
Technical	Reference	Guide
Technical	Reference	Guide
	
Quick	Reference

RDML	Commands
RDMLX	Commands
Built-In	Functions	by	Category
System	Variables
Formats,	Values	and	Codes

Fields
Rules	and	Triggers
Files
Components
Weblets
Processes	and	Functions
RDML	Commands
RDMLX	Commands	and	Full	RDMLX
Built-In	Functions
Intrinsics
System	and	Multilingual	Variables
Formats,	Values	and	Codes
Common	RDML/X	Parameters	&	BIF	Notes
Template	Commands	and	Variables
External	Resources
Windows	and	Linux	Considerations
Execution	Control
Error	Messages
Appendix	A.	Other	Vendor	Built-In	Functions

	
Edition	Date	July	22,	2015

©	LANSA
	

Quick	Reference
RDML	Commands
RDMLX	Commands
Built-In	Functions	by	Category
System	Variables
Formats,	Values	and	Codes

RDML	Commands
Refer	to	the	Visual	LANSA	Developer	Guide	for:
Sample	RDML	Programs	and
Producing	Reports	Using	LANSA.

The	following	commands	make	up	the	complete	LANSA	RDML	programming
language.
The	hyperlink	from	the	command	column	will	take	you	to	the	Command's
description	and	syntax	diagram.

The	 	in	the	example	column	will	take	you	straight	to	the	Command's	example.
*	indicates	that	there	may	be	portability	conflicts.	Check	the	command	for
details.

Command Description Example *

ABORT Abort	function	with	error	message 	

ADD_ENTRY Add	new	entry	to	a	list 	

BEGIN_LOOP Begin	a	processing	group 	

BEGINCHECK Begin	validation	check	block 	

BROWSE Browse	and	select	records	from	a	file *

CALL Call	a	program	or	process/function *

CALLCHECK Validate	data	by	calling	a	program *

CASE Begin	a	case	condition 	

CHANGE Change	content	of	field(s) *

CHECK_FOR Check	for	record	in	a	file *

CLOSE Close	file(s) 	

CLR_LIST Clear	a	list 	

COMMIT Commit	database	changes *

CONDCHECK Validate	data	by	checking	a	condition 	

CONTINUE Continue	next	iteration	of	loop 	

its:Lansa013.chm::/lansa/l4wdev05_0025.htm
its:Lansa013.chm::/lansa/l4wdev05_0030.htm

DATECHECK Validate	data	as	a	valid	date	or	in	date	range 	

DEF_ARRAY Define	an	array 	

DEF_BREAK Define	report	break	line(s) *

DEF_COND Define	a	condition 	

DEF_FOOT Define	report	foot	line(s) *

DEF_HEAD Define	report	heading	line(s) *

DEF_LINE Define	report	detail	line(s) *

DEF_LIST Define	a	browse	or	working	list *

DEF_REPORT Define	report	attributes 	

DEFINE Define	a	field	in	this	function 	

DELETE Delete	record(s)	from	a	file *

DISPLAY Display	information	on	a	workstation *

DLT_ENTRY Delete	an	entry	from	a	working	list 	

DLT_LIST Delete	a	list 	

DOUNTIL Do	until	a	condition	is	true. 	

DOWHILE Do	while	a	condition	is	true. 	

ELSE Else,	if	an	IF	condition	is	not	true 	

END_LOOP End	a	processing	loop 	

ENDCASE End	a	case	condition 	

ENDCHECK End	a	validation	check	block 	

ENDIF End	an	IF	condition 	

ENDPRINT End	all	printing *

ENDROUTINE End	a	subroutine *

ENDSELECT End	a	select	loop 	

ENDUNTIL End	a	DOUNTIL	loop 	

ENDWHILE End	a	DOWHILE	loop 	

EXCHANGE Exchange	information	with	another	function 	

EXEC_CPF Execute	a	CPF	command Discontinued *

EXEC_OS400 Execute	an	IBM	i	operating	system *

EXECUTE Execute	a	subroutine 	

EXIT Exit	from	LANSA 	

FETCH Fetch	a	record	from	a	file *

FILECHECK Validate	data	by	checking	against	a	file *

FUNCTION Define	function	control	options *

GET_ENTRY Get	entry	from	a	list 	

GOTO Pass	control	to	another	command 	

GROUP_BY Group	fields	under	a	common	name 	

IF If	a	condition	is	true 	

IF_ERROR If	a	validation	error	was	detected 	

IF_KEY If	a	key	was	used	at	workstation *

IF_MODE If	screen	display	mode	is *

IF_NULL If	field(s)	are	null 	

IF_STATUS If	I/O	status	flag	is 	

INCLUDE Include	RDML	from	another	function *

INSERT Insert	a	new	record	into	a	file *

INZ_LIST Initialize	a	list 	

KEEP_AVG Keep	average	of	fields 	

KEEP_COUNT Keep	count	of	fields 	

KEEP_MAX Keep	maximum	of	fields 	

KEEP_MIN Keep	minimum	of	fields 	

KEEP_TOTAL Keep	total	of	fields 	

LEAVE Leave	current	loop 	

LOC_ENTRY Locate	an	entry	in	a	list 	

MENU Transfer	to	process	main	menu *

MESSAGE Issue	a	message *

ON_ERROR On	a	validation	error	being	detected 	

OPEN Open	file(s) *

OTHERWISE If	no	WHEN	commands	are	satisfied 	

OVERRIDE Override	field's	dictionary	attributes 	

POINT Point	file	to	another	file/library/member *

POP_UP Present	a	pop	up	window	on	a	workstation *

PRINT Print	line(s)	on	a	report 	

RANGECHECK Validate	data	by	a	range	of	values	check 	

RENAME Rename	a	field	within	a	file *

REQUEST Request	information	from	the	workstation *

RETURN Return	from	a	subroutine 	

ROLLBACK Roll	back	database	changes *

SELECT Select	records	from	a	file *

SELECTLIST Select	entries	from	a	list 	

SELECT_SQL Select	records	from	a	file	using	SQL *

SET_ERROR Set	a	validation	error 	

SET_MODE Set	screen	display	mode *

SKIP Skip	to	line	"n"	on	a	report 	

SORT_LIST Sort	list	into	a	nominated	order *

SPACE Space	"n"	lines	on	a	report 	

SUBMIT Submit	a	program	or	process	to	batch *

SUBROUTINE Define	a	subroutine *

SUBSTRING Substring	one	field	into	another	field 	

TRANSFER Transfer	control	to	another	function *

UPD_ENTRY Update	an	entry	in	a	list 	

UPDATE Update	record(s)	in	a	file *

UPRINT Print	information	(unformatted) *

USE Use	a	Built	In	Function 	

VALUECHECK Validate	data	by	a	list	of	values	check 	

WHEN When	condition	is	true	(within	CASE) 	

	

RDMLX	Commands

ASSIGN ASSIGN	command	can	be	specified	without	the	command
name	to	assign	a	value	to	one	or	more	variables

ATTRIBUTE Enables	the	assignment	of	declarative	attributes	to	the	features
of	a	component	class.

BEGIN_COM Starts	a	component	definition.

DEFINE_COM Defines	a	component	inside	another.

DEFINE_EVT Creates	a	custom-specified	event.

DEFINE_MAP Creates	input	and	output	parameters.

DEFINE_PTY Creates	a	custom-specified	property.

END_COM Ends	a	component	definition.

ENDFOR Ends	a	FOR	loop.

ENDROUTINE Ends	EVTROUTINE,	MTHROUTINE	&	PTYROUTINE
block.

EVTROUTINE Defines	a	routine	for	an	event.

FOR Enables	the	definition	of	a	looping	block	of	code.

IF_REF Compares	references	of	component	variables.

IMPORT Used	to	include	function	libraries	into	an	object.

INVOKE Invokes	a	method.

MTHROUTINE Creates	a	custom-specified	method.

PERFORM Enables	the	calling	of	a	component	method,	library	function	or
intrinsic	feature.

PTYROUTINE Creates	a	custom-specified	property.

SELECT_SQL
Free	Format

Select	records	using	SQL	that	is	valid	for	any	database	engine.

SET Sets	a	property.

SET_REF Creates	component	reference.

SIGNAL Triggers	a	custom-specified	event.

WEB_MAP Defines	inputs	and	outputs	of	WEBROUTINE

WEBROUTINE Defines	routine	to	process	an	input	and/or	output	request	of	a
Web	Application	Module	(WAM)

	

Built-In	Functions	by	Category
The	platform	applicable	for	each	BIF	and	a	description	has	been	presented	in
each	category	table.

Application	Execution	Control
Built-In	Functions
Authority	Built-In	Functions
Client/Server	Support	Built-In
Functions
Data	Area	Built-In	Functions
Data	Queue	Built-In	Functions
Date	and	Time	Built-In
Functions
Domino	Integration	Built-In
Functions
Email	Handling	Built-In
Functions
Enhanced	5250	User	Interface
Built-In	Functions
Exchange	List	Built-In	Functions
Export/Import/Deployment
Built-In	Functions
Field	and	Component	Related
Built-In	Functions
File	Related	Built-In	Functions
Function	Related	Built-In
Functions
LANSA	Composer	Built-In
Functions
LANSA	Integrator	Built-In
Functions

List	Handling	Built-In	Functions
Locking	Built-In	Functions
Mathematical	Built-In	Functions
Messages	and	Message	Handling	Built-In
Functions
Message	Box	Built-in	Functions	
Miscellaneous	Built-In	Functions
Other	Vendor	Built-In	Functions
Process	Related	Built-In	Functions
Rule/Trigger	Related	Built-In	Functions
Space	Built-In	Functions
Spool	File	Built-In	Functions
String	Handling	Built-In	Functions
Template	Related	Built-In	Functions
Unique	Operating	System	and	Platform
Access	Built-In	Functions
Web	Built-In	Functions
Zip	Built-In	Functions

Application	Execution	Control	Built-In	Functions

Built-In	Function Description

GET_SESSION_VALUE Returns	the	value	for	a	specified	X_RUN
parameter.

SET_FOR_HEAVY_USAGE Set	for	heavy	usage	mode.

SET_FOR_LIGHT_USAGE Set	for	light	usage	mode.

SET_SESSION_VALUE Set	or	reset	a	Visual	LANSA	session	value.

	

Authority	Built-In	Functions

Built-In	Function Description

CHECK_AUTHORITY Check	authority	on	object.

GET_AUTHORITIES Retrieves	a	list	of	authorities		and	returns	it	in	a
variable	length	working	list.

SET_AUTHORITY Sets	user	authority		to	a	LANSA	object.

	

Client/Server	Support	Built-In	Functions

Built-In	Function Description

CALL_SERVER_FUNCTION Calls	a	function	on	a	server.

CHANGE_IBMI_SIGNON Changes	the	password	of	the	user	profile	on	the
IBM	i	server.

CHECK_IBMI_SIGNON Checks	the	status	of	the	user	profile	on	the	IBM
i	server.

CONNECT_FILE Connects	a	file	to	a	server.	See	Database
Connection	Notes

CONNECT_SERVER Connects	to	a	server.		See	Database	Connection
Notes

DEFINE_ANY_SERVER Defines	details	of	a	LANSA	system	to	be	used
as	a	server.

DEFINE_DB_SERVER Defines	database	for	redirected	files.	See
Database	Connection	Notes

DEFINE_OS_400_SERVER Defines	an	IBM	i	server	machine.

DEFINE_OTHER_SERVER Defines	a	non-IBM	i	server	system.

DISCONNECT_FILE Disconnects	a	file	from	a	server.

DISCONNECT_SERVER Disconnects	from	a	server.

	

Data	Area	Built-In	Functions

Built-In	Function Description

GET_CHAR_AREA Get	a	character	value	from	a	data	area.

GET_NUM_AREA Get	a	numeric	value	from	a	data	area.

PUT_CHAR_AREA Put	a	character	value	into	a	data	area.

PUT_NUM_AREA Put	a	numeric	value	into	a	data	area.

	

Data	Queue	Built-In	Functions

Built-In	Function Description

RCV_FROM_DATA_QUEUE Receive	working	list	entry(s)	from	a	data	queue

SND_TO_DATA_QUEUE Send	working	list	entry(s)	to	a	data	queue

	

Date	and	Time	Built-In	Functions
Date	Formats

Built-In	Function Description

CONVERTDATE Converts	format	of	alphanumeric	date.

CONVERTDATE_NUMERIC Converts	format	of	numeric	date

DATEDIFFERENCE Calculates	the	difference	between	two	dates.

DATEDIFFERENCE_ALPHA Calculates	the	difference	between	two
alphanumeric	dates

FINDDATE Finds	date	"n"	days	after/before	a	given	date.

FINDDATE_ALPHA Finds	date	"n"	days	after/before	a	given
alphanumeric	date

	

Domino	Integration	Built-In	Functions

Built-In	Function Description

DOM_ADD_FIELD Adds	a	field	to	an	open	data	note	using	the
item	name.

DOM_ADD_ITEM Adds	an	item	to	an	open	data	note	using	the
item	name.

DOM_CLOSE_DATABASE Closes	an	opened	Domino/Notes	Database	on
a	local	or	remote	Domino	server.

DOM_CLOSE_FILE Closes	an	opened	Domino/Notes	File	on	a
local	or	remote	Domino	server.

DOM_CLOSE_DOCUMENT Closes	an	open	document	when	no	longer
required.

DOM_CREATE_DOCUMENT Creates	a	new	document/data	note	in	memory
within	an	opened	database.

DOM_DELETE_DOCUMENT Deletes	a	document/data	note	from	the
database	using	the	given	Note	ID.

DOM_DELETE_FIELD Deletes	a	field	from	an	open	document/data
note	using	the	item	name.

DOM_DELETE_ITEM Deletes	an	item	from	an	open	document/data
note	using	the	item	name.

DOM_END_SEARCH_DOCS Releases	all	memory	that	was	allocated	for
search	process.

DOM_EXECUTE_AGENT Executes	an	Agent.

DOM_GET_FIELD Gets	a	field	from	an	open	data	note	using	the
item	name.

DOM_GET_ITEM Gets	an	item	from	an	open	data	note	using	the
item	name.

DOM_GET_NXT_DOCUMENT Retrieves	Note	ID	from	the	ID	Table.

DOM_CLOSE_DATABASE Closes	a	Domino/Notes	Database	on	a	local
or	remote	Domino	server.

DOM_CLOSE_FILE Closes	a	Domino/Notes	File	on	a	local	or
remote	Domino	server.

DOM_OPEN_DATABASE Opens	a	Domino/Notes	Database	on	a	local
or	remote	Domino	server

DOM_OPEN_DOCUMENT Opens	the	specified	document	within	a
database	using	the	given	Note	ID.

DOM_SEARCH_DOCUMENTS Searches	a	database	for	documents/data	notes
matching	selection	criteria	or	using	a
previously	created	view.

DOM_UPDATE_DOCUMENT Updates	a	document/data	note	in	the
database.

DOM_UPDATE_FIELD Updates	an	existing	field	to	an	open	data	note
using	the	item	name.

DOM_UPDATE_ITEM Updates	an	existing	item	to	an	open	data	note
using	the	item	name.

	

Email	Handling	Built-In	Functions
Also	see
Email	Built-In	Functions	Notes

Built-In	Function Description

MAIL_START Initialize	a	mail	message

MAIL_ADD_TEXT Append	message	text

MAIL_ADD_ATTACHMENT Add	attachment	file

MAIL_ADD_RECIPIENT Add	a	recipient

MAIL_ADD_ORIGINATOR Add	an	originator

MAIL_SET_SUBJECT Set	the	mail	message	subject

MAIL_SET_OPTION Set	O/S	specific	mail	option

MAIL_SEND Send	mail	message

	

Enhanced	5250	User	Interface	Built-In	Functions

Built-In	Function Description

ADD_DD_VALUES Add	dropdown	values.

ALLOW_EXTRA_USER_KEYAllow	an	extra	user	function	keys	to	be	used.

BUILD_WORK_OPTIONS Build	option	lists	for	a	"Work	With"	Driver

DROP_DD_VALUES Drop	dropdown	values.

DROP_EXTRA_USER_KEYS Drop	all	extra	user	function	keys	assigned.

SET_ACTION_BAR Make	pull	down	choices	available	/
unavailable.

SET_DD_ATTRIBUTES Set	attributes	of	a	drop	down	field.

SHOW_HELP Modally	display	help

	

Exchange	List	Built-In	Functions

Built-In	Function Description

EXCHANGE_ALPHA_VAR Put	an	alphanumeric	value	on	the	exchange
list.

EXCHANGE_NUMERIC_VAR Put	a	numeric	value	on	the	exchange	list.

	

Export/Import/Deployment	Built-In	Functions

Built-In	Function Description

EXPORT_OBJECTS Creates	LANSA	Import	formatted	files	LANSA
objects	specified.

GET_BIF_LIST Searches	for	BIF	name	and	returns	BIF	details.

GET_COMPOSITION Returns	the	list	of	objects	that	comprise	a	LANSA
Object.

GET_ENVIRONMENTS Return	a	list	of	the	Environment	Names	and	a	build
environment	indicator.

GET_LICENSE_STATUS Retrieve	the	status	of	LANSA	licenses	in	this
LANSA	system	as	at	specified	particular	date

GET_PROPERTIES Returns	the	version	details	for	a	single	LANSA
object.

GET_TASK_DETAILS Retrieves	a	list	of	all	objects	modified	under	the
specified	task.

GET_TASK_LIST Reads	LX_F75	to	return	a	list	of	tasks.

GET_TEMPLATE_LIST Returns	a	list	of	all	templates	in	the	system

IMPORT_OBJECTS Acts	as	an	interface	to	the	LANSA	Import	Facility.

OBJECT_PROPAGATE Propagate	an	object	to	a	given	repository	group.

PACKAGE_CREATE Creates	a	package	based	on	the	supplied	Deployment
Tool	Template.

PACKAGE_BUILD Builds	a	package	that	has	been	defined	using	the
Deployment	Tool	or		the	PACKAGE_CREATE
Built-In	Function.

	

Field	and	Component	Related	Built-In	Functions

Built-In	Function Description

DLT_FIELD Deletes	a	field	definition	from	the	LANSA
Repository.

GET_COMPONENT_LIST Returns	a	list	of	Components.

GET_FIELD Retrieves	attributes	of	a	LANSA	Repository	field.

GET_FIELD_INFO Retrieves	a	list	of	LANSA	internal	database	field
information

GET_FIELD_LIST Retrieves	a	list	of	LANSA	Repository	fields	and
descriptions.

GET_HELP Gets	a	list	of	help	text	for	a	specified	field,
function	or	process.

GET_MULTVAR_LIST Retrieves	a	list	of	multilingual	variables	and
values.

GET_ML_VARIABLE Retrieves	a	multilingual	variable	definition.

GET_SYSVAR_LIST Retrieves	a	list	of	system	variables	and
descriptions,	programs	and	program	types.

GET_SYSTEM_VARIABLE Retrieves	a	system	variable	definition.

PUT_FIELD Inserts/updates	a	field	in	the	LANSA	Repository.

PUT_FIELD_ML Puts/updates	a	list	of	field	multilingual	attributes
in	different	languages.

PUT_HELP Puts/updates	a	list	of	help	text	for	a	specified
field,	function	or	process.

PUT_ML_VARIABLE Adds/updates	a	multilingual	variable	definition	to
the	Repository.

PUT_SYSTEM_VARIABLE Creates/amends	a	system	variable.

	

File	Related	Built-In	Functions

Built-In	Function Description

ACCESS_FILE Read	records	from	any	file	in	the	system.

ACCESS_RTE Specifies/re-specifies	the	attributes	of	an	"access
route".

ACCESS_RTE_KEY Specifies/re-specifies	the	name	of	a	field	or
value	that	is	to	be	used	to	access	data	via	an
access	route.

COMPARE_FILE_DEF Compares	two	CTD	files	and	indicates	if	a
difference	is	found.

DLT_FILE Submits	a	batch	job	to	delete	a	file	and	its
associated	logical	files	and	I/O	module.

END_FILE_EDIT Ends	an	"edit	session"	on	the	definition	of	a
nominated	LANSA	file.

FILE_FIELD Specifies/re-specifies	a	field	in	format	of	the	file
being	edited.

FILE_FIELD	VIRTUAL Specifies/re-specifies	a	virtual	field	of	the	file
definition	being	edited.

GET_FILE_INFO Retrieves	a	list	of	file	related	information	from
the	LANSA	internal	database.

GET_LOGICAL_LIST Retrieves	a	list	of	physical	files,	associated
logical	views	and	descriptions.

GET_PHYSICAL_LIST Retrieves	a	list	of	physical	files	and	descriptions.

LOAD_FILE_DATA Calls	the	OAM	for	the	requested	file	and	loads
the	data.

LOAD_OTHER_FILE Loads	the	definition	of	an	"OTHER"	file.

LOGICAL_KEY Specifies/re-specifies	the	name	of	a	field	that	is	a
key	of	a	logical	view/file.

LOGICAL_VIEW Specifies/re-specifies	the	name	and	basic

attributes	of	a	logical	view/file

MAKE_FILE_OPERATIONL Submits	a	batch	job	to	create/recreate	a	file	plus
associated	logical	files	and	I/O	module.

PHYSICAL_KEY Specifies/re-specifies	the	key	of	the	physical	file
associated	with	the	file	being	edited.

PUT_FILE_ML Puts/updates	a	list	of	file	multilingual	attributes
in	different	languages.

REBUILD_FILE Optionally	drops	the	existing	file	and	its	views,
and	creates	the	new	file	from	the	CTD	file	.

REBUILD_TABLE_INDEX Rebuild	IBM	i	High	Speed	Index

RESET_@@UPID Reset	the	@@UPID	field	to	zero	in	any	file.

SET_FILE_ATTRIBUTE Sets	a	file's	database	attributes.

START_FILE_EDIT Starts	an	"edit	session"	on	the	definition	of	a
nominated	LANSA	file	definition.

STM_FILE_CLOSE Closes	the	stream	file	which	was	opened	by	a
STM_FILE_OPEN

STM_FILE_OPEN Opens	a	stream	file.

STM_FILE_READ Reads	data	from	the	specified	stream	file	that
was	opened	by	STM_FILE_OPEN.

STM_FILE_WRITE Writes	data	to	the	specified	stream	file	that	was
opened	by	STM_FILE_OPEN.

STM_FILE_WRITE_CTL Writes	Line	terminator	character/s	to	the	data
stream.

UNLOAD_FILE_DATA Calls	the	OAM	for	a	file	and	unloads	all	its	data
to	a	flat	file.

	

Function	Related	Built-In	Functions

Built-In	Function Description

DELETE_FUNCTION Deletes	all	details	of	the	function	currently	being
edited.

END_FUNCTION_EDIT Ends	an	active	edit	session	on	a	LANSA	function
definition.

GET_FUNCTION_ATTR Gets	an	attribute	of	the	function	being	edited.

GET_FUNCTION_INFO Retrieves	a	list	of	function	related	information
from	the	LANSA	internal	database	for	the	RDML
function.

GET_FUNCTION_LIST Retrieves	a	list	of	processes,	associated	functions
and	descriptions	from	the	LANSA	internal
database.

GET_FUNCTION_RDML Returns	the	RDML	code	associated	with	a
function.

PUT_FUNCTION_ATTR Sets	an	attribute	of	a	function	definition	that	is
being	edited.

PUT_FUNCTION_ML Puts/updates	a	list	of	function	multilingual
attributes	in	different	languages.

PUT_FUNCTION_RDML Stores	the	RDML	code	associated	with	a	function
from	a	working	list.

START_FUNCTION_EDIT Starts	an	"edit	session"	on	the	definition	of	a
nominated	LANSA	function	definition.

	

LANSA	Composer	Built-In	Functions

Built-In	Function Description

COMPOSER_CALLF Calls	a	named	LANSA	function.

COMPOSER_USE Runs	a	LANSA	Composer	Processing	Sequence.

COMPOSER_RUN Connects	to	the	nominated	LANSA	or	LANSA
Composer	server	system.

	

LANSA	Integrator	Built-In	Functions

Built-In	Function Description

MQSeries	in	the	LANSA
Integrator	Guide

Transfer	messages	from	a	message	queue	to
loaded	service	for	processing.
Transfer	XML	responses	from	the	loaded	service
into	a	message	queue.

	

Java	Service	Manager	Built-In	Functions	
Built-In	Function Description

JSM_COMMAND Sends	a	command	string	to	the	currently	open	JSM	server
connection.

JSM_OPEN Opens	a	connection	to	the	JSM	server.

JSM_CLOSE Closes	the	currently	open	connection	to	the	JSM	server.

JSMX_COMMANDSends	a	command	string	to	the	JSM	connection	identified
by	the	handle.

JSMX_OPEN Opens	a	connection	to	the	JSM	server	to	start	a	service
thread	for	commands	sent	by	JSMX_COMMAND.

JSMX_CLOSE Closes	the	JSM	connection	identified	by	the	handle.

	

its:LANSA093.CHM::/lansa/intengb7_1980.htm

List	Handling	Built-In	Functions

Built-In	Function Description

DELETE_SAVED_LIST Delete	a	previously	saved	list.

RESTORE_SAVED_LIST Restore	a	previously	saved	list.

SAVE_LIST Save	a	working	list	to	disk.

TRANSFORM_FILE Transform	a	disk	file	into	a	working	list(s).

TRANSFORM_LIST Transform	working	list(s)	to	a	disk	file.

	

Locking	Built-In	Functions

Built-In	Function Description LANSA
for	i

LOCK_OBJECT Lock	a	User	Object. Y

UNLOCK_OBJECT Unlock	a	User	Object. Y

	

Mathematical	Built-In	Functions

Built-In	Function Description

EXPONENTIAL Calculate	exponential	value.

RANDOM_NUM_GENERATOR Returns	a	random	number	between	0	and	1.

ROUND Rounds	off	a	decimal	value.

SQUARE_ROOT Calculate	a	square	root	value.

	

Messages	and	Message	Handling	Built-In	Functions

Built-In	Function Description

CLR_MESSAGES Clear	all	messages	from	RDML	program	queue.

GET_MESSAGE Gets	details	of	next	message	from	RDML	pgm
queue.

GET_MESSAGE_DESC Gets	the	description	of	a	message	from	a	msg	file.

GET_MESSAGE_LIST Loads	the	list	with	each	subsequent	message
file/message	stored	in	the	message	table.

ISSUEINQUIRY Issue	an	inquiry	message	to	a	message	queue.

ISSUEMESSAGE Issue	a	message	to	a	message	queue.

MESSAGE_COLLECTOR Nominate	function	as	a	message	collector.

	

Message	Box	Built-in	Functions	

Built-In	Function Description

MESSAGE_BOX_ADD Adds	items	to	the	message	box	assembly	area.

MESSAGE_BOX_APPEND Appends	items	to	the	message	box	assembly	area.

MESSAGE_BOX_CLEAR Clears	the	current	message	box	assembly	area.

MESSAGE_BOX_SHOW Causes	a	standard	MS	message	box	to	be
displayed.

	

Miscellaneous	Built-In	Functions

Built-In	Function Description

GET_ILENTRY_LIST Retrieves	a	list	of	Impact	List	entries	and	descriptions
from	the	data	dictionary.

LIST_PRINTERS Retrieves	a	list	of	printers	currently	configured	on	the
machine.

MAKE_SOUND Causes	a	standard	sound	to	be	queued.

	

Other	Vendor	Built-In	Functions

Built-In
Function

Description

Other	Vendor
Built-In
Functions

A	collection	of	miscellaneous	Built-In	Functions	created	by
LANSA	users	and	distributed	by	LANSA	as	a	service.
These	Built-In	Functions	carry	no	guarantees	and	you	use
them	at	your	own	risk.

	

Process	Related	Built-In	Functions

Built-In	Function Description

COMPILE_PROCESS Submits	a	batch	job	to	compile	a	process	and	all
selected	functions.

COMPILE_COMPONENT Compiles	a	component.

DELETE_PROCESS Submits	a	batch	job	to	delete	a	process	and	all	of
its	functions.

DLT_PROCESS_ATTACH Deletes	attached	processes	and/or	functions	from
the	definition	of	the	process	definition	being
edited.

END_PROCESS_EDIT Ends	an	active	edit	session	on	a	LANSA	process
definition.

GET_PROCESS_ATTR Gets	attributes	of	a	process	definition.

GET_PROCESS_INFO Retrieves	a	list	of	process	related	information	from
the	LANSA	internal	database.

GET_PROCESS_LIST Retrieves	a	list	of	processes	and	descriptions	from
the	LANSA	internal	database.

PUT_PROCESS_ACTIONS Puts	the	definition	of	an	action	bar	layout	into	the
definition	of	the	process	definition.

PUT_PROCESS_ATTACH Puts	a	process	and/or	function	"attachment"	into
the	definition	of	the	process	definition.

PUT_PROCESS_ATTR Sets	an	attribute	of	a	process	definition	within	an
edit	session.

PUT_PROCESS_ML Puts/updates	a	list	of	process	multilingual
attributes	in	different	languages.

START_PROCESS_EDIT Starts	an	"edit	session"	on	the	definition	of	a
nominated	LANSA	process	definition.

	

Rule/Trigger	Related	Built-In	Functions

Built-In	Function Description

DELETE_CHECKS Deletes	standard	Repository	or	File	level	validation
checks	from	nominated	field.

DELETE_TRIGGERS Deletes	standard	Repository	or	File	level	triggers
from	nominated	field	for	subsequent	replacement

PUT_COND_CHECK Create/amend	a	"simple	conditional	logic"
Repository	or	File	level	validation	check

PUT_DATE_CHECK Create/amend	a	"date	range/date	format"
Repository	or	File	level	validation	check.

PUT_FILE_CHECK Create/amend	a	"code/table	file	lookup"	Repository
or	File	level	validation	check.

PUT_PROGRAM_CHECK Create/amend	a	"call	user	program"	Repository	or
File	level	validation	check.

PUT_RANGE_CHECK Create/amend	a	"range	of	values"	Repository	or
File	level	validation	check.

PUT_TRIGGER Create/amend	a	Repository	or	File	level	trigger.

PUT_VALUE_CHECK Create/amend	a	"list	of	values"	Repository	or	File
level	validation	check.

	

Space	Built-In	Functions

Built-In	Function Description

CREATE_SPACE Creates	a	space	object	with	the	specified	name

DEFINE_SPACE_CELL Defines	a	cell	(or	column)	within	the	specified
space	object.

DELETE_IN_SPACE Deletes	all	cell	rows	that	matches	the	key	values
supplied

DESTROY_SPACE Destroys	a	space	object	with	the	specified	name

FETCH_IN_SPACE Retrieves	the	values	of	the	first	cell	row	that
matches	the	key	values	supplied.

INSERT_IN_SPACE Inserts	a	set	of	cell	values	into	a	space	object

SELECT_IN_SPACE Retrieves	the	values	of	the	first	row	of	cells	that
match	the	key	values	supplied

SELECTNEXT_IN_SPACE Retrieves	the	values	of	the	next	row	of	cells	that
match	the	key	values	supplied.

SPACE_OPERATION Request	a	miscellaneous	space	object	operation

UPDATE_IN_SPACE Updates	a	single	cell	row	that	matches	the	key
values	supplied

	

Spool	File	Built-In	Functions

Built-In	Function Description

START_RTV_SPLF_LIST Provides	the	selection	criteria	for	retrieval	of	spool
files.

GET_SPLF_LIST_ENTRY Retrieves	the	details	of	the	specified	spooled	files.

END_RTV_SPLF_LIST Closes	the	list	and	releases	the	storage	allocated	to
that	list.

	

String	Handling	Built-In	Functions

Built-In	Function Description

BCONCAT Concatenate	strings	with	a	blank	character.

BINTOHEX Converts	source	field	from	binary	to
alphanumeric.

CENTRE CENTRE	an	argument	string	into	a	return	string.

CHECKNUMERIC Check	and	convert	an	alpha	string	to	numeric
form.

CHECKSTRING Check	a	string	only	contains	allowable	values.

CONCAT Concatenate	strings	in	full	(no	truncation).

CONVERT_STRING Converts	a	text	string	from	one	encoding	to
another.

DECRYPT Decrypts	a	string.

ENCRYPT Encrypts	a	string.

FILLSTRING Fill	a	field	with	occurrences	of	a	string.

FORMAT_STRING Returns	a	character	string	which	is	built	from	an
input	Format	Pattern.

GET_KEYWORD_STRING Get	keywords	and	values	from	an	ESF	string.

HEXTOBIN Converts	source	field	from	alphanumeric	to
binary.

LEFT Left	align	argument	into	return	string.

NUMERIC_STRING Convert	a	number	to	a	string.

REVERSE Reverse	a	text	string.

RIGHT Right	align	argument	into	return	string.

SCANSTRING Scan	a	string	for	first	occurrence	of	a	pattern.

TCONCAT Concatenate	strings	with	trailing	blanks	truncated.

UPPERCASE Convert	a	string	to	uppercase	characters.

	

Template	Related	Built-In	Functions

Built-In	Function Description

EXECUTE_TEMPLATE Executes	an	application	template	to	generate
RDML	function	code	into	a	working	list.

TEMPLATE_@@ADD_LST Allows	a	new	field	to	be	added	to	an	application
template	list.

TEMPLATE_@@CANSNNN Allows	an	application	template	character	reply
variable	to	be	set	before	execution.

TEMPLATE_@@CLR_LST Clears	an	application	template	list.

TEMPLATE_@@GET_FILS Returns	a	list	of	all	related	files	from	a
nominated	base	file

TEMPLATE_@@NANSNNN Allows	an	application	template	numeric	reply
variable	to	be	set	before	execution.

TEMPLATE_@@SET_FILS Allows	file(s)	from	a	list	of	files	to	be	"selected"
for	use	within	an	application	template.

TEMPLATE_@@SET_IDX Allows	an	index	variable	to	be	set	to	a
nominated	value	before	execution.

	

Unique	Operating	System	and	Platform	Access	Built-In
Functions

Built-In	Function Description

DLL Invoke	a	function	contained	in	a	DLL.

GET_REGISTRY_VALUE This	BIF	will	return	the	Value	for	the	specified
Registry	Key.

PUT_REGISTRY_VALUE This	BIF	will	add/update	the	value	for	the	specified
Registry	Key.

SYSTEM_COMMAND Execute	an	operating	system	command.

	

Web	Built-In	Functions

Built-In	Function Description

DELETE_WEB_COMPONENT Deletes	a	Web	Component	and	backups.

GET_WEB_COMPONENT Gets	the	page	text	for	a	Web	Component.

PUT_WEB_COMPONENT (Re)build	a	Web	Component.	Use	when
generating	a	hand	crafted	Web	Component	at
execution	time.

	

Zip	Built-In	Functions
Also	see
Zip	Built-in	Function	Note

Built-In	Function Description

ZIP_ADD Adds	files	to	zip	file.

ZIP_DELETE Deletes	files	from	zip	file.

ZIP_EXTRACT Extracts	files	from	zip	file.

ZIP_GET_INFO Retrieve	information	about	zip	file.

ZIP_MAKE_EXE Create	executable	file	from	zip	file.

	

System	Variables
Refer	to:
General	Variables
Function	Only	Variables
BIF	Variables
Special	Variables
SuperServer	Variables
System	Variable	Evaluation	Programs	in	the	Visual	LANSA	Developer	Guide.

its:lansa013.CHM::/lansa/crfile8_begin.HTM

Formats,	Values	and	Codes
Refer	to:
Date	Formats
Standard	Field	Edit	Codes
Arithmetic	and	Expression	Operators
RDML	Field	Attributes	and	their	Use
RDML	I/O	Return	Codes
Help	Text	Enhancement	and	Substitution	Values

	
	
	

1.	Fields
Fields	can	be	defined	in	either:
the	LANSA	Repository	or
directly	in	the	RDML	Source	Code	using	the	DEFINE	command.

The	information	in	this	chapter	relates	to	fields	defined	in	the	LANSA
Repository.
Specific	details	of	field	type	rules,	warnings,	tips	and	techniques,	and	platform
considerations	are	documented	by	field	type.

Also	See
1.1	Field	Types
1.2	Field	Definitions
1.3	Field	Visualizations
1.4	Field	Rules	and	Triggers
1.5	Field	Help	Text		
Components
Fields	in	the	User	Guide
Creating	Fields	in	the	Developer	Guide

its:Lansa012.chm::/lansa/l4wusr01_0130.htm
its:LANSA013.CHM::/lansa/L4wDev03_0010.htm

1.1	Field	Types
Please	review	the	general	1.1.1	Field	Type	Considerations.	Specific	details	of
field	type	rules,	warnings,	tips	and	techniques,	and	platform	considerations	are
documented	by	field	type.	Select	the	field	type	of	interest:

1.1.2	Alpha
1.1.14	Binary
1.1.17	BLOB
1.1.19	Boolean
1.1.5	Char
1.1.18	CLOB

1.1.11	Date
1.1.13	DateTime
1.1.16	DBCS	Graphic	String
1.1.10	Float
1.1.9	Integer
1.1.6	NChar

1.1.4	NVarChar
1.1.7	Packed
1.1.8	Signed
1.1.3	String
1.1.12	Time
1.1.15	VarBinary

Also	See
1.2	Field	Definitions
	1.	Fields

1.1.1	Field	Type	Considerations

Field	Type	Use
Recommendations		

Field	Type
Conversions		

RDMLX
Enabled
Partition		

SQL	Null
Handling		

What	Classifies	a
Field	as	RDML?

Field	Definitions
Field	types	1.1.2	Alpha,	1.1.7	Packed,	and	1.1.8	Signed	can	be	used	in	all
partitions.
Field	types	1.1.11	Date,	1.1.12	Time,	1.1.13	DateTime,	1.1.14	Binary,	1.1.15
VarBinary,	1.1.3	String,	1.1.4	NVarChar,	1.1.6	NChar,	1.1.5	Char,	1.1.9
Integer,	1.1.10	Float,	1.1.17	BLOB,	1.1.18	CLOB	and	1.1.19	Boolean	must
be	used	in	an	RDMLX	Enabled	Partition.	Refer	to	RDML	and	RDMLX
Partition	Concepts	in	the	Administrator	Guide	for	details	about	these	partition
differences.
Packed,	Signed	and	Integers	allow	Edit	Codes	and	Edit	Words.	No	other	field
types	support	Edit	Codes	or	Edit	Words.
Keyboard	Shift	Blanks	is	the	only	valid	value	for	Binary,	VarBinary,	Date,
Time,	DateTime,	Integer,	Float,	NVarChar,	NChar,	BLOB	and	Boolean.
In	an	RDMLX	partition,	a	field	that	is	defined	by	a	reference	field	must	not
have	different	attributes	to	the	reference	field,	regardless	of	the
*IMPREFFLDNOPROP	flag	in	the	system	definitions.
ASQN	attribute	(see	Common	Attributes	in	1.2.17	Input	Attributes)	will	be
enabled	by	default	for	new	fields	of	types	Date,	Time,	DateTime,	Binary,
VarBinary,	BLOB,	and	CLOB.

Field	Usage	in	LANSA
LANSA	has	implemented	strong	typing	for	all	field	types.
Alpha,	String	and	Char	are	all	classed	as	String	types	and	are	valid	for
LANSA	arguments	of	type	'A'.
Packed,	Signed,	Float	and	Integer	are	classed	as	Numbers	and	so	are	valid
for	LANSA	arguments	of	type	'N'.
All	other	types	like	Date,	DateTime	and	BLOB	are	classed	as	their	own	type
and	are	not	valid	for	either	a	type	'A',	or	type	'N'.
Use	of	Hex	00	is	not	supported	by	LANSA	in	Alpha,	String,	Char,	NVarChar

its:LANSA011.CHM::/lansa/l4wpar01_0020.htm

and	NChar	fields.	The	behavior	will	vary	depending	on	what	platform	you	are
on	and	the	database	you	write	the	data	to.	The	use	of	hex	00	in	Alpha	working
fields	where	overlays	are	used	may	have	a	valid	purpose	in	RDML	on	IBM	i,
but	it	is	up	to	the	you	to	ensure	that	the	LANSA	behavior	meets	the	needs	of
the	application	on	all	platforms	and	databases	where	the	application	may	run.
Field	types	have	a	default	property,	usually	.Value,	and	additional	properties
as	required.		For	a	Date	field	#MyDate,	the	following	examples	all	have	an
identical	meaning:
Define	Field(#MyDate)	Type(*DATE)
Change	#MyDate	To(1972-03-04)
Set	#MyDate	Value(1972-03-04)
#MyDate.Value	:=	"1972-03-04"
Rather	than	the	default	property	.Value,	fields	of	type	BLOB	and	CLOB	have
a	default	property	called	.FileName	to	clearly	indicate	that	changing	the
"value"	of	the	field	is	actually	changing	its	default	property	which	is	a	file
name	property.
Fields	that	are	SQL-nullable	can	be	tested	with	*IS	or	*ISNOT	*SQLNULL,
and	also	have	an	intrinsic	property	called	.IsSqlNull.	This	can	be	used	to
determine	the	current	state	of	the	field.	For	example:
If	(#Std_Num.IsSqlNull)
	
If	(#Std_Num	*ISNOT	*SqlNull)
	
If	((*Not	#Std_Num.IsSqlNull)	*AndIf	(#Std_Num	>	45.00))
	
If	(([your	expression]	*IS	*SqlNull)

Built-In	Function	Argument/Return	Value	Types
Refer	to	BIF	Function	Rules	for	information.

Tips	&	Techniques
LANSA	has	implemented	strong	typing	for	all	field	types.	For	example,	a
Built-In	Function	that	allows	an	Alpha	will	also	support	String.	It	will	not
allow	a	DateTime.	To	use	a	DateTime,	you	simply	use	#MyDateTim.asString,
explicitly	stating	that	you	want	to	use	the	string	representation.
If	you	are	using	RDML	Partitions,	you	may	wish	to	refer	to	the	LANSA	for	i
User	Guide.	This	documentation	has	been	written	for	development	using
RDML	Partitions	only.

Some	field	types	such	as	1.1.10	Float	are	primarily	supported	in	LANSA	for
use	with	Other	Files	and	are	not	recommended	for	use	in	business
applications.	It	is	recommended	that	you	use	1.1.9	Integer	or	1.1.7	Packed
fields	for	the	majority	of	your	numeric	data,	and	1.1.8	Signed	is	also
recommended	for	RDML	partitions.
Character	data	can	be	stored	in	1.1.2	Alpha,	1.1.3	String,	1.1.5	Char,	1.1.4
NVarChar	and	1.1.6	NChar	type	fields.	Where	possible,	use	of	1.1.2	Alpha
fields	is	recommended.
Select	the	vendor	specific	DBMS	you	are	targeting	and	be	sure	to	review	all
warnings	when	creating/editing	files	to	ensure	that	there	are	no	problems
supporting	a	specific	field	range	for	the	selected	DBMS.

Platform	Considerations
When	creating	a	LANSA	file,	LANSA	field	types	are	converted	to	specific
DBMS	Data	types	supported	by	each	vendor.	For	example,	an	Integer	field
(depending	upon	its	length)	might	be	implemented	as	a	TINYINT,
SMALLINT,	INTEGER,	BIGINT,	NUMBER(3),	NUMBER(5),	or	other
type,	depending	upon	the	specific	vendor	DBMS	layer	supported.	The	file
x_dbmenv.dat	controls	this	behavior	though	it	must	not	be	modified.
In	some	cases,	a	particular	vendor's	DBMS	may	not	be	able	to	handle	the	full
length	of	a	field	because	the	length	of	data	available	in	LANSA	exceeds	the
length	available	in	the	vendor's	database.	It	is	possible	to	select	the	target
DBMS	system	and	warnings	will	be	displayed	where	the	field	may	not	be
preserved	exactly.	In	these	cases,	the	data	will	either	be	truncated,	or	rejected.
For	example,	if	you	define	a	DateTime	of	length	29,	Oracle	supports	storing
the	full	9	decimal	places.	Other	DBMSs	might	automatically	truncate	data	to
0,	3,	or	6	decimal	places.

Also	See

1.1.2	Alpha
1.1.11	Date
1.1.14	Binary
1.1.5	Char
1.1.6	NChar

1.1.9	Integer
1.1.17	BLOB
1.1.7	Packed
1.1.12	Time
1.1.4	NVarChar

1.1.15	VarBinary
1.1.3	String
1.1.10	Float
1.1.18	CLOB

1.1.8	Signed
1.1.13	DateTime
1.1.17	BLOB
1.1.19	Boolean
	

	1.1	Field	Types

Field	Type	Use	Recommendations
If	you	want	to	define	a	new	field	into	the	LANSA	dictionary	use	this	decision
tree:
Is	the	field	a	Date	or	a	Time?

To	store	a	unique	day	use	type	Date.
To	store	a	unique	moment	in	time	use	type	DateTime	(in	preference	to
two	separate	Date	and	Time	fields).
To	store	a	non-unique	time,	which	is	unusual,	use	Time.

Is	it	a	True/False	value?	If	so,	use	Boolean.
Is	it	a	number?	If	there	are	no	decimal	places	use	type	Integer	otherwise	use
type	Packed.
Then	it	must	be	a	string	of	characters	or	some	other	stream	of	bytes.

Is	it	normally	kept	in	a	specialized	type	of	file	or	document	(eg:	an
image,	a	sound,	an	MS-Word	document	or	an	XML	document)?	Use
type	BLOB.
Do	you	expect	it	to	be	subjected	to	normal	code	page	conversions?	If
not,	use	VarBinary	unless	your	data	is	always	the	same	length,	in
which	case	you	may	choose	to	use	Binary.
Will	the	field	be	256	bytes	or	less	and	be	best	stored	as	a	fixed	length
field?	If	yes,	and	it	only	needs	to	support	one	language	at	execution
time,	use	type	Alpha.
Will	it	ever	be	longer	than	65535	bytes?	Use	type	CLOB.
Do	you	store	the	field	as	variable	length	with	any	trailing	blanks
significant	(for	example,	included	in	field	concatenation	operations)?
If	it	only	needs	to	support	one	language	at	execution	time,	use	type
String.	Otherwise,	use	type	NVarChar.
Otherwise	it	is	fixed	length.	If	it	only	needs	to	support	one	language	at
execution	time,	use	type	Char.	Otherwise,	use	type	NChar.

All	other	types	are	provided	for	compatibility	with	non-LANSA
database	tables.	Generally	you	should	avoid	using	them	when	defining
new	fields	or	columns	in	new	DBMS	tables.

Commonly	Used	Field	Types

Type Description Typical
DBMS
Storage	Type

Maximum
Dictionary
Definable
Length	

Subject	to
Code	Page
Conversions

Notes

Integer Integer INTEGER 4	bytes. 	 Hardware
and
compiler
behaviors
may	vary.

Packed Standard	decimal
number

DECIMAL RDMLX
programs:
63	digits	of
which	up
to	63	may
be
decimals
RDML
programs:
30	digits	of
which	up
to	9	may
be
decimals

N/A 	

String Variable	length
alphanumeric	string
with	a	dictionary
defined	maximum
length.

VARCHAR
(variable
length)

65535 YES Not
padded
with
blanks	to
the
dictionary
defined
maximum
length,
except
that	a
zero

length
string	has
1	space
added.

VarBinaryExactly	the	same	as
String	but	never
subjected	to	code
page	conversions.

VARBINARY32767 NO Not
padded	to
the
dictionary
defined
maximum
length.

NVarChar Similar	to	String	but
data	is	handled	as
Unicode.	This	allows
multiple	languages	to
be	used	at	execution
time.

NVARCHAR 65535
characters

YES	(but
only	when
converted	to
native
String)

	

Alpha Constant	length
alphanumeric	string
with	a	dictionary
defined	maximum
length.

CHAR	(fixed
length)

256 YES Always
padded
with
blanks	to
the
dictionary
defined
maximum
length.		

Date Date	in	ISO	format:
YYYY-MM-DD
	

DATE N/A N/A 	

Time Time	is	ISO	format
HH:MM:SS
	

TIME N/A N/A 	

DateTime Date	and	Time	in
ISO	format	YYYY-
MM-DD

DATETIME 29 N/A 	

HH:MM:SS[.fffffffff]
where	the	existence
and	length	of	the
[.fffffffff]	portion	are
definable.		

Boolean True/False Decimal N/A N/A 	

	

Specialized	Character	and	Binary	Types	(useable	only	in	RDMLX
programs)
	Type Description Typically

Stored	in
a	DBMS
as

Maximum
Dictionary
Definable
Length	

Typical
DBMS
Storage
length
used

Subject	to
Code	Page
Conversions

Important

Char Exactly	the
same	as	String,
except	fixed
length	and
DBMS	storage
implementation
is	usually
CHAR.

CHAR 65535 Fixed
length

YES 	

BinaryExactly	the
same	as
VarBinary	but
DBMS
implementation
varies.

BINARY 32767 May	be
either
Fixed	or
Variable.

NO Databases
that	use	fixed
length	column
types	will	pad
to	the
maximum
length.

NChar Exactly	the
same	as
NVarChar,
except	fixed

NCHAR 65535 Fixed
length

YES	(but
only	when
converted	to
native

	

length	and
DBMS	storage
implementation
is	usually
NCHAR

String)

CLOBCharacter
Large
OBject			

CLOB Undefined Varies
according
to
content

YES DBMS
performance
considerations
may	apply.

BLOBBinary
Large
OBject

BLOB Undefined Varies
according
to
content

NO DBMS
performance
considerations
may	apply.

	

Rarely	Used	Numeric	Types
Type DescriptionTypical

DBMS
storage
Type

Maximum
Dictionary
Definable
Length	

When	to	Use Important Useable
in
RDML	
or
RDMLX
Programs

SignedSigned	or
Zoned
decimal

DECIMALRDMLX
programs:	63
digits	of	which
up	to	63	may	be
decimals
RDML
programs:	30
digits	of	which
up	to	9	may	be
decimals

For	programmatic
numeric/character
overlaying
operations.		

Signed	is
less	efficient
than	Packed
or	Integer	on
mathematical
operations.

Both

Float Floating
Point

FLOAT Undefined.
Floating	point

When	using	non-
LANSA	defined

Hardware
and	compiler

RDMLX

numbers	are
approximations,
not	exact
numbers.

DBMS	tables
only.

behaviors
may	vary.

	

	1.1.1	Field	Type	Considerations	

Field	Type	Conversions
Following	are	the	basic	field	type	groupings	used	in	LANSA:

Character/String Store	alpha	data	that	is	either	SBCS,	mixed	SBCS	and	DBCS,
or	DBCS-only.	Includes	types	Alpha,	String,	Char,	and	CLOB.

Unicode
Character/String

Store	alpha	data	in	Unicode.	(Character/String	are	stored	in	the
native	codepage.)	Multiple	languages	can	be	handled	without
data	loss.	Includes	types	NChar	and	NVarChar.

Numeric Store	numeric	data	in	a	variety	of	formats.	Includes	types
Signed,	Packed,	Integer,	and	Float.

Date/Time Store	date	and	time	data.	Includes	types	Date,	Time,	DateTime.

Binary Store	binary	data.	(This	data	is	not	subject	to	codepage
conversion.)	Includes	types	Binary,	VarBinary,	BLOB.

LOB Store	very	large	character	or	binary	data.	Includes	types
CLOB,	BLOB.

Boolean Store	a	True	or	False	value.

The	following	table	summarizes	field	conversions	between	groups.	Yes
indicates	that	conversion	between	the	field	type	groups	is	allowed.	It	does	not
indicate	that	conversion	will	always	be	successful.	For	example,	you	cannot
convert	DBCS	data	to	SBCS	data,	or	a	value	like	"Hello	world"	to	a	Numeric.
General	Conversion	Rules

									From:
To:

CharacterUnicode
Character

NumericDate/TimeBinaryLOB
4

Boolean

Character Yes Yes	5 Yes	1 Yes	1 Yes Yes Yes

Unicode
Character

Yes Yes Yes Yes Yes Yes Yes

Numeric Yes Yes Yes Yes	2 No No Yes

Date/Time Yes Yes Yes	2 Yes	3 No No No

Binary Yes Yes No No Yes No No

LOB	4 Yes Yes	5 No No Yes Yes No

Boolean Yes Yes Yes No No No Yes

	

Table	notes:
1.		CLOBs	are	treated	as	file	pointers,	so	do	not	support	conversion	to	a
Numeric	or	Date/Time	field	type.

2.		No	support	for	conversion
between	Integer	or	Float	and	the	Date/Time	field	types
of	a	numeric	type	directly	to	a	DateTime,	as	there	is	no	way	to
determine	if	the	type	should	be	setting	the	Date	or	Time	portion	of	the
DateTime.

3.		DateTime	->	Date	and	DateTime	->	Time	are	obvious.
The	default	Date	is	1900-01-01	and	the	default	time	is	midnight
(00:00:00).	Therefore:
Date	->	DateTime	sets	the	time	part	to	midnight
Time	->	DateTime	sets	the	date	part	to	1900-01-01
Date	->	Time	always	results	in	midnight
Time	->	Date	always	results	in	1900-01-01

4.		The	"value"	for	a	LOB	is	a	filename.	Thus,	when	converting	it	is	the
filenames	that	are	being	copied,	not	the	data.	If	an	invalid	filename	is	copied
to	a	LOB,	an	error	will	occur	at	some	stage.

5.		When	converting	a	Unicode	string	to	a	native	string,	the	intrinsic
.AsNativeString	may	need	to	be	used.

	

	1.1.1	Field	Type	Considerations

RDMLX	Enabled	Partition
Please	refer	to	the	Field	Type	information	in	the	RDMLX	Partition	Settings	in
the	Administrator	Guide	for	details	about	enabling	manual	field	creation	in	the
partition.	Also	refer	to	the	Field	Definition	option	1.2.14	Enable	Field	for
RDMLX.
Note:	If	a	field	type	is	not	enabled	in	a	partition,	the	field	type	may	still	be	used
if	loaded	as	an	OTHER	file.	Developers	are	not	allowed	to	manually	create
fields	of	the	type	that	has	been	disallowed.	Hence,	you	may	see	a	field	type
(loaded	from	an	other	file)	in	the	repository,	but	you	may	not	be	allowed	to
manually	create	that	field	type.

Also	See
RDML	and	RDMLX	Partition	Concepts	in	the	Administrator	Guide.
	1.1.1	Field	Type	Considerations

its:LANSA011.CHM::/lansa/l4wADM05_0200.htm
its:LANSA011.CHM::/lansa/l4wpar01_0020.htm

SQL	Null	Handling
SQL	Null	support	has	been	introduced	mainly	for	Other	File	integration.
SQL	Null	indicates	that	data	is	unknown.	For	example,	the	field	#BirthDate
could	be	SQL	Null	for	a	record	read	from	file	Person,	indicating	that	we	do	not
have	the	person's	birthdate.	Without	SQL	Null	support,	the	only	alternative	is	to
set	the	date	something	unlikely	(such	as	0001-01-01).
A	field	must	have	the	ASQN	(Allow	SQL	Nulls)	attribute	to	utilize	SQL	Null
functionality	such	as	the	*SQLNULL	Keyword,	the	Intrinsic	Property
.IsSqlNull,	and	the	Intrinsic	Method	.AsValue.
At	execution	time,	a	field	that	allows	SQL	Null	either	has	a	real	value	or	is	SQL
Null.	Fields	allowing	SQL	Null	may	behave	differently	at	execution	time	when
they	are	SQL	Null,	and	this	behaviour	is	also	dependent	on	whether	the	function
option	*STRICT_NULL_ASSIGN	has	been	specified.	Refer	to	Assignment,
Conditions,	and	Expressions	with	Fields	allowing	SQL	Null	for	further	details.
When	working	with	Other	Files,	behaviour	for	SQL	Null	fields	may	vary	on
Insert	and	Update,	if	the	database	definition	of	the	column	differs	from	the
LANSA	definition.	Refer	to	UPDATE	Comments/Warnings	for	further	details.
	1.1.1	Field	Type	Considerations

its:\Lansa015.chm::/lansa/update_c.htm

ASQN	(Allow	SQL	Nulls)	attribute
ASQN	is	a	field	storage	attribute	along	the	lines	of	SBIN	and	SREV.	It	may	be
specified	as	either	an	input	or	output	attribute.	A	field	must	have	the	ASQN
attribute	to	utilize	SQL	Null	functionality.
The	ASQN	attribute	is	only	available	when	the	partition	has	been	enabled	for
full	RDMLX.	Fields	using	the	ASQN	attribute	are	RDMLX	fields.

Also	See
*SQLNULL	Keyword
Intrinsic	Property	.IsSqlNull
Intrinsic	Method	.AsValue
	SQL	Null	Handling

*SQLNULL	Keyword
*SQLNULL	is	a	special	keyword	like	*NULL,	but	with	a	different	meaning:
*SQLNULL	means	the	value	for	the	field	is	unknown,	whereas	*NULL	means
the	field	is	empty.
Fields	may	not	be	compared	to	*SQLNULL	with	operators	such	as	*EQ	and
*NE,	however	*IS	and	*ISNOT	can	be	used.
*SQLNULL	becomes	the	default	for	fields	that	allow	SQL	Null,	regardless	of
field	type,	unless	another	default	has	been	specified.	*SQLNULL	may	be
explicitly	specified	as	the	default	for	a	field	if	it	has	the	ASQN	attribute.	For
example,	in	RDML:
	
Define	Field(#B)	Type(*CHAR)	Length(8)	Input_Atr(ASQN)
Default(*SQLNULL)
	

Also	See
ASQN	(Allow	SQL	Nulls)	attribute
Intrinsic	Property	.IsSqlNull
Assignment,	Conditions,	and	Expressions	with	Fields	allowing	SQL	Null
	SQL	Null	Handling

Intrinsic	Property	.IsSqlNull
The	ASQN	attribute	has	an	intrinsic	read-only	property	.IsSqlNull.	This	may
have	the	values	True	or	False.	If	the	field	is	SQL	Null,	.IsSqlNull	is	True,
otherwise	it	is	False.
Note	that	Intrinsic	properties	can	also	be	used	in	conditions	that	are	defined	by
or	passed	to	an	I/O	module,	but	this	is	not	recommended.	Refer	to	Specifying
WHERE	Parameters	in	I/O	Commands.

Also	See
ASQN	(Allow	SQL	Nulls)	attribute
Intrinsic	Method	.AsValue
Assignment,	Conditions,	and	Expressions	with	Fields	allowing	SQL	Null
	SQL	Null	Handling

Intrinsic	Method	.AsValue
The	ASQN	attribute	has	an	intrinsic	method	.AsValue.	If	you	want	to	control
what	value	will	be	returned	from	an	expression	if	the	value	of	a	field	is	SQL
Null,	use	the	AsValue()	intrinsic	method	for	the	field.	The	AsValue	parameter
will	be	returned	instead	of	SQL	Null	when	the	field's	value	is	SQL	Null.

Also	See
ASQN	(Allow	SQL	Nulls)	attribute
Intrinsic	Property	.IsSqlNull
Assignment,	Conditions,	and	Expressions	with	Fields	allowing	SQL	Null
	SQL	Null	Handling

Assignment,	Conditions,	and	Expressions	with	Fields	allowing
SQL	Null
This	section	described	the	behavior	of	SQL	Null	fields	in
Assignment,
Conditions	and
Expressions.	

The	following	field	definitions	are	used	throughout	the	text:
Define	Field(#A)	Type(*DEC)	Length(9)	Decimals(0)	Input_Atr(ASQN)
Default(*SQLNULL)
Define	Field(#B)	Type(*DEC)	Length(9)	Decimals(0)	Input_Atr(ASQN)
Default(*SQLNULL)
Define	Field(#C)	Type(*DEC)	Length(9)	Decimals(0)	Default(*NULL)

Also	See
ASQN	(Allow	SQL	Nulls)	attribute
Specifying	Conditions	and	Expressions	in	the	Technical	Reference	Guide.
Assignment

If	you	wish	to	ensure	that	SQL	Null	fields	are	handled	via	ANSI	rules
for	assignment,	enable	the	*STRICT_NULL_ASSIGN	function
option.	This	option	causes	a	fatal	error	to	occur	at	execution	time	if
the	source	field	is	SQL	Null	and	the	target	field	does	not	have	the
ASQN	attribute.

A	field	allowing	SQL	Null	may	be	explicitly	set	to	SQL	Null,	as	in	the
following	example.
#B	:=	*SQLNULL
	

A	field	that	is	currently	SQL	Null	may	be	assigned	to	another	field.	If	the	target
field	allows	SQL	Null,	it	will	be	set	to	SQL	Null.	In	the	following	example,	#A
becomes	SQL	Null	because	#B	was	SQL	Null.
#A	:=	#B
	

If	the	target	field	does	not	have	the	ASQN	attribute,	the	behavior	varies
depending	on	whether	the	*STRICT_NULL_ASSIGN	function	option	is

enabled.	By	default,	the	*NULL	value	for	the	field	type	will	be	assigned	to	the
target	field.	In	the	example	below,	as	#C	is	a	numeric	field,	it	would	be	set		to
zero.	For	a	definition	of	what	the	*NULL	value	is	for	each	of	the	field	types
refer	to	CHANGE	Parameters.
#C	:=	#B
	

However,	if	*STRICT_NULL_ASSIGN	has	been	enabled,	and	the	example
code	above	is	executed	when	#B	is	SQL	Null,	a	fatal	error	will	occur	as	the
target	field	does	not	support	being	set	to	SQL	Null.	When	working	with
*STRICT_NULL_ASSIGN,	the	LANSA	Developer	must	code	carefully	to
protect	against	such	runtime	errors.	For	example:
If	(*Not	#B.IsSqlNull)
#C	:=	#B
Else
Message	Msgtxt('#B	is	SQL	Null')
Endif
	

You	can	also	use	the	.AsValue	intrinsic	method	to	treat	an	SQL	Null	field	as	a
different	value.	This	is	useful	for	mathematics	and	concatenation,	where	SQL
Null	or	*NULL	are	not	appropriate	values.	In	the	following	example,	we	now
get	the	result	of	5	in	#C	if	#B	is	SQL	Null.	However,	if	#B	was	3,	#C	would	be
set	to	15	because	#B.AsValue	only	affects	#B	when	it	is	SQL	Null.
#C	:=	#B.AsValue(1)	*	5
	

Also	See
*SQLNULL	Keyword
Intrinsic	Property	.IsSqlNull
Intrinsic	Method	.AsValue
Conditions

To	test	for	SQL	Null,	you	should	use	*IS	*SQLNULL	or	*ISNOT
*SQLNULL,	or	the	Intrinsic	Property	.IsSqlNull.
When	using	IF_NULL	or	.IsNull,	an	SQL	Null	field	will	return	FALSE.
Since	SQL	Null	does	not	represent	a	value,	when	using	an	equality	operator
such	as	*EQ,	*LE,	*GT	to	compare	fields,	and	one	of	the	factors	of	the
compare	is	SQL	Null,	the	comparison	will	produce	an	SQL	Null.	When

combined	with	*OR	and	*AND	operators,	an	SQL	Null	factor	will	continue
to	produce	an	SQL	Null.	A	conditional	expression	that	produces	an	SQL	Null
will	evaluate	to	false.
SQLNULL	comparisons	will	always	stay	as	SQLNULL	if	the	SQLNULL
value	is	true.	That	is,	when	an	expression	is	testing	an	SQLNULL,	and	there
IS	an	SQLNULL,	the	expression	will	keep	the	SQLNULL	value.	For	these
types	of	scenarios,	the	*ORIF	boolean	feature	should	be	used.
IF	COND((#DATE2.IsSqlNull)	*orif	(#DATE1	*gt	#DATE2))
#DATE2	:=	#DATE1
ENDIF
	
If	you	want	a	condition	to	return	TRUE	for	both	Null	and	SQL	Null,	use	the
*ORIF	boolean	feature	together	with	Intrinsic	Property	.IsSqlNull	and
Intrinsic	Property	.IsNull.	The	following	condition	on	our	sample	field	#A
will	return	true	if	the	field	is	zero	or	SQL	Null.
				(#A.IsSqlNull)	*orif	(#A.IsNull)
	
If	you	want	a	condition	to	return	TRUE	for	both	SQL	Null	and	some	other
value,	use	the	Intrinsic	Method	.AsValue.	The	following	condition	will	return
true	if	the	field	is	1	or	SQL	Null.
#A.AsValue(1)	*EQ	1
	

The	following	table	summarizes	the	result	of	various	conditions,	with	the
sample	fields	#A	and	#B	both	SQL	Null,	and	#C	*ZERO.

Condition Result

#A.IsSqlNull TRUE

#A.IsNull FALSE

(#A.IsSqlNull)	*orif	(#A.IsNull) TRUE

IF_NULL(#A	#B	#C) FALSE

IF_NULL(#C) TRUE

#A.AsValue(*ZERO)	*EQ	*ZERO TRUE

#A	*EQ	*ZERO FALSE

#A	*EQ	#B FALSE

#A	*LE	#B FALSE

#B	*EQ	#C FALSE

#B	*LE	#C FALSE

	

Expressions
When	expressions	are	being	evaluated,	intermediate	results	retain	the	SQL	Null
state.	They	are	ALWAYS	strictly	interpreted.	For	example,	when	#B	is	SQL
Null,		the	result	of	expression	'#B	+	1'	is	SQL	Null.	That	is,	SQL	Null	plus	1	is
still	SQL	Null.	This	is	independent	of	the	attributes	of	any	result	field.
It	is	only	when	the	result	of	the	expression	is	assigned	into	the	result	field	that	a
difference	in	behaviour	can	occur.	If	the	result	of	an	expression	is	SQL	Null,
behaviour	depends	on	whether	the	result	field	allows	SQL	Null	and	also	on	the
function	option	*STRICT_NULL_ASSIGN.	Refer	to	Assignment	for	details.
If	you	wish	to	change	the	value	of	SQL	Null	fields	to	something	more
appropriate,	use	Intrinsic	Method	.AsValue.	For	example,	the	result	of
expression	'#B.AsValue(1)	+	1'	is	2	when	#B	is	SQL	Null	(and	5	when	#B	is	4).
	SQL	Null	Handling

	
	
	
	
	
	
	
	
	
	
	
	
	

What	Classifies	a	Field	as	RDML?
All	working	fields	defined	in	RDMLX	application	code	are	classified	as	either
RDML	or	RDMLX.	If	a	field	meets	the	following	rules,	it	is	an	RDML	field.
Otherwise	it	is	an	RDMLX	field.
Field	does	not	have	the	ASQN	attribute.
TYPE(*CHAR)	LENGTH(n),	where	n	<=	256.
TYPE(*DEC)	LENGTH(n)	DECIMALS(d),	where	1	<=	n	<=	30	and	0	<=	d
<=	9
TYPE(x)	LENGTH(*REFFLD)	REFFLD(#A),	where	x	is	*CHAR,	*DEC,	or
*REFFLD	and	field	#A	is	an	RDML	data	dictionary	field.
	1.1.1	Field	Type	Considerations

1.1.2	Alpha
Alpha	fields	are	used	to	store	character	type	data	up	to	a	maximum	of	256
characters	in	length.
Data	may	be	SBCS,	mixed	SBCS	and	DBCS,	or	DBCS-only.	Only	the	current
native	codepage	is	supported.
Alpha	fields	are	classified	as	strings.
An	Alpha	does	not	treat	trailing	blanks	as	significant.	They	are	truncated	before
concatenation	and	comparison.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	an	Alpha	field	in	the	repository	are:

Length Must	be	1	to	256	in	length.	No	decimals.

Valid	Keyboard	Shift Blanks,	X,	A,	N,	I,	D,	M,	O,	E,	J,	or	W.

Allowed	Attributes Null	values	are	not	allowed.

Edit	Mask Not	allowed.

Default Spaces.

Usage	Rules
Partition	Type RDML	and	RDMLX	Partitions.

Files RDML	and	RDMLX	Files.	Alpha	fields	may	be	used	as	real
fields	or	keys.

Logical	Views Alpha	fields	may	be	used	as	keys	to	logical	views.

Virtual	Fields Alpha	fields	may	be	used	with	Substring,	Concatenation	or
Date	Virtual	Fields.

Predetermined
Join	Fields

Alphas	may	be	used	for	lookup	predetermined	joined	fields.

Built-In	Functions When	used	in	Built-In	Functions,	Alpha	fields	are	valid	for
arguments	of	type	'A'.

Conversion Refer	to	Field	Type	Conversions.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Also	See
1.1.5	Char
1.1.3	String
	1.1	Field	Types

1.1.3	String
String	is	a	variable-length	character	field,	with	a	maximum	length	between	1
and	65,535.	(This	is	the	byte	length,	not	the	number	of	characters.)
Strings	store	alpha	data	that	is	either	SBCS,	mixed	SBCS	and	DBCS,	or	DBCS-
only.	Only	the	current	native	codepage	is	supported.
Strings	are	classified	as	strings.
A	String	retains	any	trailing	blanks,	they	are	significant.	When	concatenating	a
String	with	spaces	on	the	end,	those	spaces	are	retained.	But	the	space	is	NOT
SIGNIFICANT	for	comparisons.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	String	field	in	the	repository	are:

Length Strings	may	be	1	to	65,535	in	length.	Strings	have	no	decimals.

Valid
Keyboard
Shift

Blanks,	O,	E,	J	or	W.

Allowed
Attributes

AB,	ASQN,	CS,	DDNN,	FE,	FUNC,	FUNU,	FUNX,	JNMC,	JNMU,
JNMX,	JNRC,	JNRU,	JNRX,	LC,	ND,	PROC,	PROU,	PROX,	RA,
RB,	RL,	RLTB,	SREV,	SUNI,	USRC,	USRU,	USRX.

Edit
Mask

Not	allowed.

Default *NULL

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files Strings	may	only	be	used	in	RDMLX	Files.	Strings	may	be	used
as	real	or	key	fields.	If	used	as	keys,	length	must	be	no	more
than	4000	bytes.

Logical	Views Strings	may	be	used	as	key	fields.	If	used	as	keys,	length	must	be
less	than	4000	bytes.

Virtual	Fields Strings	may	be	used	with	Code	Fragment	Virtual	Fields.

Predetermined
Join	Fields

Strings	may	be	used	for	lookup	predetermined	joined	fields.

RDML
Commands

DEF_HEAD,	DEF_FOOT,	DEF_BREAK,	and	DEF_LINE	only
support	printing	of	RDML	fields.	Therefore,	String	fields	need	to
be	converted	to	Alpha	to	be	used	in	reports.

Built-In
Functions

When	used	in	Built-In	Functions,	Strings	are	valid	for	arguments
of	type	'A'.

Special
Values

*NULL,	*NAVAIL,	*REMEMBERED_VALUE

Conversion Refer	to	Field	Type	Conversions.

Usage	Notes
Working	fields	may	be	defined	as	TYPE(*STRING).
Fields	of	type	String	or	Char	and	length	of	256	or	less	may	be	used	almost
anywhere	that	fields	of	type	Alpha	may	be	used.
A	string	of	zero	length	has	a	space	added	to	it	before	inserting	or	updating	the
database	via	SQL.	This	is	in	order	to	obtain	consistent	behaviour	between	our
databases.	Without	a	space,	Oracle	interprets	the	data	as	being	SQL	Null,
which	is	not	strictly	true	and	is	not	how	the	other	databases	behave.

					So,	be	aware	that	your	application	cannot	make	a	distinction	between	an
empty	String	and	a	String	with	1	blank.	Also,	concatenations	of	a	zero	length
String	before	inserting	to	the	database	and	after	reading	may	differ	by	the
extra	space.	Behaviour	can	be	made	consistent	by	truncating	trailing	spaces
before	using	Strings	in	an	expression.	Note	that	when	comparing	an	empty
String	in	RDML	to	a	String	with	1	space	read	from	the	database	they	will
compare	equal	because	trailing	spaces	are	not	significant	in	comparisons	-
they	are	only	significant	in	expressions,	like	concatenation.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Also	See
1.1.2	Alpha
1.1.5	Char
1.1.4	NVarChar

	1.1	Field	Types

1.1.4	NVarChar
NVarChar	is	a	variable-length	character	field,	with	a	maximum	length	between
1	and	65,535.	(This	is	the	number	of	characters,	not	the	byte	length.)
NVarChars	store	alpha	data	of	any	codepage.	For	example,	in	a	list,	an
NVarChar	field	may	have	Japanese	in	one	row,	and	French	in	another	row.
NVarChars	are	classified	as	unicode	strings.
An	NVarChar	retains	any	trailing	blanks,	they	are	significant.	When
concatenating	an	NVarChar	with	spaces	on	the	end,	those	spaces	are	retained.
But	the	space	is	NOT	SIGNIFICANT	for	comparisons.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	an	NVarChar	field	in	the	repository	are:

Length NVarChars	may	be	1	to	65,535	in	length.	NVarChars	have	no
decimals.

Valid	Keyboard
Shift

Blanks.

Allowed
Attributes

AB,	ASQN,	CS,	FE,	LC,	ND,	RA,	RB,	RL,	RLTB,	SREV.

Edit	Mask NVarChars	may	be	used	for	lookup	predermined	joined
fields.

Default *NULL

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files NVarChars	may	only	be	used	in	RDMLX	Files.	NVarChars	may
be	used	as	real	or	key	fields.	If	used	as	keys,	length	must	be	no
more	than	2000	characters.

Logical	Views NVarChars	may	be	used	as	key	fields.	If	used	as	keys,	length
must	be	less	than	2000	characters.

Virtual	Fields NVarChars	may	be	used	with	Code	Fragment	Virtual	Fields.

Predetermined NVarChars	may	be	used	for	lookup	predermined	joined	fields.

Join	Fields

RDML
Commands

DEF_FOOT,	DEF_BREAK,	and	DEF_LINE	only	support
printing	of	RDML	fields.	Therefore,	NVarChar	fields	need	to	be
converted	to	Alpha	to	be	used	in	reports.

Built-In
Functions

When	used	in	Built-In	Functions,	NVarChars	are	valid	for
arguments	of	type	'A'.

Special
Values

*NULL,	*NAVAIL,

Conversion Refer	to	Field	Type	Conversions.

Usage	Notes
Working	fields	may	be	defined	as	TYPE(*NVARCHAR).
A	NVarChar	of	zero	length	has	a	space	added	to	it	before	inserting	or
updating	the	database	via	Sql.	This	is	in	order	to	obtain	consistent	behaviour
between	our	databases.	Without	a	space,	Oracle	interprets	the	data	as	being
SQL	Null,	which	is	not	strictly	true	and	is	not	how	the	other	databases
behave.

					So,	be	aware	that	your	application	cannot	make	a	distinction	between	an
empty	NVarChar	and	a	NVarChar	with	1	blank.	Also,	concatenations	of	a
zero	length	NVarChar	before	inserting	to	the	database	and	after	reading	may
differ	by	the	extra	space.	Behaviour	can	be	made	consistent	by	truncating
trailing	spaces	before	using	NVarChars	in	an	expression.	Note	that	when
comparing	an	empty	NVarChar	in	RDML	to	an	NVarChar	with	1	space	read
from	the	database	they	will	compare	equal	because	trailing	spaces	are	not
significant	in	comparisons	-	they	are	only	significant	in	expressions,	like
concatenation.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Tips	&	Techniques
If	there	is	no	need	to	support	multiple	languages	at	execution	time,	use	an
Alpha	field	or	a	String	field.

Also	See
1.1.2	Alpha
1.1.3	String

	1.1	Field	Types

1.1.5	Char
A	Char	is	a	fixed-length	character	field,	with	a	length	between	1	and	65,535.
(This	is	the	byte	length,	not	the	number	of	characters.)	Char	fields	with	lengths
of	256	or	less	are	equivalent	to	the	existing	Alpha	field.
Char	fields	store	alpha	data	that	is	either	SBCS,	mixed	SBCS	and	DBCS,	or
DBCS-only.	Chars	are	classified	as	strings.
Depending	on	the	database	type,	Char	may	or	may	not	treat	trailing	blanks	as
significant.	If	trailing	blanks	are	not	desired,	a	String	field	should	be	used.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	Char	field	in	the	repository	are:

Length Chars	may	be	1	to	65,535	in	length.	Chars	have	no	decimals.

Valid
Keyboard
Shift

Blanks,	O,	E,	J	or	W.

Allowed
Attributes

AB,	ASQN,	CS,	DDNN,	FE,	FUNC,	FUNU,	FUNX,	JNMC,	JNMU,
JNMX,	JNRC,	JNRU,	JNRX,	LC,	ND,	PROC,	PROU,	PROX,	RA,
RB,	RL,	RLTB,	SREV,	SUNI,	USRC,	USRU,	USRX.

Edit
Mask

Not	allowed.

Default *NULL

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files Chars	may	only	be	used	in	RDMLX	Files.	Chars	may	be	used	as
real	or	key	fields.	If	used	as	keys,	length	must	be	no	more	than
4000	bytes.

Logical	Views Chars	may	be	used	as	key	fields.	If	used	as	keys,	length	must	be
less	than	4000	bytes.

Virtual	Fields Chars	may	be	used	with	Code	Fragment	Virtual	Fields.

Predetermined Chars	may	be	used	for	lookup	predetermined	joined	fields.

Join	Fields

RDML
Commands

DEF_HEAD,	DEF_FOOT,	DEF_BREAK,	and	DEF_LINE	only
support	printing	of	RDML	fields.	Therefore,	Char	fields	need	to
be	converted	to	Alpha	to	be	used	in	reports.

Built-In
Functions

When	used	in	Built-In	Functions,	Chars	are	valid	for	arguments
of	type	'A'.

Special
Values

*NULL,	*NAVAIL,	*REMEMBERED_VALUE

Conversion Refer	to	Field	Type	Conversions.

Usage	Notes
Working	fields	defined	with	TYPE(*CHAR)	where	the	field	length	is	256	or
less	should	operate	similarly	to	alpha	fields.
Fields	of	type	String	or	Char	and	length	of	256	or	less	may	be	used	almost
anywhere	that	fields	of	type	Alpha	may	be	used.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Tips	&	Techniques
If	a	field	is	a	fixed	character	length	of	256	or	less,	use	an	Alpha	field.
If	you	want	trailing	blanks	to	be	significant,	use	a	String	field.

Also	See
1.1.2	Alpha
1.1.3	String
1.1.6	NChar
	1.1	Field	Types

1.1.6	NChar
An	NChar	is	a	fixed-length	character	field,	with	a	length	between	1	and	65,535.
(This	is	the	number	of	characters,	not	the	byte	length.)
NChar	fields	store	alpha	data	of	any	codepage.	For	example,	in	a	list,	an	NChar
field	may	have	Japanese	in	one	row,	and	French	in	another	row.
NChars	are	classified	as	unicode	strings.
Depending	on	the	database	type,	NChar	may	or	may	not	treat	trailing	blanks	as
significant.	If	trailing	blanks	are	not	desired,	an	NVarChar	field	should	be	used.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	Char	field	in	the	repository	are:

Length NChars	may	be	1	to	65,535	in	length.	NChars	have	no
decimals.

Valid	Keyboard
Shift

Blanks.

Allowed	Attributes AB,	ASQN,	CS,	FE,	LC,	ND,	RA,	RB,	RL,	RLTB.

Edit	Mask Not	allowed.

Default *NULL

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files NChars	may	only	be	used	in	RDMLX	Files.	NChars	may	be
used	as	real	or	key	fields.	If	used	as	keys,	length	must	be	no
more	than	2000	characters.

Logical	Views NChars	may	be	used	as	key	fields.	If	used	as	keys,	length	must
be	less	than	2000	characters.

Virtual	Fields NChars	may	be	used	with	Code	Fragment	Virtual	Fields.

Predetermined
Join	Fields

NChars	may	be	used	for	lookup	predermined	joined	fields.

RDML DEF_HEAD,	DEF_FOOT,	DEF_BREAK,	and	DEF_LINE	only

Commands support	printing	of	RDML	fields.	Therefore,	NChar	fields	need
to	be	converted	to	Alpha	to	be	used	in	reports.

Built-In
Functions

When	used	in	Built-In	Functions,	Chars	are	valid	for	arguments
of	type	'A'.

Special
Values

*NULL,	*NAVAIL

Conversion Refer	to	Field	Type	Conversions.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Tips	&	Techniques
If	there	is	no	need	to	support	multiple	languages	at	execution	time,	use	an
Alpha	field	or	a	Char	field.
If	you	want	trailing	blanks	to	be	significant,	use	an	NVarChar	field.

Also	See
1.1.2	Alpha
1.1.5	Char
1.1.4	NVarChar
	1.1	Field	Types

1.1.7	Packed
Packed	fields	are	exact,	fixed-point	numeric	fields	with	a	precision	(#	of
significant	digits),	and	a	scale	(#	of	digits	after	decimal	place).	The	scale	may	be
0,	indicating	a	whole	number.	Packed	fields	store	signed	numbers	(+/-).
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	Packed	field	in	the	repository	are:

Length Packed	fields	have	a	maximum	length	of	63	in	an	RDMLX	partition
and	30	in	an	RDML	partition.	Maximum	number	of	decimals	is	63	in
an	RDMLX	partition	and	9	in	an	RDML	partition.

Valid
Keyboard
Shift

Blanks.

Allowed
Attributes

Null	values	are	not	allowed.

Edit
Mask

Use	of	an	Edit	Mask	(that	is,	an	Editcode	or	Editword)	is	allowed.

Default Zero.

Field	Definition	Notes
Packed	and	Signed	appear	to	be	identical	types,	however	a	Packed	field	will
almost	always	require	less	storage	in	memory	(and	in	some	databases)	than
type	Signed.

Usage	Rules
Partition	Type RDML	and	RDMLX	Partitions.

Files RDML	and	RDMLX	Files.	Packed	fields	may	be	used	as	real
fields	or		keys.

Logical	Views Packed	fields	may	be	used	as	keys	to	logical	views.

Virtual	Fields Packed	fields	may	be	used	with	Mathematical,	Substring,
Concatenation	or	Date	Virtual	Fields.

Predetermined Packed	fields	may	be	used	for	numeric	predetermined	joined

Join	Fields fields.

Built-In
Functions

When	used	in	Built-In	Functions,	packed	fields	are	valid	for
arguments	of	type	'N'.

Conversion Refer	to	Field	Type	Conversions.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.
Oracle	and	SQL	Server	support	a	maximum	of	38	digits	of	which	up	to	38
may	be	decimals.	You	may	use	fields	with	a	larger	definition,	but	if	these
fields	are	on	a	file,	the	column	will	be	created	with	a	smaller	size.	For
example,	Packed(63,9)	will	be	created	as	(38,9).	If	the	field	has	more	than	38
significant	digits	and	you	try	to	write	it	to	the	database,	an	error	will	occur.

Also	See
1.1.8	Signed
1.1.9	Integer
1.1.10	Float
	1.1	Field	Types

1.1.8	Signed
Signed	fields	are	exact,	fixed-point	numeric	fields	with	a	precision	(#	of
significant	digits),	and	a	scale	(#	of	digits	after	decimal	place).	The	scale	may	be
0,	indicating	a	whole	number.	Signed	fields	store	signed	numbers	(+/-).
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	Signed	field	in	the	repository	are:

Length Signed	fields	have	a	maximum	length	of	63	in	an	RDMLX	partition
and	30	in	an	RDML	partition.	Maximum	number	of	decimals	is	63	in
an	RDMLX	partition	and	9	in	an	RDML	partition.

Valid
Keyboard
Shift

Blanks

Allowed
Attributes

Null	values	are	not	allowed.

Edit
Mask

Use	of	an	Edit	Mask	(that	is,	an	Editcode	or	Editword)	is	allowed.

Default Zero.

Field	Definition	Notes
Packed	and	Signed	appear	to	be	identical	types,	however	a	Packed	field	will
almost	always	require	less	storage	in	memory	(and	in	some	databases)	than
type	Signed.

Usage	Rules
Partition	Type RDML	and	RDMLX	Partitions.

Files RDML	and	RDMLX	Files.	Signed	fields	may	be	used	as	real
fields	or		keys.

Logical	Views Signed	fields	may	be	used	as	keys	to	logical	views.

Virtual	Fields Signed	fields	may	be	used	with	Mathematical,	Substring,
Concatenation	or	Date	Virtual	Fields.

Predetermined Signed	fields	may	be	used	for	numeric	predetermined	joined

Join	Fields fields.

Built-In
Functions

When	used	in	Built-In	Functions,	Signed	fields	are	valid	for
arguments	of	type	'N'.

Conversion Refer	to	Field	Type	Conversions.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.
Oracle	and	SQL	Server	support	a	maximum	of	38	digits	of	which	up	to	38
may	be	decimals.	You	may	use	fields	with	a	larger	definition,	but	if	these
fields	are	on	a	file,	the	column	will	be	created	with	a	smaller	size.	For
example,	Packed(63,9)	will	be	created	as	(38,9).	If	the	field	has	more	than	38
significant	digits	and	you	try	to	write	it	to	the	database,	an	error	will	occur.

Also	See
1.1.7	Packed
1.1.9	Integer
1.1.10	Float
	1.1	Field	Types

1.1.9	Integer
Integers	are	whole	numeric	fields	and	are	signed	by	default.	Fields	of	type
Integer	have	a	length	measured	in	bytes	(1,	2,	4,	8).	For	example,	a	signed
Integer	of	Byte	Length	2,	can	store	values	from	-32768	to	+32767.	Integers	have
no	decimal	places	and	are	accurate.	Integers	are	classed	as	Numbers	in	LANSA.
The	following	table	provides	the	implied	length	for	each	of	the	possible	byte
lengths	for	an	Integer.	The	implied	length	is	equivalent	to	the	actual	length	of	a
signed	or	packed	field.

#	BytesMax	value
(signed)

Max	value
(unsigned)

Max	#	digits	
(implied	length)

1 127 255 3

2 32767 65535 5

4 2147483647 4294967295 10

8 92233720368547758071844674407370955161519	signed,	
20	unsigned

	

Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	an	Integer	in	the	repository	are:

Length Integers	may	be	1,	2,	4,	or	8	bytes	in	length.	Integers	have	no
decimals.

Valid
Keyboard
Shift

Blanks

Allowed
Attributes

AB,	ASQN,	CS,	FE,	ND,	RA,	RB,	RL,	RLTB,	SUNS

Edit
Mask

Use	of	an	Edit	Mask	(i.e.	an	Editcode	or	Editword)	is	allowed	if	the
Integer	is	signed.	Integer	does	not	allow	edit	codes	W	and	Y.	May	use
*DEFAULT.

Default *NULL

Field	Definition	Notes
By	default,	Integers	are	signed.
SUNS	is	only	supported	for	one	byte	integers	initially.	If	SUNS	is	enabled,	it
means	the	Integer	cannot	hold	negative	numbers,	and	so	it	will	have	a	higher
maximum	value.	An	Integer(1)	without	SUNS	ranges	from	-128	to	+127,
while	an	Integer(1)	with	SUNS	ranges	from	0	to	255.

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files Integers	may	only	be	used	in	RDMLX	Files.	Integers	may	be
used	as	real	fields	or		keys.

Logical	Views Integers	may	be	used	as	keys	to	logical	views.

Virtual	Fields Integers	may	be	used	with	Mathematical	Virtual	Fields.	Integers
may	be	used	as	the	source	field(s).
Integers	may	be	used	with	Code	Fragment	Virtual	Fields.
Integers	must	not	be	used	with	Substring,	Concatenation	or	Date
Virtual	Fields.

Predetermined
Join	Fields

Integers	may	be	used	for	numeric	predetermined	joined	fields.

RDML
Commands

Fields	of	type
Integer
may	be	used	as	a	command	parameter	anywhere	Numeric	fields
may	be	used,	except	where	digits	after	the	decimal	point	are
required/expected.

Built-In
Functions

When	used	in	Built-In	Functions,	integers	are	valid	for
arguments	of	type	'N'.

Special
Values

*NULL,	*NAVAIL,	*HIVAL,	*LOVAL,
*REMEMBERED_VALUE

Conversion It	is	wrong	to	convert	Integers	to/from	Date	and	Time	fields.
Refer	to	Field	Type	Conversions.

Usage	Notes

Working	fields	may	be	defined	as	TYPE(*INT)	in	functions	or	components.
If	no	length	is	specified,	the	default	of	4	is	assumed.	The	default	value	will	be
*ZERO.
When	used	in	Built-In	Functions,	integers	are	valid	for	arguments	of	type	'N'.
Fields	of	type	Integer	may	only	be	used	as	numeric	arguments	or	return
values	under	the	following	conditions:

The	minimum	decimals	for	the	argument	or	return	value	is	0.
The	minimum	length	for	the	argument	or	return	value	is	less	than	or
equal	to	the	implied	length	of	the	Integer	field.	For	example,	if	the
minimum	length	for	the	argument	is	4,	an	Integer	of	1	byte	may	not	be
used	(as	it	only	has	an	implied	length	of	3).
The	maximum	length	for	the	argument	or	return	value	is	2147483647
OR	the	maximum	length	for	the	argument	or	return	value	is	greater
than	or	equal	to	the	implied	length	of	the	Integer	field.	For	example,	if
the	maximum	length	for	an	argument	is	4,	an	Integer	of	2,	4,	or	8	bytes
may	not	be	used	(as	they	have	implied	lengths	of	5	or	higher).

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Also	See
1.1.7	Packed
1.1.8	Signed
1.1.10	Float
	1.1	Field	Types

1.1.10	Float
A	Float	is	an	approximate	numeric	field	that	stores	floating	point	numeric	data
(as	opposed	to	fixed	point	like	Signed	and	Packed).	Floating	point	data	is
approximate.	Not	all	values	in	the	field	type	range	can	be	precisely	represented.
Floats	are	classed	as	Numbers	in	LANSA.
Fields	of	type	Float	may	only	be	used	in	an	arithmetic	expression.	Floats	cannot
be	displayed	in	a	component	or	function.
A	Float	is	defined	by	the	number	of	bytes	used	to	store	the	value.	The	higher
number	of	bytes,	the	more	accurate	the	number.	A	4	byte	Float	is	accurate	while
the	number	of	digits	is	less	than	or	equal	to	6.	An	8	byte	Float	is	accurate	while
the	number	of	digits	is	less	than	or	equal	to	15.
The	following	table	provides	the	accurate	length	for	each	of	the	possible	byte
lengths	for	a	Float.	The	accurate	length	may	be	considered	equivalent	to	the
actual	length	of	a	signed	or	packed	field.	The	table	also	notes	the	possible
number	of	decimal	places	at	runtime.

#	BytesAccurate	#	digits	(accurate	length)Possible	decimal	places

4 6 0	-	6

8 15 0	-	15

	

Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	Float	field	in	the	repository	are:

Length Floats	may	be	4	or	8	bytes	in	length.	Decimals	must	always
be	zero.

Valid	Keyboard
Shift

Blanks

Allowed
Attributes

AB,	ASQN,	CS,	FE,	ND,	RA,	RB,	RL,	RLTB.

Edit	Mask Not	allowed.

Default *NULL

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files Floats	may	only	be	used	in	RDMLX	Files.	Floats	may	be	used	as
real	fields.	Use	of	Floats	as	key	fields	is	not	recommended.

Logical	Views Use	of	Floats	as	key	fields	is	not	recommended.

Virtual	Fields Floats	may	only	used	with	Mathematical	Virtual	Fields.	Floats
may	be	used	as	the	source	field(s).
Floats	may	be	used	with	Code	Fragment	Virtual	Fields.Floats
must	not	be	used	with	Substring,	Concatenation	or	Date	Virtual
Fields.

Predetermined
Join	Fields

Floats	may	be	used	for	numeric	predetermined	joined	fields.

RDML
Commands

Fields	of	type
Float
may	only	be	used	in	an	arithmetic	expression.
For	example,		DISPLAY,	REQUEST,	POP_UP,	DEF_HEAD,
DEF_FOOT	DEF_BREAK,	and	DEF_LINE	cannot	support
fields	of	type	Float.	Visual	LANSA	components	have	no
mechanism	for	displaying	fields	of	type	Float.

Built-In
Functions

When	used	in	Built-In	Functions,	floats	are	valid	for	arguments
of	type	'N'.
As	the	value	for	a	field	of	type	Float	may	have	anywhere
between	0	and	15	decimal	places	at	execution	time,	it	is
generally	not	considered	suitable	as	a	numeric	argument	to	a	BIF
as	it	is	not	possible	to	predict	the	actual	number	of	decimal
places.

Special
Values

*NULL,	*NAVAIL,	*HIVAL,	*LOVAL,
*REMEMBERED_VALUE

Conversion It	is	wrong	to	convert	Floats	to/from	Date	and	Time	fields.	Refer
to	Field	Type	Conversions.

Usage	Notes
Working	fields	may	be	defined	as	TYPE(*FLOAT)	in	functions	or
components.	If	no	length	is	specified,	the	default	of	8	is	assumed.
Fields	of	type	Float	may	only	be	used	in	an	arithmetic	expression.	Use	of	a
Float	as	a	command	parameter	that	is	not	an	arithmetic	expression	will	result
in	a	FFC	Error.	For	example,	a	Float	cannot	be	used	in	a	BEGIN_LOOP
command.
Floats	are	generally	not	considered	suitable	as	a	numeric	argument	to	a	BIF.
Exact	comparisons	using	Floats	is	not	recommended	due	to	inaccuracy	of	the
type.	For	example,	the	value	stored	in	the	field	or	saved	in	the	table	may	not
be	exactly	what	was	assigned	to	the	field.	However,	comparison	to	*ZERO	or
*SQLNULL	is	fine.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Tips	&	Techniques
Floats	are	generally	used	in	scientific	or	engineering	applications	and	are	not
generally	used	in	business	applications.
Floats	are	primarily	supported	in	LANSA	for	use	with	Other	Files	and	are	not
recommended	for	use	in	business	applications.

Also	See
1.1.7	Packed
1.1.8	Signed
1.1.9	Integer
	1.1	Field	Types

1.1.11	Date
Date	is	a	fixed-length	field	with	a	length	of	10,	containing	a	date	in	ISO	format:
YYYY-MM-DD.	The	*NULL	value	is	1900-01-01,	as	this	value	is	valid	across
all	supported	databases.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	Date	field	in	the	repository	are:

Length Dates	must	be	10	in	length.	Dates	have	no	decimals.

Valid	Keyboard
Shift

Blanks

Allowed
Attributes

AB,	ASQN,	CYDC,	CYDU,	CYDX,	CS,	FE,	ISO,	ND,	RA,
RL,	RLTB.
Note:	ISO	for	display	format	must	be	selected.

Edit	Mask Not	allowed.

Default *SQLNULL.	ASQN	will	be	enabled	by	default.

Field	Definition	Notes
By	default,	Dates	are	ISO	format.

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files Dates	may	only	be	used	in	RDMLX	Files.	Dates	may	be	used	as
real	fields	or	keys.	If	used	as	key	fields,	take	note	of	the
Warning
below.

Logical	Views Dates	may	be	used	as	keys	to	logical	views.

Virtual	Fields Dates	may	be	used	with	Date	Virtual	Fields	as	the	source	field.
Dates	may	be	used	with	Code	Fragment	Virtual	Fields.

Predetermined
Join	Fields

Not	allowed.

RDML
Commands

Dates	are	classified	as	their	own	types	and	are	not	valid	for
numeric	or	alpha	command	parameters	in	RDML	commands.

Built-In
Functions

When	used	in	Built-In	Functions,	Dates	are	classified	as	their
own	type	(D)	and	are	not	valid	for	numeric	or	alpha	arguments.

Special
Values

*NULL,	*HIVAL,	*LOVAL,	*REMEMBERED_VALUE

Conversion Date	fields	may	be	converted	to	alpha,	signed,	packed,	string	or
char.	Refer	to	Field	Type	Conversions.

Usage	Notes
Working	fields	may	be	defined	as	TYPE(*DATE).	Date	literals	are	always
specified	in	ISO	format,	for	example:	2003‑03‑31.
Dates	can	be	used	in	Datecheck	validation	rules.

Warnings
If	this	field	is	used	as	a	key	field,	remove	the	*SQLNULL	and	ASQN
attributes.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Tips	&	Techniques
To	use	a	Date	field,	#MyDate,	as	an	alpha	argument,	you	simply	use
#MyDate.asString,	explicitly	stating	that	you	want	to	use	the	string
representation.

Also	See
1.1.13	DateTime
1.1.12	Time
	1.1	Field	Types

1.1.12	Time
Time	is	a	fixed-length	field	with	a	length	of	8,	containing	a	time	in	ISO	format:
HH:MM:SS.	The	*NULL	value	is	00:00:00	(i.e.	midnight).
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	an	Integer	in	the	repository	are:

Length Times	must	be	8	in	length.	Times	have	no	decimals.

Valid	Keyboard
Shift

Blanks

Allowed
Attributes

AB,	ASQN,	CS,	FE,	ISO,	ND,	RA,	RL,	RLTB,	TIMC,
TIMU,	TIMX.
Note:	ISO	display	format	must	be	selected.

Edit	Mask Not	allowed.

Default *SQLNULL.	ASQN	will	be	enabled	by	default.

Field	Definition	Notes
By	default,	Times	are	ISO	format.

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files Times	may	only	be	used	in	RDMLX	Files.	Times	may	be	used	as
real	fields.	Use	of	Times	as	key	fields	is	not	recommended.	If
used	as	key	fields,	take	note	of	the
Warning
below.

Logical	Views Use	of	Times	as	key	fields	is	not	recommended.

Virtual	Fields Times	may	be	used	with	Code	Fragment	Virtual	Fields.

Predetermined
Join	Fields

Not	allowed.

RDML
Commands

Times	are	classified	as	their	own	types	and	are	not	valid	for
numeric	or	alpha	command	parameters	in	RDML	commands.

Built-In
Functions

When	used	in	Built-In	Functions,	Times	are	classified	as	their
own	types	and	are	not	valid	for	numeric	or	alpha	arguments.

Special
Values

*NULL,	*NAVAIL,	*REMEMBERED_VALUE

Conversion Date	fields	may	be	converted	to	alpha,	signed,	packed,	string	or
char.	Refer	to	Field	Type	Conversions.

Usage	Notes
Working	fields	may	be	defined	as	TYPE(*TIME).	Time	literals	are	always
specified	in	ISO	format;	for	example:	22:58:35	or	03:08:05.	Note	that
seconds	are	optional	(if	omitted,	they	are	assumed	to	be	zero),	so	22:58	or
03:08	would	also	be	valid.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Warning
If	this	field	is	used	as	a	key	field,	remove	the	*SQLNULL	and	ASQN
attributes.

Tips	&	Techniques
To	use	a	Time	field,	#MyTime,	as	an	alpha	argument,	you	simply	use
#MyTime.asString,	explicitly	stating	that	you	want	to	use	the	string
representation.

Also	See
1.1.13	DateTime
1.1.11	Date
	1.1	Field	Types

1.1.13	DateTime
DateTime	is	a	fixed-length	field	with	a	length	of	19	(no	fractional	seconds)	or
between	21	and	29	(depending	on	number	of	positions	after	decimal	point),
containing	a	timestamp	in	ISO	format:	YYYY-MM-DD	HH:MM:SS[.fffffffff].
If	no	length	is	specified,	the	length	will	default	to	26,	which	is	the	most	portable
maximum	length	and	the	ISO	default:	YYYY-MM-DD	HH:MM:SS.ffffff.
Internally,	a	DateTime	field	always	contains	a	DateTime	in	UTC	(Universal
Coordinated	Time).	UTC	is	the	modern	term	for	GMT	(Greenwich	Mean	Time).
LANSA	automatically	converts	to	and	from	UTC	when	required.	The	DUTC
and	SUTC	attributes	are	used	to	define	whether	the	DateTime	is	displayed	and
stored	in	the	database	in	UTC	or	local	time.
The	*NULL	value	is	1900-01-01	00:00:00.	
DateTime	literals	may	be	specified	with	or	without	a	time	zone.
The	literal	format	without	a	time	zone	is	known	as	the	ISO	format	(described
above).	In	the	ISO	format,	the	DateTime	literal	is	in	UTC,	so	this	specifies	the
time	in	Greenwich,	England,	not	the	local	time.	Both	seconds	and	fractional
seconds	portions	are	optional	(will	be	set	to	zero	if	not	provided).	Note	that	as
this	format	contains	a	space,	it	must	be	enclosed	in	single	quotes	to	allow	the
editor	to	correctly	identify	it	as	a	DateTime	literal.	For	example:	'2004-02-03
00:10:30'
The	literal	format	with	a	time	zone	is	known	as	ISO	8601.	In	the	ISO	8601
format,	the	time	zone	is	always	specified	with	the	data,	either	as	a	Z,	meaning
UTC,	or	+/-hh:mm,	being	the	difference	from	UTC.	To	distinguish	ISO	8601
from	the	standard	ISO	format,	as	well	as	the	time	zone	value,	the	blank	between
the	date	and	the	time	is	replaced	with	a	T.	Fractional	seconds	are	optional	(will
be	set	to	zero	if	not	provided).	For	example:	1900-01-01T00:00:00Z	is	the
*NULL	value.	Another	example	is	1994-11-05T08:15:30-05:00,	which
corresponds	to	November	5,	1994,	8:15:30	am,	US	Eastern	Standard	Time	(the
time	zone	is	5	hours	behind	UTC).	1994-11-05T13:15:30Z	corresponds	to	the
same	instant.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	DateTime	fields	in	the	repository	are:

Length May	be	19	or	21	to	29	in	length.	Default	is	26.	Decimals	are
automatically	calculated	(if	19,	Decimals	are	0,	otherwise	Decimals

are	Length	-	20).

Valid
Keyboard
Shift

Blanks

Allowed
Attributes

AB,	ASQN,	CS,	DUTC,	FE,	ISO,	ND,	RA,	RL,	RLTB,	SUTC,
TCYC,	TCYU	and	TCYX.
Note:	ISO	display	format	must	be	selected.

Edit
Mask

Not	allowed.

Default *SQLNULL.	ASQN	will	be	enabled	by	default.

Field	Definition	Notes
By	default,	DateTimes	are	ISO	format.
The	DUTC	(Display	in	UTC)	attribute	is	disabled	by	default.	If	it	is	enabled,
data	is	input	and	output	in	UTC.	If	it	is	disabled,	data	is	input	and	output	in
the	local	time	zone.	Generally,	users	prefer	to	see	data	in	their	own	time	zone,
but	it	may	be	appropriate	to	display	in	UTC	format	for	some	cross-time	zone
reports,	Web	displays,	etc.

DUTC	affects	the	display	and	entry	of	DateTime	data	in	reports,
components	(using	PRIM_DTIM	or	PRIM_MCTL),	web	functions
and	web	events.	Note	that	if	DUTC	is	disabled,		the	DateTime	will	be
displayed	and	entered	in	the	local	time	zone	of	the	machine	where	the
application	code	is	being	executed.
DUTC	is	irrelevant	for	field	literals	and	intrinsic	functions,	where	data
is	always	manipulated	in	UTC.
DUTC	is	used	for	WAMS.	The	DateTime	is	always	passed	in	XML	in
ISO	8601	UTC	format,	which	is	an	XML	standard.	The	std_datetime
weblet	takes	care	of	visualization.	The	entered	value	is	subsequently
also	submitted	in	ISO	8601	UTC	format.

The	SUTC	(Store	in	UTC)	attribute	is	enabled	by	default.	This	means	that
when	the	field	is	on	a	file,	and	the	file	is	written	to	or	read	from	the	database,
the	field	will	be	stored	in	UTC	rather	than	local	time.	This	automatically
allows	applications	executing	anywhere	in	the	world	to	process	the	DateTime
with	a	known	time	zone.	If	using	tools	other	than	LANSA	to	access	the	file,
remember	that	the	DateTime	field	is	stored	in	UTC	and	not	a	local	time	zone.

SUTC	may	be	disabled	if	your	data	will	only	ever	exist	in	one	time
zone,	and	all	interfaces	to	the	data	will	always	be	executed	in	the	same
time	zone.	If	SUTC	is	disabled,	the	data	will	be	saved	in	the	local	time
zone	of	the	machine	where	the	database	interface	executes.	For
example,	in	a	SuperServer	application	where	file	access	is	redirected
to	the	server,	data	will	be	read	and	written	in	the	local	time	zone	of	the
server.
SUTC	is	disabled	by	default	for	DateTime	fields	created	by	Load
Other	File,	as	most	external	applications	store	data	in	local	time.	If	the
external	data	is	stored	in	UTC,	you	should	enable	SUTC.

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files DateTime	fields	may	only	be	used	in	RDMLX	Files.	DateTimes
may	be	used	as	real	fields	or	keys.	If	used	as	key	fields,	take	note
of	the
Warning
below.

Logical	Views Use	of	DateTimes	as	key	fields	is	not	recommended.

Virtual	Fields DateTimes	may	be	used	with	Code	Fragment	Virtual	Fields.

Predetermined
Join	Fields

Not	allowed.

RDML
Commands

DateTimes	are	classified	as	their	own	types	and	are	not	valid	for
numeric	or	alpha	command	parameters	in	RDML	commands.

Built-In
Functions

When	used	in	Built-In	Functions,	Times	are	classified	as	their
own	types	and	are	not	valid	for	numeric	or	alpha	arguments.

Special
Values

*NULL,	*HIVAL,	*LOVAL,	*REMEMBERED_VALUE

Conversion Date	fields	may	be	converted	to	alpha,	signed,	packed,	string	or
char.	Refer	to	Field	Type	Conversions.

Usage	Notes
Working	fields	may	be	defined	as	TYPE(*DateTime).
If	the	DateTime	field	is	not	large	enough	for	the	fractional	seconds	provided,

then	it	will	be	rounded.
Application	code,	including	intrinsic	functions,	always	processes	DateTime	in
UTC	format.

Warning
If	this	field	is	used	as	a	key	field,	remove	the	*SQLNULL	and	ASQN
attributes.
System	Variables	like	*DATETIME	provide	values	in	local	time.	This	is	not
consistent	with	the	internal	storage	of	DateTime	fields	which	always	contains
a	DateTime	in	UTC	format.	Instead,	use	the	Now	intrinsic.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Tips	&	Techniques
When	you	first	enable	your	partition	for	RDMLX,	new	DateTime	fields	have
SUTC	on	and	DUTC	off.	This	automatically	allows	multi-time	zone
applications,	with	data	displayed	and	entered	in	local	time,	but	saved	in	the
database	in	UTC.	This	may	initially	be	confusing,	but	in	the	end	is	what	most
applications	need.	If	you	wish	your	application	to	run	all	in	UTC	or	all	in
local	time,	simply	modify	the	default	field	attributes	for	the	DateTime	field
type.
To	use	a	DateTime	field,	#MyDateTim,	as	an	alpha	argument,	you	simply	use
#MyDateTim.asString,	explicitly	stating	that	you	want	to	use	the	string
representation.
To	initialise	a	DateTime	field	to	the	current	time	or	to	set	its	default	to	the
current	time	use	the	Now	intrinsic.	This	ensures	that	the	field	is	correctly	set
to	UTC	format.

Also	See
1.1.11	Date
1.1.12	Time
	1.1	Field	Types

1.1.14	Binary
Binary	is	a	fixed-length	binary	field,	with	a	length	between	1	and	32,767.
Binary	fields	with	lengths	of	256	or	less	are	equivalent	to	the	existing	Alpha
field	with	the	SBIN	attribute	enabled.
Binary	fields	are	used	to	store	binary	data.	This	data	is	not	subject	to	codepage
conversion.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	Binary	field	in	the	repository	are:

Length Binary	fields	may	be	1	to	32,767	in	length.	Binary	fields	have
no	decimals.

Valid	Keyboard
Shift

Blanks

Allowed
Attributes

AB,	ASQN,	CS,	FE,	ND,	RA,	RL,	RLTB.

Edit	Mask Not	allowed.

Default *SQLNULL.	ASQN	will	be	enabled	by	default.

Field	Definition	Notes
There	is	NO	difference	between	Binary	and	VarBinary	except	how	they	are
stored	in	the	database.

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files Binary	fields	may	only	be	used	in	RDMLX	Files.	Binary	fields
may	be	used	as	real	fields.	Binary	fields	may	not	be	used	as	key
fields.

Logical	Views Binary	fields	may	not	be	used	as	key	fields.

Virtual	Fields Binary	fields	may	be	used	with	Code	Fragment	Virtual	Fields.

Predetermined
Join	Fields

Binary	fields	may	be	used	for	lookup	predetermined	joined
fields.

RDML
Commands

DEF_HEAD,	DEF_FOOT,	DEF_BREAK,	and	DEF_LINE	will
not	support	printing	of	fields	of	type	Binary.	A	FFC	error	will	be
generated	if	these	Binary	fields	are	used.
Binary	fields	are	manipulated	as	if	they	are	Char	fields	except
where	sensitivity	to	their	Binary	characteristics	will	be
incorporated.

Built-In
Functions

When	used	in	Built-In	Functions,	Binary	fields	are	classified	as
their	own	types	and	are	not	valid	for	numeric	or	alpha
arguments.

Special
Values

*NULL,	*NAVAIL,	*REMEMBERED_VALUE

Conversion Binary	fields	may	be	converted	to	character	type	fields.	Refer	to
Field	Type	Conversions.

Usage	Notes
Working	fields	may	be	defined	as	TYPE(*BIN).
If	an	SQL	WHERE	clause	will/may	be	generated	by	a	condition,	these	field
types	may	only	be	compared	to	*NULL	or	*SQLNULL;	any	other
comparison	will	be	rejected.

Warnings
Binary	is	treated	as	a	fixed	length	type	by	some	databases.	Thus	they	pad	the
unused	length	and	the	padding	character	also	differs	between	different
databases.	Other	databases	may	treat	it	as	variable	length	and	thus	not	pad	it
at	all.	If	data	is	then	compared	before	and	after,	the	result	of	the	comparison
will	differ	depending	on	the	database	that	is	being	used.	VarBinary	is	never
padded	and	thus	always	compares	correctly.	Recommendation	is	to	use
VarBinary	unless	the	binary	data	is	always	the	same	length

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Also	See
1.1.15	VarBinary
	1.1	Field	Types

1.1.15	VarBinary
VarBinary	is	a	variable-length	binary	field,	with	a	maximum	length	between	1
and	32,767.
VarBinary	fields	are	used	to	store	binary	data.	This	data	is	not	subject	to
codepage	conversion.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	VarBinary	field	in	the	repository	are:

Length VarBinary	fields	may	be	1	to	32,767	in	length.	VarBinary	fields
have	no	decimals.

Valid	Keyboard
Shift

Blanks

Allowed
Attributes

AB,	ASQN,	CS,	FE,	ND,	RA,	RL,	RLTB.

Edit	Mask Not	allowed.

Default *SQLNULL.	ASQN	will	be	enabled	by	default.

Field	Definition	Notes
There	is	NO	difference	between	Binary	and	VarBinary	except	how	they	are
stored	in	the	database.

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files VarBinary	fields	may	only	be	used	in	RDMLX	Files.	VarBinary
fields	may	be	used	as	real	fields.	VarBinary	fields	may	not	be
used	as	key	fields.

Logical	Views VarBinary	fields	may	not	be	used	as	key	fields.

Virtual	Fields VarBinary	fields	may	be	used	with	Code	Fragment	Virtual
Fields.

Predetermined
Join	Fields

VarBinary	fields	may	be	used	for	lookup	predetermined	joined
fields.

RDML
Commands

DEF_HEAD,	DEF_FOOT,	DEF_BREAK,	and	DEF_LINE	will
not	support	printing	of	fields	of	type	VarBinary.	A	FFC	error	will
be	generated	if	these	VarBinary	fields	are	used.
VarBinary	fields	are	manipulated	as	if	they	are	String	fields
except	where	sensitivity	to	their	Binary	characteristics	will	be
incorporated.

Built-In
Functions

When	used	in	Built-In	Functions,	VarBinary	fields	are	classified
as	their	own	types	and	are	not	valid	for	numeric	or	alpha
arguments.

Special
Values

*NULL,	*NAVAIL,	*REMEMBERED_VALUE

Conversion VarBinary	fields	may	be	converted	to	character	type	fields.	Refer
to	Field	Type	Conversions.

Usage	Notes
There	is	no	working	field	type	for	VarBinary	fields.
If	an	SQL	WHERE	clause	will/may	be	generated	by	a	condition,	these	field
types	may	only	be	compared	to	*NULL	or	*SQLNULL;	any	other
comparison	will	be	rejected.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Also	See
1.1.14	Binary
	1.1	Field	Types

1.1.16	DBCS	Graphic	String
A	DBCS	Graphic	String	is	for	use	to	store	Japanese	DBCS	characters	in	Other
files	on	an	IBM	i	system.	It	is	a	type	of	graphic	string	with	CCSID	300
encoding.
This	type	of	field	can	only	be	created	by	Visual	LANSA	when	loading	an	IBM	i
Other	File	into	the	repository.	The	IBM	i	Other	File	field	is	created	as	a
Char/String	type	with	pre-set	Edit	Code	'J'	and	a	special	Input	Attribute	'SGRA'.
It	is	invalid	for	use	in	any	Visual	LANSA	File.
Field	Definsxcition	Rules
Length Total	number	of	bytes	of	graphic	characters	plus	two	bytes	for

the	<shift-out>/<shift-in>	characters.	Each	graphic	character	is
two	bytes.

Valid
Keyboard	Shift

J

Allowed
Attributes

SGRA,	CS,	FE.

Edit	Mask Not	allowed.

Default *NULL	/	*SQLNULL

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files IBM	i	Other	File

Logical	Views Not	allowed.

Virtual	Fields Not	allowed.

Predetermined
Join	Fields

Not	allowed.

RDML
Commands

DEF_HEAD,	DEF_FOOT,	DEF_BREAK,	and	DEF_LINE	only
support	printing	of	RDML	fields.	Therefore,	Char	fields	need	to
be	converted	to	Alpha	to	be	used	in	reports.

Built-In When	used	in	Built-In	Functions,	Chars	are	valid	for	arguments

Functions of	type	'A'.

Special
Values

*NULL,	*NAVAIL,	*REMEMBERED_VALUE

Conversion Refer	to	Field	Type	Conversions

Usage	Notes
Unsupported	if	defined	as	working	fields.
Unsupported	if	used	as	Visual	LANSA	File	Field.
	1.1	Field	Types

1.1.17	BLOB
BLOB	is	a	variable-length	binary	field	of	undefined	maximum	length.
The	most	common	operation	with	BLOBs	are	saving	files	into	the	database	and
retrieving	them	so	they	can	be	viewed/edited/etc.	In	RDML	and	RDMLX,
BLOB	fields	are	manipulated	as	filenames.
Following	is	an	example	of	saving	a	JPG	into	a	BLOB:
#MYBLOB	:=	'C:\temp\mypicture.jpg'
UPDATE	FIELDS(#MYBLOB)	IN_FILE(FILE1)

Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	BLOB	in	the	repository	are:

Length Length	cannot	be	specified.	No	decimals.

Valid	Keyboard
Shift

Blanks

Allowed
Attributes

AB,	ASQN,	CS,	FE,	LC,	ND,	RA,	RL,	RLTB.
Note:	LC	and	ASQN	must	always	be	defined	and	cannot	be
removed.

Edit	Mask Not	allowed.

Default *SQLNULL.	ASQN	will	be	enabled	by	default.

Field	Definition	Notes
There	is	no	working	field	type	for	BLOBs.

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files BLOBS	may	only	be	used	in	RDMLX	Files.	BLOB	fields	may
be	used	as	real	fields.		BLOBS	must	not	be	used	as	key	fields.

Logical	Views BLOBS	may	not	be	used	as	key	fields.

Virtual	Fields Not	applicable.

Predetermined
Join	Fields

Not	applicable.

RDML
Commands

If	a	BLOB	or	CLOB	field	is	used,	keep	in	mind	that	the	field
contains	a	filename,	not	the	actual	data	in	the	object.	In	RDML
and	RDMLX,	LANSA	LOB	fields	will	be	manipulated	as
filenames.	It	is	only	in	database	IO	commands	that	the	BLOB	or
CLOB	actual	data	itself	is	handled	by	reading	from	or	writing	to
the	named	file.

Built-In
Functions

When	used	in	Built-In	Functions,	BLOBs	are	classified	as	their
own	types	and	are	not	valid	for	numeric	or	alpha	arguments.

Special
Values

*SQLNULL,	*NAVAIL,	*REMEMBERED_VALUE,	*EMPTY

Conversion BLOBs	are	treated	as	file	pointers	and	do	not	support	conversion
to	a	Numeric	or	Date/Time	field	type.	Refer	to	Field	Type
Conversions.

Usage	Notes
BLOBs	cannot	be	part	of	any	key	(e.g.	for	Access	Routes,	etc.)
You	cannot	display	or	print	BLOB	data.
If	a	BLOB	field	is	added	to	the	list,	keep	in	mind	that	the	field	contains	a
filename,	not	the	actual	data	in	the	object.
If	an	SQL	WHERE	clause	will/may	be	generated	by	a	condition,	these	field
types	may	only	be	compared	to	*NULL	or	*SQLNULL;	any	other
comparison	will	be	rejected.
Rather	than	the	default	property	.Value,	fields	of	type	BLOB	have	a	default
property	called	.FileName	to	clearly	indicate	that	changing	the	"value"	of	the
field	is	actually	changing	its	default	property	which	is	a	file	name	property.
BLOB	fields	are	subject	to	certain	restrictions:

They	cannot	be	used	in	SELECT_SQL	commands.
They	cannot	be	used	in	a	condition;	the	exception	is	comparison
against	*NULL,	or	*SQLNULL.
Changes	may	not	be	logged	(and	therefore	rollback	may	have	no
effect)	on	some	or	all	DBMSs.
The	attribute	LC	is	always	enabled,	and	cannot	be	disabled.	This	will
affect	filenames	initially.	BLOB,	as	a	binary	type,	allows	any	type	of
data	so	lowercase	is	meaningless	within	the	file.
The	attribute	ASQN	is	always	enabled,	and	cannot	be	disabled.

When	BLOB	and	CLOB	data	is	read	from	the	database,	files	are
automatically	created	in	the	directory	structures	under	the	LPTH=	directory
(for	information,	refer	to	Standard	X_RUN	Parameters).

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Tips	&	Techniques
The	recommended	design	when	using	BLOB	and	CLOB	fields	is	to	put	them
in	a	separate	file	from	the	rest	of	the	fields	using	the	same	key	as	the	main
file.	This	forces	programmers	to	do	separate	IOs	to	access	the	BLOB	and
CLOB	data,	thus	reducing	impact	on	database	performance	from
indiscriminate	use	of	this	data.	It	is	also	the	most	portable	design	ensuring
that	the	non-BLOB	and	non-CLOB	data	can	be	quickly	accessed	at	all	times.
The	LOB	directory	files	created	on	read	are	occasionally	not	deleted	at	the
end	of	your	LANSA	session.	A	special	process,	*LOBCLNUP,	can	be
executed	occasionally	to	cleanup	the	LOB	directory	structure.	The	process
needs	to	be	run	by	a	user	with	sufficient	authority	to	remove	files	that	may
have	been	created	by	other	users.	For	example,	on	IBM	i,	use	the	following
command:	LANSA	REQUEST(X_RUN)
X_RUNADPRM('PROC=*LOBCLNUP')

Also	See
1.1.18	CLOB
	1.1	Field	Types

1.1.18	CLOB
CLOB	is	a	variable-length	character	field	of	undefined	maximum	length.
CLOBs	can	be	used	for	saving	files	into	the	database	and	retrieving	them	so
they	can	be	viewed/edited/etc.	In	RDML	and	RDMLX,	CLOB	fields	are
manipulated	as	filenames.
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	CLOB	field	in	the	repository	are:

Length Length	cannot	be	specified.	No	decimals.

Valid	Keyboard
Shift

Blanks,	O,	E,	J	or	W.

Allowed
Attributes

AB,	ASQN,	CS,	FE,	LC,	ND,	RA,	RL,	RLTB,	SUNI.
Note:	LC	and	ASQN	must	always	be	defined	and	cannot	be
removed.

Edit	Mask Not	allowed.

Default *SQLNULL.	ASQN	will	be	enabled	by	default.

Field	Definition	Notes
There	is	no	working	field	type	for	CLOBs.

Usage	Rules
Partition	Type RDMLX	Enabled	Partition

Files CLOBS	may	only	be	used	in	RDMLX	Files.	CLOB	fields	may
be	used	as	real	fields.	CLOBS	must	not	be	used	as	key	fields.

Logical	Views CLOBS	must	not	be	used	as	key	fields.

Virtual	Fields Not	applicable.

Predetermined
Join	Fields

Not	applicable.

RDML
Commands

If	a	BLOB	or	CLOB	field	is	used,	keep	in	mind	that	the	field
contains	a	filename,	not	the	actual	data	in	the	object.	In	RDML
and	RDMLX,	LANSA	LOB	fields	will	be	manipulated	as

filenames.

Built-In
Functions

When	used	in	Built-In	Functions,	CLOBs	are	classified	as	their
own	types	and	are	not	valid	for	numeric	or	alpha	arguments.

Special
Values

*SQLNULL,	*NAVAIL,	*REMEMBERED_VALUE,	*EMPTY

Conversion CLOBs	are	treated	as	file	pointers	and	do	not	support	conversion
to	a	Numeric	or	Date/Time	field	type.	Refer	to	Field	Type
Conversions.

Usage	Notes
There	are	no	working	field	types	for	CLOBs.

CLOBs	cannot	be	part	of	any	key	(e.g.	for	Access	Routes,	etc.)
You	cannot	display	or	print	CLOB	data.
If	a	CLOB	field	is	added	to	the	list,	keep	in	mind	that	the	field	contains	a
filename,	not	the	actual	data	in	the	object.
If	an	SQL	WHERE	clause	will/may	be	generated	by	a	condition,	these	field
types	may	only	be	compared	to	*NULL	or	*SQLNULL;	any	other
comparison	will	be	rejected.
Rather	than	the	default	property	.Value,	fields	of	type	CLOB	have	a	default
property	called	.FileName	to	clearly	indicate	that	changing	the	"value"	of	the
field	is	actually	changing	its	default	property	which	is	a	file	name	property.
CLOB	fields	are	subject	to	certain	restrictions:

They	cannot	be	used	in	SELECT_SQL	commands.
They	cannot	be	used	in	a	condition;	the	exception	is	comparison
against	*NULL,	or	*SQLNULL.
Changes	may	not	be	logged	(and	therefore	rollback	may	have	no
effect)	on	some	or	all	DBMSs.
The	attribute	LC	is	always	enabled,	and	cannot	be	disabled.	This	will
affect	filenames	initially,	but	could	also	eventually	affect	the	content
for	CLOBs.
The	attribute	ASQN	is	always	enabled,	and	cannot	be	disabled.

When	BLOB	and	CLOB	data	is	read	from	the	database,	files	are
automatically	created	in	the	directory	structures	under	the	LPTH=	directory
(for	information,	refer	to	Standard	X_RUN	Parameters).

Platform	Considerations
When	reading	CLOB	fields	on	IBM	i,	the	file	created	on	the	IFS	will	have	the
same	CCSID	as	the	native	CLOB	or	DBCLOB	column	on	the	database	table;
no	data	conversion	is	performed	on	the	data.	That	includes
DBCLOB	columns	with	CCSID	1200	or	13488.
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Tips	&	Techniques
The	recommended	design	when	using	BLOB	and	CLOB	fields	is	to	put	them
in	a	separate	file	from	the	rest	of	the	fields	using	the	same	key	as	the	main
file.	This	forces	programmers	to	do	separate	IOs	to	access	the	BLOB	and
CLOB	data,	thus	reducing	impact	on	database	performance	from
indiscriminate	use	of	this	data.	It	is	also	the	most	portable	design	ensuring
that	the	non-BLOB	and	non-CLOB	data	can	be	quickly	accessed	at	all	times.
The	LOB	directory	files	created	on	read	are	occasionally	not	deleted	at	the
end	of	your	LANSA	session.	A	special	process,	*LOBCLNUP,	can	be
executed	occasionally	to	cleanup	the	LOB	directory	structure.	The	process
needs	to	be	run	by	a	user	with	sufficient	authority	to	remove	files	that	may
have	been	created	by	other	users.	For	example,	on	IBM	i,	use	the	following
command:	LANSA	REQUEST(X_RUN)
X_RUNADPRM('PROC=*LOBCLNUP')

Also	See
1.1.17	BLOB
	1.1	Field	Types

1.1.19	Boolean
Boolean	fields	have	only	two	possible	values:	either	False	(0)	or	True	(1).
Please	review	the	general	1.1.1	Field	Type	Considerations.
Field	Definition	Rules
Rules	for	defining	a	Boolean	field	in	the	repository	are:

Length Length	cannot	be	specified.	No	decimals.

Valid	Keyboard	Shift Blanks

Allowed	Attributes ASQN

Edit	Mask Not	allowed.

Default *NULL	(False)

Field	Definition	Notes
None.

Usage	Rules
Partition	Type RDMLX	Enabled	Partitions

Files Booleans	may	only	be	used	in	RDMLX	Files.	Booleans	may	be
used	as	real	or	key	fields.

Logical	Views Booleans	may	be	used	as	keys	to	logical	views.	Booleans	may	be
used	in	Select/Omit	criteria	with	COMP()	EQ/NE	'True'	or
'False'

Virtual	Fields Booleans	may	be	used	as	virtual	field;	they	may	only	be	assigned
a	value	using	Code	Fragments.

Predetermined
Join	Fields

Booleans	may	be	used	for	lookup	predetermined	joined	fields.

RDML
Commands

Booleans	are	classified	as	their	own	type	and	are	not	valid	for
numeric	or	alpha	command	parameters	in	RDML	commands.

Built-In
Functions

Booleans	are	classified	as	their	own	type	and	are	not	valid	for
numeric	or	alpha	command	parameters	in	RDML	commands.

Special *NULL,	*NAVAIL,	*HIVAL,	*LOVAL,

Values *REMEMBERED_VALUE

Conversion Booleans	may	be	converted	to	alpha,	integer,	signed,	packed,
string	or	char.	In	numeric	conversions,	False	becomes	0,	and
True	becomes	1.	In	Character/String	conversions,	the	target	is
populated	with	the	word	"False"	or	"True".	Refer	to	Field	Type
Conversions.

Usage	Notes
Working	fields	may	be	defined	as	TYPE(*BOOLEAN).
In	a	SELECT_SQL	Where	clause,	you	must	use	0	and	1,	the	keywords	True
and	False	are	not	supported.
In	Select/Omit	criteria,	Boolean	literals	must	be	specified	in	capitals	and
surrounded	by	quotes.	I.e.	'TRUE'	or	'FALSE'.

Platform	Considerations
Refer	to	Platform	Considerations	in	1.1.1	Field	Type	Considerations.

Also	See
	1.1	Field	Types

1.2	Field	Definitions

1.2.20	Alias	Name
1.2.11	Allocated	Length	(IBM	i
only)
1.2.5	Decimals
1.2.6	Default	Value
1.2.12	Edit	Mask
1.2.14	Enable	Field	for
RDMLX

1.2.16	Field	Attributes
1.2.10	Field	Column
Heading
1.2.8	Field	Description
1.2.2	Field	Identifier
1.2.9	Field	Label
1.2.4	Field	Length
1.2.1	Field	Name

1.2.3	Field	Type
1.2.17	Input
Attributes
1.2.13	Keyboard
Shift
1.2.18	Output
Attributes
1.2.19	Prompting
1.2.7	Reference
Field
1.2.15	System	Field

Also	See
1.1	Field	Types
1.3	Field	Visualizations
1.4	Field	Rules	and	Triggers
1.5	Field	Help	Text
Fields	in	the	User	Guide
Creating	Fields	in	the	Developer	Guide
	1.	Fields

its:Lansa012.chm::/lansa/l4wusr01_0130.htm
its:LANSA013.CHM::/lansa/L4wDev03_0010.htm

1.2.1	Field	Name
Mandatory.
Specify	the	name	of	the	field	to	be	created	in	the	LANSA	Repository.
Refer	to	LANSA	object	name.
Rules

Refer	to	LANSA	object	name.
Warnings

Refer	to	LANSA	object	name.
Tips	&	Techniques

Refer	to	LANSA	object	name.
Platform	Considerations

Refer	to	LANSA	object	name.
Also	See
1.2.2	Field	Identifier
	1.2	Field	Definitions

1.2.2	Field	Identifier
Mandatory.
Specify	the	identifier	of	the	field	to	be	stored	in	the	LANSA	Repository.		Field
identifiers	are	not	case	sensitive.	By	default,	field	identifiers	are	often	converted
to	upper	case	characters	in	LANSA.
Rules

Must	be	a	valid	LANSA	object	name.
Cannot	be	the	same	as	the	alias	name	or	the	alias	for	another	field.

Warnings
Avoid	the	use	of	field	identifiers	like	SQLxxx,	as	this	may	cause	problems
when	used	in	functions	that	use	SQL	(Structured	Query	Language)	facilities.
(i.e.	Command	SELECT_SQL.)

Platform	Considerations
IBM	i:	Use	of	identifiers	of	more	than	6	characters	in	length	is	not
recommended	if	you	are	writing	your	own	RPG	application	programs.	Refer
to	the	RPG	Programmer's	Reference	Guide.

Tips	&	Techniques
Use	alias	name	for	COBOL	or	PL/1	long	names.
Field	naming	standards	will	assist	in	the	maintenance	of	your	LANSA
applications.	Refer	to	Object	Naming	Standards	in	the	LANSA	Application
Design	Guide.
LANSA	recommends	a	corporate	data	dictionary	approach	for	creating	fields
in	the	LANSA	Repository.	Refer	to	Corporate	Data	Dictionary	Concepts	in
the	Developer	Guide.

Also	See
1.2.1	Field	Name
	1.2	Field	Definitions

its:Lansa065.CHM::/lansa/dsnb2_0010.htm
its:lansa013.chm::/lansa/l4wdev03_0050.htm

1.2.3	Field	Type
Mandatory.
Specify	the	type	of	field	to	be	created	in	the	LANSA	Repository.
Allowable	1.1	Field	Types	are	defined	at	the	partition	level.	Refer	to		1.1.1	Field
Type	Considerations.
It	is	important	to	set	the	type	of	the	field	before	specifying	other	attributes
because	attributes	are	dependent	on	the	field	type.	(Refer	to	1.2.17	Input
Attributes	and	1.2.18	Output	Attributes.)
Rules

Rules	are	specific	to	the	1.1	Field	Types.
Cannot	be	entered	if	a	1.2.7	Reference	Field	has	been	specified.

Warnings
Refer	to	1.1	Field	Types.

Tips	&	Techniques
Refer	to	1.1	Field	Types.

Platform	Considerations
Refer	to	1.1	Field	Types.

Also	See
1.2.4	Field	Length
1.2.5	Decimals
	1.2	Field	Definitions

1.2.4	Field	Length
Mandatory.
Specify	the	length	of	the	field	to	be	created	in	the	LANSA	Repository.	Field
length	is	dependent	upon	the	1.1	Field	Types.
Rules

Refer	to	1.1	Field	Types.
Cannot	be	entered	if	a	1.2.7	Reference	Field	has	been	specified.

Warnings
Refer	to	1.1	Field	Types.

Tips	&	Techniques
Refer	to	1.1	Field	Types.

Platform	Considerations
Refer	to	1.1	Field	Types.

Also	See
1.2.5	Decimals
	1.2	Field	Definitions

1.2.5	Decimals
Specify	the	number	of	decimals	for	fields	of	numeric	type.	The	specification	of
decimals	is	dependent	upon	the	1.1	Field	Types.
Rules

Refer	to	1.1	Field	Types.
Must	be	less	than	or	equal	to	1.2.4	Field	Length	(total	number	of	digits).
Cannot	be	entered	if	a	1.2.7	Reference	Field	has	been	specified.

Warnings
Refer	to	1.1	Field	Types.

Tips	&	Techniques
Refer	to	1.1	Field	Types.

Platform	Considerations
Refer	to	1.1	Field	Types.

Also	See
1.2.4	Field	Length
	1.2	Field	Definitions

1.2.6	Default	Value
Specify	the	default	value	for	a	field.		This	value	is	used	as	defaults	on	screens,
reports	and	fields	in	a	function.
If	no	default	value	is	specified,	the	field	defaults	to	*BLANKS	(blanks)	for
character	fields,	*ZERO	(zero)	for	numeric	fields	and	*NULL	(null	value)	for
other	fields.
Rules
Allowable	values	include:
system	variable	such	as	*BLANKS,	*ZERO,	*DATE,*NULL	or	any	other
variables	specifically	defined	at	your	installation.
alpha	literal	(in	quotes)	such	as	'NSW',	'BALMAIN'	or	'Australia'.
numeric	literal	such	as	1,	10.43,	-1.341217

Additional	rules:
Refer	to	1.1	Field	Types.
Cannot	be	entered	if	a	1.2.7	Reference	Field	has	been	specified.

Warnings
Refer	to	1.1	Field	Types.

Tips	&	Techniques
Refer	to	1.1	Field	Types.

Platform	Considerations
Refer	to	1.1	Field	Types.

Also	See
General	Variables
	1.2	Field	Definitions

1.2.7	Reference	Field
Specify	the	name	of	the	field	which	should	be	"referred"	to.	The	new	field	will
inherit	the	following	characteristics	from	the	reference	field	entered:
Type
Length
Number	of	decimal	positions
Default	value
Edit	mask
Keyboard	Shift
Input	attributes	and	Output	attributes.

You	cannot	change	these	characteristics	while	the	reference	field	is	specified,
and	they	are	automatically	updated	if	the	reference	field	is	changed.	For
example,	if	the	length	of	the	reference	field	is	changed,	the	same	changes	will
automatically	be	made	to	the	fields	that	refer	to	it.
Initially,	the	prompt	process	and	function	are	inherited,	but	you	can	change
these	details	if	required.
Rules

The	reference	field	must	already	exist	in	the	repository.
Warnings

In	an	RDML	partition,	if	the	flag	*IMPREFFLDNOPROP	is	in	the	system
data	area	DC@OSVEROP,	the	input	and	output	attributes	will	not	be	updated
during	an	import	or	export.	If	the	reference	field	is	subsequently	changed,	the
changes	will	be	propagated	to	the	fields	referencing	the	reference	field.	For
further	information	refer	to	Reference	field	propagation	in	import	Export	and
Import	settings	of	the	LANSA	for	i	User	Guide.
In	an	RDMLX	partition,	the	attributes	of	a	field	that	is	defined	by	a	reference
field	cannot	be	changed.	The	*IMPREFFLDNOPROP	flag	in	the	system
definitions	is	ignored.

Tips	&	Techniques
All	LANSA	modeling	tools	that	use	a	data	type	approach,	will	use	reference
fields	when	building	field	definitions.
Make	each	referred	field	a	1.2.15	System	Field	so	that	it	won't	be	deleted.

its:Lansa010.chm::/lansa/ladugub7_0020.htm

Also	See
1.1	Field	Types
	1.2	Field	Definitions

1.2.8	Field	Description
Mandatory.
Specify	the	description	associated	with	the	field.	The	field	description	text	will
be	used	as	the	default	field	description	on	screens	and	reports	generated	by
LANSA.
Rules

A	field	description	must	be	entered	for	each	language	defined	for	the
partition.

Platform	Considerations
IBM	i:	Use	of	CUA	standards	for	identification	are	recommended.

Also	See
1.2.9	Field	Label
1.2.10	Field	Column	Heading
	1.2	Field	Definitions

1.2.9	Field	Label
Mandatory.
Specify	the	label	associated	with	the	field	stored.		The	field	label	text	can	be
used	as	the	field	description	when	a	field	is	used	on	screens	and	reports
generated	by	LANSA.
Rules

Maximum	length	is	15.
A	field	label	must	be	entered	for	each	language	defined	for	the	partition.

Platform	Considerations
IBM	i:			Use	of	CUA	standards	for	identification	are	recommended.

Also	See
1.2.8	Field	Description
1.2.10	Field	Column	Heading
	1.2	Field	Definitions

1.2.10	Field	Column	Heading
Mandatory.
Specify	the	column	heading	associated	with	the	field.		The	field	column	heading
text	will	be	used	as	the	default	column	headings	text	when	a	field	is	used	in	a
list	on	a	screen	or	report	generated	by	LANSA.
Rules

A	field	column	heading	must	be	entered	for	each	language	defined	for	the
partition.

Tips	&	Techniques
Match	column	heading	text	length	to	the	field	length.	For	example,	a	2
character	state	code	might	have	a	2	character	column	heading	of	ST	instead	of
using	STATE	CODE.
Single	line	column	headings	require	less	display	area	on	screens	and	reports.

Platform	Considerations
IBM	i:		Use	of	CUA	standards	for	identification	are	recommended.

Also	See
1.2.8	Field	Description
1.2.9	Field	Label
	1.2	Field	Definitions

1.2.11	Allocated	Length	(IBM	i	only)
What	is	it	for?
The	Allocated	length	is	only	used	when	creating	files	on	IBM	i.	It	defines	the
space	to	be	reserved	for	variable	length	columns	in	each	row.	Column	values
with	lengths	less	than	or	equal	to	the	allocated	value	are	stored	in	the	fixed-
length	portion	of	the	row.	Column	values	with	lengths	greater	than	the	allocated
value	are	stored	in	the	variable-length	portion	of	the	row	and	require	additional
input/output	operations	to	retrieve.
Rules:
The	allocated	length	cannot	exceed	the	1.2.4	Field	Length.
Allocated	length	is	only	available	with	these	field	types:	String,	NVarChar,
VarBinary,	CLOB	&	BLOB.
If	the	field	has	keyboard	shift	E,	O,	or	J,	the	allocated	field	length	must	be	0,	or
greater	than	4.
If	the	field	has	the	attribute	SUNI,	the	allocated	field	length	is	specified	in
characters,	not	bytes.
For	example:
If	you	enter	an	allocated	length	of	32000,	and	the	file	is	created	via	DDS,
VARLEN(32000)	will	be	specified	for	the	field	definition.	
If	the	file	is	created	via	SQL's	CREATE	TABLE	statement,
ALLOCATE(32000)	will	be	specified	for	the	column	definition.
For	further	details,	please	refer	to	the	IBM	DDS	Reference	and	SQL	Reference
manuals.
	1.2	Field	Definitions

1.2.12	Edit	Mask
Edit	Mask	allows	you	to	specify	the	format	in	which	you	want	your	data
returned	for	the	application.
Edit	Code
Specify	the	letter	or	number	representing	the	format	for	output-capable	numeric
fields.	This	indicates	the	formatting	to	be	done	before	a	field	is	displayed	or
printed.	The	following	editing	can	be	done,	depending	on	which	edit	code	is
specified:
Leading	zeros	can	be	suppressed.
The	field	can	be	punctuated	with	commas	and	decimal	points	to	show
decimal	position	and	to	group	digits	by	threes.
Negative	values	can	be	displayed	with	a	minus	sign	or	CR	to	the	right.	Zero
values	can	be	displayed	as	zero	or	blanks.

Refer	to	Standard	Field	Edit	Codes	for	edit	codes	that	are	supported	in	this
version	of	LANSA.
Edit	Word
If	you	cannot	accomplish	the	desired	editing	by	using	a	predefined	edit	code,
you	may	specify	an	edit	word	instead.	An	edit	word	specifies	the	form	in	which
the	field	values	are	to	print	and	clarifies	the	data	by	inserting	characters,	such	as
decimal	points,	commas,	floating-	and	fixed-currency	symbols,	and	credit
balance	indicators.	Also	use	it	to	suppress	leading	zeros	and	to	provide	asterisk
fill	protection.
Warnings

Use	of	edit	words	should	only	be	attempted	by	experienced	users	as	the
validity	checking	done	by	LANSA	is	unsophisticated.	Invalid	edit	words	may
pass	undetected	into	the	system	and	cause	subsequent	failures	when
attempting	to	create	database	files	or	compile	programs.	Refer	to	IBM	manual
Data	Description	Specifications	for	more	details	about	EDTCDE	(Edit	Code)
and	EDTWRD	(Edit	Word)	Keywords.

Rules
Edit	codes	cannot	be	used	with	all	numeric	field	types.	Refer	to	1.1	Field
Types.
Edit	Codes	cannot	be	entered	if	a	1.2.7	Reference	Field	has	been	specified	as
the	code	is	inherited	from	the	referenced	field.

Tips	&	Techniques
Use	of	edit	masks	for	packed	and	signed	fields	is	strongly	recommended.
Note:	Edit	word	processing	involving	floating	currency	symbols	is	handled
differently	by	the	operating	system	for	screens	and	reports.	If	such	a	problem
occurs,	it	is	best	overcome	by	the	use	of	a	virtual	field	for	report	production
and	only	using	the	real	field	for	screen	display.

Also	See
1.1.1	Field	Type	Considerations
	1.2	Field	Definitions

1.2.13	Keyboard	Shift
Specify	the	keyboard	shift	to	limit	what	the	user	can	type	into	a	field.
Note	-	V11	SP5	onwards:
Keyboard	Shift	U	is	no	longer	an	option.	New	Field	Attribute	SUNI	indicates
if	a	field	is	a	Unicode	field	or	not.
Keyboard	shift	settings	can	be	changed	and	maintain	via	the	LANSA	Editor.

Valid	keyboard	shift	values	are	based	on	1.1	Field	Types.
Rules
Allowable	values	are:

Keyboard
shift

Meaning Data	Type	Allowed

A Alpha	shift Alpha

Blank 	 Alpha	/	Numeric

D Digits	only	0	-	9 Alpha/Numeric

I Inhibit	entry	(no	keyboard
entry	allowed)

Alpha/Numeric

M Numeric	keys 0	-	9,	plus,	minus,	comma,	dash,
space,	period

N Numeric	shift Alpha	/	Numeric

S Signed	numeric Numeric

W Katakana	(for	Japan	only) Alpha

X Alphabetic	only Alpha.	A	-	Z,	comma,	period,	dash,
space

Y Numeric	only Numeric

	

Additional	rules	are:
Cannot	be	entered	if	a	1.2.7	Reference	Field	has	been	specified.

Tips	&	Techniques
When	using	a	DBCS	LANSA	language	on	DBCS	operating	systems,	the	IME
mode	is	set	dependent	on	the	type	of	keyboard	shift	to	allow	the	construction
of	DBCS	characters	from	phonetics.
Keyboard	Shift	U	is	not	valid	for	fields	defined	in	functions.	
Therefore,	any	field	definition	commands	that	reference	the	original	Other
File	field	with	Keyboard	Shift	U,	must	specify	a	valid	value	for	the
SHIFT	parameter.	Use	SHIFT(*BLANKS)	if	users	will	only	be	entering
SBCS	data,	otherwise	set	the	SHIFT	parameter	to	another	appropriate	value.

Platform	Considerations
IBM	i:		The	IBM	i	DBCS	or	IGC	data	types	J,	E	&	O	have	been	implemented
as	the	Alpha	LANSA	data	type	with	LANSA	keyboard	shift	J,	E	&	O
respectively.

												 												 J Alpha,	Used	for	DBCS	only.

	 	 E Alpha.	Used	for	all	DBCS	characters	or	all	SBCS	characters.
Both	DBCS	and	SBCS	are	not	allowed	in	the	same	field.

	 	 O Alpha.	Used	for	mixed	DBCS	and	SBCS

IBM	i:	Refer	to	the	IBM	manual	Data	Description	Specifications	for	more
details	about	DDS	Data	Type/Keyboard	Shift	for	display	files	(Position	35).

Also	See
1.1.1	Field	Type	Considerations

1.2.14	Enable	Field	for	RDMLX
Specify	if	this	field	is	enabled	for	full	RDMLX	so	that	extended	field	definition
characteristics	can	be	used.	Refer	to	What	Classifies	a	Field	as	RDMLX.)
This	option	is	only	available	in	an	RDMLX	Enabled	Partition.
The	default	value	for	this	option	is	controlled	in	the	RDMLX	Partition	Settings.
Tips	&	Techniques

Once	enabled	for	RDMLX,	you	can	change	the	field	type	to	an	RDMLX	field
type.	Refer	to	Field	Type	Considerations	for	details	about	RDML	and
RDMLX	fields.
When	you	change	the	field	option	to	RDMLX,	the	field	definition	must	meet
all	RDMLX	requirements	before	you	can	save	it.
It	is	recommended	that	you	review	the	RDML	and	RDMLX	Partition
Concepts	in	the	Administrator	Guide.

Implications
All	editing	must	be	performed	using	Visual	LANSA.	You	cannot	edit
RDMLX	Fields	from	LANSA	for	i.
RDMLX	fields	cannot	be	used	by	RDML	Objects.	Once	it	becomes	an
RDMLX	field,	a	field	cannot	be	used	within	any	RDML	File,	RDML
Function	or	RDML	Component.	This	change	may	have	major	implications	to
your	existing	applications.	(RDML	Fields	can	be	used	by	RDMLX	objects.)

Warning
If	a	field	is	changed	so	it	is	no	longer	enabled	for	RDMLX,	then	all	RDMLX
features	must	be	removed	before	it	can	be	saved.
	1.2	Field	Definitions

its:Lansa011.chm::/lansa/l4wadm05_0200.htm
its:Lansa011.chm::/lansa/l4wpar01_0020.htm

1.2.15	System	Field
Mandatory.	Default=No	(not	selected).
Specify	if	this	field	is	to	be	considered	a	LANSA	system	field.		LANSA	system
fields	cannot	be	deleted	from	the	repository	while	it	remains	identified	as	a
system	field.
The	standard	shipped	LANSA	system	fields	are	inserted	into	each	new	partition.
Tips	&	Techniques

Make	all	reference	fields	system	fields.	Refer	to	1.2.7	Reference	Field.
	1.2	Field	Definitions

1.2.16	Field	Attributes
Field	attributes	are	used	to	control	how	a	field	is	displayed	when	it	is	used	as	an
input	field	(1.2.17	Input	Attributes)	and	how	a	field	is	displayed	when	it	is	used
for	output	(1.2.18	Output	Attributes).
Field	Attributes
Specify	the	field	attributes.	You	may	manually	edit	the	list	of	attributes	for	a
field,	or	the	list	will	automatically	be	updated	as	you	select	the	codes	from	the
lists	for	specific	Attribute	Types.	The	allowable	1.2.17	Input	Attributes	and
1.2.18	Output	Attributes	will	vary	by	1.1	Field	Types.
Attribute	Type
Specify	the	desired	attribute	type	from	the	drop	down	list.	The	allowable
Attribute	Types	for	the	1.2.17	Input	Attributes	and	1.2.18	Output	Attributes	will
vary	by	1.1	Field	Types.
	1.2	Field	Definitions

1.2.17	Input	Attributes
Input	Field	Attribute	Types
Specify	how	a	field	is	displayed	when	it	is	used	as	an	input	field	in	a	function	or
a	form.
Rules
Allowable	values	will	vary	by	1.1	Field	Types.	Groupings	include:
Common	Attributes
SAA/CUA	Attributes	-	Functions	Only
Colors	-	Functions	Only
GUI	Attributes	-	Function	Only

Tips	&	Techniques
Most		input	attributes,	such	as	color,	are	used	in	functions	because	other
LANSA	screens	(forms,	web	functions,	etc.)	use	other	techniques	such	as
visual	style	to	define	how	fields	are	displayed.
Input	attributes	such	as	Hidden	Field	(for	passwords)	or	Lowercase	(allow
lower	case	text	to	be	entered)	can	be	used	for	all	types	of	applications.

Input	Attributes
Specify	the	field	attribute	to	be	displayed	when	it	is	used	as	an	input	field	in	a
function	or	a	form.
Rules
Common	Attributes
Allowable	values	for	Common	Attributes	are:

AttributeDescription	/	comments

AB Allow		blank.

ASQN Allow	*SQLNULL	assignment.

BL Display	blinking.

CBOX Check	box.

CS Display	with	column	separators.

FE Field	Exit	key	required.

HI Display	with	high	intensity.

LC Lowercase	entry	allowed.	If	you	do	NOT	set	this	attribute,	refer	to
PC	Locale	uppercasing	requested	in	Review	or	Change	a	Partition's
Multilingual	Attributes	in	the	LANSA	for	i	User	Guide.

ME Mandatory	entry	check	required.

MF Mandatory	fill	check	required.

ND Non-display	(hidden	field).

RA Auto	record	advance	field.

RB Right	adjust	and	blank	fill.

RL Move	cursor	right	to	left.

RLTB Tab	cursor	right/left	top/bottom.

RZ Right	adjust	and	zero	fill.

SBIN Store	in	binary	format.	This	is	a	special	attribute	provided	for	fields
that	need	to	contain	imbedded	packed	or	signed	fields.	Refer	to	Use
of	Hex	Values,	Attributes,	Hidden/Imbedded	Decimal	Data	in	the
LANSA	Application	Design	Guide	(Use	of	Hex	Values,	Attributes,
Hidden/Imbedded	Decimal	Data).

SREV Store	in	reverse	format.	This	is	a	special	attribute	provided	for	bi-
directional	languages.	Refer	to	The	SREV	Field	Attribute	in	the
LANSA	Multilingual	Application	Design	Guide.

SUNS Store	integer	values	as	unsigned	binary	values.

SUNI Store	in	Unicode.	This	is	a	special	attribute	which	allows	data	from
different	languages	to	be	stored	in	the	database	without	data	loss
through	code	page	conversion.	For	new	fields,	field	type	NChar	or
NVarChar	is	recommended,	rather	than	adding	the	SUNI	attribute.

VN Valid	name	check	required.

	

CUA	Attributes	-	Function	Only
Allowable	values	for	SAA/CUA	Attributes	-	Function	Only	are:

its:LANSA010.chm::/lansa/ugub_50050.htm
its:Lansa065.CHM::/lansa/dsnbf_0020.htm
its:Lansa070.chm::/lansa/mulb8_0015.htm

AttributeDescription	/	comments

ABCH Action	(menu)	bar	and	pull-down	choices

FKCH Function	key	information

PBBR Brackets

PBCE Protected	field	(emphasized)

PBCH Choices	shown	on	menu

PBCM Field	column	headings

PBCN Protected	field	(normal)

PBEE Input	capable	field	(emphasized)

PBEN Input	capable	field	(normal)

PBET Emphasized	text

PBFP Field	prompt	/	label	or	description	details

PBGH Group	headings

PBIN Instructions	to	user

PBNT Normal	text

PBPI Panel	identifier

PBPT Panel	title

PBSC Choice	last	selected	from	menu

PBSI Scrolling	information

PBSL Separator	line

PBUC Choices	that	are	not	available

PBWB Pop-up	window	border

	

Note	that	normally	only	PBEN	and	PBEE	would	be	specified	as	input	attributes.
Colors	-	Functions	Only

Allowable	values	for	Colors	-	Functions	Only	are:	

AttributeDescription	/	comments

BLU Display	with	color	blue.

GRN Display	with	color	green.

PNK Display	with	color	pink.

RED Display	with	color	red.

TRQ Display	with	color	turquoise.

WHT Display	with	color	white.

YLW Display	with	color	yellow.

	

GUI	Attributes	–	Functions	Only
Allowable	values	for	GUI	Attributes	–	Functions	Only	are:

AttributeDescription	/	comments

CBOX Present	field	value	as	a	GUI	WIMP	Check	Box.

DDxx	 Drop	Down
Represents	the	field	with	the	corresponding	GUI	WIMP	construct.

PBnn Push	Button

RBnn Radio	Button	

	

Tips	&	Techniques
Only	one	color	can	be	specified	for	a	field.
Use	of	colors	may	affect	other	attributes.

Platform	Considerations
IBM	i:		Refer	to	IBM	manual	Data	Description	Specifications	for	more
details.	Keywords	that	should	be	reviewed	are	CHECK,	COLOR	and

DSPATR.

Also	see
1.2.18	Output	Attributes
	1.2	Field	Definitions

1.2.18	Output	Attributes
Output	Field	Attribute	Types
Specify	how	a	field	is	displayed	when	it	is	used	for	output	in	a	function	or	a
form.
Rules
Allowable	values	will	vary	by	1.1	Field	Types.	Grouping	include:
Common	Attributes
SAA/CUA	Attributes	-	Functions	Only
Colors	-	Functions	Only
Record	Stamping	-	Create
Record	Stamping	-	Create	&	Update
Record	Stamping		-	Update
GUI	Attributes	-	Functions	Only
UD	Reporting	Attributes	-	Functions	Only

Output	Attributes
Specify	the	field	attribute	to	be	displayed	when	it	is	used	for	output	in	a	function
or	form
Rules
Common	Attributes
Allowable	values	for	Common	Attributes	are:

AttributeDescription	/	comments

ASQN Allow	*SQLNULL	assignment.

BL Display	blinking.

CBOX Present	field	value	as	a	GUI	WIMP	Check	Box.

CDTX Stamped	with	the	date	(*SYSFMT8)	that	the	record	was	created	or
last	updated.

CS Display	with	column	separators.

CYDX Stamped	with	the	date	(CCYYMMDD)	that	the	record	was	created	or
last	updated.

DATX Stamped	with	the	date	(*SYSFMT)	that	the	record	was	created	or	last
updated.

DUTC Display	in	UTC.	DateTimes	only.

FUNX Stamped	with	the	name	of	the	LANSA	function	or	component	that
either	created	or	last	updated	the	record.

HI Display	in	high	intensity.

ISO Display	in	ISO	Format.	Date,	Time,	and	DateTime	only.

JNMX Stamped	with	the	name	of	the	job	that	either	created	or	last	updated
the	record.*

JNRX Stamped	with	the	number	of	the	job	that	either	created	or	last	updated
the	record.*

ND Non-display	(hidden	field).

PROX Stamped	with	the	name	of	the	LANSA	Process	that	either	created	or
last	updated	the	record.

RA Auto	record	advance	field

SBIN Store	in	binary	format.	This	is	a	special	attribute	provided	for	fields
that	need	to	contain	imbedded	packed	or	signed	fields.	Refer	to	the
LANSA	Application	Design	Guide	(Use	of	Hex	Values,	Attributes,
Hidden/Imbedded	Decimal	Data).

SREV Store	in	reverse	format.	This	is	a	special	attribute	provided	for
bidirectional	languages.	Refer	to	The	SREV	Field	Attribute	in	the
LANSA	Multilingual	Application	Design	Guide.

SUNS Store	integer	values	as	unsigned	binary	values

SUNI Store	in	Unicode.	This	is	a	special	attribute	which	allows	data	from
different	languages	to	be	stored	in	the	database	without	data	loss
through	code	page	conversion.	For	new	fields,	field	type	NChar	or
NVarChar	is	recommended,	rather	than	adding	the	SUNI	attribute.

SUTC Store	in	the	database	in	UTC.	Datetimes	only.

TCDX Stamped	with	the	DateTime	(HHMMSS+*SYSFMT8)	that	the	record
was	created	or	last	updated.

its:Lansa070.chm::/lansa/mulb8_0015.htm

TDSX Stamped	with	the	DateTime	(HHMMSS+*SYSFMT)	that	the	record
was	created	or	last	updated.

TIMX Stamped	with	the	time	(HHMMSS)	that	the	record	was	created	or
last	updated.

TYDX Stamped	with	the	DateTime	(HHMMSSYYMMDD)	that	the	record
was	created	or	last	updated.

Urxx Associate	field	with	a	User	Defined	Reporting	Attribute	(URxx).
Provides	access	to	IBM	i	DDS	statements	for	printer	files.

	

SAA/CUA	Attributes	–	Functions	Only
Allowable	values	for	SAA/CUA	Attributes	–	Functions	Only	are:

AttributeDescription	/	comments

ABCH Action	(menu)	bar	and	pull-down	choices

FKCH Function	key	information

PBBR Brackets

PBCE Protected	field	(emphasized)

PBCH Choices	shown	on	menu

PBCM Field	column	headings

PBCN Protected	field	(normal)

PBEE Input	capable	field	(emphasized)

PBEN Input	capable	field	(normal)

PBET Emphasized	text

PBFP Field	prompt	/	label	or	description	details

PBGH Group	headings

PBIN Instructions	to	user

PBNT Normal	text

PBPI Panel	identifier

PBPT Panel	title

PBSC Choice	last	selected	from	menu

PBSI Scrolling	information

PBSL Separator	line

PBUC Choices	that	are	not	available

PBWB Pop-up	window	border

	

Colors	–	Functions	Only
Allowable	values	for	Colors	–	Functions	Only	are:

AttributeDescription	/	comments

BLU Display	with	color	blue.

GRN Display	with	color	green.

PNK Display	with	color	pink.

RED Display	with	color	red.

TRQ Display	with	color	turquoise.

WHT Display	with	color	white.

YLW Display	with	color	yellow.

	

Record	Stamping	–	Create
Allowable	values	for	Record	Stamping	–	Create	are:

AttributeDescription	/	comments

CDTC Stamped	with	the	date	(*SYSFMT8)	that	the	record	was	created.

CYDC Stamped	with	the	date	(CCYYMMDD)	that	the	record	was	created.

DATC Stamped	with	the	date	(*SYSFMT)	that	the	record	was	created.

FUNC Stamped	with	the	name	of	the	LANSA	function	or	component	that
created	the	record.

JNMC Stamped	with	the	name	of	the	job	that	created	the	record.*

JNRC Stamped	with	the	number	of	the	job	that	created	the	record.*

PROC Stamped	with	the	name	of	the	LANSA	Process	that	created	the
record.

TCDC Stamped	with	the	DateTime	(HHMMSS+*SYSFMT8)	that	the	record
was	created.

TCYC Stamped	with	the	DateTime	(YYYY-MM-DD	HH:MM:SS)	that	the
record	was	created.

TDSC Stamped	with	the	DateTime	(HHMMSS+*SYSFMT)	that	the	record
was	created.

TIMC Stamped	with	the	time	(HHMMSS)	that	the	record	was	created.

TYDC Stamped	with	the	DateTime	(HHMMSSYYMMDD)	that	the	record
was	created.

USRC Stamped	with	the	name	of	the	user	that	created	the	record.*
If	*LONG_USER_AUDIT	is	enabled	then	the	user	name	will	be	the
audit	user	(up	to	256	characters)	if	the	SET_SESSION_VALUE
USER_AUDIT	has	been	set,	otherwise	the	current	authenticated	user
name	is	used	if	available,	otherwise	the	current	user	name	is	used.	
If	*LONG_USER_AUDIT	is	not	enabled	then	the	user	name	will	be
the	audit	user	(up	to	10	characters)	if	the	SET_SESSION_VALUE
USER_AUDIT	has	been	set,	otherwise	the	current	user	name	is	used.

YMDC Stamped	with	the	date	(YYMMDD)	that	the	record	was	created.

	

Record	Stamping	–	Create	&	Update
Allowable	values	for	Create	&	Update	are:

AttributeDescription	/	comments

CDTX Stamped	with	the	date	(*SYSFMT8)	that	the	record	was	created	or
last	updated.

CYDX Stamped	with	the	date	(CCYYMMDD)	that	the	record	was	created	or
last	updated.

DATX Stamped	with	the	date	(*SYSFMT)	that	the	record	was	created	or	last
updated.

FUNX Stamped	with	the	name	of	the	LANSA	function	or	component	that
either	created	or	last	updated	the	record.

JNMX Stamped	with	the	name	of	the	job	that	either	created	or	last	updated
the	record.*

JNRX Stamped	with	the	number	of	the	job	that	either	created	or	last	updated
the	record.*

PROX Stamped	with	the	name	of	the	LANSA	Process	that	either	created	or
last	updated	the	record.

TCDX Stamped	with	the	DateTime	(HHMMSS+*SYSFMT8)	that	the	record
was	created	or	last	updated.

TCYX Stamped	with	the	DateTime	(YYYY-MM-DD	HH:MM:SS)	that	the
record	was	created	or	last	updated.

TDSX Stamped	with	the	DateTime	(HHMMSS+*SYSFMT)	that	the	record
was	created	or	last	updated.

TIMX Stamped	with	the	time	(HHMMSS)	that	the	record	was	created	or
last	updated.

TYDX Stamped	with	the	DateTime	(HHMMSSYYMMDD)	that	the	record
was	created	or	last	updated.

USRX Stamped	with	the	name	of	the	user	that	either	created	or	last	updated
the	record.*
If	*LONG_USER_AUDIT	is	enabled	then	the	user	name	will	be	the
audit	user	(up	to	256	characters)	if	the	SET_SESSION_VALUE
USER_AUDIT	has	been	set,	otherwise	the	current	authenticated	user
name	is	used	if	available,	otherwise	the	current	user	name	is	used.	
If	*LONG_USER_AUDIT	is	not	enabled	then	the	user	name	will	be
the	audit	user	(up	to	10	characters)	if	the	SET_SESSION_VALUE

USER_AUDIT	has	been	set,	otherwise	the	current	user	name	is	used.

YMDX Stamped	with	the	date	(YYMMDD)	that	the	record	was	created	or
last	updated.

	

Record	Stamping	-	Update
Allowable	values	for	record	stamping	are:

AttributeDescription	/	comments

CDTU Stamped	with	the	date	(*SYSFMT8)	that	the	record	was	last	updated.

CYDU Stamped	with	the	date	(CCYYMMDD)	that	the	record	was	last
updated.

DATU Stamped	with	the	date	(*SYSFMT)	that	the	record	was	last	updated.

FUNU Stamped	with	the	name	of	the	LANSA	function	or	component	that
last	updated	the	record.

JNMU Stamped	with	the	name	of	the	job	that	last	updated	the	record.*

JNRU Stamped	with	the	number	of	the	job	that	last	updated	the	record.*

PROU Stamped	with	the	name	of	the	LANSA	Process	that	last	updated	the
record.

TCDU Stamped	with	the	DateTime	(HHMMSS+*SYSFMT8)	that	the	record
was	last	updated.

TCYU Stamped	with	the	DateTime	(YYYY-MM-DD	HH:MM:SS)	that	the
record	was	last	updated.

TDSU Stamped	with	the	DateTime	(HHMMSS+*SYSFMT)	that	the	record
was	last	updated.

TIMU Stamped	with	the	time	(HHMMSS)	that	the	record	was	last	updated.

TYDU Stamped	with	the	DateTime	(HHMMSSYYMMDD)	that	the	record
was	last	updated.

USRU Stamped	with	the	name	of	the	user	that	last	updated	the	record.*
If	*LONG_USER_AUDIT	is	enabled,	then	the	user	name	will	be	the

audit	user	(up	to	256	characters)	if	the	SET_SESSION_VALUE
USER_AUDIT	has	been	set,	otherwise	the	current	authenticated	user
name	is	used	if	available,	otherwise	the	current	user	name	is	used.
If	*LONG_USER_AUDIT	is	not	enabled,	then	the	user	name	will	be
the	audit	user	(up	to	10	characters)	if	the	SET_SESSION_VALUE
USER_AUDIT	has	been	set,	otherwise	the	current	user	name	is	used.

YMDU Stamped	with	the	date	(YYMMDD)	that	the	record	was	last	updated.

	

GUI	Attributes	–	Functions	Only
Allowable	values	for	GUI	Attributes	–	Functions	Only	are:

AttributeDescription	/	comments

CBOX Present	field	value	as	a	GUI	WIMP	Check	Box.

DDxx Drop	Down**
Represents	the	field	with	the	corresponding	GUI	WIMP	construct.

PBnn Push	Button	**

RBnn Radio	Button	**

	

UD	Reporting	Attributes	–	Functions	Only
Allowable	values	for	UD	Reporting	Attributes	–	Functions	Only	are:

AttributeDescription	/	comments

Urxx Where	xx	is	any	alphanumeric	combination	except	for	blank
characters.

	

Warnings
The	single	asterisked	(*)	stamping	attributes	can	be	used	(in	the	repository
only)	to	indicate	that	certain	fields	in	file	definitions	should	be	automatically

stamped	during	INSERT	and/or	UPDATE	operations.
The	double	asterisked	(**)	attributes	the	field	with	the	corresponding	GUI
WIMP	construct.	Refer	to	GUI	WIMP	Constructs	for	more	information.

Tips	&	Techniques
Only	one	color	can	be	specified	for	a	field.
Use	of	colors	may	affect	other	attributes.

Platform	Considerations
IBM	i:		Refer	to	IBM	manual	Data	Description	Specifications	for	more
details.	Keywords	that	should	be	reviewed	are	COLOR	and	DSPATR.

Also	See
1.2.17	Input	Attributes
	1.2	Field	Definitions

1.2.19	Prompting
Specify	the	RDML	process	and	function	that	should	be	invoked	to	handle	a
"prompt	request"	made	against	the	field	being	defined	or	changed.		A	"prompt
request"	is	made	against	a	field	when	the	user	positions	the	screen	cursor	into	a
field,	on	its	label,	or	on	one	of	its	column	headings,	and	then	uses	the	PROMPT
function	key	or	equivalent	request.	Normally	the	prompt	function	key	is	F4,	but
it	may	be	assigned	differently	on	your	system.
Process
Specify	the	name	of	the	process	that	has	the	RDML	function	to	be	invoked	to
handle	a	"prompt	request"	made	against	the	field	being	defined	or	changed.	
Function
Specify	the	RDML	function	that	should	be	invoked	to	handle	a	"prompt
request"	made	against	the	field	being	defined	or	changed.	
Warnings

LANSA	does	not	check	that	the	Process	or	Function	exists.
Tips	&	Techniques

When	specifying	the	name	associated	with	a	prompting	process	and	function,
it	is	recommended	that	the	process	name	be	nominated	as	*DIRECT.	This
indicates	to	the	prompt	control	procedures	that	the	nominated	function	can	be
called	in	"direct"	mode,	without	having	to	go	through	the	associated	process
"controller".
Using	*DIRECT	has	positive	performance	benefits,	but	when	a	prompting
function	is	to	be	invoked	this	way	it	must	use	the	FUNCTION
OPTIONS(*DIRECT)	command.	Refer	to	CALL	Comments	/	Warnings	and
FUNCTION	Examples	for	more	details	of	direct	mode	invocation	of
functions.
When	a	reference	field	has	been	specified,	initially	the	prompt
process/function	is	inherited	from	the	referenced	field,	but	you	can	change	it
if	required.	Refer	to	1.2.7	Reference	Field.
If	the	reference	field's	prompt	process/function	is	changed,	any	of	the	fields
referring	to	it	which	have	the	same	prompt	process/function	(before	the
referenced	field	is	changed)	also	have	their	prompt	process/function	updated.
For	more	technical	details,	refer	to	Prompt_Key	Processing.	For	examples	of
prompting	processes	and	functions,	please	refer	to	What	Happens	When	the

its:LANSA065.CHM::/lansa/dsnb8_0035.htm

PROMPT	Key	is	Used	in	the	LANSA	Application	Design	Guide.

Also	See
Prompt	Key	Processing
	1.2	Field	Definitions

its:LANSA065.CHM::/lansa/dsnb8_0010.htm

1.2.20	Alias	Name
Specify	the	alternate	unique	name	for	the	field	being	defined	or	changed.
Rules

Must	not	be	the	same	as	any	other	field's	name	(including	the	field	that	is
being	created	or	amended)	in	the	Repository.
Must	not	be	the	same	as	any	other	field's	alias	name	in	the	Repository.
Maximum	of	30	characters.

Tips	&	Techniques
COBOL	or	PL/1	language	naming	conventions	are	NOT	checked.

Platform	Considerations
IBM	i:		The	alias	name	facility	is	provided	primarily	for	installations	that	use
the	COBOL	or	PL/1	programming	languages.	Refer	to	the	specific	IBM
supplied	program	reference	manuals	for	the	use	of	the	ALIAS	keyword.
Name	must	conform	to	field	naming	conventions	like	the	field	identifier.

Also	See
1.2.2	Field	Identifier
1.2.1	Field	Name
	1.2	Field	Definitions

1.3	Field	Visualizations
Field	Visualizations	can	be	centrally	stored	in	the	LANSA	Repository	to	provide
a	consistent	visual	presentation	of	a	field	when	used	on	a	Visual	LANSA	form
or	other	graphical	interface	supporting	visualizations.

Also	see
Field	Visualization	Tab	in	the	User	Guide
Field	Visualization	Development	in	the	Developer	Guide
Creating	Fields	in	the	Developer	Guide
	1.	Fields

its:LANSA012.CHM::/lansa/l4wusr01_0435.htm
its:lansa013.chm::/lansa/l4wdev03_0170.htm
its:LANSA013.CHM::/lansa/L4wDev03_0010.htm

1.4	Field	Rules	and	Triggers
Rules	and	Triggers	can	be	stored	in	the	LANSA	Repository	at	both	the	field
level	and	file	level.
It	is	important	to	understand	how	the	rules	and	triggers	work	at	both	levels	and
how	the	levels	work	together.	Refer	to	Rules	and	Triggers	Development
Concepts	in	the	Developer	Guide.
Both	field	and	file	level	details	are	found	in	Rules	and	Triggers.

Also	See
1.1	Field	Types
Field	Rules	and	Triggers	Tab	in	the	User	Guide
	1.	Fields

its:LANSA013.CHM::/lansa/L4wDev04_0035.HTM
its:LANSA012.CHM::/lansa/l4wusr01_0430.htm

1.5	Field	Help	Text
HELP	text	is	information	that	is	displayed	to	the	user	when	the	LANSA
application	requests	help	(using	the	HELP	key	or	equivalent	request).	Help	text
for	fields	is	stored	in	the	LANSA	Repository.	This	help	text	is	automatically
available	as	field	level	context	sensitive	help	text	when	a	field	is	displayed	on	a
screen.		Help	text	can	be	entered	for	each	language	specified	in	the	partition.
Generally	HELP	text	has	the	following	characteristics:
It	is	free	format.	No	restrictions	usually	exist	on	the	content	or	format	of
HELP	text.
It	relates	directly	to	the	action	the	user	was	taking	at	the	time	the	HELP	was
requested.	Usually	the	process	or	function	that	the	user	is	using	is	explained
in	some	detail.
Help	text	may	also	include	special	Help	Text	Enhancement	&	Substitution
Values.

LANSA	automatically	controls	the	handling	of	the	HELP	processing	in
applications.	LANSA	will	automatically	determine	the	type	of	HELP	that	is
required	(field,	component,	process	or	function)	and	automatically	display	the
associated	HELP	text	(if	any	exists).
LANSA	can	dynamically,	and	in	the	correct	language,	create	the	HELP	text
associated	with	a	field	from	the	repository	and	the	rules	that	it	contains.	You	can
turn	off	this	automatic	field	level	help	text	feature:	globally,	by	field,	or	precede
it	with	your	own	HELP	text.

Also	See
Substitution/Control	Values
Substitution/Control	Values	-	Visual	LANSA	Only
Help	Text	Attributes
Process	Help	Text
Function	Help	Text
Repository	Help	Tab	in	the	User	Guide
Repository	Help	Text	Development	in	the	Developer	Guide
	1.	Fields

	
	

its:LANSA012.CHM::/lansa/l4wusr01_1800.htm
its:LANSA013.CHM::/lansa/L4wDev03_0030.htm

2.	Rules	and	Triggers
Rules	and	triggers	are	applied	at	both	the	field	level	and	file	level.	The
following	topics	apply	to	both	fields	and	files	in	the	LANSA	Repository.
2.1	Rule	Definitions
2.2	List	of	Values	Checks
2.3	Range	of	Values	Checks
2.4	Date	Format/Range	Check
2.5	Code	File/Table	Lookup	Checks
2.6	Simple	Logic	Check
2.7	Complex	Logic	Check
2.8	Triggers

Also	See
Fields
Files
File	Rules	and	Triggers	Development	in	the	Developer	Guide
Field	Rules	and	Triggers	tabs	in	the	User	Guide
File	Rules	and	Triggers	tabs	in	the	User	Guide.

its:LANSA013.CHM::/lansa/L4wDev04_0035.HTM
its:LANSA012.CHM::/lansa/l4wusr01_0430.htm
its:LANSA012.CHM::/lansa/l4wusr01_0460.htm

2.1	Rule	Definitions
Rules	are	defined	at	both	the	field	level	and	file	level.	The	following	topics
apply	to	both	fields	and	files	in	the	LANSA	Repository.
2.1.1	Rule	Sequence
2.1.2	Rule	Description
2.1.3	Validation	Usage
2.1.4	Define	Rules	(by	type)
2.1.5	Validation	Actions
2.1.6	Error	Message

Also	See
File	Rules	and	Trigger	Development	in	the	Developer	Guide
Field	Rules	and	Triggers	tabs	in	the	User	Guide
File	Rules	and	Triggers	tabs	in	the	User	Guide
2.1.4	Define	Rules	(by	type)
	2.	Rules	and	Triggers

its:LANSA013.CHM::/lansa/L4wDev04_0035.HTM
its:LANSA012.CHM::/lansa/l4wusr01_0430.htm
its:LANSA012.CHM::/lansa/l4wusr01_0460.htm

2.1.1	Rule	Sequence
Mandatory.
Specify	the	sequence	number	for	the	order	to	perform	the	rules.
The	sequence	number	is	specific	to	the	rules	at	the	level	at	which	the	rule	is
being	added:	the	field	level	or	file	level.		Field	levels	are	applied	before	the	file
level	rules.
Rules

Sequence	numbers	must	be	consecutive.
The	sequence	number	is	automatically	assigned	when	a	rule	is	added.
Sequence	number	is	updated	when	the	order	of	the	rules	is	updated	in	the	list
of	rules.

Tips	&	Techniques
The	rule	sequence	number,	or	order	that	the	rules	are	processed,	is	extremely
important	as	you	review	the	2.1.5	Validation	Actions	performed	for	each	rule.

Also	See
Understanding	Rule	Sequence	in	the	Developer	Guide
Rule	Hierarchy	in	the	Developer	Guide
	2.1	Rule	Definitions

its:LANSA013.CHM::/lansa/L4wDev04_0160.HTM
its:LANSA013.CHM::/lansa/L4wDev04_0155.HTM

2.1.2	Rule	Description
Mandatory.
Specify	a	brief	description	of	the	rule	to	aid	other	developers	in	understanding
its	purpose.
Rules

Description	is	a	maximum	of	30	characters.
	2.1	Rule	Definitions

2.1.3	Validation	Usage
When	inserting
Mandatory.	Default=	Always	apply	rule	(ADD)
Specify	database	operation	when	the	rule	is	to	be	performed.
Rules
Allowable	values	are:

Always	apply	rule
(ADD)

Rule	is	always	applied	when	information	is	added
(inserted)	to	the	database.

Apply	when	field	is
used	(ADDUSE)

Rule	is	only	applied	when	the	field	is	actually	specified
in	the	INSERT	command	being	executed.

Never	apply	rule Do	not	apply	rule	when	inserting	to	the	file.

	

When	updating
Mandatory.	Default=	Always	apply	rule	(CHG)
Specify	database	operation	when	the	rule	is	to	be	performed.
Rules
Allowable	values	are:

Always	apply	rule
(CHG)

Rule	is	always	applied	when	information	is	changed
(updated)	in	the	database.

Apply	when	field	is
used	(CHGUSE)

Rule	is	only	applied	when	the	field	is	actually	specified
in	the	UPDATE	command	being	executed.

Never	apply	rule Do	not	apply	rule	when	updating	the	file.

	

When	deleting
Mandatory.	Default=	Never	apply	rule
Specify	database	operation	when	the	rule	is	to	be	performed.

Rules
Allowable	values	are:

Always	apply	rule
(DLT)

Rule	is	always	applied	when	information	is	deleted
(removed)	from	the	database.

Never	apply	rule Do	not	apply	rule	when	deleting	from	the	file.

	

Tips	&	Techniques
Most	commonly	used	entries	are	ADD,	CHG	and	CHGUSE.
Use	of	DLT	by	itself	is	a	common	and	a	very	powerful	rule	mechanism.
If	ADDUSE	is	specified,	ensure	that	the	default	value	of	the	field	is	a	valid
database	value.
Use	caution	when	specifying	CHGUSE	with	a	rule	that	involves	multiple
fields,	because	the	check	will	only	be	done	when	the	field	linked	to	the	rule	is
specified	on	an	UPDATE	command,	and	not	done	when	it	is	omitted,
regardless	of	whether	or	not	any	of	the	other	fields	referenced	in	the	rule	are
specified.
When	creating	a	rule,	ensure	that	it	does	not	indirectly	interfere	with	a	trigger.
For	more	information,	refer	to	Triggers	-	Some	Do's	and	Don'ts.

Also	See
2.1.4	Define	Rules	(by	type)
	2.1	Rule	Definitions

2.1.4	Define	Rules	(by	type)
The	fields	to	be	specified	are	dependent	upon	the	type	of	validation	rule.	Refer
to:
2.2	List	of	Values	Checks
2.3	Range	of	Values	Checks
2.4	Date	Format/Range	Check
2.5	Code	File/Table	Lookup	Checks
2.6	Simple	Logic	Check
2.7	Complex	Logic	Check
	2.1	Rule	Definitions

2.1.5	Validation	Actions
If	Field	is	Within	the	Checks
Mandatory.	Default=Evaluate	next	rule	(NEXT).
Specify	action	to	be	performed	if	the	field	is	found	to	be	in	one	of	the	ranges
specified.
Rules
Allowable	values	are:

Evaluate	next	rule
(NEXT)

Field	is	okay.	Proceed	to	next	rule	for	this	field.	No	error
message	is	displayed.

Set	field	in	error
(ERROR)

Field	is	in	error.	Issue	error	message	described	below.

Value	is	accepted
(ACCEPT)

Field	is	okay.	Bypass	all	other	rules	for	this	field.

	

If	Field	is	Not	Within	the	Checks
Mandatory.	Default=Set	field	in	error	(ERROR).
Specify	action	to	be	performed	if	the	field	is	NOT	found	to	be	in	one	of	the
ranges	specified.
Rules
Allowable	values	are:

Evaluate	next	rule
(NEXT)

Field	is	okay.	Proceed	to	next	rule	for	this	field.	No	error
message	is	displayed.

Set	field	in	error
(ERROR)

Field	is	in	error.	Issue	error	message	described	below.

Value	is	accepted
(ACCEPT)

Field	is	okay.	Bypass	all	other	rules	for	this	field.

	

Tips	&	Techniques
When	using	ACCEPT	to	bypass	all	other	rules	for	this	field,	the	Order	to
Process	rules	are	very	important.	Refer	to	2.1.1	Rule	Sequence.

Also	See
2.1.4	Define	Rules	(by	type)
	2.1	Rule	Definitions

2.1.6	Error	Message
Specify	either	message	number	and	message	file	or	message	text.	If	neither	an
error	message	number	and	file	nor	error	message	text	is	specified	LANSA	will
insert	a	default	error	message	number,	file	and	library	as	the	error	message.
These	default	messages	are	"general	purpose"	and	do	not	provide	much	detail
about	the	specific	cause	of	the	error.
Message	File
Specify	the	message	file	name	to	be	used	to	locate	the	identified	message
number.
Message	file	is	mandatory	if	using	a	Message	Number.
Platform	Considerations

IBM	i:	Error	message	files	and	error	message	numbers	are	a	native	part	of	the
IBM	i	operating	system.	Refer	to	the	IBM	supplied	Control	Language
Reference	Manual	for	more	details.	CL	commands	involving	message	files
include	CRTMSGF	and	ADDMSGD.
IBM	i:	You	can	directly	edit	the	message	details	from	this	screen	panel.	Enter
as	much	of	the	message	details	as	is	known	and	use	the	function	key	labeled
"Work	Msgd"	(Work	Message	Description).	This	will	cause	an	IBM	i
WRKMSGD	command	to	be	executed,	using	as	much	of	the	supplied
message	details	as	is	possible.	This	IBM	i	facility	will	allow	you	to	create	or
edit	the	message	details.	Upon	completion	of	the	WRKMSGD	command,	this
screen	panel	will	be	redisplayed,	unchanged,	to	allow	you	to	proceed.
Do	not	store	user	defined	messages,	or	modify	"shipped"	messages,	in	the
LANSA	message	file	DC@M01	via	this	or	any	other	message	file	editing
facility.	It	is	regularly	replaced	by	new	versions	or	EPCs	(Expedited	Program
Changes).

Error	Message	Number
Specify	the	message	number	from	the	identified	message	file	that	you	wish
displayed.
Message	number	is	mandatory	if	using	a	Message	File.
Error	Message	Text
Specify	the	text	of	the	error	message	to	be	displayed	directly.
Message	length	can	be	a	maximum	of	80	characters.
Tips	&	Techniques

If	Message	Text	facility	is	used,	then	the	message	will	have	no	second	level
text	associated	with	it.
Special	substitution	characters	can	be	used	in	the	message.
	2.1	Rule	Definitions

2.2	List	of	Values	Checks
A	list	of	values	rule	allows	a	field	to	be	checked	against	a	list	of	values.	For
instance,	an	Australian	state	should	be	in	the	list	QLD,	NSW,	VIC,	etc.
You	can	modify	the	sequencing	of	the	rule	by	changing	the	2.1.1	Rule	Sequence
field.	A	2.1.2	Rule	Description	must	be	associated	with	the	rule.	All	the
currently	existing	values	for	the	rule	are	shown	in	a	list.
Refer	to:
2.2.1	Value
2.2.2	List	Examples

Also	See
2.1.4	Define	Rules	(by	type)
	2.1	Rule	Definitions

2.2.1	Value
Specify	the	value	to	add	to	the	values	list	or	change	in	the	value	list.
At	least	one	entry	in	the	list	is	required,	and	a	maximum	of	50	entries	can	be
specified.	Values	are	checked	for	type	and	length	compatibility.
Rules
Allowable	values	include:
An	alphanumeric	literal	(in	quotes)	such	as	'NSW',	'BALMAIN'
A	numeric	literal	such	as	1,	14.23,	-1.141217.
Another	field	name	such	as	CUSTNO,	INVNUM,	etc.
A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variable	defined	at	your	installation.
A	process	parameter	such	as	*UP01,	*UP02,	etc.

Tips	&	Techniques
You	may	wish	to	use	2.3	Range	of	Values	Checks	depending	upon	your	list
contents.	For	large	numeric	lists,	a	range	check	may	be	more	appropriate.
	2.1	Rule	Definitions

2.2.2	List	Examples
These	examples	are	provided	to	illustrate	the	use	of	the	list	of	values	rule
facility:
Example	1
Field	being	checked:

Name Type Len Dec

STATEA 3 	

	

List	of	values:

List	Of	Values Comments

'NSW'
'QLD'
'VIC'

Check	for	valid	Australian	state	mnemonic.

	

Example	2
Field	being	checked:

Name Type Len Dec

NAMEA 7 	

	

List	of	values:

List	Of
Values

Comments

*BLANKSA	blank	name	is	an	error.	Reverse	the	default	error	logic	to	get
ERROR	if	in	list,	NEXT	if	not	in	list.

	

Example	3
Field	being	checked:

Name Type Len Dec

COMPNOP 1 0

	

List	of	values:		

List	Of	Values Comments

1
2
3

Company	number	must	be	1,	2	or	3.

	

Example	4
Field	being	checked:

Name Type Len Dec

YEARA 2 	

	

List	of	values:

List	Of
Values

Comments

*LASTYEAR
*THISYEAR
*NEXTYEAR

Year	must	equal	one	of	the	site	defined	system	variables
*LASTYEAR,	*THISYEAR	or	*NEXTYEAR

	

	2.2	List	of	Values	Checks

2.3	Range	of	Values	Checks
Specify	a	field	to	be	checked	against	various	ranges	of	values.
A	Range	of	Values	rule	allows	a	field	to	be	checked	against	various	ranges	of
values.	For	instance,	an	Australian	postcode	can	be	in	one	of	the	ranges	2000	-
2999,	3000	-	3999,	etc.
You	can	modify	the	sequencing	of	the	rule	by	changing	the	2.1.1	Rule	Sequence
field.	A	2.1.2	Rule	Description	must	be	associated	with	the	rule.	All	the
currently	existing	values	for	the	rule	are	shown	in	a	list.
Refer	to:
2.3.1	Range:	From	value	/	To	value
2.3.2	Range	of	Values	Examples

Also	See
2.1.4	Define	Rules	(by	type)
	2.1	Rule	Definitions

2.3.1	Range:	From	value	/	To	value
Mandatory.
Specify	a	"from"	and	"to"	value	for	each	range	that	the	field	will	be	checked
against.
At	least	one	range	is	required	and	up	to	a	maximum	of	20	ranges	can	be
specified.	The	range	values	are	checked	for	type	and	length	compatibility.
Rules
Allowable	values	are:
An	alphanumeric	literal	(in	quotes)	such	as	'NSW',	'BALMAIN'.
A	numeric	literal	such	as	1,	14.23,	-1.141217.
Another	field	name	such	as	CUSTNO,	INVNUM,	etc.	Notice	that	a	field
name	is	not	entered	as	#CUSTNO.
A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variable	defined	at	your	installation.
A	process	parameter	such	as	*UP01,	*UP02,	etc.
System	does	NOT	check	that	the	"from"	value	is	less	than	"to"	value.

Tips	&	Techniques
You	may	wish	to	use	2.2	List	of	Values	Checks	when	a	small	range	of	values
are	being	checked.

Also	See
2.3.2	Range	of	Values	Examples
	2.3	Range	of	Values	Checks

2.3.2	Range	of	Values	Examples
These	examples	illustrate	the	use	of	the	range	of	values	rule	facility:
Example	1
Field	being	checked:

Name Type Len Dec

POSTCDA 4 	

	

Range	of	values:

	 From
Value

To
Value

Comments

	
Or
Or

'2000'
'3000'
'4000'

'2900'
'3900'
'4900'

Check	post	code	is	in	NSW,	VIC	or	QLD.	Post	code	is
numeric.

	

Example	2
Field	being	checked:

Name Type Len Dec

POSTCDS 4 0

	

Range	of	values:

	 From
Value

To
Value

Comments

	
Or

2000
3000

2900
3900

Check	post	code	is	in	NSW,	VIC	or	QLD.	Post	code	is
numeric.

Or4000 4900

	

Example	3
Field	being	checked:

Name Type Len Dec

AMOUNTP 5 2

	

Range	of	values:

From	Value To	Value Comments

0.01 999.99 Check	that	AMOUNT	is	positive.

	

Example	4
Field	being	checked:

Name Type Len Dec

AMOUNTP 5 2

	

Range	of	values:

From	Value To	Value Comments

-999.99 -0.01 Check	that	AMOUNT	is	negative.

	

Example	5

Field	being	checked:

Name Type Len Dec

PERIODA 2 	

	

Range	of	values:

From
Value

To	Value Comments

*LASTPER*NEXTPERCheck	PERIOD	using	site	defined	system	variables
*LASTPER	and	*NEXTPER.

	

	2.3	Range	of	Values	Checks

2.4	Date	Format/Range	Check
A	date	format/range	rule	allows	a	field	to	be	validated	as	a	date	in	a	certain
format	(DDMMYY,	MMDDYY,	etc.)	and	in	a	certain	range.	For	instance,	a
"date	order	due"	may	have	to	be	in	format	DDMMYY	and	no	more	than	90	days
into	the	future.
You	can	modify	the	sequencing	of	the	rule	by	changing	the	2.1.1	Rule	Sequence
field.	A	2.1.2	Rule	Description	must	be	associated	with	the	rule.
Refer	to:
2.4.1	Date	Format
2.4.2	Number	of	Days	Allowed	into	the	Past
2.4.3	Number	of	Days	Allowed	into	the	Future
2.4.4	Date	Format/Range	Check	Examples

Also	See
2.1.4	Define	Rules	(by	type)
	2.1	Rule	Definitions

2.4.1	Date	Format
Mandatory.		Default=SYSFMT.
Rules
Allowable	values	are:

SYSFMT operating	system	date	format	(from	QDATFMT)

DDMMYY day	month	year	format

MMDDYY month	day	year	format

YYMMDD year	month	day	format

DDMMYYYYday	month	century	year	format

MMDDYYYYmonth	day	century	year	format

YYYYMMDDcentury	year	month	day	format

YYYYDDMMcentury	year	day	month	format

YYMM year	month	format

MMYY month	year	format

YYYYMM century	year	month	format

MMYYYY month	century	year	format

SYSFMT8 operating	system	date	format	including	century

	

Date	Format	Examples
For	example,	the	date	28th	October	1986	would	have	to	be	entered	as	follows	to
satisfy	each	format	type:

SYSFMT 281086	(Usual	format	for	Australia	and	Europe)

SYSFMT 102886	(Usual	format	for	USA)

DDMMYY 281086

MMDDYY 102886

YYMMDD 861028

DDMMYYYY28101986

MMDDYYYY10281986

YYYYMMDD19861028

YYYYDDMM19862810

YYMM 8610

MMYY 1086

YYYYMM 198610

MMYYYY 101986

SYSFMT8 28101986	(Usual	format	for	Australia	and	Europe)

SYSFMT8 10281986	(Usual	format	for	USA)

	

Tips	&	Techniques
In	a	client/server	application,	the	client's	date	format	will	be	automatically
passed	to	the	server.	If	the	client	and	server	date	formats	are	different	(e.g.
MDY	vs	DMY),	the	server	will	automatically	return	data	in	the	client's
format.
The	client's	format	can	be	changed	from	the	default	by	specifying	the
X_RUN	parameter	DATF=.	For	more	information,	please	refer	to	Standard
X_RUN	Parameters.
If	client	and	server	date	formats	are	different	(such	as	between	USA	and	UK
clients),	date	format	validation	rules	specifying	exact	formats	will	fail.	For
example,	DDMMYY	may	be	returned	as	MMDDYY.	Where	clients	need	to
use	different	date	formats,	date	format	SYSFMT	is	recommended.
	2.4	Date	Format/Range	Check

2.4.2	Number	of	Days	Allowed	into	the	Past
Mandatory.		Default=9999999
Specify	the	lower	limit	of	the	date	range	rule.
The	use	of	the	"days	into	the	past"	and	"days	into	the	future"	range	limit	values
can	be	illustrated	with	a	time	line:
	
	
																									Current	date
		Lower	limit										(date	on	which	the						Upper	limit
	for	valid	date									rule	is	performed)				for	valid	date
						|																							|																						|
						|																							|																						|
						|																							N																						|
======|=======	PAST	==========O=======	FUTURE	=======|=======>
						|																							W																						|
						|																							|																						|
						|																							|																						|
						|<----------------------|--------------------->|
											"X"	days	allowed			|			"Y"	days	allowed
													into	the	past				|				into	the	future
Tips	&	Techniques

If	you	are	simply	performing	a	date	format	check,	leave	this	value	as	9999999
so	that	there	are	no	range	limits	applied.
	2.4	Date	Format/Range	Check

2.4.3	Number	of	Days	Allowed	into	the	Future
Mandatory.		Default=9999999
Specify	the	higher	limit	of	the	date	range	rule.
The	use	of	the	"days	into	the	past"	and	"days	into	the	future"	range	limit	values
can	be	illustrated	with	a	time	line:
	
																									Current	date
		Lower	limit										(date	on	which	the						Upper	limit
	for	valid	date									rule	is	performed)				for	valid	date
						|																							|																						|
						|																							|																						|
						|																							N																						|
======|=======	PAST	==========O=======	FUTURE	=======|=======>
						|																							W																						|
						|																							|																						|
						|																							|																						|
						|<----------------------|--------------------->|
											"X"	days	allowed			|			"Y"	days	allowed
													into	the	past				|				into	the	future
Tips	&	Techniques

If	you	are	simply	performing	a	date	format	check,	leave	this	value	as	9999999
so	that	there	are	no	range	limits	applied.
	2.4	Date	Format/Range	Check

2.4.4	Date	Format/Range	Check	Examples
These	examples	are	provided	to	illustrate	the	use	of	the	date	format/range	rule:

Description	of	Check	Required Date	Format Days
Into
Past

Days
Into
Future

Check	field	DATDUE	is	in	format
DDMMYY

DDMMYY 9999999 9999999

Check	field	DATDUE	is	in	format
YYMMDD	and	is	not	prior	to	the	current
date.

YYMMDD 0 9999999

Check	field	DATE	is	in	format
DDMMYYYY	and	is	within	the	next	90
days.

DDMMYYYY 0 90

Check	field	DATE	is	in	format	DDMMYY
and	is	in	the	last	180	days.

DDMMYY 180 0

Check	field	DATE	is	in	format
YYYYMMDD	and	is	in	the	last	week.

YYYYMMDD 7 0

Check	field	DATE	is	in	format
YYYYDDMM	and	is	within	the	next	week.			

YYYYDDMM 0 7

Check	field	DATE	is	in	format	YYMM. YYMM 9999999 9999999

Check	field	DATE	is	in	format
MMDDYYYY	and	is	within	the	next	30
days.

MMDDYYYY 0 30

	

	2.4	Date	Format/Range	Check

2.5	Code	File/Table	Lookup	Checks
A	code/table	file	lookup	rule	allows	a	field	to	be	"looked	up"	in	a	code	file	or
table.	For	instance,	a	product	number	may	be	looked	up	in	the	product	master
file	to	check	that	it	is	a	valid	number.
You	can	modify	the	sequencing	of	the	rule	by	changing	the	2.1.1	Rule	Sequence
field.	A	2.1.2	Rule	Description	must	be	associated	with	the	rule.
A	code/table	file	lookup	is	typically	defined	for	file	level	validation	checks	only.
Refer	to:
2.5.1	Lookup	File	Name
2.5.2	Key	Field	or	Literal
2.5.3	Code	File/Table	Lookup	Check	Examples

Also	See
2.1.4	Define	Rules	(by	type)
	2.1	Rule	Definitions

2.5.1	Lookup	File	Name
Mandatory.
Specify	the	physical	or	logical	file	/	table	that	is	to	be	used	for	checking.
Rules

File	name	must	exist	in	the	Repository.
Tips	&	Techniques

You	can	prompt	for	all	the	file	definitions	currently	existing	in	the	repository.
	2.5	Code	File/Table	Lookup	Checks

2.5.2	Key	Field	or	Literal
Specify	the	key	that	is	to	be	compared	with	the	keyed	index	of	the	file	looking
for	a	"match"	(i.e.:	a	record	with	an	identical	key	in	the	file).	
At	least	1	key	field	is	required.	The	entire	key	list	supplied	is	checked	for
compatibility	with	the	actual	key(s)	of	the	file.	The	key	list	specified	can	be	a
full	or	partial	key	to	the	file.	A	warning	is	issued	if	a	partial	key	list	is	specified.
Rules
Allowable	values	are:
For	field	level	validations,	the	name	of	the	current	field.
For	file	level	validations,	a	field	from	the	current	file.
An	alphanumeric	literal	(in	quotes)	such	as	'NSW',	'BALMAIN'
A	numeric	literal	such	as	1,	14.23,	-1.141217.
A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variable	defined	at	your	installation.
A	process	parameter	such	as	*UP01,	*UP02,	etc.

Tips	&	Techniques
A	code/table	file	lookup	is	typically	defined	for	file	level	validation	checks
only.
	2.5	Code	File/Table	Lookup	Checks

2.5.3	Code	File/Table	Lookup	Check	Examples
These	examples	are	provided	to	illustrate	the	use	of	the	code/table	file	lookup
rule	facility:
Example	1
Field	being	checked:

Name Type Len Dec

PRODNOA 10 	

	

File	details:

Name Actual	Keys Keys	Supplied Comments

PRODMSTProduct	numberPRODNO Check	product	is	in	product	master

	

Example	2
Field	being	checked:

Name Type Len Dec

TAXCDEA 3 	

	

File	details:

Name Actual
Keys

Keys
Supplied

Comments

TAXTABLTax
code
type

INCOMECheck	TAXCDE	is	a	valid	income	tax	code	using
alpha	literal	'INCOME'	in	the	key	list.

	 Tax TAXCDE	

code

	

Example	3
Field	being	checked:

Name Type Len Dec

PARTNOP 7 0

	

File	details:

Name Actual	Keys Keys
Supplied

Comments

INVENTPart	number
Warehouse	number

PARTNO Check	PARTNO	exists.	This	is	a
"partial"	key	validation	check.

	

Example	4
Field	being	checked:

Name Type Len Dec

INVNUMA 8 	

	

File	details:

Name Actual
Keys

Keys
Supplied

Comments

INVNUMInvoice
number

INVNUMCheck	INVNUM	does	not	already	exist.	Reverse
default	error	logic	to	get	ERROR	if	key	match	is
found,	NEXT	if	key	match	is	NOT	found.

	

	2.5	Code	File/Table	Lookup	Checks

2.6	Simple	Logic	Check
A	simple	logic	rule	allows	simple	conditions	to	be	evaluated	to	check	a	field.
For	instance,	"item	weight	must	be	less	than	(item	volume	*	10.643)"	may	be	a
check	used	in	an	order	entry	system.
You	can	modify	the	sequencing	of	the	rule	by	changing	the	2.1.1	Rule	Sequence
field.	A	2.1.2	Rule	Description	must	be	associated	with	the	rule.
Refer	to:
2.6.1	Condition	to	Check
2.6.2	Simple	Logic	Check	Examples

Also	See
2.1.4	Define	Rules	(by	type)
	2.1	Rule	Definitions

2.6.1	Condition	to	Check
Mandatory.
Specify	an	expression	that	can	be	evaluated	and	produces	a	"true"	or	"false"
result.
The	expression	must	be	syntactically	correct.	Expression	evaluation	is	left	to
right	within	brackets,	so	use	brackets	whenever	in	doubt	as	to	the	order	in	which
the	expression	will	be	evaluated.	Expression	components	are	checked	for	type
and	length	compatibility.	Error	messages	are	issued	that	indicate	any	problems
found	when	attempting	to	evaluate	the	expression.
Rules
Valid	expression	operators	are:

(Open	bracket) Close	bracket

+ Add - Subtract

/ Divide * Multiply

= Compare	equal ^= Compare	not	equal

*EQ Compare	equal *NE Compare	not	equal

	 	 *NE= Compare	not	equal

< Compare	less	than > Compare	greater	than

*LT Compare	less	than *GT Compare	greater	than

<= Compare	less	than	or	equal	to >= Compare	greater	than	or	equal	to

*LE Compare	less	than	or	equal	to *GE Compare	greater	than	or	equal	to

AND And OR Or

	

Components	of	the	expression	can	be:
An	alphanumeric	literal	such	as	'NSW',	NSW,	'Balmain'	or	BALMAIN
A	numeric	literal	such	as	1,	14.23,	-1.141217.
Another	field	name	such	as	#CUSTNO,	#INVNUM,	etc.

A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variable	defined	at	your	installation.
A	process	parameter	such	as	*UP01,	*UP02,	etc.
Alphanumeric	literals	do	NOT	have	to	be	in	quotes	when	used	in	an
expression.	Quotes	are	only	required	when	the	alphanumeric	literal	contains
lowercase	characters.	If	no	quotes	are	used	the	alpha	literal	is	converted	to
uppercase.	Thus	BALMAIN	=	balmain	=	Balmain	=	balMAIN.	However,
Balmain	does	not	equal	'Balmain'.
Field	names	must	be	preceded	by	a	#	(hash)	symbol	when	used	in
expressions.	This	allows	LANSA	to	differentiate	between	fields	and
alphanumeric	literals.	For	instance	the	expression	CNTRY	=	AUST	does	not
indicate	which	of	the	components	is	the	field	and	which	is	the	alphanumeric
literal.	The	correct	format	is	#CNTRY	=	AUST	or	#CNTRY	=	'AUST'.

	
	2.6	Simple	Logic	Check

2.6.2	Simple	Logic	Check	Examples
These	examples	illustrate	the	use	of	the	simple	logic	rule	facility:

Check	Required Actual	Expression	Used

Field	VALUE	must	be	greater	than	zero #VALUE	>	0		
or
#VALUE	*GT	0

Field	STATE	must	be	NSW,	VIC	or	QLD. (#STATE	=	NSW)	OR
(#STATE	=	VIC)
(#STATE	=	QLD)

Field	WEIGHT	must	be	zero	if	field	MEASUR
is	not	zero.

(#MEASUR	^=	0)	AND
(#WEIGHT	=	0)	
or
(#MEASUR	*NE	0)	*AND
(#WEIGHT	*EQ	0)

Field	WEIGHT	must	be	less	than	field
MEASUR	multiplied	by	10.462

#WEIGHT	<	(#MEASUR	*
10.462)	
or
#WEIGHT	*LT	(#MEASUR	*
10.462)

	

	2.6	Simple	Logic	Check

2.7	Complex	Logic	Check
A	complex	logic	rule	allows	complex	validation	checking	to	be	performed	by
your	own	LANSA	functions	or	3GL	application	programs.	For	instance,	the
validation	of	a	"due	date"	may	be	done	via	a	function	or	program	that	can
account	for	public	holidays,	weekends,	etc.
You	can	modify	the	sequencing	of	the	rule	by	changing	the	2.1.1	Rule	Sequence
field.	A	2.1.2	Rule	Description	must	be	associated	with	the	rule.
Refer	to:
2.7.1	Program	to	Call
2.7.2	Program	to	Call:	Function
2.7.3	Program	to	Call:	3GL	Program
2.7.4	3GL	Parameters
2.7.5	Complex	Logic	Check	Examples

Also	See
2.1.4	Define	Rules	(by	type)
Technical	notes	for	*ALP_FIELD_VALIDATE	and	*NUM_FIELD_VALIDATE
in	Function	Parameters.
	2.1	Rule	Definitions

2.7.1	Program	to	Call
Mandatory.	Default=3GL	Program.
Specify	whether	a	LANSA	function	or	3GL	program	is	to	be	called.
Rules
Allowable	values	are:
Function
3GL	Program

Tips	&	Techniques
No	check	is	done	for	the	existence	of	the	function/program.

Also	See
2.7.2	Program	to	Call:	Function
2.7.3	Program	to	Call:	3GL	Program
	2.7	Complex	Logic	Check

2.7.2	Program	to	Call:	Function
Specify	that	a	LANSA	function	is	to	perform	the	validation	check.
Rules

Mandatory	if	Function	is	specified	in	2.7.1	Program	to	Call.
Tips	&	Techniques

LANSA	does	not	check	whether	the	function	specified	exists	or	not.
See	the	FUNCTION	command	for	design	constraints	on	validation	functions.

Platform	Considerations
IBM	i:	The	function	specified	should	be	found	in	your	library	list	at	the	time
the	rule	is	to	be	performed.

Also	See
2.7.1	Program	to	Call
	2.7	Complex	Logic	Check

2.7.3	Program	to	Call:	3GL	Program
Specify	that	a	3GL	program	is	to	perform	the	validation	check.
Rules

Mandatory	if	3GL	Program	is	specified	in	2.7.1	Program	to	Call.
Tips	&	Techniques

LANSA	does	not	check	whether	the	program	specified	exists	or	not.
Platform	Considerations

IBM	i:	The	program	specified	should	be	found	in	your	library	list	at	the	time
the	rule	is	to	be	performed.

Also	See
2.7.1	Program	to	Call
	2.7	Complex	Logic	Check

2.7.4	3GL	Parameters
Optional.
Specify	additional	parameters,	if	any,	to	be	passed	to	the	program.
Additional	parameters	may	only	be	used	when	a	3GL	program	is	called,	and
cannot	be	used	when	a	validation	function	is	called.
Rules
Additional	parameters	may	be:
An	alphanumeric	literal	(in	quotes)	such	as	'NSW',	'BALMAIN'.
A	numeric	literal	such	as	1,	14.23,	-1.141217.
Another	field	name	such	as	CUSTNO,	INVNUM,	etc.
A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variable	defined	at	your	installation.
A	process	parameter	such	as	*UP01,	*UP02,	etc.
For	alphanumeric	fields	(alpha	literals,	alpha	fields,	alpha	system	variables	or
alpha	process	parameters),	the	parameter	is	passed	as	alpha	(256)	with	the
parameter	value	left	aligned	into	the	256	byte	parameter.
For	numeric	fields	(numeric	literals,	numeric	fields,	numeric	system	variables
or	numeric	process	parameters),	the	parameter	is	passed	as	packed	15	with	the
same	number	of	decimal	positions	as	the	parameter	value.	For	numeric
literals,	this	means	the	same	number	of	decimal	positions	as	specified	in	the
literal	(e.g.:	1.12	will	be	passed	as	packed	15,2.	7.12345	will	be	passed	as
packed	15,5.	143	will	be	passed	as	packed	15,0.	etc.).	For	all	other	types	of
numeric	parameters,	this	means	the	same	number	of	decimal	positions	as	their
respective	definitions.
The	type	and	length	of	the	parameter(s)	passed	depends	upon	the	type	and
length	of	the	parameter	value	supplied.
As	with	the	standard	parameters,	the	actual	value	is	passed	in	a	work	area	so
it	is	not	possible	to	change	the	value	of	a	field	by	changing	the	parameter
value	in	the	validation	program.
LANSA	does	not	check	that	the	3GL	program	being	called	has	the	correct
parameter	list.	This	is	your	responsibility.

All	3GL	programs	called	as	part	of	a	complex	logic	rule	must	have	a	least	3
standard	parameters.	These	are:

Name Description

Return
code

Alphanumeric	length	1.	Returned	by	the	program	as	'1'	(good	return)	or
'0'	(bad	return).	Used	by	the	program	to	indicate	to	LANSA	the	success
or	failure	of	the	complex	logic	rule.

Name
of
field

Alphanumeric	length	10.	Passed	to	the	program.	Contains	the	name	(as
opposed	to	the	value)	of	the	field	that	is	passed	in	the	third	parameter.

Value
of
field

Length	and	type	depend	upon	the	repository	definition	of	the	field.
Alphanumeric	fields	are	passed	with	same	type	and	length	as	their
repository	definition.	All	numeric	fields	(type	P	or	S)	are	passed	as
packed	(type	P)	and	the	same	length	and	number	of	decimal	positions	as
their	repository	definition.	Note	that	the	value	of	the	field	is	passed	in	a
work	area,	thus	it	is	not	possible	to	change	the	value	of	the	field	by
changing	the	value	of	the	parameter	in	the	validation	program.

	

Also	See
2.7.3	Program	to	Call:	3GL	Program
	2.7	Complex	Logic	Check

2.7.5	Complex	Logic	Check	Examples
These	examples	are	provided	to	illustrate	the	use	of	the	complex	logic	rule
facility:

Check	Required Program
Specified

Additional
Parameters

Pass	field	DATDUE	to	program	DATECHECK	for
validation.

DATECHECK none

Pass	field	DATDUE	to	program	INVCHECK	for
validation.	Also	pass	fields	INVNUM	and
COMPNO.

INVCHECK INVNUM
COMPNO

Pass	field	TAXCDE	to	program	TAXCHECK	for
validation.	Also	supply	tax	scale	7	as	a	parameter
with	3	decimal	positions.

TAXCHECK 						7.000
or	+7.000
or	07.000

	

See	also	example	Using	the	CALLCHECK	Command	for	Inline	Validation	in	the
CALLCHECK	Examples.
	2.7	Complex	Logic	Check

2.8	Triggers
A	trigger	function	is	a	type	of	LANSA	function	which	will	be	invoked
automatically	when	a	specific	type	of	operation	occurs	and	when	a	specific	set
of	conditions	are	met.	Triggers	are	applied	at	both	the	field	level	and	file	level.
The	following	topics	apply	to	both	fields	and	files	in	the	LANSA	Repository.
2.8.1	Trigger	Definition
2.8.2	Trigger	Condition
2.8.3	Trigger	Functions

Also	See
Trigger	Concepts	in	the	Developer	Guide
File	Rules	&	Triggers	Development	in	the	Developers	Guide
Field	Rules	and	Triggers	tab	in	the	User	Guide
File	Rules	and	Triggers	tab	in	the	User	Guide
	2.	Rules	and	Triggers

its:lansa013.chm::/lansa/L4wDev04_0170.htm
its:lansa013.chm::/lansa/l4wdev04_0035.htm
its:LANSA012.CHM::/lansa/l4wusr01_0430.htm
its:LANSA012.CHM::/lansa/l4wusr01_0460.htm

2.8.1	Trigger	Definition
Triggers	are	defined	at	both	the	field	level	and	file	level.	The	following	topics
apply	to	both	fields	and	files	in	the	LANSA	Repository.
Trigger	Description
Trigger	Function	Name
Trigger	Points
Trigger	Definition	Example

Also	See
File	Rules	and	Triggers	Development	in	the	Developer	Guide
Field	Rules	and	Triggers	tabs	in	the	User	Guide
File	Rules	and	Triggers	tabs	in	the	User	Guide
	2.8	Triggers

its:lansa013.chm::/lansa/L4wDev04_0035.htm
its:LANSA012.CHM::/lansa/l4wusr01_0430.htm
its:LANSA012.CHM::/lansa/l4wusr01_0460.htm

Trigger	Description
Mandatory.	Default=New	Trigger
Specify	a	brief	description	of	the	trigger	to	aid	other	developers	in
understanding	its	purpose.
Rules

Description	is	a	maximum	of	30	characters.
	2.8.1	Trigger	Definition

Trigger	Function	Name
Mandatory.
Specify	the	name	of	the	trigger	function	which	will	be	called	when	the	trigger
conditions	are	satisfied.
Rules

The	named	function	must	be	defined	with	the	TRIGGER	parameter	on	the
FUNCTION	command.
LANSA	does	not	check	whether	the	function	specified	exists	or	not.

Tips	&	Techniques
Review	the	FUNCTION	command	for	additional	information	about	trigger
functions.
File	Rules	&	Triggers	Development	in	the	Administrator	Guide.
	2.8.1	Trigger	Definition

its:lansa013.chm::/lansa/l4wdev04_0035.htm

Trigger	Points
Mandatory.
Specify	when	the	function	is	to	be	triggered.
At	least	one	trigger	point	must	be	specified.
Rules
Allowable	values	are:

Option Triggered

Before	Open Before	the	file	is	opened.

Before	Close Before	the	file	the	field	is	in	is	closed.

Before	Read Before	the	file	the	field	is	in	is	read.

Before	Insert Before	the	file	the	field	is	in	is	inserted.

Before	Update Before	the	file	the	field	is	in	is	updated.

Before	Delete Before	the	file	the	field	is	in	is	deleted.

After	Open After	the	file	the	field	is	in	has	been	opened.

After	Close After	the	file	the	field	is	in	has	been	closed.

After	Read After	the	file	the	field	is	in	has	been	opened	(accessed).

After	Insert After	the	file	the	field	is	in	has	been	opened	(accessed).

After	Update After	the	file	the	field	is	in	has	been	opened	(accessed).

After	Delete After	the	file	the	field	is	in	has	been	opened	(accessed).

	

	
	2.8.1	Trigger	Definition

Trigger	Definition	Example
Trigger	field:

Name Type Len Dec

SALARYP 12 2

	

Trigger	function:

Name FunctionTrigger
Before

Points
After

Comments

TRGFN1Open 	 	 Call	trigger	function	TRGFN1	following	an
insert	or	update	of	field	SALARY,	or	before
a	delete	of	field	SALARY.	Note	that	no
conditions	have	been	applied	to	this	trigger.

Close 	 	

Read 	 	

Insert 	 Y

Update 	 Y

Delete Y 	

	

Also	See
File	Rules	&	Triggers	Development	in	the	Developers	Guide	for	details	and
examples.
	2.8.1	Trigger	Definition

its:lansa013.chm::/lansa/l4wdev04_0035.htm

2.8.2	Trigger	Condition
The	use	of	a	trigger	condition	is	optional.	If	no	test	conditions	are	specified,	the
trigger	will	be	unconditionally	invoked.	No	conditions	are	allowed	if	"Open"	or
"Close"	Trigger	Points	are	used.
If	the	trigger	is	defined	at	field	level,	the	conditions	can	only	involve	the	field	to
which	the	trigger	is	being	linked.	If	the	trigger	is	defined	at	the	file	level,	the
conditions	can	involve	any	other	real	or	virtual	fields	in	the	file	to	which	the
trigger	is	being	linked.
Refer	to:
And/Or	Logic
Field	Name
Operator
Compare	to	value
Trigger	Sequence

Also	See
Trigger	Concepts	in	the	Developer	Guide
	2.8	Triggers

its:lansa013.chm::/lansa/l4wdev04_0170.htm

And/Or	Logic
Mandatory.	Default=AND
Specify	whether	multiple	conditions	are	joined	with	a	logical	"AND"	or		"OR".
If	only	one	condition	is	entered,	this	value	is	ignored.
Rules
Allowable	values	are:
AND
OR
	2.8	Triggers

Field	Name
Mandatory.	
Specify	the	field	name	to	be	used	on	the	condition	expression.
Rules

Field	must	exist	in	the	current	file.
	2.8	Triggers

Operator
Mandatory.		Default=Equal	to
Specify	the	operator	for	the	condition	that	will	be	used	with	the	Field	Name	and
Compare	to	value.
Rules
Operations	allowed	are:

GT Greater	than

GE Greater	than	or	equal	to

LT Less	than

LE Less	than	or	equal	to

EQ Equal	to

NE Not	equal	to

REF Refers	to

	

Tips	&	Techniques
All	operation	codes	can	be	suffixed	by	a	"P"	indicating	that	the	previous
value	of	the	nominated	field	should	be	used.	Such	conditions	are	only	valid
for	"Update"	operations.	Also	the	Compare	to	value	of	the	condition	must	not
be	a	literal	if	this	type	of	operation	code	is	used.
The	"REF"	operation	code	is	only	valid	for	"Insert",	"Update"	and	"Read"
operations.	
	2.8	Triggers

Compare	to	value
Mandatory.
Specify	the	field/literal	that	will	make	up	the	value	which	is	being	compared
with	the	Field	Name.
The	values	are	checked	for	type	and	length	compatibility	with	the	Field	Name.
If	the	operation	codes	are	suffixed	by	a	"P",	the	condition	must	not	be	a	literal.
Rules
Allowable	values	are:
An	alphanumeric	literal	such	as	'NSW',	NSW,	'Balmain'	or	BALMAIN
A	numeric	literal	such	as	1,	14.23,	-1.141217.
Another	field	name	such	as	#CUSTNO,	#INVNUM,	etc.
A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variable	defined	at	your	installation.
	2.8	Triggers

Trigger	Sequence
Mandatory.		Default=Next	sequential	number.
Specify	the	sequence	in	which	the	statements	are	to	be	executed.
Rules

Sequence	numbers	must	be	consecutive.
The	sequence	number	is	automatically	assigned	when	a	condition	is	added.

Tips	&	Techniques
Sequence	of	the	conditions	is	important	when	setting	the	trigger	And/Or
Logic.
	2.8	Triggers

2.8.3	Trigger	Functions
What	is	a	Trigger	Function?
Create	a	Trigger	Function
Activate	a	Trigger	Function
Exactly	When	Are	Triggers	Invoked?
The	TRIG_OPER	and	TRIG_RETC	Variables	and	TRIG_LIST	Working	List
What	Codes	Are	Passed	in	TRIG_OPER	to	the	Trigger?
How	Many	Entries	Are	Passed	in	the	TRIG_LIST?
	
Triggers	-	A	Classic	Example
Examples	of	Trigger	use
Triggers	-	Restrictions	and	Limitations
Triggers	-	Some	Do's	and	Don'ts
	2.8	Triggers

What	is	a	Trigger	Function?
A	trigger	function	is	a	type	of	LANSA	function	which	will	be	invoked
automatically	when	a	specific	type	of	I/O	operation	occurs	to	a	file	and	when	a
specific	set	of	conditions	are	met.
For	example,	when	an	application	developer	defines	the	"Cancel	of	an	Order"
via	the	RDML	command	DELETE	FROM_FILE(ORDHDR)
WITH_KEY(#ORDNUM),	they	have	initiated	an	"event",	which	may
automatically	cause	other	functions	to	be	"triggered".
When	the	order	is	canceled	it	may	"trigger"	the	following:

Activity	A Flag	Order	Historical	Details

Activity	B Print	Outstanding	Credit	Invoices

Activity	C Send	a	Message	to	the	Sales	Department

Additionally,	the	list	of	activities	that	happen	when	an	order	is	canceled	can	be
added	to	or	changed	at	any	time	without	having	to	change	or	even	recompile
the	original	DELETE	FROM_FILE(ORDHDR)	function.
A	trigger	function	allows	a	business	activity	to	be	associated	directly	with	a
database	file	(i.e.	the	"object").	When	a	specified	event	happens	to	information
in	the	file,	then	the	trigger(s)	will	be	automatically	invoked.
For	example,	if	the	business	rules	stated	that	when	an	order	is	canceled	you
must	also	perform	activities	A,	B	and	C,	then	a	"traditional	design"	would
include	A,	B	and	C	as	direct	logic	(or	calls)	into	the	interactive	function	called
"Cancel	an	Order".
In	fact	there	may	be	several	sources	from	which	an	Order	may	be	canceled:

Source
1

The	typical	interactive	"Cancel	an	Order"	transaction.

Source
2

Monthly	Batch	Automatic	Canceling	of	Unfilled	Orders.

Source
3

Requests	arriving	via	LANSA	Open	transactions	from	sales	people	using
dial	up	PC	systems.

and	the	most	"dangerous"	source	of	all:

Source	X The	transaction	that	will	be	defined	by	someone	else	in	2	years	time.

You	have	to	remember	to	include	the	A,	B	and	C	activities	(or	at	least	the
initiation	of	it)	into	sources	1	through	3	now.
In	fact	it	is	often	the	last	case,	"Source	X",	that	will	cause	the	most	problem
when	the	new	designer	fails	to	realize	that	the	A,	B	and	C	logic	exists,	or	even
to	understand	fully	how	and	when	it	is	used.
Triggers	solve	all	these	problems	because	they	link	the	activities	A,	B	and	C	to
the	"object"	Order,	and	thus	are	always	invoked,	no	matter	what	the	"source"	of
the	event	is.
And	best	of	all,	you	can	add	new	activities	D,	E	and	F	to	Order,	at	any	time,
without	having	to	change	any	of	the	event	"sources"	in	any	way.
Sensible	use	of	triggers	may	transform	the	way	that	an	application	is	designed.
The	user	interface	can	be	fully	designed,	and	then	the	complexities	and	rules
can	be	introduced	later	by	using	data	dictionary	validation	rules	and	database
trigger	functions.
The	resulting	design	is	much	more	in	the	"object	oriented"	style.
Triggers	separate	"business	function"	from	"user	interface"	in	a	much	clearer
and	easier	way.
	2.8.3	Trigger	Functions

Create	a	Trigger	Function
To	define	a	function	as	being	a	trigger	function,	use	the	TRIGGER	parameter	on
the	FUNCTION	command.
If	the	function	is	to	act	as	a	data	dictionary	level	trigger,	enter	*FIELD	into	the
first	part	of	the	parameter,	and	the	associated	data	dictionary	field	name	into	the
second	part	of	the	parameter.
If	the	function	is	to	act	as	a	database	level	trigger,	enter	*FILE	into	the	first	part
of	the	parameter,	and	the	associated	database	file	name	into	the	second	part	of
the	parameter.	The	file	specified	must	be	a	physical	file.
As	an	aid	to	defining	new	trigger	functions	LANSA	is	shipped	with	the
following	Application	Templates	that	can	be	used	to	form	the	base	of	a	trigger
function:

BBFLDTRIG Field	Level	Trigger	Function

BBFILTRIG File	Level	Trigger	Function

When	a	function	is	defined	as	a	trigger	function	you	must	follow	these
guidelines:
The	parameter	RCV_LIST(#TRIG_LIST)	must	be	used.
The	parameter	RCV_DS	must	not	be	used.
Option	*DIRECT	must	also	be	used.
Options	xxx_SYSTEM_VARIABLE	or	xxx_FIELD_VALIDATE	must	not	be
used.
The	list	#TRIG_LIST	must	be	defined	by	a	DEF_LIST	command	as
DEF_LIST	NAME(#TRIG_LIST)	TYPE(*WORKING)	ENTRYS(2)	and
must	not	include	any	fields	in	the	FIELDS	parameter.	The	required	fields	will
be	automatically	added.
No	DISPLAY,	REQUEST	or	POP_UP	commands	may	be	used.	This	is	a
deliberately	imposed	design/usage	constraint	that	may	be	removed	in	later
versions.
No	CALL	can	exist	to	another	process/function.	This	is	a	deliberately
imposed	design/usage	constraint	that	may	be	removed	in	later	versions.
Trigger	functions	cannot	be	defined	within	an	action	bar	process.	This	is	not
to	say	that	they	cannot	be	referenced	from	within	an	action	bar,	it	just	means
that	a	trigger	function	cannot	be	defined	as	part	of	a	process	that	is	of	action

bar	type.
The	associated	process	must	not	have	any	parameters.
The	exchange	list	may	not	be	used.	This	is	a	deliberately	imposed
design/usage	constraint	imposed	to	enforce	insulated	and	modular	design	and
use	of	trigger	functions.

When	a	function	is	defined	as	a	trigger	function	you	should	follow	these
guidelines	in	most	situations:
Understand	how	triggers	are	defined	and	how	they	should	be	used	by	reading
the	Field	Rules/triggers	sections	and	Trigger	Functions	section.
Use	options	*NOMESSAGES	and	*MLOPTIMIZE.
Options	*HEAVYUSAGE	and	*DBOPTIMIZE	may	also	be	considered.
Do	not	directly	or	indirectly	access	the	database	file	that	the	trigger	is,	or	will
be,	linked	to.
Where	triggers	are	heavily	and	constantly	invoked	avoid	resource	intensive
operations.	Such	operations	will	slow	down	access	to	the	associated	file.
Whenever	reasonable	make	the	trigger	"submit"	another	transaction	thus	not
delaying	the	source	of	the	event	significantly.
Recursive	implementations	may	be	defined,	but	will	fail	to	execute	correctly.
For	instance	a	field	trigger	function	invoked	during	an	insert	to	file	A	could
attempt	to	insert	data	into	file	B,	possibly	causing	itself	to	be	invoked	in	a
recursive	situation,	and	thus	to	fail.
	2.8.3	Trigger	Functions

its:Lansa010.chm::/lansa/ugub_20007.htm

Activate	a	Trigger	Function
To	associate	a	data	dictionary	field	or	a	file	to	a	trigger	function	it	is	necessary
to	take	either	the	"Review,	change	or	create	field	rules	and	triggers"	from	the
field	control	menu	if	the	trigger	is	to	be	created	at	dictionary	level,	or	the
"Review	or	change	file	rules	and	triggers"	if	the	trigger	is	to	be	created	at	the
file	level.
When	the	"Add	a	Trigger"	option	has	been	selected,	the	field	must	then	be
associated	with	a	trigger	function.
Information	can	then	be	entered	which	will	specify	when	the	trigger	function	is
to	be	activated	(for	example,	before	an	update	of	the	field	is	carried	out),	and	if
the	trigger	function	should	only	be	activated	under	certain	conditions.	See	Field
Rules/Triggers	for	details	on	entering	trigger	information.
	2.8.3	Trigger	Functions

its:Lansa010.chm::/lansa/ugub_20007.htm

Exactly	When	Are	Triggers	Invoked?
Before	Open	/	Close
Before	open/close	triggers	are	invoked	immediately	before	an	attempt	is	made
to	open	or	close	a	file	(or	a	view	of	it).
A	before	open	trigger	is	invoked	when	a	file	or	a	view	is	opened	and	or	another
view	has	not	already	opened	the	file.
This	means	that	if	your	logic	is	"Open	View	1",	then	"Open	View	2"	(where
view	1	and	view	2	are	both	based	on	the	same	file)	then	the	trigger	would	be
invoked	when	you	open	view	1,	but	not	when	you	open	view	2.
A	before	close	trigger	is	invoked	when	a	file	or	a	view	is	closed	and	another
view	still	does	not	have	the	file	open.
This	means	that	if	your	logic	is	"Close	View	1",	then	"Close	View	2"	(where
view	1	and	view	2	are	both	based	on	the	same	file)	then	the	trigger	would	be
invoked	when	you	close	view	2,	but	not	when	you	closed	view	1.

After	Open	/	Close
Is	invoked	identically	to	the	"before"	options	but	immediately	after	a	successful
attempt	has	been	made	to	close	the	file.

Before	Read
Is	invoked	immediately	before	an	attempt	is	made	to	read	a	record	from	a	file.
Before	input	triggers	have	no	access	to	"information"	from	the	file	(because	the
information	has	not	been	input	yet)	so	their	use	should	be	considered	carefully.
Access	to	the	key(s)	being	used	to	access	the	file	is	not	possible	in	this	mode	so
do	not	design	triggers	based	on	this	premise.

After	Read
Is	invoked	after	a	record	has	been	successfully	read	from	a	file	and	just	before
the	details	of	the	record	are	passed	back	to	the	invoking	function.	Any	virtual
field	logic	has	been	completed	by	this	stage.

Before	Insert
Is	invoked	immediately	before	an	attempt	is	made	to	insert	a	new	record	into	a
file.	Please	note	the	following:
The	trigger	is	run	even	if	the	requester	uses	CHECK_ONLY(*YES)
The	insert	may	still	fail	(e.g.:	duplicate	key	error).	Before	insert	triggers
should	not	perform	database	changes.	If	database	changes	are	to	be	done

move	the	trigger	into	the	"after	insert"	position	instead.
All	virtual	logic	has	been	completed	when	the	trigger	is	invoked.

After	Insert
Is	invoked	immediately	after	a	new	record	has	been	inserted	into	a	file.	Please
note	the	following:
The	trigger	is	not	run	when	the	requester	uses	CHECK_ONLY(*YES)
At	the	time	of	invocation	all	batch	control	logic	has	been	executed.
If	AUTOCOMMIT	is	used	then	the	commit	is	issued	before	the	trigger	is
invoked.

Before	Update
Is	invoked	immediately	before	an	attempt	is	made	to	update	an	existing	record
in	a	file.	Please	note	the	following:
The	trigger	is	run	even	if	the	requester	uses	CHECK_ONLY(*YES)
The	update	may	still	fail	(e.g.:	duplicate	key	error).	Before	update	triggers
should	not	perform	database	changes.	If	database	changes	are	to	be	done
move	the	trigger	into	the	"after	update"	position	instead.
All	virtual	logic	has	been	completed	when	the	trigger	is	invoked.

After	Update
Is	invoked	immediately	after	an	existing	record	has	been	updated	in	a	file.
Please	note	the	following:
The	trigger	is	not	run	when	the	requester	uses	CHECK_ONLY(*YES)
At	the	time	of	invocation	all	batch	control	logic	has	been	executed.
If	AUTOCOMMIT	is	used	then	the	commit	is	issued	before	the	trigger	is
invoked.

Before	Delete
Is	invoked	immediately	before	an	attempt	is	made	to	delete	an	existing	record
from	a	file.	Please	note	the	following:
The	trigger	is	run	even	if	the	requester	uses	CHECK_ONLY(*YES)
The	delete	may	still	fail	(even	though	very	unlikely).	Before	delete	triggers
should	not	perform	database	changes.	If	database	changes	are	to	be	done
move	the	trigger	into	the	"after	delete"	position	instead.

After	Delete

Is	invoked	immediately	after	an	existing	record	has	been	deleted	from	a	file.
Please	note	the	following:
The	trigger	is	not	run	when	the	requester	uses	CHECK_ONLY(*YES)
At	the	time	of	invocation	all	batch	control	logic	has	been	executed.
If	AUTOCOMMIT	is	used	then	the	commit	is	issued	before	the	trigger	is
invoked.
	2.8.3	Trigger	Functions

The	TRIG_OPER	and	TRIG_RETC	Variables	and	TRIG_LIST
Working	List
When	a	trigger	function	is	invoked	it	receives	2	things	from	the	invoker:

TRIG_OPER
TRIG_OPER:	is	an	A(6)	field	which	must	be	defined	in	the	data	dictionary.	The
content	of	this	field	defines	what	database	operation	has,	or	is	about	to	be,
performed.	Refer	to	What	Codes	Are	Passed	in	TRIG_OPER	to	the	Trigger?	for
details.

TRIG_LIST
TRIG_LIST:	is	a	2	entry	working	list	containing	0,1	or	2	entries.	The	number	of
entries	passed	depends	upon	the	database	operation	being	performed.	Refer	to
How	Many	Entries	Are	Passed	in	the	TRIG_LIST?	for	details.
You	must	define	TRIG_LIST	as	a	working	list	with	2	entries	but	you	must	not
define	any	fields	within	it.	The	required	fields	are	automatically	defined	by	the
RDML	compiler.
If	your	trigger	is	for	field	#CUSTNO	then	the	single	field	#CUSTNO	is
automatically	defined	in	the	list	just	as	if	you	had	typed	in:

DEF_LIST	NAMED(#TRIG_LIST)	FIELDS(#CUSTNO)
If	your	trigger	was	for	file	Z	which	contained	real	fields	X,	A,	T	and	virtual
fields	Q	and	B	then	the	list	is	automatically	defined	just	as	if	you	had	typed	in:

DEF_LIST	NAMED(#TRIG_LIST)	FIELDS(#X	#A	#T	#Q	#B)
This	automatic	definition	ensures	that	the	correct	names	are	used	and	that	you
do	not	have	to	know	or	key	in	the	correct	names	in	the	correct	order.
Remember	that	the	automatic	definition	is	done	from	the	"active"	definition	of
file	Z.	So	if	you	changed	file	Z	to	have	X,	A,	V,	T,	Q	and	B	as	fields	and	then
recompiled	the	trigger	before	you	made	the	changed	file	Z	"operational"	it
would	automatically	define	from	the	unchanged	"active"	(X,	A,	T,	Q,	B)	version
of	file	Z.
If	you	then	made	the	file	Z	"operational"	it	would	set	up	its	trigger	invocations
using	X,	A,	V,	T,	Q,	B	as	the	list	layout.	This	is	a	clear	mismatch	and	would
cause	unpredictable	results.
This	mistake	would	be	typified	by	decimal	data	errors	or	by	data	being	"offset"
within	fields	in	the	list.	If	this	type	of	problem	occurs	when	a	trigger	is	invoked
you	should	recompile	it.

So,	when	changing	a	file	definition,	always	make	the	file	"operational"	before
attempting	to	recompile	its	associated	trigger	functions.
To	"get"	values	from	the	list	use	the	GET_ENTRY	command.
This	means	that	when	using	a	trigger	for	field	#CUSTNO	you	must	"get"	the
correct	value	of	#CUSTNO	from	the	list	by	using	GET_ENTRY	NUMBER(?)
FROM_LIST(#TRIG_LIST).
Likewise,	to	get	the	values	of	#X	through	#B	in	the	file	Z	example	you	would
need	also	need	to	"get"	them	by	using	GET_ENTRY	NUMBER(?)
FROM_LIST(#TRIG_LIST).
Only	use	the	list	operations	SELECTLIST,	GET_ENTRY	and	UPD_ENTRY
against	the	list	TRIG_LIST.	Only	ever	issue	UPD_ENTRY	operations	against
entry	number	1.	When	a	trigger	function	terminates	it	returns	2	things	to	the
invoker:
TRIG_RETC:	is	an	A(2)	field	which	must	be	defined	in	the	data	dictionary.	At
the	point	of	return	it	must	be	set	to	"OK",	"ER",	and	in	some	situations,	"VE".
See	the	following	sections	for	more	details	of	the	meaning	and	use	of	these
return	codes.
TRIG_LIST:	is	the	2	entry	working	list	containing	0,1	or	2	entries	previously
described.	You	may	alter	the	data	in	the	first	entry	passed	by	using	the
UPD_ENTRY	command.	If	you	do	this	in	a	"before"	operation	then	you	will
actually	alter	the	data	that	is	inserted	or	updated	into	the	file.
Likewise	if	you	do	this	in	an	"after	read"	operation	you	will	alter	the	data	that	is
passed	back	to	the	function	that	issued	the	read	request.
It	is	strongly	recommended	that	you	do	not	use	this	facility	to	"communicate"
between	serially	invoked	trigger	functions.
Only	use	the	list	operations	SELECTLIST,	GET_ENTRY	and	UPD_ENTRY
against	the	list	TRIG_LIST.	Only	ever	issue	UPD_ENTRY	operations	against
entry	number	1.
	2.8.3	Trigger	Functions

What	Codes	Are	Passed	in	TRIG_OPER	to	the	Trigger?
When	a	trigger	function	is	invoked	it	can	access	field	TRIG_OPER	to	determine
what	operation	was	in	progress	when	it	was	invoked.
The	values	passed	in	TRIG_OPER	are:

Operation	In	Progress Value	In	TRIG_OPER

Before	Open BEFOPN

After	Open AFTOPN

Before	Close BEFCLS

After	Close AFTCLS

Before	Read BEFRED

After	Read AFTRED

Before	Insert BEFINS

After	Insert AFTINS

Before	Update BEFUPD

After	Update AFTUPD

Before	Delete BEFDLT

After	Delete AFTDLT

	

	
	2.8.3	Trigger	Functions	

How	Many	Entries	Are	Passed	in	the	TRIG_LIST?
When	a	trigger	is	invoked	it	is	passed	a	working	list	called	TRIG_LIST	that
contains	details	of	the	field	or	file	record	that	is	being	actioned.
When	invoked,	TRIG_LIST	may	contain	0,	1	or	2	entries:

Number
of
Entries

Meaning	/	Content

0 There	are	no	details	available	in	this	context	(e.g.:	before	open,	before
read).

1 There	is	one	set	of	details	available	in	the	current	context	(e.g.:	after
read).

2 There	are	two	sets	of	details	available	in	the	current	context.	Entry	1
is	the	new	details	and	entry	2	is	the	previous	details.	(e.g.:	before/after
update	images).

	

The	number	of	entries	passed	in	the	list	varies	with	the	operation	in	progress
according	to	the	following	table:

Operation	In	Progress Number	Of	Entries	In	TRIG_LIST

Before	Open 0

After	Open 0

Before	Close 0

After	Close 0

Before	Read 0

After	Read 1

Before	Insert 1

After	Insert 1

Before	Update 2

After	Update 2

Before	Delete 1

After	Delete 1

	

	
	2.8.3	Trigger	Functions

What	Return	Codes	Are	Used	in	TRIG_RETC	and	How	Can
They	Be	Set?
Whenever	a	trigger	function	completes	its	completion	status	is	subjected	to	3
tests:
1.		The	return	code	TRIG_RETC	is	checked	for	"OK"	(uppercase).	If	not	"OK",
then	the	trigger	is	deemed	to	have	failed.

2.		The	function	completion	status	is	tested.	If	not	okay,	then	the	trigger	is
deemed	to	have	failed.	A	function	will	give	a	"bad"	completion	status	if	it
issues	an	ABORT	command,	or	hits	an	ENDCHECK	with	no	last	display,	or
uses	an	invalid	array	or	substring	reference,	etc,	etc.

3.		The	IBM	i	completion	status	is	tested.	If	not	okay,	then	the	trigger	is	deemed
to	have	failed	(e.g.:	trigger	function	not	found).

When	a	trigger	function	is	deemed	to	have	failed,	a	return	code	is	then	issued	to
the	actual	invoking	function	issuing	the	database	operation	(i.e.	the	function
doing	the	SELECT	or	UPDATE	or	INSERT)	according	to	the	following	table:

Operation	In	Progress Return	Code

Before	Open OK,	ER

After	Open OK,	ER

Before	Close OK,	ER

After	Close OK,	ER

Before	Read OK,	ER

After	Read OK,	ER

Before	Insert OK,	VE

After	Insert OK,	ER

Before	Update OK,	VE

After	Update OK,	ER

Before	Delete OK,	VE

After	Delete OK,	ER

	

You	should	not	return	values	in	TRIG_RETC	outside	of	those	specified	in	this
table.
Nor	should	the	invoking	RDML	I/O	command	be	set	up	to	do	any	special
"trapping"	or	"handling"	when	it	knows	that	there	is	an	underlying	trigger.
Such	an	approach	would	create	very	complex	designs	and	defeat	the	whole
purpose	for	which	triggers	were	introduced	(i.e.	being	"invisible"	to	the	upper
layer	of	functionality).
RDML	functions	doing	I/O	operations	are	recommended	to	not	use	the
IO_ERROR	or	VAL_ERROR	parameters	(like	any	other	normal	RDML
functions).
Leave	the	default	values	and	let	the	standard	error	handling	solve	the	problem.
Use	a	"binary"	approach	to	doing	I/O	operations	-	it	either	worked	or	it	didn't
work	-	and	if	it	didn't	work	let	the	standard	error	handling	solve	the	problem.
Coding	your	own	I/O	error	traps	in	RDML	functions	is	not	recommended	unless
they	are	of	a	very	specialized	nature	(e.g.:	setting	up	work	files).	Failing	to
observe	this	recommendation	will	lead	to	overly	complex	implementations	that
exhibit	no	real	business	benefit	and	cost	significantly	more	to	develop	and
maintain.
An	"OK"	response	indicates	that	the	operation	completed	normally.
An	"ER"	response	sets	the	IO_ERROR	parameter	in	the	RDML	command	that
issued	the	I/O	request.
A	"VE"	response	sets	the	VAL_ERROR	parameter	in	the	RDML	command	that
issued	the	I/O	request.
Note	that	the	"VE"	response	is	only	possible	for	before	insert,	before	update	and
before	delete.
This	allows	triggers	in	these	positions	to	act	like	"extended	validation	checkers".
However,	a	trigger	set	up	as	an	"extended	validation	checker"	cannot	actually
"flag"	a	specific	field	as	being	in	error.
It	can	indicate	an	error	has	occurred,	and	it	can	issue	error	message	details,	but
it	cannot	flag	the	specific	field	in	error	in	the	same	way	that	a	normal	validation
rule	can,	or	in	the	same	way	that	a	normal	validation	checking	function	can	(see
function	option	*xxx_FIELD_VALIDATE).
However,	an	"extended	validation	checker"	defined	as	a	trigger	has	one
advantage	over	a	normal	validation	checking	function:	it	has	access	to	all	the

values	in	the	record	of	a	file	that	is	being	inserted,	deleted	or	updated	-	whereas
a	normal	validation	function	only	has	access	to	the	individual	field	value	with
which	it	is	associated.
Using	a	trigger	as	an	"extended	validation	checker"	is	a	very	powerful	facility,
especially	when	the	"before	and	after	images"	available	to	the	before	update
check	are	considered,	and	as	such	it	can	be	very	useful	at	times.
However:
Reserve	the	use	of	"extended	validation	triggers"	for	truly	complex	situations.
Do	not	use	this	facility	without	even	considering	the	normal	dictionary
facilities.
Where	"extended	validation	check"	type	triggers	are	to	be	used,	have	just	one
per	file	and	encapsulate	all	the	rules	inside	it.	You	then	have	just	one	trigger
that	supports	the	action	"Validate".
Make	trigger	functions	exhibit	"insulated	modularity".	Like	action	bar
functions	they	should	exhibit	these	"OO"	like	characteristics:

They	should	perform	one	and	only	one	"action".
They	should	not	expect	other	triggers	or	virtual	code	logic	to	precede,
or	to	follow	them.
They	should	operate	"standalone".
They	should	be	small	and	robust.	When	a	trigger	is	invoked	to
perform	an	action	it	should	just	do	that	single	action	or	issue	an	error
message	indicating	why	it	cannot.

	2.8.3	Trigger	Functions

Triggers	-	A	Classic	Example
The	following	example	is	a	classic	example	of	how	a	trigger	function	should	be
used.
It	takes	a	complex	business	rule	and	"encapsulates"	it	into	a	trigger.
Next	the	trigger	is	linked	to	the	associated	database	file	and	the	business	rule	is
performed	automatically	whenever	the	specified	event	occurs.
It	is	a	classic	example	because	it	clearly	demonstrates	how	triggers	can
"encapsulate"	complex	rules	and	associate	them	directly	with	the	"object"	(i.e.
file).

The	Business	Problem
ACME	Engineering	run	a	payroll	system.
The	Employee	Master	file	(EMPL)	contains	two	fields	called	"SALARY"	and
"WEEKPAY".
SALARY	is	the	annual	salary	that	the	company	has	contracted	to	pay	the
employee.
WEEKPAY	is	the	amount	paid	to	the	employee	each	week.
WEEKPAY	is	arrived	at	via	a	complex	set	of	rules.
For	a	new	employee	the	WEEKPAY	calculation	is	relatively	simple,	but	when
an	employee's	SALARY	is	changed	the	complex	calculation	involves	both	the
new	SALARY	figure	and	the	previous	SALARY	figure.

The	Trigger	Function
The	first	step	in	defining	the	trigger	is	to	define	the	trigger	function	that
encapsulates	all	the	WEEKPAY	rules	into	one	and	only	one	place.
This	is	a	fundamental	of	good	trigger	design.
The	following	function	may	have	been	coded	to	handle	this:
FUNCTION	OPTIONS(*DIRECT	*NOMESSAGES	*MLOPTIMIZE)
									RCV_LIST(#TRIG_LIST)	TRIGGER(*FILE	EMPL)
	
/*	Define	the	standard	trigger	list	which	will	contain	the	*/
/*	before	and	after	images	of	the	EMPL	file	record.	These		*/
/*	fields	are	automatically	added	to	the	list	definition			*/
/*	by	the	RDML	compiler.																																			*/
	

DEF_LIST	NAME(#TRIG_LIST)	TYPE(*WORKING)	ENTRYS(2)
	
/*	Now	examine	exactly	what	event	has	occurred														*/
	
CASE		OF_FIELD(#TRIG_OPER)
	
/*	A	new	employee	is	being	created	*/
	
WHEN		VALUE_IS('=	BEFINS')
						GET_ENTRY	NUMBER(1)	FROM_LIST(#TRIG_LIST)
						<<	calculate	correct	value	into	field	WEEKPAY	>>
						UPD_ENTRY	IN_LIST(#TRIG_LIST)
	
/*	An	existing	salary	has	been	changed	*/
	
WHEN		VALUE_IS('=	BEFUPD')
	
						DEFINE	FIELD(#OLDSALARY)	REFFLD(#SALARY)
						GET_ENTRY	NUMBER(2)	FROM_LIST(#TRIG_LIST)
						CHANGE	FIELD(#OLDSALARY)	TO(#SALARY)
	
						GET_ENTRY	NUMBER(1)	FROM_LIST(#TRIG_LIST)
						<<	calculate	correct	value	into	WEEKPAY	>>
						<<	using	OLDSALARY	in	the	calculations		>>
						UPD_ENTRY	IN_LIST(#TRIG_LIST)
	
OTHERWISE
						ABORT	MSGTXT('WEEKPAY	trigger	function	invalidly	invoked')
	
ENDCASE
	
CHANGE	FIELD(#TRIG_RETC)	TO(OK)
RETURN
	

Activating	the	Trigger	Function
Now	that	the	trigger	function	has	been	defined	it	needs	to	be	activated.	To	do
this,	access	the	definition	of	file	EMPL	and	associate	two	trigger	invocation
events	with	it.

The	first	would	be	specified	as	"BEFORE	INSERT"	and	would	not	have	any
associated	conditions.	This	means	that	the	trigger	function	will	be	called
whenever	an	attempt	is	made	to	create	a	new	employee.
The	second	would	be	specified	as	"BEFORE	UPDATE"	and	would	have	an
associated	condition	which	would	look	something	like	this:
									SALARY				NEP			SALARY	
i.e.						salary	is	not	equal	to	previous	salary

which	says	that	the	trigger	should	be	activated	"BEFORE	UPDATE"	but	only	if
the	employee's	SALARY	has	changed.
Defining	the	"BEFORE	UPDATE"	event	like	this	is	very	efficient	because	it
means	that	the	trigger	will	not	be	activated	when	the	employee's	salary	has	not
been	changed	(which	will	probably	be	most	of	the	time).
If	WEEKPAY	had	to	be	recalculated	when	the	SALARY	changed	or	when	the
COMPANY	that	the	employee	worked	for	changed,	then	you	would	define	the
invocation	event	like	this	instead:
									SALARY				NEP			SALARY					OR		COMPANY			NEP			COMPANY	
i.e.						salary	is	not	equal	to	previous	salary
				or			company	is	not	equal	to	previous	company
	

If	WEEKPAY	was	to	always	be	recalculated,	then	you	would	not	have	to	define
two	separate	invocation	events.	You	could	simply	define	one	event	(with	no
conditions)	and	indicate	that	the	trigger	should	be	invoked	"BEFORE	INSERT"
and	"BEFORE	UPDATE".
Of	course,	this	means	that	every	single	insert	or	update	of	an	employee	would
cause	the	trigger	function	to	be	invoked.

Key	Things	to	Note	About	this	Example
This	example	demonstrates	some	of	the	key	elements	of	good	trigger	design	and
use:
The	"encapsulation"	principle.	The	WEEKPAY	calculation	"method"	is
"encapsulated"	in	one	and	only	one	function.	If	it	has	to	be	changed	it	only
has	to	be	changed	in	one	place.
Deferment.	The	existence	of	the	WEEKPAY	method	does	not	have	to	be
defined,	or	even	known	about,	during	initial	system	design.

This	also	means	that	a	"method"	can	be	introduced	into	an	application	design
at	any	time.	For	instance,	the	WEEKPAY	method	does	not	have	to	be	defined

before	any	applications	that	create	or	update	employees	are.	The	create	and
update	applications	can	be	defined	and	tested	first.	When	the	WEEKPAY
method	is	created	and	defined	it	will	immediately	begin	to	affect	the
processing	of	all	existing	applications.
Reusability.	The	WEEKPAY	calculation	method	is	automatically	and
implicitly	reused	by	any	application	that	creates	or	changes	employee	details.
The	trigger	could	be	activated	from	a	normal	NPT	device	via	an	"Employee
Maintenance"	function,	or	from	a	PC	application	via	the	LANSA	Open
facility.
Transparency.	The	fact	that	the	WEEKPAY	logic	is	present	and	being	used	is
invisible	and	probably	immaterial	to	an	RDML	builder	creating	an	"Employee
Maintenance"	function.
Separation	of	the	"method"	from	the	"event".	The	trigger	function	defines
what	to	do	when	an	"event"	happens	(i.e.	the	"method").

However,	it	does	not	have	to	detect	the	occurrence	of	the	event.

For	example,	the	function	defined	previously	defines	a	"method"	called
"Calculate	Weekly	Pay".

The	business	rules	says	that	weekly	pay	must	be	(re)calculated	when	a	new
employee	is	taken	on,	or	when	an	existing	employee's	salary	is	changed,	or
when	an	existing	employee	moves	to	another	company.

The	actual	"event"	is	defined	in	the	LANSA	data	dictionary.
	2.8.3	Trigger	Functions

Examples	of	Trigger	use
Example	1:	Calculates	the	current	balance	of	the	account:
	
Object											:	Account	(ACNT)
	
Trigger	Field				:	"Account	Balance"	(ACCBAL)
	
Trigger	Method			:	Calculates	the	current	balance	of	the	account.

Trigger	Event(s)	:	1.	AFTER	READ	when	ACCBAL	is	REF	(referenced)
	
Invoked	By							:	(i.e.	How	is	an	account	balance	retrieved	?)
	
																				FETCH	FIELDS(....#ACCBAL....)	
																										FROM_FILE(ACNT)
																or	SELECT	FIELDS(....#ACCBAL....)	
																										FROM_FILE(ACNT)
	
Comments									:	Quite	efficient	because	ACCBAL	is	only	
																			calculated	when	the	requester	asks	for	it.
	

Example	2:	Submits	batch	order	print	job:
	
Object											:	Order	(ORDR)
	
Trigger	Field				:	"Print	Required"	(PRINT_REQ)
	
Trigger	Method			:	Submits	batch	order	print	job.	Batch	function
																			prints	order	and	updates	PRINT_REQ	to	'N'.
	
Trigger	Event(s)	:	1.	AFTER	INSERT	when	PRINT_REQ	EQ		'Y'
	
																			2.	AFTER	UPDATE	when	PRINT_REQ	EQ		'Y'
																																			and		PRINT_REQ	NEP	PRINT_REQ
	
Invoked	By							:	(i.e.	How	is	an	order	submitted	for	printing	?)

																				CHANGE	#PRINT_REQ	'Y'
																				UPDATE	FIELD(#PRINT_REQ)	IN_FILE(ORDR)
	
Comments									:	It	may	seem	a	little	obscure	as	an	IBM	i	
																			based	trigger	but	what	if	the	update	
																			comes	from	a	PC	based	application	via	
																			the	LCOE	facility,	or	from	a	batch	job	
																			that	starts	automatically	every	morning	
																			and	automatically	selects	certain
																			orders	for	printing	?
	
	2.8.3	Trigger	Functions

Triggers	-	Restrictions	and	Limitations
Trigger	logic	on	associated	batch	control	files	is	not	performed.	If	file	A	uses
file	B	as	a	batch	control	header	file,	then	triggers	associated	with	B	are	not
invoked	when	I/O	operations	to	A	need	to	insert/update	file	B	"batch	header"
records.
	2.8.3	Trigger	Functions

Triggers	-	Some	Do's	and	Don'ts
Some	Do's
Do	experiment	with	small	test	cases	using	triggers	so	that	you	are
comfortable	with	what	they	are	and	how	they	work	before	attempting	to
implement	a	complex	application	involving	triggers.
Do	remember	that	when	you	change	the	type	or	length	of	a	field	in	the	data
dictionary	(that	has	associated	triggers)	you	should	recompile:

All	trigger	functions	associated	with	the	field.
All	I/O	modules	of	files	that	contain	the	field	as	a	real	or	virtual	field.
All	functions	that	make	*DBOPTIMIZE	references	to	file(s)
containing	the	field.

The	list	of	objects	to	recompile	is	easily	obtained	by	producing	a	full	listing
of	the	definition	of	the	field.
Remember	that	when	you	change	the	layout	of	a	database	file	(that	has
associated	triggers)	you	should	recompile:

The	I/O	module	of	file.
All	trigger	functions	associated	with	the	file.
Any	functions	that	make	*DBOPTIMIZE	references	to	the	file.

The	list	of	objects	to	recompile	is	easily	obtained	by	producing	a	full	listing	of
the	definition	of	the	file.

Some	Don'ts
Do	not	do	any	I/O	to	the	file	with	which	the	trigger	is	linked.	Attempting	such
I/O	directly,	or	indirectly,	may	cause	a	recursive	call	to	the	file	I/O	module.
Do	not	attempt	to	use	*DBOPTIMIZE	to	circumvent	this	rule.	Such	attempts
will	cause	the	file	cursor	of	the	active	I/O	module	to	become	lost	or
corrupted.	
Do	not	use	triggers	on	files	that	have	more	than	799	real	and	virtual	fields
(the	800th	field	position	is	reserved	for	the	standard	@@UPID	field).	
Do	not	make	triggers	too	expensive	to	execute.	For	example,	an
unconditioned	trigger	that	is	always	executed	after	reading	from	a	file	doing,
say,	3	database	accesses,	will	at	least	quadruple	the	time	required	to	read	the
base	file.	Triggers	are	a	very	useful	facility	but	they	are	not	magic.	When	you
set	up	a	trigger	to	do	a	lot	of	work,	then	your	throughput	will	be	reduced

accordingly.	The	use	of	triggers	and	the	estimation	of	the	impact	that	they
exert	on	application	throughput	is	entirely	your	responsibility	as	an
application	designer.	
Do	not	introduce	dependencies	between	triggers.	For	instance,	trigger	A
(before	update)	sets	a	value	in	field	X,	say.	Setting	up	trigger	B	(also	before
update),	to	run	after	trigger	A,	with	the	"knowledge"	that	trigger	A	has	been
executed	first	(and	thus	set	field	X)	is	not	a	good	idea.	This	is	an	example	of
"interdependence"	between	triggers	and	it	is	not	a	good	way	to	use	triggers.
In	this	case	the	logic	in	trigger	B	should	be	inserted	directly	into	trigger	A
following	the	point	that	it	sets	a	value	into	field	X.	
Do	not	use	ABORT	when	a	user	exit	is	called	from	a	Trigger	function.	When
ABORT	is	issued	in	the	Trigger	Function,	the	I/O	Module	is	able	to	intercept
the	ABORT	and	passes	a	Trigger	error	status	back	to	the	Function.	However,
when	the	ABORT	is	issued	in	the	(user	exit)	Function,	called	by	the	Trigger,
the	ABORT	is	interpreted	in	the	standard	way	because	the	Function	is	not
aware	that	the	call	was	from	a	Trigger	and	it	does	not	make	any	difference.
Using	ABORT	in	these	situations	(e.g.	validations)	is	not	recommended.
It	is	very	strongly	recommended	that	you	do	not	design	triggers	in	such	a
way	as	that	"normal"	RDML	functions	doing	I/O	operations	are	"aware"	of
their	existence,	and	attempt	to	directly	"communicate"	with	them	in	any	way
(e.g.:	*LDA,	data	areas,	etc).

Where	trigger	"requests"	are	to	be	supported,	introduce	a	virtual	(or	real)	field
into	the	file	definition	and	use	it	to	"fire"	the	trigger	in	the	normal	way.
	2.8.3	Trigger	Functions

	
	

3.	Files

3.1	File	Definition
3.2	Real	Fields	in	File
3.3	Virtual	Fields	in	File
3.4	Logical	Views

3.5	Access	Routes
3.6	File	Attributes
3.8	Batch	Control
3.9	Virtual	Derivation

3.10	File	Rules	and	Triggers
3.11	File	Compile	Options
3.12	Load	Other	File

Also	See
Editing	Files	in	the	User	Guide.
Developing	Databases	in	the	Developer	Guide.

its:LANSA012.CHM::/lansa/l4wusr01_0135.htm
its:LANSA013.CHM::/lansa/L4wDev04_0020.HTM

3.1	File	Definition

3.1.5	File	Description
3.1.3	File	Identifier

3.1.4	File	Library
3.1.2	File	Name

3.1.1	File	Type

Also	See
Developing	Databases	in	the	Developer	Guide.
	3.	Files

its:LANSA013.CHM::/lansa/L4wDev04_0020.HTM

3.1.1	File	Type
File	Type	defines	whether	the	file	is	created	and	maintained	by	LANSA	or	is	an
externally-defined	file	which	is	maintained	by	another	system.
You	can	easily	identify	the	file	type	by	the	icon	used	or	you	can	look	at	the	File
Description	in	the	File	Attributes	tab.

							 A	LANSA	file,	created	and	maintained	by	LANSA.

	 An	IBM	i	Other	file.	Files	with	this	icon	are	IBM	i	files	created	and
maintained	by	another	application.	The	definition	of	the	file	has	been
loaded	into	LANSA	from	the	IBM	i	via	Load	Other	File.

	 A	PC	Other	file.	Files	with	this	icon	are	non-IBM	i	files	that	are	created
and	maintained	by	another	application.	The	definition	of	the	file	has
been	loaded	into	LANSA	from	an	ODBC	data	source.	For	more
information	refer	to	PC	Other	Files	in	the	Visual	LANSA	Developer's
Guide.

	3.1	File	Definition

its:lansa013.chm::/lansa/l4wdev04_0330.htm

3.1.2	File	Name
Mandatory.
Specify	the	name	by	which	the	file	is	to	be	known.
Rules

Must	be	a	valid		LANSA	object	name.
Platform	Considerations

Refer	to		LANSA	object	name.
Tips	&	Techniques

Refer	to		LANSA	object	name.

Also	See
3.1.4	File	Library
3.1.3	File	Identifier
	3.1	File	Definition

3.1.3	File	Identifier
Mandatory.
Specify	the	identifier	by	which	the	file	is	to	be	known.
Rules

Must	be	a	valid		LANSA	object	name.
Combination	of	file	identifier	and	3.1.4	File	Library	must	be	unique.	

Platform	Considerations
IBM	i:	If	using	native	RPG	programming	language,	a	maximum	of	8
character	names	should	be	used.

Tips	&	Techniques
The	use	of	the	same	file	identifier	in	different	libraries	is	possible	using
LANSA.	However	it	is	strongly	recommended	that	this	procedure	is	NOT
used.	Instead	it	is	better	to	install	multiple	LANSA	systems	to	service
different	environments	such	as	development	and	production.

Also	See
3.1.2	File	Name
3.1.4	File	Library
	3.1	File	Definition

3.1.4	File	Library
Mandatory.
Specify	the	library	in	which	the	new	file	is	to	reside.
Default=Partition	default	file	library	name.
Rules

Library	name	must	conform	to	object	naming	standards	for	the	operating
system.
When	the	library	name	is	combined	with	the	3.1.3	File	Identifier,	it	must	form
a	unique	name	for	the	file.
This	field	is	pre-filled	with	the	partition	default	file	library	name.	LANSA
does	not	check	whether	the	library	specified	exists	or	not.

Warnings
The	library	specified	must	exist	and	you	must	be	authorized	to	use	it.	LANSA
does	not	check	whether	the	library	specified	exists	or	not.

Platform	Considerations
IBM	i:	Avoid	creating	files	that	reside	in	your	IBM	i	"current"	library.

Tips	&	Techniques
The	use	of	the	same	3.1.3	File	Identifier	in	different	libraries	is	possible	using
LANSA.	However	it	is	strongly	recommended	that	this	procedure	is	NOT
used.	Instead	it	is	better	to	install	multiple	LANSA	systems	to	service
different	environments	such	as	development	and	production.

Also	See
3.1.3	File	Identifier
	3.1	File	Definition

3.1.5	File	Description
Mandatory.
Specify	the	description	to	be	associated	with	the	file.		This	description	is	used
within	LANSA	and	within	the	operating	system	to	aid	system	users	in
identifying	the	file.	If	the	partition	is	multilingual,	the	description	specified	for
the	default	partition	language	will	be	used	as	the	default	for	other	languages.
File	descriptions	for	other	languages	can	be	updated	using	3.6	File	Attributes.
Rules

Maximum	length	is	40	characters.
Platform	Considerations

IBM	i:			Use	of	CUA	standards	for	identification	are	recommended.
Tips	&	Techniques

Choose	the	file	description	carefully	as	it	is	used	more	often	than	the	3.1.3
File	Identifier.	For	example,	reporting	tools	like	LANSA	Client	will	display
File	Descriptions	for	end-users	to	select	files.

	
	3.1	File	Definition

3.2	Real	Fields	in	File
The	real	fields	in	the	file	are	the	normal	fields	found	in	any	table/file	definition
and	are	assembled	together	to	form	the	record	format	of	the	associated	table/file.
Such	fields	actually	exist	in	the	database	table/file	and	their	content	(or	value)
can	be	extracted	from	any	record	in	the	table	/file	at	any	time.
When	adding	a	new	real	field	to	a	file,	refer	to:
3.2.1	Field	Name
3.2.3	Field	Key	Position
3.2.2	Field	Sequence
3.2.4	Virtual	Field	Flag

Also	See
3.3	Virtual	Fields	in	File
Developing	Databases	in	the	Developer	Guide.
Fields	in	File	tab	in	the	User	Guide.
	3.	Files

its:LANSA013.CHM::/lansa/L4wDev04_0020.HTM
its:LANSA012.CHM::/lansa/l4wusr01_0450.htm

3.2.1	Field	Name
Mandatory.
Specify	the	name	of	a	field	that	is	to	be	included	in	the	file	definition.
Rules

A	field	used	in	a	file	definition	must	be	defined	in	the	LANSA	Repository.
Note:	If	the	"Multi-add	fields"	interface	is	being	used	to	add	fields	to	the	file,
new	fields	may	be	created	in	the	repository.	Refer	to		Field	Name	Definition.

Tips	&	Techniques
LANSA	automatically	includes	one	field	into	every	file	it	creates.	The	field	is
called	3.7	The	@@UPID	Field	in	LANSA	Created	Files	and	is	used	by	the
LANSA	database	I/O	modules	to	check	for	'crossed	updates'.	Although	this
field	is	defined	in	the	LANSA	Repository	it	should	NEVER	be	manually
included	into	a	file	definition.	The	field	does	not	appear	in	the	list	of	fields	in
the	file	but	will	appear	in	the	physical	database	definition.
The	allowed	field	types	in	a	file	are	determined	by	the	partition	settings.	For
more	details,	refer	to		RDML	and	RDMLX	Partition	Concepts	in	the
Administrator	Guide.

Also	See
3.2.3	Field	Key	Position
3.2.2	Field	Sequence
	3.2	Real	Fields	in	File

its:LANSA011.CHM::/lansa/l4wpar01_0020.htm

3.2.2	Field	Sequence
Mandatory.
Specify	the	position	of	the	field	relative	to	other	fields	in	the	file.
Field	sequence	is	used	to	determine	the	physical	order	of	the	fields	in	the	file,	or
the	order	of	the	columns	in	the	table.
Rules

Sequence	numbers	must	be	consecutive.
The	sequence	number	is	automatically	assigned	when	a	field	is	added.
Sequence	number	is	updated	when	the	order	of	the	fields	is	updated	in	the	list
of	fields.

Tips	&	Techniques
Field	sequence	is	not	related	to	3.2.3	Field	Key	Position	.	However,	the	key
fields	are	typically	the	first	fields	listed	in	the	file.
Field	sequence	is	important	when	templates	are	used	to	generate	RDML	code.
By	default,	fields	are	listed	in	the	physical	order	in	the	file.	Generally,	the
most	important	fields	will	be	grouped	as	the	first	fields	in	the	file.
	3.2	Real	Fields	in	File

3.2.3	Field	Key	Position
Specify	if	the	field	is	assigned	a	key	position	so	that	it	is	included	to	form	the
primary	key	of	the	file.	
Fields	that	form	the	primary	key	of	the	file	should	be	listed	first	key	in	hierarchy
(most	significant	key)	to	last	key	in	the	hierarchy	(least	significant	key).
Rules

The	primary	key	of	a	file	(which	is	composed	of	all	the	fields	in	the	key
concatenated	in	the	order	specified)	must	be	UNIQUE.
Sequence	numbers	must	be	consecutive.
The	sequence	number	is	automatically	assigned	when	a	key	field/value	is
added.	Sequence	number	is	updated	when	the	order	of	the	key	is	updated	in
the	list	of	keys.

Platform	Considerations
IBM	i:	No	more	than	one	record	in	a	file	can	have	any	given	primary	key.
This	rule	is	enforced	by	features	in	the	operating	system	(DDS	keyword
UNIQUE)	and	can	never	be	violated.	Attempting	to	add	a	record	to	a	file	with
the	same	primary	key	as	a	record	already	in	the	file	will	result	in	a	"duplicate
key	error".

Tips	&	Techniques
There	is	no	requirement	to	specify	a	primary	key	when	setting	up	a	file
definition,	but	it	is	strongly	recommended	that	each	file	be	set	up	with	a	key.
LANSA	automatically	handles	duplicate	key	errors	and	there	is	no	need	for
user	logic	to	handle	or	check	for	them.
The	existence	of	a	unique	primary	key	is	important	to	LANSA	because	it
uniquely	identifies	one	and	only	one	record	in	a	file.
Field	key	position	is	not	related	to	3.2.2	Field	Sequence.	However,	the	key
fields	are	typically	the	first	fields	listed	in	the	file.

Also	See
3.2.2	Field	Sequence
	3.2	Real	Fields	in	File

3.2.4	Virtual	Field	Flag
Specify	whether	this	field	will	be	a	virtual	field	in	the	file	definition.
When	adding	multiple	fields	to	a	file,	you	may	specify	that	the	field	will	have	a
virtual	field	definition	associated	with	it.
Default=No	(unchecked/not	selected)
	3.3	Virtual	Fields	in	File

3.3	Virtual	Fields	in	File
Virtual	fields	are	fields	that	do	not	actually	exist	in	the	database	file,	but	are
dynamically	derived	from	"real"	fields	in	the	file.
3.3.1	Virtual	Field	Definition
3.3.2	Date	Conversion
3.3.3	Substring
3.3.4	Concatenation
3.3.5	Mathematical	Calculations
3.3.6	Code	Fragment

Also	See
Virtual	Field	Development	in	the	Developer	Guide.
Fields	in	File	Tab	in	the	User	Guide.
3.5.2	Predetermined	Join	Field	Definitions
3.2	Real	Fields	in	File
3.9	Virtual	Derivation
	3.	Files

its:LANSA013.CHM::/lansa/L4wDev04_0030.HTM
its:LANSA012.CHM::/lansa/l4wusr01_0450.htm

3.3.1	Virtual	Field	Definition
Virtual	Field	Name
Virtual	Field	Type
Virtual	Field	Sequence
Derive	value	when	record	is	read
Populate	real	field	when	writing	to	file

Also	See
Virtual	Field	Development	in	the	Developer	Guide.
	3.3	Virtual	Fields	in	File

its:LANSA013.CHM::/lansa/L4wDev04_0030.HTM

Virtual	Field	Name
Mandatory.
Specify	the	name	of	a	field	that	is	to	be	included	in	the	file	definition	as	a	virtual
field.
Rules

A	field	used	in	a	file	definition	must	be	defined	in	the	LANSA	Repository.
The	field	type	must	be	in	agreement	with	the	Virtual	Field	Type	selected.	For
example,	a	numeric	field	type	must	be	specified	for	a	mathematical
calculation.
The	field	length	is	validated	for	substring	and	concatenation	virtuals.

Tips	&	Techniques
Follow	the	field	naming	standards	when	using	virtual	fields.	For	example,
name	all	virtual	fields	with	a	3	character	suffix	of	"VIR".	This	will	help
developers	identify	a	field	as	a	virtual	field.

Also	See
3.2	Real	Fields	in	File
	3.3	Virtual	Fields	in	File

Virtual	Field	Type
Mandatory.
Specify	the	type	of	derivation	to	be	used	for	the	virtual	field.
Rules
Allowable	values	are:

3.3.2	Date
Conversion

Map	a	date	held	in	a	real	field	in	format	(YYMMDD)	into	a
virtual	field	in	format	(DDMMYY).

3.3.3
Substring

Substring	1	real	field	into	multiple	virtual	fields

3.3.4
Concatenation

Substring	multiple	real	fields	into	one	virtual	field

3.3.5
Mathematical
Calculations

Specify	the	mathematical	calculation	extended	definition	of	the
virtual	field	currently	being	worked	with.

3.3.6	Code
Fragment

Allows	you	to	specify	RDMLX	code	to	populate	a	virtual	field
when	reading	from	a	file,	and	to	populate	a	real	field	when
writing	to	a	file.

	

Tips	&	Techniques
The	Virtual	Field	Name's	type	and	length	must	be	in	agreement	with	the	type
of	virtual	field	selected.	For	example,	a	numeric	field	type	must	be	specified
for	a	mathematical	calculation.	The	field	length	is	validated	for	only	some
types	of	virtuals.	Check	that	the	length	of	the	field	is	correct	for	the	virtual
type	selected.

Also	See
Virtual	Field	Name
	3.3	Virtual	Fields	in	File

Virtual	Field	Sequence
Mandatory.
Specify	the	sequence/order	of	the	virtual	field	relative	to	the	other	virtual	fields
in	the	file.
Rules

Sequence	numbers	must	be	consecutive.
The	sequence	number	is	automatically	assigned	when	a	virtual	field	is	added.
Sequence	number	is	updated	when	the	order	of	the	fields	is	updated	in	the	list
of	fields.

Tips	&	Techniques
The	ordering	of	the	virtual	fields	can	be	resequenced	by	varying	the	value	in
this	field.
The	sequence	number	for	virtual	fields	only	applies	within	the	group	they	are
listed	in.
	3.3	Virtual	Fields	in	File

Derive	value	when	record	is	read
Specify	whether	the	virtual	field	should	be	derived	from	the	file	after	reading
the	real	field.
This	option	means	that	the	virtual	field	is	created	when	you	read	the	information
from	the	file.	The	information	will	now	be	derived	and	available	for	display.	For
example,	a	date	is	stored	as	format	YYYY/MM/DD	so	the	file	can	be	properly
sorted	by	date,	but	the	information	is	displayed	to	the	user	as	DD/MM/YY.
Default=NO	(unchecked).
Rules

At	least	one	of	Populate	real	field	when	writing	to	file	and	Derive	value	when
record	is	read	must	be	selected.	Both	values	may	be	selected.

Tips	&	Techniques
Virtual	field	derivation	is	also	performed	relative	to	predetermined	joined
fields.	Refer	to	3.5.1	Access	Route	Definitions	and	Derivation.

Also	See
Populate	real	field	when	writing	to	file
	3.3	Virtual	Fields	in	File

Populate	real	field	when	writing	to	file
Specify	whether	the	"real"	field	should	be	setup	from	the	"virtual"	field	before
writing	to	the	file.
This	option	means	that	information	entered	in	a	virtual	field	will	be	written	out
to	the	file	field(s)	used	to	define	the	virtual	fields.	The	virtual	fields	are	the	user
input	fields	and	will	write	information	to	a	real	field	in	the	file.	For	example,	the
user	enters	a	date	in	DD/MM/YY	and	it	is	then	converted	and	stored	in	the	file
as	YY/MM/DD.
Default=NO	(unchecked).
Rules

At	least	one	of	Populate	real	field	when	writing	to	file	and	Derive	value	when
record	is	read	must	be	selected.	Both	values	may	be	selected.

Tips	&	Techniques
This	option	is	not	supported	for	the	3.3.5	Mathematical	Calculations	virtual.
You	can	add	validation	rules	to	virtual	fields	but	be	careful	that	the	virtual
field	is	included	on	the	display	so	that	it	can	be	highlighted	when	an	error
occurs.	In	the	case	of	a	date	virtual,	you	would	only	display	the	virtual	field
with	the	validation	rule	and	not	the	real	field	on	the	screen.
Virtual	field	derivation	is	also	performed	relative	to	predetermined	joined
fields.	Refer	to	3.5.1	Access	Route	Definitions	and	Derivation.

Also	See
Derive	value	when	record	is	read
	3.3	Virtual	Fields	in	File

3.3.2	Date	Conversion
The	date	virtual	will	convert	the	format	of	an	existing	date	field	in	the	file.	For
example,	when	a	date	is	held	in	a	real	field	in	format	YYMMDD	it	can	be	easily
mapped	into	a	virtual	field	in	format	DDMMYY.	The	real	field	may	be	the	most
commonly	used	format	for	ordering	the	file,	but	the	virtual	field	format	may	be
the	most	commonly	used	for	display	or	printing.
Refer	to:
Source	Field
Source	Format
Target	Format

Also	See
Virtual	Field	Type
	3.3	Virtual	Fields	in	File

Source	Field
Mandatory.
Specify	the	field	(real	or	virtual)	in	the	physical	file	to	be	used	for	the	date
conversion	to	the	resulting	virtual	field	nominated	by	the	Virtual	Field	Name.
Rules

If	the	virtual	field	is	defined	as	Populate	real	field	when	writing	to	file,	the
source	field	must	be	big	enough	to	contain	the	result	of/value	for	the	date
conversion,	otherwise	unpredictable	results	could	occur.

Also	See
	3.3.2	Date	Conversion

Source	Format
Mandatory.
Specify	the	date	format	which	is	currently	being	used	by	the	Source	Field	in	the
file.
Rules
Valid	date	format	values	are:

SYSFMT QDATFMT

DDMMYY Day,	Month	and	Year

MMDDYY Month,	Day	and	Year

YYMMDD Year,	Month	and	Day

DDMMYYYY Day,	Month,	Century	and	Year

MMDDYYYYMonth,	Day,	Century	and	Year

YYYYMMDD Century,	Year,	Month	and	Day

YYMM Year	and	Month

MMYY Month	and	Year

MMYYYY Month,	Century	and	Year

YYYYMM Century,	Year	and	Month

SYSFMT8 QDATFMT	including	Century

CYYMMDD Century	indicator,	Year,	Month	and	Day
Note:
The	CYYMMDD	format	is	only	valid	for	a	real	field	in	LANSA
for	the	IBM	i	in	virtual	field	derivation.	It	can	be	defined	in
Visual	LANSA,	but	not	made	operational.

	

Also	See
Target	Format

	3.3.2	Date	Conversion

Target	Format
Mandatory.
Specify	the	desired	date	format	to	be	used	by	the	virtual	field	nominated	in	the
Virtual	Field	Name.
This	is	the	date	format	that	the	virtual	field	is	converting	to.
Rules
Valid	date	format	values	are:

SYSFMT QDATFMT

DDMMYY Day,	Month	and	Year

MMDDYY Month,	Day	and	Year

YYMMDD Year,	Month	and	Day

DDMMYYYY Day,	Month,	Century	and	Year

MMDDYYYYMonth,	Day,	Century	and	Year

YYYYMMDD Century,	Year,	Month	and	Day

YYMM Year	and	Month

MMYY Month	and	Year

MMYYYY Month,	Century	and	Year

YYYYMM Century,	Year	and	Month

SYSFMT8 QDATFMT	including	Century

	

Warning
If	an	alphanumeric	date	field	(real	or	virtual)	is	being	converted	to	a	resulting
numeric	date	field	(real	or	virtual),	a	check	will	be	automatically	performed	to
ensure	the	resulting	numeric	date	field	contains	all	numeric	characters	(0	to
9).	If	the	resulting	numeric	date	field	does	not	contain	all	numeric	characters
(i.e.	alpha	characters	have	been	found)	the	resulting	numeric	date	field	will	be
set	to	0.

Also	See
Source	Format
	3.3.2	Date	Conversion

3.3.3	Substring
The	substring	virtual	field	allows	you	to	access	either	part	of	a	field	or	a
complete	file	record.	For	a	substring	virtual,	you	will	need	to	specify	the	field
from	which	you	want	to	substring.	A	substring	virtual	can	be	based	on:
a	real	field	in	the	file
another	virtual	field	in	the	file
the	complete	record	contents	of	the	file	(indicated	by	*RECORD).

Refer	to:
Substring	from	Field
Start	Position

Also	See
Virtual	Field	Type
	3.3	Virtual	Fields	in	File

Substring	from	Field
Mandatory.
Specify	the	source	field	(real	or	virtual)	in	the	physical	file	or	the	record
contents	of	the	physical	file	(*RECORD)	that	is	to	be	used	for	the	substring
operation.
Rules
Allowable	values	are:
A	real	or	virtual	field	defined	in	the	file	definition.
*RECORD	indicates	that	the	full	record	content	of	the	file	is	to	be	used.
You	cannot	perform	a	substring	from	a	packed	numeric	field	to	an	alpha	field.

Warnings
If	*RECORD	has	been	specified	for	this	field,	the	utmost	care	should	be
taken	in	the	substring	of	the	file	record.	There	will	be	no	validation	checks	to
ensure	data	type/length	compatibility.	Virtual	fields	formed	as	a	result	of	a
substring	operation	specifying	*RECORD	are	totally	your	responsibility.
PLEASE	be	careful	when	performing	this	option	when	using	*RECORD	as
field	definition	errors	could	cause	unpredictable	results.

Tips	&	Techniques
Following	are	special	notes	for	substring	virtuals	when	used	with	alpha	field
into	a	numeric	field:
The	field	should	only	contain	the	digits	0-9.	Any	other	character,	including	a
sign	character	('+'	or	'-'),	will	give	unpredictable	results.
Substring	is	performed	from	left	to	right,	therefore	if	a	field	containing
'123.45'	is	substringed	into	position	1	of	a	signed	(6,2)	field	(which	is	initially
set	to	*ZERO),	the	value	will	be	set	to	1234.50.

Also	See
Start	Position
	3.3.3	Substring

Start	Position
Specify	the	start	position	within	the	Substring	from	Field.
There	is	no	requirement	for	an	end	position	as	this	is	automatically	calculated
by	adding	the	length	of	the	virtual	field	to	the	start	position.	(Refer	to	Virtual
Field	Name.)
Mandatory.	Default=1
Rules

Value	must	be	less	than	the	length	of	the	Substring	from	Field.
The	length	of	the	Substring	from	Field	minus	the	value	of	the	Start	Position
must	not	be	greater	than	the	virtual	field	nominated	in	the	Virtual	Field	Name
(unless	*RECORD	has	been	specified),	i.e.	the	length	of	the	substring	data
must	fit	into	the	virtual	field.

Also	See
Substring	from	Field
	3.3.3	Substring

3.3.4	Concatenation
The	string	concatenation	virtual	will	join	multiple	fields	in	the	file	together	and
place	the	result	into	the	defined	virtual.
Refer	to:
Concatenated	Field	Names
Concatenation	Example
	3.3	Virtual	Fields	in	File

Concatenated	Field	Names
Mandatory.
Specify	each	field	(real	or	virtual)	in	the	physical	file	to	be	joined	together	to
form	the	virtual	field	nominated	in	the	Virtual	Field	Name.
When	the	fields	have	been	concatenated,	they	will	form	the	virtual	field	starting
at	position	1.
Rules

One	or	more	fields	must	be	identified.
Fields	may	be	real	fields,	virtual	fields	or	predetermined	join	fields	from	the
file	definition.

Tips	&	Techniques
The	field	defined	in	the	Virtual	Field	Name	must	be	of	sufficient	length	to
hold	the	concatenated	fields.
If	you	are	using	Predetermined	Join	Fields	to	create	the	virtual	field,	you	must
specify	that	the	PJF	derivation	is	Before	virtual	fields	in	the	Derivation	of
the	3.5.1	Access	Route	Definitions.

Also	See
Concatenation	Example
	3.3.4	Concatenation

Concatenation	Example
Following	is	an	example	of	a	concatenation	virtual	field.
The	Employee	file	contains	the	employee's	last	name	in	a	field	SURNAME
defined	as	A(20).
The	Employee	file	contains	the	employee's	first	name	in	a	field	GIVENAME
defined	as	A(20).
A	concatenation	virtual	field	can	be	created	named	FULLNAME	defined	as
A(40).	This	field	will	have	the	first	name	followed	by	the	last	name:
Virtual	Field	Name:	FULLNAME
Field	Names Length Description

GIVENAME 20 Employee	Given	Name

SURNAME 20 Employee	Surname

	

Also	see
3.3.6	Code	Fragment
	3.3.4	Concatenation

3.3.5	Mathematical	Calculations
The	mathematical	calculation	virtual	will	perform	a	set	of	numeric	calculations
to	determine	field.		This	type	of	virtual	can	only	be	derived	when	read	from	the
file.
Refer	to:
Factor	1
Operator
Factor	2
Result
Mathematical	Calculation	Example

Also	See
Virtual	Field	Type
	3.3	Virtual	Fields	in	File

Factor	1
Mandatory.
Specify	the	first	field	or	value	(Factor1)	that	will	be	used	in	a	mathematical
expression	of:
Factor1		(Operator)	Factor2	=	Result

Rules
The	field	(real	or	virtual)	must	be	defined	in	the	physical	file,	or	a	valid
numeric	literal,	or	an	*WORKnnnnn	field.
If	a	field	name	has	been	specified,	its	data	type	must	be	numeric.
This	is	an	optional	entry	for	all	operation	codes,	except	for	when	the
operation	code	of	"S"	is	specified.	In	this	case,	the	Factor1	field	must	be
blank.

Also	See
Mathematical	Calculation	Example
	3.3.5	Mathematical	Calculations

Operator
Mandatory.
Specify	the	operator	that	will	be	used	in	a	mathematical	expression	of:
Factor1		(Operator)	Factor2	=	Result

Rules
The	list	of	operators	are:

+ Add

- Subtract

/ Divide

* Multiply

S Set

	

Warning
If	the	operation	for	a	calculation	line	is	/	(Divide),	a	check	will	be
automatically	performed	to	ensure	Divide	by	zero	errors	are	prevented.
If	the	value	within	Value	2	is	0,	the	Result	value	will	be	automatically	set	to
0.	If	the	value	within	Value	2	is	not	0,	then	the	/	(Divide)	operation	will	be
performed.

Also	See
Mathematical	Calculation	Example
	3.3.5	Mathematical	Calculations

Factor	2
Mandatory.
Specify	the	second	field	or	value	(Factor2)	that	will	be	used	in	a	mathematical
expression	of:
Factor1		(Operator)	Factor2	=	Result

Rules
The	field	(real	or	virtual)	must	be	defined	in	the	physical	file,	or	a	valid
numeric	literal,	or	an	*WORKnnnnn	field.
If	a	field	name	has	been	specified,	its	data	type	must	be	numeric.
This	is	a	mandatory	entry	for	all	operation	codes,	except	for	when	the
operation	code	of	S	is	specified.	In	this	case	the	Value	2	is	optional.	If	the
operation	code	is	S	and	Value	2	is	blank,	the	system	will	automatically	set
Value	2	field	to	0.

Also	See
Mathematical	Calculation	Example
	3.3.5	Mathematical	Calculations

Result
Mandatory.
Specify	the	result	virtual	field	or	a	*WORKnnnnn	field	that	will	be	used	in	a
mathematical	expression	of:
Factor1		(Operator)	Factor2	=	Result

Rules
The	final	result	in	the	calculation	must	be	the	defined	virtual	field.

Tips	&	Techniques
The	*WORKnnnnn	fields	are	exclusively	reserved	for	use	in	"virtual"	code
extended	definition	"mathematical	calculations"	only.
The	*WORKnnnnn	fields	do	not	have	to	be	defined	within	LANSA,	the
*WORKnnnnn	field	length	will	be	automatically	assumed	to	30,	9	if	the
machine	is	an	IBM	i.
All	*WORKnnnnn	fields	that	are	used	in	a	mathematical	calculation	are
automatically	initialized	before	the	first	time	they	are	used.
Multiple	*WORKnnnnn	fields	can	be	used	in	mathematical	calculations
simply	by	replacing	the	nnnnn	portion	of	the	work	field	name	with	a	unique
replacement	value.
If	*WORKnnnnn	fields	with	the	same	name	are	used	in	other	virtual	fields'
mathematical	calculations,	their	values	will	not	be	carried	forward	to	the	next
virtual	field's	mathematical	calculation.

Platform	Considerations
IBM	i:	The	*WORKnnnnn	fields	do	not	have	to	be	defined	within	LANSA,
the	*WORKnnnnn	field	length	will	be	automatically	assumed	to	30,	9	if	the
machine	is	an	IBM	i.
Other	platforms:	Virtual	field	calculations	support	a	maximum	of	15	digits
precision.	This	means	that	if	the	contents	of	the	field	in	Factor	1,	Factor	2	are
more	than	15	digits,	or	the	result	would	exceed	15	digits,	this	will	result	in	an
error	and/or	an	incorrect	result.	To	avoid	this,	if	the	file	is	RDMLX,	use	an
RDMLX	code	fragment.	If	the	file	is	RDML,	use	a	trigger	function	to
calculate	the	result	field.	RDML	mathematics	will	work	correctly	in	a	trigger
function	on	all	platforms.

Also	See

Mathematical	Calculation	Example
	3.3.5	Mathematical	Calculations

Mathematical	Calculation	Example
Following	is	an	example	of	a	mathematical	calculation	virtual	field.
Calculate	the	Gross	sales	price	of	a	transaction	by	multiplying	the	Net	sales
price	by	the	Current	sales	tax	rate	and	adding	the	result	to	the	Gross	sales	price:

Factor1 operator Factor2 Result

	 S O GRSPRC

NETPRC / 100 *WORKNET01

*WORKNET01 * SALTAX *WORKTAX01

NETPRC + *WORKTAX01 GRSPRC

	

	3.3.5	Mathematical	Calculations

3.3.6	Code	Fragment
The	code	fragment	virtual	field	allows	you	to	specify	RDMLX	code	to	populate
a	virtual	field	when	reading	from	a	file,	and	to	populate	a	real	field	when
writing	to	a	file.
A	code	fragment	does	not	support	the	full	range	of	RDML/X	commands.	In
Version	11,	you	are	limited	to	constructs	such	as	If,	Case,	Dountil,	Dowhile,
Change,	Assign.
At	execution	time,	the	code	fragment	will	have	read-only	access	to	all	fields	in
the	file.	You	may	use	trigger	functions	for	complex	coding	of	virtual	fields	or	to
update	fields	in	a	file.
Code	Fragments	are	specified	by	selecting	Code	Fragments	in	the	Virtual	field
type	dropdown	list	in	the	Details	tab.	In	the	Details	tab,	when	you	select	the
Derive	Value	when	record	is	read	option,	the	associated	tab	for	Virtual	Field
Derivation	is	displayed.	Enter	the	code	fragment	to	be	used	to	derive	the	virtual
field.	The	code	fragment	is	typically	derived	from	one	or	more	real	fields	on	the
file	but	may	also	use	system	variables,	multilingual	variables	and	work	fields.
When	you	select	the	Populate	real	field	when	writing	to	the	file	option,	the
associated	tab	for	Real	Field	Derivation	is	displayed.	Enter	the	code	fragment	to
be	used	to	derive	the	real	field	values.	The	code	fragment	is	typically	derived
from	the	current	virtual	field.
In	the	following	example,	only	the	first	option	is	selected,	so	only	the	Virtual
Field	Derivation	tab	is	shown:

When	both	options	are	selected	both	tabs	appear:

When	only	the	second	option	is	selected,	only	the	Real	Field	Derivation	tab	is
shown:

Code	fragment	vs	concatenation
Code	fragments	give	you	more	control	and	variability	than	concatenation.	The
following	example	of	Concatenation	uses	the	same	information	to	derive	the
real	and	the	virtual	field	(simply	by	applying	reverse	of	definition)	and	gives
you	a	similar	but	not	quite	the	same	result.

The	code	fragment:
#fullname	:=	#surname	+	'	,	'	+	#givename
	

would	result	in	Turner	,	Scott
Concatenation	of	Surname	and	Full	name	would	give	TurnerScott

Also	see
Code	Fragment	Virtual	Field	Derivation
Code	Fragment	Real	Field	Derivation
3.3.4	Concatenation
	3.3	Virtual	Fields	in	File

Code	Fragment	Virtual	Field	Derivation
A	code	fragment	does	not	support	the	full	range	of	RDML/X	commands.	In
Version	11,	the	user	is	limited	to	constructs	such	as	If,	Case,	Dountil,	Dowhile,
Change,	Assign.
At	execution	time,	the	code	fragment	will	have	read	only	access	to	all	fields	in
the	file.
In	the	following	example,	the	PSLMST	file	has	two	fields	SURNAME	and
GIVENAME.	SURNAME	is	A(20)	and	GIVENAME	is	A(20).	If	the
SURNAME	was	"Smith														"	and	SURNAME	was	"John															",	a
simple	concatenation	virtual	would	create	a	virtual	field	called	FULLNAME
with	a	result	of		"Smith														John															".
Using	the	following	code	fragment:
#FULLNAME	:=	#SURNAME.Trim	+	',	'	+	#GIVENAME.Trim
	

the	code	fragment	virtual	field	FULLNAME	will	have	a	result	of	"Smith,	John".
	3.3.6	Code	Fragment

Code	Fragment	Real	Field	Derivation
A	code	fragment	does	not	support	the	full	range	of	RDML/X	commands.	In
Version	11,	the	user	is	limited	to	constructs	such	as	If,	Case,	Dountil,	Dowhile,
Change,	Assign.
At	execution	time,	the	code	fragment	will	have	read-only	access	to	all	fields	in
the	file.
	3.3.6	Code	Fragment

3.4	Logical	Views
Logical	files	or	views	are	created	as	part	of	a	file	definition.	They	are	not	stored
as	separate	objects	in	the	repository.	Logical	views	are	used	to	create	alternate
ways	of	organizing	the	data	in	your	files.
3.4.1	Logical	View	Definition
3.4.2	Logical	View	Keys
3.4.3	Select/Omit	Criterion

Also	See
Logical	View	Development	in	the	Developer	Guide.
Logical	Views	Tab	in	the	User	Guide.
	3.	Files

its:LANSA013.CHM::/lansa/L4wDev04_0025.HTM
its:LANSA012.CHM::/lansa/l4wusr01_0455.htm

3.4.1	Logical	View	Definition
Logical	View	Name
Logical	View	Description
Unique	Key
Access	Path
Dynamic	Select
Alt.	Seq.
Record	Format
CRTLF/CHGLF	Parameters

Also	See
Logical	View	Development	in	the	Developer	Guide.
Logical	Views	Tab	in	the	User	Guide
	3.4	Logical	Views

its:LANSA013.CHM::/lansa/L4wDev04_0025.HTM
its:LANSA012.CHM::/lansa/l4wusr01_0455.htm

Logical	View	Name
Mandatory.
Specify	the	name	that	is	to	be	assigned	to	the	logical	view/	file.
Rules

Must	be	a	valid		LANSA	object	name.
Restricted	to	a	maximum	of	10	characters.	
Logical	file	names	must	be	unique.	No	other	physical	or	logical	file	can	exist
in	the	same	library	with	the	same	name.
Note	that	no	library	name	is	required.	LANSA	will	always	create	the	logical
file	into	the	same	library	as	the	associated	physical	file.	This	is	the	library	that
was	specified	when	the	file	definition	was	first	created.

Platform	Considerations
IBM	i:	If	using	native	RPG	programming	language,	a	maximum	of	8
character	names	should	be	used.

Tips	&	Techniques
Many	IT	departments	adopt	a	naming	standard	that	requires	that	logical	file
names	contain	or	relate	to	the	associated	physical	file	name.	This	is	to	prevent
confusion	amongst	users	when	they	are	accessing	the	physical	or	logical	files.
For	instance,	the	physical	file	(and	LANSA	file	definition)	of	a	customer
master	file	might	be	named	CUSMST.	The	associated	logical	views	might	be
called:

CUSMSTV1 Customers	ordered	by	customer	name.

CUSMSTV2 Customers	ordered	by	postcode.

CUSMSTV3 Customers	ordered	by	state.

	

	3.4.1	Logical	View	Definition

Logical	View	Description
Mandatory.
Specify	the	description	to	be	associated	with	the	logical	view.		This	description
is	used	within	LANSA	and	within	the	operating	system	to	aid	system	users	in
identifying	the	file.
Rules

A	file	description	must	be	entered	for	each	language	defined	for	the	partition.
Maximum	length	is	40	characters.

Tips	&	Techniques
Wherever	possible	include	information	in	the	description	that	specifies	what
the	logical	file/view	should	be	used	for.	For	example,	"Customer	master
ordered	by	post	code"	or	"Orders	by	customer	number,	order	number".
	3.4.1	Logical	View	Definition

Unique	Key
Mandatory.
Specify	whether	or	not	the	key	fields	nominated	are	to	form	a	unique	key	to	the
file.
Default=NO.
Rules

NO	(unchecked	or	not	selected),	indicates	that	the	key	fields	nominated	do
not	form	a	unique	key	to	the	file.	This	allows	multiple	records	with	the	same
key	to	exist	in	the	file.
YES	(checked	or	selected),	which	indicates	that	the	key	fields	are	to	form	a
unique	key	to	the	file.	This	means	that	one	(and	only	one)	record	can	exist	in
the	file	for	any	given	key	value.

Tips	&	Techniques
When	defining	a	new	logical	file	over	a	physical	file	that	already	contains
records	and	using	the	YES	option	make	sure	that	there	are	no	duplicate
records	(i.e.:	key	values)	already	in	the	file.	If	duplicate	records	do	exist,	then
the	"make	operational"	job	will	fail	as	this	logical	view	cannot	be	loaded
because	of	the	duplicate	records.	The	job	log	will	indicate	the	cause	of	this
problem.	To	correct,	remove	or	change	the	duplicate	records.
LANSA	automatically	handles	duplicate	key	errors	and	there	is	no	need	for
user	logic	to	handle	or	check	for	them.
	3.4.1	Logical	View	Definition

Access	Path
Mandatory.
Specify	the	method	to	be	used	to	maintain	the	IBM	i	database	access	path
associated	with	this	logical	view/file.
When	a	logical	view	is	created	to	arrange	the	information	in	a	file	into	a	specific
order,	the	IBM	i	database	creates	an	access	path.
The	access	path	is	essentially	the	logical	file	"key	fields"	arranged	in	a	special
structure	that	allows:
Extremely	fast	access	to	any	individual	record	in	the	file	using	just	the	key(s)
of	the	logical	file.
The	processing	of	the	records	in	order	of	the	logical	file	key(s)	without	the
need	to	first	sort	the	file.

An	access	path	exists	for	every	logical	view/file	created.	Every	time	a	record	in
the	file	is	added,	deleted	or	updated	the	operating	system	must	update	all	the
access	paths	to	this	file.	To	do	this	it	must	use	up	part	of	the	computer's	time	and
available	processing	cycles.	This	of	course	degrades	the	performance	of	the
system.	The	more	access	paths	that	are	being	maintained,	the	slower	the	system
will	run.
Default=Immediate.
Rules
Allowable	values	are:

IMMED The	access	path	should	be	maintained	immediately	(i.e.	whenever	a
record	is	added,	updated	or	deleted	from	the	file).	This	option	is	the
most	common.	If	the	logical	file	is	to	be	used	in	an	interactive
environment	then	IMMED	should	always	be	used.

DELAY The	access	path	should	only	be	maintained	when	the	logical	file	is
used.	This	type	of	access	path	lies	dormant	and	is	not	maintained	by
the	operating	system	until	such	time	as	someone	needs	to	use	the
logical	file.	Thus	it	places	no	burden	on	the	operating	system	until	it	is
actually	required.	Typically,	logical	views	that	use	this	option	are	only
used	very	infrequently	to	"sort"	a	file	into	a	specific	order.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.

Tips	&	Techniques
If	the	logical	file	is	to	be	used	in	an	interactive	environment,	then	this	option
should	be	selected.

	
	3.4.1	Logical	View	Definition

Dynamic	Select
Mandatory.
Specify	whether	or	not	any	select/omit	tests	specified	on	the	lower	portion	of
the	screen	are	to	be	done	at	execution	time.
Default=NO
Rules

NO	(unchecked/not	selected),	indicates	that	the	dynamic	select	feature	should
not	be	used.	In	this	case	the	access	path	associated	with	the	logical	file	will
contain	only	records	that	match	the	select/omit	criteria	specified.
YES	(checked/selected)	,	indicates	that	the	dynamic	select	feature	should	be
used.	In	this	case	the	access	path	associated	with	the	logical	file	will	contain
all	records	in	the	file.	The	select/omit	testing	should	be	done	when	the
program	reads	the	records	from	the	file.

Tips	&	Techniques
If	you	specify	YES	(checked/selected),	then	do	not	specify	any	select/omit
tests	or	else	the	value	will	be	automatically	changed	back	to	NO.

Platform	Considerations
IBM	i:	The	dynamic	select	facility	is	a	feature	of	the	operating	system.	Using
it	can	have	significant	overall	performance	benefits	in	some	situations.	For
more	information	about	this	facility	refer	to	the	appropriate	IBM	supplied
manual.

	
	3.4.1	Logical	View	Definition

Alt.	Seq.
Optional.
Specifies	the	name	of	an	Alternate	Collating	Table	to	be	used	when	sequencing
the	records	for	retrieval	on	a	Keyed	file.
Warning

At	File	Creation	time,	you	must	have	operational	rights	to	the	Alternate
Collating	Table.	Alternate	Collating	sequences	are	not	valid	for	key	fields
with	a	data	type	of	packed	decimal	as	it	causes	zoned	key	fields	to	default	to
unsigned	sequence.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.

Tips	&	Techniques
The	Alternate	Collating	Table	name,	if	specified,	is	not	validated	to	determine
if	it	actually	exists.
When	attempting	to	use	any	file	that	has	been	created	with	an	Alternate
Collating	Table,	the	library	list	is	used	to	locate	the	Table	file.
	3.4.1	Logical	View	Definition

Record	Format
Mandatory.
Specify	the	record	format	name	to	be	assigned	to	the	logical	file	record.	
When	the	file	definition	is	first	set	up,	this	value	is	initialized	to	be	the	same	as
the	logical	file	name.
Default=Logical	view	name.
Rules

The	name	specified	must	be	no	more	than	10	characters	long.
Name	specified	must	conform	to	IBM	i	record	format	naming	conventions.
First	character	must	be	A	to	Z.	Do	not	use		#	as	first	character.	Subsequent
characters	should	be	A	to	Z,	0	to	9.	Characters	$	and	#	are	allowed	but	not
recommended.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.

	
	3.4.1	Logical	View	Definition

CRTLF/CHGLF	Parameters
Specify	additional	command	parameters	that	are	to	be	used	by	LANSA	when
creating	(CRTLF	command)	or	changing	(CHGLF	command)	the	logical	file.
Rules

Parameters	specified	are	checked	for	validity.
Tips	&	Techniques

When	specifying	parameters,	input	them	exactly	as	would	be	done	when
entering	them	through	the	IBM	i	command	entry	facility	by	using	"keyword"
(rather	than	positional)	specification	of	any	parameters	required.
	3.4.1	Logical	View	Definition

3.4.2	Logical	View	Keys
Key	Field	Name
Key	Field	Details
Numeric	Ordering
Key	Order
Key	Position
	3.4	Logical	Views

Key	Field	Name
Mandatory.	
Specify	the	name	of	one	of	the	field(s)	in	the	logical	view.
Rules

At	least	one	key	must	be	specified	for	the	view	definition.
Any	fields	named	as	a	key	must	first	be	defined	as	a	field	in	the	file
definition.
	3.4.2	Logical	View	Keys

Key	Field	Details
Display	Only.
The	fields	details	of	the	specified	Key	Field	Name	will	be	displayed	including:
Description
Type
Length
Decimals

You	can	review	this	information	to	confirm	the	field	details.
	3.4.2	Logical	View	Keys

Numeric	Ordering
Mandatory.
Specify,	for	numeric	key	fields	only,	additional	details	about	how	the	key	is	to
be	ordered.
Default=Unsigned.
Rules
Allowable	values	are:

S (Signed)	indicates	the	numeric	fields	should	be	stored	taking	into	account
their	signs	(+	or	-).

U (Unsigned)	indicates	the	numeric	field	should	be	stored	without	taking	into
account	their	signs.	The	numeric	field	is	to	be	treated	just	like	a	character
field.

A (Absolute	value)	indicates	that	the	numeric	field	should	be	stored	by	its
absolute	value.	Note	that	this	is	not	the	same	(and	does	not	always	produce
the	same	order)	as	the	U	option.

Tips	&	Techniques
Character	fields	are	always	U	(unsigned)	fields.	If	you	specify	something
other	than	U	for	a	character	field,	it	will	be	automatically	changed	to	U.
	3.4.2	Logical	View	Keys

Key	Order
Mandatory.
Specify	whether	the	associated	key	is	to	be	stored	in	ascending	or	descending
sequence	(i.e.	from	lowest	to	highest	or	highest	to	lowest	order).
Default=Ascending.
Rules
Allowable	values	are:

A (Ascending)	store	in	lowest	to	highest	order

D (Descending)	store	in	highest	to	lowest	order.

This	is	an	optional	field.	If	not	specified,	A	is	assumed.
	3.4.2	Logical	View	Keys

Key	Position
Mandatory.
Specify	the	order	of	the	keys	defined.		Key	fields	are	specified	from	top	to
bottom	in	order	of	their	importance	in	the	key	hierarchy	(that	is,	major	to
minor).	Major	keys	come	first.
Default=Next	sequential	number.
Rules

Sequence	numbers	must	be	consecutive.
The	sequence	number	is	automatically	assigned	when	a	key	field/value	is
added.	Sequence	number	is	updated	when	the	order	of	the	key	is	updated	in
the	list	of	keys.
	3.4.2	Logical	View	Keys

3.4.3	Select/Omit	Criterion
Select/Omit
Select/Omit	And/Or
Select/Omit	Type
Select/Omit	Field	Name
S/O	Operator
S/O	Value
S/O	Range

Also	See
3.4.1	Logical	View	Definition
3.4.2	Logical	View	Keys
Select	Omit	Concepts	in	the	Developer	Guide.
	3.4	Logical	Views

its:Lansa013.chm::/lansa/l4wdev04_0290.htm

Select/Omit
Mandatory.
Specify	whether	the	condition	specified	in	the	operation(s)	field	is	to	be	used	to
select	or	omit	records	when	found	to	be	true.
Rules
Allowable	values	are:

SELECT Use	operation	to	select	records

OMIT Use	operation	to	omit	records

blank Form	an	"and"	with	previous	SELECT/OMIT	operation

Tips	&	Techniques
Using	SELECT	or	OMIT	implies	an	OR	relationship	with	the	preceding
select/omit	statement.	When	adding	more	than	one	select/omit	criteria,	the
use	of	a	blank	value	indicates	that	the	criteria	is	being	in	an	AND	relationship
with	previous	criteria.		Refer	to	Select/Omit	And/Or.

Also	See
Select/Omit	Type
	3.4.3	Select/Omit	Criterion

Select/Omit	And/Or
This	is	an	output	field	only.
It	indicates	whether	the	previous	select/omit	statement	is	ANDed	or	ORed	with
this	statement.
When	using	select/omit	statements	specify	SELECT,OMIT	or	blanks	in	the
SELECT/OMIT	column.	Using	SELECT	or	OMIT	implies	an	OR	relationship
with	the	preceding	select/omit	statement.
Leaving	the	entry	in	the	SELECT/OMIT	column	blank	implies	an	AND
relationship	with	the	preceding	select/omit	statement.
To	confirm	the	proper	AND/OR	condition	has	been	specified,	refer	to	the
completed	description	of	the	condition.	Refer	to		Logical	Views	Tab	in	the	User
Guide.

Also	See
Select/Omit
	3.4.3	Select/Omit	Criterion

its:LANSA012.CHM::/lansa/l4wusr01_0455.htm

Select/Omit	Type
Mandatory.
Specify	the	operation	that	is	to	be	performed	against	the	field	nominated	in	the
"field"	field.
Default=Range.
Rules
Allowable	values	are	:
RANGE(<low	value>	<high	value>)	which	indicates	that	the	nominated
field	should	be	tested	against	the	range	of	values	<low	value>	to	<high
value>.	The	<low	value>	and	<high	value>	specified	can	be	a	character	literal
in	quotes	(e.g.	'BALMAIN'),	a	numeric	literal	(e.g.		1.54)	or	the	name	of
another	field	in	the	file	definition.	Refer	to	S/O	Range	and	S/O	Range	To.
VALUES(<value1>	<value2>	<value100>)	which	indicates	that	the
nominated	field	should	be	compared	with	the	list	of	values	specified.	Up	to
100	values	can	be	specified	in	the	list	of	values.	The	value	fields	specified	can
be	a	character	literal	in	quotes	(e.g.	'BALMAIN')	or	a	numeric	literal.	Refer	to
S/O	Value.
COMP(<operator>	<value>)	which	indicates	that	the	nominated	field
should	be	compared	using	<operator>	to	the	<value>.	Refer	to	S/O	Operator
and	S/O	Value.
Allowable	values	for	<operator>	are:

																					 EQ Equal	to

	 NE Not	equal	to

	 LT Less	than

	 NL Not	less	than

	 GT Greater	than

	 NG Not	greater	than

	 LE Less	than	or	equal	to

	 GE Greater	than	or	equal	to

					The	value	specified	for	<value>	can	be	a	character	literal	in	quotes	(e.g.
'BALMAIN'),	a	numeric	literal	(e.g.		1.54)	or	the	name	of	another	field	in	the

file	definition.

ALL	which	is	only	ever	used	as	the	last	select/omit	statement	associated	with
a	logical	view/file.	It	indicates	what	is	to	happen	after	all	other	select/omit
statements	have	been	processed.	If	used	with	SELECT	then	all	records	not
meeting	the	previous	select/omit	statements	will	be	selected.	If	used	with
OMIT	then	all	records	not	meeting	the	previous	select	/omit	statements	will
be	omitted.

If	the	ALL	condition	is	NOT	specified	as	the	last	statement	in	a	set	of
select/omit	statements	then	a	default	value	is	assumed.	The	default	value	is
the	reverse	of	the	last	select/	omit	statement	specified.	If	the	last	select/omit
statement	is	SELECT	then	a	default	of	OMIT	ALL	is	assumed	as	the	last
statement.	Likewise	if	the	last	select/omit	statement	is	OMIT	then	a	default
value	of	SELECT	ALL	is	assumed	as	the	last	select/omit	statement.
	3.4.3	Select/Omit	Criterion

Select/Omit	Field	Name
Mandatory.
Specify	the	name	of	the	field	that	is	to	be	used	in	conjunction	with	the
operations(s)	to	evaluate	the	select/omit	expression.
This	field	must	be	specified	if	the	Select/Omit	Type	is	RANGE,	VALUES	or
COMP.
Rules

Field	named	must	be	defined	in	the	file	definition.
For	fields	of	type	Nchar	or	Nvarchar,	and	fields	with	SUNI	attribute,	the	only
valid	comparison	is	EQ	or	NE	*SQLNULL.	Other	Select/Omit	conditions	are
not	supported.
	3.4.3	Select/Omit	Criterion

S/O	Operator
Mandatory.
Specify	the	operator	to	be	used	with	the	nominated	Select/Omit	Field	Name	and
S/O	Value.
This	field	must	be	specified	if	the	Select/Omit	Type	is	Compare.
Rules
Allowable	values	are:

EQ Equal	to

NE Not	equal	to

LT Less	than

NL Not	less	than

GT Greater	than

NGNot	greater	than

LE Less	than	or	equal	to

GE Greater	than	or	equal	to

	

	3.4.3	Select/Omit	Criterion

S/O	Value
Mandatory.
Specify	the	value	that	the	select/omit	filed	should	be	compared	to.
This	field	must	be	specified	if	the	Select/Omit	Type	is	Values	or	Compare.
Rules
Allowable	values	are:
Character	literal	in	quotes	(e.g.	'BALMAIN').
Numeric	literal	(e.g.		1.54).
DateTime	literal	in	quotes.	(e.g.	'2005-05-01	10:00:00')	
DateTime	literals	need	to	be	entered	as	per	the	SUTC	attribute	of	the	field.
If	the	SUTC	attribute	is	enabled,	enter	the	value	as	UTC,	otherwise	enter	the
value	in	local	time.
Name	of	another	field	in	the	file	definition.
	3.4.3	Select/Omit	Criterion

S/O	Range
These	fields	must	be	specified	if	the	Select/Omit	Type	is	Range.
Range	From
Mandatory.
Specify	the	lower	value	that	the	select/omit	filed	should	be	compared	to.
Rules
Allowable	values	are:
Character	literal	in	quotes	(e.g.	'BALMAIN').
Numeric	literal	(e.g.		1.54).
DateTime	literal	in	quotes.	(e.g.	'2005-05-01	10:00:00')	
DateTime	literals	need	to	be	entered	as	per	the	SUTC	attribute	of	the	field.
If	the	SUTC	attribute	is	enabled,	enter	the	value	as	UTC,	otherwise	enter	the
value	in	local	time.
Name	of	another	field	in	the	file	definition.

S/O	Range	To
Mandatory.
Rules
Allowable	values	are:
Character	literal	in	quotes	(e.g.	'BALMAIN').
Numeric	literal	(e.g.		1.54).
DateTime	literal	in	quotes.	(e.g.	'2005-05-01	10:00:00')	
DateTime	literals	need	to	be	entered	as	per	the	SUTC	attribute	of	the	field.
If	the	SUTC	attribute	is	enabled,	enter	the	value	as	UTC.,	otherwise	enter	the
value	in	local	time.
Name	of	another	field	in	the	file	definition.
	3.4.3	Select/Omit	Criterion

3.5	Access	Routes
LANSA	uses	access	routes	to	describe	relationships	between	files	in	a	database.
They	provide	information	about	the	database	map	or	schema	that	can	be	used	by
the	LANSA	development	environment	and	other	products.	Access	routes	also
support	Predetermined	Join	Fields	which	are	a	special	type	of	virtual	field.
3.5.1	Access	Route	Definitions
3.5.2	Predetermined	Join	Field	Definitions

Also	See
Access	Route	Tab	in	the	User	Guide.
Access	Route	Development	in	the	Developer	Guide.
Predetermined	Join	Field	Development	in	the	Developer	Guide.
	3.	Files

its:Lansa012.chm::/lansa/l4wusr04_0375.htm
its:LANSA013.CHM::/lansa/L4wDev04_0040.HTM
its:LANSA013.CHM::/lansa/L4wDev04_0045.HTM

3.5.1	Access	Route	Definitions

Access	Route	Name
Access	Route	Description
Accessed	File
Association	Type

Association	Rule
Documentation	Only
Maximum	Records
Default	Action

Derivation
Key	Fields/Values
Key	Field	Details
Target	Field	Details
Key	Position

Also	See
Access	Route	Tab	in	the	User	Guide.
Access	Route	Development	in	the	Developer	Guide.
	3.5	Access	Routes

its:Lansa012.chm::/lansa/l4wusr04_0375.htm
its:LANSA013.CHM::/lansa/L4wDev04_0040.HTM

Access	Route	Name
Mandatory.
Specify	the	name	that	is	to	be	assigned	to	the	access	route.
This	name	is	used	for	identification	purposes	only.
Rules

The	name	specified	must	be	unique	within	the	current	file	definition.
Maximum	length	is	10	characters.

Tips	&	Techniques
It	is	suggested	that	a	naming	convention	be	developed	for	access	route	names.
For	example,	first	3	letters	may	indicate	current	file	definition,	next	3	indicate
the	name	of	the	file	being	accessed,	etc.
	3.5.1	Access	Route	Definitions

Access	Route	Description
Mandatory.
Specify	the	description	of	this	access	route	to	assist	users	in	identifying	what
information	can	be	obtained	from	the	access	route.
For	example:

Current	File
Definition

File	Accessed	Via	Access
Route

Access	Route	Description

Order	header Order	lines Order	lines	associated	with
order

Order	header Cust	master Full	details	of	order	customer

Cust	master Order	header Orders	associated	with	this
customer

Order	lines Order	header Order	associated	with	this
order	line

	

Rules
Maximum	length	is	40	characters.

Tips	&	Techniques
Access	route	information	can	be	used	by	reporting	tools	such	as	LANSA
Client.	End	users	will	benefit	from	proper	access	route	descriptions.
	3.5.1	Access	Route	Definitions

Accessed	File
Mandatory.
Specify	the	name	of	the	physical	or	logical	file	that	is	to	be	accessed	via	this
access	route.
Rules

The	physical	or	logical	file	specified	must	exist	in	the	repository.

Also	See
Key	Fields/Values
	3.5.1	Access	Route	Definitions

Association	Type
In	conjunction	with	Association	Rule,	Association	Type	identifies	the	nature	of
the	relationship	between	the	current	file	and	the	target	file	as	specified	in	the
Accessed	File	property.	They	allow	a	more	precise	meaning	to	be	ascribed	to	an
Access	route	than	was	previously	possible	with	the	Maximum	Records	and
Default	Action	features,	and	are	used	by	the	Database	Diagram	Viewer	to	better
show	relationships.
There	are	several	possible	values:
Join
Part	Of,	Parent
Child
Whole	Part
Derive	from	Maximum	Records
Default	Action.

Changes	to	Association	Type	and	Rule	may	cause	the	Maximum	Records	and
Default	Action	to	automatically	update.

Association	Rule
In	conjunction	with	Association	Type,	Association	Rule	identifies	the	nature	of
the	relationship	between	the	current	file	and	the	target	file	as	specified	in	the
Accessed	File	property.		They	allow	a	more	precise	meaning	to	be	ascribed	to	an
Access	route	than	was	previously	possible	with	the	Maximum	Records	and
Default	Action	features,	and	are	used	by	the	Database	Diagram	Viewer	to	better
show	relationships.
There	are	three	possible	values:
Optional
Mandatory
Derive	from	Default	Action.

Changes	to	Association	Type	and	Rule	may	cause	the	Maximum	Records	and
Default	Action	to	automatically	update.

Documentation	Only
As	the	name	suggests,	an	Access	Route	flagged	as	Documentation	Only	is
simply	defined	for	the	purposes	of	documenting	a	relationship	between	two
tables	so	that	a	relationship	can	be	displayed	in	the	Database	Diagram	Viewer.
Documentation	Only	Access	Routes	are	not	actionable	in	anyway	and	will	not
be	compiled	in	to	the	OAM.	They	will	not	appear	as	relationships	in	LANSA
Client	and	do	not	support	the	definition	of	Predetermined	Join	Fields	

Maximum	Records
Mandatory.
Specify	the	maximum	number	of	records	that	are	expected	to	be	found	in	the	
Accessed	File	that	have	a	key	matching	the	Key	Fields/Values	specified.
If	the	value	is	One	then	a	"1:1"	relationship	between	the	files	is	established.	If
the	value	is	More	than	one,	then	a	"1:many"	relationship	is	established.	The
relationship	between	the	files	affects	the	method	by	which	screen	formats	are
designed.	It	determines	the	type	of	PJFs	that	can	be	created.	(Refer	to	Access
Routes	and	PJFs	in	the	Developer	Guide.)
Rules
Allowable	values	are:
One
More	than	one

Platform	Considerations
IBM	i:	Range	of	allowed	values	is	1	to	9999.

Also	See
Keep	Last
Key	Fields/Values
Predetermined	Join	Field	Development	in	the	Developer	Guide.
	3.5.1	Access	Route	Definitions

its:LANSA013.CHM::/lansa/L4wDev04_0210.HTM
its:LANSA013.CHM::/lansa/L4wDev04_0045.HTM

Keep	Last
Specify	the	number	of	retrieved	Predetermined	Join	Field	values	to	be	kept	in
memory.
This	value	applies	to	Predetermined	Join	Fields	defined	on	the	access	route
when	the	relationship	is	one	to	one.	(Refer	to	Maximum	Records.)	Each	value
retrieved	from	the	accessed	file	is	stored	in	memory	up	to	the	keep	last	value.
Rules

Range	of	values	is	0	to	999.
A	value	can	only	be	entered	if	the	access	route	relationship	is	one	to	many,
i.e.	the	Maximum	Records	is	set	to	One.

Tips	&	Techniques
This	is	a	very	useful	feature	when	using	Predetermined	Join	Fields	to	retrieve
values	from	small	frequently	used	code	fields	to	reduce	I/Os.
By	storing	values	in	memory,	file	accesses	can	be	reduced	and	performance	is
improved.		If	more	than	the	keep	last	value	are	retrieved,	then	a	file	access	is
simply	performed	and	the	current	values	are	overwritten	starting	from	the	first
value	retrieved.

Also	See
Predetermined	Join	Field	Development	in	the	Developer	Guide.
PJF	Type
	3.5.1	Access	Route	Definitions

its:LANSA013.CHM::/lansa/L4wDev04_0045.HTM

Default	Action
Mandatory.
Specify	the	actions	to	take	if	no	records	can	be	found	in	the	Accessed	File	that
have	a	key	matching	the	Key	Fields/Values	specified.
Default=	Ignore	and	continue	processing	(IGNORE).
Rules
Allowable	values	are:
Abort	and	issue	an	error	message	(ABORT):	The	function	attempting	to
access	the	file	specified	should	abort	(fail)	with	an	error	message	indicating
the	cause	of	the	problem.	This	option	can	be	used	to	continually	verify
database	integrity.	For	instance,	an	access	route	from	an	order	lines	file	to	an
order	header	file	should	always	find	a	record.	An	order	line	without	an
associated	order	header	probably	indicates	database	corruption.
Ignore	and	continue	processing	(IGNORE):	The	function	attempting	to	access
the	file	specified	should	ignore	the	no	records	situation	and	continue	to
process.	This	option	may	be	valid	in	the	reverse	access	path	of	the	case
above.	It	is	perfectly	valid	for	an	order	header	record	to	have	no	associated
order	lines.
Create	a	dummy	record	with	empty	fields	(DUMMY):	The	function
attempting	to	access	the	file	specified	should	create	a	"dummy"	record	when
no	"real"	record(s)	can	be	found.	The	dummy	record	created	will	have	blanks
in	all	alphanumeric	fields	and	zero	(0)	in	all	numeric	fields.	Only	one	dummy
record	will	be	created.
Create	a	dummy	record	and	mark	fields	as	not	available	(N/AVAIL):	The
function	attempting	to	access	the	file	specified	should	create	a	"dummy"
record	when	no	"real"	record(s)	can	be	found.	The	dummy	record	created	will
have	zero	(in	all	numeric	fields,	blanks	in	all	alphanumeric	field	less	than	3
characters	long,	and	as	much	of	the	string	as	will	fit	in	all	other	alphanumeric
fields.	Only	one	"dummy"	record	will	be	created.

Tips	&	Techniques
The	N/AVAIL	option	is	useful	in	situations	where	the	no	record	situation
arises	occasionally.	For	instance	an	access	route	from	an	archived	invoices
file	to	a	customer	mast	file	may	use	this	option.	When	the	name	of	a	customer
associated	with	an	archived	invoice	cannot	be	found	(presumably	because	it
has	been	deleted)	then	it	will	be	displayed	as	N/AVAIL,	rather	than	causing	an

error.
	3.5.1	Access	Route	Definitions

Derivation
Mandatory.
Specify	whether	you	want	predetermined	join	field	values	to	be	derived	before
or	after	the	virtual	field	values	are	derived.
Default=After	virtual	fields.
Rules
Allowable	values	are:
Before	virtual	fields
After	virtual	fields

Tips	&	Techniques
This	option	allows	a	Predetermined	Join	Field	to	be	used	in	deriving	a	virtual
field	or	a	virtual	field	to	be	used	as	a	key	to	a	file	accessed	for	Predetermined
Join	Fields.

Also	See
3.3	Virtual	Fields	in	File
Predetermined	Join	Field	Development	in	the	Developer	Guide.
	3.5.1	Access	Route	Definitions

its:LANSA013.CHM::/lansa/L4wDev04_0045.HTM

Key	Fields/Values
Mandatory.
Specify	the	fields	or	values	that	should	be	used	to	form	the	key	that	will	be	used
to	access	the	record(s)	in	the	Accessed	File.
Up	to	20	key	fields	or	values	can	be	specified.	Key	values	are	checked	for	type
and	length	compatibility.	The	entire	key	list	supplied	is	checked	for
compatibility	with	the	actual	key(s)	of	the	Accessed	File.
Rules
Allowable	values	include:
A	field	that	is	defined	in	the	current	file	definition.
An	alphanumeric	literal	(in	quotes)	such	as	'NSW',	'BALMAIN'
A	numeric	literal	such	as	1,	14.23,	-1.141217.
A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variable	defined	at	your	installation.

Tips	&	Techniques
In	cases	where	a	"1:many"	relationship	is	being	defined,	the	key	list	specified
would	almost	always	be	partial	key	to	the	file.	Refer	to	Maximum	Records.
In	a	1:1	relationship,	it	may	be	valid	to	only	supply	a	partial	key.	However,	if
the	warning	message	is	issued,	check	what	has	just	been	defined.
It	should	be	noted	that	the	access	route	facility	is	provided	as	an	aid	to	user
traversal	of	database	structures.	LANSA	RDML	does	not	use	access	routes	in
any	way	nor	does	it	restrict	database	access	to	pre-defined	access	routes.

Also	See
Key	Position
	3.5.1	Access	Route	Definitions

Key	Field	Details
Display	Only.
The	fields	details	of	the	specified	Key	Fields/Values	will	be	displayed	including:
Description
Type
Length
Decimals

You	can	review	this	information	to	confirm	compatibility	with	the	Target	Field
Details	of	the	accessed	file.

Also	See
Key	Fields/Values
	3.5.1	Access	Route	Definitions

Target	Field	Details
Display	Only.
The	fields	details	of	the	target	field	in	the	accessed	file	will	be	displayed
including:
Description
Type
Length
Decimals

You	can	review	this	information	to	confirm	compatibility	with	the	Key
Fields/Values		of	the	accessed	file.

Also	See
Key	Fields/Values
	3.5.1	Access	Route	Definitions

Key	Position
Mandatory.
Specify	the	sequence	of	the	entered	key	field/value.
Rules

Sequence	numbers	must	be	consecutive.
The	sequence	number	is	automatically	assigned	when	a	key	field/value	is
added.	Sequence	number	is	updated	when	the	order	of	the	key	is	updated	in
the	list	of	keys.

Also	See
Key	Fields/Values
	3.5.1	Access	Route	Definitions

3.5.2	Predetermined	Join	Field	Definitions
PJF	Field
PJF	Field	Details
PJF	Type
PJF	Source	Field

Also	See
Predetermined	Join	Field	Development	in	the	Developer	Guide.
	3.5	Access	Routes

its:LANSA013.CHM::/lansa/L4wDev04_0045.HTM

PJF	Field
Mandatory.
Specify	the	name	of	the	predetermined	join	field.
No	check	is	made	on	the	Predetermined	Join	Field's	suitability	to	hold	the
required	information.
Rules

It	must	exist	in	the	repository.
It	must	not	already	exist	as	a	Predetermined	Join,	Virtual	or	Real	field	on	the
file.
It	must	be	of	the	type	allowed	by	PJF	Type.	Field	type	must	be	numeric	if	the
PJF	Type	is	Total,	Maximum,	Minimum,	Average	or	Count.
It	must	be	a	suitable	type	to	match	the	PJF	Source	Field.

Tips	&	Techniques
The	Predetermined	Join	Field	may	have	the	same	name	as	the	PJF	Source
Field	as	long	as	it	complies	with	the	defined	rules.
It	is	your	responsibility	to	check	that	Predetermined	Join	Field	is	suitable	to
hold	the	required	information.	For	example,	ensure	fields	that	hold	counts	or
totals	are	large	enough.
	3.5.2	Predetermined	Join	Field	Definitions

PJF	Field	Details
Display	Only.
The	fields	details	of	the	specified	PJF	Field	or	PJF	Source	Field	will	be
displayed	including:
Description
Type
Length
Decimals

You	can	review	this	information	to	confirm	the	field	details.
	3.5.2	Predetermined	Join	Field	Definitions

PJF	Type
Mandatory.
Specify	the	type	of	predetermined	joined	field	to	be	assigned	to	the	PJF	Field.
The	PJF	type	is	checked	against	the	Maximum	Records	specified	for	the	access
route.
Rules

Fields	with	value	of	*SQLNULL	are	ignored.
Allowable	values	are:

Lookup Specifies	that	the	predetermined	join	field	will	hold	the	value
retrieved	from	the	selected	PJF	Source	Field	in	the	accessed	file.
This	option	is	only	available	when	there	is	a	1:1	relationship	between
the	files.	Refer	to	Maximum	Records	and	Keep	Last.
The	predetermined	join	field	must	be	of	the	same	type	as	the	selected
field.

Total Specifies	that	the	predetermined	join	field	is	to	hold	the	total	of	the
selected	PJF	Source	Field	retrieved	using	the	access	route	key.
This	option	is	only	available	when	there	is	a	1:many	relationship
between	the	files	and	the	selected	field	is	numeric.	Refer	to
Maximum	Records.

Maximum Specifies	that	the	predetermined	join	field	is	to	hold	the	highest	value
of	the	PJF	Source	Field	selected	field	in	records	retrieved	using	the
access	route	key.
This	option	is	only	available	when	there	is	a	1:many	relationship
between	the	files	and	the	selected	field	is	numeric.	Refer	to
Maximum	Records.

Minimum Specifies	that	the	predetermined	join	field	is	to	hold	the	lowest	value
of	the	selected	PJF	Source	Field	in	records	retrieved	using	the	access
route	key.
This	option	is	only	available	when	there	is	a	1:many	relationship
between	the	files	and	the	selected	field	is	numeric.	Refer	to
Maximum	Records.

Average Specifies	that	the	predetermined	join	field	is	to	hold	the	average

value	of	the	selected	PJF	Source	Field	in	records	retrieved	using	the
access	route	key.
This	option	is	only	available	when	there	is	a	1:many	relationship
between	the	files	and	the	selected	field	is	numeric.	Refer	to
Maximum	Records.

Count Specifies	that	the	predetermined	join	field	is	to	hold	the	count	of	the
number	of	fields	retrieved	using	the	access	route	key.
This	option	is	only	available	when	there	is	a	1:many	relationship
between	the	files.	Refer	to	Maximum	Records.

	

Also	See
PJF	Source	Field
	3.5.2	Predetermined	Join	Field	Definitions

PJF	Source	Field
Mandatory.
Specify	the	source	field	in	the	Accessed	File	that	is	to	be	used	with	the
operation	specified	by	the	PJF	Type.
No	check	is	made	on	the	Predetermined	Join	Field's	suitability	to	hold	the
required	information.
Rules

Field	must	exist	in	the	nominated	Accessed	File	of	the	access	route.
Field	type	must	be	numeric	if	the	PJF	Type	is	Total,	Maximum,	Minimum,
Average.

Tips	&	Techniques
It	is	your	responsibility	to	check	that	the	PJF	Field	is	suitable	to	hold	the
required	information.

Also	See
PJF	Field
3.5.1	Access	Route	Definitions
	3.5.2	Predetermined	Join	Field	Definitions

3.6	File	Attributes
When	a	file	is	defined	in	the	Repository,	some	operating	system	specific	file
"attributes"	that	influence	how	the	file	is	to	be	set	up	and	used	can	be	specified.
Some	of	the	attributes	influence:
How	big	the	file	is	allowed	to	be
When	the	file	is	to	be	recovered	after	a	system	failure
Whether	space	should	be	allocated	for	the	file	when	it	is	created
Whether	or	not	the	file	is	to	be	under	commitment	control

Refer	to:

3.6.1	File	Library
3.6.2	Record	Format
Name
3.6.3	I/O	Module	Library
3.6.4	File	Uses	SQL	On
IBM	i
3.6.5	Alternate	Collating
Table	(ALTSEQ)
3.6.6	Enable	Files	for
RDMLX
3.6.7	Share
3.6.8	Secure

3.6.9	Strip	Debug
3.6.10	Suppress
IOM0034	Message
3.6.11	Ignore
Decimal	Errors
3.6.12	IOM	Required
3.6.13	Create	Batch
Control
3.6.14	IBM	i	High
Speed	Table
3.6.15	Auto	RRN
Creation
3.6.16	Create	RRNO
Column

3.6.17	Convert	Special
Characters	in	Field	Names
3.6.18	Commitment	Control
3.6.19	Auto	Commit
3.6.20	CRTPF	and	CHGPF
Parameter
3.6.21	Readonly	Access
3.6.22	Database	File	Trigger
3.6.23	File	Description

	
	3.	Files

File	Attributes	Tab	in	the	User	Guide.

its:LANSA012.CHM::/lansa/l4wusr01_0475.htm

3.6.1	File	Library
Mandatory.
Specify	the	library	in	which	the	new	file	is	to	reside.
This	field	is	pre-filled	with	the	partition	default	file	library	name.
Rules

Library	name	must	conform	to	object	naming	standards	for	the	operating
system.
When	the	library	name	is	combined	with	the	file	name	it	must	form	a	unique
name	for	the	file.

Warnings
The	library	specified	must	exist	and	you	must	be	authorized	to	use	it.	LANSA
does	not	check	whether	the	library	specified	exists	or	not.

Platform	Considerations
IBM	i:	Avoid	creating	files	that	reside	in	your	IBM	i	"current"	library.

	
	3.6	File	Attributes

3.6.2	Record	Format	Name
Mandatory.
Specify	the	record	format	name	to	be	assigned	to	the	physical	file	record.	When
the	file	definition	is	first	set	up,	this	value	is	initialized	to	be	the	same	as	the	file
name.
Rules

The	name	specified	must	be	no	more	than	10	characters	long.
Name	specified	must	conform	to	IBM	i	record	format	naming	conventions.
First	character	must	be	A	to	Z.	Do	not	use		#	as	first	character.	Subsequent
characters	should	be	A	to	Z,	0	to	9.	Characters	$	and	#	are	allowed	but	not
recommended.

Tips	&	Techniques
It	is	recommended	that	no	more	than	8	characters	are	used.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.

	
	3.6	File	Attributes

3.6.3	I/O	Module	Library
Mandatory.
Specify	in	which	library	the	file's	I/O	module	will	reside.
Rules
Allowable	values	are:
Same	library	as	the	file	(F)
Partition	module	library	(M)
	3.6	File	Attributes

3.6.4	File	Uses	SQL	On	IBM	i
Read	only.
For	LANSA	Files,	Yes	indicates	that	the	IBM	i	file	was	created	with	SQL	the
last	time	it	was	built	(rather	than	DDS	and	CRTPF).	This	value	is	only	set	on
Checkout	from	IBM	i	(or	when	a	LANSA	Import	is	done).
LANSA	files	are	built	with	SQL	for	a	number	of	reasons,	for	example,	if	they
include	a	BLOB	or	CLOB	field.	You	can	force	all	files	to	be	built	with	LANSA
SQL.	For	details,	see	the	option	Always	Build	Using	SQL	(IBM	i)	in	System
Definitions	in	the	Administrators	Guide.
For	IBM	i	Other	Files,	Yes	indicates	that	SQL	must	be	used	to	access	the	file	at
execution	time.	This	value	is	set	during	Load	Other	File.	Refer	to	Load	Other
File	for	further	information.

Also	see
Always	build	using	SQL	in	Field	and	File	Defaults	in	the	LANSA	for	i	User
Guide.
	3.6	File	Attributes

its:lansa011.CHM::/lansa/l4wADM05_0965.HTM
its:LANSA010.chm::/lansa/ladugub7_0030.htm

3.6.5	Alternate	Collating	Table	(ALTSEQ)
Specify	the	name	of	an	Alternate	Collating	Table	to	be	used	when	sequencing
the	records	for	retrieval	on	a	Keyed	file.
Default	=	blank	(none).
Rules

Table	name	must	conform	to	object	naming	standards	for	the	operating
system.

Warnings
At	File	Creation	time,	you	must	have	operational	rights	to	the	Alternate
Collating	Table.	Alternate	Collating	sequences	are	not	valid	for	key	fields
with	a	data	type	of	packed	decimal.	Causes	zoned	key	fields	to	default	to
unsigned	sequence.

Tips	&	Techniques
The	Alternate	Collating	Table	name	if	specified	is	not	validated	that	it
actually	exists.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.
IBM	i:	When	attempting	to	use	any	file	that	has	been	created	with	an
Alternate	Collating	Table,	the	library	list	is	used	to	locate	the	Table	file.
	3.6	File	Attributes

3.6.6	Enable	Files	for	RDMLX
To	enable	a	file	for	RDMLX,	open	the	file	in	the	Visual	LANSA	Editor	and
choose	the	File	Attributes	tab.	Select	the	Enabled	for	RDMLX	option.
This	option	is	only	available	in	an	RDMLX	Enabled	Partition.
The	default	value	for	this	option	is	controlled	in	the	RDMLX	Partition	Settings
described	in	the	Administrator	Guide.
Tips	&	Techniques

If	you	change	this	file	option,	the	file	definition	must	meet	all	requirements
before	it	can	be	saved.
Performance	characteristics	of	file	operations	may	change	and	should	be
properly	evaluated	once	the	conversion	to	RDMLX	has	been	made.
It	is	recommended	that	you	review	the	RDML	and	RDMLX	Partition
Concepts	information	in	the	Administrator	Guide.

Implications:
RDMLX	files	cannot	be	used	by	LANSA	RDML	Object	Types.	RDML	Files
can	be	used	by	RDMLX	objects.
You	cannot	import	RDMLX	objects	into	RDML	partitions

Warning
If	you	change	an	RDMLX	file	back	to	an	RDML	file	but	you	must	remove	all
RDMLX	features	before	you	save	the	file.
All	editing	must	be	performed	using	Visual	LANSA.	RDMLX	Files	cannot
be	edited	from	LANSA	for	i.
	3.6	File	Attributes

its:Lansa011.chm::/lansa/l4wadm05_0200.htm
its:Lansa011.chm::/lansa/l4wpar01_0020.htm

3.6.7	Share
Specify	whether	or	not	this	file	(and	any	of	its	associated	logical	views)	should
be	opened	with	the	option	to	share	an	open	data	path.
Note	that	this	value	only	affects	the	way	that	the	I/O	module	(and	hence	RDML
applications)	open	the	file	at	run	time.	To	actually	get	the	physical	file	and
logical	files	defined	to	the	operating	system	as	SHARE(*YES)	or
SHARE(*NO)	for	the	benefit	of	external	application	programs,	refer	to	the
3.6.20	CRTPF	and	CHGPF	Parameter.
Default	=	NO	(unchecked/not	selected).
Warnings

This	option	relates	to	the	opening	of	the	file's	open	data	path	when	used	in	I/O
modules	and	*DBOPTIMISE	programs.
This	option	does	not	relate	to	the	creation	or	changing	of	the	database	file
attributes.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.
IBM	i:	Despite	the	fact	that	IBM	recommends	data	path	sharing	as	one	of	the
fundamental	design	considerations	for	efficient	applications,	the	default	for
LANSA	created	files	is	NO	(UNCHECKED	or	unselected).	That	is,	do	not
share	open	data	paths.	The	reason	for	this	is	that	the	I/O	module	concept
implicitly	emulates	an	open	data	path,	because	one	active	I/O	module	is
shared	by	all	RDML	functions	(within	a	job)	that	are	accessing	a	file.
IBM	i:	Generally	use	option	NO	(UNCHECKED/not	selected).	That	is	do	not
share	an	open	data	path,	except	in	the	special	situation	where	the	file	is	only
being	used	as	a	'joined	record	format'	for	data	that	is	dynamically	created	by
the	IBM	OPNQRYF	(open	query	file)	command.

	
	3.6	File	Attributes

3.6.8	Secure
Specify	whether	or	not	this	file	(and	any	of	its	associated	logical	views)	should
be	opened	with	the	option	to	be	secured	from	file	override	commands	already
issued	by	higher	level	program(s).
Default	=	YES	(checked/selected).
Warnings

The	default	for	this	field	is	YES	(checked/selected).	Do	not	change	this	value
unless	you	understand	what	it	does	and	how	it	is	used.	Refer	to	the
appropriate	IBM	supplied	manual(s)	for	more	information	about	the	SECURE
parameter	on	file	override	commands	and	the	effects	of	using	it.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.

	
	3.6	File	Attributes

3.6.9	Strip	Debug
Specify	whether	or	not	the	I/O	module	associated	with	the	file	definition	should
have	its	associated	debug	symbolic	information	removed.
Default	=	YES	(checked/selected).
Tips	&	Techniques

This	information	is	only	required	when	you	are	using	the	IBM	supplied
debugging	aids	with	the	compiled	RPG	I/O	module.
Since	these	situations	are	relatively	rare,	the	default	for	this	field	is	YES
(debugging	information	should	be	stripped).	By	using	this	option,	the	size	of
the	compiled	I/O	module	will	typically	be	reduced	by	40	to	60%.	This	size
reduction	has	no	bearing	on	execution	speed,	just	on	the	size	of	the	compiled
object.

Platform	Considerations
IBM	i:	To	enable	I/O	modules	to	be	debugged,	or	in	environments	where	they
will	be	ported	from	CISC	IBM	i	to	RISC	IBM	i,	use	option	NO	(debug
information	should	not	be	stripped).

	
	3.6	File	Attributes

3.6.10	Suppress	IOM0034	Message
Specify	whether	or	not	to	suppress	the	IOM0034	Message.
When	an	I/O	module	is	used	to	access	a	file	that	has	never	been	directly	defined
to	LANSA,	it	issues	message	IOM0034	indicating	that	no	LANSA	level
security	information	exists	for	the	file.
To	suppress	this	message	specify	YES	(checked/selected).	To	allow	this
message	to	be	issued,	specify	NO	(UNCHECKED	or	not	selected).	That	is,
message	is	not	to	be	suppressed..
Default	=	NO	(unchecked/not	selected).
Platform	Considerations

IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.

	
	3.6	File	Attributes

3.6.11	Ignore	Decimal	Errors
Specify	whether	or	not	the	I/O	module	associated	with	the	file	definition	should
be	compiled	with	the	IGNDECERR	(ignore	decimal	data	error)	option.
Default	=	NO	(unchecked/not	selected).
Warnings

While	the	IGNDECERR	option	is	available	in	LANSA,	the	IBM	warnings
about	using	this	option	still	apply.	Should	using	this	option	cause	problems
your	product	vendor	may	assist	you	in	correcting	them,	but	obviously	cannot
accept	any	responsibility	for	the	problem	or	its	cause.
Do	not	use	this	option	unless	absolutely	necessary.	Refer	to	the	IBM	i
CRTRPGPGM	command	for	more	details	of	the	IBM	warnings	and
disclaimer	before	attempting	to	use	this	option.

Tips	&	Techniques
The	default	is	NO	(not	checked/not	selected).	The	use	of	YES
(checked/selected)	is	not	recommended.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.

	
	3.6	File	Attributes

3.6.12	IOM	Required
Specify	whether	or	not	an	I/O	module	is	required	for	this	file	and	its	associated
logical	views.
To	effectively	use	NO	(not	checked/not	selected),	you	must	use	the	FUNCTION
RDML	command	with	the	OPTIONS(*DBOPTIMISE)	keyword	in	every
RDML	function	that	attempts	to	access	this	file	or	any	of	its	associated	logical
views.	If	this	command	is	omitted	from	the	RDML	function,	it	will	still	compile
correctly,	but	at	execution	time,	it	will	fail	because	it	places	a	call	to	the	non-
existent	I/O	module.
Default	=	YES	(checked/selected).
Warnings

Note	that	if	this	value	is	changed	from	YES(checked/selected)	to	NO
(unchecked/not	selected),	and	the	resultant	change	made	operational,	any
existing	I/O	module	will	be	automatically	deleted.	After	this	has	been	done,
all	existing	RDML	functions	that	access	this	file	without	using
*DBOPTIMISE	will	fail	when	used.	This	is	because	they	are	attempting	to
resolve	to	a	now	non-existent	I/O	module.	In	such	cases,	add	the
*DBOPTIMISE	option	to	the	RDML	functions	involved	and	recompile	them.

Tips	&	Techniques
It	is	strongly	recommended	that	you	do	not	use	NO	(not	checked/not	selected)
until	you	have	had	some	experience	with	the	LANSA	product	and	are	familiar
with	the	concept	and	workings	of	I/O	modules.
Refer	to	the	FUNCTION	command	and	Using	*DBOPTIMIZE	/
*DBOPTIMIZE_Batch	in	the	LANSA	for	i	User	Guide	for	more	details	of
how	to	set	up	and	use	a	system	without	using	I/O	modules.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.

	
	3.6	File	Attributes

its:LANSA010.CHM::/lansa/ugubc_c10070.htm

3.6.13	Create	Batch	Control
Specify	whether	or	not	other	database	files	that	perform	batch	control	totaling
against	this	file	should	be	allowed	to	automatically	create	missing	"batch"
records	in	this	file.
NO,	indicates	that	when	a	batch	control	record	cannot	be	found	in	this	file,	the
other	file	operation	should	fail	with	error	message	IOM0032.
YES,	indicates	that	when	a	batch	control	record	cannot	be	found	in	this	file,	the
other	file's	I/O	operation	is	allowed	to	automatically	create	one.	The	other	file's
I/O	operation	is	modified	to	create	the	missing	batch	control	record	in	this	file
like	this:
All	fields	in	this	file's	record	format	are	set	to	blanks	(alphanumeric	fields)	or
zero	(numeric	fields).
The	field(s)	or	value(s)	from	the	other	file	that	were	used	as	key(s)	to	access
the	batch	control	record	in	this	file	are	mapped	into	their	corresponding
field(s)	in	this	file.	This	mapping	is	by	key	matching,	not	by	name.
The	new	record	thus	assembled	is	inserted	into	this	file.

Default	=	NO	(unchecked/not	selected).
Warnings

Before	attempting	to	use	this	option	ensure	that	you	understand	the
ramifications	of	using	it	and	then	thoroughly	test	all	resulting	applications.
When	changing	this	option,	it	is	necessary	to	make	the	amendment	to	this	file
operational.	Additionally,	all	I/O	modules	for	other	files	that	perform	batch
control	totaling	against	this	file	must	also	be	(re)compiled.

	
	3.6	File	Attributes

3.6.14	IBM	i	High	Speed	Table
Specify	whether	this	file	definition	and	associated	logical	views	should	be
mirrored	into	a	high	speed	IBM	i	User	Index	to	allow	more	rapid	access	in	"read
only"	situations.
The	following	points	provide	basic	information	about	the	IBM	i	high	speed
table	facility.	They	should	all	be	read	and	understood	before	this	facility	is	used
in	any	way:
A	high	speed	table	is	not	a	"thing"	in	itself.	A	high	speed	table	is	a	normal
LANSA	file	definition	that	has	its	"high	speed"	flag	set	to	YES.
A	LANSA	file	definition	flagged	as	high	speed	table	is	actually	implemented
as	a	normal	database	file.	All	functions	which	insert,	update	or	delete	data	in
the	table	actually	access	the	normal	database	file.	
This	normal	database	file	actually	contains	the	data,	so	there	is	no	difference
in	the	risk	of	data	loss	between	a	normal	file	definition	and	a	high	speed	table.
This	also	means	that	you	can,	at	any	time,	set	the	high	speed	table	flag	back
to	NO	and	revert	to	a	normal	database	file	again	without	any	loss	of	definition
or	data.	
The	difference	between	a	normal	file	and	a	high	speed	table	is	that	a	high
speed	table	uses	an	extra	object	(over	and	above	the	normal	database	file).
This	object	is	called	an	IBM	i	"User	Index"	and	it	contains	a	duplication	or
"mirror"	of	the	data	in	the	associated	database	file	and	its	logical	views.	
Functions	that	only	read	the	file	actually	access	the	"mirror"	data	in	the	user
index.	Such	a	method	of	access	has	some	strong	advantages:

It	is	very	fast.
There	is	no	open	or	close	overhead.
There	is	very	little	of	the	normal	space	(PAG)	overhead	associated	with
having	a	normal	database	file	open.

In	a	traditional	commercial	application	that	had,	say,	40	database	files	open,
there	is	a	significant	overhead	in	space	and	time	to	open	and	keep	open	the	40
files.
However,	if	20	of	these	files	were	implemented	as	high	speed	tables,	then	the
space	and	time	overheads	would	be	reduced	by	a	factor	of	approximately	50%.
This	would	probably	significantly	enhance	the	performance	of	this	application.
The	high	speed	table	index	is	an	IBM	i	"platform	specific"	option.	On	other
platforms	the	"high	speed	table"	flag	may	be	ignored	and	the	file	would	be
implemented	just	like	any	other	file.

This	may	be	a	design	consideration.	Do	not	use	the	very	high	speed	of	IBM	i
User	Indexes	to	"over-engineer"	an	application	to	the	point	that	it	will	not	be
able	to	function	on	other	platforms	using	normal	database	management
facilities.	Details	of	the	IBM	i	User	Index	facility	and	its	use	can	be	obtained
from	the	IBM	i	Information	Center.	It	is	possible	for	existing	3GL	based
application	programs	to	also	access	the	high	speed	tables.
Default	=	NO	(unchecked/not	selected).
Usage	Rules
To	be	valid	as	a	high	speed	table	a	file	definition	must	conform	to	the	following
rules.	Most	of	these	things	are	checked	during	the	"make	operational"	phase	of
creating/changing	a	file.	If	a	rule	is	violated	the	make	operational	will	fail	with
appropriate	error	message(s).
These	rules	apply	to	the	basic	physical	file	definition	and	all	logic	views	defined
over	it:
No	form	of	alternate	collating	sequence	is	supported.	The	IBM	i	User	Index
facility	only	supports	simple	binary	collation.	
From	"SC21-8226",	the	manual	that	elaborates	upon	access	to	an	IBM	i	User
(or	Independent)	Index:
"Each	entry	is	inserted	into	the	index	at	the	appropriate	location	based	on	the
binary	value	of	the	argument.	No	other	collating	sequence	is	supported."
All	key	fields	must	be	ascending,	unsigned	values.
When	a	file	with	date,	time	or	timestamp	fields	in	its	key	list	is	mirrored	in	a
high	speed	table,	a	LANSA	function	with	read-only	access	to	the	file	will	not
use	the	I/O	module.	The	date,	time	or	timestamp	field	is	treated	as	an
alphanumeric	field	in	the	high	speed	table.	Therefore	values	must	be	entered
in	full	(for	example,	as	1999-01-02	not	as	1999-1-2)	when	fetching	a	record.
Also,	if	an	invalid	value	is	entered,	the	LANSA	function	will	not	check	if	it	is
a	valid	date,	time	or	timestamp,	but	just	return	a	not-found	status.
The	table	can	have	no	more	than	99	fields.
The	maximum	table	entry	record	length	depends	on	the	system	data	area
DC@OSVEROP.	If	option	*HSTABEXTEND	has	been	inserted,	the
maximum	entry	record	length	is	1988	bytes	(this	is	an	OS400	limit)	and	a
maximum	key	length	of	108	bytes	(this	is	a	LANSA	limit	for	storage	and
performance	reasons).	The	key	is	included	in	the	1988	record	length.	If	option
*HSTABEXTEND	is	not	in	the	system	data	area,	the	table	entry	record	length
cannot	exceed	108	bytes.	WARNING	entry	record	lengths	greater	than	108

bytes	cannot	be	saved	to	or	restored	from	an	OS400	release	prior	to	V2R2M0.
Note	for	packed	fields	their	decimal	length	is	counted,	rather	than	their	byte
length.	For	more	information	refer	to
Allow	extended	files	to	be	added	to	HST	in	Compile	and	Edit	Settings.
The	base	physical	file	must	have	one	or	more	primary	key	fields.
The	concepts	of	file	members,	run	time	library	list	changes	and	any	form	of
file	override	or	rename	are	NOT	supported	in	any	way	in	the	high	speed	table
execution	environment.	There	is	one	high	speed	table	index	per	LANSA
partition.	When	an	application	is	invoked	that	needs	to	access	the	index,	it
uses	the	single	index	associated	with	the	current	partition.
No	select	omit	logic	can	be	specified.
No	batch	control	logic	can	be	specified.
No	form	of	open,	read	or	close	trigger	can	be	specified	for	any	field	in	the
file,	either	at	the	field	or	file	level.
No	virtual	fields	or	logic	(code)	can	be	defined.
No	read	security	will	be	actioned	for	the	table.	This	means	that	a	function
cannot	be	stopped	from	reading	the	content	of	the	high	speed	table.	However,
they	can	be	stopped	from	modifying	it	in	the	normal	manner	(because	they
are	actually	modifying	the	normal	database	file,	not	the	high	speed	index).	
This	restriction	exists	to	ensure	maximum	performance	in	read	only
applications.	Applying	read	security	would	severely	impact	the	performance
of	tables	where	only	a	few	accesses	are	made.	
In	fact	the	security	checking	time	would	be	far	longer	than	the	actual	time
taken	to	access	many	table	entries.
Functions	that	modify	(INSERT,	UPDATE	or	DELETE)	files	that	are	tagged
as	high	speed	tables	cannot	use	*DBOPTIMISE,	*DBOPTIMISE_BATCH	or
any	other	option	that	infers	these	options.	
This	restriction	exists	because	the	special	logic	required	to	"mirror"	the	real
file	data	into	the	high	speed	index	only	exists	in	the	associated	I/O	module.
Thus	all	"table	modifiers"	must	be	forced	to	use	the	appropriate	I/O	module.
Functions	that	only	read	from	a	high	speed	table	may	use	*DBOPTIMISE	or
*DBOPTIMISE_BATCH	in	the	normal	manner.
When	the	definition	(i.e.:	layout)	of	a	high	speed	table	is	changed	all
functions	and	I/O	module	validation	rules	that	read	from	the	high	speed	table
rather	than	the	real	file	need	to	be	recompiled.	Again,	this	restriction	exists	to
provide	maximum	performance.	

its:Lansa010.chm::/lansa/ladugub7_0035.htm

By	definition	tables	are	largely	static	in	design	and	content,	so	this	should	not
be	a	problem.	If	it	proves	to	be,	remove	the	high	speed	table	option	from	the
definition	of	the	file.
No	form	of	locking	is	supported	in	applications	that	only	read	from	high
speed	tables.	If	you	need	record	locking	in	a	"read	only"	function,	then	your
file	is	not	a	good	candidate	for	the	high	speed	table	facility.
The	use	of	any	of	the	following	facilities	with	high	speed	tables	is	not
checked,	but	they	are	not	supported	in	any	form	within	functions	that	require
"read	only"	access	to	high	speed	tables:
The	use	of	the	OPEN	command	with	the	*OPNQRYF	option.
The	use	of	the	*BLOCKnnn	option	in	any	form.
The	use	of	SELECT_SQL	in	any	form.
The	use	of	WITH_RRN,	RETURN_RRN	or	any	form	of	relative	record
addressing.
The	ISS_MSG	parameter	in	any	form.

In	summary,	the	high	speed	table	facility	is	designed	for	use	with	"plain	vanilla"
lookup	and	decode	style	files	only.	Files	that	are	to	be	used	in	any	other	"fancy"
way	at	all	should	not	be	implemented	as	high	speed	tables.
Tips	&	Techniques
Some	common	questions	about	high	speed	tables:
Q:	What	type	of	files	are	candidates	to	be	high	speed	tables?
Broadly	speaking,	database	files	that	have	the	following	characteristics	are	good
candidates	for	high	speed	table	implementations:
The	data	content	is	widely	used	for	decode	(e.g.:	state	code	'CA'	is	printed	as
description	"CALIFORNIA")	and	validation	(e.g.:	is	state	code	'CA'	valid?).
The	data	content	is	relatively	stable.	(e.g.:	How	often	is	a	new	state	acquired).
Generally	this	means	files	that	are	not	subject	to	continual	and	random
change	on	a	daily	basis.	A	"product"	file	would	be	a	good	candidate	if	it	only
contained	descriptive	details	because	products	are	not	created/changed	often.
However	if	it	contained	stock	levels	it	would	not	be	a	good	candidate	because
stock	levels	are	continually	changed.
There	are	usually	a	small	number	of	records	in	the	file	(say,	for	example,
5000	or	less).
There	is	usually	only	one	application	that	"maintains"	the	file,	and	it	is	not
used	often	(say,	once	per	day	or	less	often).

The	vast	bulk	of	applications	only	"read"	from	the	file	for	decode	and
validation	purposes.

Q:	Where	is	the	high	speed	table	data	kept?
A	LANSA	file	definition	flagged	as	a	high	speed	table	is	set	up	just	like	any
other	file.	The	actual	file	data	is	stored	and	maintained	in	this	normal	file.
However,	the	data	is	also	mirrored	into	a	"read	only"	high	speed	index	to	allow
very	fast	access	from	"read	only"	applications.
The	high	speed	index	is	actually	an	IBM	i	User	Index	(object	type	*USRIDX).
It	is	automatically	created	in,	and	must	always	remain	in,	the	module	(or
program)	library	of	the	current	partition.	You	do	not	have	to	create	this	index,
but	you	may	choose	to	periodically	delete	and	rebuild	it.	See	the	following
points	for	an	example	of	this.	It	is	named	DC@TBLIDX.
Q:	Do	I	need	to	backup	the	high	speed	index?
Not	really.	Since	each	individual	table	has	an	associated	data	real	file	containing
the	"real"	data,	then	you	can	actually	re-create	the	high	speed	index	for	all	tables
in	just	a	few	minutes	by	using	the	built	in	function	REBUILD_TABLE_INDEX.
However,	a	synchronized	backup	of	the	index	and	all	the	associated	database
files	containing	the	"real"	data	may	simplify	and	speed	up	your	restore
procedures,	should	they	need	to	be	invoked.
Q:	When	is	the	high	speed	index	accessed?
At	various	points	the	LANSA	code	translators	may	generate	code	to	access
database	files.	When	this	is	done	and	the	file	involved	is	a	high	speed	table,	then
the	high	speed	index	will	actually	be	accessed	instead	of	the	real	file	in	the
following	situations	:
In	RDML	functions	that	only	"read"	from	the	file	via	CHECK_FOR,
FILECHECK,	FETCH	or	SELECT	commands.	When	an	RDML	function	is
compiled	it	is	checked	for	direct	access	to	a	high	speed	table.	If	all	accesses	to
all	the	high	speed	tables	used	in	the	function	are	"read	only"	then	the	I/O	will
be	directed	to	the	high	speed	table	rather	than	to	the	real	database	file.
In	inter	file	validation	checks.	I/O	modules	or	*DBOPTIMISE	generated	code
that	needs	to	lookup	a	file	entry	as	the	result	of	a	validation	check	will	always
look	in	the	high	speed	index	rather	than	the	real	file.

Q:	Can	I	use	*DBOPTIMISE/*DBOPTIMIZE	with	high	speed	tables?
Yes	you	can	in	all	situations	except	where	the	function	updates	a	high	speed
table.	Functions	that	update	a	high	speed	table	must	do	all	their	I/O	to	the	table

via	the	associated	I/O	module.	This	ensures	that	real	data	file	and	the	mirrored
high	speed	index	are	updated	together.
Q:	When	is	the	high	speed	index	updated?
When	the	I/O	module	for	a	file	that	is	flagged	as	a	high	speed	table	is	created
extra	code	is	added	to	it	to	count	the	number	of	inserts,	updates	and	deletes
performed	to	the	file.
When	the	file	is	being	closed	this	count	is	examined,	and	if	greater	than	0,	all
existing	entries	for	the	file	are	erased	from	the	high	speed	index,	then	the	real
file	(and	its	views)	are	read	from	end	to	end	to	insert	new	entries	into	the	high
speed	index.
This	architecture	has	some	impacts	on	the	use	of	high	speed	tables:
The	file	and	the	mirror	index	are	not	actually	maintained	simultaneously.
When	the	file	is	being	closed	the	existing	mirrored	index	entries	are	erased
and	then	recreated	from	the	updated	version	of	the	file.
The	file	and	all	its	views	are	maintained	as	separate	high	speed	index	data.
This	means	that	a	table	with	4	views	actually	uses	5	times	the	index	space	of
the	source	table.	One	for	the	table	and	one	for	each	of	the	views.
Contention	may	occur	if	multiple	users	attempt	to	update	a	file	that	has	a	high
speed	index	mirror	simultaneously.	This	problem	is	easily	overcome	by
ensuring	that	applications	which	update	high	speed	tables	are	restricted	to
single	user	access.	
There	are	a	variety	of	simple	methods	that	may	be	used	to	restrict	a	function
to	single	user	access.	Contact	your	product	vendor	if	you	require	assistance	in
designing	such	an	application.

Q:	Can	the	"real"	file	and	the	index	get	out	of	synchronization?
From	the	previous	points	it	can	be	seen	that	it	is	possible	for	a	file	and	its
mirrored	high	speed	index	to	get	out	of	synchronization.	For	example,	a
function	may	insert	3	new	entries	to	a	table	and	then	fail.	At	this	point	the	new
entries	are	in	the	real	file	but	they	are	not	reflected	in	the	high	speed	index.
Q:	How	can	the	lack	of	synchronization	be	corrected?
If	a	file	and	its	high	speed	index	get	out	of	synchronization	then	they	may	be
resynchronized	by:
Doing	a	"dummy"	update	to	the	file.	The	associated	I/O	module	will	then
rebuild	the	index	to	reflect	the	updated	file	thus	synchronizing	the	file	and
index	again.

Use	the	built	in	function	REBUILD_FILE_INDEX	to	manually	trigger	the
I/O	module	to	rebuild	the	index	of	one	or	more	files.	

In	fact,	this	sequence	of	commands	will	physically	delete	the	entire	IBM	i
user	index	area	and	then	rebuild	the	indices	of	all	high	speed	tables	within	the
current	partition.	The	first	file	rebuild	will	recreate	the	IBM	i	user	index	if	it
does	not	currently	exist.:
		EXEC_OS400	CMD('DLTUSRIDX	DC@TBLIDX')
		USE	BUILTIN(REBUILD_FILE_INDEX)	WITH_ARGS('''*ALL''')

Q:	What	happens	when	I	change	the	layout	of	a	file?
If	you	change	the	layout	of	a	file	and	then	"make	the	change	operational"	a
resynchronization	of	the	table	and	index	will	be	automatically	performed.	This
automatic	synchronization	is	not	performed	if	you	then	export	the	changed
definition	to	another	system.
Q:	What	happens	if	I	import	a	high	speed	table	to	another	system?
A	high	speed	table	is	imported	to	another	system	just	like	a	normal	file.
However,	if	the	file	data	is	imported,	or	the	file	layout	is	changed,	the	associated
index	is	not	automatically	updated/reformatted.	To	do	this	you	should	trigger	a
"resynchronization"	of	the	file	and	its	index	using	any	of	the	techniques
previously	described.
Note:	A	user	index	greater	than	1	gigabyte	or	with	an	entry	record	length
greater	than	108	bytes	cannot	be	saved	to	or	restored	from	an	OS/400	release
prior	to	V2R2M0.
Warnings

It	is	strongly	recommended	that,	if	option	*HSTABEXTEND	is	added	to
system	data	area	DC@OSVEROP,	to	make	either	the	extended	entry	record
length	available	or	remove	it	to	limit	entry	length.		All	files	tagged	as	high
speed	tables,	all	read	only	functions	that	use	these	files	and	all	other	I/O
modules	and	DBOPTIMIZED	functions	that	use	high	speed	tables	for	lookup
validation	rules,	must	be	recompiled	AFTER	deleting	the	current	user	index.
This	index	is	DC@TBLIDX	if	adding	*HSTABEXTEND,	or		DC@TBLIDY
if	removing	*HSTABEXTEND.
If	this	is	not	done,	all	functions	that	use	a	particular	file	and	the	I/O	module
must	be	recompiled	at	the	same	time	or	they	will	not	be	pointing	to	the	same
index.	The	situation	will	be	further	complicated	by	I/O	modules	and
DBOPTIMIZED	functions	which	use	high	speed	table	files	for	lookup

validation	rules	also	pointing	to	the	wrong	index.	It	may	not	be	obvious	to	the
user	that	there	is	a	problem	as	the	database	file	and	one	index	will	be
unsynchronized,	but	it	will	not	cause	program	failure.

Platform	Considerations
IBM	i:	This	file	attribute	applies	to	IBM	i	databases	only.

	
	3.6	File	Attributes

3.6.15	Auto	RRN	Creation
Specify	whether	the	RRN	column	is	created	automatically.
This	option	is	set	by	the	3.12	Load	Other	File	options	when	the	file	has	to
include	RRNO	column	and	the	RRNO	value	is	automatically	generated	by	the
database	when	doing	the	SQL	INSERT	operation.
It	is	also	set	when	creating	a	new	LANSA	file.	There	is	also	an	option	to	set
Auto	RRN	on	a	File	object	from	its	pull	down	menu.
It	is	only	enabled	for	PC	Other	Files	and	for	LANSA	files	that	do	not	have	the
option	set	yet.
It	is	disabled	for	all	LANSA	files	that	have	the	option	set.	That	is,	it	cannot	be
unset	once	it	has	been	set.
Once	a	file	has	been	set	Auto	RNN	on,	LANSA	does	not	support	setting	it	off
again.	This	includes	importing	an	older	version	and	checking	out	an	older
version	from	the	IBM	i	Master	or	the	VCS	Master.
Default	=	YES	(selected).
	3.6	File	Attributes

3.6.16	Create	RRNO	Column
Specify	whether	or	not	RRN	functionality	is	required	for	this	file.	It	is	only
available	if	the	File	is	a	PC	Other	File.
YES	specifies	that	the	table	requires	the	X_RRNO	and	X_UPID	columns
(@@RRNO	and	@@UPID	fields),	so	that	crossed-update	checks	can	be
made	and	LANSA	RRN	functionality	can	be	used.	An	automatically
incrementing	column	will	be	used	for	X_RRNO.
NO	indicates	that	the	table	does	not	require	the	X_RRNO	and	X_UPID
columns.	This	option	has	been	deprecated	but	is	retained	for	backward
compatibility.

Warnings
Removing	the	X_RRNO	and	X_UPID	columns	will	limit	the	functionality
that	can	be	performed	on	a	file.	
Following	is	a	partial	list	of	limitations:

Any	command	that	uses	RRN	functionality	will	not	be	supported	(for
example:	WITH_RRN	and	RETURN_RRN	parameters).
Virtual	field	derivation	code	may	not	work.
The	@@UPID	field	will	have	an	undefined	value.
Crossed	update	checking	will	be	limited:	there	is	a	remote	possibility
that	an	update	made	by	another	user	will	be	overwritten	(for	example:
two	batch	jobs	simultaneously	updating	the	same	set	of	rows).
If	there	is	no	primary	key	on	the	file,	UPDATE	and	DELETE
commands	are	not	supported.
Most	templates	shipped	with	LANSA	will	not	work	without	these
columns.
SQL	is	only	reusable	for	INSERT	statements.	(With	Create	RRNO
Column,	it	would	be	reusable	for	UPDATE,	DELETE	and	re-read
SQL	statements	too.)	That	is,	you	get	better	performance	on	UPDATE
and	DELETE	if	you	add	the	@@UPID	and	@@RRNO	fields	to	the
file.

Tips	&	Techniques
For	PC	Other	Files,	the	initial	value	of	Create	RRNO	Column	can	be	set
during	the	load	of	the	file.	It	defaults	to	NO	for	new	installations.	The	choice
selected	is	remembered	for	the	next	load.	(Refer	to	Other	Data	Sources	Load

Options.)
Platform	Considerations

IBM	i:	This	option	is	ignored	for	LANSA	files.	It	must	be	YES	(selected)	for
Other	files.

Note:	With	the	introduction	of	setting	Auto	RRNO	on	LANSA	files,	it	is	now
mandatory	to	create	the	RRNO	column	on	new	LANSA	files.	Setting	Auto
RRNO	creates	an	Identity	column	to	store	the	RRNO.	
This	provides	a	very	fast	method	of	generating	the	RRNO.	It	is	much	faster	than
the	deprecated	method	of	using	an	external	file	to	store	the	next	RRNO.	Too
many	important	LANSA	features	are	unavailable	(as	listed	above)	when	the
RRNO	is	not	used.	You	may	consider	that	the	RRNO	is	an	unnecessary
overhead,	but	it	is	so	essential	to	LANSA	that	without	it,	much	functionality
becomes	far	more	difficult	for	you	to	implement.	In	practice,	both	developing
LANSA	and	execution	of	LANSA	are	at	least	as	fast	if	not	faster,	with	RRNO.

Also	See
3.12	Load	Other	File
	3.6	File	Attributes

3.6.17	Convert	Special	Characters	in	Field	Names
Specifies	whether	or	not	field	names	should	be	used	as-is	when	creating
database	columns	from	field	names.

Default	=	NO	(unchecked/not	selected)	for	files	created	from	LANSA
Version	11	SP4	onwards.	Files	created	in	earlier	versions	default	to
YES	(checked/selected).

Prior	to	LANSA	Version	11	SP4,	any	files	compiled	under	Windows	might
create	database	columns	that	did	not	match	the	field	names.	For	example,	the
SECTION	field	on	the	Demonstration	file	SECTAB	was	created	as	S_CTION
because	SECTION	was	an	SQL	Keyword.	For	the	same	reason,	the	column
MY@FLD	would	be	created	as	MY_FLD.
From	Version	11	SP4,	field	names	in	all	new	files	will	not	be	converted	in	the
database.
This	now	allows	Visual	LANSA	to	use	files	that	previously	would	not	compile
on	Windows	and	failed	with	error	979.	For	example,	if	you	had	two	fields
named	MY@FLD	and	MY#FLD	on	a	file,	the	file	would	fail	to	build	on
Windows	with	the	message:
979	FATAL	-	Fields	MY@FLD	and	MY#FLD	resolve	to	the	same	SQL
column	name	MY_FLD
The	file	could	only	be	used	on	IBM	i.	Now,	you	can	change	the	setting	to	NO
(unchecked/not	selected)	and	the	file	will	build	successfully.
Warnings

LANSA	provides	no	support	for	changing	this	setting	to	NO(unchecked/not
selected)	for	files	that	have	previously	compiled	successfully	on	Windows.
That	is,	you	must	only	set	it	to	unchecked/not	selected	from	checked/selected
if	the	file	has	failed	to	compile	with	error	979.
LANSA	provides	no	support	for	changing	this	setting	to	YES
(checked/selected)	for	files	created	with	V11	SP4	or	later.
If	you	change	this	setting,	you	must	also	recompile	and	redeploy	any
functions	or	components	that	use	SELECT_SQL	against	the	file,	and	any
OAMs	for	files	that	have	this	file	as	a	target	of	Batch	Control	or	PJFs.
Any	non-LANSA	applications	that	access	the	table	should	use	the	actual	field
names	for	the	column	names,	and	should	quote	these	identifiers	to	avoid	any
issues.

Tips	&	Techniques
Leave	the	setting	as	its	default	unless	you	have	had	problems	with	error	979
on	file	compile.

Platform	Considerations
IBM	i:	This	file	attribute	does	not	apply	to	files	in	IBM	i	databases.
	3.6	File	Attributes

3.6.18	Commitment	Control
Specify	whether	or	not	the	file	is	to	be	placed	under	commitment	control.	For
information,	refer	to	Commitment	Control	in	the	LANSA	Application	Design
Guide.
Default	=	NO	(unchecked/not	selected).
Warnings

Using	this	option	indicates	that	the	file	is	to	be	placed	under	commitment
control	all	the	time,	in	all	applications.

Tips	&	Techniques
To	selectively	use	(or	not	use)	commitment	control,	refer	to	the
*PGMCOMMIT	/	*NOPGMCOMMIT	options	of	the	FUNCTION	command.
When	a	file	definition	is	first	created,	the	default	value	for	commitment
control	is	set	from	the	system	definition	block.	Refer	to	System	Definition
Data	Areas	in	the	LANSA	for	i	User	Guide	for	more	details	and	information
about	how	to	change	the	system	default	values.

Platform	Considerations
IBM	i:	Refer	to	the	appropriate	IBM	supplied	manuals	for	more	details	of
commitment	control	and	commitment	control	processing.	Commitment
control	is	a	facility	provided	by	the	IBM	i	operating	systems.

Also	See
3.6.19	Auto	Commit
	3.6	File	Attributes

its:lansa065.chm::/lansa/dsnbe_0060.htm
its:LANSA010.CHM::/lansa/ugubc_c10010.htm

3.6.19	Auto	Commit
The	Auto	Commit	option	was	made	redundant	by	LANSA	release	4.0	at
program	change	level	E5.
Default	=	NO	(unchecked/not	selected).
Tips	&	Techniques

To	use	commitment	control	specify	COMMIT	and/or	ROLLBACK
commands	in	your	application.
Generally	only	COMMIT	commands	are	required.
In	the	event	of	an	application	failure,	ROLLBACK	operations	are
automatically	issued	by	the	operating	system	when	the	file	involved	is	closed.

Platform	Considerations
IBM	i:	Refer	to	the	appropriate	IBM	supplied	manuals	for	more	details	of
commitment	control	and	commitment	control	processing.	Commitment
control	is	a	facility	provided	by	the	IBM	i	operating	systems.

Also	See
3.6.18	Commitment	Control
	3.6	File	Attributes

3.6.20	CRTPF	and	CHGPF	Parameter
Specify	any	additional	command	parameters	that	are	to	be	used	by	LANSA
when	creating	(CRTPF	command)	or	changing	(CHGPF	command)	the	physical
file.
When	the	file	definition	is	set	up	this	value	is	initialized	to	include	SIZE	and
LVLCHK	parameters	which	are	set	from	the	default	values	specified	in	the
system	definition	block.	Refer	to	System	Definition	Data	Areas	for	more	details.
Default	=	SIZE(10000	2000	3)	LVLCHK(*YES)
Rules
When	specifying	parameters,	input	them	exactly	as	would	be	done	when
entering	them	through	the	IBM	i	command	entry	facility.	Use	"keyword"	(rather
than	positional)	specification	of	any	parameters	required.
Parameters	that	can	be	specified	include:
EXPDATE
MAXMBRS
MAINT
RECOVER
FRCACCPTH
SIZE
ALLOCATE
UNIT
FRCRATIO
WAITFILE
WAITRCD
SHARE
DLTPCT
LVLCHK

The	SHARE	parameter	relates	to	the	CRTPF	and	CHGPF	command	common
parameters	only,	it	does	not	relate	to	the	share	an	open	data	option.	Refer	to
3.6.7	Share.
Parameters	specified	are	checked	for	validity.	If	invalid	the	screen	will	be	re-
displayed	with	an	error	message.

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

Platform	Considerations
IBM	i:	Refer	to	the	IBM	supplied	manual	Control	Language	Reference
Manual	for	more	details	of	the	CRTPF	and	CHGPF	commands	and	the
associated	common	parameters.
	3.6	File	Attributes

3.6.21	Readonly	Access
Readonly	access	indicates	files	with	contents	that	cannot	be	updated	through
LANSA.
The	attribute	applies	to	Other	Files	and	the	default	is	No	(that	is,	updating	is
allowed).
It	can	be	set	to	Yes	(no	updating	allowed)	if	the	Allow	read	only	access	option	is
enabled	during	the	loading	process.
It	is	possible	that	LANSA	will	be	unable	to	update	a	file	regardless	of	this
indicator's	setting.
You	can	set	this	option	for	Other	Files	as	described	in	3.12.4	Other	Data
Sources	Load	Options.

3.6.22	Database	File	Trigger
This	option	enables	a	Database	Trigger	program	to	be	generated	for	access	by
external	programs.
The	program	will	be	generated	using	the	Database	Trigger	Program	name
which	you	provide	when	you	select	the	Enable	Database	Triggers	option.
Default	=	DB	followed	by	the	first	letters	of	the	owning	File	name,	for	example
DBFILEM
Rules

The	name	cannot:
include	invalid	filename	characters.
be	the	same	as	an	existing	file	name.
be	the	same	as	an	existing	database	trigger	name.

The	name	cannot	be	blank	when	the	Enable	Database	Triggers	option	is
selected.

Platform	Considerations
Database	Triggers	are	only	implemented	for	database	access	occurring	on
IBM	i	via	Native	I/O	in	an	RDMLX	partition.

Also	see
in	the	Developer's	Guide:
File	Rules	&	Triggers	Development
LANSA	Database	Triggers
	3.6	File	Attributes

its:lansa013.chm::/lansa/L4wDev04_0035.htm
its:lansa013.chm::/lansa/L4wDev04_0465.htm

3.6.23	File	Description
Mandatory.
Specify	the	description	of	the	physical	file.	This	description	is	used	within
LANSA	and	within	the	operating	system	to	aid	system	users	in	identifying	the
file.
Rules

A	file	description	must	be	entered	for	each	language	defined	for	the	partition.
Maximum	length	is	40	characters.
	3.6	File	Attributes

3.7	The	@@UPID	Field	in	LANSA	Created	Files
Whenever	a	physical	file	is	created	and	maintained	by	LANSA	(rather	than
some	OTHER	system)	it	has	an	additional	field	placed	into	it.	The	field	is	called
@@UPID	and	is	defined	as	packed	(7,0).	It	is	always	the	last	field	in	the	file.
Field	@@UPID	is	used	by	LANSA	to	automatically	check	for	"crossed
updates".	The	logic	to	do	this	is	very	simple:
Read	the	record	and	save	the	@@UPID	value.
If	update	required:	re-read	record	and	compare	the	@@UPID	with	saved
@@UPID	value.	If	different	issue	"crossed	update"	error	message,	else	add	1
to	@@UPID	and	update	the	file	record.

When	writing	user	application	programs	(in	non-LANSA	applications)	to	write
new	records	or	update	existing	records	in	database	files	created	by	LANSA	the
following	is	recommended:
1.		Set	@@UPID	to	1	when	writing	new	records.
2.		Add	1	to	@@UPID	when	updating	an	existing	record.
This	effectively	emulates	the	logic	automatically	used	in	all	LANSA	functions.
Note:	COBOL	programs	will	not	like	the	field	name	@@UPID.
To	solve	this	problem,	alter	the	data	dictionary	definition	of	field	@@UPID	so
that	it	has	an	associated	alias	name	acceptable	to	COBOL	(unless	this	has
already	been	done).
Force	recreation	of	all	database	files	(that	do	not	already	have	the	alias	name
included),	and	then	in	the	COBOL	programs,	use	the	COPY	DD	option	to
ensure	that	where	a	field	has	an	alias	name,	it	is	to	be	used	in	the	program	in
preference	to	its	real	name.
Warning:	The	field	@@UPID	should	not	be	used	at	4GL	level,	except	where
you	have	received	specific	instructions	from	LANSA	on	how	to	use	it.
Note:	When	a	file	contains	BLOB	or	CLOB	fields,	@@UPID	may	be
incremented	multiple	times	for	a	single	UPDATE	command.	This	occurs	once
for	the	main	file,	and	once	for	each	BLOB	or	CLOB	field	included	in	the
UPDATE	command.

Also	see
RESET_@@UPID	Built-In	Function.
	3.	Files

3.8	Batch	Control
Batch	control	is	used	to	define	the	logic	by	which	numeric	fields	in	one	file	are
to	be	accumulated	into	fields	in	another	file.
3.8.1	Batch	Control	Definition

Also	See
Batch	Control	Tab	in	the	User	Guide.
Batch	Control	Development	in	the	Developer	Guide.
	3.	Files

its:LANSA012.CHM::/lansa/l4wusr01_0470.htm
its:LANSA013.CHM::/lansa/L4wDev04_0050.HTM

3.8.1	Batch	Control	Definition
Batch	Control	File	Name
Batch	Control	Description
Batch	Control	Key	Field
Batch	Control	Key	Sequence
Batch	Control	Source	Field
Batch	Control	Target	Field
Batch	Control	Field	Details

Also	See
Batch	Control	Tab	in	the	User	Guide.
Batch	Control	Development	in	the	Developer	Guide.
	3.8	Batch	Control

its:LANSA012.CHM::/lansa/l4wusr01_0470.htm
its:LANSA013.CHM::/lansa/L4wDev04_0050.HTM

Batch	Control	File	Name
Mandatory.
Specify	the	name	of	the	physical	or	logical	file	that	is	to	be	maintained	by	this
batch	control	logic.	This	is	file	that	will	hold	the	accumulated	totals	from	the
currently	selected	file.
Rules

The	physical	or	logical	file	specified	must	exist	in	the	repository.
The	file	specified	cannot	contain	batch	control	logic	itself.

Tips	&	Techniques
If	the	specified	file	contains	batch	control	and	causes	a	problem,	investigate
moving	the	batch	control	logic	from	the	nominated	"batch	control	file"	to	this
file	(the	file	definition	currently	being	worked	with).	In	most	cases	this
technique	will	satisfy	all	batch	control	requirements.

Also	See
Batch	Control	Target	Field
	3.8.1	Batch	Control	Definition

Batch	Control	Description
Mandatory.
Specify	a	description	that	will	aid	other	users	of	this	file	definition	in	identifying
the	purpose	of	the	batch	control	logic.
Rules

Maximum	length	is	40	characters.
	3.8.1	Batch	Control	Definition

Batch	Control	Key	Field
Mandatory.
Specify	the	fields	or	values	that	should	be	used	to	form	the	key	that	will	be	used
to	access	the	appropriate	record	in	the	file	named	as	the	"batch	control	file"
identified	by	the	Batch	Control	File	Name.
If	field	names	are	used,	then	they	must	be	defined	in	this	file	(i.e.	the	file
definition	that	is	currently	selected	and	not	the	file	named	as	the	"batch	control"
file).
Key	values	are	checked	for	type	and	length	compatibility.	The	entire	key	list
supplied	is	checked	for	compatibility	with	the	actual	key(s)	of	the	"batch	control
file".	The	key	list	specified	can	be	a	full	or	partial	key	to	the	file.
Rules
Allowable	values	are:
A	field	that	is	defined	in	the	current	file	definition.	You	must	not	use	a	virtual
field.
An	alphanumeric	literal	(in	quotes)	such	as	'NSW',	'BALMAIN'
A	numeric	literal	such	as	1,	14.23,	-1.141217.
A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variable	defined	at	your	installation.

Warnings
A	warning	is	issued	if	a	partial	key	list	is	specified.	The	use	of	a	partial	key	in
this	particular	situation	would	be	rare.	If	a	warning	message	is	issued
carefully	check	and	reconsider	exactly	what	batch	control	logic	has	just	been
defined.

Tips	&	Techniques
If	you	need	to	use	a	virtual	field	in	the	key,	then	code	the	batch	control	update
logic	into	a	trigger.	Use	of	virtual	fields	may	lead	to	unpredictable	and/or
unexpected	results.

Also	See
Batch	Control	File	Name
	3.8.1	Batch	Control	Definition

Batch	Control	Key	Sequence
Mandatory.
Specify	the	sequence	number	for	the	Batch	Control	Key	Field.
Rules

Sequence	numbers	must	be	consecutive.
The	sequence	number	is	automatically	assigned	when	a	key	is	added.
Sequence	number	is	updated	when	the	order	of	the	keys	is	updated	in	the	list
of	keys.
	3.8.1	Batch	Control	Definition

Batch	Control	Source	Field
Mandatory.
Specify	from	1	to	4	fields	in	this	file	(i.e.	the	file	definition	currently	selected)
that	are	to	be	accumulated	into	the	"batch	control	file"	identified	by	the	Batch
Control	File	Name.
At	least	one	pair	of	fields	(source	and	target)	is	required.
Rules

All	fields	nominated	must	be	defined	in	this	file.
All	fields	must	be	numeric.

Warnings
The	checking	(and	testing)	of	accumulated	field	precision	is	a	user
responsibility	and	is	not	performed	by	LANSA.

Tips	&	Techniques
Note	that	while	LANSA	will	check	that	all	fields	nominated	exist	in	their
respective	files,	and	are	numeric,	it	will	not	check	the	sizes.	Thus	it	is
possible	to	accumulate	a	field	with	4	decimal	positions	into	a	field	with	no
decimal	positions.	All	decimal	precision	would	be	lost	and	the	accumulation
would	probably	be	meaningless.	Likewise	a	field	with	15	significant	digits
could	be	accumulated	into	a	field	with	1	significant	digit.	Again	the
accumulation	would	almost	certainly	be	meaningless.

Also	See
Batch	Control	Target	Field
	3.8.1	Batch	Control	Definition

Batch	Control	Target	Field
Mandatory.
Specify	from	1	to	4	fields	in	the	"batch	control	file"	that	are	to	hold	the
accumulations	of	the	fields	from	this	file.
At	least	one	pair	of	fields	(source	and	target)	is	required.
Rules

All	fields	nominated	must	be	defined	in	the	file	identified	in	the	Batch
Control	File	Name.
All	fields	must	be	numeric.

Warnings
The	checking	(and	testing)	of	accumulated	field	precision	is	a	user
responsibility	and	is	not	performed	by	LANSA.

Tips	&	Techniques
Note	that	while	LANSA	will	check	that	all	fields	nominated	exist	in	their
respective	files,	and	are	numeric,	it	will	not	check	the	sizes.	Thus	it	is
possible	to	accumulate	a	field	with	4	decimal	positions	into	a	field	with	no
decimal	positions.	All	decimal	precision	would	be	lost	and	the	accumulation
would	probably	be	meaningless.	Likewise	a	field	with	15	significant	digits
could	be	accumulated	into	a	field	with	1	significant	digit.	Again	the
accumulation	would	almost	certainly	be	meaningless.

Also	See
Batch	Control	Source	Field
	3.8	Batch	Control

Batch	Control	Field	Details
Display	Only.
The	fields	details	of	the	specified	Batch	Control	Key	Field,	Batch	Control
Source	Field,	or	Batch	Control	Target	Field		will	be	displayed	including:
Description
Type
Length
Decimals

You	can	review	this	information	to	confirm	field	compatibility.

	
	3.8	Batch	Control

3.9	Virtual	Derivation
In	addition	to	the	extended	definition	virtual	fields	(refer	to	3.3	Virtual	Fields	in
File),	virtual	fields	can	be	defined	by	entering	code	that	is	included	into	the	I/O
module.
3.9.1	I/O	Module	Section
3.9.2	Virtual	Code

Also	See
Virtual	Derivation	Tab	in	the	User	Guide.
Virtual	Fields	in	the	LANSA	for	i	User	Guide.
	3.	Files

its:LANSA012.CHM::/lansa/l4wusr01_0485.htm
its:Lansa010.chm::/lansa/ugubc_c00000.htm

3.9.1	I/O	Module	Section
Specify	the	sections	the	part	of	the	file	I/O	module	in	which	you	can	include
user	code	to	be	used	to	derive	virtual	fields.
When	LANSA	is	automatically	generating	an	I/O	module,	it	looks	for	any
virtual	field	code	associated	with	the	file	and	automatically	includes	it	at	the
correct	point.
Rules
Allowable	values	are:

ARRAYSPECIFICATIONS Array	specifications

CALCULATIONSAFTERINPUT Calculations	after	input

CALCULATIONSBEFOREOUTPUT Calculations	before	output

COMPILETIMEARRAYDATA Compile	time	array	data

DATASTRUCTURES Data	structures

EXTERNALFIELDRENAMES External	field	renames

FILESPECIFICATIONS File	specifications

INTERNALSUBROUTINES Internal	subroutines

OUTPUTSPECIFICATIONS Output	specifications

	

Tips	&	Techniques
The	sections	of	the	I/O	module	that	will	require	code	may	depend	upon	the
language	being	used.	For	example,	RPG	has	a	very	structured	program	layout
that	requires	code	definitions	in	specific	parts	of	the	program.

Also	See
3.9.2	Virtual	Code
	3.9	Virtual	Derivation

3.9.2	Virtual	Code
Specify	the	code	for	the	virtual	fields	that	is	to	be	imbedded	into	the	I/O
module.
When	LANSA	is	automatically	generating	the	code	for	an	I/O	module,	it	looks
for	any	virtual	field	code	associated	with	the	file	and	automatically	includes	it	at
the	correct	point.
Rules

RPG	or	C	code	may	be	entered.
C	code	must	have	the	letter	C	as	the	first	character	of	each	line.

Warnings
There	is	no	syntax	checking	performed	on	the	code	entered.

Tips	&	Techniques
The	sections	of	RPG	or	C	code	displayed	describe	the	parts	or	portions	of	the
file	I/O	module	in	which	you	can	include	user	code	that	is	to	be	used	to	derive
virtual	fields.
Triggers	or,	for	RDMLX	files	3.3.6	Code	Fragment,	can	be	used	for	most
complex	virtual	field	derivation.	These	are	much	simpler	than	writing	C	or
RPG	code.

Platform	Considerations
IBM	i:	Please	refer	to		Examples	of	Virtual	Fields	and	Derivation	Code		in	the
LANSA	for	i	User	Guide	for	specific	RPG	coding	requirements.

Also	See
3.9.1	I/O	Module	Section
	3.9	Virtual	Derivation

its:Lansa010.chm::/lansa/ugubc_c00170.htm

3.10	File	Rules	and	Triggers
Rules	and	Triggers	can	be	stored	in	the	LANSA	Repository	at	both	the	field
level	and	file	level.
It	is	important	to	understand	how	the	rules	and	triggers	work	at	both	levels	and
how	the	levels	work	together.	Refer	to	Rules	and	Triggers	Development	in	the
Developer	Guide.
Both	field	and	file	level	details	are	found	in	Rules	and	Triggers	in	this	guide.

Also	see
File	Rules	and	Triggers	Tab	in	the	User	Guide.
	3.	Files

its:LANSA013.CHM::/lansa/L4wDev04_0035.HTM
its:LANSA012.CHM::/lansa/l4wusr01_0460.htm

3.11	File	Compile	Options
Select	the	options	which	should	be	used	when	generating	the
Tables/Indexes/OAMs	for	the	selected	file.	The	options	will	be	saved	after
completion	of	the	current	operation.
3.11.1	Compile	only	if	necessary
3.11.2	Rebuild	table
3.11.3	Rebuild	indexes	and	views
3.11.4	Rebuild	OAMs
3.11.5	Strip	debug	information
3.11.6	Keep	generated	source
3.11.7	Keep	saved	data	(DAT	file)
3.11.8	Drop	existing	tables/indexes
3.11.9	Save	table	data
3.11.10	Reload	table	data
	3.	Files

3.11.1	Compile	only	if	necessary
Select	this	option	so	that	only	those	files	needing	to	be	compiled	(i.e.	files	with
a	status	of	rebuild	required)	are	compiled.	This	is	the	default	setting.
If	it	is	not	selected,	all	the	selected	files	are	forced	to	be	compiled.
	3.11	File	Compile	Options

3.11.2	Rebuild	table
This	option	is	only	available	if	you	have	not	selected	the	3.11.1	Compile	only	if
necessary	check	box.
Select	this	option	to	force	the	generation	and	compilation	of	the	table,	indexes
and	OAM.

Also	See
3.11.3	Rebuild	indexes	and	views
3.11.4	Rebuild	OAMs
	3.11	File	Compile	Options

3.11.3	Rebuild	indexes	and	views
This	option	is	only	available	if	you	have	not	selected	the	3.11.1	Compile	only	if
necessary	check	box.
Select	this	option	to	force	the	generation	and	compilation	of	the	indexes	and
OAM.

Also	See
3.11.2	Rebuild	table
3.11.4	Rebuild	OAMs
	3.11	File	Compile	Options

3.11.4	Rebuild	OAMs
This	option	is	only	available	if	you	have	not	selected	the	3.11	File	Compile
Options	check	box.
Select	this	option	to	force	the	generation	and	compilation	of	the	OAM.

Also	See
3.11.2	Rebuild	table
3.11.3	Rebuild	indexes	and	views
	3.11	File	Compile	Options

3.11.5	Strip	debug	information
Specifies	whether	to	retain	RPG	or	C/C++	debugging	information	in	the
compiled	file.
On	Windows,	refer	to	Producing	Debug	Symbols	for	Your	LANSA	Application
in	the	Administrator's	Guide	for	important	information	that	is	vital	to	keep
securely	for	rare	but	critical	situations.
On	the	System	i,	this	information	is	only	required	in	two	situations:
When	attempting	to	use	the	IBM	supplied	debugging	aids	with	the	compiled
RPG	I/O	module.
When	restoring	a	compiled	RPG	Object	Access	Module	(OAM)	shipped	from
a	System/38	onto	an	IBM	i.

Since	these	situations	are	relatively	rare,	the	default	for	this	field	is	YES.
Debugging	information	should	be	stripped.
By	using	this	option,	the	size	of	the	compiled	Object	Access	Module	(OAM)
will	typically	be	reduced	by	40	-	60%.	This	size	reduction	has	no	bearing	on
execution	speed,	just	on	the	size	of	the	compiled	object.
To	enable	RPG	OAMs	to	be	debugged,	and	in	environments	where	they	will	be
ported	from	System/38s	to	System	i,	this	option	should	not	be	checked
(selected).
	3.11	File	Compile	Options

its:lansa011.CHM::/lansa/l4wADM07_0075.HTM

3.11.6	Keep	generated	source
Select	this	option	to	keep	the	generated	source	code.	The	default	option	is	not	to
keep	the	source	code.
The	source	code	needs	to	be	kept	if	the	resulting	objects	are	to	be	executed	on	a
platform	other	than	Microsoft	Windows.		It	is	also	required	in	order	to	fully
resolve	dump	files,	though	its	possible	to	produce	this	when	needed,	provided
the	original	Visual	LANSA	development	environment	is	retained.
If	the	source	code	is	being	moved	to	another	machine	for	subsequent
(re)compilation,	you	must	use	this	option.
The	source	code	to	be	kept	includes:
The	table/index/view/OAM	creation	code	if	generating	a	file
The	process/function/component	creation	code	if	generating	a	process,	or
function	or	component.
The	corresponding	define	and	make	files.
	3.11	File	Compile	Options

3.11.7	Keep	saved	data	(DAT	file)
Select	this	option	to	keep	the	data	that	is	created	by	the	3.11.9	Save	table	data
option.
If	this	option	is	not	used,	the	data	is	only	deleted	if	the	reload	of	the	table	data
was	successful.
If	this	option	is	used,	the	data	is	never	deleted.	This	may	mean	that	large
amounts	of	disk	space	are	consumed.
	3.11	File	Compile	Options

3.11.8	Drop	existing	tables/indexes
Drop	the	existing	table/index	before	creating	the	new	table/index	definition.
Select	this	option	when	an	existing	table/index/view	is	to	be	generated/compiled
so	that	the	existing	SQL	table/index/view	definition	is	removed	before	re-
creation.
Note:	Refer	to	the	3.11.9	Save	table	data	option	for	saving	data	before	the	table
is	dropped.
	3.11	File	Compile	Options

3.11.9	Save	table	data
This	option	is	only	available	when	you	have	also	selected	the	3.11.8	Drop
existing	tables/indexes	check	box.
Select	this	option	when	you	wish	to	have	the	existing	data	in	the	table(s)	saved
before	the	table	is	deleted	and	recreated	during	a	LANSA	file	compile.
Using	this	option	will	result	in	all	existing	data	being	saved	to	a	file	named
ffffffff.DAT	(where	ffffffff	is	the	table	name)	in	the	partition	directory
X_LANSA_ppp	(where	ppp	is	the	partition	identifier)	in	delimited	ASCII
format.
Format	of	the	data	file	is:
column	1	data,	column	2	data,	column	3	data,

This	format	applies	to	every	row	in	the	table.
All	alphanumeric	data	is	delimited	by	double	quotes(").
It	is	your	responsibility	to	restore	any	data	back	into	the	table	using	the	data
saved	in	the	ffffffff.DAT	file.	You	may	also	use	the	3.11.10	Reload	table	data.
	3.11	File	Compile	Options

3.11.10	Reload	table	data
This	option	is	only	available	when	you	have	also	selected	the	3.11.8	Drop
existing	tables/indexes	check	box.	Selecting	this	box	will	cause	the	3.11.9	Save
table	data	box	to	be	automatically	selected.
Select	this	option	when	you	wish	to	have	the	existing	data	in	the	tables(s)
restored	after	the	table	is	deleted	and	recreated	during	a	LANSA	defined	file
generation/creation.

Also	See
Load	Other	Files	in	the	Developer	Guide.
	3.11	File	Compile	Options

its:lansa013.chm::/lansa/l4wdev04_0320.htm

3.12	Load	Other	File
To	load	file	definitions	whose	definitions	are	maintained	outside	of	LANSA,
choose	the	New	>	File	>	Load	Other	File	option	from	the	File	menu.	

The	Load	Other	File	dialog	will	be	displayed.	If	your	LANSA	installation	is	a
Slave	to	an	IBM	i	Master	system	or	has	remote	IBM	I	system	defined,	an	IBM	I
tab	will	be	shown.	Use	this	tab	to	load	file	definitions	that	reside	on	the	selected
IBM	i	system.	An	Other	Data	Sources	tab	will	always	be	shown.	Use	this	tab	to
load	files	from	databases	as	defined	by	the	ODBC	Data	Sources	configured	on
your	PC.
3.12.1	Loading	IBM	i	Files
3.12.2	Loading	Files	From	Other	Data	Sources
3.12.3	IBM	i	Load	Options
3.12.4	Other	Data	Sources	Load	Options

Also	See
Load	Other	Files	in	the	Developer	Guide
	3.	Files

its:lansa013.chm::/lansa/l4wdev04_0320.htm

3.12.1	Loading	IBM	i	Files
In	order	to	load	IBM	i	file	definitions,	you	search	an	IBM	i	library	and	select	the
file	name	from	the	list	of	files	located.	Your	search	will	include:
Remote	System
Select	remote	IBM	i	system	to	be	searched.	System	must	be	defined	as	a
Remote	System.
Library	containing	files
Mandatory.
Specify	the	name	of	the	library	in	which	the	files	to	be	loaded	reside.
Full	or	partial	file	name
Specify	the	full	name	or	part	of	the	file	name	to	be	found.
If	no	full	or	partial	file	name	has	been	specified	all	files	in	the	library	will	be
listed	in	the	search	results.	If	the	library	contains	many	files,	the	search	results
may	take	some	time	to	be	displayed.
Search	Results
Once	the	search	criteria	have	been	specified,	and	the	Find	button	has	been
pressed,	a	list	of	matching	files	will	be	displayed.
Each	file	displayed	in	the	search	results	list	includes:
A	clickable	expansion	button,	if	the	file	has	logical	views.	Clicking	the	button
when	it	shows	a	plus	sign	(+)	will	display	the	file's	logical	views.	Clicking	it
when	a	minus	sign	(-)	is	shown	will	hide	them.	Once	a	file	has	been	selected,
any	logical	views	belonging	to	the	file	will	be	enabled	and	may	also	be
selected	for	loading.
A	check	box.	Select	the	check	box	to	load	the	file	definition.	Note	that	until	a
check	box	is	checked/selected,	the	check	boxes	for	any	logical	files	belonging
to	the	file	will	be	disabled.		The	Select	All,	Deselect	All	and	Invert	Selection
buttons	at	the	bottom	of	the	form	can	be	used	for	managing	multiple
selections.
A	green	tick	or	red	cross,	indicating	whether	or	not	its	definition	has	been
previously	loaded	into	the	repository.

Selected	files	are	loaded	by	clicking	the	 	Load	button	on	the	toolbar.	Prior	to
the	load	being	performed,	the	Load	Options	dialog	will	be	displayed.		Refer	to
3.12.3	IBM	i	Load	Options	for	more	information.

If	warning	or	error	messages	are	generated	by	the	load	process,	a	warning	or
error	triangle	will	be	displayed	adjacent	to	the	physical	file's	check	box.	Click
on	the	triangle	to	view	the	messages.
Note	that	warning	and	error	messages	for	all	selected	files,	as	well	as	those
messages	that	may	not	be	specific	to	a	particular	file,	are	accessible	by	clicking
the	inverted	triangle	that	appears	adjacent	to	the	Search	results	text,	above	the
list	of	files.

Load	messages	can	also	be	displayed	by	clicking	the	 	Messages	button	on
the	toolbar.		From	the	resultant	messages	dialog,		the	text	can	be	copied	and	then
pasted	elsewhere.		This	can	be	useful	if	you	need	to	contact	LANSA	Support
about	a	loading	issue.
Once	a	file	definition	has	been	loaded,	its	repository	definitions	can	be
previewed	by	selecting	the	file	and	clicking	the	 	Preview	button.

If	no	error	messages	have	been	generated	by	the	validation	process,	the	 	Save
button	will	be	enabled.	Click	it	to	save	the	selected	file	definitions	to	the
LANSA	repository.
Note	that,	by	changing	the	selection	of	files	in	the	Search	results,	the	Save
button	will	be	disabled	and	the	load	must	be	performed	again.

Also	See
Load	Other	Files	in	the	Developer	Guide
	3.12	Load	Other	File

its:lansa013.chm::/lansa/l4wdev04_0320.htm

3.12.2	Loading	Files	From	Other	Data	Sources
In	order	to	load	file	definitions,	you	must	search	existing	data	sources	and	select
the	file	name	from	the	list	of	files	located.	Your	search	will	include:
Connect	to	Database
Mandatory.
Select	the	database	from	the	list	provided.
Note:	Some	data	sources	can	only	be	searched	once	you	have	supplied	a	valid
User	ID	and	Password	in	a	Connect	to	Database	dialog.
If	the	MS	Access	Database	data	source	is	selected,	a	Select	Database	dialog	will
be	displayed.		It	is	similar	to	a	standard	Windows	File	Open	dialog.
Full	or	partial	table	name
Specify	the	full	name	or	part	of	the	file	name	to	be	found.		Note	that	this	edit
box	is	case-sensitive,	and	that	no	results	will	be	found	if	the	case	entered	does
not	match	the	case	of	your	table	names.
If	no	full	or	partial	physical	file	name	has	been	specified	all	files	in	the	data
source	will	be	listed	in	the	search	results.	If	the	data	source	contains	many	files,
the	search	results	may	take	some	time	to	be	displayed.
Search	Results
Once	the	search	criteria	have	been	specified,	and	the	Find	button	has	been
pressed,	a	list	of	matching	tables	will	be	displayed.
Each	table	displayed	in	the	search	results	list	includes:
A	check	box.	Select	the	check	box	to	load	the	table	definition.		The	Select
All,	Deselect	All	and	Invert	Selection	buttons	at	the	bottom	of	the	form	can
be	used	for	managing	multiple	selections.
A	green	tick	or	red	cross,	indicating	whether	or	not	its	definition	has	been
previously	loaded	into	the	repository.

Selected	tables	are	loaded	by	clicking	the	 	Load	button	on	the	toolbar.	Prior
to	the	load	being	performed,	the	Load	Options	dialog	will	be	displayed.		Refer
to	3.12.4	Other	Data	Sources	Load	Options	for	more	information.
If	warning	or	error	messages	are	generated	by	the	load	process,	a	warning	or
error	triangle	will	be	displayed	adjacent	to	the	table's	check	box.	Click	on	the
triangle	to	view	the	messages.
Note	that	warning	and	error	messages	for	all	selected	tables,	as	well	as	those

messages	that	may	not	be	specific	to	a	particular	table,	are	accessible	by
clicking	the	inverted	triangle	that	appears	adjacent	to	the	Search	results	text,
above	the	list	of	tables.

Load	messages	can	also	be	displayed	by	clicking	the	 	Messages	button	on
the	toolbar.		From	the	resultant	dialog,	the	text	can	be	copied	and	then	pasted
elsewhere.		This	can	be	useful	if	you	need	to	contact	LANSA	Support	about	a
loading	issue.
Once	a	table	definition	has	been	loaded,	its	repository	definitions	can	be
previewed	by	selecting	the	table	and	clicking	the	 	Preview	button.

If	no	error	messages	have	been	generated	by	the	validation	process,	the	 	Save
button	will	be	enabled.	Click	it	to	save	the	selected	table	definitions	to	the
LANSA	repository.
Note	that,	by	changing	the	selection	of	tables	in	the	Search	results,	the	Save
button	will	be	disabled	and	the	load	must	be	performed	again.

Also	See
Load	Other	Files	in	the	Developer	Guide
	3.12	Load	Other	File

its:lansa013.chm::/lansa/l4wdev04_0320.htm

3.12.3	IBM	i	Load	Options
The	following	load	options	may	be	specified	when	loading	IBM	i	files	after	you
select	this	icon	 	in	the	top	right	corner	of	the	Load	Other	File	list:
Enable	for	RDMLX
Check/select	this	option	if	the	file	contains	RDMLX	field	types	(refer	to	What
Classifies	a	Field	as	RDMLX	for	more	information)	and	you	wish	to	allow	the
selected	file(s)	to	be	used	only	by	RDMLX-enabled	components	or	functions.
Refer	to	RDML	and	RDMLX	Partition	Concepts	for	more	information.
If	this	option	is	not	checked/selected	and	the	file(s)	being	loaded	contain	fields
that	are	only	supported	by	RDMLX,	error	messages	will	be	generated	by	the
load.
Submit	compiles
Check/select	this	option	if	you	wish	to	compile	the	loaded	file	definitions	once
they	have	been	saved	in	the	repository.
Suppress	IOM0034
This	option	will	set	the	Suppress	IOM0034	attribute	of	all	loaded	file	definitions
accordingly.
Commitment	Control
This	option	will	set	the	Commitment	Control	attribute	of	all	loaded	file
definitions	accordingly.
I/O	Module	Library
This	option	will	set	the	I/O	Module	Library	attribute	of	all	loaded	file
definitions	accordingly.
	3.12	Load	Other	File

its:Lansa011.chm::/lansa/l4wpar01_0020.htm

3.12.4	Other	Data	Sources	Load	Options
	Select	this	icon	after	you	have	highlighted	a	file	on	the	Load	Other	File

import	list	to	change	the	following	options:
Submit	compiles
Select	this	option	if	you	wish	to	compile	the	loaded	table	definitions	once	they
have	been	saved	in	the	repository.
Allow	read	access	only
Select	this	option	if	you	do	not	wish	any	changes	to	be	made	to	the	table.	This
will	automatically	disable	Create	RRNO	Column	and	Add	Columns	to	Support
LOBs.	Any	Inserts,	Updates,	or	Deletes	attempted	against	the	file	will	be
disallowed.
This	option	is	displayed	as	3.6.21	Readonly	Access	on	the	File	Attributes	tab.
Add	columns	to	support	LOBs
Select	this	option	if	you	wish	to	access	BLOB	or	CLOB	fields	from	the	file	the
same	way	as	they	are	read	from	a	LANSA	file.	Additional	columns	will	be
added	to	the	file	when	it	is	compiled,	allowing	a	particular	file	name	to	be
associated	with	each	BLOB	or	CLOB	field	value	when	it	is	read	from	the
database.
Database	privileges	are	required	to	modify	external	tables.	Please	refer	to	Load
Other	Files	in	the	Developer	Guide	for	more	information.
Create	RRNO	column
Select	this	option	if	you	require	RRN	functionality	to	be	enabled	for	the	loaded
tables.		Refer	to	3.6.16	Create	RRNO	Column	for	more	information	about	this
file	attribute.
Database	privileges	are	required	to	modify	external	tables.	Please	refer	to	Load
Other	Files	in	the	Developer	Guide	for	more	information.
Suppress	IOM0034
This	option	will	set	the	Suppress	IOM0034	attribute	of	all	loaded	table
definitions	accordingly.
Commitment	Control
This	option	will	set	the	Commitment	Control	attribute	of	all	loaded	table
definitions	accordingly.
I/O	Module	Library

its:lansa013.chm::/lansa/l4wdev04_0320.htm
its:lansa013.chm::/lansa/l4wdev04_0320.htm

This	option	will	set	the	I/O	Module	Library	attribute	of	all	loaded	table
definitions	accordingly.

Also	See
Load	Other	Files	in	the	Developer	Guide.
	3.12	Load	Other	File

	
	
	

its:lansa013.chm::/lansa/l4wdev04_0320.htm

4.	Components
4.1	Component	Concepts
4.2	Component	Definition
4.3	Component	Types:

4.3.1	Form
4.3.2	Reusable	Part
4.3.3	WAM

4.3.4	Visual	Style
4.3.5	Icon
4.3.6	Bitmap

4.3.7	Cursor
4.3.8	ActiveX
4.3.9	.NET	Components

4.4	Component	Help	Text
4.5	Component	Compile	Options
4.6	Technology	Services

Also	See
Fields
Edit	Components	and	Functions	in	the	User	Guide

its:LANSA012.CHM::/lansa/l4wusr01_0125.htm

4.1	Component	Concepts
Visual	LANSA	extends	the	LANSA	repository	to	include	components	in
addition	to	fields	and	files.	This	object-oriented	component	model	provides	the
foundation	for	user-centered,	event-driven	applications.	However,	in	Visual
LANSA	the	object-oriented	paradigm	is	implemented	in	a	simple	way	to	allow
you	to	focus	on	productivity	and	business	goals.
Components	are	programming	objects	that	support	properties,	events	and
methods.	LANSA	components	are	stored	in	the	LANSA	Repository.	With
components,	you	create	event-driven	applications.
Visual	LANSA	has	many	user	definable	4.3	Component	Types.	The	most
common	component	is	a	4.3.1	Form	which	corresponds	to	a	window	of	an
application.	4.3.2	Reusable	Part	parts	contain	controls	and	code	which	can	be
reused	in	forms	(or	other	reusable	parts).
Properties
All	Visual	LANSA	components	have	properties	which	define	their
characteristics.	Most	properties	deal	with	the	way	a	component	is	displayed	on
the	screen:	its	size,	color,	and	whether	it	is	visible	or	not.	You	can	set	the
properties	when	you	are	designing	your	application,	or	programmatically	when
the	application	is	running.	Often	you	do	not	need	to	change	any	of	the	default
property	values.
Events
An	event	is	a	thing	that	happens	or	takes	place.	Typically	an	event	is	any	action
the	user	takes.	The	most	common	event	is	click	(when	the	user	clicks	on	a
component	with	the	mouse).	You	could	for	example	define	a	button	'Print'	and
write	code	for	the	button's	click	event	to	print	something.	When	the	application
is	running,	every	time	your	user	clicks	on	the	Print	button	the	print	routine	will
be	executed.
Methods
A	method	is	how	you	tell	a	component	to	do	something.	For	example	to	display
a	form,	you	use	the	ShowForm	method:
	
INVOKE	#FormB.ShowForm
	

You	can	also	define	custom	methods	to	make	a	component	perform	an	action.

Also	See
4.2	Component	Definition
4.3	Component	Types
4.4	Component	Help	Text
Edit	Components	and	Functions	in	the	User	Guide
	4.	Components

its:LANSA012.CHM::/lansa/l4wusr01_0125.htm

4.2	Component	Definition
4.2.1	Component	Name
4.2.2	Component	Identifier
4.2.3	Component	Description
4.2.4	Enable	Components	for	RDMLX
4.2.5	Framework
4.2.6	Group
4.2.9	Layout	Weblet
4.2.7	Open	In	Editor
4.2.8	Close

Also	see
4.1	Component	Concepts
Edit	Components	and	Functions	in	the	User	Guide
	4.	Components

its:LANSA012.CHM::/lansa/l4wusr01_0125.htm

4.2.1	Component	Name
Mandatory.
Specify	the	name	of	the	component	to	be	stored	in	the	LANSA	Repository.	
Component	names	are	not	case	sensitive.	Component	names	are	not	converted
to	upper	case	characters	in	LANSA.
Rules

Must	be	a	valid		LANSA	object	name.
Tips	&	Techniques

Define	standards	for	component	names.	Different	standards	may	apply	to
different	component	types.
Properly	defined	naming	standards	are	extremely	helpful	when	you	are
sharing	components	with	other	developers	and	when	you	attempt	to	deploy
your	finished	applications.

Also	See
4.2.2	Component	Identifier
4.1	Component	Concepts
4.3	Component	Types
Edit	Objects	in	the	User	Guide
	4.2	Component	Definition

its:lansa012.chm::/lansa/l4wusr01_0020.htm

4.2.2	Component	Identifier
Mandatory.
Specify	the	identifier	of	the	component	to	be	stored	in	the	LANSA	Repository.	
Component	identifiers	are	not	case	sensitive.	By	default,	component	identifiers
are	often	converted	to	upper	case	characters	in	LANSA.
Rules

Must	be	a	valid		LANSA	object	name.
Tips	&	Techniques

Define	standards	for	component	identifiers.	Different	standards	may	apply	to
different	component	types.
Properly	defined	naming	standards	are	extremely	helpful	when	you	are
sharing	components	with	other	developers	and	when	you	attempt	to	deploy
your	finished	applications.

Also	See
4.2.1	Component	Name
4.1	Component	Concepts
4.3	Component	Types
Edit	Objects	in	the	User	Guide
	4.2	Component	Definition

its:lansa012.chm::/lansa/l4wusr01_0020.htm

4.2.3	Component	Description
Mandatory.
Specify	the	description	associated	with	the	component.	The	description	text
may	be	used	as	the	default	description	when	component	information	is
displayed	in	the	repository	or	in	the	finished	application.	If	the	partition	is
multilingual,	the	description	specified	for	the	default	partition	language	will
be	used	for	other	languages.

Tips	&	Techniques
Use	upper	and	lower	case	characters	for	the	description.
For	a	Form,	the	component	description	can	be	used	as	the	default	title	in	the
window	title	bar.
Define	standards	for	component	descriptions.	Different	standards	may	apply
to	different	component	types.

Also	See
4.3	Component	Types
Create	Components	in	the	User	Guide
	4.2	Component	Definition

its:LANSA012.CHM::/lansa/l4wusr01_1550.htm

4.2.4	Enable	Components	for	RDMLX
To	change	an	existing	RDML	Component	to	an	RDMLX	Component,	open	the
component	in	the	Visual	LANSA	Editor,	choose	the	File	menu	and	select	the
Enable	for	Full	RDMLX	option.
This	option	is	only	available	in	an	RDMLX	Enabled	Partition.
Once	you	select	this	option,	the	code	in	the	component	will	be	evaluated	using
the	full	RDMLX	Language	Features.	Errors,	if	any,	must	be	corrected	before
you	will	be	able	to	enable	it	for	full	RDMLX
A	message	will	be	displayed	when	the	component	is	saved	unless	the	Visual
LANSA	environment	settings	have	been	set	so	no	user	confirmation	is	required.
If	a	component	is	enabled	for	full	RDMLX,	it	means	that	it	can	use	RDMLX
objects	such	as	fields	and	files.
The	default	value	for	this	option	is	controlled	in	the	RDMLX	Partition	Settings.
Tips	&	Techniques

It	is	recommended	that	you	review	the	RDML	and	RDMLX	Partition
Concepts	information	in	the	Administrator	Guide.

Implications:
If	no	changes	have	been	made	to	the	code	in	an	enabled	RDMLX
Component,	the	resulting	program	should	be	functionally	equivalent	to	the
program	created	by	the	RDML	Component.	However,	it	is	your	responsibility
to	retest	the	functionality	of	the	new	program.
Performance	characteristics	may	change	and	should	be	properly	evaluated
once	the	conversion	to	RDMLX	has	been	made.

Warning
Once	a	component	has	been	enabled	as	a	Full	RDMLX	Component,	it	cannot
be	changed	back	to	an	RDML	Component.	The	code	in	the	component	would
need	to	be	copied	to	an	RDML	Component	and	any	RDMLX	features
removed	from	the	code.
	4.2	Component	Definition

its:Lansa011.chm::/lansa/l4wadm05_0200.htm
its:Lansa011.chm::/lansa/l4wpar01_0020.htm

4.2.5	Framework
Mandatory.
Specify	the	framework	with	which	you	want	to	associate	the	component.
Frameworks	are	a	business-oriented	grouping	of	items.
Rules

You	may	select	only	one	Framework	to	associate	with	the	component.
Tips	&	Techniques

It	is	easier	to	manage	your	application	if	you	put	all	its	forms	in	the	same
group	or	framework.	Often	you	might	want	to	create	a	new	group	for	the
application.
Groups	and	Frameworks	are	defined	on	the	IBM	i	and	imported	to	Visual
LANSA.

Also	See
4.2.6	Group
	4.2	Component	Definition

Creating	Components

its:LANSA012.CHM::/lansa/l4wusr01_1550.htm

4.2.6	Group
Specify	the	group	or	groups	with	which	you	want	to	associate	the	component.
Groups	are	a	development-oriented	means	of	grouping	similar	items	together.
Rules

A	group	does	not	have	to	be	selected.
You	may	select	(highlight	in	the	list)	one	or	more	groups	to	associate	with	the
component.

Tips	&	Techniques
Groups	and	Frameworks	are	defined	on	the	IBM	i	and	imported	to	Visual
LANSA.
You	might	assign	a	commonly	used	shared	component	to	a	specific	Group.
User	defined	Lists	are	commonly	used	to	organize	application	components
within	the	editor.

Also	See
4.2.5	Framework
Create	Components	in	the	User	Guide
	4.2	Component	Definition

its:LANSA012.CHM::/lansa/l4wusr01_1550.htm

4.2.7	Open	In	Editor
Select	this	option	if	you	want	the	component	opened	immediately	in	the	Editor
so	that	you	can	start	working	on	it.
If	you	don't	select	(ü)	this	option,	the	component	will	be	added	to	the	Repository
and	you	can	open	it	in	the	Editor	later.
	4.2	Component	Definition

4.2.8	Close
Select	the	Close	option	(ü)	if	you	do	not	want	to	create	another	component	of
the	same	type.
If	you	leave	this	option	blank,	the	dialog	will	remain	open	to	enable	you	to	enter
the	next	component.
	4.2	Component	Definition

4.2.9	Layout	Weblet
Only	applies	to	Web	Application	Modules.
The	name	of	the	Layout	Weblet	to	be	used	as	the	default	layout	for	the	WAM.
A	Layout	Weblet	provides	the	basic	HTML	document	structure	(html,	head,
body,	script,	style,	etc.)	required	by	all	web	pages.
It	is	suggested	that	you	should	create,	and	use,	a	site	Layout	Weblet	to	maintain
a	consistent	look	and	feel	for	all	your	company's	web	pages.
The	Layout	Weblet	you	choose	may	be:
one	of	the	LANSA	shipped	Layout	Weblets
an	existing	WAM	Layout	Weblet
your	own	site	Layout	Weblet.

Your	own	site	Layout	Weblet	can	be	created	using	the	Web
Application	Layout	Wizard	or	you	may	choose	to	create	your	own
Layout	Weblet.

If	you	leave	this	field	blank,	LANSA	will	use	the	default	Layout	Weblet.
LANSA	will	generate	a	default	layout	specific	to	your	WAM	using	the
nominated	or	default	Layout	Weblet.
Once	a	WAM	is	created	using	a	specific	Layout	Weblet,	all	subsequent	New
WAM	dialogs	will	default	to	use	the	same	layout.

Also	see
WAM	Layouts	and	Layout	Weblets	in	the	Web	Application	Modules	(WAMs)
Guide.
Create	a	WAM	in	the	User	Guide.
	4.2	Component	Definition

its:lansa087.chm::/Lansa/WAMEngm1_0120.htm
its:lansa087.chm::/lansa/wamengm2_0035.htm
its:lansa012.chm::/lansa/l4wusr04_0235.htm

4.3	Component	Types
Visual	LANSA	has	the	following	types	of	user	definable	components:
4.3.1	Form:	A	form	corresponds	to	a	window	of	an	application.
4.3.2	Reusable	Part:	These	parts	contain	controls	and	code	which	can	be
reused	in	forms	(or	other	reusable	parts).
4.3.4	Visual	Style:	This	is	a	special	kind	of	component	which	controls	the
appearance	of	individual	fields,	forms	and	controls	or	entire	applications.
4.3.3	WAM:	Web	Application	Modules	are	component-based	web	technology
used	for	building	LANSA	applications	for	the	Internet
4.3.5	Icon:	These	are	images	which	are	shared	by	many	applications.
4.3.6	Bitmap:	These	are	images	which	are	shared	by	many	applications.
4.3.7	Cursor:	These	are	images	which	are	shared	by	many	applications.
4.3.8	ActiveX:	This	is	a	Microsoft	ActiveX	control.
4.3.9	.NET	Components:	Third-party	reusable	components	that	have	been
created	using	the	Microsoft	.NET	Framework.

Platform	Considerations
General:	Restrictions	may	apply	to	the	execution	of	some	component	types	on
specific	platforms.	For	example,	IBM	i	platform	does	not	support	the
execution	of	Forms	with	a	visual	interface;	however,	server-side	components
are	supported.
Windows:	All	component	types	are	supported	on	Windows.

Also	See
4.1	Component	Concepts
4.2	Component	Definition
	4.	Components

4.3.1	Form
A	form	is	a	component	which	corresponds	to	a	window	of	your	application
when	it	is	running.	You	create	the	interface	of	your	application	by	dragging
components	from	the	repository	to	forms.	It	might	include	fields,	buttons,	lists,
4.3.2	Reusable	Part	or	other	types	of	components.	You	can	also	put	various
purely	visual	things	such	as	4.3.5	Icon,	4.3.6	Bitmap	and	videos	on	forms.

The	form	consists	of	two	parts:	a	visual/graphical	design	or	interface	layout,	and
source	code.	A	form	uses	RDML/RDMLX	code	for	building	the	program	logic
to	support	the	interface.
Typically,	an	application	will	consist	of	more	than	one	form	to	create	a	"multi-
form	application".

Also	See
4.2	Component	Definition
	4.3	Component	Types

4.3.2	Reusable	Part
Component	technology	is	designed	to	provide	productivity,	quality	and
consistency	gains	by	centering	the	development	effort	on	the	creation	of
standard,	reusable,	automated	building	blocks,	called	reusable	parts,	from	which
applications	are	assembled.	As	much	of	the	maintenance	is	carried	out	at	the
reusable	part	level,	the	time	required	in	testing	and	verifying	individual
applications	is	also	greatly	reduced.
A	typical	Visual	LANSA	application	is	built	from	a	number	of	reusable	parts
defined	in	the	repository,	such	as	lists,	fields	and	standard	dialogs.	You	can
change	an	individual	reusable	part	and	this	change	is	reflected	in	every
application	that	uses	the	component—the	applications	themselves	do	not	need
to	be	changed	or	recompiled.	For	example	you	could	change	the	label	of	a
reusable	part	and	this	change	would	be	reflected	immediately	in	every
application	where	the	button	is	used.
Reusable	parts	allow	you	to	define	components	that	can	be	reused	in	many
different	applications.	It	is	like	using	any	other	component	such	as	a	push
button.		A	reusable	part	presents	to	the	outside	world	as:
a	set	of	properties	-	which	you	can	set	and	get	just	like	the	properties
associated	with	a	push	button.
a	set	of	methods	-	which	you	can	invoke	to	request	that	the	part	performs
some	activity.
a	set	of	events	-	which	you	can	monitor	for	so	that	you	are	notified	when
something	significant	happens	within	the	reusable	part.

Reusable	Parts	can	be	used	whenever	you	suspect	that	the	logic	you	are	going	to
create	can	be	simplified,	standardized	and	reused	in	more	than	one	form.
Note	that	you	cannot	execute	a	reusable	part	in	isolation.	It	has	to	be	imbedded
in	a	4.3.1	Form	before	you	can	observe	and	test	its	operation.

Also	See
4.2	Component	Definition
	4.3	Component	Types

4.3.3	WAM
Web	Application	Modules,	also	called	WAMs,	are	a	component-based	Web
technology	used	for	building	LANSA	applications	for	the	Internet.	WAM
components	are	enabled	for	Full	RDMLX	and	are	defined	with	component
properties,	events	and	methods	(PEM).	The	WAM	Editor	also	includes
WYSIWYG	editing	features	for	customizing	any	XSL	presentation	associated
with	the	WAM.
WAMs	use	a	standard	XML/XSL	Architecture	which	is	open	and	rapidly
adaptable	to	technology	changes.	By	using	an	XML/XSL	Architecture,	WAMs
are	able	to	create	an	independence	between	the	data	specification	and
presentation	specification.	This	independence	is	very	important	as	new
computing	device	and	presentation	formats	are	defined.	For	example,	if	you
build	a	solution	for	only	HTML,	what	happens	when	you	require	a	cellular
solution	requiring	WML	or	some	other	technology.	The	WAM	architecture	is
able	to	deliver	technology	services	for	a	variety	of	client	computing	devices
including	browsers.

Also	See
An	Introduction	to	WAMs
4.2	Component	Definition
	4.3	Component	Types

its:lansa087.chm::/lansa/wamengm1_0010.htm

4.3.4	Visual	Style
The	appearance	of	Visual	LANSA	components	is	controlled	by	visual	style
components.	A	visual	style	component	controls	the	appearance	of	the
application	including	colors,	fonts	and	3D	effects.
You	can	set	one	visual	style	to	govern	your	entire	application.	This	ensures
absolute	uniformity	and	makes	it	possible	to	make	global	changes	by	changing	a
single	setting.	Visual	styles	are	multilingual	so	that	you	can	define	different
settings	for	different	languages	in	one	style.
To	define	how	items	such	as	a	text	label	will	be	displayed,	LANSA	supports	the
component	property	called	a	VisualStyle	property.	This	property	can	be
assigned	to	a	Visual	Style	defined	in	the	LANSA	Repository.
For	example,	a	LANSA	shipped	visual	style	VS_Norm	defines	the	following
properties	for	a	label:

BorderStyle 3DLeft	(3D	effect,	shadow	on	the	left)

NormBackColor ButtonFace	(the	color	specified	for	buttons	in	the	Windows
BUTTONFACE	system	value,	usually	gray)

TextColor WindowText	(the	color	specified	for	windows	text	in	the
WINDOWTEXT	system	value,	usually	black)

Face	Name MS	Sans	Serif

FontSize 8	points

and	it	will	look	like	this:

LANSA	comes	with	predefined	visual	styles.	You	can	use	them,	change	them	or
create	your	own.	To	get	the	full	benefit	of	visual	styles,	they	should	be	managed
centrally.

Also	See
4.2	Component	Definition
	4.3	Component	Types

4.3.5	Icon
When	you	want	to	use	icons	or	bitmaps	in	many	of	the	Visual	LANSA	controls
such	as	tree	and	list	views,	forms,	push-buttons	and	toolbar	buttons	you	must
first	enroll	the	image	in	the	repository	as	a	bitmap	or	icon	component.
Using	repository-enrolled	images	makes	development	and	application
deployment	easier	because	the	images	are	managed	centrally	so	no	separate
image	files	need	to	be	maintained	or	distributed.	Also,	you	do	not	need	to
recompile	your	forms	when	you	change	an	image.
There	is	a	set	of	icons	and	bitmaps	supplied	with	LANSA	(called	VB_xxxxxx
and	VI_xxxxxx).
Visual	LANSA	does	not	provide	an	icon	editor,	but	many	cheap	or	free	icon
editors	are	available	on	the	Web.
Libraries	of	icons	are	also	accessible	on	the	Web.	Usually	these	libraries	are	free
or	available	for	a	nominal	charge.	An	example	of	a	site	that	offers	icon	libraries:
Kira's	Icon	Library.	A	Web	search	will	reveal	other	icon	libraries.	

Also	See
4.2	Component	Definition
	4.3	Component	Types

http://lightsphere.com/kicons/

4.3.6	Bitmap
When	you	want	to	use	icons	or	bitmaps	in	many	of	the	Visual	LANSA	controls
such	as	tree	and	list	views,	forms,	push-buttons	and	toolbar	buttons	you	must
first	enroll	the	image	in	the	repository	as	a	bitmap	or	icon	component.
Using	repository-enrolled	images	makes	development	and	application
deployment	easier	because	the	images	are	managed	centrally	so	no	separate
image	files	need	to	be	maintained	or	distributed.	Also,	you	do	not	need	to
recompile	your	forms	when	you	change	an	image.
There	is	a	set	of	icons	and	bitmaps	supplied	with	LANSA	(called	VB_xxxxxx
and	VI_xxxxxx).
Visual	LANSA	does	not	provide	an	icon	editor,	but	many	cheap	or	free	icon
editors	are	available	on	the	Web.
Libraries	of	icons	are	also	accessible	on	the	Web.	Usually	these	libraries	are	free
or	available	for	a	nominal	charge.	An	example	of	a	site	that	offers	icon	libraries:
Kira's	Icon	Library.	A	Web	search	will	reveal	other	icon	libraries.	

Also	See
4.2	Component	Definition
	4.3	Component	Types

http://lightsphere.com/kicons/

4.3.7	Cursor
When	you	want	to	use	specific	cursor	images	for	operations	such	as	drag	and
drop,	you	must	first	enroll	the	image	in	the	repository	as	a	cursor	component.
When	you	create	cursor	components,	you	need	to	specify	the	name	of	an
existing	.cur	file	as	the	value	of	the	FileName	property.	You	should	be	able	to
find	.cur	files	in	your	Windows	directory.

Also	See
4.2	Component	Definition
	4.3	Component	Types

4.3.8	ActiveX
ActiveX	controls	are	third-party	standard	reusable	components	which	you	can
use	in	any	application	that	supports	ActiveX	technology.	Visual	LANSA
provides	full	support	of	ActiveX.
There	are	ActiveX	controls	for,	for	instance,	calendars,	text	formatting,
graphing,	spell	checking,	advanced	grids	or	Web	browsers.	You	can	also
integrate	many	applications,	such	as	the	Microsoft	Office	Suite	(Word,	Excel,
Powerpoint	etc.)	into	your	Visual	LANSA	application	using	ActiveX
technology.
You	need	to	enrol	ActiveX-enabled	applications	in	the	LANSA	repository	as	a
component	before	you	can	use	them	from	your	LANSA	application.
You	work	with	ActiveX	controls	the	same	way	as	you	work	with	any	other
controls:	by	using	the	control's	properties,	methods	and	events.	Some	controls
are	very	simple	and	little	programming	is	required	to	use	them,	others	provide
complex	functionality	and	may	require	much	more	coding	than	is	needed	than
when	using	native	Visual	LANSA	controls.
Visual	LANSA	also	allows	developers	to	expose	LANSA	components	as
ActiveX	controls	on	Microsoft	Windows.	When	a	Visual	LANSA	component
(form	or	reusable	part)	is	compiled,	ActiveX	controls	can	be	generated	exposing
nominated	properties,	events	and	methods.	These	features	will	be	exposed	via
attributes	in	the	components	code.

Also	See
4.2	Component	Definition
Using	ActiveX	Controls	in	the	Developers	Guide.
	4.3	Component	Types

its:lansa013.CHM::/lansa/l4wdev07_0015.HTM

4.3.9	.NET	Components
.NET	Components	are	third-party	reusable	components	which	have	been	created
using	the	Microsoft	.NET	Framework.	.NET	Components	may	be	components
or	controls	that	you	have	created	yourself,	purchased	from	a	third-party,	or
standard	controls	in	the	Microsoft	.NET	Framework.
Examples	of	.NET	Framework	components	are	calendars,	graphing,	spell
checking,	advanced	grids	and	browsers.
LANSA	provides	support	for	the	use	of	.NET	Framework	components	and
controls	in	Visual	LANSA	projects.

Also	See
4.2	Component	Definition
Before	You	Decide	to	Use	a	.NET	Component	in	the	Developers	Guide.
	4.3	Component	Types

its:lansa013.CHM::/lansa/l4wdev07_0375.HTM

4.4	Component	Help	Text
Component	help	text	can	be	stored	within	the	component	definition	(refer	to
DEFINE_COM)	or	it	can	be	stored	in	the	repository	as	it	with	field,	function
and	process	help.
Help	text	is	information	that	is	displayed	to	the	user	when	application	requests
help	(using	the	Help	key	or	equivalent	request).	Help	text	can	be	entered	for
each	language	specified	in	the	partition.
Generally	Help	text	has	the	following	characteristics:
It	is	free	format.	No	restrictions	usually	exist	on	the	content	or	format	of	Help
text.
It	relates	directly	to	the	action	the	user	was	taking	at	the	time	the	Help	was
requested.	Usually	an	overall	description	of	the	component	that	the	user	is
using	is	presented.
Help	text	may	also	include	special	Help	Text	Enhancement	&	Substitution
Values.

LANSA	automatically	controls	the	handling	of	the	Help	processing	in
applications.	LANSA	will	automatically	determine	the	type	of	Help	that	is
required	(field,	component,	process	or	function)	and	automatically	display	the
associated	Help	text	(if	any	exists).
You	can	also	build	your	own	application	level	help	that	integrates	online	help
and	your	application	documentation.	Refer	to	SET	230	example		Using	CHM
files	for	Online	Help	Text.

Also	See
In	the	Developer	Guide:	Repository	Help	Editor
In	this	guide:	Substitution/Control	Values	
Substitution/Control	Values	-	Visual	LANSA	Only	
Help	Text	Attributes.
	4.	Components

its:set.chm::/using_chm_files_for_online_help_text.htm
its:LANSA013.CHM::/lansa/L4wDev03_0135.htm

4.5	Component	Compile	Options
Select	the	options	that	should	be	used	when	generating	and/or	compiling	the
selected	components.	The	options	will	be	saved	after	completion	of	the	current
operation.
4.5.1	Compile	Component	only	if	necessary
4.5.2	Keep	Generated	Source
4.5.3	Debug	Enabled
4.5.4	Web	Application	Module	Options
	4.	Components

4.5.1	Compile	Component	only	if	necessary
Select	this	option	so	that	only	those	components	that	need	to	be	compiled	are
compiled.	This	is	the	default	setting.
If	it	is	not	selected,	all	the	selected	components	are	compiled.
	4.5	Component	Compile	Options

4.5.2	Keep	Generated	Source
Select	this	option	to	keep	the	generated	source	code.	The	default	option	is	not	to
keep	the	source	code.
The	source	code	needs	to	be	kept	if	the	resulting	objects	are	to	be	executed	on	a
platform	other	than	Microsoft	Windows.	It	is	also	required	in	order	to	fully
resolve	dump	files,	though	its	possible	to	produce	this	when	needed,	provided
the	original	Visual	LANSA	development	environment	is	retained.
If	the	source	code	is	being	moved	to	another	machine	for	subsequent
(re)compilation,	you	must	use	this	option.
The	source	code	to	be	kept	includes:
The	table/index/view/OAM	creation	code	if	generating	a	file
The	process/function/component	creation	code	if	generating	a	process,	or
function	or	component.
The	corresponding	define	and	make	files.
	4.5	Component	Compile	Options

4.5.3	Debug	Enabled
Select	this	option	to	compile	the	objects	with	debug	information.
If	you	use	this	option,	the	object	can	be	debugged	using	the	LANSA	debug
tools.	The	executable	objects	will	be	slightly	larger	than	compiling	without
debug.
Refer	to	Producing	Debug	Symbols	for	Your	LANSA	Application	in	the
Administrator's	Guide		for	important	information	that	is	vital	to	keep	securely
for	rare	but	critical	situations.
	4.5	Component	Compile	Options

its:lansa011.CHM::/lansa/l4wADM07_0075.HTM

4.5.4	Web	Application	Module	Options
When	compiling	a	Web	Application	Module	or	when	one	or	more	of	the
selected	objects	to	compile	is	a	Web	Application	Module,	the	Generate
XML/XSL	checkbox	is	enabled.
Generated	code	can	only	execute	from	the	Web.

Also	See
Generate	XSL
Technology	Services
	4.5	Component	Compile	Options

Generate	XSL
Select	this	option	if	you	want	to	generate	both	the	Web	application	Module's
input	XML	and	XSL	stylesheets.	If	you	do	not	select	this	option,	only	the	input
XML	is	generated	for	the	Web	Application	Module's	webroutines.
When	you	select	to	generate	XSL,	you	have	the	option	to	do	this	for	all
webroutines	or	only	for	new	webroutines	which	do	not	have	existing	XSL
stylesheets.	The	default	option	is	to	generate	only	for	new	webroutines.
	4.5.4	Web	Application	Module	Options

Technology	Services
Select	the	Technology	Services	that	you	want	to	generate.	An	XSL	stylesheet
will	be	created	for	the	selected	Technology	Services.	If	generating	XSL,	at	least
one	Technilogy	Service	must	be	selected.
	4.5.4	Web	Application	Module	Options

4.6	Technology	Services
Technology	Services	is	a	presentation	or	XML	format	used	by	a	WAM	to
interact	with	a	user	agent	or	other	XML-aware	application.
LANSA	provides	Technology	Services	for	XHTML	and	Pocket	PC	HTML.	A
Technology	Service	is	uniquely	identified	by	the	combination	of	the	Technology
Service	provider	and	the	Technology	Service	name,	for	example:
LANSA:XHTML.
To	create	a	Technology	Service,	refer	to	Edit	Technology	Service	Definitions	in
the	User	Guide.
4.6.1	Technology	Service	Name
4.6.2	Technology	Service	Provider	Name
4.6.3	Technology	Service	Caption
4.6.4	Technology	Service	Description
4.6.5	Technology	Service	Properties

Also	See
Web	Application	Module	Guide
	4.	Components

its:Lansa012.chm::/lansa/l4wusr01_1610.htm
its:LANSA087.chm::/lansa/lansa087_begin.htm

4.6.1	Technology	Service	Name
Mandatory.
The	name	of	the	presentation	or	XML	format.	It	normally	matches	the	name	of
the	standardized	format	(For	example,	XHTML	or	WML).
A	Technology	Service	is	uniquely	identified	by	the	combination	of	the
Technology	Service	provider	and	the	Technology	Service	name,	for	example:
LANSA:XHTML.
Rules

Maximum	10	characters.

Also	see
4.6.2	Technology	Service	Provider	Name
	4.6	Technology	Services

4.6.2	Technology	Service	Provider	Name
Mandatory.
The	name	of	the	party	who	provided	this	Technology	Service.
Any	Technology	Services	supplied	by	LANSA	will	be	defined	under	the
Technology	Service	Provider:	LANSA.	If	you	intend	to	create	your	own
Technology	Services,	it	is	recommended	that	you	use	a	unique	Technology
Service	Provider	name	to	avoid	any	clashes	with	LANSA	definitions	in	future
releases.
For	example,	LANSA	provides	an	XHTML	Technology	Service.	The
combination	of	Technology	Service	Provider	and	Technology	Service	is	used	to
uniquely	identify	the	Technology	Service	as	LANSA:XHTML.	If	you	need	to
define	your	own	variation	of	XHTML,	you	use	your	own	Technology	Service
Provider	and	a	new	Technology	Service	associated	with	this	Provider,	so	you
may	have	your	version	of	XHTML	identified	as	<Provider>:XHTML.
Rules

Maximum	10	characters.
	4.6	Technology	Services

4.6.3	Technology	Service	Caption
Mandatory.
A	short	description	by	which	the	Technology	Service	can	be	known.
This	description	can	be	entered	via	the	Details	tab	after	you	have	created	the
Technology	Service.
Rules

Maximum	25	characters.
	4.6	Technology	Services

4.6.4	Technology	Service	Description
Mandatory.
Specify	the	description	of	the	Technology	Service.
	4.6	Technology	Services

4.6.5	Technology	Service	Properties
MIME	Type
Document	Extension
Edit	Numeric
Designable	in	Editor
Maximum	Footprint
Device	Skin	Image
Script	Location
Style	Location

Also	See
Web	Application	Module	Guide
	4.6	Technology	Services

its:LANSA087.chm::/lansa/lansa087_begin.htm

MIME	Type
Mandatory.
Specify	the	MIME	type	to	include	in	the	HTTP	header	for	an	outgoing	response.
Rules
Allowable	values	are:

text/html Text	or	HTML	documents

	4.6.5	Technology	Service	Properties

Document	Extension
Mandatory.
Specify	the	document	extension	associated	with	documents	(stream	files)	for	the
Technology	Service.	For	example,	HTML	pages	are	identified	by	the	extension
.html.
Rules

Maximum	10	characters.
	4.6.5	Technology	Service	Properties

Edit	Numeric
Mandatory.
Specify	whether	the	Technology	Service	should	edit	numeric	values	or	not.
Presentation	oriented	formats	normally	edit	numeric	fields.	If	your	Technology
Service	is	to	be	consumed	by	an	application,	you	would	not	want	edit	symbols
in	your	numeric	values.
	4.6.5	Technology	Service	Properties

Designable	in	Editor
Mandatory.
This	property	is	used	to	determine	if	you	can	visually	design	(use	drag-and-
drop)	the	Technology	Service.	This	is	normally	set	to	"Yes"	only	for	Technology
services	shipped	by	LANSA.	If	you	are	creating	a	customized	version	of	any	of
Technology	Services	shipped	by	LANSA,	you	may	set	this	property	to	"Yes"
but	you	are	responsible	for	compatibility.
	4.6.5	Technology	Service	Properties

Maximum	Footprint
Optional.
This	property	is	used	in	the	Design	view	to	present	the	actual	screen	size	of	the
Technology	Service	end-user	interface.	Most	devices,	such	as	PDAs,	have	small
screen	sizes	which	you	must	allow	for	when	designing	presentation	in	WAM
Editor.
	4.6.5	Technology	Service	Properties

Device	Skin	Image
Optional.
This	property	is	used	to	display	a	device	background	image	in	the	Design	view.
This	file	can	be	in	most	image	file	formats	and	it	is	loaded	from	the	web	server
images	virtual	directory.
	4.6.5	Technology	Service	Properties

Script	Location
Mandatory.
The	default	location	for	web	external	resources	of	type	script.	The	WAM	guide
describes	these	locations.
	4.6.5	Technology	Service	Properties

Style	Location
Mandatory.
The	default	location	for	web	external	resources	of	type	style.	The	WAM	guide
describes	these	locations.
	4.6.5	Technology	Service	Properties

5.	Weblets
Weblets	are	reusable	components	for	common	HTML	functions	and	can	simply
be	dragged	and	dropped	into	your	web	pages.

5.1	Weblet	Name
5.2	Weblet	Description
5.3	Weblet	Group

5.4	Layout	Weblet
5.5	Webroutine	Service	Name

	5.	Weblets

5.1	Weblet	Name
Mandatory.
Specify	the	name	of	the	weblet	to	be	stored	in	the	LANSA	Repository.	Weblet
names	are	not	case	sensitive.
Rules

Must	be	a	valid	LANSA	Object	Name.
Warnings

Avoid	the	use	of	names	like	SQLxxx,	as	this	may	cause	problems	when	used
in	functions	that	use	SQL	(Structured	Query	Language)	facilities.	(For
example,	Command	SELECT_SQL.)

Tips	&	Techniques
Name	can	be	either	lower	case	or	upper	case.
	5.	Weblets

5.2	Weblet	Description
Mandatory.
Specify	the	description	associated	with	the	weblet.	The	description	text	may
be	used	as	the	default	description	when	weblet	information	is	displayed	in	the
repository	or	in	the	finished	application.	
If	the	partition	is	multilingual,	the	initial	description	is	copied	as	the
description	for	all	other	languages	in	the	partition.	You	must	change	each
description	if	you	wish	it	to	be	in	a	different	language.

Tips	&	Techniques
You	can	use	upper	and	lower	case	characters	for	the	description.

Also	See
Create	Weblet	in	the	User	Guide
	5.	Weblets

its:Lansa012.chm::/lansa/l4wusr04_0335.htm

5.3	Weblet	Group
Optional.
Weblet	Groups	allow	you	to	group	similar	weblets	together.	
Nominate	the	weblet	group	to	which	the	weblet	will	be	added.	If	the	weblet
group	does	not	already	exist,	the	group	will	be	created.	If	no	group	is
nominated,	the	weblet	is	added	to	the	'Unassigned'	group.
	5.	Weblets

5.4	Layout	Weblet
Optional.
Select	this	option	if	you	want	to	create	a	layout	weblet.	A	layout	weblet
provides	the	basic	HTML	document	structure	(html,	head,	body,	script,	style,
etc.)	required	by	all	web	pages.

Also	See
Create	Weblet	in	the	User	Guide
	5.	Weblets

its:Lansa012.chm::/lansa/l4wusr04_0335.htm

5.5	Webroutine	Service	Name
A	WAM's	webroutine	can	uniqely	either	be	identified	by	its	name	and	the	name
of	the	WAM	it	belongs	to.	It	can	also	be	uniquely	identified	by	one	name,	called
the	Service	Name.
When	launching	a	webroutine	in	a	browser	use	the	following	URL:

http://localhost/cgi-bin/lansaweb?webapp=<WAM	name>+webrtn=
<WEBROUTINE	name>+ml=<TS	name>+part=<PARTITION
name>+lang=<LANGUAGE	name>
If	a	service	name	has	been	associated	with	a	Webroutine,	the	unique	service
name	can	be	specified:

http://localhost/cgi-bin/lansaweb?srve=<Service	name>+ml=<TS
name>+part=<PARTITION	name>+lang=<LANGUAGE	name>
The	Service	Name	has	to	be	unique	in	the	partition	it	is	used	in.
Using	a	WEBROUTINE	Service	Name	provides	greater	flexibility	when
deploying	WAM	applications.	For	example,	it	allows	applications	to	be	re-
deployed	to	a	different	Partition,	WAM	or	WEBROUTINE	without	having	to
modify	any	external	URL	references	to	it.
	5.	Weblets

	
	
	

6.	Processes	and	Functions
Process	Topics:
6.1	Process	Definition
6.2	Function	Control	Table
6.3	Special	Entries
6.4	Attached	Processes/Functions
6.5	Action	Bar	Table
6.6	Process	Help	Text
6.9	Process/Function	Compile	Options
Function	Topics:
6.7	Function	Definition
6.8	Function	Help	Text

Also	See
In	the	User	Guide:
Editing	Processes	
Editing	Components	and	Functions.
In	the	Developer	Guide:
Developing	with	Processes	and	Functions.

its:LANSA012.CHM::/lansa/l4wusr01_0395.htm
its:LANSA012.CHM::/lansa/l4wusr01_0125.htm
its:LANSA013.CHM::/lansa/L4wDev05_0020.htm

6.1	Process	Definition
6.1.1	Process	Name
6.1.2	Process	Identifier
6.1.3	Process	Description
6.1.4	Menu	Style
6.1.5	Anticipated	Usage
6.1.6	Optimize	for	remote	communications
6.1.7	Enable	for	Web
6.1.8	Generate	XML

Also	See
Editing	Processes	in	the	User	Guide.
Creating	Processes	in	the	User	Guide.
What	is	a	Process		in	the	Developer	Guide.
Developing	with	Processes	and	Functions		in	the	Developer	Guide.
	6.	Processes	and	Functions

its:LANSA012.CHM::/lansa/l4wusr01_0395.htm
its:LANSA012.CHM::/lansa/l4wusr01_0490.htm
its:LANSA013.CHM::/lansa/L4wDev05_0075.htm
its:LANSA013.CHM::/lansa/L4wDev05_0020.htm

6.1.1	Process	Name
Mandatory.
Specify	the	name	of	the	process	to	be	stored	in	the	repository.
Rules

Must	be	a	valid	LANSA	object	name.
Warnings

Please	refer	to	LANSA	object	name.
Platform	Considerations

Please	refer	to	LANSA	object	name.
A	process	name	must	be	unique	within	the	entire	LANSA	partition.

Tips	&	Techniques
It	is	recommended	that	a	naming	standard	be	developed	for	process	names.

Also	see
Creating	Processes	in	the	User	Guide.
6.1.2	Process	Identifier
	6.1	Process	Definition

its:LANSA012.CHM::/lansa/l4wusr01_0490.htm

6.1.2	Process	Identifier
Mandatory.
Specify	the	identifier	of	the	process	to	be	stored	in	the	repository.
Rules

Must	be	a	valid	LANSA	object	name.
Warnings

Please	refer	to	process	details	described	in	LANSA	object	name.
Platform	Considerations

Please	refer	to	process	details	described	in	LANSA	object	name.
A	process	identifier	must	be	unique	within	the	entire	LANSA	partition.

Tips	&	Techniques
It	is	recommended	that	a	naming	standard	be	developed	for	process
identifiers.

Also	see
Creating	Processes	in	the	User	Guide.
6.1.1	Process	Name
	6.1	Process	Definition

its:LANSA012.CHM::/lansa/l4wusr01_0490.htm

6.1.3	Process	Description
Mandatory.
Specify	the	description	to	be	associated	with	the	process.	The	description	aids
other	users	of	this	process	in	identifying	what	it	can	be	used	for.	If	the	partition
is	multilingual,	the	description	specified	for	the	default	partition	language	will
be	used	for	other	languages.
Rules

A	description	must	be	entered	for	each	language	defined	for	the	partition.
Maximum	length	is	40	characters.

Also	see
Creating	Processes	in	the	User	Guide.
	6.1	Process	Definition

its:LANSA012.CHM::/lansa/l4wusr01_0490.htm

6.1.4	Menu	Style
Mandatory.	Default=	SAA/CUA
Specify	the	menu	style	of	the	process	that	is	to	be	created.
Rules
Allowable	values	are:

SAA/CUA All	menus	and	screen	formats	used	by	this	process	and	any	of	its
associated	functions	are	to	conform	to	the	SAA	(Systems
Application	Architecture)	and/or	CUA	(Common	User	Access)
standards	defined	for	the	partition	in	which	the	process	is	being
defined.	Refer	to	Partition	Definitions	in	SAA/CUA	Implementation
in	the	LANSA	Application	Design	Guide	for	more	details	of	what	the
SAA/CUA	standards	are	for	a	partition	and	how	they	apply.

Action
Bar

The	process	is	to	act	as	an	"Action	bar"	as	defined	by	the	CUA
(Common	User	Access)	standards	defined	by	IBM	and	for	this
partition.

Warning
If	using	Action	Bar,	then	the	following	prerequisites	must	be	satisfied:
The	current	partition	must	be	SAA/CUA	enabled.
You	must	read	all	relevant	information	in	the	LANSA	Application	Design
Guide	and	in	the	IBM	supplied	CUA	1989	Basic	Interface	Design	Guide.
You	must	be	totally	committed	to	the	CUA	1989	standard	for	the	"look"	and
"feel"	of	your	application	software.
	6.1	Process	Definition

its:lansa065.chm::/lansa/dsnbd_0010.htm
its:lansa065.chm::/lansa/lansa065_begin.htm

6.1.5	Anticipated	Usage
Mandatory.	Default=Light.
Specify	the	amount	of	usage	of	the	process	which	is	anticipated.
Rules
Allowable	values	are:

LIGHT Anticipated	usage	is	LIGHT.	The	process	will	not	be	used	repeatedly
and	continuously.	Most	processes	are	considered	to	be	LIGHT	usage.

HEAVY Anticipated	usage	is	heavy.	The	process	will	be	used	repeatedly	and
continuously.	This	option	is	normally	only	used	in	repetitive	data	entry
applications.

Platform	Considerations
IBM	i:	In	technical	terms	the	Anticipated	Usage	value	indicates	whether	or
not	the	RPG	programs	created	for	the	functions	in	this	process	should	set	on
the	LR	(last	record)	indicator	and	close	all	files	when	terminating.
IBM	i:	The	Anticipated	Usage	value	can	be	changed	dynamically	(without
having	to	recompile	any	programs)	so	it	may	be	worthwhile	experimenting
with	it	to	modify	system	performance/throughput.
	6.1	Process	Definition

6.1.6	Optimize	for	remote	communications
Default=No
Specify	whether	remote	communications	are	optimized	for	all	functions	within
this	process.
Platform	Considerations

IBM	i:	Please	refer	to	Miscellaneous	Process	Details	Maintenance	in	the
LANSA	for	i	User	Guide	for	information	about	optimizing	remote
communications.
	6.1	Process	Definition

its:Lansa010.chm::/lansa/ugub_40127.htm

6.1.7	Enable	for	Web
Default=No.
	6.1	Process	Definition

6.1.8	Generate	XML
Default=No.
	6.1	Process	Definition

6.2	Function	Control	Table
6.2.1	Function	Description
6.2.2	Display	on	Menu
6.2.3	Menu	Sequence
6.2.4	Next	Function
6.2.5	Allowable	Next	Function(s)

Also	See
6.	Processes	and	FunctionsFunction	Tab	in	the	User	Guide.
Function	Control	Table	Concepts	in	the	Developer	Guide.
	6.	Processes	and	Functions

its:LANSA012.CHM::/lansa/l4wusr01_0495.htm
its:LANSA013.CHM::/lansa/L4wDev05_0105.htm

6.2.1	Function	Description
Mandatory.
Specify	the	description	associated	with	the	function.	The	description	of	the
function	will	be	displayed	on	the	process	menu	and	in	the	LANSA	Repository.
Rules

A	file	description	must	be	entered	for	each	language	defined	for	the	partition.
Maximum	length	is	40	characters.

Tips	&	Techniques
This	option	is	often	used	to	change	the	description	of	the	function	in	the
LANSA	Repository.
Since	this	value	will	appear	on	the	process	menu,	it	is	recommended	that	you
use	upper	and	lower	case	characters.
There	is	no	need	to	use	blanks	to	centre	the	description	as	this	is	done
automatically	on	the	process	menu.

Also	See
Function	Control	Table	Concepts	in	the	Developer	Guide.
6.7	Function	Definition
	6.2	Function	Control	Table

its:LANSA013.CHM::/lansa/L4wDev05_0105.htm

6.2.2	Display	on	Menu
Mandatory.	Default=Yes
Specify	whether	or	not	this	function	should	be	displayed	(and	therefore	be
accessible	from)	the	process's	main	menu.

Also	See
Function	Control	Table	Concepts	in	the	Developer	Guide.
	6.2	Function	Control	Table

its:LANSA013.CHM::/lansa/L4wDev05_0105.htm

6.2.3	Menu	Sequence
Mandatory.	Default=Next	sequential	number.
Specify	the	order	of	the	functions	on	the	Process	Menu.	If	the	function	is	to	be
displayed	on	the	process	menu	then	the	order	in	which	it	appears	on	the	process
menu	can	be	governed	by	modifying	the	sequencing.
Tips	&	Techniques

Example:	If	the	process	contains	FUNC1,	FUNC2	and	FUNC3.	If	you	wish
to	modify	the	sequencing	such	that	FUNC3	appears	before	FUNC2,	then	a
sequence	number	which	is	less	than	the	sequence	number	for	FUNC2	is
entered	in	this	entry	field.	This	will	then	cause	the	function	sequencing	to	be
FUNC1,	FUNC3	and	then	FUNC2.

Also	See
Function	Control	Table	Concepts	in	the	Developer	Guide.
	6.2	Function	Control	Table

its:LANSA013.CHM::/lansa/L4wDev05_0105.htm

6.2.4	Next	Function
Mandatory.	Default=MENU
Specify	the	function	that	is	"usually"	invoked	after	this	function	has	been
completed.
Rules

Allowable	values	are	any	function	defined	in	the	process	or	any	of	the
"reserved"	function	names,	except	for	*ANY	which	makes	no	sense	in	this
context.	Refer	to	Allowable	Next	Function(s).

Also	See
Function	Control	Table	Concepts	in	the	Developer	Guide.
	6.2	Function	Control	Table

its:LANSA013.CHM::/lansa/L4wDev05_0105.htm

6.2.5	Allowable	Next	Function(s)
Mandatory.	Default=*ANY
Specify	up	to	20	functions	that	are	allowed	to	be	invoked	after	this	function	has
been	completed.	
Rules
Allowable	values	include	all	functions	in	the	process	as	well	as	the	following
reserved	words:

Name Reserved	meaning	/	description

*ANY Any	function	name

MENU Display	process	main	menu

EXIT Exit	from	LANSA

HELP Display	process	HELP	text

SELECT Select	next	function	from	list	of	allowable	function

EOJ End	all	batch	processing

ERROR Abort	process	with	an	error

RETRN Return	control	to	calling	process	or	function

	

Tips	&	Techniques
The	use	of	special	value	*ANY	is	recommended	if	any	function	can	be
invoked	rather	than	listing	all	function	names.
If	*ANY	is	used,	it	should	be	the	only	entry	in	the	list.
If	*ANY	is	not	used,	ensure	that	the	Next	Function	is	included	into	the	list.
Lists	that	do	not	include	"reserved"	names	EXIT	and	MENU	are	effectively
disabling	the	use	of	the	EXIT	and	MENU	function	keys.	The	EXIT	and
MENU	function	keys	are	processed	by	simulating	the	entry	of	"next
functions"	of	EXIT	and	MENU	respectively.

Also	See
Function	Control	Table	Concepts	in	the	Developer	Guide.

its:LANSA013.CHM::/lansa/L4wDev05_0105.htm

	6.2	Function	Control	Table

6.3	Special	Entries
6.3.1	Description
6.3.2	Sequence
6.3.3	Runtime	Prompt
6.3.4	Command

Also	See
Special	Entries	Tab	in	the	User	Guide.
Special	Entries	Concepts	in	the	Developer	Guide.
	6.	Processes	and	Functions

its:LANSA012.CHM::/lansa/l4wusr01_0510.htm
its:LANSA013.CHM::/lansa/L4wDev05_0110.htm

6.3.1	Description
Specify	a	user	description	of	the	purpose	of	the	special	command	that	has	been
defined	to	LANSA.	This	description	will	appear	on	the	process	menu.
Rules

Must	be	a	valid	operating	system	command	for	the	platform	where	the
process	is	being	executed.

Also	See
Special	Entries	Concepts	in	the	Developer	Guide.
	6.3	Special	Entries

its:LANSA013.CHM::/lansa/L4wDev05_0110.htm

6.3.2	Sequence
Mandatory.	Default=Next	available	sequential	number.
Specify	the	order	in	which	the	special	menu	entry	will	appear	on	the	selected
processes	menu.
Tips	&	Techniques

The	ordering	of	the	menu	entries	can	be	resequenced	by	varying	the	value	in
this	field.

Also	See
Special	Entries	Concepts	in	the	Developer	Guide.
	6.3	Special	Entries

its:LANSA013.CHM::/lansa/L4wDev05_0110.htm

6.3.3	Runtime	Prompt
Specify	whether	or	not	the	command	should	be	"prompted"	when	it	is	used	from
the	process's	main	menu.
This	value	used	with	IBM	i	only.	If	this	option	is	selected,	the	command	will	be
prompted	before	executing.	When	used,	the	prompt	is	the	standard	IBM	CL
command	style	prompting.	Refer	to	the	appropriate	IBM	supplied	manual	for
more	details.

Also	See
Special	Entries	Concepts	in	the	Developer	Guide.
	6.3	Special	Entries

its:LANSA013.CHM::/lansa/L4wDev05_0110.htm

6.3.4	Command
Mandatory.
Specify	the	operating	system	command	that	is	to	be	executed	when	the	entry	is
chosen	from	the	process's	main	menu.
Rules

The	command	should	be	entered	exactly	as	it	would	be	on	the	command	entry
display	screen.
You	are	responsible	to	ensure	that	a	proper	path	and	parameters	have	been
specified	to	enable	the	command	to	execute	properly.

Platform	Considerations
The	use	of	special	entries	may	not	be	portable	between	operating	systems.	For
example,	IBM	i	CL	commands	cannot	be	executed	on	a	Windows	platform.
Use	caution	with	special	entries	if	you	are	building	applications	for	more	than
one	platform.

Also	See
Special	Entries	Concepts	in	the	Developer	Guide.
	6.3	Special	Entries

its:LANSA013.CHM::/lansa/L4wDev05_0110.htm

6.4	Attached	Processes/Functions
6.4.1	Process	Name
6.4.2	Function	Name
6.4.3	Sequence
6.4.4	Process	Parameters

Also	See
Attachments	Tab	in	the	User	Guide.
Attached	Processes/Functions	Concepts	in	the	Developer	Guide.
	6.	Processes	and	Functions

its:LANSA012.CHM::/lansa/l4wusr01_0505.htm
its:LANSA013.CHM::/lansa/L4wDev05_0100.htm

6.4.1	Process	Name
Mandatory.
Specify	the	name	of	the	processes	to	be	attached.
Rules

The	name	of	the	process	to	be	attached	must	be	nominated	when	attaching	a
process	or	when	directly	attaching	a	single	function.
Note	that	the	process	nominated	does	not	have	to	exist.	If	it	does	not	currently
exist	a	warning	message	will	be	issued.

Tips	&	Techniques
Multiple	processes	may	be	attached	to	a	single	process.
Multiple	functions	(from	other	processes)	may	be	directly	attached	to	a
process.
A	process	(or	any	of	its	associated	functions)	may	be	attached	to	itself.
If	a	process	B	is	attached	to	process	A,	then	it	is	possible	to	attach	process	A
to	process	B.
Processes	can	be	built	into	a	"hierarchy"	by	using	this	facility.	There	is	no
limit	to	the	"depth"	of	the	hierarchy	that	can	be	defined,	but	when	actually
using	a	process	the	"depth"	being	used	must	not	exceed	9	processes.	If	it	does
an	error	message	will	be	issued	indicating	that	it	is	not	possible	to	go	any
deeper	in	the	process	"hierarchy"	and	that	the	required	process	should	be
accessed	via	a	different	route.	

Also	See
Attached	Processes/Functions	Concepts	in	the	Developer	Guide.
	6.4	Attached	Processes/Functions

its:LANSA013.CHM::/lansa/L4wDev05_0100.htm

6.4.2	Function	Name
Mandatory.
Specify	the	name	of	the	function	that	is	to	be	directly	attached	to	the	current
process	or	indicates	that	all	functions	in	the	process	should	be	attached.
Rules

To	directly	attach	a	function	to	the	process	specify	the	name	of	the	function.
To	attach	all	functions	(i.e.:	attach	the	entire	process)	specify	*ALL	as	the
attached	function	name.
Note	that	the	function	nominated	does	not	have	to	exist.	If	it	does	not
currently	exist,	a	warning	message	will	be	issued.

Also	See
Attached	Processes/Functions	Concepts	in	the	Developer	Guide.
	6.4	Attached	Processes/Functions

its:LANSA013.CHM::/lansa/L4wDev05_0100.htm

6.4.3	Sequence
Mandatory.
Specify	the	sequence	number	to	nominate	the	relative	order	in	which	the
attached	process	or	function	should	be	displayed	on	the	process	menu.
Rules

Enter	a	number	in	the	range	1	-	999	that	indicates	the	required	display	order
of	the	process	or	function	relative	to	other	attached	processes	or	functions.

Also	See
Attached	Processes/Functions	Concepts	in	the	Developer	Guide.
	6.4	Attached	Processes/Functions

its:LANSA013.CHM::/lansa/L4wDev05_0100.htm

6.4.4	Process	Parameters

Process	Parameters	should	not	be	used.	They	exist	only	for	backward
compatibility.

Symbolic	Name
Mandatory.
The	process	parameter	symbolic	name	in	the	form	*UPnn	where	"nn"	is	the
parameter	number	in	the	range	01	to	10.
This	name	allows	the	parameter	to	be	easily	accessed	by	the	RDML	commands
associated	with	a	function.	Generally	a	parameter's	symbolic	name	can	be	used
anywhere	in	an	RDML	command	that	a	normal	field	name	or	literal	value	could
be	used.

Sequence
Mandatory.	Default=Next	sequential	number.
The	sequence	number	to	nominate	the	relative	order	in	which	the	parameter	is
stored.
Sequence	numbers	are	consecutive	and	must	be	in	the	range	from	1	to	10.

Data	Type
Mandatory.	Default=Alpha.
The	type	of	parameter	that	is	to	be	defined.
Allowable	values	are:

Alpha The	parameter	is	to	be	alphanumeric.

Numeric The	parameter	is	to	be	numeric.	If	this	option	is	used	the	parameter	is
in	fact	defined	as	a	packed	variable	as	this	format	is	easiest	to	pass.

Length
Mandatory.	Default=256
The	length	for	type	Alpha	parameters	or	the	total	number	of	digits	(including
decimals)	for	Numeric	parameters.
For	type	Alpha	parameters	the	length	specified	must	be	in	the	range	1	to	256.
For	type	Numeric	parameters	the	total	number	of	digits	must	be	in	the	range	1	to
15	and	not	less	than	the	number	of	decimal	positions	specified.

Decimals

Default=0.
The	number	of	decimals	for	Data	Type	of	Numeric	parameters	only	in	the	range
0	to	9	and	less	than	or	equal	to	the	total	number	of	digits	specified.

Description
Mandatory.
A	short	description	that	is	to	be	associated	with	the	parameter.	If	it	is	necessary
for	LANSA	to	display	a	data	entry	screen	for	specification	of	parameter	values,
this	description	will	be	displayed.	A	brief	description	of	every	process
parameter	that	is	defined	must	be	supplied.

Also	See
Parameters	Tab	in	the	User	Guide
Process	Parameter	Concepts	in	the	Developer	Guide.
	6.4	Attached	Processes/Functions

its:LANSA012.CHM::/lansa/l4wusr01_0515.htm
its:LANSA013.CHM::/lansa/L4wDev05_0115.htm

6.5	Action	Bar	Table
6.5.1	Action	Bar	Item	Description
6.5.2	AB$OPT
6.5.3	Action	Bar	Item	Sequence
6.5.4	Pull	Down	Item	Description
6.5.5	Accelerator	Key
6.5.6	PD$OPT
6.5.7	Pull	Down	Item	Sequence
6.5.8	Initially	Enabled
6.5.9	Association	Type

Also	See
Action	Bar	Table	Tab		in	the	User	Guide.
Action	Bar	Concepts	in	the	Developer	Guide.
	6.	Processes	and	Functions

its:LANSA012.CHM::/lansa/l4wusr01_0520.htm
its:LANSA013.CHM::/lansa/L4wDev05_0120.htm

6.5.1	Action	Bar	Item	Description
Mandatory.
Specify	the	text	that	is	to	appear	in	the	action	bar	to	identify	this	action	bar
choice.
Rules

Text	must	be	entered	for	each	language	defined	for	the	partition.
Tips	&	Techniques

Try	to	use	just	one	word.
Use	upper	and	lower	case	characters.
Support	for	bidirectional	and	DBCS	languages	is	provided.
Conform	to	the	CUA	1989	guidelines.
Help	option	is	automatic.	You	do	not	have	to	define	it.

Also	See
Action	Bar	Concepts
	6.5	Action	Bar	Table

its:LANSA013.CHM::/lansa/L4wDev05_0120.htm

6.5.2	AB$OPT
Mandatory.
Specify	a	value	that	allows	the	function	to	determine	exactly	which	action	bar
choice	was	used	to	cause	the	function	to	be	invoked.	The	value	you	specify	here
is	placed	into	field	AB$OPT	when	this	menu	option	is	used.	This	field	is
accessible	to	RDML	functions.
Rules

Value	specified	should	be	unique	within	this	action	bar.
It	is	an	alphanumeric	value.
Do	not	use	values	CUR	or	ALL	as	they	are	reserved	to	mean	"current"	and
"all"	in	the	SET_ACTION_BAR	Built-In	Function.

Warnings
If	AB$OPT	is	not	already	defined	in	the	Repository,	define	it	as	alphanumeric
(length	3).

Tips	&	Techniques
One	RDML	function	handling	multiple	action	bar	choices	can	have	good
performance	implications.	Refer	to	the	Sample	Program:	All	3	Functions	in
One	Program	in	the	LANSA	Application	Design	Guide.
Standards	for	AB$OPT	values	should	be	established.
	6.5	Action	Bar	Table

its:LANSA065.CHM::/lansa/dsnba_0140.htm

6.5.3	Action	Bar	Item	Sequence
Mandatory.	Default=Next	sequential	number.
Specify	the	number	associated	with	the	pull	down	choice.	This	value	is
generally	only	used	to	reorder	action	bar	choices.
Rules

Must	be	in	the	range	1	to	18	and	unique	within	the	action	bar.
	6.5	Action	Bar	Table

6.5.4	Pull	Down	Item	Description
Mandatory.
Specify	the	text	that	is	to	appear	in	the	pull	down	to	identify	this	pull	down
choice.
Rules

Text	must	be	entered	for	each	language	defined	for	the	partition.
Tips	&	Techniques

Use	upper	and	lower	case	characters.
Support	for	bidirectional	and	DBCS	languages	is	provided.
Conform	to	the	CUA	1989	guidelines.
Include	"Fnn"	to	identify	accelerator	keys	(where	required).
Include	"..."	ellipses	for	resulting	pop-ups	(where	required).
Help	pull	downs	are	automatic.	You	do	not	have	to	define	them.
	6.5	Action	Bar	Table

6.5.5	Accelerator	Key
Specify	the	accelerator	key	that	is	to	be	associated	with	this	pull	down	choice.
Rules

Allowable	values	are	F1	to	F24,	or	"No	Accelerator	key".
Avoid	conflicts	with	other	key	assignments.	This	is	not	checked.

Tips	&	Techniques
Avoid	overuse.	They	will	confuse	users	and	complicate	the	system.
Conform	to	the	CUA	1989	guidelines.
Key	will	be	activated	on	any	panel	showing	this	action	bar.

Platform	Considerations
IBM	i:	Can	be	changed	dynamically	without	requiring	recompilation.
	6.5	Action	Bar	Table

6.5.6	PD$OPT
Mandatory.
Specify	the	value	that	allows	the	function	to	decide	exactly	which	pull	down
choice	was	used	to	cause	it	to	be	invoked.		The	value	specified	here	is	placed
into	field	PD$OPT	when	this	pull	down	choice	is	used.	The	field	is	accessible	to
RDML	functions.
Rules

Value	specified	should	be	unique	within	this	pull	down,	and	preferably,	within
the	entire	action	bar.
It	is	an	alphanumeric	value.
Do	not	use	values	CUR	or	ALL,	as	they	are	reserved	to	mean	"current"	and
"all"	in	the	SET_ACTION_BAR	Built-In	Function.

Warnings
If	PD$OPT	is	not	already	defined	in	the	Repository,	define	it	as	alphanumeric
(length	3).

Tips	&	Techniques
One	RDML	function	handling	multiple	pull	down	choices	can	have	good
performance	implications.	Refer	to	the	Sample	Program:	All	3	Functions	in
One	Program	in	the	LANSA	Application	Design	Guide.
Standards	for	PD$OPT	values	should	be	established.
	6.5	Action	Bar	Table

its:LANSA065.CHM::/lansa/dsnba_0140.htm

6.5.7	Pull	Down	Item	Sequence
Mandatory.	Default=Next	consecutive	number.
Specify	the	position	of	this	option	in	the	menu.		Use	this	field	to	change	the
relative	order	of	fields.
Rules

Must	be	consecutive.
	6.5	Action	Bar	Table

6.5.8	Initially	Enabled
Mandatory.	Default=Yes.
Specify	whether	or	not	this	pull	down	choice	is	to	be	made	available	on	the
initial	invocation	of	the	action	bar.	Unavailable	pull	down	choices	are	shown	in
blue	and	have	their	associated	selection	numbers	replaced	by	an	"*".
Tips	&	Techniques

RDML	program	access	to	make	pull	down	choices	available/	unavailable	is
provide	by	the	SET_ACTION_BAR	Built-In	Function.
	6.5	Action	Bar	Table

6.5.9	Association	Type
Mandatory.
Specifies	which	function/process/special	entry	is	to	be	invoked	when	this	menu
option	is	selected.
Rules
Allowable	values	are:
Function	Name
Attachment
Special	Entry
Undefined
	6.5	Action	Bar	Table

Function	Name
Specify	the	RDML	function	that	belongs	to	the	current	process.
Rules

Function	specified	must	exist	within	the	current	process.
	6.5.9	Association	Type

Attachment
Specify	the	"Attached	Process"	indicating	a	process	that	has	been	attached	to	the
current	process	or	the	"Attached	Function"	indicating	a	function	that	has	been
attached	to	the	current	process	from	another	process.
Rules

Attached	process	or	attached	function	specified	must	be	defined	as	an
attachment	within	the	current	process	definition.

Tips	&	Techniques
Attached	processes	may	cause	a	menu	to	appear	if	they	are	menu	style	(i.e.:
SAA/CUA)	and	thus	do	not	have	a	menu	bar	or	another	menu	bar	to	appear	if
they	are	menu	bar	style.	This	facility	can	be	used	to	build	up	a	"hierarchy"	of
menu	bars	in	an	acceptable	manner.
Attached	functions	may	cause	another	menu	bar	to	appear.	This	is	the	menu
bar	associated	with	the	process	to	which	they	belong,	not	the	current	process's
menu	bar.	This	can	be	confusing	to	end	users	in	some	situations	and	should	be
carefully	controlled	or	avoide
	6.5.9	Association	Type

Special	Entry
Specify	a	special	entry	that	has	been	defined	within	the	current	process.
Rules

Special	entry	specified	must	be	defined	within	the	current	process	definition.
	6.5.9	Association	Type

Undefined
Specify	the	association	is	not	currently	defined.
	6.5.9	Association	Type

6.6	Process	Help	Text
Help	text	is	information	that	is	displayed	to	the	user	when	application	requests
help	(using	the	Help	key	or	equivalent	request).	Help	text	for	processes	is	stored
in	the	LANSA	Repository.	This	help	text	is	automatically	available	from	the
process	menu	and	can	also	be	accessed	when	a	function	within	the	process	is
executed.	Function	Help	Text	can	also	be	accessed.	Help	text	can	be	entered	for
each	language	specified	in	the	partition.
Generally	Help	text	has	the	following	characteristics:
It	is	free	format.	No	restrictions	usually	exist	on	the	content	or	format	of	Help
text.
It	relates	directly	to	the	action	the	user	was	taking	at	the	time	the	Help	was
requested.	Usually	the	process	or	function	that	the	user	is	using	is	explained
in	some	detail.
Help	text	may	also	include	special	Help	Text	Enhancement	&	Substitution
Values.

LANSA	automatically	controls	the	handling	of	the	Help	processing	in
applications.	LANSA	will	automatically	determine	the	type	of	Help	that	is
required	(field,	component,	process	or	function)	and	automatically	display	the
associated	Help	text	(if	any	exists).
LANSA	does	not	automatically	create	the	free	format	Help	text	that	is
associated	with	the	processes	or	functions.	LANSA	can	dynamically,	and	in	the
correct	language,	create	the	Help	text	associated	with	a	field	from	the	repository
and	the	rules	that	it	contains.	You	can	turn	off	this	automatic	field	level	help	text
feature:	globally,	by	field,	or	precede	it	with	your	own	Help	text.

Also	See
6.8	Function	Help	Text
In	the	Developer	Guide:
Repository	Help	Editor.
In	the	User	Guide
Repository	Help	Tab
In	this	guide:
Substitution/Control	Values
Substitution/Control	Values	-	Visual	LANSA	Only

its:LANSA013.CHM::/lansa/L4wDev03_0135.htm
its:LANSA012.CHM::/lansa/l4wusr01_1800.htm

Help	Text	Attributes
Field	Help	Text.
	6.	Processes	and	Functions

6.7	Function	Definition
6.7.1	Function	Name
6.7.2	Function	Identifier
6.7.3	Function	Description
6.7.4	Template
6.7.5	Enable	Functions	for	RDMLX

Also	See
What	is	a	Function	in	the	Developer	Guide
Creating	Functions		in	the	User	Guide.
Developing	with	Processes	and	Functions	in	the	Developer	Guide
Getting	Started	with	Function	Development	in	the	Developer	Guide.
	6.	Processes	and	Functions

its:LANSA013.CHM::/lansa/L4wDev05_0085.htm
its:LANSA012.CHM::/lansa/l4wusr01_1555.htm
its:LANSA013.CHM::/lansa/L4wDev05_0020.htm
its:LANSA013.CHM::/lansa/L4wDev05_0015.htm

6.7.1	Function	Name
Mandatory.
Specify	the	name	that	is	to	be	assigned	to	the	new	function.
Rules

Must	be	a	valid	LANSA	object	name.
Platform	Considerations

Refer	to	LANSA	object	name

Also	See
What	is	a	Function	in	the	Developer	Guide
Creating	Functions	in	the	User	Guide
6.7.2	Function	Identifier
	6.7	Function	Definition

its:LANSA013.CHM::/lansa/L4wDev05_0085.htm
its:LANSA012.CHM::/lansa/l4wusr01_1555.htm

6.7.2	Function	Identifier
Mandatory.
Specify	the	identifier	that	is	to	be	assigned	to	the	new	function.
Rules

Must	be	a	valid	LANSA	object	name.
Platform	Considerations

IBM	i:	A	function	identifier	must	be	unique	within	the	process	it	is	created.	It
is	possible	to	have	two	functions	with	the	same	identifier	in	a	single	partition
if	they	are	located	in	different	processes.
Windows:	Function	identifier	must	be	unique	in	the	partition.	All	functions
must	be	defined	as	type	*DIRECT.
Please	refer	to	function	details	described	in	LANSA	object	name

Warnings
Certain	function	identifiers	are	"reserved"	for	use	by	LANSA	and	cannot	be
specified	as	a	valid	function	identifier.	These	are:

Name Reserved	Meaning	/	Description

MENU Display	process	main	menu

EXIT Exit	from	LANSA

HELP Display	process	HELP	text

SELECT Select	next	function	from	list	of	allowable	function

EOJ End	all	batch	processing

ERROR Abort	process	with	an	error

RETRN Return	control	to	calling	process	or	function

*ANY Any	function	identifier

	

For	more	details	of	why	these	names	are	"reserved"	refer	to	the	Function
Control	Table	section.

Also	See
What	is	a	Function	in	the	Developer	Guide
Creating	Functions	in	the	User	Guide
6.7.1	Function	Name
	6.7	Function	Definition

its:LANSA013.CHM::/lansa/L4wDev05_0085.htm
its:LANSA012.CHM::/lansa/l4wusr01_1555.htm

6.7.3	Function	Description
Mandatory.
Specify	the	description	that	is	to	be	associated	with	the	function.	The
description	of	the	function	will	be	displayed	on	the	process	menu	and	in	the
LANSA	Repository.	If	the	partition	is	multilingual,	the	description	specified	for
the	default	partition	language	will	be	used	for	other	languages.
Rules

Maximum	length	is	40	characters.
Tips	&	Techniques

Function	descriptions	can	be	changed	by	altering	the	Function	Control	Table
of	the	process.
Since	this	value	will	appear	on	the	process	menu,	it	is	recommended	that
upper	and	lower	case	characters	are	used.
There	is	no	need	to	use	blanks	to	centre	the	description	as	this	is	done
automatically	on	the	process	menu.

Also	See
Creating	Functions
	6.7	Function	Definition

its:LANSA012.CHM::/lansa/l4wusr01_1555.htm

6.7.4	Template
Default=No	template	selected.
Specify	the	name	of	the	application	template	to	be	used	to	create	the	RDML	in
the	function.
Note:	You	must	open	the	function	in	the	editor	to	allow	the	template	to	execute.
Refer	to	Creating	Functions.
Tips	&	Techniques
Following	are	tips	for	using	LANSA	templates:
Make	extensive	use	of	the	HELP	function	key	and	take	your	time.	When
using	a	template	for	the	first	time,	read	all	the	HELP	panels	associated	with
the	template,	especially	the	examples.	Get	a	good	idea	of	what	the	template
will	do	and	what	the	template	won't	do	before	you	use	it.
Most	templates	work	by	using	a	"question	and	answer"	session.	So	after
selecting	a	template	to	be	used,	a	question	will	most	likely	appear	in	the	pop
up	window	area.
If	no	question	appears,	and	the	source	is	re-displayed,	you	can	assume	that	the
template	has	generated	your	RDML	program	without	having	to	ask	you	any
questions	at	all.	Some	very	simple	templates	work	this	way	(e.g.:	the	one	that
generates	a	basic	program	layout).
When	a	question	appears,	read	the	question	very	carefully.	Next,	read	any
additional	prompting	information	very	carefully.	And	finally,	if	you	still	have
any	doubts,	use	the	HELP	function	key.
Follow	instructions	exactly.	The	concept	of	an	application	template	is	to
generate	RDML	programs	for	you	in	a	very	quick	and	very	consistent	matter.
The	generalized	nature	of	the	Application	Template	facility	and	its	ability	to
be	site	definable,	mean	that	absolutely	precise	validation	of	your	answers	is
often	not	practicable.	Incorrect	answers	will	cause	no	real	problems,	other
than	to	cause	RDML	code	that	will	either	not	compile,	or	not	execute
correctly,	to	be	generated.	This	is	not	a	real	problem,	but	it	means	that	you
will	most	probably	have	to	then	fix	it	by	manual	editing	of	the	RDML	code.
Most	templates	allow	you	to	"back	up"	to	a	previously	answered	question	and
change	your	answer.	To	do	this	use	the	Cancel	function	key.	Do	not	do	this	if
the	prompt	indicates	you	should	not	do	it.

Also	See

its:LANSA012.CHM::/lansa/l4wusr01_1555.htm

Getting	Started	with	Function	Development	in	the	Developer	Guide.
Using	Application	Templates	in	the	Developer	Guide.
Creating	Functions	in	the	User	Guide.
	6.7	Function	Definition

its:LANSA013.CHM::/lansa/L4wDev05_0015.htm
its:LANSA013.CHM::/lansa/L4wDev08_0015.htm
its:LANSA012.CHM::/lansa/l4wusr01_1555.htm

6.7.5	Enable	Functions	for	RDMLX
To	change	an	existing	RDML	Function	to	an	RDMLX	Function,	open	the
function	in	the	Visual	LANSA	Editor,	choose	the	File	menu	and	select	the
Enable	for	Full	RDMLX	option.
This	option	is	only	available	in	a	RDMLX	Enabled	Partition.
A	Function	must	be	Enabled	for	Full	RDMLX	in	order	to	use	other	RDMLX
objects	or	to	use	RDMLX	commands.	You	cannot	use	RDMLX	Fields	or
RDMLX	Files	unless	the	function	is	enabled	for	RDMLX.	RDMLX	Functions
can	interact	with	Components.
The	default	value	for	this	option	is	controlled	in	the		RDMLX	Partition	Settings.
Tips	&	Techniques

Once	you	select	this	option,	the	code	in	the	component	will	be	evaluated
using	the	full	RDMLX	Language	Features.	If	it	contains	any	errors,	you	must
correct	them	before	you	can	save	it	as	an	RDMLX	function.
RDMLX	Language	features	include:

use	of	intrinsic	field	methods
use	of	function	libraries
use	of	expressions	in	many	parameters	and	properties
enhanced	RDMLX	command	support	such	as	assignment	statements
simplified	RDML	statements	due	to	the	removal	of	quotes.

It	is	recommended	that	you	review	the	RDML	and	RDMLX	Partition
Concepts	information	in	the	Administrator	Guide.

Implications:
RDMLX	Functions	do	not	support	5250	interfaces.	If	you	enable	an	RDML
Function	to	use	RDMLX	field	types,	this	new	RDMLX	Function	can	no
longer	directly	support	a	5250	interface.	You	must	call	an	RDML	Function	to
perform	any	screen	interactions.
Performance	characteristics	may	change	and	should	be	properly	evaluated
once	the	conversion	to	RDMLX	has	been	made.
If	no	changes	have	been	made	to	the	code	in	an	enabled	RDMLX	Function,
the	resulting	program	should	be	functionally	equivalent	to	the	program
created	by	the	RDML	Function.	However,	it	is	your	responsibility	to	retest	the
functionality	of	the	new	program.

its:Lansa011.chm::/lansa/l4wadm05_0200.htm
its:Lansa011.chm::/lansa/l4wpar01_0020.htm

Warning
All	editing	must	be	performed	using	Visual	LANSA.	RDMLX	Functions
cannot	be	edited	from	LANSA	for	i.	(LANSA	for	i	does	not	support
development	in	RDMLX	Partitions.)
Once	a	function	is	enabled	for	RDMLX,	it	cannot	be	changed	back.	You	can
create	a	new	RDML	Function	and	code	can	be	copied	and	pasted	back	into
the	RDML	Function.	Code	will	be	syntax	checked	for	compatibility	with	the
RDML	Function.
	6.7	Function	Definition

6.8	Function	Help	Text
Help	text	is	information	that	is	displayed	to	the	user	when	the	application
requests	help	(using	the	Help	key	or	equivalent	request).	Help	text	for	functions
is	stored	in	the	LANSA	Repository.	This	help	text	is	automatically	available	as
function	level	context	sensitive	help	text	when	a	function	is	executed.	Process
Help	Text	can	also	be	accessed.	Help	text	can	be	entered	for	each	language
specified	in	the	partition.
Generally	Help	text	has	the	following	characteristics:
It	is	free	format.	No	restrictions	usually	exist	on	the	content	or	format	of	Help
text.
It	relates	directly	to	the	action	the	user	was	taking	at	the	time	the	Help	was
requested.	Usually	the	process	or	function	that	the	user	is	using	is	explained
in	some	detail.
Help	text	may	also	include	special	Help	Text	Enhancement	&	Substitution
Values.

LANSA	automatically	controls	the	handling	of	the	Help	processing	in
applications.	LANSA	will	automatically	determine	the	type	of	Help	that	is
required	(field,	component,	process	or	function)	and	automatically	display	the
associated	Help	text	(if	any	exists).
LANSA	does	not	automatically	create	the	free	format	Help	text	that	is
associated	with	the	processes	or	functions.	LANSA	can	dynamically,	and	in	the
correct	language,	create	the	Help	text	associated	with	a	field	from	the	repository
and	the	rules	that	it	contains.	You	can	turn	off	this	automatic	field	level	help	text
feature:	globally,	by	field,	or	precede	it	with	your	own	text.

Also	See
In	the	Developer	Guide:
Repository	Help	Editor
In	the	User	Guide
Repository	Help	Tab
In	this	guide:
Substitution/Control	Values
Substitution/Control	Values	-	Visual	LANSA	Only
Help	Text	Attributes

its:LANSA013.CHM::/lansa/L4wDev03_0135.htm
its:LANSA012.CHM::/lansa/l4wusr01_1800.htm

Field	Help	Text
	6.	Processes	and	Functions

6.9	Process/Function	Compile	Options
Select	the	options	that	are	to	be	used	when	generating	and/or	compiling	the
selected	processes	or	functions.	The	options	will	be	saved	after	the	operation
has	been	completed.
The	options	displayed	will	depend	on	the	object	selected	for	compilation.

6.9.1	Compile	Process	only	if	necessary
6.9.2	Compile	All	Process	Functions
6.9.3	Compile	Functions	Only	if	Necessary
6.9.4	Keep	Generated	Source
6.9.5	Debug	Enabled
6.9.6	Generate	HTML
6.9.7	Generate	XML
6.9.8	Use	Default	Settings
	6.	Processes	and	Functions

6.9.1	Compile	Process	only	if	necessary
Select	this	option	so	that	only	those	processes	that	need	to	be	compiled	are
compiled.	This	is	the	default	setting.
If	it	is	not	selected,	all	the	selected	processes	are	compiled.
	6.9	Process/Function	Compile	Options

6.9.2	Compile	All	Process	Functions
Select	this	option	so	that	all	of	the	functions	of	the	selected	processes	will	be
compiled	as	well.	This	is	the	default	setting.
If	it	is	not	selected,	the	functions	are	not	compiled	–	only	the	processes	are
compiled.
	6.9	Process/Function	Compile	Options

6.9.3	Compile	Functions	Only	if	Necessary
This	option	is	only	active	if	Compile	Functions	has	been	selected.
Select	this	option	so	that	only	those	functions	that	need	to	be	compiled	are
compiled.	This	is	the	default	setting.
If	it	is	not	selected,	all	the	selected	functions	are	compiled.
	6.9	Process/Function	Compile	Options

6.9.4	Keep	Generated	Source
Select	this	option	to	keep	the	generated	source	code.	The	default	option	is	not	to
keep	the	source	code.
The	source	code	needs	to	be	kept	if	the	resulting	objects	are	to	be	executed	on	a
platform	other	than	Microsoft	Windows.	It	is	also	required	in	order	to	fully
resolve	dump	files,	though	its	possible	to	produce	this	when	needed,	provided
the	original	Visual	LANSA	development	environment	is	retained.
If	the	source	code	is	being	moved	to	another	machine	for	subsequent
(re)compilation,	you	must	use	this	option.
You	may	also	be	requested	to	keep	the	generated	source	for	problem	resolution.
The	source	code	to	be	kept	includes:
The	table/index/view/OAM	creation	code	if	generating	a	file
The	process/function/component	creation	code	if	generating	a	process,	or
function	or	component.
The	corresponding	define	and	make	files.
	6.9	Process/Function	Compile	Options

6.9.5	Debug	Enabled
Select	this	option	to	compile	the	objects	with	debug	information.
If	you	use	this	option,	the	object	can	be	debugged	using	the	LANSA	debug
tools.	The	executable	objects	will	be	slightly	larger	than	compiling	without
debug.
Refer	to	Producing	Debug	Symbols	for	Your	LANSA	Application	in	the
Administrator's	Guide	for	important	information	that	is	vital	to	keep	securely
for	rare	but	critical	situations.
	6.9	Process/Function	Compile	Options

its:lansa011.CHM::/lansa/l4wADM07_0075.HTM

6.9.6	Generate	HTML
Specifies	if	HTML	pages	should	be	generated	for
DISPLAY/REQUEST/POP_UP	commands	when	this	function(s)	is	compiled.
This	option	will	only	be	available	if	the	process	is	web	enabled.
Default	value	is	YES.	Allowable	values	are	:

YES Generate	HTML	pages	for	each	DISPLAY/REQUEST/POP_UP	command
in	each	function	that	is	compiled.

NO Do	not	generate	HTML	pages	for	each	DISPLAY/REQUEST/POP_UP
command	in	each	function	that	is	compiled.
This	value	should	be	used	with	caution.	It	is	generally	only	used	when
changes	to	the	function	have	not	included	modification	of	any
DISPLAY/REQUEST/POP_UP	command.	This	allows	HTML	pages	that
have	been	modified	using	an	HTML	editor	to	be	preserved.

	

Also	See
Validate	Numeric	Values
	6.9	Process/Function	Compile	Options

Validate	Numeric	Values
Specifies	if	input	numeric	fields	should	be	validated	via	JavaScript	according	to
the	allowable	number	of	digits	before	and	after	the	decimal	point.	This	option	is
only	applicable	if	the	Generate	HTML	pages	option	is	YES.
Allowable	values	are:

YES Generate	JavaScript	function	calls	for	input	numeric	fields	for	each
function	being	compiled.

NO Do	not	generate	JavaScript	function	calls	for	input	numeric	fields	for	each
function	being	compiled.

	

	6.9.6	Generate	HTML

6.9.7	Generate	XML
Specifies	if	XML	should	be	generated	for	DISPLAY/REQUEST/POP_UP
commands	when	this	function(s)	is	compiled.	This	option	will	only	appear	if	the
process	is	XML	enabled.
Default	value	is	YES.	Allowable	values	are:

YES Generate	XML	for	each	DISPLAY/REQUEST/POP_UP	command	in	each
function	that	is	compiled.

NO Do	not	generate	XML	for	each	DISPLAY/REQUEST/POP_UP	command
in	each	function	that	is	compiled.
This	value	should	be	used	with	caution.	It	is	generally	only	used	when
changes	to	the	function	have	not	included	modification	of	any
DISPLAY/REQUEST/POP_UP	command.	This	allows	XML	that	has	been
modified	using	the	XML	editor	to	be	preserved.

	

	6.9	Process/Function	Compile	Options

6.9.8	Use	Default	Settings
Select	this	button	to	reset	all	options	to	the	shipped	defaults.
		6.9	Process/Function	Compile	Options

	
	

7.	RDML	Commands
Go	to	RDML	Commands	List	for	a	summary	of	the	commands.
The	following	commands	make	up	the	complete	LANSA	RDML	programming
language.	Provided	for	each	command	is:
A	description
References	to	related	commands
A	syntax	diagram
Explanation	of	each	parameter
Warnings	/Comments
Examples.

For	further	information	regarding	the	use	and	format	of	these	commands	and
their	parameters,	refer	to	RDML	Command	Parameters.

7.1	ABORT
The	ABORT	command	is	used	to	cause	an	executing	RDML	program	to	end
immediately	and	optionally	issue	an	error	message.	Ending	a	function	via	an
ABORT	command	is	considered	to	be	an	"abnormal"	end	and	the	entire	process
is	canceled	by	LANSA.	For	the	implications	of	commitment	control	refer	to
Commitment	Control	in	the	LANSA	for	i	User	Guide.

Also	See
7.1.1	ABORT	Parameters
7.1.2	ABORT	Examples
7.6	CALL	(see	the	IF_ERROR	parameter)
7.46	EXIT
7.69	MENU
7.81	RETURN
	
																																																								Optional		
																																																																		
		ABORT	--------	MSGTXT	--------*NONE	----------------------
---->	
																																'message	text'																				
																																																																		
													>--	MSGID	--------	*NONE	-------------------------->	
																																message	identifier																
																																																																		
													>--	MSGF	---------	*NONE	-------------------------->	
																																message	file			library	name							
																																																																		
													>--	MSGDTA	-------		substitution	variables	-------|		
																															|	expandable	group	expression			|		
																																--------	20	max	---------------		
																																																																		

its:LANSA010.CHM::/lansa/ugubc_c10060.htm

7.1.1	ABORT	Parameters
MSGTXT
MSGID
MSGF
MSGDTA

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	This	text	will	be
displayed	when	the	function	ends	as	an	error	message.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID/MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	issued	when	the	function	ends.	Message	identifiers	must	be	7	characters
long.	Use	this	parameter	in	conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.

When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:

"&1	are	out	of	stock	...	reorder	&2"

	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:

MSGDTA('BOLTS'	#ORDQTY)

	

or	like	this:

MSGDTA('BOLTS					'	#ORDQTY)

	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:

MSGDTA('''BOLTS					'''	#ORDQTY)

	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.1.2	ABORT	Examples
Aborting	with	Simple	Text
Aborting	with	Dynamically	Constructed	Text
Aborting	with	a	Substituted	Variable	Message
Aborting	with	a	Multilingual	Text
Trapping	an	Abort
Aborting	with	Simple	Text
This	command	aborts	a	function	and	causes	an	error	message	to	be	displayed:
ABORT						MSGTXT('Unable	to	locate	system	definition	record')	
	

Aborting	with	Dynamically	Constructed	Text
This	subroutine	dynamically	constructs	the	error	message	that	the	ABORT
command	displays:
SUBROUTINE	NAME(ABORT)	PARMS((#MSGTXT1	*RECEIVED)	(#MSGTXT2	*RECEIVED)	(#MSGTXT3	*RECEIVED))
DEFINE					FIELD(#MSGTXT1)	TYPE(*CHAR)	LENGTH(40)	DECIMALS(0)
DEFINE					FIELD(#MSGTXT2)	REFFLD(#MSGTXT1)
DEFINE					FIELD(#MSGTXT3)	REFFLD(#MSGTXT1)
DEFINE					FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)	DECIMALS(0)
USE								BUILTIN(BCONCAT)	WITH_ARGS(#MSGTXT1	#MSGTXT2	#MSGTXT3)	TO_GET(#MSGDTA)
ABORT						MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDROUTINE		
	

It	may	be	used	in	fatal	error	situations	like	this:
EXECUTE				SUBROUTINE(ABORT)	WITH_PARMS('Employee'	#EMPNO	'not	found')	
	

Or	this:
EXECUTE				SUBROUTINE(ABORT)	WITH_PARMS(#DEPTMENT	'is	invalid'	*BLANKS)
	

Aborting	with	a	Substituted	Variable	Message
The	aborting	message	wording	can	also	be	defined	in	a	message	file	and	the
details	substituted	as	variables	at	the	time	of	the	fatal	error.	A	message	file,	e.g.
MYMSGF	is	created	and	a	message	definition	with	an	ID	of	MSG0001	is	added
to	the	file.	The	First	Level	Message	Text	is	'Employee	&1	&2	&3	is	not	valid

for	this	tax	operation	because	their	salary	of	&4	is	too	high.'	Then	the	Message
Data	Field	Formats	are	defined	like	this:
*CHAR		length	5
*CHAR		length	20
*CHAR		length	20
*DEC					length	11		decimals	2

Then,	the	abort	is	given	as:
DEFINE					FIELD(#SALRY_CAP)	REFFLD(#SALARY)	EDIT_CODE(3)	DEFAULT(0)
REQUEST				FIELDS(#SALRY_CAP)
SELECT					FIELDS(#EMPNO	#GIVENAME	#SURNAME	#SALARY)	FROM_FILE(PSLMST)
IF									COND('#SALARY		>	#SALRY_CAP')
ABORT						MSGID(MSG0001)	MSGF(MYMSGF)	MSGDTA(#EMPNO	#GIVENAME	#SURNAME	#SALARY)
ENDIF						
ENDSELECT		
MESSAGE				MSGTXT('All	Employees	are	OK')	TYPE(*WINDOW)	LOCATE(*MIDDLE)	
	

Aborting	with	a	Multilingual	Text
In	multilingual	applications	you	sometimes	need	to	issue	fatal	error	messages
that	contain	*MTXT	variables	as	their	message	text.	This	subroutine	shows	a
way	of	doing	this.
SUBROUTINE	NAME(ABORT)	PARMS((#MSGDTA	*RECEIVED))
DEFINE					FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)	DECIMALS(0)
ABORT						MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDROUTINE
	

It	may	be	used	in	fatal	error	situations	like	this:
	EXECUTE	SUBROUTINE(ABORT)	WITH_PARMS(*MTXTABORT_MESSAGE_1)
	

Or	like	this:
EXECUTE				SUBROUTINE(ABORT)	WITH_PARMS(*MTXTABORT_EMPTY_FILE)	
	

Trapping	an	Abort
The	execution	of	an	ABORT	command	in	a	called	function	can	be	detected	and
trapped	by	the	calling	function	in	this	way:
CALL							PROCESS(*DIRECT)	FUNCTION(MYFUNC)	IF_ERROR(ERR)

RETURN					
ERR:	MESSAGE				MSGTXT('MYFUNC	has	ended	with	in	error')	TYPE(*WINDOW)
RETURN
	

If	the	function	MYFUNC	fails,	control	is	passed	to	the	ERR	label	(note	that	the
IF_ERROR	parameter	logic	may	be	triggered	for	many	reasons	other	than	the
execution	of	a	ABORT	command).

7.2	ADD_ENTRY
The	ADD_ENTRY	command	is	used	to	add	a	new	entry	to	a	list.
The	list	may	be	a	browse	list	(used	for	displaying	information	at	a	workstation)
or	a	working	list	(used	to	store	information	within	a	program).
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	list	processing.

Also	See
7.2.1	ADD_ENTRY	Parameters
7.2.2	ADD_ENTRY	Comments	/	Warnings
7.2.3	ADD_ENTRY	Examples
7.12	CLR_LIST
7.23	DEF_LIST
7.28	DLT_ENTRY
7.89	SORT_LIST
7.95	UPD_ENTRY
																																																								Optional
																																																																
		ADD_ENTRY	----	TO_LIST	------	*FIRST	--------------------
---->
																																list	name																							
																																																																
													>--	SET_SELECT	---	*YES	-------------------------->
																																*NO																													
																																																																
													>--	WITH_MODE	----	*CURRENT	--------------------
-->
																																*ADD																												
																																*CHANGE																									
																																*DELETE																									
																																*DISPLAY																								
																																field	name
												>--	AFTER---------	*END	---------------------------|
																															*START
																															numeric	value	or	field	name
	

	

7.2.1	ADD_ENTRY	Parameters
TO_LIST
SET_SELECT
WITH_MODE
AFTER

TO_LIST
Specifies	the	name	of	the	list	to	which	the	new	entry	should	be	added.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used	(which
may	be	a	browse	or	a	working	list).
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command.

SET_SELECT
Specifies	whether	or	not	any	fields	in	the	list	that	have	special	attribute
*SELECT	should	be	set	to	blanks	before	the	new	entry	is	added	to	the	list.	Refer
to	the	DEF_LIST	command	for	more	details.
This	parameter	is	only	valid	for	browse	list	processing.	It	is	ignored	for	working
list	processing.

WITH_MODE
Specifies	the	mode	to	be	set	for	the	entry	being	added.	This	overrides	the	mode
that	has	been	set	by	the	SET_MODE	command	(refer	to	the	SET_MODE
command).
The	default	is	*CURRENT	which	uses	the	current	mode	that	has	been	set	by	the
SET_MODE	command.	Other	allowable	values	are	*ADD,	*CHANGE,
*DELETE	and	*DISPLAY.	A	user	field	name	may	also	be	specified,	and	must
be	alphanumeric	with	a	length	of	3,	and	must	contain	one	of	the	values	"ADD",
"CHG",	"DLT"	or	"DIS".
This	parameter	is	only	valid	for	browse	list	processing.	It	is	ignored	for	working
list	processing.

AFTER
Specifies	the	position	in	the	list	where	the	entry	is	to	be	added.
The	default	value	of	*END	specifies	that	the	entry	will	be	added	at	the	end	of

the	list.	This	is	the	only	value	that	will	be	accepted	for	a	browse	list.
The	other	special	value	of	*START	specifies	that	the	entry	will	be	added	at	the
beginning	of	the	list,	before	the	current	first	entry.	It	is	equivalent	to	specifying
the	numeric	value	of	0.	This	value	is	only	valid	for	a	working	list.
A	numeric	value	or	field	name	specifies	the	number	of	the	entry	after	which	the
new	entry	will	be	added.	Specifying	0	is	equivalent	to	the	special	value	of
*START.	Apart	from	0,	the	entry	number	specified	must	exist	in	the	list	when
the	ADD_ENTRY	is	executed.	A	numeric	value	or	field	name	is	only	valid	for	a
working	list.

7.2.2	ADD_ENTRY	Comments	/	Warnings
ADD_ENTRY	is	a	"mode	sensitive"	command	when	being	used	with	a
browse	list.	For	details,	refer	to	RDML	Screen	Modes	and	Mode	Sensitive
Commands.
Use	of	the	AFTER	parameter	specifying	anything	other	than	*END	may	incur
a	performance	penalty	because	of	the	underlying	implementation	of	working
lists.	Heavy	use	should	be	benchmarked	with	realistically	sized	data	sets
before	being	put	into	a	production	environment.	Possible	design	alternatives
include	replacement	of	the	working	list	by	a	keyed	work	file	and	construction
of	a	second	working	list	from	the	first.
Use	of	the	AFTER	parameter	specifying	anything	other	than	*END	also
means	that	the	entry	number	of	all	entries	succeeding	the	newly	added	entry
are	incremented	by	1.	This	may	cause	problems	where	the	entry	number	of	a
particular	entry	is	assumed	to	remain	static,	for	example	where	'pointers'	to
working	list	entries	are	used	and	also	where	the	entries	in	a	list	are	processed
in	a	loop	other	than	SELECTLIST/ENDSELECT.

7.2.3	ADD_ENTRY	Examples
Defining,	Adding	Entries	To	and	Displaying	a	Browse	List
Filling	a	Browse	List	with	Information	from	a	Database	File
Adding	Entries	to	the	Beginning	or	End	of	a	Browse	List
Sorting	Entries	in	Browse	Lists	by	Using	a	Working	List
Defining,	Adding	Entries	To	and	Displaying	a	Browse	List
To	define,	add	two	entries	to	and	display	a	browse	list	named	#EMPBROWSE
you	would	use	these	commands	like	this:
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#GIVENAME	#SURNAME)
											
CHANGE					#EMPNO				'A0001'
CHANGE					#GIVENAME	'JOHN'
CHANGE					#SURNAME		'SMITH'
ADD_ENTRY		TO_LIST(#EMPBROWSE)
											
CHANGE					#EMPNO				'A0002'
CHANGE					#GIVENAME	'MARY'
CHANGE					#SURNAME		'BROWN'
ADD_ENTRY		TO_LIST(#EMPBROWSE)
											
DISPLAY				BROWSELIST(#EMPBROWSE)		
	

Filling	a	Browse	List	with	Information	from	a	Database	File
This	example	asks	the	user	to	input	a	department	code	(eg:	ADM,	MKT,	etc).	
All	employees	that	work	in	the	specified	are	then	added	to	a	browse	list	named
#EMPBROWSE.	The	resulting	browse	list	then	displayed	to	the	user:
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#SECTION	#EMPNO	#SURNAME	#GIVENAME)
BEGIN_LOOP	
REQUEST				FIELDS(#DEPTMENT)	BROWSELIST(#EMPBROWSE)
CLR_LIST			NAMED(#EMPBROWSE)
SELECT					FIELDS(#EMPBROWSE)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT)
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
END_LOOP	
	

Adding	Entries	to	the	Beginning	or	End	of	a	Browse	List
This	example	asks	the	user	to	input	sets	of	employee	details.
Each	set	of	employee	details	is	added	to	a	browse	list.		
These	employee	details	may	be	added	to	the	start	or	the	end	of	the	browse	list.
Since	you	can't	add	entries	to	the	start	of	a	browse	list	a	working	list	is	used	to
hold	the	details	and	a	browse	list	to	display	them:
DEFINE					FIELD(#WHERE)	TYPE(*CHAR)	LENGTH(1)	LABEL('Top	or	Bottom')	DEFAULT(B)
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#SURNAME	#GIVENAME)
DEF_LIST			NAME(#EMPWORKNG)	FIELDS(#EMPNO	#SURNAME	#GIVENAME)	TYPE(*WORKING)	ENTRYS(9999)
											
BEGIN_LOOP	
REQUEST				FIELDS(#WHERE	#EMPNO	#SURNAME	#GIVENAME)	BROWSELIST(#EMPBROWSE)
IF									COND('#WHERE	=	B')
ADD_ENTRY		TO_LIST(#EMPWORKNG)
ELSE							
ADD_ENTRY		TO_LIST(#EMPWORKNG)	AFTER(*START)
ENDIF						
											
EXECUTE				SUBROUTINE(VISIBLE)
END_LOOP	
	

This	subroutine	is	used	to	copy	the	contents	of	the	working	list
(#EMPWORKNG)	to	the	visible	browse	list	#	EMPBROWSE:	
SUBROUTINE	NAME(VISIBLE)
CLR_LIST			#EMPBROWSE
SELECTLIST	NAMED(#EMPWORKNG)
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
ENDROUTINE
	

Sorting	Entries	in	Browse	Lists	by	Using	a	Working	List
This	example	asks	the	user	to	input	sets	of	employee	details.
Each	set	of	employee	details	is	added	to	a	browse	list.		
Function	keys	are	provided	to	allow	the	browse	list	to	be	sorted	in	various	ways.
Since	you	can't	sort	entries	in	a	browse	list	a	working	list	is	used	to	hold	the
sorted	details	and	a	browse	list	to	display	in	sorted	order:

DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#SURNAME	#GIVENAME)
DEF_LIST			NAME(#EMPWORKNG)	FIELDS(#EMPNO	#SURNAME	#GIVENAME)	TYPE(*WORKING)	ENTRYS(9999)
											
DEFINE					FIELD(#UK_EMPNO)	REFFLD(#IO$KEY)	DEFAULT('''09''')
DEFINE					FIELD(#UK_SURNME)	REFFLD(#IO$KEY)	DEFAULT('''10''')
DEFINE					FIELD(#UK_GVNNME)	REFFLD(#IO$KEY)	DEFAULT('''11''')
											
BEGIN_LOOP	
REQUEST				FIELDS(#EMPNO	#SURNAME	#GIVENAME)	BROWSELIST(#EMPBROWSE)	USER_KEYS((09	EMPNO	*NEXT)
(10	'SURNAME'	*NEXT)(11	'GIVNAME	'))
											
CASE							OF_FIELD(#IO$KEY)
WHEN							VALUE_IS('=	#UK_EMPNO')
SORT_LIST		NAMED(#EMPWORKNG)	BY_FIELDS(#EMPNO)
WHEN							VALUE_IS('=	#UK_SURNME')
SORT_LIST		NAMED(#EMPWORKNG)	BY_FIELDS(#SURNAME)
WHEN							VALUE_IS('=	#UK_GVNNME')
SORT_LIST		NAMED(#EMPWORKNG)	BY_FIELDS(#GIVENAME)
OTHERWISE		
ADD_ENTRY		TO_LIST(#EMPWORKNG)
ENDCASE				
											
EXECUTE				SUBROUTINE(VISIBLE)
END_LOOP			
											
SUBROUTINE	NAME(VISIBLE)
CLR_LIST			NAMED(#EMPBROWSE)
SELECTLIST	NAMED(#EMPWORKNG)
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
ENDROUTINE	
RETURN
	

7.3	BEGIN_LOOP
The	BEGIN_LOOP	command	is	used	in	conjunction	with	the	END_LOOP
command	to	form	a	processing	loop.
The	loop	formed	is	repeated	the	number	of	times	specified	by	the	FROM,	TO
and	STEP	parameters.	Optionally	a	field	can	be	nominated	in	the	USING
parameter	which	contains	the	value	of	the	current	iteration	of	the	loop.
Refer	to	the	END_LOOP	command	for	more	details	and	examples.

Also	See
7.3.1	BEGIN_LOOP	Parameters
7.3.2	BEGIN_LOOP	Examples
	
	
		BEGIN_LOOP	---	USING	--------	*INTERNAL	--------------
-------->	
																																field	name
	
												>---	FROM		--------	1	------------------------------>	
																																numeric	value	or	field	name
	
												>---	TO	-----------	9999999	------------------------>	
																																numeric	value	or	field	name
	
												>---	STEP	---------	1	------------------------------|	
																																non-zero	numeric	value	(+	or	-)		
	

7.3.1	BEGIN_LOOP	Parameters
USING
FROM
TO
STEP

USING
Optionally	specifies	the	name	of	a	field	that	is	to	contain	the	value	of	the	current
iteration	of	the	loop.
*INTERNAL,	which	is	the	default	value,	indicates	that	no	user	field	is	to
contain	the	current	iteration	value.	LANSA	is	to	create	an	internal	field	that	is
not	accessible	to	user	RDML	program	logic.
Otherwise	a	field	name	may	be	specified.	Any	field	specified	must	be	of	type
numeric	and	must	be	defined	in	the	LANSA	data	dictionary	or	in	the	function.
In	addition	the	field	must	contain	enough	digits	to	hold	the	maximum	iteration
value	expected	in	the	loop.	This	is	not	checked	by	LANSA.

FROM
Specifies	the	start	value	for	the	first	loop	iteration.	If	this	parameter	is	omitted,
value	1	is	assumed.	Specify	either	a	numeric	literal	or	the	name	of	a	numeric
field	that	contains	the	value.

TO
Specifies	the	final	value	for	the	last	loop	iteration.	If	this	parameter	is	omitted,
value	9999999	is	assumed.	Specify	either	a	numeric	literal	or	the	name	of	a
numeric	field	that	contains	the	value.

STEP
Specifies	the	value	by	which	the	loop	iteration	counter	should	be	incremented
after	each	loop	iteration.	If	this	parameter	is	omitted,	value	1	is	assumed.
Specify	any	non-zero	integer	for	this	parameter.

7.3.2	BEGIN_LOOP	Examples
Example	1:	Use	the	BEGIN_LOOP	/	END_LOOP	commands	to	insert	records
into	a	file	until	the	user	uses	the	EXIT	or	menu	function	key:
GROUP_BY			NAME(#CUSTOMER)	FIELDS(#CUSTNO	#NAME	#ADDL1	#ADDL2	#ADDL3)
BEGIN_LOOP
REQUEST				FIELDS(#CUSTOMER)	EXIT_KEY(*YES	*EXIT)		MENU_KEY(*YES	*MENU)
INSERT					FIELDS(#CUSTOMER)	TO_FILE(CUSMST)	
VAL_ERROR(*LASTDIS)
CHANGE					FIELD(#CUSTOMER)	TO(*DEFAULT)
END_LOOP
	

Example	2:	Use	the	BEGIN_LOOP	/	END_LOOP	commands	to	reference
entries	1	through	10	of	a	working	list	called	#LIST:
BEGIN_LOOP	USING(#I)	FROM(1)	TO(10)
GET_ENTRY		NUMBER(#I)	FROM_LIST(#LIST)
END_LOOP
	

Example	3:	Use	the	BEGIN_LOOP	/	END_LOOP	commands	to	reference
entries	10	through	1	(i.e.:	backwards)	of	a	working	list	called	#LIST:
BEGIN_LOOP	USING(#I)	FROM(10)	TO(1)	STEP(-1)
GET_ENTRY		NUMBER(#I)	FROM_LIST(#LIST)
END_LOOP
	

Example	4:	Use	the	BEGIN_LOOP	/	END_LOOP	commands	to	reference	even
numbered	entries	between	1	and	100	in	a	working	list	called	#LISTF:
BEGIN_LOOP	USING(#I)	FROM(2)	TO(100)	STEP(2)
GET_ENTRY		NUMBER(#I)	FROM_LIST(#LIST)
END_LOOP
	

Example	5:	Use	the	BEGIN_LOOP	/	END_LOOP	commands	to	reference	odd
numbered	entries	between	1	and	100	in	a	working	list	called	#LIST:
BEGIN_LOOP	USING(#I)	FROM(1)	TO(99)	STEP(2)
GET_ENTRY		NUMBER(#I)	FROM_LIST(#LIST)
END_LOOP
	

7.4	BEGINCHECK
The	BEGINCHECK	command	is	used	to	specify	the	beginning	of	a	block	of
validation	checks.	This	command	is	always	used	in	conjunction	with	the
ENDCHECK	command.
A	field	that	is	to	contain	an	ongoing	count	of	the	number	of	errors	that	occur
within	the	validation	block	may	also	be	specified	on	this	command.
Refer	to	the	ENDCHECK	command	for	more	details	and	examples	of	both
commands.

Also	See
7.4.1	BEGINCHECK	Parameters
7.4.2	BEGINCHECK	Examples
7.7	CALLCHECK
7.14	CONDCHECK
7.16	DATECHECK
7.35	ENDCHECK
7.48	FILECHECK
7.78	RANGECHECK
7.99	VALUECHECK
																																																									Optional
	
		BEGINCHECK	---	KEEP_COUNT	---	*NONE	--------------
------------|
																																field	name
	

7.4.1	BEGINCHECK	Parameters
KEEP_COUNT
Optionally	specifies	the	name	of	a	field	that	contains	an	ongoing	count	of	the
number	of	errors	detected	within	a	BEGINCHECK/ENDCHECK	validation
block.
Specify	the	name	of	a	numeric	field	that	is	to	contain	the	ongoing	error	count.
The	field	must	be	defined	in	the	LANSA	data	dictionary	or	in	this	function.
*NONE	is	the	default	value	and	indicates	that	no	error	counter	field	is	required
for	this	validation	block.
Note	that	while	LANSA	will	automatically	increment	the	field	every	time	an
error	is	detected	within	a	validation	block,	it	does	not	ever	set	or	reset	the	field
to	zero.	This	is	the	responsibility	of	the	programmer.

7.4.2	BEGINCHECK	Examples
Structuring	Functions	for	Inline	Validation
Structuring	Functions	to	Use	a	Validation	Subroutine
Using	the	BEGINCHECK/ENDCHECK	Commands	for	Inline	Validation
Using	the	BEGINCHECK/ENDCHECK	Commands	for	Validation	with	a
Subroutine
Structuring	Functions	to	Validate	Header	Fields	and	Multiple	Details	Input	Via	a
Browse	List
Example	of	Validating	Header	Fields	and	Multiple	Details	Input	Via	a	Browse
List
Structuring	Functions	for	Inline	Validation
Typically	functions	using	validation	commands	(e.g.:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	inline	validation	like	this:

BEGIN_LOOP	
REQUEST				<<	INPUT	>>
BEGINCHECK	
*										<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			
*										<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	passed	back	to	the	REQUEST
command.	This	happens	because	of	the	default	IF_ERROR(*LASTDIS)
parameter	on	the	ENDCHECK	command.		
Structuring	Functions	to	Use	a	Validation	Subroutine
Typically	functions	using	validation	commands	(e.g.:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	subroutine	validation	like	this:

DEFINE					FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')

											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				<<	INPUT	>>
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			
*										<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
*										<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			IF_ERROR(*NEXT)
ENDROUTINE	
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	returned	to	the	main	function	loop
with	#ERRORCNT	>	0.	
Using	the	BEGINCHECK/ENDCHECK	Commands	for	Inline	Validation
This	example	demonstrates	how	to	use	the	BEGINCHECK/ENDCHECK
commands	(and	the	other	validation	commands)	within	the	main	program	block
to	verify	a	set	of	input	details.
DEFINE					FIELD(#NEWSALARY)	REFFLD(#SALARY)	LABEL('New	Salary')	DESC('New	Salary	for	Employee')
DEFINE					FIELD(#TOTSALARY)	REFFLD(#SALARY)	DESC('Total	Salary	for	Department')	DEFAULT(0)
DEFINE					FIELD(#BUDGET)	REFFLD(#SALARY)	LABEL('Budget')	DESC('Budget	for	Department	Salaries')
GROUP_BY			NAME(#XG_DTAILS)	FIELDS(#DEPTMENT	#EMPNO	#SURNAME	#GIVENAME	#NEWSALARY	#STARTDTE)
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#XG_DTAILS)
											
BEGIN_LOOP	
REQUEST				FIELDS(#XG_DTAILS	#BUDGET)	BROWSELIST(#EMPBROWSE)
CHANGE					FIELD(#TOTSALARY)	TO(*DEFAULT)
SELECT					FIELDS(#SALARY)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT)
CHANGE					FIELD(#TOTSALARY)	TO('#TOTSALARY	+	#SALARY')
ENDSELECT		
											
BEGINCHECK	

CALLCHECK		FIELD(#STARTDTE)	BY_CALLING(WORKDAY)	PROG_TYPE(FUN)	MSGTXT('The	supplied	date	is	not	a	working	day.')
CONDCHECK		FIELD(#NEWSALARY)	COND('(#NEWSALARY	+	#TOTSALARY)	<=	#BUDGET')	MSGTXT('New	salary	causes	Department	budget	to	be	exceeded')
DATECHECK		FIELD(#STARTDTE)	IN_FORMAT(*DDMMYY)	BEFORE(30)	AFTER(0)	MSGTXT('Start	date	is	not	in	the	right	format	or	not	in	the	last	month')
FILECHECK		FIELD(#EMPNO)	USING_FILE(PSLMST)	FOUND(*ERROR)	NOT_FOUND(*NEXT)	MSGTXT('Employee	number	supplied	already	exists')
RANGECHECK	FIELD(#EMPNO)	RANGE((A0000	A9999))	MSGTXT('Employee	number	has	to	be	in	the	range	A0000	-	A9999')
VALUECHECK	FIELD(#DEPTMENT)	WITH_LIST(ADM	AUD	FLT	GAC)	MSGTXT('The	department	code	entered	is	not	valid')
ENDCHECK			
											
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP
	

If	any	of	the	input	values	causes	a	validation	command	to	give	an	error	the
message	defined	with	that	command	is	issued	and	program	control	returns	to	the
last	screen	displayed.	In	this	case	the	last	screen	displayed	is	the	REQUEST
screen.
Using	the	BEGINCHECK/ENDCHECK	Commands	for	Validation	with	a
Subroutine
This	example	demonstrates	how	to	use	the	BEGINCHECK/ENDCHECK
commands	inside	a	subroutine	to	check	that	entered	details	for	a	new	employee
conform	to	a	set	of	validations	before	being	accepted	for	further	processing.
After	the	user	enters	the	requested	details	the	VALIDATE	subroutine	is	called.	It
checks	that	all	the	values	comply	with	the	various	validations.	If	this	is	not	true
the	message	defined	in	a	command	that	gives	an	error	is	given,	1	is	added	to
#ERRORCNT	and	the	DOUNTIL	loop	executes	again.	When	the	error	tally	is
zero	the	DOUNTIL	loop	ends	and	processing	of	the	verified	input	is	done.
DEFINE					FIELD(#ERRORCNT)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	DEFAULT(0)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
DEFINE					FIELD(#NEWSALARY)	REFFLD(#SALARY)	LABEL('New	Salary')	DESC('New	Salary	for	Employee')
DEFINE					FIELD(#TOTSALARY)	REFFLD(#SALARY)	DESC('Total	Salary	for	Department')	DEFAULT(0)
DEFINE					FIELD(#BUDGET)	REFFLD(#SALARY)	LABEL('Budget')	DESC('Budget	for	Department	Salaries')
GROUP_BY			NAME(#XG_DTAILS)	FIELDS(#DEPTMENT	#EMPNO	#SURNAME	#GIVENAME	#NEWSALARY	#STARTDTE)
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#XG_DTAILS)
											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				FIELDS(#XG_DTAILS	#BUDGET)	BROWSELIST(#EMPBROWSE)
EXECUTE				SUBROUTINE(VALIDATE)

ENDUNTIL			
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
CHANGE					FIELD(#TOTSALARY)	TO(*DEFAULT)
SELECT					FIELDS(#SALARY)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT)
CHANGE					FIELD(#TOTSALARY)	TO('#TOTSALARY	+	#SALARY')
ENDSELECT		
											
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
CALLCHECK		FIELD(#STARTDTE)	BY_CALLING(WORKDAY)	PROG_TYPE(FUN)	MSGTXT('The	supplied	date	is	not	a	working	day.')
CONDCHECK		FIELD(#NEWSALARY)	COND('(#NEWSALARY	+	#TOTSALARY)	<=	#BUDGET')	MSGTXT('New	salary	causes	Department	budget	to	be	exceeded')
DATECHECK		FIELD(#STARTDTE)	IN_FORMAT(*DDMMYY)	BEFORE(30)	AFTER(0)	MSGTXT('Start	date	is	not	in	the	right	format	or	not	in	the	last	month')
FILECHECK		FIELD(#EMPNO)	USING_FILE(PSLMST)	FOUND(*ERROR)	NOT_FOUND(*NEXT)	MSGTXT('Employee	number	supplied	already	exists')
RANGECHECK	FIELD(#EMPNO)	RANGE((A0000	A9999))	MSGTXT('Employee	number	has	to	be	in	the	range	A0000	-	A9999')
VALUECHECK	FIELD(#DEPTMENT)	WITH_LIST(ADM	AUD	FLT	GAC)	MSGTXT('The	department	code	entered	is	not	valid')
ENDCHECK			IF_ERROR(*NEXT)
											
ENDROUTINE	
	

Structuring	Functions	to	Validate	Header	Fields	and	Multiple	Details	Input
Via	a	Browse	List
At	times	there	may	be	a	need	to	validate	multiple	values	for	a	field	or	fields.	An
example	of	this	would	be	a	screen	that	requires	input	of	several	header	fields
and	multiple	entries	of	a	set	of	detail	fields.	Typically	a	function	required	to	do
this	type	of	validation	would	be	structured	like	this:

FUNCTION			OPTIONS(*DIRECT)
DEFINE					FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
GROUP_BY			NAME(#HEADER)	FIELDS(....	<FIELDS	ON	HEADER>)
DEF_LIST			NAME(#DETAILS)	FIELDS(.	<FIELDS	IN	DETAILS>)
											
BEGIN_LOOP	
CHANGE					FIELD(#HEADER	#DETAILS)	TO(*NULL)
INZ_LIST			NAMED(#DETAILS)	NUM_ENTRYS(100)	WITH_MODE(*ADD)

DOUNTIL				COND(*NOERRORS)
REQUEST				FIELDS(#HEADER)	BROWSELIST(#DETAILS)
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
*										<<																																													>>
*										<<								VALIDATE	HEADER	FIELDS	HERE										>>
*										<<																																													>>
SELECTLIST	NAMED(#DETAILS)	GET_ENTRYS(*NOTNULL)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
*										<<																																													>>
*										<<								VALIDATE	DETAIL	FIELDS	HERE										>>
*										<<																																													>>
ENDCHECK			IF_ERROR(*NEXT)
UPD_ENTRY		IN_LIST(#DETAILS)	WITH_MODE(*ADD)
ENDSELECT		
ENDCHECK			IF_ERROR(*NEXT)
ENDROUTINE	
	

Example	of	Validating	Header	Fields	and	Multiple	Details	Input	Via	a
Browse	List
This	example	demonstrates	how	to	validate	a	screen	with	several	header	fields
and	multiple	values	of	a	set	of	detail	fields	that	are	input	via	a	browse	list.
DEFINE					FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
GROUP_BY			NAME(#HEADER)	FIELDS(#EMPNO	#SURNAME	#GIVENAME)
DEF_LIST			NAME(#DETAILS)	FIELDS(#SKILCODE	#DATEACQ)
											
MESSAGE				MSGTXT('Input	Employee	details,	Press	Enter.')
BEGIN_LOOP	
CHANGE					FIELD(#HEADER	#DETAILS)	TO(*NULL)
INZ_LIST			NAMED(#DETAILS)	NUM_ENTRYS(100)	WITH_MODE(*ADD)
DOUNTIL				COND(*NOERRORS)

REQUEST				FIELDS(#HEADER)	BROWSELIST(#DETAILS)
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			
MESSAGE				MSGTXT('Employee	details	have	been	accepted.	Input	next	Employee')
END_LOOP			
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
											
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
RANGECHECK	FIELD(#EMPNO)	RANGE((A0001	A0090))
VALUECHECK	FIELD(#SURNAME)	WITH_LIST(*BLANKS)	IN_LIST(*ERROR)	NOT_INLIST(*NEXT)
VALUECHECK	FIELD(#GIVENAME)	WITH_LIST(*BLANKS)	IN_LIST(*ERROR)	NOT_INLIST(*NEXT)
											
SELECTLIST	NAMED(#DETAILS)	GET_ENTRYS(*NOTNULL)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
FILECHECK		FIELD(#SKILCODE)	USING_FILE(SKLTAB)	USING_KEY(#SKILCODE)
DATECHECK		FIELD(#DATEACQ)
ENDCHECK			IF_ERROR(*NEXT)
UPD_ENTRY		IN_LIST(#DETAILS)	WITH_MODE(*ADD)
ENDSELECT		
											
ENDCHECK			IF_ERROR(*NEXT)
ENDROUTINE
	

7.5	BROWSE
The	BROWSE	command	is	used	to	display	selected	fields	from	selected	file
records	at	a	workstation.
Optionally,	the	user	may	select	one	of	the	displayed	records.	If	record	selection
is	used,	the	BROWSE	command	will	return	the	record	fields	to	the	program	in
much	the	same	way	as	a	FETCH	command	does.
The	use	of	the	BROWSE	command	in	new	applications	is	not	recommended.
The	BROWSE	command	was	provided	in	an	early	release	of	LANSA	and	it	will
always	exist	for	that	reason.
However,	subsequent	releases	of	LANSA	have	included	features	like
application	templates,	pop-up	windows	and	prompt	key	processing	that	far
exceed	the	speed	and	functionality	of	the	BROWSE	command.
The	BROWSE	command	cannot	be	used	in	programs	that	are	portable.	Use	the
*DBOPTIMIZE	facility,	request	multilingual	support,	and	GUI	(Graphical	User
Interface)	enabled	or	Web	enabled.

Portability
Considerations

A	build	warning	will	be	generated	if	used	in	Visual	LANSA
code.	An	error	will	occur	at	execution	time.	Code	using	this
facility	can	be	conditioned	so	that	it	is	not	executed	in	this
environment.

Also	See
7.5.1	BROWSE	Parameters
7.5.2	BROWSE	Examples
																																																						Required
	
		BROWSE	-------	FIELDS	------
-	field	name		field	attributes	--->
																																|										|															|				|
																																|												---	7	max	--------	|
																																	------	100	max	----------------
	
													>--	FROM_FILE	----	file	name	.	*FIRST	-------------
>
																																												library	name
	

																																																							Optional
													>--	WHERE	--------	'condition'	-------------------->
	
													>--	WITH_KEY	-----	key	field	values	--------------->
	
													>--	NBR_KEYS	-----	*WITHKEY	----------------------
->
																																numeric	field	name
	
													>--	GENERIC	------	*NO	---------------------------->
																																*YES
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------
>
																																label
	
													>--	VAL_ERROR	----	*LASTDIS	-----------------------
>
																																*NEXT
																																label
	
													>--	USE_SELECT	---	*YES		-------------------------->
																																*NO
	
													>--	NO_SELECT	----	*NEXT	--------------------------
>
																																label
	
													>--	ONE_FOUND	----	*DISPLAY----------------------
-->
																																*SELECT
	
													>--	ISSUE_MSG	----	*NO	---------------------------->
																																*YES
	
													>--	RETURN_RRN	---	*NONE	-------------------------

->
																																field	name
	
													>--	DOWN_SEP	-----	*DESIGN	-----------------------
->
																																decimal	value
	
													>--	ACROSS_SEP	---	*DESIGN	-----------------------
->
																																decimal	value
	
													>--	EXIT_KEY	-----	*YES	--	*EXIT	------------------>
																																*NO					label
	
													>--	MENU_KEY	-----	*YES	--	*MENU		---------------
-->
																																*NO					label
	
													>--	ADD_KEY	------	*NO	---	*NEXT	------------------
>
																																*YES				label
	
													>--	CHANGE_KEY	---	*NO	----	*NEXT	--------------
--->
																																*YES					label
	
													>--	DELETE_KEY	---	*NO	----	*NEXT	---------------
-->
																																*YES					label
	
													>--	USER_KEYS	----	fnc	key---'description'--label--
>
																														|																															|
																															---------	5	maximum	-----------
	
													>--	SHOW_NEXT	----	*PRO	---------------------------|
																																*YES
																																*NO
	

7.5.1	BROWSE	Parameters
FIELDS
FROM_FILE
WHERE
WITH_KEY
IO_ERROR
IO_STATUS
ACROSS_SEP
ADD_KEY
CHANGE_KEY
DELETE_KEY
DOWN_SEP
EXIT_KEY
GENERIC
ISSUE_MSG
MENU_KEY
NBR_KEYS
NO_SELECT
ONE_FOUND
RETURN_RRN
SHOW_NEXT
USE_SELECT
USER_KEYS
VAL_ERROR

FIELDS
Specifies	either	the	field(s)	that	are	to	be	browsed	from	the	record	in	the	file	or
the	name	of	a	group	that	specifies	the	field(s)	to	be	browsed.

FROM_FILE
Refer	to	Specifying	File	Names	in	I/O	Commands.

WHERE

Refer	to	Specifying	Conditions	and	Expressions.

WITH_KEY
Refer	to	Specifying	File	Key	Lists	in	I/O	Commands.

NBR_KEYS
This	parameter	can	be	used	in	conjunction	with	the	WITH_KEY	parameter	to
vary	the	number	of	key	fields	that	are	actually	used	to	browse	records	at
execution	time.
*WITHKEY,	which	is	the	default	value,	specifies	that	the	number	of	key	fields
will	always	match	the	number	specified	in	the	WITH_KEY	parameter	and	the
value	will	not	be	changed	at	execution	time.
If	the	number	of	key	fields	is	to	be	varied	at	execution	time	specify	the	name	of
a	numeric	field	that	contains	the	number	of	keys	value.	The	field	specified	must
be	defined	in	this	function	or	in	the	LANSA	data	dictionary	and	must	be
numeric.
At	execution	time	the	value	contained	in	the	NBR_KEYS	field	must	not	be	less
than	zero	or	greater	than	the	number	of	key	fields	specified	in	the	WITH_KEY
parameter.
Refer	to	the	examples	following	for	more	information.
GENERIC
Specifies	whether	or	not	generic	searching	is	required.	Generic	searching	is
different	to	full	or	partial	key	searching	because	only	the	non-blank	or	non-zero
portion	of	the	key	value	is	used	when	comparing	the	search	key	with	the	file
key.
When	using	generic	searching	on	an	alphanumeric	field	only	the	leftmost	non-
blank	portion	of	the	search	field	is	compared	with	the	file	key	(i.e:	trailing
blanks	are	ignored	for	comparative	purposes).
When	using	generic	searching	on	a	numeric	field	only	the	leftmost	non-zero
portion	of	the	search	field	is	compared	with	the	file	key	(i.e:	trailing	zeros	are
ignored	for	comparative	purposes).	Also,	generic	numeric	field	comparisons	are
done	as	if	both	the	search	key	and	the	file	key	are	positive	numbers,	regardless
of	what	they	actually	are.
Note	that	these	generic	search	rules	mean	that	a	blank	alphanumeric	search	key
or	a	zero	(0)	numeric	key	will	match	every	record	selected.
For	example,	if	a	file	was	keyed	by	a	name	field	and	it	contained	the	following
values:

SM

SMIT

SMITH

SMITHS

SMITHY

SMYTHE

	

Then	the	SELECT	statement:

SELECT		WITH_KEY('SM')

	

would	only	select	the	first	record	in	the	file	because	it	is	the	only	record	that
matches	the	full	key	value	'SM'.
If	however,	the	SELECT	statement	was	changed	to:

SELECT		WITH_KEY('SM')	GENERIC(*YES)

	

then	all	the	records	in	the	file	would	be	selected	because	only	the	non-blank
portion	of	the	key	value	specified	is	compared	with	the	file	key.
*NO,	which	is	the	default	value,	indicates	that	generic	searching	is	not	required.
*YES,	indicates	that	generic	searching	is	to	be	performed.	When	generic
searching	is	used	it	is	actually	performed	only	on	the	last	key	that	was	supplied
at	execution	time.	Other	(previous)	keys	specified	in	the	WITH_KEY	parameter
must	exactly	match	the	values	in	the	file.	They	are	not	generically	compared
with	the	data	in	the	file.
For	instance,	imagine	a	name	and	address	file	that	is	keyed	by	state,	post/zip
code	and	name.	The	command:

SELECT		WITH_KEY('NSW'	2000	'SM')	NBR_KEYS(3)	GENERIC(*YES)

	

would	select	all	names	in	NSW,	with	postcode	2000	whose	names	start	with
SM.	This	is	an	example	of	generic	searching	on	an	alphanumeric	field.	Trailing
blanks	are	ignored	when	comparing	the	search	key	with	the	data	read	from	the
file.	Also	note	that	only	the	last	key	('SM')	is	actually	generically	compared	with
the	data	on	the	file.	The	other	keys	,	'NSW'	and	2000	must	exactly	match	data
read	from	the	file.
If,	at	execution	time	the	command	was	dynamically	modified	to	use	2	keys,	like
this:

SELECT		WITH_KEY('NSW'	2000	'SM')	NBR_KEYS(2)	GENERIC(*YES)

	

then	it	would	select	all	names	in	NSW	with	a	post	code	that	starts	with	2.	This	is
an	example	of	generic	searching	on	a	numeric	field	where	trailing	zeroes	(0's)
are	ignored.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code,	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	IO$STS
will	still	be	updated.
For	values,	refer	to	I/O	Return	Codes.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.

If	the	default	value	*ABORT	is	not	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed	if	an	I/O	error	occurs.

VAL_ERROR
Specifies	the	action	to	be	taken	if	a	validation	error	was	detected	by	the
command.
A	validation	error	occurs	when	information	that	is	to	be	added,	updated	or
deleted	from	the	file	does	not	pass	the	FILE	or	DICTIONARY	level	validation
checks	associated	with	fields	in	the	file.
If	the	default	value	*LASTDIS	is	used	control	will	be	passed	back	to	the	last
display	screen	used.	The	field(s)	that	failed	the	associated	validation	checks	will
be	displayed	in	reverse	image	and	the	cursor	will	be	positioned	to	the	first	field
in	error	on	the	screen.
If	the	default	value	*LASTDIS	is	not	used	you	must	nominate	either	*NEXT,
indicating	that	control	should	be	passed	to	the	next	command,	or,	a	valid
command	label	to	which	control	should	be	passed.

The	*LASTDIS	is	valid	even	if	there	is	no	"last	display"	(such	as	in
batch	functions).	In	this	case	the	function	will	abort	with	the
appropriate	error	message(s).

When	using	*LASTDIS	the	"Last	Display"	must	be	at	the	same	level
as	the	database	command	(INSERT,	UPDATE,	DELETE,	FETCH	and
SELECT).		If	they	are	at	different	levels	e.g.	the	database	command	is
specified	in	a	SUBROUTINE,	but	the	"Last	Display"	is	a	caller
routine	or	the	mainline,	the	function	will	abort	with	the	appropriate
error	message(s).

The	same	does	NOT	apply	to	the	use	of	event	routines	and	method
routines	in	Visual	LANSA.	In	these	cases,	control	will	be	returned	to
the	calling	routine.	The	fields	will	display	in	error	with	messages
returned	to	the	first	status	bar	encountered	in	the	parent	chain	of
forms,	or	if	none	exist,	the	first	form	with	a	status	bar	encountered	in
the	execution	stack	(for	example,	a	reusable	part	that	inherits	from
PRIM_OBJT).

USE_SELECT
Specifies	whether	the	browse	is	to	allow	record	selection.

The	default	value	is	*YES	which	means	that	when	the	browse	is	displayed,	the
user	will	be	able	to	nominate	which	record	is	to	be	selected.	Once	a	record
selection	is	made,	all	of	the	fields	in	the	function	will	contain	the	associated
values	and	the	program	will	continue	on	to	the	next	statement.
The	only	other	allowable	value	is	*NO	which	means	that	the	browse	will	be
displayed	with	no	select	column.	Once	the	enter	key	or	a	function	key	is
pressed,	the	program	will	continue	to	the	next	statement.	The	value	of	fields
within	the	function	will	be	unchanged.	The	I/O	status	will	return	an	OK	if	there
was	at	least	one	record	in	the	browse	or	else	NR	if	there	were	no	records	in	the
browse.

NO_SELECT
Indicates	the	action	to	be	taken	if	no	browse	entry	was	selected.
The	default	*NEXT	will	pass	control	to	the	next	executable	command.
Otherwise	nominate	the	label	associated	with	a	command	to	which	control
should	be	passed.
This	option	will	be	ignored	if	USE_SELECT(*NO)	has	been	specified.

ONE_FOUND
Indicates	what	action	is	to	be	taken	if	the	browse	command	finds	one	and	only
one	record	matching	the	search	criteria.
The	default,	*DISPLAY	indicates	that	the	record	should	be	displayed	to	the
user.
The	only	other	option	is	to	specify	*SELECT	which	will	automatically	select
the	record.	This	provides	a	very	simple	means	of	supplying	generic	search	lists.
A	partial	key	can	be	supplied,	and	if	a	single	hit	was	found	then	the	record
would	be	retrieved.	If	more	than	one	record	was	found	then	LANSA	would
prompt	the	user	to	select	the	desired	record.

ISSUE_MSG
Specifies	whether	an	"end	of	file"	message	is	to	be	automatically	issued	or	not.
The	default	value	is	*NO	which	indicates	that	no	message	should	be	issued.
The	only	other	allowable	value	is	*YES	which	indicates	that	a	message	should
be	automatically	issued.	The	message	will	appear	on	line	22/24	of	the	next
screen	format	presented	to	the	user	or	on	the	job	log	of	a	batch	job.

RETURN_RRN
Specifies	the	name	of	a	field	in	which	the	relative	record	number	of	the	record

just	selected	should	be	returned	in.
Any	field	nominated	in	this	parameter	must	be	defined	within	the	function	or
the	LANSA	data	dictionary	and	must	be	numeric.
For	further	information	refer	also	to	Load	Other	File	in	the	Visual	LANSA
Developers	Guide.

DOWN_SEP
Specifies	the	spacing	between	rows	on	the	browse.	The	value	specified	must	be
*DESIGN	or	a	number	in	the	range	1	to	10.	DESIGN	will	set	a	default	value	of
1.

ACROSS_SEP
Specifies	the	spacing	between	columns	on	the	browse.	The	value	specified	must
be	*DESIGN	or	a	number	in	the	range	1	to	10.	DESIGN	will	set	a	default	value
of	1.

EXIT_KEY
Specifies	whether	the	EXIT	function	key	is	to	be	enabled	when	the	browse	list
is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to	happen	if
the	EXIT	key	is	used.
*YES,	which	is	the	default	value,	indicates	that	the	EXIT	key	should	be	enabled
when	the	screen	is	displayed.
If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to	which
control	should	be	passed	when	the	EXIT	key	is	used.
If	no	label	is	specified	the	default	value	of	*EXIT	is	used	which	specifies	that	a
complete	exit	from	the	LANSA	system	should	be	performed.	In	SAA/CUA
partitions	this	is	referred	to	as	a	"high"	exit.
*NO	indicates	that	the	EXIT	function	key	should	not	be	enabled	when	the
screen	is	displayed.

MENU_KEY
Specifies	whether	the	MENU	function	key	is	to	be	enabled	when	the	browse	list
is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to	happen	if
the	MENU	key	is	used.
*YES,	which	is	the	default	value,	indicates	that	the	MENU	key	should	be
enabled	when	the	screen	is	displayed.	If	*YES	is	used	it	is	also	possible	to
nominate	a	command	label	to	which	control	should	be	passed	when	the	MENU
key	is	used.	If	no	label	is	specified	the	default	value	of	*MENU	is	used	which

its:Lansa013.chm::/lansa/l4wdev04_0320.htm

specifies	that	the	process's	main	menu	should	be	re-displayed.
*NO	indicates	that	the	MENU	function	key	should	not	be	enabled	when	the
screen	is	displayed.

ADD_KEY
Specifies	whether	the	ADD	function	key	is	to	be	enabled	when	the	browse	list	is
displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to	happen	if	the
ADD	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	ADD	function	key	should	not
be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	ADD	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	ADD	key	is	used.	If	no	label	is
specified	the	default	value	of	*NEXT	is	used	which	specifies	that	the	next
RDML	command	should	be	executed.

CHANGE_KEY
Specifies	whether	the	CHANGE	function	key	is	to	be	enabled	when	the	browse
list	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to	happen
if	the	CHANGE	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	CHANGE	function	key
should	not	be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	CHANGE	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	CHANGE	key	is	used.	If	no	label	is
specified	the	default	value	of	*NEXT	is	used	which	specifies	that	the	next
RDML	command	should	be	executed.

DELETE_KEY
Specifies	whether	the	DELETE	function	key	is	to	be	enabled	when	the	browse
list	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to	happen
if	the	DELETE	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	DELETE	function	key	should
not	be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	DELETE	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	DELETE	key	is	used.	If	no	label	is
specified	the	default	value	of	*NEXT	is	used	which	specifies	that	the	next

RDML	command	should	be	executed.

USER_KEYS
Specifies	up	to	5	additional	user	function	keys	that	will	be	enabled	when	the
browse	list	is	displayed	at	the	workstation.
Any	user	function	keys	assigned	must	not	conflict	with	function	keys	assigned
to	the	standard	LANSA	functions	of	EXIT,	MENU,	MESSAGES,	ADD,
CHANGE	or	DELETE	when	they	are	enabled	on	a	command	(i.e:	a	function
key	cannot	be	assigned	to	more	than	one	function).
Additional	user	function	keys	are	specified	in	the	format:
(fnc	key	number		'description'		label)
where:

fnc	key
number

Is	a	normal	function	or	function	key	number	in	the	range	1	to	24.

'description' Is	a	description	of	the	function	assigned	to	the	function	key.	This
description	will	be	displayed	on	line	23	of	the	screen	format.
Maximum	length	is	8	characters.

Label Is	an	optional	label	to	which	control	should	be	passed	if	the
function	key	is	used.	Special	value	*NEXT	is	assumed	as	a	default
and	indicates	that	the	next	command	(after	this	one)	should	receive
control.

Refer	to	the	IF_KEY	command	for	details	of	how	the	function	key	that	was
used	can	be	tested	in	the	RDML	program.
As	an	example	of	use	consider	the	following:

BROWSE			USER_KEYS((14	'Commit')(15	'Purge'))

						IF_KEY		WAS(*USERKEY1)

								<<	Commit	logic	>>

						ENDIF

						IF_KEY		WAS(*USERKEY2)

								<<	Purge	logic	>>

						ENDIF

	

Note	that	the	IF_KEY	command	refers	to	the	keys	by	symbolic	names	that
indicate	the	order	in	which	they	are	declared	in	the	USER_	KEYS	parameter,
not	the	actual	function	key	numbers	assigned	to	them.	This	makes	changing
function	key	assignments	easier.

SHOW_NEXT
Specifies	whether	the	"next	function"	field	should	be	shown	on	line	22	of	the
screen.	The	next	function	field	is	a	facility	that	allows	transfer	between	the
functions	in	a	process	without	the	need	to	return	to	the	process	menu	each	time.
Refer	to	The	Function	Control	Table	in	the	LANSA	for	i	User	Guide	for	details
about	"next	function"	processing.
*PRO,	which	is	the	default	value,	indicates	that	the	"next	function"	field	should
appear	only	when	the	process	to	which	this	function	belongs	has	a	menu
selection	style	of	"FUNCTION".	If	the	process	menu	selection	style	is
"NUMBER"	or	"CURSOR"	then	the	next	function	field	should	not	appear.
*YES	indicates	that	the	next	function	field	should	appear	regardless	of	what
menu	selection	style	is	being	used	by	the	process	to	which	this	function	belongs.
*NO	indicates	that	the	next	function	field	should	not	appear	regardless	of	what
menu	selection	style	is	being	used	by	the	process	to	which	this	function	belongs.
Note:	The	SHOW_NEXT	parameter	is	ignored	in	SAA/CUA	applications.

its:Lansa010.chm::/lansa/ugub_40097.htm

7.5.2	BROWSE	Examples
Example	1:	Browse	all	lines	of	a	given	order	allowing	selection	of	an	individual
order	line:
GROUP_BY			NAME(#BRWLIN)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY)
REQUEST				FIELDS(#ORDNUM)
BROWSE					FIELDS(#BRWLIN)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)	RETURN_RRN(#RRNFLD)
	

This	is	functionally	similar	to:
DEF_LIST			NAME(#BRWLIN)	FIELDS((#SELECTOR	*SELECT)	#ORDLIN	#PRODUCT	#QUANTITY	#RRNFLD)
	
REQUEST				FIELDS(#ORDNUM)
CLR_LIST			NAMED(#BRWLIN)
SELECT					FIELDS(#BRWLIN)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)	RETURN_RRN(#RRNFLD)
ADD_ENTRY		TO_LIST(#BRWLIN)
ENDSELECT
DISPLAY				BROWSELIST(#BRWLIN)
SELECTLIST	NAMED(#BRWLIN)	GET_ENTRYS(*SELECT)
FETCH						FIELDS(#BRWLIN)	FROM_FILE(ORDLIN)	WITH_RRN(#RRNFLD)
ENDSELECT
	

Example	2:	Generically	browse	customers	by	name	that	are	in	state	NSW	with
a	credit	limit	of	$100,000:
BROWSE					FIELDS(#NAME	#ADD1	#ADD2	#POSTCD	#CRDLIM)	FROM_FILE(CUSTMAS)	WHERE('(#POSTCD	>	1999)	*AND	(#POSTCD	<	3000)	*AND	(#CRDLIM	=	100000)')	WITH_KEY(#NAME)	GENERIC(*YES)
	

Example	3:	Expand	on	example	2	by	automatically	selecting	the	record	if	it	is
the	only	record	in	the	browse:
BROWSE					FIELDS(#NAME	#ADD1	#ADD2	#POSTCD	#CRDLIM)	FROM_FILE(CUSTMAS)	WHERE('(#POSTCD	>	1999)	*AND	(#POSTCD	<	3000)	*AND	(#CRDLIM	=	100000)')	WITH_KEY(#NAME)	GENERIC(*YES)	ONE_FOUND(*SELECT)
	

Example	4:	Use	browse	to	provide	for	a	customer	master	file	inquiry	with
update	and	delete	facilities.	The	browse	is	to	support	generic	searching	for	the
customer	name:
				GROUP_BY			NAME(#BRWLIN)	FIELDS(#NAME	#ADD1	#ADD2	#ADD3	#POSTCD)
	
				BEGIN_LOOP
L1:	REQUEST				FIELDS(#NAME)

				SET_MODE			TO(*DISPLAY)
				BROWSE					FIELDS(#BRWLIN)	FROM_FILE(CUSTMAS)	WITH_KEY(#NAME)	GENERIC(*YES)	NO_SELECT(L1)	RETURN_RRN(#FILRRN)	CHANGE_KEY(*YES)	DELETE_KEY(*YES)
				DISPLAY				FIELDS(#BRWLIN)
				IF_MODE				IS(*CHANGE)
				UPDATE					FIELDS(#BRWLIN)	IN_FILE(CUSTMAS)	WITH_RRN(#FILRRN)
				ENDIF
				IF_MODE				IS(*DELETE)
				DELETE					FROM_FILE(CUSTMAS)	WITH_RRN(#FILRRN)
				ENDIF
				END_LOOP
	

7.6	CALL
The	CALL	command	is	used	to	invoke	a	3GL	program	or	process	or	function
and	optionally	pass	parameters,	data	structures	and	lists	into	it.		The	CALL
command	can	also	be	used	in	WAM	Components	to	invoke	other
WEBROUTINEs	in	the	same	WAM	Component	or	other	WAM	Components.

Portability
Considerations

See	Parameters	PARM	and	PGM	and	Specifying	File
Names	in	I/O	Commands.

Also	See
7.6.1	CALL	Parameters
7.6.2	CALL	Comments	/	Warnings
7.6.3	CALL	Examples
																																																									Optional
	
		CALL	---------	PGM	----------	*NONE	----------------------->
																																pgm	name
																																pgm	name	.	*LIBL
																																pgm	name	.	library	name
	
													>--	PROCESS	------	*NONE	----------------------->
																																*DIRECT
																																process	name
	
													>--	FUNCTION	-----	*MENU	----------------------->
																																function	name
	
													>--	WEBROUTINE	---	webroutine	name	-------------
>
																																*SERVICE	service	name
																																*EVALUATE	field	name
	
													>--	ONENTRY	------	*MAP_NONE	-------------------
>
																																*MAP_ALL
																																*MAP_LOCAL
																																*MAP_SHARED

	
													>--	ONEXIT	-------	*MAP_NONE	------------------->
																																*MAP_ALL
																																*MAP_LOCAL
																																*MAP_SHARED
	
													>--	PARM	---------	list	of	parameters	---------->
																													|		expandable	group	expression		|
																														-------	20	maximum	------------	
	
													>--	EXIT_USED	----	*EXIT	----------------------->
																																*MENU
																																*NEXT
																																*RETURN
																																label
	
													>--	MENU_USED	----	*MENU	-----------------------
>
																																*EXIT
																																*NEXT
																																*RETURN
																																label
	
													>--	NUM_LEN	------	*ALL15	---------------------->
																																*DEFINED
	
													>--	PGM_EXCH	-----	*NO	------------------------->
																																*YES
	
													>--	IF_ERROR	-----	*ABORT	---------------------->
																																*NEXT
																																*RETURN
																																label
	
													>--	PASS_DS	------	data	structure	names	-------->
																																|																			|
																																	------	20	max	-----
	
													>--	PASS_LST	-----	working	list	names	-------------|

																																|																			|
																																	------	20	max	-----
	

7.6.1	CALL	Parameters
EXIT_USED
FUNCTION
IF_ERROR
MENU_USED
NUM_LEN
ONENTRY
ONEXIT
PARM
PASS_DS
PASS_LST
PGM
PGM_EXCH
PROCESS
WEBROUTINE

PGM
Specifies	the	name	of	a	3GL	program	which	is	to	be	invoked.	This	parameter	is
a	qualified	name.	Either	a	program	name	or	a	process	name	(but	not	both)	must
be	specified	on	this	command.	If	required	the	library	in	which	the	program
resides	can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is
assumed	which	indicates	the	execution	time	library	list	of	the	job	should	be
searched	to	find	the	program.
The	use	of	library	names	in	a	CALL	command	is	not	recommended.	For	further
information,	refer	to	Specifying	File	Names	in	I/O	Commands.

Portability
Considerations

Calls	of	3GL	programs	are	only	supported	in	RDMLX
programs	on	IBM	i	for	compatibility	with	existing	RDML
code.	As	such,	only	RDML	fields	and	lists	are	supported	in
the	parameters	PARM,	PGM_EXCH,	PASS_DS	and
PASS_LIST	that	may	be	used	for	3GL	program	calls.
A	build	warning	will	be	generated	if	used	in	Visual	LANSA
code.	An	error	will	occur	at	execution	time.	Code	using	this
facility	can	be	conditioned	so	that	it	is	not	executed	in	this
environment.

For	further	information	refer	to	Calling	3GL	Programs	in	the
LANSA	Application	Design	Guide.

PROCESS
Specifies	the	name	of	the	LANSA	process	which	is	to	be	invoked.	Either	a	3GL
program	name	or	a	process	name	(but	not	both)	must	be	specified.
When	calling	a	function	there	are	large	performance	benefits	to	be	gained	from
using	a	"direct"	call.
To	use	a	direct	call	simply	specify	the	name	*DIRECT	in	this	parameter,	in
place	of	the	actual	process	name,	and	then	nominate	the	function	name	in	the
FUNCTION	parameter.
Note:

A	*DIRECT	call	does	not	perform	security	checking	in	the	same	way	that	a
process	controlled	call	does.	This	is	one	of	the	major	reasons	for	its	superior
performance.	Read	the	comments	section	before	using	the	*DIRECT	option.
On	IBM	i,	*DIRECT	calls	must	be	used	when	calling	between	RDML	and
RDMLX	functions.
Full	RDMLX	Forms	cannot	call	a	Process.	Only	a	Function	can	be	called.
Forms	that	are	NOT	enabled	for	full	RDMLX	can	call	a	Process.

FUNCTION
Optionally	specifies	the	function	within	the	nominated	process	that	should	be
invoked.	If	this	parameter	is	not	specified	a	default	value	of	*MENU	is	assumed
that	indicates	that	the	main	menu	of	the	nominated	process	should	be	displayed
for	the	user	to	select	the	desired	function.

PARM
Is	optional	and	if	specified	will	define	a	list	of	parameters	which	are	to	be
passed	to	the	called	program.	The	parameters	must	correspond	to	the	expected
parameters	in	the	called	program.	This	is	NOT	checked	by	LANSA.	For	further
information,	refer	to	Quotes	and	Quoted	Strings.	This	parameter	allows
expandable	group	expressions.

Portability
Considerations

Not	supported	in	the	current	release	of	Visual	LANSA	and	not
expected	to	be	supported	in	future	releases.

EXIT_USED
Is	valid	when	calling	another	process	only.	This	parameter	is	ignored	when

its:LANSA065.CHM::/lansa/dsnbf_0075.htm

calling	another	program.	Specifies	what	is	to	happen	when	the	called	process	is
ended	by	use	of	the	EXIT	function	key	or	the	EXIT	command.	The
EXIT_USED	parameter	will	only	take	effect	if	the	EXIT	function	key	or	the
EXIT	command	were	used	to	end	the	called	process.
*EXIT	indicates	that	this	function	should	itself	terminate	and	request	an	exit
from	the	entire	LANSA	system.
*MENU	indicates	that	this	function	itself	should	terminate	and	request	that	the
process	main	menu	be	re-displayed.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

WEBROUTINE
Specifies	the	name	of	the	WEBROUTINE	to	call.	You	can	specify	another
WAM,	in	this	case	WAM	name	followed	by	a	WEBROUTINE	name	separated
by	a	dot	(for	example	#MyWAM.MyWebRtn).
A	Service	Name	can	also	be	specified,	if	prefixed	with	*SERVICE	modifier.
The	value	can	also	be	provided	from	a	field,	if	prefixed	with	*EVALUATE
modifier.

ONENTRY
Is	valid	when	calling	another	WEBROUTINE	only.	For	WEBROUTINE
information,	refer	to	WEBROUTINE.
Used	for	mapping	incoming	fields	and	list	into	the	target	WEBROUTINE.
Can	be	one	of:
*MAP_NONE	does	not	map	any	fields	or	lists).
*MAP_ALL	maps	all	required	fields	and	lists.
*MAP_LOCAL	only	fields	and	lists	on	WEBROUTINE's	WEB_MAPs	are
mapped.
*MAP_SHARED	only	WAM	level	WEB_MAP	fields	and	lists	are	mapped,	not
WEBROUTINE	level.
The	default	value	is	*MAP_ALL.

ONEXIT

Is	valid	when	calling	another	WEBROUTINE	only.
Used	for	mapping	outgoing	fields	from	the	target	WEBROUTINE.
Can	be	one	of:
*MAP_NONE	does	not	map	any	fields	or	lists.
*MAP_ALL	maps	all	required	fields	and	lists.
*MAP_LOCAL	only	fields	and	lists	on	WEBROUTINE's	WEB_MAPs	are
mapped.
*MAP_SHARED	only	WAM	level	WEB_MAP	fields	and	lists	are	mapped,	not
WEBROUTINE	level.
The	default	value	is	*MAP_ALL.

MENU_USED
Is	valid	when	calling	another	process	only.	This	parameter	is	ignored	when
calling	another	program.	Specifies	what	is	to	happen	when	the	called	process	is
ended	by	use	of	the	MENU	function	key	or	the	MENU	command.	The
MENU_USED	parameter	will	only	take	effect	if	the	MENU/CANCEL	function
key	or	the	MENU	command	were	used	to	end	the	called	process.
*EXIT	indicates	that	this	function	should	itself	terminate	and	request	an	exit
from	the	entire	LANSA	system.
*MENU	indicates	that	this	function	itself	should	terminate	and	request	that	the
process	main	menu	be	re-displayed.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

NUM_LEN
Specifies	the	length	to	be	used	when	passing	numeric	fields	or	literals	as
parameters	when	calling	a	user	program.
*ALL15	is	the	default	and	indicates	that	all	numeric	parameters	should	be
passed	with	length	packed	15,N	(where	N	=	number	of	decimal	places	defined
as	per	the	data	dictionary	or	DEFINE	command).
*DEFINED	indicates	that	all	numeric	parameters	should	be	passed	with	length
as	per	the	data	dictionary	or	DEFINE	command.

PGM_EXCH
Specifies	whether	or	not	the	program	specified	by	the	PGM	parameter	will
require	access	to	the	LANSA	exchange	list	that	is	normally	only	used	to
communicate	information	between	LANSA	processes	and	functions.
This	parameter	has	no	meaning	when	placing	a	call	to	a	LANSA	process	or
function	(i.e:	PROCESS	or	FUNCTION	parameters	used).	In	this	context	it	is
totally	ignored,	no	matter	what	value	it	has.
*NO,	which	is	the	default	value,	specifies	that	the	program	nominated	in	the
PGM	parameter,	or	programs	that	it	in	turn	may	call,	do	not	require	access	to	the
LANSA	exchange	list.
*YES	specifies	that	the	program	nominated	in	the	PGM	parameter,	or	programs
that	it	in	turn	may	call,	do	require	access	to	the	LANSA	exchange	list	by	placing
calls	to	program	M@EXCHL.
The	use	of	program	M@EXCHL	is	described	in	detail	in	the	section	that
describes	the	EXCHANGE	command	and	exchange	list	processing.

IF_ERROR
Is	valid	when	calling	a	program	or	a	process/function.
This	parameter	specifies	what	is	to	happen	when	the	called	program	or
process/function	terminates	with	an	error.
*ABORT,	which	is	the	default	value,	indicates	that	this	function	itself	should
terminate	with	an	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

PASS_DS
Allows	up	to	20	different	data	structures	to	be	passed	from	an	RDML	function
into	another	RDML	function	or	3GL	program.	The	following	points	should	be
noted	before	attempting	to	use	this	parameter:
Each	data	structure	name	should	be	the	name	of	a	physical	file	which	has	been
defined	to	LANSA	and	made	operational.
CALL	PROCESS(*DIRECT)	must	be	specified	when	this	parameter	is	used

(and	the	call	is	being	made	to	a	LANSA	function).
To	be	able	to	pass	fields	within	the	named	physical	file,	the	fields	must	be
referenced	at	some	point	within	the	function,	otherwise	they	will	not	be	passed
to	the	caller.	This	applies	to	the	function	being	called	also.	Only	real	fields	in
the	file	can	be	passed,	not	virtual	fields.
This	point	needs	to	be	well	understood.	Say	a	file	definition	contained	3
numeric	real	fields	called	A,	B	and	C.
An	RDML	function	is	written	and	it	sets	fields	A	and	C	to	zero,	then	calls
another	RDML	function	that	receives	the	structure.
If	the	called	function	started	with	the	command	"IF	(B	=	17)"	it	would	fail
because	field	B	does	not	contain	valid	numeric	data.	It	does	not	contain	valid
numeric	data	because	the	first	function	made	no	"reference	to"	or	"mention	of"
field	B	at	all.
The	"reference"	does	not	have	to	be	a	specific	"CHANGE	FIELD(B)	TO(0)"
type	of	command,	it	can	be	any	reference	at	all	in	any	command.	It	just	needs	to
tell	LANSA	that	it	is	"interested"	in	field	B,	and	therefore	needs	to	map	the
current	value	of	field	B	into	and	out	of	the	contiguous	data	structure	storage
area	before	and	after	the	call	to	the	other	function.
It	is	also	important	to	note	that	the	order	in	which	the	data	structures	are
specified	on	the	PASS_DS	parameter	of	the	calling	function	and	the	order	in
which	they	are	specified	on	the	RCV_DS	parameter	of	the	called	function	(see
FUNCTION	command)	is	significant	-	the	data	structures	must	appear	in	the
same	order	in	the	called	and	calling	functions,	otherwise	errors	may	occur.
Avoid	using	this	facility	in	conjunction	with	the	EXCHANGE	command	data
transfer	facility,	particularly	where	a	field	is	in	both	the	exchange	list	and	the
data	structure.
If	a	3GL	program	is	being	called	the	data	structures	should	be	defined	as
received	parameters	in	the	same	order	as	they	are	defined	in	the	RDML	CALL
command.
A	3GL	call	can	involve:	parameters	(PARM),	data	structures	(PASS_DS)	and
working	lists	(PASS_LST).	Parameters	are	always	passed	first,	then	all	data
structures,	then	all	working	lists.
The	use	of	this	facility	with	3GL	programs	is	not	recommended	unless	the
developer	has	extensive	3GL	experience.

PASS_LST
Allows	up	to	20	different	working	list	names	to	be	passed	into	an	RDML

function	or	3GL	program.	The	following	points	should	be	noted	before	using
this	parameter:
Each	working	list	specified	must	be	a	defined	working	list	within	the	function.
CALL	PROCESS(*DIRECT)	must	be	specified	when	this	parameter	is	used
(and	the	call	is	to	an	RDML	function).
The	working	lists	must	have	been	defined	with	the	same	attributes	in	both	the
calling	and	called	function/program	otherwise	errors	could	occur.
It	is	also	important	to	note	that	the	order	in	which	the	working	lists	are	specified
on	the	PASS_LST	parameter	on	the	CALL	command	and	the	order	in	which
they	are	specified	on	the	RCV_LIST	of	the	called	function	is	significant	-	the
working	lists	must	appear	in	the	same	order	in	the	called	and	calling	functions,
otherwise	errors	will	occur.
If	a	3GL	program	is	being	called	the	receiving	data	structures	should	be	defined
as	received	parameters	in	the	same	order	as	they	are	defined	in	the	RDML
CALL	command.
A	3GL	call	can	involve:	parameters	(PARM),	data	structures	(PASS_DS)	and
working	lists	(PASS_LST).	Parameters	are	always	passed	first,	then	all	data
structures,	then	all	working	lists.
Under	IBM	i	each	working	list	is	actually	passed	as	three	3GL	level	parameters:
1.		Under	IBM	i	this	is	the	storage	area	representing	the	working	list	at
maximum	size.

2.		A	numeric	(IBM	i	packed	7,0)	value	representing	the	count	of	the	number	of
list	entries	that	exist	within	the	list	area.

3.		A	numeric	(IBM	i	packed	7,0)	value	representing	the	"current"	list	entry
being	processed	by	the	caller.

The	use	of	this	facility	with	3GL	programs	is	not	recommended	unless	the
developer	has	very	extensive	3GL	experience.

7.6.2	CALL	Comments	/	Warnings
Calling	a	Process	or	Function
The	use	of	parameters	when	calling	another	process	or	function	is	strongly
not	recommended.	Use	the	exchange	list	instead.
When	calling	another	LANSA	process	the	parameters	must	exactly	match
those	required	by	the	process,	in	number	passed,	and	type	(i.e:	numeric	or
alpha).
The	parameters	passed	to	the	called	process	or	function	can	be	a	field	name,
an	alphanumeric	literal,	a	numeric	literal,	a	system	variable	or	a	process
parameter.
Note	that	when	numeric	parameters	are	defined	for	a	process	they	are	always
packed	decimal.	Thus	any	numeric	parameters	passed	to	LANSA	processes
should	also	be	packed	decimal	with	the	same	length	and	number	of	decimal
positions.	Failure	to	observe	this	rule	may	result	in	unpredictable	results.
Using	multiple	data	structures	that	have	fields	with	the	same	name	in	the
same	function,	may	cause	unpredictable	results.
In	the	current	release	of	LANSA	parameters	passed	to	another	process	or
function	are	NOT	RETURNED	from	the	process	or	function.	However,
information	can	be	passed	to	and	returned	from	a	called	function	by	using	the
EXCHANGE	command	just	before	the	CALL	command.	Refer	to	the
EXCHANGE	command	for	more	details	of	how	this	is	done.
Each	physical	file	referred	to	by	the	data	structures	named	in	the	PASS_DS
parameter	must	be	made	operational	or	the	results	will	be	unpredictable.
When	a	compiled	RDML	function	(e.g.:	FUNCA)	is	running	and	executes	a
CALL	command	like	this:

CALL	PROCESS(TEST)	FUNCTION(FUNCB)

	

to	invoke	another	RDML	function	called	FUNCB,	what	actually	happens	is	this:

																					|												|	
																					|		Function		|
																					|			FUNCA				|

																					|____________|	
																											|
																									calls
																											|
																						_____|______
																					|												|	
																					|		Process			|
																					|"Controller"|
																					|			TEST					|
																					|____________|
																											|
																									calls
																											|
																						_____|______
																					|												|	
																					|		Function		|
																					|			FUNCB				|
																					|____________|

This	CALL	operation	can	be	made	significantly	quicker	by	doing	the
following,	especially	if	the	process	controller	TEST	is	running	in	interpretive
mode	rather	than	compiled	mode:

1.		Include	the	command	FUNCTION	OPTIONS(*DIRECT)	into	FUNCB	(note
that	is	FUNCB)	then	recompile	it.	This	simply	specifies	that	FUNCB	is
eligible	for	direct	mode	invocation	and	it	will	not	affect	FUNCB	in	any	way.

2.		Change	the	call	command	in	FUNCA	to	be	like	this:

CALL	PROCESS(*DIRECT)	FUNCTION(FUNCB)

	

					then	recompile	FUNCA.	This	indicates	that	function	FUNCB	should	be
called	in	direct	mode,	rather	than	via	its	process	controller	named	TEST.

					After	these	changes,	the	CALL	will	work	like	this:

																							|												|		
																							|		Function		|
																							|			FUNCA				|

																							|____________|
																													|
																											calls
																													|
																								_____|______
																							|												|
																							|		Function		|
																							|			FUNCB				|
																							|____________|
	
	

Use	this	option	(i.e:	FUNCTION	OPTIONS(*DIRECT))	in	any	function	that
is	intended	to	be	used	as	a	"subroutine",	rather	than	a	main	controlling
function	directly	accessible	from	a	process	menu.	All	calls	to	the	function
should	use	the	CALL	PROCESS(*DIRECT)	option.
This	performance	benefit	is	also	available	when	FUNCB	is	used	as	a
prompter	function	(i.e:	it	services	F4=Prompt	key	requests).	When	associating
FUNCB	with	a	field	in	the	data	dictionary,	simply	indicate	its	process	name
as	*DIRECT,	rather	than	by	specifying	its	actual	process	name	(TEST).
There	is	no	harm	in	specifying	FUNCTION	OPTIONS(*DIRECT)	in	all
functions.	Functions	using	this	option	are	equivalent	to	functions	that	do	not
use	this	option,	and	no	restrictions	on	accessing	such	functions	from	process
menus	exist.
In	a	function	that	does	not	use	FUNCTION	OPTIONS(*DIRECT)	the
associated	RPG	program,	display	file	object	and	multilingual	extension
program	have	names	F@innnnn,	@innnnn	and	F@innnnnML	respectively,
where	"innnnn"	is	an	internal	function	identifier	assigned	by	LANSA.	This
caters	for	duplicate	function	names.
In	a	function	that	does	use	FUNCTION	OPTIONS(*DIRECT),	the	resulting
object	names	are	@fffffff,	@fffffff	and	@fffffffML,	where	fffffff	is	the	name
of	the	function	(from	1	to	7	characters	long).	This	is	why	function	names
must	be	unique	when	using	FUNCTION	OPTIONS(*DIRECT).
Some	restrictions	do	exist	when	using	the	*DIRECT	facility:

All	exchange	of	information	between	FUNCA	and	FUNCB	must	be
via	the	exchange	list.	Parameters	are	not	supported	and	cannot	be
used.	This	is	checked	by	the	full	function	checker.
The	function	name	FUNCB	must	be	unique	within	the	partition.	This

is	also	checked	by	the	full	function	checker.
FUNCB	cannot	use	any	"sideways"	control	commands	like
TRANSFER	because	in	this	structure	it	does	not	have	its	process
controller	(TEST)	available	to	handle	the	request	for	it.	It	should
always	be	terminated	by	a	CANCEL/MENU	function	key	or
command,	an	EXIT	function	key	or	command,	or	by	a	RETURN
command.
FUNCB	should	not	be	part	of	an	action	bar	process.	This	type	of	call,
into	an	action	bar	function,	would	be	quite	strange	and	is	unlikely	to
be	encountered.	Whenever	an	action	bar	function	calls	another
program,	the	called	program	should	only	communicate	with	the	user
via	POP_UPs,	not	via	full	panel	DISPLAY	or	REQUEST	commands
that	may	upset	the	action	bar	display	and	processing.
FUNCB	acts	like	a	logical	"subroutine"	of	FUNCA.
FUNCB	should	have	a	specific	OPTIONS(*HEAVYUSAGE)	or
(*LIGHTUSAGE)	directive.	If	this	is	not	specified	they	will	adopt	the
usage	option	of	the	function	that	called	them,	rather	than	adopting	the
usage	option	of	its	parent	process	TEST.

The	introduction	of	the	CALL	PROCESS(*DIRECT)	option	has	now	made
high	volume	calls	possible,	this	was	previously	not	recommended	IN
LANSA.	When	implementing	high	volume	calls	to	other	functions	the	size	of
the	exchange	list	should	be	considered.	In	these	circumstances	a	large	number
of	fields	on	the	exchange	list	may	cause	a	performance	overhead.

Investigate	the	option	of	passing	data	structures
(CALL....PASS_DS(#dddddd))	between	functions	instead	of	using	the
exchange	option.

Calling	a	User
Program

The	parameters	passed	to	the	called	program	or	process	can	be	a	field	name,
an	alphanumeric	literal,	a	numeric	literal,	a	system	variable	or	a	process
parameter.
If	special	value	*LIBL	was	nominated	as	the	library	containing	the	program
then	the	program	should	be	in	one	of	the	libraries	in	the	user's	library	list	at
the	time	the	function	is	executed.
When	a	parameter	is	alphanumeric	it	is	always	passed	to	the	user	program

with	the	length	defined	in	the	data	dictionary	or	defined	by	the	DEFINE
command.
When	a	parameter	is	numeric	it	is	passed	in	a	packed	decimal	field	of	length
determined	by	the	NUM_LEN	parameter.	If	the	default	of	*ALL15	is
specified	then	all	numeric	parameters	will	be	passed	in	a	packed	decimal	15
digit	field.	The	number	of	decimals	passed	will	match	the	respective
definition	of	the	field	for	fields	and	system	variables.	For	numeric	literals	the
number	of	decimals	will	match	the	number	specified	in	the	literal	(i.e.	12.34
will	be	passed	as	packed	(15,2);	132	will	be	passed	as	packed	(15,0)).
If	*DEFINED	is	specified	then	all	numeric	parameters	will	be	passed	in	a
packed	decimal	field	with	length	and	number	of	decimals	as	defined	in	the
data	dictionary	or	defined	by	the	DEFINE	command.
The	parameters	returned	by	the	user	program	will	only	be	mapped	back	into
the	function	if	the	parameter	is	a	field.	This	prevents	the	user	program	from
modifying	the	contents	of	system	variables,	alphanumeric	literals,	numeric
literals	or	process	parameters.

7.6.3	CALL	Examples
Example	1:	Call	a	program	named	INVOICE	in	library	PRODLIB	and	pass	two
parameters,	invoice	number	and	inquiry	date	as	literals.

CALL		PGM(PRODLIB/INVOICE)	PARM('INV123'	'010187')

	

Example	2:	Call	program	PUTBATCH	passing	the	fields	#BATCH,	#ORDER
and	the	current	date	(which	is	obtained	from	system	variable	*DATE).

CALL		PGM(PUTBATCH)	PARM(#BATCH	#ORDER	*DATE)

	

Example	3:	Call	LANSA	process	ORDERS	and	request	that	the	process	main
menu	be	displayed	to	allow	the	user	to	choose	the	desired	function.	If	the	user
uses	the	MENU	key	to	exit	from	process	ORDERS	continue	processing	in	this
function	at	the	next	RDML	command:

CALL		PROCESS(ORDERS)	FUNCTION(*MENU)	MENU_USED(*NEXT)

	

Example	4:	Call	LANSA	process	ORDERS	and	request	that	the	function
HEADER	be	directly	invoked	without	displaying	the	process	main	menu.	If	the
user	uses	the	MENU	or	EXIT	keys	to	exit	from	function	HEADER,	continue
processing	in	this	function	at	the	next	RDML	command:

CALL		PROCESS(ORDERS)	FUNCTION(HEADER)

						EXIT_USED(*NEXT)	MENU_USED(*NEXT)

	

Example	5:	Do	the	same	thing	as	example	4,	but	use	a	direct	call	to	function
HEADER:

CALL		PROCESS(*DIRECT)	FUNCTION(HEADER)

						EXIT_USED(*NEXT)	MENU_USED(*NEXT)

	

Example	6:	Pass	data	structure	DATAFILE	into	function(ORDER):
This	requires	a	file	called	DATAFILE	to	be	defined	to	LANSA.	The	real	fields
on	this	file	can	be	passed	as	a	data	structure	to	another	function.	A	dummy	field
on	the	end	of	the	data	structure	would	avoid	the	need	to	recompile	each	called
function	receiving	the	data	structure	each	time	fields	are	added	within	the	data
structure.	As	long	as	the	length	of	the	data	structure	remains	consistent,	the
called	function	would	not	need	to	be	recompiled	(unless	the	existing	fields	are
changed	in	length,	position	or	type	within	the	data	structure).

CALL		PROCESS(*DIRECT)	FUNCTION(ORDER)	PASS_DS(DATAFILE)

	

Example	7:	Pass	working	list	#ORDLINE	to	function(ORDER):
CALL						PROCESS(*DIRECT)	FUNCTION(ORDER)	PASS_LST(#ORDLINE)
DEF_LIST		NAME(#ORDLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
TYPE(*WORKING)
	

The	contents	of	working	list	#ORDLINE	can	now	be	referenced	by	function
ORDER.
Example	8:	Call	WEBROUTINE	ORDER:
CALL						WEBROUTINE(ORDER)
	

Values	of	any	fields	and	lists	specified	FOR(*INPUT)	on	the	ORDER
WEBROUTINE	will	be	passed	to	it.
Example	9:	Call	WEBROUTINE	ORDER	in	ORDERS	WAM:
CALL						WEBROUTINE(#ORDERS.ORDER)
	

Values	of	any	fields	and	lists	specified	FOR(*INPUT)	on	the	ORDER
WEBROUTINE	will	be	passed	to	it.
Example	10:	Provide	the	name	of	a		WEBROUTINE	to	call	from	a	field:
#WEBRTN	:=	'ORDERS.ORDER'
CALL						WEBROUTINE(*EVALUATE	#WEBRTN)

	

7.7	CALLCHECK
The	CALLCHECK	command	is	used	to	validate	data	by	calling	a	program	and
optionally	pass	additional	parameters	to	it	as	well	as	to	then	take	appropriate
action	as	determined	by	the	return	codes.

Portability	Considerations See	Parameter	PROG_TYPE.

Also	See
7.7.1	CALLCHECK	Parameters
7.7.2	CALLCHECK	Comments	/	Warnings
7.7.3	CALLCHECK	Examples
7.4	BEGINCHECK
7.14	CONDCHECK
7.16	DATECHECK
7.35	ENDCHECK
7.48	FILECHECK
7.78	RANGECHECK
7.99	VALUECHECK
																																																										Required
	
		CALLCHECK	----	FIELD	--------	field	name	-----------------
---->
	
													>--	BY_CALLING	---	program	name	.	*LIBL	--------
--->
																																															library	name
	
													>--	PROG_TYPE	----	program	type	-------------------
>

																																																									Optional
	
													>--	ADD_PARM	-----	additional	parameters	---------
->

																														|	expandable	group	expression	|				
																															----------	20	characters	----					
	
													>--	GOOD_RET	-----	*NEXT	--------------------------
>
																																*ERROR
																																*ACCEPT
	
													>--	BAD_RET	------	*ERROR	-------------------------
>
																																*NEXT
																																*ACCEPT
	
													>--	MSGTXT	-------	*NONE	-------------------------->
																																message	text
	
													>--	MSGID	--------	DCU0005	------------------------>
																																message	identifier
	
													>--	MSGF	---------	DC@M01	.	*LIBL	-----------------
>
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																														|	expandable	group	expression					|
																															--------	20	max	-----------------
	

7.7.1	CALLCHECK	Parameters
ADD_PARMS
BAD_RET
BY_CALLING
GOOD_RET
MSGDTA
MSGF
MSGID
MSGTXT
PROG_TYPE

FIELD
Specifies	the	name	of	the	field	which	is	to	be	validated.

BY_CALLING
Specifies	the	name	of	the	program	which	is	to	be	called	to	perform	the
validation	of	the	field	entered	in	the	FIELD	parameter.	This	parameter	is	a
qualified	name.	The	program	name	must	be	specified.
If	required	the	library	in	which	the	program	resides	can	also	be	specified.	If	no
library	name	is	specified,	special	value	*LIBL	is	assumed	which	indicates	the
execution	time	library	list	of	the	function	should	be	searched	to	locate	the
program.

PROG_TYPE
Specifies	if	the	program	to	be	called	is	a	3GL	program	or	a	function.	If	the
program	type	is	specified	as	a	function,	no	additional	parameters	are	allowed
and	the	function	must	use	option	*DIRECT.	Please,	refer	to	the	FUNCTION
command	for	more	details.

Portability
Considerations

Calling	of	3GL	programs	is	not	supported	in	the	current
release	of	Visual	LANSA	but	will	be	supported	in	a	future
release.
A	build	warning	will	be	generated	if	used	in	Visual	LANSA
code.	An	error	will	occur	at	execution	time.	Code	using	this
facility	can	be	conditioned	so	that	it	is	not	executed	in	this
environment.

For	further	information	refer	to	Calling	3GL	Programs	in	the
LANSA	Application	Design	Guide.

ADD_PARMS
Specifies	any	additional	parameters	which	should	be	passed	to	the	program.	See
comments	following	for	more	details.

GOOD_RET
Specifies	the	action	to	be	taken	if	the	user	program	nominated	in	the
BY_CALLING	parameter	gives	a	"good"	return	code.	Refer	to	the	comments
section	for	more	details	of	return	codes.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	return	code	will	be	accepted	and	no	further
validation	checks	will	be	performed	against	the	field	named	in	the	FIELD
parameter	within	this	validation	block.	Processing	continues	with	the	next
RDML	command.	However,	if	this	is	another	validation	check	against	the	same
field	it	will	be	effectively	"disabled"	and	not	performed.

BAD_RET
Specifies	the	action	to	be	taken	if	the	user	program	nominated	in	the
BY_CALLING	parameter	gives	a	"bad"	return	code.	Refer	to	the	comments
section	for	more	details	of	return	codes.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues

its:LANSA065.CHM::/lansa/dsnbf_0075.htm

with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	return	code	will	be	accepted	and	no	further
validation	checks	will	be	performed	against	the	field	named	in	the	FIELD
parameter	within	this	validation	block.	Processing	continues	with	the	next
RDML	command.	However,	if	this	is	another	validation	check	against	the	same
field	it	will	be	effectively	"disabled"	and	not	performed.

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:

"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this:
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.7.2	CALLCHECK	Comments	/	Warnings
The	CALLCHECK	command	must	be	coded	within	a	BEGINCHECK	/
ENDCHECK	validation	block.	Refer	to	these	commands	for	further	details.
All	programs	called	as	part	of	a	complex	logic	check	must	have	at	least	3
standard	parameters.	These	parameters	are	implicit	and	do	not	have	to	be
declared	in	the	ADD_PARMS	parameter.

Name Description

Return
code

Alphanumeric	length	1.	Returned	by	the	program	as	'1'	(good	return)	or
'0'	(bad	return).	Used	by	the	program	to	indicate	to	LANSA	the	success
or	failure	of	the	complex	logic	check.

Name
of
field

Alphanumeric	length	10.	Passed	to	the	program.	Contains	the	name	(as
opposed	to	the	value)	of	the	field	that	is	passed	in	the	third	parameter.

Value
of
field

Length	and	type	depend	upon	the	data	dictionary	definition	of	the	field.
Alphanumeric	fields	are	passed	with	same	type	and	length	as	their	data
dictionary	definition.	All	numeric	fields	(type	P	or	S)	are	passed	as
packed	(type	P)	and	the	same	length	and	number	of	decimal	positions	as
their	data	dictionary	definition.	Note	that	the	value	of	the	field	is	passed
in	a	work	area,	thus	it	is	not	possible	to	change	value	of	the	field	by
changing	the	value	of	the	parameter	in	the	validation	program.

	

Additional	parameters	may	be	passed	to	the	program	by	nominating	them	in
the	ADD_PARMS	parameter.
Additional	parameters	may	be:
An	alphanumeric	literal
A	numeric	literal	such	as	1,	14.23,	-1.141217.
Another	field	name	such	as	#CUSTNO,	#INVNUM,	etc.
A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variables	defined	at	your	installation.
A	process	parameter	such	as	*UP01,	*UP02,	etc.
an	expandable	group	expression	such	as	(#XG_CUST	#XG_PROD

*EXCLUDING	#CUSTNO).
The	type	and	length	of	the	parameter(s)	passed	depends	upon	the	type	and
length	of	the	parameter	value	supplied.
For	alphanumeric	fields	(alpha	literals,	alpha	fields,	alpha	system	variables	or
alpha	process	parameters)	the	parameter	is	passed	as	alpha	(256)	with	the
parameter	value	left	aligned	into	the	256	byte	parameter.
For	numeric	fields	(numeric	literals,	numeric	fields,	numeric	system	variables
or	numeric	process	parameters)	the	parameter	is	passed	as	packed	15	with	the
same	number	of	decimal	positions	as	the	parameter	value.
For	numeric	literals	this	means	the	same	number	of	decimal	positions	as
specified	in	the	literal	(e.g.:	1.12	will	be	passed	as	packed	15,2.	7.12345	will
be	passed	as	packed	15,5.	143	will	be	passed	packed	15,0.	etc).
For	all	other	types	of	numeric	parameters	this	means	the	same	number	of
decimal	positions	as	their	respective	definitions.
As	with	the	standard	parameters,	the	actual	value	is	passed	in	a	work	area	so
it	is	not	possible	to	change	the	value	of	a	field	by	changing	the	parameter
value	in	the	validation	program.
Refer	to	the	Complex	Logic	Rule	in	the	LANSA	for	i	User	Guide	for	further
information.

its:LANSA010.CHM::/lansa/ugub_20012.HTM

7.7.3	CALLCHECK	Examples
Structuring	Functions	for	Inline	Validation
Structuring	Functions	to	Use	a	Validation	Subroutine
Using	the	CALLCHECK	Command	for	Inline	Validation
Using	the	CALLCHECK	Command	for	Validation	with	a	Subroutine
Structuring	Functions	for	Inline	Validation
Typically	functions	using	validation	commands	(eg:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	inline	validation	like	this:

BEGIN_LOOP	
REQUEST				<<	INPUT	>>
BEGINCHECK	
*											<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			
*											<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	passed	back	to	the	REQUEST
command.	This	happens	because	of	the	default	IF_ERROR(*LASTDIS)
parameter	on	the	ENDCHECK	command.		
Structuring	Functions	to	Use	a	Validation	Subroutine
Typically	functions	using	validation	commands	(eg:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	subroutine	validation	like	this:

DEFINE					FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				<<	INPUT	>>
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			

*											<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
*										<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			IF_ERROR(*NEXT)
ENDROUTINE
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	returned	to	the	main	function	loop
with	#ERRORCNT	>	0.	
Using	the	CALLCHECK	Command	for	Inline	Validation
This	example	demonstrates	how	to	use	the	CALLCHECK	command	within	the
main	program	block	with	an	RDML	function	as	the	validation	program.
After	the	user	enters	the	requested	details,	the	start	date	is	checked	to	make	sure
it	falls	on	a	working	day	by	calling	the	WORKDAY	RDML	program.	If	the
WORKDAY	program	returns	a	negative	response	the	defined	message	is	given
and	program	control	returns	to	the	last	screen	displayed,	the	Request	screen	in
this	case.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#STARTDTE)
											
BEGIN_LOOP	
REQUEST				FIELDS(#EMPNO	#STARTDTE)	BROWSELIST(#EMPBROWSE)
											
BEGINCHECK	
CALLCHECK		FIELD(#STARTDTE)	BY_CALLING(WORKDAY)	PROG_TYPE(FUN)	MSGTXT('The	supplied	date	is	not	a	working	day.')
ENDCHECK			
											
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP
	

The	WORKDAY	function	is	defined	as	follows;
FUNCTION			OPTIONS(*DIRECT	*LIGHTUSAGE	*MLOPTIMISE	*NUM_FIELD_VALIDATE)
											

DEFINE					FIELD(#TESTDATEC)	TYPE(*CHAR)	LENGTH(6)
DEFINE					FIELD(#TESTDATEN)	LENGTH(6)	DECIMALS(0)	REFFLD(#DATE)	EDIT_CODE(4)	DEFAULT(0)	TO_OVERLAY(#TESTDATEC)
DEFINE					FIELD(#DAYOFWEEK)	TYPE(*CHAR)	LENGTH(3)
											
CHANGE					FIELD(#TESTDATEN)	TO(#VALFLD$NV)
USE								BUILTIN(CONVERTDATE)	WITH_ARGS(#TESTDATEC	B	R)	TO_GET(#DAYOFWEEK)
CASE							OF_FIELD(#DAYOFWEEK)
WHEN							VALUE_IS('=	MON'	'=	TUE'	'=	WED'	'=	THU'	'=	FRI')
CHANGE					FIELD(#VALFLD$RT)	TO('''1''')
OTHERWISE		
CHANGE					FIELD(#VALFLD$RT)	TO('''0''')
ENDCASE				
											
RETURN
	

For	more	information	related	to	creating	complex	logic	validation	functions	see
the	technical	notes	for	*ALP_FIELD_VALIDATE	and
*NUM_FIELD_VALIDATE	in	the	parameters	section	for	the	FUNCTION
command.
Using	the	CALLCHECK	Command	for	Validation	with	a	Subroutine
This	example	demonstrates	how	to	use	the	CALLCHECK	command	inside	a
subroutine	with	an	RDML	function	as	the	validation	program.
After	the	user	enters	the	requested	input	code	the	VALIDATE	subroutine	is
called.	It	checks	that	the	input	code	is	in	the	correct	format	by	calling	the
ANUMBER	RDML	program.	If	the	ANUMBER	program	returns	a	negative
response	the	message	defined	in	the	CALLCHECK	command	is	given	and	the
DOUNTIL	loop	executes	again.	When	the	ANUMBER	program	returns	a
positive	response	the	DOUNTIL	loop	ends	and	processing	of	the	verified	input
is	done.
DEFINE					FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
DEFINE					FIELD(#INPUT)	TYPE(*CHAR)	LENGTH(7)
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#INPUT)
											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				FIELDS(#INPUT)	BROWSELIST(#EMPBROWSE)

EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			
											
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
											
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
CALLCHECK		FIELD(#INPUT)	BY_CALLING(ANUMBER)	PROG_TYPE(FUN)	MSGTXT('The	input	code	format	must	be	Annnnnn.')
ENDCHECK			IF_ERROR(*NEXT)
											
ENDROUTINE
	

The	ANUMBER	program	is	defined	as	follows:
FUNCTION			OPTIONS(*DIRECT	*LIGHTUSAGE	*MLOPTIMISE	*ALP_FIELD_VALIDATE)
DEFINE					FIELD(#INPUT)	TYPE(*CHAR)	LENGTH(7)
DEFINE					FIELD(#INPUTA1)	TYPE(*CHAR)	LENGTH(1)	TO_OVERLAY(#INPUT)	
DEFINE					FIELD(#INPUTA6)	TYPE(*CHAR)	LENGTH(6)	TO_OVERLAY(#INPUT	2)	
DEFINE					FIELD(#DECIMAL)	TYPE(*DEC)	LENGTH(1)	DECIMALS(1)
DEFINE					FIELD(#RTN_CODE)	TYPE(*CHAR)	LENGTH(1)
											
CHANGE					FIELD(#INPUT)	TO(#VALFLD$AV)
USE								BUILTIN(CHECKNUMERIC)	WITH_ARGS(#INPUTA6	6	0)	TO_GET(#STD_NUM	#DECIMAL	#RTN_CODE)
											
IF									COND('(#INPUTA1	=	A)	and	(#RTN_CODE	=	Y)')
CHANGE					FIELD(#VALFLD$RT)	TO('''1''')
ELSE							
CHANGE					FIELD(#VALFLD$RT)	TO('''0''')
ENDIF						
											
RETURN
	

For	more	information	related	to	creating	complex	logic	validation	functions	see
the	technical	notes	for	*ALP_FIELD_VALIDATE	and
*NUM_FIELD_VALIDATE	in	the	parameters	section	for	the	FUNCTION
command.

7.8	CASE
The	CASE	command	is	used	to	specify	the	beginning	of	a	case	condition.	The
CASE	command	is	used	in	conjunction	with	the	WHEN,	OTHERWISE	and
ENDCASE	commands.
Refer	to	the	WHEN,	OTHERWISE	and	ENDCASE	commands	for	more	details
and	examples	of	these	commands.

Also	See
7.8.1	CASE	Parameters
7.8.2	CASE	Comments	/	Warnings
7.8.3	CASE	Examples
7.34	ENDCASE
7.73	OTHERWISE
7.100	WHEN
																																																									Required
	
		CASE	---------	OF_FIELD	-----	field	name	--------------------
-|
	

7.8.1	CASE	Parameters
OF_FIELD
Specifies	the	name	of	the	field	which	is	to	be	compared	to	the	condition(s)
specified	in	the	WHEN	commands	that	follow.

7.8.2	CASE	Comments	/	Warnings
Note	that	only	the	commands	associated	with	one	'WHEN	VALUE_IS'
condition	can	be	executed.	If	more	than	one	'WHEN	VALUE_IS'	condition	is
true,	within	a	case	command,	only	the	commands	associated	with	the	first
true	condition	are	executed.

7.8.3	CASE	Examples
Basic	CASE	Processing
Why	use	the	CASE	command?
Using	the	CASE	command	with	OR	operations
Using	the	CASE	command	with	operations	other	than	"="	(equal	to)
Using	the	CASE	command	with	compound	expressions
Basic	CASE	Processing
This	example	illustrates	the	most	basic	type	of	CASE	command	processing.	
Imagine	that	a	user	inputs	a	value	into	field	#DEPTMENT	and	that	a	CASE
command	to	be	used	to	implement	this	logic:

When	user	inputs	this
value	into	field
#DEPTMENT

Field	#SECTION	should
be	changed	to	this	value	.	.
.

And	this	message
should	be	issued	.	.	.
.

ADM A ADM	was	entered

AUD B AUD	was	entered

FLT C FLT	was	entered

TRVL D TRVL	was	entered

Any	other	value E Other	value	was
entered

	

Structurally,	a	CASE	command	to	implement	this	logic	would	look	like	this:

CASE							OF_FIELD(#DEPTMENT)
WHEN							VALUE_IS('=	ADM')
											<<	Logic	>>
WHEN							VALUE_IS('=	AUD')
											<<	Logic	>>
WHEN							VALUE_IS('=	FLT')
											<<	Logic	>>
WHEN							VALUE_IS('=	TRVL')

										<<	Logic	>>
OTHERWISE		
											<<	Logic	>>
ENDCASE
	

A	sample	program	to	fully	implement	this	logic	might	be	coded	like	this:	
BEGIN_LOOP	
REQUEST				FIELDS(#DEPTMENT	(#SECTION	*OUTPUT))
CASE							OF_FIELD(#DEPTMENT)
WHEN							VALUE_IS('=	ADM')
CHANGE					FIELD(#SECTION)	TO(A)
MESSAGE				MSGTXT('ADM	was	entered')
WHEN							VALUE_IS('=	AUD')
CHANGE					FIELD(#SECTION)	TO(B)
MESSAGE				MSGTXT('AUD	was	entered')
WHEN							VALUE_IS('=	FLT')
CHANGE					FIELD(#SECTION)	TO(C)
MESSAGE				MSGTXT('FLT	was	entered')
WHEN							VALUE_IS('=	TRVL')
CHANGE					FIELD(#SECTION)	TO(D)
MESSAGE				MSGTXT('TRVL	was	entered')
OTHERWISE		
CHANGE					FIELD(#SECTION)	TO(E)
MESSAGE				MSGTXT('Other	value	was	entered')
ENDCASE				
END_LOOP			
	

Why	use	the	CASE	command?
Imagine	you	have	to	implement	this	logic:

When	field
#DEPTMENT	is	this
value	...

Field	#SECTION	should	be
changed	to	this	value	...		

And	this	message
should	be	issued

ADM	or	FLT	or	TRVL A Either	ADM	,	FLT	or
TRVL	was	entered

AUD	or	INF	or	MKT		 B Either	AUD,	INF	or

MKT	was	entered

Any	other	value C Other	value	was
entered

	

If	you	code	nested	IF-ELSE-END	blocks	you	will	end	up	with	logic	like	this:	
IF									COND('(#DEPTMENT	=	ADM)	or	(#DEPTMENT	=	FLT)	or	(#DEPTMENT	=	TRVL)')
CHANGE					FIELD(#SECTION)	TO(A)
MESSAGE				MSGTXT('Either	ADM	,	FLT	or	TRVL	was	entered')
ELSE							
IF									COND('(#DEPTMENT	=	AUD)	or	(#DEPTMENT	=	INF)	or	(#DEPTMENT	=	MKT)')
CHANGE					FIELD(#SECTION)	TO(B)
MESSAGE				MSGTXT('Either	AUD,	INF	or	MKT	was	entered')
ELSE							
CHANGE					FIELD(#SECTION)	TO(C)
MESSAGE				MSGTXT('Other	value	was	entered')
ENDIF						
ENDIF
	

However,	by	using	a	CASE	command	you	can	code	this	instead:
CASE							OF_FIELD(#DEPTMENT)
WHEN							VALUE_IS('=	ADM'	'=	FLT'	'=	TRVL')
CHANGE					FIELD(#SECTION)	TO(A)
MESSAGE				MSGTXT('Either	ADM,	FLT	or	TRVL	was	entered')
WHEN							VALUE_IS('=	AUD'	'=	INF'	'=	MKT')
CHANGE					FIELD(#SECTION)	TO(B)
MESSAGE				MSGTXT('Either	AUD,	INF	or	MKT	was	entered')
OTHERWISE		
CHANGE					FIELD(#SECTION)	TO(C)
MESSAGE				MSGTXT('Other	value	was	entered')
ENDCASE
	

Which	is	shorter,	easier	to	read	and	easier	to	maintain.	It	also	executes
faster	in	most	situations.
Using	the	CASE	command	with	OR	operations
Imagine	that	when	field	#TEST	contains	A	or	B	or	C	you	have	to	perform	some

operation.
If	it	contains	X	or	Y	or	Z	you	have	to	perform	some	other	operation.
If	it	contains	any	other	value	it	all	then	you	have	to	perform	yet	another
operation.
You	could	use	a	CASE	command	structured	like	this	to	implement	the	required
logic:

CASE							OF_FIELD(#TEST)
											
WHEN							VALUE_IS('=	A'	'=	B'	'=	C')
											
										<<	Logic	Block	1	>>	
											
WHEN							VALUE_IS('=	X'	'=	Y'	'=	Z')
											
										<<	Logic	Block	2>>
											
OTHERWISE		
											
										<<	Logic	Block	3>>
											
ENDCASE				
	

Using	the	CASE	command	with	operations	other	than	"="	(equal	to)
Imagine	that	when	field	#COPIES	needs	to	be	validated	according	to	these
rules:

Value	of	#COPIESMessage	to	Issue

=	0 Value	of	zero	is	invalid

<	0 Value	is	negative	!

1	to	50 Value	is	sensible

>	50 Value	is	probably	incorrect

	

Hence	a	CASE	command	can	be	used	like	this:
DEFINE					FIELD(#COPIES)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	EDIT_CODE(N)	DEFAULT(+1)
BEGIN_LOOP	
REQUEST				FIELDS(#COPIES)
CASE							OF_FIELD(#COPIES)
WHEN							VALUE_IS('=	0')
MESSAGE				MSGTXT('Value	of	zero	is	invalid')
WHEN							VALUE_IS('<	0')
MESSAGE				MSGTXT('Value	is	negative')
WHEN							VALUE_IS('<=	50')
MESSAGE				MSGTXT('Value	is	sensible')
OTHERWISE		
MESSAGE				MSGTXT('Value	is	probably	incorrect')
ENDCASE				
END_LOOP			
	

Using	the	CASE	command	with	compound	expressions
In	a	situation	whereby	a	field	#DISCOUNT	needs	to	be	validated	by	using	a
mathematical	calculation	such	as	this:

When	user	inputs	this	value
into	fields	#DISCOUNT,	
#QUANTITY

This	equation	is	used
to	validate	the
discount	value

A	message	will	be
displayed

1000,	20 #QUANTITY	*	0.1 Discount	value	is
larger	than
QUANTITY	times	0.1

10,	200 #QUANTITY	*	0.1 Discount	value	is	less
than	QUANTITY
times	0.1

10,	100 #QUANTITY	*	0.1 A	correct	discount
value	was	entered

	

This	can	be	coded	by	using	the	CASE	command:
DEFINE					FIELD(#DISCOUNT)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	EDIT_CODE(1)

DEFINE					FIELD(#QUANTITY)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
BEGIN_LOOP	
REQUEST				FIELDS(#DISCOUNT	#QUANTITY)
CASE							OF_FIELD(#DISCOUNT)
WHEN							VALUE_IS('>	(#QUANTITY	*	0.1)')
MESSAGE				MSGTXT('Discount	value	is	larger	than	quantity	times	0.1')
WHEN							VALUE_IS('<	(#QUANTITY	*	0.1)')
MESSAGE				MSGTXT('Discount	value	is	less	than	quantity	times	0.1')
OTHERWISE		
MESSAGE				MSGTXT('A	correct	discount	value	was	entered')
ENDCASE				
END_LOOP
	

7.9	CHANGE
The	CHANGE	command	is	used	to	change	the	value(s)	of	a	field(s).
The	FIELD	parameter	specifies	the	name	of	the	field	or	fields	that	are	to	have
their	contents	changed	by	the	command.
Optionally	the	FIELD	parameter	may	specify	a	group	name	or	an	expandable
group	expression	which	indirectly	indicates	that	a	group	or	list	of	fields	are	to
have	their	contents	changed	by	the	command.
When	the	FIELD	parameter	nominates	a	group	or	list	name,	rather	than	specific
field(s),	the	VALUE	parameter	may	only	be	one	of	the	special	values	*NULL,
*SQLNULL,	*DEFAULT,	*NAVAIL,	*LOVAL	or	*HIVAL.	This	constraint
doesn't	apply	when	an	expandable	group	expression	is	used,	as	the	expression	is
replaced	by	the	fields	themselves.
The	VALUE	parameter	allows	an	expression	to	be	specified	that	is	used	to
change	the	contents	of	the	field(s)	nominated	in	the	FIELD	parameter.

Portability
Considerations

Refer	to	Parameters:	PRECISION,	ROUND_UP	and	TO.
Refer	also	to	Portability	Specifics	in	the	LANSA
Application	Design	Guide.

Also	See
7.9.1	CHANGE	Parameters
7.9.2	CHANGE	Comments/Warnings
7.9.3	CHANGE	Examples
																																																									Required
	
		CHANGE	-------	FIELD	--------	field	/	list	name(s)	----------
->
																																expandable	group	expression						
	
													>--	TO	-----------	value	-------------------------->

																																																									Optional
	
													>--	PRECISION	----	*COMPUTE	---
-	*COMPUTE	--------->

its:LANSA065.CHM::/lansa/dsnbf_0010.htm

																															total	digits		total	decimals
	
													>--	ROUND_UP	-----	*NO	----------------------------|
																																*YES
	

7.9.1	CHANGE	Parameters
FIELD
PRECISION
ROUND_UP
TO

FIELD
Specifies	the	name(s)	of	the	field(s),	list(s)	or	expandable	group	expression
which	is/are	to	be	changed.

TO
Specifies	the	new	value	which	field(s)	nominated	in	the	FIELD	parameter	are	to
take	on.	The	new	value	specified	can	be	another	field	name,	an	alphanumeric
literal,	a	numeric	literal,	a	system	variable,	a	process	parameter	or	an	expression
involving	any	of	these	in	combination.
The	VALUE	parameter	may	also	be	specified	as	any	one	of	the	following
"special"	values	when	using	an	RDML	field:

*NULL Indicates	all	alphanumeric	fields	should	be	set	to	blanks	and	all
numeric	fields	to	zero.

*NAVAIL Indicates	all	numeric	fields	should	be	set	to	zero	and	all
alphanumeric	fields	of	less	than	3	characters	to	blanks.
Alphanumeric	fields	of	3	or	more	characters	in	length	are	to	be	set
to	as	much	of	"N/AVAIL"	as	will	fit	into	the	field.

*DEFAULT Indicates	all	fields	should	be	set	to	their	data	dictionary	or	program
defined	default	values.

*HIVAL Indicates	that	all	fields	should	be	set	to	their	highest	possible	value.
For	alphanumeric	fields	this	means	all	bytes	are	set	to	hexadecimal
X'FF'.	For	numeric	fields	this	means	all	digits	are	set	to	9	and	the
sign	is	made	to	be	positive.

*LOVAL Indicates	that	all	fields	should	be	set	to	their	lowest	possible	value.
For	alphanumeric	fields	this	means	all	bytes	are	set	to	hexadecimal
X'00'.	For	numeric	fields	this	means	all	digits	are	set	to	9	and	the
sign	is	made	to	be	negative.

The	following	special	options	can	be	used	in	Visual	LANSA	applications:

Change	Command	Special	Option Meaning

*REMEMBERED_VALUE_FOR_USER Remembers	the	value
of	the	specified	field
for	the	current	user	in
the	context	of	the
current	form	or
function.

*REMEMBERED_VALUE_FOR_USER_IN_SYSTEMRemembers	the	value
of	the	specified	field
for	the	current	user	in
all	contexts	(within	the
current	PC	system).

*REMEMBERED_VALUE_FOR_FUNCTION Remembers	the	value
of	the	specified	field
for	all	users	in	the
context	of	the	current
form	or	function.

*REMEMBERED_VALUE_FOR_SYSTEM Remembers	the	value
of	the	specified	field
for	all	users	in	all
contexts	(within	the
current	PC	system).	

	

The	following	table	describes	the	behavior	of	RDMLX	fields	for	special	values.
(Note	that	the	behaviour	of	RDMLX	Packed	and	Signed	fields	are	the	same	as
RDML	fields	of	the	same	type.)

Special	Value FIELD	type Notes

*NULL Integer,	Float,
or	Boolean

Treat	as	per	Signed/Packed,	i.e.
*ZERO	(For	Boolean	*ZERO
means	Off/False)

*NULL Date	or
Datetime

1900-01-01

*NULL Time Midnight	(00:00:00)

*NULL Char,	String,
Binary,
VarBinary,
CLOB,	BLOB

Empty	string.	Note	that	this	is
considered	equivalent	to
*BLANKS	for	comparisons.
BLOB	&	CLOB:	Filename	is
empty.

*NAVAIL Integer,	Float,
Time	or
Boolean

As	for	Signed/Packed,	i.e.	*ZERO

*NAVAIL Date,Datetime,
Binary,
VarBinary

FFC	Error	as	cannot	put	character
string	into	these	fields

*NAVAIL Char,	String,
CLOB,	BLOB

As	for	Alpha.
BLOB	&	CLOB:	Filename	is
"
N/AVAILABLE
"
.

*DEFAULT Any Field	default

*SQLNULL Any If	the	field	does	not	have	the
ASQN	attribute	it	is	an	FFC	Error.
Otherwise	it	is	okay.

*HIVAL
*LOVAL

Integer Set	to	the	maximum	value
(positive)	for	the	integer.
Set	to	the	minimum	value
(negative)	for	the	integer.	If	field
has	SUNS	attribute,	minimum	is
*ZERO.

*HIVAL
*LOVAL

Boolean Set	to	On/True.
Set	to	Off/False.

*HIVAL
*LOVAL

Float,
Date,Time

FFC	Error	as	no	logical	upper	or
lower,	especially	for	Date,	as

different	databases	support
different	values.

*HIVAL
*LOVAL

Datetime *TIMESTAMP_HIVAL
*TIMESTAMP_LOVAL

*REMEMBERED_VALUE*CLOB,
BLOB,	Date,
Time,
Datetime,
Integer,	Float,
Boolean

Store	in	the	registry	as	a	string,	as
per	current	fields.

*REMEMBERED_VALUE*Char,	String There	may	be	a	limit	to	the	size	of
the	string	that	may	be	stored
(Char/String	allow	up	to	64Kb).	If
there	is	a	limit,	and	the	field	size	is
greater	than	the	limit,	FFC	Error.	If
there	is	no	limit,	or	the	field	size	is
less	than	the	limit,	store	in	the
registry	as	a
String
,	as	per	current	fields.

*REMEMBERED_VALUE*Binary,
VarBinary

There	may	be	a	limit	to	the	size	of
the	string	that	may	be	stored
(Binary/VarBinary	allow	up	to
32Kb).	If	there	is	a	limit,	and	the
field	size	is	greater	than	the	limit,
FFC	Error.	If	there	is	no	limit,	or
the	field	size	is	less	than	the	limit,
store	in	the	registry	as	a
Binary
.

	

PRECISION
Specifies,	for	numeric	expressions	only,	what	precision	is	to	be	used	for	any

intermediate	work	fields	generated	by	the	RDML	compiler.
When	a	numeric	expression	is	evaluated	the	RDML	compiler,	by	default,
attempts	to	compute	the	precision	of	any	intermediate	work	fields.	This	is	what
happens	when	this	parameter	is	not	specified,	or	specified	using	the	default
values.
This	logic	is	biased	towards	the	precision	of	leading	(or	significant)	digits.	In
some	cases	it	may	cause	the	loss	of	decimal	precision.	The	PRECISION
parameter	is	provided	to	allow	you	to	manually	specify	the	precision	required	in
intermediate	work	fields.
For	instance,	if	you	multiply	a	9,2	number	by	a	15,9	number,	the	logic
determines	that	one	of	the	numbers	has	7	leading	digits	(the	9,2	one).	Thus
intermediate	calculations	will	use	a	15,8	work	field	which	also	has	7	leading
digits.	This	may	cause	the	loss	of	decimal	precision.
To	overcome	this	problem,	and	force	intermediate	work	fields	to	use	a
predetermined	precision,	use	the	PRECISION	parameter.
This	parameter	has	2	values.	The	first	specifies	the	total	number	of	digits
(including	decimals)	that	all	intermediate	work	fields	are	to	have.	The	second
indicates	how	many	of	these	are	to	be	decimals.	When	specifying	a
PRECISION	parameter	you	must	specify	both	the	total	number	of	digits	and	the
number	of	decimals.
For	instance,	PRECISION(15	6)	indicates	a	total	of	15	digits,	6	of	which	are
decimals.	Thus	the	work	field	has	9	leading	digits	and	6	decimals.
It	would	be	unusual	to	code	a	PRECISION	parameter	in	which	the	number	of
decimals	required	was	less	than	the	number	of	decimals	in	any	individual	field
involved	in	the	expression.

Also	See
Field	Types

ROUND_UP
Specifies,	for	numeric	and	datetime	expressions	only,	whether	or	not	the	result
of	the	expression	is	to	be	"rounded	up"	before	it	is	placed	into	the	result	field
nominated	in	the	FIELD	parameter.
If	this	parameter	is	not	specified,	or	specified	using	value	*NO,	then	any
decimal	portion	is	truncated	when	it	does	not	fit	into	the	result	field.
For	instance,	if	you	divide	two	integer	values	containing	3	and	2	and	place	the
result	into	an	integer	field,	you	will	get	a	result	of	1.

However,	if	you	use	the	ROUND_UP	parameter,	and	an	appropriate
PRECISION	parameter,	you	will	get	a	resulting	integer	value	of	2.
Always	use	the	PRECISION	parameter	in	conjunction	with	the	ROUND_UP
parameter	to	ensure	that	all	intermediate	work	fields	used	to	evaluate	the
expression	have	at	least	one	more	decimal	position	than	the	field	nominated	in
the	FIELD	parameter.
If	the	intermediate	work	fields	involved	do	not	have	at	least	one	more	decimal
position	than	the	field	nominated	in	the	FIELD	parameter,	then	the	ROUND_UP
parameter	will	be	ignored	and	treated	as	if	ROUND_UP(*NO)	was	specified.
Datetime	fields	can	have	between	0	-	9	fractional	seconds.	The	default
behaviour	on	assignment	of	a	long	Datetime	to	a	shorter	Datetime	will	be	to
truncate	fractional	seconds.	If	ROUND_UP	is	specified,	rounding	of
fractional	seconds	up	will	occur	when	this	is	appropriate.
The	use	of	the	ROUND_UP	parameter	equates	directly	to	the	RPG	"half	adjust"
facility.	In	fact,	using	the	ROUND_UP	parameter	simply	causes	the	final
mapping	of	the	intermediate	work	field	into	the	result	field	(in	the	translated
RPG)	to	use	the	RPG	"half	adjust"	option	(provided	that	the	intermediate	work
field	has	more	decimal	positions	than	the	result	field).
You	may	choose	to	refer	to	the	appropriate	RPG	manual	for	more	details	of	the
mechanics	of	the	"half	adjust"	facility.

Portability
Considerations

When	this	value	is	specified	as	*YES,	you	must	specify	an
appropriate	PRECISION	value	to	ensure	platform	consistency
in	the	results	obtained.	Failure	to	observe	this	rule	may	lead	to
rounding	variances	when	your	code	is	ported	to	different
platforms.

7.9.2	CHANGE	Comments/Warnings
When	changing	multiple	variables	simultaneously	to	an	expression,	the
position	of	the	field	will	affect	the	result	as	shown	in	examples	A	and	B.
Define	Field(#STD_NUMSV)	Reffld(#STD_NUM)
	

					Example	A:	#std_num	gets	value	5	and	#std_numsv	gets	value	6
					Change	Field(#STD_NUM)	To(4)
					Change	Field(#STD_NUM	#STD_NUMSV)	To('#std_num	+	1')
	

					Example	B:	#std_num	gets	value	5	and	#std_numsv	gets	value	5
					Change	Field(#STD_NUM)	To(4)
					Change	Field(#STD_NUMSV	#STD_NUM)	To('#std_num	+	1')
	

Using	quotes
In	RDML	functions,	a	literal	whose	first	character	looks	like	a	number
(begins	with	plus,	minus,	decimal	point	or	a	digit),	must	be	triple	quoted
using	three	single	quotes.	For	example:
					CHANGE	FIELD(#ADDRESS1)	TO('''1	Mount		ST''')
	
In	RDMLX	code:

The	literal	needs	to	be	enclosed	in	double	quote	characters:
											CHANGE	FIELD(#ADDRESS1)	TO("1	Mount		ST")
	

When	assigning	the	value,	the	literal	can	be	in	either	single	or	double
quotes:

										#ADDRESS1	:=	'1	Mount		ST'
or
										#ADDRESS1	:=	"1	Mount		ST"
	

7.9.3	CHANGE	Examples
Example	1:	Increment	field	#COUNT.
CHANGE					FIELD(#COUNT)	TO('#COUNT	+	1')
	

Example	2:	Add	field	#QUANTITY	to	field	#COUNT.
CHANGE					FIELD(#COUNT)	TO('#COUNT	+	#QUANTITY')
	

Example	3:	Change	all	fields	in	group	#ORDERLINE	to	their	null	values.	A
"null"	value	is	blanks	for	an	alphanumeric	field	and	zero	for	a	numeric	field.
GROUP_BY			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	
CHANGE					FIELD(#ORDERLINE)	TO(*NULL)
	

which	is	identical	to:
CHANGE					FIELD(#ORDLIN)			TO(*NULL)
CHANGE					FIELD(#PRODUCT)		TO(*NULL)
CHANGE					FIELD(#QUANTITY)	TO(*NULL)
CHANGE					FIELD(#PRICE)				TO(*NULL)
	

which	is	identical	to:
CHANGE					FIELD(#ORDLIN)			TO(*ZERO)
CHANGE					FIELD(#PRODUCT)		TO(*BLANKS)
CHANGE					FIELD(#QUANTITY)	TO(*ZERO)
CHANGE					FIELD(#PRICE)				TO(*ZERO)
	

which	is	identical	to:
CHANGE					FIELD(#ORDLIN)			TO(0)
CHANGE					FIELD(#PRODUCT)		TO('''	''')
CHANGE					FIELD(#QUANTITY)	TO(0)
CHANGE					FIELD(#PRICE)				TO(0)
	

Example	4:	Change	all	fields	in	group	#ORDERLINE	to	their	data	dictionary
defined	default	values.
GROUP_BY			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)

CHANGE					FIELD(#ORDERLINE)	TO(*DEFAULT)
	

which	is	identical	to:
CHANGE					FIELD(#ORDLIN)			TO(*DEFAULT)
CHANGE					FIELD(#PRODUCT)		TO(*DEFAULT)
CHANGE					FIELD(#QUANTITY)	TO(*DEFAULT)
CHANGE					FIELD(#PRICE)				TO(*DEFAULT)
	

Example	5:	Change	fields	#A,	#B	and	#C	so	that	they	all	contain	the	product	of
#QUANTITY	and	#PRICE.
CHANGE					FIELD(#A	#B	#C)	TO('#QUANTITY	*	#PRICE')
	

which	is	identical	to:
CHANGE					FIELD(#A)	TO('#QUANTITY	*	#PRICE')
CHANGE					FIELD(#B)	TO('#QUANTITY	*	#PRICE')
CHANGE					FIELD(#C)	TO('#QUANTITY	*	#PRICE')
	

Example	6:	Change	fields	#A,	#B	and	#C	so	that	they	all	contain	the	value	1.
CHANGE					FIELD(#A	#B	#C)	TO(1)
	

which	is	identical	to:
CHANGE					FIELD(#A)	TO(1)
CHANGE					FIELD(#B)	TO(1)
CHANGE					FIELD(#C)	TO(1)
	

Example	7:	Change	fields	#A	and	#B	so	that	they	contain	the	product	of	'#A	+
1'.
CHANGE					FIELD(#A	#B)	TO('#A	+	1')
	

which	is	identical	to:
CHANGE					FIELD(#A)	TO('#A	+	1')
CHANGE					FIELD(#B)	TO('#A	+	1')
	

Note	that	this	shows	that	the	resulting	values	of	#A	and	#B	are	not	the	same.
The	value	of	#B	in	this	case	is	1	more	than	#A.

This	is	not	necessarily	wrong,	but	it	may	not	be	the	expected	resulted.	If	you
wanted	both	#A	and	#B	to	have	the	same	value	(#A	+	1),	then	one	of	the
following	methods	should	be	used.
CHANGE					FIELD(#B	#A)	TO('#A	+	1')
	

which	is	identical	to:
CHANGE					FIELD(#B)	TO('#A	+	1')
CHANGE					FIELD(#A)	TO('#A	+	1')
	

or
CHANGE					FIELD(#A)	TO('#A	+	1')
CHANGE					FIELD(#B)	TO(#A)
	

7.10	CHECK_FOR
The	CHECK_FOR	command	is	used	to	check	for	the	existence	of	a	record	in	a
particular	file.

Portability	Considerations Refer	to	parameter	IN_FILE.

Also	See
7.10.1	CHECK_FOR	Parameters
7.10.2	CHECK_FOR	Comments	/	Warnings
7.10.3	CHECK_FOR	Examples
																																																									Required
	
		CHECK_FOR	----	INFILE	-------	file	name	.	*FIRST	-------
------>
																																												library	name
	
													>--	WITH_KEY	-----	key	field	values	--------------->
																																expandable	group	expression						

																																																									Optional
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------
>
																																*NEXT
																																*RETURN	
																																label
	
													>--	VAL_ERROR	----	*LASTDIS	-----------------------
>
																																*NEXT
																																*RETURN
																																label
	

													>--	NOT_FOUND	----	*NEXT	-------------------------
->
																																*RETURN
																																label
	
													>--	ISSUE_MSG	----	*NO	----------------------------|
																																*YES
	

7.10.1	CHECK_FOR	Parameters
IN_FILE
IO_ERROR
IO_STATUS
ISSUE_MSG
NOT_FOUND
VAL_ERROR
WITH_KEY

IN_FILE
Refer	to	Specifying	File	Names	in	I/O	Commands.

WITH_KEY
Refer	to	Specifying	File	Key	Lists	in	I/O	Commands.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS
will	still	be	updated.
For	the	values,	refer	to	I/O	Return	Codes.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.	The
purpose	of	*NEXT	is	to	permit	you	to	handle	error	messages	in	the	RDML,	and

then	ABORT,	rather	than	use	the	default	ABORT.	(It	is	possible	for	processing
to	continue	for	LANSA	for	i	and	Visual	LANSA,	but	this	is	NOT	a
recommended	way	to	use	LANSA.)
ER	returned	from	a	database	operation	is	a	fatal	error	and	LANSA	does	not
expect	processing	to	continue.	The	IO	Module	is	reset	and	further	IO	will	be	as
if	no	previous	IO	on	that	file	had	occurred.	Thus	you	must	not	make	any
presumptions	as	to	the	state	of	the	file.	For	example,	the	last	record	read	will	not
be	set.	A	special	case	of	an	IO_ERROR	is	when	a	trigger	function	is	coded	to
return	ER	in	TRIG_RETC.	The	above	description	applies	to	this	case	as	well.	
Therefore,	LANSA	recommends	that	you	do	NOT	use	a	return	code	of	ER	from
a	trigger	function	to	cause	anything	but	an	ABORT	or	EXIT	to	occur	before	any
further	IO	is	performed.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

VAL_ERROR
Specifies	the	action	to	be	taken	if	a	validation	error	was	detected	by	the
command.
A	validation	error	occurs	when	information	that	is	to	be	added,	updated	or
deleted	from	the	file	does	not	pass	the	FILE	or	DICTIONARY	level	validation
checks	associated	with	fields	in	the	file.
If	the	default	value	*LASTDIS	is	used	control	will	be	passed	back	to	the	last
display	screen	used.	The	field(s)	that	failed	the	associated	validation	checks	will
be	displayed	in	reverse	image	and	the	cursor	positioned	to	the	first	field	in	error
on	the	screen.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

The	*LASTDIS	is	valid	even	if	there	is	no	"last	display"	(such	as	in
batch	functions).	In	this	case	the	function	will	abort	with	the
appropriate	error	message(s).

When	using	*LASTDIS	the	"Last	Display"	must	be	at	the	same	level
as	the	database	command	(INSERT,	UPDATE,	DELETE,	FETCH	and
SELECT).		If	they	are	at	different	levels	e.g.	the	database	command	is
specified	in	a	SUBROUTINE,	but	the	"Last	Display"	is	a	caller
routine	or	the	mainline,	the	function	will	abort	with	the	appropriate
error	message(s).

The	same	does	NOT	apply	to	the	use	of	event	routines	and	method
routines	in	Visual	LANSA.	In	these	cases,	control	will	be	returned	to
the	calling	routine.	The	fields	will	display	in	error	with	messages
returned	to	the	first	status	bar	encountered	in	the	parent	chain	of
forms,	or	if	none	exist,	the	first	form	with	a	status	bar	encountered	in
the	execution	stack	(for	example,	a	reusable	part	that	inherits	from
PRIM_OBJT).

NOT_FOUND
Specifies	what	is	to	happen	if	no	record	is	found	in	the	file	that	has	a	key
matching	the	key	nominated	in	the	WITH_KEY	parameter.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	indicates	that	control	should	be	returned	to	the	invoking	routine
(identical	to	executing	a	RETURN	command).
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

ISSUE_MSG
Specifies	whether	a	"not	found"	message	is	to	be	automatically	issued	or	not.
The	default	value	is	*NO	which	indicates	that	no	message	should	be	issued.
The	only	other	allowable	value	is	*YES	which	indicates	that	a	message	should
be	automatically	issued.	The	message	will	appear	on	line	22/24	of	the	next
screen	format	presented	to	the	user	or	on	the	job	log	of	a	batch	job.

7.10.2	CHECK_FOR	Comments	/	Warnings
The	CHECK_FOR	command	does	not	read	fields	from	the	file	into	the
RDML	program.	It	only	checks	if	a	record	with	the	key	specified	actually
exists	in	the	file	specified.	To	read	fields	into	the	program	use	the	FETCH
command	or	SELECT	command.

7.10.3	CHECK_FOR	Examples
Example	1:	Check	for	a	record	in	the	file	CUSMST	that	has	a	key	matching	the
value	currently	in	the	field	#CUSNUM:
CHECK_FOR			IN_FILE(CUSMST)	WITH_KEY(#CUSNUM)

IF_STATUS			IS_NOT(*EQUALKEY)
ABORT							MSGTXT('Customer	not	found	in	customer	master')
ENDIF
	

Note	how	the	CHECK_FOR	command	returns	a	status	of	*EQUALKEY	or
*NOTEQUALKEY,	rather	than	the	more	commonly	used	status	of	*OKAY.
	
Example	2:	Check	a	nominated	tax	code	against	a	table	of	valid	tax	codes.	The
first	key	to	the	table	indicates	the	tax	classification	which	in	this	case	is	always
income	tax	.
CHECK_FOR			IN_FILE(TAXTAB)	WITH_KEY('INCOME'	#TAXCDE)
	
IF_STATUS			IS_NOT(*EQUALKEY)
MESSAGE					MSGTXT('Tax	code	specified	not	valid	for	income	tax')
ENDIF
	

7.11	CLOSE
The	CLOSE	command	is	used	to	close	the	database	file	specified	by	the	FILE
parameter.	Individual	files	can	be	closed,	or	all	files	in	the	function	open	at	the
time	the	command	is	issued	can	be	closed.

Also	See
7.11.1	CLOSE	Parameters
7.11.2	CLOSE	Comments	/	Warnings
7.11.3	CLOSE	Examples
																																																									Optional
	
		CLOSE	--------	FILE----------	*ALL						.	*FIRST			-----------
>
																																file	name	.	library	name
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------|
																																*NEXT
																																*RETURN
																																label
	

7.11.1	CLOSE	Parameters
FILE
IO_ERROR
IO_STATUS

FILE
Specifies	the	file	to	be	closed.	Individual	files	can	be	selected	or	the	default	of
*ALL	can	be	nominated.	For	more	information,	refer	to	the	section	on
Specifying	File	Names	in	I/O	Commands.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.
For	values,	refer	to	I/O	Return	Codes.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.	The
purpose	of	*NEXT	is	to	permit	you	to	handle	error	messages	in	the	RDML,	and
then	ABORT,	rather	than	use	the	default	ABORT.	(It	is	possible	for	processing
to	continue	for	LANSA	for	i	and	Visual	LANSA,	but	this	is	NOT	a
recommended	way	to	use	LANSA.)
ER	returned	from	a	database	operation	is	a	fatal	error	and	LANSA	does	not
expect	processing	to	continue.	The	IO	Module	is	reset	and	further	IO	will	be	as

if	no	previous	IO	on	that	file	had	occurred.	Thus	you	must	not	make	any
presumptions	as	to	the	state	of	the	file.	For	example,	the	last	record	read	will	not
be	set.	A	special	case	of	an	IO_ERROR	is	when	a	trigger	function	is	coded	to
return	ER	in	TRIG_RETC.	The	above	description	applies	to	this	case	as	well.	
Therefore,	LANSA	recommends	that	you	do	NOT	use	a	return	code	of	ER	from
a	trigger	function	to	cause	anything	but	an	ABORT	or	EXIT	to	occur	before	any
further	IO	is	performed.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

7.11.2	CLOSE	Comments	/	Warnings
Refer	to	the	OPEN	command	for	more	details	of	file	OPEN	and	CLOSE
command	considerations.
Normally	there	is	no	need	to	code	specific	OPEN	or	CLOSE	commands	into
an	RDML	program.	LANSA	will	automatically	open	and	close	the	file	by
default.	The	CLOSE	command	is	only	used	when	you	wish	to	change	the
default	method	that	LANSA	uses	to	open	and	close	the	file.

7.11.3	CLOSE	Examples
Example	1:	Close	the	customer	master	file	CUSTMST.
CLOSE							FILE(CUSTMST)
	

Example	2:	Close	all	files	which	are	active	at	this	time.
CLOSE
	

Example	3:	A	temporary	work	file	must	be	closed	in	order	to	clear	the	data.
CLOSE							FILE(WORKFILE.QTEMP)
EXEC_CPF				COMMAND('CLRPFM	FILE(QTEMP/WORKFILE)')
	

7.12	CLR_LIST
The	CLR_LIST	command	is	used	to	clear	all	entries	from	a	list.
The	list	may	be	a	browse	list	(used	for	displaying	information	at	a	workstation)
or	a	working	list	(used	to	store	information	within	a	program).
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	list	processing.

Also	See
7.12.1	CLR_LIST	Parameters
7.12.2	CLR_LIST	Example
																																																									Optional
	
		CLR_LIST	-----	NAMED	--------	*FIRST	----------------------
---|
																																name	of	list
	

7.12.1	CLR_LIST	Parameters
NAMED
Specifies	the	name	of	the	list	which	is	to	be	cleared.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used	(which
may	be	a	browse	or	a	working	list).
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command.

7.12.2	CLR_LIST	Example
The	following	example	applies	to	the	CLR_LIST	command.
Clear	all	entries	from	a	list	named	#ORDERLINE:
CLR_LIST			NAMED(#ORDERLINE)
	

7.13	COMMIT
The	COMMIT	command	is	used	to	cause	an	operating	system	"commit"
operation	to	be	issued.	A	commit	operation	commits	all	uncommitted	changes	to
the	database.
Refer	to	the	appropriate	IBM	supplied	manual	for	details	of	IBM	i	commitment
control	processing	before	attempting	to	use	this	command.
It	is	also	advisable	to	read	Commitment	Control	in	the	LANSA	for	i	User	Guide.

Portability
Considerations

If	using	Visual	LANSA,	refer	to	Commitment	Control	in	the
LANSA	Application	Design	Guide.

Also	See
7.13.1	COMMIT	Parameters
7.13.2	COMMIT	Example
	
		COMMIT	-----	no	parameters	-----------------------------------
|
	

its:LANSA010.CHM::/lansa/ugubc_c10060.htm
its:LANSA065.CHM::/lansa/dsnbe_0060.htm

7.13.1	COMMIT	Parameters
The	COMMIT	command	has	no	parameters.

7.13.2	COMMIT	Example
Request	that	the	user	input	details	of	an	order	and	then	write	the	order	header
and	all	associated	lines	to	the	database	before	issuing	a	commit	operation:
GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	
SET_MODE			TO(*ADD)
INZ_LIST			NAMED(#ORDERLINE)	NUM_ENTRYS(20)
REQUEST				FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE)
	
INSERT					FIELDS(#ORDERHEAD)	TO_FILE(ORDHDR)
SELECTLIST	NAMED(#ORDERLINE)	GET_ENTRYS(*NOTNULL)
INSERT					FIELDS(#ORDERLINE)	TO_FILE(ORDLIN)
ENDSELECT
	
COMMIT
	

If	the	function	were	to	fail	when	writing	the	4th	order	line	(say),	then	an
automatic	rollback	would	be	issued.	This	would	cause	the	order	header	and	any
order	lines	already	created	to	be	rolled	back	from	the	file.

7.14	CONDCHECK
The	CONDCHECK	command	is	used	to	check	a	field	by	evaluating	a	condition
or	expression.

Also	See
7.14.1	CONDCHECK	Parameters
7.14.2	CONDCHECK	Comments	/	Warnings
7.14.3	CONDCHECK	Examples
7.4	BEGINCHECK
7.7	CALLCHECK
7.16	DATECHECK
7.35	ENDCHECK
7.48	FILECHECK
7.78	RANGECHECK
7.99	VALUECHECK
																																																										Required
	
		CONDCHECK	----	FIELD	--------	field	name	----------------
----->
	
													>--	COND	---------	condition	---------------------->

																																																									Optional
	
													>--	IF_TRUE	------	*NEXT	-------------------------->
																																*ERROR
																																*ACCEPT
	
													>--	IF_FALSE	-----	*ERROR	------------------------->
																																*NEXT
																																*ACCEPT
	
													>--	MSGTXT	-------	*NONE	-------------------------->
																																message	text

	
													>--	MSGID	--------	DCU0004	------------------------>
																																message	identifier
	
													>--	MSGF	---------	DC@M01	.	*LIBL	-----------------
>
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																														|	expandable	group	expression					|
																															---------	20	max	----------------	
	

7.14.1	CONDCHECK	Parameters
COND
FIELD
IF_FALSE
IF_TRUE
MSGID
MSGDTA
MSGF
MSGTXT

FIELD
Specifies	the	name	of	the	field	which	is	to	be	associated	with	the	check.

COND
Specifies	the	condition	or	expression	that	is	to	be	evaluated	as	either	"true"	or
"false".

IF_TRUE
Specifies	the	action	to	be	taken	if	the	condition	in	the	COND	parameter	is	found
to	be	true.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

IF_FALSE

Specifies	the	action	to	be	taken	if	the	condition	in	the	COND	parameter	is	found
to	be	false.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match

in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:
"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.14.2	CONDCHECK	Comments	/	Warnings
CONDCHECK	commands	must	be	within	a	BEGINCHECK	/	ENDCHECK
validation	block.	Refer	to	these	commands	for	further	details.

7.14.3	CONDCHECK	Examples
Structuring	Functions	for	Inline	Validation
Structuring	Functions	to	Use	a	Validation	Subroutine
Using	the	CONDCHECK	Command	for	Inline	Validation
Using	the	CONDCHECK	Command	for	Validation	with	a	Subroutine
Structuring	Functions	for	Inline	Validation
Typically	functions	using	validation	commands	(eg:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	inline	validation	like	this:

BEGIN_LOOP	
REQUEST				<<	INPUT	>>
BEGINCHECK	
*									<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			
*										<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	passed	back	to	the	REQUEST
command.	This	happens	because	of	the	default	IF_ERROR(*LASTDIS)
parameter	on	the	ENDCHECK	command.		
Structuring	Functions	to	Use	a	Validation	Subroutine
Typically	functions	using	validation	commands	(eg:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	subroutine	validation	like	this:

DEFINE					FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')	
	
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				<<	INPUT	>>
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			

*										<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
*										<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			IF_ERROR(*NEXT)
ENDROUTINE
	

	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	returned	to	the	main	function	loop
with	#ERRORCNT	>	0.	
Using	the	CONDCHECK	Command	for	Inline	Validation
This	example	demonstrates	how	to	use	the	CONDCEHECK	command	within
the	main	program	block	to	check	the	value	of	a	field	against	a	set	of	conditions.
Here	the	salary	of	the	new	employee	is	added	to	the	current	salary	of	the
department	and	checked	that	it	is	still	under	the	salary	budget.
DEFINE					FIELD(#NEWSALARY)	REFFLD(#SALARY)	LABEL('New	Salary')	
DEFINE					FIELD(#TOTSALARY)	REFFLD(#SALARY)	DEFAULT(0)
DEFINE					FIELD(#BUDGET)	REFFLD(#SALARY)	LABEL('Budget')	
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#NEWSALARY)
											
BEGIN_LOOP	
REQUEST				FIELDS(#DEPTMENT	#BUDGET	#EMPNO	#NEWSALARY)	BROWSELIST(#EMPBROWSE)
CHANGE					FIELD(#TOTSALARY)	TO(*DEFAULT)
											
SELECT					FIELDS(#SALARY)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT)
CHANGE					FIELD(#TOTSALARY)	TO('#TOTSALARY	+	#SALARY')
ENDSELECT		
											
BEGINCHECK	
CONDCHECK		FIELD(#NEWSALARY)	COND('(#NEWSALARY	+	#TOTSALARY)	<=	#BUDGET')	MSGTXT('New	salary	causes	Department	budget	to	be	exceeded')
ENDCHECK			
											

ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP
	

If	the	salary	for	the	new	employee,	when	added	to	all	existing	salaries	for	that
department,	exceeds	the	budget	for	salaries	the	message	defined	with	the
CONDCHECK	command	is	issued	and	program	control	returns	to	the	last
screen	displayed.	In	this	case	the	last	screen	displayed	is	the	REQUEST	screen.
Using	the	CONDCHECK	Command	for	Validation	with	a	Subroutine
This	example	demonstrates	how	to	use	the	CONDCHECK	command	inside	a
subroutine	to	check	the	value	of	a	field	against	a	set	of	conditions.
After	the	user	enters	the	requested	details	the	VALIDATE	subroutine	is	called.	It
checks	that	the	salary	of	the	new	employee	when	added	to	all	existing	salaries
for	the	department	is	still	under	the	salary	budget.	If	this	condition	is	not	true
the	message	defined	in	the	CONDCHECK	command	is	given	and	the
DOUNTIL	loop	executes	again.	When	this	condition	is	true	the	DOUNTIL	loop
ends	and	processing	of	the	verified	input	is	done.
DEFINE					FIELD(#ERRORCNT)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	DEFAULT(0)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
DEFINE					FIELD(#NEWSALARY)	REFFLD(#SALARY)	LABEL('New	Salary')	
DEFINE					FIELD(#TOTSALARY)	REFFLD(#SALARY)	DEFAULT(0)
DEFINE					FIELD(#BUDGET)	REFFLD(#SALARY)	LABEL('Budget')
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#NEWSALARY)
											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				FIELDS(#DEPTMENT	#BUDGET	#EMPNO	#NEWSALARY)	BROWSELIST(#EMPBROWSE)
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
CHANGE					FIELD(#TOTSALARY)	TO(*DEFAULT)
SELECT					FIELDS(#SALARY)	FROM_FILE(PSLMST1)	WITH_KEY(#DEPTMENT)
CHANGE					FIELD(#TOTSALARY)	TO('#TOTSALARY	+	#SALARY')
ENDSELECT		

											
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
CONDCHECK		FIELD(#NEWSALARY)	COND('(#NEWSALARY	+	#TOTSALARY)	<=	#BUDGET')	MSGTXT('New	salary	causes	Department	budget	to	be	exceeded')
ENDCHECK			IF_ERROR(*NEXT)
												
ENDROUTINE
	

7.15	CONTINUE
The	CONTINUE	command	is	a	loop	modifying	command.	It	causes	the	next
iteration	of	the	loop	structure	it	is	within	to	be	processed	immediately.
CONTINUE/LEAVE	commands	work	inside	all	loop	commands.

Also	See
7.15.1	CONTINUE	Parameters
7.15.2	CONTINUE	Comments	/	Warnings
7.15.3	CONTINUE	Examples
7.3	BEGIN_LOOP
7.30	DOUNTIL
7.31	DOWHILE
7.67	LEAVE
7.83	SELECT
																																																									Required	
																																																																		
		CONTINUE	--->	

																																																									Optional	
																																																																		
													>--	IF	-----------	'condition'	--------------------|	
	

7.15.1	CONTINUE	Parameters
IF
Optionally	specifies	the	condition	that	is	to	be	evaluated	to	determine	if	the
CONTINUE	should	be	executed.	If	not	specified	the	CONTINUE	is	executed
immediately.	For	more	details,	refer	to	Specifying	Conditions	and	Expressions.

7.15.2	CONTINUE	Comments	/	Warnings
The	CONTINUE	loop	modifying	command	only	applies	to	the	following
RDML	loop	structures:-	SELECT/ENDSELECT,
SELECTLIST/ENDSELECT,	SELECT_SQL/ENDSELECT,
DOWHILE/ENDWHILE,	DOUNTIL/ENDUNTIL	and
BEGIN_LOOP/END_LOOP.

The	CONTINUE	command	operates	as	follows:-

	

	------>		Begin	loop	command

|

	------			CONTINUE

	

								End	loop	command

	

7.15.3	CONTINUE	Examples
Using	CONTINUE	within	a	BEGIN_LOOP	loop
Using	CONTINUE	within	a	SELECT
Using	CONTINUE	within	a	BEGIN_LOOP	loop
This	example	demonstrates	how	to	use	the	CONTINUE	command	in	a
BEGIN_LOOP	loop.
DEF_LIST			NAME(#EMPBROSWE)	FIELDS(#EMPNO	#SURNAME	#GIVENAME	#DEPTMENT)
											
BEGIN_LOOP	
REQUEST				FIELDS(#EMPNO)	BROWSELIST(#EMPBROSWE)
FETCH						FIELDS(#EMPNO	#SURNAME	#GIVENAME	#DEPTMENT)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
											
IF_STATUS		IS_NOT(*OKAY)
MESSAGE				MSGTXT('That	employee	could	not	be	found!')
CONTINUE			
ENDIF						
											
ADD_ENTRY		TO_LIST(#EMPBROSWE)
END_LOOP
	

If	the	requested	employee	number	is	not	found	the	message	is	issued	and	the
CONTINUE	command	causes	program	control	to	skip	the	ADD_ENTRY
command	and	return	to	the	top	of	the	loop	at	the	REQUEST	command.
Using	CONTINUE	within	a	SELECT
This	example	demonstrates	how	to	use	the	CONTINUE	command	within	a
SELECT	loop.	Here,	with	the	use	of	an	additional	user	function	key,	selected
records	can	be	viewed	and	dropped	if	not	required.
DEF_COND			NAME(*DROPPED)	COND('#IO$KEY	=	''09''')
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#SECTION	#EMPNO	#SURNAME	#GIVENAME)
DEF_LIST			NAME(#EMPSELECT)	FIELDS(#SECTION	#EMPNO	#SURNAME	#GIVENAME)
											
SELECT					FIELDS(#EMPBROWSE)	FROM_FILE(PSLMST)
DISPLAY				FIELDS(#SECTION	#EMPNO	#SURNAME	#GIVENAME)	BROWSELIST(#EMPBROWSE)	USER_KEYS((09	'Drop'))
CONTINUE			IF(*DROPPED)
ADD_ENTRY		TO_LIST(#EMPBROWSE)

ADD_ENTRY		TO_LIST(#EMPSELECT)
ENDSELECT		
DISPLAY	BROWSELIST(#EMPSELECT)
	

7.16	DATECHECK
The	DATECHECK	command	is	used	to	check	if	a	date	field	is	valid	against	one
of	five	possible	formats	and	optionally	that	the	date	is	within	a	certain	number
of	days	before	and/or	after	the	current	date.

Also	See
7.16.1	DATECHECK	Parameters
7.16.2	DATECHECK	Comments	/	Warnings
7.16.3	DATECHECK	Examples
7.4	BEGINCHECK
7.7	CALLCHECK
7.14	CONDCHECK
7.35	ENDCHECK
7.48	FILECHECK
7.78	RANGECHECK
7.99	VALUECHECK
																																																									Required	
																																																																		
		DATECHECK	----	FIELD	--------	field	name	-----------------
---->	

																																																									Optional	
																																																																		
													>--	IN_FORMAT	----	*SYSFMT	------------------------
>	
																																*DDMMYY																											
																																*MMDDYY																											
																																*YYMMDD																											
																																*DDMMYYYY																									
																																*YYYYMMDD																									
																																*YYYYDDMM																									
																																*YYMM																													
																																*MMYY																													
																																*MMDDYYYY																									

																																*YYYYMM																											
																																*MMYYYY																											
																																*SYSFMT8																									
																																																																		
													>--	BEFORE	-------	9999999	------------------------>	
																																numeric	value																					
																																																																		
													>--	AFTER	--------	9999999	------------------------>	
																																numeric	value																					
																																																																		
													>--	IF_VALID	-----	*NEXT	-------------------------->	
																																*ERROR																												
																																*ACCEPT																											
																																																																		
													>--	IF_INVALID	---	*ERROR	-------------------------
>	
																																*NEXT																													
																																*ACCEPT																											
																																																																		
													>--	MSGTXT	-------	*NONE	--------------------------
>	
																																message	text																						
																																																																		
													>--	MSGID	--------	DCU0006	------------------------
>	
																																message	identifier																
																																																																		
													>--	MSGF	---------	DC@M01	.	*LIBL	-----------------
>	
																																message	file	.	library	name							
																																																																		
													>--	MSGDTA	-------	substitution	variables	---------|	
																													|		expandable	group	expression					|	
																														-----	-----	20	max	---------------		
																																																																		

7.16.1	DATECHECK	Parameters
AFTER
BEFORE
FIELD
IF_INVALID
IF_VALID
IN_FORMAT
MSGDTA
MSGF
MSGID
MSGTXT

FIELD
Specifies	the	name	of	the	field	which	is	to	be	checked.	Only	fields	of	type
Alpha,	Packed,	Signed,	Date,	or	Datetime	may	be	specified.	Fields	of	any	other
type	cannot	be	specified.

IN_FORMAT
Specifies	the	format	the	date	is	expected	in.	The	only	permissible	values	are
*SYSFMT,	*DDMMYY,	*MMDDYY,	*YYMMDD,	and	*DDMMYYYY,
*YYYYMMDD,	*YYYYDDMM,	*YYMM,	*MMYY,	*MMDDYYYY,
*YYYYMM,	*MMYYYY,	*SYSFMT8.
*SYSFMT,	which	is	the	default	value,	indicates	the	date	format	nominated	in
the	operating	system	"system	value"	QDATFMT	should	be	used	as	the	date
format	required.	Refer	to	the	appropriate	IBM	supplied	manual	for	more	details
of	system	value	QDATFMT.
If	the	specified	field	is	of	type	Date	or	Datetime,	this	parameter	is	irrelevant	as
fields	of	type	Date	or	Datetime	are	always	in	ISO	format.	So,	if	this	parameter	is
specified	as	other	than	*SYSFMT,	a	FFC	Warning	is	displayed	stating	that	the
format	is	ignored.

BEFORE
Specifies	the	number	of	days	prior	to	the	current	date	for	which	this	date	will
still	be	valid.	If	no	days	are	specified,	the	value	9999999	is	assumed.

AFTER

Specifies	the	number	of	days	after	the	current	date	for	which	this	date	will	still
be	valid.	If	no	days	are	specified,	the	value	9999999	is	assumed.

IF_VALID
Specifies	the	action	to	be	taken	if	the	field	is	a	valid	date	in	the	format
nominated	and	also	passes	any	associated	range	checking.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

IF_INVALID
Specifies	the	action	to	be	taken	if	the	date	is	not	a	valid	date	in	the	format
nominated	or	fails	any	associated	range	checking.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as	.
"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this	:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.16.2	DATECHECK	Comments	/	Warnings
All	dates	must	have	a	four	character	year	so	that	accurate	comparisons	and
calculations	can	be	performed.	Where	a	two	character	year	(e.g.	DDMMYY,
YYMMDD,	MMYY)	is	supplied	the	century	value	is	retrieved	from	the
system	definition	data	area.	The	year	supplied	is	compared	to	a	year	in	the
data	area,	if	the	supplied	year	is	less	than	or	equal	to	the	comparison	year	then
the	less	than	year	is	used.	If	the	supplied	year	is	greater	than	the	comparison
year	then	the	greater	than	year	is	used.

7.16.3	DATECHECK	Examples
Structuring	Functions	for	Inline	Validation
Structuring	Functions	to	Use	a	Validation	Subroutine
Using	the	DATECHECK	Command	for	Inline	Validation
Using	the	DATECHECK	Command	for	Validation	with	a	Subroutine
Structuring	Functions	for	Inline	Validation
Typically	functions	using	validation	commands	(e.g.:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	inline	validation	like	this:

BEGIN_LOOP	
REQUEST				<<	INPUT	>>
BEGINCHECK	
											<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			
											<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	passed	back	to	the	REQUEST
command.	This	happens	because	of	the	default	IF_ERROR(*LASTDIS)
parameter	on	the	ENDCHECK	command.		
Structuring	Functions	to	Use	a	Validation	Subroutine
Typically	functions	using	validation	commands	(e.g.:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	subroutine	validation	like	this:

DEFINE					FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				<<	INPUT	>>
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			

*										<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
*										<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			IF_ERROR(*NEXT)
ENDROUTINE
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	returned	to	the	main	function	loop
with	#ERRORCNT	>	0.	
Using	the	DATECHECK	Command	for	Inline	Validation
This	example	demonstrates	how	to	use	the	DATECHECK	command	within	the
main	program	block	to	check	the	validity	of	date	fields.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#GIVENAME	#SURNAME)
										
BEGIN_LOOP	
REQUEST				FIELDS(#EMPNO	#STARTDTE)	BROWSELIST(#EMPBROWSE)
											
BEGINCHECK	
DATECHECK		FIELD(#STARTDTE)	IN_FORMAT(*DDMMYY)	BEFORE(30)	AFTER(0)	MSGTXT('Start	date	is	not	in	the	right	format	or	not	in	the	last	month')
ENDCHECK			
											
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP
	

If	the	value	of	#STARTDTE	is	not	in	format	of	DDMMYY,	is	more	than	30
days	in	the	past	or	is	in	the	future	the	message	defined	with	the	DATECHECK
command	is	issued	and	program	control	returns	to	the	last	screen	displayed.	In
this	case	the	last	screen	displayed	is	the	REQUEST	screen.
Using	the	DATECHECK	Command	for	Validation	with	a	Subroutine
This	example	demonstrates	how	to	use	the	DATECHECK	command	inside	a
subroutine	to	check	the	validity	of	date	fields.
After	the	user	enters	the	requested	details	the	VALIDATE	subroutine	is	called.	It

checks	that	the	value	of	#STARTDTE	is	in	the	DD/MM/YY	format,	is	0	days	in
the	future	and	is	not	more	than	30	days	in	the	past.	If	this	is	not	true	the	message
defined	in	the	DATECHECK	command	is	given	and	the	DOUNTIL	loop
executes	again.	When	#STARTDTE	is	the	correct	format	and	value	the
DOUNTIL	loop	ends	and	processing	of	the	verified	input	is	done.
DEFINE					FIELD(#ERRORCNT)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	DEFAULT(0)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#STARTDTE)
											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				FIELDS(#EMPNO	#STARTDTE)	BROWSELIST(#EMPBROWSE)
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
											
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
DATECHECK		FIELD(#STARTDTE)	IN_FORMAT(*DDMMYY)	BEFORE(30)	AFTER(0)	MSGTXT('Start	date	is	not	in	the	right	format	or	not	in	the	last	month')
ENDCHECK			IF_ERROR(*NEXT)
											
ENDROUTINE
	

7.17	DEF_ARRAY
The	DEF_ARRAY	command	is	used	to	define	an	array	structure	within	an
RDML	function.
The	array	created	by	this	command	can	be	used	for:
1.		Grouping	up	to	1000	individual	identical	fields	into	contiguous	storage,	thus
allowing	"indexed"	references	to	be	made	to	any	one	of	the	fields.	To	do	this,
use	the	OF_FIELDS	parameter.	This	is	the	only	option	supported	for
RDMLX	fields.	Note	that	if	an	object	is	not	enabled	for	RDMLX	it	is	limited
to	100	fields.

2.		Overlaying	a	large	field	with	an	array	structure,	thus	allowing	"indexed"
references	to	individual	areas	within	the	larger	field.	To	do	this,	use	the
OVERLAYING	parameter.	This	option	is	not	supported	when	using	an
RDMLX	field.

This	command	provides	full	array	support	to	LANSA	applications.
However,	it	must	be	emphasized	that	the	use	of	array	constructs	in	database	files
is	NOT	considered	to	be	the	best	long	term	strategy	in	terms	of	relational
database	design.
This	facility	is	provided	as	a	concession	to	reality.	Array	structures	within	files
provide	better	system	performance	than	fully	normalized	relational	database
designs.
However,	the	presence	of	this	facility	should	not	be	construed	in	any	way	as
encouraging	the	use	of	array	structures	in	database	designs.
Whenever	hardware	resources	permit,	a	fully	relational	design	will	always	yield
a	simpler,	easier	to	use,	easier	to	maintain	and	longer	lasting	solution.

Also	See
7.17.1	DEF_ARRAY	Parameters
7.17.2	DEF_ARRAY	Comments	/	Warnings
7.17.3	DEF_ARRAY	Examples
																																																									Required
	
		DEF_ARRAY	----	NAME	---------	#name	of	array	------------
----->
	
													>--	INDEXES	------	#index	field	name	-------------->

																													|																				|
																														-----	50	max	-------
	
													>--	OF_FIELDS	----	#field	name	-------------------->
																													|		expandable	group	expression				|
																														----------	100	max	--------------	
																	--	OR	--
	
													>--	OVERLAYING	---	#field	name	--	start	position	--
>

																																																									Optional
	
													>--	TYPE	--------
-	*CHAR	*DEC	*PACKED	*SIGNED	----->
	
													>--	TOT_ENTRY	----	total	entries	(1-9999)	---------
>
	
													>--	ENTRY_LEN	----	entry	length	(1-256)	-----------
>
	
													>--	ENTRY_DEC	----	number	of	decimals	(0-9)	-----
--|
	

7.17.1	DEF_ARRAY	Parameters
ENTRY_DEC
ENTRY_LEN
INDEXES
NAME
OF_FIELDS
OVERLAYING
TOT_ENTRY
TYPE

NAME
Specifies	the	name	that	is	to	be	assigned	to	the	array.	The	following	warnings
and	comments	apply	to	the	assignment	of	array	names:
The	name	must	begin	with	the	standard	"#"	symbol.
The	name	can	be	from	2	to	4	characters	long	(including	the	"#").
The	second	character	must	be	a	letter	from	the	English	alphabet.
Subsequent	characters	must	be	a	letter	from	the	English	alphabet,	or,	one	of
the	values	1,2,3,4,5,6,7,8,9,0	or	$.
It	is	strongly	recommended	that	array	naming	standards	are	devised	for
application	systems	to	facilitate	the	exchange	of	array	data	between	functions
and	all	improved	impact	analysis	abilities.
The	following	names	are	reserved	and	must	not	be	used
any	name	containing	an	"@"	symbol.
any	name	containing	an	imbedded	"#"	symbol.
names	containing	"MVR",	"CMK",	"RIM"	or	"GEN".
'TAB'	can	not	be	used	as	an	array	name.

INDEXES
Specifies	the	names	of	the	numeric	fields	that	will	be	used	as	indexes	to
reference	individual	elements	in	this	array.
At	least	one	index	name	must	be	specified.	Up	to	50	may	be	specified.
The	following	warnings	and	comments	apply	to	the	assignment	of	array	index
field	names:

The	name	must	begin	with	the	standard	"#"	symbol.
The	name	must	be	3	characters	long	(including	the	"#").
The	second	character	must	be	a	letter	from	the	English	alphabet.
The	third	character	must	be	a	letter	from	the	English	alphabet,	or	one	of	the
values	1,2,3,4,5,6,7,8,9,0	or	$.
The	array	index	field	must	be	a	numeric	field	(packed	or	signed)	and	must	be
either	defined	in	this	function	or	in	the	LANSA	data	dictionary.
The	array	index	field	cannot	be	an	RDMLX	field.
The	following	names	are	reserved	and	must	not	be	used
any	name	containing	an	"@"	symbol.
any	name	containing	an	imbedded	"#"	symbol.

It	is	strongly	recommended	that	several	standard	array	index	names	are	defined
in	the	data	dictionary	as	used	by	all	programs.	A	minimum	suggested	set	of
index	fields	would	be:

NameTypeLengthDecimals

II P 7 0

JJ P 7 0

KK P 7 0

LL P 7 0

MM P 7 0

NN P 7 0

	

Do	not	skimp	on	the	number	of	digits	to	values	of	2	or	3,	this	will	only	cause
later	problems.
Array	index	fields	must	not	be	overlaid	on	or	by	other	fields	(in	any	context).

OF_FIELDS
Specifies	from	1	to	100	fields	that	are	to	be	grouped	into	a	contiguous	area	so
that	they	can	be	referenced	by	index	via	this	array.
All	fields	must	have	the	same	type,	length	and	number	of	decimal	positions.	An

expandable	group	expression	is	allowed	in	this	parameter.	Either	none	of	them
have	the	ASQN	attribute,	or	ALL	of	them	have	the	ASQN	attribute.
Any	field	specified	in	this	parameter	must	NOT	itself	be	overlaid	onto	another
field	by	using	the	TO_OVERLAY	parameter	of	DEFINE	or	OVERRIDE
commands.
Once	a	field	has	been	specified	in	the	OF_FIELDS	parameter	of	one
DEF_ARRAY	command	it	cannot	be	specified	in	the	OF_FIELDS	parameter	of
any	other	DEF_ARRAY	command	(ie:	a	field	can	only	be	defined	in	one	array).
An	RDMLX	field	does	not	have	a	#xxx#ARRAY	field	automatically	defined,
whether	or	not	the	length	is	less	than	or	equal	to	256.
Failure	to	observe	these	rules	may	cause	unpredictable	results.
The	OF_FIELDS	parameter	and	the	OVERLAYING	parameter	are	mutually
exclusive.	You	must	specify	one,	but	cannot	specify	both.

OVERLAYING
Specifies	the	name	of	a	field	that	is	to	be	fully	or	partially	overlaid	by	this	array.
RDMLX	fields	may	not	be	overlaid,	nor	overlay	another	field.
When	a	full	overlay	is	required,	the	total	length	(in	bytes)	of	the	array	should
match	the	total	length	(in	bytes)	of	the	field	being	overlaid.
When	a	partial	overlay	is	required,	the	total	length	(in	bytes)	of	the	array	may	be
less	than	the	total	length	(in	bytes)	of	the	field	being	overlaid.
The	optional	start	position	component	of	this	parameter	allows	the	array	to
partially	overlay	only	a	component	of	the	field	being	overlaid.
Whether	a	full	or	partial	overlay	is	required,	you	must	NOT	define	the	array	so
that	it	goes	beyond	the	last	position	of	the	field	being	overlaid.	Failure	to
observe	this	rule	will	cause	unpredictable	results.
The	field	that	is	referenced	by	this	parameter	must	NOT	itself	be	overlaid	onto
another	field	by	using	the	TO_OVERLAY	parameter	of	the	DEFINE	or
OVERRIDE	commands.
The	OVERLAYING	parameter	and	the	OF_FIELDS	parameter	are	mutually
exclusive.	You	must	specify	one,	but	cannot	specify	both.

TYPE
Specifies	the	type	of	data	storage	to	be	used	within	the	array.	Valid	types	are:

*CHAR Character	or	alphanumeric	data	is	to	be	stored	in	the	array.
Corresponds	to	the	LANSA	dictionary	type	of	"A".

*PACKED/*DEC Packed	decimal	data	is	to	be	stored	in	the	array.	Corresponds
to	the	LANSA	dictionary	type	of	"P".

*SIGNED Signed	or	zoned	decimal	data	is	to	be	stored	in	the	array.
Corresponds	to	the	LANSA	dictionary	type	of	"S".

Do	NOT	specify	this	parameter	when	you	use	the	OF_FIELDS	parameter.	Its
value	is	automatically	deduced	from	the	type	of	the	field(s)	specified	in	the
OF_FIELDS	parameter.

TOT_ENTRY
Specifies	the	total	number	of	entries	the	array	will	contain.	Any	integer	value	in
the	range	1	to	9999	is	valid.
Do	NOT	specify	this	parameter	when	you	use	the	OF_FIELDS	parameter.	Its
value	is	automatically	deduced	from	the	number	of	field(s)	specified	in	the
OF_FIELDS	parameter.

ENTRY_LEN
Specifies	the	total	length	of	each	individual	entry	in	the	array.
For	type	*CHAR	arrays,	the	value	must	be	an	integer	in	the	range	1	to	256.
For	type	*DEC,	*PACKED	and	*SIGNED	arrays,	the	value	must	be	an	integer
in	the	range	1	to	30.	The	value	you	specify	here	is	the	total	number	of	digits	the
numeric	field	contains.	For	packed	fields	this	does	not	represent	the	number	of
bytes	of	memory	each	array	entry	will	occupy.
Do	NOT	specify	this	parameter	when	you	use	the	OF_FIELDS	parameter.	Its
value	is	automatically	deduced	from	the	length	of	the	field(s)	specified	in	the
OF_FIELDS	parameter.

ENTRY_DEC
Specifies	the	total	number	of	decimal	positions	(ie:	digits,	not	bytes)	that	each
numeric	array	entry	should	contain.
For	type	*CHAR	arrays	this	value	is	ignored.
For	type	*DEC,	*PACKED	and	*SIGNED	arrays	the	value	must	be	an	integer
in	the	range	0	to	9.
Do	NOT	specify	this	parameter	when	you	use	the	OF_FIELDS	parameter.	Its
value	is	automatically	deduced	from	the	number	of	decimal	positions	of	the
field(s)	specified	in	the	OF_FIELDS	parameter.

7.17.2	DEF_ARRAY	Comments	/	Warnings
To	use	the	array	facility	properly	you	must	understand	the	IBM	i	data	storage
formats	of	character,	packed	decimal	and	signed	/	zoned	decimal.
When	you	define	an	array	various	fields	are	automatically	defined	into	the
function,	just	as	if	you	had	defined	them	yourself	using	the	DEFINE	command.
RDMLX	fields	may	not	be	overlaid,	nor	overlay	another	field.
The	following	example	assumes	that	#VAL01,	#VAL02	and	#VAL03	are	all
packed	decimal	fields	of	length	7,	with	2	decimals:
DEF_ARRAY	NAME(#VAL)	INDEXES(#II	#JJ)	OF_FIELDS(#VAL01	#VAL02	#VAL03)
	

will	define	the	following	"fields"	into	your	function:
#VAL#II	as	a	packed	7,2	field.	This	field	allows	you	to	make	indexed
references	to	array	#VAL	using	index	#II.
#VAL#JJ	as	a	packed	7,2	field.	This	field	allows	you	to	make	indexed
references	to	array	#VAL	using	index	#JJ.

Additionally,	references	to	#VAL#II	or	#VAL#JJ	by	data	validation
commands	like	RANGECHECK	and	SET_ERROR	will	cause	an	error	to	be
set	in	the	associated	OF_FIELD	field.

For	example:
									CHANGE	FIELD(#II)	TO(3)
									SET_ERROR	FOR_FIELD(#VAL#II)
	
									CHANGE	FIELD(#JJ)	TO(1)
									SET_ERROR	FOR_FIELD(#VAL#JJ)
	
									DISPLAY	FIELDS(#VAL01	#VAL02	#VAL03)
	

			will	cause	fields	#VAL01	and	#VAL03	to	be	displayed	in	reverse	video
because	they	have	had	their	error	flags	turned	on	by	the	SET_ERROR
commands.
These	element	fields	#VAL#II	and	#VAL#JJ	can	be	referenced	as	individual
fields	in	almost	all	commands.	Specific	places	where	they	cannot	be	used
include:

On	any	screen	panel.	DISPLAY	FIELDS(#VAL#II)	in	any	form	is	invalid	and
will	cause	a	compile	failure.	Likewise	they	cannot	be	placed	in	browse	lists.
However,	they	can	be	placed	into	working	lists.
In	EXEC_OS400	or	EXEC_CPF	commands,	use	an	intermediate	work	field
instead.	See	the	following	examples	for	details.
In	debug	mode	#VAL#II	cannot	be	shown	directly	by	the	debug	facility.
In	database	operations.	The	following	code	sections	are	not	equivalent.	The
second	operation	will	yield	no	result.
													FETCH	FIELDS(#VAL01)	FROM_FILE(.....)
	
													and			CHANGE	#II	1
													FETCH	FIELDS(#VAL#II)	FROM_FILE(.....)
	

#VAL#ARRAY	as	a	character	field	of	length	12.	This	field	is	the	full
representation	of	array	#VAL	in	character	format.	In	this	case	3	*	P(7,2)	uses	12
bytes	of	storage.	This	field	is	only	automatically	defined	when	the	aggregate
array	length	is	less	than	or	equal	to	256	bytes.
This	full	array	field	#VAL#ARRAY	is	very	useful	because	it	can	be	used	to:
Pass	an	entire	array	to	another	function	via	the	exchange	list	or	to	a	3GL
program	via	a	parameter.	Of	course	the	array	in	the	other	function	will	have	to
have	the	same	name	and	be	identical	in	all	other	respects.	Also	remember	that
the	complete	exchange	list	area	is	only	2K	bytes.
Display	the	contents	of	the	entire	array	while	in	debug	mode.
Allow	alphanumeric	arrays	to	be	initialized	in	one	command.
Display	on	screen	panels	or	reports.	However,	if	the	actual	array	content	is
packed	decimal	data	it	may	cause	a	workstation	device	failure.
Placed	into	a	working	list,	thus	facilitating	2	dimensional	array	processing.
One	"index"	is	the	working	list	entry	number,	the	other	is	the	actual	array
entry	index.
Since	fields	like	#VAL#II,	#VAL#JJ	and	#VAL#ARRAY	are	real	fields	in	the
program,	it	is	possible	to	override	their	attributes	with	an	OVERRIDE
command.	Do	not	override	their	lengths	or	number	of	decimal	positions.
When	an	RDML	function	is	translated	into	RPG	code,	up	to	40	arrays	may	be
defined	by	LANSA	to	facilitate	program	processing.	The	number	and	type
vary	with	the	complexity	of,	and	facilities	used	by,	the	RDML	function.

Additionally,	every	group,	list,	database	operation	or	screen	panel	interaction
will	cause	additional	arrays	to	be	defined.
An	RPG	program	is	limited	to	having	200	arrays.
So	while	the	actual	number	that	any	RDML	program	will	consume
automatically	is	impossible	to	predict	until	compile	time,	you	should	plan	on
not	ever	defining	more	than	50	to	100	arrays	in	any	individual	function.	In	a
single	RDML	function,	number	of	arrays	multiplied	by	the	number	of	indexes
must	be	less	or	equal	to	100.

7.17.3	DEF_ARRAY	Examples
These	examples	apply	to	the	DEF_ARRAY	command.
Example	1:	The	data	dictionary	contains	3	packed	decimal	fields	of	length	7
with	2	decimals	called	VAL01,	VAL02	and	VAL03.
Group	them	all	into	an	array	called	#VAL	that	will	be	indexed	by	field	#II:
DEF_ARRAY	NAME(#VAL)	INDEXES(#II)	OF_FIELDS(#VAL01	#VAL02	#VAL03)
	

Example	2:	Using	array	#VAL,	request	that	the	user	inputs	all	3	values,	then
check	that	they	are	all	in	the	range	7	to	42:
DEF_ARRAY	NAME(#VAL)	INDEXES(#II)	OF_FIELDS(#VAL01	#VAL02	#VAL03)
	
REQUEST			FIELDS(#VAL01	#VAL02	#VAL03)
	
BEGINCHECK
				BEGIN_LOOP	FROM(1)	TO(3)	USING(#II)
				RANGECHECK	FIELD(#VAL#II)	RANGE((7	42))
				END_LOOP
ENDCHECK
	

The	example	demonstrates	how	the	data	validation	commands	VALUECHECK,
RANGECHECK,	FILECHECK,	DATECHECK,	CONDCHECK,
CALLCHECK	and	SET_ERROR	not	only	set	an	error	for	the	array	entry
(#VAL#II)	but	also	for	the	underlying	field	#VAL01,	#VAL02	or	#VAL03
(depending	on	the	current	value	of	#II).
	
Example	3:	Using	array	#VAL,	request	the	user	inputs	all	3	values,	increment
all	values	by	10	%	and	show	the	total	to	the	user:
DEF_ARRAY	NAME(#VAL)	INDEXES(#II)	OF_FIELDS(#VAL01	#VAL02	#VAL03)
REQUEST			FIELDS(#VAL01	#VAL02	#VAL03)
CHANGE		FIELD(#RESULT)	TO(0)
BEGIN_LOOP	FROM(1)	TO(3)	USING(#II)
CHANGE		FIELD(#VAL#II)	TO('#VAL#II	*	1.10')
CHANGE		FIELD(#RESULT)	TO('#RESULT	+	#VAL#II')
END_LOOP
DISPLAY	FIELDS(#RESULT)

	
Example	4:	The	data	dictionary	contains	an	alphanumeric	field	of	length	50
called	#LIBLST.	It	is	actually	an	"array"	of	up	to	5	library	names	stored	in	one
long	field.
Define	an	array	so	that	individual	library	names	within	it	can	be	easily
referenced:
DEF_ARRAY	NAME(#LIB)	TYPE(*CHAR)	TOT_ENTRY(5)	ENTRY_LEN(10)	INDEXES(#JJ)	OVERLAYING(#LIBLST	1)
	

Example	5:	Write	a	program	so	that	field	#LIBLST	can	be	fetched	from	file
USERDET,	displayed	on	the	screen	as	5	separate	fields,	validated,	and	then
updated	back	into	the	database:
DEF_ARRAY	NAME(#LIB)	TYPE(*CHAR)	TOT_ENTRY(5)	ENTRY_LEN(10)
INDEXES(#JJ)	OVERLAYING(#LIBLST	1)
	
DEFINE	FIELD(#LIB01)	TYPE(*CHAR)	LENGTH(10)	TO_OVERLAY(#LIBLST	1)
DEFINE	FIELD(#LIB02)	REFFLD(#LIB01)	TO_OVERLAY(#LIBLST	11)
DEFINE	FIELD(#LIB03)	REFFLD(#LIB01)	TO_OVERLAY(#LIBLST	21)
DEFINE	FIELD(#LIB04)	REFFLD(#LIB01)	TO_OVERLAY(#LIBLST	31)
DEFINE	FIELD(#LIB05)	REFFLD(#LIB01)	TO_OVERLAY(#LIBLST	41)
DEFINE	FIELD(#LIBWRK)	REFFLD(#LIB01)
	
FETCH	FIELDS(#LIBLST)	FROM_FILE(USERDET)	WITH_KEY(*USER)
REQUEST	FIELDS(#LIB01	#LIB02	#LIB03	#LIB04	#LIB05)
BEGINCHECK
BEGIN_LOOP	FROM(1)	TO(5)	USING(#JJ)
		IF					COND('#LIB#JJ	*NE	*BLANKS')
		CHANGE	FIELD(#LIBWRK)	TO(#LIB#JJ)
		EXEC_OS400	COMMAND('CHKOBJ	QSYS/#LIBWRK	*LIB')	IF_ERROR(L10)
		GOTO	L20
		L10:		SET_ERROR	FOR_FIELD(#LIB#JJ)
		L20:		ENDIF
END_LOOP
ENDCHECK
UPDATE	FIELDS(#LIBLST)	IN_FILE(USERDET)
	

You	can	see	from	this	example	that	there	would	have	been	less	code	in	the
program	if	field	#LIBLST	in	file	USERDET	had	actually	been	defined	in	the

file	as	five	fields	called	#LIB01	->	#LIB05.
You	will	also	note	that	EXEC_OS400	is	one	of	the	very	few	commands	that	will
not	accept	indexed	field	references,	which	is	why	the	work	field	#LIBWRK	is
required.
Example	6:	Write	a	program	so	that	field	#LIBLST	can	be	fetched	from	file
USERDET	and	then	printed	on	a	report	as	one	column:
DEF_ARRAY	NAME(#LIB)	TYPE(*CHAR)	TOT_ENTRY(5)	ENTRY_LEN(10)	INDEXES(#JJ)	OVERLAYING(#LIBLST	1)
	
OVERRIDE		FIELD(#LIB#JJ)	COLHDG('Library'	'Names')
	
DEF_LINE		NAME(#LINE01)	FIELDS(#LIB#JJ)
	
FETCH	FIELDS(#LIBLST)	FROM_FILE(USERDET)	WITH_KEY(*USER)
	
BEGIN_LOOP	FROM(1)	TO(5)	USING(#JJ)
						IF		COND('#LIB#JJ	*NE	*BLANKS')
						PRINT		LINE(#LINE01)
						ENDIF
END_LOOP
ENDPRINT
	

Example	7:	A	SALES	file	contains	one	field	called	SALDATA	that	consists	of
MONTHS	(as	a	12	*	character	(2)	array),	and	then	EXPECTED	SALES	and
ACTUAL	SALES	(as	two	separate	12	*	packed	decimal	(7,2)	decimal	arrays).
Define	arrays	that	will	allow	indexed	references	to	any	component	of	the	3
arrays	imbedded	in	this	large	field.
DEF_ARRAY	NAME(#MTH)	TYPE(*CHAR)	TOT_ENTRY(12)	ENTRY_LEN(2)	INDEXES(#II)	OVERLAYING(#SALDATA	1)
DEF_ARRAY	NAME(#EXP)	TYPE(*DEC)	TOT_ENTRY(12)	ENTRY_LEN(7)	ENTRY_DEC(2)	INDEXES(#II)	OVERLAYING(#SALDATA	25)
DEF_ARRAY	NAME(#ACT)	TYPE(*DEC)	TOT_ENTRY(12)	ENTRY_LEN(7)	ENTRY_DEC(2)	INDEXES(#II)	OVERLAYING(#SALDATA	73)
	

Example	8:	Using	the	file	from	example	7,	print	all	records	from	the	file	in
columns	and	produce	grand	totals:
DEF_ARRAY	NAME(#MTH)	TYPE(*CHAR)	TOT_ENTRY(12)	ENTRY_LEN(2)	INDEXES(#II)	OVERLAYING(#SALDATA	1)
OVERRIDE		FIELD(#MTH#II)	COLHDG('Month')
DEF_ARRAY	NAME(#EXP)	TYPE(*DEC)	TOT_ENTRY(12)	ENTRY_LEN(7)	ENTRY_DEC(2)	INDEXES(#II)	OVERLAYING(#SALDATA	25)
OVERRIDE		FIELD(#EXP#II)	COLHDG('Expected'	'Sales')	EDIT_CODE(3)
DEF_ARRAY	NAME(#ACT)	TYPE(*DEC)	TOT_ENTRY(12)	ENTRY_LEN(7)	ENTRY_DEC(2)	INDEXES(#II)	OVERLAYING(#SALDATA	73)

OVERRIDE		FIELD(#ACT#II)	COLHDG('Actual'	'Sales')	EDIT_CODE(3)
DEF_LINE		NAME(#SALES)	FIELDS(#MTH#II	#EXP#II	#ACT#II)
DEFINE				FIELD(#EXP_TOT)	REFFLD(#EXP#II)	LABEL('Total	Expected')
DEFINE				FIELD(#ACT_TOT)	REFFLD(#ACT#II)	LABEL('Total	Actual')
DEF_BREAK	NAME(#TOTAL)	FIELDS(#EXP_TOT	#ACT_TOT)
SELECT		FIELDS(#SALDATA)	FROM_FILE(SALES)
				BEGIN_LOOP	FROM(1)	TO(12)	USING(#II)
				KEEP_TOTAL	OF_FIELD(#EXP#II)	IN_FIELD(#EXP_TOT)
				KEEP_TOTAL	OF_FIELD(#ACT#II)	IN_FIELD(#ACT_TOT)
				PRINT	LINE(#SALES)
				END_LOOP
ENDSELECT
ENDPRINT		
*	automatically	prints	grand	total	lines
	

7.18	DEF_BREAK
The	DEF_BREAK	command	is	used	to	define	one	or	more	break	lines	for
inclusion	on	a	report.
Only	fields	of	type	Alpha,	Packed	and	Signed	may	be	specified.	RDMLX	field
types	cannot	be	specified.
Break	lines	are	only	printed	when	the	condition	specified	in	the	TRIGGER_BY
parameter	is	true.	Break	lines	are	primarily	intended	to	produce	level	or	control
"break"	lines	in	a	report.
You	should	read	Producing	Reports	Using	LANSA	in	the	Developers	Guide
before	attempting	to	use	the	DEF_BREAK	command.

Also	See
7.18.1	DEF_BREAK	Parameters
7.18.2	DEF_BREAK	Comments	/	Warnings
7.18.3	DEF_BREAK	Example
																																																									Required
	
		DEF_BREAK	----	NAME	---------	name	of	break	group	-----
------->

																																																									Optional
	
													>--	FIELDS	-------	field	name		field	attributes	--->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|	expandable	group	expression	|
																																	------	100	max	--------------
	
													>--	TRIGGER_BY	---	*DEFAULT	---------------------
-->
																																list	of	field	names
																															|	expandable	group	expression|
																																--------20	max	------------
	
													>--	TYPE	---------	*TRAILING	---------------------->

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

																																*LEADING
	
													>--	SPACE_BEF	----	2	------------------------------>
																																decimal	value
	
													>--	SPACE_AFT	----	1	------------------------------>
																																decimal	value
	
													>--	TEXT	---------	'text'	---	line/	---	position	-->
																															|											row							column			|
																																-----------	50	max	-----------
																																	*TMAPnnn		1		1		(special	value)
	
													>--	FOR_REPORT	---	1	------------------------------>
																																report	number	1	->	8
	
													>--	DESIGN	-------	*ACROSS	------------------------>
																																*DOWN
	
													>--	IDENTIFY	-----	*LABEL	------------------------->
																																*COLHDG
																																*NOID
	
													>--	DOWN_SEP	-----	1	------------------------------>
																																decimal	value
	
													>--	ACROSS_SEP	---	1	------------------------------>
																																decimal	value
	
													>--	HEAD_COND	----	*NONE	-------------------------
->
																																name	of	condition
	
													>--	SUBROUTINE	---	*NONE	-------------------------
-|
																																name	of	subroutine
	

7.18.1	DEF_BREAK	Parameters
ACROSS_SEP
DESIGN
DOWN_SEP
FIELDS
FOR_REPORT
HEAD_COND
IDENTIFY
NAME
SPACE_AFT
SPACE_BEF
SUBROUTINE
TEXT
TRIGGER_BY
TYPE

NAME
Specifies	the	name	that	is	to	be	assigned	to	the	group	of	report	print	lines
defined	by	this	command.	The	name	specified	must	be	unique	within	the
function.

FIELDS
Specifies	the	field(s)	that	is	to	be	printed	on	the	report.	An	expandable	group
expression	is	allowed	in	this	parameter.
Only	RDML	fileds	are	supported.

TRIGGER_BY
Specifies	the	condition	that	is	to	be	used	to	"trigger"	the	printing	of	the	break
line(s)	defined	by	this	command.	An	expandable	group	expressions	is	allowed
in	this	parameter.
*DEFAULT,	which	is	the	default	value,	indicates	that	the	break	line	should	only
be	triggered	once,	when	the	report	is	finished	/	closed	by	the	ENDPRINT
command	or	the	termination	of	the	function.	This	value	is	typically	used	to
produce	"grand"	total	break	lines	at	the	end	of	a	report.
Otherwise,	specify	a	list	of	field	names	that	are	to	be	used	to	trigger	the	printing

of	the	break	line(s).	Every	time	any	report	line	is	printed	LANSA	compares	the
fields	nominated	in	the	list	with	their	previous	values.	If	any	field	nominated	in
the	list	has	changed	value	the	break	line(s)	will	be	produced.

TYPE
Specifies	the	type	of	break	line	required.
*TRAILING,	which	is	the	default	value,	is	typically	used	to	produce	break	lines
that	trail	after	their	associated	detail	lines.
*LEADING	is	typically	used	to	produce	break	lines	that	are	printed	before	their
associated	detail	lines.
The	difference	between	leading	and	trailing	break	lines	is	best	illustrated	by
example.	Consider	the	following	detail	(see	DEF_LINE	command)	and	trailing
break	line	definitions:
DEF_LINE		NAME(#DETAIL)	FIELDS(#REGION	#PRODES	#VALUE)
	
DEF_BREAK	NAME(#REGTOT)	FIELDS(#REGVAL)	TRIGGER_BY(#REGION)
	

A	report	produced	using	these	line	definitions	might	look	like	this:

RegionProduct	descriptionValue

NSW Tinned	goods 400.00

NSW Paper	plates 700.00

NSW Plastic	spoons 300.00

			Region	total 1400.00

VIC Tinned	goods 500.00

VIC Paper	plates 750.00

VIC Plastic	spoons 100.00

			Region	total 1350.00

	

In	this	example	the	line	Region	total	1400.00	is	the	trailing	break	line.
The	use	of	the	break	lines	as	typical	"trailing"	subtotals	can	be	seen.	However,

the	appearance	of	the	report	can	be	improved	by	using	a	"leading"	break	line	as
well:
DEF_LINE		NAME(#DETAIL)	FIELDS(#PRODES	#VALUE)
	
DEF_BREAK	NAME(#REGTOT)	FIELDS(#REGVAL)	TRIGGER_BY(#REGION)
	
DEF_BREAK	NAME(#REGNAM)	FIELDS(#REGION)	TRIGGER_BY(#REGION)	TYPE(*LEADING)
	

When	the	report	is	produced	now	it	would	probably	look	something	like	this:

Product	DescriptionValue

Region	NSW 	

			Tinned	goods 400.00

			Paper	plates 700.00

			Plastic	spoons 300.00

			Region	total 1400.00

Region	VIC 	

			Tinned	goods 500.00

			Paper	plates 750.00

			Plastic	spoons 100.00

			Region	total 1350.00

	

	
In	this	example	the	line	Region	NSW	is	the	leading	break	line	and	the	line
Region	total	1400.00	is	the	trailing	break	line.

SPACE_BEF
Specifies	the	number	of	lines	on	the	report	that	should	be	spaced	before	the
break	line(s)	is	printed.	The	default	value	is	2,	but	any	value	in	the	range	0	to
100	can	be	specified.

SPACE_AFT

Specifies	the	number	of	lines	on	the	report	that	should	be	spaced	after	the	break
line(s)	is	printed.	The	default	value	is	1,	but	any	value	in	the	range	0	to	100	can
be	specified.

TEXT
Allows	the	specification	of	up	to	50	"text	strings"	that	are	to	appear	on	the
screen	panel	or	report.	Each	text	string	specified	is	restricted	to	a	maximum
length	of	20	characters.
When	a	text	string	is	specified	it	should	be	followed	by	a	row/line	number	and	a
column/position	number	that	indicates	where	it	should	appear	on	the	screen
panel	or	report.
For	example:

TEXT(('ACME'	6	2)('ENGINEERING'	7	2))

	

specifies	2	text	strings	to	appear	at	line	6,	position	2	and	line	7,	position	2
respectively.

Portability
Considerations

In	Visual	LANSA	this	parameter	should	only	be	edited	using
the	screen	or	report	painter	which	will	replace	any	text	with	a
text	map.	DO	NOT	enter	text	using	the	command	prompt	or
free	format	editor	as	it	will	not	pass	the	full	function	checker
if	checked	in	to	LANSA	for	i.

All	Platforms
The	text	map	is	used	by	the	screen	or	report	design	facilities	to	store	the	details
of	all	the	text	strings	associated	with	the	screen	panel	or	report	lines.
Once	a	screen	or	report	layout	has	been	"painted"	and	saved,	all	text	details
from	the	layout	are	stored	in	a	"text	map".	The	text	map	is	then	subsequently
changed	by	using	the	"painter"	again.
The	presence	of	a	text	map	is	indicated	by	a	TEXT	parameter	that	looks	like	this
example:

TEXT((*TMAPnnn	1	1))
	

where	"nnn"	is	a	unique	number	(within	this	function)	that	identifies	the	stored

text	map.
Some	very	important	things	about	"text	maps"	and	*TMAPnnn	identifiers	that
you	must	know	are:
Never	specify	*TMAPnnn	identifiers	of	your	own	or	change	*TMAPnnn
identifiers	to	other	values.	Leave	the	assignment	and	management	of
*TMAPnnn	identifiers	to	the	screen	and	report	design	facilities.
When	copying	a	command	that	has	an	*TMAPnnn	identifier,	remove	the
*TMAPnnn	references	(ie:	the	whole	TEXT	parameter)	from	the	copied
command.	If	you	fail	to	do	this,	then	the	full	function	checker	will	detect	the
duplicated	use	of	*TMAPnnn	identifiers,	and	issue	a	fatal	error	message
before	any	loss	occurs.
Never	remove	an	*TMAPnnn	identifier	from	a	command.	If	this	is	done	then
the	associated	text	map	may	be	deleted,	or	reused	in	another	command,
during	a	full	function	check	or	compilation.	Loss	of	text	details	is	likely	to
result.
Never	"comment	out"	a	command	that	contains	a	valid	*TMAPnnn	identifier.
This	is	just	another	variation	of	the	preceding	warning	and	it	runs	the	same
risks	of	loss	or	reuse	of	text.
Never	specify	*TMAPnnn	values	in	an	Application	Template.	In	the	template
context	*TMAPnnn	values	have	no	meaning.	Use	the	"text	string"	format	in
commands	used	in,	and	initially	generated	by,	Application	Templates.

FOR_REPORT
Specifies	the	report	with	which	this	command	should	be	associated.	Up	to	8
reports	can	be	produced	by	a	function	at	one	time.	Each	report	is	identified	by	a
number	in	the	range	1	to	8.	The	default	value	for	this	report	is	report	number	1.

DESIGN
Specifies	the	design/positioning	method	which	should	be	used	for	fields	that	do
not	have	specific	positioning	attributes	associated	with	them.
*ACROSS,	which	is	the	default	value	for	the	DEF_BREAK	command,
indicates	that	fields	should	be	designed	"across"	the	report	line	(ie:	one	after
another).
*DOWN	indicates	that	the	fields	should	be	designed	"down"	the	report	page	(ie:
one	under	another).

IDENTIFY
Specifies	the	default	identification	method	to	be	used	for	fields	that	do	not	have

specific	identification	attributes	associated	with	them.
*LABEL,	which	is	the	default	value	for	the	DEF_BREAK	command,	indicates
that	fields	should	be	identified	by	their	associated	labels.
*COLHDG	indicates	that	fields	should	be	identified	by	their	associated	column
headings.
*NOID	indicates	that	no	identification	of	the	field	is	required.	Only	the	field
itself	should	be	included	into	the	report	line(s).

DOWN_SEP
Specifies	the	spacing	between	lines	on	the	report	that	should	be	used	when
automatically	designing	a	report.	The	value	specified	must	be	a	number	in	the
range	1	to	10.	The	default	value	for	the	DEF_BREAK	command	is	1.

ACROSS_SEP
Specifies	the	spacing	between	columns	on	the	report	that	should	be	used	when
automatically	designing	a	report.	The	value	specified	must	be	a	number	in	the
range	0	to	10.	The	default	value	for	the	DEF_BREAK	command	is	1.

HEAD_COND
Optionally	specifies	the	name	of	a	condition	that	indicates	whether	any	column
heading	line(s)	associated	with	fields	in	this	break	print	line	are	to	be	printed	in
the	header	area	of	the	report.
*NONE,	which	is	the	default	value,	indicates	that	no	controlling	condition
applies,	and	any	column	headings	associated	with	this	break	line	should	always
be	printed	in	the	report	header	area,	regardless	of	which	line	is	actually	being
printed.
If	a	controlling	condition	is	specified,	it	must	be	defined	elsewhere	in	the
RDML	function	by	a	DEF_COND	(define	condition)	command.	At	the	time	that
any	print	line	is	to	be	printed	the	status	of	the	condition	will	be	checked.	Only
when	it	is	found	to	be	true	will	the	column	headings	associated	with	this	break
print	line	be	included	in	the	header	area	of	the	report.

SUBROUTINE
Optionally	specifies	the	name	of	a	subroutine	that	is	to	be	executed	just	prior	to
printing	the	break	line.
*NONE,	which	is	the	default	value,	indicates	that	no	subroutine	should	be
executed	before	printing	the	break	line.
If	a	subroutine	name	is	specified,	it	must:

Be	defined	within	this	function	as	a	valid	subroutine	by	using	the
SUBROUTINE	command.
Not	have	any	parameters.	Subroutines	used	this	way	cannot	have	parameters.

Any	subroutine	used	with	a	break	line	should:
Restrict	itself	to	simple	manipulations	of	fields	that	are	to	be	printed	on	the
break	line.	Fields	other	than	those	that	appear	on	the	print	line	may	be
changed	but	not	in	ways	that	are	expected	to	communicate	information	to
other	parts	of	the	RDML	function	at	some	later	time.
Avoid	executing	other	subroutines.
Avoid	any	screen	panel	interactions.
Avoid	printing	any	type	of	information	at	all.

These	guidelines	are	not	checked,	but	failure	to	observe	them	may	lead	to
unpredictable	results.
The	logic	used	for	invoking	a	TYPE(*LEADING)	break	line	subroutine	works
like	this:

<<if	first	usage	or	trigger	values	have	changed>>

							<<execute	leading	break	subroutine>>

							<<print	the	leading	break	line>>

<<endif>>

<<store	current	trigger	values	for	next	comparison>>

	

An	example	of	using	a	subroutine	with	a	TYPE(*LEADING)	break	line	is	as
follows:
DEF_BREAK		NAME(#REGION)	FIELDS(#REG_CODE	#REG_NAME)	TRIGGER_BY(#REG_CODE)	TYPE(*LEADING)	SUBROUTINE(GET_REGION)
	
SUBROUTINE	NAME(GET_REGION)
FETCH	FIELDS(#REG_NAME)	FROM_FILE(REGIONS)	WITH_KEY(#REG_CODE)
ENDROUTINE
	

The	leading	break	line	is	printed	whenever	a	new	region	code	is	encountered.

The	break	subroutine	uses	the	current	region	code	value	to	extract	the	associated
region	name	from	the	regions	table.	This	is	an	efficient	approach	because	the
subroutine	is	only	executed	when	a	change	of	region	code	occurs.
The	logic	used	for	invoking	a	TYPE(*TRAILING)	break	line	subroutine	is
slightly	more	complex	because	the	values	printed	on	a	trailing	break	line
actually	"trail	behind"	the	apparent	(and	visible)	values	in	the	RDML	function.
For	instance,	a	trailing	break	line	that	is	triggered	by	a	change	of	region	code,
and	also	prints	the	region	name,	is	set	up	so	that	the	printed	region	codes	and
region	names	"trail	behind"	the	current	values	of	the	region	code	and	region
name	fields	visible	in	the	RDML	function.
The	reason	for	this	is	simple.
When	the	region	code	changes	from	"001"	to	"002",	say,	the	trailing	break	line
is	triggered.	If	it	printed	the	current	value	of	the	region	code	then	it	would	show
as	"002"	on	the	report.
So	a	special	internal	"trailing"	field	containing	the	"previous"	value	of	region
code	is	actually	printed,	which	still	contains	the	value	"001".
This	"trailing"	logic	is	applied	to	all	fields	that	are	printed	on
TYPE(*TRAILING)	break	lines.
While	this	may	appear	complex,	it	actually	makes	the	RDML	level	logic	for	the
developer	much	simpler,	because	the	complexity	of	"trailing"	logic	is	catered
for	internally	and	need	not	concern	the	developer.
The	trailing	break	print	logic	goes	like	this:

<<if	this	is	not	first	usage	and	trigger	values	have	changed>>

							<<save	current	values	of	all	fields	used	in	function>>

							<<restore	all	printed	fields	from	their	"trailing"	values>>

							<<execute	trailing	break	subroutine>>

							<<move	all	printed	fields	back	into	their	"trailing"	values>>

							<<restore	current	values	of	all	fields	used	in	function>>

							<<print	the	trailing	break	line	(ie:	the	trailing	values)>>

<<endif>>

<<store	current	trigger	values	for	next	comparison>>

	

At	the	completion	of	this	logic	all	fields	are	restored	back	to	what	they	were	at
the	time	that	the	logic	was	invoked.
This	makes	it	effectively	impossible	for	a	trailing	break	line	subroutine	to
"communicate"	with	other	parts	of	the	RDML	function	by	changing	field
values.
An	example	of	using	a	subroutine	with	a	TYPE(*TRAILING)	break	line	is	as
follows:
DEF_BREAK		NAME(#REG_TOTAL)	FIELDS(#REG_CODE	#REG_NAME		#REG_TOT1	#REG_TOT2	#REG_PCT)		TRIGGER_BY(#REG_CODE)	TYPE(*TRAILING)	SUBROUTINE(REG_TOTAL)
	
SELECT					FIELDS(#REG_CODE	...	etc	...)	FROM_FILE(SALES)
KEEP_TOTAL	OF_FIELD(...)	IN_FIELD(#REG_TOT1)		BY_FIELD(#REG_CODE)
KEEP_TOTAL	OF_FIELD(...)	IN_FIELD(#REG_TOT2)		BY_FIELD(#REG_CODE)
PRINT						LINE(*BREAKS)	<-
ENDSELECT	<-
	
SUBROUTINE	NAME(REG_TOTAL)
FETCH	FIELDS(#REG_NAME)	FROM_FILE(REGIONS)	WITH_KEY(#REG_CODE)
CHANGE	FIELD(#REG_PCT)	TO('(#REG_TOT1	/	#REG_TOT2)	*	100')
ENDROUTINE	<-
	

Like	the	preceding	example	the	subroutine	is	only	invoked	when	a	region	code
changes.	It	extracts	the	region	name	from	the	region	table	and	also	sets
#REG_PCT	to	be	the	percentage	of	totalled	fields	#REG_TOT1	and
#REG_TOT2.
This	routine	will	work	well	because	it	only	uses	and	changes	values	that	are
actually	printed	on	the	break	line.
This	approach	would	be	apparent	if	you	ran	this	application	in	debug	mode.
If	you	set	up	this	application	to	stop	in	debug	mode	at:
The	PRINT	LINE(*BREAKS)	command
The	ENDSELECT	command
The	ENDROUTINE	command	(of	the	REG_TOTAL	subroutine)

Then	assuming	that	the	SALES	file	contained	information	for	region	codes

"001"	and	"002",	and	that	the	SELECT	loop	had	already	processed	all	the
region	"001"	information,	and	just	read	in	the	first	region	"002"	record	you
would	find:
At	the	PRINT	command:
Field	#REG_CODE	would	contain	"002".
Field	#REG_NAME	would	be	blank.
Field	#REG_TOT1	would	be	the	current	total	for	region	"002"
Field	#REG_TOT2	would	be	the	current	total	for	region	"002"
Field	#REG_PCT	would	be	zero.

At	the	ENDROUTINE	command:
Field	#REG_CODE	would	contain	"001".
Field	#REG_NAME	would	contain	the	name	of	region	"001".
Field	#REG_TOT1	would	be	the	final	total	for	region	"001"
Field	#REG_TOT2	would	be	the	final	total	for	region	"001"
Field	#REG_PCT	would	be	the	region	"001"	percentage	total.

At	the	ENDSELECT	command:
Field	#REG_CODE	would	contain	"002".
Field	#REG_NAME	would	be	blank.
Field	#REG_TOT1	would	be	the	current	total	for	region	"002"
Field	#REG_TOT2	would	be	the	current	total	for	region	"002"
Field	#REG_PCT	would	be	zero.

7.18.2	DEF_BREAK	Comments	/	Warnings
When	assigning	specific	line	attributes	to	fields	or	text	in	a	DEF_BREAK
command	note	that	the	line	numbers	used	are	"offsets"	from	the	start	of	the
print	line.	Thus	specifying	*L001	against	a	field	does	not	mean	the	field	will
actually	print	on	line	1	of	the	report.	The	field	will	print	on	line	1	of	the
"group"	of	fields	that	make	up	the	DEF_BREAK	command.
If	you	use	an	expandable	group	expression	in	a	DEF_BREAK	command
FIELDS	and/or	TRIGGER_BY	parameter(s)	and	you	change	the	layout	using
the	report	design	facility,	LANSA	will	substitute	the	expression	with	the
actual	fields.	This	is	the	only	way	LANSA	can	assign	attributes	to	the
individual	fields	regardless	of	the	group	they	initially	came	from.
Note	that	trailing	breaks	really	do	"trail	behind"	the	data	being	processed	by
the	function.	For	example,	when	a	trailing	break	definition	like	this	is
"triggered"	for	printing:
DEF_BREAK	NAME(#REGTOT)	FIELDS(#REGION	#REGVAL)	TRIGGER_BY(#REGION)
	

it	does	not	really	print	the	current	content	of	fields	#REGION	and	#REGVAL.	It
actually	prints	the	contents	of	2	"internal"	fields	that	contain	the	"previous"
#REGION	value	and	the	"previous"	#REGVAL	value.	This	feature	is	what
makes	the	processing	of	"break"	totalling	so	simple	and	quick	within	LANSA.

7.18.3	DEF_BREAK	Example
This	example	applies	to	the	DEF_BREAK	command.
Write	an	RDML	program	to	read	a	regional	sales	file,	print	details	of	each
record	read	and	produce	regional	subtotals.
DEF_LINE			NAME(#DETAIL)	FIELDS(#REGION	#PRODES	#VALUE)
DEF_BREAK		NAME(#REGTOT)	FIELDS(#REGVAL)	TRIGGER_BY(#REGION)
	
SELECT					FIELDS(#DETAIL)	FROM_FILE(SALEHIST)
KEEP_TOTAL	OF_FIELD(#VALUE)	IN_FIELD(#REGVAL)	BY_FIELD(#REGION)
PRINT						LINE(#DETAIL)
ENDSELECT
	
ENDPRINT
	

Refer	also	to	Producing	Reports	Using	LANSA.

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

7.19	DEF_COND
The	DEF_COND	command	is	used	to	define	a	condition	that	may	be	used	for
one	or	more	of	the	following	tasks:
To	"pre-define"	an	expression	that	is	used	repeatedly	in	subsequent	IF,
DOWHILE,	DOUNTIL	or	CONDCHECK	commands.
To	define	a	condition	to	be	used	to	control	the	enabling	(or	disabling)	of
function	keys	on	subsequent	DISPLAY,	REQUEST	or	POP_UP	commands.
To	define	a	condition	to	be	used	to	control	the	appearance	(or	non-
appearance)	of	fields	on	a	screen	panel	or	a	report	line.

Also	See
7.19.1	DEF_COND	Parameters
7.19.2	DEF_COND	Examples
																																																									Mandatory
	
		DEF_COND	-----	NAME	---------	name	of	condition	--------
------>
	
													>--	COND	-	'condition	to	evaluate'	---------------->

																																																									Optional
	
													>--	COLHDG	-------	*YES	---------------------------|
																																*NO
	

7.19.1	DEF_COND	Parameters
NAME
COND
COLHDG

NAME
Specifies	the	name	of	the	condition.
Every	condition	must	have	a	name	and	it	must	start	with	an	"*"	(asterisk).	The
second	character	must	be	a	letter	of	the	alphabet.	Any	subsequent	characters
must	be	in	the	range	A	->	Z	or	0	->	9.	This	rule	therefore	prohibits	the	use	of
condition	names	that	contain	imbedded	blanks.
Condition	names	starting	with	*R,	*P,	*L	or	*C	followed	by	1,	2	or	3	digits
must	not	be	used	on	fields	to	be	displayed	on	screen	panels	or	used	in	reports.
This	will	cause	a	conflict	with	the	field	positioning	attributes,	for	example,
*R12,	*L123,	*C01	etc.
These	condition	names	should	also	not	be	used:	*COLUMN,	*COL,
*COLHEAD,	*COLHDG,	*LAB,	*LABEL,	*NOID,	*NOIDENT,
*NEWPAGE,	*NEWFORMAT,	*DESC,	*DES.
Also	these	names	are	reserved	and	should	not	be	used:	*EQ,	*NE,	*LT,	*LE,
*GT,	*GE,	*AND,	*OR,	*LIKE,	*EQU,	*NEU,	*LTU,	*LEU,	*GTU,	*GEU
and	*LIKEU.
Names	that	conflict	with	system	or	multilingual	variable	names	should	also	be
avoided.
The	maximum	length	allowed	for	a	condition	name	(including	the	"*")	is	10
characters.
Up	to	99	conditions	can	be	defined	within	a	program.	Every	one	must	have	a
unique	name.
Conditions	should	be	defined	before	any	of	the	other	commands	that	reference
them.
Since	the	DEF_COND	command	"defines"	something,	and	is	thus	strictly	non-
executable,	it	is	customary	for	it	to	be	placed	at	the	beginning	of	the	program
along	with	all	other	definition	style	commands	(eg:	DEFINE,	DEF_LIST,
GROUP_BY,	etc).

COND

Specifies	the	condition	that	is	to	be	evaluated	to	test	the	"truth"	of	the	condition.
For	more	details,	refer	to	Specifying	Conditions	and	Expressions.

COLHDG
Specifies	whether	or	not	field	column	headings	associated	with	a	field
controlled	by	this	condition	are	to	also	be	conditioned.
When	a	field	in	a	print	line	is	printed	or	a	field	in	a	browse	list	is	displayed,	you
can	control	whether	or	not	its	associated	column	headings	appear	by	using	this
parameter.
*YES,	which	is	the	default	value,	indicates	that	any	associated	column	headings
are	subject	to	the	condition	just	like	the	associated	field.
*NO,	if	used,	specifies	that	no	condition	controls	any	associated	column
headings.	The	column	headings	will	be	printed	or	displayed	according	to	the
normal	rules.
For	example,	making	a	whole	column	disappear:
DEF_COND	NAME(*AUTSAL)	COND('#GROUP	=	HO')	COLHDG(*YES)
	
DEF_LINE	NAME(#DETAIL)	FIELDS(#A	#B	#C	(#SALARY	*AUTSAL))
	

specifies	that	field	#SALARY	and	its	column	headings	are	only	to	appear	on	the
report	if	the	#GROUP	=	HO.	This	means	that	if	the	group	is	not	HO,	the	salary
column	effectively	disappears	from	the	report.
However,	making	a	field	selectively	disappear:
DEF_COND	NAME(*PRTAMT)	COND('(#CREDLMT	*EQ	0)	*OR	(#OVERDUE	*GT	30)')	COLHDG(*NO)
	
DEF_LINE	NAME(#DETAIL)	FIELDS(#A	#B	#C	(#AMTDUE	*PRTAMT)	#D	#E	#F)
	

specifies	that	field	#AMTDUE	is	only	to	be	printed	if	the	credit	limit	is	zero	or
the	amount	has	been	outstanding	more	than	30	days.	However,	the	associated
column	headings	always	appear	on	the	report.
Please	note:	A	condition	controlling	a	column	heading	is	tested	at	the	time	the
column	heading	is	printed	or	displayed.	In	the	case	of	a	report	this	is	at	the	time
the	first	line	on	the	report	page	is	printed.	In	the	case	of	a	display,	this	is	the
time	at	which	the	DISPLAY,	REQUEST	or	POP_UP	command	is	executed.
Also:	A	condition	controlling	a	field	in	a	browse	list	is	only	tested	at	the	time
the	browse	list	entry	is	added	or	updated.

Additionally:	Attempting	to	condition	field(s)	in	a	DEF_BREAK	(define	break)
line	of	type	*TRAILING	may	produce	confusing	or	misleading	results	because
the	line	is	implicitly	"trailing"	behind	the	program	in	terms	of	the	data	it	is
processing.
Finally:	Even	if	all	fields	on	a	print	line	or	in	a	browse	list	entry	have	been
conditioned	not	to	appear,	they	will	still	cause	a	"blank"	line	to	appear	on	the
report	or	display	panel.

7.19.2	DEF_COND	Examples
Example	1:	Define	the	condition	"A	is	less	than	B	multiplied	by	C"	so	that	it
can	be	used	repeatedly	in	other	commands:
DEF_COND	NAME(*ALTBC)	COND('#A	*LT	(#B	*	#C)')
	
IF							COND(*ALTBC)
ENDIF
	
DOWHILE		COND(*ALTBC)
ENDWHILE
	
DOUNTIL		COND(*ALTBC)
ENDUNTIL
	
BEGINCHECK
CONDCHECK	FIELD(#A)	COND(*ALTBC)	MSGTXT('A	must	be	not	be	less	than	B	times	C')
ENDCHECK
	

Example	2:	Use	the	DEF_COND	command	so	that	the	CHANGE	and	DELETE
function	keys	in	a	DISPLAY	command	are	only	enabled	when	the	user's	name	is
FRED	or	MARY	or	BILL:
DEF_COND	NAME(*AUTHORISE)
COND('(#USER	=	FRED)	*OR	(#USER	=	MARY)	*OR	(#USER	=	BILL)')
	
DISPLAY			FIELDS(......)			CHANGE_KEY(*YES	*NEXT	*AUTHORISE)
																											DELETE_KEY(*YES	*NEXT	*AUTHORISE)
	

Example	3:	Use	the	CHECK_AUTHORITY	Built-In	Function	to	generalise	the
previous	example	into	an	enquire	and	maintain	program	using	a	product	master
file	called	PRODMST:
DEF_COND		NAME(*ALLOWCHG)	COND('#CHANGE	=	Y')
DEF_COND		NAME(*ALLOWDLT)	COND('#DELETE	=	Y')
	
USE							BUILTIN(CHECK_AUTHORITY)	WITH_ARGS(PRODMST	'''*LIBL'''	'FD'	'CH')	TO_GET(#CHANGE)
	
USE							BUILTIN(CHECK_AUTHORITY)	WITH_ARGS(PRODMST	'''*LIBL'''	'FD'	'DL')	TO_GET(#DELETE)

	
REQUEST			FIELDS(.....)
	
FETCH					FIELDS(......)			FROM_FILE(PRODMST)	WITH_KEY(......)
	
DISPLAY			FIELDS(......)			CHANGE_KEY(*YES	*NEXT	*ALLOWCHG)	DELETE_KEY(*YES	*NEXT	*ALLOWDLT)
	
IF_MODE			IS(*CHANGE)
UPDATE				FIELDS(........)	IN_FILE(PRODMST)
ENDIF
	
IF_MODE			IS(*DELETE)
DELETE				FROM_FILE(PRODMST)
ENDIF
	

This	is	an	effective	way	to	safely	and	simply	combine	an	enquiry	program	and
maintenance	program	into	one	program.	The	CHANGE	and	DELETE	function
keys	will	only	ever	be	enabled	when	the	user	is	authorised	to	change	or	delete
information,	so	no	further	program	checking	is	required.
Example	4:	Prevent	field	#SALARY	from	appearing	on	a	screen	panel	unless
the	department	number	is	464:
DEF_COND		NAME(*HEADOFF)	COND('#DEPTMENT	=	''464''')
	
DISPLAY			FIELDS(#A	#B	#C	(#SALARY	*HEADOFF)	#E	#F	#G)
	

Example	5:	Simplify	complex	conditions	by	breaking	into	smaller	parts:
DEF_COND			NAME(*SELCUST)	COND('((#CUSTTYPE	=	''A'')	*OR	(#CUSTTYPE	=	''B'')	*OR	(#CUSTTYPE	=	''C''))	*AND	((#BALANCE	*GT	10000)	*AND	(#BALANCE	*LT	100000))	*AND	(#LASTSALE	>	*MONTHSTART)')
	

The	previous	condition	can	be	made	more	maintainable	and	understandable	by:
DEF_COND			NAME(*SELTYPE)	COND('(#CUSTTYPE	=	''A'')	*OR	(#CUSTTYPE	=	''B'')	*OR	(#CUSTTYPE	=	''C'')')

DEF_COND			NAME(*SELBAL)	COND('(#BALANCE	*GT	10000)	*AND	(#BALANCE	*LT	100000)')
DEF_COND			NAME(*SELSALE)	COND('#LASTSALE	>	#MONTHSTRT')	

DEF_COND			NAME(*SELCUST)	COND('*SELTYPE	*AND	*SELBAL	*AND	*SELSALE')
	

Conditions	can	be	used	individually,	or	as	part	of	a	larger	expression:

IF							COND(*SELCUST)																																									
DOWHILE		COND('*SELCUST	*OR	(#ACTIVE	*EQ	''Y'')')															
	

7.20	DEF_FOOT
The	DEF_FOOT	command	is	used	to	define	one	or	more	foot	lines	for	inclusion
on	a	report.
Only	fields	of	type	Alpha,	Packed	and	Signed	may	be	specified.	RDMLX	field
types	cannot	be	specified.
Foot	lines	are	printed	on	the	lower	portion	of	a	page	(between	the	last	detail
print	line	and	the	overflow	line)	before	a	new	page	is	started.
You	should	read	Producing	Reports	Using	LANSA	in	the	Developers	Guide
before	attempting	to	use	the	DEF_FOOT	command.

Portability	Considerations Refer	to	Parameter	TEXT.

Also	See
7.20.1	DEF_FOOT	Parameters
7.20.2	DEF_FOOT	Comments	/	Warnings
7.20.3	DEF_FOOT	Examples
																																																									Required
	
		DEF_FOOT	-----	NAME	---------	name	of	footing	group	---
------->

																																																									Optional
	
													>--	FIELDS	-------	field	name		field	attributes	--->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|	expandable	group	expression	|
																																	------	100	max	--------------
	
													>--	TEXT	---------	'text'	---	line/	---	position	-->
																															|											row							column			|
																																-----------	50	max	-----------
																																	*TMAPnnn		1		1		(special	value)
	
													>--	FOR_REPORT	---	1	------------------------------>

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

																																report	number	1	->	8
	
													>--	DESIGN	-------	*ACROSS	------------------------>
																																*DOWN
	
													>--	IDENTIFY	-----	*LABEL	------------------------->
																																*COLHDG
																																*NOID
	
													>--	DOWN_SEP	-----	1	------------------------------>
																																decimal	value
	
													>--	ACROSS_SEP	---	5	------------------------------|
																																decimal	value
	

7.20.1	DEF_FOOT	Parameters
ACROSS_SEP
DESIGN
DOWN_SEP
FIELDS
FOR_REPORT
IDENTIFY
NAME
TEXT

NAME
Specifies	the	name	that	is	to	be	assigned	to	the	group	of	report	print	lines
defined	by	this	command.	The	name	specified	must	be	unique	within	the
function.

FIELDS
Specifies	the	field(s)	that	are	to	be	printed	on	the	report.	An	expandable	group
expression	is	allowed	in	this	parameter.
Only	RDML	fields	are	supported.

TEXT
Allows	the	specification	of	up	to	50	"text	strings"	that	are	to	appear	on	the
screen	panel	or	report.	Each	text	string	specified	is	restricted	to	a	maximum
length	of	20	characters.
When	a	text	string	is	specified	it	should	be	followed	by	a	row/line	number	and	a
column/position	number	that	indicates	where	it	should	appear	on	the	screen
panel	or	report.
For	example:
TEXT(('ACME'	6	2)('ENGINEERING'	7	2))
	

specifies	2	text	strings	to	appear	at	line	6,	position	2	and	line	7,	position	2
respectively.

Portability
Considerations

In	Visual	LANSA	this	parameter	should	only	be	edited	using
the	screen	or	report	painter	which	will	replace	any	text	with	a
text	map.	DO	NOT	enter	text	using	the	command	prompt	or

free	format	editor	as	it	will	not	pass	the	full	function	checker
if	checked	in	to	LANSA	for	i.

All	Platforms
The	text	map	is	used	by	the	screen	or	report	design	facilities	to	store	the	details
of	all	the	text	strings	associated	with	the	screen	panel	or	report	lines.
Once	a	screen	or	report	layout	has	been	"painted"	and	saved,	all	text	details
from	the	layout	are	stored	in	a	"text	map".	The	text	map	is	then	subsequently
changed	by	using	the	"painter"	again.
The	presence	of	a	text	map	is	indicated	by	a	TEXT	parameter	that	looks	like	this
example:
TEXT((*TMAPnnn	1	1))
	

where	"nnn"	is	a	unique	number	(within	this	function)	that	identifies	the	stored
text	map.
Some	very	important	things	about	"text	maps"	and	*TMAPnnn	identifiers	that
you	must	know	are:
Never	specify	*TMAPnnn	identifiers	of	your	own	or	change	*TMAPnnn
identifiers	to	other	values.	Leave	the	assignment	and	management	of
*TMAPnnn	identifiers	to	the	screen	and	report	design	facilities.
When	copying	a	command	that	has	an	*TMAPnnn	identifier,	remove	the
*TMAPnnn	references	(ie:	the	whole	TEXT	parameter)	from	the	copied
command.	If	you	fail	to	do	this,	then	the	full	function	checker	will	detect	the
duplicated	use	of	*TMAPnnn	identifiers,	and	issue	a	fatal	error	message
before	any	loss	occurs.
Never	remove	an	*TMAPnnn	identifier	from	a	command.	If	this	is	done	then
the	associated	text	map	may	be	deleted,	or	reused	in	another	command,
during	a	full	function	check	or	compilation.	Loss	of	text	details	is	likely	to
result.
Never	"comment	out"	a	command	that	contains	a	valid	*TMAPnnn	identifier.
This	is	just	another	variation	of	the	preceding	warning	and	it	runs	the	same
risks	of	loss	or	reuse	of	text.
Never	specify	*TMAPnnn	values	in	an	Application	Template.	In	the	template
context	*TMAPnnn	values	have	no	meaning.	Use	the	"text	string"	format	in
commands	used	in,	and	initially	generated	by,	Application	Templates.

FOR_REPORT

Specifies	the	report	with	which	this	command	should	be	associated.	Up	to	8
reports	can	be	produced	by	a	function	at	one	time.	Each	report	is	identified	by	a
number	in	the	range	1	to	8.	The	default	value	for	this	report	is	report	number	1.

DESIGN
Specifies	the	design/positioning	method	which	should	be	used	for	fields	that	do
not	have	specific	positioning	attributes	associated	with	them.
*ACROSS,	which	is	the	default	value	for	the	DEF_FOOT	command,	indicates
that	fields	should	be	designed	"across"	the	report	line	(ie:	one	after	another).
*DOWN	indicates	that	the	fields	should	be	designed	"down"	the	report	page	(ie:
one	under	another).

IDENTIFY
Specifies	the	default	identification	method	to	be	used	for	fields	that	do	not	have
specific	identification	attributes	associated	with	them.
*LABEL,	which	is	the	default	value	for	the	DEF_FOOT	command,	indicates
that	fields	should	be	identified	by	their	associated	labels.
*COLHDG	indicates	that	fields	should	be	identified	by	their	associated	column
headings.
*NOID	indicates	that	no	identification	of	the	field	is	required.	Only	the	field
itself	should	be	included	into	the	report	line(s).

DOWN_SEP
Specifies	the	spacing	between	lines	on	the	report	that	should	be	used	when
automatically	designing	a	report.	The	value	specified	must	be	a	number	in	the
range	1	to	10.	The	default	value	for	the	DEF_FOOT	command	is	1.

ACROSS_SEP
Specifies	the	spacing	between	columns	on	the	report	that	should	be	used	when
automatically	designing	a	report.	The	value	specified	must	be	a	number	in	the
range	0	to	10.	The	default	value	for	the	DEF_FOOT	command	is	5.

7.20.2	DEF_FOOT	Comments	/	Warnings
When	assigning	specific	line	attributes	to	fields	or	text	in	a	DEF_FOOT
command	note	that	the	line	numbers	used	are	the	actual	line	numbers	that	the
field	will	be	printed	on	(unlike	the	DEF_BREAK	and	DEF_LINE)
commands.	Thus	specifying	*L059	against	a	field	means	that	the	field	will
always	print	on	report	line	59.
If	you	use	an	expandable	group	expression	in	a	DEF_FOOT	command
FIELDS	parameter	and	you	change	the	layout	using	the	report	design	facility,
LANSA	will	substitute	the	expression	with	the	actual	fields.	This	is	the	only
way	LANSA	can	assign	attributes	to	the	individual	fields,	regardless	of	which
group	they	initially	came	from.
Since	line	numbers	specified	are	the	"actual"	line	numbers,	any	line	numbers
specified	in	a	DEF_FOOT	command	must	be	after	the	"last	detail	print	line"
and	not	greater	than	the	"overflow	line"	number.	Refer	to	the	DEF_REPORT
command	for	more	information	about	how	these	values	are	derived	/	set	for
reports.

7.20.3	DEF_FOOT	Examples
Refer	to	Producing	Reports	Using	LANSA.

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

7.21	DEF_HEAD
The	DEF_HEAD	command	is	used	to	define	one	or	more	heading	lines	for
inclusion	on	a	report.
Only	fields	of	type	Alpha,	Packed	and	Signed	may	be	specified.	RDMLX	field
types	cannot	be	specified.
Heading	lines	are	only	printed	when	the	condition	specified	in	the
TRIGGER_BY	parameter	is	true	and	are	used	to	begin	or	trigger	a	new	page	in
the	report.
You	should	read	Producing	Reports	Using	LANSA	in	the	Developers	Guide
before	attempting	to	use	a	DEF_HEAD	command.

Portability	Considerations Refer	to	Parameter	TEXT	.

Also	See
7.21.1	DEF_HEAD	Parameters
7.21.2	DEF_HEAD	Comments	/	Warnings
7.21.3	DEF_HEAD	Examples
																																																									Required
	
		DEF_HEAD	-----	NAME	---------	name	of	heading	group	--
-------->

																																																									Optional
	
													>--	FIELDS	-------	field	name		field	attributes	--->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|	expandable	group	expression	|
																																	------	100	max	--------------
	
													>--	TRIGGER_BY	---	*OVERFLOW	------------------
---->
																																list	of	field	names
																															|expandable	group	expression|
																																--------20	max	------------

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

	
													>--	TEXT	---------	'text'	---	line/	---	position	-->
																															|											row							column			|
																																-----------	50	max	-----------
																																	*TMAPnnn		1		1		(special	value)
	
													>--	FOR_REPORT	---	1	------------------------------>
																																report	number	1	->	8
	
													>--	DESIGN	-------	*ACROSS	------------------------>
																																*DOWN
	
													>--	IDENTIFY	-----	*LABEL	------------------------->
																																*COLHDG
																																*NOID
	
													>--	DOWN_SEP	-----	1	------------------------------>
																																decimal	value
	
													>--	ACROSS_SEP	---	5	------------------------------|
																																decimal	value
	

7.21.1	DEF_HEAD	Parameters
ACROSS_SEP
DESIGN
DOWN_SEP
FIELDS
FOR_REPORT
IDENTIFY
NAME
TEXT
TRIGGER_BY

NAME
Specifies	the	name	that	is	to	be	assigned	to	the	group	of	report	print	lines
defined	by	this	command.	The	name	specified	must	be	unique	within	the
function.

FIELDS
Specifies	the	field(s)	that	are	to	be	printed	on	the	report.	An	expandable	group
expression	is	allowed	in	this	parameter.
Only	RDML	fields	are	supported.

TRIGGER_BY
Specifies	the	condition	that	is	be	used	to	"trigger"	the	printing	of	the	heading
line(s)	defined	by	this	command.
*OVERFLOW,	which	is	the	default	value,	indicates	that	the	heading	lines
should	be	printed	when	the	previous	report	page	is	full	(ie:	has	reached
overflow).
Otherwise,	specify	a	list	of	field	names	(or	an	expandable	group	expression)	that
are	to	be	used	to	trigger	the	printing	of	the	heading	line(s).	Every	time	any
report	line	is	printed	LANSA	compares	the	fields	nominated	in	the	list	with	their
previous	values.	If	any	field	nominated	in	the	list	has	changed	value	the
heading	line(s)	will	be	produced.
To	demonstrate	the	use	of	the	TRIGGER_BY	parameter	consider	the	following
example:
DEF_HEAD		NAME(#HEADING)	FIELDS(#COMPANY)	TRIGGER_BY(#COMPANY)

DEF_LINE		NAME(#DETAIL)		FIELDS(#REGION	#PRODUCT	#VALUE)
	

Note	that	a	new	page	is	triggered	by	change	of	#COMPANY,	so	the	report	might
look	like	this:
											Company	:	ACME																		Page	1
	
						Region		Product									Value										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
	
	
						Company	:	ALLIED																					Page	2
	
						Region		Product									Value										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
	
Note	how	page	2	is	"triggered"	by	the	change	of	company	name	and	that	page	1
was	not	full	when	page	2	was	started.
If	company	ACME	had	more	information	than	would	fit	on	1	page,	then	the
report	would	be	produced	like	this:
						Company	:	ACME																						Page	1
	
						Region		Product									Value										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
	
						Region		Product									Value							Page	2
	
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										

	
						Company	:	ALLIED																					Page	3
	
						Region		Product									Value										
							XXXXX		XXXXXXXXXXXXX		999.99										
							XXXXX		XXXXXXXXXXXXX		999.99										
	
Note	how	the	company	name	did	not	print	on	page	2.	This	is	because	the
DEF_HEAD	command	indicates	that	the	heading	should	only	be	produced	on
change	of	#COMPANY,	which	did	not	change	on	the	overflow	from	page	1	to
page	2.
This	feature	allows	the	specification	of	"special"	or	"break"	heading	lines.
However,	in	many	cases,	such	as	this	one,	the	correct	DEF_HEAD	command	is
probably:
DEF_HEAD		NAME(#HEADING)	FIELDS(#COMPANY)	
										TRIGGER_BY(#COMPANY	*OVERFLOW)
	

This	states	that	the	page	heading	details	should	be	"triggered"	by	change	of
#COMPANY	or	page	overflow,	thus	ensuring	that	the	company	name	prints	on
every	page,	even	when	it	is	an	overflow	from	the	previous	page.

TEXT
Allows	the	specification	of	up	to	50	"text	strings"	that	are	to	appear	on	the
screen	panel	or	report.	Each	text	string	specified	is	restricted	to	a	maximum
length	of	20	characters.
When	a	text	string	is	specified	it	should	be	followed	by	a	row/line	number	and	a
column/position	number	that	indicates	where	it	should	appear	on	the	screen
panel	or	report.
For	example:
TEXT(('ACME'	6	2)('ENGINEERING'	7	2))
	

specifies	2	text	strings	to	appear	at	line	6,	position	2	and	line	7,	position	2
respectively.

Portability
Considerations

In	Visual	LANSA	this	parameter	should	only	be	edited	using
the	screen	or	report	painter	which	will	replace	any	text	with	a
text	map.	DO	NOT	enter	text	using	the	command	prompt	or
free	format	editor	as	it	will	not	pass	the	full	function	checker

if	checked	in	to	LANSA	for	i.

All	Platforms
The	text	map	is	used	by	the	screen	or	report	design	facilities	to	store	the	details
of	all	the	text	strings	associated	with	the	screen	panel	or	report	lines.
Once	a	screen	or	report	layout	has	been	"painted"	and	saved,	all	text	details
from	the	layout	are	stored	in	a	"text	map".	The	text	map	is	then	subsequently
changed	by	using	the	"painter"	again.
The	presence	of	a	text	map	is	indicated	by	a	TEXT	parameter	that	looks	like	this
example
TEXT((*TMAPnnn	1	1))
	

where	"nnn"	is	a	unique	number	(within	this	function)	that	identifies	the	stored
text	map.
Some	very	important	things	about	"text	maps"	and	*TMAPnnn	identifiers	that
you	must	know	are:
Never	specify	*TMAPnnn	identifiers	of	your	own	or	change	*TMAPnnn
identifiers	to	other	values.	Leave	the	assignment	and	management	of
*TMAPnnn	identifiers	to	the	screen	and	report	design	facilities.
When	copying	a	command	that	has	an	*TMAPnnn	identifier,	remove	the
*TMAPnnn	references	(ie:	the	whole	TEXT	parameter)	from	the	copied
command.	If	you	fail	to	do	this,	then	the	full	function	checker	will	detect	the
duplicated	use	of	*TMAPnnn	identifiers,	and	issue	a	fatal	error	message
before	any	loss	occurs.
Never	remove	an	*TMAPnnn	identifier	from	a	command.	If	this	is	done	then
the	associated	text	map	may	be	deleted,	or	reused	in	another	command,
during	a	full	function	check	or	compilation.	Loss	of	text	details	is	likely	to
result.
Never	"comment	out"	a	command	that	contains	a	valid	*TMAPnnn	identifier.
This	is	just	another	variation	of	the	preceding	warning	and	it	runs	the	same
risks	of	loss	or	reuse	of	text.
Never	specify	*TMAPnnn	values	in	an	Application	Template.	In	the	template
context	*TMAPnnn	values	have	no	meaning.	Use	the	"text	string"	format	in
commands	used	in,	and	initially	generated	by,	Application	Templates.

FOR_REPORT
Specifies	the	report	with	which	this	command	should	be	associated.	Up	to	8

reports	can	be	produced	by	a	function	at	one	time.	Each	report	is	identified	by	a
number	in	the	range	1	to	8.	The	default	value	for	this	report	is	report	number	1.

DESIGN
Specifies	the	design/positioning	method	which	should	be	used	for	fields	that	do
not	have	specific	positioning	attributes	associated	with	them.
*ACROSS,	which	is	the	default	value	for	the	DEF_HEAD	command,	indicates
that	fields	should	be	designed	"across"	the	report	line	(i.e.:	one	after	another).
*DOWN	indicates	that	the	fields	should	be	designed	"down"	the	report	page	(ie:
one	under	another).

IDENTIFY
Specifies	the	default	identification	method	to	be	used	for	fields	that	do	not	have
specific	identification	attributes	associated	with	them.
*LABEL,	which	is	the	default	value	for	the	DEF_HEAD	command,	indicates
that	fields	should	be	identified	by	their	associated	labels.
*COLHDG	indicates	that	fields	should	be	identified	by	their	associated	column
headings.
*NOID	indicates	that	no	identification	of	the	field	is	required.	Only	the	field
itself	should	be	included	into	the	report	line(s).

DOWN_SEP
Specifies	the	spacing	between	lines	on	the	report	that	should	be	used	when
automatically	designing	a	report.	The	value	specified	must	be	a	number	in	the
range	1	to	10.	The	default	value	for	the	DEF_HEAD	command	is	1.

ACROSS_SEP
Specifies	the	spacing	between	columns	on	the	report	that	should	be	used	when
automatically	designing	a	report.	The	value	specified	must	be	a	number	in	the
range	0	to	10.	The	default	value	for	the	DEF_HEAD	command	is	5.

7.21.2	DEF_HEAD	Comments	/	Warnings
When	assigning	specific	line	attributes	to	fields	or	text	in	a	DEF_HEAD
command	note	that	the	line	numbers	used	are	the	actual	line	numbers	that	the
field	will	be	printed	on	(unlike	the	DEF_BREAK	and	DEF_LINE)
commands.	Thus	specifying	*L004	against	a	field	means	that	the	field	will
always	print	on	report	line	4.
If	you	use	an	expandable	group	expression	in	a	DEF_HEAD	command
FIELDS	and/or	TRIGGER_BY	parameter(s)	and	you	change	the	layout	using
the	report	design	facility,	LANSA	will	substitute	the	expression	with	the
actual	fields.	This	is	the	only	way	LANSA	can	assign	attributes	to	the
individual	fields	regardless	of	which	group	they	initially	came	from.

7.21.3	DEF_HEAD	Examples
Refer	to	Producing	Reports	Using	LANSA.

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

7.22	DEF_LINE
The	DEF_LINE	command	is	used	to	define	one	or	more	detail	lines	for
inclusion	on	a	report.
Only	fields	of	type	Alpha,	Packed	and	Signed	may	be	specified.	RDMLX	field
types	cannot	be	specified.
A	detail	line	is	printed	when	a	PRINT	command	is	executed	that	nominates	it	in
the	LINE	parameter.
You	should	read	Producing	Reports	Using	LANSA	in	the	Developers	Guide
before	attempting	to	use	a	DEF_LINE	command.

Portability	Considerations Refer	to	parameter	TEXT.

Also	See
7.22.1	DEF_LINE	Parameters
7.22.2	DEF_LINE	Comments	/	Warnings
7.22.3	DEF_LINE	Examples
																																																									Required
		DEF_LINE	-----	NAME	---------	name	of	detail	group	------
----->

																																																									Optional
	
													>--	FIELDS	-------	field	name		field	attributes	--->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|	expandable	group	expression	|
																																	------	1000	max	-------------
	
													>--	SPACE_BEF	----	1	------------------------------>
																																decimal	value
	
													>--	SPACE_AFT	----	0	------------------------------>
																																decimal	value
	
													>--	TEXT	---------	'text'	---	line/	---	position	-->

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

																															|											row							column			|
																																-----------	50	max	-----------
																																	*TMAPnnn		1		1		(special	value)
	
													>--	FOR_REPORT	---	1	------------------------------>
																																report	number	1	->	8
	
													>--	DESIGN	-------	*ACROSS	------------------------>
																																*DOWN
	
													>--	IDENTIFY	-----	*COLHDG	------------------------
>
																																*LABEL
																																*NOID
	
													>--	DOWN_SEP	-----	5	------------------------------>
																																decimal	value
	
													>--	ACROSS_SEP	---	1	------------------------------>
																																decimal	value
	
													>--	HEAD_COND	----	*NONE	-------------------------
-|
																																name	of	condition
	

7.22.1	DEF_LINE	Parameters
ACROSS_SEP
DESIGN
FIELDS
FOR_REPORT
HEAD_COND
DOWN_SEP
NAME
SPACE_AFT
SPACE_BEF
TEXT

NAME
Specifies	the	name	that	is	to	be	assigned	to	the	group	of	report	print	lines
defined	by	this	command.	The	name	specified	must	be	unique	within	the
function.

FIELDS
Specifies	the	field(s)	that	are	to	be	printed	on	the	report.	An	expandable	group
expression	is	allowed	in	this	parameter.
Only	RDML	fields	are	supported.

SPACE_BEF
Specifies	the	number	of	lines	on	the	report	that	should	be	spaced	before	the
detail	line(s)	are	printed.	The	default	value	is	1	but	any	value	in	the	range	0	to
100	can	be	specified.

SPACE_AFT
Specifies	the	number	of	lines	on	the	report	that	should	be	spaced	after	the	detail
line(s)	are	printed.	The	default	value	is	1	but	any	value	in	the	range	0	to	100	can
be	specified.

TEXT
Allows	the	specification	of	up	to	50	"text	strings"	that	are	to	appear	on	the
screen	panel	or	report.	Each	text	string	specified	is	restricted	to	a	maximum
length	of	20	characters.

When	a	text	string	is	specified	it	should	be	followed	by	a	row/line	number	and	a
column/position	number	that	indicates	where	it	should	appear	on	the	screen
panel	or	report.
For	example:
TEXT(('ACME'	6	2)('ENGINEERING'	7	2))
	

specifies	2	text	strings	to	appear	at	line	6,	position	2	and	line	7,	position	2
respectively.

Portability
Considerations

In	Visual	LANSA	this	parameter	should	only	be	edited	using
the	screen	or	report	painter	which	will	replace	any	text	with	a
text	map.	DO	NOT	enter	text	using	the	command	prompt	or
free	format	editor	as	it	will	not	pass	the	full	function	checker
if	checked	in	to	LANSA	for	i.

All	Platforms
The	text	map	is	used	by	the	screen	or	report	design	facilities	to	store	the	details
of	all	the	text	strings	associated	with	the	screen	panel	or	report	lines.
Once	a	screen	or	report	layout	has	been	"painted"	and	saved,	all	text	details
from	the	layout	are	stored	in	a	"text	map".	The	text	map	is	then	subsequently
changed	by	using	the	"painter"	again.
The	presence	of	a	text	map	is	indicated	by	a	TEXT	parameter	that	looks	like	this
example:
TEXT((*TMAPnnn	1	1))
	

where	"nnn"	is	a	unique	number	(within	this	function)	that	identifies	the	stored
text	map.
Some	very	important	things	about	"text	maps"	and	*TMAPnnn	identifiers	that
you	must	know	are:
Never	specify	*TMAPnnn	identifiers	of	your	own	or	change	*TMAPnnn
identifiers	to	other	values.	Leave	the	assignment	and	management	of
*TMAPnnn	identifiers	to	the	screen	and	report	design	facilities.
When	copying	a	command	that	has	an	*TMAPnnn	identifier,	remove	the
*TMAPnnn	references	(ie:	the	whole	TEXT	parameter)	from	the	copied
command.	If	you	fail	to	do	this,	then	the	full	function	checker	will	detect	the
duplicated	use	of	*TMAPnnn	identifiers,	and	issue	a	fatal	error	message
before	any	loss	occurs.

Never	remove	an	*TMAPnnn	identifier	from	a	command.	If	this	is	done	then
the	associated	text	map	may	be	deleted,	or	reused	in	another	command,
during	a	full	function	check	or	compilation.	Loss	of	text	details	is	likely	to
result.
Never	"comment	out"	a	command	that	contains	a	valid	*TMAPnnn	identifier.
This	is	just	another	variation	of	the	preceding	warning	and	it	runs	the	same
risks	of	loss	or	reuse	of	text.
Never	specify	*TMAPnnn	values	in	an	Application	Template.	In	the	template
context	*TMAPnnn	values	have	no	meaning.	Use	the	"text	string"	format	in
commands	used	in,	and	initially	generated	by,	Application	Templates.

FOR_REPORT
Specifies	the	report	with	which	this	command	should	be	associated.	Up	to	8
reports	can	be	produced	by	a	function	at	one	time.	Each	report	is	identified	by	a
number	in	the	range	1	to	8.	The	default	value	for	this	report	is	report	number	1.

DESIGN
Specifies	the	design/positioning	method	which	should	be	used	for	fields	that	do
not	have	specific	positioning	attributes	associated	with	them.
*ACROSS,	which	is	the	default	value	for	the	DEF_LINE	command,	indicates
that	fields	should	be	designed	"across"	the	report	line	(ie:	one	after	another).
*DOWN	indicates	that	the	fields	should	be	designed	"down"	the	report	page	(ie:
one	under	another).

IDENTIFY
Specifies	the	default	identification	method	to	be	used	for	fields	that	do	not	have
specific	identification	attributes	associated	with	them.
*COLHDG,	which	is	the	default	value	for	the	DEF_LINE	command,	indicates
that	fields	should	be	identified	by	their	associated	column	headings.
*LABEL	indicates	that	fields	should	be	identified	by	their	associated	labels.
*NOID	indicates	that	no	identification	of	the	field	is	required.	Only	the	field
itself	should	be	included	into	the	report	line(s).

DOWN_SEP
Specifies	the	spacing	between	lines	on	the	report	that	should	be	used	when
automatically	designing	a	report.	The	value	specified	must	be	a	number	in	the
range	1	to	10.	The	default	value	for	the	DEF_LINE	command	is	5.

ACROSS_SEP

Specifies	the	spacing	between	columns	on	the	report	that	should	be	used	when
automatically	designing	a	report.	The	value	specified	must	be	a	number	in	the
range	0	to	10.	The	default	value	for	the	DEF_BREAK	command	is	1.

HEAD_COND
Optionally	specifies	the	name	of	a	condition	that	indicates	whether	any	column
heading	line(s)	associated	with	fields	in	this	detail	print	line	are	to	be	printed	in
the	header	area	of	the	report.
*NONE,	which	is	the	default	value,	indicates	that	no	controlling	condition
applies,	and	any	column	headings	associated	with	this	detail	line	should	always
be	printed	in	the	report	header	area,	regardless	of	which	detail	line	is	actually
being	printed.
If	a	controlling	condition	is	specified,	it	must	be	defined	elsewhere	in	the
RDML	function	by	a	DEF_COND	(define	condition)	command.	At	the	time	that
any	print	line	is	to	be	printed	the	status	of	the	condition	will	be	checked.	Only
when	it	is	found	to	be	true	will	the	column	headings	associated	with	this	detail
print	line	be	included	in	the	header	area	of	the	report.

7.22.2	DEF_LINE	Comments	/	Warnings
When	assigning	specific	line	attributes	to	fields	or	text	in	a	DEF_LINE
command	note	that	the	line	numbers	used	are	"offsets"	from	the	start	of	the
print	line.	Thus	specifying	*L001	against	a	field	does	not	mean	the	field	will
actually	print	on	line	1	of	the	report.	The	field	will	print	on	line	1	of	the
"group"	of	fields	that	make	up	the	DEF_LINE	command.
If	you	use	an	expandable	group	expression	in	a	DEF_LINE	command
FIELDS	parameter	and	you	change	the	layout	using	the	report	design	facility,
LANSA	will	substitute	the	expression	with	the	actual	fields.	This	is	the	only
way	LANSA	can	assign	attributes	to	the	individual	fields,	regardless	of	which
group	they	initially	came	from.

7.22.3	DEF_LINE	Examples
This	example	applies	to	the	DEF_BREAK	command.	Refer	also	to	Producing
Reports	Using	LANSA.
Write	an	RDML	program	to	read	a	regional	sales	file	and	print	details	of	each
record	read:
DEF_LINE			NAME(#DETAIL)	FIELDS(#REGION	#PRODES	#VALUE)
	
SELECT					FIELDS(#DETAIL)	FROM_FILE(SALEHIST)
PRINT						LINE(#DETAIL)
ENDSELECT
	
ENDPRINT
	

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

7.23	DEF_LIST
The	DEF_LIST	command	is	used	to	define	a	list	and	the	fields	that	comprise	an
entry	in	the	list.
The	list	may	be	a	browse	list	(used	for	displaying	information	at	a	workstation)
or	a	working	list	(used	to	store	information	within	a	program).
Lists	are	categorized	into	static	and	dynamic	lists.	A	static	list	is	a	list	that	does
not	specify	*MAX	in	the	ENTRYS	parameter.	If	it	does	it	is	a	dynamic	list.
Dynamic	lists	can	only	be	used	in	RDMLX	objects	and	are	recommended	as
memory	requirements	are	much	lower.
For	instance	the	command:
DEF_LIST	NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	

defines	a	browse	list	that	can	be	displayed	at	a	workstation	and	might	look	like
this:
	
Order	Line											Product	Number				Quantity																		Net
Number																																	Ordered																			Price
		999																						XXXXXXXXX					99999																		9999.99
		999																						XXXXXXXXX					99999																		9999.99
		999																						XXXXXXXXX					99999																		9999.99
		999																						XXXXXXXXX					99999																		9999.99
		999																						XXXXXXXXX					99999																		9999.99
		999																						XXXXXXXXX					99999																		9999.99
	
While	the	command:
DEF_LIST	NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	TYPE(*WORKING)	ENTRYS(10)
	

defines	a	working	list	that	can	contain	at	most	10	entries.	This	type	of	list
cannot	be	directly	displayed	at	the	workstation,	but	can	be	accessed	within	the
RDML	program	just	like	a	browse	list.
When	the	DEF_LIST	command	is	used	it	defines	what	fields	are	in	one	"entry"
of	the	list.	The	browse	list	example	above	has	6	entries	shown	and	each	entry
contains	an	order	line	number,	a	product	number,	a	quantity	and	a	price.
Once	defined,	there	are	limits	to	the	number	of	entries	in	each	type	of	list.
An	RDML	browse	list	can	contain	up	to	the	number	of	entries	as	shown	in	the

following	table:

Operating	Systems RDML RDMLX
List	without	RDMLX
field

RDMLX
List	with	RDMLX
field

All	(Non	Web
functions)

9999 9999 9999

IBM	i	(Web
functions)

99999999999 9999999

Others	(Web
functions)

9999 9999 9999999

	

Continued	in	7.23.2	DEF_LIST	Description

Portability	Considerations Refer	to	parameter:	SCROLL_TXT.

Also	See
7.23.1	DEF_LIST	Parameters
7.23.2	DEF_LIST	Description	continued
7.23.3	DEF_LIST	Comments	/	Warnings
7.23.4	DEF_LIST	Examples
																																																									Required	
		DEF_LIST	-----	NAME	---------	name	of	list	------------------
->	
													>--	FIELDS	-------	field	name		field	attributes	--->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|	expandable	group	expression	|
																																|------	1000	max	for	RDMLX----|
																																	------	100	max	for	RDML	-----

																																																									Optional
													>--	COUNTER	------	*NONE	--------------------------
>

																																numeric	field	name
	
													>--	TYPE	---------	*BROWSE	------------------------>
																																*WORKING
	
													>--	ENTRYS	-------	50	----------------------------->
																																number	in	range	1	–	2,147,483,647		
	
													>--	PAGE_SIZE	----	*NONE	-------------------------->
																																numeric	field	name
	
													>--	TOP_ENTRY	----	*CURRENT	---------------------
-->
																																numeric	field	name	
	
													>--	SEL_ENTRY	----	*NONE	--------------------------
>
																																numeric	field	name		
	
													>--	SCROLL_TXT	---	*NONE	--------------------------
|
																																alphanumeric	field	name
	

7.23.1	DEF_LIST	Parameters
COUNTER
ENTRYS
FIELDS
NAME
PAGE_SIZE
SCROLL_TXT
SEL_ENTRY
TOP_ENTRY
TYPE

NAME
Specifies	the	name	that	is	to	be	assigned	to	the	list.	The	name	specified	must	not
be	the	same	as	any	other	list	defined	in	this	function,	any	group	name	defined	in
this	function	(see	the	GROUP_BY	command),	or	any	field	defined	in	this
function	or	in	the	LANSA	data	dictionary.

FIELDS
Specifies	the	names	of	the	field(s)	which	are	to	form	one	entry	in	the	list.	Field
control	attributes	can	be	included	with	the	field(s)	specified.	Alternatively,	an
expandable	group	expression	can	be	entered	in	this	parameter.
All	fields	nominated	in	this	parameter	must	be	defined	within	this	function	or	in
the	LANSA	data	dictionary.
Fields	of	type	Binary,	VarBinary,	Float	and	Boolean	cannot	be	used.
Refer	to	the	7.52.1	GROUP_BY	Parameters	for	more	details	of	specifying	field
lists	and	field	control	attributes.

COUNTER
Specifies	a	field	which	is	to	be	automatically	maintained	with	a	count	of	the
number	of	entries	currently	in	the	list.
The	default	value	is	*NONE	which	indicates	no	automatic	counter	is	required.
If	a	field	is	nominated	as	the	automatic	counter	it	must	be	defined	in	this
function	or	in	the	LANSA	data	dictionary	and	be	of	numeric	type.

TYPE

Identifies	the	list	as	either	a	browse	list	(*BROWSE)	which	can	be	displayed	at
a	workstation,	or	as	a	working	list	(*WORKING)	that	can	be	used	within	the
program.	The	default	value	for	this	parameter	is	*BROWSE.

ENTRYS
This	parameter	is	used	for	TYPE(*WORKING)	lists	or	for	TYPE(*BROWSE)
lists	when	the	application	will	be	run	on	Visual	LANSA	It	specifies	the
maximum	number	of	entries	that	can	be	contained	in	the	list	at	any	time.	If	this
parameter	is	omitted	a	value	of	50	is	assumed.	Otherwise	specify	an	integer
value	in	the	range	1	to	2,147,483,647.	If	the	Function	or	Component	is	not
enabled	for	RDMLX,	the	limit	is	9999.
The	special	value	*MAX	is	provided	to	represent	2,147,483,647.	Using	this
value	on	some	operating	systems,	like	32-bit	Microsoft	Windows	versions,	will
overflow	available	memory	in	a	process	if	an	attempt	is	made	to	add	the
maximum	number	of	entries.	So,	the	use	of	a	large	number	of	entries	needs	to
be	seen	as	allowing	for	an	unknown	number	that	may	never	be	practically
attained.	It	is	up	to	the	application	designer	to	make	appropriate	use	of	this
feature.	The	full	function	checker	issues	warnings	when	the	maximum	size	of
the	list	would	overflow	the	practical	available	memory	on	various	MS	Windows
versions.	Refer	to	7.23.3	DEF_LIST	Comments	/	Warnings	for	information	on
how	to	use	the	FFC	warnings	to	calculate	memory	use.
Note	that	an	RDML	list	pre-allocates	all	the	required	memory	for	the	list.	An
RDMLX	list	pre-allocates	only	the	number	of	entries	that	will	fit	into	one
memory	page	or	the	width	of	one	entry,	whichever	is	the	larger.	RDMLX	lists
allocate	more	memory	at	runtime	as	the	need	arises.

PAGE_SIZE
This	parameter	is	only	used	for	TYPE(*BROWSE)	lists.	If	used,	it	specifies	the
name	of	a	numeric	field	that	is	to	contain	the	size	(number	of	entries)	of	the
browse	list	that	fits	on	one	"page"	of	the	display	device	being	used.
The	default	value	is	*NONE	which	indicates	that	page	size	is	not	required.
If	a	field	is	nominated	to	contain	the	"page"	size	it	must	be	defined	in	this
function	or	in	the	LANSA	data	dictionary	and	be	of	numeric	type.

Note:	The	use	of	this	parameter	does	not	control	the	page	size,	it
merely	allows	you	to	nominate	a	numeric	field	that	is	to	have	the
LANSA	assigned	page	size	placed	into	it	at	the	start	of	the	RDML
program.

This	parameter	is	normally	only	used	when	creating	browse	lists	that	are
displayed	using	"page	at	a	time"	techniques.	It	saves	the	programmer	from
having	to	find	out	what	the	LANSA	assigned	page	size	is,	and	then	having	to
"hard	code"	it	into	the	RDML	program.

TOP_ENTRY
This	parameter	is	only	used	for	TYPE(*BROWSE)	lists.	It	specifies	a	numeric
field	which	can	be	used	to:
Specify	that	the	"page"	of	the	browse	list	that	is	to	be	displayed	initially	is	the
"page"	that	contains	this	entry	number.
Receive	back	(after	a	DISPLAY,	REQUEST	or	POP_UP	command)	the
browse	list	entry	number	of	the	browse	list	line	that	was	at	the	top	of	the
"page"	when	the	enter	key	or	a	function	key	was	used.

The	default	value	is	*CURRENT	which	indicates	that	the	"page"	to	be
displayed	should	be	the	current	one.	This	means	the	first	page	if	this	is	the	first
time	the	list	is	being	displayed,	or	the	one	that	was	last	displayed	if	the	list	has
been	previously	displayed.
If	a	field	is	nominated	to	contain	the	top	entry	it	must	be	defined	in	this	function
or	in	the	LANSA	data	dictionary	and	be	of	numeric	type.

SEL_ENTRY
This	parameter	is	only	used	for	TYPE(*BROWSE)	lists.	It	specifies	a	numeric
field	which	is	to	contain	the	entry	number	of	a	browse	list	entry	that	was
selected	by	the	user	placing	the	cursor	on	the	entry	and	pressing	enter	or	a
function	key.	If	the	cursor	is	not	validly	positioned	the	value	will	be	returned	as
zero.
The	default	value	is	*NONE	which	indicates	that	cursor	selected	entry	number
is	not	required.
If	a	field	is	nominated	to	contain	the	selected	entry	number	it	must	be	defined	in
this	function	or	in	the	LANSA	data	dictionary	and	be	of	numeric	type.

SCROLL_TXT
This	parameter	is	only	used	for	TYPE(*BROWSE)	lists.	Additionally	it	should
only	be	used	when	you	are	coding	your	RDML	program	to	use	"page	at	a
time"	browse	list	displays.
Under	the	current	releases	of	LANSA,	IBM	i	and	CPF	this	parameter	is	used	to
control	the	appearance	(or	non-appearance)	of	the	high	intensity	"+"	(plus)	sign
at	the	bottom	of	a	list	displayed	on	the	screen.

Traditionally,	this	appearance	of	the	"+"	sign	indicates	to	the	user	that	more
details	exist	on	the	next	"page"	of	the	list,	and	that	they	can	be	viewed	by	using
the	roll	up	key.
When	your	RDML	program	is	not	using	"page	at	a	time"	techniques	to	build
and	display	a	list	(ie:	you	build	the	whole	list	before	displaying	it)	you	should
not	use	this	parameter.
If	your	RDML	program	is	using	"page	at	a	time"	techniques,	you	should	use
this	parameter	to	control	when	the	"+"	scrolling	sign	appears.
The	default	value	is	*NONE,	which	indicates	that	no	specific	program	control
of	the	"+"	sign	is	required.	It	will	be	handled	automatically	by	LANSA,	IBM	i
or	CPF	with	no	program	intervention.	Use	this	value	when	you	are	not	using
"page	at	a	time"	techniques.
Otherwise	nominate	an	alphanumeric	field	name	for	this	parameter.	When	any
page	from	the	browse	list	is	displayed	on	the	screen,	either	by	the	RDML
program	or	by	the	user	pressing	one	of	the	scroll	keys	to	move	backwards	or
forwards	through	the	list,	the	following	occurs:
If	more	entries	exist	in	the	browse	list	beyond	the	page	that	is	being
displayed,	the	"+"	sign	will	appear,	regardless	of	what	value	is	contained	in
the	field	you	nominate	in	this	parameter.
If	no	more	entries	exist	in	the	browse	list	beyond	the	page	that	is	being
displayed,	the	appearance	of	the	"+"	sign	is	controlled	by	the	content	of	the
field	you	nominate	in	this	parameter.	If	the	contents	of	the	field	nominated
start	with	an	"M"	or	an	"m",	the	"+"	sign	will	appear.	Otherwise	it	will	not
appear.

Refer	to	the	end	of	this	section	for	an	example	of	a	"page	at	a	time"	browse	list
program	and	the	use	of	this	parameter.

Portability
Considerations

If	used	with	Visual	LANSA,	this	feature	is
ignored.

7.23.2	DEF_LIST	Description
continued	from	7.23	DEF_LIST
An	RDMLX	browse	list	can	only	be	used	on	the	Web	and	in	this	context	list
use	greatly	impacts	the	response	time	in	the	browser.	Client	and	server
computing	power	and	the	size	of	the	communication	pipe	will	dictate	what
the	practical	limit	is.	In	some	configurations	it	can	be	as	little	as	1000	entries.
Notice	that	a	browse	list	is	a	static	list.	A	static	list	allocates	sufficient
tracking	information	for	the	maximum	number	of	entries	specified.	For	small
numbers	of	entries,	such	as	10,000,	this	tracking	information	is
inconsequential.	But,	if	millions	of	entries	are	required,	it	can	become
significant.
Because	of	a	limitation	of	generated	field	names	for	an	HTML	form,	only
9999	entries	can	be	used	for	input.	Due	of	this	limitation,	for	an
RDMLX/RDML	browse	list	used	on	the	Web	and	which	supports	more	than
9999	entries,	the	entries	beyond	9999	are	for	output	only.
An	RDMLX	function	can	only	use	a	browse	list	if	it	is	web	enabled.
A	static	working	list	in	an	RDML	object	can	contain	up	to	the	number	of
entries	specified	in	the	ENTRYS	parameter	which	has	a	maximum	of	9999.
However,	the	aggregate	entry	length	cannot	exceed	256	bytes	in	a	primary
list.	See	the	note	in	7.23.3	DEF_LIST	Comments	/	Warnings.
A	static	working	list	in	an	RDMLX	object	can	also	contain	up	to	the	number
of	entries	specified	in	the	ENTRYS	parameter	which	has	a	maximum	of	2
giga	entries.	The	aggregate	entry	length	cannot	exceed	2	Giga	bytes	in	a
primary	list.	Also,	String	and	Binary	data	memory	needs	are	on	top	of	this	as
they	are	not	stored	in	the	list	itself.	Thus	each	entry	could	have	many	Strings
each	up	to	64	Kbytes	long.	It	is	very	easy	to	consume	very	large	amounts	of
memory.	See	the	note	in	7.23.3	DEF_LIST	Comments	/	Warnings.
A	dynamic	working	list	in	an	RDMLX	object	allocates	and	releases	memory
on	demand.	Enter	the	value	*MAX	into	the	ENTRYS	parameter.	This	is	the
kind	of	list	recommended	for	use	in	an	RDMLX	object,	though	it	has	severe
restrictions	when	used	with	the	SORT_LIST	command.	The	aggregate	entry
length	cannot	exceed	2	Giga	bytes	in	a	primary	list.	Also,	String	and	Binary
data	memory	needs	are	on	top	of	this	as	they	are	not	stored	in	the	list	itself.
Thus	each	entry	could	have	many	Strings	each	up	to	64	Kbytes	long.	It	is
very	easy	to	consume	very	large	amounts	of	memory,	far	beyond	the
capacities	of	today's	computers.	The	memory	management	is	described	in

7.23.3	DEF_LIST	Comments	/	Warnings.
The	actual	positioning	of	a	browse	list	onto	the	workstation	display	depends
upon	the	parameters	used	in	the	REQUEST,	DISPLAY	or	POP_UP	command
that	is	used	to	display	the	list	on	the	screen	and	on	any	field	attributes	used	in
the	DEF_LIST	command.	For	more	details,	refer	to	Field	Attributes	and	their
Use.
When	a	browse	list	is	displayed	at	a	workstation	only	the	first	"page"	is
displayed.	A	"page"	is	the	number	of	entries	that	will	fit	on	the	screen.	By	using
the	ROLL	UP	and	ROLL	DOWN	keys	the	user	can	browse	backwards	and
forwards	through	all	the	pages	in	the	list.	This	is	why	it	is	called	a	"browse"	list.
Generally	a	browse	list	should	only	be	used	when	the	list	entries	are	to	be
displayed	at	a	workstation.	Working	lists,	which	cannot	be	directly	displayed	at
a	workstation,	have	2	major	advantages	over	browse	lists.	The	first	is	that	they
can	be	processed	much	faster	than	browse	lists,	and	the	second	is	that	they	can
be	used	in	RDML	programs	running	in	batch.
Some	of	the	other	commands	that	work	with	or	reference	lists	include:

Command Description Valid	For
Browse	List

Valid	For
Working	List

ADD_ENTRYAdd	a	new	entry	to	a	list. YES YES

UPD_ENTRY Update	an	existing	entry	in	a	list YES YES

GET_ENTRY Get	an	entry	from	a	list YES YES

SELECTLIST Process	entries	from	a	list	in	a
loop

YES YES

CLR_LIST Clear	all	entries	from	a	list YES YES

DLT_LIST Delete	a	list YES YES

INZ_LIST Initialise	a	list	with	"n"	entries YES YES

DISPLAY Display	fields	and	optionally	a
list

YES NO

REQUEST Request	fields	and	optionally	a
list

YES NO

POP_UP Display	fields	and	optionally	a
list	in	a	pop	up	window

YES NO

LOC_ENTRY Locate	an	entry	in	a	list NO YES

SORT_LIST Sort	a	list NO YES

DLT_ENTRY Delete	entry	from	a	list NO YES

	

7.23.3	DEF_LIST	Comments	/	Warnings
There	are	two	types	of	working	list.	The	first	list	is	one	that	specifies	*MAX
for	the	ENTRYS	parameter.	This	kind	of	list	dynamically	allocates	memory
and	is	referred	to	as	a	Dynamic	Working	List.	The	second	specifies	any	other
value	for	the	ENTRYS	parameter.	These	are	static	working	lists.
Warnings

Keep	in	mind	when	defining	static	working	lists	that	the	amount	of
storage	allocated	to	each	working	list	will	be	equal	to	the	entry	length
multiplied	by	the	number	of	entries	on	the	list,	so	the	amount	of
storage	space	allocated	to	a	function	using	many	working	lists	can
increase	quite	substantially.
If	you	intend	to	improve	the	memory	management	and	performance	of
your	lists	by	performing	storage	space	manipulation,	a	document:
Memory	Management	in	LANSA	that	covers	this	topic	and	is	available
from	your	LANSA	distributor.	
Under	normal	circumstances	you	should	not	need	to	change	a	list's
storage	space.	Changing	it	without	understanding	the	implications
could	affect	your	application's	performance	or	stability.	Contact	your
local	LANSA	distributor	before	continuing.

When	a	static	working	list	will	exceed	typical	available	Windows	32-bit
process	memory,	messages	870,	871,	872,	873	and	874	may	be	displayed.	An
example	of	message	871	is:	"Maximum	32-bit	windows	server	process
memory	of	3	GB	will	be	exceeded."	These	messages	should	be	considered	as
near	fatal	errors.	They	are	indicating	that	the	memory	requirement	is	beyond
the	capability	of	particular	windows	configurations.	The	capabilities	of	other
platforms	is	generally	larger,	like	the	IBM	i,	but	to	raise	these	warnings	still
indicates	a	design	that	should	be	re-considered.
Message	874	contains	the	dimensions	of	the	list.	An	example	of	message	874
is	"List	page	size	=	1098000000	bytes	Entry	length	=	549	bytes."
On	the	other	hand	a	dynamic	working	list	only	pre-allocates	a	small	amount
of	memory	to	hold	pointers	to	the	list	entrys.	Then,	as	more	space	is	required
it	is	allocated	with	one	page	of	operating	system	memory	or	the	size	of	one
entry,	which	ever	is	the	larger.	On	Microsoft	Windows	the	size	of	a	page	is	32
KB.	Memory	is	also	released	as	entrys	are	deleted	from	the	list.	If	you	were	to
keep	adding	entries	indefinitely,	memory	would	eventually	run	out	on
windows.

Whilst	the	IBM	i	has	a	greater	total	amount	of	memory	available,	it	is	limited
to	a	maximum	of	16	MB	in	any	single	memory	allocation.	This	means	that	on
an	IBM	i,	each	STATIC	working	list	is	limited	to	a	TOTAL	size	of	16	MB
and	each	DYNAMIC	working	lists	is	limited	to	a	maximum	ENTRY	width	of
16	MB.	Thus	a	dynamic	working	list	has	a	far	greater	total	capacity	-	only
limited	by	the	total	amount	of	memory	that	the	operating	system	has	available
for	the	process	to	use.	This	is	strictly	an	IBM	i	limitation.	All	other	platforms
have	the	same	limit	for	each	list	as	for	the	total	memory	used	by	all	lists.
Large	working	lists	may	not	perform	satisfactorily,	especially	if
LOC_ENTRY	is	used	because	they	are	only	accessed	sequentially	-	there	are
no	indexes.	For	lists	that	allow	fast	look-up	see	the	SPACE	BIFs.

Note:	Once	defined,	an	RDML	working	list	has	an	aggregate	length	limit	of	256
bytes	in	the	primary	list.	To	overcome	this	limit	Appendage	Lists	may	be
specified	by	invoking	the	Transform_LIST	Built-In	Function.	Another	solution
is	to	use	an	RDMLX	Function	with	a	dynamic	working	list.

Working	lists	are	not	an	infinite	resource	-	use	a	realistic	and	sensible
size	for	the	number	of	entries.

Where	the	fields	defined	in	a	browse	list	will	not	fit	onto	one	screen	line	they
will	automatically	wrap	around	onto	the	next	screen	line.	For	example,	the
command:
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN		#PRODUCT	#QUANTITY	#PRICE)
	

May	cause	a	list	to	be	displayed	that	looks	like	this	on	the	screen:
	
					No							Product														Quantity														Price	
					99							9999999															99999															99999.99	
					99							9999999															99999															99999.99	
					99							9999999															99999															99999.99	
	
If	more	fields	were	added	to	the	DEF_LIST	command	like	this:
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#PDESC	#QUANTITY	#PRICE	#TAXRTE)
	

then	when	the	list	was	displayed	it	might	now	look	like	this:
	
					No					Product										Description	

					99						9999999											XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
					Quantity	99999						Price	99999.99					Tax	rate	99.99	
					99						9999999											XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
					Quantity	99999						Price	99999.99						Tax	rate	99.99	
					99					9999999										XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX	
					Quantity	99999						Price	99999.99					Tax	rate	99.99		
	
Field	attributes	and/or	the	screen	design	facility	can	be	used	to	modify	the
automatically	designed	screen	layout	in	any	way.
For	information	refer	to:	
In	this	guide,	for	details	of:
field	attributes,	refer	to		Field	Attributes.
the	screen	design	facility,	refer	to	The	Screen	Design	Facility	in	the	Visual
LANSA	User	Guide.	Note	that	row/line	attributes	are	ignored	when	specified
for	fields	in	a	browselist.

In	the	LANSA	for	i	User	Guide,	for	details	of:
field	attributes,	refer	to	New	Field	Attribute	Concepts	Create	a	New	Field
Definition	.
the	screen	design	facility,	refer	to	The	Screen	Design	Facility.	Note	that
row/line	attributes	are	ignored	when	specified	for	fields	in	a	browselist.

its:LANSA010.chm::/lansa/ugub_20023.htm
its:Lansa010.chm::/lansa/ugub_40067.htm

7.23.4	DEF_LIST	Examples
Example	1:	Write	an	RDML	program	to	display	the	full	details	of	an	order.
Define	the	order	line	list	required	with	name	#ORDERLINE	and	group	the
fields	required	from	the	order	header	file	under	the	name	#ORDERHEAD:
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
	

Ask	the	user	to	input	an	order	number,	clear	all	entries	from	the	list	and	set
mode	to	display:
L1:	REQUEST				FIELDS(#ORDNUM)
				SET_MODE			TO(*DISPLAY)
				CLR_LIST			NAMED(#ORDERLINE)
	

Fetch	the	required	fields	from	the	ORDHDR	file.	If	not	found	return	to
REQUEST	command	with	an	automatic	error	message:
FETCH						FIELDS(#ORDERHEAD)	FROM_FILE(ORDHDR)		WITH_KEY(#ORDNUM)	NOT_FOUND(L1)		ISSUE_MSG(*YES)
	

Select	the	required	fields	from	the	ORDLIN	file.	For	each	record	selected	add	a
new	entry	to	the	list	named	#ORDERLINE:
SELECT					FIELDS(#ORDERLINE)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
ADD_ENTRY		TO_LIST(#ORDERLINE)
ENDSELECT
	

Finally	display	the	order	header	fields	and	order	line	details	to	the	user:
DISPLAY				FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE)
	

The	screen	formats	automatically	designed	by	LANSA	for	this	RDML	program
would	look	something	like	this:
For	the	REQUEST	FIELDS(#ORDNUM)	command:
	
									Order	number	:	______________
	
For	DISPLAY	FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE)
command:

	
									Order	number	:	99999999																											
									Customer	no		:	999999																													
									Date	due					:	99/99/99																											
																																																											
									Line																																														
									No			Product	Quantity	Price																							
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
																																																											
Example	2:	Modify	the	RDML	program	used	in	the	previous	example	to
include	the	field	#PDESC	(product	description)	from	the	PROMST	(product
master)	file	into	the	list:
Include	#PDESC	into	the	list	definition.
DEF_LIST		NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#PDESC	#QUANTITY	#PRICE)
GROUP_BY		NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
	
L1:	REQUEST				FIELDS(#ORDNUM)
				SET_MODE			TO(*DISPLAY)
				CLR_LIST			NAMED(#ORDERLINE)
				FETCH						FIELDS(#ORDERHEAD)	FROM_FILE(ORDHDR)	WITH_KEY(#ORDNUM)	NOT_FOUND(L1)	ISSUE_MSG(*YES)
	

Select	the	required	fields	from	the	ORDLIN	file.	For	each	record	selected	get
the	associated	product	description	then	add	a	new	entry	to	the	list	named
#ORDERLINE:
SELECT					FIELDS(#ORDERLINE)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
FETCH						FIELDS(#PDESC)	FROM_FILE(PROMST)	WITH_KEY(#PRODUCT)
ADD_ENTRY		TO_LIST(#ORDERLINE)
ENDSELECT
	
DISPLAY				FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE)
	

The	screen	formats	automatically	designed	by	LANSA	for	this	amended	RDML

program	would	now	look	something	like	this:
For	the	REQUEST	FIELDS(#ORDNUM)	command:
	
									Order	number	:		___________________
	
For	DISPLAY	FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE)
command:
								
		Order	number	:	99999999																											
		Customer	no		:	999999																													
		Date	due					:	99/99/99																											
																																																											
		Line																																														
		No			Product	Description								Quantity	Price				
		99			9999999	XXXXXXXXXXXXXXXXXXXX	99999		99999.99	
		99			9999999	XXXXXXXXXXXXXXXXXXXX	99999		99999.99	
		99			9999999	XXXXXXXXXXXXXXXXXXXX	99999		99999.99	
		99			9999999	XXXXXXXXXXXXXXXXXXXX	99999		99999.99	
		99			9999999	XXXXXXXXXXXXXXXXXXXX	99999		99999.99	
		99			9999999	XXXXXXXXXXXXXXXXXXXX	99999		99999.99	
																																																											
Example	3:	Consider	the	following	simple	RDML	program	that	requests	the
user	inputs	the	surname	(fully	or	partially),	then	displays	a	list	of	all	employees
whose	names	start	with	the	value	specified:
********			Define	work	variables	and	browse	list	to	be	used
DEFINE					FIELD(#L1COUNT)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)
DEF_LIST			NAME(#L1)	FIELDS((#SURNAME)	(#GIVENAME)	(#EMPNO)	(#ADDRESS1))	COUNTER(#L1COUNT)
********			Loop	until	terminated	by	EXIT	or	CANCEL
BEGIN_LOOP
********			Get	surname	to	search	for
REQUEST				FIELDS(#SURNAME)
********			Build	list	of	generically	identical	names
CLR_LIST			NAMED(#L1)
SELECT					FIELDS(#L1)	FROM_FILE(PSLMST2)	WITH_KEY(#SURNAME)	GENERIC(*YES)
ADD_ENTRY		TO_LIST(#L1)
ENDSELECT
********			If	names	found,	display	list	to	user

IF									COND('#L1COUNT	*GT	0')
DISPLAY				BROWSELIST(#L1)
********			else	issue	error	indicating	none	found
ELSE
MESSAGE				MSGTXT('No	employees	have	a	surname	matching	request')
ENDIF
********			Loop	back	and	request	next	name	to	search	for
END_LOOP
	

This	program	will	work	just	fine,	but	what	if	the	user	inputs	a	search	name	of
"D",	and	800	employees	working	for	the	company	have	a	surname	that	starts
with	"D"?
The	result	will	be	a	list	containing	800	names.	But	more	importantly,	it	will	take
a	long	time	to	build	up	the	list	and	use	a	lot	of	computer	resource	while	doing
it.
To	solve	this	problem,	a	technique	called	"page	at	a	time"	browsing	is	often
used.	What	this	basically	means	is	that	the	program	extracts	one	"page"	of
names	matching	the	request,	and	then	displays	them	to	the	user.	If	the	user
presses	the	roll	up	key	then	the	next	page	is	fetched	and	displayed,	etc,	etc.
To	implement	a	"page	at	a	time"	technique	for	this	particular	program	it	could
be	modified	like	this:
********			Define	work	variables	and	browse	list	to	be	used
DEFINE					FIELD(#L1COUNT)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)
DEFINE					FIELD(#L1PAGE)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)
DEFINE					FIELD(#L1TOP)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)
DEFINE					FIELD(#L1POS)	TYPE(*CHAR)	LENGTH(7)
DEF_LIST			NAME(#L1)	FIELDS((#SURNAME)	(#GIVENAME)	(#EMPNO)	
********			Loop	until	teminated	by	EXIT	or	CANCEL
BEGIN_LOOP
********			Get	surname	to	search	for
REQUEST				FIELDS(#SURNAME)
********			Build	list	of	generically	identical	names
CLR_LIST			NAMED(#L1)
CHANGE					FIELD(#IO$KEY)	TO(UP)
CHANGE					FIELD(#L1TOP)	TO(1)	
SELECT					FIELDS(#L1)	FROM_FILE(PSLMST2)	WITH_KEY(#SURNAME)	GENERIC(*YES)
EXECUTE				SUBROUTINE(DISPLAY)	WITH_PARMS('''More...''')	
ADD_ENTRY		TO_LIST(#L1)

ENDSELECT
	********			If	names	found,	display	list	to	user
IF									COND('#L1COUNT	*GT	0')
EXECUTE				SUBROUTINE(DISPLAY)	WITH_PARMS('''Bottom''')
********			else	issue	error	indicating	none	found
ELSE
MESSAGE				MSGTXT('No	employees	have	a	surname	matching	request')
ENDIF
********			Loop	back	and	request	next	name	to	search	for
END_LOOP

********			Display	names	if	page	is	full	or	list	is	complete

SUBROUTINE	NAME(DISPLAY)	PARMS(#L1POS)	
DEFINE					FIELD(#L1REMN)	TYPE(*DEC)	LENGTH(5)	DECIMALS(5)
CHANGE					FIELD(#L1REMN)	TO('#L1COUNT	/	#L1PAGE')	
IF									COND('(#L1COUNT	*NE	0)	*AND	(#IO$KEY	=	UP)	*AND	((#L1POS	=	''Bottom'')	*OR	(#L1REMN	*EQ	0.00000))')
DOUNTIL				COND('(#L1POS	*NE	''Bottom'')	*OR	(#IO$KEY	*NE	UP)'
DISPLAY				BROWSELIST(#L1)	USER_KEYS((*ROLLUP))	
ENDUNTIL	
CHANGE					FIELD(#L1TOP)	TO('#L1TOP	+	#L1PAGE')	
ENDIF	
ENDROUTINE	
	

The	"page	at	a	time"	technique	described	here	can	be	applied	to	just	about	any
situation	where	a	browse	list	is	to	be	displayed	and	can	considerably	improve
performance	in	most	of	them.
It	is	easy	to	modify	existing	programs	that	use	SELECT	and	DISPLAY	(like	the
inital	example	here)	to	use	the	page	at	a	time	technique.	Note	how	the	new	logic
"slots	into"	the	existing	logic	with	no	major	structural	change	to	the	program
logic/flow.
The	easiest	way	to	implement	"page	at	a	time"	techniques	is	to	design	and	fully
test	a	standard	"algorithm"	that	is	suitable	for	your	site's	needs.	This	can	then	be
used	as	a	base	or	template	for	all	future	applications.
Example	4:	A	transaction	file	called	TRANS	is	to	be	printed	and	contains
10,000	records.	For	each	transaction	printed	the	associated	state	description
must	be	extracted	from	file	STATES	and	printed	as	well.
A	simple	RDML	program	to	do	this	might	look	like	this:

GROUP_BY			NAME(#TRANS)	FIELDS(#TRANNUM	#TRANTIME	#TRANDATE	#TRANTYPE	#TRANUSER	#TRANSTATE	#STATEDES)
	
SELECT					FIELDS(#TRANS)	FROM_FILE(TRANS)
FETCH						FIELDS(#TRANS)	FROM_FILE(STATES)	WITH_KEY(#TRANSTATE)
UPRINT					FIELDS(#TRANS)
ENDSELECT
	

However,	by	using	a	working	list	the	speed	of	this	program	can	be	improved
considerably:
GROUP_BY			NAME(#TRANS)	FIELDS(#TRANNUM	#TRANTIME	#TRANDATE	#TRANTYPE	#TRANUSER	#TRANSTATE	#STATEDES)
DEF_LIST			NAME(#STATES)	FIELDS(#STATE	#STATEDES)	TYPE(*WORKING)	ENTRYS(10)
	
SELECT					FIELDS(#STATES)	FROM_FILE(STATE)
ADD_ENTRY		TO_LIST(#STATES)
ENDSELECT
	
SELECT					FIELDS(#TRANS)	FROM_FILE(TRANS)
LOC_ENTRY		IN_LIST(#STATES)	WHERE('#STATE	=	#TRANSTATE')
UPRINT					FIELDS(#TRANS)
ENDSELECT
	

If	there	were	10	states,	then	this	version	of	the	print	program	would	do	9,990
less	database	accesses	than	the	first	version.
Note	that	exactly	the	same	performance	improvement	can	be	achieved	more
simply	by	using	the	KEEP_LAST	parameter	of	the	FETCH	command	like	this:
GROUP_BY			NAME(#TRANS)	FIELDS(#TRANNUM	#TRANTIME	#TRANDATE	#TRANTYPE	#TRANUSER	#TRANSTATE	#STATEDES)
	
SELECT					FIELDS(#TRANS)	FROM_FILE(TRANS)
FETCH						FIELDS(#TRANS)	FROM_FILE(STATES)	WITH_KEY(#TRANSTATE)	KEEP_LAST(10)
UPRINT					FIELDS(#TRANS)
ENDSELECT
	

7.24	DEF_REPORT
The	DEF_REPORT	command	is	used	to	define	the	attributes	of	a	report.	
A	DEF_REPORT	command	is	only	required	in	a	function	when	the	attributes	of
the	report	are	different	from	the	default	report	attributes	set	up	within	your
LANSA	system.
Before	you	use	DEF_REPORT,	refer	to	Producing	Reports	Using	LANSA	for
further	information.

Also	See
7.24.1	DEF_REPORT	Parameters
7.24.2	DEF_REPORT	Comments	/	Warnings
7.24.3	DEF_REPORT	Examples
	
																																																									Optional
	
		DEF_REPORT	---	REPORT_NUM	---	1	----------------------
-------->
																																report	number	1	->	8
	
													>--	PRT_FILE	-----	QSYSPRT	------------------------>
																																printer	file.library	name
	
													>--	FORMSIZE		----	*DEFAULT	----	*DEFAULT	---
------>
																																*FILE				----	*FILE
																																form	length			form	width
	
													>--	LAST_LINE	----	*DEFAULT	-----------------------
>
																																*FILE
																																last	print	line	number
	
													>--	OVERFLOW	-----	*DEFAULT	---------------------
-->
																																*FILE
																																overflow	line	number

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

	
													>--	OUTQ	---------	*FILE	-------------------------->
																																output	queue	name
	
													>--	COPIES	-------	*FILE	-------------------------->
																																number	of	copies
	
													>--	FORMTYPE	-----	*FILE	-------------------------->
																																type	of	forms
	
													>--	OTHER_OVR	----	*NONE	-------------------------
->
																																other	override	attributes
	
													>--	RET_LENGTH	---	*NONE	-------------------------
->
																																returned	form	length
	
													>--	RET_WIDTH	----	*NONE	--------------------------
>
																																returned	form	width
	
													>--	RET_OVERF	----	*NONE	--------------------------
>
																																returned	overflow	value
	
													>--	RET_LINE	-----	*NONE	-------------------------->
																																returned	line	number
	
													>--	RET_PAGE	-----	*NONE	--------------------------|
																																returned	page	number
	

7.24.1	DEF_REPORT	Parameters
COPIES
FORMSIZE
FORMTYPE
LAST_LINE
OTHER_OVR
OUTQ
OVERFLOW
PRT_FILE
REPORT_NUM
RET_LENGTH
RET_LINE
RET_OVERF
RET_PAGE
RET_WIDTH

REPORT_NUM
Specifies	the	report	which	is	to	be	defined	by	this	command.	Up	to	8	reports	can
be	produced	by	a	function	at	one	time.	Each	report	is	identified	by	a	number	in
the	range	1	to	8.	The	default	value	for	this	report	is	report	number	1.

PRT_FILE
IBM	i	use	only
Specifies	the	name	and	library	of	residence	of	the	IBM	i	printer	file	that	should
be	used	to	produce	this	report.
QSYSPRT.*LIBL,	which	is	the	default	value,	indicates	that	the	IBM	supplied
default	printer	file	QSYSPRT	(which	is	to	be	located	by	using	the	job's	library
list)	should	be	used	to	produce	this	report.
Optionally,	specify	the	name	of	an	IBM	i	printer	file	and	either	*LIBL	or	the
library	in	which	the	file	resides.	Printer	files	must	be	created	using	CRTPRTF
command	and	are	used	to	describe	various	attributes	of	the	printer	file.	Refer	to
the	appropriate	IBM	manual	for	details	of	the	CRTPRTF	command.
Printer	files	other	than	QSYSPRT	are	usually	only	required	when	some
"special"	printer	file	attributes	are	required	for	the	report.	An	example	might	be

when	the	lines	per	inch,	characters	per	inch	or	printer	quality	attributes	are
different	to	those	in	the	IBM	supplied	default	printer	file	QSYSPRT.
When	a	printer	file	is	specified,	spool	file	User	Data	must	be	specified	in	the
printer	file	or,	for	RDMLX,	the	OTHER_OVR	parameter.

FORMSIZE
Specifies	the	length	and	width	of	the	form	that	the	report	is	to	be	produced	on.
Not	supported	in	RDMLX.
*DEFAULT/*DEFAULT,	which	are	the	default	values,	indicate	that	the
formsize	parameters	should	be	extracted	from	the	LANSA	system	definition
block.	Refer	to	The	System	Definition	Data	Areas	in	the	LANSA	for	i	User
Guide	for	details	of	the	system	definition	block	and	how	it	can	be	changed.	In
the	shipped	LANSA	system	definition	block	the	form	length	is	set	at	66	and	the
form	width	at	132.
*FILE/*FILE,	indicate	that	the	form	size	parameters	should	be	extracted	from
the	values	specified	on	the	printer	file.	These	values	are	only	taken	at	execution
time.
Otherwise	nominate	the	length	and	width	of	the	form	on	which	the	report	is	to
be	produced.

LAST_LINE
Specifies	the	last	line	upon	which	report	detail	lines	(DEF_LINE	and
DEF_BREAK	lines)	should	be	allowed	to	be	printed.
Not	supported	in	RDMLX.
*DEFAULT,	which	is	the	default	value,	indicates	that	the	value	used	should	be
calculated	as	3	less	than	the	overflow	line	specified	in	the	system	definition
block.	In	the	shipped	version	of	LANSA	the	overflow	line	number	is	set	at	60,
so	the	default	last	print	line	number	is	57.
*FILE,	indicates	that	the	value	used	should	be	calculated	as	3	less	than	the
overflow	line	specified	on	the	printer	file.
Otherwise,	specify	the	last	print	line	number	required.

OVERFLOW
Specifies	overflow	line	number	to	be	used	for	the	report.	No	print	line	(no
matter	what	type)	can	be	printed	beyond	the	overflow	line	on	a	report.
Not	supported	in	RDMLX.
*DEFAULT,	which	is	the	default	value,	indicates	that	the	overflow	parameters

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

should	be	extracted	from	the	LANSA	system	definition	block.	Refer	to	The
System	Definition	Data	Areas	in	the	LANSA	for	i	User	Guide	and	how	it	can	be
changed.	In	the	shipped	LANSA	system	definition	block	the	overflow	line
number	is	set	to	60.
*FILE,	indicates	that	the	overflow	parameters	should	be	extracted	from	the
printer	file.
Otherwise	nominate	overflow	line	number	required.

Note:	Report	footlines	can	only	be	defined	on	lines	beyond	the	last
print	line	and	up	to	and	including	the	overflow	line.	Thus	if	LANSA
shipped	values	are	used,	report	footlines	can	only	be	defined	on	lines
58	to	60.

OUTQ
Specifies	the	output	queue	name	for	the	spooled	output	file.	Note	that	library
name	cannot	be	specified	for	the	OUTQ	parameter.
*FILE	indicates	that	the	output	queue	name	should	be	taken	from	the	default
output	queue	name	for	the	printer	file.

COPIES
Specifies	the	number	of	copies	that	are	to	be	produced	for	the	report.	A	value
from	1	to	255	is	allowed.
*FILE	indicates	that	the	number	of	copies	should	be	taken	from	the	default
value	for	the	printer	file.

FORMTYPE
Specifies	the	type	of	forms	used	in	the	printer	for	the	report.	If	a	form	type	other
than	the	default	is	used,	the	system	(when	the	output	is	produced)	sends	a
message	that	identifies	the	form	type	to	the	system	operator	and	requests	that
the	specified	type	of	forms	be	put	in	the	printer.
*FILE	indicates	that	the	form	type	should	be	taken	from	the	default	value	for
the	printer	file.

OTHER_OVR
Additional	IBM	i	printer	file	override	options	can	be	specified	in	this	parameter,
for	example	HOLD(*YES).	Refer	to	the	IBM	Control	Language	Reference
Manuals	for	additional	overrides.	The	following	overrides	cannot	be	specified	in
this	parameter	as	they	are	already	handled	within	the	DEF_REPORT	command:

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

FILE LVLCHK			-	(specified	as	*NO)

TOFILE SECURE			-	(specified	as	*NO)

OVRFLOW			 SHARE				-	(specified	as	*NO)

OUTQ							 PAGESIZE	-	(on	the	IBM	i)

FORMTYPE		 COPIES

*NONE	indicates	that	there	are	no	additional	overrides.

Note	-	this	parameter	allows	entry	of	additional	printer	file	overrides
which	rely	heavily	on	IBM	i	features	-	this	must	be	taken	into
consideration	when	future	use	on	other	platforms	may	be	likely.

RET_LENGTH
Specifies	whether	the	form	length	should	be	returned	into	the	field	named	in	the
parameter.	The	field	must	be	defined	as	a	numeric	field.
*NONE	indicates	that	the	form	length	will	not	be	returned.

RET_WIDTH
Specifies	whether	the	form	width	should	be	returned	into	the	field	named	in	the
parameter.	The	field	must	be	defined	as	a	numeric	field.
*NONE	indicates	that	the	form	width	will	not	be	returned.

RET_OVERF
Specifies	whether	the	overflow	value	for	the	printer	file	should	be	returned	into
the	field	named	in	the	parameter.	The	field	must	be	defined	as	a	numeric	field.
*NONE	indicates	that	the	overflow	value	will	not	be	returned.

RET_LINE
Specifies	whether	the	current	line	number	for	the	printer	file	should	be	returned
into	the	field	named	in	the	parameter.	The	field	must	be	defined	as	a	numeric
field.
*NONE	indicates	that	the	current	line	number	will	not	be	returned.

RET_PAGE
Specifies	whether	the	current	page	number	should	be	returned	into	the	field
named	in	the	parameter.	The	field	must	be	defined	as	a	numeric	field.
Note	that	the	page	number	is	always	returned	after	the	first	line	of	a	page	is

printed.	This	means	that	the	page	number	in	RET_PAGE	is	always	1	page
behind	the	printed	page.
*NONE	indicates	that	the	current	page	number	will	not	be	returned.

7.24.2	DEF_REPORT	Comments	/	Warnings
When	using	value	*FILE	for	form	length,	last	line	and	overflow,	make	the	use
of	*FILE	consistent,	that	is	do	not	for	example	use	*DEFAULT	for	form
length	while	using	*FILE	on	overflow	unless	you	are	sure	the	two	values	will
not	conflict.
Portability	Note:

PRT_FILE	parameter	is	for	use	with	IBM	i	only.
FORMSIZE,	LAST_LINE	&	OVERFLOW	parameters	are	not
supported	in	RDMLX.

7.24.3	DEF_REPORT	Examples
Define	report	number	1	to	be	printed	on	a	198	character	printer
Define	report	number	3	to	be	printed	via	print	file	INVOICE
Define	report	number	1	to	have	3	copies	printed	on	output	queue	LASER
Define	report	number	1	to	have	form	length	returned	in	field	#RETLEN
Refer	also	to	Producing	Reports	Using	LANSA.
Define	report	number	1	to	be	printed	on	a	198	character	printer
DEF_REPORT		FORMSIZE(66	198)
	

Define	report	number	3	to	be	printed	via	print	file	INVOICE
INVOICE	has	a	length	of	50	and	a	width	of	80.	Last	print	line	and	overflow	line
are	set	to	48	and	49	respectively:
DEF_REPORT		REPORT_NUM(3)	PRT_FILE(INVOICE)	FORMSIZE(50	80)			LAST_LINE(48)	OVERFLOW(49)
	

Define	report	number	1	to	have	3	copies	printed	on	output	queue	LASER
Use	a	formtype	of	A4	LETTER	and	for	the	output	to	be	held:
DEF_REPORT		OUTQ(LASER)	COPIES(3)	FORMTYPE('A4	LETTER')			OTHER_OVR('HOLD(*YES)')
	

Define	report	number	1	to	have	form	length	returned	in	field	#RETLEN
Form	width	is	returned	in	field	#RETWID,	the	overflow	value	is	returned	in
field	#RETOVF,	current	line	number	is	returned	in	field	#RETLIN	and	current
page	number	is	returned	in	field	#RETPAG.
DEF_REPORT		RET_LENGTH(#RETLEN)	RET_WIDTH(#RETWID)			RET_OVERF(#RETOVF)	RET_LINE(#RETLIN)			RET_PAGE(#RETPAG)
	

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

7.25	DEFINE
The	DEFINE	command	is	used	to	define	a	field	for	local	use	within	a	function,
form,	reusable	part	or	WAM.	

Also	See
7.25.1	DEFINE	Parameters
7.25.2	DEFINE	Examples
																																																									Required	
	
		DEFINE	-------	FIELD	--------	field	name	---------------------
>

																																																									Optional
													>--	TYPE	---------	*REFFLD	------------------------>
																																*DEC
																																*PACKED
																																*CHAR
																																*NVARCHAR
																																*STRING
																																*SIGNED
																																*BIN
																																*DATE
																																*TIME
																																*DATETIME
																																*INT
																																*FLOAT
																																*BOOLEAN
													>--	LENGTH	-------	*REFFLD	------------------------
>
																																numeric	value
																																						incr/decr						*PLUS
																																																					*MINUS
																																																					*NONE
																																						#	to	incr/decr	*NONE
																																																					numeric	value
													>--	DECIMALS	-----	*REFFLD	------------------------

>
																																numeric	value
																																						incr/decr						*PLUS
																																																					*MINUS
																																																					*NONE
																																						#	to	incr/decr	*NONE
																																																					numeric	value
													>--	REFFLD	-------	*NONE	-------------------------->
																																name	of	reference	field
													>--	LABEL	--------	*DEFAULT	----------------------->
																																label	name
	
													>--	DESC	---------	*DEFAULT	----------------------->
																																text	description
	
													>--	COLHDG	-------	*DEFAULT	----------------------
->
																																column	heading
																																|													|
																																	-	3	maximum	-
	
													>--	EDIT_CODE	----	*DEFAULT	---------------------
-->
																																edit	code
	
													>--	EDIT_WORD	----	*DEFAULT	---------------------
-->
																																edit	word
	
													>--	INPUT_ATR	----	*DEFAULT	----------------------
->
																																input	attributes
	
													>--	OUTPUT_ATR	---	*DEFAULT	--------------------
--->
																																output	attributes
	
													>--	DEFAULT	------	*DEFAULT	-----------------------
>

																																default	value
	
													>--	TO_OVERLAY	---	*NONE	--------------	1	--------
->
																																#field	name				start	position
	
													>--	SHIFT	--------	*DEFAULT	-----------------------|
																																keyboard	shift
	

7.25.1	DEFINE	Parameters
COLHDG
DECIMALS
DEFAULT
DESC
EDIT_CODE
EDIT_WORD
FIELD
INPUT_ATR
LABEL
LENGTH
OUTPUT_ATR
REFFLD
SHIFT
TO_OVERLAY
TYPE

FIELD
Specifies	the	name	of	the	field	which	is	to	be	defined.	The	field	name	must	start
with	a	#	and	not	be	defined	in	the	LANSA	data	dictionary.	In	addition,	it	must
not	be	the	name	of	a	group	or	list	defined	within	this	function.	Avoid	the	use	of
field	names	like	SQLxxx,	as	this	may	cause	problems	when	used	in	functions
that	use	SQL	(Structured	Query	Language)	facilities.	(IE	Command
SELECT_SQL.)

TYPE
Specifies	the	type	of	field	which	is	being	defined.	The	permissible	values	are:
*BIN	indicates	a	Binary	working	field.
*BOOLEAN	indicates	a	Boolean	working	field.	Valid	values	for	use	with	a
Boolean	are	True	and	False	(not	case	sensitive)	or	1	and	0	(zero).
*CHAR	indicates	an	Alpha	working	field.
*DATE	indicates	a	Date	working	field.
*DATETIME	indicates	a	Datetime	working	field.

*DEC	or	synonym	*PACKED	indicates	a	Packed	working	field.
*FLOAT	indicates	a	Float	working	field.
*INT	indicates	an	Integer	working	field.
*NVARCHAR	indicates	an	NVarChar	working	field.
*REFFLD	indicates	the	type	comes	from	the	Reference	field	in	the	REFFLD
parameter.
*SIGNED	indicates	a	Signed	working	field.
*STRING	indicates	a	String	working	field.
*TIME	indicates	a	Time	working	field.

If	the	Function	or	Component	is	not	RDMLX	enabled,	only	*REFFLD,	*DEC,
and	*CHAR	are	valid	types.
If	the	REFFLD	parameter	is	not	*NONE:
and	the	referenced	field	is	an	RDMLX	field
the	TYPE	parameter	MUST	be	specified	as	*REFFLD.
and	the	reference	field	is	an	RDML	field
the	TYPE	parameter	may	only	be	set	to	*REFFLD,	*DEC	or	*CHAR.
Specifying	the	type	as	other	than	*REFFLD	is	not	recommended	as	it	renders
useless	the	fundamental	idea	of	repository	fields.

LENGTH
Specifies	the	length	of	the	field	being	defined.	If	the	value	*REFFLD	is
specified	then	the	length	to	be	used	is	the	same	as	the	field	specified	on	the
REFFLD	parameter.	For	specific	information	on	allowable	field	lengths	see
Field	Types

Type Notes	for	Length	parameter

*REFFLD *REFFLD,	or	any	value	that	is	valid	for	the	underlying	field	type
of	the	reference	field.

*DEC	or
synonym
*PACKED

LENGTH(*REFFLD)	may	only	be	specified	if	parameter
REFFLD	is	specified.
If	the	REFFLD	Parameter	is	specified,	and	it	is	an	RDML	field,
changing	the	length	to	31	or	higher	will	make	the	working	field
an	RDMLX	field.

*CHAR LENGTH(*REFFLD)	may	only	be	specified	if	parameter
REFFLD	is	specified.

*STRING If	LENGTH(*REFFLD)	REFFLD(*NONE)	is	specified,	the
length	will	default	to	256.

*SIGNED LENGTH(*REFFLD)	may	only	be	specified	if	parameter
REFFLD	is	specified.
If	the	REFFLD	Parameter	is	specified,	and	it	is	an	RDML	field,
changing	the	length	to	31	or	higher	will	make	the	working	field
an	RDMLX	field.

*BIN LENGTH(*REFFLD)	may	only	be	specified	if	parameter
REFFLD	is	specified.

*DATE Dates	are	fixed	size	(always	10)
incr/decr	must	be	*NONE
#	to	incr/decr	must	be	*NONE

*TIME Times	are	fixed	size	(always	8)
incr/decr	must	be	*NONE
#	to	incr/decr	must	be	*NONE

*DATETIME19,	21-29.
The	various	lengths	influence	the	number	of	fractional	seconds.
This	must	be	made	clear.	A	length	of	19	means	no	fractional
seconds,	21	-	29	means	1	-	9	fractional	seconds.	The	DECIMALS
parameter	has	no	impact.
If	LENGTH(*REFFLD)	REFFLD(*NONE)	is	specified,	the
length	will	default	to	the	ISO	standard	of	26:	YYYY-MM-DD
HH:MM:SS.ffffff
incr/decr	must	be	*NONE
#	to	incr/decr	must	be	*NONE

	

"Incr/decr"	value	is	used	in	conjunction	with	*REFFLD	on	the	length	parameter.
The	purpose	of	this	field	is	to	allow	the	length	value	as	obtained	from	the	field
specified	on	the	REFFLD	keyword	to	be	altered.	Permissible	values	are	*PLUS,
*MINUS	and	*NONE.	*PLUS	specifies	that	the	REFFLD	field	length	attribute
is	to	be	increased.	*MINUS	specifies	that	the	REFFLD	field	length	attribute	is

to	be	decreased.	*NONE	specifies	that	the	REFFLD	field	length	attribute	is	to
remain	the	same.
"#	to	incr/decr"	value	is	used	in	conjunction	with	the	*REFFLD	value	on	the
length	parameter	and	is	directly	related	to	the	"incr/decr"	value.	The	purpose	of
this	field	is	to	specify	the	value	by	which	the	REFFLD	field	length	value	is	to
be	increased	or	decreased.	Permissible	values	for	this	field	are	a	numeric	value
or	the	value	*NONE.

DECIMALS
Specifies	the	number	of	decimal	positions	of	the	field	being	defined	and	is	used
in	conjunction	with	the	type	value	of	*DEC.	If	the	value	*REFFLD	is	specified
then	the	decimal	positions	to	be	used	are	the	same	as	the	field	specified	on	the
REFFLD	parameter.	Otherwise	a	value	in	the	range	0	to	63	must	be	specified.
All	Fields	of	types	other	than	Signed	and	Packed	must	have	DECIMALS(0)	or	
DECIMALS(*REFFLD	*NONE	*NONE)	specified.
"Incr/decr"	value	is	used	in	conjunction	with	*REFFLD	on	the	decimals
parameter.	The	purpose	of	this	field	is	to	allow	the	decimal	positions	value	as
obtained	from	the	field	specified	on	the	REFFLD	keyword	to	be	altered.
Permissible	values	are	*PLUS,	*MINUS	and	*NONE.	*PLUS	specifies	that	the
REFFLD	field	decimal	positions	attribute	is	to	be	increased.	*MINUS	specifies
that	the	REFFLD	field	decimal	positions	attribute	is	to	be	decreased.	*NONE
specifies	that	the	REFFLD	field	decimal	positions	attribute	is	to	remain	the
same.
"#	to	incr/decr"	value	is	used	in	conjunction	with	the	*REFFLD	value	on	the
decimal	positions	parameter	and	is	directly	related	to	the	"incr/decr"	value.	The
purpose	of	this	field	is	to	specify	the	value	by	which	the	REFFLD	field	decimal
positions	value	is	to	be	increased	or	decreased.	Permissible	values	for	this	field
are	a	numeric	value	or	the	value	*NONE.

REFFLD
Specifies	the	name	of	the	field	on	which	this	definition	is	based.

LABEL
Specifies	the	15	character	label	which	should	be	assigned	to	this	field.
*DEFAULT	indicates	the	default	label	should	be	used.	If	the	REFFLD
parameter	is	used	then	the	label	of	the	referenced	field	will	be	used.	If	the
REFFLD	parameter	is	not	used	then	the	name	of	the	field	being	defined	will	be
used	as	the	label.

DESC
Specifies	the	50	character	description	that	should	be	assigned	to	this	field.
*DEFAULT	specifies	the	default	description	should	be	used.	If	the	REFFLD
parameter	is	used	then	the	description	of	the	referenced	field	will	be	used.	If	the
REFFLD	parameter	is	not	used	then	the	name	of	the	field	being	defined	will	be
used	as	the	description.

COLHDG
Specifies	the	3	x	20	character	column	headings	that	should	be	assigned	to	this
field.	*DEFAULT	specifies	that	the	default	column	headings	should	be	used.	If
the	REFFLD	parameter	is	specified	then	the	column	heading	of	the	referenced
field	will	be	used.	If	REFFLD	is	not	used	then	the	name	of	the	field	will	be	used
as	column	heading	1.

EDIT_CODE
Specifies	the	edit	code	(if	any)	which	is	to	be	assigned	to	the	field	being
defined.	If	no	edit	code	is	specified	then	the	value	*DEFAULT	is	assumed.
*DEFAULT	indicates	that	the	edit	code	of	the	REFFLD	field	should	be	used	if
the	REFFLD	parameter	is	used.	Otherwise	no	edit	code	should	be	used	for	the
field.
Use	of	edit	codes	for	all	numeric	fields	(e.g.	type	*DEC)	is	strongly
recommended.
Fields	of	type	Integer,	Signed,	or	Packed	may	have	an	Editcode	or	Editword,	or
may	leave	both	as	*DEFAULT.	However,	Integer	does	not	allow	edit	codes	W
and	Y.	All	other	field	types	must	have	EDIT_CODE(*DEFAULT)
EDIT_WORD(*DEFAULT).
Edit	codes	supported	by	LANSA	are	shown	in	Standard	Field	Edit	Codes.

EDIT_WORD
Specifies	the	edit	word	(if	any)	which	is	to	be	assigned	to	the	field	being
defined.	If	no	edit	word	is	specified	then	the	value	*DEFAULT	is	assumed.
*DEFAULT	indicates	that	the	edit	word	of	the	REFFLD	field	should	be	used	if
the	REFFLD	parameter	is	used.	Otherwise	no	edit	word	should	be	used	for	the
field.
Fields	of	type	Integer,	Signed,	or	Packed	may	have	an	Editcode	or	Editword,	or
may	leave	both	as	*DEFAULT.	All	other	field	types	must	have
EDIT_CODE(*SAME)	EDIT_WORD(*SAME).
Use	of	edit	words	should	only	be	attempted	by	experienced	users	as	the	validity

checking	done	by	LANSA	is	unsophisticated.
Note	that	by	using	the	REFFLD	option	and	EDIT_WORD(*DEFAULT)	you	are
specifying	that	the	edit	word	associated	with	the	REFFLD	should	be	used.
However,	if	the	length	or	number	of	decimal	positions	used	are	different	to	the
REFFLD	field	then	the	associated	edit	word	may	be	invalid.	In	such	cases	it	will
be	necessary	to	define	the	required	edit	word.
Note	also	that	the	operating	system	handles	edit	words	involving	floating
currency	symbols	on	screen	panels	differently	to	how	they	are	handled	on
reports.	In	such	cases,	it	is	suggested	that	a	separate	field	(or	a	"virtual"	field)	is
used	for	report	production.
When	an	edit	word	is	defined	in	LANSA	via	the	RDML	command	language	it
should	be	enclosed	in	triple	quotes	as	opposed	to	single	quotes.
For	example:
Correct	Method	for	defining	an	edit	word	for	a	5,2	numeric	field	requiring	a
trailing	%.
DEFINE	FIELD(#INCREASE)	TYPE(#DEC)	LENGTH(5)	DECIMALS(2)	LABEL('Sales	Increase')	EDIT_WORD('''			.		%''')
	

Incorrect	Method	for	defining	an	edit	word	for	a	5,2	numeric	field	requiring	a
trailing	%.
DEFINE	FIELD(#INCREASE)	TYPE(#DEC)	LENGTH(5)	DECIMALS(2)	LABEL('Sales	Increase')	
	

For	further	details,	refer	to	keyword	EDTWRD	in	IBM	manual	Data
Description	Specifications.

INPUT_ATR
Specifies	the	input	attributes	which	are	to	be	assigned	to	the	field	being	defined.
If	no	input	attributes	are	defined	then	the	value	*DEFAULT	is	assumed.
*DEFAULT	indicates	that	the	input	attributes	of	the	REFFLD	field	should	be
used	if	the	REFFLD	parameter	is	used.	Otherwise	the	system	default	input
attributes	list	for	either	alpha	or	numeric	fields	should	be	used	according	to	the
field	type.
For	information	on	allowable	attributes	for	RDMLX	fields	see	Field	Types
Valid	input	attributes	for	types	A	(alphanumeric),	P	(packed),	and	S	(signed)	are:

AttributeDescription	/	Comments AP S

AB Allow	to	be	blank. YYY

ME Mandatory	entry	check	required. YYY

MF Mandatory	fill	check	required. YYY

M10 Modulus	10	check	required. 	 YY

M11 Modulus	11	check	required. 	 YY

VN Valid	name	check	required. Y 	 	

FE Field	exit	key	required. YYY

LC Lowercase	entry	allowed.	If	you	do	NOT	set	this	attribute,
refer	to	PC	Locale	uppercasing	requested	in	Review	or	Change
a	Partition's	Multilingual	Attributes	in	the	LANSA	for	i	User
Guide.

Y 	 	

RB Right	adjust	and	blank	fill. 	 YY

RZ Right	adjust	and	zero	fill. 	 YY

RL Move	cursor	right	to	left. YYY

RLTB Tab	cursor	right/left	top/bottom.	Valid	in	SAA/CUA	partitions
only.	Affects	all	screen	panels

YYY

GRN Display	with	color	green. YYY

WHT Display	with	color	white. YYY

RED Display	with	color	red. YYY

TRQ Display	with	color	turquoise. YYY

YLW Display	with	color	yellow. YYY

PNK Display	with	color	pink. YYY

BLU Display	with	color	blue. YYY

BL Display	blinking. YYY

CS Display	with	column	separators. YYY

HI Display	in	high	intensity. YYY

ND Non-display	(hidden	field). YYY

RA Auto	record	advance	field YYY

its:LANSA010.chm::/lansa/ugub_50050.htm

SREV Store	in	reversed	format.	This	special	attribute	is	provided	for
bi-directional	languages	&	is	not	applicable	in	this	context.

YNN

SBIN Store	in	binary	format.	This	special	attribute	is	provided	for
repository	fields	&	is	not	applicable	in	this	context.

YNN

HIND HINDI	Numerics.	Display	using	HINDI	numerals.	Refer	to
Hindi	Numerics	in	the	LANSA	for	i	User	Guide.

NYY

CBOX	* Check	Box YNN

RBnn	* Radio	Button YNN

PBnn	* Push	Button YNN

DDXX	* Drop	Down. YNN

	

	
Attributes	marked	with	*	represent	the	field	with	the	corresponding	GUI	WIMP
construct.	Refer	to	GUI	WIMP	Constructs	in	the	LANSA	for	i	User	Guide	for
more	information.
In	partitions	that	comply	with	SAA/CUA	guidelines	the	following	attributes
may	be	used	as	well	(and	are	in	fact	preferred	to	those	described	above):

AttributeDescription	/	Comments

ABCH Action	bar	and	pull-down	choices

PBPT Panel	title

PBPI Panel	identifier

PBIN Instructions	to	user

PBFP Field	prompt	/	label	/	description	details

PBBR Brackets

PBCM Field	column	headings

PBGH Group	headings

PBNT Normal	text

its:LANSA010.CHM::/lansa/ugubc_c10040.htm
its:LANSA010.CHM::/lansa/ugubc_c10500.htm

PBET Emphasized	text

PBEN	* Input	capable	field	(normal)

PBEE	* Input	capable	field	(emphasized)

PBCH Choices	shown	on	menu

PBSC Choice	last	selected	from	menu

PBUC Choices	that	are	not	available

PBCN Protected	field	(normal)

PBCE Protected	field	(emphasized)

PBSI Scrolling	information

PBSL Separator	line

PBWB Pop-up	window	border

FKCH Function	key	information

	

Note:	Normally	only	PBEN	and	PBEE	would	be	specified	as	input	attributes.
Refer	to	SAA/CUA	Implementation	in	the	LANSA	Application	Design	Guide	for
more	details	of	these	attributes.	Also	note	that	only	one	color	can	be	specified
for	a	field.	Use	of	colors	may	affect	other	attributes.	Refer	to	IBM	manual	Data
Description	Specifications	for	more	details.	Keywords	that	should	be	reviewed
are	CHECK,	COLOR	and	DSPATR.

OUTPUT_ATR
Specifies	the	output	attributes	which	are	to	be	assigned	to	the	field	being
defined.	If	no	output	attributes	are	specified	then	the	value	*DEFAULT	is
assumed.
*DEFAULT	indicates	that	the	output	attributes	of	the	REFFLD	field	should	be
used	if	the	REFFLD	parameter	is	used.	Otherwise	the	system	default	output
attributes	list	for	either	alpha	or	numeric	fields	should	be	used	according	to	the
field	type.
For	information	on	allowable	attributes	for	RDMLX	fields	see	Field	Types
Valid	output	attributes	for	types	Alpha	(A),	Packed	(P),	and	Signed	(S)	are:

AttributeDescription	/	Comments AP S

GRN Display	with	color	green. YYY

WHT Display	with	color	white. YYY

RED Display	with	color	red. YYY

TRQ Display	with	color	turquoise. YYY

YLW Display	with	color	yellow. YYY

PNK Display	with	color	pink. YYY

BLU Display	with	color	blue. YYY

BL Display	blinking. YYY

CS Display	with	column	separators. YYY

HI Display	in	high	intensity. YYY

ND Non-display	(hidden	field). YYY

SREV Store	in	reversed	format.	This	special	attribute	is	provided	for
bi-directional	languages	and	is	not	applicable	in	this	context.

YNN

SBIN Store	in	binary	format.	This	special	attribute	is	provided	for
repository	fields	&	is	not	applicable	in	this	context.

YNN

Urxx User	Defined	Reporting	Attribute.	Provides	access	to	IBM	i
DDS	statements	for	printer	files.	Refer	to	User	Defined
Reporting	Attributesin	the	LANSA	for	i	User	Guide.

YYY

HIND HINDI	Numerics.	Display	using	HINDI	numerals.	Refer	to
Hindi	Numerics	in	the	LANSA	for	i	User	Guide.

NYY

CBOX	* Check	Box YNN

RBnn	* Radio	Button YNN

PBnn	* Push	Button YNN

DDxx	* Drop	Down. YNN

	

its:LANSA010.CHM::/lansa/ugubc_c10140.HTM
its:LANSA010.CHM::/lansa/ugubc_c10040.htm

Attributes	marked	with	an	*	represent	the	field	with	the	corresponding	GUI
WIMP	construct.	Refer	to	GUI	WIMP	Constructsin	the	LANSA	for	i	User	Guide
for	more	information
In	partitions	that	comply	with	SAA/CUA	guidelines,	the	following	attributes
may	be	used	as	well	(and	are	in	fact	preferred	to	those	described	above):

AttributeDescription	/	Comments

ABCH Action	bar	and	pull-down	choices

PBPT Panel	title

PBPI Panel	identifier

PBIN Instructions	to	user

PBFP Field	prompt	/	label	/	description	details

PBBR Brackets

PBCM Field	column	headings

PBGH Group	headings

PBNT Normal	text

PBET Emphasized	text

PBEN Input	capable	field	(normal)

PBEE Input	capable	field	(emphasized)

PBCH Choices	shown	on	menu

PBSC Choice	last	selected	from	menu

PBUC Choices	that	are	not	available

PBCN	* Protected	field	(normal)

PBCE	* Protected	field	(emphasized)

PBSI Scrolling	information

PBSL Separator	line

PBWB Pop-up	window	border

FKCH Function	key	information

its:LANSA010.CHM::/lansa/ugubc_c10500.htm

	

*	Note:	Normally	only	PBCN	and	PBCE	would	be	specified	as	output
attributes.	Refer	to	SAA/CUA	Implementation	in	the	LANSA	Application	Design
Guide	for	more	details	of	these	attributes.	Also	note	that	only	one	color	can	be
specified	for	a	field.	Use	of	colors	may	affect	other	attributes.	Refer	to	IBM
manual	Data	Description	Specifications	for	more	details.	Keywords	that	should
be	reviewed	are	COLOR	and	DSPATR.

DEFAULT
Specifies	the	default	value	which	is	to	apply	to	the	field	being	defined.
This	is	the	value	that	the	field	will	contain	when	the	function	begins	to	execute.
Note	that	using	the	EXCHANGE	command	can	appear	to	alter	the	default	value
of	a	field.
For	information	on	what	DEFAULT(*DEFAULT)	means	for	RDMLX	fields	see
Field	Types
If	no	default	value	is	specified	then	*DEFAULT	is	assumed.	This	means	that	if
the	REFFLD	parameter	has	been	specified	the	default	value	of	the	REFFLD
field	will	be	used.	If	the	REFFLD	parameter	has	not	been	used	then	a	default
value	of	*BLANKS	will	be	used	for	alphanumeric	fields	and	a	default	value	of
*ZERO	for	numeric	fields	will	be	used.
Default	values	specified	can	be:
A	system	variable	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
specifically	defined	at	your	installation.
An	alphanumeric	literal	such	as	BALMAIN.
A	numeric	literal	such	as	1,	10.43,	-1.341217.
A	process	parameter	such	as	*UP01.
*SQLNULL	is	allowed	as	a	default	value	for	any	field	type	that	has	ASQN	as
an	input	or	output	attribute.
*NULL	is	allowed	as	a	default	value	for	any	field	type	(if	the	partition	is
RDMLX	enabled).

TO_OVERLAY
Specifies	that	the	field	being	defined	is	to	fully	or	partially	overlay	(i.e.	occupy
the	same	storage	locations)	as	the	field	referenced	in	this	parameter.
It	is	invalid	for	RDMLX	fields	to	be	overlaid	or	overlay	another	field.

*NONE,	which	is	the	default	value,	indicates	that	the	field	being	defined	is	to
occupy	its	own	storage	area	and	not	to	overlay	any	other	field.
The	only	other	allowable	value	that	can	be	specified	here	is	the	name	of	another
field	defined	in	this	program	or	the	data	dictionary,	optionally	followed	by	a
starting	position.
The	TO_OVERLAY	parameter	is	a	powerful	facility	that	allows	a	field	to
occupy	the	same	storage	(ie:	memory	locations)	as	another	field.	The	power	of
this	parameter	means	that	you	must	understand	exactly	what	it	causes	to	happen
and	what	problems	you	may	cause	yourself	in	using	it.
The	following	notes	and	comments	should	be	read	in	full	before	attempting	to
use	this	parameter:
You	must	NOT	overlay	a	field	onto	a	field	that	is	itself	overlaid	onto	another
field.	This	is	NOT	checked	by	the	full	function	checker	and	may	cause	a
compile	failure.
You	should	fully	understand	the	IBM	i	data	storage	formats	of	character,
signed/zoned	decimal	and	packed	decimal	before	attempting	to	overlay
fields	of	varying	types.	Overlaying	of	fields	means	that	you	can	easily	cause
invalid	decimal	data	to	be	placed	into	decimal	fields,	thus	causing	your
program	to	fail	in	an	unpredictable	manner.
Array	index	fields	must	not	be	overlaid	on	or	by	other	fields	(in	any	context).
The	start	position	component	of	this	parameter	allows	you	to	overlay	just	a
part	of	a	specific	field,	rather	than	its	entire	length.	The	start	position	is	a	full
byte	position,	even	when	using	packed	decimal	fields.	When	you	specify	a
start	position	you	MUST	ensure	that	you	do	not	overlay	the	field	beyond	the
end	position	of	the	field	being	overlaid.

This	is	NOT	checked	by	the	full	function	checker.	Failure	to	observe	this	rule
can	cause	dangerous	and	unpredictable	results.
A	packed	decimal	field	of	even	length	can	be	overlaid	on	another	field,
however	the	RPG	compiler	will	always	interpret	the	overlaying	field	as	the
next	highest	odd	length.	For	example:
DEFINE	FIELD(#DEC6)	TYPE(*DEC)	LENGTH(6)	DECIMALS(0)
DEFINE	FIELD(#OVR6)	TYPE(*DEC)	LENGTH(6)	DECIMALS(0)	TO_OVERLAY(#DEC6)
	

			will	cause	#DEC6	to	be	treated	by	the	RPG	compiler	as	a	packed	decimal
(6,0)	value.	However,	#OVR6	will	be	treated	by	the	RPG	compiler	as	a

packed	decimal	(7,0)	value.	There	is	no	memory	length	problem	here,	both
fields	require	4	bytes	of	memory	to	be	stored,	it	is	just	the	way	that	the	RPG
compiler	works	that	may	cause	a	presentation	length	problem	on
reports.			HOWEVER,	if	#OVR6	is	put	on	a	screen	as	only	*OUTPUT,	the
function	compile	will	crash.	This	is	because	the	external	description	of
#OVR6	from	the	display	file	will	say	that	it	is	6	digits,	packed.	Meanwhile,	as
stated	above,	the	overlay	causes	the	RPG	compiler	to	assume	that	#OVR6	is
7	digits,	packed.
When	the	data	validation	commands	RANGECHECK,	VALUECHECK,
DATECHECK,	CALLCHECK,	CONDCHECK,	FILECHECK	or
SET_ERROR	are	used	on	an	overlaying	field,	they	also	set	an	error	for	the
overlaid	field.

For	example:

									DEFINE	FIELD(#INPUT)	TYPE(*CHAR)	LENGTH(3)
									DEFINE	FIELD(#INPC1)	TYPE(*CHAR)	LENGTH(1)							TO_OVERLAY(#INPUT	1)
									DEFINE	FIELD(#INPC3)	TYPE(*CHAR)	LENGTH(1)							TO_OVERLAY(#INPUT	3)
	
									REQUEST	FIELDS(#INPUT)
	
									BEGINCHECK
									VALUECHECK	FIELD(#INPC1)	WITH_LIST('A'	'B'	'C')
									VALUECHECK	FIELD(#INPC3)	WITH_LIST('X'	'Y'	'Z')
									ENDCHECK
	

This	program	accepts	a	3	character	field	(#INPUT)	from	the	workstation	and
validates	that	the	first	character	is	an	A,	B	or	C	and	also	that	the	last	character	is
an	X,	Y	or	Z.
When	an	error	is	triggered	against	overlaid	fields	#INPC1	or	#INPC3	by	the
VALUECHECK	commands,	it	is	also	triggered	against	the	overlaid	field
#INPUT.	This	means	that	when	the	REQUEST	command	is	(re)executed	in	an
error	situation,	field	#INPUT	will	be	displayed	in	reverse	video.

SHIFT
Specifies	the	keyboard	shift	(if	any)	which	is	to	be	assigned	to	the	field	being
defined.	If	no	keyboard	shift	is	specified	then	the	value	*DEFAULT	is	assumed.

*DEFAULT	indicates	that	the	keyboard	shift	of	the	REFFLD	field	should	be
used	if	the	REFFLD	parameter	is	used.	Otherwise	no	keyboard	shift	should	be
used	for	the	field.
For	information	on	what	values	of	SHIFT,	apart	from	*DEFAULT,	are	valid	for
each	working	field	type	see	Field	Types.
For	working	fields	of	type	Boolean,	SHIFT	must	be	*DEFAULT.
Refer	to	the	IBM	manual	Data	Description	Specifications	for	more	details.
Position	35	for	display	files	is	the	entry	that	should	be	reviewed.

7.25.2	DEFINE	Examples
Define	a	work	/	counter	field	#I	for	internal	use	in	an	RDML	program
Define	a	work	/	counter	field	#I	for	internal	use
Define	a	field	called	#LASTORDER	with	same	#ORDER	attributes
Define	a	field	called	#LASTORDER	with	different	#ORDER	attributes
Define	a	field	called	#TOTQTY	with	3	more	significant	digits	than	#QTY
Define	a	field	called	#TOTQTY	with	different	attributes	to	#QTY
Define	a	field	called	#SHORT	with	similar	attributes	to	field	#LONG
Define	a	field	called	#SHORT	with	similar	attributes	to	#LONG
Define	a	work	/	counter	field	#I	for	internal	use	in	an	RDML	program
DEFINE	FIELD(#I)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)
	

Define	a	work	/	counter	field	#I	for	internal	use
Define	in	an	RDML	program	so	that	it	will	contain	value	2	when	the	function
begins	to	execute:
DEFINE	FIELD(#I)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	DEFAULT(2)
	

Define	a	field	called	#LASTORDER	with	same	#ORDER	attributes
Ensure	that	it	has	exactly	the	same	attributes	as	field	#ORDER	which	is	defined
in	the	LANSA	data	dictionary.
DEFINE	FIELD(#LASTORDER)	REFFLD(#ORDER)
	

Define	a	field	called	#LASTORDER	with	different	#ORDER	attributes
Ensure	that	it	has	exactly	the	same	attributes	as	field	#ORDER	except	for	the
description,	label	and	column	headings.
DEFINE	FIELD(#LASTORDER)	REFFLD(#ORDER)	DESC('Last	Order	Number')	LABEL('Last	Order')	COLHDG('Last'	'Order'	'Number')
	

Define	a	field	called	#TOTQTY	with	3	more	significant	digits	than	#QTY
Ensure	that	it	has	exactly	the	same	attributes	as	field	#QTY	except	for	having	3
more	significant	digits.
DEFINE	FIELD(#TOTQTY)	REFFLD(#QTY)	LENGTH(*REFFLD	*PLUS	3)
	

Define	a	field	called	#TOTQTY	with	different	attributes	to	#QTY
Ensure	it	has	exactly	the	same	attributes	as	field	#QTY	except	for	having	3
more	significant	digits	and	2	more	decimal	digits.
DEFINE	FIELD(#TOTQTY)	REFFLD(#QTY)	LENGTH(*REFFLD	*PLUS	5)	DECIMALS(*REFFLD	*PLUS	2)
	

Define	a	field	called	#SHORT	with	similar	attributes	to	field	#LONG
Make	sure	#SHORT	is	exactly	10	characters	long.
DEFINE	FIELD(#SHORT)	REFFLD(#LONG)	LENGTH(10)
	

Define	a	field	called	#SHORT	with	similar	attributes	to	#LONG
Make	sure	#SHORT	has	exactly	the	same	attributes	as	field	#LONG	except	that
it	is	10	characters	shorter.
DEFINE	FIELD(#SHORT)	REFFLD(#LONG)	LENGTH(*REFFLD	*MINUS	10)	
	

Define	a	numeric	field	based	on	another	field
Define	it	with	the	S	keyboard	shift	so	that	it	can	be	displayed	with	edit	code	J.
DEFINE	FIELD(#SHIFTY)	REFFLD(#SHIFTS)	EDIT_CODE(J)	SHIFT(Y)
	

7.26	DELETE
The	DELETE	command	allows	the	user	to	delete	records	from	a	file	either	by
key	or	relative	record	number.

Portability	Considerations Refer	to	parameter	FROM_FILE.

Also	See
7.26.1	DELETE	Parameters
7.26.2	DELETE	Comments	/	Warnings
7.26.3	DELETE	Examples
																																																									Required
	
		DELETE	-------	FROM_FILE	---
-	file	name	.	library	name	------->

																																																									Optional
	
													>--	WHERE	-------	'condition'	--------------------->
	
													>--	WITH_KEY	-----	key	value	---------------------->
																															|	expandable	group	expression	|
																															---	20	maximum	--------------
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------
>
																																*NEXT
																																*RETURN
																																label
	
													>--	VAL_ERROR	----	*LASTDIS	-----------------------
>
																																*NEXT
																																*RETURN

																																label
	
													>--	NOT_FOUND	----	*NEXT	-------------------------
->
																																*RETURN
																																label
	
													>--	ISSUE_MSG	----	*NO	---------------------------->
																																*YES
	
													>--	WITH_RRN	-----	*NONE	--------------------------
>
	
													>--	RETURN_RRN	---	*NONE	-------------------------
->
	
													>--	CHECK_ONLY	---	*NO	----------------------------
>
																																*YES
	
													>--	AUTOCOMMIT	---	*FILEDEF	--------------------
---|
																																*YES
																																*NO
	

7.26.1	DELETE	Parameters
AUTOCOMMIT
CHECK_ONLY
FROM_FILE
IO_ERROR
IO_STATUS
ISSUE_MSG
NOT_FOUND
RETURN_RRN
WHERE
VAL_ERROR
WITH_KEY
WITH_RRN

FROM_FILE
Refer	to	Specifying	File	Names	in	I/O	Commands.

WHERE
Refer	to	Specifying	Conditions	and	Expressions	and	Specifying	WHERE
Parameter	in	I/O	Commands.

WITH_KEY
Refer	to	Specifying	File	Key	Lists	in	I/O	Commands.
For	details	of	how	using	this	parameter	can	affect	automatic	"cross	update"
checking,	refer	to	the	Delete	Comments/Warnings	section.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.

For	values,	refer	to	I/O	Return	Codes.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.	The
purpose	of	*NEXT	is	to	permit	you	to	handle	error	messages	in	the	RDML,	and
then	ABORT,	rather	than	use	the	default	ABORT.	(It	is	possible	for	processing
to	continue	for	LANSA	for	i	and	Visual	LANSA,	but	this	is	NOT	a
recommended	way	to	use	LANSA.)
ER	returned	from	a	database	operation	is	a	fatal	error	and	LANSA	does	not
expect	processing	to	continue.	The	IO	Module	is	reset	and	further	IO	will	be	as
if	no	previous	IO	on	that	file	had	occurred.	Thus	you	must	not	make	any
presumptions	as	to	the	state	of	the	file.	For	example,	the	last	record	read	will	not
be	set.	A	special	case	of	an	IO_ERROR	is	when	a	trigger	function	is	coded	to
return	ER	in	TRIG_RETC.	The	above	description	applies	to	this	case	as	well.	
Therefore,	LANSA	recommends	that	you	do	NOT	use	a	return	code	of	ER	from
a	trigger	function	to	cause	anything	but	an	ABORT	or	EXIT	to	occur	before	any
further	IO	is	performed.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

VAL_ERROR
Specifies	the	action	to	be	taken	if	a	validation	error	was	detected	by	the
command.
A	validation	error	occurs	when	information	that	is	to	be	added,	updated	or
deleted	from	the	file	does	not	pass	the	FILE	or	DICTIONARY	level	validation
checks	associated	with	fields	in	the	file.
If	the	default	value	*LASTDIS	is	used	control	will	be	passed	back	to	the	last
display	screen	used.	The	field(s)	that	failed	the	associated	validation	checks	will

be	displayed	in	reverse	image	and	the	cursor	positioned	to	the	first	field	in	error
on	the	screen.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	indicates	that	control	should	be	returned	to	the	invoking	routine
(identical	to	executing	a	RETURN	command).
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

The	*LASTDIS	is	valid	even	if	there	is	no	"last	display"	(such	as	in
batch	functions).	In	this	case	the	function	will	abort	with	the
appropriate	error	message(s).

When	using	*LASTDIS	the	"Last	Display"	must	be	at	the	same	level
as	the	database	command	(INSERT,	UPDATE,	DELETE,	FETCH	and
SELECT).		If	they	are	at	different	levels	e.g.	the	database	command	is
specified	in	a	SUBROUTINE,	but	the	"Last	Display"	is	a	caller
routine	or	the	mainline,	the	function	will	abort	with	the	appropriate
error	message(s).

The	same	does	NOT	apply	to	the	use	of	event	routines	and	method
routines	in	Visual	LANSA.	In	these	cases,	control	will	be	returned	to
the	calling	routine.	The	fields	will	display	in	error	with	messages
returned	to	the	first	status	bar	encountered	in	the	parent	chain	of
forms,	or	if	none	exist,	the	first	form	with	a	status	bar	encountered	in
the	execution	stack	(for	example,	a	reusable	part	that	inherits	from
PRIM_OBJT).

NOT_FOUND
Specifies	what	is	to	happen	if	no	record	is	found	in	the	file	that	has	a	key
matching	the	key	nominated	in	the	WITH_KEY	parameter.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	indicates	that	control	should	be	returned	to	the	invoking	routine
(identical	to	executing	a	RETURN	command).
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

ISSUE_MSG
Specifies	whether	a	"not	found"	message	is	to	be	automatically	issued	or	not.

The	default	value	is	*NO	which	indicates	that	no	message	should	be	issued.
The	only	other	allowable	value	is	*YES	which	indicates	that	a	message	should
be	automatically	issued.	The	message	will	appear	on	line	22/24	of	the	next
screen	format	presented	to	the	user	or	on	the	job	log	of	a	batch	job.

WITH_RRN
Specifies	the	name	of	a	field	that	contains	the	relative	record	number	(for
relative	record	file	processing)	of	the	record	which	is	to	be	deleted.	The
WITH_RRN	parameter	cannot	be	used	if	the	WITH_KEY	or	WHERE
parameters	are	used.
Any	field	nominated	in	this	parameter	must	be	defined	within	the	function	or
the	LANSA	data	dictionary	and	must	be	numeric.

Note:	Using	the	WITH_RRN	parameter	to	FETCH,	DELETE	or
UPDATE	records	is	faster	than	any	other	form	of	database	access.

The	actual	database	file	being	accessed	is	always	the	physical	file,	regardless	of
whether	or	not	the	file	nominated	in	the	command	is	a	logical	file.	Thus	logical
file	select/omit	criteria	are	not	used	when	accessing	a	logical	file	via	the
WITH_RRN	parameter.
Refer	also	to:
7.26.2	DELETE	Comments	/	Warnings	for	details	of	how	using	this
parameter	can	affect	automatic	"cross	update"	checking.
Load	Other	File	in	the	Visual	LANSA	Developers	Guide.

RETURN_RRN
Specifies	the	name	of	a	field	in	which	the	relative	record	number	of	the	record
just	deleted	should	be	returned.	The	value	returned	in	this	field	is	not	usable
when	the	DELETE	command	is	deleting	multiple	records	from	the	file.
Any	field	nominated	in	this	parameter	must	be	defined	within	the	function	or
the	LANSA	data	dictionary	and	must	be	numeric.
For	further	information	refer	also	to	Load	Other	File	in	the	Visual	LANSA
Developers	Guide.

CHECK_ONLY
Indicates	whether	the	I/O	operation	should	actually	be	performed	or	only
"simulated"	to	check	whether	all	file	and	data	dictionary	level	validation	checks
can	be	satisfied	when	it	is	actually	performed.

its:Lansa013.chm::/lansa/l4wdev04_0320.htm
its:Lansa013.chm::/lansa/l4wdev04_0320.htm

*NO,	which	is	the	default	value,	indicates	that	the	I/O	operation	should	be
performed	in	the	normal	manner.
*YES	indicates	that	the	I/O	operation	should	be	simulated	to	verify	that	all	file
and	data	dictionary	level	checks	can	be	satisfied.	The	database	file	involved	is
not	changed	in	any	way	when	this	option	is	used.

AUTOCOMMIT
This	parameter	was	made	redundant	in	LANSA	release	4.0	at	program	change
level	E5.
To	use	commitment	control	specify	COMMIT	and/or	ROLLBACK	commands
in	your	application.
Generally	only	COMMIT	commands	are	required.
For	the	implications	of	using	commitment	control	on	the	IBM	i,	refer	to
Commitment	Control	in	the	LANSA	for	i	User	Guide.

Portability
Considerations

If	using	Visual	LANSA,	refer	to	Commitment	Control	in	the
LANSA	Application	Design	Guide.

its:LANSA010.CHM::/lansa/ugubc_c10060.htm
its:LANSA065.CHM::/lansa/dsnbe_0060.htm

7.26.2	DELETE	Comments	/	Warnings
The	use	of	automatic	"crossed	update"	checks	by	the	DELETE	command
should	be	clearly	understood.

Consider	the	following	flow	of	commands:
FETCH			WITH_KEY()	or	WITH_RRN()
DISPLAY
IF_MODE	*DELETE
DELETE
ENDIF
	

Since	the	DELETE	command	has	no	WITH_KEY	or	WITH_RRN	parameter	it
is	indicating	that	the	last	record	read	(by	the	FETCH	command)	should	be
deleted.
In	this	situation,	the	"crossed	update	window"	is	in	the	interval	between	the
time	the	record	was	FETCHed	and	the	time	that	it	is	DELETEd.	This	could	be
very	long	if	the	user	went	and	had	a	cup	of	coffee	when	the	DISPLAY
command	was	on	his/her	workstation.
This	is	a	correct	and	valid	use	of	the	automatic	"crossed	update"	checking
facility.	If	the	record	was	changed	by	another	job/user	between	the	FETCH	and
the	DELETE,	then	the	DELETE	will	generate	a	"crossed	update	error"	(which
should	be	handled	just	like	any	other	type	of	validation	error).
Now	consider	this	flow	of	commands:
FETCH			WITH_KEY()	or	WITH_RRN()
DISPLAY
IF_MODE	*DELETE
DELETE		WITH_KEY()	or	WITH_RRN()
ENDIF
	

Since	the	DELETE	command	has	a	WITH_KEY	or	WITH_RRN	parameter	it	is
indicating	that	a	specific	record	(or	group	of	records)	should	be	read	and
deleted.
This	is	a	common	coding	mistake.	Everybody	knows	that	the	WITH_KEY	or
WITH_RRN	values	on	the	DELETE	command	should/would	be	the	same	as
those	on	the	FETCH	command.	However,	the	RDML	compiler	cannot	be	sure
that	the	values	were	not	changed,	so	it	is	forced	to	(re)read	the	record	before

attempting	the	DELETE.
In	this	situation,	the	"crossed	update	window"	is	in	the	interval	between	the
time	the	record	is	(re)read	by	the	DELETE	command	and	then	deleted	by	the
DELETE	command.	This	interval	is	very	short,	and	thus	the	"crossed	update"
check	is	effectively	disabled.
This	is	not	considered	to	be	a	valid	and	correct	use	of	the	DELETE	command
in	an	interactive	program	like	this	because	it	effectively	disables	the	automatic
"crossed	update"	check.
Where	a	DELETE	operation	is	issued	with	no	WITH_KEY,	WHERE	or
WITH_RRN	parameters	specified	the	last	record	read	from	the	file	will	be
deleted.	Thus	the	following	are	equivalent	operations:
DELETE	FROM_FILE(ORDHDR)	WITH_KEY(#ORDNUM)
	

is	functionally	equivalent	to:
FETCH		FROM_FILE(ORDHDR)	WITH_KEY(#ORDNUM)
DELETE	FROM_FILE(ORDHDR)
	

and:
DELETE	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
	

is	functionally	equivalent	to:
SELECT					FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
DELETE					FROM_FILE(ORDLIN)
ENDSELECT
	

7.26.3	DELETE	Examples
Example	1:	Delete	an	order	specified	in	field	#ORDNUM	from	an	order	header
file:
DELETE	FROM_FILE(ORDHDR)	WITH_KEY(#ORDNUM)
	

Example	2:	Delete	order	line	number	1	and	then	order	line	2	from	an	order	lines
file	called	ORDLIN.	The	order	number	is	contained	in	a	field	called
#ORDNUM:
DELETE	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM	1)
DELETE	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM	2)
	

Note	the	use	of	the	numeric	literals	1	and	2	as	key	values.
This	example	could	also	have	been	coded	as:
CHANGE				FIELD(#I)	TO(1)
DOWHILE			COND('#I	<=	2')
DELETE				FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM	#I)
CHANGE				FIELD(#I)	TO('#I	+	1')
ENDWHILE
	

Example	3:	Delete	all	order	lines	associated	with	an	order	specified	in	field
#ORDNUM:
DELETE	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
	

Note	that	this	command	deletes	multiple	records	from	the	file.
Example	4:	Delete	all	order	lines	associated	with	an	order	specified	in	field
#ORDNUM	and	then	delete	the	order	header	record:
DELETE	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
DELETE	FROM_FILE(ORDHDR)	WITH_KEY(#ORDNUM)
	

Example	5:	Delete	all	records	from	file	NAMES	where	field	#DLTIND
contains	a	Y:
DELETE	FROM_FILE(NAMES)	WHERE('#DLTIND	=	Y')
	

Example	6:	Delete	all	records	from	file	NAMES	where	field	#DLTIND

contains	a	Y	and	field	#UPDATE	is	less	than	the	current	date:
DELETE	FROM_FILE(NAMES)	WHERE('(#DLTIND	=	Y)	AND	(#UPDATE	<	*YYMMDD)')
	

Note	the	use	of	the	system	variable	*YYMMDD	which	contains	the	current	date
in	format	YYMMDD	(which	is	presumably	the	same	format	as	#UPDATE).

7.27	DISPLAY
The	DISPLAY	command	allows	the	user	to	display	information	on	a
workstation.	
The	DISPLAY	command	is	only	valid	in	RDMLX	functions	when	being	used
on	the	Web.	If	it	is	used	elsewhere	a	fatal	error	occurs	at	runtime.	If	this	occurs,
either	put	your	DISPLAY	command	in	an	RDML	function	or	use	a	Form	to
show	user	information.

Portability
Considerations

Refer	to	parameters:	FIELDS,	IGCCNV_KEY,	OPTIONS
SHOW_NEXT,	and	TEXT

Also	See
7.27.1	DISPLAY	Parameters
7.27.2	DISPLAY	Comments	/	Warnings
7.27.3	DISPLAY	Examples
																																																									Optional
	
		DISPLAY	------	FIELDS	-------	field	name		field	attributes	-
-->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|	expandable	group	expression	|
																																|------	1000	max	for	RDMLX----|
																																	------	100	max	for	RDML	-----
	
													>--	DESIGN	-------	*IDENTIFY	---------------------->
																																*DOWN
																																*ACROSS
	
													>--	IDENTIFY	-----	*DESIGN	------------------------>
																																*COLHDG
																																*LABEL
																																*DESC
																																*NOID
	
													>--	IDENT_ATR	----	*DEFAULT	----------------------
->

																																*NONE
																																*HI	*RI	*UL	(3	maximum)
	
													>--	DOWN_SEP	-----	*DESIGN	-----------------------
->
																																decimal	value
	
													>--	ACROSS_SEP	---	*DESIGN	-----------------------
->
																																decimal	value
	
													>--	BROWSELIST	---	*NONE	--------	999	------------
->
																																name	of	list			no.entries/page
	
													>--	EXIT_KEY	-----	*YES	--	*EXIT	-
-	*HIGH	-	*NONE	->
																																*NO					*MENU				*LOW		condition
																																								*NEXT	
																																								*RETURN
																																								label
	
													>--	MENU_KEY	-----	*YES	--	*MENU	---
-	*NONE	------->
																																*NO					*EXIT						condition
																																								*RETURN
																																								*NEXT	
																																								label
	
													>--	ADD_KEY	------	*NO	---	*NEXT	----	*NONE	---
---->
																																*YES				*RETURN				condition
																																								label
	
													>--	CHANGE_KEY	---	*NO	---	*NEXT	---
-	*NONE	------->
																																*YES				*RETURN				condition
																																								label
	

													>--	DELETE_KEY	---	*NO	---	*NEXT	----	*NONE	-
------>
																																*YES				*RETURN				condition
																																								label
	
													>--	PROMPT_KEY	---	*DFT	--	*AUTO	---
-	*NONE	------->
																																*YES				*NEXT						condition
																																*NO					*RETURN
																																								label
	
													>--	USER_KEYS	---	fnc	key--'desc'--*NEXT	-
-	cond	-->
																														|																	*RETURN								|
																														|																	label										|
																														|																																|
																															---------	5	maximum	------------
	
													>--	PANEL_ID	-----	*AUTO	-------------------------->
																													or	*NONE
																													or	panel	identifier
	
													>--	PANEL_TITL	---	*FUNCTION	--------------------
-->
																													or	'Panel	title'
	
													>--	SHOW_NEXT	----	*PRO	---------------------------
>
																																*YES
																																*NO
	
													>--	TEXT	---------	'text'	---	line/	---	position	-->
																															|											row							column			|
																																-----------	50	max	-----------
																																	*TMAPnnn		1		1		(special	value)
	
													>--	CURSOR_LOC	---	*NONE		-------	*NONE	------
----->
																																*ATFIELD							field	name

																																row	value						column	value
	
													>--	STD_HEAD	-----	*DFT	--------------------------->
																																*YES
																																*NO
	
													>--	OPTIONS	------	*NONE	-------------------------->
																																*NOREAD	*OVERLAY	(2	maximum)
	
													>--	IGCCNV_KEY		--	*AUTO	--------------------------
|
																																*YES
																																*NO
																																condition	name
	

7.27.1	DISPLAY	Parameters
ACROSS_SEP
ADD_KEY
BROWSELIST
CHANGE_KEY
CURSOR_LOC
DELETE_KEY
DESIGN
DOWN_SEP
EXIT_KEY
FIELDS
IDENT_ATR
IDENTIFY
IGCCNV_KEY
MENU_KEY
OPTIONS
PANEL_ID
PANEL_TITL
PROMPT_KEY
SHOW_NEXT
STD_HEAD
TEXT
USER_KEYS

FIELDS
Specifies	either	the	field(s)	that	are	to	be	displayed	at	the	workstation	or	the
name	of	a	group	that	specifies	the	field(s)	to	be	displayed.	Alternatively,	an
expandable	group	expression	can	be	entered	in	this	parameter.

Portability
Considerations

Visual	LANSA	has	multi-page	and	field	spanning	line
restrictions:
Multi-page	data	(i.e.	if	the	screen	format	is	larger	than	one
page)	can	be	displayed	in	a	Web	browser	window	but	NOT	in

a	LANSA	function.	
If	a	process	containing	multi-page	data	is	compiled,	a	warning
will	be	issued	if	the	process	is	WEB/XML	enabled.	If	the
process	is	NOT	WEB/XML	enabled,	a	full	function	check
error	will	be	issued.
Field	spanning	(i.e.	when	the	field	is	larger	than	one	line	on
the	screen)	is	not	supported	-	only	a	single	line	will	be
displayed.	No	error	or	warning	is	issued.

DESIGN
Specifies	the	design/positioning	method	which	should	be	used	for	fields	that	do
not	have	specific	positioning	attributes	associated	with	them.
*IDENTIFY,	which	is	the	default	value,	indicates	that	the	design	method	should
be	the	default	method	associated	with	the	IDENTIFY	parameter.	Refer	to	the
table	in	the	Comments	section	for	more	details.
*DOWN	indicates	that	the	fields	should	be	designed	"down"	the	screen	in	a
column.
*ACROSS	indicates	that	fields	should	be	designed	"across"	the	screen	in	a	row.

IDENTIFY
Specifies	the	default	identification	method	to	be	used	for	fields	that	do	not	have
a	specific	identification	attribute	associated	with	them.
*DESIGN,	which	is	the	default	value,	indicates	that	the	fields	should	be
identified	by	the	default	method	associated	with	the	DESIGN	parameter.	See	the
table	in	the	comments	section	for	more	details.
*LABEL	indicates	that	fields	should	be	identified	by	their	associated	labels	on
the	screen.
*DESC	indicates	that	fields	should	be	identified	by	their	associated	descriptions
on	the	screen.
*COLHDG	indicates	that	fields	should	be	identified	by	their	associated	column
headings	on	the	screen.
*NOID	indicates	that	no	identification	of	the	field	is	required.	Only	the	field
itself	should	be	included	into	the	screen	design.

IDENT_ATR
Specifies	display	attributes	that	are	to	be	associated	with	identification	text
(labels,	descriptions,	column	headings,	etc)	that	are	displayed	on	the	screen.

*DEFAULT,	which	is	the	default	value,	indicates	that	the	system	defaults	for
identification	display	attributes	should	be	adopted.	They	are	set	up	in	the	system
definition	block	as	overall	system	default	values.	Refer	to	The	System
Definition	Data	Areas	in	the	LANSA	for	i	User	Guide	and	how	to	change	it.
*NONE	indicates	that	identification	text	should	have	no	special	display
attributes	associated	with	it.
Otherwise,	specify	one	or	more	of	the	values:	*HI	(high	intensity),	*RI	(reverse
image)	and	*UL	(underline).
This	parameter	is	ignored	in	SAA/CUA	processes	in	SAA/CUA	compliant
partitions.	In	such	partitions	the	attributes	are	determined	from	the	partition
wide	standards	for	labels	and	column	headings.

DOWN_SEP
Specifies	the	spacing	between	rows	on	the	display	that	should	be	used	when
automatically	designing	a	screen.	The	value	specified	must	be	*DESIGN	or	a
number	in	the	range	1	to	10.	Refer	to	the	table	in	the	Comments	section	for
details	of	what	value	*DESIGN	is	actually	specifying.

ACROSS_SEP
Specifies	the	spacing	between	columns	on	the	display	that	should	be	used	when
automatically	designing	a	screen.	The	value	specified	must	be	*DESIGN	or	a
number	in	the	range	1	to	10.	Refer	to	the	table	in	the	Comments	section	for
details	of	what	value	*DESIGN	is	actually	specifying.

BROWSELIST
Specifies	the	name	of	a	browse	list	which	is	also	to	be	included	into	the	screen
format,	and	optionally,	the	number	of	entries	of	the	browse	list	that	should
appear	in	the	screen	panel.
*NONE	indicates	that	no	browse	list	is	required.	The	screen	designed	will	not
have	any	browse	component.
If	a	browse	list	is	specified,	then	you	may	also	specify	the	number	of	entries
from	the	browse	list	that	are	to	appear	on	the	screen	panel.	This	may	leave	space
below	the	browse	list	for	other	details	(which	can	be	overlaid	by	a	subsequent
screen).	The	default	of	999	entries	indicates	that	the	browse	list	should	extend	to
the	logical	bottom	of	the	screen	panel.
If	a	browse	list	is	specified	it	must	be	defined	elsewhere	in	the	RDML	program
with	a	DEF_LIST	(define	list)	command.

EXIT_KEY

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

Specifies	the	following	things	about	the	EXIT	function	key:
Whether	the	EXIT	function	key	is	to	be	enabled.
What	is	to	happen	when	the	EXIT	function	key	is	used.
In	SAA/CUA	partitions,	which	EXIT	function	key	is	required.
A	condition	to	control	when	the	EXIT	function	key	is	enabled.

By	default	the	EXIT	function	key	is	enabled.	To	disable	the	EXIT	function	key
specify	*NO	as	the	first	value	for	this	parameter.
If	the	EXIT	function	key	is	enabled,	you	may	specify	what	happens	when	it	is
used.	The	allowable	values	for	this	second	component	of	the	EXIT_KEY
parameter	are	as	follows:

*EXIT		 The	application	should	exit	completely	from	LANSA	(identical	to
executing	an	EXIT	command).

*MENU The	process's	main	menu	should	be	re-displayed	(identical	to
executing	a	MENU	command).

*NEXT Indicates	that	control	should	be	passed	to	the	next	command.

*RETURN Specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller
routine	or	the	program	mainline.

If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	value	*EXIT	is	the	default	for	this	parameter	value.
The	default	value	is	*HIGH	for	this	parameter	value.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.
Note:	In	SAA/CUA	applications	it	is	recommended	that	only	the	following	2
variations	of	the	EXIT_KEY	parameter	are	used:

EXIT_KEY(*YES	*EXIT	*HIGH)		in	a	"main	program"
*	

EXIT_KEY(*YES	*RETURN	*LOW)		in	"subroutines"
	

MENU_KEY
Specifies	whether	the	MENU	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	MENU	key	is	used.
*NO	indicates	that	the	MENU	function	key	should	not	be	enabled	when	the
screen	is	displayed.
*YES,	which	is	the	default	value,	indicates	that	the	MENU	key	should	be
enabled	when	the	screen	is	displayed.	If	*YES	is	used	it	is	also	possible	to
specify	the	action	to	be	taken	when	the	menu	key	is	used.
*MENU,	the	default	value,	specifies	that	the	process's	main	menu	should	be	re-
displayed.	*EXIT	specifies	that	the	application	should	exit	completely	from
LANSA.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

ADD_KEY
Specifies	whether	the	ADD	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	ADD	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	ADD	function	key	should	not
be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	ADD	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to

which	control	should	be	passed	when	the	ADD	key	is	used.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

CHANGE_KEY
Specifies	whether	the	CHANGE	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	CHANGE	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	CHANGE	function	key
should	not	be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	CHANGE	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	CHANGE	key	is	used.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

DELETE_KEY

Specifies	whether	the	DELETE	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	DELETE	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	DELETE	function	key	should
not	be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	DELETE	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	DELETE	key	is	used.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

PROMPT_KEY
Specifies	whether	the	PROMPT	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	PROMPT	key	is	used.
*DFT,	which	is	the	default	value,	indicates	that	the	PROMPT	function	key
should	be	enabled	or	disabled	automatically	according	to	its	default	value
defined	in	the	system	definition	data	area	DC@A01.	Refer	System	Definition
Data	Area	DC@A01	in	the	LANSA	for	i	User	Guide	for	more	information	about
this	default	value.
*YES	indicates	that	the	PROMPT	key	should	be	enabled	when	the	screen	is
displayed.
*NO	indicates	that	the	PROMPT	key	should	NOT	be	enabled	when	the	screen
is	displayed.
In	any	case,	when	the	PROMPT	function	key	is	enabled	(either	by	specifying
*DFT	or	*YES	for	the	first	part	of	this	parameter),	it	is	possible	to	also	specify
what	is	to	happen	if	the	function	key	is	used.	Allowable	values	for	this	part	of

its:LANSA010.CHM::/lansa/ugubc_c10015.htm

the	parameter	are:
*AUTO	indicates	that	the	prompt	key	processing	should	be	handled
automatically	by	LANSA.	Before	attempting	to	use	this	option,	refer	to	Prompt
Key	Processing.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

USER_KEYS
Specifies	up	to	5	additional	user	function	keys	that	can	be	enabled	when	the
screen	format	is	displayed	at	the	workstation.
Any	user	function	keys	assigned	must	not	conflict	with	function	keys	assigned
to	the	standard	LANSA	functions	of	EXIT,	MENU,	MESSAGES,	PROMPT,
ADD,	CHANGE	or	DELETE	when	they	are	enabled	on	a	command	(ie:	a
function	key	cannot	be	assigned	to	more	than	one	function).
Additional	user	function	keys	are	specified	in	the	format:

(fnc	key	number 'description' *NEXT *NONE)

	 	 *RETURN cond	name

	 	 Label 	

where	-

Fnc	key
number:

Is	the	function	key	number	in	the	range	1	to	24	or	one	of	the	
special	values	*ROLLUP	(roll	up	key)	or	*ROLLDOWN	(roll
down	key).		

'description' Is	a	description	of	the	function	assigned	to	the	function	key.	This

description	will	be	displayed	on		line	23	of	the	screen	format.
Maximum	length	is	8	characters.

*NEXT Is	the	default	and	indicates	that	the	next	command	(after	this	one)
should	receive	control.

*RETURN Indicates	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller
routine	or	the	program	mainline.

Label Indicates	the	command	label	to	which	control	should	be	passed	if
the	command	key	is	used.

*NONE Indicates	that	no	condition	applies	to	control	when	the	function	key
is	to	be	enabled	or	disabled.

Cond	name Indicates	that	a	condition	defined	by	a	DEF_COND	command
should	be	evaluated	to	determine	whether	to	enable	or	disable	the
function	key.

Refer	to	the	IF_KEY	command	for	details	of	how	the	function	key	that	was
used	can	be	tested	in	the	RDML	program.
As	an	example	of	use	consider	the	following:
DISPLAY	FIELDS(#PRODUCT)	USER_KEYS((14	'Commit')(15	'Purge'))
				IF_KEY		WAS(*USERKEY1)
*						<<	Commit	logic	>>
				ENDIF
				IF_KEY		WAS(*USERKEY2)
*						<<	Purge	logic	>>
				ENDIF
	

Note:	The	IF_KEY	command	refers	to	the	keys	by	symbolic	names	that	indicate
the	order	they	are	declared	in	the	USER_KEYS	parameter,	not	the	actual
function	key	numbers	assigned	to	them.	This	makes	changing	function	key
assignments	easier.

PANEL_ID
Specifies	the	identifier	that	is	to	be	assigned	to	the	panel	or	pop-up	window
created	by	this	command.
*AUTO	indicates	that	it	should	be	automatically	generated	by	LANSA	from	the
function	name	and	the	source	statement	number	of	the	RDML	program.

*NONE	indicates	that	no	panel	identifier	is	required	for	this	panel	or	pop-up
window.
Otherwise	specify	a	panel	identifier	from	1	to	10	characters	in	length.	The	value
specified	is	fixed	and	cannot	be	changed	at	execution	time.
This	parameter	is	valid	for	SAA/CUA	applications	only.
This	parameter	is	ignored	if	the	current	partition	definition	indicates	that	panel
identifiers	are	never	required,	no	matter	what	value	is	specified.

PANEL_TITL
Specifies	the	title	that	is	to	be	assigned	to	the	window	panel.
*FUNCTION	indicates	that	it	should	be	derived	from	the	RDML	function's
description.
Otherwise	specify	a	panel	title	from	1	to	40	characters	in	length.	The	value
specified	is	fixed	and	cannot	be	changed	at	execution	time.
This	parameter	is	valid	for	SAA/CUA	applications	only.

SHOW_NEXT
Specifies	whether	the	"next	function"	field	should	be	shown	on	line	22	of	the
screen.	The	next	function	field	is	a	facility	that	allows	transfer	between	the
functions	in	a	process	without	the	need	to	return	to	the	process	menu	each	time.
Refer	to	the	section	that	describes	the	The	Function	Control	Table	in	the	LANSA
for	i	User	Guide	for	more	details	about	"next	function"	processing.
*PRO,	which	is	the	default	value,	indicates	that	the	"next	function"	field	should
appear	only	when	the	process	to	which	this	function	belongs	has	a	menu
selection	style	of	"FUNCTION".	If	the	process	menu	selection	style	is
"NUMBER"	or	"CURSOR"	then	the	next	function	field	should	not	appear.
*YES	indicates	that	the	next	function	field	should	appear	regardless	of	what
menu	selection	style	is	being	used	by	the	process	to	which	this	function	belongs.
*NO	indicates	that	the	next	function	field	should	not	appear	regardless	of	what
menu	selection	style	is	being	used	by	the	process	to	which	this	function	belongs.
Note:	The	SHOW_NEXT	parameter	is	ignored	in	SAA/CUA	applications.

Portability
Considerations

Ignored	in	Visual	LANSA	applications	with	no	known
effect	to	the	application.

TEXT
Allows	the	specification	of	up	to	50	"text	strings"	that	are	to	appear	on	the

its:Lansa010.chm::/lansa/ugub_40097.htm

screen	panel	or	report.	Each	text	string	specified	is	restricted	to	a	maximum
length	of	20	characters.
When	a	text	string	is	specified	it	should	be	followed	by	a	row/line	number	and	a
column/position	number	that	indicates	where	it	should	appear	on	the	screen
panel	or	report.
For	example:
TEXT(('ACME'	6	2)('ENGINEERING'	7	2))
	

specifies	2	text	strings	to	appear	at	line	6,	position	2	and	line	7,	position	2
respectively.

Portability
Considerations

In	Visual	LANSA	this	parameter	should	only	be	edited	using
the	screen	or	report	painter	which	will	replace	any	text	with	a
text	map.	DO	NOT	enter	text	using	the	command	prompt	or
free	format	editor	as	it	will	not	pass	the	full	function	checker
if	checked	in	to	LANSA	for	i.

All	Platforms
The	text	map	is	used	by	the	screen	or	report	design	facilities	to	store	the	details
of	all	the	text	strings	associated	with	the	screen	panel	or	report	lines.
Once	a	screen	or	report	layout	has	been	"painted"	and	saved,	all	text	details
from	the	layout	are	stored	in	a	"text	map".	The	text	map	is	then	subsequently
changed	by	using	the	"painter"	again.
The	presence	of	a	text	map	is	indicated	by	a	TEXT	parameter	that	looks	like	this
example:
TEXT((*TMAPnnn	1	1))
	

where	"nnn"	is	a	unique	number	(within	this	function)	that	identifies	the	stored
text	map.
Some	very	important	things	about	"text	maps"	and	*TMAPnnn	identifiers	that
you	must	know	are:
Never	specify	*TMAPnnn	identifiers	of	your	own	or	change	*TMAPnnn
identifiers	to	other	values.	Leave	the	assignment	and	management	of
*TMAPnnn	identifiers	to	the	screen	and	report	design	facilities.
When	copying	a	command	that	has	an	*TMAPnnn	identifier,	remove	the
*TMAPnnn	references	(ie:	the	whole	TEXT	parameter)	from	the	copied
command.	If	you	fail	to	do	this,	then	the	full	function	checker	will	detect	the

duplicated	use	of	*TMAPnnn	identifiers,	and	issue	a	fatal	error	message
before	any	loss	occurs.
Never	remove	an	*TMAPnnn	identifier	from	a	command.	If	this	is	done	then
the	associated	text	map	may	be	deleted,	or	reused	in	another	command,
during	a	full	function	check	or	compilation.	Loss	of	text	details	is	likely	to
result.
Never	"comment	out"	a	command	that	contains	a	valid	*TMAPnnn	identifier.
This	is	just	another	variation	of	the	preceding	warning	and	it	runs	the	same
risks	of	loss	or	reuse	of	text.
Never	specify	*TMAPnnn	values	in	an	Application	Template.	In	the	template
context	*TMAPnnn	values	have	no	meaning.	Use	the	"text	string"	format	in
commands	used	in,	and	initially	generated	by,	Application	Templates.

CURSOR_LOC
Specifies	any	user	controlled	cursor	positioning	that	is	required.	The
CURSOR_LOC	parameter	must	always	contain	2	values	which	may	take	any	of
the	following	forms:
*NONE	/	*NONE:	which	are	the	default	values	indicate	that	no	user	controlled
cursor	positioning	is	required.	Normal	LANSA	cursor	control	is	to	be	used.
When	a	screen	is	displayed	the	cursor	will	be	positioned	to	either	the	first	input
capable	field	or	the	first	field	in	error.
*ATFIELD	/	Field	name:	specifies	that	the	cursor	should	be	positioned	to	the
named	field.	If	the	named	field	is	not	on	the	display	or	a	field	error	exists,
normal	LANSA	cursor	control	will	be	used.	Otherwise	the	cursor	will	be
positioned	to	the	nominated	field.
Row	value	/	Column	value:	specifies	that	the	"values"	nominated	indicate	the
row	and	column	number	at	which	the	cursor	is	to	be	positioned.	The	"values"
nominated	may	be	an	alphanumeric	literal	(e.g.:	15)	or	the	name	of	a	field	that
contains	the	value	(e.g.:	#ROW).	In	all	cases	the	value	must	be	numeric.	If	the
row	or	column	values	are	invalid	or	a	field	error	exists,	normal	LANSA	cursor
control	will	be	used.	Otherwise	the	cursor	will	be	positioned	at	the	row	and
column	specified.
When	the	row	and	column	option	is	used	and	the	row	and	column	values	are
specified	as	fields	(rather	than	numeric	literals),	the	row	and	column	number
that	the	cursor	was	at	when	the	command	completed	execution	will	be	returned
in	them.
Note:	The	CURSOR_LOC	does	not	behave	in	the	same	way	on	Windows	as	on

IBM	i.	On	a	Windows	platform	the	value	retrieved	is	the	first	position	of	the
field	the	cursor	is	currently	in.
The	feature	is	a	useful	way	of	retrieving	the	location	of	the	screen	cursor	at	the
time	the	command	completed	execution.	In	cases	where	you	wish	to	retrieve
the	cursor	location,	but	do	not	want	to	specify	it	before	output	to	the	screen,	use
coding	like	this:
CHANGE			FIELD(#ROW	#COL)	TO(0)
DISPLAY		FIELDS(#FIELD1	..	#FIELD10)	CURSOR_LOC(#ROW	#COL)
	

When	the	DISPLAY	command	is	executed	#ROW	and	#COL	are	both	zero,
which	is	an	invalid	cursor	location.	In	such	cases	normal	LANSA	cursor	control
is	resumed	and	the	user	positioning	request	is	ignored.	However,	after
completion	of	the	command	fields	#ROW	and	#COL	will	contain	the	location	of
the	cursor	at	the	time	the	DISPLAY	command	completed	execution.

STD_HEAD
Specifies	whether	or	not	the	standard	LANSA	design	for	the	screen	heading
lines	(lines	1	and	2)	should	be	used.
*DFT,	which	is	the	default	value,	indicates	that	the	system	default	value	for	the
STD_HEAD	parameter	should	be	used.	The	system	default	value	is	stored	in	the
LANSA	system	definition	block.	Refer	to	The	System	Definition	Data	Areas	in
the	LANSA	for	i	User	Guide	for	more	details	of	the	system	definition	block	and
how	to	change	it.
This	default	value	is	affected	when	used	with	the	OPTIONS(*OVERLAY)
parameter.	Refer	to	the	OPTIONS	parameter	for	more	details.
*YES	indicates	that	the	standard	LANSA	screen	heading	lines	should	be	used.
When	this	option	is	used	lines	1	and	2	of	the	display	are	not	available	for	the
positioning	of	user	fields.
*NO	indicates	that	the	standard	LANSA	screen	heading	lines	should	not	be
used.	In	this	case	lines	1	and	2	of	the	display	can	be	used	to	position	user	fields.

OPTIONS
Specifies	special	display	options	for	this	screen	panel.
*NONE,	which	is	the	default	value,	indicates	that	there	are	no	special	display
options	for	this	screen	panel.
Otherwise,	specify	one	or	more	of	the	following:
*NOREAD	indicates	that	the	details	being	displayed	are	not	to	be	read	back

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

from	the	screen.	Thus	the	details	are	presented	to	the	user,	but	cannot	ever	be
read	back	into	the	program.	Additionally,	the	program	does	not	stop	at	the
command	and	wait	for	a	user	interaction.	The	stop	and	wait	event	will	only
occur	when	a	subsequent	DISPLAY	or	REQUEST	command	is	executed	that
does	not	use	the	*NOREAD	option.
*OVERLAY	indicates	that	the	screen	panel	should	overlay	whatever	details	are
already	on	the	screen.	Details	already	on	the	screen	will	become	protected	and
can	no	longer	be	read	from	the	device,	but	they	will	be	visible	to	the	user.
When	*OVERLAY	is	used,	the	default	for	the	STD_HEAD	parameter	is	*NO.
Therefore,	unless	STD_HEAD(*YES)	is	coded,	the	screen	heading	lines	will
not	be	displayed	when	using	OPTIONS(*OVERLAY).	Note	that	when	a
"standard	heading"	(*YES)	is	sent	to	the	screen	it	causes	the	entire	screen	to	be
cleared.	If	STD_HEAD(*NO)	is	used	it	has	no	effect	upon	standard	headings
already	on	the	screen	from	previous	commands.
If	either	the	*NOREAD	or	*OVERLAY	options	are	used,	the	complete	screen
details	must	fit	on	one	screen	panel.
Note:	These	display	options	have	been	provided	to	allow	emulation	of	IBM	i
3GL	programs,	and	will	not	be	portable	to	other	platforms.	They	are	not
supported	by	the	current	GUI	or	by	LANSA	for	the	Web.	use	of	these	options	is
therefore	not	recommended.

Portability
Considerations

This	parameter	is	not	supported	in	Visual	LANSA
applications	and	should	not	be	used.	If	used,	a	Full	Function
Check	fatal	error	will	be	issued.

IGCCNV_KEY
Controls	the	appearance	of	the	text	"Fnn=XXXXXX"	in	the	function	key	area,
of	the	function	key	assigned	to	support	IGC	conversion.
This	parameter	is	ignored	if	the	language	under	which	this	function	is	being
compiled	does	not	have	the	"IGCCNV	required"	flag	enabled,	or	if	this	function
uses	the	*NOIGCCNV	options	keyword	(refer	to	the	FUNCTION	command).
Also	note	that	this	parameter	only	controls	the	appearance	of	the	text
"Fnn=XXXXX"	in	the	function	key	area.	It	does	not	control	the	enablement	of
the	IGCCNV	DDS	keyword	in	the	display	file	associated	with	this	function.
This	is	controlled	by	the	setting	of	the	"IGCCNV	required"	flag	and	the	use	of
the	*NOIGCCNV	option.
*AUTO,	which	is	the	default	value,	indicates	that	appearance	of	the	function
key	text	should	be	determined	automatically.	The	automatic	rules	used	to

determine	whether	or	not	to	show	the	function	key	text	are:
If	there	are	no	fields	with	keyboard	shift	J,	E	or	O	involved,	the	text	will	not
appear	(ignore	all	following	rules).
For	a	REQUEST	command	the	text	will	always	appear.
For	DISPLAY	or	POP_UP	commands,	the	current	"mode"	is	tested.	If	the
mode	is	"change"	(ie:	fields	on	the	screen	are	input	capable),	the	text	will
appear.	For	all	other	modes	the	text	will	not	appear.

Other	allowable	values	for	this	parameter	are	*YES,	indicating	that	the	text
should	always	appear,	or,	*NO	indicating	that	the	text	should	never	appear.
The	final	option	allows	the	nomination	of	a	condition	previously	defined	by	a
DEF_COND	command.	If	the	condition	is	true	the	text	should	appear.	If	the
condition	is	false,	the	text	should	not	appear.

Portability
Considerations

The	parameter	is	ignored	in	Visual	LANSA	applications	with
no	known	effect	to	the	application.

7.27.2	DISPLAY	Comments	/	Warnings
The	DISPLAY	command	is	a	"mode	sensitive"	command.	For	details	of	mode
sensitive	command	processing,	refer	to	Screen	Modes	and	Mode	Sensitive
Commands.
The	following	table	indicates	all	combinations	of	the	DESIGN	and
IDENTIFY	parameters	and	what	values	actually	result	when	any	of	the
default	values	are	used:

Specified:
DESIGN

Specified:
IDENTIFY

LANSA	uses:
DESIGN

LANSA	uses:
IDENTIFY

*IDENTIFY *DESIGN *DOWN *LABEL

*IDENTIFY *COLHDG *ACROSS *COLHDG

*IDENTIFY *LABEL *DOWN *LABEL

*IDENTIFY *DESC *DOWN *DESC

*IDENTIFY *NOID *ACROSS *NOID

*DOWN *DESIGN *DOWN *LABEL

*DOWN *COLHDG *DOWN *COLHDG

*DOWN *LABEL *DOWN *LABEL

*DOWN *DESC *DOWN *DESC

*DOWN *NOID *DOWN *NOID

*ACROSS *DESIGN *ACROSS *COLHDG

*ACROSS *COLHDG *ACROSS *COLHDG

*ACROSS *LABEL *ACROSS *LABEL

*ACROSS *DESC *ACROSS *DESC

*ACROSS *NOID *ACROSS *NOID

	

The	following	table	indicates	all	combinations	of	the	DESIGN	and

IDENTIFY	parameters	and	what	values	result	when	the	*DESIGN	default	is
used	in	the	associated	DOWN_SEP	or	ACROSS_SEP	parameters:

Specified:
DESIGN

Specified:
IDENTIFY

*DESIGN	Specified:
DOWN_SEP

*DESIGN	Specified:
ACROSS_SEP

*IDENTIFY *DESIGN 1 1

*IDENTIFY *COLHDG 5 1

*IDENTIFY *LABEL 1 1

*IDENTIFY *DESC 1 1

*IDENTIFY *NOID 1 1

*DOWN *DESIGN 1 1

*DOWN *COLHDG 5 1

*DOWN *LABEL 1 1

*DOWN *DESC 1 1

*DOWN *NOID 1 1

*ACROSS *DESIGN 5 1

*ACROSS *COLHDG 5 1

*ACROSS *LABEL 1 1

*ACROSS *DESC 1 1

*ACROSS *NOID 1 1

	

In	some	cases	all	the	fields	specified	in	the	FIELDS	parameter	will	not	fit	on
one	screen.	In	this	case	a	second,	third,	fourth,	etc.	screen	is	automatically
designed	as	required.
In	terms	of	the	RDML	program	they	can	be	treated	like	a	single	"long"
screen.	LANSA	will	automatically	process	the	screens	one	after	another	until
they	have	all	been	processed.	When	all	screens	have	been	processed	the	next
RDML	command	is	executed.	So	when	you	use	the	DISPLAY	command	you
may	in	fact	be	requesting	that	2	or	3	or	more	screens	be	displayed	one	after

another.
This	facility	is	a	feature	of	the	automatic	design	procedures.	If	you	are	coding
the	RDML	program	yourself	it	may	be	advisable	in	some	circumstances	to
"split	up"	the	DISPLAY	command	into	multiple	DISPLAY	commands	that
have	only	one	screen	format	each.
If	you	use	an	expandable	group	expression	in	a	DISPLAY	command	FIELDS
parameter	and	you	change	the	layout	using	the	report	design	facility,	LANSA
will	substitute	the	expression	with	the	actual	fields.	This	is	the	only	way
LANSA	can	assign	attributes	to	the	individual	fields,	regardless	of	which
group	they	initially	came	from.

7.27.3	DISPLAY	Examples
Example	1:	Display	fields	#ORDNUM,	#CUSTNUM	and	#DATEDUE	to	the
user.
DISPLAY				FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
	

or,	identically:
GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
DISPLAY				FIELDS(#ORDERHEAD)
	

both	use	default	values	for	all	parameters	and	field	attributes	and	thus	would
cause	a	screen	something	like	this	to	be	designed	automatically:
						
					Order	number	:						99999999																											
					Customer	no		:						999999																													
					Date	due					:						99/99/99																											
	
Example	2:	Modify	the	previous	example	to	design	the	screen	across	ways	and
use	column	headings	to	identify	the	fields:
GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
DISPLAY				FIELDS(#ORDERHEAD)	DESIGN(*ACROSS)	IDENTIFY(*COLHDG)
	

which	would	cause	a	screen	something	like	this	to	be	designed	automatically:
	
					Company								Order											Date																										
					Order										Customer								Order																									
					Number									Number										Due																											
					99999999							999999										99/99/99																						
	
Example	3:	Display	#ORDNUM	#CUSTNUM	and	#DATEDUE	and	also
specify	specific	positions	and	identification	methods	as	field	attributes.
For	details	of	field	attributes,	refer	to	Field	Attributes	and	their	Use.
When	specific	positions	for	a	field	are	nominated	the	automatic	design	facility
is	effectively	"disabled".
GROUP_BY	NAME(#ORDERHEAD)	FIELDS((#ORDNUM		*COLHDG	*L3	*P3)	(#CUSTNUM	*LABEL		*L3	*P24)	(#DATEDUE	*NOID			*L7	*P37))

	
DISPLAY		FIELDS(#ORDERHEAD)	DESIGN(*ACROSS)	TEXT(('--
DATE--'	6	37)	('--------'	8	37))
	

which	would	cause	a	screen	something	like	this	to	be	designed:
	
					Company														Customer	no		:	999999																		
					Order																																													
					Number																																												
					99999999																																										--DATE--	
																																																							99/99/99	

Note:	The	manual	specification	of	row	and	column	numbers	and	"text"	is	not
required.	The	screen	design	facility	can	be	used	to	modify	an	"automatic"
design	much	more	quickly	and	easily.	Refer	to	The	Screen	Design	Facility	in	the
LANSA	for	i	User	Guide	for	details	of	how	to	use	the	screen	design	facility.
After	the	screen	design	facility	has	been	used	on	a	DISPLAY	command	the
associated	FIELDS	parameter	(in	the	DISPLAY	or	GROUP_BY	command)	will
be	automatically	re-written	with	the	required	row,	column	and	method	of
identification	attributes.	Remember,	if	an	expandable	group	expression	was
used,	LANSA	will	substitute	the	expression	with	the	fields	that	constitute	it.
In	addition	the	TEXT	parameter	of	the	DISPLAY	command	will	also	be
automatically	re-written.
Example	4:	Display	the	order	header	details	used	in	the	previous	example	and
all	the	associated	invoice	lines	nominated	in	a	list	named	#ORDERLINE:
GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
DISPLAY				FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE)
	

Since	default	values	were	used	for	all	parameters	and	no	field	attributes	were
specified	a	screen	something	like	this	would	be	designed	automatically:
	
					Order	number	:	99999999																										
					Customer	no		:	999999																												
					Date	due					:	99/99/99																										
																																																			

its:Lansa010.chm::/lansa/ugub_40067.htm

					Line																																														
					No			Product	Quantity	Price																						
					99			9999999		99999		99999.99																				
					99			9999999		99999		99999.99																				
					99			9999999		99999		99999.99																				
					99			9999999		99999		99999.99																				
					99			9999999		99999		99999.99																				
					99			9999999		99999		99999.99																				
	
Example	5:	Display	the	order	header	details	used	in	the	previous	example	and
all	the	associated	invoice	lines	nominated	in	a	list	named	#ORDERLINE	which
only	has	4	entries.	Display	invoice	line	totals	(which	can	be	adjusted)	below	the
invoice	lines:
GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
DISPLAY				FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE	4)	OPTIONS(*NOREAD)
REQUEST				FIELDS(#TOTQTY	#TOTPRICE)	OPTIONS(*OVERLAY)
	

after	screen	painting	to	adjust	the	field	positions	to	avoid	overlapping,	the
resulting	screen	(after	executing	the	above	code)	would	look	something	like
this:
	
					Order	number	:	99999999																											
					Customer	no		:	999999																													
					Date	due					:	99/99/99																											
																																																				
					Line																																														
					No			Product	Quantity	Price																							
					99			9999999		99999		99999.99																					
					99			9999999		99999		99999.99																					
					99			9999999		99999		99999.99																					
					99			9999999		99999		99999.99																					
																																																				
					Total	Qty				:	9999999																												
					Total	Price		:	9999999.99																									
	
Example	6	:	Use	an	expandable	group	expression	and	redesign	the	layout	using
the	screen	design	facility:

GROUP_BY			NAME(#XG_ORDHDG)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
DISPLAY				FIELDS(#XG_ORDHDG)	DESIGN(*ACROSS)	IDENTIFY(*COLHDG)
	

The	screen	designed	automatically	would	look	like	this:
	
													Company			Order					Date																																		
													Order					Customer		Order																																	
													Number				Number				Due																																			
													99999999		999999				99/99/99																														
																			
If	the	layout	is	changed	using	the	screen	design	facility	to	look	like	this:
	
												Company			Order																																										
												Order					Customer																																								
												Number				Number																																								
												99999999		999999							Date	Order	Due	:	99/99/99									
	
then	the	DISPLAY	command	FIELDS	parameter	will	be	expanded	as	follows:
DISPLAY				FIELDS((#ORDNUM	*L2	*P3)	(#CUSTNUM	*L2	*P37)	(#DATEDUE	*L5	*P26	*LAB))	DESIGN(*ACROSS)	IDENTIFY(*COLHDG)
	

7.28	DLT_ENTRY
The	DLT_ENTRY	command	is	used	to	delete	an	individual	entry	from	a	list.
The	list	specified	must	be	a	working	list	(used	to	store	information	within	a
program).	It	is	not	possible	to	use	the	DLT_ENTRY	command	against	a	browse
list	(used	for	displaying	information	at	a	workstation).
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	list	processing.

Also	See
7.28.1	DLT_ENTRY	Parameters
7.28.2	DLT_ENTRY	Comments	/	Warnings
7.28.3	DLT_ENTRY	Examples
																																																								Optional
	
				DLT_ENTRY	----	NUMBER	-------	*CURRENT	------------
-------->
																																numeric	value	or	field	name					
																																																																
															>--	FROM_LIST	----	*FIRST	----------------------|
																																		list	name																					
																																																																
																																																																

7.28.1	DLT_ENTRY	Parameters
FROM_LIST
NUMBER

NUMBER
Specifies	the	list	entry	number	that	is	to	be	deleted.
The	default	value	of	*CURRENT	specifies	that	the	entry	currently	selected	(ie
retrieved)	from	the	list,	in	a	SELECTLIST/ENDSELECT	list	processing	loop	or
by	a	GET_ENTRY	or	LOC_ENTRY	command,	will	be	deleted	from	the	list.
A	numeric	value	or	field	name	specifies	the	entry	number	of	the	list	that	is	to	be
deleted.	As	each	entry	is	added	to	a	list	by	the	ADD_ENTRY	command	it	is
assigned	a	number	that	identifies	it.	List	entries	are	numbered	from	1	(first	entry
number)	to	9999	(maximum	possible	last	entry	number).	This	entry	number	can
then	vary	as	ADD_ENTRY	commands,	to	add	after	previous	list	entries,	or
DLT_ENTRY	commands,	to	delete	previous	list	entries,	are	executed.	By
specifying	a	list	entry	number	it	is	possible	to	delete	an	individual	list	entry
without	first	having	selected	(or	retrieved)	it.

FROM_LIST
Specifies	the	name	of	the	list	from	which	the	entry	should	be	deleted.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used	(which
must	be	a	working	list).
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command.

7.28.2	DLT_ENTRY	Comments	/	Warnings
Use	of	the	DLT_ENTRY	command	may	incur	a	performance	penalty	because
of	the	underlying	implementation	of	working	lists.	Heavy	use	should	be
benchmarked	with	realistically	sized	data	sets	before	being	put	into	a
production	environment.	Possible	design	alternatives	include	replacement	of
the	working	list	by	a	keyed	work	file	and	construction	of	a	second	working
list	from	the	first.
Use	of	the	DLT_ENTRY	command	also	means	that	the	entry	number	of	all
entries	succeeding	the	deleted	entry	are	reduced	by	1.	This	may	cause
problems	where	the	entry	number	of	a	particular	entry	is	assumed	to	remain
static,	for	example	where	"pointers"	to	working	list	entries	are	used	and	also
where	the	entries	in	a	list	are	processed	in	a	loop	other	than
SELECTLIST/ENDSELECT.

7.28.3	DLT_ENTRY	Examples
Example	1:	Delete	the	3rd	entry	from	the	order	line	working	list,	which	is	the
first	list	defined	in	the	program:
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	TYPE(*WORKING)
*				...	<entries	added	to	the	order	line	list	via	ADD_ENTRY>					
GET_ENTRY		NUMBER(3)	FROM_LIST(#ORDERLINE)																			
DLT_ENTRY																																																				
	

which	is	equivalent	to:
GET_ENTRY		NUMBER(3)	FROM_LIST(#ORDERLINE)																			
DLT_ENTRY		NUMBER(*CURRENT)	FROM_LIST(*FIRST)																
	

which	is	also	equivalent	to:
GET_ENTRY		NUMBER(3)	FROM_LIST(#ORDERLINE)																			
DLT_ENTRY		NUMBER(*CURRENT)	FROM_LIST(#ORDERLINE)												
	

which	is	also	equivalent	to:
DLT_ENTRY		NUMBER(3)	FROM_LIST(#ORDERLINE)																			
	

Example	2:	Delete	all	entries	in	an	existing	working	list	named	#ORDERLINE,
where	the	field	#QUANTITY	is	less	than	or	equal	to	0:
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	TYPE(*WORKING)
DEFINE					FIELD(#ENTRY)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)
	
SELECTLIST	NAMED(#ORDERLINE)
IF									COND('#QUANTITY	*LE	0')
DLT_ENTRY		NUMBER(*CURRENT)	FROM_LIST(#ORDERLINE)
ENDIF
ENDSELECT
	

7.29	DLT_LIST
The	DLT_LIST	command	is	used	to	delete	all	entries	in	a	list.
The	list	may	be	a	browse	list	(used	for	displaying	information	at	a	workstation)
or	a	working	list	(used	to	store	information	within	a	program).
Normally	it	is	only	ever	used	when	exiting	from	a	function	or	to	reduce	the
number	of	"active"	browse	lists	in	a	function.	Only	10	browse	lists	can	be
"active"	(ie:	contain	information)	at	any	one	time	within	a	function.
Executing	a	DLT_LIST	command	against	a	working	list	is	functionally	identical
to	executing	a	CLR_LIST	command.
Deleting	a	list	that	contains	no	entries	is	a	valid	operation.	No	error	will	result.

Also	See
7.29.1	DLT_LIST	Parameters
7.29.2	DLT_LIST	Examples
																																																									Optional
	
		DLT_LIST	-----	NAMED	--------	*FIRST	----------------------
---|
																																name	of	list
	

7.29.1	DLT_LIST	Parameters
NAMED

NAMED
Specifies	the	name	of	the	list	which	is	to	be	deleted.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used	(which
may	be	a	browse	or	a	working	list).
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command.
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	their	uses.

7.29.2	DLT_LIST	Examples
This	example	applies	to	the	DLT_LIST	command.
Delete	a	list	named	#ORDERLINE:
DLT_LIST			NAMED(#ORDERLINE)
	

7.30	DOUNTIL
The	DOUNTIL	command	is	used	to	create	a	conditional	loop	and	to	continue
looping	until	the	condition	is	true.	The	DOUNTIL	command	loop	is	"delimited"
by	the	associated	ENDUNTIL	command	which	must	be	present.
Note:	The	DOUNTIL	command	is	similar	in	structure	to	the	DOWHILE
command.	However,	there	is	one	important	difference.	In	the	DOUNTIL
command,	the	condition	is	not	checked	BEFORE	doing	the	first	iteration.
Refer	to	the	ENDUNTIL	command	for	more	information	and	examples	of	both
of	these	commands.

Also	See
7.30.1	DOUNTIL	Parameters
7.30.2	DOUNTIL	Examples
7.3	BEGIN_LOOP
7.33	END_LOOP
7.40	ENDUNTIL
7.31	DOWHILE
7.41	ENDWHILE
																																																									Required
	
		DOUNTIL	------	COND	---------'condition'--------------------
--|
	

7.30.1	DOUNTIL	Parameters
COND

COND
Specifies	the	condition	which	is	to	be	met	to	cause	the	loop	to	terminate.	For
details	of	how	conditions	and	expressions	are	specified	in	LANSA,	refer	to
Specifying	Conditions	and	Expressions.

7.30.2	DOUNTIL	Examples
Executing	a	DOUNTIL	.	.	.	ENDUNTIL	Routine
Executing	DOUNTIL	.	.	.	ENDUNTIL	to	enter	"n"	records	to	a	file
Using	DEF_COND	Values	as	DOUNTIL	parameters	to	make	code	easier	to
read	and	maintain
Comparing	DOUNTIL	.	.	.	ENDUNTIL	to	the	use	of	IF	.	.	.	GOTO	.	.	.	ENDIF
Executing	DOUNTIL	.	.	.	ENDUNTIL	routine	with	an	Array	Index
Executing	a	DOUNTIL	.	.	.	ENDUNTIL	Routine
This	is	an	example	of	the	simple	use	of	DOUNTIL	and	ENDUNTIL	to	count	to
10	in	a	loop:
DEFINE					FIELD(#COUNT)	REFFLD(#STD_NUM)
CHANGE					FIELD(#COUNT)	TO(1)
DOUNTIL				COND('#COUNT	>	10')
DISPLAY				FIELDS(#COUNT)
CHANGE					FIELD(#COUNT)	TO('#COUNT	+	1')
ENDUNTIL
	

The	DOUNTIL	command	is	similar	in	structure	to	the	DOWHILE	command.
However,	there	is	one	important	difference.	In	the	DOUNTIL	command,	the
condition	is	not	checked	BEFORE	doing	the	first	iteration.	This	is	an	example:
DEFINE					FIELD(#COUNT)	REFFLD(#STD_NUM)
CHANGE					FIELD(#COUNT)	TO(5)
DOUNTIL				COND('#COUNT	>	1')
DISPLAY				FIELDS(#COUNT)
ENDUNTIL
	

Although	#COUNT	is	greater	than	1,	the	loop	is	still	executed	one	time.
Executing	DOUNTIL	.	.	.	ENDUNTIL	to	enter	"n"	records	to	a	file
In	this	example,	the	details	of	10	employees	are	inserted	into	a	file:
GROUP_BY			NAME(#EMPDET)	FIELDS(#EMPNO	#SURNAME	#SALARY)
DEFINE					FIELD(#COUNT)	REFFLD(#STD_NUM)
DEF_LIST			NAME(#WORKER)	FIELDS(#EMPNO	#SURNAME	#SALARY)
CHANGE					FIELD(#COUNT)	TO(1)
DOUNTIL				COND('#COUNT	>	10')

DISPLAY				FIELDS(#COUNT)
REQUEST				FIELDS(#EMPNO	#SURNAME	#SALARY)
ADD_ENTRY		TO_LIST(#WORKER)
CHANGE					FIELD(#COUNT)	TO('#COUNT	+	1')
ENDUNTIL			
DISPLAY				BROWSELIST(#WORKER)
	

Using	DEF_COND	Values	as	DOUNTIL	parameters	to	make	code	easier	to
read	and	maintain
In	this	example,	the	COND	parameter	for	the	DOUNTIL	command	is	set	by	the
DEF_COND	command	before	DOUNTIL	is	executed.
DEFINE					FIELD(#COUNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*COUNT_TEN)	COND('#COUNT	>	10')
CHANGE					FIELD(#COUNT)	TO(1)
DOUNTIL				COND(*COUNT_TEN)
DISPLAY				FIELDS(#COUNT)
CHANGE					FIELD(#COUNT)	TO('#COUNT	+	1')
ENDUNTIL
	

The	use	of	DEF_COND	allows	the	programmer	to	give	a	complex	condition	a
meaningful	label	that	expresses	the	reason	behind	the	test	of	the	condition.
When	subsequent	programmers	read	the	DOWHILE	statement,	the	meaningful
label	will	help	them	to	understand	the	purpose	of	the	statement.
The	use	of	DEF_COND	also	helps	in	situations	where	the	same	condition	is
referred	to	multiple	times	in	the	function.	In	this	case	it	reduces	the	quantity	of
code	and	makes	maintenance	of	the	condition	easier.	.	For	further	reference,
refer	to	the	<<	link	to	DEF_COND	>>	command.
Comparing	DOUNTIL	.	.	.	ENDUNTIL	to	the	use	of	IF	.	.	.	GOTO	.	.	.
ENDIF
This	example,	shows	the	simple	use	of	the	DOUNTIL	ENDUNTIL	routine:

DOUNTIL				COND('#A	>=	B')
											<<	logic	>>
											<<	logic	>>
											<<	logic	>>
ENDUNTIL
	

Now	compare	this	to	the	use	of	the	IF	GOTO	ENDIF	routine:

L01:	IF									COND('#A	<	B')
											<<	logic	>>
											<<	logic	>>
											<<	logic	>>
GOTO							LABEL(L01)
ENDIF
	

When	compared,	the	use	of	the	DOUNTIL	ENDUNTIL	routine	is	simpler
and	easier	to	read	than	when	the	IF	GOTO	ENDIF	routine	is	used	for	a
simple	loop.
Executing	DOUNTIL	.	.	.	ENDUNTIL	routine	with	an	Array	Index
This	example	demonstrates	the	use	of	the	DOUNTIL	ENDUNTIL	routine
with	an	Array	Index	that	groups	3	field	values	into	an	array,	increments	each
one	by	10%,	then	adds	the	resulting	values	up	to	display:
DEFINE					FIELD(#VAL1)	REFFLD(#STD_NUM)
DEFINE					FIELD(#VAL2)	REFFLD(#STD_NUM)
DEFINE					FIELD(#VAL3)	REFFLD(#STD_NUM)
DEFINE					FIELD(#I1)	REFFLD(#STD_NUM)
DEFINE					FIELD(#TOTAL)	TYPE(*DEC)	LENGTH(6)	DECIMALS(2)	LABEL(TOTAL)	EDIT_CODE(3)
DEF_ARRAY		NAME(#ARR)	INDEXES(#I1)	OF_FIELDS(#VAL1	#VAL2	#VAL3)
CHANGE					FIELD(#TOTAL)	TO(1)
CHANGE					FIELD(#I1)	TO(1)
REQUEST				FIELDS(#VAL1	#VAL2	#VAL3)
DOUNTIL				COND('#I1	>	3')
CHANGE					FIELD(#ARR#I1)	TO('#ARR#I1	*	1.1')
CHANGE					FIELD(#TOTAL)	TO('#TOTAL	+	#ARR#I1')
CHANGE					FIELD(#I1)	TO('#I1	+	1')
ENDUNTIL			
DISPLAY	FIELDS(#TOTAL)
	

Refer	to	the	7.30	DOUNTIL	command	for	further	reference	to	the	array	index.

7.31	DOWHILE
The	DOWHILE	command	is	used	to	create	a	conditional	loop	and	to	continue
looping	whilst	the	condition	is	true.	The	end	of	the	loop	is	"delimited"	by	the
associated	ENDWHILE	command.
Note:	The	DOUNTIL	command	is	similar	in	structure	to	the	DOWHILE
command.	However,	in	the	DOUNTIL	command,	the	condition	is	not	checked
BEFORE	doing	the	first	iteration.
Refer	to	the	ENDWHILE	command	for	more	information	and	examples	of	both
of	these	commands.

Also	See
7.31.1	DOWHILE	Parameters
7.31.2	DOWHILE	Examples
7.3	BEGIN_LOOP
7.30	DOUNTIL
7.33	END_LOOP
7.40	ENDUNTIL
7.41	ENDWHILE
																																																									Required
	
		DOWHILE	------	COND	--------	'condition'	-------------------
--|
	

7.31.1	DOWHILE	Parameters
COND

COND
Specifies	the	condition	which	is	to	be	met	to	continue	the	loop	processing.	For
details	of	how	conditions	and	expressions	are	specified	using	LANSA,	refer	to
Specifying	Conditions	and	Expressions.

7.31.2	DOWHILE	Examples
Executing	a	DOWHILE	.	.	.	ENDWHILE	Routine
Executing	DOWHILE	.	.	.	ENDWHILE	to	enter	"n"	records	to	a	file
Comparing	DOWHILE	.	.	.	ENDWHILE	to	the	use	of	IF	.	.	.	GOTO	.	.	.	ENDIF
Executing	DOWHILE	.	.	.	ENDWHILE	routine	with	an	Array	Index
Executing	a	DOWHILE	.	.	.	ENDWHILE	Routine

This	is	an	example	of	the	simple	use	of	DOWHILE	and	ENDWHILE	to	count	to
10	in	a	loop:

DEFINE					FIELD(#COUNT)	REFFLD(#STD_NUM)
CHANGE					FIELD(#COUNT)	TO(1)
DOWHILE				COND('#COUNT	<=	10')
DISPLAY				FIELDS(#COUNT)
CHANGE					FIELD(#COUNT)	TO('#COUNT	+	1')
ENDWHILE
	

The	DOWHILE	command	is	similar	in	structure	to	the	DOUNTIL	command.
However,	there	is	one	important	difference.	In	the	DOWHILE	command,	the
condition	is	checked	BEFORE	doing	the	first	iteration.
Executing	DOWHILE	.	.	.	ENDWHILE	to	enter	"n"	records	to	a	file
In	this	example,	the	details	of	10	employees	are	inserted	into	a	file:
GROUP_BY			NAME(#EMPDET)	FIELDS(#EMPNO	#SURNAME	#SALARY)
DEFINE					FIELD(#COUNT)	REFFLD(#STD_NUM)
DEF_LIST			NAME(#WORKER)	FIELDS(#EMPNO	#SURNAME	#SALARY)
CHANGE					FIELD(#COUNT)	TO(1)
DOWHILE				COND('#COUNT	<=	10')
DISPLAY				FIELDS(#COUNT)
REQUEST				FIELDS(#EMPNO	#SURNAME	#SALARY)
ADD_ENTRY		TO_LIST(#WORKER)
CHANGE					FIELD(#COUNT)	TO('#COUNT	+	1')
ENDWHILE			
DISPLAY				BROWSELIST(#WORKER)
	

Using	DEF_COND	Values	as	DOWHILE	parameters	to	make	code	easier	to

read	and	maintain
In	this	example,	the	COND	parameter	for	the	DOWHILE	command	is	set	by	the
DEF_COND	command	before	DOWHILE	is	executed.
DEFINE					FIELD(#COUNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*COUNT_TEN)	COND('#COUNT	<=	10')
CHANGE					FIELD(#COUNT)	TO(1)
DOWHILE				COND(*COUNT_TEN)
DISPLAY				FIELDS(#COUNT)
CHANGE					FIELD(#COUNT)	TO('#COUNT	+	1')
ENDWHILE
	

The	use	of	DEF_COND	allows	the	programmer	to	give	a	complex	condition	a
meaningful	label	that	expresses	the	reason	behind	the	test	of	the	condition.
When	subsequent	programmers	read	the	DOWHILE	statement,	the	meaningful
label	will	help	them	to	understand	the	purpose	of	the	statement.
The	use	of	DEF_COND	also	helps	in	situations	where	the	same	condition	is
referred	to	multiple	times	in	the	function.	In	this	case	it	reduces	the	quantity	of
code	and	makes	maintenance	of	the	condition	easier.	For	further	details,	refer	to
the	DEF_COND	command.
Comparing	DOWHILE	.	.	.	ENDWHILE	to	the	use	of	IF	.	.	.	GOTO	.	.	.
ENDIF
In	this	example,	we	see	the	simple	use	of	the	DOWHILE	ENDWHILE
routine:

	DOWHILE				COND('#A	<	B')
											<<	logic	>>
											<<	logic	>>
											<<	logic	>>
ENDWHILE
	

Now	compare	this	to	the	use	of	the	IF	GOTO	ENDIF	routine:

L01:	IF									COND('#A	<	B')
											<<	logic	>>
											<<	logic	>>
											<<	logic	>>
GOTO							LABEL(L01)

ENDIF
	

When	compared,	the	use	of	the	DOWHILE	ENDWHILE	routine	is	simpler
and	easier	to	read	than	when	the	IF	GOTO	ENDIF	routine	is	used	for	a
simple	loop.
Executing	DOWHILE	.	.	.	ENDWHILE	routine	with	an	Array	Index
This	example	demonstrates	the	use	of	the	DOWHILE	ENDWHILE	routine
with	an	Array	Index	that	groups	3	field	values	into	an	array,	increments	each
one	by	10%,	then	adds	the	resulting	values	up	to	display:
DEFINE					FIELD(#VAL1)	REFFLD(#STD_NUM)
DEFINE					FIELD(#VAL2)	REFFLD(#STD_NUM)
DEFINE					FIELD(#VAL3)	REFFLD(#STD_NUM)
DEFINE					FIELD(#I1)	REFFLD(#STD_NUM)
DEFINE					FIELD(#TOTAL)	TYPE(*DEC)	LENGTH(6)	DECIMALS(2)	LABEL(TOTAL)	EDIT_CODE(3)
DEF_ARRAY		NAME(#ARR)	INDEXES(#I1)	OF_FIELDS(#VAL1	#VAL2	#VAL3)
CHANGE					FIELD(#TOTAL)	TO(1)
CHANGE					FIELD(#I1)	TO(1)
REQUEST				FIELDS(#VAL1	#VAL2	#VAL3)
DOWHILE				COND('#I1	<=	3')
CHANGE					FIELD(#ARR#I1)	TO('#ARR#I1	*	1.1')
CHANGE					FIELD(#TOTAL)	TO('#TOTAL	+	#ARR#I1')
CHANGE					FIELD(#I1)	TO('#I1	+	1')
ENDWHILE			
DISPLAY	FIELDS(#TOTAL)
	

Refer	to	the	DEF_ARRAY	command	for	further	reference	to	the	array	index.
Refer	to	the	7.17	DEF_ARRAY	command	for	further	reference	to	the	array
index.

7.32	ELSE
The	ELSE	command	is	used	in	conjunction	with	the	IF	command	and	specifies
what	is	to	happen	if	the	IF	condition	is	not	true.
Refer	to	the	IF	and	ENDIF	commands	for	more	details	and	examples	of	these
commands.

Also	See
7.32.2	ELSE	Examples
7.32.1	ELSE	Parameters
	
		ELSE	---------	no	parameters	---------------------------------|
	

7.32.1	ELSE	Parameters
There	are	no	ELSE	Parameters.

7.32.2	ELSE	Examples
Example	1:	If	field	#I	is	greater	than	10	issue	a	message	indicating	this,	else
issue	a	message	indicating	it	is	less	than	or	equal	to	10:
IF							COND('#I	*GT	10')
MESSAGE		MSGTXT('#I	is	greater	than	10')
ELSE
MESSAGE		MSGTXT('#I	is	less	than	or	equal	to	10')
ENDIF
	

Example	2:	Execute	a	certain	series	of	commands	if	#QUANTITY	is	less	than
10	and	#MEASURE	is	greater	than	42.67,	else	execute	a	different	series	of
commands:
IF							COND('(#QUANTITY	*LT	10)	*AND	(#MEASURE	*GT	42.67)')
*	<<	commands	to	execute	when	condition	is	true	>>
ELSE
*	<<	commands	to	execute	when	condition	is	false	>>
ENDIF
	

7.33	END_LOOP
The	END_LOOP	command	is	used	to	delimit	a	processing	loop	that	was	started
by	a	BEGIN_LOOP	command.

Also	See
7.33.1	END_LOOP	Parameters
7.33.2	END_LOOP	Examples
	
		END_LOOP	-----	no	parameters	-------------------------------
--|
	

7.33.1	END_LOOP	Parameters
There	are	no	END_LOOP	parameters

7.33.2	END_LOOP	Examples
Refer	to	the	7.3.2	BEGIN_LOOP	Examples.

7.34	ENDCASE
The	ENDCASE	command	is	used	in	conjunction	with	the	CASE	command	and
specifies	the	end	of	a	case	block	of	statements.
Refer	to	the	CASE,	WHEN	and	OTHERWISE	commands	for	more	details	and
examples	of	these	commands.

Also	See
7.34.1	ENDCASE	Parameters
7.34.2	ENDCASE	Examples
7.8	CASE
7.73	OTHERWISE
7.100	WHEN
	
		ENDCASE	------	no	parameters	--------------------------------
-|
	

7.34.1	ENDCASE	Parameters
There	are	no	ENDCASE	parameters.

7.34.2	ENDCASE	Examples
Refer	to	7.8.3	CASE	Examples	for	use	of	the	ENDCASE	Command

7.35	ENDCHECK
The	ENDCHECK	command	is	used	in	conjunction	with	the	BEGINCHECK
command	and	identifies	the	end	of	a	block	of	validation	checks.
In	addition	it	also	indicates	what	is	to	happen	if	a	validation	error	was	detected
within	the	validation	block.
Refer	to	the	BEGINCHECK	command	for	more	details	and	examples	of	this
command.

Also	See
7.35.1	ENDCHECK	Parameters
7.35.2	ENDCHECK	Comments	/	Warnings
7.35.3	ENDCHECK	Examples
																																																									Optional
	
		ENDCHECK	-----	IF_ERROR	-----	*LASTDIS	---------------
-------->
																																*NEXT
																																*RETURN
																																label
	
													>--	MSGTXT	-------	*NONE	-------------------------->
																																message	text
	
													>--	MSGID	--------	*NONE	-------------------------->
																																message	identifier
	
													>--	MSGF	---------	DC@M01	.	*LIBL	-----------------
>
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																															|expandable	group	expression|
																																-------	20	max	------------
	

7.35.1	ENDCHECK	Parameters
IF_ERROR
MSGDTA
MSGF
MSGID
MSGTXT

IF_ERROR
Specifies	what	action	is	to	be	taken	if	one	or	more	of	the	validation	commands
inside	the	validation	block	find	a	validation	error.	The	validation	check
commands	used	inside	a	validation	block	include	CONDCHECK,
RANGECHECK,	VALUECHECK,	CALLCHECK	and	DATECHECK.
A	validation	error	occurs	within	a	validation	block	when	one	or	more	of	the
validation	commands	detects	a	condition	that	has	an	"action"	of	*ERROR
specified.	Refer	to	the	validation	commands	for	more	details	of	how	and	when
the	*ERROR	"action"	is	specified	in	a	validation	command.
In	addition,	a	validation	error	can	also	be	caused	by	the	execution	of	a
SET_ERROR	command	within	the	validation	block.	This	usually	occurs	when
user	written	validation	logic	is	being	used	rather	than	one	of	the	6	standard
validation	check	commands.
Finally,	a	validation	error	can	be	caused	by	the	execution	(within	the	validation
block)	of	any	database	I/O	command	that	receives	a	"VE"	(validation	error)
return	code.	Validation	errors	are	normally	only	received	by	the	INSERT,
UPDATE	and	DELETE	database	I/O	commands.
*LASTDIS,	which	is	the	default	value,	specifies	that	control	should	be	passed
back	to	the	last	display	screen	used.	The	field(s)	that	failed	the	validation
check(s)	within	the	validation	block	or	had	a	SET_ERROR	command	executed
against	them	will	be	displayed	in	reverse	image	and	the	cursor	positioned	to	the
first	field	in	error	on	the	screen.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

Note	that	*LASTDIS	is	valid	even	if	there	is	no	"last	display"	(such	as
in	batch	functions).	In	this	case	the	function	will	abort	with	the
appropriate	error	message(s).

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as
"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.35.2	ENDCHECK	Comments	/	Warnings
BEGINCHECK	/	ENDCHECK	blocks	can	be	nested.	However,	if	an	"inner"
block	detects	an	error	it	also	triggers	an	error	in	all	associated	"outer"	blocks.
This	can	be	illustrated	like	this:

BEGINCHECK
					BEGINCHECK
									BEGINCHECK
										A	validation	error	in	this	block	will	"trigger"	a
										validation	error	at	all	levels	(marked	by	<-).
									ENDCHECK	<-
					ENDCHECK				<-
ENDCHECK								<-
	

The	ability	to	nest	BEGINCHECK	/	ENDCHECK	commands	is	particularly
useful	when	processing	screens	that	have	browse	lists	that	are	used	for	data
entry.	Consider	a	data	entry	screen	like	this:
	
									Order	number	:	99999999																											
									Customer	no		:	999999																													
									Date	due					:	99/99/99																											
																																																											
									Line																																														
									No			Product	Quantity	Price																							
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
									99			9999999		99999		99999.99																					
	
The	RDML	program	to	process	data	entered	in	this	way	might	look	something
like	this:
				GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
				DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	

				SET_MODE			TO(*ADD)
				INZ_LIST			NAMED(#ORDERLINE)	NUM_ENTRYS(20)
L1:	REQUEST				FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE)
	
BEGINCHECK
	
				<<	validate	order	header	details	>>
	
SELECTLIST	NAMED(#ORDERLINE)	GET_ENTRYS(*NOTNULL)	<-
				BEGINCHECK																																						|
				<<	validate	order	line	details	>>															|
									IF_ERROR																																			|
									UPD_ENTRY		IN_LIST(#ORDERLINE)													|
									ENDIF																																						|
				ENDCHECK			IF_ERROR(*NEXT)																						|
																																																				|
ENDSELECT	--
	
				ENDCHECK	IF_ERROR(*LASTDIS)
				<<	update	database	>>
	

Note	that	the	"inner"	BEGINCHECK/ENDCHECK	loop	is	processed	for	each
browse	list	entry	that	the	user	entered.	Note	also	that	the	IF_ERROR(*NEXT)
parameter	causes	the	SELECTLIST	loop	to	continue	to	process	all	browse	list
entries	and	not	stop	the	first	time	an	error	is	detected.
The	"outer"	BEGINCHECK/ENDCHECK	command	uses	the
IF_ERROR(*LASTDIS)	parameter	which	will	cause	the	REQUEST	command
to	be	re-executed	if	a	validation	error	is	detected.	A	validation	error	will	be
"detected"	if
an	error	is	found	in	the	order	header	details.

or
an	error	is	found	in	one	or	more	of	the	order	line	details.	This	happens
because	any	error	in	the	"inner"	validation	block	also	triggers	an	error	in	the
"outer"	validation	block.

7.35.3	ENDCHECK	Examples
Example	1:	Request	that	the	user	input	a	product	number,	an	order	number	and
a	quantity	then	perform	validation	checks	against	the	fields:
REQUEST					FIELDS(#PRODNO	#ORDNUM	#QUANTITY)
	
BEGINCHECK
FILECHECK			FIELD(#PRODNO)	USING_FILE(PRODUCT)	MSGTXT('Product	number	not	found	in	product	master')
RANGECHECK		FIELD(#ORDNUM)	RANGE(A000000	Z999999)	MSGTXT('Order	number	is	not	in	range	A000000	-	Z999999')
RANGECHECK		FIELD(#QUANTITY)	RANGE(1	9999)	MSGTXT('Quantity	ordered	must	be	in	range	1	-	9999')
ENDCHECK
	

is	identical	to	the	following	example,	because	of	the	default	value
IF_ERROR(*LASTDIS)	on	the	ENDCHECK	command:
REQUEST					FIELDS(#PRODNO	#ORDNUM	#QUANTITY)
L1:
BEGINCHECK
FILECHECK			FIELD(#PRODNO)	USING_FILE(PRODUCT)	MSGTXT('Product	number	not	found	in	product	master')
RANGECHECK		FIELD(#ORDNUM)	RANGE(A000000	Z999999)	MSGTXT('Order	number	is	not	in	range	A000000	-	Z999999')
RANGECHECK		FIELD(#QUANTITY)	RANGE(1	9999)	MSGTXT('Quantity	ordered	must	be	in	range	1	-	9999')
ENDCHECK				IF_ERROR(L1)
	

Example	2:	The	*LASTDIS	default	value	actually	means	the	"last	display	at
this	nesting	level	(or	higher)"	as	is	indicated	in	the	following	example:

REQUEST					FIELDS(#FIELD01)	<-----------------------------
	IF									COND('#FIELD01	*LT	10')																								|
												REQUEST					FIELDS(#FIELD02)	<------------					|
												BEGINCHECK																																|				|
												RANGECHECK		FIELD(#FIELD01)	RANGE(5	9)				|				|
												RANGECHECK		FIELD(#FIELD02)	RANGE(10	20)		|				|
												ENDCHECK	---------------------------------					|
	ELSE																																																						|
												BEGINCHECK																																					|
												RANGECHECK		FIELD(#FIELD01)	RANGE(15	19)							|
												ENDCHECK	--------------------------------------
	ENDIF
	

The	arrows	indicate	where	control	is	passed	if	either	of	the	ENDCHECK
commands	find	a	validation	error	in	their	respective	validation	blocks.
If	this	example	was	coded	it	may	be	hard	to	use	because	the	user	does	not	get	a
chance	to	correct	an	error	in	FIELD01	if	the	value	specified	is	less	than	10	but
not	in	the	range	5	to	9.	In	this	case	the	error	message	would	appear	on	line
22/24	of	the	screen	but	the	FIELD01	would	not	be	on	the	display	and	thus	could
not	be	corrected.
This	example	might	be	better	coded	as:

REQUEST					FIELDS(#FIELD01)		<----------------

BEGINCHECK																																					|
IF										COND('#FIELD01	*LT	10')												|
RANGECHECK		FIELD(#FIELD01)	RANGE(5	9)									|
ELSE																																											|
RANGECHECK		FIELD(#FIELD01)	RANGE(15	19)							|
ENDIF																																										|
ENDCHECK	--------------------------------------
	
IF										COND('#FIELD01	*LT	10')
												REQUEST					FIELDS(#FIELD02)	<-------------
												BEGINCHECK																																	|
												RANGECHECK		FIELD(#FIELD02)	RANGE(10	20)			|
												ENDCHECK	----------------------------------
ELSE
ENDIF
	

7.36	ENDIF
The	ENDIF	command	is	used	in	conjunction	with	the	IF	command	and	specifies
the	end	of	a	IF	condition.
Refer	to	the	7.53	IF	and	7.32	ELSE	commands	for	more	details	and	examples	of
these	commands.

Also	See
7.36.1	ENDIF	Parameters
7.36.2	ENDIF	Examples
	
		ENDIF	--------	no	parameters	---------------------------------|
	

7.36.1	ENDIF	Parameters
There	are	no	ENDIF	parameters.

7.36.2	ENDIF	Examples
Refer	to	the	7.53.2	IF	Examples	and	7.32.2	ELSE	Examples	for	examples	of	the
ENDIF	command.

7.37	ENDPRINT
The	ENDPRINT	command	is	used	to	end	(close)	a	printer	file	that	was
previously	opened	by	a	PRINT	or	UPRINT	command	and	cause	a	message	to
be	issued	that	indicates	how	many	pages	were	printed	into	the	report.
If	a	printer	file	is	opened	by	a	PRINT	or	UPRINT	command	and	no	ENDPRINT
command	is	present	in	the	RDML	program	it	will	be	automatically	closed	when
the	function	ends.
If	an	ENDPRINT	command	is	executed	against	a	report	that	has	never	been
opened	it	is	ignored.

Portability
Considerations

When	associated	with	a	UPRINT	command,	a	build	warning
will	be	generated	if	used	in	Visual	LANSA	code.	An	error
will	occur	at	execution	time.	Code	using	this	facility	can	be
conditioned	so	that	it	is	not	executed	in	this	environment.
Fully	supported	when	associated	with	any	other	report
command	(e.g.	PRINT,	SKIP,	SPACE).

Also	See
7.37.1	ENDPRINT	Parameters
7.37.2	ENDPRINT	Examples
																																																									Optional
	
		ENDPRINT	-----	REPORT_NUM	----	1	-----------------------
------>
																																	report	number	1	->	8
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------|
																																*NEXT
																																*RETURN
																																label
	

7.37.1	ENDPRINT	Parameters
IO_ERROR
IO_STATUS
REPORT_NUM

REPORT_NUM
Specifies	the	number	of	the	report	that	is	to	be	ended.	If	no	report	number	is
specified	report	number	1	is	assumed.	The	report	number	specified	can	be	any
number	in	the	range	1	to	8.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.	This	parameter	is	only	valid	for	printer	files	opened	by	the
UPRINT	command.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.
For	values,	refer	to	I/O	Return	Codes	.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.	This	parameter	is	only	valid	for	printer	files	opened	by	the	UPRINT
command.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command

label	to	which	control	should	be	passed.

7.37.2	ENDPRINT	Examples
Example	1:	Consider	the	2	following	RDML	programs	which	ask	a	user	to
input	an	order	number	and	then	print	the	order	line	details:
				GROUP_BY		NAME(#ORDERDET)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE	#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
				REQUEST			FIELDS(#ORDNUM)
L1:		FETCH					FIELDS(#ORDERDET)	FROM_FILE(ORDHDR)	WITH_KEY(#ORDNUM)	NOT_FOUND(L1)	ISSUE_MSG(*YES)
				SELECT				FIELDS(#ORDERDET)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
				UPRINT				FIELDS(#ORDERDET)
				ENDSELECT
				GOTO						L1
	

and:
					GROUP_BY		NAME(#ORDERDET)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE	#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	
					REQUEST			FIELDS(#ORDNUM)
L1:			FETCH					FIELDS(#ORDERDET)	FROM_FILE(ORDHDR)	WITH_KEY(#ORDNUM)	NOT_FOUND(L1)	ISSUE_MSG(*YES)
					SELECT				FIELDS(#ORDERDET)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
					UPRINT				FIELDS(#ORDERDET)
					ENDSELECT
	
					ENDPRINT
					GOTO						L1
	

Note	that	both	programs	are	almost	identical.	They	both	request	that	an	order
number	be	input,	retrieve	the	order	header	details	and	then	print	all	associated
order	line	details.
The	difference	is	in	the	ENDPRINT	command.
The	first	program	waits	until	the	user	uses	the	EXIT	or	MENU	function	key	on
the	REQUEST	command	before	an	ENDPRINT	command	is	automatically
executed	as	the	function	ends.	Thus	all	the	orders	requested	have	been	printed
into	one	print	/	spool	file.
In	the	second	program	an	ENDPRINT	is	executed	after	each	order	has	been
printed.	This	causes	the	print	/	spool	file	to	be	closed.	A	new	one	will	be
automatically	opened	when	the	next	UPRINT	command	(if	any)	is	executed.
Thus	each	order	is	placed	into	a	separate	print	/	spool	file.

7.38	ENDROUTINE
The	ENDROUTINE	command	is	used	to	indicate	the	end	of:
a	subroutine	(which	starts	with	a	SUBROUTINE	command).
an	event	routine	(which	starts	with	an	EVTROUTINE	command).
a	method	routine	(which	starts	with	a	MTHROUTINE	command).
a	property	routine	(which	starts	with	a	PTYROUTINE	command).			

Every	SUBROUTINE,	EVTROUTINE,	MTHROUTINE	or	PTYROUTINE
command	must	have	one	and	only	one	ENDROUTINE	command.
When	an	ENDROUTINE	command	is	executed	control	is	returned	to	the	logic
that	invoked	the	routine:
Executing	an	ENDROUTINE	command	in	a	SUBROUTINE	returns	control
to	the	command	following	the	EXECUTE	command	that	caused	the
subroutine	to	be	executed.		
Executing	an	ENDROUTINE	command	in	an	EVTROUTINE,
MTHROUTINE	or	PTYROUTINE	returns	control	to	the	control	logic	that
invoked	the	routine.	The	control	logic	will	then	decide	what	to	do	next	based
on	the	way	in	which	the	routine	was	invoked.	

Portability
Considerations

Subroutines	that	are	nested	inside	one	another	are	not
supported	in	the	current	release	of	Visual	LANSA.	This	is	a
very	rarely	used	coding	technique	and	thus	unlikely	to	cause
any	problems.	In	the	event	of	problems	simply	un-nest	the
subroutine(s)	involved	and	recompile.

Also	See
7.38.1	ENDROUTINE	Parameters
7.38.2	ENDROUTINE	Examples
	
		ENDROUTINE	---	no	parameters	------------------------------
---|
	

7.38.1	ENDROUTINE	Parameters
There	are	no	ENDROUTINE	parameters.

7.38.2	ENDROUTINE	Examples
For	examples	of	using	this	command,	refer	to:
7.92.3	SUBROUTINE	Examples	-	Part	1	and	7.92.4	SUBROUTINE	Examples
-	Part	2
EVTROUTINE	Examples
MTHROUTINE	Examples,	and
PTYROUTINE	Examples.

7.39	ENDSELECT
The	ENDSELECT	command	has	2	uses:
To	"delimit"	a	database	file	processing	loop	that	is	caused	by	a	SELECT
command.
To	"delimit"	a	list	processing	loop	that	is	caused	by	a	SELECTLIST
command.

Refer	to	the	SELECT	and	SELECTLIST	commands	for	more	details	and
examples	of	this	command.

Also	See
7.39.1	ENDSELECT	Parameters
7.39.2	ENDSELECT	Examples
	
		ENDSELECT	----	no	parameters	-------------------------------
--|
	

7.39.1	ENDSELECT	Parameters
There	are	no	ENDSELECT	Parameters.

7.39.2	ENDSELECT	Examples
Example	1:	Select	and	print	fields	#ORDLIN,	#PRODUCT,	#QUANTITY	and
#PRICE	from	records	in	an	order	lines	file	which	have	an	order	number
matching	what	is	specified	in	field	#ODRNUM:
SELECT				FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
UPRINT				FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
ENDSELECT
	

or	identically:
GROUP_BY		NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
SELECT				FIELDS(#ORDERLINE)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
UPRINT				FIELDS(#ORDERLINE)
ENDSELECT
	

Example	2:	Select	and	print	fields	#ORDLIN,	#PRODUCT,	#QUANTITY	and
#PRICE	from	records	in	an	order	lines	file	which	have	a	#QUANTITY	value
greater	than	10	or	a	#PRICE	value	less	than	49.99
SELECT				FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	FROM_FILE(ORDLIN)	WHERE('(#QUANTITY	*GT	10)	*OR	(#PRICE	*LT	49.99)')
UPRINT				FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
ENDSELECT
	

or	identically:
GROUP_BY		NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
SELECT				FIELDS(#ORDERLINE)	FROM_FILE(ORDLIN)	WHERE('(#QUANTITY	*GT	10)	*OR	(#PRICE	*LT	49.99)')
UPRINT				FIELDS(#ORDERLINE)
ENDSELECT
	

Example	3:	Process	all	"altered"	entries	from	a	list	named	#ORDERLINE.
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	list	processing.
SELECTLIST	NAMED(#ORDERLINE)	GET_ENTRYS(*ALTERED)
*						<<	Commands	to	process	the	list	>>
*						<<	Commands	to	process	the	list	>>
*						<<	Commands	to	process	the	list	>>
ENDSELECT
	

7.40	ENDUNTIL
The	ENDUNTIL	command	is	used	to	"delimit"	the	processing	loop	caused	by	a
DOUNTIL	command.
Note:	The	DOUNTIL	command	is	similar	in	structure	to	the	DOWHILE
command.	However,	in	the	DOUNTIL	command,	the	condition	is	not	checked
BEFORE	doing	the	first	iteration.

Also	See
7.40.1	ENDUNTIL	Parameters
7.40.2	ENDUNTIL	Examples
7.30	DOUNTIL
7.31	DOWHILE
7.41	ENDWHILE
7.33	END_LOOP
7.3	BEGIN_LOOP
	
			ENDUNTIL	-----	no	parameters	-------------------------------
--|
	

7.40.1	ENDUNTIL	Parameters
There	are	no	ENDUNTIL	Parameters.

7.40.2	ENDUNTIL	Examples
Refer	to	the	7.30.2	DOUNTIL	Examples	for	examples	of	using	this	command.

7.41	ENDWHILE
The	ENDWHILE	command	is	used	to	"delimit"	the	processing	loop	caused	by	a
DOWHILE	command.

Also	See
7.41.1	ENDWHILE	Parameters
7.41.2	ENDWHILE	Examples
7.3	BEGIN_LOOP
7.30	DOUNTIL
7.31	DOWHILE
7.33	END_LOOP
7.40	ENDUNTIL
			ENDWHILE	-----	no	parameters	-------------------------------
--|
	
	

7.41.1	ENDWHILE	Parameters
There	are	no	ENDWHILE	parameters.

7.41.2	ENDWHILE	Examples
Refer	to	the	7.31.2	DOWHILE	Examples	for	examples	of	using	this	command.

7.42	EXCHANGE
The	EXCHANGE	command	allows	information	to	be	exchanged	between
functions	via	an	internal	LANSA	queue	called	the	"exchange	list".
The	"exchange	list"	is	like	a	notice	board	that	can	be	used	to	exchange
information	between	functions.	It	is	not	the	same	as	the	parameter	list	concept
that	has	been	traditionally	used	to	exchange	information	between	programs.
When	a	function	executes	an	EXCHANGE	command	(or	uses	an	EXCHANGE
parameter)	it	is	in	effect	"tacking"	information	onto	the	notice	board.	This
information	is	left	on	the	notice	board	until	another	function	is	invoked.
When	another	function	is	invoked	the	first	thing	it	does	is	to	look	at	the	entries
on	the	notice	board.	If	any	of	the	entries	"apply"	to	the	function	they	are	copied
from	the	notice	board	into	the	function.
The	notice	board	is	then	cleared.	It	is	important	to	remember	this	step	is	always
performed.
Note	that	an	EXCHANGE	command	in	a	Component	is	only	valid	for	passing
information	to	and	from	a	Function.	For	example,	using	the	CALL	or	SUBMIT
command.	It	is	not	valid	to	receive	information	into	a	Component	this	way.
Unpredictable	results	will	occur.	(an	example	is	that	the	instantiation	of	a
Component	does	not	clear	the	exchange	list)	The	recommended	way	to	pass
information	into	and	out	of	a	Component	is	to	use	a	method	call	or	get	a
property	or	set	a	property.
Remember	that	there	are	many	ways	of	invoking	a	function.	These	include
being	selected	from	the	process	main	menu,	by	executing	a	TRANSFER
command,	a	CALL	command,	a	SUBMIT	command	or	by	using	the	PROMPT
function	key.

Also	See
7.42.1	EXCHANGE	Parameters
7.42.2	EXCHANGE	Comments	/	Warnings
7.42.3	EXCHANGE	Accessing	the	Exchange	List	from	RPG/COBOL
7.42.4	EXCHANGE	Examples
																																																									Optional	
	
		EXCHANGE	-----	FIELDS	-------	field	name	-----------------
---->

																											|	expandable	group	expression	|
																											|																													|
																												---------	100	max	-----------
	
																	OPTION	-------	*NOW	---------------------------|
																																*ALWAYS
	

7.42.1	EXCHANGE	Parameters
FIELDS
OPTION

FIELDS
Specifies	the	name	of	the	field(s)	to	be	exchanged	or	the	name	of	a	group	that
defines	the	field(s)	to	be	exchanged.	For	more	details	of	how	field	and	group
names	can	be	specified,	refer	to	Field	Groups	and	Expandable	Groups.
Alternatively,	an	expandable	group	expression	can	be	entered	in	this	parameter.
The	contents	of	a	BLOB/CLOB,	not	just	the	filename,	will	be	moved	when
exchanging	with	a	server	or	through	Job	Queues.	This	is	because	the	file	must
be	visible	on	the	other	end	of	the	communications	link.

OPTION
Specifies	when	the	nominated	fields	are	to	be	exchanged.
*NOW	or	N	which	is	the	default	value,	indicates	that	all	nominated	fields
should	be	mapped	into	the	exchange	list	now	(ie:	at	this	point	in	the	program
logic).	This	version	of	the	EXCHANGE	command	is	considered	to	be	an
executable	command	because	it	causes	the	fields	to	be	placed	into	the	exchange
list	at	this	point	in	the	RDML	program	(and	nowhere	else).
*ALWAYS	or	A,	the	other	allowable	value,	indicates	that	all	nominated	fields
should	be	automatically	mapped	into	the	exchange	list	at	several	pre-defined
points	during	the	program's	execution.	These	pre-defined	points	are:
during	any	type	of	normal	program	termination
before	calling	a	process	or	function	(CALL	command)
before	invoking	a	PROMPT_KEY	handling	process	or	function
before	submitting	a	process	or	function	(SUBMIT	command)

The	use	of	OPTION(*ALWAYS)	creates	a	version	of	the	EXCHANGE
command	that	is	considered	to	be	a	declarative	command	because	it	does	not
directly	execute	within	the	program.	It	declares	that	certain	logic	should	be
executed	at	other	(pre-defined)	points	in	the	program.	Usually	this	type	of
EXCHANGE	command	is	coded	at	the	beginning	of	the	program,	however	it
may	be	coded	anywhere	in	the	program.

7.42.2	EXCHANGE	Comments	/	Warnings
Information	is	exchanged	between	functions	in	an	"exchange	list".	The	format
of	the	exchange	list	is	something	like	this:

							||N|T|L|D|		V		||N|T|L|D|			V				|	|N|T|L|D|					V				||

							where:

N is	the	name	of	a	field
T is	the	type	of	a	field
L is	the	length	of	a	field
D is	the	number	of	decimal	positions
V is	the	variable	length	value	of	the	field

Whenever	a	function	is	invoked,	a	CALL	to	another	function	completes,	or	a
PROMPT_KEY	handling	function	completes	after	being	prompted	from	an
input	capable	field,	the	exchange	list	is	searched.	If	a	field	is	found	in	the
exchange	list	with	the	same	name	as	a	field	used	in	the	function	it	is
"mapped"	into	the	function.	After	the	search	has	been	completed	the
exchange	list	is	cleared,	regardless	of	whether	or	not	any	fields	were	found	in
it	and	mapped	into	the	function.
It	can	be	seen	that	the	exchange	of	information	between	functions	is	by	name,
not	by	position	as	with	normal	program	parameters.
There	are	two	exchange	lists:	RDML	and	RDMLX.	In	general,	RDML	Fields
are	put	on	the	RDML	exchange	list	and	RDMLX	fields	are	put	on	the
RDMLX	exchange	list.	The	exception	is	when	the	current	Function	or
Component	is	RDMLX.	In	this	case,	if	the	field	is	RDML	but	the	RDML
exchange	list	is	full,	the	RDML	field	will	be	put	on	the	RDMLX	exchange
list.	For	more	information	see	What	Classifies	a	Field	as	RDMLX?
An	RDML	field	can	be	exchanged	from	an	RDMLX	function	or	component
to	an	RDML	Function	and	back	again	provided	the	RDML	exchange	list	is
not	full.	If	the	exchange	list	is	full,	the	RDML	function	will	not	exchange	the
value	as	the	RDML	field	value	will	be	on	the	RDMLX	exchange	list.
The	"mapping"	procedure	mentioned	above	will	automatically	convert	field
types,	lengths	and	decimal	positions	if	the	definition	of	the	field	in	the

exchange	list	is	different	to	the	definition	of	the	field	in	the	function.	This
does	not	mean	that	the	conversion	will	always	succeed.	A	'best	attempt'	will
be	made	to	coerce	the	exchange	value	into	the	target	field,	and	this	may	fail.
The	exchange	list	mechanism	is	designed	for	exchanging	identical	fields,	and
changing	anything	except	the	length	is	highly	inadvisable.
When	the	type	of	the	target	field	is	Alpha	or	String	and	the	length	of	the
target	field	is	shorter	than	the	exchanged	value,	then	the	value	is	truncated	to
the	maximum	length	of	the	target	field.
When	the	type	of	the	source	field	is	Alpha	or	String,	the	Target	Field	is
numeric	and	the	length	of	the	target	field	is	shorter	than	the	exchanged	value,
then	the	value	is	truncated	to	the	left	and	right	of	the	decimal	point	according
to	the	length	and	decimals	of	the	target	field.
When	the	target	and	source	fields	are	of	any	other	combination	and	the	length
is	shorter	than	the	exchanged	value,	the	behavior	is	undefined.	This	undefined
behavior	may	also	change	in	the	future	in	an	undefined	way.	You	should
assume	that	a	result	obtained	with	this	undefined	behavior	will	change	in	a
future	release.
It	is	possible	to	exchange	a	field	with	the	ASQN	attribute.	Note	that	it	is
expected	that	the	field	is	defined	identically	(including	the	ASQN	attribute)	in
both	sets	of	code.
When	a	PROMPT_KEY	processing	function	is	automatically	invoked	from	a
DISPLAY,	REQUEST	or	POP_UP	command	(ie:	when	the	prompt	function
key	is	used),	the	following	events	occur:
All	fields	nominated	in	EXCHANGE	OPTION(*ALWAYS)	commands	are
placed	into	the	exchange	list.
The	field	being	prompted	is	placed	into	the	exchange	list.
If	the	field	being	prompted	refers	to	another	field	for	its	definition,	it	is	added
to	the	exchange	list	again,	but	this	time	under	the	"refer"	field	name.
Special	fields	PROMPT$FN	and	PROMPT$RN	are	placed	onto	the	exchange
list.	These	fields	contain	the	name	of	the	field	that	is	being	prompted	and	the
name	of	its	associated	reference	field	(if	any)	respectively.
As	many	of	all	the	other	fields	used	by	the	program	as	will	fit	into	the	space
left	in	the	exchange	list	are	also	added	to	the	exchange	list	if	the	flag	in	the
System	Definition	Data	Area	is	set	accordingly.	If	not,	only	the
EXCHANGEd	fields	will	be	placed	on	the	exchange	list.	Refer	to	The	System
Definition	Data	Areas	in	the	LANSA	for	i	User	Guide.
The	prompt	key	processing	function	is	invoked.

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

If	the	prompt	key	processing	function	completes	normally

and

the	field	being	prompted	was	input	capable	on	the	screen	at	the	time	it	was
prompted,	fields	placed	onto	the	exchange	list	by	the	prompting	function	are
mapped	back	into	the	calling	program's	storage.
Finally	the	exchange	list	is	always	cleared	of	all	entries.
The	EXCHANGE	command	or	the	EXCHANGE	parameter	on	the
TRANSFER	command	are	used	to	add	a	new	entry	into	the	EXCHANGE	list.
The	net	length	of	the	RDML	field	exchange	list	cannot	exceed	2000
characters	at	any	time	or	the	EXCHANGE	or	TRANSFER	command	that	is
attempting	to	add	information	to	the	list	will	end	abnormally.
The	length	of	the	RDMLX	exchange	list	is	only	limited	by	available	memory.
When	working	with	the	function	that	receives	the	EXCHANGE	information
remember	that	the	exchange	of	information	takes	place	before	the	first	RDML
command	in	the	function	is	executed	(ie:	during	the	function	initialization
procedures).
If	the	EXCHANGE	command	or	parameter	does	not	appear	to	be	working
correctly	it	is	probably	because	the	first	RDML	command	in	the	function	sets
the	fields	that	have	just	been	mapped	from	the	exchange	list	to	*DEFAULT	or
*NULL.	This	causes	the	EXCHANGE	values	to	be	overwritten.
When	retrieving	fields	(GET)	from	the	exchange	list	in	RPG	/	CL	etc.	use	the
same	field	length	and	number	of	decimal	positions.	If	different	lengths	are
used	unpredictable	results	may	occur.
Shorter	field	lengths	on	GET:

The	decimal	and	/	or	integer	parts	may	be	truncated	or	trimmed.
Characters	may	be	trimmed.

Longer	field	lengths	on	GET:
Values	will	be	padded	with	zeroes	or	blanks.

The	introduction	of	the	CALL	PROCESS(*DIRECT)	option	has	now	made	high
volume	calls	possible.	This	was	previously	not	recommended	in	LANSA.	When
implementing	high	volume	calls	to	other	functions,	the	size	of	the	exchange	list
should	be	considered.	In	these	circumstances,	a	large	number	of	fields	on	the
exchange	list	may	cause	a	performance	overhead.	Investigate	the	option	of
passing	data	structures	(CALL	PASS_DS(#dddddd))	between	functions

instead	of	using	the	exchange	option.

7.42.3	EXCHANGE	Accessing	the	Exchange	List	from
RPG/COBOL
A	flag	field	in	the	system	definition	data	area	DC@A01	must	be	set	to	indicate
that	the	exchange	capability	is	required.	Refer	to	The	System	Definition	Data
Area	DC@A01	in	the	LANSA	for	i	User	Guide.
Normally	the	exchange	list	is	only	used	to	communicate	information	between
LANSA	processes	and	functions,	however,	a	facility	does	exist	to	allow
RPG/COBOL/etc	programs	that	call	LANSA	applications	or	are	called	by
LANSA	applications	to	access	the	exchange	list.
This	facility	is	actually	a	program	called	M@EXCHL	that	is	shipped	with
LANSA.	By	placing	calls	to	M@EXCHL,	RPG/COBOL/etc	programs	are	able
to	place	things	onto	the	exchange	list	and	get	things	off	the	exchange	list,	just
like	LANSA	processes	and	functions	do.
You	cannot	use	the	M@EXCHL	facility	with	RDMLX	functions	because
X_RUN	is	not	aware	of	external	exchange	lists.	You	can	only	CALL	a	LANSA
RDML	function	and	not	RDMLX	if	the	exchange	list	is	needed.	That	is,
RPG	calling	LANSA	-	this	must	be	an	RDML	function
LANSA	calling	RPG	-	this	could	be	either	an	RDML	or	RDMLX	function.	To
do	this,	you	need	to	create	a	simple	RDML	function	for	the	MC@EXCHL
values	and	then	they	can	be	exchanged	to	the	RDMLX	function.	That	is,	call
this	RDMLX	function	from	RDML	to	exchange	the	values.

Following	are	two	different	scenarios	that	demonstrate	how	to	use	M@EXCHL.

Scenario	1	-	RPG/COBOL/etc	calling	a	LANSA	application
The	RPG/COBOL/etc	program	would	have	logic	like	this:
1.		CALL	M@EXCHL	to	"CLR"	any	rubbish	left	on	the	list.
2.		CALL	M@EXCHL	to	"PUT"	information	into	the	list.
3.		CALL	LANSA	to	run	the	LANSA	function.	This	must	be	an	RDML
function,	not	an	RDMLX	function	(called	via	LANSA	X_RUN).

4.		CALL	M@EXCHL	to	"GET"	information	from	the	list.
The	actual	logic	flow	of	these	operations	works	like	this:
1.		M@EXCHL	clears	any	rubbish	on	the	user	list.
2.		M@EXCHL	places	requested	details	into	the	user	list.

its:LANSA010.CHM::/lansa/ugubc_c10015.htm

3.		As	LANSA	is	invoked,	it	appends	the	user	list	to	the	current	exchange	list
and	clears	the	user	list.	The	function	then	runs	under	the	normal	exchange	list
rules.	Just	before	control	is	returned	to	the	RPG/COBOL/etc	application,	the
exchange	list	is	mapped	into	the	user	list	and	the	exchange	list	is	cleared.

4.		M@EXCHL	searches	the	user	list	and	returns	information.

Scenario	2	-	A	LANSA	application	calling	RPG/COBOL/etc
1.		A	LANSA	function	places	a	call	to	an	RPG/COBOL/etc	program	via	the
RDML	CALL	command.	Since	this	program	wishes	to	access	the	exchange
list,	the	PGM_EXCH(*YES)	parameter	is	used.	This	may	be	an	RDML	or
RDMLX	function,	but	only	RDML	fields	can	be	exchanged.	Refer	to	the
CALL	command	for	further	information.

2.		The	RPG/COBOL/etc	program	receives	control.
3.		It	calls	M@EXCHL	to	"GET"	details	from	the	list.
4.		It	calls	M@EXCHL	to	"CLR"	the	list.
5.		It	does	whatever	processing	is	required.
6.		Then	it	calls	M@EXCHL	to	"PUT"	details	back	onto	the	list.
7.		Control	returns	to	the	LANSA	function,	and	details	from	list	appear	and	are
processed	just	like	an	exchange	via	the	exchange	list	with	another	LANSA
function.

The	actual	logic	flow	of	these	operations	works	like	this:
1.		Any	OPTION(*ALWAYS)	fields	are	added	to	the	exchange	list,	and	then	the
exchange	list	is	mapped	into	the	user	list,	then	the	exchange	list	is	cleared,
and	the	CALL	to	the	RPG/COBOL/etc	application	is	placed.

2.		The	RPG/COBOL/etc	program	receives	control.
3.		M@EXCHL	searches	the	user	list	and	returns	information.
4.		M@EXCHL	clears	the	user	list.
5.		As	above.
6.		M@EXCHL	places	requested	details	into	the	user	list.
7.		Control	returns	to	the	LANSA	function,	which	replaces	the	exchange	list
with	the	user	list,	and	clears	the	user	list.	Next	the	exchange	list	is	searched
for	matches	with	fields	in	the	function	and,	where	required,	mapping	occurs.
Finally,	the	exchange	list	is	cleared.

Parameters	required	by	M@EXCHL
M@EXCHL	has	1	parameter	that	must	be	specified	on	a	CALL,	and	up	to	10
"pairs"	of	parameters	that	are	used	to	define	and	contain	information	that	is	to
be	placed	on	or	received	from	the	exchange	list.	This	means	a	minimum	of	1
and	a	maximum	of	21	parameters	can	be	passed	to	M@EXCHL	on	any	call.
In	detail	these	parameters	look	like	this:

Parm	Number Type Min	LenMax	Len Comments

01 Alpha 3 3 PUT	=	Put	data	onto	list
GET	=	Get	data	from	list	
CLR	=	Clear	list

02,04,
06,08,
10,12,
14,16,
18,20

Alpha 15 15 Format	:	nnnnnnnnnntllld
where:	
nnnnnnnnnn	is	the	field	name
t	is	the	field	type	(A/P/S)
lll	is	the	field	length	or	the	total	digits
d	is	the	number	of	decimals

03,05,
07,09,
11,13,
15,17,
19,21

Any 1 256 This	is	the	field's	value.

	

Examples	of	calling	M@EXCHL
Example	1:	From	a	CL	(control	language)	program	place	the	value	of	field
COMPNO	(company	number)	and	ACCTYP	(account	type)	onto	the	exchange
list.	Run	a	LANSA	function	and	get	back	a	field	called	TOTAMOUNT	from	the
exchange	list.
DCL	&COMPNO				*DEC	(3	0)
DCL	&ACCTYP				*CHAR	5
DCL	&TOTAMOUNT	*DEC	(13	2)
	
CALL	M@EXCHL	('CLR')
	

CALL	M@EXCHL	('PUT'	'COMPNO			P0030'	&COMPNO		ACCTYP			A0050'	&ACCTYP)
	
LANSA	RUN	...	etc
	
CALL	M@EXCHL	('GET'	'TOTAMOUNT	P0132'	&TOTAMOUNT)
	

Example	2:	Do	the	same	thing	from	RPG.
E																				ATR					1			3	15
C*
C*	CLEAR	THE	LIST
C*
C																					CALL	'M@EXCHL'
C																					PARM	'CLR'					A@EXCH		3
C*
C*	PUT	TO	THE	LIST
C*
C																					CALL	'M@EXCHL'
C																					PARM	'PUT'					A@EXCH
C																					PARM											ATR,01
C																					PARM											COMPNO		30
C																					PARM											ATR,02
C																					PARM											ACCTYP			5
C*
C*	INVOKE	THE	FUNCTION
C*
C																					CALL	'LANSA'
C											----------	ETC	-----------
C											----------	ETC	-----------
C											----------	ETC	-----------
C*
C*	GET	FROM	THE	LIST
C*
C*	NOTE:	The	field	is	named	"TOTAMOUNT"	in	the	exchange
C*								list,	but	is	actually	returned	into	a	field
C*								called	TOTAMT.
C																					CALL	'M@EXCHL'
C																					PARM	'GET'					A@EXCH
C																					PARM											ATR,03

C																					PARM											TOTAMT	132
C*
C																					MOVE	'1'							*INLR
C																					RETRN
**
COMPNO				P0030
ACCTYP				A0050
TOTAMOUNT	P0132
	

Example	3:	Write	a	CL	program	that	is	to	receive	the	name	of	a	file	and	library
from	the	exchange	list,	copy	the	file	to	tape	and	place	a	return	code	back	onto
the	exchange	list.
COPYTAPE:	PGM
	
DCL	&FILE						*CHAR	10
DCL	&LIBRARY			*CHAR	10
DCL	&RETCODE			*CHAR		1
CALL	M@EXCHL	('GET'	'FILE						A0100'	&FILE				'LIBRARY			A0100'	&LIBRARY)
CALL	M@EXCHL	('CLR')
	
CHGVAR	&RETCODE	'Y'
CPYTOTAP		...	etc
MONMSG	(CPF0000	MCH0000)	EXEC(CHGVAR	&RETCODE	'N')
	
CALL	M@EXCHL	('PUT'	'RETCODE			A0010'	&RETCODE)
	
ENDPGM
	

Example	4:	Write	the	RDML	code	required	to	display	a	screen	panel,	input	the
file	and	library	name,	call	the	CL	program	in	example	3	and	act	upon	the	return
code.
DEFINE	#FILE	*CHAR	10
DEFINE	#LIBRARY	*CHAR	10
DEFINE	#RETCODE	*CHAR	1
	
REQUEST		FIELDS(#FILE	#LIBRARY)
EXCHANGE	FIELDS(#FILE	#LIBRARY)
CALL					PGM(COPYTAPE)	PGM_EXCH(*YES)

IF							('#RETCODE	*NE	Y')
MESSAGE		MSGTXT('Copy	to	tape	failed')
ENDIF
	

7.42.4	EXCHANGE	Examples
The	following	example	applies	to	the	EXCHANGE	command	in	general,	not	to
the	program	M@EXCHL:
Consider	2	functions	being	used	that	are	named	FUNC1	and	FUNC2	and	have
RDML	programs	that	look	like	this:
Function:	FUNC1
REQUEST				(#FIELD01	#FIELD02)
INSERT					FIELDS(#FIELD01	#FIELD02)	TO_FILE(FILE01)
	

Function:	FUNC2
REQUEST				(#FIELD01	#FIELD02	#FIELD03	#FIELD04)
INSERT					FIELDS(#FIELD01	#FIELD02	#FIELD03	#FIELD04)	TO_FILE(FILE02)
	

If	FUNC1	had	the	following	command	added	to	it	(as	the	last	command)	and
was	recompiled:
EXCHANGE			FIELDS(#FIELD01	#FIELD02)
	

then,	if	the	user	used	function	FUNC1,	and	then	used	function	FUNC2,	the
fields	#FIELD01	and	#FIELD02	would	come	up	on	the	FUNC2	REQUEST
display	"prefilled"	with	the	values	entered	by	the	user	in	function	FUNC1.
There	is	no	need	to	re-compile	FUNC2	to	make	this	happen.	Remember	that	the
exchange	list	is	searched	whenever	a	function	is	invoked.	As	soon	as	fields
#FIELD01	and	#FIELD02	start	to	appear	in	the	exchange	list	they	will	be
"mapped"	into	function	FUNC2.
If	the	exchange	command	described	above	was	also	added	to	FUNC2	and
FUNC2	was	re-compiled	then	the	following	will	happen.
Whenever	FUNC2	is	invoked	after	FUNC1	then	the	#FIELD01	and	#FIELD02
values	on	the	FUNC2	REQUEST	display	will	be	pre-filled	with	the	values
entered	by	the	user	in	FUNC1.
Whenever	FUNC1	is	invoked	after	FUNC2	then	the	#FIELD01	and	#FIELD02
values	on	the	FUNC1	REQUEST	display	will	be	pre-filled	with	the	values
entered	by	the	user	in	FUNC2.
If	FUNC1	is	invoked	repeatedly	from	the	process	menu	then	the	#FIELD01	and
#FIELD02	values	will	be	pre-filled	with	the	values	entered	during	the	previous

invocation.
In	other	words	FUNC1	is	exchanging	information	with	itself.
The	first	time	that	FUNC1	is	invoked	(assuming	that	FUNC2	has	not	been	used
already)	the	exchange	list	will	be	empty.	In	this	case	#FIELD01	and	#FIELD02
will	be	pre-filled	with	the	default	values	specified	for	them	in	the	data
dictionary	or	DEFINE	command.

7.43	EXEC_CPF
This	command	has	been	deprecated.	Please	use	7.44	EXEC_OS400	instead.

7.44	EXEC_OS400
The	EXEC_OS400	command	is	used	to	execute	an	IBM	i	operating	system
command	from	within	an	RDML	or	RDMLX	program.	Optionally	fields	from
the	function	can	be	specified	within	the	command	and	will	be	substituted	with
their	values	at	execution	time.

Portability
Considerations

This	command	is	only	supported	in	RDMLX	programs	for
compatibility	with	existing	RDML	code.	As	such,	it	only
supports	the	substitution	of	RDML	field	values	at	execution
time.
Use	the	SYSTEM_COMMAND	Built-In	Function	as	a	better
alternative	for	RDMLX	programs.

Also	See
7.44.1	EXEC_OS400	Parameters
7.44.2	EXEC_OS400	Comments	/	Warnings
7.44.3	EXEC_OS400	Example
																																																									Required
	
		EXEC_OS400			-----	COMMAND	-----
-	'AS/400	command'	---------->

																																																									Optional
	
															>--	IF_ERROR	-----	*ABORT			---------------------|
																																		*NEXT
																																		*RETURN
																																		label
	

7.44.1	EXEC_OS400	Parameters
COMMAND
IF_ERROR

COMMAND
Specifies	the	IBM	i	(EXEC_OS400)	command	string	that	is	to	be	executed	from
within	the	function.	The	command	specified	must	be	eligible	for	execution	via
the	IBM	supplied	command	execution	programs	QCMDEXC.

IF_ERROR
Specifies	what	action	is	to	be	taken	if	an	error	occurs	when	the	command	is
executed.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	these	values	are	used	you	must	nominate	a	valid	command	label	to
which	control	should	be	passed.

7.44.2	EXEC_OS400	Comments	/	Warnings
The	command	string	is	executed	via	IBM	supplied	program	QCMDEXC.	As
such	it	must	be	a	valid	command	in	IBM	i	format.	This	can	only	be	executed	on
an	IBM	i.
Where	an	operating	system	command	specified	for	execution	via	the
EXEC_OS400	command	fails	to	execute,	place	the	function	in	LANSA	debug
mode	and	attempt	the	operation	again.	Refer	to	LANSA	Debugging	Mode	in	the
LANSA	for	i	User	Guide	for	details.
When	a	function	is	in	debug	mode	the	routine	that	actually	handles	the
execution	of	the	command	will	stop	processing	just	before	executing	the
command.	The	command	that	is	about	to	be	executed	will	be	displayed	in	full.
This	includes	the	substitution	values	of	any	LANSA	fields	that	were	imbedded
into	the	command.
Fields	from	the	function	specified	in	the	command	string	must	be	in	uppercase.
The	process	by	which	fields	in	the	command	string	are	substituted	is	quite
complex.	The	following	example	shows	most	of	the	substitution	methods	used.
If	the	command	to	be	executed	is:
EXEC_OS400	COMMAND('CALL	PGM001	(#BATCH	#TRANS)')
	

where	#BATCH	is	a	numeric	field	(7	0)	and	#TRANS	is	an	alphanumeric	field
of	length	10,	this	table	indicates	the	actual	command	executed	for	various
values	of	#BATCH	and	#TRANS:

Value	in
#Batch

Value	in	#Trans Actual	Command	String	Executed	/	Comments

42 XXXXXXXXXX CALL	PGM001	(X'0000042F'	XXXXXXXXXX)

108 XXX	XXX CALL	PGM001	(X'0000108F'	'XXX	XXX			')
because	#TRANS	contains	imbedded	blanks.

9999 1234567890 CALL	PGM001	(X'0009999F'	'1234567890')
because	#TRANS	contains	all	numeric	characters.

	

Note	that	the	command	specified	must	be	enclosed	in	quotes.	This	means	that	if

its:LANSA010.CHM::/lansa/ugub_40040.HTM

the	command	itself	must	contain	quotes	then	2	will	have	to	be	used	instead	of
one.	For	details	of	quotes	and	quoted	strings,	read	the	section	on	handling
Quotes	and	Quoted	Strings.

OS400	Authority
Considerations
Commands	executed	via	EXEC_OS400	adopt	the	authority	of	the	LANSA
system	owner	user	profile,	and	the	user	profile	of	any	other	entries	in	the	call
stack	with	USRPRF(*OWNER)	as	long	as	the	"chain"	is	not	broken	by	an	entry
in	the	call	stack	with	USEADPAUT(*NO).
If	this	does	not	suit	your	site	security	policy,	issue	the	commands:

CHGPGM	PGM(M@CPEXEC)	USRPRF(<your	value>)
USEADPAUT(<your	value>)

CHGPGM	PGM(M@OSEXEC)	USRPRF(<your	value>)
USEADPAUT(<your	value>)
If	either	of	these	commands	fail,	contact	your	LANSA	product	vendor.	You
should	also	examine	these	values	after	any	form	of	upgrade	to	your	LANSA
system.

7.44.3	EXEC_OS400	Example
Example	1:	Write	an	RDML	program	that	will	execute	any	IBM	i	operating
system	command	that	can	be	executed	via	program	QCMDEXC,	and	that	will
not	abort	if	the	command	is	invalid	or	contains	errors:
				DEFINE					FIELD(#CMD)	TYPE(*CHAR)	LENGTH(200)
L1:	REQUEST				FIELDS(#CMD)
				EXEC_OS400	COMMAND(#CMD)	IF_ERROR(L1)
				GOTO							LABEL(L1)
	

7.45	EXECUTE
The	EXECUTE	command	is	used	to	execute	a	subroutine	defined	within	a
function	and	optionally	pass	parameters	to	it.
When	the	subroutine	has	completed	execution	control	is	passed	to	the	command
following	the	EXECUTE	command.

Also	See
7.45.1	EXECUTE	Parameters
7.45.2	EXECUTE	Examples
7.38	ENDROUTINE
7.92	SUBROUTINE
EVTROUTINE
MTHROUTINE
PTYROUTINE
																																																									Required
	
		EXECUTE	------	SUBROUTINE	---	subroutine	name	-------
--------->

																																																									Optional
	
													>--	WITH_PARMS	---	list	of	parameters	-------------|
																														|	expandable	group	expression	|
																															----------	50	max	-----------
	

7.45.1	EXECUTE	Parameters
SUBROUTINE
WITH_PARMS

SUBROUTINE
Specifies	the	name	of	the	subroutine	that	is	to	be	executed.	The	subroutine
named	in	this	parameter	must	be	defined	elsewhere	in	the	function	with	a
SUBROUTINE	command.

WITH_PARMS
Optionally	defines	a	list	of	parameters	that	are	to	be	passed	to	the	subroutine.
An	expandable	group	expression	is	allowed	in	this	parameter.
When	executing	a	subroutine,	the	parameters	specified	in	the	WITH_PARMS
parameter	of	the	EXECUTE	command	must	exactly	match	in	number	and	type
the	parameters	defined	in	the	PARMS	parameter	of	the	associated
SUBROUTINE	command.

7.45.2	EXECUTE	Examples
Refer	to	7.92.3	SUBROUTINE	Examples	-	Part	1	command	for	examples	using
this	command.

7.46	EXIT
The	EXIT	command	is	used	to	cause	an	executing	RDML	program	to	end	and
an	immediate	exit	from	LANSA	to	be	performed.	Note	that	the	exit	is	from	the
entire	LANSA	system,	not	just	from	the	current	function	/	process.
Using	the	EXIT	command	is	functionally	identical	to	using	the	EXIT	function
key.
Optionally	a	message	may	be	issued	which	will	be	routed	back	onto	the
program	message	queue	of	the	program	that	initially	invoked	LANSA.

Also	See
7.46.1	EXIT	Parameters
7.46.2	EXIT	Examples
																																																									Optional
	
		EXIT	---------	MSGTXT	--------*NONE	------------------------
-->
																																'message	text'
	
													>--	MSGID	--------	*NONE	-------------------------->
																																message	identifier
	
													>--	MSGF	---------	*NONE	-------------------------->
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																														|	expandable	group	expression	|
																															----------	20	max	-----------
	

7.46.1	EXIT	Parameters
MSGDTA
MSGF
MSGID
MSGTXT

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	This	text	will	be
routed	back	onto	the	program	message	queue	of	the	program	that	initially
invoked	LANSA.	The	message	text	specified	should	be	enclosed	in	quotes.	Use
either	the	MSGTXT	parameter	or	the	MSGID/MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	issued	when	the	function	ends	and	the	exit	from	LANSA	is	performed.
Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the

field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:
"&1	are	out	of	stock	...	reorder	&2"
where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this:
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.46.2	EXIT	Examples
Example	1:	Exit	from	a	function	with	a	text	message:
EXIT				MSGTXT('LANSA	ended	at	user	request')
	

Example	2:	Exit	from	a	function	using	a	message	identifier	and	message	file:
EXIT		MSGID(USR0046)	MSGF(QUSRMSG)
	
EXIT		MSGID(USR0167)	MSGF(QUSRMSG.*LIBL)
	
EXIT		MSGID(USR8046)	MSGF(QUSRMSG.USERLIB01)
	

7.47	FETCH
The	FETCH	command	is	used	to	fetch	fields	from	the	first	record	in	a	file	that
matches	a	nominated	key,	condition	or	relative	record	number.

Portability	Considerations Refer	to	parameters:	FROM_FILE	and	LOCK

Also	See
7.47.1	FETCH	Parameters
7.47.2	FETCH	Examples
																																																							Required
	
		FETCH	--------	FIELDS	-------	field	name		field	attributes	-
-->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|*ALL																									|
																																|*ALL-REAL																				|
																																|*ALL-VIRT																				|
																																|*INCLUDING																			|
																																|*EXCLUDING																			|
																																|	expandable	group												|
																																|------	1000	max	for	RDMLX----|
																																	-------	100	max	for	RDML	----
	
													>--	FROM_FILE	----	file	name	.	*FIRST	-------------
>
																																												library	name

																																																									Optional
													>--	WHERE	--------	'condition'	-------------------->
	
													>--	WITH_KEY	-----	key	field	values	--------------->
																																expandable	group	expression
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name

	
													>--	IO_ERROR	-----	*ABORT	-------------------------
>
																																*NEXT
																																*RETURN	
																																label
	
													>--	VAL_ERROR	----	*LASTDIS	-----------------------
>
																																*NEXT
																																*RETURN
																																label
	
													>--	NOT_FOUND	----	*NEXT	-------------------------
->
																																*RETURN
																																label
	
													>--	ISSUE_MSG	----	*NO	---------------------------->
																																*YES
	
													>--	LOCK	---------	*NO	---------------------------->
																																*YES
	
													>--	WITH_RRN	-----	*NONE	--------------------------
>
	
													>--	RETURN_RRN	---	*NONE	-------------------------
->
	
													>--	KEEP_LAST	----	*NONE	--------------------------|
																																1	-	9999
	

7.47.1	FETCH	Parameters
FIELDS
FROM_FILE
IO_ERROR
IO_STATUS
ISSUE_MSG
KEEP_LAST
LOCK
NOT_FOUND
RETURN_RRN
VAL_ERROR
WHERE
WITH_KEY
WITH_RRN

FIELDS
Specifies	either	the	field(s)	that	are	to	be	fetched	from	the	file	or	the	name	of	a
group	that	specifies	the	field(s)	to	be	fetched.	Alternatively,	an	expandable
group	expression	can	be	entered	in	this	parameter.	For	more	details,	refer	to
Expandable	Groups.
The	following	special	values	can	be	used:
*ALL	specifies	that	all	fields	from	the	currently	active	file	be	fetched.
*ALL_REAL	specifies	that	all	real	fields	from	the	currently	active	file	be
fetched.
*ALL_VIRT	specifies	that	all	virtual	fields	from	the	currently	active	file	be
fetched.
*EXCLUDING	specifies	that	fields	following	this	special	value	must	be
excluded	from	the	field	list.
*INCLUDING	specifies	that	fields	following	this	special	value	must	be
included	in	the	field	list.	This	special	value	is	only	required	after	an
*EXCLUDING	entry	has	caused	the	field	list	to	be	in	exclusion	mode.

Note:	When	all	fields	are	fetched	from	a	logical	file	maintained	by
OTHER,	all	the	fields	from	the	based-on	physical	file	are	included	in

the	field	list.

It	is	strongly	recommended	that	the	special	values	*ALL,	*ALL_REAL	or
*ALL_VIRT	be	used	sparingly	and	only	when	required.	Fetching	fields	which
are	not	needed	causes	the	function	to	retrieve	and	map	fields	unnecessarily,
invalidates	cross-reference	details	(shows	fields	which	are	not	used	in	the
function)	and	increases	the	Crude	Entity	Complexity	Rating	of	the	function
pointlessly.
Note	that	when	BLOB	or	CLOB	data	is	retrieved,	it	is	either	*SQLNULL	or	a
filename.	If	a	filename,	the	data	from	the	database	file	has	been	copied	into	the
file.
Warning:	It	is	time-consuming	to	retrieve	BLOB	or	CLOB	fields	from	a	file.
Recommended	Database	Design	When	Using	BLOB	and	CLOB	Fields
The	recommended	design	when	using	BLOB	and	CLOB	fields	is	to	put	them	in
a	separate	file	from	the	rest	of	the	fields	using	the	same	key	as	the	main	file.
This	forces	programmers	to	do	separate	IOs	to	access	the	BLOB	and	CLOB
data,	thus	reducing	impact	on	database	performance	from	indiscriminate	use	of
this	data.	It	is	also	the	most	portable	design	ensuring	that	the	non-BLOB	and
non-CLOB	data	can	be	quickly	accessed	at	all	times.

FROM_FILE
Refer	to	Specifying	File	Names	in	I/O	commands.

WHERE
Refer	to	Specifying	Conditions	and	Expressions	and	Specifying	WHERE
Parameter	in	I/O	Commands.
After	a	fetch	utilizing	a	where	condition	that	results	in	a	record	not	found,	the
contents	of	the	fields	are	unpredictable.

WITH_KEY
Refer	to	Specifying	File	Key	Lists	in	I/O	Commands.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.

If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.
For	details	of	I/O	operation	return	code	values,	refer	to	I/O	Return	Codes.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

VAL_ERROR
Specifies	the	action	to	be	taken	if	a	validation	error	was	detected	by	the
command.
A	validation	error	occurs	when	information	that	is	to	be	added,	updated	or
deleted	from	the	file	does	not	pass	the	FILE	or	DICTIONARY	level	validation
checks	associated	with	fields	in	the	file.
If	the	default	value	*LASTDIS	is	used	control	will	be	passed	back	to	the	last
display	screen	used.	The	field(s)	that	failed	the	associated	validation	checks	will
be	displayed	in	reverse	image	and	the	cursor	positioned	to	the	first	field	in	error
on	the	screen.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

The	*LASTDIS	is	valid	even	if	there	is	no	"last	display"	(such	as	in
batch	functions).	In	this	case	the	function	will	abort	with	the
appropriate	error	message(s).

When	using	*LASTDIS	the	"Last	Display"	must	be	at	the	same	level
as	the	database	command	(INSERT,	UPDATE,	DELETE,	FETCH	and
SELECT).		If	they	are	at	different	levels	e.g.	the	database	command	is
specified	in	a	SUBROUTINE,	but	the	"Last	Display"	is	a	caller
routine	or	the	mainline,	the	function	will	abort	with	the	appropriate
error	message(s).

The	same	does	NOT	apply	to	the	use	of	event	routines	and	method
routines	in	Visual	LANSA.	In	these	cases,	control	will	be	returned	to
the	calling	routine.	The	fields	will	display	in	error	with	messages
returned	to	the	first	status	bar	encountered	in	the	parent	chain	of
forms,	or	if	none	exist,	the	first	form	with	a	status	bar	encountered	in
the	execution	stack	(for	example,	a	reusable	part	that	inherits	from
PRIM_OBJT).

NOT_FOUND
Specifies	what	is	to	happen	if	no	record	is	found	in	the	file	that	has	a	key
matching	the	key	nominated	in	the	WITH_KEY	parameter.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

ISSUE_MSG
Specifies	whether	a	"not	found"	message	is	to	be	automatically	issued	or	not.
The	default	value	is	*NO	which	indicates	that	no	message	should	be	issued.
The	only	other	allowable	value	is	*YES	which	indicates	that	a	message	should
be	automatically	issued.	The	message	will	appear	on	line	22/24	of	the	next
screen	format	presented	to	the	user	or	on	the	job	log	of	a	batch	job.

LOCK

Specifies	whether	or	not	the	record	should	be	locked	when	it	is	read.
*NO,	which	is	the	default	value,	indicates	that	the	record	should	not	be	locked.
*YES	indicates	the	record	should	be	locked.	It	is	the	responsibility	of	the	user	to
ensure	that	the	record	is	released	at	some	future	time.
NOTE:	LOCK(*YES)	performs	a	record	level	lock.	It	may	exhibit	intra	and
inter	operating	system	behavioural	variations	(e.g.	commitment	control	locking
multiple	records;	default	wait	times).	User's	are	advised	to	investigate	the
development	of	proper	and	complete	"user	object"	locking	protocol	by	using	the
LOCK_OBJECT	Built-In	Function.

Portability
Considerations

Not	supported	and	should	not	be	used	in	portable	applications.
A	build	warning	will	be	generated	when	used	in	Visual
LANSA.

WITH_RRN
Specifies	the	name	of	a	field	that	contains	the	relative	record	number	(for
relative	record	file	processing)	of	the	record	which	is	to	be	fetched.	The
WITH_RRN	parameter	cannot	be	used	if	the	WITH_KEY	or	WHERE
parameters	are	used.
Any	field	nominated	in	this	parameter	must	be	defined	within	the	function	or
the	LANSA	data	dictionary	and	must	be	numeric.

Note:	Using	the	WITH_RRN	parameter	to	FETCH,	DELETE	or
UPDATE	records	is	faster	than	any	other	form	of	database	access.

The	actual	database	file	being	accessed	can	not	be	a	logical	file	when	using	the
WITH_RRN	parameter.
For	information,	refer	also	to	Load	Other	File	in	the	Visual	LANSA	Developers
Guide.

RETURN_RRN
Specifies	the	name	of	a	field	in	which	the	relative	record	number	of	the	record
just	fetched	should	be	returned.
Any	field	nominated	in	this	parameter	must	be	defined	within	the	function	or
the	LANSA	data	dictionary	and	must	be	numeric.
For	further	information	refer	also	to	Load	Other	File	in	the	Visual	LANSA
Developers	Guide.

KEEP_LAST

its:Lansa013.chm::/lansa/l4wdev04_0320.htm
its:Lansa013.chm::/lansa/l4wdev04_0320.htm

Specifies	that	details	of	the	last	"n"	FETCH	operations	be	kept	within	the
compiled	RDML	program.	Whenever	a	FETCH	command	is	executed	the
details	of	the	last	"n"	FETCH	operations	are	searched	first.	If	the	required
details	are	found	within	the	program,	no	database	I/O	operation	actually	occurs.
This	can	dramatically	improve	the	performance	of	RDML	programs.
*NONE,	which	is	the	default	value,	indicates	that	no	details	of	previous	FETCH
operations	are	to	be	kept.	Every	FETCH	performed	will	result	in	I/O	to	the
associated	database	file.
An	integer	in	the	range	1	to	9999	may	be	specified.	This	indicates	the	number	of
previous	FETCH	operations	for	which	details	should	be	kept.	The	number
specified	reflects	the	maximum	number	of	different	FETCH	operations	that
could	be	reasonably	expected.
For	instance,	if	the	FETCH	is	made	to	a	company	file	(by	key	company
number)	to	get	a	company	name,	and	only	15	companies	exist,	a	value	of	15
would	be	correct.	Specifying	500	will	waste	storage	in	the	executing	RDML
program	and	may	actually	degrade	its	performance.

Note	that	the	number	specified	does	not	limit	the	number	of	different
FETCH	operations	allowed.	If	no	space	is	available	within	the	RDML
program	for	a	FETCH's	details	to	be	stored,	the	oldest	FETCH	details
are	overwritten.

When	the	KEEP_LAST	parameter	is	specified,	the	WITH_KEY	parameter	must
be	specified	and	the	WHERE	parameter	must	not	be	specified.

Note	also	that	since	previous	FETCH	details	are	stored	within	the
RDML	program,	it	is	possible	for	the	actual	database	file	details	to	be
changed	without	the	change	being	reflected	in	the	RDML	program.

7.47.2	FETCH	Examples
Example	1:	Fetch	fields	#NAME,	#ADDL1	and	#POSTCD	from	the	record	in
file	CUSTMST	that	has	key	#CUSNUM:
FETCH							FIELDS(#NAME	#ADDL1	#POSTCD)	FROM_FILE(CUSMST)	WITH_KEY(#CUSNUM)
	

or	identically:
GROUP_BY				NAME(#CUSTOMER)	FIELDS(#NAME	#ADDL1	#POSTCD)
FETCH							FIELDS(#CUSTOMER)	FROM_FILE(CUSMST)	WITH_KEY(#CUSNUM)
	

Example	2:	Fetch	a	tax	rate	(#TAXRATE)	from	a	table	of	valid	tax	codes.	The
first	key	to	the	table	indicates	the	tax	type	which	in	this	case	is	always	"income
tax"	and	the	second	is	the	tax	code	(#TAXCDE):
FETCH				FIELDS(#TAXRATE)	FROM_FILE(TAXTAB)	WITH_KEY('INCOME'	#TAXCDE)
	

Example	3:	Fetch	the	product	number	(#PRODUCT)	of	the	first	order	in	an
order	line	files	where	the	#QUANTITY	field	is	greater	than	10:
FETCH				FIELDS(#PRODUCT)	FROM_FILE(ORDLIN)	WHERE('#QUANTITY	>	10')
	

Example	4:	Read	and	print	details	of	all	general	ledger	transactions	from	a	file
called	GLTRANS.	Associated	with	each	transaction	is	a	company	number
(#COMPNO).	Fetch	the	actual	company	name	(#COMPNAME)	from	file
COMPANY	and	include	this	on	the	report:
GROUP_BY		NAME(#REPORTLIN)	FIELDS(#TRANSNUM	#TRANSTYP	#TRANSVAL	#COMPNO	#COMPNAME)
	
SELECT				FIELDS(#REPORTLIN)	FROM_FILE(GLTRANS)
FETCH					FIELDS(#COMPNAME)	FROM_FILE(COMPANY)	WITH_KEY(#COMPNO)	KEEP_LAST(15)
UPRINT				FIELDS(#REPORTLIN)
ENDSELECT
	
ENDPRINT
	

Note	that	if	there	were	10,000	transactions	in	GLTRANS,	and	15	(or	less)
different	companies,	this	program	would	perform	at	most	10,015	database	I/O
operations.	If	the	KEEP_LAST	parameter	on	the	FETCH	command	was	omitted
it	would	perform	20,000	I/O	operations,	which	would	probably	double	its

execution	time.
Example	5:	Fetch	all	fields	from	the	currently	active	version	of	file	CUSMST
with	key	#CUSNUM:
FETCH							FIELDS(*ALL)	FROM_FILE(CUSMST)	WITH_KEY(#CUSNUM)
	

Example	6:	Fetch	all	real	fields	from	the	currently	active	version	of	file
CUSMST	but	exclude	address	information:
GROUP_BY				NAME(#XG_ADDR)	FIELDS(#ADDL1	#ADDL2	#ADDL3	#POSTCD)
FETCH							FIELDS(*ALL_REAL	*EXCLUDING	#XG_ADDR)	FROM_FILE(CUSMST)	WITH_KEY(#CUSNUM)
	

7.48	FILECHECK
The	FILECHECK	command	is	used	to	check	a	field	against	an	entry	in	a	file.

Portability	Considerations Refer	to	parameter	USING_FILE	.

Also	See
7.48.1	FILECHECK	Parameters
7.48.2	FILECHECK	Comments	/	Warnings
7.48.3	FILECHECK	Examples
7.4	BEGINCHECK
7.7	CALLCHECK
7.14	CONDCHECK
7.16	DATECHECK
7.35	ENDCHECK
7.78	RANGECHECK
7.99	VALUECHECK
																																																									Required
	
		FILECHECK	----	FIELD	--------	field	name	------------------
--->
	
													>--	USING_FILE	---	file	name	.	*FIRST	-------------
>
																																												library	name

																																																									Optional
	
													>--	USING_KEY	----	*FIELD	-------------------------
>
																																key	field	values
																																expandable	group	expression
	
													>--	FOUND	--------	*NEXT	-------------------------->
																																*ERROR

																																*ACCEPT
	
													>--	NOT_FOUND	----	*ERROR	-----------------------
-->
																																*NEXT
																																*ACCEPT
	
													>--	MSGTXT	-------	*NONE	-------------------------->
																																message	text
	
													>--	MSGID	--------	DCU0003	------------------------>
																																message	identifier
	
													>--	MSGF	---------	DC@M01	.	*LIBL	-----------------
>
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																														|expandable	group	expression	|
																															---------	20	max	----------
	

7.48.1	FILECHECK	Parameters
FIELD
FOUND
MSGDTA
MSGF
MSGID
MSGTXT
NOT_FOUND
USING_FILE
USING_KEY

FIELD
Specifies	the	name	of	the	field	which	is	to	be	associated	with	the	check.

USING_FILE
Specifies	the	name	of	the	file	that	is	to	be	looked	up	by	this	check.	Refer	to
Specifying	File	Names	in	I/O	commands.

USING_KEY
Specifies	the	key	that	is	to	be	used	to	look	up	the	file	specified	in	the
USING_FILE	parameter.
*FIELD,	which	is	the	default	value	indicates	that	the	field	nominated	in	the
FIELD	parameter	should	be	used	as	the	key	to	look	up	the	file.
To	specify	other	key	field(s)	refer,	for	more	details,	to	Specifying	File	Key	Lists
in	I/O	Commands.

FOUND
Specifies	the	action	to	be	taken	if	a	record	is	found	in	the	nominated	file	with
the	nominated	key.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be

positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

NOT_FOUND
Specifies	the	action	to	be	taken	if	no	record	can	be	found	in	the	nominated	file
with	the	key	value	specified.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file

name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:
"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this:
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.48.2	FILECHECK	Comments	/	Warnings
The	FILECHECK	command	only	checks	for	the	presence	of	a	matching	key.
The	record	from	the	file	is	not	read	into	the	program.	Refer	to	the	FETCH
command	if	it	is	necessary	to	read	a	record	into	the	program.
FILECHECK	commands	must	be	within	a	BEGINCHECK	/	ENDCHECK
validation	block.	Refer	to	these	commands	for	further	details.

7.48.3	FILECHECK	Examples
Structuring	Functions	for	Inline	Validation
Structuring	Functions	to	Use	a	Validation	Subroutine
Using	the	FILECHECK	Command	for	Inline	Validation
Using	the	FILECHECK	Command	for	Validation	with	a	Subroutine
Structuring	Functions	for	Inline	Validation
Typically	functions	using	validation	commands	(eg:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	inline	validation	like	this:

BEGIN_LOOP	
REQUEST				<<	INPUT	>>
BEGINCHECK	
*										<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			
*										<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	passed	back	to	the	REQUEST
command.	This	happens	because	of	the	default	IF_ERROR(*LASTDIS)
parameter	on	the	ENDCHECK	command.		
Structuring	Functions	to	Use	a	Validation	Subroutine
Typically	functions	using	validation	commands	(eg:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	subroutine	validation	like	this:

DEFINE					FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				<<	INPUT	>>
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			

*										<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
*										<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			IF_ERROR(*NEXT)
ENDROUTINE
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	returned	to	the	main	function	loop
with	#ERRORCNT	>	0.	
Using	the	FILECHECK	Command	for	Inline	Validation
This	example	demonstrates	how	to	use	the	FILECHECK	command	within	the
main	program	block	to	check	an	employee	number	against	entries	in	a	personnel
file.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#GIVENAME	#SURNAME)
											
BEGIN_LOOP	
REQUEST				FIELDS(#EMPNO	#GIVENAME	#SURNAME)	BROWSELIST(#EMPBROWSE)
											
BEGINCHECK	
FILECHECK		FIELD(#EMPNO)	USING_FILE(PSLMST)	FOUND(*ERROR)	NOT_FOUND(*NEXT)	MSGTXT('Employee	number	supplied	already	exists')
ENDCHECK			
											
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP
	

If	the	value	of	#EMPNO	is	found	in	the	file	PSLMST	the	message	defined	with
the	FILECHECK	command	is	issued	and	program	control	returns	to	the	last
screen	displayed.	In	this	case	the	last	screen	displayed	is	the	REQUEST	screen.
Using	the	FILECHECK	Command	for	Validation	with	a	Subroutine
This	example	demonstrates	how	to	use	the	FILECHECK	command	inside	a
subroutine	to	check	an	employee	number	against	entries	in	a	personnel	file.
After	the	user	enters	the	requested	details	the	VALIDATE	subroutine	is	called.	It

checks	that	the	value	of	#EMPNO	is	not	already	present	in	the	PSLMST	file.	If
this	is	true	the	message	defined	in	the	FILECHECK	command	is	given	and	the
DOUNTIL	loop	executes	again.	When	a	#EMPNO	value	is	entered	that	is	not
found	in	the	file	the	DOUNTIL	loop	ends	and	processing	of	the	verified	input	is
done.
DEFINE					FIELD(#ERRORCNT)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	DEFAULT(0)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#GIVENAME	#SURNAME)
											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				FIELDS(#EMPNO	#GIVENAME	#SURNAME)	BROWSELIST(#EMPBROWSE)
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
											
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
FILECHECK		FIELD(#EMPNO)	USING_FILE(PSLMST)	FOUND(*ERROR)	NOT_FOUND(*NEXT)	MSGTXT('Employee	number	supplied	already	exists')
ENDCHECK			IF_ERROR(*NEXT)
											
ENDROUTINE
	

7.49	FUNCTION
The	FUNCTION	command	is	used	to	specify	certain	compilation	options	that
affect	the	way	an	RDML	program	is	generated	and	thus	the	way	it	behaves
when	it	is	actually	being	executed.
By	specifying	certain	values	with	this	command,	the	behavior	of	an	RDML
function	can	often	be	altered	to	produce	better	performance	characteristics	in	a
specific	operating	environment.

Portability
Considerations

Note	Visual	LANSA	considerations	in	this	command's
parameters.

Also	See
7.49.1	FUNCTION	Parameters
7.49.2	FUNCTION	Examples
																																																									Optional
	
		FUNCTION	-----	OPTIONS	------	function	control	option	--
------>
																																					*NOMESSAGES
																																					*DEFERWRITE
																																					*HEAVYUSAGE
																																					*LIGHTUSAGE
																																					*DBOPTIMISE
																																					*DBOPTIMIZE
																																					*DBOPTIMISE_BATCH
																																					*DBOPTIMIZE_BATCH
																																					*PGMCOMMIT
																																					*NOPGMCOMMIT
																																					*NOIGCCNV
																																					*NO_RLTB_MIRROR
																																					*DIRECT
																																					*CLOSE_DISPLAY
																																					*MLOPTIMISE
																																					*MLOPTIMIZE
																																					*ALP_SYSTEM_VARIABLE
																																					*NUM_SYSTEM_VARIABLE
																																					*ALP_FIELD_VALIDATE

																																					*NUM_FIELD_VALIDATE
																																					*MINI_SCREEN
																																					*OS400_EXT_PRINT
																																					*BUILTIN
																																				|												|
																																					---	9	max	--
	
													>--	RCV_DS	-------	data	structure	names	----------->
																																|																			|
																																	------	20	max	-----
	
													>--	RCV_LIST	-----	working	list	names	------------->
																																|																			|
																																	------	20	max	-----
	
													>--	TRIGGER	------	*NONE		-----	name	--------------
|
																																*FIELD
																																*FILE
																																type

7.49.1	FUNCTION	Parameters
OPTIONS
RCV_DS
RCV_LIST
TRIGGER

OPTIONS
Allows	up	to	9	different	options	to	be	specified.	Values	that	may	be	specified	in
this	parameter	include:
*NOMESSAGES
Specifies	that	the	program	will	never	be	required	to	route	messages	in	from	its
caller,	nor	route	messages	back	to	its	caller	(unless	it	fails).	By	using	this	option
the	entry	and	exit	resources	used	by	a	compiled	RDML	function	can	be	reduced.
When	this	option	is	used,	outstanding	developer	messages	are	not	checked	for.
This	can	benefit	performance	of	heavily	used	/	called	functions	in	a	production
environment	where	developer	services	is	on.
*DEFERWRITE
Portability
Considerations

Will	be	ignored	with	no	known	effect	to	the	application,	if
used	in	Visual	LANSA	code.

Specifies	that	any	IBM	i	display	file	created	to	service	DISPLAY,	REQUEST	or
POP_UP	commands	within	this	program	should	always	use	the
DFRWRT(*YES)	parameter.	By	using	this	option	the	time	spent	by	the	program
waiting	for	device	responses	can	be	reduced.
Any	program	that	uses	a	POP_UP	command,	or	communicates	to	remotely
attached	devices,	should	use	this	option.
*HEAVYUSAGE	and	*LIGHTUSAGE
Specify	that	the	compiled	RDML	function	should	use	the	HEAVY	usage	option
or	the	LIGHT	usage	option	regardless	of	what	option	the	associated	process
uses.
For	details	of	the	heavy	and	light	usage	options,	refer	to	Anticipated	Usage.
Note	that	RDMLX	functions	will,	by	default,	retain	their	state	between
invocations.	If	the	state	is	not	to	be	retained,	then	use	components	that	are
*DYNAMIC.

*DBOPTIMIZE	or	*DBOPTIMISE
Portability
Considerations

Will	be	ignored	with	no	known	effect	to	the	application,	if
used	in	Visual	LANSA	and	RDMLX	code.

Specifies	that	the	RDML	function	should	not	use	I/O	modules	to	access
database	files,	but	rather	OPTIMIZE	database	access	by	using	direct	I/O
techniques.
Using	this	option	can	enhance	application	performance.	However,	many
additional	considerations	and	restrictions	apply	to	using	this	option.
It	is	strongly	recommended	that		you	read	Using	*DBOPTIMIZE	/
*DBOPTIMIZE_Batch	in	the	LANSA	for	i	User	Guide	before	attempting	to	use
this	option.
*DBOPTIMIZE_BATCH	or	*DBOPTIMISE_BATCH
Portability
Considerations

Will	be	ignored	with	no	known	effect	to	the	application,	if
used	in	Visual	LANSA	and	RDMLX	code.

Specifies	that	the	RDML	function	should	not	use	I/O	modules	to	access
database	files,	but	rather	OPTIMIZE	database	access	by	using	direct	I/O
techniques	best	suited	to	batch	processing	involving	large	volumes	of	update	or
delete	operations.
Using	this	option	can	enhance	batch	application	performance.	However,	many
additional	considerations	and	restrictions	apply	to	using	this	option.
It	is	strongly	recommended	that	you	read	Using	*DBOPTIMIZE	/
*DBOPTIMIZE_Batch	in	the	LANSA	for	i	User	Guide	before	attempting	to	use
this	option.
*PGMCOMMIT
Portability
Considerations

Will	be	ignored	with	no	known	effect	to	the	application,	if
used	in	Visual	LANSA	and	RDMLX	code.	A	build	warning
will	be	generated.

Specifies	that	individual	program	level	commitment	control	is	required	for	all
files	opened	for	any	type	of	update	activity	by	this	RDML	function.
Using	this	option	overrides	and	supersedes	any	individual	database	file's
definition	or	RDML	command	with	regard	to	commitment	control	status	and/or
autocommit	options.
Additionally,	the	operating	system's	commitment	control	facility	will	be	started
and	ended	automatically	by	the	RDML	function.	See	User	Exit	F@BGNCMT	-

its:LANSA010.CHM::/lansa/ugubc_c10070.HTM
its:LANSA010.CHM::/lansa/ugubc_c10070.HTM
its:lansa010.CHM::/lansa/ladtgubh_0160.HTM

Start	Commitment	Control	and	User	Exit	F@ENDCMT	-	End	Commitment
Control	in	the	LANSA	for	i	User	Guide	for	details.
The	issuing	of	COMMIT	and	ROLLBACK	commands	at	the	appropriate
transaction	boundary	is	the	responsibility	of	the	user.
This	facility	is	primarily	intended	for	batch	processing.
It	is	strongly	recommended	that	Commitment	Control	in	the	LANSA	for	i	User
Guide	be	read	in	full	before	attempting	to	use	this	option.
Using	*PGMCOMMIT	implies	the	use	of	*DBOPTIMIZE,	regardless	of
whether	or	not	the	*DBOPTIMIZE	option	is	actually	specified.
*NOPGMCOMMIT
Portability
Considerations

Will	be	ignored	with	no	known	effect	to	the	application,	if
used	in	Visual	LANSA	and	RDMLX	code.	A	build	warning
will	be	generated.

Specifies	that	individual	program	level	commitment	control	is	NOT	required	for
all	files	opened	for	any	type	of	update	activity	by	this	RDML	function.
Using	this	option	overrides	and	supersedes	any	individual	database	file's
definition	or	RDML	command	with	regard	to	commitment	control	status	and/or
autocommit	options.
Using	*NOPGMCOMMIT	implies	the	use	of	*DBOPTIMIZE,	regardless	of
whether	or	not	the	*DBOPTIMIZE	option	is	actually	specified.
*NOIGCCNV
Portability
Considerations

Will	be	ignored	with	no	known	effect	to	the	application,	if
used	in	Visual	LANSA	code.

Specifies	that	the	IGCCNV	DDS	keyword	(for	IGC	conversion)	should	not	be
enabled	for	any	display	file	created	to	support	this	function,	regardless	of	the
setting	of	the	"IGCCNV	required"	flag	in	the	definition	of	the	current	language.
Normally,	any	display	file	created	for	a	function,	under	a	language	that	has	the
"IGCCNV	required"	flag	set,	has	the	IGCCNV	DDS	keyword	generated	into	it
automatically.
Using	this	option	suppresses	the	automatic	enabling	of	the	IGCCNV	keyword	in
all	display	file	DDS	generated	for	this	function.
*NO_RLTB_MIRROR
Specifies	that	the	automatic	"mirroring"	of	field	positions	on	screen	panels	and
report	layouts	should	not	be	enabled	in	this	function,	regardless	of	whether	or

its:lansa010.CHM::/lansa/ladtgubh_0155.HTM
its:LANSA010.CHM::/lansa/ugubc_c10060.htm

not	the	function	is	being	compiled	under	a	right-to-left	language.
The	automatic	"mirroring"	facility,	and	this	parameter	value,	only	apply	to
functions	being	compiled	under	right-to-left	languages.	This	parameter	is
ignored	for	all	other	language	groups.
*DIRECT
Specifies	that	this	function	should	be	made	eligible	for	potential	direct	calling
from	another	function,	or	to	directly	service	a	prompt	key	request.
Note:	All	RDMLX	Functions	must	use	*DIRECT.	This	ensures	that	migrated
IBM	i	RDML	Functions	are	unique.
By	using	this	option	you	are	indicating	that	this	function	may	be	directly
invoked	by	another	caller	function,	or	to	directly	service	a	prompt	key	request.
Whether	or	not	this	is	a	completely	valid	way	to	invoke	this	function	is	not
important	at	this	stage.	This	option	just	indicates	that,	should	the	need	arise,	the
function	may	be	directly	called.
It	is	recommended	that	all	functions	include	a	FUNCTION	command
containing	this	option,	and	that	any	application	template	created	before	this
option	became	available,	should	be	modified	to	automatically	generate	a
FUNCTION	command	using	this	option.
Refer	to	the	CALL	command	for	more	details	of	how	a	direct	mode	call	is	made
and	the	restrictions	that	exist	when	using	this	type	of	call	operation.
*CLOSE_DISPLAY
Portability
Considerations

Will	be	ignored	with	no	known	effect	to	the	application,	if
used	in	Visual	LANSA	code.

This	option	indicates	that	even	though	the	function	may	remain	active	as	a
HEAVY	usage	process,	or	a	*HEAVYUSAGE	function,	its	display	file	should
be	closed	when	it	terminates,	and	re-opened	when	it	is	activated	again.
This	option	is	primarily	intended	for	use	in	pop-up	window	prompt	key
functions	that	suffer	from	"restored"	displays	that	are	out	of	date,	or	that	"flash"
onto	the	screen.
If	this	option	is	used,	ensure	that	all	browse	lists	are	specifically	cleared
(CLR_LIST	command)	at	each	entry	or	(re)entry	to	the	function.	This	ensures
that	any	counter	fields	are	reset	to	zero	to	match	the	current	number	of	entries	in
the	list,	which	will	be	zero	because	the	display	file	was	closed	on	any	previous
termination.
*MLOPTIMIZE	or	*MLOPTIMISE

Portability
Considerations

Will	be	ignored	if	used	in	Visual	LANSA	and
RDMLX	code.

Specifies	that	an	RDML	function	using	multilingual	support	(which	is	defined	at
the	partition	level)	should	be	optimized	for	multilingual	application	support	of
five	or	less	languages.
Using	this	option	can	enhance	application	performance	where	typically	five	or
less	languages	are	being	supported.
When	an	RDML	function	is	compiled	a	main	program	object	results.
When	the	RDML	function	is	in	a	multilingual	partition	an	"extra"	program
object	is	also	produced.
The	main	RDML	compiled	function	declares	a	storage	area	to	contains	all
"literal"	values	that	may	be	subject	to	dynamic	change	by	language.
When	it	is	invoked	it	calls	the	extra	program	to	initialize	the	storage	area	with
the	literal	values	that	are	correct	for	the	current	language.
This	is	an	efficient	approach	when	quite	a	large	number	of	languages	are
involved	because	the	main	program	only	has	to	declare	storage	sufficient	for
one	language	set.
When	the	extra	program	is	invoked	it	temporarily	uses	storage	sufficient	for	all
languages,	copies	the	correct	language	details	into	the	main	programs	storage
area,	then	ends,	freeing	all	the	extra	(and	now	unneeded)	language	storage	areas.
This	approach	also	has	two	disadvantages.	Firstly,	it	means	that	the	RDML
function	takes	longer	to	compile	because	two	compiled	program	objects	must	be
produced.	Secondly,	it	means	that	the	main	RDML	function	must	place	a	call	to
the	extra	initializing	program	during	function	startup.
By	using	*MLOPTIMIZE	(or	*MLOPTIMISE)	the	existence	of	the	extra
initializing	function	can	be	suppressed.	The	storage	required	for	all	languages	is
declared	in	the	main	program	and	the	storage	area	used	for	the	current	language
is	initialized	directly	by	the	main	program.
Using	*MLOPTIMIZE	in	a	function	means	more	storage	requirements	in	the
main	program,	but	less	resource	usage	during	compiles	and	during	function
invocation.
Since	more	storage	is	used,	it	is	recommended	that	*MLOPTIMIZE	is	only	used
in	functions	that	are	supporting	5	or	less	languages.
However,	the	value	5	is	a	recommendation	only,	and	the	option	can	be	used	in
functions	supporting	more	languages,	at	the	discretion	of	the	application

designer.
The	following	points	about	*MLOPTIMIZE	should	also	be	noted:
You	must	be	using	OS/400	V2R1	(or	higher).
The	application	must	be	in	a	multilingual	partition.

Use	of	*MLOPTIMIZE	in	any	situation	where	these	conditions	are	not	all	met
does	no	harm.	A	warning	message	is	issued	and	the	*MLOPTIMIZE	request	is
ignored.
*ALP_SYSTEM_VARIABLE
Specifies	that	this	function	is	to	be	a	system	variable	evaluation	function	(for
alphanumeric	variables	only).	Refer	to	the	System	Variable	Evaluation
Programs	in	the	Visual	LANSA	Developer	Guide	for	more	information.	Option
*DIRECT	must	also	be	used	when	this	option	is	used.
*NUM_SYSTEM_VARIABLE
Specifies	that	this	function	is	to	be	a	system	variable	evaluation	function	(for
numeric	system	variables	only).	Refer	to	the	System	Variable	Evaluation
Programs	in	the	Visual	LANSA	Developer	Guide	for	more	information	and	the
design	constraints	on	the	use	of	functions	for	system	variable	evaluation.	Option
*DIRECT	must	also	be	used	when	this	option	is	used.
*ALP_FIELD_VALIDATE
Specifies	that	this	function	is	to	be	a	complex	logic	check	function	(for
alphanumeric	fields	only).
Refer	to	the	Complex	Logic	Rule	in	the	LANSA	for	i	User	Guide	for	further
information.	Option	*DIRECT	must	also	be	used	when	this	option	is	used.
*NUM_FIELD_VALIDATE
Specifies	that	this	function	is	to	be	a	complex	logic	check	function	(for	numeric
fields	only).
Refer	to	the	Complex	Logic	Rule	in	the	LANSA	for	i	User	Guide	for	further
information.	Option	*DIRECT	must	also	be	used	when	this	option	is	used.
Technical	notes	for	*ALP_FIELD_VALIDATE	and
*NUM_FIELD_VALIDATE
Complex	logic	validation	functions	can	handle	fields	of	different	lengths	and
decimal	precision	but	not	of	different	types.	The	FUNCTION	command	option
of	*ALP_FIELD_VALIDATE	will	indicate	that	this	is	a	function	to	validate	an
alphanumeric	field.	The	FUNCTION	command	option	of

its:LANSA013.CHM::/lansa/crfile8_begin.HTM
its:LANSA013.CHM::/lansa/crfile8_begin.HTM
its:LANSA010.CHM::/lansa/ugub_20012.HTM
its:LANSA010.CHM::/lansa/ugub_20012.HTM

*NUM_FIELD_VALIDATE	will	indicate	that	this	is	a	function	to	validate	a
numeric	field.
In	order	to	access	the	field	name,	length	and	the	field	value	within	the	validation
function	it	is	necessary	to	define	the	following	fields	in	the	data	dictionary:
VALFLD$NM	A(10)	Name	of	Field	being	Validated
VALFLD$LN	P(7,0)	Length	of	Field	being	Validated
VALFLD$DP	P(7,0)	No.	of	decimals	for	Field	being	Validated	
VALFLD$AV	A(256)	Current	Field	Value	(Alphanumeric	Field	and	only	the
first	256	bytes	of	*Char/	*String	Field).
Note:	The	*SQLNULL	special	value	can't	be	evaluated	to	the	*Char/*String
Field	Type	in	the	CALLBACK	Function	because	the	VALFLD$AV	is	*Alpha
type.
	
VALFLD$NV	P(30,9)	Current	Field	Value	(Numeric	Field)
VALFLD$RT	A(1)	Return	code

Note	that	this	implementation	effectively	prohibits	validating	numeric	fields	that
have	more	than	21	significant	digits.
If	option	*ALP_FIELD_VALIDATE	or	*NUM_FIELD_VALIDATE	are	used
within	the	function,	return	the	calculated	return	code	in	field	VALFLD$RT.	This
should	be	returned	by	the	validation	function	as	'1'	(good	return)	or	'0'	(bad
return).
If	either	*ALP_FIELD_VALIDATE	or	*NUM_FIELD_VALIDATE	have	been
entered	as	a	function	option	the	following	design	constraints	(rather	than
technical	constraints)	exist	to	ensure	the	correct	use	of	the	facility:
No	DISPLAY,	REQUEST	or	POP_UP	command	can	be	used	within	a
complex	logic	validation	function.
No	CALL	can	exist	to	another	process/function	within	a	complex	logic
validation	function.	However,	a	call	to	a	3GL	program	can	exist.
Complex	logic	validation	functions	cannot	exist	within	an	action	bar	process.
This	is	not	to	say	that	they	cannot	be	referenced	from	within	an	action	bar,	it
just	means	that	a	complex	logic	function	cannot	be	defined	as	part	of	a
process	that	is	of	action	bar	type.
Complex	logic	validation	functions	cannot	have	options	of	RCV_DS	or
RCV_LIST.
The	associated	process	must	not	have	parameters.

The	exchange	list	may	not	be	used.	This	restriction	ensures	insulated
modularity	in	the	validation	check.
Recursive	implementations	may	be	defined,	but	will	fail	to	execute	correctly.
For	instance	a	validation	checker	function	invoked	during	an	insert	to	file	A
could	attempt	to	insert	data	into	file	B,	possibly	causing	itself	to	be	invoked	in
a	recursive	situation,	and	thus	to	fail.
Use	of	options	*DBOPTIMIZE	and	*NOMESSAGES	are	recommended	for
complex	logic	validation	functions.	The	use	of	*HEAVYUSAGE	may	also	be
considered	in	heavily	used	validation	functions.
The	use	of	option	*MLOPTIMIZE	is	strongly	recommended	in	all
multilingual	applications	of	this	facility.

*MINI_SCREEN
Portability
Considerations

Do
not
use	this	option	unless	the	application	is
IBM	i
based	and	it	is	using	"miniature"	or	"palm	top"	devices	that
have	a	screen	panel	size	smaller	than	the	normal	24	line	x	80
column	devices.
Do
not
use	this	option	in	functions	that	contain	normal	full	panel
DISPLAY	or	REQUEST	commands.
Do
not
use	this	option	in	functions	that	are	GUI	enabled.	If	used	in
Visual	LANSA	code	it	will	be	ignored.	A	build	warning	will
be	generated.

Specifies	that	POP_UP	commands	used	within	this	function	are	to	be	used	for
"mini	screen"	display	devices	that	may	be	attached	to	an	IBM	i	system.	When
this	option	is	used	the	following	changes	to	the	normal	way	that	the	POP_UP
commands	function	are	activated:
No	borders	are	presented.
The	window	can	be	located	left	as	far	as	row	1,	column	1.

The	borderless	window	produces	a	representation	of	a	"mini"	full	screen
panel,	rather	than	of	a	typical	pop-up	window.
Browselists	presented	within	a	pop-up	window	where	all	field	column
headings	have	been	overridden	to	blanks	values	will	not	be	spaced/separated
from	the	header	area	by	the	normal	separation	line.

This	means	that	manually	defined	text	can	be	effectively	specified	for
"apparent"	column	headings.	This	facility	is	only	used	where	all	fields	in	the
browselist	have	their	column	headings	overridden	to	blanks.	It	also	means
that	it	is	hard	to	insert	a	whole	new	line	of	text	into	the	design	via	the	screen
painter	because	the	normal	separation	line	cannot	be	used	as	a	target	position
to	"push"	the	browselist	down	the	screen	panel.	To	insert	a	new	line	of	text
return	to	the	RDML	editor	and	define	a	"dummy"	field	into	the	header	area	at
the	end	of	the	FIELDS	list	and	then	re-invoke	the	screen	painter.	The	dummy
field	should	be	positioned	so	as	to	"push"	the	browselist	further	down	the
screen	panel.	Add/move	the	necessary	text	and/or	field	onto	the	new	line
created	and	then	optionally	delete	the	"dummy"	field.

Where	large	scale	use	of	this	feature	is	being	made	it	is	strongly
recommended	that	an	Application	Template	be	constructed	for	invocation	by
the	"ET"	(Execute	Template)	editor	action.	This	template	can	be	used	to
construct	a	"standard	layout"	for	every	"mini-screen"	including	one	or	more
initial	"dummy"	fields	to	push	the	browselist	portion	onto	the	required
starting	line	and	leave	sufficient	space	for	the	insertion	of	fields	and/or	text
into	the	header	area.

*OS400_EXT_PRINT
Portability
Considerations

Not	supported	in	Visual	LANSA	and	RDMLX	code.	A	build
warning	will	be	generated	if	used.

specifies	that	LANSA	should	generate	and	use	IBM	i	specific	External	Printer
files	for	the	RDML	function.	By	itself	there	is	no	advantage	in	using	this	option,
but	it	must	be	specified	to	utilize	User	Define	Reporting	Attributes	within	the
RDML	function.
The	use	of	this	Option	makes	the	function	IBM	i	PLATFORM	DEPENDENT.
When	*OS400_EXT_PRINT	is	specified	there	are	certain	restrictions:
*DIRECT	must	also	be	specified.
The	SKIP	command	cannot	be	used.

Only	Report	Number	1	may	be	used.
If	any	of	these	restrictions	are	broken	then	a	fatal	error	will	result	when	function
Checking.
More	information	on	User	Defined	Reporting	Attributes	and	External	Printer
files,	is	supplied	in	User	Defined	Reporting	Attributes	in	the	LANSA	for	i	User
Guide.
*BUILTIN
Specifies	that	this	function	is	to	be	a	Built-In	Function.
Refer	to	Create	your	Own	Built-In	Functions	in	the	LANSA	Application	Design
Guide	for	more	details.	*DIRECT	must	also	be	used	when	this	option	is	used.
*STRICT_NULL_ASSIGN
Specifies	that	it	is	an	error	to	assign	an	*SQLNULL	into	a	non-nullable	field.
The	default	is	not	to	be	strict	and	in	simple	terms	treat	an	*SQLNULL	value	as
*NULL	when	assigning	into	a	non-nullable	field.	For	a	definition	of	the	*NULL
value	for	each	of	the	field	types,	refer	to	7.9.1	CHANGE	Parameters.
Refer	to	Assignment,	Conditions,	and	Expressions	with	Fields	allowing	SQL
Null	for	full	details	on	strict	null	assignment	versus	the	default	behaviour.

RCV_DS
Allows	up	to	20	different	data	structure	names	to	be	specified	which	can	be
received	by	the	function.	The	following	points	should	be	noted	when	using	this
parameter:
Each	data	structure	name	should	be	the	name	of	a	physical	file	which	has	been
defined	to	LANSA.
FUNCTION	OPTIONS(*DIRECT)	must	be	specified	when	this	parameter	is
used.
A	function	receiving	data	structure(s)	is	flagged	as	being	not	directly	accessible
from	a	process	menu	(or	an	action	bar)	during	its	compilation,	unless	the	special
*EXCHANGE	option	is	used.
Such	a	function	has	to	be	called	from	another	function	that	will	pass	the	correct
data	structures	(in	the	correct	order)	rather	than	being	called	directly	from	a
process	menu	or	action	bar.
To	be	able	to	receive	fields	within	the	named	physical	file	(ie:	data	structure),
the	fields	must	be	referenced	at	some	point	within	the	function,	otherwise	they
will	not	be	received.	This	applies	to	the	calling	function	also.	Only	real	fields
from	the	file	can	be	passed,	not	virtual	fields.

its:LANSA010.CHM::/lansa/ugubc_c10140.HTM
its:LANSA065.CHM::/lansa/dsnbi_0005.htm

It	is	important	to	note	that	the	order	in	which	the	data	structures	are	specified	on
the	PASS_DS	parameter	of	the	CALL	command	and	the	order	in	which	they	are
specified	on	the	RCV_DS	on	the	FUNCTION	command	of	the	called	function
is	significant	-	the	data	structures	must	appear	in	the	same	order	in	the	called
and	calling	functions,	otherwise	errors	could	occur.
Likewise,	when	the	layout	of	a	data	structure	is	changed,	all	functions	that
reference	it	in	a	RCV_DS	or	PASS_DS	parameter	should	be	recompiled	after
the	changed	data	structure	has	been	made	operational.
A	specialized	option	called	*EXCHANGE	may	be	used	as	the	first	argument	of
the	RCV_DS	parameter	(e.g.:	RCV_DS(*EXCHANGE	CUSMST	PRODMST)
).	This	indicates	that	the	named	data	structures	are	to	be	passed	and	returned	via
an	"exchange	list"	type	of	structure,	rather	than	as	actual	parameters.
This	facility	is	highly	specialized	and	designed	for	use	only	in	functions	that
exactly	match	the	following	criteria.	DO	NOT	USE	this	option	unless	your
function	exactly	matches	these	criteria:
They	are	directly	invoked	from	a	menu	or	an	action	bar.	This	feature	was
provided	to	allow	such	functions	to	"exchange"	a	complete	set	of	data
structures	amongst	themselves,	rather	that	having	to	use	the	EXCHANGE
command	to	exchange	many	individual	fields.
They	are	not	called	by	other	functions.	Why	use	this	option	when	the	data
structure	can	be	directly	passed	in	by	the	caller	in	the	normal	manner?

The	processing	logic	used	in	a	function	using	RCV_DS(*EXCHANGE)	is	like
this:
As	the	function	is	entered,	the	"exchange	area"	is	searched	for	data	structures
(by	data	structure	name,	not	by	order	of	specification).	When	a	match	is
found	the	content	is	copied	into	the	data	structure.	When	a	match	is	not	found
the	content	of	the	data	structure	remains	unchanged.
The	"exchange	area"	is	then	cleared	of	all	data	structures.
The	function	then	proceeds	to	do	its	normal	processing.
When	the	function	terminates	normally	(in	any	way)	the	contents	of	all	the
data	structures	nominated	in	the	RCV_DS	parameter	are	copied	back	into	the
"exchange	area".

Some	technical	considerations	when	using	this	option	are:
Only	functions	that	use	RCV_DS(*EXCHANGE)	will	search,	clear	and
alter	the	exchange	area.	Functions	that	do	not	use	this	option	have	no	impact
at	all	on	the	exchange	area.

The	maximum	length	of	the	exchange	area	is	9999	bytes.	Attempting	to	use	a
set	of	data	structures	with	an	aggregate	length	exceeding	this	limit	will	cause
an	application	failure.
The	actual	storage	of	the	exchange	area	is	performed	by	a	shipped	program
called	M@EXCHDS.	To	optimize	performance	under	the	IBM	i	operating
system	and	prevent	PAG	(Process	Access	Group)	"holes"	this	program	has	an
"open"	and	"close"	option	that	can	be	used	before	LANSA	is	invoked	(e.g.:
during	system	sign	on).	The	"open"	and	"close"	option	uses	the	LANSA
convention	of	CALL	M@EXCHDS	(X'00')	to	open	and	CALL	M@EXCHDS
(X'FF')	to	close.	Obviously	the	close	operation	clears	the	exchange	area.	Do
not	call	M@EXCHDS	from	within	LANSA	RDML	functions.	These	types	of
calls	are	not	required	to	actually	use	this	facility,	only	to	OPTIMIZE	its	use.
Using	RCV_DS(*EXCHANGE)	is	less	efficient	than	using	a	normal
RCV_DS(.....)	parameter,	but	more	efficient	than	using	an	EXCHANGE
command	with	many	fields.

RCV_LIST
Allows	up	to	20	different	working	list	names	to	be	specified.	The	following
points	should	be	noted	when	using	this	parameter:
Each	working	list	specified	must	be	a	defined	working	list	within	the	function.
FUNCTION	OPTIONS(*DIRECT)	must	be	specified	when	this	parameter	is
used.
A	function	receiving	a	working	list	will	be	flagged	as	being	not	accessible	from
the	main	menu	when	it	is	compiled.	It	will	have	to	be	called	from	another
function	passing	in	the	correct	working	lists,	rather	than	from	a	menu.
The	working	lists	must	have	been	defined	with	the	same	attributes	in	both	the
called	and	calling	function	otherwise	errors	could	occur.
It	is	also	important	to	note	that	the	order	in	which	the	working	lists	are	specified
on	the	PASS_LST	parameter	of	the	calling	function	and	the	order	in	which	they
are	specified	on	the	RCV_LIST	of	the	called	function	is	significant	-	the
working	lists	must	appear	in	the	same	order	in	the	called	and	calling	functions,
otherwise	errors	could	occur.

TRIGGER
is	used	to	specify	that	this	function	is	to	act	as	a	"trigger"	for	a	data	dictionary
field	or	a	database	file.
*NONE,	which	is	the	default	value,	indicates	that	this	function	is	not	a	trigger

function.
*FIELD	indicates	that	this	function	is	to	act	as	a	data	dictionary	level	trigger.
The	associated	data	dictionary	field	name	must	also	be	specified	in	this
parameter.
*FILE	indicates	that	this	function	is	to	act	as	a	database	level	trigger.	The
associated	database	file	name	must	also	be	specified	in	this	parameter.	The	file
specified	must	be	a	physical	file.
For	further	details,	refer	to	Triggers.
When	a	function	is	defined	as	a	trigger	function	you	must	follow	these
guidelines:
The	parameter	RCV_LIST(#TRIG_LIST)	must	be	used.
The	parameter	RCV_DS	must	not	be	used.
Option	*DIRECT	must	also	be	used.
Options	xxx_SYSTEM_VARIABLE	or	xxx_FIELD_VALIDATE	must	not	be
used.
The	list	#TRIG_LIST	must	be	defined	by	a	DEF_LIST	command	as
DEF_LIST	NAME(#TRIG_LIST)	TYPE(*WORKING)	ENTRYS(2)	and
must	not	include	any	fields	in	the	FIELDS	parameter.	The	required	fields	will
be	automatically	added.
No	DISPLAY,	REQUEST	or	POP_UP	commands	may	be	used.	This	is	a
deliberately	imposed	design/usage	constraint	that	may	be	removed	in	later
versions.
No	CALL	can	exist	to	another	process/function.	This	is	a	deliberately
imposed	design/usage	constraint	that	may	be	removed	in	later	versions.
If	the	Built-In	Function	CALL_SERVER_FUNCTION	is	used	to	call	a
function	via	SuperServer,	you	must	not	pass	the	list	#TRIG_LIST	to	the
server	function.
Trigger	functions	cannot	be	defined	within	an	action	bar	process.	This	is	not
to	say	that	they	cannot	be	referenced	from	within	an	action	bar,	it	just	means
that	a	trigger	function	cannot	be	defined	as	part	of	a	process	that	is	of	action
bar	type.
The	associated	process	must	not	have	any	parameters.
The	exchange	list	may	not	be	used.	This	is	a	deliberately	imposed
design/usage	constraint	imposed	to	enforce	insulated	and	modular	design	and
use	of	trigger	functions.

When	a	function	is	defined	as	a	trigger	function	you	should	follow	these
guidelines	in	most	situations:
Understand	how	triggers	are	defined	and	how	they	should	be	used	by	also
reading	Triggers.
Use	options	*NOMESSAGES	and	*MLOPTIMIZE.
Options	*HEAVYUSAGE	and	*DBOPTIMIZE	may	also	be	considered.
Do	not	directly	or	indirectly	access	the	database	file	that	the	trigger	is,	or	will
be,	linked	to.
Where	triggers	are	heavily	and	constantly	invoked	avoid	resource	intensive
operations.	Such	operations	will	slow	down	access	to	the	associated	file.
Recursive	implementations	may	be	defined,	but	will	fail	to	execute	correctly.
For	instance	a	field	trigger	function	invoked	during	an	insert	to	file	A	could
attempt	to	insert	data	into	file	B,	possibly	causing	itself	to	be	invoked	in	a
recursive	situation,	and	thus	to	fail.

7.49.2	FUNCTION	Examples
Example	1:	Set	the	possible	options	for	a	batch	subroutine	RDML	program:
FUNCTION		OPTIONS(*NOMESSAGES	*HEAVYUSAGE)
	

Example	2:	Set	possible	options	for	an	interactive	"pop	up	selector"	RDML
subroutine:
FUNCTION		OPTIONS(*NOMESSAGES	*DEFERWRITE)
	

Example	3:	Receive	data	structure	DATAFILE	into	this	function:
FUNCTION		OPTIONS(*DIRECT)	RCV_DS(DATAFILE)
	

This	requires	a	file	called	DATAFILE	to	be	defined	to	LANSA.	The	real	fields
on	this	file	can	be	received	as	a	data	structure	from	another	function.	A	dummy
field	on	the	end	of	the	data	structure	would	avoid	the	need	to	recompile	each
function	referencing	the	data	structure	each	time	fields	are	added	within	the	data
structure.	As	long	as	the	length	of	the	data	structure	remains	consistent,	the
functions	which	use	it	would	not	require	recompilation	(unless	the	existing
fields	are	changed	in	length,	position	or	type	within	the	data	structure).
Example	4:	Receive	working	list	#ORDERLINE	into	this	function
FUNCTION		OPTIONS(*DIRECT)	RCV_LIST(#ORDERLINE)
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	TYPE(*WORKING)
	

7.50	GET_ENTRY
The	GET_ENTRY	command	is	used	to	retrieve	an	individual	entry	from	a	list.
The	list	may	be	a	browse	list	(used	for	displaying	information	at	a	workstation)
or	a	working	list	(used	to	store	information	within	a	program).
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	list	processing.

Also	See
7.50.1	GET_ENTRY	Parameters
7.50.2	GET_ENTRY	Examples
																																																									Required
	
		GET_ENTRY	----	NUMBER	------
-	numeric	value	or	field	name	---->

																																																									Optional
	
												>---	FROM_LIST	----	*FIRST	------------------------->
																																list	name
	
													>--	RET_STATUS	---	*STATUS	------------------------|
																																field	name
	

7.50.1	GET_ENTRY	Parameters
NUMBER
FROM_LIST
RET_STATUS

NUMBER
Specifies	a	numeric	literal	or	numeric	field	that	indicates	the	entry	number	of
the	list	entry	that	is	to	be	retrieved.	As	each	entry	is	added	to	a	list	by	the
ADD_ENTRY	command	it	is	assigned	a	number	that	identifies	it.	List	entries
are	numbered	from	1	(first	entry	number)	to	9999	(maximum	possible	last	entry
number)	sequentially.	By	specifying	a	list	entry	number	it	is	possible	to	retrieve
an	individual	list	entry.

FROM_LIST
Specifies	the	name	of	the	list	from	which	the	entry	should	be	retrieved.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used	(which
may	be	a	browse	or	a	working	list).
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command.

RET_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	GET_ENTRY	command.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.
The	GET_ENTRY	command	only	returns	2	possible	status	codes.	These	are
"OK"	(the	entry	was	successfully	retrieved)	or	"NR"	(the	entry	was	not	found).

7.50.2	GET_ENTRY	Examples
Example	1:	Retrieve	entry	number	5	from	a	list	named	#ORDERLINE:
GET_ENTRY			NUMBER(5)	FROM_LIST(#ORDERLINE)
	

Example	2:	Retrieve	entries	7	through	42	from	an	existing	list	named
#ORDERLINE	and	increase	the	value	of	field	#QUANTITY	by	10	percent.
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
DEFINE					FIELD(#ENTRY)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)
	
CHANGE					FIELD(#ENTRY)	TO(7)
DOWHILE				COND('#ENTRY	*LE	42')
GET_ENTRY		NUMBER(#ENTRY)	FROM_LIST(#ORDERLINE)
CHANGE					FIELD(#QUANTITY)	TO('#QUANTITY	*	1.1')
UPD_ENTRY		IN_LIST(#ORDERLINE)
CHANGE					FIELD(#ENTRY)	TO('#ENTRY	+	1')
ENDWHILE
	

7.51	GOTO
The	GOTO	command	is	used	to	transfer	control	to	another	command	in	the
same	function.	The	command	which	is	to	receive	control	is	identified	by	the
label	associated	with	it.

Also	See
7.51.1	GOTO	Parameters
7.51.2	GOTO	Examples
																																																									Required
	
		GOTO	---------	LABEL	--------	label	------------------|
	

7.51.1	GOTO	Parameters
LABEL

LABEL
Specifies	the	label	of	the	command	which	is	to	receive	control.	The	label
specified	in	this	parameter	must	be	the	label	of	one	and	only	one	other
command	in	the	function.

7.51.2	GOTO	Examples
Example	1:	If	field	#X	is	less	than	10	then	transfer	control	to	label	L10:
IF					COND('#X	*LT	10')
GOTO			LABEL(L10)
ENDIF
	

Example	2:	If	field	#X	is	less	than	10	then	transfer	control	to	label	L10:	else
transfer	control	to	label	L11:
IF					COND('#X	*LT	10')
GOTO			LABEL(L10)
ELSE
GOTO			LABEL(L11)
ENDIF
	

7.52	GROUP_BY
The	GROUP_BY	command	is	used	to	group	a	number	of	fields	together	under	a
common	name.
Once	fields	have	been	grouped	under	a	"group	name"	the	fields	can	be
referenced	as	a	group	by	using	the	group	name.

Also	See
7.52.1	GROUP_BY	Parameters
7.52.2	GROUP_BY	Comments	/	Warnings
7.52.3	GROUP_BY	Examples
7.52.4	GROUP_BY	Examples	of	Expandable	Groups
																																																									Required
	
		GROUP_BY	-----	NAME	---------	group	name	----------------
----->
	
													>--	FIELDS	---------	field	name		field	attributes	-|
																																|													|															|	|
																																|														---	7	max	-----		|
																																|*INCLUDING																					|
																																|*EXCLUDING																					|
																																|	expandable	group														|
																																|--	1000	max	for	RDMLX----------|
																																	--	100	max	for	RDML	-----------	
	

7.52.1	GROUP_BY	Parameters
FIELDS
NAME

NAME
Specifies	the	name	by	which	the	group	of	fields	is	to	be	known.	The	name
specified	must	start	with	a	#	(like	field	names)	and	must	not	be	the	same	as	any
field	defined	in	this	function	or	the	LANSA	data	dictionary.	Start	the	name	of
the	group	with	the	prefix	"#XG_"	if	the	group	is	to	be	an	expandable	group.	For
more	details	about	these	special	types	of	groups,	refer	to	Expandable	Groups.

FIELDS
Specifies	the	field(s)	that	are	to	be	in	this	group.	Optionally	the	field	names	can
be	accompanied	by	field	attributes.	Refer	to	Formats,	Values	and	Codes	for
further	information	about	specifying	field	names	and	field	attributes.
The	following	special	values	may	only	be	used	in	expandable	groups:
Expandable	group	name,	in	the	field	list,	causes	the	fields	assembled	under
the	group	name	entry	to	be	expanded	and	included	in	the	field	list	instead	of
the	group	itself.
*EXCLUDING	in	the	field	list	causes	the	field(s)	following	this	special	value
to	be	excluded	(if	present)	from	the	field	list.	That	is,	the	field	list	is	switched
to	exclusion	mode.
*INCLUDING	in	the	field	list	causes	the	field	to	return	to	inclusion	mode.
This	is	required	if	additional	fields	need	to	be	added	to	the	field	list	after	an
*EXCLUDING	entry	earlier	in	the	list	caused	the	list	to	be	in	exclusion
mode.

7.52.2	GROUP_BY	Comments	/	Warnings
A	field	can	be	specified	in	multiple	groups.

7.52.3	GROUP_BY	Examples
Example	1:	Compare	the	following	RDML	program:
L1:	REQUEST	FIELDS(#A	#B	#C	#D	#E	#F	#G	#H	#I)
				INSERT		FIELDS(#A	#B	#C	#D	#E	#F	#G	#H	#I)	TO_FILE(TESTFILE)
				GOTO				LABEL(L1)
	

with	the	identical	RDML	program:
				GROUP_BY	NAME(#GROUP)	FIELDS(#A	#B	#C	#D	#E	#F	#G	#H	#I)
L1:	REQUEST		FIELDS(#GROUP)
				INSERT			FIELDS(#GROUP)	TO_FILE(TESTFILE)
				GOTO					LABEL(L1)
	

Now	if	fields	#J	->	#Z	were	added	to	file	TESTFILE	and	this	function	had	to	be
changed	to	use	these	new	fields,	which	function	would	be	the	easiest	to	change?

7.52.4	GROUP_BY	Examples	of	Expandable	Groups
Example	1:	Groups	assembled	from	other	groups:
GROUP_BY		NAME(#XG_GRP1)	FIELDS(#A	#B	#C	#D)
GROUP_BY		NAME(#XG_GRP2)	FIELDS(#E	#F	#G	#H)
GROUP_BY		NAME(#XG_GRP3)	FIELDS(#XG_GRP1	#XG_GRP2)
	

is	equivalent	to	writing:
GROUP_BY		NAME(#XG_GRP3)	FIELDS(#A	#B	#C	#D	#E	#F	#G	#H)
	

Example	2:	Groups	assembled	from	other	groups	which	share	common	fields:
GROUP_BY		NAME(#XG_GRP1)	FIELDS(#A	#B	#C	#D)															
GROUP_BY		NAME(#XG_GRP2)	FIELDS(#C	#D	#E	#F)															
GROUP_BY		NAME(#XG_GRP3)	FIELDS(#XG_GRP1	#XG_GRP2)								
	

is	equivalent	to	writing:
GROUP_BY		NAME(#XG_GRP3)	FIELDS(#A	#B	#C	#D	#E	#F)
	

When	the	field	list	is	expanded,	the	fields	from	group	#XG_GRP2	which	are
already	in	the	field	list	are	not	added	again.
Example	3:	Mixing	expandable	groups	and	individual	fields	in	the	field	list:
GROUP_BY		NAME(#XG_GRP1)	FIELDS(#A	#B	#C)
GROUP_BY		NAME(#XG_GRP2)	FIELDS(#E	#F	#G)
GROUP_BY		NAME(#XG_GRP3)	FIELDS(#XG_GRP1	#D	#XG_GRP2	#H)
	

is	equivalent	to	writing:
GROUP_BY		NAME(#XG_GRP3)	FIELDS(#A	#B	#C	#D	#E	#F	#G	#H)		
	

Example	4:	Using	*EXCLUDING	and	*INCLUDING	special	values	in	the	field
list:
GROUP_BY		NAME(#XG_GRP1)	FIELDS(#A	#B	#C	#D	#E)												
GROUP_BY		NAME(#XG_GRP2)	FIELDS(#F	#G	#H	#I	#J)												
GROUP_BY		NAME(#XG_GRP3)	FIELDS(#XG_GRP1	*EXCLUDING	#D	#E	*INCLUDING	#XG_GRP2	*EXCLUDING	#J)
	

is	equivalent	to	writing:

GROUP_BY		NAME(#XG_GRP3)	FIELDS(#A	#B	#C	#F	#G	#H	#I)
	

7.53	IF
The	IF	command	is	used	to	test	the	truth	of	a	condition	and	then	execute	certain
RDML	commands	only	if	the	condition	is	true.
By	using	an	ELSE	command	in	conjunction	with	an	IF	command	it	is	possible
to	nominate	the	RDML	commands	to	execute	if	the	condition	is	true	and	the
commands	to	execute	if	the	condition	is	not	true.
An	IF	command	is	always	used	in	conjunction	with	an	ENDIF	command	and
optionally	may	be	used	in	conjunction	with	an	ELSE	command.	Refer	to	these
commands	for	more	information.

Also	See
7.53.1	IF	Parameters
7.53.2	IF	Examples
																																																									Required
	
		IF	-----------	'condition'	-----------------------------------|
	

7.53.1	IF	Parameters
COND

COND
Specifies	the	condition	that	is	to	be	evaluated	to	test	the	"truth"	of	the	IF
condition.	For	more	details,	refer	to	Specifying	Conditions	and	Expressions.

7.53.2	IF	Examples
Example	1:	If	field	#I	is	greater	than	10	issue	a	message	indicating	this,	else
issue	a	message	indicating	it	is	less	than	or	equal	to	10:
IF							COND('#I	*GT	10')
MESSAGE		MSGTXT('#I	is	greater	than	10')
ELSE
MESSAGE		MSGTXT('#I	is	less	than	or	equal	to	10')
ENDIF
	

Example	2:	Execute	a	certain	series	of	commands	if	#QUANTITY	is	less	than
10	and	#MEASURE	is	greater	than	42.67,	else	execute	a	different	series	of
commands:
IF							COND('(#QUANTITY	*LT	10)	*AND	(#MEASURE	*GT	42.67)')
*	<<	commands	to	execute	when	condition	is	true	>>
ELSE
*	<<	commands	to	execute	when	condition	is	false	>>
ENDIF
	

7.54	IF_ERROR
The	IF_ERROR	command	is	a	hybrid	version	of	the	normal	IF	command.	It
allows	for	the	"error	condition"	inside	a	validation	block	to	be	checked.
For	more	information	about	the	raising	of	the	"error	condition"	inside	a
validation	block	refer	to	the	ENDCHECK	command.
An	optional	error	message	may	be	issued	when	the	"error	condition	is	raised".

Also	See
7.54.1	IF_ERROR	Parameters
7.54.2	IF_ERROR	Examples
																																																									Optional
	
		IF_ERROR	-----	MSGTXT	-------	*NONE	---------------------
----->
																																message	text
	
													>--	MSGID	--------	*NONE	-------------------------->
																																message	identifier
	
													>--	MSGF	---------	DC@M01	.	*LIBL	-----------------
>
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																														|	expandable	group	expression	|
																															--------	20	max	-------------
	

7.54.1	IF_ERROR	Parameters
MSGDTA
MSGF
MSGID
MSGTXT

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing

blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:
"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this:
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS	'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.54.2	IF_ERROR	Examples
There	are	no	examples	for	the	IF_ERROR	Command

7.55	IF_KEY
The	IF_KEY	command	is	a	hybrid	version	of	the	normal	IF	command.	It	allows
the	last	key	used	at	a	workstation	to	be	tested.
For	more	information	about	the	keys	that	are	enabled	by	commands	that	use	a
workstation	refer	to	the	DISPLAY,	REQUEST,	POP_UP	and	BROWSE
commands.

Also	See
7.55.1	IF_KEY	Parameters
7.55.2	IF_KEY	Comments	/	Warnings
7.55.3	IF_KEY	Examples
																																																									Required
	
		IF_KEY	-------	WAS	----------	*ENTER	------------------------
-|
																									|						*EXIT									|
																									|						*ADD										|
																									|						*CHANGE							|
																									|						*DELETE							|
																									|						*PROMPT							|
																									|						*CANCEL							|
																									|						*EXITHIGH					|
																									|						*EXITLOW						|
																									|						*ROLLUP							|
																									|						*ROLLDOWN					|
																									|						*USERKEY1					|
																									|						*USERKEY2					|
																									|						*USERKEY3					|
																									|						*USERKEY4					|
																									|						*USERKEY5					|
																									|						*BUTTONnn					|
																									|																				|
																										----	10	maximum	----
	
			NOTE	:	nn	=	"1	"	to	"20"
	

7.55.1	IF_KEY	Parameters
WAS

WAS
Specifies	the	workstation	keys	that	will	make	the	IF	condition	true.	If	any	one	of
the	keys	specified	matches	the	last	key	used	at	the	workstation	then	the	IF
statement	is	deemed	to	be	"true"	(ie:	the	condition	is	an	OR	condition).

7.55.2	IF_KEY	Comments	/	Warnings
The	IF_KEY	command	should	only	be	used	after	a	command	that	uses	the
workstation	such	as	DISPLAY,	REQUEST,	POP_UP	or	BROWSE	has	been
executed.	Using	an	IF_KEY	command	before	any	interaction	with	a
workstation	will	produce	unpredictable	results.
The	value	*PROMPT	allows	tests	to	be	made	for	the	use	of	the	prompt	key.
However	in	most	RDML	programs	the	prompt	key	is	handled	automatically
because	the	associated	parameter	is	coded	as	PROMPT_KEY(*YES
*AUTO).	To	avoid	having	the	prompt	key	handled	automatically	code
PROMPT_KEY(*YES	*NEXT)	or	PROMPT_KEY(*YES	L10)	where	L10	is
a	command	label.	In	these	cases	the	prompt	key	is	deemed	to	be	handled	by
the	RDML	program,	and	thus	the	IF_KEY	command	can	be	used	to	test	for
its	use.
The	test	values	*CANCEL,	*EXITHIGH	and	*EXITLOW	are	provided	for
complete	compatibility	with	SAA/CUA	function	key	assignments.	Do	not	use
these	values	in	non-SAA/CUA	applications.
*CANCEL	is	functionally	identical	to	*MENU.
When	testing	for	*EXITHIGH	and	*EXITLOW	ensure	that	the	associated
DISPLAY,	REQUEST	or	POP_UP	command	correctly	enables	either	the	exit
high	key	or	the	exit	low	key	via	the	EXIT_KEY	parameter.	It	is	not	possible
to	enable	a	high	and	low	exit	on	the	one	DISPLAY,	REQUEST	or	POP_UP
command.
The	LANSA	dictionary	contains	a	special	field	called	#IO$KEY	which
always	contains	the	last	function	key	used	during	a	workstation	interaction.
This	can	be	tested	in	an	IF	or	CASE	statement	like	any	other	field.	In	some
situations	using	this	field	in	an	IF	or	CASE	command	is	a	better	solution	than
using	the	hybrid	IF_KEY	command.

					An	example	of	using	this	field	follows:
				DISPLAY			USER_KEYS((15	'Purge')(16	'Commit')
(17	'Save')	(*ROLLUP	'Up')(*ROLLDOWN	'Down'))
	
				CASE						OF_FIELD(#IO$KEY)
											WHEN						VALUE_IS('=	''15''')
											WHEN						VALUE_IS('=	''16''')
											WHEN						VALUE_IS('=	''17''')
											WHEN						VALUE_IS('=	''UP''')

											WHEN						VALUE_IS('=	''DN''')
				ENDCASE
	

					Field	#IO$KEY	can	be	compared	for	normal	function	key	use	by	using	the
function,	key	number	(ie:	01	to	24).	However,	some	other	values	may	occur
in	#IO$KEY	during	an	RDML	programs	execution.	These	include	the
following:			'RA'	-	The	record	advance	/	enter	key	was	used				'UP'	-	The	roll
up	key	was	used				'DN'	-	The	roll	down	key	was	used			These	values	are
referred	to	as	AIDS	values	and	are	actually	part	of	the	i5/05	operating	system.
If	a	DISPLAY,	REQUEST	or	POP_UP	command	has	been	executed	that
enables	the	roll	up	(*ROLLUP)	or	roll	down	(*ROLLDOWN)	keys,	and	a
browse	list	is	also	displayed,	control	will	not	actually	return	to	the	RDML
program	until	the	user	rolls	off	either	"end"	of	the	browselist.

For	instance	if	a	browse	list	is	filled	with	42	entries	(assume	15	entries	are
displayed	on	each	"page"	of	the	display)	and	then	displayed,	the	roll	up	key
processing	is	handled	automatically	by	the	i5/05	operating	system	until	the	3rd
use.	On	the	3rd	use	the	user	has	attempted	to	roll	off	the	"end"	of	the	browselist,
thus	control	is	returned	to	the	RDML	program.	Roll	down	processing	is	handled
similarly.

7.55.3	IF_KEY	Examples
The	following	example	applies	to	the	IF_KEY	command.
Use	the	IF_KEY	command	to	indicate	to	the	user	which	function	key	he/she
pressed:
BEGIN_LOOP
	
DISPLAY		FIELDS(#ORDNUM	#CUSTNUM
#DATEDUE)	EXIT_KEY(*YES	L01)	MENU_KEY(*YES	L01)	ADD_KEY(*YES)	USER_KEYS((15	'Task1')
(16	'Task2')(17	'Task3')	(18	'Task4')(19	'Task5'))
	
L01:		IF_KEY				WAS(*ENTER)
						MESSAGE			MSGTXT('The	ENTER	key	was	pressed')
						ENDIF
	
						IF_KEY				WAS(*MENU)
						MESSAGE			MSGTXT('The	MENU	key	was	pressed')
						ENDIF
	
						IF_KEY				WAS(*ADD)
						MESSAGE			MSGTXT('The	ADD	key	was	pressed')
						ENDIF
	
						IF_KEY				WAS(*USERKEY1)
						MESSAGE			MSGTXT('User	key	1	(F15)	was	pressed')
						ENDIF
	
						IF_KEY				WAS(*USERKEY2)
						MESSAGE			MSGTXT('User	key	2	(F16)	was	pressed')
						ENDIF
	
						IF_KEY				WAS(*USERKEY3)
						MESSAGE			MSGTXT('User	key	3	(F17)	was	pressed')
						ENDIF
	
						IF_KEY				WAS(*USERKEY4)
						MESSAGE			MSGTXT('User	key	4	(F18)	was	pressed')
						ENDIF

	
						IF_KEY				WAS(*USERKEY5)
						MESSAGE			MSGTXT('User	key	5	(F19)	was	pressed')
						ENDIF
	
						END_LOOP
	

For	more	information	about	function	key	use	and	function	key	assignments	refer
to	the	DISPLAY,	REQUEST,	POP_UP	and	BROWSE	commands.

7.56	IF_MODE
The	IF_MODE	command	is	a	hybrid	version	of	the	normal	IF	command.	It
allows	the	current	screen	"mode"	to	be	tested.
For	more	information,	refer	to	Screen	Modes	and	Mode	Sensitive	Commands.

Also	See
7.56.1	IF_MODE	Parameters
7.56.2	IF_MODE	Examples
																																																									Optional
	
		IF_MODE	------	IS	-----------	*DISPLAY	----------------------
-|
																																*ADD
																																*CHANGE
																																*DELETE
	

7.56.1	IF_MODE	Parameters
IS

IS
Specifies	the	screen	mode	that	is	to	be	tested	for.	Allowable	values	are
*DISPLAY,	*ADD,	*CHANGE	and	*DELETE.	For	more	details	of	screen
processing	modes	and	the	standard	screen	processing	logic,	refer	to	Screen
Modes	and	Mode	Sensitive	Commands.

7.56.2	IF_MODE	Examples
The	following	example	applies	to	the	IF_MODE	command.
Create	a	simple	inquire/add/update/delete	function	on	a	file	called	NAMES.	Use
the	IF_MODE	command	to	test	the	mode	that	the	screen	was	in	at	the	time	the
enter	key	was	pressed:
					GROUP_BY	NAME(#NAMEINFO)	FIELDS(#CUSTNO	#NAME	#ADD1	#ADD2	#POSTCD)
	
L10:	CHANGE			FIELD(#CUSTNO)	TO(*DEFAULT)
	
				MESSAGE		MSGTXT('Specify	customer	to	review	or	use	ADD	key	to	add	one')
	
L15:	SET_MODE	TO(*DISPLAY)
				REQUEST		FIELDS(#CUSTNO)	ADD_KEY(*YES)
				*
				*	Add	a	new	customer	to	the	file
				*
				IF_MODE		IS(*ADD)
									REQUEST		FIELDS(#NAMEINFO)
									INSERT			FIELDS(#NAMEINFO)	TO_FILE(NAMES)
				*
				*	Else	review	/	change	/	delete	an	existing	customer
				*
				ELSE
									FETCH				FIELDS(#NAMEINFO)	FROM_FILE(NAMES)	WITH_KEY(CUSTNO)	NOT_FOUND(L15)	ISSUE_MSG(*YES)
	
									DISPLAY		FIELDS(#NAMEINFO)	CHANGE_KEY(*YES)	DELETE_KEY(*YES)
	
									IF_MODE		IS(*CHANGE)
									UPDATE			FIELDS(#NAMEINFO)	IN_FILE(NAMES)
									ENDIF
	
									IF_MODE		IS(*DELETE)
									DELETE			FROM_FILE(NAMES)
									ENDIF
	
				ENDIF
				*

				*	Go	back	and	request	next	customer
				*
				GOTO					LABEL(L10)
	

7.57	IF_NULL
The	IF_NULL	command	is	a	hybrid	version	of	the	normal	IF	command.	It
allows	one	or	more	field(s)	to	be	tested	for	the	"null"	values.
For	a	definition	of	the	*NULL	value	for	each	of	the	field	types,	refer	to	7.9.1
CHANGE	Parameters.

Also	See
7.57.1	IF_NULL	Parameters
7.57.2	IF_NULL	Comments	/	Warnings
7.57.3	IF_NULL	Examples
																																																									Required
	
		IF_NULL	------	FIELD	------------	field	name	-----------------
|
																																|	expandable	group	expression	|
																																|																													|
																																	---------	100	max	----------
	

7.57.1	IF_NULL	Parameters
FIELD

FIELD
Specifies	the	names	of	the	field(s)	or	group(s)	(refer	to	the	GROUP_BY
command)	that	are	to	be	checked	for	the	"null"	condition.	An	expandable	group
expression	is	allowed	in	this	parameter.

Note	that	the	relationship	between	the	field(s)	in	the	list	is	an	AND
relationship.	Thus	all	fields	specified	must	have	null	values	to	satisfy
the	condition.

7.57.2	IF_NULL	Comments	/	Warnings
Fields	that	are	SQL	Null	will	fail	the	IF_NULL	check.
If	you	only	need	to	check	for	SQL	Null,	use	code	like	the	following:
If	'#FIELD.IsSqlNull'
…
Endif
	

If	you	want	a	condition	to	return	True	if	the	field	is	SQL	Null	or	Null,	use	code
like	the	following:
If	'#FIELD.IsSqlNull	*OR	#FIELD.IsNull'
…
Endif
	

Alternatively,	you	can	compare	against	the	null	value	for	the	field.	The
following	If	example	returns	True	if	#Field	is	*SQLNULL	or	*NULL	(assuming
#Field	is	numeric)	.
If	'#FIELD	*EQ	*ZERO'
…
Endif
	

7.57.3	IF_NULL	Examples
Example	1:	If	field	#A	and	#C	are	numeric	and	field	#B	is	alphanumeric	then
the	following	IF	conditions	are	all	identical	(assuming	none	of	the	fields	are
SQL	Null):
IF_NULL			FIELD(#A	#B	#C)
	

is	identical	to:
GROUP_BY		NAME(#GROUP)	FIELDS(#A	#B	#C)
IF_NULL			FIELD(#GROUP)
	

which	is	identical	to:
IF								COND('(#A	=	0)	AND	(#B	=	*BLANKS)	AND	(#C	=	0)')
	

which	is	identical	to:
IF								COND('(#A	=	*ZERO)	AND	(#B	=	''	'')	AND	(#C	=	*ZERO)')
Example	2:	Request	that	the	user	supplies	values	for	fields	#A,	#B	and	#C.	If
no	values	are	specified	assume	that	the	user	wants	to	end	the	function	and	re-
display	the	process's	main	menu:
GROUP_BY	NAME(#GROUP)	FIELDS(#A	#B	#C)
	
CHANGE			FIELD(#GROUP)	TO(*NULL)
REQUEST		FIELDS(#GROUP)
	
IF_NULL		FIELD(#GROUP)
MENU					MSGTXT('Since	no	data	entered,	end	of	function	assumed')
ENDIF
	

7.58	IF_STATUS
The	IF_STATUS	command	is	a	hybrid	version	of	the	normal	IF	command.	It
allows	the	status	of	the	last	I/O	command	to	be	tested	without	specific
references	to	the	I/O	return	codes.
For	more	information,	refer	to	I/O	Return	Codes.

Also	See
7.58.1	IF_STATUS	Parameters
7.58.2	IF_STATUS	Comments	/	Warnings
7.58.3	IF_STATUS	Examples
																																																									Optional
	
		IF_STATUS	----	IS	-----------	*OKAY	--------------------------
>
																																*ERROR
																																*VALERROR
																																*NORECORD
																																*ENDFILE
																																*BEGINFILE
																																*EQUALKEY
																																*NOTEQUALKEY
	
												>---	IS_NOT	-------	*OKAY	--------------------------|
																																*ERROR
																																*VALERROR
																																*NORECORD
																																*ENDFILE
																																*BEGINFILE
																																*EQUALKEY
																																*NOTEQUALKEY
	

7.58.1	IF_STATUS	Parameters
IS
IS_NOT

IS
Specifies	the	I/O	return	codes	that	will	make	the	IF	condition	true.	If	any	one	of
the	I/O	codes	matches	the	I/O	return	code	of	the	last	I/O	operation	then	the	IF
statement	is	deemed	to	be	"true".

IS_NOT
Specifies	the	I/O	return	codes	that	will	make	the	IF	condition	true	in	negation.	If
any	one	of	the	I/O	codes	does	not	match	the	I/O	return	code	of	the	last	I/O
operation	then	the	IF	statement	is	deemed	to	be	"true".

7.58.2	IF_STATUS	Comments	/	Warnings
The	following	table	matches	the	values	specified	on	the	IS	or	IS_NOT
parameters	with	the	actual	I/O	return	codes.	For	more	information,	refer	to
I/O	Return	Codes:

Parameter	Value I/O	Return	Code

*OKAY 'OK'

*VALERROR 'VE'

*ERROR 'ER'

*NORECORD 'NR'

*ENDFILE 'EF'

*BEGINFILE 'BF'

*NOTEQUALKEY 'NE'

*EQUALKEY 'EQ'

	

IF_STATUS	does	NOT	check	the	value	of	#IO$STS.	IF_STATUS	simply
returns	the	status	of	the	last	database	I/O	command.	In	many	cases	this	will	be
the	same	as	IF	COND(#IO$STS	*EQ	{Some	Value}).	However	it	should	be
noted	that	in	the	following	cases	these	statements	will	be	different:

When	#IO$STS	is	being	set	through	an	Output	mapping	of	a
MthRoutine.
When	#IO$STS	is	being	set	through	an	Output	mapping	of	a
SubRoutine.
When	#IO$STS	is	being	used	in	the	TO_GET	parameter	of	a	USE
command.
When	#IO$STS	is	EXCHANGE'ed	from	another	program/function.

7.58.3	IF_STATUS	Examples
Example	1:	Use	the	IF_STATUS	command	to	trap	a	record	not	found	condition
and	abort	the	function	with	an	error:
FETCH					FIELDS(#NAMEINFO)	FROM_FILE(NAMES)	WITH_KEY(#CUSTNO)
IF_STATUS	IS_NOT(*OKAY)
ABORT					MSGTXT('Customer	name	details	not	found')
ENDIF
	

which	is	identical	to	the	following:
FETCH					FIELDS(#NAMEINFO)	FROM_FILE(NAMES)	WITH_KEY(#CUSTNO)
IF								COND('#IO$STS	*NE	OK')
ABORT					MSGTXT('Customer	name	details	not	found')
ENDIF
	

Example	2:	Modify	the	previous	example	to	display	the	details	(if	found)	else
to	abort	the	function:
FETCH					FIELDS(#NAMEINFO)	FROM_FILE(NAMES)	WITH_KEY(#CUSTNO)
IF_STATUS	IS(*OKAY)
DISPLAY			FIELDS(#NAMEINFO)
ELSE
ABORT					MSGTXT('Customer	name	details	not	found')
ENDIF
	

which	is	identical	to	the	following:
FETCH					FIELDS(#NAMEINFO)	FROM_FILE(NAMES)	WITH_KEY(#CUSTNO)
IF								COND('#IO$STS	=	OK')
DISPLAY			FIELDS(#NAMEINFO)
ELSE
ABORT					MSGTXT('Customer	name	details	not	found')
ENDIF
	

7.59	INCLUDE
The	INCLUDE	command	is	used	to	include	RDML	from	another	function.

Portability	Considerations Refer	to	7.59.2	INCLUDE	Comments	/	Warnings.

Also	See
7.59.1	INCLUDE	Parameters
7.59.2	INCLUDE	Comments	/	Warnings
7.59.3	INCLUDE	Examples
	
	INCLUDE	-------	PROCESS--------	process	name	------------
------->
																																*DIRECT
																																											
												>--	FUNCTION	-----	function	name	-------------------

7.59.1	INCLUDE	Parameters
FUNCTION
PROCESS

PROCESS
Specifies	the	name	of	the	LANSA	process	from	which	RDML	is	to	be	included.
This	parameter	must	be	specified.
If	the	function	name	from	which	RDML	is	to	be	included	is	unique	in	the
partition,	simply	specify	the	name	*DIRECT	in	this	parameter,	in	place	of	the
actual	process	name,	and	then	nominate	the	function	name	in	the	FUNCTION
parameter.

FUNCTION
Specifies	the	name	of	the	LANSA	function	from	which	RDML	is	to	be
included.	This	parameter	must	be	specified.

7.59.2	INCLUDE	Comments	/	Warnings
This	note	applies	only	to	IBM	i:
If	PROCESS(*DIRECT)	is	specified	and	the	function	name	is	not	unique	in	the
partition,	then	the	RDML	code	is	included	from	the	function	of	that	name	in	the
process	name	that	is	highest	in	the	normal	collating	sequence.	For	example,	if
function	F	is	in	both	process	B	and	process	C,	then	INCLUDE
PROCESS(*DIRECT)	FUNCTION(F)	will	cause	RDML	to	be	included	from
function	F	in	process	B.	If	function	F	is	later	created	in	process	A,	a	subsequent
compile	will	cause	RDML	to	be	included	from	function	F	in	process	A.
This	note	applies	to	Visual	LANSA:
If	PROCESS(*DIRECT)	is	specified	the	function	name	must	be	unique	within
the	partition.	
If	process	B	and	process	C	both	have	the	same	function	named	function	F,	the
function	F	process	will	not	compile	on	both	process	B	and	process	C.	This
would	cause	the	following	error	message	to	be	displayed:
Function	name	must	be	unique	within	the	partition	to	use
OPTIONS(*DIRECT).
However,	if	OPTIONS(*DIRECT)	is	NOT	used,	this	error	message	is
displayed:
To	generate	C	code	you	must	use	FUNCTION	OPTIONS(*DIRECT)	in	this
function.
Therefore,	it	is	not	possible	to	use	the	same	function	name	in	the	partition.

INCLUDE	Comments	/	Warnings	(all	LANSA)
INCLUDE	cannot	be	embedded	in	RDML	that	is	already	included.
Import	/	export,	checkin	/	checkout	and	the	deployment	tool	will	not
automatically	cause	functions	that	are	included	to	also	be	processed.
Impact	Analysis	will	not	automatically	associate	included	functions	with	the
functions	that	INCLUDE	them	via	the	related	object	search,	or	vice	versa.	A
profile	search	scanning	for	the	function	name	in	RDML	code	will	allow	the
where	used	capability.
The	total	number	of	lines	of	RDML	code	in	a	function	in	IBM	i	cannot	be
greater	than	4096	counting	the	included	RDML.	This	restriction	does	not
apply	to	a	function	in	Visual	LANSA.
Included	screens	(DISPLAY,	REQUEST,	POP_UP,	supporting	DEF_LIST	&

GROUP_BY)	&	reports	(DEF_LINE,	DEF_HEAD,	DEF_FOOT,
DEF_BREAK)	cannot	be	painted.
Included	screens	&	reports	are	not	recommended.
The	full	function	checker	reports	any	errors	in	included	RDML	against	the
relevant	INCLUDE	RDML	command.
The	INCLUDE	RDML	command	is	not	valid	in	components.
Print	of	functions	does	not	expand	included	RDML	commands.
Included	RDML	cannot	be	debugged	on	LANSA	for	IBM	i
Run	time	errors	in	included	RDML	will	be	reported	against	the	relevant
INCLUDE	RDML	command

7.59.3	INCLUDE	Examples
Include	common	executable	code	in	functions
Include	common	declarations	in	Functions
Include	common	executable	code	in	functions
A	common	set	of	code	exists	that	needs	to	be	executed	from	many	functions.
FUNCA	RDML
SUBROUTINE	NAME(SUB1)
*<<common	set	of	code>>
ENDROUTINE
	

FUNCB	RDML
EXECUTE	SUBROUTINE(SUB1)
	
INCLUDE	PROCESS(PROCA)	FUNCTION(FUNCA)
	

As	an	alternative,	you	could	place	the	common	code	in	its	own	function	and	call
it	where	it	is	needed,	or	copy	it	in	to	each	function	that	needs	it.	Using	the
INCLUDE	command	is	the	recommended	approach.
Include	common	declarations	in	Functions
One	function	calls	another	function,	passing	a	working	list.	The	working	list
needs	to	be	defined	exactly	the	same	in	both	functions.
FUNC1	RDML
DEF_LIST	NAME(#WRKLIST)	FIELDS(<<fields	needed>>)	TYPE(*WORKING)	ENTRYS(10)
	

FUNC2	RDML
INCLUDE	PROCESS(*DIRECT)	FUNCTION(FUNC1)
	
CALL	PROCESS(*DIRECT)	FUNCTION(FUNC3)	PASS_LST(#WRKLIST)
	

FUNC3	RDML
FUNCTION	OPTIONS(*DIRECT)	RCV_LIST(#WRKLIST)
INCLUDE	PROCESS(*DIRECT)	FUNCTION(FUNC1)
	

Alternatives	would	be	either	to	define	the	working	list	in	one	function	then	copy

it	into	the	other	function	that	needs	it,	or	to	include	it	in	the	functions	that	need
it.

7.60	INSERT
The	INSERT	command	is	used	to	insert	fields	into	a	new	record	in	a	file.

Portability
Considerations

Refer	to	parameters:	AUTOCOMMIT	and
TO_FILE	.

Also	See
7.60.1	INSERT	Parameters
7.60.2	INSERT	Comments	/	Warnings
7.60.3	INSERT	Examples
																																																									Required
	
		INSERT	-------	FIELDS	-------	field	name		field	attributes	--
->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|*ALL																									|
																																|*ALL_REAL																				|
																																|*ALL_VIRT																				|
																																|*INCLUDING																			|
																																|*EXCLUDING																			|
																																|expandable	group													|
																																|																													|
																																|-----	1000	max	for	RDMLX-----|
																																	-----	100	max	for	RDML	------
	
													>--	TO_FILE	------	file	name	.	*FIRST	------------->
																																												library	name

																																																									Optional
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------
>

																																*NEXT
																																*RETURN
																																label
	
													>--	VAL_ERROR	----	*LASTDIS	-----------------------
>
																																*NEXT
																																*RETURN
																																label
	
													>--	ISSUE_MSG	----	*NO	---------------------------->
																																*YES
	
													>--	RETURN_RRN	---	*NONE	-------------------------
->
	
													>--	CHECK_ONLY	---	*NO	----------------------------
>
																																*YES
	
													>--	AUTOCOMMIT	---	*FILEDEF	--------------------
---|
																																*YES
																																*NO
	

7.60.1	INSERT	Parameters
AUTOCOMMIT
CHECK_ONLY
FIELDS
IO_ERROR
IO_STATUS
ISSUE_MSG
RETURN_RRN
TO_FILE
VAL_ERROR

FIELDS
Specifies	either	the	field(s)	that	are	to	be	inserted	into	the	file	or	the	name	of	a
group	that	specifies	the	field(s)	to	be	inserted.
Alternatively,	an	expandable	group	expression	can	be	entered	in	this	parameter.
For	more	details,	refer	to	Expandable	Groups.	The	following	special	values	can
be	used:
*ALL,	specifies	that	all	fields	from	the	currently	active	file	be	inserted.
*ALL_REAL,	specifies	that	all	real	fields	from	the	currently	active	file	be
inserted.
*ALL_VIRT,	specifies	that	all	virtual	fields	from	the	currently	active	file	be
inserted.
*EXCLUDING,	specifies	that	fields	following	this	special	value	must	be
excluded	from	the	field	list.
*INCLUDING,	specifies	that	fields	following	this	special	value	must	be
included	in	the	field	list.	This	special	value	is	only	required	after	an
*EXCLUDING	entry	has	caused	the	field	list	to	be	in	exclusion	mode.

Note:	When	all	fields	are	inserted	from	a	logical	file	maintained	by
OTHER,	all	the	fields	from	the	based-on	physical	file	are	included	in
the	field	list.

It	is	strongly	recommended	that	the	special	values	*ALL,	*ALL_REAL	or
*ALL_VIRT	in	parameter	FIELDS	be	used	sparingly	and	only	when	strictly
required.	Inserting	fields	which	are	not	needed	invalidates	cross-reference

details	(shows	fields	which	are	not	used	in	the	function)	and	increases	the	Crude
Entity	Complexity	Rating	of	the	function	pointlessly.

TO_FILE
Refer	to	Specifying	File	Names	in	I/O	commands.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.
For	values,	refer	to	I/O	Return	Codes.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples:	a	file	not	found,
file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the	function
from	performing	any	processing	at	all	with	the	file	involved.
*ABORT,	the	default	value,	indicates	the	function	will	abort	with	error
messages	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.	The
purpose	of	*NEXT	is	to	permit	you	to	handle	error	messages	in	the	RDML,	and
then	ABORT,	rather	than	use	the	default	ABORT.	(It	is	possible	for	processing
to	continue	for	LANSA	on	IBM	i	and	Visual	LANSA,	but	this	is	NOT	a
recommended	way	to	use	LANSA.)
ER	returned	from	a	database	operation	is	a	fatal	error	and	LANSA	does	not
expect	processing	to	continue.	The	IO	Module	is	reset	and	further	IO	will	be	as
if	no	previous	IO	on	that	file	had	occurred.	Thus	you	must	not	make	any
presumptions	as	to	the	state	of	the	file.	For	example,	the	last	record	read	will	not
be	set.	A	special	case	of	an	IO_ERROR	is	when	a	trigger	function	is	coded	to
return	ER	in	TRIG_RETC.	The	above	description	applies	to	this	case	as	well.	
Therefore,	LANSA	recommends	that	you	do	NOT	use	a	return	code	of	ER	from
a	trigger	function	to	cause	anything	but	an	ABORT	or	EXIT	to	occur	before	any

further	IO	is	performed.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

VAL_ERROR
Specifies	the	action	to	be	taken	if	a	validation	error	was	detected	by	the
command.
A	validation	error	occurs	when	information	that	is	to	be	added,	updated	or
deleted	from	the	file	does	not	pass	the	FILE	or	DICTIONARY	level	validation
checks	associated	with	fields	in	the	file.
The	default	value	*LASTDIS	specifies	that	control	will	be	passed	back	to	the
last	display	screen	used.	The	fields	that	failed	the	associated	validation	checks
will	be	displayed	in	reverse	image	and	the	cursor	positioned	to	the	first	field	in
error	on	the	screen.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

The	*LASTDIS	is	valid	even	if	there	is	no	"last	display"	(such	as	in
batch	functions).	In	this	case	the	function	will	abort	with	the
appropriate	error	message(s).

When	using	*LASTDIS	the	"Last	Display"	must	be	at	the	same	level
as	the	database	command	(INSERT,	UPDATE,	DELETE,	FETCH	and
SELECT).		If	they	are	at	different	levels	e.g.	the	database	command	is
specified	in	a	SUBROUTINE,	but	the	"Last	Display"	is	a	caller
routine	or	the	mainline,	the	function	will	abort	with	the	appropriate
error	message(s).

The	same	does	NOT	apply	to	the	use	of	event	routines	and	method
routines	in	Visual	LANSA.	In	these	cases,	control	will	be	returned	to
the	calling	routine.	The	fields	will	display	in	error	with	messages

returned	to	the	first	status	bar	encountered	in	the	parent	chain	of
forms,	or	if	none	exist,	the	first	form	with	a	status	bar	encountered	in
the	execution	stack	(for	example,	a	reusable	part	that	inherits	from
PRIM_OBJT).

ISSUE_MSG
This	parameter	is	redundant.	Its	value	has	no	effect.
The	default	value	is	*NO.
The	only	other	allowable	value	is	*YES.

RETURN_RRN
Specifies	the	name	of	a	field	in	which	the	relative	record	number	of	the	record
inserted	should	be	returned.
Any	field	nominated	in	this	parameter	must	be	defined	within	the	function	or
the	LANSA	data	dictionary	and	must	be	numeric.
For	further	information	refer	also	to	Load	Other	File	in	the	Visual	LANSA
Developers	Guide.

CHECK_ONLY
Indicates	whether	the	I/O	operation	should	actually	be	performed	or	only
"simulated"	to	check	whether	all	file	and	data	dictionary	level	validation	checks
can	be	satisfied	when	it	is	actually	performed.
*NO,	which	is	the	default	value,	indicates	that	the	I/O	operation	should	be
performed	in	the	normal	manner.
*YES	indicates	that	the	I/O	operation	should	be	simulated	to	verify	that	all	file
and	data	dictionary	level	checks	can	be	satisfied.	The	database	file	involved	is
not	changed	in	any	way	when	this	option	is	used.

AUTOCOMMIT
This	parameter	was	made	redundant	in	LANSA	release	4.0	at	program	change
level	E5.
To	use	commitment	control	specify	COMMIT	and/or	ROLLBACK	commands
in	your	application.
Generally	only	COMMIT	commands	are	required.
For	the	implications	of	using	commitment	control	on	the	IBM	i,	refer	to
Commitment	Control	in	the	LANSA	for	i	User	Guide.

Portability If	using	Visual	LANSA,	refer	to	Commitment	Control	in	the

its:Lansa013.chm::/lansa/l4wdev04_0320.htm
its:LANSA010.CHM::/lansa/ugubc_c10060.htm
its:LANSA065.CHM::/lansa/dsnbe_0060.htm

Considerations LANSA	Application	Design	Guide.

7.60.2	INSERT	Comments	/	Warnings
Where	fields	are	not	specified	for	the	new	record	they	will	adopt	their	default
values	as	defined	in	the	data	dictionary.	For	example,	if	a	record	in	file
NAMES	contained	fields	#CUSTNO	(customer	number),	#NAME	(customer
name),	#ADD1	(address	line	1)	and	#POSTCD	(post	code),	then	the
following	command:
				INSERT	FIELDS(#CUSTNO	#NAME)	TO_FILE(NAMES)
	

					would	cause	#ADD1	to	be	set	to	blanks	in	the	new	record	and	#POSTCD	to
be	set	to	2000	(if	these	were	the	data	dictionary	defaults	for	the	fields).

Note	that	when	BLOB	or	CLOB	data	is	inserted,	it	should	be	either
*SQLNULL,	*NULL	or	a	filename.	If	a	filename,	it	is	assumed	that	the	file
exists	and	that	the	contents	are	to	be	copied	into	the	BLOB	or	CLOB	in	the
database.
Any	INSERT	operation	must	include	at	least	the	"primary	key	fields"	of	the
file.	The	primary	key	fields	are	specified	when	the	file	is	set	up.	If	the
primary	key	fields	are	not	specified	the	INSERT	operation	will	fail	with	an
"insufficient	information"	error.

					For	example,	if	the	primary	key	of	file	NAMES	is	#CUSTNO	then	the
following	operations	will	fail:
				INSERT	FIELDS(#NAME	#ADD1)	TO_FILE(NAMES)
	
				INSERT	FIELDS(#POSTCD)	TO_FILE(NAMES)
	
When	an	SQL	Null	field	is	inserted	into	a	table's	database	column,	one	of	the
following	will	occur:

If	the	column	has	a	default	or	automatically	generated	value	defined
(in	the	DBMS,	not	LANSA),	the	default	value	will	be	inserted,	rather
than	the	SQL	Null.
If	the	column	does	not	have	the	NOT	NULL	constraint,	the	column	is
set	to	SQL	Null.
If	the	column	does	have	the	NOT	NULL	constraint,	the	insert	will	fail.
(This	can	only	occur	if	the	database	definition	of	the	column	does	not
match	the	LANSA	definition	of	the	field.)

7.60.3	INSERT	Examples
Example	1:	Insert	fields	#CUSTNO,	#NAME,	#ADDL1	and	#POSTCD	into	a
file	named	CUSTMST	that	has	key:
INSERT		FIELDS(#CUSTNO	#NAME	#ADDL1	#POSTCD)	TO_FILE(CUSMST)
	

or	identically:
GROUP_BY		NAME(#CUSTOMER)	FIELDS(#CUSTNO	#NAME	#ADDL1	#POSTCD)
INSERT				FIELDS(#CUSTOMER)	TO_FILE(CUSMST)
	

Example	2:	Request	that	the	user	input	some	customer	details.	If	the	customer
already	exists	update	the	fields,	else	create	a	new	customer	record:
GROUP_BY		NAME(#CUSTOMER)	FIELDS(#CUSTNO	#NAME	#ADDL1	#POSTCD)
	
REQUEST			FIELDS(#CUSTOMER)
CHECK_FOR	IN_FILE(CUSMST)	WITH_KEY(#CUSTNO)
	
IF_STATUS	IS(*EQUALKEY)
UPDATE				FIELDS(#CUSTOMER)	IN_FILE(CUSMST)	WITH_KEY(#CUSTNO)
ELSE
INSERT				FIELDS(#CUSTOMER)	TO_FILE(CUSMST)
ENDIF
	

Example	3:	Insert	all	real	fields	from	the	currently	active	version	into	file
CUSMST:
INSERT		FIELDS(*ALL_REAL)	TO_FILE(CUSMST)
	

Example	4:	Exclude	address	fields	during	insertion	of	a	new	record	into	file
CUSMST:
GROUP_BY		NAME(#XG_ADDR)	FIELDS(#ADDL1	#POSTCD)
INSERT				FIELDS(*ALL	*EXCLUDING
#XG_ADDR)	TO_FILE(CUSMST)
	

7.61	INZ_LIST
The	INZ_LIST	command	is	used	to	initialize	a	list	with	a	set	number	of
identical	entries.	All	entries	will	be	set	to	the	values	the	list's	fields	contain	at
the	time	the	INZ_LIST	command	is	executed.
The	list	may	be	a	browse	list	(used	for	displaying	information	at	a	workstation)
or	a	working	list	(used	to	store	information	within	a	program).
The	INZ_LIST	command	is	normally	used	to	initialize	a	list	with	a	number	of
"null"	entries	that	are	to	be	used	for	data	entry	(rather	than	display)	purposes.
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	list	processing.

Also	See
7.61.1	INZ_LIST	Parameters
7.61.2	INZ_LIST	Comments	/	Warnings
7.61.3	INZ_LIST	Examples
																																																									Optional
	
		INZ_LIST	-----	NAMED	--------	*FIRST	-----------------------
-->
																																list	name
	
													>--	NUM_ENTRYS	---	1	------------------------------>
																																number	of	entries
	
													>--	SET_SELECT	---	*YES	--------------------------->
																																*NO
	
													>--	WITH_MODE	----	*CURRENT	--------------------
---|
																																*ADD
																																*CHANGE
																																*DELETE
																																*DISPLAY
																																field	name
	

7.61.1	INZ_LIST	Parameters
NAMED
NUM_ENTRYS
SET_SELECT
WITH_MODE

NAMED
Specifies	the	name	of	the	list	which	is	to	be	initialized.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used	(which
may	be	a	browse	or	a	working	list).
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command.

NUM_ENTRYS
Specifies	the	number	of	entries	that	should	be	initialized	into	the	list.
The	default	value	is	1.	Any	other	value	specified	must	be	in	the	range	1	to	9999.

SET_SELECT
Specifies	whether	or	not	any	fields	in	the	list	that	have	special	attribute
*SELECT	should	be	set	to	blanks	before	the	new	entry	is	added	to	the	list.	Refer
to	the	DEF_LIST	command	for	more	details.
This	is	only	valid	for	browse	lists.	It	is	ignored	for	working	lists.

WITH_MODE
Specifies	the	mode	to	be	set	for	the	entries	being	initialized	into	the	list.	This
overrides	the	mode	that	has	been	set	by	the	SET_MODE	command	(refer	to	the
SET_MODE	command).
The	default	is	*CURRENT	which	uses	the	current	mode	that	has	been	set	by	the
SET_MODE	command.	Other	allowable	values	are	*ADD,	*CHANGE,
*DELETE	and	*DISPLAY.	A	user	field	name	may	also	be	specified,	and	must
be	alphanumeric	with	a	length	of	3,	and	must	contain	one	of	the	values	"ADD",
"CHG",	"DLT"	or	"DIS".

7.61.2	INZ_LIST	Comments	/	Warnings
INZ_LIST	is	a	"mode	sensitive"	command	when	being	used	with	a	browse	list.
For	details	of	mode	sensitive	commands,	refer	to	Screen	Modes	and	Mode
Sensitive	Commands.

7.61.3	INZ_LIST	Examples
Example	1:	Initialize	a	list	named	#ORDERLINE	with	100	"null"	entries	that
are	to	be	used	for	data	entry	(input	capable	on	the	display):
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY)
CHANGE					FIELD(#ORDERLINE)	TO(*NULL)
SET_MODE			TO(*ADD)
INZ_LIST			NAMED(#ORDERLINE)	NUM_ENTRYS(100)
	

Example	2:	Use	the	list	created	in	example	1	to	perform	multiple	line	data	entry
for	an	order	lines	file:
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY)
CHANGE					FIELD(#ORDERLINE)	TO(*NULL)
SET_MODE			TO(*ADD)
INZ_LIST			NAMED(#ORDERLINE)	NUM_ENTRYS(100)
	
REQUEST				FIELDS(#ORDNUM)	BROWSELIST(#ORDERLINE)
	
SELECTLIST	NAMED(#ORDERLINE)		GET_ENTRYS(*NOTNULL)
INSERT					FIELDS(#ORDERLINE)	TO_FILE(ORDLIN)
ENDSELECT
	

7.62	KEEP_AVG
The	KEEP_AVG	command	is	used	to	keep	the	average	of	field(s)	in	another
field.
Note:	Full	RDMLX	Fields	cannot	be	used	with	this	command.
The	KEEP_AVG	command	is	only	valid	within	SELECT	or	SELECTLIST
command	loops,	because	the	processing	logic	used	is	implicitly	linked	to	the
SELECT	/	SELECTLIST	loop	logic.
Normally	the	KEEP_AVG	command	is	entered	directly	after	the	SELECT	or
SELECTLIST	command.	However	there	are	specific	exceptions	to	this.	Refer	to
the	examples	section	for	more	details.

Also	See
7.62.1	KEEP_AVG	Parameters
7.62.3	KEEP_AVG	Examples
7.62.2	KEEP_AVG	Comments	/	Warnings
	
																																																									Required
	
		KEEP_AVG	---	OF_FIELD	----	list	of	field	names	-----------
---->
																													|	expandable	group	expression	|
																													------	--	50	max	-	-----------
	
																	IN_FIELD	----	field	name	---------------------->

																																																									Optional
	
																	BY_FIELD	----	*SELECTED	-----------------------|
																															list	of	field	names
																														|	expandable	group	expression	|
																															---------		20	max	----------
	

7.62.1	KEEP_AVG	Parameters
BY_FIELD
IN_FIELD
OF_FIELD

OF_FIELD
Specifies	from	1	to	50	fields	that	are	to	be	averaged	by	the	KEEP_AVG
command.
Fields	specified	in	this	parameter	must	be	defined	in	the	LANSA	data	dictionary
or	defined	within	this	function	by	a	DEFINE	command.	Expandable	group
expressions	are	valid	in	this	parameter.
The	fields	specified	must	also	be	numeric.

IN_FIELD
Specifies	the	field	that	is	to	hold	the	result	of	the	averaging	of	the	field(s)
specified	in	the	OF_FIELD	parameter.
The	field	specified	in	this	parameter	must	be	numeric	and	must	be	defined	in	the
LANSA	data	dictionary	or	defined	in	this	function	with	a	DEFINE	command.
This	field	is	reset	at	the	beginning	of	each	SELECT/SELECTLIST	loop.

BY_FIELD
Specifies	the	condition	under	which	the	fields	are	to	be	averaged.
*SELECTED,	which	is	the	default	value	indicates,	that	the	averaging	should
continue	until	the	SELECT/SELECTLIST	loop	terminates	(ie:	all	selected
information).
Otherwise,	specify	a	list	of	1	to	20	field	names	(alternatively,	enter	an
expandable	group	expression).	The	averaging	continues	until	one	or	more	of
the	fields	in	the	list	changes	value.	When	one	or	more	of	the	fields	changes
value	the	"accumulator".is	reset	to	its	null	value	and	a	new	averaging	cycle	is
started.
The	"accumulator"	is	the	work	field	calculating	the	average.
See	the	examples	section	for	more	details	of	how	this	parameter	is	used.

7.62.2	KEEP_AVG	Comments	/	Warnings
Refer	to	the	7.63.2	KEEP_COUNT	Comments	/	Warnings	which	are	also
applicable	to	KEEP_AVG.

7.62.3	KEEP_AVG	Examples
Example	1:	A	sales	history	file	contains	details	of	a	company	name
(#COMPANY),	a	division	name	(#DIVNAM)	and	a	sales	value	(#SALES).
Print	all	sales	details	and	print	total	and	average	sales	details	by	division,
company	and	report	(grand	total):
DEF_LINE		NAME(#DETAIL)	FIELDS(#COMPANY	#DIVNAM	#SALES)
DEF_BREAK	NAME(#SUBDIV)	FIELDS(#DIVTOT	#DIVAVG)	TRIGGER_BY(#COMPANY	#DIVNAM)
DEF_BREAK	NAME(#SUBCOM)	FIELDS(#COMTOT	#COMAVG)	TRIGGER_BY(#COMPANY)
DEF_BREAK	NAME(#GRAND)		FIELDS(#GRDTOT	#GRDAVG)
SELECT				FIELDS(#DETAIL)		FROM_FILE(SALEHIST)
		KEEP_TOTAL	OF_FIELD(#SALES)	IN_FIELD(#DIVTOT)	BY_FIELD(#COMPANY	#DIVNAM)
		KEEP_AVG			OF_FIELD(#SALES)	IN_FIELD(#DIVAVG)	BY_FIELD(#COMPANY	#DIVNAM)
		KEEP_TOTAL	OF_FIELD(#SALES)	IN_FIELD(#COMTOT)	BY_FIELD(#COMPANY)
		KEEP_AVG			OF_FIELD(#SALES)	IN_FIELD(#COMAVG)	BY_FIELD(#COMPANY)
		KEEP_TOTAL	OF_FIELD(#SALES)	IN_FIELD(#GRDTOT)
		KEEP_AVG			OF_FIELD(#SALES)	IN_FIELD(#GRDAVG)
		PRINT			LINE(#DETAIL)
ENDSELECT
ENDPRINT
	

Example	2:	A	sales	file	contains	details	of	a	company	division	(#DIVNAM)
and	of	an	entire	year's	sales	in	4	quarters	(#QTR01	->	#QTR04).	Produce	a
report	that	summarizes	total	and	average	yearly	sales	by	division.
DEF_BREAK				NAME(#SUMMARY)	FIELDS(#TOTAL	#AVERAGE)	TRIGGER_BY(#DIVNAM)
	
SELECT							FIELDS(#DIVNAM	#QTR01	#QTR02	#QTR03	#QTR04)	FROM_FILE(DIVSALES)
KEEP_TOTAL	OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#TOTAL)	BY_FIELD(#DIVNAM)
KEEP_AVG			OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#AVERAGE)	BY_FIELD(#DIVNAM)
PRINT						LINE(*BREAKS)
ENDSELECT
	
ENDPRINT
	

7.63	KEEP_COUNT
The	KEEP_COUNT	command	is	used	to	keep	count	of	field(s)	changes	in
another	field.
Note:	Full	RDMLX	Fields	cannot	be	used	with	this	command.
The	KEEP_COUNT	command	is	only	valid	within	SELECT	or	SELECTLIST
command	loops,	because	the	processing	logic	used	is	implicitly	linked	to	the
SELECT	/	SELECTLIST	loop	logic.
Normally	the	KEEP_COUNT	command	is	entered	directly	after	the	SELECT	or
SELECTLIST	command.	However	there	are	specific	exceptions	to	this.	Refer	to
the	examples	section	for	more	details.

Also	See
7.63.1	KEEP_COUNT	Parameters
7.63.3	KEEP_COUNT	Example
7.63.2	KEEP_COUNT	Comments	/	Warnings
	
																																																									Required
	
		KEEP_COUNT	---	OF_FIELD	----	list	of	field	names	------
------->
																													|	expandable	group	expression	|
																													------	--	50	max	-	-----------
	
																	IN_FIELD	----	field	name	---------------------->

																																																									Optional
	
																	BY_FIELD	----	*SELECTED	-----------------------|
																															list	of	field	names
																														|	expandable	group	expression	|
																															---------		20	max	----------
	

7.63.1	KEEP_COUNT	Parameters
BY_FIELD
IN_FIELD
OF_FIELD

OF_FIELD
Specifies	from	1	to	50	fields	that	are	to	be	counted	by	the	KEEP_COUNT
command.
Fields	specified	in	this	parameter	must	be	defined	in	the	LANSA	data	dictionary
or	defined	within	this	function	by	a	DEFINE	command.	Expandable	group
expressions	are	valid	in	this	parameter.
The	fields	specified	may	be	numeric	or	non-numeric.	It	is	possible	to	count	the
changes	of	a	non-numeric	field.

IN_FIELD
Specifies	the	field	that	is	to	hold	the	result	of	the	count	of	the	field(s)	specified
in	the	OF_FIELD	parameter.
The	field	specified	in	this	parameter	must	be	numeric	and	must	be	defined	in	the
LANSA	data	dictionary	or	defined	in	this	function	with	a	DEFINE	command.
This	field	is	reset	at	the	beginning	of	each	SELECT/SELECTLIST	loop.

BY_FIELD
Specifies	the	condition	under	which	the	fields	are	to	be	counted.
*SELECTED,	which	is	the	default	value	indicates,	that	the	count	should
continue	until	the	SELECT/SELECTLIST	loop	terminates	(ie:	all	selected
information).
Otherwise,	specify	a	list	of	1	to	20	field	names	(alternatively,	enter	an
expandable	group	expression).	The	count	continues	until	one	or	more	of	the
fields	in	the	list	changes	value.	When	one	or	more	of	the	fields	changes	value
the	"accumulator"	is	reset	to	its	null	value	and	a	new	count	cycle	is	started.
The	"accumulator"	is	the	work	field	keeping	the	count	of	the	changes.
See	the	examples	section	for	more	details	of	how	this	parameter	is	used.

7.63.2	KEEP_COUNT	Comments	/	Warnings
This	applies	to	the	commands	KEEP_AVG,	KEEP_COUNT,	KEEP_MAX,
KEEP_MIN	and	KEEP_TOTAL.
The	processing	logic	used	by	these	commands	is	best	demonstrated	by	an
example.
Consider	the	following	SELECT	loop	that	selects	and	prints	invoice	detail	lines:
DEF_LINE		NAME(#DETAIL)	FIELDS(#INVNUM	#VALUE)
DEF_BREAK	NAME(#TOTAL)		FIELDS(#INV_TOTAL)	TRIGGER_BY(#INVNUM)
DEF_BREAK	NAME(#GRAND)		FIELDS(#GRD_TOTAL)
	
SELECT	FIELDS(#INVNUM	#VALUE)	FROM_FILE(INVLIN)
		KEEP_TOTAL	OF_FIELD(#VALUE)	IN_FIELD(#INV_TOTAL)BY_FIELD(#INVNUM)
		KEEP_TOTAL	OF_FIELD(#VALUE)	IN_FIELD(#GRD_TOTAL)
		PRINT	LINE(#DETAIL)
ENDSELECT
	
ENDPRINT
	

In	highly	simplified	terms,	what	actually	happens	is:

								Set	#INV_TOTAL	and	#GRD_TOTAL	to	zero

			--->	Select	next	record

		|							If	#INVNUM	has	changed	set	#INV_TOTAL	to	zero

		|							Add	#VALUE	to	#INV_TOTAL

		|							Add	#VALUE	to	#GRD_TOTAL

		|							If	#INVNUM	has	changed,	print	"trailing"	break	

		|										line	#TOTAL

		|							Print	the	#DETAIL	line

			----	Endselect

								Print	the	grand	total	line	#GRAND

	

Although	this	logic	is	highly	simplified,	it	demonstrates	the	basic	processing
logic.	This	is	shared	by	all	KEEP_XXXXX	commands	and	their	relationship	to
the	SELECT	and	SELECTLIST	commands.	Only	the	method	of	"accumulating"
the	result	as	an	average,	count,	maximum,	minimum	or	total	varies.
Refer	to	the	DEF_BREAK	command	for	details	of	how	and	when	the	break
lines	are	"triggered"	and	why	the	correct	#INV_TOTAL	value	is	always
printed,	even	though	it	has	apparently	been	cleared	and	reset	by	the
KEEP_TOTAL	command	before	it	is	printed.
If	the	KEEP_XXXXX	command	is	within	a	condition	(like	IF	or
CASE/WHEN)	and	BY_FIELD	is	used	the	totals	will	not	be	reset	correctly.

7.63.3	KEEP_COUNT	Example
A	personnel	file	contains	details	of	employees	with	their	department,	section
and	salary.	Print	details	of	the	count	of	departments	and	sections	and	the	totals
of	salaries	by	department	and	section
DEF_LINE	NAME(#DETAIL)	FIELDS(#EMPNO	#FULLNAME	#DEPTMENT	#SECTION	#SALARY)
*
DEF_BREAK	NAME(#SECSUM)	FIELDS(#DEPTMENT	#SECTION	#DEM_SCTOT	#DEM_SCSEM)	TRIGGER_BY(#DEPTMENT	#SECTION)
DEF_BREAK	NAME(#DEPSUM)	FIELDS(#DEPTMENT	#DEM_DPTOT	#DEM_DPSEM)	TRIGGER_BY(#DEPTMENT)
*
SELECT	FIELDS(#DETAIL)	FROM_FILE(PERSNEL)
KEEP_COUNT	OF_FIELD(#EMPNO)	IN_FIELD(#DEM_DPSEM)	BY_FIELD(#DEPTMENT)
KEEP_COUNT	OF_FIELD(#EMPNO)	IN_FIELD(#DEM_SCSEM)	BY_FIELD(#DEPTMENT	#SECTION)
KEEP_TOTAL	OF_FIELD(#SALARY)	IN_FIELD(#DEM_DPTOT)	BY_FIELD(#DEPTMENT)
KEEP_TOTAL	OF_FIELD(#SALARY)	IN_FIELD(#DEM_SCTOT)	BY_FIELD(#DEPTMENT	#SECTION)
PRINT	LINE(#DETAIL)
ENDSELECT
*
ENDPRINT
	

7.64	KEEP_MAX
The	KEEP_MAX	command	is	used	to	keep	the	value	of	the	field	having	the
maximum	value	of	field(s)	in	another	field.
Note:	Full	RDMLX	Fields	cannot	be	used	with	this	command.
The	KEEP_MAX	command	is	only	valid	within	SELECT	or	SELECTLIST
command	loops,	because	the	processing	logic	used	is	implicitly	linked	to	the
SELECT	/	SELECTLIST	loop	logic.
Normally	the	KEEP_MAX	command	is	entered	directly	after	the	SELECT	or
SELECTLIST	command.	However	there	are	specific	exceptions	to	this.	Refer	to
the	examples	section	for	more	details.

Also	See
7.64.1	KEEP_MAX	Parameters
7.64.3	KEEP_MAX	Example
7.64.2	KEEP_MAX	Comments	/	Warnings
	
																																																									Required
	
		KEEP_MAX	---	OF_FIELD	----	list	of	field	names	----------
----->
																													|	expandable	group	expression	|
																													------	--	50	max	-	-----------
	
																	IN_FIELD	----	field	name	---------------------->

																																																									Optional
	
																	BY_FIELD	----	*SELECTED	-----------------------|
																															list	of	field	names
																														|	expandable	group	expression	|
																															---------		20	max	----------
	

7.64.1	KEEP_MAX	Parameters
BY_FIELD
IN_FIELD
OF_FIELD

OF_FIELD
Specifies	from	1	to	50	fields	that	are	to	be	scanned	for	the	maximum	value	by
the	KEEP_MAX	command.
Fields	specified	in	this	parameter	must	be	defined	in	the	LANSA	data	dictionary
or	defined	within	this	function	by	a	DEFINE	command.	Expandable	group
expressions	are	valid	in	this	parameter.
The	fields	specified	must	also	be	numeric.

IN_FIELD
Specifies	the	field	that	is	to	hold	the	value	of	the	field	having	the	maximum
value	of	the	field(s)	specified	in	the	OF_FIELD	parameter.
The	field	specified	in	this	parameter	must	be	numeric	and	must	be	defined	in	the
LANSA	data	dictionary	or	defined	in	this	function	with	a	DEFINE	command.
This	field	is	reset	at	the	beginning	of	each	SELECT/SELECTLIST	loop.

BY_FIELD
Specifies	the	condition	under	which	the	fields	are	to	be	scanned	for	the
maximum	value.
*SELECTED,	which	is	the	default	value	indicates,	that	the	scanning	for
maximum	value	should	continue	until	the	SELECT/SELECTLIST	loop
terminates	(ie:	all	selected	information).
Otherwise,	specify	a	list	of	1	to	20	field	names	(alternatively,	enter	an
expandable	group	expression).	The	scanning	for	maximum	value	continues	until
one	or	more	of	the	fields	in	the	list	changes	value.	When	one	or	more	of	the
fields	changes	value	the	"accumulator"	is	reset	to	its	null	value	and	a	new	scan
for	maximum	value	cycle	is	started.
The	"accumulator"	is	the	work	field	keeping	track	of	the	maximum	value.
See	the	examples	section	for	more	details	of	how	this	parameter	is	used.

7.64.2	KEEP_MAX	Comments	/	Warnings
Refer	to	the	7.63.2	KEEP_COUNT	Comments	/	Warnings	which	are	also
applicable	to	KEEP_MAX.

7.64.3	KEEP_MAX	Example
A	sales	file	contains	details	of	a	company	division	(#DIVNAM)	and	of	an	entire
year's	sales	in	4	quarters	(#QTR01	->	#QTR04).	Produce	a	report	that
summarizes	the	maximum	and	minimum	values	and	the	total	yearly	sales	by
division.
DEF_BREAK				NAME(#SUMMARY)	FIELDS(#TOTAL	#MAXIMUM	#MINIMUM)	TRIGGER_BY(#DIVNAM)
	
SELECT							FIELDS(#DIVNAM	#QTR01	#QTR02	#QTR03	#QTR04)	FROM_FILE(DIVSALES)
		KEEP_TOTAL	OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#TOTAL)	BY_FIELD(#DIVNAM)
		KEEP_MAX			OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#MAXIMUM)	BY_FIELD(#DIVNAM)
		KEEP_MIN			OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#MINIMUM)	BY_FIELD(#DIVNAM)
		PRINT						LINE(*BREAKS)
ENDSELECT
	
ENDPRINT
	

7.65	KEEP_MIN
The	KEEP_MIN	command	is	used	to	keep	the	value	of	the	field	having	the
minimum	value	of	field(s)	in	another	field.
Note:	Full	RDMLX	Fields	cannot	be	used	with	this	command.
The	KEEP_MIN	command	is	only	valid	within	SELECT	or	SELECTLIST
command	loops,	because	the	processing	logic	used	is	implicitly	linked	to	the
SELECT	/	SELECTLIST	loop	logic.
Normally	the	KEEP_MIN	command	is	entered	directly	after	the	SELECT	or
SELECTLIST	command.	However	there	are	specific	exceptions	to	this.	Refer	to
the	examples	section	for	more	details.

Also	See
7.65.1	KEEP_MIN	Parameters
7.65.3	KEEP_MIN	Example
7.65.2	KEEP_MIN	Comments	/	Warnings
	
																																																									Required
	
		KEEP_MIN	---	OF_FIELD	----	list	of	field	names	-----------
---->
																													|	expandable	group	expression	|
																													------	--	50	max	-	-----------
	
																	IN_FIELD	----	field	name	---------------------->

																																																									Optional
	
																	BY_FIELD	----	*SELECTED	-----------------------|
																															list	of	field	names
																														|	expandable	group	expression	|
																															---------		20	max	----------
	

7.65.1	KEEP_MIN	Parameters
BY_FIELD
IN_FIELD
OF_FIELD

OF_FIELD
Specifies	from	1	to	50	fields	that	are	to	be	scanned	for	the	minimum	value	by
the	KEEP_MIN	command.
Fields	specified	in	this	parameter	must	be	defined	in	the	LANSA	data	dictionary
or	defined	within	this	function	by	a	DEFINE	command.	Expandable	group
expressions	are	valid	in	this	parameter.
The	fields	specified	must	also	be	numeric.

IN_FIELD
Specifies	the	field	that	is	to	hold	the	value	of	the	field	having	the	minimum
value	of	the	field(s)	specified	in	the	OF_FIELD	parameter.
The	field	specified	in	this	parameter	must	be	numeric	and	must	be	defined	in	the
LANSA	data	dictionary	or	defined	in	this	function	with	a	DEFINE	command.
This	field	is	reset	at	the	beginning	of	each	SELECT/SELECTLIST	loop.

BY_FIELD
Specifies	the	condition	under	which	the	fields	are	to	be	scanned	for	the
minimum	value.
*SELECTED,	which	is	the	default	value	indicates,	that	the	scanning	for
minimum	value	should	continue	until	the	SELECT/SELECTLIST	loop
terminates	(ie:	all	selected	information).
Otherwise,	specify	a	list	of	1	to	20	field	names	(alternatively,	enter	an
expandable	group	expression).	The	scanning	for	minimum	value	continues	until
one	or	more	of	the	fields	in	the	list	changes	value.	When	one	or	more	of	the
fields	changes	value	the	"accumulator"	is	reset	to	its	null	value	and	a	new	scan
for	minimum	value	cycle	is	started.
The	"accumulator"	is	the	work	field	keeping	track	of	the	minimum	value.

7.65.2	KEEP_MIN	Comments	/	Warnings
Refer	to	the	7.63.2	KEEP_COUNT	Comments	/	Warnings	which	are	also
applicable	to	KEEP_MIN.

7.65.3	KEEP_MIN	Example
A	sales	file	contains	details	of	a	company	division	(#DIVNAM)	and	of	an	entire
year's	sales	in	4	quarters	(#QTR01	->	#QTR04).	Produce	a	report	that
summarizes	the	maximum	and	minimum	values	and	the	total	yearly	sales	by
division.
DEF_BREAK				NAME(#SUMMARY)	FIELDS(#TOTAL	#MAXIMUM	#MINIMUM)	TRIGGER_BY(#DIVNAM)
	
SELECT							FIELDS(#DIVNAM	#QTR01	#QTR02	#QTR03	#QTR04)	FROM_FILE(DIVSALES)
		KEEP_TOTAL	OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#TOTAL)	BY_FIELD(#DIVNAM)
		KEEP_MAX			OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#MAXIMUM)	BY_FIELD(#DIVNAM)
		KEEP_MIN			OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#MINIMUM)	BY_FIELD(#DIVNAM)
		PRINT						LINE(*BREAKS)
ENDSELECT
	
ENDPRINT
	

7.66	KEEP_TOTAL
The	KEEP_TOTAL	command	is	used	to	keep	the	total	of	field(s)	in	another
field.
Note:	Full	RDMLX	Fields	cannot	be	used	with	this	command.
The	KEEP_TOTAL	command	is	only	valid	within	SELECT	or	SELECTLIST
command	loops,	because	the	processing	logic	used	is	implicitly	linked	to	the
SELECT	/	SELECTLIST	loop	logic.
Normally	the	KEEP_TOTAL	command	is	entered	directly	after	the	SELECT	or
SELECTLIST	command.	However	there	are	specific	exceptions	to	this.	Refer	to
the	examples	section	for	more	details.

Also	See
7.66.1	KEEP_TOTAL	Parameters
7.66.3	KEEP_TOTAL	Examples
7.66.2	KEEP_TOTAL	Comments	/	Warnings
	
																																																									Required
	
		KEEP_TOTAL	---	OF_FIELD	----	list	of	field	names	-------
-------->
																													|	expandable	group	expression	|
																													------	--	50	max	-	-----------
	
																	IN_FIELD	----	field	name	---------------------->

																																																									Optional
	
																	BY_FIELD	----	*SELECTED	-----------------------|
																															list	of	field	names
																														|	expandable	group	expression	|
																															---------		20	max	----------
	

7.66.1	KEEP_TOTAL	Parameters
BY_FIELD
IN_FIELD
OF_FIELD

OF_FIELD
Specifies	from	1	to	50	fields	that	are	to	be	totaled	by	the	KEEP_TOTAL
command.
Fields	specified	in	this	parameter	must	be	defined	in	the	LANSA	data	dictionary
or	defined	within	this	function	by	a	DEFINE	command.	Expandable	group
expressions	are	valid	in	this	parameter.
The	fields	specified	must	also	be	numeric.

IN_FIELD
Specifies	the	field	that	is	to	hold	the	result	of	the	totaling	of	the	field(s)
specified	in	the	OF_FIELD	parameter.
The	field	specified	in	this	parameter	must	be	numeric	and	must	be	defined	in	the
LANSA	data	dictionary	or	defined	in	this	function	with	a	DEFINE	command.
This	field	is	reset	at	the	beginning	of	each	SELECT/SELECTLIST	loop.

BY_FIELD
Specifies	the	condition	under	which	the	fields	are	to	be	totaled.
*SELECTED,	which	is	the	default	value	indicates,	that	the	totaling	should
continue	until	the	SELECT/SELECTLIST	loop	terminates	(ie:	all	selected
information).
Otherwise,	specify	a	list	of	1	to	20	field	names	(alternatively,	enter	an
expandable	group	expression).	The	totaling	continues	until	one	or	more	of	the
fields	in	the	list	changes	value.	When	one	or	more	of	the	fields	changes	value
the	"accumulator"	is	reset	to	its	null	value	and	a	new	totaling	cycle	is	started.
The	"accumulator"	is	the	work	field	calculating	the	total.
See	the	examples	section	for	more	details	of	how	this	parameter	is	used.

7.66.2	KEEP_TOTAL	Comments	/	Warnings
Refer	to	the	7.63.2	KEEP_COUNT	Comments	/	Warnings	which	are	also
applicable	to	KEEP_TOTAL.

7.66.3	KEEP_TOTAL	Examples
Example	1:	A	sales	history	file	contains	details	of	a	company	name
(#COMPANY),	a	division	name	(#DIVNAM)	and	a	sales	value	(#SALES).
Print	all	sales	details	and	print	total	and	average	sales	details	by	division,
company	and	report	(grand	total):
DEF_LINE		NAME(#DETAIL)	FIELDS(#COMPANY	#DIVNAM	#SALES)
DEF_BREAK	NAME(#SUBDIV)	FIELDS(#DIVTOT	#DIVAVG)	TRIGGER_BY(#COMPANY	#DIVNAM)
DEF_BREAK	NAME(#SUBCOM)	FIELDS(#COMTOT	#COMAVG)	TRIGGER_BY(#COMPANY)
DEF_BREAK	NAME(#GRAND)		FIELDS(#GRDTOT	#GRDAVG)
SELECT				FIELDS(#DETAIL)		FROM_FILE(SALEHIST)
KEEP_TOTAL	OF_FIELD(#SALES)	IN_FIELD(#DIVTOT)	BY_FIELD(#COMPANY	#DIVNAM)
KEEP_AVG			OF_FIELD(#SALES)	IN_FIELD(#DIVAVG)	BY_FIELD(#COMPANY	#DIVNAM)
KEEP_TOTAL	OF_FIELD(#SALES)	IN_FIELD(#COMTOT)	BY_FIELD(#COMPANY)
KEEP_AVG			OF_FIELD(#SALES)	IN_FIELD(#COMAVG)	BY_FIELD(#COMPANY)
KEEP_TOTAL	OF_FIELD(#SALES)	IN_FIELD(#GRDTOT)
KEEP_AVG			OF_FIELD(#SALES)	IN_FIELD(#GRDAVG)
PRINT			LINE(#DETAIL)
ENDSELECT
ENDPRINT
	

Example	2:	A	sales	file	contains	details	of	a	company	division	(#DIVNAM)
and	of	an	entire	year's	sales	in	4	quarters	(#QTR01	->	#QTR04).	Produce	a
report	that	summarizes	total	and	average	yearly	sales	by	division.
DEF_BREAK				NAME(#SUMMARY)	FIELDS(#TOTAL	#AVERAGE)	TRIGGER_BY(#DIVNAM)
	
SELECT							FIELDS(#DIVNAM	#QTR01	#QTR02	#QTR03	#QTR04)	FROM_FILE(DIVSALES)
KEEP_TOTAL	OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#TOTAL)	BY_FIELD(#DIVNAM)
KEEP_AVG			OF_FIELD(#QTR01	#QTR02	#QTR03	#QTR04)	IN_FIELD(#AVERAGE)	BY_FIELD(#DIVNAM)
PRINT						LINE(*BREAKS)
ENDSELECT
	
ENDPRINT
	

7.67	LEAVE
The	LEAVE	command	is	a	loop	modifying	command.	It	causes	the	current	loop
to	be	exited	and	execution	to	continue	on	the	statement	following	the	end	loop
command.
CONTINUE/LEAVE	commands	work	inside	all	loop	commands.

Also	See
7.67.1	LEAVE	Parameters
7.67.2	LEAVE	Comments	/	Warnings
7.67.3	LEAVE	Examples
7.3	BEGIN_LOOP
7.15	CONTINUE
7.30	DOUNTIL
7.31	DOWHILE
7.83	SELECT
																																																									Required
	
		LEAVE	-->

																																																									Optional
	
													>--	IF	-----------	'condition'	--------------------|
	

7.67.1	LEAVE	Parameters
IF

IF
Optionally	specifies	the	condition	that	is	to	be	evaluated	to	determine	if	the
LEAVE	should	be	executed.	If	not	specified	the	LEAVE	is	executed
immediately.	For	more	details,	refer	to	Specifying	Conditions	and	Expressions.

7.67.2	LEAVE	Comments	/	Warnings
The	LEAVE	loop	modifying	command	operates	as	follows:

																			<	loop	command	>

														----	LEAVE

													|

													|					<	end	loop	command	>

														--->

	

The	<	loop	command	>	and	<	end	loop	command	>	can	be	any	of	the	following:
SELECT	/	ENDSELECT
SELECTLIST	/	ENDSELECT
SELECT_SQL	/	ENDSELECT
DOWHILE	/	ENDWHILE
DOUNTIL	/	ENDUNTIL
BEGIN_LOOP	/	END_LOOP.

7.67.3	LEAVE	Examples
Using	LEAVE	within	a	SELECT	Loop
Using	LEAVE	within	a	BEGIN_LOOP	loop
Using	LEAVE	within	a	SELECT	Loop
At	times,	when	one	record	has	been	read	in	a	SELECT	loop,	there	is	no	need	to
read	further.	This	example	demonstrates	how	to		achieve	this	using	the	LEAVE
command	within	a	SELECT	loop.
For	example,	assume	you	have	a	pricing	file	defined	like	this,	sorted	by	these
primary	keys:
1.		#ITEMNO	(ascending).
2.		#EFF_DATE	(ascending).

Item	No.
(Packed	7,0)

Effective	Date
(Packed	8,0)

Price	($)
(Packed	9,2)

116 2000/01/01 4.00

116 2000/07/01 4.25

116 2001/01/01 4.50

116 2001/07/01 4.75

116 2002/01/01 5.00

	

For	the	purpose	of	an	invoice,	a	price	for	item	116	as	at	08/02/2001	is	required.
DEFINE					FIELD(#REQITEM)	REFFLD(#ITEMNO)
DEFINE					FIELD(#REQDATE)	REFFLD(#EFF_DATE)
DEFINE					FIELD(#PRICEOUT)	REFFLD(#PRICE)
											
BEGIN_LOOP	
REQUEST				FIELDS(#REQITEM	#REQDATE)
CHANGE					FIELD(#PRICEOUT)	TO(0)
EXECUTE				SUBROUTINE(GETPRICE)	WITH_PARMS(#REQITEM	#REQDATE	#PRICEOUT)
DISPLAY				FIELDS(#REQITEM	#PRICEOUT)
END_LOOP			

										
SUBROUTINE	NAME(GETPRICE)	PARMS((#REQITEM	*RECEIVED)	(#REQDATE	*RECEIVED)	(#PRICEOUT	*RETURNED))
SELECT					FIELDS(#ITEMNO	#EFF_DATE	#PRICE)	FROM_FILE(PRICING)	WHERE('#ITEMNO	=	#REQITEM')	WITH_KEY(#REQITEM	#REQDATE)	OPTIONS(*BACKWARDS	*STARTKEY	*ENDWHERE)
CHANGE					FIELD(#PRICEOUT)	TO(#PRICE)
LEAVE						
ENDSELECT		
ENDROUTINE	
	

The	SELECT	positions	to	the	pricing	record	with	an	effective	date	the	same	as
or	earlier	than	the	requested	date	and	reads	it.	If	a	record	is	found,	the	value	of	
#PRICE	is	moved	into	#PRICEOUT.	As	the	required	record	has	been	found	it	is
not	necessary	to	keep	reading	pricing	records,	so	the	LEAVE	is	used	to	exit
from	the	SELECT	loop.
If	no	record	is	found	for	the	requested	item,	prior	to	(or	equal	to)	the	requested
date,	the	value	#PRICEOUT	remains	zero.
Alternatively,	instead	of	requesting	an	'as	of'	date	today's	date	can	be	used
automatically.
DEFINE					FIELD(#REQITEM)	REFFLD(#ITEMNO)
DEFINE					FIELD(#PRICEOUT)	REFFLD(#PRICE)
											
BEGIN_LOOP	
REQUEST				FIELDS(#REQITEM)
CHANGE					FIELD(#PRICEOUT)	TO(0)
EXECUTE				SUBROUTINE(GETPRICE)	WITH_PARMS(#REQITEM	#PRICEOUT)
DISPLAY				FIELDS(#REQITEM	#PRICEOUT)
END_LOOP			
											
SUBROUTINE	NAME(GETPRICE)	PARMS((#REQITEM	*RECEIVED)
(#PRICEOUT	*RETURNED))
SELECT					FIELDS(#ITEMNO	#EFF_DATE	#PRICE)	FROM_FILE(PRICING)	WHERE('#ITEMNO	=	#REQITEM')	WITH_KEY(#REQITEM	*YYYYMMDD)	OPTIONS(*BACKWARDS	*STARTKEY	*ENDWHERE)
CHANGE					FIELD(#PRICEOUT)	TO(#PRICE)
LEAVE						
ENDSELECT		
ENDROUTINE
	

Using	LEAVE	within	a	BEGIN_LOOP	loop
This	example	demonstrates	how	to	use	the	LEAVE	command	within	a

BEGIN_LOOP	loop.	With	the	help	of	an	additional	user	function	key	and	a
defined	condition	the	LEAVE	command	causes	the	loop	to	end	when	the	user
presses	the	'Finish'	key.
DEF_COND			NAME(*FINISHED)	COND('#IO$KEY	=	''09''')
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#SURNAME	#GIVENAME)
	
BEGIN_LOOP	
REQUEST				FIELDS(#EMPNO	#SURNAME	#GIVENAME)	BROWSELIST(#EMPBROWSE)	USER_KEYS((09	'Finish'))
LEAVE						IF(*FINISHED)
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP			
MESSAGE	MSGTXT('Input	of	Employees	Completed')
	

7.68	LOC_ENTRY
The	LOC_ENTRY	command	is	used	to	locate	the	first	entry	in	a	list	that
satisfies	a	specified	condition.
The	list	specified	must	be	a	working	list	(used	to	store	information	within	a
program).	It	is	not	possible	to	use	the	LOC_ENTRY	command	against	a	browse
list	(used	for	displaying	information	at	a	workstation).
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	list	processing.

Also	See
7.68.1	LOC_ENTRY	Parameters
7.68.2	LOC_ENTRY	Examples
																																																									Optional
	
		LOC_ENTRY	----	IN_LIST	------	*FIRST	----------------------
--->
																																list	name
	
													>--	WHERE	--------	'condition'	-------------------->
	
													>--	RET_NUMBER	---	*NONE	------------------------
-->
																																field	name
	
													>--	RET_STATUS	---	*STATUS	------------------------
>
																																field	name
	
													>--	RET_ENTRY	----	*YES	---------------------------|
																																*NO
	

7.68.1	LOC_ENTRY	Parameters
IN_LIST
RET_ENTRY
RET_NUMBER
RET_STATUS
WHERE

IN_LIST
Specifies	the	name	of	the	list	that	should	be	searched	by	this	command.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used.	This	list
must	have	the	TYPE(*WORKING)	parameter	to	be	valid.
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command	and	must	have	the
TYPE(*WORKING)	parameter.

WHERE
Refer	to	Specifying	Conditions	and	Expressions.
If	no	WHERE	parameter	is	specified	then	the	first	entry	in	the	list	will	always
be	returned	by	the	LOC_ENTRY	command.

RET_NUMBER
Optionally	specify	the	name	of	a	field	that	is	to	be	set	by	the	LOC_ENTRY
command	to	contain	the	entry	number	of	the	entry	located.
If	no	entry	is	found	in	the	list	that	satisfies	the	condition	the	field's	value	is	not
changed	by	the	LOC_ENTRY	command.
*NONE,	which	is	the	default	value	indicates	that	no	field	is	to	contain	the
located	list	entry	number.	If	a	field	is	nominated,	it	must	be	of	type	numeric	and
have	been	defined	previously	in	the	LANSA	data	dictionary	or	elsewhere	in	the
function.
As	each	entry	is	added	to	a	list	by	the	ADD_ENTRY	command	it	is	assigned	a
number	that	identifies	it.	List	entries	are	numbered	from	1	(first	entry	number)
to	9999	(maximum	possible	last	entry	number)	sequentially.
By	knowing	a	list	entry	number	it	is	possible	to	directly	retrieve	an	individual
list	entry	(see	the	GET_ENTRY	command	for	more	details).

RET_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	LOC_ENTRY	command.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2	and	be	defined	in	the	LANSA	data	dictionary	or	elsewhere	in
the	function.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is	still
updated.
The	LOC_ENTRY	command	only	returns	2	possible	status	codes.	These	are
"OK"	(an	entry	was	located)	or	"NR"	(no	entry	was	located).

RET_ENTRY
Specifies	whether	or	not	the	located	list	entry	should	be	returned	from	the	list
into	the	RDML	program.
*YES,	which	is	the	default	value,	indicates	that	the	located	list	entry	should	be
returned	into	the	RDML	program.
*NO	indicates	that	there	is	no	need	to	return	the	list	entry	into	the	RDML
program.	This	option	is	typically	used	when	a	list	is	being	used	for	validation
purposes.	In	such	cases,	it	is	the	fact	that	the	entry	is	in	(or	not	in)	the	list	that
matters,	not	its	location	or	content.
The	command:
LOC_ENTRY	IN_LIST(#COUNTRIES)	WHERE('#CNTRY	=	AUST')
	

is	functionally	identical	to	the	commands:
LOC_ENTRY	IN_LIST(#COUNTRIES)	WHERE('#CNTRY	=	AUST')	RET_NUMBER(#NUMBER)	RET_ENTRY(*NO)
IF_STATUS	IS(*OKAY)
GET_ENTRY	NUMBER(#NUMBER)	FROM_LIST(#COUNTRIES)
ENDIF
	

7.68.2	LOC_ENTRY	Examples
Example	1:	Locate	the	first	entry	in	a	list	called	#ORDERLINE	where	the
product	of	quantity	and	price	is	greater	than	1000:
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	TYPE(*WORKING)
	
LOC_ENTRY	IN_LIST(#ORDERLINE)	WHERE('(#QUANTITY	*	#PRICE)	*GT	1000')
	

Example	2:	A	"table	file"	called	#COUNTRY	(a	list	of	countries)	contains
fields	#CCODE	(country	code),	#CMNEM	(country	mnemonic)	and	#CNAME
(country	full	name).	Use	a	working	list	to	create	a	subroutine	that	will	minimize
I/O's	to	the	file	(ie:	replace	FETCH	commands	with	LOC_ENTRY	commands):
SUBROUTINE	NAME(GET_CNTRY)	PARMS((#GETCODE	*RECEIVED)
(#CMNEM	*RETURNED)	(#CNAME	*RETURNED))
	
DEFINE					FIELD(#GETCODE)	REFFLD(#CCODE)
DEF_LIST			NAME(#COUNTRIES)	FIELDS(#CCODE	#CMNEM	#CNAME)	TYPE(*WORKING)	ENTRYS(100)
	
LOC_ENTRY		IN_LIST(#COUNTRIES)	WHERE('#CCODE	=	#GETCODE')
	
IF_STATUS		IS_NOT(*OKAY)
FETCH						FIELDS(#COUNTRIES)	FROM_FILE(COUNTRY)	WITH_KEY(#GETCODE)
ADD_ENTRY		TO_LIST(#COUNTRIES)
ENDIF
	
ENDROUTINE
	

Note	that	this	routine	makes	no	allowances	for	a	country	code	not	being	found
in	the	file	#COUNTRY.	The	entry	is	added	to	the	list	regardless	of	whether	the
country	was	found	or	not.
Note	also	the	use	of	field	#GETCODE	(instead	of	#CCODE)	in	the	parameter
list.	If	this	was	not	done,	the	WHERE	condition	in	the	LOC_ENTRY	command
would	have	to	be	expressed	as	WHERE('#CCODE	=	#CCODE'),	which	is
always	true,	so	the	first	entry	would	always	be	retrieved.
When	a	field	referenced	in	a	WHERE	condition	is	part	of	the	working	list,	it	is
the	occurrence	of	the	field	in	the	working	list	that	is	evaluated,	not	the	actual
field	as	it	is	known	in	the	program.

Thus	the	condition	WHERE('#CCODE	=	#GETCODE')	is	actually	saying
"where	the	value	of	field	country	code	in	a	working	list	entry	is	equal	to	the
value	of	field	get	code	in	the	program".

7.69	MENU
The	MENU	command	is	used	to	cause	an	executing	RDML	program	to	end	and
a	re-display	of	the	process's	main	menu	to	occur.	Note	that	the	executing
function	ends	and	the	process	controller	receives	control	again.
Using	the	MENU	command	is	functionally	identical	to	using	the	MENU
function	key.
Optionally	a	message	may	be	issued	which	will	be	routed	back	onto	the	process
controller's	message	queue.	This	message	will	appear	on	line	22/24	when	the
process's	main	menu	is	(re)displayed.
Note:	The	MENU	command	indicates	control	should	return	to	the	last	displayed
process	menu.	This	means	that	in	non-procedural	or	full	RDMLX	functions	the
MENU	command	cannot	be	sensibly	or	predicably	used.

Also	See
7.69.1	MENU	Parameters
7.69.2	MENU	Examples
																																																									Optional
	
		MENU	---------	MSGTXT	--------*NONE	----------------------
---->
																																'message	text'
	
													>--	MSGID	--------	*NONE	-------------------------->
																																message	identifier
	
													>--	MSGF	---------	*NONE	-------------------------->
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																														|	expandable	group	expression	|
																															---------	20	max	------------
	

7.69.1	MENU	Parameters
MSGDTA
MSGF
MSGID
MSGTXT

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	This	text	will	be
displayed	on	line	22/24	when	the	process's	main	menu	is	(re)displayed.	The
message	text	specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT
parameter	or	the	MSGID/MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	issued	when	the	function	ends	and	the	process's	main	menu	is	(re)displayed.
Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the

field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:
"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.69.2	MENU	Examples
Example	1:	End	a	function	and	re-display	the	process	menu:
MENU				MSGTXT('Previous	function	ended	at	user	request')
	

Example	2:	Cause	a	function	to	end	and	the	process	main	menu	to	be	re-
displayed	with	message	details	from	an	IBM	i	message	file:

MENU		MSGID(USR0046)	MSGF(QUSRMSG)
	

IBM	i	only:

MENU		MSGID(USR0167)	MSGF(QUSRMSG.*LIBL)

	

MENU		MSGID(USR8046)	MSGF(QUSRMSG.USERLIB01)

	

7.70	MESSAGE
The	MESSAGE	command	has	4	main	uses:
To	cause	a	message	to	appear	on	line	22/24	of	the	next	screen	format	that	is
displayed	to	the	user.
To	cause	a	message	to	be	displayed	on	line	22/24	of	the	current	screen	format
(no	matter	what	it	is)	and	then	disappear	when	the	next	screen	format	is
displayed	to	the	user.
To	cause	a	message	to	be	displayed	on	line	22/24	of	the	current	screen	format
(no	matter	what	it	is)	and	then	delay	the	executing	job	for	a	minimum	period
of	time.
To	cause	a	single	message	to	overlay	the	current	screen	format	in	a	message
"window"	and	optionally	receive	a	reply	to	the	message	back	into	the	RDML
program.	The	message	window	may	be	positioned	to	overlay	the	top,	middle
or	bottom	of	the	current	screen	format.

Portability	Considerations Refer	to	parameters:	MIN_TIME	and	TYPE.

Also	See
7.70.1	MESSAGE	Parameters
7.70.2	MESSAGE	Comments	/	Warnings
7.70.3	MESSAGE	Examples
GET_MESSAGE	Built	In	Function
CLR_MESSAGES	Built	In	Function
MESSAGE_COLLECTOR	Built	In	Function
																																																									Optional
	
		MESSAGE	------	MSGTXT	--------*NONE	--------------------
------>
																																'message	text'
	
													>--	MSGID	--------	*NONE	-------------------------->
																																message	identifier
	
													>--	MSGF	---------	*NONE	-------------------------->
																																message	file	.	library	name

	
													>--	MSGDTA	-------	substitution	variables	--------->
																																	|expandable	group	expression|
																																		-----------	20	max	--------
	
													>--	TYPE	---------	*INFO	-------------------------->
																																*STATUS
																																*WINDOW
																																*WINDOWBUZ
	
													>--	MIN_TIME	-----	0	------------------------------>
																																number	of	seconds
	
													>--	REPLY	--------	*NONE	-------------------------->
																																field	name
	
													>--	BORDER	-------	*YES---------------------------->
																																*NO
	
													>--	LOCATE	-------	*BOTTOM	------------------------|
																																*MIDDLE
																																*TOP
	

7.70.1	MESSAGE	Parameters
BORDER
LOCATE
MIN_TIME
MSGDTA
MSGF
MSGID
MSGTXT
REPLY
TYPE

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	This	text	will	be
displayed	on	line	22/24	of	the	current	or	next	screen	format	that	is	displayed	to
the	user.	The	message	text	specified	should	be	enclosed	in	quotes.	Use	either	the
MSGTXT	parameter	or	the	MSGID/MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	displayed	on	line	22/24	of	the	current	or	next	screen	displayed	to	the	user.
Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

Portability
Considerations

If	you	are	relying	on	receiving	specific	message	identifiers
in	your	application,	please	note:
On	IBM	i,	when	messages	are	routed	between	RDMLX
components	or	functions	and	RDML	functions,	the	original
message	identifier	is	not	retained.	Such	message	are	re-issued
as	text	messages	with	a	message	identifier	of	DCM9899.	

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA

Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:
"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

TYPE
Specifies	the	type	of	message	that	is	to	be	issued.
*INFO,	which	is	the	default	value,	causes	the	message	to	appear	on	line	22/24
of	the	NEXT	screen	format	that	is	displayed	to	the	user.	This	message	will
remain	on	line	22/24	until	the	user	presses	the	enter	key	again.

*STATUS	indicates	that	the	message	should	appear	on	line	22/24	of	the	current
screen,	no	matter	what	it	is.	The	current	screen	may	not	even	be	part	of	the
LANSA	system.	When	the	next	screen	format	is	presented	to	the	user	the	status
message	will	be	erased	from	the	screen.	Typically	"status"	messages	are	issued
to	inform	the	user	that	some	extended	action	is	in	progress	and	that	he/she
should	wait.	See	the	following	examples	for	more	information.
*WINDOW	indicates	that	the	message	should	be	presented	to	the	user	in	a
message	"window".	The	window	will	overlay	the	current	screen	format	(no
matter	what	it	is)	and	can	be	positioned	at	the	top,	middle	or	bottom	of	the
screen	(see	the	LOCATE	parameter).	Once	the	window	has	been	presented	the
user	must	press	the	enter	key	before	processing	is	resumed.	When	processing	is
resumed	the	screen	is	restored	to	what	it	was	before	the	message	window	was
displayed.	Optionally	a	reply	to	the	message	may	be	received	back	into	the
RDML	program	(see	the	REPLY	parameter).
*WINDOWBUZ	indicates	that	the	message	should	be	presented	to	the	user	in	a
message	"window".	When	it	is	presented	the	workstation	alarm	will	sound.	(See
TYPE(*WINDOW)	for	more	details.)

Portability
Considerations

*WINDOWBUZ	is	interpreted	as	*WINDOW	and	a	build
warning	is	generated	when	used	in	Visual	LANSA.

MIN_TIME
Specifies	the	minimum	time	that	a	*STATUS	message	should	be	displayed	on
line	22/24	of	the	current	screen.	Use	this	parameter	to	extend	the	display	time	of
a	status	message	so	that	it	can	be	read.	If	no	value	is	specified	for	this	parameter
a	default	value	of	0	seconds	is	assumed	(which	will	cause	the	message	to	flash
on	the	screen	briefly).	Otherwise	specify	the	minimum	display	time	required	in
seconds.	Note	that	the	user's	job	will	wait	(and	not	perform	any	useful	work)	for
the	number	of	seconds	specified	in	this	parameter.
This	parameter	can	be	used	to	"suspend"	a	function	for	a	period	of	time	while
waiting	for	some	other	function	to	complete.

Portability
Considerations

Not	supported	in	the	current	release	of	Visual	LANSA	but
will	be	supported	in	a	future	release.	A	build	warning	will	be
generated	when	used	in	Visual	LANSA.

REPLY
Optionally	nominates	a	field	that	is	to	receive	the	user's	reply	to	the	message.
This	parameter	is	only	valid	for	messages	using	the	TYPE(*WINDOW)

parameter.
*NONE,	which	is	the	default	value,	indicates	that	the	user	should	not	be	given
an	option	to	reply	to	the	message.	In	this	case	the	message	window	will	only
display	the	message	text	to	the	user.
When	a	field	name	is	specified	it	must	be	defined	in	the	LANSA	data	dictionary
or	in	the	function.	The	field	may	be	alphanumeric	or	numeric.	Where	the	field	is
alphanumeric	and	longer	than	20	characters	only	the	first	20	characters	may	be
specified	by	the	user.	When	the	field	is	numeric	it	must	be	an	integer	(i.e.	no
decimal	positions).	When	a	field	name	is	specified,	the	message	window
contains	the	message	text	and	an	input	field	identified	by	the	string	"Reply?"
into	which	the	user	may	enter	the	required	reply	to	the	message.

BORDER
Specifies	for	messages	of	TYPE(*WINDOW)	whether	or	not	the	message
window	should	be	surrounded	by	a	border.	The	default	value	is	*YES.	The	only
other	possible	value	for	this	parameter	is	*NO,	which	indicates	that	no	border	is
required.

LOCATE
Specifies	for	messages	of	TYPE(*WINDOW)	where	on	the	screen	the	message
window	should	be	located.
*BOTTOM,	which	is	the	default	value,	indicates	that	the	window	should	be
positioned	at	the	bottom	of	the	screen.
The	other	allowable	values	are	*TOP	and	*MIDDLE,	which	indicate	that	the
window	should	be	positioned	at	the	top	or	middle	of	the	screen	respectively.

7.70.2	MESSAGE	Comments	/	Warnings
MESSAGE	TYPE(*WINDOW)	or	TYPE(*WINDOWBUZ)	is	not	currently
available	for	those	applications	that	are	enabled	for	the	LANSA	GUI
(Graphical	User	Interface).
MESSAGE	TYPE(*WINDOW),	TYPE(*WINDOWBUZ)	or
TYPE(*STATUS)	are	not	available	for	those	applications	that	are	enabled	for
LANSA	for	the	WEB.
As	many	TYPE(*INFO)	messages	as	required	can	be	issued.	The	first
message	issued	will	be	displayed	on	line	22/24	of	the	next	screen	presented	to
the	user	with	a	"+"	sign	indicating	that	more	messages	follow.	These	can	be
reviewed	by	using	either	the	ROLL	keys	or	the	MESSAGE	function	key.	For
information,	refer	to	Messages	and	the	Help	Key	in	the	LANSA	for	i	User
Guide.
Messages	of	TYPE(*WINDOW)	should	not	be	issued	when	a	function	is
executing	in	batch.

its:Lansa010.chm::/lansa/ugub_1012.htm

7.70.3	MESSAGE	Examples
Issuing	a	Plain	Text	Message
Issuing	Multiple	Messages	During	an	Abort
Issuing	Messages	with	Dynamically	Constructed	Text
Issuing	Messages	with	an	*MTXT	Variable	as	the	Text
Issuing	Messages	with	Substituted	Variables
Using	Messages	to	Instruct	and	Notify	the	User
Using	Messages	to	Format	Text
Issuing	a	Plain	Text	Message
This	example	shows	how	to	issue	a	text	message	that	will	be	shown	on	the
user's	screen:
	MESSAGE	MSGTXT('Welcome	to	the	LANSA	system')
	

Issuing	Multiple	Messages	During	an	Abort
This	example	shows	how	to	issue	multiple	messages	during	an	abort	sequence:
MESSAGE				MSGTXT('===')
MESSAGE				MSGTXT('==		EMPLOYEE	DETAILS	NOT	FOUND	IN	PSLMST			==')
MESSAGE				MSGTXT('===')
MESSAGE				MSGTXT('==	FATAL	ERROR	-	CONTACT	YOUR	SUPERVISOR	==')
ABORT						MSGTXT('===')
	

Issuing	Messages	with	Dynamically	Constructed	Text
This	subroutine	demonstrates	how	to	dynamically	construct	a	message	with	all
the	relevant	details	at	the	time	that	it	needs	to	be	issued:
SUBROUTINE	NAME(MESSAGE)	PARMS((#MSGTXT1	*RECEIVED)	(#MSGTXT2	*RECEIVED)	(#MSGTXT3	*RECEIVED))
DEFINE					FIELD(#MSGTXT1)	TYPE(*CHAR)	LENGTH(40)	DECIMALS(0)
DEFINE					FIELD(#MSGTXT2)	REFFLD(#MSGTXT1)
DEFINE					FIELD(#MSGTXT3)	REFFLD(#MSGTXT1)
DEFINE					FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)	DECIMALS(0)
USE								BUILTIN(BCONCAT)	WITH_ARGS(#MSGTXT1	#MSGTXT2	#MSGTXT3)	TO_GET(#MSGDTA)
ABORT						MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDROUTINE	
	

The	subroutine	can	then	be	used	to	issue	messages	like	this:
	EXECUTE	SUBROUTINE(MESSAGE)	WITH_PARMS('Details	for	employee'	#EMPNO	'saved	to	file')
	

Or	this:
	EXECUTE	SUBROUTINE(MESSAGE)	WITH_PARMS(#DEPTMENT	'	department	has	been	created'	*BLANKS)
	

Issuing	Messages	with	an	*MTXT	Variable	as	the	Text
In	multilingual	applications	you	sometimes	need	to	issue	messages	that	contain
*MTXT	variables	as	their	message	text.	This	subroutine	shows	one	way	of
doing	this.
SUBROUTINE	NAME(MTXTMESSGE)	PARMS((#MSGDTA	*RECEIVED))
DEFINE					FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)	DECIMALS(0)
MESSAGE				MSGID(DCM9899)	MSGF(DC@M01)	MSGDTA(#MSGDTA)
ENDROUTINE	
	

The	subroutine	can	then	be	used	to	send	messages	as	follows;
	EXECUTE	SUBROUTINE(MTXTMESSGE)	WITH_PARMS(*MTXTDEMEMPLO05501)
	

Issuing	Messages	with	Substituted	Variables
This	example	shows	how	a	message	wording	can	be	defined	in	a	message	file
and	the	required	details	substituted	as	variables	when	the	message	is	issued.	The
message	would	be	defined	like	this:

Message	File: MYMSGF

Message	ID: MSG0002

Message	Text: 'The	salary	for	&1	&2	&3	is	&4.'

Substitution	Variables

Label Type Length Dec. Intended	Content

&1 *CHAR5 	 #EMPNO	(Employee	Number)

&2 *CHAR20 	 #GIVENAME

&3 *CHAR20 	 #SURNAME

&4 *DEC 11 2 #SALARY

	

Then	the	message	is	issued	like	this:
GROUP_BY			NAME(#XG_EMPLOY)	FIELDS(#EMPNO	#GIVENAME	#SURNAME	#SALARY)
											
REQUEST				FIELDS(#EMPNO)
FETCH						FIELDS(#XG_EMPLOY)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)
IF_STATUS		IS(*OKAY)
MESSAGE				MSGID(MSG0002)	MSGF(MYMSGF)	MSGDTA(#XG_EMPLOY)
ELSE							
MESSAGE				MSGTXT('Details	for	employee	can	not	be	found')
ENDIF	
	

Using	Messages	to	Instruct	and	Notify	the	User
This	example	demonstrates	how	to	use	messages	to	both	instruct	the	user	on
what	they	should	do	next	and	notify	the	user	about	what	the	program	is
currently	doing.	The	example	gives	some	input	instructions	then	begins	a	cycle
of	requesting	input,	notifying	the	user	of	the	various	processing	steps	as	it
executes	them	and	then	finally	notifies	the	user	of	the	completion	of	processing
before	asking	for	the	next	input.
MESSAGE				MSGTXT('Input	instructions	appear	here.	Press	Enter')
											
BEGIN_LOOP	
REQUEST				FIELDS(#STD_TEXT)
MESSAGE				MSGTXT('Processing	Step	1.	Please	wait.')	TYPE(*STATUS)
EXECUTE				SUBROUTINE(WAIT)
MESSAGE				MSGTXT('Processing	Step	2.	Please	wait.')	TYPE(*STATUS)
EXECUTE				SUBROUTINE(WAIT)
MESSAGE				MSGTXT('Processing	Step	3.	Please	wait.')	TYPE(*STATUS)
EXECUTE				SUBROUTINE(WAIT)
MESSAGE				MSGTXT('Processing	has	completed.	Please	input	next')
END_LOOP			
											
SUBROUTINE	NAME(WAIT)
BEGIN_LOOP	TO(20000000)
END_LOOP			
ENDROUTINE	

	
If	the	TYPE	parameter	of	the	*STATUS	messages	was	changed	to	*INFO	then
the	messages	would	not	appear	until	after	the	processing	had	been	completed
and	the	next	REQUEST	command	is	executed.	The	messages	would	then
remain	until	the	next	REQUEST	command	is	executed.
Using	Messages	to	Format	Text
This	example	demonstrates	how	messages	can	be	used	to	format	variables	and
text	into	concatenated	text	without	the	need	to	convert	data	types	or	concatenate
strings.	The	following	messages	definitions	are	created:

Message	File: MYMSGF

Message	ID: MSG0004

Message	Text: 'The	name	of	employee	&1	is	&2	&3.'

Substitution	Variables

Label Type Length Dec. Intended	Content

&1 *CHAR5 	 #EMPNO	(Employee	Number)

&2 *CHAR20 	 #GIVENAME

&3 *CHAR20 	 #SURNAME

	

Message	File: MYMSGF

Message	ID: MSG0005

FMessage	Text: 'The	department	and	section	of	employee	&1	is	&2	&3.'

Substitution	Variables

Label Type Length Dec. Intended	Content

&1 *CHAR5 	 #EMPNO	(Employee	Number)

&2 *CHAR20 	 #DEPTMENT

&3 *CHAR20 	 #SECTION

	

Message	File: MYMSGF

Message	ID: MSG0006

Message	Text: 'The	salary	of	employee	&1	is	&2.'

Substitution	Variables

Label Type Length Dec. Intended	Content

&1 *CHAR5 	 #EMPNO	(Employee	Number)

&2 *DEC 11 2 #SALARY

	

Then,	these	messages	are	issued	with	the	appropriate	variables.	The
GET_MESSAGES	BIF	is	used	in	the	subroutine	to	copy	the	messages	to	a
browse	list	to	be	displayed	on	the	screen	and,	if	the	user	wants,	to	lines	of	a
report	for	printing:
DEFINE					FIELD(#PRINT)	TYPE(*CHAR)	LENGTH(1)	LABEL('PRINT?')	DEFAULT(N)
DEFINE					FIELD(#EMPTXT)	TYPE(*CHAR)	LENGTH(78)
DEFINE					FIELD(#RETCODE)	TYPE(*CHAR)	LENGTH(2)
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPTXT)
DEF_LINE			NAME(#EMPLOYEE)	FIELDS(#EMPTXT)
											
REQUEST				FIELDS(#PRINT)
CLR_LIST			NAMED(#EMPBROWSE)
											
SELECT					FIELDS(*ALL)	FROM_FILE(PSLMST1)
MESSAGE				MSGID(MSG0004)	MSGF(MYMSGF)	MSGDTA(#EMPNO	#GIVENAME	#SURNAME)
MESSAGE				MSGID(MSG0005)	MSGF(MYMSGF)	MSGDTA(#EMPNO	#DEPTMENT	#SECTION)
MESSAGE				MSGID(MSG0006)	MSGF(MYMSGF)	MSGDTA(#EMPNO	#SALARY)
IF									COND('#TERMDATE	*NE	0')
MESSAGE				MSGID(MSG0003)	MSGF(MYMSGF)	MSGDTA(#EMPNO	#GIVENAME	#SURNAME)
ENDIF						
ENDSELECT		
											
EXECUTE				SUBROUTINE(SHOWMSGS)

DISPLAY				BROWSELIST(#EMPBROWSE)
											
SUBROUTINE	NAME(SHOWMSGS)
USE								BUILTIN(GET_MESSAGE)	TO_GET(#RETCODE	#EMPTXT)
DOWHILE				COND('#RETCODE	=	OK')
ADD_ENTRY		TO_LIST(#EMPBROWSE)
IF									COND('#PRINT	*NE	N')
PRINT						LINE(#EMPLOYEE)
ENDIF						
USE								BUILTIN(GET_MESSAGE)	TO_GET(#RETCODE	#EMPTXT)
ENDWHILE			
ENDROUTINE	
	

The	wording	of	the	messages	in	the	message	file	can	be	changed	or	even
translated	into	another	language	without	the	need	to	change	or	recompile	the
program.

7.71	ON_ERROR
The	ON_ERROR	command	is	used	to	transfer	control	to	another	command	if	an
"error	condition"	is	raised	within	a	validation	block.
For	more	information	about	the	raising	of	the	"error	condition"	inside	a
validation	block	refer	to	the	ENDCHECK	command.
An	optional	error	message	may	be	issued	when	the	"error	condition"	is	raised.

Also	See
7.71.1	ON_ERROR	Parameters
7.71.2	ON_ERROR	Comments	/	Warnings
7.71.3	ON_ERROR	Examples
																																																									Required
	
		ON_ERROR	-----	GOTO	---------	label	------------------------
--->

													>--	MSGTXT	-------	*NONE	-------------------------->
																																message	text
	
													>--	MSGID	--------	*NONE	-------------------------->
																																message	identifier
	
													>--	MSGF	---------	DC@M01	.	*LIBL	-----------------
>
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																														|expandable	group	expression	|
																															----------	20	max	----------
	

7.71.1	ON_ERROR	Parameters
GOTO
MSGDTA
MSGF
MSGID
MSGTXT

GOTO
Specifies	the	label	associated	with	the	command	to	which	control	will	be	passed
if	an	"error	condition"	has	been	raised	within	a	validation	block.

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type

*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:
"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.71.2	ON_ERROR	Comments	/	Warnings
The	ON_ERROR	command	can	only	be	used	within	a	BEGINCHECK	/
ENDCHECK	validation	block.	Refer	to	these	commands	for	more	details	of
validation	blocks.

7.71.3	ON_ERROR	Examples
The	following	example	applies	to	the	ON_ERROR	command.
Consider	the	following	RDML	"input	and	validate"	program:
REQUEST				FIELDS(#A	#B	#C	#D	#E)
	
BEGINCHECK
FILECHECK		FIELD(#A)	USING_FILE(ACHECK)
FILECHECK		FIELD(#B)	USING_FILE(BCHECK)
FILECHECK		FIELD(#C)	USING_FILE(CCHECK)
FILECHECK		FIELD(#D)	USING_FILE(DCHECK)
FILECHECK		FIELD(#E)	USING_FILE(ECHECK)
ENDCHECK
	

This	validation	block	is	relatively	inefficient	because	it	performs	all	subsequent
checks	even	if	a	previous	check	failed.	For	instance	if	field	#A	is	in	error	then
the	checks	of	#B,	#C,	#D	and	#E	are	wasted	because	they	will	have	to	be
performed	again	when	field	#A	is	corrected	by	the	user.
The	ON_ERROR	command	can	be	used	to	improve	the	efficiency	of	such	a
validation	block	by	specifying	a	series	of	"premature	ends"	like	this:
L10:	REQUEST				FIELDS(#A	#B	#C	#D	#E)
	
					BEGINCHECK
					FILECHECK		FIELD(#A)	USING_FILE(ACHECK)
					ON_ERROR			GOTO(L10)
					FILECHECK		FIELD(#B)	USING_FILE(BCHECK)
					ON_ERROR			GOTO(L10)
					FILECHECK		FIELD(#C)	USING_FILE(CCHECK)
					ON_ERROR			GOTO(L10)
					FILECHECK		FIELD(#D)	USING_FILE(DCHECK)
					ON_ERROR			GOTO(L10)
					FILECHECK		FIELD(#E)	USING_FILE(ECHECK)
					ENDCHECK
	

Thus	any	failed	check	will	cause	control	to	be	passed	back	to	the	REQUEST
command	and	the	error	details	will	be	displayed	for	correction.	Of	course	the
disadvantage	of	this	technique	is	that	if	a	field	is	in	error	all	subsequent	fields

will	not	be	validated	until	the	first	error	is	corrected.

7.72	OPEN
The	OPEN	command	is	used	to	open	(or	control	the	opening	of)	the	database
file(s)	specified	by	the	FILE	parameter.	Individual	files	or	all	files	can	be
opened	or	controlled.
There	are	two	forms	of	the	OPEN	command.
The	first	is	the	executable	form.	It	is	called	executable	because	the	file	is
opened	at	the	time	the	OPEN	command	is	executed.	This	form	supports	access
to	the	IBM	i	operating	system	command	OPNQRYF	(Open	Query	File).
The	second	is	the	declarative	form.	It	is	called	declarative	because	the	OPEN
command	does	not	actually	execute.	The	presence	of	the	command	in	the
RDML	program	declares	how	and	when	the	file	is	to	be	automatically	opened
by	LANSA.
These	2	forms	of	the	command	are	described	in	more	detail	later.
There	is	normally	no	need	to	code	OPEN	or	CLOSE	commands	into	RDML
programs.	LANSA	will	automatically	open	and	close	files	as	required.	OPEN
and	CLOSE	commands	are	only	used	to	specifically	open	or	close	a	file,	or	to
modify	how	and	when	LANSA	automatically	opens	and	closes	them.

Portability
Considerations

FILE	(library)	is	not	supported	in	Visual	LANSA.	A	build
warning	will	be	generated	if	used	in	Visual	LANSA	code.
Refer	to	parameters:	ALWCPYDTA,	OPTIMIZE,	SEQONLY,
COMMIT	and	TYPE	,	ALWCPYDTA,	OPTIMIZE,
SEQONLY,	COMMIT	and	TYPE	,	FILE	,	KEYFLD,
ALWCPYDTA,	OPTIMIZE,	SEQONLY,	COMMIT	and
TYPE	,	QRYSLT,	ALWCPYDTA,	OPTIMIZE,	SEQONLY,
COMMIT	and	TYPE	,	ALWCPYDTA,	OPTIMIZE,
SEQONLY,	COMMIT	and	TYPE	and	USE_OPTION	.

Also	See
7.72.1	OPEN	Parameters
7.72.2	OPEN	Comments	/	Warnings
7.72.3	OPEN	Examples
																																																									Optional
	
		OPEN	---------	FILE----------	*ALL.	*FIRST	------------------
->

																																file	name.library	name
	
													>--	USE_OPTION	---	*FIRSTSCREEN	---------------
---->
																																*IMMEDIATE
																																*ONDEMAND
																																*OPNQRYF
																																*KEEPOPEN
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------
>
																																*NEXT
																																*RETURN
																																label
	
													>--	QRYSLT	-------	*ALL	--------------------------->
																																'selection	criteria'
																																#field	name
																																'=EXCHANGE'
	
													>--	KEYFLD	-------	*NONE	-------------------------->
																																*FILE
																																'key	/	sort	order	required'
																																#field	name
	
													>--	ALWCPYDTA	----	*YES	--------------------------->
																																*NO
	
													>--	OPTIMIZE	-----	*ALLIO	------------------------->
																																*FIRSTIO
																																*MINWAIT
	
													>--	SEQONLY	------	*YES	---	number	of	records	----
->
																																*NO
	

													>--	COMMIT	-------	*NO	---------------------------->
																																*YES
	
													>--	TYPE	---------	*NORMAL	------------------------|
																																*PERM
	

7.72.1	OPEN	Parameters
ALWCPYDTA,	OPTIMIZE,	SEQONLY,	COMMIT	and	TYPE
ALWCPYDTA,	OPTIMIZE,	SEQONLY,	COMMIT	and	TYPE
FILE
IO_ERROR
IO_STATUS
KEYFLD
ALWCPYDTA,	OPTIMIZE,	SEQONLY,	COMMIT	and	TYPE
QRYSLT
ALWCPYDTA,	OPTIMIZE,	SEQONLY,	COMMIT	and	TYPE
ALWCPYDTA,	OPTIMIZE,	SEQONLY,	COMMIT	and	TYPE
USE_OPTION

FILE
Specifies	the	file(s)	to	be	opened	or	controlled.	Individual	files	can	be	specified
or	the	default	of	*ALL	can	be	nominated.	For	more	information,	refer	to
Specifying	File	Names	in	I/O	commands.
Note:	The	combination	of	parameters	FILE(*ALL)	and
USE_OPTION(*OPNQRYF)	is	invalid.	To	open	a	query	file,	a	specific	file
must	be	nominated	in	the	FILE	parameter.

Portability
Considerations

FILE	(library)	is	not	supported	in	Visual	LANSA.	A	build
warning	will	be	generated	if	used	in	Visual	LANSA	code.

USE_OPTION
Specifies	the	open	or	control	option	that	LANSA	is	to	use	when	opening	this
file.	The	allowable	values	for	this	parameter	are:
*FIRSTSCREEN(FSS),	which	is	the	default	value	and	is	a	"declarative"	form	of
the	command.	This	value	indicates	that	the	nominated	file	open(s)	should	be
"overlapped"	with	the	first	screen	interaction	with	the	user.	This	means	that	the
first	screen	is	presented	to	the	user,	and	while	he/she	is	keying	in	data,	the	file(s)
are	opened.
*IMMEDIATE(IMD),	which	is	an	"executable"	form	of	the	command.	This
value	indicates	that	the	nominated	file(s)	should	be	opened	immediately	(ie:
when	the	OPEN	command	is	executed).

*ONDEMAND(OND),	which	is	a	"declarative"	form	of	the	command.	This
value	specifies	that	the	nominated	file(s)	should	be	opened	as	required	(ie:	on	a
demand	basis).	This	means	that	the	first	I/O	request	to	the	file	will	cause	it	to	be
automatically	opened.	If	no	I/O	request	is	ever	made	to	the	file	it	will	not	be
opened.
*OPNQRYF(UOQ),	which	is	an	"executable"	form	of	the	command.	This	value
indicates	that	the	IBM	i	operating	system	command	OPNQRYF	should	be	used
during	the	file	open	to	select	and/or	order	the	data	in	the	file.	The	file	is	opened
when	the	OPEN	command	is	executed.
OPNQRYF	is	a	very	powerful	and	useful	command.	However,	it	can	cause
significant	performance	degradation	in	some	situations.	Refer	to	the	appropriate
IBM	supplied	manuals	for	more	details	of	the	OPNQRYF	command,	its
associated	parameter	values	and	performance	impact.
*KEEPOPEN(KPO),	which	is	an	"executable"	form	of	the	command.	This
value	indicates	that	the	file(s)	should	be	opened	immediately	(i.e.,	when	the
OPEN	command	is	executed)	and	then	left	open	until	such	time	as	they	are
closed	by	issuing	a	specific	CLOSE	command.	Once	a	file	has	been	opened	this
way	it	can	only	be	closed	from	within	LANSA	by	issuing	a	specific	CLOSE
command.
The	automatic	close	logic	used	by	LANSA	when	an	RDML	program	terminates,
cannot	close	a	file	that	has	been	opened	with	this	option.
This	option	is	normally	used	for	performance	reasons	to	ensure	that	a	frequently
used	file	is	left	open	at	all	times.

Portability
Considerations

*FIRSTSCREEN	ignored	with	no	known	effect	to	the
application.
*ONDEMAND	ignored	with	no	known	effect	to	the
application.
*OPNQRYF	is	only	supported	for	execution	on	IBM	i.	On	all
other	platforms	an	execution	error	will	occur,	but	execution	of
the	code	can	be	made	conditional.
*KEEPOPEN	ignored.	Testing	of	application	required.	A
build	warning	will	be	generated	when	used	in	Visual	LANSA.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.

If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.
For	values	refer	to	I/O	Return	Codes.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.	The
purpose	of	*NEXT	is	to	permit	you	to	handle	error	messages	in	the	RDML,	and
then	ABORT,	rather	than	use	the	default	ABORT.	(It	is	possible	for	processing
to	continue	for	LANSA	on	IBM	i	and	Visual	LANSA,	but	this	is	NOT	a
recommended	way	to	use	LANSA.)
ER	returned	from	a	database	operation	is	a	fatal	error	and	LANSA	does	not
expect	processing	to	continue.	The	IO	Module	is	reset	and	further	IO	will	be	as
if	no	previous	IO	on	that	file	had	occurred.	Thus	you	must	not	make	any
presumptions	as	to	the	state	of	the	file.	For	example,	the	last	record	read	will	not
be	set.	A	special	case	of	an	IO_ERROR	is	when	a	trigger	function	is	coded	to
return	ER	in	TRIG_RETC.	The	above	description	applies	to	this	case	as	well.	
Therefore,	LANSA	recommends	that	you	do	NOT	use	a	return	code	of	ER	from
a	trigger	function	to	cause	anything	but	an	ABORT	or	EXIT	to	occur	before	any
further	IO	is	performed.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

QRYSLT

Portability
Considerations

Not	supported	in	the	current	release	of	Visual	LANSA	unless
using	LANSA/SuperServer	to	an	IBM	i	server.
Use	of	QRYSLT('=EXCHANGE')	only	supports	RDML
fields.	Note	that	when	fields	are	put	on	the	exchange	list	in
RDMLX,	trailing	blanks	are	stripped	from	the	value	put	on
the	exchange	list.

This	parameter	is	only	valid	when	used	with	the	USE_OPTION(*OPNQRYF)
parameter.	It	is	ignored	in	all	other	cases.	It	is	used	to	specify	the	selection
criteria	that	should	be	used	by	the	OPNQRYF	command	when	building	an
access	path	to	the	data	in	the	file.
It	may	be	specified	as	an	alphanumeric	literal	like	this:
OPEN	FILE(STATES)	USE_OPTION(*OPNQRYF)	QRYSLT('STATE	*EQ	"NSW"')
	

or	as	the	name	of	a	field	that	contains	the	selection	criteria,	like	this:
CHANGE	FIELD(#SELECTION)	TO('STATE	*EQ	"NSW"')
OPEN	FILE(STATES)	USE_OPTION(*OPNQRYF)	QRYSLT(#SELECTION)
	

or,	making	use	of	the	exchange	list,	like	this:
OPEN	FILE(STATES)	USE_OPTION(*OPNQRYF)	QRYSLT('=EXCHANGE')
	

The	second	version	indicates	that	the	RDML	program	can	change	the	selection
criteria	at	execution	time.	By	modifying	the	content	of	field	#SELECTION	the
actual	data	selected	by	the	program	can	be	modified.	This	is	one	of	the	powerful
facilities	available	with	the	OPNQRYF	command.	Note	that	Visual	LANSA	has
similar	behavior	to	this	with	the	SELECT_SQL	command,	although	it	is	only
available	with	RDMLX	objects	on	IBM	i.	Following	is	an	example	of	cross-
platform	code.	Great	care	must	be	taken	to	construct	the	query	in	a	cross-
platform	manner,	in	particular,	single	quotes	must	be	used	around	literals	and
the	file	must	be	closed	on	IBM	i:
EXECUTE	SUBROUTINE(QUOTE)	WITH_PARMS('NSW'	#QUOTED)
USE	BUILTIN(BCONCAT)	WITH_ARGS('STATE	='	#QUOTED)	TO_GET(#SELECTION)
IF	COND('*CPUTYPE	*NE	AS400')
			SELECT_SQL	FIELDS(#STATE)	FROM_FILES((#STATES))	WHERE(#SELECTION)
						DISPLAY	FIELDS(#STATE)
			ENDSELECT
ELSE

			OPEN	FILE(STATES)	USE_OPTION(*OPNQRYF)	QRYSLT(#SELECTION)
			SELECT	FIELDS(#STATE)	FROM_FILE((#STATES))
						DISPLAY	FIELDS(#STATE)
			ENDSELECT			
			CLOSE	FILE(STATES)	
ENDIF
SUBROUTINE	NAME(QUOTE)	PARMS((#TEXT1	*RECEIVED)	(#TEXT2	*RETURNED))
USE	BUILTIN(TCONCAT)	WITH_ARGS(*QUOTE	#TEXT1	*QUOTE)	TO_GET(#TEXT2)
ENDROUTINE
	

The	third	version	allows	you	to	specify	up	to	256	characters	in	length	per	field
and	as	many	exchange	fields	as	required	to	define	a	query	select.
'=EXCHANGE'	is	used	in	conjunction	with	the	EXCHANGE	command.	This
would	be	a	better	option	than	the	second	version	if	the	query	select	is
complicated	and	requires	more	than	256	characters	to	define.	This	third
version	is	only	supported	when	executed	locally	on	an	IBM	i.	If	you	want	to
use	it	from	Visual	LANSA,	an	IBM	i	function	MUST	be	executed	via
LANSA/SuperServer	as	shown	in	this	example:

Note:	The	use	of	the	"	(double	quote)	symbols	within	the	QRYSLT	parameter.
The	"	(double	quote)	symbol	can	be	used	interchangeably	with	the	'	(single
quote)	symbol	by	OPNQRYF.	When	using	OPNQRYF	through	LANSA	the	"
symbol	is	preferable	because	it	is	easier	to	code	into	alphanumeric	literals.
The	field	name	STATE	is	not	preceded	by	a	#	(hash)	symbol	in	this	example.
This	is	because	the	actual	selection	request	is	being	made	to	the	OPNQRYF
command,	not	to	LANSA.
Refer	to	the	OPNQRYF	command	in	the	appropriate	IBM	supplied	manuals	for

more	details	of	the	QRYSLT	parameter	and	the	values,	operations	and	options
that	it	supports.

KEYFLD
This	parameter	is	only	valid	when	used	with	the	USE_OPTION(*OPNQRYF)
parameter.	It	is	ignored	in	all	other	cases.
It	is	used	to	specify	the	key	fields	that	should	be	used	by	the	OPNQRYF
command	when	building	an	access	path	to	the	data	in	the	file.	This	then	allows
access	to	the	data	in	the	file	in	the	requested	key	order.	It	may	be	specified	as	an
alphanumeric	literal	like	this:
OPEN	FILE(STATES)	USE_OPTION(*OPNQRYF)	
					KEYFLD('STATE	POSTCD')
	

or	as	the	name	of	a	field	that	contains	the	key	field	names,	like	this:
CHANGE	FIELD(#ORDER_BY)	TO('STATE	POSTCD')
OPEN	FILE(STATES)	USE_OPTION(*OPNQRYF)	KEYFLD(#ORDER_BY)
	

The	second	version	indicates	that	the	key	fields	(and	thus	the	order	of
processing	data	from	the	file)	can	be	changed	by	the	program	at	execution	time.
By	modifying	the	content	of	field	#ORDER_BY	the	order	records	are	processed
from	file	STATES,	can	be	dynamically	modified.	This	is	another	of	the	powerful
facilities	available	with	the	OPNQRYF	command.
Also	note	that	the	field	names	STATE	and	POSTCD	are	not	preceded	by	a	#
(hash)	symbol	in	this	example.	This	is	because	the	actual	key/order	request	is
being	made	to	the	OPNQRYF	command,	not	to	LANSA.
Refer	to	the	OPNQRYF	command	in	the	appropriate	IBM	supplied	manuals	for
more	details	of	the	KEYFLD	parameter	and	the	values,	operations	and	options
that	it	supports.

Portability
Considerations

Not	supported	in	the	current	release	of	Visual	LANSA	unless
using	LANSA/SuperServer	to	an	IBM	i	server.

ALWCPYDTA,
OPTIMIZE,
SEQONLY,
COMMIT	and
TYPE

These	parameters	are	only	valid	when	used	with	the
USE_OPTION(*OPNQRYF)	parameter.	They	are	ignored	in	all	other	cases.
Refer	to	the	OPNQRYF	command	in	the	appropriate	IBM	supplied	manuals	for
more	details	of	these	parameters	and	the	values,	operations	and	options	that	they
support.

Portability
Considerations

These	parameters	are	not	supported	in	the	current	release	of
Visual	LANSA	unless	using	LANSA/SuperServer	to	an	IBM	i
Server.

7.72.2	OPEN	Comments	/	Warnings
When	no	specific	OPEN	command	is	coded	for	a	file	in	an	interactive
RDML	program,	the	file	is	opened	as	if	an	OPEN
USE_OPTION(*FIRSTSCREEN)	command	was	used.
When	no	specific	OPEN	command	is	coded	for	a	file	in	a	batch	RDML
program,	the	file	is	opened	as	if	an	OPEN	USE_OPTION(*ONDEMAND)
command	was	used.
Any	OPEN	command	or	request	will	be	ignored	if	the	file	is	already	open.
The	exception	to	this	rule	is	when	the	*OPNQRYF	option	is	used.	In	this	case
the	open	file	is	closed,	and	then	re-opened	with	the	appropriate	OPNQRYF
parameters.

In	addition,	use	of	the	*KEEPOPEN	option	against	a	file	that	is	already	open
will	cause	the	file	to	be	flagged	so	that	it	can	only	be	closed	by	a	specific
CLOSE	command.	The	file	is	not	actually	closed	and	opened	again	(as	with	the
*OPNQRYF	option),	but	it	is	internally	tagged	so	that	it	cannot	be	closed	unless
a	specific	CLOSE	request	command	is	issued.
There	are	2	ways	a	file	can	be	closed:
The	first	is	by	letting	the	normal	RDML	program	termination	logic	CLOSE
the	file	automatically.
The	second	is	to	issue	a	specific	CLOSE	command	in	the	RDML	program.

When	an	RDML	program	terminates	normally	it	will	attempt	to	automatically
close	all	the	database	files	it	uses.	However,	if	one	or	more	of	the	following
conditions	apply	the	close	request	for	a	file	will	be	ignored:
the	file	has	already	been	closed	or	has	never	been	opened.
the	associated	process	has	the	usage	HEAVY	option.
the	file	has	been	previously	opened	with	the	*KEEPOPEN	option.
the	function	attempting	to	close	the	file	is	not	the	one	that	originally	opened
the	file.
A	specific	CLOSE	command	(ie:	coded	into	the	RDML	program)	will	only	be
ignored	if	the	file	is	already	closed.	In	all	other	situations	it	will	force	the	file
to	be	closed,	even	if	it	was	opened	with	the	*KEEPOPEN	option,	or	by	some
other	program.
If	any	file	is	referenced	by	an	RDML	command	before	it	is	specifically
opened	(ie:	by	an	OPEN	command)	or	before	the	appropriate	automatic	open

time	has	occurred	(ie:	a	first	screen	interaction)	it	will	be	automatically
opened	on	an	"on	demand"	basis.	What	this	means	is	that	attempting	any	I/O
operation	against	a	closed	file	will	merely	result	in	the	file	being
automatically	opened.
When	using	USE_OPTION(*OPNQRYF)	it	is	advisable	to	code	a	specific
CLOSE	into	the	RDML	program.	This	will	ensure	that	any	temporary	access
path	created	by	the	OPNQRYF	command	is	destroyed.

In	addition,	after	using	the	*OPNQRYF	option	in	combination	with	a	specific
KEYFLD	parameter	(other	than	the	special	*FILE	parameter),	it	is	advisable	to
only	use	a	simple	SELECT	loop	to	read	all	records	from	the	temporary	access
path	created	by	the	OPNQRYF	command.
Attempting	to	use	a	SELECT	command	(or	any	other	I/O	command	for	that
matter)	that	has	a	WITH_KEY	parameter	may	produce	unpredictable	results
because	the	file	key	being	used	by	the	I/O	module	does	not	match	the	actual	key
of	the	temporary	file	created	by	the	OPNQRYF	command.
When	using	the	USE_OPTION(*FIRSTSCREEN)	parameter	the	open
"overlap"	is	attempted	when	the	first	screen	is	presented	to	the	user.	This
screen	is	the	first	DISPLAY,	REQUEST	or	POP_UP	command	that	is	actually
executed	in	the	program	(which	may	not	be	the	first	one	coded	in	the
program).

Additionally,	use	of	this	option	may	cause	a	slight	degradation	over
communication	lines	because	it	is	not	possible	to	use	the	DFRWRT	(defer
screen	write	until	read)	option	in	the	associated	IBM	i	display	file.
Refer	to	the	IBM	i	CRTDSPF	command	in	the	appropriate	IBM	supplied
manual	for	more	details	of	the	DFRWRT	parameter.
Attempting	to	manually	change	the	display	file	to	DFRWRT(*YES)	will
completely	nullify	the	"overlap"	feature	and	the	user	will	have	to	wait	until	the
file(s)	are	open	before	the	first	screen	appears.

7.72.3	OPEN	Examples
Example	1:	Open	the	customer	master	file	CUSTMST	during	the	first	screen
interaction.
OPEN	FILE(CUSTMST)
	

or
OPEN	FILE(CUSTMST)	USE_OPTION(*FIRSTSCREEN)
	

Example	2:	Open	all	files	immediately,	except	for	the	customer	master	file
which	should	be	opened	"on	demand".
OPEN	FILE(*ALL)	USE_OPTION(*IMMEDIATE)
OPEN	FILE(CUSTMST)	USE_OPTION(*ONDEMAND)
	

Example	3:	Open	file	STATES,	load	all	records	into	working	list	#WRK_LIST
and	then	close	file	STATES.
OPEN						FILE(STATES)	USE_OPTION(*IMMEDIATE)
SELECT				FIELDS(#WRK_LIST)	FROM_FILE(STATES)
ADD_ENTRY	TO_LIST(#WRK_LIST)
ENDSELECT
CLOSE					FILE(STATES)
	

Example	4:	Open	file	STATES,	load	all	records	into	working	list	#WRK_LIST
in	state	name	(STATNM)	order,	and	then	close	file	STATES.
OPEN						FILE(STATES)	USE_OPTION(*OPNQRYF)	KEYFLD('STATNM')
SELECT				FIELDS(#WRK_LIST)	FROM_FILE(STATES)
ADD_ENTRY	TO_LIST(#WRK_LIST)
ENDSELECT
CLOSE					FILE(STATES)
	

Example	5:	Open	file	STATES,	load	all	records	into	working	list	#WRK_LIST
in	state	name	(STATNM)	order,	select	only	records	where	the	post	code
(POSTCD)	is	in	the	range	2000	to	3999,	and	then	close	file	STATES.
OPEN						FILE(STATES)	USE_OPTION(*OPNQRYF)	KEYFLD('STATNM')	QRYSLT('(POSTCD	*GE	2000)	*AND	(POSTCD	*LE	3999)')
SELECT				FIELDS(#WRK_LIST)	FROM_FILE(STATES)
ADD_ENTRY	TO_LIST(#WRK_LIST)

ENDSELECT
CLOSE					FILE(STATES)
	

Example	6:	Create	a	completely	user	driven	name	and	address	report	that	will
answer	just	about	any	name	and	address	query	request.	The	name	and	address
file	is	called	NAMES.
				DEFINE				FIELD(#SELECTION)	TYPE(*CHAR)	LENGTH(100)	LABEL('Select	:')
				DEFINE				FIELD(#ORDER_BY)		TYPE(*CHAR)	LENGTH(100)	LABEL('Sort			:')
				DEF_LINE		NAME(#LINE1)	FIELDS(#CUSTNO	#NAME	#ADDR1	#ADDR2	#ADDR3	#POSTCD	#CRTDATE)
L1:	REQUEST			FIELDS(#SELECTION	#ORDER_BY)
	
				OPEN						FILE(NAMES)	USE_OPTION(*OPNQRYF)	IO_ERROR(L1)	QRYSLT(#SELECTION)	KEYFLD(#ORDER_BY)
	
				SELECT				FIELDS(#LINE1)	FROM_FILE(NAMES)
				PRINT					LINE(#LINE1)
				ENDSELECT
	
				CLOSE					FILE(NAMES)
	

Example	7:	Create	a	report	that	will	allow	the	user	to	scan	the	name	and
address	file	for	a	suburb	name	in	any	of	the	3	address	lines.	Print	details	of	all
customers	that	contain	the	required	suburb.
DEFINE				FIELD(#SRCHSUB)	TYPE(*CHAR)	LENGTH(20)	LABEL('Suburb	:')
DEFINE				FIELD(#SELECT)	TYPE(*CHAR)	LENGTH(256)
DEF_LINE		NAME(#LINE1)	FIELDS(#CUSTNO	#NAME	#ADDR1	#ADDR2	#ADDR3	#POSTCD	#CRTDATE)
REQUEST			FIELDS(#SRCHSUB)
USE		BUILTIN(TCONCAT)	WITH_ARGS('''(ADDR1	*CT	"'''		#SRCHSUB	'''")''')	TO_GET(#SELECT)
USE		BUILTIN(TCONCAT)	WITH_ARGS(#SELECT	'''	*OR	(ADDR2	*CT	"'''	#SRCHSUB	'''")''')	TO_GET(#SELECT)
USE		BUILTIN(TCONCAT)	WITH_ARGS(#SELECT	'''	*OR	(ADDR3	*CT	"'''	#SRCHSUB	'''")''')	TO_GET(#SELECT)
OPEN						FILE(NAMES)	USE_OPTION(*OPNQRYF)	QRYSLT(#SELECT)	KEYFLD(*FILE)
SELECT				FIELDS(#LINE1)	FROM_FILE(NAMES)
PRINT					LINE(#LINE1)
ENDSELECT
CLOSE					FILE(NAMES)
	

Example	8:	Open	file	STATES,	load	all	records	into	browse	list	#BROWSEL,
select	only	records	where	the	states	=	'NSW'	and	'QLD'	and	the	post	code	is
within	the	range	of	2000	and	4999.

DEFINE				FIELD(#FIELDA)	TYPE(*CHAR)	LENGTH(256)	
DEFINE				FIELD(#FIELDB)	TYPE(*CHAR)	LENGTH(256)	
CHANGE				FIELD(#FIELDA)	TO('(DEPTMENT	*EQ	"ADM")	*OR	(DEPTMENT	*EQ	"MNT")	OR	')
CHANGE				FIELD(#FIELDB)	TO('(DEPTMENT	*EQ	"FLT")	*OR	(DEPTMENT	*EQ	"MIS")')
EXCHANGE		FIELDS(#FIELDA)
EXCHANGE		FIELDS(#FIELDB)
OPEN						FILE(STATES)	USE_OPTION(*OPNQRYF)	QRYSLT('=EXCHANGE')
SELECT				FIELDS((#BROWSEL))	FROM_FILE(STATES)
ADD_ENTRY	TO_LIST(#BROWSEL)
ENDSELECT
	

7.73	OTHERWISE
The	OTHERWISE	command	is	used	within	a	CASE	/	ENDCASE	block	in
conjunction	with	WHEN	commands.
The	OTHERWISE	command	is	used	to	indicate	what	command(s)	should	be
executed	if	none	of	the	WHEN	commands	are	matched	and	executed.
Refer	to	the	CASE,	WHEN	and	ENDCASE	commands	for	more	details	and
examples	of	these	commands.
Inclusion	of	an	OTHERWISE	command	within	a	CASE	/	ENDCASE	block	is
optional.	However	if	one	is	used	it	should	follow	the	last	WHEN	command	and
precede	the	ENDCASE	command.

Also	See
7.73.1	OTHERWISE	Parameters
7.73.2	OTHERWISE	Examples
7.8	CASE
7.34	ENDCASE
7.100	WHEN
	
		OTHERWISE	------	no	parameters	-----------------------------
--|
	

7.73.1	OTHERWISE	Parameters
No	parameters	exist	for	the	OTHERWISE	command.

7.73.2	OTHERWISE	Examples
Refer	to	the	7.8	CASE	for	use	of	OTHERWISE	command

7.74	OVERRIDE
The	OVERRIDE	command	is	used	to	override	the	data	dictionary	attributes	of	a
field	in	a	function	or	component.
Any	field	attribute	(except	the	type)	can	be	overridden.
Any	overrides	specified	take	effect	only	within	the	function.	The	LANSA	data
dictionary	remains	totally	unaffected	by	the	override.

Also	See
7.74.1	OVERRIDE	Parameters
7.74.2	OVERRIDE	Examples
																																																									Required
	
		OVERRIDE	-----	FIELD	--------	field	name	-------------------
-->

																																																									Optional
	
													>--	LENGTH	-------	*SAME	-------------------------->
																																numeric	value
																																						incr/decr						*PLUS
																																																					*MINUS
																																																					*NONE
																																						#	to	incr/decr	*NONE
																																																					numeric	value
	
													>--	DECIMALS	-----	*SAME	--------------------------
>
																																numeric	value
																																						incr/decr						*PLUS
																																																					*MINUS
																																																					*NONE
																																						#	to	incr/decr	*NONE
																																																					numeric	value
	
													>--	LABEL	--------	*SAME	-------------------------->
																																label	name

	
													>--	DESC	---------	*SAME	-------------------------->
																																text	description
	
													>--	COLHDG	-------	*SAME	--------------------------
>
																																column	heading
																																|													|
																																--	3	maximum	--
	
													>--	EDIT_CODE	----	*SAME	--------------------------
>
																																edit	code
	
													>--	EDIT_WORD	----	*SAME	--------------------------
>
																																edit	word
	
													>--	INPUT_ATR	----	*SAME	--------------------------
>
																																input	attributes
	
													>--	OUTPUT_ATR	---	*SAME	-------------------------
->
																																output	attributes
	
													>--	DEFAULT	------	*SAME	-------------------------->
																																default	value
	
													>--	TO_OVERLAY	---	*NONE	--------------	1	--------
à
																																#field	name				start	position
	
													>--	SHIFT	------	*SAME	--------------------------|
																																keyboard	shift
	

7.74.1	OVERRIDE	Parameters
COLHDG
DECIMALS
DEFAULT
DESC
EDIT_CODE
EDIT_WORD
FIELD
INPUT_ATR
LABEL
LENGTH
OUTPUT_ATR
SHIFT
TO_OVERLAY

FIELD
Specifies	the	name	of	the	field	which	is	to	be	overridden.	The	field	name	must
start	with	a	#	and	be	defined	in	the	LANSA	data	dictionary.

LENGTH
Specifies	the	length	to	which	the	field	is	to	be	overridden.	If	the	value	*SAME
is	specified	the	length	of	the	field	is	not	to	be	overridden.	For	specific
information	on	allowable	field	lengths	see	Field	Types

Type Notes	for	Length	parameter

*DEC	or
synonym
*PACKED

If	the	field	is	an	RDML	field,	changing	the	length	to	31	or	higher
will	make	the	working	field	an	RDMLX	field.

*SIGNED If	the	field	is	an	RDML	field,	changing	the	length	to	31	or	higher
will	make	the	working	field	an	RDMLX	field.

*DATE Dates	are	fixed	size	(always	10)
incr/decr	must	be	*NONE
#	to	incr/decr	must	be	*NONE

*TIME Times	are	fixed	size	(always	8)
incr/decr	must	be	*NONE
#	to	incr/decr	must	be	*NONE

*DATETIME19,	21-29.
The	various	lengths	influence	the	number	of	fractional	seconds.
This	must	be	made	clear.	A	length	of	19	means	no	fractional
seconds,	21	-	29	means	1	-	9	fractional	seconds.	The	DECIMALS
parameter	has	no	impact.
incr/decr	must	be	*NONE
#	to	incr/decr	must	be	*NONE

	

	
"Incr/decr"	value	is	used	in	conjunction	with	*SAME	on	the	length	parameter.
The	purpose	of	this	field	is	to	allow	the	length	to	be	incremented	or
decremented	by	a	specific	amount.	Permissible	values	are	*PLUS,	*MINUS	and
*NONE.
*PLUS	specifies	that	the	field	length	attribute	is	to	be	increased.
*MINUS	specifies	that	the	field	length	attribute	is	to	be	decreased.
*NONE	specifies	that	the	field	length	attribute	is	to	remain	the	same.

"#	to	incr/decr"	value	is	used	in	conjunction	with	the	*SAME	value	on	the
length	parameter	and	is	directly	related	to	the	"incr/decr"	value.	The	purpose	of
this	field	is	to	specify	the	value	by	which	the	field	length	value	is	to	be
increased	or	decreased.	Permissible	values	for	this	field	are	a	numeric	value	or
the	value	*NONE.
Notes:		
Until	release	4PC	E2,	LANSA	supported	up	to	15-digit	long	numeric	fields.	PC
E2	introduced	support	for	30-digit	long	numeric	fields.	Please	note	that	when
you	use	this	command	to	override	the	length	of	fields	which	are	15	digit	or	less
with	a	length	of	greater	than	15,	specify	*DBOPTIMISE	in	the	OPTIONS
parameter	of	the	FUNCTION	command	to	ensure	backward	compatibility.
Similarly,	do	not	override	the	length	of	a	field	that	is	now	at	least	15	digits	long
with	a	length	of	15	digits	or	less	without	specifying	*DBOPTIMISE.	This
restriction	arises	from	the	fact	that	when	support	for	longer	numeric	fields	was

introduced,	existing	I/O	modules	could	not	handle	conversion	of	8-byte	fields	to
16-byte	fields	or	vice	versa.

DECIMALS
Specifies	the	number	of	decimal	positions	to	which	the	field	is	to	be	overridden.
If	the	value	*SAME	is	specified	then	the	decimal	positions	are	not	to	be
overridden.	Otherwise	a	value	in	the	range	0	to	63	must	be	specified.
"Incr/decr"	value	is	used	in	conjunction	with	*SAME	on	the	decimals
parameter.	The	purpose	of	this	field	is	to	allow	the	decimal	positions	value	to	be
incremented	or	decremented	by	a	set	amount.	Permissible	values	are	*PLUS,
*MINUS	and	*NONE.	*PLUS	specifies	that	the	field	decimal	positions
attribute	is	to	be	increased.	*MINUS	specifies	that	the	field	decimal	positions
attribute	is	to	be	decreased.	*NONE	specifies	that	the	field	decimal	positions
attribute	is	to	remain	the	same.
"#	to	incr/decr"	value	is	used	in	conjunction	with	the	*SAME	value	on	the
decimal	positions	parameter	and	is	directly	related	to	the	"incr/decr"	value.	The
purpose	of	this	field	is	to	specify	the	value	by	which	the	field	decimal	positions
value	is	to	be	increased	or	decreased.	Permissible	values	for	this	field	are	a
numeric	value	or	the	value	*NONE.

LABEL
Specifies	the	15	character	label	which	should	be	assigned	to	this	field.	*SAME
indicates	the	label	is	not	to	be	overridden.	In	all	other	cases	specify	the	override
label	in	quotes.

DESC
Specifies	the	40	character	description	that	should	be	assigned	to	this	field.
*SAME	indicates	the	field	description	is	not	to	be	overridden.	In	all	other	cases
specify	the	override	description	in	quotes.

COLHDG
Specifies	the	3	x	20	character	column	headings	that	should	be	assigned	to	this
field.	*SAME	indicates	the	column	headings	are	not	to	be	overridden.	In	all
other	cases	specify	the	3	override	column	headings	required	in	quotes.

EDIT_CODE
Specifies	the	field	edit	code	for	numeric	fields.	*SAME	indicates	the	field	edit
code	is	not	to	be	overridden.	In	other	cases	specify	one	of	the	edit	codes	from
the	list	below	as	the	override	edit	code:

Fields	of	type	Integer,	Signed,	or	Packed	may	have	an	Editcode	or	Editword,	or
may	leave	both	as	*SAME.	However,	Integer	does	not	allow	edit	codes	W	and
Y.	All	other	field	types	must	have	EDIT_CODE(*SAME)
EDIT_WORD(*SAME).
Edit	codes	supported	by	LANSA	are	shown	in	Standard	Field	Edit	Codes.

EDIT_WORD
Specifies	the	override	edit	word	to	be	assigned	to	the	field.	*SAME	indicates
that	the	edit	word	is	not	to	be	overridden.	In	other	cases	specify	the	override	edit
word	as	required.
Use	of	edit	words	should	only	be	attempted	by	experienced	users	as	the	validity
checking	done	by	LANSA	is	unsophisticated.
Fields	of	type	Integer,	Signed,	or	Packed	may	have	an	Editcode	or	Editword,	or
may	leave	both	as	*SAME.	All	other	field	types	must	have
EDIT_CODE(*SAME)	EDIT_WORD(*SAME).
Note	that	when	overriding	a	field	length	and	using	EDIT_WORD(*SAME)	you
are	specifying	that	the	edit	word	associated	with	the	data	dictionary	should	be
used.	However,	if	the	length	or	number	of	decimal	positions	used	are	different
to	the	data	dictionary	definition	the	associated	edit	word	may	be	invalid.	In	such
cases	it	will	be	necessary	to	override	the	edit	word	as	well.
Note	also	that	the	operating	system	handles	edit	words	involving	floating
currency	symbols	on	screen	panels	differently	to	how	they	are	handled	on
reports.	In	such	cases,	it	is	suggested	that	a	separate	field	(or	a	"virtual"	field)	is
used	for	report	production.
When	an	edit	word	is	defined	in	LANSA	via	the	RDML	command	language	it
should	be	enclosed	in	triple	quotes	as	opposed	to	single	quotes.
For	example:
Correct	method	for	overriding	an	edit	word	for	a	5,2	numeric	field	requiring	a
trailing	%:
OVERRIDE	FIELD(#INCREASE)	TYPE(#DEC)	LENGTH(5)	DECIMALS(2)
									LABEL('Sales	Increase')	EDIT_WORD('''			.		%''')
	

Incorrect	method	for	overriding	an	edit	word	for	a	5,2	numeric	field	requiring
a	trailing	%:
OVERRIDE	FIELD(#INCREASE)	TYPE(#DEC)	LENGTH(5)	DECIMALS(2)
									LABEL('Sales	Increase')	EDIT_WORD('			.		%')
	

Refer	to	IBM	manual	Data	Description	Specifications	for	more	details.	See
keyword	EDTWRD.

INPUT_ATR
Specifies	the	input	attribute	overrides	that	are	required.	*SAME	indicates	that
no	override	of	input	attributes	is	required.
For	information	on	allowable	attributes	for	RDMLX	fields	see	Field	Types.
Valid	input	attributes	for	types	A	(alphanumeric),	P	(packed),	and	S	(signed)	are:

AttributeDescription	/	Comments AP S

AB Allow	to	be	blank. YYY

ME Mandatory	entry	check	required. YYY

MF Mandatory	fill	check	required. YYY

M10 Modulus	10	check	required. 	 YY

M11 Modulus	11	check	required. 	 YY

VN Valid	name	check	required. Y 	 	

FE Field	exit	key	required. YYY

LC Lowercase	entry	allowed.	If	you	do	NOT	set	this	attribute,
refer	to	PC	Locale	uppercasing	requested	in	Review	or	Change
a	Partition's	Multilingual	Attributes	in	the	LANSA	for	i	User
Guide.

Y 	 	

RB Right	adjust	and	blank	fill. 	 YY

RZ Right	adjust	and	zero	fill. 	 YY

RL Move	cursor	right	to	left. YYY

RLTB Tab	cursor	right/left	top/bottom.
Valid	in	SAA/CUA	partitions	only.	Affects	all	screen	panels	in
function.

YYY

GRN Display	with	color	green. YYY

WHT Display	with	color	white. YYY

RED Display	with	color	red. YYY

its:LANSA010.chm::/lansa/ugub_50050.htm

TRQ Display	with	color	turquoise. YYY

YLW Display	with	color	yellow. YYY

PNK Display	with	color	pink. YYY

BLU Display	with	color	blue. YYY

BL Display	blinking. YYY

CS Display	with	column	separators. YYY

HI Display	in	high	intensity. YYY

ND Non-display	(hidden	field). YYY

RA Auto	record	advance	field YYY

SREV Store	in	reversed	format.
This	special	attribute	is	provided	for	bi-directional	languages	is
not	applicable	in	this	context.

YNN

SBIN Store	in	binary	format.	This	special	attribute	is	provided	for
repository	fields	&	is	not	applicable	in	this	context.

YNN

HIND HINDI	Numerics.
Display	using	HINDI	numerals.	Refer	to	Hindi	Numerics	in
the	LANSA	for	i	User	Guide.

NYY

CBOX	* Check	Box YNN

RBnn	* Radio	Button YNN

PBnn	* Push	Button YNN

DDxx	* Drop	Down YNN

	

	
Attributes	marked	with	an	*	represent	the	field	with	the	corresponding	GUI
WIMP	construct.	Refer	to	GUI	WIMP	Constructs	in	the	LANSA	for	i	User
Guide	for	more	information
In	partitions	that	comply	with	SAA/CUA	guidelines	the	following	attributes
may	be	used	as	well	(and	are	in	fact	preferred	to	those	described	above):

its:LANSA010.CHM::/lansa/ugubc_c10040.htm
its:LANSA010.CHM::/lansa/ugubc_c10500.htm

AttributeDescription	/	Comments

ABCH Action	bar	and	pull-down	choices

PBPT Panel	title

PBPI Panel	identifier

PBIN Instructions	to	user

PBFP Field	prompt	/	label	/	description	details

PBBR Brackets

PBCM Field	column	headings

PBGH Group	headings

PBNT Normal	text

PBET Emphasized	text

PBEN	* Input	capable	field	(normal)

PBEE	* Input	capable	field	(emphasized)

PBCH Choices	shown	on	menu

PBSC Choice	last	selected	from	menu

PBUC Choices	that	are	not	available

PBCN Protected	field	(normal)

PBCE Protected	field	(emphasized)

PBSI Scrolling	information

PBSL Separator	line

PBWB Pop-up	window	border

FKCH Function	key	information

	

Note:	Normally	only	PBEN	and	PBEE	would	be	specified	as	input	attributes.
Refer	to	SAA/CUA	Implementation	in	the	LANSA	Application	Design	Guide

more	details	of	these	attributes.	Also	note	that	only	one	color	can	be	specified
for	a	field.	Use	of	colors	may	affect	other	attributes.	Refer	to	IBM	manual	Data
Description	Specifications	for	more	details.	Keywords	that	should	be	reviewed
are	CHECK,	COLOR	and	DSPATR.

OUTPUT_ATR
Specifies	the	output	attribute	overrides	that	are	required.	*SAME	indicates	that
no	output	attribute	overrides	are	required.	In	other	cases	specify	the	required
output	attribute	overrides	from	the	list	below:
For	information	on	allowable	attributes	for	RDMLX	fields	see	Field	Types
Valid	output	attributes	for	types	Alpha	(A),	Packed	(P),	and	Signed	(S)	are:

AttributeDescription	/	Comments AP S

GRN Display	with	color	green. YYY

WHT Display	with	color	white. YYY

RED Display	with	color	red. YYY

TRQ Display	with	color	turquoise. YYY

YLW Display	with	color	yellow. YYY

PNK Display	with	color	pink. YYY

BLU Display	with	color	blue. YYY

BL Display	blinking. YYY

CS Display	with	column	separators. YYY

HI Display	in	high	intensity. YYY

ND Non-display	(hidden	field). YYY

SREV Store	in	reversed	format.
This	special	attribute	is	provided	for	bi-directional	languages	is
not	applicable	in	this	context.

YNN

SBIN Store	in	binary	format.	This	special	attribute	is	provided	for
repository	fields	&	is	not	applicable	in	this	context.

YNN

Urxx User	Defined	Reporting	Attribute.
Provides	access	to	IBM	i	DDS	statements	for	printer	files.

YYY

Refer	to	User	Defined	Reporting	Attributes	in	the	LANSA	for	i
User	Guide.

HIND HINDI	Numerics.
Display	using	HINDI	numerals.	Refer	to	Hindi	Numerics	in
the	LANSA	for	i	User	Guide.

NYY

CBOX	* Check	Box YNN

RBnn	* Radio	Button YNN

PBnn	* Push	Button YNN

DDxx	* Drop	Down YNN

	

	
Attributes	marked	with	an	*	represent	the	field	with	the	corresponding	GUI
WIMP	construct.	Refer	to	GUI	WIMP	Constructs	in	the	LANSA	for	i	User
Guide	for	more	information
In	partitions	that	comply	with	SAA/CUA	guidelines	the	following	attributes
may	be	used	as	well	(and	are	in	fact	preferred	to	those	described	above):

AttributeDescription	/	comments

ABCH Action	bar	and	pull-down	choices

PBPT Panel	title

PBPI Panel	identifier

PBIN Instructions	to	user

PBFP Field	prompt	/	label	/	description	details

PBBR Brackets

PBCM Field	column	headings

PBGH Group	headings

PBNT Normal	text

PBET Emphasized	text

its:LANSA010.CHM::/lansa/ugubc_c10140.HTM
its:LANSA010.CHM::/lansa/ugubc_c10040.htm
its:LANSA010.CHM::/lansa/ugubc_c10500.htm

PBEN Input	capable	field	(normal)

PBEE Input	capable	field	(emphasized)

PBCH Choices	shown	on	menu

PBSC Choice	last	selected	from	menu

PBUC Choices	that	are	not	available

PBCN	* Protected	field	(normal)

PBCE	* Protected	field	(emphasized)

PBSI Scrolling	information

PBSL Separator	line

PBWB Pop-up	window	border

FKCH Function	key	information

	

Note:	Normally	only	PBCN	and	PBCE	would	be	specified	as	output	attributes.
Refer	to	SAA/CUA	Implementation	in	the	LANSA	Application	Design	Guide	for
more	details	of	these	attributes.	Also	note	that	only	one	color	can	be	specified
for	a	field.	Use	of	colors	may	affect	other	attributes.	Refer	to	IBM	manual	Data
Description	Specifications	for	more	details.	Keywords	that	should	be	reviewed
are	COLOR	and	DSPATR.

DEFAULT
Specifies	the	default	value	which	is	to	apply	to	the	field.	*SAME	indicates	that
no	override	of	the	field's	default	value	is	required.	In	other	cases	specify	the
override	default	value	that	is	to	apply	to	the	field.
For	information	on	what	DEFAULT(*DEFAULT)	means	for	RDMLX	fields	see
Field	Types
Default	values	specified	can	be:
A	system	variable	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
specifically	defined	at	your	installation.
An	alphanumeric	literal	such	as	BALMAIN.
A	numeric	literal	such	as	1,	10.43,	-1.341217.

A	process	parameter	such	as	*UP01.
Another	field	name	such	as	#ORDNUM.

TO_OVERLAY
Specifies	that	the	field	being	overridden	is	to	fully	or	partially	overlay	(ie:
occupy	the	same	storage	locations)	as	the	field	referenced	in	this	parameter.
It	is	invalid	for	RDMLX	fields	to	be	overlaid	or	overlay	another	field.
*NONE,	which	is	the	default	value,	indicates	that	the	field	is	to	occupy	its	own
storage	area	and	not	to	overlay	any	other	field.
The	only	other	allowable	value	that	can	be	specified	here	is	the	name	of	another
field	defined	in	this	program	or	the	data	dictionary,	optionally	followed	by	a
starting	position.
The	TO_OVERLAY	parameter	is	a	powerful	facility	that	allows	a	field	to
occupy	the	same	storage	(ie:	memory	locations)	as	another	field.	The	power	of
this	parameter	means	that	you	must	understand	exactly	what	it	causes	to	happen
and	what	problems	you	may	cause	yourself	in	using	it.
The	following	notes	and	comments	should	be	read	in	full	before	attempting	to
use	this	parameter:
You	must	NOT	overlay	a	field	onto	a	field	that	is	itself	overlaid	onto	another
field.	This	is	NOT	checked	by	the	full	function	checker	and	may	cause	a
compile	failure.
You	should	fully	understand	the	IBM	i	data	storage	formats	of	character,
signed/zoned	decimal	and	packed	decimal	before	attempting	to	overlay
fields	of	varying	types.	Overlaying	of	fields	means	that	you	can	easily	cause
invalid	decimal	data	to	be	placed	into	decimal	fields,	thus	causing	your
program	to	fail	in	an	unpredictable	manner.
The	start	position	component	of	this	parameter	allows	you	to	overlay	just	a
part	of	a	specific	field,	rather	than	its	entire	length.	The	start	position	is	a	full
byte	position,	even	when	using	packed	decimal	fields.	When	you	specify	a
start	position	you	MUST	ensure	that	you	do	not	overlay	the	field	beyond	the
end	position	of	the	field	being	overlaid.

This	is	NOT	checked	by	the	full	function	checker.	Failure	to	observe	this	rule
can	cause	dangerous	and	unpredictable	results.
Array	index	fields	must	not	be	overlaid	on	or	by	other	fields	(in	any	context).
A	packed	decimal	field	of	even	length	can	be	overlaid	on	another	field,

however	the	RPG	compiler	will	always	interpret	the	overlaying	field	as	the
next	highest	odd	length.	For	example,	if	the	data	dictionary	contains	2	packed
decimal	(type	P)	fields	of	length	6,0	called	#DEC6	and	#OVR6	then	the
following	will	cause	#DEC6	to	be	treated	by	the	RPG	compiler	as	a	packed
decimal	(6,0)	value:
									OVERRIDE	FIELD(#OVR6)	TO_OVERLAY(#DEC6)
	

					The	#OVR6	will	be	treated	by	the	RPG	compiler	as	a	packed	decimal	(7,0)
value.	There	is	no	memory	length	problem	here,	both	fields	require	4	bytes	of
memory	to	be	stored,	it	is	just	the	way	that	the	RPG	compiler	works	that	may
cause	a	presentation	length	problem	on	reports.

When	the	data	validation	commands	RANGECHECK,	VALUECHECK,
DATECHECK,	CALLCHECK,	CONDCHECK,	FILECHECK	or
SET_ERROR	are	used	on	an	overlaying	field	they	also	set	an	error	for	the
overlaid	field.	For	example,	if	the	data	dictionary	contains	fields	#INPUT
(character	length	3),	#INPC1	(character	length	1)	and	#INPC3	(character
length	1),	then	this	code	accepts	a	3	character	field	(#INPUT)	from	the
workstation	and	validates	that	the	first	character	is	an	A,	B	or	C	and	also	that
the	last	character	is	an	X,	Y	or	Z:

																		OVERRIDE	FIELD(#INPC1)	TO_OVERLAY(#INPUT	1)
																		OVERRIDE	FIELD(#INPC3)	TO_OVERLAY(#INPUT	3)
	
																		REQUEST	FIELDS(#INPUT)
	
																		BEGINCHECK
																		VALUECHECK	FIELD(#INPC1)	WITH_LIST('A'	'B'	'C')
																		VALUECHECK	FIELD(#INPC3)	WITH_LIST('X'	'Y'	'Z')
																		ENDCHECK
	

					When	an	error	is	triggered	against	overlaid	fields	#INPC1	or	#INPC3	by	the
VALUECHECK	commands,	it	is	also	triggered	against	the	overlaid	field
#INPUT.	This	means	that	when	the	REQUEST	command	is	(re)executed	in
an	error	situation,	field	#INPUT	will	be	displayed	in	reverse	video.
You	should	consider	the	following	points,	if	you	are	continually	overriding
fields	into	overlay	positions	in	every	program	such	as	in	this	example:

																		OVERRIDE	FIELD(#COMPANY)	TO_OVERLAY(#ACCOUNT	1)
																		OVERRIDE	FIELD(#DEPTMENT)	TO_OVERLAY(#ACCOUNT	4)
																		OVERRIDE	FIELD(#SECTION)	TO_OVERLAY(#ACCOUNT	6)
																		OVERRIDE	FIELD(#SUBACC)	TO_OVERLAY(#ACCOUNT	7)
	

The	data	model	and/or	function	model	behind	your	entire	design	may
be	slightly	suspect.	Clearly,	there	are	4	separate	"elements":	a
company,	a	department,	a	section	and	a	"subaccount"	number.	Why
are	they	being	aggregated	into	a	field	called	"account"?	Is	this	really
necessary?	Is	it	just	being	done	because	this	is	the	way	it	was	done
before?	What	are	the	alternatives?	Have	they	been	fully	considered
and	investigated?	Do	they	offer	a	new	and	easier	to	understand	system
perspective	to	end	users	of	the	system?
If	the	structure	is	to	be	implemented,	then	possibly	the	overlay	logic
should	be	moved	to	the	"virtual	field"	area,	thus	centralizing	the	logic
and	saving	programmers	from	having	to	repeat	and	maintain	the	logic
in	every	program.

SHIFT
Specifies	the	keyboard	shift	to	be	used	to	override	any	existing	keyboard	shift.
If	no	keyboard	shift	is	specified	then	the	value	*SAME	is	assumed.
For	information	on	what	values	of	SHIFT,	apart	from	*DEFAULT,	are	valid	for
each	working	field	type	see	Field	Types.
For	working	fields	of	type	Boolean,	SHIFT	must	be	*DEFAULT.
*SAME	indicates	that	the	keyboard	shift	is	not	to	be	overridden.
Refer	to	the	IBM	manual	Data	Description	Specifications	for	more	details.
Position	35	for	display	files	is	the	entry	that	should	be	reviewed.

7.74.2	OVERRIDE	Examples
Example	1:	Override	attributes	of	a	field	called	#ORDER	because	the	context
in	which	it	is	used	makes	it	appear	like	a	"last"	order	number:
OVERRIDE	FIELD(#ORDER)	DESC('Last	Order	Number')	LABEL('Last	Order')	COLHDG('Last'	'Order'	'Number')
	

Example	2:	Override	field	#QTY	to	have	3	more	significant	digits
OVERRIDE	FIELD(#QTY)	LENGTH(*SAME	*PLUS	3)
	

Example	3:	Override	field	#QTY	so	that	it	has	3	more	significant	digits	and	2
more	decimal	digits:
OVERRIDE	FIELD(#QTY)	LENGTH(*SAME	*PLUS	5)	DECIMALS(*SAME	*PLUS	2)
	

Example	4:	Override	the	length	of	field	#SHORT	to	10	characters
OVERRIDE	FIELD(#SHORT)	LENGTH(10)
	

Example	5:	Override	field	#SHORT	so	that	it	is	10	characters	shorter:
OVERRIDE	FIELD(#SHORT)	LENGTH(*SAME	*MINUS	10)
	

Example	6:	Override	a	numeric	field	that	is	keyboard	shift	S	so	that	it	can	be
displayed	with	the	J	edit	code
OVERRIDE	FIELD(#SHIFTS)	EDIT_CODE(J)	SHIFT(Y)
	

7.75	POINT
Except	when	using	SELECT_SQL,	the	POINT	command	is	used	to	"point",	"re-
direct"	or	"override"	all	I/O	requests	made	to	a	file	to:
Another	file	in	the	same	library
Another	file	in	another	library
The	same	file	in	another	library
A	specific	member	within	a	file.

This	command	is	provided	for	backward	compatibility	rather	than	for
its	specific	functionality.	See	the	Permanent	File	Overrides	in	the
LANSA	for	i	User	Guide	for	a	generally	better	mechanism	for
achieving	similar	functionality.

Portability
Considerations

The	POINT	command	is	supported	in	RDMLX	code	for
compatibility	with	existing	RDML	code.	When	executed	on
platforms	other	than	IBM	i	it	has	no	effect.
Code	generation	varies	for	RDML	functions	and	RDMLX
code,	and	a	difference	may	be	caused	in	the	library	that	is
used	where	there	are	multiple	files	of	the	same	name.	RDML
function	generation	on	IBM	i	matches	up	File	references	to
Libraries	using	the	Library	List	of	the	job	that	is	compiling
the	object;	if	not	found	in	the	library	list,	the	first	File	in	the
repository	found	in	EBCDIC	collation	sequence	will	be	used.
RDMLX	objects	are	generated	on	Windows,	which	does	not
have	a	Library	List,	and	so	the	first	file	in	the	repository
found	in	ANSI	collation	sequence	order	will	be	used.	Thus	if
the	POINT	command	specifies	a	library	but	an	IO	command
does	not	(or	vice	versa),	and	there	are	multiple	files	of	the
same	name,	the	RPG	and	C	code	generation	may	match
different	libraries.

Also	See
7.75.1	POINT	Parameters
7.75.2	POINT	Comments/Warnings
7.75.3	POINT	Examples

its:lansa010.chm::/lansa/ladugubh_0020.htm

																																																									Required
	
		POINT	--------	FILE	---------	file	name	.	*FIRST	-------------
>
																																												library	name

																																																									Optional
	
													>--	TO_FILE	-	----	*SAME	-------------------------->
																																file	name
	
													>--	TO_LIBRARY	---	*LIBL	-------------------------->
																																library	name
	
													>--	TO_MEMBER	----	*FIRST	-------------------------
|
																																member	name
	
	

7.75.1	POINT	Parameters
FILE
TO_FILE
TO_LIBRARY
TO_MEMBER

FILE
For	details	of	how	file	names	are	specified,	refer	to	Specifying	File	Names	in
I/O	commands.	The	name	specified	here	is	the	name	of	the	file	as	it	is	known	or
has	been	coded	within	this	function.

TO_FILE
Specifies	the	name	of	the	file	to	which	all	I/O	requests	are	to	be	actually
directed	when	the	function	executes.	If	the	default	value	*SAME	is	used	the
name	of	the	file	is	not	changed	from	its	current	value.
The	file	name	can	be	specified	as	an	alphanumeric	literal	(e.g.:	CUSTMST),	or
an	alphanumeric	variable	name	(e.g.:	#FILE)	or	an	alphanumeric	system
variable	(e.g.:	*PERIODFILE).

TO_LIBRARY
Specifies	the	name	of	the	library	in	which	the	file	can	be	found.	If	default	value
*LIBL	is	used	the	library	list	of	the	function	will	be	searched	at	execution	time
to	locate	the	file.	If	it	cannot	be	found	an	error	will	occur.
The	library	name	can	be	specified	as	an	alphanumeric	literal	(e.g.:	QGPL),	an
alphanumeric	variable	name	(e.g.:	#USINGLIB)	or	an	alphanumeric	system
variable	(e.g.:	*COMPANYLIB).

TO_MEMBER
Specifies	the	name	of	the	member	within	the	file	that	is	to	be	used.	If	the	default
value	*FIRST	is	used	then	the	first	member	within	the	file	will	be	used.
Refer	to	the	appropriate	IBM	manuals	for	more	details	of	file	members	and
multi-member	files.
Use	of	multi-member	files	within	new	applications	is	not	recommended	because
of	the	maintenance	problems	involved.	This	facility	is	provided	primarily	as	a
means	of	accessing	existing	databases	that	contain	multi-member	files.
The	member	name	can	be	specified	as	an	alphanumeric	literal	(e.g.:	COMP010),
an	alphanumeric	variable	name	(e.g.:	#USINGMBR)	or	an	alphanumeric	system

variable	(e.g.:	*COMPANYMBR).

7.75.2	POINT	Comments/Warnings
When	an	RDML	program	is	first	invoked	(or	subsequently	invoked	in
LIGHT	usage	mode)	the	internal	details	of	all	files,	libraries	and	members	to
be	used	are	initialized	as	if	the	command	is	executed	for	every	file	used	by
the	program.

						POINT	FILE(XXXXX)	TO_FILE(XXXXX)	TO_LIBRARY(*LIBL)	
											TO_MEMBER(*FIRST)
	

					This	means	that	by	default	files	are	opened	with	the	same	name	as	they	were
coded,	using	the	library	list	to	locate	the	file	and	accessing	the	first	member
in	the	file.
The	POINT	command	is	an	executable	command.	The	internal	details	of
which	file,	library	and	member	are	to	be	used	are	updated	when	the	POINT
command	executes.
Interactive	RDML	functions	attempt	to	overlap	database	file	opens	with	the
first	screen	interaction.	So	it	is	advisable	to	execute	all	required	POINT
commands	before	issuing	the	first	DISPLAY,	REQUEST	or	POP_UP
command.
File	re-direction	details	provided	in	a	POINT	command	apply	only	to	the
current	function,	not	to	called	or	subsequently	invoked	functions.	They	must
specify	their	own	POINT	commands.
When	a	POINT	command	is	issued	against	a	logical	file	you	must	also
specify	a	POINT	command	for	the	associated/underlying	physical	file.	This	is
because	many	I/O	requests	made	via	the	logical	file	are	actually	performed
via	the	physical	file	(e.g.:	UPDATE,	DELETE,	LOCK(*YES)).	This
requirement	is	checked	by	the	full	function	checker	which	will	issue	a	fatal
error	if	it	is	not	complied	with.
For	similar	reasons,	when	a	POINT	command	is	issued	against	a	physical	file,
POINT	commands	must	also	be	issued	for	any	associated	logical	files	that	are
used	by	the	function.	This	requirement	is	checked	by	the	full	function
checker	which	will	issue	a	fatal	error	message	if	it	is	not	complied	with.
It	is	possible	using	POINT	commands	that	a	physical	file	is	re-directed	to	a
particular	member	and	an	associated	logical	view	is	re-directed	to	another
member.	In	this	situation	strange	and	unpredictable	results	may	occur.	For

instance	a	record	read	from	member	A	via	a	logical	view	and	then	updated,
may	actually	update	a	completely	different	record	in	member	B.
Take	care	when	using	the	POINT	command.	Make	sure	that	the	logical	and
physical	file	POINT	commands	involved	ultimately	"point"	to	data	in	the
same	physical	file	member.
When	the	actual	file,	library	or	member	being	accessed	is	to	be	changed	while
a	function	is	executing	the	file	must	be	closed	via	a	CLOSE	command	or	the
I/O	module	will	issue	a	fatal	error.

For	instance,	this	command	will	fail	on	the	second	FETCH:

										POINT	FILE(CUSTMST)	TO_MEMBER(CURRENT)
										FETCH	FIELDS(#NAME)	FROM_FILE(CUSTMST)	WITH_KEY(#CUSTNO)
										POINT	FILE(CUSTMST)	TO_MEMBER(ARCHIVE)
										FETCH	FIELDS(#NAME)	FROM_FILE(CUSTMST)	WITH_KEY(#CUSTNO)
	

					The	I/O	module	will	abort	with	an	error	indicating	that	member	CURRENT
is	open	and	you	have	asked	for	an	I/O	to	member	ARCHIVE.

					The	correct	way	to	achieve	this	is	as	follows:

										POINT	FILE(CUSTMST)	TO_MEMBER(CURRENT)
										FETCH	FIELDS(#NAME)	FROM_FILE(CUSTMST)	WITH_KEY(#CUSTNO)
										CLOSE	FILE(CUSTMST)
										POINT	FILE(CUSTMST)	TO_MEMBER(ARCHIVE)
										FETCH	FIELDS(#NAME)	FROM_FILE(CUSTMST)	WITH_KEY(#CUSTNO)
	

Where	entire	application	systems	use	multi-member	files	there	is	usually	a
predictable	naming	convention	used	for	file	members.	For	example,	in	multi-
company	financial	systems	the	member	name	may	be	an	"M"	followed	by	the
company	number.	In	such	cases	it	is	worth	creating	system	variables	that
automatically	set	the	name	of	the	member	to	be	used.

					Consider	the	following	examples	of	standard	coding	at	the	beginning	of	all
RDML	programs	used	in	a	multi-member	financial	system:

										POINT	FILE(GLMAST)	TO_MEMBER(*COMPANY_MBR)
										POINT	FILE(SUMAST)	TO_MEMBER(*COMPANY_MBR)

										POINT	FILE(FTMAST)	TO_MEMBER(*COMPANY_MBR)
	

					The	same	feature	can	be	used	to	determine	the	name	of	the	library	that	is	to
be	used.	For	instance	a	system	that	utilizes	3	identical	data	libraries	called
PRODUCTION,	TESTING1	and	TESTING2	might	use	the	following	coding
at	the	beginning	of	all	RDML	programs:

										POINT	FILE(GLMAST)	TO_LIBRARY(*DATA_LIBRARY)
										POINT	FILE(SUMAST)	TO_LIBRARY(*DATA_LIBRARY)
										POINT	FILE(FTMAST)	TO_LIBRARY(*DATA_LIBRARY)
	

					The	program	behind	the	system	variable	"*DATA_LIBRARY"	works	out	the
required	library	name	from	the	user	profile	or	some	other	identifier.
In	the	current	release	of	LANSA,	files	used	by	I/O	modules	for	other
purposes	such	as	data	validation	and	batch	control	logic	cannot	be	re-directed.
They	are	always	opened	by	searching	the	library	list	and	using	the	first
member	in	the	file.
Where	I/O	is	re-directed	to	a	file	that	has	not	been	defined	to	LANSA	it	is
not	possible	for	LANSA	to	check	the	user's	access	rights	against	its	internal
security	information.	In	such	cases	the	user	is	granted	"special	access"	and	a
warning	message	is	issued.	Such	access	is	still	subject	to	normal	IBM	i
operating	system	security.
It	is	the	developer's	responsibility	to	check	and	test	the	ramifications	of	using
the	POINT	command	in	any	RDML	program.

7.75.3	POINT	Examples
Example	1:	Point	file	CUSTMST	to	library	TESTDATA:
POINT	FILE(CUSTMST)	TO_LIBRARY(TESTDATA)
	

or	
DEFINE	FIELD(#LIBRARY)	TYPE(*CHAR)	LENGTH(10)
CHANGE	FIELD(#LIBRARY)	TO('TESTDATA')
POINT		FILE(CUSTMST)	TO_LIBRARY(#LIBRARY)
	

Example	2:	Point	file	GLTRANS	to	a	member	with	the	same	name	as	the
current	workstation:
POINT	FILE(GLTRANS)	TO_MEMBER(*JOB)
	

or
DEFINE	FIELD(#MEMBER)	TYPE(*DEC)	LENGTH(2)	DECIMALS(0)
CHANGE	FIELD(#MEMBER)	TO(*JOB)
POINT		FILE(GLTRANS)		TO_MEMBER(#MEMBER)
	

Example	3:	Point	file	GLTRANS	to	a	member	with	a	name	made	up	of	an	"M"
concatenated	with	the	current	job	number:
DEFINE	FIELD(#MEMBER)	TYPE(*CHAR)	LENGTH(10)
USE				BUILTIN(CONCAT)	WITH_ARGS('M'	*JOBNBR)	TO_GET(#MEMBER)
POINT		FILE(GLTRANS)	TO_MEMBER(#MEMBER)
	

7.76	POP_UP
The	POP_UP	command	displays	information	on	a	workstation	in	a	pop	up
window.
The	POP_UP	command	is	only	valid	in	RDMLX	functions	when	being	used	on
the	Web.	If	it	is	used	elsewhere	a	fatal	error	occurs	at	runtime.	If	this	occurs,
either	put	your	POP_UP	command	in	an	RDML	function	or	use	a	Form	to	show
user	information.
The	POP_UP	command	is	functionally	very	similar	to	the	DISPLAY	command,
except	that	the	information	is	presented	in	a	window	that	overlays	(or	pops	up
over)	information	that	is	already	on	the	screen.
For	example,	the	following	DISPLAY	command:
DISPLAY	FIELDS(#CUSTNUM	#NAME	#ADDR1	#ADDR2	#ADDR3	#PHONE	#ZIP)
	

might	cause	a	panel	to	be	presented	on	the	workstation	that	looks	something	like
this:
	
									Customer	no		:	99999999
									Name									:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
									Address						:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
																						:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
																						:	XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX
									Telephone				:	9999999999
									Zip										:	999999
	
	
If	the	following	POP_UP	command	was	then	executed:
POP_UP	FIELDS(#DEBIT	#CREDIT)
	

the	resulting	panel	on	the	workstation	might	look	something	like	this:
	
									Customer	no		:	99999999
									Name									:	XXXXXXXX	----------------------	XX
									Address						:	XXXXXXXX	|																				|	XX
																						:	XXXXXXXX	|	Debit		:	999999.99	|	XX
																						:	XXXXXXXX	|	Credit	:	999999.99	|	XX

									Telephone				:	99999999	|																				|
									Zip										:	999999			----------------------
	
Portability
Considerations

Refer	to	parameters:	FIELDS	,	IGCCNV_KEY	and
TEXT	.

Also	See
7.76.1	POP_UP	Parameters
7.76.2	POP_UP	Comments	/	Warnings
7.76.3	POP_UP	Examples
																																																									Optional	
	
		POP_UP	-------	FIELDS	------
-	field	name		field	attributes	--->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|	expandable	group	expression	|
																																|------	1000	max	for	RDMLX----|
																																	-------	100	max	for	RDML	----
	
													>--	DESIGN	-------	*ACROSS	------------------------>
																																*DOWN
	
													>--	IDENTIFY	-----	*LABEL	------------------------->
																																*COLHDG
																																*DESC
																																*NOID
	
													>--	IDENT_ATR	----	*DEFAULT	----------------------
->
																																*NONE
																																*HI	*RI	*UL	(3	maximum)
	
													>--	DOWN_SEP	-----	*DESIGN	-----------------------
->
																																decimal	value
	
													>--	ACROSS_SEP	---	*DESIGN	-----------------------

->
																																decimal	value
	
													>--	AT_LOC	-------	*CENTRE	------------------------>
																													or	*QUAD1	*QUAD2	*QUAD3	*QUAD4
																													or	*UPPER	*LOWER	*LEFT	*RIGHT
																													or	(row	number				column	number)
	
													>--	WITH_SIZE	----	*AUTO	-------------------------->
																													or	(width			length)
	
													>--	PANEL_ID	-----	*AUTO	-------------------------->
																													or	*NONE
																													or	panel	identifier
	
													>--	PANEL_TITL	---	*FUNCTION	--------------------
-->
																													or	'Panel	title'
	
													>--	BROWSELIST	---	*NONE	--------------------------
>
																																name	of	list
	
													>--	EXIT_KEY	-----	*YES	--	*EXIT	-
-	*HIGH	-	*NONE	->
																																*NO					*MENU				*LOW			condition
																																								*NEXT
																																								*RETURN
																																								label
	
													>--	MENU_KEY	-----	*YES	--	*MENU	---
-	*NONE	------->
																																*NO					*EXIT						condition
																																								*NEXT	
																																								*RETURN
																																								label
	
													>--	ADD_KEY	------	*NO	----	*NEXT	---	*NONE	---
---->

																																*YES					*RETURN			condition
																																									label
	
													>--	CHANGE_KEY	---	*NO	----	*NEXT	--
-	*NONE	------->
																																*YES					*RETURN			condition
																																									label
	
													>--	DELETE_KEY	---	*NO	----	*NEXT	---	*NONE	-
------>
																																*YES					*RETURN			condition
																																									label
	
													>--	PROMPT_KEY	---	*DFT	---	*AUTO	--
-	*NONE	------->
																																*YES					*NEXT					condition
																																*NO						*RETURN
																																									label
	
													>--	USER_KEYS	---	fnc	key--'desc'--*NEXT	-
-	*NONE	->
																														|																	*RETURN			cond	|
																														|																	label										|
																														|																																|
																															---------	5	maximum	------------
	
													>--	SHOW_NEXT	----	*PRO	---------------------------
>
																																*YES
																																*NO
	
													>--	TEXT	---------	'text'	---	line/	---	position	-->
																															|											row							column			|
																																-----------	50	max	-----------
																																	*TMAPnnn		1		1		(special	value)
	
													>--	CURSOR_LOC	---	*NONE		-------	*NONE	------
----->
																																*ATFIELD							field	name

																																row	value						column	value
	
													>--	STD_HEAD	-----	*DFT	--------------------------->
																																*YES
																																*NO
	
													>--	IGCCNV_KEY		--	*AUTO	--------------------------
|
																																*YES
																																*NO
																																condition	name
	

7.76.1	POP_UP	Parameters
ACROSS_SEP
ADD_KEY
AT_LOC
BROWSELIST
CHANGE_KEY
CURSOR_LOC
DELETE_KEY
DESIGN
DOWN_SEP
EXIT_KEY
FIELDS
IDENT_ATR
IDENTIFY
IGCCNV_KEY
MENU_KEY
PANEL_ID
PANEL_TITL
PROMPT_KEY
STD_HEAD
TEXT
USER_KEYS
WITH_SIZE

FIELDS
Specifies	either	the	field(s)	that	are	to	be	displayed	in	the	pop	up	window	or	the
name	of	a	group	that	specifies	the	field(s).	Alternatively,	an	expandable	group
expression	can	be	entered	in	this	parameter.

Portability
Considerations

Visual	LANSA	has	multi-page	and	field	spanning	line
restrictions:
Multi-page	data	(i.e.	if	the	screen	format	is	larger	than	one
page)	can	be	displayed	in	a	Web	browser	window	but	NOT	in

a	LANSA	function.	
If	a	process	containing	multi-page	data	is	compiled,	a	warning
will	be	issued	if	the	process	is	WEB/XML	enabled.	If	the
process	is	NOT	WEB/XML	enabled,	a	full	function	check
error	will	be	issued.
Field	spanning	(i.e.	when	the	field	is	larger	than	one	line	on
the	screen)	is	not	supported	-	only	a	single	line	will	be
displayed.	No	error	or	warning	is	issued.

DESIGN
Specifies	the	design/positioning	method	which	should	be	used	for	fields	that	do
not	have	specific	positioning	attributes	associated	with	them.
*ACROSS,	which	is	the	default	value,	indicates	that	fields	should	be	designed
"across"	the	window.
*DOWN	indicates	the	fields	should	be	designed	"down"	the	window	in	a
column.
Note:	The	default	value	of	this	parameter	is	different	to	the	equivalent	default
used	on	DISPLAY	or	REQUEST	commands.

IDENTIFY
Specifies	the	default	identification	method	to	be	used	for	fields	that	do	not	have
specific	identification	attributes	associated	with	them.
*LABEL,	which	is	the	default	value,	indicates	that	fields	should	be	identified	by
their	associated	labels	in	the	window.
*DESC	indicates	that	fields	should	be	identified	by	their	associated	descriptions
in	the	window.
*COLHDG	indicates	that	fields	should	be	identified	by	their	associated	column
headings	in	the	window.
*NOID	indicates	that	no	identification	of	the	field	is	required.	Only	the	field
itself	should	be	included	into	the	window.
Note:	The	default	value	of	this	parameter	is	different	to	the	equivalent	default
used	on	DISPLAY	or	REQUEST	commands.

IDENT_ATR
Specifies	display	attributes	that	are	to	be	associated	with	identification	text
(labels,	column	headings,	descriptions,	etc)	that	are	displayed	in	the	window.
*DEFAULT,	which	is	the	default	value,	indicates	that	the	system	defaults	for

identification	display	attributes	should	be	adopted.	They	are	set	up	in	the	system
definition	block	as	overall	system	default	values.	Refer	to	The	System
Definition	Data	Areas	in	the	LANSA	for	i	User	Guide	for	more	details	of	the
system	definition	block	and	how	to	change	it.
*NONE	indicates	that	identification	text	should	have	no	special	display
attributes	associated	with	it.
Otherwise,	specify	one	or	more	of	the	values:	*HI	(high	intensity),	*RI	(reverse
image)	and	*UL	(underline).
This	parameter	is	ignored	in	SAA/CUA	processes	in	SAA/CUA	compliant
partitions.	In	such	partitions	the	attributes	are	determined	from	the	partition
wide	standards	for	labels	and	column	headings.

DOWN_SEP
Specifies	the	spacing	between	rows	on	the	display	that	should	be	used	when
automatically	designing	a	screen.	The	value	specified	must	be	*DESIGN	or	a
number	in	the	range	1	to	10.	Refer	to	the	table	in	the	Comments/Warnings
section,	for	details	of	what	value	*DESIGN	is	actually	specifying.

ACROSS_SEP
Specifies	the	spacing	between	columns	on	the	display	that	should	be	used	when
automatically	designing	a	screen.	The	value	specified	must	be	*DESIGN	or	a
number	in	the	range	1	to	10.	Refer	to	the	table	in	the	Comments/Warnings
section	for	details	of	what	value	*DESIGN	is	actually	specifying.

AT_LOC
Specifies	the	position	of	the	window	on	the	screen	panel.	It	may	be	entered	as	a
special	value	that	automatically	specifies	the	row	and	column	number	according
to	the	table	below,	or	as	actual	row	and	column	numbers.	Values	specified	are
fixed	and	cannot	be	varied	at	execution	time.	The	special	values	and	the	actual
row	and	column	numbers	used	are	as	follows:

Special	ValueRow	NumberColumn	Number

*CENTRE 8 22

*QUAD1 2 3

*QUAD2 2 43

*QUAD3 14 3

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

*QUAD4 14 43

*UPPER 2 3

*LOWER 14 3

*LEFT 2 3

*RIGHT 2 43

	

WITH_SIZE
Specifies	the	size	(ie:	width	and	length)	of	the	window.	It	may	be	entered	as	a
special	value	*AUTO	that	automatically	computes	a	width	and	length,	or	as
actual	width	and	length	values.
Values	specified	are	fixed	and	cannot	be	varied	at	execution	time.
To	use	the	WITH_SIZE	parameter,	the	AT_LOC	parameter	must	be	set	to
numeric	values.	If	the	AT_LOC	parameter	is	unspecified	it	will	default	to	a
special	value,	and	the	WITH_SIZE	parameter	values	will	be	ignored.
When	the	AT_LOC	parameter	is	one	of	the	following	special	values,	the
WITH_SIZE	parameter	is	automatically	computed	according	to	the	following
table,	regardless	of	what	value	you	specify	for	the	parameter.

Special	ValueWidthLength

*CENTRE 38 10

*QUAD1 36 10

*QUAD2 35 10

*QUAD3 36 10

*QUAD4 35 10

*UPPER 75 10

*LOWER 75 10

*LEFT 36 22

*RIGHT 35 22

	

If	you	specify	a	specific	row	and	column	value	for	the	AT_LOC	parameter,	and
leave	the	WITH_SIZE	parameter	as	*AUTO,	the	width	and	length	values	will
be	automatically	calculated	to	fill	the	entire	screen	panel	to	the	right	of	and	to
the	bottom	of	the	nominated	locating	row	and	column	number.

PANEL_ID
Specifies	the	identifier	that	is	to	be	assigned	to	the	panel	or	pop-up	window
created	by	this	command.
*AUTO	indicates	that	it	should	be	automatically	generated	by	LANSA	from	the
function	name	and	the	source	statement	number	of	the	RDML	program.
*NONE	indicates	that	no	panel	identifier	is	required	for	this	panel	or	pop-up
window.
Otherwise	specify	a	panel	identifier	from	1	to	10	characters	in	length.	The	value
specified	is	fixed	and	cannot	be	changed	at	execution	time.
This	parameter	is	valid	for	SAA/CUA	and	non-SAA/CUA	applications.
This	parameter	is	ignored	if	the	current	partition	definition	indicates	that	panel
identifiers	are	never	required,	no	matter	what	value	is	specified.

PANEL_TITL
Specifies	the	title	that	is	to	be	assigned	to	the	window	panel.
*FUNCTION	indicates	that	it	should	be	derived	from	the	RDML	function's
description.
Otherwise	specify	a	panel	title	from	1	to	40	characters	in	length.	The	value
specified	is	fixed	and	cannot	be	changed	at	execution	time.
This	parameter	is	valid	for	SAA/CUA	and	non-SAA/CUA	applications.

BROWSELIST
Specifies	the	name	of	a	browse	list	which	is	also	to	be	included	into	the	window.
*NONE	indicates	that	no	browse	list	is	required.	The	window	designed	will	not
have	any	browse	component.
If	a	browse	list	is	specified	it	must	be	defined	elsewhere	in	the	RDML	program
with	a	DEF_LIST	(define	list)	command.

EXIT_KEY
Specifies	the	following	things	about	the	EXIT	function	key:

Whether	the	EXIT	function	key	is	to	be	enabled.
What	is	to	happen	when	the	EXIT	function	key	is	used.
In	SAA/CUA	partitions,	which	EXIT	function	key	is	required.
A	condition	to	control	when	the	EXIT	function	key	is	enabled.

By	default	the	EXIT	function	key	is	enabled.	To	disable	the	EXIT	function	key
specify	*NO	as	the	first	value	for	this	parameter.
If	the	EXIT	function	key	is	enabled,	you	may	specify	what	happens	when	it	is
used.	The	allowable	values	for	this	second	component	of	the	EXIT_KEY
parameter	are	as	follows:

*EXIT The	application	should	exit	completely	from	LANSA.	(identical	to
executing	an	EXIT	command).

*MENU	 The	process's	main	menu	should	be	re-displayed	(identical	to
executing	a	MENU	command).

*NEXT Indicates	that	control	should	be	passed	to	the	next	command.

*RETURN Specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller
routine	or	the	program	mainline.

If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	value	*EXIT	is	the	default	for	this	parameter	value.
Additionally,	in	SAA/CUA	partitions,	you	may	nominate	whether	the	EXIT
function	key	to	be	enabled	is	the	"high"	exit	key	or	the	"low"	exit	key.
The	default	value	is	*HIGH	for	this	parameter	value.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.
Note:	In	SAA/CUA	applications	it	is	recommended	that	only	the	following	2
variations	of	the	EXIT_KEY	parameter	are	used:
										EXIT_KEY(*YES	*EXIT	*HIGH)		in	a	"main	program"
										EXIT_KEY(*YES	*RETURN	*LOW)		in	"subroutines"

	

MENU_KEY
Specifies	whether	the	MENU	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	MENU	key	is	used.
*YES,	which	is	the	default	value,	indicates	that	the	MENU	key	should	be
enabled	when	the	screen	is	displayed.	If	*YES	is	used	it	is	also	possible	to
specify	the	action	to	be	taken	when	the	menu	key	is	used.
*MENU,	the	default	value,	specifies	that	the	process's	main	menu	should	be	re-
displayed.
*EXIT	specifies	that	the	application	should	exit	completely	from	LANSA.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
*NO	indicates	that	the	MENU	function	key	should	not	be	enabled	when	the
screen	is	displayed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

ADD_KEY
Specifies	whether	the	ADD	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	ADD	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	ADD	function	key	should	not
be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	ADD	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	ADD	key	is	used.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.

*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

CHANGE_KEY
Specifies	whether	the	CHANGE	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	CHANGE	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	CHANGE	function	key
should	not	be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	CHANGE	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	CHANGE	key	is	used.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

DELETE_KEY
Specifies	whether	the	DELETE	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to

happen	if	the	DELETE	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	DELETE	function	key	should
not	be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	DELETE	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	DELETE	key	is	used.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

PROMPT_KEY
Specifies	whether	the	PROMPT	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	PROMPT	key	is	used.
*DFT,	which	is	the	default	value,	indicates	that	the	PROMPT	function	key
should	be	enabled	or	disabled	automatically	according	to	its	default	value
defined	in	the	system	definition	data	area	DC@A01.	Refer	to	The	System
Definition	Data	Area	DC@A01	in	the	LANSA	for	i	User	Guide.
*YES	indicates	that	the	PROMPT	key	should	be	enabled	when	the	screen	is
displayed.
*NO	indicates	that	the	PROMPT	key	should	NOT	be	enabled	when	the	screen
is	displayed.
In	any	case,	when	the	PROMPT	function	key	is	enabled	(either	by	specifying
*DFT	or	*YES	for	the	first	part	of	this	parameter),	it	is	possible	to	also	specify
what	is	to	happen	if	the	function	key	is	used.	Allowable	values	for	this	part	of
the	parameter	are:
*AUTO	indicates	that	the	prompt	key	processing	should	be	handled

its:LANSA010.CHM::/lansa/ugubc_c10015.htm

automatically	by	LANSA.	Refer	to	Prompt_Key	Processing	before	attempting
to	use	this	option.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

USER_KEYS
Specifies	up	to	5	additional	user	function	keys	that	can	be	enabled	when	the
screen	format	is	displayed	at	the	workstation.
Any	user	function	keys	assigned	must	not	conflict	with	function	keys	assigned
to	the	standard	LANSA	functions	of	EXIT,	MENU,	MESSAGES,	ADD,
CHANGE,	DELETE	or	PROMPT	when	they	are	enabled	on	a	command	(ie:	a
function	key	cannot	be	assigned	to	more	than	one	function).
Additional	user	function	keys	are	specified	in	the	format:

(fnc	key	number 'description' *NEXT *NONE)

	 	 *RETURN cond	name

	 	 label 	

where:

fnc	key
number

Is	the	function	key	number	in	the	range	1	to	24	or	one	of	the	special
values	*ROLLUP	(roll	up	key)	or	*ROLLDOWN	(roll	down	key).

'description' Is	a	description	of	the	function	assigned	to	the	function	key.	This
description	will	be	displayed	on	line	23	of	the	screen	format.
Maximum	length	is	8	characters.

*NEXT Is	the	default	and	indicates	that	the	next	command	(after	this	one)
should	receive	control.

*RETURN Indicates	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller
routine	or	the	program	mainline.

Label	 Indicates	the	command	label	to	which	control	should	be	passed	if
the	command	key	is	used.

*NONE Indicates	that	no	condition	applies	to	control	when	the	function	key
is	to	be	enabled	or	disabled.

cond	name Indicates	that	a	condition	defined	by	a	DEF_COND	command
should	be	evaluated	to	determine	whether	to	enable	or	disable	the
function	key.

Refer	to	the	IF_KEY	command	for	details	of	how	the	function	key	that	was
used	can	be	tested	in	the	RDML	program.
As	an	example	of	usage	consider	the	following:
POP_UP	FIELDS(#PRODUCT)	USER_KEYS((14	'Commit')(15	'Purge'))
			IF_KEY		WAS(*USERKEY1)
				<<	Commit	logic	>>
			ENDIF
			IF_KEY		WAS(*USERKEY2)
				<<	Purge	logic	>>
			ENDIF
	

Note	that	the	IF_KEY	command	refers	to	the	keys	by	symbolic	names	that
indicate	the	order	they	are	declared	in	the	USER_KEYS	parameter,	not	the
actual	function	key	numbers	assigned	to	them.	This	makes	changing	function
key	assignments	easier.

TEXT
Allows	the	specification	of	up	to	50	"text	strings"	that	are	to	appear	on	the
screen	panel	or	report.	Each	text	string	specified	is	restricted	to	a	maximum
length	of	20	characters.
When	a	text	string	is	specified	it	should	be	followed	by	a	row/line	number	and	a
column/position	number	that	indicates	where	it	should	appear	on	the	screen
panel	or	report.

For	example:
TEXT(('ACME'	6	2)('ENGINEERING'	7	2))
	

specifies	2	text	strings	to	appear	at	line	6,	position	2	and	line	7,	position	2
respectively.

Portability
Considerations

In	Visual	LANSA	this	parameter	should	only	be	edited	using
the	screen	or	report	painter	which	will	replace	any	text	with	a
text	map.	DO	NOT	enter	text	using	the	command	prompt	or
free	format	editor	as	it	will	not	pass	the	full	function	checker
if	checked	in	to	LANSA	for	i.

All	Platforms
The	text	map	is	used	by	the	screen	or	report	design	facilities	to	store	the	details
of	all	the	text	strings	associated	with	the	screen	panel	or	report	lines.
Once	a	screen	or	report	layout	has	been	"painted"	and	saved,	all	text	details
from	the	layout	are	stored	in	a	"text	map".	The	text	map	is	then	subsequently
changed	by	using	the	"painter"	again.
The	presence	of	a	text	map	is	indicated	by	a	TEXT	parameter	that	looks	like	this
example:
TEXT((*TMAPnnn	1	1))
	

where	"nnn"	is	a	unique	number	(within	this	function)	that	identifies	the	stored
text	map.
Some	very	important	things	about	"text	maps"	and	*TMAPnnn	identifiers	that
you	must	know	are:
Never	specify	*TMAPnnn	identifiers	of	your	own	or	change	*TMAPnnn
identifiers	to	other	values.	Leave	the	assignment	and	management	of
*TMAPnnn	identifiers	to	the	screen	and	report	design	facilities.
When	copying	a	command	that	has	an	*TMAPnnn	identifier,	remove	the
*TMAPnnn	references	(ie:	the	whole	TEXT	parameter)	from	the	copied
command.	If	you	fail	to	do	this,	then	the	full	function	checker	will	detect	the
duplicated	use	of	*TMAPnnn	identifiers,	and	issue	a	fatal	error	message
before	any	loss	occurs.
Never	remove	an	*TMAPnnn	identifier	from	a	command.	If	this	is	done	then
the	associated	text	map	may	be	deleted,	or	reused	in	another	command,
during	a	full	function	check	or	compilation.	Loss	of	text	details	is	likely	to

result.
Never	"comment	out"	a	command	that	contains	a	valid	*TMAPnnn	identifier.
This	is	just	another	variation	of	the	preceding	warning	and	it	runs	the	same
risks	of	loss	or	reuse	of	text.
Never	specify	*TMAPnnn	values	in	an	Application	Template.	In	the	template
context	*TMAPnnn	values	have	no	meaning.	Use	the	"text	string"	format	in
commands	used	in,	and	initially	generated	by,	Application	Templates.

CURSOR_LOC
Specifies	any	user	controlled	cursor	positioning	that	is	required.	The
CURSOR_LOC	parameter	must	always	contain	2	values,	which	may	take	any
of	the	following	forms:
*NONE	/	*NONE:	which	are	the	default	values	indicate	that	no	user	controlled
cursor	positioning	is	required.	Normal	LANSA	cursor	control	is	to	be	used.
When	a	screen	is	displayed	the	cursor	will	be	positioned	to	either	the	first	input
capable	field	or	the	first	field	in	error.
*ATFIELD	/	Field	name:	specifies	that	the	cursor	should	be	positioned	to	the
named	field.	If	the	named	field	is	not	on	the	display	or	a	field	error	exists,
normal	LANSA	cursor	control	will	be	used.	Otherwise	the	cursor	will	be
positioned	to	the	nominated	field.
Row	value	/	Column	value:	specifies	that	the	"values"	nominated	indicate	the
row	and	column	number	at	which	the	cursor	is	to	be	positioned.	The	"values"
nominated	may	be	an	alphanumeric	literal	(e.g.:	15)	or	the	name	of	a	field	that
contains	the	value	(e.g.:	#ROW).	In	all	cases	the	value	must	be	numeric.	If	the
row	or	column	values	are	invalid	or	a	field	error	exists,	normal	LANSA	cursor
control	will	be	used.	Otherwise	the	cursor	will	be	positioned	at	the	row	and
column	specified.
When	the	row	and	column	option	is	used	and	the	row	and	column	values	are
specified	as	fields	(rather	than	numeric	literals),	the	row	and	column	number
where	the	cursor	was	located	when	the	command	completed	execution	will	be
returned	in	them.
Note:	The	CURSOR_LOC	does	not	behave	in	the	same	way	on	Windows	as	on
IBM	i.	On	a	Windows	platform	the	value	retrieved	is	the	first	position	of	the
field	the	cursor	is	currently	in.
This	feature	is	a	useful	way	of	retrieving	the	location	of	the	screen	cursor	at	the
time	the	command	completed	execution.	In	cases	where	you	wish	to	retrieve
the	cursor	location,	but	do	not	want	to	specify	it	before	output	to	the	screen,	use

coding	like	this:
CHANGE		FIELD(#ROW	#COL)	TO(0)
POP_UP		FIELDS(#FIELD1	..	#FIELD10)	CURSOR_LOC(#ROW	#COL)
	

When	the	POP_UP	command	is	executed	#ROW	and	#COL	are	both	zero,
which	is	an	invalid	cursor	location.	In	such	cases	normal	LANSA	cursor	control
is	resumed	and	the	user	positioning	request	is	ignored.	However,	after
completion	of	the	command,	fields	#ROW	and	#COL	will	contain	the	location
of	the	cursor	at	the	time	the	POP_UP	command	completed	execution.

STD_HEAD
Specifies	whether	or	not	the	standard	LANSA	design	for	the	screen	heading
lines	(lines	1	and	2)	should	be	used.
*DFT,	which	is	the	default	value,	indicates	that	the	system	default	value	for	the
STD_HEAD	parameter	should	be	used.	The	system	default	value	is	stored	in	the
LANSA	system	definition	block.	Refer	to	The	System	Definition	Data	Areas	in
the	LANSA	for	i	User	Guide	for	details	of	the	system	definition	block	and	how
to	change	it.
*YES	indicates	that	the	standard	LANSA	screen	heading	lines	should	be	used.
When	this	option	is	used	lines	1	and	2	of	the	display	are	not	available	for	the
positioning	of	user	fields.
*NO	indicates	that	the	standard	LANSA	screen	heading	lines	should	not	be
used.	In	this	case	lines	1	and	2	of	the	display	can	be	used	to	position	user	fields.

IGCCNV_KEY
Controls	the	appearance	of	the	text	"Fnn=XXXXXX"	in	the	function	key	area,
of	the	function	key	assigned	to	support	IGC	conversion.
This	parameter	is	ignored	if	the	language	under	which	this	function	is	being
compiled	does	not	have	the	"IGCCNV	required"	flag	enabled,	or	if	this	function
uses	the	*NOIGCCNV	options	keyword	(refer	to	the	FUNCTION	command).
Also	note	that	this	parameter	only	controls	the	appearance	of	the	text
"Fnn=XXXXX"	in	the	function	key	area.	It	does	not	control	the	enablement	of
the	IGCCNV	DDS	keyword	in	the	display	file	associated	with	this	function.
This	is	controlled	by	the	setting	of	the	"IGCCNV	required"	flag	and	the	use	of
the	*NOIGCCNV	option.
*AUTO,	which	is	the	default	value,	indicates	that	appearance	of	the	function
key	text	should	be	determined	automatically.	The	automatic	rules	used	to

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

determine	whether	or	not	to	show	the	function	key	text	are:
If	there	are	no	fields	with	keyboard	shift	J,	E	or	O	involved,	the	text	will	not
appear	(ignore	all	following	rules).
For	a	REQUEST	command	the	text	will	always	appear.
For	DISPLAY	or	POP_UP	commands,	the	current	"mode"	is	tested.	If	the
mode	is	"change"	(ie:	fields	on	the	screen	are	input	capable),	the	text	will
appear.	For	all	other	modes	the	text	will	not	appear.

Other	allowable	values	for	this	parameter	are	*YES,	indicating	that	the	text
should	always	appear,	or,	*NO	indicating	that	the	text	should	never	appear.
The	final	option	allows	the	nomination	of	a	condition	previously	defined	by	a
DEF_COND	command.	If	the	condition	is	true	the	text	should	appear.	If	the
condition	is	false,	the	text	should	not	appear.

Portability
Considerations

When	used	with	Visual	LANSA,	this	parameter	is	ignored
with	no	known	effect	to	the	application.

7.76.2	POP_UP	Comments	/	Warnings
POP_UP	windows	are	defined	and	presented	via	conventional	DDS	(Data
Description	Specifications).	They	do	not	use	"user	defined	data	streams"	and
thus	do	not,	and	will	not	ever	have,	upward	compatibility	problems.
The	POP_UP	command	is	a	"mode	sensitive"	command.	For	details	of	"mode
sensitive"	command	processing,	refer	to	Screen	Modes	and	Mode	Sensitive
Commands.
When	a	pop	up	window	appears,	all	fields	already	on	the	screen	are	protected
and	cannot	be	changed	by	the	user.
Only	the	function	keys	enabled	by	the	POP_UP	window	command	are	enabled.
Function	keys	enabled	on	the	panel	that	it	overlaid	are	disabled	and	cannot	be
used.
A	pop-up	window	is	a	"miniature"	screen	panel,	and	is	laid	out	exactly	like	a
full	screen	panel.	Consider	the	following:
	
	------------------	l	:	window	location	(AT_LOC)	specified
|																							as	a	row	and	column	number.
|
|			BB
	--->l	iiiiiii							ttttttttttttttttttttttttt	|									B
				B																																										|									B
				B																																										|									B
				B																																								length						B
				B																																										|									B
				B<-----------------------	width	-----------|-------->B
				B																																										|									B
				B																																										|									B
				B																																										|									B
				B	MM	|	MMMMMMM	B
				B	FF	|	FFFFFFF	B
				B	FF	|	FFFFFFF	B
				B																																										|									B
				BB
	
			*	where:			"iiiiiiii"	is	the	panel	identifier.
														"ttt...tt"	is	the	panel	title.

														"MMM...MM"	is	the	message	line.
														"FFFFFFFF"	are	the	2	function	key	lines.
														"BB....BB"	are	the	window	border	fill	characters.
	
Note	that	the	panel	identifier	and	title	line	may	omitted.	The	message	line	and
function	key	lines	may	appear	in	a	different	order	if	specified	for	the	partition.
In	non-SAA/CUA	functions	only	one	line	of	function	keys	is	presented.
The	window	location	is	specified	as	a	row	and	column	number	and	is	used	to
position	the	upper	left	hand	corner	(within	the	border)	of	the	window.	Since	the
window	border	must	also	appear,	the	minimum	row	value	is	2	and	the	maximum
is	23.	Likewise	the	minimum	column	number	is	3	and	the	maximum	77.
The	pop	up	window	border	is	presented	in	SAA/CUA	applications	according	to
the	partition	level	definition	of	panel	element	category	PBWB	(normally	reverse
video	blue).	In	non-SAA/CUA	applications	the	value	used	is	reverse	video
green.
The	pop	up	window	width	and	length	are	specified	in	character	positions	and
nominate	the	dimensions	within	(but	not	including)	the	border.
Rows	within	the	window	used	for	panel	identification,	messages	and	function
keys	are	reserved	and	you	cannot	position	fields	anywhere	on	these	rows.
The	first	and	last	2	columns	within	a	pop	up	window	are	reserved	and	you
cannot	position	a	field	to	start,	end	or	span	one	of	these	columns.
When	a	field	is	positioned	into	a	pop	up	window,	the	field	(including	its	label	or
description)	and	all	leading	and	trailing	attribute	bytes	must	entirely	fit	onto	one
line	of	the	window.	A	field	cannot	span	lines	of	the	display	in	a	pop	up	window.
Pop	up	windows	can	be	used	for	input	or	output	operations	just	like	the
DISPLAY	command.	Note	also	that	the	POP_UP	command	is	"mode	sensitive"
just	like	the	DISPLAY	command.
Pop	up	windows	can	contain	a	browse	list.	The	browse	list	may	be	used	for
input	or	output	operations.
When	specifying	field	locations	within	a	window,	note	that	the	positions	are
relative	to	the	window	location.	Thus:
POP_UP	FIELDS((#DATE	*R2	*C3))
	

specifies	that	DATE	is	to	be	positioned	at	row	2,	column	3	within	the	pop	up
window.
When	using	the	CURSOR_LOC	parameter	to	nominate	a	specific	row	and

column	for	cursor	positioning,	note	that	the	positions	are	absolute.	The	values
specified	relate	to	the	entire	screen	panel,	not	the	window.	Thus	values	outside
the	pop	up	window	borders	may	be	specified.
If	you	want	the	name	of	the	field	in	which	the	CURSOR	was	located	when
Enter	or	any	other	AID	was	pressed,	to	be	returned	to	your	function,	then	refer
to	a	field	named	#CURLOC$FN	within	your	function.	
#CURLOC$FN	(alpha,	10)	will	contain	the	name	of	the	field.
The	following	table	indicates	all	combinations	of	the	DESIGN	and	IDENTIFY
parameters	and	what	values	result	when	the	*DESIGN	default	is	used	in	the
associated	DOWN_SEP	or	ACROSS_SEP	parameters:

Specified:
DESIGN

Specified:
IDENTIFY

*DESIGN	Specified:
DOWN_SEP

*DESIGN	Specified:
ACROSS_SEP

*DOWN *COLHDG 5 1

*DOWN *LABEL 1 1

*DOWN *DESC 1 1

*DOWN *NOID 1 1

*ACROSS *COLHDG 5 1

*ACROSS *LABEL 1 1

*ACROSS *DESC 1 1

*ACROSS *NOID 1 1

	

In	some	cases	all	the	fields	specified	in	the	FIELDS	parameter	will	not	fit	on
one	screen.	In	this	case	a	second,	third,	fourth,	etc.	window	is	automatically
designed	as	required.
In	terms	of	the	RDML	program	they	can	be	treated	like	one	"long"	window.
LANSA	will	automatically	process	the	windows	one	after	another	until	they
have	all	been	processed.	When	all	windows	have	been	processed	the	next
RDML	command	is	executed.
So	when	you	use	the	POP_UP	command	you	may	in	fact	be	requesting	that	2	or
3	or	more	windows	be	displayed	one	after	another.

This	facility	is	a	feature	of	the	automatic	design	procedures.	If	you	are	coding
the	RDML	program	yourself	it	is	advisable	to	"split	up"	the	POP_UP	command
into	multiple	POP_UP	commands	that	have	only	one	window	format	each	or
increase	the	size	of	the	window.
Note	that	format	control	characters	in	2nd	level	message	text	have	no	effect
when	the	message	is	displayed	from	a	POP_UP.

7.76.3	POP_UP	Examples
The	following	examples	apply	to	the	POP_UP	command.	For	further	examples
refer	to	the	DISPLAY	command	which	is	functionally	identical.
Example	1:	Present	fields	#ORDNUM,	#CUSTNUM	and	#DATEDUE	to	the
user	in	a	pop	up	window	located	in	the	center	of	the	screen:
POP_UP				FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
	

or,	identically:
GROUP_BY		NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
POP_UP				FIELDS(#ORDERHEAD)
	

Example	2:	Display	an	order,	including	all	line	details	in	a	scrollable	area,	in	a
pop	up	window:
GROUP_BY		NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
DEF_LIST		NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	
POP_UP				FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE)	AT_LOC(5	10)	WITH_SIZE(*AUTO)
	

Example	3:	Request	#ORDNUM	#CUSTNUM	and	#DATEDUE	and	also
specify	specific	positions	and	identification	methods	as	field	attributes.
For	details	of	field	attributes,	refer	to	Field	Attributes	and	their	Use.
When	specific	positions	for	a	field	are	nominated,	the	automatic	design	facility
is	effectively	"disabled".	For	example,
GROUP_BY		NAME(#ORDERHEAD)	FIELDS((#ORDNUM		*COLHDG	*L3	*P3)	(#CUSTNUM	*LABEL		*L3	*P24)	(#DATEDUE	*NOID			*L7	*P37))	
	
POP_UP				FIELDS(#ORDERHEAD)	AT_LOC(*UPPER)	TEXT(('--DATE--
'	6	37))
	

would	cause	a	popup	something	like	this	to	be	designed:

								:																																																					:
								:		Company				Customer	no:																												:
								:		Order																																														:
								:		Number																																													:
								:																																								--DATE--					:

Note	that	the	manual	specification	of	row	and	column	numbers	and	"text"	is	not
required.	The	screen	design	facility	can	be	used	to	modify	an	"automatic"
design	much	more	quickly	and	easily.	For	details,	refer	The	Screen	Design
Facility	in	the	LANSA	for	i	User	Guide.
After	the	screen	design	facility	has	been	used	on	a	POP_UP	command,	the
associated	FIELDS	parameter	(in	the	POP_UP	or	GROUP_BY	command)	will
be	automatically	re-written	with	the	required	row,	column	and	method	of
identification	attributes.
Remember	that	if	an	expandable	group	expression	was	used,	LANSA	will
substitute	the	expression	with	the	fields	that	constitute	it.
In	addition,	the	TEXT	parameter	of	the	POP_UP	command	will	also	be
automatically	re-written.
Example	4:	Use	an	Expandable	Group	expression	and	redesign	the	layout	using
the	screen	design	facility:
GROUP_BY			NAME(#XG_ORDHDG)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
POP_UP					FIELDS(#XG_ORDHDG)	DESIGN(*ACROSS)	IDENTIFY(*COLHDG)
	

The	popup	designed	automatically	would	look	like	this:

									:																																													:
									:			Company			Order					Date																		:
									:			Order					Customer		Order																	:
									:			Number				Number				Due																			:
									:			________		______				______																:
									:																																													:

If	the	layout	is	changed	using	the	screen	design	facility	to	look	like	this:
	
												Company			Order																																											
												Order					Customer																																								
												Number				Number																																										
												________		______							Date	Order	Due			______												
	
then	the	POP_UP	command	FIELDS	parameter	will	be	expanded	as	follows:

its:Lansa010.chm::/lansa/ugub_40067.htm

POP_UP					FIELDS((#ORDNUM	*L2	*P3)	(#CUSTNUM	*L2	*P13)	(#DATEDUE	*L5	*P26	*LAB))	DESIGN(*ACROSS)	IDENTIFY(*COLHDG)
	

7.77	PRINT
The	PRINT	command	is	used	to	either	test	the	"trigger"	of	all	break	lines	and/or
print	one	or	more	detail	lines.
Break	lines	(see	DEF_BREAK	command)	are	printed	only	when	their
associated	"trigger"	has	been	satisfied	and	thus	it	is	necessary	to	cause	LANSA
to	check	the	"trigger"	values	at	the	appropriate	time.	If	their	"trigger"	has	been
satisfied	the	break	line(s)	will	be	printed.
Detail	lines	(see	DEF_LINE	command)	are	not	printed	automatically	or
"triggered"	like	break	lines	(see	DEF_BREAK	command),	heading	lines	(see
DEF_HEAD	command)	or	foot	lines	(see	DEF_FOOT	command).	To	print	a
detail	line	you	must	request	that	it	be	printed	by	executing	a	PRINT	command.
Review	Producing	Reports	Using	LANSA	before	attempting	to	use	a	PRINT
command.

Also	See
7.77.1	PRINT	Parameters
7.77.2	PRINT	Examples
																																																									Optional
	
		PRINT	--------	LINE	---------	*BREAKS	-----------------------
->
																																list	of	DEF_LINE	group	names
																																|																										|
																																	----------	20	max	--------
	
													>--	ON_REPORT	----	1	------------------------------|
																																report	number	1	->	8
	

its:LANSA013.CHM::/lansa/l4wdev05_0030.htm

7.77.1	PRINT	Parameters
LINE
ON_REPORT

LINE
Specifies	what	is	to	be	printed	by	this	command.
*BREAKS,	which	is	the	default	value,	indicates	that	there	are	no	detail	lines
(DEF_LINE	commands)	to	be	printed,	but	all	break	lines	(DEF_BREAK
commands)	should	be	checked	and	printed	if	their	"trigger"	has	been	satisfied.
Otherwise	specify	from	1	to	20	detail	line	group	names	previously	defined	with
DEF_LINE	commands.	When	this	option	is	used	all	break	line	"triggers"	will
also	be	tested	implicitly.

ON_REPORT
Specifies	the	report	on	which	the	line	groups	nominated	are	to	be	printed.	Up	to
8	reports	can	be	produced	by	a	function	at	one	time.	Each	report	is	identified	by
a	number	in	the	range	1	to	8.	The	default	value	for	this	report	is	report	number
1.

7.77.2	PRINT	Examples
Example	1:	Write	an	RDML	program	to	read	a	regional	sales	file	and	print
details	of	each	record	read.
DEF_LINE			NAME(#DETAIL)	FIELDS(#REGION	#PRODES	#VALUE)
	
SELECT					FIELDS(#DETAIL)	FROM_FILE(SALEHIST)
PRINT						LINE(#DETAIL)
ENDSELECT
	
ENDPRINT
	

Example	2:	Write	an	RDML	program	to	read	a	regional	sales	file,	print	details
of	each	record	read	and	produce	regional	subtotals.
DEF_LINE			NAME(#DETAIL)	FIELDS(#REGION	#PRODES	#VALUE)
DEF_BREAK		NAME(#REGTOT)	FIELDS(#REGVAL)	TRIGGER_BY(#REGION)
	
SELECT					FIELDS(#DETAIL)	FROM_FILE(SALEHIST)
KEEP_TOTAL	OF_FIELD(#VALUE)	IN_FIELD(#REGVAL)	BY_FIELD(#REGION)
PRINT						LINE(#DETAIL)
ENDSELECT
	
ENDPRINT
	

Example	3:	Write	an	RDML	program	to	read	a	regional	sales	file	and	print	the
regional	subtotals	only	(ie:	a	summary	report).
DEF_BREAK		NAME(#REGTOT)	FIELDS(#REGION	#REGVAL)	TRIGGER_BY(#REGION)
SELECT					FIELDS(#REGION	#VALUE)	FROM_FILE(SALEHIST)
KEEP_TOTAL	OF_FIELD(#VALUE)	IN_FIELD(#REGVAL)	BY_FIELD(#REGION)
PRINT						LINE(*BREAKS)
ENDSELECT
	
ENDPRINT
	

7.78	RANGECHECK
The	RANGECHECK	command	is	used	to	check	a	field	against	one	or	more
ranges	of	values.

Also	See
7.78.1	RANGECHECK	Parameters
7.78.2	RANGECHECK	Examples
7.4	BEGINCHECK
7.7	CALLCHECK
7.14	CONDCHECK
7.16	DATECHECK
7.35	ENDCHECK
7.48	FILECHECK
7.99	VALUECHECK
																																																									Required
	
		RANGECHECK	---	FIELD	--------	field	name	----------------
----->
	
													>--	RANGE	--------	low	value	--	high	value	-------->
																													|																											|
																														---------	20	max	----------

																																																									Optional
	
													>--	IN_RANGE	-----	*NEXT	-------------------------->
																																*ERROR
																																*ACCEPT
	
													>--	OUT_RANGE	----	*ERROR	------------------------
->
																																*NEXT
																																*ACCEPT
	
													>--	MSGTXT	-------	*NONE	-------------------------->

																																message	text
	
													>--	MSGID	--------	DCU0001	------------------------>
																																message	identifier
	
													>--	MSGF	---------	DC@M01	.	*LIBL	-----------------
>
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																															|expandable	group	expression	|
																																---------	20	max	-----------
	

7.78.1	RANGECHECK	Parameters
FIELD
IN_RANGE
MSGDTA
MSGF
MSGID
MSGTXT
OUT_RANGE
RANGE

FIELD
Specifies	the	name	of	the	field	which	is	to	be	checked.

RANGE
Specifies	from	1	to	20	ranges	of	values	that	are	to	be	checked	against	the	field.
Each	individual	range	must	consist	of	a	"low"	value	and	a	"high"	value.	See
following	examples	for	more	details.

IN_RANGE
Specifies	the	action	to	be	taken	if	the	field	is	found	to	be	in	one	(or	more)	of	the
ranges	specified	in	the	RANGE	parameter.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

OUT_RANGE
Specifies	the	action	to	be	taken	if	the	field	is	not	found	to	be	in	any	of	the
range(s)	specified	in	the	RANGE	parameter.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.

Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:
"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:
MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this:
MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:
MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.78.2	RANGECHECK	Examples
Structuring	Functions	for	Inline	Validation
Structuring	Functions	to	Use	a	Validation	Subroutine
Using	the	RANGECKECK	Command	for	Inline	Validation
Using	the	RANGECHECK	Command	for	Validation	with	a	Subroutine
Structuring	Functions	for	Inline	Validation
Typically	functions	using	validation	commands	(e.g.:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	inline	validation	like	this:

BEGIN_LOOP	
REQUEST				<<	INPUT	>>
BEGINCHECK	
											<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			
											<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	passed	back	to	the	REQUEST
command.	This	happens	because	of	the	default	IF_ERROR(*LASTDIS)
parameter	on	the	ENDCHECK	command.		
Structuring	Functions	to	Use	a	Validation	Subroutine
Typically	functions	using	validation	commands	(e.g.:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	subroutine	validation	like	this:

DEFINE					FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				<<	INPUT	>>
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			

											<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP			
											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
											<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK			IF_ERROR(*NEXT)
ENDROUTINE
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	returned	to	the	main	function	loop
with	#ERRORCNT	>	0.	
Using	the	RANGECKECK	Command	for	Inline	Validation
This	example	demonstrates	how	to	use	the	RANGECHECK	command	within
the	main	program	block	to	check	that	an	employee	number	is	within	a	range	of
values.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#GIVENAME	#SURNAME)
*											
BEGIN_LOOP	
REQUEST				FIELDS(#EMPNO	#GIVENAME	#SURNAME)	BROWSELIST(#EMPBROWSE)
*											
BEGINCHECK	
RANGECHECK	FIELD(#EMPNO)	RANGE((A0000	A9999))	MSGTXT('Employee	number	has	to	be	in	the	range	A0000	-	A9999')
ENDCHECK			
*											
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP	
	

If	the	value	of	#EMPNO	is	outside	the	range	of	A0000	to	A9999	the	message
defined	with	the	RANGECHECK	command	is	issued	and	program	control
returns	to	the	last	screen	displayed.	In	this	case	the	last	screen	displayed	is	the
REQUEST	screen.
Using	the	RANGECHECK	Command	for	Validation	with	a	Subroutine
This	example	demonstrates	how	to	use	the	RANGECHECK	command	inside	a
subroutine	to	check	an	employee	number	is	within	a	range	of	values.

After	the	user	enters	the	requested	details	the	VALIDATE	subroutine	is	called.	It
checks	that	the	value	of	#EMPNO	is	within	the	range	of	A0000	to	A9999.	If
this	is	not	true	the	message	defined	in	the	RANGECHECK	command	is	given
and	the	DOUNTIL	loop	executes	again.	When	a	value	for	#EMPNO	is	entered
that	is	within	the	specified	range	the	DOUNTIL	loop	ends	and	processing	of	the
verified	input	is	done.
DEFINE					FIELD(#ERRORCNT)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	DEFAULT(0)
DEF_COND			NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#GIVENAME	#SURNAME)
*											
BEGIN_LOOP	
DOUNTIL				COND(*NOERRORS)
REQUEST				FIELDS(#EMPNO	#GIVENAME	#SURNAME)	BROWSELIST(#EMPBROWSE)
EXECUTE				SUBROUTINE(VALIDATE)
ENDUNTIL			
*											
ADD_ENTRY		TO_LIST(#EMPBROWSE)
END_LOOP			
*											
SUBROUTINE	NAME(VALIDATE)
CHANGE					FIELD(#ERRORCNT)	TO(0)
*											
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
RANGECHECK	FIELD(#EMPNO)	RANGE((A0000	A9999))	MSGTXT('Employee	number	has	to	be	in	the	range	A0000	-	A9999')
ENDCHECK			IF_ERROR(*NEXT)
*											
ENDROUTINE	
	

7.79	RENAME
The	RENAME	command	is	used	to	rename	a	field	in	a	file	that	is	referenced	by
the	function.
The	RENAME	command	is	most	commonly	used	when	referencing	2	or	more
files	that	contain	a	field	with	the	same	name	but	a	different	"meaning"	or
"value".	By	renaming	the	field	in	one	or	more	of	the	files	it	is	easier	to	reference
the	individual	fields	in	all	of	the	files.
Note	that	the	rename	only	occurs	within	the	function	involved	and	has	no	effect
upon	the	file	definition	or	data	dictionary.
The	current	release	of	LANSA	does	not	allow	the	RENAME	command	to	be
used	in	functions	that	use	the	*DBOPTIMISE	features.	Refer	to	the
FUNCTION	command	for	more	information	about	this	feature.

Portability	Considerations Refer	to	parameter	FROM_FILE.

Also	See
7.79.1	RENAME	Parameters
7.79.2	RENAME	Comments	/	Warnings
7.79.3	RENAME	Examples
																																																									Required
	
		RENAME	-------	FIELD	--------	field	name	--------------------
->
	
													>--	FROM_FILE	----	file	name	.	*FIRST	-------------
>
																																												library	name
	
													>--	WITH_NAME	----	new	field	name	-----------------
|
	

7.79.1	RENAME	Parameters
FIELD
FROM_FILE
WITH_NAME

FIELD
Specifies	the	field	(in	the	file	nominated	in	the	FROM_FILE	parameter)	that	is
to	be	renamed.	The	field	specified	must	start	with	a	#	and	must	be	defined	in	the
file	nominated.

FROM_FILE
Refer	to	Specifying	File	Names	in	I/O	commands.

WITH_NAME
Specifies	the	new	name	that	is	to	be	assigned	to	the	field	specified	in	the	field
parameter.	The	new	name	must	start	with	a	#	and	must	not	be	the	name	of
another	field	in	the	LANSA	data	dictionary,	or	the	name	of	a	group	or	a	list.

7.79.2	RENAME	Comments	/	Warnings
In	terms	of	processing,	when	a	field	is	renamed	it	appears	exactly	as	if	the	new
name	is	the	name	of	the	field	in	the	file.	Attempting	to	use	the	"old"	name	in
any	context	will	probably	fail	to	produce	the	desired	results.

7.79.3	RENAME	Examples
The	following	example	applies	to	the	RENAME	command.
A	function	uses	2	customer	master	files	called	CUSMST1	and	CUSTMST2.
Both	contain	field	CUSTNO.	Rename	CUSTNO	in	CUSMST2	so	that	it	is
called	CUSTNO2:
RENAME	FIELD(#CUSTNO)	FROM_FILE(CUSTMST2)	WITH_NAME(#CUSTNO2)
	

7.80	REQUEST
The	REQUEST	command	allows	the	user	to	input	information	at	a	workstation.
The	REQUEST	command	is	only	valid	in	RDMLX	functions	when	being	used
on	the	Web.	If	it	is	used	elsewhere	a	fatal	error	occurs	at	runtime.	If	this	occurs,
either	put	your	REQUEST	command	in	an	RDML	function	or	use	a	Form	to
show	user	information.

Portability
Considerations

Refer	to	parameters:	FIELDS,	
IGCCNV_KEY	,	OPTIONS	,SHOW_NEXT	and
TEXT.

Also	See
7.80.1	REQUEST	Parameters
7.80.2	REQUEST	Comments	/	Warnings
7.80.3	REQUEST	Examples
																																																									Optional
	
		REQUEST	------	FIELDS	------
-	field	name		field	attributes	--->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|	expandable	group	expression	|
																																|-----	1000	max	for	RDMLX-----|
																																	-----	100	max	for	RDML	------
	
													>--	DESIGN	-------	*IDENTIFY	---------------------->
																																*DOWN
																																*ACROSS
	
													>--	IDENTIFY	-----	*DESIGN	------------------------>
																																*COLHDG
																																*LABEL
																																*DESC
																																*NOID
	
													>--	IDENT_ATR	----	*DEFAULT	----------------------
->

																																*NONE
																																*HI	*RI	*UL	(3	maximum)
	
													>--	DOWN_SEP	-----	*DESIGN	-----------------------
->
																																decimal	value
	
													>--	ACROSS_SEP	---	*DESIGN	-----------------------
->
																																decimal	value
	
													>--	BROWSELIST	---	*NONE	--------	999	------------
->
																																name	of	list			no.entries/page
	
													>--	EXIT_KEY	-----	*YES	--	*EXIT	-
-	*HIGH	-	*NONE	->
																																*NO					*MENU				*LOW			condition
																																								*NEXT
																																								*RETURN
																																								label
	
													>--	MENU_KEY	-----	*YES	--	*MENU	---
-	*NONE	------->
																																*NO					*EXIT						condition
																																								*NEXT		
																																								*RETURN
																																								label
	
													>--	ADD_KEY	------	*NO	----	*NEXT	---	*NONE	---
---->
																																*YES					*RETURN			condition
																																										label
	
													>--	CHANGE_KEY	---	*NO	----	*NEXT	--
-	*NONE	------->
																																*YES					*RETURN			condition
																																									label
	

													>--	DELETE_KEY	---	*NO	----	*NEXT	---	*NONE	-
------>
																																*YES					*RETURN			condition
																																									label
	
													>--	PROMPT_KEY	---	*DFT	---	*AUTO	--
-	*NONE	------->
																																*YES					*NEXT					condition
																																*NO						label
	
													>--	USER_KEYS	---	fnc	key--'desc'--*NEXT	-
-	*NONE	->
																														|																	*RETURN			cond	|
																														|																	label										|
																														|																																|
																															---------	5	maximum	------------
	
													>--	PANEL_ID	-----	*AUTO	-------------------------->
																													or	*NONE
																													or	panel	identifier
	
													>--	PANEL_TITL	---	*FUNCTION	--------------------
-->
																													or	'Panel	title'
	
													>--	SHOW_NEXT	----	*PRO	---------------------------
>
																																*YES
																																*NO
	
													>--	TEXT	---------	'text'	---	line/	---	position	-->
																															|											row							column			|
																																-----------	50	max	-----------
																																	*TMAPnnn		1		1		(special	value)
	
													>--	CURSOR_LOC	---	*NONE		-------	*NONE	------
----->
																																*ATFIELD							field	name
																																row	value						column	value

	
													>--	STD_HEAD	-----	*DFT	--------------------------->
																																*YES
																																*NO
	
													>--	OPTIONS	------	*NONE	-------------------------->
																																*NOREAD	*OVERLAY	(2	maximum)
	
													>--	IGCCNV_KEY		--	*AUTO	--------------------------
|
																																*YES
																																*NO
																																condition	name
	

7.80.1	REQUEST	Parameters
ACROSS_SEP
ADD_KEY
BROWSELIST
CHANGE_KEY
CURSOR_LOC
DELETE_KEY
DESIGN
DOWN_SEP
EXIT_KEY
FIELDS
IDENT_ATR
IDENTIFY
IGCCNV_KEY
MENU_KEY
OPTIONS
PANEL_ID
PANEL_TITL
PROMPT_KEY
SHOW_NEXT
STD_HEAD
TEXT
USER_KEYS

FIELDS
Specifies	either	the	field(s)	that	are	to	be	input	at	the	workstation	or	the	name	of
a	group	that	specifies	the	field(s)	to	be	input.	An	expandable	group	expression	is
allowed	in	this	parameter.

Portability
Considerations

Visual	LANSA	has	multi-page	and	field	spanning	line
restrictions:
Multi-page	data	(i.e.	if	the	screen	format	is	larger	than	one
page)	can	be	displayed	in	a	Web	browser	window	but	NOT	in

a	LANSA	function.	
If	a	process	containing	multi-page	data	is	compiled,	a	warning
will	be	issued	if	the	process	is	WEB/XML	enabled.	If	the
process	is	NOT	WEB/XML	enabled,	a	full	function	check
error	will	be	issued.
Field	spanning	(i.e.	when	the	field	is	larger	than	one	line	on
the	screen)	is	not	supported	-	only	a	single	line	will	be
displayed.	No	error	or	warning	is	issued.

DESIGN
Specifies	the	design/positioning	method	which	should	be	used	for	fields	that	do
not	have	specific	positioning	attributes	associated	with	them.
*IDENTIFY,	which	is	the	default	value,	indicates	that	the	design	method	should
be	the	default	method	associated	with	the	IDENTIFY	parameter.	Refer	to	the
table	in	the	comments	section	for	more	details.
*DOWN	indicates	that	the	fields	should	be	designed	"down"	the	screen	in	a
column.
*ACROSS	indicates	that	fields	should	be	designed	"across"	the	screen	in	a	row.

IDENTIFY
Specifies	the	default	identification	method	to	be	used	for	fields	that	do	not	have
a	specific	identification	attribute	associated	with	them.
*DESIGN,	which	is	the	default	value,	indicates	that	the	fields	should	be
identified	with	by	the	default	method	associated	with	the	DESIGN	parameter.
See	the	table	in	the	comments	section	for	more	details.
*LABEL	indicates	that	fields	should	be	identified	by	their	associated	labels	on
the	screen.
*DESC	indicates	that	fields	should	be	identified	by	their	associated	descriptions
on	the	screen.
*COLHDG	indicates	that	fields	should	be	identified	by	their	associated	column
headings	on	the	screen.
*NOID	indicates	that	no	identification	of	the	field	is	required.	Only	the	field
itself	should	be	included	into	the	screen	design.

IDENT_ATR
Specifies	display	attributes	that	are	to	be	associated	with	identification	text
(labels,	description,	column	headings,	etc)	that	are	displayed	on	the	screen.

*DEFAULT,	which	is	the	default	value,	indicates	that	the	system	defaults	for
identification	display	attributes	should	be	adopted.	These	are	set	up	in	the
system	definition	block	as	overall	system	default	values.	Refer	to	The	System
Definition	Data	Areas	in	the	LANSA	for	i	User	Guide	for	more	details	of	the
system	definition	block	and	how	to	change	it.
*NONE	indicates	that	identification	text	should	have	no	special	display
attributes	associated	with	it.
Otherwise,	specify	one	or	more	of	the	values:	*HI	(high	intensity),	*RI	(reverse
image)	and	*UL	(underline).
This	parameter	is	ignored	in	SAA/CUA	processes	in	SAA/CUA	compliant
partitions.	In	such	partitions	the	attributes	are	determined	from	the	partition
wide	standards	for	labels	and	column	headings.

DOWN_SEP
Specifies	the	spacing	between	rows	on	the	display	that	should	be	used	when
automatically	designing	a	screen.	The	value	specified	must	be	*DESIGN	or	a
number	in	the	range	1	to	10.	Refer	to	the	table	in	the	comments	section	for
details	of	what	value	*DESIGN	is	actually	specifying.

ACROSS_SEP
Specifies	the	spacing	between	columns	on	the	display	that	should	be	used	when
automatically	designing	a	screen.	The	value	specified	must	be	*DESIGN	or	a
number	in	the	range	1	to	10.	Refer	to	the	table	in	the	comments	section	for
details	of	what	value	*DESIGN	is	actually	specifying.

BROWSELIST
Specifies	the	name	of	a	browse	list	which	is	also	to	be	included	into	the	screen
format,	and	optionally,	the	number	of	entries	of	the	browse	list	that	should
appear	in	the	screen	panel.
*NONE	indicates	that	no	browse	list	is	required.	The	screen	designed	will	not
have	any	browse	component.
If	a	browse	list	is	specified,	then	you	may	also	specify	the	number	of	entries
from	the	browse	list	that	are	to	appear	on	the	screen	panel.	This	may	leave	space
below	the	browse	list	for	other	details	(which	can	be	overlaid	by	a	subsequent
screen).	The	default	of	999	entries	indicates	that	the	browse	list	should	extend	to
the	bottom	of	the	screen	panel.
If	a	browse	list	is	specified	it	must	be	defined	elsewhere	in	the	RDML	program
with	a	DEF_LIST	(define	list)	command.

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

EXIT_KEY
Specifies	the	following	things	about	the	EXIT	function	key:
Whether	the	EXIT	function	key	is	to	be	enabled.
What	is	to	happen	when	the	EXIT	function	key	is	used.
In	SAA/CUA	partitions,	which	EXIT	function	key	is	required.
A	condition	to	control	when	the	EXIT	function	key	is	enabled.

By	default	the	EXIT	function	key	is	enabled.	To	disable	the	EXIT	function	key
specify	*NO	as	the	first	value	for	this	parameter.
If	the	EXIT	function	key	is	enabled,	you	may	specify	what	happens	when	it	is
used.	The	allowable	values	for	this	second	component	of	the	EXIT_KEY
parameter	are	as	follows:

*EXIT The	application	should	exit	completely	from	LANSA.	(identical	to
executing	an	EXIT	command).

*MENU The	process's	main	menu	should	be	re-displayed.	(identical	to
executing	a	MENU	command).

*NEXT Indicates	that	control	should	be	passed	to	the	next	command.

*RETURN Specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller
routine	or	the	program	mainline.

If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	value	*EXIT	is	the	default	for	this	parameter	value.
Additionally,	in	SAA/CUA	partitions,	you	may	nominate	whether	the	EXIT
function	key	to	be	enabled	is	the	"high"	exit	key	or	the	"low"	exit	key.
The	default	value	is	*HIGH	for	this	parameter	value.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.
Note:	In	SAA/CUA	applications	it	is	recommended	that	only	the	following	2
variations	of	the	EXIT_KEY	parameter	are	used:

												EXIT_KEY(*YES	*EXIT	*HIGH)		in	a	"main	program"
											EXIT_KEY(*YES	*RETURN	*LOW)		in	"subroutines"
	

MENU_KEY
Specifies	whether	the	MENU	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	MENU	key	is	used.
*YES,	which	is	the	default	value,	indicates	that	the	MENU	key	should	be
enabled	when	the	screen	is	displayed.	If	*YES	is	used	it	is	also	possible	to
nominate	a	command	label	to	which	control	should	be	passed	when	the	MENU
key	is	used.
*MENU,	the	default	value,	specifies	that	the	main	menu	of	the	process	should
be	redisplayed.
*EXIT	specifies	that	the	application	should	exit	completely	from	LANSA.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
*NO	indicates	that	the	MENU	function	key	should	not	be	enabled	when	the
screen	is	displayed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

ADD_KEY
Specifies	whether	the	ADD	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	ADD	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	ADD	function	key	should	not
be	enabled	when	the	screen	is	displayed.

*YES	indicates	that	the	ADD	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	ADD	key	is	used.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

CHANGE_KEY
Specifies	whether	the	CHANGE	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	CHANGE	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	CHANGE	function	key
should	not	be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	CHANGE	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	CHANGE	key	is	used.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program

by	a	DEF_COND	(define	condition)	command.

DELETE_KEY
Specifies	whether	the	DELETE	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	DELETE	key	is	used.
*NO,	which	is	the	default	value,	indicates	that	the	DELETE	function	key	should
not	be	enabled	when	the	screen	is	displayed.
*YES	indicates	that	the	DELETE	key	should	be	enabled	when	the	screen	is
displayed.	If	*YES	is	used	it	is	also	possible	to	nominate	a	command	label	to
which	control	should	be	passed	when	the	DELETE	key	is	used
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

PROMPT_KEY
Specifies	whether	the	PROMPT	function	key	is	to	be	enabled	when	this	screen
format	is	displayed	at	the	workstation.	In	addition	it	also	specifies	what	is	to
happen	if	the	PROMPT	key	is	used.
*DFT,	which	is	the	default	value,	indicates	that	the	PROMPT	function	key
should	be	enabled	or	disabled	automatically	according	to	its	default	value
defined	in	the	system	definition	data	area	DC@A01.	Refer	to	The	System
Definition	Data	Area	DC@A01	in	the	LANSA	for	i	User	Guide	for	details	of	the
DC@A01	system	definition	data	area.
*YES	indicates	that	the	PROMPT	key	should	be	enabled	when	the	screen	is
displayed.
*NO	indicates	that	the	PROMPT	key	should	NOT	be	enabled	when	the	screen
is	displayed.

its:LANSA010.CHM::/lansa/ugubc_c10015.htm

In	any	case,	when	the	PROMPT	function	key	is	enabled	(either	by	specifying
*DFT	or	*YES	for	the	first	part	of	this	parameter),	it	is	possible	to	also	specify
what	is	to	happen	if	the	function	key	is	used.	Allowable	values	for	this	part	of
the	parameter	are:
*AUTO	indicates	that	the	prompt	key	processing	should	be	handled
automatically	by	LANSA.	Refer	to	Prompt_Key	Processing	before	attempting
to	use	this	option.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
The	final	value	that	can	be	specified	for	this	parameter	allows	a	condition	to	be
named	to	control	when	the	function	key	should	be	enabled.	The	default	value	is
*NONE	that	indicates	no	condition	should	apply.	The	function	key	will	be
enabled	according	to	the	normal	rules.
If	a	condition	name	is	specified	it	must	be	defined	within	the	RDML	program
by	a	DEF_COND	(define	condition)	command.

USER_KEYS
Specifies	up	to	5	additional	user	function	keys	that	can	be	enabled	when	the
screen	format	is	displayed	at	the	workstation.
Any	user	function	keys	assigned	must	not	conflict	with	function	keys	assigned
to	the	standard	LANSA	functions	of	EXIT,	MENU,	MESSAGES,	ADD,
CHANGE,	DELETE	or	PROMPT	when	they	are	enabled	on	a	command	(ie:	a
function	key	cannot	be	assigned	to	more	than	one	function).
Additional	user	function	keys	are	specified	in	the	format:

(fnc	key	number 'description' *NEXT *NONE)

	 	 *RETURN Cond	name

	 	 label 	

where

fnc	key Is	the	function	key	number	in	the	range	1	to	24	or	one	of	the	special

number values	*ROLLUP	(roll	up	key)	or	*ROLLDOWN	(roll	down	key).

'description' Is	a	description	of	the	function	assigned	to	the	function	key.	This
description	will	be	displayed	on	line	23	of	the	screen	format.
Maximum	length	is	8	characters.

*NEXT Is	the	default	and	indicates	that	the	next	command	(after	this	one)
should	receive	control.

*RETURN Indicates	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller
routine	or	the	program	mainline.

Label Indicates	the	command	label	to	which	control	should	be	passed	if
the	command	key	is	used.

*NONE Indicates	that	no	condition	applies	to	control	when	the	function	key
is	to	be	enabled	or	disabled.

Cond	name Indicates	that	a	condition	defined	by	a	DEF_COND	command
should	be	evaluated	to	determine	whether	to	enable	or	disable	the
function	key.

Refer	to	the	IF_KEY	command	for	details	of	how	the	function	key	that	was
used	can	be	tested	in	the	RDML	program.
As	an	example	of	usage	consider	the	following:
DISPLAY	FIELDS(#PRODUCT)	USER_KEYS((14	'Commit')(15	'Purge'))
			IF_KEY		WAS(*USERKEY1)
				<<	Commit	logic	>>
			ENDIF
			IF_KEY		WAS(*USERKEY2)
				<<	Purge	logic	>>
			ENDIF
	

Note	that	the	IF_KEY	command	refers	to	the	keys	by	symbolic	names	that
indicate	the	order	they	are	declared	in	the	USER_KEYS	parameter,	not	the
actual	function	key	numbers	assigned	to	them.	This	makes	changing	function
key	assignments	easier.

PANEL_ID
Specifies	the	identifier	that	is	to	be	assigned	to	the	panel	or	pop-up	window

created	by	this	command.
*AUTO	indicates	that	it	should	be	automatically	generated	by	LANSA	from	the
function	name	and	the	source	statement	number	of	the	RDML	program.
*NONE	indicates	that	no	panel	identifier	is	required	for	this	panel	or	pop-up
window.
Otherwise	specify	a	panel	identifier	from	1	to	10	characters	in	length.	The	value
specified	is	fixed	and	cannot	be	changed	at	execution	time.
This	parameter	is	valid	for	SAA/CUA	applications	only.
This	parameter	is	ignored	if	the	current	partition	definition	indicates	that	panel
identifiers	are	never	required,	no	matter	what	value	is	specified.

PANEL_TITL
Specifies	the	title	that	is	to	be	assigned	to	the	window	panel.
*FUNCTION	indicates	that	it	should	be	derived	from	the	RDML	function's
description.
Otherwise	specify	a	panel	title	from	1	to	40	characters	in	length.	The	value
specified	is	fixed	and	cannot	be	changed	at	execution	time.
This	parameter	is	valid	for	SAA/CUA	applications	only.

SHOW_NEXT
Specifies	whether	the	"next	function"	field	should	be	shown	on	line	22	of	the
screen.	The	next	function	field	is	facility	that	allows	transfer	between	the
functions	in	a	process	without	the	need	to	return	to	the	process	menu	each	time.
Refer	to	The	Process	Control	Table	in	the	LANSA	for	i	User	Guide	for	more
details	about	"next	function"	processing.
*PRO,	which	is	the	default	value,	indicates	that	the	"next	function"	field	should
appear	only	when	the	process	to	which	this	function	belongs	has	a	menu
selection	style	of	"FUNCTION".	If	the	process	menu	selection	style	is
"NUMBER"	or	"CURSOR"	then	the	next	function	field	should	not	appear.
*YES	indicates	that	the	next	function	field	should	appear	regardless	of	what
menu	selection	style	is	being	used	by	the	process	to	which	this	function	belongs.
*NO	indicates	that	the	next	function	field	should	not	appear	regardless	of	what
menu	selection	style	is	being	used	by	the	process	to	which	this	function	belongs.
Note:	the	SHOW_NEXT	parameter	is	ignored	in	SAA/CUA	applications.

Portability
Considerations

This	feature	is	not	known	to	Visual	LANSA	and	will	be
ignored,	with	no	known	effect	to	the	application,	if	used	in

its:Lansa010.chm::/lansa/ugub_40097.htm

Visual	LANSA	code.

TEXT
Allows	the	specification	of	up	to	50	"text	strings"	that	are	to	appear	on	the
screen	panel	or	report.	Each	text	string	specified	is	restricted	to	a	maximum
length	of	20	characters.
When	a	text	string	is	specified	it	should	be	followed	by	a	row/line	number	and	a
column/position	number	that	indicates	where	it	should	appear	on	the	screen
panel	or	report.
For	example:
TEXT(('ACME'	6	2)('ENGINEERING'	7	2))
	

specifies	2	text	strings	to	appear	at	line	6,	position	2	and	line	7,	position	2
respectively.

Portability
Considerations

In	Visual	LANSA	this	parameter	should	only	be	edited	using
the	screen	or	report	painter	which	will	replace	any	text	with	a
text	map.	DO	NOT	enter	text	using	the	command	prompt	or
free	format	editor	as	it	will	not	pass	the	full	function	checker
if	checked	in	to	LANSA	for	i.

All	Platforms
The	text	map	is	used	by	the	screen	or	report	design	facilities	to	store	the	details
of	all	the	text	strings	associated	with	the	screen	panel	or	report	lines.
Once	a	screen	or	report	layout	has	been	"painted"	and	saved,	all	text	details
from	the	layout	are	stored	in	a	"text	map".	The	text	map	is	then	subsequently
changed	by	using	the	"painter"	again.
The	presence	of	a	text	map	is	indicated	by	a	TEXT	parameter	that	looks	like	this
example:
TEXT((*TMAPnnn	1	1))
	

where	"nnn"	is	a	unique	number	(within	this	function)	that	identifies	the	stored
text	map.
Some	very	important	things	about	"text	maps"	and	*TMAPnnn	identifiers	that
you	must	know	are:
Never	specify	*TMAPnnn	identifiers	of	your	own	or	change	*TMAPnnn
identifiers	to	other	values.	Leave	the	assignment	and	management	of

*TMAPnnn	identifiers	to	the	screen	and	report	design	facilities.
When	copying	a	command	that	has	an	*TMAPnnn	identifier,	remove	the
*TMAPnnn	references	(ie:	the	whole	TEXT	parameter)	from	the	copied
command.	If	you	fail	to	do	this,	then	the	full	function	checker	will	detect	the
duplicated	use	of	*TMAPnnn	identifiers,	and	issue	a	fatal	error	message
before	any	loss	occurs.
Never	remove	an	*TMAPnnn	identifier	from	a	command.	If	this	is	done	then
the	associated	text	map	may	be	deleted,	or	reused	in	another	command,
during	a	full	function	check	or	compilation.	Loss	of	text	details	is	likely	to
result.
Never	"comment	out"	a	command	that	contains	a	valid	*TMAPnnn	identifier.
This	is	just	another	variation	of	the	preceding	warning	and	it	runs	the	same
risks	of	loss	or	reuse	of	text.
Never	specify	*TMAPnnn	values	in	an	Application	Template.	In	the	template
context	*TMAPnnn	values	have	no	meaning.	Use	the	"text	string"	format	in
commands	used	in,	and	initially	generated	by,	Application	Templates.

CURSOR_LOC
Specifies	any	user	controlled	cursor	positioning	that	is	required.	The
CURSOR_LOC	parameter	must	always	contain	2	values,	which	may	take	any
of	the	following	forms:
*NONE	/	*NONE:	which	are	the	default	values	indicate	that	no	user	controlled
cursor	positioning	is	required.	Normal	LANSA	cursor	control	is	to	be	used.
When	a	screen	is	displayed	the	cursor	will	be	positioned	to	either	the	first	input
capable	field	or	the	first	field	in	error.
*ATFIELD	/	Field	name:	specifies	that	the	cursor	should	be	positioned	to	the
named	field.	If	the	named	field	is	not	on	the	display	or	a	field	error	exists,
normal	LANSA	cursor	control	will	be	used.	Otherwise	the	cursor	will	be
positioned	to	the	nominated	field.
Row	value	/	Column	value:	specifies	that	the	"values"	nominated	indicate	the
row	and	column	number	at	which	the	cursor	is	to	be	positioned.	The	"values"
nominated	may	be	an	alphanumeric	literal	(e.g.:	15)	or	the	name	of	a	field	that
contains	the	value	(e.g.:	#ROW).	In	all	cases	the	value	must	be	numeric.	If	the
row	or	column	values	are	invalid	or	a	field	error	exists,	normal	LANSA	cursor
control	will	be	used.	Otherwise	the	cursor	will	be	positioned	at	the	row	and
column	specified.
When	the	row	and	column	option	is	used	and	the	row	and	column	values	are

specified	as	fields	(rather	than	numeric	literals),	the	row	and	column	number
that	the	cursor	was	at	when	the	command	completed	execution	will	be	returned
in	them.
Note:	The	CURSOR_LOC	does	not	behave	in	the	same	way	on	Windows	as	on
IBM	i.	On	a	Windows	platform	the	value	retrieved	is	the	first	position	of	the
field	the	cursor	is	currently	in.
The	feature	is	a	useful	way	of	retrieving	the	location	of	the	screen	cursor	at	the
time	the	command	completed	execution.	In	cases	where	you	wish	to	retrieve	the
cursor	location,	but	do	not	want	to	specify	it	before	output	to	the	screen,	use
coding	like	this:
CHANGE			FIELD(#ROW	#COL)	TO(0)
REQUEST		FIELDS(#FIELD1	..	#FIELD10)	CURSOR_LOC(#ROW	#COL)
	

When	the	REQUEST	command	is	executed	#ROW	and	#COL	are	both	zero,
which	is	an	invalid	cursor	location.	In	such	cases	normal	LANSA	cursor	control
is	resumed	and	the	user	positioning	request	is	ignored.	However,	after
completion	of	the	command	fields	#ROW	and	#COL	will	contain	the	location	of
the	cursor	at	the	time	the	REQUEST	command	completed	execution.

STD_HEAD
Specifies	whether	or	not	the	standard	LANSA	design	for	the	screen	heading
lines	(lines	1	and	2)	should	be	used.
*DFT,	which	is	the	default	value,	indicates	that	the	system	default	value	for	the
STD_HEAD	parameter	should	be	used.	The	system	default	value	is	stored	in	the
LANSA	system	definition	block.	Refer	to	The	System	Definition	Data	Areas	in
the	LANSA	for	i	User	Guide	for	details	of	the	system	definition	block	and	how
to	change	it.
*YES	indicates	that	the	standard	LANSA	screen	heading	lines	should	be	used.
When	this	option	is	used	lines	1	and	2	of	the	display	are	not	available	for	the
positioning	of	user	fields.
*NO	indicates	that	the	standard	LANSA	screen	heading	lines	should	not	be
used.	In	this	case	lines	1	and	2	of	the	display	can	be	used	to	position	user	fields.

OPTIONS
Specifies	special	display	options	for	this	screen	panel.
*NONE,	which	is	the	default	value,	indicates	that	there	are	no	special	display
options	for	this	screen	panel.

its:LANSA010.CHM::/lansa/ugubc_c10010.htm

Otherwise,	specify	one	or	more	of	the	following:
*NOREAD	indicates	that	the	details	being	displayed	are	not	to	be	read	back
from	the	screen.	Thus	the	details	are	presented	to	the	user,	but	cannot	ever	be
read	back	into	the	program.	Additionally,	the	program	does	not	stop	at	the
command	and	wait	for	a	user	interaction.	The	stop	and	wait	event	will	only
occur	when	a	subsequent	DISPLAY	or	REQUEST	command	is	executed	that
does	not	use	the	*NOREAD	option.
*OVERLAY	indicates	that	the	screen	panel	should	overlay	whatever	details	are
already	on	the	screen.	Details	already	on	the	screen	will	become	protected	and
can	no	longer	be	read	from	the	device,	but	they	will	be	visible	to	the	user.
When	*OVERLAY	is	used,	the	default	for	the	STD_HEAD	parameter	is	*NO.
Therefore,	unless	STD_HEAD(*YES)	is	coded,	the	screen	heading	lines	will
not	be	displayed	when	using	OPTIONS(*OVERLAY).	Note	that	when	a
"standard	heading"	(*YES)	is	sent	to	the	screen	it	causes	the	entire	screen	to	be
cleared.	If	STD_HEAD(*NO)	is	used	it	has	no	effect	upon	standard	headings
already	on	the	screen	from	previous	commands.
If	either	the	*NOREAD	or	*OVERLAY	options	are	used,	then	the	complete
screen	details	must	fit	on	one	screen	panel.
Note:	These	display	options	have	been	provided	to	allow	emulation	of	IBM	i
3GL	programs,	and	will	not	be	portable	to	other	platforms.	They	are	not
supported	by	the	current	GUI	or	by	LANSA	for	the	Web.	use	of	these	options	is
therefore	not	recommended.

Portability
Considerations

Not	supported	and	should	not	be	used	in	portable	applications.
If	used	in	Visual	LANSA	code,	a	Full	Function	Check	fatal
error	will	be	issued.

IGCCNV_KEY
Controls	the	appearance	of	the	text	"Fnn=XXXXXX"	in	the	function	key	area,
of	the	function	key	assigned	to	support	IGC	conversion.
This	parameter	is	ignored	if	the	language	under	which	this	function	is	being
compiled	does	not	have	the	"IGCCNV	required"	flag	enabled,	or	if	this	function
uses	the	*NOIGCCNV	options	keyword	(refer	to	the	FUNCTION	command).
Also	note	that	this	parameter	only	controls	the	appearance	of	the	text
"Fnn=XXXXX"	in	the	function	key	area.	It	does	not	control	the	enablement	of
the	IGCCNV	DDS	keyword	in	the	display	file	associated	with	this	function.
This	is	controlled	by	the	setting	of	the	"IGCCNV	required"	flag	and	the	use	of
the	*NOIGCCNV	option.

*AUTO,	which	is	the	default	value,	indicates	that	appearance	of	the	function
key	text	should	be	determined	automatically.	The	automatic	rules	used	to
determine	whether	or	not	to	show	the	function	key	text	are:
If	there	are	no	fields	with	keyboard	shift	J,	E	or	O	involved,	the	text	will	not
appear	(ignore	all	following	rules).
For	a	REQUEST	command	the	text	will	always	appear.
For	DISPLAY	or	POP_UP	commands,	the	current	"mode"	is	tested.	If	the
mode	is	"change"	(ie:	fields	on	the	screen	are	input	capable),	the	text	will
appear.	For	all	other	modes	the	text	will	not	appear.

Other	allowable	values	for	this	parameter	are	*YES,	indicating	that	the	text
should	always	appear,	or,	*NO	indicating	that	the	text	should	never	appear.
The	final	option	allows	the	nomination	of	a	condition	previously	defined	by	a
DEF_COND	command.	If	the	condition	is	true	the	text	should	appear.	If	the
condition	is	false,	the	text	should	not	appear.

Portability
Considerations

Will	be	ignored	with	no	known	effect	to	the	application,	if
used	in	Visual	LANSA	code.

7.80.2	REQUEST	Comments	/	Warnings
The	REQUEST	command	is	not	a	"mode	sensitive"	command.	For	details	of
mode	sensitive	command	processing,	refer	to	Screen	Modes	and	Mode	Sensitive
Commands.	All	fields	in	the	FIELDS	parameter	will	be	input	capable	unless
they	have	the	specific	attributes	*NOCHG	or	*OUTPUT.
The	following	table	indicates	all	combinations	of	the	DESIGN	and	IDENTIFY
parameters	and	what	values	actually	result	when	any	of	the	default	values	are
used:

Specified:
DESIGN

Specified:
IDENTIFY

LANSA	Uses:
DESIGN

LANSA	Uses:
IDENTIFY

*IDENTIFY *DESIGN *DOWN *LABEL

*IDENTIFY *COLHDG *ACROSS *COLHDG

*IDENTIFY *LABEL *DOWN *LABEL

*IDENTIFY *DESC *DOWN *DESC

*IDENTIFY *NOID *ACROSS *NOID

*DOWN *DESIGN *DOWN *LABEL

*DOWN *COLHDG *DOWN *COLHDG

*DOWN *LABEL *DOWN *LABEL

*DOWN *DESC *DOWN *DESC

*DOWN *NOID *DOWN *NOID

*ACROSS *DESIGN *ACROSS *COLHDG

*ACROSS *COLHDG *ACROSS *COLHDG

*ACROSS *LABEL *ACROSS *LABEL

*ACROSS *DESC *ACROSS *DESC

*ACROSS *NOID *ACROSS *NOID

	

The	following	table	indicates	all	combinations	of	the	DESIGN	and	IDENTIFY
parameters	and	what	values	result	when	the	*DESIGN	default	is	used	in	the
associated	DOWN_SEP	or	ACROSS_SEP	parameters:

Specified:
DESIGN

Specified:
IDENTIFY

*DESIGN	Specified:
DOWN_SEP

*DESIGN	Specified:
ACROSS_SEP

*IDENTIFY *DESIGN 1 1

*IDENTIFY *COLHDG 5 1

*IDENTIFY *LABEL 1 1

*IDENTIFY *DESC 1 1

*IDENTIFY *NOID 1 1

*DOWN *DESIGN 1 1

*DOWN *COLHDG 5 1

*DOWN *LABEL 1 1

*DOWN *DESC 1 1

*DOWN *NOID 1 1

*ACROSS *DESIGN 5 1

*ACROSS *COLHDG 5 1

*ACROSS *LABEL 1 1

*ACROSS *DESC 1 1

*ACROSS *NOID 1 1

	

In	some	cases	all	the	fields	specified	in	the	FIELDS	parameter	will	not	fit	on
one	screen.	In	this	case	a	second,	third,	fourth,	etc	screen	is	automatically
designed	as	required.
In	terms	of	the	RDML	program	they	can	be	treated	like	one	"long"	screen.
LANSA	will	automatically	process	the	screens	one	after	another	until	they
have	all	been	processed.	When	all	screens	have	been	processed	the	next
RDML	command	is	executed.	So	when	you	use	the	REQUEST	command	you

may	in	fact	be	requesting	that	2	or	3	or	more	screens	be	input	one	after
another.
This	facility	is	a	feature	of	the	automatic	design	procedures.	If	you	are	coding
the	RDML	program	yourself	it	may	be	advisable	in	some	circumstances	to
"split	up"	the	REQUEST	command	into	multiple	REQUEST	commands	that
have	only	one	screen	format	each.
If	you	want	the	name	of	the	field	in	which	the	CURSOR	was	located	when
Enter	or	any	other	AID	was	pressed,	to	be	returned	to	your	function,	then
refer	to	a	field	named	#CURLOC$FN	within	your	function.	
#CURLOC$FN	(alpha,	10)	will	contain	the	name	of	the	field.

7.80.3	REQUEST	Examples
Example	1:	Input	fields	#ORDNUM,	#CUSTNUM	and	#DATEDUE	from	the
workstation:
REQUEST				FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)

or,	identically:
GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
REQUEST				FIELDS(#ORDERHEAD)
	

both	use	default	values	for	all	parameters	and	field	attributes	and	thus	would
cause	a	screen	something	like	this	to	be	designed	automatically:
	
			Order	number	:	__________
			Customer	no		:	_________
			Date	due					:	___________
	
Example	2:	Modify	the	previous	example	to	design	the	screen	across	ways	and
use	column	headings	to	identify	the	fields:
GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
REQUEST				FIELDS(#ORDERHEAD)	DESIGN(*ACROSS)	IDENTIFY(*COLHDG)
	

which	would	cause	a	screen	something	like	this	to	be	designed	automatically:
	
			Company					Order							Date
			Order							Customer				Order
			Number						Number						Due
			______						______						________	
	
Example	3:	Request	#ORDNUM	#CUSTNUM	and	#DATEDUE	and	also
specify	specific	positions	and	identification	methods	as	field	attributes.
For	details	of	field	attributes,	refer	to	Field	Attributes	and	their	Use.
When	specific	positions	for	a	field	are	nominated	the	automatic	design	facility
is	effectively	"disabled".
GROUP_BY		NAME(#ORDERHEAD)	FIELDS((#ORDNUM		*COLHDG	*L3	*P3)	(#CUSTNUM	*LABEL		*L3	*P14)	(#DATEDUE	*NOID			*L7	*P37))
	

REQUEST			FIELDS(#ORDERHEAD)	TEXT(('--DATE--'	6	37))
	

which	would	cause	a	screen	something	like	this	to	be	designed:
	
	Company				Customer	no	:	_______
	Order
	Number
	______																																									--DATE--

Note	that	the	manual	specification	of	row	and	column	numbers	and	"text"	is	not
required.	The	screen	design	facility	can	be	used	to	modify	an	"automatic"
design	much	more	quickly	and	easily.	Refer	to	the	LANSA	for	i	User	Guide	for
details	of	how	to	use	the	screen	design	facility.
After	the	screen	design	facility	has	been	used	on	a	REQUEST	command	the
associated	FIELDS	parameter	(in	the	REQUEST	or	GROUP_BY	command)
will	be	automatically	re-written	with	the	required	row,	column	and	method	of
identification	attributes.
In	addition	the	TEXT	parameter	of	the	REQUEST	command	will	also	be
automatically	re-written.
Example	4:	Use	an	Expandable	Group	expression	and	redesign	the	layout	using
the	screen	design	facility:
GROUP_BY			NAME(#XG_ORDHDG)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
REQUEST				FIELDS(#XG_ORDHDG)	DESIGN(*ACROSS)	IDENTIFY(*COLHDG)
	

The	screen	designed	automatically	would	look	like:
																																																																				
							Company			Order					Date																																					
							Order					Customer		Order																																				
							Number				Number				Due																																						
							________		______				______																																			
																																																																				
																
If	the	layout	is	changed	using	the	screen	design	facility	to	look	like	this:
																																																																
						Company			Order																																											

						Order					Customer																																								
						Number				Number																																										
						________		______							Date	Order	Due			______												
																																																																
												
The	REQUEST	command	FIELDS	parameter	will	be	expanded	as	follows:
REQUEST				FIELDS((#ORDNUM	*L2	*P3)	(#CUSTNUM	*L2	*P13)	(#DATEDUE	*L5	*P26	*LAB))	DESIGN(*ACROSS)IDENTIFY(*COLHDG)
	

7.81	RETURN
The	RETURN	command	is	used	to	cause	an	executing	subroutine	or	function	to
end	and	return	control	to	the	calling	function	or	process.	The	calling	function
may	be	the	function	"mainline",	another	subroutine	within	the	function	or	even
another	process	altogether.
When	a	RETURN	command	is	executed	in	the	"mainline"	of	a	function	the
current	function	(and	the	process	to	which	it	belongs)	is	ended	and	control	is
returned	to	the	process	or	function	that	invoked	it.	See	the	CALL	command	for
more	details	of	how	a	process	or	function	can	be	invoked	from	another	function.
When	a	RETURN	command	is	executed	within	a	subroutine	(see	the
SUBROUTINE	command)	control	is	returned	to	the	command	following	the
EXECUTE	command	that	caused	the	subroutine	to	be	invoked.	The	EXECUTE
command	may	have	been	in	either	another	subroutine	or	in	the	"mainline"	of	the
function.

Also	See
7.81.1	RETURN	Parameters
7.81.2	RETURN	Examples
	
		RETURN	-------	no	parameters	---------------------------------
|
	

7.81.1	RETURN	Parameters
The	RETURN	command	has	no	parameters.

7.81.2	RETURN	Examples
In	this	example,	a	subroutine	uses	the	RETURN	command	rather	than	a
complex	IF-ELSE	structure:
SUBROUTINE		NAME(MATHS)	PARMS(#F1	#OP	#F2	#RS)
	
DEFINE						FIELD(#F1)	TYPE(*DEC)		LENGTH(7)		DECIMALS(0)
DEFINE						FIELD(#OP)	TYPE(*CHAR)	LENGTH(1)
DEFINE						FIELD(#F2)	TYPE(*DEC)		LENGTH(7)		DECIMALS(0)
DEFINE						FIELD(#RS)	TYPE(*DEC)		LENGTH(15)	DECIMALS(5)
	
IF										COND('#OP	=	''+''')
CHANGE						FIELD(#RS)	TO('#F1	+	#F2')
RETURN
ENDIF
	
IF										COND('#OP	=	''-''')
CHANGE						FIELD(#RS)	TO('#F1	-	#F2')
RETURN
ENDIF
	
IF										COND('#OP	=	''*''')
CHANGE						FIELD(#RS)	TO('#F1	*	#F2')
RETURN
ENDIF
	
IF										COND('#OP	=	''/''')
CHANGE						FIELD(#RS)	TO('#F1	/	#F2')
RETURN
ENDIF
	
MESSAGE					MSGTXT('Operation	specified	is	not	+,-,*	or	/')
	
ENDROUTINE
	

7.82	ROLLBACK
The	rollback	command	is	used	to	cause	an	IBM	i	operating	system	"rollback"
operation	to	be	issued.	A	rollback	operation	"rolls	back"	(ie:	removes)	all
uncommitted	changes	from	the	database.
Refer	to	the	appropriate	IBM	supplied	manual	for	details	of	IBM	i	commitment
control	processing	before	attempting	to	use	this	command.
It	is	also	advisable	to	read	Commitment	Control	in	the	LANSA	for	i	User	Guide.

Portability
Considerations

If	using	Visual	LANSA,	refer	to	Commitment	Control	in	the
LANSA	Application	Design	Guide.

Also	See
7.82.1	ROLLBACK	Parameters
7.82.2	ROLLBACK	Examples
	
		ROLLBACK	-----	no	parameters	--------------------------------
-|
	

its:LANSA010.CHM::/lansa/ugubc_c10060.htm
its:LANSA065.CHM::/lansa/dsnbe_0060.htm

7.82.1	ROLLBACK	Parameters
The	ROLLBACK	command	has	no	parameters.

7.82.2	ROLLBACK	Examples
Requesting	the	user	to	input	details	of	an	order.	Write	the	order	header	and	all
associated	lines	to	the	database.	Ask	the	user	to	confirm	that	the	order	should	be
kept.	If	the	reply	is	not	YES,	remove	the	order	from	the	database.
GROUP_BY			NAME(#ORDERHEAD)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE)
DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
DEFINE					FIELD(#CONFIRM)	TYPE(*CHAR)	LENGTH(3)	LABEL('Confirm	order	:')
	
SET_MODE			TO(*ADD)
INZ_LIST			NAMED(#ORDERLINE)	NUM_ENTRYS(20)
REQUEST				FIELDS(#ORDERHEAD)	BROWSELIST(#ORDERLINE)
	
INSERT					FIELDS(#ORDERHEAD)	TO_FILE(ORDHDR)
SELECTLIST	NAMED(#ORDERLINE)	GET_ENTRYS(*NOTNULL)
INSERT					FIELDS(#ORDERLINE)	TO_FILE(ORDLIN)
ENDSELECT
	
REQUEST				FIELDS((#CONFIRM)(#ORDNUM	*NOCHG))
	
IF									COND('#CONFIRM	=	YES')
COMMIT
MESSAGE				MSGTXT('Order	has	been	commited	to	the	database')
ELSE
ROLLBACK
MESSAGE				MSGTXT('Order	has	been	removed	from	the	database')
ENDIF
	

If	the	function	were	to	fail	when	writing	the	4th	order	line	(say),	then	an
automatic	rollback	would	be	issued.	This	would	cause	the	order	header	and	any
order	lines	already	created	to	be	rolled	back	from	the	file.

7.83	SELECT
The	SELECT	command	is	used	in	conjunction	with	the	ENDSELECT
command	to	form	a	"loop"	to	process	one	or	more	records	from	a	file	that	match
certain	criteria.
For	example,	the	SELECT	/	ENDSELECT	loop:

	--->SELECT		FIELDS(#ORDLIN	#PRODUCT	#QUANTITY)	
|							FROM_FILE(ORDLIN)	WITH_KEY(#ORDER)
|				
|				DISPLAY	FIELDS(#ORDER	#ORDLIN	#PRODUCT	#QUANTITY)
|				
	----ENDSELECT
	

Forms	a	loop	to	read	all	records	from	file	ORDLIN	that	have	an	order	number
matching	the	value	in	field	#ORDER.
Each	time	a	record	is	read	the	DISPLAY	command,	which	is	within	the
SELECT	/	ENDSELECT	loop	will	display	details	of	the	record	just	read.
The	SELECT	command	is	probably	the	most	flexible	command	in	the	LANSA
RDML	and	some	experience	with	it	is	required	before	the	full	power	can	be
utilized.	Some	of	the	types	of	database	processing	supported	by	it	include:
Entry	sequence	processing
Full	key	processing
Partial	key	processing
Generic	key	processing
Execution	time	modification	of	the	number	of	keys	to	be	used
Conditional	selection	of	records
Forwards	or	backwards	processing	of	selected	records
Start	at	(or	near)	a	key	then	process	backwards	or	forwards

In	addition,	the	SELECT	command	can	be	used	in	conjunction	with	the	IBM	i
operating	system	command	OPNQRYF	(Open	Query	File).	This	extends	the
power	of	the	SELECT	command	to	include:
Execution	time	modification	of	record	selection	criteria
Execution	time	modification	of	the	order	records	are	processed

Field	content	searching
Field	substringing	during	selection	comparisons
Searching	without	regard	to	the	case	(upper	or	lower)	of	fields

For	more	details	of	how	to	use	the	IBM	i	operating	system	command
OPNQRYF	refer	to	the	OPEN	command	in	this	guide	first.
SELECT	loop	logic	that	should	be	avoided.
When	fields	A,	B	and	C	are	selected	in	a	SELECT	loop	like	this:

SELECT	FIELDS(#A	#B	#C)	
FROM_FILE(...)									
WHERE(...............)	
.......	
.......	
ENDSELECT
	

they	have	a	predictable	and	consistent	value	within	the	loop	across	all	platforms.
These	fields	do	not	have	a	predictable	and	consistent	value	outside	the	loop.	So
this:

SELECT	FIELDS(#A	#B	#C)	FROM_FILE(...)	
.......	
IF	COND(#A	<	35.5)	
.......	
ENDIF	
.......	
ENDSELECT
	

is	a	predictable	piece	of	logic,	while:

SELECT	FIELDS(#A	#B	#C)	
FROM_FILE(...)									
WHERE(...............)	
.......	
.......	
ENDSELECT
IF	COND(#A	<	35.5)	

.......	
ENDIF
	

in	any	form	or	variation,	is	an	unpredictable	piece	of	logic.
The	value	of	A	(B	and	C),	in	terms	of	data	read	from	the	selection	table,	after
exit	from	the	SELECT	loop,	are	actually	defined	as	"not	defined".	This	means
that	their	values	at	the	termination	of	a	SELECT	/	ENDSELECT	loop	are	not
predictable	or	consistent	across	platforms.

Portability
Considerations

Refer	to	parameters	FROM_FILE	,	GENERIC	,	LOCK
and	OPTIONS	.

Also	See
7.83.1	SELECT	Parameters
7.83.2	SELECT	Comments	/	Warnings
7.83.3	SELECT	Examples
	
																																																									Required
	
		SELECT	-------	FIELDS	-------	field	name		field	attributes	-
-->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|*ALL																									|
																																|*ALL_REAL																				|
																																|*ALL_VIRT																				|
																																|*INCLUDING																			|
																																|*EXCLUDING																			|
																																|expandable	group													|
																																|																													|
																																|-------	1000	max	for	RDMLX---|
																																	-------	100	max	for	RDML	----
	
													>--	FROM_FILE	----	file	name	.	*FIRST	-------------
>
																																												library	name

																																																									Optional
													>--	WHERE	--------	'condition'	-------------------->
	
													>--	WITH_KEY	-----	key	field	values	--------------->
																															expandable	group	expression
	
													>--	NBR_KEYS	-----	*WITHKEY	----------------------
->
																																*COMPUTE
																																numeric	field	name
	
													>--	GENERIC	------	*NO	---------------------------->
																																*YES
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------
>
																																*NEXT
																																*RETURN	
																																label
	
													>--	VAL_ERROR	----	*LASTDIS	-----------------------
>
																																*NEXT
																																*RETURN
																																label
	
													>--	END_FILE	-----	*NEXT	-------------------------->
																																*RETURN
																																label
	
													>--	ISSUE_MSG	----	*NO	---------------------------->
																																*YES
	
													>--	LOCK	---------	*NO	---------------------------->
																																*YES

	
													>--	RETURN_RRN	---	*NONE	-------------------------
->
																																field	name
	
													>--	OPTIONS	-----	up	to	5	options	allowed	---------|
	
																																*BACKWARDS
																																*STARTKEY
																																*ENDWHERE
																																*ENDWHERESQL
																																*BLOCKnnn
	

7.83.1	SELECT	Parameters
END_FILE
FIELDS
FROM_FILE
GENERIC
IO_ERROR
IO_STATUS
ISSUE_MSG
LOCK
NBR_KEYS
OPTIONS
RETURN_RRN
VAL_ERROR
WHERE
WITH_KEY

FIELDS
Specifies	either	the	field(s)	that	are	to	be	selected	from	the	record	in	the	file	or
the	name	of	a	group	that	specifies	the	field(s)	to	be	selected.	Alternatively,	an
expandable	group	expression	can	be	entered	in	this	parameter.
The	following	special	values	can	be	used:
*ALL	specifies	that	all	fields	from	the	currently	active	file	be	selected.
*ALL_REAL	specifies	that	all	real	fields	from	the	currently	active	file	be
selected.
*ALL_VIRT	specifies	that	all	virtual	fields	from	the	currently	active	file	be
selected.
*EXCLUDING	specifies	that	fields	following	this	special	value	must	be
excluded	from	the	field	list.
*INCLUDING	specifies	that	fields	following	this	special	value	must	be
included	in	the	field	list.	This	special	value	is	only	required	after	an
*EXCLUDING	entry	has	caused	the	field	list	to	be	in	exclusion	mode.

Note:	When	all	fields	are	selected	from	a	logical	file	maintained	by
OTHER,	all	the	fields	from	the	based-on	physical	file	are	included	in

the	field	list.

It	is	strongly	recommended	that	the	special	values	*ALL,	*ALL_REAL	or
*ALL_VIRT	in	parameter	FIELDS	be	used	sparingly	and	only	when	strictly
required.	Selecting	fields	which	are	not	needed	invalidates	cross-reference
details	(shows	fields	which	are	not	used	in	the	function)	and	increases	the	Crude
Entity	Complexity	Rating	of	the	function	pointlessly.
Note	that	when	BLOB	or	CLOB	data	is	retrieved,	it	is	either	*SQLNULL	or	a
filename.	If	a	filename,	the	data	from	the	database	file	has	been	copied	into	the
file.
Warning:	It	is	time-consuming	to	retrieve	BLOB	or	CLOB	fields	from	a	file.
Recommended	Database	Design	When	Using	BLOB	and	CLOB	Fields
The	recommended	design	when	using	BLOB	and	CLOB	fields	is	to	put	them	in
a	separate	file	from	the	rest	of	the	fields	using	the	same	key	as	the	main	file.
This	forces	programmers	to	do	separate	IOs	to	access	the	BLOB	and	CLOB
data,	thus	reducing	impact	on	database	performance	from	indiscriminate	use	of
this	data.	It	is	also	the	most	portable	design	ensuring	that	the	non-BLOB	and
non-CLOB	data	can	be	quickly	accessed	at	all	times.

FROM_FILE
Refer	to	Specifying	File	Names	in	I/O	commands	.

WHERE
Refer	to	Specifying	Conditions	and	Expressions	and	Specifying	WHERE
Parameter	in	I/O	Commands.
After	a	SELECT/ENDSELECT	loop	utilizing	a	where	condition,	the	contents	of
the	fields	are	unpredictable.	The	records	matching	the	where	condition	should
only	be	processed	within	the	SELECT/ENDSELECT	loop.

WITH_KEY
Refer	to	Specifying	File	Key	Lists	in	I/O	Commands	.

NBR_KEYS
This	parameter	can	be	used	in	conjunction	with	the	WITH_KEY	parameter	to
vary	the	number	of	key	fields	that	are	actually	used	to	retrieve	records	at
execution	time.
*WITHKEY,	which	is	the	default	value,	specifies	that	the	number	of	key	fields
will	always	match	the	number	specified	in	the	WITH_KEY	parameter	and	the

value	will	not	be	changed	at	execution	time.
*COMPUTE	can	also	be	specified	for	this	parameter.	This	specifies	that	the
number	of	keys	should	be	determined	by	examining	the	contents	of	the	fields
nominated	in	the	WITH_KEY	parameter	at	execution	time.
The	logic	used	to	determine	the	number	of	keys	works	like	this:
Set	<n>	to	number	of	fields	specified	in	WITH_KEY	parameter.	
Dowhile	n	is	greater	than	zero	and	keyfield(n)	is	*NULL	or	*SQLNULL.	
Subtract	1	from	n.	
Endwhile.	
Set	<number	of	keys>	to	<n>.
	

For	a	definition	of	the	*NULL	value	for	each	of	the	field	types,	refer	to	7.9.1
CHANGE	Parameters.
If	you	want	to	vary	the	number	of	key	fields	by	direct	RDML	logic	specify
the	name	of	a	numeric	field	for	this	parameter.	The	field	you	name	should
contain	the	number	of	keys	value	at	execution	time.	The	field	specified	must	be
defined	in	this	function	or	in	the	LANSA	data	dictionary	and	must	be	numeric.
At	execution	time	the	value	contained	in	the	NBR_KEYS	field	must	be	not	less
than	zero	and	not	greater	than	the	number	of	key	fields	specified	in	the
WITH_KEY	parameter.
When	a	SELECT	command	is	executed	with	the	NBR_KEYS	field	set	to	zero
the	entire	WITH_KEY	parameter	is	effectively	ignored	for	selection	purposes.
Refer	to	the	examples	following	for	more	information.

GENERIC
Specifies	whether	or	not	generic	searching	is	required.	Generic	searching	is
different	to	full	or	partial	key	searching	because	only	the	non-blank	or	non-zero
portion	of	the	key	value	is	used	when	comparing	the	search	key	with	the	file
key.
GENERIC	is	ignored	for	Date,	Time,	Datetime,	Integer,	and	Float.
When	using	generic	searching	on	an	alphanumeric	field	only	the	leftmost	non-
blank	portion	of	the	search	field	is	compared	with	the	file	key	(i.e.,	trailing
blanks	are	ignored	for	comparative	purposes).
When	using	generic	searching	on	a	numeric	field	only	the	leftmost	non-zero
portion	of	the	search	field	is	compared	with	the	file	key	(ie:	trailing	zeros	are
ignored	for	comparative	purposes).	Also,	generic	numeric	field	comparisons	are
done	as	if	both	the	search	key	and	the	file	key	are	positive	numbers,	regardless

of	what	they	actually	are.
Note	that	these	generic	search	rules	mean	that	a	blank	alphanumeric	search	key
or	a	zero	(0)	numeric	key	will	match	every	record	selected.
For	example,	if	a	file	was	keyed	by	a	name	field	and	it	contained	the	following
values:

SM

SMIT

SMITH

SMITHS

SMITHY

SMYTHE

	

then	the	SELECT	statement:

SELECT		WITH_KEY('SM')
	

would	only	select	the	first	record	in	the	file	because	it	is	the	only	record	that
matches	the	full	key	value	'SM'.	If	however,	the	SELECT	statement	was
changed	to:

SELECT		WITH_KEY('SM')	GENERIC(*YES)
	

then	all	the	records	in	the	file	would	be	selected	because	only	the	non-blank
portion	of	the	key	value	specified	is	compared	with	the	file	key.
*NO,	which	is	the	default	value,	indicates	that	generic	searching	is	not	required.
*YES	indicates	that	generic	searching	is	to	be	performed.	When	generic
searching	is	used	it	is	only	actually	performed	on	the	last	key	that	was	supplied
at	execution	time.	Other	(previous)	keys	specified	in	the	WITH_KEY	parameter
must	exactly	match	the	values	in	the	file.	They	are	not	generically	compared

with	the	data	in	the	file.
For	instance,	imagine	a	name	and	address	file	that	is	keyed	by	state,	post/zip
code	and	name.	The	command:

SELECT		WITH_KEY('NSW'	2000	'SM')	NBR_KEYS(3)	GENERIC(*YES)
	

would	select	all	names	in	NSW,	with	post	code	2000	whose	names	start	with
SM.	This	is	an	example	of	generic	searching	on	an	alphanumeric	field.	Trailing
blanks	are	ignored	when	comparing	the	search	key	with	the	data	read	from	the
file.	Also	note	that	only	the	last	key	('SM')	is	actually	generically	compared	with
the	data	on	the	file.	The	other	keys	,	'NSW'	and	2000	must	exactly	match	data
read	from	the	file.	If,	at	execution	time	the	command	was	dynamically	modified
to	use	2	keys,	like	this:

SELECT		WITH_KEY('NSW'	2000	'SM')	NBR_KEYS(2)	GENERIC(*YES)
	

then	it	would	select	all	names	in	NSW	with	a	post	code	that	starts	with	2	(ie:
2000	to	2999).	This	is	an	example	of	generic	searching	on	a	numeric	field	where
trailing	zeroes	(0's)	are	ignored.

Portability
Considerations

When	native	I/O	is	used,	there	is	an	implied	*ENDWHERE
when	a	key	is	encountered	that	does	not	match	the	search	key
generically.	You	must	test	the	application	to	confirm	that	it	is
functioning	as	required.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.
For	values,	refer	to	I/O	Return	Codes	.

IO_ERROR

Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.	The
purpose	of	*NEXT	is	to	permit	you	to	handle	error	messages	in	the	RDML,	and
then	ABORT,	rather	than	use	the	default	ABORT.	(It	is	possible	for	processing
to	continue	for	LANSA	for	i	and	Visual	LANSA,	but	this	is	NOT	a
recommended	way	to	use	LANSA.)
ER	returned	from	a	database	operation	is	a	fatal	error	and	LANSA	does	not
expect	processing	to	continue.	The	IO	Module	is	reset	and	further	IO	will	be	as
if	no	previous	IO	on	that	file	had	occurred.	Thus	you	must	not	make	any
presumptions	as	to	the	state	of	the	file.	For	example,	the	last	record	read	will	not
be	set.	A	special	case	of	an	IO_ERROR	is	when	a	trigger	function	is	coded	to
return	ER	in	TRIG_RETC.	The	above	description	applies	to	this	case	as	well.	
Therefore,	LANSA	recommends	that	you	do	NOT	use	a	return	code	of	ER	from
a	trigger	function	to	cause	anything	but	an	ABORT	or	EXIT	to	occur	before	any
further	IO	is	performed.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

VAL_ERROR
Specifies	the	action	to	be	taken	if	a	validation	error	was	detected	by	the
command.
A	validation	error	occurs	when	information	that	is	to	be	added,	updated	or
deleted	from	the	file	does	not	pass	the	FILE	or	DICTIONARY	level	validation
checks	associated	with	fields	in	the	file.
If	the	default	value	*LASTDIS	is	used	control	will	be	passed	back	to	the	last
display	screen	used.	The	field(s)	that	failed	the	associated	validation	checks	will
be	displayed	in	reverse	image	and	the	cursor	positioned	to	the	first	field	in	error
on	the	screen.

*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

The	*LASTDIS	is	valid	even	if	there	is	no	"last	display"	(such	as	in
batch	functions).	In	this	case	the	function	will	abort	with	the
appropriate	error	message(s).

When	using	*LASTDIS	the	"Last	Display"	must	be	at	the	same	level
as	the	database	command	(INSERT,	UPDATE,	DELETE,	FETCH	and
SELECT).		If	they	are	at	different	levels	e.g.	the	database	command	is
specified	in	a	SUBROUTINE,	but	the	"Last	Display"	is	a	caller
routine	or	the	mainline,	the	function	will	abort	with	the	appropriate
error	message(s).

The	same	does	NOT	apply	to	the	use	of	event	routines	and	method
routines	in	Visual	LANSA.	In	these	cases,	control	will	be	returned	to
the	calling	routine.	The	fields	will	display	in	error	with	messages
returned	to	the	first	status	bar	encountered	in	the	parent	chain	of
forms,	or	if	none	exist,	the	first	form	with	a	status	bar	encountered	in
the	execution	stack	(for	example,	a	reusable	part	that	inherits	from
PRIM_OBJT).

END_FILE
Specifies	what	is	to	happen	when	the	"end	of	the	file"	is	reached.	Note	that	the
"end	of	the	file"	means	the	last	record	that	matches	the	selection	criteria	has
been	processed,	not	necessarily	the	last	record	in	the	file	has	been	processed.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.
Values	may	not	be	as	expected	on	exit	from	a	select	loop	due	to	an	extra	record

being	read	to	determine	when	to	terminate	the	select	loop.

ISSUE_MSG
Specifies	whether	an	"end	of	file"	message	is	to	be	automatically	issued	or	not.
The	default	value	is	*NO	which	indicates	that	no	message	should	be	issued.
The	only	other	allowable	value	is	*YES	which	indicates	that	a	message	should
be	automatically	issued.	The	message	will	appear	on	line	22/24	of	the	next
screen	format	presented	to	the	user	or	on	the	job	log	of	a	batch	job.

LOCK
Specifies	whether	or	not	the	record	should	be	locked	when	it	is	read.
*NO,	which	is	the	default	value,	indicates	that	the	record	should	not	be	locked.
*YES	indicates	the	record	should	be	locked.	It	is	the	responsibility	of	the	user	to
ensure	that	the	record	is	released	at	some	future	time.
Note:	LOCK(*YES)	performs	a	record	level	lock.	It	may	exhibit	intra	and	inter
operating	system	behavioral	variations	(e.g.	commitment	control	locking
multiple	records;	default	wait	times).	User's	are	advised	to	investigate	the
development	of	proper	and	complete	"user	object"	locking	protocol	by	using	the
LOCK_OBJECT	Built-In	Function.

Portability
Considerations

Not	supported	and	should	not	be	used	in	portable	applications.
A	build	warning	will	be	generated	when	used	in	Visual
LANSA.

RETURN_RRN
Specifies	the	name	of	a	field	in	which	the	relative	record	number	of	the	record
just	selected	should	be	returned.
Any	field	nominated	in	this	parameter	must	be	defined	within	the	function	or
the	LANSA	data	dictionary	and	must	be	numeric.
Note:	The	value	returned	by	this	parameter,	when	OPTIONS(*BLOCKnnn)	is
used,	is	largely	useless,	as	it	represents	the	relative	record	number	of	the	last
record	in	the	block	of	records	just	read,	which	may	not	be	the	number	of	the
record	currently	being	processed	by	the	SELECT/ENDSELECT	loop.
For	further	reference	refer	to	Load	Other	File	in	the	Visual	LANSA	Developers
Guide.

OPTIONS
Specifies	from	1	to	4	special	options	that	can	be	used	when	processing	records

its:Lansa013.chm::/lansa/l4wdev04_0320.htm

from	the	file.	Allowable	special	options	are:
*BACKWARDS:	Indicates	that	the	records	should	be	processed	in	reverse	order
to	that	which	would	normally	be	used.	Normally	records	are	read	in	the	order	of
the	key	specified	in	the	FROM_FILE	parameter.
When	the	*BACKWARDS	option	is	used	the	records	are	read	in	reverse	order.
Backwards	processing	by	sequential,	full	or	partial	key	is	supported	(even
though	it	is	not	supported	by	some	other	high	level	languages	such	as	RPG).
Generic	key	processing	backwards	is	also	supported	(but	may	be	hard	to
effectively	implement).
*STARTKEY:	Indicates	that	the	key(s)	nominated	in	the	WITH_KEY	parameter
should	only	be	used	to	establish	the	start	position	for	the	first	read	operation.
The	first	record	read	will	be	the	first	one	that	has	a	key	greater	than	or	equal	to
the	key	value(s)	nominated	in	the	WITH_KEY	parameter.	All	subsequent
records	are	then	processed	with	no	regard	to	the	WITH_KEY	values.	In	this
situation	the	SELECT	loop	normally	has	to	be	terminated	by	program	logic	or
by	using	the	special	option	*ENDWHERE.
*ENDWHERE:	Specifies	that	if	the	condition	specified	in	the	WHERE
parameter	is	found	to	be	false	(that	is,	not	true)	then	the	SELECT	loop	should
terminate.	Control	is	then	passed	to	the	position	in	the	program	nominated	by
the	END_FILE	parameter.
Normally	a	SELECT	loop	only	terminates	when	all	records	that	could	match	the
selection	criteria	have	been	read	and	examined	for	possible	selection	and
processing	by	the	SELECT	loop.	When	the	*ENDWHERE	option	is	used,	the
first	time	a	record	is	read	(or	some	other	condition	occurs)	that	causes	the
WHERE	condition	to	be	false,	the	SELECT	loop	is	terminated.

Portability
Considerations

Use	of	the	SELECT	options	*STARTKEY	and
*ENDWHERE	are	not	recommended	for	portable
applications	as	they	may	have	performance	implications	when
using	SQL	requests.	
The	*STARTKEY	option	emulates	the	positioning	of	a	"file
cursor".
The	*ENDWHERE	option	tests	the	condition	inside	the	select
loop	and	is	not	placed	in	the	WHERE	clause	when	using
SQL.

*ENDWHERESQL:	allows	you	to	handle	SELECT	commands	in	the	most
appropriate	manner	according	to	the	WHERE	condition.

SQL	(using	ODBC)	doesn't	handle	table	operations	the	same	way	as	native	I/O
on	IBM	i	.	To	enhance	the	performance	of	the	SELECT	command	for	different
tables	(SQL	and	native	I/O),	this	value	supersedes	*ENDWHERE.
This	new	value	is	applied	by	selecting	the	force	*ENDWHERESQL	option	in	the
Partition	definition	tab.	This	partition	option	signals	to	LANSA	that	ALL
*ENDWHERE	options	in	SELECT	commands	are	to	be	interpreted	as	though
*ENDWHERESQL	had	been	coded.	As	code	is	updated,	or	new	code	is	written,
it	is	recommended	that	the	SELECT	commands	are	changed	to	use	this	new
option	where	it	is	appropriate.

Portability
Considerations

This	value	flags	the	runtime	to	interpret	SELECT	operation
differently:
-	If	the	code	is	generated	to	use	SQL,	then	this
*ENDWHERESQL	option	will	effectively	be	ignored	and	the
WHERE	condition	will	be	placed	in	the	WHERE	clause	of
the	SQL	request	(when	all	real	columns	are	specified).
-	If	the	code	is	generated	to	use	native	I/O	access,	then	the
*ENDWHERESQL	option	will	be	interpreted	to	be	the	same
as	the	*ENDWHERE	option.

	
*	BLOCKnnn:	Specifies	that	the	records	selected	from	the	file	are	to	be	read	in
blocks	to	reduce	the	number	of	real	database	I/O	operations	being	performed.
					Used	properly,	this	option	can	substantially	improve	the	performance	of	a
SELECT/ENDSELECT	loop.

					However,	LANSA	and	IBM	i	conditions	apply	to	using	it:
The	'nnn'	component	of	the	*BLOCKnnn	parameter	value	specifies
the	number	of	records	read	in	each	block.	The	allowable	values	for
'nnn'	are	010,	020,	030,	040,	050,	060,	070,	080,	090,	100,	150,	200,
250,	300,	400	or	500.	The	IBM	recommended	value	is	as	many
records	as	will	fit	into	a	32K	block.
The	use	of	*BLOCKnnn	implies	the	use	of	*DBOPTIMISE,
regardless	of	whether	or	not	*DBOPTIMISE	is	actually	specified	in	a
FUNCTION	command.
The	SELECT	command	must	not	have	a	WITH_KEY	parameter.	The
use	of	the	WITH_KEY	parameter	causes	file	cursor	positioning
operations	that	disable	the	blocking	logic.

No	other	I/O	operations	must	be	performed	on	the	file	specified	in	the
FROM_FILE	parameter	anywhere	else	in	the	function.
The	SELECT/ENDSELECT	loop	must	be	executed	once	and	only
once	in	the	programs	invocation.	Subsequent	attempts	to	(re)execute
the	SELECT/ENDSELECT	loop	will	cause	unpredictable	results
because	the	file	cursor	will	not	be	(re)positioned	to	the	start	of	the	file.
If	this	feature	is	required,	CLOSE	the	file	before	attempting	to
(re)execute	the	SELECT/ENDSELECT	loop.
The	file	must	not	be	left	open	by	option	*KEEPOPEN	or	have	been
opened	(or	left	open)	by	some	other	function	/	program,	including	this
one.	If	the	file	is	already	open	the	current	location	of	the	file	cursor	is
unpredictable.	If	in	doubt,	use	the	CLOSE	command	to	close	the	file
first.
The	relative	record	number	returned	by	the	RETURN_RRN	parameter
is	meaningless	when	OPTIONS(*BLOCKnnn)	is	used	as	it	represents
the	number	of	the	last	record	read	in	the	current	block,	which	may	not
be	the	record	being	processed	by	the	SELECT/ENDSELECT	loop.

Portability
Considerations

Not	supported	and	should	not	be	used	in	portable	applications.
A	Full	Function	Check	fatal	error	will	be	issued	when	used	in
Visual	LANSA.	*BLOCKnnn	options	are	ignored	with	no
known	effect	to	the	application.

7.83.2	SELECT	Comments	/	Warnings
SQL	does	not	handle	all	of	its	table	operations	in	the	same	manner	as	file
operations	on	the	IBM	i.	Here	are	some	important	points	which	you	should	be
aware	of:
The	SQL	based	SELECT	operation	may	select	all	the	matching	rows	at	the
time	it	is	first	executed	(into	a	temporary	table)	and	then	proceed	to	process
the	selected	set	of	rows	(one	by	one).

This	style	of	processing	may	cause	functional	changes	between	IBM	i	and
Visual	LANSA	applications	where	a	SELECT	loop	actually	inserts	or	updates
rows,	as	it	goes,	so	that	they	become	part	of	the	set	of	"selectable"	rows.	

Under	IBM	i	such	rows	would	be	processed	by	the	SELECT	loop.	Under
Visual	LANSA	they	may	not,	because	they	were	not	part	of	the	initially
selected	set.

This	style	of	processing	would	be	quite	strange	under	IBM	i	because	it	runs
a	very	real	risk	of	infinite	loops,	but	this	processing	difference	should	be
noted	and	you	should	avoid	this	style	of	processing.
DO	NOT	break	SELECT	loops	with	GOTO	commands	as	this	may	leave	the
SQL	cursor	open.	You	should	use	the	LEAVE	RDML	command	to	exit
SELECT	loops	instead.
DO	NOT	under	any	circumstances	branch	into	the	middle	of	a	SELECT	loop.
This	is	an	unnatural	coding	technique	that	will	produce	unpredictable	results
on	any	platform.
For	similar	reasons	to	the	previous	points,	changing	the	value	of	selection
criteria	within	a	SELECT	loop	may	produce	platform	variant	results.
Consider	this	SELECT	loop	where	SALARY	is	a	column	in	the	SQL	table
and	REQSALARY	is	some	sort	of	selection	value:

						SELECT	FIELDS(...)	FROM_FILE(...)	WHERE('#SALARY	<			
													#REQSALARY')	
										
										
									
									CHANGE	#REQSALARY	('#REQSALARY	*	1.1')	

						ENDSELECT
	

This	is	not	a	well	written	piece	of	logic	and	it	may	produce	differing
results	between	platforms.
Visual	LANSA	evaluates	and	selects	according	to	the	values	at	the
time	that	the	SELECT	is	first	executed.	Do	not	change	the	value	of
selection	criteria	after	they	have	been	established	or	unpredictable
results	may	occur.

The	SQL-based	SELECT	operation	with	a	WHERE	condition	involving	only
"real"	fields	in	the	named	file	selects	only	the	matching	set	of	rows	from	the
file.	This	means	that	after	read	triggers	will	not	be	invoked	for	those	rows	not
matching	the	WHERE	condition.

This	may	be	functionally	different	to	RDML	on	the	IBM	i	where	all	rows	are
read	before	testing	the	WHERE	condition

If	the	WHERE	condition	involves	any	fields	that	are	not	"real"	fields	in	the
file	then	the	processing	will	be	identical	under	Visual	LANSA	and	IBM	i
(RDML	and	RDMLX).
Generic	search	where	the	search	string	contains	the	'%'	character	may	not	act
the	same	as	on	the	IBM	i.

Refer	to	the	SQL	LIKE	predicate	in	the	appropriate	SQL	Reference	manual.
Use	of	the	SELECT	option	*STARTKEY	is	not	recommended	as	it	may	have
performance	implications	when	using	SQL	requests	to	emulate	the
positioning	of	a	"file	cursor".

7.83.3	SELECT	Examples
Example	1:	Select	and	print	fields	#ORDLIN,	#PRODUCT,	#QUANTITY	and
#PRICE	from	all	records	in	an	order	lines	file	which	have	an	order	number
matching	that	specified	in	field	#ODRNUM.
SELECT				FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
UPRINT				FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
ENDSELECT
	

or	identically:
GROUP_BY		NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	
SELECT				FIELDS(#ORDERLINE)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
UPRINT				FIELDS(#ORDERLINE)
ENDSELECT
	

Example	2:	Select	and	print	fields	#ORDLIN,	#PRODUCT,	#QUANTITY	and
#PRICE	from	all	records	in	an	order	lines	file	which	have	a	#QUANTITY	value
greater	than	10	or	a	#PRICE	value	less	than	49.99
SELECT				FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	FROM_FILE(ORDLIN)	WHERE('(#QUANTITY	*GT	10)	*OR	(#PRICE	*LT	49.99)')
UPRINT				FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
ENDSELECT
	

or	identically:
GROUP_BY		NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	
SELECT				FIELDS(#ORDERLINE)	FROM_FILE(ORDLIN)	WHERE('(#QUANTITY	*GT	10)	*OR	(#PRICE	*LT	49.99)')
UPRINT				FIELDS(#ORDERLINE)
ENDSELECT
	

Example	3:	If	a	file	called	ACCOUNT	contains	the	following	fields	and	data:

Company
(#COMP)

Division
(#DIV)

Department
(#DEPT)

Expenditure
(#EXPEND)

Revenue
(#REVNU)

01 1 ADM 400 576

" " MKT 678 56

" " SAL 123 6784

	 	 	 	 	

" 2 ADM 46 52

" " SAL 978 456

	 	 	 	 	

" 3 ACC 456 678

" " SAL 123 679

	 	 	 	 	

02 1 ACC 843 400

" " MKT 23 0

" " SAL 876 10

	 	 	 	 	

" 2 ACC 0 43

	

and	the	file	is	keyed	by	#COMP,	#DIV	and	#DEPT	then	use	the	NBR_KEYS
parameter	of	the	SELECT	command	to	create	a	very	flexible	browse	function:
DEF_LIST			NAME(#ACCOUNTS)		FIELDS(#COMP	#DIV	#DEPT	#EXPEND	#REVNU)
DEFINE					FIELD(#NBRKEYS)	TYPE(*DEC)	LENGTH(1)	DECIMALS(0)
	
BEGIN_LOOP
	
CHANGE					(#COMP	#DIV	#DEPT)	*NULL
REQUEST				FIELDS(#COMP	#DIV	#DEPT)
	
IF_NULL				FIELD(#COMP	#DIV	#DEPT)
CHANGE					#NBRKEYS	0
ELSE
IF_NULL				FIELD(#DIV	#DEPT)
CHANGE					#NBRKEYS	1

ELSE
IF_NULL				FIELD(#DEPT)
CHANGE					#NBRKEYS	2
ELSE
CHANGE					#NBRKEYS	3
ENDIF
ENDIF
ENDIF
CLR_LIST			NAMED(#ACCOUNTS)
SELECT					FIELDS(#ACCOUNTS)	FROM_FILE(ACCOUNT)	WITH_KEY(#COMP	#DIV	#DEPT)	NBR_KEYS(#NBRKEYS)
ADD_ENTRY		TO_LIST(#ACCOUNTS)
ENDSELECT
	
DISPLAY				BROWSELIST(#ACCOUNTS)
	
END_LOOP
	

If	the	user	does	not	input	any	values	at	the	REQUEST	command,		then
#NBRKEYS	will	contain	0	when	the	SELECT	command	is	executed,	so	in
effect	the	SELECT	command	that	is	being	executed	is:
SELECT					FIELDS(#ACCOUNTS)	FROM_FILE(ACCOUNT)
	

which	causes	all	the	records	in	the	file	to	be	displayed.
If	the	user	inputs	a	value	for	#COMP	at	the	REQUEST	command,		then
#NBRKEYS	will	contain	1	when	the	SELECT	command	is	executed,	so	in
effect	the	SELECT	command	that	is	being	executed	is:
SELECT		FIELDS(#ACCOUNTS)	FROM_FILE(ACCOUNT)	WITH_KEY(#COMP)
	

which	causes	all	the	records	in	the	file	that	have	the	requested	company	number
to	be	displayed.
If	the	user	inputs	a	value	for	#COMP	and	a	value	for	#DIV	at	the	REQUEST
command,	then	#NBRKEYS	will	contain	2	when	the	SELECT	command	is
executed,	so	in	effect	the	SELECT	command	that	is	being	executed	is:
SELECT		FIELDS(#ACCOUNTS)	FROM_FILE(ACCOUNT)	WITH_KEY(#COMP	#DIV)
	

which	causes	all	the	records	in	the	file	that	have	the	requested	company	number
and	division	number	to	be	displayed.

If	the	user	inputs	a	value	for	#COMP,	a	value	for	#DIV	and	a	value	for	#DEPT
at	the	REQUEST	command,	then	#NBRKEYS	will	contain	3	when	the
SELECT	command	is	executed,	so	in	effect	the	SELECT	command	that	is	being
executed	is:
SELECT			FIELDS(#ACCOUNTS)	FROM_FILE(ACCOUNT)	WITH_KEY(#COMP	#DIV	#DEPT)
	

which	causes	all	the	records	in	the	file	that	have	the	requested	company	number,
division	number	and	department	number	to	be	displayed.	For	the	data	specified,
only	one	record	would	ever	be	displayed	in	this	case.
Example	4:	Produce	a	functionally	identical	solution	to	example	3	by	using	the
NBR_KEYS(*COMPUTE)	parameter:
DEF_LIST			NAME(#ACCOUNTS)		FIELDS(#COMP	#DIV	#DEPT	#EXPEND	#REVNU)
	
BEGIN_LOOP
CHANGE					(#COMP	#DIV	#DEPT)	*NULL
REQUEST				FIELDS(#COMP	#DIV	#DEPT)
CLR_LIST			NAMED(#ACCOUNTS)
SELECT					FIELDS(#ACCOUNTS)	FROM_FILE(ACCOUNT)	WITH_KEY(#COMP	#DIV	#DEPT)	NBR_KEYS(*COMPUTE)
ADD_ENTRY		TO_LIST(#ACCOUNTS)
ENDSELECT
DISPLAY				BROWSELIST(#ACCOUNTS)
END_LOOP
	

Example	5:	Select	and	print	fields	#ORDLIN,	#PRODUCT,	#QUANTITY	and
#PRICE	from	all	records	in	an	order	lines	file	which	have	an	order	number
matching	that	specified	in	field	#ODRNUM.	Print	the	information	in	reverse
order	(ie:	highest	line	number	first).
GROUP_BY		NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	
SELECT				FIELDS(#ORDERLINE)	FROM_FILE(ORDLIN)	
WITH_KEY(#ORDNUM)	OPTIONS(*BACKWARDS)
UPRINT				FIELDS(#ORDERLINE)
ENDSELECT
	

Example	6:	Use	exactly	the	same	logic	as	example	5,	but	ensure	that	no	more
than	3	lines	are	ever	printed.
GROUP_BY		NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)

	
CHANGE				FIELD(#COUNTER)	TO(0)
SELECT				FIELDS(#ORDERLINE)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)	WHERE('#COUNTER	*LT	3')	OPTIONS(*BACKWARDS	*ENDWHERE)
UPRINT				FIELDS(#ORDERLINE)
CHANGE				FIELD(#COUNTER)	TO('#COUNTER	+	1')
ENDSELECT
	

Example	7:	Ask	the	user	to	input	a	customer	name.	Then	select	and	display
details	of	the	first	10	names	from	a	name	and	address	file	that	are	"closest"	to
the	nominated	name.
DEF_LIST		NAME(#CUSTOMER)	FIELDS(#NAME	#CUSTNO	#ADDR1	#POSTCODE)	COUNTER(#NUMCUSTS)
	
REQUEST			FIELDS(#NAME)
CLR_LIST		NAMED(#CUSTOMER)
SELECT				FIELDS(#CUSTOMER)	FROM_FILE(NAMES)	WITH_KEY(#NAME)	WHERE('#NUMCUSTS	*LT	10')	OPTIONS(*STARTKEY	*ENDWHERE)
ADD_ENTRY	TO_LIST(#CUSTOMER)
ENDSELECT
DISPLAY			BROWSELIST(#CUSTOMER)
	

Example	8:	Select	all	fields	from	the	currently	active	version	of	file	ORDLIN,
perform	diverse	calculations	involving	all	fields	from	the	file	and	print	the
results	for	each	selected	record.

SELECT				FIELDS(*ALL)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)				
.......
.......
.......
	
UPRINT				FIELDS(#RESULT1	#RESULT2	#RESULT3)																	
	

7.84	SELECTLIST
The	SELECTLIST	command	is	used	in	conjunction	with	the	ENDSELECT
command	to	form	a	loop	to	process	all	entries	from	a	list	that	match	certain
criteria.
The	list	may	be	a	browse	list	(used	for	displaying	information	at	a	workstation)
or	a	working	list	(used	to	store	information	within	a	program).
For	example,	the	SELECTLIST	/	ENDSELECT	loop:

----->	SELECTLIST	NAMED(#ORDERLINE)	GET_ENTRYS(*ALTERED)
|						UPDATE					FIELDS(#ORDERLINE)	IN_FILE(ORDLIN)
|																	WITH_KEY(#ORDER)
-----		ENDSELECT
	

forms	a	loop	to	process	all	entries	in	a	list	named	#ORDERLINE	that	have	been
altered	since	they	were	added	to	it.	Each	changed	entry	is	processed	by	the
UPDATE	command	which	reflects	the	change	into	file	ORDLIN.
For	more	details	of	what	lists	are	and	list	processing	refer	to	the	DEF_LIST
(define	list)	command.

Also	See
7.84.1	SELECTLIST	Parameters
7.84.2	SELECTLIST	Examples
	
																																																									Optional
	
		SELECTLIST	---	NAMED	--------	*FIRST	--------------------
----->
																																list	name
	
													>--	GET_ENTRYS	---	*ALL	--------------------------->
																																*SELECT				<----
																																*ALTERED								|			Valid	for
																																*NOTNULL								|		browse	lists
																																*DISPLAY								|					only
																																*ADD												|

																																*CHANGE									|
																																*DELETE				<----
	
												>---	WHERE	--------	'condition'	-------------------|
	

7.84.1	SELECTLIST	Parameters
GET_ENTRYS
NAMED
WHERE

NAMED
Specifies	the	name	of	the	list	that	is	to	be	processed	by	the	SELECTLIST	/
ENDSELECT	loop.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used	(which
may	be	a	browse	or	a	working	list).
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command.

GET_ENTRYS
Specifies	which	entries	from	the	list	are	to	be	processed	by	the	SELECTLIST	/
ENDSELECT	loop.
*ALL,	which	is	the	default	value,	indicates	that	all	entries	in	the	list	should	be
processed	by	the	loop.	When	the	list	being	processed	is	a	working	list	this	is	the
parameter	value	that	is	valid.
*SELECT	indicates	that	only	entries	that	have	a	non-blank	"select"	field	should
be	processed	by	the	loop.	A	"select"	field	in	a	list	has	the	field	attribute
*SELECT	associated	with	it.	For	more	details,	refer	to	the	DEF_LIST
command.	Also	see	how	field	attributes	are	used.
*ALTERED	indicates	that	only	entries	that	have	been	altered	since	they	were
added	to	the	list	by	the	ADD_ENTRY	or	INZ_LIST	command	should	be
processed	by	the	loop.
*NOTNULL	indicates	that	only	entries	that	have	a	non	"null"	value	in	one	or
more	of	the	fields	should	be	processed	by	the	loop.	The	"null"	value	is	blanks
for	alphanumeric	fields	and	zero	for	numeric	fields.
*DISPLAY	indicates	that	only	entries	that	were	added	or	updated	in	the	list
when	the	screen	processing	mode	was	*DISPLAY	should	be	processed	by	the
loop.	For	more	details,	refer	to	Screen	Modes	and	Mode	Sensitive	Commands.
*ADD	indicates	that	only	entries	that	were	added	or	updated	in	the	list	when	the
screen	processing	mode	was	*ADD	should	be	processed	by	the	loop.	For	more
details,	refer	to	Screen	Modes	and	Mode	Sensitive	Commands.

*CHANGE	indicates	that	only	entries	that	were	added	or	updated	in	the	list
when	the	screen	processing	mode	was	*CHANGE	should	be	processed	by	the
loop.	For	more	details,	refer	to	Screen	Modes	and	Mode	Sensitive	Commands.
*DELETE	indicates	that	only	entries	that	were	added	or	updated	in	the	list	when
the	screen	processing	mode	was	*DELETE	should	be	processed	by	the	loop.
For	more	details,	refer	to	Screen	Modes	and	Mode	Sensitive	Commands.
Values	may	not	be	as	expected	on	exit	from	a	selectlist	loop	due	to	an	extra
record	being	read	to	determine	when	to	terminate	the	selectlist	loop.

WHERE
For	more	information,	refer	to	the	Specifying	Conditions	and	Expressions	which
describes	how	to	specify	conditions	and	expressions.
The	WHERE	parameter	is	valid	only	for	working	lists.	If	the	WHERE
parameter	is	not	specified,	all	entries	in	the	working	list	are	returned.
After	a	SELECTLIST/ENDSELECT	loop	utilizing	a	where	condition,	the
contents	of	the	fields	are	unpredictable.	The	entries	matching	the	where
condition	should	only	be	processed	within	the	SELECTLIST/ENDSELECT
loop.

7.84.2	SELECTLIST	Examples
Example	1:	Process	all	"altered"	entries	from	a	list	named	#ORDERLINE.
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	list	processing.

SELECTLIST	NAMED(#ORDERLINE)	GET_ENTRYS(*ALTERED)
						<<	Commands	to	process	the	list	>>
						<<	Commands	to	process	the	list	>>
						<<	Commands	to	process	the	list	>>
ENDSELECT
	

Example	2:	Process	all	"selected"	entries	from	a	list	named	#ORDERLINE.

SELECTLIST	NAMED(#ORDERLINE)	GET_ENTRYS(*SELECT)
						<<	Commands	to	process	the	list	>>
						<<	Commands	to	process	the	list	>>
						<<	Commands	to	process	the	list	>>
ENDSELECT
	

Example	3:	Process	all	entries	where	quantity	is	greater	than	0	in	working	list
#ORDERLINE.

SELECTLIST	NAMED(#ORDERLINE)	WHERE('#QUANTITY	*GT	0')
						<<	Commands	to	process	the	list	>>
						<<	Commands	to	process	the	list	>>
						<<	Commands	to	process	the	list	>>
ENDSELECT
	

7.85	SELECT_SQL
Unlike	the	standard	SELECT	command,	which	uses	native	IBM	i	database
access,	the	SELECT_SQL	command	uses	the	SQL/400	product	to	perform
database	access.
There	are	two	forms	of	the	SELECT_SQL	command.	The	first,	which	is
documented	in	this	section,	is	heavily	structured	helping	to	ensure	the	SQL	is
correct	and	object	names	that	differ	between	platforms	are	catered	for	but	it
restricts	the	type	of	SELECT	statements	to	quite	simple	ones.	The	other	form	of
SELECT_SQL	is	free-format.	Any	SELECT	statement	can	be	entered	that	the
database	engine	accepts	as	valid	syntax,	but	LANSA	does	not	attempt	to	make
object	names	compatible	across	platforms.	These	two	differences	make	it	more
likely	that	the	SQL	will	not	execute	as	expected	across	different	databases.	See
SELECT_SQL	Free	Format	for	further	information.
The	SELECT_SQL	command	is	used	in	conjunction	with	the	ENDSELECT
command	to	form	a	"loop"	to	process	one	or	more	rows	(records)	from	one	or
more	tables	(files).
For	example,	the	following	SELECT_SQL	/	ENDSELECT	loop	selects	all
values	of	product	and	quantity	from	the	table	ORDLIN	and	places	them,	one	by
one,	in	a	list:
---->	DEF_LIST	NAME(#ALIST)	FIELDS(#PRODUCT	#QUANTITY)
	-->	SELECT_SQL	FIELDS(#PRODUCT	#QUANTITY)
|																USING('SELECT	"PRODUCT",	"QUANTITY"	FROM	"MYDTALIB"."ORDLIN"')
|
|									ADD_ENTRY(#ALIST)
|
	----	ENDSELECT
	

The	method	of	implementing	SELECT_SQL	differs	between	objects
generated	as	RPG	on	IBM	i	and	objects	generated	as	C.	RPG
implements	SELECT_SQL	in	static	embedded	SQL.	C	implements
SELECT_SQL	in	a	call	level	interface	(CLI)	and	thus	is	dynamic.	The
effect	of	this	distinction	is	described	below	where	relevant.

Before	attempting	to	use	SELECT_SQL	you	must	be	aware	of	the	following:
1.		To	compile	functions	containing	SELECT_SQL	commands	these	licensed
products	are	required:

For	IBM	i	RPG	Functions: IBM	-	SQL	DevKit

For	C	executables: No	other	products	required

					If	an	IBM	iRPG	application	using	SELECT_SQL	is	ported	in	compiled	form
from	one	IBM	i	to	another,	it	can	still	be	executed,	even	if	the	target	machine
does	not	have	the	IBM	licensed	product	installed.	However,	this	situation	will
cause	problems	if	the	need	to	recompile	the	application	on	the	target	machine
ever	arises.

2.		Information	accessed	via	SELECT_SQL	is	for	read	only.	If	you	wish	to
update	information	it	is	often	easier	to	use	the	standard	SELECT	command.

3.		The	SELECT_SQL	command	is	primarily	intended	for	performing	complex
extract/join/summary	extractions	from	one	or	more	SQL	database	tables
(files)	for	output	to	reports,	screens	or	other	tables.	It	is	not	intended	for	use
in	high	volume	or	heavy	use	interactive	applications.					With	that	intention	in
mind,	it	must	be	balanced	by	the	fact	that	SELECT_SQL	is	a	very	powerful
and	useful	command	that	can	vastly	simplify	and	speed	up	most
join/extract/summary	applications,	no	matter	whether	the	results	are	to	be
directed	to	a	screen,	a	printer,	or	into	another	file	(table).

4.		The	SELECT_SQL	command	provides	very	powerful	database
extract/join/summarize	capabilities	that	are	directly	supported	by	the	SQL
database	facilities.	However,	the	current	IBM	i	implementation	of	SQL	may
require	and	use	significant	resource	in	some	situations.	It	is	entirely	the
responsibility	of	the	user	to	compare	the	large	benefits	of	this	command,	with
its	resource	utilization,	and	to	decide	whether	it	is	being	correctly	used.	One
of	the	factors	to	consider	is	whether	the	WHERE	parameter	uses	any	non-key
fields.	If	it	does,	then	SELECT_SQL	will	probably	be	quicker	than	SELECT.
Otherwise	SELECT	will	probably	be	quicker.	This	is	especially	important
when	developing	the	program	on	Visual	LANSA	first	with	the	intention	of
also	running	it	on	IBM	i.	This	is	because	Visual	LANSA	has	much	fewer
performance	differences	between	SELECT	and	SELECT_SQL.

5.		This	section	assumes	that	the	user	is	familiar	with	the	SQL	'SELECT'
command.	This	section	is	about	how	the	SQL	'SELECT'	command	is
accessed	directly	from	RDML	functions,	not	about	the	syntax,	format	and
uses	of	the	SQL	'SELECT'	command.

6.		Very	limited	checking	is	performed	on	the	correctness	of	the	WHERE,
GROUP_BY,	HAVING	and	ORDER_BY	parameters.

7.		SELECT_SQL	does	not	use	the	IO	Modules/OAMs	so	it	bypasses	the
repository	validation	and	triggers.

8.		When	a	file	is	deployed	on	non-IBM	i	platforms,	by	default	the	table	is
created	using	the	target	partition's	data	library.	But,	calls	to	SELECT_SQL
have	compiled	in	the	source	partition's	data	library.	So	if	the	names	are
different,	you	must	use	the	DEFINE_OVERRIDE_FILE	Built-In	Function	to
change	the	table	owner.

Error	Handling
If	an	SQL	Function	is	incorrectly	quoted	by	SELECT_SQL,	it	will	cause	an
error.	With	SQL	Server	the	error	may	be	"SQL	error	code	16954…Executing
SQL	directly;	no	cursor".	Other	error	codes	may	occur	for	the	same	reason.
Other	databases	will	have	different	error	codes.
This	occurs	when	a	Function	is	not	known	by	LANSA	and	so	the	word	is
presumed	to	be	an	identifier	and	is	quoted.	The	workaround	for	this	is	to	use	the
SELECT_SQL	Free	Format	version	of	the	command.
IBM	i	RPG	Functions
If	your	command	is	incorrect	then	there	are	2	possible	points	where	it	will	fail:
When	you	compile	the	RDML	function.	The	SQL	command	preprocessor	will
indicate	an	error	in	the	command	and	LANSA	will	interpret	this	as	a	failure	to
compile	the	resulting	RPG.	In	this	situation	the	SQL	commands	embedded	in
the	resulting	RPG	will	have	to	be	examined	for	error	message	details.
At	execution	time.	Even	if	the	application	compiles	SQL	may	cause	it	to	fail
when	the	SELECT_SQL	command	is	actually	executed.	In	this	case	examine
all	the	resulting	error	messages	for	the	exact	cause.
A	useful	technique	when	working	with	SQL	is	to	use	interactive	SQL	to	"test
case"	your	command	(and	its	syntax)	before	compiling	it	into	a
SELECT_SQL	command.
When	dealing	with	an	execution	time	error,	the	use	of	debug	on	the	function
will	cause	SQL	to	present	useful	error	analysis	information.	Note	that	this
feature	is	provided	by	SQL/400,	not	by	LANSA,	but	it	will	work	in
conjunction	with	normal	LANSA	debug	mode	(IBM	i	only).

C	Executables
If	your	command	is	incorrect	then	the	following	diagnosis	is	possible:
When	you	build	the	function/component	warning	messages	are	displayed.
Some	of	these	messages	are	described	in	a	table	below.

Compiling	the	function/component	will	not	provide	any	further	information
as	the	SQL	is	evaluated	at	execution	time.	That	is,	the	SQL	is	dynamic.
At	execution	time.	Even	if	the	application	compiles	SQL	may	cause	it	to	fail
when	the	SELECT_SQL	command	is	actually	executed.	In	this	case	examine
all	the	resulting	error	messages	for	the	exact	cause.	

A	useful	technique	when	working	with	SQL	is	to	use	interactive	SQL	to	"test
case"	your	command	(and	its	syntax)	before	compiling	it	into	a
SELECT_SQL	command.

When	dealing	with	an	execution	time	error,	the	use	of	trace	on	the	function
will	allow	the	capture	of	the	exact	SQL	that	the	SELECT_SQL	command	has
generated.	Open	the	latest	trace	file	and	search	for	"***ERROR".	This	will	be
the	same	text	as	in	the	error	messages.	Go	back	8	lines	or	so	to	the
"Preparing"	message	and	you	will	find	the	SELECT	statement	that	caused	
the	error.	You	can	copy	and	paste	this	into	interactive	SQL	to	further	diagnose
the	problem.
When	reporting	issues	with	SELECT_SQL	to	support	you	must	provide	the
trace	file	and	the	generated	C	source	code.

IBM	i	RPG	Functions	Only
Cross-reference	information	is	only	taken	from	the	FIELDS	and
FROM_FILES	parameters.	References	to	fields	and	files	embedded	in	other
parameters	of	this	command	are	not	reflected	into	the	LANSA	cross-reference
facility	in	the	current	release.
The	database's	column	name	must	be	used	when	accessing	through	SQL.	C
executables	can	use	either	the	database's	column	name	or	the	field	name	that
LANSA	knows	the	column	by.	This	can	be	different	when	using	Naming
Level	0	files.	If	the	field	name	is	used	(without	the	#),	LANSA	converts	it	to	a
column	name	at	runtime.	This	allows	the	name	used	at	execution	time	to	be
portable	between	all	platforms.	All	of	the	parameters	that	accept	a	column
name	exhibit	this	behaviour.	For	example,	this	RDML	using	Naming	Level	0
file	#MYFILE:

						SELECT_SQL	FIELDS(#A$	#B)	FROM_FILES((#MYFILE))	WHERE('A_	=	''A	VALUE''')
						DISPLAY	FIELDS(#A$	#B)	
						ENDSELECT
	

					will	work	correctly	on	non-IBM	i	platforms	but	will	fail	on	IBM	i.	Visual
LANSA	will	issue	warning	PRC1065	if	A_	is	not	a	physical	field	in	one	of
the	files	in	the	FROM_FILES	parameter.	A	portable	way	to	write	this	so	that
it	executes	on	all	LANSA	platforms	is	as	follows:

						SELECT_SQL	FIELDS(#A$	#B)	FROM_FILES((#MYFILE))	WHERE('A$	=	''A	VALUE''')
								DISPLAY	FIELDS(#A$	#B)	
						ENDSELECT	
	

Visual	LANSA	C	Functions	Only
The	maximum	number	of	SELECT_SQL	commands	that	a	single	field	can
appear	in	is	50
A	LANSA	field	used	in	SELECT_SQL	only	has	one	rename	in	the	whole	of	a
Function	or	Component.	Renames	are	used	by	VL	Other	Files	and	IBM	i
Other	Files.	The	loading	of	other	files	should	ensure	that	a	different	field	is
created	when	a	column	matches	an	existing	field,	and	thus	the	situation
should	not	occur.
*	SELECT/OMIT	Criteria	in	a	Logical	File	specifed	in	the	FROM_FILE
parameter	will	be	ignored	since	CLI	does	not	use	the	Logical	File	when
retrieving	data.

The	extensive	use	of	the	SELECT_SQL	command	is	not	recommended	for	the
following	reasons:
The	SQL	access	commands	are	imbedded	directly	into	the	RDML	function.
DBMS	access	is	direct	and	not	done	via	IOM/OAM	access	routines.	This
approach	may	compromise	the	use	of	before	and	after	read	triggers	and	the
use	of	the	"thin	client"	designs	implemented	via	LANSA/SuperServer.
If	the	contents	of	SELECT_SQL	is	sourced	from	a	field	on	a	screen	then	it	is
possible	for	an	end	user	to	perform	more	than	a	select.	It	is	especially	easy	in
the	Free	Format	version	where	this	code	is	possible:
REQUEST	FIELD(#ANYSQL)
Select_Sql	Fields(#STD_NUM)	Using(#ANYSQL)
endselect.

					and	the	end	user	could	enter	this	on	the	screen:	"delete	from
mylib.afile;select	count(*)	from	mylib.afile"

The	use	of	imbedded	SQL	features	and	facilities	may	introduce	platform
dependencies	into	your	applications.	Not	all	SQL	facilities	are	supported	by

all	DBMSs.	By	bypassing	the	IOM/OAM	associated	with	the	table,	you	are
bypassing	the	feature	isolation	it	provides.	Using	SQL	features	and	facilities
that	are	DBMS	defined,	platform	dependent	extensions,	is	solely	at	the
discretion	of,	and	the	responsibility	of,	the	application	designer.
Where	SELECT_SQL	is	to	be	used,	you	should	isolate	the	use	within	a
specific	function,	separate	from	any	user	interface	operations.	This	will	allow
the	function	to	be	invoked	as	an	"RPC"	(Remote	Procedure	Call)	in	the	client
design	models.

Messages	issued	at	build	time	by	Visual	LANSA
LII0898W Ambiguous.	Field	#A$	exists	in	more	than	one	file	and	they	use

different	naming	algorithms.
This	message	is	reporting	about	the	SQL	name	that	will	be	used	for
the	field	at	runtime.	There	are	two	further	messages	which	follow
this	message	which	provide	more	detail.The	generator	decides	on	the
naming	algorithm	to	use	based	on	the	following	precedence:	(1)
Older	Visual	LANSA	Files	use	LANSA	mangled	names,	like	#A$
becomes	A_;	(2)	Naming	Level	1	files	which	use	LANSA-defined
names,	that	is,	the	SQL	name	is	the	same	as	the	field	name;	(3)	VL
Other	File	naming	or	IBM	i	Other	File	naming,	which	ever	one
appears	first	in	the	FROM_FILES	parameter.
It	is	not	necessary	to	change	the	RDML	to	eliminate	the	message.	It
depends	on	which	file's	data	you	need	to	access.	If	the	default
behaviour	is	not	wanted,	then	add	an	SQL	source	parameter	with	the
real	name	that	is	needed.

	
The	following	warnings	should	be	eliminated	to	improve	success	at	runtime	and
when	running	on	IBM	i.

PRC1064 **	WARNING:	Name		is	not	a	defined	field.	Correct	it	for	portability.
The	field	name	may	be	a	real	column	in	one	of	the	files	and	so	the
select	will	work,	but	to	work	on	all	LANSA	supported	databases	a
field	name	must	be	used	(without	the	hash	character).

PRC1065 **	WARNING:	Field	<afield>	is	not	a	physical	field	in	any	of	the
files	in	the	FROM_FILES	parameter.
LANSA	checks	if	a	name	specified	in	SQL	is	known	to	LANSA	in
one	of	the	files	in	the	FROM_FILES	parameter.	It	checks	if	the	name

is	a	LANSA	name,	a	converted	name	or	a	column	rename.	It	also
checks	if	it	is	a	reserved	SQL	keyword.	If	it	is	none	of	these,	then	this
warning	is	displayed:
This	can	be	caused	either	be	using	the	column	name	instead	of	the
field	name	in	which	case	the	SQL	will	still	work	on	Visual	LANSA,
or	because	the	field	is	not	correct	and	so	will	fail	at	runtime.

PRC1067 **	Fields	A$	and	A_	both	resolve	to	A_	so	A_	in	SELECT_SQL	will
be	set	with	Non-IBM	i	text	A_
Two	or	more	fields	that	resolve	to	the	same	name	mean	that	the
generated	code	cannot	tell	them	apart	and	so	a	compile	error	would
occur.	So,	for	backward	compatibility,	SELECT_SQL	uses	a	fixed
literal	value	so	the	compile	will	succeed.	But,	this	may	not	execute	on
IBM	i.	Change	your	code	so	that	it	does	not	use	both	these	matching
Fields	in	the	one	Function.
For	example,		the	column	name	has	been	fixed	at	A_,	so	it	will	not
run	on	IBM	i.	Use	A$	instead.

Portability
Considerations

When	using	multiple	platforms,	you	must	take	into
consideration	the	length	of	the	field	names	used	by	each	of
the	platforms.	Refer	to	the	WHERE	parameter.
Do	NOT	use	this	command	to	connect	from	Visual	LANSA	to
a	database	on	the	IBM	i.	If	you	use	the	SELECT_SQL
command	to	connect	from	Visual	LANSA	to	an	IBM	i
Database,	it	will	access	the	Database	on	the	PC	and	not	on	the
IBM	i.	For	this	type	of	connection,	you	should	use	a	remote
procedure	call	(i.e	call_server_function).

Also	See
7.85.1	SELECT_SQL	Parameters
7.85.2	SELECT_SQL	Column	Names	versus	Column	Values
7.85.3	SELECT_SQL	Examples
7.85.4	SELECT_SQL	References
7.85.5	SELECT_SQL	Coercions
																																																									Required
	
		SELECT_SQL	---	FIELDS	-------	field	name	---	*SAME	----

------->
																																|													SQL	field	source	|
																																	------	1000	max	--------------
	
													>--	FROM_FILES	-------	file	name	--	correlation	---
>
																																|																														|
																																	------------	20	max-----------

																																																									Optional
													>--	WHERE	--------	'SQL	where	condition'	----------
>
	
													>--	GROUP_BY	-----	'SQL	group	by	clause'	---------
->
	
													>--	HAVING	-------	'SQL	having	condition'	---------
>
	
													>--	ORDER_BY	-----	'SQL	order	by	parameter'	-----
-->
	
													>--	DISTINCT	-----	*NO	---------------------------->
																																*YES
	
													>--	IO_STATUS	----	field	name	--------------------->
																																*STATUS
	
													>--	IO_ERROR	-----	*ABORT	-------------------------|
																																*NEXT
																																*RETURN
																																label
	

7.85.1	SELECT_SQL	Parameters
DISTINCT
FIELDS
FROM_FILES
GROUP_BY
HAVING
IO_ERROR
IO_STATUS
ORDER_BY
WHERE
See	also	7.85.2	SELECT_SQL	Column	Names	versus	Column	Values

FIELDS
Specifies	the	columns	(fields)	and	their	associated	"SQL	source"	or	function.

Fields	of	type	BLOB	and	CLOB	are	not	supported	in	the
SELECT_SQL	command.	If	one	is	specified	a	fatal	error	will	occur
when	the	command	is	compiled.

All	columns	nominated	by	this	parameter	must	be	defined	in	the	current
function	or	in	the	LANSA	data	dictionary	as	valid	RDML	variables.
For	each	column	specified	an	optional	field	"SQL	source"	may	be	nominated.
This	field	has	a	maximum	length	of	50	characters.
When	the	source	is	not	specified,	the	default	value	of	*SAME	(same	as	column
name)	is	used.	This	means	that	the	column	name	in	the	function	and	its	"source"
in	the	SQL	table	are	assumed	to	be	the	same.	When	this	value	is	used	the
column	must	be	defined	as	a	valid	real	column	in	one	(or	more)	of	the	tables
nominated	in	the	FROM_FILES	parameter.
For	example:
SELECT_SQL	FIELDS((#CUSTNAM))	FROM_FILES(CUSTMST)
	

indicates	that	the	column	named	CUSTNAM	is	to	be	extracted	from	the	table
CUSTMST	and	its	value	returned	into	the	RDML	function	into	the	field	called
#CUSTNAM.	This	example	uses	the	*SAME	default.	But	the	example:
SELECT_SQL	FIELDS((#CUSTNO	CUSTNAM))	FROM_FILES(CUSTMST)

	
indicates	that	column	named	CUSTNAM	is	to	be	extracted	from	the	table
CUSTMST	and	its	value	returned	into	the	RDML	function	into	the	field	called
#CUSTNO.
And,	the	further	example:
SELECT_SQL	FIELDS((#SHORTNAME	'SUBSTR(CUSTNAM,3,10)'))
	

indicates	that	a	substring	of	column	CUSTNAM	(from	the	SQL	table)	is	to	be
returned	into	the	RDML	function	field	#SHORTNAME.
And,	another	example	where	two	files	are	being	joined	and	the	column
CUSTNAM	is	in	both	tables	a	correlation	is	used	to	clarify	which	table,
CUSTMST	or	CUSTMST2	to	obtain	the	data	from:
SELECT_SQL	FIELDS((#CUSTNAM	'A.CUSTNAM'))	FROM_FILES((CUSTMST	A)
(CUSTMST2	B))	WHERE('A.CUSTID	=	B.CUSTID')
	

And,	the	final	example:
SELECT_SQL	FIELDS(#DEPTMENT	(#VALUE1	'AVG(SALARY)')	(#VALUE2	'SUM(SALARY)')
(#VALUE3	'MAX(SALARY)')
	

indicates	that	SQL	table	column	DEPTMENT	is	to	be	returned	into	RDML
variable	#DEPTMENT,	the	average	of	SQL	table	field	SALARY	is	to	be
returned	into	RDML	variable	#VALUE1,	the	total	into	#VALUE2,	and	the
maximum	into	#VALUE3.

FROM_FILES
Refer	to	Specifying	File	Names.
Note:	Up	to	20	file	(table)	names	can	be	specified	for	use	by	this	command.
Note:	When	accessing	Other	Files	that	are	in	other	databases	LANSA	locates
the	database	connection	information	that	was	used	to	load	the	Other	File	into
LANSA.	This	can	be	further	refined	by	using	the	DEFINE_DB_SERVER	and
CONNECT_FILE	BIFs
For	each	file	name	specified	an	optional	field	"correlation"	may	be	nominated.
When	the	correlation	is	not	specified,	the	default	of	*SAME	(IE	same	as	file
name)	is	assumed.	This	means	that	when	referring	to	a	column	in	a	specific
table	the	actual	table	name	must	be	used.	If	a	correlation	name	is	used	the
correlation	name	must	be	used	to	identify	a	column	from	a	specific	table.

Examples
.	.	.	FROM_FILES((ORDLIN)	(ORDDTL))	WHERE('ORDLIN.CUSTNO	=	ORDDTL.CUSTNO')
	

If	correlations	were	used	this	statement	could	written	as:
.	.	.	FROM_FILES((ORDLIN	A)	(ORDDTL	B))	WHERE('A.CUSTNO	=	B.CUSTNO')
	

Portability
Considerations

Visual	LANSA	does	not	use	@#$	in	table	names.	This
conversion	is	done	for	the	FROM_FILES	parameter,	but	not
for	table	names	in	the	other	parameters,	e.g.	the	WHERE
parameter.	So,	in	order	that	the	SQL	can	work	on	all	LANSA
platforms,	correlations	should	always	be	used	as	in	the	second
example	above.
Visual	LANSA	provides	access	to	multiple	databases	using
Visual	LANSA	Other	Files.Visual	LANSA	Other	files	can	be
used	in	SELECT_SQL,	but	they	must	all	be	from	the	same
database.	If	aVisual	LANSA	Other	File	is	in	the	same
database	as	a	LANSA	file,	then	the	two	can	files	can	be	used
in	the	same	SELECT_SQL	command

WHERE
You	must	enclose	the	SQL_SELECT	WHERE	clause	in	quotes	as	shown	here:

.	.	.	WHERE('EMPNO	<	''A9999''')

.	.	.	WHERE('NOT	EMPNO	LIKE	''%a''')

	

The	where	clause	may	contain	either	LANSA	field	names,	or	column	names.
(Refer	to	the	FIELDS	Parameter	for	more	details.)
The	SQL	language	uses	double	quotes	to	surround	identifiers	that	might
otherwise	be	interpreted	as	SQL	syntax.	LANSA	leaves	the	contents	of	double-
quoted	text	untouched.	Note,	this	is	the	double-quote	character	("),	not	two
single	quotes	('').

Portability
Considerations

LANSA	field	names	in	the	WHERE	parameter	will	be	generated
as	double-quoted	column	names	into	the	SQL	statement,	as	long	as
the	field	is	recognized	as	being	from	one	of	the	files	in	the

FROM_FILES	parameter.	Note	that	the	column	name	is	not
always	the	same	as	the	field	name.	This	is	often	the	case	for	fields
on	Other	Files,	but	also	happens	for	certain	field	names	on
LANSA	files.	Refer	to	Convert	Special	Characters	in	Field	Names
An	exception	to	the	previous	paragraph	is	when	an	unquoted
LANSA	field	name	conflicts	with	SQL	keywords.	In	this	case	the
field	name	is	NOT	converted.	Refer	to	SQL/ODBC	Grammar:
Keyword	Conflicts	for	more	details.	
For	example,	SECTION	is	a	LANSA	field	in	SECTAB.	This	is
created	as	the	column	S_CTION.	
If	the	WHERE	parameter	was	written	as
WHERE('SECTION	=	''1''')	then	SECTION	would	not	be	changed
and	thus	will	cause	an	SQL	syntax	error	at	runtime.	
A	workaround	for	this	is	to	use	a	correlation	so	that	LANSA
knows	your	intention	is	to	access	the	column	and	not	use	it	as	an
SQL	keyword.	An	example	would	be:
FROM_FILES((SECTAB	SEC))	WHERE('SEC.SECTION	=	''
If	selecting	from	two	or	more	files	that	have	the	same	LANSA
field,	the	column	name	may	differ	between	the	files.	Refer	to
Convert	Special	Characters	in	Field	Names.	In	this	case,	you,	the
developer,	have	two	way	to	control	the	SQL	WHERE	clause	that
LANSA	generates.	The	first	is	to	use	a	correlation	(refer	to	the
FROM_FILES	parameter)	so	that	LANSA	renames	it	according	to
the	rules	of	that	file.	The	second	is	to	use	the	column	name	and
enclose	it	in	double	quotes.
If	using	field	names	in	the	WHERE	parameter,	it	is	recommended
that	you	leave	space	around	the	field	name	so	that	LANSA	can
recognise	the	field	names	and	convert	them	appropriately.	For
example,	WHERE('a=b')	should	be	instead	be	WHERE	('a	=	b').

Visual	LANSA	allows	a	single	field	name	to	be	specified	instead	as	shown	here:

CHANGE	FIELDS(#SELECTION)	TO('STATE	=	''NSW''')
SELECT_SQL	FIELDS(#STATE)	FROM_FILES((#STATES))	WHERE(#SELECTION)
			DISPLAY	FIELDS(#STATE)
ENDSELECT
	

The	contents	of	the	field	are	used	as	the	WHERE	clause	and	the	following

needs	to	be	considered:
A	build	warning	will	be	generated	if	a	single	field	name	is	used	in	LANSA
for	i	RPG	Functions.	An	error	will	occur	at	execution	time.	Code	using	this
facility	can	be	conditioned	so	that	it	is	not	executed	in	this	environment.	See
the	*OPNQRYF	command	for	an	alternate	programming	method	and	how	to
write	portable	code
The	field	name	STATE	is	not	preceded	by	a	#	(hash)	symbol	in	this	example.
This	is	because	the	actual	selection	request	is	being	made	to	the	SQL
database,	not	to	LANSA.	That	is,	the	actual	column	name	must	be	used.
Visual	LANSA	renames	column	names	that	contain	@,	#	or	$	and	replaces
them	with	an	underscore	in	Naming	level	0	files,	but	this	does	not	occur	on
LANSA	for	i,	thus	the	code	is	portable	provided	that	the	LANSA	field	name
is	used,	not	the	actual	column	name.	E.g.	if	the	Field	is	CUST$NAM	then	this
should	be	used,	not	CUST_NAM.	Visual	LANSA	will	change	CUST$NAM
to	CUST_NAM	at	runtime	(Naming	Level	0	file).	LANSA	for	i	will	leave	it
as	it	is.
Variable	comparison	values	as	in	:KARTIC	will	not	be	replaced.	Instead	the
value	must	be	concatenated	into	the	#SELECTION	field.

WHERE	clause	hints
When	searching	for	data	using	the	like	condition,	characters	with	special	
meaning	to	SQL	need	to	be	escaped	if	they	need	to	be	taken	literally.	For
example,	the	character	'_'	matches	any	character.	To	literally	match	'_'	then	the
following	syntax	needs	to	be	used.	This	will	find	all	states	that	start	with	'B_':

CHANGE	FIELDS(#SELECTION)	TO('STATE	LIKE	''B!_%''	ESCAPE	''!''')
	

Note:	This	nominates	the	exclamation	mark	as	the	escape	character.
Any	"normal"	character	not	greater	than	127	in	the	ASCII	table	can	be
used.	(Characters	%,_,[do	not	work	on	all	DBMS	systems	and	so	are
not	recommended.)

This	has	been	tested	on	ASA,	DB2400,	SQL	Server,	and	Oracle.	The
only	exception	is	MS	Access,	where	instead	you	need	to	use	[]	around
the	character	to	be	escaped.	For	example:	WHERE	STATE	LIKE
'B[_]%'

Using	a	Field	for	Variable	Comparison	Values
Place	a	colon	(:)	immediately	in	front	of	the	field	name,	without	any	spaces
separating	the	colon	from	the	field	name	to	indicate	that	the	name	in	the
WHERE	clause	should	be	used.	(If	the	field	name	is	more	than	six	characters
long,	you	will	get	unpredictable	results	in	LANSA	for	i	RPG	Functions.)

Portability
Considerations

Fields	used	to	contain	variable	comparison	values	in	the
WHERE	clause	are	not	translated	by	LANSA.	Therefore,
when	using	fields	in	this	way,	your	field	names	must	be	six
(6)	characters	or	less.	(This	is	because	fields	are	used	with
their	actual	name	in	the	generated	RPG	on	LANSA	for	i.)
LANSA	for	i	RPG	Functions	allow	a	space	between	the
colon	and	the	field	name,	but	this	does	not	work	in	generated
C	code.	For	portability	do	not	leave	a	space	between	the
colon	and	the	field	name.

If	your	code	will	run	in	a	LANSA	for	i	RPG	function,	and	you	have	field	names
that	are	longer	than	six	characters	that	are	to	be	used	in	the	WHERE	clause,	you
will	need	to	define	a	work	field	for	these	names	with	a	name	that	is	six
characters	or	less,	as	in	the	example	below.
Example:
DEFINE						#KARTIC	REFFLD	(#ARTICO)
DEFINE						#KADTRG	REFFLD	(#MADTRG)
	
.	.	.	WHERE	('ARTICO	=	:KARTIC	AND	MADTRG	>	:KADTRG')
	

For	further	details	about	specifying	conditions,	refer	to	Specifying	Conditions
and	Expressions.	For	further	information	about	the	structure	of	this	clause,	refer
to	the	SQL	guides.

RDMLX	IBM	i	Other	Files	with	Unicode	Fields
SQL	on	IBM	i	cannot	compare	a	graphic	unicode	field	directly	to	a	string	literal
or	a	character	column;	a	conversion	error	occurs.
There	are	two	ways	of	converting	the	expression	to	Unicode	to	avoid	the
conversion	error:
1.		Use	a	LANSA	field	for	comparison.	For	example,
WHERE('MYUNIGRPH	=	:STD_TEXT').

2.		Pass	the	literal	as	a	Unicode	(UX'ssss')	literal.	For	example,	instead	of:

					WHERE('UNIFLD	LIKE	'C%')
					try
					WHERE('UNIFLD	LIKE	UX''00430025''').
For	further	details,	refer	to	the	IBM	manual	DB2	UDB	for	IBM	SQL	Reference.

GROUP_BY
Is	used	to	find	the	characteristics	of	groups	of	rows	rather	than	individual	rows.
Grouping	does	not	mean	sorting.	Grouping	puts	each	selected	row	in	a	group
which	SQL	processes	to	derive	characteristics	of	the	group.
Specify	the	column(s)	you	want	to	group	the	selected	rows	by.	If	more	than	one
column	is	specified,	commas	must	be	used	to	separate	the	data.	For	example,
GROUP_BY('EMPTSYEAR,	EMPTSWEEK').

HAVING
Is	used	to	specify	a	search	condition	for	the	groups	selected	based	on	a
GROUP_BY	clause.	The	HAVING	parameter	says	that	you	want	only	those
groups	that	satisfy	the	condition	in	the	clause.	That	is,	the	HAVING	clause	tests
the	properties	of	each	group	not	the	properties	of	the	individual	rows	in	the
group.
The	HAVING	clause	can	contain	the	same	kind	of	search	condition	that	can	be
used	in	the	WHERE	parameter.

ORDER_BY
Use	this	parameter	to	specify	the	order	you	want	the	selected	rows	retrieved.
The	order	by	parameter	can	be	used	the	same	way	as	the	GROUP_BY
parameter.
Specify	the	name	of	the	column	or	columns	SQL	should	use	when	retrieving	the
rows	in	a	column.	If	more	than	one	column	is	specified,	commas	must	be	used
to	seperate	the	data.	For	example,	ORDER_BY('SURNAME,	GIVENAME').

DISTINCT
Specify	*YES	to	this	parameter	if	duplicate	rows	are	not	required	in	the	result
of	the	SELECT_SQL.
Specify	*NO	if	duplicate	rows	are	required	in	the	result	table.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.

If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	I/O	return	code	it	must	be
alphanumeric	with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special
field	#IO$STS	is	still	updated.
Refer	to	I/O	Command	Return	Codes	Table	for	values.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

7.85.2	SELECT_SQL	Column	Names	versus	Column	Values
The	basic	rule	is:
					if	a	name	is	preceded	by	a	'#'	it	means	the	Column	Name	should	be	used
					if	its	preceded	by	a	':'	it	means	the	Column	Value	should	be	used.
The	only	exception	to	this	is	in	the	WHERE	and	HAVING	parameters	when	the
#Field	is	the	ONLY	value	in	the	parameter.	In	that	case,	it	means	use	the
Column	Value.
The	secondary	rule	is	that	if	an	identifier	does	not	have	a	'#'	or	':'	then	it	will	be
interpreted	as	a	column	name	unless	its	also	an	SQL	Name,	in	which	case	it	will
be	left	exactly	as	typed	in	the	generated	code.	The	Visual	LANSA	Editor	will
display	the	following	warning	if	this	is	the	case:
Ambiguous.	Token	<name>	is	an	SQL	keyword	and	a	LANSA	field.	If	it's	a
LANSA	field,	prepend	a	'#'	to	the	field.
	

Following	are	some	examples	to	help	explain	it	more	fully.
When	using	a	column	name	that	is	an	SQL	keyword,	LANSA	will	not	convert
it.	So	it	must	be	specified	explicitly	as	either	the	mangled	name,	LANSA	Name
or	Long	Name,	depending	on	how	the	table	has	been	created.	E.g.	#SECTION.
This	is	mangled	to	S_CTION	and	its	long	name	may	be	set	to	SectionCode.
If	the	file	is	using	mangled	names	or	long	names	then	this	code	will	not	work
Select_Sql	Fields(#SECTION)	From_Files((PSLMSTX2))
Group_By(SECTION)		
Add_Entry
Endselect
	

The	SQL	would	be:
SELECT	"SectionCode"	FROM		"EVDEXLIB"."PersonnelMaster2"	GROUP
BY		"SECTION"
	

The	Group_By(SECTION)	will	be	left	as	it	is,	which	will	not	match	the	actual
column	name	-	S_CTION	or	SectionCode.
To	fix	this	code	in	the	most	flexible	manner	(See	Note	2	following)	prepend	a	'#'
to	the	name	as	in:
Select_Sql	Fields(#SECTION)	From_Files((PSLMSTX2))

Group_By(#SECTION)		
Add_Entry
Endselect
	

The	SQL		for	this	would	be:
SELECT	"SectionCode"	FROM		"EVDEXLIB"."PersonnelMaster2"	GROUP
BY		"SectionCode"
But	if	the	field	name	is	not	an	SQL	keyword	like	EMPNO	here,	it	WILL
automatically	convert	the	Field	name	to	the	actual	column	name,	with	or
without	the	'#':
Select_Sql	Fields(#EMPNO)	From_Files((PSLMSTX2))	Group_By(EMPNO)
Add_Entry
Endselect
	

If	the	Long	Name	for	EMPNO	is	EmployeeNumber,	and	PSLMSTX2	allows
long	names	then	the	Group_By	EMPNO	will	be	resolved	to	EmployeeNumber.
The	SQL	would	be:
SELECT	"EmployeeNumber"	FROM		"EVDEXLIB"."PersonnelMaster2"
GROUP	BY		"EmployeeNumber"
	

Note	1:	'#Field'	means	use	the	column	name	in	the	generated	SQL	in	all
parameters	except	when	it's	the	ONLY	value	in	WHERE	or	HAVING,	in	which
case	it	will	generate	the	runtime	contents	of	the	Field.	The	Free	Format	version
of	SELECT_SQL	-	the	USING	parameter	-	is	not	included	in	this.	It	has	its	own
semantics	described	in	SELECT_SQL	Free	Format	Parameters.
Note	2:	'Flexible	manner'	in	the	sense	that	if	the	old	style	Windows	mangling	of
column	names	is	being	used	then	the	generator	will	automatically	use
"S_CTION"	for	Windows	&	Linux	and	"SECTION"	on	IBM	i.

SELECT_SQL	Examples
Using	SELECT_SQL	With	the	DISTINCT	Option
Using	SELECT_SQL	With	Calculations
Using	SELECT_SQL	With	AND	and	OR	Operators
Using	SELECT_SQL	With	the	BETWEEN	Operator
Using	SELECT_SQL	With	the	DISTINCT	Option
This	example	demonstrates	how	to	use	the	SELECT_SQL	command	with	the
DISTINCT	option	to	eliminate	duplicate	field	values.	The	use	of	the	standard
SELECT_SQL	command	without	any	extra	options	is	also	demonstrated.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#NDSTEMPNO	#DSTEMPNO)
DEFINE					FIELD(#HEADING1)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#NDSTEMPNO)	REFFLD(#EMPNO)	COLHDG('Employee	number'	'Not	Distinct')
DEFINE					FIELD(#DSTEMPNO)	REFFLD(#EMPNO)	COLHDG('Employee	Number'	'Distinct')
DEFINE					FIELD(#ENTRYNO)	TYPE(*DEC)	LENGTH(5)	DECIMALS(0)	DESC('List	entry	counter')
											
CHANGE					FIELD(#HEADING1)	TO('''This	function	uses	SELECT_SQL	from	PSLSKL.''')
											
BEGIN_LOOP	
EXECUTE				SUBROUTINE(NOTDISTINC)
EXECUTE				SUBROUTINE(DISTINCT)
DISPLAY				FIELDS(#HEADING1)	DESIGN(*DOWN)	IDENTIFY(*NOID)	BROWSELIST(#EMPBROWSE)
END_LOOP			
											
SUBROUTINE	NAME(NOTDISTINC)
CLR_LIST			NAMED(#EMPBROWSE)
CHANGE					FIELD(#DSTEMPNO)	TO(*NULL)
SELECT_SQL	FIELDS(#EMPNO)	FROM_FILES((PSLSKL))
CHANGE					FIELD(#NDSTEMPNO)	TO(#EMPNO)
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
ENDROUTINE	
											
SUBROUTINE	NAME(DISTINCT)
CHANGE					FIELD(#ENTRYNO)	TO(1)
SELECT_SQL	FIELDS(#EMPNO)	FROM_FILES((PSLSKL))	DISTINCT(*YES)
GET_ENTRY		NUMBER(#ENTRYNO)	FROM_LIST(#EMPBROWSE)

CHANGE					FIELD(#DSTEMPNO)	TO(#EMPNO)
UPD_ENTRY		IN_LIST(#EMPBROWSE)
CHANGE					FIELD(#ENTRYNO)	TO('#ENTRYNO	+	1')
ENDSELECT		
ENDROUTINE	
	

Using	SELECT_SQL	With	Calculations
This	example	demonstrates	how	calculations	can	be	used	on	date	retrieved	by
the	SELECT_SQL	command.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#SURNAME	#SALARY	#STD_AMNT)
DEFINE					FIELD(#HEADING1)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING2)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING3)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
											
OVERRIDE			FIELD(#STD_AMNT)	COLHDG('Salary	+	10%')
											
CHANGE					FIELD(#HEADING1)	TO('''This	function	uses	SELECT_SQL	from	PSLMST.''')
CHANGE					FIELD(#HEADING2)	TO('''This	shows	a	list	of	employee	surnames	and	salaries	and	the	salary	+	10%.''')
CHANGE					FIELD(#HEADING3)	TO('''This	can	be	done	with	one	SELECT_SQL	statement.''')
											
BEGIN_LOOP	
CLR_LIST			NAMED(#EMPBROWSE)
SELECT_SQL	FIELDS(#SURNAME	#SALARY	(#STD_AMNT	'SALARY	*	1.10'))	FROM_FILES((PSLMST))
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
DISPLAY				FIELDS(#HEADING1	#HEADING2	#HEADING3)	DESIGN(*DOWN)	IDENTIFY(*NOID)	BROWSELIST(#EMPBROWSE)
END_LOOP	
	

Using	SELECT_SQL	With	AND	and	OR	Operators
This	example	demonstrates	how	the	SLECT_SQL	command	can	be	used	with
AND	and	OR	operators	to	conduct	more	complex	queries.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#ADDRESS2	#SALARY	#SURNAME)
DEFINE					FIELD(#HEADING1)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING2)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING3)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
											
CHANGE					FIELD(#HEADING1)	TO('''This	function	uses	SELECT_SQL	from	PSLMST.''')

CHANGE					FIELD(#HEADING2)	TO('''This	lists	all	employees	who	either	have	a	salary	in	the	range	10000	to	20000,''')
CHANGE					FIELD(#HEADING3)	TO('''or	who	live	in	SEVEN	HILLS.	This	can	be	done	with	one	SELECT_SQL	statement.''')
											
BEGIN_LOOP	
CLR_LIST			NAMED(#EMPBROWSE)
SELECT_SQL	FIELDS(#EMPNO	#SURNAME	#ADDRESS2	#SALARY)	FROM_FILES((PSLMST))	WHERE('((SALARY	>	10000)	AND	(SALARY	<	20000))	OR	(ADDRESS2	=	''SEVEN	HILLS.'')')
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
DISPLAY				FIELDS(#HEADING1	#HEADING2	#HEADING3)	DESIGN(*DOWN)	IDENTIFY(*NOID)	BROWSELIST(#EMPBROWSE)
END_LOOP	
	

Using	SELECT_SQL	With	the	BETWEEN	Operator
This	example	demonstrates	the	use	of	the	SELECT_SQL	command	with	the
BETWEEN	operator.	The	BETWEEN	operator	can	be	used	in	the	WHERE
clause	to	retrieve	data	between	specified	values.	It	can	also	be	used	to	retrieve
data	excluding	that	between	specified	values.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#SALARY)
DEFINE					FIELD(#HEADING1)	TYPE(*CHAR)	LENGTH(079)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING2)	TYPE(*CHAR)	LENGTH(079)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING3)	TYPE(*CHAR)	LENGTH(079)	INPUT_ATR(LC)
DEF_COND			NAME(*AS400)	COND('*CPUTYPE	=	AS400')
											
CHANGE					FIELD(#HEADING1)	TO('''EXAMPLE	1:	Select	all	employees	with	a	salary	between	30,000	and	60,000.''')
CHANGE					FIELD(#HEADING2)	TO(*BLANKS)
CHANGE					FIELD(#HEADING3)	TO('''This	can	be	done	with	one	SELECT_SQL	statement.''')
											
BEGIN_LOOP	
CHANGE					FIELD(#HEADING1)	TO('''EXAMPLE	1:	Select	all	employees	with	a	salary	between	30,000	and	60,000.''')
CLR_LIST			NAMED(#EMPBROWSE)
SELECT_SQL	FIELDS(#EMPNO	#SALARY)	FROM_FILES((PSLMST))	WHERE('SALARY	BETWEEN	30000	AND	60000')
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
											
EXECUTE				SUBROUTINE(DISP)
CHANGE					FIELD(#HEADING1)	TO('''EXAMPLE	2:	Select	all	employees	with	a	salary	outside	range	30,000	to	60,000.''')
CLR_LIST			NAMED(#EMPBROWSE)
SELECT_SQL	FIELDS(#EMPNO	#SALARY)	FROM_FILES((PSLMST))	WHERE('SALARY	NOT	BETWEEN	30000	AND	60000')
ADD_ENTRY		TO_LIST(#EMPBROWSE)

ENDSELECT		
EXECUTE				SUBROUTINE(DISP)
END_LOOP			
											
SUBROUTINE	NAME(DISP)
DISPLAY				FIELDS(#HEADING1	#HEADING2	#HEADING3)	DESIGN(*DOWN)	IDENTIFY(*NOID)	BROWSELIST(#EMPBROWSE)
ENDROUTINE	
	

For	more	examples	of	the	SELECT_SQL	command	please	see	‘All	About
SELECT_SQL’	in	The	Set	Collection.

7.85.4	SELECT_SQL	References
SAA	Structured	Query	Language/400	Reference	(SC41-9608)SAA	Structured
Query	Language/400	Programmers	Guide	(SC41-9609)

7.85.4	SELECT-SQL	Coercions
Following	are	some	examples	of	the	results	that	may	be	expected	when	using
SELECT_SQL	when	the	column	field	type	and	the	LANSA	field	type	are	not
the	same	-	thus	coercion	needs	to	occur.
Test	Values	were	all	numeric.	If	an	Alpha/String	contains	non-numeric	data,	the
coercion	to	numerics	is	undefined.	It	may	result	in	0,	it	may	ignore	non-numeric
characters	and	convert	the	rest,	and	it	may	ABEND.
Note	that	overflow	of	a	value	is	undefined.	For	example,	if	a	number	is	too	large
to	fit	in	to	a	field,	it	may	truncate	left	or	right	or	indeed	be	an	indeterminate
value.	On	IBM	i,	it	is	usually	a	fatal	error.
Where	NO	is	stated,	a	coercion	is	performed,	but	valid	coercions	are	not
common	due	to	formatting	requirements.
	Target
Field
Type

Windows
Packed
(63,0)

RDMLX
IBM	i
Packed
(63,0)

Windows
Alpha

RDMLX
IBM	i
Alpha

Windows
Signed
(63,0)

RDMLX
IBM	i
Signed
(63,0)

Windows
Char
(300)

RDMLX
IBM	i
Char(300)

Windows
Date

RDMLX
IBM	i
Date

Char
(65535)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Signed
(63,0)

Yes No Yes Yes Yes Yes Yes Yes Yes Yes

Time No ABEND No ABEND No ABEND No ABEND No No
Date No ABEND No ABEND No ABEND No ABEND Yes Yes
Binary Yes Yes Yes ABEND Yes Yes Yes ABEND No No
Alpha Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Signed
(63,63)

Yes No Yes Yes Yes Yes Yes Yes No No

Date
Time

No ABEND No ABEND No ABEND No ABEND No No

Packed
(63,0)

Yes Yes Yes Yes Yes No Yes Yes Yes Yes

Char
(300)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Packed
(63,63)

Yes Yes Yes Yes Yes No Yes Yes No No

Integer
(4)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Float(8) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

	

Coercion:	Best	attempt	to	take	a	value	of	one	type	and	make	some	sense	of	it	in
another	type.	For	example,	packed	1234	becomes	Alpha	"1234"	when	viewed
on	a	Form.	In	this	case	the	underlying	packed	data	has	been	converted	to	a
string	and	then	assigned	to	the	Alpha	field.	This	is	in	contrast	to	a	LANSA
OVERLAY,	where	no	conversion	is	performed	and	the	alpha	would	contain	the
same	binary	data	as	the	Packed	field,		that	is,	the	Alpha	would	NOT	display	the
number	when	viewed	on	a	Form.	Any	reliance	on	coercions	must	be	thoroughly
tested	for	the	entire	range	of	expected	source	values	on	all	databases	that	the
application	will	run	on.
RDML	Field	types	in	an	RDML	Function	are	all	interchangeably	coercible.	The
only	platform	difference	is	that	an	overflow	or	underflow	on	Visual	LANSA
platforms	sets	the	field	value	to	0.	On	IBM	i,	an	ABEND	occurs.	For	example,
Assigning	123	to	a	Packed(7,7).

7.86	SET_ERROR
The	SET_ERROR	command	is	used	to	set	an	error	against	a	field	within	a
BEGINCHECK	/	ENDCHECK	validation	block.
Normally	the	SET_ERROR	command	is	used	when	a	set	of	RDML	commands
other	than	the	standard	commands	RANGECHECK,	DATECHECK,
VALUECHECK,	etc	is	used	to	validate	a	field.

Also	See
7.86.1	SET_ERROR	Parameters
7.86.2	SET_ERROR	Examples
																																																									Required
	
		SET_ERROR	----	FOR_FIELD	----	field	name	---------------
------>
																													|expandable	group	expression	|
																														--------	100	max	-----------

																																																									Optional
	
													>--	MSGTXT	-------	*NONE	-------------------------->
																																message	text
	
													>--	MSGID	--------	*NONE	-------------------------->
																																message	identifier
	
													>--	MSGF	---------	*NONE		.	*LIBL	----------------->
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																													|expandable	group	expression	|
																														--------	20	max	------------
	

7.86.1	SET_ERROR	Parameters
FOR_FIELD
MSGDTA
MSGF
MSGID
MSGTXT

FOR_FIELD
Specifies	the	name	of	the	field(s)	which	are	to	have	an	error	set	against	them.
The	next	screen	presented	to	the	user	will	have	the	field(s)	displayed	in	reverse
image	with	the	cursor	positioned	to	the	first	field	in	error.	An	expandable	group
expression	can	be	entered	in	this	parameter.

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match
in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.

When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:

"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:

MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this:

MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:

MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.86.2	SET_ERROR	Examples
Example	1:	The	following	2	validation	blocks	are	functionally	identical.
The	first	uses	a	"standard"	validation	check:
BEGINCHECK
	
CONDCHECK	FIELD(#QUANTITY)	COND('(#QUANTITY	>=	0)	AND	(#QUANTITY	<=	(#MEASURE	*	1.462))')	MSGTXT('Quantity	exceeds	top	measurement	factor	or	is	negative')
	
ENDCHECK
	

The	second	uses	the	SET_ERROR	command	to	achieve	exactly	the	same	result:
BEGINCHECK
	
IF										COND('(#QUANTITY	<	0)	OR	(#QUANTITY	>	(#MEASURE	*	1.462))')
SET_ERROR	FOR_FIELD(#QUANTITY)	MSGTXT('Quantity	exceeds	top	measurement	factor	or	is	negative')
ENDIF
	
ENDCHECK
	

Example	2:	The	following	2	validation	blocks	are	also	functionally	identical.
BEGINCHECK
	
FILECHECK		FIELD(#PRODNO)	USING_FILE(PRODUCT)	MSGTXT('Product	number	not	found	in	product	master')
	
RANGECHECK	FIELD(#ORDNUM)	RANGE(A000000	Z999999)	MSGTXT('Order	number	is	not	in	range	A000000	to	Z999999')
	
RANGECHECK	FIELD(#QUANTITY)	RANGE(1	9999)	MSGTXT('Quantity	ordered	must	be	in	range	1	-	9999')
	
ENDCHECK
	

and
BEGINCHECK
	
CHECK_FOR		IN_FILE(PRODUCT)	WITH_KEY(#PRODNO)
IF_STATUS		IS_NOT(*EQUALKEY)
SET_ERROR		FOR_FIELD(#PRODNO)	MSGTXT('Product	number	not	found	in	product	master')
ENDIF

	
IF									'(#ORDNUM	<	A000000)	OR	(#ORDNUM	>	Z999999)'
SET_ERROR		FOR_FIELD(#ORDNUM)	MSGTXT('Order	number	is	not	in	range	A000000	-	Z999999')
ENDIF
	
IF									'(#QUANTITY	<	1)	OR	(#QUANTITY	>	9999)'
SET_ERROR		FOR_FIELD(#QUANTITY)	MSGTXT('Quantity	ordered	must	be	in	range	1	-	9999')
ENDIF
	
ENDCHECK
	

7.87	SET_MODE
The	SET_MODE	command	is	used	to	set	the	screen	mode	for	a	subsequent
"mode	sensitive"	command.	Refer	to	Screen	Modes	and	Mode	Sensitive
Commandsfor	details	of	"mode	sensitive"	commands	and	screen	mode
processing	techniques.	Mode	sensitive	commands	include	DISPLAY,
ADD_ENTRY,	INZ_LIST	and	UPD_ENTRY.

Also	See
7.87.1	SET_MODE	Parameters
7.87.2	SET_MODE	Examples
																																																									Required
	
		SET_MODE	-----	TO	-----------	*DISPLAY	--------------------
---|
																																*ADD
																																*CHANGE
																																*DELETE
	

7.87.1	SET_MODE	Parameters
TO

TO
Specifies	the	mode	to	which	the	system	is	to	be	set.	Allowable	values	are
*DISPLAY,	*ADD,	*CHANGE	and	*DELETE.

7.87.2	SET_MODE	Examples
Example	1:	Set	the	screen	to	display	mode	before	displaying	a	set	of	fields	to
the	user:
SET_MODE			TO(*DISPLAY)
DISPLAY				FIELDS(#ORDER	#CUSTNO	#ADDRL1	#ADDRL2	#POSTCD)
	

Example	2:	Set	the	mode	to	add	before	initializing	a	list	with	20	entries:
SET_MODE			TO(*ADD)
CHANGE					FIELD(#ORDERLINE)	TO(*NULL)
INZ_LIST			NAMED(#ORDERLINE)	NUM_ENTRYS(20)
	

7.88	SKIP
The	SKIP	command	is	used	to	skip	to	a	nominated	line	on	a	report	prior	to
printing	information	on	the	report.

Also	See
7.88.1	SKIP	Parameters
7.88.2	SKIP	Examples
																																																									Optional
	
		SKIP	---------	TO_LINE	------	1	------------------------------>
																																decimal	value
	
													>--	ON_REPORT	----	1	------------------------------|
																																report	number	1	->	8
	

7.88.1	SKIP	Parameters
ON_REPORT
TO_LINE

TO_LINE
Specifies	the	line	on	the	report	which	is	to	be	skipped	to.	The	default	value	is	1.
Otherwise	specify	a	line	number	between	1	and	the	overflow	line	associated
with	the	report.	See	the	DEF_REPORT	command	for	details	of	the	overflow
line.

ON_REPORT
Specifies	the	report	which	is	to	be	used	by	this	command.	Up	to	8	reports	can	be
produced	by	a	function	at	one	time.	Each	report	is	identified	by	a	number	in	the
range	1	to	8.	The	default	value	for	this	parameter	is	report	number	1.

7.88.2	SKIP	Examples
Skip	to	line	32	on	report	1	prior	to	printing	a	line	called	#TOTAL.
SKIP							TO_LINE(32)
PRINT						LINE(#TOTAL)
	

7.89	SORT_LIST
The	SORT_LIST	command	is	used	to	sort	a	list	into	a	nominated	sequence.
The	list	specified	must	be	a	working	list	(used	to	store	information	within	a
program).	It	is	not	possible	to	use	the	SORT_LIST	command	against	a	browse
list	(used	for	displaying	information	at	a	workstation).
Sorting	a	Static	Working	List	or	a	Dynamic	Working	List	with	all	its	entries	in	a
single	block	of	memory	is	accomplished	by	sorting	the	entries	in	place.
When	a	Dynamic	Working	List	has	its	entries	across	multiple	blocks	of
memory,	Visual	LANSA	performs	the	sort	by	allocating	a	single	block	of
memory;	filling	the	block	with	pointers	that	address	each	entry	in	the	working
list	and	then	sorting	the	block	of	pointers.
While	this	technique	enables	the	SORT_LIST	command	to	work	with	Dynamic
Working	Lists	managing	multiple	blocks	of	memory,	the	SORT_LIST	command
has	a	limitation	–	it	must	allocate	a	single	block	of	memory	that	can	contain	a
pointer	to	each	entry	in	the	working	list:
For	the	IBM	i	where	each	pointer	is	16	bytes	and	the	maximum	block	size	is
16MB,	only	1MB	of	entries	can	be	sorted.
For	32-bit	Windows	system	where	a	pointer	is	4	bytes	and	it	is	theoretically
possible	to	allocate	a	1GB	block	of	memory,	the	limit	is	much	higher.

Refer	to	the	7.23	DEF_LIST	command	for	further	information	of	lists	and	list
processing.

Also	See
7.89.1	SORT_LIST	Parameters
7.89.2	SORT_LIST	Examples
																																																									Optional
	
		SORT_LIST	----	NAMED	--------	*FIRST	---------------------
---->
																																name	of	list
	
																	BY_FIELDS	----	name	of	field	---	*ASCEND	------
|
																													|																				*DESCEND	|
																													|	expandable	group	expression	|
																														--------	100	maximum	--------

	

7.89.1	SORT_LIST	Parameters
BY_FIELDS
NAMED

NAMED
Specifies	the	name	of	the	list	which	is	to	be	sorted.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used.	This	list
must	have	the	TYPE(*WORKING)	parameter	to	be	valid.
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command	and	must	have	the
TYPE(*WORKING)	parameter.

BY_FIELDS
Specifies	the	fields	whose	contents	are	to	be	used	to	order	the	list	and	optionally
whether	the	ordering	is	to	be	in	ascending	or	descending	sequence.	An
expandable	group	expression	may	be	entered	in	this	parameter.
Fields	nominated	in	this	parameter	must	be	defined	in	the	list	nominated	in	the
NAMED	parameter.
Where	no	order	sequence	is	specified	for	a	field,	ascending	order	(*ASCEND)
is	assumed.

7.89.2	SORT_LIST	Examples
Example	1:	Sort	the	entries	in	a	list	called	#TOTALS	by	field	#COMP	into
ascending	order:
DEF_LIST			NAME(#TOTALS)	FIELDS(#COMP	#DEPT	#DIV	#SALES)	TYPE(*WORKING)	ENTRYS(200)
SORT_LIST		NAMED(#TOTALS)	BY_FIELDS(#COMP)
	

Example	2:	Sort	the	entries	in	a	list	called	#TOTALS	by	fields	#COMP	and
#DEPT	into	ascending	order:
DEF_LIST			NAME(#TOTALS)	FIELDS(#COMP	#DEPT	#DIV	#SALES)	TYPE(*WORKING)	ENTRYS(200)
SORT_LIST		NAMED(#TOTALS)	BY_FIELDS(#COMP	#DEPT)
	

Example	3:	Sort	the	entries	in	a	list	called	#TOTALS	by	field	#SALES
(descending	order),	then	fields	#COMP	#DEPT	and	#DIV	in	ascending	order:
DEF_LIST			NAME(#TOTALS)	FIELDS(#COMP	#DEPT	#DIV	#SALES)	TYPE(*WORKING)	ENTRYS(200)
SORT_LIST		NAMED(#TOTALS)	BY_FIELDS((#SALES	*DESCEND)	#COMP	#DEPT	#DIV)
	

7.90	SPACE
The	SPACE	command	is	used	to	space	a	nominated	number	of	lines	prior	to
printing	information	on	the	report.

Also	See
7.90.1	SPACE	Parameters
7.90.2	SPACE	Examples
																																																									Optional
	
		SPACE	--------	NUM_LINES	----	1	-----------------------------
->
																																decimal	value
	
													>--	ON_REPORT	----	1	------------------------------|
																																report	number	1	->	8
	

7.90.1	SPACE	Parameters
NUM_LINES
ON_REPORT

NUM_LINES
Specifies	the	number	of	lines	that	are	to	be	spaced	on	the	report.	The	default
value	is	1.	Otherwise	specify	a	value	between	1	and	100.

ON_REPORT
Specifies	the	report	which	is	to	be	used	by	this	command.	Up	to	8	reports	can	be
produced	by	a	function	at	one	time.	Each	report	is	identified	by	a	number	in	the
range	1	to	8.	The	default	value	for	this	parameter	is	report	number	1.

7.90.2	SPACE	Examples
Example	1:	Space	1	line	before	printing	a	line	called	#TOTAL:
SPACE
PRINT						LINE(#TOTAL)
	

Example	2:	Space	5	lines	before	and	after	printing	a	line	called	#TOTAL:
SPACE						NUM_LINES(5)
PRINT						LINE(#TOTAL)
SPACE						NUM_LINES(5)
	

7.91	SUBMIT
The	SUBMIT	command	is	used	to	submit	a	call	to	a	program	to	batch,	to	a
process/function	to	batch	or	to	start	a	Form	if	executing	on	Windows.
Optionally	parameters	may	be	passed	to	the	program	or	the	LANSA
process/function.
If	the	submitted	call	is	to	a	process/function	or	a	Form	it	is	also	possible	to
exchange	information	with	it	using	the	exchange	list.	Refer	to	the	EXCHANGE
command	for	more	details	of	the	exchange	list	and	how	it	is	used.

Portability
Considerations

Refer	to	parameters:	JOBD	,	JOBQ	,	PARM	,	PGM	and
OUTQ	and	Specifying	File	Names	in	I/O	Commands.

Also	See
7.91.1	SUBMIT	Parameters
7.91.2	SUBMIT	Comments	/	Warnings
7.91.3	SUBMIT	Examples
																																																									Optional
	
		SUBMIT	-------	PGM	----------	*NONE	-----------------------
>
																																pgm	name	.	*LIBL
																																pgm	name	.	library	name
	
													>--	PROCESS	------	*NONE	----------------------->
																																process	or	Form	name
	
													>--	FUNCTION	-----	*FIRST	---------------------->
																																function	name	or	*FORM	if	executing	a
Form
	
													>--	PARM	---------	list	of	parameters	---------->
																													|	expandable	group	expression	|
																														---------	20	maximum	--------
	
													>--	EXCHANGE	-----	field	name	------------------>
																											|expandable	group	expression	|

																											|																												|
																												---------	100	max	----------
	
													>--	JOB	----------	*PGMPRO	--------------------->
																																job	name
	
												>---	JOBD	---------	QBATCH	.	*LIBL	-------------->
																																*USRPRF
																																job	description	.	*LIBL
																																job	description	.	library	name
	
												>---	JOBQ	---------	*JOBD	----------------------->
																																job	queue	.	*LIBL
																																job	queue	.	library	name
	
												>---	OUTQ	---------	*JOBD	-----------------------|
																																*CURRENT
																																*USRPRF
																																*DEV
																																output	queue	.	*LIBL
																																output	queue	.	library	name
	

7.91.1	SUBMIT	Parameters
EXCHANGE
FUNCTION
JOB
JOBD
JOBQ
OUTQ
PARM
PGM
PROCESS

PGM
Specifies	the	name	of	the	program	which	is	to	be	invoked	in	batch.	This
parameter	is	a	qualified	name.	Either	a	program	name	or	a	process	name	(but
not	both)	must	be	specified	on	this	command.	If	required	the	library	in	which
the	program	resides	can	also	be	specified.	If	no	library	name	is	specified,	library
*LIBL	is	assumed	which	indicates	the	execution	time	library	list	of	the	batch
job	should	be	searched	to	find	the	program.

Portability
Considerations

	
The	submit	of	3GL	programs	is	only	supported	on	IBM	i	for
compatability	with	existing	RDML	Code.	As	such,	only
RDML	fields	are	supported	in	the	PARM	parameter	that	may
be	used	for	the	submit	of	3GL	programs.
Not	supported	in	the	current	version	of	Visual	LANSA	but
will	be	supported	in	a	future	release.	A	build	warning	will	be
generated	if	used	and	an	error	will	occur	at	execution	time.
Code	using	this	facility	can	be	made	conditional	so	that	it	is
not	executed	in	this	environment.

PROCESS
Specifies	the	name	of	the	LANSA	process	or	Form	that	is	to	be	invoked.	Either
the	PGM	parameter	or	the	PROCESS	parameter	(but	not	both)	must	be
specified.

Portability	Considerations 	

A	Form	can	only	be	executed	on	Windows.

	

FUNCTION
Optionally	specifies	the	function	within	the	nominated	process	that	should	be
invoked	in	batch.	If	this	parameter	is	not	specified	a	default	value	of	*FIRST	is
assumed	that	indicates	that	the	first	function	(alphabetically)	associated	with	the
nominated	process	should	be	invoked.
When	a	Form	is	specified	for	the	PROCESS	parameter,	this	value	must	be
*FORM.
	

PARM
Is	optional,	and	if	specified	defines	a	list	of	parameters	which	are	to	be	passed
to	the	batch	program	or	process.	The	parameters	must	correspond	in	number	and
type	to	those	expected	by	the	program	or	process.	This	is	not	checked	by
LANSA.
Parameters	specified	may	be	alphanumeric	or	numeric	literals,	field	names,	an
expandable	group	expression,	system	variables	or	process	parameters.	They	are
passed	to	the	called	program	or	process	with	the	same	type	and	length	attributes
as	they	are	defined	within	LANSA.
When	passing	numeric	parameters	to	a	process	they	must	always	be	in	packed
decimal	format.	This	rule	does	not	necessarily	apply	to	user	application
programs	written	in	other	languages	such	as	RPG	or	COBOL.
The	passing	of	parameters	to	a	process	is	not	recommended.	Use	the	exchange
list	instead	as	a	more	flexible	means	of	passing	information	to	the	batch	process.
Refer	to	the	EXCHANGE	parameter	of	this	command	and	to	the	EXCHANGE
command	in	this	guide	for	more	details	of	the	exchange	list	and	exchange	list
processing.

Portability
Considerations

Not	supported	in	the	current	release	of	Visual	LANSA	and
not	expected	to	be	in	future	releases.

EXCHANGE
Optionally	specifies	the	name	of	the	field(s)	whose	value(s)	are	to	be
exchanged,	or	the	name	of	a	group	that	defines	the	field(s)	whose	value(s)	are	to
be	exchanged,	with	the	batch	function.
For	details	of	how	field	and	group	names	can	be	specified	in	this	parameter,

refer	to	Field	Groups	and	Expandable	Groups.	For	more	details	of	how
information	is	exchanged	between	functions,	refer	to	the	EXCHANGE
command.
Use	of	the	EXCHANGE	parameter	is	only	valid	when	submitting	a
process/function/form	to	batch.	The	parameter	is	ignored	when	submitting	a
program	to	batch.
The	EXCHANGE	parameter	on	this	command	is	provided	for	convenience
only.	Using	it	is	identical	to	using	one	or	more	EXCHANGE	commands	before
the	SUBMIT	command.	Thus:
SUBMIT			PROCESS(PROC01)	FUNCTION(FUN1)	EXCHANGE(#A	#B	#C	#D)

is	functionally	identical	to:
EXCHANGE		FIELDS(#A	#B	#C	#D)
SUBMIT				PROCESS(PROC01)	FUNCTION(FUN1)
	

which	is	functionally	identical	to:
EXCHANGE		FIELDS(#A)
EXCHANGE		FIELDS(#B)
EXCHANGE		FIELDS(#C)
EXCHANGE		FIELDS(#D)
SUBMIT				PROCESS(PROC01)	FUNCTION(FUN1)
	

Note	that	the	exchange	list	is	cleared	of	all	entries	after	the	SUBMIT	command
has	completed	execution.

JOB
Optionally	specifies	the	name	that	is	to	be	assigned	to	the	batch	job	when	it	is
submitted.	The	name	specified	must	conform	to	IBM	i	naming	conventions.
Refer	to	the	LANSA	Application	Design	Guide	for	LANSA's	naming
conventions.
If	this	parameter	is	not	specified,	default	value	*PGMPRO	is	assumed.	This
indicates	that	the	job	submitted	should	have	the	same	name	as	either	the
program	specified	in	the	PGM	parameter	or	the	process/form	specified	in	the
PROCESS	parameter	(which	ever	is	used).

JOBD
Specifies	the	name	(and	optionally	library)	of	the	job	description	that	is	to	be
used	to	submit	the	job	to	batch.

To	submit	a	job	on	the	IBM	i	a	job	description	is	always	required.	The	details	of
what	a	job	description	is	and	how	it	is	used	are	beyond	the	scope	of	this	guide.
Refer	to	the	appropriate	IBM	supplied	manual	for	more	details	of	job
descriptions.
This	parameter	is	a	qualified	name.	Specify	the	name	of	the	job	description	that
is	to	be	used.	If	required	the	library	in	which	the	job	description	resides	can	also
be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed	which
indicates	the	execution	time	library	list	of	this	job	(ie:	the	job	executing	the
SUBMIT	command)	should	be	searched	to	locate	the	job	description.
If	this	parameter	is	not	specified,	default	value	QBATCH.*LIBL	is	assumed.
This	indicates	that	the	library	list	of	this	job	should	be	searched	to	locate	a	job
description	named	QBATCH.
Special	value	*USRPRF	indicates	that	the	job	description	associated	with	the
user	profile	under	whose	name	the	submitted	job	is	to	execute	should	be	used.
Normally	submitted	jobs	execute	under	the	user	profile	of	the	person	who
submitted	the	job.

Portability	Considerations Refer	to	IBM	i	Job	Queue	Emulation	.

JOBQ
Specifies	the	name	(and	optionally	library)	of	the	job	queue	onto	which	the
batch	job	should	be	placed.
All	batch	jobs	submitted	on	the	IBM	i	must	be	placed	onto	a	job	queue.	The
details	of	what	a	job	queue	is	and	how	it	is	used	are	beyond	the	scope	of	this
guide.	Refer	to	the	appropriate	IBM	supplied	manual	for	more	details	of	job
queues.
This	parameter	is	a	qualified	name.	Specify	the	name	of	the	job	queue	that	is	to
be	used.	If	required	the	library	in	which	the	job	queue	resides	can	also	be
specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed	which
indicates	the	execution	time	library	list	of	this	job	(ie:	the	job	executing	the
SUBMIT	command)	should	be	searched	to	locate	the	job	queue.
If	this	parameter	is	not	specified,	default	value	*JOBD	is	assumed.	This
indicates	that	the	job	queue	associated	with	the	job	description	specified	in	the
JOBD	parameter	should	be	used.

Portability	Considerations Refer	to	IBM	i	Job	Queue	Emulation	.

OUTQ

Specifies	the	name	(and	optionally	library)	of	the	output	queue	onto	which	the
batch	job's	output	should	be	placed.
All	batch	jobs	submitted	on	the	IBM	i	must	have	an	associated	output	queue.
The	details	of	what	an	output	queue	is	and	how	it	is	used	are	beyond	the	scope
of	this	guide.	Refer	to	the	appropriate	IBM	supplied	manual	for	more	details	of
output	queues.
This	parameter	is	a	qualified	name.	Specify	the	name	of	the	output	queue	that	is
to	be	used.	If	required	the	library	in	which	the	output	queue	resides	can	also	be
specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed	which
indicates	the	execution	time	library	list	of	this	job	(ie:	the	job	executing	the
SUBMIT	command)	should	be	searched	to	locate	the	output	queue.
If	this	parameter	is	not	specified,	default	value	*JOBD	is	assumed.	This
indicates	that	the	output	queue	associated	with	the	job	description	specified	in
the	JOBD	parameter	should	be	used.
Refer	to	the	appropriate	IBM	supplied	manual	for	more	details	of	how	the
special	parameter	values	*CURRENT,	*USRPRF	and	*DEV	can	be	used.

Portability
Considerations

Refer	to	the	SET_SESSION_VALUE	Built-In
Function.

7.91.2	SUBMIT	Comments	/	Warnings
Using	Fields	(i.e:	Variables)	in	the	Submit	Command
The	SUBMIT	command	parameters	PGM,	PROCESS,	FUNCTION,	JOB,
JOBD,	JOBQ	and	OUTQ	can	all	be	specified	as	either	alphanumeric	literals	(for
example,	GLR001)	or	as	LANSA	field	names	(for	example,	#PGMNAME).
This	allows	a	great	deal	of	flexibility	to	be	coded	into	one	SUBMIT	command.
Consider	the	following	RDML	program:
REQUEST	FIELDS(#OPTION)
	
CASE	OF_FIELD(#OPTION)
				WHEN	VALUE_IS('=	1')
									CHANGE	FIELD(#FUNCTION)	TO(PRINT)
				WHEN	VALUE_IS('=	2')
									CHANGE	FIELD(#FUNCTION)	TO(BATCH)
				WHEN	VALUE_IS('=	3')
									CHANGE	FIELD(#FUNCTION)	TO(PURGE)
				WHEN	VALUE_IS('=	4')
									CHANGE	FIELD(#FUNCTION)	TO(BACKUP)
ENDCASE
	
SUBMIT	PROCESS(ORDERS)	FUNCTION(#FUNCTION)	JOB(#FUNCTION)
	

This	program	allows	the	user	to	nominate	an	option	of	1,2,3	or	4	and	submit
functions	PRINT,	BATCH,	PURGE	or	BACKUP	respectively	(all	of	which
belong	to	process	ORDERS).	The	name	of	the	job	submitted	will	be	the	same	as
the	function.

Submitting	a	Process	or	Function
When	submitting	a	process/function	the	parameters	must	exactly	match	those
required	by	the	process	in	number	passed	and	type	(ie:	numeric	or	alpha).
The	parameters	passed	to	the	batch	process	or	function	can	be	a	field	name,
an	alphanumeric	literal,	a	numeric	literal,	a	system	variable	or	a	process
parameter.
Note	that	when	numeric	parameters	are	defined	for	a	process	they	are	always
packed	decimal.	Thus	any	numeric	parameters	passed	to	LANSA	processes
should	also	be	packed	decimal	with	the	same	length	and	number	of	decimal

positions.	Failure	to	observe	this	rule	may	result	in	unpredictable	results.

Calling	a	User	Program
The	parameters	passed	to	the	batch	program	can	be	a	field	name,	an
alphanumeric	literal,	a	numeric	literal,	a	system	variable	or	a	process
parameter.
If	special	value	*LIBL	was	nominated	as	the	library	containing	the	program
to	be	invoked	in	batch	then	the	program	should	be	in	one	of	the	libraries
specified	in	the	INLLIBL	(initial	library	list)	parameter	of	the	job	description
nominated	in	the	JOBD	(job	description)	parameter	of	this	command.

Submitting	a	Form
When	sugmitting	a	form,	the	value	*FORM	must	be	supplied	to	the	SUBMIT
command's	FUNCTION	parameter	in	a	field.	For	example,
				CHANGE	FIELD(#FORM)	TO	('''*FORM''')
				SUBMIT	PROCESS(ORDERFRM)	FUNCTION	(#FORM)
	

7.91.3	SUBMIT	Examples
Example	1:	Submit	a	call	to	a	program	named	INVOICE	in	library	PRODLIB
and	pass	two	parameters,	invoice	number	and	inquiry	date	as	literals.
SUBMIT	PGM(INVOICE.PRODLIB)	PARM('INV123'	'010187')
	

Example	2:	Submit	a	call	to	program	PUTBATCH	passing	the	fields	#BATCH,
#ORDER	and	the	current	date	(which	is	obtained	from	system	variable	*DATE)
as	parameters.	Use	job	description	GLEDGER	and	job	queue	QNIGHT	to
submit	the	job.
SUBMIT	PGM(PUTBATCH)	PARM(#BATCH	#ORDER	*DATE)	JOBD(GLEDGER)	JOBQ(QNIGHT)

Example	3:	Submit	a	call	to	LANSA	process	ORDERS	and	request	that	the	first
function	in	the	process	be	executed.
SUBMIT	PROCESS(ORDERS)
	

Example	4:	Submit	a	call	to	LANSA	process	ORDERS2	and	request	that	the
function	PURGE	be	executed.	Exchange	the	order	number	and	batch	number
with	the	function.
SUBMIT	PROCESS(ORDERS2)	FUNCTION(PURGE)	EXCHANGE(#ORDER	#BATCH)
	

Example	5:	Write	a	function	called	PRNTBCH	(belonging	to	process
GLPROC01)	that	when	invoked	interactively	asks	the	user	to	specify	the	print
criteria,	submits	itself	to	batch,	and	when	invoked	in	batch	uses	the	print	criteria
to	produce	the	required	report	for	the	user.	This	example	also	illustrates	the	use
of	expandable	groups	to	simplify	field	lists.
GROUP_BY	NAME(#XG_EXCH)	FIELDS(#GLNUMB	#BATCH	#MINCREDIT)
IF	COND('*JOBMODE	=	I')
										REQUEST	FIELDS(#XG_EXCH)
										SUBMIT		PROCESS(GLPROC01)	FUNCTION(PRNTBCH)	EXCHANGE(#XG_EXCH)
ELSE
										SELECT		FIELDS(#CREDIT	#DEBIT)	FROM_FILE(GLMASTV3)	WITH_KEY(#GLNUMB	#BATCH)	WHERE('#CREDIT	*GE	#MINCREDIT')
										UPRINT		FIELDS(#GLNUMB	#BATCH	#CREDIT	#DEBIT)
										ENDSELECT
										ENDPRINT
ENDIF
	

When	run	interactively	(ie:	*JOBMODE	=	I)	,	this	function	requests	that	the
user	input	a	general	ledger	number,	a	batch	number	and	a	minimum	credit
amount.	It	then	submits	itself	to	batch,	exchanging	the	general	ledger	number,
batch	number	and	minimum	credit	amount	that	were	input	by	the	user.
When	invoked	in	batch,	this	function	selects	only	records	that	match	the	user's
request	from	logical	file	GLMASTV3	and	prints	them.	The	initial	value	of
fields	#GLNUMB,	#BATCH	and	#MINCREDIT	are	established	from	the
exchange	list	that	was	passed	to	the	batch	version	of	this	function	from	the
interactive	version.
Example	6:	Submit	a	form	called	ORDERFRM
				CHANGE	FIELD(#FORM)	TO	('''*FORM''')
				SUBMIT	PROCESS(ORDERFRM)	FUNCTION	(#FORM)
	

7.92	SUBROUTINE
The	SUBROUTINE	command	is	used	to	define	the	start	of	a	subroutine	and
optionally	nominate	parameters	which	must	be	passed	to	it.

Portability
Considerations

Subroutines	that	are	nested	inside	one	another	are	not
supported	in	the	current	release	of	Visual	LANSA.	This	is	a
very	rarely	used	coding	technique	and	thus	unlikely	to	cause
any	problems.	In	the	event	of	problems	simply	unnest	the
subroutine(s)	involved	and	recompile.

Also	See
7.92.1	SUBROUTINE	Parameters
7.92.2	SUBROUTINE	Comments	/	Warnings
7.92.3	SUBROUTINE	Examples	-	Part	1
7.92.4	SUBROUTINE	Examples	-	Part	2
7.38	ENDROUTINE
7.45	EXECUTE
EVTROUTINE
MTHROUTINE
PTYROUTINE
																																																									Required
	
		SUBROUTINE	---	NAME	---------	subroutine	name	---------
------->

																																																									Optional
	
													>--	PARMS	--------	field	name	--		*BOTH	-----------|
																													|																	*RECEIVED		|
																													|																	*RETURNED		|
																													|																												|
																														-----------	50	max	---------
	

7.92.1	SUBROUTINE	Parameters
NAME
PARMS

NAME
Specifies	the	name	of	the	subroutine	that	is	to	be	executed.	The	name	used	must
be	unique	within	the	function.

PARMS
Optionally	defines	a	list	of	parameters	that	must	be	passed	to	the	subroutine	by
any	EXECUTE	command	that	uses	it.	All	parameters	must	be	defined	as	fields
either	in	the	LANSA	data	dictionary	or	in	the	function	with	a	DEFINE
command.
Following	each	field	in	the	parameter	list	is	an	optional	value	that	indicates
whether	the	parameter	is	to	be	received	or	returned	by	the	subroutine	(or	both).
*BOTH,	which	is	the	default	value,	indicates	that	the	parameter	is	to	be
received	from	the	value	in	the	callers	WITH_PARMS	list,	and	returned	into	the
callers	WITH_PARMS	value	(if	it	is	a	field	name).
*RECEIVED	indicates	that	the	parameter	is	to	be	received	from	the	value	in	the
caller's	WITH_PARMS	list,	but	not	returned	into	the	caller's	WITH_PARMS
value.
*RETURNED	indicates	that	the	parameter	is	not	to	be	received	from	the	value
in	the	caller's	WITH_PARMS	list,	but	only	returned	into	the	caller's
WITH_PARMS	value	(if	it	is	a	field	name).
When	executing	a	subroutine,	the	parameters	specified	in	the	WITH_PARMS
parameter	of	the	EXECUTE	command	must	exactly	match	in	number	and	type
the	parameters	defined	in	the	PARMS	parameter	of	the	associated
SUBROUTINE	command.

7.92.2	SUBROUTINE	Comments	/	Warnings
The	parameters	passed	to	a	subroutine	by	an	EXECUTE	command	can	be	a
field	name,	an	alphanumeric	literal,	a	numeric	literal,	a	system	variable	or	a
process	parameter.
The	parameters	defined	in	a	subroutine	(ie:	in	the	PARMS	parameter)	must	be
field	names.	All	fields	used	in	the	PARMS	parameter	must	be	defined	in	the
LANSA	data	dictionary	or	within	the	function	by	a	DEFINE	command.
The	values	specified	in	the	WITH_PARMS	parameter	of	an	EXECUTE
command	are	mapped	into	the	fields	specified	in	the	PARMS	parameter	of	the
associated	SUBROUTINE	command	just	prior	to	executing	the	subroutine
when	they	have	the	attribute	*BOTH	or	*RECEIVED.
When	the	subroutine	has	completed	execution	the	fields	nominated	in	the
PARMS	parameter	of	the	SUBROUTINE	command	are	conditionally	mapped
back	into	the	values	specified	in	the	WITH_PARMS	parameter	of	the
EXECUTE	command.	The	condition	is	that	fields	are	not	mapped	back	when
the	WITH_PARMS	value	is	a	literal	value	(alphanumeric	or	numeric),	a	system
variable,	a	process	parameter	or	the	parameter	has	the	attribute	*RECEIVED.
The	default	mapping	value	for	parameters	is	*BOTH.	However,	it	is	worth
taking	the	time	to	specify	*RECEIVED	or	*RETURNED	as	this	will	reduce	the
time	taken	for	parameter	mapping.
Subroutines	can	be	coded	anywhere	within	a	function	and	even	nested	within
one	another	like	this:

SUBROUTINE	NAME(SUB01)
..........
DISPLAY	..	etc,	etc
	
						SUBROUTINE	NAME(SUB02)
					
					
					
						ENDROUTINE	(subroutine	SUB02)
	
CHANGE	..	etc,etc
..........
	

						SUBROUTINE	NAME(SUB03)
					
					
					
						ENDROUTINE	(subroutine	SUB03)
..........
GOTO
..........
..........
ENDROUTINE	(subroutine	SUB01)
	

However,	most	programmers	prefer	to	program	subroutines	at	the	end	of	the
function,	without	nesting	them	inside	one	another.
There	are	very	slight	performance	benefits	in	coding	subroutines	in	decreasing
order	of	use.	If	the	most	heavily	used	subroutines	are	coded	first,	then	the
operating	system	will	have	less	work	to	do	when	you	request	that	a	subroutine
be	executed.
In	the	example	above	the	command	"following"	(ie:	executed	after)	the
DISPLAY	command	is	the	CHANGE	command	even	though	subroutine	SUB02
is	between	the	2	commands.	Positioning	SUB02	this	way	does	not	cause	it	be
executed.	The	only	way	to	execute	SUB02	is	via	an	EXECUTE	command.
The	ability	to	code	subroutines	anywhere	within	a	function	and	nest
subroutines	within	one	another	does	not	imply	any	"scope"	of	the	subroutines
or	the	fields	that	they	declare.	The	"scope"	or	"scoping"	facility	is	a	feature	of
some	computer	languages	such	as	PL/1	and	is	not	available	in	LANSA.

7.92.3	SUBROUTINE	Examples	-	Part	1
Executing	a	SUBROUTINE
Executing	a	SUBROUTINE	with	parameters
Executing	a	SUBROUTINE	with	numeric	literal	as	parameters
Executing	a	SUBROUTINE	with	alphanumeric	literals	as	parameters
Executing	a	SUBROUTINE	with	system	variables	as	parameters
Using	SUBROUTINE	to	reduce	coding
Using	SUBROUTINE	to	print	employee	details
Techniques	for	documenting	SUBROUTINES	using	the	BBUSE	template
Recursion
Subroutine	variables	are	not	locally	scoped
Emulating	local	scoping	by	using	a	naming	standard
Techniques	for	saving	and	restoring	globally	scoped	variables
7.92.4	SUBROUTINE	Examples	-	Part	2
Executing	a	SUBROUTINE
This	is	an	example	of	how	to	execute	a	subroutine	without	passing	any
parameters:
EXECUTE				SUBROUTINE(SUB1)
SUBROUTINE	NAME(SUB1)
*										<<Logic>>
ENDROUTINE	
	

Executing	a	SUBROUTINE	with	parameters
To	pass	parameters	to	a	subroutine,	use	the	WITH_PARMS()	parameter	in	the
EXECUTE	command.	You	must	make	sure	the	EXECUTE	command	passes	the
same	number	of	fields	or	values	(WITH_PARMS)	as	the	SUBROUTINE	is
expecting:
EXECUTE				SUBROUTINE(SUB1)	WITH_PARMS(#EMPNO)
EXECUTE				SUBROUTINE(SUB2)	WITH_PARMS(#GIVENAME	#SURNAME)
EXECUTE				SUBROUTINE(SUB3)	WITH_PARMS(#SALARY	#TOTAL)
SUBROUTINE	NAME(SUB1)	PARMS((#EMP1	*RETURNED))
CHANGE					FIELD(#EMP1)	TO(A0088)
ENDROUTINE	

SUBROUTINE	NAME(SUB2)	PARMS((#NAME1	*RETURNED)	(#NAME2	*RETURNED))
CHANGE					FIELD(#NAME1)	TO(JOHN)
CHANGE					FIELD(#NAME2)	TO(COOK)
ENDROUTINE	
SUBROUTINE	NAME(SUB3)	PARMS((#WAGES	*RECEIVED)	(#SUM	*RETURNED))
CHANGE					FIELD(#WAGES)	TO(230000)
CHANGE					FIELD(#SUM)	TO('#WAGES	*	1.1')
ENDROUTINE
	

In	this	example,	any	field	specified	with	*RETURNED,	like	#EMP1,	will	be
mapped	back	to	#EMPNO	when	the	subroutine	completes.
If	a	function	is	coded	with	this	logic	then	the	final	result	for	each	subroutine	for
fields	#EMPNO,	#GIVENAME,	#SURNAME	and	#TOTAL	will	be:

				#EMPNO	=	A0080
				#GIVENAME	=	John
				#SURNAME	=	COOK
				#TOTAL	=	253,000.00
	

Executing	a	SUBROUTINE	with	numeric	literal	as	parameters
In	this	example,	subroutine	A	receives	two	numeric	values,	one	passed	in	field
#STD_NUM	and	a	second	one	as	a	numeric	literal	(0.75).	The	subroutine	makes
a	calculation	and	returns	a	value	in	the	field	#DISCOUNT.
DEFINE					FIELD(#DISCOUNT)	TYPE(*DEC)	LENGTH(10)	DECIMALS(2)	LABEL(DISCOUNT)	EDIT_CODE(3)
DEFINE					FIELD(#Q)	REFFLD(#STD_NUM)
DEFINE					FIELD(#N)	TYPE(*DEC)	LENGTH(3)	DECIMALS(2)
DEFINE					FIELD(#D)	TYPE(*DEC)	LENGTH(10)	DECIMALS(2)	EDIT_CODE(3)
BEGIN_LOOP	
REQUEST				FIELDS(#STD_NUM)
EXECUTE				SUBROUTINE(A)	WITH_PARMS(#STD_NUM	0.75	#DISCOUNT)
DISPLAY				FIELDS(#DISCOUNT)
CHANGE					FIELD(#DISCOUNT)	TO(#ZEROS)
END_LOOP			
SUBROUTINE	NAME(A)	PARMS((#Q	*RECEIVED)	(#N	*RECEIVED)	(#D	*RETURNED))
CHANGE					FIELD(#D)	TO('#Q	*	#N')
ENDROUTINE
	

A	problem	can	occur	if	fields	for	*RECEIVED	or	*RETURNED	parameters	in
a	subroutine	are	not	defined	in	the	same	field	format	(e.g.	Length,	type)	with
fields	or	literals	that	are	used	in	the	EXECUTE	command	as	in		this	example:
DEFINE					FIELD(#DISCOUNT)	TYPE(*DEC)	LENGTH(10)	DECIMALS(2)	LABEL(DISCOUNT)	EDIT_CODE(3)
DEFINE					FIELD(#Q)	REFFLD(#STD_NUM)
DEFINE					FIELD(#N)	REFFLD(#STD_NUM)
DEFINE					FIELD(#D)	TYPE(*DEC)	LENGTH(10)	DECIMALS(2)	EDIT_CODE(3)
BEGIN_LOOP	
EXECUTE				SUBROUTINE(A)	WITH_PARMS(1234	0.75	#DISCOUNT)
DISPLAY				FIELDS(#DISCOUNT)
CHANGE					FIELD(#DISCOUNT)	TO(#ZEROS)
END_LOOP			
SUBROUTINE	NAME(A)	PARMS((#Q	*RECEIVED)	(#N	*RECEIVED)	(#D	*RETURNED))
CHANGE					FIELD(#D)	TO('#Q	*	#N')
ENDROUTINE
	

Field	#N	is	defined	as	packed	7,0
The	literal	0.75	is	passed	to	the	subroutine,	but	this	does	not	match	the	number
of	decimals	that	the	subroutine	is	expecting	for	field	#N.
As	a	result,	the	field	#N	received	into	the	subroutine	will	incorrectly	contain	the
value	zero.
To	work	correctly,	field	#N	should	be	defined	as	follows:
DEFINE					FIELD(#N)	TYPE(*DEC)	LENGTH(3)	DECIMALS(2)
	

Executing	a	SUBROUTINE	with	alphanumeric	literals	as	parameters
In	this	example,	subroutine	STDNAME	concatenates	two	strings	from	fields
#STRING1	and	#STRING2	into	field	#TEXT,	which	is	mapped	back
(*RETURNED)	into	#CTEXT:
DEFINE					FIELD(#OPTION)	TYPE(*CHAR)	LENGTH(1)
DEFINE					FIELD(#CTEXT)	TYPE(*CHAR)	LENGTH(30)	LABEL('Text')
BEGIN_LOOP	
REQUEST				FIELDS(#OPTION)
CASE							OF_FIELD(#OPTION)
WHEN							VALUE_IS('=	C')
EXECUTE				SUBROUTINE(STDNAME)	WITH_PARMS(WILSON	COOKSON	#CTEXT)
DISPLAY				FIELDS(#CTEXT)
OTHERWISE		

MESSAGE				MSGTXT('Not	a	valid	option')
ENDCASE				
END_LOOP			
SUBROUTINE	NAME(STDNAME)	PARMS((#STRING1	*RECEIVED)	(#STRING2	*RECEIVED)	(#TEXT	*RETURNED))
DEFINE					FIELD(#STRING1)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#STRING2)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#TEXT)	TYPE(*CHAR)	LENGTH(30)
USE								BUILTIN(CONCAT)	WITH_ARGS(#STRING1	#STRING2)	TO_GET(#TEXT)
ENDROUTINE	
	

Executing	a	SUBROUTINE	with	system	variables	as	parameters
It	is	also	possible	to	pass	system	variables	as	parameters.	In	this	example	the
system	variable	*FUNCTION:
DEFINE					FIELD(#TEMP)	REFFLD(#FUNCTION)
DEFINE					FIELD(#TEMP2)	REFFLD(#STD_TEXT)
DEFINE					FIELD(#TEXT)	TYPE(*CHAR)	LENGTH(20)
BEGIN_LOOP	
EXECUTE				SUBROUTINE(VARIABLE)	WITH_PARMS(*FUNCTION	#STD_TEXT)
DISPLAY				FIELDS(#STD_TEXT)
MESSAGE				MSGTXT('Not	a	valid	option')
END_LOOP			
SUBROUTINE	NAME(VARIABLE)	PARMS((#TEMP	*RECEIVED)	(#TEMP2	*RETURNED))
CHANGE					FIELD(#TEXT)	TO('Function	name:')
USE								BUILTIN(CONCAT)	WITH_ARGS(#TEXT	#TEMP)	TO_GET(#TEMP2)
ENDROUTINE	
	

Using	SUBROUTINE	to	reduce	coding
SUBROUTINEs	are	a	very	useful	way	to	reduce	the	amount	of	RDML	code	and
at	the	same	time	make	it	simpler	and	easier	to	understand.	Consider	this	case
where	the	CHANGE	command	is	used	to	add	values	to	a	working	list:
CHANGE					FIELD(#EMPNO)	TO(A0090)
CHANGE					FIELD(#NAME)	TO('Fred')
CHANGE					FIELD(#SALARY)	TO(23456.78)
ADD_ENTRY		TO_LIST(#LIST)
CHANGE					FIELD(#EMPNO)	TO(A0070)
CHANGE					FIELD(#NAME)	TO('Mary')
CHANGE					FIELD(#SALARY)	TO(43456.78)

ADD_ENTRY		TO_LIST(#LIST)
CHANGE					FIELD(#EMPNO)	TO(A0072)
CHANGE					FIELD(#NAME)	TO('William')
CHANGE					FIELD(#SALARY)	TO(33456.78)
ADD_ENTRY		TO_LIST(#LIST)
	

By	changing	the	code	to	use	a	subroutine	which	receives	the	values	we	want	to
add	to	the	working	list,	the	function	becomes	neater	and	the	code	more
structured:
EXECUTE				SUBROUTINE(ADDTOLIST)	WITH_PARMS(A0090	'Fred'	23456.78)
EXECUTE				SUBROUTINE(ADDTOLIST)	WITH_PARMS(A0070	'Mary'	43456.78)
EXECUTE				SUBROUTINE(ADDTOLIST)	WITH_PARMS(A0072	'William'	33456.78)
SUBROUTINE	NAME(ADDTOLIST)	PARMS((#EMPNO	*RECEIVED)	(#NAME	*RECEIVED)	(#SALARY	*RECEIVED))
ADD_ENTRY		TO_LIST(#LIST)
ENDROUTINE	
	

Using	SUBROUTINE	to	print	employee	details
Similar	to	other	examples,	in	this	one	we	use	a	subroutine	to	execute	a	PRINT
of	employee	details	selected	from	PSLMST:
Using	a	subroutine	to	print	a	line	is	a	useful	method	for	handling	those
situations	where	it	is	necessary	to	print	the	same	line	in	several	different	parts	of
the	same	LANSA	function.
DEFINE					FIELD(#D1)	REFFLD(#EMPNO)
DEFINE					FIELD(#D2)	REFFLD(#SURNAME)
DEFINE					FIELD(#D3)	REFFLD(#GIVENAME)
DEFINE					FIELD(#OPTION)	TYPE(*CHAR)	LENGTH(2)
DEF_LIST			NAME(#LIST1)	FIELDS(#EMPNO	#SURNAME	#GIVENAME)
BEGIN_LOOP	
REQUEST				FIELDS(#OPTION)
CASE							OF_FIELD(#OPTION)
WHEN							VALUE_IS('=	A')
SELECT					FIELDS(#EMPNO	#SURNAME	#GIVENAME)	FROM_FILE(PSLMST)
ADD_ENTRY		TO_LIST(#LIST1)
EXECUTE				SUBROUTINE(PRINT)	WITH_PARMS(#EMPNO	#SURNAME	#GIVENAME)
ENDSELECT		
OTHERWISE		
CALL							PROCESS(MYPROC)

ENDCASE				
DISPLAY				FIELDS(#EMPNO	#SURNAME	#GIVENAME)	BROWSELIST(#LIST1)
END_LOOP			
SUBROUTINE	NAME(PRINT)	PARMS((#D1	*RECEIVED)	(#D2	*RECEIVED)	(#D3	*RECEIVED))
DEF_LINE			NAME(#NAME)	FIELDS(#D1	#D2	#D3)
PRINT						LINE(#NAME)
ENDROUTINE	
	

7.92.4	SUBROUTINE	Examples	-	Part	2
Techniques	for	documenting	SUBROUTINES	using	the	BBUSE	template
Recursion
Subroutine	variables	are	not	locally	scoped
Emulating	local	scoping	by	using	a	naming	standard
Techniques	for	saving	and	restoring	globally	scoped	variables
7.92.3	SUBROUTINE	Examples	-	Part	1
Techniques	for	documenting	SUBROUTINES	using	the	BBUSE	template
When	using	the	SUBROUTINE	command	it	is	often	a	good	idea	to	use	the
LANSA	template	(for	both	Visual	LANSA	and	LANSA	for	IBM	i)	called
BBSUB.
This	template	will	provide	the	basic	coding	layout	for	subroutine	like	this:
*===
*Subroutine:
*Description....:
*===
SUBROUTINE	NAME(SUB1)
ENDROUTINE
	

If	a	parameter	is	required	for	the	subroutine	then	this	template	will	provide	the
basic	coding	layout	automatically	like	this:
*===
*Subroutine:
*Description....:
*Parameters:			Name		Type		Len		Description
*-----	-------	-------	--------	-------------
*#XXXXXX				XXX		99,9	XXXXXXXXXXXXXXXXXXXX
				*===
SUBROUTINE	NAME(SUB1)	PARMS(#XXXX)
ENDROUTINE	
	

For	example	subroutine	named	SUB1	has	parameters	#EMPNO,	#SURNAME
and	#GIVENAME,	these	parameters	can	then	be	commented	in	the	basic	layout
created	by	the	BBUSE	template	to	make	the	subroutine	more	understandable
and	easier	to	implement	in	the	future.

Hence	the	layout	can	contain	information	about	fields	used	as	parameters	used
in	the	subroutine	like	this:
*===
*Subroutine....:SUB1
*Description....:	To	retrieve	an	employee	record	from	file	PSLMST
*Parameters:	#EMPNO,	#SURNAME	and	#GIVENAME		
*Name								Type						Len						Description							
*-----							-------			-------		-----------------------------
*#EMPNO1					A									5								Employee	number
*#NAME1						A									20							Surname
*#NAME2						A									20							Givename	
				*==
SUBROUTINE
NAME(SUB1)	PARMS((#EMPNO1	*RETURNED)	(#SURNAME	*RETURNED)	(#GIVENAME	*RETURNED))
ENDROUTINE
	

Recursion
You	should	avoid	recursively	invoking	SUBROUTINEs,	either	directly	or
indirectly.
Here	SUBROUTINE	SUB_A	is	invoked	recursively	by	itself:

SUBROUTINE	SUB_A
<<	ETC	>>
EXECUTE	SUB_A
<<	ETC	>>
ENDROUTINE		
	

Within	Visual	LANSA,	this	example	will	produce	a	fatal	error,	while	in	LANSA
for	i,	it	simply	will	fail	to	compile.
Here	SUBROUTINE	SUB_A	is	invoked	recursively	by	SUBROUTINE
SUB_B:	

SUBROUTINE	SUB_A
<<	ETC	>>
EXECUTE	SUB_B
<<	ETC	>>
ENDROUTINE		

	
SUBROUTINE	SUB_B
<<	ETC	>>
EXECUTE	SUB_A
<<	ETC	>>
ENDROUTINE		
	

Once	again	within	"Visual	LANSA",	this	example	will	produce	a	fatal	error,	but
in	LANSA	for	i,	it	will	end	up	in	a	recursive	loop	which	will	have	to	be	ended
manually.
Unlike	subroutines	MTHROUTINES	(Method	routines)	in	RDMLX	are
allowed	to	be	recursive,	so	this	factorial	calculator	should	function	correctly:
Mthroutine	Factorial
Define_Map	*input	#Std_Num	#OfNumber
Define_Map	*output	#Std_Num	#ReturnResult
If								'#OfNumber.Value	=	1'
Set							#ReturnResult	Value(1)
Else						
Change				#Std_Num	'#OfNumber.Value	-	1'
Invoke				#Com_Owner.Factorial	OfNumber(#Std_Num)	ReturnResult(#ReturnResult)
Change				#Std_NumL	'#OfNumber.Value	*	#ReturnResult.Value'
Set							#ReturnResult	Value(#Std_Num)
Endif					
Endroutine
	

So	Invoke	#Com_Owner.factorial	ofNumber(4)	ReturnResult(#Std_Num)
should	return	a	result	of	4	*	3	*	2	*1	=	24.
Subroutine	variables	are	not	locally	scoped
Often	the	arguments	received	and	returned	by	subroutines	are	defined	within	the
subroutine	like	this:
SUBROUTINE	NAME(A)	PARMS(#A	#B	#C)
DEFINE				FIELD(#A)	REFFLD(#SALARY)
DEFINE				FIELD(#B)	REFFLD(#PERCENT)
DEFINE				FIELD(#C)	REFFLD(#SALARY)
	

In	RDML,	such	field	definitions	are	simply	a	convention	and	are	not	locally

scoped.	The	fields	are	globally	scoped	within	the	RDML	function	(i.e:
accessible	to	all	the	code	in	the	function).
So	in	this	example	in	this	code,	SUBROUTINE	SUB_A	will	return	the	value
42.45,	not	17.72:
FUNCTION		OPTIONS(*DIRECT)
Define				Field(#newsal)	Reffld(#salary)
Execute			Subroutine(SUB_A)	With_Parms(#newsal)
Display			Fields(#newsal)
									
Subroutine	SUB_A	((#A	*returned))
Define				#A	reffld(#salary)
Change				#A	17.72
Execute			SUB_B
Endroutine	
									
Subroutine	SUB_B
Change					#A	42.45
Endroutine
	

This	happens	because	#A	is	globally	scoped.	So	when	you	reference	#A	in	your
code	it	is	always	the	same	instance	of	#A.				
In	RDMLX	though,	the	EVTROUTINEs,	MTHROUTINEs	and
PTYROUTINEs	do	support	local	scoping.
If	you	coded	the	previous	SUB_A	and	SUB_B	subroutines	as	methods	like	this:
Function		Options(*Direct)
Begin_Com	Role(*Extends	#Prim_Form)
Define_Com	Class(#Salary.Visual)	Name(#Salary)	DisplayPosition(1)	Height(19)	Left(43)	Parent(#Com_Owner)	TabPosition(1)	Top(72)	Width(278)
									
Evtroutine	handling(#com_owner.Initialize)
Set							#com_owner	caption(*component_desc)
Invoke				#com_owner.SUB_A	A(#Salary)
Endroutine	
									
Mthroutine	SUB_A
Define_Map	*output	#Salary	#A		
Set							#A	Value(17.72)
Invoke				#com_owner.SUB_B

Endroutine	
									
Mthroutine	SUB_B
Define_Com	Class(#Salary)	Name(#A)		
Set							#A	Value(42.45)
Endroutine
End_Com
	

The	method	SUB_A	would	return	17.72.
This	happens	because	there	are	two	locally	scoped	#As	defined.
One	in	method	SUB_A	and	another	method	SUB_B.
If	however	you	defined	your	code	like	this:
Define_Com	Class(#Salary)	Name(#A)
									
Mthroutine	SUB_A
Define_Map	*output	#Salary	#ReturnValue		
Set							#A	Value(17.72)
Invoke				#com_owner.SUB_B
Set							#ReturnValue	Value(#A)
Endroutine	
									
Mthroutine	SUB_B
Set							#A	Value(42.45)
Endroutine
	

Then	method	SUB_A	would	again	return	42.45,	because	#A	is	a	globally	scoped
component,	so	SUB_A	and	SUB_B	are	both	referring	to	the	same	#A.
Emulating	local	scoping	by	using	a	naming	standard
Even	though	locally	scoped	variables	are	not	supported	in	subroutines	you	can
(if	required)	emulate	them	by	using	a	simple	naming	standard.
For	example,	each	subroutine	ensures	that	its	arguments	and	variables	are
uniquely	defined:
FUNCTION		OPTIONS(*DIRECT)
DEFINE				FIELD(#PERCENT)	TYPE(*DEC)	LENGTH(4)	DECIMALS(1)	DESC(PERCENTAGE)	EDIT_CODE(3)
REQUEST			FIELDS(#EMPNO	#PERCENT)
FETCH					FIELDS(#SALARY)	FROM_FILE(PSLMST)	WITH_KEY(#EMPNO)

EXECUTE			SUBROUTINE(SUB_A)	WITH_PARMS(#SALARY	#PERCENT	#EMPNO)
*									
SUBROUTINE	NAME(SUB_A)	PARMS((#A_001	*Received)
(#B_001	*received)(#C_001	*Received))
DEFINE				FIELD(#A_001)	REFFLD(#SALARY)
DEFINE				FIELD(#B_001)	REFFLD(#PERCENT)
DEFINE				FIELD(#C_001)	REFFLD(#EMPNO)
CHANGE				FIELD(#A_001)	TO('#A_001	*	#B_001')
DISPLAY			FIELDS(#C_001	#A_001)
EXECUTE			SUB_B	(#A_001	#B_001	#C_001)	
ENDROUTINE	
*									
SUBROUTINE	NAME(SUB_B)	PARMS((#A_002	*Received)
(#B_002	*received)(#C_002	*Received))
DEFINE				FIELD(#A_002)	REFFLD(#SALARY)
DEFINE				FIELD(#B_002)	REFFLD(#PERCENT)
DEFINE				FIELD(#C_002)	REFFLD(#EMPNO)
CHANGE				FIELD(#A_002)	TO('#A_002	-	500')
DISPLAY			FIELDS(#C_002	#A_002)
EXECUTE			SUBROUTINE(SUB_C)	WITH_PARMS(#A_002	#C_002)
ENDROUTINE	
*									
SUBROUTINE	NAME(SUB_C)	PARMS((#A_003	*received)
(#C_003	*Received))
DEFINE				FIELD(#A_003)	REFFLD(#PERCENT)
DEFINE				FIELD(#C_003)	REFFLD(#EMPNO)
CHANGE				FIELD(#A_003)	TO('#A_003	-	100')
DISPLAY			FIELDS(#EMPNO	#A_003)
ENDROUTINE
	

If	you	code	Execute	SUB_A	(#Salary	#Percent	#Empno),	you	are	sure	that	these
values	being	passed	between	the	various	subroutines	will	not	inadvertently
interfere	with	the	globally	scoped	values	of	#Salary	#Percent	#Empno
Techniques	for	saving	and	restoring	globally	scoped	variables
The	previous	example	provides	a	simple	technique	for	emulating	locally	scoped
variables.
Sometimes	when	you	are	writing	a	subroutine	you	cannot	avoid	overwriting	a
globally	scoped	variable	(e.g.:	you	have	to	fetch	a	field	from	a	file).

Equally	when	you	are	maintaining	a	subroutine	you	cannot	always	be	sure	what
other	use	is	already	being	made	of	globally	scoped	variables	elsewhere	in	the
program	without	a	detailed	examination.	
In	these	situations	people	typically	use	a	simple	save/restore	technique	to	ensure
that	the	globally	scoped	variable(s)	remain	unchanged	by	the	execution	of	the
subroutine.
For	example,	imagine	you	had	to	construct	subroutine	named	SUB_A	that
needed	to	fetch	the	department	(#DEPTMENT)	in	which	an	employee	worked
in	its	logic:	
Subroutine	Name(SUB_A)	Parms((#A_001	*received))
Define				#A_001	Reffld(#Empno)		
*<<etc>>			
Fetch					(#Deptment)	from_file(pslmst)	with_key(#A_001)
*<<	etc	>>	
Endroutine
	

Now	imagine	that	field	#DEPTMENT	was	already	used	in	several	places	in	the
program.
To	ensure	that	you	are	not	upsetting	the	value	of	field	#DEPTMENT	in	your
new	subroutine	you	would	probably	code	this:
Subroutine	Name(SUB_A)	Parms((#A_001	*received))
Define				#A_001	Reffld(#Empno)		
Define				#Save_001	Reffld(#Deptment)		
*<<	etc	>>	
Change				#Save_001	#Deptment
*<<	etc	>>	
Fetch					(#Deptment)	from_file(pslmst)	with_key(#A_001)
*<<	etc	>>	
Change				#Deptment	#Save_001
*<<	etc	>>	
Endroutine
	

This	ensures	that	the	value	of	#DEPTMENT	is	unchanged	by	the	execution	of
your	subroutine.
Now	imagine	that	you	also	have	to	reference	#SECTION,	#SURNAME	and
#STARTDTE.
Your	subroutine	now	looks	like	this:

Subroutine	Name(SUB_A)	Parms((#A_001	*received))
Define				#A_001	Reffld(#Empno)		
Define				#SavA_001	Reffld(#Deptment)		
Define				#SavB_001	Reffld(#Section)		
Define				#SavC_001	Reffld(#Surname)		
Define				#SavD_001	Reffld(#Startdte)		
*<<	etc	>>	
Change				#SavA_001	#Deptment
Change				#SavB_001	#Section
Change				#SavC_001	#Surname
Change				#SavD_001	#Startdte
*<<	etc	>>	
Fetch					(#Deptment)	from_file(pslmst)	with_key(#A_001)
*<<	etc	>>	
Change				#Deptment	#SavA_001
Change				#Section	#SavB_001	
Change				#Surname	#SavC_001	
Change				#Startdte	#SavD_001	
*<<	etc	>>	
Endroutine
	

However,	by	using	a	simple	working	list	you	can	achieve	the	same	result	in	a
more	efficient,	easier	to	read	and	more	maintainable	manner:
Subroutine	Name(SUB_A)	Parms((#A_001	*received))
Define				#A_001	Reffld(#Empno)	
	

Global	fields	that	may	have	been	overwritten	by	this	subroutine
Def_List		#Save_001	(#Deptment	#Section	#Surname	#StartDte)	Type(*Working)	Entrys(1)
	

Save	the	value	of	all	globally	defined	fields	that	may	be	overwritten
Inz_List		#Save_001	Num_Entrys(1)
*<<	etc	>>	
Fetch					(#Deptment	#Section	#StartDte	#Surname)	from_file(pslmst)	with_key(#A_001)
*<<	etc	>>
	

Restore	the	value	of	all	globally	defined	fields	that	may	have	been	overwritten
Get_Entry	1	#Save_001

Endroutine
	

7.93	SUBSTRING
The	SUBSTRING	command	is	used	to	copy	a	string	from	one	field	to	another
field.
The	string	copied	from	the	first	field	can	be	all	or	only	part	of	the	field.
The	string	can	be	copied	into	all	or	only	part	of	the	result	field.

Also	See
7.93.1	SUBSTRING	Parameters
7.93.2	SUBSTRING	Examples
																																																									Required
	
		SUBSTRING	----	FIELD	--------	field	name	----	1	----
-	*END	--->
																																													field	name	field	name
																																												(start	pos)	(length)
	
												>---	INTO_FIELD	---	field	name	----	1	-----	*END	--
-|
																																													field	name	field	name
																																												(start	pos)	(length)
	

7.93.1	SUBSTRING	Parameters
FIELD
INTO_FIELD

FIELD
Specifies	the	field	from	which	the	string	is	to	be	extracted	and	optionally	the
start	position	and	length	of	the	string.
The	field	nominated	in	this	parameter	can	be	type	alphanumeric	or	type
numeric.	When	specifying	a	specific	start	position	and	length	for	a	packed
numeric	field	remember	that	digit	positions	and	lengths	are	used	not	byte
positions	and	lengths.
If	no	start	position	is	specified	for	the	string	then	start	position	1	is	assumed.
If	no	length	is	specified	for	the	string	then	*END	is	assumed	which	indicates
that	all	of	the	string	from	the	start	position	to	the	end	of	the	field	is	to	be	used.
The	start	position	and	length	values	can	be	nominated	as	either	a	literal	value
(e.g.:	10)	or	as	the	name	of	a	field	that	contains	the	value	(e.g:	#LENGTH).
The	start	and	end	positions	specified	are	validated	at	execution	time	(since	they
may	be	variable).	If	an	invalid	start	or	end	position	is	specified	the	function	will
abort	with	an	error	message	indicating	the	cause	of	the	failure.
Special	notes	for	substringing	an	alpha	field	into	a	numeric	field:
Note	1.	The	field	should	only	contain	the	digits	0-9.	Any	other	character,
including	a	sign	character	('+'	or	'-'),	will	give	unpredictable	results.
Note	2.	Substringing	is	from	left	to	right,	therefore	if	a	field	containing	'123.45'
is	substringed	into	position	1	of	a	signed	(6,2)	field	(which	is	initially	set	to
*ZERO),	the	value	will	be	set	to	1234.50.
Note	3.	The	length	and	start	position	for	Unicode	fields	is	specified	in
characters,	where	every	character	is	a	2-byte	unit.

INTO_FIELD
Specifies	the	field	into	which	the	string	extracted	from	the	field	nominated	in
the	FIELD	parameter	is	to	be	placed.
The	field	nominated	in	this	parameter	can	be	type	alphanumeric	or	type
numeric.	When	specifying	a	specific	start	position	and	length	for	a	packed
numeric	field	remember	that	digit	positions	and	lengths	are	used	not	byte
positions	and	lengths.

If	no	start	position	is	specified	for	the	string	then	start	position	1	is	assumed.
If	no	length	is	specified	for	the	string	then	*END	is	assumed	which	indicates
that	all	of	the	string	from	the	start	position	to	the	end	of	the	field	is	to	be	used.
The	start	position	and	length	values	can	be	nominated	as	either	a	literal	value
(e.g.:	10)	or	as	the	name	of	a	field	that	contains	the	value	(e.g.:	#LENGTH).
The	start	and	end	positions	specified	are	validated	at	execution	time	(since	they
may	be	variable).	If	an	invalid	start	or	end	position	is	specified	the	function	will
abort	with	an	error	message	indicating	the	cause	of	the	failure.

7.93.2	SUBSTRING	Examples
Example	1:	If	field	#A	is	alphanumeric	length	10	and	field	#B	is	alphanumeric
length	5	then	the	following	table	indicates	what	happens	when	various
SUBSTRING	commands	are	used:

#A	Before
Substr.

#B	Before
Substr.

Substring	Command #B	After
Substr.

ABCDEFGHIJ XXXXX FIELD(#A)	INTO_FIELD(#B) ABCDE

ABCDEFGHIJ XXXXX FIELD(#A	1	1)
INTO_FIELD(#B)

A

ABCDEFGHIJ XXXXX FIELD(#A	1	1)
INTO_FIELD(#B	1	1)

AXXXX

ABCDEFGHIJ XXXXX FIELD(#A	2	2)
INTO_FIELD(#B)

BC

ABCDEFGHIJ XXXXX FIELD(#A	2	2)
INTO_FIELD(#B	2)

XBC

ABCDEFGHIJ XXXXX FIELD(#A	2	2)
INTO_FIELD(#B	2	2)

XBCXX

ABCDEFGHIJ XXXXX FIELD(#A	9	1)
INTO_FIELD(#B)

I

ABCDEFGHIJ XXXXX FIELD(#A	9	2)
INTO_FIELD(#B)

IJ

ABCDEFGHIJ XXXXX FIELD(#A	9	2)
INTO_FIELD(#B	2)

XIJ

ABCDEFGHIJ XXXXX FIELD(#A	9	2)
INTO_FIELD(#B	2	2)

XIJXX

	

Example	2:	Use	the	SUBSTRING	command	to	alter	a	numeric	six	date	field
called	#DDMMYY	from	format	DDMMYY	to	YYMMDD:
DEFINE	FIELD(#WORK02)	TYPE(*CHAR)	LENGTH(2)

	
SUBSTRING	FIELD(#DDMMYY	1	2)	INTO_FIELD(#WORK02)
SUBSTRING	FIELD(#DDMMYY	5	2)	INTO_FIELD(#DDMMYY	1	2)
SUBSTRING	FIELD(#WORK02)					INTO_FIELD(#DDMMYY	5	2)
	

Example	3:	The	following	RDML	program	stores	up	to	20	product	numbers
input	by	the	user	in	one	long	string	called	#PRODUCTS,	then	prints	them	all
when	no	more	are	entered:
DEFINE	FIELD(#PRODUCTS)	TYPE(*CHAR)	LENGTH(200)
DEFINE	FIELD(#ENTERED)		TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
DEFAULT(0)
DEFINE	FIELD(#I)								TYPE(*DEC)	LENGTH(3)		DECIMALS(0)
	
DOUNTIL	'(#PRODNO	=	*BLANKS)	*OR	(#ENTERED	=	20)'
	CHANGE		#PRODNO	*BLANKS
	REQUEST	FIELDS(#PRODNO)
		IF						'#PRODNO	*NE	*BLANKS'
		CHANGE		#ENTERED	('#ENTERED	+	1')
		CHANGE		#I	'((#ENTERED	-	1)	*	10)	+	1'
		SUBSTRING	FIELD(#PRODNO)	INTO_FIELD(#PRODUCTS	#I	10)
		ENDIF
ENDUNTIL
	
DOWHILE	'#ENTERED	*GT	0'
		CHANGE		#I	'((#ENTERED	-	1)	*	10)	+	1'
		SUBSTRING	FIELD(#PRODUCTS	#I	10)	INTO_FIELD(#PRODNO)
		FETCH		FIELDS(#DESCRIPT	#PRICE	#QUANTITY)	FROM_FILE(PRODMAST)	WITH_KEY(#PRODNO)
		UPRINT	FIELDS(#PRODNO	#DESCRIPT	#PRICE	#QUANTITY)
		CHANGE	#ENTERED	('#ENTERED	-	1')
ENDWHILE
	

7.94	TRANSFER
The	TRANSFER	command	is	used	to	transfer	control	from	one	function	to
another	function.	Optionally	information	may	be	exchanged	with	the	other
function.		The	TRANSFER	command	can	also	be	used	in	WAM	Components	to
transfer	control	to	other	WEBROUTINEs	in	the	same	WAM	Component	or
another	WAM	Component.

Also	See
7.94.1	TRANSFER	Parameters
7.94.2	TRANSFER	Comments	/	Warnings
7.94.3	TRANSFER	Examples
																																																									Optional
	
		TRANSFER	-----	TOFUNCTION	--	*NEXT	-------------------
------->
																																*LAST
																																*EXIT
																																*MENU
																																*HELP
																																*EOJ
																																function	name
	
											>----	EXCHANGE	-----	field	name	---------------------|
																											|	expandable	group	expression	|
																											|																													|
																												---------	100	max	-----------
											>----	TOROUTINE	----	webroutine	name	--------------
-->
																																		*SERVICE	service	name
																																		*EVALUATE	field	name
	
										>----	ONENTRY	------	*MAP_NONE	--------------------
-->
																																		*MAP_ALL
																																		*MAP_LOCAL
																																		*MAP_SHARED
	

7.94.1	TRANSFER	Parameters
EXCHANGE
ONENTRY
TOFUNCTION
TOROUTINE

TOFUNCTION
Specifies	the	name	of	the	function	that	is	to	receive	control.	The	current
function	ends	when	this	command	is	executed	and	the	function	nominated	in
this	parameter	receives	control.
*NEXT,	which	is	the	default	value,	indicates	that	the	function	name	input	from
the	screen	should	receive	control	next.	Usually	this	is	the	function	nominated	in
the	function	control	table	as	the	default	next	function.	However,	dependent	upon
the	menu	selection	style	and	the	SHOW_NEXT	parameter	of	the	DISPLAY	or
REQUEST	commands	used,	it	may	have	been	changed	by	the	user.	Refer	to
Function	Control	Table	for	information	about	the	function	control	table	before
attempting	to	use	this	parameter.
*LAST	indicates	that	control	should	be	transferred	to	the	function	that	was	in
use	immediately	prior	to	this	one.
*EXIT	indicates	that	control	should	be	passed	out	of	the	LANSA	system	to	the
application	that	invoked	LANSA.	Using	this	option	is	identical	to	using	the
EXIT	command.
*MENU	indicates	that	control	should	be	passed	to	the	process's	main	menu.
Using	this	option	is	identical	to	using	the	MENU	command.
*HELP	indicates	that	control	should	be	passed	to	the	online	HELP	facility.
Using	this	option	is	similar	to	using	the	HELP	function	key.
*EOJ	indicates	that	a	batch	function	should	end.	Using	this	option	is	similar	to
using	the	*EXIT	option	in	an	interactive	function.
If	one	of	the	previous	values	is	not	used	then	the	name	of	another	function	that
is	defined	within	the	same	process	must	be	specified.

EXCHANGE
Specifies	the	name	of	the	field(s)	to	be	exchanged	or	the	name	of	a	group	that
defines	the	field(s)	to	be	exchanged.	When	an	expandable	expression	is	used,
the	expanded	field	list	must	not	exceed	the	maximum	number	of	substitution
variables	allowed	in	the	parameter.

Refer	to	Field	Groups	and	Expandable	Groups	for	more	information	of	how
field	and	group	names	can	be	specified.	Refer	to	the	7.42	EXCHANGE
command	for	more	information	about	how	information	is	exchanged	between
functions.
The	EXCHANGE	parameter	on	this	command	is	provided	for	convenience
only.	Using	it	is	identical	to	using	one	or	more	EXCHANGE	commands	before
the	TRANSFER	command.	Thus:

TRANSFER		TOFUNCTION(INPUT)	EXCHANGE(#A	#B	#C	#D)
	

is	functionally	identical	to:

EXCHANGE		FIELDS(#A	#B	#C	#D)
TRANSFER		TOFUNCTION(INPUT)
	

which	is	functionally	identical	to:

EXCHANGE		FIELDS(#A)
EXCHANGE		FIELDS(#B)
EXCHANGE		FIELDS(#C)
EXCHANGE		FIELDS(#D)
TRANSFER		TOFUNCTION(INPUT)
	

TOROUTINE
Specifies	the	name	of	a	WEBROUTINE	to	transfer	to.	You	can	specify	another
WAM,	in	this	case	the	WAM	name	followed	by	a	WEBROUTINE	name
separated	by	a	dot	(for	example	#MyWAM.MyWebRtn).	Unlike	a	CALL
command,	after	a	transfer	control	does	not	return	to	the	WEBROUTINE	making
the	transfer.
A	Service	Name	can	also	be	specified,	if	prefixed	with	the	*SERVICE	modifier.
The	value	can	also	be	provided	from	a	field,	if	prefixed	with	the	*EVALUATE
modifier.

ONENTRY
Is	valid	when	transferring	to	another	WEBROUTINE	only.	For	WEBROUTINE
information,	refer	to	WEBROUTINE.

Used	for	mapping	incoming	fields	and	lists	into	the	target	WEBROUTINE.	This
property	can	be	one	of:
*MAP_NONE	does	not	map	any	fields	or	lists.
*MAP_ALL	maps	all	required	fields	and	lists.
*MAP_LOCAL	only	fields	and	lists	on	WEBROUTINE's	WEB_MAPs	are
mapped.
*MAP_SHARED	only	WAM	level	WEB_MAP	fields	and	lists	are	mapped,	not
WEBROUTINE	level.
The	default	value	is	*MAP_ALL.

7.94.2	TRANSFER	Comments	/	Warnings
Information	is	exchanged	between	functions	in	an	"exchange	list".	The	format
of	the	exchange	list	is	something	like	this:
||N|T|L|D|		V		||N|T|L|D|			V				|	|N|T|L|D|					V				||
where:
N	 is	the	name	of	a	field
T	 is	the	type	of	a	field
L	 is	the	length	of	a	field
D	 is	the	number	of	decimal	positions
V	 is	the	variable	length	value	of	the	field

Whenever	a	function	is	invoked	the	exchange	list	is	searched.	If	a	field	is	found
in	the	exchange	list	with	the	same	name	as	a	field	used	in	the	function	it	is
"mapped"	into	the	function.	After	the	search	has	been	completed	the	exchange
list	is	cleared,	regardless	of	whether	or	not	any	fields	were	found	in	it	and
mapped	into	the	function.
It	can	be	seen	that	the	exchange	of	information	between	functions	is	by	name,
not	by	position	as	with	normal	program	parameters.
The	"mapping"	procedure	mentioned	above	will	automatically	convert	field
types,	lengths	and	decimal	positions	if	the	definition	of	the	field	in	the	exchange
list	is	different	from	the	definition	of	the	field	in	the	function.
The	EXCHANGE	command	or	the	EXCHANGE	parameter	on	the	TRANSFER
command	are	used	to	add	a	new	entry	into	the	EXCHANGE	list.
The	net	length	of	the	exchange	list	cannot	exceed	2000	characters	at	any	time	or
the	EXCHANGE	or	TRANSFER	command	that	is	attempting	to	add
information	to	the	list	will	end	abnormally.
When	working	with	the	function	that	receives	the	EXCHANGE	information
remember	that	the	exchange	of	information	takes	place	before	the	first	RDML
command	in	the	function	is	executed.
If	the	EXCHANGE	command	or	parameter	does	not	appear	to	be	working
correctly	it	is	probably	because	the	first	RDML	command	in	the	function	sets
the	fields	that	have	just	been	mapped	from	the	exchange	list	to	*DEFAULT	or
*NULL.	This	causes	the	EXCHANGE	values	to	be	lost	/	overwritten.

7.94.3	TRANSFER	Examples
Example	1:	Transfer	control	to	the	default	next	function.	No	information	is	to
be	exchanged:
TRANSFER
	

Example	2:	Transfer	control	to	a	function	named	INPUT.	No	information	is	to
be	exchanged:
TRANSFER		TOFUNCTION(INPUT)
	

Example	3:	Transfer	control	to	a	function	named	INPUT.	Exchange	the	values
of	fields	#CUSTNO,	#BATCH	and	#USER	with	it:
TRANSFER		TOFUNCTION(INPUT)	EXCHANGE(#CUSTNO	#BATCH	#USER)
	

Example	4:	Transfer	control	to	WEBROUTINE	ORDER:
TRANSFER						TOROUTINE(ORDER)
	

Values	of	any	fields	and	lists	specified	FOR(*INPUT)	on	the	ORDER
WEBROUTINE	will	be	passed	to	it.
Example	5:	Transfer	control	to	WEBROUTINE	ORDER	in	ORDERS	WAM:
TRANSFER						TOROUTINE(#ORDERS.ORDER)
	

Values	of	any	fields	and	lists	specified	FOR(*INPUT)	on	the	ORDER
WEBROUTINE	will	be	passed	to	it.
Example	6:	Provide	the	name	of	a	WEBROUTINE	to	transfer	control	to,	from
a	field:
#WEBRTN	:=	'ORDERS.ORDER'
TRANSFER						TOROUTINE(*EVALUATE	#WEBRTN)
	

7.95	UPD_ENTRY
The	UPD_ENTRY	command	is	used	to	update	an	existing	entry	in	a	list.
The	list	may	be	a	browse	list	(used	for	displaying	information	at	a	workstation)
or	a	working	list	(used	to	store	information	within	a	program).
Before	a	list	entry	can	be	updated	via	the	UPD_ENTRY	command	it	must	first
have	been	selected	(ie:	retrieved)	from	the	list	in	a	SELECTLIST	/
ENDSELECT	list	processing	loop	or	by	a	GET_ENTRY	or	LOC_ENTRY
command.
Refer	to	the	DEF_LIST	command	for	more	details	of	lists	and	list	processing.

Also	See
7.95.1	UPD_ENTRY	Parameters
7.95.2	UPD_ENTRY	Comments	/	Warnings
7.95.3	UPD_ENTRY	Examples
	
																																																									Optional
	
		UPD_ENTRY	----	IN_LIST	------	*FIRST	---------------------
---->
																																list	name
	
													>--	WITH_MODE	----	*CURRENT	--------------------
---|
																																*ADD
																																*CHANGE
																																*DELETE
																																*DISPLAY
																																*SAME
																																field	name
	

7.95.1	UPD_ENTRY	Parameters
IN_LIST
WITH_MODE

IN_LIST
Specifies	the	name	of	the	list	in	which	the	entry	should	be	updated.
The	default	value	of	*FIRST	specifies	that	the	first	list	declared	in	the	RDML
program	by	a	DEF_LIST	(define	list)	command	is	the	list	to	be	used	(which
may	be	a	browse	or	working	list).
If	a	list	name	is	used	then	the	list	name	must	be	declared	elsewhere	in	the
RDML	program	by	a	DEF_LIST	(define	list)	command.

WITH_MODE
Specifies	the	mode	to	be	set	for	the	entry	being	updated.	This	overrides	the
mode	that	has	been	set	by	the	SET_MODE	command	(refer	to	the	SET_MODE
command).
The	default	is	*CURRENT	which	uses	the	current	mode	that	has	been	set	by	the
SET_MODE	command.	Other	allowable	values	are	*ADD,	*CHANGE,
*DELETE,	*DISPLAY	and	*SAME	(leave	list	entry	in	same	mode	as	it	was
when	added	to	the	list,	i.e.	if	it	was	added	to	the	list	with	a	mode	of	*CHANGE
then	leave	the	entry	in	*CHANGE	mode).	A	user	field	name	may	also	be
specified,	and	must	be	alphanumeric	with	a	length	of	3,	and	must	contain	one	of
the	values	"ADD",	"CHG",	"DLT"	or	"DIS".

7.95.2	UPD_ENTRY	Comments	/	Warnings
UPD_ENTRY	is	a	"mode	sensitive"	command	when	being	used	with	a	browse
list.	Refer	to	RDML	Screen	Modes	and	Mode	Sensitive	Commands	for	details.
IBM	i	and	CPF	operating	system	restrictions	prevent	logic	like	the	following
example	from	ever	working	correctly	on	two	(or	more)	browse	lists:

SELECTLIST	NAMED(#LIST01)
<<	process	LIST01	entry	>>
											SELECTLIST	NAMED(#LIST02)
											<<	process	LIST02	entry	>>
											UPD_ENTRY		IN_LIST(#LIST02)
											ENDSELECT
UPD_ENTRY	IN_LIST(#LIST01)
									ENDSELECT
	

The	reason	is	that	all	browse	lists	belong	to	the	same	"file"	(ie:	display	file)	and
therefore	the	update	implicitly	attempts	to	update	the	last	"record"	processed	in
the	"file".	If	a	program	like	this	example	was	compiled,	it	would	fail	on	the
UPD_ENTRY	command	to	#LIST01	with	an	error	indicating	an	update	was
attempted	"without	a	prior	read".
In	other	words,	you	can	only	update	a	browse	list	entry	if	the	last	operation
performed	on	any	browse	list	was	a	read	operation	against	the	browse	list	that
is	being	updated	(ie:	SELECTLIST	or	GET_ENTRY).
This	restriction	can	usually	be	overcome	by	altering	the	point	at	which	the
update	operation	is	performed	like	this:

			SELECTLIST	NAMED(#LIST01)
			<<	process	LIST01	entry	>>
=>	UPD_ENTRY	IN_LIST(#LIST01)
														SELECTLIST	NAMED(#LIST02)
														<<	process	LIST02	entry	>>
														UPD_ENTRY		IN_LIST(#LIST02)
														ENDSELECT
			ENDSELECT
	

If	a	solution	like	this	cannot	be	implemented,	use	a	GET_ENTRY	command
immediately	before	the	UPD_ENTRY	command.
This	restriction	does	not	apply	to	working	lists.

7.95.3	UPD_ENTRY	Examples
Example	1:	Define,	initialize	and	accept	input	into	a	list	from	the	workstation.
Process	and	validate	the	input,	then	update	the	database:
					DEF_LIST			NAME(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
					SET_MODE			TO(*ADD)
					CHANGE					FIELD(#ORDERLINE)	TO(*NULL)
					INZ_LIST			NAMED(#ORDERLINE)	NUM_ENTRYS(10)
	
					DISPLAY				BROWSELIST(#ORDERLINE)
	
					BEGINCHECK
SELECTLIST	NAMED(#ORDERLINE)	GET_ENTRYS(*NOTNULL)

*			VALUECHECK	--
*			CONDCHECK				|		Various	validation	checks
*			RANGECHECK			|		performed	against	each	list	entry
*			FILECHECK		--

			UPD_ENTRY		IN_LIST(#ORDERLINE)
ENDSELECT
	
					ENDCHECK			IF_ERROR(*LASTDIS)
	
SELECTLIST	NAMED(#ORDERLINE)	GET_ENTRYS(*ALL)
				INSERT					FIELDS(#ORDERLINE)	TO_FILE(ORDLIN)
ENDSELECT
	

7.96	UPDATE
The	UPDATE	command	allows	the	field(s)	in	record(s)	in	a	file	to	be	updated.

Portability
Considerations

Refer	to	the	parameters:	AUTOCOMMIT,	FIELDS
and	IN_FILE	.

Also	See
7.96.1	UPDATE	Parameters
7.96.2	UPDATE	Comments	/	Warnings
7.96.3	UPDATE	Examples
																																																									Required
		UPDATE	-------	FIELDS	------
-	field	name		field	attributes	--->
																																|											|															|	|
																																|												---	7	max	-----		|
																																|*ALL																									|
																																|*ALL_REAL																				|
																																|*ALL_VIRT																				|
																																|*EXCLUDING																			|
																																|*INCLUDING																			|
																																|expandable	group													|
																																|																													|
																																|------	1000	max	for	RDMLX----|
																																	-------	100	max	for	RDML	----
	
													>--	IN_FILE	------	file	name	.	*FIRST	------------->

																																																									Optional
													>--	WITH_KEY	-----	key	value	---------------------->
																															|expandable	group	expression|
																																---------	20	maximum	-------
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------

>
																																*NEXT
																																*RETURN
																																command	label
	
													>--	VAL_ERROR	----	*LASTDIS	-----------------------
>
																																*NEXT
																																*RETURN
																																command	label
	
													>--	NOT_FOUND	----	*NEXT	-------------------------
->
																																*RETURN
																																command	label
	
													>--	ISSUE_MSG	----	*NO	---------------------------->
																																*YES
	
													>--	WITH_RRN	-----	*NONE	--------------------------
>
	
													>--	RETURN_RRN	---	*NONE	-------------------------
->
	
													>--	CHECK_ONLY	---	*NO	----------------------------
>
																																*YES
	
													>--	AUTOCOMMIT	---	*FILEDEF	--------------------
---|
																																*YES
																																*NO
	

7.96.1	UPDATE	Parameters
AUTOCOMMIT
CHECK_ONLY
FIELDS
IN_FILE
IO_ERROR
IO_STATUS
ISSUE_MSG
NOT_FOUND
RETURN_RRN
VAL_ERROR
WITH_KEY
WITH_RRN

FIELDS
Specifies	either	the	field(s)	that	are	to	be	updated	in	the	file	or	the	name	of	a
group	that	specifies	the	field(s)	to	be	updated.
An	expandable	group	expression	is	allowed	in	this	parameter.	Refer	to	Field
Groups	and	Expandable	Groups	for	more	details.	The	following	special	values
can	be	used:
*ALL,	specifies	that	all	fields	from	the	currently	active	file	be	updated.
*ALL_REAL,	specifies	that	all	real	fields	from	the	currently	active	file	be
updated.
*ALL_VIRT,	specifies	that	all	virtual	fields	from	the	currently	active	file	be
updated.
*EXCLUDING,	specifies	that	fields	following	this	special	value	must	be
excluded	from	the	field	list.
*INCLUDING,	specifies	that	fields	following	this	special	value	must	be
included	in	the	field	list.	This	special	value	is	only	required	after	an
*EXCLUDING	entry	has	caused	the	field	list	to	be	in	exclusion	mode.

Note:	When	all	fields	are	updated	through	a	logical	file	maintained	by
OTHER,	all	the	fields	from	the	based-on	physical	file	are	included	in
the	field	list.

It	is	strongly	recommended	that	the	special	values	*ALL,	*ALL_REAL	or
*ALL_VIRT	in	parameter	FIELDS	be	used	sparingly	and	only	when	strictly
required.	Updating	fields	which	are	not	needed	invalidates	cross-reference
details	(shows	fields	which	are	not	used	in	the	function)	and	increases	the	Crude
Entity	Complexity	Rating	of	the	function	pointlessly.

Portability
Considerations

On	IBM	i,	if	one	or	more	LOB	fields	are	to	be	updated,	and
the	file	is	not	under	commitment	control,	if	an	I/O	error
occurs,	it	is	possible	that	the	non-LOB	fields	have	been
updated,	but	one	or	more	LOB	fields	have	not.
Refer	also	to	Commitment	Control	in	the	LANSA	Application
Design	Guide.

	

IN_FILE
Refer	to	Specifying	File	Names	in	I/O	commands.

WITH_KEY
Refer	to	Specifying	File	Key	Lists	in	I/O	Commands.
Also	refer	to	the	comments/warnings	section	following	for	details	of	how	using
this	parameter	affects	automatic	"crossed	update"	checking.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.
Refer	to	I/O	Command	Return	Codes	Table	for	I/O	operation	return	codes.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the

its:LANSA065.CHM::/lansa/dsnbe_0060.htm

function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.	The
purpose	of	*NEXT	is	to	permit	you	to	handle	error	messages	in	the	RDML,	and
then	ABORT,	rather	than	use	the	default	ABORT.	(It	is	possible	for	processing
to	continue	for	LANSA	for	i	and	Visual	LANSA,	but	this	is	NOT	a
recommended	way	to	use	LANSA.)
ER	returned	from	a	database	operation	is	a	fatal	error	and	LANSA	does	not
expect	processing	to	continue.	The	IO	Module	is	reset	and	further	IO	will	be	as
if	no	previous	IO	on	that	file	had	occurred.	Thus	you	must	not	make	any
presumptions	as	to	the	state	of	the	file.	For	example,	the	last	record	read	will	not
be	set.	A	special	case	of	an	IO_ERROR	is	when	a	trigger	function	is	coded	to
return	ER	in	TRIG_RETC.	The	above	description	applies	to	this	case	as	well.	
Therefore,	LANSA	recommends	that	you	do	NOT	use	a	return	code	of	ER	from
a	trigger	function	to	cause	anything	but	an	ABORT	or	EXIT	to	occur	before	any
further	IO	is	performed.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

VAL_ERROR
Specifies	the	action	to	be	taken	if	a	validation	error	was	detected	by	the
command.
A	validation	error	occurs	when	information	that	is	to	be	added,	updated	or
deleted	from	the	file	does	not	pass	the	FILE	or	DICTIONARY	level	validation
checks	associated	with	fields	in	the	file.
If	the	default	value	*LASTDIS	is	used	control	will	be	passed	back	to	the	last
display	screen	used.	The	field(s)	that	failed	the	associated	validation	checks	will
be	displayed	in	reverse	image	and	the	cursor	positioned	to	the	first	field	in	error
on	the	screen.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.

If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

The	*LASTDIS	is	valid	even	if	there	is	no	"last	display"	(such	as	in
batch	functions).	In	this	case	the	function	will	abort	with	the
appropriate	error	message(s).

When	using	*LASTDIS	the	"Last	Display"	must	be	at	the	same	level
as	the	database	command	(INSERT,	UPDATE,	DELETE,	FETCH	and
SELECT).		If	they	are	at	different	levels	e.g.	the	database	command	is
specified	in	a	SUBROUTINE,	but	the	"Last	Display"	is	a	caller
routine	or	the	mainline,	the	function	will	abort	with	the	appropriate
error	message(s).

The	same	does	NOT	apply	to	the	use	of	event	routines	and	method
routines	in	Visual	LANSA.	In	these	cases,	control	will	be	returned	to
the	calling	routine.	The	fields	will	display	in	error	with	messages
returned	to	the	first	status	bar	encountered	in	the	parent	chain	of
forms,	or	if	none	exist,	the	first	form	with	a	status	bar	encountered	in
the	execution	stack	(for	example,	a	reusable	part	that	inherits	from
PRIM_OBJT).

NOT_FOUND
Specifies	what	is	to	happen	if	no	record	is	found	in	the	file	to	be	updated.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

ISSUE_MSG
Specifies	whether	a	"record	not	found"	message	is	to	be	automatically	issued	or
not.
The	default	value	is	*NO	which	indicates	that	no	message	should	be	issued.
The	only	other	allowable	value	is	*YES	which	indicates	that	a	message	should
be	automatically	issued.	The	message	will	appear	on	line	22/24	of	the	next
screen	format	presented	to	the	user	or	on	the	job	log	of	a	batch	job.

	

WITH_RRN
Specifies	the	name	of	a	field	that	contains	the	relative	record	number	(for
relative	record	file	processing)	of	the	record	which	is	to	be	updated.
The	WITH_RRN	parameter	cannot	be	used	with	the	WITH_KEY	parameter.
Any	field	nominated	in	this	parameter	must	be	defined	within	the	function	or
the	LANSA	data	dictionary	and	must	be	numeric.
Note:	Using	the	WITH_RRN	parameter	to	FETCH,	DELETE	or	UPDATE
records	is	faster	than	any	other	form	of	database	access.
The	actual	database	file	being	accessed	is	always	the	physical	file,	regardless	of
whether	or	not	the	file	nominated	in	the	command	is	a	logical	file.	Thus	logical
file	select/omit	criteria	are	not	used	when	accessing	a	logical	file	via	the
WITH_RRN	parameter.
Refer	also	to:
7.96.2	UPDATE	Comments	/	Warnings	for	details	of	how	using	this
parameter	affects	automatic	"crossed	update"	checking.
Load	Other	File	in	the	Visual	LANSA	Developers	Guide.

RETURN_RRN
Specifies	the	name	of	a	field	in	which	the	relative	record	number	of	the	record
just	updated	should	be	returned.	The	value	returned	in	this	field	is	not	usable
when	the	UPDATE	command	is	updating	multiple	records	in	the	file.
Any	field	nominated	in	this	parameter	must	be	defined	within	the	function	or
the	LANSA	data	dictionary	and	must	be	numeric.
For	further	information	refer	also	to	Load	Other	File	in	the	Visual	LANSA
Developers	Guide.

CHECK_ONLY
Indicates	whether	the	I/O	operation	should	actually	be	performed	or	only
"simulated"	to	check	whether	all	file	and	data	dictionary	level	validation	checks
can	be	satisfied	when	it	is	actually	performed.
*NO,	which	is	the	default	value,	indicates	that	the	I/O	operation	should	be
performed	in	the	normal	manner.
*YES	indicates	that	the	I/O	operation	should	be	simulated	to	verify	that	all	file
and	data	dictionary	level	checks	can	be	satisfied.	The	database	file	involved	is
not	changed	in	any	way	when	this	option	is	used.

its:Lansa013.chm::/lansa/l4wdev04_0320.htm
its:Lansa013.chm::/lansa/l4wdev04_0320.htm

AUTOCOMMIT
This	parameter	was	made	redundant	in	LANSA	release	4.0	at	program	change
level	E5.
To	use	commitment	control	specify	COMMIT	and/or	ROLLBACK	commands
in	your	application.
Generally	only	COMMIT	commands	are	required.
For	the	implications	of	using	commitment	control	on	the	IBM	i,	refer	to
Commitment	Control	in	the	LANSA	for	I	User	Guide.

Portability
Considerations

If	using	Visual	LANSA,	refer	to	Commitment	Control	in	the
LANSA	Application	Design	Guide.

its:LANSA010.CHM::/lansa/ugubc_c10060.htm
its:LANSA065.CHM::/lansa/dsnbe_0060.htm

7.96.2	UPDATE	Comments	/	Warnings
Understand	UPDATE	Command
The	use	of	automatic	"crossed	update"	checks	by	the	UPDATE	command
should	be	clearly	understood.
Consider	the	following	flow	of	commands:

FETCH			WITH_KEY()	or	WITH_RRN()
DISPLAY
IF_MODE	*CHANGE
UPDATE
ENDIF
	

Since	the	UPDATE	command	has	no	WITH_KEY	or	WITH_RRN	parameter	it
is	indicating	that	the	last	record	read	(by	the	FETCH	command)	should	be
updated.
In	this	situation,	the	"crossed	update	window"	is	in	the	interval	between	the
time	the	record	was	FETCHed	and	the	time	that	it	is	UPDATEd.	This	could	be
very	long	if	the	user	went	and	had	a	cup	of	coffee	when	the	DISPLAY
command	was	on	their	workstation.
This	is	a	correct	and	valid	use	of	the	automatic	"crossed	update"	checking
facility.	If	the	record	was	changed	by	another	job/user	between	the	FETCH	and
the	UPDATE,	then	the	UPDATE	will	generate	a	"crossed	update	error"	(which
should	be	handled	just	like	any	other	type	of	validation	error).
Now	consider	the	following	flow	of	commands:
FETCH			WITH_KEY()	or	WITH_RRN()
DISPLAY
IF_MODE	*CHANGE
UPDATE		WITH_KEY()	or	WITH_RRN()
ENDIF
	

Since	the	UPDATE	command	has	a	WITH_KEY	or	WITH_RRN	parameter	it	is
indicating	that	a	specific	record	(or	group	of	records)	should	be	read	and
updated.
This	is	a	common	coding	mistake.	Everybody	knows	that	the	WITH_KEY	or
WITH_RRN	values	on	the	UPDATE	command	should/would	be	the	same	as

those	on	the	FETCH	command.	However,	the	RDML	compiler	cannot	be	sure
that	the	values	were	not	changed,	so	it	is	forced	to	(re)read	the	record	before
attempting	the	UPDATE.
In	this	situation,	the	"crossed	update	window"	is	in	the	interval	between	the
time	the	record	is	(re)read	by	the	UPDATE	command	and	then	updated	by	the
UPDATE	command.	This	interval	is	very	short,	and	thus	the	"crossed	update"
check	is	effectively	disabled.
This	is	not	considered	to	be	a	valid	and	correct	use	of	the	UPDATE	command
in	an	interactive	program	like	this	because	it	effectively	disables	the	automatic
"crossed	update"	check.
No	KEY
Where	an	UPDATE	operation	is	issued	with	no	WITH_KEY	or	WITH_RRN
parameters	specified	the	last	record	read	from	the	file	will	be	updated.	Thus	the
following	are	equivalent	operations:

CHANGE	FIELD(#DATDUE)	TO(*DATE)
UPDATE	FIELDS(#DATDUE)	IN_FILE(ORDHDR)	WITH_KEY(#ORDNUM)
	

is	functionally	equivalent	to:

FETCH		FIELDS(#DATEDUE)	FROM_FILE(ORDHDR)	WITH_KEY(#ORDNUM)
CHANGE	FIELD(#DATDUE)	TO(*DATE)
UPDATE	FIELDS(#DATDUE)	IN_FILE(ORDHDR)
	

and:
CHANGE	FIELD(#QUANTITY)	TO(100)
UPDATE	FIELDS(#QUANTITY)	IN_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
	

is	functionally	equivalent	to:
SELECT	FIELDS(#QUANTITY)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
CHANGE	FIELD(#QUANTITY)	TO(100)
UPDATE	FIELDS(#QUANTITY)	IN_FILE(ORDLIN)
ENDSELECT
	

Note	that	the	last	2	examples	change	the	#QUANTITY	field	of	all	order	lines	to

100.	This	is	an	example	of	multiple	record	updating	(or	"set	at	a	time"
updating).
Note	'UPDATE	WITH_KEY'	should	not	be	used	within	a	select	loop	or	in	a
subroutine	called	from	within	a	select	loop.
SQL	NULL
When	an	SQL	Null	field	is	updated	into	a	table's	database	column,	one	of	the
following	will	occur:
If	the	column	does	not	have	the	NOT	NULL	constraint,	the	column	is	set	to
SQL	Null.
If	the	column	does	have	the	NOT	NULL	constraint,	the	update	will	fail.	(This
can	only	occur	if	the	database	definition	of	the	column	does	not	match	the
LANSA	definition	of	the	field.)

7.96.3	UPDATE	Examples
Example	1:	Ask	the	user	to	input	an	order	number	and	customer	number	from
the	workstation	and	update	the	associated	order	header	record:
REQUEST		FIELDS(#ORDNUM	#CUSTNO)
UPDATE			FIELDS(#ORDNUM	#CUSTNO)	IN_FILE(ORDHDR)	WITH_KEY(#ORDNUM)
	

Example	2:	Ask	the	user	to	input	an	existing	order	number	and	a	new	order
number	at	the	workstation.	Update	the	existing	order	header	and	all	associated
order	lines	to	have	the	new	order	number:
DEFINE		FIELD(#OLDORDNUM)	REFFLD(#ORDNUM)	LABEL('Existing	order')
DEFINE		FIELD(#NEWORDNUM)	REFFLD(#ORDNUM)	LABEL('New	order')
	
REQUEST	FIELDS(#OLDORDNUM	#NEWORDNUM)
	
CHANGE		FIELD(#ORDNUM)	TO(#NEWORDNUM)
UPDATE		FIELDS(#ORDNUM)	IN_FILE(ORDHDR)	WITH_KEY(#OLDORDNUM)
UPDATE		FIELDS(#ORDNUM)	IN_FILE(ORDLIN)	WITH_KEY(#OLDORDNUM)
	

Example	3:	Change	the	price	(#PRICE)	of	all	records	in	a	nominated	product
category	(#CAT)	to	$100.00:
CHANGE		FIELD(#PRICE)	TO(100.00)
UPDATE		FIELDS(#PRICE)	IN_FILE(PROMSTV1)	WITH_KEY(#CAT)
	

Example	4:	Increase	the	price	(#PRICE)	of	all	records	in	a	nominated	product
category	(#CAT)	by	$100.00:
SELECT		FIELDS(#PRICE)	FROM_FILE(PROMSTV1)	WITH_KEY(#CAT)
CHANGE		FIELD(#PRICE)	TO('#PRICE	+	100.00')
UPDATE		FIELDS(#PRICE)	IN_FILE(PROMSTV1)
ENDSELECT
	

Example	5:	Reset	all	cost	related	fields	in	a	nominated	product	category
(#CAT):
GROUP_BY			NAME(#XG_COST)	FIELDS(#COST1	#COST2	#COST3	#COST4)
CHANGE					FIELD(#XG_COST)	TO(*DEFAULT)
UPDATE					FIELDS(#XG_COST)	IN_FILE(PROMSTV1)	WITH_KEY(#CAT)

	

7.97	UPRINT
The	UPRINT	command	is	used	to	print	fields	onto	a	report.
The	UPRINT	command	can	be	used	to	produce	simple	paginated	listings	with
subtotals.	Refer	to	the	RDML	Field	Attributes	and	their	Use	for	details	of	which
field	attributes	can	be	used	in	with	the	UPRINT	command.
The	use	of	the	UPRINT	command	is	recommended	only	for	very	simple	list
style	reports.	For	serious	application	reporting,	multilingual	reporting	or	bi-
directional	language	reporting	use	only	the	PRINT	command.
For	producing	complex	reports	or	reports	with	specific	layout	requirements
refer	to	the	PRINT	command.
Refer	also	to	the	ENDPRINT	command,	which	is	used	to	close	(end)	a	report
produced	by	using	the	UPRINT	command.

Portability
Considerations

This	command	is	not	supported	in	Visual	LANSA	and	is	not
expect	to	be	in	future	releases.	A	build	warning	will	be
generated	if	used	and	an	error	will	occur	at	execution	time.
Code	using	this	facility	can	be	made	conditional	so	that	it	is
not	executed	in	this	environment.

Also	See
7.97.1	UPRINT	Parameters
7.97.2	UPRINT	Examples
																																																									Required
	
		UPRINT	-------	FIELDS	-------	field	name		field	attributes	-
-->
																																|											|															|	|
																																|												---	7	max	-----		|
																																	------	100	max	--------------

																																																									Optional
	
													>--	TITLE	--------	*NONE	-------------------------->
																																'report	title'
	

													>--	REPORT_NUM	---	1	------------------------------>
																																report	number	1	->	9
	
													>--	SPACE	--------	1	------------------------------>
																																lines	to	space
	
													>--	WIDTH	--------	*DEFAULT	-----------------------
>
																																report	width
	
													>--	COLUMN_SEP	---	1	------------------------------>
																																column	separation
	
													>--	START_COL	----	1	------------------------------>
																																start	column	number
	
													>--	IO_STATUS	----	*STATUS	------------------------>
																																field	name
	
													>--	IO_ERROR	-----	*ABORT	-------------------------|
	

7.97.1	UPRINT	Parameters
COLUMN_SEP
FIELDS
IO_ERROR
IO_STATUS
REPORT_NUM
SPACE
START_COL
TITLE
7.98	USE

FIELDS
Specifies	either	the	field(s)	that	are	to	be	printed	or	the	name	of	a	group	that
specifies	the	field(s)	to	be	printed.

TITLE
Specifies	the	title	(if	any)	that	is	to	be	printed	on	the	report.
*NONE,	which	is	the	default	value	indicates	that	no	title	is	required.
If	a	title	is	required	specify	the	title	in	quotes.

REPORT_NUM
Specifies	the	number	of	the	report	that	is	to	be	used	to	print	the	line.	If	no	report
number	is	specified	report	number	1	is	assumed.	The	report	number	specified
can	be	any	number	in	the	range	1	to	9.	Up	to	9	reports	can	be	produced
simultaneously.

SPACE
Specifies	the	number	of	lines	to	be	spaced	before	printing	the	line.	If	no	value	is
specified	1	is	assumed.	The	value	specified	must	be	in	the	range	1	to	3.

WIDTH
Specifies	the	width	(in	characters)	of	the	report.	If	no	value	is	specified
*DEFAULT	is	assumed	which	means	that	the	system	default	report	width	will
be	used.	Refer	to	other	sections	in	this	guide	for	more	details	of	system	default
values.	Otherwise	specify	a	value	in	the	range	1	to	198.

COLUMN_SEP

Specifies	the	number	of	spaces	(in	characters)	that	are	to	be	left	between
columns	in	the	report.	If	no	value	is	specified	1	is	assumed.	Otherwise	specify	a
value	in	the	range	1	to	20.

START_COL
Specifies	the	column	in	which	the	first	field	is	to	be	printed.	If	no	value	is
specified	1	is	assumed.	Otherwise	specify	a	value	in	the	range	1	to	198.

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from
the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	return	code	it	must	be	alphanumeric
with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special	field	#IO$STS	is
still	updated.
Refer	to	I/O	Command	Return	Codes	Table	for	I/O	operation	return	codes.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
If	the	default	value	*ABORT	is	not	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed	if	an	I/O	error	occurs.

7.97.2	UPRINT	Examples
Example	1:	The	following	RDML	program	asked	the	user	to	input	an	order
number	and	then	prints	details	of	the	order	and	its	associated	order	lines.
					GROUP_BY		NAME(#ORDERDET)	FIELDS(#ORDNUM	#CUSTNUM	#DATEDUE	#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
	
L1:		REQUEST			FIELDS(#ORDNUM)
					FETCH					FIELDS(#ORDERDET)	FROM_FILE(ORDHDR)	WITH_KEY(#ORDNUM)	NOT_FOUND(L1)	ISSUE_MSG(*YES)
	
					SELECT				FIELDS(#ORDERDET)	FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM)
					UPRINT				FIELDS(#ORDERDET)
					ENDSELECT
	
					ENDPRINT
	

Example	2:	If	a	file	called	ACCOUNT	contains	the	following	fields	and	data:

Company
(#COMP)

Division
(#DIV)

Department
(#DEPT)

Expenditure
(#EXPEND)

Revenue
(#REVNU)

01 1 ADM 400 576

" " MKT 678 56

" " SAL 123 6784

" 2 ADM 46 52

" " SAL 978 456

" 3 ACC 456 678

" " SAL 123 679

02 1 ACC 843 400

" " MKT 23 0

" " SAL 876 10

" 2 ACC 0 43

	

and	if	the	file	is	keyed	by	#COMP,	#DIV	and	#DEPT,	then	the	following	RDML
program	will	produce	a	paginated	report	with	subtotals	from	this	file:
GROUP_BY		NAME(#ACCOUNTS)		FIELDS((#COMP	*TOTLEVEL1	*NEWPAGE)	(#DIV		*TOTLEVEL2)	(#DEPT		*TOTLEVEL3)	(#EXPEND	*TOTAL)	(#REVNU		*TOTAL))
	
SELECT				FIELDS(#ACCOUNTS)	FROM_FILE(ACCOUNT)
UPRINT				FIELDS(#ACCOUNTS)
ENDSELECT
	
ENDPRINT
	

The	following	points	about	the	field	attributes	should	be	noted:
The	*NEWPAGE	attribute	indicates	that	a	new	page	should	be	started
whenever	the	company	number	changes.
The	*TOTLEVELn	attribute	indicates	the	total	"level	breaks"	that	are
required.	In	this	case	totals	are	required	by	company,	division	(within
company),	and	department	(within	division	within	company).
The	*TOTAL	attribute	indicates	the	fields	that	are	to	be	totaled.	In	this	case
the	expenditure	and	revenue	fields	are	to	be	totaled.

Refer	to	Field	Attributes	and	their	use	for	more	details.
Note	also	that	LANSA	does	not	sort	the	data.	The	data	is	printed	in	the	same
order	as	it	is	presented	to	the	UPRINT	command.	It	is	the	responsibility	of	the
programmer	to	ensure	that	the	new	page	and	total	level	attributes	"make	sense"
with	regard	to	the	order	in	which	the	information	is	printed.
Note	this	RDML	program	could	also	have	been	coded	as:
SELECT					FIELDS(#COMP	#DIV	#DEPT	#EXPEND	#REVNU)	FROM_FILE(ACCOUNT)
UPRINT					FIELDS((#COMP	*TOTLEVEL1	*NEWPAGE)	(#DIV		*TOTLEVEL2)	(#DEPT		*TOTLEVEL3)	(#EXPEND	*TOTAL)	(#REVNU		*TOTAL))
ENDSELECT
	
ENDPRINT	
	

7.98	USE
The	USE	command	is	used	to	invoke	a	Built-In	Function	(BIF).	Arguments	may
be	passed	to	the	Built-In	Function	and	values	may	be	returned	by	the	Built-In
Function.

Also	See
7.98.1	USE	Parameters
7.98.2	USE	Examples
																																																									Required
	
		USE	----------	BUILTIN	------	built	in	function	name	------>

																																																									Optional
	
													>--	WITH_ARGS	----	list	of	arguments	----------->
																													|	expandable	group	expression	|
																														---------	20	maximum	--------
	
													>--	TO_GET	-------	list	of	field	names	---------|
																													|	expandable	group	expression	|
																														--------	20	maximum	---------
	

7.98.1	USE	Parameters
BUILTIN
TO_GET
WITH_ARGS

BUILTIN
Specifies	the	name	of	the	Built-In	Function	that	is	to	be	invoked.	The	name
must	match	one	of	those	specified	in	the	Built-In	Functions.

WITH_ARGS
Optionally	allows	a	list	of	up	to	20	arguments	to	be	passed	to	the	Built-In
Function.
An	entry	in	the	list	of	arguments	may	be	a	field	name,	an	expandable	group
expression,	an	alphanumeric	literal,	a	numeric	literal	or	a	system	variable	name.
The	values	of	entries	specified	in	an	argument	list	are	not	changed	by	the	Built-
In	Function	(unless	the	same	field	name	is	repeated	in	the	RET_VALS	list).
Entries	specified	in	an	arguments	list	must	match	in	type	and	number	those
specified	for	the	Built-In	Function.	Refer	to	the	Built-In	Functions	for	further
details.

TO_GET
Optionally	allows	a	list	of	up	to	20	field	names	to	be	specified	as	"return	values"
passed	back	by	the	Built-In	Function.
Some	Built-In	Functions	can	return	information	to	the	program	that	invoked
them.	In	such	cases	the	return	values	are	mapped	back	into	fields	that	are
nominated	in	the	RET_VALS	list.
An	entry	in	the	list	of	return	values	can	only	be	a	field	name.	The	field	must	be
defined	in	the	LANSA	dictionary	or	within	the	function	by	a	DEFINE
command.	Expandable	group	expressions	are	allowed	in	this	parameter.
Entries	specified	in	a	return	values	list	must	match	in	type	and	number	those
specified	for	the	Built-In	Function.	Refer	to	the	Built-In	Functions	for	more
details.

7.98.2	USE	Examples
Example	1:	Use	the	built	in	concatenation	functions	to	concatenate	name	fields
#FIRST,	#SECOND	and	#THIRD	into	field	#NAME	in	a	number	of	different
ways:
USE	BUILTIN(CONCAT)		WITH_ARGS(#FIRST	#SECOND)	TO_GET(#NAME)
USE	BUILTIN(BCONCAT)	WITH_ARGS(#FIRST	#SECOND	#THIRD)	TO_GET(#NAME)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#SECOND	''',	'''	#FIRST)	TO_GET(#NAME)
GROUP_BY	NAME(#XG_PARMS)	FIELDS(#FIRST	#SECOND	#THIRD)
USE	BUILTIN(CONCAT)		WITH_ARGS(#XG_PARMS)	TO_GET(#NAME)
	

Example	2:	Use	Built-In	Function	UPPERCASE	to	convert	the	contents	of	field
#NAME	to	uppercase:
USE	BUILTIN(UPPERCASE)	WITH_ARGS(#NAME)	TO_GET(#NAME)
	

7.99	VALUECHECK
The	VALUECHECK	command	is	used	to	check	a	field	against	one	or	more
specific	values.

Also	See
7.99.1	VALUECHECK	Parameters
7.99.2	VALUECHECK	Examples
7.4	BEGINCHECK
7.7	CALLCHECK
7.14	CONDCHECK
7.16	DATECHECK
7.35	ENDCHECK
7.48	FILECHECK
7.78	RANGECHECK
																																																									Required
	
		VALUECHECK	---	FIELD	--------	field	name	----------------
----->
	
													>--	WITH_LIST	----	compare	value	------------------>
																													|																			|
																														-----	50	max	------

																																																									Optional
	
													>--	IN_LIST	------	*NEXT	-------------------------->
																																*ERROR
																																*ACCEPT
	
													>--	NOT_INLIST	---	*ERROR	-------------------------
>
																																*NEXT
																																*ACCEPT
	
													>--	MSGTXT	-------	*NONE	-------------------------->

																																message	text
	
													>--	MSGID	--------	DCU0002	------------------------>
																																message	identifier
	
													>--	MSGF	---------	DC@M01	.	*LIBL	-----------------
>
																																message	file	.	library	name
	
													>--	MSGDTA	-------	substitution	variables	---------|
																														|	expandable	group	expression	|
																															---------	20	max	------------
	

7.99.1	VALUECHECK	Parameters
FIELD
IN_LIST
MSGDTA
MSGF
MSGID
MSGTXT
NOT_INLIST
WITH_LIST

FIELD
Specifies	the	name	of	the	field	to	be	checked.

WITH_LIST
Specifies	from	1	to	50	values	that	are	to	be	checked	against	the	field.	See
following	examples	for	more	details.

IN_LIST
Specifies	the	action	to	be	taken	if	the	field	is	found	to	match	one	of	the	values
specified	in	the	WITH_LIST	parameter.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

NOT_INLIST

Specifies	the	action	to	be	taken	if	the	field	does	not	match	any	of	the	values	in
the	list	specified	in	the	WITH_LIST	parameter.
If	*NEXT	is	specified	the	field	is	considered	to	have	passed	the	validation
check.	Processing	will	continue	with	the	next	RDML	command.
If	*ERROR	is	specified	the	field	is	considered	to	have	failed	the	validation
check.	Either	the	message	text	specified	in	MSGTXT	or	the	message	specified
in	MSGID	and	MSGF	parameters	will	be	displayed	on	line	22/24	of	the	next
screen	format	presented	to	the	user.	In	addition	the	field	named	in	the	FIELD
parameter	will	be	displayed	in	reverse	image	and	the	screen	cursor	will	be
positioned	to	the	first	field	on	the	screen	that	is	in	error.	Processing	continues
with	the	next	RDML	command.
If	*ACCEPT	is	specified	the	field	is	considered	to	have	passed	the	validation
check	AND	no	other	validation	checks	will	be	performed	against	the	field
named	in	the	FIELD	parameter	within	this	validation	block.	Processing
continues	with	the	next	RDML	command.	However,	if	this	is	another	validation
check	against	the	same	field	it	will	be	effectively	"disabled"	and	not	performed.

MSGTXT
Allows	up	to	80	characters	of	message	text	to	be	specified.	The	message	text
specified	should	be	enclosed	in	quotes.	Use	either	the	MSGTXT	parameter	or
the	MSGID	/	MSGF	parameters	but	not	both.

MSGID
Allows	a	standard	message	identifier	to	be	specified	as	the	message	that	should
be	used.	Message	identifiers	must	be	7	characters	long.	Use	this	parameter	in
conjunction	with	the	MSGF	parameter.

MSGF
Specifies	the	message	file	in	which	the	message	identified	in	the	MSGID
parameter	will	be	found.	This	parameter	is	a	qualified	name.	The	message	file
name	must	be	specified.	If	required	the	library	in	which	the	message	file	resides
can	also	be	specified.	If	no	library	name	is	specified,	library	*LIBL	is	assumed.

MSGDTA
Use	this	parameter	only	in	conjunction	with	the	MSGID	and	MSGF	parameters.
It	specifies	from	1	to	20	values	that	are	to	be	used	to	replace	"&n"	substitution
variables	in	the	message	specified	in	the	MSGID	parameter.
Values	in	this	parameter	may	be	specified	as	field	names,	an	expandable	group
expression,	alphanumeric	literals	or	numeric	literals.	They	should	exactly	match

in	type,	length	and	specification	order	the	format	of	the	substitution	variables
defined	in	the	message.
When	a	field	specified	in	this	parameter	has	a	type	of	signed	(also	called	zoned)
decimal,	the	corresponding	"&n"	variable	in	the	message	should	have	type
*CHAR	(character).	This	may	cause	a	problem	when	dealing	with	negative
values.	In	this	case	use	packed	decimal	format	instead.
When	an	"&n"	variable	in	the	message	has	type	*DEC	(packed	decimal)	the
field	specified	in	this	message	must	be	of	packed	decimal	type.
When	using	alphanumeric	literals	in	this	parameter,	remember	that	trailing
blanks	may	be	significant.	For	instance,	if	a	message	is	defined	as:

"&1	are	out	of	stock	...	reorder	&2"
	

where	&1	is	defined	as	(*CHAR	10)	and	&2	as	(*DEC	7	0),	then	the	message
will	NOT	be	issued	correctly	if	specified	like	this:

MSGDTA('BOLTS'	#ORDQTY)
	

or	like	this

MSGDTA('BOLTS					'	#ORDQTY)
	

To	make	LANSA	aware	of	the	trailing	blanks,	the	parameter	must	be	specified
like	this:

MSGDTA('''BOLTS					'''	#ORDQTY)
	

When	expandable	expressions	are	used,	the	expanded	field	list	must	not	exceed
the	maximum	number	of	substitution	variables	allowed	in	the	parameter.

7.99.2	VALUECHECK	Examples
Structuring	Functions	for	Inline	Validation
Structuring	Functions	to	Use	a	Validation	Subroutine
Using	the	VALUECHECK	Command	for	Inline	Validation
Using	the	VALUECHECK	Command	for	Validation	with	a	Subroutine
Structuring	Functions	for	Inline	Validation
Typically,	functions	using	validation	commands	(e.g.:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	inline	validation	like	this:

BEGIN_LOOP	
REQUEST			<<	INPUT	>>
BEGINCHECK	
									<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK		
									<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP		
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	passed	back	to	the	REQUEST
command.	This	happens	because	of	the	default	IF_ERROR(*LASTDIS)
parameter	on	the	ENDCHECK	command.		
Structuring	Functions	to	Use	a	Validation	Subroutine
Typically	functions	using	validation	commands	(e.g.:	CONDCHECK,
DATECHECK,	FILECHECK,	RANGECHECK	and	VALUECHECK)	are
structured	for	subroutine	validation	like	this:

DEFINE				FIELD(#ERRORCNT)	REFFLD(#STD_NUM)
DEF_COND		NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
									
BEGIN_LOOP	
DOUNTIL			COND(*NOERRORS)
REQUEST			<<	INPUT	>>
EXECUTE			SUBROUTINE(VALIDATE)
ENDUNTIL		

									<<	PROCESS	THE	VALIDATED	INPUT	HERE	>>
END_LOOP		
									
SUBROUTINE	NAME(VALIDATE)
CHANGE				FIELD(#ERRORCNT)	TO(0)
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
									<<	USE	CHECK	COMMANDS	TO	VALIDATE	INPUT	HERE	>>
ENDCHECK		IF_ERROR(*NEXT)
ENDROUTINE	
	

If	a	validation	command	inside	the	BEGINCHECK	/	ENDCHECK	command
block	detects	a	validation	error	control	is	returned	to	the	main	function	loop
with	#ERRORCNT	>	0.	
Using	the	VALUECHECK	Command	for	Inline	Validation
This	example	demonstrates	how	to	use	the	VALUECHECK	command	within
the	main	program	block	to	check	that	a	department	code	is	one	of	a	set	of
values.
DEF_LIST		NAME(#EMPBROWSE)	FIELDS(#EMPNO	#DEPTMENT)
									
BEGIN_LOOP	
REQUEST			FIELDS(#EMPNO	#DEPTMENT)	BROWSELIST(#EMPBROWSE)
									
BEGINCHECK	
VALUECHECK	FIELD(#DEPTMENT)	WITH_LIST(ADM	AUD	FLT	GAC)	MSGTXT('The	department	code	entered	is	not	valid')
ENDCHECK		
									
ADD_ENTRY	TO_LIST(#EMPBROWSE)
END_LOOP		
	

If	the	value	of	#DEPTMENT	is	not	in	the	list	of	values	specified	with	the
'WITH_LIST'	parameter	the	message	defined	in	the	VALUECHECK	command
is	issued	and	program	control	returns	to	the	last	screen	displayed.	In	this	case
the	last	screen	displayed	is	the	REQUEST	screen.
Using	the	VALUECHECK	Command	for	Validation	with	a	Subroutine
This	example	demonstrates	how	to	use	the	VALUECHECK	command	inside	a
subroutine	to	check	a	department	code	is	in	a	set	of	values.

After	the	user	enters	the	requested	details	the	VALIDATE	subroutine	is	called.	It
checks	that	the	value	of	#DEPTMENT	is	in	the	set	of	values	specified	with	the
'WITH_LIST'	parameter.	If	it	is	not	the	message	defined	in	the	VALUECHECK
command	is	given	and	the	DOUNTIL	loop	executes	again.	When	a	value	for	#
DEPTMENT	is	entered	that	is	in	the	set	of	specified	values	the	DOUNTIL	loop
ends	and	processing	of	the	verified	input	is	done.
DEFINE				FIELD(#ERRORCNT)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	DEFAULT(0)
DEF_COND		NAME(*NOERRORS)	COND('#ERRORCNT	=	0')
DEF_LIST		NAME(#EMPBROWSE)	FIELDS(#EMPNO	#DEPTMENT)
									
BEGIN_LOOP	
DOUNTIL			COND(*NOERRORS)
REQUEST			FIELDS(#EMPNO	#DEPTMENT)	BROWSELIST(#EMPBROWSE)
EXECUTE			SUBROUTINE(VALIDATE)
ENDUNTIL		
ADD_ENTRY	TO_LIST(#EMPBROWSE)
END_LOOP		
									
SUBROUTINE	NAME(VALIDATE)
CHANGE				FIELD(#ERRORCNT)	TO(0)
									
BEGINCHECK	KEEP_COUNT(#ERRORCNT)
VALUECHECK	FIELD(#DEPTMENT)	WITH_LIST(ADM	AUD	FLT	GAC)	MSGTXT('The	department	code	entered	is	not	valid')	
ENDCHECK		IF_ERROR(*NEXT)
									
ENDROUTINE
	

7.100	WHEN
The	WHEN	command	is	used	within	a	CASE	/	ENDCASE	block	in	conjunction
with	other	WHEN	commands	and	an	optional	OTHERWISE	command	to
condition	the	execution	of	RDML	commands.
The	WHEN	command	is	used	to	nominate	expression(s)	that	should	be
evaluated	as	true	or	false	(in	conjunction	with	the	CASE	command)	to	condition
the	execution	of	the	following	RDML	commands.
Only	one	WHEN	command	can	be	evaluated	to	true	within	a	CASE	ENDCASE
structure.
Refer	to	the	CASE,	ENDCASE	and	OTHERWISE	commands	for	more	details
and	examples	of	these	commands.

Also	See
7.100.1	WHEN	Parameters
7.100.2	WHEN	Examples
7.8	CASE
7.34	ENDCASE
7.73	OTHERWISE
																																																									Required
	
		WHEN	---------	VALUE_IS	-----	'expression'	------------------
-|
																													|															|
																													|															|
																														---	20	max	----
	

7.100.1	WHEN	Parameters
VALUE_IS
Specifies	from	1	to	20	expressions	that	should	be	combined	with	the	OF_FIELD
parameter	of	the	associated	CASE	command.	See	the	7.100.2	WHEN	Examples
for	more	details.	Refer	to	Specifying	Conditions	and	Expressions	for	more
information	about	specificying	conditions	and	expressions.

7.100.2	WHEN	Examples
Refer	to	7.8	CASE	command	for	examples.
	
	

8.	RDMLX	Commands	and	RDMLX	Features
RDMLX	Commands
RDMLX	commands	are	only	used	in	the	Visual	LANSA	Editor	and
development	environment.
RDMLX	commands	may	be	used	in	components	and	any	LANSA	objects	that
have	been	enabled	for	Full	RDMLX.	(Refer	to	RDML	and	RDMLX	Partition
Concepts	in	the	Administrator	Guide.)
Go	to	the	RDMLX	Commands	List	for	a	summary	of	the	RDMLX	commands.

RDMLX	Features
LANSA	objects	that	have	been	enabled	for	Full	RDMLX	may	use	the	following
features:
Intrinsic	Functions
8.25	Component	Variables	and	Values
8.26	Function	Libraries
8.27	Variant	Handling
8.28	Enhanced	Expressions

Also	See
RDML	Commands

its:Lansa011.chm::/lansa/l4wpar01_0020.htm

8.1	ASSIGN
The	LANSA	CHANGE	command	has	been	the	means	of	assigning	a	value	to
one	or	more	variables.	In	the	vast	majority	of	situations	this	is	a	cumbersome
way	of	assigning	values.	Full	RDMLX	introduces	the	ASSIGN	command	that
can	be	specified	in	a	program	without	the	command	name.
#FULLNAME	:=	#SURNAME.Trim	+	','	+	#GIVENAME.Trim	
#STD_NUM	+=	10
#ADDRESS1	#ADDRESS2	#ADDRESS3	:=	*DEFAULT
	

The	most	important	aspect	of	this	command	is	that	the	command	and	all
keywords	are	optional.
We	recommend	you	only	use	the	CHANGE	command	when	you	need	control
over	PRECISION	and	ROUND_UP	options.	Otherwise	always	use	ASSIGN.

Also	See
8.1.1	ASSIGN	Parameters
8.1.2	ASSIGN	Examples
	
																																																											Optional							
																																																																										
				ASSIGN	-------	Variables	(variable	list)	---------------------
>							
																																																																										
															>--	Using	(operator)	------------------------------->						
																																																																										
															>--	Expression	(assignment	expression)	-------------
>						
	

8.1.1	ASSIGN	Parameters
The	command	and	all	keywords	are	optional.

Valid	Operators
The	following	list	details	the	operators	supported	by	the	ASSIGN	command.

:= Simple	value	assignment

+= The	value	of	the	variable	plus	the	value	on	the	right

-= The	value	of	the	variable	minus	the	value	on	the	right

*= The	value	of	the	variable	multiplied	by	the	value	on	the	right

/= The	value	of	the	variable	divided	by	the	value	on	the	right

<= Assign	the	reference	on	the	right	to	the	subject

	

Also	See
8.28	Enhanced	Expressions

8.1.2	ASSIGN	Examples
Simple	value	assignments
#PHBN_1.Left	:=	10
#PHBN_2.Left	:=	#PHBN_1.Left	+	10
#PHBN_3.Left	:=	#PHBN_2.Left	+	10
	

String	assignment
#FullAddress	:=	#Address1.RightTrim	+	'	'	+	#Address2.RightTrim	+	'	'	+	#Address3.RightTrim
	

Arithmetic	assignments
#PHBN_1.Width	+=	10
#PHBN_1.Height	*=	2
	

Multiple	assignments
#ADDRESS1	#ADDRESS2	#ADDRESS3	:=	*DEFAULT
	

Reference	assignments
#REF_ONE	#REF_TWO	#REF_THREE	<=	*NULL
	
Mthroutine	Assign_example
Define_Map	For(*input)	Class(#prim_objt)	name(#Object)	Pass(*by_Reference)
Define_Com	Class(#Prim_phbn)	Name(#Current_button)	Reference(*dynamic)
#Current_button	<=	#Object	*as	#prim_phbn
Endroutine
	

8.2	ATTRIBUTE
A	new	RDMLX	command	called	ATTRIBUTE	enables	the	assignment	of
declarative	attributes	to	the	features	of	a	component	class.
The	ATTRIBUTE	command	can	be	coded	immediately	after	the	following
commands:
BEGIN_COM
DEFINE_COM
DEFINE_PTY
DEFINE_EVT
MTHROUTINE
DEFINE_MAP

Visual	LANSA	is	primarily	an	imperative	language,	but	like	all	imperative
languages	it	does	have	some	declarative	elements.	For	example,	the
FUNCTION	command	enables	declarative	attributes	to	be	assigned	to	a
function	or	component	that	are	later	processed	by	the	LANSA	build	and	runtime
environments.
Through	its	support	for	attributes,	Visual	LANSA	generalizes	this	capability,	so
that	programmers	can	invent	new	kinds	of	declarative	information,	attach	this
declarative	information	to	various	program	entities,	and	retrieve	this	declarative
information	at	run-time.	Components	specify	this	additional	declarative
information	by	defining	and	using	attributes.
For	instance,	Visual	LANSA	might	define	a	WinHelpAttribute	attribute	that	can
be	placed	on	program	elements	such	as	visual	member	variables,	enabling
developers	to	show	Window's	help	for	their	application	when	the	F1	key	is
pressed.
It	also	means	that	the	declarative	information	is	stored	(and	consequently
copied)	with	the	RDMLX	source	code	to	which	they	are	directly	related.
Attribute	classes	will	play	a	significant	role	in	maintaining	the	type	library
information	for	those	component	classes	enabled	for	ActiveX	integration.
Whilst	it	is	possible	manually	declare	Attribute	statements	in	component	source
it	is	strongly	recommended	that	the	automated	ActiveX	tool	is	used	to	specify
ActiveX	attribute	details.

Attribute	classes
A	component	class	that	directly	or	indirectly	inherits	from	the	abstract	class

#PRIM_ATTR	is	an	attribute	class.	The	only	supported	attribute	classes	will	be
supplied	by	LANSA.

Attribute	usage
The	AttributeUsage	attribute	of	an	attribute	class	describes	how	an	attribute	can
be	used.
The	constructor	of	the	AttributeUsage	attribute	has	a	positional	parameter	that
enables	an	attribute	class	to	specify	the	kinds	of	declarations	on	which	the
attribute	can	be	used.
The	constructor	of	an	AttributeUsage	attribute	also	includes	an	optional
parameter	that	indicates	whether	the	attribute	can	be	specified	more	than	once
for	a	given	declaration.

Instance	Constructors
The	instance	constructors	of	an	attribute	class	define	the	required	and	optional
parameters	needed	to	complete	the	definition	of	an	attribute.

Reflection
The	component	classes	that	support	access	to	Visual	LANSA	Types,	Methods,
Events,	Properties	and	their	properties	will	provide	properties	that	support
access	to	the	attributes	assigned	to	the	feature.

Also	See
8.2.1	ATTRIBUTE	Parameters
8.2.2	ATTRIBUTE	Examples
	
																																																											Required						
																																																																									
			ATTRIBUTE	-----CLASS	-------Class	Name	-----------------------
->						

																																																											Optional						
																																																																									
														>--	DESC	-------	Short	Description	of	event	-------->
																																																																									
														>--	HELP	-------	Long	description	of	the	Attribute	--
>					

																																																																								

8.2.1	ATTRIBUTE	Parameters
CLASS
DESC
HELP

CLASS
Used	to	define	the	type	of	attribute.

DESC
The	DESC	parameter	can	be	used	to	define	a	short	description	for	the	Attribute

HELP
The	DESC	parameter	can	be	used	to	define	a	long	description	for	the	Attribute
of	up	to	250	characters.

8.2.2	ATTRIBUTE	Examples
It	is	strongly	recommended	that	you	let	LANSA	define	your	attributes	for	you
when	defining	components	as	ActiveX.
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(306)	Clientwidth(492)
	
Define_Pty	Name(Property)	Get(*auto	#std_text)
	
Define_Evt	Name(Text_Changed)
Define_Map	For(*input)	Class(#Std_text)	Name(#Text)
	
Mthroutine	Name(Method_1)
Define_Map	For(*input)	Class(#Std_text)	Name(#Text)
Define_Map	For(*Result)	Class(#Std_text)	Name(#Result)
	
	
Endroutine
	
End_Com
	

The	form	above	is	required	to	be	made	available	as	an	ActiveX	control.		From
the	Edit	menu,	select	the	Set	ActiveX	Attributes	menu	option.		The	result	will
be	similar	to	the	following.
Function	Options(*DIRECT)
Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Clientheight(306)	Clientwidth(492)
Attribute	Class(#PRIM_ATTR.AX_TYPELIB)	Guid('{0BA92712-162E-
48CB-AF41-7087EA05BD5E}')	Typelibname('LANSA_AAA_LIB')
Attribute	Class(#PRIM_ATTR.AX_CLASS)	Guid('{ADC02BD2-C249-
48B1-A0B1-30900707B32C}')	Progid('LANSA.AAA')
Attribute	Class(#PRIM_ATTR.AX_IN_INTERFACE)	Guid('{5A2034F3-
2E84-4475-A90E-B6857E62C892}')	Basedispid(0)
Attribute	Class(#PRIM_ATTR.AX_EVT_INTERFACE)	Guid('{58DACA90-
A2D7-48F9-B459-E56DBFE9E810}')	Basedispid(0)
	
Define_Pty	Name(Property)	Get(*auto	#std_text)
Attribute	Class(#PRIM_ATTR.AX_IN_MEMBER)	Dispid(0)	Name('Property')
	

Define_Evt	Name(Text_Changed)
Attribute	Class(#PRIM_ATTR.AX_EVT_MEMBER)	Dispid(0)	Name('Text_Changed')
Define_Map	For(*input)	Class(#Std_text)	Name(#Text)
	
Mthroutine	Name(Method_1)
Attribute	Class(#PRIM_ATTR.AX_IN_MEMBER)	Dispid(1)	Name('Method_1')
Define_Map	For(*input)	Class(#Std_text)	Name(#Text)
Define_Map	For(*Result)	Class(#Std_text)	Name(#Result)
	
	
Endroutine
	
End_Com
	

Attribute	statements	are	inserted	for	the	component	and	each	of	the	features
(properties,	events	and	methods)	defined	within	the	source.

8.3	BEGIN_COM
BEGIN_COM	begins	the	component	definition.	It	has	an	associated
END_COM	statement	which	ends	the	component	definition.
This	command	is	inserted	automatically	by	the	editor	when	you	create	a	new
component.
If	you	change	the	default	values	for	any	of	the	properties	of	the	component,
these	are	shown	in	the	component	definition.	For	example	if	you	change	the
Visible	property	to	False	in	a	form	you	are	editing,	the	BEGIN_COM	statement
will	show	this:
BEGIN_COM	VISIBLE(False)
	

Normally	you	change	the	component's	properties	using	the	Component	view,
but	you	can	also	type	them	in	the	Source	view.

Also	See
8.3.1	BEGIN_COM	Parameters	
8.3.2	BEGIN_COM	Examples
8.8	END_COM
	
																																																											Optional							
																																																																										
				BEGIN_COM		---	Property	Values	-------------------------------
>							
																																																																										
																																																																										
															>--	HELP	-------	Help	text	------------------------->						
																																																																										
																																																																										
															>--	PUBLIC	-----	name	------------------------------>						
																																																																										
																																																																										
															>--	PROTECT	----	name	------------------------------>						
																																																																										
																																																																										
															>--	PRIVATE	----	name	------------------------------>						
																																																																										

																																																																										
															>--	DEFAULTPTY—-	name	------------------------------
>						
																																																																										
																																																																										
															>--	OPTIONS—----	*FINAL-----------------------------
>						
																																*ABSTRACT																																	
																																																																										
															>--	ROLE	-------	Help	text	-------------------------|						
																																																																										
																																																																									
		

8.3.1	BEGIN_COM	Parameters	
HELP
PUBLIC
PROTECT
PRIVATE
OPTIONS
DEFAULTPTY
ROLE

HELP
Use	the	HELP	parameter	to	write	a	description	for	the	component.	It	can	be	250
characters	long.

PUBLIC
Use	the	Public	property	of	a	form	or	a	reusable	part	to	make	public	a	custom-
defined	event,	method,	or	property	of	its	ancestor	which	has	been	defined	as
protected	in	the	ancestor.
A	form	or	a	reusable	part	can	define	that	custom-defined	events,	methods	and
properties	are	not	accessible	from	outside	using	the	Protect	property	of	the	form
or	reusable	part.	Events,	methods	and	properties	defined	as	protected	are	visible
to	forms	and	reusable	parts	which	inherit	from	it,	but	they	are	not	visible	to
owner	forms	or	reusable	parts.
An	inheriting	form	or	a	reusable	part	can	make	an	inherited	protected	event,
method	or	property	visible	to	all	other	components	by	defining	them	as	Public.
The	list	of	values	for	Public	shows	two	internal	system	values	CreateInstance
and	DestroyInstance.	They	should	not	be	used.
The	easiest	way	to	set	the	Public	parameter	is	to	use	display	the	Properties	in	the
Details	Tab.	When	you	click	on	the	Public	property,	a	list	of	the	protected
events,	methods	and	properties	is	displayed.

PROTECT
Use	the	Protect	property	to	hide	custom-defined	events,	properties	or	methods
from	owner	reusable	parts	or	forms.	An	event,	method	or	property	defined	as
protected	is	visible	to	inheriting	reusable	parts	and	forms.	These	can	make	the
protected	event,	property	or	method	visible	to	owners	by	defining	it	as	Public.
The	easiest	way	to	set	the	Protect	parameter	is	to	display	the	Properties	in	the

Details	Tab.	When	you	click	on	the	Protect	property,	a	list	of	the	user-defined
events,	methods	and	properties	is	displayed.

PRIVATE
Use	the	Private	property	of	a	form	or	a	reusable	part	to	hide	a	custom-defined
event,	method	or	property	from	other	forms	or	reusable	parts.	An	event,	method
or	property	defined	as	Private	is	not	visible	to	inheriting	or	owning	reusable
parts	or	forms.
The	easiest	way	to	set	the	Private	parameter	is	to	use	display	the	Properties	in
the	Details	Tab.	When	you	click	on	the	Private	property,	a	list	of	the	user-
defined	events,	methods	and	properties	is	displayed.

OPTIONS
Use	the	Options	parameter	to	control	how	the	component	is	inherited	and
instantiated.

*FINAL The	component	class	cannot	be	inherited	further.

*ABSTRACT The	component	class	cannot	be	instantiated.	You	must	inherit
from	this	class	and	create	instances	of	the	descendent	class.

	

DEFAULTPTY
The	default	property	of	this	component.
This	means	that	when	you	pass	a	reference	to	this	component	as	*BY_VALUE
parameter	(in	8.6	DEFINE_MAP),	it	will	automatically	use	the	default	property
to	get	the	value.
This	is	similar	to	using	the	default	property	of	fields:	Value.	Whenever	I	refer
to,	for	example,	#SALARY	in	the	code	I	am	actually	referring	to
#SALARY.VALUE	since	the	.Value	property	is	the	SALARY	classes	default
property.

ROLE
The	Role	parameter	has	a	number	of	functions.	
*Extends
*Extends	comes	immediately	prior	to	the	ancestor	class	for	the	component.		In
the	example	below,	the	component	inherits	from	#Prim_FORM,	the	Visual
LANSA	primitive	Form	class.

Begin_Com	Role(*EXTENDS	#PRIM_FORM)

End_Com
	

*Extends	corresponds	directly	to	the	ancestor	property	as	seen	in	the	property
detailer	and	can	be	entered	either	in	the	details	or	directly	in	the	source.
*Implements
*Implement	is	used	to	specify	the	interfaces	that	the	component	will	implement.
Unlike	*Extends,	which	is	limited	to	a	single	component,	*Implements	can	have
multiple	arguments	as	shown	below.
Begin_Com	Role(*EXTENDS	#PRIM_PANL	*implements
#Prim_dc.iMonitorSubject	#Prim_dc.iContextualSubject)
	
End_Com
	

*ListFields
*ListFields	applies	when	a	reusable	part	is	being	used	as	the	design	element	of	a
user	defined	control	(UDC).		When	ADD_ENTRY	is	used	to	create	a	list	entry
in	a	UDC,	the	fields	or	group	of	fields	specified	in	the	variables(s)	following
*ListFields	are	initialized	with	the	values	from	the	corresponding	fields	in	the
component	that	contains	the	ADD_ENTRY.	
Begin_Com	Role(*EXTENDS	*Implements	#Prim_Tile.iTileDesign
#PRIM_PANL	*ListFields	#ListFields)
	
Group_by	Name(#ListFields)	Fields(#Field	#Field2	#Field3)
	
End_Com
	

8.3.2	BEGIN_COM	Examples
Begin_Com	examples	of	components	that	can	be	visible	at	run	time.

Begin_Com	Role(*EXTENDS	#PRIM_FORM)	Height(338)	Left(118)	Top(163)	Width(574)	Caption('Sample	Form	')
End_com
	
Begin_Com	Role(*EXTENDS	#PRIM_PANL)
End_Com
	

An	ancestor	of	PRIM_OBJT	can	be	used	to	create	component	that	has	no	visible
portion	

Begin_Com	Role(*EXTENDS	#PRIM_OBJT)
End_Com
	

You	can	also	use	your	own	predefined	component	classes	as	an	ancestor,	as
below,	where	XXXXXXXX	is	the	name	of	your	component.

Begin_Com	Role(*EXTENDS	#XXXXXXXXX)
End_Com
	

8.4	DEFINE_COM
This	command	is	inserted	automatically	as	you	drag	components	to	be	included
in	the	component	being	edited.
DEFINE_COM	defines	instances	of	other	components	to	be	included	in	the
component	being	edited.
In	addition	to	the	class	and	the	name	of	the	component,	this	command	shows	all
property	values	for	which	default	values	have	been	overridden.
In	Functions	that	are	running	as	*HEAVYUSAGE,	the	state	of	referenced
components	is	retained	between	invocations.	If	the	state	is	not	to	be	retained,
use	components	that	are	*DYNAMIC.

Also	See
8.4.1	DEFINE_COM	Parameters
8.4.2	DEFINE_COM	Examples
	
																																																											Required							
																																																																										
				DEFINE_COM	----CLASS	-------Component	Class	-------------
----->							
																																*VARIANT																																		
																																																																										
															>--	NAME	-------	Component	name		------------------
>							
																																																																										
															>--	SCOPE	------	*DEFAULT--------------------------
>							
																																*LOCAL																																				
																																*INSTANCE																																	
																																*SHARED																																			
				DEFINE_COM	----CLASS	-------Component	Class	-------------
----->							
																																																																										
															>--	REFERENCE---	*DEFAULT--------------------------
>							
																																*STATIC																																			
																																*DEFERRED																																	

																																*DYNAMIC																																		

																																																										Optional								
																																																																										
															>--	DESC	-------	Description		--------------------->							
																																																																										
															>--	HELP	-------	Help	text	---------------------------|				
																																																																										
																																																																										
	

8.4.1	DEFINE_COM	Parameters
CLASS
DESC
HELP
NAME
OPTIONS
SCOPE
REFERENCE

CLASS
CLASS	is	the	type	of	the	component,	for	example	command	button,	check	box,
form	etc.
For	fields,	the	class	can	be	a	simple	field	such	as	#SALARY	or	any	of	its
visualizations	such	as	#SALARY.VISUAL	or	#SALARY.MYPART.
*VARIANT	allows	the	use	of	a	variant	variable.	You	can	read	or	write	values
from	a	variant	variable.	It	has	no	properties.	At	the	moment	a	better	alternative
is	to	use	a	8.25.3	Variant	Variable.

OPTIONS
The	Options	parameter	can	have	a	keyword	LIST_ENTRIES	with	value
*COMPUTE	or	*MAX.	For	example:
OPTIONS(*LIST_ENTRIES	*MAX)
	

The	*List_Entries	keyword	specifies	the	number	of	entries	a	list-type
component	can	have.	List	type	components	are:
					Grid
					ListView
					TreeView
					ComboBox
					ListBox
					Memo
					Graph
					Property	Sheet

The	number	of	entries	allowed	depends	on	whether	the	list	contains	RDMLX
fields	and	if	the	list	is	in	a	component	that	is	enabled	for	Full	RDMLX.
*COMPUTE	sets	the	maximum	number	of	entries	required	based	on	the	fields
in	the	list.	If	the	list	contains	only	RDML	fields,	the	number	of	entries	is
restricted	to	RDML	levels(limited	to	32767	entries).	If	the	list	contains
RDMLX	fields,	the	list	is	treated	as	a	Full	RDMLX	list	which	can	have	a	much
higher	platform-dependent	maximum	number	of	entries.
*MAX	sets	the	limit	of	entries	to	the	maximum	allowed	by	the	containing
component.	Independent	of	whether	the	fields	in	the	list	are	RDMLX	or	not,	if
the	list	is	in	an	RDML	component,	it	will	be	limited	to	RDML	list	entries	but	if
it	is	a	Full	RDMLX	component,	it	will	be	an	RDMLX	list

NAME
NAME	is	the	unique	name	of	this	instance	of	a	component.

SCOPE
The	SCOPE	parameter	can	be	used	to	create	component	instances	that	are
shared	between	different	instances	of	owner	components	by	specifying
*SHARED	as	the	value.	When	*SHARED	is	specified	in	the	DEFINE_COM,
only	one	single	shared	instance	of	a	member	component	is	created	regardless	of
how	many	instances	of	the	owner	component	are	created.
*SHARED	can	only	be	used	in	DEFINE_COM	commands	that	are	placed
directly	after	the	BEGIN_COM	statement	of	the	component.
When	the	value	of	the	SCOPE	parameter	is	*DEFAULT,		the	scope	of	the
DEFINE_COM	command	is	determined	by	its	position.	If	it	is	placed
immediately	after	the	BEGIN_COM	statement,	the	scope	is	interpreted	as
*INSTANCE.	If	the	DEFINE_COM	command	is	located	after	an	event,	method
or	property	routine,	the	scope	is	interpreted	as	*LOCAL.
A	scope	of		*INSTANCE	causes	a	new	instance	of	a	member	component	to	be
created	whenever	a	new	instance	of	its	owner	component	is	created.	This	value
can	only	be	specified	in	DEFINE_COM	commands	that	immediately	follow	the
BEGIN_COM	statement.
A	scope	of	*LOCAL	causes	a	new	local	instance	of	a	component	to	be	created
every	time	an	event,	method	or	property	routine	is	executed.	This	value	can	only
be	specified	in	DEFINE_COM	commands	that	immediately	follow	the	event,
method	or	property	routine.
All	*APPLICATION	variables	are	identified	by	variable	name.	Therefore,	two
different	component	classes	can	share	a	component	instance	simply	by

including	a	DEFINE_COM	for	the	variable	name	and	specifying	a	scope	of
*APPLICATION.
The	first	reference	to	an	*APPLICATION	scoped	variable	that	is	not
*DYNAMIC	will	cause	the	component	instance	to	be	created.	All	other
accesses	retrieve	that	instance.
When	a	component	instance	at	scope	*APPLICATION	is	retrieved,	the	only
checking	performed	is	to	ensure	that	the	class	of	the	component	instance	can	be
dynamically	cast	to	the	class	specified	on	the	variable's	DEFINE_COM.
*APPLICATION	variables	are	released	when	the	application	terminates.	Care
must	be	taken	to	ensure	that	the	component	classes	used	by	an	instance	of	a
component	at	*APPLICATION	scope	are	fully	understood.	All	the	component
DLL's	required	to	implement	these	component	classes	will	remain	in	memory
for	the	lifetime	of	the	component	instance	and	this	could	correspond	to	the
lifetime	of	the	application.

REFERENCE
The	REFERENCE	parameter	is	used	to	define	how	the	reference	to	the
component	being	defined	is	resolved.	The	reference	is	created	to	the	object
defined	by	the	CLASS	parameter	and	assigned	to	the	variable	defined	by	the
NAME	parameter	in	the	DEFINE_COM	statement.
By	assigning	references,	you	can	use	system	resources	economically	because
you	can	control	when	a	reference	to	an	object	is	created	and	released	and	thus
free	memory	locations	as	they	are	no	longer	required.	Also,	when	you	are	using
external	components	and	applications	via	ActiveX	you	will	need	to	set
references	at	run	time.
*DEFAULT	indicates	that	the	default	reference	determined	by	the	*SCOPE
parameter	is	used.
*STATIC	indicates	that	when	the	DEFINE_COM	statement	is	encountered
during	execution,	a	reference	is	created	to	the	component	defined	by	the	CLASS
parameter	and	the	reference	is	assigned	to	the	variable	defined	by	the	NAME
parameter.	The	CLASS	parameter	must	define	a	concrete	class.	This	is	the
default	when	SCOPE	is	*INSTANCE	(except	for	forms)	or	*LOCAL.
*DEFERRED	indicates	that	when	the	DEFINE_COM	statement	is	encountered
during	execution,	the	component	reference	is	set	to	*NULL.	Then	when	the
component	used	in	the	code,	a	reference	is	created	to	the	component	defined	by
the	CLASS	parameter	and	the	reference	is	assigned	to	the	variable	defined	by
the	NAME	parameter.	This	means	that	if	the	code	that	uses	this	component	is

not	executed,	no	reference	is	created.	The	CLASS	parameter	must	define	a
concrete	class.	This	is	the	default	for	forms	which	have	a	SCOPE	of
*INSTANCE.
*DYNAMIC	indicates	that	when	the	DEFINE_COM	statement	is	encountered
during	execution,	the	component	reference	is	set	to	*NULL	and	no	reference	to
a	component	is	created	automatically.	You	must	use	a	SET_REF	command	to
assign	a	reference	to	the	component	defined	by	the	CLASS	parameter	and	to
assign	the	reference	to	the	variable	defined	by	the	NAME	parameter.
RDMLX	Functions	can	use	the	DEFINE_COM	command.	For	functions	that
are	running	as	*HEAVYUSAGE,	the	state	of	referenced	components	is	retained
between	invocations.	If	the	state	is	not	to	be	retained,	use	components	that	are
*DYNAMIC.
Note:
Any	property	you	change	for	this	instance	of	the	component	is	shown	in	the
DEFINE_COM	statement.	Default	values	for	properties	are	not	shown.

DESC
Use	the	DESC	parameter	to	write	a	brief	description	for	this	instance	of	the
component.	It	can	be	40	characters	long.
The	setting	of	the	OPTIONS	parameter	in	the	DEFINE_EVT	command
automatically	set	the	value	of	the	OPTIONS	parameters	for	the	EVTROUTINE
command	handling	the	event.

HELP
Use	the	HELP	parameter	to	write	a	longer	description	for	this	instance	of	the
component.	The	help	text	can	be	viewed	using	the	Features	option	of	the	Help
menu.	It	can	be	250	characters	long.

8.4.2	DEFINE_COM	Examples
The	following	code	is	inserted	automatically	when	a	push-button	is	included	on
the	form	and	its	caption	is	made	OK.	The	DisplayPosition,	Left	and	Top
properties	specify	where	it	is	placed.	The	TabPosition	indicates	the	order	in
which	controls	are	selected	on	a	form	when	the	Tab	key	is	pressed.
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#PHBN_1)	CAPTION(OK)	DISPLAYPOSITION(1)	LEFT(116)	PARENT(#COM_OWNER)	TABPOSITION(1)	TOP(132)
	

8.5	DEFINE_EVT
The	DEFINE_EVT	command	defines	a	user-defined	event	for	a	form.	The	form
issues	the	specified	event	using	the	SIGNAL	command.
Custom	specified	events	are	used	to	signal	events	from	a	form	instance	to	an
owner	form	in	multi-form	applications.		See	also	the	description	of	the
DEFINE_MAP	command	to	see	how	values	can	be	mapped	to	events.

Also	See
8.5.1	DEFINE_EVT	Parameters
8.5.2	DEFINE_EVT	Examples
8.6	DEFINE_MAP
	
																																																											Required							
																																																																										
				DEFINE_EVT	----NAME	-------Event	Name	----------------------
-->							

																																																											Optional							
																																																																										
															>--	DESC	------	Description	of	event	-------------->					
																																																																										
															>--	OPTIONS	---	Message	and	Error	clearing	options-
>					
																																																																										
															>--	ACCESS		---	*PUBLIC/*PROTECT/*PRIVATE	----
----->				
																																																																										
															>--	HELP	------	Help	text	for	event	-----------------|				
																																																																										
	
	

8.5.1	DEFINE_EVT	Parameters
NAME
DESC
OPTIONS
ACCESS
HELP

NAME
NAME	is	the	unique	name	of	an	event.	The	name	can	be	up	to	20	characters
long.

DESC
Use	the	DESC	parameter	to	write	a	brief	description	for	the	event.	It	can	be	40
characters	long.

OPTIONS
The	options	parameter	can	have	two	values:

*CLEARERRORS	or
*NOCLEARERRORS

*CLEARERRORS	clears	the	ShowError	states	on
member	forms
	
*NOCLEARERRORS	stops	the	clearing	of
ShowError	states	on	member	forms
	

*CLEARMESSAGES	or
*NOCLEARMESSAGES

*CLEARMESSAGES	clears	messages	on	the	form
that	is	handling	the	event
	
*NOCLEARMESSAGES	stops	the	clearing	of
messages	on	the	form	that	is	handling	the	event

	

The	setting	of	the	OPTIONS	parameter	in	the	DEFINE_EVT	command
automatically	set	the	value	of	the	OPTIONS	parameters	for	the	EVTROUTINE
command	handling	the	event.

ACCESS
This	parameter	supports	one	of	the	options	from	the	list	*PUBLIC,	*PROTECT
and	*PRIVATE.

HELP
Use	the	HELP	parameter	to	write	a	longer	description	for	an	event.	The	help
text	can	be	viewed	using	the	Features	option	of	the	Help	menu.	It	can	be	250
characters	long.

8.5.2	DEFINE_EVT	Examples
This	command	defines	an	event	called	ADRESSCHANGED	in	a	form:
define_evt	name(ADDRESSCHANGED)	help('This	event	tells	that	the	#ADDRESS1	field	on	this	form	has	changed.')
	

The	form	also	contains	a	SIGNAL	command	which	triggers	this	event	when	the
contents	of	the	#ADDRESS1	field	on	the	form	are	changed:
EVTROUTINE	HANDLING(#address1.changed)
			signal	event(ADDRESSCHANGED)
ENDROUTINE	
	

In	this	way	the	form	where	these	commands	have	been	specified	can
communicate	to	an	owner	form	that	the	contents	of	the	#ADDRESS	field	on	it
have	changed.	An	owner	form	can	react	to	this	event	by	having	an	event	routine
for	it:
EVTROUTINE	HANDLING(#FormB.ADDRESSCHANGED)
			execute	RfrshDtls
ENDROUTINE	
	

See	also	8.6.2	DEFINE_MAP	with	DEFINE_EVT.

8.6	DEFINE_MAP
The	DEFINE_MAP	command	defines	the	input	and	output	value	for	an	event,
method	or	property	routine.
The	DEFINE_MAP	statement	is	specified	after	the	DEFINE_EVT	statement	or
inside	a	MTHROUTINE	or	PTYROUTINE	block.	Input	and	output	values	have
to	be	defined	in	separate	DEFINE_MAP	statements.
To	pass	more	than	one	value	to	or	from	an	event	routine,	you	have	to	specify
separate	DEFINE_MAP	statements	for	all	of	them	in	the	DEFINE_EVT	block.
The	same	applies	to	method	routines	that	can	accept	multiple	input	parameters.
A	property	routine	can	have	only	one	DEFINE_MAP	statement	for	input	and
one	for	output	because	a	property	is	always	a	single	value.

Also	See
8.6.1	DEFINE_MAP	Parameters
8.6.3	DEFINE_MAP	in	MTHROUTINE
8.6.4	DEFINE_MAP	in	PTYROUTINE
8.6.2	DEFINE_MAP	with	DEFINE_EVT
8.16	MTHROUTINE
8.18	PTYROUTINE
8.5	DEFINE_EVT
	
																																																											Required							
																																																																										
				DEFINE_MAP	---	FOR	-------*INPUT	----------------------------
->							
																														*OUTPUT																																					
																														*BOTH																																							
																														*RESULT																																					
																																																																										
																																																																										
															>---CLASS	------	Component	Class	------------------
>							
																															*Variant																																			
																																																																										
																																																																										
															>--	NAME	-------	Component	name		------------------

>							
																																																																										
															>--	PASS	-------	*BY_VALUE		-------------------->										
																																*BY_REFERENCE																													

																																																									Optional									
																																																																										
																																																																										
															>--	DESC	-------	Description		----------------------->					
																																																																										
															>--	MANDATORY	--*YES	--------------------------------
>					
																															*NULL																																						
																															Default	value																														
																																																																										
															>--	HELP	-------	Help	text	---------------------------|				
																																																																										
																																																																										
	
	

8.6.1	DEFINE_MAP	Parameters
FOR
CLASS
NAME
PASS
MANDATORY
DESC
HELP

FOR
Parameter	will	be	received	by	the	associated	routine.
Allowable	values	ARE:
*Input
*Output
*Both
*Result
*Input

*Output

Parameter	will	be	returned	by	the	associated	routine

*Both

Parameter	will	be	received	and	subsequently	returned	by	the	associated	routine.

*Result

Parameter	will	be	returned	by	the	associated	routine.
*Result	is	only	valid	for	a	method	routine,	and	only	one	*Result	is	allowed	per
Method.	To	return	multiple	results,	use	*Output.
A	DEFINE_MAP	of	*Result	indicates	that	a	method	routine	has	a	defined	result
parameter.	This	is	similar	in	concept	to	Intrinsic	functions,	and	allows	a	method
routine	to	be	used	as	part	of	an	expression.

CLASS

CLASS	defines	the	type	of	value	that	is	passed.	The	value	of	CLASS	can	be	a
repository-defined	field.	The	field	can	be	a	simple	field	such	as	#SALARY	or
any	of	its	visualizations	such	as	#SALARY.VISUAL	or	#SALARY.MYPART.
*VARIANT	allows	the	use	of	a	variant	variable.	You	can	read	or	write	values
from	a	variant	variable,	but	it	has	no	properties.	At	the	moment	a	better
alternative	is	to	use	a	8.25.3	Variant	Variable	(#PRIM_VAR).
Note	that	you	can	pass	only	a	single	value	in	a	single	DEFINE_MAP	statement.

NAME
Name	uniquely	identifies	the	mapped	value.	The	name	can	be	up	to	20
characters	long	and	it	has	to	be	preceded	by	a	hash,	just	like	a	field	name.
Make	sure	the	name	is	unique	in	your	system.	It	should	not	be	the	same	name	as
any	other	field	or	component	in	your	program	nor	should	it	be	the	same	as	any
field	or	component	defined	in	the	repository.
There	are	few	things	you	should	note	about	the	name:
When	you	use	it	in	a	CHANGE	command	to	set	a	value	for	a	field,	you	must
refer	to	its	value	property:

					change	#empno	#curemp.value
	

When	you	want	to	change	its	value,	use	the	SET	command:

					set	com(#curemp)	value('A0070')
	

You	can	refer	to	the	name	without	the	value	property	in	subroutines	and	built-
in	functions

					use	builtin(reverse)	with_args(#curemp)	to_get(#revname)
	

The	same	name	can	be	used	in	different	event,	method	and	property	routines.
The	name	should	not	contain	any	prefixes	reserved	for	LANSA	such	as
#PRIM_,	#LANSA,	#SYS,	#COM	and	#LP.

PASS
Use	this	parameter	to	specify	how	the	supplied	parameter	is	mapped	to	the
variable	name.

By	default	the	parameter	is	supplied	*BY_VALUE.	This	means	that	a	copy	of
the	value	is	passed.
If	the	value	is	passed	*BY_REFERENCE,	the	routine	can	access	the	value	of
the	field	and	change	it.

MANDATORY
Use	this	parameter	to	specify	whether	the	parameter	being	specified	is
mandatory	(*YES).
Specify	*NULL	to	allow	users	of	the	method	to	not	supply	a	reference
parameter	by	default	when	Pass	is	*BY_REFERENCE.	The	method	code	can
then	use	the	IF_REF	command	to	work	out	whether	the	parameter	has	been
supplied	or	not.
If	the	parameter	is	optional,	you	must	specify	here	the	default	value	for	the
parameter.
The	following	code	defines	a	default	value	for	the	optional	parameter
#this_emp:

define_map	*input	class(#empno)	name(#this_emp)	mandatory('A1234')

	

The	following	code	defines	that	the	default	value	for	the	optional	parameter
#this_emp	is	blank:

define_map	*input	class(#empno)	name(#this_emp)	mandatory('')

	

You	can	also	supply	a	value	for	non-mandatory	output	parameters.	This	value	is
used	to	initialize	the	variable	at	the	beginning	of	the	routine	and	the	value	is
replaced	if	the	parameter	is	supplied	when	the	routine	is	invoked.
The	following	code	initializes	#mNumberOfTimes	to	a	default	of	99	and
#mValid	to	false:	

define_map	*output	class(#std_count)	name(#mNumberofTimes)	mandatory(99)

define_map	*result	class(#prim_boln)	name(#mValid)	mandatory(false)

	

DESC
You	can	specify	a	brief	description	for	the	mapped	value	using	the	DESC
parameter.	It	can	be	40	characters	long.

HELP
You	can	specify	a	longer	description	for	the	mapped	value	using	the	HELP
parameter.	The	help	text	can	be	viewed	using	the	Features	option	of	the	Help
menu.	It	can	be	250	characters	long.

8.6.2	DEFINE_MAP	with	DEFINE_EVT
Unlike	standard	events	such	as	Click	or	Initialize,	user-defined	events	can	also
receive	values.	To	specify	the	value	to	be	passed	to	the	event,	add	a
DEFINE_MAP	statement	after	the	DEFINE_EVT	statement.
Let's	use	a	form	called	Form	B	as	an	example.	It	has	a	user-defined	event
EMPLOYEE_CREATED	which	is	signaled	when	the	user	has	created	a	new
employee	record.	The	DEFINE_MAP	statement	defines	that	the	event	will	also
receive	the	employee	number	of	the	newly	added	employee.
This	is	the	DEFINE_EVENT	block	in	Form	B:
define_evt	name(employee_created)
define_map	*input	class(#empno)	name(#this_emp)
	

FormB	also	has	a	SIGNAL	command	which	signals	that	the	event	has	been
triggered	and	passes	the	employee	number	of	the	new	employee	to	the	event
routine:
signal	event(employee_created)	this_emp(#empno)
	

The	owner	form	of		Form	B	has	an	event	routine	for	the	employee_created
event	which	receives	the	employee	number	and	maps	it	to	a	variable	#TheValue
and	then	assigns	this	value	to	field	#empno	on	the	owner	form.
EVTROUTINE	HANDLING(#FormB.employee_created)	this_emp(#TheValue)
			set	com(#empno)	value(#TheValue)
ENDROUTINE
	

8.6.3	DEFINE_MAP	in	MTHROUTINE
When	you	create	a	custom-defined	method	using	the	MTHROUTINE
command,	you	can	optionally	specify	that	the	method	can	receive	input	values
and	return	output	values	using	a	DEFINE_MAP	statement.

Example	1
You	could	define	a	method	to	fetch	details	for	an	employee	on	the	form.	The
method	accepts	the	employee	number	(#curemp)	as	input	and	returns	a
transaction	number	(#trnno):
mthroutine	name(GetInfo)
			define_map	for(*input)	class(#empno)	name(#curemp)
			define_map	for(*output)	class(#STD_NUM)	name(#trnno)
			change	#empno	#curemp.value
			fetch	fields(#detflds)	from_file(pslmst)	with_key(#empno)
			change	#STD_NUM	'#STD_NUM	+	1'
			set	com(#trnno)	value(#STD_NUM)
endroutine		
	

An	owner	form	of	this	form	can	now	ask	it	to	execute	this	method.	It	passes	the
current	value	of	the	#empno	field	and	receives	the	transaction	number.	The
value	of	the	transaction	number	is	assigned	to	a	field	#TRANSA	on	the	owner
form.
EVTROUTINE	HANDLING(#MOVETO.Click)
			invoke	#frmdetail.GetInfo	curemp(#empno)	trnno(#transa)
ENDROUTINE
	

Example	2
In	this	example	form	the	Click	event	of	the	push	button	invokes	the	method
LoadForm,	passing	the	name	of	a	form	to	be	displayed	and	returning	a	reference
to	the	created	form	instance.
Try	copying	and	pasting	this	source	code	to	a	form	component	and	compile	it.
Execute	the	form	and	use	it	to	create	and	display	instances	of	other	forms	by
specifying	the	name	of	the	form	to	be	displayed	and	clicking	the	Load	button.
The	form	name	entered	must	be	the	name	of	a	previously	created	form.
BEGIN_COM	HEIGHT(123)	LEFT(296)	TOP(120)	WIDTH(209)
DEFINE_COM	CLASS(#STD_OBJ.Visual)	NAME(#STD_OBJ)	CAPTION('Form	to	Load:')	DISPLAYPOSITION(1)	HEIGHT(19)	LABELTYPE(Caption)	LEFT(8)	MARGINLEFT(80)	PARENT(#COM_OWNER)	TABPOSITION(1)	TOP(8)	WIDTH(161)

DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#PHBN_1)	CAPTION('Load')	DISPLAYPOSITION(2)	LEFT(16)	PARENT(#COM_OWNER)	TABPOSITION(2)	TOP(45)
	
*	form	collection	counter	and	form	collection
define	#FormTot	Reffld(#STD_NUM)	default(0)
DEFINE_COM	CLASS(#PRIM_KCOL)	NAME(#FORMS)	COLLECTS(#PRIM_FORM)	KEYEDBY(#STD_NUM)	STYLE(Collection)
	
define	#Position	Reffld(#STD_NUM)	default(1)
	
EVTROUTINE	HANDLING(#PHBN_1.Click)
Change	#FormTot	'#FormTot	+	1'
*	call	the	LoadForm	method,	pass	it	the	name	of	the	form	to	be	instantiated	and	return	a	reference	to	it.
Invoke	#COM_OWNER.LoadForm	FormName(#Std_Obj)	FormReference(#Forms<#FormTot>)
ENDROUTINE
	
Mthroutine	LoadForm
*	receive	the	name	of	the	form	and	return	a	reference	of	the	form	instance	which	has	been	created
Define_map	*input		#Std_Obj				#FormName
Define_map	*output	#prim_form		#FormReference	pass(*by_Reference)
	
*Create	an	instance	of	the	named	form	and	set	reference	to	it
Set_Ref	#FormReference	(*Create_from	#FormName.Value)
	
Set	#FormReference	Left(#Position)	Top(#Position)
Change	#Position	'#Position	+	10'
	
Invoke	#FormReference.ShowForm
Endroutine
END_COM
	

8.6.4	DEFINE_MAP	in	PTYROUTINE
When	you	define	a	property	for	a	component,	you	can	optionally	use	the
PTYROUTINE	command	to	specify	routines	for	setting	the	value	of	the
property	and	for	returning	its	value.	You	only	use	a	property	routine	when	you
want	to	manipulate	the	value	in	some	way,	for	example	to	derive	the	value	or
format	it.
The	property	routine	that	sets	the	value	contains	a	DEFINE_MAP	statement	for
specifying	the	type	of	value	that	can	be	input	(*INPUT)	to	the	routine.	The
property	routine	that	returns	the	value	of	the	property	has	a	DEFINE_MAP
statement	defining	what	kind	of	value	the	routine	returns	(*OUTPUT).
Let's	use	a	Form	B	as	an	example.	The	form	has	a	user-defined	property
EMP_NAME.	This	property	can	be	used	by	an	owner	form	of	Form	B	for
setting	the	value	of	the	employee	name	on	Form	B.	The	property	can	also	be
used	by	an	owner	form	for	retrieving	the	current	value	of	the	employee	name	on
Form	B.	In	Form	B	the	employee	name	is	handled	as	two	separate	fields
#GIVENAME	and	#SURNAME.
The	following	code	in	Form	B	defines	the	property	and	specifies	that	its	value	is
set	using	a	property	routine	called	SET_EMP_NAME	and	returned	by	a
property	routine	called	GET_EMP_NAME.
define_pty	name(EMP_NAME)	set(SET_EMP_NAME)	get(GET_EMP_NAME)
	

Define	Input
Parameter
FormB	contains	this	SET_EMP_NAME	routine:
ptyroutine	name(SET_EMP_NAME)	
		define_map	*input	class(#fullname)	name(#this_emp)
*		<<logic	to	split	#this_emp	to	#GIVENAME	and	#SURNAME>>
endroutine	
	

The	DEFINE_MAP	statement	in	this	routine	specifies	that	the	EMP_NAME
property	can	take	a	value	which	is	valid	for	a	#FULLNAME	field	and	that	the
value	is	identified	by	the	name	#this_emp	inside	this	routine.		
An	owner	form	can	now	set	the	value	of		the	EMP_NAME	property	in	Form	B.
set	#FORMB	EMP_NAME(#fullname)
	

or
set	#FORMB	EMP_NAME('John	Smith')
	

Define	Output
Parameter
FormB	also	contains	the	GET_EMP_NAME	routine	which	returns	the	value	of
the	EMP_NAME	property:
ptyroutine	name(GET_EMP_NAME)	
			define_map	*output	class(#fullname)	name(#this_emp)
*		<<logic	to	concatenate	#GIVENAME	and	#SURNAME	to	form	#this_emp>>
endroutine	
	

The	DEFINE_MAP	statement	in	this	routine	specifies	that	the	EMP_NAME
property	will	return	a	valid	value	for	#FULLNAME	field.	The	output	value	is
referred	to	with	the	name	#this_emp.	The	routine	then	concatenates	the	values
of	#GIVENAME	and	#SURNAME	to	form	the	value	#this_emp	which	will	be
returned	as	the	value	of	the	EMP_NAME	property.
An	owner	form	can	now	query	the	value	of	EMP_NAME	for	example	like	this:
IF	COND(#FormB.Emp_Name	*eq	'John	Smith')
	

8.7	DEFINE_PTY
The	DEFINE_PTY	command	defines	a	user-defined	property.
Custom	specified	properties	are	typically	used	to	pass	information	from	a
component	to	an	owner	component	in	multi-form	applications	or	from	a
reusable	part	to	an	owner	form.

Also	See
8.7.1	DEFINE_PTY	Parameters
8.7.2	DEFINE_PTY	Examples
	
																																																											Required							
																																																																										
				DEFINE_PTY	----NAME	-------Property	Name	------------------
--->							
																																																																										
																																																																										
															>--	SET	-------	*NONE		---------------------------->							
																												--	*AUTO	---	Member	Component	Name----
|							
																												--	*REFERENCE	--	#Variable	-----------|							
																												--	Property	Routine	------------------|							
																																																																										
															>--	GET	-------	*NONE		---------------------------->							
																												--	*AUTO	---	Member	Component	Name----
|							
																												--	*REFERENCE	-	#Variable	------------|							
																												--	*COLLECTION	-	#CollectionVariable	-|							
																												--	Property	Routine	------------------|							

																																																						Optional												
																																																																										
															>--	DESC	-------	Description	of	property	---------->							
																																																																										
															>--	ACCESS		----	*PUBLIC/*PROTECT/*PRIVATE	---
----->							

																																																																										
															>--	HELP	-------	Help	text	for	property	-----------|							
																																																																										
																																																																										
	

8.7.1	DEFINE_PTY	Parameters
NAME
SET
GET
DESC
ACCESS
HELP

NAME
NAME	is	the	unique	name	of	a	property.	It	can	be	up	to	20	characters	long.

SET
SET	specifies	what	happens	when	an	owner	component	sets	the	value	of	this
property.

*NONE Indicates	that	an	owner	component	cannot	set	the	value	of	this
property.

*AUTO	and
component
name

Indicates	that	an	owner	component	can	set	the	value	of	this
property.	The	value	which	is	passed	to	this	property	is
automatically	assigned	to	the	component	specified	in	this
parameter.

*REFERENCE
#variable

Sets	a	reference	to	the	component	defined	in	the	variable.	The
variable	must	be	defined	as	*DYNAMIC.

Property
Routine

Indicates	that	an	owner	component	of	this	component	can	set
the	value	using	a	property	routine.	The	routine	is	specified
using	the	PTYROUTINE	command	in	the	form	which	owns	the
property.
This	option	is	used	only	when	the	value	returned	has	to	be
derived	or	formatted.

	

GET
GET	specifies	what	happens	when	an	owner	component	retrieves	the	value	of

this	property.

*NONE Indicates	that	other	components	cannot	query	the	value	of
this	property.

*AUTO	and	
component	name

Indicates	that	the	current	value	of	the	component	specified
in	this	parameter	is	returned	to	the	component	querying	the
information.

*REFERENCE
#variable

Returns	a	reference	to	the	component	defined	in	the
variable.	The	variable	must	be	defined	as	*DYNAMIC.

*COLLECTION
#CollectionVariable

Returns	a	read-only	reference	to	the	collection	specified	in
#CollectionVariable.
You	can	use	these	kinds	of	properties	to	access	a	collection
to	do	look-ups	or	to	loop	through	the	collection	contents.
This	property	does	not	allow	you	to	change	the	contents	of
the	collection.

Property	Routine Indicates	that	a	value	will	be	determined	by	a	property
routine.	The	routine	must	be	specified	in	the	component
using	the	PTYROUTINE	command.
This	option	is	used	only	when	the	value	returned	has	to	be
derived	or	formatted.

	

DESC
Use	the	DESC	parameter	to	write	a	brief	description	for	the	property.	It	can	be
40	characters	long.

ACCESS
This	parameter	supports	one	of	the	options	from	the	list	*PUBLIC,	*PROTECT
and	*PRIVATE.

HELP
Use	the	HELP	parameter	to	write	a	longer	description	for	a	property.	The	help
text	can	be	viewed	using	the	Features	option	of	the	Help	menu.	It	can	be	250
characters	long.

8.7.2	DEFINE_PTY	Examples
Example	1
This	command	defines	a	property	STREETNO	for	Form	B.	When	an	owner
form	sets	the	value	of	this	property,	the	value	is	assigned	automatically	to	the
#address1	field	on	Form	B.	When	an	owner	form	queries	the	value	of	this
property,	the	current	value	of	the	#address1	field	on	Form	B	is	returned.
define_pty	name(STREETNO)	set(*auto	#address1)	get(*auto	#address1)
	

An	owner	form	can	now	set	the	value	of	the	property	like	this:
set	COM(#FORMB)	STREETNO('58	Surrey	St')
	

Or	if	it	contains	an	#ADDRESS1	field,	it	can	pass	the	current	value	of	the	field:
set	COM(#FORMB)	STREETNO(#ADDRESS1)
	

Example	2
Define	a	property	that	gets	a	reference	to	button	#PHBN:
Define_Pty	Name(Button1)	Get(*Reference	#Phbn_1)
	

The	Button1	property	of	the	owner	component	can	then	be	used	to	access
#Phbn_1,	for	example	to	change	its	Parent	property:
Set	Com(#COM_OWNER.Button1)	Parent(#GPBX_1)	
	

Example	3
Get	a	reference	to	a	collection:
Define_Pty	Name(TheCollection)	Get(*Collection	#Collection)
	

It	then	iterates	through	the	collection	using	the	reference	and	adds	the	value	and
the	caption	of	the	collection	items	to	a	list:
For	Each(#Current)	In(#COM_OWNER.TheCollection)	Key(#CurrentKey)
	
Change	Field(#STD_COUNT)	To('#CurrentKey.Value')
Change	Field(#STD_DESCS)	To('#Current.Caption')
	

Add_Entry	To_List(#GRID_1)
	
Endfor
	

8.8	END_COM
This	command	is	inserted	automatically	by	the	editor.
END_COM	ends	the	component	definition.	It	has	a	matching	a	BEGIN_COM
statement	which	starts	the	component	definition.	END_COM	is	always	the	last
statement	in	a	component.

Also	See
8.8.1	END_COM	Parameters
8.8.2	END_COM	Examples
8.3	BEGIN_COM
	
																																																																										
				END_COM		-----	no	parameters	---------------------------------
|							
																																																																										
	
	

8.8.1	END_COM	Parameters
There	are	no	END_COM	parameters.

8.8.2	END_COM	Examples
Refer	to	the	The	Role	parameter	has	a	number	of	functions.		for	example	of	the
END_COM	command.

8.9	ENDFOR
ENDFOR	ends	a	FOR	loop.	It	has	a	matching	a	FOR	statement	which	starts	the
loop.

Also	See
8.9.1	ENDFOR	Parameters
8.9.2	ENDFOR	Examples
8.12	FOR
	
																																																																										
				ENDFOR		-----	no	parameters	---------------------------------
|							
																																																																										
	

8.9.1	ENDFOR	Parameters
There	are	no	ENDFOR	parameters.

8.9.2	ENDFOR	Examples
Refer	to	the	8.12.2	FOR	Examples	for	example	of	the	ENDFOR	command.

8.10	ENDROUTINE
The	ENDROUTINE	command	is	used	to	end	an	EVTROUTINE,
MTHROUTINE	or		PTYROUTINE	block.
It	is	inserted	automatically	together	with	the	EVTROUTINE	command	as	you
click	on	an	event	in	the	Event	tab

Also	See
8.10.1	ENDROUTINE	Parameters
8.10.2	ENDROUTINE	Examples
ENDROUTINE	(in	RDML	Commands)
8.16	MTHROUTINE
8.18	PTYROUTINE
8.24	WEBROUTINE
	
																																																																										
				ENDROUTINE		-----	no	parameters	------------------------------
|							
																																																																										
	
	

8.10.1	ENDROUTINE	Parameters
There	are	no	ENDROUTINE	parameters.

8.10.2	ENDROUTINE	Examples
Refer	to	the	8.11.2	EVTROUTINE	Examples,	8.16	MTHROUTINE,	8.18
PTYROUTINE	or	8.24	WEBROUTINE	for	example	of	the	ENDROUTINE
command.

8.11	EVTROUTINE
This	command	is	inserted	automatically	together	with	the	ENDROUTINE
command	as	you	click	on	an	event	in	the	Event	tab.
EVTROUTINE	defines	an	event	handling	routine.

Also	See
8.11.1	EVTROUTINE	Parameters
8.11.2	EVTROUTINE	Examples
8.10	ENDROUTINE
	
	
																																																											Required							
																																																																										
				EVTROUTINE	----HANDLING	-------
ComponentName.EventName	------->							

																																																										Optional								
																																																																										
															>--	COM_SENDER	–	name	----------------------------
>								
																																																																										
															>--	COM_CURSOR	–	option	name	---------------------
>								
																																																																										
															>--	OPTIONS	----	message	and	error	clearing	options	-
|					
																																																																										
	
	

8.11.1	EVTROUTINE	Parameters
HANDLING
COM_SENDER
COM_CURSOR
OPTIONS

HANDLING
HANDLING	specifies	the	component	and	the	event	to	be	handled.	You	can
enter	up	to	50	combinations	of	components	and	events	in	this	parameter.
The	event	name	is	qualified	by	the	component	name.

COM_SENDER
COM_SENDER	can	be	used	to	generically	refer	to	components	that	signaled	an
event.
The	COM_SENDER	parameter	is	used	to	give	a	generic	name	to	all
components	that	signal	an	event	and	then	inside	the	event	routine	this	generic
name	can	be	used	to	refer	to	any	of	the	signaling	components.
The	components	can	be	individual	components	or	instances	of	a	collection.

COM_CURSOR
COM_CURSOR	can	be	used	to	control	the	behavior	of	the	desktop	cursor
during	busy	operations.	It	takes	the	following	options:

*DEFAULT Same	as	*DELAY_01.

*NEVER No	busy	cursor

*IMMEDIATEShow	busy	cursor	immediately

*DELAY_01 Shows	busy	cursor	if	the	activity	takes	longer	than	1	second.

*DELAY_02 Shows	busy	cursor	if	the	activity	takes	longer	than	2	seconds.

*DELAY_04 Shows	busy	cursor	if	the	activity	takes	longer	than	4	seconds.

	

OPTIONS
The	Options	parameter	can	have	two	values:

*CLEARERRORS	or
*NOCLEARERRORS

*CLEARERRORS	clears	the	ShowError	states	on
member	forms
	
*NOCLEARERRORS	stops	the	clearing	of
ShowError	states	on	member	forms

*CLEARMESSAGES	or
*NOCLEARMESSAGES

*CLEARMESSAGES	clears	messages	on	the	form
that	is	handling	the	event
	
*NOCLEARMESSAGES	stops	the	clearing	of
messages	on	the	form	that	is	handling	the	event

	

8.11.2	EVTROUTINE	Examples
The	following	code	displays	a	message	saying	"hello"	when	the	user	clicks	on
#HelloBtn	or	selects	the	menu	item	#HelloMit	:
EVTROUTINE	HANDLING(#HelloBtn.Click	#HelloMit.Click)
									MESSAGE	MSGTXT('hello')
ENDROUTINE
	

The	following	code	first	defines	a	generic	name	#AnyComponent	for	the	three
push-buttons	#PHBN_1,	#PHBN_2,	#PHBN_3	which	Click	event	is	being
processed.	Then	it	sets	the	value	of	the	#Button_Caption	field	to	the	caption	of
the	button	which	is	clicked.
EVTROUTINE	HANDLING(#PHBN_1.Click	#PHBN_2.Click	#PHBN_3.Click)	COM_SENDER(#AnyComponent)
				#Button_Caption	:=	#AnyComponent.Caption
ENDROUTINE		
	

The	following	code	defines	a	pop-up	menu	and	a	collection	for	its	menu	items.
When	the	form	is	initialized	five	menu	items	are	created	in	the	collection.	In	the
event	routine	of	the	Click	event	of	the	menu	item	collection	the	items	are	given
a	generic	name	#AnyOfTheGroup.	This	name	is	then	used	to	assign	the	caption
of	the	clicked	menu	item	to	a	field	named	#M_Caption.
DEFINE_COM	CLASS(#PRIM_PMNU)	NAME(#PMNU_1)
DEFINE_COM	CLASS(#PRIM_KCOL)	NAME(#ITEMS)	COLLECTS(#PRIM_MITM)	KEYEDBY(#STD_NUM)
	
EVTROUTINE	HANDLING(#COM_OWNER.Initialize)	OPTIONS(*NOCLEARMESSAGES	*NOCLEARERRORS)
			Set	Com(#Items<1>)	Caption('Item	One')	Parent(#PMNU_1)	
			Set	Com(#Items<2>)	Caption('Item	Two')	Parent(#PMNU_1)	
			Set	Com(#Items<3>)	Caption('Item	Three')	Parent(#PMNU_1)

			Set	Com(#Items<4>)	Caption('Item	Four')	Parent(#PMNU_1)	
			Set	Com(#Items<5>)	Caption('Item	Five')	Parent(#PMNU_1)	
ENDROUTINE		
	
EVTROUTINE	HANDLING(#Items<>.Click)	COM_SENDER(#AnyOfTheGroup)
			Change	#M_Caption	#AnyOfTheGroup.Caption
ENDROUTINE		
	

8.12	FOR
The	FOR/ENDFOR	command	enables	the	definition	of	a	looping	block	of	code
which	can	be	used	to	iterate	through	user-defined	collections	and	collections
provided	by	LANSA.
The	loop	is	run	once	per	item	identified	in	the	EACH	parameter.

Also	See
8.12.1	FOR	Parameters
8.12.2	FOR	Examples
8.9	ENDFOR
	
																																																											Required							
																																																																										
							FOR				---	EACH	---------	#VariableName	-------------------
>							
																																																																										
															>--	IN	----------	#Expression	--------------------->						
																																																																										
																																																											Optional							
															>--	KEY----------	#KeyVariableName	----------------
>							
																																																																										
															>--	OPERATION----*DEFAULT	-------------------------
|							
																																*INSTANCE_OF	----	#ClassName														
																																*KIND_OF	--------	#ClassName														
																																*DYNAMIC	--------	#VariableName											
																																																																										
	
	

8.12.1	FOR	Parameters
EACH
IN
KEY
OPERATION

EACH
The	EACH	parameter	names	a	variable	that	will	be	defined	for	the	scope	of	the
FOR/ENDFOR	block	to	be	a	reference	to	the	current	component	being	supplied
by	the	iterator.
By	default,	the	type	of	this	variable	is	that	of	the	type	of	the	component	being
collected	by	the	collection	from	which	the	iterator	was	created.	This	can	be
changed	by	the	OPERATION(…)	parameter.

IN
The	IN	parameter	identifies	the	collection	to	be	iterated	through.	The	collections
can	be	user-defined	or	primitive	LANSA	collections.
User-defined	collection	types	are:

Keyed
collection

Keyed	collection.	Keyed	collections	are	an	unordered	sequence	of
components	identified	by	a	key	value.	No	duplicates	of	the	key	value
are	allowed.
Note	that	because	there	is	no	predefined	ordering	of	items	in	a	keyed
collection,	there	is	no	guaranteed	order	in	which	the	items	will	be
returned	when	iterating	through	the	collection.

List
collection

A	List	collection.	List	collections	provide	an	ordered	collection	of
components.	The	features	of	the	list	component	are	positional	in
nature,	in	reference	to	a	given	index	or	to	the	beginning	or	end	of	the
list.	Indexing	is	always	relative	to	1.

Array
collection

An	array	collection.	Array	collections	are	a	dynamically	sized,
ordered	collection	of	components	that	can	be	located	by	indexing.
Indexing	is	always	relative	to	1.

Sorted
array
collection

A	sorted	array	collection.	Sorted	array	collections	are	a	dynamically
sized,	sorted	collection	of	components	that	can	be	located	by
indexing.	Indexing	is	always	relative	to	1.

Set
collection

A	set	collection.	Set	collections	are	an	unordered	collection	of
components	that	cannot	contain	duplicates.

Dictionary
collection

A	dictionary	collection.	Dictionary	collections	are	an	unordered
sequence	of	key-value	component	pairs	with	no	duplicates	of	the
key.

Sorted
dictionary
collection

A	sorted	dictionary	collection.	Sorted	dictionary	collections	are	a
collection	of		key-value	component	pairs.	The	collection	is	sorted	by
the	key	component	and	no	duplicates	of	the	key	are	allowed.

	

Primitive	LANSA	collections	are	accessed	using	these	properties:

ComponentMembers
property

The	ComponentMembers	property	of	a	component
provides	access	to	the	collection	of	all	its	member
components.	All	components	that	are	owners	of	other
components	have	this	property.

ComponentControls
property

All	composite	visual	components	(like	forms,	panels,
tabbed	folders,	etc)	support	the	ComponentControls
property	which	enables	access	to	its	children	controls.

Items	property The	Items	property	provides	access	to	the	items	in	grids,
list	views,	tree	views,	tree	view	items,	list	boxes,	combo
boxes,	property	sheets	and	menus.
For	a	menu	the	Items	property	provides	a	collection	of	all
the	menu	items	contained	in	MenuBar,	Popup	and
SubMenu	components.

Columns	property The	Columns	property	provides	access	to	the	attributes		of
columns	in	grids,	list	views,	tree	views,	list	boxes,	combo
boxes	and	property	sheets.

ComponentForms
property

The	ComponentForms	property	of	component	
#SYS_APPLN	provides	a	collection	of	all	the	forms
currently	realized	by	the	application.

	

KEY
Some	collections	provide	a	key.
Keyed	collections	have	a	key	which	is	the	type	of	the	field	defined	in	the
KeyedBy	parameter.	Other	collections	have	keys	that	are	simply	indexes.
If	you	want	access	the	current	key	of	the	current	component,	you	specify	a	name
for	the	KEY	parameter	and	Visual	LANSA	will	automatically	provide	access	to
the	current	key	each	time	you	reference	the	variable	name	in	the	FOR/ENDFOR
block.

OPERATION
This	parameter	lets	you	do	casting	operations	in	order	to	select	specific	kinds	of
objects	from	the	collection.

*DEFAULT All	items	are	selected.

*INSTANCE_OF
ClassName

Checks	if	the	variable	is	of	the	type	identified	by	the	class
name	or	of	the	type	of	ancestors	identified	by	the	class	name.

*KIND_OF
ClassName

Checks	if	the	variable	is	of	the	class	identified	by	the	class
name	value.

*DYNAMIC
#VariableName

Assigns	the	reference	contained	in	the	variable	name	to	each
of	the	variables	identified	by	the	EACH	parameter.	No
compile	time	checking	is	performed	to	see	if	the	variables	are
compatible.
At	run-time,	if	the	variable	name	cannot	be	cast	to	any	of	the
variables	identified	by	the	EACH	parameter,	an	error	is
raised.

	

8.12.2	FOR	Examples
Columns	Collection
This	example	loops	through	the	columns	of	a	list	view	and	retrieves	the
DisplayPosition	and	Width	attributes	of	the	columns	to	a	grid:
For	Each(#Current)	In(#ltvw_1.Columns)
Set	Com(#STD_NUM)	Value(#current.displayposition)
Set	Com(#std_amnt)	Value(#current.width)
Add_Entry	To_List(#GRID_1)
Endfor
	

ComponentMembers	Collection
This	example	records	all	the	member	components	on	a	form	and	lists	them	in	a
grid:
For	Each(#Current)	In(#COM_OWNER.ComponentMembers)
Change	Field(#STD_NAME)	To('#CURRENT.NAME')
Add_Entry	To_List(#GRID_1)
Endfor
	

ComponentForms	Collection
This	example	loops	through	the	collection	of	all	forms	currently	realized	by	an
application	and	records	them	in	a	grid:
For	Each(#Current)	In(#SYS_APPLN.ComponentForms)
Change	Field(#STD_NAME)	To('#CURRENT.ComponentTypeName')
Add_Entry	To_List(#GRID_1)
Endfor
	

Items	Collection
In	this	example	clicking	#PHBN_1	disables	all	the	menu	items	in	submenu
#SMNU_1	and	clicking	#PHBN_2	enables	the	menu	items:
Evtroutine	Handling(#PHBN_1.Click)
For	Each(#Current)	In(#smnu_1.Items)
Set	Com(#Current)	Enabled(False)
Endfor
Endroutine

	
Evtroutine	Handling(#PHBN_2.Click)
For	Each(#Current)	In(#smnu_1.Items)
Set	Com(#Current)	Enabled(True)
Endfor
Endroutine
	

8.13	IF_REF
The	IF_REF	command	is	used	to	compare	refrences	of	component	variables.

Also	See
8.13.1	IF_REF	Parameters
8.13.2	IF_REF	Examples
8.21	SET_REF
	
	
																																																											Required							
																																																																										
							IF_REF	---	COM	---------	Variable	name|variable	name	-----
->							
																																																																										
															>--	IS		--------	Reference	expression	------------->							
																																																																										
															>--	IS_NOT	------	Reference	expression	------------|							
																																																																										
	

8.13.1	IF_REF	Parameters
COM
IS	and	IS_NOT

COM
The	COM	parameter	identifies	one	or	more	component	variables	that	are	the
target	of	the	comparisons.

IS	and	IS_NOT
Specifies	the	reference	expression	that	must	be	true	to	make	the	IF	condition
true.	It	can	be	one	of	these:

*NULL Checks	if	the	variables	identified	by	the	COM	parameter	are
set	to	*NULL

*EQUAL_TO
#VariableName

Checks	if	the	variable	identified	by	the	COM	parameter	is
equal	to	this	variable.	In	other	words	the	condition	checks	if
both	variables	refer	to	the	same	component	instance.

*INSTANCE_OF
ClassName

Checks	if	the	variable	identified	by	the	COM	parameter	is	of
the	type	identified	by	the	class	name	or	of	the	type	of
ancestors	identified	by	the	class	name.

*KIND_OF
ClassName

Checks	if	the	variable	identified	by	the	COM	parameter	is	of
the	class	identified	by	the	class	name	value.

	

Refer	also	to	Specifying	Conditions	and	Expressions.

8.13.2	IF_REF	Examples
This	example	shows	a	message	box	if	a	reference	to	component	#WordApp
exists:
If_ref	Com(#WordApp)	Is_Not(*null)
			Use	Builtin(MESSAGE_BOX_SHOW)	With_Args(OK	OK	Information	'Reference'	'#WordApp	is	referenced.')
Endif
	

8.14	IMPORT
The	IMPORT	command	is	used	to	include	function	libraries	into	an	object.
Function	Libraries	are	LANSA	defined	primitives	that	contain	a	set	of	routines
and	functions.	
The	IMPORT	command	is	specified	immediately	after	the	FUNCTION
statement	and	before	the	BEGIN_COM.
Once	a	Function	library	has	been	imported,	the	routines	defined	in	the	library
can	be	used	in	expressions.
FUNCTION	Options(*DIRECT)
*	import	the	variant	function	library	named	#PRIM_LIBV
IMPORT	Libraries(#PRIM_LIBV)
	

Also	See
8.14.1	IMPORT	Parameters
8.14.2	IMPORT	Examples
				
																																																							Required							
																																																																										
							IMPORT	---	Libraries----	list	of	library	name	-------------
>							
																																																																										
																																																																										
																																																																										
	

8.14.1	IMPORT	Parameters
LIBRARIES
Use	this	parameter	to	specify	the	libraries	to	be	imported.
There	are	5	defined	libraries	available:
PRIM_LIBD	–	Date	time	library
PRIM_LIBI	–	Intrinsic	library
PRIM_LIBN	–	Number	function	library
PRIM_LIBS	–	String	function	library
PRIM_LIBV	–	Variant	function	library
Note:	With	the	exception	of	the	Variant	function	library,	all	of	the	features	of	the
libraries	are	available	through	the	use	of	intrinsic	functions.		This	is	the
recommended	technique.
Variants	by	their	nature	cannot	support	a	large	array	of	intrinsic	functions.		It	is
necessary	therefore	to	IMPORT	the	available	functions	such	that	a	variant	can
be	easily	manipulated.

8.14.2	IMPORT	Examples
The	IMPORT	command		is	specified	immediately	after	the	FUNCTION
statement	and	before	the	BEGIN_COM.	The	following	command	imports	the
variants	function	library:
FUNCTION	Options(*DIRECT)
*	import	variant	library
IMPORT	Libraries(#PRIM_LIBV)
	

Example	of	how	to	use	the	IMPORTED	function.		The	following	method
receives	variant.		If	the	variant	is	a	string,	it	is	returned	as	a	string	in	the	#Result
Define_map
Mthroutine	Name(Get_Variant_value)
Define_Map	For(*Input)	Class(*Variant)	Name(#iVariant)
Define_Map	For(*Result)	Class(#Prim_alph)	Name(#Result)
	
*	Call	the	Varisstring	function		
If	(VarisString(#iVariant))
	
#result	:=	VarasString(#iVariant)
	
Endif
	
Endroutine
	

8.15	INVOKE
The	INVOKE	command	invokes	a	method.	A	method	can	be	a	standard	method
such	as	a	form's	Show	and	Hide	methods,	or	it	can	be	a	user-defined	method.
Custom-defined	methods	can	also	accept	input	values	and	can	return	output
values.	When	you	invoke	a	method	like	this	you	need	to	pass	a	value	and	assign
a	field	for	the	returned	value.
Methods	are	often	used	by	an	owner	form	to	instruct	a	member	form	to	perform
some	action.	Note	that	a	component	can	also	invoke	its	own	methods,	for
example	a	form	can	close	itself	by	invoking	its	Hide	method.
The	specification	of	the	INVOKE	command	is	as	follows:
INVOKE	Method(method_expression)	ParmOne(#ArgOne)	ParmTwo(#ArgTwo)
	

Using	Full	RDMLX,	without	its	name,	the	command	can	be	entered	in	the
following	way:
method_expression	ParmOne(#ArgOne)	ParmTwo(#ArgTwo)
	

Also	See
8.15.1	INVOKE	Parameters
8.15.2	INVOKE	Examples
	
	
																																																											Required							
																																																																										
				INVOKE	-------------Component.Method		-------------------------
->					

																																																						Optional												
																								>----	Parameter	and	Value		-----------------|					
																																																																										
																																																																										
	
	

8.15.1	INVOKE	Parameters
COMPONENT.METHOD
Parameter	and	Value

COMPONENT.METHOD
The	method	to	be	invoked	qualified	by	the	component	name.

Parameter	and
Value
If	an	output	parameter	has	been	specified	in	the	MTHROUTINE	command,	the
name	of	the	parameter	and	the	value	to	be	passed.

8.15.2	INVOKE	Examples
This	code	shows	MyForm	using	its	Show	method:
INVOKE	#MyForm.ShowForm
	

This	code	executes	a	GetInfo	method,	passes	the	current	value	of	the	#employee
field	to	it,	and	receives	a	transaction	number	(trrno)	which	it	assigns	to	the	field
#transa.
INVOKE	#frmDetails.GetInfo	CurEmp(#EMPNO)	trnno(#TRANSA)
	

Simple	invocation	using	Full	RDMLX:
#Com_Owner.StringMethod	String1(#Address1)	String2(#Address2)	String3(#Address3)
#Com_Owner.StringMethod	String2(#Address2)	String3(#Address3)	String1(#Address1)
	

For	more	information	about	input	parameters	for	methods,	refer	to	8.6
DEFINE_MAP	and	8.16	MTHROUTINE	in	this	chapter.

8.16	MTHROUTINE
The	MTHROUTINE	command	is	used	to	define	a	user-defined	method.	A
method	instructs	the	component	to	do	something.
The	method	routine	can	optionally	receive	input	parameters.	For	more
information	refer	to	the	description	of	8.6	DEFINE_MAP.
The	MTHROUTINE	must	have	a	matching	ENDROUTINE	command.	A
method	is	executed	using	the	INVOKE	command.

Also	See
8.16.1	MTHROUTINE	Parameters
8.16.2	MTHROUTINE	Examples
8.10	ENDROUTINE
8.6	DEFINE_MAP
	
																																																											Required							
																																																																										
				MTHROUTINE	----	NAME	-------Routine	Name	-----------------
----->						

																																																						Optional												
																																																																										
															>--	DESC	-------	Description	------------------------->				
																																																																										
															>--	OPTIONS	----	*REDEFINE/*FINAL/*ABSTRACT-
---------->				
																																																																										
															>--	ACCESS		---
-	*PUBLIC/*PROTECT/*PRIVATE/*DEFAULT--->				
																																																																										
															>--	HELP	-------	Help	text----------------------------|				
																																																																										
	
	

8.16.1	MTHROUTINE	Parameters
NAME
DESC
OPTIONS
ACCESS
HELP

NAME
The	name	of	the	method	routine.	This	name	can	be	up	to	20	characters	long.

DESC
Use	the	DESC	parameter	to	write	a	brief	description	for	the	method.	It	can	be
40	characters	long.

OPTIONS
The	value	of	the	OPTIONS	parameter	determines	whether	a	method	inherited
from	an	ancestor	can	be	redefined:

*REDEFINE The	method	is	redefining	(overriding)	the	implementation	of	a
method	in	a	component's	ancestor.

*FINAL The	method	cannot	be	redefined	by	components	that	inherited
from	the	component	defining	the	method.

	

ACCESS
This	parameter	supports	one	of	the	options	from	the	list	*PUBLIC,	*PROTECT
and	*PRIVATE.

HELP
Use	the	Help	parameter	to	write	a	longer	description	for	a	method.	The	help	text
can	be	viewed	using	the	Features	option	of	the	Help	menu.	It	can	be	250
characters	long.

8.16.2	MTHROUTINE	Examples
You	can	define	a	user-defined	method	that	instructs	a	form	to	fetch	details	from
a	file:
MTHROUTINE	Name(GetInfo)	Help('This	method	gets	the	details	of	the	employee.')
				FETCH	Fields(#detflds)	From_File(pslmst)	With_Key(#empno)
ENDROUTINE	
	

An	owner	form	can	now	instruct	the	form	to	perform	this	action	by	invoking	the
method:
INVOKE	#frmDetail.GetInfo
	

For	an	example	of	how	to	pass	values	to	a	method	routine,	see	8.6.3
DEFINE_MAP	in	MTHROUTINE.

8.17	PERFORM
The	PERFORM	command	enables	the	calling	of	a	component	method,	library
function	or	intrinsic	feature	where	the	routine	being	called	does	not	require	any
parameters	or	the	parameters	are	supplied	as	a	parameter	list	enclosed	in
parentheses.
The	specification	of	the	PERFORM	command	is	as	follows:
PERFORM		EXPRESSION(expression)	

The	most	important	aspect	of	this	command	is	that	the	command	and	all
keywords	are	optional.

Also	See
8.17.1	PERFORM	Parameters
8.17.2	PERFORM	Examples
	
	
																																																							Required							
																																																																										
							PERFORM	---	Expression----	Expression	------------->							
																																																																										
																																																																										
																																																																									

8.17.1	PERFORM	Parameters
The	command	and	all	keywords	are	optional.
	

8.17.2	PERFORM	Examples
Simple	perform	operations:
#Com_Owner.Realize
#Com_Owner.SetFocus
#Com_Owner.StringMethod(#Address1	#Address2	#Address3)
	

	

8.18	PTYROUTINE
The	PTYROUTINE	command	is	used	create	a	routine	to	manipulate	the	value
of	a	user-defined	property.
When	you	define	a	property	for	a	form	using	the	DEFINE_PTY	command,	you
can	use	the	PTYROUTINE	command	to	specify	routines	for	setting	the	value	of
the	property	and	for	returning	its	value.	You	do	this	when	you	want	to
manipulate	the	value	of	the	property.	For	instance	you	can:
Split	the	value	that	has	been	passed	to	the	property	and	assign	the	resulting
values	to	two	or	more	fields.	For	example	you	could	do	this	by	splitting	the
value	of	an	Address	property	into	separate	fields	for	street	name	and	number,
city,	state	and	country	and	postcode.
Concatenate	the	values	of	several	fields	to	form	the	value	of	a	property	when
it	is	retrieved.
Calculate	or	otherwise	derive	the	value	of	the	property.

The	input	and	output	values	for	a	property	routine	are	defined	using	the
DEFINE_MAP	command.	For	more	information	refer	to	the	description	of	8.6
DEFINE_MAP	in	this	chapter.
It	is	worth	noting	that	the	custom-defined	properties	(DEFINE_PTY)	and	the
property	routines	are	all	contained	inside	the	form.	As	a	result	the	form	can
receive	property	values	from	its	owner	forms	as	well	as	return	them,	but	the	way
this	value	is	handled	inside	the	form	is	not	visible	to	the	owner	forms.	As	a
consequence,	you	can	change	the	way	the	form	handles	the	property	value
without	having	to	make	any	change	to	forms	that	use	this	property.
For	instance	a	form	which	has	an	Address	property	could	be	changed	so	that
post	code	and	state	information	which	was	previously	handled	as	one	field
would	now	be	handled	as	two	fields.	As	a	result	the	property	routine	in	the	form
would	have	to	be	changed,	but	no	change	would	be	required	in	other	forms	that
set	or	retrieve	the	value	of	the	Address	property	because	the	property	itself	does
not	change.
The	name	of	a	PTYROUTINE	can	be	the	value	of	the	SET	or	GET	parameters
in	a	DEFINE_PTY	command.	See	the	description	of	8.7	DEFINE_PTY.

Also	See
8.18.1	PTYROUTINE	Parameters
8.6.4	DEFINE_MAP	in	PTYROUTINE

8.10	ENDROUTINE
	
																																																											Required							
																																																																										
				PTYROUTINE	----	NAME	-------Routine	Name	-------
|																					
																																																																										

8.18.1	PTYROUTINE	Parameters
NAME

NAME
The	name	of	the	routine.

8.18.2	PTYROUTINE	Examples
See	8.6.4	DEFINE_MAP	in	PTYROUTINE.

8.19	SELECT_SQL	Free	Format
There	are	two	forms	of	the	SELECT_SQL	command.	This	section	describes	the
free	format	version	which	allows	any	SQL	that	is	valid	for	the	particular
database	engine.	No	parsing	is	performed	of	the	SQL	either	at	compile	time	or
runtime.	The	entered	SQL	command	is	passed	exactly	as	it	is	to	the	database
engine.	It	is	the	responsibility	of	the	RDML	programmer	to	ensure	that	the	data
returned	by	the	database	engine	matches	the	list	of	fields	in	the	FIELDS
parameter.	See	SELECT_SQL	for	the	other	form	of	SELECT_SQL.
This	form	of	the	SELECT_SQL	command	can	only	be	used	in	RDMLX
functions	and	components.
The	SELECT_SQL	command	is	used	in	conjunction	with	the	ENDSELECT
command	to	form	a	"loop"	to	process	one	or	more	rows	(records)	from	one	or
more	tables	(files).
For	example,	the	following	SELECT_SQL	/	ENDSELECT	loop	selects	all
values	of	product	and	quantity	from	the	table	ORDLIN	and	places	them,	one	by
one,	in	a	list:
---->	DEF_LIST	NAME(#ALIST)	FIELDS(#PRODUCT	#QUANTITY)
	-->	SELECT_SQL	FIELDS(#PRODUCT	#QUANTITY)
|																USING('SELECT	"PRODUCT",	"QUANTITY"	FROM	"MYDTALIB"."ORDLIN"')
|
|									ADD_ENTRY(#ALIST)
|
	----	ENDSELECT
	

Before	attempting	to	use	free	format	SELECT_SQL	you	must	be	aware	of	the
following:
1.		Information	accessed	via	SELECT_SQL	is	for	read	only.	If	you	use	INSERT
or	UPDATE	statements	in	your	USING	parameter	you	do	so	at	your	own	risk.

2.		SELECT_SQL	does	not	use	the	IO	Modules/OAMs	so	it	bypasses	the
repository	validation	and	triggers.

3.		The	SELECT_SQL	command	is	primarily	intended	for	performing	complex
extract/join/summary	extractions	from	one	or	more	SQL	database	tables
(files)	for	output	to	reports,	screens	or	other	tables.	It	is	not	intended	for	use
in	high	volume	or	heavy	use	interactive	applications.

					With	that	intention	in	mind,	it	must	be	balanced	by	the	fact	that

SELECT_SQL	is	a	very	powerful	and	useful	command	that	can	vastly
simplify	and	speed	up	most	join/extract/summary	applications,	no	matter
whether	the	results	are	to	be	directed	to	a	screen,	a	printer,	or	into	another	file
(table).

4.		The	SELECT_SQL	command	provides	very	powerful	database
extract/join/summarize	capabilities	that	are	directly	supported	by	the	SQL
database	facilities.	However,	the	current	IBM	i	implementation	of	SQL	may
require	and	use	significant	resource	in	some	situations.	It	is	entirely	the
responsibility	of	the	user	to	compare	the	large	benefits	of	this	command,	with
its	resource	utilization,	and	to	decide	whether	it	is	being	correctly	used.	One
of	the	factors	to	consider	is	whether	the	USING	parameter	uses	any	non-key
fields.	If	it	does,	then	SELECT_SQL	will	probably	be	quicker	than	SELECT.
Otherwise	SELECT	will	probably	be	quicker.	This	is	especially	important
when	developing	the	program	on	Visual	LANSA	first	with	the	intention	of
also	running	it	on	IBM	i.	This	is	because	Visual	LANSA	has	much	fewer
performance	differences	between	SELECT	and	SELECT_SQL.

5.		This	section	assumes	that	the	user	is	familiar	with	the	SQL	'SELECT'
command.	This	section	is	about	how	the	SQL	'SELECT'	command	is
accessed	directly	from	RDML	functions,	not	about	the	syntax,	format	and
uses	of	the	SQL	'SELECT'	command.

If	your	command	is	incorrect	then	the	following	diagnosis	is	possible:
A	useful	technique	when	working	with	SQL	is	to	use	interactive	SQL	to	"test
case"	your	command	(and	its	syntax)	before	compiling	it	into	a
SELECT_SQL	command.
At	execution	time.	Compiling	the	SELECT_SQL	free	format	command
proves	very	little.	Almost	all	the	parsing	is	performed	by	the	SQL	database
engine.	In	this	case	examine	all	the	resulting	error	messages	for	the	exact
cause.	

When	dealing	with	an	execution	time	error,	the	use	of	trace	on	the	function
will	allow	the	capture	of	the	exact	SQL	that	the	SELECT_SQL	command	has
generated.	Open	the	latest	trace	file	and	search	for	"***ERROR".	This	will	be
the	same	text	as	in	the	error	messages.	Go	back	8	lines	or	so	to	the
"Preparing"	message	and	you	will	find	the	SELECT	statement	that	caused	
the	error.	You	can	copy	and	paste	this	into	interactive	SQL	to	further	diagnose
the	problem.
One	of	the	most	common	execution	errors,	apart	from	a	syntax	errors	is	that

the	list	of	fields	does	not	match	the	data	returned	by	the	SQL	statement	in	the
USING	parameter.
When	reporting	issues	with	SELECT_SQL	to	support	you	must	provide	the
trace	file	and	the	generated	C	source	code.

The	extensive	use	of	the	SELECT_SQL	command	is	not	recommended	for	the
following	reasons:
The	SQL	access	commands	are	imbedded	directly	into	the	RDML	function.
DBMS	access	is	direct	and	not	done	via	IOM/OAM	access	routines.	This
approach	may	compromise	the	use	of	before	and	after	read	triggers	and	the
use	of	the	"thin		client"	designs	implemented	via	LANSA/SuperServer.
If	the	contents	of	SELECT_SQL	is	sourced	from	a	field	on	a	screen	then	it	is
possible	for	an	end	user	to	perform	more	than	a	select.	It	is	especially	easy	in
this	Free	Format	version	where	this	code	is	possible:
REQUEST	FIELD(#ANYSQL)
Select_Sql	Fields(#STD_NUM)	Using(#ANYSQL)
endselect.

					and	the	end	user	could	enter	this	on	the	screen:	"delete	from
mylib.afile;select	count(*)	from	mylib.afile"
The	use	of	imbedded	SQL	features	and	facilities	may	introduce	platform
dependencies	into	your	applications.	Not	all	SQL	facilities	are	supported	by
all	DBMSs.	By	bypassing	the	IOM/OAM	associated	with	the	table,	you	are
bypassing	the	feature	isolation	it	provides.	Using	SQL	features	and	facilities
that	are	DBMS	defined,	platform	dependent	extensions,	is	solely	at	the
discretion	of,	and	the	responsibility	of,	the	application	designer.
Where	SELECT_SQL	is	to	be	used,	you	should	isolate	the	use	within	a
specific	function,	separate	from	any	user	interface	operations.	This	will	allow
the	function	to	be	invoked	as	an	"RPC"	(Remote	Procedure	Call)	in	the	client
design	models.

Portability
Considerations

Do	NOT	use	this	command	to	connect	from	Visual	LANSA	to
a	database	on	the	IBM	i.	If	you	use	the	SELECT_SQL
command	to	connect	from	Visual	LANSA	to	an	IBM	i
Database,	it	will	access	the	Database	on	the	PC	and	not	on	the
IBM	i.	For	this	type	of	connection,	you	should	use	a	remote
procedure	call	(i.e	call_server_function).

Also	See
8.19.1	SELECT_SQL	Free	Format	Parameters

8.19.2	SELECT_SQL	Free	Format	Examples
8.19.3	SELECT_SQL	Free	Format	References
8.19.4	SELECT_SQL	Free	Format	Coercions
																																																									Required
	
		SELECT_SQL	---	FIELDS	-------	field	name	------------------
--->
	
													>--	USING	--------	SQL	select	command	-------------
>

																																																									Optional
	
													>--	FROM_FILES	---	file	name	---------------------->
																																|																														|
																																	------------	20	max-----------
	
													>--	IO_STATUS	----	field	name	--------------------->
																																*STATUS
	
													>--	IO_ERROR	-----	*ABORT	-------------------------|
																																*NEXT
																																*RETURN
																																label
	

8.19.1	SELECT_SQL	Free	Format	Parameters
FIELDS
FROM_FILES
IO_ERROR
IO_STATUS
USING

FIELDS
Specifies	the	fields	that	will	receive	the	result	of	the	SQL	command	specified	in
the	USING	parameter.	This	parameter	can	only	contain	fields,	groups	and
expandable	groups
All	columns	nominated	by	this	parameter	must	be	defined	in	the	current
function	or	in	the	LANSA	data	dictionary	as	valid	RDML	variables.
Fields	of	type	BLOB	and	CLOB	are	not	supported	in	the	SELECT_SQL
command.	If	one	is	specified	a	fatal	error	will	occur	when	the	command	is
compiled.

USING
The	SQL_SELECT	USING	parameter	can	be	any	valid	enhanced	expression	.	It
is	best	to	use	single	quotes	to	delimit	strings	so	that	double	quotes	can	be	used
around	the	SQL	identifiers.	This	means	that	single	quotes	around	string	literals
must	be	doubled	up.	The	first	and	second	examples		have	the	same	result	except
that	the	last	single	quote	to	terminate	the	SQL	literal	is	specified	in	two	different
ways	-	either	''''	or	"'".	The	fourth	example	puts	the	value	and	the	quotes	into	a
work	field	which	may	be	the	easiest	method	to	read	and	maintain.

.	.	.	USING('SELECT	"EMPNO"	FROM	"XDEMOLIB"."PSLMST"	WHERE	"EMPNO"	<	'''	+	#EMPNO	+	'''')

.	.	.	USING('SELECT	"EMPNO"	FROM	"XDEMOLIB"."PSLMST"	WHERE	"EMPNO"	<	'''	+	#EMPNO	+	"'")

.	.	.	USING('SELECT	"EMPNO"	FROM	"XDEMOLIB"."PSLMST"	WHERE	NOT	"EMPNO"	LIKE	''%a''')

.	.	.	#STD_TEXT	:=	"'%a'"

.	.	.	USING('SELECT	"EMPNO"	FROM	"XDEMOLIB"."PSLMST"	WHERE	NOT	"EMPNO"	LIKE	'
+	#STD_TEXT)

	

The	SQL	language	uses	double	quotes	(the	quote	character	may	differ	on	some
databases)	to	surround	identifiers	that	might	otherwise	be	interpreted	as	SQL
syntax	By	quoting	identifiers	you	are	assured	that	the	identifiers	will	not	clash
with	any	SQL	syntax	on	any	database.

The	USING	parameter	does	not	support	embedded	fields	(e.g.
:KARTIC)	like	the	WHERE	parameter	does.

Portability
Considerations

	
Visual	LANSA	provides	access	to	multiple	databases	using
Visual	LANSA	Other	Files.	Visual	LANSA	Other	files	can	be
used	in	SELECT_SQL,	but	they	must	all	be	from	the	same
database.	If	a	Visual	LANSA	Other	File	is	in	the	same
database	as	a	LANSA	file,	then	the	two	files	can	be	used	in
the	same	SELECT_SQL	command
SQL	Table	names	may	differ	from	the	LANSA	file	name,	for
example	when	an	@,	#	or	$	is	in	the	name.	This	name	may
also	be	different	between	different	operating	systems.	If	the
SQL	Command	is	intended	to	be	executed	on	multiple
platforms	ensure	that	the	table	names	are	either	the	same	or
they	are	specified	as	a	variable	in	the	USING	parmater

USING	clause	hints
It	is	usually	necessary	to	specify	the	collection	that	the	table	is	in.	This	is	not
necessary	in	the	WHERE	parameter	because	LANSA	parses	the	SQL	and
determines	the	correct	collection	to	use.
All	the	identifiers	must	be	spelt	exactly	as	required	by	the	database.	For
example	the	LANSA	name	for	an	Other	File	may	be	different	to	the	actual	table
name	if	the	table	name	already	exists	or	its	longer	than	10	characters.	It's	the
table	name	that	must	be	specified.	The	following	example	uses	a	table	named
"Long	Table	Name	With	Spaces"	with	columns	named	"Long	Field	Name	1"
and	"Long	Field	Name	2".	LANSA	has	loaded	the	table	as	"LONG_TABLE"
and	named	the	fields	"LONG_FIEL"	and	"LONG_FIE1".

SELECT_SQL	FIELDS(#LONG_FIEL	#LONG_FIE1)
FROM_FILES((LONG_TABLE))	IO_ERROR(*NEXT)	USING('select	"Long

Field	Name	1",	"Long	Field	Name	2"	FROM	LX_DTA."Long	Table	Name	With
Spaces"')

When	searching	for	data	using	the	like	condition,	characters	with	special	
meaning	to	SQL	need	to	be	escaped	if	they	need	to	be	taken	literally.	For
example,	the	character	'_'	matches	any	character.	To	literally	match	'_'	then	the
following	syntax	needs	to	be	used.	This	will	find	all	states	that	start	with	'B_':

CHANGE
FIELDS(#TABLE)	TO('SELECT	"CUSTNUM"	FROM	"XDEMOLIB"."CUSTOMERS"
')

CHANGE	FIELDS(#SELECTION)	TO('WHERE	STATE	LIKE	''B!_%''	ESCAPE	''!''')

SELECT_SQL	FIELDS(#CUSTNUM")	USING(#TABLE	+	#SELECTION)

									DISPLAY	FIELDS(#CUSTNUM)

ENDSELECT
	

Note:	This	nominates	the	exclamation	mark	as	the	escape	character.
Any	"normal"	character	not	greater	than	127	in	the	ASCII	table	can	be
used.	(Characters	%,_,[do	not	work	on	all	DBMS	systems	and	so	are
not	recommended.)

This	has	been	tested	on	ASA,	DB2400,	SQL	Server,	and	Oracle.	The
only	exception	is	MS	Access,	where	instead	you	need	to	use	[]	around
the	character	to	be	escaped.	For	example:	WHERE	"STATE"	LIKE
'B[_]%'

For	further	details	about	specifying	conditions,	refer	to	Specifying	Conditions
and	Expressions.	For	further	information	about	the	structure	of	this	clause,	refer
to	the	SQL	guides.

RDMLX	IBM	i	Other	Files	with	Unicode	Fields
SQL	on	IBM	i	cannot	compare	a	graphic	unicode	field	directly	to	a	string	literal
or	a	character	column;	a	conversion	error	occurs.
There	are	three	ways	of	converting	the	expression	to	Unicode	to	avoid	the

conversion	error:
1.		Pass	the	literal	as	a	Unicode	(UX'ssss')	literal.	For	example,	instead	of:
					'WHERE	"UNIFLD"	LIKE	''C%'''
					try
					'WHERE	"UNIFLD"	LIKE	UX''00430025''').
2.		Convert	the	literal	or	column	using	SQL	functions	so	it	becomes	a	Unicode
expression.	For	example,	CHARFLD	is	a	Character	column.	Instead	of

					'WHERE	"UNIFLD"	=	"CHARFLD"')
					try
					'WHERE	"UNIFLD"	=	CAST	"CHARFLD"	AS	GRAPHIC(6)	CCSID
13488)')

For	further	details,	refer	to	the	IBM	manual	DB2	UDB	for	IBM	SQL	Reference.

FROM_FILES
Refer	to	Specifying	File	Names.
This	is	an	optional	parameter,	unlike	the	parameter	of	the	same	name	in	the
form	of	the	SELECT_SQL	command	which	is	parsed	by	LANSA.	This	is
because	the	file	name	used	here	does	not	effect	the	file	accessed	at	runtime.	It
has	two	purposes:	the	first	is	for	use	in	accessing	Other	Files	that	are	in	other
databases.	By	specifying	the	file	name	LANSA	will	be	able	to	locate	the
database	connection	information	that	was	used	to	load	the	Other	File	into
LANSA.	This	can	be	further	refined	by	using	the	DEFINE_DB_SERVER	and
CONNECT_FILE	BIFs.
The	second	purpose	is	to	generate	cross	reference	information	so	that	use	of	the
files	in	the	USING	parameter	can	be	traced.	This	can	later	be	used	for	impact
analysis	though	clearly	it	is	a	manual	cross	reference	and	so	relies	on	the
programmer	to	keep	it	up	to	date.	LANSA	suggests	that	it	should	be	made	a
program	documentation	rule.
Examples
.	.	.	FROM_FILES(ORDLIN)	
.	.	.	USING('SELECT	*	FROM	"MYLIB"."ORDLIN",	"MYLIB"."ORDDTL"	
.	WHERE	"MYLIB"."ORDLIN"."CUSTNO"	=	"MYLIB"."ORDDTL"."CUSTNO"')

IO_STATUS
Specifies	the	name	of	a	field	that	is	to	receive	the	"return	code"	that	results	from

the	I/O	operation.
If	the	default	value	of	*STATUS	is	used	the	return	code	is	placed	into	a	special
field	called	#IO$STS	which	can	be	referenced	in	the	RDML	program	just	like
any	other	field.
If	a	user	field	is	nominated	to	receive	the	I/O	return	code	it	must	be
alphanumeric	with	a	length	of	2.	Even	if	a	user	field	is	nominated	the	special
field	#IO$STS	is	still	updated.
Refer	to	I/O	Command	Return	Codes	Table	for	values.

IO_ERROR
Specifies	what	action	is	to	be	taken	if	an	I/O	error	occurs	when	the	command	is
executed.
An	I/O	error	is	considered	to	be	a	"fatal"	error.	Some	examples	are	file	not
found,	file	is	damaged,	file	cannot	be	allocated.	These	types	of	errors	stop	the
function	from	performing	any	processing	at	all	with	the	file	involved.
If	the	default	value	of	*ABORT	is	used	the	function	will	abort	with	error
message(s)	that	indicate	the	nature	of	the	I/O	error.
*NEXT	indicates	that	control	should	be	passed	to	the	next	command.
*RETURN	specifies	that	in	a	program	mainline	control	is	to	be	returned	to	the
caller	and	in	a	subroutine	control	is	to	be	returned	to	the	caller	routine	or	the
program	mainline.
If	none	of	the	previous	values	are	used	you	must	nominate	a	valid	command
label	to	which	control	should	be	passed.

8.19.2	SELECT_SQL	Free	Format	Examples
Using	SELECT_SQL	With	the	DISTINCT	Option
Using	SELECT_SQL	With	Calculations
Using	SELECT_SQL	With	AND	and	OR	Operators
Using	SELECT_SQL	With	the	BETWEEN	Operator
Using	SELECT_SQL	With	the	DISTINCT	Option
This	example	demonstrates	how	to	use	the	SELECT_SQL	command	with	the
DISTINCT	option	to	eliminate	duplicate	field	values.	The	use	of	the	standard
SELECT_SQL	command	without	any	extra	options	is	also	demonstrated.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#NDSTEMPNO	#DSTEMPNO)
DEFINE					FIELD(#HEADING1)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#NDSTEMPNO)	REFFLD(#EMPNO)	COLHDG('Employee	number'	'Not	Distinct')
DEFINE					FIELD(#DSTEMPNO)	REFFLD(#EMPNO)	COLHDG('Employee	Number'	'Distinct')
DEFINE					FIELD(#ENTRYNO)	TYPE(*DEC)	LENGTH(5)	DECIMALS(0)	DESC('List	entry	counter')
											
CHANGE					FIELD(#HEADING1)	TO('''This	function	uses	SELECT_SQL	from	PSLSKL.''')
											
BEGIN_LOOP	
EXECUTE				SUBROUTINE(NOTDISTINC)
EXECUTE				SUBROUTINE(DISTINCT)
DISPLAY				FIELDS(#HEADING1)	DESIGN(*DOWN)	IDENTIFY(*NOID)	BROWSELIST(#EMPBROWSE)
END_LOOP			
											
SUBROUTINE	NAME(NOTDISTINC)
CLR_LIST			NAMED(#EMPBROWSE)
CHANGE					FIELD(#DSTEMPNO)	TO(*NULL)
SELECT_SQL	FIELDS(#EMPNO)	USING('SELECT	"EMPNO"	FROM	"XDEMOLIB"."PSLSKL"')
CHANGE					FIELD(#NDSTEMPNO)	TO(#EMPNO)
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
ENDROUTINE	
											
SUBROUTINE	NAME(DISTINCT)
CHANGE					FIELD(#ENTRYNO)	TO(1)
SELECT_SQL	FIELDS(#EMPNO)	USING('SELECT	DISTINCT	"EMPNO"	FROM	"XDEMOLIB"."PSLSKL"')
GET_ENTRY		NUMBER(#ENTRYNO)	FROM_LIST(#EMPBROWSE)

CHANGE					FIELD(#DSTEMPNO)	TO(#EMPNO)
UPD_ENTRY		IN_LIST(#EMPBROWSE)
CHANGE					FIELD(#ENTRYNO)	TO('#ENTRYNO	+	1')
ENDSELECT		
ENDROUTINE	
	

Using	SELECT_SQL	With	Calculations
This	example	demonstrates	how	calculations	can	be	used	on	date	retrieved	by
the	SELECT_SQL	command.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#SURNAME	#SALARY	#STD_AMNT)
DEFINE					FIELD(#HEADING1)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING2)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING3)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
											
OVERRIDE			FIELD(#STD_AMNT)	COLHDG('Salary	+	10%')
											
CHANGE					FIELD(#HEADING1)	TO('''This	function	uses	SELECT_SQL	from	PSLMST.''')
CHANGE					FIELD(#HEADING2)	TO('''This	shows	a	list	of	employee	surnames	and	salaries	and	the	salary	+	10%.''')
CHANGE					FIELD(#HEADING3)	TO('''This	can	be	done	with	one	SELECT_SQL	statement.''')
											
BEGIN_LOOP	
CLR_LIST			NAMED(#EMPBROWSE)
SELECT_SQL	FIELDS(#SURNAME	#SALARY	#STD_AMNT)
											USING('SELECT	"SURNAME",	"SALARY",	"SALARY"	*	1.10	FROM	"XDEMOLIB"."PSLMST"')))
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
DISPLAY				FIELDS(#HEADING1	#HEADING2	#HEADING3)	DESIGN(*DOWN)	IDENTIFY(*NOID)	BROWSELIST(#EMPBROWSE)
END_LOOP	
	

Using	SELECT_SQL	With	AND	and	OR	Operators
This	example	demonstrates	how	the	SLECT_SQL	command	can	be	used	with
AND	and	OR	operators	to	conduct	more	complex	queries.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#ADDRESS2	#SALARY	#SURNAME)
DEFINE					FIELD(#HEADING1)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING2)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING3)	TYPE(*CHAR)	LENGTH(79)	INPUT_ATR(LC)
											

CHANGE					FIELD(#HEADING1)	TO('''This	function	uses	SELECT_SQL	from	PSLMST.''')
CHANGE					FIELD(#HEADING2)	TO('''This	lists	all	employees	who	either	have	a	salary	in	the	range	10000	to	20000,''')
CHANGE					FIELD(#HEADING3)	TO('''or	who	live	in	SEVEN	HILLS.	This	can	be	done	with	one	SELECT_SQL	statement.''')
											
BEGIN_LOOP	
CLR_LIST			NAMED(#EMPBROWSE)
SELECT_SQL	FIELDS(#EMPNO	#SURNAME	#ADDRESS2	#SALARY)
											USING('SELECT	"EMPNO",	"SURNAME",	"ADDRESS2",	"SALARY"	FROM	"XDEMOLIB"."PSLMST"	
																		WHERE	(("SALARY"	>	10000)	AND	("SALARY"	<	20000))	
																										OR	("ADDRESS2"	=	''SEVEN	HILLS.'')')
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
DISPLAY				FIELDS(#HEADING1	#HEADING2	#HEADING3)	DESIGN(*DOWN)	IDENTIFY(*NOID)	BROWSELIST(#EMPBROWSE)
END_LOOP	
	

Using	SELECT_SQL	With	the	BETWEEN	Operator
This	example	demonstrates	the	use	of	the	SELECT_SQL	command	with	the
BETWEEN	operator.	The	BETWEEN	operator	can	be	used	in	the	WHERE
clause	to	retrieve	data	between	specified	values.	It	can	also	be	used	to	retrieve
data	excluding	that	between	specified	values.
DEF_LIST			NAME(#EMPBROWSE)	FIELDS(#EMPNO	#SALARY)
DEFINE					FIELD(#HEADING1)	TYPE(*CHAR)	LENGTH(079)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING2)	TYPE(*CHAR)	LENGTH(079)	INPUT_ATR(LC)
DEFINE					FIELD(#HEADING3)	TYPE(*CHAR)	LENGTH(079)	INPUT_ATR(LC)
DEF_COND			NAME(*AS400)	COND('*CPUTYPE	=	AS400')
											
CHANGE					FIELD(#HEADING1)	TO('''EXAMPLE	1:	Select	all	employees	with	a	salary	between	30,000	and	60,000.''')
CHANGE					FIELD(#HEADING2)	TO(*BLANKS)
CHANGE					FIELD(#HEADING3)	TO('''This	can	be	done	with	one	SELECT_SQL	statement.''')
											
BEGIN_LOOP	
CHANGE					FIELD(#HEADING1)	TO('''EXAMPLE	1:	Select	all	employees	with	a	salary	between	30,000	and	60,000.''')
CLR_LIST			NAMED(#EMPBROWSE)
SELECT_SQL	FIELDS(#EMPNO	#SALARY)	
											USING('SELECT	"EMPNO",	"SALARY",	FROM	"XDEMOLIB"."PSLMST"	
																		WHERE	"SALARY"	BETWEEN	30000	AND	60000'
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		

											
EXECUTE				SUBROUTINE(DISP)
CHANGE					FIELD(#HEADING1)	TO('''EXAMPLE	2:	Select	all	employees	with	a	salary	outside	range	30,000	to	60,000.''')
CLR_LIST			NAMED(#EMPBROWSE)
SELECT_SQL	FIELDS(#EMPNO	#SALARY)	
											USING('SELECT	"EMPNO",	"SALARY",	FROM	"XDEMOLIB"."PSLMST"	
																		WHERE	"SALARY"	NOT	BETWEEN	30000	AND	60000')
ADD_ENTRY		TO_LIST(#EMPBROWSE)
ENDSELECT		
EXECUTE				SUBROUTINE(DISP)
END_LOOP			
											
SUBROUTINE	NAME(DISP)
DISPLAY				FIELDS(#HEADING1	#HEADING2	#HEADING3)	DESIGN(*DOWN)	IDENTIFY(*NOID)	BROWSELIST(#EMPBROWSE)
ENDROUTINE	
	

	
For	more	examples	of	the	SELECT_SQL	command	please	see	‘All	About
SELECT_SQL’	in	The	Set	Collection.
	

8.19.3	SELECT_SQL	Free	Format	References
SAA	Structured	Query	Language/400	Reference	(SC41-9608)SAA	Structured
Query	Language/400	Programmers	Guide	(SC41-9609)

8.19.4	SELECT-SQL	Free	Format	Coercions
Following	are	some	examples	of	the	results	that	may	be	expected	when	using
SELECT_SQL	when	the	column	field	type	and	the	LANSA	field	type	are	not
the	same	-	thus	coercion	needs	to	occur.
Test	Values	were	all	numeric.	If	an	Alpha/String	contains	non-numeric	data,	the
coercion	to	numerics	is	undefined.	It	may	result	in	0,	it	may	ignore	non-numeric
characters	and	convert	the	rest,	and	it	may	ABEND.
Note	that	overflow	of	a	value	is	undefined.	For	example,	if	a	number	is	too	large
to	fit	in	to	a	field,	it	may	truncate	left	or	right	or	indeed	be	an	indeterminate
value.	On	IBM	i,	it	is	usually	a	fatal	error.
Where	NO	is	stated,	a	coercion	is	performed,	but	valid	coercions	are	not
common	due	to	formatting	requirements.
	Target
Field
Type

Windows
Packed
(63,0)

RDMLX
IBM	i
Packed
(63,0)

Windows
Alpha

RDMLX
IBM	i
Alpha

Windows
Signed
(63,0)

RDMLX
IBM	i
Signed
(63,0)

Windows
Char
(300)

RDMLX
IBM	i
Char(300)

Windows
Date

RDMLX
IBM	i
Date

Char
(65535)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Signed
(63,0)

Yes No Yes Yes Yes Yes Yes Yes Yes Yes

Time No ABEND No ABEND No ABEND No ABEND No No
Date No ABEND No ABEND No ABEND No ABEND Yes Yes
Binary Yes Yes Yes ABEND Yes Yes Yes ABEND No No
Alpha Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Signed
(63,63)

Yes No Yes Yes Yes Yes Yes Yes No No

Date
Time

No ABEND No ABEND No ABEND No ABEND No No

Packed
(63,0)

Yes Yes Yes Yes Yes No Yes Yes Yes Yes

Char
(300)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Packed
(63,63)

Yes Yes Yes Yes Yes No Yes Yes No No

Integer
(4)

Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

Float(8) Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes

8.20	SET
The	SET	command	sets	a	property	in	a	component

Also	See
8.20.1	SET	Parameters
8.20.2	SET	Examples
	
	
																																																											Required							
																																																																										
				SET	----	COM	-------Component	Name	-------
>																											
																																																																										
							>----	Property	Values	------------------|																										
																																																																										
																																																																										
	
	

8.20.1	SET	Parameters
COM
Property	and	Value

COM
COM	specifies	the	component.	You	can	define	up	to	50	components.

Property	and	Value
The	property	and	the	value	to	which	it	is	to	be	set.	Note	that	the	value	can	also
be	the	current	value	of	another	component.

8.20.2	SET	Examples
This	code	sets	the	caption	of	#MyButton	to	"OK":
SET	COM(#MyButton)	Caption('OK')
	

This	code	disables	buttons	#PHBN_1	and	#PHBN_2:
set	COM(#phbn_1	#phbn_2)	Enabled(false)
	

This	code	sets	the	ColumnWidth	of	the	first	grid	in	an	ActiveX	grid	to	50:
SET	COM(#Com_Grid)	ColumnWidth<1>(50)
	

This	code	sets	the	caption	of	a	label	to	the	current	value	of	the	#SURNAME
field	on	the	form:
SET	COM(#label_1)	Caption(#SURNAME)
	

Note	that	if	a	field	is	used	in	a	list-type	component	in	a	form,	its	current	value
can	be	passed	using	the	field	name	exactly	as	if	the	actual	field	was	on	the	form.
So	the	code	above	would	work	if	the	form	contained	a	list-type	component
which	has	a	column	with	the	Source	property	set	to	#SURNAME.

8.21	SET_REF
The	SET_REF	command	is	used	to	assign	a	component	reference	to	a	variable
that	has	been	defined	with	a	dynamic	reference	in	the	DEFINE_COM
statement.	With	a	dynamic	reference,	an	instance	of	a	component	is	created	only
when	a	reference	to	it	is	assigned	with	the	SET_REF	command.

Note:	Beware	of	using	long	object	names	with	this	command.
SET_REF	Com(#MyObject)	To(*CREATE_AS
#MyFormWithLongNames)	works	with	long	names.
SET_REF	Com(#MyObject)	To(*CREATE_FROM
#MyFormWithLongNames)	doesn't	work	as	it	is	runtime	and	long
names	are	not	available.

Also	See
8.21.1	SET_REF	Parameters
8.21.2	SET_REF	Examples
8.13	IF_REF
	
	
																																																											Required							
																																																																										
							SET_REF	---	COM		-------	Variable	name|variable	name-----
-->						
																																																																										
															>--	TO		--------	Reference	expression	------------->							
																																																																										
															>--	CONTEXT		---	*DEFAULT		------------------------
>							
																																*OWNER																																				
																																*MODULE																																			
																																*NEW																																						
																																*NAMED	----	#Variable																					
																																																																										
															>--	COM_ERROR---	*ABORT	---------------------------
|							
																																*IGNORE																																			

																																*SET_NULL																																	
																																																																										
	
	

8.21.1	SET_REF	Parameters
COM
TO
CONTEXT
COM_ERROR

COM
The	COM	parameter	specifies	the	component	or	components	to	which	the	result
of	the	reference	expression	specified	in	the	TO	parameter	is	assigned.	The
components	specified	in	this	parameter	must	have	been	specified	with	a
dynamic	reference	in	the	DEFINE_COM	parameter.

TO
Note:	SET_REF	*create	only	works	with	object	short	names.	It	cannot
load	objects	using	their	long	names	because	in	runtime	long	names	are
not	available.

The	TO	parameter	derives	a	component	reference	which	is	assigned	to	the
variables	named	in	the	COM	parameter.	The	reference	expression	has	to	be	in
one	of	the	following	forms:

#VariableName Assigns	the	reference	contained	in	the	variable	name	to	each
of	the	variables	identified	by	the	COM	parameter.	The
variables	must	be	compatible.

*NULL Assigns	a	*NULL	reference	to	all	the	component	variables
identified	by	the	COM	parameter.

*DYNAMIC
#VariableName

Assigns	the	reference	contained	in	the	variable	name	to	each
of	the	variables	identified	by	the	COM	parameter.	No
compile	time	checking	is	performed	to	see	if	the	variables
are	compatible.
At	run-time,	if	the	variable	name	cannot	be	cast	to	any	of
the	variables	identified	by	the	COM	parameter,	an	error	is
raised.

*CREATE_AS
ClassName

Creates	an	instance	of	the	component	identified	by	the	class
name.	The	class	must	be	defined	in	the	LANSA	repository,

for	instance	#SALARY.Visual.
Note	that	if	you	create	an	instance	of	a	keyed	collection	you
must	use	the	parameterized	version	of	the	collection	syntax:
SET_REF	#variable		To(*Create_As	#Prim-
KCol<#PRIM_PHBN	#STD_NUM>)

*CREATE_FROM
ClassName

Creates	an	instance	of	the	component	identified	by	the	class
name.	The	class	name	can	be	either	a	string	or	a	variable.
At	run-time,	if	the	class	name	cannot	be	resolved,	an	error	is
raised.

	

CONTEXT
The	CONTEXT	parameter	controls	how	the	new	component	reference	is
assigned	a	context	in	which	it	can	obtain	memory.	This	parameter	enables
management	of	object	pooling.
By	default	the	memory	usage	of	objects	is	managed	automatically	by
loading/unloading	of	a	DLL	or	by	passing	of	an	component	from	one	form	to
another.		Memory	is	removed	when	no	more	objects	are	active	in	the	pool.
The	CONTEXT	parameter	allows	you	to	control	the	memory	pooling	of	objects
programmatically,	for	instance	you	can	load	related	objects	into	their	own
memory	area.
For	example	you	may	load	a	large	and	complex	form	into	memory	then	close
the	form	but	a	single	component	(or	an	instance	of	an	object)	in	the	form	may
still	be	active	and	therefore	the	memory	is	not	released.		The	CONTEXT
parameter	can	be	used	to	manage	that	form	by	creating	a	separate	pool	for	the
remaining	object	so	that	the	main	memory	can	be	released.
The	CONTEXT	parameter	can	only	be	used	when	the	TO	parameter	is	set	to
*CREATE_AS	or	*CREATE_FROM.	It	can	have	one	of	these	values:

*DEFAULTFor	primitive	component	classes	*DEFAULT	is	*OWNER.	For
non-primitive	component	classes	it	is	*MODULE.

*OWNER Use	the	context	of	the	instance	of	the	component	for	which	the
routine	is	executing.

*MODULE Use	the	context	allocated	to	the	module	(DLL)	that	contains	the

routine	that	is	executing	the	SET_REF	command.

*NEW Create	a	new	context	for	this	component.

*NAMED
#Variable

The	context	is	the	component	reference	identified	by	the	variable
name.

	

COM_ERROR
The	COM_ERROR	parameter	indicates	the	action	to	be	taken	when	a	SET_REF
assignment	fails.	The	assignment	can	fail	because:
It	is	unable	to	find	the	component	DLL	for	the	name	supplied	for	the
*CREATE_FROM/*CREATE_AS	options.
It	is	unable	to	cast	the	component	to	the	class	required	by	the	variable
supplied	to	the	SET_REF's	COM()	parameter

The	COM_ERROR	parameter	can	have	these	values:

*ABORT The	component	execution	is	aborted	if	the	SET_REF	assignment
fails.

*IGNORE The	failed	SET_REF	assignment	is	ignored.	*IGNORE	does	not
change	the	value	of	the	reference	variable.

*SET_NULLThe	failed	SET_REF	assignment	is	ignored.	A	*NULL	reference
is	set	to	the	variable	supplied	in	the	SET_REF's	COM()
parameter.

	

8.21.2	SET_REF	Examples
Example	1:	*CREATE_FROM
This	form	can	be	used	to	load	(create	and	display)	instances	of	other	forms:

This	loader	form	has	a	collection	of	forms	(#FORMS).	When	you	click	the
Load	button,	a	new	instance	of	the	form	which	you	specified	is	created	and
added	to	the	#FORMS	collection	and	then	shown.
BEGIN_COM	HEIGHT(123)	LEFT(296)	TOP(120)	WIDTH(209)
DEFINE_COM	CLASS(#PRIM_PHBN)	NAME(#PHBN_1)	CAPTION('Load')	DISPLAYPOSITION(2)	LEFT(16)	PARENT(#COM_OWNER)	TABPOSITION(2)	TOP(45)
*The	name	of	the	form	to	be	loaded
DEFINE_COM	CLASS(#STD_OBJ.Visual)	NAME(#STD_OBJ)	CAPTION('Form	to	Load:')	DISPLAYPOSITION(1)	HEIGHT(19)	LABELTYPE(Caption)	LEFT(8)	MARGINLEFT(80)	PARENT(#COM_OWNER)	TABPOSITION(1)	TOP(8)	WIDTH(161)
*The	form	counter	and	collection
define	#FormTot	Reffld(#STD_NUM)	default(0)
DEFINE_COM	CLASS(#PRIM_KCOL)	NAME(#FORMS)	COLLECTS(#PRIM_FORM)	KEYEDBY(#STD_NUM)	STYLE(Collection)
	
define	#Position	Reffld(#STD_NUM)	default(1)
	
EVTROUTINE	HANDLING(#PHBN_1.Click)
*	increase	form	counter	by	one
Change	#FormTot	'#FormTot	+	1'
	
*	create	a	new	instance	of	the	named	form	and	set	a	reference	to	it
Set_Ref	#Forms<#FormTot>	(*Create_from	#Std_Obj.Value)
	
*	control	the	position	of	the	form
Set	#Forms<#FormTot>	Left(#Position)	Top(#Position)
Change	#Position	'#Position	+	10'
	
*show	the	form
Invoke	#Forms<#FormTot>.ShowForm
ENDROUTINE
	

END_COM
	

Try	copying	and	pasting	the	source	code	to	a	form	component	and	compile	it.
Execute	the	form	and	use	it	to	create	and	display	instances	of	other	forms	by
specifying	the	name	of	the	form	to	be	displayed	and	clicking	the	Load	button.
Example	2:	*CREATE_AS
The	component	reference	to	an	ActiveX	component	for	Microsoft	Word	is
defined	dynamically	so	that	no	reference	is	created	when	the	component
definition	statement	is	executed.
DEFINE_COM	Class(#VA_WORD.Application)	Name(#WordApp)	Reference(*DYNAMIC)
	

A	reference	to	the	object	is	created	only	when	it	is	explicitly	declared	in	a
SET_REF	command.
SET_REF	COM(#WordApp)	To(*CREATE_AS	#VA_WORD.application)
	

Because	the	reference	is	created	with	the	*CREATE_AS	keyword,	a	new
instance	of	the	#WordApp	component	is	created.
Example	3:	*DYNAMIC	and	Variable	Name
A	variable	of	the	type	Microsoft	Word	document	is	defined	so	that	the	this
variable	can	be	used	to	refer	to	a	document:
DEFINE_COM	Class(#VA_WORD.Document)	Name(#WordDoc)	Reference(*DYNAMIC)
	

The	variable	name	is	used	to	create	a	reference	to	a	newly	created	document
which	is	returned	(in	the	parameter	add_retval)	when	a	document	is	created:
INVOKE	Method(#WordApp.documents.add)	add_retval(#WordDoc)
	

This	reference	is	then	used	to	access	the	methods,	properties	and	events	of	the
document:
Set	Com(#edit_1)	Value(#WordDoc.Name_COM)
INVOKE	Method(#WordDoc.PrintOut)
	

Later	on	the	same	variable	is	changed	to	refer	to	which	ever	document	is	active
at	the	moment:
SET_REF	COM(#WordDoc)	To(#WordApp.ActiveDocument)
	

8.22	SIGNAL
The	SIGNAL	command	triggers	a	user-defined	event	in	a	form.	The	form	must
contain	a	DEFINE_EVT	command	for	defining	the	event.
Custom-defined	events	are	used	in	multi-form	applications	to	communicate
events	to	an	owner	form.

Also	See
8.22.1	SIGNAL	Parameters
8.22.2	SIGNAL	Examples
8.5	DEFINE_EVT
	
	
																																																						Required												
																																																																										
				SIGNAL	----	EVENT	------	Event	Name	--------------------------
>							

																																																						Optional												
																																																																										
																								>----	Parameter	and	Value		-------------|									
																																																																										
																																																																										
	

8.22.1	SIGNAL	Parameters
EVENT
Parameter	and	Value

EVENT
EVENT	specifies	the	component	and	event	being	triggered.

Parameter	and
Value
If	the	event	being	signaled	has	an	output	parameter	(specified	with	a
DEFINE_MAP	statement	in	the	DEFINE_EVT	block),	the	value	for	this
parameter	is	specified	in	the	SIGNAL	command.

8.22.2	SIGNAL	Examples
This	statement	signals	a	custom-defined	Button_1_Clicked	event.
SIGNAL	Event(Button_1_Clicked)
	

This	statement	signals	that	the	Employee_Created	event	has	been	triggered	and
it	passes	the	employee	number	of	the	new	employee	to	an	owner	form.
SIGNAL	Event(employee_created)	this_emp(#empno)
	

An	owner	form	can	respond	to	this	event	using	an	event	routine:
EVTROUTINE	Handling(#FormB.employee_created)	this_emp(#TheValue)
Set	Com(#empno)	Value(#TheValue)
ENDROUTINE
	

8.23	WEB_MAP
Once	you	have	declared	a	WEBROUTINE,	you	can	map	its	incoming	and
outgoing	fields	and	lists	by	using	the	WEB_MAP	statement.	A	WEBROUTINE
can	have	multiple	WEB_MAP	statements.
In	addition	to	specifying	WEB_MAPs	inside	WEBROUTINE	blocks,	you	are
allowed	to	declare	WEB_MAPs	inside	a	BEGIN_COM	block	of	a	WAM.	This
technique	allows	you	to	map	fields	and	lists	into	every	WEBROUTINE	in	your
WAM	without	having	to	explicitly	define	WEB_MAPS	in	each
WEBROUTINE.

Also	See
8.23.1	WEB_MAP	Parameters
8.23.2	WEB_MAP	Examples
8.24	WEBROUTINE
	
																																																											Required							
																																																																										
				WEB_MAP	------	FOR	-------*INPUT	-----------------------------
>							
																														*OUTPUT																																					
																														*BOTH																																							
																														*NONE																																							
															>---FIELDS-----	field	names			attributes----------->							
																															list	name																																		

																																																											Optional							
																																																																										
															>--	OPTIONS	----	*PERSISTS	-------------------------
>					
																																																																										
	

8.23.1	WEB_MAP	Parameters
FIELDS
FOR
OPTIONS

FOR
The	FOR	parameter	may	have	one	of	the	following	values:

*INPUT Incoming	data

*OUTPUTOutgoing	data

*BOTH Both	incoming	and	outgoing	data

*NONE Neither	incoming	nor	outgoing	data,	used	to	declare	session	state.

	

If	an	attribute	is	not	specified,	a	default	of	*INPUT	is	assumed.
When	a	FOR(*NONE)	declaration	is	used,	the	declared	fields	and	lists	will	not
be	mapped	in	or	out	of	WEBROUTINEs.	If	OPTIONS(*PERSIST)	is	specified
with	FOR(*NONE),	the	values	of	the	fields	and	lists	so	declared	will	be
maintained	as	part	of	session	data.	Declaring	fields	and	lists	this	way	at	the
WAM	level	(that	is,	after	BEGIN_COM)	will	make	the	values	of	those	fields
and	lists	available	for	all	WEBROUTINEs	in	the	WAM	and	will	be	maintained
as	part	of	session	data	(that	is,	spanning	multiple	WEBROUTINE	executions).

FIELDS
Specifies	the	names	of	the	field(s)	or	names	of	the	lists	which	are	used	in	the
WEB_MAP.
All	fields	nominated	in	this	parameter	can	be	defined	in	the	LANSA	Repository
or	via	a	DEFINE	FIELD	command	in	the	WAM.
Fields	may	have	the	following	attributes	assigned	to	them:
*INPUT	-	a	field,	which	accepts	input	(i.e.	an	input	box	for	HTML
Technology	Service)
*OUTPUT	-	a	field,	which	displays	output	only
*HIDDEN	-	a	field,	which	contains	a	value,	but	is	hidden	on	display

*PRIVATE	-	a	value	for	this	field	or	list	is	available,	but	XSL	generator	does
not	generate	it	into	the	XSL	Stylesheet.	This	is	useful	for	fields	or	lists,	which
are	used	for	purposes	other	than	to	be	directly	displayed	or	accept	input.	For
example,	a	list	that	contains	entries	for	a	dropdown	box	can	be	used	by	the
dropdown	weblet.	However,	a	browse	list	table	for	it	will	not	be	generated	if
it	is	marked	with	this	attribute.
*INLINE	–	Generate	the	list	using	inline	parsing	instead	of	XSLT.		Not
required	if	the	WAM	default	has	been	set	to	INLINE	with	the	INLINE
parameter	of	BEGIN_COM.
*NOINLINE	–	Generate	the	list	using	XSLT	instead	of	inline	parsing.		Only
required	if	the	WAM	default	has	been	set	to	INLINE	with	the	INLINE
parameter	of	BEGIN_COM.

OPTIONS
The	OPTIONS	parameter	may	have	the	following	values:

*PERSIST Declares	that	fields	and	lists	are	to	retain	or	persist	data	so	that	it	is
available	across	WEBROUTINE	executions	for	the	duration	of	a
Web	session

	

In	addition	to	declaring	an	OPTIONS(*PERSIST),	the	WEBROUTINE	needs	to
have	an	initial	SessionStatus	set	to	Active.	This	is	done	by,	either	setting	it	for
the	WAM	or	by	setting	OnEntry(*SessionStatus_Active)	keyword	for	individual
WEBROUTINE.	By	setting	SessionStatus	to	Active,	in	this	way,	ensures	that
the	WEBROUTINE	will	load	the	session	state	before	it	starts	execution.

8.23.2	WEB_MAP	Examples
In	this	example,	the	SearchQuery	WebRoutine	will	display	a	page	to	allow	a
user	to	request	a	search.	The	fields	are	*OUTPUT	only	as	no	values	are	sent
back	to	this	Webroutine.	The	next	Webroutine	(Browse)	will	specify
#SURNAME	as	in	input.	It	requires	#SURNAME,	#STDRENTRY,	and
#STD_COUNT	to	be	able	to	retrieve	the	next	or	previous.
WEBROUTINE	NAME(SearchQuery)	DESC('Search	Criteria')
WEB_MAP	FOR(*OUTPUT)	FIELDS(#SURNAME	(#STDRENTRY	*HIDDEN))
	
ENDROUTINE
	

The	Browse	WebRoutine	will	allow	the	user	to	browse	through	the	list	of
employees	(#EMPLISTPG)	a	page	at	a	time.	It	requires	#SURNAME,
#STDRENTRY,	and	#STD_COUNT	to	be	able	to	retrieve	the	next	or	previous.
WEBROUTINE	NAME(Browse)	DESC('Browse	Employees')
WEB_MAP	FOR(*BOTH)	FIELDS((#SURNAME	*HIDDEN)	(#STD_COUNT	*HIDDEN)	(#STDRENTRY	*HIDDEN)	(#STDPREV	*HIDDEN)	(#STDMORE	*HIDDEN))
WEB_MAP	FOR(*OUTPUT)	FIELDS(#EMPLISTPG)
	
ENDROUTINE
	

Finally,	the	Details	WebRoutine	retrieves	employee's	details	for	display	to	user.
The	#EMPNO	and	#SURNAME	are	both	sent	and	received,	but	displayed	as
output	fields	only.		The	#STDRENTRY	field	is	used	to	communicate	status	with
other	Webroutines.
WEBROUTINE	NAME(Details)
WEB_MAP	FOR(*OUTPUT)	FIELDS((#GIVENAME	*OUTPUT)	(#ADDRESS1	*OUTPUT)	(#ADDRESS2	*OUTPUT)	(#ADDRESS3	*OUTPUT)	(#POSTCODE	*OUTPUT)	(#PHONEHME	*OUTPUT)	(#PHONEBUS	*OUTPUT)	(#STARTDTER	*OUTPUT)	(#TERMDATER	*OUTPUT)	(#DEPTDESC	*OUTPUT)	(#SECDESC	*OUTPUT)	(#SALARY	*OUTPUT)	(#MNTHSAL	*OUTPUT)	(#STARTDTE	*OUTPUT)	(#TERMDATE	*OUTPUT))
WEB_MAP	FOR(*BOTH)	FIELDS((#EMPNO	*OUTPUT)	(#SURNAME	*OUTPUT)	(#STDRENTRY	*HIDDEN)	(#STD_COUNT	*HIDDEN))
	
ENDROUTINE
	

8.24	WEBROUTINE
A	WEBROUTINE	is	an	entry	point	into	a	WAM.	A	WAM	may	contain	one	or
more	WEBROUTINEs.	The	WEBROUTINE	names	have	to	be	unique	within	a
WAM	only.	It	is	possible	to	have	more	than	one	WAM	with	a	WEBROUTINE
with	the	same	name.
You	can	add	a	new	WEBROUTINE	anywhere	inside	BEGIN_COM	block	in
your	WAM	component	by	using	a	WEBROUTINE	keyword.
The	WEBROUTINE	command	is	followed	by	a	one	or	more	WEB_MAP
commands	-	each	WEB_MAP	command	identifying	fields	or	a	lists	that	are	to
be	mapped	as	input	or	output	of	the	Webroutine.	Collectively,	the	WEB_MAP
commands	define	all	the	inputs	and	outputs	of	a	Webroutine.	All	fields	and	lists
defined	FOR(*INPUT)	can	be	sent	to	the	called	WEBROUTINE	and	they	will
be	mapped	into	those	fields	and	lists.	Any	fields	or	lists	defined
FOR(*OUTPUT)	are	outgoing	from	the	WEBROUTINE	and	can	be	visualized
on	the	output	page.	In	addition	field	and	list	mapping	can	be	bidirectional	in
which	case	FOR(*BOTH)	specification	should	be	used.
A	WEBROUTINE	is	invoked	via	a	URL	request	and	is	uniquely	identified	by
the	key	of	Web	Application	Module	(up	to	10	characters)	and	WEBROUTINE
name	(up	to	20	characters).
Each	WEBROUTINE	generates	separate	XML	and	XSL	data.	The	XML	data
contains	all	the	fields	and	lists	nominated	by	the	WEB_MAP	FOR(*OUTPUT)
or	FOR(*BOTH)	commands.

Also	See
8.24.1	WEBROUTINE	Parameters
8.24.2	WEBROUTINE	Examples
	
																																																											Required							
																																																																										
				WEBROUTINE	----NAME	-------Name	of	WebRoutine	----------
------>				

																																																											Optional							
																																																																										

															>--	DESC	-------	Description	of	routine	----------->					
																																																																								
															>--	RESPONSE	----*DEFAULT	-------------------------
>					
																																*NONE
																																*JSON
																																Response	Variable	(LOB)
																																																																								
															>--	OPTIONS	-----*METADATA	------------------------
>					
																																																																								
															>--	ONENTRY	-----*SESSIONSTATUS_OF_WAM------
------->					
																																*SESSIONSTATUS_NONE
																																*SESSIOSTATUS_ACTIVE
	
															>--	HELP	--------Help	Text	------------------------>					
	
															>--	ServiceName-	Name	of	Service	---------------------
|				
																																																																										
																																																																										
	

8.24.1	WEBROUTINE	Parameters
DESC
HELP
NAME
ONENTRY
OPTIONS
RESPONSE
SERVICENAME

NAME
NAME	is	the	unique	name	of	the	WebRoutine.		The	name	must	be	unique	in	the
WAM.	The	name	can	be	up	to	20	characters	long.

DESC
Use	the	DESC	parameter	to	write	a	brief	description	for	the	WebRoutine.	It	can
be	40	characters	long.	By	default,	this	description	will	be	displayed	on	the
output	page.

RESPONSE
Use	the	RESPONSE	parameter	to	indicate	a	response	type	other	than	the
default,	which	is	to	send	a	result	document.
Response	type	can	be:
*DEFAULT:	Send	a	result	document	(for	example,	an	XHTML	page)
*NONE:	The	webroutine	produces	no	output
*JSON:	The	webroutine's	web	maps	(fields	and	lists)	is	sent	as	a	JSON	response
with	MIME	type	application/json	and	encoded	in	UTF-8.
Response	variable	name:	Enter	the	name	of	the	variable	for	a	LOB	response.
See	LOB	Data	Types	and	Stream	Files	in	the	Web	Application	Module	(WAM)
Guide	for	details.

OPTIONS
Only	valid	for	RESPONSE(*JSON).	Use	the	OPTIONS	parameter	to	indicate
whether	the	JSON	response	should	include	captions.
*METADATA:	Include	field/list	captions	in	JSON	response.

HELP

its:lansa087.CHM::/lansa/wamengb3_0020.HTM

Not	implemented.

SERVICENAME
A	Service	Name	is	unique	to	all	WAMs,	i.e.	a	Service	Name	can	only	be	used
once	in	a	LANSA	Partition.	Once	deployed,	the	WEBROUTINE	may	be
invoked	from	the	browser	by	providing	just	the	Service	Name	and	Partition
keyword	in	the	URL	(without	the	additional	keywords).	A	Partition	keyword
may	be	omitted	if	LANSA	for	the	Web	has	been	setup	to	always	run	in	a
configured	partition.
Using	a	Service	Name	provides	greater	flexibility	when	deploying	WAM
applications.	For	example,	it	allows	applications	to	be	re-deployed	to	a	different
Partition,	WAM	or	WEBROUTINE	without	having	to	modify	any	external	URL
references	to	it.

ONENTRY
Is	used	to	override	the	SessionStatus	property	setting	for	individual
WEBROUTINEs.
This	is	useful	when	the	default	SessionStatus	is	Active,	which	prevents
execution	of	WEBROUTINEs	in	the	WAM	unless	a	session	is	created.	In	this
situation,	you	need	at	least	one	WEBROUTINE	that	can	be	executed	initially	so
that	a	session	can	be	created.	ONENTRY	Parameter	value	of
*SESSIONSTATUS_NONE	can	be	used	to	turn	off	session	validation	and
session	data	loading	for	that	WEBROUTINE
Can	be	one	of:
*SESSIONSTATUS_NONE	does	not	validate	the	session	and	will	not	load	any
session	data	when	the	WEBROUTINE	is	entered.
*SESSIONSTATUS_OF_WAM	uses	the	value	specified	by	WAM
SessionStatus	property.
*SESSIONSTATUS_ACTIVE	enables	validation	of	session	and	will	load
session	data,	if	the	session	is	valid,	when	the	WEBROUTINE	is	entered.
The	default	value	is	*SESSIONSTATUS_OF_WAM.

8.24.2	WEBROUTINE	Examples
For	example,	a	WAM	can	be	created	to	all	a	user	to	search	for	an	employee	in
file,	select	the	employee	from	a	search	list	and	display	the	employee	details.
Three	WebRoutines	might	be	defined	as	follows:
FUNCTION	OPTIONS(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#PRIM_WAM)
	
WEBROUTINE	NAME(SearchQuery)DESC('Search	Criteria')
ENDROUTINE
	
WEBROUTINE	NAME(Browse)DESC('Browse	Employees')
ENDROUTINE
	
WEBROUTINE	NAME(Details)DESC('Details')	SERVICENAME(EmpDetails)
ENDROUTINE
	
WEBROUTINE	NAME(Send_Sample)	DESC('Sample	Document')
RESPONSE(#HTTPR)
ENDROUTINE
WEBROUTINE	NAME(Update)	DESC('JSON	response')
RESPONSE(*JSON)
END_COM
	

The	Details	WebRoutine	can	be	invoked	from	the	browser	by	providing	just	the
Service	Name	keyword	in	the	URL	(without	the	additional	keywords):

http://localhost/cgi-bin/lansaweb?srve=EmpDetails	
	

Refer	to	the	8.23.2	WEB_MAP	Examples	for	example	of	how	data	could	be
mapped	for	each	WebRoutine.
	

8.25	Component	Variables	and	Values
8.25.1	Referring	to	Property	Values
8.25.2	Com_Owner,	Com_Ancestor	and	Com_Self	-	Generic	References	to
Components
8.25.3	Variant	Variable
8.25.4	Qualified	Properties
	8.	RDMLX	Commands	and	RDMLX	Features

8.25.1	Referring	to	Property	Values
When	you	refer	to	property	values	and	event	names	you	must	always	qualify
them	by	the	name	of	the	component	they	belong	to.
You	can	assign	the	value	of	a	property	to	another	component.	For	instance	this
statement	assigns	the	value	of	the	Level	property	of	the	current	item	in	a	tree
view	to	a	field	called	#level.
Change	#LEVEL		#Trvw_1.CurrentItem.Level
	

Often	in	your	code	you	want	to	test	the	value	of	a	property.	You	do	this	using
the	IF	statement	where	the	condition	is	specified	using	the	property	name
qualified	by	the	name	of	the	component,	a	standard	operator	and	the	value	of	the
property:
IF	COND('#rdbn_3.ButtonChecked	*eq	True')
			Set	Com(#SPOUSE	#MARRIED	#DIVORCED)	Enabled(true)
ENDIF		
	

Or	similarly:
IF	COND('#lvcl_1.SortDirection	*eq	Ascending')
				Set	Com(#lvcl_1)	SortDirection(Descending)
ENDIF
	
	8.25	Component	Variables	and	Values

8.25.2	Com_Owner,	Com_Ancestor	and	Com_Self	-	Generic
References	to	Components
Com_Owner
Com_Owner	is	commonly	used	throughout	RDMLX	and	is	a	variable	that
always	refers	to	the	object	in	which	the	command	is	specified.
So,	when	adding	controls	to	a	component	using	the	designer,	or	implementing
events	and	method	routines,	any	source	code	generated	by	the	editor	will	refer
to	the	component	currently	being	edited	using	the	generic	name
#COM_OWNER.
Define_Com	Class(#PRIM_LABL)	Name(#Label)	Parent(#COM_OWNER)	
	

OR
Evtroutine	Handling(#Com_Owner.Initialize)

#Com_owner.Prepare

Endroutine
	

As	a	large	percentage	of	code	typically	needs	to	refer	to	the	current	location,	the
use	of	the	generic	Com_owner	to	mean	'here'	greatly	simplifies	code
understanding.		It	also	means	that	copied	code	can	be	pasted	directly	in	to	a
target	without	the	need	to	update	component	references	with	specific	class
names.
For	relatively	simple	applications	that	don't	use	inheritance	beyond	a	single
level,	there	is	no	reason	to	move	away	from	the	use	of	Com_Owner.		However,
where	multiple	layers	of	inheritance	are	being	used,	Com_Ancestor	and
Com_Self	can	be	used	to	execute	code	defined	in	the	different	layers	of	the
inheritance	hierarchy.
Com_Ancestor
Com_Ancestor	refers	directly	to	the	class	specified	as	the	ancestor	of	the	current
component.
Thus,	when	in	an	application	that	uses	inheritance,	we	might	define	basic
behavior	in	a	base	ancestor	class	but	override	that	behavior	by	redefining	the
method	in	the	inheriting	class.		At	execution	time	the	processing	in	the	ancestor
class	will	be	ignored	and	the	redefined	method	will	be	executed.

Mthroutine	Name(Prepare)	Options(*Redefine)
	
*	Class	specific	processing
	
Endroutine
	

Whilst	this	typical	use	of	a	redefined	method	is	often	desirable,	there	may	also
be	circumstances	where	rather	than	wanting	to	completely	change	the
processing,	we	simply	need	to	augment	it.		To	enable	this	we	might	write	the
following

Mthroutine	Name(Prepare)	Options(*Redefine)
	
#Com_Ancestor.Prepare
	
*	Class	specific	processing
	
Endroutine
	

Here,	the	method	is	redefined	but	the	very	first	line	of	the	new	method	causes
the	ancestor	version	of	the	method	to	be	executed.		This	technique	is	typically
used	when	a	change	to	the	ancestor	processing	is	the	exception	rather	than	the
rule.
Com_Self
Com_Self	and	Com_owner	are	very	similar	in	use	apart	from	one	very	distinct
difference.		While	Com_owner	always	refers	to	the	current	component,
Com_Self	refers	to	the	current	component	taking	into	consideration	any
redefined	methods	further	up	the	inheritance	chain.
In	the	previous	Com_ancestor	example,	redefining	the	method	represented	the
exceptional	case,	but	in	a	scenario	where	it	is	commonplace,	the	need	to
remember	to	execute	ancestor	code	can	cause	complications.		In	this	situation	it
is	better	to	drive	the	processing	from	the	ancestor	class.
Thus	in	the	Ancestor	we	might	have	something	similar	to	the	following.
Mthroutine	Name(Prepare)
	
*	Run	base	code	then	class	specific	code
#Com_owner.PrepareBase

	
#Com_Self.PrepareSelf
	
Endroutine
	
Mthroutine	Name(PrepareBase)	Options(*Final)
	
*	Base	class	processing
*	Final	–	This	method	cannot	be	redefined
	
Endroutine
	
Mthroutine	Name(PrepareSelf)	
	
*	Redefine	in	inheriting	classes
	
Endroutine
	

In	the	inheriting	class	we	would	then	see:
Mthroutine	Name(PrepareSelf)	Options(*Redefine)
	
*	Class	specific	processing	here
	
Endroutine
	

At	runtime,	invoking	the	Prepare	method	would	result	in	the	PrepareBase
method	being	executed.		However,	because	the	invocation	of	PrepareSelf	uses
Com_Self,	the	runtime	looks	further	up	the	inheritance	chain	for	a	redefined
version	and	executes	that	rather	than	the	version	of	the	method	defined	in	the
ancestor.
Unfortunately,	it	is	all	too	easy	to	accidentally	use	Com_owner	rather	than
Com_Self	and	a	common	issue	found	during	development	is	that	redefined	code
is	never	actually	executed	because	Com_owner	has	been	used	instead	of
Com_Self.
	8.25	Component	Variables	and	Values

8.25.3	Variant	Variable
You	can	use	the	Variant	component	class	#PRIM_VAR	to	create	a	variant
component	variable.	A	variant	component	variable	can	contain	any	type	of	data
(strings,	integers,	decimals,	booleans,	components).
A	variant	component	has	properties	for	testing	the	kind	of	value	contained	by
the	component.	You	can	retrieve	its	value	in	converted	forms	like	numbers,
strings	or	booleans.
Variants	make	it	possible	for	components	to	give	access	to	values	whose	type
cannot	be	statically	determined.	For	example,	the	value	of	a	cell	in	a	grid	cannot
be	statically	defined	-	it	depends	on	the	type	of	the	cell's	column.	By	returning	a
variant,	the	grid	control	can	provide	access	to	the	cell's	value	without	causing
compiler	errors	about	the	declared	type	of	the	value.	You	then	need	to	write	the
program	in	a	way	that	understands	what	type(s)	are	in	the	grid.
Variants	are	also	used	in	dynamic	programming.	There	are	situations	(especially
with	ActiveX)	where	the	type	information	of	a	component	cannot	be	determined
at	compile	time.	It	must	be	processed	at	runtime.	When	using	variants,	the
Visual	LANSA	compiler	does	not	attempt	to	resolve	the	method	or	property
because	it	has	no	idea	what	type	of	component	is	stored	in	the	variant.	It	must
wait	until	runtime	to	resolve	all	this	information.	This	behavior	enables	the	an
ActiveX	control	to	supply	a	component	of	unknown	type	and	only	when	the
component	is	called	will	the	type	information	be	requested.
This	statement	defines	a	variant	variable	called	#MYVARIANT:
Define_Com	Class(#PRIM_VAR)	Name(#MYVARIANT)
	

You	can	assign	a	value	to	the	variant	variable	either	using	its	Value	property	(in
which	case	the	type	of	the	value	is	of	unspecific	type):
Set	Com(#myvariant)	Value(#XYZ)
	

Or	by	explicitly	assigning	its	value	type	using	the	String,	Integer,	Boolean,
Decimal	or	Component	properties	of	the	variable:
Set	Com(#myvariant)	Integer(#XYZ)	
	

Explicitly	assigning	the	type	of	value	is	necessary	only	when	you	use	the
variable	in	RDML	commands,	in	RDMLX	the	type	can	be	unspecific.
When	you	read	the	value	of	the	variable	it	is	automatically	converted	to	the	type

of	the	field	that	receives	the	value:
Set	Com(#Out_INTEGER)	Value(#myvariant)
	

Or	you	can	also	explicitly	specify	the	type	of	value:
Set	Com(#Out_INTEGER)	Value(#myvariant.Integer)
	

To	ensure	that	the	value	in	the	variant	is	one	that	you	can	support	you	use	the
ValueType	property	of	the	variable.
IF	Cond('#myvariant.ValueType	=	VarInteger')
Set	Com(#Out_INTEGER)	Value(#myvariant)
ELSE
Set	Com(#Out_INTEGER)	Value(0)
ENDIF
	

If	this	check	is	not	performed	and	the	value	cannot	be	converted	at	runtime,	you
will	get	a	runtime	error.
The	ValueType	property	is	an	enumeration	whose	value	can	be	one	of	the
following	symbols:
varNull
varEmpty
varInteger
varDouble
varString
varDecimal
varBoolean
varComponent
	8.25	Component	Variables	and	Values

8.25.4	Qualified	Properties
Many	ActiveX	components	use	properties	with	qualifying	arguments.	The
syntax	for	a	qualified	property	is:
Component.property<qualifier>
	

For	example	this	is	how	you	would	refer	to	a	qualified	ColumnWidth	property
which	sets	the	width	of	a	particular	column	in	the	ActiveX	grid:
#Com_Grid.ColumnWidth<1>
	

You	can	retrieve	the	value	this	property	the	same	way	as	you	would	a	non-
qualified	property:
IF	'#Com_Grid.ColumnWidth<1>	*GT	100'
*			Some	code
ENDIF
	

Similarly,	you	can	set	the	value	of	a	qualified	property	the	same	way	as	would	a
non-qualified	property:
SET	COM(#Com_Grid)	ColumnWidth<1>(50)
	

You	can	use	a	field	as	the	qualifier.	In	this	example	the	qualifier	of	the	column	is
set	by	the	field	#STD_NUM:
SET	COM(#Com_Grid)	ColumnWidth<#STD_NUM>(50)
	

A	property	can	have	more	than	one	qualifier.	For	example	a	Cell	property	of	an
ActiveX	grid	can	have	two	qualifying	arguments	(referring	to	row	and	column)
to	indicate	the	position	of	a	cell	in	the	grid:
#Com_Grid.Cell<1,1>
	8.25	Component	Variables	and	Values

8.26	Function	Libraries
An	alternative	way	of	using	Intrinsic	Functions	is	to	import	function	libraries.
Function	Libraries	are	a	component	that	contains	a	set	of	routines	defined	using
the	MthRoutine	command.	These	function	library	routines	can	be	used	in
expressions.
There	are	function	libraries	for	the	following:

string #PRIM_LIBS

number #PRIM_LIBN

date	and	time #PRIM_LIBD

*VARIANT #PRIM_LIBV

	

For	string,	number,	date	and	time,	using	Intrinsic	Functions	is	simpler	than
using	a	function	library.
To	handle	objects	of	type	*VARIANT,	you	need	to	use	the	variant	function
library	#PRIM_LIBV.	(Refer	to	8.27	Variant	Handling.)
When	using	function	library	methods	the	syntax	is	different.
For	example	the	Uppercase	method:
#Subject.Uppercase()
	

is	specified	as:
Uppercase(Subject)
	

Function	libraries	are	introduced	into	a	RDMLX	object	by	the	8.14	IMPORT
command	which	is	specified	immediately	after	the	FUNCTION	statement.	For
example:
Function	Options(*DIRECT)
*	Import	the	variant	library	#prim_libv.
Import	Libraries(#PRIM_LIBV)
	

Once	a	Function	library	has	been	imported,	the	routines	defined	in	the	library
can	be	used	in	expressions.

	8.	RDMLX	Commands	and	RDMLX	Features

8.27	Variant	Handling
A	Function	Library	is	a	component	that	contains	a	set	of	routines	defined	using
the	MthRoutine	command.	(Refer	to	8.26	Function	Libraries.)	These	function
library	routines	can	be	used	in	expressions.	To	handle	objects	of	type
*VARIANT,	you	need	to	use	the	variant	function	library	#PRIM_LIBV.	(For
string,	number,	date	and	time,	using	Intrinsic	Functions	is	simpler	than	using	a
function	library.)
Variants	can	contain	any	type	of	data	(strings,	integers,	decimals,	booleans,
components).	You	can	use	variant	functions	for	testing	the	kind	of	value
contained	in	the	variable	and	you	can	retrieve	its	value	in	converted	forms	like
numbers,	strings	or	booleans.
Variants	make	possible	the	generic	processing	of	values	regardless	of	their	type.
For	example,	the	value	of	a	grid	cell	cannot	be	known	by	the	compiler	before
the	application	is	executed.	Therefore	the	Value	parameter	of	grid
EditorChanged	and	ItemChangedAccept	events	returns	the	value	in	the	cell	as	a
variant	so	that	compiler	errors	about	the	declared	type	of	the	value	do	not	occur.
You	then	need	to	write	the	program	in	a	way	that	understands	what	type(s)	are
in	the	grid.
Also	the	EditorChanged	and	ItemChangedAccept	events	of	tree	and	list	views
return	the	Value	parameter	as	a	variant.	Similarly,	many	ActiveX	controls	return
and	accept	values	as	variants.	You	can	also	use	variants	in	your	own	dynamic
programs	for	generic	processing	of	values	regardless	of	their	type.	For	example:
Define_Com	Class(*VARIANT)	Name(#lclVariant)
	

Using	the	*VARIANT	class	is	the	recommended	approach.	Alternatively,	you
can	use	primitive	variant	component	#PRIM_VAR	and	its	properties	and
methods.
#PRIM_LIBV	supports	these	functions:

8.27.1	VarAsBoolean 8.27.8	VarIsNull

8.27.2	VarAsDecimal 8.27.9	VarIsNullReference

8.27.3	VarAsInteger 8.27.10	VarIsNumber

8.27.4	VarAsReference 8.27.11	VarIsReference

8.27.5	VarAsString 8.27.12	VarIsString

8.27.6	VarIsBoolean 8.27.13	VarType

8.27.7	VarIsEmpty 	

Also	See
8.26	Function	Libraries
Intrinsic	Functions
	8.	RDMLX	Commands	and	RDMLX	Features

8.27.1	VarAsBoolean
VarAsBoolean	returns	the	Subject	variant	as	a	Boolean.
VarAsBoolean(Subject)
	
	8.27	Variant	Handling

8.27.2	VarAsDecimal
VarAsDecimal	returns	the	Subject	variant	as	a	decimal	number.
VarAsDecimal(Subject)
	
	8.27	Variant	Handling

8.27.3	VarAsInteger
VarAsInteger	returns	the	Subject	variant	as	an	integer.
VarAsInteger(Subject)
	
	8.27	Variant	Handling

8.27.4	VarAsReference
VarAsReference	returns	the	Subject	variant	as	a	component	reference.
VarAsReference(Subject)
	
	8.27	Variant	Handling

8.27.5	VarAsString
VarAsString	returns	the	Subject	variant	as	a	string.
VarAsString(Subject)
	
	8.27	Variant	Handling

8.27.6	VarIsBoolean
VarIsBoolean	Returns	a	Boolean	True	if	the	Subject	variant	can	be	converted	to
a	Boolean,	otherwise	it	returns	a	Boolean	False.
VarIsBoolean(Subject)
	

Example
This	property	routine	tests	if	the	variable	is	a	Boolean:
Ptyroutine	Name(Set_uSignalSelection)
Define_Map	For(*input)	Class(*variant)	Name(#lcVariant)

If	Cond(VarIsBoolean(#lcVariant)	*EQ	True)
Execute	Subroutine(FP_SETB)	With_Parms(#USE_NAME	uSignalSelection	1	#USE_OCUR	#lclVariant.Boolean)
Else
Execute	Subroutine(FP_SET)	With_Parms(#USE_NAME	uSignalSelection	1	#USE_OCUR	#LCLVARIANT.String)
Endif
	
	8.27	Variant	Handling

8.27.7	VarIsEmpty
VarIsEmpty	returns	a	Boolean	True	if	the	Subject	variant	does	not	contain	a
value,	otherwise	it	returns	a	Boolean	False.
VarIsEmpty(Subject)
	

Example
This	statement	checks	if	a	value	has	been	assigned	to	a	grid	cell:
If	(VarIsEmpty(#grid_1.focusCell.column.EditorPArt))
Use	Builtin(MESSAGE_BOX_SHOW)	With_Args(OK	OK	Information	'Variant'	'The	variant	has	not	yet	been	assigned	a	value.')
Endif
	
	8.27	Variant	Handling

8.27.8	VarIsNull
VarIsNull	returns	a	Boolean	True	if	the	Subject	variant	contains	the	special	Null
value,	otherwise	it	returns	a	Boolean	False.
VarIsNull(Subject)
	

Example
This	statement	tests	if	the	value	in	the	grid	cell	is	unknown	or	missing:
If	(VarIsNull(#grid_1.focusCell.value))
Use	Builtin(MESSAGE_BOX_SHOW)	With_Args(OK	OK	Information	'Variant'	'The	value	is	unknown	or	missing.')
Endif
	
	8.27	Variant	Handling

8.27.9	VarIsNullReference
VarIsNullReference	returns	a	Boolean	True	if	the	Subject	variant	contains	a
component	reference	and	the	reference	is	the	special	*NULL	component
reference,	otherwise	it	returns	a	Boolean	False.
VarIsNullReference(Subject)
	
	8.27	Variant	Handling

8.27.10	VarIsNumber
VarIsNumber	returns	a	Boolean	True	if	the	Subject	variant	can	be	converted	to	a
number,	otherwise	it	returns	a	Boolean	False.
VarIsNumber(Subject)
	

Example
This	if	statement	tests	if	the	value	is	a	string:
If	Cond(VarIsNumber(#TheValue)	*EQ	True)
Use	Builtin(MESSAGE_BOX_SHOW)	With_Args(OK	OK	Information	'Variant	Type'	'The	value	is	a	decimal.')
Endif
	
	8.27	Variant	Handling

8.27.11	VarIsReference
VarIsReference	Returns	a	Boolean	True	if	the	Subject	variant	is	a	component
reference,	otherwise	it	returns	a	Boolean	False.
VarIsReference(Subject)
	
	8.27	Variant	Handling

8.27.12	VarIsString
VarIsString	returns	a	Boolean	True	if	the	Subject	variant	can	be	converted	to	a
string,	otherwise	it	returns	a	Boolean	False.
VarIsString(Subject)
	

Example
This	if	statement	tests	if	the	value	is	a	string:
If	Cond(VarIsString(#TheValue)	*EQ	True)
Use	Builtin(MESSAGE_BOX_SHOW)	With_Args(OK	OK	Information	'Variant	Type'	'The	value	is	a	string.')
Else
Use	Builtin(MESSAGE_BOX_SHOW)	With_Args(OK	OK	Information	'Variant	Type'	'The	value	is	a	decimal.')
Endif
	
	8.27	Variant	Handling

8.27.13	VarType
VarType	returns	the	type	of	the	value	current	stored	in	the	Subject	variant.
VarType(Subject)
	

Possible	results	are:
VarNull
VarEmpty
VarInteger
VarDouble
VarString
VarDecimal
VarBoolean
VarComponent

Example
This	example	checks	whether	the	value	returned	from	a	grid	is	a	string:
If	Cond(VarType(#TheValue)	*EQ	VarString)
Use	Builtin(MESSAGE_BOX_SHOW)	With_Args(OK	OK	Information	'Variant	Type'	'The	value	is	a	string.')
Endif
	

	8.27	Variant	Handling

8.28	Enhanced	Expressions
In	Full	RDMLX,	you	can	use	8.28.1	Expressions	as	Values	for	many	command
parameters	thus	eliminating	the	need	for	additional	commands	to	prepare	the
required	value.	For	example	you	can	specify:
MESSAGE	MSGTXT('Message:	name	is	'		+	#fullname)
	

It	is	now	possible	to	use	component	8.28.2	Methods	in	Expressions.	For
example:
Change	#STD_TEXT	To(#COM_OWNER.StringMethod(#ADDRESS1,	#ADDRESS2))
	

You	can	define	one	of	the	parameters	of	a	method	to	return	8.28.3	Method
Results.
You	can	use	8.28.4	Named	Parameters	instead	of	referring	to	parameters	by
position:
#RESULT	=	#COM_OWNER.MethodOne(ParmTwo	:=	2)
	

Other	operators	available:

8.28.5	*Not
Operator
8.28.6	*IS	and
*ISNOT	Operator

8.28.7	*IsEqualTo	and
*IsOfType	Operators
8.28.8	*AS	Operator

8.28.9	*ANDIF	and	*ORIF
Logical	Operators

	8.	RDMLX	Commands	and	RDMLX	Features

8.28.1	Expressions	as	Values
Full	RDMLX	supports	the	use	of	expressions	in	many	parameters	and
properties.

EXECUTE	Command
You	can	now	use	expressions	as	the	value	of	the	With_Parms	parameter	in	the
Execute	command,	thus	eliminating	the	need	for	additional	commands	to
prepare	the	required	value.	For	example:
Execute	Subroutine(Routine2)	With_Parms(#STD_DESC	('B'	+	#Phbn_2.Caption	+	'B')	'AaBbCcDd')
	

MSGTXT	Parameter	of	Various	Commands
The	MSGTXT	parameter	can	have	as	a	value	an	expression	which	contains
more	than	a	single	item	or	the	expression	is	enclosed	in	parentheses.	For
example:
Message	Msgtxt('Message:	name	is	'	+	#fullname)
	
Mthroutine	Name(Trace)
Define_Map	For(*INPUT)	Class(#STD_TEXT)	Name(#InTextOne)
Define_Map	For(*INPUT)	Class(#STD_TEXT)	Name(#InTextTwo)
Message	Msgtxt(#InTextOne.Value	+	"	"	+	#InTextTwo.Value)
Endroutine
	

SET	Command
The	values	assigned	to	properties	selected	on	a	SET	command	support	an
expression:
SET	#COM_OWNER	Left(#COM_OWNER.Left	+	2)	Top(#COM_OWNER.Top	+	2)
	

INVOKE	Command
The	values	assigned	to	method	parameters	selected	on	an	INVOKE	command
support	an	expression:
INVOKE	#COM_OWNER.MethodOne	ParmOne(#COM_OWNER.Left	+	2)	ParmTwo(#COM_OWNER.Top	+	2)
	

SIGNAL	Command
The	values	assigned	to	event	parameters	selected	on	a	SIGNAL	command

support	an	expression:
SIGNAL	EventOne	ParmOne(#COM_OWNER.Left	+	2)	ParmTwo(#COM_OWNER.Top	+	2)
	

SET_REF	Command
You	can	use	expressions	in	SET_REF	commands:
Set_Ref	#CurrentDepartment			(*dynamic		#COM_OWNER.dosomething(#STD_NUM))
Set_Ref	#CurrentDepartment			(*dynamic		#COM_OWNER.dosomething(iNumber	:=	10))
	
MTHROUTINE	NAME(dosomething)
DEFINE_MAP	FOR(*INPUT)	CLASS(#STD_NUM)	name(#iNumber)
DEFINE_MAP	FOR(*RESULT)	CLASS(#DEPTMENT)	NAME(#oDepartment)	PASS(*BY_REFERENCE)
	
Set_Ref	#oDepartment	(*create_As	#DEPTMENT)
	
ENDROUTINE
	
	8.28	Enhanced	Expressions

8.28.2	Methods	in	Expressions
You	can	now	use	methods	of	a	component	and	intrinsic	functions	in
expressions.	For	example:
Change	#STD_TEXT	To(#COM_OWNER.StringMethod(#ADDRESS1,	#ADDRESS2))
Change	#STD_NUM	To(#COM_OWNER.NumberMethod(#SALARY)	*	2)
Change	#STD_COUNT	To(#ADDRESS1.Trim.CurSize)
	

The	syntax	is:
#VariableName[.Features].MethodName[([Parameters])]
	

When	parameters	are	supplied	to	the	method,	the	MethodName	must	be
followed	by	the	left	parenthesis	that	starts	the	parameters.	No	imbedded	spaces
are	allowed.
When	no	parameters	are	required,	the	parentheses	are	optional	but	if	you	supply
a	left	parenthesis,	it	must	follow	the	name	of	the	method	without	any	imbedded
spaces.
Parameters	can	be	specified	by	position	or	they	can	be	8.28.4	Named
Parameters.
	8.28	Enhanced	Expressions

8.28.3	Method	Results
Methods	can	have	one	of	their	*OUTPUT	maps	defined	as	*RESULT.	In	this
way	you	can	use	a	method	in	an	expression	as	a	function	call	that	produces	a
factor	of	an	expression.
For	example:
Mthroutine	Name(MakeMessage)
Define_Map	For(*RESULT)	Class(#STD_TEXT)	Name(#OutTextOne)
Define_Map	For(*INPUT)	Class(#STD_TEXT)	Name(#InTextOne)
Define_Map	For(*INPUT)	Class(#STD_TEXT)	Name(#InTextTwo)
#OutTextOne	:=	#InTextOne.Value	+	"	"	+	#InTextTwo.Value
Endroutine

Evtroutine	Handling(#PHBN_2.Click)
Begincheck
Datecheck	Field(#STD_DATE)	In_Format(*DDMMYY)
Endcheck	Msgtxt(#COM_OWNER.MakeMessage("#Phbn_2.Click",	"Bad	Date"))
Endroutine
	

Methods	or	intrinsic	functions	that	return	a	Boolean	result	can	be	used	in	IF
statements.		This	is	similar	in	concept	to	the	use	of	a	defined	condition	(see
DEF_COND	command).		However,	because	a	method	is	being	invoked,	there
are	no	limitations	imposed	upon	the	nature	of	the	condition.
Mthroutine	Name(Set_availability)

#Button1.Enabled	:=	#COM_OWNER.Allow_Access
#SURNAME.readonly	:=	*Not	#COM_OWNER.Allow_Access

Endroutine

Mthroutine	Name(Allow_Access)
Define_Map	For(*RESULT)	Class(#Prim_boln)	Name(#RESULT)

#RESULT	:=	True

If	(#GIVENAME.Contains('ABC'))
#RESULT	:=	False

Endif

Endroutine
	
	8.28	Enhanced	Expressions

8.28.4	Named	Parameters
All	parameters	of	methods,	keyed	properties	and	function	library	routines	are
named.	When	invoking	such	a	routine	as	an	operation	in	an	expression,	usually
you	would	code:
Invoke	#COM_OWNER.MethodOne	ParmOne(1)	ParmTwo(2)	ParmThree(#RESULT)	
	

The	same	result	could	be	achieved	using	an	assignment	statement	and	the
following	syntax:
#RESULT	=	#COM_OWNER.MethodOne(1,	2)	
	

If	ParmOne	is	optional	and	you	want	to	use	the	default,	you		can	simply	pass	a
value	for	ParmTwo	without	specifying	a	positional	value	for	parameter
ParmOne	by	specifying	ParmTwo	by	name:
#RESULT	=	#COM_OWNER.MethodOne(ParmTwo	:=	2)	
#RESULT	=	#COM_OWNER.MethodOne(ParmTwo	:=	((#A	+	#B)	*	#C))	
	
	8.28	Enhanced	Expressions

8.28.5	*Not	Operator
*Not	can	be	used	to	test	or	set	the	reciprocal	of	a	Boolean	result.	
For	example:
If	(*Not	#Object.Boolean)
	

or
#button.enabled	:=	*not	#button.enabled
	

Where	complex	logic	processing	is	required	to	define	a	"good"	or	"bad"	result,	a
good	technique	is	to	encapsulate	the	code	in	a	method	that	returns	a	Boolean.	
Consequently,	*Not	can	be	used	to	perform	processing	based	on	the	reciprocal
result.
Evtroutine	Handling(#STD_NUM.Changed)
If	(*Not	#COM_OWNER.IsValidEntry(#STD_NUM))
*	Do	something
Endif
Endroutine
	
Mthroutine	Name(IsValidEntry)
Define_Map	For(*input)	Class(#STD_NUM)	Name(#NUMBER)
Define_Map	For(*RESULT)	Class(#prim_boln)	Name(#RESULT)
#RESULT	:=	False
If	((#NUMBER	>	100)	*And	(#NUMBER	<	200))
#RESULT	:=	true
Endif
If	((#NUMBER	>	300)	*And	(#NUMBER	<	400))
#RESULT	:=	true
Endif
Endroutine
	
	8.28	Enhanced	Expressions

8.28.6	*IS	and	*ISNOT	Operator
You	can	use	the	*IS	and	the	*ISNOT	operators	to	perform	type	testing	of
component	reference	variables.	The	following	code	fragment	illustrates	the
syntax	of	these	operators:
#Variable1	*IS	#ClassName
#Variable2	*ISNOT	*NULL
	

The	*IS	operator	is	used	to	test	the	class	of	the	supplied	variable,	checking	if	the
type	of	the	variable	or	one	of	its	ancestors	matches	the	type	identified	by	the
class	name.
The	*ISNOT	operator	is	used	to	test	the	class	of	the	supplied	variable,	checking
if	the	type	of	the	variable	or	one	of	its	ancestors	does	not	match	the	type
identified	by	the	class	name.
Both	operators	can	also	be	used	to	test	if	the	variable	is	a	null	reference.

Example
The	following	code	fragment	shows	the	use	of	the	*IS	and	*ISNOT	operators:
...
DEFINE_COM	CLASS(#DEPTMENT)	NAME(#DEPARTMENT)
SET	COM(#COM_OWNER)	PSCENARIO('if	cond(#DEPARTMENT	*IsNot	*null))')
SET	COM(#PASS)	VALUE(FALSE)
IF	COND(#DEPARTMENT	*IsNot	*null)
SET	COM(#PASS)	VALUE(TRUE)
ENDIF

SET	COM(#COM_OWNER)	PSCENARIO('if	(#DEPARTMENT	*IS	#DEPTMENT)')
	(#ReferenceOne.Left	<=	0))
SET	COM(#PASS)	VALUE(FALSE)
IF	(#DEPARTMENT	*Is	#DEPTMENT)
SET	COM(#PASS)	VALUE(TRUE)
ENDIF

IF	(((#DEPARTMENT	*IsNot	*null)	*AndIf	(#DEPARTMENT	*Is	#DEPTMENT))	*OrIf	(#ADDRESS1	*Is	*null))
SET	COM(#PASS)	VALUE(TRUE)
ENDIF
...

	
	8.28	Enhanced	Expressions

8.28.7	*IsEqualTo	and	*IsOfType	Operators
Just	as	with	*IS	and	*ISNOT	Operator,	you	can	use	the	*IsEqualTo,
*IsNotEqualTo,	*IsOfType	and	*IsNotOfType	operators	to	perform	testing	of
component	reference	variables:
If	(#COM_OWNER	*IsEqualTo	#Phbn_1.Parent)
Use	Builtin(Ov_Message_box)	With_Args("3.	#COM_OWNER	is	equal	to	#PHBN_1.Parent")
Endif
If	(#COM_OWNER	*IsNotEqualTo	#Phbn_1)
Use	Builtin(Ov_Message_box)	With_Args("4.	#COM_OWNER	is	not	equal	to	#PHBN_1")
Endif
If	(#COM_OWNER	*IsOfType	#AADFORM22)
Use	Builtin(Ov_Message_box)	With_Args("5.	#COM_OWNER	is	of	type	#AADFORM22")
Endif
If	(#COM_OWNER	*IsNotOfType	#PRIM_PHBN)
Use	Builtin(Ov_Message_box)	With_Args("6.	#COM_OWNER	is	not	of	type	#PRIM_PHBN")
Endif
	
	8.28	Enhanced	Expressions

8.28.8	*AS	Operator
You	can	perform	type	casting	of	component	reference	variables	using	the	*AS
operator.	The	following	code	fragment	illustrates	the	syntax	of	the	*AS
operator:
If	((#Object1	*As	#Prim_Form).Visible	=	True)
Set	#COM_OWNER	Left((#Object1	*As	#Prim_Form).Left)	
EndIf
	
	8.28	Enhanced	Expressions

8.28.9	*ANDIF	and	*ORIF	Logical	Operators
RDMLX	supports	*AND	and	*OR	logical	operators.	The	following	code
fragment	illustrates	the	syntax	of	these	operators:
ConditionalExpression1	*OR		ConditionalExpression2
ConditionalExpression1	*AND	ConditionalExpression2
	

Both	of	these	operators	fully	evaluate	the	two	conditional	expressions	coded
either	side	of	the	operator	before	logically	combining	the	resultant	Boolean
values	into	a	logical	result.	This	means	that	there	is	no	way	of	stopping	the
second	conditional	expression	based	on	the	result	of	the	first	conditional
expression.
Sometimes	you	may	want	to	stop	the	second	conditional	expression	based	on
the	result	of	the	first	conditional	expression.	Referred	to	as	short-circuiting,	the
following	example	illustrates	the	coding	style	that	has	previously	been	used
logical	operators.
If_Ref	Com(#ReferenceOne)	Is_Not(*null)
			If	Cond('#ReferenceOne.Left	<=	0')
			Set	#ReferenceOne	Left(100)
			Endif
Endif
	

So	it	has	been	necessary	to	write	two	conditional	commands	in	order	to	first
ensure	that	the	variable	#ReferenceOne	was	not	null	and	therefore	could	be
referenced.	The	second	conditional	command	then	checked	the	state	of	the
component	before	executing	the	SET	command.
Full	RDMLX	supports	short	circuiting	using	the	*ANDIF	and	*ORIF	operators.
The	*ANDIF	operator	will	only	execute	the	second	conditional	expression
should	the	first	conditional	expression	return	a	True	result.	The	*ORIF	operator
will	only	execute	the	second	conditional	expression	should	the	first	conditional
expression	return	a	False	result.
This	means	that	the	previous	example	can	now	be	coded	as:
If	Cond((#ReferenceOne	*IsNot	*Null)	*AndIf	(#ReferenceOne.Left	<=	0))
Set	#ReferenceOne	Left(100)
Endif
	

Example
The	following	code	fragment	shows	the	use	of	the	*OrIf	and	*AndIf	operators:
...
DEFINE_COM	CLASS(#DEPTMENT)	NAME(#DEPARTMENT)
SET	COM(#COM_OWNER)	PSCENARIO('(#ReferenceOne	*isnot	*null)	*andif	(#ReferenceOne.Left	<=	0))')
(#ReferenceOne.Left	<=	0))
IF	COND((#DEPTMENT	*IsNot	*null)	*AndIf	(#DEPTMENT.Value	=	ADM))
SET	COM(#pass)	VALUE(TRUE)
ENDIF

SET	COM(#COM_OWNER)	PSCENARIO('if	(#DEPTMENT.value	=	FIN)	*orif	(#section.value	=		''05'')')
IF	((#DEPTMENT.value	=	ADM)	*OrIf	(#section.value	=	'05'))
SET	COM(#pass)	VALUE(TRUE)
ENDIF

SET	COM(#COM_OWNER)	PSCENARIO('if	cond((#COM_OWNER.ComponentPatternName	=	QAP308)	*andif	(#com_self.componentpatternname	=	QAP308))')
IF	((#COM_OWNER.ComponentPatternName	=	QAP308)	*AndIf	(#com_self.componentpatternname	=	QAP308))
SET	COM(#pass)	VALUE(TRUE)
ENDIF
...
	8.28	Enhanced	Expressions

	
	
	

9.	Built-In	Functions
LANSA	is	shipped	with	a	number	of	Built-In	Functions	(BIFs)	that	perform
common	data	processes.
Built-In	Functions	are	invoked	from	RDML	programs	by	the	USE	command.
Before	using	any	BIFs,	please	review:	USE	command.

Also	see
9.1	Built-In	Function	Rules
For	a	full	list	of	Built-In	Function,	refer	to	Built-In	Functions	by	Category
Built	In	Functions	(BIFs)	in	the	Visual	LANSA	Developer's	Guide.
Create	Your	Own	Built-In	Functions	in	the	Application	Design	Guide.

its:lansa013.chm::/Lansa/L4wDev01_0150.htm
its:lansa065.chm::/Lansa/DSNBI_0005.htm

9.1	Built-In	Function	Rules
Long	Names
The	majority	of	existing	Built	In	Functions	will	accept	only	the	Object	Identifier
when	referring	to	LANSA	Objects.	Built	In	Functions	which	support	long
names	are	documented	accordingly.
BIF	Argument	&	Return	Value	Types
An	input	argument	or	return	value	type	can	be	of	type	A,	N,	L,	U,	w	or	X.

TypeDescription

A Alphanumeric	-	allows	fields	of	type	Alpha,	String	and	Char.

N Numeric	-	allows	fields	of	type	Packed,	Signed,	Float	and	Integer.

L List

U Unicode	-	allows	fields	of	type	Alpha,	String,	Char,	NChar	and	NVarChar.

w Any	field	type	except	Unicode	may	be	supplied	(excluding	Lists).	This	is
the	same	as	X,	but	excluding	Unicode.

X Any	field	type	may	be	supplied	(excluding	Lists).

	

All	other	field	types	like	Date,	DateTime	and	BLOB	are	classed	as	their	own
type	and	thus	are	not	valid	for	either	an	argument/return	type	'A',	or	type	'N'.	To
use	these	field	types	they	must	be	coerced	into	the	correct	class	using	intrinsic
functions.	Refer	to	Intrinsic	Functions	for	information	and	examples	of	using
intrinsics.
User	defined	Built-In	Functions	require	exact	field	type	matches	for	all
RDMLX	field	types.	Therefore,	if	a	String	is	used	in	the	user	defined	Built-In
Function	declaration,	then	that	is	all	that	can	be	used	when	it	is	called.	An	Alpha
field	cannot	be	used.	But	if	an	argument	is	declared	as	Alpha,	then	String	fields
may	be	used.	This	anomaly	exists	due	to	support	for	backward	compatibility.	A
user	defined	Built-In	Function	cannot	declare	an	argument	or	return	value	of
type	X,	U	or	w.
Fields	v.	Literals
When	the	length	of	an	Argument	is	stated	as	being	greater	than	50,	this	is	only

true	for	Fields.	Literal	values	are	restricted	to	a	maximum	length	of	50.
FFC	Warning	instead	of	FFC	Error	for	some	arguments	and	return	values
in	RDMLX
If	an	A,	u,	w	or	X	(Any)	argument	or	return	value	has	a	maximum	length	of
256,	and	a	longer	field	is	passed,	this	will	be	a	FFC	Warning	(the	BIF	may	not
cope	with	fields	over	256	bytes	in	length)	instead	of	an	error.
If	an	N	argument	or	return	value	has	a	maximum	length	of	30	and	maximum
decimals	of	9,	and	a	longer	field	is	passed,	this	will	be	a	FFC	Warning	(the	BIF
may	not	cope	with	fields	over	30,9)	instead	of	an	error.
Unlimited	maximum	length	/	maximum	decimals	in	RDMLX
Some	BIF	arguments	and	return	values	will	be	defined	with	a	new	maximum
length	value	of	2147483647,	meaning	unlimited.	This	will	mean	there	is	no
need	to	check	the	min/max	field	length.
Some	N	or	X	arguments	and	return	values	will	be	defined	with	a	new	maximum
decimals	value	of	32767,	meaning	unlimited.	This	will	mean	there	is	no	need	to
check	the	min/max	decimals	length.
Fields	of	type	Integer
Fields	of	type	Integer	have	a	size	in	bytes	rather	than	a	length,	have	no	decimal
places,	and	are	accurate.
The	following	table	provides	the	implied	length	for	each	of	the	possible	byte
lengths	for	an	Integer.	The	implied	length	is	equivalent	to	the	actual	length	of	a
signed	or	packed	field.

#	BytesMax	value
(signed)

Max	value
(unsigned)

Max	#	digits	
(implied	length)

1 127 255 3

2 32767 65535* 5

4 2147483647 4294967295* 10

8 922337203685477580718446744073709551615*19	signed,	
20	unsigned*

	

Fields	of	type	Integer	may	only	be	used	as	numeric	arguments	or	return	values

under	the	following	conditions:
The	minimum	decimals	for	the	argument	or	return	value	is	0.
The	minimum	length	for	the	argument	or	return	value	is	less	than	or	equal	to
the	implied	length	of	the	Integer	field.	For	example,	if	the	minimum	length
for	the	argument	is	4,	an	Integer	of	1	byte	may	not	be	used	(as	it	only	has	an
implied	length	of	3).
The	maximum	length	for	the	argument	or	return	value	is	2147483647	OR	the
maximum	length	for	the	argument	or	return	value	is	greater	than	or	equal	to
the	implied	length	of	the	Integer	field.	For	example,	if	the	maximum	length
for	an	argument	is	4,	an	Integer	of	2,	4,	or	8	bytes	may	not	be	used	(as	they
have	implied	lengths	of	5	or	higher).

Fields	of	type	Float
Fields	of	type	Float	have	a	size	in	bytes	rather	than	a	length,	can	be	assumed	to
contain	decimal	places	although	not	of	a	fixed	length,	and	are	accurate	to	a
certain	number	of	digits.
The	following	table	provides	the	accurate	length	for	each	of	the	possible	byte
lengths	for	a	Float.	The	accurate	length	may	be	considered	equivalent	to	the
actual	length	of	a	signed	or	packed	field.	The	table	also	notes	the	possible
number	of	decimal	places	at	runtime.

#	BytesAccurate	#	digits	(accurate	length)Possible	decimal	places

4 6 0	-	6

8 15 0	-	15

	

As	the	value	for	a	field	of	type	Float	may	have	anywhere	between	0	and	15
decimal	places	at	execution	time,	it	is	generally	not	considered	suitable	as	a
numeric	argument	to	a	BIF	as	the	actual	number	of	decimal	places	cannot	be
predicted.	An	FFC	warning	will	occur	if	a	field	of	type	Float	is	used	for	a
numeric	argument,	unless	the	maximum	length	of	the	argument	is	2147483647.
However,	a	field	of	type	Float	is	suitable	as	a	numeric	return	value	under	the
following	conditions:
The	maximum	length	is	defined	as	2147483647,	meaning	a	number	of	any
size	is	acceptable,	OR	The	maximum	decimals	for	the	return	value	is	1	or
higher,	meaning	a	number	with	decimal	places	is	normal	and	accepted.

The	minimum	length	and	the	minimum	decimals	for	the	return	value	are	less
than	or	equal	to	the	accurate	length	of	the	Float	field.	For	example,	if	the
minimum	length	for	the	argument	is	10,	a	Float	of	4	bytes	may	not	be	used
(as	it	is	only	accurate	to	6	digits).	Or,	if	the	minimum	decimals	for	the
argument	is	7	a	Float	of	4	bytes	may	not	be	used	(as	it	is	only	accurate	to	6
decimal	places).		This	happens	as	part	of	normal	numeric	checking,	given	that
a	Float's	length	is	adjusted	as	per	the	above	table.	If	minimum	length	was	10
then	a	numeric	of	length	6	will	cause	an	error	regardless	of	the	numeric	type
used.	Likewise	if	the	minimum	decimal	places	is	7	then	minimum	length
must	be	7,	or	greater.	Thus,	a	numeric	of	length	6	will	again	cause	an	error.
Currently,	the	highest	minimum	decimals	for	any	of	LANSA's	shipped	BIF	is
1.	So,	why	the	minimum	decimals	restriction?	Because	BIFs	may	be	defined
by	customers	(or	new	LANSA	BIFs)	that	require	a	higher	minimum	#	of
decimal	places.

Rules	for	Alphanumeric	arguments	and	return	values
Where	an	alphanumeric	argument	or	return	value	is	required,	the	following
general	rules	apply	in	addition	to	the	Built-In	Function	Argument	&	Return
Value	Types	just	listed.
Fields	of	type	String	or	Char	may	be	used,	as	long	as	the	field's	length	is
within	the	range	specified	for	the	argument	or	return	value.	Note	that	if	the
maximum	length	is	2147483647,	this	means	any	length	can	be	used.
Fields	of	type	NChar	or	NVarChar	must	be	coerced	to	an	Alphanumeric
argument	using	the	asNativeString	intrinsic	and	have	the	same	length
restrictions	as	above.	Refer	to	asNativeString	for	an	example	of	using	this
Intrinsic.
All	other	RDMLX	Field	types	must	be	coerced	to	an	Alphanumeric	argument
using	the	asString	intrinsic	and	have	the	same	length	restrictions	as	above.
Refer	to	the	Intrinsic	Functions	for	information	and	examples	of	using
Intrinsics.
Fields	of	type	BLOB	and	CLOB	actually	contain	a	filename	(max	length
256).	To	access	the	filename	the	syntax	#Myblob.Value	can	be	used	as	well	as
#Myblob.asString.	(It	is	a	developer	decision	as	to	whether	or	not	the	contents
of	the	BLOB	or	CLOB	filename	are	valid	for	the	BIF	argument	or	return
value.)
Fields	of	type	Date	(length	always	10),	Time	(length	always	8),	and
DateTime	(length	between	19	and	29)	would	require	asString	with	length
checks	as	specified.	(It	is	a	developer	decision	as	to	whether	or	not	the

contents	of	the	Date,	Time,	or	DateTime	are	valid	for	the	BIF	argument	or
return	value.)

Rules	for	Unicode	arguments	and	return	values
Argument	and	return	types	of	X	andU	support	Unicode
The	rules	for	Unicode	argument	or	return	values	are	the	same	as	for
Alphanumeric,	except	:
In	RDML	objects,	a	Unicode	argument	or	return	value	is	treated	exactly	the
same	as	an	Alphanumeric	argument	or	return	value.
In	RDMLX	objects,	fields	of	type	NChar	and	NVarChar	can	be	used	directly
and	without	data	loss.
If	a	Unicode	argument	uses	a	Unicode	field,	then	a	Unicode	return	value	must
use	a	Unicode	field.	This	stops	implicit	data	loss	when	Unicode	is	converted
to	native.	Note	that	the	reverse	is	not	true.	If	a	Unicode	argument	uses	a
native	field,	a	Unicode	return	value	may	use	either	a	Unicode	field	or	a	native
field	as	there	will	be	no	implicit	data	loss.

Rules	for	List	arguments	and	return	values
The	FFC	does	not	check	the	aggregate	byte	length	for	working	lists.	If	a	specific
aggregate	byte	length	is	required	by	the	BIF	you	must	ensure	it	is	correct.
All	Multilingual	Built-In	Functions
Non-DBCS	SQL	Server	may	corrupt	DBCS	data.	DBCS	SQL	Server	may
corrupt	all	other	language's	text.	To	be	sure	of	no	corruption,	only	change	text
that	is	compatible	with	the	database	server's	character	set.
Note	that	the	Visual	LANSA	integrated	development		environment	performs
database	IO	in	a	different	way	and	so	avoids	corruption.
	9.	Built-In	Functions

9.2	Development	Environment	only	Built-In	Functions
Some	Built-In	Functions	are	recommended	for	use	with	Development
Environments	only.	These	BIFs	are	identified	by	this	link:	Development
Environment	only.
These	BIFs	are	restricted	because	they:
require	a	LANSA	development	license	or	hardware	key	(i.e.	dongle)	to	use
them.	For	example,	if	you	intend	to	generate	and	compile	LANSA	objects	in	a
deployed	environment,	you	will	probably	need	some	type	of	licensing	on	the
system.	Note	that	software	key	licenses	do	not	support	development
environments-only	BIFs.
are	designed	purely	to	assist	application	developers	and	are	not	necessarily
optimized	for	best	performance	in	all	situations.
may	use	parts	of	the	Visual	LANSA	development	environment.	The	Visual
LANSA	development	environment	is	rarely	available	in	deployed	Visual
LANSA	environments.	
The	Visual	LANSA	development	environment	is	also	32-bit	so	64-bit
applications	on	Windows	cannot	use	these	BIFs.
may	access	or	update	repository	details.	
In	deployed	systems	this	will	cause	complications	if:

the	BIF	assumes	a	development	database	is	available	on	the	system
where	the	BIF	is	being	executed.
the	appropriate	repository	details	are	not	deployed	with	the
application.
the	updated	information	is	overwritten	when	repository	details	are
later	redeployed.

Note:	When	executing	applications	on	Windows	that	use	these
development-only	BIFs,	the	X_RUN	argument	LOCK=Y	must	be
specified	to	ensure	that	object	locks	are	released.

	9.	Built-In	Functions

9.3	ACCESS_FILE

	Note:	Built-In	Function	Rules

Reads	records	from	any	file	in	the	system	including	files	not	known	to	LANSA.	
Warning:
When	using	this	BIF	ensure	that	the	file	and/or	member	exists.	The	job	will	fail
if	the	file	and/or	member	do	not	exist	on	the	system.
The	file	must	be	opened	before	you	can	read	records	from	it.
You	cannot	change	a	file/member	once	the	file	is	open.	To	access	a	new
file/member	you	must	first	close	the	open	file/member.
If	a	library	is	not	specified,	the	first	file	matching	the	requested	file	name	in	the
library	list	will	be	used.
If	a	member	is	not	specified	the	first	member	of	the	file	will	be	used.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Action:
OPEN	-	
Open	the	file
READ	-	
Read	a	record
CLOSE	-	
Close	the	file

4 5 	 	

2 A Req File	name 1 10 	 	

3 A Opt Library	name
Default	*LIBL

1 10 	 	

4 A Opt Member	name 1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max	Dec

1 A Opt Return	Code
OK	-	Action
completed
ER	-	Error	occurred
EF	-	End	of	File

2 2 	 	

2 A Opt Returned	data	block	1 1 256 	 	

3 A Opt Returned	data	block	2 1 256 	 	

4 A Opt Returned	data	block	3 1 256 	 	

5 A Opt Returned	data	block	4 1 256 	 	

6 A Opt Returned	data	block	5 1 256 	 	

7 A Opt Returned	data	block	6 1 256 	 	

8 A Opt Returned	data	block	7 1 256 	 	

9 A Opt Returned	data	block	8 1 256 	 	

	

If	the	records	on	the	file	are	longer	than	256	bytes,	bytes	1-256	of	the	record
will	be	returned	in	data	block	1,	bytes	257-512	of	the	record	in	data	block	2,
bytes	513-768	of	the	record	in	data	block	3,	etc.

Example
To	read	the	first	10	records	from	a	requested	file	and	member.

DEFINE					FIELD(#FILENM)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#LIBRARY)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#MEMBER)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
DEFINE					FIELD(#DATA1)	TYPE(*CHAR)	LENGTH(256)

REQUEST		FIELDS(#FILENM	#LIBRARY	#MEMBER)

USE						BUILTIN(ACCESS_FILE)	WITH_ARGS(OPEN	#FILENM	#LIBRARY	
									#MEMBER)	TO_GET(#RETCOD)

DOUNTIL		COND('(#I	*GE	10)	*OR	(#RETCOD	*NE	OK)')
USE						BUILTIN(ACCESS_FILE)	WITH_ARGS(READ	#FILENM)		
									TO_GET(#RETCOD	#DATA1)

*	<	process	data1	>

ENDUNTIL

USE								BUILTIN(ACCESS_FILE)	WITH_ARGS(CLOSE
#FILENM....)	TO_GET(#RETCOD)
	

9.4	ACCESS_RTE

	Note:	Built-In	Function	Rules.

Specifies	or	re-specifies	the	attributes	of	an	access	route	between	the	definition
of	the	file	being	edited	and	another	file	defined	within	the	LANSA	system.
For	details	of	what	an	access	route	is	and	how	they	are	used	by	the	LANSA
system	refer	to	Access	Routes	to	Other	Files	in	the	LANSA	for	i	User	Guide.
After	using	this	Built-In	Function	to	define	the	basic	access	route	attributes,
repetitively	use	the	ACCESS_RTE_KEY	Built-In	Function	to	specify	or	re-
specify	the	route	key	field(s)	or	value(s).
An	edit	session	must	be	commenced	by	using	the	START_FILE_EDIT	Built-In
Function	prior	to	using	ACCESS_RTE.
Allowable	argument	values	and	adopted	default	values	are	as	shown	in	the
Detailed	Access	Route	Maintenance	described	in	the	LANSA	for	i	User	Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	an	IBM	i	in	an	RDMLX

partition.

Visual	LANSA	for
Windows

YES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	access	route	First	3	letters	of	the
name	must	be	the	same	as	the	edit	"source"
nominated	in	the	START_FILE_EDIT	Built-
In	Function.

1 10 	 	

its:LANSA010.CHM::/lansa/ugub_30041.htm
its:LANSA010.CHM::/lansa/ugub_30045.htm

2 A Req Description	of	access	route 1 40 	 	

3 A Req File	to	be	accessed	via	route 1 10 	 	

4 A Req Library	in	which	file	resides	*FIRST	and
*DEFAULT	are	allowable.	
In	Visual	LANSA	blanks	or	*LIBL	are	also
valid	for	backward	compatibility.

1 10 	 	

5 N Req Maximum	records	expected	Must	be	in	range
1	-	9999.

1 4 0 0

6 A Opt Action	to	take	if	no	records	found	via	this
route.	Must	be	ABORT,	IGNORE,	N/AVAIL
or	DUMMY.

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	access	route	defined
ER	=	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically	and	the	edit	session
continues.	The	access	route	that	caused	the
error	is	ignored	in	this	and	all	subsequent
requests	during	the	edit	session.

2 2 	 	

	

9.5	ACCESS_RTE_KEY

	Note:	Built-In	Function	Rules	.

Specifies	or	re-specifies	the	name	of	a	field	or	value	that	is	to	be	used	to	access
data	via	an	access	route	previously	defined	via	the	ACCESS_RTE	Built-In
Function.
An	edit	session	must	be	commenced	by	using	the	START_FILE_EDIT	Built-In
Function	prior	to	using	this	Built-In	Function.
Allowable	argument	values	and	adopted	default	values	are	described	in	Detailed
Access	Route	Maintenance	in	the	LANSA	for	i	User	Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	an	IBM	i	in	an	RDMLX

partition.

Visual	LANSA	for
Windows

YES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Access	route	name 1 10 	 	

2 A Req Name	of	field	from	file	being	edited	or	a
literal	value	that	is	to	be	used	to	form	the	key
used	to	access	data	via	the	access	route.

1 20 	 	

3 N Opt Optional	sequencing	number.	Used	to
sequence	key	fields.	If	not	specified	keys	are
sequenced	in	the	same	order	as	they	are

1 5 0 0

its:LANSA010.CHM::/lansa/ugub_30045.htm

presented.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	access	key	defined
ER	=	error	detected
In	the	case	of	"ER"	return	code	error
message(s)	are	issued	automatically	and	the
edit	session	continues.	The	access	route	that
caused	the	error	is	ignored	in	this	and	all
subsequent	requests	during	the	edit	session

2 2 	 	

	

9.6	ADD_DD_VALUES

	Note:	Built-In	Function	Rules.

Adds	either	a	new	set	of	dropdown	values	or	appends	to	an	existing	set	of
dropdown	values.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES	(Supported	from	V10.0)

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Dropdown	name	Must	begin	with	DD 4 4 	 	

2 A Req Separator	Values:	blank	or	*LOVAL
means	all	one	value

1 1 	 	

3 A Req Dropdown	value(s) 1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code.	Returned	values
possible	are:
OK:	Value(s)	added	successfully
ER:	Error	occurred

2 2 	 	

	

Example
To	set	up	the	dropdown	values	for	an	order	status	field:
DEFINE			FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
USE						BUILTIN(ADD_DD_VALUES)	WITH_ARGS(DDST	'/'	
								'Raised/Open/Closed/Invoiced/History/Back	Ordered')
											TO_GET(#RETCOD)
IF							COND('#RETCOD	*NE	OK')
*	<<	error	processing	>>
ENDIF
USE						BUILTIN(ADD_DD_VALUES)	WITH_ARGS(DDST	'	'	'Cancelled')
											TO_GET(#RETCOD)
IF							COND('#RETCOD	*NE	OK')
*	<<	error	processing	>>
ENDIF
	

9.7	ALLOW_EXTRA_USER_KEY

	Note:	Built-In	Function	Rules.

Enables	an	"extra"	user	defined	function	key	above	and	beyond	any	that	are
normally	enabled	by	parameters	on	a	DISPLAY,	REQUEST	or	POP_UP
command.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req A	literal	or	variable	that	specifies	or	contains
the	number	of	the	extra	function	key	to	be
enabled.	The	value	specified	should	be	in	the
range	1	to	24	or	it	will	be	ignored.

1 2 0 0

2 A Opt Literal	or	variable	that	specifies	or	contains
the	description	that	should	be	associated	with
the	function	key	when	it	is	displayed	in	the
function	key	area	of	a	screen	panel.

1 10 	 	

	

Return	Values
No	return	values.

Technical	Notes
Once	an	extra	function	key	is	enabled	by	ALLOW_EXTRA_USER_KEY,	it

will	affect	the	processing	of	all	following	DISPLAY,	REQUEST	or	POP_UP
commands	within	the	current	function.
Each	time	ALLOW_EXTRA_USER_KEY	is	executed	it	adds	another	(or
even	the	same)	function	key	to	a	"stack"	of	extra	keys	that	should	be	enabled
by	all	following	DISPLAY,	REQUEST	or	POP_UP	commands.	This	"stack"
of	extra	enabled	function	keys	can	contain	at	most	24	entries.	Attempting	to
enable	more	than	24	extra	function	keys	(even	if	the	same	function	key	is
enabled	repeatedly)	will	cause	an	execution	time	application	failure.
All	entries	on	the	"stack"	of	extra	function	keys	are	removed	by	use	of	the
DROP_EXTRA_USER_KEYS	Built-In	Function.
Caution	should	be	used	to	ensure	that	extra	function	keys	enabled	this	way	do
not	conflict	with	function	keys	automatically	enabled	by	the	normal
parameters	on	a	DISPLAY,	REQUEST	or	POP_UP	command.	If	such	a
conflict	is	allowed	to	occur	then	unpredictable	or	unexpected	results	may
occur.
The	ability	of	this	Built-In	Function	to	dynamically	enable	and	disable
function	keys,	and	to	dynamically	vary	their	associated	descriptions,	prevents
the	screen	panel	images	used	by	the	full	function	checker	and	screen	painter
from	showing	them	in	the	image's	function	key	area.	Such	function	keys	will
only	appear	in	the	function	key	area	of	an	executing	application.

Examples
Enable	function	key	5	on	all	panels	and	pop-ups	within	a	function:
FUNCTION	OPTIONS(........)
USE						BUILTIN(ALLOW_EXTRA_USER_KEY)	WITH_ARGS(5	'Refresh')
	

Enable	function	keys	18	and	19	on	a	particular	panel	and	make	sure	that	no
other	extra	keys	are	accidentally	enabled:
USE						BUILTIN(DROP_EXTRA_USER_KEYS)
USE						BUILTIN(ALLOW_EXTRA_USER_KEY)	WITH_ARGS(18	'''Hold''')
USE						BUILTIN(ALLOW_EXTRA_USER_KEY)	WITH_ARGS(19	'''Save''')
	
DISPLAY		FIELDS(........)
	
CASE					OF_FIELD(#IO$KEY)
WHEN					VALUE_IS('=	''18''')
									<<	hold	processing	>>

WHEN					VALUE_IS('=	''19''')
									<<	save	processing	>>
ENDCASE
	

Enable	extra	function	keys	14	to	21:
DEFINE					FIELD(#I)	TYPE(*DEC)	LENGTH(2)	DECIMALS(0)
USE								BUILTIN(DROP_EXTRA_USER_KEYS)
BEGIN_LOOP	FROM(14)	TO(21)	USING(#I)
USE						BUILTIN(ALLOW_EXTRA_USER_KEY)	WITH_ARGS(#I)
END_LOOP
	

9.8	BCONCAT

	Note:	Built-In	Function	Rules.

Concatenates	up	to	five	alphanumeric	strings	to	form	one	string	as	a	return
value.	Trailing	blanks	from	each	string	are	truncated	and	one	blank	is	reinserted
between	each	string	during	the	concatenation	operation.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 U Req 1st	string	to
concatenate

1 Unlimited 	 	

2 U Req 2nd	string	to
concatenate

1 Unlimited 	 	

3 U Opt 3rd	string	to
concatenate

1 Unlimited 	 	

4 U Opt 4th	string	to
concatenate

1 Unlimited 	 	

5 U Opt 5th	string	to
concatenate

1 Unlimited 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max	Len Min
Dec

Max
Dec

1 U Req Concatenated	result
string

1 Unlimited 	 	

2 N Opt Length	of	returned
string

1 15 0 0

	

Example
Concatenate	a	first	name	and	surname	to	get	a	print	name	field.
USE	BUILTIN(BCONCAT)	WITH_ARGS(#FNAME	#SURNAME)	TO_GET(#PRTNAME)
	

9.9	BINTOHEX

	Note:	Built-In	Function	Rules.

Converts	the	contents	of	the	source	field	from	its	binary	format	to	an
alphanumeric	string	consisting	of	two	characters	for	each	byte	in	the	source.
For	example,	if	Source	contains	AB,	Return	alphanumeric	string	will	be	C1C2
(IBM	i)	4142	(Windows)

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 w Req Source:	
Visual	LANSA	Note:
Source	field	type	can	be	any	RDMLX
field	type	with	unlimited	length.

1 Unlimited 	 	

2 N Opt Number	of	bytes	to	be	converted.	See
Technical	Note	below.

1 11 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 X Req Returned	string 2 Unlimited 	 	

Characters	will	be	0-9,
A-F

2 A Opt Return	code.	
OK	=	action	completed.
ER	=	An	error	occurred.

2 2 	 	

	

Technical	Note
Second	Argument Built-In	Function	Behaviour

0	(Default) The	value	of	the	first	argument	(Source)	is	treated	as
a	NULL	terminated	string:
The	first	NULL	byte	in	the	source	will	be	the
terminator	of	the	string.
If	there	is	no	NULL	byte	in	the	source,	the	BIF	will
process	the	whole	field.
Any	trailing	BLANK,	Carriage	Return(CR)	or	Line
Feed(LF)	of	the	string	being	processed	will	be
truncated.
For	example	(in	Windows):		
If	the	source	value	is
0xC1D4D840C1D4E2E8C4F0F220001F01
Then	the	actual	value	processed	by	this	BIF	will	be:
0xC1D4D840C1D4E2E8C4F0F2
because
the	input	value	is	only	read	until	the	first	NULL(
0x00)
then	the	trailing	BLANK	(0x20)	is	truncated.

Any	negative	value The	whole	value	of	the	source	field	will	be	processed.
No	truncation	will	happen.

Positive,	not	bigger	than
the	current	size	of	the
first	argument	field

The	BIF	will	process	only	the	specified	number	of
bytes	from	the	source	field.	No	truncation	will	happen
to	this	portion	of	the	source	value.

Bigger	than	the	current
size	of	the	first	argument
field

Return	ER.	
No	conversion	will	happen.

	

	

9.10	BUILD_WORK_OPTIONS

	Note:	Built-In	Function	Rules.

Dynamically	converts	a	list	of	process	and	function	names	into	a	set	of	lists	that
are	easy	to	use	in	"Work	With"	style	RDML	function	drivers.
A	list	of	process	and	function	names	are	passed	into	this	Built-In	Function
together	with	a	"type"	code.	If	type	code	is:
O	-	this	function	acts	on	a	single	instance	of	an	object	in	the	work	list.
M	-	this	function	acts	on	multiple	instances	of	objects	in	the	work	list.
B	-	this	function	acts	on	multiple	instances	of	objects	in	the	work	list	(in	a
batch).

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	the	function	details.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	50	bytes.
Each	list	entry	should	be	formatted	exactly	as
follows:
Bytes	1-2:	Option	Number	(packed	format)
Bytes	3-3:	Function	type	(O,	M	or	B)
Bytes	4-13:	Process	Name
Bytes:	14-20:	Function	Name

50 50 	 	

Bytes	21-50:	Function	Description

This	list	is	updated	by	the	Built-In	Function
in	accordance	to	the	following	rules:
Any	function	that	the	user	is	not	allowed	to
use	is	removed	from	the	list.
All	"O"	entries	are	removed	and	moved	to	the
return	lists.
Any	blank	function	descriptions	are	set	to	the
correct	current	value	(where	it	can	be	found).

2 N Req Entry	length	of	the	first	list	returned.	This
value	must	be	in	the	range	40	to	80.

1 15 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	the	Option	Lines
composed	from	all	valid	"O"	entries	of	the	1st
argument	list.
The	calling	RDML	function	must	provide	a
working	list	of	an		aggregate	entry	length	of
exactly	the	length	specified	by	the	2nd
argument.

1 80 	 	

2 L Req Working	list	containing	the	option	numbers	of
those	type	"O"	functions	that	were	placed	into
the	previous	list	as	valid	options	in	text
format.
The	calling	RDML	function	must	provide	a
working	list	of	an	aggregate	entry	length	of
exactly	2	bytes.
Each	list	entry	should	be	formatted	as
follows:
Bytes	1-2:	Valid	Option	Number	(packed

1 2 	 	

format)

	

Examples
Imagine	an	input	Definition	List	to	this	Built-In	Function	that	contained	entries
like	this:

OptionTypeProcess FunctionDescription

3 O PROC01FUNC01 Print	Customer

4 O PROC01FUNC02 Change

5 O PROC01FUNC03 	

0 M PROC01FUNC04 Print	all	Customers

0 M PROC01FUNC05 	

0 B PROC01FUNC06 Print	State	Customer	Sales

4 O PROC01FUNC07 Delete	Customer

	

If	this	Built-In	Function	was	executed,	then	it	would	return	3	lists	that	make
"Work	With"	style	functions	easier	to	implement.
Returned	Definition	List

OptionTypeProcess FunctionDescription

0 M PROC01FUNC05 Send	Outstanding	FAXs

0 B PROC01FUNC06 Print	State	Customer	Sales

	

Note

All	"O"	entries	have	been	removed.

FUNC04	has	been	removed	because	the	user	is	not	authorized.
The	description	of	FUNC05	has	been	inserted.
This	list	can	be	used	to	build	a	dynamic	"menu"	of	functions	to	call	(M)	or
submit	(B).

Returned	Textual	List

Text	(length	30,	say)	

3=Print	Customer	4=Change	

5=Send	FAX	to	Customer

	

Note

Two	list	entries	are	returned	because	all	the	text	details	would	not	fit	into	text
"lines"	of	length	30.
Options	are	"folded"	so	that	they	do	not	ever	span	an	option	text	"line".
The	description	of	option	5	has	been	inserted.
FUNC07	(option	number	4)	is	not	included	because	the	user	is	not	authorized
to	use	it.
This	list	can	be	used	to	dynamically	build	the	options	area	on	work	with	style
screen	panels.

Returned	Valid	Options	List
Option	

		03	

		04	

		05

	

Note

FUNC07	(option	number	4)	is	not	included	because	the	user	is	not	authorized

to	use	it.
This	list	can	be	used	to	dynamically	validate	whether	a	user	is	authorized	to
an	option	number	that	they	enter	into	a	work	with	list.

9.11	CALL_SERVER_FUNCTION

	Note:	Built-In	Function	Rules.

Calls	(executes)	a	LANSA	application	on	the	nominated	server	and	waits	until	it
completes	execution.	The	function	must	be	a	*DIRECT	function.
	

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
No TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req SSN	of	defined	server. 1 10 	 	 	

2 A Req Name	of	function	to	be	called. 1 7 	 	 	

3 A Opt Pass	Exchange	List
Y=	Pass	exchange	list.
other	=	do	not	pass	exchange	list.
The	default	is	N.

1 1 	 	 	

4 A Opt Return	Exchange	List
Y=	Return	exchange	list.
other	=	do	not	return	exchange		list.
The	default	is	N.

1 1 	 	 	

5	-
14

L Opt Working	Lists	1	through	10	to	be	passed
to	the	function	on	the	server.

	 	 	 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
OK	-	Call	Completed
ER	-	Error	during	call	and	error
message(s)	issued.

2 2 	 	

	

Technical	Notes
The	server	function	that	is	called	is	strictly	a	"batch"	job	on	the	server.	It
cannot	execute	DISPLAY/REQUEST/POP_UP	commands	in	any	form	(e.g.,
via	Windows)	because	it	is	not	logically	connected	to	any	form	of	user
interface.	Likewise	it	cannot	successfully	use	other	IBM	i	products	that	need
to	be	logically	connected	to	a	user	interface	(e.g.,	STRSEU,	WAF/400).

This	point	needs	to	be	understood	very	clearly	because	it	may	influence
application	design.	Client	functions	"talk"	to	the	user	via
DISPLAY/REQUEST/POP_UP	commands.	Server	functions	are	actually
executing	on	the	server	and	thus	have	no	direct	or	logical	way	by	which	they
can	"talk"	to	the	user.

A	server	function	is	typically	a	"subroutine"	of	a	client	function	that	just
happens	to	be	executed	on	another	platform.
Fields	exchanged	or	passed	in	working	lists	are	automatically	converted	from
ASCII	to	EBCDIC	(and	back	again).	The	conversions	are	invisible	to	client
and	server	functions.	It	is	just	as	if	the	function	was	being	called	on	the	same
machine	via	the	RDML	CALL	command.
The	same	rules	that	apply	to	the	RDML	CALL	command	for	working	list
passing	/	receiving	apply	to	this	Built-In	Function.

For	example:	All	working	lists	must	have	identical	definitions	in	the	caller

and	receiver	at	all	times.	If	the	list	definition	changes,	both	must	be
recompiled.
Fields	can	be	exchanged	to,	and	back	from,	the	server	function.
Working	lists	can	be	passed	to,	and	received	back	from,	the	server	function.
Alphanumeric	fields	with	DBCS	attributes	are	translated	to/from	ASCII	and
EBCDIC	DBCS.	This	type	of	translation	only	occurs	when	the	field	has
DBCS	attributes	(e.g.,	J,	E,	O)	and	the	server	has	been	connected	with	the
"DBCS	Capable"	option	set	to	Y.
When	the	working	list	details	only	need	to	be	passed	to	the	server	function,
make	the	server	function	clear	the	working	list	before	it	completes.	This	saves
having	to	send	the	list	back	to	the	client	again	and	reduces	communications
traffic.
When	a	working	list	only	needs	to	be	returned	by	the	server	function,	clear	it
before	calling	the	server	function.	This	saves	having	to	send	the	list	details	to
the	server	and	thus	reduces	communications	traffic.
It	may	also	prevent	accidental	"overfilling"	when	the	server	function	assumes
that	it	is	receiving	an	empty	or	cleared	list.	See	the	following	points	for	more
details	about	"overfilling".
Message	information	routed	from	the	server	machine	(in	any	form)	arrives	in
a	text	format.	It	is	displayed	and	accessible	to	RDML	functions	in	the	normal
manner	(e.g.,	GET_MESSAGE)	as	pure	text.	The	message	identifier	and
message	file	name	details	are	not	available	for	messages	that	have	been
routed	from	a	server.	You	should	not	design	client	applications	that	rely	on
reading	specific	message	identifiers	from	the	applications	message	queue.

Portability
Considerations

Servers	defined	with	DEFINE_OS_400_SERVER:
	
The	aggregate	byte	length	of	a	working	list	passed	to	a	server
cannot	exceed	32,000	bytes.	The	aggregate	byte	length	is	the
entry	byte	length	multiplied	by	the	current	number	of	entries.
As	1	to	10	working	lists	can	be	passed	to	the	function	on	the
server,	the	total	number	of	bytes	that	can	be	passed	to	the
Server	is	320,000,	that	is,	10	working	lists	of	32,000	bytes
each.
This	Built-In	Function	will	cause	a	fatal	error	message	if	a
client	function	passes	a	list	that	is	too	large.	However,	the
server	function	is	a	different	matter.	The	working	list	it

receives	as	a	parameter	is	in	memory	allocated	by	its	caller
(i.e.	the	IBM	i	based	server	controller).	If	it	attempts	to	add
too	many	entries	to	the	working	list	it	may	"zap"	the	server
controller	and	cause	an	application	failure.
Please	do	not	ignore	this	warning.	Server	(i.e.	IBM	i	based)
functions	that	receive	working	lists	from	Client	(e.g.
Windows)	functions	via	this	Built-In	Function	must	take	great
care	not	to	"overfill"	the	working	list(s)	that	they	are	passed.
If	an	unexpected	failure	of	CALL_SERVER_FUNCTION
occurs,	and	working	lists	are	involved,	then	look	to	this	point
as	the	first	possible	cause	the	server	function	may	be
overfilling	the	working	list(s).

A	Note	on	Error	Handling
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application.

if	(#retcode	*ne	OK)	

					abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	Built-In	Function	to	every	generated	application
take	care	of	the	problem.	Situations	have	arisen	where	user	defined	error
handling	logic	has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML
code	(with	no	obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.

9.12	CENTRE

	Note:	Built-In	Function	Rules.

Centers	argument	string	into	return	string.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
The	following	table	shows	the	arguments	used	in	this	function.

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req String	to	be	centered 1 256 	 	

2 A Opt Remove	imbedded	blanks
flag
Values:
Y	=	remove
N	=	do	not	remove
Default:	N

1 1 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Return	centered	string1 256 	 	

	

	

9.13	CHANGE_IBMI_SIGNON
	Note:	Built-In	Function	Rules.

Changes	the	password	of	the	user	profile	on	the	IBM	i	server.

For	use	with
LANSA	for	i YESOnly	available	with	RDMLX

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req IBM	i	Server	Name	or	IP	Address 1 256 	 	

2 A Req SSL	Required.
Y	-	Use	SSL	to	communicate	with
the	IBM	i	server
other	-	do	not	use	SSL

1 1 	 	

3 A Req User	name	(signon)	to	be	changed 1 10 	 	

4 A Req Password	for	the	User	Name	to	be
changed.

1 128 	 	

5 A Req New	Password	for	the	User	Name. 1 128 	 	

6 A Req Encrypt	Password.
Y	-	Encrypt	password
other	-	do	not	encrypt	password

1 1 	 	

7 N Opt Server	Mapper	Port.
Defaults	to	449	if	not	specified	or
passed	as	0.

1 5 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
OK	-	Password	changed
OK
CE	-	Communications
error
LE	-	Local	Encryption
error
NR	-	User	name	does	not
exist
PE	-	Password	Expired
SE	-	Server	error
WP	-	Wrong	Password
UD	-	User	name	is
disabled
LP	-	Password	is	too	long
NE	-	New	Password	Error

2 2 	 	

	

Technical	Notes
Because	of	the	way	that	the	IBM	i	operating	system	handles	user	names	and
short	passwords	(Password	level	0	or	1)	with	the	US	English	(CCSID	037)
characters	'@',	'#'	and	'$',	this	facility	will	only	work	with	such	user	names	and
short	passwords	if	the	IBM	i	is	operating	in	US	English	(CCSID	037).
The	current	implementation	of	SSL	used	for	this	facility	ensures	that	encryption
is	negotiated	and	used	for	communication	between	the	client	and	the	IBM	i
server.	It	does	not	verify	that	the	IBM	i	server	is	that	specified	on	the	security
certificate	that	has	been	downloaded.

The	interplay	between	SSL	Required	and	Encrypt	Password	is	interesting.	If
SSL	is	available	and	SSL	Required	is	Y,	then	strictly	speaking	password
encryption	is	not	needed	because	the	entire	communication	stream	is	encrypted,
so	Encrypt	Password	could	be	specified	as	N.	If	SSL	Required	is	N,	then	we
recommend	that	Encrypt	Password	be	specified	as	Y.
The	reasons	for	Return	Code	CE	-Communications	error	can	include:
a	misspelling	in	the	IBM	i	Server	name;
the	IBM	i	Server	name	not	being	locatable	by	your	DNS;
a	firewall	between	the	local	computer	and	the	IBM	i	server;
the	IBM	i	server	being	offline;
TCP/IP	not	being	started	on	the	IBM	i	server;
TCP/IP	host	servers	not	being	started	on	the	IBM	i	server;
SSL	Required	Y	and	the	SSL	TCP/IP	host	servers	not	being	started	on	the
IBM	i	server;
SSL	not	required	and	the	non-SSL	TSP/IP	host	servers	not	being	started	on
the	IBM	i	server.

If	Return	Codes	SE	-	Server	Error	or	NE	-	New	Password	Error	is	returned,	a
review	of	the	joblog	for	the	QZSOSIGN	job	on	the	IBM	i	server	should	show
the	detailed	reason.

9.14	CHECK_AUTHORITY

	Note:	Built-In	Function	Rules.

Checks	whether	a	user	has	a	certain	authority	to	an	object.

For	use	with
LANSA
for	i

YES	

Visual
LANSA	for
Windows

YESObject	Types	P#	and	AT	have	no	meaning	in	the	context	of
this	platform.	If	either	of	these	object	types	are	passed	to	this
Built-In	Function,	an	error	is	returned.

Visual
LANSA	for
Linux

YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Object	name 1 10 	 	

2 A Req Object	name
extension	Values:
-	blanks	
-	literal
-	*LIBL

1 10 	 	

3 A Req Object	type
Values:
DF	-	Field
AT	-	Application	template*
PF	-	Function
PD	-	Process

2 2 	 	

FD	-	File
P#	-	Partition*
SV	-	System	variable
MT	-	Multilingual	string.
*Note:	Object	Types	P#	and	AT	have	no
meaning	in	the	context	of	Visual	LANSA.

4 A Req Access	required	to	object
Values:
Operational		
UD	-	Use	definition		
MD	-	Modify	definition	
DD	-	Delete	definition
Data		
DS	-	Display		
AD-	Add		
CH	-	Change		
DL	-	Delete		

2 2 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Access	granted1 1 	 	

	

This	function	can	be	used	to	determine	whether	a	user	can	update	a	record	in	a
file	OR	use	a	field	definition.
DEFINE			FIELD(#OBJEXT)	TYPE(*CHAR)	LENGTH(10)	DEFAULT('''*LIBL''')
*	<	OR	>
DEFINE			FIELD(#OBJEXT)	TYPE(*CHAR)	LENGTH(10)	DEFAULT(*BLANKS)
USE						BUILTIN(CHECK_AUTHORITY)	WITH_ARGS	(#FILENAME	#OBJEXT	FD	CH)	TO_GET(#OKAY)
IF							COND('#OKAY	*EQ	Y')
UPDATE			FILE(#FILENAME)
ELSE

MESSAGE		MSGTXT('Not	authorized	to	update	file')
ENDIF
DEFINE			FIELD(#OBJEXT)	TYPE(*CHAR)	LENGTH(10)	DEFAULT(*BLANKS)
USE						BUILTIN(CHECK_AUTHORITY)	WITH_ARGS	#FLDNAME	#OBJEXT	DF	UD)	TO_GET(#OKAY)
IF							COND('#OKAY	*EQ	Y')
USE						BUILTIN(GET_FIELD)	WITH_ARGS(#FIELDNAME)	TO_GET(#RETC	#TYPE	#LEN....)
ENDIF
	

When	the	value	*CHECK_AUTH_DYNLIBL		is	not	specified	in	data	area
DC@OSVEROP,	when	checking	authorities	on	files	(FD)	and	no	library	or
*LIBL	is	specified,	it	is	assumed	the	file	is	in	the	library	list	that	was	present	at
time	of	entry	to	LANSA.	Library	list	cannot	be	changed	dynamically.	If	the
library	list	was	changed	during	the	LANSA	session	LANSA	must	be	left	and	re-
entered	for	the	new	library	list	to	be	recognized.

Tips

When	the	value	*	CHECK_AUTH_DYNLIBL	is	specified	in		data	area
DC@OSVEROP,	when	checking	authorities	on	files	(FD)	and	no	library	or
LIBL	is	specified,	the	library	list	is	retrieved	each	time	dynamically	to
determine	which	library	the	CHECK_AUTHORITY	is	to	actually	use.	Use	of
this	setting	may	have	performance	implications.
When	checking	authority	on	files	use	the	system	variable	*PARTDTALIB	for
the	object	extension	value.
Note:	When	checking	FUNCTION	authorization	(type	PF)	both	the	PROCESS
and	the	FUNCTION	must	be	specified	as	arguments.	That	is,	the	PROCESS	is
the	object	name	and	the	FUNCTION	is	the	object	extension.
USE						BUILTIN(CHECK_AUTHORITY)	
									WITH_ARGS	(#PROCESS	CONTROL	PF	UD)	TO_GET(#OKAY)
IF							COND('#OKAY	*EQ	Y')
CALL					PROCESS(#PROCESS)	FUNCTION(CONTROL)
ELSE
MESSAGE		MSGTXT('Not	authorized	to	function	CONTROL')
ENDIF
	

9.15	CHECK_IBMI_SIGNON
	Note:	Built-In	Function	Rules.

Checks	the	status	of	the	user	profile	on	the	IBM	i	server.

For	use	with
LANSA	for	i YESOnly	available	with	RDMLX

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req IBM	i	Server	Name	or	IP	Address 1 256 	 	

2 A Req SSL	Required.
Y	-	Use	SSL	to	communicate	with
the	IBM	i	server
other	-	do	not	use	SSL

1 1 	 	

3 A Req User	name	(signon)	to	be	checked 1 10 	 	

4 A Req Password	for	the	User	Name	to	be
checked.

1 128 	 	

5 A Req Encrypt	Password.
Y	-	Encrypt	password
other	-	do	not	encrypt	password

1 1 	 	

6 N Opt Server	Mapper	Port.
Defaults	to	449	if	not	specified	or
passed	as	0.

1 5 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
OK	-	Signon	is	OK
CE	-	Communications	error
LE	-	Local	Encryption	error
NR	-	User	name	does	not	exist
SE	-	Server	error
WP	-	Wrong	Password
UD	-	User	name	is	disabled
LP	-	Password	is	too	long

2 2 	 	

2 A Req Date	Password	Expires.	Only	valid	if	the
Return	Code	is	OK.	Returned	as	'99991231'	if
the	password	never	expires.

8 8 	 	

	

Technical	Notes
Because	of	the	way	that	the	IBM	i	operating	system	handles	user	names	and
short	passwords	(Password	level	0	or	1)	with	the	US	English	(CCSID	037)
characters	'@',	'#'	and	'$',	this	facility	will	only	work	with	such	user	names	and
short	passwords	if	the	IBM	i	is	operating	in	US	English	(CCSID	037).
The	current	implementation	of	SSL	used	for	this	facility	ensures	that	encryption
is	negotiated	and	used	for	communication	between	the	client	and	the	IBM	i
server.	It	does	not	verify	that	the	IBM	i	server	is	that	specified	on	the	security
certificate	that	has	been	downloaded.
The	interplay	between	SSL	Required	and	Encrypt	Password	is	interesting.	If
SSL	is	available	and	SSL	Required	is	Y,	then	strictly	speaking	password
encryption	is	not	needed	because	the	entire	communication	stream	is	encrypted,
so	Encrypt	Password	could	be	specified	as	N.	If	SSL	Required	is	N,	then	we
recommend	that	Encrypt	Password	be	specified	as	Y.
The	reasons	for	Return	Code	CE	-Communications	error	can	include:

a	misspelling	in	the	IBM	i	Server	name;
the	IBM	i	Server	name	not	being	locatable	by	your	DNS;
a	firewall	between	the	local	computer	and	the	IBM	i	server;
the	IBM	i	server	being	offline;
TCP/IP	not	being	started	on	the	IBM	i	server;
TCP/IP	host	servers	not	being	started	on	the	IBM	i	server;
SSL	Required	Y	and	the	SSL	TCP/IP	host	servers	not	being	started	on	the
IBM	i	server;
SSL	not	required	and	the	non-SSL	TSP/IP	host	servers	not	being	started	on
the	IBM	i	server.

If	Return	Code	SE	-	Server	Error	is	returned,	a	review	of	the	joblog	for	the
QZSOSIGN	job	on	the	IBM	i	server	should	show	the	detailed	reason.

9.16	CHECKNUMERIC

	Note:	Built-In	Function	Rules.

Checks	a	string	only	contains	allowable	values	and	converts	the	digital	and
decimal	portions	into	numeric	variables.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req String	to	be	converted 1 256 	 	

2 N Opt Max.	no.	of	integers	allowed
Range:	0	-	63
Default:	15

1 3 0 0

3 N Opt Max.	no.	of	decimals	allowed
Range:	0	-	63
Default:	9

1 3 0 0

4 A Opt List	of	allowable	characters	to	be
ignored	e.g.	$,	%,	C,	R

1 50 	 	

	

Return	Values
NoTypeReq/ Description Min Max	Len Min Max	Dec

Opt Len Dec

1 N Req Return	integer	portion 1 Unlimited 0 0

2 N Opt Return	decimal	portion 1 Unlimited 1 Unlimited

3 A Opt Return	okay	code	(Y/N) 1 1 	 	

4 A Opt Return	sign	of	the	number
(+	or	-)

1 1 	 	

5 N Opt Return	number	of	integers 1 3 0 0

6 N Opt Return	number	of
decimals

1 3 0 0

	

Example
To	get	a	packed	decimal	9,2	result	field	#P92	from	an	alphanumeric	field	#A
using	2	intermediate	work	fields	called	#P90	and	#DEC.
USE								BUILTIN(CHECKNUMERIC)	WITH_ARGS(#A	7	2)	TO_GET(#P90	#DEC)
CHANGE					FIELD(#P92)	TO('#P90	+	#DEC')
	

9.17	CHECKSTRING

	Note:	Built-In	Function	Rules.

Checks	a	string	contains	only	allowable	characters.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req String	to	be	checked 1 Unlimited 	 	

2 A Req List	of	allowable
characters

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	okay	code	(Y/N)
Y	=	only	contains	specified
characters
N	=	contains	other	characters

1 1 	 	

	

Technical	Notes
Alpha	fields	always	contain	trailing	blanks	up	to	the	length	of	the	field.	These
trailing	blanks	need	to	be	considered	if	you	use	Alpha	fields	when	using	this
BIF.	If	trailing	blanks	are	permitted	in	the	String	to	be	checked,	then	a	blank
must	be	provided	in	the	list	of	allowable	characters.
A	literal	may	be	used	for	the	List	of	allowable	characters.
If	an	Alpha	field	is	used	for	the	List	of	allowable	characters,	it	may	contain
trailing	blanks.	For	example
USE	BUILTIN(CHECKSTRING)	WITH_ARGS(#STRING	#ALLOW)
TO_GET(#YN)
	

If	#ALLOW	is	Alpha(2)	with	a	value	of	'A	',	then	characters	A	and	blank	are
checked	for	in	#STRING.
If	#ALLOW	contains	'AB',	only	characters	A	and	B	are	checked	for	in
#STRING.	Any	trailing	blanks	in	#STRING	will	result	in	a	return	code	of	N
(contains	other	characters).
Reminder	-	in	RDMLX	you	may:
Use	the	intrinsic	.Trim	on	the	Built-In	Function	arguments	to	trim	trailing
blanks	from	field	values.
Replace	the	CHECKSTRING	Built-In	Function	with	the	ContainsOnly
intrinsic.	This	intrinsic	treats	trailing	blanks	in	Alpha	fields	as	insignificant
and	handles	DBCS	characters.
Use	fields	of	type	String

9.18	CLR_MESSAGES

	Note:	Built-In	Function	Rules.

Clears	all	messages	from	the	RDML	program	queue	function.
Messages	on	the	program	queue	of	an	RDML	function	are	normally	displayed
on	line	22/24	of	the	next	screen	presented	to	the	user	and	then	automatically
cleared	/	removed.
Messages	may	have	been	placed	on	the	program	message	queue	by	operating
system	commands,	Built-In	Functions,	invalid	I/O	requests	and/or	RDML
commands	such	as	MESSAGE,	VALUECHECK,	etc.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Clear	Event	Log	Messages	(Y/N)
This	option	only	affects	Visual
LANSA.
Default	is	Y	to	clear	the	Event
Log	messages.

1 1 	 	

	

Return	Values
No	values	are	returned	by	this	Built-In	Function.

9.19	COMPARE_FILE_DEF

	Note:	Built-In	Function	Rules.

Compares	two	CTD	files	and	returns	a	flag	to	indicate	if	the	objects	are
different.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req The	LANSA	File	Name1 10 	 	

2 A Req Path	for	the	current
CTD

1 256 	 	

3 A Req Path	for	the	new	CTD 1 256 	 	

4 A Opt Library	Name 1 10 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code
NC	=	No	differences	found
CH	=	Differences	were	found	in

2 2 	 	

the	definitions
ER	=	An	error	occurred

	

9.20	COMPILE_PROCESS

	Note:	Built-In	Function	Rules.

Compiles	a	process	and	all	selected	functions.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

LANSA	for	i	submits	a	job	to	batch	as	a	separate	task.

Visual	LANSA
for	Windows

YESVisual	LANSA	initiates	the	compile	process	and	does	not
return	control	until	the	compile	is	complete.

Visual	LANSA
for	Linux

NO 	

	

Arguments	for	Visual	LANSA
NoTypeReq/

Opt
Visual	LANSA	Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Process	name 1 10 	 	

2 L Req Working	list	to	contain	function	names.	The
calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	7	bytes.
If	you	do	not	wish	to	specify	any	functions
for	compilation	then	you	must	pass	an	empty
working	list.

1 7 	 	

3 A Opt Name	of	job
Ignored

1 10 	 	

4 A Opt Name	of	job	description 1 21 	 	

Ignored

5 A Opt Name	of	job	queue
Ignored.

1 21 	 	

6 A Opt Name	of	output	queue
Ignored.

1 21 	 	

7 A Opt Force	compile	of	the	process.	This	option
forces	the	process	to	be	rebuilt.	If	this	option
is	NO,	the	process	may	still	be	compiled	if
changes	have	been	made	since	it	was	last
compiled.	Functions	are	not	affected.
Functions	are	always	compiled.	
Default	NO.

2 3 	 	

8 A Opt Produce	RDML	source	listing?
Ignored.

2 3 	 	

9 A Opt Produce	RPG	&	DDS	source	listings?
This	option	is	treated	as	the	Keep	Source
option	in	LANSA/PC.

2 3 	 	

10 A Opt Optimize	compiled	program(s)?
Ignored.

2 3 	 	

11 A Opt Ignore	decimal	data	errors	in	program(s)?
Ignored.

2 3 	 	

12 A Opt Allow	debug	/	Remove	Program
observability?
Only	the	first	character	is	checked.	If	this	is	Y
then	debug	is	enabled.	Default	Y

6 6 	 	

13 A Opt Dump	code	generator	work	areas?
Ignored.

2 3 	 	

14 A Opt Produce	Documentor	details?
Ignored.

2 2 	 	

15 A Opt Generate	HTML	pages? 2 3 	 	

YES	=	Generate	HTML	pages
NO		=		Do	not	generate	HTML	pages
Default	:	YES
Note:	This	argument	is	only	applicable	to
Web	enabled	processes.

16 A Opt Generate	HTML	editor	extension	details?
This	option	is	treated	the	same	as	"Validate
Numeric	Values"
YES	=	Generate	details	to	support	HTML
editor	extension.
NO	=	Do	not	generate	details.
Note:	This	argument	is	only	applicable	to	web
enabled	processes.
If	this	option	is	YES,	the	Generate	HTML
Pages	option	must	also	be	YES.

2 3 	 	

17 A Opt Generate	XML?
YES	=	Generate	XML
NO		=	Do	not	Generate	XML
Default:	YES
Note:	This	argument	is	only	applicable	to
XML	enabled	processes

2 3 	 	

	

Arguments	for	LANSA	for	i
NoTypeReq/

Opt
LANSA	for	i	Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Process	name 1 10 	 	

2 L Req Working	list	to	contain	function	names.	The
calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	7	bytes.

1 7 	 	

If	you	do	not	wish	to	specify	any	functions
for	compilation	then	you	must	pass	an	empty
working	list.
Each	returned	list	entry	is	formatted	as
follows:
Bytes	1-7:	Function	name

3 A Opt Name	of	batch	job
Default:	Process	name

1 10 	 	

4 A Opt Name	of	job	description
Default:	the	job	description	from	the
requesting	job's	attributes.

1 21 	 	

5 A Opt Name	of	job	queue
Default:	the	job	queue	from	the	requesting
job's	attributes.

1 21 	 	

6 A Opt Name	of	output	queue
Default:	the	output	queue	from	the	requesting
job's	attributes.

1 21 	 	

7 A Opt Compile	process	as	well	as	functions?
YES	=	compile	process
NO	=	do	not	compile	process
Default:	the	"compile	process	default"	value
at	position	461	in	the	system	definition	data
area	DC@A01.	See
Note

2 3 	 	

8 A Opt Produce	RDML	source	listing?
YES	=	produce	RDML	listing
NO	=	do	not	produce	listing
Default:	the	"source	listing	default"	value	at
position	146	in	the	system	definition	data	area
DC@A01.

2 3 	 	

9 A Opt Produce	RPG	&	DDS	source	listings?
YES	=	produce	RPG	&	DDS	listings

2 3 	 	

NO	=	do	not	produce	listings
Default:	the	"source	listing	default"	value	at
position	146	in	the	system	definition	data	area
DC@A01.	See
Note

10 A Opt Optimize	compiled	program(s)?
YES	=	optimize	program(s)
NO	=	do	not	optimize
Default:	the	"optimize	compile	default"	value
at	position	147	in	the	system	definition	data
area	DC@A01.	See
Note

2 3 	 	

11 A Opt Ignore	decimal	data	errors	in	program(s)?
YES	=	ignore	decimal	data	errors
NO	=	do	not	ignore	errors
Default:	the	"decimal	data	error	default"
value	at	position	148	in	the	system	definition
data	area	DC@A01.	See
Note

2 3 	 	

12 A Opt Allow	debug	/	Remove	Program
observability?
YESYES	=	Allow	program(s)	to	be	used	in
debug	and	do	not	remove	observability.
NO	NO	=	Do	not	allow	debug	and	remove
program	observability
NO	YES	=	Do	not	allow	debug	but	do	not
remove	the	programs	observability.
Default:	the	"enable	debug	default"	value	at
position	400	in	the	system	definition	data	area
DC@A01.
Warning:	Do	not	specify	YESNO	for	this
parameter.	The	DEBUG	facility	cannot	work
if	a	program	is	not	observable.

6 6 	 	

13 A Opt Dump	code	generator	work	areas?
YES	=	Dump	work	areas
NO	=	Do	not	dump	work	areas
Default:	YES

2 3 	 	

14 A Opt Produce	Documentor	details?
YES	=	Produce	Documentor	details
NO	=	Do	not	produce	Documentor	details
Default:	YES	if	Documentor	is	enabled	at	the
partition	level,	otherwise	NO.

2 2 	 	

15 A Opt Generate	HTML	Pages?
YES	=	Generate	HTML	pages
NO		=		Do	not	generate	HTML	pages
Default	:	YES
Note:	This	argument	is	only	applicable	to
Web	enabled	processes.

2 3 	 	

16 A Opt Validate	numerics
YES	=	Generate	details	to	support	HTML
editor	extension.
NO	=	Do	not	generate	details.
Note:	This	argument	is	only	applicable	to	web
enabled	processes.
If	this	option	is	YES,	the	Generate	HTML
Pages	option	must	also	be	YES.

2 3 	 	

17 A Opt Generate	XML?
YES	=	Generate	XML
NO		=	Do	not	Generate	XML
Default:	YES
Note:	This	argument	is	only	applicable	to
XML	enabled	processes

2 3 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	successful	submission.
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.	In	this	case,
return	code	error	message(s)	are	issued
automatically.

2 2 	 	

	

Notes	for	LANSA	for	i	Arguments
	No 	

9 Produce	RPG	&	DDS	source	listings?	
Default:	the	"source	listing	default"	value	at	position	146	in	the	system
definition	data	area	DC@A01.
Review	this	default	setting	via	the	Compile	process	option	in	Work	with
Compile	and	Edit	Settings	in	the	Review	Systems	setting	facility.

10 Optimize	compiled	program(s)?	
Default:	the	"optimize	compile	default"	value	at	position	147	in	the	system
definition	data	area	DC@A01.	
Review	this	default	setting	via	the	Produce	source	listing	option	in	Work
with	Compile	and	Edit	Settings	in	the	Review	Systems	setting	facility.

11 Ignore	decimal	data	errors	in	program(s)?	
Default:	the	"decimal	data	error	default"	value	at	position	148	in	the	system
definition	data	area	DC@A01.
Review	this	default	setting	via	the	Ignore	Decimal	data	errors	in	RPG
option	in	Work	with	Compile	and	Edit	Settings	in	the	Review	Systems
setting	facility.

	

Example

its:LANSA010.CHM::/lansa/ladugub7_0035.htm
its:LANSA010.CHM::/lansa/ladugub7_0035.htm
its:LANSA010.CHM::/lansa/ladugub7_0035.htm

A	user	wants	to	control	the	compilation	of	processes	and	functions	using	their
own	version	of	the	"Compile	/	Re-Compile	a	Process"	facility.
*********		Define	arguments	and	lists
DEFINE					FIELD(#PROCES)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#FUNCTN)	TYPE(*CHAR)	LENGTH(7)
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
DEF_LIST			NAME(#WKFUNL)	FIELDS((#FUNCTN))	TYPE(*WORKING)
DEF_LIST			NAME(#BWFUNL)	FIELDS((#FUNCTN))
*********		Clear	working	and	browse	lists
BEGIN_LOOP					
CLR_LIST			NAMED(#WKFUNL)
INZ_LIST			NAMED(#BWFUNL)	NUM_ENTRYS(10)	WITH_MODE(*CHANGE)
*********		Request	Process	and	Functions
REQUEST				FIELDS(#PROCES)	BROWSELIST(#BWFUNL)
*********		Move	Functions	from	the	browselist	to	the	working	list
SELECTLIST	NAMED(#BWFUNL)
ADD_ENTRY		TO_LIST(#WKFUNL)
ENDSELECT					
*********		Execute	built-in-function	-	COMPILE_PROCESS
USE								BUILTIN(COMPILE_PROCESS)	WITH_ARGS(#PROCES	#WKFUNL)	TO_GET(#RETCOD)
*********		Check	if	submission	was	successful
IF									COND('#RETCOD	*EQ	''OK''')
MESSAGE				MSGTXT('Compile	Process	submitted	successfully')
CHANGE					FIELD(#PROCES)	TO(*BLANK)
ELSE					
MESSAGE				MSGTXT('Compile	Process	submit	failed	with	errors,	refer	to	additional	messages')
ENDIF					
END_LOOP					
	

9.21	COMPILE_COMPONENT

	Note:	Built-In	Function	Rules.

This	BIF	compiles	a	component.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i NO 	

Visual	LANSA
for	Windows

YESVisual	LANSA	initiates	the	compile	process	and	does	not
return	control	until	the	compile	is	complete.

Visual	LANSA
for	Linux

NO 	

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	List	Name.	The	working	list	must
have	an	aggregate	length	of	9	bytes.
Each	list	entry	should	be	formatted	as
follows:
Bytes	1-9:	A(9),	Component	Name

1 9 	 	

2 A Opt Force	Compile	(YES/NO).
When	this	option	is	NO,	only	those
components	that	need	to	be	are	compiled,
otherwise	all	the	components	are	compiled.
Default:	NO

2 3 	 	

3 A Opt Keep	the	generated	source	code	(YES/NO).
Default:	NO

2 3 	 	

4 A Opt Compile	for	debug	(YES/NO).
Default:	NO

2 3 	 	

5 A Opt Web	services	to	compile	(A/W/N)
A	-	All	Web	Routines
W	-	New	Web	Routines	only
N	-	None.
Default:	N

1 1 	 	

6 L Opt Working	List	Name.	The	working	list	must
have	an	aggregate	length	of	21	bytes.
Each	list	entry	should	be	formatted	as
follows:
Technology	Services	identifier.	A(21).	This
should	be	specified	in	the	following	format
<Provider>:<Technology	Service	Name>.	
For	example,	LANSA:XHTML

1 21 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code.
The	component	may	fail	if	it	doesn't	pass	the
build	process	or	is	locked.
OK	=	successful	submission	of	compile.
NR	=	No	compilable	components	found	in
list.
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.	In	this	case,
return	code	error	message(s)	are	issued
automatically.

2 2 	 	

	

Example
A	user	wants	to	control	the	compilation	of	components	using	their	own	version
of	the	"Compile	/	Re-Compile	a	Component"	facility.
*********		Define	arguments	and	lists
DEFINE					FIELD(#COMPNAME)	TYPE(*CHAR)	LENGTH(9)
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
DEF_LIST			NAME(#WKCOMP)	FIELDS(#COMPNAME)	TYPE(*WORKING)
DEF_LIST			NAME(#BWCOMP)	FIELDS(#COMPNAME)
*********		Clear	working	and	browse	lists
BEGIN_LOOP
CLR_LIST			NAMED(#WKCOMP)
INZ_LIST			NAMED(#BWCOMP)	NUM_ENTRYS(2)	WITH_MODE(*CHANGE)
*********		Request	component	names
REQUEST				BROWSELIST(#BWCOMP)
*********		Move	components	from	the	browselist	to	the	working	list
SELECTLIST	NAMED(#BWCOMP)
ADD_ENTRY		TO_LIST(#WKCOMP)
ENDSELECT
*********		Execute	built-in-function	-	COMPILE_COMPONENT
USE								BUILTIN(COMPILE_COMPONENT)	WITH_ARGS(#WKCOMP)	TO_GET(#RETCOD)
*********		Check	if	submission	was	successful
IF									COND('#RETCOD	*EQ	''OK''')
MESSAGE				MSGTXT('Compile	Component	submitted	successfully')
ELSE
MESSAGE				MSGTXT('Compile	Component	submit	failed	with	errors,	refer	to	additional	messages')
ENDIF
END_LOOP
	

9.22	COMPOSER_CALLF

	Note:	Built-In	Function	Rules.

This	Built-In	Function	can	only	be	used	with	LANSA	Composer	greater	than
V3.0.

This	Built-In	Function	assumes	that	the	source	system	(the	system	in
which	the	Built-In	Function	executes)	is	a	LANSA	Composer	system,
greater	than	Version	3,	and	contains	the	LANSA	Composer	Request
Server	software.	This	Built-In	Function	will	fail	if	this	is	not	the
case.

COMPOSER_CALLF	calls	a	named	LANSA	function,	in	the	LANSA	or
LANSA	Composer	system	identified	by	the	server	symbolic	name	argument,
through	the	LANSA	Composer	Request	Server.

It	can	pass	and	receive	up	to	seven	values	via	the	LANSA	exchange	list.		All
exchange	variables	are	passed	as	A(256)	using	exchange	variable	names
EXCH01	-	EXCH07.
This	Built-In	Function	is	intended	for	use	in	custom	activity	processors	or	other
user-defined	plug-in	components	of	LANSA	Composer	to	invoke	processing
logic	contained	in	another	LANSA	application	that	may	be	installed	in	a
different	LANSA	system	and/or	partition.
You	must	execute	the	9.24	COMPOSER_USE	Built-In	Function	to	define	the
server	connection	details	and	a	symbolic	name	representing	them	before
executing	this	Built-In	Function.
Further	important	information	about	this	Built-In	Function	is	provided	later	in
these	notes	in:

Exchange	Variables
LANSA	programming	considerations	for	the	called	function
Further	considerations	for	functions	calls	executed	through	the	LANSA
Composer	Request	Server
You	should	also	refer	to	LANSA	Composer	documentation	of	the
CALL_FUNCTION	activity	and	of	the	LANSA	Composer	Request	Server	for
further	information	and	considerations.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req LANSA	Composer	server	symbolic	name.
Specifies	a	symbolic	name	used	to	identify
the	connection	details	for	the	required
LANSA	Composer	server	system.		The	name
must	have	previously	been	specified	in	the
COMPOSER_USE	Built-In	Function	in	the
current	session.

1 10 	 	

2 A Req Name	of	the	LANSA	process	containing	the
function	to	be	called.
IBM	i
:	if	*DIRECT	is	specified,	the	function	must
be	defined	with	FUNCTION
OPTIONS(*DIRECT).
Windows	servers
:	the	process	name	(not	*DIRECT)	must	be
specified.

1 10 	 	

3 A Req Name	of	the	LANSA	function	to	be	called.
Compulsory.

1 7 	 	

4 N Opt Number	of	exchange	variables	used.	If	not
specified,	a	default	of	0	(zero)	is	assumed.

1 5 0 0

5 A Opt Value	of	exchange	variable	EXCH01	(see
Exchange	Variables).

1 256 	 	

6 A Opt Value	of	exchange	variable	EXCH02	(see
Exchange	Variables).

1 256 	 	

7 A Opt Value	of	exchange	variable	EXCH03	(see
Exchange	Variables).

1 256 	 	

8 A Opt Value	of	exchange	variable	EXCH04	(see
Exchange	Variables).

1 256 	 	

9 A Opt Value	of	exchange	variable	EXCH05	(see
Exchange	Variables).

1 256 	 	

10 A Opt Value	of	exchange	variable	EXCH06	(see
Exchange	Variables).

1 256 	 	

11 A Opt Value	of	exchange	variable	EXCH07	(see
Exchange	Variables).

1 256 	 	

12 A Opt Synchronous	call?
Specifies	whether	the	Built-In	Function	waits
for	the	function	call	to	complete.
Default	is	'Y',	to	wait.
If	any	other	value	is	specified,	the	Built-In
Function	posts	the	function	call	request	and
ends	immediately.
Note	that	this	Built-In	Function	can	only
receive	values	returned	from	the	called
function	(in	the	EXCH01	...	EXCH07
exchange	variables)	if	this	parameter	is	'Y'.

1 1 	 	

13 N Opt Synchronous	time-out	(seconds).
The	number	of	seconds	the	Built-In	Function
waits	for	a	synchronous	call	to	complete.	If

1 5 0 0

the	timeout	is	exceeded,	the	Built-In	Function
ends	with	a	result	code	of	'TM'.
Default	is	30	seconds.

14 N Opt Request	expires	(seconds).	IBM	i	only.
Expiry	does	not	apply	to	Windows	servers.
On	IBM	i	servers	only,	specify	the	number	of
seconds	for	the	request	to	remain	effective
after	it	is	posted	to	the	request	server.	If	more
than	the	specified	interval	has	elapsed	before
the	request	server	begins	to	process	the
request,	it	will	consider	the	request	to	have
expired	and	will	not	process	it.
Default	is	zero	(0),	which	means	that	no
expiry	applies	to	the	request.
Note	that	the	expiry	ONLY	applies	to	requests
executed	through	the	request	server	for	IBM	i
servers.	No	expiry	applies	when	running	on
Windows	servers.

1 5 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Result	code.
If	the	Built-In	Function	completes
successfully,	the	result	code	will	contain
'OK'.		If	the	synchronous	request	timed	out,
the	result	code	will	contain	'TM'.		Any	other
result	code	signifies	that	an	error	occurred.

2 2 	 	

2 A Opt Value	of	exchange	variable	EXCH01	(see
Exchange	Variables).

1 256 	 	

3 A Opt Value	of	exchange	variable	EXCH02	(see
Exchange	Variables).

1 256 	 	

4 A Opt Value	of	exchange	variable	EXCH03	(see
Exchange	Variables).

1 256 	 	

5 A Opt Value	of	exchange	variable	EXCH04	(see
Exchange	Variables).

1 256 	 	

6 A Opt Value	of	exchange	variable	EXCH05	(see
Exchange	Variables).

1 256 	 	

7 A Opt Value	of	exchange	variable	EXCH06	(see
Exchange	Variables).

1 256 	 	

8 A Opt Value	of	exchange	variable	EXCH07	(see
Exchange	Variables).

1 256 	 	

	

Examples
This	example	uses	a	previously	defined	connection	to	a	LANSA	system,	with
the	symbolic	name	COMPOSER	(see	COMPOSER_USE),	to	do	a	simple
function	call.	The	process	name	is	specified	in	the	variable	#PROCESS	and	the
function	name	is	specified	in	the	variable	#FUNCTION.
use	builtin(COMPOSER_CALLF)	with_args('COMPOSER'	#PROCESS
#FUNCTION)
	

This	example	connects	to	the	same	LANSA	system	as	the	above	to	call	a
function.	The	process	name	is	specified	in	the	variable	#PROCESS	and	the
function	in	the	variable	#FUNCTION.	Two	parameter	values	are	passed:
'VALUE	1'	and	'VALUE	2'.	To	receive	these	values	through	the	exchange	list,
the	called	function	must	have	fields	EXCH01	and	EXCH02	defined.	In	this
case,	the	activity	will	not	wait	for	the	function	to	complete	before	proceeding	as
the	call	is	asynchronous.
use	builtin(COMPOSER_CALLF)	with_args('COMPOSER'	#PROCESS
#FUNCTION	2	'VALUE	1'	'VALUE	2'	*Default	*Default	*Default	*Default
*Default	N)	to_get(#RESULT)
	

This	example	connects	to	the	same	LANSA	system	as	the	above	to	call	a
function.	The	process	name	is	specified	in	the	variable	#PROCESS	and	the
function	in	the	variable	#FUNCTION.	Two	parameter	values	are	passed	and

three	are	returned.	In	order	to	receive	these	variables	via	the	exchange	list,	the
called	function	must	have	the	fields	EXCH01	and	EXCH02	defined.	In	addition,
to	return	the	variables	the	field	EXCH03	must	also	be	defined	and	the	fields
must	be	exchanged.
use	builtin(COMPOSER_CALLF)	with_args('COMPOSER'	#PROCESS
#FUNCTION	2	'VALUE	1'	'VALUE	2')	to_get(#RESULT	#VAR1	#VAR2
#VAR3)
	

Exchange	Variables
The	Built-In	Function	arguments	and	return	values	can	be	used	to	pass	and
receive	up	to	seven	values	to/from	the	called	function	via	the	LANSA	exchange
list.		The	parameters	are	placed	on	and	received	from	the	exchange	list	as
character	variables	of	length	256	using	the	variable	names	EXCH01	...
EXCH07.
The	called	function	must	also	use	the	variables	names	EXCH01	...	EXCH07	in
order	to	receive	the	exchange	values.		If	the	called	function	needs	to	return
values	via	these	variables,	it	must	execute	the	EXCHANGE	command	at	the
appropriate	point.
The	Built-In	Function	will	place	on	and	receive	from	the	exchange	list	the
number	of	parameters	(up	to	seven)	specified	in	the	fourth	argument.		If	used,
they	must	be	specified	contiguously	-	for	example,	if	you	specify	the	value
three,	the	Built-In	Function	will	exchange	the	variables	EXCH01,	EXCH02	and
EXCH03	and	the	values	for	the	remaining	exchange	variable	arguments	will	be
ignored.
Note	that	the	Built-In	Function	can	only	receive	values	returned	from	the	called
function	when	executed	synchronously.
Refer	to	the	description	of	the	EXCHANGE	command	for	further	information
on	exchanging	information	via	the	exchange	list.

LANSA	programming	considerations	for	the	called	function
If	*DIRECT	is	specified	or	assumed	for	the	PROCESS	parameter,	the
function	must	be	defined	with	FUNCTION	OPTIONS(*DIRECT)
Called	functions	may	be	RDML	or	they	may	be	fully	RDMLX	enabled.
The	function	must	define	fields	EXCH01	...	EXCH07	in	order	to	receive
values	(via	the	exchange	list)	that	are	specified	in	the	corresponding	Built-In
Function	arguments.

The	function	must	use	the	EXCHANGE	command	with	fields	EXCH01	...
EXCH07	in	order	to	return	values	(via	the	exchange	list)	to	populate	the
corresponding	Built-In	Function	return	values.
On	IBM	i	servers	only,	position	487	of	LANSA	data	area	DC@A01	in	the
LANSA	system	containing	the	function	to	be	called	must	be	set	to	'Y'	before
compiling	or	executing	the	function.		If	this	condition	is	not	met,	the	called
function	will	not	correctly	receive	or	return	the	EXCH01	...	EXCH07	variable
values.

Depending	on	all	the	requirements,	these	considerations	may	sometimes	require
developers	to	write	functions	specifically	for	the	purpose.	If	this	is	necessary,
the	functions	can	often	be	simple	"stub"	functions	that	call	existing	functions	in
the	LANSA	application.

Further	considerations	for	functions	calls	executed	through	the
LANSA	Composer	Request	Server
This	Built-In	Function	will	execute	the	function	call	through	the	LANSA
Composer	request	server.
When	executed	this	way,	the	function	call	executes	in	another	process	or	job
(the	request	server).		The	Built-In	Function	and	the	request	server	process	or	job
communicate	cooperatively	to	execute	the	request	and	return	the	results.
This	is	generally	transparent	to	your	application.	However,	some	special
considerations	apply	to	this	mode	of	execution,	including	considerations	related
to:
User	profiles,	authorities	and	execution	environment
IBM	i	work	management	(jobs	and	subsystems)
The	way	in	which	the	called	function	must	be	compiled

For	information	about	requests	executed	through	the	LANSA	Composer	request
server,	refer	to	Appendix	F	(The	LANSA	Composer	Request	Server)	in	the
LANSA	Composer	Guide.

9.23	COMPOSER_RUN

	Note:	Built-In	Function	Rules.

COMPOSER_RUN	runs	a	LANSA	Composer	Processing	Sequence,	in	the
LANSA	Composer	system	identified	by	the	server	symbolic	name	argument,
through	the	LANSA	Composer	Request	Server.	It	can	pass	up	to	five	named
parameter	values	to	the	processing	sequence.

COMPOSER_RUN	assumes	that	the	target	system	(the	system
identified	by	the	LANSA	Composer	server	symbolic	name	argument)
is	a	LANSA	Composer	system	greater	than	Version	3,	and	contains	the
LANSA	Composer	Request	Server	software.	This	Built-In	Function
will	fail	if	this	is	not	the	case.

	

You	must	execute	the	9.24	COMPOSER_USE	Built-In	Function	to	define	the
server	connection	details	and	a	symbolic	name	representing	them	before
executing	this	Built-In	Function.
Further	important	information	about	this	Built-In	Function	is	provided	at	the
end	of	these	notes.
For	further	information,	also	refer	to	the	COMPOSER_RUN	activity	and
Appendix	F	-	The	LANSA	Composer	Request	Server,	in	the	LANSA	Composer
Guide.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req LANSA	Composer	server	symbolic	name.
The	symbolic	name	is	used	to	identify	the
connection	details	for	the	required	LANSA
Composer	server	system.		The	name	must
have	previously	been	specified	in	the
COMPOSER_USE	Built-In	Function	in	the
current	session.

1 10 	 	

2 A Req Processing	Sequence	identifier
Identifies	the	LANSA	Composer	processing
sequence	to	run.		Specify	either	the	external
identifier	(name)	or	the	internal	identifier.

1 32 	 	

3 A Opt Parameter	name	1	(see	Processing	Sequence
Parameters).

1 20 	 	

4 A Opt Parameter	value	1	(see	Processing	Sequence
Parameters).

1 200 	 	

5 A Opt Parameter	name	2	(see	Processing	Sequence
Parameters).

1 20 	 	

6 A Opt Parameter	value	2	(see	Processing	Sequence
Parameters).

1 200 	 	

7 A Opt Parameter	name	3	(see	Processing	Sequence
Parameters).

1 20 	 	

8 A Opt Parameter	value	3	(see	Processing	Sequence
Parameters).

1 200 	 	

9 A Opt Parameter	name	4	(see	Processing	Sequence
Parameters).

1 20 	 	

10 A Opt Parameter	value	4	(see	Processing	Sequence
Parameters).

1 200 	 	

11 A Opt Parameter	name	5	(see	Processing	Sequence
Parameters).

1 20 	 	

12 A Opt Parameter	value	5	(see	Processing	Sequence
Parameters).

1 200 	 	

13 A Opt Synchronous	call?
Specifies	whether	the	Built-In	Function	waits
for	the	processing	sequence	to	complete.
Defaults	is	'Y',	to	wait.
If	any	other	value	is	specified,	the	Built-In
Function	posts	the	processing	sequence	run
request	and	ends	immediately.

1 1 	 	

14 N Opt Synchronous	time-out	(seconds).
The	number	of	seconds	the	Built-In	Function
waits	for	a	synchronous	processing	sequence
run	to	complete.	If	the	timeout	is	exceeded,
the	Built-In	Function	ends	with	a	result	code
of	'TM'.
Defaultisf	30	seconds.	

1 5 0 0

15 N Opt Request	expires	(seconds).
IBM	i	servers	only
.	Expiry	does	not	apply	to	Winders	servers.
The	number	of	seconds	the	request	remains
effective	after	it	is	posted	to	the	request
server.
If	more	than	the	specified	interval	has	elapsed
before	the	request	server	begins	to	process	the
request,	the	request	server	will	consider	that
the	request	has	expired	and	will	not	process
it.
Default	is	zero	(0).	This	means	that		no	expiry
applies	to	the	request.	

1 5 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Result	code.
OK,	if	the	Built-In	Function
completes	successfully.
TM,	if	the	synchronous	request
timed	out.
Any	other	result	code	signifies	that
an	error	occurred.

2 2 	 	

	

Examples
This	example	uses	a	previously	defined	connection	to	a	LANSA	Composer
system,	with	the	symbolic	name	COMPOSER	(see	COMPOSER_USE),	to	call
the	processing	sequence	'EXAMPLE_AATEST1'.
use	builtin(COMPOSER_RUN)	with_args('COMPOSER'
'EXAMPLE_AATEST1')
	

This	example	uses	the	same	connection	as	above	to	call	processing	sequence
'EXAMPLE_AATEST2'.	A	single	parameter:	'DIRECTORY'	is	passed	with	the
value	of	'/'.	The	result	code	is	received	in	variable	#RESULT.
use	builtin(COMPOSER_RUN)	with_args('COMPOSER'
'EXAMPLE_AATEST2'	'DIRECTORY'	'/')	to_get(#RESULT)
	

This	example	uses	the	same	connection	as	above	to	call	processing	sequence
'EXAMPLE_AATEST1',	passing	no	parameters.	The	timeout	value	has	been
doubled	from	30	seconds	to	60	seconds.
Use	Builtin(COMPOSER_RUN)	With_Args('COMPOSER'
'EXAMPLE_AATEST1'	*Default	*Default	*Default	*Default	*Default
*Default	*Default	*Default	*Default	*Default	*Default	60)	to_get(#RESULT)
	

Processing	Sequence	Parameters
The	Built-In	Function	arguments	can	be	used	to	pass	up	to	five	parameter	values
to	the	processing	sequence	run.	A	pair	of	Built-In	Function	arguments	is	used
for	each	processing	sequence	parameter:
The	first	argument	in	each	pair	(Parameter	name	n)	should	specify	the
parameter	name	as	defined	in	the	processing	sequence	to	be	run.		If	not
specified,	a	default	of	'*NONE'	is	used	which	means	that	parameter	pair	is	not
used.
The	second	argument	in	each	pair	(Parameter	value	n)	should	specify	the
value	that	is	to	be	passed	to	the	processing	sequence	for	the	corresponding
parameter	name.		The	maximum	value	length	that	can	be	passed	is	200.		If	not
specified,	a	default	of	'*NONE'	is	used.		However,	you	should	specify	the
parameter	value	for	each	parameter	name	that	is	specified.

Further	considerations	for	processing	sequences	executed	through
the	LANSA	Composer	Request	Server
This	Built-In	Function	will	run	the	processing	sequence	through	the	LANSA
Composer	request	server.
When	executed	this	way,	the	processing	sequence	runs	in	another	process	or	job
(the	request	server).		The	Built-In	Function	and	the	request	server	process	or	job
communicate	cooperatively	to	execute	the	request	and	return	the	results.
This	is	generally	transparent	to	your	application.	However,	some	special
considerations	apply	to	this	mode	of	execution,	including	considerations	related
to:
User	profiles,	authorities	and	execution	environment
IBM	i	work	management	(jobs	and	subsystems)

For	information	about	requests	executed	through	the	LANSA	Composer	request
server,	refer	to	Appendix	F	(The	LANSA	Composer	Request	Server)	in	the
LANSA	Composer	Guide.

9.24	COMPOSER_USE

	Note:	Built-In	Function	Rules.

This	Built-In	Function	associates	a	symbolic	name	with	the	details	necessary	for
COMPOSER_CALLF	or	COMPOSER_RUN	to	connect	to	a	nominated
LANSA	or	LANSA	Composer	server	system.
The	association	persists	only	for	the	duration	of	the	current	session	or	until
COMPOSER_USE	is	used	again	to	specify	different	LANSA	Composer	or
LANSA	Systems	with	the	associated	symbolic	name.
The	Result	code	of	OK	must	be	received	before	the	LANSA	Composer	server
symbolic	name	is	used	with	the	COMPOSER_RUN	or	COMPOSER_CALLF
Built-In	Functions.
Note	that	no	connection	is	actually	attempted	until	either	the
COMPOSER_RUN	or	COMPOSER_CALLF	Built-In	Functions	is	executed.
Thus,	connection	errors	arising	from	incorrect	values	used	in	this	Built-In
Function	will	not	be	evident	until	the	connection	is	attempted	by	either	the
COMPOSER_RUN	or	COMPOSER_CALLF	Built-In	Functions.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req LANSA	Composer	server	symbolic	name.
The	symbolic	name	that	will	be	used	to
identify	the	connection	details	specified.	If
successful,	the	symbolic	name	may	be
specified	in	subsequent	invocations	of	the

1 10 	 	

COMPOSER_RUN	and/or
COMPOSER_CALLF	Built-In	Functions	in
the	current	session.
	

2 A Opt Partition	name.
Specifies	the	name	of	the	LANSA	partition	in
the	specified	LANSA	system	in	which
LANSA	Composer	is	installed.
'LIC'	is	the	default.	This	partition	name	is
used	in	a	standard	LANSA	Composer
installation.

3 3 	 	

	

Arguments	-	IBM	i	server	only
These	arguments	are	ignored	when	running	on	a	Windows	server.
For	a	Windows	Windows	server,	specify	*DEFAULT	for	these	arguments.

3AOptLANSA	program	library	name.	(IBM	i	server	only)
Specifies	the	name	of	the	LANSA	program	library	for	the
LANSA	system	in	which	LANSA	Composer	is	installed.		In	a
default	LANSA	Composer	installation,	the	library	name	would
be	LICPGMLIB.		This	is	the	default	value	used	if	this	argument
is	not	specified.

110 	 	

4AOptReserved	for	future	use.		Must	be	blank. 1256	 	

5AOptReserved	for	future	use.		Must	be	blank. 1256	 	

	

Arguments	-	Windows	server	only
These	arguments	are	ignored	when	running	on	an	IBM	i	server	system.
Note	that	although	this	Built-In	Function	allows	for	the	long	user	names	and
passwords	to	be	specified,	the	current	version	(3.0)	of	LANSA	Composer	does
not	yet	support	the	use	long	user	names	and	passwords.

6 AOptLANSA	system	path.		(Windows	server	only)
Specifies	the	path	to	the	X_WIN95	folder	in	the	LANSA
system	in	which	LANSA	Composer	is	installed:
Default	is	C:\Program	Files\LANSA	Composer
Server\X_WIN95
This	would	be	the	path	in	a	default	LANSA	Composer
installation.

1256	 	

7 AOptUser	name.	(Windows	server	only)
Specifies	the	user	name	used	to	connect	to	the	LANSA	system
in	which	LANSA	Composer	is	installed.
(This	value	corresponds	to	the	X_RUN	parameter	USER=.)

1256	 	

8 AOptPassword.		(Windows	server	only)
Specifies	the	password	used	to	connect	to	the	LANSA	system
in	which	LANSA	Composer	is	installed.
(This	value	corresponds	to	the	X_RUN	parameter	PSPW=.)

1256	 	

9 AOptData	Source		(Windows	server	only)
Identifies	the	user	database	used	with	the	LANSA	system	in
which	LANSA	Composer	is	installed.
(This	value	corresponds	to	the	X_RUN	parameter	DBID=.)

132 	 	

10AOptDatabase	type.		(Windows	server	only)
Specifies	the	type	of	database	specified	in	the	previous
argument.
(This	value	corresponds	to	the	X_RUN	parameter	DBUT=.)

120 	 	

11AOptDatabase	user.		(Windows	server	only)
Specifies	the	user	name	for	the	database	login,	if	required.
(This	value	corresponds	to	the	X_RUN	parameter	DBUS=.)
It	is	256	bytes	long	on	Windows.

1256	 	

12AOptDatabase	password.		(Windows	server	only)
Specifies	the	password	for	the	database	login,	if	required.
(This	value	corresponds	to	the	X_RUN	parameter	DBPW=.)
It	is	256	byte	long	Windows.

1256	 	

13AOptLANSA	system	overrides.		(Windows	server	only)
This	argument	may	be	used	to	specify	a	string	of	further
X_RUN	parameter	names	and	values	required	to	connect	to	the
LANSA	system	in	which	LANSA	Composer	is	installed.
For	more	information,	refer	to	The	X_RUN	Command.

1128	 	

14AOptLANSA	Composer	Request	Server	logging	enabled?	
(Windows	server	only)
'Y'	if	logging	is	enabled.

11 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Result	code.
If	the	Built-In	Function	completes
successfully,	the	result	code	will	contain
'OK'.		Any	other	result	code	signifies	that	an
error	occurred.

2 2 	 	

	

Examples
This	example	defines	a	connection	with	the	symbolic	name,	COMPOSER,	to
the	LANSA	or	LANSA	Composer	system	in	partition	LIC	(the	default	value)	in
the	default	LANSA	Composer	installed	location	on	either	IBM	i	or	Windows
servers:
use	builtin(COMPOSER_USE)	with_args('COMPOSER')
	

This	example	defines	a	connection	with	the	symbolic	name	ISERVER1	to
partition	'PRD'	in	a	LANSA	or	LANSA	Composer	system	on	the	IBM	i	server
that	is	executing	the	Built-In	Function.		The	program	library	name	for	the	target
system	is	specified	in	variable	#PGMLIB.		The	result	code	is	received	in
variable	#RESULT:

use	builtin(COMPOSER_USE)	with_args('ISERVER1'	'PRD'	#PGMLIB)
to_get(#RESULT)
	

This	example	defines	a	connection	with	the	symbolic	name	WINSERVER1	to
partition	'PRD'	in	a	LANSA	or	LANSA	Composer	system	on	the	Windows
server	that	is	executing	the	Built-In	Function.		The	path	to	the	target	system	is
specified	n	variable	#XWIN95.		Literal	values	have	been	used	to	specify	the
remaining	connection	details	-	for	example,	the	user	name	and	password	is
specified	as	'PCXUSER',	and	the	target	system	uses	a	Sybase	SQL	anywhere
database	with	name	LX_LANSA.		LANSA	Composer	request	server	logging	is
enabled.		The	result	code	is	received	in	variable	#RESULT:
use	builtin(COMPOSER_USE)	with_args('WINSERVER1'	'PRD'	*default
*default	*default	#XWIN95	'PCXUSER'	'PCXUSER'	'LX_LANSA'
'SQLANYWHERE'	'DBA'	'SQL'	*default	'Y')	to_get(#RESULT)
	

9.25	CONCAT

	Note:	Built-In	Function	Rules.

Concatenates	up	to	five	alphanumeric	strings	to	form	one	string	as	a	return
value.	No	truncation	of	trailing	blanks	is	performed	by	this	function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 U Req 1st	string	to
concatenate

1 Unlimited 	 	

2 U Req 2nd	string	to
concatenate

1 Unlimited 	 	

3 U Opt 3rd	string	to
concatenate

1 Unlimited 	 	

4 U Opt 4th	string	to
concatenate

1 Unlimited 	 	

5 U Opt 5th	string	to
concatenate

1 Unlimited 	 	

	

Return	Values
NoTypeReq/ Description Min Max	Len Min Max

Opt Len Dec Dec

1 U Req Concatenated	result
string

1 Unlimited 	 	

2 N Opt Length	of	returned
string

1 15 0 0

	

Technical	Notes
This	Built-In	function	contains	two	consecutive	operations:
1.	Concatenate	the	input	strings.
			The	length	of	the	resulting	string	then	is	put	into	the	second	returning	field	(if
it	is	provided).	The	concatenation	goes	through	all	the	input	strings	unless	the
length	of	the	resulting	string	is	bigger	than	the	maximum	possible	length	of
the	first	returning	field	type.	In	this	case,	the	concatenation	will	stop	and	the
second	returning	field	will	have	the	value	of	the	maximum	possible	length	of
the	first	returning	field	type.

2.	Assign	the	resulting	string	into	the	first	returning	field.
			If	the	length	of	the	returning	field	is	smaller	that	the	length	of	the	resulting
string,	the	last	will	be	truncated.

Therefore,	the	value	of	the	second	returning	field	is	not	the	length	of	the	string
in	the	first	returning	field.
For	the	maximum	possible	length	of	a	field	type	please	refer	to	Field	Type
Considerations.

Examples
USE	BUILTIN(CONCAT)	WITH_ARGS(#VAL1	#VAL2	#VAL3	#VAL4
#VAL5)	TO_GET(#VAL6	#SIGN150)
	

Example
number

#VAL1
length

#VAL2	
length

#VAL3
length

#VAL4
length

#VAL5
length

#VAL6
max
length

#VAL6
type

#SIGN150
returned
value

Example
1

2 2 2 2 2 7 Alpha 10

Example
2

256 2 2 2 2 7 Alpha 256

	

In	Example	1,	all	5	input	fields	contain	2	characters	strings.	Even	the	#VAL6
can	take	up	to	only	7	bytes,	the	#SIGN150	gets	back	10,	which	is	2	+2	+2	+2
+2.
In	Example	2,	the	concatenation	stops	at	#VAL2	because	the	resulting	string
length	is	bigger	than	256,	which	is	the	maximum	possible	length	of	an
Alphanumeric	field	(#VAL6	type).	#The	SIGN150	value	is	256.
In	both	examples	#VAL6	returns	only	7	characters.

9.26	CONNECT_FILE

	Note:	Built-In	Function	Rules.

Prepares	LANSA	so	that	all	following	I/O	requests	to	the	nominated	physical
file	(and	any	views	based	on	it)	are	rerouted	to	the	server.	Refer	to	Database
Connection	for	more	details.
The	time	taken	to	establish	a	file	connection	is	very	fast.	It	simply	updates	a
routing	table	and	does	not	communicate	to	the	server	at	all.
The	connection	remains	in	effect	until	it	is	explicitly	terminated	by	use	of	the
Built-In	Function	DISCONNECT_FILE	or	by	the	ending	of	the	LANSA
environment.
You	should	design	your	applications	so	that	a	minimal	number	of	connection
and	disconnection	points	are	used.
Different	files	may	be	connected	to	different	server	systems	at	the	same	time,
but	a	single	file	cannot	be	connected	to	more	than	one	server	at	a	time.
The	word	"File"	here	refers	to	the	base	physical	file	(or	table)	and	all	logical
files	(or	views)	that	are	based	on	it.
A	request	to	connect	a	file	to	a	server	that	it	is	already	connected	to	will	be
ignored,	apart	from	resetting	the	selection	block	size	and	selection	limit.	No
error	will	result.
A	fatal	error	is	caused	by	a	request	to	connect	a:
file	to	a	server	that	is	different	to	the	one	that	it	is	currently	connected.
LANSA	File	(not	an	OTHER	File	or	SQL	View)	that	does	not	have
AUTO_RRN	set	on	to	a	database	that	requires	an	RRN	path	defined.

For	use	with
LANSA	for	i YESOnly	available	with	RDMLX

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Physical	File\Table	Name.
The	name	must	be	specified	using	uppercase
characters.
No	check	is	made	for	the	validity	or	existence
of	the	name	specified.
The	name	may	be	specified	as	a	generic
name.	The	'*'	symbol	is	used	as	the	generic
delimiter.

1 10 	 	

2 A Req SSN	of	defined	server. 1 10 	 	

3 N Opt Selection	Using	the	CONNECT_FILE	Block
Size.	Default	=	50.
Note	1:	For	files	used	in	SELECT	loops	with
the	RETURN_RRN	parameter,	you	should
use	block	size	1.
Larger	block	sizes	will	result	in	unpredictable
values	being	returned	in	the	RETURN_RRN
value.
Note	2:	For	files	used	in	SELECT	loops	and
altered	by	DELETE	or	UPDATE	commands
that	do	not	have	WITH_KEY	or	WITH_RRN
parameters	(i.e.	update	or	delete	of	the	last
record	read)	you	should	use	block	size	1.
Note	3:	If	any	of	the	fields	to	be	selected	is	a
BLOB	or	a	CLOB	and	therefore	might
require	a	file	to	be	send	from	the	server	to	the
client,	the	behavior	will	be	as	if	you	have
used	block	size	1	for	the	SELECT	process.

1 10 0 0

4 N Opt Selection	limit.	This	option	does	not
programmatically	limit	a	selection	loop	to	'n'
rows.	It	should	not	be	used	for	this	purpose.
It	is	designed	to	stop	a	runaway	(that	is,	out
of	control)	select	loop	from	attempting	to
transfer	too	much	data.

1 10 0 0

Exceeding	the	selection	limit	value	will
cause	a	fatal	application	error.	The	number	of
rows	returned	in	this	error	situation	is
unspecified.
Default	=	10000

	

Return	Values
No	return	values.

Technical	Notes
Connecting	a	file	while	it	is	"in	use"	(e.g:	in	the	middle	of	a	SELECT	loop
when	the	file	being	selected	is	not	connected	to	a	server	or	connected	to
another	server)	will	cause	application	failure	and/or	unpredictable	results.
You	cannot,	under	any	circumstances,	connect	the	LANSA	for	i	DC@Fnn
internal	database	files	to	your	application	via	this	Built-In	Function.	This	rule
is	not	checked,	but	it	should	not	be	violated.
The	entire	LANSA	SuperServer	facility	does	not	support	multi-membered
files	in	any	way,	shape	or	form.	You	may	be	able	to	devise	a	strategy	that	will
actually	allow	you	to	execute	or	call	server	functions	that	access	multi-
membered	files,	but	you	should	remember	that	you	are	using	an	unsupported
and	totally	IBM	i	dependent	facility.	When	an	IBM	i	based	I/O	module	is
invoked	via	this	facility	it	opens	the	required	file	member(s)	via	the	current
library	list	(*LIBL)	and	as	the	IBM	i	logically	first	member	(usually
symbolically	named	*FIRST).

If	you	attempt	to	interleave	a	Client	based	function	(using	library	*LIBL
member	*FIRST)	and	a	Server	based	function	(using	a	POINT	command	to	a
library	and/or	member),	and	both	functions	access	the	same	file(s)	you	may
cause	the	associated	I/O	module	to	fail	with	message	IOM0033.	This	will
happen	regardless	of	any	POINT	commands	present	in	the	Client	function.
POINT	commands	are	ignored	in	all	Visual	LANSA	(i.e.	Client)
environments.
It	is	very	strongly	recommended	that	all	"connect"	logic	is	coded	in	one	and
only	one	function,	rather	than	scattered	and	repeated	through	many	RDML
functions.	This	approach	will	isolate	your	application	from	future	changes	to

the	server(s)	that	are	being	used.
Attempting	to	connect	a	file	that	is	already	connected	(to	the	same	server)
does	not	cause	an	error.	When	the	file	you	are	attempting	to	connect	is
already	connected,	the	selection	block	and	limit	values	are	updated.	This
technique	may	be	used	to	dynamically	alter	the	selection	block/limit	values,
but	not	while	I/O	operations	are	pending	(e.g:	within	a	select	loop).
Do	not	attempt	to	connect	a	blank	file	name.
When	using	generic	file	names	(e.g.	LM*,	GL*,	*)	be	extremely	careful	not
to	overlap	any	generic	names.	Failure	to	observe	this	rule	will	cause
unpredictable	results.	This	rule	means	that	name	"*"	(any	name)	can	only	be
used	by	itself,	as	any	other	file	name	connected	before	or	after	the	"*"	will
overlap	with	it.
Message	information	routed	from	the	server	machine	(in	any	form)	arrives	in
a	text	format.	It	is	displayed	and	accessible	to	RDML	functions	in	the	normal
manner	(e.g.	GET_MESSAGE)	as	pure	text.	The	message	identifier	and
message	file	name	details	are	not	available	for	messages	that	have	been
routed	from	a	server.	You	should	not	design	client	applications	that	rely	on
reading	specific	message	identifiers	from	the	applications	message	queue.

A	Note	on	Error	Handling
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application.

if	(#retcode	*ne	OK)	

				abort	msgtxt('Failed	to')

endif

	

Let	the	standard	error	handling	Built-In	Function	to	every	generated	application
take	care	of	the	problem.	Situations	have	arisen	where	user	defined	error
handling	logic	has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML
code	(with	no	obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.
Using	the	CONNECT_FILE	Block	Size
By	default,	the	Block	size	parameter	is	the	value	50.	This	means	that	50	records

will	be	returned	to	the	client	end	of	the	application	for	each	trip	to	the	server.
The	data	will	still	be	processed	in	the	sequence	in	which	it	exists	in	the
particular	file,	and	debug	will	show	the	code	looping	through	50	records,	but
only	one	trip	has	been	made	to	the	server	to	retrieve	the	data.
Because	of	this,	using	either	the	relative	record	number	or	the	last	record	read
has	inherent	dangers.
Consider	this	code:

SELECT	FIELDS(...)	FROM_FILE(FILEA)	RETURN_RRN(#RRN)

...

UPDATE	FIELDS(...)	IN_FILE(FILEA)	WITH_RRN(#RRN)

ENDSELECT

	

This	is	acceptable	on	an	IBM	i	server.	However,	in	a	client/server	environment,
the	value	of	RRN	after	the	select	will	be	the	relative	record	number	of	the	50th
record.	The	OAM	on	the	server	has	performed	one	read	action,	and	therefore
has	returned	the	LAST	RRN	it	is	aware	of.
The	same	applies	to	this	code:

SELECT	FIELDS(...)	FROM_FILE(FILEA)	RETURN_RRN(#RRN)

...

UPDATE	FIELDS(...)	IN_FILE(FILEA)

ENDSELECT

	

As	far	as	the	OAM	is	concerned,	the	last	record	read	is	the	50th	record.	Any
attempted	UPDATE	or	DELETE	will	be	performed	on	the	last	record	read.
Updating	with	a	key	to	the	file	used	in	the	SELECT	loop	is	not	allowed.
Therefore,	the	only	possible	solution	is	to	set	the	block	size	to	1.	This	will
ensure	that	the	data	is	returned	one	record	at	a	time.

The	down	side	of	this	is	that	the	performance	of	the	application	is	significantly
decreased.	It	should	be	noted	at	this	point	that	the	most	efficient	way	to	update
multiple	records	on	the	server	is	to	run	the	update	code	on	the	server	using	the
CALL_SERVER_FUNCTION	Built-In	Function.
A	similar	issue	occurs	in	maintenance	applications	that	allow	multiple	detail
records	to	be	opened.	For	example,	a	Visual	LANSA	application	displays	a	list
of	employees.	The	user	can	double	click	on	an	item	in	the	list,	and	a
maintenance	form	is	opened.	This	receives	the	employee	number	from	the	list,
and	uses	FETCH	to	read	the	data.	FETCH	causes	the	OAM	to	read	only	one
record.	Before	saving	the	changes,	the	user	opens	another	employee	detail	as
well.	The	last	record	read	value	is	stored	in	the	OAM	on	the	server,	and	as	far	as
it	is	concerned,	it	was	the	second	employee.
So,	even	though	it	was	a	FETCH	that	was	performed,	the	employee
maintenance	form	MUST	update	with	a	key.	Any	attempt	to	update	the	last
record	read	will	OVERWRITE	the	last	record	read.

9.27	CONNECT_SERVER

	Note:	Built-In	Function	Rules.

Connects	an	executing	function	to	a	server.	The	connection	remains	in	effect
until	explicitly	terminated	by	using	the	DISCONNECT_SERVER	Built-In
Function	or	by	exiting	from	the	Visual	LANSA	environment.
A	server	can	be	any	SSN	defined	by	one	of	the	BIFs:
DEFINE_OS_400_SERVER,	DEFINE_ANY_SERVER,
DEFINE_OTHER_SERVER	and	DEFINE_DB_SERVER.	It	can	also	be	the
special	SSN	*LOCALDB	which	refers	to	the	local	database	server.	Refer	to
Database	Connection	for	more	details.
The	time	taken	to	establish	a	connection	is	relatively	long.
You	should	design	your	applications	so	that	a	single	entry	point	connect	is
required	rather	than	using	many	connects	and	disconnects.
A	request	to	connect	to	a	server	that	is	already	connected	will	be	ignored.	No
error	will	result.

For	use	with
LANSA	for	i YESOnly	available	with	RDMLX

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req SSN	of	a	defined	server. 1 10 	 	

2 A Opt Password	to	be	used	to	connect	to	the	server.
This	value	is	not	stored	and	only	exists	for	the
duration	of	this	function	call.
If	this	value	is	not	specified,	Application

1 256 	 	

server	connections	use	the	value	from	the
x_run	parameter	PSPW=	for	the	default
password.
If	this	value	is	not	specified,	Database	server
connections	use	the	password	defined	in	the
connection	parameter	overrides	in
DEFINE_DB_SERVER.	You	can	let	ODBC
prompt	for	the	password,	as	described	in	the
9.37	DEFINE_DB_SERVER	example.

3 A Opt If	this	value	is	'Y',	then	the	password	value	is
ignored,	and	the	authority	under	which	the
Windows	application	is	running	is	used	for
authentication	with	the	server	via	the
Kerberos	protocol.
If	this	value	is	'N',	then	the	password
argument	is	used	for	authentication.
If	this	value	is	not	specified,	then	the	default
value	is	the	current	setting	of	the	PSTC
parameter.	Refer	to	The	PSXX	Parameters	.

1 1 	 	

4 A Opt User	name	to	be	used	to	connect	to	the
server.	This	value	is	not	stored	and	only
exists	for	the	duration	of	this	function	call.
If	this	value	is	not	specified,	Application
server	connections	use	the	value	from	the
X_RUN	parameter	USER=	for	the	default
user	name.
This	value	is	ignored	in	Database	server
connections.

1 256 	 	

5 A Opt Handle	Server	Error
If	this	value	is	set	to	'Y',	then	the	client
X_Run	session	will	not	abort	on	errors
returned	from	a	Server.	Instead	the	return
code	will	be	set	to	FE	and	server's	error
messages	will	be	stored	in	the	message
queue.

1 1 	 	

If	set	to	'N',	the	client	X_Run	session	will
abort	on	errors	returned	from	a	Server.
Default	Value	is	'N'.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
OK	-	Connection	established	
ER	-	Connection	not	established
FE	–	Fatal	error.

2 2 	 	

2 A Opt Server	Type.
If	a	SuperServer,	one	of:
AS400	(IBM	i	RPG)
RDMLX400	(IBM	i	RDMLX)
LINUX
WINDOWS
If	a	Database	Server,	one	of:
DB_ODBCORACLE
DB_MSSQLS
DB_MSACCESS
DB_SQLANYWHERE
DB_XXXXX	where	XXXXX	is	a	user-
defined	database	type
Note:
If	the	type	cannot	be	determined,	the	server
type	will	be	returned	as	UNKNOWN.

3 15 	 	

3 N Opt Connection	Error	Code.
Zero	if	Return	Code	is	OK	or	LANSA	is
unable	to	determine	an	error	code.
If	a	SuperServer,	this	will	be	the	Comms
Error	Code.	The	most	common	Error	Codes

10 10 0 0

are:
	
6
-	Could	not	logon
17
-	Unexpected	error	at	client	or	server
20
-	Could	not	locate	server
If	a	Database	Server,	this	may	be	the	native
database	error,	an	ODBC/CLI	API	return
code,	or	-9999	indicating	an	internal	LANSA
error.

	

Technical	Notes
It	is	very	strongly	recommended	that	all	"connect"	logic	is	coded	in	one	and
only	one	function,	rather	than	scattered	and	repeated	through	many	RDML
functions.	This	approach	will	isolate	your	application	from	future	changes	to
the	server(s)	that	are	being	used.
By	default	this	Built-In	Function	will	connect	to	a	partition	on	the	server
system	that	has	the	same	identifier	as	the	partition	currently	being	used	on	the
client	system.	For	information	on	how	to	connect	to	a	partition	with	a
different	identifier	refer	to	the	CONNECT_PARTITION	option	in	the	Built-In
Function	SET_SESSION_VALUE.
When	using	Kerberos	authentication	to	an	IBM	i	server,	the	Kerberos
Principal	Name	of	the	Windows	domain	user	under	whose	authority	the
application	is	running,	must	be	associated	with	a	LANSA	User.	This
association	is	made	using	the	IBM	i	Enterprise	Identity	Mapping	(EIM)
facility.

Technical	Notes	(IBM	i	Specific)
Kerberos	works	without	further	configuration	directly	to	a	server	with
no	access	outside	that	server,	say	to	SQL	Server	or	a	file	share.

If	access	outside	of	that	one	server	is	required	–	so	called	"multi-hop"

–	then	this	is	what	is	supported:

1.Trust	whole	computer	to	*any*	services	–	We	have	tested	and
proved	this	is	working
2.Trust	a	specific	domain	user	to	*any*	services	–	We	have	tested	and
proved	this	is	working	(this	requires	setting	up	listener	properly	to	run
as	a	specific	user,	see	the	attached	document.	This	should	be	verified
first	using	lcoecho)

If	your	environment	does	not	allow	one	of	these	configurations	then
multi-hop	cannot	be	used.

Technical	Notes	(IBM	i	Specific)
You	may	be	concurrently	connect	to	multiple	different	IBM	i	servers.
You	may	be	concurrently	connected	to	the	same	IBM	i	server	multiple	times
(with	different	SSN	names).
Database	server	connections	are	usually	simpler	to	setup	than	communication
servers	are.	The	"first	time"	connection	to	communication	servers	is	the	most
difficult.	It	is	the	time	that	causes	frustration	when	a	series	of	complex	and
often	meaningless	(without	the	Host	Integration	Server	2000	Error
Major/Minor	error	codebook)	error	message	numbers	may	appear
The	actual	configuration	and	maintenance	of	communications	between
workstation	clients	and	IBM	i	servers	is	actually	beyond	the	scope	of	this
reference	guide,	however	the	following	tips	and	techniques	may	aid	you	in
determining	the	cause	of	your	problem.

Make	sure	that	the	user	profile	you	are	using	is:
Defined	to	IBM	i.
Authorized	to	use	the	LANSA	partition	required.
10	characters	or	less	in	length.
Has	a	job	description	associated	with	it	that	has	an	initial	library	list	that
includes	the	LANSA	program	library	(often	DC@PGMLIB)	and	library
QGPL.
That	the	same	job	description	has	LOG(4	00	*SECLVL)	logging	if	you	are
trying	to	solve	a	problem.	This	will	ensure	any	IBM	i	job	the	profile	starts
will	produce	an	IBM	i	job	log.	This	job	log	will	almost	always	yield	useful
error	information.

Enrolled	in	Office	Services	via	the	ADDDIRE	and	ADDOFCENR
commands.
Verify	the	IBM	i	user	profile	being	used	by	signing	on	at	a	dumb	terminal	and
then	immediately	typing	a	LANSA	PARTITION(xxx)	command.	Does
anything	surprising	happen?

Remove	the	cause	of	any	errors	or	authority	problems	that	are	apparent	before
trying	the	profile	through	a	communications	link.
Use	the	IBM	i	command	WRKSBSJOB	QCMN	to	display	the	active	jobs	in
subsystem	QCMN.	Repeatedly	use	F5=Refresh,	to	refresh	the	list	as	the
communication	job	starts.
Is	subsystem	QCMN	active?

NO: Start	it	and	try	the	operation	again

YES: Does	an	IBM	i	"server"	job	appear	in	the	QCMN	subsystem?
	

If
YES

Immediately	use	"5=Work	with"	to	trace	this	Job.	Wait	until	it	completes
and	then	check	its	resulting	spooled	job	log	file	for	details.	If	it	does	not
produce	a	log,	alter	the	job	description	associated	with	the	user	profile
you	are	using	to	LOG(4	00	*SECLVL)	until	you	trace	the	cause	of	the
problem.
Do	you	have	an	"LXX"	(i.e.	LANSA	SuperServer)	license	installed	in	the
IBM	i	system?	Is	it	current?	Use	the	command	LANSA
REQUEST(LICENSE)	to	check.

If
NO

Have	you	started	communications	manager,	PC	Support,	or	other
communications	router	on	the	PC?
Does	the	communications	manager	"Display	Messages"	option	show	any
error	information?
Does	the	IBM	i	DSPLOG	(display	log)	command	show	any
communications	error	information?

A	Note	on	Error	Handling
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application.

if	(#retcode	*ne	OK)	

					abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	Built-In	Function	to	every	generated	application
take	care	of	the	problem.	Situations	have	arisen	where	user	defined	error
handling	logic	has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML
code	(with	no	obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.

9.28	CONVERTDATE

	Note:	Built-In	Function	Rules.

Converts	format	of	alphanumeric	date.
Using	the	CONVERTDATE	Built-In	Function	twice	and	producing	2	different
result	fields	allows	you	to	produce	dates	such	as:	THURSDAY	5TH	OCTOBER
1987.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Date	that	is	to	be	converted 1 20 	 	

2 A Req Format	of	date	to	be	converted 1 1 	 	

3 A Req Format	required	of	date	in
return	value

1 1 	 	

	

Valid	Date	Formats
Date	to	be	converted:	A,	B,	C,	D,	E,	F,	G,	H,	I,	J,	K,	L,	M,	V,	W,	X,	Y,	Z	and
1.
Date	to	be	returned:	A,	B,	C,	D,	E,	F,	G,	H,	I,	J,	K,	L,	M,	N,	O,	P,	Q,	R,	S,	T,
U,	V,	W,	X,	Y,	Z	and	1.
Refer	to	Date	Formats

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Returned	converted	date 1 20 	 	

2 A Opt Return	code	(Y	or	N)	for
successful	conversion

1 1 	 	

	

Technical	Notes
All	dates	must	have	a	four	character	year	so	that	accurate	comparisons	and
calculations	can	be	performed.	Where	a	two	character	year	(e.g.	DDMMYY,
YYMMDD,	MMYY)	is	supplied	the	century	value	is	retrieved	from	the
system	definition	data	area.	The	year	supplied	is	compared	to	a	year	in	the
data	area,	if	the	supplied	year	is	less	than	or	equal	to	the	comparison	year	then
the	less	than	century	is	used.	If	the	supplied	year,	is	greater	than	the
comparison	year,	then	the	greater	than	century	is	used.
When	using	date	formats	P,	Q,	R,	S,	T,	U,	the	date	is	returned	in	the	format
specified	in	messages	BIF0101	and	BIF0102	in	DC@M01.	To	have	the	date
returned	in	a	language	other	than	English	you	should	ensure	these	messages
are	translated	into	the	appropriate	language.

If	LANG	is	something	other	than	ENG	or	NAT,	you	will	need	to	ensure	the
messages	exist	in	the	message	file	for	the	language	you	are	executing	in.

Example
Convert	a	date	field	#YMD	in	date	format	YYMMDD	(D)	to	date	format
DDMMYY	(B)	in	field	#DMY:
USE								BUILTIN(CONVERTDATE)	WITH_ARGS(#YMD	D	B)	TO_GET(#DMY)
	

9.29	CONVERTDATE_NUMERIC

	Note:	Built-In	Function	Rules.

Converts	format	of	numeric	date.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Date	that	is	to	be	converted 4 8 0 0

2 A Req Format	of	date	to	be	converted 1 1 	 	

3 A Req Format	required	of	date	in
return	value

1 1 	 	

	

Valid	Date	Formats
Valid	formats	of	the	date	to	be	converted:	A,	B,	D,	F,	H,	J,	L,	V,	W,	X,	Y,	Z
and	1.
Valid	formats	of	the	date	to	be	returned:	A,	B,	D,	F,	H,	J,	L,	V,	W,	X,	Y,	Z	and
1.
Refer	to	Date	Formats

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Returned	converted	date 4 8 0 0

2 A Opt Return	code	(Y	or	N)	for
successful	conversion

1 1 	 	

	

Technical	Notes
All	dates	must	have	a	four	digit	year
So	that	accurate	comparisons	and	calculations	can	be	performed,	all	dates	must
have	a	four	digit	year.	Where	a	two	digit	year	(e.g.	DDMMYY,	YYMMDD,
MMYY)	is	supplied	the	century	value	is	retrieved	from	the	system	definition
data	area.	The	year	supplied	is	compared	to	a	year	in	the	data	area,	if	the
supplied	year	is	less	than	or	equal	to	the	comparison	year	then	the	less	than
century	is	used.	If	the	supplied	year	is	greater	than	the	comparison	year	then	the
greater	than	century	is	used.
First	argument	and	return	value	specifics
For	the	first	argument	and	the	first	return	Value,	INTEGER	and	FLOAT	fields
cannot	be	used.
The	DATE	field	cannot	be	used	directly.	However,	the	DATE	field	can	be	used
indirectly	when	being	converted	into	Number	using	the	.AsNumber	Intrinsic
Function.
The	value	of	the	second	argument	should	be	in	sync	with	the	format	that	is	put
into	the	Intrinsic	Function.
For	example	if	you	have	a	DATE	field	called	DATEFL1,	and	you	want	to	use	it
in	the	Built-In	Function	as	the	first	argument,	you	must	do	a	conversion	like
this:

DATEFL1.AsNumber(DDMMCCYY)
	

Please	refer	to	the	Intrinsic	Function	for	other	formats
The	value	of	the	second	argument	should	be	H,	which	indicates	the
DDMMYYYY	date	format.
To	hold	the	first	return	value,	any	NUMERIC	field	can	be	used	including
INTEGER	and	FLOAT.

Translations
When	using	date	formats	P,	Q,	R,	S,	T,	U,	the	date	is	returned	in	the	format
specified	in	messages	BIF0101	and	BIF0102	in	DC@M01.	To	have	the	date
returned	in	a	language	other	than	English	you	should	ensure	these	messages	are
translated	into	the	appropriate	language.

If	LANG	is	something	other	than	ENG	or	NAT,	you	will	need	to	ensure	the
messages	exist	in	the	message	file	for	the	language	you	are	executing	in.

Example	RDMLX	only:
Use	CONVERTDATE_NUMERIC	with	DATE	field	type	only.
USE		BUILTIN(CONVERTDATE_NUMERIC)
WITH_ARGS(#DATEFL1.AsNumber(DDMMCCYY)	H
J)TO_GET(#NUM80)
	

The	following	code	must	be	used	for	a	better	programming	style:
#NUM80	:=	#DATEFL1.	AsNumber	(CCYYMMDD)
#NUM80	is	a	numeric	signed	8	bytes	long	,0	decimal	.
	

Example	RDML
Convert	a	date	field	#YMD	in	date	format	YYMMDD	(D)	to	date	format
DDMMYY	(B)	in	field	#DMY:
USE								BUILTIN(CONVERTDATE_NUMERIC)	WITH_ARGS(#YMD	D	B)	TO_GET(#DMY)
	

9.30	CONVERT_STRING

	Note:	Built-In	Function	Rules.

This	Built-In	Function	converts	a	text	string	from	one	encoding	to	another.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsNot	applicable

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req String	to	be	converted. 1 Unlimited 0 0

2 N Req To	code	page. 1 5 0 0

3 N Opt From	code	page.
Default:	code	page	of	the
current	job.

1 5 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req Converted	string	returned. 1 Unlimited 0 0

2 A Opt Return	code.	OK	=	conversion
completed.	ER	=	An	error	occurred.

2 2 0 	

	

Technical	Notes
This	BIF	is	intended	for	IBM	i	use.	The	IBM	i	translation	table	for	the	'from
code'	to	the	'to	code"	page	must	exist.	If	the	table	does	not	exist,	the	returned
string	will	be	the	same	as	for	the	argument	string.
If	this	Built-In	Function	is	executed	in	Visual	LANSA	for	Windows,	no
conversion	will	be	done.	The	returned	string	will	be	the	same	as	the	argument
string.

Example
FUNCTION			OPTIONS(*DIRECT)
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
DEFINE					FIELD(#tocode)	TYPE(*DEC)	LENGTH(5)	DECIMALS(0)
DEFINE					FIELD(#fromcode)	TYPE(*DEC)	LENGTH(5)	DECIMALS(0)								
DEFINE					FIELD(#String1)	TYPE(*CHAR)	LENGTH(256)	INPUT_ATR(LC)	DEFAULT('convert	this	line')
DEFINE					FIELD(#string2)	TYPE(*CHAR)	LENGTH(256)	INPUT_ATR(LC)
REQUEST				FIELDS(#string1	#tocode	#fromcode)				
USE								BUILTIN(convert_string)	WITH_ARGS(#string1	#tocode	#fromcode)	TO_GET(#string2	#RETCOD)
DISPLAY				FIELDS((#RETCOD)	(#string2))	
	

9.31	CREATE_SPACE

	Note:	Built-In	Function	Rules.

Creates	a	space	object	with	the	specified	name.

For	use	with
LANSA	for	i YESOnly	available	with	RDMLX

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A R Space	Name
A	name	must	be	specified.
Names	are	NOT	case	sensitive.
Names	should	not	be	started	with	an
asterisk	(*)	or	blank	character.	

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A O Standard	Return	Code
"OK"	=	Space	created	or	already	exists.
"ER"	=	Creation	attempt	failed.	Messages
issued	will	indicate	more	about	the	cause	of
the	failure.		

2 2 	 	

	

Technical	Notes
Space	objects	are	unique	within	an	operating	system	process	(or	job)	by	their
name	(case	insensitive).
Space	objects	cannot	be	shared	between	operating	system	processes	(or	jobs).	If
operating	system	process	A	and	B	are	both	using	a	space	object	named	X	then
they	each	have	their	own	unique	and	independent	instance	of	the	space	object
named	X.
Space	objects	are	not	persistent.	A	space	object	and	its	data	content	ceases	to
exist	when	the	operating	system	process	(or	job)	that	owns	them	ends.			

Space	Naming	Recommendations	and	Techniques
In	most	simple	RDML	function	contexts	a	naming	convention	based	on	the
name	of	the	current	function	should	be	used.
This	is	demonstrated	in	this	working	function:
FUNCTION	OPTIONS(*DIRECT)
**********	COMMENT(Prototypical	cells	must	be	referenced)
GROUP_BY	NAME(#XG_SPACE)	FIELDS(#EMPNO	#SURNAME	#GIVENAME)
**********	COMMENT(Space	name	is	based	on	function	name	and	default)
DEFINE	FIELD(#SPACENAME)	REFFLD(#FUNCTION)
**********	COMMENT(Create	space	keyed	cell	EMPNO	and	with	2	data	cells)
USE	BUILTIN(CREATE_SPACE)	WITH_ARGS(#SPACENAME)
USE	BUILTIN(DEFINE_SPACE_CELL)	WITH_ARGS(#SPACENAME	EMPNO	KEY)
USE	BUILTIN(DEFINE_SPACE_CELL)	WITH_ARGS(#SPACENAME	GIVENAME)
USE	BUILTIN(DEFINE_SPACE_CELL)	WITH_ARGS(#SPACENAME	SURNAME)
**********	COMMENT(Don't	forget	to	destroy	the	space	when	finished)
USE	BUILTIN(DESTROY_SPACE)	WITH_ARGS(#SPACENAME)
	

Where	a	form	or	function	creates	multiple	spaces	an	approach	that	suffixes	the
space	names	with	a	unique	identifier	is	recommended.
This	code	fragment	demonstrates	a	technique	for	doing	this:	
**********	COMMENT(Name	is	longer	and	contains	the	function	name)
DEFINE	FIELD(#EMPSPACE)	REFFLD(#SYSVAR$AV)	DEFAULT(*FUNCTION)
DEFINE	FIELD(#DEPSPACE)	REFFLD(#SYSVAR$AV)	DEFAULT(*FUNCTION)
DEFINE	FIELD(#SECSPACE)	REFFLD(#SYSVAR$AV)	DEFAULT(*FUNCTION)
**********	COMMENT(During	initialization/startup)

USE	BUILTIN(TCONCAT)	WITH_ARGS(#EMPSPACE	'.Emp')	TO_GET(#EMPSPACE)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#DEPSPACE	'.Dep')	TO_GET(#DEPSPACE)
USE	BUILTIN(TCONCAT)	WITH_ARGS(#SECSPACE	'.Sec')	TO_GET(#SECSPACE)
	

(In	a	component	you	would	of	course	use	a	default	value	of	*COMPONENT
rather	than	*FUNCTION	for	each	of	the	space	names).
In	more	complex	environments	there	is	a	possibility	that	a	space	has	already
been	created	and	defined	by	another	instance	or	previous	execution	of	the	same
piece	of	logic.
In	such	situations	you	can	check	whether	a	space	exists	before	attempting	to
create	it	by	using	a	technique	like	the	one	demonstrated	in	these	RDMLX	code
fragments:	
Define	#SpaceName	RefFld(#SysVar$Av)	Default(*Component)
Define	#SpaceRC	*Char	2
Def_Cond	*NoSpace	'#SpaceRC	*ne	OK'
	
EvtRoutine	Handling(#Com_Owner.CreateInstance)
Use	Space_Operation	(#SpaceName	CheckExistence)	(#SpaceRC)
If	*NoSpace
Use	Create_Space	(#SpaceName)
Use	Define_Space_Cell	(#SpaceName	EmpNo	Key)
Use	Define_Space_Cell	(#SpaceName	SurName)
Use	Define_Space_Cell	(#SpaceName	GiveName)
Endif
EndRoutine
	

In	more	complex	multi-instance	RDMLX	components	you	may	sometimes
require	a	unique	space	(remembering	that	spaces	are	unique	by	name)	for	each
separate	instance	of	the	component.
A	technique	like	this	may	be	used:
Define	#SpaceName	RefFld(#SysVar$Av)	Default(*Component)
Define	#SpaceRC	*Char	2
Def_Cond	*NoSpace	'#SpaceRC	*ne	OK'	
EvtRoutine	Handling(#Com_Owner.CreateInstance)
Invoke	#Com_Owner.CreateUniqueSpace	ReturnName(#SpaceName)
Use	Define_Space_Cell	(#SpaceName	EmpNo	Key)
Use	Define_Space_Cell	(#SpaceName	SurName)

Use	Define_Space_Cell	(#SpaceName	GiveName)
EndRoutine
MthRoutine	CreateUniqueSpace
Define_Map	*Output	#SysVar$av	#ReturnName
Define	#TempName	RefFld(#SpaceName)
Define	#TempChar	*Char	10
Define	#TempNum	RefFld(#Date)	Length(10)	Decimals(0)	edit_code(4)	default(0)	To_Overlay(#TempChar)
Begin_Loop	Using(#TempNum)
Use	TConcat		(*Component	'.'	#TempChar)	(#TempName)
Use	Space_Operation	(#TempName	CheckExistence)	(#SpaceRC)
Leave	*NoSpace
End_Loop
Use	Create_Space	(#TempName)
Set	#ReturnName	Value(#TempName)
EndRoutine
	

Other	Tips,	Techniques	and	Recommendations
In	high	volume	repeated	commands	avoid	using	visually	defined	fields	as
mapping	values	unless	absolutely	necessary.	When	a	field	has	been	visually
defined	mapping	into	or	out	of	its	value	is	significantly	slower	because	of	the
underlying	visual	context.
For	example,	imagine	that	you	want	to	count	the	total	number	of	rows	in	an
employee	space	(which	has	about	125,000	rows).
You	might	use	code	like	this:
Def_Cond	*Okay	'#SpaceRC	=	OK'
Change	#EmpTotal	0
Use	Select_in_Space	#Space	(#SpaceRc	#EmpNo	#GiveName	#SurName)
DoWhile	*okay
Change	#EmpTotal	'#EmpTotal	+	1'
Use	SelectNext_in_Space	#Space	(#SpaceRc	#EmpNo	#GiveName	#SurName)
EndWhile
	

If	any	one	of	the	fields	#Space,	#SpaceRc,	#EmpNo,	#GiveName	or	#SurName
is	defined	in	a	visual	context	(ie:	as	part	of	a	DEFINE_COM)	then	the
performance	of	this	loop	will	be	impacted	by	mapping	values	into	them	125,000
times.
Assuming	that	#EmpNo,	#GiveName	or	#SurName	are	in	fact	defined	in	a

visual	context	then	to	improve	the	performance	of	this	logic	you	could	do	this:
Def_Cond	*Okay	'#SpaceRC	=	OK'
Change	(EmpTotal	0
Use	Select_in_Space	#Space	(#SpaceRc)
DoWhile	*okay
Change	#EmpTotal	'#EmpTotal	+	1'
Use	SelectNext_in_Space	#Space	(#SpaceRc)
EndWhile
	

Or	do	this:
Def_Cond	*Okay	'#SpaceRC	=	OK'
Define	#XEmpNo	RefFld(#EmpNo)
Define	#XGiveName	RefFld(#GiveName)
Define	#XSurName	RefFld(#SurName);	
Change	(EmpTotal	0
Use	Select_in_Space	#Space	#SpaceRc	#XEmpNo	#XGiveName	#XSurName)
DoWhile	*okay
Change	#EmpTotal	'#EmpTotal	+	1'
Use	SelectNext_in_Space	#Space	(#SpaceRc	#XEmpNo	#XGiveName	#XSurName)
EndWhile
	

Example
This	example	defines	a	space	whose	name	is	the	current	components	name
suffixed	by	".emp"	and	then	defines	3	cells	within	it	whose	type	and	length	are
based	on	the	definitions	of	fields	EMPNO,	GIVENAME	and	SURNAME
respectively.	The	first	cell	the	key	to	the	space:
Define	#SpaceName	*char	20
Use	TConcat	(*component	'.EMP')	(#SpaceName)
Use	Create_Space	(#SpaceName)
Use	Define_Space_Cell	(#SpaceName	EmpNo	Key)
Use	Define_Space_Cell	(#SpaceName	GiveName)
Use	Define_Space_Cell	(#SpaceName	SurName)
	
	
	

9.32	CREATE_PROMPT_FILE

	Note:	Built-In	Function	Rules.

This	Built-In	Function	is	used	to	create	a	physical	file	containing	all	Promptable
File	Library	Variables	extracted	from	the	importing	package	in	a	runtime
environment.	The	generated	file	can	be	used	to	update	the	variables'	values
before	calling	the	IMPORT_OBJECTS	Built-In	Function.
The	generated	file	is	only	valid	to	the	IMPORT_OBJECTS	Built-In	Function
when	the	CREATE_PROMPT_FILE	and	IMPORT_OBJECTS	are	in	the	same
session.

For	use	with
LANSA	for	i No

Visual	LANSA	for	WindowsYes

Visual	LANSA	for	Linux No

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Importing	Package	Folder 1 256 	 	

2 A Req Requested	File	Type.
The	supported	file	type	values	are:
*ImportLibraryVar:	Import
substitution	variables.

1 20 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	values	are:
OK
:	A	file	is	generated.
NR
:	No	promptable	variable	found.	No	file	is
created.
ER
:	Invalid	argument	or	invalid	environment.
For	example,	ER	is	returned	for	an	IBM	i.

2 2 	 	

2 A O The	newly	created	file. 1 256 	 	

	

9.33	DATEDIFFERENCE

	Note:	Built-In	Function	Rules.

Calculates	the	difference	between	two	given	dates	in	number	of	days.	The	return
code	indicates	if	the	format	of	the	dates	or	the	dates	themselves	are	valid	(Y	or
N).	The	sign	of	the	calculated	value	may	also	be	returned.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Start/First	date.	See	Note. 6 8 0 0

2 A Req Format	of	Start/First
Date

1 1 	 	

3 N Req End/Second	date.	See
Note.

6 8 0 0

4 A Req Format	of	End/Second
Date

1 1 	 	

	

Valid	Date	Formats
Valid	formats	for	first	and	second	dates:	A,	B,	D,	F,	H,	J,	L,	V	and	1.
Refer	to	Date	Formats

Note:

For	the	first	and	the	third	argument,	the	INTEGER	and	FLOAT	field	cannot	be
used.
The	DATE	field	can	be	used,	but	it	should	first	be	converted	into	string	using
the	.AsNumber	Intrinsic	Function.	For	further	information,	please	refer	to	the
What's	New	in	V11.0	list	for	information	about	Intrinsics.
The	value	of	the	second	and	the	fourth	argument	must	be	in	sync	with	the
format	that	is	put	into	the	intrinsic	function.
For	example,	if	you	have	a	DATE	field	called	DATEFL1,	and	want	to	use	it	in
the	BIF	as	the	first	argument,	you	must	do	a	conversion	like	this:
DATEFL1.AsNumber(DDMMCCYY)	(Please	refer	to	Intrinsic	Function	for
other	formats.)
In	this	example,	the	value	of	the	second	argument	should	be	H,	which	indicates
the	DDMMYYYY	date	format.
To	hold	the	first	return	value,	any	NUMERIC	field	can	be	used	including
INTEGER	and	FLOAT.
Example	RDMLX	only:
USE							BUILTIN(DATEDIFFERENCE_ALPHA)
WITH_ARGS(#DATEFL1.	AsNumber(DDMMCCYY)	H	#DATFL2.
AsNumber	(CCYYMMDD)	J)TO_GET(#DEC80)
	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Difference	(beg	to	end)	in
days

3 8 0 0

2 A Opt Sign	of	difference	(+,-) 1 1 	 	

3 A Opt Return	code	(Y,	N)	for
complete.

1 1 	 	

	

Note:	All	dates	must	have	a	four	character	year	so	that	accurate	comparisons
and	calculations	can	be	performed.	Where	a	two	character	year	(e.g.
DDMMYY,	YYMMDD,	MMYY)	is	supplied	the	century	value	is	retrieved

from	the	system	definition	data	area.	The	year	supplied	is	compared	to	a	year	in
the	data	area,	if	the	supplied	year	is	less	than	or	equal	to	the	comparison	year
then	the	less	than	century	is	used.	If	the	supplied	year	is	greater	than	the
comparison	year	then	the	greater	than	century	is	used.

Example
Calculate	the	difference	#DIFF	in	days	between	date	field	#YMD	in	date	format
YYMMDD	(D)	and	date	field	#DMY	in	date	format	DDMMYY	(B):
USE								BUILTIN(DATEDIFFERENCE)	WITH_ARGS(#YMD	D	#DMY	B)
											TO_GET(#DIFF	#SIGN)
	

9.34	DATEDIFFERENCE_ALPHA

	Note:	Built-In	Function	Rules.

Calculates	the	difference	between	two	given	dates	in	number	of	days.	The	return
code	indicates	if	the	format	of	the	dates	or	the	dates	themselves	are	valid	(Y	or
N).	The	sign	of	the	calculated	value	may	also	be	returned.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Start/First	date.	See	Note. 1 10 	 	

2 A Req Format	of	Start/First
Date

1 1 	 	

3 A Req End/Second	date	See
Note.

1 10 	 	

4 A Req Format	of	End/Second
Date

1 1 	 	

	

Valid	Date	Formats
Valid	formats	for	first	and	second	dates:	A,	B,	C,	D,	E,	F,	G,	H,	I,	J,	K,	L,	M,
V	and	1.
Refer	to	Date	Formats

Note:
For	the	first	and	the	third	argument,	the	INTEGER	and	FLOAT	field	cannot	be
used.
The	DATE	field	can	be	used,	but	it	should	first	be	converted	into	string	using
the	.AsNumber	Intrinsic	Function.	For	further	information,	please	refer	to	the
What's	New	in	V11.0	list	for	information	about	Intrinsics.
The	value	of	the	second	and	the	fourth	argument	must	be	in	sync	with	the
format	that	is	put	into	the	intrinsic	function.
For	example,	if	you	have	a	DATE	field	called	DATEFL1,	and	want	to	use	it	in
the	BIF	as	the	first	argument,	you	must	do	a	conversion	like	this:
DATEFL1.AsNumber(DDMMCCYY)	(Please	refer	to	Intrinsic	Function	for
other	formats.)
In	this	example,	the	value	of	the	second	argument	should	be	H,	which	indicates
the	DDMMYYYY	date	format.
To	hold	the	first	return	value,	any	NUMERIC	field	can	be	used	including
INTEGER	and	FLOAT.

Example	RDMLX	only:
USE							BUILTIN(DATEDIFFERENCE_ALPHA)
WITH_ARGS(#DATEFL1.	AsNumber(DDMMCCYY)	H	#DATFL2.
AsNumber	(CCYYMMDD)	J)TO_GET(#DEC80)

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Difference	(beg	to	end)	in
days

3 8 0 0

2 A Opt Sign	of	difference	(+,-) 1 1 	 	

3 A Opt Return	code	(Y,	N)	for
complete.

1 1 	 	

	

Note:	All	dates	must	have	a	four	character	year	so	that	accurate	comparisons
and	calculations	can	be	performed.	Where	a	two	character	year	(e.g.
DDMMYY,	YYMMDD,	MMYY)	is	supplied	the	century	value	is	retrieved

from	the	system	definition	data	area.	The	year	supplied	is	compared	to	a	year	in
the	data	area,	if	the	supplied	year	is	less	than	or	equal	to	the	comparison	year
then	the	less	than	century	is	used.	If	the	supplied	year	is	greater	than	the
comparison	year	then	the	greater	than	century	is	used.

Example
Calculate	the	difference	#DIFF	in	days	between	date	field	#YMD	in	date	format
YYMMDD	(D)	and	date	field	#DMY	in	date	format	DDMMYY	(B):
USE								BUILTIN(DATEDIFFERENCE_ALPHA)	WITH_ARGS(#YMD	D	#DMY	B)
											TO_GET(#DIFF	#SIGN)
	

9.35	DECRYPT

	Note:	Built-In	Function	Rules.

Decrypt	a	text	string.
This	Built-in	Function	is	used	in	conjunction	with	9.79	ENCRYPT.

LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req Text	to	be	decrypted 8 Unlimited 	 	

2 N Req Length	of	expected	output	text	after
decryption.	This	is	the	same	value	as
that	used	for	the	second	argument,
length	of	text	to	be	encrypted,	during
encryption.
When	encrypted	text	is	stored	in	HEX
(the	recommended	way	to	store	any
encrypted	text)	this	value	is	half	the
length	of	the	text	to	be	decrypted.
The	value	for	this	length	argument	must
be	a	multiple	of	8.
The	value	provided	for	this	argument
must	not	be	greater	than	the	length	of
Argument	1	(text	to	be	decrypted)

1 11 0 0

3 u Req Key	to	be	used	for	decryption
This	key	must	be	the	same	key	as	was

16 32 	 	

used	with	the	ENCRYPT	function.

4 A Opt Encrypted	text	stored	in	HEX.
YES=Text	to	be	decrypted	is	in	HEX
format.
NO=	Text	to	be	decrypted	is	in	binary
format.
Default	is	NO

2 3 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 u Req Returned	decrypted
text

8 Unlimited 	 	

2 A Opt Return	code
OK	=	action
completed
ER	=	error	occurred

2 2 	 	

	

Technical	Notes
Refer	to	9.79	ENCRYPT.

Example
Refer	to	9.79	ENCRYPT.

9.36	DEFINE_ANY_SERVER

	Note:	Built-In	Function	Rules.

Defines	the	details	of	a	LANSA	system	that	is	to	be	used	as	a	Server.
The	definition	details	are	not	persistent	and	only	exist	while	the	LANSA
environment	remains	active.
The	time	taken	to	define	a	server	is	minimal.
Platform	Considerations
IBM	i
Server

This	Built-In	Function	must	be	used	for	I/O	commands	to	RDMLX
files	or	to	call	an	RDMLX	function	on	the	server.	It	may	also	be	used
instead	of	DEFINE_OS_400_SERVER	to	access	non-RDMLX
objects,	if	they	have	been	recompiled	since	enabling	the	partition	for
RDMLX.
If	the	partition	has	not	been	enabled	for	RDMLX	or	the	non-RDMLX
objects	have	not	been	recompiled,	DEFINE_OS_400_SERVER	must
be	used	to	access	non-RDMLX	objects.

Other
Servers

Either	this	Built-In	Function	or	DEFINE_OTHER_SERVER	may	be
used	to	access	any	object	on	the	server.

For	use	with
LANSA	for	i YESOnly	available	with	RDMLX

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/OptDescription Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req SSN	(Server	Symbolic	Name)	This	is	the
name	that	will	be	used	in	all	future
references	to	this	server	by	this	and	other

1 10 	 0

RDML	functions.

2 A Req LU	Partner	Name 1 20 	 0

3 A Req Ignored	on	non-IBM	i	Servers	(Always
Y)
Y	or	1	-	Start	commitment	control	on	the
server.	Once	this	server	is	connected	it
will	receive	a	"commit"	or	"rollback"
request	whenever	the	client	issues	an
RDML	level	COMMIT	or	ROLLBACK
command.
other	-	do	not	use	commitment	control

1 1 	 	

4 A Opt X_RUN	exceptional	arguments. 1 256 	 0

5 A Opt Divert	LOCK_OBJECT	requests	to	this
server.	
If	this	option	is	used	all	subsequent
LOCK_OBJECT	requests	will	be
diverted	to	this	server.	Multiple	servers
will	receive	the	same	LOCK_OBJECT
request	if	multiple	servers	have	this
option	enabled	concurrently.
In	such	cases,	a	lock	must	be	granted	on
all	participating	servers	for	the
LOCK_OBJECT	to	complete	normally.
Where	one	server	fails	to	grant	the	lock
an	UNLOCK_OBJECT	request	is	made
to	all	servers	that	have	already	granted
the	object	lock.
Note	that	*AUTONUM,	*AUTOALP,
and	*DTAssslllxxxxxxxxxx	system
variables	are	also	retrieved	from	the
server	if	locks	are	diverted	to	the	server.
Refer	to	*AUTONUM	and	*AUTOALP
System	Variables	(Data	Areas)	and
*DTASSSLLLXXXXXXXXXX	System
Variables	(Data	Areas)	in	the	LANSA
Application	Design	Guide.

1 1 	 0

its:LANSA065.CHM::/lansa/dsnbf_0040.htm
its:LANSA065.CHM::/lansa/dsnbf_0045.htm

Y	or	1	-	Divert	LOCK_OBJECT	requests.
Z	-	Divert	LOCK_OBJECT	requests	and
also	divert	authority	checking	requests	to
this	server	(only	one	server	should	be
nominated	as	the	diversion	target	for
authority	checking	requests).
R	-	Route	lock	requests	AND	authority
requests	AND	repository	data	requests	(if
not	found	locally).	Refer	also	to	the
Notes	of	the	X_RUN	parameter	PSRR.
Other-	do	not	divert	LOCK_OBJECT
requests.
The	default	value	is	Z.

6 A Opt Show	"Please	Wait"	message	while
connecting.	
Y	or	1	-	Show	wait	message.
Other	-	do	not	show	message.	
Default	value	is	Y.

1 1 	 0

7 A Opt Ignored	on	non-IBM	i	Servers
Execution	priority.	Default	value	is	'20'.
Specify	other	values	as	per	the	IBM	i
command	CHGJOB	parameter	RUNPTY.
User	should	be	authorized	to	change	to
the	nominated	value.

1 2 	 	

8 A Opt Ignored	on	non-IBM	i	Servers
Client-to-Server	conversion	table	name	to
be	used.	No	library	name	can	be	specified
Defaults	to	*JOB,	meaning	the
translation	table	will	be	generated	based
on	the	client	code	page	and	the	IBM	i
server	job's	CCSID.
If	this	argument	is	*JOB	then	the	Server-
to-Client	table	must	also	be	*JOB.

1 10 	 0

9 A Opt Ignored	on	non-IBM	i	Servers
Server-to-Client	conversion	table	name	to

1 10 	 0

be	used.	No	library	name	can	be
specified.	Defaults	to	*JOB,	meaning	the
translation	table	will	be	generated	based
on	the	client	code	page	and	the	IBM	i
server	job's	CCSID.
If	this	argument	is	*JOB	then	the	Client-
to-Server	table	must	also	be	*JOB.

	

Return	Values
NoTypeReq/OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Return	Code:	
OK	-	Server	Defined

2 2 	 0

	

Technical	Notes
To	use	this	BIF	you	must	set	x_run	parameter	CDLL	to	LCOMGR32.DLL
and	x_run	parameter	CMTH	must	be	C	or	T.
The	Server	Network	Name	you	specify	when	invoking	this	Built-In	Function
should	be	identical	to	the	Partner	LU	Name	under	which	the	server	was	(or
will	be)	enrolled	within	the	LANSA	Communications	Administrator.		
It	is	very	strongly	recommended	that	your	server	definition	and	connection
logic	is	coded	in	one	and	only	one	function,	rather	than	scattered	and	repeated
through	many	RDML	functions.	This	approach	will	isolate	your	application
from	future	changes	to	the	server(s)	that	are	being	used.
It	is	recommended	that	you	use	SSN	values	that	are	meaningful	to	end	users
(e.g:	CHICAGO,	BOSTON,	CHARLIE1,	etc.)	as	they	may	appear	in
messages	from	time	to	time.
SSN	names	must	be	unique	and	start	with	a	character	in	the	English	language
alphabet	(uppercase	A	through	Z).
A	server	may	be	repeatedly	defined	and	(re)defined	when	it	is	not	connected.
If	you	attempt	to	(re)define	a	server	that	is	currently	connected	a	fatal	error
will	result.

The	X_RUN	exceptional	argument	may	be	used	to	override	the	parameters
used	on	the	X_RUN	command	started	on	the	server	system.	

By	default,	the	following	client	X_RUN	parameter	values	are	passed	to	(and
inherited	by)	the	X_RUN	command	started	on	the	server	system:CMTH=,
CDLL=,	DATF=,	DATS=,	DBCF=,	DBCL=,	DBLK=,	DBTC=,	DBUS=,
DEVE=,	FXQF=,	FXQM=,	HSKC=,	INIT=,	ITHP=,	ITRC=,	ITRL=,	ITRM=
,	ITRO=,	LANG=,	PART=,	PRTR=,	PSPW=,	PSTC=,	PSWD=,	TASK=,
TERM=,	USER=,	XAFP=	and	XCMD=.	The	following	client	X_RUN
parameter	values	are	only	inherited	by	the	server	if	the	client	and	the	server
are	using	the	same	operating	system:	DBID=,	DBII=,	DBIT=,	DBUT=,
ODBI=	and	WPEN	(and	related	Windows	Printing	Extension	parameters).

All	other	X_RUN	parameter	values	on	the	server	system	are	defaulted	(on	the
server	system)	in	the	usual	manner	(that	is,	from	a	profile	file,	from	system
environment	settings,	and	so	on).	Refer	to	the	definition	of	the	X_RUN
command	for	details	of	all	parameter	values	and	the	methods	by	which	they
can	be	specified	and	defaulted.	
You	may	override	any	server	X_RUN	parameter	(via	the	X_RUN	exceptional
argument	value)	except	for		CDLL=,	CMTH=,	DATF=,	DATS=,	DBUG=,
DEVE=,	LANG=,	MODE=,	PART=,	PROC=,	PSPW=,	USER=	and	XAFP=.
These	X_RUN	arguments	are	unconditionally	inherited	from	the	client
system.	However,	some	of	these	parameters	may	be	altered	by	calling
SET_SESSION_VALUE	before	invoking	CONNECT_SERVER.

Override	parameters	may	be	given	a	specific	value,	or	the	special	value
*SERVER,	which	indicates	that	the	server	default	should	be	used.	As	an
example,	a	Windows	client	using	DBII=*NONE	might	connect	to	a	Windows
Server	running	Oracle.	By	default,	Windows	uses	the	database	type	MSSQLS
(SQL	Server),	so	DBUT	needs	to	be	overridden.	The	X_RUN	exceptional
argument	value	could	be	set	to	either	DBUT=ODBCORACLE	or
DBUT=*SERVER.
The	details	defined	via	this	Built-In	Function	are	not	persistent.	They	are	lost
when	the	X_RUN	command	completes.	You	may	choose	to	define	your	own
set	of	SQL	based	tables	to	hold	server	details	and	actually	read	the	table(s)	to
get	values	to	be	passed	on	to	this	Built-In	Function.
Please	experiment	with	these	facilities	first	and	then	design	some	sort	of
server	architecture	for	your	organization	that	has	these	characteristics:

It	matches	your	organization's	requirements.
It	is	quick	and	easy	to	change.
It	is	extensible.

			Do	this	before	launching	into	any	large-scale	design	or	development	project.
The	client's	date	format	will	be	automatically	passed	to	the	server.	If	the	date
formats	are	different	(e.g.	MDY	vs	DMY),	the	server	will	automatically
return	data	in	the	client's	format.

The	client's	date	format	can	be	changed	from	the	default	by	specifying	the
x_run	parameter	DATF=.	Please	refer	to	Standard	X_RUN	Parameters	for
more	information	about	this	parameter.

Note	that	if	the	client	and	server	date	formats	are	different,	Date	format
validation	rules	specifying	exact	formats	(e.g.	DDMMYY)	will	fail	(as	the
data	may	be	returned	as	MMDDYY).	Date	format	SYSFMT	is	recommended
where	clients	need	to	use	different	date	formats	(e.g.	USA	and	UK	clients).

Notes	on	Commitment	Control
If	Start	Commitment	Control	is	Y,	LANSA	will	automatically	start	and	end
commitment	control.	See	User	Exit	F@BGNCMT	-	Start	Commitment
Control	and	User	Exit	F@ENDCMT	-	End	Commitment	Control	in	the
LANSA	for	i	User	Guide	for	details.
When	the	server	has	been	indicated	as	having	commitment	control	started,	it
will	effect	all	subsequent	COMMIT	and	ROLLBACK	commands	issued.
When	a	COMMIT	or	ROLLBACK	command	is	issued	the	routine	involved
loops	through	all	currently	connected	servers.
To	each	one	that	has	commitment	control	active,	it	issues	a	"commit"	or
"rollback"	request	and	then	waits	for	the	server	to	respond	before	proceeding.
This	is	done	after	a	commit/rollback	has	been	issued	correctly	to	the
local/client	database	management	system.

A	Note	on	Error	Handling
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application:

if	(#retcode	*ne	OK)

its:lansa010.CHM::/lansa/ladtgubh_0160.htm
its:lansa010.CHM::/lansa/ladtgubh_0155.htm

				abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	built	into	every	generated	application,	take	care
of	the	problem.	Situations	have	arisen	where	user	defined	error	handling	logic
has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML	code	(with	no
obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.

DBCS	Considerations
When	the	server	is	indicated	as	being	DBCS	capable	an	additional	translation
table	must	be	locatable	on	the	client	PC.
This	table	must	be	named	X_CT<language	code>.DAT	and	must	be	located	in
the	X_LANSA\EXECUTE	directory.
A	version	of	this	table	named	X_CTJPN.DAT	for	<language	code>	"JPN"
(Japanese)	is	available	to	all	Japanese	customers.
This	translation	file	contains	the	following	notes:
This	table	is	shipped	in	an	"as	is"	condition	to	support	customer	tailoring.	No
warranty	is	expressed	or	implied.	It	is	the	customer's	responsibility	to
maintain	and	verify	this	table.
This	table	is	loaded	by	the	Visual	LANSA	DEFINE_ANY_SERVER	function
when	the	current	language	has	DBCS	capability.
The	name	of	the	table	loaded	is	derived	from	"x_ct"	combined	with	the
current	language	code	(e.g.	jpn)	and	the	suffix	".dat".	Thus	if	language	code
jpn	was	being	used,	the	table	name	would	have	to	be	"x_ctjpn.dat".	For
language	code	tchi	the	table	name	would	be	"x_cttchi.dat".
The	table	must	reside	in	the	<drive>:\x_lansa\execute	directory	where
<drive>	is	whatever	local	or	server	disk	drive	onto	which	Visual	LANSA	has
been	installed.
This	conversion	table	is	only	used	for	the	double	byte	parts	of	any	string.
Single	byte	parts	of	any	string	at	all	(DBCS	allowed	or	not)	are	always
converted	by	using	the	IBM	i	single	byte	tables	specified	in	the
DEFINE_ANY_SERVER	Built-In	Function	call.
This	means	that	a	field	containing	mixed	double	and	single	byte	characters	is
partially	converted	by	this	table	and	partially	by	the	single	byte	conversion

table	that	is	used	by	both	DBCS	and	non-DBCS	conversions.
DBCS	conversion	of	data	within	an	individual	field	only	occurs	when	the
field	is	indicated	as	being	DBCS	capable	(e.g.	dictionary	keyboard	attributes
j,	e,	o,	etc.)	and	when	the	current	language	is	DBCS	capable.	If	both	these
conditions	are	not	met	the	entire	field	is	converted	as	a	single	byte	string	by
the	single	byte	conversion	tables	previously	mentioned.
An	*	in	column	1	indicates	a	comment	line.
All	values	are	specified	in	hexadecimal	format.

Separate	values	with	a	single	comma	(,)	only.

9.37	DEFINE_DB_SERVER

	Note:	Built-In	Function	Rules.

Defines	details	of	a	database	that	is	to	be	used	for	files	that	are	specifically
redirected	to	use	this	database.
Primarily,	this	is	for	the	purpose	of	supporting	Other	Files	and	SQL	Views	in
Other	databases.	Other	Files	and	SQL	Views	are	loaded	into	LANSA	using
Load	Other	Files	on	the	File	Control	menu.
It	can	also	be	used	to	access	LANSA	User	Files	in	a	different	partition	or	in	an
external	database.	These	file	definitions	must	be	exported	from	the	repository
for	the	external	database	into	the	current	repository.	Whenever	the	file	definition
is	changed	in	the	external	repository	it	will	need	to	be	re-imported	to	the	current
repository	and	the	OAM	re-built.
The	definition	details	are	not	persistent	and	only	exist	while	the	LANSA
environment	remains	active.
The	time	taken	to	define	a	database	is	minimal.
Note	1:	This	BIF	has	a	similar	purpose	to	DEFINE_OTHER_SERVER	except
that	the	OAMs	still	reside	on	the	local	PC	and	database	I/O	is	used	to	access	the
server.	See	Database	Connection.
Note	2:	This	BIF	requires	a	local	database	connection	established,	otherwise	it
will	return	an	error.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req SSN	(Server	Symbolic	Name)	This	is	the 1 10 	 	

name	that	will	be	used	in	all	future	references
to	this	server	by	this	and	other	RDML
functions.

2 A Req Database	Identifier. 1 32 	 	

3 A Opt Connection	Parameter	Overrides	(may	be
blank).

1 256 	 	

4 A Opt RRN	Path	Override	(may	be	blank).	If	it	is
specified,	it	must	end	with	a	path	separator	-
on	MS	Windows,	this	is	a	back	slash.

1 256 	 	

5 A Opt Database	Type	Override	(may	be	blank).
Specify	a	valid	database	type	from	The
X_DBMENV.DAT	File.

1 32 	 	

6 A Opt ODBI=	Override	to	specifically	set	the
transaction	isolation	level	for	this	database.
May	be	0-4	or	blank.	0	means	the	default
setting	for	the	database.	Blank	means	the
same	as	the	ODBI=	parameter.	For	more
information,	refer	to	The	ODBI=Parameter.

1 1 	 	

7 A Opt ODBA=	This	parameter	has	been	deprecated.
For	more	information,	refer	to	The
ODBA=Parameter.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
OK	-	Server	Defined
ER	-	Server	not	defined	and	error
message(s)	issued.

2 2 	 	

	

Technical	Notes
The	Database	Identifier	must	be	a	valid	ODBC	database	name,	defined	in	the
32-bit	ODBC	Administrator.	It	would	normally	be	the	same	as	the	ODBC
database	name	that	was	used	to	load	the		OTHER	File	into	LANSA.
It	is	very	strongly	recommended	that	your	server	definition	and	connection
logic	is	coded	in	one	and	only	one	function,	rather	than	scattered	and	repeated
through	many	RDML	functions.	This	approach	will	isolate	your	application
from	future	changes	to	the	server(s)	that	are	being	used.
It	is	recommended	that	you	use	SSN	values	that	are	meaningful	to	end	users
(e.g.	CHICAGO,	BOSTON,	CHARLIE1,	etc.)	as	they	may	appear	in
messages	from	time	to	time.
SSN	names	must	be	unique	and	start	with	a	character	in	the	English	language
alphabet	(uppercase	'A'	through	'Z').
A	server	may	be	repeatedly	defined	and	re-defined	when	it	is	not	connected.
If	you	attempt	to	re-define	a	server	that	is	currently	connected	a	fatal	error
will	result.
By	default,	the	same	connection	parameters	will	be	used	as	when	the	OTHER
File	was	loaded.
The	Connection	Parameter	overrides	may	be	used	to	augment	and	replace	the
parameters	used	when	connecting	to	this	database.	Existing	parameters	are
only	replaced	on	a	parameter	by	parameter	basis.	Thus,	the	parameters	that
pre-exist	and	are	not	specified	in	the	override	parameter	remain	as	they	are.
If	this	database	is	to	be	connected	to	by	using	the	CONNECT_SERVER	BIF,
ALL	the	connection	parameters	will	need	to	be	specified	in	the	Connection
Parameter	Overrides,	otherwise	ODBC	will	prompt	for	missing	parameters.
(Note:	the	following	ODBC	connection	parameters	are	not	required,	and	are
ignored:	DSN=,	FILEDSN=,	DRIVER=).	Also,	the	Database	Type	Override
must	be	specified,	as	the	default	Database	Type	is	held	in	the	OAM,	which	is
not	known	when	the	CONNECT_SERVER	BIF	is	used.
When	a	Function	or	Component	uses	an	OTHER	File,	if	it	has	not	been
connected	to	a	different	server	or	database	using	CONNECT_FILE,	the
default	database	is	used.	The	system	checks	if	the	database	has	been	defined
by	this	BIF.	If	it	has,	the	Connection	parameter	Overrides	are	applied	before
an	automatic	connection	is	made.
When	a	LANSA	File	is	to	be	connected	to	this	database	and	AUTO_RRN	is
not	used,	it	is	mandatory	that	the	RRN	Path	be	specified.

The	database	type	has	been	provided	for	future	use	in	supporting	OTHER
Files	in	Linux	servers	when	the	table	definition	is	loaded	into	LANSA	using
ODBC	Oracle,	but	executes	using	native	Oracle.	If	it	is	used	to	change	from
one	ODBC	database	type	to	another	a	fatal	error	will	occur	when	the	OAM	is
executed.	That	is,	the	database	type	specified	in	this	BIF	must	match	the
database	type	in	the	OAM,	except	for	the	special	Oracle	case.
The	details	defined	via	this	Built-In	Function	are	not	persistent.	They	are	lost
when	the	X_RUN	command	completes.	You	may	choose	to	define	your	own
set	of	SQL	based	tables	to	hold	server	details	and	actually	read	the	table(s)	to
get	values	to	be	passed	on	to	this	Built-In	Function.
If	the	Connection	parameter	Overrides	cause	the	user	to	be	prompted	for
connection	information	(for	example,	a	database	login	and	password),	the
Connection	parameter	Overrides	that	were	defined	with	this	BIF	may	be
updated	with	the	actual	connection	string	that	was	used	to	connect	to	the
database.	This	feature	is	to	save	the	user	from	being	prompted	for	each	new
ODBC	connection	to	this	SSN	(for	example,	SQL	Server	requires	an	update
connection	and	multiple	read	connections),	or	where	a
DISCONNECT_SERVER	is	used,	followed	by	a	later	CONNECT_SERVER.
If	you	want	to	execute	DISCONNECT_SERVER	to	force	the	user	to	be
prompted	again	for	connection	details,	you	should	call	this	BIF	again	to
replace	your	original	values.
Please	experiment	with	these	facilities	first	and	then	design	some	sort	of
server	architecture	for	your	organization	that	has	these	characteristics:

It	matches	your	organization's	requirements.
It	is	quick	and	easy	to	change.
It	is	extensible.

Do	this	before	launching	into	any	large-scale	design	or	development	project.

Example
The	following	example	defines	a	database	server	called	CHICAGO	that
connects	to	the	database	MYDATABASE	and	sets	the	user	id	and	password	to
null	so	that	ODBC	prompts	for	the	user	id	and	password.
USE	BUILTIN(DEFINE_DB_SERVER)	WITH_ARGS(CHICAGO	MYDATABASE	"UID=;PWD=;")	TO_GET(#RETCOD)
	

The	connection	will	be	made	when	the	first	file	that	is	associated	with
MYDATABASE	is	used.

A	Note	on	Error	Handling
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application:

if	(#retcode	*ne	OK)

abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	built	into	every	generated	application,	take	care
of	the	problem.	Situations	have	arisen	where	user	defined	error	handling	logic
has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML	code	(with	no
obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.

9.38	DEFINE_OVERRIDE_FILE

	Note:	Built-In	Function	Rules.

Use	this	Built-In	Function	to	override	the	Database	Table	Owner	Name	and/or
the	Database	Table	Name.
Typically	this	Built-In	Function	will	be	used	when	the	library	(schema	name)
associated	with	a	file	(table)	is	modified	during	the	application	installation.	In
this	case	the	table	is	created	in	the	database	with	the	installation	schema	name
but	the	supplied	OAM	has	embedded	in	it	the	LANSA	Library	of	when	the
OAM	was	generated.		To	access	the	file	when	executing	the	application,	the
application	must	redirect	the	OAM	to	the	appropriate	LANSA	Library	for	the
current	installation	using	the	DEFINE_FILE_OVERRIDE.		Refer	to	Why	are
File	Overrides	required?	and	Use	of	Define_Override_File	with	SuperServer
and	LANSA	Open.Net	for	details.
The	database	overrides	remain	only	during	the	current	session.
The	DEFINE_OVERRIDE_FILE's	functionality	is	not	available	to	the
SELECT_SQL	Free	Format	command.

For	use	with
LANSA	for	i No

Visual	LANSA	for	WindowsYes

Visual	LANSA	for	Linux No

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A O File	Library	name
If	no	File	Library	name	is	given,	the	BIF	will
remove	all	defined	overrides.

1 10 	 	

2 A O File	name 1 10 	 	

3 A O Override	Database	Table	Owner	name
If	no	override	database	table	owner	and	table
name	is	given,	the	BIF	will	try	to	remove	any
previously	defined	override.

1 128 	 	

4 A O Override	Database	Table	name
If	no	override	database	table	owner	and	table
name	is	given,	the	BIF	will	try	to	remove	any
previously	defined	override.

1 128 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A R Return	Code:
OK

2 2 	 	

	

Why	are	File	Overrides	required?
When	installing	an	application	only	one	OAM	will	be	installed	which	has
embedded	in	it	the	LANSA	Library	of	when	the	OAM	was	generated.		If	an
application	file	is	installed	into	a	library	which	is	different	to	the	library
embedded	in	the	OAM,	the	OAM	must	be	redirected	to	the	appropriate	LANSA
Library	at	runtime.		The	LANSA	Library	is	mapped	into	the	database
equivalent,	which	has	a	different	name	in	different	database	managers:	it	is
variously	called	Schema,	Owner	and	Collection.
A	summary	of	the	process:
1.		The	Function/Component	is	generated	with	the	BUILT	library	and	passes
this	to	the	common	database	execution	layer.

2.		The	OAM	is	located.	If	this	is	in	the	Partition	Module	Library	or	Partition
File	Library	then	the	library	is	no	longer	the	BUILT	library.	It	is	an
EXECUTE	Library.

					A	file	OAM	refers	to	the	library	it	is	BUILT	with.	When	overriding,	you
would	specify	this	BUILT	library	in	OVERRIDE_TABLE_OWNER.

3.		The	EXECUTE	is	looked	up	to	see	if	there	is	an	OVERRIDE.	If	the
EXECUTE	library	is	still	the	BUILT	library	then	the	file	will	be	overridden
with	the	new	library.

					If	you	need	to	override	a	file	that	has	been	installed	in	the	Partition	File
Library,	then	the	Partition	File	Library	system	variable	needs	to	be	assigned
to	a	Field	and	this	Field	passed	to	the	OVERRIDE_TABLE_OWNER	so	that
the	library	can	be	overridden	at	runtime.

An	application	has	files	installed	into	the	Partition	File	Library.	Typically	the
Partition	File	Library	is	NOT	the	same	name	as	the	BUILT	library.	If	it	were
the	same,	then	OVERRIDE	of	BUILT	would	also	override	the	Partition	File
Library	files.	This	would	not	achieve	the	desired	outcome,	as	the	files	should
always	access	the	same	library.

Use	of	Define_Override_File	with	SuperServer	and	LANSA
Open.Net
The	DEFINE_OVERRIDE_FILE	operates	on	the	database	local	to	the	RDML
that	is	executing.	When	database	IO	is	performed,	the	OAM	checks	the	file
overrides	on	the	machine/process	where	the	OAM	is	executing.	Therefore,	an
OAM	executing	on	a	server	requires	that	the	file	overrides	have	been	set	up	on
the	server	by	using	CALL_SERVER_FUNCTION	and	calling	the
DEFINE_OVERRIDE_FILE	appropriately.	This	is	true	for	both	SuperServer
and	LANSA	Open	.Net.

How	to	set	up	an	override
1.		A	valid	File	Library	name	and	optionally	a	File	Name	must	be	provided	to
indicate	the	file(s)	that	overrides	should	be	applied	to.

2.		A	valid	Override	Database	Table	Owner	name	and/or	Override	Database
Table	name	must	also	be	provided.	The	below	table	illustrates	all	valid	cases:

Description File
Library
Name

File
Name

Override
Database
Table	Owner
Name

Override
Database
Table
Name

Override	all	Files	under	a	specific
File	Library	name	to	a	different
Database	Table	Owner

X *DefaultX 	

Override	a	specific	File	to	a X X X 	

different	Database	Table	Owner.

Override	a	specific	File	to	a
different	Database	Table	with	the
same	Database	Table	Owner.

X X *Default X

Override	a	specific	File	to	a
different	Database	Table.

X X X X

	

How	to	remove	an	override	of	group	of	overrides
1.		Execute	DEFINE_OVERRIDE_FILE	with	no	arguments	values	supplied	to
remove	all	overrides	on	database	files.

2.		Execute	DEFINE_OVERRIDE_FILE	with	only	the	File	Library	Name
argument	to	remove	overrides	from	all	files	in	a	library.

3.		Execute	DEFINE_OVERRIDE_FILE	with	the	File	Library	Name	and	File
Name	arguments	to	remove	overrides	from	a	specific	file.

Description File
Library
Name

File
Name

Override	Database
Table	Owner	Name

Override
Database	Table
Name

Remove	all
defined	overrides

	 	 	 	

Remove	a	File
Library	override

X 	 	 	

Remove	a
specific	File
override

X X 	 	

	

	
Examples
Example	1:	Override	all	Files	under	a	specific	File	Library	name	to	a

different	Database	Table	Owner	ABC
Use	BIF(Define_Override_File)	('DC@DEMOLIB'	*Default	'ABC')	To_Get(#retcode)
	

Example	2:	Override	a	specific	File	to	a	different	Database	Table	Owner
ABC
Use	BIF(Define_Override_File)		('DC@DEMOLIB'	'PSLMST'	'ABC')	To_Get(#retcode)
	

Example	3:	Override	a	specific	File	to	a	different	Database	Table	with	the
same	Database	Table	Owner
Use	BIF(Define_Override_File)	('DC@DEMOLIB'	'PSLMST'	*Default	'XYZ')	To_Get(#retcode)
	

Example	4:	Override	a	specific	File	to	a	different	Database	Table
Use	BIF(Define_Override_File)	('DC@DEMOLIB'	'PSLMST'	'ABC'	'XYZ')	To_Get(#retcode)
	

Example	5:	Remove	all	defined	overrides
Use	BIF(Define_Override_File)	To_Get(#retcode)
	

Example	6:	Remove	a	File	Library	override
Use	BIF(Define_Override_File)		('DC@DEMOLIB')	To_Get(#retcode)
	

Example	7:	Remove	a	specific	File	override
Use	BIF(Define_Override_File)	('DC@DEMOLIB'	'PSLMST')	To_Get(#retcode)
	

9.39	DEFINE_OS_400_SERVER

	Note:	Built-In	Function	Rules.

Defines	details	of	an	IBM	i	system	that	is	to	be	used	as	a	server	to	the	current
RDML	function.
The	definition	details	are	not	persistent	and	only	exist	while	the	LANSA
environment	remains	active.
The	time	taken	to	define	a	server	is	minimal.

You	must	use	BIF	DEFINE_ANY_SERVER	for	I/O	commands	to
RDMLX	files	or	to	call	an	RDMLX	function	on	the	server.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req SSN	(Server	Symbolic	Name)	This	is	the
name	that	will	be	used	in	all	future	references
to	this	server	by	this	and	other	RDML
functions.

1 10 	 	

2 A Req LU	Partner	Name 1 20 	 	

3 A Req Start	commitment	control	on	the	server.	Once
this	server	is	connected	it	will	receive	a
"commit"	or	"rollback"	request	whenever	the
client	issues	an	RDML	level	COMMIT	or
ROLLBACK	command.

1 1 	 	

Y	or	1	-	Use	commitment	control
other	-	do	not	use	commitment	control

4 A Opt The	server	is	DBCS	capable.
Y	or	1	-	DBCS	capable	server.
Other	-	not	DBCS	capable	server
The	default	value	is	N.

1 1 	 	

5 A Opt Divert	LOCK_OBJECT	requests	to	this
server.	If	this	option	is	used	all	subsequent
LOCK_OBJECT	requests	will	be	diverted	to
this	server.	Multiple	servers	will	receive	the
same	LOCK_OBJECT	request	if	multiple
servers	have	this	option	enabled	concurrently.
In	such	cases	a	lock	must	be	granted	on	all
participating	servers	for	the	LOCK_OBJECT
to	complete	normally.	Where	one	server	fails
to	grant	the	lock	an	UNLOCK_OBJECT
request	is	made	to	all	servers	that	have
already	granted	the	object	lock.
Note	that	*AUTONUM,	*AUTOALP,	and
*DTAssslllxxxxxxxxxx	system	variables	are
also	retrieved	from	the	server	if	locks	are
diverted	to	the	server.	Refer	to	*AUTONUM
and	*AUTOALP	System	Variables	(Data
Areas)	and	*DTASSSLLLXXXXXXXXXX
System	Variables	(Data	Areas)	in	the	LANSA
Application	Design	Guide.
Y	or	1	-	Divert	LOCK_OBJECT	requests.
Z	-	Divert	LOCK_OBJECT	requests	and	also
divert	authority	checking	requests	to	this
server	(only	one	server	should	be	nominated
as	the	diversion	target	for	authority	checking
requests).
R	-	Route	lock	requests	AND	authority
requests	AND	repository	data	requests	(if	not
found	locally).	Refer	to	the	X_RUN

1 1 	 	

its:LANSA065.CHM::/lansa/dsnbf_0040.htm
its:LANSA065.CHM::/lansa/dsnbf_0045.htm

parameters	in	Using	the	X_RUN	Command.
Other-	do	not	divert	LOCK_OBJECT
requests.
The	default	value	is	N.

6 A Opt Show	"Please	Wait"	message	while
connecting.
Y	or	1	-	Show	wait	message.
Other	-	do	not	show	message.
Default	value	is	Y.

1 1 	 	

7 A Opt IBM	i	execution	priority.	Default	value	is	20.
Specify	other	values	as	in	the	IBM	i
command	CHGJOB	parameter	RUNPTY.
User	should	be	authorized	to	change	to	the
nominated	value.

1 2 	 	

8 A Opt Client-to-Server	conversion	table	name	to	be
used.	No	library	name	can	be	specified.
Defaults	to	ANSEBC1140.

1 10 	 	

9 A Opt
	

Server-to-Client	conversion	table	name	to	be
used.	No	library	name	can	be	specified.
Defaults	to	EBC1140ANS.

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
OK	-	Server	Defined
ER	-	Server	not	defined	and	error
message(s)	issued.	

2 2 	 	

	

Technical	Notes
It	is	very	strongly	recommended	that	server	definition	logic	is	coded	in	one
and	only	one	function,	rather	than	scattered	and	repeated	through	many
RDML	functions.	This	approach	will	isolate	your	application	from	future
changes	to	the	server(s)	that	are	being	used.
The	LU	partner	name	specified	must	be	either:

The	fully	qualified	Partner	LU	(Logical	Unit)	name	that	has	been
previously	defined	to	the	Communications	Router.

This	is	usually	formatted	"Network	Name.Control	Point	Name"	and
corresponds	to	the	IBM	i	DSPNETA	values	of	"Local	Network	ID"
and	"Local	control	point	name".

Normally	any	Communications	Router	that	allows	5250	emulation
sessions	to	work	will	have	these	details	already	configured	ready	for
use.
e.g.	APPN.SYDASD25
Or,	if	you	have	configured	an	"alias"	name	for	the	LU	name	it	may	be
used	in	place	of	the	fully	qualified	LU	Name.
e.g.	5250PLU

The	translation	tables	specified	are	actually	uploaded	from	the	IBM	i	server
during	a	connect.	The	initial	connect	phase	needs	to	translate	the	initial
connection	details	via	a	default	translation	table	as	the	tables	you	specify	have
not	yet	been	uploaded.
The	initial	connect	details	(sent	to	the	server)	include:

The	partition
The	language	code
The	task	identifier
The	client	to	server	conversion	table	name
The	server	to	client	conversion	table	name

Use	only	English	alphabetic	characters	A	through	Z	and	the	numbers	0
through	9	in	the	names	of	the	objects	listed	above	to	avoid	potential
problems	in	this	area.

It	is	recommended	that	you	use	SSN	values	that	are	meaningful	to	end	users
(e.g.	CHICAGO,	BOSTON,	CHARLIE1,	etc.)	as	they	may	appear	in

messages	from	time	to	time.
SSN	names	must	be	unique	and	start	with	a	character	in	the	English	language
alphabet	(uppercase	A	through	Z).
A	server	may	be	repeatedly	defined	and	(re)defined	when	it	is	not	connected.
If	you	attempt	to	(re)define	a	server	that	is	currently	connected	a	fatal	error
will	result.
The	details	defined	are	not	persistent.	They	are	lost	when	the	X_RUN
command	completes.	You	may	choose	to	define	your	own	set	of	SQL	based
tables	to	hold	server	details	and	actually	read	the	table(s)	to	get	values	to	be
passed	on	to	this	Built-In	Function.
Please	experiment	with	these	facilities	first	and	then	design	some	server
architecture	for	your	organization	that	has	these	characteristics:

It	matches	your	organization's	requirements.
It	is	quick	and	easy	to	change.
It	is	extendible.

Do	this	before	launching	into	any	large	scale	design	or	development
project.

The	client's	date	format	will	be	automatically	passed	to	the	server.	If	the	date
formats	are	different	(e.g.	MDY	vs	DMY),	the	server	will	automatically
return	data	in	the	client's	format.

The	client's	date	format	can	be	changed	from	the	default	by	specifying	the
x_run	parameter	DATF=.	Please	refer	to	Standard	X_RUN	Parameters	for
more	information	about	this	parameter.

Note	that	if	the	client	and	server	date	formats	are	different,	Date	format
validation	rules	specifying	exact	formats	(e.g.	DDMMYY)	will	fail	(as	the
data	may	be	returned	as	MMDDYY).	Date	format	SYSFMT	is	recommended
where	clients	need	to	use	different	date	formats	(e.g.	USA	and	UK	clients).

Notes	on	Commitment	Control
If	Start	Commitment	Control	is	Y,	LANSA	will	automatically	start	and	end
commitment	control.	See	User	Exit	F@BGNCMT	-	Start	Commitment
Control	and	User	Exit	F@ENDCMT	-	End	Commitment	Control	in	the
LANSA	for	i	User	Guide	for	details.
When	the	server	has	been	indicated	as	having	commitment	control	started,	it

its:lansa010.CHM::/lansa/ladtgubh_0160.htm
its:lansa010.CHM::/lansa/ladtgubh_0155.htm

will	effect	all	subsequent	COMMIT	and	ROLLBACK	commands	issued.
When	a	COMMIT	or	ROLLBACK	command	is	issued	the	routine	involved
loops	through	all	currently	connected	servers.
To	each	one	that	has	commitment	control	active,	it	issues	a	"commit"	or
"rollback"	request	and	then	waits	for	the	server	to	respond	before	proceeding.
This	is	done	after	a	commit/rollback	has	been	issued	correctly	to	the
local/client	database	management	system.

A	Note	on	Error	Handling
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application:

if	(#retcode	*ne	OK)

				abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	Built-In	Function	to	every	generated	application
take	care	of	the	problem.	Situations	have	arisen	where	user	defined	error
handling	logic	has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML
code	(with	no	obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.

DBCS	Considerations
When	the	server	is	indicated	as	being	DBCS	capable	an	additional	translation
table	must	be	locatable	on	the	client	PC.
This	table	must	be	named	X_CT<language	code>.DAT	and	must	be	located	in
the	X_LANSA\EXECUTE	directory.
A	version	of	this	table	named	X_CTJPN.DAT	for	<language	code>	"JPN"
(Japanese)	is	available	to	all	Japanese	customers.
This	translation	file	contains	the	following	notes:
This	table	is	shipped	in	an	"as	is"	condition	to	support	customer	tailoring.	No
warranty	is	expressed	or	implied.	It	is	the	customer's	responsibility	to
maintain	and	verify	this	table.
This	table	is	loaded	by	the	Visual	LANSA	DEFINE_OS_400_SERVER
function	when	it	has	been	indicated	that	the	server	has	DBCS	capability.

The	name	of	the	table	loaded	is	derived	from	"x_ct"	combined	with	the
current	language	code	(e.g.	jpn)	and	the	suffix	".dat".	Thus	if	language	code
jpn	was	being	used,	the	table	name	would	have	to	be	"x_ctjpn.dat".	For
language	code	tchi	the	table	name	would	be	"x_cttchi.dat".
The	table	must	reside	in	the	<drive>:\x_lansa\execute	directory	where
<drive>	is	whatever	local	or	server	disk	drive	onto	which	Visual	LANSA	has
been	installed.
This	conversion	table	is	only	used	for	the	double	byte	parts	of	any	string.
Single	byte	parts	of	any	string	at	all	(DBCS	allowed	or	not)	are	always
converted	by	using	the	IBM	i	single	byte	tables	specified	in	the
DEFINE_OS_400_SERVER	Built-In	Function	call.
This	means	that	a	field	containing	mixed	double	and	single	byte	characters	is
partially	converted	by	this	table	and	partially	by	the	single	byte	conversion
table	that	is	used	by	both	DBCS	and	non-DBCS	conversions.
DBCS	conversion	of	data	within	an	individual	field	only	occurs	when	the
field	is	indicated	as	being	DBCS	capable	(e.g.	dictionary	keyboard	attributes
j,	e,	o,	etc.)	and	when	the	DEFINE_OS_400_SERVER	Built-In	Function	has
indicated	that	the	server	is	DBCS	capable.	If	both	these	conditions	are	not
met	the	entire	field	is	converted	as	a	single	byte	string	by	the	single	byte
conversion	tables	previously	mentioned.
An	*	in	column	1	indicates	a	comment	line.
All	values	are	specified	in	hexadecimal	format.
Separate	values	with	a	single	comma	(,)	only.

9.40	DEFINE_OTHER_SERVER

	Note:	Built-In	Function	Rules.

Defines	details	of	a	non-IBM	i	(i.e.	other)	system	that	is	to	be	used	as	a	server	to
the	current	RDML	function.
The	definition	details	are	not	persistent	and	only	exist	while	the	LANSA
environment	remains	active.	The	time	taken	to	define	a	server	is	minimal.

To	use	this	BIF	you	must	set	x_run	parameter	CDLL	to
LCOMGR32.DLL	and	x_run	parameter	CMTH	must	be	C	or	T.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req SSN	(Server	Symbolic	Name)	This	is	the
name	that	will	be	used	in	all	future	references
to	this	server	by	this	and	other	RDML
functions.

1 10 	 	

2 A Req Server	Network	Name 1 20 	 	

3 A Opt Divert	LOCK_OBJECT	requests	to	this
server.	If	this	option	is	used	all	subsequent
LOCK_OBJECT	requests	will	be	diverted	to
this	server.	Multiple	servers	will	receive	the
same	LOCK_OBJECT	request	if	multiple
servers	have	this	option	enabled	concurrently.

1 1 	 	

In	such	cases	a	lock	must	be	granted	on	all
participating	servers	for	the	LOCK_OBJECT
to	complete	normally.	Where	one	server	fails
to	grant	the	lock	an	UNLOCK_OBJECT
request	is	made	to	all	servers	that	have
already	granted	the	object	lock.	Note	that
*AUTONUM,	*AUTOALP,	and
*DTAssslllxxxxxxxxxx	system	variables	are
also	retrieved	from	the	server	if	locks	are
diverted	to	the	server.	Refer	to	*AUTONUM
and	*AUTOALP	System	Variables	(Data
Areas)	and	*DTASSSLLLXXXXXXXXXX
System	Variables	(Data	Areas)	in	the	LANSA
Application	Design	Guide.
Y	or	1	-	Divert	LOCK_OBJECT	requests.
Z	-	Route	lock	requests	AND	route	authority
requests.
R	-	Route	lock	requests	AND	authority
requests	AND	repository	data	requests	(if	not
found	locally).	Refer	to	the	X_RUN
parameters	in	Using	the	X_RUN	Command.
Other	-	do	not	divert	requests.
The	default	value	is	N.

4 A Opt Show	"Please	Wait"	message	while
connecting.
Y	or	1		-	Show	wait	message.
other	-	do	not	show	message.
Default	value	is	Y.

1 1 	 	

5 A Opt X_RUN	exceptional	arguments. 1 256 	 	

6 A Opt Server	dependent	exceptional	arguments.	Not
currently	implemented.
Do	not	use	this	argument.

1 256 	 	

7 A Opt Reserved	for	Future	Expansion.	Not	currently
implemented.

1 256 	 	

its:LANSA065.CHM::/lansa/dsnbf_0040.htm
its:LANSA065.CHM::/lansa/dsnbf_0045.htm

Do	not	use	this	argument.

8 A Opt Reserved	for	Future	Expansion.	Not	currently
implemented
Do	not	use	this	argument.

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
OK	-	Server	Defined
ER	-	Server	not	defined	and	error
message(s)	issued.	

2 2 	 	

	

Technical	Notes
The	Server	Network	Name	you	specify	when	invoking	this	Built-In	Function
should	be	identical	to	the	Partner	LU	Name	under	which	the	server	was	(or
will	be)	enrolled	within	the	LANSA	Communications	Administrator.
It	is	very	strongly	recommended	that	your	server	definition	and	connection
logic	is	coded	in	one	and	only	one	function,	rather	than	scattered	and	repeated
through	many	RDML	functions.	This	approach	will	isolate	your	application
from	future	changes	to	the	server(s)	that	are	being	used.
It	is	recommended	that	you	use	SSN	values	that	are	meaningful	to	end	users
(e.g:	CHICAGO,	BOSTON,	CHARLIE1,	etc.)	as	they	may	appear	in
messages	from	time	to	time.
SSN	names	must	be	unique	and	start	with	a	character	in	the	English	language
alphabet	(uppercase	A	through	Z).
A	server	may	be	repeatedly	defined	and	(re)defined	when	it	is	not	connected.
If	you	attempt	to	(re)define	a	server	that	is	currently	connected	a	fatal	error
will	result.
The	X_RUN	exceptional	argument	may	be	used	to	override	the	parameters

used	on	the	X_RUN	command	started	on	the	server	system.	

By	default,	the	following	client	X_RUN	parameter	values	are	passed	to	(and
inherited	by)	the	X_RUN	command	started	on	the	server	system:CMTH=,
CDLL=,	DATF=,	DATS=,	DBCF=,	DBCL=,	DBLK=,	DBTC=,	DBUS=,
DEVE=,	FXQF=,	FXQM=,	HSKC=,	INIT=,	ITHP=,	ITRC=,	ITRL=,	ITRM=
,	ITRO=,	LANG=,	PART=,	PRTR=,	PSPW=,	PSTC=,	PSWD=,	TASK=,
TERM=,	USER=,	XAFP=	and	XCMD.	The	following	client	X_RUN
parameter	values	are	only	inherited	by	the	server	if	the	client	and	the	server
are	using	the	same	operating	system:	DBID=,	DBII=,	DBIT=,	DBUT=,
ODBI=	and	WPEN	(and	related	Windows	Printing	Extension	parameters).

All	other	X_RUN	parameter	values	on	the	server	system	are	defaulted	(on	the
server	system)	in	the	usual	manner	(ie:	from	a	profile	file,	from	system
environment	settings,	etc).	Refer	to	the	definition	of	the	X_RUN	command
for	details	of	all	parameter	values	and	the	methods	by	which	they	can	be
specified	and	defaulted.	
You	may	override	any	server	X_RUN	parameter	(via	the	X_RUN	exceptional
argument	value)	except	for		CDLL=,	CMTH=,	DATF=,	DATS=,	DBUG=,
DEVE=,	LANG=,	MODE=,	PART=,	PROC=,	PSPW=,	USER=	and	XAFP=.
These	X_RUN	arguments	are	unconditionally	inherited	from	the	client
system.	However,	some	of	these	parameters	may	be	altered	by	calling
SET_SESSION_VALUE	before	invoking	CONNECT_SERVER.

Override	parameters	may	be	given	a	specific	value,	or	the	special	value
*SERVER,	which	indicates	that	the	server	default	should	be	used.	As	an
example,	a	Windows	client	using	DBII=*NONE	might	connect	to	a	Windows
Server	running	Oracle.	By	default,	Windows	uses	the	database	type	MSSQLS
(SQL	Server),	so	DBUT	needs	to	be	overridden.	The	X_RUN	exceptional
argument	value	could	be	set	to	either	DBUT=ODBCORACLE	or
DBUT=*SERVER.
The	details	defined	via	this	Built-In	Function	are	not	persistent.	They	are	lost
when	the	X_RUN	command	completes.	You	may	choose	to	define	your	own
set	of	SQL	based	tables	to	hold	server	details	and	actually	read	the	table(s)	to
get	values	to	be	passed	on	to	this	Built-In	Function.
Please	experiment	with	these	facilities	first	and	then	design	some	sort	of
server	architecture	for	your	organization	that	has	these	characteristics:

It	matches	your	organization's	requirements.

It	is	quick	and	easy	to	change.
It	is	extensible.

			Do	this	before	launching	into	any	large-scale	design	or	development	project.
The	client's	date	format	will	be	automatically	passed	to	the	server.	If	the	date
formats	are	different	(e.g.	MDY	vs	DMY),	the	server	will	automatically
return	data	in	the	client's	format.

The	client's	date	format	can	be	changed	from	the	default	by	specifying	the
x_run	parameter	DATF=.	Please	refer	to	Standard	X_RUN	Parameters	for
more	information	about	this	parameter.

Note	that	if	the	client	and	server	date	formats	are	different,	Date	format
validation	rules	specifying	exact	formats	(e.g.	DDMMYY)	will	fail	(as	the
data	may	be	returned	as	MMDDYY).	Date	format	SYSFMT	is	recommended
where	clients	need	to	use	different	date	formats	(e.g.	USA	and	UK	clients).

A	Note	on	Error	Handling
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application:

if	(#retcode	*ne	OK)

				abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	built	into	every	generated	application,	take	care
of	the	problem.	Situations	have	arisen	where	user	defined	error	handling	logic
has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML	code	(with	no
obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.

9.41	DEFINE_SPACE_CELL

	Note:	Built-In	Function	Rules.

Defines	a	cell	(or	column)	within	the	nominated	space	object.	Refer	also	to	the
other	SPACE	Built-In	Functions.

For	use	with
LANSA	for	i YESOnly	available	with	RDMLX

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A R Name	of	the	space	into	which	the	cell	should
be	defined.

1 256 	 	

2 A R Name	of	a	field	whose	definition	is	to	be	used
as	a	prototype	for	the	definition	of	this	space
cell.
Note	that	this	is	the	name	of	the	field,	not	the
field	itself.	Thus	you	should	specify	an
employee	number	field	as	EMPNO	rather
than	#EMPNO	(which	means	that	the	content
of		field	#EMPNO	contains	the	field	name).			

1 10 	 	

3 A O Cell	attributes.
Multiple	cell	attributes	should	be	separated	by
a	single	space.
The	list	of	valid	attributes	(which	may	be	in
any	case)	includes:
KEY:		specifies	that	this	cell	is	a	key	to	the

1 256 	 	

space	contents.	Space	objects	should	always
have	at	least	one	key	cell.
DESCEND:	specifies	that	descending
sequence	should	be	applied	to	this	cell.	This
attribute	is	only	valid	when	used	with	the
KEY	attribute,	otherwise	it	is	ignored.		
NOCASE:	specifies	that	the	case	of	the	key	is
ignored	and	all	key	comparisons	are	done	in
lowercase.	This	attribute	is	only	valid	when
used	with	alphanumeric	KEY	cells,	otherwise
it	is	ignored.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A O Standard	Return	Code
"OK"	=	Cell	defined.	
"ER"	=	Cell	definition	attempt	failed.
Messages	issued	will	indicate	more	about	the
cause	of	the	failure.		

2 2 	 	

	

Technical	Notes
The	specified	space	object	must	be	defined	before	any	attempt	is	made	to	define
cells	within	it	(see	the	CREATE_SPACE	Built-In	Function)	
The	currently	active	invocation	stack	is	searched	backwards	until	the	first
instance	of	a	field	with	the	specified	name	is	found.
If	an	instance	of	the	field	name	is	found	it	is	then	instantaneously	used	as	a
definitional	prototype	for	the	space	cell	in	terms	of	type,	length,	etc.
If	an	instance	of	the	field	name	cannot	be	found	a	fatal	error	message	is	issued
and	the	application	terminates.	

It	is	recommended	that	all	KEY	cells	be	defined	as	the	first	cells	in	a	space
object.
The	order	that	a	key	cell	is	defined	implies	their	order	within	the	aggregate	key
to	the	cell	row.	
The	order	that	any	cell	is	defined	implies	the	order	that	they	will	be	mapped	into
and	out	of	other	space	commands	such	as	INSERT_IN_SPACE	and
FETCH_IN_SPACE.
If	the	data	in	the	space	requires	more	than	one	level	of	key	to	uniquely	identify
an	individual	entry,	then	more	than	one	cell	MUST	be	defined	as	the	key.

Examples
Example	1
This	example	defines	a	space	whose	name	is	the	current	components	name
suffixed	by	".emp"	and	then	defines	3	cells	within	it	whose	type	and	length	are
based	on	the	definitions	of	fields	EMPNO,	GIVENAME	and	SURNAME
respectively.	The	first	cell	the	key	to	the	space:
Define	#SpaceName	*char	20
Use	TConcat	(*component	'.EMP')	(#SpaceName)
Use	Create_Space	(#SpaceName)
Use	Define_Space_Cell	(#SpaceName	EmpNo	Key)
Use	Define_Space_Cell	(#SpaceName	GiveName)
	

Use	Define_Space_Cell	(#SpaceName	SurName);
Example	2
The	section	file	(SECTAB)	in	the	LANSA	demonstration	system	requires	that
two	levels	of	key	be	specified	to	identify	any	given	record.		The	space	must	be
defined	in	a	similar	format.		Failure	to	do	so	will	cause	unpredictable	results
when	attempting	to	retrieve	data	from	the	space	using	SELECT_IN_SPACE	and
SELECT_NEXT_IN_SPACE.
Define	field(#SpaceName)	type(*char)	length(20)
Use	TConcat	(*component	'.EMP')	#SpaceName)
Use	Create_Space	(#SpaceName)
Use	Define_Space_Cell	(#SpaceName	Deptment	Key)
Use	Define_Space_Cell	(#SpaceName	Section	Key)
Use	Define_Space_Cell	(#SpaceName	Secdesc)
	

9.42	DELETE_CHECKS

	Note:	Built-In	Function	Rules.

Deletes	standard	DICTIONARY	or	FILE	level	validation	checks	from	a
nominated	field	for	subsequent	replacement	by	PUT_XXXXXXX	validation
check	Built-In	Functions.
When	deleting	FILE	level	validation	checks	from	a	field,	the	file	involved	must
have	been	previously	placed	into	an	edit	session	by	the	START_FILE_EDIT
Built-In	Function.
Normal	authority	and	task	tracking	rules	apply	to	the	use	of	this	Built-In
Function.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i	 YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Level	of	validation	checks	that	are	to	be
deleted.
D	=	Dictionary	level
F	=	File	level

1 1 	 	

2 A Req Name	of	field	in	dictionary	or	file	from	which
validation	rules	are	to	be	deleted.

1 10 	 	

3	*N Req Sequence	number	to	control	deletion.	Only
checks	with	a	sequence	number	greater	than

1 3 0 0

or	equal	to	this	value	are	deleted.	If	this
argument	is	not	specified,	a	value	of	zero	(0)
is	assumed,	so	all	checks	will	match	this
control	value.

4	*A Req Generic	description	of	check	used	to	control
deletion.	Only	checks	which	have	a
description	generically	matching	this	value
will	be	deleted.	If	this	value	is	not	specified,	a
default	value	of	blanks	is	assumed,	so	all
checks	will	match	this	control	value.

1 30 	 	

	

*	The	deletion	control	sequence	number	and	description	are	related	by	an
"AND"	relationship.	So	if	you	pass	values	of	500	and	IEW,	only	checks	that
have	a	sequence	number	greater	than	or	equal	to	500	and	a	description	that
starts	with	IEW	will	be	deleted.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	validation	check	defined
ER	=	fatal	error	detected
NR	=	no	records	found	eligible	for	deletion
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.	When	a	file	edit
session	is	involved	it	is	ended	automatically
without	commitment.

2 2 	 	

	

Example
A	user	wants	to	delete	validation	checks	for	a	specific	field,	without	going
through	the	LANSA	options	provided	on	the	Field	Control	Menu	that	enables

the	user	to	delete	validation	checks.
*********	Define	arguments	and	lists
DEFINE				FIELD(#LEVEL)	TYPE(*CHAR)	LENGTH(1)	LABEL('Level')
DEFINE				FIELD(#FIELD)	TYPE(*CHAR)	LENGTH(10)	LABEL('Field')
DEFINE				FIELD(#SEQNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	
										LABEL('Sequence	#')
DEFINE				FIELD(#DESCR)	TYPE(*CHAR)	LENGTH(30)	LABEL('Description')
DEFINE				FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	code')
GROUP_BY		NAME(#VALCHK)	FIELDS((#LEVEL)	(#FIELD)	(#SEQNUM)	(#DESCR))
*********	Request	Validation	check	details
BEGIN_LOOP	
REQUEST			FIELDS(#VALCHK)
*********	Execute	built-in-function	-	DELETE_CHECKS
USE							BUILTIN(DELETE_CHECKS)	WITH_ARGS(#LEVEL	#FIELD	#SEQNUM	
										#DESCR)	TO_GET(#RETCOD)
*********	Deletion	of	validation	checks	was	successful
IF								COND('#RETCOD	*EQ	''OK''')
MESSAGE			MSGTXT('Deletion	of	validation	check(s)	was	successful')
*********	Deletion	of	validation	checks	failed
ELSE	
IF								COND('#RETCOD	*EQ	''ER''')
MESSAGE			MSGTXT('Deletion	of	validation	check(s)	failed')
*********	No	records	found	eligible	for	deletion
ELSE	
IF								COND('#RETCOD	*EQ	''NR''')
MESSAGE			MSGTXT('No	Records	found	eligible	for	deletion')
ENDIF	
ENDIF	
ENDIF	
END_LOOP	
	

9.43	DELETE_FUNCTION

	Note:	Built-In	Function	Rules.

Deletes	all	details	of	the	function	currently	being	edited	and	ends	the	edit
session	against	the	function.	An	edit	session	is	commenced	by	using	the	Built-In
Function	START_FUNCTION_EDIT.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.	This	is
a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
No	argument	values.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	function	deleted	and	edit
session	was	ended
ER	=	fatal	error	detected

2 2 	 	

	

9.44	DELETE_IN_SPACE

	Note:	Built-In	Function	Rules.

Deletes	all	cell	rows	that	match	the	key	values	supplied.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 A R Space	Name 1 256 	 	

2-
20

w O Fields	specifying	the	key	values	to
be	used	to	locate	the	cell	rows	to
be	deleted.		

1 Unlimited 	 Unlimited

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A O Standard	Return	Code
"OK"	=	A	cell	row	was	found	and	the	cell
values	have	been	returned.
"NR"	=	Now	cell	row	could	be	found	with	a
key	matching	the	key	values	supplied.
"ER"	=	Select	attempt	failed.	Messages

2 2 	 	

issued	will	indicate	more	about	the	cause	of
the	failure.		

	

Technical	Notes
You	can	specify	less	key	values	than	are	defined	in	the	space.	All	matching	cell
rows	will	be	deleted.	This	means	that	partial	keys	operations	can	be	performed.	
The	operation	USE	DELETE_IN_SPACE	(CustomerList)	will	delete	all	cell
rows	from	the	space	named	CustomerLists.
If	you	specify	more	key	values	than	are	defined	as	key	cells	for	the	space	then
the	additional	values	will	be	ignored	and	have	no	effect	on	the	outcome	of	the
delete	operation.
If	a	key	value	longer	than	256	bytes	is	specified,	a	fatal	error	will	occur.

9.45	DELETE_PROCESS

	Note:	Built-In	Function	Rules.

Submits	a	job	to	delete	a	process	and	all	of	its	functions.
Argument	values	are	exactly	as	the	information	input	on	the	"Delete	a	Process"
screen	described	in	Submitting	the	Job	to	Delete	a	Process	Definition	in	the
LANSA	for	i	User	Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

LANSA	for	i	submits	a	job	to	batch	as	a	separate	task.

Visual	LANSA
for	Windows

YESVisual	LANSA	initiates	the	delete	process	and	does	not
return	control	until	the	delete	is	complete.

Visual	LANSA
for	Linux

NO 	

	

Arguments	for	Visual	LANSA
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Process	name 1 10 	 	

2 A Opt Name	of	job
Ignored

1 10 	 	

3 A Opt Name	of	job
description
Ignored

1 21 	 	

4 A Opt Name	of	job	queue
Ignored

1 21 	 	

its:LANSA010.CHM::/lansa/ugub_40010.htm

5 A Opt Name	of	output	queue
Ignored

1 21 	 	

	

Arguments	for	LANSA	for	i
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Process	name 1 10 	 	

2 A Opt Name	of	batch	job
Default:	Process	name

1 10 	 	

3 A Opt Name	of	job	description
Default:	the	job	description	from	the
requesting	job's	attributes.

1 21 	 	

4 A Opt Name	of	job	queue
Default:	the	job	queue	from	the
requesting	job's	attributes.

1 21 	 	

5 A Opt Name	of	output	queue
Default:	the	output	queue	from	the
requesting	job's	attributes.

1 21 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	successful	submission
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.	In	case	of
"ER"	return	code	error	message(s)	are	issued

2 2 	 	

automatically.

	

Example
A	user	wants	to	control	the	deletion	of	processes	using	their	own	version	of	the
"Delete	a	Process"	facility.
*********		Define	arguments
DEFINE					FIELD(#PROCES)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
*********		Request	Process
BEGIN_LOOP					
REQUEST				FIELDS(#PROCES)
*********		Execute	built-in-function	-	DELETE_PROCESS
USE								BUILTIN(DELETE_PROCESS)	WITH_ARGS(#PROCES)	TO_GET(#RETCOD)
	

*********		Check	if	submission	was	successful
IF									COND('#RETCOD	*EQ	''OK''')
MESSAGE				MSGTXT('Delete	Process	submitted	successfully')
CHANGE					FIELD(#PROCES)	TO(*BLANK)
ELSE					
MESSAGE				MSGTXT('Delete	Process	submit	failed	with	errors,	
											refer	to	additional	messages')
ENDIF					
END_LOOP					
	

9.46	DELETE_SAVED_LIST

	Note:	Built-In	Function	Rules.

Deletes	a	previously	saved	permanent	or	temporary	working	list.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	previously	saved	list	to
be	deleted.

1 10 	 	

	

Return	Values
No	return	values.

Technical	Notes
This	Built-In	Function	is	designed	to	delete	a	permanent	or	temporary
working	list.
It	is	good	practice	to	specifically	delete	temporary	lists.
File	DC@F80	in	the	LANSA	data	library	is	used	to	store	saved	list	details.
This	file	should	be	considered	in	your	backup	and	restore	procedures.
Deleted	record	space	in	file	DC@F80	is	reorganized	and	removed	during	a
normal	LANSA	internal	database	reorganization.	This	reorganization	also
deletes	any	temporary	lists	that	have	exceeded	their	retention	period.

You	can	reorganize	file	DC@F80	to	free	deleted	record	space	at	any	time	by
using	the	IBM	i	RGZPFM	(Reorganize	Physical	File	Member)	command.
Use	DC@F80V1	as	the	sequencing	logical	view.
The	backup	and	recovery	of	data	area	DC@A08	and	database	file	DC@F80
(and	its	logical	views	DC@F80V1	and	DC@F80V2)	is	your	responsibility.
Movement	of	DC@F80	or	saved	lists	between	machines	or	between
environments	is	your	responsibility.

Example
A	list	has	been	saved.	It	contains	a	list	of	contacts	that	need	to	have	their
information	updated	in	the	database.	This	user	is	in	a	telemarketing	role.	The
user	looks	at	a	record,	calls	the	contact	and	ensures	the	database	is	up	to	date.	If
a	change	is	necessary	the	user	changes	the	information	and	updates	the
database.
The	list	has	come	from	a	job	that	has	checked	the	date	of	update	of	each	contact.
If	the	update	date	is	more	than	NN	days	the	record	is	put	into	a	list.	The	list	is
then	saved.
When	the	list	has	been	processed	the	saved	list	is	deleted.
DEF_LIST			NAME(#RSTLST)	FIELDS((#CTTCDE)	(#CTTDES))	
											TYPE(*WORKING)
GROUP_BY			NAME(#DETAIL)	FIELDS((#CTTCDE)	(#CTTDES)	(#CTTNAM)		
											(#CTTAD1)	(#CTTAD2)	(#CTTAD3)	(#CTTPHO)	(#CTTFAX)		
											(#CTTUPD))
**********	Clear	the	list
CLR_LIST			NAMED(#RSTLST)
**********	Restore	the	list
USE								BUILTIN(RESTORE_SAVED_LIST)	WITH_ARGS('CONTACTS')		
											TO_GET(#RSTLST)
**********	Process	the	list
SELECTLIST	NAMED(#RSTLST)
FETCH						FIELDS(#DETAIL)	FROM_FILE(CONTACTS)	WITH_KEY(#CLICDE)
DISPLAY				FIELDS(#DETAIL)	CHANGE_KEY(*YES)
**********	If	contact	information	has	changed
IF_MODE				IS(*CHANGE)
CHANGE					FIELD(#CTTUPD)	TO(*YYMMDD)
UPDATE					FIELDS(#DETAIL)	IN_FILE(CONTACTS)
ENDIF
ENDSELECT

**********	Delete	the	list
USE								BUILTIN(DELETE_SAVED_LIST)	WITH_ARGS(#LSTNME)
	

9.47	DELETE_TRIGGERS

	Note:	Built-In	Function	Rules.

Deletes	standard	DICTIONARY	or	FILE	level	triggers	from	a	nominated	field
for	subsequent	replacement	by	the	PUT_TRIGGER	Built-In	Function.
When	deleting	FILE	level	triggers	from	a	field,	the	file	involved	must	have	been
previously	placed	into	an	edit	session	by	the	START_FILE_EDIT	Built-In
Function.
Normal	authority	and	task	tracking	rules	apply	to	the	use	of	this	Built-In
Function.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Level	of	triggers	that	are	to	be	deleted.
D	=	Dictionary	level
F	=	File	level

1 1 	 	

2 A Req Name	of	field	in	dictionary	or	file	from	which
triggers	are	to	be	deleted.

1 10 	 	

3	*N Req Sequence	number	to	control	deletion.	Only
triggers	with	a	sequence	number	greater	than
or	equal	to	this	value	are	deleted.	If	this
argument	is	not	specified,	a	value	of	zero	(0)

1 3 0 0

is	assumed,	so	all	triggers	will	match	this
control	value.

4	*A Req Generic	description	of	trigger	used	to	control
deletion.	Only	checks	which	have	a
description	generically	matching	this	value
will	be	deleted.	If	this	value	is	not	specified,	a
default	value	of	blanks	is	assumed,	so	all
checks	will	match	this	control	value.

1 30 	 	

	

*	The	deletion	control	sequence	number	and	description	are	related	by	an
"AND"	relationship.	So	if	you	pass	values	of	500	and	'IEW',	only	triggers	that
have	a	sequence	number	greater	than	or	equal	to	500	and	a	description	that
starts	with	'IEW'	will	be	deleted.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	validation	check	defined
ER	=	fatal	error	detected
NR	=	no	records	found	eligible	for	deletion
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.	When	a	file	edit
session	is	involved	it	is	ended	automatically
without	commitment.

2 2 	 	

	

9.48	DELETE_WEB_COMPONENT

	Note:	Built-In	Function	Rules.

Programmatically	delete	a	Web	Component.	Refer	to	the	LANSA	for	the	Web
Guide	for	more	information	about	Web	Components.
All	versions	(including	backups)	of	the	page	text	will	be	deleted.
This	Built-In	Function	only	supports	page,	script,	text,	and	visual	components.
An	error	will	be	issued	if	an	attempt	is	made	to	delete	a	banner,	weblink,	or	file
component.
When	deleting	a	component,	if	a	language	is	specified,	only	the	X02	records	for
that	language	will	be	deleted.	If	*ALL	is	used	for	the	language,	X02	records	for
all	languages	are	deleted,	as	well	as	the	X03	and	X01	header	records.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Web	Component 1 20 	 	

2 A Req Mode.	Possible	values	are:
I:	Input
O:	Output
N:	Not	applicable.

1 1 	 	

3 A Opt Language
Default	is	all	languages	(*ALL)
For	non-multilingual	partitions	this
should	be	'NAT'

4 4 	 	

*DFT	-	partition	default	language.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Possible	values	are:
OK:	Delete	completed
normally.
NR:	No	component	found	to
delete.
ER:	Delete	encountered	an
error.

1 2 	 	

	

9.49	DESTROY_SPACE

	Note:	Built-In	Function	Rules.

Destroys	the	space	object	with	the	specified	name.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A R Space	Name.
Special	space	name	*ALL	may	be	used	to
destroy	all	spaces	within	the	current	operating
system	process.

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A O Standard	Return	Code
"OK"	=	Space	destroyed	or	does	not	exist.
"ER"	=	Destruction	attempt	failed.	Messages
issued	will	indicate	more	about	the	cause	of
the	failure.		

2 2 	 	

	

Technical	Notes
Once	a	space	object	has	been	destroyed	it	can	no	longer	be	used.

9.50	DISCONNECT_FILE

	Note:	Built-In	Function	Rules.

Disconnects	a	file	previously	connected	to	a	server.
Warning:

Using	this	Built-In	Function	during	pending	I/O	operations	to	the	file	(e.g.	in
the	middle	of	a	SELECT	loop)	will	cause	unpredictable	results.
A	request	to	disconnect	a	file	that	is	not	currently	connected	will	be	ignored.
No	error	will	result.

For	use	with
LANSA	for	i YESOnly	available	with	RDMLX

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Physical	File\Table	Name
The	name	may	be	specified	as	a	generic
name.	The	*	symbol	is	used	as	the	generic
delimiter.

1 10 	 	

2 A Req SSN	of	defined	server. 1 10 	 	

	

Return	Values
No	return	values.

Technical	Notes

When	a	generic	name	is	specified	it	must	exactly	match	a	generic	name
previously	defined	by	using	the	CONNECT_FILE	Built-In	Function.
For	example	connecting	file	name	A*	and	then	disconnecting	file	name	AB*
does	not	mean	that	all	files	starting	with	A	(except	those	starting	with	AB)	are
currently	connected.	The	disconnect	of	AB*	will	not	find	a	match	in	the
connected	files	list	and	be	ignored.	All	files	that	start	with	A	will	continue	to
be	connected.
Disconnecting	a	file	while	it	is	in	use	(e.g:	in	the	middle	of	a	SELECT	loop
when	the	file	being	selected	is	not	connected	to	a	server	or	connected	to
another	server)	will	cause	application	failure	and/or	unpredictable	results.
It	is	very	strongly	recommended	that	all	"disconnect"	logic	is	coded	in	one
and	only	one	function,	rather	than	scattered	and	repeated	through	many
RDML	functions.	This	approach	will	isolate	your	application	from	future
changes	to	the	server(s)	that	are	being	used.
Do	not	attempt	to	disconnect	a	blank	file	name.
When	using	generic	file	names	(e.g.	LM*,	GL*,	*)	be	extremely	careful	not
to	overlap	any	generic	names.	Failure	to	observe	this	rule	will	cause
unpredictable	results.	This	rule	means	that	name	"*"	(any	name)	can	only	be
used	by	itself,	as	any	other	file	name	disconnected	before	or	after	the	"*"	will
overlap	with	it.
There	is	no	real	need	to	disconnect	file(s).	As	the	X_RUN	command	is
terminating	it	will	automatically	disconnect	any	connected	files.
Message	information	routed	from	the	server	machine	(in	any	form)	arrives	in
a	text	format.	It	is	displayed	and	accessible	to	RDML	functions	in	the	normal
manner	(e.g.	GET_MESSAGE)	as	pure	text.	The	message	identifier	and
message	file	name	details	are	not	available	for	messages	that	have	been
routed	from	a	server.	You	should	not	design	client	applications	that	rely	on
reading	specific	message	identifiers	from	the	applications	message	queue.

A	Note	on	Error	Handling
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application.

if	(#retcode	*ne	OK)	

				abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	Built-In	Function	to	every	generated	application
take	care	of	the	problem.	Situations	have	arisen	where	user	defined	error
handling	logic	has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML
code	(with	no	obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.

9.51	DISCONNECT_SERVER

	Note:	Built-In	Function	Rules.

Disconnects	the	current	function	from	a	previously	connected	server.
A	request	to	disconnect	a	server	that	is	already	disconnected	will	be	ignored.	No
error	will	result.

For	use	with
LANSA	for	i YESOnly	available	with	RDMLX

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req SSN	of	a	defined
server

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
OK	-	Disconnection
Completed.
ER	-	Error	during
Disconnection

2 2 	 	

	

Technical	Notes
Disconnecting	a	server	while	it	is	in	use	(e.g.	in	the	middle	of	a	SELECT	loop
when	the	file	being	selected	is	connected	to	the	server)	will	cause	application
failures.
It	is	very	strongly	recommended	that	all	"disconnect"	logic	is	coded	in	one
and	only	one	function,	rather	than	scattered	and	repeated	through	many
RDML	functions.	This	approach	will	isolate	your	application	from	future
changes	to	the	server(s)	that	are	being	used.
There	is	no	real	need	to	disconnect	server(s).	As	the	X_RUN	command	is
terminating	it	will	automatically	disconnect	any	connected	servers.
When	executing	against	a	database	server,	the	actual	connections	to	the
database	are	dropped,	but	if	more	IO	is	performed	against	the	database	the
connections	will	be	re-established	automatically.

A	Note	on	Error	Handling
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application.

if	(#retcode	*ne	OK)	

					abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	Built-In	Function	to	every	generated	application
take	care	of	the	problem.	Situations	have	arisen	where	user	defined	error
handling	logic	has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML
code	(with	no	obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.

9.52	DLL

	Note:	Built-In	Function	Rules.

Allows	processing	within	a	standard	DLL	(Dynamic	Link	Library)	object	to	be
invoked	from	a	LANSA	component	or	function.
This	is	a	generic	interface	to	operating	system	DLL	entry	points.	It	may	not	be
the	most	appropriate	interface	for	specialized	requirements.	For	specialized
requirements	please	investigate	creating	your	own	Built-In	Function.	Refer	to
Creating	Your	Own	Built-In	Functions	in	the	LANSA	Application	Design	Guide
for	more	details	of	this	facility.

For	use	with
LANSA	for	i NO 	

Visual	LANSA	for
Windows

YESOnly	execute	in	Visual	LANSA	applications	run	on
MS	Windows	platforms.

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Alias	name	of	DLL	to	be	invoked. 1 32 	 	

2 A Req Alias	name	of	function	(i.e.	entry	point)	to
be	invoked.

1 32 	 	

3-
20

X Opt User	defined	real	or	logical	arguments	to
be	passed	to	the	DLL	entry	points.

1 Unlimited 	 	

	

Return	Values

its:LANSA065.CHM::/lansa/dsnbi_0005.htm

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code
"OK"	=	Completed	okay.
"ER"	=	Error	detected.

2 2 	 	

2 A Opt Error	message	text 1 256 	 	

3-
20

X Opt User	defined	real	or	logical	return	values
from	the	DLL	entry	point.

1 Unlimited 	 	

	

Technical	Notes
It	is	obvious,	but	it	needs	to	be	said.	By	using	this	Built-In	Function	you	are
introducing	an	operating	system	dependency	into	your	function.

You,	the	application	builder,	are	totally	responsible	for	doing	this,	and	there	is
no	guarantee,	expressed	or	implied,	that	anything	you	do	via	this	Built-In
Function	is	in	any	way	portable	across	different	operating	systems	(or	even
versions	of	the	same	operating	system).
The	DLL	alias	name	and	entry	point	alias	name	must	be	alphanumeric	literals
as	the	values	that	they	specify	must	be	determinable	at	compile	time.
Before	a	DLL	can	be	used	it	must	be	defined	in	file	X_USEDLL.DAT	in	the
X_LANSA\SOURCE	directory.	This	file	provides	details	of	the	DLL	and	its
entry	points	and	maps	alias	names	to	real	names.	The	alias	and	real	name
facility	has	been	provided	to:

Provide	a	level	of	isolation	between	the	RDML	function	and	the	real
DLL.	For	example,	you	can	change	the	name	of	the	real	DLL	being
used	without	having	to	change	code	in	your	RDML	functions	(but	you
will	have	to	recompile	them	as	the	real	name	is	referenced	in	the
generated	C	code).
To	allow	for	RDML	code	that	is	easier	to	read.	For	example,	the
Crystal	Reports	DLL	is	called	"CRPE",	but	when	given	an	alias	name
of	"CrystalReports"	the	resulting	RDML	code	is	much	easier	to
understand.	The	same	logic	applies	to	entry	point	names.

The	X_USEDLL.DAT	Definition	File
The	X_USEDLL.DAT	definition	file	defines	the	characteristics	of	all	DLLs	that
can	be	used	by	the	DLL	Built-In	Function.	The	following	should	be	read	and
understood	before	attempting	to	create	or	alter	this	file	or	use	this	Built-In
Function:	
It	is	an	optional	file.	When	present	it	must	reside	in	the	X_LANSA\SOURCE
directory.
It	is	only	required	on,	and	used	by,	development	environments	during	code
generation.	Thus	changes	to	the	content	of	the	file	may	require	the
(re)generation	and	(re)compilation	of	RDML	functions	that	use	DLLs
affected	by	the	changes.
There	is	no	need	for	this	file	to	exist	in	execution	environments.
No	DLL	can	have	more	than	256	entry	points	defined	for	it.
This	file	is	a	simple	keyword	definition	style	file	that	can	be	edited	with	most
source	editors.	The	file	is	laid	out	as	a	series	of	keywords	(which	must	begin
in	column	1	of	the	record,	and	only	one	keyword	per	line	may	be	specified):

Keyword Meaning

* Line	is	a	comment

DLLNAM=Name	of	the	real	(ie:	operating	system	level)	DLL	file	without	any
form	of	suffix.

DLLALS= The	alias	name	for	this	DLL	that	is	to	be	used	in	RDML	functions.
Up	to	32	characters	may	be	specified.	This	name	must	be	unique
within	the	definition	file	and	is	not	case	sensitive.	The	DLLNAM=
must	precede	DLLALS=.

ENTNAM=Name	of	the	real	(ie:	operating	system	level)	DLL	entry	point.	This
name	is	case	sensitive	in	most	operating	systems.	This	name	should
be	unique	within	the	current	DLL	definition.

ENTALS= The	alias	name	for	a	DLL	entry	point	that	is	to	be	used	in	RDML
functions	Up	to	32	characters	may	be	specified.	This	name	must	be
unique	within	the	current	DLL	and	is	not	case	sensitive.	The
ENTNAM=	must	precede	ENTALS=.

ENTSKL= Specifies	the	name	of	the	skeleton	file	(including	the	suffix)	that
defines	the	required	C	code	to	execute	the	DLL	entry	point.	This

code	is	used	as	a	template	to	generate	C	code	to	invoke	the	DLL
entry	point.	Please	refer	to	shipped	samples	/	examples	for	fully
commented	examples	of	how	to	produce	such	a	template.	All
template	files	must	reside	in	the	X_LANSA/SOURCE	directory.
The	ENTNAM=	must	precede	ENTSKL=.

	

As	an	example	of	the	content	of	this	file,	consider	the	following:
*		--
*	Example	of	defining	Crystal	Report	DLL	entry	points
*	---
DLLNAM=CRPE
DLLALS=CrystalReports
*
ENTNAM=PEOpenEngine
ENTALS=OpenEngine
ENTSKL=CRPE0001.S
*
ENTNAM=PECloseEngine
ENTALS=CloseEngine
ENTSKL=CRPE0002.S
*
ENTNAM=PEPrintReport
ENTALS=PrintReport
ENTSKL=CRPE0003.S
*
ENTNAM=PEGetVersion
ENTALS=GetVersion
ENTSKL=CRPE0004.S
	

Here	you	can	see	the	definitions	for	the	Crystal	Reports	DLL	named	CRPE.	It
has	four	entry	point	aliases	called	OpenEngine,	CloseEngine,	PrintReport	and
GetVersion.	The	skeleton	/	template	code	for	invoking	this	DLL	and	the	entry
points	is	to	be	found	in	the	...\X_LANSA\SOURCE	directory	in	files
CRPE0001.S,	CRPE0002.S,	CRPE0003.S	and	CRPE0004.S	respectively.	The
skeleton	code	defines	how	the	DLL	is	loaded,	what	the	real	entry	point	names
are,	how	Built-In	Function	arguments	are	mapped	to	entry	point	arguments,	how

return	codes	and	return	values	are	handled,	etc.
When	setting	up	your	own	skeleton	files	/	templates	please	follow	these
guidelines:
Copy	a	shipped	example	and	use	it	as	a	starting	point.
Always	place	the	file	in	the\X_LANSA\SOURCE	directory	and	make	a
backup	copy.
Do	not	use	the	file	suffix	.S,	which	is	reserved	so	the	Visual	LANSA
install/upgrade	procedures	can	identify	its	own,	shipped	skeletons	and	replace
them.	If	you	use	suffix	.S	then	your	files	will	be	deleted	the	next	time	that	you
install/upgrade.

The	DLL	may	need	to	be	copied	into	the	X_LANSA/EXECUTE	directory	for
the	application	to	be	executed	properly.	For	example,	CRPE32.DLL	has	to	be
copied	into	the	X_LANSA/EXECUTE	directory.
At	your	development	site,	you	need	to	decide	on	a	convention	for	mapping	this
Built-In	Function's	arguments	to	the	actual	DLL	entry	point	arguments.	The
convention	you	adopt	is	implemented	in	the	skeleton/template	code	associated
with	each	DLL	entry	point.
The	skeleton	template	file	supplied	was	used	because	it	supports:
Variable	argument	lists	and	default	values	for	arguments	that	the	caller	has
not	passed.
Variable	and	optional	return	values.
The	ability	to	add	new	arguments	or	return	values	at	any	time,	without	the
need	to	modify	or	even	recompile	any	existing	caller	of	the	DLL	entry	point.
The	ability	to	handle	all	calling	conventions	and	pointer	conversion
requirements	and,	cleanly	support	multiple	operating	systems	via	one	simple
interface.
The	ability	to	hide	the	complexity	of	DLL	loading	and	entry	point	resolution
from	the	RDML	level	programming	interface.
Performance	appropriate	for	the	high	level	of	programming	used	in	the
LANSA	RDML	language.

For	example,	the	Crystal	Reports	entry	points	use	the	following	parameter	and
return	value	conventions	in	their	shipped	format:

DLL	Alias Entry	Point AliasArguments	And	Return	Values

CrystalReportsOpenEngine Ret	1 Is	the	OK	or	ER	return	code	and	it	is

optional.

CrystalReportsCloseEngineRet	1 Is	the	OK	or	ER	return	code	and	it	is
optional.

CrystalReportsPrintReport Arg
3

Is	the	report	name	and	it	is	required.	If	not
specified	it	will	default	to	a	null	string
causing	a	"not	found"	error.

Arg
4

Is	the	print	report	option	and	it	is	optional.	It
should	be	Y	or	N.	It	defaults	to	Y.

Arg
5

Is	the	show	in	window	option	and	it	is
optional.	It	should	be	Y	or	N.	It	defaults	to	N.

Arg
6

Is	the	window	title	and	it	is	optional.	It
defaults	to	a	null	string.

Ret	1 Is	the	OK	or	ER	return	code.

CrystalReportsGetVersion Ret	1 Is	the	OK	or	ER	return	code	and	it	is
optional.

Ret	2 Is	the	major	version	number	and	it	is
optional.

Ret	3 Is	the	minor	version	number,	and	is	optional.

	

9.53	DLT_FIELD

	Note:	Built-In	Function	Rules.

Deletes	a	field	definition	from	the	LANSA	Repository	and	any	LANSA	for	the
Web	visual	components	associated	with	the	field.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	field	to	be	deleted	from
Repository

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code.
OK	=	field	details	returned
ER	=	field	not	accessible.
In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

2 2 	 	

	

9.54	DLT_FILE

	Note:	Built-In	Function	Rules.

Submits	a	job	to	delete	a	file	and	its	associated	logical	files	and	I/O	module.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

On	the	IBM	i	,	this	Built-In	Function	submits	a	job	to
perform	the	delete	operation.

Visual	LANSA	for
Windows

YESThis	Built-In	Function	does	not	submit	a	job.	It	deletes
the	file	and	then	returns	control.

Visual	LANSA	for
Linux

NO 	

	

Arguments	for	Visual	LANSA
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req File	name 1 10 	 	

2 A Req Library	name.	In	Visual	LANSA	blanks	are
valid	for	backward	compatibility.

1 10 	 	

3 A Opt Name	of	job.
Ignored

1 10 	 	

4 A Opt Name	of	job	description.
Ignored

1 21 	 	

5 A Opt Name	of	job	queue.
Ignored

1 21 	 	

6 A Opt Name	of	output	queue.
Ignored

1 21 	 	

	

Arguments	for	LANSA	for	i
For	further	information,	refer	to	Delete	a	file	from	the	System	described	in
Submitting	the	Job	to	Delete	a	File	Definition	in	the	LANSA	for	i	User	Guide.

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req File	name 1 10 	 	

2 A Req Library	name 1 10 	 	

3 A Opt Name	of	job
Default:	File	name

1 10 	 	

4 A Opt Name	of	job	description	Default:	the	job
description	from	the	requesting	job's
attributes.

1 21 	 	

5 A Opt Name	of	job	queue	Default:	the	job	queue
from	the	requesting	job's	attributes.

1 21 	 	

6 A Opt Name	of	output	queue	Default:	the	output
queue	from	the	requesting	job's	attributes.

1 21 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	successful	submission
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.

2 2 	 	

its:LANSA010.CHM::/lansa/ugub_30015.htm

In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

	

Example
A	user	wants	to	control	the	deletion	of	files	and	associated	logical	views	and	I/O
module	using	their	own	version	of	the	"Delete	a	file	from	the	System"	facility.
*********			Define	arguments	and	lists
DEFINE						FIELD(#FILNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE						FIELD(#LIBNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE						FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
BEGIN_LOOP						
*********			Request	File	and	library	name
REQUEST					FIELDS(#FILNAM	#LIBNAM)
*********			Execute	built-in-function	-	DLT_FILE
USE									BUILTIN(DLT_FILE)	WITH_ARGS(#FILNAM	#LIBNAM)	
												TO_GET(#RETCOD)
*********			Check	if	submission	was	successful
IF										COND('#RETCOD	*EQ	''OK''')
MESSAGE					MSGTXT('Delete	of	file	submitted	successfully')
CHANGE						FIELD(#FILNAM)	TO(*BLANK)
ELSE						
MESSAGE					MSGTXT('Delete	submit	failed	with	errors,	
																				refer	to	additional	messages')
ENDIF						
END_LOOP						
	

9.55	DLT_PROCESS_ATTACH

	Note:	Built-In	Function	Rules.

Deletes	all	attached	processes	and/or	functions	from	the	definition	of	the
process	definition	currently	being	edited	by	the	START_PROCESS_EDIT
Built-In	Function.
Information	passed	into	this	Built-In	Function	is	subjected	to	the	same	editing
and	validation	rules	as	the	equivalent	online	facility	provided	in	a	full	LANSA
development	environment.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Delete	Test	Sequence	Number.																							
All	attached	processes	/	functions	with	a
sequence	number	greater	than	or	equal	to	this
value	are	to	be	deleted.

1 3 0 0

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.56	DOM_ADD_FIELD

	Note:	Built-In	Function	Rules.

Adds	a	field	to	an	open	data	note	using	the	field	name.	The	field	type	must	also
be	specified.
The	field	types	supported	are	the	simple	data	types	TYPE_TEXT,	
TYPE_NUMBER,	TYPE_TIME	and	TYPE_TEXT_LIST	as	these	are	the
closest	types	to	the	standard	LANSA	data	types	A	(Alphanumeric),	P	(Packed)
and	S	(Signed).	The	data	will	be	converted	to	the	required	field	type	and	from
EBCDIC	to	LMBCS	for	TYPE_TEXT,	TYPE_DATE	and	TYPE_TEXT_LIST
fields.
Either	an	alphanumeric	field	value	or	numeric	field	value	should	be	specified	to
create	the	new	field.		For	a	TYPE_TIME	field,	the	alphanumeric	value	may	be
specified	as	'*CURRENT',	in	which	case	the	current	date	and	time	will	be	set
for	the	field	otherwise	the	date/time	value	must	be	supplied	in	the	correct	format
e.g.	mm/dd/yy	hh:mm:ss.	For	a	TYPE_TEXT_LIST	field,	the	value	will	be
added	to	the	existing	field	if	the	text	list	field	already	exists.
Note	that	the	document/data	note	is	not	updated	in	the	database	until	you	use	the
DOM_UPDATE_DOCUMENT	Built-In	Function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Document/Data	Note	handle 4 4 	 	

2 A Req Field	name	to	be	added	to	the	document 1 65 	 	

3 N Req Field	type	in	note:
1	=	TYPE_NUMBER
2	=	TYPE_TEXT
3	=	TYPE_TIME
4	=	TYPE_TEXT_LIST

1 7 0 0

4 A Opt Alphanumeric	field	required	for	field	type
TYPE_TEXT,	TYPE_TIME	&
TYPE_TEXT_LIST

1 256 	 	

5 N Opt Numeric	field	required	for	field	type
TYPE_NUMBER

1 15 0 9

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Field	successfully
added.
ER	=	Field	not	added.

2 2 	 	

	

Example
Refer	to	this	Domino	Built-In	Function	Example:
Example	1:	Creating	a	New	Document	in	a	Database

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs
NSFFieldSetNumber,	NSFFieldSetText,	ConvertTextToTIMEDATE,
NSFFieldSetTime	and	NSFFieldAppendTextList.	All	security	and	integrity
issues	related	to	the	use	of	this	Built-In	Function	are	according	to	normal	Lotus
Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example1.HTM

9.57	DOM_ADD_ITEM

	Note:	Built-In	Function	Rules.

Adds	an	item	to	an	open	data	note	using	the	item	name.	The	item	type	must	also
be	specified.
The	item	types	supported	are	the	simple	data	types	TYPE_TEXT,	
TYPE_NUMBER,	TYPE_TIME	and	TYPE_TEXT_LIST	as	these	are	the
closest	types	to	the	standard	LANSA	data	types	A	(Alphanumeric),	P	(Packed)
and	S	(Signed).	The	data	will	be	converted	to	the	required	item	type	and	from
EBCDIC	to	LMBCS	for	TYPE_TEXT,		TYPE_DATE	and	TYPE_TEXT_LIST
items.
Either	an	alphanumeric	field	value	or	numeric	field	value	should	be	specified	to
create	the	new	item.		For	a	TYPE_TIME	item,	the	alphanumeric	value	may	be
specified	as	'*CURRENT',	in	which	case	the	current	date	and	time	will	be	set
for	the	item	otherwise	the	date/time	value	must	be	supplied	in	the	correct	format
e.g.	mm/dd/yy	hh:mm:ss.	For	a	TYPE_TEXT_LIST	item,	the	value	will	be
added	to	the	existing	item	if	the	text	list	item	already	exists.
Note	that	the	document/data	note	is	not	updated	in	the	database	until	you	use	the
DOM_UPDATE_DOCUMENT	Built-In	Function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req Document/Data	Note	handle 4 4 	 	

2 A Req Item	name	to	be	added	to	the	document 1 65 	 	

3 N Req Item	type	in	note:
1	=	TYPE_NUMBER
2	=	TYPE_TEXT
3	=	TYPE_TIME
4	=	TYPE_TEXT_LIST

1 7 0 0

4 A Opt Alphanumeric	field	required	for	item
type	TYPE_TEXT,	TYPE_TIME	&
TYPE_TEXT_LIST
Refer	to	Argument	Item	4.

1 Unlimited 	 	

5 N Opt Numeric	field	required	for	item	type
TYPE_NUMBER

1 15 0 9

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Item	successfully
added.
ER	=	Item	not	added.

2 2 	 	

	

Example
Refer	to	this	Domino	Built-In	Function	Example:
Example	1:	Creating	a	New	Document	in	a	Database

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	NSFItemSetNumber,
NSFItemSetText,	ConvertTextToTIMEDATE,	NSFItemSetTime	and
NSFItemAppendTextList.	All	security	and	integrity	issues	related	to	the	use	of
this	Built-In	Function	are	according	to	normal	Lotus	Notes	API	use	for	the
current	platform.

its:lansa013.CHM::/lansa/dom_example1.HTM

Argument	Item	4
This	Built-In	Function	also	converts	the	value	of	the	fourth	argument	(whenever
it	is	applicable)	into	LMBCS	equivalent		using	Lotus	API	OSTranslate,	which
can	process	up	to	65535	bytes	only.	Therefore,	the	length	of	the	added	Item
must	not	exceed	65535	bytes.

9.58	DOM_CLOSE_DATABASE

	Note:	Built-In	Function	Rules.

Closes	a	previously	opened	Domino/Notes	Database	on	a	local	or	remote
Domino	server.	If	the	database	resides	on	a	remote	server,	the	session	to	the
server	is	also	closed.
You		must	use	the	DOM_CLOSE_DATABASE	Built-In	Function	before	exiting
your	application	once	the	database	has	been	previously	opened.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Database	handle4 4 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Database	successfully
closed.
ER	=	Database	not	closed.

2 2 	 	

	

Examples
Refer	to	these	Domino	Built-In	Function	Examples:
Example	1:	Creating	a	New	Document	in	a	Database
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	3:	Executing	an	Agent	in	a	Database
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	API	NSFDbClose.	All
security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example1.HTM
its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example3.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

9.59	DOM_CLOSE_DOCUMENT

	Note:	Built-In	Function	Rules.

Closes	an	open	document	when	no	longer	required	to	release	Notes	allocated
memory	for	the	document/data	note.
Note	that	this	does	not	write	the	contents	of	the	document	to	the	database,	you
must	use	the	DOM_UPDATE_DOCUMENT	Built-In	Function	to	update	the
document	to	disk.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Document/Data	Note
handle

4 4 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Document/Data	Note
successfully	closed.
ER	=	Document/Data	Note	not
closed.

2 2 	 	

	

Examples
Refer	to	these	Domino	Built-In	Function	Examples	in	the	Visual	LANSA
Developer	Guide:
Example	1:	Creating	a	New	Document	in	a	Database
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	3:	Executing	an	Agent	in	a	Database
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	API	NSFNoteClose.	All
security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example1.HTM
its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example3.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

9.60	DOM_CLOSE_FILE

	Note:	Built-In	Function	Rules.

Closes	a	previously	opened	Domino/Notes	File	on	a	local	or	remote	Domino
server.	If	the	file	resides	on	a	remote	server,	the	session	to	the	server	is	also
closed.
You		must	use	the	DOM_CLOSE_FILE	Built-In	Function	before	exiting	your
application	once	the	file	has	been	previously	opened.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/	OptDescriptionMin	LenMax	LenMin	DecMax	Dec

1 A Req File	handle 4 4 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	File	successfully
closed.
ER	=	File	not	closed.

2 2 	 	

	

Examples
Refer	to	these	Domino	Built-In	Function	Examples:
Example	1:	Creating	a	New	Document	in	a	Database
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	3:	Executing	an	Agent	in	a	Database
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	API	NSFDbClose.	All
security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example1.HTM
its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example3.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

9.61	DOM_CREATE_DOCUMENT

	Note:	Built-In	Function	Rules.

Creates	a	new	document/data	note	in	memory	within	an	opened	database.
Note	that	the	document/data	note	is	empty	after	creation	and	is	not	yet	stored	in
the	database.		You	should	use	the	DOM_ADD_ITEM	Built-In	Function	to	add
items/fields	to	the	note	and	the	DOM_UPDATE_DOCUMENT	Built-In
Function	to	update	the	document/data	note	in	the	database.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Database	handle4 4 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Document	successfully
created.
ER	=	Document	not	created.

2 2 	 	

2 A Req Document/Data		Note	Handle 4 4 	 	

	

Example
Refer	to	these	Domino	Built-In	Function	Examples:
Example	1:	Creating	a	New	Document	in	a	Database

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	API	NSFNoteCreate.	All
security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example1.HTM

9.62	DOM_DELETE_DOCUMENT

	Note:	Built-In	Function	Rules.

Deletes	a	document/data	note	from	the	database	using	the	given	Note	ID.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Database	handle4 4 	 	

2 N Req Note	ID 1 15 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Document/Data	Note
successfully	deleted.
ER	=	Document/Data	Note	not
deleted.

2 2 	 	

	

Example

Refer	to	these	Domino	Built-In	Function	Examples:
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	API	NSFNoteDelete.	All
security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example4.HTM

9.63	DOM_DELETE_FIELD

	Note:	Built-In	Function	Rules.

Deletes	a	field	from	an	open	document/data	note	using	the	field	name.	The
named	field	is	deleted	from	the	in-memory	copy	of	the	document	until	the
DOM_UPDATE_DOCUMENT	Built-In	Function	is	used	to	update	the
document/note	in	the	database.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Document/Data	Note	handle 4 4 	 	

2 A Req Field	name	in	the	document	whose
value	is		to	be	deleted.

1 65 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Field	value	successfully
deleted.
ER	=	Field	not	deleted.

2 2 	 	

NF	=	Field	value	not	found.

	

Example
Refer	to	these	Domino	Built-In	Function	Examples:
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	NSFFieldIsPresent
and	NSFFieldDelete.	All	security	and	integrity	issues	related	to	the	use	of	this
Built-In	Function	are	according	to	normal	Lotus	Notes	API	use	for	the	current
platform.

its:lansa013.CHM::/lansa/dom_example4.HTM

9.64	DOM_DELETE_ITEM

	Note:	Built-In	Function	Rules.

Deletes	an	item	from	an	open	document/data	note	using	the	item	name.	The
named	item	is	deleted	from	the	in-memory	copy	of	the	document	until	the
DOM_UPDATE_DOCUMENT	Built-In	Function	is	used	to	update	the
document/note	in	the	database.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Document/Data	Note	handle 4 4 	 	

2 A Req Item	name	in	the	document	whose
value	is		to	be	deleted.

1 65 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Item	value	successfully
deleted.
ER	=	Item	not	deleted.

2 2 	 	

NF	=	Item	value	not	found.

	

Example
Refer	to	these	Domino	Built-In	Function	Examples:
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	NSFItemIsPresent
and	NSFItemDelete.	All	security	and	integrity	issues	related	to	the	use	of	this
Built-In	Function	are	according	to	normal	Lotus	Notes	API	use	for	the	current
platform.

its:lansa013.CHM::/lansa/dom_example4.HTM

9.65	DOM_END_SEARCH_DOCS

	Note:	Built-In	Function	Rules.

Must	be	called	when	the	processing	of	all	documents,	as	the	result	of		the
DOM_SEARCH_DOCUMENTS	Built-In	Function,	is	complete.	This	will
release	all	memory	that	was	allocated	to	process	the
DOM_SEARCH_DOCUMENTS	Built-In	Function	request.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Note	ID	Table	handle4 4 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Memory	successfully
released.
ER	=	Error	releasing	memory.

2 2 	 	

	

Examples
Refer	to	these	Domino	Built-In	Function	Examples:
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	API	IDDestroyTable.	All
security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

9.66	DOM_EXECUTE_AGENT

	Note:	Built-In	Function	Rules.

Executes	an	Agent	.	The	Note	ID	of	the	specified	agent	will	be	obtained		and	the
Agent	will	be	then	be	opened	and	an	Agent	runtime	context	will	be	created
before	running	the	Agent.
Agents	are	design	notes	that	perform	custom	operations	on	documents	in	a
database.	Agents	usually	contain	formulas	that	select	which	documents	to
process,	and	calculate	values	to	store	in	the	documents.	You	may	execute	any
agent	that	does	not	depend	on	Notes	user	interface	functionality.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Database	handle4 4 	 	

2 A Req Agent	name 1 128 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Agent	ran	successfully.
ER	=	Agent	did	not	run

2 2 	 	

successfully.

	

Example
Refer	to	these	Domino	Built-In	Function	Examples:
Example	3:	Executing	an	Agent	in	a	Database

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	NIFFindDesignNote,
NIFFindPrivateDesignNote,	AgentOpen,	AgentCreateRunContext,
AgentRedirectStdout,	AgentRun,	AgentDestroyRunContext	and	AgentClose.
All	security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example3.HTM

9.67	DOM_GET_FIELD

	Note:	Built-In	Function	Rules.

Gets	a	field	from	an	open	data	note	using	the	field	name.	Either	an
alphanumeric	field	value	or	numeric	field	value	will	be	returned	for	the	field
according	to	the	field	type.
The	field	types	supported	are	the	simple	data	types	TYPE_TEXT,	
TYPE_NUMBER,	TYPE_TIME		and	TYPE_TEXT_LIST	as	these	are	the
closest	types	to	the	standard	LANSA	data	types	A	(Alphanumeric),	P	(Packed)
and	S	(Signed).	The	data	will	be	converted	from		the	required	field	type	and
from	LMBCS	to	EBCDIC	for	TYPE_TEXT,		TYPE_TIME	and
TYPE_TEXT_LIST	fields.
For	a	TYPE_TEXT_LIST	field,	an	entry	position	must	be	specified	with	a	value
of	0	being	for	the	first	entry	in	the	test	list	field.		The	return	code	is	set	to	"NF"
when	the	entry	position	requested	is	greater	than	the	number	of	entries	in	the
text	list	field.
If	a	field	type	of	TYPE_TEXT	is	specified	as	an	argument	but	the	actual	field
type	in	the	document	is	TYPE_TEXT_LIST,	the	first	entry	in	the	text	list	field
will	be	returned	by	default	with	no	error.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Document/Data	Note	handle 4 4 	 	

2 A Req Field	name	in	the	document	whose
value	is		to	be	returned.

1 65 	 	

3 N Req Field	type	in	note:
1	=	TYPE_NUMBER
2	=	TYPE_TEXT
3	=	TYPE_TIME
4	=	TYPE_TEXT_LIST

1 7 0 0

4 N Opt Entry	position	for	a
TYPE_TEXT_LIST	field.

1 15 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Field	value	successfully	retrieved.
ER	=	Field	not	retrieved.
NF	=	Field	value	not	found.

2 2 	 	

2 A Opt Alphanumeric	field	required	for	field	type
TYPE_TEXT,	TYPE_TIME	&
TYPE_TEXT_LIST

1 256 	 	

3 N Opt Numeric	field	required	for	field	type
TYPE_NUMBER

1 15 0 9

	

Examples
Refer	to	these	Domino	Built-In	Function	Examples:
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	NSFFieldIsPresent,

its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

NSFFieldInfo,	NSFFieldGetNumber,	NSFFieldGetText,
ConvertTIMEDATEToText,	NSFFieldGetTime,	NSFFieldGetTextListEntries
and	NSFFieldGetTextListEntry.	All	security	and	integrity	issues	related	to	the
use	of	this	Built-In	Function	are	according	to	normal	Lotus	Notes	API	use	for
the	current	platform.

9.68	DOM_GET_ITEM

	Note:	Built-In	Function	Rules.

Gets	an	item	from	an	open	data	note	using	the	item	name.	Either	an
alphanumeric	field	value	or	numeric	field	value	will	be	returned	for	the	item
according	to	the	item	type.
The	item	types	supported	are	the	simple	data	types	TYPE_TEXT,	
TYPE_NUMBER,	TYPE_TIME		and	TYPE_TEXT_LIST	as	these	are	the
closest	types	to	the	standard	LANSA	data	types	A	(Alphanumeric),	P	(Packed)
and	S	(Signed).	The	data	will	be	converted	from		the	required	item	type	and
from	LMBCS	to	EBCDIC	for	TYPE_TEXT,		TYPE_TIME	and
TYPE_TEXT_LIST	items.
For	a	TYPE_TEXT_LIST	item,	an	entry	position	must	be	specified	with	a	value
of	0	being	for	the	first	entry	in	the	test	list	item.		The	return	code	is	set	to	"NF"
when	the	entry	position	requested	is	greater	than	the	number	of	entries	in	the
text	list	item.
If	an	item	type	of	TYPE_TEXT	is	specified	as	an	argument	but	the	actual	item
type	in	the	document	is	TYPE_TEXT_LIST,	the	first	entry	in	the	text	list	item
will	be	returned	by	default	with	no	error.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Document/Data	Note	handle 4 4 	 	

2 A Req Item	name	in	the	document	whose
value	is		to	be	returned.

1 65 	 	

3 N Req Item	type	in	note:
1	=	TYPE_NUMBER
2	=	TYPE_TEXT
3	=	TYPE_TIME
4	=	TYPE_TEXT_LIST

1 7 0 0

4 N Opt Entry	position	for	a
TYPE_TEXT_LIST	item.

1 15 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Item	value	successfully	retrieved.
ER	=	Item	not	retrieved.
NF	=	Item	value	not	found.

2 2 	 	

2 A Opt Alphanumeric	field	required	for	item	type
TYPE_TEXT,	TYPE_TIME	&
TYPE_TEXT_LIST

1 256 	 	

3 N Opt Numeric	field	required	for	item	type
TYPE_NUMBER

1 15 0 9

	

Example
Refer	to	these	Domino	Built-In	Function	Examples:
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	NSFItemIsPresent,

its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

NSFItemInfo,	NSFItemGetNumber,	NSFItemGetText,
ConvertTIMEDATEToText,	NSFItemGetTime,	NSFItemGetTextListEntries	and
NSFItemGetTextListEntry.	All	security	and	integrity	issues	related	to	the	use	of
this	Built-In	Function	are	according	to	normal	Lotus	Notes	API	use	for	the
current	platform.

9.69	DOM_GET_NXT_DOCUMENT

	Note:	Built-In	Function	Rules.

Gets	the	first	or	next	Note	ID	from	the	ID	Table	created	by	a	previous
DOM_SEARCH_DOCUMENTS	Built-In	Function	call.
To	return	the	Note	ID	of	the	first	document	in	the	ID	Table	set	the	Previous
Note	ID	argument	to	0	otherwise	it	should	be	set	to	the	value	returned	from	a
previous	call	to	this	Built-In	Function.
The	returned	Note	ID	should	then	be	processed	as	required	by	the
DOM_OPEN_DOCUMENT,	DOM_GET_ITEM,	DOM_UPDATE_ITEM,
DOM_UPDATE_DOCUMENT,...	Built-In	Functions.
When	the	processing	of	all	documents	is	complete	the
DOM_END_SEARCH_DOCS	Built-In	Function	must	be	used.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Note	ID	Table	handle 4 4 	 	

2 N Req Previous	Note	ID:
Set	to	0	to	return	the	first	Note	ID	in	the	ID
Table	otherwise	set	to	the	previously	returned
Note	ID.

1 15 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Next	Note	ID	returned
successfully.
EF	=	No	more	Note	Ids	in	the
ID	Table.
ER	=	Error	returning	next	Note
ID.

2 2 	 	

2 N Req Note	ID	returned 1 15 0 0

	

Examples
Refer	to	these	Domino	Built-In	Function	examples:
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	API	IDScan.	All	security
and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are	according	to
normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

9.70	DOM_OPEN_DATABASE

	Note:	Built-In	Function	Rules.

Opens	a	Domino/Notes	Database	on	a	local	or	remote	Domino	server.
You	must	use	the	DOM_CLOSE_DATABASE	Built-In	Function	before	exiting
your	application	once	the	database	has	been	opened.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Notes	database	file	name.
Note:
This	includes	the	Notes	data	directory.
The	file	extension	may	be	omitted	if	it	is
".NSF"	e.g.	"/NOTES/DATA/ACME.NSF"

1 255 	 	

2* A Opt Network	port	name 1 32 	 	

3* A Opt Domino	server	name 1 255 	 	

	

Note:	Arguments	2*	and	3*	required	if	accessing	a	Remote	Server	Directory
To	open	the	database	on	a	local	Domino	server	only	requires	the	database	name.
To	open	the	database	on	a	remote	Domino	server	may	require	a	full	path	name
including	the	server	name	(TCP/IP	host	name	usually	registered	in	a	DNS),	the

organisation	name,	the	country	code	and	Notes	database	name	eg.
"SYDNOTES/ACME/AU/NOTES/DATA/ACME.NSF".
The	server	name	may	be	sufficient	if	this	name	exists	in	the	TCP/IP	Host	Table
on	the	local	IBM	i	server.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Database	successfully
opened.
ER	=	Database	not	opened.

2 2 	 	

2 A Req Database	handle 4 4 	 	

	

Examples
Refer	to	these	Domino	Built-In	Function	Examples:
Example	1:	Creating	a	New	Document	in	a	Database
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	3:	Executing	an	Agent	in	a	Database
Example	4:	Updating	Documents	selected	from	a	Browselist.

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	OSTranslate,
NotesInit,	OSPathNetConstruct	and	NSFDbOpen.	All	security	and	integrity
issues	related	to	the	use	of	this	Built-In	Function	are	according	to	normal	Lotus
Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example1.HTM
its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example3.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

9.71	DOM_OPEN_DOCUMENT

	Note:	Built-In	Function	Rules.

Opens	the	specified	document	within	a	database	using	the	given	Note	ID.
You	must	use	either	the	DOM_UPDATE_DOCUMENT	or
DOM_CLOSE_DOCUMENT	Built-In	Function	when	you	have	finished	with
the	document	to	release	Notes	allocated	memory.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Database	handle4 4 	 	

2 N Req Note	ID 1 15 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Document	successfully
opened.
ER	=	Document	not	opened.

2 2 	 	

2 A Req Document/Data		Note	Handle 4 4 	 	

	

Example
Refer	to	this	Domino	Built-In	Function	Examples:
Example	2:	Selecting	documents	from	a	Database	using	a	view.

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	API	NSFNoteOpen.	All
security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example2.HTM

9.72	DOM_OPEN_FILE

	Note:	Built-In	Function	Rules.

Opens	a	Domino/Notes	File	on	a	local	or	remote	Domino	server.
You	must	use	the	DOM_CLOSE_FILE	Built-In	Function	before	exiting	your
application	once	the	file	has	been	opened.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Notes	file	file	name.
Note:
This	includes	the	Notes	data	directory.
The	file	extension	may	be	omitted	if	it	is
".NSF"	e.g.	"/NOTES/DATA/ACME.NSF"

1 255 	 	

2* A Opt Network	port	name 1 32 	 	

3* A Opt Domino	server	name 1 255 	 	

	

Note:	Arguments	2	and	3*	required	if	accessing	a	Remote	Server	Directory
To	open	the	file	on	a	local	Domino	server	only	requires	the	file	name.
To	open	the	file	on	a	remote	Domino	server	may	require	a	full	path	name
including	the	server	name	(TCP/IP	host	name	usually	registered	in	a	DNS),	the

organisation	name,	the	country	code	and	Notes	file	name	eg.
"SYDNOTES/ACME/AU/NOTES/DATA/ACME.NSF".
The	server	name	may	be	sufficient	if	this	name	exists	in	the	TCP/IP	Host	Table
on	the	local	IBM	i	server.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	File	successfully
opened.
ER	=	File	not	opened.

2 2 	 	

2 A Req File	handle 4 4 	 	

	

Examples
Refer	to	these	Domino	Built-In	Function	Examples:
Example	1:	Creating	a	New	Document	in	a	Database
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	3:	Executing	an	Agent	in	a	Database
Example	4:	Updating	Documents	selected	from	a	Browselist.

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	OSTranslate,
NotesInit,	OSPathNetConstruct	and	NSFDbOpen.	All	security	and	integrity
issues	related	to	the	use	of	this	Built-In	Function	are	according	to	normal	Lotus
Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example1.HTM
its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example3.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

9.73	DOM_SEARCH_DOCUMENTS

	Note:	Built-In	Function	Rules.

Searches	a	database	for	documents/data	notes	matching	selection	criteria	or
using	a	previously	created	view.	If	no	selection	criteria	or	view	is	specified	then
all	documents/data	notes	in	the	database	will	match.
The	result	of	this	Built-In	Function	is	a	Note	ID	table	which	can	be	used	to	read
documents	sequentially	using	the	DOM_GET_NXT_DOCUMENT	Built-In
Function.	When	selection	criteria	is	specified,	the	selection	formula	is	compiled
and	a	Note	ID	table	built	for	all	documents	matching	the	criteria.	When	a	view
is	specified,	a	collection	will	be	built	for	the	view	and	all	Note	Ids	for	the
collection	will	be	added	to	the	Note	ID	table.
Note	that	if	selection	criteria	is	specified,	it	must	conform	to	the	same	syntax	as
view	selection	formulas	which	consist	of	Notes	@functions,	field	names	and
logical	operators.	Selection	criteria	must	be	quoted	correctly.	The	syntax	of	the
selection	criteria	will	not	be	validated.
When	the	processing	of	all	documents	is	complete	the
DOM_END_SEARCH_DOCS	Built-In	Function	must	be	used.
Some	general	guidelines	for	using	a	view	versus	using	selection	criteria	are:
Use	selection	criteria	to	select	documents	from	a	database	when	the	selection
criteria	is	not	known	until	run	time,	if	the	performance	of	the	program	is	not
important	or	the	program	will	be	run	only	a	few	times.
Use	a	view	to	select	documents	from	a	database	when	you	want	to	process	the
documents	in	a	certain	order	or	the	performance	of	the	program	is	important.
You	will	usually	find	the	document	selection	using	a	view	to	be	faster	than
the	equivalent	selection	using	selection	criteria.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Database	handle 4 4 	 	

2 A Req Search	Type:
V	=	View
C	=	Selection	Criteria
N	=	None	i.e.	all	documents	will	be	selected.

1 1 	 	

3 A Opt View	Name	-	required	if	Search	Type	=	V 1 128 	 	

4 A Opt Selection	Criteria
-	required	if	Search	Type	is	C
-	required	if	Search	Type	is	V	and	search	is
done	via	the	Find	By	Name	method.	The
value	entered	is	a	case	insensitive	match	of
the	primary	sort	key.

1 255 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Search	completed	successfully.
ER	=	Search	did	not	complete
successfully.

2 2 	 	

2 A Req Note	ID	Table	Handle 4 4 	 	

3 N Opt No.	Note	Ids	in	the	Note	ID	Table	i.e.	the
number	of	documents	selected.

1 15 0 0

	

Examples
Refer	to	these	Domino	Built-In	Function	Examples:
Example	2:	Selecting	documents	from	a	Database	using	a	view
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	IDCreateTable,
NSFFormulaCompile,	NSFSearch,	IDEntries,	IDInsert,	NIFFindView,
NIFOpenCollection,	IDCreateTable,	NIFReadEntries	and	NIFCloseCollection.
All	security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example2.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

9.74	DOM_UPDATE_DOCUMENT

	Note:	Built-In	Function	Rules.

Updates	a	document/data	note	in	the	database.	This	writes	the	in-memory
version	of	the	note	to	the	database.	Notes	allocated	memory	is	also	released	for
the	document/data	note.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Document/Data	Note
handle

4 4 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Document/Data	Note
successfully	updated.
ER	=	Document/Data	Note	not
updated.

2 2 	 	

	

Examples
Refer	to	these	Domino	Built-In	Function	Examples:
Example	1:	Creating	a	New	Document	in	a	Database
Example	4:	Updating	Documents	selected	from	a	Browselist.

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	API	NSFNoteUpdate.	All
security	and	integrity	issues	related	to	the	use	of	this	Built-In	Function	are
according	to	normal	Lotus	Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example1.HTM
its:lansa013.CHM::/lansa/dom_example4.HTM

9.75	DOM_UPDATE_FIELD

	Note:	Built-In	Function	Rules.

Updates	an	existing	field	to	an	open	data	note	using	the	field	name.	The	field
type	must	also	be	specified.		If	the	field	does	not	exist	it	will	be	added	to	the
document.
The	field	types	supported	are	the	simple	data	types	TYPE_TEXT,	
TYPE_NUMBER,	TYPE_TIME	and	TYPE_TEXT_LIST	as	these	are	the
closest	types	to	the	standard	LANSA	data	types	A	(Alphanumeric),	P	(Packed)
and	S	(Signed).	The	data	will	be	converted	to	the	required	field	type	and	from
EBCDIC	to	LMBCS	for	TYPE_TEXT,		TYPE_DATE	and	TYPE_TEXT_LIST
fields.
Either	an	alphanumeric	field	value	or	numeric	field	value	should	be	specified	to
update	the	specified	field.		For	a	TYPE_TIME	field,	the	alphanumeric	value
may	be	specified	as	'*CURRENT',	in	which	case	the	current	date	and	time	will
be	set	for	the	field	otherwise	the	date/time	value	must	be	supplied	in	the	correct
format	e.g.	mm/dd/yy	hh:mm:ss.	For	a	TYPE_TEXT_LIST	field,	the	value	will
be	added	to	the	existing	field	if	the	text	list	field	already	exists.
Note	that	the	document/data	note	is	not	updated	in	the	database	until	you	use	the
DOM_UPDATE_DOCUMENT	Built-In	Function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Document/Data	Note	handle 4 4 	 	

2 A Req Field	name	to	be	updated	in	the	document 1 65 	 	

3 N Req Field	type	in	note:
1	=	TYPE_NUMBER
2	=	TYPE_TEXT
3	=	TYPE_TIME
4	=	TYPE_TEXT_LIST

1 7 0 0

4 A Opt Alphanumeric	field	required	for	field	type
TYPE_TEXT,	TYPE_TIME	&
TYPE_TEXT_LIST

1 256 	 	

5 N Opt Numeric	field	required	for	field	type
TYPE_NUMBER

1 15 0 9

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Field	successfully
updated.
ER	=	Field	not	updated.

2 2 	 	

	

Example
Refer	to	this	Domino	Built-In	Function	Example:
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs
NSFFieldSetNumber,	NSFFieldSetText,	ConvertTextToTIMEDATE,
NSFFieldSetTime	and	NSFFieldAppendTextList.	All	security	and	integrity
issues	related	to	the	use	of	this	Built-In	Function	are	according	to	normal	Lotus
Notes	API	use	for	the	current	platform.

its:lansa013.CHM::/lansa/dom_example4.HTM

9.76	DOM_UPDATE_ITEM

	Note:	Built-In	Function	Rules.

Updates	an	existing	item	to	an	open	data	note	using	the	item	name.	The	item
type	must	also	be	specified.	If	the	item	does	not	exist	it	will	be	added	to	the
document.
The	item	types	supported	are	the	simple	data	types	TYPE_TEXT,
TYPE_NUMBER,	TYPE_TIME	and	TYPE_TEXT_LIST	as	these	are	the
closest	types	to	the	standard	LANSA	data	types	A	(Alphanumeric),	P	(Packed)
and	S	(Signed).	The	data	will	be	converted	to	the	required	item	type	and	from
EBCDIC	to	LMBCS	for	TYPE_TEXT,		TYPE_DATE	and	TYPE_TEXT_LIST
items.
Either	an	alphanumeric	field	value	or	numeric	field	value	should	be	specified	to
update	the	specified	item.		For	a	TYPE_TIME	item,	the	alphanumeric	value
may	be	specified	as	'*CURRENT',	in	which	case	the	current	date	and	time	will
be	set	for	the	item	otherwise	the	date/time	value	must	be	supplied	in	the	correct
format	e.g.	mm/dd/yy	hh:mm:ss.	For	a	TYPE_TEXT_LIST	item,	the	value	will
be	added	to	the	existing	item	if	the	text	list	item	already	exists.
Note	that	the	document/data	note	is	not	updated	in	the	database	until	you	use	the
DOM_UPDATE_DOCUMENT	Built-In	Function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Document/Data	Note	handle 4 4 	 	

2 A Req Item	name	to	be	updated	in	the	document 1 65 	 	

3 N Req Item	type	in	note:
1	=	TYPE_NUMBER
2	=	TYPE_TEXT
3	=	TYPE_TIME
4	=	TYPE_TEXT_LIST

1 7 0 0

4 A Opt Alphanumeric	field	required	for	item	type
TYPE_TEXT,	TYPE_TIME	&
TYPE_TEXT_LIST

1 256 	 	

5 N Opt Numeric	field	required	for	item	type
TYPE_NUMBER

1 15 0 9

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Item	successfully
updated.
ER	=	Item	not	updated.

2 2 	 	

	

Example
Refer	to	this	Domino	Built-In	Function	Example:
Example	4:	Updating	Documents	selected	from	a	Browselist

Technical	Notes
This	Built-In	Function	uses	the	standard	Lotus	Notes	APIs	NSFItemSetNumber,
NSFItemSetText,	ConvertTextToTIMEDATE,	NSFItemSetTime	and
NSFItemAppendTextList.	All	security	and	integrity	issues	related	to	the	use	of
this	Built-In	Function	are	according	to	normal	Lotus	Notes	API	use	for	the
current	platform.

its:lansa013.CHM::/lansa/dom_example4.HTM

9.77	DROP_DD_VALUES

	Note:	Built-In	Function	Rules.

Drops	a	set	of	dropdown	values	to	free	up	space	for	other	sets	of	dropdown
values.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Dropdown	name
Must	begin	with	DD

4 4 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code.	Returned	values
possible	are:
OK:	Values	dropped	successful
ER:	Error	occurred

2 2 	 	

	

Example	

To	drop	the	dropdown	values	for	an	asset	code	field	to	make	room	for	a	status
field.
DEFINE			FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
USE						BUILTIN(ADD_DD_VALUES)	WITH_ARGS(DDST	'/'	
								'Raised/Open/Closed/Invoiced/History/Back	Ordered')
											TO_GET(#RETCOD)
IF							COND('#RETCOD	*NE	OK')

USE						BUILTIN(DROP_DD_VALUES)	WITH_ARGS(DDAC)
											TO_GET(#RETCOD)
USE						BUILTIN(ADD_DD_VALUES)	WITH_ARGS(DDST	'/'	
								'Raised/Open/Closed/Invoiced/History/Back	Ordered')
											TO_GET(#RETCOD)
ENDIF

USE						BUILTIN(ADD_DD_VALUES)	WITH_ARGS(DDST	'	'	'Cancelled')
											TO_GET(#RETCOD)
IF							COND('#RETCOD	*NE	OK')
*	<<	error	processing	>>
ENDIF
	

9.78	DROP_EXTRA_USER_KEYS

	Note:	Built-In	Function	Rules.

Disables	all	"extra"	user	defined	function	keys	that	have	been	previously
enabled	by	one	or	more	uses	of	the	ALLOW_EXTRA_USER_KEY	Built-In
Function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	Windows YES

Visual	LANSA	for	Linux YES

	

Arguments
No	arguments.

Return	Values
No	return	values.

9.79	ENCRYPT

	Note:	Built-In	Function	Rules.

Encrypt	a	text	string.
A	companion	Built-in	Function,	9.35	DECRYPT,	is	used	to	decode	the
encrypted	text	string.
Warning:	From	this	version	(LANSA	V11	SP4)	onward,	a	blank	key	won't	be
used	to	encrypt,	a	generated	key	will	be	used	instead	if	the	key	argument	is
passed	with	all	blanks.	In	versions	prior	to	V11	SP4,	encrypt	will	have	a	key	of
all	spaces.

LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 u Req Text	to	be	encrypted 8 Unlimited 	 	

2 N Req Length	of	text	to	be	encrypted
The	value	for	this	length	argument	must
be	a	multiple	of	8.
The	value	provided	for	this	argument
must	not	be	greater	than	the	length	of
Argument	1	(text	to	be	encrypted).

1 11 0 0

3 u Opt Key	to	be	used	for	encryption
If	a	key	is	not	provided	for	the
encryption,	a	key	will	be	generated	and
returned.
The	key	used	for	encryption	must	be

16 32 	 	

saved	and	provided	to	the	DECRYPT
Built-In	Function.
The	current	encryption	cipher	uses	16
bytes/128	bits	key.	The	last	16	bytes	are
reserved	for	future	use.
If	a	Unicode	field	type	is	used	it	is
converted	to	UTF-8	and	truncated	to	32
bytes.	If	the	key	is	not	provided,	and	if
return	value	3	is	a	Unicode	field	type,
then	a	Unicode	key	is	generated.	This
key	is	converted	to	UTF-8	and	truncated
to	32	bytes.	Alternatively,	a	key	may	be
automatically	generated	using	a	Unicode
field	for	the	key,	but	setting	it	to	an
empty	string.

4 A Opt Encrypted	text	stored	in	HEX.
YES=	return	encrypted	text	in	HEX
format.	
NO=	Return	encrypted	text	in	binary
format.
Default	is	NO.

2 3 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req Returned	encrypted	text 8 Unlimited 	 	

2 A Opt Return	code
OK	=	action	completed
ER	=	error	occurred

2 2 	 	

3 u Opt Key	used	for	encryption	when	no	key
argument	provided

16 32 	 	

	

Technical	Notes
Cipher	block	encryption	algorithms	always	encrypt	and	decrypt	blocks	of	8
characters.	Therefore	the	actual	value	you	encrypt	must	have	a	length	that	is
a	multiple	of	8.
The	encrypted	data	returned	by	the	encryption	algorithm	is	binary	data	and
can	contain	any	value.	As	such,	using	it	or	passing	it	through	environments
where	it	may	be	subject	to	code	page	conversion	(eg:	database	managers,
communications	links,	etc)	or	where	special	characters	like	CR,	LF	or	binary
zero	may	cause	issues	(eg:	HTML	or	XML	documents,	string	processing,
stream	file	processing,	etc)	may	prove	to	be	problematic.	As	such	it	is
recommended	that	encrypted	data	is	physically	stored	in	hexadecimal	format.
Unicode	fields	are	converted	to	UTF-8	before	encryption.	This	allows	a
Unicode	field	to	be	encrypted	on	one	platform	and	decrypted	on	another.	It
also	means	that	the	encryption	length	(argument	2)	can	be	up	to	3	times	the
length	of	the	text	to	be	encrypted	(argument	1).	And	then	if	the	result	is	stored
in	hex	it's	further	doubled	in	size.	So	if	you	have	a	500	character	NVarchar
then	the	encrypted	length	should	be	1500	and	the	size	of	the	returned
encrypted	text	should	be	3000.	If	you	do	not	have	the	lengths	in	this	ratio	then
data	may	be	lost.

Examples
Following	are	two	RDML	subroutines	that	demonstrate	a	generic	encryption
technique	for	any	information	up	to	16	characters	in	length.		
For	example	EXECUTE	ENCRYPT	(#KEY	#PROD_NUM	#PROD_ENC)
might	encrypt	#PROD_NUM	(char	10)	to	produce	encrypted	#PROD_ENC
(char	32).
Note	that	even	though	the	subroutine	parameter	#PROD_NUM	is	a	char	10
field,	the	resulting	encryption	field	#PROD_ENC	is	char	32.
This	is	because	the	initial	binary	encryption	requires	an	input	that	is	a	multiple
of	8	(ie:	char	10	#PROD_NUM	is	padded	with	blanks	to	be	16	bytes	long	by	the
subroutine	execution)	and	it	produces	a	hexadecimal	representation	of	the
encrypted	binary	data,	which	is	therefore	32	bytes	long.	
All	32	bytes	of	#PROD_ENC	need	to	be	stored	for	successful	decryption	to
occur	later.	
To	decrypt	these	values	you	would	code	EXECUTE	DECRYPT	(#KEY

#PROD_ENC	#PROD_NUM).
Here	the	32	byte	hexadecimal	value	is	first	converted	to	binary,	decrypted	and
then	returned	as	a	char	16.
The	subroutine	finally	returns	the	decrypted	value	right	truncated	into
#PROD_NUM	as	a	char	10.
ENCRYPT	a	value	with	a	supplied	key	and	return	a	32	byte	encrypted
value	in	hex
**********	===	
**********	Sample	routine	to	Encrypt	a	passed	in	value	(up	to	16			
**********	bytes	in	length)	with	a	supplied	key	and	return	a							
**********	32	byte	encrypted	value	in	hex	(suitable	for	storing	in	
**********	database,	etc)																																									
**********	===	
SUBROUTINE	NAME(ENCRYPT)	PARMS((#KEY16	*RECEIVED)	(#VAL16	*RECEIVED)	(#HEX32	*RETURNED))
DEFINE					FIELD(#KEY16)	TYPE(*CHAR)	LENGTH(16)	DESC('Encryption	key	supplied')
DEFINE					FIELD(#VAL16)	TYPE(*CHAR)	LENGTH(16)	DESC('Value	to	be	encrypted')
DEFINE					FIELD(#HEX32)	TYPE(*CHAR)	LENGTH(32)	DESC('Encrypted	value	in	Hex')
DEFINE					FIELD(#LEN)	TYPE(*DEC)	LENGTH(5)	DECIMALS(0)											
CHANGE					#LEN	16																																																
**********	Use	ENCRYPT	BIF	to	encrypt	#VAL16	of	length	#LEN	using	
**********	#KEY16	to	return	encrypted	value	in	#HEX32													
**********	The	encrypted	value	is	converted	into	HEX	resulting	in	
**********	a	32	byte	value.
USE								BUILTIN(ENCRYPT)	WITH_ARGS(#VAL16	#LEN	#KEY16	YES)	TO_GET(#HEX32)
ENDROUTINE																																																								
**********	===
	

DECRYPT	a	Hex	value	using	the	supplied	key	and	return	the	unencrypted
value
**********	===	
**********	Sample	routine	to	Decrypt	a	passed	in	Hex	value									
**********	using	the	supplied	key	and	return	the	unencrypted							
**********	value.																																																		
**********	===	
SUBROUTINE	DECRYPT	((#DKEY16	*Received)(#DHEX32	*Received)
(#DVAL16	*Returned))
**********	Key	to	be	used	for	the	decryption.	This	must	be	the					
**********	same	key	that	was	used	for	the	encryption.														

DEFINE					#DKEY16	*char	16																																								
DEFINE					FIELD(#DHEX32)	TYPE(*CHAR)	LENGTH(32)	DESC('Encrypted	value	in	hex')
DEFINE					FIELD(#DVAL16)	TYPE(*CHAR)	LENGTH(16)	DESC('Decrypted	value	returned')	
DEFINE					FIELD(#DLEN)	TYPE(*DEC)	LENGTH(5)	DECIMALS(0)												
CHANGE					FIELD(#DLEN)	TO(16)																																						

**********	Use	DECRYPT	BIF	to	decrypt	character	#HEX32	of	length			
**********	#DLEN	using	#DKEY16	to	return	decrypted	value,#DVAL16				

USE								BUILTIN(DECRYPT)	WITH_ARGS(#HEX32	#DLEN	#DKEY16	YES)	TO_GET(#DVAL16)
ENDROUTINE																																																										
	

ENCRYPT	a	password	and	then	DECRYPT
DEFINE					FIELD(#PASSWORD)	TYPE(*CHAR)	LENGTH(10)																	
DEFINE					FIELD(#TEXT)	TYPE(*CHAR)	LENGTH(16)																					
DEFINE					FIELD(#LENGTH)	TYPE(*DEC)	LENGTH(11)	DECIMALS(0)								
DEFINE					FIELD(#KEY)	TYPE(*CHAR)	LENGTH(16)																						
DEFINE					FIELD(#RETCODE)	TYPE(*CHAR)	LENGTH(2)																			
DEFINE					FIELD(#ENCRYPTED)	TYPE(*CHAR)	LENGTH(16)																
DEFINE					FIELD(#DECRYPTED)	TYPE(*CHAR)	LENGTH(16)																

**********	Encrypt	password	with	key																															
CHANGE					#TEXT	#PASSWORD																																									
CHANGE					#LENGTH	16																																														
CHANGE					#KEY	'AXG12345lj0gtUMX'																																	
USE								BUILTIN(ENCRYPT)	WITH_ARGS(#TEXT	#LENGTH	#KEY)	TO_GET(#ENCRYPTED	#RETCODE)

**********	Decrypt	password	with	same	key	as	provided	for	encryption
CHANGE					#LENGTH	16																																														
USE								BUILTIN(DECRYPT)	WITH_ARGS(#ENCRYPTED	#LENGTH	#KEY)	TO_GET(#DECRYPTED	#RETCODE)

9.80	END_FILE_EDIT

	Note:	Built-In	Function	Rules.

Ends	an	"edit	session"	on	the	definition	of	a	nominated	LANSA	file	definition
previously	started	by	the	START_FILE_EDIT	Built-In	Function.
The	edit	session	may	have	been	used	to	define	a	new	file	or	alter	an	existing
one.
The	file	definition	is	released	by	this	Built-In	Function	so	that	it	can	be	accessed
by	other	users.
A	number	of	checks	that	relate	to	prior	actions	via	the	LOGICAL_KEY	and
ACCESS_RTE_KEY	Built-In	Functions	are	performed	via	this	function.	These
may	result	in	the	abandonment	of	the	edit	session,	and	an	"ER"	return	code
being	returned.
Additionally,	warning	messages	may	be	issued	by	this	Built-In	Function.	In	this
case	the	return	code	will	still	be	returned	as	"OK".
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual
LANSA	for
Windows

YESThe	access	route	key	field	validation	performed	by	this
Built-In	Function	is	not	as	rigorous	as	that	performed
byLANSA	for	i.

Visual
LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Commit	edited	details 1 1 	 	

flag
Y	=	commit	details
N	=	drop	edited	details

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code	
OK	=	edit	session	ended
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically	and	the	edit	session
ended	without	commitment

2 2 	 	

	

9.81	END_FUNCTION_EDIT

	Note:	Built-In	Function	Rules.

Ends	an	active	edit	session	on	a	LANSA	function	definition.
An	edit	session	is	commenced	by	using	the	Built-In	Function
START_FUNCTION_EDIT.
A	function	edit	session	should	be	terminated	by	using	the
END_FUNCTION_EDIT	Built-In	Function	to	ensure	all	locks/etc	are
released/shutdown	in	an	orderly	manner.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
No	argument	values.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	edit	session
ended

2 2 	 	

ER	=	fatal	error
detected

	

9.82	END_PROCESS_EDIT

	Note:	Built-In	Function	Rules.

Ends	an	active	edit	session	on	a	LANSA	process	definition
An	edit	session	is	commenced	using	the	Built-In	Function
START_PROCESS_EDIT.
A	process	edit	session	should	be	terminated	using	the	END_PROCESS_EDIT
Built-In	Function	to	ensure	all	locks/etc	are	released/shutdown	in	an	orderly
manner.
Any	process	edit	session	that	receives	a	fatal	error	will	have	an
END_PROCESS_EDIT	command	automatically	issued.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
No	argument	values.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code																	OK	=	edit	session 2 2 	 	

ended				ER	=	fatal	error	detected

	

9.83	END_RTV_SPLF_LIST

	Note:	Built-In	Function	Rules.

Used	in	conjunction	with	START_RTV_SPLF_LIST	and
GET_SPLF_LIST_ENTRY.
The	START_RTV_SPLF_LIST	must	be	used	first	to	provide	the	selection
criteria	for	the	retrieval	of	spool	files.	Once	the	selection	criteria	are	established,
the	GET_SPLF_LIST_ENTRY	can	be	used	to	retrieve	the	details	of	the	spool
files.
The	END_RTV_SPLF_LIST	must	be	used	after	the	list	of	spool	files	have	been
retrieved.	This	will	close	the	list	and	release	the	storage	allocated	to	that	list.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Return	code.
OK	=	The	list	was	closed
successfully.

2 2 	 	

	

Example
Refer	to	9.130	GET_SPLF_LIST_ENTRY	for	an	example.

9.84	EXCHANGE_ALPHA_VAR

	Note:	Built-In	Function	Rules.

Places	an	alphanumeric	variable	/	value	onto	the	exchange	list

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/	OptDescriptionMin	LenMax	Len Min	DecMax	Dec

1 A Req Field	name 1 10 	 	

2 A Req Value 1 Unlimited 	 	

	

Return	Values
This	Built-In	Function	does	not	return	values.

Example
This	function	can	be	used	to	exchange	a	variable	to	another	function,	with	a
different	name.	That	is,	exchange	the	value	of	field	#CODEDES,	but	give	the
field	a	different	name,	e.g.	#DESC.
**********	Retrieve	code	description

FETCH						FIELDS(#CODEDES)	FROM_FILE(CDMST)

**********	Exchange	CODEDES	as	DESC

USE								BUILTIN(EXCHANGE_ALPHA_VAR)	WITH_ARGS('DESC'	#CODEDES)

CALL							PROCESS(PPPPPPPP)	FUNCTION(FFFFFFF)
	

This	Built-In	Function	can	also	be	used	in	place	of	the	EXCHANGE	command,
i.e.	to	simply	exchange	a	value.
EXCHANGE			FIELDS(#VALUE)
CALL							PROCESS(PPPPPPPP)	FUNCTION(FFFFFFF)
	

is	functionally	identical	to	the	following:
USE								BUILTIN(EXCHANGE_ALPHA_VAR)	WITH_ARGS('VALUE'	#VALUE)
CALL							PROCESS(PPPPPPPP)	FUNCTION(FFFFFFF)
	

9.85	EXCHANGE_NUMERIC_VAR

	Note:	Built-In	Function	Rules.

Places	a	numeric	variable/value	onto	the	exchange	list.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Platform	Notes
Note	the	difference	between	the	maximum	length	of	the	value:
30.9	in	IBM	i	and	63.63	in	Visual	LANSA

Arguments
NoTypeReq/	OptDescriptionMin	LenMax	Len Min	DecMax	Dec

1 A Req Field	name 1 10 	 	

2 N Req Value 1 Unlimited 	 Unlimited

	

Return	Values
No	values	are	returned	by	this	Built-In	Function.

Examples
This	function	can	be	used	to	exchange	a	variable	to	another	function,	with	a
different	name.	That	is,	exchange	the	value	of	field	#PRDTOTAL	but	give	the
field	a	different	name,	e.g.	#TOTAL.
**********	Calculate	product	total

SELECT					FIELDS(#COST)	FROM_FILE(PRDMST)

KEEP_TOTAL	OF_FIELD(#COST)	IN_FIELD(#PRDTOTAL)
ENDSELECT

**********	Exchange	PRDTOTAL	as	TOTAL

USE								BUILTIN(EXCHANGE_NUMERIC_VAR)	
											WITH_ARGS('TOTAL'	#PRDTOTAL)
CALL							PROCESS(PPPPPPPP)	FUNCTION(FFFFFFF)
	

This	Built-In	Function	can	also	be	used	in	place	of	the	EXCHANGE	command,
i.e.	to	simply	exchange	a	value.
EXCHANGE			FIELDS(#PRICE)
CALL							PROCESS(PPPPPPPP)	FUNCTION(FFFFFFF)
	

is	functionally	identical	to	the	following:
USE								BUILTIN(EXCHANGE_NUMERIC_VAR)	
											WITH_ARGS('PRICE'	#PRICE)
CALL							PROCESS(PPPPPPPP)	FUNCTION(FFFFFFF)
	

9.86	EXCHANGE_VARIABLE

	Note:	Built-In	Function	Rules.

Places	a	variable/value	onto	the	exchange	list.

For	use	with
LANSA	for	i YES.	Only	available	with	RDMLX.

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/	OptDescriptionMin	LenMax	Len Min	DecMax	Dec

1 A Req Field	name 1 10 	 	

2 X Req Value 1 Unlimited 	 Unlimited

	

Return	Values
No	values	are	returned	by	this	Built-In	Function.

9.87	EXECUTE_TEMPLATE

	Note:	Built-In	Function	Rules.

Executes	an	application	template	to	generate	RDML	function	code	into	a
working	list
Generated	RDML	code	is	appended	to	the	END	of	the	working	list,	so	the	list
may	need	to	be	cleared	before	(via	the	CLR_LIST	command)	before	invoking
the	application	template.
Alternatively,	multiple	templates	may	be	executed	serially	to	progressively	build
up	the	resulting	RDML	function	code.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	using	the	START_FUNCTION_EDIT
Built-In	Function.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	commercial	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	Application	Template	to	be 1 10 	 	

executed.	This	template	must	be	previously
defined	using	the	LANSA	Application
Template	facilities.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation	completed
ER	=	fatal	error	detected

2 2 	 	

2 L Req Working	list	Name.
The	working	list	must	be	formatted	as
described	in	the	9.110
GET_FUNCTION_RDML	Built-In	Function
and	must	not	contain	more	than	32767
entries.

	 	 	 	

	

9.88	EXPONENTIAL

	Note:	Built-In	Function	Rules.

Performs	exponentiation	by	raising	a	base	number	to	an	exponent.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Base	digit	portion	Decimal	portion	and
digits	beyond	13th	position	ignored.

1 15 0 9

2 N Req Base	decimal	portion	Digit	portion	and
decimals	beyond	5th	position	ignored.

1 15 0 9

3 N Req Exponent	digit	portion	Decimal	portion	and
digits	beyond	13th	position	ignored.

1 15 0 9

4 N Req Exponent	decimal	portion	Digit	portion	and
decimals	beyond	5th	position	ignored.

1 15 0 9

5 A Opt Rounding	of	result	required:
Values:	Y	or	N
Default:	N
Note:	rounding	is	at	the	5th	decimal
position.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Result	digit	portion	Accurate	to	13
digits.

1 15 0 9

2 N Req Result	decimal	portion	Accurate
to	5	decimals.

1 15 0 9

3 A Opt Return	code
Values:	
Y	=	good	return	
N	=	error	occurred

1 1 	 	

	

Examples
Calculate	2.345	raised	to	the	power	of	5.67	accurate	to	five	decimal	positions:
USE								BUILTIN(EXPONENTIAL)	WITH_ARGS(2		0.345			5		0.67)		
											TO_GET(#DIGITS	#DECIMALS)
CHANGE					FIELD(#RESULT)	TO('#DIGITS	+	#DECIMALS')
	

Read	a	packed	decimal	15,5	base	and	a	packed	decimal	5,2	exponent	from	a
workstation	and	display	the	result	to	the	user	as	a	packed	decimal	15,5:
DEFINE					FIELD(#BASE)	TYPE(*DEC)	LENGTH(15)	DECIMALS(5)	LABEL('Base	:')	EDIT_CODE(3)
DEFINE					FIELD(#EXPN)	TYPE(*DEC)	LENGTH(5)	DECIMALS(2)	LABEL('Exponent	:')	EDIT_CODE(3)
DEFINE					FIELD(#RDGT)	TYPE(*DEC)	LENGTH(10)	DECIMALS(0)	
DEFINE					FIELD(#RDEC)	TYPE(*DEC)	LENGTH(5)	DECIMALS(5)	
DEFINE					FIELD(#RSLT)	TYPE(*DEC)	LENGTH(15)	DECIMALS(5)	LABEL('Result			:')	EDIT_CODE(3)
REQUEST				FIELDS(#BASE	#EXPN)	
USE								BUILTIN(EXPONENTIAL)	WITH_ARGS(#BASE	#BASE	
#EXPN	#EXPN)	TO_GET(#RDGT	#RDEC)	
CHANGE					FIELD(#RSLT)	TO('#RDGT	+	#RDEC')	
DISPLAY				FIELDS(#BASE	#EXPN	#RSLT)	
	

9.89	EXPORT_OBJECTS

	Note:	Built-In	Function	Rules.

Creates	LANSA	Import	formatted	files	for	all	LANSA	objects	specified	in	an
input	list.
The	input	list	contains	the	object	types	and	names	to	be	exported.	(Optionally,
the	whole	partition	can	be	exported.)	For	each	object	in	the	list,	information	in
the	related	internal	tables	will	be	unloaded	in	LANSA	Import	format.	As	each
list	entry	is	processed	a	completion	message	is	written	to	the	file	export.log	that
will	be	automatically	created	/	replaced	in	the	temporary	directory.	The	message
will	indicate	if	the	definition	for	the	object	was	successfully	exported	or	if	it
failed.	If	any	one	definition	fails	to	export	successfully	the	return	code	will	be
set	to	ER.

Portability
Considerations

This	BIF	cannot	be	used	for	exporting	development	source
to/from	a	Linux	platform.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	List	of	Objects	to	have	internal	data
exported.
Formatted:
Start			End			Description
1	-	2			Object	Type
where	:
AA	=	Technology	Service

32 32 	 	

DF	=	Field/Component/WAM
FD	=	File
PD=	Process
PF	=	Function
SV	=	System	Variable
MT	=	Multilingual	Variable
AT	=	Template
RM	=	Message/Message	File
BI	=	Built-In	Function
WL	=	Weblet
WC=Web	Component	(HTML)
XC=Web	Component(XML)
3	-	32			Details	of	the	object
For	AA
	1	-	10		Entity	ID
11	-	20		Technology	Service	ID
For	DF
	1	-	10		Field/Component	Name
For	FD
	1	-	10		File	Name
11	-	20		File	Library
21	-	30		Library	Substitution	Item
For	PD
	1	-	10		Process	Name
For	PF
	1	-	10		Process	Name
11	-	17		Function	Name
For	SV/Weblet
	1	-	20		System	Variable	Name
For	BI
	1	-	20		BIF	Name
For	AT
	1	-	10		Template	Name
For	MT
	1	-	20		Multilingual	Variable	Name
For	RM
	1	-		4		Language	Code
	5	-	14		Message	File
15	-	21			Message	Id
For	WL
	1	-	20		Weblet	Name
For	WC	and	XC
	1	-	20		Web	Component	Name
21-25	Secondary	Extension	Name

26-26	Input	or	Output	Visual
Note:
If	Message	Id	is	left	blank	all	messages	for	the	message	file
language	will	be	extracted.

2 A Req Export	directory
NB.	This	directory	MUST	exist.

256 256 	 	

3 A Opt Export	Whole	Partition
Y	-	Ignore	list	passed	and	export	all	objects
in	the	partition
N	-	Process	the	entries	in	the	list	of	objects	to
be	exported.
Default	=	N

1 1 	 	

4 A Opt Append	to	Existing	Files
Y	-	Append	export	data	to	any	existing
export	files	in	the	export	directory
N	-	Replace	any	export	files	in	the	export
directory
Default	=	Y

1 1 	 	

5 A Opt Export	System	Definition	(LX_F46/LX_F96)
Y	-	System	Definitions	exported
N	-	System	Definitions	not	exported
Default	-	Y

1 1 	 	

6 A Opt Export	to	Development	System
Y	-	include	internal	data	for	a	development
system	(eg.	RDML	source)
Cannot	be	set	to	Y	if	exporting	to	a	Linux
platform.
N	-	do	not	include	internal	data	for	a
development	system
Default	-	N

1 1 	 	

7 A Opt Reset	Build	Status
Y	-	Reset	the	exported	object's	build	status	to

1 1 	 	

Build	and	Compile	Required.
N	-	Export	the	object's	build	status	as	it	is.
Default	-	N

8 List Opt Library	Directive	File	Substitutions
This	list	will	contain	the	details	for	the
PARTITION	and	USERLIB	information	to
be	put	in	LXXLDF:
1	-	4				Prompt	Language
5	-	14			Override	Level
15	-	24		Override	Item
25	-	44		Override	Value
45	-	45		Prompt	Override
46	-	195	Prompt	Text	

195 195 	 	

9 A Opt Silent	Mode.
Y	–	Perform	the	export	object	definitions
without	showing	the	Log	Window.
Default	=	N

1 1 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code
OK	=	The	export	completed
without	error
ER	=	An	Error	occurred	during
the	export.

2 2 	 	

	

Technical	Notes
The	Export	to	Development	System	and	Export	System	Definition	flags	control

the	amount	of	information	exported.	If	Export	to	Development	System	is	set	to
N	(the	default),	this	will	only	export	definitions	that	are	required	for	execution.
If	Export	to	Development	System	is	set	to	Y,	this	will	export	the	full	definitions
(e.g.	RDML	for	functions,	access	routes	for	files)	for	the	various	objects.
Assuming	all	other	required	objects	are	exported	(e.g.	fields	on	the	file)	or
already	available	in	the	target	environment,	this	will	allow	development	of	the
objects	on	the	target	system.
Some	definitions	will	only	be	exported	if	the	Export	to	Development	System
flag	is	set	to	Y.	For	example,	BIFs,	and	templates,	which	are	not	required	on	a
non-development	system.
To	export	standard	definitions	to	a	development	system,	set	both	Export	to
Development	System	and	Export	System	Definition	to	Y.	This	will	export
definitions	for	all	BIFs,	Templates,	RDML	commands,	etc.

9.90	FETCH_IN_SPACE

	Note:	Built-In	Function	Rules.

Fetches	the	first	cell	row	that	matches	the	key	values	supplied	and	returns	the
cell	values	into	the	specified	fields.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 A R Space	Name 1 256 	 	

2-
20

w O Fields	that	specify	the	key	values
to	be	used	to	locate	the	first	cell
row	required.	

1 Unlimited 0 Unlimited

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 A O Standard	Return	Code
"OK"	=	A	cell	row	was	found	and
the	cell	values	have	been	returned.
"NR"	=	No	cell	row	could	be
found	with	a	key	matching	the	key

2 2 	 	

values	supplied.
"ER"	=	Select	attempt	failed.
Messages	issued	will	indicate	more
about	the	cause	of	the	failure.		

2-
20

w O Fields	to	receive	the	values	of	the
cells	in	the	selected	cell	row.	

1 Unlimited 0 Unlimited

	

Technical	Notes
The	return	fields	must	be	specified	in	the	same	order	as	the	cells	in	the	space
were	defined.	Cells	are	matched	by	the	order	of	their	specification	in	return
values	2	->	20.	The	names	of	the	fields	used	have	no	bearing	whatsoever	on	the
cell	mapping	logic.	
You	can	specify	less	key	values	than	are	defined	in	the	space.	The	first	matching
cell	row	will	be	returned.
If	you	specify	more	key	values	than	are	defined	as	key	cells	for	the	space	then
the	additional	values	will	be	ignored	and	have	no	effect	on	the	outcome	of	the
search.
If	you	specify	less	return	field	values	than	there	are	cells	in	the	space	then	the
non-specified	cells	are	not	mapped	back	into	the	fields.
If	you	specify	more	return	field	values	than	there	are	cells	in	the	space	then	the
additional	field	values	are	ignored	and	are	not	changed	by	the	search	operation.
If	a	key	value	longer	than	256	bytes	is	specified,	a	fatal	error	will	occur.

9.91	FILE_FIELD

	Note:	Built-In	Function	Rules.

FILE_FIELD	specifies	or	re-specifies	a	field	that	is	part	of	the	record	format	of
the	file	definition	being	edited.
An	edit	session	must	be	commenced	by	using	the	START_FILE_EDIT	Built-In
Function	prior	to	using	this	Built-In	Function.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Warning:	The	FILE_FIELD	Built-In	Function	cannot	be	used	for	a
file	of	type	"OTHER".

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	real	field.	Must	be	defined	in	the
LANSA	data	dictionary.

1 10 	 	

2 N Opt Optional	sequencing	number.	Used	to	order
fields	within	the	file	record	format.	If	not
specified	fields	are	sequenced	in	the	same
order	as	they	are	presented.

1 5 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	field	added	to	file
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically	and	the	edit	session
ended	without	commitment

2 2 	 	

	

9.92	FILE_FIELD_VIRTUAL

	Note:	Built-In	Function	Rules.

Specifies	or	re-specifies	a	virtual	field	that	is	part	of	the	definition	of	the	file
being	edited.
An	edit	session	must	be	commenced	by	using	the	START_FILE_EDIT	Built-In
Function	prior	to	using	this	Built-In	Function.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	the	virtual	field.	Must	be	defined	in
the	LANSA	data	dictionary.

1 10 	 	

2 N Opt Optional	sequencing	number.	Used	to	order
fields	within	the	file	record	format.	If	not
specified	fields	are	sequenced	in	the	same
order	as	they	are	presented.

1 5 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	field	added	to	file
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically	and	the	edit	session
ended	without	commitment

2 2 	 	

	

9.93	FILLSTRING

	Note:	Built-In	Function	Rules.

Fills	a	field	with	as	many	occurrences	of	a	specified	string	as	will	fit	in	a	given
field.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	Len Min	DecMax	Dec

1 A Req String	to	be	repeated1 Unlimited 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	Len Min	DecMax	Dec

1 A Req Returned	string1 Unlimited 	 	

	

Note:	This	function	will	put	as	many	occurrences	of	a	string	as	will	fit.	If	the
target	field	length	is	not	a	multiple	of	the	length	of	the	string	to	be	repeated,	the
last	occurrence	will	be	truncated.

Examples
Fill	a	field	with	the	character	'*'	(asterisk).
DEFINE					FIELD(#OUTEXT)		TYPE(*CHAR)	LENGTH(10)

USE								BUILTIN(FILLSTRING)	WITH_ARGS('''*''')	TO_GET(#OUTEXT)
DISPLAY				FIELDS(#OUTEXT)
	

Resulting	display	would	look	something	like	this:
	
							FUN01										Fillstring	BIF							
																																														
							Out	text	.	.	.	********************
																																														
							CF1=Help																														
																																														
	
Fill	a	string	with	a	requested	value.
DEFINE					FIELD(#INTEXT)		TYPE(*CHAR)	LENGTH(4)
DEFINE					FIELD(#OUTEXT)		TYPE(*CHAR)	LENGTH(18)

REQUEST				FIELDS(#INTEXT)
USE								BUILTIN(FILLSTRING)	WITH_ARGS(#INTEXT)	TO_GET(#OUTEXT)
DISPLAY				FIELDS(#OUTEXT)
	

Resulting	displays	would	look	something	like	this:
	
							FUN01									Fillstring	BIF							
																																													
							In	text	.	.	.	FRED																		
																																													
							CF1=Help																													
																																													
	
then,
	
							FUN01										Fillstring	BIF						
																																														
							Out	text	.	.	.	FREDFREDFREDFREDFR
																																														
							CF1=Help																														

																																														
	

9.94	FINDDATE

	Note:	Built-In	Function	Rules.

Finds	the	date	that	is	'n'	days	after/before	a	given	date.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Date	to	be	counted	from 6 8 0 0

2 N Req No.	of	days(+/-)	after/before	the	given	date.
Note:
For	non-IBM	i	systems,	this	value	should	be
less	than	214783648	and	greater	than
-214783649,	otherwise	a	fatal	execution	error
will	occur.

1 15 0 0

3 A Opt Date	format	of	given	date
Default:	A

1 1 	 	

4 A Opt Date	format	of	returned	date
Default:	A

1 1 	 	

	

Valid	Date	Formats
These	date	formats	are	valid	formats	for	given	and	returned	dates:	A,	B,	D,	F,	H,

J,	L,	V	and	1.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Returned	date 6 8 0 0

2 A Opt Returned	okay	code
(Y/N)

1 1 	 	

	

Note:	All	dates	must	have	a	four	character	year	so	that	accurate	comparisons
and	calculations	can	be	performed.	Where	a	two	character	year	(e.g.
DDMMYY,	YYMMDD,	MMYY)	is	supplied	the	century	value	is	retrieved
from	the	system	definition	data	area.	The	year	supplied	is	compared	to	a	year	in
the	data	area,	if	the	supplied	year	is	less	than	or	equal	to	the	comparison	year
then	the	less	than	century	is	used.	If	the	supplied	year	is	greater	than	the
comparison	year	then	the	greater	than	century	is	used.

Example
Find	the	date	field	#NXTDAT	in	date	format	YYMMDD	(D)	that	is	#NUMD
days	after	date	field	#DMY	in	date	format	DDMMYY	(B):

USE								BUILTIN(FINDDATE)	WITH_ARGS(#DMY	#NUMD	B	D)

											TO_GET(#NXTDAT)

	

9.95	FINDDATE_ALPHA

	Note:	Built-In	Function	Rules.

Finds	the	date	that	is	'n'	days	after	or	before	a	given	date.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Date	to	be	counted	from 1 10 	 	

2 N Req No.	of	days(+/-)	after/	before	the	given	date.
Note:
For	non-IBM	i	systems,	this	value	should	be
less	than	214783648	and	greater	than
-214783649,	otherwise	a	fatal	execution	error
will	occur.

1 15 0 0

3 A Opt Date	format	of	given	date
Default:	A

1 1 	 	

4 A Opt Date	format	of	returned	date
Default:	A

1 1 	 	

	

Valid	Date	Formats
These	date	formats	are	valid	formats	for	given	and	returned	dates:	A,	B,	C,	D,

E,	F,	G,	H,	I,	J,	K,	L,	M,	V	and	1.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Returned	date 1 10 	 	

2 A Opt Returned	okay	code
(Y/N)

1 1 	 	

	

Note:	All	dates	must	have	a	four	character	year	so	that	accurate	comparisons
and	calculations	can	be	performed.	Where	a	two	character	year	(e.g.
DDMMYY,	YYMMDD,	MMYY)	is	supplied	the	century	value	is	retrieved
from	the	system	definition	data	area.	The	year	supplied	is	compared	to	a	year	in
the	data	area,	if	the	supplied	year	is	less	than	or	equal	to	the	comparison	year
then	the	less	than	century	is	used.	If	the	supplied	year	is	greater	than	the
comparison	year	then	the	greater	than	century	is	used.

Example
Find	the	date	field	#NXTDAT	in	date	format	YYMMDD	(D)	that	is	#NUMD
days	after	date	field	#DMY	in	date	format	DDMMYY	(B):

USE								BUILTIN(FINDDATE_ALPHA)	WITH_ARGS(#DMY	#NUMD	B	D)

											TO_GET(#NXTDAT)

	

9.96	FORMAT_STRING

	Note:	Built-In	Function	Rules.

This	Built-in	Function	returns	a	character	string	which	is	built	from	an	input
Format	Pattern.	The	Format	Pattern	can	consist	of	text	plus	field	values.	Editing
options	may	be	applied	to	the	field	values.
Special	Note:	All	characters	preceded	by	a	colon	(:)	will	be	treated	as	a	field
name	and	ends	with	either	one	of	the	following	characters	()	space	and	colon.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req Format	Pattern
Refer	to	Technical	Notes	for	pattern
syntax	and	options.
Fields	specified	as	:field
Optional	formatting	options	may	be
appended	to	fields.	The	option/s
immediately	follow	the	field	name	and
are	enclosed	in	brackets	().
(editcode,x)
apply	edit	code	to	field	value	where	x	is
a	valid	LANSA	editcode.	Refer	to
Standard	Field	Edit	Codes	for	a	list	of
valid	edit	codes.

1 Unlimited 	 	

(substr,n1,n2)
apply	substring	to	field	value	where
n1=start	position,	n2=length.
(triml)
remove	leading	blanks	from	field	value.
(trim)
remove	trailing	blanks	from	field	value.
(trimall)
remove	leading	and	trailing	blanks	from
field	value.
(upper)
convert	field	value	to	uppercase.
(lower)
convert	field	value	to	lowercase.	

2 A Opt DBCS	enable
Default:	disable
YES	=	to	enable
Note:
For	substring,	the	number	count	is	for
each	character,	not	byte.

3 3 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Formatted	String 1 unlimited 	 	

2 A Opt Return	code
OK	=	action
completed
ER	=	Error	occurred

2 2 	 	

	

Technical	Notes
Field	names	are	preceded	by	a	colon	(:).
Example	Format	Pattern	=
Employee	:givename	:surname	with	number	:EMPNO	was	not	found.

Return	Formatted	String	=
Employee	DARREN	BROWN	with	number	A0001	was	not	found.

when	field	givename	contains	the	value	"DARREN",	field	surname	contains
the	value	"BROWN"	and	field	empno	contains	the	value	"A0001"
Fields	used	in	the	Format	Pattern	must	be	used	elsewhere	in	the	RDML
function.	
Fields	may	be	defined	in	the	repository	or	internally	within	the	function.
To	include	a	colon	(:)	in	the	returned	Formatted	String,	use	two	colons	in	the
input	Format	pattern.
Example	Format	Pattern=
Employee	no:::empno

Returned	Formatted	String=
Employee	no:A0001
To	include	a	character	straight	after	the	field,	use	brackets().
Example	Format	Pattern=
Employee	no:::empno()NoSpace

Returned	Formatted	String=
Employee	no:A0001NoSpace
Formatting	option/s	may	be	applied	to	a	field	value	and	specified	in	the
Format	Pattern.	
Multiple	options	may	be	applied	to	a	field	value.
Formatting	options	must	immediately	follow	the	field	name	and	be	contained
within	brackets	().

Example	Format	Pattern=
Employee	:givename(substr,1,1	UPPER).	:SURNAME(trim	upper)

Returned	Formatted	String=
Employee	D.	BROWN
When	multiple	formatting	options	are	specified	for	a	field	value,	the	options
are	applied	in	the	following	order
1.	edit	code	
2.	substring	
3.	trim	trailing	(trim)
4.	trim	leading	(triml)
5.	trim	all	
6.	lower
7.	upper
The	Edit	code	formatting	option	are	applied	only	to	numeric	fields.	
If	an	edit	code	formatting	option	is	specified	for	a	character	field,	it	will	be
ignored.
Edit	codes	which	suppress	leading	zeroes	will	remove	any	resulting	leading
blanks.

DBCS	considerations
Text	sections	of	the	Format	Pattern	may	contain	DBCS	or	mixed	characters.
However	the	:field	specification	must	be	entered	in	single	byte	mode.	Also	any
text	section	must	be	a	complete	string	with	the	correct	pairing	of	shift	out/	shift
in	characters.
The	substring	format	option	is	not	DBCS	sensitive	by	default.	To	enable	DBCS,
set	the	second	optional	argument	to	'YES'.	Note	that	the	number	for	the	start
position	and	length	are	in	character	count,	not	in	byte	and	the	shift	in	and	shift
out	bytes	are	not	counted.

Example
This	example	retrieves	information	from	a	file	and	formats	different	lines	into	a
standard	browse	list.	A	variety	of	formatting	options	are	used	to	format	field
values.
FUNCTION			OPTIONS(*DIRECT)																																									
DEFINE					FIELD(#STRING)	TYPE(*CHAR)	LENGTH(75)	COLHDG('Details')	INPUT_ATR(LC)
DEFINE					FIELD(#PATERN)	TYPE(*CHAR)	LENGTH(256)	INPUT_ATR(LC)					
DEF_LIST			NAME(#BRWLST)	FIELDS((#STRING))																										

SELECT					FIELDS((#EMPNO)	(#GIVENAME)	(#SURNAME)	(#STARTDTE)	(#TERMDATE)	(#ADDRESS1)	(#ADDRESS2)	(#ADDRESS3)	(#SALARY)	(#POSTCODE))	FROM_FILE(PSLMST)
CHANGE					FIELD(#PATERN)	TO('''EMPLOYEE::	:empno	:GIVENAME(substr,1,1	upper).:surname(upper	trim)''')

EXECUTE				SUBROUTINE(ADDTOBRW)																																					
CHANGE					FIELD(#PATERN)	TO('''										Start	:startdte(editcode	,Y)	Salary	$:salary(editcode,J)''')
EXECUTE				SUBROUTINE(ADDTOBRW)																																				
CHANGE					FIELD(#PATERN)	TO('''										Address::	:ADDRESS1(trim)	:ADDRESS2(TRIM)''')
EXECUTE				SUBROUTINE(ADDTOBRW)																																				
CHANGE					FIELD(#PATERN)	TO('''																			:aDDRESS3(trima
ll)	:postcode(editcode,4)''')
EXECUTE				SUBROUTINE(ADDTOBRW)																																				
ENDSELECT																																																										

DISPLAY				BROWSELIST(#BRWLST)																																					
RETURN																																																													
**********	---													
SUBROUTINE	NAME(ADDTOBRW)																																										
USE								BUILTIN(FORMAT_STRING)	WITH_ARGS(#PATERN)	TO_GET(#STRING)
ADD_ENTRY		#BRWLST																																																	
ENDROUTINE																																																									.
	
	
	

9.97	GET_AUTHORITIES

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	authorities	to	LANSA	objects	and	returns	it	to	the	calling
RDML	function	in	a	variable	length	working	list.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	applications.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Object	name. 1 10 	 	

2 A Req Object	extension. 1 10 	 	

3 A Req Object	type.
Valid	types	are:
AT	-	Application
template
DF	-	Field
FD	-	File
PD	-	Process
PF	-	Function
P#	-	Partition

2 2 	 	

SV	-	System	variable
MT	-	Multilingual
variable

4 A Opt User	name. 1 10 	 	

	

Dependencies
If	any	of	Object	type,	Object	name	or	Object	extension	are	specified,	then	all
three	must	be	specified	according	to	the	following	table.

Object
Type

Object	Name Object	Extension

AT template	name *blank

DF field	name *blank

FD file	name *blank,	*LIBL,	library	name

PD process	name *blank

PF process	name function	name

P# partition	name *blank

SV positions	1-10	of	system	variable
name

positions		11-20	of	system	variable
name

MT positions	1-10	of	multilingual
variable	name

positions	11-20	of	multilingual
variable	name

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	list	returned	partially	or	completely
filled.	No	more	authorities	that	match	the

2 2 	 	

arguments	exist
OV	=	list	returned	completely	filled,	but	more
authorities	that	match	the	arguments	than
could	fit	in	the	list	exist.
NR	=	No	authorities	that	match	the	arguments
exist.	Last	entry	in	the	list	is	returned	as	null.
ER	=	Error	in	the	arguments	passed.	Last
entry	in	the	list	is	returned	as	null.

2 L Req Working	list	of	authorities.
If	Object	type,	name	and	extension	are
specified	but	not	User,	then	as	many
authorities	of	users	to	the	object	as	fit	in	the
list	will	be	returned.
If	User	is	specified	but	not	Object	type,	name
and	extension,	then	as	many	authorities	of	the
user	to	different	objects	as	fit	in	the	list	will
be	returned.
If	Object	type,	name,	extension	and	User	are
specified,	and	the	user	is	specifically
authorized	to	the	object	then	the	authority	of
the	user	to	the	object	will	be	returned	in	the
list.
If	the	user	is	not	specifically	authorized	to	the
object	no	authorities	will	be	returned.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	70	bytes.
List	cannot	be	more	than:
32767	entries	in	Windows
9999	entries	on	IBM	i.
From	-	To			Description
1	-	10			Object	name
11	-	20			Object	extension
21	-	22			Object	type	(see	above	for	object	type	explanation)
23	-	32			User	name
33	-	52				Access	rights

70 70 	 	

This	is	a	string	of	2	character	codes	representing	the	different
access	rights	that	the	user	has	to	the	object.

The	individual	access	rights	are:
UD	-	Use	Definition	
MD	-	Manage	Definition	
DD	-	Existence	of	Definition	
DS	-	Data	-	Display	
AD	-	Data	-	Add	
CH	-	Data	-	Change	
DL	-	Data	-	Delete
If	the	entire	string	is	blank	then	the	user	has
had	their	access	rights	to	the	object	revoked.
53	-	70			<<future	expansion>>

	

9.98	GET_BIF_LIST

	Note:	Built-In	Function	Rules.

Searches	for	the	BIF	name	and	returns	a	working	list	containing	user	defined
BIF	details.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Search	Built-In	Function
Name

1 20 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	BIF	details.
The	list	must	be	in	the	following	format	and
not	contain	more	than	32,767	entries:
From	-	To			Description
1	-	4			BIF	Number
5	-	24			BIF	Name

64 64 	 	

25	-	64			BIF	Description

2 A Req The	last	Built-In	Functions	in	the	returned
list.

1 20 	 	

3 A Req Return	Code
OK	=	list	returned	partially	or	completely
filled	with	BIF	details.	No	more	Built-In
Functions	exist	beyond	those	returned	in	the
list.
OV	=	list	returned	completely	filled,	but
more	Built-In	Functions	than	could	fit	in	the
list	still	exist.
NR	=	list	was	returned	empty.	Last	Built-In
Function	in	list	returned	as	blanks.

2 2 	 	

	

9.99	GET_CHAR_AREA

	Note:	Built-In	Function	Rules.

Gets	a	character	string	from	a	character	data	area.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Data	area	name 1 10 	 	

2 A Opt Library	name
Default:	*LIBL	When	data	area	is	*LDA	or
*GDA	this	argument	must	be	*LIBL

1 10 	 	

3 A Opt Lock	data	area
Y	-	lock	data	area
N	-	do	not	lock	data	area
Default:	N	When	data	area	is	*LDA	or
*GDA	this	argument	is	ignored.

1 1 	 	

4 N Opt Start	pos.	to	retrieve	from	Default:	position
1

1 5 0 0

Req If	*LDA	or	*GDA	is	the	data	area 	 	 	 	

5 N Opt Length	to	retrieve
Default:	full	length

1 4 0 0

Req If	*LDA	or	*GDA	is	the	data	area 	 	 	 	

	

Note:	Start	position	and	length,	if	specified,	must	BOTH	be	provided	as
argument	values.

Return	Values
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Opt Returned	value1 2000 	 	

	

Examples
Retrieve	a	company	name	from	a	data	area	named	COMPID.	Use	the	job's
current	library	list	to	locate	the	data	area:

USE				BUILTIN(GET_CHAR_AREA)	WITH_ARGS(COMPID)	TO_GET(#COMPANY)

	

Retrieve	bytes	101	-	110	of	data	area	called	USERINFO	in	library	QTEMP	and
place	the	result	into	a	field	called	#OUTQ:

USE				BUILTIN(GET_CHAR_AREA)	

							WITH_ARGS(USERINFO	QTEMP	N	101	10)	TO_GET(#OUTQ)

	

Warning:	When	processing	*LDA	or	*GDA,	a	start	position	and	a	length	must
be	specified.	If	these	arguments	are	not	specified	the	program	will	terminate
abnormally.	*	Retrieve	the	first	30	bytes	of	information	from	the	Local	Data
Area	(*LDA).	Note:	The	*LDA	data	area	will	not	be	locked	even	if	it	is
specified	in	the	functions	arguments.

DEFINE				FIELD(#RETVAL)	TYPE(*CHAR)	LENGTH(30)

USE							BUILTIN(GET_CHAR_AREA)	WITH_ARGS('''*LDA'''	'''*LIBL'''	N	1	30)	TO_GET(#RETVAL)

	

Retrieve	some	information	passed	by	one	of	my	group	jobs	into	the	Group	Data
Area	(*GDA).	The	information	is	in	positions	20	to	50	of	the	*GDA:

DEFINE				FIELD(#RETVAL)	TYPE(*CHAR)	LENGTH(30)

USE							BUILTIN(GET_CHAR_AREA)	WITH_ARGS('''*GDA'''	'''*LIBL'''	N	20	30)	TO_GET(#RETVAL)

	

9.100	GET_COMPONENT_LIST

	Note:	Built-In	Function	Rules.

Returns	a	list	of	Components.	All	simple	fields	will	be	ignored	by	this	BIF.	This
will	be	done	by	processing	one	of	the	LANSA	internal	tables	that	list	the
components	in	one	of	the	three	selection	methods.	It	will	order	the	components
by	component	name	if	the	search	type	is	by	component,	or	by	Group	and
component	name	if	the	search	type	is	by	Group,	or	by	Framework	and
component	if	the	search	type	is	by	Framework.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Use
If	all	the	search	parameters	are	blank	a	search	by	component	will	be	assumed.
By	Component
To	search	by	component	the	user	will	be	required	to	provide	a	value	for	the
Search	Component	parameter	and	leave	Search	Framework/Group	blank.
To	continue	loading	the	list	with	subsequent	data	after	receiving	a	return	code	of
OV	set	the	Search	Component	parameter	to	the	value	of	the	Last	Component
return	value	with	Search	Group/Framework	set	to	blank.	The	BIF	will	use	this
as	the	pointer	from	which	it	will	read	the	next	set	of	information	requested.
By	Group/Framework
To	search	by	group/framework	the	user	will	be	required	to	provide	a	value	for
the	Search	Group/Framework	parameter	and	leave	Search	Component.
To	continue	loading	the	list	with	subsequent	data	after	receiving	a	return	code	of
OV	set	the	Search	Group/Framework	and	Search	Component	parameters	to	the

value	of	Last	Group/Framework	and	Last	Component	return	values.	The	BIF
will	use	this	as	the	pointer	from	which	it	will	read	the	next	set	of	information
requested.

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Search	Type
The	type	of	search
required.
Valid	values:
CMP	=	by	Component
FRW	=	by	Framework
GRP	=	by	Group

3 3 	 	

2 A Opt Search	Component
Positioning	Component
value.

1 10 	 	

3 A Opt Search	Framework/Group
Positioning
Framework/Group

1 20 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	Component	details.
The	list	must	be	in	the	following	format	and
not	contain	more	than	32,767	entries:
	
From	-	To			Description
1	-	10			Component	Name
11	-	50			Component	Description
51	-	70			Framework

90 90 	 	

71	-	90			Group

2 A Req The	last	Component	in	the	returned	list. 1 10 	 	

3 A Req The	last	Group/Framework	in	the	returned
list.

1 20 	 	

4 A Req Return	Code
OK	=	list	returned	partially	or	completely
filled	with	component	details.	No	more
Components	exist	beyond	those	returned	in
the	list.
OV	=	list	returned	completely	filled,	but
more	Components	than	could	fit	in	the	list
still	exist.
NR	=	list	was	returned	empty.	Last
Component/Framework/Group	in	list
returned	as	blanks.

2 2 	 	

	

9.101	GET_COMPOSITION

	Note:	Built-In	Function	Rules

Returns	the	list	of	objects	that	comprise	a	LANSA	Object	for	all	currently
enabled	build	environments.	An	enabled	environment	is	indicated	by
envenab=YES	in	x_bldenv.dat.	Note	that	the	Microsoft	Windows	environment
(envtype=W32)	is	returned	as	W95	as	only	one	or	the	other	can	be	enabled	at
one	time	and	they	share	the	same	directory	structure	and	filenames.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Processing
This	BIF	will	return	the	list	of	Objects	that	comprise	a	specific	object	name	and
type.	It	will	get	the	information	from	X_BLDENV.DAT	and	return	the	fully
calculated	value	of	the	file	name	and	path.	It	also	returns	a	single	entry	with	the
object's	generated	C	name	for	ALL	platforms.

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req LANSA	Object 1 20 	 	

2 A Req Object	Type:
DF	=
Field/Component
FD	=	File
PD	=	Process

2 2 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Composition	list	for	an	object.
The	list	must	be	in	the	following	format	and
not	contain	more	than	32,767	entries:
From-To			Description
1	-	5			Platform	(Linux,	etc)
6	-	7			Object	Type
								CN	=	Generated	C	Name
								EO	=	Executable
								SO	=	Source
8	-	27			Object	Name			(Physical	name	of	the	file)

	

27 27 	 	

2 A Req Return	Code
OK	=	The	list	was	returned	without	error
ER	=	An	Error	occurred	during	the	getting
of	the	list.

2 2 	 	

	

9.102	GET_ENVIRONMENTS

	Note:	Built-In	Function	Rules.

Returns	a	list	of	the	Environment	Names	and	a	Flag	to	indicate	if	the
environment	is	enabled	for	build	purposes	from	X_BLDENV.DAT.
Environment	name	will	be	returned	from	the	envname	value	and	the	enabled
flag	will	be	determined	from	the	envenab	value.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
None

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	Environment
details.
The	list	must	be	in	the	following	format	and
not	contain	more	than	32,767	entries:
From	-	To			Description
1	-	5			Environment	Type
6	-	75			Environment	Name
76	-	76			Environment	Enabled

76 76 	 	

	

9.103	GET_FIELD

	Note:	Built-In	Function	Rules.

Retrieves	attributes	of	a	field	stored	in	the	LANSA	Repository	and	returns	them
to	the	calling	RDML	function.
Returned	values	are	exactly	as	presented	in	Detailed	Display	of	a	Field
Definition	in	the	LANSA	for	i	User	Guide.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	field	to	be	retrieved	from	Repository 1 10 	 	

2 A Opt Name	of	process	or	*COMP	if	component
*COMP	is	not	available	inLANSA	for	i	in
non-RDMLX	partitions.

1 10 	 	

3 A Opt Name	of	function	or	component.	Compulsory
if	Arg	2	is	provided.
If	this	argument	is	provided,	the	field	in	Arg	1
will	be	looked	for	first	in	the	working	fields
for	this	function	or	component,	and	if	not
found	as	a	working	field,	then	the	data
dictionary	will	be	searched.	Note	that	the
working	field	definitions	for	the	function	or
component	are	as	of	the	most	recent	compile.

1 10 	 	

its:LANSA010.CHM::/lansa/ugub_20027.htm

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	field	details	returned	
ER	=	field	not	accessible
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.

2 2 	 	

2 A Opt Field	type
A	=	alpha	
S	=	signed	decimal	numeric	
P	=	packed	decimal	numeric
B	=	Binary
E	=	Date
F	=	Float
H	=	Char
I	=	Integer
M	=	Time
Z	=	DateTime
1	=	String
2	=	VarBinary
3	=	CLOB
4	=	BLOB
8=Nchar
9=NVarChar

1 1 	 	

3 N Opt Length	of	field	or	total	number	of	digits	in
field.	Length	will	be	zero	for	types	BLOB
and	CLOB.

3 15 0 0

4 N Opt Number	of	decimal	positions	Not	applicable
to	all	types.

1 15 0 0

5 A Opt Reference	field	name 1 10 	 	

6 A Opt Field	description 1 40 	 	

7 A Opt Field	label 1 15 	 	

8 A Opt List	of	3	*	A(20)	headings
Bytes	1-20	are	column	head	1.
Bytes	21-40	are	column	head	2.
Bytes	41-60	are	column	head	3.

1 60 	 	

9 A Opt List	of	10	*	A(4)	output	attributes 1 40 	 	

10 A Opt List	of	10	*	A(4)	input	attributes 1 40 	 	

11 A Opt Edit	code	or	edit	word.
If	first	char	is	a	quote	(')	then	value	is	an	edit
word,	otherwise	it	is	an	edit	code.
Not	applicable	to	type	A	field.

1 20 	 	

12 A Opt Default	value	of	field 1 20 	 	

13 A Opt Optional	alias	name	of	field 1 30 	 	

14 A Opt System	field	flag
YES	=	a	system	field	
NO	=	not	a	system	field

3 3 	 	

15 A Opt Keyboard	shift 1 1 	 	

16 A Opt Component	(Y/N)
Note:
Fields	which	have	visualization	return	N.

1 1 	 	

17 A Opt Definition	source
W:	Working	field
D:	Data	dictionary.	
Will	always	be	'D'	if	process	&	function
arguments	not	supplied.

1 1 	 	

18 A Opt Prompting	process	name
Return	Blank	for	working	field

1 10 	 	

19 A Opt Prompting	function	name
Return	Blank	for	working	field

1 7 	 	

20 A Opt Is	field	RDMLX? 1 1 	 	

Y=Field	is	RDMLX
N=Field	is	RDML.

	

9.104	GET_FIELD_INFO

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	field	related	information	from	the	LANSA	internal	database
and	returns	it	to	the	calling	RDML	function	in	variable	length	working	lists.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Field	name 1 10 	 	

2 A Req Level	at	which	information	is	requested
D	=	Dictionary	level
F	=	File	level

1 1 	 	

3 A Req Type	of	field	related	information	to
retrieve.	Valid	types	are	:
FIELDCHECK	-	Validation	rules
MLATTR-	Multilingual	attributes

1 10 	 	

REFFLD	-	Fields	referring	to	the
requested	field

4 A Opt Physical	file	name.	Required	if	file	level
information	is	requested.

1 10 	 	

5 A Opt Physical	file	library.	Required	if	file
level	information	is	requested.

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	list	returned	partially	or	completely
filled.	No	more	of	this	type	of	information
exists	for	this	field.
OV	=	list	returned	completely	filled,	but	more
of	this	type	of	information	than	could	fit	in
the	list	exists.
NR	=	list	was	returned	empty.	Last	entry	in
the	list	is	returned	as	null.
ER	=	Field	not	found.	Last	entry	in	the	list	is
returned	as	null.

2 2 	 	

2 L Req Header	working	list	to	contain	field	related
information.
The	calling	RDML	function	must:
-	provide	a	working	list	with	an	aggregate
entry	length	of	exactly	100	bytes.
-	contain	no	more	than:
32,767	entries	if	Windows
9999	entries	if	IBM	i	.
For	type	of	field	related	information	to
retrieve	see
Format	for	header	working	list	type

100 100 	 	

FIELDCHECK:
Format	for	header	working	list	type
MLATTR:
Format	for	header	working	list	type	REFFLD:

3 L Req Detail	working	list	to	contain	field	related
information.
The	calling	RDML	function	must	provide	a
working	list	with:
-	an	aggregate	entry	length	of	exactly	100
bytes
-	contain	no	more	than:
32,767	entries	if	Windows
9999	entries	if	IBM	i	.
Refer	to:
Format	for	detail	working	list	type	
FIELDCHECK:
Format	for	detail	working	list	type	MLATTR:
Format	for	detail	working	list	type	REFFLD:
for	details.

100 100 	 	

	

Format	for	header	working	list	type	FIELDCHECK:

BytesDescription

1-5 Number	of	the	first	entry	in	the	detail	list	for	this	entry	in	character
format.	A	value	of	00000	denotes	that	there	are	no	entries	in	the	detail	list
for	this	entry.

6-10 Number	of	the	last	entry	in	the	detail	list	for	this	entry	in	character	format

11-12Type	of	check.	SL	=	Simple	Logic,	DC	=	Date	Check,	CF	=	File	Check,
CL	=	Complex	Logic,	RV	=	Range	of	Values,	LV	=	List	of	Values

13-42Description	of	check.

43-43Enable	check	for	ADD.	Y	=	Check	performed	on	ADD,					U	=	Check
performed	on	ADD	USE,	N	=	Check	not	performed	on	ADD.

44-44Enable	check	for	CHANGE.	Y	=	Check	performed	on	CHG,	U	=	Check
performed	on	CHG	USE,	N	=	Check	not	performed	on	CHG.

45-45Enable	check	for	DELETE.	Y	=	Enable	check,	N	=	Do	not	enable	check.

46-46Action	if	check	is	true.	N	=	Perform	NEXT	check,	E	=	Issue	fatal
ERROR,	A	=	ACCEPT	value	and	do	no	more	checking.

47-47Action	if	check	is	false.	N	=	Perform	NEXT	check,	E	=	Issue	fatal
ERROR,	A	=	ACCEPT	value	and	do	no	more	checking.

48-54Error	Message	Number.

55-64Message	File	Name.

65-74Message	File	Library.

75-84Name	of	program	to	be	called	to	perform	Complex	Logic	check.	Blank	if
not	Complex	Logic	check.

85-94Name	of	file	used	in	File	check.	Blank	if	not	File	check.

	

Format	for	header	working	list	type	MLATTR:

BytesDescription

1-5 Number	of	the	first	entry	in	the	detail	list	for	this	entry	in	character
format.	A	value	of	00000	denotes	that	there	are	no	entries	in	the	detail	list
for	this	entry.

6-10 Number	of	the	last	entry	in	the	detail	list	for	this	entry	in	character	format

11-14Language	code.

15-29Label.

30-49Column	heading	1.

50-69Column	heading	2.

70-89Column	heading	3.

	

Format	for	header	working	list	type	REFFLD:

BytesDescription

1-5 A	value	of	00000	since	the	detail	list	is	not	used	for	REFFLD
information.

6-10 A	value	of	00000.

11-20Field	Name

21-60Description

	

Format	for	detail	working	list	type		FIELDCHECK:

BytesDescription

Type	of	check	Simple	Logic

Each	detail	list	entry	is	formatted	as	follows:

1-79 Condition	line.

Type	of	check	Date	Check

One	detail	list	entry	is	formatted	as	follows:

1-8 Date	format.

9-15 Number	of	days	allowed	into	the	past	for	specified	date	in	character
format.

16-22Number	of	days	allowed	into	the	future	for	specified	date	in	character
format.

Type	of	check	File	Check

Each	detail	list	entry	is	formatted	as	follows:

1-20 Value	used	as	a	key	to	the	file.

Type	of	check	Complex	Logic

Each	detail	list	entry	is	formatted	as	follows:

1-20 Value	used	as	an	additional	parameter.

Type	of	check	Range	of	Values

Each	detail	list	entry	is	formatted	as	follows:

1-20 Value	used	as	low	limit	of	range.

21-40Value	used	as	high	limit	of	range.

Type	of	check	List	of	Values.

Each	detail	list	entry	is	formatted	as	follows:

1	-	20Value	used	as	a	list	element.

	

Format	for	detail	working	list	type	MLATTR:

Bytes Description

Each	detail	list	entry	is	formatted	as	follows:

1-40 Field	description.

	

Format	for	detail	working	list	type	REFFLD:

Bytes Description

No	information	is	returned	in	the	detail	list.

	

9.105	GET_FIELD_LIST

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	fields	and	their	descriptions	from	the	Repository	and	returns
them	to	the	calling	RDML	function	in	a	variable	length	working	list.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Positioning	field	value.	The	returned	list
starts	with	the	first	field	from	the	dictionary
whose	name	is	greater	than	the	value	passed
in	this	argument.

1 10 	 	

2 A Opt Omit	Visual	LANSA	Components	From	list
Y/N.
Default	is	N

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	Field	information.
The	calling	function	must	provide	a	working
list	with:
-	an	aggregate	entry	length	of	exactly	60
bytes
-	no	more	than	9999	entries.
Each	returned	list	entry	is	formatted	as
follows:
From-To			Description
1	-	10			Field	Name
11	-	50			Field	Description
51	-	51			RDMLX	Field	(Y	or	N)
52-60				<<future	expansion>>

60 60 	 	

2 A Opt Last	field	in	returned	list.	Typically	this	value
is	used	as	the	positioning	argument	on
subsequent	calls	to	this	Built-In	Function.

1 10 	 	

3 A Opt Return	code.
OK	=	list	returned	partially	or	completely
filled	with	field	details.	No	more	fields	exist
beyond	those	returned	in	the	list.
OV	=	list	returned	completely	filled,	but	more
fields	than	could	fit	in	the	list	exist.	Typically
used	to	indicate	"more"	fields	in	page	at	a
time	style	list	displays.
NR	=	list	was	returned	empty.	Last	field	in
the	list	is	returned	as	blanks.

2 2 	 	

	

Example
A	user	wants	to	customize	some	field	definitions	by	changing	labels,	and
column	headings.
FUNCTION	OPTIONS(*DIRECT)
GROUP_BY						NAME(#FLDDTL)	FIELDS((#FLDNAM	*NC)	(#FLDDES	*NC)	#FLDLBL	#FLDCH1	#FLDCH2	#FLDCH3)
DEF_LIST						NAME(#FLDLST)	FIELDS(#FLDNAM	#FLDDES	#SPARE)	TYPE(WORKING)	ENTRYS(1000)
**********				-Request	field-

REQUEST							FIELDS(#STRFLD)	TEXT(('Field	to	start	from'	5	5))
**********				-Get	list	of	fields-
USE											BUILTIN(GET_FIELD_LIST)	WITH_ARGS(#STRFLD)	TO_GET(#FLDLST	#LAST	#RETCOD)
**********				-Process	lists-
SELECTLIST				NAMED(#FLDLST)
USE											BUILTIN(GET_FIELD)	WITH_ARGS(#FLDNAM)	TO_GET(#RETCOD	#FLDTYP	#FLDLEN	#FLDDEC	#FLDREF	#FLDDES	#FLDLBL	#FLDCOL)
**********				<	break	column	headings	into	FLDCH1,	FLDCH2,	FLDCH3	>
**********				-Change	field	definition-
REQUEST							FIELDS(#FLDDTL)
USE											BUILTIN(PUT_FIELD)	WITH_ARGS('NNN'	#FLDNAM	#FLDTYP	#FLDLEN	#FLDDEC	#FLDREF	#FLDDES	#FLDLBL	#FLDCOL)
TO_GET(#STD_CMPAR)
ENDSELECT						
	

9.106	GET_FILE_INFO

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	file	related	information	from	the	LANSA	internal	database
and	returns	it	to	the	calling	RDML	function	in	variable	length	working	lists.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Physical	file	name 1 10 	 	

2 A Req Physical	file	library
(value	ignored	by	CHECKFILE).
In	Visual	LANSA	blanks	are	also
validated	for	backward	compatibility.

1 10 	 	

3 A Req Type	of	file	related	information	to
retrieve.	Valid	types	are:
CHECKFILE	–	First	library	the	file	exists
in.

1 10 	 	

FIELDS-	Fields	in	the	file
VIRTUALS	–	Virtual	fields	in	the	file.
PHYKEYS-	Fields	used	as	keys	to	the
file.
LGLVIEWS-	Logical	views	for	the	file.
ACCROUTES-	Access	routes	for	the	file.
MLATTR-	Multilingual	attributes

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	lists	returned	partially	or	completely
filled.	No	more	of	this	type	of	information
exists	for	this	file.
OV	=	lists	returned	completely	filled,	but
more	of	this	type	of	information	than	could	fit
in	the	list	exists.
NR	=	details	list	was	returned	empty.
(FIELDS/VIRTUALS	return	OK)
ER	=	File	not	found

2 2 	 	

2 L Req Header	working	list	to	contain	file	related
information.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	100	bytes.
List	cannot	be	more	than:
32767	entries	in	Windows
9999	entries	on	IBM	i.
From	-	To			Description
1	-	5			Number	of	the	first	entry	in	the	detail	list	for	this	entry
in	character	format.	A	value	of	'00000'	denotes	that	there	are

100
	

100
	

	
	
	
	
	
	
	
0
	

	
	
	
	
	
	
	
0
	

no	entries	in	the	detail	list	for	this	entry.
6	-	10			Number	of	the	last	entry	in	the	detail	list	for	this
entry	in	character	format
11	-	100			Rest	of	information

For	type	CHECKFILE:	
One	header	list	entry	formatted	as	follows:
From	-	To			Description
1	-	5			As	above
6	-	10			As	above
11	-	20			File	name	
	

For	type	FIELDS:	
One	header	list	entry	formatted	as	follows:
From	-	To			Description
1	-	5			As	above
6	-	10			As	above

	
For	type	VIRTUALS:	
One	header	list	entry		formatted	as	follows:
From	-	To			Description
1	-	5				As	above
6	-	10			As	above

	
For	type	PHYKEYS:	
One	header	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	5			As	above
6	-	10			As	above

	
For	Type	LGLVIEWS:
Each	header	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	5			As	above
6	-	10			As	above
11	-	20			Logical	view	name
21	-	60			Logical	view	description

	
	
	
	
0

	
	
	
	
0

	
For	type	ACCROUTES	:
Each	header	list	entry	is	formatted	as
follows:	
From	-	To			Description
1	-	5			As	above
6	-	10			As	above
11	-	20			Access	route	name
21	-	60			Access	route	description
61	-	70			File	accessed
71	-	80			File	library	accessed.
81	-	84	(P7,0)	Maximum	records	expected.
	

For	type	MLATTR:	
Each	header	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	5			As	above
6	-	10			As	above
11	-	20			Logical	view	name	or	physical	file	name

3 L Req Detail	working	list	to	contain	file	related
information.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	50	bytes.
For	type	CHECKFILE:	
Single	detail	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	10			First	library	name	that	the	file	exists	in

For	type	FIELDS:	
Each	detail	list	entry	is	formatted	as	follows:	
From	-	To			Description
1	-	10			Field	name	that	is	part	of	the	file

For	type	VIRTUALS:	
Each	detail	list	entry	is	formatted	as	follows:	
From	-	To			Description
1	-	10			Virtual	field	name	that	is	part	of	the	file

	 50 	 	

11	-	11			Virtual	field	populates	real	field	on	output
(Yes/No/Unknown)
12	-	12			Real	field	populates	virtual	field	on	input
(Yes/No/Unknown).

For	type	PHYKEYS:	
Each	detail	list	entry	is	formatted	as	follows:	
From	-	To			Description
1	-	10			Field	name	that	is	part	of	the	file	key

For	type	LGLVIEWS:
Each	detail	list	entry	is	formatted	as	follows:	
From	-	To			Description
1	-	10				Field	name	that	is	part	of	the	logical	view	key

For	type	ACCROUTES	:
Each	detail	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	20			Value	that	is	used	as	a	key	in	the	access	route.

For	type	MLATTR:	
Each	detail	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	4			Language	code
5	-	44			Logical	view	or	physical	file	description

	

9.107	GET_FUNCTION_ATTR

	Note:	Built-In	Function	Rules.

Gets	an	attribute	of	a	function	definition	that	is	being	edited	within	an	edit
session	previously	started	by	using	the	START_FUNCTION_EDIT	Built-In
Function.
Attributes	set	or	returned	by	this	Built-In	Function	have	the	same	editing	and
validation	rules	as	the	equivalent	online	facility	provided	in	a	full	LANSA
development	environment.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	attribute	to	get
Valid	attribute	names	are:
DESC-	Function	description
ONMENU	-	Display	on	Menu
MENUSQ	-	Menu	sequence	Number

1 10 	 	

TOTCMD	-	Total	RDML	commands
(including	comments)
EDTSRC	-	Associated	editing	source

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation	completed
ER	=	fatal	error	detected

2 2 	 	

2 A Req Area	in	which	to	return	the	attribute.
Allowable	values	are	as	follows
For	attribute	DESC:
The	function	description	up	to	40	characters
in	length.
For	attribute	ONMENU:
Y	–	Displayed	on	Menu
N	–	Not	displayed	on	Menu
For	attribute	MENUSQ:
Valid	number	represented	as	5	characters.
Range	00001	to	99999.
For	attribute	TOTCMD:
Valid	number	represented	as	4	characters.
Range	0000	to	9999.
For	attribute	EDTSRC:
Character	3	editing	source	as	the	"source"
field	on	the	START_PROCESS_EDIT	Built-
In	Function.
Value	LAN	or	blanks	indicates	last	editor	was
standard	online	RDML	editor

1 256 	 	

	

9.108	GET_FUNCTION_INFO

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	function	related	information	from	the	LANSA	internal
database	and	returns	it	to	the	calling	RDML	function	in	a	variable	length
working	list.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Process	name. 1 10 	 	

2 A Req Function	name. 1 7 	 	

3 A Req Type	of	function	related	information	to
retrieve.
Valid	type	for	all	LANSA	systems:
MLATTR-	Multilingual	attributes
Valid	types	for	LANSA	on	IBM	i	:

1 10 	 	

FIELDS-	Fields	used	by	the	function
FILES-	Files	used	by	the	function
FUNCPANEL	-	LANSA	Documentor
panel	layouts
FUNSTEXT-	LANSA	Documentor
function	MSL	Diagram
FUNTNOTE-	LANSA	Documentor
function	MSL	technical	notes
FUNTABLE-	LANSA	Documentor
function	MSL	tables
FUNXR3GL-	LANSA	Documentor
called	3GL	programs
FUNXRPRO-	LANSA	Documentor
called	processes
FUNXRFUN-	LANSA	Documentor
called	functions
FUNXRBIF-	LANSA	Documentor
called	Built-In	Functions
FUNCREP-	LANSA	Documentor	report
layouts	functions
FUNXRSYV-	LANSA	Documentor
system	variables	used
FUNXRMST-	LANSA	Documentor
message	text	used
FUNXRMSI-	LANSA	Documentor
predefined	messages	used
	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code 2 2 	 	

OK	=	list	returned	partially	or	completely
filled.	No	more	of	this	type	of	information
exists	for	this	function.
OV	=	list	returned	completely	filled,	but	more
of	this	type	of	information	than	could	fit	in
the	list	exists.
NR	=	list	was	returned	empty.	Last	entry	in
the	list	is	returned	as	null.
ER	=	Function	not	found.	Last	entry	in	the	list
is	returned	as	null.

2 L Req Working	list	to	contain	process	related
information.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	132	bytes.
List	must	not	be	more	than:
32767	entries	in	Windows
9999	entries	on	IBM	i.
For	type	FIELDS:
Each	returned	list	entry	is	formatted	as
follows
From	-	To			Description
1	-	10			Field	name.
11	-	132			<<future	expansion>>

For	type	FILES:
Each	returned	list	entry	is	formatted	as
follows
From	-	To			Description
1	-	10			Physical	file	name
11	-	20			Physical	file	library
21	-	30			Logical	view	name	(blank	if	the	physical	file	used)
31	-	132			<<future	expansion>>

For	type	FUNXXXXXXXXXX:
(ex	LANSA	Documentor)
Each	returned	list	entry	is	formatted	as

132 132 	 	

follows
From	-	To			Description
1	-	132			LANSA	Documentor	line.

For	type	MLATTR:
Each	returned	list	entry	is	formatted	as
follows
From	-	To			Description
1	-	4			Language	code
5	-	44			Function	description
45	-	132			<<future	expansion>>

	

9.109	GET_FUNCTION_LIST

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	processes,	associated	functions	and	their	descriptions	from	the
LANSA	internal	database	and	returns	them	to	the	calling	RDML	function	in	a
variable	length	working	list
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Process	name.1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	function	information.
List	must	not	be	more	than:
32767	entries	in	Windows
9999	entries	on	IBM	i.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of

60 60 	 	

exactly	60	bytes.
Each	returned	list	entry	is	formatted	as
follows:
From	-	To			Description
1	-	7			Function	name
8	-	47			Function	description
48	-	48			RDMLX	function	(Y	or	N)
49-60			<<future	expansion>>

2 A Opt Return	code.
OK	=	list	returned	partially	or	completely
filled	with	function	details.	No	more
functions	exist	for	this	process.
OV	=	list	returned	completely	filled,	but	more
functions	than	could	fit	in	the	list	exist.
Typically	used	to	indicate	"more"	functions	in
page	at	a	time	style	list	displays.
NR	=	list	was	returned	empty.	Last	function
in	the	list	is	returned	as	blanks.
ER	=	Process	not	found.	Last	function	in	the
list	is	returned	as	blanks.

2 2 	 	

	

9.110	GET_FUNCTION_RDML

	Note:	Built-In	Function	Rules.

Returns	the	RDML	code	associated	with	a	function	into	a	working	list.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	by	using	the	START_FUNCTION_EDIT
Built-In	Function.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
No	argument	values.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation	completed
ER	=	fatal	error	detected

2 2 	 	

2 L Req Working	list	Name. 	 	 	 	

If	the	edit	session	is	Include	RDML	audit
stamps	N,	then	the	working	list	must	be	no
greater	than	32,767	entries	and	have	an
aggregate	entry	length	of	72	bytes	where	each
entry	is	composed	of:
From	-	To			Description
1	-	4			Command	sequence	number	Format	Signed	(4,	0).	
5	-	7			Command	Label	A(3)
8	-	17			Command
18	-	72			Command	Parameters.	Alpha.

If	the	edit	session	is	Include	RDML	audit
stamps	Y,	then	the	working	list	must	have	an
aggregate	entry	length	of	99	bytes,	where,	in
addition	to	the	positions	and	number	of
entries	described	for	Include	RDML	audit
stamps	N,	each	entry	is	composed	of:
From-To			Description
73	-	73			Command	Changed	Flag,	always	N.
74	-	81			Command	Changed	Date.	Signed(8,0)
(CCYYMMDD).
82	-	91			Command	Changed	User.	Alpha.
92	-	99				Command	Changed	Task.	A(8)

	

Technical	Notes
Commands	that	have	more	than	55	bytes	of	parameters	are	returned	in	multiple
entries	like	this	example

	Seq		Lab	Command							Parameters
	0001					**********				This	is	a	comment	line
	0002					SET_MODE						TO(*CHANGE)
	0003	L32	GROUP_BY						NAME(#GROUP)	FIELDS(#FIELD001	#FIELD002	
	0003																			#FIELD003	#FIELD004	#FIELD005	#FIELD006)
	0004					DISPLAY							FIELDS(#GROUP)
	0005					MENU					
	0006					**********				This	is	a	comment	line
	

9.111	GET_HELP

	Note:	Built-In	Function	Rules.

Gets	a	list	of	help	text	for	a	specified	field,	function	or	process.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Object	name	The	name	of	a	field,	function	or
process.

1 10 	 	

2 A Req Object	extension	name	If	the	object	type	is	a
function	then	this	value	should	contain	the
name	of	the	process	that	the	function	is
defined	in.	If	the	object	type	is	not	a	function
then	this	value	should	be	blank.

1 10 	 	

3 A Req Object	type	Values:
DF	-	Field
PD	-	Process
PF	-	Function

2 2 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	help	text.
List	must	not	be	more	than:
32767	entries	in	Windows
9999	entries	on	IBM	i.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	77	bytes.
Each	returned	list	entry	is	formatted	as
follows:
Bytes	1-77:	Help	Text

1 77 	 	

2 A Req Return	code
OK	=	list	returned	partially	or	completely
filled	with	help	text	for	this	object	No	more
help	text	exists	for	this	object.
OV	=	list	returned	completely	filled,	but	more
help	text	than	could	fit	in	the	list	exist.
Typically	used	to	indicate	"more"	functions	in
page	at	a	time	style	list	displays.
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.

2 2 	 	

	

Example
A	user	wants	to	retrieve	the	help	text	of	a	specific	object	and	display	it	without
the	use	of	the	HELP	key.
*********	Define	arguments	and	lists
DEFINE	FIELD(#OBJNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE	FIELD(#OBJEXT)	TYPE(*CHAR)	LENGTH(10)

DEFINE	FIELD(#OBJTYP)	TYPE(*CHAR)	LENGTH(2)
DEFINE	FIELD(#HLPTXT)	TYPE(*CHAR)	LENGTH(77)
DEFINE	FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
DEF_LIST	NAME(#WKHLPL)	FIELDS((#HLPTXT))	TYPE(*WORKING)
DEF_LIST	NAME(#BWHLPL)	FIELDS((#HLPTXT))
GROUP_BY	NAME(#RQSOBJ)	FIELDS((#OBJNAM)	(#OBJEXT)
(#OBJTYP))
GROUP_BY	NAME(#DSPHLP)	FIELDS((#OBJNAM)	(#OBJEXT)
(#OBJTYP))
*********	Clear	working	and	browse	lists
BEGIN_LOOP	
*********	Request	Object	Name,	Extension	and	Type
REQUEST	FIELDS(#RQSOBJ)
CLR_LIST	NAMED(#WKHLPL)
CLR_LIST	NAMED(#BWHLPL)
*********	Execute	built-in-function	-	GET_HELP
USE	BUILTIN(GET_HELP)	WITH_ARGS(#OBJNAM	#OBJEXT
#OBJTYP)	
TO_GET(#WKHLPL	#RETCOD)
*********	Help	text	was	retrieved	successfully
IF	COND('#RETCOD	*EQ	''OK''')
*********	Move	Help	text	from	the	working	list	to	the	browselist
SELECTLIST	NAMED(#WKHLPL)
ADD_ENTRY	TO_LIST(#BWHLPL)
ENDSELECT	
*********	Allow	Help	text	to	be	reviewed	for	the	specified	object
DISPLAY	FIELDS((#DSPHLP))	BROWSELIST(#BWHLPL)
*********	Working	list	overflowed,	more	help	text	to	retrieve
ELSE	
IF	COND('#RETCOD	*EQ	''OV''')
MESSAGE	MSGTXT('List	not	big	enough	to	fit	all	help	text')
*********	GET_HELP	failed	with	errors,	report	error
ELSE	
MESSAGE	MSGTXT('GET_HELP	failed	with	errors,	try	again')
ENDIF	
ENDIF	
END_LOOP	
	

9.112	GET_ILENTRY_LIST

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	Impact	List	entries	and	their	descriptions	from	the	data
dictionary	and	returns	them	to	calling	RDML	function	in	a	variable	length
working	list.	The	Impact	List	must	have	been	previously	created	and	entries
added	using	the	LANSA	development	menu.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Impact	List	name	from	which	entries	are	to	be
retrieved.

7 7 	 	

1 A Req Start	positioning	value	consisting	of	Entry
type	and	Entry	Name.	The	returned	list	starts
with	the	first	entry	from	the	Impact	List
which	is	greater	than	the	value	passed	in	this
argument.
Entry	types	are	:
DF	(field),	FD	(file),
PF	(function),	SV	(system	variable),	MT
(multilingual	text)
Entry	names	are	:
Field	-	field	name

1 22 	 	

File	-	file	name	and	library
Function	-	process	and	function	names
System	variable	name
Multilingual	variable	name.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	Entry	information.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	70	bytes.
Each	returned	list	entry	is	formatted	as
follows:
From	-	To			Description
1	-	2			ENTRY	TYPE
						DF	=	field
						FD	=	file
						PF	=	function
						SV	=	system	variable
						MT	=	multilingual	variable
3	-	22			ENTRY	NAME
						Field
3	-	12			Field	name
13	-	22			Blank
						File
3	-	12			File	name
13	-	22			Library
Function
3	-	12			Process	name
13	-	19			Function	name
20	-	22			Blank
	
						System	variable
3	-	22			Variable	name

	 	 	 	

	
						Multilingual	Variable
3	-	22			Variable	name
23	-	62			DESCRIPTION
63	-	70			<<	FUTURE	EXPANSION>>

2 A Opt Last	entry	in	returned	list	Typically	this	value
is	used	as	the	positioning	argument	on
subsequent	calls	to	this	Built-In	Function.

1 22 	 	

3 A Opt Return	code.
OK	=	list	returned	partially	or	completely
filled	with	Impact	List	entry	details.	No	more
entries	exist	beyond	those	returned	in	the	list.
OV	=	list	returned	completely	filled,	but	more
entries	than	could	fit	in	the	list	exist.
NR	=	list	was	returned	empty.	Last	entry	in
the	list	is	returned	as	blanks.

2 2 	 	

	

Example
This	function	could	be	used	to	compile	the	file	entries,	which	exist	in	an	Impact
List.	The	Impact	List	would	have	been	created	and	the	file	entries	added	using
the	LANSA	developer's	menu	option	"Work	with	Impact	Lists".
**********				#ETYP		*CHAR	2					
**********				#FILE		*CHAR	10					
**********				#LIB			*CHAR	10					
**********				#DESC		*CHAR	40					
**********				#SPARE	*CHAR	8					
**********				#START		*CHAR	22					
**********				#LAST			*CHAR	22					
DEF_LIST						NAME(#ELLST)	FIELDS(#ETYP	#FILE	#LIB	#DESC	#SPARE)						
														TYPE(*WORKING)	ENTRYS(10)						
**********				-Clear	list-						
CLR_LIST						NAMED(#ELLST)						
**********				-Request	Impact	List	name-						
REQUEST							FIELDS(#ILNAME)	TEXT(('Impact	List	to	use'	5	5))						

**********				-Set	the	start	value	to	start	at	the	file	entries-						
CHANGE								FIELD(#START)	TO(FD)						
**********				-Get	the	entries	from	the	Impact	List-						
BEGIN_LOOP					
USE											BUILTIN(GET_ILENTRY_LIST)	WITH_ARGS(#ILNAME	#START)				
														TO_GET(#ELLST	#LAST	#RETCOD)						
**********				-If	entries	found-						
IF												COND('(#RETCOD	*EQ	OK)	*OR	(#RETCOD	*EQ	OV)')						
SELECTLIST				NAMED(#ELLST)						
IF												COND('#TYP	=	FD')						
USE											BUILTIN(MAKE_FILE_OPERATIONL)	WITH_ARGS(#FILE	#LIB)		
														TO_GET(#RTN)						
ENDIF																
ENDSELECT												
**********				-If	more	entries,	set	start	value	for	repeat	-						
IF												COND('#RETCOD	*EQ	OV')						
CHANGE								FIELD(#START)	TO(#LAST)						
ELSE												
RETURN										
ENDIF										

**********								-No	entries-					
ELSE												
RETURN											
ENDIF											
END_LOOP

9.113	GET_KEYWORD_STRING

	Note:	Built-In	Function	Rules.

Gets	the	keywords	and	their	values	from	a	string	containing	one	ESF	(external
source	format)	statement.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WINDOWSNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	'lines'	of	string	from
which	keywords	and	their	values	will	be
retrieved.	There	is	a	limit	of	1000	characters
in	total	for	this	list.

1 256 	 	

2 N Req The	length	of	working	list	entry	for	the	'lines'
of	the	string	from	which	keywords	and	their
values	will	be	retrieved.

1 3 0 0

3 A Req Tag	name	(command	name)	of	the	ESF
statement	that	is	being	processed.

1 10 	 	

4 L Req Working	list	of	keywords	to	search	for.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	16	bytes.
Each	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	15			Keyword

16 16 	 	

16	-	16			Number	of	Values:
					S	-	Single	Value
					L	-	List	of	Values

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	List	for	keywords	found.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	25	bytes.
Each	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	15			Keyword
16	-	20			First	value	list	entry	number	for	keyword	5,0	Signed
21	-	25			Last	value	list	entry	number	for	keyword	5,0	Signed

25 25 	 	

2 L Req Working	List	for	values	found
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	131	bytes.
Each	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	1				Value	Type:
			A	-	Alphanumeric
			N	-	Numeric
2	-	101			Alpha	value.
Note:
The	alpha	value	is	always	enclosed	in	quotes.
102	-	131			Numeric	value.
Note:	The	numeric	literal	is	a	30,	9	signed	value.

131 131 	 	

3 L Req Working	list	for	the	leftover	part	of	the
searched	string	after	the	search	keywords	and
their	values	have	been	removed.

1 22 	 	

Each	list	entry	is	formatted	as	follows:
From	-	To			Description
1	-	2			Error	code	.	Error	codes	are	listed	below.
3	-	22			The	first	20	character	string	that	was	not	recognized.

	

Error	codes
01 Tag	open	delimiter	was	not	a	colon

02 Tag	name	does	not	start	with	an	alpha	character

03 Tag	name	to	long	-	must	be	less/equal	to	10	characters

04 Keyword	does	not	start	with	an	alpha	character

05 Keyword	Invalid	-	not	found	in	declared	keyword	list

06 Keyword	incomplete	-	end	of	string	found

07 Keyword	specified	too	long	-	must	be	less/equal	to	15	characters

08 No	Values	specified	for	keyword

09 Value	specified	is	too	long

10Multiple	values	specified	for	a	single	value	list

11 Quoted	value	does	not	end	in	a	quote

12 Invalid	numeric	literal	value

13More	than	one	decimal	format	character	specified	for	value

14 Digit	portion	of	numeric	literal	value	is	longer	than	21

15 Decimal	portion	of	numeric	literal	is	longer	than	9

16 Command	string	longer	than	allowed	maximum	of	1000	characters

17 Tag	close	delimiter	not	specified

18 Value	incomplete	-	end	of	string	found

19 Expected	tag	name	not	found

20 Quoted	value	must	be	followed	by	a	blank

21 End	of	keyword	relator	not	specified

22 Keyword	specified	more	than	once

Technical	Notes
The	returned	keywords	list	will	have	an	entry	for	each	keyword	searched	for,
in	the	order	specified	in	the	keywords	to	search	for	list.	A	keyword	not	found
will	have	0	as	its	first	value	list	entry	number.
Ensure	all	keywords	specified	in	the	working	list	of	keywords	to	be	searched
for	and	the	keywords	specified	within	the	ESF	statement	are	in
UPPERCASE.
The	alpha	value	in	the	returned	values	list	will	always	be	there	whether	the
value	is	alpha	or	numeric.	The	numeric	value	will	only	be	nonzero	if	the
value	is	numeric.
Alphanumeric	values	that	contain	lowercase	characters	and	that	are	not
enclosed	in	quotes	will	be	converted	to	UPPERCASE.
Alphanumeric	values	must	not	contain	embedded	quotes.
The	maximum	length	allowable	for	an	alphanumeric	value	is	98,	all
alphanumeric	values	will	be	returned	in	quotes.
The	string	in	the	returned	leftover	list	will	consist	of	the	search	string	where
an	error	has	occurred.

Example
A	list	has	been	constructed	containing	an	ESF	style	statement.	It	has	been
determined	that	it	is	the	RECORD	statement.	The	value	for	FILENAME	which
is	a	single	value	keyword	is	required.
DEFINE					FIELD(#KWD)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#KWDTYPE)	TYPE(*CHAR)	LENGTH(1)
DEFINE					FIELD(#LINE)	TYPE(*CHAR)	LENGTH(70)
DEFINE					FIELD(#KWDSTR)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
DEFINE					FIELD(#KWDEND)	TYPE(*DEC)	LENGTH(5)	DECIMALS(0)
DEFINE					FIELD(#VALTYPE)	TYPE(*CHAR)	LENGTH(1)
DEFINE					FIELD(#VALALPHA)	TYPE(*CHAR)	LENGTH(50)
DEFINE					FIELD(#VALNUM)	TYPE(*DEC)	LENGTH(30)	DECIMALS(0)
DEFINE					FIELD(#FILENAME)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#LEFTCOUNT)	TYPE(*DEC)	LENGTH(5)	DECIMALS(0)

DEF_LIST			NAME(#KWDSRCH)	FIELDS((#KWD)	(#KWDTYPE))	
											TYPE(*WORKING)
DEF_LIST			NAME(#STRSRCH)	FIELDS((#LINE))	TYPE(*WORKING)
DEF_LIST			NAME(#KWDFND)	FIELDS((#KWD)	(#KWDSTR)	(#KWDEND)	
											TYPE(*WORKING)
DEF_LIST			NAME(#VALFND)	FIELDS((#VALTYPE)	(#VALALPHA)	
											(#VALNUM))	TYPE(*WORKING)
DEF_LIST			NAME(#STRLEFT)	FIELDS((#LINE))	TYPE(*WORKING)	
											COUNTER(#LEFTCOUNT)
**********	Construct	list	containing	ESF:RECORD	statement
.		
**********	Clear	the	keyword	search	list
CLR_LIST			NAMED(#KWDSRCH)
**********	Put	in	search	keywords
CHANGE					FIELD(#KWD)	TO(FILENAME)
CHANGE					FIELD(#KWDTYPE)	TO(S)
ADD_ENTRY		TO_LIST(#KWDSRCH)
**********	Get	the	keywords	from	the	string
USE								BUILTIN(GET_KEYWORD_STRING)	WITH_ARGS(#STRSRCH	#KWDSTR	#KWD	
											#KWDSRCH)	TO_GET(#KWDFND	#VALFND	#STRLEFT)
**********	Handle	error
IF									COND('#LEFTCOUNT	>	0')
**********									error	processing
.		
ELSE
**********	Get	the	value	for	the	file	name	keyword
GET_ENTRY		NUMBER(1)	FROM_LIST(#VALFND)
GET_ENTRY		NUMBER(#KWDSTR)	FROM_LIST(#VALFND)
CHANGE					FIELD(#FILENAME)	TO(#VALALPHA)
**********	Use	the	file	name
.		
ENDIF
	

9.114	GET_LICENSE_STATUS
Retrieve	the	status	of	LANSA	licenses	in	this	LANSA	system	as	at	a	particular
date.
Running	a	regularly	scheduled	job	using	this	Built-In	Function	can	provide
advance	warning	of	a	license	about	to	expire.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Opt License	status	as	at	Date	(YYYYMMDD)
If	this	argument	is	not	provided	or	it	is	zero,
today's	date	will	be	used.

8 8 0 0

2 A Opt Status	of	this	license	code	is	requested.	If	this
argument	is	not	provided,	the	status	of	all
licenses	as	at	argument1	date	will	be	returned.
(
*
)

3 3 	 	

3 A Opt License	Version	(
*
)
If	this	argument	is	not	provided	or	is	blank,	a
license	version	of	"1"	will	be	assumed.

1 1 0 0

4 A Opt Long	License	Code	to	check	(
*
)

24 24 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	List	to	contain	the	license	statuses.
(*)

* * 0 0

2 A Opt Return	code.
OK	=	list	returned	partially	or	completely
filled	with	license	status.	No	more	fields	exist
beyond	those	returned	in	the	list.
OV	=	list	returned	completely	filled,	but	more
entries	than	could	fit	in	the	list	exist.	

2 2 	 	

	

(*)		When	License	Version	is	set	to	"1",	the	4th	argument,	if	specified,	is
ignored.	The	calling	RDML	function	must	provide	a	working	list	with	an
aggregate	entry	length	of	exactly	4	bytes	and	with	no	more	than	9999	entries.
Each	returned	list	entry	is	formatted	as	follows:

FromToDescription

1 3 License	Code

4 4 Status	Y/N.
Y	=	License	is	valid	for	this	machine	as	at	the	date	used	from
argument	1.

	

					When	License	Version	is	set	to	"2",	the	2nd	argument	is	ignored	and	the	4th

argument,	if	specified,	is	used	as	the	license	code	whose	status	is	requested.
The	calling	RDML	function	must	provide	a	working	list	with	an	aggregate
entry	length	of	exactly	25	bytes	and	with	no	more	than	9999	entries.	Each
returned	list	entry	is	formatted	as	follows:

FromToDescription

1 24 License	Code

25 25 Status	Y/N.
Y	=	License	is	valid	for	this	machine	as	at	the	date	used	from
argument	1.

	

Technical	Notes
IBM	i	licenses:	The	license	codes	return	will	contain	this	LANSA	system's
permanent	licenses	plus	LANSA	Integrator	key	licenses	where	Integrator	has
been	installed	or	upgraded	using	the	IBM	i	installation	processing.	Where
LANSA	Integrator	has	been	installed	separately,	the	Integrator	licenses	will	not
be	returned	by	GET_LICENSE_STATUS.

Example
To	find	licenses	which	are	currently	valid	but	will	expire	in	the	next	month.
DEFINE					FIELD(#CODE1)	TYPE(*CHAR)	LENGTH(3)																					
DEFINE					FIELD(#CODE2)	TYPE(*CHAR)	LENGTH(3)																					
DEFINE					FIELD(#STATUS1)	TYPE(*CHAR)	LENGTH(1)																			
DEFINE					FIELD(#STATUS2)	TYPE(*CHAR)	LENGTH(1)																			
DEF_LIST			NAME(#WLIST1)	FIELDS((#CODE1)	(#STATUS1))	TYPE(*WORKING	
)																																																							
DEF_LIST			NAME(#WLIST2)	FIELDS((#CODE2)	(#STATUS2))	TYPE(*WORKING	
)																																																							
DEF_LIST			NAME(#BLIST)	FIELDS((#CODE2)	(#STATUS2))																
DEFINE					FIELD(#EXPDATE)	TYPE(*DEC)	LENGTH(8)	DECIMALS(0)								
DEFINE					FIELD(#YESTERDAY)	TYPE(*DEC)	LENGTH(8)	DECIMALS(0)						
																																																																			
DEFINE					FIELD(#RETCODE)	TYPE(*CHAR)	LENGTH(2)																			
**********	Today	+	31	days	:	to	get	licenses	which	will	expire	
**********	next	month	

USE								BUILTIN(FINDDATE)	WITH_ARGS(#YYYYMMDD	31	J	J)	TO_GET(#E	
											XPDATE)																																															
**********	WLIST2	will	contain	license	status	in	31	days	time.
CLR_LIST			#wlist2																																																	
USE								BUILTIN(GET_LICENSE_STATUS)	WITH_ARGS(#EXPDATE)	TO_GET(
											#WLIST2)	
**********	Today	-	1	day	:	to	get	yesterday's	date																	
USE								BUILTIN(FINDDATE)	WITH_ARGS(#YYYYMMDD	-1	J	J)	TO_GET(#Y	
											ESTERDAY)																																															
**********	WLIST1	will	contain	license	status	yesterday.
CLR_LIST			#wlist1																																																	
USE								BUILTIN(GET_LICENSE_STATUS)	WITH_ARGS(#YESTERDAY)	TO_GE	
											T(#WLIST1)																																														
**********	Compare	the	status	in	a	month's	time	with	the	status	
**********	yesterday	to	find	licenses	which	will	expire	in	the	
**********	next	month.	
CLR_LIST			#blist																																																		
SELECTLIST	#wlist2																																																	
IF									COND('#status2	=	N')																																	
LOC_ENTRY		IN_LIST(#WLIST1)	WHERE('#code1	=	#code2')															
IF									COND('(#IO$STS	=	OK)	*AND	(#STATUS1	=	Y)')														
ADD_ENTRY		#BLIST																																																		
ENDIF																																																														
ENDIF																																																														
ENDSELECT																																																										
DISPLAY				FIELDS((#EXPDATE))	BROWSELIST(#BLIST)																			
	

9.115	GET_LOGICAL_LIST

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	a	physical	files	associated	logical	views	and	their	descriptions
from	the	data	dictionary	and	returns	them	to	the	calling	RDML	function	in	a
variable	length	working	list.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES	

Visual	LANSA	for
Windows

YESThis	Built-In	Function	is	not	supported	if	the	X_RUN
parameter	DBII=*NONE.

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Physical	file	name. 1 10 	 	

2 A Req Physical	file	library. 1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	logical	file
information.
List	must	not	be	more	than:

70 70 	 	

32767	entries	in	Windows
9999	entries	on	IBM	i.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	70	bytes.
Each	returned	list	entry	is	formatted	as
follows:
From	-	To	Description
	1	-	10				Logical	file
11	-	20			Logical	file	library
21	-	60			Description
61	-	70				<<future	expansion>>

2 A Opt Return	code.
OK	=	list	returned	partially	or	completely
filled	with	file	details.	No	more	logicals	exist
for	this	physical	file.
OV	=	list	returned	completely	filled,	but	more
files	than	could	fit	in	the	list	exist.	Typically
used	to	indicate	"more"	fields	in	page	at	a
time	style	list	displays.
NR	=	list	was	returned	empty.	Last	file	in	the
list	is	returned	as	blanks.
ER	=	Physical	file	not	found.	Last	file	in	the
list	is	returned	as	blanks.

2 2 	 	

	

9.116	GET_MESSAGE

	Note:	Built-In	Function	Rules.

Gets	the	details	of	the	next	message	from	the	program	queue	of	the	RDML
function.
Normally	the	returned	message	details	are	then	processed	or	printed	by	the
RDML	function	in	some	non-standard	way.
Messages	on	the	program	queue	of	an	RDML	function	normally	displayed	on
line	22/24	of	the	next	screen	presented	to	the	user	and	then	automatically
cleared	/	removed.
Messages	may	have	been	placed	on	the	program	message	queue	by	operating
system	commands,	Built-In	Functions,	invalid	I/O	requests	and/or	RDML
commands	such	as	MESSAGE,	VALUECHECK,	etc.

Portability
Considerations

This	BIF	does	not	retrieve	the	Message	File	or	Message	Id
number	when	running	under	LANSA	SuperServer.	See	the
note	following	the	example	below.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Remove	message	from
queue
Y	-	message	is	removed
N	-	message	is	not
removed

1 1 	 	

Default	value	is	Y.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Message	return	code
OK	=	message	returned
NO	=	no	message	found

2 2 	 	

2 A Opt Message	text 1 132 	 	

3 A Opt Message	number 1 7 	 	

4 A Opt Message	file	name 1 10 	 	

5 A Opt Message	file	library 1 10 	 	

6 A Opt Message	substitution
variable

1 132 	 	

	

Example
Insert	a	new	name	and	address	into	file	NAMES	in	a	batch	program.	If	an	error
is	detected,	print	details	of	the	name	and	address	an	exception	report	with	all
associated	error	messages.
DEFINE					FIELD(#ERRTXT)	TYPE(*CHAR)	LENGTH(100)	
											LABEL('Error	:')
DEF_LINE			NAME(#NAME)		FIELDS(#CUSTNO	#ADDRESS1	
																															#ADDRESS2	#ZIPCODE)
DEF_LINE			NAME(#ERROR)	FIELDS(#ERRTXT)	IDENTIFY(*LABEL)

INSERT					FIELDS(#NAME)	TO_FILE(NAMES)	VAL_ERROR(*NEXT)
IF_STATUS		IS_NOT(*OKAY)
						PRINT						LINE(#NAME)
						USE								BUILTIN(GET_MESSAGE)	TO_GET(#RETCODE	#ERRTXT)

						DOWHILE				COND('#RETCODE	=	OK')
											PRINT						LINE(#ERROR)
											USE								BUILTIN(GET_MESSAGE)	
																						TO_GET(#RETCODE	#ERRTXT)
						ENDWHILE
ENDIF

Note:
Running	the	same	program	under	IBM	i	and	in	LANSA	SuperServer	mode	will
produce	different	messages.
A	retrieved	message	using	this	BIF	on	the	IBM	i	will	display:
Message	text:						Record	to	be	updated	has	been	changed	by	another	job/user
Message	number:				IOM0017
Message	file	name:	DC@M01

Running	in	LANSA	SuperServer	mode	(against	the	IBM	i)	will	display:
Message	text:						Record	to	be	updated	has	been	changed	by	another	job/user
Message	number:				*STCMSG
Message	file	name:	2

This	is	a	design	consideration	that,	due	to	technical	complexities,	will	not	be
changed	in	the	short	term.

9.117	GET_MESSAGE_DESC

	Note:	Built-In	Function	Rules.

Gets	the	description	associated	with	a	message	number	in	a	message	file.
Normally	the	returned	message	details	are	then	processed	or	printed	by	the
RDML	function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Message	number 1 7 	 	

2 A Req Message	file 1 10 	 	

3 A Opt Message	file	library 1 10 	 	

4 A Opt Message	substitution	value(s)
Multiple	substitution	values	can	be	used.
Substring	values	together	to	match	message
definition.	For	example,	"Function	&1	in	&2
failed",	with	substitution	values	*CHAR7	and
*CHAR10	provided.	The	second	value	must
begin	in	position	8.

1 132 	 	

	

Return	Values

NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Message	description1 132 	 	

	

Example
Execute	a	subroutine	to	print	an	error	/	exception	report.	The	subroutine	is
passed	an	error	message	number.
DEFINE					FIELD(#ERRTXT)	TYPE(*CHAR)	LENGTH(132)	
											LABEL('Error	:')
DEFINE					FIELD(#TEXT)	TYPE(*CHAR)	LENGTH(132)
DEFINE					FIELD(#MSGID)	TYPE(*CHAR)	LENGTH(7)
DEFINE					FIELD(#MSGT)	TYPE(*CHAR)	LENGTH(132)
DEF_LINE			NAME(#NAME)		FIELDS(#CUSTNO	#ADDRESS1	#ADDRESS2	#ZIPCODE)
DEF_LINE			NAME(#ERROR)	FIELDS(#ERRTXT)	IDENTIFY(*LABEL)

		'		'		Some	processing		'			'
		'		'																			'			'
INSERT					FIELDS(#NAME)	TO_FILE(NAMES)	VAL_ERROR(*NEXT)
IF_STATUS		IS_NOT(*OKAY)
PRINT						LINE(#NAME)
CHANGE					FIELD(#TEXT)	TO('xxxxxxx')
EXECUTE				SUBROUTINE(ERRPRT)	WITH_PARMS(ERR0003	#TEXT)
ENDIF
		'		'		More	processing		'			'
		'		'																			'			'

SUBROUTINE	NAME(ERRPRT)	PARMS(#MSGID)
USE								BUILTIN(GET_MESSAGE_DESC)	WITH_ARGS(#MSGID	#ERRFILE
											'''*LIBL'''	#TEXT)	TO_GET(#MSGT)
PRINT						LINE(#ERROR)

ENDROUTINE

9.118	GET_MESSAGE_LIST

	Note:	Built-In	Function	Rules.

The	only	required	parameter	will	be	a	message	file.	This	will	load	the	list	with
each	subsequent	message	file	/	message	stored	in	the	message	table	LX_MSG.
If	a	language	other	than	*ALL	is	specified	only	messages	with	the	specified
language	will	be	returned.
If	a	message	id	is	specified,	all	messages	following	the	message	id	will	be
returned	to	the	list.	(NB	a	language	must	be	specified	if	a	message	id	is
specified.).

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Search	Message	File 1 10 	 	

2 A Opt Language	Code
If	the	special	value	*ALL	is	specified	all
languages	will	be	returned,	otherwise	only
messages	for	the	selected	language	will	be
listed.

1 4 	 	

3 A Opt Message	Identifier 1 7 	 	

	

Return	Values

No.TypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	message	details.
List	must	not	be	more	than	32767	entries.
Message	details	to	be	formatted	as	follows:
From	-	To			Description
1	-	4			Language
5	-	14						Message	File
15	-	21			Message	Identifier
22	-	153			Message	Text

153 153 	 	

2 A Req The	last	Language	in	the	returned	list. 1 4 	 	

3 A Req The	last	Message	File	in	the	returned	list. 1 10 	 	

4 A Req The	last	Message	Identifier	in	the	returned
list.

1 7 	 	

5 A Req Return	Code
OK	=	list	returned	partially	or	completely
filled	with	message	details.	No	more
Messages	exist	beyond	those	returned	in	the
list
OV	=	list	returned	completely	filled,	but
more	Messages	than	could	fit	in	the	list	still
exist
NR	=	list	was	returned	empty.	Last	Message
File/	Message	Identifier	in	list	returned	as
blanks

2 2 	 	

	

9.119	GET_ML_VARIABLE

	Note:	All	Multilingual	Built-In	Functions	in	Built-In	Function	Rules.

Retrieves	a	multilingual	variable	definition.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Multilingual	variable
name

5 20 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code	(OK,	ER) 2 2 	 	

2 N Req Length	/	Total	digits 3 3 0 0

3 L Req Working	list	to	contain	multilingual
definition	information.
List	must	not	be	more	than:
32767	entries	in	Windows

82 82 	 	

9999	entries	on	IBM	i.
RDML

An	RDML	list	must	be	formatted	with	an
aggregate	entry	length	of	exactly	82	bytes.	
Bytes	1-4:	Language	code
Bytes	5-82:	Multilingual	variable	value.
RDMLX

An	RDMLX	list	must	be	formatted	as:	
Alpha	(4):	Language	code
NChar	(39):	Multilingual	variable	value.

	

9.120	GET_MULTVAR_LIST

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	multilingual	variables	(*MTXT)	and	their	value	in	the	current
language	and	returns	them	to	the	calling	RDML	function	in	a	variable	length
working	list.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Positioning	*MTXT	variable.	The	returned
list	starts	with	the	first	*MTXT	variable
whose	name	is	greater	than	the	value	passed
in	this	argument.

1 20 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	*MTXT	variable
information.
List	must	not	be	more	than:

108 108 	 	

32767	entries	in	Windows
9999	entries	on	IBM	i.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	108	bytes.
Each	returned	list	entry	is	formatted	as
follows:
From	-	To			Description
1	-	20			*MTXT	variable	name
21	-	98			*MTXT	value	in	current	language
99	-	108				<<	for	future	expansion	>>

2 A Opt Last	*MTXT	variable	in	list	Typically	this
value	is	used	as	the	positioning	argument	on
subsequent	calls	to	this	Built-In	Function.

1 20 	 	

3 A Opt Return	code.
OK	=	list	returned	partially	or	completely
filled	with	*MTXT	variable	details.	No	more
*MTXT	variables	exist	beyond	those	returned
in	the	list.
OV	=	list	returned	completely	filled,	but	more
*MTXT	variables	than	could	fit	in	the	list
exist.	Typically	used	to	indicate	"more"
*MTXT	variables	in	page	at	a	time	style	list
displays.
NR	=	list	was	returned	empty.	Last	*MTXT
variable	in	the	list	is	returned	as	blanks.

2 2 	 	

	

Example
A	user	wants	to	print	a	list	of	all	*MTXT	variables.
DEF_LIST						NAME(#MTXLST)	FIELDS(#MTXNAM	#MTXVAL	#SPARE)							
														TYPE(*WORKING)	ENTRYS(1000)						
**********				-Define	the	report	layout-						
DEF_REPORT				PRT_FILE(QSYSPRT)						

DEF_HEAD						NAME(#HEAD01)	FIELDS(#TEXT	#PAGE	.	.	.)						
DEF_LINE						NAME(#MTXPRT)	FIELDS(#MTXNAM	#MTXVAL)						
**********				-Set	start	*MTXT	variable	to	blanks-						
CHANGE								FIELD(#MTXVAR)	TO(*BLANKS)						
**********				-Get	list	of	system	variables-						
USE											BUILTIN(GET_MULTVAR_LIST)	WITH_ARGS(#MTXVAR)	
														TO_GET(#MTXLST)
**********				-Process	list-						
SELECTLIST				NAME(#MTXLST)						
**********				-Print	*MTXT	variables-						
PRINT									LINE(#MTXPRT)						
ENDSELECT												
**********				-Close	printer	file-						
ENDPRINT												

9.121	GET_NUM_AREA

	Note:	Built-In	Function	Rules.

Gets	a	numeric	value	from	a	numeric	data	area.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Data	area	name 1 10 	 	

2 A Opt Library	name
Default:	*LIBL

1 10 	 	

3 A Opt Lock	data	area
Y	-	lock	data	area.	
N	-	do	not	lock	data
area.	
Default:	N

1 1 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 N Opt Returned	value 	 15 0 0

	

Example
Retrieve	a	batch	number	#BATCH	from	data	area	named	NEXTBATCH	which
should	be	located	via	the	job's	library	list.
Increment	the	batch	number	value	and	place	the	incremented	value	back	into	the
data	area.
Make	sure	that	no	2	jobs	can	be	assigned	the	same	batch	number	by	using	the
lock	and	unlock	options.
USE								BUILTIN(GET_NUM_AREA)		
											WITH_ARGS(NEXTBATCH	'''*LIBL'''	'Y')	TO_GET(#BATCH)
CHANGE					FIELD(#BATCH)	TO('#BATCH	+	1')
USE								BUILTIN(PUT_NUM_AREA)		
											WITH_ARGS(#BATCH	NEXTBATCH	'''*LIBL''	'Y')
	

9.122	GET_PHYSICAL_LIST

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	physical	files	and	their	descriptions	from	the	data	dictionary
and	returns	them	to	calling	RDML	function	in	a	variable	length	working	list.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES	

Visual	LANSA	for
Windows

YESThis	Built-In	Function	is	not	supported	if	the	X_RUN
parameter	DBII=*NONE.

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Positioning	file	value.	The	returned	list	starts
with	the	first	file	from	the	dictionary	whose
name	is	greater	than	the	value	passed	in	this
argument.

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	File	information.
List	must	not	be	more	than:

70 70 	 	

32767	entries	in	Windows
9999	entries	on	IBM	i.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	70	bytes.
Each	returned	list	entry	is	formatted	as
follows:
From	-	To			Description

1	-	10			Physical	file	name
11	-	20			Physical	file	library
21	-	60			Description
61	-	63			On	IBM	i	are	set	to	blank.
On	Windows,	they	contain	this	Visual	LANSA-specific
information:
61	-	61			File	type:
			N	=	LANSA	File
			Y	=	Other	File	(loaded	on	IBM	i)
			P	=	Other	File	(loaded	on	Windows)
62	-	62			Automatic	RRNO	(Y	or	N)
63	-	63			@@RRNO	&	@@UPID	on	file	(Y	or	N)
64	-	64			RDMLX	file	(Y	or	N)

65	-	70			<<future	expansion>>

2 A Opt Last	file	in	returned	list	Typically	this	value	is
used	as	the	positioning	argument	on
subsequent	calls	to	this	Built-In	Function.

1 10 	 	

3 A Opt Return	code.
OK	=	list	returned	partially	or	completely
filled	with	file	details.	No	more	files	exist
beyond	those	returned	in	the	list.
OV	=	list	returned	completely	filled,	but	more
files	than	could	fit	in	the	list	exist.	Typically
used	to	indicate	"more"	files	in	page	at	a	time
style	list	displays.
NR	=	list	was	returned	empty.	Last	file	in	the
list	is	returned	as	blanks.

2 2 	 	

	

Example
This	function	could	be	used	to	write	a	program	that	allows	a	site	to	modify	an
existing	LANSA	database.
DEF_LIST						NAME(#FILLST)	FIELDS(#FILNAM	#FILLIB	#FILDES	#SPARE)						
														TYPE(*WORKING)	ENTRYS(10)						
DEF_LIST						NAME(#FILDSP)	FIELDS((#SELECTOR	*SEL)	#FILNAM	#FILLIB						
														#FILDES)						
**********				-Clear	lists-						
CLR_LIST						NAMED(#FILLST)						
CLR_LIST						NAMED(#FILDSP)						
**********				-Request	file	to	start	from	in	list-						
REQUEST							FIELDS(#STRTFL)	TEXT(('File	to	start	from'	5	5))						
**********				-Get	the	list	of	files-						
USE											BUILTIN(GET_PHYSICAL_LIST)	WITH_ARGS(#STRTFL)							
														TO_GET(#FILLST	#LAST	#RETCOD)						
**********				-If	records	found-						
IF												COND('(#RETCOD	*EQ	OK)	*OR	(#RETCOD	*EQ	OV)')						
SELECTLIST				NAMED(#FILLST)						
ADD_ENTRY					TO_LIST(#FILDSP)						
ENDSELECT												

DISPLAY							BROWSELIST(#FILDSP)						
**********				-Process	selected	records-						
SELECTLIST				NAMED(#FILDSP)	GET_ENTRYS(*SELECT)						
EXECUTE							SUBROUTINE(FILE_EDIT)						
ENDSELECT												
ELSE												
MESSAGE							MSGTXT('No	files	found	Program	ended')						
RETURN												
ENDIF												
	

9.123	GET_PROCESS_ATTR

	Note:	Built-In	Function	Rules.

Gets	attributes	of	a	process	definition,	that	is	being	edited	within	an	edit	session,
previously	started	using	the	START_PROCESS_EDIT	Built-In	Function.
Attributes	set	or	returned	by	this	Built-In	Function	have	the	same	editing	and
validation	rules	as	the	equivalent	online	facility	provided	in	a	full	LANSA
development	environment.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	commercial	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	attribute	to	get
Valid	attribute	names	are:
DESC-	Process	Description
TYPE-	Process	Type
OPTCOM	-	Optimize	for	remote	comms
ENAWEB	-	Enable	for	the	Web

1 50 	 	

ENAXML	-	Enable	for	XML	Generation
TOTFUN	-	Total	associated	functions
EXISTS	-	Checks	for	existence	of	function
name	specified	in	bytes	7	to	13	of	argument
(directly	following	the	EXISTS	string	in
bytes	1	to	6).

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation	completed
ER	=	fatal	error	detected

2 2 	 	

2 A Req Returned	process	attribute
For	attribute	DESC:
The	process	description	up	to	40
characters	in	length.
For	attribute	TYPE:
SAA/CUA
ACT/BAR
For	attribute	OPTCOMM:
Y	–	Optimized	for	remote	comms
N	–	Not	optimized	for	remote	comms
For	attribute	ENAWEB:
Y	–	Enabled	for	the	Web
N	–	Not	enabled	for	the	Web
For	attribute	ENAXML:
Y	–	Enabled	for	XML	Generation
N	–	Not	enabled	for	XML	Generation
For	attribute	TOTFUN:
Character	3	value	containing	a	number
in	the	range	000	-	990.

1 256 	 	

For	attribute	EXISTS:	
Y	–	Function	name	specified	exists	in
the	process
N	–	Function	name	specified	does	not
exist	in	the	process

	

9.124	GET_PROCESS_INFO

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	process	related	information	from	the	LANSA	internal
database	and	returns	it	to	the	calling	RDML	function	in	a	variable	length,
working	list.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Process	name. 1 10 	 	

2 A Req Type	of	process	related
information	to	retrieve.
Valid	types	are:
PROCATTACH	-	Attached
processes/	functions
MLATTR-	Multilingual	attributes

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	list	returned	partially	or	completely
filled.	No	more	of	this	type	of	information
exists	for	this	process.
OV	=	list	returned	completely	filled,	but	more
of	this	type	of	information	than	could	fit	in
the	list	exists.
NR	=	list	was	returned	empty.	Last	entry	in
the	list	is	returned	as	null.
ER	=	Process	not	found.	Last	entry	in	the	list
is	returned	as	null.
	

2 2 	 	

2 L Req Working	list	to	contain	process	related
information.
List	must	not	be	more	than:
32767	entries	in	Windows
9999	entries	on	IBM	i.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	100	bytes.
For	type	PROCATTACH:
Each	returned	list	entry	is	formatted	as
follows:
From	-	To			Description
1	-	10			Attached	process	name
11	-	17			Attached	function	name	(*ALL	if	process	is
attached)
18	-	100			<<future	expansion>>
For	type	MLATTR:
Each	returned	list	entry	is	formatted	as	follows:

100 100 	 	

1	-	4			Language	code
5	-	44			Process	description
45	-	100			<<future	expansion>>

	

9.125	GET_PROCESS_LIST

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	processes	and	their	descriptions	from	the	LANSA	internal
database	and	returns	them	to	the	calling	RDML	function	in	a	variable	length,
working	list
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Positioning	process	value.	The	returned	list
starts	with	the	first	process	from	the
dictionary	whose	name	is	greater	than	the
value	passed	in	this	argument.

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	Process	information.
List	must	not	be	more	than:
32767	entries	in	Windows

60 60 	 	

9999	entries	on	IBM	i.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	60	bytes.
Each	returned	list	entry	is	formatted	as
follows:
From	-	To			Description
1	-	10			Process	name
11	-	50			Description
51	-	60			<<future	expansion>>

2 A Opt Last	process	in	returned	list	Typically	this
value	is	used	as	the	positioning	argument	on	a
subsequent	calls	to	this	Built-In	Function.

1 10 	 	

3 A Opt Return	code.
OK	=	list	returned	partially	or	completely
filled	with	process	details.	No	more	processes
exist	beyond	those	returned	in	the	list.
OV	=	list	returned	completely	filled,	but	more
processes	than	could	fit	in	the	list	exist.
Typically	used	to	indicate	"more"	processes
in	page	at	a	time	style	list	displays.
NR	=	list	was	returned	empty.	Last	process	in
the	list	is	returned	as	blanks.

2 2 	 	

	

Example
A	program	can	be	created,	using	this	function,	to	compile	a	series	of	processes
in	an	overnight	job.
FUNCTION	OPTIONS(*DIRECT)
DEFINE	FIELD(#STARTPRC)	REFFLD(#PROCESS)	DESC('Start	Search	with:')
DEFINE	FIELD(#LASTPRC)	REFFLD(#PROCESS)	DESC('Last	retrieved:')
DEFINE	FIELD(#SPARE)	REFFLD(#PROCESS)
OVERRIDE	FIELD(#STD_INSTR)	COLHDG('Name	(Description)')
OVERRIDE	FIELD(#STD_CMPAR)	DESC('Return	Code	(OV,OK	or	NR)')

DEF_LIST	NAME(#PRCLST)	FIELDS(#PROCESS	#PARTDESC	#SPARE)	TYPE(*WORKING)	ENTRYS(14)
DEF_LIST	NAME(#BRWLST)	FIELDS((#STD_INSTR	*NOID))
*	
CHANGE	FIELD(#LASTPRC	#STD_CMPAR)	TO(*BLANKS)
*	
BEGIN_LOOP
REQUEST	FIELDS(#STARTPRC	#LASTPRC	(#STD_CMPAR	*OUT))	IDENTIFY(*DESC)	BROWSELIST(#BRWLST)
IF	COND('#lastprc	*ne	#blanks')
CHANGE	FIELD(#STARTPRC)	TO(#lastprc)
ENDIF
CLR_LIST	NAMED(#PRCLST)
USE	BUILTIN(GET_PROCESS_LIST)	WITH_ARGS(#STARTPRC)	TO_GET(#PRCLST	#LASTPRC	#STD_CMPAR)
CASE	OF_FIELD(#STD_CMPAR)
WHEN	VALUE_IS('=	OV')
CLR_LIST	NAMED(#BRWLST)
SELECTLIST	NAMED(#PRCLST)
USE	BUILTIN(BCONCAT)	WITH_ARGS(#PROCESS	'('	#PARTDESC	')')	TO_GET(#STD_INSTR)
ADD_ENTRY	TO_LIST(#BRWLST)
ENDSELECT
WHEN	VALUE_IS('=	OK')
MESSAGE	MSGTXT('No	more	matching	process	names')
CHANGE	FIELD(#LASTPRC)	TO(#BLANKS)
WHEN	VALUE_IS('=	ER')
MESSAGE	MSGTXT('No	process	names	matching	search')
ENDCASE
END_LOOP
	

9.126	GET_PRODUCT_ATTRIBS

	Note:	Built-In	Function	Rules.

This	BIF	lists	an	installed	product's	attributes.	Use	and	understanding	of	its
return	values	requires	knowledge	of	Windows	Installer	which	you	may	obtain
from	the	Internet.	Indeed	there	are	references	to	C	header	files	in	this
description	that	may	assist	in	understanding,	and	to	give	you	a	starting	point	in
your	search	for	further	knowledge.	LANSA	cannot	provide	this	to	you.

For	use	with
LANSA	for	i No 	

Visual	LANSA	for
Windows

Yes In	RDMLX	partitions	only	as	it	requires	NCHAR	or
NVARCHAR	fields.

Visual	LANSA	for
Linux

No 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A O Upgrade	code	(defaults	to	the	UPCD	session
value)	Requires	surrounding	{}	and	hyphen
delimiters	adding	up	to	38	bytes.	For
example,	{7121782D-DD4E-4E53-A83E-
DFFE86AE6995}

38 38 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A R Return	Code:
OK	–	Upgrade	Code	found
NR	–	Upgrade	Code	not	known.
VE	–	Validation	Error.	A	list	format	is
incorrect.	For	example,	Too	few
columns	or	incorrect	column	type.
OV	–	more	attributes	available	than
size	of	list.	Extend	list	to	obtain	other
attributes.
ER	–	Error.	Could	not	complete
request.

2 2 	 	

2 List R Product	Attributes
Only	contains	entries	if	return	code	is
OK	or	OV.
All	attributes	are	returned.	If	an
attribute	is	not	valid	in	the	current
context	then	the	Attribute	Validity	is
set	to	ER	and	the	Attribute	Value	is
set	to	the	API	Error	Code.	Refer	to
MsiGetProductInfoEx()	error	codes
for	error	code	reason.
For	example,	1608	is
ERROR_UNKNOWN_PROPERTY.
The	values	can	be	looked	up	in
winerror.h.	Note	that	the	error	codes
are	all	negated.	Remove	the	negative
sign	to	locate	the	meaning.
List	structure	is	flexible	with	only
these	requirements:
NCHAR/NVARCHAR	fields
preferably	with	*LC	attribute
Field	1,	NCHAR	or	NVARCHAR
=Attribute	Id;
Field	2,	NCHAR	or	NVARCHAR
=Attribute	Value;
Field	3,	Alpha(2)=Attribute	Validity:	

1 2147483647 	 	

OK,		ER	=	value	not	available,
OV	=	Attribute	Value	length	is	too
short	for	the	value.

3 List O Patch	Attributes
If	the	Patch	List	is	provided	then
Patch	Attributes	are	listed.
Only	contains	entries	if	Return	Code
is	OK	or	OV.
All	attributes	are	returned.	If	an
attribute	is	not	valid	in	the	current
context	then	the	Attribute	Validity	is
set	to	ER.	And	the	Attribute	Value	is
set	to	the	API	Error	Code.	Refer	to
MsiGetPatchInfoEx	()	error	codes
e.g.	-1608	is
ERROR_UNKNOWN_PROPERTY.
The	values	can	be	looked	up	in
winerror.h.	Note	that	the	error	codes
are	all	negated.	Remove	the	negative
sign	to	locate	the	meaning.
List	structure	is	flexible	with	only
these	requirements:
NCHAR/NVARCHAR	fields
preferably	with	*LC	attribute
Field	1,	NCHAR	or	NVARCHAR
=Attribute	Id;
Field	2,	NCHAR	or	NVARCHAR
=Attribute	Value;
Field	3,	Alpha(2)=Attribute	Validity:
OK=valid,
ER	=	invalid	,
OV	=	Attribute	Value	length	is	too
short	for	the	value.

1 2147483647 	 	

	

Notes
This	Built-In	Function	lists	all	products	that	are	related	to	the	Upgrade	Code.
The	current	Windows	Installer	documentation	implies	that	there	should	only	be
one,	but	the	code	will	list	all	products	that	are	returned.
Products	installed	across	all	users	in	the	system	are	listed.	You	may	not	have
access	rights	to	the	Upgrade	Code	you	have	specified.
Attributes	may	be	added	to	the	list,	so	do	not	expect	them	in	any	particular	order
or	even	that	the	one	you	are	looking	for	is	returned.	If	the	code	lists	a	value,	it
will	at	least	set	the	attribute	return	code	to	ER,	it	will	not	omit	it	from	the	list.
References	are	made	below	to	attributes	that	are	defined	winerror.h	and	msi.h
which	are	C	header	files.

Product	Attributes
UpgradeCode	-	38	byte	GUID	(Input	value,	but	as	it	is	optional	the	actual	value
used	is	returned	in	the	list).
For	each	Product	related	to	the	Upgrade	Code	the	following	are	returned:
ProductCode	–	38	byte	GUID
InstallContext	–	a	value	in	the	enumeration	MSIINSTALLCONTEXT
SID	–	Security	Identifier	of	the	account	under	which	this	product	instance
exists.
The	following	values	are	easily	mapped	to	the	Attribute	Identifier	returned.	For
example,	INSTALLPROPERTY_INSTALLEDPRODUCTNAME	returns
InstalledProductName.	Listing	the	value	used	by	C	will	enable	you	to	search
the	Web	for	what	the	attribute	means.
				INSTALLPROPERTY_INSTALLEDPRODUCTNAME,
				INSTALLPROPERTY_PACKAGENAME											,
				INSTALLPROPERTY_TRANSFORMS												,
				INSTALLPROPERTY_LANGUAGE														,
				INSTALLPROPERTY_PRODUCTNAME											,
				INSTALLPROPERTY_ASSIGNMENTTYPE								,
				INSTALLPROPERTY_INSTANCETYPE										,
				INSTALLPROPERTY_AUTHORIZED_LUA_APP				,
				INSTALLPROPERTY_PACKAGECODE											,
				INSTALLPROPERTY_VERSION															,
				INSTALLPROPERTY_PRODUCTICON											,
	
			//	Product	info	attributes:	installed	information

	
				INSTALLPROPERTY_INSTALLEDPRODUCTNAME		,
				INSTALLPROPERTY_VERSIONSTRING									,
				INSTALLPROPERTY_HELPLINK														,
				INSTALLPROPERTY_HELPTELEPHONE									,
				INSTALLPROPERTY_INSTALLLOCATION							,
				INSTALLPROPERTY_INSTALLSOURCE									,
				INSTALLPROPERTY_INSTALLDATE											,
				INSTALLPROPERTY_PUBLISHER													,
				INSTALLPROPERTY_LOCALPACKAGE										,
				INSTALLPROPERTY_URLINFOABOUT										,
				INSTALLPROPERTY_URLUPDATEINFO									,
				INSTALLPROPERTY_VERSIONMINOR										,
				INSTALLPROPERTY_VERSIONMAJOR										,
				INSTALLPROPERTY_PRODUCTID													,
				INSTALLPROPERTY_REGCOMPANY												,
				INSTALLPROPERTY_REGOWNER														,
				INSTALLPROPERTY_INSTALLEDLANGUAGE					,
				INSTALLPROPERTY_PRODUCTSTATE										,
				INSTALLPROPERTY_LASTUSEDSOURCE								,
				INSTALLPROPERTY_LASTUSEDTYPE										,
				INSTALLPROPERTY_MEDIAPACKAGEPATH						,
				INSTALLPROPERTY_DISKPROMPT,
	

For	example,	following	is	a	list	of	a	few	of	the	attributes	returned	for	an
example	Product.	Note	that	the	Attribute	Value	field	length	was	only	30	so	a
number	of	attributes,	such	as	UpgradeCode,	have	a	status	of	OV.	LANSA	has
implemented	the	standard	behaviour	of	truncating	the	value:

Patch	Attributes
Each	of	the	attributes	will	be	listed	starting	with	the	Patch	Code.	When	a	Patch
Code	entry	repeats,	its	the	start	of	another	patch.	There	can	be	many	patches	in
some	products,	such	as	the	Microsoft	Windows	product	itself,	so	it's	advisable
to	use	a	dynamic	list.
PatchCode	–	38	byte	GUID
			INSTALLPROPERTY_LOCALPACKAGE,
			INSTALLPROPERTY_PATCHTYPE,
			INSTALLPROPERTY_TRANSFORMS,
			INSTALLPROPERTY_INSTALLDATE,
			INSTALLPROPERTY_UNINSTALLABLE,
			INSTALLPROPERTY_PATCHSTATE,
			INSTALLPROPERTY_LUAENABLED,
			INSTALLPROPERTY_DISPLAYNAME,

			INSTALLPROPERTY_MOREINFOURL
	

9.127	GET_PROPERTIES

	Note:	Built-In	Function	Rules.

Returns	the	version	details	of	a	single	LANSA	OBJECT.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Object	Name.
Refer	to	Type	of	Object	Name	for	format	of
the	name	entered	here.

1 20 	 	

2 A Opt Type	of	Object	Name
F	=	Full.	This	is	the	default.		The	full	library
name	has	been	supplied	e.g.	for	Linux	Object
Name	=	"liblp_dpb.so"	for	the	object	lp_dpb
P	=	Partial.	Only	the	base	library	name	has
been	supplied.	The	platform-specific	data	must
be	added.		E.g.	Object	Name	=	"X_PDF"
which	for	Windows	would	be	converted	to
"X_PDF.DLL"	and	for	Linux	would	be
converted	to	"libx_pdf.so"

1 1 	 	

3 A Opt Partition	or	System	Object
P	=	Partition.	This	is	the	default.	The	object
will	be	located	in	the	execute	directory	for	the
partition	being	processed	e.g.

1 1 	 	

C:\X_WIN95\X_LANSA\X_DEM\EXECUTE

S	=	System.	The	object	will	be	located	in	the
system	execute	directory	e.g.

C:\X_WIN95\X_LANSA\EXECUTE

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Identification	list	for	an	object
From	-	To			Description
1	-	2			Identifier	Number	
3	-	4			Option	Number
5	-	44			Data

See	values	below.

44 44 	 	

2 A Req Return	Code
OK	=	The	list	was	returned	without	error
NR	=	List	was	returned	empty.	This	is
usually	due	to	either	a	non-LANSA	object
being	queried	or	when	the	LANSA	object
was	generated	before	the	information	was
made	available.
ER	=	An	Error	occurred	during	the	getting	of
the	list.

2 2 	 	

	

Note:	Identifier,	Option	Number	and	Build	Number	(in	Data	description	below)
are	zero	filled	and	right	justified.
Identifier	Number
			00	=	Object	Type

			01	=	Object	Name
			02	=	Object	Extension
			03	=	DLL	Name
			04	=	Build	Date
			05	=	Build	Time
			06	=	Supports	Components
			07	=	Collection	Name
			08	=	Visual	LANSA	Internal	Identification

Option	Number
This	only	applies	when	the	Identifier	Number	is	08.
			00	=	Build	Number
			01	=	Release	Number
			02	=	Build	Date
			03	=	Copyright	Dates

Data
Object	Type: FD	=	File

PF	=	Function
PD	=	Process	
DF	=	Component
XX	=	LANSA	Internal	Object

Object
Name

	

Object
Extension

	

DLL	Name 	

Build	Date	* mmm	dd	yyyy

Build	Time
*

hh:mm:ss

Component
Support

Y=Supports	Components
N=Does	not	support	Components

Not	used	for	Functions.

Collection
Name

This	name	is	the	same	as	the	Library	Name,	except	that	it	is
truncated	when	the	Library	Name	is	too	long.	For	example,	a	file
in	the	LANSA	demonstration	system	would	have	a	value	of
XDEMOLIB.
Not	used	for	a	Function.

Visual
LANSA
Internal
Option
Number

00	=	Build	Number
01	=	Release	Number
02	=	Build	Date
03	=	Copyright	Dates

*	All	dates	and	times	are	in	the	language	format	of	the	computer	on	which	the
object	was	built.	Therefore,	LANSA	internal	objects,	such	as	X_PDF.DLL,	will
always	return	an	English	style	date	because	they	were	built	in	Australia.	On	the
other	hand,	for	an	object	built	in	France	such	as	MYFUNC.DLL,	the	date	will
be	French.
Times	do	not	contain	any	time	zone	information	so	it	is	not	possible	to	convert
the	time	into	local	time	for	comparison	purposes.	The	times	should	only	be	used
for	comparison	when	you	are	certain	that	all	times	you	are	comparing	were
generated	in	the	same	time	zone.

Examples
Following	are	two	examples	of	the	GET_PROPERTIES	Return	Values.	One
shows	the	values	for	a	Function,	the	other	is	for	a	File:

Indentifier
Number

Option
Number

Function	Example File
Example

00 Spaces PF FD

01 Spaces MYFUNC LX_F02

02 Spaces MYPROC LX_DTA

03 Spaces MYFUNC LX_F02

04 Spaces Oct	12	2001 Jul	16	1999

05 Spaces 12:53:40 15:15:07

06 Spaces Spaces.	Does	not	apply	to	a
Function.

Y

07 Spaces Spaces.	Does	not	apply	to	a
Function.

LX_DTA

08 01 9.1 7.8

08 02 0000002208 0000000000

08 03 Oct	10	2001 Jun	24	1999

08 04 1993-2001 1993-1999

	

9.128	GET_REGISTRY_VALUE

	Note:	Built-In	Function	Rules.

Processing
Returns	the	Value	for	the	specified	Registry	Key.

When	the	length	of	an	Argument	is	stated	as	being	greater	than	50,
this	is	only	true	for	Fields.	Literal	values	are	restricted	to	a	maximum
length	of	50.	This	is	especially	true	for	the	three	arguments	in	this	BIF.
All	the	arguments	are	limited	to	a	length	of	50	unless	a	field	is	used.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

1 A R Registry	Root
e.g.
HKEY_CLASSES_ROOT,HKEY_LOCAL_MACHINE

1 256

2 u R Registry	Path
e.g.	WinZip\shell\open\command

1 256

3 u O Registry	Key	Name
If	not	specified	the	(Default)	value	for	the	specified	path
will	be	returned,	otherwise	specify	the	name	of	the	key.

1 256

4 N O Registry	Hive	to	use:	32	or	64
Any	other	value	will	use	the	default	for	the	application.

1 4

That	is,	a	32	bit	application	will	write	to	wow6432	while
a	64	bit	application	will	write	to	wow6464.
This	argument	is	ignored	on	a	32	bit	operating	system.

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 X R Registry	Key	Value
Refer	to	Key	Value	Note	for
details.

1 Unlimited 	 Unlimited

2 A R Return	Code
OK	–	Key	found	and	Value
Returned	
ER	–	Key	could	not	be	found

2 2 	 	

3 A O Value	Type
S	–	String
B	–	Binary
D	–	DWORD
X	–	Expanded	string.	Can	contain
environment	variables	which	will
be	expanded	on	return	from	this
Built-In	Function.

1 1 	 	

	

Key	Value	Note
If	a	field	value	is	saved	by	PUT_REGISTRY_VALUE,	a	field	with	the	same
type	must	be	used	to	get	the	correct	value	by	GET_REGISTRY_VALUE.
The	table	shows	the	supported	field	types	for	each	key	type.

Key
Type

Supported	Field	Types

S	&	X Alpha,	BLOB,	Boolean,	Char,	CLOB,	Date,	DateTime,	Float,	Integer,
Packed,	Signed,	Time	and	Char.

B Binary,	VarBinary,	Alpha,	Char	and	String.

D Alpha,	Char,	String	and	less	than	8	bytes	Integer.

	

Example
Values	PUT	and	the	returned	value	on	a	GET	from	the	Registry.

Data	TypePUT GET

S ABC1234 ABC1234

D 7000 7000

D 99999999990	(the	biggest	number	for	DWORD	is	4294967295)

D –12 -12

B AAAAA AA	AA	0A

B WEWE 0E	0E	(because	'W'	is	not	a	HEX	number)

	

9.129	GET_SESSION_VALUE
Returns	the	value	for	a	specified	X_RUN	parameter.
The	following	parameters	are	supported	:
APPL,	ASCT,	ASLU,	ASPW,	ASSQ,	ASST,	ASTC,	CDLL,	CIPH,	CMTH,
DBID,	DBUS,	DBUT,	DBII,	DBIT,	DELI,	DPTH,	EXPS,	GUSR,	HELP,	HLPF,
HMJB,	INST,	ITRO,	ITRL,	ITRM,	ITRC,	LANG,	ODBI,	PKGD,	PPTH,	PSCT,
PSTC,	PSLU,	PSST,	PSPW,	QUET,	RPTH,	SUBD,	UDEF,	USER,	USEX,
WDTM	plus	all	Windows	Printing	Extension	parameters	such	as	WPEN,
WPPN,	WPPS,	WPPD,	WPDF,	WPDS,	WPFO,	WPAS,	XCMD	(only	becomes
active	for	jobs	submitted	after	it	has	been	set).
LOB	Temporary	File	Parameters
The	following	pseudo	X_RUN	parameters	are	supported	for	LOB	temporary
file	handling.	They	return	directories	that	can	be	used	in	code	to	temporarily
store	LOB	files	for	the	current	job	or	user.	Use	the	OV_FILE_SERVICE	Built-
In	Function	to	ensure	the	directory	exists	before	creating	files:

LTPP Temporary	LOB	Path	for	the	current	job.	Automatically	cleaned	up	when
LANSA	completes	execution.

LTPUTemporary	LOB	Path	for	the	current	user.	Not	cleaned	up	when	LANSA
completes	execution.

	

Pseudo	X_RUN	parameters	are	supported	by	Visual	LANSA	for	Windows
only:

*ENC Encoded	root	path.	Returns	an	alphanumeric	string	that	matches	the
Windows	registry	key	for	the	currently	executing	application.

*HST Returns	the	Host	Monitor	status	(the	meaning	of	the	return	values	is	not
currently	published).

*LPC Returns	'Y'	if	the	LANSA	development	environment	is	running.
Otherwise	returns	'N'.

*MEXReturns	the	maximum	export	version	that	can	be	imported	into	the
system,	as	3	characters	with	a	leading	zero.	For	example,	'001'.

	

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req X_RUN	Parameter	Name
Note:	USER	vs	USEX

USER	always	uses	value	in	upper
case
USEX	maintains	case	exactly	as
entered.	For	example:
If	AbCd	is	entered,	USER	=	ABCD
USEX	=	AbCd

1 4 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req X_RUN	Parameter	Value 1 256 	 	

2 A Req Return	Code
OK	=	Parameter	Returned
OK
ER	=	Error	returning	value

2 2 	 	

	

9.130	GET_SPLF_LIST_ENTRY

	Note:	Built-In	Function	Rules.

This	Built-In	Function	is	used	in	conjunction	with	START_RTV_SPLF_LIST
and	END_RTV_SPLF_LIST.	The	START_RTV_SPLF_LIST	must	be	used	first
to	provide	the	selection	criteria	for	the	retrieval	of	spool	files.	The	selection
criteria	which	can	be	specified	are	User	Name,	Output	queue	name	and	library,
Form	Type,	User	Data	and	Status.	Once	the	START_RTV_SPLF_LIST	has	been
used	to	establish	the	selection,	this	Built-In	Function,
GET_SPLF_LIST_ENTRY	can	be	used	to	retrieve	the	details	of	the	spool	files.
The	END_RTV_SPLF_LIST	must	be	used	after	the	list	of	spool	files	have	been
retrieved.	This	will	close	the	list	and	release	the	storage	allocated	to	that	list.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Starting	record	number.
This	must	be	1	for	the	first	use	of	this	Built-In
Function	after	each
START_RTV_SPLF_LIST.	On	subsequent
calls	it	will	normally	be	one	more	than	the
last	record	returned	on	the	previous	call.	This
value	must	be	a	positive	number	greater	than
zero.

5 15 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Last	record	number	returned.
This	will	return	the	number	of	the	last	record
returned	in	this	list.	This	can	be	used	to
establish	the	starting	record	number	for	the
next	use	of	this	function.	The	starting	record
for	the	next	use	should	be	this	number	plus
one.

5 15 0 0

2 L Req Working	list	to	contain	details	of	the	spool
files	retrieved.	The	calling	RDML	function
must	provide	a	working	list	with	an	aggregate
entry	length	of	exactly	160	bytes.
Each	returned	list	entry	is	formatted	as
follows:
From	-	To			Description
1	-	10			A(10)	Spool	file	Name
11	-	20			A(10)	Job	Name	
21	-	30			A(10)	User
31	-	36			A(6)	Job	Number
37	-	40			A(4)	Spool	file	Number
41	-	44			P(7,0)	Total	Pages
45	-	48			P(7,0)	Current	Page
49	-	52			P(7,0)	Copies	left	to	print
53	-	62			A(10)	Output	Queue	name
63	-	72			A(10)	Output	Queue	Library
73	-	82			A(10)	User	Data
83	-	92			A(10)	Status
93	-	102			A(10)	Form	Type
103	-	104			A(2)	Priority
105	-	136			A(32)	Reserved
137	-	146			A(10)	Device	type
147	-	160			A(14)	Reserved

160 160 	 	

3 A Opt Return	code 2 2 	 	

OK	=	list	returned	partially	or	completely
filled.	No	more	spool	files	exists	for	the
selection.
OV	=	list	returned	completely	filled,	and
more	spool	files	exist.
NR	=	list	was	returned	empty.
ER	=	error	encountered	in	retrieval	of	spool
files.	Starting	record	may	be	invalid.

	

Example
A	user	wants	to	retrieve	all	the	spool	files	on	output	queue	PAYOUTQ	in	library
PAYLIB	and	then	perform	some	processing	on	each	spool	file.
*********			Define	arguments	and	lists
DEFINE					FIELD(#RETURN)	TYPE(*CHAR)	LENGTH(2)																					

DEFINE					FIELD(#SPLF)	TYPE(*CHAR)	LENGTH(10)																						
DEFINE					FIELD(#JOB)	TYPE(*CHAR)	LENGTH(10)																							
DEFINE					FIELD(#USER)	TYPE(*CHAR)	LENGTH(10)																						
DEFINE					FIELD(#JOBNO)	TYPE(*CHAR)	LENGTH(6)																						
DEFINE					FIELD(#SPLFNO)	TYPE(*CHAR)	LENGTH(4)																					
DEFINE					FIELD(#TOTPAGE)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)									
DEFINE					FIELD(#CURPAGE)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)									
DEFINE					FIELD(#COPIES)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)										
DEFINE					FIELD(#OUTQ)	TYPE(*CHAR)	LENGTH(10)																						
DEFINE					FIELD(#OUTQL)	TYPE(*CHAR)	LENGTH(10)																					
DEFINE					FIELD(#USERDATA)	TYPE(*CHAR)	LENGTH(10)																		
DEFINE					FIELD(#STATUS)	TYPE(*CHAR)	LENGTH(10)																				
DEFINE					FIELD(#FORM)	TYPE(*CHAR)	LENGTH(10)																						
DEFINE					FIELD(#PRTY)	TYPE(*CHAR)	LENGTH(2)																							
DEFINE					FIELD(#RESV1)	TYPE(*CHAR)	LENGTH(32)																					
DEFINE					FIELD(#DEVICE)	TYPE(*CHAR)	LENGTH(10)																				
DEFINE					FIELD(#RESV2)	TYPE(*CHAR)	LENGTH(14)																					

DEFINE					FIELD(#START)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	DEFAULT(0)
DEFINE					FIELD(#LASTREC)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	DEFAULT(0)

DEF_LIST			NAME(#LIST)	FIELDS((#SPLF)	(#JOB)	(#USER)	(#JOBNO)	(#SPLFNO)	(#TOTPAGE)	(#CURPAGE)	(#COPIES)	(#OUTQ)	(#OUTQL)	(#USERDATA)	(#STATUS)	(#FORM)	(#PRTY)	(#RESV1)	(#DEVICE)	(#RESV2))	COUNTER(#LISTCOUNT)	TYPE(*WORKING)

**********	Retrieve	spool	files	on	output	Q	PAYLIB/PAYOUTQ										

USE								BUILTIN(START_RTV_SPLF_LIST)	WITH_ARGS('''*ALL'''	PAYOUTQ	PAYLIB)	TO_GET(#RETURN)
IF									COND('#RETURN	=	OK')																																					

CLR_LIST			NAMED(#LIST)																																													
BEGIN_LOOP																																																										
USE								BUILTIN(GET_SPLF_LIST_ENTRY)	WITH_ARGS(#START)	TO_GET(#LASTREC	#LIST	#RETURN)
IF									COND('(#return	=	ER)	*OR	(#return	=	NR)')																
LEAVE																																																															
ENDIF																																																															
SELECTLIST	NAMED(#LIST)																																													

**********	At	this	point	some	processing	on	the	spool	file	can						
**********	be	done.																																																	
**********	eg	IBM	i	commands	such	as	CPYSPLF	DLTSPLF															
**********	or	release	(RLSSPLF)	all	files	which	are	currently							
**********	held	(have	a	status	of	*HELD)																												

ENDSELECT																																																											
IF									COND('(#return	=	OV)')																																			
CHANGE					FIELD(#START)	TO('#LASTREC	+	1')																									
ELSE																																																																
LEAVE																																																															
ENDIF																																																															
END_LOOP																																																												

USE								BUILTIN(END_RTV_SPLF_LIST)																															
ENDIF																																																															
	

9.131	GET_SYSTEM_VARIABLE

	Note:	Built-In	Function	Rules.

Retrieves	a	system	variable	definition.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req System	variable	name5 20 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code	(OK,	ER) 2 2 	 	

2 A Opt Description 1 40 	 	

3 A Opt STATIC	or	DYNAMIC 7 7 	 	

4 A Opt Data	type	(ALPHA,
NUMBER)

6 6 	 	

5 N Opt Length	/	Total	digits 3 3 0 0

6 N Opt Decimal	positions 1 1 0 0

7 A Opt Evaluation	program 10 10 	 	

8 A Opt Ev.	program	type	(FUN,
3GL)

3 3 	 	

	

9.132	GET_SYSVAR_LIST

	Note:	Built-In	Function	Rules.

Retrieves	a	list	of	system	variables,	their	descriptions,	programs	and	program
types	and	returns	them	to	the	calling	RDML	function	in	a	variable	length
working	list.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Positioning	system	variable.	The	returned	list
starts	with	the	first	system	variable	whose
name	is	greater	than	the	value	passed	in	this
argument.

1 20 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	system	variable
information.
List	must	not	be	more	than:

80 80 	 	

32767	entries	in	Windows
9999	entries	on	IBM	i.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	80	bytes.
Each	returned	list	entry	is	formatted	as
follows:
From	-	To			Description
1	-	20			System	variable	name
21	-	60			System	variable	description
61	-	70			System	variable	program
71	-	73			Program	type
74	-	80			<<	for	future	expansion	>>

2 A Opt Last	system	variable	in	list.	Typically	this
value	is	used	as	the	positioning	argument	on
subsequent	calls	to	this	Built-In	Function.

1 20 	 	

3 A Opt Return	code.
OK	=	list	returned	partially	or	completely
filled	with	system	variable	details.		No	more
system	variables	exist	beyond	those	returned
in	the	list.
OV	=	list	returned	completely	filled,	but	more
system	variables	than	could	fit	in	the	list
exist.	Typically	used	to	indicate	"more"
system	variables	in	page	at		a	time	style	list
displays
NR	=	list	was	returned	empty.	Last	system
variable	in	the	list	is	returned	as	blanks.

2 2 	 	

	

Example
A	user	wants	to	print	a	list	of	all	system	variables.
DEF_LIST						NAME(#VARLST)	FIELDS(#VARNAM	#VARDES	#VARPGM	#VARTYP	#SPARE)							
														TYPE(*WORKING)	ENTRYS(1000)						
**********				-Define	the	report	layout-						

DEF_REPORT				PRT_FILE(QSYSPRT)						
DEF_HEAD						NAME(#HEAD01)	FIELDS(#TEXT	#PAGE	.	.	.)						
DEF_LINE						NAME(#VARPRT)	FIELDS(#VARNAM	#VARDES	#VARPGM	#VARTYP)						
**********				-Set	start	system	variable	to	blanks-						
CHANGE								FIELD(#STRVAR)	TO(*BLANKS)						
**********				-Get	list	of	system	variables-						
USE											BUILTIN(GET_SYSVAR_LIST)	WITH_ARGS(#STRVAR)	TO_GET(#VARLST	#LAST	#RETCOD)
**********				-If	return	code	is	OK	then	process	list-						
IF												COND('#RETCOD	*EQ	OK')						
SELECTLIST				NAMED(#VARLST)						
**********				-Print	system	variables-						
PRINT									LINE(#VARPRT)						
ENDSELECT												
**********				-Otherwise	issue	an	error-						
ELSE												
MESSAGE							MSGTXT('An	error	has	occurred.	Report	not	produced.')						
ENDIF												
**********				-Close	printer	file-						
ENDPRINT												
	

9.133	GET_TASK_DETAILS

	Note:	Built-In	Function	Rules..

Retrieves	a	list	of	all	the	objects	that	have	been	worked	on	or	modified	under
the	specified	task.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Task	Identifier
NB.	Value	must	be	right	justified.

1 8 	 	

2 A Opt Object	Type 2 2 	 	

3 A Opt Object	Name 1 10 	 	

4 A Opt Object	Extension
NB.	Object	Type,	Name,	Extension	would
typically	only	be	used	to	continue	loading	the
list	after	a	previous	return	code	of	OV.

1 10 	 	

	

Return	Values

No.TypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	objects	modified	by
the	input	task.
The	list	must	contain	no	more	than	32,767
entries	and	with	details	in	the	following
format:
From	-	To			Description
1	-	2			Object	Type
3	-	12			Object	Name
13	-	22			Object	Extension
23	-	72			Object	Description
73	-	87			PC	Name

22 87 	 	

2 A Req The	last	Object	Type	in	the	returned	list. 2 2 	 	

3 A Req The	last	Object	Name	in	the	returned	list. 1 10 	 	

4 A Req The	last	Object	Extension	in	the	returned	list. 1 10 	 	

5 A Req Return	Code
OK	=	list	returned	partially	or	completely
filled	with	task	details.	No	more	Tasks
Details	exist	beyond	those	returned	in	the
list.
OV	=	list	returned	completely	filled,	but
more	Task	Details	than	could	fit	in	the	list
still	exist.
NR	=	list	was	returned	empty.	Last	Object
Type,	Name	and	Extension	in	list	returned	as
blanks.
ER	=	ended	in	error.

2 2 	 	

	

9.134	GET_TASK_LIST

	Note:	Built-In	Function	Rules.

Reads	one	of	the	LANSA	internal	tables.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Task	Identifier
NB.	Value	must	be	right	justified.

1 8 	 	

2 A Opt Task	Status
Values:
OPN	=	Open	(No	Work	done	yet)
WRK	=	Open	(Work	has	been	done)
CLS	=	Closed	(Work	completed
Objects	still	locked	to	the	task)
FIN	=	Finished	(Objects	no	longer
locked)
If	no	value	specified	all	tasks	are
returned.	This	is	the	default.

3 3 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	tasks.
The	list	must	contain	no	more	than	32,767
entries	and	with	entries	in	the	following
format:
From	-	To			Description
1	-	8			Task	Identifier
9	-	58			Task	Description

58 58 	 	

2 A Req The	last	Task	Identifier	in	the	returned	list. 1 8 	 	

3 A Req Return	Code
OK	=	list	returned	partially	or	completely
filled	with	tasks.	No	more	Tasks	exist
beyond	those	returned	in	the	list.
OV	=	list	returned	completely	filled,	but
more	Tasks	than	could	fit	in	the	list	still
exist.
NR	=	list	was	returned	empty.	Last	Task
Identifier	in	list	returned	as	blanks.

2 2 	 	

	

9.135	GET_TEMPLATE_LIST

	Note:	Built-In	Function	Rules.

Returns	a	list	of	all	templates	in	the	system.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
No.TypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Search	Template1 10 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	containing	Template	details.
The	list	must	not	contain	more	than	32,676
entries	and	entries	must	be	in	the	following
format:
From	-	To			Description
1	-	10			Template	Name
11	-	50			Template	Description

50 50 	 	

2 A Req The	last	Template	in	the	returned	list. 1 10 	 	

3 A Req Return	Code
OK	=	list	returned	partially	or	completely
filled	with	template	details.	No	more
Templates	exist	beyond	those	returned	in	the
list.
OV	=	list	returned	completely	filled,	but
more	Templates	than	could	fit	in	the	list	still
exist.
NR	=	list	was	returned	empty.	Last	Template
in	list	returned	as	blanks.

2 2 	 	

	

9.136	GET_WEB_COMPONENT

	Note:	Built-In	Function	Rules.

Get	the	page	text	(version	0)	for	a	Web	Component.	Refer	to	the	LANSA	for	the
Web	Guide	for	more	information	about	Web	Components.
Use	this	Built-In	Function	with	9.198	PUT_WEB_COMPONENT	when	you
want	to	generate	handcrafted	web	components	at	execution	time.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Web	Component 1 20 	 	

2 A Req Mode
Possible	values	are:
I:	Input
O:	Output
N:	Not	applicable

1 1 	 	

3 A Opt Language
Default	is	current	language
For	non-multilingual	partitions	this
should	be	'NAT'
*DFT	-	partition	default	language.

4 4 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Possible	values	are:
OK:	Get	completed	normally.
OV:	list	returned	completely	filled,	but	more
lines	of	page	text	than	could	fit	in	the	list	still
exist.
NR:	List	is	empty	as		component	is	not	of	a
type	that	is	supported	by
PUT_WEB_COMPONENT
ER:	Get	encountered	an	error.

1 2 	 	

2 L Req Working	list	to	contain	component	source. 1 255 	 	

3 A Req Page
Generally	the	same	as	a	Web	component.

1 20 	 	

4 A Opt Type.	Possible	values	are:
P:	Page
S:	Script
T:	Text
V:	Visual
If	the	component	is	one	of	the	next	three
types,	the	list	will	be	returned	empty.
W:	Web	Link	
B:	Banner	
F:	File

1 1 	 	

5 A Opt Description 1 40 	 	

	

9.137	HEXTOBIN

	Note:	Built-In	Function	Rules.

Converts	the	alphanumeric	source	string	to	its	binary	format.	Each	pair	of
characters	in	the	source	will	be	converted	into	its	binary	equivalent.
The	source	string	should	contain	only	characters	0-9,	A-F.	Any	invalid
characters	will	be	treated	as	zero	and	an	error	status	returned.	The	source	string
must	be	a	multiple	of	two	in	length.
For	example,	source	contains	alphanumeric	string	C1C2	(IBM	i)	4142
(Windows),	Return	is	AB

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req Source:	
Must	contain	only	characters	0-9,	A-F
Must	be	a	multiple	of	2	in	length.

2 Unlimited 	 	

2 A Opt Y	=	Return	true	binary	value.
N	=	(Default)	Return	"string	like"	binary
value.	The	first	NULL	byte	in	the	return
will	be	the	terminator	of	the	string.

1 1 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max	Len Min
Dec

Max
Dec

1 w Req Returned	binary	value 1 Unlimited 	 	

2 A Opt Return	code.
OK	=	action
completed.
ER	=	An	error
occurred.

2 2 	 	

	

Technical	Note
If	'Y'	is	specified	for	the	second	argument,	use	a	Binary	(or	Alpha)	field	to	get
the	returned	value.	Any	other	field	type	may	cause	the	returned	value	to	be
truncated	or	unusable.
Example:
FUNCTION	OPTIONS(*DIRECT)
DEFINE	FIELD(#MYHEX)	TYPE(*CHAR)	LENGTH(100)
DEFINE	FIELD(#MYHEX2)	TYPE(*CHAR)	LENGTH(100)
DEFINE	FIELD(#MYRET)	TYPE(*CHAR)	LENGTH(2)
DEFINE	FIELD(#MYLEN)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)
	
CHANGE	FIELD(#MYHEX)
TO('''414D5120414D5359443337202020002044B826A420C12563''')
	
USE	BUILTIN(HEXTOBIN)	WITH_ARGS(#MYHEX	'Y')
TO_GET(#MYBIN	#MYRET)							(1)
CHANGE	FIELD(#MYLEN)	TO('24')																																											(3)
USE	BUILTIN(BINTOHEX)	WITH_ARGS(#MYBIN	#MYLEN)
TO_GET(#MYHEX2	#MYRET)			(2)
RETURN
	

If	#MYBIN	is	a	Binary	(or	Alpha)	field	and	is	equal	to	or	greater	than	24	bytes,
the	BINTOHEX	in	(2)	will	return	#MYHEX2	with	same	value	as	#MYHEX
has.	The	value	in	#MYRET	is	'OK'
If		#MYBIN	is	a	String,	the	BINTOHEX	in	(2)	will	return	nothing	to

#MYHEX2	and	the	value	in	#MYRET	will	be	'ER'.
Reason:	Although	the	HEXTOBIN	in	(1)	is	instructed	to	return	true	binary
value,	the	String	nature	of	#MYBIN	in	this	case	will	prevent	it	holding	the	full
result.	In	fact		#MYBIN	will	only	get	the	binary	form	of
'414D5120414D5359443337202020'	as	the		next	'00'	is	considered	as	a	string
terminator.	So	for	the	BINTOHEX	in	(2)	#MYBIN	has	only	14	bytes,	which	is
shorter	than	the	24	bytes	expected.

9.138	IMPORT_OBJECTS
Acts	as	an	interface	to	the	LANSA	Import	Facility.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Path	that	contains	file(s)	for	IMPORT 1 256 	 	

2 A Opt Run	LANSA	Import	with	standard	prompts
Values:
Y	-	LANSA	Import	run	with	prompts
N	-	LANSA	Import	run	without	prompts
Default	=	N
Note:	N	implies	that	the	LANSA	Import
window	will	not	require	a	user	response	on
completion.	The	message	to	continue	with
the	LANSA	Import	after	conversion	to	the
intermediate	format	will	not	be	displayed.

1 1 	 	

3 A Opt Apply	Filter	to	Import
This	is	an	array	of	single	byte	entries	that
controls	the	import	of	the	associated	Object
Group.
Byte:
1	=	System	Definition
2	=	Partition	Definition
3	=	System	Objects

1 256 	 	

4	=	User	/	Development
See	below	for	definition	of	objects
Values	:
Y	=	Import	this	object	group
N	=	Force	Import	to	bypass	this	object	group
Default		=	Y	(For	each	entry	if	the	argument
is	passed.)

4 A Opt File	Library
Determines	the	value	of	the	importing	file's
library	to	be	saved	into	the	repository.
By	specifying	a	value	of	I	the	importing	file's
library	will	be	saved	with	the	same	file's
library	value	as	the	exporting	system.
Setting	this	option	to	P	will	override	the
importing	Files'	File	Library	with	the
destination's	Partition	Data	Library.	Any	File
Library	Substitutions	setting	will	not	be
applied.
Values:
I	–	Use	importing	file's	libary
P	–	Partition	data	library
O	–	Use	file's	library	override	if	included	in
the	export	information
Default	=	I

1 1 	 	

5 A Opt Allow	Name	Changes
This	parameter	determines	if	the	existing
objects'	names	will	be	overwritten	by	the
importing	names.		Note	–	Use	this	option
with	care	as	it	will	change	existing	objects
and	may	impact	other	objects	which	refer	to
this	name	such	as	fields	and	files.		The	name
may	also	be	directly	referenced	in	RDMLX
code.
Values:
Y	–	Allow	to	override	existing	names

1 1 	 	

N	–	Do	not	allow	to	override	existing	names.
Default	=	N

6 A Opt Allow	Type	Change
This	parameter	determines	if	the	existing
objects	will	be	deleted	and	imported	as	a
different	object	type.		Note:	Use	this	option
with	care	as	it	will	change	existing	objects
and	it	may	impact	other	objects	which	refer
to	this	name	such	as	fields	and	files.		The
name	may	also	be	directly	referenced	in
RDMLX	code.
Values:
Y	-	Delete	existing	object(s)	and	continue
with	import
N	-	Do	not	proceed	further	if	the	importing
Identifier	is	already	in	use	by	a	different
object	type
Default	=	N

1 1 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 	 Req Return	Code
OK	=	The	import	completed
without	error
ER	=	A	fatal	error	occurred
during	the	import.

2 2 	 	

2 N Opt Number	of	Errors 1 7 0 0

3 N Opt Number	of	Warnings 1 7 0 0

	

Object	Groups
System	Definition

System	Options	and	Defaults
LANSA	Commands

Partition	Definition
Partition	Definition
Partition	Languages
Groups	and	Frameworks

System	Objects
Users
Enrolled	Workstations

User	/	Development	Objects
Fields
Files
Processes
Functions
Components
WAMs
Weblets
Technology	Service	Providers		
Technology	Services
Web	Components
Multilingual	Variables
System	Variables
Tasks

9.139	INSERT_IN_SPACE

	Note:	Built-In	Function	Rules.

Inserts	a	set	of	cell	values	into	a	space	object.	Refer	also	to	the	other	SPACE
Built-In	Functions.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A R Space	Name 1 256 	 	

2-
20

w O Fields	whose	values	are	to	be	inserted	into	the
space	cells.	The	fields	used	do	not	have	to	be
the	same	as	the	field	names	used	to	prototype
the	cell.	It	is	the	values	of	the	fields	specified
in	these	arguments	that	are	mapped	into	the
space	cells.

1 256 0 9

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A O Standard	Return	Code
"OK"	=	Cell	values	inserted	successfully.

2 2 	 	

"ER"	=	Insert	attempt	failed.	Messages	issued
will	indicate	more	about	the	cause	of	the
failure.

	

Technical	Notes
The	field	values	must	be	specified	in	the	same	order	as	the	cells	in	the	space
were	defined.	Cells	are	matched	by	the	order	of	their	specification	in	arguments
2	->	20.	The	names	of	the	fields	used	have	no	bearing	whatsoever	on	the	cell
mapping	logic.
If	you	specify	less	field	values	than	there	are	cells	in	the	space	then	the	non-
specified	cells	are	set	to	blank/zero/null	values	as	appropriate.
If	you	specify	more	field	values	than	there	are	cells	in	the	space	then	the
additional	field	values	are	ignored.

The	provided	field	values	MUST	be	enough	to	uniquely	identify	the
entry	being	inserted.

	

Examples
This	example	inserts	the	current	values	of	the	fields	#EMPNO,	#GIVENAME
and	#SURNAME	into	a	space	whose	name	is	contained	in	field
#SPACENAME:

Use	Insert_in_Space	(#SpaceName	#Empno	#GiveName	#SurName)

	

This	example	inserts	literal	values	into	a	space	named	TEST:

Use	Insert_in_Space	(TEST	A0090	'Mary'	'Jones');	

	

9.140	ISSUEINQUIRY

	Note:	Built-In	Function	Rules.

Issues	an	inquiry	message	to	a	message	queue.

For	use	with
LANSA	for	i YES	

Visual	LANSA
for	Windows

YESISSUEINQUIRY	will	only	allow	an	alphanumeric	reply
value	up	to	20	characters	in	length

Visual	LANSA
for	Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Message	queue	to	which	inquiry	is
to	be	sent

1 10 	 	

2 A Req Type	of	message	(T	=	text,	M	=
from	message	file)

1 1 	 	

3 A Req Text	of	message	(T)	or	message
number	(M)

1 132 	 	

4 A Opt Message	file	name	(M	only)
Default:	QUSRMSG

1 10 	 	

5 A Opt Message	file	library	(M	only)
Default:	*LIBL

1 10 	 	

6 A Opt Message	data	Default:	*BLANKS 1 132 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Reply	to	message	input	by
message	receiver

1 132 	 	

	

Examples
Issue	a	message	to	ask	who	is	signed	on	to	a	terminal:
USE		BUILTIN(ISSUEINQUIRY)	WITH_ARGS(DSP16	T	'Who	are	you	?')	
					TO_GET(#REPLY)
	

Issue	a	message	to	ask	operator	if	MYJOB	can	be	submitted	at	this	time:
CHANGE			FIELD(#MSGID)	TO(MSG0120)
CHANGE			FIELD(#MSGF)	TO(OPRMSGF)
CHANGE			FIELD(#SUB)	TO('MYJOB')

USE						BUILTIN(ISSUEINQUIRY)	WITH_ARGS(DSP01	M	#MSGID	#MSGF	
									'*LIBL'	#SUB)	TO_GET(#REPLY)
IF							COND('#REPLY	*EQ	Y')
SUBMIT			PROCESS(BTCHJOB)		FUNCTION(UPDATE)
ELSE
MESSAGE		MSGTXT('Job	not	submitted')
ENDIF
	

MSG0120	=	Can	&1	be	submitted	at	this	time	?
Note:	The	message	data	parameter	corresponds	directly	to	the	MSGDTA
parameter	in	the	CL	command	SNDUSRMSG.	The	passing	of	information
through	this	parameter	is	your	responsibility.	For	more	information	on	passing
substitution	variables	see	the	appropriate	IBM	manuals.

9.141	ISSUEMESSAGE

	Note:	Built-In	Function	Rules.

Issues	a	message	to	a	message	queue.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Message	queue	to	which	message	is	to	be
sent.	Do	not	leave	this	argument	blank.
Note:
This	argument	is	ignored	on	non-IBM	i
platforms.

1 10 	 	

2 A Req Type	of	message	(T	=	text,	M	=	from
message	file)

1 1 	 	

3 A Req Text	of	message	(T)	or	message	number
(M)

1 132 	 	

4 A Opt Message	file	name	(M	only)
Default:	QUSRMSG

1 10 	 	

5 A Opt Message	file	library	(M	only)
Default:	*LIBL

1 10 	 	

6 A Opt Message	data	Default:	*BLANKS 1 132 	 	

	

Return	Values
No	return	values.

Examples
Issue	a	message	to	ask	user	to	sign	off	for	10	minutes:
USE								BUILTIN(ISSUEMESSAGE)	
											WITH_ARGS(DSP16	T		
										'Please	sign	off	for	10	minutes.	Thank	you.'
	

Issue	a	message	to	tell	operator	that	DAYJOB	to	CLOSE	has	been	submitted	to
the	batch	queue:
CHANGE					FIELD(#MSGID)	TO(MSG0121)
CHANGE					FIELD(#MSGF)	TO(WRKMSGF)
CHANGE					FIELD(#SUB)	TO('''DAILY				CLOSE''')
*
SUBMIT					PROCESS(DAYLY)	FUNCTION(CLOSE)
USE								BUILTIN(ISSUEMESSAGE)	WITH_ARGS(DSP01	M	#MSGID
											#MSGF	#SUB)
*
MSG0121	=	The	&1	&2	job	for	today	has	been	submitted.
	

Note:	The	message	data	parameter	corresponds	directly	to	the	MSGDTA
parameter	in	the	CL	command	SNDPGMMSG.	The	passing	of	information
through	this	parameter	is	your	responsibility.	For	more	information	on	passing
substitution	variables	see	the	appropriate	IBM	manuals.

9.142	JSM_CLOSE

	Note:	Built-In	Function	Rules.

Closes	the	currently	open	connection	to	the	JSM	server.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsYESNot	available	for	RDMLX.

Visual	LANSA	for	Linux NO Not	available	for	RDMLX.

	

Arguments
None

Return	Values
NoTypeReq/	OptDescriptionMin	LenMax	LenMin	DecMax	Dec

1 A Req Status 1 20 	 	

2 A Req Message 1 255 	 	

	

Technical	Notes
JSM_CLOSE	can	only	be	used	in	an	RDML	function	or	component.

Example
USE	BUILTIN(JSM_CLOSE)	TO_GET(#JSMSTS	#JSMMSG)
	

9.143	JSM_COMMAND

	Note:	Built-In	Function	Rules.

Sends	a	command	string	to	the	currently	open	JSM	server	connection.
If	an	optional	working	list	argument	is	supplied	then	the	function	fields	and	this
working	list	contents	are	available	to	the	loaded	service.
Function	field	names	prefixed	with	the	letters	JSM	will	not	be	sent,	so	it	is
recommended	to	use	BIF	argument	names	such	as	#JSMCMD,	#JSMSTS	and
#JSMMSG.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsYESNot	available	for	RDMLX.

Visual	LANSA	for	Linux NO Not	available	for	RDMLX.

	

Arguments
NoTypeReq/	OptDescriptionMin	LenMax	LenMin	DecMax	Dec

1 A Req Command 1 255 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Status 1 20 	 	

2 A Req Message 1 255 	 	

3 L Opt Working	List
This	list	must	not	have	more	than
9999	entries.

0 0 	 	

	

Example
USE	BUILTIN(JSM_COMMAND)	WITH_ARGS(#JSMCMD)	TO_GET(#JSMSTS	#	JSMMSG	#WRKLST)
	

9.144	JSM_OPEN

	Note:	Built-In	Function	Rules.

Opens	a	connection	to	the	JSM	server,	which	starts	a	service	thread	to	handle
commands	to	be	sent	by	the	JSM_COMMAND	BIF.
If	no	server	argument	is	supplied,	then	the	JSM	server	host	is	obtained	by
reading	the	JSMCLTDTA	data	area.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsYESNot	available	for	RDMLX.

Visual	LANSA	for	Linux NO Not	available	for	RDMLX.

	

Arguments
NoTypeReq/	OptDescriptionMin	LenMax	LenMin	DecMax	Dec

1 A Opt Server 1 50 	 	

	

Return	Values
NoTypeReq/	OptDescriptionMin	LenMax	LenMin	DecMax	Dec

1 A Req Status 1 20 	 	

2 A Req Message 1 255 	 	

	

Example
	USE	BUILTIN(JSM_OPEN)	TO_GET(#JSMSTS	#JSMMSG)
USE	BUILTIN(JSM_OPEN)	WITH_ARGS(#JSMSRV)	TO_GET(#JSMSTS	#JSMMSG)

	

9.145	JSMX_CLOSE

	Note:	Built-In	Function	Rules.

This	Built-In	Function	closes	the	JSM	connection	identified	by	the	handle.
See	also:	9.147	JSMX_OPEN	and	9.146	JSMX_COMMAND

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYESOnly	available	for	RDMLX.

Visual	LANSA	for	Linux YESOnly	available	for	RDMLX.

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Handle	to	connection4 4 	 	

	

Return	Values
NoTypeReq/	OptDescriptionMin	LenMax	Len Min	DecMax	Dec

1 U Req Status 1 20 	 	

2 U Req Message 1 Unlimited 	 	

	

Example
Close	a	JSM	connection.
USE	BUILTIN(JSMX_CLOSE)	WITH_ARGS(#JSMHNDL)
TO_GET(#JSMSTS	#JSMMSG)

	

9.146	JSMX_COMMAND

	Note:	Built-In	Function	Rules.

This	Built-In	Function	sends	a	command	string	to	the	JSM	connection	identified
by	the	handle.
If	an	optional	working	list	argument	is	specified	then	the	fields	defined	in	that
list	are	available	to	the	loaded	service.	If	no	working	list	argument	is	specified
then	no	fields	are	available	to	the	loaded	service.	Note	that	this	working	list
does	not	need	to	have	any	entries.
If	an	optional	working	list	return	value	is	specified	then	that	working	list	is
available	to	the	loaded	service.
See	also:	9.147	JSMX_OPEN	and	9.145	JSMX_CLOSE.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYESOnly	available	for	RDMLX.

Visual	LANSA	for	Linux YESOnly	available	for	RDMLX.

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req Handle	to	connection 4 4 	 	

2 U Req Command 1 Unlimited 	 	

3 L Opt List	of	field	definitions	to	send/receive.
If	this	list	is	not	passed,	no	fields	will	be
used.

	 	 	 	

	

Return	Values

NoTypeReq/	OptDescription Min	LenMax	Len Min	DecMax	Dec

1 U Req Status 1 20 	 	

2 U Req Message 1 Unlimited 	 	

3 L Opt Working	List 	 	 	 	

	

Technical	Note	1
There	is	a	new	keyword:	SERVICE_CONTENT
It	can	take	one	attribute:	*HTTP
When	JSMX_COMMAND	sends	a	SERVICE_LOAD	command	it	may	also
use	the	SERVICE_CONTENT	keyword.

					Note	that	the	following	will	ONLY	happen	if	you	are	running	under	the
context	of	JSMDirect
If	SERVICE_CONTENT(*HTTP)	is	used	in	the	command	string,	the
following	will	happen:
If	this	is	the	first	connection	to	use	SERVICE_CONTENT(*HTTP)
read	STDIN	(this	can	only	be	done	once)
this	connection	takes	ownership	of	JSM_CLOSE	(receives	STDOUT)
If	this	is	NOT	the	first	connection	to	use	SERVICE_CONTENT(*HTTP)
this	connection	takes	ownership	of	JSMX_CLOSE	(receives	STDOUT)	-	The
previous	connection	loses	the	ownership.
	

Scenario	A:
#1	JSMX_OPEN	-	open	connection
#2	JSMX_OPEN	-	open	connection
#3	JSMX_OPEN	-	open	connection
#1	JSMX_COMMAND("SERVICE_LOAD(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	read	STDIN,	claim
ownership
#2	JSMX_COMMAND("SERVICE_LOAD(xxx)")		-	send	CGI	keywords
#3	JSMX_COMMAND("SERVICE_LOAD(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	transfer	ownership
#1	JSMX_CLOSE	-	close	connection

#2	JSMX_CLOSE	-	close	connection
#3	JSMX_CLOSE	-	close	connection	and	write	STDOUT
	

Scenario	B:
#1	JSMX_OPEN	-	open	connection
#1	JSMX_COMMAND("SERVICE_LOAD(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	read	STDIN,	claim
ownership
#1	JSMX_CLOSE	-	close	connection	and	write	STDOUT
#2	JSMX_OPEN	-	open	connection
#2	JSMX_COMMAND("SERVICE_LOAD(xxx)")	-	send	CGI	keywords
#2	JSMX_CLOSE	-	close	connection
#3	JSMX_OPEN	-	open	connection
#3	JSMX_COMMAND("SERVICE_LOAD(xxx)
SERVICE_CONTENT(*HTTP)")	-	send	CGI	keywords,	transfer	ownership
#3	JSMX_CLOSE	-	close	connection	
	

Note

Only	one	connection	can	have	ownership	of	JSMX_CLOSE	at	a	time.
STDIN	is	read	once	only.
STDOUT	is	written	once	only.
The	CGI	keywords	are	always	sent.

Technical	Note	2
The	following	datatypes	are	supported.	If	any	other	datatype	is	used,	that
datatype	will	be	ignored,	that	is,	not	passed	to	JSM.
TYPE(*CHAR)
TYPE	(*DATETIME)
TYPE	(*BOOLEAN)
TYPE	(*STRING)
TYPE	(*INT)
TYPE	(*TIME)
TYPE	(*DATE)
TYPE	(*PACKED)
TYPE	(*DEC)
TYPE	(*FLOAT)

TYPE	(*SIGNED)

Example
Example:	To	call	a	command	using	field	list	and	working	list.
USE	BUILTIN(JSMX_COMMAND)	WITH_ARGS(#JSMHNDL	#JSMCMD
#FLDLST)	TO_GET(#JSMSTS	#JSMMSG	#WRKLST)
	

9.147	JSMX_OPEN

	Note:	Built-In	Function	Rules.

This	Built-In	Function	opens	a	connection	to	the	JSM	server,	which	starts	a
service	thread	to	handle	commands	to	be	sent	by	the	JSMX_COMMAND	BIF.
JSMX_OPEN	returns	a	handle,	which	identifies	the	JSM	connection.
If	no	server	argument	is	supplied,	then	the	JSM	server	host	is	obtained	by
reading	the	JSMCLTDTA	data	area.
See	also:	9.146	JSMX_COMMAND	and	9.145	JSMX_CLOSE.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYESOnly	available	for	RDMLX.

Visual	LANSA	for	Linux YESOnly	available	for	RDMLX.

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Server	(host:port),	Default	is
*BLANKS

1 50 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	Len Min	DecMax	Dec

1 U Req Status 1 20 	 	

2 U Req Message 1 Unlimited 	 	

3 A Req Handle	to	connection4 4 	 	

	

Examples
Example	1:	Open	a	connection	using	server	in	JSMCLTDTA	data	area.
USE	BUILTIN(JSMX_OPEN)	TO_GET(#JSMSTS	#JSMMSG	#JSMHDNL)
	

Example	2:	Open	a	connection	specifying	a	server.
USE	BUILTIN(JSMX_OPEN)	WITH_ARGS(#JSMSRV)
TO_GET(#JSMSTS	#JSMMSG	#JSMHDNL)
	

9.148	LEFT

	Note:	Built-In	Function	Rules.

Left	aligns	argument	into	return	string.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req String	to	be	left	align 1 256 	 	

2 A Opt Remove	imbedded	blanks	flag
(Y/N)
Values:	
Y	=	remove	
N	=	do	not	remove	
Default:	N

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	LenMin	DecMax	Dec

1 A Req Return	left	align
string

1 256 	 	

	

Example
Left	align	and	remove	imbedded	blanks	from	a	requested	string.
DEFINE					FIELD(#INTEXT)		TYPE(*CHAR)	LENGTH(18)
DEFINE					FIELD(#OUTEXT)		TYPE(*CHAR)	LENGTH(18)

REQUEST				FIELDS(#INTEXT)
USE								BUILTIN(LEFT)	WITH_ARGS(#INTEXT	Y)	TO_GET(#OUTEXT)
DISPLAY				FIELDS(#OUTEXT)
	

Resulting	displays	would	look	something	like	the	following.
								FUN01										Left	Example										
*																																																
								In	text	.	.	.				FR			E				D									
*																																															
								CF1=Help																														
*																																															
	

then,
								FUN01										Left	Example										
*																																																
								Out	text	.	.	.	FRED																		
*																																																
								CF1=Help																														
*																																																
	

9.149	LIST_PRINTERS

	Note:	Built-In	Function	Rules.

This	BIF	will	return	a	list	of	printers	currently	configured	on	the	machine.
Refer	to	Technical	Notes	if	running	on	Windows	Vista.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Printer	Location
A	–	All	printers
L	–	Local	Only	-	use	always
with	IBM	i.
Default	is	A.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	List	containing	the	printer's	full
name	(see	technical	notes).
The	list	must	be	in	the	following	format:
From	–	To		Description

255 255 	 	

1	–	255		Printer	Name
256	–	256		Printer	Location	(L	–	local,	N	–
network).

2 A Req Return	Code
OK	=	list	returned	successfully
OV	=	list	returned	completely	filled	but	more
printers	than	could	fit	in	the	list	still	exist.
NR	=	empty	list	returned
ER	=	an	error	occurred

2 2 	 	

	

Technical	Notes
The	working	list	will	return	the	full	printer	name.	This	includes	the	domain
name	for	remote	printers.	That	is	//domain/PrinterName.	For	example,
\\ourdomain\Epson	Stylus	COLOR	900.
If	printing	through	a	server	function,	this	BIF	should	be	run	on	the	server	to
obtain	the	list	of	printers	available	to	the	server	and	the	list	then	passed	back
to	the	client.	The	selected	printer	name	may	then	be	sent	to	the	server
function	that	will	perform	the	printing.
If	running	on	Windows	Vista,	there	is	a	limit	to	the	number	of	printers	that
can	be	defined	using	this	Built-In	Function.	This	includes	both	local	and
remote	printers.	The	limit	depends	on	the	printers	defined,	but	as	a	guide,	you
should	limit	the	number	of	printers	to	12.

Example
FUNCTION	OPTIONS(*DIRECT)
DEF_LIST	NAME(#PRNLIST)	FIELDS(#PRN_NAME	#PRN_LOC)
TYPE(*WORKING)
USE	BUILTIN(LIST_PRINTERS)	WITH_ARGS(A)	TO_GET(#PRNLIST
#STD_CMPAR)
	

9.150	LOAD_FILE_DATA

	Note:	Built-In	Function	Rules.

Will	call	the	OAM	for	the	requested	file	and	load	all	the	data	from	the	flat	file
specified.

This	Built-In	Function	expects	to	be	executed	on	the	same	machine	as
the	OAM.	Both	the	BIF	and	the	OAM	need	to	access	the	input	file.	If
you	execute	the	BIF	from	a	local	Function	but	redirect	the	File	to
SuperServer,	it	is	your	responsibility	to	ensure	that	the	input	filename
is	valid	on	both	the	client	and	the	server.

Of	course,	while	loading	data	into	a	file	it	is	not	expected	that	an	IO	is
still	in	use	from,	say,	calling	LOAD_FILE_DATA	from	within	a
SELECT	loop	over	the	same	file!	At	the	completion	of	loading	the	file
the	OAM	is	completely	closed,	terminating	all	existing	transactions.

For	use	with
LANSA
for	i

NO This	function	is	not	supported	on	IBM	i.	If	executed	on	IBM	i,
a	fatal	error	will	result	with	this	message	"This	Built-In
Function	is	not	supported	in	the	current	release".

Visual
LANSA
for
Windows

YES	

Visual
LANSA
for	Linux

YES	

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req The	LANSA	File	Name 1 10 	 	

2 A Opt Use	Rules/Triggers	?
Y	will	cause	all	rules,	triggers	and	batch
control	logic	to	be	processed,	any	other	value
will	load	the	data	without	processing	rules,
triggers	and	batch	control	logic.
Default	=	N

1 1 	 	

3 A Opt Input	File	Path/Name
Default	Value	=\X_ppp\source\[File
Name].dat

1 256 	 	

4 A Opt Ignore	Duplicate	Keys
Y	-	duplicate	keys	found	when	attempting	to
add	a	record	will	cause	the	record	to	not	be
added	and	a	message	to	be	added	to	the	job
message	queue.
N	-	duplicate	keys	will	cause	the	load	to	end
with	an	error
Default	=	Y

	 	 	 	

5 A Opt Y\N	Check	for	OAM
Default	=	N

1 1 	 	

6 A Opt Delete	.dat	file	and	BLOB/CLOB	files	after	a
successful	load	(no	errors	and	no	warnings
about	missing	BLOB	and	CLOB	data).
Default	-	N.

1 1 	 	

7 A Opt If	BLOB	or	CLOB	field	exist	on	the	file,	and
the	.dat	file	indicates	a	filename	for	the	field,
LOAD_FILE_DATA	will	automatically	look
for	the	file	and	load	the	data	into	the	database
if	the	file	is	found.	This	flag	controls	what	to
do	if	an	expected	file	is	not	found.
Default	=	W,	meaning	issue	a	warning
message	and	set	field	to	default
(*SQLNULL).

1 1 	 	

If	Y,	set	field	to	default	(*SQLNULL).
If	N,	give	a	fatal	error	and	abort.

8 A Opt CTD	Location	Level
A=	All	(Partition	+	System).
P	=	Partition	Level	only.
S=System	Level	only.
Default	is	A.

1 1 	 	

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code
OK	=	File	successfully	loaded
VE	=	Validation	Error	in	load	of	the	file
ER	=	File	load	failed	(possible	causes	-	flat
file	not	found,	a	trigger	failed	to	execute
correctly)
NT	=	No	table	exists
NO	=	No	OAM.	File	does	not	exist	or	is	not
compiled.
NO	only	returned	when	input	option	5	is	set
to	Y

2 2 	 	

	

Issues	related	to	OAMs	built	prior	to	V10.0
When	UNLOAD_FILE_DATA	has	been	used	with	an	OAM	built	prior	to
V10.0,	then	a	CTX	file	must	exist	for	V10.0	LOAD_FILE_DATA	to	work.	Note
that	a	the	following	steps	to	manually	create	a	CTX	file	are	not	required	when
data	is	created	by	a	V10.0	OAM.
Follow	these	steps	to	create	a	CTX	file.	V9.1	to	V10.0	has	been	used	in	this
example:

1.		Return	to	V9.1	of	LANSA	that	generated	the	data	file.
2.		Make	a	copy	of	the	relevant	V9.1	.CTD	(Common	Table	Definition)	file	with
an	extension	of	.CTX	(ex-Common	Table	Definition).

3.		Copy	the	V9.1	.CTX	file	into:		...\x_win95\X_lansa\X_<partition>\Source\
					For	example:	...\x_win95\X_lansa\X_<partition>\Source\<filename>.CTX
4.		Use	the	LOAD_FILE_DATA	Built-In	Function	to	load	the	unloaded	data.
5.		Delete	the	CTX	file	after	using	LOAD_FILE_DATA	as	it	is	no	longer
needed.

9.151	LOAD_OTHER_FILE

	Note:	Built-In	Function	Rules.

Loads	the	definition	of	an	"OTHER"	file.
An	edit	session	must	be	commenced	by	using	the	START_FILE_EDIT	Built-In
Function,	prior	to	using	this	Built-In	Function.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Maximum	number	of	logical	files	to	load
Default:	5

1 2 0 0

2 L Opt Working	list	to	contain	the	names	of	logical
files	to	be	loaded.	Each	logical	file	name
must	be	10	bytes.
If	this	argument	is	provided,	then	Argument	1
(Maximum	number	of	logical	files	to	load)
must	be	zero.

100 100 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code:	OK,	ER.
In	case	of	"ER"	return	code,	error
message(s)	are	issued	automatically.

2 2 	 	

	

Example
A	user	wants	to	control	the	load	of	an	"OTHER"	file	definition	using	their	own
version	of	the	'Load	an	"OTHER"	file'	option.	A	maximum	of	2	logicals	to	load
has	been	specified	in	this	example.
**********	Define	arguments	and	lists
DEFINE					FIELD(#FILNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#LIBNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#MAXLOG)	TYPE(*DEC)	LENGTH(2)	DECIMALS(0)
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
BEGIN_LOOP
**********	Request	File	and	library	name	and	maximum	number	of
**********	logicals	to	load
REQUEST				FIELDS(#FILNAM	#LIBNAM	#MAXLOG)

USE								BUILTIN(START_FILE_EDIT)	WITH_ARGS(#FILNAM	#LIBNAM	'DEM')	TO_GET(#RETCOD)
USE								BUILTIN(LOAD_OTHER_FILE)	WITH_ARGS(2)	TO_GET(#RETCOD)
USE								BUILTIN(END_FILE_EDIT)	WITH_ARGS('Y')	TO_GET(#RETCOD)
**********	Submit	job	to	make	file	operational
USE								BUILTIN(MAKE_FILE_OPERATIONL)	WITH_ARGS(#FILNAM	#LIBNAM)	TO_GET(#RETCOD)

END_LOOP
	

9.152	LOCK_OBJECT

	Note:	Built-In	Function	Rules.

Attempts	to	place	a	lock	on	the	specified	User	Object	and	returns	an	error	if
unsuccessful.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Object	Type. 1 20 	 	

2 A Opt Object	Identifier	1. 1 10 	 	

3 A Opt Object	Identifier	2. 1 10 	 	

4 A Opt Object	Identifier	3. 1 10 	 	

5 A Opt Object	Identifier	4. 1 10 	 	

6 A Opt Locking	Level
FUNC	=	Function
(Default)
JOB	=	Job
PERM	=	Permanent

3 4 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Object	was	successfully	locked.
IG	=	Lock	request	ignored.	Object
already	locked	by	current	Job.
ER	=	Object	already	has	a	lock	present.

2 2 	 	

2 A Opt Job	Name	of	Locking	Job 1 10 	 	

3 A Opt User	of	Locking	Job 1 10 	 	

4 A Opt Job	Number	of	Locking	Job 1 6 	 	

	

This	Built-In	Function	allows	the	locking	of	User	Objects.	Once	a	User	Object
is	locked	any	other	attempt	to	lock	that	User	Object	results	in	an	error	condition
and	a	Return	Code	of	"ER"	being	returned.	The	exception	to	this	is	when	an
attempt	is	made	to	lock	a	User	Object	that	is	already	locked	by	the	current	job.
When	this	occurs	the	lock	request	is	ignored	and	a	Return	Code	of	"IG"	is
return.
A	User	Object	need	not	be	a	physical	object	on	the	system,	it	can	be
ANYTHING	you	require.	User	Objects	are	more	conceptual	than	physical,	and
can	represent	a	particular	customer	number	or	an	entire	LANSA	partition.	The
only	limitation	is	your	imagination.
The	word	'ALL'	is	reserved	by	the	system	and	must	not	be	used	as	an	Object
Identifier.
This	method	of	locking	is	controlled	by	your	application,	it	is	NOT	controlled
by	the	operating	system.	Therefore	system	commands	cannot	be	used	to
investigate	the	lock	status	of	User	Objects.
Some	of	the	advantages	of	using	LOCK_OBJECT	over	the	LOCK(*YES)
parameter	of	I/O	commands	include:
You	can	devise	a	proper	locking	"protocol".	For	example	LOCK_OBJECT
('ORDER'	#ORDNUM	is	the	"protocol"	to	lock	the	order	identified	by
#ORDNUM.	By	using	a	protocol	you	do	not	have	to	worry/think	about	how
your	application	will	lock	the	order	header,	the	associated	line	items	and	line

items	charges	across	3	differing	database	files.
You	do	not	introduce	inter	or	intra	operating	system	dependencies.	For
example	IBM	i	will	lock	multiple	records	in	the	same	file	when	full
before/after	image	commitment	control	is	used,	but	it	won't	in	other
situations.
You	can	lock	multiple	objects	easily.
You	can	"invent"	objects	to	handle	any	type	of	situation,	you	are	no	longer
dependent	on	file	"records".
You	can	have	"permanent"	locks	lasting	days,	months	or	years.

The	Object	Type	argument	is	used	to	organize	the	object	identifiers	into	groups
of	common	attributes.	For	example	an	Object	Type	could	be	used	to	group
customers,	orders	or	printer	names.
The	Object	Identifiers	then	specify	a	single	object.
Current	User	Object	locks	are	stored	in	the	file	DC@FOL.	There	exists	one
record	in	DC@FOL	for	each	User	Object	lock	present.	The	layout	of	DC@FOL
is:

Field	NameLengthDescription

FOLP#I 3A Partition	Identifier

FOLTYP 20A Object	Type

FOLID1 10A Object	Identifier	1

FOLID2 10A Object	Identifier	2

FOLID3 10A Object	Identifier	3

FOLID4 10A Object	Identifier	4

FOLLVL 4A Lock	Level

FOLMOD 10A Process	name

FOLFMT 7A Function	name

FOLJNL 10A Locked	by	Job	Name

FOLJ#L 6A Locked	by	Job	Number

FOLUSL 10A Locked	by	User

FOLTDS 12S	0 Time/Date	Stamp	-	System	Format

	

The	Logical	Views	present	and	their	keys	are:-

Logical	File Key	Sequence Use

DC@FOLV1FOLP#I,	FOLTYP,	FOLID1,	FOLID2,	FOLID3,	FOLID4. Read
Only

DC@FOLV2Same	as	DC@FOLV1. Update

DC@FOLV3FOLLVL,	FOLJ#L,	FOLMOD,	FOLFMT,	FOLP#I,
FOLTYP,	FOLID1,	FOLID2,	FOLID3,	FOLID4.

Read
Only

DC@FOLV4Same	as	DC@FOLV3. Update

	

Be	aware	that	backup	and	recovery	of	this	file	is	a	user	responsibility.	Any	locks
that	are	present	when	a	backup	is	done	will	be	reinstated	when	that	backup	is
restored.
Should	LANSA	or	a	function	crash	due	to	error	any	locks	that	are	present	will
be	removed.	But	if	the	system	were	to	crash,	LANSA	will	be	unable	to	remove
the	locks.	Locks	remaining	due	to	a	system	crash	become	the	responsibility	of
the	user	to	remove.
The	User	Object	locks	are	either	unlocked	automatically	or	when	the
UNLOCK_OBJECT	Built-In	Function	is	used.
The	Locking	Level	used	on	the	LOCK_OBJECT	determines	when	the	User
Object	would	be	automatically	unlocked.
A	Locking	Level	of	'FUNC'	indicates	that	the	lock	will	be	automatically
removed	at	the	end	of	the	function	that	created	it.
A	Locking	Level	of	'JOB'	indicates	that	the	lock	will	be	automatically
removed	when	you	exit	JOB,	for	example,	a	form	or	process.
If	you	need	a	User	Object	lock	to	exist	after	you	have	exited	LANSA	then	a
Locking	Level	of	'PERM'	is	required.	This	is	a	permanent	User	Object	lock
that	exists	until	explicitly	removed	with	UNLOCK_OBJECT.

Examples

By	using	the	four	User	Object	Identifiers	to	build	a	structure	to	your	object
locking	it	is	possible	to	do	generic	key	unlocking.
DEFINE					FIELD(#RETURN)		TYPE(*CHAR)	LENGTH(2)
DEFINE					FIELD(#STATE)			TYPE(*CHAR)	LENGTH(3)
DEFINE					FIELD(#CUSTNO)		TYPE(*CHAR)	LENGTH(6)
**********	Lock	Customers	to	be	Updated
USE								BUILTIN(LOCK_OBJECT)	
											WITH_ARGS('CUSTOMER'	#STATE	#CUSTNO	''	''	'FUNC')	TO_GET(#RETURN)
**********	Unlock	ALL	Customers	for	the	STATE
USE								BUILTIN(UNLOCK_OBJECT)	WITH_ARGS('CUSTOMER'	#STATE	'ALL'	''	''	'FUNC')	
											TO_GET(#RETURN)
	

In	this	example	a	number	of	User	Objects	relating	to	customers	had	locks	placed
on	them.	All	the	locked	'customers'	belong	to	the	same	'state'.	When	the	update
process	is	complete	the	locks	can	be	removed.	Rather	than	remove	each
individual	lock	for	each	customer,	all	the	locks	for	a	state	can	be	removed
generically	by	specifying	'ALL'	on	the	second	Object	Identifier.
User	Object	locking	can	also	be	used	to	limit	the	number	of	concurrent	users	a
function	can	have.	For	example,	if	you	wish	to	impose	a	three	user	limit	on	your
order	entry	function,	then	create	three	User	Objects,	each	relating	to	a	user.
Then	at	the	top	of	your	order	entry	function	attempt	to	obtain	a	lock	on	one	of
the	User	Objects.	If	none	are	available	then	you	could	display	a	message	stating
this,	and	exit	the	function.	If	a	lock	is	granted	then	allow	access	to	the	function.
Remember	to	unlock	the	User	Object	when	exiting	the	function,	or	specify
'FUNC'	as	the	Locking	Level	so	the	lock	will	be	automatically	removed	when
the	function	is	finished.	Use	the	following	example	as	a	guide.
DEFINE					FIELD(#RETURN)		TYPE(*CHAR)	LENGTH(2)
**********	Attempt	lock	on	1st	instance
USE								BUILTIN(LOCK_OBJECT)	
											WITH_ARGS('ORDER_ENTRY'	'ORDER#1'	''	''	''	'FUNC')	TO_GET(#RETURN)
IF									COND('#RETURN	*EQ	ER')
**********	Attempt	lock	on	2nd	instance
USE								BUILTIN(LOCK_OBJECT)	
											WITH_ARGS('ORDER_ENTRY'	'ORDER#2'	''	''	''	'FUNC')	TO_GET(#RETURN)
IF									COND('#RETURN	*EQ	ER')
**********	Attempt	lock	on	3rd	instance
USE								BUILTIN(LOCK_OBJECT)	
											WITH_ARGS('ORDER_ENTRY'	'ORDER#3'	''	''	''	'FUNC')	TO_GET(#RETURN)

IF									COND('#RETURN	*EQ	ER')
**********	Cannot	obtain	any	locks
MESSAGE				MSGTXT('No	Order	Entry	sessions	are	Available')
RETURN
ENDIF
ENDIF
ENDIF

**********	Protected	processing
**********	Unlock	ALL	Order	Entry	locks	for	this	Function
USE								BUILTIN(UNLOCK_OBJECT)	WITH_ARGS('ORDER_ENTRY'	'ALL'	''	''	''	'FUNC')	TO_GET(#RETURN)
	

9.153	LOGICAL_KEY

	Note:	Built-In	Function	Rules.

Specifies	or	re-specifies	the	name	of	a	field	that	is	a	key	of	a	logical	view	/	file
previously	defined	by	the	LOGICAL_VIEW	Built-In	Function.
Prior	to	using	this	Built-In	Function	an	edit	session	must	be	commenced	by
using	the	START_FILE_EDIT	Built-In	Function	.
Allowable	argument	values	and	adopted	default	values	are	as	described	in
Detailed	Logical	View	Maintenance	in	the	LANSA	for	i	User	Guide.
Warning:	This	Built-In	Function	cannot	be	used	for	a	file	of	type	"OTHER".
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	logical	view	to	which	key	is	to
belong.

1 10 	 	

2 A Req Name	of	key	field.	Must	have	been
previously	specified	as	a	field	in	the	file	by
using	the	FILE_FIELD	Built-In	Function.

1 10 	 	

3 N Opt Optional	sequencing	number.	Used	to
sequence	key	fields.	If	not	specified	keys	are
sequenced	in	the	same	order	as	they	are
presented.

1 5 0 0

its:LANSA010.CHM::/lansa/ugub_30033.htm

4 A Opt Ascending	or	Descending	key.	Must	be	A	or
D.	Default	is	A.

1 1 	 	

5 A Opt Signed,	Unsigned	or	Absolute	value	ordering
of	numeric	key.	Must	be	S,U	or	A.	Default	is
U	for	alphas	and	S	for	numerics.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	key	defined
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically	and	the	edit	session
ended	without	commitment.

2 2 	 	

	

9.154	LOGICAL_VIEW

	Note:	Built-In	Function	Rules.

Specifies	or	re-specifies	the	name	and	basic	attributes	of	a	logical	view	/	file
that	is	to	base	on	the	file	definition	being	edited.
Prior	to	using	this	Built-In	Function	an	edit	session	must	be	commenced	by
using	the	START_FILE_EDIT	Built-In	Function.
After	using	this	Built-In	Function	to	define	the	basic	logical	view	/	file
attributes,	repetitively	use	the	LOGICAL_KEY	Built-In	Function	to	specify	or
re-specify	the	key	field	name(s).
Allowable	argument	values	and	adopted	default	values	are	as	described	in
Detailed	Logical	View	Maintenance	in	the	LANSA	for	i	User	Guide.
Warning:	This	Built-In	Function	cannot	be	used	for	a	file	of	type	"OTHER".
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	logical	view. 1 10 	 	

2 A Req Description	of	logical	view 1 40 	 	

3 A Opt Access	path	maintenance	option	Must	be
IMMED	or	DELAY.	Default	is	IMMED.

1 7 	 	

4 A Opt Uniquely	keyed	file	/	view	Must	be	YES	or 1 3 	 	

its:LANSA010.CHM::/lansa/ugub_30033.htm

NO.	Default	is	NO.

5 A Opt Dynamic	record	selection	Must	be	Y	or	N.
Default	is	N.	Must	be	YES	or	NO.	Default	is
NO.

1 3 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	logical	view	defined
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically	and	the	edit	session
ended	without	commitment.

2 2 	 	

	

9.155	MAIL_ADD_ATTACHMENT

	Note:	Built-In	Function	Rules.

This	Email	handling	Built-In	Function	is	used	to	add	a	file	to	be	sent	as	an
attachment	to	the	current	email.
Successive	calls	enable	an	internal	list	of	attachments	for	sending	to	be	built-up.

For	use	with
LANSA	for	i YES	

Visual	LANSA	for
Windows

YES Refer	to	Email	Built-In	Function	Notes	before	using
this	Built-In	Function.

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Full	path	to	file	including	directories
(Windows)	and	file.

1 255 	 	

2 A Opt The	attachment	filename	seen	by	the
recipient,	which	may	differ	from	the	filename
in	the	Full	Path	argument	if	temporary	files
are	being	used.	Default	behavior	is	mail
system	specific.

1 255 	 	

3 A Opt Reserved	for	future	use.	This	argument	is
currently	unused.

0 10 	 	

4 N Opt Reserved	for	future	use.	This	argument	is
currently	unused.

5 5 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max	Dec

1 A Opt Return	Code
OK	-	Action
completed
ER	-	Error	occurred

2 2 	 	

	

Technical	Notes
No	attachments	are	defined	immediately	following	a	MAIL_START	call.
Details	of	the	email	definition	will	be	lost	unless	the	MAIL_SEND	Built-In
Function	is	used	to	send	the	message.
If	any	error	occurs,	all	details	of	the	email	definition	will	be	lost.	To	restart
processing,	a	new	call	to	MAIL_START	would	be	required.

Example
The	following	example	shows	only	this	function.	See	the	example	for
MAIL_START	which	defines	all	details	of	an	Email	message	and	then	sends	it
by	using	Built-In	Functions.
**********	COMMENT(Define	attachment	file)
USE	BUILTIN(MAIL_ADD_ATTACHMENT)	WITH_ARGS('c:\config.sys'	'MyConfig.txt')	TO_GET(#LEM_RETC)
	

9.156	MAIL_ADD_ORIGINATOR

	Note:	Built-In	Function	Rules.

This	Email	Handling	Built-In	Function	is	used	to	add	the	name	of	the	original
sender	for	the	current	email.
This	call	will	allow	you	to	specify	the	original	sender	for	the	message.

For	use	with
LANSA	for	i YES	

Visual	LANSA	for
Windows

YES Refer	to	Email	Built-In	Function	Notes	before	using
this	Built-In	Function.

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Display	name	of	the	message	sender. 1 255 	 	

2 A Opt Sender's	address.	This	address	is	provider-
specific	message	delivery	data.	For	outbound
messages,	this	argument	may	be	an	address
entered	by	the	user	for	a	sender	that	is	not	in
an	address	book	(that	is,	a	custom	sender).
Default	behavior	is	mail	system	specific.

1 255 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max	Dec

1 A Opt Return	Code
OK	-	Action
completed
ER	-	Error	occurred

2 2 	 	

	

Technical	Notes
On	Windows	systems,	the	mail	system	will	normally	use	the	current	mail	user
as	the	original	sender	and	will	ignore	this	setting	but	no	error	will	occur.
On	IBM	i,	a	mail	message	requires	a	minimum	of	one	originator		(normally
you	would	only	provide	one	originator).	If	no	originator	is	provided,	the
current	user's	email	address	is	used.	The	current	user	must	be	registered	in	the
SNADS	directory	and	have	a	SMTP	alias.
Under	IBM	i,	enter	the	full	email	address	(the	address	type	prefix	SMTP:	is
optional)	in	either	the	display	name	argument	or	the	sender's	address
argument	if	a	display	name	is	specified.
Details	of	the	email	definition	will	be	lost	unless	the	MAIL_SEND	Built-In
Function	is	used	to	send	the	message.
If	any	error	occurs,	all	details	of	the	email	definition	will	be	lost.	To	restart
processing,	a	new	call	to	MAIL_START	would	be	required.

Example
This	example	shows	only	this	function.	See	the	example	for	MAIL_START
which	defines	all	details	of	an	Email	message	and	then	sends	it	by	using	Built-
In	Functions.
Note:	If	you	wish	to	use	this	example	for	testing	you	will	need	to	insert	a	valid
recipient's	address	in	the	required	argument.
**********	COMMENT(Define	Message	Originator	if	IBM	i)
**********	COMMENT(MAPI	on	non-IBM	i	usually	defaults)
IF	COND(*HOST)
USE	BUILTIN(MAIL_ADD_ORIGINATOR)	WITH_ARGS('SMTP:<-
-	recipient@address	-->')	TO_GET(#LEM_RETC)
ENDIF
	

9.157	MAIL_ADD_RECIPIENT

	Note:	Built-In	Function	Rules.

This	Email	handling	Built-In	Function	is	used	to	add	the	name	of	a	recipient	for
the	current	email.
Successive	calls	enable	an	internal	list	of	recipients	to	be	built	up.	As	a
minimum	you	would	normally	define	at	least	one	recipient	of	class	"TO".

For	use	with
LANSA	for	i YES	

Visual	LANSA	for
Windows

YES Refer	to	Email	Built-In	Function	Notes	before	using
this	Built-In	Function.

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Recipient	Class.
Values:
TO	-	To
CC	-	Copy	to
BCC	-	Blind	copy	to

2 3 	 	

2 A Req Display	name	of	the	message	recipient. 1 255 	 	

3 A Opt Recipient's	address.	This	address	is
provider-specific	message	delivery	data.

1 255 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max	Dec

1 A Opt Return	Code
OK	-	Action
completed
ER	-	Error	occurred

2 2 	 	

	

Technical	Notes
No	recipients	are	defined	immediately	following	a	MAIL_START	call.
The	optional	Recipient's	address	may	be	an	address	entered	by	the	user	for	a
recipient	not	in	an	address	book	(that	is,	a	custom	recipient).	Default	behavior
is	mail	system	specific.	MAPI	will	typically	require	that	you	provide	this
address	in	the	form:
<address	type>:<full	address>

			For	example:

Microsoft	PC	Mail: MS:network/postoffice/mailbox

Internet: SMTP:mailbox@companyname.com

Under	IBM	i,	enter	the	full	email	address	(the	address	type	prefix	SMTP:	is
optional)	in	the	display	name	argument	or	the	sender's	address	argument	if	a
display	name	is	specified.	A	mail	message	requires	a	minimum	of	one
recipient.
Details	of	the	email	definition	will	be	lost	unless	the	MAIL_SEND	Built-In
Function	is	used	to	send	the	message.
If	any	error	occurs,	all	details	of	the	email	definition	will	be	destroyed.	To
restart	processing,	a	new	call	to	MAIL_START	is	required.

Example
This	example	shows	only	this	function.	Refer	to	the	9.162	MAIL_START
example,	which	defines	all	details	of	an	Email	message.
Note:	If	you	wish	to	use	this	example	for	testing	you	should	insert	a	valid
display	name	as	the	second	argument	and	insert	a	valid	recipient's	address	as	the
third	argument.

**********	COMMENT(Set	Recipient	using	TO	argument)
**********	COMMENT(may	also	set	others	for	TO	CC	BCC)
lansaELSE
USE	BUILTIN(MAIL_ADD_RECIPIENT)	WITH_ARGS(TO	'<--	name	--
>'	'SMTP:<--	recipient@address	-->')
TO_GET(#LEM_RETC)
	

9.158	MAIL_ADD_TEXT

	Note:	Built-In	Function	Rules.

This	Email	handling	Built-In	Function	is	used	to	add	text	to	the	message	buffer
for	the	current	email.
Successive	calls	enable	a	message	text	to	be	built	up	by	concatenating	the	text
to	the	end	of	the	buffer.	Each	call	may	determine	if	a	newline	is	to	be	added	to
the	end	of	the	text	in	that	call.

For	use	with
LANSA	for	i YES	

Visual	LANSA	for
Windows

YES Refer	to	the	Email	Built-In	Function	Notes	before
using	this	Built-In	Function.

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req Text	to	be	added	to	the	email
message

1 Unlimited 	 	

2 A Opt Add	new	line	to	the	end	of	the
text.
Values:
Y	-	Yes
N	-	No
Default	Y

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max	Dec

1 A Opt Return	Code
OK	-	Action
completed
ER	-	Error	occurred

2 2 	 	

	

Technical	Notes
The	message	buffer	is	cleared	when	MAIL_START	is	called.
Trailing	blanks	in	the	text	are	truncated.	If	you	require	blanks	to	be	inserted
between	successive	calls	that	have	no	intervening	new	line,	place	the	blanks
at	the	beginning	of	the	later	call.
Details	of	the	email	definition	will	be	lost	unless	the	MAIL_SEND	Built-In
Function	is	used	to	send	the	message.
If	any	error	occurs,	all	details	of	the	email	definition	are	destroyed.	To	restart
processing,	a	new	call	to	MAIL_START	would	be	required.

For	the	maximum	possible	length	of	a	field	type	please	refer	to	Field	Type
Considerations.

Example
This	example	shows	only	this	function.	See	the	example	for	MAIL_START
which	defines	all	details	of	an	Email	message	and	then	sends	it	by	using	Built-
In	Functions.
**********	COMMENT(Set	message	Text)
USE	BUILTIN(MAIL_ADD_TEXT)	WITH_ARGS('Hello,'	Y)	TO_GET(#LEM_RETC)
DEFINE	FIELD(#BIGLINE)	TYPE(*CHAR)	LENGTH(255)	LABEL('Big	Text	Line')	INPUT_ATR(LC)
CHANGE	FIELD(#BIGLINE)	TO('''I	am	sending	this	message	just	to	try	out	the	LANSA	Email	Built-
In	Functions.''')
USE	BUILTIN(MAIL_ADD_TEXT)	WITH_ARGS(#BIGLINE	Y)	TO_GET(#LEM_RETC)
USE	BUILTIN(MAIL_ADD_TEXT)	WITH_ARGS('Thank	You'	N)	TO_GET(#LEM_RETC)
	

9.159	MAIL_SEND

	Note:	Built-In	Function	Rules.

Used	to	send	the	constructed	email	message.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
None

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max	Dec

1 A Opt Return	Code
OK	-	Action
completed
ER	-	Error	occurred

2 2 	 	

	

Technical	Notes
On	the	Visual	LANSA	platform,	MAIL_SET_OPTION	calls	may	be	required
to	logon	to	the	MAPI	mail	provider.	The	information	set	in	this	way	is	not
used	until	a	MAIL_SEND	call	is	issued	at	which	time	an	attempt	at	logon
validation	will	take	place.
On	IBM	i	the	mail	message	is	written	to	the	IBM	i	Mail	Server	Framework
(MSF).	The	mail	message	is	then	processed	by	a	MSF	job	and	delivered
according	to	the	schedule	of	the	distribution	queues.	MSF	must	be	configured

and	running	before	any	mail	messages	can	be	delivered.
Details	of	the	email	definition	will	be	lost	unless	the	MAIL_SEND	Built-In
Function	is	used	to	send	the	message.
MAIL_SEND	destroys	the	current	mail	information	on	return	from	the	call
even	if	the	call	is	unsuccessful.	To	start	processing	a	new	message,	a	new	call
to	MAIL_START	is	required.

Example
This	example	shows	only	this	function.	See	the	example	for	MAIL_START
which	defines	all	details	of	an	Email	message	and	then	sends	it	by	using	Built-
In	Functions.
**********	COMMENT(SEND	the	mail)
USE	BUILTIN(MAIL_SEND)	TO_GET(#LEM_RETC)
	

9.160	MAIL_SET_OPTION

	Note:	Built-In	Function	Rules.

Used	to	set	various	options	which	may	be	required	by	the	mail	system.
Refer	to	Email	Built-In	Functions	Notes	before	using	this	Built-In	Function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

LANSA	for	i	Specific	Options

Option	Name Option	Values Option
Default

PRIORITY
An	indication	of	the	priority	of	the	message.

'NORMAL'
'LOW'
'URGENT'

'NORMAL'

SENSITIVITY
An	indication	of	the	sensitivity	of	the	message
content.

'NONE'
'PERSONAL'
'PRIVATE'
'CONFIDENTIAL'

'NONE'

IMPORTANCE
An	indication	of	the	importance	of	the	message
content.

'NORMAL'
'LOW'
'HIGH'

'NORMAL'

MESSAGE_CCSID
The	CCSID	to	use	for	the	mail	message	text
strings	such	as	mail	message	subject	and	text
lines.

String '65535'

CONTENT_TYPE
The	content-type	that	the	message	text	contains.

String 'text/plain'

Examples	are	'text/plain'	&	'text/html'.	Other
values	may	be	used,	but	in	any	case	the
application	should	be	tested	to	ensure	that	the
content-type	is	suitable.	This	option	value	is	not
validated,	nor	is	the	message	text	validated
against	the	content-type.	When	using	the
content-type	of	'text/html',	be	aware	that	some
email	clients	may	not	be	able	to	render	this,	also
this	may	trip	some	spam	filters.

	

Visual	LANSA	Specific	Options

Option	Name Option
Values

Option
Default

PROFILENAME
Profile	name	string	to	use	when	logging	on.	If	the	value
supplied	is	invalid,	and	MAPI_LOGON_UI	is	set,	MAPI
displays	an	error	followed	by	a	logon	dialog	box	with	an
empty	name	field.

String "Windows
Messaging
Settings"

PASSWORD
Credential	string.	If	the	messaging	system	does	not	require
password	credentials,	or	if	it	requires	that	the	user	enter
them,	this	option	should	NOT	be	set.	When	the	user	must
enter	credentials,	the	MAPI_LOGON_UI	or
MAPI_PASSWORD_UI	option	must	be	set	to	allow	a	logon
dialog	box	to	be	displayed.

String None	-
empty
string

MAPI_NEW_SESSION
Indicates	if	an	attempt	should	be	made	to	create	a	new
session	rather	than	acquire	the	environment's	shared	session.
If	the	MAPI_NEW_SESSION	option	is	not	set,	an	existing
shared	session	is	used.

Y/N N

MAPI_LOGON_UI
Indicates	if	a	logon	dialog	box	should	be	displayed	to
prompt	the	user	for	logon	information.	If	the	user	needs	to
provide	a	password	and	profile	name	to	enable	a	successful

Y/N N

logon,	MAPI_LOGON_UI	must	be	set.

MAPI_PASSWORD_UI
Indicates	if	MAPI	should	only	prompt	for	a	password	and
not	allow	the	user	to	change	the	profile	name.	You	should
not	set	both	MAPI_PASSWORD_UI	and
MAPI_LOGON_UI	since	the	intent	is	to	select	between	two
different	dialog	boxes	for	logon.

Y/N N

	

Options	Applicable	to	All	Platforms
These	options	may	be	used	on	any	platform.

Option	Name: Option	ValuesOption	Default

RECEIPT_REQUESTED
Indicates	if	a	receipt	notification	is	requested.

Y/N N

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Option	Name	(see	descriptions
above).

1 20 	 	

2 A Req Option	Value	(see	descriptions
above).

1 255 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max	Dec

1 A Opt Return	Code 2 2 	 	

OK	-	Action
completed
ER	-	Error	occurred

	

Technical	Notes
The	MAPI	interface	is	used	on	the	Windows	platform.	MAIL_SET_OPTION
calls	may	be	required	for	logon	to	the	MAPI	mail	provider	which	begins	a
session	with	the	messaging	system.	To	request	the	display	of	a	logon	dialog
box	if	the	credentials	presented	(password)	fail	to	validate	the	session,	set	the
MAPI_LOGON_UI	or	MAPI_PASSWORD_UI	option.	If	you	do	not	allow
the	display	of	the	dialog	box,	all	logon	information,	default	or	specified	must
be	valid	or	the	MAIL_SEND	will	fail	during	the	MAPI	logon	phase	with	very
little	information	available	as	to	the	cause	of	the	failure.	The	information	set
in	this	way	is	not	used	until	a	MAIL_SEND	call	is	issued	at	which	time	an
attempt	at	logon	validation	will	take	place.
Details	of	the	email	definition	will	be	lost	unless	the	MAIL_SEND	Built-In
Function	is	used	to	send	the	message.
If	any	error	occurs,	all	details	of	the	email	definition	will	be	lost.	To	restart
processing,	a	new	call	to	MAIL_START	would	be	required.
The	PRIORITY,	SENSITIVITY	and	IMPORTANCE	mail	options	are	usually
ignored	by	PC	mail	clients.	It	is	your	responsibility	to	verify	they	work
properly	in	your	environment.
The	RECEIPT_REQUESTED:	Y	mail	option	may	either	be	ignored	or
disabled	by	PC	mail	clients,	or	disabled	at	the	recipient	mail	server	to	prevent
spam.	It	is	your	responsibility	to	verify	it	works	properly	in	your
environment.

Example
This	example	shows	only	this	function.	See	the	example	for	MAIL_START
which	defines	all	details	of	an	Email	message	and	then	sends	it	by	using	Built-
In	Functions.
**********	COMMENT(Set	receipt	acknowledgement	is	required)
USE	BUILTIN(MAIL_SET_OPTION)	WITH_ARGS(RECEIPT_REQUESTED	Y)	TO_GET(#LEM_RETC)
	

9.161	MAIL_SET_SUBJECT

	Note:	Built-In	Function	Rules.

Used	to	set	the	text	of	the	messages	subject.
You	would	normally	call	this	function	to	set	a	Subject	but	it	is	not	mandatory.

For	use	with
LANSA	for	i YES	

Visual	LANSA	for
Windows

YES Refer	to	Email	Built-In	Function	Notes	before	using
this	Built-In	Function.

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Text	string	describing	the
message	subject.

1 255 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max	Dec

1 A Opt Return	Code
OK	-	Action
completed
ER	-	Error	occurred

2 2 	 	

	

Technical	Notes
No	Subject	is	defined	immediately	following	a	MAIL_START	call.
Details	of	the	email	definition	will	be	lost	unless	the	MAIL_SEND	Built-In
Function	is	used	to	send	the	message.
If	any	error	occurs,	all	details	of	the	email	definition	will	be	lost.	To	restart
processing,	a	new	call	to	MAIL_START	would	be	required.

Example
This	example	shows	only	this	function.	See	the	example	for	MAIL_START
which	defines	all	details	of	an	Email	message	and	then	sends	it	by	using	Built-
In	Functions.
**********	COMMENT(Set	Subject	text)
USE	BUILTIN(MAIL_SET_SUBJECT)	WITH_ARGS('Testing	Email	Built-
In	Functions')	TO_GET(#LEM_RETC)
	

9.162	MAIL_START

	Note:	Built-In	Function	Rules.

Used	to	start	an	email	session.
The	email	session	started	can	be	used	by	the	calling	function	to	define	and	send
a	single	email	message.
Refer	to	Email	Built-In	Functions	Notes	before	using	this	Built-In	Function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
None

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max	Dec

1 A Opt Return	Code
OK	-	Action
completed
ER	-	Error	occurred

2 2 	 	

	

Technical	Notes
MAIL_START	destroys	any	existing	mail	message	information	and	starts	a
new	mail	session.
Only	one	email	definition	can	be	in	progress	at	one	time	(ie:	it	is	not	possible

to	concurrently	define	two	email	definitions	prior	to	sending	them	from
within	the	same	job).
Details	of	the	email	definition	will	be	lost	unless	the	MAIL_SEND	Built-In
Function	is	used	to	send	the	message.
If	any	error	occurs,	all	details	of	the	email	definition	are	destroyed.	To	restart
processing,	a	new	call	to	MAIL_START	would	be	required.

Example
This	example	defines	all	details	of	an	Email	message	and	then	sends	it	by	using
Built-In	Functions.
Note:	If	you	wish	to	use	this	example	for	testing	you	should	replace	<--	name	--
>	and	<--	recipient@address	-->	where	these	are	used	in	the	examples	of
MAIL_ADD_RECIPIENT	and	MAIL_ADD_ORIGINATOR.
FUNCTION	OPTIONS(*DIRECT)
DEFINE	FIELD(#LEM_RETC)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	Code')
DEF_COND	NAME(*OKAY)	COND('#LEM_RETC	=	OK')
DEF_COND	NAME(*NOTOKAY)	COND('#LEM_RETC	*NE	OK')
DEF_COND	NAME(*CLIENT)	COND('*CPUTYPE	*NE	AS400')
DEF_COND	NAME(*HOST)	COND('*CPUTYPE	*EQ	AS400')

BEGIN_LOOP
**********	COMMENT(Start	Mail	message	-	Initialize)
USE	BUILTIN(MAIL_START)	TO_GET(#LEM_RETC)
**********	COMMENT(If	not	IBM	i,	set	MAPI	arguments)
IF	COND(*CLIENT)
**********	COMMENT(Use	the	Windows	Default	Profile)
USE	BUILTIN(MAIL_SET_OPTION)	WITH_ARGS('PROFILENAME'	'Windows	Messaging	Settings')	TO_GET(#LEM_RETC)
**********	COMMENT(Assume	user	has	no	Password)
USE	BUILTIN(MAIL_SET_OPTION)	WITH_ARGS('PASSWORD'	*BLANK)	TO_GET(#LEM_RETC)
**********	COMMENT(Use	existing	MAPI	mail	session)
**********	COMMENT(from	logged	on	Email	client)
USE	BUILTIN(MAIL_SET_OPTION)	WITH_ARGS('MAPI_NEW_SESSION'	N)	TO_GET(#LEM_RETC)
**********	COMMENT(Display	MAPI	Logon	dialog	if	required)
USE	BUILTIN(MAIL_SET_OPTION)	WITH_ARGS('MAPI_LOGON_UI'	Y)	TO_GET(#LEM_RETC)
**********	COMMENT(Do	not	display	MAPI	Password	Dialog)
**********	COMMENT(mutually	exclusive	to	MAPI_LOGON_UI))
USE	BUILTIN(MAIL_SET_OPTION)	WITH_ARGS('MAPI_PASSWORD_UI'	N)	TO_GET(#LEM_RETC)
**********	COMMENT(Set	Recipient	using	TO	argument)

**********	COMMENT(may	also	set	others	for	TO	CC	BCC)
USE	BUILTIN(MAIL_ADD_RECIPIENT)	WITH_ARGS(TO	'<--	name	--
>'	'SMTP:<--	recipient@address	-->')	TO_GET(#LEM_RETC)
**********	COMMENT(To	define	attachment	file	remove	comments)
***	USE	BUILTIN(MAIL_ADD_ATTACHMENT)	WITH_ARGS('c:\config.sys'	'MyConfig.txt')	TO_GET(#LEM_RETC)
ELSE
**********	COMMENT(Set	Recipient	using	TO	argument)
USE	BUILTIN(MAIL_ADD_RECIPIENT)	WITH_ARGS(TO	'SMTP:<-
-	recipient@address	-->')	TO_GET(#LEM_RETC)
ENDIF
IF	COND(*HOST)
**********	COMMENT(Define	Message	Originator	if	IBM	i)
**********	COMMENT(MAPI	on	non-IBM	i	usually	defaults)
USE	BUILTIN(MAIL_ADD_ORIGINATOR)	WITH_ARGS('SMTP:<-
-	recipient@address	-->')	TO_GET(#LEM_RETC)
ENDIF
**********	COMMENT(Set	receipt	acknowledgement	is	required)
USE	BUILTIN(MAIL_SET_OPTION)	WITH_ARGS(RECEIPT_REQUESTED	Y)	TO_GET(#LEM_RETC)
**********	COMMENT(Set	Subject	text)
USE	BUILTIN(MAIL_SET_SUBJECT)	WITH_ARGS('Testing	Email	Built-
In	Functions')	TO_GET(#LEM_RETC)
**********	COMMENT(Set	message	Text)
USE	BUILTIN(MAIL_ADD_TEXT)	WITH_ARGS('Hello,'	Y)	TO_GET(#LEM_RETC)
DEFINE	FIELD(#BIGLINE)	TYPE(*CHAR)	LENGTH(255)	LABEL('Big	Text	Line')	INPUT_ATR(LC)
CHANGE	FIELD(#BIGLINE)	TO('''I	am	sending	this	message	just	to	try	out	the	LANSA	Email	Built-
In	Functions.''')
USE	BUILTIN(MAIL_ADD_TEXT)	WITH_ARGS(#BIGLINE	Y)	TO_GET(#LEM_RETC)
USE	BUILTIN(MAIL_ADD_TEXT)	WITH_ARGS('Thank	You'	N)	TO_GET(#LEM_RETC)
**********	COMMENT(Prompt	to	SEND	the	mail	then	send)
DEFINE	FIELD(#LTEXT2)	TYPE(*CHAR)	LENGTH(1)	DESC('Press	ENTER	to	SEND	or	CANCEL')
POP_UP	FIELDS((#LTEXT2	*L4	*P4	*DESC	*NC))	IDENTIFY(*LABEL)	AT_LOC(7	20)	WITH_SIZE(57	10)	PANEL_TITL('Confirm	Mail	Send...')	EXIT_KEY(*NO)	PROMPT_KEY(*NO)	STD_HEAD(*YES)
USE	BUILTIN(MAIL_SEND)	TO_GET(#LEM_RETC)
IF	COND(*OKAY)
MESSAGE	MSGTXT('Send	SUCCESSFUL.')
ELSE
MESSAGE	MSGTXT('Send	FAILED.')
ENDIF
END_LOOP

9.163	MAKE_FILE_OPERATIONL

	Note:	Built-In	Function	Rules.

Submits	a	job	to	create	or	recreate	a	file	plus	associated	logical	files	and	I/O
module.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

A	job	is	submitted	to	perform	the	operation	compile.

Visual
LANSA	for
Windows

YESCalls	the	code	generator	and	compiler	directly,	and	only
returns	when	the	operation	is	complete.	Does	not	submit	a
job.

Visual
LANSA	for
Linux

NO 	

	

Arguments	for	Visual	LANSA
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req File	name 1 10 	 	

2 A Req Library	name 1 10 	 	

3 A Opt Recreate	options	if	file	is	already
created
Byte	1:
Y	=	rebuild	the	table	and	save	data
N	=	do	not	rebuild	the	table	
Default:	Y
Byte	2:

1 3 	 	

Y	=	rebuild	indexes/views	
N	=	do	not	rebuild	indexes/views	
Default:	Y
Byte	3:
Y	=	rebuild	OAM	
N	=	do	not	rebuild	OAM	
Default:	Y

4 A Opt Name	of	job
Ignored

1 10 	 	

5 A Opt Name	of	job	description
Ignored

1 21 	 	

6 A Opt Name	of	job	queue
Ignored

1 21 	 	

7 A Opt Name	of	output	queue
Ignored

1 21 	 	

8 A Opt Produce	file	and	I/O	module	source
listings	?
Y	=	keep	source
N	=	do	not	keep	source

1 1 	 	

9 A Opt Ignore	decimal	data	error	in
associated	I/O	module?
Ignored

1 1 	 	

10 A Opt Strip	debug	data	options	in
associated	I/O	module?
Ignored

1 1 	 	

11 A Opt User	program	to	call
Ignored

1 21 	 	

12 A Opt Delete	$$	File?	(Used	for	Keep
Saved	Data)
Y	=	Keep	saved	data.
N	=	Do	not	keep	saved	data.

1 1 	 	

Default:	N

	

Arguments	for	LANSA	for	i
For	further	information,	refer	to	Create/Recreate	a	file	from	its	definition	screen
in	Submitting	Job	to	Make	File	Definition	Operational	in	the	LANSA	for	i	User
Guide.

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req File	name 1 10 	 	

2 A Req Library	name 1 10 	 	

3 A Opt Recreate	options	if	file	is	already
created
Byte	1:
Y	=	recreate	the	table
N	=	do	not	recreate	the	table	
Default:	Y
Byte	2:
Y	=	recreate	indexes	
N	=	do	not	recreate	indexes
Default:	Y
Byte	3:
Y	=	rebuild	OAM	
N	=	do	not	rebuild	OAM	
Default:	Y

1 3 	 	

4 A Opt Name	of	batch	job
Default:	File	name

1 10 	 	

5 A Opt Name	of	job	description
Default:	the	job	description	from	the
requesting	job's	attributes.

1 21 	 	

6 A Opt Name	of	job	queue 1 21 	 	

its:LANSA010.CHM::/lansa/ugub_30018.htm

Default:	the	job	queue	from	the
requesting	job's	attributes.

7 A Opt Name	of	output	queue
Default:	the	output	queue	from	the
requesting	job's	attributes.

1 21 	 	

8 A Opt Produce	file	and	I/O	module	source
listings	?
Y	=	produce	listings
N	=	do	not	produce	listings
Default	N	(do	not	produce	listings)

1 1 	 	

9 A Opt Ignore	decimal	data	error	in	associated
I/O	module?
Y	=	ignore	decimal	data	errors
N	=	do	not	ignore	errors
Default:	N	(do	not	ignore	errors)

1 1 	 	

10 A Opt Strip	debug	data	options	in	associated
I/O	module?
Y	=	debugging	information	should	be
stripped.
N	=	debugging	information	should	not
be	stripped.
Default:	Y	(debugging	information
should	be	stripped)

1 1 	 	

11 A Opt User	program	to	call	Default:	Blank 1 21 	 	

12 A Opt Delete	$$	File?
Y	=	$$	version	of	file	should	be
deleted.
N	=	$$	version	of	file	should	not	be
deleted.
Default:	N	($$	version	of	file	should
not	be	deleted)

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	successful	submission
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.
In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

2 2 	 	

	

Example
A	user	wants	to	control	the	compilation	of	files	and	associated	logical	views	and
I/O	module	using	their	own	version	of	the	"Create	/	Re-Create	a	File"	facility.
FUNCTION		OPTIONS(*DIRECT)
	
**********	Define	arguments	and	lists
DEFINE				FIELD(#FILNAM)	TYPE(*CHAR)	LENGTH(010)
DEFINE				FIELD(#LIBNAM)	TYPE(*CHAR)	LENGTH(010)
DEFINE				FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(002)
BEGIN_LOOP	
**********	Request	File	and	library	name
REQUEST			FIELDS((#FILNAM)(#LIBNAM))
USE							BUILTIN(START_FILE_EDIT)	WITH_ARGS(#FILNAM
#LIBNAM	LAN	'SALES	RESULTS'	NORMAL)	TO_GET(#RETCOD)
USE							BUILTIN(END_FILE_EDIT)	WITH_ARGS(Y)
TO_GET(#RETCOD)
**********	Execute	Built-In	Function	-	MAKE_FILE_OPERATIONL
USE							BUILTIN(MAKE_FILE_OPERATIONL)	WITH_ARGS(#FILNAM
#LIBNAM)	TO_GET(#RETCOD)
**********	Check	if	submission	was	successful
IF								COND('#RETCOD	*EQ	''OK''')

MESSAGE			MSGTXT('Create/recreate	of	file	submitted	successful')
CHANGE				FIELD(#FILNAM)	TO(*BLANK)
ELSE							
MESSAGE			MSGTXT('Create/recreate	submit	failed	with	errors,	refer	to
additional	messages')
ENDIF						
END_LOOP			
											
	

9.164	MAKE_SOUND

	Note:	Built-In	Function	Rules.

Causes	a	standard	sound	to	be	queued.

For	use	with
LANSA	for	i NO 	

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Sound	identifier.
The	value	specified	should	be	one	of	:
'BEEP'	-	Standard	beep	using	the	computer
speaker
'ASTERISK'	-	System	configured	Asterisk
sound.
'EXCLAMATION'	-	System	configured
Exclamation	sound.
'HAND'	-	System	configured	Hand	sound.
'QUESTION'	-	System	-	configured	Question
sound.
'DEFAULT'	-	System	configured	Default
sound.
If	this	argument	is	not	specified	or	is
specified	incorrectly	the	default	value	'BEEP'
will	be	used.

1 20 	 	

	

Return	Values
There	are	no	Return	Values.

Technical	Notes
After	queuing	the	sound	the	MAKE_SOUND	Built-In	Function	returns
control	to	the	calling	function.	The	sound	will	be	played	asynchronously.
If	the	system	cannot	play	the	specified	sound	it	attempts	to	play	the	system
default	sound.	If	it	cannot	play	the	system	default	sound,	the	function
produces	a	standard	beep	sound	through	the	computer	speaker.

Example
This	example	is	for	all	possible	sounds	as	not	all	are	available	with	every	PC.
The	actual	sound	you	hear	will	vary	from	PC	to	PC.	(The	default	sound	BEEP	is
particularly	recalcitrant.)
function	options(*DIRECT)
begin_loop
change	field(#STD_TEXT)	to(ASTERISK)
use	builtin(MAKE_SOUND)	with_args(ASTERISK)
request	fields(#STD_TEXT)
change	field(#STD_TEXT)	to(EXCLAMATION)
use	builtin(MAKE_SOUND)	with_args(EXCLAMATION)
request	fields(#STD_TEXT)
change	field(#STD_TEXT)	to(BEEP)
use	builtin(MAKE_SOUND)	with_args(BEEP)
request	fields(#STD_TEXT)
change	field(#STD_TEXT)	to(HAND)
use	builtin(MAKE_SOUND)	with_args(HAND)
request	fields(#STD_TEXT)
change	field(#STD_TEXT)	to(QUESTION)
use	builtin(MAKE_SOUND)	with_args(QUESTION)
request	fields(#STD_TEXT)
change	field(#STD_TEXT)	to(DEFAULT)
use	builtin(MAKE_SOUND)	with_args(DEFAULT)
request	fields(#STD_TEXT)
end_loop
	

9.165	MESSAGE_BOX_ADD

	Note:	Built-In	Function	Rules.

Adds	one	or	more	items	to	the	message	box	assembly	area	as	a	new	message
line.	These	items	would	normally	be	displayed	by	the
MESSAGE_BOX_SHOW,	Built-In	Function	at	some	later	time.

For	use	with
LANSA	for	i NO 	

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
No TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 X Req First	item	to	be	added	to	the	message
box	assembly	area

1 256 0 9

2
-10

X Opt Subsequent	items	to	be	added	to	the
message	box	assembly	area

1 256 0 9

	

Return	Values
There	are	no	Return	Values

Technical	Notes
The	first	item	in	the	list	of	items	specified	causes	a	new	message	line	to	be
started.
Subsequent	items	in	the	list	are	separated	by	a	single	blank	from	the
preceding	item.

Items	are	converted	to	left	aligned	strings	and	trailing	blanks	are	truncated.	A
completely	blank/null	item	is	converted	to	a	single	blank.
The	maximum	length	of	256	characters	is	true	if	the	argument	is	specified	as
a	character	variable.	However,	the	maximum	length	of	a	character	literal	is
48	characters.
Messages	from	successive	MESSAGE_BOX_ADD	commands	are	added	to
the	message	box	assembly	area.	The	message	box	message	assembly	area	can
contain	at	most	4096	characters	(including	automatically	inserted	blanks	or
control	characters).	Once	the	assembly	area	reaches	its	maximum	size	all	in
progress	or	subsequent	add	or	append	operations	are	ignored.	No	notification
or	error	is	given	when	this	situation	arises.
The	message	assembly	area	is	cleared	at	completion	of	a
MESSAGE_BOX_SHOW	command.

Examples
Refer	to	9.168	MESSAGE_BOX_SHOW.

9.166	MESSAGE_BOX_APPEND

	Note:	Built-In	Function	Rules.

Appends	one	or	more	items	to	the	message	box	assembly	area.	A	new	message
line	is	not	started.	These	items	would	normally	be	displayed	by	the
MESSAGE_BOX_SHOW,	Built-In	Function	at	some	later	time.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
No TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 X Req First	item	to	be	appended	to	the	message
box	assembly	area

1 256 0 9

2	-
10

X Opt Subsequent	items	to	be	appended	to	the
message	box	assembly	area

1 256 0 9

	

Return	Values
There	are	no	Return	Values

Technical	Notes
This	Built-In	Function	does	not	cause	a	new	message	line	to	be	started.	It	is
designed	to	append	information	to	existing	message	lines.
All	items	(including	the	first	one)	are	separated,	by	a	single	blank	from	the
preceding	item.

Items	are	converted	to	left	aligned	strings	and	trailing	blanks	are	truncated.	A
completely	blank/null	item	is	converted	to	a	single	blank.
The	message	box	message	assembly	area	can	contain	at	most	4096	characters
(including	any	automatically	inserted	blanks	or	control	characters).	Once	the
assembly	area	reaches	its	maximum	size	all	in	progress	or	subsequent	add	or
append	operations	are	ignored.	No	notification	or	error	is	given	when	this
situation	arises.	

Examples
Refer	to	9.168	MESSAGE_BOX_SHOW

9.167	MESSAGE_BOX_CLEAR

	Note:	Built-In	Function	Rules.

Clears	the	current	message	box	message	assembly	area.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	Windows YES

Visual	LANSA	for	Linux NO

	

Arguments
There	are	no	Arguments

Return	Values
There	are	no	Return	Values

Technical	Notes
Use	of	this	Built-In	Function	is	rare	because	the	message	assembly	area	is
automatically	cleared	by	using	MESSAGE_BOX_SHOW,	Built-In	Function.

Examples
Refer	to	9.168	MESSAGE_BOX_SHOW

9.168	MESSAGE_BOX_SHOW

	Note:	Built-In	Function	Rules.

Causes	a	standard	MS	Windows	message	box	to	be	displayed.	It	then	waits	until
the	user	clicks	one	of	a	specified	set	of	buttons	in	the	message	box	before
returning	control	to	the	application.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Specifies	the	button(s)	to	be	displayed	in	the
message	box.	This	value	should	be	specified
as:
'ABORTRETRYIGNORE'
'OK'
'OKCANCEL'
'RETRYCANCEL'
'YESNO'
'YESNOCANCEL'
If	this	argument	is	not	specified	or	is	invalid	it
will	be	set	to	'OK'.	

1 20 	 	

2 A Opt Specifies	which	of	the	enabled	buttons	is	to
be	the	default	button.	This	value	should	be
specified	as:
'ABORT'
'RETRY'

1 20 	 	

'IGNORE'
'OK'
'CANCEL'
'YES'
'NO'
If	this	argument	is	not	specified	or	is	invalid	it
will	be	set	to	the	first	button	specified	by
argument	1.
If	argument	1	is	also	not	specified	or	invalid	it
this	argument	will	be	set	to	OK.

3 A Opt Icon	to	be	displayed	in	message	box.	This
value	should	be	specified	as:
'EXCLAMATION'
'	WARNING'
'INFORMATION'
'	ASTERISK'
'	QUESTION'
'STOP'
'ERROR'
'HAND'
'NONE'
If	this	argument	is	not	specified	or	it	is	invalid
this	argument	will	be	set	to	'NONE'.	

1 20 	 	

4 u Opt Message	Box	Title.	If		this	argument	is	not
specified	this	argument	defaults	to	the
description	of	the	application	that	is	using	the
Built-In	Function.	

1 256 	 	

5 U Opt Overriding	message	text.	This	value	will
override	and	replace	any	text	currently	in	the
message	box	assembly	area.		This	argument
allows	simple	messages	to	be	presented
without	having	to	use	using	the	ADD	and
APPEND	Built-In	Functions.

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Button	used	to	close	the	message	box
window.	This	will	be	returned	as:	'ABORT'
'RETRY'
'IGNORE'
'OK'
'CANCEL'
'YES'
'NO'
The	exception	to	this	rule	is	when	this	Built-
In	Function	is	used	in	a	non-Windows
environment.	In	this	case	the	return	value	is
the	default	value	specified	by	argument	2
(regardless	of	its	validity).

1 20 	 	

	

Technical	Notes
The	message	assembly	area	is	cleared	at	completion	of	this	Built-In	Function.
If	invoked	in	an	appropriate	environment	(eg:	batch	task,	non-Windows
environment)	no	message	window	is	displayed	and	the	default	button	value	is
returned.		The	value	returned	is	the	default	value	specified	in	argument	2.
You	should	ensure	that	the	default	button,	when	specified,	is	valid	and
appropriate	for	all	situations.	

Examples
Present	the	simplest	possible	message	box:
USE	BUILTIN(MESSAGE_BOX_SHOW)
	

Present	a	message	box	enabling	the	OK	and	Cancel	buttons	(with	Cancel	as	the
default),	title	"HELLO",	the	question	icon	and	text	"Do	you	want	to	do	your
backups	now?".
USE	BUILTIN(MESSAGE_BOX_SHOW)	WITH_ARGS(OKCANCEL	CANCEL	QUESTION	HELLO	'Do	you	want	to	do	your	backups	now?')	to_get(#std_codel)

if	'#std_codel	*eq	CANCEL'
Return
endif
	

Format	some	details	of	an	employee	into	the	message	box	assembly	area	as
individual	lines	and	then	display	them	with	just	an	OK	button.	
use	message_box_add	('Employee	Number:'	#empno)
use	message_box_add	('Name:'	#givename	#surname)
use	message_box_add	('Department:'	#deptment)
use	message_box_add	('Section:'	#section)
use	message_box_add	('Salary:'	#salary	'(monthly	='	#mnthsal	')')
use	message_box_show	
	

9.169	MESSAGE_COLLECTOR

	Note:	Built-In	Function	Rules.

Nominates	a	function	as	a	"message	collector".

For	use	with
LANSA	for	i YES Not	available	for	RDMLX.

Visual	LANSA	for	Windows NO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
No	Argument	Values.

Return	Values
No	Return	Values

Technical	Notes
This	Built-In	Function	allows	a	function	to	nominate	itself	as	a	"message
collector".	This	means	that	most	messages	that	it	causes	to	be	subsequently
issued	(from	functions	that	it	calls,	I/O	modules	it	invokes,	or	triggers	it	fires)
will	be	routed	directly	to	it.	Normally	they	would	be	routed	up	the	invocation
stack	as	each	object	involved	completes	execution.
This	Built-In	Function	is	a	definition	function.	Its	presence	anywhere	in	a
function	causes	the	function	to	be	added	to	the	collector	stack	at	entry,	and
removed	at	termination.

Because	the	MESSAGE_COLLECTOR	Built-In	Function	is	a	definition
function,	not	an	executable	function,	you	cannot	make	code	like	this	work:

					if	(.......)	

					use	MESSAGE_COLLECTOR	

					endif

	

			This	code	will	become	a	message	collector	regardless	of	the	IF	condition.
Normally	a	USE	MESSAGE_COLLECTOR	command	would	immediately
follow	a	FUNCTION	command	at	the	beginning	of	the	function.
This	Built-In	Function	has	been	designed	to	be	used	in	interactive	functions
and	batch	functions	that	are	"sitting	at	the	top"	of	a	very	complex	and	"deep"
series	of	function	calls	and	triggers.	It	is	not	usually	required	in	mainstream
applications.
This	Built-In	Function	has	been	designed	to	speed	up	this	special	type	of
application,	not	to	alter	its	processing	logic	or	architecture	in	any	way.

Warnings:
Do	not	under	any	circumstances	whatsoever	design	applications	that	use
the	MESSAGE_COLLECTOR	Built-In	Function	to	affect	the	way	that	the
application	works.	In	other	words,	the	application	should	be	functionally
identical	regardless	of	whether	this	Built-In	Function	is	used	or	not.
MESSAGE_COLLECTOR	must	only	be	used	to	speed	up	message	routing	-
not	to	implement	any	other	form	of	logic	or	architecture	that	relies	on	its
existence	to	work	correctly.

While	it	is	thought	that	designers	could	not	use	MESSAGE_COLLECTOR	to
change	processing	in	any	way,	it	is	better	that	this	important	point	is	noted.	
The	message	routing	logic	used	by	Visual	LANSA	is	much	more	efficient	that
the	IBM	i	message	routing	architecture,	and	has	no	need	of	this	special	option
to	speed	it	up.
Up	to	10	message	collectors	may	be	stacked.

9.170	NUMERIC_STRING

	Note:	Built-In	Function	Rules.

Converts	a	number	to	a	string.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Number	to	be	converted 1 29 0 9

2 A Opt Removes	trailing	zeroes	from	the
decimal	portion	of	the	number.
Y	=	Trim
Default	=	Trim

1 1 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Number	as	a	string1 31 	 	

	

Example
Convert	a	number	to	a	string	for	use	in	QRYSLT	of	OPEN	command

DEFINE					FIELD(#SALARY)		TYPE(*DEC)	LENGTH(20)	DECIMALS(0)
DEFINE					FIELD(#SALCHR)		TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#QRYSLT)		TYPE(*CHAR)	LENGTH(256)

REQUEST				FIELDS(#SALARY)
USE								BUILTIN(NUMERIC_STRING)	WITH_ARGS(#SALARY)	
											TO_GET(#SALCHR)
CHANGE					FIELD(#QRYSLT)	TO('''SALARY	*GT''')
USE								BUILTIN(BCONCAT)	WITH_ARGS(#QRYSLT	#SALCHR)	
											TO_GET(#QRYSLT)
OPEN							FILE(PAYROLL)	USE_OPTION(*OPNQRYF)	QRYSLT(#QRYSLT)

						<	some	processing	>
	

9.171	OBJECT_PROPAGATE

	Note:	Built-In	Function	Rules.

Propagates	an	object	to	a	given	repository	group.

For	use	with
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

LANSA	for	i YESCannot	be	used	in	an	RDMLX	function.
Can	work	for	RDML	and	RDMLX	objects	in	an
RDMLX	partition.	
Can	work	for	RDML	objects	in	an	RDML	partition.

Visual	LANSA	for
Windows

NO 	

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Object	Name
For	type:	Object	name	is	
Field:		field	name
File:	file	name
Function	:	process	name
Process:	process	name
System	variable:	first	10	characters	of
system	variable	name	
Multilingual	variable:	first	10	characters
of	multilingual	variable	name

1 10 0 0

2 A Req Object	extension. 1 10 0 0

For	type	:	Object	extension	is
Field	:		blank
File	:	file	library	name
Function	:	function	name
Process	:	blank	or	partition	module
library
System	variable:	last	10	characters	of
system	variable	name	
Multilingual	variable	:	last	10	characters
of	multilingual	variable	name

3 A Req Object	type.
Valid	object	types	are:
DF	=	Field
FD=	File
PF	=Function
PD=Process
SV=	System	variable
MT=	Multilingual	text	variable

	 	 	 	

4 A Req Work	Group
*ALL	or	a	valid	work	group

	 	 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Return	code
Valid	return	codes:
OK=	Successful
ER=	Not	Successful

1 2 0 0

	

Technical	Notes
The	Partition	Id	is	the	current	partition	in	which	this	Built-In	Function	is

executed.

Example
This	RDML	code	shows	how	the	Built-In	Function	can	be	used	in	different
environments.
These	functions	can	be	invoked	directly	by	using	the	LANSA	command	with
these	parameters:
LANSA	REQUEST(RUN)	PROCESS(Process_name)	FUNCTION(Function_name)	PARTITION(DEM)

FUNCTION			*DIRECT																																																	
	DEFINE					FIELD(#OBJNM)	TYPE(*CHAR)	LENGTH(10)	DESC('Object	Name'	
)																																																							
	DEFINE					FIELD(#OBJEX)	TYPE(*CHAR)	LENGTH(10)	DESC('Object	Ex')		
	DEFINE					FIELD(#OBJTY)	TYPE(*CHAR)	LENGTH(2)	DESC('Object	Type')	
	DEFINE					FIELD(#WRKGP)	TYPE(*CHAR)	LENGTH(10)	DESC('WorkGroup	')	
	DEFINE					FIELD(#TSKID)	TYPE(*CHAR)	LENGTH(10)	DESC('Task	ID')				
	DEFINE					FIELD(#RTNCD)	TYPE(*CHAR)	LENGTH(2)	DESC('Return	Code')	
	GROUP_BY			NAME(#PARM_GRP)	FIELDS((#OBJNM)	(#OBJEX)	(#OBJTY)	(#WRK	GP)	(#RTNCD))

	BEGIN_LOOP																																																									
	REQUEST				FIELDS((#PARM_GRP))																																					
USE								BUILTIN(OBJECT_PROPAGATE)	WITH_ARGS(#OBJNM	#OBJEX	#OBJT	Y	#WRKGP)	TO_GET(#RTNCD)
	END_LOOP																																																											
*	
FUNCTION			*DIRECT																																																	
DEFINE					FIELD(#OBJNM)	TYPE(*CHAR)	LENGTH(10)	DESC('Object	Name')
DEFINE					FIELD(#OBJEX)	TYPE(*CHAR)	LENGTH(10)	DESC('Object	Ex')		
DEFINE					FIELD(#OBJTY)	TYPE(*CHAR)	LENGTH(2)	DESC('Object	Type')	
DEFINE					FIELD(#WRKGP)	TYPE(*CHAR)	LENGTH(10)	DESC('WorkGroup	(*	ALL)')
DEFINE					FIELD(#TSKID)	TYPE(*CHAR)	LENGTH(10)	DESC('Task	ID')				
DEFINE					FIELD(#RTNCD)	TYPE(*CHAR)	LENGTH(2)	DESC('Return	Code')	
DEFINE					FIELD(#MSGDTA1)	TYPE(*CHAR)	LENGTH(30)																		
DEFINE					FIELD(#MSGDTA)	TYPE(*CHAR)	LENGTH(132)																		
CHANGE					FIELD(#MSGDTA1)	TO('RETURN	CODE-->	')																			
GROUP_BY			NAME(#PARM_GRP)	FIELDS((#OBJNM)	(#OBJEX)	(#OBJTY)	(#WRK	GP))
IF									COND('*JOBMODE	=	I')																																				
BEGIN_LOOP																																																									
REQUEST				FIELDS((#PARM_GRP))																																					

SUBMIT					PROCESS(TESTBIF)	FUNCTION(BIF02)	EXCHANGE(#PARM_GRP)				
CHANGE					FIELD(#PARM_GRP)	TO(*NULL)																														
END_LOOP																																																											
ELSE																																																															
USE								BUILTIN(OBJECT_PROPAGATE)	WITH_ARGS(#OBJNM	#OBJEX	#OBJTY	#WRKGP)	TO_GET(#RTNCD)

USE								BUILTIN(BCONCAT)	WITH_ARGS(#MSGDTA1	#RTNCD	#OBJNM)	TO_GET(#MSGDTA)
					MESSAGE				MSGID(CPF9898)	MSGF(QCPFMSG)	MSGDTA(#MSGDTA)
ENDIF																																																														
	

9.172	PACKAGE_BUILD

	Note:	Built-In	Function	Rules..	

This	Built-In	Function	will	build	a	Version	or	Patch	has	been	defined	using	the
Deployment	Tool	or	the	9.173	PACKAGE_CREATE	Built-In	Function.

For	use	with
LANSA	for	i NO 	

Visual	LANSA	for	WindowsYESOnly	available	for	RDMLX.

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Application	Name 1 8 	 	

2 A Req Version	or	Patch
Version	must	be	in	the	format	<major	version
number>.<minor	version	number>.<build
number>
Patch	must	be	in	the	format	<major	version	number>.<minor
version	number>.<build	number>.<patch	number>

1 23 	 	

3 A Opt Package	Path
Indicate	where	the	package	should	be	created.
If	path	is	blank,	package	is	expected	to	exist
in	<System	Directory>\X_Apps.
Default:	blank

1 256 	 	

4
	

A Opt Replace	Package
Y	or	N
Default:	N

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 	A Req Return	Code
OK	=	Package	built	without	error
ER	=	An	Error	occurred	during	the	package
build.	Check	log	files	associated	with
package.

2 2 	 	

2 A Req Reason
Explanation	accompanying	error

1 100 	 	

	

9.173	PACKAGE_CREATE

	Note:	Built-In	Function	Rules..	Deleteif	applicable.

This	Built-In	Function	creates	a	Package	based	on	the	supplied	Deployment
Tool	Template.	Objects	can	be	added	to	the	package.
Note:	For	WAMs	and	Weblets,	the	required	Languages	and	Technology
Services	must	be	provided.

For	use	with
LANSA	for	i NO 	

Visual	LANSA	for	WindowsYESOnly	available	for	RDMLX.

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Deployment	Template
Must	have	associated	.ptf	template	file	in
<System	Directory>\X_Apps\X_Tmplt

1 10 	 	

2 A Req Application	Name 1 8 	 	

3 A Req Version	or	Patch
Version	must	be	in	the	format	<major	version
number>.<minor	version	number>.<build
number>
Patch	must	be	in	the	format	<major	version
number>.<minor	version	number>.<build
number>.<patch	number>

1 23 	 	

4 List Req Objects	to	include	in	Package
List	can	be	empty	but	must	be	supplied.

81 99 	 	

From	-	To			Description
		1					50					Object	Type
Supported	object	types	are	listed	in	Package
Objects.
	51					70					Object	Name
	71					80				Object	Qualifier
	81					81				Include	Data	(Files	&	Web
Components	only)
For	files:
		Y	-	Include	data
		N	-	Do	not	include	data
For	web	components:
		I	-	Input
		O	-	Output
		N	-	Not	applicable
	82					82				Data	processing	option	(files	only)
For	files:
		I	-	Reload	data	ignoring	any	duplicates
		D	-	Drop	existing	data
		R	-	Reload	data	replacing	duplicates	(only
available	if	file	data	included).
	83				99				Reserved	for	future	use.

5 List Req Web	Designs
If	including	WAMs	or	weblets	in	the	package
indicate	the	languages	and	technology
services	required.
List	can	be	empty	but	must	be	supplied.
From	-	To			Description
		1					50					Object	Type
WEBLANGUAGE
TECHNOLOGYSERVICE
	51					60					Language	/	Provider
WEBLANGUAGE	:	Language	Code	(e.g.
ENG)

70 70 	 	

TECHNOLOGYSERVICE:	Technology
Service	Provider	(e.g.	LANSA)
	61					70					Technology	Service
WEBLANGUAGE:	blank
TECHNOLOGYSERVICE:	Technology
Service	(e.g.	XHTML)

6 A Opt Package	Path
Indicate	where	the	package	should	be	created.
If	blank	package	will	be	created	at	<System
Directory>\X_Apps.
If	you	intend	to	edit	the	package	using	the
Deployment	Tool,	the	package	must	be
created	at	<System	Directory>\X_Apps
Default:	blank

1 256 	 	

7 A Opt Replace	Package
Y	or	N
Default:	N

1 1 	 	

8 A Opt Build	Package
Y	or	N
Default:	Y

1 1 	 	

9 A Opt Package	Description
If	the	package	already	exists,	the	description
will	only	be	replaced	if	a	non-blank
description	is	supplied.
Default:	blank

1 200 	 	

10 A Opt Application	Description
If	application	already	exists,	the	description
will	only	be	replaced	if	non-blank	description
is	supplied.
Default:	blank

1 200 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 	A Req Return	Code
OK	=	Package	created	without	error
ER	=	An	Error	occurred	during	the	package
creation	or	build.		Check	log	files	associated
with	package.

2 2 	 	

2 A Req Reason
Explanation	accompanying	error

1 100 	 	

	

Package	Objects
When	formatting	entries	for	Argument	4,	the	Objects	to	include	in	Package,	use
the	following	table	to	determine	appropriate	data	for	each	object	type.

Object	Type Object	Name
Required

Object
Qualifier
Required

Include
Data
Required

ACTIVEX Y N N

BITMAP Y N N

BUSINESS	OBJECT Y N N

CURSOR Y N N

DOTNETCOMPONENT Y N N

EXTERNALRESOURCE Y N N

FIELD Y N N

FILE Y Y	-	Library
name

Y

FORM Y N N

FUNCTION Y Y	-	Process N

ICON Y N N

LANGUAGE Y	–	Package	Language
Code
Special	value	used	to
include	Package
Languages

N N

MESSAGE Y	-	Message	ID	(1-7),
Language	Code	(8-11)
Language	is	optional.	If
not	supplied,	all
languages	are	included.

Y	-
Message
File

	

MESSAGEFILE Y	–	Message	File Y	-
Language
Code

N

MULTILINGUALVARIABLE Y N N

PROCESS Y N N

REUSABLEPART Y N N

SYSTEMVARIABLE Y N N

TECHNOLOGYSERVICE Y	–	Provider Y	–
Technology
Service

N

VISUALSTYLE Y N N

WEBAPPLICATIONMODULEY N N

WEBCOMPONENT Y N Y

WEBLET Y N N

WEB	SERVICE Y N N

	

What	you	cannot	include	with	this	BIF
Non-LANSA	objects	–	unless	they	are	first	recorded	as	External	Resources.
Editor	List	or	Task	related	objects.
Application	Template	objects.

9.174	PHYSICAL_KEY

	Note:	Built-In	Function	Rules.

Specifies	or	re-specifies	the	name	of	a	field	that	is	a	key	of	the	physical	file
associated	with	the	file	definition	being	edited.
An	edit	session	must	be	commenced	using	the	START_FILE_EDIT	Built-In
Function	prior	to	using	PHYSICAL_KEY.
Warning:	This	Built-In	Function	cannot	be	used	for	a	file	of	type	"OTHER".
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	key	field.	Must	have	been
previously	specified	as	a	field	in	the	file	by
using	the	FILE_FIELD	Built-In	Function.

1 10 	 	

2 N Opt Optional	sequencing	number.	Used	to
sequence	key	fields.	If	not	specified	keys	are
sequenced	in	the	same	order	as	they	are
presented.

1 5 0 0

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	key	defined
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically	and	the	edit	session
ended	without	commitment.

2 2 	 	

	

9.175	PUT_CHAR_AREA

	Note:	Built-In	Function	Rules.

Puts	a	character	string	into	a	character	data	area.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Value	to	put 1 2000 	 	

2 A Req Data	area	name 1 10 	 	

3 A Opt Library	name
Default:	'*LIBL'	
When	data	area	is	*LDA	or	*GDA	this
argument	is	'*LIBL'.

1 10 	 	

4 A Opt Unlock	data	area
'Y'	-	unlock	data	area
'N'	-	do	not	unlock	data	area
Default:	'N'

1 1 	 	

5 N Opt Start	pos.	to	insert	from.
Default:	position	1

1 5 0 0

6 N Opt Length	to	insert	
Default:	full	length

1 4 0 0

	

Note:	Start	position	and	length,	if	specified,	must	BOTH	be	provided	as
argument	values.

Return	Values
No	return	values.

Examples
Store	a	customer	name	#CUSNAM	in	a	data	area	LASTCUST	which	resides	in
library	QTEMP.
USE							BUILTIN(PUT_CHAR_AREA)	WITH_ARGS(#CUSNAM	LASTCUST	QTEMP)
	

Store	a	customer	name	#CUSNAM	in	bytes	101	to	140	of	a	data	area	called
INFOCUST	which	resides	in	library	QTEMP.
USE								BUILTIN(PUT_CHAR_AREA)	WITH_ARGS(#CUSNAM	INFOCUST	QTEMP	N	101	40)
	

Store	user	name	in	the	*LDA	data	area	to	be	used	for	report	headings.
USE							BUILTIN(PUT_CHAR_AREA)	WITH_ARGS('''JOHN	SMITH'''	'''*LDA'	'')
	

The	first	10	positions	of	*GDA	are	updated	by	the	current	job.	As	a	group	job
becomes	active	it	sets	a	flag	in	the	*GDA.
In	other	words	by	retrieving	the	*GDA	you	can	find	out	what	group	jobs	you
have	already	activated.
CASE							OF_FIELD(#GROUP)
WHEN							VALUE_IS('*EQ	JOB0001')
USE								BUILTIN(PUT_CHAR_AREA)	WITH_ARGS('Y'	'''*GDA'''	'''*LIBL'''	'N'	1	1)
WHEN							VALUE_IS('*EQ	JOB0002')
USE								BUILTIN(PUT_CHAR_AREA)	WITH_ARGS('Y'	'''*GDA'''	'''*LIBL'''	'N'	2	1)
ENDCASE
	

9.176	PUT_COND_CHECK

	Note:	Built-In	Function	Rules.

Creates/amends	a	"simple	conditional	logic"	DICTIONARY	or	FILE	level
validation	check	into	the	data	dictionary	or	file	definition	of	the	nominated	field.
When	adding	a	FILE	level	validation	check	to	a	field,	the	file	involved	must
have	been	previously	placed	into	an	edit	session	by	the	START_FILE_EDIT
Built-In	Function.
All	argument	values	passed	to	this	Built-In	Function	are	validated	exactly	as	if
they	had	been	entered	through	the	online	validation	check	definition	screen
panels.
Normal	authority	and	task	tracking	rules	apply	to	the	use	of	this	Built-In
Function.
For	more	information	refer	to	Field	Rules	and	Triggers	in	the	LANSA	for	i	User
Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA
for	Windows

YESValidation	performed	on	the	Windows	platform	is	not	as
rigorous	as	that	performed	by	LANSA	for	i.

Visual	LANSA
for	Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Level	of	validation	check.
D	=	Dictionary	level									F	=	File	level

1 1 	 	

its:LANSA010.CHM::/lansa/ugub_20007.htm

2 A Req Name	of	field	in	dictionary	to	which
validation	rule	is	to	be	applied.

1 10 	 	

3 N Req Sequence	number	of	check. 1 3 0 0

4 A Req Description	of	check. 1 30 	 	

5 A Req Enable	check	for	ADD.
Y	=	Check	performed	on	ADD
U	=	Check	performed	on	ADDUSE
N	=	Check	not	performed	on	ADD

1 1 	 	

6 A Req Enable	check	for	CHANGE.
Y	=	Check	performed	on	CHG
U	=	Check	performed	on	CHGUSE
N	=	Check	not	performed	on	CHG

1 1 	 	

7 A Req Enable	check	for	DELETE.
Y	=	Check	performed	on	DLT
N	=	Check	not	performed	on	DLT

1 1 	 	

8 A Req Action	if	check	is	true.
NEXT	=	Perform	next	check
ERROR	=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

9 A Req Action	if	check	is	false.
NEXT	=	Perform	next	check
ERROR	=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

10 A Req Message	file	details.	Details	of	error	message
to	be	issued	from	a	message	file.	Message	file
details	should	be	formatted	as	follows:
From	-	To			Description
1	-	7			Error	Message	Number
8	-	17			Message	File	Name	
18	-	27			Message	File	Library.

27 27 	 	

If	message	text	is	used,	pass	this	argument	as	blanks

11 A Req Message	text. 1 80 	 	

12 L Req Working	list	to	contain	the	condition	that	is	to
be	evaluated	for	the	simple	logic	check.	The
calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	79	bytes	and	exactly	5	condition	line
entries.	Each	list	entry	sent	should	be
formatted	as	follows:
From	-	To			Description
1	-	79			Condition	line

1 20 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	validation	check	defined																								
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.	When	a	file	edit
session	is	involved	it	is	ended	automatically
without	commitment.

2 2 	 	

	

Example
A	user	wants	to	put	a	"simple	conditional	logic"	validation	check	for	a	specific
field,	without	going	through	the	LANSA	options	provided	on	the	"Field	Control
Menu"	that	enables	the	user	to	put	a	"simple	conditional	logic"	validation	check.
*********		Define	arguments	and	lists
DEFINE					FIELD(#LEVEL)	TYPE(*CHAR)	LENGTH(1)	LABEL('Level')
DEFINE					FIELD(#FIELD)	TYPE(*CHAR)	LENGTH(10)	LABEL('Field')

DEFINE					FIELD(#SEQNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	LABEL('Sequence	#')
DEFINE					FIELD(#DESCR)	TYPE(*CHAR)	LENGTH(30)	LABEL('Description')
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	code')
DEFINE					FIELD(#ENBADD)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	ADD')
DEFINE					FIELD(#ENBCHG)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	CHG')
DEFINE					FIELD(#ENBDLT)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	DLT')
DEFINE					FIELD(#TRUE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	True')
DEFINE					FIELD(#FALSE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	False')
DEFINE					FIELD(#MSGDET)	TYPE(*CHAR)	LENGTH(27)	LABEL('Message	Detail')
DEFINE					FIELD(#MSGTXT)	TYPE(*CHAR)	LENGTH(80)	LABEL('Message	Text')
DEFINE					FIELD(#CONLIN)	TYPE(*CHAR)	LENGTH(79)	LABEL('Condition	line')
DEF_LIST			NAME(#CONWRK)	FIELDS((#CONLIN))	TYPE(*WORKING)	ENTRYS(5)
DEF_LIST			NAME(#CONBRW)	FIELDS((#CONLIN))	ENTRYS(5)
GROUP_BY			NAME(#VALCHK)	FIELDS((#LEVEL)	(#FIELD)	(#SEQNUM)	(#DESCR)	(#ENBADD)	(#ENBCHG)	(#ENBDLT)	(#TRUE)	(#FALSE)	(#MSGDET)	(#MSGTXT))
*********		Initialize	Browse	list
CLR_LIST			NAMED(#CONBRW)
INZ_LIST			NAMED(#CONBRW)	NUM_ENTRYS(5)	WITH_MODE(*CHANGE)
*********		Clear	Working	lists
BEGIN_LOOP												
CLR_LIST			NAMED(#CONWRK)
*********		Request	Validation	check	details
REQUEST				FIELDS((#VALCHK))	BROWSELIST(#CONBRW)
*********		Load	key	field	working	list
SELECTLIST	NAMED(#CONBRW)
ADD_ENTRY		TO_LIST(#CONWRK)
ENDSELECT											
*********		Execute	Built-In	Function	-	PUT_COND_CHECK
USE								BUILTIN(PUT_COND_CHECK)	WITH_ARGS(#LEVEL	#FIELD	#SEQNUM	#DESCR	#ENBADD	#ENBCHG	#ENBDLT	#TRUE	#FALSE	#MSGDET	#MSGTXT	#CONWRK)	TO_GET(#RETCOD)
*********		Put	"simple	conditional	logic"	successful
IF									COND('#RETCOD	*EQ	''OK''')
MESSAGE				MSGTXT('Put	"simple	conditional	logic"	validation	check(s)	was	successful')
*********		Put	"simple	conditional	logic"	failed
ELSE												
IF									COND('#RETCOD	*EQ	''ER''')
MESSAGE				MSGTXT('Put	"simple	conditional	logic"	validation	check(s)	failed')
ENDIF												
ENDIF												
END_LOOP												
	

9.177	PUT_DATE_CHECK

	Note:	Built-In	Function	Rules.

Creates/amends	a	"date	range	/	date	format"	DICTIONARY	or	FILE	level
validation	check	into	the	data	dictionary	or	file	definition	of	the	nominated	field.
When	adding	a	FILE	level	validation	check	to	a	field,	the	file	involved	must
have	been	previously	placed	into	an	edit	session	by	the	START_FILE_EDIT
Built-In	Function.
All	argument	values	passed	to	this	Built-In	Function	are	validated	exactly	as	if
they	had	been	entered	through	the	online	validation	check	definition	screen
panels.
Normal	authority	and	task	tracking	rules	apply	to	the	use	of	this	Built-In
Function.
For	more	information	refer	to	Field	Rules	and	Triggers	in	the	LANSA	for	i	User
Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Level	of	validation	check.
D	=	Dictionary	level
F	=	File	level

1 1 	 	

2 A Req Name	of	field	in	dictionary	to	which 1 10 	 	

its:LANSA010.CHM::/lansa/ugub_20007.htm

validation	rule	is	to	be	applied.

3 N Req Sequence	number	of	check. 1 3 0 0

4 A Req Description	of	check. 1 30 	 	

5 A Req Enable	check	for	ADD.
Y	=	Check	performed	on	ADD
U	=	Check	performed	on	ADDUSE
N	=	Check	not	performed	on	ADD

1 1 	 	

6 A Req Enable	check	for	CHANGE.
Y	=	Check	performed	on	CHG
U	=	Check	performed	on	CHGUSE
N	=	Check	not	performed	on	CHG

1 1 	 	

7 A Req Enable	check	for	DELETE.
Y	=	Enable	check.
N	=	Do	not	enable	check.

1 1 	 	

8 A Req Action	if	check	is	true.
NEXT	=	Perform	next	check
ERROR		=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

9 A Req Action	if	check	is	false.
NEXT	=	Perform	next	check
ERROR		=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

10 A Req Message	file	details.
Details	of	error	message	to	be	issued	from	a
message	file.	Message	file	details	should	be
formatted	as	follows:
From	-	To			Description
1	-	7				Error	Message	Number
8	-	17			Message	File	Name

27 27 	 	

18	-	27			Message	File	Library	
If	message	text	is	used,	pass	this	argument	as	blanks.

11 A Req Message	text. 1 80 	 	

12 A Req Format	that	date	is	to	be	validated	in. 1 8 	 	

13 N Opt Number	of	days	allowed	into	the	past	for
specified	date.	If	not	specified,	a	value	of
9999999	is	assumed.

1 7 0 0

14 N Opt Number	of	days	allowed	into	the	future	for
specified	date.	If	not	specified,	a	value	of
9999999	is	assumed.

1 7 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	validation	check	defined
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.	When	a	file	edit
session	is	involved	it	is	ended	automatically
without	commitment.

2 2 	 	

	

Example
A	user	wants	to	put	a	"date	range	/	date	format"	validation	check	for	a	specific
field,	without	going	through	the	LANSA	options	provided	on	the	"Field	Control
Menu",	that	enables	the	user	to	put	a	"date	range	/	date	format"	validation
check.
*********	Define	arguments	and	lists
DEFINE				FIELD(#LEVEL)	TYPE(*CHAR)	LENGTH(1)	LABEL('Level')

DEFINE				FIELD(#FIELD)	TYPE(*CHAR)	LENGTH(10)	LABEL('Field')
DEFINE				FIELD(#SEQNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	LABEL('Sequence	#')
DEFINE				FIELD(#DESCR)	TYPE(*CHAR)	LENGTH(30)	LABEL('Description')
DEFINE				FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	code')
DEFINE				FIELD(#ENBADD)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	ADD')
DEFINE				FIELD(#ENBCHG)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	CHG')
DEFINE				FIELD(#ENBDLT)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	DLT')
DEFINE				FIELD(#TRUE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	True')
DEFINE				FIELD(#FALSE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	False')
DEFINE				FIELD(#MSGDET)	TYPE(*CHAR)	LENGTH(27)	LABEL('Message	Detail')
DEFINE				FIELD(#MSGTXT)	TYPE(*CHAR)	LENGTH(80)	LABEL('Message	Text')
DEFINE				FIELD(#DATFMT)	TYPE(*CHAR)	LENGTH(8)	LABEL('Date	format')
DEFINE				FIELD(#DAYPST)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('Days	Past')
DEFINE				FIELD(#DAYFUT)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('Days	Future')
GROUP_BY		NAME(#VALCHK)	FIELDS((#LEVEL)	(#FIELD)	(#SEQNUM)	(#DESCR)	(#ENBADD)	(#ENBCHG)	(#ENBDLT)	(#TRUE)	(#FALSE)	(#MSGDET)	(#MSGTXT)	(#DATFMT)	(#DAYPST)	(#DAYFUT))
*********	Request	Validation	check	details
BEGIN_LOOP																
REQUEST			FIELDS((#VALCHK))
*********	Execute	Built-In	Function	-	PUT_DATE_CHECK
USE							BUILTIN(PUT_DATE_CHECK)	WITH_ARGS(#LEVEL	#FIELD	#SEQNUM	#DESCR	#ENBADD	#ENBCHG	#ENBDLT	#TRUE	#FALSE	#MSGDET	#MSGTXT	#DATFMT	#DAYPST	#DAYFUT)	TO_GET(#RETCOD)	
*********	Put	"date	range/format"	validation	check	was	successful
IF								COND('#RETCOD	*EQ	''OK''')
MESSAGE			MSGTXT('Put	"date	range/format"	validation	check(s)	was	successful')
*********	Put	"date	range/format"	failed
ELSE															
IF								COND('#RETCOD	*EQ	''ER''')
MESSAGE			MSGTXT('Put	"date	range/format"	validation	check(s)	failed')
ENDIF																
ENDIF																
END_LOOP																
	

9.178	PUT_FIELD

	Note:	Built-In	Function	Rules.

Either	inserts	a	new	field	into	the	LANSA	Repository	or	updates	details	of	an
existing	field.
Optionally	this	Built-In	Function	can	present	a	prompt	screen	to	the	user	that
will	allow	details	of	a	new	or	amended	field	to	be	further	specified.
Argument	values	are	exactly	as	the	information	presented	in	the	Detailed
Display	of	a	Field	Definition	in	the	LANSA	for	i	User	Guide.
When	a	new	field	is	being	inserted	into	the	dictionary,	arguments	that	are	not
passed	to	the	Built-In	Function	(or	passed	as	null	values)	will	adopt	default
values	as	described	in	Creating	a	New	Field	Definition	in	the	LANSA	for	i	User
Guide.
When	an	existing	field	is	being	updated	in	the	Repository,	arguments	that	are
not	passed	to	the	Built-In	Function	(or	passed	as	null	values)	will	remain
unchanged	by	the	update	operation.
When	zero	is	input	as	the	'Number	of	Decimals'	parameter,	it	is	treated	as	a	null
value.	Use	-1	in	'Number	of	Decimals'	parameter	to	indicate	a	request	to	change
the	number	of	decimals	of	a	field	to	zero.
If	the	copy	validation	checks	option	is	used,	all	checks	from	the	sequence
number	specified	are	deleted,	then	the	validation	checks	are	copied	from	the
'from	field'.	Any	reference	to	the	'from	field'	in	copied	validation	checks	are
replaced	by	the	name	of	the	field	being	inserted/updated.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA
for	i

YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual
LANSA	for
Windows

YESThe	prompting	option	is	not	supported	in	this	environment.
The	validation	performed	by	this	Built-In	Function	in	the
Windows	environment	is	not	as	rigorous	as	that	performed	by
the	LANSA	in	the	IBM	i	environment

Visual NO 	

its:LANSA010.CHM::/lansa/ugub_20027.htm
its:LANSA010.CHM::/lansa/ugub_20023.htm

LANSA	for
Linux

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Prompt	control	details
Byte	1	-	Prompt	required
Y	=	prompt	the	user
N	=	do	not	prompt	the	user
Byte	2	-	EXIT/SYSTEM	key
Y	=	enable	EXIT/SYSTEM	key
N	=	do	not	enable	EXIT/SYSTEM	key
Byte	3	-	MENU	key
Y	=	enable	MENU	key
N	=	do	not	enable	MENU	key

1 3 	 	

2 A Req Name	of	field	to	be	inserted	or	updated 1 10 	 	

3 A Opt Field	type
A	=	alphanumeric
S	=	signed	decimal	numeric
P	=	packed	decimal	numeric

1 1 	 	

4 N Opt Length	of	field	or	total	number	of	digits	in
field.
Note:	For	type	A	must	be	in	range	1	-	256.
For	type	P	or	S	must	be	in	range	1	-	30.

3 15 0 0

5 N Opt Number	of	decimal	positions	Not	applicable
to	type	A	field.
If	updating	an	existing	field,	use	-1	to	make
this	argument	0.

1 15 0 0

6 A Opt Reference	field	name
If	updating	an	existing	field,	use		'*NONE'	to
remove	an	existing	reference	field	name.

1 10 	 	

7 A Opt Field	description 1 40 	 	

8 A Opt Field	label 1 15 	 	

9 A Opt Field	column	headings
List	of	3	*	A(20)	headings
From	-	To			Description
1	-	20			Column	Head	1
21	-	40			Column	head	2	
41	-	60			Column	head	3

1 60 	 	

10 A Opt Output	attributes	list
List	of	10	*	A(4)	attributes

1 40 	 	

11 A Opt Input	attributes	list
List	of	10	*	A(4)	attributes

1 40 	 	

12 A Opt Edit	code	or	edit	word	If	first	char	is	a	quote
(')	then	value	is	an	edit	word.	Otherwise	it	is
an	edit	code.
Not	applicable	to	type	A	field

1 20 	 	

13 A Opt Default	value	of	field 1 20 	 	

14 A Opt Optional	alias	name	of	field 1 30 	 	

15 A Opt System	field	flag
YES	=	a	system	field
NO	=	not	a	system	field

3 3 	 	

16 A Opt Initial	public	access	Ignored	for	update
operations

1 7 	 	

17 A Opt Keyboard	shift 1 1 	 	

18 A Opt Prompting	Process/Function	The	first	10
bytes	are	PROCESS	name,	the	next	7	are
FUNCTION	name.

1 17 	 	

19 A Opt (Re)Copy	validation	checks	from	Repository 1 10 	 	

field

20 N Opt Starting	sequence	for	copy 1 3 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	field	inserted/updated
EX	=	prompt	was	terminated	by
EXIT/SYSTEM	function	key
MU	=	prompt	was	terminated	by
MENU/CANCEL	function	key
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.	In	case	of
"ER"	return	code	error	message(s)	are	issued
automatically.

2 2 	 	

	

9.179	PUT_FIELD_ML

	Note:	All	Multilingual	Built-In	Functions	in	Built-In	Function	Rules.

Puts/updates	a	list	of	field	multilingual	attributes	in	different	languages.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Field	name 1 10 	 	

2 L Req Working	list	to	contain	language	code	and
field	multilingual	attributes.	The	function
must	supply	a	working	list	with	an	aggregate
entry	length	of	exactly	119	bytes.
Each	list	entry	sent	should	be	formatted	as
follows:
From	-	To			Description
1	-	4			Language	Code
5	-	44			Field	description
45	-	59			Field	label
60	-	79			Field	column	heading	1
80	-	99			Field	column	heading	2
100	-	119			Field	column	heading	3

119 119 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	multilingual	attributes	added	/
updated	to	the	database	successfully.
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.
In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

2 2 	 	

	

9.180	PUT_FILE_CHECK

	Note:	Built-In	Function	Rules.

Creates/amends	a	"code/table	file	lookup"	DICTIONARY	or	FILE	level
validation	check	into	the	data	dictionary	or	file	definition	of	the	nominated	field.
When	adding	a	FILE	level	validation	check	to	a	field,	the	file	involved	must
have	been	previously	placed	into	an	edit	session	by	the	START_FILE_EDIT
Built-In	Function.
All	argument	values	passed	to	this	Built-In	Function	are	validated	exactly	as	if
they	had	been	entered	through	the	online	validation	check	definition	screen
panels.
Normal	authority	and	task	tracking	rules	apply	to	the	use	of	this	Built-In
Function.
For	more	information	refer	to	Field	Rules	and	Triggers	in	the	LANSA	for	i	User
Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Level	of	validation	check.
D	=	Dictionary	level
F	=	File	level

1 1 	 	

2 A Req Name	of	field	in	dictionary	to	which 1 10 	 	

its:LANSA010.CHM::/lansa/ugub_20007.htm

validation	rule	is	to	be	applied.

3 N Req Sequence	number	of	check. 1 3 0 0

4 A Req Description	of	check. 1 30 	 	

5 A Req Enable	check	for	ADD.
Y	=	Check	performed	on	ADD
U	=	Check	performed	on	ADDUSE
N	=	Check	not	performed	on	ADD

1 1 	 	

6 A Req Enable	check	for	CHANGE.
Y	=	Check	performed	on	CHG
U	=	Check	performed	on	CHGUSE
N	=	Check	not	performed	on	CHG

1 1 	 	

7 A Req Enable	check	for	DELETE.
Y	=	Enable	check.
N	=	Do	not	enable	check.

1 1 	 	

8 A Req Action	if	check	is	true.
NEXT	=	Perform	next	check
ERROR		=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

9 A Req Action	if	check	is	false.
NEXT	=	Perform	next	check
ERROR		=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

10 A Req Message	file	details.
Details	of	error	message	to	be	issued	from	a
message	file.
Message	file	details	should	be	formatted	as
follows:
From	-	To			Description
1	-	7			Error	Message	Number

27 27 	 	

8	-	17			Message	File	Name
18	-	27			Message	File	Library
If	message	text	is	used,	pass	this	argument	as	blanks.

11 A Req Message	text. 1 80 	 	

12 A Req Name	of	file	that	check	is	to	be	performed
against.

1 10 	 	

13 L Req Working	list	to	contain	key	fields/values	to
use	when	checking	in	the	file.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	20	bytes	and	at	most	10	key
fields/values	entries	may	be	specified.
Each	list	entry	sent	should	be	formatted	as
follows	:
From	-	To			Description

1	-	20			Key	fields/values

1 20 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	validation	check	defined
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.	When	a	file	edit
session	is	involved	it	is	ended	automatically
without	commitment.

2 2 	 	

	

Example

A	user	wants	to	put	a	"code/table	file	lookup"	validation	check	for	a	specific
field,	without	going	through	the	LANSA	options	provided	on	the	"Field	Control
Menu"	that	enables	the	user	to	put	a	"code	/	table	file	lookup"	validation	check.
*********	Define	arguments	and	lists
DEFINE					FIELD(#FILNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#LIBNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#LEVEL)	TYPE(*CHAR)	LENGTH(1)	LABEL('Level')
DEFINE					FIELD(#FIELD)	TYPE(*CHAR)	LENGTH(10)	LABEL('Field')
DEFINE					FIELD(#SEQNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	LABEL('Sequence	#')
DEFINE					FIELD(#DESCR)	TYPE(*CHAR)	LENGTH(30)	LABEL('Description')
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	code')
DEFINE					FIELD(#ENBADD)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	ADD')
DEFINE					FIELD(#ENBCHG)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	CHG')
DEFINE					FIELD(#ENBDLT)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	DLT')
DEFINE					FIELD(#TRUE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	True')
DEFINE					FIELD(#FALSE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	False')
DEFINE					FIELD(#MSGDET)	TYPE(*CHAR)	LENGTH(27)	LABEL('Message	Detail')
DEFINE					FIELD(#MSGTXT)	TYPE(*CHAR)	LENGTH(80)	LABEL('Message	Text')
DEFINE					FIELD(#CODFIL)	TYPE(*CHAR)	LENGTH(10)	LABEL('File	name')
DEFINE					FIELD(#KEYFLD)	TYPE(*CHAR)	LENGTH(20)	LABEL('Key	field')
DEF_LIST			NAME(#KEYWRK)	FIELDS((#KEYFLD))	TYPE(*WORKING)	ENTRYS(10)
DEF_LIST			NAME(#KEYBRW)	FIELDS((#KEYFLD))	ENTRYS(10)
GROUP_BY			NAME(#VALCHK)	FIELDS((#LEVEL)	(#FIELD)	(#SEQNUM)	(#DESCR)	(#ENBADD)	(#ENBCHG)	(#ENBDLT)	(#TRUE)	(#FALSE)	(#MSGDET)	(#MSGTXT)	(#CODFIL))
*********		Initialize	Browse	list
CLR_LIST			NAMED(#KEYBRW)
INZ_LIST			NAMED(#KEYBRW)	NUM_ENTRYS(10)	WITH_MODE(*CHANGE)
*********		Start	file	edit
REQUEST				FIELDS(#FILNAM	#LIBNAM)

USE								BUILTIN(START_FILE_EDIT)	WITH_ARGS(#FILNAM	#LIBNAM	'DEM')	TO_GET(#RETCOD)
*********		Clear	Working	lists
BEGIN_LOOP						
CLR_LIST			NAMED(#KEYWRK)
*********		Request	Validation	check	details
REQUEST				FIELDS((#VALCHK))	BROWSELIST(#KEYBRW)
*********		Load	key	field	working	list
SELECTLIST	NAMED(#KEYBRW)
ADD_ENTRY		TO_LIST(#KEYWRK)

ENDSELECT						
*********		Execute	Built-In	Function	-	PUT_FILE_CHECK
USE								BUILTIN(PUT_FILE_CHECK)	WITH_ARGS(#LEVEL	#FIELD	#SEQNUM	#DESCR	#ENBADD	#ENBCHG	#ENBDLT	#TRUE	#FALSE	#MSGDET	#MSGTXT	#CODFIL	#KEYWRK)	TO_GET(#RETCOD)
*********		Put	"code/table	file	lookup"	validation	successful
IF									COND('#RETCOD	*EQ	''OK''')
MESSAGE				MSGTXT('Put	"code/table	file	lookup"	validation	check(s)	was	successful')
*********		Put	"code/table	file	lookup"	failed
ELSE						
IF									COND('#RETCOD	*EQ	''ER''')
MESSAGE				MSGTXT('Put	"code/table	file	lookup"	validation	check(s)	failed')
ENDIF						
ENDIF						
END_LOOP						
USE								BUILTIN(END_FILE_EDIT)	('Y')
	

9.181	PUT_FILE_ML

	Note:	All	Multilingual	Built-In	Functions	in	Built-In	Function	Rules.

Puts/updates	a	list	of	file	multilingual	attributes	in	different	languages.
An	edit	session	must	be	commenced	by	using	the	START_FILE_EDIT	Built-In
Function	prior	to	using	this	Built-In	Function.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Physical	file	or	logical	view	name. 1 10 	 	

2 L Req Working	list	to	contain	language	code	and	file
multilingual	attributes.	The	function	must
supply	a	working	list	with	an	aggregate	entry
length	of	exactly	44	bytes.	Each	list	entry	sent
should	be	formatted	as	follows:
From	-	To			Description
1	-	4			Language	code
5	-	44			Physical	file	or	logical	view	description

44 44 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	multilingual	attributes	added	/
updated	to	the	database	successfully.
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.
In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

2 2 	 	

	

9.182	PUT_FUNCTION_ATTR

	Note:	Built-In	Function	Rules.

Sets	an	attribute	of	a	function	definition	that	is	being	edited	within	an	edit
session	previously	started	by	using	the	START_FUNCTION_EDIT	Built-In
Function.
Attributes	set	or	returned	by	this	Built-In	Function	have	the	same	editing	and
validation	rules	as	the	equivalent	online	facility	provided	in	a	full	LANSA
development	environment.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	attribute	to	change
Valid	attribute	names	are:
DESC-	Function	description
ONMENU	-	Display	on	Menu
MENUSQ	-	Menu	sequence	Number

1 10 	 	

EDTSRC	-	Identifier	of	Editor

2 A Req Value	of	that	attribute	is	to	be	changed	to.
Allowable	values	are	as	follows
For	attribute	DESC:
Any	valid	new	function	description	up	to
40	characters	in	length
For	attribute	ONMENU:
Y	–	Displayed	on	Menu
N	–	Not	displayed	on	Menu
For	attribute	MENUSQ:
Valid	number	represented	as	5	numbers	in
range	00001	to	99999.
For	attribute	EDTSRC:
3	character	editing	"source"	identifier.
Must	not	be	blank	or	LAN.

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.183	PUT_FUNCTION_ML

	Note:	All	Multilingual	Built-In	Functions	in	Built-In	Function	Rules.

Puts/updates	a	list	of	function	multilingual	attributes	in	different	languages.
An	edit	session	must	be	commenced	by	using	the	START_FUNCTION_EDIT
Built-In	Function	prior	to	using	this	Built-In	Function.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	language	code	and
function	multilingual	attributes.
The	function	must	supply	a	working	list	with
an	aggregate	entry	length	of	exactly	44	bytes.
Each	list	entry	sent	should	be	formatted	as
follows:
From	-	To			Description
1	-	4			Language	code
5	-	44			Function	description

44 44 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	multilingual	attributes	added	/
updated	to	the	database	successfully.
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.
In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

2 2 	 	

	

9.184	PUT_FUNCTION_RDML

	Note:	Built-In	Function	Rules.

Stores	the	RDML	code	associated	with	a	function	from	a	working	list.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	using	the	START_FUNCTION_EDIT
Built-In	Function.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	Name
If	the	edit	session	is	Include	RDML	audit	stamps	N,	then	the
working	list	must	have	an	aggregate	entry	length	of	72	bytes
where	each	entry	is	composed	of:
From	-	To			Description
1	-	4			Command	sequence	number	Signed(4,	0)
5	-	7			Command	Label	A(3)
8	-	17			Command	A(10).

	 	 	 	

19	-	72			Command	Parameters	A(55).

If	the	edit	session	is	Include	RDML	audit
stamps	Y,	then	the	working	list	must	have	an
aggregate	entry	length	of	99	bytes,	where,	in
addition	to	the	positions	described	for	Include
RDML	audit	stamps	N,	each	entry	is
composed	of:
From	-	To			Description
73	-	73			Command	Changed	Flag,	to	be	set	to	Y	if	the
RDML	command	was	added	or	changed	in	this	edit	session,
N	otherwise.A(1)
74	-	81				Command	Changed	Date	S(8,	0).	(CCYYMMDD).
Must	never	be	changed	or	set.
82	-	91			Command	Changed	User.	Must	never	be	changed	or
set.	A(10).
92	-	99			Command	Changed	Task.	Must	never	be	changed	or
set.	A(8).

2 A Req Nominated	Editing	Source	Must	not	be	blank
or	LAN.	Used	to	"tag"	edited	RDML	with	last
editor	identifier.
*S=Signed

3 3 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

Technical	Notes
If	the	function	is	being	created	by	this	edit	session	and	the	edit	session	is

Include	RDML	audit	stamps	Y,	the	value	of	the	Command	Changed	Flag	is
ignored.
Commands	that	have	more	than	55	bytes	of	parameters	must	be	formatted
across	multiple	entries	as	shown	in	this	example:
	Seq		Lab	Command		Parameters
	0001					**********			This	is	a	comment	line
	0002					SET_MODE	TO(*CHANGE)
	0003	L32	GROUP_BY	NAME(#GROUP)	FIELDS(#FIELD001	#FIELD002	
	0003														#FIELD003	#FIELD004	#FIELD005	#FIELD006)
	0004					DISPLAY		FIELDS(#GROUP)
	0005					MENU	
	0006					**********		This	is	a	comment	line
	

9.185	PUT_HELP

	Note:	Built-In	Function	Rules.

Puts/updates	a	list	of	help	text	for	a	specified	field,	function	or	process.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Object	name
The	name	of	a	field,	function	or	process.

1 10 	 	

2 A Req Object	extension	name
If	the	object	type	is	a	function	then	this	value
should	contain	the	name	of	the	process	in
which	the	function	is	defined.	If	the	object
type	is	not	a	function	then	this	value	should
be	blank.

1 10 	 	

3 A Req Object	type
Values:
DF	-	Field
PD	-	Process
PF	-	Function

2 2 	 	

4 L Req Working	list	to	contain	help	text.	The	calling 1 77 	 	

RDML	function	must	provide	a	working	list
with	an	aggregate	entry	length	of	exactly	77
bytes.
Each	list	entry	sent	should	be	formatted	as
follows:
From	-	To			Description
1	-	77			Help	Text

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	help	text	put/updated	to	database
successfully.
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.
In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

2 2 	 	

	

Example
A	user	wants	to	retrieve	and	update	the	help	text	of	a	specific	object	without
going	through	the	LANSA	options	provided	on	the	"Process	Control	Menu"	and
the	"Field	Control	Menu",	that	enables	the	user	to	create/change	help	text	for
fields,	functions	and	processes.
*********			Define	arguments	and	lists
DEFINE						FIELD(#OBJNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE						FIELD(#OBJEXT)	TYPE(*CHAR)	LENGTH(10)
DEFINE						FIELD(#OBJTYP)	TYPE(*CHAR)	LENGTH(2)
DEFINE						FIELD(#HLPTXT)	TYPE(*CHAR)	LENGTH(77)
DEFINE						FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
DEF_LIST				NAME(#WKHLPL)	FIELDS((#HLPTXT))	TYPE(*WORKING)

DEF_LIST				NAME(#BWHLPL)	FIELDS((#HLPTXT))
GROUP_BY				NAME(#RQSOBJ)	FIELDS((#OBJNAM)	(#OBJEXT)	(#OBJTYP))
GROUP_BY				NAME(#DSPHLP)	FIELDS((#OBJNAM)	(#OBJEXT)	(#OBJTYP))
*********			Clear	working	and	browse	lists
BEGIN_LOOP						
CLR_LIST				NAMED(#WKHLPL)
CLR_LIST				NAMED(#BWHLPL)
*********			Request	Object	Name,	Extension	and	Type
REQUEST					FIELDS(#RQSOBJ)
*********			Execute	Built-In	Function	-	GET_HELP
USE									BUILTIN(GET_HELP)	WITH_ARGS(#OBJNAM	#OBJEXT	#OBJTYP)	TO_GET(#WKHLPL	#RETCOD)
*********			Help	text	was	retrieved	successfully
IF										COND('#RETCOD	*EQ	''OK''')
*********			Move	Help	text	from	the	working	list	to	the	browselist
SELECTLIST		NAMED(#WKHLPL)
ADD_ENTRY			TO_LIST(#BWHLPL)	WITH_MODE(*CHANGE)
ENDSELECT						
*********			Allow	Help	text	to	be	changed	for	the	object
REQUEST					FIELDS(#DSPHLP)	BROWSELIST(#BWHLPL)
*********			Change	the	help	text	for	this	object
EXECUTE					SUBROUTINE(PUTHELP)
*********			Working	list	overflowed,	more	help	text	to	retrieve
ELSE						
IF										COND('#RETCOD	*EQ	''OV''')
MESSAGE					MSGTXT('List	not	big	enough	to	fit	all	help	text')
*********			GET_HELP	failed	with	errors,	report	error
ELSE						
MESSAGE					MSGTXT('GET_HELP	failed	with	errors,	try	again')
ENDIF						
ENDIF						
END_LOOP						
*********				Subroutine	to	change	help	text	for	this	object
SUBROUTINE			NAME(PUTHELP)
CLR_LIST					NAMED(#WKHLPL)
*********				Move	Help	text	from	the	browselist	to	the	working	list
SELECTLIST			NAMED(#BWHLPL)
ADD_ENTRY				TO_LIST(#WKHLPL)
ENDSELECT						
*********				Execute	Built-In	Function	-	PUT_HELP

USE										BUILTIN(PUT_HELP)	WITH_ARGS(#OBJNAM	#OBJEXT	#OBJTYP	#WKHLPL)	TO_GET(#RETCOD)
*********				Help	text	was	changed	successfully
IF											COND('#RETCOD	*EQ	''OK''')
MESSAGE						MSGTXT('Help	text	for	this	object	has	been	changed')
*********				PUT_HELP	failed	with	errors,	report	error
ELSE						
MESSAGE						MSGTXT('PUT_HELP	failed	with	errors,	try	again')
ENDIF						
ENDROUTINE						
	

9.186	PUT_ML_VARIABLE

	Note:	All	Multilingual	Built-In	Functions	in	Built-In	Function	Rules.

Adds/Updates	a	multilingual	variable	definition.	to	the	Repository.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Multilingual	variable	name 5 20 	 	

2 N Req Length	/	Total	digits 1 3 0 0

3 L Req Working	list	to	contain	multilingual
definition	information.
RDML
An	RDML	list	must	be	formatted	with	an
aggregate	entry	length	of	exactly	82	bytes.	
Bytes	1-4:	Language	code
Bytes	5-82:	Multilingual	variable	value.
RDMLX

An	RDMLX	list	must	be	formatted	as:	
Alpha	(4):	Language	code
NChar	(39):	Multilingual	variable	value.

82 82 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min	LenMax	LenMin	DecMax	Dec

1 A Req Return	code	(OK,	ER)2 2 	 	

	

9.187	PUT_NUM_AREA

	Note:	Built-In	Function	Rules.

Puts	a	numeric	value	into	a	numeric	data	area.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Value	to	put 1 15 0 0

2 A Req Data	area	name 1 10 	 	

3 A Opt Library	name
Default:	'*LIBL'

1 10 	 	

4 A Opt Unlock	data	area
'Y'	-	unlock	data	area
'N'	-	do	not	unlock	data
area
Default:	'N'

1 1 	 	

	

Return	Values
No	return	values.

Example

Retrieve	a	batch	number	#BATCH	from	data	area	named	NEXTBATCH	which
should	be	located	via	the	job's	library	list.
Increment	the	batch	number	value	and	place	the	incremented	value	back	into	the
data	area.
Make	sure	that	no	2	jobs	can	be	assigned	the	same	batch	number	by	using	the
lock	and	unlock	options.
USE						BUILTIN(GET_NUM_AREA)		
									WITH_ARGS(NEXTBATCH	'''*LIBL'''	'Y')	TO_GET(#BATCH)
CHANGE			FIELD(#BATCH)	TO('#BATCH	+	1')
USE						BUILTIN(PUT_NUM_AREA)		
									WITH_ARGS(#BATCH	NEXTBATCH	'''*LIBL'''	'Y')
	

9.188	PUT_PROCESS_ACTIONS

	Note:	Built-In	Function	Rules.

Puts	the	definition	of	an	action	bar	layout	into	the	definition	of	the	process
definition	currently	being	edited	by	the	START_PROCESS_EDIT	Built-In
Function.
Information	passed	into	this	Built-In	Function	is	subjected	to	the	same	editing
and	validation	rules	as	the	equivalent	online	facility	provided	in	a	full	LANSA
development	environment.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Action	Bar	Definition	List	1.
This	working	list	must	contain	at	least	1	entry	and	may
contain	at	most	18.
For	each	entry	in	this	list	there	must	also	be	an	entry	in
action	bar	definition	list	number	2.
Lists	1	and	2	are	conceptually	just	one	list	that	must	be
passed	as	two	real	lists	to	get	around	the	256	byte	list	entry

	 	 	 	

length	limit	that	LANSA	imposes.
Each	working	list	entry	must	have	an	aggregate	length	of	200
bytes	and	be	formatted	exactly	as	follows:
From	-	To			Description
1	-	10			A(10)	Action	Bar	Keyword
11	-	13			A(3)	AB$OPT	Code
14	-	15			P(3,0)	Number	of	Pull	Down	Options	define	in
following	array	structures.
16	-	195			A(9*20)	Array	of	9	x	alpha	20	Pull	Down	Option
Descriptions
196	-	200			A(5)	Spare	area	for	future	expansion	of	function

2 L Req Action	Bar	Definition	List	2
This	working	list	must	contain	at	least	1	entry	and	may
contain	at	most	18.
For	each	entry	in	this	list	there	must	also	be	an	entry	in
action	bar	definition	list	number	1.	Lists	1	and	2	are
conceptually	just	one	list	that	must	be	passed	as	two	real	lists
to	get	around	the	256	byte	list	entry	length	limit	that	LANSA
imposes.
Each	working	list	entry	must	have	an	aggregate	length	of	200
bytes	and	be	formatted	exactly	as	follows:
From	-	To			Description
1	-	18			A(9*2)	Array	of	9	x	alpha	2	Accelerator	Function
Key	Numbers.
19	-	45			A(9*3)	Array	of	9	x	alpha	3	PD$OPT	identification
values.
46	-	54			A(9*1)	Array	of	9	x	alpha	1	initial	availability	flags.
55	-	144			A(9*10)	Array	of	9	x	alpha	10	function	names.
Used	to	indicate	name	of	function	within	this	process	that	is
to	be	invoked.
145	-	171			A(9*3)	Array	of	9	x	alpha	3	process	attachment
sequence	numbers.	Used	to	specify	the	sequence	number	of
an	"attached"	process	or	function	that	is	to	be	invoked.
172	-	200			A(29)	Spare	area	for	future	expansion	of
function.

	 	 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.189	PUT_PROCESS_ATTACH

	Note:	Built-In	Function	Rules.

Puts	a	process	and/or	function	"attachment"	into	the	definition	of	the	process
definition	currently	being	edited	by	the	START_PROCESS_EDIT	Built-In
Function.
Information	passed	into	this	Built-In	Function	is	subjected	to	the	same	editing
and	validation	rules	as	the	equivalent	online	facility	provided	in	a	full	LANSA
development	environment.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Sequencing	Number. 1 3 0 0

2 A Req Name	of	process	to
attach.

1 10 	 	

3 A Req Name	of	function	to
attach.

1 7 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.190	PUT_PROCESS_ATTR

	Note:	Built-In	Function	Rules.

Sets	an	attribute	of	a	process	definition	that	is	being	edited	within	an	edit
session	previously	started	using	the	START_PROCESS_EDIT	Built-In
Function.
Attributes	set	or	returned	by	this	Built-In	Function	have	the	same	editing	and
validation	rules	as	the	equivalent	online	facility	provided	in	a	full	LANSA
development	environment.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	attribute	to	change
Valid	attribute	names	are:
DESC-	Process	Description
TYPE-	Process	Type
OPTCOM	-	Optimize	for	remote

1 10 	 	

comms
ENAWEB	-	Enable	for	the	Web
ENAXML	-	Enable	for	XML
Generation.

2 A Req Value	of	that	attribute	is	to	be	changed
to.
Allowable	values	are	as	follows:
For	attribute	DESC:
Any	valid	new	process	description	up	to
40	characters	in	length.
For	attribute	TYPE:
SAA/CUA
ACT/BAR
For	attribute	OPTCOMM:
Y	–	Optimized	for	remote	comms
N	–	Not	optimized	for	remote	comms
For	attribute	ENAWEB:
Y	–	Enabled	for	the	Web
N	–	Not	enabled	for	the	Web
For	attribute	ENAXML:
Y	–	Enabled	for	XML	Generation
N	–	Not	enabled	for	XML	Generation

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.191	PUT_PROCESS_ML

	Note:	All	Multilingual	Built-In	Functions	in	Built-In	Function	Rules.

Puts/updates	a	list	of	process,	multilingual	attributes,	in	different	languages.
An	edit	session	must	be	commenced	using	the	START_PROCESS_EDIT	Built-
In	Function	prior	to	using	this	Built-In	Function.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	list	to	contain	language	code	and
process	multilingual	attributes.
The	function	must	supply	a	working	list	with
an	aggregate	entry	length	of	exactly	44	bytes.
Each	list	entry	sent	should	be	formatted	as
follows:
From	-	To			Description
1	-	4			Language	code
5	-	44			Process	description

44 44 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	multilingual	attributes	added	/
updated	to	the	database	successfully.
ER	=	argument	details	are	invalid	or	an
authority	problem	has	occurred.
In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

2 2 	 	

	

9.192	PUT_PROGRAM_CHECK

	Note:	Built-In	Function	Rules.

Creates/amends	a	"call	user	program"	DICTIONARY	or	FILE	level	validation
check	into	the	data	dictionary	or	file	definition	of	the	nominated	field.
When	adding	a	FILE	level	validation	check	to	a	field,	the	file	involved,	must
have	been	previously	placed	into	an	edit	session,	by	the	START_FILE_EDIT
Built-In	Function.
All	argument	values	passed	to	this	Built-In	Function	are	validated	exactly	as	if
they	had	been	entered	through	the	online	validation	check	definition	screen
panels.
Normal	authority	and	task	tracking	rules	apply	to	the	use	of	this	Built-In
Function.
For	more	information	refer	to	Field	Rules	and	Triggers	in	the	LANSA	for	i	User
Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Level	of	validation	check.
D	=	Dictionary	level
F	=	File	level

1 1 	 	

2 A Req Name	of	field	in	dictionary	to	which 1 10 	 	

its:LANSA010.CHM::/lansa/ugub_20007.htm

validation	rule	is	to	be	applied.

3 N Req Sequence	number	of	check. 1 3 0 0

4 A Req Description	of	check. 1 30 	 	

5 A Req Enable	check	for	ADD.
Y	=	Check	performed	on	ADD
U	=	Check	performed	on	ADDUSE
N	=	Check	not	performed	on	ADD

1 1 	 	

6 A Req Enable	check	for	CHANGE.
Y	=	Check	performed	on	CHG
U	=	Check	performed	on	CHGUSE
N	=	Check	not	performed	on	CHG

1 1 	 	

7 A Req Enable	check	for	DELETE.
Y	=	Enable	check.
N	=	Do	not	enable	check.

1 1 	 	

8 A Req Action	if	check	is	true.
NEXT	=	Perform	next	check
ERROR		=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

9 A Req Action	if	check	is	false.
NEXT	=	Perform	next	check
ERROR		=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

10 A Req Message	file	details
Details	of	error	message	to	be	issued	from	a
message	file.
Message	file	details	should	be	formatted	as
follows:
From	-	To			Description
1	-	7			Error	Message	Number

27 27 	 	

8	-	17			Message	File	Name
18	-	27			Message	File	Library

If	message	text	is	used,	pass	this	argument	as
blanks.

11 A Req Message	text. 1 80 	 	

12 A Req Name	of	program	that	is	to	be	called	to
perform	this	check.	Prefix	name	by	"LF="	if	a
function	is	to	be	called.
Note	-	additional	parameters	are	not	allowed
if	a	function	is	performing	the	check.

1 10 	 	

13 L Req Working	list	to	contain	the	additional
parameters	that	should	be	passed	to	the
nominated	program.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	20	bytes	and	exactly	10	parameter
entries.
Each	list	entry	sent	should	be	formatted	as
follows:
From	-	To			Description
1	-	20			Additional	parameter

1 20 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	validation	check	defined
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.	When	a	file	edit
session	is	involved	it	is	ended	automatically
without	commitment.

2 2 	 	

	

Example
A	user	wants	to	put	a	"call	user	program"	validation	check	for	a	specific	field,
without	going	through	the	LANSA	options	provided	on	the	"Field	Control
Menu"	that	enables	the	user	to	put	a	"call	user	program"	validation	check.
*********		Define	arguments	and	lists
DEFINE					FIELD(#LEVEL)	TYPE(*CHAR)	LENGTH(1)	LABEL('Level')
DEFINE					FIELD(#FIELD)	TYPE(*CHAR)	LENGTH(10)	LABEL('Field')
DEFINE					FIELD(#SEQNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	
											LABEL('Sequence	#')
DEFINE					FIELD(#DESCR)	TYPE(*CHAR)	LENGTH(30)	LABEL('Description')
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	code')
DEFINE					FIELD(#ENBADD)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	ADD')
DEFINE					FIELD(#ENBCHG)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	CHG')
DEFINE					FIELD(#ENBDLT)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	DLT')
DEFINE					FIELD(#TRUE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	True')
DEFINE					FIELD(#FALSE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	False')
DEFINE					FIELD(#MSGDET)	TYPE(*CHAR)	LENGTH(27)	LABEL('Message	Detail')
DEFINE					FIELD(#MSGTXT)	TYPE(*CHAR)	LENGTH(80)	LABEL('Message	Text')
DEFINE					FIELD(#USRPGM)	TYPE(*CHAR)	LENGTH(10)	LABEL('User	program')
DEFINE					FIELD(#PGMPRM)	TYPE(*CHAR)	LENGTH(20)	LABEL('program	parms')
DEF_LIST			NAME(#PRMWRK)	FIELDS((#PGMPRM))	TYPE(*WORKING)	ENTRYS(10)
DEF_LIST			NAME(#PRMBRW)	FIELDS((#PGMPRM))	ENTRYS(10)
GROUP_BY			NAME(#VALCHK)	FIELDS((#LEVEL)	(#FIELD)	(#SEQNUM)	(#DESCR)	(#ENBADD)	(#ENBCHG)	(#ENBDLT)	(#TRUE)	(#FALSE)	(#MSGDET)	(#MSGTXT)	(#USRPGM))
*********		Initialize	Browse	list
CLR_LIST			NAMED(#PRMBRW)
INZ_LIST			NAMED(#PRMBRW)	NUM_ENTRYS(10)	WITH_MODE(*CHANGE)
*********		Clear	Working	lists
BEGIN_LOOP				
CLR_LIST			NAMED(#PRMWRK)
*********		Request	Validation	check	details
REQUEST				FIELDS((#VALCHK))	BROWSELIST(#PRMBRW)
*********		Load	key	field	working	list
SELECTLIST	NAMED(#PRMBRW)
ADD_ENTRY		TO_LIST(#PRMWRK)
ENDSELECT				

*********		Execute	Built-In	Function	-	PUT_PROGRAM_CHECK
USE								BUILTIN(PUT_PROGRAM_CHECK)	WITH_ARGS(#LEVEL	#FIELD	#SEQNUM	#DESCR	#ENBADD	#ENBCHG	#ENBDLT	#TRUE	#FALSE	#MSGDET	#MSGTXT	#USRPGM	#PRMWRK)	TO_GET(#RETCOD)
*********		Put	"call	user	program"	validation	successful
IF									COND('#RETCOD	*EQ	''OK''')
MESSAGE				MSGTXT('Put	"call	user	program"	validation	check(s)	was	successful')
*********		Put	"call	user	program"	failed
ELSE				
IF									COND('#RETCOD	*EQ	''ER''')
MESSAGE				MSGTXT('Put	"call	user	program"	validation	check(s)	failed')
ENDIF				
ENDIF				
END_LOOP				
	

9.193	PUT_RANGE_CHECK

	Note:	Built-In	Function	Rules.

Creates/amends	a	"range	of	values"	DICTIONARY	or	FILE	level	validation
check	into	the	data	dictionary	or	file	definition	of	the	nominated	field.
When	adding	a	FILE	level	validation	check	to	a	field,	the	file	involved	must
have	been	previously	placed	into	an	edit	session	by	the	START_FILE_EDIT
Built-In	Function.
All	argument	values	passed	to	this	Built-In	Function	are	validated	exactly	as	if
they	had	been	entered	through	the	online	validation	check	definition	screen
panels.
Normal	authority	and	task	tracking	rules	apply	to	the	use	of	this	Built-In
Function.
For	more	information	refer	to	Field	Rules	and	Triggers	in	the	LANSA	for	i	User
Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA
for	Windows

YESValidation	performed	by	Visual	LANSA	is	not	as
rigorous	as	that	performed	by	LANSA	for	i.

Visual	LANSA
for	Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Level	of	validation	check.
D	=	Dictionary	level

1 1 	 	

its:LANSA010.CHM::/lansa/ugub_20007.htm

F	=	File	level

2 A Req Name	of	field	in	dictionary	to	which
validation	rule	is	to	be	applied.

1 10 	 	

3 N Req Sequence	number	of	check. 1 3 0 0

4 A Req Description	of	check. 1 30 	 	

5 A Req Enable	check	for	ADD.
Y	=	Check	performed	on	ADD
U	=	Check	performed	on	ADDUSE
N	=	Check	not	performed	on	ADD

1 1 	 	

6 A Req Enable	check	for	CHANGE.
Y	=	Check	performed	on	CHG
U	=	Check	performed	on	CHGUSE
N	=	Check	not	performed	on	CHG

1 1 	 	

7 A Req Enable	check	for	DELETE.
Y	=	Enable	check.
N	=	Do	not	enable	check.

1 1 	 	

8 A Req Action	if	check	is	true.
NEXT	=	Perform	next	check
ERROR		=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

9 A Req Action	if	check	is	false.
NEXT	=	Perform	next	check
ERROR		=	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

10 A Req Message	file	details
Details	of	error	message	to	be	issued	from	a
message	file.
Message	file	details	should	be	formatted	as

27 27 	 	

follows:
From	-	To			Description
1	-	7			Error	Message	Number
8	-	17			Message	File	Name
18	-	27			Message	File	Library
If	message	text	is	used,	pass	this	argument	as	blanks.	

11 A Req Message	text. 1 80 	 	

12 L Req Working	list	to	contain	"from"	range	values.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	20	bytes	and	at	most	20	"from"	range
value	entries	may	be	specified.	Each	"from"
range	entry	passed	must	have	a	matching	"to"
value	entry	or	unpredictable	results	may
occur.
Each	list	entry	sent	should	be	formatted	as
follows:
Bytes	1-20:	"From"	range	value

1 20 	 	

13 L Req Working	list	to	contain	"to"	range	values.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	20	bytes	and	at	most	20	"to"	range
value	entries	may	be	specified.	Each	"to"
range	entry	passed	must	have	a	matching
"from"	value	entry	or	unpredictable	results
may	occur.
Each	list	entry	sent	should	be	formatted	as
follows:
Bytes	1-20:	"To"	range	value

1 20 	 	

	

Return	Values
NoTypeReq/Description MinMaxMinMax

Opt Len Len Dec Dec

1 A Req Return	code
OK	=	validation	check	defined
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.	When	a	file	edit
session	is	involved	it	is	ended	automatically
without	commitment.

2 2 	 	

	

Example
A	user	wants	to	put	a	"range	of	values"	validation	check	for	a	specific	field,
without	going	through	the	LANSA	options	provided	on	the	"Field	Control
Menu"	that	enables	the	user	to	put	a	"range	of	values"	validation	check.
*********		Define	arguments	and	lists
DEFINE					FIELD(#LEVEL)	TYPE(*CHAR)	LENGTH(1)	LABEL('Level')
DEFINE					FIELD(#FIELD)	TYPE(*CHAR)	LENGTH(10)	LABEL('Field')
DEFINE					FIELD(#SEQNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	LABEL('Sequence	#')
DEFINE					FIELD(#DESCR)	TYPE(*CHAR)	LENGTH(30)	LABEL('Description')
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	code')
DEFINE					FIELD(#ENBADD)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	ADD')
DEFINE					FIELD(#ENBCHG)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	CHG')
DEFINE					FIELD(#ENBDLT)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	DLT')
DEFINE					FIELD(#TRUE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	True')
DEFINE					FIELD(#FALSE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	False')
DEFINE					FIELD(#MSGDET)	TYPE(*CHAR)	LENGTH(27)	LABEL('Message	Detail')
DEFINE					FIELD(#MSGTXT)	TYPE(*CHAR)	LENGTH(80)	LABEL('Message	Text')
DEFINE					FIELD(#FRMRNG)	TYPE(*CHAR)	LENGTH(20)	LABEL('From	range')
DEFINE					FIELD(#TORNG)	TYPE(*CHAR)	LENGTH(20)	LABEL('To	range')
DEF_LIST			NAME(#FRMWRK)	FIELDS((#FRMRNG))	TYPE(*WORKING)	ENTRYS(20)
DEF_LIST			NAME(#TOWRK)	FIELDS((#TORNG))	TYPE(*WORKING)	ENTRYS(20)
DEF_LIST			NAME(#RNGBRW)	FIELDS((#FRMRNG)	(#TORNG))	ENTRYS(20)
GROUP_BY			NAME(#VALCHK)	FIELDS((#LEVEL)	(#FIELD)	(#SEQNUM)	(#DESCR)	(#ENBADD)	(#ENBCHG)	(#ENBDLT)	(#TRUE)	(#FALSE)	(#MSGDET)	(#MSGTXT))
*********		Initialize	Browse	list
CLR_LIST			NAMED(#RNGBRW)

INZ_LIST			NAMED(#RNGBRW)	NUM_ENTRYS(20)	WITH_MODE(*CHANGE)
*********		Clear	Working	lists
BEGIN_LOOP					
CLR_LIST			NAMED(#FRMWRK)
CLR_LIST			NAMED(#TOWRK)
*********		Request	Validation	check	details
REQUEST				FIELDS((#VALCHK))	BROWSELIST(#RNGBRW)
*********		Load	From	and	To	range	value	working	lists
SELECTLIST	NAMED(#RNGBRW)
ADD_ENTRY		TO_LIST(#FRMWRK)
ADD_ENTRY		TO_LIST(#TOWRK)
ENDSELECT					
*********		Execute	Built-In	Function	-	PUT_RANGE_CHECK
USE								BUILTIN(PUT_RANGE_CHECK)	WITH_ARGS(#LEVEL	#FIELD	#SEQNUM	#DESCR	#ENBADD	#ENBCHG	#ENBDLT	#TRUE	#FALSE	#MSGDET	#MSGTXT	#FRMWRK	#TOWRK)	TO_GET(#RETCOD)
*********		Put	"range	of	values"	validation	check	was	successful
IF									COND('#RETCOD	*EQ	''OK''')
MESSAGE				MSGTXT('Put	"range	of	values"	validation	check(s)	was	successful')
*********		Put	"range	of	values"	failed
ELSE					
IF									COND('#RETCOD	*EQ	''ER''')
MESSAGE				MSGTXT('Put	"range	of	values"	validation	check(s)	failed')
ENDIF					
ENDIF					
END_LOOP					
	

9.194	PUT_REGISTRY_VALUE

	Note:	Built-In	Function	Rules.

Processing
Adds/updates	the	value	for	the	specified	Registry	Key.

When	the	length	of	an	Argument	is	stated	as	being	greater	than	50,
this	is	only	true	for	Fields.	Literal	values	are	restricted	to	a	maximum
length	of	50.	This	is	especially	true	for	the	first	four	arguments	in	this
BIF.	All	these	arguments	are	limited	to	a	length	of	50	unless	a	field	is
used.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
No.TypeReq/

Opt
Description Min

Len
Max	Len

1 A R Registry	Root
For	example:
HKEY_CLASSES_ROOT,HKEY_LOCAL_MACHINE

1 256

2 u R Registry	Path
For	example:
WinZip\shell\open\command

1 256

3 u R Registry	Key	Name 1 256

4 X R Registry	Key	Value:
Refer	to	Registry	Key	Value	Note	for	details.

1 Unlimited

5 A O Value	Type:
S	–	String
B	–	Binary
D	–	DWORD
X	–	Expanded	String	which	can	contain	environment
variables.
Refer	to	Supported	&	Default	Key	Types	for	further
information.
Default	Value	–	S

1 1

6 A O Create	key:
Y	–	If	registry	does	not	exist,	create	one.
N	–	No	key	to	be	created.
Default	–	N.

1 1

7 N O Registry	Hive	to	use:	32	or	64
Any	other	value	will	use	the	default	for	the	application.
That	is,	a	32	bit	application	will	write	to	wow6432	while
a	64	bit	application	will	write	to	wow6464.
This	argument	is	ignored	on	a	32	bit	operating	system.

1 4

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A R Return	Code
OK	–	Key	added	/	updated	
ER	–	Key	could	not	be	added	/
updated

2 2 	 	

	

Registry	Key	Value	Note
If	the	S	type	is	used	to	save	a	field	value	(except	Binary	or	VarBinary),	the
string	representation	of	the	field	will	be	saved	in	the	Registry.

If	the	B	type	is	used	to	save	an	Alpha,	Char	or	String	field,	it	is	presumed	that
the	field	value	is	a	hexadecimal	string	and	it	will	be	converted	into	its	actual
value.	Any	byte	in	the	Alpha,	Char	or	String	field	must	be	a
1,2,3,4,5,6,7,8,9,A,B,C,D,E	or	F	character.	If	a	non	Hexadecimal	character	is
encountered,	it	will	be	replaced	with	'0'	(zero).
If	the	D	type	is	used	to	save	an	Alpha,	Char	or	String	field	value,	it	is	presumed
that	the	field	value	is	a	decimal	string	representation	of	a	value	and	it	will	be
converted	into	that	actual	value.
The	Supported	&	Default	Key	Types	table	shows	how	the	key	type	is	defined	by
default	and	also	the	supported	key	types	for	each	field	type.	The	default	is
applied	when	the	5th	argument	is	not	specified.	It	is	strongly	recommended	that
you	use	the	default.
If	a	non-supported	key	type	is	used,	a	fatal	error	with	the	message:	"Using	non-
supported	key	type"	will	occur.

Supported	&	Default	Key	Types
Field	Type Key	Type	by	DefaultSupported	Key	Type

Alpha,	Char	and	String S S,	B,	D,	X

CLOB,	BLOB,	Time,
Date,	DateTime,
Packed,	Signed,	Float
Boolean	and	Integer

S S,	X

Less	than	8	bytes	IntegerS S,	D,	X

Binary
VarBinary.

B B

	

9.195	PUT_SYSTEM_VARIABLE

	Note:	Built-In	Function	Rules.

Creates	/	amends	a	system	variable.	If	the	system	variable	name	specified	does
not	already	exist	the	system	variable	is	added,	if	it	does	exist	the	system	variable
definition	is	updated	with	the	new	details.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req System	variable	name	A	System	variable
name	must	begin	with	'*'.

5 20 	 	

2 A Req Description 1 40 	 	

3 A Req STATIC	or	DYNAMIC 6 7 	 	

4 A Req Data	type	(ALPHA,	NUMBER) 5 6 	 	

5 N Req Length	/	Total	digits 3 3 0 0

6 N Req Decimal	positions 1 1 0 0

7 A Req Evaluation	program 1 10 	 	

8 A Req Ev.	program	type	(FUN,	3GL) 3 3 	 	

9 A Req Initial	public	access	(ALL,	NORMAL	or 3 6 	 	

NONE)

	

Return	Values
NoTypeReq/

Opt
Description Min	LenMax	LenMin	DecMax	Dec

1 A Req Return	code	(OK,	ER)2 2 	 	

	

Example
A	small	program	to	allow	the	creation	/	amendment	of	system	variables.	The
user	is	requested	to	fill	in	the	system	variable	details	and	a	message	based	on	the
return	code	notifies	if	the	operation	was	successful.
GROUP_BY				NAME(#SYSVAR)	FIELDS(#SYSNAM	#SYSDES	#SYSSOD	#SYSTYP	#SYSLEN	#SYSDEC	#SYSPGM	#PGMTYP	#ACCESS)
*********			Set	some	defaults
CHANGE						#SYSNAM	*NULL
CHANGE						#SYSDES	'NULL	VALUE'
CHANGE						#SYSSOD	'DYNAMIC'
CHANGE						#SYSTYP	'ALPHA	'
CHANGE						#SYSLEN	1
CHANGE						#SYSDEC	0
CHANGE						#SYSPGM	'SVPGM'
CHANGE						#PGMTYP	'FUN'
CHANGE						#ACCESS	'NORMAL'
*********			Request	System	variable	details
REQUEST					FIELDS(#SYSVAR)

USE									BUILTIN(PUT_SYSTEM_VARIABLE)	WITH_ARGS(#SYSNAM	#SYSDES	#SYSSOD	#SYSTYP	#SYSLEN	#SYSDEC	#SYSPGM	#PGMTYP	#ACCESS)	TO_GET(#RETCOD)
**********		Inform	user	of	success	/	failure
IF										'#RETCOD	*EQ	OK'
MESSAGE					MSGF(SYSMSGS)	MSGID(SYS0023)	MSGDTA(#SYSNAM)
ELSE						
MESSAGE					MSGF(SYSMSGS)	MSGID(SYS0024)	MSGDTA(#SYSNAM)
*	<	-------			Handle	any	errors		-------	>

ENDIF		
	

9.196	PUT_TRIGGER

	Note:	Built-In	Function	Rules.

Creates/amends	a	DICTIONARY	or	FILE	level	trigger	into	the	data	dictionary
or	file	definition	of	the	nominated	field.
When	adding	a	FILE	level	trigger	to	a	field,	the	file	involved,	must	have	been
previously	placed	into	an	edit	session	by	the	START_FILE_EDIT	Built-In
Function.
All	argument	values	passed	to	this	Built-In	Function	are	validated	exactly	as	if
they	had	been	entered	through	the	online	validation	check	definition	screen
panels.
Normal	authority	and	task	tracking	rules	apply	to	the	use	of	this	Built-In
Function.
For	more	information	refer	to	Field	Rules/Triggers	in	the	LANSA	for	i	User
Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Level	of	validation	check.
D	=	Dictionary	level
F	=	File	level

1 1 	 	

2 A Req Name	of	field	in	dictionary	to	which	trigger 1 10 	 	

its:LANSA010.CHM::/lansa/ugub_20007.htm

rule	is	to	be	applied.

3 N Req Sequence	number	of	trigger. 1 3 0 0

4 A Req Description	of	trigger. 1 30 	 	

5 A Req Name	of	trigger	function. 1 7 	 	

6 L Req Working	list	of	trigger	points.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	5	bytes	and	at	most	6	trigger	point
value	entries	may	be	specified.
Each	trigger	point	is	associated	with	a
"before"	and	an	"after"	entry.	At	least	one
trigger	point	must	have	one	of	these	set	to
"Y".
The	trigger	point	must	be	specified	in	3
characters	as	one	of:
OPN	for	Open
CLS	for	Close
RED	for	Read
INS	for	Insert
UPD	for	Update
DLT	for	Delete
Each	list	entry	sent	should	be	formatted	as
follows:
From	-	To			Description
1	-	3			Trigger	position
4	-	4			Trigger	before
5	-	5			Trigger	after

5 5 	 	

7 L Req Working	list	of	trigger	conditions.
The	calling	RDML	function	may	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	36	bytes	and	at	most	20	trigger
conditions	entries	may	be	specified.	Each	list
entry	sent	should	be	formatted	as	follows:

36 36 	 	

From	-	To			Description
1	-	3			Physical	file	name
1	-	3			AND	/	OR
4	-	13			Field	name
14	-	16			Operation	code
17	-	36			Value

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	field	details	returned
ER	=	field	not	accessible
In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

2 2 	 	

	

9.197	PUT_VALUE_CHECK

	Note:	Built-In	Function	Rules.

Creates/amends	a	"list	of	values"	DICTIONARY	or	FILE	level	validation	check
into	the	data	dictionary	or	file	definition	of	the	nominated	field.
When	adding	a	FILE	level	validation	check	to	a	field,	the	file	involved	must
have	been	previously	placed	into	an	edit	session	by	the	START_FILE_EDIT
Built-In	Function.
All	argument	values	passed	to	this	Built-In	Function	are	validated	exactly	as	if
they	had	been	entered	through	the	online	validation	check	definition	screen
panels.
Normal	authority	and	task	tracking	rules	apply	to	the	use	of	this	Built-In
Function.
For	more	information	refer	to	Field	Rules/Triggers	in	the	LANSA	for	i	User
Guide.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for
Windows

YESVisual	LANSA	validation	is	not	as	rigorous	as	that
performed	by	LANSA	for	i.

Visual	LANSA	for
Linux

NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Level	of	validation	check.
D	=	Dictionary	level

1 1 	 	

its:LANSA010.CHM::/lansa/ugub_20007.htm

F	=	File	level

2 A Req Name	of	field	in	dictionary	to	which
validation	rule	is	to	be	applied.

1 10 	 	

3 N Req Sequence	number	of	check. 1 3 0 0

4 A Req Description	of	check. 1 30 	 	

5 A Req Enable	check	for	ADD.
Y	=	Check	performed	on	ADD
U	=	Check	performed	on	ADDUSE
N	=	Check	not	performed	on	ADD

1 1 	 	

6 A Req Enable	check	for	CHANGE.
Y	=	Check	performed	on	CHG
U	=	Check	performed	on	CHGUSE
N	=	Check	not	performed	on	CHG

1 1 	 	

7 A Req Enable	check	for	DELETE.
Y	=	Enable	check.
N	=	Do	not	enable	check.

1 1 	 	

8 A Req Action	if	check	is	true.
NEXT	Perform	next	check
ERROR	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

9 A Req Action	if	check	is	false.
NEXT	Perform	next	check
ERROR	Issue	fatal	error
ACCEPT	=	Accept	value	and	do	no	more
checking.

4 6 	 	

10 A Req Message	file	details
Details	of	error	message	to	be	issued	from	a
message	file.	Message	file	details	should	be
formatted	as	follows:

27 27 	 	

From	-	To			Description
1	-	7			Error	Message	Number
8	-	17			Message	File	Name
18	-	27			Message	File	Library.
If	message	text	is	used,	pass	this	argument	as	blanks.

11 A Req Message	text. 1 80 	 	

12 L Req Working	list	to	contain	list	values.
The	calling	RDML	function	must	provide	a
working	list	with	an	aggregate	entry	length	of
exactly	20	bytes	and	at	most	50	list	value
entries	may	be	specified.
Each	list	entry	sent	should	be	formatted	as
follows:
Bytes	1-20:	List	value

20 20 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	validation	check	defined
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically.	When	a	file	edit
session	is	involved	it	is	ended	automatically
without	commitment.

2 2 	 	

	

Example
A	user	wants	to	put	a	"list	of	values"	validation	check	for	a	specific	field,
without	going	through	the	LANSA	options	provided	on	the	"Field	Control
Menu"	that	enables	the	user	to	put	a	"list	of	values"	validation	check.

*********		Define	arguments	and	lists
DEFINE					FIELD(#LEVEL)	TYPE(*CHAR)	LENGTH(1)	LABEL('Level')
DEFINE					FIELD(#FIELD)	TYPE(*CHAR)	LENGTH(10)	LABEL('Field')
DEFINE					FIELD(#SEQNUM)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	LABEL('Sequence	#')
DEFINE					FIELD(#DESCR)	TYPE(*CHAR)	LENGTH(30)	LABEL('Description')
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	code')
DEFINE					FIELD(#ENBADD)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	ADD')
DEFINE					FIELD(#ENBCHG)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	CHG')
DEFINE					FIELD(#ENBDLT)	TYPE(*CHAR)	LENGTH(1)	LABEL('Enable	DLT')
DEFINE					FIELD(#TRUE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	True')
DEFINE					FIELD(#FALSE)	TYPE(*CHAR)	LENGTH(6)	LABEL('Action	if	False')
DEFINE					FIELD(#MSGDET)	TYPE(*CHAR)	LENGTH(27)	LABEL('Message	Detail')
DEFINE					FIELD(#MSGTXT)	TYPE(*CHAR)	LENGTH(80)	LABEL('Message	Text')
DEFINE					FIELD(#LSTVAL)	TYPE(*CHAR)	LENGTH(20)	LABEL('List	value')
DEF_LIST			NAME(#VALWRK)	FIELDS((#LSTVAL))	TYPE(*WORKING)	ENTRYS(50)
DEF_LIST			NAME(#VALBRW)	FIELDS((#LSTVAL))	ENTRYS(50)
GROUP_BY			NAME(#VALCHK)	FIELDS((#LEVEL)	(#FIELD)	(#SEQNUM)	(#DESCR)	(#ENBADD)	(#ENBCHG)	(#ENBDLT)	(#TRUE)	(#FALSE)	(#MSGDET)	(#MSGTXT))
*********		Initialize	Browse	list
CLR_LIST			NAMED(#VALBRW)
INZ_LIST			NAMED(#VALBRW)	NUM_ENTRYS(50)	WITH_MODE(*CHANGE)
*********		Clear	Working	list
BEGIN_LOOP					
CLR_LIST			NAMED(#VALWRK)
*********		Request	Validation	check	details
REQUEST				FIELDS((#VALCHK))	BROWSELIST(#VALBRW)
*********		Load	list	of	values	working	list
SELECTLIST	NAMED(#VALBRW)
ADD_ENTRY		TO_LIST(#VALWRK)
ENDSELECT					
*********		Execute	Built-In	Function	-	PUT_VALUE_CHECK
USE								BUILTIN(PUT_VALUE_CHECK)	WITH_ARGS(#LEVEL	#FIELD	#SEQNUM	#DESCR	#ENBADD	#ENBCHG	#ENBDLT	#TRUE	#FALSE	#MSGDET	#MSGTXT	#VALWRK)	TO_GET(#RETCOD)
*********		Put	"list	of	values"	validation	check	was	successful
IF									COND('#RETCOD	*EQ	''OK''')
MESSAGE				MSGTXT('Put	"list	of	values"	validation	check(s)	was	successful')
*********		Put	"list	of	values"	failed
ELSE					
IF									COND('#RETCOD	*EQ	''ER''')
MESSAGE				MSGTXT('Put	"list	of	values"	validation	check(s)	failed')
ENDIF					

ENDIF					
END_LOOP					
	

9.198	PUT_WEB_COMPONENT

	Note:	Built-In	Function	Rules.

Programmatically	(re)build	an	HTML	Web	Component	(refer	to	the	LANSA	for
the	Web	Guide	for	more	information	about	Web	Components).
Use	this	Built-In	Function	when	you	want	to	generate	handcrafted	web
components	at	execution	time.	Note	that	there	is	no	validation	of	the	component
page	text;	it	is	your	responsibility	to	verify	that	your	web	components	work	as
expected.
This	Built-In	Function	only	supports	page,	script,	text,	and	visual	components.
Any	existing	component	will	be	replaced	unless	the	existing	component	is	of	an
unsupported	type,	in	which	case	an	error	will	occur.
If	a	component	already	exists	the	function	will	fail	if	the	existing	component	is
not	of	the	same	type	as	the	one	used	in	this	function.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Web	Component 1 20 	 	

2 A Req Mode.	Possible	values	are:
I:	Input
O:	Output
N:	Not	applicable.

1 1 	 	

3 A Req Type.	Possible	values	are:
P:	Page

1 1 	 	

S:	Script
T:	Text
V:	Visual.

4 A Req Description 1 40 	 	

5 L Req Working	list	containing	component	page	text.
For	a	Text	component,	the	working	list	should
only	have	one	entry.

255 255 	 	

6 A Opt Page
Defaults	to	same	as	component.
Generally,	you	should	leave	as	default.

1 20 	 	

7 A Opt Language
Default	is	current	language
For	non-multilingual	partitions	this	should	be
'NAT'
*DFT	-	partition	default	language.

4 4 	 	

8 A Opt Roll	sets?	(Y/N)
Default	is	N.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Possible	values	are:
OK:	Build	completed
normally.
ER:	Build	encountered	an
error.

1 2 	 	

	

9.199	RANDOM_NUM_GENERATOR
	Note:	Built-In	Function	Rules.

Returns	a	random	number	between	0	and	1.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 N Opt Stream	index 1 2 0 0

2 N Opt Seed 1 10 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Random	number	between	0
and	1.

1 63 1 63

	

Technical	Notes
By	default,	the	Built-In-Function	RANDOM_NUM_GENERATOR	always
returns	a	random	number	between	0	and	1.	For	advanced	users,	it	also
provides	100	independent	streams	of	random	numbers,	where	drawing	a
random	number	from	one	stream	does	not	affect	the	sequence	of	random

numbers	drawn	from	a	different	stream.	Each	stream	is	referenced	using	an
optional	"stream	index"	in	the	range	[0,99],	inclusive.	If	no	stream	index	is
supplied,	then	stream	0	is	used	by	default.
By	default,	the	Built-In-Function	RANDOM_NUM_GENERATOR	seeds
(i.e.	initializes)	each	stream	from	the	current	system	time	the	first	time	the
stream	is	referenced.	For	advanced	users,	it	also	accepts	an	optional	seed
value	which	is	used	to	seed	(i.e.	initialize)	a	stream.	This	is	useful	if	you	wish
to	repeat	the	same	sequence	of	random	numbers	many	times.

Examples
Get	the	next	random	number	from	the	default	stream	(0):
Use	Builtin(RANDOM_NUM_GENERATOR)	To_Get(#x_dec)
	

Get	the	next	random	number	from	stream	23:
Use	Builtin(RANDOM_NUM_GENERATOR)	With_Args(23)
To_Get(#x_dec)
	

Seed	stream	42	with	the	value	12345.	n.b.	This	seeds	the	stream	and	so	will
always	return	the	same	random	number	value:
Use	Builtin(RANDOM_NUM_GENERATOR)	With_Args(42	12345)
To_Get(#x_dec)
	

Seed	the	default	stream	(0)	with	the	value	56789.	
Note:	This	seeds	the	stream	and	so	will	always	return	the	same	value:
Use	Builtin(RANDOM_NUM_GENERATOR)	With_Args(*DEFAULT
56789)	To_Get(#x_dec)
	

9.200	RCV_FROM_DATA_QUEUE

	Note:	Built-In	Function	Rules.

Receives	one	or	more	working	list's	entries	from	an	IBM	i	or	Windows
emulated	data	queue.	For	more	information	about	data	queues	refer	to	the
appropriate	IBM	manuals.
Note:	Only	use	this	Built-In	Function	in	applications	that	are	to	fully	execute
under	the	control	of	the	IBM	i	or	a	Windows	operating	system.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req A	literal	or	variable	that	specifies	or	contains
the	name	of	the	data	queue.
This	name
must
conform	to	IBM	i	object	naming
conventions.		This	is	not	checked	by	the
Built-In	Function.

1 10 	 	

2 N Req A	literal	or	variable	that	specifies	or	contains
the	byte	length	of	one	complete	entry	of	the
working	list	specified	in	return	value	1.

1 5 0 0

3 N Req A	literal	or	variable	that	specifies	or	contains
the	length	of	time	(in	seconds)	that	the	Built-
In	Function	should	wait	for	data	to	arrive	on

1 5 0 0

the	data	queue.
-	A	negative	value	indicates	an	unlimited
wait.
-	A	zero	value	indicates	no	wait	is	required.
-	A	Positive	value	is	the	number	of	seconds.
Refer	to	the	appropriate	IBM	supplied	manual
for	more	details	of	this	argument.	Refer	to
IBM	supplied	program	QRCVDTAQ	which	is
what	is	actually	used	by	this	Built-In
Function.
	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req The	name	of	the	working	list	whose	entries
are	to	be	received	from	the	specified	data
queue.

1 10 	 	

	

Technical	Notes
This	Built-In	Function	may	be	used	with	IBM	i	or	with	a	Windows	operating
system.	Please	refer	to	the	Technical	notes	associated	with	the
SND_TO_DATA_QUEUE	Built-In	Function	for	more	information	about
using	data	queues	under	different	operating	systems.

Examples
Receive	a	customer	number	and	a	part	number	from	a	data	queue	called
PICKLIST	and	then	print	their	details.	Assume	that	the	entry	is	already	known
to	be	on	the	data	queue:
DEF_LIST		NAME(#PICK)	FIELDS(#CUSTNO	#PARTNO)	TYPE(*WORKING)	ENTRYS(1)
										(where	#CUSTNO	is	defined	in	the	dictionary	as	a	signed	5,0	number	and	#PARTNO	is	defined	in	the	dictionary	as	a	packed	7,0	number)

USE							BUILTIN(RCV_FROM_DATA_QUEUE)	WITH_ARGS('PICKLIST'	9	0)	TO_GET(#PICK)
GET_ENTRY	NUMBER(1)	FROM_LIST(#PICK)
EXECUTE			SUBROUTINE(PRINT_PICK)
	

Sit	in	a	permanent	loop	receiving	customer	and	part	number	details	(one	by	one)
as	they	arrive.	As	each	arrives	its	details	should	be	printed:
DEF_LIST		NAME(#PICK)	FIELDS(#CUSTNO	#PARTNO)	TYPE(*WORKING)	ENTRYS(1)
BEGIN_LOOP
USE							BUILTIN(RCV_FROM_DATA_QUEUE)	WITH_ARGS('PICKLIST'9	-1)	TO_GET(#PICK)
GET_ENTRY	NUMBER(1)	FROM_LIST(#PICK)
EXECUTE			SUBROUTINE(PRINT_PICK)
END_LOOP
	

Sit	in	a	permanent	loop	receiving	customer	and	part	number	details	(in	blocks	of
up	to	5)	as	they	arrive.	As	each	block	arrives	it	should	be	printed:
DEF_LIST			NAME(#PICK)	FIELDS(#CUSTNO	#PARTNO)	TYPE(*WORKING)	ENTRYS(5)	COUNTER(#LISTCOUNT)
BEGIN_LOOP
		USE								BUILTIN(RCV_FROM_DATA_QUEUE)	WITH_ARGS('PICKLIST'9	-1)	TO_GET(#PICK)
		BEGIN_LOOP	USING(#I)	FROM(1)	TO(#LISTCOUNT)
				GET_ENTRY		NUMBER(#I)	FROM_LIST(#PICK)
				EXECUTE				SUBROUTINE(PRINT_PICK)
		END_LOOP
END_LOOP
	

Note:	Routines	placing	customer/part	number	pairs	onto	this	data	queue	can
actually	place	1,2,3,4	or	5	entries	and	this	function	will	work	successfully.
However	if	a	function	attempted	to	place	more	than	5	entries	onto	one	data
queue	entry,	then	this	application	would	fail	because	working	list	#PICK	can
contain	at	most	5	entries.

9.201	REBUILD_FILE

	Note:	Built-In	Function	Rules.

Optionally	drops	the	existing	file	and	its	views,	and	creates	a	new	file	from	the
CTD	file.
REBUILD_FILE	can	also	be	used	to	alter	a	PC	OTHER	File	to	add	the	two
LANSA	columns	X_RRNO	and	X_UPID.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Processing
If	drop	views	specified,	drop	the	table	and	its	matching	views.
If	Create	new	file	is	specified,	create	the	new	table	from	the	CTD	file.
If	Use	Connection	Parameters	in	CTD	file	is	specified,	alter	the	table	in	the
external	database	specified	in	the	CTD	file.
If	Prompt	for	user	ID	and	password	is	specified,	remove	the	existing	user	id	and
password	from	the	connection	parameters	in	the	CTD	file	and	allow	the
database	manager	(e.g.	ODBC	driver)	to	prompt	for	the	user	id	and	password.
Note	that	some	database	managers	prompt	for	much	more	than	this,	even	though
it	is	only	the	user	id	and	password	that	is	required.	Some	others	do	not	need	a
user	id	and	password	and	so	the	database	manager	will	still	not	prompt	for	them
(e.g.	MS	Access	and	MS	SQL	Server).

Arguments
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req The	LANSA	File	Name 1 10 	 	

2 A Opt Drop	File	and	Views 1 1 	 	

Values:
Y	=	Drop
N	=	Do	not	Drop
Default	=	Y

3 A Opt Create	New	File
Values:
Y	=	Create
N	=	Do	not	Create
Default	=	Y

1 1 	 	

4 A Opt Use	Connection	Parameters	in
CTD	File
Values:
Y	=	Connect	using	CTD	File
N	=	Use	current	database
connection
Default	=	N

1 1 	 	

5 A Opt Prompt	for	user	ID	and
password
Values:
Y	=	Prompt
N	=	Use	CTD	file	user	id	and
password
Default	=	N

1 1 	 	

6 A Opt Library	Name 1 10 	 	

7 A Opt CTD	Location	Level
A=	All	(Partition	+	System).
P	=	Partition	Level	only.
S=System	Level	only.
Default	is	A.

1 1 	 	

	

Return	Values

No.TypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code:
OK	=	File	successfully	rebuilt
ER	=	An	Error	occurred
rebuilding	the	file

2 2 	 	

	

9.202	REBUILD_TABLE_INDEX

	Note:	Built-In	Function	Rules.

Clears	and	rebuilds	the	high	speed	index	entries	associated	with	file
definition(s)	that	are	flagged	as	high	speed	tables.	Refer	to	the	Database	File
Attributes	section	in	the	LANSA	for	i	User	Guide	for	more	information	about
IBM	i	high	speed	tables.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req A	literal	or	variable	that	specifies	or	contains
the	name	of	the	file.	The	name	may	be	special
value	"*ALL",	a	full	name,	or	a	generic	name

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.	Returned	values	possible
are:	
OK:	Rebuild(s)	all	completed	normally.
ER:	One	or	more	rebuild(s)	encountered	an
error.

2 2 	 	

its:LANSA010.CHM::/lansa/ugub_30080.htm

NR:	No	files	flagged	as	high	speed	tables
found	matching	the	name	supplied.

	

Examples
Rebuild	the	index	of	a	file	called	STATES:
USE								BUILTIN(REBUILD_TABLE_INDEX)	WITH_ARGS('STATES')	TO_GET(#RETURNVAL)
	

Rebuild	the	index	of	all	files	that	start	with	S:
USE								BUILTIN(REBUILD_TABLE_INDEX)	WITH_ARGS('S')	TO_GET(#RETURNVAL)
	

Delete	the	user	index	area	and	completely	rebuild	it:
EXEC_OS400	COMMAND('DLTUSRIDX	DC@TBLIDX')
USE								BUILTIN(REBUILD_TABLE_INDEX)	WITH_ARGS('''*ALL''')	TO_GET(#RETURNVAL)
	

9.203	RESET_@@UPID

	Note:	Built-In	Function	Rules.

Resets	the	@@UPID	field	to	zero.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req File	name 1 10 	 	

2 A Opt Library	name
Default	'*LIBL'

1 10 	 	

	

Return	Values
No	return	values.
This	function	is	used	to	reset	the	value	of	the	@@UPID	field	to	zero.

Example
DEFINE					FIELDS(#PARTDTALIB)	TYPE(*CHAR)	LENGTH(10)	DEFAULT(*PARTDTALIB)
USE								BUILTIN(RESET_@@UPID)	WITH_ARGS(#FILENAME	#PARTDTALIB)
	

9.204	RESTORE_SAVED_LIST

	Note:	Built-In	Function	Rules.

Restores	the	contents	of	a	previously	saved	permanent	or	temporary	working
list.

Portability
Considerations

RESTORE_SAVED_LIST	and	SAVE_LIST	should	be	used	in
the	same	context.	That	is,	you	should	not	use	SAVE_LIST
from	within	a	function	run	on	the	WEB	and	later	restore	the
saved	list	from	within	a	function	run	as	a	Visual	LANSA
function.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	previously	saved	list	to
be	restored.

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	List	for	saved	list	to	be
loaded/restored	into.

1 10 	 	

2 A Opt Return	Code	
'OK'	-	List	retrieved	
'OV'	-	List	full	
'NR'	-	List	not	found

2 2 	 	

3 N Opt Length	of	each	list	entry 1 15 0 0

4 A Opt Type	of	list	
'P'	-	Permanent	list	
'T'	-	Temporary	List

1 1 	 	

	

Technical	Notes
This	Built-In	Function	is	designed	to	restore	a	saved	working	list,	or	to
retrieve	the	contents	of	a	working	list	passed	between	jobs	(e.g.	interactive	to
batch).	It	is	not	designed	for	retrieving	working	list	details	of	a	program	in
the	same	job.	The	exchange	of	working	list	details	between	programs	in	the
same	job	can	be	achieved	in	a	much	more	efficient	manner	by	using	the
RCV_LISTS	and	PASS_LISTS	parameters	of	the	FUNCTION	and	CALL
commands.
File	DC@F80	in	the	LANSA	data	library	is	used	to	store	saved	list	details.
This	file	should	be	considered	in	your	backup	and	restore	procedures.
The	target	list	must	be	the	same	size	or	bigger	than	the	saved	list	or	none	of
the	information	saved	will	be	restored.	This	scenario	will	return	an	'OV'
return	code	and	an	empty	list.
Deleted	record	space	in	file	DC@F80	is	reorganized	and	removed	during	a
normal	LANSA	internal	database	reorganization.	This	reorganization	also
deletes	any	temporary	lists	that	have	exceeded	their	retention	period.
You	can	reorganize	file	DC@F80	to	free	deleted	record	space	at	any	time	by
using	the	IBM	i	RGZPFM	(Reorganize	Physical	File	Member)	command.
Use	DC@F80V1	as	the	sequencing	logical	view.
The	backup	and	recovery	of	data	area	DC@A08	and	database	file	DC@F80
(and	its	logical	views	DC@F80V1	and	DC@F80V2)	is	your	responsibility.
Movement	of	DC@F80	or	saved	lists	between	machines	or	between
environments	is	your	responsibility.

Example

A	list	has	been	saved.	This	list	is	a	list	of	clients	that	have	been	selected	by	user
to	be	printed	on	a	report.	The	name	of	the	list	has	been	passed	to	this	job	by	the
submitting	job.
DEF_LIST			NAME(#RSTLST)	FIELDS((#CLICDE)	(#CLIDES))	TYPE(*WORKING)
DEF_LINE			NAME(#LINE1)		FIELDS((#CLICDE)	(#CLIDES)	(#CLIAD1)	(#CLIAD2)	(#CLIAD3)	(#CLIPHO)	(#CLIFAX))
DEFINE					FIELD(#LSTNME)	TYPE(*CHAR)	LENGTH(10)
**********	Clear	the	list
CLR_LIST			NAMED(#RSTLST)
**********	Restore	the	list
USE								BUILTIN(RESTORE_SAVED_LIST)	WITH_ARGS(#LSTNME)	TO_GET(#RSTLST)
**********	Process	the	list
SELECTLIST	NAMED(#RSTLST)
FETCH						FIELDS(#LINE1)	FROM_FILE(CLIMASTER)	WITH_KEY(#CLICDE)
PRINT						LINE(#LINE1)
ENDSELECT
**********	Close	print	file
ENDPRINT
**********	Submit	job	to	delete	list
USE								BUILTIN(DELETE_SAVED_LIST)	WITH_ARGS(#LSTNME)
	

9.205	REVERSE

	Note:	Built-In	Function	Rules.

Reverses	a	text	string.
Important	note	for	DBCS:	This	Built-In	function	is	DBCS	unaware.	To	reverse
a	string	containg	DBCS	characters	so	that	the	DBCS	characters	do	not	get
corrupted	you	must	use	RDMLX		.Reverse	instrinsic

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	Len Min	DecMax	Dec

1 A Req String	to	reverse 1 Unlimited 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	Len Min	DecMax	Dec

1 A Req Reversed	string1 Unlimited 	 	

	

Examples
Example	1:	Reverse	a	text	string	input	from	user
DEFINE					FIELD(#INTEXT)		TYPE(*CHAR)	LENGTH(20)
DEFINE					FIELD(#OUTEXT)		TYPE(*CHAR)	LENGTH(20)

REQUEST				FIELDS(#INTEXT)
USE								BUILTIN(REVERSE)	WITH_ARGS(#INTEXT)	TO_GET(#OUTEXT)
DISPLAY				FIELDS(#OUTEXT)
	

Example	2:	Reverse	a	known	text	string
DEFINE					FIELDS(#OUTEXT)		TYPE(*CHAR)	LENGTH(10)

USE								BUILTIN(REVERSE)	WITH_ARGS('''ti	esreveR''')	
											TO_GET(#OUTEXT)
DISPLAY				FIELDS(#OUTEXT)
	

9.206	RIGHT

	Note:	Built-In	Function	Rules.

Right	aligns	argument	into	return	string.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req String	to	be	right	align 1 256 	 	

2 A Opt Remove	imbedded	blanks	flag
(Y/N)
Values:
Y	=	remove
N	=	do	not	remove
Default:	N

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	right	aligned
string

1 256 	 	

	

Example
Right	align	and	remove	imbedded	blanks	from	a	requested	string.
DEFINE					FIELD(#INTEXT)		TYPE(*CHAR)	LENGTH(18)
DEFINE					FIELD(#OUTEXT)		TYPE(*CHAR)	LENGTH(18)

REQUEST				FIELDS(#INTEXT)
USE								BUILTIN(RIGHT)	WITH_ARGS(#INTEXT	Y)	TO_GET(#OUTEXT)
DISPLAY				FIELDS(#OUTEXT)
	

Resulting	displays	would	look	something	like	this:
	
								FUN01										Right	Example								
																																															
								In	text	.	.	.					FR			E					D						
																																														
								CF1=Help																													
																																														
then,
	
								FUN01										Right	Example									
																																																
								Out	text	.	.	.																			FRED
																																																
								CF1=Help																															
																																																

9.207	ROUND

	Note:	Built-In	Function	Rules.

Rounds	off	a	decimal	value.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 N Req Value	to	be	rounded1 15 0 9

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 N Req Returned	value1 15 0 9

	

	
Note:	This	function	will	round	off	a	numeric	value.	The	length	of	the	return
value	field	will	determine	where	the	value	will	be	rounded.

Example
To	round	a	3	decimal	field	to	2	decimal	places.
DEFINE					FIELD(#INVAL)	TYPE(*DEC)	LENGTH(5)	DECIMALS(3)
DEFINE					FIELD(#OUTVAL)	TYPE(*DEC)	LENGTH(4)	DECIMALS(2)

USE								BUILTIN(ROUND)	WITH_ARGS(#INVAL)	TO_GET(#OUTVAL)
	

9.208	SAVE_LIST

	Note:	Built-In	Function	Rules.

Permanently	or	temporarily	saves	the	contents	of	a	working	list.

Portability
Considerations

SAVE_LIST	and	RESTORE_SAVED_LIST	should	be	used	in
the	same	context.	That	is,	you	should	not	use	SAVE_LIST
from	within	a	function	run	on	the	WEB	and	later	restore	the
saved	list	from	within	a	function	run	as	a	Visual	LANSA
function.

For	use	with
LANSA
for	i

YES	

Visual
LANSA
for
Windows

YESWorking	list	data	must	not	contain	X'FF'	characters.	Refer	to	the
topics	IBM	i	Defined	Data	Areas	and	Data	Areas	and	Other
LANSA	Features	in	the	LANSA	Application	Design	Guide	for
information	about	data	areas	in	this	environment.

Visual
LANSA
for
Linux

YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Working	List	to	be	saved 1 10 	 	

2 N Req Length	of	each	list	entry	i.e.	Total	length	of
all	fields	in	the	entry.	For	packed	fields	allow
(SIZE/2)+1.	
This	parameter	is	ignored	for	RDMLX	lists.
Any	value	can	be	specified.	Whatever	the	list

1 15 0 0

its:LANSA065.CHM::/lansa/dsnbf_0035.HTM
its:LANSA065.CHM::/lansa/dsnbf_0055.HTM

entry	length	is,	it	will	be	saved	correctly.

3 A Opt Type	of	list
'P'	-	Permanent	list	
'T'	-	Temporary	List
If	not	specified,	the	list	is	assumed	to	be
temporary.

1 1 	 	

4 N Opt Retention	period	(in	days)	for	temporarily
saved	lists.
Only	use	a	value	in	the	range	1	to	90.	If	not
specified,	a	default	value	of	7	is	assumed	for
temporary	lists.

1 2 0 0

5 A Opt Name	that	list	is	to	be	saved	with.	If	this
argument	is	not	specified,	or	passed	as	blank
a	unique	list	name	will	be	automatically
assigned.

10 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Returned	name	of	saved
list

10 10 	 	

	

Technical	Notes
This	Built-In	Function	is	designed	to	permanently	save	a	working	list,	or	to
pass	the	contents	of	a	working	list	between	jobs	(e.g.	interactive	to	batch).	It
is	not	designed	to	exchange	working	lists	details	between	programs	in	the
same	job.	The	exchange	of	working	list	details	between	programs	in	the	same
job	can	be	achieved	in	a	much	more	efficient	manner	by	using	the
RCV_LISTS	and	PASS_LISTS	parameters	of	the	FUNCTION	and	CALL
commands.

Automatically	assigned	list	names	are	assigned	from	data	area	DC@A08	in
the	LANSA	data	library.	In	system	restore	situations	the	value	in	this	data
area	should	be	restored	as	well,	and	then	verified	as	being	a	larger	number
than	the	highest	valued	record	found	in	file	DC@F80.
The	automatic	list	name	assignment	procedure	locks	and	retrieves	data	area
DC@A08,	then	increments	its	value	by	1,	then	returns	the	new	value	to	the
data	area	and	finally	unlocks	it.	The	data	area	contains	a	9	digit	number,	and
the	final	10	character	list	name	is	created	by	prefixing	the	assigned	9	digits
with	the	unique	prefix	of	the	current	partition.
The	automatic	list	name	assignment	logic	prevents	the	same	name	from	ever
being	assigned	to	more	than	one	executing	IBM	i	task.	However,	this	may	not
be	the	case	when	you	are	using	manually	assigned	list	names.	For	instance	if
two	IBM	i	tasks	attempt	to	save	a	list	with	manually	assigned	name
'TESTLIST',	unpredictable	results	may	occur.
File	DC@F80	in	the	LANSA	data	library	is	used	to	store	saved	list	details.
This	file	should	be	considered	in	your	backup	and	restore	procedures.
Deleted	record	space	in	file	DC@F80	is	reorganized	and	removed	during	a
normal	LANSA	internal	database	reorganization.	This	reorganization	also
deletes	any	temporary	lists	that	have	exceeded	their	retention	period.
You	can	reorganize	file	DC@F80	to	free	deleted	record	space	at	any	time	by
using	the	IBM	i	RGZPFM	(Reorganize	Physical	File	Member)	command.
Use	DC@F80V1	as	the	sequencing	logical	view.
It	is	good	practice	to	specifically	delete	temporary	lists	use	the
DELETE_SAVED_LIST	Built-In	Function,	rather	than	waiting	for	them	to
exceed	their	retention	period	and	thus	be	automatically	deleted	during	the
next	internal	reorg.
The	backup	and	recovery	of	data	area	DC@A08	and	database	file	DC@F80
(and	its	logical	views	DC@F80V1	and	DC@F80V2)	is	your	responsibility.
Movement	of	DC@F80	or	saved	lists	between	machines	or	between
environments	is	your	responsibility.

Example
A	list	is	displayed	to	the	user.	The	user	can	select	entries	from	the	list	to	be
output	to	a	printer.	By	saving	a	list	of	selected	entries	this	can	later	be	restored
by	a	print	job	to	create	the	output.
DEF_LIST			NAME(#CLIENTS)	FIELDS((#SELECTOR	*SEL)	#CLICDE	#CLIDES)
DEF_LIST			NAME(#SAVLST)	FIELDS(#CLICDE	#CLIDES)	TYPE(*WORKING)

DEFINE					FIELD(#LSTNME)	TYPE(*CHAR)	LENGTH(10)
**********	Clear	the	list
CLR_LIST			NAMED(#CLIENTS)
CLR_LIST			NAMED(#SAVLST)
**********	Build	the	browselist
SELECT					FIELDS(#CLIENTS)	FROM_FILE(CLIMASTER)
ADD_ENTRY		TO_LIST(#CLIENTS)
ENDSELECT
**********	Allow	user	to	select	clients	for	print
DISPLAY				BROWSELIST(#CLIENTS)
SELECTLIST	NAMED(#CLIENTS)	GET_ENTRYS(*SELECT)
ADD_ENTRY		TO_LIST(#SAVLST)
ENDSELECT
**********	Save	the	list
USE								BUILTIN(SAVE_LIST)	WITH_ARGS(#SAVLST	50	T	10)	TO_GET(#LSTNME)
**********	Submit	job	to	print	client	information
SUBMIT					PROCESS(PRINTS)	FUNCTION(CLIENTS)	EXCHANGE(#LSTNME)
	

9.209	SCANSTRING

	Note:	Built-In	Function	Rules.

Scans	a	string	for	the	first	occurrence	of	a	pattern.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
This	table	shows	the	arguments	used	in	this	function.

NoTypeReq/
Opt

Description Min
Len

Max	Len Min
Dec

Max
Dec

1 A Req String	to	be	scanned 1 Unlimited 	 	

2 A Req Pattern	to	be	located.	Enter	in	upper
and/or	lower	case	as	required.
This	parameter	is	ignored	for	RDMLX
Lists.	Any	value	can	be	specified.
Whatever	the	list	entry	length	is,	it	will
be	saved	correctly.

1 Unlimited 	 	

3 N Opt Position	to	start	scan	Range:	1	-
maximum	possible	length	of	the	string
to	be	scanned.
Default:	1

1 11 0 0

4 A Opt Compare	in	uppercase?
1	=	No,	compare	all	cases	
0	=	Yes,	compare	upper	case.
Default:	1

1 1 	 	

See	Note.

5 A Opt Trim	trailing	pattern	blanks?
1	=	Yes	
0	=	No
Default:	1	-trim	trailing	blanks	from
wild	card	pattern.

1 1 	 	

6 A Opt Wild	card	in	scan	pattern	Values:
Blank	=	no	wild	card	activated.
Non-blank	=	wild	card	activated.
Default:	no	wild	card.
Do	not	use	a	blank	as	the	left	most
character	of	the	pattern.	An	error	will
result	if	you	do	this.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Position	of	first		occurrence	in
string	or	error	code.
Any	one	of	these	values	may	be
returned:
+p	=	Occurrence	of	pattern	found	at
position	"p"
0	=	Pattern	not	found	in	string		to	
be	scanned.
-1	=	Error.	Pattern	is	longer	than
string.
-2	=	Error.	Pattern	length	is	less
than		1.
-3	=	Error.	First	char	in	pattern	is	
wild.

1 3 0 0

-4	=	Error.	Pattern	is	blank		and	
trim		requested.
-5	=	Error.	Starting	position	is	
invalid	.

	

Note
The	result	is	converted	to	upper	case	for	string	comparison.	Following	is	an
example	of	some	results.

String	to	search	forUpper	Case	parameter?Result Found?

ABC 1		(No) 123abc4 Yes

123ABC4Yes

ABC 0		(Yes) 123abc4 No

123ABC4Yes

abc 1		(No) 123abc4 No

123ABC4No

abc 0		(Yes) 123abc4 Yes

123ABC4No

	

Example
This	code	searches	for	the	string	"where"	in	the	text	"find	where	it	exists".
Function				Options(*DIRECT)
Define						Field(#PATTERN)	Reffld(#SKILCODE)	Label('Find	Pattern')	Default(WHERE)
Define						Field(#STARTPOS)	Reffld(#STD_IDNOS)	Label('Start	Pos')	Default(1)
Override				Field(#STD_FLAG)	Label('Case	(1/0)?')	Default('''1''')
Define						Field(#TRIM)	Reffld(#STD_FLAG)	Label('Trim	(1/0)')	Default('''1''')
Define						Field(#WILD)	Reffld(#STD_FLAG)	Label('WildCard?')	Default('')
Override				Field(#STD_IDNOS)	Label('Occurs	at	Pos.')	Edit_Code(L)
Change						Field(#STD_TEXTS)	To('''Find	where	it	exists''')

Begin_Loop
Request					Fields((#STD_TEXTS	*LOWER)	#PATTERN	#STARTPOS	#STD_FLAG	#TRIM	#WILD	(#STD_IDNOS	*OUT))
Use									Builtin(SCANSTRING)	With_Args(#STD_TEXTS	#PATTERN	#STARTPOS	#STD_FLAG)	To_Get	(#STD_IDNOS)
End_Loop
		

9.210	SELECT_IN_SPACE

	Note:	Built-In	Function	Rules.

Selects	the	first	row	of	cells	that	matches	the	key	values	supplied	and	returns	the
cell	values	into	the	specified	fields.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoType

A/N
Req/
Opt

Description Min
Len

Max	Len Min
Dec

Max	Dec

1 A R Space	Name 1 256 	 	

2-
20

w O Fields	that	specify	the	key	values
to	be	used	to	locate	the	first	cell
row	required.	

1 Unlimited 0 Unlimited

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 A O Standard	Return	Code
"OK"	=	A	cell	row	was	found	and
the	cell	values	have	been	returned.
"NR"	=	No	cell	row	could	be
found	with	a	key	matching	the	key

2 2 	 	

values	supplied.
"ER"	=	Select	attempt	failed.
Messages	issued	will	indicate	more
about	the	cause	of	the	failure.		

2-
20

w O Fields	to	receive	the	values	of	the
cells	in	the	selected	cell	row.	

1 Unlimited 0 Unlimited

	

Technical	Notes
The	return	fields	must	be	specified	in	the	same	order	as	the	cells	in	the	space
were	defined.	Cells	are	matched	by	the	order	of	their	specification	in	return
values	2	->	20.	The	names	of	the	fields	used	have	no	bearing	whatsoever	on	the
cell	mapping	logic.
You	can	specify	less	key	values	than	are	defined	in	the	space.	The	first	matching
cell	row	will	be	returned.	This	means	that	partial	key	operations	can	be
performed.
If	you	specify	more	key	values	than	are	defined	as	key	cells	for	the	space	then
the	additional	values	will	be	ignored	and	have	no	effect	on	the	outcome	of	the
search.
If	you	specify	less	return	field	values	than	there	are	cells	in	the	space	then	the
non-specified	cells	are	not	mapped	back	into	the	fields.
If	you	specify	more	return	field	values	than	there	are	cells	in	the	space	then	the
additional	field	values	are	ignored	and	are	not	changed	by	the	search	operation.
If	a	key	value	longer	than	256	bytes	is	specified,	a	fatal	error	will	occur.

Example
This	example	is	selecting	the	first	record	with	a	matching	surname.
	
Define	Field(#SpaceRC)	Type(*Char)	Length(2)
Def_Cond	Name(*Okay)	Cond('#SpaceRC	=	OK')
*
Use	Builtin(Select_in_Space)	With_Args(TEST	#SURNAME)
To_Get(#SpaceRC	#SURNAME	#GIVENAME	#EMPNO)
Dowhile	(*Okay)
Add_Entry	To_List(#Emplist)

Use	Builtin(SelectNext_in_Space)	With_Args(TEST	#SURNAME)
To_Get(#SpaceRC	#SURNAME	#GIVENAME	#EMPNO)
Endwhile
	

9.211	SELECTNEXT_IN_SPACE
Selects	the	next	row	of	cells	that	matches	the	key	values	supplied	and	returns
the	cell	values	into	the	specified	fields.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 A R Space	Name 1 256 	 	

2-
20

w O Fields	that	specify	the	key	values
to	be	used	to	locate	the	next	cell
row	required..	

1 Unlimited 0 Unlimited

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 A O Standard	Return	Code
"OK"	=	A	cell	row	was	found	and
the	cell	values	have	been	returned.
"NR"	=	No	cell	row	could	be
found	with	a	key	matching	the	key
values	supplied.
"ER"	=	Select	attempt	failed.
Messages	issued	will	indicate	more

2 2 	 	

about	the	cause	of	the	failure.		

2-
20

w O Fields	to	receive	the	values	of	the
cells	in	the	selected	cell	row.	

1 Unlimited 0 Unlimited

	

Technical	Notes
The	return	fields	must	be	specified	in	the	same	order	as	the	cells	in	the	space
were	defined.	Cells	are	matched	by	the	order	of	their	specification	in	return
values	2	->	20.	The	names	of	the	fields	used	have	no	bearing	whatsoever	on	the
cell	mapping	logic.					
You	can	specify	less	key	values	than	are	defined	in	the	space.	The	first	matching
cell	row	will	be	returned.	This	means	that	partial	key	operations	can	be
performed.				
If	you	specify	more	key	values	than	are	defined	as	key	cells	for	the	space	then
the	additional	values	will	be	ignored	and	have	no	effect	on	the	outcome	of	the
search.
If	you	specify	less	return	field	values	than	there	are	cells	in	the	space	then	the
non-specified	cells	are	not	mapped	back	into	the	fields.
If	you	specify	more	return	field	values	than	there	are	cells	in	the	space	then	the
additional	field	values	are	ignored	and	are	not	changed	by	the	search	operation.
If	a	key	value	longer	than	256	bytes	is	specified,	a	fatal	error	will	occur.
Using	a	SELECTNEXT_IN_SPACE	operation	that	is	not	immediately	preceded
by	a	SELECT_IN_SPACE	or	a	SELECTNEXT_IN_SPACE	operation	may
produce	unpredictable	results	and/or	application	failure.

9.212	SET_ACTION_BAR

	Note:	Built-In	Function	Rules.

Makes	pull	down	choices	available	or	unavailable	in	an	action	bar.

For	use	with
LANSA
for	i

YES Warning
:	Do
not
use	this	Built-In	Function	unless	the	RDML	function	is	in	a
process	of	type	ACT/BAR.	Translated	3GL	code	may	fail	to
compile	if	this	warning	is	ignored.

Visual
LANSA	for
Windows

YES	

Visual
LANSA	for
Linux

NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Action	bar	option	(AB$OPT)	value	of
action	bar	option	to	be	changed.
Allowable	values	are:		CUR-	Current
option	
ALL-	All	options	
other	-	AB$OPT	value	as	it	is	specified	in
the	action	bar	control	table.
Default	value	is	CUR.

1 3 	 	

2 A Opt Pull	down	choice	(PD$OPT)	value	of	pull
down	choice		to	be	changed.
Allowable	values	are:		CUR-	Current
choice	
ALL-	All	choices	
other	-	PD$OPT	value	as	it	is	specified	in
the	action	bar	control	table.
Default	value	is	ALL.

1 3 	 	

3 A Opt Set	pull	down	choice	to	available	or
unavailable.	Allowable	values	are:
Y	-	Set	as	available.
N	-	Set	as	unavailable.
Default	value	is	Y.

1 1 	 	

	

Return	Values
No	return	values.

9.213	SET_AUTHORITY

	Note:	Built-In	Function	Rules.

Sets	the	authority	of	a	user	to	a	LANSA	object.	The	caller	of	this	Built-In
Function	must	have	management	rights	(MD)	to	the	LANSA	object.
Special	Notes:	This	Built-In	Function	provides	access	to	very	advanced
facilities	that	basically	allow	RDML	functions	to	construct	new	RDML
applications.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted
Changes	to	a	user's	access	rights	to	LANSA	objects	may	not	take	effect	until	the
next	time	the	user	starts	to	use	LANSA.	If	the	user	is	currently	using	LANSA
they	should	exit	from	LANSA	and	then	re-invoke	LANSA	to	ensure	that	the
changed	object	access	rights	take	effect.
This	condition	also	applies	to	the	caller	of	SET_AUTHORITY	changing	their
own	authorities	to	objects.
Changes	to	authority	will	have	no	impact	if	security	checking	is	disabled	for	the
type	of	object	(process,	function,	or	file).	To	determine	your	security	settings	on
IBM	i	refer	to	Execution	and	Security	Settings	in	the	Review	System	Settings
facility	described	in	the	LANSA	for	i	User	Guide.	To	determine	your	security
settings	on	Windows,	or	applications	deployed	to	Linux,	refer	to	the	x_defppp.h
file	that	you	compiled	your	processes	and	forms	with.	You	can	find	out	more
about	this	file	in	The	X_DEFppp.H	Definition	Header	File.

For	use	with
LANSA
for	i

YES Not	available	for	RDMLX.

Visual
LANSA	for
Windows

YES*Object	Types	P#	(Partition)	and	AT	(Application	Template)
have	no	meaning	to	Visual	LANSA.	If	passed	to	this	Built-In
Function	an	error	is	returned.

Visual
LANSA	for
Linux

YES 	

its:lansa010.CHM::/lansa/ladugub7_0040.htm

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Object	name. 1 10 	 	

2 A Req Object	extension. 1 10 	 	

3 A Req Object	type.
Valid	types	are:
AT	-	Application	template*
DF	-	Field
FD	-	File
PD	-	Process
PF	-	Function
P#	-	Partition*
SV	-	System	variable
MT	-	Multilingual	variable.
*Do	not	use	with	Visual	LANSA.

2 2 	 	

4 A Req User	name. 1 10 	 	

5 A Req Access	rights
This	is	a	string	of	2	character	codes
representing	the	different	access	rights	that
the	user	is	to	have.
The	individual	access	rights	are:	
UD	-	Use	Definition	
MD	-	Manage	Definition	
DD	-	Existence	of	Definition	
DS	-	Data	-	Display	
AD	-	Data	-	Add	
CH	-	Data	-	Change	
DL	-	Data	-	Delete
If	the	entire	string	is	blank	then	the	user	is	to
have	their	access	rights	to	the	object	revoked.

1 20 	 	

If	the	string	has	the	special	value	'*DELETE'
then	the	user's	authority	is	to	be	deleted,	thus
causing	their	rights	to	revert	back	to	their
associated	group	profile	or	*PUBLIC.

	

Dependencies
Object
Type

Object	Name Object	Extension

AT template	name *blank 	

DF field	name *blank 	

FD file	name *blank,	*LIBL,	library	name 	

PD process	name *blank 	

PF process	name function	name 	

P# partition	name *blank 	

SV positions	1-10	of	system	variable
name

positions	11-20	of	system	variable
name

	

MT positions	1-10	of	multilingual
variable	name

positions	11-20	of	multilingual
variable	name

	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	The	authority	of	the	user	to	the
LANSA	object	has	been	set.	
ER	=	Error	occurred	in	setting	the
authority	of	the	user	to	the	object.

2 2 	 	

	

9.214	SET_DD_ATTRIBUTES

	Note:	Built-In	Function	Rules.

Allows	the	characteristics	of	a	field	that	is	to	be	visualized	as	a	drop-down	to	be
controlled.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req The	name	of	the	drop	down.	It	must	begin
with	"DD"	and	be	in	the	format	DDxx.	This
name	corresponds	to	the	name	used	in	the
field's	input	or	output	attributes	and	the	name
used	in	the	ADD_DD_VALUES	Built-In
Function.

4 4 	 	

2 A Req The	style	to	be	used	when	visualizing	the
drop	down	field.	Allowable	values	are:
A	-	The	default	single	line	non-editable	drop
down.
B	-	A	single	line	editable	drop	down.
C	-	A	multiple	line	editable	drop	down.	Under
Windows	this	style	is	visualized	as	a	combo-
box.
D	-	A	multiple	line	non-editable	drop	down.
This	style	is	visualized	as	a	list	box.

1 1 	 	

Invalid	values	in	this	argument	are	ignored
and	they	are	converted	to	style	A.

3 N Opt The	total	number	of	panels	"lines"	that	the
drop	down	control	is	to	occupy	on	the	panel
or	window.
For	styles	A	and	B	this	value	indicates	the
number	of	lines	that	the	drop	down	should
occupy	when	the	user	has	dropped	it	down.
For	styles	C	and	D	this	value	indicates	the
number	of	lines	that	the	drop	down	control
should	permanently	occupy	on	the	panel.
This	argument	must	be	a	valid	number	in	the
range	1	to	20.	Values	outside	this	range	are
ignored	and	the	default	value	is	used.
The	value	is	specified	in	panel	"lines",	where
a	panel	is	up	to	24	lines	long.	The	actual
number	of	items	that	can	be	visualized	in	the
drop	down	depends	upon	the	height	of	the
font	being	used.
The	default	length	is	the	least	of
a)	no.	of	items	in	the	List;
b)	remaining	lines	on	the	Panel.

1 7 0 00

	

Return	Values
No	return	values.

General	Technical	Notes
Once	a	drop	down's	attributes	are	set	they	remain	in	effect	for	the	duration	of
the	current	job	/	process.	Subsequent	use	of	this	Built-In	Function	for	the
same	drop	down	name	will	effectively	replace	(ie:	overwrite)	its	current
attribute	values.
In	all	styles,	using	a	length	of	1	is	fairly	nonsensical.
If	the	length	value	is	set	so	that	the	drop	down	extends	outside	of	the	current

panel	or	pop-up	window	then	unpredictable	results	and/or	application	failure
may	result.
For	styles	C	and	D,	setting	the	length	value	so	that	the	drop	down	overlaps
any	other	object	in	the	panel	or	window	may	cause	unpredictable	results
and/or	application	failure.
You	cannot	put	duplicate	data	into	a	drop	down.	Duplicated	items	in	a	drop
down	are	treated	as	the	same	item.	You	must	ensure	that	your	application
does	NOT	put	duplicated	data	into	a	drop	down.
There	are	finite	limits	to	the	total	storage	occupied	by	all	the	items	in	a	drop
down.	Typically	this	is	32K,	but	you	should	never	be	anywhere	near	this	limit
because	of	usability	limitations.
There	are	finite	limits	to	the	usability	of	drop	downs	that	are	met	before
storage	limits	are	exceeded.	Typically	drop	downs	contain	up	to	around	100
items.	Drop	downs	containing	thousands	of	items	are	not	advisable	and
should	not	be	used.

9.215	SET_FILE_ATTRIBUTE

	Note:	Built-In	Function	Rules.

Sets	a	file's	database	attributes.
An	edit	session	must	be	commenced	by	using	the	START_FILE_EDIT	Built-In
Function	prior	to	using	this	Built-In	Function.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Attribute	to	set 1 256 	 	

	 	 	 Valid	attributes	.	.	.
I/O	module:
'IOMODULE=YES'
'IOMODULE=NO	'
IBM	i	High	Speed	Table:
'OS400HST=YES'
'OS400HST=NO	'

	 	 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	code	(OK,	ER)
In	case	of	"ER"	return	code	error
message(s)	are	issued	automatically.

2 2 	 	

	

	
Note:	Currently	this	Built-In	Function	can	only	be	used	to	determine	whether	or
not	a	file	will	have	an	I/O	module.

Example
A	LANSA	function	to	emulate	the	'File	definition	Menu'	has	been	written.
When	a	certain	option	is	taken	the	user	can	decide	to	set	a	file	attribute.	IE	Do
you	want	an	I/O	module	(Yes/No)	?
**********	Define	arguments	and	lists
DEFINE					FIELD(#FILNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#LIBNAM)	TYPE(*CHAR)	LENGTH(10)
DEFINE					FIELD(#YESNO)	TYPE(*CHAR)	LENGTH(32)	LABEL('I/O	Module')
DEFINE					FIELD(#RETCOD)	TYPE(*CHAR)	LENGTH(2)
BEGIN_LOOP
**********	Request	File	and	library	name	and	I/O	module	attribute
REQUEST				FIELDS(#FILNAM	#LIBNAM	#YESNO)

USE								BUILTIN(START_FILE_EDIT)	WITH_ARGS(#FILNAM	#LIBNAM	'DEM')	TO_GET(#RETCODE)
IF									COND('#YESNO	*EQ	YES')
USE								BUILTIN(SET_FILE_ATTRIBUTE)	WITH_ARGS('''IOMODULE=YES''')	TO_GET(#RETCOD)
ELSE
USE								BUILTIN(SET_FILE_ATTRIBUTE)	WITH_ARGS('''IOMODULE=NO	''')	TO_GET(#RETCOD)
ENDIF
USE								BUILTIN(END_FILE_EDIT)	WITH_ARGS('Y')	TO_GET(#RETCOD)
**********	Submit	job	to	make	file	operational
USE								BUILTIN(MAKE_FILE_OPERATIONL)	WITH_ARGS(#FILNAM	#LIBNAM)		
											TO_GET(#RETCOD)

END_LOOP
	

9.216	SET_FOR_HEAVY_USAGE

	Note:	Built-In	Function	Rules.

Sets	a	function	for	heavy	usage	mode

For	use	with
LANSA	for	i YES

Visual	LANSA	for	Windows NO

Visual	LANSA	for	Linux NO

	

Arguments
No	Argument	Values.

Return	Values
No	Return	Values.

Technical	Notes
This	Built-In	Function	allows	a	function	to	dynamically	change	from	heavy
usage	to	light	usage	(and	vice-versa).	For	example:

					if	(*jobmode	=	B)

								use	SET_FOR_HEAVY_USAGE	

					else	

								use	SET_FOR_LIGHT_USAGE	

					endif

	

At	every	entry	or	(re)entry	the	heavy/light	usage	option	is	set	by	the	calling
parent	process,	or	adopted	from	a	*DIRECT	caller,	so	at	every	invocation	you
should	positively	(re)set	the	usage	option.

This	Built-In	Function	executes	very	quickly	and	imposes	little	overhead.
Changing	a	"light	usage"	function	to	have	a	"heavy	usage"	capability	may	be
more	complex	than	simply	adding	a	use	of	the	SET_FOR_HEAVY_USAGE
Built-In	Function.	Since	a	heavy	usage	function's	variables	and	lists	retain
their	values	between	invocations,	more	complex	entry	and/or	exit	logic	may
be	required.

9.217	SET_FOR_LIGHT_USAGE

	Note:	Built-In	Function	Rules.

Sets	a	function	for	light	usage	mode.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	Windows NO

Visual	LANSA	for	Linux NO

	

Arguments
No	Argument	Values.

Return	Values
No	Return	Values.

Technical	Notes
This	Built-In	Function	allows	a	function	to	dynamically	change	from	heavy
usage	to	light	usage	(and	vice-versa).	For	example:

					if	(*jobmode	=	B)

								use	SET_FOR_HEAVY_USAGE	

					else	

								use	SET_FOR_LIGHT_USAGE	endif

	

At	every	entry	or	(re)entry	the	heavy/light	usage	option	is	set	by	the	calling
parent	process,	or	adopted	from	a	*DIRECT	caller,	so	at	every	invocation	you
should	positively	(re)set	the	usage	option.
This	built-in	executes	very	quickly	and	imposes	little	overhead.

9.218	SET_SESSION_VALUE

	Note:	Built-In	Function	Rules.

Allows	various	Visual	LANSA	session	values	to	be	dynamically	altered	by	an
executing	application.
Note	that	a	change	to	a	session	value	only	exists	until	the	session	(i.e.,	the
X_RUN	command)	completes	execution.
More	information	can	be	found	on	some	session	values	by	searching	in	the
LANSA	Global	guide.	In	particular,	refer	to	the	Standard	X_RUN	Parameters.

For	use	with
LANSA	for	i YES*Only	USER_AUDIT	session	value	may	be	used	on

IBM	i	in	an	RDML	function.

Visual	LANSA	for
Windows

YES	

Visual	LANSA	for
Linux

YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	session	value	to	be	set	or	reset.
Currently	the	following	session	values	may
be	set	or	reset	by	this	Built-In	Function:
USER:	The	current	user	-	cannot	be	changed
on	IBM	i.	When	you	set	USER,	USEX
(default	user	id	when	connecting	to	servers)
also	set.	Refer	to	Technical	Notes	for	Session
Value	USER=,	GUSR=	and	USEX
GUSR:	The	current	group	user	-	cannot	be
changed	on	IBM	i.

1 50 	 	

USER_AUDIT:	The	user	to	be	used	in	user
audit	stamping.	This	must	be	explicitly	set	on
the	IBM	i.	Changing	it	in	Visual	LANSA	will
not	update	the	IBM	i	in	a	Superserver
application.
PRTR:	The	current	printer
PPTH:	The	current	fully	qualified	directory
for	printer	files
JOBPTY:	Job	queue	priority
DBMS_OPTIMIZE:	Optimize	heavy	DBMS
activity
CONNECT_PARTITION:	The	default
partition	to	be	used	by	the
CONNECT_SERVER	Built-In	Function.
DPTH:	Directory	in	which	emulated	IBM	i
data	queues	are	to	be	created	/	accessed.
EXPS:	The	action	to	take	when	importing
object	security	records.
HELP:	Help	system	to	use
HLPF:	Help	file	to	use
HMJB:	Identifies	that	the	current	application
is	a	Host	Monitor	job.	'Y'	or	'N'	.	It	is	reserved
for	use	by	the	LANSA	development	team
only.
LANG:	Change	currently	executing	language.
This	is	designed	to	be	used	only	with	intimate
knowledge	of	the	internal	working	of	LANSA
so	use	is	restricted	to	applications	created	by
the	LANSA	development	team.
All	tracing	parameters	e.g.	ITRO.	This	can	be
useful	for	turning	tracing	on	only	whilst	an
issue	is	occurring	so	that	the	trace	file	size	is
kept	to	a	minimum.
PSRA=:	Primary	Server	Route	Authority.
Setting	PSRA=Y	indicates	that	authority
checks	should	be	routed	to	the	server.	

Use	this	command	to	set	the	value	on	the	fly.
This	should	be	done	before	you	define	and
make	the	connection.	(Refer	to	PSRA	Notes
in	Using	the	X_RUN	Command.)
PSRR:	Primary	Server	Route	Repository.
Setting	PSRR=Y	(the	default)	indicates	that	if
the	repository	data	cannot	be	retrieved
locally,	a	request	should	be	sent	to	the	server
to	retrieve	the	data.
Use	this	command	to	set	the	value	on	the	fly.
This	should	be	done	before	you	define	and
make	the	connection.	(Refer	to	the	X_RUN
parameters	in	Using	the	X_RUN	Command.)
UDEF:	User-defined	values	with	spaces	up	to
256	bytes.	If	the	value	contains	spaces	or	you
wish	to	use	embedded	quotes,	it	must	be
enclosed	in	double	quotes,	reducing	the
usable	length	to	254	bytes.
Note:
All	embedded	quotes
must
be	single	quotes;	if	you	embed	double	quotes
it	will	cause	submitted	jobs	to	fail.
Windows	printing	extension	parameters	such
as	WPEN,	WPPN,	WPPS,	WPPD,	WPFD,
WPDF,	WPDS,	WPFO	and	WPAS	may	be
specified	in	this	parameter.	Any	value
specified	in	argument	2	should	follow	the
same	rules	as	defined	for	use	of	the	windows
printing	extension	parameter	on	the	command
line.	(Refer	to	Windows	Printing	Extensions.)
XCMD:	Obscures	values	of	specific
parameters	such	as	password.	This	parameter
only	becomes	active	for	jobs	submitted	after
it	has	been	set.
CIPH:	Symmetric	cipher	to	use	when	LANSA
calls	OPenSSL.

2 A Req Value	to	which	the	session	value	should	be	set
or	reset.	Refer	to	the	following	technical
notes	for	more	details.

1 256 	 	

	

Return	Values
No	return	values.

General	Technical	Notes
The	session	value	name	(e.g.,	USER)	that	you	specify	is	converted	to
uppercase	before	being	tested	for	validity.
The	session	value	can	be	specified	with	or	without	the	equal	sign.	For
example	USER=	and	USER	are	both	valid	and	identical.
The	actual	value	that	you	specify	may	be	converted	to	uppercase.	Refer	to	the
session	value	specific	notes	for	details.
Any	value	specified	must	not	be	blank	or	null.	In	all	other	cases	it	is	accepted.
You	are	responsible	for	ensuring	the	integrity	and	correctness	of	any	value
that	you	pass	to	this	Built-In	Function.	Invalid	or	inappropriate	specification
of	values	may	result	in	application	failure	and/or	unexpected	results	on	the
current	platform	or	any	associated	server	platforms.
Generally	this	Built-In	Function	is	designed	to	be	used	very	high	in	any
invocation	stack	as	an	'entry	point'	function	that	establishes	various	settings
and	that	passes	control	into	the	actual	application.
Once	a	session	setting	is	altered,	it	remains	in	effect	until	the	session	(ie:
x_run	command)	completes	execution.	An	altered	session	value	effects	all
subsequently	invoked	facilities.
When	a	session	value	is	altered,	functions,	OAMs	or	communication	sessions
that	are	already	active	may	ignore	the	change.	As	a	very	simple	example	of
the	concept	of	'already	active'	consider:

						define	#chguser	reffld(#user)

						begin_loop	

									request	#chguser	

									use	set_session_value	with_args('user='	#chguser)

									display	#user	

															end_loop

	

			This	function	will	not	display	the	changed	user.	It	will	display	#user
(defaulted	from	*USER)	at	the	time	the	function	was	originally	invoked.	The
defaulting	system	variable	*USER	is	static	and	is	only	initialized	during
function	startup.
The	following	specific	session	value	technical	notes	may	refer	to	a
'designated	use'.	When	a	designated	use	has	been	specified	you	must	not	use
this	Built-In	Function	in	any	other	context.
Invalid	or	inappropriate	use	of	this	Built-In	Function	may	result	in	application
failure	and/or	unexpected	results	on	the	current	platform	or	any	associated
server	platforms.

Technical	Notes	for	Session	Value	USER=,	GUSR=	and	USEX
This	session	value	is	designated	for	use	in	a	top	level	entry	point	function	to
allow	you	to	design	and	implement	your	own	'sign	on'	function.	After	the	user
profile	has	been	established	the	current	user	profile	and	group	profile	values
may	be	altered.
It	is	not	designed	to	support	multiple	changes	of	user	scattered	throughout	an
executing	application.	Do	not	attempt	to	design	or	implement	applications
using	such	an	approach.
The	value	specified	for	USER=	or	GUSR=	must	conform	to	the	rules	defined
in	the	x_run	command.	The	correct	value	for	no	associated	group	user	profile
is	*NONE.
The	value	specified	is	always	converted	to	uppercase.
When	you	set	USER,	you	also	set	USEX.	The	value	you	pass	must	be	in	a
variable	that	maintains	case.	That	value	is	first	used	to	set	USEX	and	then	it
is	uppercased	and	USER	is	set.	
USEX	is	the	default	User	ID	used	when	establishing	connections	to	servers.
For	some	servers	the	case	is	important	and	this	allows	the	default	to	be
changed	in	one	place	whilst	also	correctly	controlling	security	access,	if	it	is
used.	When	the	User	ID	is	passed	to	X_RUN,	it	puts	the	exact	case	in	the

USEX	parameter,	the	same	as	this	Built-In	Function	now	does.

Technical	Notes	for	Session	Value	USER_AUDIT
This	session	value	may	be	used	to	set	the	user	that	will	be	used	in	user	audit
stamping.	It	may	be	used	where	the	current	user	does	not	give	sufficient
differentiations,	such	as	in	web	jobs	where	all	user	jobs	run	under	the	default
web	user	profiles.
This	session	value	is	designated	for	use	in	a	top	level	entry	point	function.
It	is	not	designed	to	support	multiple	changes	of	user	audit	scattered
throughout	an	executing	application.	Do	not	attempt	to	design	or	implement
applications	using	such	an	approach.
The	value	can	be	retrieved	via	system	variable	*USER_AUDIT.
No	conversion	to	upper	case	is	done	on	the	value.
The	audit	user	setting	remains	in	effect	until	the	session	completes	execution.

In	Visual	LANSA	(on	Windows,	IBM	i	RDMLX	and	Linux),	a	session
is	until	the	x-run	command	completes.
On	IBM	i	RDML,	the	session	value	remains	in	effect	until	the	job
ends	or	the	LANSA	partition	is	changed.
In	LANSA	for	the	web	jobs,	the	session	value	should	be	set	for	each
browser	interaction,	since	jobs	may	time-out	and	different	jobs	may	be
used	to	process	a	request.
Batch	jobs	start	a	new	session.	Consequently,	the	audit	user	should	be
set	for	the	batch	job	session.

If	*LONG_USER_AUDIT	is	ON,	then	256	characters	of	the	session	value
will	be	used	to	set	the	value	that	will	be	used	in	user	audit	stamping.
Otherwise	10	characters	of	the	session	value	will	be	used	to	set	this	value.

Technical	Notes	for	Session	Value	PRTR=	and	PPTH=
The	PRTR=	session	value	is	designated	for	use	in	reporting	functions	that
wish	to	alter	the	name	of	the	logical	printing	device	to	which	a	report	should
be	directed.
The	PRTR=	session	value	may	also	be	used	in	reporting	functions	that	wish	to
have	all	report	output	directed	to	a	file.	The	special	value	*PATH	should	be
specified	and	the	PPTH=	session	value	also	used.
The	value	specified	for	PRTR=	must	conform	to	the	rules	defined	in	the
x_run	command.

The	value	specified	for	PPTH=	must	conform	to	the	rules	defined	in	the
x_run	command.
The	value	specified	is	not	converted	to	uppercase.	This	may	be	an	important
consideration	for	Linux	systems.

Technical	Notes	for	Session	Value	JOBPTY=
This	session	value	is	designated	for	use	in	controlling	the	queuing	priority	of
jobs	submitted	from	this	(ie:	the	currently	executing)	job.	This	value	is
defaulted	to	5	when	the	x_run	environment	is	invoked.	This	value	should	only
be	used	with	(and	only	has	meaning	in	the	context	of)	IBM	i	batch	job	queue
and	subsystem	emulation.
The	value	specified	for	JOBPTY=	must	be	an	integer	value	in	the	range	0	->
9.	Jobs	submitted	with	the	lowest	JOBPTY	value	are	executed	from	an
emulated	job	queue	first.	Jobs	with	equal	JOBPTY	values	are	executed	in
arrival	order.
Please	read	the	section	in	the	Deploying	LANSA	Client	and	Server
Applications	guide	that	deals	with	IBM	i	Job	Queue	Emulation	before
attempting	to	use	this	facility.

Technical	Notes	for	Session	Value	CONNECT_PARTITION=
This	session	value	is	designated	for	use	in	altering	the	partition	identifier	that
the	next	CONNECT_SERVER	Built-In	Function	invocation	will	attempt	to
connect	to	on	the	server	system.	The	session	value	must	be	set	prior	to	calling
the	builtin-in	function	CONNECT_SERVER	and	the	value	remains	in	effect
until	the	X_RUN	command	ends	or	another	CONNECT_PARTITION	value
is	specified	via	this	Built-In	Function.
This	session	value	specified	in	the	value	argument	(argument	2)	should	be	the
3	character	identifier	of	a	valid	partition	on	the	server	system.
The	value	specified	is	always	converted	to	uppercase.

Technical	Notes	for	Session	Value	DBMS_OPTIMIZE=
Portability
Considerations

When	using	this	Built-In	Function	in	RDMLX	code	on	the
IBM	i,	a	COMMIT	is	issued	so	Commitment	Control	must	be
started.

The	DBMS_OPTIMIZE	session	value	is	designed	to	allow	you	to	specify
how	a	heavy	or	complex	DBMS	transaction	can	be	optimized.

Judicious	use	of	this	option	can	significantly	improve	the	performance	of

heavy	or	complex	DBMS	activity.

The	value	parameter,	which	must	be	in	uppercase,	may	be	set	to:

BEGIN_SYNC_nnnn Specifies	the	beginning	of	a	complex	DBMS	activity	and
switches	on	DBMS	optimize	mode.	"Hard"	commits	are
to	be	performed	at	every	"nnnn"	invocations	of	the	"soft"
synchronization	point.

SYNC_POINT Specifies	a	"soft"
synchronization	point	for	a
complex	DBMS	activity.	A
soft	synchronization	point	is
the	equivalent	of	a
"optimized"	commitment
control	boundary.

	

END_SYNC Specifies	the	end	of	a
complex	DBMS	activity	and
switches	off	DBMS	optimize
mode.

	

The	use	of	DBMS_OPTIMIZE	is	best	illustrated	by	example.
Consider	this	simple	RDML	function:

begin_loop	from(1)	to(2000)	

							insert	fields(......)	to_file(testfile)	

end_loop

	

In	normal	circumstances	this	function	would	be	using	auto-commit	and	would
be	performing	a	DBMS	commit	operation	after	every	single	insert.
Most	DBMS	commit	operations	are	usually	quite	slow.	The	commit	can	have	a
very	significant	performance	impact	on	this	type	of	application	(ie:	one	doing
the	same	thing	1000's	rather	than	just	5	or	10	times).
If	the	function	was	changed	to:

use	set_session_value	(DBMS_OPTIMIZE	BEGIN_SYNC_100)

	

begin_loop	from(1)	to(2000)

			insert	fields(......)	to_file(testfile)

			use	set_session_value	(DBMS_OPTIMIZE	SYNC_POINT)

end_loop

	

use	set_session_value	(DBMS_OPTIMIZE	END_SYNC)

	

then	it	may	run	much	faster	than	before.	The	DBMS_OPTIMIZE	operations	are
enabling	the	underlying	OAM	(Object	Access	Module)	to	understand	the
transaction	better,	and	thus	to	optimize	it.
The	primary	reason	for	the	performance	improvement	is	the	fact	that	the	"soft"
SYNC_POINT	will	only	issue	"hard"	(ie:	real)	DBMS	commit	operations	every
100	times	that	it	is	executed.	This	is	why	the	BEGIN_SYNC_100	value	is	used.
Thus	the	whole	DBMS	transaction	begins	to	work	faster.
Another	example	might	be	this	"batch"	style	function:

select	fields(.....)	from_file(customer)	where(.......)

			select	fields(.....)	from_file(orders)	with_key(customer)

							call	*direct	calculate

							select	fields(.....)	from_file(items)	with_key(orderno)	

														update	fields(.....)	in_file(items)	

							endselect	

							update	fields(.....)	in_file(orders)	

		endselect	

endselect

	

The	performance	of	this	batch	style	program,	could	be	enhanced	by	changing	it
to	this:

use	set_session_value	(DBMS_OPTIMIZE	BEGIN_SYNC_20)

	select	fields(.....)	from_file(customer)	where(.......)

			select	fields(.....)	from_file(orders)	with_key(customer)	

					call	*direct	calculate	

					select	fields(.....)	from_file(items)	with_key(orderno)

											update	fields(.....)	in_file(items)	

			endselect	

			update	fields(.....)	in_file(orders)	

	endselect	

use	set_session_value	(DBMS_OPTIMIZE	SYNC_POINT)	endselect

use	set_session_value	(DBMS_OPTIMIZE	END_SYNC)

	

Some	things	that	you	must	understand	and	rules	that	you	must	follow	when
using	DBMS_OPTIMIZE	are:

BEGIN_SYNC_nnnn
Must	be	specified	in	uppercase	characters.
Will	abort	if	a	BEGIN_SYNC_nnnn	is	already	active	within	the	current	job.
BEGIN_SYNC_nnnn	operations	cannot	be	nested.
Sets	a	synchronization	"trigger"	to	the	"nnnn"	value	specified.	"nnnn"	must	be
a	valid	integer	in	the	range	1	to	1000.

Setting	"nnnn"	to	1	may	negate	any	possible	performance	improvement
because	the	SYNC_POINT	will	issue	a	commit	operation	every	time	it	is
executed.
Set	a	synchronization	point	"counter"	to	zero.
Switches	on	DBMS	optimize	mode.
Switches	off	all	"auto-commitment"	options.	All	DBMS	tables	will	now	be
under	full	manual	commitment	control,	regardless	of	how	they	are	defined.
Manual	commits	are	issued	when:

A	SYNC_POINT	reaches	a	trigger	level.
An	END_SYNC	is	executed.
A	COMMIT	operation	is	issued	by	an	RDML	function.

Must	have	an	associated	END_SYNC	operation	that	is	always	executed	to
indicate	the	normal	completion	of	a	DBMS	transaction.
May	have	an	associated	SYNC_POINT	operation	that	specifies	the	point	of	a
commitment	control	boundary.	If	no	SYNC_POINT	is	specified	then	the
END_SYNC	operation	acts	as	the	single	commitment	control	boundary.
Generally	the	higher	the	"nnnn"	value	the	better	the	performance	(within
DBMS	and	journalling	limits),	however	values	above	500	would	be	unusual.
Remember	that	the	higher	the	value	the	more	system	resources	being
held/locked	and	the	more	data	that	will	be	lost	if	a	rollback	event	occurs.
Should	be	used	with	SYNC_POINT	and	END_SYNC	in	a	simple	and	well
structured	way	to	establish	commitment	boundaries	and	to	optimize
performance.	Avoid	scattering	BEGIN_SYNC,	SYNC_POINT	and
END_SYNC	operations	across	multiple	functions	and	down	through	complex
invocations	stacks.	Try	to	keep	all	operations	in	a	single	function	and	keep	the
boundaries	simple	and	well	delimited.
Should	not	be	used	in	complex	and	convoluted	invocation	stacks	involving
many	different	RDML	functions	and	function	calls.	The	primary	reason	for
this	is	the	very	real	possibility	that	a	called	function	may	well	issue	a
COMMIT	(or	perform	some	action	that	causes	a	commit	to	be	performed)
thus	negating	any	performance	benefit	that	this	option	may	bring.
Has	no	real	meaning	when	used	in	LANSA	SuperServer	mode.
It	is	recommended	that	jobs	concurrently	accessing	more	than	15	tables
should	not	use	this	facility.

SYNC_POINT
Must	be	specified	in	uppercase	characters.
Will	abort	if	DBMS	optimize	mode	is	not	currently	turned	on.
Increments	the	synchronization	point	"counter"
If	the	synchronization	"counter"	is	greater	than	or	equal	to	the
synchronization	"trigger"	value,	then	a	DBMS	commit	operation	is	performed
and	the	counter	is	reset	to	zero.
Will	still	issue	a	commit	when	used	in	LANSA	SuperServer	mode.

END_SYNC
Must	be	specified	in	uppercase	characters.
Will	abort	if	DBMS	optimize	mode	is	not	currently	turned	on.
Unconditionally	issues	a	DBMS	commit.
Resets	the	synchronization	counter	to	zero.
Resets	the	synchronization	trigger	to	a	default	value.
Turns	DBMS	optimize	mode	off.

Will	still	issue	a	commit	when	used	in	LANSA	SuperServer	mode.

9.219	SHOW_HELP

	Note:	Built-In	Function	Rules.

Causes	the	help	text	associated	with	a	field,	a	component,	a	process	or	a
function	to	be	modally	displayed.	.

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Object	Type.	Specify	this	argument	as:
PD	–	Process
PF	–	Function
DF	–	Field	or	Component
Any	other	value	is	invalid	and	will	cause	a
run	time	error	to	be	generated.

2 2 	 	

2 A Req Object	Name.	Blank	or	null	object	names	will
cause	a	run	time	error	to	be	generated.	Other
invalid	or	non-existent	object	names	may
cause	help	text	to	be	displayed	indicating	that
no	help	text	exists.

1 10 	 	

3 A Opt Object	Name	Extension.	Specify	this
argument	only	for	type	PF	(Function)	or	DF
(Component	only,	NOT	Field).
For	a	Function	it	is	the	name	of	the	process	to
which	the	function	belongs	and	it	must	be	no

1 65 	 	

longer	than	10	characters.
For	a	Component	it	is	the	name	of	the
specific	Component	within	the	owning
Component.
For	all	other	object	types	this	argument	is
ignored,	regardless	of	what	value	it	contains.

	

Return	Values
There	are	no	return	values

Comments
The	help	text	associated	with	a	component	should	only	be	displayed	in	a
component	context	(i.e.	from	an	RDMLX	program).
Field,	Process	and	Function	help	text	can	be	displayed	in	any	context	(i.e.
from	RDMLX	programs	or	RDML	functions).
In	this	version	of	this	Built-In	Function	the	display	of	help	text	is	modal.	The
application	halts	until	the	user	completes	the	display	of	the	help	text	and
closes	the	help	text	window.
In	future	versions	of	this	Built-In	Function	the	display	of	help	text	may	not	be
modal.	You	should	avoid	designing	applications	that	architecturally	rely	on
the	modal	nature	of	the	current	version.
This	Built-In	Function	should	never	be	executed	in	environments	in	which	no
user	interface	capability	exists	(e.g.	in	a	trigger	or	in	a	remote	procedure).

Examples
Display	the	help	text	associated	with	field	EMPNO:

USE	BUILTIN(SHOW_HELP)	WITH_ARGS(DF	EMPNO);
Display	the	help	text	associated	with	process	MYPROC:

USE	BUILTIN(SHOW_HELP)	WITH_ARGS(PD	MYPROC);
Display	the	help	text	associated	with	the	TREEVIEW	component	in	the
component	VL_DEM20:

USE	BUILTIN(SHOW_HELP)	WITH_ARGS(DF	VL_DEM20
TREEVIEW);

9.220	SND_TO_DATA_QUEUE

	Note:	Built-In	Function	Rules.

Places	one	or	more	entries	from	a	working	list	onto	an	IBM	i	or	Windows
emulated	data	queue.	Refer	to	IBM	supplied	manuals	for	more	details	of	data
queues.
Note:	Only	use	this	Built-In	Function	in	applications	that	are	to	fully	execute
under	the	control	of	the	IBM	i	or	a	Windows	operating	system.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req A	literal	or	variable	that	specifies	or	contains
the	name	of	the	data	queue.
This	name
must
conform	to	IBM	i	object	naming
conventions.		This	is	not	checked	by	the
Built-In	Function.

1 10 	 	

2 N Req A	literal	or	variable	that	specifies	or	contains
the	byte	length	of	one	complete	entry	of	the
working	list	specified	in	argument	3.

1 5 0 0

3 L Req The	name	of	the	working	list	whose	entries
are	to	be	sent	to	the	specified	data	queue.

1 10 	 	

	

Return	Values
No	Return	Values.

Technical	Notes	-	General
When	the	working	list	contains	multiple	entries,	all	entries	are	sent	to	the	data
queue	in	one	operation.	For	example,	if	a	working	list	had	an	entry	length	of
20	bytes,	and	it	contained	7	entries,	then	the	actual	length	of	the	data	record
sent	to	the	data	queue	would	be	20	*	7	=	140	bytes.	This	processing	must	be
considered	when	specifying	the	MAXLEN	parameter	of	the	IBM	supplied
CRTDTAQ	(create	data	queue)	command	under	IBM	i.
If	a	list	is	passed	to	the	Built-In	Function	that	contains	zero	(0)	entries	no
error	occurs	and	no	data	is	written	to	the	data	queue.
For	maximum	speed,	no	significant	checking	is	performed	by	this	Built-In
Function.	Errors	with	lengths	or	data	types	may	cause	failures	that	require
detailed	analysis	of	error	information.
The	backup,	recovery	and	maintenance	of	any	data	queues	accessed	via	this
Built-In	Function	is	entirely	the	responsibility	of	the	user.
Data	queues	are	persistent	objects	but	their	data	content	can	be	lost	or
corrupted	during	a	system	failure.
Data	queues	are	limited	in	how	much	information	they	can	store.	Typically	no
more	than	16Mb	of	data	should	be	queued	at	any	point	in	time.			

Technical	Notes	-	IBM	i	Operating	System
The	data	queue	specified	must	be	created	by	using	the	IBM	supplied
CRTDTAQ	(create	data	queue)	command.
Data	queues	may	be	cleared	by	using	the	IBM	supplied	API	QCLRDTAQ.
Data	queues	may	be	deleted	by	using	the	IBM	supplied	DLTDTAQ	(Delete
Data	Queue)	command.		
The	data	queue	must	be	able	to	be	located	in	the	job's	current	library	list.
Support	for	fully	qualified	library/queue	names	is	not	provided	in	the	interests
of	good	design	practice.

Technical	Notes	-	Windows	Operating	Systems
Data	queues	are	automatically	created	when	they	are	referenced.
Data	queues	may	be	cleared	by	deleting	the	file	used	to	store	the	data	queue

data.	They	will	be	automatically	(re)created	the	next	time	they	are	referenced.
Data	queues	may	be	deleted	by	deleting	the	file	used	to	store	the	data	queue
data	and	the	file	used	to	control	data	queue	locking.		
Data	queues	are	stored	in	a	normal	Windows	file.
The	data	queue	storage	file	name	is	an	8	character	conversion	of	the	data
queue	name.	The	conversion	process	uses	the	same	algorithm	as	is	used	to
convert	10	character	LANSA	process	names	to	an	8.3	formatted	DLL
name.						
The	data	queue	storage	files	are	suffixed	by	.EDQ	(for	Emulated	Data	Queue)
and	.LDQ	(for	Lock	Data	Queue).	The	.LDQ	file	will	only	exist	if	a	function
has	at	some	time	attempted	a	receive	operation	from	the	queue.	
The	.EDQ	file	stores	the	actual	queue	data.	Space	in	this	file	is	reused	as
queue	entries	are	removed,	thus	the	size	of	this	file	represents	a	high	water
mark.
The	.LDQ	file	is	used	to	logically	lock	a	data	queue	during	receive
operations.	This	file	can	be	deleted	at	any	time	as	it	is	automatically
(re)created	on	demand.		
By	default	data	queue	storage	files	are	created	in	the	<sysdir>\x_ppp
directory	(where	ppp	is	the	partition)	of	the	current	LANSA	environment.
The	location	of	the	data	queue	storage	files	can	be	controlled	by	using	the
DPTH=	parameter	of	the	X_RUN	command.	For	example,	DPTH=c:\temp
would	cause	all	data	queues	to	be	created	and	accessed	in	the	c:\temp
directory.
The	DPTH=	parameter	value	can	be	dynamically	altered	in	an	application	by
using	the	SET_SESSION_VALUE	Built-In	Function.
You	should	not	use	the	DPTH=	parameter	for	any	purpose	other	than	the
simple	one	time	redirection	of	all	data	queue	accesses	to	an	alternative
directory.	Complicated	designs	that	use	many	instances	a	single	data	queue
name	in	many	different	directories	should	be	avoided	(for	the	same	reason
that	support	for	IBM	i	fully	qualified	library/queue	names	is	not	provided).

Examples
Receive	a	customer	number	and	a	part	number	from	a	screen	panel	and	then
place	them	onto	a	data	queue	called	PICKLIST:
DEF_LIST			NAME(#PICK)	FIELDS(#CUSTNO	#PARTNO)	TYPE(*WORKING)
											ENTRYS(1)

											(where	#CUSTNO	is	defined	in	the	dictionary	as	a	signed	5,0	number	and	#PARTNO	is	defined	in	the	dictionary	as	a	packed	7,0	number)
REQUEST				FIELDS(#CUSTNO	#PARTNO)
INZ_LIST			NAMED(#PICK)	NUM_ENTRYS(1)
USE								BUILTIN(SND_TO_DATA_QUEUE)	WITH_ARGS('PICKLIST'	9	#PICK)
	

Receive	5	customer	numbers	and	part	numbers	from	a	screen	panel	and	then
place	them	onto	a	data	queue	called	PICKLIST	as	5	separate	data	queue
entries:
DEF_LIST			NAME(#PICK)	FIELDS(#CUSTNO	#PARTNO)	TYPE(*WORKING)	ENTRYS(1)
BEGIN_LOOP	FROM(1)	TO(5)
		REQUEST				FIELDS(#CUSTNO	#PARTNO)
		INZ_LIST			NAMED(#PICK)	NUM_ENTRYS(1)
		USE								BUILTIN(SND_TO_DATA_QUEUE)	WITH_ARGS	('PICKLIST'	9	#PICK)
END_LOOP
	

Receive	5	customer	numbers	and	part	numbers	from	a	screen	panel	and	then
place	them	onto	a	data	queue	called	PICKLIST	as	a	single	data	queue	entry:
DEF_LIST			NAME(#PICK)	FIELDS(#CUSTNO	#PARTNO)	TYPE(*WORKING)	ENTRYS(5)
CLR_LIST			NAMED(#PICK)
BEGIN_LOOP	FROM(1)	TO(5)
		REQUEST				FIELDS(#CUSTNO	#PARTNO)
		ADD_ENTRY		TO_LIST(#PICK)
END_LOOP
USE						BUILTIN(SND_TO_DATA_QUEUE)	WITH_ARGS('PICKLIST'	9	#PICK)
	

9.221	SPACE_OPERATION

	Note:	Built-In	Function	Rules.

Requests	a	miscellaneous	space	object	operation.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 A R Space	Name 1 256 	 	

2 A R Requested	Operation 1 256 	 	

3-
20

X O Fields	that	specify	additional
operation	dependent
arguments.				

1 Unlimited 0 Unlimited

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 A O Standard	Return	Code
"ER"	=	Request	failed.	Messages
issued	will	indicate	more	about	the
cause	of	the	failure.	
Other	return	code	values	depend

2 2 	 	

upon	the	operation	requested.		See
the	description	of	each	operation
for	more	details.	

2-
20

X O Fields	that	specify	additional
operation	dependent	return	values.

1 Unlimited 0 Unlimited

	

The	CheckExistence	Operation
The	CheckExistence	operation	can	be	used	to	check	for	the	existence	of	a	space
object	within	the	current	operating	system	process	(or	job).	
In	the	following	example,	it	checks	for	the	existence	of	a	space	named
TestSpace:

Use	Builtin(SPACE_OPERATION)	With_Args('TestSpace'	CHECKEXISTENCE)	To_Get(#SPACERC)

	

The	return	code	is	only	ever	returned	as	"OK"	(space	object	exists)	or	"NR"
(space	object	does	not	exist)	by	valid	CheckExistence	requests.

The	SetCursor	Operation
The	SetCursor	operation	can	be	used	to	set	the	cursor	for	ALL	subsequent
invocations	of	the	SELECT_IN_SPACE	or	SELECTNEXT_IN_SPACE	BIFs.	It
is	not	specific	to	the	space	object.	If	the	cursor	is	set	to	2,	all	subsequent	select
BIFs	for	any	space	object	will	use	cursor	2	until	it	is	changed	to	something
different.	The	default	cursor	is	1,	and	up	to	4	cursors	can	be	specified	for	each
space	object.	The	only	checking	performed	is	to	ensure	that	the	cursor	number
is	between	1	and	4.
For	example	...

Use	Builtin(SPACE_OPERATION)	With_Args('TestSpace'	SETCURSOR	2)	To_Get(#SPACERC)

	

The	return	code	is	only	ever	returned	as	"OK"	(space	object	exists)	or	"ER"
(cursor	number	invalid)	by	valid	SetCursor	requests.
This	operation	permits	SELECT_IN_SPACE	requests	for	the	same	space	object

to	be	nested.	To	be	used	effectively,	the	SetCursor	operation	should	be	called
just	before	using	the	SELECT_IN_SPACE	or	SELECTNEXT_IN_SPACE	BIFs
to	ensure	that	the	correct	cursor	is	being	used.	This	is	typical	of	the	use	of	the
SetCursor	operation	to	ensure	that	no	unwanted	side-effects	occur	by	using	the
wrong	cursor	because,	for	example,	the	LEAVE	command	was	issued	from	the
inner	loop:
Use	Builtin(SPACE_OPERATION)	With_Args(#AR_SPACE	SetCursor	1)	To_Get(#SPACERC)
Use	Builtin(SELECT_IN_SPACE)	With_Args(#AR_SPACE)	To_Get(#SPACERC	#XG_AR)
Dowhile	Cond(*SPACEOK)
	
			Use	Builtin(SPACE_OPERATION)	With_Args(#AR_SPACE	SetCursor	2)	To_Get(#SPACERC)
	
			*	Note	the	use	of	a	different	set	of	fields	to	hold	the	data	-	#XG_AR2
			Use	Builtin(SELECT_IN_SPACE)	With_Args(#AR_SPACE)	To_Get(#SPACERC	#XG_AR2)
			Dowhile	Cond(*SPACEOK)
						*	Do	something	with	the	data	here
						Use	Builtin(SPACE_OPERATION)	With_Args(#AR_SPACE	SetCursor	2)	To_Get(#SPACERC)
						Use	Builtin(SELECTNEXT_IN_SPACE)	With_Args(#AR_SPACE)	To_Get(#SPACERC	#XG_AR2)
			Endwhile
	
			Use	Builtin(SPACE_OPERATION)	With_Args(#AR_SPACE	SetCursor	1)	To_Get(#SPACERC)
			Use	Builtin(SELECTNEXT_IN_SPACE)	With_Args(#AR_SPACE)	To_Get(#SPACERC	#XG_AR)
Endwhile
*	Set	the	cursor	back	to	the	default	for	any	further	SELECT...	BIF	calls.
Use	Builtin(SPACE_OPERATION)	With_Args(#AR_SPACE	SetCursor	1)	To_Get(#SPACERC)
	

9.222	SQUARE_ROOT

	Note:	Built-In	Function	Rules.

Calculates	a	square	root	value.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Value	to	have	square	root
calculated.
Note:
In	Visual	LANSA	the	maximum
length	is	15,5

1 30 0 9

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Square	root	value.
Note:
In	Visual	LANSA	the	maximum
length	is	15,5

1 30 0 9

	

	
Note:	This	function	will	truncate	the	root	value	into	the	return	value.	That	is,	if
the	return	field	is	defined	as	digits(4)	decimals(2)	and	the	value	of	the	square
root	is	1.41421,	the	value	returned	will	be	01.41.

Examples
**********	A	simple	square	root	calculator
DEFINE					FIELD(#NUMBER1)	TYPE(*DEC)	LENGTH(15)	DECIMALS(5)	EDIT_CODE(3)
DEFINE					FIELD(#RESULT)	TYPE(*DEC)	LENGTH(15)	DECIMALS(5)	EDIT_CODE(3)
**********	Request	number	to	calculate	root	from
REQUEST				FIELDS(#NUMBER1)
**********	Calculate	square	root
USE								BUILTIN(SQUARE_ROOT)	WITH_ARGS(#NUMBER1)	TO_GET(#RESULT)
**********	Display	result
DISPLAY			FIELDS(#NUMBER1	#RESULT)
	

9.223	START_FILE_EDIT

	Note:	Built-In	Function	Rules.

Starts	an	"edit	session"	on	the	definition	of	a	nominated	LANSA	file	definition.
The	edit	session	can	be	used	to	define	a	new	file	or	alter	an	existing	one.
The	file	definition	is	locked	for	exclusive	use	throughout	the	edit	session.
Only	one	file	definition	can	be	edited	at	one	time	(ie:	it	is	not	possible	to
concurrently	edit	2	file	definitions	from	within	the	same	job).
Details	of	the	new	or	amended	file	definition	will	be	lost	unless	the
END_FILE_EDIT	Built-In	Function	is	used	to	"commit"	them.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	file	to	be	edited 1 10 	 	

2 A Req Library	in	which	file	resides
*LIBL	or	*FIRST	is	acceptable	when	editing
an	existing	file	definition.
*DEFAULT	is	acceptable	when	editing	an
existing	file	definition	or	creating	a	new	one.
Note:
When	coding	*FIRST,	*DEFAULT,

1 10 	 	

*LIBL,etc.,	they	must	be	placed	in	extra
quotes	to	distinguish	them	as	literals	and	not
system	variables.	Thus,	three	single	quotes
must	be	coded	round	the	argument.	e.g.
'''*FIRST'''.
It	is	NOT	valid	to	code	double	quotes	and
single	quotes	("'*FIRST'")
Refer	to	the	Example.

3
**

A Req Source	of	edited	details.	Must	not	be	blank,
LAN	or	OTH.

3 3 	 	

4 A Opt File	description	Must	not	be	blank.	Required
for	a	new	file.

1 40 	 	

5 A Opt Initial	public	access.	Required	for	a	new	file.
ALL,	NORMAL	or	NONE	allowed.

1 6 	 	

6 A Opt File	component	edit	options
Byte	1:	Y	or	N	indicates	that	fields	are	to	be
edited.	Default	value	is	Y.
Byte	2:	Y	or	N	indicates	that	logical
views/files	are	to	be	edited.	Default	value	is
Y.
Byte	3:	Y	or	N	indicates	that	access	route
details	are	to	be	edited.	Default	value	is	Y.
When	a	byte	is	passed	as	N,	the	associated
component	of	the	file	definition	remains
unchanged	during	the	edit	session	and	is	not
flagged	for	pending	deletion	as	described
below.	Any	attempt	to	edit	that	component	of
the	file	definition	will	cause	a	fatal	error.

3 3 	 	

	

**	The	"source"	of	the	edited	details	is	vital.	When	an	edit	session	is
commenced	all	details	of	the	file	definition	that	have	the	same	"source"	as	that
passed	to	the	START_FILE_EDIT	Built-In	Function	are	flagged	for	pending
deletion.	If	the	details	are	not	"re-specified"	by	one	of	the	FILE_FIELD,

LOGICAL_VIEW,	etc	Built-In	Functions,	they	are	deleted	from	the	file
definition	by	the	END_FILE_EDIT	Built-In	Function.	The	exception	is	those
that	have	been	specifically	excluded	from	editing	using	one	or	more	of	the	byte
positions	in	the	6th	argument	previously	described.	This	allows	for	file	details
specified	by	other	sources	(such	as	direct	input	via	the	LANSA	Review	or
change	a	file	definition	facility	in	the	The	File	Control	Menu)	to	remain	intact
during	a	file	edit	session.
Examples	of	this	"source"	code	would	be:

LDM LANSA	data	modeling	interface

IEW Information	engineering	workbench	interface

ACC Accelerate	data	modeling	interface

Once	set,	the	source	code	used	should	never	be	changed	within	a	particular	type
of	interface.

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	edit	session	commenced
ER	=	fatal	error	detected
In	case	of	"ER"	return	code	error	message(s)
are	issued	automatically	and	the	edit	session
ended	without	commitment.

2 2 	 	

	

Example
The	following	example	defines	all	details	of	a	simple	name	and	address	file
called	NAMES	to	the	LANSA	system	by	using	Built-In	Functions	rather	than
the	conventional	menu	driven	interfaces.
***	Define	the	fields	into	the	data	dictionary	(no	prompting)
*
USE					BUILTIN(PUT_FIELD)	WITH_ARGS('N'	'CUSTNO'	'S'	007	0	'	'		
								'Customer	number')	TO_GET(#RETCODE)

its:lansa010.chm::/lansa/ugub_30007.htm

USE					BUILTIN(PUT_FIELD)	WITH_ARGS('N'	'CUSNAME'	'A'	010	0	'	'		
								'Customer	name')	TO_GET(#RETCODE)
USE					BUILTIN(PUT_FIELD)	WITH_ARGS('N'	'ADDRESS1'	'A'	020	0	'	'		
								'Address	line	1')	TO_GET(#RETCODE)
USE					BUILTIN(PUT_FIELD)	WITH_ARGS('N'	'ADDRESS2'	'A'	020	0	'	'		
								'Address	line	2')	TO_GET(#RETCODE)
USE					BUILTIN(PUT_FIELD)WITH_ARGS('N'	'ZIPCODE'	'S'	006	0	'	'		
								'Zip	code')	TO_GET(#RETCODE)
*
***	Start	an	edit	session	on	the	new	file	NAMES	in	library	QGPL
*
USE					BUILTIN(START_FILE_EDIT)	WITH_ARGS('NAMES'	'QGPL'	'DEM'	
											'Customer	details'	'NORMAL')	TO_GET(#RETCODE)
*
***	Use	of	triple	quotes	round	*FIRST	and	*DEFAULT	libraries
*
USE					BUILTIN(START_FILE_EDIT)	WITH_ARGS('CODES'	'''*FIRST'''	'TST'	'Codes	details'	'NORMAL')	TO_GET(#RETCODE)
*
USE					BUILTIN(START_FILE_EDIT)	WITH_ARGS('SALES'	'''*DEFAULT'''	'PRD'	'Sales	results'	'NORMAL')	TO_GET(#RETCODE)
*
***	Define	the	fields	in	the	file
USE					BUILTIN(FILE_FIELD)	WITH_ARGS('CUSTNO')	TO_GET(#RETCODE)
USE					BUILTIN(FILE_FIELD)	WITH_ARGS('CUSNAME')	TO_GET(#RETCODE)
USE					BUILTIN(FILE_FIELD)	WITH_ARGS('ADDRESS1')	TO_GET(#RETCODE)
USE					BUILTIN(FILE_FIELD)	WITH_ARGS('ADDRESS2')	TO_GET(#RETCODE)
USE					BUILTIN(FILE_FIELD)	WITH_ARGS('ZIPCODE')	TO_GET(#RETCODE)
***	Define	the	primary	or	relational	file	key
*
USE					BUILTIN(PHYSICAL_KEY)	WITH_ARGS('CUSTNO')	TO_GET(#RETCODE)
*
***	Define	additional	logical	view	in	CUSNAME	/	ZIPCODE	order
USE					BUILTIN(LOGICAL_VIEW)	WITH_ARGS('NAMESV1'	'Customers	in	name	order')	TO_GET(#RETCODE)
*
***	Define	keys	of	logical	view	NAMESV1
USE					BUILTIN(LOGICAL_KEY)	WITH_ARGS('NAMESV1'	'CUSNAME')	TO_GET(#RETCODE)
USE					BUILTIN(LOGICAL_KEY)	WITH_ARGS('NAMESV1'	'ZIPCODE')	TO_GET(#RETCODE)

***	Define	"one	to	one"	access	route	to	ZIPTABLE	by	using	key	ZIPCODE
USE					BUILTIN(ACCESS_RTE)	WITH_ARGS('DEM1'	'Zip	details'	'ZIPTABLE'	'''*FIRST'''	1	'N/AVAIL')	TO_GET(#RETCODE)

USE					BUILTIN(ACCESS_RTE_KEY)	WITH_ARGS('DEM1'	'ZIPCODE')	TO_GET(#RETCODE)
*
***	Define	"one	to	many"	access	route	to	ORDHDRV2	using	key	CUSTNO
USE					BUILTIN(ACCESS_RTE)	WITH_ARGS('DEM2'	'Order	details'	'ORDHDRV2'	'''*FIRST'''	999	'IGNORE')	TO_GET(#RETCODE)
USE					BUILTIN(ACCESS_RTE_KEY)	WITH_ARGS('DEM2'	'CUSTNO')	TO_GET(#RETCODE)
*
***	End	the	edit	session	and	commit	details
USE					BUILTIN(END_FILE_EDIT)	WITH_ARGS('Y')	TO_GET(#RETCODE)
	

9.224	START_FUNCTION_EDIT

	Note:	Built-In	Function	Rules.

Starts	an	"edit	session"	on	the	definition	of	a	nominated	LANSA	function
definition.
The	edit	session	can	be	used	to	define	a	new	function	or	alter	an	existing	one.
A	function	edit	session	must	be	started	and	ended	within	a	process	edit	session
on	the	parent	(i.e.:	owning)	process.	Multiple	edit	sessions	on	functions	within
the	same	process	may	be	conducted	serially	(but	not	concurrently)	within	the
same	process	edit	session.
For	example:

START_PROCESS_EDIT

						START_FUNCTION_EDIT	

						<<	work	with	function	A	>>	

							END_FUNCTION_EDIT

END_PROCESS_EDIT

	

or:

START_PROCESS_EDIT

						START_FUNCTION_EDIT	

						<<	work	with	function	A	>>	

						END_FUNCTION_EDIT

	

						START_FUNCTION_EDIT	

						<<	work	with	function	B	>>	

						END_FUNCTION_EDIT

END_PROCESS_EDIT

	

The	function	definition	is	locked	for	exclusive	use	throughout	the	function	edit
session.
Only	one	function	definition	can	be	edited	at	one	time	(ie:	it	is	not	possible	to
concurrently	edit	two	or	more	function	definitions	within	the	same	job).
A	function	edit	session	should	be	terminated	by	using	the
END_FUNCTION_EDIT	Built-In	Function	to	ensure	all	locks/etc	are
released/shutdown	in	an	orderly	manner.
Any	function	edit	session	that	receives	a	fatal	error	will	have	an
END_FUNCTION_EDIT	and	an	END_PROCESS_EDIT	operation
automatically	issued.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/Description MinMaxMinMax

Opt Len Len Dec Dec

1 A Req Name	of	function	to	be	edited 1 7 	 	

2 A Opt Function	Description.	Required	for	a	new
function	only.	Must	not	be	blank.	Default
value	is	FUNCTION.

1 40 	 	

3 A Opt Initial	public	access.
Required	for	a	new	function	only.	ALL,
NORMAL	or	NONE	allowed.	Default	value
is	NORMAL.

3 6 	 	

4 A Opt Include	RDML	audit	stamps	(Y,N).
Controls	the	content	and	length	of	the	RDML
working	lists	used	in	the	following	Built-In
Functions	in	this	function	edit	session:
GET_FUNCTION_RDML
EXECUTE_TEMPLATE	and
PUT_FUNCTION_RDML
Y=RDML	audit	stamping	is	included	in	the
RDML	working	lists	used	in	this	function	edit
session.
N=RDML	audit	stamping	is	not	included	in
the	RDML	working	lists	used	in	this	function
edit	session.
Default	value	is	N.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	edit	session
commenced
ER	=	fatal	error	detected

2 2 	 	

	

9.225	START_PROCESS_EDIT
Starts	an	"edit	session"	on	the	definition	of	a	nominated	LANSA	process
definition.
The	edit	session	can	be	used	to	define	a	new	process	or	alter	an	existing	one.
The	process	definition	is	locked	for	exclusive	use	throughout	the	edit	session.
Only	one	process	definition	can	be	edited	at	one	time	(ie:	it	is	not	possible	to
concurrently	edit	two	or	more	process	definitions	within	the	same	job).
A	process	edit	session	should	be	terminated	using	the	END_PROCESS_EDIT
Built-In	Function	to	ensure	all	locks/etc	are	released/shutdown	in	an	orderly
manner.
Any	process	edit	session	that	receives	a	fatal	error	will	have	an
END_PROCESS_EDIT	command	automatically	issued.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	process	to	be	edited 1 10 	 	

2 A Opt Process	description. 1 40 	 	

Used	for	a	new	process	only.
Default	value	is	PROCESS.

3 A Opt Process	menu	type	/	style.
Used	for	a	new	process	only.
Must	be	SAA/CUA	or
ACT/BAR.
Default	value	is	SAA/CUA.

7 7 	 	

4 A Opt Initial	public	access.
Used	for	a	new	process	only.
ALL,	NORMAL	or	NONE
allowed.
Default	value	is	NORMAL.

3 6 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	edit	session
commenced
ER	=	fatal	error	detected

2 2 	 	

	

9.226	START_RTV_SPLF_LIST

	Note:	Built-In	Function	Rules.

Used	in	conjunction	with	GET_SPLF_LIST_ENTRY	and
END_RTV_SPLF_LIST.	It	must	be	used	first	to	provide	the	selection	criteria
for	the	retrieval	of	spool	files.	The	selection	criteria	which	can	be	specified	are
User	Name,	Output	queue	name	and	library,	Form	Type,	User	Data	and	Status.
Once	this	START_RTV_SPLF_LIST	has	been	used	to	establish	the	selection,
the	GET_SPLF_LIST_ENTRY	can	be	used	to	retrieve	the	details	of	the	spool
files.
The	END_RTV_SPLF_LIST	must	be	used	after	the	list	of	spool	files	have	been
retrieved.	This	will	close	list	and	release	the	storage	allocated	to	that	list.
Refer	to	9.130	GET_SPLF_LIST_ENTRY	for	an	example.

For	use	with
LANSA	for	i YESNot	available	for	RDMLX.

Visual	LANSA	for	WindowsNO 	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt User	Name
This	argument	should	contain	the	User	Name
of	the	spool	files	you	want	to	retrieve.	A
value	of	*ALL	will	select	all	users.
Default	value	is	*ALL.

1 10 	 	

2 A Opt Output	Queue	Name
This	argument	is	used	in	conjunction	with
Output	Queue	Library	to	determine	from

1 10 	 	

which	output	queue	to	retrieve	spool	files.	A
value	of	*ALL	will	select	all	output	queues.
Default	value	is	*ALL.

3 A Opt Output	Queue	Library
This	argument	is	used	in	conjunction	with
Output	Queue	Name	to	determine	from	which
output	queue	to	retrieve	spool	files.
Default	value	is	*LIBL.

1 10 	 	

4 A Opt Form	Type
This	argument	should	contain	the	Form	Type
of	spool	files	to	retrieve.	A	value	of	*ALL
will	select	all	form	types.
Default	value	is	*ALL.

1 10 	 	

5 A Opt User	Data
This	argument	should	contain	the	User	Data
of	spool	files	to	retrieve.	A	value	of	*ALL
will	select	spool	files	regardless	of	their	user
data.
Default	value	is	*ALL.

1 10 	 	

6 A Opt Status
This	argument	should	contain	the	Status	of
the	spool	files	to	select.
Default	value	is	*ALL.
Possible	values	are	*ALL,	*CLOSED,
*DEFERRED,	*SENDING,	*FINISHED,
*HELD,	*MESSAGE,	*OPEN,	*PENDING,
*PRINTING,	*READY,	*SAVED,
*WRITING.

1 10 	 	

	

Return	Values
NoTypeReq/ Description Min Max Min Max

Opt Len Len Dec Dec

1 A Opt Return	code.
OK	=	The	list	was	opened	successfully.
ER	=	the	argument	selection	details	are
invalid.
NR	=	no	spool	files	were	found	which
match	the	selection	arguments.

2 2 	 	

	

9.227	STM_FILE_CLOSE
This	Built-In	function	closes	the	stream	file	which	was	previously	opened	by	a
STM_FILE_OPEN.
All	stream	files	opened	should	be	closed	before	terminating	a	function.	Once	the
stream	file	is	closed,	no	further	action	against	that	file	is	possible	until	it	is	re-
opened.	
Related	Built-In	Functions:	STM_FILE_OPEN,	STM_FILE_READ,
STM_FILE_WRITE,	STM_FILE_WRITE_CTL

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req File	number	(file	handle)	of	the	file	that	is	to
be	closed.
This	number	was	allocated	to	a	stream	file
and	returned	on	the	STM_FILE_OPEN.

1 3 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Return	Code
OK	=	File	has	been
closed

2 2 	 	

ER	=	Error	occurred.

	

Example
Refer	to	9.228	STM_FILE_OPEN.

9.228	STM_FILE_OPEN

	Note:	Built-In	Function	Rules.

This	Built-In	function	opens	or	creates	a	stream	file.	Options	control	how	the
file	is	opened	or	created.	Associated	Built-In	Functions	may	be	used	to	read	or
write	data	to	the	stream	file.
When	executing	in	LANSA	for	i,	these	Built-In	functions	may	be	used	to	read
and	write	to	IBM	i	IFS	files.
Related	Built-In	Functions:	9.229	STM_FILE_READ,	9.230
STM_FILE_WRITE,	9.227	STM_FILE_CLOSE	and	9.231
STM_FILE_WRITE_CTL.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 A Req Full	path	and	file	name	of	the	file	to	be
opened.
eg	/mydir/myfile.txt.	See	File	Open
Options	following.
If	the	file	is	opened	for	read,	the	file
must	exist.	If	the	file	is	opened	for	write
or	append,	the	file	will	be	created	if	it
does	not	exist.

1 Unlimited 	 	

2 A Opt Options	that	are	to	be	applied	to
handling	of	this	stream	file.

1 Unlimited 	 	

Multiple	options	may	be	specified.
Options	must	be	separated	by	at	least
one	blank	character.
Refer	to	Technical	Notes	for	details.
Possible	options:
Read
Write
Append
Text
Binary
LineTerminator=aaaaa
LineTerminator=LF
NoTrim
CodePage=nnnnn

3 A Opt Used	on	IBM	i	only:	Authority	level	to
set	the	public	authorities	when	a	file	is
created.	
N=NONE	no	authorities	set
A=ALL	set	authority	to	RWX
R=READUSE	set	authority	to	RX
Default	value	is	R

1 1 	 	

4 A Opt Buffering.	This	option	is	only	valid	if
the	file	is	opened	for	a	Write	or	Append
operation.	If	this	option	is	set	to	N,	data
will	be	written	to	permanent	storage
before	the	BIF	returns.
Y	=	Buffering.
N	=	No	buffering.
Default	value	is	Y

1 1 	 	

5 A Opt Used	on	IBM	i	only:	When	a	file	is
created,	set	the	file	authorities	to	the
Group	Profile	settings	obtained	from	the
User	Profile.
N=	Not	apply
Y-	Apply

1 1 	 	

Defaul	value	is	N.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req File	number	(file	handle)
A	unique	file	number	is	allocated	to	this	file
when	opened	and	returned	in	this	value.	This
file	number	must	be	used	when	further
actions	are	made	against	this	file.	For
example	when	data	is	to	be	read	from	this	file
using	STM_FILE_READ	this	file	number
must	be	provided.
Up	to	256	files	may	be	opened	at	any	time.
Any	of	these	files	may	be	processed	by
providing	the	appropriate	file	number.

1 3 0 0

2 A Opt Return	Code
OK	=	File	has	been	opened	and	file	number
allocated.
ER	=	Error	occurred	on	the	file	open.	Refer	to
messages	for	details.

2 2 	 	

	

Technical	Notes
File	Open	Options
Note:	IBM	i	path	separator	is	/	(forward	slash).	\	(back	slash)	is	not	acceptable
in	IBM	i.	It	will	create	an	unreachable	file.

Option	group Default	value	if
not	specified

Option	values	which	may
be	specified

Notes

File	mode Read Read The	file	will	be

opened	for
read.	The	file
must	exist.

Write The	file	will	be
opened	for
write.	If	the	file
does	not	exist	it
will	be	created.
If	the	file	does
exist	the	data
contents	will	be
overwritten.

Append The	file	will	be
opened	for
write	at	the	end
of	the	file.
Write	actions
will	append	the
data	to	the
existing	file.	If
the	file	does	not
exist	it	will	be
created.

Data	mode Text Text Data	is
read/written	as
a	text	stream.
Character
conversion	is
done.	The	data
will	be
converted
between	the
code	page	of
the	job	and	the
code	page	of
the	file.	

Binary Data	is

read/written	as
a	binary	stream.
No	character
conversion	is
done.	The	data
is	not	altered	on
input	or	output.
If	a	file	is
created	in
Binary	mode,	it
will	be	created
with	the	code
page	of	the	job.

Line	format
This	option
enables	you	to
specify	the
line
terminating
character/s.
On	read	files,
this	character
is	searched	for
and	data	up	to
the	terminator
returned	by
each	read
action.	The
terminator
character/s
is/are	not
returned.
On	files	being
written	the
line	terminator
is	added	to	the
end	of	the	data

LineTerminator=LF
	

LineTerminator=ALL
	
Default=LF

Valid	on	READ
files	only.
Any	of	the	line
terminators
(CR,	CRLF,	LF,
NL	or	LFCR)
will	be	used	to
indicate	the	end
of	a	line.

LineTerminator=CR Terminator
character	is
Carriage	Return

LineTerminator=CRLF
See	Windows	Text	Mode
Handling

Terminator
characters	are
Carriage
Return,	Line
Feed

LineTerminator=LF
See	Windows	Text	Mode
Handling

Terminator
character	is
Line	Feed

LineTerminator=NL Terminator
character	is

on	each	write
action.

New	Line

LineTerminator=LFCR
See	Windows	Text	Mode
Handling

Terminator
characters	are
Line	Feed,
Carriage	Return

LineTerminator=NONE
All	line	terminators	(LT)
are	stripped	off	the
ends	of	lines
after	reading	and	before
writing.	The	end	of	line	is
what	the	BIF	has
recognised	as	an	end	of
line,	not	the	file's	end	of
line.	If	an	LT	is	chosen	that
does	not	match	the	file,
then	no	LTs	will	be	stripped
because	they	are	not	at	the
end	of	the	line.	Similarly	on
output.	Each	line	that	is
written	out	by	the	BIF	will
have	LT	stripped	from	the
end	only.

No	line
terminator
characters	are
used.

Trim	trailing
blanks
This	option
may	be	used
for	files	being
written	and
controls	the
trimming	of
trailing	blanks
from	Data
Blocks
provided	to
the	write

The	default	action
is	to	trim	trailing
blanks	from	Data
Blocks	before
writing	to	the	data
stream.

Notrim Trailing	blanks
will	not	be
trimmed	from
Data	Blocks
provided	on	the
write	action.

action.

Code	page
This	option	is
used	when
files	are
created	.	Files
created	on
IBM	i	IFS	will
be	created	as
the	specified
code	page.
This	option	is
ignored	when
executing	on	a
non	IBM	i
platform.

The	code	page	of
the	current	job	is
used	if	a	file	is
created.

CodePage=nnnnn
where	nnnnn	is	the	code
page	required.
Note:	CodePage=00819	is
usual	for	English	IBM	i	IFS
files.	

This	option	will
be	ignored	by	a
file	opened	for
writing	in
Append	mode
to	an	existing
file.	The	code
page
information	is
used	only	if	the
file	needs	to	be
created.

	

Windows	Text	Mode	Handling
Text	mode,	when	reading	a	file	with	0x0d0a	line	termination	Windows	only
returns	0x0a.	To	match	this	you	need	to	specify	LineTerminator=LF	or	ALL
In	Text	mode,	when	writing	a	file,	0x0d	is	output	by	Windows	if	0x0a	is	in	the
buffer.	Thus	when	LF	is	specified,	the	file	gets	0x0d0a.	When	CR	is	specified
file	gets	0x0d.	When	CRLF	is	specified	file	gets	0x0d0d0a.
In	Binary	mode	the	0x0d0a	is	read	intact.	Thus	CRLF	works.
When	the	stream	file	Built-In	Functions	are	used	to	copy	from	one	file	to
another	and	the	line	termination	in	the	file	is	0x0d0a	on	Windows,	these
combinations	preserve	the	CRLF:
Read	Text	mode,	LineTerminator=LF	or	ALL,	Write	Text	Mode,
LineTerminator=LF
Read	Binary	mode,	LineTerminator=CRLF	or	ALL,	Write	Binary	Mode,
LineTerminator=CRLF

Also,	unless	there	is	special	processing	for	flagging	that	reading	a	line	has
returned	OV,	extra	lines	will	be	output	when	writing.	Either	make	your	read

buffer	greater	than	the	maximum	length	or	handle	the	OV	lines	when	writing	so
that	the	line	is	re-constituted.
Binary	mode	is	more	portable	than	text	mode	because	it	is	entirely	predictable.
It	tells	the	OS	to	get	out	of	the	way	and	let	LANSA	handle	it.	On	Windows	there
is	no	character	conversion	in	text	mode	so	there	is	very	little	reason	to	use	it—it
only	causes	confusion.	Use	Binary	on	Windows.	You	know	that	the	Built-In
Function	will	receive	your	data	exactly	as	you	see	it	in	the	file	and	will	output	it
exactly	as	you	specify	it.
End	of	Line	markers	vary	from	platform	to	platform.	Windows	uses	0x0d0a	and
Linux	uses	0x0a.
Its	probable	that	using	Text	mode	and	LineTerminator=LF	for	both	Windows
and	Linux	would	also	work.

Code	page	conversion
When	executing	on	an	IBM	i	platform,	conversion	between	the	code	page	of	the
executing	job	and	the	code	page	of	the	stream	file	may	occur.	The	code	page	of
the	stream	file	is	established	when	the	file	is	created.
When	reading	data	from	a	file	in	text	mode,	the	data	is	converted	from	the	file's
code	page	to	the	job's	code	page.	When	reading	data	in	binary	mode,	no
conversion	is	done.
When	a	file	is	created	for	writing,	it	will	be	created	with	the	code	page	specified
on	the	STM_FILE_OPEN.	If	no	code	page	was	provided,	it	will	default	to	the
code	page	of	the	executing	job.	Text	data	written	to	a	file	will	be	converted	from
the	code	page	of	the	job	to	the	code	page	of	the	file.	Data	written	in	Binary
mode	will	not	be	converted.
If	a	file	is	opened	for	writing	in	Append	mode	to	an	existing	file,	the	code	page
of	the	existing	file	remains	unchanged.
On	Windows	and	Linux,	no	code	page	conversion	occurs.	When	reading	data
from	a	file	in	text	mode,	the	data	is	assumed	to	be	in	the	current	code	page.	Data
in	UTF-8	and	UTF-16	is	not	supported.

Example
A	stream	file	on	the	IBM	i	IFS	is	opened.	The	stream	file	is	in	directory	/tmp
and	named	updphone.txt	.		The	file	is	to	be	read	as	text	and	any	of	the	standard
line	terminators	(CRLF,	LFCR,	CR,	LF,	NL)	indicates	the	end	of	each	line.
Each	line	of	the	stream	file	is	read	and	the	information	used	to	update	database
file	PSLMST.	When	the	end	of	the	stream	file	is	encountered,	it	is	closed.

FUNCTION			OPTIONS(*DIRECT)																																							

DEFINE					FIELD(#FILENO)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	DESC('Allocated	file	number')
DEFINE					FIELD(#RETNCODE)	TYPE(*CHAR)	LENGTH(2)																	
DEFINE					FIELD(#COMMA)	TYPE(*CHAR)	LENGTH(1)																				
DEFINE					FIELD(#OPTIONS)	TYPE(*CHAR)	LENGTH(256)	DESC('Options	for	stream	file	open')
CHANGE					FIELD(#OPTIONS)	TO('''Read	Text	LineTerminator=ALL''')

USE								BUILTIN(STM_FILE_OPEN)	WITH_ARGS('''/tmp/updphone.txt'''	#OPTIONS)	TO_GET(#FILENO	#RETNCODE)
IF									COND('#retncode	*NE	OK')																																
MESSAGE				MSGTXT('Error	occurred	on	OPEN')																								
RETURN																																																													
ENDIF																																																														

**********	Read	IFS	file	updphone.txt	until	end	of	file.												
**********	File	contains	update	for	employee	phone	numbers.								
**********	Each	line	of	data	contains	EMPNO,PHONENO	with
**********	a	line	terminator	of	Carriage	return	line	feed.									
**********	eg		A0001,754310																																								
**********					A1007,325	187																																							

DOUNTIL				COND('#retncode	=	EF')																																		
USE								BUILTIN(STM_FILE_READ)	WITH_ARGS(#FILENO)	TO_GET(#EMPNO	#RETNCODE	#COMMA	#PHONEBUS)
IF									COND('#retncode	*EQ	ER')																													
MESSAGE				MSGTXT('Error	reading	stream	file')																		
RETURN																																																										
ENDIF																																																											
IF									COND('#retncode	*EQ	OK')																													
**********	update	PSLMST	with	information	from	stream	file						
UPDATE					FIELDS((#PHONEBUS))	IN_FILE(PSLMST)	WITH_KEY(#EMPNO)	
ENDIF																																																											

ENDUNTIL																																																								

**********	Close	stream	file	and	finish																									
USE								BUILTIN(STM_FILE_CLOSE)	WITH_ARGS(#FILENO)											
MESSAGE				MSGTXT('Phone	numbers	updated')																						
RETURN																																																										
	

9.229	STM_FILE_READ

	Note:	Built-In	Function	Rules.

This	Built-In	function	reads	data	from	the	specified	stream	file.	The	stream	file
was	previously	opened	by	a	STM_FILE_OPEN.
If	the	stream	file	was	opened	with	a	LineTerminator	option,	then	data	up	to	the
specified	line	terminator	will	be	return	by	a	STM_FILE_READ	action.
If	the	stream	file	was	opened	with	a	LineTerminator=NONE	option,	then	as
much	data	as	will	fit	in	the	provided	Returned	Data	Blocks	will	be	return	by	the
STM_FILE_READ	action.					
Related	Built-In	Functions:	STM_FILE_OPEN,	STM_FILE_CLOSE,
STM_FILE_WRITE,	STM_FILE_WRITE_CTL.	Refer	to	9.228
STM_FILE_OPEN	for	the	Line	Terminators	used.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req File	number	(file	handle)	of	the	file	from
which	data	is	to	be	read.
This	number	was	allocated	to	the	stream
file	by	the	STM_FILE_OPEN.

1 3 0 0

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max	Len Min
Dec

Max
Dec

1 A Req Returned	data	block	1
Data	will	be	returned	up	to	the	length	of
this	data	block

1 Unlimited 	 	

2 A Opt Return	Code
OK	=	Data	has	been	read	and	returned.	
If	a	Line	Terminator	was	specified	on
the	open,	data	up	to	the	nominated
terminator	would	have	been	returned.
If	Lineterminator=NONE	was	specified
on	the	open,	data	would	have	been
returned	in	the	Data	Blocks	provided.
OV	=	Data	overflow.
A	Line	Terminator	was	specified	on	the
open	and	as	much	data	as	will	fit	in	the
Data	Blocks	has	been	returned,
however,	more	data	exists	to	reach	the
nominated	terminator	for	this	line.	The
subsequent	STM_FILE_READ	will
return	the	further	data	from	this	line	up
to	the	nominated	terminator.
EF	=	End	of	file	encountered.
A	read	was	attempted	but	no	more	data
is	available.	The	Returned	Data	Block/s
will	be	returned	blank.
ER	=	Error	occurred.
	

2 2 	 	

3 A Opt Returned	data	block	2 1 Unlimited 	 	

4 A Opt Returned	data	block	3 1 Unlimited 	 	

5 A Opt Returned	data	block	4 1 Unlimited 	 	

6 A Opt Returned	data	block	5 1 Unlimited 	 	

7 A Opt Returned	data	block	6 1 Unlimited 	 	

8 A Opt Returned	data	block	7 1 Unlimited 	 	

9 A Opt Returned	data	block	8 1 Unlimited 	 	

10 A Opt Returned	data	block	9 1 Unlimited 	 	

11 A Opt Returned	data	block	10 1 Unlimited 	 	

	

Example
Refer	to	9.228	STM_FILE_OPEN.

9.230	STM_FILE_WRITE

	Note:	Built-In	Function	Rules.

This	Built-In	function	writes	data	to	the	specified	stream	file.	The	stream	file
was	previously	opened	by	a	STM_FILE_OPEN.
If	the	stream	file	was	opened	with	a	LineTerminator	option,	then	data	provided
in	the	Data	Blocks	will	be	written	and	terminated	with	the	provided	terminator.
If	the	stream	file	was	opened	with	a	LineTerminator=NONE	option,	then	data
provided	in	the	Data	Blocks	will	be	written	to	the	data	stream.		A	line	terminator
may	be	written	at	the	appropriate	position	in	the	data	stream	by	use	of	the
STM_FILE_WRITE_CTL	Built-In	Function.
Related	Built-In	Functions:	STM_FILE_OPEN,	STM_FILE_READ,
STM_FILE_CLOSE,	STM_FILE_WRITE_CTL.	Refer	to	9.228
STM_FILE_OPEN	for	the	Line	Terminators	used.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 N Req File	number	(file	handle)	of	the	file	to
which	data	is	to	be	written.
This	number	was	allocated	to	a	stream
file	and	returned	on	the
STM_FILE_OPEN.

1 3 0 0

2 A Req Data	Block	1 1 Unlimited 	 	

3 A Opt Data	Block	2 1 Unlimited 	 	

4 A Opt Data	Block	3 1 Unlimited 	 	

5 A Opt Data	Block	4 1 Unlimited 	 	

6 A Opt Data	Block	5 1 Unlimited 	 	

7 A Opt Data	Block	6 1 Unlimited 	 	

8 A Opt Data	Block	7 1 Unlimited 	 	

9 A Opt Data	Block	8 1 Unlimited 	 	

10 A Opt Data	Block	9 1 Unlimited 	 	

11 A Opt Data	Block	10 1 Unlimited 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Return	Code
OK	=	Data	has	been
written
ER	=	Error	occurred.

2 2 	 	

	

Example
In	this	IBM	i	example,	a	stream	file	is	written	to	the	IBM	i	IFS.
The	file	is	written	to	directory	/tmp	and	named	example1.txt
The	file	is	written	as	text	and	each	line	is	terminated	with	a	Carriage	Return
Line	Feed.	The	fields	in	each	line	are	not	trimmed	of	trailing	blanks,
consequently	the	data	will	appear	as	fixed	format.
FUNCTION			OPTIONS(*DIRECT)																																								

DEFINE					FIELD(#FILENO)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	DESC('Allocated	file	number')
DEFINE					FIELD(#RETNCODE)	TYPE(*CHAR)	LENGTH(2)																		

DEFINE					FIELD(#OPTIONS)	TYPE(*CHAR)	LENGTH(256)	DESC('Options	for	stream	file	open')
CHANGE					FIELD(#OPTIONS)	TO('''WRITE	notrim	Text	lineTerminator=	CRLF	CodePage=819''')

USE								BUILTIN(STM_FILE_OPEN)	WITH_ARGS('''/tmp/example1.txt'''	#OPTIONS)	TO_GET(#FILENO	#RETNCODE)
IF									COND('#retncode	*NE	OK')																															
MESSAGE				MSGTXT('Error	occurred	on	OPEN')																							
RETURN																																																												
ENDIF																																																													

**********	Read	file	PSLMST	and	write	to	the	IFS	file	example1.txt
**********	Each	line	written	contains	employee	name	and	phone	number.
**********	Each	line	written	contains	employee	name	and	phone	number.				

SELECT					FIELDS((#SURNAME)	(#GIVENAME)	(#PHONEBUS))	FROM_FILE(PSLMST)
USE								BUILTIN(STM_FILE_WRITE)	WITH_ARGS(#FILENO	#SURNAME	#GIVENAME	#PHONEBUS)	TO_GET(#RETNCODE)
IF									COND('#retncode	*NE	OK')																													
MESSAGE				MSGTXT('Error	writing	to	stream	file')															
RETURN																																																										
ENDIF																																																											
ENDSELECT																																																							

**********	Close	stream	file	and	finish																									

USE								BUILTIN(STM_FILE_CLOSE)	WITH_ARGS(#FILENO)											
RETURN		
	

9.231	STM_FILE_WRITE_CTL

	Note:	Built-In	Function	Rules.

This	Built-In	function	writes	Line	terminator	character/s	to	the	data	stream.
Related	Built-In	Functions:	STM_FILE_OPEN,	STM_FILE_CLOSE,
STM_FILE_WRITE,	STM_FILE_READ

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req File	number	(file	handle)	of	the	file	to
which	the	line	terminator	is	to	be	written.
This	number	was	allocated	to	a	stream	file
by	the	STM_FILE_OPEN.

1 3 0 0

2 A Opt Line	terminator	control	character/s	to	be
written.
Valid	values:
CR
LF		(default	value)
CRLF
NL
LFCR

1 10 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

2 A Opt Return	Code
OK	=	Terminator	has	been
written.
ER	=	Error	occurred

2 2 	 	

	

Example
In	this	IBM	i	example,	a	stream	file	is	written	to	the	IBM	i	IFS.	The	file	is
written	to	directory	/tmp	and	named	example2.txt
The	data	written	contains	the	employee	number	from	database	file	PSLMST
followed	by	the	skills	code	for	the	employee.	The	skills	are	separated	by	a
comma.	The	end	of	the	data	for	an	employee	is	marked	by	a	Carriage	Return
Line	Feed	as	in	this	example:
A0001,ADVPGM,CS
A0008
A0013
A0090,CL,COBOL,ECD,INTRO,MANAGE1,MARKET2,MARKET3,MBA,RPG
A	line	terminator	is	not	automatically	written	by	the	STM_FILE_WRITE
because	of	the	open	option	'LineTerminator=NONE'.		The	line	terminator	is
written	by	STM_FILE_WRITE_CTL	at	the	end	of	the	information	for	an
employee.
FUNCTION			OPTIONS(*DIRECT)																																							

DEFINE					FIELD(#FILENO)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	DESC('Allocated	file	number')
DEFINE					FIELD(#RETNCODE)	TYPE(*CHAR)	LENGTH(2)																	
DEFINE					FIELD(#COMMA)	TYPE(*CHAR)	LENGTH(1)	DEFAULT(',')							
DEFINE					FIELD(#OPTIONS)	TYPE(*CHAR)	LENGTH(256)	DESC('Options	for	stream	file	open')
CHANGE					FIELD(#OPTIONS)	TO('''WRITE	Text	CodePage=819	LineTerminator=NONE''')

USE								BUILTIN(STM_FILE_OPEN)	WITH_ARGS('''/tmp/example2.txt'''	#OPTIONS)	TO_GET(#FILENO	#RETNCODE)
IF									COND('#retncode	*NE	OK')																																

MESSAGE				MSGTXT('Error	occurred	on	OPEN')																								
RETURN																																																													
ENDIF																																																														

**********	Read	file	PSLMST	and	for	each	employee	get	his	skills			
**********	Write	to	stream	file	employee	no	and	list	of	skills					
**********		comma	delimited.	Terminate	with	a	CRLF.																

SELECT					FIELDS((#EMPNO))	FROM_FILE(PSLMST)																						
USE								BUILTIN(STM_FILE_WRITE)	WITH_ARGS(#FILENO	#EMPNO)	TO_GET(#RETNCODE)

SELECT					FIELDS((#SKILCODE))	FROM_FILE(PSLSKL)	WITH_KEY(#EMPNO)
USE								BUILTIN(STM_FILE_WRITE)	WITH_ARGS(#FILENO	#COMMA	#SKILCODE)	TO_GET(#RETNCODE)
ENDSELECT																																																								
**********	Add	line	terminator	at	end	of	details	for	employee				
USE								BUILTIN(STM_FILE_WRITE_CTL)	WITH_ARGS(#FILENO	CRLF)	TO_GET(#RETNCODE)
ENDSELECT																																																								

**********	Close	stream	file	and	finish																										

USE								BUILTIN(STM_FILE_CLOSE)	WITH_ARGS(#FILENO)												
RETURN																																																												
	

9.232	SYSTEM_COMMAND

	Note:	Built-In	Function	Rules.

Executes	an	operating	system	command.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Command	execution	option.
X	=	Execute	via	synchronous	process.
B	=	Execute	via	synchronous	process	in
silent	mode
S	=	Execute	via	the	"system"	command
interface	in	a	command	interpreter	window.
H	=	Execute	via	the	"ShellExecute"
command	interface.
A	=	Execute	via	asynchronous	process.
W	=	Backward	compatibility	only.	Use	"S"
instead.
For	IBM	i:
All	options	result	in	synchronous	execution
of	the	command.

1 1 	 	

2 A Opt Command	string	part	1 1 256 	 	

3 A Opt Command	string	part	2 1 256 	 	

4 A Opt Command	string	part	3 1 256 	 	

5 A Opt Working	Directory 1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Return/Response	Code	from	the
operating	system.
For	IBM	i:

0	=	command	successfully	executed
1	=	command	failed	to	execute
successfully.

7 7 0 0

	

Technical	Notes	-	all	platforms
By	using	this	Built-In	Function	you	are	introducing	an	operating	system
dependency	into	your	function.

You,	the	application	builder,	are	totally	responsible	for	doing	this,	and	there	is
no	guarantee,	expressed	or	implied,	that	anything	you	do	via	this	Built-In
Function	is	in	any	way	portable	across	different	operating	systems	(or	even
versions	of	the	same	operating	system).
Do	not	use	this	facility	to	call	the	X_RUN	entry	point.	It	may	be	used	to
"start"	or	"spawn"	another	X_RUN	process,	but	not	to	cause	it	to	be
recursively	invoked.
As	a	general	rule	on	a	Windows	platform,	for	the	Command	execution	option,
try	the	"X"	option	first,	and	if	it	does	not	process	the	command	as	you
require,	try	the	"S"	option.
An	overview	of	the	execution	options:

The	"X"	option	is	recommended	as	it	performs	synchronous

execution	of	the	command	on	all	platforms.	This	causes	your	LANSA
Function	to	wait	while	the	command	executes.	The	processes	created
will	be	fully	under	the	control	of	Windows	Desktop	Heap
Management	–	if	it	is	enabled	–	otherwise,	it	will	use	the	parent's
desktop	heap.	Note	that	a	return	code	of	2	implies	that	the	command
cannot	be	found	or	a	dependent	DLL	cannot	be	found.	On	IBM	i	and
Linux,	this	option	is	executed	the	same	as	the	"S"	option.

Following	is	an	"X"	option	example,	to	invoke	a	Windows'
notepad.exe	to	display	a	text	file:
USE	BUILTIN(SYSTEM_COMMAND)	WITH_ARGS('X'	'notepad.exe

"X"	option	does	not	start	a	command	interpreter	so	commands	like
COPY	or	DEL	are	not	supported.	If	you	need	to	use	these	commands,
use	the	"S"	option.	For	a	complete	list	of	these	commands	on	a
Windows	platform,	start	a	Command	Prompt	and	type	"Help".
The	"B"	option	is	the	same	as	the	'X"	option,	however,	the	execution
is	performed	in	the	background	and	hidden	on	the	Windows	platform.
USE	BUILTIN(SYSTEM_COMMAND)	WITH_ARGS('B'	'c:\temp\x.cmd
The	"S"	option	indicates	that	the	command	should	be	executed	as	a
standard	C	"system"	command.	This	option	starts	a	command
interpreter,	so	commands	like	COPY	and	DEL	are	supported.	For
example,	use	the	"S"	option	to	execute	a	command	line:
USE	BUILTIN(SYSTEM_COMMAND)	WITH_ARGS('S'	'help.exe	>	c:\temp\x.txt
The	"H"	option	is	only	available	in	the	Windows	environment	and
invokes	the	operating	system	linked	editor/viewer	for	the	file	specified
in	the	following	arguments.	Thus	if	command	string	part	1	contained
c:\temp\test.doc	then	the	operating	system	editor	associated	with	a
.doc	file	(probably	MS	Word)	would	be	started.	Likewise
c:\temp\test.htm	would	probably	cause	an	HTML	browser	to	be
started.	The	editor/viewer	is	executed	asynchronously.	For	example,
the	"H"	option	to	display	a	text	file	using	the	system's	default
application:
USE	BUILTIN(SYSTEM_COMMAND)	WITH_ARGS('H'	'c:\temp\x.txt
The	"A"	option	is	the	same	as	the	"X"	option,	except	it	performs
asynchronous	execution	of	the	command.	It	is	fully	supported	on	all
supported	Windows	platforms.	It	has	been	implemented	for	other
platforms,	but	it	may	or	may	not	work	as	expected	and	LANSA

reserves	the	right	to	not	address	such	issues.
The	"W"	option	exists	for	backward	compatibility.	The	"S"	option
should	be	used	for	new	applications.

Technical	Notes	-	Windows	&	Linux
Each	operating	system	has	differing	rules	about	commands	and	about	the
environments	in	which	they	are	allowed	to	be	executed.
It	is	solely	the	application	builder's	responsibility	to	test	that	commands	are
valid,	and	that	they	function	as	expected.
When	an	application	design	has	a	critical	point	involving	the	use	of	this	Built-
In	Function,	make	sure	it	does	what	you	expect	it	to	do	before	basing	an
application	design	around	it.

Technical	Notes	-	IBM	i
The	operating	system	command	specified	must	be	eligible	to	be	executed	via
the	IBM	Execute	Command	(QCMDEXC)	API.
Commands	executed	via	SYSTEM_COMMAND	adopt	the	authority	of	the
LANSA	system	owner	user	profile	and	the	user	profile	of	any	other	entries	in
the	call	stack	with	USRPRF(*OWNER)	as	long	as	the	chain	is	not	broken	by
an	entry	in	the	call	stack	with	USEADPAUT(*NO).

					If	this	does	not	suit	your	site	security	policy,	then	use	this	command:
CHGPGM	PGM(M@SYEXEC)	USRPRF(<your	value>)

USEADPAUT(<your	value>)
					You	should	check	these	values	after	any	upgrade	to	your	LANSA	system.

9.233	TCONCAT

	Note:	Built-In	Function	Rules.

Concatenates	up	to	five	alphanumeric	strings	to	form	one	string	as	a	return
value.	Trailing	blanks	from	each	string	are	truncated	during	the	concatenation
operation.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 U Req 1st	string	to
concatenate

1 Unlimited 	 	

2 U Req 2nd	string	to
concatenate

1 Unlimited 	 	

3 U Opt 3rd	string	to
concatenate

1 Unlimited 	 	

4 U Opt 4th	string	to
concatenate

1 Unlimited 	 	

5 U Opt 5th	string	to
concatenate

1 Unlimited 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max	Len Min
Dec

Max
Dec

1 U Req Concatenated	result
string

1 Unlimited 	 	

2 N Opt Length	of	returned
string

1 15 0 0

	

9.234	TEMPLATE_@@ADD_LST

	Note:	Built-In	Function	Rules.

Allows	a	new	field	to	be	added	to	an	application	template	list.	The	application
template	list	is	not	cleared	by	this	operation.	If	the	field	is	already	in	the	list	it	is
replaced,	otherwise	it	is	added	to	the	list.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	by	using	the	START_FUNCTION_EDIT
Built-In	Function.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	application	template	that	will	be
used	later	via	the	EXECUTE_TEMPLATE
Built-In	Function.

1 10 	 	

2 N Req Number	of	list	that	field	is	to	be	added	to. 1 2 0 0

3 A Req Name	of	field	to	be	added	to	application 1 10 	 	

template	list.	Must	be	a	valid	field	in	the
LANSA	data	dictionary.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.235	TEMPLATE_@@CANSNNN

	Note:	Built-In	Function	Rules.

Allows	an	application	template	character	reply	(@@CANSnnn)	variable	to	be
set	before	executing	an	application	template	via	the	EXECUTE_TEMPLATE
Built-In	Function.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	by	using	the	START_FUNCTION_EDIT
Built-In	Function.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	application	template	that	will	be
used	later	via	the	EXECUTE_TEMPLATE
Built-In	Function.

1 10 	 	

2 N Req Number	of	@@CANSnnn	variable	that	is	to
be	set.

1 2 0 0

3 A Req Value	that	@@CANSnnn	variable	is	to	be	set
to.

1 74 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.236	TEMPLATE_@@CLR_LST

	Note:	Built-In	Function	Rules.

Clears	an	application	template	list.
Application	template	lists	are	widely	used	by	application	templates	to	control
and	organize	the	generation	of	RDML	code.	They	should	not	be	confused	with
working	lists	or	browse	lists	which	are	RDML	level	constructs	used	in	normal
RDML	application.
This	Built-In	Function	allows	access	to	an	application	template	list,	thus
providing	a	means	by	which	information	can	be	set	up	for	(and	thus
communicated	to)	an	application	template	that	will	be	later	executed	via	the
EXECUTE_TEMPLATE	Built-In	Function	to	generate	RDML	code.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	by	using	the	START_FUNCTION_EDIT
Built-In	Function.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	application	template	that	will	be
used	later	via	the	EXECUTE_TEMPLATE
Built-In	Function.

1 10 	 	

2 N Req Number	of	application	template	list	to	be
cleared.

1 2 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.237	TEMPLATE_@@GET_FILS

	Note:	Built-In	Function	Rules.

From	a	nominated	base	file	name	this	facility	returns	to	the	caller	a	list	of	all
related	files.
Functionally	this	Built-In	Function	acts	like	the	first	step	of	the	application
template	command	@@GET_FILS	in	that	from	a	nominated	base	file	name	it
returns	a	list	of	files.
In	a	template,	the	command	displays	the	resulting	list	to	the	user	for	selection.
However,	the	Built-In	Function	version	returns	to	the	list	the	calling	RDML
function.
In	an	application	template	the	user	selects	files	by	entering	a	non-blank	value
beside	them	at	the	workstation.	To	perform	this	action	from	an	RDML	function
use	the	TEMPLATE_@@SET_FILS	Built-In	Function.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	by	using	the	START_FUNCTION_EDIT
Built-In	Function.
Please	Note:	This	Built-In	Function	has	considerably	more	power	than	its	online
template	equivalent	@@GET_FILS.
The	basic	difference	is	in	the	ability	of	this	function	to	extract	a	much	more
comprehensive	file	access	route	list.	The	online	version	prevents	the	extraction
of	the	same	underlying	physical	file	more	than	once	in	the	complete	file	list.
However	this	Built-In	Functions	relaxes	this	rule	so	that	the	same	underlying
physical	file	cannot	be	used	more	than	once	in	any	single	access	route	"chain"
or	"path"	starting	from,	and	including,	the	base	file.
Obviously	this	limit	must	be	imposed	to	prevent	"closed	circuits"	or	"infinite
loops"	within	the	access	route	"chain"	or	"path".
It	is	strongly	recommended	that	any	developer	who	plans	to	use	this	function
design	a	simple	test	function	using	this	Built-In	Function	to	extract	and	display
the	resulting	file	list	from	a	nominated	base	file.	This	way	the	characteristics	of
this	function	can	be	much	more	easily	examined	and	understood.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order

Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	application	template	that	will	be
used	later	via	the	EXECUTE_TEMPLATE
Built-In	Function.

1 10 	 	

2 A Req Primary	or	base	file	name. 1 10 	 	

3 N Opt From	file	number.
Default	value	is	1.

1 2 	 	

4 N Opt To	file	number.
Default	value	is	50.

1 2 	 	

5 A Opt Physical	Files	Only.
Must	be	Y	or	N.
Default	value	is	Y.

1 1 	 	

6 A Opt 1:1	Relationships	Only.
Must	be	Y	or	N.
Default	value	is	Y.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation	completed
ER	=	fatal	error	detected

2 2 	 	

2 L Req Returned	list	of	related	files	First	entry	will
be	the	base	file.	Working	list	must	have	an
aggregate	length	of	40	bytes	and	is	formatted
as	follows:
From	-	To			Description
1	-	1			Selection	Flag.	Format	Alpha.
First	entry	returned	as	X.	Others	returned	as	blanks.
2	-	11			File	Name.	Format	Alpha.
12	-	21			File	Library.
Format	Alpha.
22	-	22			File	Type
P	=		Physical
L	=	Logical.
23	-	32			Underlying	Physical	File.	Format	Alpha.
If	this	file	is	a	physical	file	then	this	name	will	be	the	same	as
the	entry	file	name.
33	-	35			Related	file	entry	number.	Format	Signed,	length	3,
decimal	0.
1	=	the	file	is	directly	related	to	the	base	file	or	is	the	base
file.	
other	=	file	is	indirectly	related	to	the	base	file	via	the	file
specified	by	this	entry	number.
36	-	36			Nature	of	relationship	between	this	file	and	the
related	file.	Format	Alpha.
P	=	Primary	or	Base	File.	
O	=	One	to	One
M	=	Many.
37	-	40			<<Future	expansion.>>	Format	Alpha.

. 	 	 	

	

9.238	TEMPLATE_@@NANSNNN

	Note:	Built-In	Function	Rules.

Allows	an	application	template	numeric	reply	(@@NANSnnn)	variable	to	be
set	before	executing	an	application	template	via	the	EXECUTE_TEMPLATE
Built-In	Function.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	by	using	the	START_FUNCTION_EDIT
Built-In	Function.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	application	template	that	will	be
used	later	via	the	EXECUTE_TEMPLATE
Built-In	Function.

1 10 	 	

2 N Req Number	of	@@NANSnnn	variable	that	is	to
be	set.

1 2 0 0

3 A Req Value	that	@@NANSnnn	variable	is	to	be	set
to.

1 15 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.239	TEMPLATE_@@SET_FILS

	Note:	Built-In	Function	Rules.

Allows	file(s)	from	a	list	of	files	previously	built	by	the
TEMPLATE_@@GET_FILS	Built-In	Function	to	be	"selected"	for	use	within
an	application	template	that	will	be	executed	later.
Functionally	this	Built-In	Function	acts	like	the	second	step	of	the	application
template	command	@@GET_FILS	in	that	a	"selection"	of	files	is	made	and	set
up	for	use	by	the	application	template.
In	an	application	template	the	user	selects	files	by	entering	a	non-blank	value
beside	them	at	the	workstation.	To	perform	this	action	from	an	RDML	function
use	this	Built-In	Function.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	by	using	the	START_FUNCTION_EDIT
Built-In	Function.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	application	template	that	will	be
used	later	via	the	EXECUTE_TEMPLATE
Built-In	Function.

1 10 	 	

2 L Req List	of	related	files	previously	built	by	the
TEMPLATE_	@@GET_FILS	command	with
the	"selection"	flag	set	to	a	non-blank	value	to
indicate	a	file	that	is	to	be	selected.
The	first	entry	in	the	list	is	the	base	file	and	it
must	always	be	selected.	Working	list	must
have	an	aggregate	length	of	40	bytes	and	is
formatted	as	follows:
From	-	ToDescription
1	-	1			Selection	Flag.	First	entry	returned	as	X.	Others
returned	as	blanks.
2	-	11			File	Name.	Format	Alpha.
12	-	21			File	Library.	Format	Alpha.
22	-	22			File	Type:
			P	=		Physical.	
			L	=	Logical.
23	-	32			Underlying	Physical	File.	If	this	file	is	a	physical
file	then	this	name	will	be	the	same	as	the	entry	file	name.
Format	Alpha.
33	-	35			Related	file	entry	number.	
Format	Signed(3,0).
1	=	the	file	is	directly	related	to	the	base	file	or	is	the	base
file.	
other	=	file	is	indirectly	related	to	the	base	file	via	the	file
specified	by	this	entry	number.
36	-	36			Nature	of	relationship	between	this	file	and	the
related	file.
			P	=	Primary	or	Base	File.
			O	=	One	to	One
			M	=	Many.
37	-	40			<<future	expansion>>	A(4)

	 	 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.240	TEMPLATE_@@SET_IDX

	Note:	Built-In	Function	Rules.

Allows	an	application	template	index	variable	to	be	set	to	a	nominated	value
before	executing	an	application	template	via	the	EXECUTE_TEMPLATE	Built-
In	Function.
This	Built-In	Function	can	only	be	used	against	a	function	that	has	been
previously	placed	into	an	edit	session	by	using	the	START_FUNCTION_EDIT
Built-In	Function.
Special	Note:	This	Built-In	Function	provides	access	to	very	advanced	facilities
that	basically	allow	RDML	functions	to	construct	new	RDML	functions.
This	is	a	very	specialized	area	that	requires	very	good	knowledge	of	the	LANSA
product.	Use	of	this	Built-In	Function	in	a	"commercial"	application	(e.g.	Order
Entry)	is	not	normal	and	should	not	be	attempted.
	This	is	a	Specialized	Built-In	Function	for	use	in	a	Development

Environment	only.

For	use	with
LANSA	for	i YESDo	not	use	on	IBM	i	in	an	RDMLX	partition.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux NO 	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Name	of	application	template	that	will	be
used	later	via	the	EXECUTE_TEMPLATE
Built-In	Function.

1 10 	 	

2 A Req Identifier	of	index	variable	that	is	to	be	set. 	 2 	 	

3 N Req Value	that	index	variable	is	to	be	set	to. 1 2 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	operation
completed
ER	=	fatal	error	detected

2 2 	 	

	

9.241	TRANSFORM_FILE

	Note:	Built-In	Function	Rules.

Transforms	the	current	contents	of	a	disk	file	into	one	or	more	working	lists.
It	is	designed	to	facilitate	the	transfer	of	information	between	Visual	LANSA
applications	and	other	products	such	as	spreadsheets.
Note:	This	Built-In	Function	is	designed	to	work	only	with	text	data	files.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max
Dec

1 L Req Name	of	the	primary	working	list	that	is
to	receive	the	transformed	file	data.

	 	 	 	

2 A Req Name	of	file	containing	input	data. 1 256 	 	

3 A Opt Input	File	Format.
A	=	Normal	Delimited	File.
B	=	DBF	File.	(Not	available	on	IBM	i.)
C	=	Column	File	(with	signs)
D	=	Column	File	(without	signs)
O	=	Comma	Delimited	File.
T	=	Horizontal	Tab	Delimited	File.
The	default	value	is	'A'.
The	following	special	testing	options	are
also	available.	These	options	are	for

1 3 	 	

testing	and	debugging	only	and	must	not
be	used	in	production	software.
CL	=	Expected	Column	File	(with	signs)
layout.
DL	=	Expected	Column	File		(without
signs)	layout.
Input	File	Formats	A,	C,	D,	O,	T,	CL
and	DL	support	UTF-8	format.	This	is
indicated	by	placing	a	'U'	in	the	second
column	of	this	argument	(i.e.	Format).
For	example,	UTF-8	input	for	format	A
would	have	an	Input	File	Format	of
'AU'.	Format	CL	would	have	an	Input
File	Format	of	'CUL'.

4 A Opt Method	of	handling	invalid	characters
encountered	within	alphanumeric	fields.
B	=	Replace	by	blank	character.
I	=	Ignore.	Include	character.
R	=	Remove	from	input.
The	default	value	is	B.

1 1 	 	

5 A Opt Expect	Carriage	Returns.
N	=	Do	not	expect	carriage	return.
T	=	Process	a	truncated	line	as	if	it	was
padded	with	blanks.
Y	=	Expect	carriage	return.
The	default	is	'Y'.

1 1 	 	

6 A Opt Decimal	Point	to	be	expected.	The
allowable	values	are:
R	=	Decimal	points	do	not	exist	and
should	be	implied	from	the	definition	of
the	field	being	loaded.	Only	valid	with
file	formats	C	and	D.
other	-	The	value	to	be	expected	as	a
decimal	point	character.

1 1 	 	

The	default	is	the	currently	defined
system	decimal	point	(ie:	'.'	or	',').
Note:	The	use	of	European	style	','
decimal	points	may	create	problems	in
files	formats	that	also	use	commas	to
delimit	fields.

7 A Opt Close	input	file	option.
Y	=	Close	the	file	at		completion.
N	=	Do	not	close	the	file	at		completion
unless	the		end	of	the	file	is
encountered.
The	default	is	Y.

1 1 	 	

8 A Opt Record	Selection	Option.
N	=	No	comparison	required.
EQ	=	Equal
GT	=	Greater	Than
GE	=	Greater	Than	or	Equal	To
LT	=	Less	Than
LE	=	Less	Than	or	Equal	To
NE	=	Not	Equal
The	default	is	N.
This	option	is	not	available	when	input
file	type	is	B.

1 20 	 	

9 N Opt Record	Selection	Position.
The	position	in	the	input	record	that	is	to
be	compared	with	the	compare	value.
The	first	byte	in	the	record	has	the
position	1.
The	default	is	1.
This	argument	is	ignored	if	argument
number	8	is	specified	as	N.

1 Unlimited 0 0

10 u Opt Record	Selection	Compare	Value.	When
a	record	is	read	from	the	input	buffer	it

1 256 	 	

is	compared	with	this	value	(at	the
position	specified).	The	number	of	bytes
to	be	compared	is	the	length	of	the	field
which	holds	the	value.
If	the	comparison	is	true	the	record	is
processed.		If	it	is	false	the	record	is	
skipped.	The	comparison	is	done	with
the	current	value	of	this	field	for	its	full
length	in	its	current	case.	This	argument
is	ignored	if	argument	number	8	is
specified	as	N.
There	is	no	default.	If	*DEFAULT	is
specified,	no	comparison	will	happen.

11
-
20

L Opt Allows	up	to	10	"appendage"	working
lists	to	be	specified.	Refer	to	the
following	notes	for	more	details.
Valid	only	if	the	primary	working	list	is
an	RDML	list.

	 	 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
EF	-	File	transformed	into	list(s).	End	of	input
file	was	encountered	before	the	list
overflowed.
FE	-	Format	Error.	For	example,	Input	file
format	is	specified	as	UTF-8	but	file	is
inUTF-16	format.
OV	-	File	transformed	into	list(s).	End	of
input	file	not	encountered	before	list	was	full
(ie:	overflow).
ER	-	Error	when	opening	file.

2 2 	 	

	

Technical	Notes	-	TRANSFORM_FILE
File	Name
Refer	to	TRANSFORM_LIST's	9.242.1	Output	File	Formats	for	detailed
information.
Input	File	Format
Refer	to	TRANSFORM_LIST's	9.242.1	Output	File	Formats	for	detailed
information.
The	special	options	CL	and	DL	are	available	for	testing	and	debugging	purposes
only.	Do	not	use	these	options	in	production	software.	When	used,	these	options
do	not	attempt	to	read	the	nominated	lists.	Instead,	the	layout	details	are
prepared,	and	the	expected	layout	of	the	input	file	is	actually	printed	back	into
the	file	specified	in	the	file	parameter.	If	the	nominated	file	does	not	exist,	it	is
created.	If	it	does	exist,	then	all	existing	data	in	the	file	is	erased	before	the
layout	details	are	printed	into	it.	Once	the	layout	file	has	been	produced	it	can
be	reviewed	by	any	standard	text	editor.	This	information	allows	you	to
compare	the	actual	input	data	file	record	layout	with	what	this	Built-In	Function
expects	the	layout	to	be.	Such	a	comparison	can	be	used	to	locate	formatting
problems.
Invalid	Character	handling	in	Alpha,	Char,	String,	BLOB,	CLOB	Fields
Refer	to	Invalid	Character	handling	in	Alpha,	Char,	String,	BLOB,	CLOB
Fields	in	TRANSFORM_LIST's	9.242.1	Output	File	Formats	.	The	same	rules
apply,	but	to	fields	in	the	working	lists	rather	than	to	those	in	the	output	files.
There	are	some	special	characters	which	cannot	be	processed	properly	by	this
Built-In	Function.	These	are:	Carriage	Return	(binary	value	in	Windows:	0x0D),
Line	Feed	(binary	value	in	Windows:	0x0A)	and	CTRL+Z	(binary	value	in
Windows:	0x1A).	For	example,	TRANSFORM_FILE	will	stop	reading	the	file
when	it	encounters	'0x1A'	character	in	Windows.
The	best	way	to	output	binary	data	to	a	file	by	TRANSFORM_LIST	is	to
convert	it	into	alphanumeric	strings	by	using	the	Built-In	Function	9.9
BINTOHEX,	then	output	the	result	by	TRANSFORM_LIST.
To	retrieve	the	data	back,	use	TRANSFORM_FILE	to	read	the	data	then	use
9.137	HEXTOBIN	to	convert	the	data	back	to	the	original	format.
Decimal	Point	Character

Normally,	this	option	is	only	required	by	customers,	in	some	European
countries,	who	have	configured	their	systems	to	use	a	comma	(,)	as	the	decimal
point	delimiter.	By	default	the	Built-In	Function	will	expect	a	comma.	This	may
not	be	appropriate	when	using	data	output	by	other	products	that	do	not	produce
the	comma.	This	option	may	be	used	to	force	this	BIF	to	expect	the	full
stop/period	character	(.).
Its	other	use	involves	the	special	R	(remove)	option	that	may	be	used	when
reading	files	created	by	applications	that	use	fixed	record	formats	and	"implied
(by	position)"	decimal	points.	In	this	case	the	number	of	decimal	positions	is
implied	by	the	definition	of	the	receiving	field	in	the	working	list.	Refer	to	the
TRANSFORM_LIST	command	for	more	details.
The	R	option	can	only	be	used	with	file	formats	C	and	D.
Close	Input	File	Option
This	option	prevents	this	Built-In	Function	from	closing	the	input	file	when	it
has	completed	execution,	unless	the	end	of	the	file	is	encountered.
In	normal	use,	a	call	is	made	to	this	Built-In	Function,	it	clears	the	lists,	loads	as
much	data	as	will	fit	into	the	lists,	closes	the	input	file	and	returns	control	to	the
invoking	function.	The	return	code	will	be	set	to	"EF"	or	"OV"	indicating
whether	the	entire	input	file	would	fit	into	the	list.
However,	by	using	the	"do	not	close"	option	it	is	possible	to	perform	more
complex	processing	such	as:
Reading	input	files	that	have	more	than	9999	records	and/or	avoid	making	huge
working	lists,	which	require	a	large	amount	of	allocated	memory.

def_list	#list	fields(....)	listcount(#count)	

									type(*working)	entrys(100)

	

dowhile	(#retcode	*ne	EF)

					use	TRANSFORM_FILE	into	#list	(with	"do	

																													not	close"	option)	

					execute	processlist	

endwhile	

execute	processlist

	

The	above	example	will	read	any	number	of	records	from	the	input	file,	even
though	the	list	being	used	is	efficiently	sized	with	100	entries.	The	list	is	acting
like	an	input	buffer	for	the	application.
Some	tips	for	using	this	option,	and	for	using	this	Built-In	Function,	are:
This	function	is	designed	to	be	an	interface	between	Visual	LANSA
applications	and	external	applications.	It	is	designed	to	open	a	file,	read	data
from	it,	then	close	it	again.	It	is	not	designed	to	service	more	complex
"system"	level	tasks	such	as	maintaining	an	"always	open"	polling	file.
Up	to	50	input	files	may	be	open	concurrently.	The	operating	system	you	are
using	may	have	limitations	or	configuration	options	that	lower	this	limit.
There	is	no	limitation	on	maximum	record	length.	At	the	end	of	every	record
a	New	Line	character	will	be	added	as	an	End	Of	Record	delimiter.
When	using	the	"Keep	Open"	option	always	let	the	Built-In	Function
continue	until	"EF"	is	returned.	This	means	that	the	input	file	will	have	been
closed.
This	Built-In	Function	must	check	all	arguments	every	time	it	is	called,	and
also	search	through	a	list	of	currently	opened	input	files	looking	for	a	match.
Therefore	it	is	most	efficient	when	called	just	a	few	times	with	lists	allowing
many	entries,	and	least	efficient	when	it	is	called	many	times	with	list(s)
allowing	just	a	few	entries.

Record	Selection	Capabilities
Not	available	when	the	input	file	type	is	B.
Arguments	8,	9	and	10	allow	simple	record	selection	logic	to	be	performed.	If
this	option	is	enabled	by	passing	argument	8	as	a	valid	value	other	than	N,	then
as	each	<record>	is	read	from	the	file	the	following	expression	is	evaluated:

if	(substring(<record>,<position>,<length>)	<operation>	<value>)
where:
<record>	is	the	current	record.
<position>	is	the	argument	9	position.
<length>	is	the	length	of	the	argument	10	field.	This	<length>	should	not	be

bigger	than	256	bytes.
<operation>	is	the	argument	8	operation.
<value>	is	the	value	of	the	argument	10	field.

If	the	expression	is	found	to	be	true,	the	record	is	selected.	If	the	expression	is
false	then	the	record	is	ignored.
Note	that	this	comparison	happens	before	any	data	processing.
It	is	a	byte-orientated	operation,	not	field-orientated	operation.
If	a	file	is	planned	to	be	used	with	Record	Selection,	it	is	recommended	that	you
use	a	fixed	length	columns	file	(C	or	D	types	in	TRANSFORM_LIST).	It	is
also	recommended	that	you	move	all	the	variable	length	fields	toward	the	tail	of
the	record	in	a	such	way	so	the	<position	>	appears	before	those	fields.	The
purpose	of	doing	this	is	to	make	sure	that	the	portion	of	<length>	bytes,	starting
from	<position>	in	the	input	buffer,	has	the	same	meaning	for	all	records.	Also
if	the	<position>	+	<length	>	is	greater	than	the	number	of	bytes	in	the	record,
TRANSFORM_FILE	will	give	this	fatal	error	"Invalid	arguments	for
comparison"	and	stop.
If	the	input	file	type	is	A,	O	or	T,	then	any	implied	character	appearing	before
the	data	to	be	compared	should	be	counted	in	the	<position	>	calculation.
Example:
An	A	type	file	is	built	from	a	list	of	2	Alpha	fields.	Both	are	9	bytes	long.	Fields
of	any	entry	are	always	full	(occupy	maximum	length).	There	is	no	invalid
character	in	the	data.	The	comparison	is	intended	to	be	from	the	first	byte	of	the
second	field.	So	the	<position>	must	be	calculated	like	this:
<position>	=	1(opening	double	quote	for	the	first	field)	+	9	(length	of	the	first
field)	+	(1	closing	double	quote)	+	1	(coma)	+	1	(opening	double	quote	for
the	second	field)	+	1	(<position>	starts	from	1)	=	14
	

If	the	output	file	type	is	C	or	D	the	<position>	calculation	is:
		<position>	=	9	(length	of	the	first	field)	+	1	(<position>	starts	from	1)	=	10
	

If	you	need	help	in	understanding	why	a	record	is	or	is	not	located,	turn	tracing
on	to	level	9,	category	'BIF'.	The	trace	file	will	list	the	comparison	parameters
used	and	the	data	that	did	not	match	the	comparison	parameters.	Note	that	the
trace	is	not	in	Unicode	so	Unicode	data	may	not	be	displayed	as	you	see	it	when
using	a	Unicode-aware	program	like	Notepad.

Appendage	Lists
Up	to	10	appendage	working	lists	may	be	specified	when	invoking	this	Built-In
Function.	Appendage	lists	may	be	used	when	the	input	file	contains	more	than
100	fields	or	where	the	aggregate	entry	length	of	a	list	exceeds	256	bytes.
Refer	to	the	9.242	TRANSFORM_LIST	Built-In	Function	for	more	details	of
appendage	lists.	The	concept	of	the	"appendage	option"	field	has	no	meaning	to
this	Built-In	Function.	All	fields	defined	in	appendage	list(s)	are	processed	just
like	a	logical	extension	of	the	primary	list	(argument	1).	Appendage	working
lists	should	all	have	the	same	maximum	number	of	entries	allowed	as	the
primary	list.
Error	Handling	and	Error	Activity
The	following	table	indicates	the	types	of	errors	that	you	can	trap	at	the	RDML
level	with	an	"ER"	return	code	(User	Trap)	and	those	that	will	cause	a	complete
failure	of	your	application	(System	Error).	System	errors	invoke	Visual	LANSA
full	error	handling	and	cause	the	entire	X_RUN	"session"	to	end.	They	cannot
normally	be	trapped	at	the	RDML	level.

Type	Of	Error Resulting	Action

Attempt	to	open	too	many	input	files System	Error

Input	file	option	is	not	A,	T,	C,	D,	B	or	O System	Error

Invalid	character	option	is	not	I,	B	or	R System	Error

Carriage	control	option	is	not	Y,	N	or	T System	Error

Close	file	option	is	not	Y	or	N System	Error

Appendage	list	has	wrong	maximum	entries	valueSystem	Error

Error	when	attempting	to	open	input	file User	Trap

Error	while	reading	from	input	file System	Error

Bad	or	unexpected	data	in	input	file System	Error

	

Error	Handling	Note
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of

your	application.

if	(#retcode	*ne	OK)	

				abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	Built-In	Function	to	every	generated	application
take	care	of	the	problem.	Situations	have	arisen	where	user	defined	error
handling	logic	has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML
code	(with	no	obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.
Special	note
BLOB,	CLOB	fields	values	in	Results	Lists
BLOB	(or	CLOB)	field	holds	only	the	file	name.	If	the	value	of	File	Name	is
<drive>:\<path>\<file>.<suffix>	then	the	BLOB	(or	CLOB)	file	itself	is	located
under	the	subdirectory:	<drive>:\<path>\<file>_LOB\	.
For	example:
To	get	a	BLOB	value	BLOBNumber1.txt	from	a	transformed	file:
C:\Root\Data\Transformed1.dat	
then	the	BLOB	file	itself	must	be:
C:\Root\Data\Transformed1_LOB\BLOBNumber1.txt
For	a	transformed	file	created	NOT	by	TRANSFORM_LIST,	BLOB	(or	CLOB)
files	need	NOT	to	be	duplicated.	In	this	case	the	BLOB	(or	CLOB)	value	must
have	the	full	path	in	it.
For	example,	if	you	have	a	BLOB	file	called	BLOBNumber1.txt	currently
located	in	C:\Data\	and	if	you	do	not		want	to	duplicate	the	BLOB	file,	the	value
of	the	BLOB	field	in	the	transformed	file	must	be	C:\Data\BLOBNumber1.txt.

Example
Refer	to	9.242	TRANSFORM_LIST.

9.242	TRANSFORM_LIST

	Note:	Built-In	Function	Rules.

Transforms	the	current	contents	of	one	or	more	working	lists	into	a	disk	file.
It	is	designed	to	facilitate	the	transfer	of	information	between	Visual	LANSA
applications	and	other	products	(e.g:	spreadsheets).

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 L Req Name	of	the	primary	working	list	that	is	to	be
transformed	into	a	disk	file.
Note:	If	this	list	contains	fields	of	type	Binary
or	VarBinary,	the	Built-In	Function	will	end
in	error.

	 	 	 	

2 A Req Name	of	file	to	be	replaced	or	created	by	this
Built-In	Function.

1 256 	 	

3 A Opt Output	File	Format.
A	-	Normal	Delimited	File.
B	-	DBF	File.(Not	available	on	IBM	i.)
C	-	Columnized	File	(Numeric	Fields	Have
Leading	Signs)	with	signs.
D	-	Columnized	File	(Numeric	Fields	do
NOT	have	Signs)	without	signs.

1 3 	 	

O	-	Comma	Delimited	File.
S	–	Comma	Delimited	File:	A	common	CSV
file	format.	It	has	exactly	the	same	format	as
type	O	files	except	that	a	completely	blank
field	is	not	represented	as	a	single	blank	and
trailing	blanks	are	ONLY	included	if	they
represent	invalid	character	substitutions.
T	-	Horizontal	Tab	Delimited	Files.
Output	File	Formats	A,	C,	D,	O,	S	and	T
support	UTF-8	format.	This	is	indicated	by
appending	a	'U'	to	this	argument	(i.e.Format).
For	example,	UTF-8	output	for	format	A
would	have	an	Output	File	Format	of	'AU'.
The	default	value	is	'A'.

4 A Opt Method	of	handling	invalid	characters
encountered	within	alphanumeric	fields.
'B'	-	Replace	by	blank	character.
'I'	-	Ignore.	Include	character.
'R'	-	Remove	from	output.
The	default	value	is	'B'.

1 1 	 	

5 A Opt Include	Carriage	Return	at	the	end	of	each
record.
'N'-	Do	not	include	carriage		return.
'T'	-	Include	carriage	return	and	also	truncate
all	blank	data	from	the	end	of	the	record.
'Y'-	Include	carriage	return.
The	default	is	'Y'.

1 1 	 	

6 A Opt Decimal	Point	to	be	used	.	The	allowable
values	are:
'R'-	Remove	the	decimal	point	from	all
numeric	representations.	This	will	shorten	the
length	of	numeric	fields	that	have	decimal
positions	by	1	character.	Only	valid	with	file
formats	C	and	D.

1 1 	 	

other	-	The	value	to	be	used	as	a	decimal
point	character.
The	default	is	the	currently	defined	system
decimal	point	(i.e.	'.'	or	',').
Note:	The	use	of	European	style	','	decimal
points	may	create	problems	in	files	formats
that	also	use	commas	to	delimit	fields.

7 A Opt Close	Output	File	Option.
'Y'-	Close	the	file	at	completion.
'N'-	Do	not	close	the	file	at		completion.
The	default	is	'Y'.

1 1 	 	

8	-
17

L Opt Allows	up	to	10	Appendage	Working	Lists	to
be	specified.	Refer	to	the	following	notes	for
more	details.
Valid	only	if	the	primary	working	list	is	an
RDML	list.

	 	 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code.
OK	-	File	Created.	
ER	-	Error	when	opening	file.	Refer	to
Return	Code	-	Error	Handling	and	Error
Activity	.

2 2 	 	

	

Technical	Notes	-	TRANSFORM_LIST
9.242.1	Output	File	Formats
9.242.2	Other	Parameters

SQLNULL	Handling
When	a	field	is	SQLNULL,	the	*NULL	equivalent	is	output.
Special	Handling	for	BLOB	and	CLOB	value
The	full	BLOB/CLOB	file	name	will	be	saved	in	the	output	file.	The
BLOB/CLOB	file	itself	will	be	duplicated	in	a	subdirectory	under	the	output	file
directory.	The	name	of	this	subdirectory	is	<output	file	name>_LOB.	For
example	if	the	output	file	is:
C:\Root\Data\Transformed1.dat,
and	the	original	CLOB	file	is	C:\XYZ\	CLOBNumber1.txt
then	the	duplicated	CLOB	file	is
C:\Root\Data\Transformed1_LOB\CLOBNumber1.txt
and	the	CLOB	value	in	the	Transformed1.dat	will	be:
C:\XYZ\	CLOBNumber1.txt
If	Transformed1.dat	is	moved	(or	copied)	into	another	system,	move	or	copy
the	sub	directory	Transformed1_LOB	and	all	its	contents	as	well.
Example
The	following	outline	function	can	save	the	contents	of	an	existing	SQL	table	to
a	disk	file,	or	insert	the	contents	of	disk	file	into	an	SQL	table	(i.e.	An	SQL	table
Save/Restore	function)

def_list	#list	fields(....)	listcount(#count)	type(*working)	entrys(100)
request	fields	(#option	and	name	of	disk	file	involved)
if	(#option	=	SAVE)	
		select	fields(...)	from_file(...)	
									add_entry	#list
									if	(#count	=	100)	
												use	TRANSFORM_LIST	#list	(with	"do	not	close"	option)	
												clr_list	#list
									endif	
							endselect	
							use	TRANSFORM_LIST	#list	(with	"close"	option)
else	(#option	was	RESTORE)
				dowhile	(#retcode	*ne	EF)
								use	TRANSFORM_FILE	into	#list	(with	"do	not	close"	option)	
								execute	insertlist	
			endwhile	
			execute	insertlist	

endif
subroutine	insertlist	
				selectlist	#list	
								insert	fields(...)	to_file(....)	
				endselect
				clr_list	#list	
endroutine
	

By	adding	the	CONNECT_SERVER	and	CONNECT_FILE	Built-In	Functions,
this	function	could	be	very	simply	expanded	to	support	the	following	table	of
"data	transfers":

Data	Target <-	-	-	-	-	-	-	-	-	- Data	Source -	-	-	-	-	-	-	-	-	->

	 PC	SQL	Table PC	Disk	File IBM	i
File

PC	SQL	Table N/A Yes Yes

PC	Disk	File Yes N/A Yes

IBM	i	File Yes Yes N/A

9.242.1	Output	File	Formats
Currently	the	following	output	formats	are	supported.	In	the	examples	this
notation	is	used:

<OptCR> Indicates	an	optional	carriage	return	character.

<nl> Indicates	a	new	line	(or	line	feed)	character.

<t> Indicates	a	horizontal	tab	character.
A	-	Normal	Delimited	File
B	-	DBF	File
C	-	Columnized	File	(Numeric	Fields	Have	Leading	Signs)
D	-	Columnized	File	(Numeric	Fields	do	NOT	have	Signs)
O	-	Comma	Delimited	File
T	-	Horizontal	Tab	Delimited	Files
dBASE	III	PLUS	Field	Format	Supported

A	-	Normal	Delimited	File
One	of	the	most	common	file	formats.	Alpha,	BLOB,	CLOB	fields	are	enclosed
in	double	quote	signs	(")	and	trailing	blanks	are	removed.	A	completely	blank
field	appears	as	a	single	blank	enclosed	in	double	quotes	(i.e.	"	").
Date,	DateTime,	Time	,	Char	and	String	fields	are	saved	like	Alpha.	In	Char	and
String	fields	trailing	blanks	are	not	removed.
Integer,	Float,	Packed	and	Signed	fields	appear	with	a	leading	negative	sign,
leading	zeros	suppressed	and	a	decimal	point	(where	required).
Boolean	field	occupies	1	byte.	FALSE	value	appears	as	'F'.	TRUE	appears	as
'T'.
Individual	fields	are	delimited	by	a	comma	(,).
The	length	of	each	file	record	may	vary.
The	position	of	an	individual	field	within	a	record	may	vary	from	record	to
record.	This	is	not	a	"fixed	format"	file.	For	example:

"SMITH","IAN",2153,345.56,"ADM",-456.78<OptCR><nl>

	

B	-	DBF	File
This	option	tells	the	BIF	to	produce	dBASE	III	PLUS,	without	memo	DBF	files.
It	is	another	common	file	format	used	to	exchange	information	with	other
environments	such	as	Microsoft	Excel.	Refer	to	dBASE	III	PLUS	Field	Format
Supported	more	details.
There	are	limitations	to	this	option.	Below	are	listed	both	supporeted	and	non-
supported	types.
Supported	Types
Alpha/Char/String	(up	to	254	bytes	only),	stored	as	Character
Packed	and	Signed	field	values	are	stored	as	DBF	Numeric.
Date	field	value	is	stored	as	DBF	Date
DateTime	field	value	is	stored	as	DBF		Timestamp.	Fraction	may	be	lost	during
the	transforming	process.
A	Timestamp	value	occupies	8	bytes	in	DBF	file	–	two	longs,	first	for	date,
second	for	time.		The	date	is	the	number	of	days	since		01/01/4713	BC	(Julian
day)	.	Time	is	hours	*	3600000L	+	minutes	*	60000L	+	Seconds	*	1000L.
Please	refer	Julian	Day	Count	for	details	about	Julian	Day	Count	algorithm.
Time	field	value	is	stored	as	DBF	Timestamp.	But	only	last	2	bytes	will	be	used.
The	value	of	the	first	2	bytes	will	be	1900-01-01
Integer	field	value	is	stored	as	DBF	Numeric.	1	byte	Integer	occupies	4	bytes
including	sign.	2	bytes	Integer	occupies	6	bytes	including	sign	.	4	bytes	Integer
occupies	11	bytes	including	sign.	8	bytes	Integer	occupies	20	bytes.	The	value
firstly	is	converted	to	a	string	(radix	10),	if	the	length	of	the	string	is	smaller
than	the	required	length,	it	will	be	right	padded	by	BLANKs.
Float	field	value	is	stored	as	DBF	Double.
Boolean	field	value	is	stored	as	DBF	Logical
Unsupported	Types
Alpha,	Char,	String	with	length	>	254,	Integer	8,	BLOB	and	CLOB.

C	-	Columnized	File	(Numeric	Fields	Have	Leading	Signs)
Produces	a	columnized	or	"fixed	format"	file.	The	length	of	each	file	record	is
identical	(unless	appendage	lists	are	used	...	see	later	note)	and	the	position	of	an
individual	field	is	identical	within	each	record.
The	width	of	a	field's	resulting	column	(and	thus	the	overall	"record	layout"	of
the	file)	can	be	predicted	by	the	following	rules:

Alpha,	BLOB,	CLOB	Date,	DateTime,	Time	,	Char	and	String	fields	have	the
same	length	as	their	definition	in	the	Data	Dictionary	or	RDML	function.
For	Packed	and	Signed	fields	the	length	is	their	Total	Digits	defined	in	the
Data	Dictionary	or	RDML	function	plus	1(for	the	leading	sign).	Note	that	this
is	the	"Total	Digits",	not	the	computed	storage	or	byte	length	for	Packed
fields.
8	bytes	Integer	field	occupies	20	bytes	in	the	output	file	(include	the	leading
sign).
4	bytes	Integer	field	occupies	11	bytes	in	the	output	file	(include	the	leading
sign).
2	bytes	Integer	field	occupies	6	bytes		in	the	output	file	(include	the	leading
sign).
1	byte	Integer	field	occupies	4	bytes	(include	the	leading	sign).
4	bytes	Float	field	occupies	14	bytes	(include	the	leading	sign)
8	bytes	Float	field	occupies	23	bytes(include	the	leading	sign)
Unlike	type	A	and	T	formats,	which	do	not	show	a	leading	positive	sign,	this
format	always	includes	a	leading	positive	or	negative	sign.	Even	UNSIGNED
Integer	will	have	a	positive	sign.

If	the	field	has	decimal	positions	(and	the	option	to	remove	decimal	points	is
not	being	used)	increment	the	length	by	1	to	allow	for	the	decimal	point(this
is	not	applicable	for	Float,	where	the	dot	'.'		presence	is	compulsory).	For
example:

A(12)	A(9)	S(4,0)	P(9,2)	A(3)	P(7,2)

..........:........:....:..........:..:........	SMITH	IAN	+2153+0000345.56ADM-
00456.78<OptCR><nl>

	

D	-	Columnized	File	(Numeric	Fields	do	NOT	have	Signs)
Produces	a	file	exactly	as	for	type	"C"	except	that	Packed,	Signed,	Integer	and

Float	fields	do	not	have	a	leading	sign.	For	examples:
With	decimal	points	included:

A(12)	A(9)	S(4,0)P(9,2)	A(3)	P(7,2)

..........:........:...:.........:..:.......	SMITH	IAN	21530000345.56ADM00456.78<OptCR>
<nl>

	

With	decimal	points	removed:

A(12)	A(9)	S(4,0)P(9,2)	A(3)	P(7,2)

..........:........:...:........:..:......	SMITH	IAN	2153000034556ADM0045678<OptCR>
<nl>

	

All	the	rules	applied	to	predict	the	width	of	a	fields	resulting	column	are	the
same	as	for	type	"C"	with	an	exception	for	Packed,	Signed,	Integer	or	Float
fields:	1	must	be	subtracted	from	the	result.
Float	field	Note:
The	Float	field	value	is	converted	into		"scientific	notation"	representation.
For	example:
The	biggest	double	float	value	that	can	be	handled	by	some	C	compilators	in
"scientific	notation"	representation	is:	1.7976931348623158E+308

O	-	Comma	Delimited	File
A	common	file	format.	It	has	exactly	the	same	format	as	type	A	files	except	that
Alpha,	BLOB,	CLOB	Date,	DateTime,	Time	,	Char	and	String	fields	are	not
enclosed	in	double	quotes.

T	-	Horizontal	Tab	Delimited	Files
A	popular	file	format.	It	has	exactly	the	same	format	as	type	A	files	except	that
Alpha,	BLOB,	CLOB	Date,	DateTime,	Time	,	Char	and	String	fields	are	not
enclosed	in	double	quotes	and	individual	fields	are	delimited	by	the	horizontal
tab	character.	For	example:

SMITH<t>IAN<t>2153<t>345.56<t>ADM<t>-456.78<OptCR><nl>

dBASE	III	PLUS	Field	Format	Supported

Symbol Data	Type Description

@ Timestamp 8	bytes	-	two	longs,	first	for	date,	second	for	time.		The
date	is	the	number	of	days	since		01/01/4713	BC.	Time
is	hours	*	3600000L	+	minutes	*	60000L	+	Seconds	*
1000L

+ Autoincrement Same	as	a	Long

B Binary,	a
string

10	digits	representing	a	.DBT	block	number.	The
number	is	stored	as	a	string,	right	justified	and	padded
with	blanks.

C Character All	OEM	code	page	characters	-	padded	with	blanks	to
the	width	of	the	field.

D Date 8	bytes	-	date	stored	as	a	string	in	the	format
YYYYMMDD.

F Float Number	stored	as	a	string,	right	justified,	and	padded
with	blanks	to	the	width	of	the	field.	

G OLE 10	digits	(bytes)	representing	a	.DBT	block	number.
The	number	is	stored	as	a	string,	right	justified	and
padded	with	blanks.

I Long 4	bytes.	Leftmost	bit	used	to	indicate	sign,	0	negative.

L Logical 1	byte	-	initialized	to	0x20	(space)	otherwise	T	or	F.

M Memo,	a
string

10	digits	(bytes)	representing	a	.DBT	block	number.
The	number	is	stored	as	a	string,	right	justified	and
padded	with	blanks.

N Numeric Number	stored	as	a	string,	right	justified,	and	padded
with	blanks	to	the	width	of	the	field.	

O Double 8	bytes	-	no	conversions,	stored	as	a	double.

	

	

	

9.242.2	Other	Parameters
Appendage	Working	Lists
Close	Output	File	Option
Decimal	Point	to	be	used
Return	Code	-	Error	Handling	and	Error	Activity
File	Name
Invalid	Character	handling	in	Alpha,	Char,	String,	BLOB,	CLOB	Fields
Julian	Day	Count

File	Name
Must	be	formatted	correctly	for	the	operating	system	being	used.	For	Windows
either	a	fully	qualified	name	in	the	format	<drive>:\<path>\<file>.<suffix>	may
be	used,	or	a	shortened	form	such	as	<file>.<suffix>.	The	shortened	form	will
replace	or	create	the	file	in	the	current	directory.
The	<suffix>	value	DAT	is	conventionally	used	for	permanent	data	files	and
TMP	for	temporary	files.	If	the	file	exists	it	is	opened	and	all	existing	data	is
erased.	If	the	file	does	not	exist	it	is	created	and	then	opened.

Invalid	Character	handling	in	Alpha,	Char,	String,	BLOB,	CLOB
Fields
Some	character	values	may	corrupt	the	output	file	if	they	are	inserted	into	the
output	data.	This	option	specifies	what	should	happen	if	an	invalid	character	is
encountered.	The	set	of	invalid	characters	that	are	scanned	for	varies	by
requested	output	format	as	follows:

Format Invalid	Characters

A	&	B Horizontal	Tab,	Vertical	Tab,	Carriage	Return,	Form	Feed,	Back	Space,
New	Line	(Line	Feed),	Double	Quotes,	End	of	String	Delimiter	(i.e.
X'00').

O Horizontal	Tab,	Vertical	Tab,	Carriage	Return,	Form	Feed,	Back	Space,
New	Line	(Line	Feed),	Comma,	End	of	String	Delimiter	(i.e.	X'00').

T,	C	&
D

Horizontal	Tab,	Vertical	Tab,	Carriage	Return,	Form	Feed,	Back	Space,
New	Line	(Line	Feed),	End	of	String	Delimiter	(i.e.	X'00').

	

Note:	Only	Alpha,	Char,	String,	BLOB,	CLOB	fields	are	scanned	for	invalid
characters.
The	supported	invalid	character	handling	options	are:
B	-	Replace	by	Blank	
The	character	is	replaced	by	a	blank	character	in	the	output	stream.
I	-	Ignore	
The	presence	of	the	character	is	ignored.	It	is	included	into	the	output	stream
and	may	corrupt	further	processing	of	the	file	by	other	applications.
R	-	Remove	from	Output	
The	character	is	removed	from	the	output	stream.	This	option	effectively
shortens	the	output	field	length	by	1.	You	should	not	use	this	option	when
making	"fixed	format"	output	files.

Decimal	Point	to	be	used
This	option	is	only	required	when	the	system	is	configured	to	use	a	comma	(,)
as	the	decimal	point	delimiter.	By	default,	output	numeric	fields	will	use	the
comma	but	this	may	not	be	appropriate	when	other	other	products	will	not
accept	the	comma.	This	option	may	be	used	to	force	this	Built-In	Function	to
use	of	the	full	stop/period	character	(.).
The	other	use	for	this	parameter	is	the	special	'R'	(Remove)	option	that	may	be
used	when	creating	files	for	input	to	applications	that	use	fixed	record	formats
and	"implied	(by	position)"	decimal	points.
The	'R'	option	can	only	be	used	with	file	formats	'C'	and	'D'.

Close	Output	File	Option
The	Close	Output	File	option	prevents	the	Built-In	Function	from	closing	the
output	file	when	it	has	completed	execution.
In	normal	use,	a	working	list	is	loaded	with	data	and	passed	to	this	Built-In
Function.	The	list	is	read,	written	to	the	disk	file,	and	then	the	disk	file	is	closed.
Subsequent	use	of	this	Built-In	Function	with	the	same	file	name	will	replace
the	existing	file	(and	its	data)	with	a	new	set	of	data.
By	using	the	"do	not	close"	option,	much	more	complex	processing	may	be
performed	such	as	in	the	following	example.
To	avoid	using	huge	working	lists	which	require	a	large	amount	of	allocated
memory,	the	following	code	will	create	any	number	of	records	in	the	output	file
even	though	the	list	being	used	is	efficiently	sized	with	just	100	entries.	The	list

is	acting	like	an	output	buffer	for	the	application.

def_list	#list	fields(....)	listcount(#count)	
									type(*working)	entrys(100)
select	fields(...)	from_file(...)	
			add_entry	#list	
			if	(#count	=	100)
							use	TRANSFORM_LIST	#list	(with	"do	not
																										close"	option)
							clr_list	#list
			endif	
endselect	
use	TRANSFORM_LIST	#list	(with	"close"	option)
	

To	produce	output	files	that	have	mixed	record	types.	Consider	an	output	file
containing	order	details	that	has	two	different	"record	types".	One	for	the
order	"header"	and	one	for	each	"detail"	item.	A	function	to	do	this	might	be
structured	like	this:

def_list	#head	fields(....)	type(*working)	entrys(1)
def_list	#line	fields(....)	listcount(#count)	type(*working)	entrys(100)
	
select	fields(...)	from_file(orders)
		inz_list	#head	num_entrys(1)
		use	TRANSFORM_LIST	#head	(with	"do	not	close"	option)
		select	fields(...)	from_file(lines)	with_key(...)
									add_entry	#line	
									if	(#count	=	100)
															use	TRANSFORM_LIST	#line	(with	"do	not	
																																		close"	option)
															clr_list	#line
									endif	
									endselect
									use	TRANSFORM_LIST	#line	(with	"do	not	close"
																												option)
									clr_list	#line	
endselect	
use	TRANSFORM_LIST	#line	(an	empty	list	with	"close"	

																			option).
	

			Some	tips	for	using	this	option,	and	for	using	this	Built-In	Function	are:
This	function	is	designed	to	be	an	interface	between	Visual	LANSA
applications	and	external	applications.	It	is	designed	to	open	a	file,	write	data
to	it,	then,	close	it	again.	It	is	not	designed	to	service	more	complex	"system"
level	tasks	such	as	maintaining	an	"always	open"	log	file.
Up	to	50	output	files	may	be	open	concurrently.	The	operating	system	you	are
using	may	have	limitations	or	configuration	options	that	lower	this	limit.
There	is	no	limitation	on	maximum	record	length.	At	the	end	of	every	record
a	New	Line	character	will	be	added	as	an	End	Of	Record	delimiter.
If	the	file	created	is	to	be	read	by	TRANSFORM_FILE	in	version	10.0	of
LANSA	or	prior,	then	the	maximum	record	length	must	be	20000	bytes.
Always	place	a	final	call	to	this	Built-In	Function	to	cause	it	to	close	the
output	file.	Pass	the	working	list	as	an	empty	or	cleared	list	if	you	just	want	to
close	the	file	and	not	add	any	more	data	to	it.
This	Built-In	Function	must	check	all	arguments	every	time	it	is	called,	and
also	search	through	a	list	of	currently	opened	output	files	looking	for	a	match.
Therefore	it	is	most	efficient	when	called	just	a	few	times	with	list(s)
containing	many	entries,	and	least	efficient	when	it	is	called	many	times	with
list(s)	containing	just	a	few	entries.

Appendage	Working	Lists
With	the	introduction	of	RDMLX	working	list,	which	may	contain	up	to	1000
fields,	2G	(2147483647)	entries	with	an	entry	length	of	up	to	2Gb	(2147483647
bytes),	in	most	of	the	cases	you	will	not	need	the	Appendage	Lists.	How	ever	if
RDMLX	appendage	lists	are	used,	the	same	rules	as	for	RDML	lists	are	applied
(apart	from	the	above).	Note	that	when	the	primary	working	list	is	an	RDMLX
list,	an	appendage	list	cannot	be	used.
Up	to	10	appendage	working	lists	may	be	specified	when	invoking	this	Built-In
Function.	This	Built-In	Function	uses	a	driving	loop	that	can	be	represented	like
this:

	->	do	for	each	entry	in	the	"primary"	working	list	(ie:	argument	1)
|
|						map	details	of	primary	list	entry	"n"	to	output	buffer

|
|			->	do	for	each	appendage	working	list	that	has	been	specified.
|		|						get	a	matching	entry	"n"	from	the	appendage	list.
|		|			--	if	entry	"n"	can	be	found
|		|		|			--	test	the	case	of	the	entry's	"appendage	option"
|		|		|		|---->	when	=	A,		Append	this	entry	to	the	current	record.
|		|		|		|---->	when	=	N,		Write	the	existing	buffer,	ends	the	current	record	with	a
New	Line	
|		|		|		|						character	.	Clear	the	output	buffer	and	map	this	entry	into	it	to	start	a
new	|		|		|		|						record.
|		|		|		|---->	when	=	O,		Omit	(ie:	skip)	this	list	entry.
|		|		|		|---->	otherwise:	Issue	a	fatal	error	and	kill	the	function.
|		|		|			--	endcase
|		|			--	endif
|			--	enddo
|
|						if	the	buffer	is	not	empty,	write	output	record	from	buffer.
|
	--	enddo
	

Note	the	"appendage	option".	Any	working	list	that	is	used	as	an	appendage	list
must	have	an	alphanumeric	1	field	as	its	first	defined	field.	This	alphanumeric	1
field	is	the	"appendage	option"	and	indicates	how	the	entry	should	be	handled.
The	currently	supported	values	are:

A Append	this	entry	to	the	output	buffer	being	built.

N Write	the	existing	buffer	and	make	a	new	one	with	this	entry.

O Omit	this	entry	from	the	output	stream.

The	appendage	option	field	is	not	really	part	of	the	list.	Its	value	is	tested,	but	it
is	not	output	to	the	output	buffer,	so	it	has	no	bearing	in	record	layout	and/or
length	calculations	even	though	it	is	actually	part	of	the	working	list	definition.
So	far	the	use	of	"appendage	lists"	may	not	be	apparent.	However,	by	using
appendage	lists	you	can	solve	the	following	problem:
An	RDML	working	list	can	contain	at	most	100	fields.	However	you	may
wish	to	output	a	file	containing	120	fields	(say).	You	can	do	this	by	using	a
primary	RDML	list	of	100	fields	and	a	single	appendage	list	of	21	fields

(including	the	appendage	option	field).	The	following	example	allows	an
output	file	with	a	record	containing	up	to	199	fields	to	be	created.	Since	up	to
10	appendage	lists	can	be	specified	this	allows	a	theoretical	total	of	100	+	(10
*	99)	=	1090	fields	in	an	output	file	record.	Similarly	some	functions	have
their	maximum	RDML	working	list	entry	length	restricted	to	256	bytes	(this
is	an	IBM	i	limitation	but	it	is	imposed	in	Visual	LANSA	to	maintain
application	portability).	This	limitation	can	also	be	easily	overcome	by	using
one	or	more	appendage	lists.
If	an	RDMLX	working	list	with	120	fields	is	used,	the	"appendage	list"	is	not
required.

The	following	example	covers	the	"A"	(append)	option.	However	the	"N"	(new)
and	"O"	(omit)	appendage	options	can	be	effectively	used	to	create	"variable
record	files"	in	an	efficient	manner.

def_list	#plist		fields(....)	type(*working)
def_list	#alist1	fields(#aoption)	type(*working)
change	#aoption	'A'
select	fields(...)	from_file(....)
			fetch	fields(...)	from_file(...)
			fetch	fields(...)	from_file(...)
			fetch	fields(...)	from_file(...)
			add_entry	#plist
			add_entry	#alist1
endselect
use	TRANSFORM_LIST	#plist	(with	appendage	list	#alist1)
	

			Consider	some	sort	of	"transaction"	output	file	that	you	must	create	for	input
to	an	existing	mainframe	application	system.

Every	customer	must	have	a	type	"HDR"	header	record.	There	may	be	a	type
"ADR"	address	update	record	and	there	may	be	a	type	"BIL"	billing	record.
Very	old	fashioned,	but	still	very	common.
By	defining	a	primary	list	for	the	HDR	data	and	two	appendage	lists	for	the
ADR	and	BIL	data	(with	appendage	option	fields)	a	"stream"	of	mixed	format
and	optional	records	like	this	can	be	created	by	just	one	invocation	of	this	Built-
In	Function.	In	this	case	the	appendage	options	O	(omit)	and	N	(new)	would	be
used.

HDR-HDR-ADR-HDR-BIL-HDR-ADR-BIL-HDR-HDR-ADR-BIL-HDR

	

If	however,	you	wanted	to	create	multiple	BIL	records	for	a	single	HDR	record
you	would	have	to	use	the	"do	not	close"	option.	See	the	reference	in	the	Close
Output	File	Option	for	more	details	of	how	this	could	be	achieved.

Return	Code	-	Error	Handling	and	Error	Activity
The	following	table	indicates	the	types	of	errors	that	you	can	trap	at	the	RDML
level	with	an	"ER"	return	code	(User	Trap)	and	those	that	will	cause	a	complete
failure	of	your	application	(System	Error).	System	errors	invoke	Visual	LANSA
full	error	handling	and	cause	the	entire	X_RUN	"session"	to	end.	They	cannot
normally	be	trapped	at	the	RDML	level.

Type	Of	Error Resulting	Action

Attempt	to	open	too	many	output	files System	Error

Output	file	option	is	not	A,	T,	C,	D,	B	or	OSystem	Error

Invalid	character	option	is	not	I,	B	or	R System	Error

Carriage	control	option	is	not	Y,	N	or	T System	Error

Close	file	option	is	not	Y	or	N System	Error

Invalid	appendage	option	in	appendage	list System	Error

Error	when	attempting	to	open	output	file User	Trap

Error	while	writing	to	opened	output	file System	Error

	

Note:
It	is	very	strongly	recommended	that	you	avoid	building	complex	error	handling
schemes	into	your	applications.	Use	a	very	simple	trap	like	this	at	all	levels	of
your	application.

if	(#retcode	*ne	OK)	

										abort	msgtxt('Failed	to')	

endif

	

Let	the	standard	error	handling	Built-In	Function	to	every	generated	application
take	care	of	the	problem.	Situations	have	arisen	where	user	defined	error
handling	logic	has	become	so	complex	as	to	consume	40	-	50%	of	all	RDML
code	(with	no	obvious	benefit	to	the	application).	Do	not	fall	into	this	trap.

Julian	Day	Count
The	Julian	Day	Count	is	a	uniform	count	of	days	from	the	past	(-4712	January
1,	12	hours	UTC	(Universal	Coordinated	Time	-	the	modern	equivalent	of
Greenwich	Mean	Time)	(Julian	proleptic	Calendar)	=	4713	BCE	January	1,	12
hours	GMT	(Julian	proleptic	Calendar)	=	4714	BCE	November	24,	12	hours
GMT	(Gregorian	proleptic	Calendar)).	At	this	point,	the	Julian	Day	Number	is
0.
The	Julian	Day	Count	is	not	related	to	the	Julian	Calendar	introduced	by	Julius
Caesar.
There	are	several	algorithms	of	calculating	the	Julian	Day	Number.	Although
they	are	very	similar	to	each	other,	the	results	may	be	different.	The	algorithm
used	by	this	Built-In	Function	calculates	the	Julian	Day	Number	of	any	date
given	on	the	Gregorian	Calendar.	The	Julian	Day	Number	calculated	will	be	for
0	hours,	GMT,	on	that	date.
1.		Express	the	date	as	Y	M	D,	where	Y	is	the	year,	M	is	the	month	number	(Jan
=	1,	Feb	=	2,	etc.),	and	D	is	the	day	in	the	month.

2.		If	the	month	is	January	or	February,	subtract	1	from	the	year	to	get	a	new	Y,
and	add	12	to	the	month	to	get	a	new	M.	(Thus,	we	are	thinking	of	January
and	February	as	being	the	13th	and	14th	month	of	the	previous	year).

3.	Dropping	the	fractional	part	of	all	results	of	all	multiplications	and	divisions,
let

						A	=	Y/100
						B	=	A/4
						C	=	2-A+B
						E	=	365.25x(Y+4716)
						F	=	30.6001x(M+1)
						JD=	C+D+E+F-1524
This	is	the	Julian	Day	Number	for	the	beginning	of	the	date	in	question	at	0

hours,	UTC.
The	following	calculation	is	used	to	convert	a	Julian	Day	Number	to	a
Gregorian	date,	assuming	that	it	is	for	0	hours,	UTC.	Drop	the	fractional	part	of
all	multiplicatons	and	divisions.
Note:	This	method	will	not	give	dates	accurately	on	the	Gregorian	Proleptic
Calendar,	that	is,	the	calendar	you	get	by	extending	the	Gregorian	calendar
backwards	to	years	earlier	than	1582	using	the	Gregorian	leap	year	rules.	In
particular,	this	method	fails	if	Y<400.
						Z	=	JD
						W	=	(Z	-	1867216.25)/36524.25
						X	=	W/4
						A	=	Z+1+W-X
						B	=	A+1524
						C	=	(B-122.1)/365.25
						D	=	365.25xC
						E	=	(B-D)/30.6001
						F	=	30.6001xE
						Day	of	month	=	B-D-F
						Month	=	E-1	or	E-13	(must	get	number	less	than	or	equal	to	12)
						Year	=	C-4715	(if	Month	is	January	or	February)	or	C-4716	(otherwise).

Also	see
General	Variables

9.243	UNLOAD_FILE_DATA

	Note:	Built-In	Function	Rules.

Will	call	the	OAM	for	the	requested	file	and	unload	all	its	data	to	the	flat	file
specified.	If	the	flat	file	specified	already	exists	it	will	be	overwritten.		See	Note
following	re	version	upgrade	issues.

This	Built-In	Function	expects	to	be	executed	on	the	same	machine	as
the	OAM.	Both	the	BIF	and	the	OAM	need	to	access	the	output	file.	If
you	execute	the	BIF	from	a	local	Function	but	redirect	the	File	to
SuperServer,	it	is	your	responsibility	to	ensure	that	the	output	filename
is	valid	on	both	the	client	and	the	server.

For	use	with
LANSA	for	iYESThe	unloaded	data	can	be	used	on	other	platforms,	for

example,	load	the	data	on	Windows	using	the
LOAD_FILE_DATA	Built	In	Function.

Visual
LANSA	for
Windows

YES	

Visual
LANSA	for
Linux

YES	

	

Arguments
No.TypeReq/OptDescription Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req The	LANSA	File	Name 1 10 	 	

2 A Opt Output	File	Path/Name
Default	Value	=\X_ppp\source\<File
Name>.dat

1 256 	 	

3 A Opt Y\N	Check	for	OAM
Default	=	N

1 1 	 	

4 A Opt Unload	BLOB	and	CLOB	fields.
Default	=
N
,	meaning	BLOB	and	CLOB	are
unloaded	as	their	default	(*SQLNULL).
If
Y
,	if	BLOB	or	CLOB	fields	exist	on	the
file	and	are	not	Null,	they	are	unloaded
to	files	in	the	same	directory	as	the
output	file	(Arg	2),	with	the	naming
convention
FileName_Field_DiskFile.ext	(where
DiskFile.ext	is	the	disk	file	name	saved
in	the	table	for	the	LOB).

1 1 	 	

5 A Opt Perform	a	Commit	to	release	any
database	locks	that	the	database	may
leave	as	part	of	this	operation.
Default	=
N
,	for	backward	compatibility.	
Y
will	release	any	database	table	locks.
Sybase	leaves	a	database	table	locked	at
the	end	of	this	operation.	This	blocks
dropping	the	table.
Set	this	value	to	Y	to	release	the
database	table	lock	so	that	the	table	can
be	dropped,	for	example,	by
REBUILD_FILE.

1 1 	 	

6 A Opt CTD	Location	Level
A=	All	(Partition	+	System).

1 1 	 	

P	=	Partition	Level	only.
S=System	Level	only.
Default	is	A.

	

Return	Values
No.TypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code:
OK	=	File	successfully	unloaded	
ER	=	File	unload	failed	(possible	causes	-
invalid	path,	out	of	space	on	disk	drive).	
NT	=	No	table	exists	
NO	=	No	OAM.	File	does	not	exist	or	is	not
compiled.
NO	only	returned	when	input	option	3	is	set
to	Y.

2 2 	 	

2 L Opt Working	list	of	files	created	for	unloaded
BLOB	and	CLOB	files

256 256 	 	

	

Note
As	from	V10.0,	UNLOAD_FILE_DATA	will	make	a	copy	of	the	.CTD
(Common	Table	Definition)	file	with	a	.CTX	(ex-Common	Table	Data)
extension.
The	.CTX	file	must	always	be	with	its	.DAT	file	and	OAM.

9.244	UNLOCK_OBJECT

	Note:	Built-In	Function	Rules.

Releases	the	lock	on	the	specified	User	Object

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	LenMin	DecMax	Dec

1 A Req Object	Type. 1 20 	 	

2 A Opt Object	Identifier	1.
ALL	=	All	Identifiers

1 10 	 	

3 A Opt Object	Identifier	2.
ALL	=	All	Identifiers

1 10 	 	

4 A Opt Object	Identifier	3.
ALL	=	All	Identifiers

1 10 	 	

5 A Opt Object	Identifier	4.
ALL	=	All	Identifiers

1 10 	 	

6 A Opt Locking	Level
ANY	=	Any	(Default)
FUNC	=	Function	
JOB=	Job	
PERM	=	Permanent

3 4 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	code
OK	=	Object	was	successfully
unlocked.
ER	=	Object	could	not	be
unlocked

2 2 	 	

	

There	are	some	rules	concerning	the	ability	and	access	to	locked	User	Objects.
These	rules	are	determined	by	the	Locking	Level	used	to	lock	the	User	Object,
and	are	as	follows:-
When	a	User	Object	is	locked	with	a	'FUNC'	Locking	Level	it	may	only	be
unlocked	by	the	same	function	and	job	that	the	lock	was	allocated	in.	If	the
'ALL'	literal	is	used	for	an	Object	Identifier	and	multiple	User	Object	locks
are	found,	then	only	locks	allocated	in	the	current	function	and	job	are
unlocked.
When	a	User	Object	is	locked	with	a	'JOB'	Locking	Level	it	may	only	be
unlocked	by	the	same	job	that	the	lock	was	allocated	in.	If	the	'ALL'	literal	is
used	for	an	Object	Identifier	and	multiple	User	Object	locks	are	found,	then
only	those	allocated	in	the	current	job	are	unlocked.
A	User	Object	locked	with	a	Locking	Level	of	'PERM'	may	be	unlocked	by
any	job	or	function.
User	Object	locks	are	also	automatically	unlocked	as	determined	by	the
Locking	Level	specified	on	the	LOCK_OBJECT.

A	Locking	Level	of	'FUNC'	indicates	that	the	lock	will	be
automatically	removed	at	the	end	of	the	function	that	created	it.
A	Locking	Level	of	'JOB'	indicates	that	the	lock	will	be	automatically
removed	when	you	exit	LANSA.
A	Locking	Level	of	'PERM'	indicates	that	the	User	Object	lock	exists
until	removed	with	UNLOCK_OBJECT.

Note:	Because	some	User	Object	locks	are	automatically	removed,	you	may	not
need	to	use	the	UNLOCK_OBJECT	Built-In	Function.	By	locking	the	User
Object	with	the	appropriate	Locking	Level	you	can	allow	the	locks	to	be
automatically	released	at	the	end	of	the	function/LANSA.
For	further	information	and	examples	concerning	User	Objects	and	their	locking
refer	to	the	Built-In	Function	9.152	LOCK_OBJECT

9.245	UPDATE_IN_SPACE

	Note:	Built-In	Function	Rules.

Updates	a	single	cell	row	that	matches	the	key	values	supplied.

For	use	with
LANSA	for	i YESOnly	available	for	RDMLX.

Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max	Len Min

Dec
Max	Dec

1 A R Space	Name 1 256 	 	

2-
20

w O Fields	that	specify	the	values	to	be
used	to	locate	and	update	the	cells
row.		

1 Unlimited 0 Unlimited

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A O Standard	Return	Code
"OK"	=	A	cell	row	was	found	and	updated.
"NR"	=	No	cell	row	could	be	found	to	update.
"ER"	=	Update	attempt	failed.	Messages
issued	will	indicate	more	about	the	cause	of
the	failure.		

2 2 	 	

	

Technical	Notes
You	cannot	change	the	values	of	keys	cells	in	a	space	object.	To	alter	the	values
of	key	cells	you	must	delete	and	(re)insert	the	cell	row.	
The	field	values	must	be	specified	in	the	same	order	as	the	cells	in	the	space
were	defined.	Cells	are	matched	by	the	order	of	their	specification	in	arguments
2	->	20.	The	names	of	the	fields	used	have	no	bearing	whatsoever	on	the	cell
mapping	logic.					
If	you	specify	less	field	values	than	there	are	cells	in	the	space	then	the	non-
specified	cells	are	set	to	blank/zero/null	values	as	appropriate.
If	you	specify	more	field	values	than	there	are	cells	in	the	space	then	the
additional	field	values	are	ignored.
If	a	key	value	longer	than	256	bytes	is	specified,	a	fatal	error	will	occur.

9.246	UPPERCASE

	Note:	Built-In	Function	Rules.

Converts	a	string	so	that	all	alphabetic	characters	are	in	uppercase.

For	use	with
LANSA	for	i YES

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req String	to	change	to
uppercase

1 256 	 	

	

Return	Values
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Req Converted	string1 256 	 	

	

9.247	ZIP_ADD

	Note:	Built-In	Function	Rules.

Allows	files	to	be	added	to	a	.zip	file.	If	the	.zip	file	does	not	exist,	it	is	created.

Also	See
ZIP	Built-In	Function	Note

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Zip	file/path	name
If	no	path	is	specified,	the	file	is	created	in
the	temporary	directory.
If	file	name	does	not	have	an	extension,	.zip
will	be	appended.

1 256 	 	

2 A Req Directory	to	use	as	base	for	zipping. 1 256 	 	

3 L Opt Working	list	containing	file	names	or
specifications	to	include.	This	argument	also
applies	to	files	in	subdirectories,	but	not	to
the	subdirectory	names.
The	default	is	to	include	all.
This	argument	is	equivalent	to	zip	–I

256 256 	 	

4 A Opt Include	subdirectories. 1 1 	 	

The	default	is	Y.
This	argument	is	equivalent	to	zip	-r

5 A Opt Delete	zipped	files	if	zip	successful.
The	default	is	N.
This	argument	is	equivalent	to	zip	-m
Note:	it	is	not	an	error	if	files	cannot	be
deleted.

1 1 	 	

6 A Opt Compression	level.	0	-	9.
0	=	no	compression	(fastest)
9	=		smallest	(slowest)
The	default	is	9.
This	argument	is	the	equivalent	of	zip	-#,
where	#	is	the	number.
Note:	zip's	default	level	is	6.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code
OK	=	Zip	file	created
successfully
ER	=	An	error	was
encountered
NR	=	No	matching	files
found

2 2 	 	

	

Technical	Notes
Note:	If	files	to	be	added	to	the	.zip	file	are	already	in	the	zip	file,	they	will	be

replaced.

9.248	ZIP_DELETE

	Note:	Built-In	Function	Rules.

Allows	files	to	be	deleted	from	a	.zip	file	(zip	-d).

Also	See
ZIP	Built-In	Function	Note

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Zip	file/path	name
If	no	path	is	specified,	the	file	is	assumed	to
be	in	the	temporary	directory.
If	file	name	does	not	have	an	extension,	.zip
will	be	appended.

1 256 	 	

2 L Req Working	list	containing	file	names	or
specifications	to	delete.
Note:	The	list	is	case	sensitive.	If	the
filenames	or	file	specifications	do	not	exactly
match,	the	files	will	not	be	deleted.

256 256 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code
OK	=	Zip	file	updated
successfully
ER	=	An	error	was
encountered
NR	=	No	matching	files
found

2 2 	 	

	

9.249	ZIP_EXTRACT

	Note:	Built-In	Function	Rules.

Allows	files	to	be	extracted	from	a	.zip	file.

Also	See
ZIP	Built-In	Function	Note

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Zip	file/path	name
If	no	path	is	specified,	the	file	is	assumed	to
be	in	the	temporary	directory.
If	file	name	does	not	have	an	extension,	.zip
will	be	appended.

1 256 	 	

2 A Req Directory	to	extract	to.
Note:	This	directory	will	be	created	if
necessary	(and	possible)

1 256 	 	

3 L Opt Working	list	containing	file	names	or
specifications	to	extract.	This	argument	also
applies	to	files	in	subdirectories,	but	not	to
the	subdirectory	names.
The	default	is	to	extract	all.
Note:	If	the	list	is	empty,	the	default	will	be

256 256 	 	

used.

4 A Opt Overwrite	existing	files.
N	=	Never	(unzip	-n)
U	=	Only	if	newer	(unzip	-uo)
Y	=	Always	(unzip	-o)
Default	is	Y.
Note:	When	using	option	U,	be	careful	of
unzipping	in	one	time	zone	a	zipfile	created
in	another	--	ZIP	archives	other	than	those
created	the	BIF	ZIP_ADD	(or	Zip	2.1	or
later)	contain	no	time	zone	information,	and	a
'newer'	file	from	an	eastern	time	zone	may,	in
fact,	be	older.

1 1 	 	

5 L Opt Working	list	containing	file	names	or
specifications	to	exclude.	This	argument	also
applies	to	files	in	subdirectories,	but	not	to
the	subdirectory	names
The	default	is	to	exclude	none.
Note:	If	the	list	is	empty,	the	default	will	be
used.
This	argument	is	equivalent	to	unzip	-x

256 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code
OK	=	Zip	file	extracted
successfully
ER	=	An	error	was
encountered
NR	=	No	matching	files

2 2 	 	

found

	

Technical	Notes
When	specifying	file	names	or	specifications	to	include	or	exclude,	the
forward	slash	(/)	must	always	be	used	when	specifying	a	path.	For	example,
x_lansa/x_ppp/mytable.dll

9.250	ZIP_GET_INFO

	Note:	Built-In	Function	Rules.

Allows	information	about	a	zip	file	to	be	retrieved.

Also	See
ZIP	Built-In	Function	Note

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Zip	file/path	name
If	no	path	is	specified,	the	file	is	assumed	to
be	in	the	temporary	directory.
If	file	name	does	not	have	an	extension,	.zip
will	be	appended.

1 256 	 	

2 L Opt Working	list	containing	file	names	or
specifications	to	include.	This	argument	also
applies	to	files	in	subdirectories,	but	not	to
the	subdirectory	names.
The	default	is	to	include	all.
The	list	cannot	contain	more	than	32,767
entries.
Note:
If	the	list	is	empty,	the	default	will	be	used.

256 256 	 	

3 L Opt Working	list	containing	file	names	or
specifications	to	exclude.	This	argument	also
applies	to	files	in	subdirectories,	but	not	to
the	subdirectory	names
The	default	is	to	exclude	none.
The	list	cannot	contain	more	than	32,767
entries.
Note:
If	the	list	is	empty,	the	default	will	be	used.
This	argument	is	equivalent	to	zipinfo	–x

256 256 	 	

4 A Opt Positioning	filename
Note:	This	argument	would	typically	only	be
used	to	continue	loading	the	list	after	a
previous	return	code	of	OV

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code
OK	=	Zip	file	able	to	be	read	okay
NR	=	No	matching	files	found
ER	=	An	error	was	encountered
OV	=	List	returned	completely	filled,	but
more	files	in	zip	file	than	can	fit	in	the	list

2 2 	 	

2 N Opt Total	size	of	matching	uncompressed	files,	in
bytes
Note:	This	value	is	only	affected	by	the	list	of
files	to	include	and	exclude.	If	this	BIF	is
called	multiple	times	for	overflow	processing,
this	value	will	not	change.

1 10 0 0

3 N Opt Number	of	matching	files 1 10 0 0

Note:	This	value	is	only	affected	by	the	list	of
files	to	include	and	exclude.	If	this	BIF	is
called	multiple	times	for	overflow	processing,
this	value	will	not	change.

4 L Opt Working	list	to	contain	file	names;	will
include	paths	if	they	exist.	List	must	not
contain	more	than	32,767	entries.

256 256 	 	

5 A Opt The	last	file	name	in	the	returned	list 1 256 	 	

6 L Opt Working	list	to	contain	information	about	the
files	returned	in	the	file	name	list.	Entry	1	in
the	file	name	list	relates	directly	to	Entry	1	in
this	list.	This	list	must	have	the	same	number
of	entries	as	the	file	name	list.
Formatted:
Start			End			Description
1	-	10			Uncompressed	size	(bytes)
11	-	18			Date	YYYYMMDD
19	-	24			Time	HHMMSS

	

18 24 	 	

	

Technical	Notes
When	specifying	file	names	or	specifications	to	include	or	exclude,	the
forward	slash	(/)	must	always	be	used	when	specifying	a	path.	For	example,
x_lansa/x_ppp/mytable.dll
This	BIF	can	be	used	to	test	(zip	-t)	the	validity	of	a	.zip	file,	without
returning	any	information,	if	only	the	first	return	value	is	specified.

9.251	ZIP_MAKE_EXE

	Note:	Built-In	Function	Rules.

Allows	a	.zip	file	to	be	converted	to	a	self-extracting	archive.	When	the	.exe	file
is	run,	the	zipped	files	will	be	extracted	to	the	current	directory.

Also	See
ZIP	Built-In	Function	Note

For	use	with
LANSA	for	i NO

Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Zip	file/path	name
If	no	path	is	specified,	the	file	is	assumed
to	be	in	the	temporary	directory.
If	file	name	does	not	have	an	extension,
.zip	will	be	appended.

1 256 	 	

2 A Opt Exe	file/path	name
If	no	path	is	specified,	the	file	will	be
created	in	the	temporary	directory.
If	file	name	does	not	have	an	extension,
.exe	will	be	appended
The	default	is	to	use	the	same	file	name	as
argument	1	with	.exe	instead	of	.zip

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	Code
OK	=	Exe	file	created	okay
ER	=	An	error	was
encountered

2 2 	 	

	

Technical	Notes
The	.exe	file	that	is	created	also	supports	some	useful	command	line	options:

-t Test	the	validity	of	the	zip	file	contained	within	the	self-extracting	archive.

-f Extract	only	those	files	that	already	exist	on	disk	and	that	are	newer	than
the	disk	copies

-u Update	existing	files	and	create	new	ones	if	needed

-n Never	overwrite	existing	files.	By	default,	if	a	file	already	exists,	the	user	is
prompted

-o Always	overwrite	existing	files

-q Quiet	mode	(no	listing	of	files	being	extracted).

-
qq

Even	quieter	mode

	
	
	

10.	Intrinsic	Functions
Intrinsic	Functions	provide	a	series	of	facilities	that	can	be	used	to	manipulate
individual	data	values.	The	following	sections	describes	the	use	of	intrinsic
functions:

10.1	Understanding
Intrinsic	Functions
10.2	Chaining	Multiple
Intrinsic	Functions
10.3	Isxxxxxx	Intrinsic
Functions
10.4	Asxxxxxx	Intrinsic
Functions
10.5	Field	Intrinsic
Functions
	

10.6	Alphanumeric/String
Intrinsic	Functions
10.7	Boolean	Intrinsic
Functions
10.8	Date	Intrinsic
Functions
10.9	DateTime	Intrinsic
Functions
10.10	Time	Intrinsic
Functions
10.11	Large	Object
Intrinsic	Functions

10.12	Binary	Intrinsic
Functions
10.13	Decimal	Intrinsic
Functions
10.14	Fixed	Point
Intrinsic	Functions
10.15	Floating	Point
Intrinsic	Functions
10.16	Integer	Intrinsic
Functions
	
	

10.1	Understanding	Intrinsic	Functions
Intrinsic	Functions	exist	for	each	generic	class	of	data	available	in	LANSA.
Thus,	there	are	Intrinsic	Functions	for	strings,	numbers,	dates,	times,	date	times
and	so	on.	All	Intrinsic	Functions	return	a	single	result,	and	there	is	no	need	to
specify	the	result	parameter	on	the	command	line.	As	such,	it	is	assumed	that
the	result	of	an	Intrinsic	Function	is	the	value	to	be	used	in	the	command.
Consider	the	following	example
#com_owner.caption	:=	'Employee	salary	is	'	+	#salary.asstring
	

In	the	above	example	the	+	operator	is	being	used	to	concatenate	a	string	and	a
numeric	field.	Without	Intrinsic	Functions,	you	would	need	to	move	the	value
from	#salary	in	to	an	alphanumeric	field,	and	then	use	this	to	build	the	caption.
The	asstring	intrinsic	takes	the	value	from	#salary,	converts	it	to	a	string	and
returns	it	in	a	result,	such	that	it	can	be	used	in	the	same	way	as	any	other	string
in	LANSA.
Intrinsic	functions	are	not	just	available	when	referring	to	specific	fields.	By
definition,	they	belong	to	the	class	of	data.	Consider	the	following	example
code
Mthroutine	Name(Set_Caption)
	
#com_owner.caption	:=	'Employee	salary	is	'	+	#Com_owner.Get_Salary(#Empno).AsString
	
Endroutine
	
	
	Mthroutine	Name(Get_Salary)
Define_Map	For(*Input)	Class(#Empno)	Name(#iEmployee)
Define_Map	For(*Result)	Class(#Salary)	Name(#oSalary)
	
Fetch	Fields(#Salary)	from_file(Pslmst)	with_key(#iEmployee)
	
#oSalary	:=	#Salary
	
Endroutine
	

In	this	example,	the	Set_Caption	method	does	much	the	same	as	the	initial

example.	The	major	difference	is	that	rather	than	the	salary	field	being	used	in
to	construct	a	caption,	the	result	of	the	Get_Salary	method	is	used.	As	the
Define_Map	#oSalary	is	of	class	#salary,	by	definition	it	is	a	numeric	value.
This	means	that	all	numeric	Intrinsic	Functions	can	be	used	to	manipulate	the
value.
Similarly,	if	we	were	to	refer	to	a	numeric	property	of	a	component,	e.g.	the
width	of	a	form,	we	could	the	use	numeric	Intrinsic	Functions.
When	an	intrinsic	function	is	called	on	an	SQL	NULL	value,	it	will	produce
SQL	NULL,	unless	the	intrinsic	function	specifically	deals	with	SQL	NULL.	
Refer	to	10.12.6	IsSqlNull	as	an	example.
	10.	Intrinsic	Functions

10.2	Chaining	Multiple	Intrinsic	Functions
As	Intrinsic	Functions	by	definition	return	a	result	factor,	it	is	possible	to	chain
multiple	Intrinsic	Functions	on	one	line	of	code.
Consider	the	following	requirement.	Set	the	caption	of	a	form	to	tomorrow's
week	day	e.g	Tuesday	or	Wednesday.
While	the	code	itself	is	not	entirely	difficult	from	a	logical	perspective,	it	could
require	a	number	of	different	variables	to	store	the	various	pieces	of	data	as	the
required	result	is	calculated.	We	would	have	to	take	today's	date,	advance	it	by
one,	taking	in	to	consideration	month	and	year	ends	etc.,	and	then	convert	the
result	to	the	day	of	the	week.	Whilst	this	is	possible	using	BIFs,	it	would	require
a	number	of	lines	of	code	and	some	temporary	storage.
However,	by	using	multiple	Intrinsic	Functions,	each	of	which	will	operate	on
the	result	of	the	preceding	function,	we	can	keep	the	code	concise	and	readable.
For	example
Mthroutine	Name(Get_Tomorrow_DOW)
Define_Map	For(*Result)	Class(#prim_alph)	Name(#oTomorrow_DOW)
	
Define	Field(#Today)	Type(*Date)
	
#oTomorrow_DOW	:=	#Today.Now.Adjust(1).AsDayOfWeek
	
Endroutine
	

In	the	code	above,	the	Now	Intrinsic	is	used	to	set	#Today	to	today's	date.	The
Adjust	intrinsic	is	then	used	to	advance	the	date	by	one	day.	Finally,	the	result	of
the	adjusting	the	date	is	converted	to	a	day	of	the	week	by	way	of	the
AsDayOfWeek	function.
Some	intrinsic	functions	appear	to	have	minimal	value.	For	example,	Pred
(predecessor)	subtracts	1	from	a	number	and	returns	it	as	the	result.	The	major
use	for	such	Intrinsic	Functions	is	as	a	component	of	a	more	complex
evaluation.	Rather	than	using	temporary	variables,	or	embedding	expressions,
which	require	a	further	set	of	parentheses,	we	can	use	the	intrinsic.
In	the	following	simple	example,	number1	is	compared	to	number2	or	number
3,	but	requires	embedded	expressions,	and	consequently	extra	sets	of
parentheses.
If	((#Number1	-	1)	=	#Number2)	or	((#Number1	-	1)	=	#Number3))

Endif
	

This	can	also	be	written	using	the	Pred	intrinsic	as	follows
If	((#Number1.pred	=	#Number2)	or	(#Number1.pred	=	#Number3))
Endif
	

It	is	difficult	to	clearly	demonstrate	the	benefit	of	embedded	Intrinsic	Functions
using	short	examples	in	isolation.	However,	when	writing	complex	code,	any
simplification	that	results	from	minimizing	expression	and	parenthesis	use,	must
be	of	benefit.
	10.	Intrinsic	Functions

10.3	Isxxxxxx	Intrinsic	Functions
Many	Intrinsic	Function	names	begin	with	IS.	This	type	of	function	will	return	a
Boolean	result,	and	can	be	thought	of	as	a	short	form	of	an	If/Else	construct.
For	example,	the	isnull	intrinsic	tests	the	value	of	the	supplied	value	and	returns
a	true	if	the	value	is	blanks	or	zero.
Previously,	testing	for	this	situation	would	look	like	the	following
If_Null	Field(#Value)
Set	Com(#Button)	Enabled(True)
Else
Set	Com(#Button)	Enabled(False)
Endif
	

Using	the	intrinsic,	we	could	write
If	(#Value.IsNull)
Set	Com(#Button)	Enabled(True)
Else
Set	Com(#Button)	Enabled(False)
Endif
	

Clearly,	this	does	not	give	any	great	benefit,	unless	combining	with	multiple
conditions.	However,	we	could	write
#Button.Enabled	:=	#Value.IsNull
	

In	this	example,	as	Isnull	returns	a	Boolean	state,	it	can	be	applied	directly	to
any	Boolean	property.
This	concept	can	be	extended	to	use	multiple	conditions,	And,	Or	and	Not
operators.
	10.	Intrinsic	Functions

10.4	Asxxxxxx	Intrinsic	Functions
Intrinsic	functions	beginning	with	As	are	convertors.	That	is,	they	convert	a
value	from	one	form	to	another.
For	example,	a	common	requirement	is	to	use	numeric	values	as	part	of	display
strings	for	things	such	as	messages	or	captions.	Rather	than	having	to	use	Built-
In	Functions	to	convert	variables	to	different	types,	it	is	now	possible	to	perform
the	conversion	within	the	individual	command.
In	this	example,	the	numeric	value	#salary	is	converted	to	a	string:
#com_owner.caption	:=	'Employee	salary	is	'	+	#salary.AsString
	
	10.	Intrinsic	Functions

10.5	Field	Intrinsic	Functions
You	can	use	the	field	intrinsic	functions	to	examine	the	characteristics	of	a	field:

10.5.1	FieldDecimals
10.5.2	FieldLength

10.5.3	FieldType
10.5.4	IsDefault
10.5.5	FieldAttributeAsString

	10.	Intrinsic	Functions

10.5.1	FieldDecimals
FieldDecimals	returns	the	number	of	decimal	places	as	specified	in	the	field
definition.
FieldDecimals	only	evaluates	the	decimal	places	for	packed	and	signed	fields.
All	other	field	types	will	return	0.
Input	Parameters
None
Example
#Decimals	:=	#Std_price.FieldDecimals
	

In	this	example,	decimals	would	take	a	value	of	2.	Std_Price	is	a	standard
LANSA	supplied	field	that	is	defined	as	a	packed	9,	2	in	the	data	dictionary.
	10.5	Field	Intrinsic	Functions

10.5.2	FieldLength
FieldLength	returns	the	length	of	a	field	as	specified	in	the	field	definition.
FieldLength	will	return	0	for	Blob	and	Clob	field	types.
Input	Parameters
None
Example
#Length	:=	#Std_price.FieldLength
	

In	this	example,	#Length	would	take	a	value	of	9.	Std_Price	is	a	standard
LANSA	supplied	field	that	is	defined	as	a	packed	9,	2	in	the	data	dictionary.
	10.5	Field	Intrinsic	Functions

10.5.3	FieldType
FieldType	returns	the	type	of	a	field	as	specified	in	the	field	definition.
Input	Parameters
None
Example
#FieldType	:=	#Std_price.FieldType
	

In	this	example,	#Fieldtype	would	take	a	value	of	Packed.	Std_Price	is	a
standard	LANSA	supplied	field	that	is	defined	as	a	packed	9,	2	in	the	data
dictionary.
	10.5	Field	Intrinsic	Functions

10.5.4	IsDefault
IsDefault	compares	the	subject	variable	with	its	defined	default	value	and
returns	true	if	the	two	are	equal.
Input	Parameters
None
Example
#Button.enabled	:=	#Std_price.IsDefault
	
	10.5	Field	Intrinsic	Functions

10.5.5	FieldAttributeAsString
Fields	(PRIM_FLD)	provide	a	method	to	read	various	properties	such	as
Description	and	Label.
The	available	properties	include:
Description
Label
Heading1
Heading2
Heading3
HeadingSingleLine
HeadingWithNewLines
HeadingWithNewLinesNoBlanks
EditCode
EditWord

To	read	a	property,	supply	the	relevant	property	name	as	a	parameter	to	the
FieldAttributeAsString()	method.
Example
#strValue	:=	#myField.	FieldAttributeAsString(Description)
	
	10.5	Field	Intrinsic	Functions

	

10.6	Alphanumeric/String	Intrinsic	Functions

10.6.1	AsBoolean
10.6.2	AsDate
10.6.3	AsDateTime
10.6.4
AsDBCSFixedChar
10.6.5	AsDBCSString
10.6.6	AsFixedChar
10.6.7	AsFloat
10.6.8	AsInteger
10.6.9	AsNumber
10.6.10	AsSBCSString
10.6.11	AsTime
10.6.12	AsValue
10.6.13	BlankConcat
10.6.14	ByteTypeAt
10.6.15	Center	and
Centre
10.6.16	CharTypeAt
10.6.17	Concat
10.6.18	Contains
10.6.19	ContainsOnly
10.6.20	CurChars
10.6.21	CurEbcdicSize
	

10.6.22	CurSize
10.6.23
DeleteSubstring
10.6.24	FieldDefault
10.6.25	InsertString
10.6.26	IsBoolean
10.6.27	IsDate
10.6.28	IsDateTime
10.6.29	IsDbcs
10.6.30	IsFloat
10.6.31	IsMixed
10.6.32	IsNull
10.6.33	IsNumber
10.6.34	IsSbcs
10.6.35	IsSqlNull
10.6.36	IsTime
10.6.37	LastPositionIn
10.6.38	LastPositionOf
10.6.39	LeftMost
10.6.40	LeftTrim
10.6.41	LowerCase
10.6.42	OccurencesIn
	

10.6.43	OccurencesOf
10.6.44	PositionIn
10.6.45	PositionOf
10.6.46	Remove
10.6.47	RemoveAll
10.6.48	RemoveCharacters
10.6.49	Repeat
10.6.50	Replace
10.6.51	ReplaceAll
10.6.52	ReplaceSubstring
10.6.53	Reverse
10.6.54	RightAdjust
10.6.55	RightMost
10.6.56	RightTrim
10.6.57	Substitute
10.6.58	Substring
10.6.59
TranslateCharacters
10.6.60	Trim
10.6.61	TrimBlankConcat
10.6.62	TrimConcat
10.6.63	TrimSubstitute
10.6.64	UpperCase

	10.	Intrinsic	Functions

10.6.1	AsBoolean
AsBoolean	converts	a	string	to	a	Boolean.	By	default,	AsBoolean	expects	to
receive	a	true	or	false	string.	Any	other	value	will	result	in	a	run-time	error.
Optionally,	you	can	override	the	defaults	and	specify	the	true	and	false	values	to
be	evaluated	using	the	TrueCaption	and	FalseCaption	parameters.
Input	Parameters
Falsecaption	-	Value	to	be	converted	to	a	Boolean	state	of	False
Truecaption	-	Value	to	be	converted	to	a	Boolean	state	of	True
Example
In	this	example,	AsBoolean	expects	a	string	value	of	true	or	false:
#Button.enabled	:=	#String.AsBoolean
	

This	is	equivalent	to	the	following:
Case	of_Field(#String)
	
When	(=	True)
#Button.enabled	:=	True
	
When	(=	False)
#Button.enabled	:=	False
	
Otherwise
Abort	Msgtxt('String	value	cannot	be	converted	to	a	Boolean')
	
Endcase

		
In	this	example,	Asboolean	expects	a	string	value	of	Y	or	N:
#Button.enabled	:=	#String.AsBoolean(N	Y)
	

This	is	equivalent	to	the	following:
Case	of_Field(#String)
	
When	(=	Y)
#Button.enabled	:=	True

	
When	(=	N)
#Button.enabled	:=	False
	
Otherwise
Abort	Msgtxt('String	value	cannot	be	converted	to	a	Boolean')
	
Endcase
	

Also	see
10.6.26	IsBoolean
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.2	AsDate
AsDate	will	return	a	date	based	on	the	value	of	the	string	and	the	specified
format.
If	the	supplied	value	does	not	conform	to	the	required	format,	the	application
will	end	with	a	run-time	error.	Use	the	IsDate	intrinsic	to	test	the	value	before
attempting	to	convert	to	a	date.
Input	Parameters
Format	-	Date	format	expected	in	the	numeric	variable
Allowable	formats	are
CCYY/DD/MM
CCYY/MM/DD
CCYYDDMM
CCYYMM
CCYYMMDD
DD/MM/CCYY
DD/MM/YY
DDMMCCYY
DDMMYY
ISO
MM/DD/CCYY
MM/DD/YY
MMCCYY
MMDDCCYY
MMDDYY
MMYY
SysFmt6
SysFmt8
xYYMMDD
YY/MM/DD
YYMM
YYMMDD

Example
If	(#String.isDate(ddmmyy)
	
#Date	:=	#string.AsDate(ddmmyy)
	
else
	
*	Error	processing
	
Endif
	

Also	see
Date	Format
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.3	AsDateTime
AsDateTime	will	return	a	datetime	based	on	the	value	of	the	string	and	the
specified	format.
If	the	supplied	value	does	not	conform	to	the	required	format,	the	application
will	end	with	a	run-time	error.	Use	the	IsDatetime	intrinsic	to	test	the	value
before	attempting	to	convert	to	a	datetime.
Input	Parameters
Format	-	Datetime	format	expected	in	the	numeric	variable.	Allowable	formats
are:
					CCYYDDMMHHMMSS
					CCYYMMDDHHMMSS
					HHMMSSDDMMCCYY
					HHMMSSDDMMYY
					ISO
					Localized_SQL
					SQL
					TZ

Example
If	(#string.IsDateTime(ccyymmddhhmmss)
	
#Datetime	:=	#string.AsDateTime(ccyymmddhhmmss)
	
else
	
*	Error	processing
	
Endif
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.4	AsDBCSFixedChar
AsDBCSFixedChar	returns	the	subject	string	as	a	DBCS	string	of	the	length
specified	in	the	TargetLength	Parameter,	ensuring	that	any	DBCS	characters
remain	fully	formed	and	are	not	truncated.
Input	Parameters
TargetLength	–	Length	of	the	returned	string
Example
	
#String40	:=	#String256.AsDBCSFixedChar(40)
	

	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.5	AsDBCSString
As	DBCS	returns	the	subject	string	ignoring	all	single	byte	(SBCS)	characters.	
Input	Parameters
None
Example
	
#DBCS	:=	#Mixed.AsDBCSString
	

	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.6	AsFixedChar
Alphanumeric	fields	only.
AsFixedChar	returns	a	result	of	the	same	length	as	the	definition	of	the	subject
of	the	intrinsic	function	rather	than	the	length	of	the	contents.
Thus,	when	referring	to	a	field	of	length	10,	AsFixedChar	will	always	return	a
value	of	10	bytes	regardless	of	the	number	of	characters	the	field	value	contains.
Input	Parameters
None
Example
	
#FullName	:=	#GiveName.AsFixedChar	+	#Surname
	

	In	this	example,	where	Givename	is	an	alpha	20	containing	the	value
"Veronica",	and	Surname	contains	"Brown"	the	result	would	be
'Veronica												Brown".
	
	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.7	AsFloat
AsFloat	allows	a	string	to	be	handled	as	a	floating	point	number.	If	the	string
contains	characters	that	cannot	be	converted,	the	application	will	end	with	a	run-
time	error.
Use	IsFloat	to	test	the	string	before	using	AsFloat.
Input	Parameters
None
Example
If	(#String.isFloat)
	
	#Float	:=	#String.AsFloat
	
Endif
	

	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.8	AsInteger
AsInteger	returns	the	ASCII/ebcdic	value	of	the	first	character	in	the	string
Windows	platform
The	ASCII	decimal	value	of	the	first	character	in	the	string	is	obtained	as	per
the	following	table:

nul 0 soh 1 stx 2 etx 3 eot 4 enq 5 ack 6 bel 7

bs 8 ht 9 nl 10 vt 11 np 12 cr 13 so 14 si 15

dle 16 dc1 17 dc2 18 dc3 19 dc4 20 nak 21 syn 22 etb 23

can 24 em 25 sub 26 esc 27 fs 28 gs 29 rs 30 us 31

sp 32 ! 33 " 34 # 35 $ 36 % 37 & 38 ' 39

(40) 41 * 42 + 43 , 44 - 45 . 46 / 47

0 48 1 49 2 50 3 51 4 52 5 53 6 54 7 55

8 56 9 57 : 58 ; 59 < 60 = 61 > 62 ? 63

@ 64 A 65 B 66 C 67 D 68 E 69 F 70 G 71

H 72 I 73 J 74 K 75 L 76 M 77 N 78 O 79

P 80 Q 81 R 82 S 83 T 84 U 85 V 86 W 87

X 88 Y 89 Z 90 [91 \ 92] 93 ^ 94 _ 95

` 96 a 97 b 98 c 99 d 100 e 101 f 102 g 103

h 04 i 105 j 106 k 107 l 108 m 109 n 110 o 111

p 112 q 113 r 114 s 115 t 116 u 117 v 118 w 119

x 120 y 121 z 122 { 123 | 124 } 125 ~ 126 del 127

	
IBM	i	platform
If	this	intrinsic	function	is	run	on	IBM	i,	it	will	return	a	value	according	to	the
table	in	www.astrodigital.org/digital/ebcdic.html.	(You	can	ignore	the	Hex
column	in	the	table).

http://www.astrodigital.org/digital/ebcdic.html

Input	Parameters
None
Examples
For	Windows
If	#String	is	"a",	#Integer	will	be	97:
#Integer	:=	#String.AsInteger
	

If	#String	is	"}",	#Integer	will	be	125
#Integer	:=	#String.AsInteger
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.9	AsNumber
Asnumber	will	convert	a	string	to	a	number.	If	the	string	contains	characters	that
cannot	be	converted,	the	application	will	end	with	a	run-time	error.
Use	IsNumber	to	test	the	string	before	using	AsNumber.
Input	Parameters
None
Example
If	(#String.isNumber)
	
#number	:=	#string.AsNumber
	
else
	
*	Error	processing
	
Endif
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.10	AsSBCSString
AsSBCSString	returns	the	subject	string	ignoring	all	double	byte	(DBCS)
characters.
Input	Parameters
None
Example
	
#SBCS	:=	#Mixed.AsSBCSString
	

	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.11	AsTime
AsTime	will	return	a	time	based	on	the	value	of	the	string	and	the	specified
format.
If	the	supplied	value	does	not	conform	to	the	required	format,	the	application
will	end	with	a	run-time	error.	Use	the	IsTime	intrinsic	to	test	the	value	before
attempting	to	convert	to	a	time.
Input	Parameters
Format	-	Time	format	expected	in	the	numeric	variable.	Allowable	formats	are:
					HHMMSS
					HHsMMsSS
					ISO

Example
If	(#string.IsTime(hhmmss)
	
#Time	:=	#string.AsTime(hhmmss)
	
else
	
*	Error	processing
	
Endif
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.12	AsValue
The	AsValue()	intrinsic	method	can	be	used	to	specify	a	value	to	be	returned
from	a	field	if	it	contains	an	SQL	Null.
See	Intrinsic	Method	.AsValue.
Input	Parameters
The	value	to	be	returned	instead	of	an	SQLNull.
Example
Rather	than	having	to	test	as	below	whether	the	value	of	an	object	is	AAA	or	an
SQL	null:
If	((#Std_obj	=	AAA)	*or	(#Std_obj.IsSqlNull)
	
Endif
	

	
You	can	use	AsValue:
If	(#Std_obj.AsValue(AAA)	=	AAA)
	
Endif
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.13	BlankConcat
BlankConcat	concatenates	up	to	10	strings,	inserting	a	blank	between	each
parameter.
All	trailing	spaces	are	trimmed.	Leading	spaces	are	left	as	is.
Input	Parameters
String1	-	String	to	be	concatenated
String2	-	String	to	be	concatenated
String3	-	String	to	be	concatenated
String4	-	String	to	be	concatenated
String5	-	String	to	be	concatenated
String6	-	String	to	be	concatenated
String7	-	String	to	be	concatenated
String8	-	String	to	be	concatenated
String9	-	String	to	be	concatenated
String10	-	String	to	be	concatenated
Example
#Com_owner.Caption	:=	#Firstname.BlankConcat(#Surname)
	

If	Firstname	contained	Veronica	and	Surname	contained	Brown,	the	result
would	be:
Veronica	Brown
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.14	ByteTypeAt
ByteTypeAt	tests	the	type	of	byte	in	a	string	at	a	given	index.	This	allows	a
string	to	be	tested	for	DBCS	and	SBCS	information.	Possible	results	are:
Sbcs	-	Single	byte
Dbcs1	-	First	byte	of	a	double	byte	character
Dbcs2	-	Second	byte	of	a	double	byte	character
ShiftIn	-	Shiftin	byte	for	an	EBCDIC	DBCS	string
ShiftOut	-	Shiftout	byte	for	an	EBCDIC	DBCS	string
Input	Parameters
Index	-	Byte	position	within	the	supplied	string
Example
This	Example	tests	the	first	character	of	the	supplied	string	for	an	EBCDIC
shiftout
If	(#String.ByteTypeAt(1)	=	ShiftOut)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.15	Center	and	Centre
Center	allows	a	string	to	be	centered	within	a	given	length,	and	will	optionally
pad	the	result	with	a	supplied	character.	Leading	and	trailing	spaces	are
significant	and	will	be	evaluated	as	part	of	the	string	to	center.
If	the	string	is	longer	than	the	target	variable,	the	first	n	bytes	of	the	string	are
used.	Where	the	result	of	centering	the	string	results	is	an	uneven	number	of
bytes,	the	extra	byte	will	be	allocated	to	the	right-hand	side.
Typically,	centering	is	used	to	center	a	value	within	a	target	variable.	By	using
the	Length	parameter	you	can	control	how	the	string	is	centered	and	padded.
Center	can	only	be	used	to	center	a	string	within	a	target	string,	which	does	not
guarantee	that	the	result	will	be	visually	centered	in	a	Windows	run-time
environment.
Input	Parameters
Length	-	Length	of	the	string	to	be	centered	in
Pad	-	Character	to	pad	either	side	of	the	centered	string.
Example
In	this	example,	if	string	is	a	40	byte	variable	that	contains	a	value	of	"Centered
Text",	the	result	is	"***Centered	Text****".	The	remaining	20	bytes	of	#string
will	be	null:
#Target	:=	#string.Center(20	'*')
	

In	this	example,	where	string	is	a	20	byte	variable	that	contains	a	value	of
"Centered	Text",	the	result	would	be	"		Centered	Text		".		This	is	a	typical
centering	scenario	where	the	length	of	the	target	governs	the	centering	of	the
text:
	
#Target	:=	#string.Center(#Target.FieldLength)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.16	CharTypeAt
CharTypeAt	is	similar	to	ByteTypeAt	in	that	it	tests	the	type	of	byte	in	a	string
at	a	given	index.	This	allows	a	string	to	be	tested	for	DBCS	and	SBCS
information.	The	difference	is	that	it	only	ever	returns	SBCS	and	DBCS.
Possible	results	are:
SBCS	-	Single	byte	character
DBCS	-	Double	byte	character
Input	Parameters
Index	-	Byte	position	within	the	supplied	string
Example
If	(#String.CharTypeAt(1)	=	DBCS)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.17	Concat
Concat	concatenates	up	to	10	strings.	Trailing	spaces	on	the	last	string	are
trimmed.	Leading	spaces	are	left	as	is.
Input	Parameters
String1	-	String	to	be	concatenated
String2	-	String	to	be	concatenated
String3	-	String	to	be	concatenated
String4	-	String	to	be	concatenated
String5	-	String	to	be	concatenated
String6	-	String	to	be	concatenated
String7	-	String	to	be	concatenated
String8	-	String	to	be	concatenated
String9	-	String	to	be	concatenated
String10	-	String	to	be	concatenated
Example
In	this	example,	if	Firstname	contained	'Veronica				'	and	Surname	contained
'Brown			',	the	result	would	be:
Veronica				Brown
#Com_owner.Caption	:=	#Firstname.Concat(#Surname)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.18	Contains
Contains	returns	a	true	if	the	string	contains	the	specified	search	value.	The
function	is	case	sensitive.
Input	Parameters
String	-	String	to	be	located	in	the	subject	of	the	intrinsic
Startposition	-	Character	position	at	which	to	start	looking	for	the	string
Example
#Button.Enabled	:=	#String.Contains(#Search)
	

To	avoid	case	sensitivity	issues,	use	the	Uppercase	or	Lowercase	intrinsic
functions	to	ensure	matching	cases	for	both	strings:
#Button.Enabled	:=	#String.Uppercase.Contains(#Search.Uppercase)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.19	ContainsOnly
ContainsOnly	compares	the	contents	of	the	subject	string	against	the	characters
supplied	in	the	String	parameter	and	returns	a	true	if	no	other	characters	are
found	in	the	subject.
Input	Parameters
String	–	Characters	to	compare	against	the	subject
Example
In	the	example	below,	the	string	is	tested	to	ensure	that	it	only	contains	the
digits	0	through	9	and	a	blank.		If	other	characters	are	used	in	#String,	the
function	returns	False.
	
If	(#String.ContainsOnly("	0123456789"))
	
	Endif
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.20	CurChars
CurChars	returns	the	number	of	characters	in	a	string.
In	a	single	byte	environment,	CurChars	and	Cursize	will	return	the	same	result.
In	a	DBCS	environment	each	character	requires	two	bytes,	so	although	a	string
may	be	8	bytes	long,	the	number	of	characters	will	be	4	in	ASCII	and	3	in
ECBDIC.	Two	bytes	will	be	used	by	the	shift	in	and	shift	out	bytes.
Input	Parameters
None
Example
In	this	example,	if	string	contained	"Sample",	number	would	be	populated	with
6:
#Number	:=	#String.CurChars
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.21	CurEbcdicSize
CurEbcdicSize	returns	the	number	of	bytes	a	string	would	require	if	it	was
running	in	an	EBCDIC	environment.
In	a	DBCS	environment	shift	in	and	shift	out	bytes	are	used	for	DBCS	values.
These	bytes	are	not	used	in	ASCII.	Thus,	a	string	that	may	be	short	enough	to	fit
in	a	variable	in	Windows	may	not	fit	when	running	on	the	IBM	i.
Input	Parameters
None
Example
#Number	:=	#String.CurEbcdicSize
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.22	CurSize
Cursize	returns	the	number	of	bytes	in	a	string.
In	a	single	byte	environment,	Cursize	and	CurChars	will	return	the	same	result.
In	a	DBCS	environment	each	character	requires	two	bytes.	On	an	ASCII
system,	a	three	character	DBCS	string	will	require	6	bytes.	On	the	IBM	i,	which
uses	EBCDIC,	the	shift	in	and	shift	out	bytes	add	2	to	all	byte	length
calculations.
Input	Parameters
None.
Example
#Number	:=	#String.CurSize
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.23	DeleteSubstring
DeleteSubstring	deletes	the	characters	in	a	string	from	the	specified	start
position	as	far	as	the	specified	length.	If	a	length	is	not	specified,	all	characters
after	the	start	position	will	be	deleted.
Input	Parameters
StartPosition	-	Character	at	which	the	substring	to	be	deleted	starts.
Length	-	The	number	of	characters	to	be	deleted.
Example
In	this	example,	if	#String	contained	"abcd",	the	caption	would	be	"acd":
#Com_owner.Caption	:=	#String.DeleteSubstring(2	1)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.24	FieldDefault
FieldDefault	can	be	used	to	set	a	field	to	its	default	value.
Input	Parameters
None
Example
define	field(#string)	type(*string)	length(12)	default("qwerty")
#string	:=	"hello"

*	the	next	line	will	set	#string	to	"qwerty"
#string	:=	#string.FieldDefault
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.25	InsertString
InsertString	allows	you	to	embed	other	strings	within	a	target	variable	at	a
specified	position	identified	by	the	At	parameter.
Input	Parameters
String	-	String	to	be	inserted
At	-	Position	to	insert	the	string
Pad	-	Character	used	to	pad	the	result	if	the	At	parameter	is	beyond	the	end	of
the	string
Example
In	this	example,	if	string	contained	"abcdefg",	the	result	would	be
"abcABCDefg":
#Com_owner.Caption	:=	#String.InsertString("ABCD"	4)
	

In	this	example,	if	string	contained	"abcdefg",	the	At	parameter	is	beyond	the
end	of	the	string,	the	result	would	be	"abcdefg**ABCD".:
#Com_owner.Caption	:=	#String.InsertString("ABCD"	10	"*")
	

	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.26	IsBoolean
IsBoolean	tests	a	string	to	determine	whether	it	can	be	used	as	a	boolean.	The
Truecaption	and	Falsecaption	parameters	define	the	allowable	values	for	the
Boolean.
IsBoolean	will	often	be	used	before	10.6.1	AsBoolean	to	so	that	you	can	trap	a
potential	run-time	error.
Input	Parameters
Falsecaption	-	Value	to	represent	a	Boolean	state	of	False
Truecaption	-	Value	to	represent	a	Boolean	state	of	True
If	no	input	parameters	are	specified,	the	function	expects	to	receive	the	strings
True	or	False.
Example
In	this	example,	isBoolean	expects	a	string	value	of	N	or	Y:
If	(#String.IsBoolean(N	Y))
	
#Button.Enabled	:=	#String.IsBoolean(N	Y)
	
Else
	
*	Error	processing
	
Endif
	

This	is	equivalent	to	writing	the	following:
Case	of_Field(#String)
	
When	(=	Y)
#Button.enabled	:=	True
	
When	(=	N)
#Button.enabled	:=	False
	
Otherwise
Abort	Msgtxt('String	value	cannot	be	converted	to	a	Boolean')
	

Endcase
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.27	IsDate
IsDate	will	return	true	if	the	string	can	be	converted	to	a	valid	date	in	the
specified	format.	IsDate	will	often	be	used	before	AsDate	to	better	handle
potential	date	errors.
Input	Parameters
Format	-	Date	format	expected	in	the	string	variable.	Allowable	formats	are:
CCYY/DD/MM
CCYY/MM/DD
CCYYDDMM
CCYYMM
CCYYMMDD
DD/MM/CCYY
DD/MM/YY
DDMMCCYY
DDMMYY
ISO
MM/DD/CCYY
MM/DD/YY
MMCCYY
MMDDCCYY
MMDDYY
MMYY
SysFmt6
SysFmt8
xYYMMDD
YY/MM/DD
YYMM
YYMMDD
Example
If	(#String.IsDate(DDMMYY)
	
#Date	:=	#String.Asdate(ddmmyy)

	
else
	
*	Error	processing
	
Endif
	

Also	see
Date	Format
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.28	IsDateTime
IsDateTime	will	return	true	if	the	string	can	be	converted	to	a	valid	datetime	in
the	specified	format.	IsDateTime	will	often	be	used	before	AsDateTime	to	better
handle	potential	errors.
Input	Parameters
Format	-	Datetime	format	expected	in	the	string	variable.	Allowable	formats
are:
CCYYDDMMHHMMSS
CCYYMMDDHHMMSS
HHMMSSDDMMCCYY
HHMMSSDDMMYY
ISO
Localized_SQL
SQL
TZ
Example
If	(#string.IsDateTime(ccyymmddhhmmss)
	
#Datetime	:=	#string.Asdatetime(ccyymmddhhmmss)
	
else
	
*	Error	processing
	
Endif
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.29	IsDbcs
IsDbcs	returns	true	if	all	of	the	characters	in	a	string	are	double	byte.
Input	Parameters
None
Example
#Buttons.Enabled	:=	#string.IsDbcs
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.30	IsFloat
IsFloat	examines	whether	a	string's	value	can	be	handled	as	a	floating	point
number.	It	returns	a	boolean	value	-	true	if	the	value	is	a	floating	point	number,
false	if	it	is	not.	It	is	a	good	idea	to	use	IsFloat	as	a	test	before	calling	AsFloat.
Input	Parameters
None.
Example
If	cond(#String.isFloat)
		#Float	:=	#String.AsFloat
Endif
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.31	IsMixed
IsMixed	returns	true	if	there	is	a	mixture	of	single	byte	and	double	byte
characters	in	the	supplied	string.
Input	Parameters
None
Example
#Buttons.Enabled	:=	#string.IsMixed
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.32	IsNull
IsNull	tests	a	string	variable	and	returns	a	true	if	it	contains	a	*null	value.
Input	Parameters
None
Example
#Button.enabled	:=	#String.IsNull
	

The	*null	value	for	a	numeric	variable	is	*blanks.
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.33	IsNumber
IsNumber	returns	true	if	the	supplied	string	can	be	converted	to	a	number.
IsNumber	will	often	be	used	before	AsNumber	to	better	handle	potential	errors.
Input	Parameters
None
Example
If	(#String.IsNumber)
	
#number	:=	#String.AsNumber
	
Endif
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.34	IsSbcs
IsSbcs	returns	true	if	all	of	the	characters	in	a	string	are	single	byte	characters.
Input	Parameters
None
Example
#Buttons.Enabled	:=	#string.IsSbcs
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.35	IsSqlNull
IsSqlNull	tests	a	string	variable	and	returns	true	if	it	contains	an	SQL	Null.
Input	Parameters
None
Example
#Button.enabled	:=	#String.IsSqlNull
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.36	IsTime
IsTime	will	return	true	if	the	string	can	be	converted	to	a	valid	time	in	the
specified	format.
IsTime	will	often	be	used	before	AsTime	to	better	handle	potential	errors.
Input	Parameters
Format	-	Time	format	expected	in	the	string	variable.	Allowable	formats	are:
HHMMSS
HHsMMsSS
ISO
Example
If	(#string.IsTime(hhmmss)
	
#Time	:=	#string.AsTime(hhmmss)
	
else
	
*	Error	processing
	
Endif
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.37	LastPositionIn
LastPositionIn	returns	the	last	position	of	the	subject	string	in	a	string.	If	the
string	is	not	found,	the	result	will	be	0.
LastPositionIn	is	case	sensitive.
Input	Parameters
String	-	String	to	be	searched	in.
Example
In	this	example,	if	#String	contained	M,	the	result	would	be	13:
#LastPosition	:=	#String.LastPositionIn('ABCDEFGHIJKLMNOPQRSTUVWXYZ')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.38	LastPositionOf
LastPositionOf	returns	the	last	position	of	a	string	in	the	subject	string.	If	the
string	is	not	found,	the	result	will	be	0.
LastPositionOf	is	case	sensitive.
Input	Parameters
String	-	String	to	be	searched	for.
Example
In	this	example,	if	#String	contained
ABCDEFGHIJKLMNOPQRSTUVWXYZ,	the	result	would	be	13:
#LastPosition	:=	#String.LastPositionOf(M)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.39	LeftMost
LeftMost	returns	the	first	n	characters	of	a	string.	If	the	string	does	not	have
enough	characters,	the	remaining	space	can	be	padded.
Input	Parameters
Characters	–	Number	of	characters	to	be	returned
Pad	-	Character	to	be	used	to	fill	remaining	space
Example
In	this	example,	if	#String	contained
ABCDEFGHIJKLMNOPQRSTUVWXYZ,	the	result	would	be
ABCDEFGHIJKLM:
#Com_owner.Caption	:=	#String.LeftMost(13)
	

In	this	example,	if	#String	contained	ABCDEFGHI	the	result	would	be
ABCDEFGHI****:
#Com_owner.Caption	:=	#String.LeftMost(13	'*')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.40	LeftTrim
LeftTrim	can	be	used	to	remove	leading	blanks,	or	other	characters,	from	a
string.
The	OfText	parameter	can	contain	more	than	one	character.
Input	Parameters
OfText	-	Character	or	characters	to	be	trimmed.	The	default	is	a	blank
Example
In	this	example,	if	#String	contained	'			ABCDE',	the	result	would	be	'ABCDE':
#Com_owner.Caption	:=	#String.LeftTrim
	

In	this	example,	if	#String	contained	AAA	the	result	would	be	A.	After	the	first
AA	has	been	removed	from	the	string,	only	a	single	A	remains	that	does	not
match	the	OfText	parameter	value:
#Com_owner.Caption	:=	#String.LeftTrim(AA)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.41	LowerCase
Lowercase	returns	the	supplied	string	with	all	characters	converted	to
lowercase.
Input	Parameters
None
Example
In	this	example,	if	#String	contained	'ABCDE',	the	result	would	be	'abcde':
#String	:=	#String.Lowercase
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.42	OccurencesIn
OccurencesIn	returns	the	number	of	times	the	string	can	be	found	in	the	string
supplied	in	the	String	parameter,	starting	from	the	character	specified	in	the
Startposition	parameter.
OccurrencesIn	is	case	sensitive
Input	Parameters
String	-	String	to	be	searched
StartPosition	-	Character	to	start	searching	from
Example
In	this	example,	if	#String	contained	'ABC',	the	result	would	be	3:
#Occurences	:=	#String.OccurencesIn('ABCDEABCDEABCDE')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.43	OccurencesOf
OccurencesOf	returns	the	number	of	times	the	string	supplied	in	the	String
parameter	can	be	found	in	a	string,	starting	from	the	character	specified	in	the
Startposition	parameter.
OccurrencesOf	is	case	sensitive
Input	Parameters
String	-	String	to	be	searched	for
StartPosition	-	Character	to	start	searching	from
Example
In	this	example,	if	#String	contained	'ABCDEABCDEABCDE',	the	result
would	be	3:
#Occurences	:=	#String.OccurencesOf('ABC')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.44	PositionIn
PositionIn	returns	character	position	of	the	first	occurrence	of	the	String	in	the
supplied	string	parameter	after	the	StartPosition.
PositionIn	is	case	sensitive
Input	Parameters
String	-	String	to	be	searched
StartPosition	-	Character	to	start	searching	from
Example
In	this	example,	if	#String	contained	'EAB',	the	result	would	be	5:
#Position	:=	#String.PositionIn('ABCDEABCDEABCDE')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.45	PositionOf
PositionOf	returns	the	character	position	of	the	first	occurrence	in	the	supplied
String	parameter	of	the	String,	after	the	StartPosition.
PositionOf	is	case	sensitive
Input	Parameters
String	-	String	to	be	searched
StartPosition	-	Character	to	start	searching	from
Example
In	this	example,	if	#String	contained	'ABCDEABCDEABCDE',	the	result
would	be	5:
#Position	:=	#String.PositionOf('EAB')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.46	Remove
Remove	removes	the	first	occurrence	of	the	string	supplied	in	the	Object
parameter
Input	Parameters
Object	–	String	to	be	removed	from	the	subject
Example
In	this	example,	if	#String	contained	the	value	"CCBBAA",	the	result	would	be
"CCBBA"
	
#String	:=	#String.Remove(A)
	

	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.47	RemoveAll
RemoveAll	removes	all	occurrences	of	the	string	supplied	in	the	Object
parameter.	This	is	similar	to	the	RemoveCharacters	intrinsic,	except	that
RemoveAll	searches	the	subject	string	for	instances	of	the	entire	search	string
rather	than	individual	characters.	RemoveAll	is	case	sensitive.
Input	Parameters
Object	–	String	to	be	removed	from	the	subject
Example
In	this	example,	if	#String	contained	the	value	"HABERDASHERY",	the	result
would	be	"HABERERY"
#String	:=	#String.RemoveAll("DASH")
	

	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.48	RemoveCharacters
RemoveCharacters	removes	all	occurrences	of	the	characters	supplied	in	the
Object	parameter.		This	is	similar	to	the	RemoveAll	intrinsic,	except	that
RemoveCharacters	searches	the	subject	string	for	individual	characters	rather
than	instances	of	the	entire	search	string.	RemoveCharacters	is	case-sensitive.
Input	Parameters
Object	–	String	to	be	removed	from	the	subject
Example
In	this	example,	if	#String	contained	the	value	"ADACABA",	the	result	would
be	"DCB"
#String	:=	#String.RemoveCharacters("A")
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.49	Repeat
Repeat	returns	the	string	repeated	the	specified	number	of	times.
Input	Parameters
Times	-	Number	of	times	to	repeat	the	string.	This	number	must	be	greater	than
zero.
Example
In	this	example,	if	#String	contained	'ABCDE'	the	result	would	be
'ABCDEABCDE':
#Com_owner.Caption	:=	#String.Repeat(2)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.50	Replace
Replace	replaces	the	first	instance	of	the	value	specified	in	the	Object	parameter
with	the	value	specified	in	the	Replacement	parameter
Input	Parameters
Object	–	Value	to	be	replaced
Replacement	–	Value	to	be	used	in	place	of	the	Object	parameter	value
Example
#Com_owner.Caption	:=	#String.Replace("	"	"_")
	

	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.51	ReplaceAll
ReplaceAll	replaces	all	instances	of	the	value	specified	in	the	Object	parameter
with	the	value	specified	in	the	Replacement	parameter.
Input	Parameters
Object	–	Value	to	be	replaced
Replacement	–	Value	to	be	used	in	place	of	the	Object	parameter	value
Example
Replace	all	spaces	in	#string	with	an	underscore
#Com_owner.Caption	:=	#String.ReplaceAll("	"	"_")
	

	 	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.52	ReplaceSubstring
ReplaceSubstring	replaces	the	characters	from	the	StartPosition	for	the	specified
length	with	the	contents	of	the	With	parameter.
If	the	length	exceeds	the	available	characters,	the	remainder	is	ignored.
Input	Parameters
Startposition	-	Character	at	which	to	start	replacing
Length	-	Number	of	characters	to	replace
With	-	Replacement	string
Pad	-	Pad	character	to	be	used	when	the	StartPosition	is	beyond	the	length	of	the
string.
Example
In	this	example,	if	#String	contained	'ABCDE',	the	result	would	be	'XYZDE':
#Com_owner.Caption	:=	#String.ReplaceSubstring(1	3	'XYZ')
	

In	this	example,	if	#String	contained	'ABCDE',	the	result	would	be
'AXYZCDE':
#Com_owner.Caption	:=	#String.ReplaceSubstring(2	1	'XYZ')
	

In	this	example,	if	#String	contained	'ABCDE',	the	result	would	be
'ABCDE****XYZ':
#Com_owner.Caption	:=	#String.ReplaceSubstring(10	1	'XYZ'	'*')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.53	Reverse
Reverse	returns	the	string	reversed	end	to	end.
Input	Parameters
None
Example
In	this	example,	if	#String	contained	'ABCDE'	the	result	would	be	'EDCBA':
#Com_owner.Caption	:=	#String.Reverse
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.54	RightAdjust
RightAdjust	shifts	the	value	in	a	string	as	far	to	the	right	as	allowed	by	either
the	length	parameter	or	the	string's	length,	whichever	is	smaller.		The	left	of	the
value	is	filled	with	the	contents	of	the	pad	parameter,	or	blank	spaces	if	the	pad
isn't	provided.
Input	Parameters	(both	optional)
Length	-	the	length	within	which	to	right-adjust	the	string's	value.
Pad	-	a	character	used	to	pad	space	created	to	the	left	of	the	value.
Examples
define	field(#source)	type(*string)	length(10)
define	field(#target)	type(*string)	length(10)
	

*	in	this	example,	#target	will	be	set	to	"							abc"
#source	:=	"abc"
#target	:=	#source.RightAdjust
	

*	in	this	example,	#target	will	be	set	to	"		abc"
#target	:=	#source.RightAdjust(5)
	

*	in	this	example,	#target	will	be	set	to	"xxabc"
#target	:=	#source.RightAdjust(5,	"x")
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.55	RightMost
RightMost	returns	the	'n'	rightmost	characters	from	the	string.
Input	Parameters
Characters	-	Number	of	characters	to	retrieve.
Pad	-	Pad	character	to	be	used	if	the	number	of	characters	exceeds	the	length	of
the	string.
Example
In	this	example,	if	#String	contained	'ABCDE'	the	result	would	be	'CDE':
#Com_owner.Caption	:=	#String.RightMost(3)
	

In	this	example,	if	#String	contained	'ABCDE'	the	result	would	be
'*****ABCDE':
#Com_owner.Caption	:=	#String.RightMost(10	'*')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.56	RightTrim
RightTrim	can	be	used	to	remove	trailing	blanks,	or	other	characters,	from	a
string.
The	OfText	parameter	can	contain	more	than	one	character.
Input	Parameters
OfText	-	Character	or	characters	to	be	trimmed.	The	default	is	a	blank
Example
In	this	example,	if	#String	contained	'ABCDE			',	the	result	would	be	'ABCDE':
#Com_owner.Caption	:=	#String.RightTrim
	

In	this	example,	if	#String	contained	AAA	the	result	would	be	A.	After	the	first
AA	has	been	removed	from	the	string,	only	a	single	A	remains	that	does	not
match	the	OfText	parameter	value:
#Com_owner.Caption	:=	#String.RightTrim(AA)
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.57	Substitute
Substitute	allows	you	to	replace	text	at	a	series	of	predetermined	points	in	a
string,	identified	by	&1,	&2…&9.
Input	Parameters
String1	-	Substitution	value
String2	-	Substitution	value
String3	-	Substitution	value
String4	-	Substitution	value
String5	-	Substitution	value
String6	-	Substitution	value
String7	-	Substitution	value
String8	-	Substitution	value
String9	-	Substitution	value
Example
In	this	example,	*MtxtCust01	is	a	multilingual	variable	containing	the
following:
"&1	&2	has	a	limit	of	$&3"
#Givename,	#Surname	and	#Limit	have	values	of	Veronica,	Brown	and	2000
respectively.
The	result	at	run-time	would	be:
Veronica	Brown	has	a	limit	of	$2000.
#Com_owner.caption	:=	*MtxtCust01.Substitute(#Givename	#Surname	#Limit.AsString)
	

Note:	If	two	ampersands	appear	together	in	a	string,	they	are	reduced	to	a	single
ampersand	and	not	considered	for	substitution.
For	example:
#str1	:=	"&1&&2"
#str2	:=	#str1.Substitute("a"	"b")
	
#str2	will	equal	"a&2"
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.58	Substring
Substring	returns	a	section	of	the	string	starting	at	the	specified	StartPosition	for
a	length	of	the	specified	Length.	If	this	combination	exceeds	the	available	string
length,	Pad	can	be	used	to	provide	a	pad	character.
Input	Parameters
StartPosition	-	Character	at	which	to	start	the	Substring
Length	-	number	of	characters	to	substring
Pad	-	Pad	character	to	be	used	when	length	exceeds	available	string
Example
In	this	example,	if	#String	contained	'ABCDE',	the	result	would	be	'ABCD':
#Com_owner.Caption	:=	#String.Substring(1	4)	
	

In	this	example,	if	#String	contained	'ABCDE',	the	result	would	be
'ABCDE***':
#Com_owner.Caption	:=	#String.Substring(1	8	'*')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.59	TranslateCharacters
TranslateCharacters	is	used	to	substitute	characters	in	the	subject	string	with
characters	in	the	'To'	string,	using	characters	in	the	'From'	string	as	a	key.	
Whenever	a	character	in	the	subject	string	matches	a	character	in	the	'From'
string	it	will	be	replaced	with	the	equivalent	character	in	the	'To'	string.
Input	Parameters
From	-	a	string	containing	the	characters	to	search	for	in	the	subject	string
To	-	a	string	containing	the	characters	to	replace	in	the	subject	string
Examples
The	following	assume	that	#String	contains	'QWERTY':
*	#String2	will	be	set	to	'YTREWQ'
#String2	:=	#String.TranslateCharacters('QWERTY',	'YTREWQ')
	

*	#String2	will	be	set	to	'qWeRtY'
#String2	:=	#String.TranslateCharacters('QET',	'qet')
	
	10.6	Alphanumeric/String	Intrinsic	Functions

	

10.6.60	Trim
Trim	can	be	used	to	remove	leading	and	trailing	blanks,	or	other	characters,
from	a	string.
The	OfText	parameter	can	contain	more	than	one	character.
Input	Parameters
OfText	-	Character	or	characters	to	be	trimmed.	The	default	is	a	blank
Example
In	this	example,	if	#String	contained	'		ABCDE			',	the	result	would	be
'ABCDE':
#Com_owner.Caption	:=	#String.Trim
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.61	TrimBlankConcat
TrimBlankConcat	concatenates	up	to	10	strings,	removing	trailing	blanks,	and
inserting	a	blank	between	each	parameter.
Input	Parameters
String1	-	String	to	be	concatenated
String2	-	String	to	be	concatenated
String3	-	String	to	be	concatenated
String4	-	String	to	be	concatenated
String5	-	String	to	be	concatenated
String6	-	String	to	be	concatenated
String7	-	String	to	be	concatenated
String8	-	String	to	be	concatenated
String9	-	String	to	be	concatenated
String10	-	String	to	be	concatenated
Example
If	#Firstname	contained	'			Veronica		'	and	#Surname	contained	'	Brown	',	the
result	would	be	'Brown	Veronica':
#Com_owner.Caption	:=	#Surname.TrimBlankConcat(#Firstname)
	

This	is	equivalent	to	writing:
#Com_owner.Caption	:=	#Surname.Trim	+	'	'	+	#Firstname.Trim
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.62	TrimConcat
TrimConcat	concatenates	up	to	10	strings,	removing	all	trailing	blanks.
Input	Parameters
String1	-	String	to	be	concatenated
String2	-	String	to	be	concatenated
String3	-	String	to	be	concatenated
String4	-	String	to	be	concatenated
String5	-	String	to	be	concatenated
String6	-	String	to	be	concatenated
String7	-	String	to	be	concatenated
String8	-	String	to	be	concatenated
String9	-	String	to	be	concatenated
String10	-	String	to	be	concatenated
Example
If	#Firstname	contained	'	Veronica	'	and	#Surname	contained	'	Brown	',	the
result	would	be	'	Brown	Veronica':
#Com_owner.Caption	:=	#Surname.TrimConcat(#Firstname)
	

This	is	equivalent	to	writing:
#Com_owner.Caption	:=	#Surname.RightTrim	+	#Firstname.RightTrim
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.63	TrimSubstitute
TrimSubstitute	allows	you	to	replace	text	at	a	series	of	predetermined	points	in	a
string,	identified	by	&1,	&2…&9,	trimming	all	trailing	blanks.
Input	Parameters
String1	-	Substitution	value
String2	-	Substitution	value
String3	-	Substitution	value
String4	-	Substitution	value
String5	-	Substitution	value
String6	-	Substitution	value
String7	-	Substitution	value
String8	-	Substitution	value
String9	-	Substitution	value
Example
In	this	example,	*MtxtCust01	is	a	multilingual	variable	containing	the
following:
"&1	&2	has	a	limit	of	$&3"
#Givename,	#Surname	and	#Limit	have	values	of	'Veronica		',	'Brown		'	and
'2000'	respectively.
The	result	at	run-time	would	be:
Veronica	Brown	has	a	limit	of	$2000.
#Com_owner.caption	:=	*MtxtCust01.Substitute(#Givename	#Surname	#Limit.AsString)
	

Note:	If	two	ampersands	appear	together	in	a	string,	they	are	reduced	to	a	single
ampersand	and	not	considered	for	substitution.
For	example:
#str1	:=	"&1&&2"
#str2	:=	#str1.Substitute("a"	"b")
	
#str2	will	equal	"a&2"
	
	10.6	Alphanumeric/String	Intrinsic	Functions

10.6.64	UpperCase
Uppercase	returns	the	supplied	string	with	all	characters	converted	to	uppercase.
Input	Parameters
None
Example
In	this	example,	if	#String	contained	'abcde',	the	result	would	be	'ABCDE':
#String	:=	#String.Uppercase
	
	10.6	Alphanumeric/String	Intrinsic	Functions

	

10.7	Boolean	Intrinsic	Functions
In	the	examples	for	the	following	functions,	simple	names	have	been	used	to
identify	individual	variables	purely	for	the	purposes	of	clarity.	They	are	not
representative	of	any	variable	in	your	LANSA	repository.

10.7.1	And
10.7.2	AsNumber
10.7.3	AsString
10.7.4	AsValue
10.7.5	IsFalse

10.7.6	IsNull
10.7.7	IsSqlNull
10.7.8	IsTrue
10.7.9	Not
10.7.10	Or

Also	see
	10.	Intrinsic	Functions

10.7.1	And
And	checks	the	value	of	two	Boolean	values.	If	both	are	true,	the	result	will	be
True,	otherwise,	it	will	be	false.
Input	Parameters
With	-	Name	of	the	second	variable	to	be	tested
Example
#Button.Enabled	:=	#Boolean1.And(#Boolean2)
	

This	is	equivalent	to	writing
	
If	(#Boolean1	*and	#boolean2)
	
#Button.Enabled	:=	True
	
Else
	
#Button.Enabled	:=	False
	
Endif
	10.7	Boolean	Intrinsic	Functions

10.7.2	AsNumber
AsNumber	returns	a	Boolean	variable	as	a	number.	If	false,	the	result	will	be	0.
If	true,	it	will	be	1
Input	Parameters
None
Example
#Number	:=	#Boolean.AsNumber
	
	10.7	Boolean	Intrinsic	Functions

10.7.3	AsString
AsString	returns	a	Boolean	variable	as	a	string.	If	false,	the	result	will	be
"False".	If	true,	it	will	be	"True".
Input	Parameters
None
Example
#Number	:=	#Boolean.AsString
	
	10.7	Boolean	Intrinsic	Functions

10.7.4	AsValue
AsValue	allows	you	to	better	handle	*SQLNull.	Rather	than	having	to	test	for	a
potential	SQL	null,	AsValue	allows	a	variable	to	return	a	specified	value.
Input	Parameters
Default	-	The	value	to	be	returned	when	the	variable	contains	an	SQLNull.
Allowable	values	for	a	Boolean	variable	are	0,	1,	True	and	False
Example
Rather	than	having	to	test	as	below
If	((#Boolean	=	True)	*or	(#Boolean.IsSqlNull)
	
Endif
	

AsValue	allows	the	following:
If	(#Boolean.AsValue(True))
	
Endif
	
	10.7	Boolean	Intrinsic	Functions

10.7.5	IsFalse
IsFalse	tests	a	Boolean	variable	and	returns	true	if	the	Boolean	is	False
Input	Parameters
None
Example
#Button.Enabled	:=	#Boolean.IsFalse
	

This	is	equivalent	to	writing
If	(#Boolean	=	False)
	
#Button.Enabled	:=	True
	
Else
	
#Button.Enabled	:=	False
	
Endif
	
	10.7	Boolean	Intrinsic	Functions

10.7.6	IsNull
IsNull	tests	a	Boolean	variable	and	returns	a	true	if	it	contains	a	*null	value.
Input	Parameters
None
Example
#Button.enabled	:=	#Boolean.IsNull
	
	10.7	Boolean	Intrinsic	Functions

10.7.7	IsSqlNull
IsSqlNull	tests	a	Boolean	and	returns	true	if	it	contains	an	SQL	null
Input	Parameters
None
Example
#Button.enabled	:=	#Boolean.IsSqlNull
	
	10.7	Boolean	Intrinsic	Functions

10.7.8	IsTrue
IsTrue	tests	a	Boolean	variable	and	returns	true	if	the	Boolean	is	False
Input	Parameters
None
Example
#Button.Enabled	:=	#Boolean.IsTrue
	

This	is	equivalent	to	writing
	
If	(#Boolean	=	True)
	
#Button.Enabled	:=	True
	
Else
	
#Button.Enabled	:=	False
	
Endif
	
	10.7	Boolean	Intrinsic	Functions

10.7.9	Not
Not	returns	the	opposite	value	of	a	Boolean	variable.	Thus,	a	true	will	be
returned	as	a	false,	and	vice	versa
Input	Parameters
None
Example
#Button.Enabled	:=	#Boolean.Not
	

This	is	equivalent	to	writing
If	(#Boolean	=	True)
	
#Button.Enabled	:=	False
	
Else
	
#Button.Enabled	:=	True
	
Endif
	
	10.7	Boolean	Intrinsic	Functions

10.7.10	Or
Or	checks	the	value	of	two	Boolean	values.	If	either	is	true,	the	result	will	be
True,	otherwise,	it	will	be	false.
Input	Parameters
With	-	Name	of	the	second	variable	to	be	tested
Example
#Button.Enabled	:=	#Boolean1.Or(#Boolean2)
	

This	is	equivalent	to	writing
	
If	(#Boolean1	*or	#boolean2)
	
#Button.Enabled	:=	True
	
Else
	
#Button.Enabled	:=	False
	
Endif
	
	10.7	Boolean	Intrinsic	Functions

10.8	Date	Intrinsic	Functions
In	the	examples	for	the	following	functions,	simple	names	have	been	used	to
identify	individual	variables	purely	for	the	purposes	of	clarity.	They	are	not
representative	of	any	variable	in	your	LANSA	repository.

10.8.1	Adjust
10.8.2	AsDateTime
10.8.3	AsDayofWeek
10.8.4	AsDays
10.8.5	AsDisplayString

10.8.6	AsNumber
10.8.7	AsString
10.8.8	AsValue
10.8.9	Day
10.8.10	Difference

10.8.11	IsNull
10.8.12	IsSqlNull
10.8.13	Month
10.8.14	Now
10.8.15	Year

	10.	Intrinsic	Functions

10.8.1	Adjust
Adjust	increments	or	decrements	a	date	by	the	number	of	days	specified
Input	Parameters
Adjustment	-	Value	to	increment	or	decrement	the	date
Example
#Tomorrow	:=	#Today.Adjust(1)
	

or
	
#Yesterday	:=	#Today.Adjust(-1)
	

	
	10.8	Date	Intrinsic	Functions

10.8.2	AsDateTime
AsDateTime	returns	a	date	variable	as	a	datetime.
Input	Parameters
Time	-	time	variable	to	be	appended	to	the	date
Example
In	this	Example,	a	#Date	and	#Time	are	combined	to	produce	a	DateTime
Variable:
#DateTime	:=	#Date.AsDateTime(#Time)
	
	10.8	Date	Intrinsic	Functions	

10.8.3	AsDayofWeek
AsDayofWeek	returns	the	equivalent	day	of	the	week	for	the	supplied	date.
Input	Parameters
None
Example
In	this	example,	if	Today	contained	the	value	01-01-2005,	#dayofweek	would
become	Saturday	for	English	systems:
#DayName	:=	#Today.AsDayofWeek
	
	10.8	Date	Intrinsic	Functions	

10.8.4	AsDays
AsDays	returns	the	number	of	days	since	01-01-0000	for	the	supplied	date.
Input	Parameters
None
Example
#NoofDays	:=	#Today.AsDays
	

A	date	of	2004-12-31	will	return	result	of	731945.
	10.8	Date	Intrinsic	Functions

10.8.5	AsDisplayString
AsDisplayString	returns	the	supplied	date	formatted	using	one	of	the	available
supplied	date	formats
Input	Parameters
Format	-	Required	format	of	the	data.	Note	that	the	month	is	multilingual.
SYSFMT	dates	are	in	operating	system	format.
Available	formats,	and	the	resulting	display	string	are	listed	below.	Examples
use	a	date	of	2004-12-31.

See
Note

Format Display	String

	 CCYYDDMM 20043112

	 CCYYMM 200412

	 CCYYMMDD 20041231

	 CCYYsDDsMM 2004/31/12

	 CCYYsMMsDD 2004/12/31

	 Fri Fri

	 DDDDDDDDD Friday

	 DDMMCCYY 31122004

	 DDMMMCCYY 31Dec2004

	 DDMMMYY 31Dec04

	 DDMMYY 311204

	 DDsMMsCCYY 31/12/2004

	 DDsMMsYY 31/12/04

	 DDXXbMMMMMMMMMbCCYY 31st	December	2004

	 DDXXbMMMMMMMMMbYY 31st	December	04

	 ISO 2004-12-31

1 ML_DDDDDDDDD Friday

1 ML_DDbMMMMMMMMMbYY 31	December	04

1 ML_DDbMMMMMMMMMbCCYY 31	December	2004

	 MMCCYY 122004

	 MMDDCCYY 12312004

	 MMDDYY 123104

1 MMMMMMMMMM December

	 MMsDDsCCYY 12/31/2004

	 MmsDDsYY 12/31/04

	 MMYY 1204

	 SYSFMT6 311204

	 SYSFMT8 31122004

	 XYYMMDD 20043112

	 YYMM 0412

	 YYMMDD 041231

	 YysMMsDD 04/12/31

	

Example
#Com_owner.Caption	:=	#Today.AsDisplayString(DDMMCCYY)
	

Also	see
Date	Format
	10.8	Date	Intrinsic	Functions	

10.8.6	AsNumber
AsNumber	returns	the	supplied	date,	formatted	as	specified,	as	a	number.
Input	Parameters
Format	-	Required	format	of	the	data
Available	formats,	and	the	resulting	display	string	are	listed	below.	Examples
use	a	date	of	2004-12-31.

Format Display	Number

CCYYDDMM20043112

CCYYMM 200412

CCYYMMDD 20041231

DAYS 731945

DDMMCCYY 31122004

DDMMYY 311204

MMCCYY 122004

MMDDCCYY 12312004

MMDDYY 123104

MMYY 1204

SYSFMT6 311204

SYSFMT8 31122004

XYYMMDD 20043112

YYMM 412

YYMMDD 41231

	

Example
#Com_owner.Caption	:=	#Today.AsNumber(CCYYDDMM)

	

Also	see
Date	Format
	10.8	Date	Intrinsic	Functions	

10.8.7	AsString
AsString	returns	the	date	as	a	string.
Input	Parameters
None
Example
#Com_owner.Caption	:=	#Today.AsString
	

A	date	of	2004-31-12	will	be	returned	as	a	string	as	follows	2004-31-12
	10.8	Date	Intrinsic	Functions

10.8.8	AsValue
AsValue	allows	you	to	better	handle	*SQLNull.	Rather	than	having	to	test	for	a
potential	SQL	null,	AsValue	allows	a	variable	to	return	a	specified	value.
Input	Parameters
Default	-	The	value	to	be	returned	when	the	variable	contains	an	SQLNull.
Allowable	values	for	a	date	variable	are	any	valid	dates
Example
The	IF	below	tests	for	the	date	as	SQLnull	or	today's	date
	
If	((#Date.IsSqlNull)	*or	(#Date	=	#Date.now))
	
Endif
	

Using	AsValue	it	can	be	coded	as	follows
	
If	(#Date.AsValue(#Date.now)	=	#Date.now)
	
Endif
	
	10.8	Date	Intrinsic	Functions	

10.8.9	Day
Day	returns	the	day	portion	of	a	date.
Input	Parameters
None
Example
In	this	example,	a	date	of	2004-12-31	would	return	a	value	of	31	to	Day:
#Day	:=	#Today.Day
	
	10.8	Date	Intrinsic	Functions

10.8.10	Difference
Difference	returns	the	number	of	days	between	the	subject	and	object	days.
Input	Parameters
Object	-	Date	to	be	compared	against
Example
The	example	below	will	return	a	value	of	1.	That	is,	tomorrow	is	1	day	after	or
greater	than	today.
#DaysDiff	:=	#Tomorrow.Difference(#today)
	

Reversing	the	parameters,	as	below,	will	give	a	result	of	-1.	That	is,	today	is	one
day	before	or	less	than	tomorrow.
	
#DaysDiff	:=	#Today.Difference(#Tomorrow)
	
	10.8	Date	Intrinsic	Functions

10.8.11	IsNull
IsNull	tests	a	date	variable	and	returns	a	true	if	it	contains	a	*null	value.
Input	Parameters
None
Example
#Button.enabled	:=	#Date.IsNull
	

The	*null	value	for	a	date	is	1900-01-01.
	10.8	Date	Intrinsic	Functions	

10.8.12	IsSqlNull
IsSqlNull	tests	a	date	variable	and	returns	true	if	it	contains	an	SQL	Null
Input	Parameters
None
Example
#Button.enabled	:=	#Date.IsSqlNull
	
	10.8	Date	Intrinsic	Functions	

10.8.13	Month
Month	returns	the	month	portion	of	a	date.
Input	Parameters
None
Example
In	this	example,	a	date	of	2004-12-31	would	return	a	value	of	12	to	Month:
#Month	:=	#Today.Month
	
	10.8	Date	Intrinsic	Functions	

10.8.14	Now
Now	returns	the	current	date.
Input	Parameters
None
Example
This	example	sets	Today	to	the	current	date:
#Today	:=	#Today.Now
	
	10.8	Date	Intrinsic	Functions	

10.8.15	Year
Year	returns	the	year	portion	of	a	date.
Input	Parameters
None
Example
In	this	example,	a	date	of	2004-12-31	would	return	a	value	of	2004	to	Year:
#Year:=	#Today.Year
	
	10.8	Date	Intrinsic	Functions	

10.9	DateTime	Intrinsic	Functions

10.9.2
AsCustomDisplayString
10.9.1	AsDisplayString
10.9.3
AsLocalizedDateTime
10.9.4	AsNumber
	

10.9.5	AsSeconds
10.9.6	AsString
10.9.7
AsUniversalDateTime
10.9.8	AsValue
10.9.9	Date

10.9.10
FractionalSeconds
10.9.11	IsNull
10.9.12	IsSqlNull
10.9.13	Now
10.9.14	Time

	10.	Intrinsic	Functions

10.9.1	AsDisplayString
AsDisplayString	returns	the	supplied	date	formatted	using	one	of	the	available
supplied	date	formats	or	a	custom	format.
Input	Parameters
Supplied	fixed	formats	and	the	resulting	display	string	are	listed	below.
Examples	use	a	datetime	of	2004-12-31	12:34:56.
The	month	is	multilingual.

Format Display	String

CCYYDDMMHHMMSS 20043112123456

CCYYMMDDHHMMSS 20041231123456

HHMMSSbSysFmt6 123456	311204

HHMMSSbSysFmt8 123456	31122004

HHMMSSDDMMCCYY 12345631122004

HHMMSSDDMMYY 123456311204

LOCALIZED_SQL 2004-12-31	22:34:56.000000000

LOCALIZED_TZ 2004-12-31T22:34:56.000000000+10:00

SQL 2004-12-31	12:34:56.000000000

SysFmt6bHHMMSS 311204	123456

SysFmt8bHHMMSS 31122004	123456

TZ 2004-12-31T12:34:56.000000000Z

	

	10.9	DateTime	Intrinsic	Functions

10.9.2	AsCustomDisplayString
AsCustomDisplayString	returns	the	date	and	time	formatted	using	the	supplied
formatting	strings.
Input	Parameters
Parameter	1:	The	date	formatting	string	made	up	of	a	combination	of	the
formats	specified	in	CustomDateFormat.	For	details	about	valid	date	formats
please	see	CustomDateFormat.
Parameter	2:	The	time	formatting	string	made	up	of	a	combination	of	the
formats	specified	in	CustomTimeFormat.	For	details	about	valid	time	formats
please	see	CustomTimeFormat.
Example
#STD_TEXT	:=	#STD_DTIMX.AsCustomDisplayString('DD/MM/YY'
'hh.mm.ss	TT')
Example	output:	07/08/12	05.03.09	PM
	
#STD_TEXT	:=	#STD_DTIMX.AsCustomDisplayString('DDDD,	DD	MMM
YYYY'	'(H:mm)')
Example	output:	Wednesday,	07	Nov	2012	(17:03)
	10.	Intrinsic	Functions

its:LANSA016.CHM::/lansa/lpvodatetimecustomdateformathelp.htm
its:LANSA016.CHM::/lansa/lpvodatetimecustomtimeformathelp.htm

10.9.3	AsLocalizedDateTime
AsLocalizedDateTime	returns	the	supplied	datetime	adjusted	to	the	time	zone
specified	on	the	executing	system.
The	time	zone	is	the	difference	in	time	between	the	executing	system	and	UTC
(Universal	Coordinated	Time).
Input	Parameters
None
Example
In	this	example,	a	date	time	of	2004-12-31	12:34:56	would	return	2004-12-31
07:34:56	for	US	Eastern	Standard	Time	(-5	Hours	UTC):
#LocalTime	:=	#DateTime.AsLocalizedDateTime
	

For	more	information	about	UTC,	see	DateTime	field	types.
	10.9	DateTime	Intrinsic	Functions

10.9.4	AsNumber
AsNumber	returns	the	supplied	datetime,	formatted	as	specified,	as	a	number.
Input	Parameters
Format	-	Required	format	of	the	datetime
Available	formats,	and	the	resulting	numbers	are	listed	below.	Examples	use	a
date	of	2004-12-31.

Format Display	String

CCYYDDMMHHMMSS 20043112123456

CCYYMMDDHHMMSS 20041231123456

HHMMSSDDMMCCYY 12345631122004

HHMMSSDDMMYY 123456311204

	

Example
#Com_owner.Caption	:=	#Today.AsNumber(CCYYDDMM)
	

See	Input	Parameters	for	the	available	formats	and	the	resultant	strings.
	10.9	DateTime	Intrinsic	Functions

10.9.5	AsSeconds
AsSeconds	returns	the	number	of	seconds	since	00:00:00	for	the	specified	date
in	the	datetime
Input	Parameters
None
Example
In	this	example,	a	date	time	of	2004-12-31	12:34:56	would	return	45296:
#Seconds	:=	#DateTime.AsSeconds
	
	10.9	DateTime	Intrinsic	Functions

10.9.6	AsString
AsString	returns	the	datetime	as	a	string.
Input	Parameters
None
Example
A	datetime	of	2004-31-12	12:34:56	will	be	returned	as	follows	2004-12-31
12:34:56:
#Com_owner.Caption	:=	#DateTime.AsString
	
	10.9	DateTime	Intrinsic	Functions

10.9.7	AsUniversalDateTime
AsUniversalDateTime	returns	the	supplied	datetime	adjusted	to	UTC	(Universal
Coordinated	Time)	based	on	the	time	zone	specified	on	the	executing	system.
The	time	zone	is	the	difference	in	time	between	the	executing	system	and	UTC
(Universal	Coordinated	Time.
Input	Parameters
None
Example
#DateTime	:=	#LocalTime.AsUniversalDateTime
	

In	this	example,	a	local	date	time	of	2004-12-31	12:34:56	would	return	2004-
12-31	17:34:56	for	US	Eastern	Standard	Time	(-5	Hours	UTC)
For	more	information	about	UTC,	see	DateTime	field	types.
	10.9	DateTime	Intrinsic	Functions

10.9.8	AsValue
AsValue	allows	you	to	better	handle	*SQLNull.	Rather	than	having	to	test	for	a
potential	SQL	null,	AsValue	allows	a	variable	to	return	a	specified	value.
Input	Parameters
Default	-	The	value	to	be	returned	when	the	variable	contains	an	SQLNull.
Allowable	values	for	a	date	variable	are	any	valid	dates
Example
The	IF	below	tests	for	the	date	as	SQLnull	or	today's	date
If	((#Datetime.IsSqlNull)	*or	(#Datetime	=	#Datetime.now))
	
Endif
	

Using	AsValue	it	can	be	coded	as	follows
If	(#Date.AsValue(#Datetime.now)	=	#Datetime.now)
	
Endif
	
	10.9	DateTime	Intrinsic	Functions

10.9.9	Date
Date	returns	the	date	portion	of	the	supplied	datetime	as	a	date.
Input	Parameters
None
Example
In	this	example,	a	datetime	of	2004-31-12	12:34:56	would	return	a	date	of
2004-31-12:
#Today	:=	#DateTime.Date
	
	10.9	DateTime	Intrinsic	Functions

10.9.10	FractionalSeconds
FractionalSeconds	returns	the	decimal	portion	of	a	datetime	as	a	number.
Input	Parameters
None
Example
In	this	example,	a	date	time	of	2004-12-31	12:34:56.789	would	return	789:
#Decimal	:=	#DateTime.FractionalSeconds
	
	10.9	DateTime	Intrinsic	Functions

10.9.11	IsNull
IsNull	tests	a	datetime	variable	and	returns	a	true	if	it	contains	a	*null	value.
The	*null	value	for	a	datetime	is	1900-01-01	00:00:00
Input	Parameters
None
Example
#Button.enabled	:=	#Datetime.IsNull
	
	10.9	DateTime	Intrinsic	Functions

10.9.12	IsSqlNull
IsSqlNull	tests	a	datetime	variable	and	returns	true	if	it	contains	an	SQL	Null
Input	Parameters
None
Example
#Button.enabled	:=	#Datetime.IsSqlNull
	
	10.9	DateTime	Intrinsic	Functions

10.9.13	Now
Now	returns	the	current	datetime.
Input	Parameters
None
Example
This	example	sets	DateTime	to	the	current	date	and	time:
#DateTime	:=	#DateTime.Now
	
	10.9	DateTime	Intrinsic	Functions

10.9.14	Time
Time	returns	the	Time	portion	of	the	supplied	datetime	as	a	time.
Input	Parameters
None
Example
In	this	example,	a	datetime	of	2004-31-12	12:34:56	would	return	a	time	of
12:34:56:
#Time	:=	#DateTime.Time
	
	10.9	DateTime	Intrinsic	Functions

10.10	Time	Intrinsic	Functions
In	the	following	examples,	simple	names	have	been	used	to	identify	individual
variables	purely	for	the	purposes	of	clarity.	They	are	not	representative	of	any
variable	in	your	LANSA	repository.

10.10.1	Adjust
10.10.2	AsDateTime
10.10.3	AsDisplayString
10.10.4	AsNumber
10.10.5	AsSeconds
10.10.6	AsString
10.10.7	AsValue

10.10.8	Difference
10.10.9	Hour
10.10.10	IsNull
10.10.11	IsSqlNull
10.10.12	Minute
10.10.13	Now
10.10.14	Second

	10.	Intrinsic	Functions

10.10.1	Adjust
Adjust	increments	or	decrements	a	time	by	the	number	of	seconds	specified
Input	Parameters
Adjustment	-	Value	to	increment	or	decrement	the	time
Example
In	this	example,	if	#Time	contained	12:34:56,	the	result	would	be	12:33:56:
#Later	:=	#Time.Adjust(60)
	
	10.10	Time	Intrinsic	Functions

10.10.2	AsDateTime
AsDateTime	returns	a	DateTime	variable	that	combines	the	Time	and	the	Date
specified	in	the	Date	parameter
Input	Parameters
Date	-	Date	to	be	combined	with	Time
Example
#DateTime	:=	#Time.AsDateTime(#Date)	
	

In	this	example,	if	#Time	contained	12:34:56	and	#Datetime	contained	2004-12-
31,	the	result	would	be	2004-12-31	12:34:56.
	10.10	Time	Intrinsic	Functions

10.10.3	AsDisplayString
AsDisplayString	returns	the	supplied	Time	formatted	using	one	of	the	available
supplied	time	formats
Input	Parameters
Format	-	Required	format	of	the	data
Available	formats,	and	the	resulting	display	string	are	listed	below.	Examples
use	a	time	of	12:34:56

Format Display	String

HHMMSS 123456

HHsMMsSS 12:34:56

ISO 12:34:56

	

Example
#Com_owner.Caption	:=	#Time.AsDisplayString(ISO)
	

See	Input	Parameters	for	the	available	formats	and	the	resultant	strings.
	10.10	Time	Intrinsic	Functions

10.10.4	AsNumber
AsNumber	returns	the	supplied	Time	converted	to	a	number	in	one	of	the
available	supplied	time	formats.
Input	Parameters
Format	-	Format	of	the	returned	time
Available	formats	are	listed	below.	Examples	use	a	time	of	12:34:56

Format Number

HHMMSS 123456

Seconds 45296

	

Example
#Seconds	:=	#Time.AsNumber(Seconds)
	

See	Input	Parameters	for	the	available	formats	and	the	resultant	strings.
	10.10	Time	Intrinsic	Functions

10.10.5	AsSeconds
AsNumber	returns	the	supplied	Time	as	the	number	of	seconds	since	00:00:00
Input	Parameters
None
Example
In	this	example,	if	#Time	had	a	value	of	12:34:56,	the	result	would	be	45296:
#Seconds	:=	#Time.AsSeconds
	
	10.10	Time	Intrinsic	Functions

10.10.6	AsString
AsString	returns	the	supplied	Time	as	a	string
Input	Parameters
None
Example
#String	:=	#Time.AsString
	
	10.10	Time	Intrinsic	Functions

10.10.7	AsValue
AsValue	allows	you	to	better	handle	*SQLNull.	Rather	than	having	to	test	for	a
potential	SQL	null,	AsValue	allows	a	variable	to	return	a	specified	value.
Input	Parameters
Default	-	The	value	to	be	returned	when	the	variable	contains	an	SQLNull.
Allowable	value	for	a	time	is	any	valid	time.
Example
Rather	than	having	to	test	as	below
If	((#Time	=	00:00:00)	*or	(#Time.IsSqlNull)
	
Endif
	

AsValue	allows	the	following
If	(#Time.AsValue(00:00:00)	=	00:00:00)
	
Endif
	
	10.10	Time	Intrinsic	Functions

10.10.8	Difference
Difference	returns	the	number	of	seconds	between	the	subject	and	object	times.
Input	Parameters
Object	-	Time	to	be	compared	against
Example
In	this	example,	if	#Starttime	contained	12:00:00	and	#Endtime	contained
13:00:00,	the	result	would	be	3600.	That	is,	#Endtime	is	3600	seconds	(1	Hour)
after	#Starttime.
#Seconds	:=	#EndTime.Difference(#StartTime)
	

Reversing	the	parameters,	as	follows,	will	give	a	result	of	-3600.	That	is,
#starttime	is	3600	seconds	before	#Endtime.
#Seconds	:=	#StartTime.Difference(#EndTime)
	
	10.10	Time	Intrinsic	Functions

10.10.9	Hour
Hour	returns	the	Hour	portion	of	a	time.
Input	Parameters
None
Example
In	this	example,	iIf	#Time	contained	12:00:00,	the	result	would	be	12:
#Hour	:=	#Time.Hour
	
	10.10	Time	Intrinsic	Functions

10.10.10	IsNull
IsNull	tests	a	time	variable	and	returns	a	true	if	it	contains	a	*null	value.
Input	Parameters
None
Example
The	*null	value	for	a	time	is	00:00:00:
#Button.enabled	:=	#String.IsNull
	
	10.10	Time	Intrinsic	Functions

10.10.11	IsSqlNull
IsSqlNull	tests	a	time	variable	and	returns	true	if	it	contains	an	SQL	Null
Input	Parameters
None
Example
#Button.enabled	:=	#Time.IsSqlNull
	
	10.10	Time	Intrinsic	Functions

10.10.12	Minute
Minute	returns	the	minute	portion	of	a	time.
Input	Parameters
None
Example
In	the	above	Example,	If	#Time	contained	12:34:00,	the	result	would	be	34:
#Minute	:=	#Time.Minute
	
	10.10	Time	Intrinsic	Functions

10.10.13	Now
Now	returns	the	current	time.
Input	Parameters
None
Example
This	Example	sets	time	to	the	current	time:
#Time	:=	#Time.Now
	
	10.10	Time	Intrinsic	Functions

10.10.14	Second
Second	returns	the	seconds	portion	of	a	time.
Input	Parameters
None.
Example
In	this	example,	If	#Time	contained	12:34:56,	the	result	would	be	56:
#Seconds	:=	#Time.Second
	
	10.10	Time	Intrinsic	Functions

10.11	Large	Object	Intrinsic	Functions
In	the	following	examples,	simple	names	have	been	used	to	identify	individual
variables	purely	for	the	purposes	of	clarity.	They	are	not	representative	of	any
variable	in	your	LANSA	repository.

10.11.1	AsValue 10.11.2	Filename 10.11.3	IsNull

10.11.4	IsSqlNull 	 	

	10.	Intrinsic	Functions

10.11.1	AsValue
AsValue	allows	you	to	better	handle	*SQLNull.	Rather	than	having	to	test	for	a
potential	SQL	null,	AsValue	allows	a	variable	to	return	a	specified	value.
Input	Parameters
Default	-	The	value	to	be	returned	when	the	variable	contains	an	SQLNull.
Allowable	value	for	a	time	is	any	valid	time.
Example
Rather	than	having	to	test	as	below:
If	((#Blob	=	'N/AVAILABLE')	*or	(#Blob.IsSqlNull))
	
	
Endif
	

AsValue	allows	the	following:
If	(#Blob.AsValue('N/AVAILABLE')	=	'N/AVAILABLE')
	
Endif
	
	10.11	Large	Object	Intrinsic	Functions

10.11.2	Filename
FileName	returns	the	qualified	filename	for	the	BLOB	or	CLOB.	For	BLOBs
and	CLOBs	fields,	this	is	equivalent	to	the	field	value
Input	Parameters
None
Example
#FileName	:=	#Blob.Filename
	
	10.11	Large	Object	Intrinsic	Functions

10.11.3	IsNull
IsNull	tests	a	string	variable	and	returns	a	true	if	it	contains	a	*null	value.
Input	Parameters
None
Example
#Button.enabled	:=	#String.IsNull
	

The	*null	value	for	a	numeric	variable	is	*blanks.
	10.11	Large	Object	Intrinsic	Functions

10.11.4	IsSqlNull
IsSqlNull	tests	a	string	variable	and	returns	true	if	it	contains	an	SQL	Null.
Input	Parameters
None
Example
#Button.enabled	:=	#String.IsSqlNull
	
	10.11	Large	Object	Intrinsic	Functions

10.12	Binary	Intrinsic	Functions
In	the	following	examples,	simple	names	have	been	used	to	identify	individual
variables	purely	for	the	purposes	of	clarity.	They	are	not	representative	of	any
variable	in	your	LANSA	repository.

10.12.1	AsByte
10.12.2	AsInteger
10.12.3	AsString
10.12.4	CurSize

10.12.5	IsNull
10.12.6	IsSqlNull
10.12.7	AsHexString
10.12.8	AsHexToInt

	

10.12.1	AsByte
AsInteger	returns	the	ASCII	decimal	value	of	the	first	character	in	the	string,	as
per	the	table	in	AsInteger	in	String	Intrinsic	Functions.
Input	Parameters
None
Example
Refer	to	the	Example	in	AsInteger	in	String	Intrinsic	Functions.
	10.12	Binary	Intrinsic	Functions

10.12.2	AsInteger
AsInteger	returns	the	ASCII	decimal	value	of	the	first	character	in	the	string,	as
per	the	table	in	AsInteger	in	String	Intrinsic	Functions.
Input	Parameters
None
Example
Refer	to	the	Example	in	AsInteger	in	String	Intrinsic	Functions.
	10.12	Binary	Intrinsic	Functions

10.12.3	AsString
AsString	is	used	to	return	a	binary	as	a	value	of	type	string
Input	Parameters
None
Example
#String	:=	#Binary.AsString
	
	10.12	Binary	Intrinsic	Functions

10.12.4	CurSize
CurSize	is	used	to	return	the	current	byte	length.	Trailing	spaces	are	significant.
Input	Parameters
None
Example
In	the	example	below,	if	#String	contained	the	value	"ABCDEFG",	Cursize
would	return	a	value	of	7
#StringLength	:=	#String.CurSize
	
	10.12	Binary	Intrinsic	Functions

10.12.5	IsNull
IsNull	tests	the	binary	and	returns	true	if	it	contains	a	*Null	(zero	or	blanks).
Input	Parameters
None
Example
#Button.enabled	:=	#Binary.IsNull
	
	10.12	Binary	Intrinsic	Functions

10.12.6	IsSqlNull
IsSqlNull	tests	the	binary	and	returns	true	if	it	contains	an	SQL	Null
Input	Parameters
None
Example
#Button.enabled	:=	#Binary.IsSqlNull
	
	10.12	Binary	Intrinsic	Functions

10.12.7	AsHexString
Convert	integers	to	hexadecimal	through	Binary	Strings.
A	hexadecimal	string	cannot	be	represented	in	a	numeric	type,	so	the	Binary
String	primitive	is	used	as	a	staging	area	for	the	conversion.
Input	Parameters
None

Portability
Consideration

Note	that	the	byte	order	of	the	result	depends	on	the	byte	order
of	the	computer	being	used.

Example
Define	Field(#myRBStr)	Type(*BIN)	Length(128)
Define	Field(#L8Int)	Type(*INT)	Length(8)
	
#myRBStr	:=	(9999).AsBinString()
#myRBStr.AsHexString()	gives	0F270000	(on	Windows	computers).
	
	10.12	Binary	Intrinsic	Functions

10.12.8	AsHexToInt
Access	the	integer	equivalent	of	a	hexadecimal	string	using	this	intrinsic.
Input	Parameters
None
Example
Define	Field(#myRBStr)	Type(*BIN)	Length(128)
Define	Field(#L8Int)	Type(*INT)	Length(8)
	
#L8Int	:=	9999
#L8Int	:=	#L8Int.AsBinString().AsHexToInt()
	
#L8Int	contains	9999.
	
	10.12	Binary	Intrinsic	Functions

	

10.13	Decimal	Intrinsic	Functions
10.13.1	AsValue
	10.	Intrinsic	Functions

10.13.1	AsValue
AsValue	allows	you	to	better	handle	*SQLNull.	Rather	than	having	to	test	for	a
potential	SQL	null,	AsValue	allows	a	variable	to	return	a	specified	value.
Input	Parameters
Default	-	The	value	to	be	returned	when	the	variable	contains	an	SQLNull.
Allowable	values	for	a	date	variable	are	any	valid	dates
Example
The	IF	below	tests	for	the	date	as	SQLnull	or	less	than	10:
	
If	((#Decimal.IsSqlNull)	*or	(#Decimal	<	10))
	
Endif
	

Using	AsValue	it	can	be	coded	as	follows
	
If	(#Decimal.AsValue(0)	<	10)
	
	Endif
	
	10.13	Decimal	Intrinsic	Functions

10.14	Fixed	Point	Intrinsic	Functions

10.14.1	AsFloat
10.14.2	AsString
10.14.3	Bound

10.14.4	IsBetween
10.14.5	Max
10.14.6	Min

10.14.7	Pred
10.14.8	Round
10.14.9	Succ

	10.	Intrinsic	Functions

10.14.1	AsFloat
AsFloat	allows	a	fixed	point	number	to	be	handled	as	a	floating	point	number
Input	Parameters
None
Example
	
#Float	:=	#Number.Asfloat	*	#Float
	
	10.14	Fixed	Point	Intrinsic	Functions

10.14.2	AsString
AsString	is	used	to	return	a	number	as	a	string.
Input	Parameters
None
Example
#String	:=	#number.AsString
	
	10.14	Fixed	Point	Intrinsic	Functions

10.14.3	Bound
Bound	returns	a	number	within	the	bounds	in	the	supplied	Input	Parameters.	If
the	variable	is	greater	than	the	bounds,	the	upper	bound	is	returned.	If	lower,	the
lower	bound	is	returned.	If	the	variable	is	within	the	bounds,	the	variable	is
returned	unmodified
Input	Parameters
Numberone	-	Upper	or	lower	bound	limit
Numbertwo	-	Upper	or	lower	bound	limit
Example
#Result	:=	#Number.Bound(1	100)
	

Using	the	example	above,	if	number	contained	150,	result	would	be	set	to	100.
If	number	contained	0,	result	would	be	set	to	1.	If	number	contained	42,	result
would	be	set	to	42.
	10.14	Fixed	Point	Intrinsic	Functions

10.14.4	IsBetween
IsBetween	tests	the	value	of	a	number	and	returns	true	if	it	is	within	the	limits
specified.	A	value	equal	to	either	of	the	limits	is	considering	to	be	within	the
limits
Input	Parameters
Numberone	-	Upper	or	lower	limit
Numbertwo	-	Upper	or	lower	limit
Example
#Button.enabled	:=	#Number.IsBetween(1	100)
	

This	is	equivalent	to	writing
If	((#Number	>=	1)	and	(#Number	<=	100))
	
#Button.Enabled	:=	True
	
Else
	
#Button.Enabled	:=	False
	
Endif
	
	10.14	Fixed	Point	Intrinsic	Functions

10.14.5	Max
Max	compares	a	numeric	value	to	the	value	supplied	in	the	Of	parameter,	and
returns	the	larger	of	the	two.
Input	Parameters
Of	-	Numeric	value	to	compare	to
Example
#Result	:=	#Number1.Max(#Number2)
	

In	this	example,	if	number1	has	a	value	of	19,	and	number2	has	a	value	of	20,
result	will	be	set	to	20
This	is	equivalent	to	writing:
If	(#number1	>	#number	2)
	
#result	:=	#number1
	
Else
	
#result	:=	#number2
	
Endif
	
	10.14	Fixed	Point	Intrinsic	Functions

	

10.14.6	Min
Min	compares	a	numeric	value	to	the	value	supplied	in	the	Of	parameter,	and
returns	the	smaller	of	the	two.
Input	Parameters
Of	-	Numeric	value	to	compare	to
Example
In	this	example,	if	number1	has	a	value	of	19,	and	number2	has	a	value	of	20,
result	will	be	set	to	19
#Result	:=	Number1.Min(#Number2)
	

The	above	example	is	equivalent	to	writing
If	(#number1	<	#number	2)
	
#result	:=	#number1
	
Else
	
#result	:=	#number2
	
Endif
	
	10.14	Fixed	Point	Intrinsic	Functions

10.14.7	Pred
Pred	returns	the	supplied	variable	decremented	by	1.
Input	Parameters
None
Example
If	(#Previous	=	#Current.Pred)
	

This	is	equivalent	to	writing
If	(#Previous	=	#Current	-	1)
	
	10.14	Fixed	Point	Intrinsic	Functions

10.14.8	Round
Round	allows	a	number	to	be	rounded	to	a	specified	number	of	decimal	places
using	a	selected	rounding	technique.
Input	Parameters
Operation	-	Type	of	rounding	to	be	performed
Allowable	values	are
Up	-	will	always	round	up
Down	-	will	always	round	down
Halfup	-	will	round	up	if	the	rounding	value	is	5	or	more
Halfdown	-	will	round	up	if	the	rounding	value	is	5	or	less
See	the	Examples	for	more	information	on	the	behavior	of	each	rounding	type
Decimals	-	Number	of	decimal	places	to	round	to
Example
#Result	:=	#Number.Round(Up	1)
	

Rounding	up	10.51	to	1	decimal	places	will	produce	a	result	of	10.6.
Rounding	up	10.01	to	0	decimal	places	will	produce	a	result	of	11.0.
Rounding	down	10.51	to	1	decimal	places	will	produce	a	result	of	10.5.
Rounding	up	10.99	to	0	decimal	places	will	produce	a	result	of	11.0.
Rounding	halfup	10.49	to	1	decimal	places	will	produce	a	result	of	10.5.
Rounding	halfup	10.44	to	1	decimal	places	will	produce	a	result	of	10.4.
Rounding	halfdown	10.44	to	1	decimal	places	will	produce	a	result	of	10.4.
Rounding	halfdown	10.46	to	1	decimal	places	will	produce	a	result	of	10.5.
	10.14	Fixed	Point	Intrinsic	Functions

10.14.9	Succ
Succ	returns	the	supplied	variable	incremented	by	1.
Input	Parameters
None
Example
If	(#Next	=	#Current.Succ)
	

This	is	equivalent	to	writing
If	(#Next	=	#Current	+	1)
	
	10.14	Fixed	Point	Intrinsic	Functions

10.15	Floating	Point	Intrinsic	Functions
Note:	The	trigonometric	intrinsics	assume	the	input	value	is	in	radians,	not
degrees.

10.15.1	Add
10.15.2	AsDecimal
10.15.3	AsString
10.15.4	AsValue
10.15.5	Bound
10.15.6	Divide
10.15.7	IsBetween
10.15.8	Max
10.15.9	Min
10.15.10	Multiply
10.15.11	Pred

10.15.12	Subtract
10.15.13	Succ
10.15.14	Sine
10.15.15	ArcSine
10.15.16	SineH
10.15.17	Cosine
10.15.18	ArcCosine
10.15.19	CosineH
10.15.20	Tangent
10.15.21	ArcTangent

10.15.22	TangentH
10.15.23	ArcTangent2
10.15.26	Power
10.15.27	SQRT
10.15.28	Exponential
10.15.29	Logarithm
10.15.30	Logarithm10
10.15.24	FAbs
10.15.25	FMod
10.15.31	IsNANorND

	10.	Intrinsic	Functions

10.15.1	Add
Add	adds	the	value	specified	in	the	Object	parameter	to	the	subject.
Input	Parameters
Object	–	Value	to	be	added	to	the	subject
Example
	
#Float	:=	#Float.Add(#Float2)
	

This	is	equivalent	to	writing
	
#Float	+=	#Float2
	

or
	
#Float	:=	#Float	+	#Float2	
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.2	AsDecimal
AsDecimal	allows	a	floating	point	number	to	a	use	fixed	point	number.
Input	Parameters
None
Example
	
#Number	:=	#Float1.asDecimal	+	#Float2.asDecimal
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.3	AsString
AsString	is	used	to	return	a	number	as	a	string.
Input	Parameters
None
Example
#String	:=	#number.AsString
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.4	AsValue
AsValue	allows	you	to	better	handle	*SQLNull.	Rather	than	having	to	test	for	a
potential	SQL	null,	AsValue	allows	a	variable	to	return	a	specified	value.
Input	Parameters
Default	-	The	value	to	be	returned	when	the	variable	contains	an	SQLNull.
Allowable	values	for	a	date	variable	are	any	valid	dates
Example
The	IF	below	tests	for	the	date	as	SQLnull	or	less	than	10:
	
If	((#Number.IsSqlNull)	*or	(#Number	<	10))
	
Endif
	

Using	AsValue	it	can	be	coded	as	follows
	
If	(#Number.AsValue(0)	<	10)
	
	Endif
	10.15	Floating	Point	Intrinsic	Functions

10.15.5	Bound
Bound	returns	a	number	within	the	bounds	in	the	supplied	Input	Parameters.	If
the	variable	is	greater	than	the	bounds,	the	upper	bound	is	returned.	If	lower,	the
lower	bound	is	returned.	If	the	variable	is	within	the	bounds,	the	variable	is
returned	unmodified
Input	Parameters
Numberone	-	Upper	or	lower	bound	limit
Numbertwo	-	Upper	or	lower	bound	limit
Example
#Result	:=	#Number.Bound(1	100)
	

Using	the	example	above,	if	number	contained	150,	result	would	be	set	to	100.
If	number	contained	0,	result	would	be	set	to	1.	If	number	contained	42,	result
would	be	set	to	42.
	10.15	Floating	Point	Intrinsic	Functions

10.15.6	Divide
Divide	divides	the	subject	by	the	value	specified	in	the	Object	parameter.
Input	Parameters
Object	–	Value	by	which	the	subject	is	divided
Example
	
#Float	:=	#Float.Divide(#Float2)
	

This	is	equivalent	to	writing
	
#Float	/=	#Float2
	

	or
	
#Float	:=	#Float	/	#Float2	
	

	 	10.15	Floating	Point	Intrinsic	Functions

10.15.7	IsBetween
IsBetween	tests	the	value	of	a	number	and	returns	true	if	it	is	within	the	limits
specified.	A	value	equal	to	either	of	the	limits	is	considering	to	be	within	the
limits
Input	Parameters
Numberone	-	Upper	or	lower	limit
Numbertwo	-	Upper	or	lower	limit
Example
#Button.enabled	:=	#Floating.IsBetween(1	100)
	

This	is	equivalent	to	writing
If	((#Floating	>=	1)	and	(#Floating	<=	100))
	
#Button.Enabled	:=	True
	
Else
	
#Button.Enabled	:=	False
	
	Endif
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.8	Max
Max	compares	a	numeric	value	to	the	value	supplied	in	the	Of	parameter,	and
returns	the	larger	of	the	two.
Input	Parameters
Of	-	Numeric	value	to	compare	to
Example
#Result	:=	#Number1.Max(#Number2)
	

In	this	example,	if	number1	has	a	value	of	19,	and	number2	has	a	value	of	20,
result	will	be	set	to	20
This	is	equivalent	to	writing:
If	(#number1	>	#number	2)
	
#result	:=	#number1
	
Else
	
#result	:=	#number2
	
Endif
	

	 	10.15	Floating	Point	Intrinsic	Functions

10.15.9	Min
Min	compares	a	numeric	value	to	the	value	supplied	in	the	Of	parameter,	and
returns	the	smaller	of	the	two.
Input	Parameters
Of	-	Numeric	value	to	compare	to
Example
In	this	example,	if	number1	has	a	value	of	19,	and	number2	has	a	value	of	20,
result	will	be	set	to	19
#Result	:=	Number1.Min(#Number2)
	

The	above	example	is	equivalent	to	writing
If	(#number1	<	#number	2)
	
#result	:=	#number1
	
Else
	
#result	:=	#number2
	
Endif
	

	 	10.15	Floating	Point	Intrinsic	Functions

10.15.10	Multiply
Multiply	multiplies	the	subject	by	the	value	specified	in	the	Object	parameter.
Input	Parameters
Object	–	Value	by	which	the	subject	is	to	be	multiplied
Example
	
#Float	:=	#Float.Mulitply(#Float2)
	

This	is	equivalent	to	writing
	
#Float	*=	#Float2
	

	or
	
#Float	:=	#Float	*	#Float2	
	

	 	10.15	Floating	Point	Intrinsic	Functions

10.15.11	Pred
Pred	returns	the	supplied	variable	decremented	by	1.
Input	Parameters
None
Example
If	(#Previous	=	#Current.Pred)
	

This	is	equivalent	to	writing
	
If	(#Previous	=	#Current	-	1)
	

	 	10.15	Floating	Point	Intrinsic	Functions

10.15.12	Subtract
Subtract	subtracts	the	value	specified	in	the	Object	parameter	from	the	subject
Input	Parameters
Object	–	Value	by	which	the	subject	is	subtracted
Example
	
#Float	:=	#Float.subtract(#Float2)
	

This	is	equivalent	to	writing
	
#Float	-=	#Float2
	

	or
	
#Float	:=	#Float	;-	#Float2	
	

	 	10.15	Floating	Point	Intrinsic	Functions

10.15.13	Succ
Succ	returns	the	supplied	variable	incremented	by	1.
Input	Parameters
None
Example
If	(#Next	=	#Current.Succ)
	

This	is	equivalent	to	writing
	
If	(#Next	=	#Current	+	1)
	

	 	10.15	Floating	Point	Intrinsic	Functions

10.15.14	Sine
Applies	the	trigonometric	sine()	function	to	a	float	data	type,	returning	a	float
result.
Input	Parameters
None
Example
Define	field(#aFloat)	Type(*FLOAT)
#aFloat	:=	(1.234).AsFloat	().Sine()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.15	ArcSine
Applies	the	trigonometric	arcsine()	function	to	a	float	data	type,	returning	a	float
result.
Input	Parameters
None
Example
Define	field(#aFloat)	Type(*FLOAT)
#aFloat		:=	(1.570796327).AsFloat().ArcSine()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.16	SineH
Applies	the	trigonometric	sineh()	function	to	a	float	data	type,	returning	a	float
result.
Input	Parameters
None
Example
Define	field(#aFloat)	Type(*FLOAT)
#afloat	:=		(20.0).AsFloat().SineH()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.17	Cosine
Applies	the	trigonometric	cosine()	function	to	a	float	data	type,	returning	a	float
result.
Input	Parameters
None
Example
Define	field(#aFloat)	Type(*FLOAT)
	#aFloat	:=	(1.2).AsFloat.Cosine()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.18	ArcCosine
Applies	the	trigonometric	arccosine()	function	to	a	float	data	type,	returning	a
float	result.
Input	Parameters
None
Example
Define	field(#aFloat)	Type(*FLOAT)
	#aFloat	:=	(1.2).AsFloat.ArcCosine()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.19	CosineH
Applies	the	trigonometric	cosineh()	function	to	a	float	data	type,	returning	a
float	result.
Input	Parameters
None
Example
Define	field(#aFloat)	Type(*FLOAT)
	#aFloat	:=	(1.2).AsFloat.CosineH()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.20	Tangent
Applies	the	trigonometric	tangent()	function	to	a	float	data	type,	returning	a
float	result.
Input	Parameters
None
Example
Define	field(#aFloat)	Type(*FLOAT)
	#aFloat	:=	(1.2).AsFloat.Tangent()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.21	ArcTangent
Applies	the	trigonometric	arctangent()	function	to	a	float	data	type,	returning	a
float	result.
Input	Parameters
None
Example
Define	field(#aFloat)	Type(*FLOAT)
	#aFloat	:=	(1.2).AsFloat.ArcTangent()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.22	TangentH
Applies	the	trigonometric	tangenth()	function	to	a	float	data	type,	returning	a
float	result.
Input	Parameters
None
Example
Define	field(#aFloat)	Type(*FLOAT)
	#aFloat	:=	(1.2).AsFloat.TangentH()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.23	ArcTangent2
Applies	the	trigonometric	arctangent2()	function	to	a	float	data	type,	returning	a
float	result.
Input	Parameters
The	"y"	coordinate	of	the	point.
Example
Define	field(#aFloat)	Type(*FLOAT)
	#aFloat	:=	(1.2).AsFloat().ArcTangent2(1.0)
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.24	FAbs
Applies	the	floating	point	fabs()	function	to	a	float	data	type,	returning	a	float
result	that	is	the	positive	value	of	the	float	supplied.
Input	Parameters
None
Example
(-9.0).AsFloat().FAbs()
	
yields	the	result	9.0
	10.15	Floating	Point	Intrinsic	Functions

10.15.25	FMod
The	FMod	float	intrinsic	returns	the	modulus	of	the	floating	point	number	to
which	it	is	applied,	as	a	floating	point	number.
Input	Parameters
Modulus	–	this	parameter	defines	the	modulus
Example
#aFloat	:=	(6.0).AsFloat().FMod(4.0)
yields	2.0	in	#aFloat
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.26	Power
Power()	raises	a	floating	point	number	to	the	power	of	the	supplied	parameter,
returning	a	floating	point	number.
Input	Parameters
PowerTo	–	raise	the	subject	to	this	power
Example
(2.0).Power(2.0)
	
returns	4.0.
	10.15	Floating	Point	Intrinsic	Functions

10.15.27	SQRT
Sqrt	returns	the	square	root	of	a	floating	point	number,	as	a	floating	point
number.
Input	Parameters
None
Example
#afloat	:=	(9.0).Sqrt()
places	3.0	in	#aFloat
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.28	Exponential
Exponential()	returns	the	exponential	value	of	a	given	floating	point	number:	e
to	the	power	of	the	number.	The	result	is	a	floating	point	number.
Input	Parameters
None
Example
#aFloat.Exponential()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.29	Logarithm
Returns	the	(natural)	logarithm	of	a	floating	point	number,	as	a	floating	point
number.
Input	Parameters
None
Example
#aFloat.Logarithm()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.30	Logarithm10
Returns	the	base	10	logarithm	of	a	floating	point	number.	The	value	is	returned
as	a	floating	point	number.
Input	Parameters
None
Example
#aFloat.Logarithm10()
	
	10.15	Floating	Point	Intrinsic	Functions

10.15.31	IsNANorND
Certain	intrinsics	may	return	values	that	are	not	recognised	numbers.	An
example	is	ArcCosine(3.0).	The	value	returned	may	be	either	an	NAN	(not	a
number)	or	an	ND(non-determinate).
IsNANorNd()	can	be	used	to	check	a	floating	point	number	to	determine	if	it	is
or	is	not	a	number.	It	returns	a	Boolean.
Input	Parameters
None
Example
#afloat	:=	(3.0).AsFloat().ArcCosine()
#afloat.IsNANorND())
	
yields	true	if	the	ArcCosine()	returns	a	NAN.
	10.15	Floating	Point	Intrinsic	Functions

	
	

10.16	Integer	Intrinsic	Functions

10.16.2	AsBinString
10.16.3	AsByte
10.16.4	AsChar
10.16.12	AsUnicodeString

10.16.5	AsValue
10.16.1	BinaryString	Conversions
10.16.6	BitAnd
10.16.7	BitNot

10.16.8	BitOr
10.16.9	BitXOr
10.16.11	Div
10.16.10	Mod

	

10.16.1	BinaryString	Conversions
A	hexadecimal	string	cannot	be	represented	in	a	numeric	type,	so	the	Binary
String	primitive	is	used	as	a	staging	area	for	the	conversion.
Integers	can	be	converted	to	and	from	hexadecimal	strings	by	using	the
following	intrinsics:
Given	an	integer,	convert	to	binary	string	using	#integerValue.AsBinaryString(),
Convert	the	binary	string	to	a	hexadecimal	representation	using
#binaryString.AsHexString(),
Given	a	binary	string	containing	a	hexadecimal	value,	access	as	an	integer	value
using	#binaryString.AsHexToInt().
These	methods	work	with	both	integers	and	long	integers.
For	example:
Define	Field(#myRBStr)	Type(*BIN)	Length(128)	Define	Field(#L8Int)
Type(*INT)	Length(8)	#myRBStr	:=	(9999).AsBinString()
#myRBStr.AsHexString()	gives	0F270000
#L8Int	:=	169999999999
L8Int.AsBinString().AsHexString()	gives	FF23CA9427000000	on	intel-based
computers.
	
	10.16	Integer	Intrinsic	Functions

10.16.2	AsBinString
AsBinString	is	used	to	create	a	binary	string	out	of	an	integer	value.
This	intrinsic	can	be	used	as	a	first	step	into	creating	a	hexadecimal
representation	of	an	integer.
Input	Parameters
None
Example
#STD_INT	:=	15
#STD_BIN	:=	#STD_INT.AsBinString
#STD_TEXT	:=	#STD_BIN.AsHexString
*	#STD_TEXT	will	contain	0F000000	on	on	intel-based	computers
	
	10.16	Integer	Intrinsic	Functions

10.16.3	AsByte
AsByte	returns	the	numeric	code	page	value	for	the	specified	index
Input	Parameters
None
	10.16	Integer	Intrinsic	Functions

10.16.4	AsChar
AsChar	returns	the	subject	as	the	equivalent	character	for	the	current	code	page
Input	Parameters
None
Example
#String	:=	"Start	a	new	line"	+	(13).AsChar
	
	10.16	Integer	Intrinsic	Functions

10.16.5	AsValue
AsValue	allows	you	to	better	handle	*SQLNull.	Rather	than	having	to	test	for	a
potential	SQL	null,	AsValue	allows	a	variable	to	return	a	specified	value.
Input	Parameters
Default	-	The	value	to	be	returned	when	the	variable	contains	an	SQLNull.
Allowable	values	for	a	date	variable	are	any	valid	dates
Example
The	IF	below	tests	for	the	date	as	SQLnull	or	less	than	10:
	
If	((#Integer.IsSqlNull)	*or	(#Integer	<	10))
	
Endif
	

Using	AsValue	it	can	be	coded	as	follows
	
If	(#Integer.AsValue(0)	<	10)
	
	Endif
	
	10.16	Integer	Intrinsic	Functions

10.16.6	BitAnd
BitAnd	performs	a	logical	bitwise	and.
The	BitXXX	Intrinsic	Functions	are	available	in	LANSA	to	support	the	use	of
binary	bit	masks.
Input	Parameters
None
Example
If	(#Integer.BitAnd(4)	=	4)
	
*	Bit	4	is	on
	
Else
	
*	Bit	4	is	Off
	
Endif
	
	10.16	Integer	Intrinsic	Functions

10.16.7	BitNot
BitNot	performs	a	logical	bitwise	not.
The	BitXXX	Intrinsic	Functions	are	available	in	LANSA	to	support	the	use	of
binary	bit	masks.
Input	Parameters
None
Example
#Integer	:=	#Integer.BitNot
	
	10.16	Integer	Intrinsic	Functions

10.16.8	BitOr
BitOr	performs	a	logical	bitwise	or.
The	BitXXX	Intrinsic	Functions	are	available	in	LANSA	to	support	the	use	of
binary	bit	masks.
Input	Parameters
None
Example
#Integer	:=	#Integer.BitOr(4)
	
	10.16	Integer	Intrinsic	Functions

10.16.9	BitXOr
BitXOr	performs	a	logical	bitwise	exclusive	or	(XOr).
The	BitXXX	Intrinsic	Functions	are	available	in	LANSA	to	support	the	use	of
binary	bit	masks.
Input	Parameters
None
Example
#Integer	:=	#Integer.BitXor(4)
	
	10.16	Integer	Intrinsic	Functions

10.16.10	Mod
Mod	returns	the	modulus	of	an	integer	constant	or	field,	when	divided	by
another	integer.
The	result	is	an	integer.
Input	Parameters
By	-	divide	by	this	number	to	obtain	the	modulus.
Example
#myIntField	:=	5
#myIntField.Mod(3)
yields	the	integer	value	2.
	10.16	Integer	Intrinsic	Functions

10.16.11	Div
Div	returns	the	number	of	times	that	an	integer	constant	or	field	divides	into
another	integer	constant	or	field.
The	result	is	an	integer.
Input	Parameters
By	-	divide	by	this	number	to	obtain	the	result.
Example
#myIntField	:=	5
#myIntField.Div(3)
yields	the	integer	value	1.
	10.16	Integer	Intrinsic	Functions

10.16.12	AsUnicodeString
AsUnicodeString	returns	the	subject	code	point	as	the	equivalent	Unicode
character.
Input	Parameters
None
Example
#My_Nvarchar	:=	"Pythagoras	in	Greek:	"	+	(928).AsUnicodeString	+
(965).AsUnicodeString	+	(952).AsUnicodeString	+	(945).AsUnicodeString	+
(947).AsUnicodeString	+	(972).AsUnicodeString	+	(961).AsUnicodeString	+
(945).AsUnicodeString	+	(962).AsUnicodeString
	

On	a	form,	#My_Nvarchar	would	display	Pythagoras	in	Greek:	Πυθαγόρας

Also	see
10.17.1	AsCodePoint
	10.16	Integer	Intrinsic	Functions

10.17	Unicode	String	Functions

10.17.2	AsNativeString

10.17.1	AsCodePoint

10.17.1	AsCodePoint
AsCodePoint	returns	the	first	character	of	subject	Unicode	String	as	its	numeric
value	or	code	point.
Input	Parameters
None
Example
#STD_INT	:=	#My_NVarchar.AsCodePoint
	

If	#My_NVarchar	contained	'A',	#STD_INT	would	have	the	value	65.

Also	see
10.16.12	AsUnicodeString

10.17.2	AsNativeString
AsNativeString	returns	the	subject	Unicode	String	converted	to	the	current	code
page.	Characters	that	are	not	valid	in	the	current	code	page	will	be	replaced	with
a	question	mark	(?).
Input	Parameters
None
Example
#STD_TEXTL	:=	#My_NVarchar.AsNativeString
	
	
	10.17	Unicode	String	Functions
	10.17	Unicode	String	Functions

11.	System	and	Multilingual	Variables
A	system	variable	is	used	to	store	commonly	used	pieces	of	information	that	are
often	variable	or	dynamic.
System	variables	are	global,	that	is,	system	wide	variables	that	are	used	across
all	LANSA	partitions.
To	learn	how	to	use	LANSA's	system	variables,	refer	to	System	Variable
Concepts	in	the	Developer	Guide.
LANSA	is	shipped	with	a	number	of	System	Variables	and	they	are	listed	in
11.2	Shipped	System	Variables

Also	See
System	Variable	Evaluation	Programs	in	the	Visual	LANSA	Developer	Guide.
To	create	system	variables,	refer	to:
					for	IBM	i:		Create	a	New	System	Variable	in	the	LANSA	for	i	User	Guide.
					for	Visual	LANSA:	Edit	System	Variables	in	the	Visual	LANSA	User	Guide.
For	the	system	variables	details,	refer	to	the	11.1	System	Variable	Definition.

its:Lansa013.chm::/lansa/l4wdev03_0150.htm
its:lansa013.chm::/lansa/crfile8_begin.htm
its:lansa010.chm::/lansa/ugub_20064.htm
its:Lansa012.chm::/lansa/l4wusr01_0150.htm

11.1	System	Variable	Definition
Following	are	details	of	the	information	required	for	each	system	variable.
11.1.1	Variable	Name
11.1.2	Description
11.1.3	Derivation	Method
11.1.4	Data	Type
11.1.5	Length
11.1.6	Decimals
11.1.7	Program	Type
11.1.8	Program	Name

Also	See
Edit	System	Variables	in	the	Visual	LANSA	User	Guide.
	11.	System	and	Multilingual	Variables

its:Lansa012.chm::/lansa/l4wusr01_0150.htm

11.1.1	Variable	Name
Mandatory.
Specify	the	name	of	the	system	variable	to	be	stored	in	the	repository.
For	a	list	of	shipped	system	variables,	refer	to	System	and	Multilingual
Variables.

	Rules Must	begin	with	an	"*"	(asterisk).
Must	be	at	least	4	characters	in	length.
Must	not	contain	imbedded	blanks.
Must	not	begin	with	*MTXT	as	this	prefix	is	reserved	for	multilingual
variables.
Must	not	be	*ALL,	*ALL_REAL,	*ALL_VIRT,	*DEFAULT,
*EXCLUDING,	*HIVAL,	*INCLUDING,	*LOVAL,	*NAVAIL,	or
*NULL	as	these	values	are	reserved	by	LANSA.

	11.1	System	Variable	Definition

11.1.2	Description
Mandatory.
Specify	a	brief	description	of	what	the	system	variable	is	or	represents,	to	aid
other	users	of	the	system.
	11.1	System	Variable	Definition

11.1.3	Derivation	Method
Mandatory.	Default=	STATIC
Specifies	how	LANSA	is	to	derive	the	system	variable	within	a	file	I/O	module
or	user	written	function	that	references	it.	You	will	enter	the	program	identifier
in	Set	Value	by	Calling	(on	IBM	i)	and	Program	Name	(in	the	LANSA	Editor).

Rules Allowable	values	are:

	 STATIC The	system	variable	is	a	static	value,	therefore	its	value	can
be	derived	once	(during	program	initialisation)	by	LANSA.
Examples	of	static	system	variables	would	include	the
current	job	name,	the	current	user	name	and	most	probably
the	current	date	(providing	that	applications	do	not	normally
span	midnight	while	executing).

	 DYNAMIC The	system	variable	is	a	dynamic	value,	therefore	its	value
must	be	derived	each	and	every	time	it	is	referenced.
Examples	of	dynamic	system	variables	would	include	the
current	time,	the	current	output	queue	name	and	library	and
all	user	defined	system	variables	that	"allocate"	values	such
as	the	next	invoice	number,	the	next	batch	number,	etc.
Note	that	every	time	a	dynamic	system	variable	is	referenced
the	associated	evaluation	program	is	called	to	"refresh"	the
system	variable.	Excessive	use	of	dynamic	system	variables
with	complex	evaluation	programs	may	degrade	LANSA
performance.

	11.1	System	Variable	Definition

11.1.4	Data	Type
Mandatory.	Default=ALPHA
Specify	the	field	type	of	the	system	variable.

Rules Allowable	values	are:

	 ALPHA System	variable	is	alphanumeric.

	 NUMBER System	variable	is	numeric.	Use	of	this	option	in	fact
nominates	the	system	variable	as	a	packed	decimal	variable.

	11.1	System	Variable	Definition

11.1.5	Length
Mandatory.
Specify	either	the	number	of	characters	in	an	alpha	system	variable	or	the	total
number	of	digits	(including	decimals)	in	a	numeric	system	variable.	

Rules Must	be	in	range	1	to	256	for	data	type	ALPHA.
Must	be	in	range	1	to	30	for	data	type	NUMBER.

	11.1	System	Variable	Definition

11.1.6	Decimals
Optional.
Specify	the	number	of	decimals	for	a	numeric	type	system	variable.

Rules Must	be	in	range	0	to	9	and	less	than	or	equal	to	total	digits.
Must	be	entered	for	data	type	NUMBER.
Ignored	for	data	type	ALPHA.

	11.1	System	Variable	Definition

11.1.7	Program	Type
Mandatory.
Specify	either	the	name	of	the	LANSA	function	or	the	3GL	program	that	is	to	be
called	to	set	the	value	of	the	system	variable.

Specify	if	a	LANSA	function	is	to	be	called	to	set	the	value	of	the	system
variable.
Specify	if	a	3GL	program	is	to	be	called	to	set	the	value	of	the	system
variable.
	11.1	System	Variable	Definition

11.1.8	Program	Name
Mandatory.
Specify	the	name	of	the	LANSA	function	or	3GL	program	that	is	to	be	called
to	set	the	value	of	the	system	variable.

	Rules LANSA	function	name	must	not	exceed	7	characters.
Program	names	may	be	10	characters.	

Warnings LANSA	checks	that	the	3GL	program	or	function	name
specified	is	valid,	but	does	not	check	that	it	actually	exists.
The	program	should	be	able	to	be	located	at	the	time	the
system	variable	is	evaluated.

Platform
Considerations

IBM	i:	The	program	should	be	able	to	be	located	in	the	user's
library	list	at	the	time	the	system	variable	is	evaluated.

For	details	about	system	variable	evaluation	programs,	refer	to	System	Variable
Evaluation	Programs	in	the	Visual	LANSA	Developer	Guide.
	11.1	System	Variable	Definition

its:lansa013.chm::/lansa/crfile8_begin.htm

11.2	Shipped	System	Variables
It	is	strongly	recommended	that	you	do	not	change	the	shipped	system	variables
or	delete	them	from	the	system.
For	your	convenience,	they	are	listed	in	these	groups:
11.2.1	General	Variables
11.2.2	Authenticating	User	System	Variables
11.2.3	Function	Only	Variables
11.2.4	Special	Variables
11.2.5	SuperServer	System	Variables
11.2.6	Built-In	Function	Variables
	11.1	System	Variable	Definition

11.2.1	General	Variables
These	system	variables	are	supplied	in	the	shipped	version	of	LANSA.	Do	not
change	these	system	variables	or	delete	them	from	the	system.

System	Variable Description

*AT_CHAR The	"@"	character

*BLANK Blank/blanks	variable

*BLANKS Blank/blanks	variable

*CENTURY_GREATER Century	when	date	greater	than	switch

*CENTURY_LESSEQUAL Century	when	date	less/equal	to	switch

*CENTURY_SWITCH Century	compare	date

*CHECKBOXSELECTED Selected	check	box	value

*COMPANY Name	of	current	company/organization

*COMPILECPU The	CPU	that	the	runtime	is	compiled	for.	This
variable	is	provided	for	completeness.	
Consider	*OSAPI	or	*OSBITNESS	before
using	this	one	to	make	your	program	more
portable.	For	example,	you	may	be	targeting	a
Tablet	and	Windows	Desktop	and	so	you	could
differentiate	between	them	using
*COMPILECPU,	but	it	may	be	better	to	use
*OSAPI	as	behaviour	is	likely	to	be	common
across	all	WINRT	devices	and	all	Windows
Desktop	devices,	no	matter	which	CPU	those
devices	are	using.
Intel	x86	and	Intel	x86-x64	chips	–	INTELX
(Intel	Itanium	(IA-64)	is	NOT	an	environment
that	LANSA	supports)
ARM	chips	-	ARM
Power	chips	-	POWER

*COMPONENT Name	of	the	active	component	when	referenced
in	a	component	context	(i.e.	in	or	from	RDMLX

logic)	or	equivalent	to	*FUNCTION	when
referenced	in	a	non-component	context

*CPFREL Current	OS/400	or	CPF	version	level

*CPU_NUMBER CPU	Serial	Number.
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDML	applications.

*CPUTYPE CPU	type.	This	variable	is	for	backwards
compatibility	only.	
Use	*OSAPI	and/or	*OSBITNESS	instead.
When	used,	AS/400,	iSeries	and	IBM	i	all
return	the	value	AS400.
Linux	returns	the	value	UNIX
Windows	returns	the	value	WINNT.

*DATE Numeric	date	in	installation	format.	Refer	to	the
Date	Note.

*DATE8 Numeric	8	digit	date	in	installation	format	Refer
to	the	Date	Note.

*DATE8C Character	8	digit	date	in	installation	format
Refer	to	the	Date	Note.

*DATEC Character	date	in	installation	format.	Refer	to
the	Date	Note.

*DATETIME Current	date	and	time	(numeric)	Refer	to	the
Date	Note.

*DATETIMEC Current	date	and	time	(character)	Refer	to	the
Date	Note.

*DAY Current	day	(numeric)	Refer	to	the	Date	Note.

*DAYC Current	day	(character)	Refer	to	the	Date	Note.

*DDMMYY Numeric	date	in	format	DDMMYY	Refer	to	the
Date	Note.

*DDMMYYC Character	date	in	format	DDMMYY	Refer	to
the	Date	Note.

*DDMMYYYY Numeric	date	in	format	DDMMYYYY	Refer	to
the	Date	Note.

*DDMMYYYYC Character	date	in	format	DDMMYYYY	Refer
to	the	Date	Note.

*DEVELOPMENTLANGUAGE Development	Language
For	LANSA	internal	use	only.

*DOLLAR_CHAR The	"$"	character

*FIELD_PREFIX Field	prefix

*FUNCTION Current	LANSA	function	name
or
name	of	active	component	when	referenced	in	a
component	context,	that	is,	in	or	from	RDMLX
logic.

*GROUP_AUTHORITY Group	profile	authority

*GROUP_OWNER Group	profile	owner

*GROUP_PROFILE Group	profile

*GUID Globally	Unique	Identifier.	Usually
incorporated	into	a	File	using	the	field
STD_GUID.

*GUIDEVICE GUI	device	in	use	(Y=GUI,	N=NPT)

*JOBMODE Current	job	mode	(B=batch,	I=inter)

*JOBNAME Current	IBM	i	job	name

*JOBNBR Current	IBM	i	job	number

*JULIAN Numeric	date	in	Julian	format	Refer	to	the	Date
Note.

*JULIANC Character	date	in	Julian	format	Refer	to	the
Date	Note.

*LANGUAGE Current	language	code

*LANGUAGE_DESC Current	language	description

*LANGUAGE_IGC Current	language	is	IGC/DBCS	(Y/N)

*LANGUAGE_LRTB Current	language	is	Left	to	Right	(Y/N)

*LANGUAGE_RLTB Current	language	is	Right	to	Left	(Y/N)

*LANSACOMLIB LANSA	communication	library

*LANSADTALIB LANSA	system	data/file	library

*LANSAPGMLIB LANSA	system	program	library

*LASTFUNCTION Last	LANSA	function	name

*MESSAGE_FILE Message	file	name

*MMDDYY Numeric	date	in	format	MMDDYY.	Refer	to	the
Date	Note.

*MMDDYYC Character	date	in	format	MMDDYY.	Refer	to
the	Date	Note.

*MMDDYYYY Numeric	date	in	format	MMDDYYYY.	Refer	to
the	Date	Note.

*MMDDYYYYC Character	date	in	format	MMDDYYYY.	Refer
to	the	Date	Note.

*MONTH Current	month	(numeric).	Refer	to	the	Date
Note.

*MONTHC Current	month	(character),	Refer	to	the	Date
Note.

*MSGQLIB Current	message	queue	library

*MSGQNAME Current	message	queue	name

*NEXTFUNCTION Default	next	LANSA	function	name

*ON_CLIENT_SYSTEM On	IBM	i	running	an	RDML	function,	value	is
always	N.
In	all	other	situations,	including	an	RDMLX
function	on	an	IBM	i,	Y	indicates	that	the
currently	executing	LANSA	object	has	direct
access	to	a	user	interface,	otherwise	this	value	is

N.
Note:
When	running	a	LANSA	object	from	a	DB2
Trigger	on	IBM	i	the	value	is	Y.	Use	of
*CPUTYPE	=	AS400	can	be	used	to	distinguish
this	situation.

*ON_SERVER_SYSTEM On	IBM	i	running	an	RDML	function,	value	is
always	Y.
In	all	other	situations,	including	an	RDMLX
function	on	IBM	i,	Y	indicates	that	this	LANSA
object	was	executed	through	a	server	interface
such	as	SuperServer	or	LANSA	for	the	Web,
otherwise	this	value	is	N.	Further,	Y	indicates
that	the	currently	executing	LANSA	object	does
NOT	have	direct	access	to	a	user	interface.
Note:
When	running	a	LANSA	object	from	a	DB2
Trigger	on	IBM	i,	the	value	is	N.	Use	of
*CPUTYPE	=	AS400	can	be	used	to	distinguish
this	situation.

*ORGANISATION Name	of	current	company/organization

*OSAPI Operating	System	API	Name.
This	is	a	more	precise	replacement	for
*CPUTYPE	which	is	less	likely	to	change	the
name	of	its	values.
Windows	Desktop	-	WIN32	(Note	Windows
Desktop	64-bit	uses	WIN32	API)
Windows	Metro	–	WINRT
IBM	i	–	IBMI
Linux	-	LINUX

*OSBITNESS Operating	System	Bitness.
For	comparing	the	behaviour	of	the	operating
system	that	may	differ	between,	say,	32-bit	and
64-bit	applications.
For	example,	to	access	different	registry	hives

when	using	a	32-bit	application	as	opposed	to	a
64-bit	application	on	Windows.	Or,	to	load	a
DLL	which	only	exists	in	32-bit.
32-bit	operating	system	-	32
64-bit	operating	system	–	64	(Note	that	current
IBM	i	is	64-bit	-	only	pointers	are	128)

*OUTQLIB Current	output	queue	library	name

*OUTQNAME Current	output	queue	name

*PART_DIR The	root	directory	of	the	current	partition's
system.	For	example,	for	Windows	32-bit:
D:\X_WIN95\X_LANSA\X_DEM\
For	Windows	64-bit:
D:\X_WIN64\X_LANSA\X_DEM\
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*PART_DIR_EXECUTE The	directory	of	the	current	partition's
EXECUTE	objects.	For	example,	for	Windows
32-bit:
D:\X_WIN95\X_LANSA\X_DEM\EXECUTE\
For	Windows	64-bit:
D:\X_WIN64\X_LANSA\X_DEM\EXECUTE\
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*PART_DIR_OBJECT The	directory	of	the	current	partitions	OBJECT
objects.	For	example,	for	Windows	32-bit:
D:\X_WIN95\X_LANSA\X_DEM\OBJECT\
For	Windows	64-bit:
D:\X_WIN64\X_LANSA\X_DEM\OBJECT\
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*PART_DIR_SOURCE The	directory	of	the	current	partition's	SOURCE
objects.	For	example,	for	Windows	32-bit:
D:\X_WIN95\X_LANSA\X_DEM\SOURCE\
For	Windows	64-bit:
D:\X_WIN64\X_LANSA\X_DEM\SOURCE\

On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*PART_DRIV This	should	not	be	used	as	it	does	not	support
UNC	naming.
The	drive	of	the	current	partition's	LANSA
system.	A	driver	letter	followed	by	a	colon.	For
example:	C:	or	D:	or	E:	This	is	for	backward
compatibility.		
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*PART_RDMLX Y	if	current	partition	is	RDMLX	enabled,	other
wise	N.

*PARTDTALIB Current	partition's	data/file	library

*PARTITION Current	partition

*PARTITION_DESC Current	partition	description

*PARTPGMLIB Current	partition's	RDML	pgm	library

*PATHDELIM '\'	if	running	on	an	MS	Windows	system
'/'	if	running	on	a	Linux	system.
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*PROCESS Current	LANSA	process	name
or
name	of	active	component	when	referenced	in	a
component	context,	that	is,	in	or	from	RDMLX
logic.

*PRODREL Current	LANSA	version	level

*PRODUCT Product	name	(i.e.:	LANSA)

*QUOTE Quote	character	(i.e.	')

*RADBUTTONSELECTED Selected	Radio	Button	Value

*ROOT_DIR LANSA	Root	directory

*SYS_DIR The	root	directory	in	which	the	LANSA	system

is	located.
For	example,	for	Windows	32-bit:
D:\X_WIN95\X_LANSA\
For	Windows	64-bit:
D:\X_WIN64\X_LANSA\
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*SYS_DIR_EXECUTE The	directory	of	the	LANSA	system's
EXECUTE	objects.	For	example,	for	Windows
32-bit:	D:\X_WIN95\X_LANSA\EXECUTE\
For	Windows	64-bit:
D:\X_WIN64\X_LANSA\EXECUTE\
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*SYS_DIR_OBJECT The	directory	of	the	LANSA	system	OBJECT
objects.	For	example,	for	Windows	32-bit:
D:\X_WIN95\X_LANSA\OBJECT\
For	Windows	64-bit:
D:\X_WIN64\X_LANSA\OBJECT\
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*SYS_DIR_SOURCE The	directory	of	the	LANSA	system	SOURCE
objects.	For	example,	for	Windows	32-bit:
D:\X_WIN95\X_LANSA\SOURCE\
For	Windows	64-bit:
D:\X_WIN64\X_LANSA\SOURCE\
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*SYS_DRIV For	backward	compatibility.	Should	not	be	used
as	it	does	not	support	UNC	naming.
The	drive	of	the	LANSA	system.	A	driver	letter
followed	by	a	colon.	For	example:	C:	or	D:	or
E:.	
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*TEMP_DIR The	directory	in	which	temporary	files	/	objects

should	be	created	e.g.:	D:\TEMP\

*TEMP_DRIV For	backward	compatibility.	Should	not	be	used
as	it	does	not	support	UNC	naming.
The	drive	in	which	temporary	files/objects
should	be	created.	For	example:	C:	or	D:	or	E:
(A	driver	letter	followed	by	a	colon.)	
On	IBM	i	platforms,	a	valid	value	is	only
returned	in	RDMLX	applications.

*TIME Current	time	(numeric)

*TIMEC Current	time	(character)

*TIMEDATE Current	time	and	date	(numeric)

*TIMEDATE8 Current	time	and	8	digit	date	(numeric)

*TIMEDATE8C Current	time	and	8	digit	date	(character)

*TIMEDATEC Current	time	and	date	(character)

*TIMESTAMP_DFT Timestamp	default	value

*TIMESTAMP_HIVAL Timestamp	high	value

*TIMESTAMP_LOVAL Timestamp	low	value

*VISUAL_LANSA Y	if	executing	on	a	Visual	LANSA	system,
otherwise	'N'

*WEBIPADDR IP	address	of	the	current	user.

*WEBMODE Y	indicates	that	LANSA	application	is	running
under	web-enabled	mode.

*WEBPATHINFO PATH_INFO	Web	server	environment	variable

*WEBREFERRER HTTP_REFERER	Web	server	environment
variable

*WEBSCRIPTNAME SCRIPT_NAME	Web	server	environment
variable

*WEBUSER Web	Server/400	or	Internet	Connection	Server
for	IBM	i	user	profile

*XMLMODE Y	indicates	that	LANSA	application	is	running
as	XML/Java	Thin	Client

*YEAR Current	year	(numeric).	Refer	to	the	Date	Note

*YEARC Current	year	(character).	Refer	to	the	Date
Note..

*YYMMDD Numeric	date	in	format	YYMMDD.	Refer	to
the	Date	Note.

*YYMMDDC Character	date	in	format	YYMMDD.	Refer	to
the	Date	Note.

*YYYY Numeric	year	in	format	YYYY.	Refer	to	the
Date	Note.

*YYYYC Character	year	in	format	YYYY.	Refer	to	the
Date	Note.

*YYYYMMDD Numeric	date	in	format	YYYYMMDD.	Refer
to	the	Date	Note.

*YYYYMMDDC Character	date	in	format	YYYYMMDD.	Refer
to	the	Date	Note.

*ZERO Zero	(0)	variable

*ZEROES Zero	(0)	variable

*ZEROS Zero	(0)	variable

	

Date	Note
For	any	LANSA-supplied	system	variable	that	contains	or	is	derived	from	date,
the	following	is	true:
The	date	is	derived	from	either	the	system	value	QDATE	or	the	job	attribute
date,	depending	on	the	DATE_SRCE	value	of	the	LANSA	command,	at	the
point	in	time	that	the	LANSA	environment	was	entered.	This	means	that	it	does
not	change	when	the	system	value	QDATE	changes	or	the	job	date	is	changed.
Applications	requiring	this	feature	should	use	a	user-defined	dynamic	system
variable.

For	information	about	creating	and	using	System	Variables,	refer	to:
Create	System	Variables	in	the	Visual	LANSA	User	Guide.
Creating	A	New	System	Variable	in	the	LANSA	for	i	User	Guide.

Also	See
System	Variable	Evaluation	Programs	in	the	Visual	LANSA	Developer	Guide.
	11.	System	and	Multilingual	Variables

its:lansa012.chm::/lansa/l4wusr01_1580.htm
its:lansa010.chm::/lansa/ugub_20064.HTM
its:lansa013.chm::/lansa/crfile8_begin.htm

*GUID	System	Variable
To	generate	a	Globally	Unique	Identifier,	use	the	*GUID	system	variable.
*GUID	uses	a	Mersenne	twister	Pseudorandom	number	generator	(PRNG)	as	a
GUID.	It	has	no	dependency	on	any	machine	state	–	for	example,	it	is	not
dependent	on	the	MAC	address	or	current	time.	It	is	also	thread	safe.	The	same
algorithm	is	used	on	Windows,	IBM	i	and	Linux.
The	Mersenne	twister	PRNG	provides	fast	generation	of	very	high-quality
pseudorandom	integers;	it	was	designed	specifically	to	rectify	many	of	the	flaws
found	in	older	PRNGs.	Its	name	derives	from	the	fact	that	its	period	length	is
chosen	to	be	a	Mersenne	prime.	LANSA	implements	MT19937.	See	this	link
for	more	information:	Mersenne_twister.	Note:	If	sufficient	numbers	are
observed	(624)	it	is	possible	to	predict	all	future	iterations,	so	it	is	not	suitable
for	cryptographic	purposes.
*GUID	is	expected	to	be	generated	once	when	inserting	a	row	and	then	not	to
be	updated	again.	A	standard	field,	#STD_GUID,	has	been	provided	to
implement	this	behaviour.	This	field	has	a	Trigger.	Before	Insert	it	assigns
*GUID	to	the	field.	Before	Update	it	ensures	the	field	has	not	changed,	and	if	it
has	changed	it	ABORTs	as	it	is	a	programming	level	error,	not	a	user	error.

http://en.wikipedia.org/wiki/Pseudorandom_number_generator
http://en.wikipedia.org/wiki/Mersenne_prime
http://en.wikipedia.org/wiki/Mersenne_twister

11.2.2	Authenticating	User	System	Variables
These	are	the	variables	described	below:

System	Variable Description TypeLenDec

*USER Current	IBM	i	User	ID A 10 	

*USER_AUDIT Current	Audit	User	Identity.
Refer	to	SET_SESSION_VALUE
and	Output	Stamping	Attributes.

A 256 	

*USER_AUTHENTICATEDCurrent	authenticated	user	name. A 256 	

*WEBUSER Web	Server/400	or	Internet
Connection	Server	for	IBM	i	user
profile

A 10 	

	

*USER
*USER	represents	the	User	ID	with	which	the	Visual	LANSA	application
(x_run)	was	started.	If	running	a	function	through	LANSA	SuperServer,	*USER
represents	the	User	ID	used	to	connect	to	the	server.	If	running	in	a	Web
Environment,	*USER	stores	the	LANSA	User	ID.	Mappings	between	the	User
ID	used	to	logon	to	the	web	session	and	LANSA	User	ID's	are	created	through
the	Web	Administrator.

*USER_AUTHENTICATED
*USER_AUTHENTICATED	represents	the	User	ID	which	has	been	used	to	log
on	to	the	operating	system	and	which	has	been	authenticated	by	the	selected
authentication	protocol	(such	as	Kerberos).	If	running	a	function	through
LANSA	SuperServer,	*USER_AUTHENTICATED	represents	the	User	ID	used
to	connect	to	the	server.	The	authenticated	name	is	the	fully	qualified	name
which	includes	the	User	ID	and	the	domain/workgroup/machine	name.	For
example,	JohnCitizen@mydomain.com.au,	JohnCitizen@Johnspc.
In	LANSA	SuperServer	mode,	if	the	User	ID	is	defined	both	as	a	local	user	and
a	domain	user,	the	local	user	will	be	used	for	authentication.
In	the	web	runtime	environment,	*USER_AUTHENTICATED	represents	the

its:lansa010.chm::/lansa/ladugub2_0010.htm

User	ID	used	to	log	on	to	the	web	session.
If	Integrated	Windows	Authentication	is	specified,	the	User	ID	used	to	log	on
to	the	operating	system	is	used	for	the	web	session,	otherwise
the	User	ID	specified	when	the	session	is	started	is	used.
If	Anonymous	Access	is	specified,	*USER_AUTHENTICATED	is	blank.

Please	refer	to	*WEBUSER	for	more	details.

Examples:
Start
Form	As

John 	

Windows
log	in

MYDOMAIN\John 	

Connect
As

John 	

Connect
To

Windows	(Logged	in	as
MYDOMAIN\John	on	server)

	

	 USER USER_AUTHENTICATED

Local John John@MYDOMAIN.COM.AU

Server
side

John John@MYDOMAIN.COM.AU

	

Start	Form	As John 	

Windows	log	inMYDOMAIN\John 	

Connect	As John 	

Connect	To IBM	i 	

	 USER USER_AUTHENTICATED

Local John John@MYDOMAIN.COM.AU

Server	side John 	

	

Start
Form	As

John 	

Windows
log	in

MYPC\Mary 	

Connect
As

John 	

Connect
To

Windows	(Logged	in	as
MYDOMAIN\John	on	server)

	

	 USER USER_AUTHENTICATED

Local John mary@mypc

Server	side John John@MYDOMAIN.COM.AU

	

Start
Form	As

John 	

Windows
log	in

MYPC\Mary 	

Connect	As Mary 	

Connect	To Windows	(Logged	in	as
MYPC\Mary	on	server)

	

	 USER USER_AUTHENTICATED

Local John John@MYDOMAIN.COM.AU

Server	side John mary@serverpc

	

*WEBUSER
*WEBUSER	represents	the	User	ID	used	to	log	on	to	the	web	session.	If

Integrated	Windows	Authentication	is	specified,	the	User	ID	used	to	log	on	to
the	operating	system	is	used	for	the	web	session.	Otherwise	the	User	ID
specified	when	the	session	is	started	is	used.	The	User	ID	will	be	truncated	to
the	length	of	*WEBUSER.
*WEBUSER	is	the	first	ten	bytes	of	the	*USER_AUTHENTICATED	value.

Examples:
With	the	following	User	Registration	settings:

Web	User	ID Web	Server
Name

Web	Server
Port

LANSA	User
ID

Timeout

John <ANY> <ANY> luser1 0

DFTUSR <ANY> <ANY> luser2 0

A123456789B123456789<ANY> <ANY> luser3 0

	

Windows	log	in MYDOMAIN\John

Connect	As Integrated	Windows	Authentication

Connect	To Windows	server

*WEBUSER John

*USER luser1

*USER_AUTHENTICATED John

	

Windows	log	in MYDOMAIN\Mary

Connect	As Integrated	Windows	Authentication

Connect	To Windows	server

*WEBUSER Mary

*USER luser2

*USER_AUTHENTICATEDMary

	

Windows	log	in MYDOMAIN\John

Connect	As Basic	Authentication	(login:	mydomain\Mary)

Connect	To Windows	server

*WEBUSER Mary

*USER luser2

*USER_AUTHENTICATEDMary

	

Windows	log	in MYDOMAIN\John

Connect	As Basic	Authentication	(login:
A123456789B123456789)

Connect	To IBM	i

*WEBUSER A123456789

*USER luser3

*USER_AUTHENTICATEDA123456789B123456789

	

	11.	System	and	Multilingual	Variables

11.2.3	Function	Only	Variables
These	system	variables	can	only	be	used	in	RDML	functions	and	RDMLX
logic.	They	have	no	meaning	in	any	other	part	of	the	system	(that	is,	they	cannot
be	used	as	the	default	on	a	field	defined	in	the	repository).	If	you	use	these
variables	in	another	context,	this	value	will	be	returned:
							"##	XXXXXXX	description	not	available	##"
	

System	Variable Description Type Length Dec

*COMPONENT_DESC Description	of	the	active	component
when	referenced	in	or	from
RDMLX	logic.	When	referenced	in
a	non-component	context,	this	value
is	equivalent	to
*FUNCTION_DESC.

A 40 	

*FUNCTION_DESC Function	or	component	description
(Function	use	only)

A 40 	

*PROCESS_DESC Process	or	component	description
(Function	use	only)

A 40 	

	

Note:	System	variables	*FUNCTION_DESC	and	*PROCESS_DESC	are
supplied	in	the	current	language	and	centered	on	IBM	i	and	left	aligned	in
Windows.

Also	See
System	Variable	Evaluation	Programs	in	the	Visual	LANSA	Developer	Guide.
11.2.6	Built-In	Function	Variables
	11.	System	and	Multilingual	Variables

its:lansa013.chm::/lansa/crfile8_begin.htm

11.2.4	Special	Variables
Remember:	System	variables	exist	at	the	LANSA	system	level	and	are	shared
by	all	partitions.	When	the	value	of	a	system	variable	is	incremented	by	an
application	in	one	LANSA	partition,	then	all	partitions	will	now	use	the	new
value.
System	Variables	for	use	in	System	Evaluation	Programs
System	Variables	to	test	I/O	Status
	11.	System	and	Multilingual	Variables

System	Variables	for	use	in	System	Evaluation	Programs
The	following	system	variables	can	be	used	with	the	system	evaluation
programs	that	have	been	shipped	with	this	product.
On	a	SuperServer	client	with	locks	diverted	to	the	server,	these	variables	are
retrieved	from	the	server.	Refer	to	DEFINE_ANY_SERVER	for	details.

System	Variable Description

*DTAssslllxxxxxxxxx Special	data	area	system	variable	layout	when	used
in	conjunction	with	evaluation	program
M@SYSDTA.	Retrieves	data	at	position	sss	for	a
length	lll	from	data	area	xxxxxxxxxx.
Length	is	limited	to	256	characters.

*AUTOALPnnxxxxxxxxx Special	data	area	system	variable	layout	when	used
in	conjunction	with	evaluation	program
M@SYSNUM.	Retrieves	a	number	nn	long	from
data	area	xxxxxxxxxx.	Increments	it,	updates	data
area	and	returns	as	an	alphanumeric	value.
Length	is	limited	to	15	digits.

*AUTONUMnnxxxxxxxxx Special	data	area	system	variable	layout	when	used
in	conjunction	with	evaluation	program
M@SYSNUM.	Retrieves	a	number	nn	long	from
data	area	xxxxxxxxxx.	Increments	it,	updates	data
area	and	returns	as	a	numeric	value.
Length	is	limited	to	15	digits.

	

For	details	about	the	evaluation	programs,	refer	to	System	Variable	Evaluation
Programs	in	the	Visual	LANSA	Developer	Guide.
	11.2.4	Special	Variables

its:lansa013.chm::/lansa/crfile8_begin.htm

System	Variables	to	test	I/O	Status
The	following	system	variable	can	be	used	in	functions	to	check	for	record
locked	I/O	error.	See	I/O	Status	Record	Locked	for	details	of	using	this	system
variable.
On	a	SuperServer	client	when	the	I/O	request	has	been	run	on	the	server,
*DBMS_RECORD_LOCKED	retrieves	the	server	record	lock	details.	Refer	to
DEFINE_ANY_SERVER	for	details.

System	Variable Description Type Len Dec

*DBMS_RECORD_LOCKED I/O	status	record	locked	Y/N A 1 	

	

11.2.4	Special	Variables

11.2.5	SuperServer	System	Variables

System	Variable Description

*SSERVER_CONNECTED Indicates	(as	Y	or	N)	whether	a	current
SuperServer	connection	exists.

*SSERVER_SSN Returns	current	SuperServer	connection	SSN
(Symbolic	Server	Name).

*SSERVER_TYPE Returns	current	SuperServer	connection	type	as
one	of:
AS400
-	returned	when	you	connect	to	an	IBM	i	server
with	DEFINE_OS_400_SERVER	(or
DBID=*OS400)
RDMLX400
-	returned	when	connect	to	an	IBM	i	server	with
DEFINE_ANY_SERVER	(or	DBID=*ANY)
OTHER
-	returned	when	you	connect	to	a	Windows	or
Linux	server
NONE
-	returned	when	you	are	not	connected	to	a	server.

	

	11.	System	and	Multilingual	Variables

11.2.6	Built-In	Function	Variables
These	system	variables	can	only	be	used	in	Built-In	Functions.	They	have	no
meaning	in	any	other	part	of	the	system	(That	is,	they	cannot	be	used	as	the
default	on	a	field	defined	in	the	repository).	If	you	use	these	variables	in	another
context,	this	value	will	be	returned:
							"##	XXXXXXX	description	not	available	##"

System	Variable Description Type Len Dec

*BIF_SHUTDOWN Shutdown	call	(Y,	N) A 1 	

*BIF_ARGCOUNT Number	of	arguments N 7 0

*BIF_RETCOUNT Number	of	return	values N 7 0

	

	11.	System	and	Multilingual	Variables

11.3	Multilingual	Text	Variables
A	multilingual	variable	is	a	text	string	that	changes	value	according	to	the
language	being	used.	It	is	a	special	form	of	system	variable	that	is	specific	to	a
multilingual	partition.	Note	that	multilingual	text	variables	are	not	system	wide
as	are	system	variables.
To	create	or	edit	Multilingual	Variables	refer	to	Multilingual	Variables	in	the
Visual	LANSA	User	Guide.
For	details	about	using	them	refer	to	Multilingual	Variables	in	the	Multilingual
Application	Design	Guide.
11.3.1	MTXT	Variable	Name
11.3.2	Maximum	Length
11.3.3	Value
	11.	System	and	Multilingual	Variables

its:LANSA012.CHM::/lansa/l4wusr01_0145.htm
its:lansa070.chm::/lansa/mulb3_0005.htm

11.3.1	MTXT	Variable	Name
Mandatory.
Specify	the	name	of	the	multilingual	variable.
Rules

Must	use	"*MTXT"	for	first	5	characters.
Rest	of	the	name	must	be	from	1	to	15	characters	and	cannot	contain
imbedded	blanks.
Must	be	unique	within	the	current	partition.

Warnings
Most	*MTXT	references	are	included	at	compile	time.	Change	of	an	*MTXT
variable	will	require	application	recompile.	This	is	where	the	field/default
value/cross	reference	capability	is	most	useful.		Exception	is	use	of	*MTXT
variables	as	message	text.	In	this	situation	the	derivation	is	dynamic,	so	no
recompiles	are	required.

Tips	&	Techniques
Use	a	maximum	of	3	characters	for	function	key	names	as	the	input	field	on
RDML	commands	is	only	8	characters	long.
Develop	and	use	naming	standards	for	*MTXT	variables.
In	packaged	systems,	use	obscure	prefixes	to	preserve	uniqueness.
Use	as	default	value	for	fields	in	the	repository,	rather	than	direct	RDML
reference,	is	preferable	when	intention	is	to	use	as	panel	or	report	text.
Improves	cross	referencing	capabilities.
Fields	in	the	repository	should	have	a	naming	standard	too.	It	should	equate
to	the	naming	standard	used	for	the	multilingual	variable	that	is	used	as	its
default	value.
	11.3	Multilingual	Text	Variables

11.3.2	Maximum	Length
Mandatory.
Specify	the	maximum	length	of	multilingual	variable.
Rules

Must	be	within	range	1	to	78.
Warnings

No	11.3.3	Value	entered	should	exceed	length	specified.
Tips	&	Techniques

In	RLTB	languages,	length	is	from	the	right	hand	side.
Includes	shift	characters	in	DBCS	languages.

Note:	If	a	value	greater	than	78	is	entered	a	length	of	78	is	assumed.

	11.3	Multilingual	Text	Variables

11.3.3	Value
Mandatory.	Specify	the	value	that	the	*MTXT	variable	is	to	have	when	the
specified	language	is	being	used.
Rules

Must	not	exceed	11.3.2	Maximum	Length	specified.
Tips	&	Techniques

Keyed	from	right	in	RLTB	languages.
Include	shift	characters	in	DBCS	languages.
Use	upper	and	lower	case	characters	as	required.
Manually	centering	(centering)	within	the	maximum	length	can	be	used.
Centre	from	left	(within	maximum	length)	for	LRTB	and	DBCS	languages.
Centre	from	right	(within	maximum	length)	for	RLTB	languages.
If	no	specific	value	has	been	entered	for	a	language,	the	value	for	the	default
partition	language	will	be	used	for	that	language.

Also	See
	11.3	Multilingual	Text	Variables

	
	

12.	Formats,	Values	and	Codes
12.1	LANSA	Object	Names
12.2	Date	Formats
12.3	Standard	Field	Edit	Codes
12.4	RDML	Field	Attributes	and	their	Use
12.5	RDML	I/O	Return	Codes
12.6	Help	Text	Enhancement	&	Substitution	Values

12.1	LANSA	Object	Names
It	is	strongly	recommended	that	you	review	all	object	naming	rules.
Object	Long	Name,	Short	Name	and	Identifier	Relationship
Each	LANSA	object	has	two	names	–	a	long	name	and	an	identifier.	Generally,
either	name	may	be	used	to	refer	to	a	LANSA	object.
An	RDML	partition	only	permits	identifiers	to	be	used.	An	RDMLX	partition
may	be	enabled	for	long	names.
Short	Name	is	another	term	for	an	identifier.	The	LANSA	Editor	has	a	setting	to
show	short	names.	With	this	set,	all	Editor	browser	windows	will	display	the
identifier	for	the	object	name.
Where	a	LANSA	Guide	uses	the	term	"object	name",	either	a	long	name	or	an
identifier	may	be	used,	unless	otherwise	specified.
General	Name	Rules
Following	are	some	general	rules	and	guidelines	that	apply	to	ALL	objects
stored	in	the	LANSA	Repository:
LANSA	object	names	must	be	unique	in	a	LANSA	partition.	For	example,	if
a	field	is	created	with	the	name	EMPNO,	then	no	other	object	(file,
component,	function,	etc.)	can	use	this	name.
Long		names	must	not	be	an	existing	identifier	and	vice	versa.	This	allows
either	to	be	used	anywhere	an	object	name	is	required	as	these	are	unique
names	in	the	partition.
Names	are	NOT	case	sensitive.	The	EMPNO	and	Empno	and	EmpNo	are
considered	the	same	name.
Embedded	blank	characters	are	not	allowed	in	names.	For	example,	"EMP
NO"	is	not	a	valid	name,	however,	"EMP_NO"	is	a	valid	name	for	some
objects.
It	is	recommended	that	you	do	not	use	these	reserved	prefixes	and	reserved
names:	_,	X,	X_,		COM,	COM_,		SYS,		SYS_,	SYSTEM,	SYSTEM_,	LAN,
LAN_,	LANSA,	LANSA_	and	PRIM_	in	your	object	names.

Object	Long	Name	Rules
Long	names	must	only	contain	the	characters	a-z,	A-Z,	and	0	–	9.
The	case	of	the	letter	as	entered	is	retained	for	easier	readability,	but	it	must
be	unique	insensitive	to	case.	E.g.	a	long	name	of	Aa	is	stored	and	displayed

everywhere	as	Aa,	but	another	object	cannot	be	called	AA	or	aa.
A	long	name	may	be	up	to	256	characters	long.
The	first	128	characters	must	be	unique	in	a	LANSA	partition	and	must	not
be	the	same	as	an	identifier.
All	LANSA	object	types	have	the	same	rules,	apart	from	Field	Long	Names
and	File	Long	Names	which	have	implementation	differences	depending	on
the	target	databases	required	as	described	below.

Field	Long	Name	Rules
Oracle	and	DB2	for	i	have	a	maximum	column	identifier	length	of	30
characters.	If	either	of	these	databases	is	targeted	and	any	Field	long	name	in
the	LANSA	file	is	longer	than	30	characters	ALL	columns	will	use	the
LANSA	field	identifier	(short	name)	in	ALL	databases.

File	Long	Name	Rules
If	the	physical	file	or	logical	view	has	a	Long	Name	that	is	less	than	9
characters,	the	identifier	will	be	used	instead.
Oracle	has	a	maximum	table	identifier	length	of	30	characters.	If	Oracle	is
targeted	and	the	File	long	name	is	longer	than	30	characters	the	table
identifier	will	use	the	LANSA	file	identifier	(short	name)	in	ALL	databases.
Note	that	the	table	identifier	restriction	is	only	on	Oracle.	All	the	other
supported	databases	use	128	bytes.

Object	Identifier	(Short	Name)	Rules
LANSA	converts	all	identifiers	to	uppercase	characters	in	the	repository.
First	character	of	names	should	be	A	to	Z.	(Characters	$,	@	and	#	are	allowed
in	some	names	but	are	not	recommended.)
For	simplicity,	it	is	strongly	recommended	that	you	use	only	characters	A	to	Z
and	1	to	9	in	LANSA	object	names.	Using	special	characters	(#,	_,	@,	$,	etc.)
are	allowed	in	some	object	names	but	may	have	portability	and	other	impacts.

Field	Identifiers
First	character	must	be	A	to	Z.	Do	not	use	@	anywhere	in	field	identifiers.
Characters	$,	_,		and	#	are	allowed	but	are	not	recommended.
Field	identifiers	are	restricted	to	a	maximum	of	9	characters.
Avoid	the	use	of	field	identifiers	like	SQLxxx,	as	this	may	cause	problems
when	used	in	functions	that	use	SQL	(Structured	Query	Language)	facilities.
(IE	Command	SELECT_SQL.)

Component	identifiers
First	character	must	be	A	to	Z.	Do	not	use	@	anywhere	in	component
identifiers.	Characters	$,	_,	and	#	are	allowed	but	are	not	recommended.
Component	identifiers	are	restricted	to	a	maximum	of	9	characters.

File	Identifiers
The	following	rules	apply	to	both	physical	and	logical	file	identifiers:
File	identifiers	must	be	valid	for	the	target	operating	system	and	DBMS.
File	identifiers	are	restricted	to	a	maximum	of	10	characters.
The	first	character	must	be	A	to	Z	or	$,	#,	@.	Remaining	characters	may	be	A
to	Z,	0	to	9,	or	$,	#,	@.	The	use	of	"_"	(underscore)	is	not	allowed.
Access	route	are	considered	part	of	a	file	definition	and	are	not	considered	a
separate	LANSA	object.	Their	names	must	be	unique	within	the	file
definition.	Access	route	names	must	follow	general	naming	rules.

Process	Identifiers
The	process	identifier	must	be	unique	within	the	entire	LANSA	System.
A	maximum	of	8	character	process	identifiers	is	recommended.	Maximum
length	for	a	process	identifier	is	10	characters.
IBM	i:	A	process	identifier	must	be	unique	within	a	LANSA	partition.	A
function	identifier	must	be	unique	within	the	process	it	is	created.
Windows:	A	process	identifier	must	be	unique	within	the	entire	LANSA
system.	All	functions	must	be	defined	as	type	*DIRECT.	Functions	identifier
must	be	unique	in	the	partition.
Windows:	If	10	character	process	identifier	are	used	on	Windows,	the	last	9
characters	must	be	unique	as	first	character	is	truncated	when	generating
some	program	names.

Function	Identifiers
RDML	function	identifier	must	not	use	"_"	(underscore).
Function	identifier	Fnnnnnn/Cnnnnnn/Pnnnnnn	(where	nnnnnn	is	in	range	1
to	999999)	are	reserved	words.
Function	identifier	MENU,	EXIT,	HELP,	SELECT,	EOJ,	ERROR,	RETRN,
and	*ANY	are	reserved.
Function	identifier	are	restricted	to	a	maximum	of	7	characters.
IBM	i:	A	function	identifier	must	be	unique	within	the	process	it	is	created.

Windows:	All	functions	must	be	defined	as	type	*DIRECT.	Function
identifiers	must	be	unique	in	the	partition.

Platform	Considerations
Characters	such	as	#,	$	or	@	may	have	language	code	translation	issues	if
your	application	is	executing	in	more	than	one	country.	Using	special
characters	with	caution	or	simply	avoid	using	special	characters	in	object
identifiers.
For	multiplatform	applications,	LANSA	object	identifiers	should	only	contain
the	characters	A	to	Z	or	0	to	9		because	these	characters	do	not	change
between	the	different	code	pages.	Thus	when	using	communications	between
operating	systems	on	different	platforms,	the	object	identifiers	will	match
correctly.

12.2	Date	Formats
Date	Built-In	Functions	may	use	one	or	more	of	the	following	formats	as
arguments	and/or	return	values.	The	relevant	Built-In	Function's	description
tells	you	which	format	is	used	as	arguments	and/or	return	values.

Code Format	of	Date

A System	date	format

B DDMMYY

C DD/MM/YY

D YYMMDD

E YY/MM/DD

F MMDDYY

G MM/DD/YY

H DDMMYYYY

I DD/MM/YYYY

J YYYYMMDD

K YYYY/MM/DD

L MMDDYYYY

M MM/DD/YYYY

N DDMMMYY	(e.g.	03JUL87)

O DDMMMYYYY	(e.g.	03JUL1987)

P DDxx	MMMMMMMMM	YY	(e.g.	16TH	SEPTEMBER	87)

Q DDxx	MMMMMMMMM	YYYY	(e.g.	16TH	SEPTEMBER	1987)

R DDD	(e.g.	MON,	TUE,	WED,	etc).

S DDDDDDDDD	(e.g.	MONDAY,	TUESDAY,	WEDNESDAY,	etc).

T DDDDDDDDDD	(in	selected	language	e.g.	LLLLLLLLLL).

U MMMMMMMMMM	(in	selected	language	e.g.	LLLLLLLLLL).

V 8	digit	system	date	format

W YYMM

X MMYY

Y YYYYMM

Z MMYYYY

1 CYYMMDD

	

12.3	Standard	Field	Edit	Codes
Field	Edit	Codes	are	stored	in	the	Repository	and	are	used	to	return	your	data	in
the	format	required	by	the	application.
If	your	output	is	not	in	the	format	expected,	you	may	simply	need	to	change	the
edit	code	in	order	to	fix	it.

Code Commas Decimal
Point

Leading	Zero
Suppression

Zero
Balance

Type	of
Sign	used

Position

1 Y Y Y Y None 	

2 Y Y Y 	 None 	

3 	 Y Y Y None 	

4 	 Y Y 	 None 	

A Y Y Y Y CR Trailing

B Y Y Y 	 CR Trailing

C 	 Y Y Y CR Trailing

D 	 Y Y 	 CR Trailing

J Y Y Y Y 		- Trailing

K Y Y Y 	 		- Trailing

L 	 Y Y Y 		- Trailing

M 	 Y Y 	 		- Trailing

N Y Y Y Y 		- Leading

O Y Y Y 	 		- Leading

P 	 Y Y Y 		- Leading

Q 	 Y Y 	 		- Leading

W	** 	 	 	 	 	 	

Y	* 	 	 Y 	 	 Y

Z	* 	 	 Y 	 	 	

	

**	Note	that	W	is	a	special	date	edit	code	with	i5/OS	version	considerations.
Refer	to	the	IBM	manual	Data	Description	Specifications,	keyword	DDS,
RPG/400	and/or	ILE	RPG	for	AS400	Reference	Edit	Codes	section.
*	Note	that	Y	is	a	special	date	edit	code	and	Z	is	a	special	sign	removal	edit
code.

12.4	RDML	Field	Attributes	and	their	Use
Whenever	fields	are	declared	in	a	FIELDS	parameter	they	can	have	various
attributes	associated	with	them.	This	applies	equally	to	the	FIELDS	parameter
of	an	I/O	command	such	as	FETCH,	DISPLAY	or	UPRINT	and	to	the	FIELDS
parameter	of	a	GROUP_BY,	DEF_LIST,	DEF_HEAD,	DEF_FOOT,
DEF_LINE	or	DEF_BREAK	command.
Attributes	assigned	to	fields	in	expandable	groups	are	ignored.	Refer	to	Special
Considerations	for	Expandable	Groups	for	details.
When	a	field	in	a	FIELDS	parameter	is	to	have	attributes	associated	with	it,	it
must	be	individually	enclosed	in	parenthesis	with	its	attributes.	For	instance
consider	the	following,	where	a1	…	a7	are	the	special	attributes	assigned	to
field	#ORDLIN:
REQUEST				FIELDS(#ORDLIN	#PRODUCT)
	

or	the	identical	commands:
GROUP_BY			#ORDERLINE	FIELDS(#ORDLIN	#PRODUCT)
REQUEST				FIELDS(#ORDERLINE)
	

If	the	field	#ORDLIN	is	to	be	assigned	some	special	attributes,	then	the
commands	would	have	to	be	modified	like	this:
REQUEST				FIELDS((#ORDLIN	a1	a2	a3	a4	a5	a6	a7)	#PRODUCT)
GROUP_BY		#ORDERLINE	FIELDS((#ORDLIN	a1	a2	a3	a4	a5	a6	a7)
																													#PRODUCT)
REQUEST			FIELDS(#ORDERLINE)
	

Up	to	7	special	attributes	may	be	assigned	to	any	field	in	a	list	or	group.

Attribute	Notes

Attributes	assigned	to	fields	in	expandable	groups	are	ignored.

In	this	example,	the	attributes	of	field	FA001	in	the	expandable	group	#XG_001
are	ignored	in	the	REQUEST	command:
GROUP_BY			NAME(#XG_001)	FIELDS((#FA001	*BLUE	*BL)	(#FA002))
GROUP_BY			NAME(#XG_002)	FIELDS((#XG_001)	(#FA003))
REQUEST				FIELDS(#XG_002)

	

Attributes	assigned	to	expandable	groups	within	a	list	or	another
expandable	group	are	also	ignored.

In	this	example,	the	attributes	assigned	to	the	expandable	group	#XG_001	in	the
REQUEST	command	are	ignored:
GROUP_BY			NAME(#XG_001)	FIELDS((#FA001)	(#FA002)	(#FA003))
REQUEST				FIELDS((#XG_001	*BLUE	*BL))
	

Attributes	assigned	to	individual	fields	in	a	field	list,	which	include
expandable	group	entries	are	acknowledged.

In	this	example,	only	the	attributes	assigned	to	field	#FA005	in	the	REQUEST
command	are	acknowledged:
GROUP_BY			NAME(#XG_001)	FIELDS((#FA001	*BLUE	*BL)	(#FA002))
GROUP_BY			NAME(#XG_002)	FIELDS((#FA003	*BL)	(#FA004))
REQUEST				FIELDS((#XG_001)	(#XG_002)	(#FA005	*BLUE	*BL))
	

Refer	to	these	topics	for	a	list	and	examples	of	special	attributes	that	can	be	used
with	a	field:
12.4.1	Output	Only	Attributes
12.4.2	Field	Conditioning	Attributes
12.4.3	Field	Display	Attributes
12.4.4	Field	Identification	Attributes
12.4.5	Field	Position	Attributes
12.4.6	Hidden	Field	Attribute	and	the	Select	Field	Attribute
12.4.7	New	Format	Attribute	and	Repeat	Attributes
12.4.8	Print	Control	Attributes

12.4.1	Output	Only	Attributes
The	following	attributes	are	synonyms.	Use	of	these	attributes	indicates	that	the
field	is	an	"output	only"	or	a	"no	change"	field	and	it	should	ALWAYS	be
protected	from	user	change	when	it	is	displayed	on	a	screen.
*NC
*NOCHG
*NOCHANGE
*OUT				
*OUTPUT			
*OUTONLY		

Example:
This	command	indicates	that	fields	#A,	#B	and	#C	should	be	displayed	to	the
user	and	the	CHANGE	function	key	should	be	enabled	(which	will	make	the
screen	input	capable	and	allow	change	of	information	on	the	screen).	However,
field	#C	has	attribute	*NOCHG,	which	indicates	that	it	should	not	be	allowed	to
be	changed:
DISPLAY		FIELDS(#A	#B	(#C	*NOCHG))	CHANGE_KEY(*YES)
	

The	following	attributes	are	synonyms.	Use	of	these	attributes	indicates	that	the
field	is	an	"input	field"	and	it	should	NEVER	be	protected	from	change,	no
matter	what	the	screen	processing	mode	is	at	the	time.	Refer	to	the	following
sections	for	more	information	about	screen	modes.Input	Only	Attributes
	
*IN
*INP
*INPUT

Example:
This	command	indicates	that	fields	#A,	#B	and	#C	should	be	displayed	to	the
user.	If	the	screen	is	in	"display"	mode	fields	#A	and	#B	will	be	protected	from
user	change.	However,	field	#C	has	attribute	*INPUT,	which	indicates	that	it
should	always	be	"input	capable"	no	matter	what	the	screen	mode:
DISPLAY		FIELDS(#A	#B	(#C	*INPUT))
	

12.4.2	Field	Conditioning	Attributes

Attributes Description

*axxxxxxxx Where	*axxxxxxxx	is	the	name	of	a	condition	previously
defined	by	a	DEF_COND	command.	The	name	*axxxxxxxx
must	conform	to	the	naming	standard	that	applies	to	defining
conditions.	Using	a	condition	name	that	conflicts	with	another
type	of	attribute	name	is	not	advisable	(e.g.:	*UL,	*IN,	etc)	
Use	of	an	*axxxxxxxx	attribute	alone	indicates	that	the
associated	field	should	only	appear	on	the	screen	panel	or
report	when	the	condition	is	true.

*INOUTCOND	
*IOCOND

These	attributes	are	synonyms.
Use	of	these	attributes	with	the	*axxxxxxxx	attribute	specifies
that	it	is	not	the	presence	or	absence	of	the	field	on	the	screen
panel	that	is	to	be	conditioned,	but	rather	whether	or	not	the
field	is	protected	from	input	or	change	by	the	user.
If	the	associated	condition	is	true,	then	the	field	will	be	input
capable	(regardless	of	the	current	screen	mode).	Similarly,	if
the	associated	condition	is	not	true	then	the	field	will	be
protected	from	input	(regardless	of	the	current	screen	mode).
If	you	use	more	than	one	*IOCOND	(or	*INOUTCOND)	as	a
field	attribute,	only	the	last	one	will	be	used	to	control	whether
the	field	is	input	capable	or	not.	Any	others	are	ignored.
Important	notes
:
This	attribute	is	not	valid	in	report	layouts.	Additionally,	this
attribute	was	implemented	for	special	situations	encountered
by	some	users.	If	you	find	that	you	are	using	it	continuously,
on	many	fields	on	many	panels,	then	you	should	seriously
consider	simplifying	the	architecture	of	your	application	to
reduce	the	usage	of	this	attribute.

	

Example:

This	command	cause	a	display	panel	to	be	created	so	that	the	field	#SALARY
only	appears	on	the	screen	panel	when	the	department	number	is	462
(accounting	department)	or	the	application	group	is	HOFF	(Head	Office):
DEF_COND	NAME(*AUTSAL)	COND('(#DEPT	=	462)	*OR	(#GROUP	=	HOFF)')
DISPLAY		FIELDS(#A	#B	(#SALARY	*AUTSAL)	#C	#D	#E	#F)
	

However,	the	commands	cause	a	display	panel	to	be	created	so	that	the	field
#SALARY	is	input	capable	when	the	department	number	is	462	(accounting
department)	or	the	application	group	is	HOFF	(Head	Office).	In	all	other	cases
field	SALARY	will	appear,	but	it	will	be	protected	from	input	(ie:	change)	by
the	user:
DEF_COND	NAME(*CHGSAL)	COND('(#DEPT	=	462)	*OR	(#GROUP	=	HOFF)')
DISPLAY		FIELDS(#A	#B	(#SALARY	*CHGSAL	*IOCOND)	#C	#D	#E	#F)
	

12.4.3	Field	Display	Attributes

Attributes Description

*AB Allow	to	be	blank.

*ME Mandatory	entry	check	required.

*MF Mandatory	fill	check	required.

*M10 Modulus	10	check	required.

*M11 Modulus	11	check	required.

*VN Valid	name	check	required.

*FE Field	exit	key	required.

*LC Lowercase	entry	allowed.	If	this	attribute	is	NOT	specified,
refer	to	PC	Locale	uppercasing	requested	in	Review	or
Change	a	Partition's	Multilingual	Attributes	in	the	LANSA	for	i
User	Guide.

*LCASE 	

*LOWER 	

*LOWERCASE 	

*RB Right	adjust	and	blank	fill.

*RZ Right	adjust	and	zero	fill.

*RL Move	cursor	right	to	left.

*RLTB Tab	cursor	right/left	top/bottom.	Valid	in	SAA/CUA	partitions
only.	Affects	all	screen	panels	in	function.

*GRN Display	with	color	green.

*GREEN 	

*WHT Display	with	color	white.

*WHITE 	

*RED Display	with	color	red.

its:LANSA010.chm::/lansa/ugub_50050.htm

*TRQ Display	with	color	turquoise.

*TURQ 	

*YLW Display	with	color	yellow.

*YELLOW 	

*PNK Display	with	color	pink.

*PINK 	

*BLU Display	with	color	blue.

*BLUE 	

*BL Display	blinking.

*CS Display	with	column	separators.

*HI Display	in	high	intensity.

*ND Non-display	(hidden	field).

*RA Auto	record	advance	field

*SREV Store	in	reversed	format.	This	special	attribute	is	provided	for
bi-directional	languages	and	is	not	applicable	in	this	context.

SBIN Store	in	binary	format.	This	special	attribute	is	provided	for
repository	fields	&	is	not	applicable	in	this	context.

	

Example:
Display	field	#A	in	blue,	#B	in	green	and	allow	field	#C	to	be	entered	in
lowercase	characters:
DISPLAY		FIELDS((#A	*BLUE)(#B	*GRN)(#C	*LC))

12.4.4	Field	Identification	Attributes

Attributes Description

*COLUMN	
*COL
*COLHEAD
*COLHDG

These	attributes	are	synonyms.
Indicates	that	the	field	should	be	identified	on	the	screen	by	its
column	headings.

*LAB	
*LABEL

These	attributes	are	synonyms.
Indicates	that	the	field	should	be	identified	on	the	screen	by	its
label.	

*DES	
*DESC

These	attributes	are	synonyms.
Indicates	that	the	field	should	be	identified	on	the	screen	by	its
description.
This	attribute	is	only	valid	in	SAA/CUA	compliant	partitions.
Additionally,	when	fields	on	a	screen	panel	use	attribute
*DES/*DESC	directly,	or	by	default,	they	are	automatically
padded	with	"leader	dots"	ending	with	a	"."	(input	field)	or	a	":"
(protected	field).	The	maximum	length	of
all
descriptions	will	be	the	maximum	length	of	the	longest
description	of
any
field	on	the	screen	panel	plus	6	characters	(for	"	.	.	."	or	"	.	.	:").
Attributes	*DES/*DESC
cannot
be	used	for	reports.	

*NOID	
*NOIDENT

These	attributes	are	synonyms.
Indicates	that	the	field	should	not	be	identified	on	the	screen.	Only
the	field	is	to	appear.

	

Examples

This	command	specifies	that	field	#A	is	to	be	identified	by	its	column	headings,
field	#B	is	not	to	be	identified	and	fields	#C,	#D	and	#E	are	to	be	identified	by
their	respective	labels	(because	the	IDENTIFY	parameter	nominates	the	default
identification	method	for	fields	that	do	not	have	a	specific	identification
attribute):
DISPLAY	FIELDS((#A	*COL)
(#B	*NOID)	#C	#D	#E)	IDENTIFY(*LABEL)
	

This	command	specifies	that	all	fields	except	for	#E	are	to	be	identified	by	their
column	headings.	Field	#E	is	not	to	be	identified.	Only	the	field	itself	is	to
appear	on	the	screen.	:
DISPLAY	FIELDS(#A	#B	#C	#D	(#E	*NOID))	IDENTIFY(*COLHDG)
	

12.4.5	Field	Position	Attributes

Attributes Description

*Rnnn
*Lnnn

These	attributes	are	synonyms.
These	attributes	are	used	to	indicate	a	specific	row	/	line	on	the
screen	/	report	at	which	the	field	should	be	positioned.
Note:	These	are	ignored	if	specified	for	a	field	in	a	browselist.

*Cnnn
*Pnnn

These	attributes	are	synonyms.
These	attributes	are	used	to	indicate	a	specific	column	/	position	on
the	screen	/	report	at	which	the	field	should	be	positioned.
Special	note
(right-to-left	languages	only):	If	you	are	using	a	right-to-left
language,	and	have	not	specifically	disabled	the	automatic
"mirroring"	facility	(see	the	FUNCTION	command),	the	column	/
position	specified	will	be	automatically	"inverted"	or	"mirrored"	into
a	right-to-left	panel	or	report	position.	This	facility	provides	for	the
easy	change	of	panel	and	report	layouts	from	right-	to-left	into	left-
to-right	layouts,	or	vice-versa.	However	it	does	mean	that	all
positions	are
always
specified
in	left-to-right	format.	Thus	it	is
much
easier	to	modify	panel	and	report	layouts	by	using	the	screen	or
report	painter	facilities	than	by	making	manual	RDML	changes.	

	

Example
This	command	specifies,	for	a	left-to-right	language,	that	field	#A,	prefixed	by
its	data	dictionary	label,	should	be	positioned	at	row	2,	position	10	and	that	field
#B	should	be	positioned	at	row	5,	position	15:
DISPLAY	FIELDS((#A	*L2	*P10)(#B	*L5	*P15))
	

Note	that	the	manual	specification	of	row	and	column	numbers	for	fields	can	be
an	arduous	task.	It	is	much	quicker	and	easier	to	use	the	LANSA	screen	design
facility,	which	will	automatically	generate	the	required	row	and	column
numbers.
For	Visual	LANSA,	refer	to	Function	Screen	Designer	in	the	Visual	LANSA
User	Guide	for	details.
For	IBM	i,	refer	to	the	The	Screen	Design	Facility	in	the	LANSA	for	i	User
Guide.

its:Lansa012.chm::/lansa/l4wusr01_1960.htm
its:Lansa010.chm::/lansa/ugub_40067.htm

12.4.6	Hidden	Field	Attribute	and	the	Select	Field	Attribute
	

Attributes Description

*HIDE		
*HIDDEN

These	attributes	are	synonyms.
Use	of	these	attributes	indicates	that	the	field	is	to	be	"hidden"	and
not	displayed	on	the	screen.
This	attribute	is	primarily	intended	to	allow	fields	to	be	included
into	a	browse	list	but	not	actually	displayed	on	the	screen.	Refer	to
the	DEF_LIST	command	for	more	information	about	lists	and	list
processing.

*SEL	
*SELECT

These	attributes	are	synonyms.
Use	of	this	attribute	indicates	that	a	field	is	to	be	used	to	"select"	an
entry	from	a	list.	Fields	with	this	attribute	are	input	capable	no
matter	what	the	display	mode.	Refer	to	the	DEF_LIST	and
SELECTLIST	command	for	more	details	of	lists	and	list	processing.

	

Examples
The	following	RDML	program	uses	the	*HIDDEN	and	*SELECT	attributes	and
requests	that	the	user	input	a	generic	customer	name.	All	customer	names	that
match	are	displayed	and	any	of	them	can	be	selected	for	detailed	display:
DEFINE			FIELD(#CHOOSE)	TYPE(*CHAR)	LENGTH(1)	COLHDG('Sel')
DEF_LIST	NAMED(#BROWSE)		FIELDS((#CHOOSE	*SELECT)	#NAME	(#CUSTNO	*HIDDEN))
GROUP_BY	NAME(#CUSTOMER)	FIELDS(#CUSTNO	#NAME	#ADDR1	#ADDR2	#POSTCD)
REQUEST				FIELDS(#NAME)
CLR_LIST			NAMED(#BROWSE)
SELECT		FIELDS(#BROWSE)	FROM_FILE(CUSMSTV1)	WITH_KEY(#NAME)	GENERIC(*YES)
ADD_ENTRY		TO_LIST(#BROWSE)
ENDSELECT
	
DISPLAY				BROWSELIST(#BROWSE)
	
SELECTLIST	NAMED(#BROWSE)	GET_ENTRYS(*SELECT)

FETCH						FIELDS(#CUSTOMER)	FROM_FILE(CUSMST)	WITH_KEY(#CUSTNO)
DISPLAY				FIELDS(#CUSTOMER)
ENDSELECT
	

Some	points	to	note	about	this	RDML	program	are:
The	first	block	of	executable	commands	requests	that	the	user	input	a
customer	name	and	then	builds	a	list	of	all	customers	that	have	a	generically
identical	name.
The	first	DISPLAY	command	displays	the	list	built	by	the	first	block	of	code.
When	displayed	the	list	would	look	something	like	this:

	
					Sel					Customer	name
						_						XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
						_						XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
						_						XXXXXXXXXXXXXXXXXXXXXXXXXXXXXXX					
	
					Note	the	input	capable	"Sel"	column.	This	resulted	from	assigning	the
*SELECT	attribute	to	field	#CHOOSE.

					Notice	also	that	field	#CUSTNO	does	not	appear	on	the	display.	This	is
because	it	has	attribute	*HIDDEN.	Even	though	it	is	not	on	the	display	it	is
still	part	of	each	list	entry	and	is	used	in	the	final	loop	to	fetch	the	required
customer	record	for	detailed	display.
The	SELECTLIST	/	ENDSELECT	loop	causes	entries	in	the	list	to	be
processed.	The	GET_ENTRYS(*SELECT)	parameter	indicates	that	only
entries	which	have	a	non-blank	value	in	field	#CHOOSE	should	be	selected
for	processing.	Note	the	link	between	the	GET_ENTRYS	parameter	and	the
*SELECT	attribute	in	the	DEF_LIST	command.
Within	the	SELECTLIST	/	ENDSELECT	loop	the	field	#CUSTNO	which
was	defined	as	being	in	the	list	(but	hidden	from	the	user)	is	used	to	retrieve
the	correct	customer	record	for	the	detailed	display.	This	had	to	be	done	in
this	case	because	the	field	#NAME	does	not	provide	a	unique	key	for	the
customer	involved.

					The	*SELECT	attribute	can	also	be	used	in	various	other	ways.	Consider	the
following	example:
				DEFINE				FIELD(#CHOOSE)	TYPE(*CHAR)	LENGTH(3)	COLHDG('Sel')
				DEF_LIST	NAMED(#BROWSE)	FIELDS((#CHOOSE	*SELECT)	#ORDER	#DATDUE)

				REQUEST			FIELDS(#DATDUE)
				CLR_LIST		NAMED(#BROWSE)
				SELECT				FIELDS(#BROWSE)	FROM_FILE(ORDHDRV3)	WITH_KEY(#DATDUE)
				ADD_ENTRY	TO_LIST(#BROWSE)
				ENDSELECT
	
				DISPLAY			BROWSELIST(#BROWSE)
					-->	SELECTLIST	NAMED(#BROWSE)	GET_ENTRYS(*SELECT)
				|
				|						CASE							OF_FIELD(#CHOOSE)
				|
				|						WHEN							VALUE_IS('=	CUS')
				|																	<	display	customer	details	>
				|						WHEN							VALUE_IS('=	DET'	'=	LIN')
				|																	<	display	line	item	details	>
				|						WHEN							VALUE_IS('=	HIS')
				|																	<	display	customer	payment	history	>
				|						WHEN							VALUE_IS('=	STS')
				|																	<	display	order	status	>
				|
				|						ENDCASE
				|
					---	ENDSELECT
	
Note	that	like	the	first	example	the	commands	request	that	a	"date	order	due"
be	input.	A	list	of	all	associated	orders	is	then	built	and	displayed.	When
displayed	the	list	would	look	something	like	this:

	
					Sel					Order					Date	Due
						_					9999999					99/99/99					
						_					9999999					99/99/99					
						_					9999999					99/99/99					
						_					9999999					99/99/99					
	

The	SELECTLIST	/	ENDSELECT	loop	requests	that	all	entries	in	the	list	that
have	a	non-blank	value	in	field	#CHOOSE	be	processed.	However,	the	loop
also	acts	upon	the	content	of	field	#CHOOSE	to	display	customer,	line	item,
payment	history	or	status	information	about	the	order.

12.4.7	New	Format	Attribute	and	Repeat	Attributes

Attributes Description

*NEWFORMAT This	attribute	is	valid	in	DISPLAY,	REQUEST	or	POP_UP
commands	and	indicates	that	the	field	should	be	placed	on	a
new	screen	format.	
Note:
This	attribute	is	ignored	by	Visual	LANSA.

*REPEAT This	attribute	is	valid	in	DISPLAY,	REQUEST	or	POP_UP
commands	and	indicates	that	the	field	should	be	repeated	onto
each	and	every	format	required.

	

Examples
This	command	indicates	that	the	DISPLAY	command	should	design	2	separate
screen	formats.	The	first	should	include	fields	#A	#B	#C.	The	second	(which
was	triggered	by	the	*NEWFORMAT	attribute)	should	contain	fields	#D,	#E
and	#F:
DISPLAY	FIELDS(#A	#B	#C	(#D	*NEWFORMAT)	#E	#F)
	

When	a	DISPLAY,	REQUEST	or	POP_UP	command	uses	multiple	screen
formats	(either	because	all	the	fields	specified	will	not	fit	on	one	format	or
because	a	*NEWFORMAT	attribute	is	used)	it	can	be	treated	like	one	"long"
format.	When	the	DISPLAY	or	REQUEST	command	is	executed	all	resulting
formats	will	be	displayed	in	order	before	the	next	RDML	command	is	executed.
Refer	to	the	DISPLAY	or	REQUEST	command	for	more	details.
This	command	indicates	that	fields	#A	->	#Z	should	be	displayed.	In	addition
field	#A	has	the	attribute	*REPEAT.	This	indicates	to	LANSA	that	if	fields	#A	-
>	#Z	will	not	fit	on	one	format,	then	field	#A	should	be	repeated	on	each	and
every	additional	format	that	is	designed:
DISPLAY	FIELDS((#A	*REPEAT)	#B	#C	#Z)
	

12.4.8	Print	Control	Attributes
Print	control	attributes	apply	mostly	to	the	UPRINT	(unformatted	print)
command.	The	PRINT	command	(and	associated	DEF_XXXXX	commands)
facilitates	all	features	described	here	in	different	and	more	advanced	ways.
Refer	to	the	PRINT	and	DEF_XXXXX	print	definition	commands	for	more
details.
Also	refer	to	Producing	Reports	Using	LANSA	in	the	Visual	LANSA	Developer
Guide.
The	use	of	the	UPRINT	command	is	recommended	only	for	very	simple	list
style	reports.	For	serious	application	reporting,	multilingual	reporting	or	bi-
directional	language	reporting	use	only	the	PRINT	command.

Attribute Applies
To	UPRINT

Applies
To	PRINT

Description

*NEWPAGE YES NO Indicates	that	a	change	of	the	contents
of	this	field	should	cause	a	new	page	to
be	started.

*TOTAL	
*TOT

YES NO Indicates	that	this	field	should	be
subtotaled.

*TOTLVLn		
*TOTLEVELn

YES NO Indicates	that	a	change	to	the	contents
of	this	field	should	trigger	a	subtotal	to
be	printed	at	"level	break"	n.

*ONCHANGEYES NO Indicates	that	this	field	should	only	be
printed	when	its	contents	changes.

*NOPRINT		
*NOPRT

YES NO Indicates	that	this	field	should	not	be
printed.

	

Example
Consider	a	file	called	ACCOUNTS	that	contains	the	following	fields	and	data:

Company
(#COMP)

Division
(#DIV)

Department
(#DEPT)

Expenditure
(#EXPEND)

Revenue
(#REVNU)

its:Lansa013.chm::/lansa/l4wdev05_0030.htm

01 1 ADM 400 576

" " MKT 678 56

" " SAL 123 6784

" 2 ADM 46 52

" " SAL 978 456

" 3 ACC 456 678

" " SAL 123 679

02 1 ACC 843 400

" " MKT 23 0

" " SAL 876 10

" 2 ACC 0 43

If	the	file	is	keyed	by	#COMP,	#DIV	and	#DEPT,	the	following	RDML	program
will	produce	a	paginated	report	with	subtotals	from	this	file:
GROUP_BY			NAME(#ACCOUNTS)		FIELDS((#COMP	*TOTLEVEL1	
										*NEWPAGE	*ONCHANGE)	
										(#DIV		*TOTLEVEL2)	
										(#DEPT		*TOTLEVEL3)	
										(#EXPEND	*TOTAL)	
										(#REVNU		*TOTAL))
	
SELECT					FIELDS(#ACCOUNTS)	FROM_FILE(ACCOUNT)
UPRINT					FIELDS(#ACCOUNTS)
ENDSELECT
	
ENDPRINT
	

The	following	points	about	the	field	attributes	used	should	be	noted:
The	*NEWPAGE	attribute	indicates	that	a	new	page	should	be	started
whenever	the	company	number	changes.
The	*ONCHANGE	attribute	indicates	that	field	#COMPNO	should	only	ever
be	printed	when	it	changes.

The	*TOTLEVELn	attributes	indicate	the	total	"level	breaks"	that	are
required.	In	this	case,	totals	are	required	by	company,	division	(within
company),	and	department	(within	division	within	company).
The	*TOTAL	attribute	indicates	the	fields	that	are	to	totaled.	In	this	case	the
expenditure	and	revenue	fields	are	to	be	totaled.
Grand	totaling	is	implicit.	Once	the	*TOTAL	attribute	is	used	a	grand	total
line	will	be	automatically	produced	when	the	print	file	is	closed	(see	the
ENDPRINT	command).

12.5	RDML	I/O	Return	Codes
Most	LANSA	database	commands	issue	a	"return	code"	when	they	have
completed.	This	return	code	is	always	mapped	into	a	field	called	#IO$STS
which	can	be	used	in	conditional	statements	like	any	other	field.	Optionally	the
return	code	can	also	be	mapped	into	a	user	defined	field.	Refer	to	the
IO_STATUS	parameter	of	the	required	command	for	more	information	about
how	this	is	done.
However,	the	approach	which	should	be	taken	in	all	normal	commercial
functions	is	that	if	there	was	a	fatal	error,	allow	the	automatic	error	handler	to
take	care	of	it.	Either	the	I/O	operation	worked,	or	it	didn't	work	(and	if	it	didn't
the	messages	will	explain	why,	not	the	return	code).
The	list	of	all	I/O	return	code	values	and	their	meanings	are	as	follows:

Return
Code

Description	/	Meaning

OK OKAY.	Operation	completed	normally.	No	errors	detected.

ER FATAL	ERROR.	Fatal	file	error	detected.	Error	is	probably
irrecoverable.	Locate	cause	of	problem,	correct,	and	re-attempt	the
operation.
See	also	the	section	in	this	chapter	that	describes	locked	I/O	status
records.

VE VALIDATION	ERROR.	Insert,	update	or	delete	operation	failed	to
satisfy	a	file	or	dictionary	level	validation	check.

NR NO	RECORD.	No	record(s)	could	be	found	matching	the	request.

EF END	OF	FILE.	End	of	file	detected	during	read	operation.

BF BEGINNING	OF	FILE.	Beginning	of	file	detected	during	a	read
backwards.

EQ EQUAL	KEY	FOUND.	A	record	with	a	key	equal	to	the	key	specified
was	found	in	the	file.

NE NO	EQUAL	KEY	FOUND.	No	record	could	be	found	with	a	key	equal
to	the	key	specified.

	

There	are	various	ways	of	checking	the	return	code	after	an	I/O	operation	has
been	performed.
The	first	is	to	always	use	the	IO_STATUS(*STATUS)	default	parameter	on	an
I/O	command.	In	this	case	the	return	code	is	mapped	into	a	field	called
#IO$STS	which	can	be	referenced	just	like	any	other	field.	For	example:
FETCH			FIELDS(#ORDERHEAD)	FROM_FILE(ORDHDR)	WITH_KEY(#ORDER)
IF						COND('#IO$STS	*NE	OK')
MESSAGE	MSGTXT('Order	not	found	in	current	order	file')
ENDIF
	

The	second	is	to	use	the	IO_STATUS	parameter	to	map	the	return	code	into	a
user	defined	field.	For	example:
DEFINE		FIELD(#RETCODE)	TYPE(*CHAR)	LENGTH(2)
FETCH			FIELDS(#ORDERHEAD)	FROM_FILE(ORDHDR)	WITH_KEY(#ORDER)
								IO_STATUS(#RETCODE)
IF						COND('#RETCODE	*NE	OK')
MESSAGE	MSGTXT('Order	not	found	in	current	order	file')
ENDIF
	

The	third,	and	probably	the	best,	is	to	use	the	IF_STATUS	command	to	test	the
last	return	code	automatically.	The	example	already	used	would	become:
FETCH					FIELDS(#ORDERHEAD)	FROM_FILE(ORDHDR)	WITH_KEY(#ORDER)
IF_STATUS	IS_NOT(*OKAY)
MESSAGE			MSGTXT('Order	not	found	in	current	order	file')
ENDIF
	

Refer	to	the	IF_STATUS	command	for	more	details	and	examples.

Also	see
I/O	Command	Return	Codes	Table

12.6	Help	Text	Enhancement	&	Substitution	Values
Help	text	can	be	input	for	fields,	processes	and	functions.
For	Visual	LANSA,	how	to	add	or	amend	Help	text	is	described	in	Field	Help
Text	and	Process	Help	Text.
For	IBM	I,	how	to	add	or	amend	Help	text	is	described	in	the	Field	Help	Text
and	Process	Help	Text	in	the	LANSA	for	i	User	Guide.
You	can	include	actual	values	when	the	HELP	text	is	displayed	by	inserting	the
special	substitution/control	values	in	these	lists:
12.6.1	Substitution/Control	Values
12.6.2	Substitution/Control	Values	-	Visual	LANSA	only
12.6.3	Help	Text	Attributes
When	creating	new	HELP	text	for	a	field,	process	or	function	an	option	is
available	that	allows	you	to	create	help	using	a	"standard	form".
The	"standard	form"	allows	the	HELP	text	associated	with	any	field,	process	or
function	to	be	formatted	to	a	standard	layout,	thus	making	all	HELP	text	input
by	users	consistent	in	layout	and	format.

its:Lansa010.chm::/lansa/ugub_20015.htm
its:Lansa010.chm::/lansa/ugub_40016.htm

12.6.1	Substitution/Control	Values

Substitution	Value Description,	Effects	And	Comments

$$PAGE Causes	the	string	"Page	:	999"	to	be	inserted	into	the
text.	Use	to	indicate	the	current	HELP	text	page
number	to	the	user.

$$NEWPAGE Causes	a	new	HELP	text	page	to	be	started.	A	HELP
text	page	is	18	lines	long	by	default.	The	line
containing	the	$$NEWPAGE	value	is	included	into
the	displayed	HELP	text.	The			$$NEWPAGE	value	is
replaced	by	blanks.

$$TITLE	XXXXXXXX Indicates	to	LANSA	the	title	that	should	be	associated
with	the	HELP	text.	Up	to	40	characters	of	title	can	be
specified.	LANSA	will	automatically	center	the	title
and	convert	it	to	uppercase.	The	line	containing	the
$$TITLE	value	is	NOT	included	into	the	displayed
help	text.

$$FLDNAM Causes	the	name	of	the	current	field	to	be	inserted	into
the	HELP	text.	Use	this	value	in	field	level	HELP	text
only.

$$FLDDES Causes	the	description	of	the	current	field	to	be
inserted	into	the	HELP	text.	Use	this	value	in	field
level	HELP	text	only.

$$PRONAM Causes	the	name	of	the	current	process	to	be	inserted
into	the	HELP	text.	Use	this	value	in	process	or
function	level	HELP	text	only.

$$PRODES Causes	the	description	of	the	current	process	to	be
inserted	into	the	HELP	text.	Use	this	value	in	process
or	function	level	HELP	text	only.

$$FUNNAM Causes	the	name	of	the	current	function	to	be	inserted
into	the	HELP	text.	Use	this	value	in	function	level
HELP	text	only.

$$FUNDES Causes	the	description	of	the	current	function	to	be

inserted	into	the	HELP	text.	Use	this	value	in	function
level	HELP	text	only.

$$RIGHT Causes	all	manually	defined	help	text	to	be	right
aligned	when	displayed.	This	support	is	provided	for
bi-directional	languages.	

$$NOAUTO Indicates	that	automatically	generated	help	text	should
not	be	created	for	this	field.	Use	this	option	in	field
level	help	text	only.

$$LANGUAGE=XXXX Delimits	the	boundary	between	the	help	text
associated	with	different	languages	when	working	in	a
multilingual	partition.	These	values	are
automatically	created
when	editing	help	text	and
should	not	be	altered
in	any	way	or	the	help	text	associated	with	a	language
may	be	corrupted.

$$TECH Indicates	that	the	following	text	is	technical	help	text
in	IBM	i

$$USER Indicates	that	the	following	text	is	user	help	text	in
IBM	i.

	

Also	See
How	to	Use	Special	Characters	in	the	Visual	LANSA	Developer	Guide.
Use	Special	Characters	to	Enhance	HELP	Text	in	the	LANSA	for	i	User	Guide.	
	12.6	Help	Text	Enhancement	&	Substitution	Values

its:LANSA013.CHM::/lansa/l4wdev03_0140.htm
its:Lansa010.chm::/lansa/ugub_20053.htm

12.6.2	Substitution/Control	Values	-	Visual	LANSA	only
These	help	text	substitutions	are	used	to	link	help	for	other	objects	to	the
automatically	generated	Index	(&	Contents)	for	the	current	object.	They	do	not
produce	visible	entries	in	the	generated	help	text.
Note	that	the	Contents	are	only	produced	for	the	standard	help	interface
provided	with	Windows.

Substitution
Value

Description,	Effects	and	Comments

$$INDEXFLD
=	<field-name>

Causes	an	item	to	be	included	in	the	Index	that	will	display
help	text	for	the	designated	field.	The	rest	of	the	current	line	is
ignored.	The	label	used	in	the	Index	is	the	field's	description.

$$INDEXCOM
=	<object-
name>,
<component-
name>

Causes	an	item	to	be	included	in	the	Index	that	will	display
help	text	for	the	designated	component.	The	component	is
specified	using	the	owning	object	(that	is,	a	form)	and
component	names,	separated	by	a	comma.	The	rest	of	the
current	line	is	ignored.	The	label	used	in	the	Index	is	the
component's	name.	If	no	component	name	is	specified	then	the
index	item	will	display	help	for	the	object	(that	is,	the	form)
itself.

$$INDEXPRO
=	<process-
name>

Causes	an	item	to	be	included	in	the	Index	that	will	display
help	text	for	the	designated	process.	The	rest	of	the	current	line
is	ignored.	The	label	used	in	the	Index	is	the	process's
description.

$$INDEXFUN
=	<process-
name>,
<function-
name>

Causes	an	item	to	be	included	in	the	Index	that	will	display
help	text	for	the	designated	function.	The	function	is	specified
using	the	owning	process	and	function	names,	separated	by	a
comma.	The	rest	of	the	current	line	is	ignored.	The	label	used
in	the	index	is	the	function's	description.

$$ROOT Causes	any	following	Index	substitutions	($$INDEX…)	to	be
added	to	the	root	of	the	Contents	tree-view.	Useful	for	index
items	that	might	be	applicable	to	all	or	a	number	of	topics.

$$LEAF Causes	any	following	Index	substitutions	($$INDEX…)	to	be
added	below	the	current	topic	in	the	Contents	tree-view.	This	is

the	default	value	and	only	needs	to	be	specified	to	switch	back
after	$$ROOT	has	been	used.

$$IMAGE	=
<filename>,
<alternate-text>

A	bitmap	(*.BMP)	image	file	to	be	included	in	the	help	text	at
this	point.	The	image	is	centered	in	the	screen.	The	default	path
is	the	current	partition's	Execute	directory,	but	any	path	may	be
specified.	Note:	Universal	Naming	Convention	(UNC)	paths
are	not	supported.	The	alternate	text	is	used	instead	of	the
image	in	an	interface	where	images	are	not	displayed,	such	as	a
5250	terminal.	If	the	alternate	text	is	not	specified	then	the
filename	is	used	instead.

	

Also	See
How	to	Use	Special	Characters	in	the	Visual	LANSA	Developer	Guide.
	12.6	Help	Text	Enhancement	&	Substitution	Values

its:LANSA013.CHM::/lansa/l4wdev03_0140.htm

12.6.3	Help	Text	Attributes
	

Character Description

%	(percentage) High	Intensity

{	(left	parenthesis) Underline

@	(at) Reverse	Image

	(accent) Blink

}	(right	parenthesis)Revert	to	normal	display

\	(backslash) Revert	to	normal	display

	

If	the	Help	Text	Attribute	characters	conflict	with	those	above,	you	can	re-
assign	them	using	these	keywords:

KeywordExampleDescription

$$HI= $$HI=! High	Intensity	Causes	the	special	character	assigned	for
high
intensity	display	to	be	re	assigned	to	a	user	defined
character.

$$RI= $$RI=› Reverse	Image	Causes	the	special	character	assigned	for
reverse
image	display	to	be	re	assigned	to	a	user	defined	character.

$$BL= $$BL=: Blink	Causes	the	special	character	assigned	for
blink
display	to	be	re	assigned	to	a	user	defined	character.

$$UL= $$UL=+ Underline	Causes	the	special	character	assigned	for	under
line	display	to	be	re	assigned	to	a	user	defined	character.

$$N1= $$N1=* Normal	Display	Causes	the	special	character	assigned	for

normal
display	one	to	be	re	assigned	to	a	user	defined	character.

$$N2= $$N2=# Normal	Display	Causes	the	special	character	assigned	for
normal
display	two	to	be	re	assigned	to	a	user	defined	character.

	

Also	See
How	to	Use	Special	Characters	in	the	Developer	Guide.
Use	Special	Characters	to	Enhance	HELP	Text	in	the	LANSA	for	i	User	Guide.
	12.6	Help	Text	Enhancement	&	Substitution	Values
	
	

	

	
	

its:LANSA013.CHM::/lansa/l4wdev03_0140.htm
its:Lansa010.chm::/lansa/ugub_20053.htm

13.	Common	RDML	Parameters	&	BIF	Notes
13.1	RDML	Command	Parameters
13.2	Built-In	Function	Notes

13.1	RDML	Command	Parameters
13.1.1	I/O	Commands
13.1.2	Field	Groups	and	Expandable	Groups
13.1.3	RDML	Screen	Modes	and	Mode	Sensitive	Commands
13.1.4	Specifying	Conditions	and	Expressions
13.1.5	Arithmetic	and	Expression	Operators
13.1.6	Quotes	and	Quoted	Strings
13.1.7	Prompt_Key	Processing
	13.	Common	RDML	Parameters	&	BIF	Notes

13.1.1	I/O	Commands
Specifying	File	Names	in	I/O	Commands
Specifying	File	Key	Lists	in	I/O	Commands
Specifying	WHERE	Parameter	in	I/O	Commands
I/O	Command	Return	Codes	Table
I/O	Status	Record	Locked
	13.1	RDML	Command	Parameters

Specifying	File	Names	in	I/O	Commands
Most	of	the	LANSA	database	I/O	commands	require	the	specification	of	a	file
name.	The	parameter	name	may	be	FROM_FILE,	TO_FILE,	INTO_FILE,	etc.
but	in	all	cases,	the	way	that	the	file	name	is	specified	is	identical.
The	following	points	apply	to	specifying	a	file	name	in	any	LANSA	command:
The	file	nominated	must	be	defined	within	the	LANSA	system	as	either	a
physical	file	or	a	logical	file.
Index-only	logical	files	may	not	be	used	for	this	parameter	in	RDML	code
that	will	execute	on	the	IBM	i.
Optionally	a	library	name	may	be	specified.
The	use	of	the	file	and	library	name	(i.e.	fully	qualified	file	names)	is	NOT
recommended	because	it	"locks"	the	RDML	program	into	using	a	certain	file
in	a	certain	library.	This	may	cause	problems	when	you	attempt	to	import	or
export	functions	to/from	other	versions	of	LANSA	that	use	different	library
names.

For	the	IBM	i,	separate	the	file	and	library	name	using	"."	(i.e.	full	stop).	For
example	a	TO_FILE	parameter	might	be	specified	as:
						TO_FILE(CUSTMST)
						TO_FILE(CUSTMST.QGPL)
						TO_FILE(CUSTMST.USERLIB01)
	

					For	Visual	LANSA,	separate	the	file	and	library	name	using	a	space.	In
Visual	LANSA,	for	example,	the	above	TO_FILE	parameters	would	be
specified	as:
						TO_FILE(CUSTMST	QGPL)
						TO_FILE(CUSTMST	USERLIB01)
	

Portability
Considerations

On	platforms	other	than	IBM	i,	Visual	LANSA	will
ignore	the	library.

If	a	library	name	is	not	specified	a	default	library	name	called	*FIRST	is
used.	This	indicates	that	the	library	list	of	the	job	in	which	the	function	is
being	compiled	should	be	searched	(in	order)	to	locate	the	required	file.	If	the
file	cannot	be	found	using	this	method	then	the	first	definition	of	the	file	that
can	be	found	in	the	LANSA	dictionary	should	be	used.	In	such	cases	a

warning	message	will	be	issued.

Portability
Considerations

Code	generation	varies	for	RDML	functions	and	RDMLX
code,	and	may	cause	a	difference	in	which	library	is	used
where	there	are	multiple	files	of	the	same	name.	RDML
function	generation	on	IBM	i	matches	up	File	references	to
Libraries	using	the	Library	List	of	the	job	that	is	compiling
the	object.	If	not	found	in	the	library	list,	the	first	File	in	the
repository	found	in	EBCDIC	collation	sequence	order	will	be
used.	RDMLX	objects	are	generated	on	Windows,	which	does
not	have	a	Library	List,	and	so	the	first	file	in	the	repository
found	in	ANSI	collation	sequence	order	will	be	used.

	13.1.1	I/O	Commands

Specifying	File	Key	Lists	in	I/O	Commands
Many	of	the	LANSA	database	I/O	commands	allow	the	specification	of	a	file
key.	In	all	cases	the	method	and	logic	used	to	set	up	the	file	key	is	identical.
The	following	points	should	be	noted	about	specifying	file	keys:
The	order	that	the	key	fields	are	specified	on	the	command	is	as	important	as
the	content	of	the	key	fields.
The	key	field	nominated	does	not	have	to	(and	often	will	not)	have	the	same
name	as	the	matching	key	field.	The	key	fields	nominated	in	the	command
are	matched	in	the	order	specified	with	the	actual	key	fields	of	the	file.

For	example,	if	#ORDNUM	contains	123456	and	#LINENO	contains	1,	then
this	command	will	attempt	to	fetch	the	first	record	in	file	ORDLIN	with	an
order	number	=	123456	and	a	line	number	=	1:
					FETCH			FROM_FILE(ORDLIN)	WITH_KEY(#ORDNUM	#LINENO)
	

			If,	however,	the	command	is	specified	as	then	LANSA	will	attempt	to	fetch
the	first	record	in	file	ORDLIN	with	an	order	number	=	1	and	a	line	number	=
123456:
					FETCH			FROM_FILE(ORDLIN)	WITH_KEY(#LINENO	#ORDNUM)
	

			This	is	because	the	actual	file	keys	are	"order	number"	followed	by	"line
number".	LANSA	processes	the	key	fields	nominated,	by	matching	their
position	with	the	actual	file	keys,	not	by	their	names.
The	key	field	nominated	does	not	have	to	have	the	same	length	as	the	key
field	in	the	file.	LANSA	will	automatically	adjust	the	lengths	as	required.
However,	the	key	field	nominated	and	the	actual	file	key	field	must	be	of	the
same	type	(alphanumeric	or	numeric).
Most	commands	support	the	use	of	"partial"	keys.	For	instance	if	a	file	is
keyed	by	KEY01,	KEY02	and	KEY03	it	is	possible	to	use	the	following
variations:
					KEY01		KEY02		KEY03
					or	KEY01		KEY02
					or	KEY01
	

				but,	it	is	not	possible	to	specify:

					-----		-----		KEY03
					or	-----		KEY02		KEY03
					or	KEY01		-----		KEY03
	
Expandable	group	expressions	are	allowed	in	key	lists.	The	number	of	entries
in	the	expanded	list	must	match	in	type	and	must	not	exceed	the	number	of
fields	in	the	key	list	of	the	file.
When	the	key	list	contains	date,	time	or	timestamp	fields,	the	nominated	key
fields	must	have	valid	date,	time	or	timestamp	values.	LANSA	will	validate
these	fields	and	return	an	error	if	invalid	values	are	nominated.

Further	Information
I/O	Command	Return	Codes	Table
I/O	Status	Record	Locked
	13.1.1	I/O	Commands

Specifying	WHERE	Parameter	in	I/O	Commands
Fields	that	Allow	SQL	Null
A	field	allowing	SQL	Null	may	be	used	as	a	key	or	as	part	of	a	where	parameter
just	the	same	as	any	other	field.	It	may	also	be	compared	to	SQL	Null.	The
following	example	shows	how	you	might	retrieve	all	rows	in	MYFILE	where
#MYFLD1	has	a	real	value	(not	SQL	Null).
SELECT(#MYFLDS)	FROM_FILE(MYFILE)	WHERE(#MYFLD1	*IsNot
*Sqlnull)
	

Note	that	fields	allowing	SQL	Null	may	behave	differently	in	where	parameters
at	execution	time	when	they	are	SQL	Null.	Refer	to	Assignment,	Conditions,
and	Expressions	with	Fields	allowing	SQL	Null	for	details.
Fields	of	type	BLOB,	CLOB,	Binary	or	VarBinary
BLOB	or	CLOB	fields	on	the	file	cannot	be	used	in	a	where	condition	unless
being	compared	against	*SQLNULL.	For	example:
SELECT(#MYFLDS)	FROM_FILE(MYFILE)	WHERE(#MYBLOB	*Is
*Sqlnull)
	

Any	attempt	to	compare	a	BLOB	or	CLOB	field	on	the	file	to	any	other	value
than	*SQLNULL	causes	a	FFC	error.
Fields	of	type	Float
Floats	are	an	inaccurate	numeric	type.	In	the	FFC,	when	a	float	is	compared	via
*EQ	or	*NE	(or	equivalent)	to	a	field,	system	variable	(other	than	*ZERO),	or
literal	value	other	than	0,	*NULL,	or	*SQLNULL,	a	warning	message	is	issued.

Performance
The	following	applies	only	to	RDMLX	on	the	IBM	I	and	both	RDML	&
RDMLX	on	non-IBM	i	platforms.
The	use	of	the	following	in	the	WHERE	condition	will	require	it	to	be	evaluated
in	the	calling	function	or	component:
Fields	not	on	the	file
Intrinsic	functions	such	as	IsSqlNull

For	best	performance,	only	use	fields	on	the	file	in	the	WHERE	clause.	This
allows	the	I/O	module	to	evaluate	the	condition	and	return	only	the	rows

matching	the	WHERE,	rather	than	having	to	return	all	the	rows	matching	the
key	provided	to	the	calling	function	or	component.
For	even	better	performance,	only	use	real	fields	on	the	file	(not	virtual	fields).
If	the	I/O	command	is	handled	in	SQL,	this	will	minimise	the	number	of	rows	to
be	returned.
	13.1.1	I/O	Commands

I/O	Command	Return	Codes	Table

Command I/O
Error

Dictionary
Validation

Not
Found

Found	Or
Completed

INSERT ER VE	#1 - OK

UPDATE ER	#3 VE NR OK

FETCH ER	#3 	 NR OK

SELECT ER	#3 	 EF	#2 OK

FILECHECK - 	 NE EQ

CHECK_FOR - 	 NE EQ

DELETE ER	#3 VE NR OK

	

#1	An	attempted	INSERT	of	a	duplicate	key	will	return	VE.
#2	A	SELECT	command	using	a	WHERE	parameter	will	select	each	record	and
test	for	the	condition.	When	the	last	record	is	selected	the	processing	will	leave
the	SELECT	loop	with	the	data	from	the	last	record	selected.	This	record	may
not	have	met	the	WHERE	condition.
#3	I/O	Status	Record	Locked
	13.1.1	I/O	Commands

I/O	Status	Record	Locked
In	addition	to	the	return	codes	in	the	I/O	Command	Return	Codes	Table,	the
system	variable	*DBMS_RECORD_LOCKED	can	be	used	to	distinguish
between	an	I/O	error	status	of	record	locked	and	other	I/O	errors.
The	following	example	shows	how	the	IO_ERROR	parameter	passes	control	to
the	label	TST	when	an	error	occurs	and	the	GOTO	NXT	by-passes	the	if
condition	when	the	command	was	successful.
	
							UPDATE				FIELDS(#ORDERQTY)	IN_FILE(ORDLINE)
																	WITH_KEY(#ORDER	#LINE)	IO_ERROR(TST)
							GOTO						LABEL(NXT)
		TST		IF								COND('*DBMS_RECORD_LOCKED	*EQ	Y')	
							MESSAGE			MSGTXT('Order	line	record	locked')
						Required	action
							ELSE
							ABORT					MSGTXT('Fatal	I/O	error	on	ORDERLINE	file')
							ENDIF		
		NXT	Next	action		
	

Comments	/	Warnings
If	using	this	method	on	files	which	were	compiled	prior	to	Release	7.0,	the	I/O
module	must	be	recompiled	first.
As	the	IO_ERROR	parameter	passes	control	to	the	label	nominated,	the
condition	should	always	have	an	ELSE	command	with	an	appropriate	action	to
handle	a	non-record	locked	I/O	error	as	in	the	example:
DBMS_RECORD_LOCKED	only	checks	the	status	of	the	file,	which	is	the
subject	of	the	command.	If	in	the	example	batch	control	logic	is	used	and	the
batch	control	record	was	locked	*DBMS_RECORD_LOCKED	would	return	a
value	of	'N'.	The	same	applies	to	any	files	used	by	triggers.	If	the	record	locked
status	is	to	be	checked	for	a	file	used	by	a	trigger	the	above	logic	should	be
inserted	into	the	trigger	function.

Portability
Considerations

IBM	i
:	Automaticaly	unlocks	a	file	after	a	certain	period	of	time.
Non-
IBM	i

:	This	feature	is	emulated	and	disabled	by	default.	For
further	details,	refer	to	Lock	Timeout.

	13.1.1	I/O	Commands

13.1.2	Field	Groups	and	Expandable	Groups
The	GROUP_BY	command	is	used	to	group	one	or	more	fields	under	a
common	name.	It	is	one	of	the	most	time	saving	of	all	the	RDML	commands
because	it	saves	having	to	repeatedly	specify	a	long	list	of	field	names.
Most	commands	that	require	a	list	of	field	names	as	a	parameter	also	allow	a
group	name	to	be	specified.	Consider	the	following	example:
BEGIN_LOOP
REQUEST				FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
INSERT					FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	
											TO_FILE(A)
INSERT					FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	
											TO_FILE(B)
UPRINT					FIELDS(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)
CHANGE					FIELD(#ORDLIN	#PRODUCT	#QUANTITY	#PRICE)	
											TO(*DEFAULT)
END_LOOP
	

Now	consider	the	identical	RDML	program	written	using	a	GROUP_BY
command	to	group	all	the	fields	under	a	common	name:
GROUP_BY			NAMED(#ORDERLINE)	FIELDS(#ORDLIN	#PRODUCT	#QUANTITY
																																				#PRICE)
BEGIN_LOOP
REQUEST				FIELDS(#ORDERLINE)
INSERT					FIELDS(#ORDERLINE)	TO_FILE(A)
INSERT					FIELDS(#ORDERLINE)	TO_FILE(B)
UPRINT					FIELDS(#ORDERLINE)
CHANGE					FIELD(#ORDERLINE)	TO(*DEFAULT)
END_LOOP
	

If	5	new	fields	were	to	be	added	to	the	RDML	program	which	would	be	the
easiest	to	change?
Some	points	to	note	about	groups	and	the	GROUP_BY	command	are:
As	many	GROUP_BY	commands	as	desired,	can	be	declared.
A	field	can	be	declared	in	the	FIELDS	parameter	of	multiple	GROUP_BY
commands.

Generally	a	GROUP_BY	name	can	be	used	wherever	a	list	of	field	names	can
be	specified.
If	a	GROUP_BY	name	is	declared	like	this:
GROUP_BY			NAMED(#ORDERHEAD)	FIELDS(#ORDER	#CUSTNO	#ADDR1
																																				#ADDR2	
																																				#POSTCD)
	

			and	then	used	like	this:
	
FETCH						FIELDS(#ORDERHEAD)	FROM_FILE(ORDHED)
FETCH						FIELDS(#ORDERHEAD)	FROM_FILE(CUSMST)
	

			then	the	first	FETCH	will	only	retrieve	fields	in	the	group	that	come	from	the
ORDHED	file.	In	this	case	only	#ORDER,	and	#CUSTNO	will	be	fetched.
All	other	fields	in	the	group	are	unchanged	/	ignored	by	the	command
because	they	don't	come	from	the	ORDHED	file.

			The	second	FETCH	will	retrieve	the	fields	#CUSTNO	(again),	#ADDR1,
#ADDR2	and	#POSTCD	because	they	all	come	from	the	CUSMST	file.	Field
#ORDER	will	be	unchanged	/	ignored	by	this	command	as	it	does	not	come
from	the	CUSMST	file.

Also	See
Expandable	Groups
Special	Considerations	for	Expandable	Groups
Expandable	Group	Expressions
Expandable	Group	Examples
	13.1	RDML	Command	Parameters

Expandable	Groups
Expandable	groups	are	a	special	kind	of	group	whose	most	important	feature	is
that	they	themselves	can	be	assembled	of	other	expandable	groups.		Expandable
groups	names	must	start	with	the	prefix	"#XG_'	(For	example,	#XG_GROUP1).
In	addition,	expandable	groups	also	support	the	special	values	*INCLUDING
and	*EXCLUDING	which	allows	the	exclusion	of	specific	fields	from	a	field
list.
They	can	be	used	in	most	places	where	a	list	of	fields	or	a	group	name	are
allowed.	Because	an	expandable	group	is	replaced	by	the	expanded	field	list	it
represents	(That's	why	they	are	called	expandable	groups),	it	can	be	used	in
field	lists	which	do	not	allow	conventional	groups.	Refer	to	the	help	text	of	the
RDML	command's	parameter	to	find	out	if	it	allows	expandable	group	name(s).
	13.1.2	Field	Groups	and	Expandable	Groups

Special	Considerations	for	Expandable	Groups
Fields	starting	with	the	same	prefix	as	expandable	groups	(#XG_)	cannot	be
included	in	expandable	groups.	When	an	entry	starting	with	this	prefix	is
found	in	the	FIELDS	parameter	of	an	expandable	group	GROUP_BY
definition,	the	RDML	full	function	checker	will	handle	it	as	a	group	name,
not	as	a	field	name.
Expandable	groups	must	be	defined	before	they	can	be	referenced.	In	this
aspect,	expandable	groups	differ	from	conventional	groups	in	that	the
placement	of	the	GROUP_BY	definition	within	the	function	is	important.
Conventional	groups	are	not	allowed	in	the	FIELDS	parameter	of	an
expandable	group.
Attributes	assigned	to	fields	in	expandable	groups	are	ignored.	Refer	to
RDML	Field	Attributes	and	their	Use	for	details.
The	following	limits	apply:

Up	to	100	expandable	groups	can	be	defined	in	a	function.
Up	to	100	fields	can	be	grouped	into	an	expandable	group.	At	no	time
during	the	expansion	can	the	field	list	go	beyond	this	limit,	even	if
some	fields	will	be	excluded	from	the	list	later	in	the	expansion.
Up	to	999	fields	altogether	can	be	defined	in	expandable	groups	within
a	function.

Expandable	groups	may	be	defined	as	follows:
GROUP_BY			NAMED(#XG_CUST)	FIELDS(#CUSTNO	#CUSTNM	#ADDR1	#ADDR2
																																		#POSTCD)
GROUP_BY			NAMED(#XG_PRKY)	FIELDS(#GROUP	#PRODNO)
GROUP_BY			NAMED(#XG_PROD)	FIELDS(#XG_PRKY	#DESC	#CLASS	#PRICE
																																		#BARCOD)
GROUP_BY			NAMED(#XG_ORD)		FIELDS(#XG_CUST	#XG_PROD)
	

and	then	used	like	this:
FETCH						FIELDS(#XG_CUST)	FROM_FILE(CUSMST)
FETCH						FIELDS(#XG_PROD)	FROM_FILE(PRDMST)	WITH_KEY(#XG_PRKY)
DISPLAY				FIELDS(#XG_ORD)
	
	13.1.2	Field	Groups	and	Expandable	Groups

Expandable	Group	Expressions
An	expandable	group	expression	is	a	list	of	entries	which	can	contain	any	of:
Field	name
Expandable	group	name
Alphanumeric	or	numeric	literal
System	variable
Expandable	group	special	value,	which	can	be	any	of	the	following:

ALL,	specifies	that	all	fields	from	the	currently	active	version	of	the
file	in	context	be	expanded	in	the	field	list.
ALL_REAL,	specifies	that	all	real	fields	from	the	currently	active
version	of	the	file	in	context	be	expanded	in	the	field	list.
ALL_VIRT,	specifies	that	all	virtual	fields	from	the	currently	active
version	of	the	file	in	context	be	expanded	in	the	field	list.
EXCLUDING,	specifies	that	fields	following	this	special	value	must
be	excluded	from	the	field	list.
INCLUDING,	specifies	that	fields	following	this	special	value	must
be	included	in	the	field	list.	This	special	value	is	only	required	after	an
*EXCLUDING	entry	has	caused	the	field	list	to	be	in	exclusion	mode.

The	special	values	*ALL,	*ALL_REAL	and	*ALL_VIRT	are	only	valid	in
the	context	of	a	file	(e.g.	when	fetching	a	record	using	the	FETCH
command.)
The	usual	parameter	restrictions	also	apply.	For	example,	the	FIELDS
parameter	of	the	FETCH	command	doesn't	allow	constants	or	system
variables.
	13.1.2	Field	Groups	and	Expandable	Groups

Expandable	Group	Examples
Example	1:
GROUP_BY	(#XG_ADDR)	FIELDS	(#ADDR1	#ADDR2	#ADDR3)
FETCH		(*ALL	*EXCLUDING	#XG_ADDR	*INCLUDING	#ADDR1)
							FROM_FILE	(CUSTMST)
	

Example	2:
GROUP_BY	(#XG_GROUP1)	FIELDS	(#A	#B	#C)
GROUP_BY	(#XG_GROUP2)	FIELDS	(#D	#E	#F)
SUBMIT				PROCESS	(PROC01)	FUNCTION	(FUN01)	
										EXCHANGE	(#XG_GROUP1	*SYSUAR1	#XG_GROUP2	*EXCLUDING	#C	#D)
	
	13.1.2	Field	Groups	and	Expandable	Groups

13.1.3	RDML	Screen	Modes	and	Mode	Sensitive	Commands
The	DISPLAY	and	POP_UP	commands	cause	information	to	be	displayed	on	a
workstation.	In	addition	the	"mode"	in	which	the	information	should	be
displayed	can	also	be	specified.	Currently	screens	can	be	displayed	in	4
different	"modes"	that	are	referred	to	as:
*DISPLAY	mode
*CHANGE	mode
*ADD	mode
*DELETE	mode

The	processing	mode	which	is	in	use	when	a	DISPLAY	and	POP_UP	command
is	executed	affects:
Whether	or	not	fields	on	the	screen	can	be	changed	by	the	user.
The	function	keys	that	are	enabled.
The	processing	logic	that	is	used	by	the	DISPLAY		and	POP_UP	commands.

The	screen	mode	can	be	set	/	changed	by	using	the	SET_MODE	command	and
can	be	tested	using	the	IF_MODE	command.

Also	See
Modes	and	Fields	that	Can	Be	Changed
Modes,	Function	Keys	and	Processing	Logic
Mode	Sensitive	Commands
	13.1	RDML	Command	Parameters

Modes	and	Fields	that	Can	Be	Changed
The	following	table	indicates	how	the	screen	processing	mode	affects	whether
or	not	fields	on	the	screen	can	be	changed.
Fields	that	use	the	*INOUTCOND	field	conditioning	attribute	to	control	when	a
field	can	or	cannot	be	changed	are	not	subject	to	the	rules	specified	in	this	table.

Mode
Fields	That	Can	Be	Changed
"
INPUT	CAPABLE
"

Fields	That	Cannot	Be	Changed

"
PROTECTED	FIELDS
"

*DISPLAY Those	with	*INPUT	attribute All	others

*CHANGE	 All	others Those	with	*NOCHG	attribute

*ADD	 All	others Those	with	*NOCHG	attribute		

*DELETE	 Those	with	*INPUT	attribute All	others

	

Note	that	when	a	list	is	initialized	(with	the	INZ_LIST	command),	or	has	an
entry	added	(with	the	ADD_ENTRY	command)	or	updated	(with	the
UPD_ENTRY	command)	the	mode	is	"set"	when	the	command	is	executed,
NOT	when	the	list	is	displayed.
For	instance	the	commands:
SET_MODE		TO(*DISPLAY)
ADD_ENTRY	TO_LIST(#BROWSE)
	

or	just
ADD_ENTRY	TO_LIST(#BROWSE)	WITH_MODE(*DISPLAY)
	

and	then
SET_MODE	TO(*CHANGE)
ADD_ENTRY	TO_LIST(#BROWSE)

	
or	just
ADD_ENTRY	TO_LIST(#BROWSE)	WITH_MODE(*CHANGE)
	

would	cause	the	first	entry	in	the	list	to	be	"protected"	and	the	second	entry	in
the	list	to	be	"input	capable".	This	is	because	the	mode	of	a	list	entry	is	"set"	at
the	time	the	entry	is	added	to	(or	updated	into)	the	list,	not	at	the	time	that	the
list	is	displayed.
The	SELECTLIST	command	has	options	that	allow	only	entries	in	a	list	to	be
processed	according	to	the	"mode"	that	was	active	when	the	entry	was	added	or
updated	last.	Refer	to	the	SELECTLIST	command	for	more	information.
Note	that	all	list	processing	commands	(e.g.:	ADD_ENTRY	or	UPD_ENTRY)
have	an	optional	parameter	to	allow	the	mode	of	the	individual	list	entry	to	be
set,	regardless	of	the	current	mode	of	the	program.	This	is	illustrated	by	the	"or
just"	examples	above.
	13.1.3	RDML	Screen	Modes	and	Mode	Sensitive	Commands

Modes,	Function	Keys	and	Processing	Logic
The	following	table	indicates	which	function	keys	are	enabled	when	a	particular
processing	mode	is	in	use	and	what	happens	when	the	function	key	is	used.
Note	that	to	be	"enabled"	a	function	key	must	match	the	entry	in	the	following
table	and	be	specified	with	the	*YES	option	on	the	associated	command.	Refer
to	the	relevant	EXIT_KEY,	MENU_KEY,	ADD_KEY,	CHANGE_KEY,
DELETE_KEY	and	PROMPT_KEY	parameters	for	more	information.
Additionally,	the	function	key	must	not	have	been	"disabled"	by	the
specification	of	a	controlling	"condition"	(previously	defined	by	a	DEF_COND
command)	that	is	not	true	at	the	time	the	screen	panel	is	processed.
Finally,	if	a	controlling	condition	has	been	specified	to	"enable"	or	"disable"	the
function	key,	it	cannot	override	the	LANSA	mode	sensitive	disabling	of	the
key.	For	instance	the	CHANGE	key	will	not	be	enabled	in	*ADD	mode,	even	if
the	controlling	condition	is	true.

Mode Function	Key Enabled What	Happens	When	Used

*DISPLAY EXIT/SYSTEM YES Function	ends	or	control	passed	to
nominated	command.	Mode	remains
unchanged.

MENU/CANCEL YES Process	menu	re-displayed	or	control
passed	to	nominated	command.	Mode
remains	unchanged.

MESSAGES YES Messages	displayed,	then	current
screen	re-displayed.	Mode	remains
unchanged.

PROMPT YES Prompt	request	processed,	then	current
screen	re-displayed.	Mode	remains
unchanged.

ADD YES Mode	changed	to	*ADD.	Control	is
passed	to	nominated	label.

CHANGE YES Mode	is	changed	to	*CHANGE.
Current	screen	is	re-displayed	with
input	capable	fields	to	allow	changes	to

be	made.

DELETE YES Mode	is	changed	to	*DELETE.
Current	screen	is	re-displayed	with	a
message	requesting	that	the	delete
request	be	confirmed.

*CHANGE EXIT/SYSTEM YES Function	ends	or	control	passed	to
nominated	command.	Mode	remains
unchanged.

MENU/CANCEL YES Process	menu	re-displayed	or	control
passed	to	nominated	command.	Mode
remains	unchanged.

MESSAGES YES Messages	displayed,	then	current
screen	re-displayed.	Mode	remains
unchanged.

PROMPT YES Prompt	request	processed,	then	current
screen	re-displayed.	Mode	remains
unchanged.

ADD NO Not	enabled	when	screen	is	in
*CHANGE	mode.

CHANGE NO Enabled	only	when	screen	is	in
*CHANGE	mode.

DELETE NO Not	enabled	when	screen	is	in
*CHANGE	mode.

*ADD EXIT/SYSTEM YES Function	ends	or	control	is	passed	to
nominated	command.	Mode	remains
unchanged.

MENU/CANCEL YES Process	menu	re-displayed	or	control
passed	to	nominated	command.	Mode
remains	unchanged.

MESSAGES YES Messages	displayed,	then	current
screen	re-displayed.	Mode	remains
unchanged.

PROMPT YES Prompt	request	processed,	then	current
screen	re-displayed.	Mode	remains
unchanged.

ADD NO Enabled	only	when	screen	is	in	*ADD
mode.

CHANGE
DELETE

NO
NO

These	keys	are	not	enabled	when	screen
is	in	*ADD	mode.

*DELETE EXIT YES Function	ends	or	control	passed	to
nominated	command.	Mode	remains
unchanged.

MENU YES Process	menu	re-displayed	or	control
passed	to	nominated	command.	Mode
remains	unchanged.

MESSAGES YES Messages	displayed,	then	current
screen	re-displayed.	Mode	remains
unchanged.

PROMPT YES Prompt	request	processed,	then	current
screen	re-displayed.	Mode	remains
unchanged.

ADD	
CHANGE
	

NO
NO
	

These	keys	are	not	enabled	when	screen
is	in	*DELETE	mode.

DELETE NO 	

	

	13.1.3	RDML	Screen	Modes	and	Mode	Sensitive	Commands

Mode	Sensitive	Commands
The	following	commands	are	"mode	sensitive":

DISPLAY
POP_UP
ADD_ENTRY
UPD_ENTRY
INZ_LIST

The	following	command	is	not	"mode	sensitive":
REQUEST

	
	13.1.3	RDML	Screen	Modes	and	Mode	Sensitive	Commands

13.1.4	Specifying	Conditions	and	Expressions
Many	of	the	RDML	commands	in	the	LANSA	system	require	that	a	condition
or	an	expression	be	specified.
Generally	a	condition	is	a	statement	that	can	be	evaluated	to	produce	a	"true"	or
"false"	answer.
Refer	to	the	online	Technical	Reference	for	details	of	this	topic	and	of
Arithmetic	and	Expression	Operators.
For	instance	"#A	*LT	10"	is	a	condition.	Either	field	#A	is	less	than	10	(true)	or
it	isn't	(false).	A	condition	may	contain	the	following	operators	for	RDML
commands:
					*GT,>
					*LT,<
					*EQ,=
					*NE,^=
					*GE,>=
					*LE,<=
We	recommend	the	use	of	the	first	operator	for	cross-platform	use.	That	is,	"#A
*LT	10",	not	"#A	<	10"
An	expression	is	a	statement	that	can	be	evaluated	to	produce	either	a	numeric
or	an	alphanumeric	result.	For	instance	the	expression	"(#X	+	10)	/	2"	produces
a	numeric	result	which	is	the	sum	of	#X	and	10	divided	by	2.	Note	that	in	this
case	the	result	has	no	"true"	or	"false"	meaning.	The	result	is	just	a	number.
Often	an	expression	is	contained	within	a	condition.	Consider	the	condition:
	
																#A		<		((#B	+	10.62)	/	3.14)
															|							|																		|	|
															|							|																		|	|
															|								---	expression	---		|
															|																												|
																---------	condition---------
	
The	components	of	a	condition	or	an	expression	can	be:
An	alphanumeric	literal	such	as	'NSW',	NSW,	'Balmain'	or	BALMAIN.

A	numeric	literal	such	as	1,	14.23,	-1.141217.
Another	field	name	such	as	#CUSTNO,	#INVNUM,	etc.
A	system	variable	name	such	as	*BLANKS,	*ZERO,	*DATE	or	any	other
system	variable	defined	at	your	installation.
A	process	parameter	such	as	*UP01,	*UP02,	etc.

A	full	RDMLX	object	allows	RDMLX	Enhanced	Expressions.	Enhanced
expressions	add	support	for:
Methods,	intrinsic	functions,	and	properties
Additional	operators	*Not,	*IS,	*ISNOT,	*IsEqual,	*IsOfType,	*AS,
*ANDIF	and	*ORIF

Note	that	alphanumeric	literals	do	NOT	have	to	be	in	quotes	when	used	in	a
condition	or	an	expression.	Quotes	are	only	required	when	the	alphanumeric
literal	contains	lowercase	characters.	If	no	quotes	are	used	the	alpha	literal	is
converted	to	uppercase.	Thus	BALMAIN	=	balmain	=	Balmain	=	balMAIN,
however,	Balmain	does	not	equal	'Balmain'.
Note	also	that	field	names	must	be	preceded	by	a	#	(hash)	symbol	when	used	in
conditions	or	expressions.	This	allows	LANSA	to	differentiate	between	fields
and	alphanumeric	literals.	For	instance	the	expression	CNTRY	=	AUST	does
not	indicate	which	of	the	components	is	the	field	and	which	is	the	alphanumeric
literal.	The	correct	format	is	#CNTRY	=	AUST.
Note	also	that	fields	allowing	SQL	Null	may	behave	differently	in	conditions
and	expressions	at	execution	time	when	they	are	SQL	Null.	Refer	to
Assignment,	Conditions,	and	Expressions	with	Fields	allowing	SQL	Null	for
details.
	13.1	RDML	Command	Parameters

13.1.5	Arithmetic	and	Expression	Operators
Within	an	expression	or	condition	a	set	of	operators	can	be	used.	These	are	as
follows:

Operator Description

(Open	bracket

) Close	bracket

+ Add

- Subtract

/ Divide

* Multiply

= Compare	equal

^= Compare	not	equal.	See	Note:

< Compare	less	than

<= Compare	less	than	or	equal	to

> Compare	greater	than

>= Compare	greater	than	or	equal	to

*EQ Compare	equal

*NE Compare	not	equal

*LT Compare	less	than

*LE Compare	less	than	or	equal	to

*GT Compare	greater	than

*GE Compare	greater	than	or	equal	to

AND And

OR Or

*AND And

*OR Or

	

Expression	evaluation	is	left	to	right	within	brackets,	so	use	brackets	liberally
whenever	any	doubt	exists	as	to	the	order	in	which	the	expression	will	be
evaluated.
The	liberal	use	of	brackets	is	a	good	programming	practice	as	well.	It	makes
clear	your	intent	to	the	RDML	compiler,	but	also	more	importantly,	to	anyone
maintaining	the	application	in	the	future.
Expression	components	are	checked	for	type	and	length	compatibility.	The
syntax	of	the	expression	or	condition	is	also	checked	to	ensure	that	it	is	correct.
Since	all	conditions	and	expressions	specified	under	LANSA	are	"quoted
strings"	you	should	also	read	13.1.6	Quotes	and	Quoted	Strings.
Some	examples	of	conditions	and	expressions	are:
Condition	RDML	commands	to	execute	only	if	field	#A	is	less	than	10:
													IF	COND('#A	<	10')
									or		IF	COND('#A	*LT	10')
	
Change	field	#A	to	contain	the	value	10:
													CHANGE			FIELD(#A)		TO(10)
										or	CHANGE			#A		(10)
										or	CHANGE			#A	10
	
Condition	RDML	commands	to	execute	only	if	field	#A	is	greater	than	the
sum	of	field	#B	and	10.62	divided	by	2:
													IF	COND('#A	<	((#B	+	10.62)	/	2)')
									or		IF	('#A	<	((#B	+	10.62)	/	2)')
									or		IF	'#A	<	((#B	+	10.62)	/	2)'
	
Change	field	#A	to	contain	the	sum	of	field	#B	and	10.62	divided	by	2:
													CHANGE			FIELD(#A)		TO('(#B	+	10.62)	/	2')
										or	CHANGE			#A		('(#B	+	10.62)	/	2')
										or	CHANGE			#A	'(#B	+	10.62)	/	2'
	

Request	that	a	product	number	be	input	by	the	user	until	it	can	be	found	in	the
product	master,	then	display	full	details	of	the	product:
										GROUP_BY	NAME(#PRODUCT)	FIELDS(#PRODNO	#DESC	#PRICE	
																																									#QOH	#TAX)
										BEGIN_LOOP
										DOUNTIL				COND('#IO$STS	=	OK')
										REQUEST				FIELD(#PRODNO)
										FETCH						FIELDS(#PRODUCT)	FROM_FILE(PROMST)	
																					WITH_KEY(#PRODNO)
										ENDUNTIL
	
										DISPLAY				FIELDS(#PRODUCT)
										END_LOOP
	
	
Note:
Due	to	translation	table	issues	between	IBM	i	and	PC	platforms
(ASCII/EBCDIC),	using	5250	terminals	or	5250	emulation	mode	terminals
users	should	be	very	careful	when	using	the		^=	Compare	not	equal
expression,	which	can	be	presented	as	^=	or	¢=	or	¬=	depending	on	the
terminal/keyboard	used	during	edit.	Use	the	*NE	expression	instead.
	13.1	RDML	Command	Parameters

13.1.6	Quotes	and	Quoted	Strings
Some	RDML	commands	require	that	associated	parameters	appear	as	"quoted
strings"	because	LANSA	uses	the	IBM	i	operating	system	command	definition
and	prompting	facilities.
Command	parameter	with	imbedded	blanks
For	example,	to	increment	field	#COUNT	by	1	the	correct	format	is:
										CHANGE				FIELD(#COUNT)	TO('#COUNT	+	1')
				or				CHANGE				#COUNT		'#COUNT	+	1'
				or				CHANGE				#COUNT		('#COUNT	+	1')
				or				CHANGE				#COUNT		'(#COUNT	+	1)'
	
but	NOT			CHANGE				#COUNT		(#COUNT	+	1)
	

This	is	because	the	IBM	i	command	facilities	demand	that	a	command
parameter	be	enclosed	in	quotes	if	it	contains	imbedded	blanks.	In	this	case	the
string	"#COUNT	+	1"	definitely	contains	imbedded	blanks	and	thus	must	be
enclosed	in	quotes	(ie:	made	into	a	"quoted"	string).
Quotes	within	a	quotes	string
When	LANSA	processes	the	command	only	the	part	between	the	quotes	(but
not	the	quotes	themselves)	are	passed	to	LANSA	by	the	operating	system.
The	matter	is	complicated	even	further	if	you	wish	to	use	quotes	within	a
"quoted"	string.	This	situation	usually	arises	when	coding	IF	or	CASE
conditions.
The	rule	for	using	quotes	inside	a	quoted	string	is:	use	2	quotes	instead	of	just
one.
For	instance,	to	check	if	#FIELD	contains	a	lowercase	"a"	you	would	have	to
code:
IF	'#FIELD	=	''a'''
	

What	is	passed	to	LANSA	by	the	IBM	i	command	processor	as	the	expression
associated	with	the	IF	command	is	actually:
#FIELD	=	'a'
	

because	the	operating	system	does	not	pass	the	outer	quotes	and	replaces

occurrences	of	2	quotes	within	the	string	with	just	one	quote.
Simple	guidelines	for	quotes
However,	the	handling	of	quotes	within	LANSA	can	be	made	much	easier	by
following	2	simple	guidelines:
1.		Only	use	quotes	inside	a	quoted	string	when	absolutely	necessary.
2.		Use	the	formatted	prompting	facilities	to	input	complex	quoted	strings.
With	regard	to	point	1,	LANSA	does	not	require	that	alphanumeric	literals	be
quoted.	Thus	the	following	are	identical	conditions	because	alphanumeric
literals	that	are	not	enclosed	in	quotes	are	converted	to	uppercase:
IF	'#FIELD	=	A'	
IF	'#FIELD	=	a'	
IF	'#FIELD	=	''A'''
	

Only	use	quotes	around	alphanumeric	literals	if	the	test	involves	lowercase
characters.	For	instance	to	test	for	a	lowercase	"a"	in	#FIELD:
IF	'#FIELD	=	''a'''
	

With	further	regard	to	point	2,	you	will	find	that	the	formatted	prompting
facility	will	automatically	insert	the	required	outer	quotes.	For	instance	if	you
prompt	an	IF	command	and	enter	the	condition	as:
#FIELD	=	A
	

then	the	prompter	will	automatically	re-format	the	condition	so	that	it	is	a	valid
"quoted"	string.
The	final	version	of	the	command	created	by	the	prompter	would	look	like	this:
IF	COND('#FIELD	=	A')
	

The	same	applies	when	it	is	necessary	to	use	quotes	within	the	expression.	For
instance	if	you	specify	to	the	prompter	the	following	condition:
#FIELD	=	'a'
	

then	it	will	re-format	the	command	automatically	and	insert	the	necessary	inner
and	outer	quote	symbols.	The	command	created	by	the	prompter	would	look
like	this:
IF	COND('#FIELD	=	''a''')

	
Quoted	strings	as	parameter	values
On	the	RDML	CALL	command,	care	should	be	taken	if	using	quoted	strings	as
parameter	values.	A	quoted	string	has	to	be	enclosed	in	triple	quotes.	For
example,	to	use	'ABC'	as	the	parameter	value,	enter	'''ABC'''.
When	the	function	containing	the	CALL	is	compiled	the	RPG	generator	uses	the
length	of	the	string,	including	the	single	quotes,	to	create	the	parameter	fields.
For	example	if	program	A	has	two	alpha	parameters	both	5	characters	long	and
a	call	is	inserted	in	function	B	as:
CALL	PGM(A)	PARM('ABC'	'''ABC''')
	

The	generator	will	create	a	3	character	parameter	(ABC)		and	a	5	character
parameter	('ABC')	for	the	call.	When	function	B	is	executed	program	A	may	end
in	error	because	the	4th	and	5th	characters	of	the	first	parameter	within	program
A	will	contain	garbage.
Triple	quotes	with	first	character	that	looks	like	a	number
For	information,	please	refer	to	the	Change	command's	Comments	and
Warnings.
	13.1	RDML	Command	Parameters

13.1.7	Prompt_Key	Processing
The	commands	DISPLAY,	REQUEST	and	POP_UP	all	have	a	parameter	called
PROMPT_KEY.	The	default	value	for	this	parameter	looks	like	this:
PROMPT_KEY(*DFT	*AUTO)
	

The	first	value	in	the	parameter	indicates	whether	or	not	the	prompt	key	should
be	enabled.	Allowable	values	are	*YES,	*NO	and	*DFT.	The	special	value
*DFT	indicates	that	it	should	be	enabled	or	disabled	according	to	byte	477	of
the	system	definition	data	area	DC@A01.	For	full	details	of	the	layout	of	the
System	Definition	Data	Areas	refer	to	the	LANSA	for	i	User	Guide.
The	second	value	indicates	what	should	happen	when	the	prompt	key	is	used.
Allowable	values	are	*NEXT	(control	should	pass	to	the	next	RDML
command),	a	command	label	(indicating	that	control	should	be	passed	to	the
label)	or	*AUTO	(which	indicates	that	the	function	key	should	be	handled
automatically	by	LANSA).
In	the	first	two	cases	(*NEXT	or	a	label)	the	prompt	key	handling	is	controlled
entirely	by	the	RDML	program,	and	thus	what	happens	is	entirely	at	the
discretion	of	the	programmer.
It	is	the	final	case	(*AUTO)	that	is	of	interest	here.	Most	of	the	following
material	discusses	how	the	prompt	key	is	handled	automatically.
Finally,	the	actual	function	key	number	assigned	to	the	prompt	key	is	set	like
this:
In	non-SAA/CUA	applications	it	is	assigned	from	bytes	478	to	479	of	the
system	definition	data	area.	Refer	to	the	LANSA	for	i	User	Guide	for	full
details	of	the	System	Definition	Data	Areas.
In	SAA/CUA	applications	it	is	assigned	from	the	partition	level	value
assigned	to	the	prompt	function	key.	Refer	to	Steps	to	Create	or	Change	a
Partition	in	the	LANSA	for	i	User	Guide	for	more	details	of	how	and	when
this	value	is	assigned.
	13.1	RDML	Command	Parameters

its:lansa010.chm::/lansa/ugubc_c10010.htm
its:lansa010.chm::/lansa/ugubc_c10010.htm
its:LANSA010.CHM::/lansa/ugub_50040.htm

13.2	Built-In	Function	Notes
13.2.1	Database	Connection
13.2.2	Email	Built-In	Functions	Notes
13.2.3	Zip	Built-in	Functions
	13.	Common	RDML	Parameters	&	BIF	Notes

13.2.1	Database	Connection
DEFINE_DB_SERVER	can	be	used	in	isolation	from	the	other	BIFs	to	just
override	the	connection	parameters	and	database	type	or	it	can	be	used	with	the
full	set	of	related	BIFs	in	this	sequence:
DEFINE_DB_SERVER,	CONNECT_SERVER,	CONNECT_FILE.
The	full	set	of	BIFS	is	only	needed	when	the	OTHER	File	is	in	a	database	with
a	different	DSN	to	the	one	with	which	it	was	loaded.
To	connect	to	all	the	default	databases	on	startup,	that	is	all	the	databases
defined	in	the	OAMs,	it	is	necessary	to	execute	DEFINE_DB_SERVER	(with
database	type	specified)	and	CONNECT_SERVER	for	each	database	using	the
DSN	that	is	in	each	OAM.	CONNECT_FILE	is	not	required	if	the	DSN	is	the
same	as	in	the	OAM.	That	is,	an	OTHER	File	is	implicitly	connected	to	the
database	from	which	it	was	loaded.
If	your	environment	has	a	development,	test	and	production	version	strategy,	the
simplest	way	of	managing	the	differing	locations	of	Other	Files	as	the
application	passes	through	the	various	stages,	is	to	use	the	same	ODBC	DSN
but	alter	the	definition	of	it	to	point	to	a	different	physical	database.	Thus,	the
default	database	embedded	in	the	OAM	will	access	a	different	physical
database.
It	may	seem	a	simple	thing	to	switch	databases	at	will,	but	its	not	if	any	OAMs
are	shared.	That	is,	if	you	are	using	the	same	file	in	multiple	databases.	When
switching	a	database	and	there	are	shared	OAMs	you	must	close	every	file	that
has	been	used,	including	Code-File	Lookups,	triggers,	etc.	Its	easy	to	miss	a	file.
If	you	don't	do	this	the	original	database	will	be	accessed.	That	is,	the	database
is	set	when	the	File	is	opened.	After	that,	all	IO	will	go	to	the	original
database.	When	using	a	single	form,	a	CLOSE	is	all	that	is	required	to	close
all	the	files	that	have	been	used.	When	multiple	objects	are	used,	its	far	more
complex.	Its	essential	that	all	Components	and	Functions	exit	back	to	the	initial
Component/Function,	ensuring	that	any	HEAVYUSAGE	objects	call	CLOSE
before	returning.	In	fact	using	LIGHTUSAGE	Functions	and	Dynamic
Components	everywhere	may	be	the	best	solution.	The	following	is	an	example
of	the	code	that	would	need	to	be	executed	in	the	initial	component	if	that
component	accesses	any	files:
Subroutine	Name(SwitchSRV)	Parms(#SwitchSRV)
Define	Field(#LastSRV)	Reffld(#SERVER1)
	

Close
	
If	('#Switchsrv	*NE	#Lastsrv')
If	('#LastSRV	*NE	*BLANK')
Use	Builtin(Disconnect_file)	With_Args(*	#LastSRV)
Endif
Use	Builtin(connect_file)	With_Args(*	#SwitchSRV)
Endif
	
#LastSRV	:=	#SwitchSRV
Endroutine
	

Note	that	if	you	have	multiple	databases	connected	with	files	under	commitment
control,	a	COMMIT	or	ROLLBACK	will	commit	or	rollback	all	transactions	on
all	databases.
	13.2	Built-In	Function	Notes

13.2.2	Email	Built-In	Functions	Notes

MAIL	Built-In	Functions
DO	NOT	support	Microsoft	Office	64	bit.
LANSA	is	a	32	bit	application	and	so	it	cannot	interact	with	the
ActiveX/MAPI	interfaces	of	64	bit	office.	
DO	support	the	32	bit	installation	of	Office	on	a	64	bit	machine
however,	and	this	is	the	default	installation	option.

An	email	message	that	is	to	be	sent	must	be	constructed	commencing	with	a	call
to	MAIL_START	followed	by	other	calls	in	the	Email	Handling	series	to	add
the	data.	The	message	is	then	sent	using	the	MAIL_SEND	call.
Notes:
Only	use	Email	Handling	Built-In	Functions	in	applications	that	are	to	fully
execute	under	the	control	of	IBM	i	or	Windows.
In	the	Windows	environment,	these	Built-In	Functions	should	not	be	used	in
functions	that	are	invoked	on	remote	Windows	server	systems.
For	Email	BIFs	to	work	locally,	you	must	set	the	PROFILE	correctly.	To	find
the	correct	PROFILE,	go	to	Outlook,	select	Tools	then	Options	and	click	on
the	Mail	Services	tab.
	13.2	Built-In	Function	Notes

13.2.3	Zip	Built-in	Functions
The	ZIP	BIFS	utilize	Info-ZIP's	compression	and	decompression	utilities	via
unzip32.dll,	zip32.dll	and	unzipsfx.exe.	Info-ZIP's	software	(Zip,	UnZip	and
related	utilities)	is	free	and	can	be	obtained	as	source	code	or	executables	from
info-zip's	web	site.	Also	refer	to	Info-zip's	web	site	for	information	on	the	.ZIP
file	format	and	functionality	of	zip	and	unzip.
PKWARE	introduced	the	.ZIP	file	format	in	1989.	According	to	strict
interpretation	of	the	zipfile	specification	(as	specified	by	PKWARE	and
amended	by	Info-ZIP),	the	following	limits	apply	to	all	zipfile	archives:

Limit Maximum

Number	of	Files 65536

Uncompressed	size	of	a	single	file 4	GB

Compressed	size	of	a	single	file 4	GB

Maximum	size	of	archive	that	can	be	created 256	TB

Maximum	size	of	archive	that	can	be	extracted 4	GB

	

Using	the	wildcard	*	in	file	specifications:	If	you	want	to	include	(or	ignore)	all
files	that	are	named	readme	or	readme.*	then	add	readme*	to	the	list	(rather
than	readme.*).
	13.2	Built-In	Function	Notes

http://www.info-zip.org/

14.	Template	Commands	and	Variables
See	also:
14.22	Tips	for	Template	Programming
	

14.1	@@CLR_LST	Command Clears	a	working	list

14.2	@@CMP_IDX	Command Compares	an	index	value

14.3	@@COMMENT
Command

Adds	a	comment	line	to	the	generated	RDML
code

14.4	@@DEC_IDX	Command Decreases	an	index	value

14.5	@@GET_FILS	Command Gets	the	files	to	be	used	in	this	template

14.6	@@GOTO	Command Passes	control	to	a	label

14.7	@@IF	Command Tests	a	condition	and	pass	control	to	a	label

14.8	@@INC_IDX	Command Increases	an	index	value

14.9	@@LABEL	Command A	label	which	is	the	subject	of	another
command

14.10	@@MAK_LSTS
Command

Makes	a	list	of	selected	fields	from	another
list(s)

14.11	@@MRG_LSTS
Command

Merges	a	list(s)	with	another	list(s)

14.12	@@QUESTION
Command

Asks	a	question	and	receives	a	reply

14.13	@@RTV_FLDS
Command

Retrieves	the	fields	in	a	file

14.14	@@RTV_KEYS
Command

Retrieves	the	keys	of	a	file

14.15	@@RTV_RELN
Command

Retrieves	the	relationship	between	two	files

14.16	@@SET_IDX	Command Sets	an	index	value

	

14.17	General	Template	Variables
14.18	Question	and	Answer	Template	Variables
14.19	File	Template	Variables
14.20	List	Template	Variables
14.21	Template	Error	Messages
Application	Template	Program	Examples	in	the	Visual	LANSA	Developer
Guide.

its:Lansa013.chm::/lansa/l4wdev08_0025.htm

14.1	@@CLR_LST	Command
The	@@CLR_LST	command	is	used	to	create/clear	a	specified	list.	
NOTE:	Before	any	command	involving	a	list	is	used,	the	list	must	have	already
been	created	by	an	@@CLR_LST.	It	is	suggested	that	all	lists	are	cleared	at	the
end	of	all	application	templates	so	that	all	work	records	will	be	deleted	from	the
work	file	on	completion	of	the	application	template.
																																																									Required	
																																																																		
		@@CLR_LST	------	NUMBER	----	number	------------------------
--|	
																															index																														
																																																																		
																																																																		

Parameters
NUMBER
Specifies	the	list	number	to	be	created	and/or	cleared.	This	number	may	be	a	1
or	2	character	numeric	or	a	2	character	index	name.	If	it	is	an	index	name,	then
the	current	index	value	will	be	substituted	in	this	command.	Refer	to	the
@@SET_IDX,	@@INC_IDX,	@@DEC_IDX,	@@CMP_IDX	commands	for
setting	and	using	indexes.

Examples
The	following	examples	apply	to	the	@@CLR_LST	command.
Example	1:	Clear	list	number	1:
@@CLR_LST	NUMBER(1)
	

Example	2:	Clear	list	indexed	by	index	name	"CF":
@@CLR_LST	NUMBER(CF)

14.2	@@CMP_IDX	Command
The	@@CMP_IDX	command	is	used	to	compare	an	index	value	with	a
numeric	value.	This	index	name	may	be	a	new	or	existing	index.	If	the	index	is
a	new	index	name,	then	the	index	value	will	be	set	to	1.	The	maximum	number
of	indexes	which	can	be	used	in	an	application	template	is	999.
																																																									Required	
																																																																		
		@@CMP_IDX	-----	IDX_NAME	-----	name	-----------------------
--->	
																																																																		
													>---	IDX_VALUE	----	value	------------------------->	
																																	numeric	variable																	

																																																									Optional	
													>-----IF_LT	-------	label	------------------------->	
																																																																		
													>-----IF_GT	-------	label	------------------------->	
																																																																		
													>-----IF_EQ	-------	label	-------------------------|	
																																																																		
																																																																		

Parameters
IDX_NAME
Specifies	the	new	or	existing	index	name.	The	first	character	of	the	two
character	index	name	must	be	non-numeric.

IDX_VALUE
Specifies	the	numeric	value	to	be	compared	with	the	index	value.	This	may	be
any	valid	numeric	variable,	any	valid	index	name	or	any	valid	numeric	literal.

IF_LT
Specifies	the	label	of	the	command	which	is	to	receive	control	if	the	value	of	the
index	is	less	than	the	comparison	value.	The	label	specified	in	this	parameter
must	be	the	label	of	one	and	only	one	other	command	in	the	application
template.

IF_GT
Specifies	the	label	of	the	command	which	is	to	receive	control	if	the	value	of	the
index	is	greater	than	the	comparison	value.	The	label	specified	in	this	parameter
must	be	the	label	of	one	and	only	one	other	command	in	the	application
template.

IF_EQ
Specifies	the	label	of	the	command	which	is	to	receive	control	if	the	value	of	the
index	is	equal	to	the	comparison	value.	The	label	specified	in	this	parameter
must	be	the	label	of	one	and	only	one	other	command	in	the	application
template.

14.2.1	@@CMP_IDX	Examples
The	following	examples	apply	to	the	@@CMP_IDX	command.
Example	1:	Compare	index	CF	with	the	maximum	file	chosen.	If	greater	than
the	maximum	file	number	then	transfer	control	to	label	LB1.
@@CMP_IDX	IDX_NAME(CF)	IDX_VALUE(@@TFMX)	IF_GT(LB1)
	

Example	2:	Compare	index	AB	with	the	literal	10.	If	equal	to	10	then	transfer
control	to	label	A25.
@@CMP_IDX	IDX_NAME(AB)	IDX_VALUE(10)	IF_EQ(A25)
	

Example	3:	Compare	index	NE	with	the	number	of	elements	in	list	number	01.
If	greater	than	this	value	then	transfer	control	to	label	X10.
@@CMP_IDX	IDX_NAME(NE)	IDX_VALUE(@@LNE01)	IF_GT(X10)

14.3	@@COMMENT	Command
The	@@COMMENT	command	is	used	to	add	a	comment	line	to	the	RDML
code	generated	by	this	application	template.
The	text	for	a	comment	may	contain	special	variables	for	substitution.
Comments	which	apply	to	the	application	template	itself	are	entered	using	SEU
in	the	standard	manner	for	comments	in	CL	programs,	i.e.
/*..........comment.line...............................*/
	

It	is	very	important	for	application	templates	to	be	documented	in	this	manner.
																																																									Required	
																																																																		
		@@COMMENT	------COMMENT	-----	'text'	----------------------
---|	
																														|									|																								
																														-	10	max	-																										
																																																																		
																																																																		

Parameters
COMMENT
Specifies	the	text	for	the	comment	to	be	added	to	the	RDML	code.	This	text
may	contain	special	variables	(refer	to	the	14.22.5	Special	Template	Variable
Notes	on	special	variables	for	more	details).	The	comment	may	be	up	to	a
maximum	of	10	lines	of	55	characters.

Examples
The	following	examples	apply	to	the	@@COMMENT	command.
Example	1:	Add	a	comment	line	containing	the	current	date	and	time	to	the
RDML	code	generated.
@@COMMENT	COMMENT('Date	-	@@DATE				Time	-	@@TIME')

	
Example	2:	Add	a	comment	line	containing	the	name	of	the	file	used	in	a
FETCH	command.
@@COMMENT		COMMENT('Fetch	file	@@FNAME01	details					')
FETCH						FIELDS((#HEADER))	+

											FROM_FILE(@@FNAME01)	+
											WITH_KEY(@@LST03)	NOT_FOUND(R10)	+
											ISSUE_MSG(*YES)

14.4	@@DEC_IDX	Command
The	@@DEC_IDX	command	is	used	to	decrement	an	index	by	1.	This	index
name	may	be	a	new	or	existing	index.	If	the	index	is	a	new	index	name,	then	the
index	value	will	be	set	to	-1.	The	maximum	number	of	indexes	which	can	be
used	in	an	application	template	is	999.
																																																									Required	
																																																																		
		@@DEC_IDX	-----	IDX_NAME	-----	name	------------------------
--|	
																																																																		
																																																																		

Parameters
IDX_NAME
Specifies	the	new	or	existing	index	name.	The	first	character	of	the	two
character	index	name	must	be	non-numeric.

Examples
The	following	example	applies	to	the	@@DEC_IDX	command.
Example	1:	Decrement	index	CF.
@@DEC_IDX	IDX_NAME(CF)

14.5	@@GET_FILS	Command
The	@@GET_FILS	command	is	used	to	ask	for	file(s)	to	be	selected	for	use	in
the	application	template.
If	more	than	1	file	can	be	selected,	then	after	choosing	the	primary	file,	the	user
will	be	presented	with	a	second	list	of	all	those	files	related	in	some	manner	to
this	selected	primary	file.	This	list	will	be	in	the	form	of	a	"tree"	of
relationships.	For	this	"tree"	of	relationships	to	be	built,	all	files	involved	will
have	to	have	been	set	up	with	access	routes	showing	how	all	the	files	are
related.	If	you	have	used	data	modeling	to	design	your	database	then	this	will
already	have	been	done	for	you,	otherwise	you	will	have	to	manually	add	all
access	routes.
Some	of	the	rules	in	selecting	from	this	list	are:
When	SGL_ONLY(*NO)	has	been	specified,	only	one	1	:	N	(many)
relationship	may	be	chosen	from	the	list	displayed.	Multiple	1	:	1
relationships	may	be	selected.
All	higher	levels	in	a	relationship	chain	must	be	chosen	before	a	lower	level
relationship	can	be	selected.
A	maximum	of	(TO	-	FROM	+	1)	files	may	be	selected.

This	command	creates/updates	special	variables	@@TFMX	and	@@TFMN	to
contain	the	maximum	and	minimum	file	numbers	chosen.
																																																									Optional	
																																																																		
		@@GET_FILS	-----	FROM	--------	1	-----------------------------
>	
																											(number	1	-	50)																								
																																																																		
													>----	TO	----------	50	---------------------------->	
																											(number	1	-	50)																								
																																																																		
													>----	PHY_ONLY----	*YES	--------------------------->	
																																*NO																															
																																																																		
													>----	SGL_ONLY----	*YES	--------------------------->	
																																*NO																															
																																																																		
													>----	PROMPT	-----	'text'	------------------------->	

																																																																		
																																																																		
													>----	EXTEND	-----	'text'	------------------------->	
																																																																
																														--	8	max	--																									
																																																																		
													>-----HELPIDS	----	HELP	panel	identifiers	---------|	
																														|																										|									
																														--------	10	max	-----------									
																																																																		
	

Parameters
FROM
Specifies	the	first	file	number	to	allocate	to	a	user	selected	file.	The	default
value	is	1	and	the	maximum	value	is	50.

TO
Specifies	the	last	file	number	to	allocate	to	a	user	selected	file.	The	default	value
is	50	and	the	maximum	value	is	50.	The	difference	between	the	FROM	and	TO
parameter	values	determines	the	number	of	files	a	user	is	able	to	select	for	this
command.	For	example,	if	FROM(1)	and	TO(1)	is	specified	then	only	1	file
may	be	selected.	If	FROM(1)	and	TO(50)	is	specified	then	50	files	may	be
selected	by	the	user.

PHY_ONLY
Specifies	whether	only	physical	files	will	be	presented	for	selection,	or	both
physical	and	logical	files.

SGL_ONLY
Specifies	whether	only	1	:	1	(single)	relationships	will	be	presented	for
selection,	or	both	1	:	1	and	1	:	N	(many)	relationships.

PROMPT
Specifies	the	prompt	text	for	the	command.	This	is	up	to	a	maximum	of	74
characters.	The	prompt	text	may	contain	special	variables	(refer	to	the	14.22.5
Special	Template	Variable	Notes	on	special	variables).	More	detailed	prompt
text	can	be	placed	in	the	EXTEND	parameter.

EXTEND

Specifies	the	extended	prompt	text	for	the	command	if	the	PROMPT	parameter
cannot	contain	a	full	enough	description	required	prompt.	This	is	up	to	a
maximum	of	8	lines	of	74	characters.	The	extended	prompt	may	contain	special
variables.

HELPIDS
Specifies	up	to	10	HELP	panel	identifiers	for	this	application	template.	These
will	be	displayed	as	full	page	screens	of	HELP	when	the	user	presses	the	HELP
function	key.

Examples
The	following	examples	apply	to	the	@@GET_FILS	command.
Example	1:	Ask	the	user	to	select	a	single	primary	physical	file.
@@GET_FILS	FROM(1)	TO(1)	PHY_ONLY(*YES)	PROMPT('Select	+
											the	primary	physical	file	to	be	worked	with')	+
											EXTEND('Enter	the	name	of	the	PHYSICAL	file')	+
											HELPIDS(HELP010)
	

Example	2:	Ask	the	user	to	select	up	to	20	related	files.	Both	physical	and
logical	files	may	be	selected.
@@GET_FILS	TO(20)	PHY_ONLY(*NO)	SGL_ONLY(*YES)	PROMPT('Enter	+
											the	name	of	the	primary	file	to	be	used	by	this	+
											template')	+
											EXTEND('The	file	name	may	be	specified	in	full,	+
											partially')	+
											HELPIDS(HELP020	HELP030	HELP040	HELP050)

14.6	@@GOTO	Command
The	@@GOTO	command	is	used	to	pass	control	to	a	command	label.	The
command	label	nominated	must	be	associated	with	another	command	within	the
application	template.
																																																									Required	
																																																																		
		@@GOTO	-----LABEL------	command	label	---------------------
|				
																																																																		
																																																																		

Parameters
LABEL
specifies	the	label	of	the	command	which	will	receive	control.	The	label
specified	in	this	parameter	must	be	the	label	of	one	and	only	one	other
command	in	the	application	template.

Examples
The	following	example	applies	to	the	@@GOTO	command.
If	none	of	a	set	of	conditions	is	met	then	branch	to	a	label:
								@@IF					COND((*IF	@@CANS001	*EQ	A))	GOTO(LB1)
								@@IF					COND((*IF	@@CANS001	*EQ	B))	GOTO(LB2)
								@@GOTO			LABEL(LB3)
		.
		.
LB1:				@@LABEL
											.
LB2:				@@LABEL
												.
LB3:				@@LABEL

14.7	@@IF	Command
The	@@IF	command	is	used	to	test	the	truth	of	a	condition	and	then	bypass	the
generation	of	certain	RDML	commands	only	if	the	condition	is	true.
The	command	label	of	the	GOTO	parameter	must	be	used	on	another
application	template	command	which	is	the	subject	of	the	GOTO.
																																																									Required	
																																																																		
		@@IF	------	COND	------	*IF		variable		*EQ		value	------------
>	
																								|	*AND											*GT										|											
																								|	*OR												*LT										|											
																								|																*NE										|											
																								|																*GE										|											
																								|																*LE										|											
																								|																													|											
																								----------	40	max	-------------													
																																																																		
										>---GOTO	-------command	label	-----------------------|	
																																																																		
																																																																		

Parameters
COND
Specifies	the	condition	to	be	evaluated	to	test	the	"truth"	of	the	IF	condition.
The	four	parts	of	the	parameter	are	the	relationship	(*IF	*AND	*OR),	the
variable	to	be	evaluated	(e.g.	@@CANS001),	the	relational	operator	(*EQ	*GT
*LT	*NE	*GE	*LE)	and	the	literal	value	used	for	comparison	(which	must	be	of
the	same	type	as	the	variables	being	evaluated).	The	variable	to	be	evaluated
may	be	any	application	template	variable.

GOTO
Specifies	the	label	of	the	command	which	is	to	receive	control.	The	label
specified	in	this	parameter	must	be	the	label	of	one	and	only	one	other
command	in	the	function.

Examples
The	following	examples	apply	to	the	@@IF	command.

Example	1:	If	the	answer	to	a	question	is	"NO"	then	branch	to	a	label	to	bypass
generating	some	RDML	code.
					@@IF								COND((*IF	@@CANS001	*EQ	NO))	GOTO(LB1)
					Some	RDML	code
									.
									.
									.
LB1:	@@LABEL

	
Example	2:	If	the	user	selected	more	than	1	file	then	ask	the	user	to	select
additional	fields.
					@@IF							COND((*IF	@@TFMX	*EQ	1))	GOTO(A25)
					@@CLR_LST	
					@@MAK_LSTS
					@@MRG_LSTS
A25:	@@LABEL
	

14.8	@@INC_IDX	Command
The	@@INC_IDX	command	is	used	to	increment	an	index	by	1.	This	index
name	may	be	a	new	or	existing	index.	If	the	index	is	a	new	index	name,	then	the
index	value	will	be	set	to	1.	The	maximum	number	of	indexes	that	can	be	used
in	an	application	template	is	999.																																																										Required	
																																																																		
		@@INC_IDX	-----	IDX_NAME	-----	name	-------------------------
|	
																																																																		
																																																																		
																																																																		

Parameters
IDX_NAME
Specifies	the	new	or	existing	index	name.	The	first	character	of	the	two
character	index	name	must	be	non-numeric.

Examples
The	following	example	applies	to	the	@@INC_IDX	command.
Increment	index	CF.
@@INC_IDX	IDX_NAME(CF)

14.9	@@LABEL	Command
The	@@LABEL	command	is	used	in	conjunction	with	the	other	application
template	commands	and	specifies	a	label	used	to	control	the	execution	of
application	template	commands	and/or	the	generation	of	RDML	code.
Refer	to	the	@@IF,	@@GOTO,	@@CMP_IDX,	etc.	commands	for	more
details	and	examples	of	this	command.
																																																																		
																																																																		
		@@LABEL	------	no	parameters	---------------------------------|	
																																																																		
																																																																		

Examples
The	following	example	applies	to	the	@@LABEL	command.
Example	1:	If	the	answer	to	a	question	is	"NO"	then	branch	to	a	label	to	bypass
generating	some	RDML	code.
					@@IF					COND((*IF	@@CANS001	*EQ	NO))	GOTO(LB1)
					Some	RDML	code
									.
									.
									.
LB1:	@@LABEL

	
Example	2:	If	index	value	is	greater	than	the	highest	file	number	selected,	then
finish	building	list	of	fields.
A10:	@@LABEL
					@@CMP_IDX	IDX_NAME(CF)	IDX_VALUE(@@TFMX)	IS_GT(A20)
					@@RTV_FLDS
					@@INC_IDX	
					@@GOTO					LABEL(A10)
A20:	@@LABEL

14.10	@@MAK_LSTS	Command
The	@@MAK_LSTS	command	is	used	to	make	a	list(s)	from	fields	selected	by
the	user.	The	list	being	built	will	be	automatically	cleared	before	executing	this
command.
The	user	will	be	presented	with	a	field	selection	list	(constructed	from	other
nominated	lists)	from	which	all	required	fields	may	be	selected.	The	method	of
both	selection	and	pre-selection	of	fields	is	determined	by	the	INTO_LSTS
parameter.	If	the	FORCE_LSTS	parameter	is	used,	then	all	fields	in	this	list
must	be	selected	by	the	user.
																																																									Required	
																																																																		
		@@MAK_LSTS	----	FROM_LSTS	-----	nn	-------------------------
-->	
																													|											|																								
																														--	5	max	--																									

																																																									Optional	
																																																																		
													>---	FORCE_LSTS	----	nn	--------------------------->	
																																																																		
																																																																		
													>---	INTO_LSTS	--	nn	--	col	hdg	1	--	col	hdg	2	---->	
																												|																																		|		
																												|																																		|		
																												|--	col	hdg	3	--	*YESNO			--	*NO	---->	
																												|															*SEQUENCE			*ALL			|		
																												|																											*FORCE	|		
																													---------	2	max	-------------------		
																																																																		
													>---	HELPIDS	----	HELP	panel	identifiers	----------|	
																													|																										|									
																													--------	10	max	-----------										
																																																																		

Parameters
FROM_LSTS

Specifies	the	list	numbers	from	which	the	list	of	fields	for	selection	will	be	built.
These	list	numbers	should	have	been	previously	built	by	the	@@RTV_FLDS	or
@@MAK_LSTS	commands.	This	number	may	be	a	1	or	2	character	numeric	or
a	2	character	index	name.	If	it	is	an	index	name,	then	the	current	index	value
will	be	substituted	in	this	command.	Refer	to	the	@@SET_IDX,	@@INC_IDX,
@@DEC_IDX,	@@CMP_IDX	commands	for	setting	and	using	indexes.

FORCE_LSTS
Specifies	a	list	number	(previously	built	by	the	@@RTV_FLDS	or
@@MAK_LSTS	commands)	which	contains	all	fields	to	be	selected	by	the
user.	This	number	may	be	a	1	or	2	character	numeric	or	a	2	character	index
name.	If	it	is	an	index	name,	then	the	current	index	value	will	be	substituted	in
this	command.	Refer	to	the	@@SET_IDX,	@@INC_IDX,	@@DEC_IDX,
@@CMP_IDX	commands	for	setting	and	using	indexes.

INTO_LSTS
Specifies	the	lists	to	be	made	from	the	selected	fields.	This	parameter	consists
of	these	parts:
List	number	-	specifies	the	list	number	to	be	built.	This	number	may	be	a	1
or	2	character	numeric	or	a	2	character	index	name.	If	it	is	an	index	name,
then	the	current	index	value	will	be	substituted	in	this	command.	Refer	to	the
@@SET_IDX,	@@INC_IDX,	@@DEC_IDX,	@@CMP_IDX	commands
for	setting	and	using	indexes.	This	list	will	be	automatically	cleared	before
executing	this	command.
Column	heading	1	-	specifies	column	heading	line	1	to	appear	over	this	field
selection	column.
Column	heading	2	-	specifies	column	heading	line	2	to	appear	over	this	field
selection	column.
Column	heading	3	-	specifies	column	heading	line	3	to	appear	over	this	field
selection	column.
Field	selection	method	-	must	be	either	*YESNO	or	*SEQUENCE.	This
specifies	the	method	the	user	can	use	to	select	the	required	fields.	If	*YESNO
(the	default)	is	chosen,	then	the	user	can	select	any	fields	by	simply	placing
any	non-blank	character	in	the	selection	column.	Pre-selected	fields	will	have
"Y"	in	the	select	column.	If	*SEQUENCE	is	chosen,	then	the	user	can
sequence	the	order	that	the	chosen	fields	are	placed	in	the	resulting	list.	This
sequence	number	is	a	decimal	4,1	field.	Pre-selected	fields	will	have	a
sequence	number	incremented	by	10	in	the	select	column.

Pre-select	fields	-	must	be	either	*NO,	*ALL	or	*FORCE.	This	specifies
whether	fields	are	to	be	pre-selected	in	the	list(s).	If	*NO	(the	default)	is
chosen,	then	none	of	the	fields	will	be	pre-selected.	If	*ALL	is	chosen,	then
all	fields	will	be	pre-selected.	If	*FORCE	is	chosen,	then	all	fields	that	are	in
the	FORCE_LSTS	list	will	be	pre-selected.

HELPIDS
Specifies	up	to	10	HELP	panel	identifiers	for	this	application	template.	These
will	be	displayed	as	full	page	screen	of	HELP	when	the	user	presses	the	HELP
function	key.

Examples
The	following	examples	apply	to	the	@@MAK_LSTS	command.
Example	1:	Ask	the	user	to	select	fields	that	cannot	be	updated	in	the	primary
file.	Fields	can	be	selected	by	any	non-blank	character.
@@MAK_LSTS	FROM_LSTS(2)	INTO_LSTS((5	'Fields	that'	'Cannot	be'
										'Updated'	*YESNO	*NO))	HELPIDS(HELP010	HELP020)

	
Example	2:	Ask	the	user	to	select	fields	that	are	to	be	displayed	on	the	data
entry	panel,	forcing	the	keys	of	the	file	to	be	selected.	The	fields	can	be	ordered
using	a	sequence	number,	and	all	fields	are	pre-selected.
@@MAK_LSTS	FROM_LSTS(1)	FORCE_LSTS(3)	INTO_LSTS((4	'Fields	to'
										'Appear	on'	'Add	Panel'	*SEQUENCE	*ALL))

14.11	@@MRG_LSTS	Command
The	@@MRG_LSTS	command	is	used	to	update	a	list	by	merging	other	lists
with	it,	and	can	also	optionally	merge	attributes	for	fields	in	the	list.	Attributes
will	only	be	merged	if	the	field	does	not	already	exist	in	the	INTO_LST.
																																																									Required	
																																																																		
		@@MRG_LSTS	----	FROM_LSTS	-----	nn	---	attributes	---------
--->	
																														|								|													|	|										
																														|								---	7	max	----		|										
																														|																								|										
																														----------	2	max	---------										
																																																																		
																																																																		
													>---	INTO_LST	------	nn	---------------------------|	
																																																																		
																																																																		
																																																																		

Parameters
FROM_LSTS
Specifies	the	list	numbers	from	which	the	list	is	to	be	built.	The	optional
attributes	on	each	list	specify	the	10	character	attributes	to	be	merged	with	the
fields	in	the	FROM_LST	if	this	field	does	not	already	exist	in	the	INTO_LST.	If
the	field	is	already	in	the	INTO_LST	then	the	attribute	will	not	be	merged.
These	list	numbers	should	have	been	previously	built	by	the	@@RTV_FLDS	or
@@MAK_LSTS	commands.	This	number	may	be	a	1	or	2	character	numeric	or
a	2	character	index	name.	If	it	is	an	index	name,	then	the	current	index	value
will	be	substituted	in	this	command.	Refer	to	the	@@SET_IDX,	@@INC_IDX,
@@DEC_IDX,	@@CMP_IDX	commands	for	setting	and	using	indexes.

INTO_LST
Specifies	the	list	to	be	built	from	the	list	merging.	This	number	may	be	a	1	or	2
character	numeric	or	a	2	character	index	name.	If	it	is	an	index	name,	then	the
current	index	value	will	be	substituted	in	this	command.	Refer	to	the
@@SET_IDX,	@@INC_IDX,	@@DEC_IDX,	@@CMP_IDX	commands	for
setting	and	using	indexes.

Examples
The	following	examples	apply	to	the	@@MRG_LSTS	command.
Example	1:	Merge	user	selected	fields	which	can't	be	updated	in	the	primary
file	with	the	*OUTPUT	attribute,	with	the	display	panel	fields	list.
@@CLR_LST		NUMBER(6)
@@MRG_LSTS	FROM_LSTS((5	*OUTPUT))	INTO_LST(6)

	
Example	2:	Merge	key	fields	of	the	file	with	the	*HIDDEN	attribute	into	the
display	panel	fields	list.
@@RTV_KEYS	OF_FILE(1)	INTO_LST(3)
@@CLR_LST		NUMBER(4)
@@MRG_LSTS	FROM_LSTS((3	*HIDDEN))		INTO_LST(4)

14.12	@@QUESTION	Command
The	@@QUESTION	command	is	used	to	ask	a	question	and	to	receive	a	valid
reply.
																																																									Required	
																																																																		
		@@QUESTION	------PROMPT------	'text'	-------------------------
>	
																																																																		
													>-----ANSWER	-----	@@CANSnnn		--------------------->	
																																@@NANSnnn																									

																																																									Optional	
													>-----EXTEND	-----	'text'	------------------------->	
																														|										|																								
																														--	8	max	--																									
																																																																		
													>-----LOWER	------	*NO		--------------------------->	
																																*YES																														
																																																																		
													>----	VALUES	-----	compare	value	------------------>	
																														|																	|																	
																														-----	40	max	------																	
																																																																		
													>----	RANGE	------	low	value	--	high	value	-------->	
																														|																										|								
																														---------	20	max	----------									
																																																																		
													>----	SPCVAL	---	from	value	--	replacement	value	-->	
																														|																									|									
																														---------	40	max	----------									
																																																																		
													>-----HELPIDS	----	HELP	panel	identifiers	---------|	
																														|																									|									
																														--------	10	max	-----------									
																																																																		

Parameters

PROMPT
Specifies	the	prompt	text	for	the	question.	This	is	up	to	a	maximum	of	74
characters.	The	prompt	text	may	contain	special	variables	(refer	to	the	14.22.5
Special	Template	Variable	Notes	on	special	variables).	More	detailed	prompt
text	can	be	placed	in	the	EXTEND	parameter.

ANSWER
Specifies	the	"special"	variable	that	is	to	contain	the	answer	to	the	question.	It
must	be	one	of	the	special	question	and	answer	variables	described	in	a
following	section	(i.e.	@@CANSnnn	or	@@NANSnnn).	The	last	2	characters
of	nnn	may	be	a	2	character	index	name,	which	will	be	substituted	by	the
current	numeric	value	of	the	index.

EXTEND
Specifies	the	extended	prompt	text	for	the	question	if	the	PROMPT	parameter
cannot	contain	a	full	enough	description	of	the	question.	This	is	up	to	a
maximum	of	8	lines	of	74	characters.	The	extended	text	may	contain	special
variables.

LOWER
Specifies	whether	the	answer	to	the	question	is	to	remain	in	lowercase	rather
than	being	converted	to	uppercase.

VALUES
Specifies	from	1	to	40	values	to	be	checked	against	the	answer.

RANGE
Specifies	from	1	to	20	ranges	of	values	to	be	checked	against	the	answer.	Each
individual	range	must	consist	of	a	"low"	value	and	a	"high"	value.

SPCVAL
Specifies	from	1	to	20	values	to	be	replaced	by	another	value	e.g.	"Y"	to
"*YES".

HELPIDS
Specifies	up	to	10	HELP	panel	identifiers	for	this	application	template	which
will	be	displayed	when	the	user	presses	the	HELP	function	key.	These	are
presented	as	full	page	screens	of	HELP.

Examples

The	following	examples	apply	to	the	@@QUESTION	command.
Example	1:	Ask	the	user	if	the	change	function	key	is	to	be	enabled.
@@QUESTION	PROMPT('Is	the	change	function	key	to	be	+
											enabled	?')	+
											ANSWER(@@CANS001)	EXTEND('Reply	Y	or	N	only'.....)	+
											LOWER(*NO)	SPCVAL((Y	*YES)	('y'	*YES)	(N	*NO)	+
											('n'	*NO))	HELPIDS(HELP010	HELP020)

	
Example	2:	Ask	the	user	how	many	conditions	are	to	be	tested.
@@QUESTION	PROMPT('How	many	conditions	are	to	be	tested	?')	+
											ANSWER(@@NANS001)	EXTEND('Indicate	the	number	of	+
											conditions	that	are	to	be	generated'	'by	this	+
											application	template')	HELPIDS(HELP040	HELP050)

14.13	@@RTV_FLDS	Command
The	@@RTV_FLDS	command	is	used	to	retrieve	all	the	fields	for	the	specified
file	number	into	the	required	list.
Note	that	the	file	must	have	already	been	chosen	by	the	@@GET_FILS
command,	and	the	list	must	have	been	defined/cleared	by	the	@@CLR_LST
command.
																																																									Required	
																																																																		
		@@RTV_FLDS	-----	FROM_FILE	---	number	--------------------
---->	
																																	index																												
																																																																		
													>----	INTO_LST	----	number	------------------------>	
																																	index																												

																																																									Optional	
																																																																		
													>----	REAL_ONLY	----	*NO		------------------------->	
																																		*YES																												
																																																																		
													>----	VIRT_ONLY	----	*NO		------------------------->	
																																		*YES																												
																																																																		
													>----	ALPHA_ONLY	---	*NO		------------------------->	
																																		*YES																												
																																																																		
													>----	NUM_ONLY	-----	*NO		-------------------------|	
																																		*YES																												
																																																																		
																																																																		

Parameters
FROM_FILE
Specifies	the	file	number	for	which	the	fields	are	to	be	retrieved.	This	number
may	be	a	1	or	2	character	numeric	or	a	2	character	index	name.	If	it	is	an	index
name,	then	the	current	index	value	will	be	substituted	in	this	command.	Refer	to

the	@@SET_IDX,	@@INC_IDX,	@@DEC_IDX,	@@CMP_IDX	commands
for	setting	and	using	indexes.	Note	that	the	file	number	must	have	already	been
selected	by	a	@@GET_FILS	command.

INTO_LST
Specifies	the	list	number	into	which	the	fields	are	to	be	added.	This	number	may
be	a	1	or	2	character	numeric	or	a	2	character	index	name.	If	it	is	an	index	name,
then	the	current	index	value	will	be	substituted	in	this	command.	Refer	to	the
@@SET_IDX,	@@INC_IDX,	@@DEC_IDX,	@@CMP_IDX	commands	for
setting	and	using	indexes.	Note	that	the	list	number	must	have	been	previously
defined	by	an	@@CLR_LST	command.

REAL_ONLY
Specifies	whether	only	"real"	fields	from	the	file	should	be	retrieved	into	the
list.

VIRT_ONLY
Specifies	whether	only	"virtual"	fields	from	the	file	should	be	retrieved	into	the
list.

ALPHA_ONLY
Specifies	whether	only	alphanumeric	fields	from	the	file	should	be	retrieved
into	the	list.

NUM_ONLY
Specifies	whether	only	numeric	fields	from	the	file	should	be	retrieved	into	the
list.

Examples
The	following	examples	apply	to	the	@@RTV_FLDS	command.
Example	1:	Retrieve	all	fields	from	file	1	into	list	1.
@@CLR_LST	NUMBER(1)
@@RTV_FLDS	FROM_FILE(1)	INTO_LST(1)

	
Example	2:	Retrieve	all	"real"	fields	from	file	CF	into	list	2.
@@CLR_LST	NUMBER(2)
@@RTV_FLDS	FROM_FILE(CF)	INTO_LST(2)	REAL_ONLY(*YES)

	
Example	3:	Retrieve	all	numeric	fields	from	file	3	into	list	3.

@@CLR_LST	NUMBER(3)
@@RTV_FLDS	FROM_FILE(3)	INTO_LST(3)	NUM_ONLY(*YES)

14.14	@@RTV_KEYS	Command
The	@@RTV_KEYS	command	is	used	to	retrieve	all	the	key	fields	for	the
specified	file	number	into	the	required	list.
Note	that	the	file	must	already	have	been	chosen	by	the	@@GET_FILS
command,	and	the	list	must	have	been	defined/cleared	by	the	@@CLR_LST
command.
																																																									Required	
																																																																		
		@@RTV_KEYS	-----	OF_FILE	-----	number	----------------------
-->	
																																	index																												
																																																																		
													>----	INTO_LST	----	number	------------------------|	
																																	index																												
																																																																		
																																																																		

Parameters
OF_FILE
Specifies	the	file	number	for	which	the	key	fields	are	to	be	retrieved.	This
number	may	be	a	1	or	2	character	numeric	or	a	2	character	index	name.	If	it	is
an	index	name,	then	the	current	index	value	will	be	substituted	in	this	command.
Refer	to	the	@@SET_IDX,	@@INC_IDX,	@@DEC_IDX,	@@CMP_IDX
commands	for	setting	and	using	indexes.	Note	that	the	file	number	must	have
already	been	selected	by	an	@@GET_FILS	command.

INTO_LST
Specifies	the	list	number	into	which	the	fields	are	to	be	added.	This	number	may
be	a	1	or	2	character	numeric	or	a	2	character	index	name.	If	it	is	an	index	name,
then	the	current	index	value	will	be	substituted	in	this	command.	Refer	to	the
@@SET_IDX,	@@INC_IDX,	@@DEC_IDX,	@@CMP_IDX	commands	for
setting	and	using	indexes.	Note	that	the	list	number	must	have	been	previously
defined	by	an	@@CLR_LST	command.

Examples
The	following	examples	apply	to	the	@@RTV_KEYS	command.
Example	1:	Retrieve	all	key	fields	from	file	1	into	list	1.

@@CLR_LST	NUMBER(1)
@@RTV_KEYS	OF_FILE(1)	INTO_LST(1)

	
Example	2:	Retrieve	all	key	fields	from	file	CF	into	list	2.
@@CLR_LST	NUMBER(2)
@@RTV_KEYS	OF_FILE(CF)	INTO_LST(2)

14.15	@@RTV_RELN	Command
The	@@RTV_RELN	command	is	used	to	retrieve	the	relationship	(the	key
fields	of	the	access	route)	for	the	specified	file	number	into	the	required	list.
This	defines	how	this	file	is	"related"	to	the	file	at	the	next	higher	level.	This
applies	to	all	files	except	the	primary	file.
Note	that	the	values	returned	would	actually	come	from	the	"parent"	or	"joined"
file,	not	the	file	nominated	by	the	OF_FILE	parameter.
Note	that	the	file	must	already	have	been	chosen	by	the	@@GET_FILS
command,	and	the	list	must	have	been	defined/cleared	by	the	@@CLR_LST
command.
																																																									Required	
																																																																		
		@@RTV_RELN	-----	OF_FILE	-----	number	----------------------
-->	
																																	index																												
																																																																		
													>----	INTO_LST	----	number	------------------------|	
																																	index																												
																																																																		
																																																																		

Parameters
OF_FILE
Specifies	the	file	number	for	which	the	relationship	(key	fields	in	the	access
route)	is	to	be	retrieved.	This	number	may	be	a	1	or	2	character	numeric	or	a	2
character	index	name.	If	it	is	an	index	name,	then	the	current	index	value	will	be
substituted	in	this	command.	Refer	to	the	@@SET_IDX,	@@INC_IDX,
@@DEC_IDX,	@@CMP_IDX	commands	for	setting	and	using	indexes.	Note
that	the	file	number	must	have	already	been	selected	by	an	@@GET_FILS
command.

INTO_LST
Specifies	the	list	number	into	which	the	fields	are	to	be	added.	This	number	may
be	a	1	or	2	character	numeric	or	a	2	character	index	name.	If	it	is	an	index	name,
then	the	current	index	value	will	be	substituted	in	this	command.	Refer	to	the
@@SET_IDX,	@@INC_IDX,	@@DEC_IDX,	@@CMP_IDX	commands	for
setting	and	using	indexes.	Note	that	the	list	number	must	have	been	previously

defined	by	an	@@CLR_LST	command.

Examples
The	following	examples	apply	to	the	@@RTV_RELN	command.
Example	1:	Retrieve	the	relationship	of	file	2	into	list	2.
@@CLR_LST	NUMBER(2)
@@RTV_RELN	OF_FILE(2)	INTO_LST(2)
	

Example	2:	Retrieve	the	relationship	of	file	"CF"	into	list	3	and	use	this	to
FETCH	the	related	record	from	file	"CF".
@@CLR_LST		NUMBER(3)
@@RTV_RELN	OF_FILE(CF)	INTO_LST(3)
FETCH						FIELDS(#PANELDATA)	FROM_FILE(@@FNAMECF)	WITH_KEY(@@LST03)

14.16	@@SET_IDX	Command
The	@@SET_IDX	command	is	used	to	set	an	index	value	to	a	numeric	value.
This	index	name	may	be	a	new	or	existing	index.	The	maximum	number	of
indexes	which	can	be	used	in	an	application	template	is	999.
																																																									Required	
																																																																		
		@@SET_IDX	-----	IDX_NAME	-----	name	-------------------------
->	
																																																																		
																																																																		
													>-----	TO	---------	value		------------------------|	
																																	numeric	variable																	
																																																																		

Parameters
IDX_NAME
Specifies	the	new	or	existing	index	name.	The	first	character	of	the	two
character	index	name	must	be	non-numeric.

TO
Specifies	the	numeric	value	to	which	the	index	is	to	be	set.	This	may	be	any
valid	numeric	variable	or	any	valid	numeric	literal.

Examples
The	following	examples	apply	to	the	@@SET_IDX	command.
Example	1:	Set	index	AB	to	2.
											@@SET_IDX	IDX_NAME(AB)	TO(2)
	

Example	2:	Set	index	CF	to	the	maximum	file	number	selected.
											@@SET_IDX	IDX_NAME(CF)	TO(@@TFMX)

14.17	General	Template	Variables
14.22.5	Special	Template	Variable	Notes
14.22	Tips	for	Template	Programming

Variable Description Type Len Dec

@@COMPANY Name	of	current	company	/
organization

A 30 	

@@DATE Date	in	installation	format
(xx/xx/xx)

A 8 	

@@DATE8 Date	in	installation	format
(xx/xx/xxxx	or	xxxx/xx/xx)

A 10 	

@@DECIMAL Decimal	format	('.'	or	',') A 1 	

@@FUNCDES Current	LANSA	function
description

A 40 	

@@FUNCTION Current	LANSA	function
name

A 7 	

@@GENNAME/xx/yy/zzzzzz Generate	field	names A Variable 	

@@INDEXii Numeric	value	of	index	ii N 2 0

@@JOBNAME Current	IBM	i	job	name A 10 	

@@JOBNBR Current	IBM	i	job	number A 6 	

@@PRODREL Current	LANSA	release	level A 4 	

@@PROCDES Current	LANSA	process
description

A 40 	

@@PROCESS Current	LANSA	process
name

A 10 	

@@PRODUCT Product	name	(i.e.:	LANSA) A 5 	

@@TIME Current	time	(xx:xx:xx) A 8 	

@@USER Current	IBM	i	user	identity A 10 	

	

Note:
ii	is	a	valid	index	name	of	2	characters.	The	numeric	value	will	be	substituted
for	the	variable.
xx	is	a	number	from	1	to	99.	This	length	is	the	maximum	length.	The	number
xx	may	be	specified	as	1	or	2	numerics,	or	a	valid	index	name	of	2	characters
may	be	used	(and	its	numeric	value	will	be	substituted	in	the	variable	name).
yy	is	a	number	from	1	to	99.	This	length	is	the	maximum	length.	The	number
yy	may	be	specified	as	1	or	2	numerics,	or	a	valid	index	name	of	2	characters
may	be	used	(and	its	numeric	value	will	be	substituted	in	the	variable	name).
zzzzzz	is	a	character	name	of	length	1	to	6.	It	must	be	followed	by	a	blank
when	used	in	a	template.
@@GENNAME/xx/yy/zzzzzz	will	be	expanded	into	a	list	of	elements
prefixed	by	zzzzzz	and	suffixed	by	xx	and	from	1	to	yy.
For	example:
								DEF_LINE	NAME(#LINEDATA)	FIELDS(@@GENNAME/01/06/#TOT)
	

												would	result	in	this	RDML	code	in	a	template:
								DEF_LINE	NAME(#LINEDATA)	FIELDS(#TOT0101	#TOT0102
																	#TOT0103	#TOT0104	#TOT0105	#TOT0106)
	

14.18	Question	and	Answer	Template	Variables
14.22.5	Special	Template	Variable	Notes
14.22	Tips	for	Template	Programming

Variable Description Type Length Dec

@@CANSnnn Character	answer A 74 	

@@NANSnnn Numeric	answer N 15 5

	

where	nnn	is	a	number	from	001	to	999.	
The	length	is	a	maximum	length.	This	number	may	be	specified	as	3	numerics,
or	1	numeric	followed	by	a	valid	index	name	of	2	characters	(its	numeric	value
will	be	substituted	in	the	variable	name).

14.19	File	Template	Variables
14.22.5	Special	Template	Variable	Notes
14.22	Tips	for	Template	Programming

Variable Description Type Len Dec

@@FNAMEnn File	name A 10 	

@@FLIBRnn File	library A 10 	

@@FVERSnn File	version	number N 15 5

@@FTYPEnn File	type	(P=PF,	L=LF) A 1 	

@@FDESCnn File	description A 40 	

@@FBASPnn Based	in	physical	file	name A 10 	

@@FRELFnn Related	file	name A 10 	

@@FRELLnn Related	file	library A 10 	

@@FRELVnn Related	file	version	number N 15 5

@@FRELRnn Related	file	relationship	(O=1:1,	M=1:n) A 1 	

@@FRELAnn Related	file	access	route	name A 10 	

@@FRELCnn Related	file	connection	type.	The	connection
types	are:
BASE	=	Base	file
DIRBASE	=	Directly	connected	to	the	base	file
INDBASE	=	Indirectly	connected	to	the	base
file
DETAIL		=	Detail	file
(i.e.	1	:		Many	related	file)
DIRDETL	=	Directly	connected	to	detail	file
INDDETL	=	Indirectly	connected	to	detail	file

A 70 	

@@FAREAnn Header	or	browse	area	(H=HDR,B=BRW) A 1 	

@@TFMX Maximum	file	number	selected N 15 5

@@TFMN Minimum	file	number	selected N 15 5

	

where	nn	is	a	number	from	1	to	99.	This	length	is	the	maximum	length.	The
number	nn	may	be	specified	as	1	or	2	numerics,	or	a	valid	index	name	of	2
characters	may	be	used	(and	its	numeric	value	will	be	substituted	in	the	variable
name).

14.20	List	Template	Variables
14.22.5	Special	Template	Variable	Notes
14.22	Tips	for	Template	Programming

See
Note

Variable Description Type Len Dec

1 @@LSTnn List	name	-	all	elements	of	list A Variable 	

1 @@LSUnn	 List	name	-	all	elements	of	list A Variable 	

2 @@LSXnn/yy List	name	-	first	yy	elements	of	list A Variable 	

1 @@LNEnn Number	of	elements	in	list	nn N 2 0

3 @@LELnnxx Element	xx	of	list	nn A 10 	

3 @@LATnnxx Attributes	of	element	xx	of	list	nn A(7) 10 	

3 @@LDSnnxx Description	of	element	xx	of	list	nn A 40 	

3 @@LTPnnxx Type	of	element	xx	of	list	nn
(A,P,S)

A 40 	

	

	
Note	1
nn	is	a	number	from	1	to	99.	This	length	is	the	maximum	length.	The	number	nn
may	be	specified	as	1	or	2	numerics,	or	a	valid	index	name	of	2	characters	may
be	used	(and	its	numeric	value	will	be	substituted	in	the	variable	name).
@@LSTnn	will	be	expanded	to	include	all	elements	(preceded	by	a	"#"	if	a
non-literal)	with	their	corresponding	attributes.
For	example:
					GROUP_BY	NAME(#PANELDATA)	FIELDS(@@LST01)	in	the	template
					may	be	substituted	for	in	the	resulting	RDML	code	by
					GROUP_BY	NAME(#PANELDATA)	FIELDS((#EMPNO	*OUTPUT)	#SURNAME
														#ADDR1	#ADDR2)
	

@@LSUnn	will	be	expanded	to	include	all	elements	with	no	preceding	"#"	and
no	attributes.
Note	2
nn	is	a	number	from	1	to	99.	This	length	is	the	maximum	length.	The	number	nn
may	be	specified	as	1	or	2	numerics,	or	a	valid	index	name	of	2	characters	may
be	used	(and	its	numeric	value	will	be	substituted	in	the	variable	name).
yy	is	a	number	from	1	to	99.	This	length	is	the	maximum	length.	The	number	yy
may	be	specified	as	1	or	2	numerics,	or	a	valid	index	name	of	2	characters	may
be	used	(and	its	numeric	value	will	be	substituted	in	the	variable	name).
@@LSXnn/yy	will	be	expanded	to	include	the	first	yy	elements	(preceded	by	a
"#"	if	a	non-literal)	of	the	list.
For	example:
GROUP_BY	NAME(#PANELDATA)	FIELDS(@@LSX01/03)
	

would	result	in	this	RDML	code	in	a	template:
GROUP_BY	NAME(#PANELDATA)	FIELDS(#EMPNO	#SURNAME	#ADDR1)
	

Note	3
nn	is	a	number	from	1	to	99.	This	length	is	the	maximum	length.	The	number	nn
may	be	specified	as	2	numerics,	or	a	valid	index	name	of	2	characters	may	be
used	(and	its	numeric	value	will	be	substituted	in	the	variable	name).
xx	is	a	number	from	1	to	99.	This	length	is	the	maximum	length.	The	number	xx
may	be	specified	as	1	or	2	numerics,	or	a	valid	index	name	of	2	characters	may
be	used	(and	its	numeric	value	will	be	substituted	in	the	variable	name).

14.21	Template	Error	Messages
The	execution	of	certain	Application	Template	Commands	may	result	in
error/warning	messages	being	displayed.	For	further	information	refer	to	the
Error	Message	Notes.	The	error	will	be	one	of	these:

Error
Code

Commands Meaning

2 @@IF	@@CMP_IDX Command	label	specified	on	GOTO	parameter	is
not	found	in	this	application	template.

3 @@GOTO Command	label	specified	is	not	found	in	this
application	template.

4 @@CLR_LST Index	specified	for	list	number	is	invalid.

5 @@SET_IDX
@@INC_IDX
@@DEC_IDX
@@CMP_IDX

Only	999	indexes	can	be	specified	in	an
application	template.

6 @@SET_IDX
@@CMP_IDX

Invalid	numeric	value.	The	literal	is	not	a	valid
numeric	or	the	special	@@	variable	is		unknown
in	this	template.

7 @@RTV_FLDS
@@RTV_KEYS
@@RTV_RELN

Index	specified	for	file	number	is	invalid.

8 @@RTV_FLDS
@@RTV_KEYS
@@RTV_RELN

File	number	specified	is	not	known	to	this
application	template.

9 @@RTV_FLDS
@@RTV_KEYS
@@RTV_RELN

Index	specified	for	list	number	is	invalid.

10 @@RTV_FLDS
@@RTV_KEYS
@@RTV_RELN
@@MRG_LSTS

List	number	specified	is	not	known	to	this
application	template.	An	@@CLR_LST
command	has	not	been	previously	executed	for
this	list	number.

11 @@MRG_LSTS Index	specified	for	"into"	list	number	is	invalid.

12 @@MRG_LSTS Index	specified	for	"from"	list	number	is	invalid.

13 @@MAK_LSTS Index	specified	for	force	list	number	is	invalid.

14 @@MAK_LSTS Index	specified	for	"from"	list	number	is	invalid.

15 @@MAK_LSTS Index	specified	for	"to"	list	number	is	invalid.

16 RDML	cmds Index	specified	in	@@INDEXii	variable	is
invalid.

	

Error	Message	Notes
These	messages	will	appear	on	the	display	of	the	application	template	command
being	executed	e.g.	DCM0793	is	issued	for	an	@@QUESTION	message	if	the
answer	is	not	a	valid	reply	according	to	the	parameters	on	the	@@QUESTION
command.
If	a	fatal	error	occurs	in	the	execution	of	an	application	template,	then	all
RDML	code	generated	by	the	application	template	so	far	will	be	backed	out,
and	the	execution	of	the	application	template	will	terminate.	Error	message
DCM0794:
"Error	occurred	in	application	template	tttttttttt	at	sequence	no.	nnnnn.nn	-	error
code	xxx"
will	appear	on	the	next	LANSA	screen	to	write	out	the	message	subfile.	The
sequence	number	in	the	application	template	is	the	command	sequence
number	rather	than	the	line	number.

14.22	Tips	for	Template	Programming
14.22.1	Accepting	Errors	On	Commands
14.22.2	Forcing	EDTSRC/SEU	to	Update	With	Errors
14.22.3	The	Double	Bracket	Trap
14.22.4	Testing	with	an	Alternate	Session
14.22.5	Special	Template	Variable	Notes

14.22.1	Accepting	Errors	On	Commands
Note	that	some	RDML	commands	will	not	be	accepted	by	the	IBM	CL	syntax
checker	when	they	contain	special	variables	such	as	@@LSTnn.	They	must	be
forced	to	accept	the	commands.	An	example	of	this	is	the	following:
GROUP_BY	NAME(#PANELDATA)	FIELDS(@@LST03)
	

After	executing	an	application	template	containing	this	RDML	command,	and
assuming	list	number	3	contains	selected	fields,	RDML	commands	like	this	will
be	generated:
GROUP_BY	NAME(#PANELDATA)	
									FIELDS((#EMPNO	*OUTPUT)	#SURNAME	
									#ADDRESS1	#ADDRESS2)
	

which	is	quite	valid.
Take	care	not	to	code	the	original	RDML	command	in	the	application	template
as	in	the	following	example:
GROUP_BY	NAME(#PANELDATA)	FIELDS((#@@LST03))
	

(which	will	be	accepted	by	the	command	prompter)	or
GROUP_BY	NAME(#PANELDATA)	FIELDS((@@LST03))
	

(which	is	the	automatic	result	when	the	command	prompting	is	canceled)	as
both	these	examples	will	generate	invalid	RDML	commands.
It	is	absolutely	essential	that	all	application	templates	which	include	RDML
commands	with	special	variables	are	thoroughly	tested	to	ensure	that	the	correct
RDML	command	will	be	generated	by	the	application	template.

14.22.2	Forcing	EDTSRC/SEU	to	Update	With	Errors
If	your	application	template	contains	RDML	commands	that	were	forced	to	be
accepted	(as	in	point	1	above),	then	on	exiting	the	EDTSRC/SEU	editor,	it	will
also	be	necessary	to	force	the	update	with	errors.	This	is	necessary	to	ensure	the
application	template	will	generate	correct	RDML	code.

14.22.3	The	Double	Bracket	Trap
If	a	command	is	forced	to	be	accepted	(as	described	above),	it	will	often	be
necessary	to	further	alter	the	command	to	ensure	that	the	correct	RDML
command	will	be	generated	by	the	template.	For	example,	if	this	command	is
required:
GROUP_BY	NAME(#PANELDATA)	FIELDS(@@LST03)
	

If	this	command	is	forced	to	be	accepted	by	canceling	the	command,	the
resulting	command	will	look	like	this:
GROUP_BY	NAME(#PANELDATA)	FIELDS((@@LST03))
	

After	executing	an	application	template	containing	this	RDML	command,	and
assuming	list	number	3	contains	selected	fields,	an	invalid	RDML	command
will	be	generated	as	follows:
GROUP_BY	NAME(#PANELDATA)	FIELDS(((#EMPNO	*OUTPUT)	
									#SURNAME	#ADDRESS1	#ADDRESS2))

or
GROUP_BY	NAME(#PANELDATA)	FIELDS((#EMPNO	#SURNAME	
									#ADDRESS1	#ADDRESS2))

14.22.4	Testing	with	an	Alternate	Session
To	aid	in	testing	application	templates,	it	is	useful	to	use	one	session	for	coding
and	modifying	the	application	template	(from	the	Housekeeping	Menu),	and	an
alternate	session	to	actually	execute	the	template	(from	the	Process	Control
Menu).

14.22.5	Special	Template	Variable	Notes
Application	templates	may	contain	special	variables.	These	special	variables,
used	in	both	Application	Templates	Command	and	RDML	Commands,	will	be
replaced	by	their	corresponding	value(s).	These	values	may	be	derived	as	the
result	of	other	Application	Template	commands.	For	example,	@@QUESTION
will	create	a	variable	@@CANSnnn	or	@@NANSnnn	which	may	be
subsequently	used	in	an	@@IF	command	or	an	@@COMMENT	command;
@@GET_FILS	will	create	file	variables;	@@MAK_LSTS	will	create	list
variables;	etc.
Note	that	some	RDML	commands	will	not	be	accepted	by	the	IBM	CL	syntax
checker	when	they	contain	these	special	variables.	They	must	be	forced	to
accept	the	commands,	and	the	SEU	editor	must	also	be	forced	to	update	with
errors.	An	example	of	this	is:
GROUP_BY	NAME(#PANELDATA)	FIELDS(@@LST03)
	

After	executing	an	application	template	containing	this	RDML	command,	and
assuming	list	number	3	contains	selected	fields,	an	RDML	command	will	be
generated	as	follows:
GROUP_BY	NAME(#PANELDATA)	FIELDS((#EMPNO	*OUTPUT)	#SURNAME	+
									#ADDRESS1	#ADDRESS2)
	

which	is	quite	valid.
Take	care	not	to	code	the	original	RDML	command	in	the	application	template
as	in	the	following	example:
GROUP_BY	NAME(#PANELDATA)	FIELDS((#@@LST03))
	

as	this	will	generate	an	invalid	RDML	command.
It	is	absolutely	essential	that	all	application	templates,	which	include	special
variables	contained	in	RDML	commands	are	thoroughly	tested	to	ensure	that	the
correct	RDML	command	will	be	generated	by	the	application	template.

14.23	Sample	Application	Templates
The	following	are	provided	as	examples	only	of	application	templates.	You
should	read	and	understand	these	examples	before	attempting	to	write/modify
application	templates	yourself.
14.23.1	Simple	data	entry	program
14.23.2	Header/Detail	style	inquiry	program

14.23.1	Simple	data	entry	program
1.	The	following	is	an	example	of	a	simple	application	template	for	a	data	entry
program:
/*	===		*/
/*	ASK	FOR	THE	"WORD"	-	ask	the	user	a	question.								*/
/*	Note	the	prompt	text	and	extended	prompt	text	that			*/
/*	can	be	entered	on	the	command.	More	detailed	help				*/
/*	can	also	be	entered	in	HELP	panels	for	the	template.	*/
/*	Note	the	special	format	of	the	ANSWER	parameter.					*/
/*	==	*/
@@QUESTION	PROMPT('Supply	word	to	describe+	
											WHAT	this	data	entry	program	wo+
											rks	with')	ANSWER(@@CANS001)	EX+
											TEND('The	word	you	specify	here+
											is	used	to	build	messages	that	+
											appear	on	the'	'data	entry	scre+
											en	panel.	You	should	use	ONE	wo+
											rd	only,	use	lowercase'	'charac+
											ters	only	and	only	use	singular+	
											form	(eg:	"customer",	"employee+
											"'	'"order").	Do	NOT	use	more	t+
											han	18	characters	in	your	answe+
											r.'	'Use	the	HELP	function	key	+
											for	more	information	and	exampl+
											es.')	HELPIDS	(HELP010	HELP020	+
											HELP030	HELP040	HELP050)
/*	==*/
/*	GET	NAME	OF	JUST	ONE	PHYSICAL	FILE																		*/
/*	Ask	the	user	to	enter	the	name	of	a	single	primary		*/
/*	file	used	for	data	entry.	Note	the	prompt	text						*/
/*	and	extended	prompt	text	that	can	be	entered	on	the	*/
/*	command.	More	detailed	help	can	also	be	entered	on		*/
/*	HELP	panels	for	the	template.																							*/
/*	==*/
@@GET_FILS	TO(1)	PROMPT('Enter	name	of	PHYSICAL	
											file	to	be	used	by	this	template')	E+
											XTEND('The	file	name	may	be	specifie+

											d	partially	(to	cause	a	partial'	'li+
											st	of	available	files	to	be	displaye+
											d),	or	in	left	blank	(to	cause	a	ful+
											l	list'	'of	available	files	to	be	di+
											splayed).		When	a	list	of	files	is	d+
											isplayed,'	'the	file	required	may	be+	
											selected	from	the	list.	'	'	'	'Use	t+
											he	HELP	function	key	for	more	detail+
											s	about	this	template	and'	'examples+
											of	the	type	of	RDML	applications	it	+
											can	create.')	HELPIDS(HELP010	HELP02+
											0	HELP030	HELP040	HELP050)
/*	===	*/
/*	GET	FIELDS	OF	CHOSEN	FILE	INTO	LIST	1											*/
/*	Note	that	all	lists	must	be	defined	by	an							*/
/*	@@CLR_LST	command	before	being	used	in	an							*/
/*	application	template.																											*/
/*	===	*/
@@CLR_LST		NUMBER(1)
@@RTV_FLDS	FROM_FILE(1)	INTO_LST(1)
/*	===	*/
/*	GET	KEYS	OF	CHOSEN	FILE	INTO	LIST	2													*/
/*	===	*/
@@CLR_LST		NUMBER(2)
@@RTV_KEYS	OF_FILE(1)	INTO_LST(2)
/*	===	*/
/*	GET	USER	TO	CHOOSE	FIELDS	TO	APPEAR	ON	PANEL						*/
/*	AND	PUT	RESULTS	INTO	LIST	3																							*/
/*	Note	how	the	keys	of	the	file	are	used	as	a							*/
/*	force	list	to	ensure	all	the	fields	are	chosen.			*/
/*	Note	the	column	headings	for	the	selection	column	*/
/*	and	that	sequence	numbers	are	pre-filled	on	all			*/
/*	fields	in	the	selection	list.	This	allows	fields		*/
/*	to	be	ordered	in	the	desired	sequence.												*/
/*	===	*/
@@CLR_LST		NUMBER(3)
@@MAK_LSTS	FROM_LSTS(1)	FORCE_LSTS(2)	INTO_LSTS+
											((3	'Fields	to'	'Appear	on'	'Entry	P+
											anel'	*SEQUENCE	*ALL))	HELPIDS(HELP0+

											10	HELP020	HELP030	HELP040	HELP050)
/*	==	*/
/*	GET	USER	TO	CHOOSE	FIELDS	TO	WORK	WITHIN							*/
/*	PROGRAM	AND	PUT	RESULTS	INTO	LIST	4												*/
/*	Note	that	this	list	only	requires	the	user	to		*/
/*	enter	anynon-blank	character	to	select	a	field.*/
/*	===*/
@@CLR_LST		NUMBER(4)
@@MAK_LSTS	FROM_LSTS(1)	INTO_LSTS((4	'Fields	to	'	'+
											Work	with		''in	Program	'	*YESNO	*NO))	H+	
											ELPIDS(HELP010	HELP020	HELP030	HELP040	H+
											ELP050)
/*	===	*/
/*	MERGE	FIELDS	IN	LIST	4	INTO	LIST	3	AS	*HIDDEN							*/
/*	The	fields	selected	as	fields	to	be	worked	with	in		*/
/*	the	program	are	merged	to	list	3	with	the	*HIDDEN			*/
/*	attribute	if	not	already	selected	in	list	3	by	the		*/
/*	previous	@@MAK_LSTS	command.																								*/
/*	===	*/
@@MRG_LSTS	FROM_LSTS((4	*HIDDEN))	INTO_LST(3)
/*	===	*/
/*	ASK	HOW	THE	PANEL	IS	TO	BE	DESIGNED													*/
/*	===	*/
@@QUESTION	PROMPT('Design	fields	on	data	entry+	
											panel	DOWN	the	screen	or	ACROSS	the+	
											screen')	ANSWER(@@CANS002)	EXTEND('+
											Reply	DOWN	or	ACROSS	only.'	'If	you+
											r	data	entry	panel	contains	17	(or	+
											less)	fields,	DOWN	is	the			'	'reco+
											mmended	value.	If	your	data	entry	p+	
											anel	contains	more	than	17'	'fields+
											,	ACROSS	is	the	recommended	value.'+
											'Use	the	HELP	function	key	for	more+
											information	and	examples.')	LOWER(*+
											NO)	VALUES(DOWN	ACROSS)	HELPIDS(HEL+
											P010	HELP020	HELP030	HELP040	HELP05+
											0)
/*	==*/
/*	GENERATE	THE	RDML	PROGRAM																									*/

/*	The	following	code	consists	only	of	RDML	that					*/
/*	will	appear	in	the	generated	RDML	program.								*/
/*	Note	the	use	of	special	@@	variables	in	the	RDML		*/
/*	commands--these	are	substituted	when	the	template	*/
/*	is	executed.																																						*/
/*	===	*/
@@COMMENT		'Function	control	options'
FUNCTION			OPTIONS(*NOMESSAGES	*DEFERWRITE)
@@COMMENT		'Group	and	field	declarations'
/*																																																					*/
/*	The	following	command	will	not	be	accepted	by	the			*/
/*	CL	syntax	checker,	it	must	be	forced	to	be	accepted	*/
/*	as	it	will	be	quite	valid	when	the	special	variable	*/
/*	@@LST03	is	relaced	by	the	list	3	elements	when						*/
/*	executing	this	template.	Do	not	code																*/
/*	FIELDS((#@@LST03))as	this	will	generate													*/
/*	an	invalid	RDML	command.	This	error																	*/
/*	may	also	be	true	for	other	RDML	commands.	It								*/
/*	will	be	necessary	to	force	these	errors	to										*/
/*	be	accepted	also	(e.g.	the	DESIGN	parameter	of						*/
/*	the	REQUEST	command)																																*/
/*																																																					*/
GROUP_BY			NAME(#PANELDATA)	FIELDS(@@LST03)
@@COMMENT		'Issue	initial	data	entry	message'
MESSAGE				MSGID(DCU0010)	MSGF(DC@M01)	+
											MSGDTA('''@@CANS001''')
@@COMMENT		'Do	data	entry	until	terminated	by	+
											EXIT	or	CANCEL'
BEGIN_LOOP
@@COMMENT		'Request	user	inputs	or	corrects	details'
REQUEST				FIELDS(#PANELDATA)	DESIGN(*@@CANS002)+	
											IDENTIFY(*LABEL)
@@COMMENT		'Perform	any	program	level	validation	here'
BEGINCHECK
ENDCHECK
@@COMMENT		'Attempt	to	insert	data	into	the	data	base'
INSERT					FIELDS((#PANELDATA))	TO_FILE(@@FNAME01)
@@COMMENT		'If	okay,	reset	fields	and	issue	accepted	+
											message'

CHANGE					FIELD(#PANELDATA)	TO(*DEFAULT)
MESSAGE				MSGID(DCU0011)	MSGF(DC@M01)	+
											MSGDTA('''@@CANS001''')
END_LOOP
/*	===	*/
/*	CLEAR	ALL	LISTS	USED																												*/
/*	At	the	end	of	all	application	templates,	it					*/
/*	is	suggested	that	all	work	lists	in	the									*/
/*	template	are	cleared	to	delete	all	work	records	*/	
/*	from	the	database.																														*/
/*	===	*/
@@CLR_LST		NUMBER(1)
LST		NUMBER(2)
@@CLR_LST		NUMBER(3)
@@CLR_LST		NUMBER(4)
	

14.23.2	Header/Detail	style	inquiry	program
The	following	is	an	example	of	a	fairly	complex	application	template	for	a
header/detail	style	inquiry	program:
	/*	===	*/
	/*	GET	NAMES	OF	UP	TO	50	RELATED	FILES																					*/
	/*	Note	that	the	user	can	select	up	to	50	physical	or						*/
	/*	logical	files	including	1:n	relationships.														*/
	/*	===	*/
	@@GET_FILS	TO(50)	PHY_ONLY(*NO)	SGL_ONLY(*NO)+	
												PROMPT('Enter	the	name	of	the	base+
												file	to	be	used	by	this	template')+	
												EXTEND('The	file	name	may	be	speci+
												fied	partially		(to	cause	a	partia+
												l'	'list	of	available	files	to	be	+
												displayed),	or	in	left	blank	(to	c+
												ause	a	full	list'	'of	available	fi+
												les	to	be	displayed).		When	a	list+
												of	files	is	displayed,'	'the	file	+
												required	may	be	selected	from	the	+
												list.'	'	'	'Use	the	HELP	function	+
												key	for	more	details	about	this	te+	
												mplate		and'	'examples	of	the	type+
												of	RDML	applications	it	can	create+
												.')	HELPIDS(HELP010	HELP020	HELP03+
												0	HELP040)
/*	===	*/
/*	LOAD	DETAILS	OF	FIELDS	OF	"HEADER"	INTO	LIST	1										*/
/*	LOAD	DETAILS	OF	FIELDS	OF	"BROWSE"	INTO	LIST	2										*/
/*	Use	special	variable	@@FAREAnn	to	separate	fields	in				*/
/*	the	header	and	browse	portions	of	the	panel.												*/
/*	Note	the	use	of	an	index	to	control	the	loading	of						*/
/*	multiple	file	information.																														*/
/*	===	*/
						@@CLR_LST		NUMBER(1)
						@@CLR_LST		NUMBER(2)
						@@SET_IDX		IDX_NAME(CF)	TO(1)
	A10:	@@LABEL

						@@CMP_IDX		IDX_NAME(CF)	IDX_VALUE(@@TFMX)	IF_GT(A20)
						@@IF							COND((*IF	@@FAREACF	*NE	B))	GOTO(A12)
						@@RTV_FLDS	FROM_FILE(CF)	INTO_LST(2)
						@@GOTO					LABEL(A14)
	A12:	@@RTV_FLDS	FROM_FILE(CF)	INTO_LST(1)
	A14:	@@INC_IDX		IDX_NAME(CF)
						@@GOTO					LABEL(A10)
	A20:	@@LABEL
/*	==*/
/*	ASK	THE	USER	TO	SELECT	THE	HEADER	FIELDS	REQUIRED			*/
/*	==*/
@@CLR_LST		NUMBER(11)
@@MAK_LSTS	FROM_LSTS(1)	INTO_LSTS((11	'Fields	in'+
											'Header'	'Area'	*SEQUENCE	*ALL))	HELPI+
											DS(HELP010	HELP020	HELP030	HELP040)
/*	===*/
/*	ASK	THE	USER	TO	SELECT	THE	BROWSE	FIELDS	REQUIRED		*/
/*	===*/
@@CLR_LST		NUMBER(22)
@@MAK_LSTS	FROM_LSTS(2)	INTO_LSTS((22	'Fields	in'+	
											'Detail/List'	'Area'	*SEQUENCE	*ALL))	+
											HELPIDS(HELP010	HELP020	HELP030	HELP0	+
											40)
/*	===*/
/*	ASK	THE	USER	HOW	TO	DESIGN	THE	PANELS														*/
/*	===*/
@@QUESTION	PROMPT('Design	fields	in	the	header	a	+
											rea	DOWN	the	screen	or	ACROSS	the	scre+
											en')	ANSWER(@@CANS002)	EXTEND('Reply	D+
											OWN	or	ACROSS	only.'	'If	your	header	a+
											rea	contains	10	(or	less)	fields,	DOWN+
											is	the			'	'recommended	value.+	
											If	your	header	area	contains	more	than+
											10'	'fields,	ACROSS	is	the	recommended+
											value.'	'Use	the	HELP	function	key	for+
											more	information	and	examples.')	LOWER+
											(*NO)	VALUES(DOWN	ACROSS)	HELPIDS(HELP+
											010	HELP020	HELP030	HELP040)
/*	===	*/

/*	MERGE	ALL	RELATED	KEY	FIELDS	INTO	LIST	11	OR	LIST	22				*/
/*	AS	*HIDDEN	FIELDS.	LIST	3	IS	A	WORKING	LIST	ONLY								*/
/*	Note	the	use	of	@@RTV_RELN	command	to	get	the	keys	of			*/
/*	the	secondary	files.																																				*/
/*	===	*/
						@@SET_IDX		IDX_NAME(CF)	TO(2)
	A30:	@@LABEL
						@@CMP_IDX		IDX_NAME(CF)	IDX_VALUE(@@TFMX)	+
																	IF_GT(A40)
						@@CLR_LST		NUMBER(3)
						@@RTV_RELN	OF_FILE(CF)	INTO_LST(3)
						@@IF							COND((*IF	@@FAREACF	*NE	B))	+
																	GOTO(A34)
						@@IF							COND((*IF	@@FRELRCF	*EQ	M))	+
																	GOTO(A34)
						@@MRG_LSTS	FROM_LSTS((3	*HIDDEN))	INTO_LST(22)
						@@GOTO					LABEL(A36)
	A34:	@@MRG_LSTS	FROM_LSTS((3	*HIDDEN))	INTO_LST(11)
	A36:	@@INC_IDX		IDX_NAME(CF)
						@@GOTO					LABEL(A30)
	A40:	@@LABEL
/*	===	*/
/*	GENERATION	OF	RDML	CODE	STARTS	HERE																					*/
/*	===	*/
						FUNCTION			OPTIONS(*NOMESSAGES	*DEFERWRITE)
						GROUP_BY			NAME(#HEADER)	FIELDS(@@LST11)
						DEF_LIST			NAME(#LIST)	
																	FIELDS((#LISTDUMMY	*HIDDEN)	@@LST22)
						@@COMMENT		'Loop	until	user	EXITs	or	CANCELs'
						BEGIN_LOOP
/*	===	*/
/*	REQUEST	KEYS	OF	THE	BASE	FILE	BE	INPUT	AND	GET	DATA					*/
/*	===	*/
						@@CLR_LST		NUMBER(3)
						@@RTV_KEYS	OF_FILE(1)	INTO_LST(3)
	R10:	REQUEST				FIELDS(@@LST03)	DESIGN(*@@CANS002)	+
																	IDENTIFY(*LABEL)
/*	===	*/
/*	GENERATE	FETCH	TO	THE	PRIMARY	FILE																						*/

/*	===	*/
						@@COMMENT		COMMENT('Fetch	file	@@FNAME01	details					')
						FETCH						FIELDS((#HEADER))	+			
																	FROM_FILE(@@FNAME01)	+
																	WITH_KEY(@@LST03)	NOT_FOUND(R10)	+
																	ISSUE_MSG(*YES)
	/*	===	*/
	/*	GENERATE	FETCHES	TO	ALL	FILES	IN	THE	HEADER	AREA								*/
	/*	===	*/
						@@SET_IDX		IDX_NAME(CF)	TO(2)
	H10:	@@LABEL
						@@CMP_IDX		IDX_NAME(CF)	IDX_VALUE(@@TFMX)	+
																	IF_GT(H20)
						@@IF							COND((*IF	@@FAREACF	*EQ	B))	GOTO(H15)
						@@CLR_LST		NUMBER(3)
						@@RTV_RELN	OF_FILE(CF)	INTO_LST(3)
						@@COMMENT		COMMENT('Fetch	file	@@FNAMECF	details					')
						FETCH						FIELDS((#HEADER))	FROM_FILE(@@FNAMECF)	+
																	WITH_KEY(@@LST03)
	H15:	@@INC_IDX		IDX_NAME(CF)
						@@GOTO					LABEL(H10)
	H20:	@@LABEL
	/*	===	*/
	/*	NOW	EXTRACT	DATA	TO	BE	PLACED	INTO	THE	BROWSE	LIST						*/
	/*	===	*/
						@@SET_IDX		IDX_NAME(CF)	TO(2)
						@@SET_IDX		IDX_NAME(SC)	TO(0)
	A50:	@@LABEL
						@@CMP_IDX		IDX_NAME(CF)	IDX_VALUE(@@TFMX)	+
																	IF_GT(A80)
						@@IF							COND((*IF	@@FAREACF	*NE	B))	GOTO(A78)
						@@CLR_LST		NUMBER(3)
						@@RTV_RELN	OF_FILE(CF)	INTO_LST(3)
						@@IF							COND((*IF	@@FRELRCF	*EQ	M))	GOTO(A55)
						/*	FETCH	INTO	THE	LIST	ENTRY																															*/
						@@COMMENT		COMMENT('Fetch	file	@@FNAMECF	details					')
						FETCH						FIELDS((#LIST))	FROM_FILE(@@FNAMECF)	+
																	WITH_KEY(@@LST03)
						@@GOTO					LABEL(A78)

						/*	THE	ONE	AND	ONLY	SELECT	COMMAND																									*/
	A55:	@@COMMENT		COMMENT('Select	all	file	@@FNAMECF	details')
						@@INC_IDX		IDX_NAME(SC)
						SELECT					FIELDS((#LIST))	FROM_FILE(@@FNAMECF)	+
																	WITH_KEY(@@LST03)
						@@GOTO					LABEL(A78)
						/*	INC	INDEX	AND	LOOP	AROUND																															*/
	A78:	@@INC_IDX		IDX_NAME(CF)
						@@GOTO					LABEL(A50)
	A80:	@@LABEL
/*	===	*/
/*	ADD_ENTRY	AND	ENDSELECT	FOR	THE	LIST	(IF	SELECT	USED)			*/
/*	===	*/
						@@CMP_IDX		IDX_NAME(SC)	IDX_VALUE(0)	IF_EQ(A90)
						ADD_ENTRY		TO_LIST(#LIST)
						ENDSELECT
	A90:	@@LABEL
/*	===	*/
/*	DISPLAY	DETAILS	TO	THE	USER																													*/
/*	===	*/
						@@COMMENT		COMMENT('Display	results	to	the	user')
						DISPLAY				FIELDS(#HEADER)	DESIGN(*@@CANS002)+
																	IDENTIFY(*LABEL)+	
																	BROWSELIST(#LIST)
						@@COMMENT		COMMENT('Clear	header	and	list	and	+
																	loop	around	')
						CHANGE					FIELD(#HEADER)	TO(*DEFAULT)
						@@CMP_IDX		IDX_NAME(SC)	IDX_VALUE(0)	IF_EQ(A95)
						CLR_LIST			NAMED(#LIST)
	A95:	@@LABEL
						END_LOOP
/*	===	*/
/*	CLEAR	ALL	LISTS	USED																																				*/
/*	===	*/
						@@CLR_LST		NUMBER(1)
						@@CLR_LST		NUMBER(2)
						@@CLR_LST		NUMBER(3)
						@@CLR_LST		NUMBER(11)
						@@CLR_LST		NUMBER(12)

15.	External	Resource	Definitions
15.1	External	Resource
Name
15.4	External	Resource
Description

15.6	External	Resource
Encoding
15.2	External	Resource
LANSA	Folder

15.3	External	Resource
File	Name
15.5	External	Resource
Content	Type

External	Resources	allow	you	to	manage	files	that	are	created	or	updated
externally	but	are	part	of	your	LANSA	application.	External	resources	may	be
Javascript,	HTML-pages	and	images	for	web-development,	or	even	simple
configuration	files	for	desktop-applications.
These	files	can	be	registered	in	the	Repository,	checked	into	an	IBM	i	master
and	deployed	using	the	LANSA	Deployment	Tool.

Also	see
Register	Multiple	External	Resources
Register	a	Single	External	Resource	in	the	User	Guide.

its:lansa013.chm::/lansa/L4wDev07_0350.htm
its:lansa012.chm::/lansa/L4wUsr04_0405.htm

15.1	External	Resource	Name
Mandatory.
Specify	the	name	of	the	External	Resource	to	be	stored	in	the	LANSA
Repository.	This	is	a	LANSA	name	and	will	be	used	to	identify	the	External
Resource	in	the	LANSA	Repository.
Rules

Must	be	a	valid	LANSA	Object	Name.
Tips	&	Techniques

Using	the	Register	External	Resources	dialog	you	can	quickly	register	many
external	resources	at	on	time	and	they	will	be	named	consistently	using	your
specified	prefix.

Also	See
Create	External	Resource	in	the	User	Guide
	15.	External	Resource	Definitions

its:lansa012.chm::/lansa/l4wusr04_0080.htm

15.2	External	Resource	LANSA	Folder
Mandatory.
Specify	the	LANSA	folder	that	is	the	root	of	External	Resource	location.
Registering	an	External	Resource	in	the	context	of	a	known	LANSA	folder
allows	you	to	move	the	External	Resource	from	one	system	to	another	(Check-
in/Check-out,	Import/Export,	Deployment)	as	all	LANSA	systems	understand
the	physical	location	of	their	(logical)	folders.
Tips	&	Techniques

Whenever	you	select	a	file,	its	path	is	analyzed	and	the	LANSA	folder	is
automatically	determined.

Also	See
Create	External	Resources	in	the	User	Guide
	15.	External	Resource	Definitions

its:lansa012.chm::/lansa/l4wusr04_0080.htm

15.3	External	Resource	File	Name
Mandatory.
Specify	the	file	that	is	to	be	managed	as	an	External	Resource.	This	file	will	be
stored	in	the	LANSA	Repository	and	can	be	deployed	to	other	LANSA	systems.
Tips	&	Techniques

Select	the	LANSA	folder	first,	then	the	prompter	will	then	take	you	to	the
corresponding	directory.

Also	See
Create	External	Resources	in	the	User	Guide
	15.	External	Resource	Definitions

its:lansa012.chm::/lansa/l4wusr04_0080.htm

15.4	External	Resource	Description
Mandatory.
Specify	the	description	associated	with	the	External	Resource.
Tips	&	Techniques

Select	the	file	first,	and	the	description	will	default	to	the	file	name.

Also	See
Create	External	Resources	in	the	User	Guide
	15.	External	Resource	Definitions

its:lansa012.chm::/lansa/l4wusr04_0080.htm

15.5	External	Resource	Content	Type
Optional.
Specifies	wether	an	External	Resource	contains	text	or	binary	data.	For	text	data
you	must	specify	the	encoding.
Note:	The	encoding	information	is	currently	used	only	to	provide	the	correct
CCSID	when	extracting	on	an	IBM	i.

Also	See
Create	External	Resources	in	the	User	Guide
	15.	External	Resource	Definitions

its:Lansa012.chm::/lansa/l4wusr04_0080.htm

15.6	External	Resource	Encoding
Optional.
Specifies	the	text	encoding	of	an	External	Resource	contains	that	text	data.
Note:	The	encoding	information	is	currently	used	only	to	provide	the	correct
CCSID	when	extracting	on	an	IBM	i.

Also	See
Create	External	Resources	in	the	User	Guide
	15.	External	Resource	Definitions

	

its:Lansa012.chm::/lansa/l4wusr04_0335.htm

16.	Windows	and	Linux	Considerations
16.1	Reporting	Considerations
16.2	"Job"	Numbers
16.3	Batch	Jobs
16.4	IBM	i	Job	Queue	Emulation
16.5	The	RUNSQL	Utility
16.5	The	RUNSQL	Utility
16.7	Sizing	RDML	Windows
16.8	Windows	64-bit	Support
16.9	Linux	Differences
16.10	Code	Page	Considerations
16.11	Regional	Settings

16.1	Reporting	Considerations
When	working	with	reporting	functions	with	Visual	LANSA	you	should	be
aware	of	the	following:
Output	for	reports	will	be	directed	to	the	printer	port	specified	by	the	X_RUN
parameter	PRTR	unless	the	special	value	PRTR=*PATH	is	specified.
If	the	special	value	PRTR=*PATH	is	specified	output	for	reports	will	be
directed	to	files	in	the	directory	specified	by	the	X_RUN	parameter	PPTH.

The	name	of	each	report	file	will	be:
fffffff.nnn

where
fffffff	is	the	function	name	(in	a	valid	filename	form)
nnn	is	the	next	consecutive	number	for	this	function	in	this	directory.	There
can	be	a	maximum	of	999	report	files	in	the	PPTH	directory	for	any	one
function	at	any	time.

For	example,	a	reporting	function	named	FREPORT	might	output	three	reports.
Executing	this	function	would	produce	files	FREPORT.001,	FREPORT.002	and
FREPORT.003	in	the	PPTH	directory.	If	the	same	function	is	executed	again	it
would	produce	files	FREPORT.004,	FREPORT.005	and	FREPORT.006,	and	so
on	until	previous	FREPORT.nnn	files	are	deleted.
Refer	to	the	topic	Using	the	X_RUN	Command	for	details	of	the	X_RUN
parameters	PRTR	and	PPTH.

16.2	"Job"	Numbers
When	using	IBM	i,	a	job	number	is	automatically	assigned	by	the	system	when
a	user	signs	onto	a	workstation	or	submits	a	job.	At	a	workstation,	multiple
processes	and	functions	can	be	run	in	separate	invocations	from	the	same	job	all
having	the	same	job	number.
When	running	Visual	LANSA	applications,	a	job	number	will	be	assigned	for
each	invocation	of	the	X_RUN	function	whether	it	is	run	from	the	same	window
or	not.
This	information	is	important	if	your	functions	rely	upon	job	numbers	or	use	the
job	number	system	variable.

16.3	Batch	Jobs
A	batch	job	in	Visual	LANSA	is	not	the	same	as	a	batch	job	on	the	IBM	i	even
though	Visual	LANSA	supports	multi-tasking.
When	a	batch	job	in	Visual	LANSA	is	executed,	an	independent	session	is
started.	This	will	appear	as	a	child	window	in	your	application.	The	window
will	display	the	status	of	the	batch	job.	All	messages	issued	by	the	batch	job	will
be	displayed	in	the	window.	When	the	job	completes,	a	message	is	displayed	in
the	window.
If	the	batch	job	completes	successfully,	then	the	window	will	close
automatically.	If	the	batch	job	fails,	a	message	will	appear	and	the	window	will
not	disappear.	It	is	necessary	to	click	on	OK	to	close	the	window.
Be	careful	when	testing	your	executing	batch	jobs	where	you	require	single
threaded	job	queues,	i.e.	batch	jobs	which	must	execute	consecutively.	Refer	to
IBM	i	Job	Queue	Emulation	for	details	of	how	to	execute	batch	jobs
consecutively.
Batch	Jobs	on	Linux
LANSA	only	ever	uses	Linux	as	a	Server	so	there	is	no	interactive	user	interface
provided	for	Linux.	When	executing	on	a	Linux	platform	all	batch	messages	are
directed	to	the	standard	error	file	(stderr)	and	also	to	the	system	log.
You	may	redirect	stderr	to	a	file	by	appending	2>	pathname,	where	pathname	is
a	filename,	to	your	X_RUN	command.
Refer	to	the	syslog	man	page	on	your	Linux	system	for	details	on	how	to
capture	LANSA	syslog	events.
IBM	i	job	queues	can	be	emulated	on	Linux	as	described	in	IBM	i	Job	Queue
Emulation.

16.4	IBM	i	Job	Queue	Emulation
A	facility	exists	within	Visual	LANSA	to	allow	Windows	applications	to
emulate	the	type	of	processing,	that	can	be	provided	by	IBM	i	job	queues	and
subsystems.
A	reasonable	understanding	of	IBM	i	job	queues	and	subsystems	is	assumed
knowledge	throughout	this	section.
The	LANSA	RDML	SUBMIT	command	is	used	to	initiate	a	"batch"	job	from
an	executing	RDML	function.	This	means	that	the	executing	function	starts	(or
spawns)	another	function	to	execute	within	the	environment.	The	spawned
function	executes	concurrently	with,	and	completely	independently	of,	the
function	that	submitted	it.
A	shipped	Visual	LANSA	system	does	not	normally	have	IBM	i	job	queue
emulation	enabled.
In	this	default	environment	the	SUBMIT	command	works,	but	there	is	no
inherent	ability	to	queue	the	submitted	jobs	for	deferred	or	serial	execution.
If	you	do	this:
begin_loop	from(1)	to(5)	
						submit	process(demo)	function(test)	
end_loop

then	all	five	spawned	functions	will	begin	to	execute	as	soon	as	they	are
submitted.	This	means	that	it	is	likely	that	all	five	spawned	functions	will	end
up	executing	immediately	(and	concurrently).
However,	by	using	the	IBM	i	job	queue	emulation	facility	you	can	queue	up	all
five	functions	so	that	they	are	executed	serially,	or	so	that	their	execution	is
deferred	until	some	predetermined	time	(e.g.	overnight).
This	type	of	job	queuing	is	often	called	"batch	processing".

Also	see
16.4.1	Establishing	the	X_JOBQ.DAT	File
16.4.2	Starting,	Stopping,	Holding	and	Releasing	Job	Queues
16.4.3	Job	Queue	Priorities
16.4.4	Additional	Job	Queue	Monitor	Parameters
16.4.5	Submitting	Jobs	Across	a	Network
16.4.6	Implementation,	Performance	and	Throughput

16.4.7	Encrypting	the	Job	Queue	Details

16.4.1	Establishing	the	X_JOBQ.DAT	File
To	use	this	emulation	facility	you	must	first	establish	a	file	called
X_JOBQ.DAT	in	the	primary	x_lansa	directory	(for	example	c:\program
files\LANSA\x_win95\x_lansa	under	Windows	32-bit).
Note	that	when	executing	a	64-bit	application,	x_win64	replaces	x_win95.
This	file	specifies,	for	all	associated	partitions,	the	names	of	the	job	queues	and
optionally,	job	descriptions	which	use	this	facility.
Any	reference	to	job	queues	or	job	descriptions	that	are	not	defined	in
X_JOBQ.DAT	remain	unchanged	and	continue	to	execute	in	the	default	manner.
X_JOBQ.DAT	is	a	text	file	that	can	be	created	and	edited	with	most	text	editors.
For	example,	X_JOBQ.DAT	may	be	defined	like	this:
jobq=qbatch=c:\jobq\qbatch	
jobd=qbatch=c:\jobq\qbatch

These	X_JOBQ.DAT	entries	indicate	that	any	SUBMIT	command	reference	to
job	queue	qbatch	or	job	description	qbatch	should	be	routed,	as	a	IBM	i
emulated	job,	into	the	directory	c:\jobq\qbatch	for	execution	at	some	later
time	by	the	"monitor"	of	that	queue	(more	information	about	queue	"monitors"
follows).
Important	things	you	must	know	about	this	file:
Each	line	must	be	formatted,

<type>=<name>=<path>			where:

																	 <type> Must	be	"JOBQ"	(job	queue)	or	"JOBD"	(job	description).

	 <name> Is	the	job	queue	or	job	description	name	which	must
conform	to	IBM	i	object	naming	conventions.

	 <path> Is	the	fully	qualified	path	name	to	a	directory	that	will	be
used	as	the	job	"queue".	The	directory	must	exist	at	the	time
you	begin	to	execute	any	application	that	references	a	job
queue	or	description	in	this	file.	The	path	name	does	not
have	to	be	associated	with	the	queue	or	job	description
name	in	any	way.

Lines	not	formatted	in	this	manner	will	be	ignored.	No	error	messages	are
issued	for	ignored	lines.

Notes

JOBQ=	entries	may	exist	by	themselves.
Every	JOBD=	entry	must	have	an	associated	JOBQ=	entry	that	has	exactly
the	same	path	details.	This	allows	job	description	names	to	be	associated	with
a	job	queue	name.
All	JOBD=	names	must	be	unique.
All	JOBQ=	names	must	be	unique.
Every	unique	JOBQ=	entry	must	have	an	associated	unique	directory	path
that	must	exist	and	be	accessible	at	execution	time.	All	users	require	write
access	to	the	directory.	Job	queue	monitors	require	full	read,	write,	update	and
delete	rights	to	the	directory.
No	individual	entry	line	in	X_JOBQ.DAT	can	exceed	256	bytes.
Entries	in	X_JOBQ.DAT	are	all	read	into	memory	the	first	time	that	they	are
referenced.	Subsequent	references	within	the	same	x_run	session	refer	to	the
details	stored	in	memory.	This	means	that	changes	to	X_JOBQ.DAT	may	not
be	reflected	in	currently	active	x_run	sessions/jobs.
When	you	submit	a	job	to	a	job	queue	in	LANSA	on	a	windows	environment,
the	job	appears	with	a	'Q'	extension,	e.g.,	job	T313330.Q50.	The	Q	extension
is	given	a	unique	alpha/numeric	identifier	for	each	job	submitted	in	one
second	for	a	particular	process.	For	example	if	job	T313330.	Q50	is
submitted	with	other	jobs	in	the	same	second,	LANSA	will	start	assigning
extensions	Q51,	Q52,...,	Q5A,	Q5B,	Q5C,	...	Q5Z.	There	is	a	limit	of	36	jobs
per	second	applicable	for	this	unique	identifier.	To	avoid	any	potential	loss	or
corruption	of	submitted	jobs,	you	should	not	submit	more	than	36	jobs	per
second.	If	your	requirements	have	the	potential	to	submit	more	than	36	jobs
per	second,	you	should	include	some	logic	to	delay	the	submission	of	jobs.
When	jobs	are	submitted	to	an	emulated	IBM	i	job	queue	they	always	have
their	TPTH=	parameter	set	to	the	same	value	as	the	path	associated	with	the
job	queue	regardless	of	how	the	TPTH=	value	of	the	submitting	job	is	set.
The	Job	Description	and	Job	Queue	Name	XLANSAJOBX	has	been	reserved
for	LANSA	internal	use.	Do	not	define	it	in	X_JOBQ.DAT

Once	set	up,	entries	in	this	file	will	cause	all	SUBMIT	commands	to	examine	its
contents.	If	a	match	is	found	for	the	referenced	job	queue	or	job	description
name,	then	the	submitted	job	will	be	"routed"	to	the	specified	directory.
The	routing	process	consists	of	creating	a	series	of	binary	files	in	the	directory
that	contain	details	of	the	submitted	job	(e.g.	request	details,	exchange	values,
LDA	values,	etc).	These	values	are	in	binary	format	and	they	should	not	be

edited	or	changed.
The	series	of	binary	files	representing	the	"queued"	batch	job	will	wait	until
their	presence	is	detected,	by	the	"monitor"	assigned	to	the	job	queue.

16.4.2	Starting,	Stopping,	Holding	and	Releasing	Job	Queues
Once	you	have	defined	entries	in	X_JOBQ.DAT,	and	can	submit	jobs	into	the
directory	associated	with	a	job	queue,	you	need	to	understand	how	to	start	a
"monitor"	against	a	job	queue.
To	do	this,	simply	use	a	normal	x_run	command	like	this:
X_RUN	PROC=*STRJOBQ	QNAM=QBATCH	...	etc

This	example	would	start	a	monitor	running	against	the	job	queue	defined	in
X_JOBQ.DAT	with	the	name	QBATCH.
Under	Windows	you	should	actually	use:
START	X_RUN	PROC=*STRJOBQ	QNAM=QBATCH	...	etc

to	start	the	monitor	running	as	another	process.
You	can	also	control	a	job	queue	monitor	by	using:

X_RUN	PROC=*HLDJOBQ	QNAM=
<queue>

to	"hold"	a	job	queue.

X_RUN	PROC=*RLSJOBQ	QNAM=<queue> to	"release"	a	job	queue.

X_RUN	PROC=*ENDJOBQ	QNAM=<queue> to	"end"	a	job	queue
monitor.

To	clear	a	job	queue,	simply	erase	all	files	in	the	nominated	job	queue	directory
(but	only	when	the	monitor	is	not	active).
A	monitor	can	only	monitor	a	single	queue.
Two	or	more	monitors	cannot	monitor	the	same	queue	at	the	same	time.
To	see	if	a	monitor	is	already	attached	to	the	queue,	see	if	x_q_lck.sts	exists	in
the	associated	directory.	If	it	does	exist,	it	indicates	that	a	job	queue	monitor	is
attached,	and	the	file	should	contain	the	process	id	(as	text)	of	the	current
monitor.	Also,	the	current	status	of	the	queue	is	stored	in	file	x_q_sts.sts	-	either
ACTIVE	or	HELD.	If	there	is	no	monitor	attached,	the	two	*.sts	files	will	not
exist.	This	effectively	means	the	job	queue	is	stopped/ended.

16.4.3	Job	Queue	Priorities
Job	queue	monitors	support	the	IBM	i	concept	of	job	queue	priorities.
Under	IBM	i,	job	queue	priority	is	determined	by	the	job	description	that	the	job
is	submitted	under.
Each	job	on	a	job	queue	is	assigned	a	priority	in	the	range	0	to	9.
Jobs	with	the	lowest	priority	value	(i.e.	closest	to	0)	execute	first	(i.e.	they	have
the	highest	priority	on	the	queue).
Within	a	single	priority	value,	jobs	are	executed	in	order	of	arrival	on	the	queue.
The	job	queue	priority	of	the	jobs	that	you	submit	can	also	be	controlled	by
using	the	shipped	Built-In	Function	SET_SESSION_VALUE.
The	default	priority	is	5.

16.4.4	Additional	Job	Queue	Monitor	Parameters
When	you	use	x_run	PROC=*STRJOBQ	to	start	the	execution	of	a	job	queue
monitor,	you	may	also	choose	to	alter	these	parameters:

QCHK=nnnn Specifies	an	integer	value	in	the	range	0	to	9999	indicating
approximately	how	often	(in	seconds)	an	active	monitor	should
wait	before	(re)checking	the	job	queue	directory	for	jobs	to
execute.
The	default	value	is	10	seconds.

QHLD=nnnn Specifies	an	integer	value	in	the	range	0	to	9999	indicating
approximately	how	often	(in	seconds)	a	held	job	queue	monitor
should	wait	before	(re)checking	the	job	queue	directory	for	a
release	instruction.
The	default	value	is	30	seconds.

QENC=Y Encrypt	the	job	details	before	placing	them	on	the	queue.	Refer	to
16.4.7	Encrypting	the	Job	Queue	Details	for	details.

16.4.5	Submitting	Jobs	Across	a	Network
If	an	X_JOBQ.DAT	file	was	set	up	like	this:
							jobq=qbatch=c:\jobqs\qbatch	
							jobq=qbnetw=s:\work\jobqs\qbatchn

where	c:	is	the	current	PC's	local	hard	drive	and	s:	is	a	shared	network	drive,
then	it	is	easy	to	see	how	this	facility	can	be	extended	to	allow	jobs	to	be
submitted	across	a	network.
If	the	current	PC	did	a	START	x_run	PROC=*STRJOBQ	QNAM=QBATCH
and	the	network	file	server	PC	did	START	x_run	PROC=*STRJOBQ
QNAM=QBNETW,	then	at	any	time	a	user	of	the	local	PC	could	elect	to	submit
jobs	locally	(to	queue	QBATCH)	or	for	execution	on	the	network	file	server	(to
queue	QBNETW).
Ideally	the	"submitting"	PC	and	the	"monitoring"	PC	should	be	using	the	same
operating	system	and	the	same	code	page	set.	Failure	to	observe	this	guideline
may	lead	to	complexities	in	the	exchanging	of	language-dependent	character
strings.
Where	the	submitting	PC	and	monitoring	PC	may	use	different	operating
systems	and/or	code	page	sets,	you	should	avoid	designing	applications	that
exchange	(in	any	way	at	all)	information	that	contains	language-dependent
character	strings.
It	is	a	requirement	of	this	implementation	that	both	the	submitting	and	receiving
PCs	use	identical	system	configurations	in	such	things	as	partition	definitions,
supported	languages,	decimal	points,	date	formats	and	so	on.
Generally,	in	implementations	like	this,	both	the	local	PC	and	the	network	file
server	PC	would	have	access	to	a	common	shared	database	as	well.

16.4.6	Implementation,	Performance	and	Throughput
The	IBM	i	job	queue	emulation	facilities	were	designed	with	these	objectives	in
mind:
Persistence.
The	ability	to	queue	tasks	when	the	"monitor"	is	not	active.	Submitted	jobs
persist	beyond	the	duration	of	a	session,	and	even	when	the	entire	machine	is
powered	down	and	up	again.
This	is	not	supported	when	encryption	of	the	job	details	is	switched	on.
This	is	because	the	encryption	key	is	only	valid	whilst	the	Job	Queue	Monitor	is
running.	Another	instance	of	the	Job	Queue	Monitor	uses	a	new	key	and	thus
any	existing	jobs	cannot	be	decrypted,	and	indeed	are	automatically	deleted	if
any	exist.
Portability.
The	method	used	to	emulate	IBM	i	job	queues	has	no	deep	operating	system
dependencies	and	can	be	easily	ported	to	other	multi-tasking	operating	systems
in	the	future.
Volume	capabilities	and	throughput	rates	similar	to	the	IBM	i	facilities
The	IBM	i	subsystem	and	job	queue	facilities	are	designed	to	handle	relatively
low	batch	job	throughput	rates	of	at	most	one	job	every	2	to	5	seconds.
Ultimately	the	throughput	rate	is	governed	by	the	amount	of	work	that	a
submitted	job	does	(i.e.	in	making	jobs	behind	it	on	the	queue	wait),	but	rates
beyond	1	job	per	2	-	3	seconds,	no	matter	how	simple	the	submitted	job,	and	no
matter	how	powerful	the	processor,	should	not	be	expected.
IBM	i	application	designers	do	not	use	the	IBM	i	job	queue	capabilities	to
process	jobs	where	throughput	rates	of	10's	or	100's	per	second	is	required.
When	high	rates	like	this	are	required,	more	advanced	facilities	such	as	data
queues,	named	pipes,	etc	should	be	implemented	via	shipped	or	user	defined
Built-In	Functions.
Summary
The	actual	throughput	rate	achieved	by	a	job	queue	monitor,	and	even	the	rate	at
which	jobs	can	be	submitted	to	a	queue	depends	upon	many,	many	factors	such
as	CPU	speed,	disk	use,	LAN	traffic,	CPU	power,	etc.	Where	very	high
throughput	rates	are	an	essential	element	of	a	design	it	is	very	strongly
recommended	that	a	prototype	be	constructed	and	verified	early	in	the	design

cycle.

16.4.7	Encrypting	the	Job	Queue	Details
To	switch	this	feature	on	it's	a	simple	matter	of	starting	the	Job	Queue	with	the
parameter	QENC=Y.	Once	its	started	you	submit	jobs	exactly	the	same	way	as
when	encryption	is	not	being	used.

Disclaimer
LANSA	does	not	warrant	the	effectiveness	or	otherwise	of	any	of	the
cipher	algorithms	in	the	Open	SSL	library.	You	should	perform	your
own	due	diligence	before	using	any	part	of	LANSA	which	makes	use
of	the	ciphers.	A	suggested	starting	place	is	the	book	Network	Security
with	Open	SSL	by	John	Viega	et	al,	published	by	O'Reilly.	The	ciphers
made	available	by	LANSA	are	as	follows:
AES	256,	Blowfish	128,	CAST5	128,	DES	64,	DESX	192,	Triple
DES	2	Key,	Triple	DES	3	Key,	IDEA,	RC2(TM)	and	RC4(TM).	There
may	also	be	patents	current	for	some	of	these	ciphers.	It	is	up	to	you	to
ensure	their	usage	does	not	contravene	any	patents.	LANSA	accepts
no	responsibility	whatsoever	for	any	contravention	of	patents.

Technical	Details
Firstly,	the	only	symmetric	encryption	algorithm	currently	supported	is	AES
256	using	CBC	mode	(Cipher	Block	Chaining)	and	an	Initalization	Vector
(IV)	also	known	as	a	'seed'.	Other	ciphers	may	be	used	but	they	are	not
currently	supported	by	LANSA	and	have	not	been	tested.	You	use	them	at
your	own	risk.	There	is	an	x_run	parameter	CIPH	which	is	passed	directly	to
the	Open	SSL	API	EVP_get_cipherbyname.	Refer	to	the	Open	SSL
documentation	for	further	details.
The	public	key	must	be	RSA	because	it	is	the	only	OpenSSL	public	key
algorithm	that	supports	key	transport.	LANSA	uses	2048	bit	modulus	with
RSA_F4	and	Blinding	ON	(stops	timing	attacks).
Envelope	encryption	is	the	usual	method	of	using	public	key	encryption	on
large	amounts	of	data,	this	is	because	public	key	encryption	is	slow	but
symmetric	encryption	is	fast.	So	symmetric	encryption	is	used	for	bulk
encryption	and	the	small	random	symmetric	key	used	is	transferred	using
public	key	encryption.
The	Private	Key	is	kept	in	the	memory	of	the	Job	Queue	Monitor.	Thus	there
is	no	security	issue	except	that	you	can	debug	the	process,	hence	the	right	to
debug	should	be	revoked.

The	Public	key,	of	course,	is	available	to	all	users	and	is	written	out	to	a	file
in	the	job	queue	directory.
A	new	key	pair	is	produced	every	time	the	Job	Queue	is	started.
Each	job	has	a	new	seed.	This	seed	is	essential	as	the	data	is	very	similar	for
each	job	queue	file.	The	Open	SSL	crypto	API	default	behaviour	is	to	provide
a	random	seed.
Only	the	job	queue	monitor	determines	whether	encryption	is	being	used	or
not.	If	it	is	on,	the	key	pair	is	created	and	the	public	key	written	out	to	a	DER
binary	format	file.	Clients	check	for	the	existence	of	this	public	key	file.	If	it
exists,	the	client	produces	a	random	seed	(IV)	which		is	used	to	produce	a
unique	symmetic	key	(Session	Key)	which	is	encrypted	with	the	public	key.
The	Session	Key	is	then	used	to	encrypt	the	job	queue	data.	The	IV,	the
encrypted	Session	Key	and	Encrypted	job	queue	data,	are	written	out	to	the
job	queue	file.	The	structure	of	the	encrypted	job	queue	file	follows:

Structure	of	the	Job	Queue	file:
<IV	length><IV><Session	Key	length><Encrypted	Session	Key>
<encrypted	data	length><encrypted	data>
The	RSA	public	key	is	named	after	the	symmetric	cipher	lookup
string,	for	example,	aes-256-cbc.der.	Thus	the	name	of	the	file	can	be
used	to	look	up	the	symmetric	cipher.	Note	that	this	may	be	confusing
as	this	file	contains	the	RSA	asymmetric	key,	not	the	symmetric	key.
When	the	Job	Queue	Monitor	starts	up,	it	firsts	deletes	all	existing	.der
files	and	all	existing	job	details	before	generating	the	Key	Pair	and
outputting	the	new	public	key.
Responsibilities:

																																							 Job
Queue
Monitor

	

	 	 1.	Generate	key	pair.
2.	Output	public	key	to	<named	symmetric
cipher>.der	e.g.	aes-256-cbc.der.
6.	Read	the	data	file.
7.	Decrypt	using	in-memory	private	key
(RSA	asymmetric	cipher)	and	clients	Session
Key	(named	symmetric	cipher).

	 Client 	

	 	 3.	Read	public	key	(RSA).
4.	Generate	Session	Key	for	use	with	named
symmetric	cipher	provided	by	server.
5.	Create	the	data	file,	encrypting	with
appropriate	keys.

	
X_RUN	Parameters:

CIPH	-	Cipher	Name	defaults	to	aes-256-cbc.	case	sensitive	as	it's
passed	as-is	through	to	the	OpenSSL	library.	This	parameter	is	also
available	with	the	Built-In	Functions		GET_SESSION_VALUE	and
SET_SESSION.
QENC	-	Use	encryption	with	Job	Q	Monitor.	(This	is	ignored	by
submitters	of	jobs	to	Job	Queue)

If	a	job	is	submitted	to	an	encrypted	job	queue,	it	can	only	be	executed	by	that
INSTANCE	of	the	job	queue	Monitor.	Once	the	Job	Queue	monitor	is
stopped	and	restarted,	a	new	private	key	is	generated	which	will	not	be	able	to
decrypt	the	existing	batch	jobs.	Clients	do	not	need	to	be	restarted,	but	neither
can	they	submit	any	jobs	until	the	Job	Queue	Monitor	is	running	and	has
generated	the	Public	Key.

@@@	here

16.5	The	RUNSQL	Utility
16.5.1	Configuration	Notes	-	Creating	Tables	and	Indexes
All	Visual	LANSA	systems	are	shipped	with	a	utility	named	RUNSQL.
RUNSQL	can	be	used	to	automatically	create	the	definition	of	a	table	into	any
supported	DBMS	system.
RUNSQL,	combined	with	a	.CTD	(Common	Table	Definition	File)	file	created
by	Visual	LANSA	during	table	compilation,	form	the	essential	ingredients	that
you	need	to	move	table	definitions	(not	data)	between	different	supported
DBMS	systems.
To	understand	how	RUNSQL	works	consider	this	diagram:

If	you	imagine	that	you	are	attempting	to	transfer	the	definition	of	a	table	named
PSLMST	(that	you	have	previously	defined	and	compiled	in	your	development
environment)	into	another	DBMS,	then	the	key	things	shown	in	this	diagram
are:
When	the	RUNSQL	utility	is	invoked	it	reads	in	the	file	named
PSLMST.CTD.	This	is	the	"Common	Table	Definition"	(CTD)	of	table
PSLMST	that	is	created	by	Visual	LANSA	whenever	you	compile	a	table	in
your	development	environment.	It	defines	table	PSLMST	and	its	associated
views	and	indices	in	a	common	cross	platform	/	cross	DBMS	format	(full
details	of	the	format	of	.CTD	files	can	be	found	in	another	section	of	this
guide).

RUNSQL	also	reads	in	a	standard	Visual	LANSA	file	named
X_DBMENV.DAT	(Database	Environment	Definitions)	that	defines	the
unique	characteristics	of	the	DBMS	that	it	is	about	to	work	with.	
By	using	PSLMST.CTD	and	X_DBMENV.DAT	the	RUNSQL	utility	can
assemble	the	unique	"create"	commands	appropriate	for	the	selected	DBMS.
Once	the	"create"	commands	are	assembled	the	DBMS	is	invoked	(via	ODBC
in	Windows	environments)	and	it	is	asked	to	create	the	necessary	table,	view,
indices,	etc.

RUNSQL	is	a	simple	program.	It	has	the	following	positional	and	non-
positional	parameters:

1 The	(qualified)	name	of	the	.ctd	(Common	Table	Definition)	file	that
contains	the	definition	of	the	table	to	be	created.	Common	Table	Definition
files	are	created	whenever	you	create	a	table	in	your	Windows	development
environment.
The.ctd	files	can	be	found	in	the	X_LANSA\X_ppp\SOURCE	directory
(where	"ppp"	is	the	partition	identifier).

2 The	name	of	the	database	or	data	source	that	the	table	is	to	be	created	into.
Typically	this	parameter	is	passed	as	LX_LANSA.

3 Commitment	Option.	Must	be	Y	or	N	and	indicates	whether	a	commit
operation	is	to	be	issued	after	the	table	has	been	successfully	created.	
You	should	always	set	this	parameter	to	Y.

4 Reporting	Option.	Must	be	Y,	N	or	F	to	indicate	the	level	of	reporting	that
RUNSQL	should	use.	
Y	=	Report	on	all	messages	and	warnings.
N	=	Do	not	report	any	messages	or	warnings.
F	=	Report	on	fatal	messages	only.

5 The	type	of	database.	This	value	is	used	to	locate	the	database	characteristics
in	the	specified	"X_DBMENV.DAT"	file.
Some	of	the	standard	shipped	database	types	are:
-		SQLANYWHERE	(Sybase	Adaptive	Server	Anywhere	and	Sybase
SQL/Anywhere)
-		MSSQL	(Microsoft	SQL/Server)

6 The	user	profile	/	password	to	be	used	when	attempting	to	connect	to	the
specified	database	or	data	source.

For	example	SA/TEST	specifies	that	user	profile	SA	with	password	TEST	be
used	when	connecting	to	the	database	or	data	source.

7 Specifies	the	directory	in	which	the	"X_DBMENV.DAT"	file	can	be	found.

8 Specifies	the	collection.	Default	is	specified	in	the	.ctd	file

9 CTD	Connection	data	option.	Must	be	Y	or	N	and	indicates	whether	to	use
the	connection	information	contained	in	the	.ctd	file.	Only	PC	Other	Files
will	have	connection	data	in	the	.ctd	file

10Prompt	User	ID/	Password	option.	Must	be	Y	or	N	and	indicates	whether	to
use	the	User	ID	and	Password	in	the	.ctd	file	(N)	or	to	prompt	for	a	new	pair
of	values	(Y).	This	is	ignored	unless	CTD	connection	data	is	being	used.

	

Non-Positional	Parameters

OLDCTD=Old	.ctd	file	name.	This	is	the	.ctd	file	that	was	last	used	to
create/change	the	table.	The	new	and	the	old	CTD	are	compared
and	any	changes	or	new	columns	are	added	to	the	table	without
deleting	the	existing	data.

	

Note	that	non-positional	parameters	can	be	placed	anywhere	on	the	command
line	separated	by	spaces	from	the	other	arguments.
For	example,	this	command	executed	from	the	x_Lansa\source	directory
compares	myfile.ctd	to	myfile_old.ctd	and	makes	the	changes	to	the	table.	Note
that	it	also	uses	the	x_dbmenv.dat	file	from	the	parent	directory	-		–	which	in
this	case	is	the	x_lansa	directory:	
..\execute\runsql	myfile.ctd	OLDCTD=myfile_old.ctd	LX_LANSA	Y	Y
SQLANYWHERE	DBA/SQL
	

16.5.1	Configuration	Notes	-	Creating	Tables	and	Indexes
You	may	also	configure	RUNSQL	using	the	environment	variables
X_RUNSQL_CREATE_TABLE	and	X_RUNSQL_CREATE_INDEX.	These
variables	allow	DBMS-specific	strings	to	be	appended	to	the	"create"
commands	before	RUNSQL	executes	them.
Note:	No	syntax	checking	will	be	done.	If	the	appended	information	is	bad
syntax,	the	DBMS	call	will	fail	and	an	error	code	will	be	returned.
The	following	example	shows	how	to	use	this	feature	to	separate	tables	and
indexes	into	different	storage	areas.
For	SQLANYWHERE	on	Windows:

SET	X_RUNSQL_CREATE_TABLE="IN	DATA"
SET	X_RUNSQL_CREATE_INDEX="IN	IDX"

(DATA	and	IDX	are	SQL/Anywhere	dbspaces	created	earlier	with	the	CREATE
DBSPACE	command.)
For	the	example	table	PSLMST,	RUNSQL	will	create	the	table	PSLMST	with
the	following	statement:

create	table	PSLMST	(...column	list...)	IN	DATA
and	the	relative	record	number	index	with	the	following	statement:

create	unique	index	PSLMST_R	on	PSLMST	(x_rrno)	IN	IDX
	

For	ORACLE	on	LINUX:
X_RUNSQL_CREATE_TABLE="tablespace	DATA";	export

X_RUNSQL_CREATE_TABLE
X_RUNSQL_CREATE_INDEX="tablespace	IDX";	export

X_RUNSQL_CREATE_INDEX
(DATA	and	IDX	are	Oracle	tablespaces	created	earlier	with	the	CREATE
TABLESPACE	command.)
For	the	example	table	PSLMST,	RUNSQL	will	create	the	table	PSLMST	with
the	following	statement:

create	table	PSLMST	(...column	list...)	tablespace	DATA
and	the	relative	record	number	index	with	the	following	statement:

create	unique	index	PSLMST_R	on	PSLMST	(x_rrno)	tablespace	IDX
Note:	Primary	Key	Indexes	will	only	use	the	X_RUNSQL_CREATE_INDEX
value	if	the	DBMS	entry	in	x_dbmenv.dat	contains	the	following	settings:

SUPPORTS_PRIMARY_KEY=NO
CONVERT_PRIMARY_KEY_TO_INDEX=YES

	

16.6	Font	Considerations
The	font	determines	the	characteristics	of	letters,	numbers,	and	symbols
displayed	on	your	PC	screen.	Fonts	may	have	different	sizes	(width,	height,
etc.),	attributes	(bold,	underline,	etc.)	and	styles	(Courier,	System	VIO,
Helvetica,	Swiss,	etc.).
Some	fonts	are	described	as	being	proportional	fonts	while	other	fonts	are
described	as	fixed	or	non-proportional	fonts.	A	proportional	font	uses	a	different
amount	of	space	to	display	different	characters.	A	fixed	font	uses	the	same
amount	of	space	to	display	each	character.
For	example,	the	characters	"EEE"	would	require	more	space	than	"iii"	if	a
proportional	font	were	used.	If	a	fixed	font	were	used,	the	same	space	is	used	by
both	"EEE"	and	"iii".
The	advantage	of	using	fixed	fonts	is	that	the	size	of	the	input	field	displayed
will	indicate	the	exact	number	of	characters	which	can	be	entered.	If	a	fixed	font
is	used,	a	three	character	input	field	will	appear	to	display	space	for	exactly
three	characters,	remembering	that	"EEE"	and	"iii"	use	the	same	space.
If	you	have	selected	a	proportional	font,	the	amount	of	space	used	in	the	input
field	will	depend	on	the	text	entered.	You	may	only	see	"EE"	even	though
"EEE"	was	entered.	This	truncation	is	a	result	of	the	fonts	selected	and	not	the
application.	Be	careful	when	selecting	proportional	fonts.
If	you	are	retrieving	the	cursor	location	(e.g.	CURSOR_LOC	PARAMETER	for
DISPLAY,	REQUEST	or	POP-UP),	you	should	use	fixed	(i.e.	non-proportional)
fonts.
The	X_UIM	(User	Interface	Manager)	allows	you	to	change	the	font	being	used
to	present	information.	The	actual	font	selection	facility	is	a	supplied	part	of	the
Windows	operating	environment.
Although	any	font	may	be	chosen,	the	choice	will	depend	upon	the	resolution	of
the	monitor	being	used.	The	following	fonts	are	recommended	as	being	the	most
suitable	for	the	most	common	VGA	monitor	resolutions:

MS	Sans	Serif Size	8

MS	Serif Size	8

Arial Size	8

Verdana Size	8

System Size	10

Note	that	changing	fonts	is	not	a	common	operation.	Once	a	font	has	been
chosen	it	is	usually	used	from	then	onwards	with	no	change.	When	you	change
fonts	the	following	may	happen:
The	current	screen	may	appear	strangely	with	information	out	of	place.	This
happens	because	the	font	change	does	not	trigger	a	resizing	and	redrawing	of
the	current	screen.	Exit	from	the	application	and	then	restart	it	in	the	new
font.
If	you	change	fonts	and	do	not	exit	from	and	restart	the	application,	the	next
screen	chosen	may	cause	the	entire	window	to	disappear	and	then	re-appear
in	the	new	size/font.	This	happens	when	the	UIM	decides	it	has	to	resize	the
entire	presentation	window	it	is	using.	To	avoid	this	problem,	exit	from	the
application	and	then	restart	it	after	changing	fonts.

Finally,	you	should	know	that	the	details	of	the	font	that	you	select	are	stored
and	remembered	from	session	to	session.
They	are	stored	on,	and	associated	with,	the	workstation	that	you	are	using,	not
with	any	user	profile	that	you	are	using.
If	you	change	the	font	used	on	a	workstation	you	are	changing	it	for	all	users	of
the	workstation.	If	you	move	to	another	workstation	your	selected	font	will	not
follow	you	to	the	new	workstation.

16.7	Sizing	RDML	Windows
All	windows	presented	by	DISPLAY	and	REQUEST	RDML	commands	are
sizable.	This	means	that	you	can	stretch	or	shrink	the	window	into	any	size	or
shape	that	you	desire.
The	stretching	and	shrinking	process	is	performed	in	the	usual	manner	by
positioning	the	cursor	on	the	window	border	(until	a	double	headed	arrow
appears)	and	then	holding	down	the	left	mouse	button	while	moving	the
window	border	in	or	out	as	desired.
When	using	this	facility	you	should	be	aware	of	the	following:
The	window	shape	that	you	select	will	be	remembered	and	used	for	all
following	DISPLAY	and	REQUEST	commands.
Pop-up	windows	resulting	from	RDML	POP_UP	commands	are	sized	and
positioned	relative	to	the	shape	of	your	basic	full	window.
Text	and	field	information	is	presented	in	all	windows	relative	to	your	basic
full	window.	If	your	basic	window	is	too	narrow	your	entry	fields	may	be	too
short	and	textual	information	may	be	truncated.	In	this	case,	stretch	your
basic	window	so	that	it	is	wider.	If	your	basic	window	is	too	short,	then	font
details	may	not	be	shown	or	may	overlap	other	fields.	In	this	case	stretch	your
basic	window	so	that	it	is	longer.
Generally	the	size	of	the	window	that	you	select	must	be	related	to	the	font
that	you	are	using.	If	you	are	using	a	large	font	(size	10	or	larger)	then	you
must	use	larger	windows.	If	you	are	using	a	small	font	(size	8	or	smaller)	then
you	can	use	smaller	windows.

16.8	Windows	64-bit	Support
This	page	is
It	is	recommended	that	you	only	enable	64-bit	support	if	installing	a	Build
machine	and	it	is	mandatory	that	the	application	is	required	to	be	64-bit.	For
example,	it's	a	required	corporate	standard.	Some	drawbacks	of	enabling	it	are:
Compiles	take	twice	as	long	as	both	32-bit	and	64-bit	DLLs	are	always	built.
Functions	which	use	DISPLAY,	REQUEST	or	POPUP	commands	will	fail	to
compile;	even	32-bit	DLLs.
You	must	obtain	your	own	64-bit	compiler.

LANSA	Features	that	do	not	function	or	have	no	support
Graphics	Server	is	not	supported.	There	are	many	modern	alternatives	that
will	work	on	both	32	bit	and	64	bit.	Use	them.	This	maps	to	the	primitive
PRIM_GRPH.
Explorer	Component	AutoRefresh	Property	does	not	function.
ZIP	BIFs	are	not	supported.
DISPLAY,	REQUEST	and	POPUP	commands	are	not	supported	in	64-bit
applications.
Web	Functions	are	not	supported.
Specialised	LANSA	Built	In	Functions	(BIFs)	are	not	supported	in	64-bit.
This	is	because	the	development	environment	is	32-bit	and	thus	they	are	not
compatible.

Installation	Considerations
It	is	presumed	that	a	developer	does	NOT	enable	64-bit	support.	The	intention
is	that	it's	only	the	Build	Machine	that	has	64-bit	support	enabled.	So	it	is	not
possible	to	ONLY	have	64-bit	support.	Some	noticeable	consequences	of	this
mean	that	when	64-bit	support	is	enabled:

Both	the	32-bit	and	64-bit	compiles	are	performed,	which	takes	longer
and	thus	may	not	be	appropiate	on	a	developer's	machine.
Both	32-bit	and	64-bit	Windows	Installer	MSI	packages	are	built.

Visual	Studio	2010	Professional	(or	later)	or	Visual	Studio	2012	Express	for
Desktop	(or	later)	are	required	to	support	64-bit	compiling.	The	compiler
shipped	with	the	Visual	LANSA	install	does	not	support	64-bit	compiles.

If	Visual	Studio	is	installed	before	LANSA	then	it	will	be	detected	and

will	be	the	compiler	used	by	LANSA.
If	a	supported	compiler	is	not	installed,	the	LANSA-shipped	compiler
will	be	installed	and	enabled.	To	enable	64-bit	compiling,	install	one
of	the	compilers	that	supports	64-bit	compiling	and	then	change	this
registry	entry	to	disable	the	LANSA-shipped	compiler:
HKEY_LOCAL_MACHINE\SOFTWARE\Wow6432Node\LANSA\MicrosoftCompiler\2010\Enabled
to	0.	On	a	32-bit	PC	it	is:
HKEY_LOCAL_MACHINE\SOFTWARE\LANSA\MicrosoftCompiler\2010\Enabled
If	the	latest	version	of	Visual	Studio	installed	is	not	one	that	supports
64-bit	compiling,	just	install	one	that	does.	LANSA	will	detect	it	when
it	is	next	started.

If	you	compile	a	Function	which	contains	DISPLAY,	REQUEST	and	POPUP
commands	(which	are	not	supported)	it	will	fail	to	compile	at	all	-	even	the
32-bit	compile.	This	is	another	reason	why	it	is	better	not	to	enable	64-bit
support	on	Developer's	machines.	If	a	Developer	needs	to	work	on	both
RDML	Functions	and	64-bit	applications	then	2	systems	may	be	installed	on
their	machine	which	use	the	same	repository.

Programming	Considerations
There	are	no	increases	in	the	maximum	size	of	any	LANSA	feature.	For
example,	the	maximum	size	of	an	RDMLX	List	is	still	2	billion	rows,	with
each	entry	being	2	billion	bytes	long.	That	is,	existing	limits	are	considered
sufficient.	This	also	means	there	is	greater	compatibility	between	32-bit	and
64-bit	applications.	For	example,	the	Built	In	Functions
SND_TO_DATA_QUEUE	and	RCV_FROM_DATA_QUEUE	may	be	used
interchangeably.	Job	Queue	Emulation	can	use	either	a	32-bit	or	64-bit	Job
Queue	Monitor	and	jobs	may	be	submitted	from	either	32-bit	or	64-bit.	Note
that	the	64-bit	Job	Queue	Monitor	will	execute	the	submitted	job	as	64-bit,	no
matter	which	platform	submitted	the	job.
PC	Other	Files	which	are	loaded	using	a	32-bit	ODBC	driver	will	need	to
create	a	64-bit	DSN	with	the	same	name	as	that	used	to	load	the	file	or	use
CONNECT_SERVER	when	deployed	to	re-direct	IO	to	a	64-bit	driver.
To	put	an	ActiveX	in	LANSA	RDML	there	must	be	a	registered	32-bit
version	of	the	ActiveX.	To	EXECUTE	the	ActiveX,	a	version	must	be
registered	which	is	of	the	same	processor	architecture	as	the	LANSA	runtime.
That	is,	if	the	LANSA	runtime	is	64-bit	then	the	64-bit	ActiveX	must	be
registered	on	the	deployed	PC.

32-bit	and	64-bit	applications	accessing	the	same	database

Considerations	when	both	a	32-bit	application	and	a	64-bit	application	are
accessing	the	same	database,	particularly	when	deploying	an	application	into	a
production	system:
LANSA	recommends	using	either	32-bit	or	64-bit	applications.	It	makes	it	far
simpler.	For	example,	when	using	SuperServer,	only	use	a	64-bit	server	if	you
use	both	32-bit	and	64-bit	clients.	As	the	clients	are	not	directly	accessing	the
database,	there	is	no	complication.	It	is	better	to	choose	to	exclusively	use	one
or	the	other.
Assign	relative	record	numbers	using	auto-generation.	If	relative	record
numbers	are	assigned	using	external	files,	duplicates	will	occur	unless	the
RPTH	parameter	is	assigned	to	the	same	path	for	both	32-bit	and	64-bit
applications.	A	file	that	is	currently	using	external	files	may	be	changed	to
auto-generation	using	the	Upgrade	tool	feature	Convert	Files	to	Use	Identity
Column.
Table	upgrades	are	identified	by	comparing	the	previous	CTD	file	to	the	new
CTD	file	being	installed.	Thus	only	the	first	system	upgraded	should	upgrade
the	database.	This	is	why	database	upgrade	defaults	to	off	during	an	MSI
install	and	why	per-user	installs	disable	database	upgrade.
If	an	existing	OAM	is	not	there	for	64-bit	but	is	for	32-bit,	and	vice	versa	-
which	is	the	latest	OAM?	This	needs	to	be	controlled	by	the	user.	If	32-bit	is
the	first	environment	to	be	installed,	continue	that	way	for	all	Upgrades	and
Patches.	Once	the	64-bit	environment	is	at	the	same	level,	there	is	the	choice
that	the	Upgrade/Patch	database	change	machine	can	be	switched,	but	it	is
inadvisable.	Be	consistent	and	use	one	machine	from	the	beginning.

Notable	Environmental	Differences
The	system	directory	for	32-bit	applications	is	of	the	form	x_win95\x_lansa.
For	64-bit	applications	it	is	x_win64\x_lansa.	Therefore	system	variables	like
*SYS_DIR	return	a	different	value.
Visual	LANSA	is	a	32-bit	application.	Hence	interaction	between	Visual
Lansa	and	64-bit	generated	DLLs	cannot	occur.
32-bit	OAMs	are	always	built	and	will	always	be	built	as	Visual	LANSA
requires	the	32-bit	OAM	to	unload	and	load	the	data	from	the	table.	The	64-
bit	build	command	always	skips	the	SQL	table	build,	presuming	that	32-bit
has	already	done	it.
Windows	Installer	has	a	known	defect	which	converts	the	Target	directory	in
a	Shortcut	from	c:\program	files	to	c:\program	files	(x86).	Nonetheless	the
shortcut	still	works	correctly	as	if	it	was	c:\program	files.	Even	if	the	32	bit

version	of	the	Application	is	installed	in	c:\program	files	(x86),	it	does	not
get	executed,	it	is	still	the	64-bit	version.	See	this	web	link	32bit	MSI	on	64bit
OS:	Converting	shortcut	target	path	of	64bit	app	to	32	bit	Path.
A	similar	situation	occurs	with	Windows\system	32.	The	shortcut	looks	OK
but	it	does	not	find	the	object.	It	is	not	valid	to	create	a	shortcut	that	points	to
this	directory.

http://social.msdn.microsoft.com/Forums/windowsdesktop/en-US/a380e765-e062-4f84-89a3-d4072c46cbc4/

16.9	Linux	Differences
Linux	is	a	case-sensitive	operating	system.

By	convention,	directories,	files,	printer	names	and	so	on	are	usually	in	lower
case.	The	exception	to	this	is	the	.RRN	files	which	are	still	in	upper	case.
Instead	of	the	directory	"execute",	LANSA	on	Linux	uses	the	directory	"bin".
Instead	of	a	back	slash	(\)	to	separate	directories	in	a	path,	Linux	uses	a
forward	slash	(/).	

When	looking	for	files	or	executing	commands	under	Linux,	change	all	upper
case	to	lower	case	and	use	forward	slashes	(/)	and	not	back	slashes	(\).

For	example,	if	the	path	to	the	X_RUN	executable	under	Windows	was
\X_LANSA\EXECUTE\X_RUN

					it	would	become,	under	Linux:
/X_LANSA/bin/X_RUN

Refer	to	the	Deploying	LANSA	Applications	on	Linux	Guide	for	more
information.

16.10	Code	Page	Considerations
If	characters	are	not	properly	translated	when	loaded	from	the	IBM	i	and	into
Visual	LANSA,	you	need	to	review	the	code	page	definitions	on	the	IBM	i.
Code	pages	are	sets	of	definitions	for	each	character	on	your	keyboard.	It	is
possible	that	the	characters	used	on	the	IBM	i	(5250	keyboards)	are	not	properly
mapped	to	characters	used	on	the	PC.
If	characters	are	not	properly	translated	when	executing	Visual	LANSA
generated	applications,	you	need	to	review	the	conversion	tables	and	files
defined	to	Visual	LANSA.	It	is	possible	that	the	characters	used	for	one
operating	system	may	be	different	for	another	operating	system.
Characters	which	are	commonly	wrong	include	#	or	@.
It	is	very	important	that	you	determine	the	correct	character	set	conversions
right	from	the	start.	Spend	the	time	considering	your	requirements	before
beginning	to	build	any	applications,	otherwise	you	will	need	to	re-build	your
applications	each	time	you	change	the	conversion	tables.
There	are	three	places	that	you	should	review	for	character	set	conversion:
1.		The	x_defppp.h	header	file	(where	ppp	=	partition	identifier)	in	each
partition.	The	contents	of	this	file	are	included	in	16.11	Regional	Settings.

Each	time	you	change	the	x_defppp.h	header	file	you	will	have	to	re-build	all
your	"entry	point"	processes	(i.e.	the	ones	through	which	you	enter	your
applications).

2.		LANSA	SuperServer	conversion	tables	defined	in	Built-In	Function
DEFINE_OS_400_SERVER.

3.		Translation	tables	specified	using	PCMAINT.

16.11	Regional	Settings
After	installation,	each	...\X_LANSA\X_ppp\SOURCE	directory	should	contain
a	file	called	x_defppp.h	(where	ppp	is	the	name	of	the	partition).	For	example,	if
the	partition	is	SYS,	then	the	file	will	be	called	x_defsys.h.
The	x_defppp.h	file	defines	execution	settings	for	your	functions	that	are	unique
to	the	partition.	(It	is	similar	in	concept	to	the	DC@A01	data	area	on	the	IBM	i).
These	settings	are	globally	defined	to	all	PROCESSES	(and	subsequently	the
functions)	in	a	specific	partition.
For	example,	your	decimal	point	character	may	be	','	rather	than	'.'	Using	this
file,	you	can	specify	the	character	that	you	require	once,	for	all	processes	and
functions	in	the	partition.
The	file	is	formatted	as	a	C	header	file.	It	is	very	easy	to	understand	and	to
change	with	any	source/text	editor,	if	necessary.	You	will	find	the	relevant
options	and	values	documented	within	the	file.
Any	changes	made	to	the	values	contained	in	the	X_DEFPPP.H	file,	will	require
(re)compilation	of	ALL	ENTRY	POINT	PROCESSES	before	the	changes	take
effect.	Once	ALL	entry	point	processes	have	been	(re)compiled	you	will	need	to
exit	and	re-enter	your	LANSA	application	for	the	new	values	to	be	picked	up	at
execution	time.
You	should	also	note	that	the	following	values	can	be	set	from	the	LANSA
X_RUN	command	or	as	a	system	environment	variable:
X_AUTOMATIC_HELP,X_CENTURY_COMPARE_DATE,X_CENTURY_GREATER_DATE,
X_CENTURY_LESS_DATE,X_DATE_SEPARATOR,X_CURRENCY_SYMBOL,
X_DECIMAL_POINT_CHAR,X_TIME_SEPARATOR,X_DOLLAR_SIGN_CHAR,
X_HASH_SIGN_CHAR,X_AT_SIGN_CHAR,X_GEN_AT_SIGN_CHAR,
X_STANDARD_MESSAGE_FILE

The	order	of	precedence	for	the	setting	of	these	values	is:
A.		Values	specified	in	XENV=	parameters	on	the	X_RUN	command.
B.		Values	specified	in	normal	system	environment	variables.
C.		Multi-national	Values	specified	in	the	Development	Environment
D.		Country-specific	information	read	from	the	Windows	settings.	These	values
are	always	available,	so	in	order	that	the	values	in	x_defxxx.h	can	still	be
used,	the	use	of	these	values	can	be	switched	off.	To	do	this	define	the
registry	value	"OSRegionalSettings"	in

HKEY_LOCAL_MACHINE\Software\LANSA\X_LANSA	registry	key	as	a
DWORD	and	set	its	value	to	0.

E.		Values	specified	in	this	file.
					For	example,	say	that	you	needed	to	set	the	X_CENTURY_LESS_DATE
value	to	"20".	You	can	do	this	using	three	different	methods.	These	methods
can	be	used	independently	or	together:

Specify	the	value	in	this	file	by	changing	the	line	below	to	#define
X_CENTURY_LESS_DATE	"20"	and	then	recompiling	all	entry
point	processes	in	your	application,	This	will	effectively	lock	your
application	into	this	value.	However,	this	value	will	not	normally	be
used	by	application	pieces	running	in	SuperServer	mode	or	as	services
to	LANSA	Open	applications	because	they	do	not	have	the	concept	of
an	entry	point	process	available	to	them.	In	such	cases	you	should	use
method	B	or	C	as	well	to	achieve	the	required	results	in	all	situations.
Set	an	environment	variable	for	the	environment	in	which	application
is	executing.	By	putting	the	operating	system	command	SET
X_CENTURY_LESS_DATE=20	into	your	operating	system	start	up
you	can	cause	the	appropriate	value	to	be	set.	A	value	set	this	way
overrides	any	value	specified	by	method	A.	When	setting	a	value	this
way	you	should	take	care	to	ensure	that	the	value	is	appropriate	and
valid,	as	no	form	of	validation	is	applied	to	the	value	specified.
Set	a	LANSA	environment	variable	by	putting	the	value	into	the
X_RUN	command.	For	example,	X_RUN	PROC=TEST	LANG=ENG
XENV=X_CENTURY_LESS_DATE=20
XENV=X_AUTOMATIC_HELP=Y	will	set	the	century	compare	date
and	automatic	help	option	to	the	values	specified,	overriding	anything
specified	by	environment	variables	(method	B)	or	in	this	file	(method
A).	Note	that	a	value	set	this	way	overrides	any	value	set	by	methods	1
or	2.When	setting	a	value	this	way	you	should	take	care	to	ensure	that
value	is	appropriate	and	valid,	as	no	form	of	validation	is	applied	to
the	value	you	specify.

There	is	a	fourth	method	of	obtaining	the	multinational	values:
X_DOLLAR_SIGN_CHAR,	X_HASH_SIGN_CHAR	and
X_AT_SIGN_CHAR.	
These	values	are	obtained	from	the	LANSAPC	registry	entry.	This	is	primarily
used	for	LANSA	objects	that	are	used	to	extend	the	Development	Environment
such	as	the	Deployment	Tool.

Note:	If	running	in	LANSA	SuperServer,	ensure	that	the	Server	setting	matches
the	Client	setting	for	X_DECIMAL_POINT_CHAR	to	avoid	values	exchanged
from	a	function	called	via	the	Built-In	Function	CALL_SERVER_FUNCTION
losing	their	decimal	places.
	
	

17.	Execution	Control
17.1	Using	X_START	as	a	Front	End	to	X_RUN
17.2	The	X_RUN	Command
17.3	X_RUN	Parameter	Summary
17.4	X_RUN	Parameter	Details
17.5	Permanently	Specify	X_RUN	Parameters
17.6	Database	Connections
17.7	The	.XQ*	Files
17.8	Lock	Timeout
17.9	User	Instructions	for	Microsoft	Exception	or	Dr	Watson

17.1	Using	X_START	as	a	Front	End	to	X_RUN
The	X_START	facility	is	shipped	with	all	Visual	LANSA	systems.
Using	X_RUN.EXE	to	invoke	Visual	LANSA	facilities	directly	from	an	icon	on
your	desktop	often	means	that	you	may	end	up	with	many	individual	icons	and
when	a	command	parameter	needs	to	be	changed	it	needs	to	be	changed	many
times.
This	problem	can	be	overcome	by	using	the	X_START	utility.	For	example,
imagine	you	had	the	following	X_RUN	command	associated	with	an	icon	on
your	desktop:

X_RUN	PROC=TEST01	PART=DEM	USER=QPGMR
then	by	altering	format	of	the	X_RUN	command	behind	the	icon	to:

X_START	X_RUN	PROC=[TEST01/Process	Name/PROCESS]
PART=[DEM/Partition	Identifier	/PARTITION]	
USER=QPGMR	etc

you	can:
cause	the	values	of	PROC=	and	PART=	to	be	prompted.
cause	the	default	values	of	PROC=	and	PART=	to	be	remembered	and	for
their	"last	used"	values	to	be	exchanged	between	the	X_START	commands
behind	different	icons.

The	way	that	X_START	works	is	very	simple.	It	processes	the	entire	command
line	looking	for	[/	/]	or	{	/	/	}	formatted	prompt	requests.
A	[/	/]	or	{	/	/	}	formatted	prompt	request	must	always	be	formatted	exactly
like	this:

	[default	value	/	description	/	symbolic	name]
or	this:

	{default	value	/	description	/	symbolic	name}
Generally	you	should	use	the	[/	/]	notation	in	Windows	environments.
For	example,	this	is	the	command	invoked	when	you	select	Execute	Process	on
a	Workstation	from	the	LANSA	menu:

%tit%Execute	process	on	workstation
%hlp%x_start.009
%basepath%\x_lansa\execute\X_RUN.exe
PROC=[Name/Process/PROC]
LANG=[ENG/Language/LANG]

PART=[DEM/Partition	Identifier/PART]
USER=[QPGMR/LANSA	User/USER]
%WIN%DBUS=[DBA/Database	User/DBUS]
%WIN%PSWD=[*password/Database	Password/PSWD]
DBII=[LX_LANSA/Database	Name/DBII%reg%LX_DBName]
%W95%DBUT=

[SQLANYWHERE/Database	Type/DBUT%reg%LX_DBType]
%WNT%DBUT=

[MSSQLS/Database	Type/DBUT%reg%LX_DBType]
%W95%CMTH=[E/Communication	Method/CMTH]
%WNT%CMTH=[C/Communication	Method/CMTH]
%W95%CDLL=

[E32APPC.DLL/Communications	DLL	to	Use/CDLL%reg%LX_CommsDLLName]
%WNT%CDLL=

[WCPIC32.DLL/Communications	DLL	to	Use/CDLL%reg%LX_CommsDLLName]
PRTR=[LPT1/Default	Printer/PRTR]

This	function	causes	the	Execute	process	on	workstation	dialog	box	to	appear.

The	values	entered	are	then	substituted	into	the	command.	If	XXXXXX	was
keyed	as	the	process	name	and	SYS	as	the	partition	identifier,	then	the
command	that	is	assembled	for	execution	would	be:

	X_RUN	PROC=XXXXXX	PART=SYS	USER=QPGMR	etc
Additionally,	the	value	XXXXXX	would	be	remembered	with	the	symbolic

name	PROCESS	and	the	value	SYS	would	be	remembered	with	the	symbolic
name	PARTITION.	This	means	that	the	next	time	the	X_START	facility	is
invoked	and	a	[//]	or	{//}	prompt	has	the	symbolic	name	PROCESS	then	the
remembered	value	XXXXXX	will	be	used	in	preference	to	any	default	value
specified	in	the	[//]	or	{//}	prompt.
The	symbolic	names	and	their	values	are	remembered	in	a	simple	text	file
named	X_START.SAV	that	is	created	and	updated	into	the	current	directory	of
the	process	executing	the	X_START	request.	If	you	suddenly	lose	your	last	set
of	values	(i.e.	they	revert	to	their	defaults),	then	the	most	likely	reason	is	that
you	have	altered	the	current	directory	of	your	application	such,	that	the
X_START.SAV	can	no	longer	be	found.
The	data	stored	in	file	X_START.SAV	is	logically	formatted	as	<symbolic
name><value><symbolic	name><value>	and	up	to	1024	symbolic	names	may
be	in	use	at	any	time.	Neither	the	symbolic	name	nor	its	value	should	ever	be
more	than	256	characters	in	length.

Also	see
17.1.1	Rules,	Limitations	and	Guidelines
17.1.2	Commands	and	Special	Variables

17.1.1	Rules,	Limitations	and	Guidelines
The	following	rules,	limitations	and	guidelines	apply	to	the	use		of	the
X_START	facility:
No	default	value,	remembered	value,	description	or	symbolic	name	can	be
more	than	256	characters	long.
All	[/	/]	prompt	requests	must	be	precisely	formatted
[default/description/symbolic	name]	using	the	'/'	character	to	delimit	the	areas
between	the	[]	characters.]
All	{	/	/	}	prompt	requests	must	be	precisely	formatted
{default/description/symbolic	name}	using	the	'/'	character	to	delimit	the
areas	between	the	{	}	characters.
Special	values	*NONE	and	*PASSWORD	may	be	used	in	the	default	and/or
symbolic	name	section	of	any	[//]	or	{//}	prompt	area.	*NONE	indicates	that
no	value	exists	and/or	that	the	prompt	value	should	not	be	saved	in	file
X_START.SAV.	*PASSWORD	indicates	that	the	prompt	is	for	a	password
field	(i.e.	that	entry	made	into	the	prompt	should	not	be	readable)	and	that	the
value	should	not	be	stored	in	file	X_START.SAV.
The	correct	format	for	a	password	field	prompt	is
[*PASSWORD/description/symbolic	name]	or
{*PASSWORD/description/symbolic	name}.	You	cannot	cause	a	password
field	to	adopt	a	default	value.
No	more	than	1024	symbolic	names	(and	their	associated	values)	can	be
stored	in	any	X_START.SAV	file.
X_START	looks	for	(and	saves)	the	file	X_START.SAV	into	the	current
directory	of	the	process	invoking	the	X_START	facility.
The	X_START	facility	can	extract	the	command	line	definition	to	be
processed	either	directly	from	the	icon	command	line	or	from	a	file.	

To	extract	the	command	definition	from	a	file,	simply	use	the	name	of	the	file
containing	the	command	line	definition	prefixed	by	an	'='	(equal)	sign	or	an
'@'	(at)	sign	as	a	single	argument	to	X_START.	For	example:
	
	X_START	%basepath%\x_lansa\execute\X_RUN
	proc=[X/Process/PROCESS]

			and

	X_START	=TEST.DTA	
			are	functionally	identical	operations	when	TEST.DTA	is	a	file	that	contains
these	2	lines:
	
	%basepath%\x_lansa\execute\X_RUN
	proc=[X/Process/PROCESS]

The	default	characters	that	denote	the	start	of	a	prompt	are	'['	and	'{'.	These
may	be	altered	by	inserting	the	following	into	the	current	X_START.SAV	file:
	X_START_OPEN_BRACE1
	y	

			or
	X_START_OPEN_BRACE2
	y	

			where	y	is	the	character	you	wish	to	use	in	place	of	the	'['	or	'{'	characters.	You
should	only	alter	the	default	value	in	extreme	situations	involving	code	page
conflicts,	etc.
The	default	characters	that	denote	the	end	of	a	prompt	are	']'	and	'}'.	These
may	be	altered	by	inserting	the	following	into	the	current	X_START.SAV	file:
	X_START_CLOSE_BRACE1
	y	

			or
	X_START_CLOSE_BRACE2
	y	

			where	y	is	the	character	you	wish	to	use	in	place	of	the	']'	or	'}'	characters.	You
should	only	alter	the	default	value	in	extreme	situations	involving	code	page
conflicts,	etc.

The	character	that	separates	strings	within	a	prompt	is	the	forward	backslash
'/'.	This	may	be	altered	by	inserting	the	following	2	lines	into	the	current
X_START.SAV	file:
	X_START_SEPARATOR
	y	

			where	y	is	the	character	you	wish	to	use	in	place	of	the	'/'	character.	You
should	only	alter	the	default	value	in	extreme	situations	involving	code	page
conflicts,	etc.

The	string	"OK"	appears	by	default	on	the	OK	button	of	the	prompt	dialogue.
You	can	change	this	string	by	inserting	the	following	2	lines	into	the	current
X_START.SAV	file:
	X_START_OK
	yyyy

			where	yyyy	is	the	string	that	is	to	appear	on	the	OK	button.	String	yyyy
should	of	course	be	sensibly	sized.

The	string	"Cancel"	appears	by	default	on	the	Cancel	button	of	the	prompt
dialogue.	You	can	change	this	string	by	inserting	the	following	2	lines	into	the
current	X_START.SAV	file:
	X_START_CANCEL
	yyyy

			where	yyyy	is	the	string	that	is	to	appear	on	the	Cancel	button.	String	yyyy
should	of	course	be	sensibly	sized.
The	string	"Parameter	Help"	appears	by	default	on	the	Parameter	Help	button
of	the	prompt	dialogue.	You	can	change	this	string	by	inserting	the	following
2	lines	into	the	current	X_START.SAV	file:
	X_START_PARMHELP
	yyyy

			where	yyyy	is	the	string	that	is	to	appear	on	the	Parameter	Help	button.	String
yyyy	should	of	course	be	sensibly	sized.
The	string	"General	Help"	appears	by	default	on	the	General	Help	button	of
the	prompt	dialogue.	You	can	change	this	string	by	inserting	the	following	2
lines	into	the	current	X_START.SAV	file:
	X_START_GENLHELP
	yyyy

			where	yyyy	is	the	string	that	is	to	appear	on	the	General	Help	button.	String
yyyy	should	of	course	be	sensibly	sized.

The	previous	points	mean	that	the	symbolic	names:

X_START_OPEN_BRACE1,	X_START_OPEN_BRACE2,
X_START_CLOSE_BRACE1,	X_START_CLOSE_BRACE2,
X_START_SEPARATOR,	X_START_OK,	X_START_PARMHELP,
X_START_GENLHELP	and	X_START_CANCEL	are	reserved	and
should	not	be	used	in	[//]	or	{//}	prompts	as	symbolic	names.

Assembled	commands	are	always	assumed	to	be	being	used	to	invoked	.EXE
programs,	so	the	string	.EXE	will	be	automatically	added	to	final	commands
as	appropriate.
The	X_START.EXE	program	should	only	ever	reside	in	the
\X_LANSA\EXECUTE\	directory	of	the	current	LANSA	system.	Do	not
place	it	in	any	other	directory.
A	file	named	X_START.SDH	may	also	optionally	reside	in	the
\X_LANSA\EXECUTE	directory.	This	file	is	used	to	support	parameter	and
general	help	text	and	is	formatted:
HELP=XXXXXXXXXX
<lines	of	text>
HELP=XXXXXXXXXX
<lines	of	text>	
where	XXXXXXX	is	the	symbolic	name	of	the	parameter	to	which	the	help
text	applies	or	the	general	help	identifier	of	the	prompt.
For	full	working	examples	of	prompted	X_RUN	commands	you	should	refer
to	files	X_START.001	->	X_START.010	in	your	\X_LANSA\SOURCE
directory	and	to	file	X_START.SDH	in	your	\X_LANSA\EXECUTE
directory.
There	is	an	optional	merge	file,	which	provides	the	ability	for	another
program	to	dynamically	provide	values	for	symbolic	names.	Each	line	in	the
merge	file	has	the	format:

%<variable	name>%=<value>
e.g.%proc%=MYPROC

The	variable	name	must	be	4	characters	long	followed	immediately	by	an	'='.
The	value	is	all	the	characters	from	the	'='	to	the	end	of	the	line.	The	variable
name	must	not	be	a	pre-defined	variable	name.	This	results	in	a	fatal	error	at
execution	time.

17.1.2	Commands	and	Special	Variables
The	following	commands	and	special	variables	may	be	used	anywhere	in	a
command	string	except	inside	a	[//]	or	{//}	prompt.	Examples	of	the	use	of	all
these	commands	and	special	variables	can	be	found	in	the	XST	files	in
\X_WIN95\X_LANSA\SOURCE	shipped	with	Visual	LANSA	to	provide
custom	execute	dialogs	from	within	the	LANSA	development	environment:

Variable	Name Description

%basepath% It	is	substituted	with	the	name	of	the	path	up	to	(but	not
including)	the	X_LANSA	directory	of	the	current
Visual	LANSA	system.	For	example	c:\x_win95.

%browser% Determine	the	user's	browser	and	expand	to	the	full
path	of	the	browser

%editor% It	is	substituted	with	the	string	NOTEPAD.EXE	under
Windows.

%if%	&	%endif% %if%<expression>?<true	text>:<false	text>%endif%
Include	the	'true	text'	if	the	expression	is	true,
otherwise	include	the	'false	text',	if	it	exists.	The
expression	and	text	cannot	include	a	prompt.	The
expression	can	either	be	an	"="	or	"!="	type	of
expression.	The	comparisons	are	case	insensitive.	The
if	statement	finishes	at	the	%endif%.	The	if	statement
cannot	be	nested.
E.g.	The	following	line	compares	the	variable	LANG
to	the	string	'NAT'	and	if	it	is	not	equal,	puts	a	'+'
followed	by	the	value	of	%lang%	in	the	command	line:

			%if%%lang%!=NAT?+%lang%%endif%

The	following	4	lines	prompt	for	"Debug",	"Device
Name"	and	"Message	Queue",	and	if							
%dbug%	is	equal	to	'Y',	puts
"+BDEBUG+%dvic%+%msgq%"	on	the	command
line:

			%promptonly%[N/Debug/DBUG]
			%promptonly%[DSP01/Device	Name/DVIC]
			%promptonly%	[DSP01/Message	Queue/MSGQ]
			%if%%dbug%=Y?
+BDEBUG+%dvic%+%msgq%%endif%

%JavaClient% The	Java-Client	physical	path.

%noshowdialog% Do	not	display	the	dialog.	Use	the	defaults	and	merge
values	as	if	the	user	had	just	pressed	OK	on	the	dialog
without	changing	any	values.	This	is	provided	for	use
in	the	merge	file	so	that	a	calling	program	can	control
whether	or	not	to	display	the	dialog.

%nospaces% Do	not	add	a	space	for	each	new	line.	Spaces	must	be
manually	included	where	necessary.	This	is	primarily
provided	in	order	to	assemble	a	URL	from	separate
lines	in	the	X_START	file

%promptonly% Only	prompt	for	the	value	that	follows.	Do	not	insert
the	text	at	that	point	in	the	file.	The	dialog	will	just	set
the	value	of	the	symbolic	name.	A	reference	to	the
Symbolic	Name	ANYWHERE	in	the	X_START	file
will	insert	its	value	there.	See	%if	%	examples

%show% Causes	the	final	command	(after	prompting)	to	be
displayed	before	an	attempt	is	made	to	execute	it.	This
is	useful	for	debugging	custom	scripts.

%<symbol>% All	symbolic	names	provided	in	prompts	are	accessible
via	this	syntax.	This	includes	values	that	are	prompted
for	and	the	symbolic	names	defined	in	the	merge	file.
The	maximum	number	of	symbolic	names	is	1024.	If
there	are	more	symbolic	names	than	this	they	are
ignored

%workpath% Sets	the	current	directory	to	this	value	when	the
assembled	command	line	is	executed,	e.g.	when
X_RUN.exe	is	executed.	If	this	is	not	specified,	the
current	directory	is	left	unchanged.
Note:

When	x_start	is	called	from	the	Visual	LANSA
Execute	Dialogs	the	current	directory	is	set	to
\x_win95\x_lansa\source,	which	is	the	same	as	the
location	of	the	XST	files

%<environment
variable>%

If	a	match	is	not	found	for	the	variable	name,	then	it	is
evaluated	as	an	environment	variable.	If	it	exists,	its
value	is	substituted	for	the	variable	name.

%X_RUN_specific% If	%basepath%	of	X_RUN.exe	is	detected	then	the
value	of	the	following	%X_RUN_specific%	is
evaluated.
If	%basepath%	of	X_RUN.exe	is	not	detected	then	any
%X_RUN_specific%	is	ignored.

*password A	special	value	for	a	default	value.	Indicates	that	the
parameter	is	a	password	and	characters	entered	are
masked	with	asterisks.	A	value	must	be	entered

*password_optional The	same	as	*password	but	a	value	is	optional

*optional_data_<value> A	special	value	for	a	default	value.	Indicates	that
entering	a	value	is	optional.	If	there	is	text	for	<value>
it's	the	default	value.	E.g.	*optional_data_	will	display
an	empty	field.	*optional_data_adefault	will	display
'adefault'	in	the	field

	

Note:	If	any	of	these	commands	are	mistyped	and	the	'%'	is	the	first	character
on	the	line,	the	command	will	be	taken	as	a	Symbol	Name	and	the	rest	of	the
line	will	be	set	as	the	value	of	that	symbol.	The	resulting	command	line	will
look	as	if	the	whole	line	has	been	ignored.

17.2	The	X_RUN	Command
The	X_RUN	command	is	used	to	execute	an	application	from	a	command	line
or	program	icon.	It	initiates	the	LANSA	execution	environment	and	executes
the	specified	application.
X_RUN	has	a	number	of	compulsory	and	optional	parameters	which	may	vary
depending	on	the	platform	on	which	it	is	used.
For	example,	this	X_RUN	command	is	used	to	bring	up	the	menu	MYPROC:

	X_RUN	PROC=MYPROC	PART=DEM	LANG=ENG
													USER=USERID	DBID=LX_LANSA

Under	Linux,	this	X_RUN	command	is	used	to	print	a	report	on	printer	lp0
using	the	MYREPT	report	function	IN	MYPROC	process:

	X_RUN	PROC=MYPROC	FUNC=MYREPT	PART=DEM	LANG=ENG
												USER=USERID	DBID=LANSA	PRTR=lp0

The	X_RUN	command	can	be	found	in
the	x_lansa\execute	directory	under	Windows
the	$LANSAXROOT/x_lansa/bin	directory	under	Linux.

The	X_RUN	command	has	standard	parameters	as	well	as	parameters	for	more
advanced	use.	These	parameters	are	described	in	17.3	X_RUN	Parameter
Summary	and	17.4	X_RUN	Parameter	Details.
X_RUN	parameters	and	their	arguments	can	be	set	up	permanently.	How	to	do
this	is	explained	in	17.5	Permanently	Specify	X_RUN	Parameters.
Designed	for	use	by	application	developers,	X_START	is	a	simple	utility	that
prompts	for	X_RUN	parameters.	Refer	to	17.1	Using	X_START	as	a	Front	End
to	X_RUN	for	details.

17.3	X_RUN	Parameter	Summary
These	parameters	have	been	listed	in	alphabetical	order	so	that	you	can	more
easily	find	them.
If	a	parameter	is	specified	more	than	once,	then	the	last	value	processed	is	used.
If	executing	X_RUN	on	IBM	i,	only	the	PROC=	parameter	is	required.

When	used,	the	parameter	must	be	followed	by	an	=	sign	and	the
value,	without	any	spaces.

Some	of	these	parameters	are	very	specialized	and	you	will	find	details	about
them	by	following	the	link.

Param. Meaning	/	Values Req Default	Value

ASPW= Application	Server	Password No Refer	to	17.4.1	User	ID	and
Password	Default	Values

ASUS= Application	Server	User No Refer	to	17.4.1	User	ID	and
Password	Default	Values

BTN2= Function	key	to	simulate	when	mouse
button	2	is	double	clicked.	Not
supported	on	Linux.

No Prompt	key

BTN3= Function	key	to	simulate	when	mouse
button	3	is	double	clicked.

No Prompt	key

CDLL= The	name	of	the	.DLL	that	should	be
used	for	communications	to	an	attached
server.
Note:	LCOMGR32.DLL	must	be	used
when	connecting	to	a	Visual	LANSA
Server.

No The	CMTH	parameter	is	set	to
the	relevant	default	value	(used
for	both	development	and
execution	connections	to
servers)	when	the	Visual
LANSA	system	is	installed.

CIPH= The	symmetric	cipher	to	use	when
LANSA	calls	OpenSSL.	This	value	is
case	sensitive.	Possible	values	are	listed
in	the	OpenSSL	documentation	at
www.openssl.org/docs.	The	value	is	one
that	is	accepted	by	the

	 The	default	is	aes-256-cbc
No	other	values	are	currently
supported	or	tested.	Use	at	your
own	risk.

http://www.openssl.org/docs

EVP_get_cipherbyname	API.

CMTH= The	communication	method	that	should
be	used	for	conversations	with	any
attached	server.
T	=	Native	TCP/IP
The	C	and	T	values	are	identical	and
can	be	used	interchangeably.	They	are
provided	to	allow	you	to	more	easily
remember	which	value	to	use.
Note:	C	or	T	must	be	specified	when
connecting	to	a	Visual	LANSA	Server.

No The	CMTH	parameter	is	set	to
the	relevant	default	value	(used
for	both	development	and
execution	connections	to
servers)	when	the	Visual
LANSA	system	is	installed.

DASO= Data	Area	Storage	Option	parameter.	It
may	be	set	to	'D'	or	'F'.
D	indicates	that	data	area	value	storage
and	locking	should	be	emulated	using
table	LX_DTA	and	the	standard
LOCK_OBJECT/UNLOCK_OBJECT
logic.
F	indicates	that	data	area	value	storage
and	locking	should	be	emulated	using
flat	operating	system	files	stored	in	the
same	directory	as	any	relative	record
number	assignment	files	(refer	to	the
RPTH=	parameter).	Locking	and
unlocking	is	achieved	by	using	the
appropriate	operating	system	facilities
for	low	level	file	access.
Refer	to	the	LANSA	Application	Design
Guide	for	Guidelines,	Rules	and
Limitations	that	apply	when	using	the
DASO=F	option.

No D	is	the	default	value.

DATF= Date	format	to	be	used.	Allowed	values
are	DMY,	MDY	and	YMD.	If	running
in	SuperServer	mode	to	an	IBM	i
server,	this	causes	the	job	on	the	IBM	i
server	to	be	run		with	this	date	format

No X96SDF	column	from	LX_F96

which	may	differ	from	the	IBM	i
system	date	format,	QDATFMT.

DATS= Is	used	to	specify	from	where	to	retrieve
the	date	and	date	format.
S:	Specifies	that	the	date	and	date
format	are	to	be	retrieved	from	the
system	values
J:	Specifies	that	the	date	and	date
format	are	to	be	retrieved	from	the	job
attributes
Note:
IBM	i	only	and	is	equivalent	to	the
DATE_SRCE	parameter	of	the	LANSA
command.

No S	is	the	default	value.

DBCL= Database	Connection	Level
1.			Handles	database	connections	as	in
Visual	LANSA	V11.3	and	earlier.	Note
that	DBCF	flags	may	still	effect	this
connection,	but	they	are	not	supported.
Therefore,	do	not	attempt	to	use	DBCF
flags	when	DBCL=1.
2.			New	database	connection	logic	and
support	for	DBCF	flags.

No 2

DBCF= Database	Connection	Flags
This	option	has	been	included	for	future
flexibility,	but	currently	is	not
supported.	For	further	details	refer	to
17.4.2	DBCF	Flags.
When	this	parameter	is	set	on	the
X_RUN	command	line	or	equivalent,	it
only	affects	the	main	LANSA	database,
including	SUBMITTED	jobs	and
SuperServer	jobs.	It	does	not	affect	PC
Other	Files.
This	parameter	is	unusual	in	that	it	can

No CT_INTEGRATED_LOGON:Y

be	specified	many	times.	Each	setting
takes	the	form:	DBCF=<flag>:[Y/N],
where	the	flag	is	one	of	the	values
specified	in	17.4.2	DBCF	Flags	and	Y
sets	the	flag	on	and	N	sets	it	off.	For
example,
DBCF=CT_INTEGRATED_LOGON:Y

DBCC= Cursor	Concurrency
ODBC	default	=	1	-	SQL	Server	only
Refer	to	LANSA	and	SQL	Server	-
Configuration	Options	in	the	Tips	and
Techniques	on	the	LANSA	web	site.

	 Defaults	to	Read	Only	(1)

DBCT= Cursor	Type:
ODBC	default	=	0	-	SQL	Server	only.
Refer	to	LANSA	and	SQL	Server	-
Configuration	Options	in	the	Tips	and
Techniques	on	the	LANSA	web	site.

No Defaults	to	Static	cursor	(3)

DBHT= Details	used,	such	as	the	Computer
Name	and	Port,	for	debugging.

No The	DBHT	parameter	is	created
from	the	LANSA	Settings.
Refer	to	Debug	in	the	Visual
LANSA	User	Guide.
You	would	normally	not	use
this	parameter.

DBID= Database	Id
When	executing	X_RUN	on	IBM	i,	this
parameter	is	not	needed.
Refer	to	17.4.3	DBID,	DBUT,	DBII	and
DBIT	Parameters	for	details

No The	default	is	to	*LOCAL
IBM	i	
and	LX_LANSA	on	other
platforms.

DBII= Internal/Repository	Database	Identifier.
Refer	to	17.4.3	DBID,	DBUT,	DBII	and
DBIT	Parameters	for	details

No Defaults	to	the	same	value	as
DBID=,	so	if	they	are	the	same
you	do	not	need	to	specify
DBIT

DBIT= The	type	of	dictionary/repository
database	specified	in	the	DBII=

No The	default	values	are:
MSSQLS	for	Windows

http://www.lansa.com.au/support/tips/e0053.htm
http://www.lansa.com.au/support/tips/e0053.htm
its:lansa012.chm::/lansa/l4wusr01_2030.htm

parameter.	If	the	DBII=	parameter	is	not
supplied,	the	DBUT	database	type	will
be	used.
Refer	to	17.4.3	DBID,	DBUT,	DBII	and
DBIT	Parameters	for	details

ODBCORACLE	for	Linux.
	

DBLK= Database	Lock	Timeout	in	seconds.
Setting	this	parameter	overrides	the
LOCK_TIMEOUT	setting	in
X_DBMENV.DAT	for	ALL	databases.
There	are	database-specific	settings
related	to	LOCK_TIMEOUT	apart	from
the	timeout	itself,	so	it	is	imperative	that
you	review	17.8	Lock	Timeout.

No The	default	is	0
A	value	of	0	indicates	there	is
no	timeout.

DBMR= Enable	MARS	-	SQL	Server	only.
Refer	to	LANSA	and	SQL	Server	-
Configuration	Options	in	the	Tips	and
Techniques	on	the	LANSA	web	site.

No Defaults	to	No.

DBSA= When	using	Adaptive	Server
Anywhere,	after	240	minutes	of	no
activity	from	a	client,	by	default,	it	is
disconnected.
This	can	cause	a	problem	if	connections
are	idle	for	long	periods.	To	ensure
there	is	activity	on	all	open	connections,
they	are	periodically	activated.
This	argument	specifies	how	often	this
happens.	The	value	is	specified	in
minutes.

No 10

DBSP= Set	savepoint	-	SQL	Server	only.
Refer	to	LANSA	and	SQL	Server	-
Configuration	Options	in	the	Tips	and
Techniques	on	the	LANSA	web	site.

No Defaults	to	No.

DBSS= May	be	used	to	adjust	the	maximum
number	of	reusable	SQL	statements	that

No The	default	is	50.

http://www.lansa.com.au/support/tips/e0053.htm
http://www.lansa.com.au/support/tips/e0053.htm

are	cached	for	reuse.
For	details,	refer	to	17.4.4	DBSS
Parameter	-	Performance	Tuning.

DBTB= Trim	DBCS	Blanks.
'Y'	=	Yes	or	'N'	=	No.
When	DBTB=Y,	when	it	receives	focus,
any	input	capable	alphanumeric	shift	J
field	presented	by	a	Function	or
Component	will	have	DBCS	blanks
trimmed	from	it.	There	is	no	change	to
the	behavior	when	such	a	field	loses
focus.
Examples	of	controls	that	would	exhibit
this	behavior	include	input	capable
fields	in	browse	lists	and	in	RDMLX
list-type	controls	such	as	grid	and	list
view.
This	does	NOT	include	fields	presented
by	Active-X	controls	(or	any	COM
object),	unless	the	Active-X	Control	is
generated	by	LANSA.

No Y

DBTC Attempt	Database	Trusted	Connection
before	userid/password	connection.
When	this	is	set	to	'Y',	then	a	trusted
connection	is	attempted	before	using	a
User	ID	and	password	to	establish	the
connection.
If	DBTC	is	set	to	'Y',	DBCL	is
automatically	set	to	2.
If	DBTC	is	set	to	N,	a	log	in	using	the
Usr	ID	and	Password	is	attempted.

No No

DBUG= Turn	on	debugging
'Y'	(Yes)	or	'N'	(No)

No 'N'

DBUS= User	name	for	the	database	login.	When
executing	X_RUN	on	IBM	i,	this

No USER=	argument.	Refer	also	to
17.4.1	User	ID	and	Password

parameter	is	ignored.	
On	other	platforms,	after	logging	on	to
the	database,	the	value	of	DBUS	is
changed	to	reflect	what	was	required	to
logon	to	the	database.	For	example,	if
trusted	connections	are	being	used	then
SQL	Server	will	return	an	empty	value
for	user	ID.	This	value	is	then	assigned
into	DBUS.	Therefore	when
GET_SESSION_VALUE	is	used	it	may
be	empty.	It	is	also	altered	by	the
default	behavior.

Default	Values.

DBUT= The	type	of	user	database	specified	in
the	DBID=parameter.
Refer	to	17.4.3	DBID,	DBUT,	DBII	and
DBIT	Parameters	for	details

No The	default	values	are:
MSSQLS	for	Windows
ODBCORACLE	for	Linux.

DELI= Delete	packages	from	the	host	monitor
after	installation.
Allowable	values	for	this	parameter	are
Y	(Yes)	and	N	(No).

No Y

DEVE= User	is	a	developer
'Y'	(Yes)	or	'N'	(No)

No 'N'

DPTH= Directory	in	which	emulated	IBM	i	data
queues	are	to	be	created	/	accessed.

No <sysdir\x_ppp	(where	ppp	is	the
partition	name).

DRIV=
or
ROOT=

The	path	containing	Visual	LANSA.
This	parameter	is	no	longer	required	in
Windows	environments.

No If	Linux	then	'/lansa',	else	the
path	from	which	X_RUN.exe
was	executed,	provided	it
contains	'X_LANSA'

EDLC= The	parameter	only	applies	to	DBCS.	It
controls	whether	any	DBCS	string
being	entered	or	assigned	is	checked	for
length	compatibility	with	EBCDIC
based	DBCS	systems	that	use	the	shift
in	and	shift	out	characters.

No Y

Allowable	values	for	this	parameter	are
Y	(Yes)	and	N	(No).
Use	EXTREME	CAUTION	when
turning	this	option	off	(value	N).This
will	allow	you	to	store	DBCS	strings
that	are	fundamentally	incompatible
with	EBCDIC	shifted	systems.	A	later
design	change	to,	say,	a	client/server
application,	that	involves	an	EBCDIC
server	(such	as	an	IBM	i)	may	cause
severe	DBCS	string	storage/truncation
problems.

EXCH= Exchange	file	name
(Designed	for	internal	LANSA	use
only)

No Null

EXPM= Name	of	file	to	contain	*LIMPORT
export	messages.

No import.log	in	temporary
directory.

EXPR= Path	that	contains	the	file(s)	for
*LIMPORT	to	import.
If	the	value	of	this	parameter	is	the
special	value	'QDLS\<folder>',	then	the
import	will	be	attempted	via	a	direct
connection	to	the	IBM	i	N.B.	the
parameters	PSLU	and	PSPW	must	be
specified	(as	a	minimum).

No The	standard	File	Open	dialog
is	presented.

EXPS= Action	to	take	when	importing	object
security	records.
D	=	Delete:	all	existing	security	records
for	an	object	will	be	deleted	before
import.
R	=	Replace:	an	existing	user	security
record	will	be	replaced	with	a	matching
incoming	record.
A	=	Append	Only:	all	existing	user
security	records	will	be	retained,
matching	incoming	records	will

No D

generate	a	duplicate	warning.

FATL= Y=	forces	the	display	of	fatal	errors	in
client-side	applications	when	QUET=Y.
Refer	also	to	17.4.13	QUET	&	FATL
Parameters	(Quiet	Mode	of	Operation	&
Fatal)	for	further	information.

	 	

FLDX= Interpret	Numeric	Keypad.
Enter	Key	as	a	Field	Exit	key	(i.e.	The
Tab	Key).
This	will	occur	on	all	controls	except
push	buttons.	That	is,	entry	fields,	check
boxes,	radio	buttons	and	all	lists.
'Y'	(Yes)	or	'N'	(No)

No Y

FORM= Form	name No Null

FUNC= Function	name No Null

FXQF= Force	*.XQ*	flat,	read-only,	repository
files	into	a	Visual	LANSA	environment
using	this	parameter	set	to	
FXQF=*ALL.	Refer	to	17.4.5	FXQX
Parameters	for	information.

	 	

FXQM= Use	this	parameter	to	control	the
maximum	number	of	flat	files	that	are
kept	concurrently	open.
Refer	to	17.4.5	FXQX	Parameters	for
information.

No 	

GUSR= Group	User	Name No *NONE

HELP= Specifies	the	run-time	help	system	to	be
used.
OLD	indicates	old-style	two-window
help.
STD	indicates	the	default	single-
window	help	with	tab	control	for
Contents	and	Index.
WIN	is	reserved	for	Windows	Help.

No STD	for	Windows.
OLD	(forced)	for	all	other
operating	systems.

This	is	no	longer	to	be	used	for	new
applications.
HTM	is	reserved	for	HTML	Help.

HLPF= Specifies	the	help	file	to	be	used	for
HTML	Help	(HELP=HTM).
Note:
From	Windows	version	Vista	onwards,
the	viewer	for	HLP	files	will	no	longer
be	distributed	by	Microsoft.
For	Windows	Help,	the	filename	is
specified	minus	the	language	code	and
file-type	extension.	For	example,
HLPF=MYHELP	might	be	expanded	to
MYHELPFRA.HLP.
For	HTML	Help,	the	filename	is	minus
the	file-type	extension.	For	example,
HLPF=MYHELP	would	be	expanded	to
MYHELP.CHM.
For	HELP=STD	or	HELP=OLD,	the
value	of	this	parameter	is	ignored.
This	means	that	when	you	use	X_RUN
HELP=WIN
HLPF=C:\TEMP\MYHELP,	the	actual
file	being	looked	for	will	be	named
C:\TEMP\MYHLPFRA.HLP	(if	LANS-
FRA	is	used)	or
C:\TEMP\MYHELPENG.HLP	(if
LANG-ENG	is	used).

No Depends	on	value	of	HELP.
For	WIN,	the	default	is	the
Visual	LANSA	Help	File.	
For	HTM	it	is	the	HTML	Help
version	of	the	Visual	LANSA
Help	File.
The	default	location	for	help
files	is	the
X_LANSA\EXECUTE\
<language>	directory.

HSKC= Enables	High	Speed	Key	Checking.	This
feature	should	only	be	used	for
Windows	or	Linux	platforms.
For	information	refer	to	17.4.6	HSKC
Parameter.

No 	

ICWD= Change	working	directory	on	startup	to
x_lansa.	Only	supported	on	IBM	i.	
Y	=	Yes			N	=	No.

No N

INIT= Specifies	a	function	to	be	automatically
executed	on	application	startup.	Refer
to	17.4.7	INIT	and	TERM	Parameters
for	information.

No 	

ITxx= Trace	Parameters.	For	information,	go
to	17.4.8	ITxx	-	Trace	Parameters.

No 	

JOBN= Job	Name No Null

LANG= Language.
When	executing	X_RUN	on	IBM	i,	this
parameter	is	not	necessary.

Yes The	default	is	the	partition
default	language	from	the
LANSA	command.

LDAV= LDA	(local	data	area)	file	name No Null

LOCK= Y	indicates	that	Object	Locks	should	be
obtained	when	executing	a	LANSA
object.	This	is	a	read-only	lock	which
blocks	requests	to	obtain	exclusive
access	to	the	object.	For	example,
compiling	an	object	requires	exclusive
access.	Thus	a	Form	cannot	be
compiled	whilst	it	is	being	executed.
LOCK=Y	should	only	be	used	in	a
development	environment.
It	has	no	purpose	in	a	deployed
environment.

No 	

LOGO= Indicates	whether	to	show	a	logo
indicating	the	version	and	date	of	Visual
LANSA	system	being	used.	Allowed
parameter	values	are	Y	and	N.

No N

LPTH= Fully	qualified	root	directory	for	storage
of	BLOB	and	CLOB	disk	files.
Requires	an	ending	'\'.

No Refer	TPTH

MENU= This	parameter	determines	whether	new
icon	and	bitmap	style	menus	and	action
bars	should	be	used.

No Y

MODE= 'I'	(interactive)	or
'B'	(batch)

No B	for	Linux	otherwise	'I'.

ODBA= Deprecated.	Number	of	database
connections	now	automatically
determined	by	LANSA.

	 	

ODBI= Used	to	specify	the	transaction	isolation
level	for	all	ODBC	database
connections.
See	ODBI	Parameter	for	details.

No Default	is	0	(zero).

PARM= Parameter	file	name
(Designed	for	internal	LANSA	use
only)

No Null

PART= Partition
When	executing	X_RUN	on	IBM	i,	this
parameter	is	not	needed.

Yes The	default	is	to	SYS	from	the
LANSA	command.

PBCM= Specifies	the	color	to	be	used	for
Column	Headings.	Values	are	G=Green,
W=Black,	R=Red,	T=Turquoise,
Y=Yellow,	P=Pink,	B=Blue.	Invalid
values	are	ignored.

No B

PBFP= Specifies	the	color	to	be	used	for	Field
Prompts	(i.e.	Labels	and	Descriptions).
Values	allowed	are	G=Green,	W=Black,
R=Red,	T=Turquoise,	Y=Yellow,
P=Pink,	B=Blue.	Invalid	values	are
ignored.

No W

PPTH= Fully	qualified	directory	for	report	files
if	PRTR=*PATH.
Requires	an	ending	'\'.

No x_lansa\x_ppp\	on	the
DRIV=path	where
ppp=partition.

PROC= Process	name Yes 	

PROG= This	parameter	allows	you	to	rename
the	X_RUN.exe	file	while	allowing	the
SUBMIT	command	to	work	correctly.

No 	

Refer	to	17.4.11	PROG	Parameter	for
details.

PRTR= Printer	port	name	(e.g.	LPT1,	LPT2)	or
special	value	*PATH	which	indicates
reports	are	to	be	output	to	a	file	rather
than	a	printer.	For	Linux	this	should	be
the	same	dest	name	which	would	be
used	by	the	lp	command.	
N.B.	Use	of	PRTR	with	any	value	other
than	*PATH	is	deprecated	for	Windows
and	is	no	longer	supported.	Existing
applications	may	continue	to	function
correctly,	but	LANSA	does	not	warrant
its	use.	Use	the	WPxx	parameters
instead.

No Linux:	*PATH
Windows:	LPT1

PSPW= Primary	Password	for	Server	and	Client No PSWD=	argument.
Refer	to	17.4.1	User	ID	and
Password	Default	Values	for
details.

PSTC= Specifies	that	Windows	Authentication
is	used.	Refer	to	17.4.1	User	ID	and
Password	Default	Values	for	details.

No Default	is	N.

PSUS= Primary	Server	User. No Refer	to	17.4.1	User	ID	and
Password	Default	Values	for
details.

PSWD= Password	for	the	database	login.
When	executing	X_RUN	on	IBM	i,	this
parameter	is	ignored.

No PSPW=	argument.	Refer	to
17.4.1	User	ID	and	Password
Default	Values	for	details.

PSxx= Please	note	The	PSxx	parameters	are
primarily	provided	to	aid	developers	in
testing	applications	in	SuperServer
mode.
Refer	to	17.4.12	PSxx	Server
Parameters	for	the	parameters	available
in	the	PSxx	range.

No 	

QCHK= Indicates	approximately	how	long	an
active	monitor	should	wait	before
checking	the	job	queue.	Refer	to
Additional	Job	Queue	Monitor
Parameters	for	details.

No Default	is	10	seconds

QHLD= Indicates	how	long	a	held	job	queue
monitor	should	wait	before	rechecking
the	job	queue	directory	for	release
instructions.	Refer	to	Additional	Job
Queue	Monitor	Parameters	for	details.

No Default	is	30	seconds

QENC= Specifies	that	the	job	details	are	to	be
encrypted	before	placing	them	on	the
queue.	Refer	to	Encrypting	the	Job
Queue	Details	for	details.

Yes Default	is	N

QUET= Used	to	force	a	batch	job	into	a	quiet
mode	when		normal	error	and	status
reporting	activities	are	suppressed.
Refer	to	17.4.13	QUET	&	FATL
Parameters	(Quiet	Mode	of	Operation	&
Fatal)	for	details.

Yes QUET=N	is	the	default.

RNDM= Render	Mode.	H	=	Hardware,
S=Software

No Default	value	is	H.

RNDR= Render	Style.	W	=	Win32,	M	=	Mixed,
X	=	DirectX

No Default	value	is	W.

RPTH= Fully	qualified	directory	for	RRNO
(relative	record	number)	files.	
Requires	an	ending	'\'.
Note	that	if	Visual	LANSA	is	installed
on	a	server,	then	this	path	must	be
located	on	the	server.

No x_lansa\x_ppp\	on	the
DRIV=path	where
ppp=partition.

RRNA= The	number	of	RRN	(Relative	Record
Number)	assignments	that	are	to	be	pre-
allocated	when	inserting	data	into	a
table.

Yes The	default	value	is	1.

Refer	to	17.4.14	RRNA	and	RRNB
Parameters	-	Performance	Tuning	for
details.

RRNB= Specifies	whether	Windows	operating
system	file	buffering	is	to	be	used	when
accessing	the	RRN	or	*AUTONUM
data	area	assignment	files.	Specify	this
argument	as	Y	or	N.	
Refer	to	17.4.14	RRNA	and	RRNB
Parameters	-	Performance	Tuning	for
details.

	 The	default	is	N.

TASK= Task	identifier	to	be	used	when
executing	applications	that	are
performing	development	tasks	(such	as
those	using	the	specialized	Built-In
Functions).

No Null

TERM= Specifies	a	function	to	be	automatically
executed	on	application	shutdown.
Refer	to	17.4.7	INIT	and	TERM
Parameters	for	information.

	 	

TPTH= Fully	qualified	directory	for	temporary
files.

No Refer	to	17.4.15	TPTH
Parameter	for	how	TPTH	is
derived.

UDEF= User	Defined	Parameter.
256	byte	alpha	to	be	used	to	pass
information	into	LANSA	on	the
command	line.
Use	GET_SESSION_VALUE	and
SET_SESSION_VALUE	to	get	and	set
the	value	from	RDML.
This	parameter	has	no	other	use	in
LANSA.	It	is	provided	purely	for	the
use	of	RDML	developers	to	more	easily
communicate	between	LANSA
jobs/processes.

No Empty/blank.

UPCD= MSI	Upgrade	Code.	
This	is	set	automatically	by	the	MSI
Install.	It	is	not	recommended	to	alter	it.

No Null

USER= User	name	for	Server	and	Client.	
When	executing	X_RUN	on	IBM	i,	this
parameter	is	ignored.	USER	is	the
actual	IBM	i	user.

Yes Refer	to	17.4.1	User	ID	and
Password	Default	Values	for
defaults.

USEX= Default	User	ID	used	when	establishing
connections	to	servers.
When	the	user	id	is	passed	to	X_RUN,
it	puts	the	exact	case	in	the	USEX
parameter,	the	same	as	the
SET_SESSION_VALUE	now	does.

	 USER	is	the	basis	of	USEX.

WDTM= Controls	the	Windows	Desktop	Heap	in
which	the	process	is	created.
Refer	to	17.4.16	WDTM	Parameter
(Windows	Desktop	Heap)	for
information.

Yes WDTM=N	is	the	default.

WPxx= Refer	to	17.4.17	WPxx	-	Windows
Printing	Extensions	for	these
parameters.

No 	

XAFP= Indicates	whether	all	fields	defined	in	a
function	should	be	exchanged	when
prompting.	Only	use	this	option	when
position	499	of	the	system	data	area
(DC@A01)	of	an	associated	LANSA
for	the	IBM	i	system	is	set	to	Y.	Do
NOT	use	this	option	in	any	other
circumstances.
Y	=	exchange	all	fields	on	prompt	other
=	do	not	exchange	all	fields.

No N

XCMD= Obscure	certain	details	in	the	command
line.	Refer	to	17.4.18	XCMD	Parameter
for	details.

No Default	is	N.

XENV= 	Sets	a	LANSA	environment	variable.
For	details,	refer	to	Regional	Settings

No 	

	

17.4	X_RUN	Parameter	Details
For	some	commands	you	will	need	more	information	to	use	them.	Where
applicable,	this	information	follows:

17.4.1	User	ID	and
Password	Default
Values
17.4.2	DBCF	Flags
17.4.3	DBID,	DBUT,
DBII	and	DBIT
Parameters
17.4.4	DBSS	Parameter
-	Performance	Tuning
17.4.5	FXQX
Parameters

17.4.6	HSKC
Parameter
17.4.7	INIT	and
TERM
Parameters
17.4.8	ITxx	-
Trace	Parameters
17.4.9	ODBA
Parameter
17.4.10	ODBI
Parameter
17.4.11	PROG
Parameter
17.4.12	PSxx
Server
Parameters

17.4.13	QUET	&	FATL	Parameters
(Quiet	Mode	of	Operation	&	Fatal)
17.4.14	RRNA	and	RRNB
Parameters	-	Performance	Tuning
17.4.15	TPTH	Parameter
17.4.16	WDTM	Parameter
(Windows	Desktop	Heap)
17.4.17	WPxx	-	Windows	Printing
Extensions
17.4.18	XCMD	Parameter

Also	see
17.7	The	.XQ*	Files

17.4.1	User	ID	and	Password	Default	Values
Notes:
The	system	variable	*USER	is	derived	from	USER.
Database	stamping	attributes	are	derived	from	USER.
PSUS,	ASUS,	PSPW	and	ASPW	will	be	automatically	converted	to	uppercase
when	attempting	to	connect	to	an	IBM	i	server	system.	For	non-IBM	i	server
systems	their	case	is	unchanged.
When	PSTC=Y,	that	is	you	have	directed	LANSA	to	use	Windows
Authentication	(also	called	Trusted	Connections),	LANSA	will	firstly	attempt	to
obtain	the	value	of	USER	by	looking	up	the	Windows	authenticated	user	in	file
LX_FKU.	If	one	is	found	then	USER	is	assigned	the	value	of	the	associated	PC
User	ID.	Any	existing	value	of	USER	is	overwritten.	If	one	is	not	found,	then
the	defaulting	logic	below	is	used.	This	lookup	always	occurs	when	PSTC=Y.
That	is,	it's	not	just	performed	when	USER	is	unassigned.
User	Profiles

Order	of
Defaulting

X_RUN
Param.

Description Always
Uppercase

Defaulting	Order

1 USER System	User Yes 1.	DBUS
2.	PSUS	(upper	case)
3.	ASUS	(upper	case)

2 DBUS Database	User Yes 1.	USER
2.	PSUS	(upper	case)
3.	ASUS	(upper	case)

3 PSUS Primary	Server	User No 1.	USER	(exact	case)
2.	ASUS
3.	DBUS	(exact	case)

4 ASUS Application	Server	UserNo 1.	USER	(exact	case)
2.	PSUS
3.	DBUS	(exact	case)

	

Passwords

Order	of
Defaulting

X_RUN
Param.

Description Always
Uppercase

Defaulting	Order

1 PSWD Database	Password Yes 1.	PSPW	(upper
case)
2.	ASPW	(upper
case)

2 PSPW Primary	Server	Password No 1.	PSWD	(exact
case)
2.	ASPW

3 ASPW Application	Server
Password

No 1.	PSWD	(exact
case)
2.	PSPW

	

17.4.2	DBCF	Flags
The	following	flags	are	mutually	exclusive.	They	are	tested	in	the	following
order.	The	connection	will	be	established	using	the	first	flag	found	to	be	true.
1.		CT_OLD_STYLE_LOGON_SQLCONNECT:	Log	on	using	User
ID/Password.	If	that	fails	it's	a	fatal	error.

2.		CT_DSN_ONLY_LOGON:	Only	provide	the	DSN	to	ODBC	presuming
that	the	DSN	completely	defines	all	the	connection	parameters.

3.		CT_INTEGRATED_LOGON:	Perform	an	integrated	Log	on.	Some
databases	require	a	special	parameter	to	be	passed	to	ODBC.

4.		Use	User	ID	and	Password,	if	they	have	been	passed	in,	if
the	CT_DRIVER_PROMPT	is	specified	and
the	LANSA	process	is	interactive	and
it	is	running	on	Microsoft	Windows.

					Allow	the	ODBC	Driver	to	prompt	for	further	information	if	the	information
provided	in	the	connection	string	and	ODBC	DSN	are	insufficient	to	establish
a	connection	to	the	database.

In	all	other	circumstances	the	CT_DRIVER_PROMPT	is	ignored.	Further
connection	behavior	is	dictated	by	the	connection	algorithm	being	used.
The	only	purpose	of	using	these	flags	is	to	speed	up	the	connection	by	ensuring
that	the	first	connection	succeeds.	For	example,	if	you	know	an	integrated
Logon	will	be	the	only	connection	you	want	to	succeed,	specify
DBCF=CT_INTEGRATED_LOGON:Y	and	DBCF=
CT_AUTHENTICATION_ERROR_IS_FATAL:Y.	This	will	cause	the	first
connection	to	be	integrated	and	a	fatal	error	will	occur	if	that	connection	is
unsuccessful.

Other	DBCF	Flags
CT_AUTHENTICATION_ERROR_IS_FATAL:	An	authentication	error	by
default	is	not	fatal.	Setting	this	option	on	ensures	that	the	first	connection	will
either	succeed	or	there	will	be	a	fatal	error.	This	is	similar	behavior	to	LANSA
Version	11.3.
CT_DISPLAY_AUTHENTICATION_PROMPT:	When	an	authentication	error
occurs,	display	a	message	to	the	user.	Typically	used	in	conjunction	with
CT_DRIVER_PROMPT	to	cause	ODBC	to	continually	re-prompt	the	user	for

connection	information	whilst	there	is	an	authentication	error	and	cancel	has	not
been	clicked.	These	options	were	used	with	PC	Other	Files	in	Version	11.3.
CT_DRIVER_PROMPT:	Ask	the	ODBC	driver	to	prompt	for	more	information
if	the	connection	information	it	has	is	insufficient	to	obtain	a	connection.
CT_ALL_FLAGS_ON:	Sets	all	the	flags	on	or	off.	Typically	used	to	ensure	that
any	preceding	commands	are	neutralized	by	using
DBCF=CT_ALL_FLAGS_ON:N.	It	does	not	make	sense	to	use
DBCF=CT_ALL_FLAGS_ON:Y,	although	all	flags	will	be	set	on	if	it	is	used.

Also	see
Connection	Algorithm

Connection	Algorithm
When	DBCL	=	1,	the	connection	algorithm	is	to	Log	on	to	the	main	database
using	the	supplied	User	ID	and	Password	(Using	ODBC	API	SQLConnect).	If
the	Log	on	fails,	LANSA	exits	with	a	fatal	error.	Files	in	Other	databases	are
logged	on	with	the	supplied	connection	information	and	if	that	fails,	the	user	is
prompted	for	further	database	connection	information	(Using	ODBC	API
SQLDriverConnect).
When	DBCL	=	2,	the	database	Log	on	goes	through	a	number	of	default
attempts	to	log	on	using	various	different	parameters.	PC	Other	Files	is
essentially	the	same,	except	DBCF	flags	do	not	affect	it	and	if	none	of	the
default	connection	methods	work,	it	finally	prompts	for	connection	information
from	the	user,	as	it	does	in	LANSA	V11.3.
Its	important	to	note	that	specifying	a	DBCF	flag	doesn't	alter	the	steps	in	the
SQL	Anywhere	algorithm,	but	the	behavior	of	each	step	may	be	changed	if	the
DBCF	flag	has	a	higher	precedence	than	the	kind	of	connection	being	attempted
in	a	particular	step.	For	example,	if	CT_INTEGRATED_LOGON	is	set,	then
step	3	of	the	SQL	Anywhere	connection	will	behave	the	same	as	a	trusted
connection	because	trusted	connection	has	a	higher	precedence	than	using	User
ID/Password	(for	precedences,	refer	to	17.4.2	DBCF	Flags).
The	DBCL	=	2	algorithm	is	described	for:

SQL	Anywhere
Oracle
SQL	Server
Other	Databases

SQL	Anywhere
1.		Attempt	a	connection	using	the	parameters	as	passed	in.
2.		If	DBTC	=	Y,	attempt	a	trusted	connection.
3.		Attempt	Logging	on	using	the	User	ID	and	Password	supplied,	if	any.	This	is
for	backward	compatibility.

4.		Connect	just	using	the	DSN.	This	presumes	that	the	ODBC	DSN	contains	all
the	connection	information	required.

5.		Attempt	to	connect	using	DBA/SQL.	This	will	be	the	most	common
connection	made	with	new	installations.

6.		If	it's	a	PC	Other	File,	prompt	the	user	repeatedly	until	a	connection	is
successfully	made	or	the	dialog	is	cancelled.	(This	applies	only	to	interactive
LANSA	processes	running	on	Microsoft	Windows.)

7.		Fatal	error.

Oracle
1.		Attempt	a	connection	using	the	parameters	as	passed	in.
2.		If	DBTC	=	Y,	attempt	a	trusted	connection.
3.		Attempt	Logging	on	using	the	User	ID	and	Password	supplied,	if	any.	This	is
for	backward	compatibility.

4.		If	it's	a	PC	Other	File,	prompt	the	user	repeatedly	until	a	connection	is
successfully	made	or	the	dialog	is	cancelled.	(This	applies	only	to	interactive
LANSA	processes	running	on	Microsoft	Windows.)

5.		Fatal	error.

SQL	Server
Microsoft	SQL	Server	has	only	ever	fully	supported	trusted	connections.
Specifying	a	User	ID	and	Password	may	work,	but	it	has	never	been	a	supported
feature.	As	such,	there	is	no	change	to	the	database	Log	on	to	an	SQL	Server
database,	except	that	DBCF	flags	may	affect	the	type	of	Log	on	performed.
1.		Attempt	a	connection	using	the	parameters	as	passed	in.
2.		If	it's	a	PC	Other	File,	prompt	the	user	repeatedly	until	a	connection	is
successfully	made	or	the	dialog	is	cancelled.	(This	applies	only	to	interactive
LANSA	processes	running	on	Microsoft	Windows.)

3.		Fatal	error.

Other	Databases
There	is	no	change	to	the	Log	on	to	other	databases,	except	that	DBCF	flags
may	affect	the	type	of	Log	on	performed.	The	default	connection	algorithm	is	as
follows:
1.		Attempt	a	connection	using	the	parameters	as	passed	in.
2.		Prompt	the	user	repeatedly	until	a	connection	is	successfully	made	or	the
dialog	is	cancelled.	(This	applies	only	to	interactive	LANSA	processes
running	on	Microsoft	Windows.)

3.		Fatal	error.

17.4.3	DBID,	DBUT,	DBII	and	DBIT	Parameters
You	use	the	DBID=	(Database/Source	Identifier)	parameter	with	the	X_RUN
command	to	nominate	the	name	of	the	database/source	to	which	you	wish	to
connect	your	application.
There	are	two	database	identifier	parameters:

DBID User	Database	Identifier.	This	is	the	database	where	your	application
tables	reside	(e.g.	CUSTMST).

DBII Internal/Repository	Database	Identifier.	This	is	the	database	where	the
Visual	LANSA	dictionary/repository	resides	(e.g.	LX_F03	-	Field
Definitions).

DBII=	defaults	to	the	same	value	as	DBID=,	so	if	they	are	the	same	you	do	not
need	to	specify	DBII.
Database	Type
DBID=	and	DBII=	have	parameters	DBUT	and	DBIT	to	indicate	the	type	of
database	being	used.
Note:	If	DBID=	and	DBII=	are	different,	and	if	the	special	values	*ANY,
*NONE,	*AS400	or	*OTHER	are	not	being	used,	then	the	DBID	and	DBII
must	have	identical	Visual	LANSA	repository	and	object	definitions.	For
example:	DBII=LX_LANSA,	DBID=LX_USER,	DBIT=MSSQLS	(if	provided,
DBUT	must	be	the	same	as	DBIT),	both	LX_LANSA	and	LX_USER	contain
the	same	LANSA	object	definitions.	Therefore,	whenever	an	object	is	added	or
modified,	it	needs	to	be	exported	to	other	database.
The	parameters	DBIT	and	DBUT	must	specify	the	same	type	of	database.	For
example	DBIT=MSSQLS	and	DBUT=MSSQLS.	It	would	NOT	be	valid	to	use
this:	DBIT=MSSQLS	and	DBUT=SQLANYWHERE.

DBUT The	type	of	user	database	specified	in	the	DBID=parameter.	The	default
values	are:
MSSQLS	for	Windows
ODBCORACLE	for	Linux.

DBIT The	type	of	dictionary/repository	database	specified	in	the	DBII=
parameter.	If	the	DBII=	parameter	is	not	supplied,	the	DBUT	database
type	will	be	used.
The	default	values	are:

MSSQLS	for	Windows
ODBCORACLE	for	Linux.

The	DBUT=	and	DBIT=	values	are	important	because	they	link	the
database/source	named	in	the	DBID=	and	DBII=	to	the	database	characteristics.
The	database	characteristics	are	defined	in	the	"x_dbmenv.dat"	(Database
Environment	Definition	File)	which	is	described	in	The	X_DBMENV.DAT	File.
The	ability	to	link	the	database/source	that	you	specify	(in,	say,	DBID=)	to	a
database	type	(specified	in	DBUT=)	is	vital.
For	example,	if	you	specify	DBUT=MSSQLS	then	the	entire	set	of	error
messages/return	codes	issued	by	the	DBMS	is	different	to	when	you	specify
DBUT=SQLANYWHERE.	These	DBMS	specific	variations	are	defined	in	the
"x_dbmenv.dat"	file.
Special	Values	DBID=*NONE	and	DBII=*NONE
Visual	LANSA	supports	the	use	of	special	values	*NONE	in	the	DBID=	and
DBII=	parameters.
The	special	value	*NONE	indicates	that	no	local	(or	connected	server)	database
is	available	to	the	Visual	LANSA	application(s).
By	using	this	option,	Visual	LANSA	applications	can	be	made	to	execute
without	the	need	to	have	any	form	of	SQL/ODBC	style	database
installed/available	locally.
When	using	DBID=*NONE	all	process,	function	and	file	level	security
checking	is	disabled.
If	you	use	*NONE	with	DBID	or	DBII,	you	will	also	use	the	XQ	files	which	are
described	in	17.7	The	.XQ*	Files.
Normally	you	would	only	use	this	option	on	end	user	PCs	or	when	testing	an
application.
To	use	any	form	of	Visual	LANSA	or	Visual	LANSA	development	facility	you
must	have	an	accessible	repository	database.
Special	Value	DBID=*ANY,	DBID=*AS400	or	DBID=*OTHER
Visual	LANSA	supports	the	use	of	special	value	*ANY,	*AS400	or	*OTHER	in
the	DBID=	parameter.
These	special	values	indicate	that	no	local	(or	connected	server)	database	is
available	to	the	Visual	LANSA	application(s)	and	that	the	first	function	or
component	invoked	should	automatically	connect	to	a	specified	server.
When	using	DBID=*ANY,	*AS400	or	*OTHER	you	will	use	the	.xq*	files

described	in	17.7	The	.XQ*	Files	as	well	as	a	series	of	PSxx=	parameter	values
that	define	the	characteristics	of	the	PS	(Primary	Server)	that	you	wish	to
automatically	connect	to.	Refer	to	17.4.12	PSxx	Server	Parameters	for	the
PSXX	parameter	requirements.
Using	DBID=*ANY,	AS400	or	*OTHER	is	exactly	the	same	as	using
DBID=*NONE,	except	that	you	will	get	an	automatic	connection	to	a
nominated	server	system.
By	using	this	option,	Visual	LANSA	applications	can	be	made	to	execute
without	the	need	to	have	any	form	of	SQL/ODBC	style	database
installed/available	locally.
Normally	you	would	only	use	this	option	on	end	user	PCs	or	when	testing	an
application.	When	using	Visual	LANSA	for	development,	you	must	have	an
accessible	repository	database.
Valid	DBID=	and	DBII=	Parameter	Settings	and	Recommendations
These	are	the	valid	and	recommended	DBID=	and	DBII=	settings	for	various
client	(Windows)/server	environments:

Environment Comments DBID= DBII=

Full
Client/Server
to	a	Server:

All	applications	work	directly	to	the	Server
DBMS	and	no	local	DBMS	is
required/available.

*ANY
*AS400
*OTHER

*NONE

Mixed
Client/Server:

Most	applications	work	directly	to	the	Server's
DBMS	and	limited	local	DBMS	access	is
required.

<name> *NONE

Heavily	Client
side:

Most	applications	work	directly	to	the	local
DBMS	and	limited	or	no	Server	DBMS	access
is	required.

<name> *NONE

	

17.4.4	DBSS	Parameter	-	Performance	Tuning
This	X_RUN	parameter	may	be	used	to	adjust	the	maximum	number	of
reusable	SQL	statements	that	are	cached	for	reuse.
DBSS=0	will	disable	caching,	which	is	not	recommended,	as	it	will	generally
result	in	performance	degradation	unless	no	SQL	statements	are	reused.
DBSS=50	is	the	default.

Also	see
17.4.14	RRNA	and	RRNB	Parameters	-	Performance	Tuning

17.4.5	FXQX	Parameters
FXQF	Parameter
When	you	have	installed	a	set	of	*.XQ*	flat	read-only	repository	files	into	a
Visual	LANSA	environment	you	can	force	them	to	be	used	by	specifying	the
parameter	FXQF=*ALL.	Normally	use	of	the	read-only	tables	only	occurs	when
the	DBII=	(Database	Internal	Identifier)	parameter	is	set	to	*NONE.	In	some
situations	you	may	need	to	have	DBII=LX_LANSA	(for	example)	so	that	access
to	internal	tables	such	as	LX_FOL	(Object	Locks),	LX_DTA	(Data	Area
Emulation)	and	LX_F80	(Saved	Lists)	is	still	possible.	You	can	do	this	by	using
the	combination	of	parameters	DBII=LX_LANSA	and	FXQF=*ALL	thus
gaining	access	to	internal	non-static	repository	tables	and	also	forcing	the	high
performance	*.XQ*	read	only	repository	tables	to	be	used.

FXQM	Parameter
When	flat,	read-only	repository	files	are	being	used	because	parameter
DBII=*NONE	or	because	parameter	FXQF=*ALL	is	being	used,	then	the	logic
to	read	information	from	the	flat	tables	is	optimized	to	keep	as	many	flat	files
open	as	possible.	In	some	situations	the	operating	system	may	limit	how	many
flat	files	can	be	concurrently	open.	Use	this	parameter	to	control	the	maximum
number	of	flat	files	that	are	kept	concurrently	open.	If	you	do	not	specify	this
parameter	it	defaults	to	60.	Otherwise	set	it	to	a	value	in	the	range	4	to	256.	If
you	receive	an	error	message	indicating	that	the	FXQM	parameter	needs	to	be
reduced	try	setting	it	to	FXQM=59,	then	FXQM=58,	etc.,	until	the	message	is
no	longer	issued.

Also	see
17.7	The	.XQ*	Files

17.4.6	HSKC	Parameter
The	HSKC=Y	parameter	may	be	specified	(or	defaulted)	on	the	X_RUN
command
When	this	value	is	used,	"High	Speed	Key	Checking"	is	enabled.	This	feature
should	only	be	used	for	Windows	or	Linux	platforms.
When	this	parameter	is	enabled,	all	eligible	FILECHECK	RDML	commands
and	OAM	based	"File	Lookup	Checks"	will	automatically	track	key	values	that
have	previously	been	found	to	exist	in	the	associated	SQL	table(s).	These
tracked	key	values	are	held	in	memory	and	are	much	faster	to	(re)access	second
and	subsequent	times.
By	using	the	HSKC=	parameter	selectively	on	relatively	static	decode	and
validation	tables	you	can	significantly	improve	the	performance	of	an
application.
For	example,	there	may	exist	an	SQL	table	called	COMPANY	that	contains	the
identifiers	of	all	valid	companies	within	your	application.	Many	other	SQL
tables	such	as	CUSTOMER,	ORDER,	PRODUCT,	etc.	may	have	referential
integrity	checks	against	the	COMPANY	table	that	are	invoked	whenever
information	is	inserted,	updated	or	deleted.
When	performed	under	SQL,	these	lookup	checks	into	COMPANY	are
relatively	expensive,	but	with	the	HSKC=Y	parameter,	all	(re)checks	of	the
same	key	value	(i.e.	the	company	identifier)	against	the	COMPANY	table	are
much	cheaper	and	faster	to	execute.
Typically,	eligible	files	include	relatively	static	tables	such	as	"Company
Names",	"Zip	Codes",	"Currency	Codes",	etc.	that	are	used	extensively	for
validation.
Before	using	this	facility	you	should	be	aware	of	the	following:
You	must	nominate	the	names	of	all	Physical	Files/SQL	tables	that	are
eligible	for	this	type	of	processing	in	a	simple	text	file	named	X_HSKC.DAT
in	the	main	x_lansa	directory	of	your	Visual	LANSA	system.	This	file	is	used
at	execution	time,	so	it	must	be	present	on	development	and	execution
systems.
File	X_HSKC.DAT	is	a	simple	text	file	that	can	be	created	and	edited	with
most	standard	source	file	editors.	Specify	the	name	of	only	one	file/table	per
line.	Upper	or	lower	case	characters	may	be	used	in	the	names.	Only	the
physical	file/SQL	table	names	need	be	specified.	All	logical	views	of	the	table

are	implicitly	included	when	the	physical	file	is	named.	The	name	of	the	file
must	be	the	first	thing	on	the	line.	Leading	blanks	are	significant	and	are	not
ignored.
No	checking	of	any	type	is	done	on	the	names	specified	in	X_HSKC.DAT.	If
you	enter	an	invalid	or	incorrect	file	name	it	will	be	accepted,	and	the	correct
file	will	not	be	subject	to	the	HSKC=Y	effects.
If	you	use	the	HSKC=Y	parameter	and	attempt	to	do	a	file	lookup	check	for
file	X_HSKC.DAT,	if	it	does	not	exist	in	the	x_lansa	directory,	a	fatal	error
will	result,	terminating	the	application.
Updates	or	deletes	made	to	a	table	from	within	the	current	X_RUN
process/session	cause	all	tracked	details	for	the	table	to	be	dropped	(thus
restarting	the	tracking	process	again).

However,	you	must	note	that	only	updates	and	deletes	issued	from	within	the
current	X_RUN	process/session	cause	this	to	happen.	Updates	and	deletes
issued	by	other	network	users,	or	to	an	IBM	i	server	(via	LANSA
SuperServer),	or	via	other	X_RUN	processes,	do	not	cause	the	tracked	key
data	to	be	dropped	from	the	current	X_RUN	session.
The	amount	of	key	data	that	can	be	tracked	is	limited	to	the	memory	size	of
your	computer.	Tracked	key	data	uses	the	aggregate	byte	length	of	the	key
involved	+	2	bytes	for	each	key	value	that	is	being	tracked.
High	Speed	Key	Checking	is	not	implemented	for	Char,	String,	Nchar	or
Nvarchar	keys.

High	Speed	Key	Checking	for	OAM	based	'File	Lookup	Checks'	is
relevant	for	Windows	and	Linux	platforms	only.	That	is,	if	the	server
is	a	Windows	or	Linux	server	then	this	parameter	is	relevant.	It	is	not
relevant	for	a	Visual	LANSA	to	IBM	i	set	up.	However,	for
FILECHECK	RDML	commands,	the	Visual	LANSA	IBM	i	set	up	is
fine.	If	you	want	to	speed	up	the	static	files	on	the	IBM	i,	then	you
should	use	the	'High	Speed	table'	option	on	these	files.	This	should
yield	a	significant	improvement	in	performance.

17.4.7	INIT	and	TERM	Parameters
The	purpose	of	the	INIT=	and	TERM=	parameters	is	to	allow	you	to	initialize
or	clean	up	your	application	automatically.
These	two	parameters	are	entirely	independent	of	each	other:	you	may	specify
one,	both	or	neither.

INIT= (Startup	Function)	specifies	a	function	to	be	automatically	executed
on	application	startup.

TERM= (Shutdown	Function)	specifies	a	function	to	be	automatically
executed	on	application	shutdown.

Once	either	parameter	has	been	specified,	it	is	automatically	passed	to	batch
jobs	so	that	they	too	will	automatically	run	the	same	function	on	startup	or
shutdown.
For	example,	you	might	create	a	startup	function	CONNECT	for	a	SuperServer
application.	This	function	could	execute	the	BIFs	DEFINE_ANY_SERVER	(or
DEFINE_OS_400_SERVER	or	DEFINE_OTHER_SERVER),
CONNECT_SERVER	and	CONNECT_FILE	with	a	standard	set	of	arguments
(such	as	blocking	factor	set	to	1	on	CONNECT_FILE).	Not	only	would	your
main	application	connect	to	the	Server	automatically,	so	would	any	batch	jobs.
Note:	You	should	avoid	the	use	of	DISPLAY/REQUEST/POP_UP	commands
in	INIT=	and	TERM=	functions.	Under	some	circumstances,	these	RDML
commands	(which	require	user	interaction)	may	be	inappropriate	or	may	cause
application	failure.

17.4.8	ITxx	-	Trace	Parameters
ITRO=
This	parameter	specifies	whether	the	application	is	to	produce	a	trace	file.
Specify	Y	to	produce	a	trace	file	or	N	to	not	produce	a	trace	file.	Trace	files	are
named	x_tracennn.txt.	The	highest	nnn	suffix	indicates	the	newest	trace	file.
The	production	of	trace	files	severely	impacts	application	performance.	
ITRL=
This	parameter	specifies	the	level	of	trace.	Valid	values	are	0	to	9,	where	0
provides	the	lowest	level	of	detail	and	9	the	highest	level	of	detail.	This	should
not	be	changed	unless	requested	by	your	Product	Vendor.
ITRM=
This	parameter	specifies	the	maximum	number	of	lines	in	the	trace	file.	The
maximum	number	you	can	enter	is	999,999,999.
ITRC=
This	parameter	specifies	the	trace	categories.	It	allows	you	to	restrict	the	areas
of	LANSA	that	will	generate	trace	messages.	This	should	not	be	changed	unless
requested	by	your	Product	Vendor.	Use	of	this	value	is	described	in	17.9	User
Instructions	for	Microsoft	Exception	or	Dr	Watson.	Multiple	values	can	be
specified	at	a	time	as	one	string,	e.g.	DBMUIM.

ALL All	categories

DBMDatabase	only

UIM User	Interface	only

FUN Standard	Function	only

PIM Printer	functions	only

COMCommunications	only

PDF Platform	Dependent	Functions	only

BIF Built-In	Functions	only

PRO Reserved

RDMRDML	only

RDX RDMLX	only

HEP Heap	Validation	only

	

ITHP=
This	parameter	specifies	the	heap	validation	level.	This	should	not	be	changed
unless	requested	by	your	Product	Vendor.	Use	of	this	value	is		described	in	17.9
User	Instructions	for	Microsoft	Exception	or	Dr	Watson.	Note	that	it	does	not
require	ITRO=Y	in	order	to	validate	the	heap.	Setting	ITRO=Y	will	just	add
trace	messages	to	the	heap	validation.	They	are	often	used	in	conjunction	in
order	to	provide	detailed	diagnostic	information	for	use	by	your	Product	Vendor.

XUse	default	as	set	in	code	(N	for	GA	versions,	G	for	internal	debug	versions)

NNo	heap	validation

GGuard	bytes	and	validate	pointer

P Validate	pointer	only

HP	+	validate	whole	of	heap	that	the	pointer	is	in

AH	+	validate	all	heaps

T H	+	trace	validations

Z A	+	trace	validations

	

	

17.4.9	ODBA	Parameter
The	ODBA=	parameter	has	been	deprecated.	The	number	of	database
connections	required	is	automatically	determined	by	LANSA.

17.4.10	ODBI	Parameter
The	ODBI	parameter	is	used	to	specify	the	transaction	isolation	level	for	all
ODBC	database	connections.
The	default	is	0.
Valid	values	are	as	per	the	table	following.	Any	other	values	will	be	ignored	and
the	default	transaction	isolation	level	will	be	used.	Note	that	some	ODBC
drivers	may	not	support	all	of	the	transaction	isolation	levels	and	may	return	an
error	when	attempting	to	set	the	transaction	isolation	level.
Note:	Careful	consideration	must	be	given	when	specifying	this	value	as	it
affects	all	ODBC	database	connections	for	the	executing	application.	This	is	an
issue	between	you,	the	designer	of	the	application,	and	your	chosen	database
management	system.

Value Transaction	Isolation	Level Meaning

0 SQL_TXN_READ_COMMITTED Refer	to	Value	2	unless	the
default	for	the	database	is	higher.

1 SQL_TXN_READ_UNCOMMITTED Dirty	reads,	non-repeatable	reads
and	phantoms	are	possible.	This
is	the	default	for	SQL	Anywhere.

2 SQL_TXN_READ_COMMITTED Dirty	reads	are	not	possible.	Non-
repeatable	reads	and	phantoms
are	possible.		This	is	the	default
for	Oracle	and	SQL	Server.

3 SQL_TXN_REPEATABLE_READ Dirty	reads	and	non-repeatable
reads	are	not	possible.	Phantoms
are	possible.

4 SQL_TXN_SERIALIZABLE Transactions	are	serializable.
Dirty	reads,	non-repeatable	reads
and	phantoms	are	not	possible.

6 SQL	Server	only:
SQL_TXN_SS_SNAPSHOT

Refer	to	LANSA	and	SQL	Server
-	Configuration	Options	in	the
Tips	and	Techniques	on	the
LANSA	web	site.

http://www.lansa.com.au/support/tips/e0053.htm

	

Platform	Specific	Notes
IBM	i:

For	files	that	are	under	Commitment	Control,	a	commitment	definition	must
be	exist	before	any	updates	are	made	to	these	files.	Refer	to	Commitment
Control	in	the	LANSA	for	i	User	Guide	for	more	information.	
The	ODBI	parameter	is	ignored.	If	a	commitment	definition	exists,	LANSA
sets	the	transaction	isolation	level	appropriately	for	the	lock	level	used	when
commitment	control	was	started.	Otherwise,	the	transaction	isolation	level	is
set	to	Read	Uncommitted.	Refer	to	Isolation	Level	in	the	DB2	for	i	SQL
Reference	for	more	information.

Also	see
Commitment	Control	in	the	LANSA	Application	Design	Guide.
	

its:lansa010.chm::/Lansa/UGUBC_C10060.htm
its:lansa065.chm::/lansa/DSNBE_0060.htm

17.4.11	PROG	Parameter
This	parameter	is	provided	so	that	the	X_RUN.exe	file	can	be	renamed	and	still
allow	the	SUBMIT	command	to	work	correctly.	There	is	no	other	support	for
renaming	X_RUN.exe,	for	example	in	the	deployment	tool.	You	will	need	to	do
this	yourself	using	batch	files	and	the	like	to	rename	files.
Providing	a	value	for	PROG	only	changes	the	behavior	of	the	SUBMIT
command	when	using	the	Process/Function	variant.	Instead	of	starting	up
X_RUN.exe,	the	value	provided	for	PROG	will	be	used	instead.	A	full	path,	up
to	256	characters,	should	be	provided	to	ensure	the	correct	executable	is	used.
PROG	supports	quoted	values	for	providing	paths	that	contain	spaces	and	is
passed	on	to	submitted	jobs.

Client	applications	will	automatically	use	the	name	of	the	executable
used	to	start	them	when	submitting	jobs.	In	effect,	the	PROG
parameter	is	automatically	initialized	to	the	name	of	the	current
executable.	It	is	only	server	applications	that	need	the	PROG
parameter	specified.

17.4.12	PSxx	Server	Parameters

Please	note	these	parameters	are	primarily	provided	to	aid	developers
in	testing	applications	in	SuperServer	mode.	It	is	very	strongly
recommended	that	you	use	your	own	entry	point	function	in
production	applications.	This	function	should	establish	any	required
SuperServer	user	profile	and	connections	details	and	then	connect	via
the	Built-In	Functions	described	below.

An	additional	specialized	set	of	parameters	may	be	used	on	the	X_RUN
command	to	establish	an	automatic	connection	to	a	single	server	(called	the
"PS"	or	"Primary	Server").
These	parameters	are	specifically	designed	to	be	used	in	conjunction	with	the
DBID=*ANY/*AS400/*OTHER	parameter	described	earlier.
These	parameters	will	be	ignored	unless	one	of	the	special	values	DBID=*ANY,
DBID=*AS400	or	DBID=*OTHER	is	used	to	trigger	their	use..
These	specialized	parameters	directly	equate	to,	and	default	like	arguments	to
server	Built-In	Functions	as	described	in	the	LANSA	Technical	Reference	Guide.
When	connecting	to	a	Server	with	DBID=*ANY,	the	following	PSxx	arguments
can	be	used:

ParamDirectly	Equates	to	this	Built-In	Function: Argument	Number

PSLU DEFINE_ANY_SERVER 2		(LU	partner
name)

PSCC DEFINE_ANY_SERVER 3		(Commitment
control)

PSEA DEFINE_ANY_SERVER	See	PSEA	Notes
(Primary	Server	Exceptional	Arguments)

4	(X_RUN
exceptional
arguments)

PSDL DEFINE_ANY_SERVER 5		(Divert	locks)

PSWMDEFINE_ANY_SERVER 6		(Show	please	wait
message)

PSEP DEFINE_ANY_SERVER 7		(Server	execution
priority)

PSCT DEFINE_ANY_SERVER 8		(Client	to	Server
table)

PSST DEFINE_ANY_SERVER 9		(Server	to	Client
table)

PSPW CONNECT_SERVER 2		(Password)

PSTC CONNECT_SERVER.	See	PSTC	Notes	(Primary
Server	Trusted	Connection)

3	(Use	Kerberos
Authentication)

PSUS See	PSUS	Notes	(Primary	Server	User) 	

PSTY See	PSTY	Notes	(Primary	Server	Type). 	

PSRA See	PSRA	Notes	(Primary	Server	Route
Authority)

	

PSRR See	PSRR	Notes	(Primary	Server	Route
Repository)

	

	

The	SSN	(Symbolic	Server	Name)	used	when	automatically	connecting	to	a
server	with	DBID=*ANY	is	always	DTASERVER.	This	value	cannot	be
changed.
When	connecting	to	an	IBM	i	with	DBID=*AS400,	the	following	PSxx
arguments	can	be	used:

ParamDirectly	Equates	to	this	Built-In	Function: Argument	Number

PSLU DEFINE_OS_400_SERVER 2		(LU	partner	name)

PSCC DEFINE_OS_400_SERVER 3		(Commitment
control)

PSDB DEFINE_OS_400_SERVER 4		(DBCS	capable)

PSDL DEFINE_OS_400_SERVER 5		(Divert	locks)

PSWMDEFINE_OS_400_SERVER 6		(Show	please	wait
message)

PSEP DEFINE_OS_400_SERVER 7		(Server	execution
priority)

PSCT DEFINE_OS_400_SERVER 8		(Client	to	Server
table)

PSST DEFINE_OS_400_SERVER 9		(Server	to	Client
table)

PSPW CONNECT_SERVER 2		(Password)

PSUS See	PSUS	Notes	(Primary	Server	User) 	

PSTC CONNECT_SERVER.	See	PSTC	Notes	(Primary
Server	Trusted	Connection)

3	(Use	Kerberos
Authentication)

PSTY See	PSTY	Notes	(Primary	Server	Type). 	

PSRA See	PSRA	Notes	(Primary	Server	Route
Authority)

	

PSRR See	PSRR	Notes	(Primary	Server	Route
Repository)

	

	

The	SSN	(Symbolic	Server	Name)	used	when	automatically	connecting	to	an
IBM	i	server	with	DBID=*AS400	is	always	AS400.	This	value	cannot	be
changed.
When	connecting	to	a	Server	with	DBID=*OTHER,	the	following	PSxx
arguments	can	be	used:

ParamDirectly	Equates	to	this	Built-In	Function: Argument	Number

PSLU DEFINE_OTHER_SERVER 2		(Server	network
name)

PSDL DEFINE_OTHER_SERVER 3		(Divert	locks)

PSWMDEFINE_OTHER_SERVER 4		(Show	please
wait	message)

PSEA DEFINE_OTHER_SERVER	See	PSEA	Notes
(Primary	Server	Exceptional	Arguments)

5	(X_RUN
exceptional
arguments)

PSTC CONNECT_SERVER.	See	PSTC	Notes	(Primary 3	(Use	Kerberos

Server	Trusted	Connection) Authentication)

PSPW CONNECT_SERVER 2		(Password)

PSUS See	PSUS	Notes	(Primary	Server	User) 	

PSTY See	PSTY	Notes	(Primary	Server	Type). 	

PSRA See	PSRA	Notes	(Primary	Server	Route	Authority) 	

PSRR See	PSRR	Notes	(Primary	Server	Route
Repository)

	

	

The	SSN	(Symbolic	Server	Name)	used	when	automatically	connecting	to	a
non-IBM	i	server	with	DBID=*OTHER	is	always	DTASERVER.	This	value
cannot	be	changed.
When	these	parameters	are	used	in	conjunction	with	the
DBID=*ANY/*AS400/*OTHER	parameter,	the	first	function	or	component	to
be	invoked	will	act	as	if	it	used	these	Built-In	Functions	during	its	start	up	logic:
DEFINE_ANY_SERVER,	DEFINE_OS_400_SERVER	or
DEFINE_OTHER_SERVER	to	define	the	server	as	per	the	PSxx=	parameter
CONNECT_SERVER	to	establish	the	connection
CONNECT_FILE	to	connect	all	files	(file	name	"*"	is	used)	to	the	server.

Note:	The	connection	uses	the	default	blocking	factor	on	all	files.	This	means
that	SELECT	/	UPDATE	/	ENDSELECT	and	SELECT	/	DELETE	/
ENDSELECT	loops	that	are	updating	the	last	record	read	(i.e.	the	DELETE
or	UPDATE	has	no	WITH_KEY	or	WITH_RRN	parameter)	may	not	process
as	expected.	Refer	to	the	CONNECT_FILE	Built-In	Function	for	more	details
of	this	problem	and	how	to	correct	it.		Another	method	of	correcting	this
problem	is	described	in	17.4.7	INIT	and	TERM	Parameters.

If	any	of	these	actions	fail	then	the	function	will	fail	during	start	up.	This	cannot
be	trapped.	To	use	trapping,	avoid	using	the	PSxx=	parameters	and	initially
invoke	your	own	start	up	function	instead.

PSUS	Notes	(Primary	Server	User)
If	this	parameter	is	not	specified,	the	user	used	to	connect	to	the	server	is	the
same	as	that	specified	in	the	USER=	parameter.

PSEA	Notes	(Primary	Server	Exceptional	Arguments)
This	argument	must	be	enclosed	in	double	quotes;	for	example:

PSEA="DBIT=*SERVER	DBUT=*SERVER"
Refer	to	the	definition	of	the	DEFINE_OTHER_SERVER	BIF	in	the	LANSA
Technical	Reference	Guide	for	further	information	on	setting	up	X_RUN
exceptional	arguments.

PSRA	Notes	(Primary	Server	Route	Authority)
Setting	PSRA=Y	indicates	that	authority	checks	should	be	routed	to	the	server.
The	following	notes	apply	to	using	the	PSRA	(or	an	equivalent)	option:
It	is	recommended	that	you	choose	one	of	these	methods	to	use	this	option:
Put	PSRA=Y	into	a	profile	file	or,
In	your	connection	routine,	put	a	USE	SET_SESSION_VALUE	(PSRA	Y)
command	to	set	the	value	on	the	fly.	This	should	be	done	before	you	define
and	make	the	connection	or,
In	your	DEFINE_XXXXXXXX_SERVER	command,	set	the	lock	objects
value	to	Z	(which	means	route	lock	requests	and	route	authority	requests).

Things	you	should	know	about	using	PSRA=Y	(or	an	equivalent	option)
include:
If	you	are	using	authority	checks	to	limit	or	restrict	access	to	an	initial	process
menu	or	action	bar	item	and	are	creating	a	SuperServer	connection	by	using
the	PSxx	command	line	parameters,	then	remember	that	the	SuperServer
connection	is	not	created	until	the	first	function	is	executed.	Any	initial
process	menu	or	action	bar	would	be	presented	before	the	SuperServer
connection	is	created.	To	resolve	this	issue	create	an	entry	point	function	that
itself	calls	the	initial	process	menu	and	then	invoke	it	(instead	of	the	initial
process	menu)	from	the	command	line.
The	use	of	PSRA=Y	(or	equivalent)	has	a	performance	impact	because	more
trips	to	the	server	are	required.
Authority	checks	are	optimized	by	being	kept	in	memory,	so	if	you	change
authority	settings	any	active	jobs/processes	may	not	see	the	changes
immediately	(LANSA	for	i	works	the	same	way).
If	the	user	profile	or	the	group	profile	you	are	using	is	QSECOFR,	or	the
LANSA	partition	security	officer,	or	the	LANSA	system	owner	then	you
always	get	access.	No	authority	checks	are	actually	made.
Authority	checks	check	authority.	They	do	not	check	for	existence	and	cannot
be	viably	used	to	do	this.
Process,	Function	and	File	Security	can	be	enabled	in	one	of	two	ways.	The
recommended	way	is	through	System	Maintenance.	The	alternative	method	is
to	modify	Regional	Settings	in	the	X_DEFppp.H	Definition	Header	File.
If	file	security	is	disabled	(which	is	the	shipped	default)	then	you	will	always

get	access	to	files.
If	process	security	is	disabled	(which	is	the	shipped	default)	then	you	will
always	get	access	to	processes	and	functions.
If	function	security	is	disabled	(which	is	the	shipped	default)	then	you	will
always	get	access	to	a	function.
If	you	are	running	in	SuperServer	mode	and	have	no	accessible	local	database
and	are	using	PSRA=N	(the	default)	then	you	will	always	get	access.	There	is
effectively	no	security	when	working	in	this	mode.
If	a	security	check	for	a	function	is	being	made,	and	no	security	information
at	all	exists	for	the	function,	then	the	authority	of	the	owning	process	is
"adopted".	This	logic	(which	has	always	existed)	is	designed	to	accommodate
sites	that	suddenly	turn	on	function	level	security	(and	thus	have	no	security
information	available	for	their	existing	functions).

PSRR	Notes	(Primary	Server	Route	Repository)
Setting	PSRR=Y	(the	default)	indicates	that	if	repository	data	cannot	be
retrieved	locally,	a	request	should	be	sent	to	the	server	to	retrieve	the	data.
Setting	PSRR=N	turns	off	this	feature.
To	turn	off	this	option	it	is	recommended	that	you:
Put	PSRR=N	into	a	profile	file

					or	
In	your	connection	routine,	put	a	USE	SET_SESSION_VALUE	(PSRR	N)
command	to	set	the	value	on	the	fly.	This	should	be	done	before	you	define
and	make	the	connection.

If	you	use	the	DEFINE_XXXXXXXX_SERVER	BIF	to	connect	to	the	server,
the	lock	objects	value	can	be	set	to	R	(which	means	route	lock	requests,	route
authority	requests,	and	repository	requests).	To	turn	off,	routing	repository
requests,	set	the	lock	objects	value	to	something	other	than	R	AND	do	one	of
the	above	recommendations	to	set	PSRR	to	N.
Some	examples	of	the	information	that	can	be	automatically	retrieved	from	the
server	repository	are	messages,	partition	definition,	help	text	and	object
descriptions	for	the	help	index.
Things	you	should	know	about	using	PSRR=Y	(or	an	equivalent	option)
include:
The	use	of	PSRR=Y	(or	equivalent)	has	a	performance	impact	because	more
trips	to	the	server	are	required.	For	best	performance,	repository	information
needs	to	be	available	locally,	in	the	*.xq*	files	or	in	a	local	database.
Automatic	help	generation	data	is	NOT	retrieved	from	the	Server	if	it	is	not
found	locally.
System	definitions	and	partition	language	definitions	are	NOT	retrieved	from
the	Server	if	they	are	not	found	locally.	However,	this	information	will	be	set
to	defaults	and	processing	will	continue.
Only	missing	information	is	retrieved	from	the	Server	during	application
execution,	as	the	server	request	is	only	generated	if	the	data	is	not	found
locally.	Therefore,	changed	information	will	not	be	retrieved.	If	definitions
have	changed,	they	need	to	be	redeployed	to	the	client.

For	further	information	on	this	feature,	please	refer	to	17.7	The	.XQ*	Files.

PSTC	Notes	(Primary	Server	Trusted	Connection)
When	this	parameter	is	specified,	it	is	used	to	set	the	default	value	of	Use
Kerberos	Authentication	when	calling	the	CONNECT_SERVER	Built-In
Function.	For	example,	if	PSTC=Y,	then	the	CONNECT_SERVER	Built-In
Function's	default	will	be	to	use	Kerberos	authentication.

PSTY	Notes	(Primary	Server	Type)
This	parameter	is	only	used	for	PROC=*LIMPORT/PLUGIN/REFRESH
processing.	It	is	used	to	set	the	server	type	as	in	the	Special	Value	DBID=*ANY,
DBID=*AS400	or	DBID=*OTHER,	while	allowing	a	local	database	to	be
specified	with	DBII=LX_LANSA.	Note	that	PSTY=*OTHER	and
PSTY=*ANY	are	not	currently	supported	for
PROC=*LIMPORT/PLUGIN/REFRESH.

17.4.13	QUET	&	FATL	Parameters	(Quiet	Mode	of	Operation	&
Fatal)
The	QUET=	parameter	can	be	used	to	force	a	batch	job	into	a	quiet	mode	of
operation	so	that	the	normal	error	and	status	reporting	activities	are	suppressed.
Using	QUET=Y	in	an	interactive	process	has	no	effect	and	the	setting	is
ignored.
Using	QUET=Y	in	a	batch	job	that	fails	suppresses	the	display	of	fatal	error
information	unless	you	also	set	FATL=Y	(see	description	following).	
If	QUET=Y	and	FATL=	N	is	set	in	a	batch	job	that	fails,	details	are	logged	to
X_ERR.LOG	in	the	usual	way,	but	they	are	never	actively	displayed.
Using	QUET=Y	in	a	batch	job	suppresses	event	log	displays	of	status
messages.	Any	process	created	will	use	the	LANSA	Desktop	Heap.
You	would	normally	set	QUET=Y	in	a	profile	file	or	an	environment	variable
rather	than	as	a	direct	X_RUN	command	parameter.

QUET=N	is	the	default.
FATL=
If	FATL=Y,	the	display	of	fatal	errors	(only)	is	forced	in	client-side
applications	when	QUET=Y.	This	is	its	only	effect.
It	does	not	affect	Server	or	web	jobs	(it	is	only	in	x_uimms*.dll	not	x_usv.dll
or	x_u4w.dll).

Also	see
17.4.16	WDTM	Parameter	(Windows	Desktop	Heap)

17.4.14	RRNA	and	RRNB	Parameters	-	Performance	Tuning
RRNA=
The	number	of	RRN	(Relative	Record	Number)	assignments	that	are	to	be	pre-
allocated	when	inserting	data	into	a	table.	The	default	value	is	1,	but	any	value
in	the	range	1	to	5000	is	valid.
Using	a	value	such	as	100	can	substantially	improve	the	performance	of	an
application	doing	a	large	numbers	of	insert	operations	because	100	RRN
numbers	are	(pre)allocated	by	a	single	access	to	the	RRN	assignment	file,	thus
minimizing	the	number	of	times	that	the	RRN	assignment	file	needs	to	be
accessed.
Using	a	value	other	than	1	may	of	course	waste	RRN	values	that	are	never
assigned	to	an	insert	operation,	thus	leading	to	a	faster	rate	of	RRN	value
consumption	than	normal.		
RRNB=
Specifies	whether	Windows	operating	system	file	buffering	is	to	be	used	when
accessing	the	RRN	or	*AUTONUM	data	area	assignment	files.	Specify	this
argument	as	Y	or	N.	The	default	is	N.
Using	Y	will	increase	application	performance	but	it	increases	the	risk	that	the
RRN	or	*AUTONUM	data	area	assignment	file	contents	may	not	be	flushed	to
disk	in	the	advent	of	a	catastrophic	system	failure	(eg:	power	failure)	meaning
that	the	contents	may	need	to	be	correctly	reset.

Also	see
17.4.4	DBSS	Parameter	-	Performance	Tuning

17.4.15	TPTH	Parameter
An	example	of	what	goes	in	the	temporary	path	are	trace	files.
The	temporary	path	evaluation	has	Linux	and	IBM	i	differences.	First	TPTH,
ROOT,	PROC,	FORM,	MODE	and	all	the	trace	x_run	parameters	(e.g.	ITRO)
are	evaluated.
This	is	how	the	temporary	path	directory	is	resolved:
1.		TPTH	x_run	parameter,	in	any	of	the	accepted	locations	for	an	x_run
parameter.

2.		TEMP	environment	variable.
3.		TMP	environment	variable.
4.		<sysdir>	directory

On	Linux:	/tmp
On	other	platforms:	<sysdir>

5.		It	should	never	get	here,	but	if	it	does,	a	Fatal	error	occurs.	As	the	temporary
directory	is	required	to	write	trace	and	error	files,	interactive	jobs	will	show	a
message	box	and	server	jobs	will	output	a	message	to	STDOUT.	On
Windows	the	Listener	can	be	run	as	a	process	rather	than	as	a	service	to	see
these	messages	(lcolist	–sstop;	lcolist	–c	–d	–x)

					In	the	above	list	<sysdir>	is	the	path	of	the	x_lansa	directory.	For	example,
on	Windows	it	could	be	c:\program	files\lansa\x_win95\x_lansa.	On	Linux
and	IBM	i	it	could	be	/home/LANSA_devpgmlib/x_lansa.

Enclosing	double	quotes	and	all	trailing	path	separators	and	blanks	are	stripped
before	validating	the	directory.
If	the	directory	does	not	exist	then	an	attempt	will	be	made	to	create	it.	If	it	fails
then	the	next	step	is	used.
The	typical	value	for	a	temporary	directory	on	Windows	will	be	%TEMP%
(typing	that	into	Windows	Explorer	will	take	you	to	the	directory).	Note	that
server	jobs	typically	use	the	user	Local	Server.	Its	%TEMP%	value	is	not	the
logged	on	user's!	For	example,	it	may	be	c:\windows\temp.	Process	Monitor	can
be	used	on	lcolist.exe	to	see	the	value	of	its	TEMP	environment	variable.
The	typical	value	for	temporary	directory	on	Linux	and	IBM	i	will	be:
/lansa_devpgmlib/x_lansa/tmp
When	the	temporary	directory	is	resolved,	it	is	output	to	STDOUT.

The	log	directory	contains	x_err.log	and	export.log.
On	Linux	and	IBM	i,	the	log	directory	follows	the	same	path	as	the	temporary
directory	on	Windows.	That	is:
1.		LOGDIR	environment	variable
2.		<sysdir>/log	directory,	if	it	exists	or	if	it	can	be	created
3.		<sysdir>
	

17.4.16	WDTM	Parameter	(Windows	Desktop	Heap)
This	X_RUN	parameter	controls	the	Windows	Desktop	Heap	in	which	child
processes	are	created.
WDTM	is	inherited	by	child	processes.
WDTM=N	is	the	default.
WDTM=Y	-	the	child	process	is	created	in	the	LANSA	Desktop	Heap	no
matter	where	it	is	started	from	(i.e.	Interactive	Desktop	Heap	(IDH)	or
Service	Desktop	Heap	(SDH)).
WDTM=N	-	the	child	process	is	created	in	the	Desktop	Heap	from	which	it
started.	Note,	that	if	the	current	process	was	created	in	the	LANSA	Desktop
Heap	then	the	child	process	is	also	created	in	the	LANSA	Desktop	Heap,	but
it	is	not	controlled	by	LANSA	and	therefore	too	many	processes	may	be
created	in	a	LANSA	Desktop	Heap.	So,	only	set	WDTM=N	if	the	current
process	is	the	top	most	process.	When	a	process	is	started	by	the	operating
system	it	will	use	either	the	IDH	or	SDH.	In	this	case,	setting	WDTM=N	is
consistent	with	where	a	child	process	will	be	created	-	not	in	the	LANSA
Desktop	Heap.
WDTM=I	-	the	behavior	is	the	same	as	for	WDTM=N

For	information	about	Desktop	Heaps,	refer	to	the	the	Web	Administrator's
Windows	Desktop	Heap	Management	in	Load	Management	in	the	Web
Administration	Guide.

its:lansa085.chm::/lansa/jmp_0310.htm

17.4.17	WPxx	-	Windows	Printing	Extensions
Visual	LANSA	supports	extended	printing	options	in	Windows	32	bit
environments.
Extended	options	are	enabled	and	controlled	by	the	WPxx=		parameters	on	the
X_RUN	command.		The	WP	component	of	the	parameter	name,	identifies	the
parameter	as	being	related	to	Windows	Printing.
WPxx=	parameters,	like	most	X_RUN	parameters,	can	be	permanently	set	by
using	a	profile	file	or	an	environment	variable.		Refer	to	17.5	Permanently
Specify	X_RUN	Parameters	for	more	details	of	how	parameters	can	be
permanently	set.	
The	parameters	used	to	enable	and	control	Windows	Printing	are:

WPEN	(Windows	Printing
Enabled)
WPPN	(Windows	Printing	Printer
Name)
WPPS	(Windows	Printing	Setup
File)
WPPD	(Windows	Printing	Print
Dialog)

WPFD	(Windows	Printing	Font	Dialog)
WPDF	(Windows	Printing	Default	Font)
WPDS	(Windows	Printing	Default	Font
Size)
WPFO	(Windows	Printing	Fixed	Pitch
Only)
WPAS	(Windows	Printing	Automatic
Stretching)

Should	you	have	problems	with	printing,	try	the	Questions	and	Answers	to	see
if	the	solution	has	been	provided.

WPEN	(Windows	Printing	Enabled)
WPEN=Y	or	WPEN=y	enables	Windows	extended	printing.
Using	any	other	value	disables	windows	extended	printing.
This	parameter	is	valid,	but	ignored,	in	all	non-Windows	32	bit	environments.
The	default	value	is	WPEN=N.

WPPN	(Windows	Printing	Printer	Name)
The	Windows	Printing	Printer	Name	specifies	the	full	name	of	the	printer.	If
specifying	a	network	printer,	the	domain	name	must	also	be	included.	That	is,
WPPN=\\domain\printer	name.	For	example,	WPPN=\\ourdomain\Epson	Stylus
COLOR	900.
The	LIST_PRINTERS	BIF	returns	the	full	printer	name	as	required	by	this
parameter.
This	parameter	is	not	passed	to	(inherited	by)	a	server	system.		To	print	from	a
server	in	a	client/server	environment,	retrieve	the	list	of	printers	defined	on	the
server	by	calling	a	function	on	the	server	that	uses	the	LIST_PRINTERS	BIF.	
The	selected	printer's	name	can	then	be	exchanged	back	to	the	server	when	the
print	function	is	called.		For	example:

**	CLIENT	SIDE	FORM

FUNCTION	OPTIONS(*DIRECT)
BEGIN_COM	ROLE(*EXTENDS	#PRIM_FORM)	CLIENTHEIGHT(240)	CLIENTWIDTH(492)	HEIGHT(267)	LEFT(378)	TOP(238)

*	DEFINE_COM	commands	appear	here	to	define	controls	on	dialog.

DEF_LIST	NAME(#PRNLIST)	FIELDS(#PRN_NAME	#PRN_LOC)	TYPE(*WORKING)

EVTROUTINE	handling(#com_owner.Initialize)
			SET	#com_owner	caption(*component_desc)

			USE	BUILTIN(SET_SESSION_VALUE)	WITH_ARGS(USER	MyUserid)
			USE	BUILTIN(DEFINE_ANY_SERVER)	WITH_ARGS(MYSERVER	Server1	Y)	TO_GET(#STD_CMPAR)
			USE	BUILTIN(CONNECT_SERVER)	WITH_ARGS(MYSERVER	'MyPassword')	TO_GET(#STD_CMPAR)
			USE	BUILTIN(CALL_SERVER_FUNCTION)	WITH_ARGS(MYSERVER	GETPRNS	Y	Y	#PRNLIST)	TO_GET(#STD_CMPAR)

			SELECTLIST	NAMED(#PRNLIST)
						ADD_ENTRY	#LTVW_1
			ENDSELECT

			CHANGE	FIELD(#DEPTMENT)	TO(FLT)

ENDROUTINE

EVTROUTINE	HANDLING(#PHBN_PrintEmplistD.Click)

			EXCHANGE	FIELDS(#DEPTMENT	#PRN_NAME)	OPTION(*ALWAYS)

			USE	BUILTIN(CALL_SERVER_FUNCTION)	WITH_ARGS(MYSERVER	SRVEMPL	Y	Y)	TO_GET(#STD_CMPAR)

ENDROUTINE

END_COM

**	SERVER	SIDE	FUNCTION

FUNCTION	OPTIONS(*DIRECT)	RCV_LIST(#PRNLIST)
DEF_LIST	NAME(#PRNLIST)	FIELDS(#PRN_NAME	#PRN_LOC)	TYPE(*WORKING)
USE	BUILTIN(LIST_PRINTERS)	WITH_ARGS(A)	TO_GET(#PRNLIST	#STD_CMPAR)
	

WPPS	(Windows	Printing	Setup	File)
The	Windows	Printing	Setup	File	specifies	the	file,	including	the	full	path,
which	contains	the	associated	printer	settings.		These	settings	will	be	used	to
initialize	the	printer	dialog.	If	the	printer	dialog	is	not	displayed	these	settings
will	be	automatically	sent	to	the	printer.		The	default	printer	settings	on	the	PC
will	be	used	if	WPPS	is	not	specified.		If	WPPS	is	specified	the	default	printer
setting	will	be	used	for	any	parameters	not	specified	in	the	file.
When	you	specify	the	WPPS	parameter,	you	must	also	specify	the	WPPN
parameter.	Even	if	you	display	the	printer	dialog,	WPPN	is	required	so	that	the
dialog	can	be	initialized	with	the	correct	default	settings.
A	new	file	can	be	specified	at	any	time	thus	allowing	the	user	to	use	different
settings	for	different	print	jobs	(reports,	etc)	without	having	to	display	the
printer	dialog	every	time.
This	parameter	is	not	passed	to	(inherited	by)	a	server	system.		When	printing
from	a	server	in	a	client/server	environment	the	file	name	can	be	exchanged	to
the	server	when	the	print	function	is	called	or	the	file	can	specified	in	the	server
function.
The	following	printer	settings	may	be	specified.		Some	settings	may	not	be
relevant	for	the	selected	printer,	in	which	case	they	will	be	ignored	by	the
printer.
Note:	The	WPXX	and	PRTR	parameters	are	X_RUN	and	should	not	be
specified	in	this	file.
PGOR=	Page	Orientation

ValueDescription

P Portrait

L Landscape

	

DPXP=	Duplex	printing

ValueDescription

N Normal	(non-duplex)

H Duplex	over	horizontal	(flip	over	the	long	edge	of	the	page)

V Duplex	over	vertical	(flip	over	the	short	edge	of	the	page)

	

COLR=	Color	printing

ValueDescription

C Colour

M Monochrome

	

COPY=	Number	of	copies
PSIZ=	Paper	Size

Value Description

LETTERLetter,	8	½	by	11-inches

LEGAL Legal	8	½	by	14	inches

A4 A4	sheet,	210	x	297	millimeters

A3 A3	sheet,	297	by	420	millimeters

xxx xxx	is	a	numeric	value	defined	by	the	Microsoft	Visual	C	runtime
which	represents	a	specific	paper	size.	The	complete	list	of	values
may	be	obtained	from	Microsoft's	MSDN	library	at:
http://msdn.microsoft.com/en-
us/library/windows/desktop/dd319099%28v=vs.85%29.aspx	
For	example	A4	paper	size	is	named	DMPAPER_A4	and	has	the
value	9.	So	use	PSIZ=9.
Alternatively,	see	below	for	instructions	on	how	to	retrieve	printer
specific	values.

	

PSRC=	Paper	Source

http://msdn.microsoft.com/en-us/library/windows/desktop/dd319099%28v=vs.85%29.aspx

ValueDescription

A Auto

L Lower	tray

M Middle	tray

xxx xxx	is	a	numeric	printer	specific	value.	See	below	for	instructions	on
how	to	retrieve	printer	specific	values.

	

QLTY=	Print	Quality

ValueDescription

H High

M Medium

L Low

D Draft

xxx xxx	is	a	numeric	printer	specific	value	which	specifies	the	number	of
dots	per	inch	(DPI).	See	below	for	instructions	on	how	to	retrieve	printer
specific	values.

	

COLL=	Collation

ValueDescription

Y Collate	when	printing	multiple	copies

N Do	not	collate	when	printing	multiple	copies

	

PTYP=	Paper	Type

ValueDescription

P Plain	paper

G Glossy	paper

T Transparent	film

xxx xxx	is	a	numeric	printer	specific	value.	See	below	for	instructions	on
how	to	retrieve	printer	specific	values.

	

FNAM=	Form	Name
See	below	for	instructions	on	how	to	retrieve	printer	specific	values.
Printer	specific	values	can	be	obtained	by	running	the	application	with
WPPD=E	and	trace	settings	ITRO=Y	ITRL=9	and	ITRM	set	to	a	value	large
enough	to	log	the	required	tracing	information.		Enter	the	required	values	into
the	print	dialog.		The	values	returned	by	the	print	dialog	will	be	logged	in	the
trace	file.	Only	values	that	are	relevant	to	the	current	printer	are	logged.		Open
the	trace	file	and	search	for	the	phrase	"Printer	Details".	The	following	is	an
example	of	the	trace	output:
MESSAGE								:	Printer	Details	for		\\syd1\HP	LaserJet	4050	Series
MESSAGE								:	Printer	Details...		PGOR=1	DPXP=1	COLR=2	COPY=2	PSIZ=9	PSRC=2	QLTY=600
	

Example	of	a	printer	setup	file
Example	1:
PGOR=P
DPXP=V
COPY=4
	

Example	2:
PGOR=L
DPXP=N
COLR=C
PSIZ=33
	

WPPD	(Windows	Printing	Print	Dialog)
Controls	how	and	when	users	of	the	application	are	prompted	to	select	printer
details	via	the	standard	Windows	printer	dialog.	The	allowable	values	for	this
parameter	are:
	WPPD=D		(default)

The	user	is	not	to	be	prompted	and	the	default	printer	is	to	be	used.
	WPPD=F		(first	time)

The	user	is	to	be	prompted	the	first	time	(within	the	X_RUN	process)	that	a
report	is	to	be	printed	and	thereafter	the	chosen	printer	used	for	all	subsequent
reports	without	any	further	prompting.
	WPPD=E	(every	time)

The	user	is	to	be	prompted	every	time	(within	the	X_RUN	process)	that	a	report
is	to	be	printed.
	WPPD=A	(automatic)

The	user	is	to	be	prompted	the	first	time	(within	the	X_RUN	process)	that	a
report	is	to	be	printed	and	thereafter	only	when	a	report	is	to	be	printed	that	has
different	characteristics	to	the	last	report	that	was	printed.	The	report
characteristics	that	are	checked	for	differences	are	the	report	width,	the	page
length,	the	overflow	line	and	the	last	detail	line.
The	default	value	is	WPPD=A.	
In	batch	mode	X_RUN	commands,	the	parameter	is	always	treated	as	WPPD=D
(default)	regardless	of	the	actual	value	specified.	This	is	because	batch	mode
commands	do	not	have	access	to	a	UI	(User	Interface)	and	thus	cannot	present
the	printer	dialog	to	a	user.	

WPFD	(Windows	Printing	Font	Dialog)
Controls	how	and	when	users	of	the	application	are	prompted	to	select	font
details	via	the	standard	Windows	font	dialog.		The	allowable	values	for	this
parameter	are:
	WPFD=D		(default)

The	user	is	not	to	be	prompted	and	the	default	font	is	to	be	used.
	WPFD=F		(first	time)

The	user	is	to	be	prompted	the	first	time	(within	the	X_RUN	process)	that	a
report	is	to	be	printed	and	thereafter	the	chosen	font	used	for	all	subsequent
reports	without	any	further	prompting.		
	WPFD=E	(every	time)

The	user	is	to	be	prompted	every	time	(within	the	X_RUN	process)	that	a	report
is	to	be	printed.
	WPFD=A	(automatic)

The	user	is	to	be	prompted	the	first	time	(within	the	X_RUN	process)	that	a
report	is	to	be	printed	and	thereafter	only	when	a	report	is	to	be	printed	that	has
different	characteristics	to	the	last	report	that	was	printed.	The	report
characteristics	that	are	checked	for	differences	are	the	report	width,	page	length,
overflow	line	and	the	last	detail	line.
The	default	value	is	WPFD=A.
In	batch	mode	X_RUN	commands	the	parameter	is	always	treated	as	WPFD=D
(default)	regardless	of	the	actual	value	specified.	This	is	because	batch	mode
commands	do	not	have	access	to	a	UI	(User	Interface)	and	thus	cannot	present
the	font	dialog	to	a	user.	

WPDF	(Windows	Printing	Default	Font)
Specifies	the	default	font	to	be	used.
Where	a	font	name	contains	imbedded	blanks	use	double	quotes	to	specify	the
name	(for	example,	WPDF="MS	LineDraw").
The	default	value	"Courier	New"	is	used,	if	this	parameter	is	not	provided.

WPDS	(Windows	Printing	Default	Font	Size)
Specifies	the	default	font	point	size	to	be	used.
The	default	value	is	8.

WPFO	(Windows	Printing	Fixed	Pitch	Only)
WPFO=Y	or	WPFO=y	indicates	that	when	a	user	is	to	be	prompted	for	fonts	via
the	standard	font	dialog	that	only	fixed	pitch	fonts	be	shown	for	selection.
Any	other	value	indicates	that	all	valid	fonts	for	the	selected	printer	should	be
shown.
The	default	value	is	WPFO=N	(i.e.	all	valid	fonts	for	the	printer	are	shown).

WPAS	(Windows	Printing	Automatic	Stretching)
WPAS=Y	or	WPAS=y	indicates	that	the	automatic	stretching	of	report	pages
should	be	enabled.
Any	other	value	indicates	that	automatic	stretching	is	not	enabled.
The	default	value	is	WPAS=N.
When	enabled,	automatic	page	stretching	causes	a	watch	to	made	for	the	longest
page	that	was	printed	in	a	report.	This	page	is	then	logically	stretched	so	that	the
entire	printed	page	is	covered	by	it.	All	other	pages	in	the	report	are
proportionately	stretched	the	same	way.
Automatic	stretching	is	only	enabled	for	a	report	when	WPAS=Y	is	specified
and	the	printed	report	contains	at	least	2	pages.

Questions	and	Answers
When	I	submit	a	batch	job	what	extended	printing	options	does	it
inherit	?
When	you	submit	a	batch	job	or	start	a	remote	batch	job	by	connecting	to	a
server	system	the	current	settings	for	all	WPxx=	parameters	are	inherited	by	it.
However,	you	should	note	the	following:
Parameter	values	WPPD=D	and	WPFD=D	are	always	assumed	in	batch	jobs
because	batch	jobs	cannot	communicate	with	the	user	via	any	user	interface.
The	WPDF=	and	WPDS=	values	used	are	the	ones	selected	for	the	last	report
produced	by	the	submitting	job.
The	default	printer	for	a	user	on	a	server	may	be	different	to	their	default
printer	on	a	client	system.

Can	I	choose	Portrait	or	Landscape	mode?
Yes.	These	are	options	in	the	Windows	printer	dialog.

Why	are	the	defaults	wrong	when	the	printer	dialog	appears?
When	the	printer	dialog	appears	it	uses	the	Windows	environmental	default
settings	for	the	selected	printer	(eg:	the	paper	size).	If	these	defaults	are	wrong
then	alter	them	via	the	standard	Windows	facilities.

What	type	and	size	of	fonts	should	I	use?
If	your	report	has	lots	of	inserted	text	(rather	than	just	fields,	labels	and	column
headings)	then	you	should	look	to	use	fixed	pitch	fonts	such	as	MS	LineDraw,
Courier	or	Lucida	Console.
For	reports	that	do	not	contain	a	lot	of	inserted	text,	variable	pitch	fonts	such	as
Arial	or	Times	New	Roman	may	work	very	well.
For	80	wide	reports	printed	in	portrait	mode	font	sizes	of		8	through	11	should
be	used.		A	common	problem	for	80	column	reports	is	often	in	the	report	length
rather	than	the	report	width.	For	example	a	12	point	font	may	work	well	with	80
columns	in	terms	of	width,	but	66	lines	of	length	may	cause	an	overlapping	of
printed	lines	because	66	lines	of	a	12	point	font	cannot	be	squeezed	into	the
vertical	space	available.
For	132+	wide	reports	printed	in	landscape	mode,	font	sizes	of	7	or	8	should	be
used.

Why	is	there	a	lot	of	blank	space	on	the	bottom	of	my	reports?

This	is	because	LANSA	reports	have	been	configured	for	IBM	i	line	printer
environments.	Typically	there	are	66	lines	x	132	columns	with	a	last	print	line
of	60.	Footings	are	often	printed	on	line	57	(or	less).
This	means	that	there	may	be	up	to	9	unused	lines	on	the	end	of	your	report.
While	this	works	well	when	printing	on	line	printer	stationery	with	its	wide
margin	physically	at	the	bottom	(or	top)	it	often	looks	wasteful	when	printed	on
A4	paper.
To	decrease	the	number	of	unused	lines	on	a	report	page,	simply	increase	the
OVERFLOW	parameter	value	to	a	higher	number	such	as	65	or	66.
Alternatively,	on	multiple	page	reports,	try	using	the	WPAS	(automatic
stretching)	parameter	so	that	the	longest	page	printed	is	logically	stretched	to
cover	the	entire	printed	page,	and	all	other	report	pages	are	proportionately
stretched.

17.4.18	XCMD	Parameter
XCMD	obscures	the	command	line.	Y	(Yes)	or	N	(No).
When	you	include	this	parameter,	the	values	of	a	subset	of	parameters	is
replaced	with	asterisks	(*)	so	that	viewing	the	properties	will	not	show
parameters	such	as	the	password.	
For	example:
C:\PROGRAM
FILES\LANSA\X_WIN95\X_LANSA\EXECUTE\X_RUN.EXE
PROC=MYPROC	LANG=ENG	PART=DEX	USER=****	DBUS=***
PSWD=***	DBII=LXDEVPGM	DBIT=SQLANYWHERE	PRTR=LPT1
DBUG=N		ITRO=N	ITRM=20000	ITRL=4	ITRC=ALL	ITHP=X
LOCK=YES	XCMD=Y

The	parameters	for	which	***	are	inserted	are:	USER,	GUSR,	DBUS,	PSWD,
PSUS,	ASUS,	PSPW	and	ASPW.
Note:	Passwords	(PSWD,	PSPW	and	ASPW)	are	always	obscured	regardless	of
this	parameter's	setting.
Default	is	N.

If	XCMD=Y,	the	CONNECT_SERVER	Built-In	Function	clears	the
X_RUN	exceptional	and	Server	exceptional	arguments.	If	you	use
XCMD=Y	then	you	should	ensure	that	your	code	calls
DISCONNECT_SERVER,	then	DEFINE_ANY_SERVER	before
calling	CONNECT_SERVER	again.

	

17.5	Permanently	Specify	X_RUN	Parameters
Parameters	used	with	X_RUN	can	be	specified	in	three	ways:
As	command	line	parameters	described	in	17.1	Using	X_START	as	a	Front
End	to	X_RUN	.
Via	the	environment	variable	X_RUN,	described	in	17.5.2	Using	an
Environment	Variable.
Via	the	profile	file	x_lansa.pro	as	described	in	17.5.3	Using	an
X_LANSA.PRO	Profile	File.

The	order	of	precedence	for	these	options	is:
1.		The	command	line.
2.		The	X_RUN	environment	variable.
3.		The	x_lansa.pro	profile	file.
The	order	of	precedence	for	a	parameter	specified	more	than	once	in	the	same
place	is	the	last	value	processed.

Also	see
17.5.1	Why	not	put	your	X_RUN	Commands	behind	Icons?

17.5.1	Why	not	put	your	X_RUN	Commands	behind	Icons?
You	can	create	multiple	icons	for	your	user	objects,	rather	than	use	a	menu.
For	example,	let's	say	you	have	a	process	that	has	a	customer,	order,	and	a
product	function	attached	to	it.	Instead	of	having	the	user	execute	the	process
and	then	select	one	of	three	functions,	you	could	create	3	separate	icons:

Customer
Order,	and
Product.

All	three	functions	could	be	executed	at	once	and	the	user	would	not	have	to
cancel	one	function	to	work	with	another.

17.5.2	Using	an	Environment	Variable
You	can	set	system	wide	values	for	X_RUN	parameters	by	setting	up	an
environment	variable	called	X_RUN.
For	example,	if	you	put	this	line	into	your	CONFIG.SYS	file:
SET	X_RUN=LANG:ENG
	

you	have	indicated	that	unless	specified	on	a	command	line	(because	it	has	a
higher	precedence),	the	LANG	parameter	should	be	English.
Similarly:
SET	X_RUN=PRTR:LPT3	LANG:FRA
	

or,	for	Linux:
X_RUN="PRTR:lpt3	LANG:FRA";	export	X_RUN	
	

sets	up	all	X_RUN	commands	to	have	printer	LPT3	and	to	use	French	(unless
overridden	by	specific	command	line	parameters).
Note:	A	colon	(":")	is	used	instead	of	the	equal	sign	("=").	The	parameter	is
specified	as	PRTR:LPT3	rather	than	PRTR=LPT3.
You	must	use	the	":"	format	when	using	the	SET	command.
You	may	use	either	"="	or	":"	format	in	the	command	line	and	profile	file.

17.5.3	Using	an	X_LANSA.PRO	Profile	File
Most	X_RUN	parameter	values	can	be	permanently	specified	in	a	special
profile	file	named	x_lansa.pro.
A	profile	file	can	provide	you	with	three	benefits:
1.		No	need	to	type	in	most	of	the	parameters	every	time	you	wish	to	use	the
X_RUN	command.

2.		All	parameter	values	are	consistently	specified.	Changing	and	forgetting
parameters	between	different	executions	of	X_RUN	may	produce	differing
results	that	confuse	you.

3.		Values	for	parameters	that	are	not	set	up	when	you	execute	your	application
directly	from	within	Visual	LANSA	can	be	specified.

The	partition	parameters	(PART=)	and	drive	parameters	(DRIV=),	if	not	the
defaults,	must	be	specified	on	the	command	line	to	indicate	the	location	of	the
profile	file.
This	file	can	be	created	and	edited	by	most	standard	source	editors.	Once
created,	the	x_lansa.pro	file	can	be	edited	in	Visual	LANSA	from	System
Information	or	the	Remote	System	associated	with	the	other	system.
You	must	observe	these	rules:
If	the	first	character	of	a	line	is	a	";"	then	the	line	is	ignored.
Lines	must	be	less	than	256	characters	long.
As	many	parameters	as	can	fit	in	255	characters	may	be	specified	on	a	single
line.
Multiple	parameters,	specified	on	a	single	line,	must	be	separated	by	space
(i.e.	blank)	characters.
Details	can	be	encrypted	using	the	Visual	LANSA	interface	to	the	file	but
once	encrypted	they	cannot	be	modified.

For	example:
Always	use	a	LAN	drive	for	the	RRN	files	and	English:
RPTH=S:\RRNDIR\	LANG=ENG
	

If	you	directly	specify	an	RPTH=	parameter	with	your	X_RUN	command,	then
x_lansa.pro	should	exist	in	the	named	RPTH=	directory.
If	you	do	not	directly	specify	an	RPTH=	parameter	on	your	X_RUN	command,

then	x_lansa.pro	should	exist	in	the	x_lansa\x_ppp	partition	directory	(where
"ppp"	is	the	partition	identifier)	in	the	path	containing	Visual	LANSA	(which	is
specified	by	DRIV=	or	PATH=).
It	is	recommended	that	you	do	not	ever	directly	specify	an	RPTH=	parameter	on
your	X_RUN	command.	If	you	need	to	specify	an	RPTH=	parameter,	create	an
x_lansa.pro	profile	file	in	the	x_lansa\x_ppp	partition	directory	and	include	the
RPTH=	parameter	value	into	it.This	way	you	will	not	forget	to	include	the
correct	RPTH=	parameter.
If		the	RPTH=	parameter	is	not	included,	or	if	its	value	is	changed	from	session
to	session,	the	file	relative	record	numbers	may	be	assigned	from	different	areas,
producing	strange	results.

17.6	Database	Connections
LANSA	and	SQL	Server	-	Configuration	Options
The	Visual	LANSA	database	connection	has	been	enhanced	to	support	windows
authentication	for	Oracle	and	SQL	Anywhere	as	well	as	continuing	to	support
Microsoft	SQL	Server	windows	authentication.
The	database	connections	also	support	the	User	ID	and	password	being
specified	in	the	ODBC	DSN,	if	supported	by	the	database	so	that	they	are	not
stored	in	the	Windows	registry	by	Visual	LANSA.
The	default	connection	is	to	use	the	existing	connection	information	stored	in
the	Windows	registry	by	Visual	LANSA.	This	establishes	a	connection	exactly
as	previously	and	is	for	backward	compatibility.
The	specific	connections	attempted	by	the	Visual	LANSA	for	each	database
type	is	as	follows:
SQL	Anywhere
1.		Attempt	a	trusted	connection
2.		Connect	just	using	the	DSN.	This	presumes	that	the	ODBC	DSN	contains	all
the	connection	information	required.

3.		Attempt	to	connect	using	DBA/SQL.	This	will	be	the	most	common
connection	made	with	new	installations.

4.		If	connection	to	load	Other	Files,	prompt	for	more	connection	information,
otherwise	display	an	error	that	ODBC	DSN	needs	to	be	re-configured	and
provide	an	option	to	start	the	ODBC	Administrator.	Either	connection	is
successful	or	Visual	LANSA	exits.

Microsoft	SQL	Server
1.		Connect	just	using	the	DSN.	This	presumes	that	the	ODBC	DSN	contains	all
the	connection	information	required.

2.		Prompt	for	more	connection	information.	Either	connection	is	successful	or
Visual	LANSA	exits.

Oracle
1.		Attempt	a	trusted	connection
2.		Connect	just	using	the	DSN.	This	presumes	that	the	ODBC	DSN	contains	all
the	connection	information	required.

3.		Attempt	to	connect	using	DBA/SQL.	This	will	be	the	most	common
connection	made	with	new	installations.

4.		Prompt	for	more	connection	information.	Either	connection	is	successful	or
Visual	LANSA	exits

Refer	also	to	LANSA	and	SQL	Server	-	Configuration	Options	in	the	Tips	and
Techniques	on	the	LANSA	web	site.

http://www.lansa.com.au/support/tips/e0053.htm

17.7	The	.XQ*	Files
17.7.1	Tips	for	Setting	up	and	Using	.XQ*	Files
Any	PC	that	executes	an	application	using	DBID=*ANY,	DBID=*AS400,
DBID=*OTHER,	DBID=*NONE	or	DBII=*NONE	needs	to	have	a	special	set
of	additional	files	created	or	installed	on	it,	or	available	to	it	via	a	connected
server	disk	drive.
These	files	are	called	the	"xq*"	files	and	are	accessed	by	your	generated	Visual
LANSA	application(s)	when	users	perform	actions	such	as	prompting,	display
help	text,	etc.
Values	*NONE,	*ANY,	*AS400	and	*OTHER	are	identical	in	indicating	that	no
local	DBMS	system	is	to	be	used.	The	difference	is	that	the	value	*ANY,
*AS400	or	*OTHER	is	used	to	additionally	indicate	that	an	automatic
connection	to	a	Server	is	to	be	established.	The	details	of	the	connection	are
defined	by	a	series	of	PSXX=	parameters	which	are	described	in	17.4.12	PSxx
Server	Parameters.
The	.XQ	files	are	used	in	place	of	a	local	DBMS	for	read-only
dictionary/repository	access.
The	complete	set	of	these	files	is:

Name Description

lx_msg.xqi Message	definitions

lx_msg.xqd

lx_f96.xqf System	definition	(not	used	on	IBM	i)

lx_f46.xqf Partition	"ppp"	definition

lx_f60.xqf Partition	"ppp"	languages

lx_f03.xqi Partition	"ppp"	field	definitions

lx_f03.xqd

lx_f40.xqi Partition	"ppp"	program	defined	and	overridden	field	definitions

lx_f40.xqd

lx_f62.xqi Partition	"ppp"	field	descriptions

lx_f62.xqd

lx_f04.xqi Help	text

lx_f04.xqd

lx_f61.xqi *MTXT	values

lx_f61.xqd

lx_f05.xqi Validation	rule	definitions

lx_f05.xqd

lx_f06.xqi Validation	rule	definitions

lx_f06.xqd

lx_f07.xqi Validation	rule	definitions

lx_f07.xqd

lx_f08.xqi Validation	rule	definitions

lx_f08.xqd

lx_f09.xqi Validation	rule	definitions

lx_f09.xqd

lx_f10.xqi Validation	rule	definitions

lx_f10.xqd

lx_f11.xqi Validation	rule	definitions

lx_f11.xqd

lx_f44.xqi Process	attachments

lx_f44.xqd

lx_f64.xqi Physical	file	descriptions

lx_f64.xqd

lx_f65.xqi Logical	file	descriptions

lx_f65.xqd

lx_f66.xqi Process	descriptions

lx_f66.xqd

lx_f67.xqi Function	descriptions

lx_f67.xqd

lx_f27.xqi File	Definitions

lx_f27.xqd

lx_f15.xqi Logical	Files

lx_f15.xqd

lx_f14.xqi File	Fields

lx_f14.xqd

lx_f26.xqi System	Variables

lx_f26.xqd

	

These	files	are	in	binary	format.	They	are	"read	only"	files	and	should	not	be
manually	edited	with	any	type	of	tool.
Failure	to	observe	this	rule	may	lead	to	application	failure	and/or	unpredictable
results.
When	created,	each	set	of	lx_fnn.xqi	and	lx_fnn.xqd	are	a	"matched	pair".	File
lx_fnn.xqi	is	an	index	and	makes	direct	offset	references	into	the	lx_fnn.xqd
(data)	file.	You	must	always	create,	ship	and	install	both	of	the	lx_fnn	files
together	as	a	pair.	Failing	to	observe	this	rule	may	lead	to	application	failure
and/or	unpredictable	results.
The	files	lx_f61.xqd	and	lx_f61.xqi	are	only	required	if	your	application	uses
*MTXT	variables.
The	files	lx_f05.xqd	through	to	lx_f11.xqi	are	only	required	if	you	use	(or
have	enabled)	automatic	field	level	help	text	generation.
The	files	lx_f27.xqd	through	to	lx_f26.xqi	are	only	required	for	LANSA
Open	applications	(on	the	Server).
The	files	lx_f96.xqf	through	lx_f60.xqf	are	only	required	for	applications	that

require	non-default	system,	partition,	and	language	definitions.	File
lx_f96.xqf	is	not	used	for	LANSA	for	i.
If	connecting	to	a	Server	via	the	PSXX	parameters	or	an	INIT	function,
repository	data	that	is	not	found	locally	can	be	retrieved	from	the	Server,	or
set	to	defaults.	Theoretically,	this	means	that	you	can	deploy	the	client	side	of
a	SuperServer	application	with	no	xq*	files.	However,	there	are	performance
and	tailoring	setbacks.	Refer	to	PSRR	Notes	(Primary	Server	Route
Repository)	for	more	details.

Refer	to	Client/Server	Applications	in	the	LANSA	Application	Design	Guide
for	more	details	about	designing	and	building	client/server	applications.

All	lx_fnn	files	are	placed	into	the	partition	source	directory
(x_lansa\x_ppp\source).	If	a	file	does	not	exist	it	is	created.	If	it	does,	it	is
cleared	of	all	existing	data	before	the	export	proceeds.
In	execution	environments,	when	a	specific	file	is	being	read,	the
x_lansa\x_ppp\source	directory	is	always	checked	first.	If	the	file	cannot	be
located	in	that	directory,	the	x_lansa\source	directory	is	checked.	This	allows
flexibility	in	deployment.	For	example,	different	partitions	can	have	their	own
copy	of	the	message	file.
The	xq*	files	may	be	created	on	any	Windows	development	system	at	any	time.
To	do	this	use	the	X_RUN	command	like	this:

X_RUN	PROC=*SYSEXPORT	FUNC=ttttt	LANG=xxx	PART=ppp	etc.
The	"ttttt"	value	can	be	specified	as	an	individual	table	name	(e.g.	LX_F03	or
LX_F46)	or	as	*ALL.	The	special	value	*ALL	causes	all	the	output	files	to	be
produced.
Once	started,	the	export	process	displays	a	standard	event	log	and	updates	it	as
the	export	proceeds.	When	complete,	an	"OK"	button	will	appear	in	the	event
log	window,	allowing	you	to	review	the	messages.	When	you	click	on	the	"OK"
button	the	export	process	ends.
The	PROC=*SYSEXPORT	facility	exports	the	specified	file(s)	to	all	enabled
environments.
Where	an	applicable	code	page	/	environment	translation	file	exists,	its
presence	and	use	will	be	noted	in	the	messages	issued	by	the	*SYSEXPORT
facility.
You	cannot	use	PROC=*SYSEXPORT	with
DBID=*NONE/*ANY/*AS400/*OTHER.	Failure	to	observe	this	rule	may

its:LANSA065.CHM::/lansa/dsnbg_0010.HTM

lead	to	unpredictable	results	and/or	application	failure.
You	cannot	use	PROC=*SYSEXPORT	when	the	lx_fnn	files	are	in	use	by
another	application	or	user.	Failure	to	observe	this	rule	may	lead	to
application	failure	and/or	unpredictable	results.
For	lx_f96	and	lx_msg,	which	are	system	based,	all	details	are	exported.	For
all	other	lx_fnn	files,	only	the	details	from	the	current	partition	(i.e.
PART=ppp	on	the	X_RUN	command)	are	included.
The	partition	based	lx_fnn	files	do	not	store	the	partition	internally.	Therefore
they	can	be	used	with	a	different	partition	name.	However,	data	library	and
program	library	values	are	still	stored	within	the	files,	and	these	cannot	be
changed.
Normally	lx_fnn	files	are	created	at	the	completion	of	a	task	/	project	and
included	into	the	packaging	and	installation	procedures	of	the	application.	If
you	are	using	lx_fnn	files	and	DBID=*NONE/*ANY/*AS400/*OTHER,	then
you	should	add	their	production,	shipping	and	installation	procedures	to	the
procedures	recommended	in	the	section	in	this	guide	that	describes	the
packaging	of	applications.
The	lx_fnn	files	are	a	read-only	"snapshot"	of	the	associated	SQL	based
tables.	You	must	remember	that	they	are	a	snapshot.	For	example,	you	may
use	*SYSEXPORT	to	export	LX_F04	(help	text)	and	then	run	your
application	using	DBID=*NONE.	If	you	edit	the	help	text	via	Visual	LANSA
the	change	will	not	appear	in	applications	using	DBID=*NONE	until	the
lx_f04.xqi	and	lx_f04.xqd	files	are	(re)created	again.	(However,	if	your
application	connects	to	a	Server	and	the	repository	data	exists	there,	missing
information	will	be	retrieved	by	default,	if	it	exists	on	the	server.	Changed
information	will	not	be	retrieved.	Refer	to	PSRR	Notes	(Primary	Server
Route	Repository)	for	more	details.

The	lx_fnn	files	will	support	system	initialization,	field	prompting	and	help	text
display	in	a	totally	standalone	environment.	These	are	the	essential	elements	of
being	able	to	execute	an	application	in	a	standalone	environment.
Any	other	form	of	database	activity	will	fail	unless	the	I/O	operations	are
"diverted"	to	a	server.
Note	that	I/O	operations	also	include	object	lock	requests	(which	may	be
automatically	diverted	to	the	server)	and	IBM	i	data	area	emulations	(which
must	be	manually	diverted	to	the	server	by	using	the
CALL_SERVER_FUNCTION	facility).	Other	Built-In	Functions	such	as
SAVE_LIST	may	also	involve	database	activity	and	must	be	manually	diverted

to	the	server.
Imagine	a	function	that	must	perform	some	activity	and	give	the	result(s)	back
to	the	caller.	For	example,	it	might	allocate	the	next	order	number,	or	save	a	list,
etc.
The	activity	must	always	be	performed	on	the	server.
By	structuring	the	function	like	this:
function	*direct	rcv_lsts(<working	lists>)
	
exchange	<other	information>	options(*always)
	
if	*cputype	=	as400
						<perform	required	activity>	
else	
							use	call_server_function	(...	itself)	
endif
return
	

When	called	on	an	IBM	i	this	function	does	its	job	and	receives	and	returns
information	via	working	lists,	exchange	lists,	etc.
When	called	in	a	PC	application,	the	function	immediately	calls	itself	on	the
associated	server	(which	does	its	job	and	returns	the	results).
To	the	program	that	called	this	one,	the	switching	to	the	server	(if	required)	is
invisible	and	immaterial.
By	using	a	more	flexible	and	dynamic	switch	than	"*cputype	=	as400"	a	very
powerful	and	dynamic	means	of	switching	logic	between	the	client	and	server
could	be	designed.
User	Defined	Messages
User	defined	Messages	will	not	be	copied	to	LX_MSG.XQD	/	XQI	files.
Therefore	the	use	of	FXQF=*ALL	is	not	recommended	in	scenarios	where	you
have	your	own	application	specific	messages.	In	such	cases	the	use	of	a
message	file	is	required.

17.7.1	Tips	for	Setting	up	and	Using	.XQ*	Files
These	tips	and	techniques	may	help	you	in	setting	up	and	using	".xq*"	files:
These	files	are	static.	They	represent	a	"snapshot"	of	your
dictionary/repository.	For	example,	if	you	edit	the	help	text	associated	with	a
field,	then	use	X_RUN	DBII=*NONE.	The	new	help	text	will	not	appear
until	you	(re)run	using	the	X_RUN	PROC=*SYSEXPORT	option.	Refer	to
17.7	The	.XQ*	Files	for	details	about	using	X_RUN	PROC=*SYSEXPORT.
If	you	are	packaging/bundling	your	application	for	distribution	to	other	PCs
and	plan	to	use	X_RUN	DBII=*NONE	on	them,	then	you	will	have	to
include	the	latest	".xq*"	files	into	your	package	as	well.	(However,	if	your
application	connects	to	a	Server	and	the	repository	data	exists	there,	missing
information	will	be	retrieved	by	default,	if	it	exists	on	the	server.	Changed
information	will	not	be	retrieved.	Refer	to	PSRR	Notes	(Primary	Server
Route	Repository)	for	more	details.)

Only	package	the	*.xq*	files	you	actually	need.	This	will	save	space.	However,
make	sure	that	before	you	package	your	application,	you	test	it	with	the	subset
of	*.xq*	files.

17.8	Lock	Timeout
These	notes	apply	to	non-IBM	i	platforms
A	lock	timeout	is	treated	by	LANSA	as	a	fatal	error	unless	LANSA's	lock
timeout	handling	is	switched	on.	In	fact,	by	default,	most	databases	wait
indefinitely	for	locks	to	be	resolved	and	thus	lock	timeouts	do	not	occur.	Some
databases	allow	a	lock	timeout	to	be	set	globally,	for	example,	Oracle	on
Windows.	If	that	is	done	and	a	lock	timeout	occurs,	then	a	fatal	error	would
occur	with	the	LANSA	application.
Once	you	have	enabled	LANSA	to	trap	lock	timeouts	LANSA	will	still	set
IO$STS=ER.	Thus	if	special	handling	is	not	provided	by	the	developer,	current
error	handling	will	be	executed,	but	it	will	no	longer	be	a	LANSA	fatal	error,	its
just	an	IO	error.
Therefore,	it	is	imperative	that	you	check	for	a	lock	error	by	using	the	system
variable	*DBMS_RECORD_LOCKED.	Without	it,	the	user	will	not	get	any
extra	messages	describing	the	reason	for	the	error.
In	summary,	if	you	switch	lock	timeouts	ON,	then	you	will	still	get	an	IO	error
and	you	MUST	check	for	a	lock	timeout	by	using	the	system	variable
*DBMS_RECORD_LOCKED.

Also	see
17.8.1	Lock	Timeout	Configuration
17.8.2	Lock	Timeout	Behavior	Examples

17.8.1	Lock	Timeout	Configuration
Connection	Lock	Timeout
Statement	Lock	Timeout
SuperServer

Lock	Timeout	Types
There	are	two	different	methods	of	setting	a	timeout	for	when	an	SQL
transaction	is	waiting	for	a	lock	to	be	freed	by	another	process.	They	are:
1.		For	a	Connection	Lock	Timeout	supported	on	Windows	and	IBM	i	(but	not
on	Linux)	for	all	LANSA	development	databases:	SQL	Server,	Oracle	and
Sybase	Adaptive	Server	Anywhere,	set	a	timeout	on	each	connection	so	that
ANY	locks	that	occur	on	that	connection	can	return	control	back	to	the
application.

2.		For	Oracle	on	Linux,	a	different	technique	is	required.	In	this	environment,	a
wait	time	can	be	set	on	the	SELECTs	executed	before	LANSA	performs	an
UPDATE	or	DELETE.	This	is	called	a	Statement	Lock	Timeout.	LANSA	also
supports	this	setting	on	Oracle	for	Windows	so	that	an	application	can	expect
consistent	lock	timeout	behavior	when	running	on	either	Windows	or	Linux.

Connection	Lock	Timeout
The	Connection	Lock	Timeout	requires	setting	LOCK_TIMEOUT	in
X_DBMENV.DAT	to	the	time	to	wait	before	timing	out.	A	value	of	zero
indicates	it	should	wait	forever	and	that	LANSA	should	not	trap	timeout	errors.
This	is	for	backward	compatibility.	Zero	is	the	default.	The	unit	of	measurement
differs	depending	on	the	database	type.	This	is	noted	in	comments	in
X_DBMENV.DAT.	For	example	SQL	Server	requires	the	timeout	to	be
specified	in	milli-seconds	and	MySQL	requires	it	to	be	specified	in	seconds.
Also	set	LOCK_TYPE=C	(default)
For	Oracle	it	also	requires	setting	a	value	in	the	file	ORAODBC.INI	in	your
Windows	directory.	This	is	usually	c:\windows,	but	the	actual	value	can	be
determined	by	typing	"set	windir"	in	a	command	window.
To	set	the	lock	timeout	ensure	that	text	similar	to	the	following	is	in
ORAODBC.INI:
[Oracle	ODBC	Driver	Common]LockTimeOut=2	
Note	that	for	Oracle	the	value	in	X_DBMENV.DAT	just	enables	LANSA's	lock
timeout	behavior,	it	does	not	actually	set	the	timeout	value.	Also	the	error	code

returned	depends	on	which	mewthod	is	chosen	to	implement	the	lock	so
DBMS_RETCODE_ROW_LOCKED=1013
The	full	set	of	Oracle	settings	in	X_DBMENV.DAT	is:
			LOCK_TYPE=C
			LOCK_TIMEOUT=2
			CMD_LOCK_TIMEOUT=<setting	ignored>
			DBMS_RETCODE_ROW_LOCKED=1013
	

Statement	Lock	Timeout
The	Statement	Lock	Timeout	is	specific	to	Oracle.	It	allows	the	same	lock
timeout	behavior	to	occur	on	Windows	and	Linux	Oracle	databases.
This	also	requires	LOCK_TIMEOUT	in	X_DBMENV.DAT	to	be	set	to	a	non-
zero	value	to	enable	the	LANSA	feature,	but	it	does	not	actually	set	the	value	of
the	timeout.	Also	set	LOCK_TYPE=S.
There	is	also	a	choice	of	whether	to	wait	for	the	lock	to	be	freed,	or	to	not	wait
at	all	if	a	lock	is	encountered.	This	is	set	in	CMD_LOCK_TIMEOUT:	"FOR
UPDATE	WAIT	n"	or	"FOR	UPDATE	NOWAIT"	respectively.
Finally	the	error	code	(DBMS_RETCODE_ROW_LOCKED)	needs	to	be	set
to	match	the	timeout	setting	as	set	out	below.
For	example,	to	set	the	lock	timeout	to	2	seconds	use	the	following	settings:
			LOCK_TYPE=S
			LOCK_TIMEOUT=2
			CMD_LOCK_TIMEOUT=FOR	UPDATE	WAIT	2
			DBMS_RETCODE_ROW_LOCKED=30006
	

To	set	the	lock	timeout	to	not	wait	at	all	use	the	following	settings:
			LOCK_TYPE=S
			LOCK_TIMEOUT=2
			CMD_LOCK_TIMEOUT=FOR	UPDATE	NOWAIT
			DBMS_RETCODE_ROW_LOCKED=54
	

SuperServer
For	Windows,	Linux	servers,	the	Client	and	Server	must	have	the	same	timeout
settings	in	x_dbmenv.dat	for	the	database	type	used	on	the	server
(LOCK_TYPE,	LOCK_TIMEOUT,	CMD_LOCK_TIMEOUT,	and

DBMS_RETCODE_ROW_LOCKED).	Otherwise,
*DBMS_RECORD_LOCKED	may	return	N	when	you	expect	it	to	return	Y.
	
	
	
	
	
	
	
	
	
	
	
	

17.8.2	Lock	Timeout	Behavior	Examples
The	following	is	a	step	by	step	description	of	how	various	combinations	of
LANSA	database	IO	work	in	different	databases	when	a	row	is	locked.	These
differences	are	fundamental	to	the	architecture	of	particular	database	engines
and	thus	cannot	be	abstracted	away	by	LANSA	to	provide	consistent	behavior
across	all	database	engines.
This	is	not	an	exhaustive	list	of	database	behaviors.	It	just	seeks	to	show	how
the	database	engines	may	differ	and	thus	not	to	include	presumptions	about	that
behavior	if	cross-database	consistency	is	required.
It	also	shows	that	thorough	testing	is	required	when	deciding	to	use	a	new
database	engine	with	an	application.	LANSA	removes	many	of	the	concerns	of
running	an	application	against	different	databases,	but	there	are	still	some	subtle
differences	that	cannot	be	assuaged	by	LANSA.

See	test	results	for:
Adaptive	Server	Anywhere	9.0
SQL	Server	2005
Oracle	10.2	-	Connection	Lock
Oracle	10.2	-	Statement	Lock
PC	Other	Files

Adaptive	Server	Anywhere	9.0
ODBI=2	(READ_COMMITTED)LockTimeout=2	(X_DBMENV.DAT)

WITH_KEY	IO	access
StepAction	(User) IO$STSMessage

1 Insert	(1) OK IO	Operation	Succeeded

2 Insert	(2) VE Record	already	exists

3 Delete	(2) ER Record	Locked

4 Commit	(1) 	 	

5 Update	(1) OK IO	Operation	Succeeded

6 Update	(2) ER Record	Locked

7 Fetch	(1) ER Record	Locked

8 Fetch	(2) ER Record	Locked

9 Commit	(1) 	 	

10 Delete	(1) OK IO	Operation	Succeeded

11 Insert	(2) ER Record	Locked

12 Update	(2),	Delete	(2)NR Record	not	found

13 Commit	(1) 	 	

	

Note	that	ASA	is	behaving	as	if	it	is	seeing	the	uncommitted	actions	of	the	other
user,	even	though	the	Transaction	Isolation	Level	is	set	to
READ_COMMITTED.

Last	Record	Read	IO	access
This	is	a	different	set	of	steps	as	there	must	be	a	record	to	read	before	the	last
record	read	can	be	updated	or	deleted!	Hence	when	an	error	occurs,	the	record
must	be	fetched	again	like	in	Step	13.

StepAction	(User) IO$STSMessage

1 Insert	(1) OK IO	Operation	Succeeded

2 Insert	(2) VE Record	already	exists

3 Commit	(1) 	 	

4 Fetch	(1),	Fetch	(2) OK IO	Operation	Succeeded

5 Update	(1) OK IO	Operation	Succeeded

6 Update	(2) ER Record	Locked

7 Fetch	(1) ER Record	Locked

8 Fetch	(2) ER Record	Locked

9 Commit	(1) 	 	

10 Fetch	(1),	Fetch	(2) OK IO	Operation	Succeeded

11 Delete	(1) OK IO	Operation	Succeeded

12 Insert	(2) ER Record	Locked

13 Fetch	(2)	Update	(2),	Fetch	(2)	Delete
(2)

NR Record	not	found

14 Commit	(1) 	 	

	

Note	in	Step	13	that	the	Update	and	Delete	cannot	proceed	because	the	record	is
not	found.

SQL	Server	2005
ODBI=2	(READ_COMMITTED)LockTimeout=2	(X_DBMENV.DAT)

WITH_KEY	IO	access
StepAction	(User) IO$STSMessage

1 Insert	(1) OK IO	Operation	Succeeded

2 Insert	(2) ER Record	Locked

3 Delete	(2) ER Record	Locked

4 Commit	(1) 	 	

5 Update	(1) OK IO	Operation	Succeeded

6 Update	(2) ER Record	Locked

7 Fetch	(1) OK IO	Operation	Succeeded

8 Fetch	(2) ER Record	Locked

9 Commit	(1) 	 	

10 Delete	(1) OK IO	Operation	Succeeded

11 Insert	(2) ER Record	Locked

12 Update	(2),	Delete	(2)ER Record	Locked

13 Commit	(1) 	 	

	

Note	the	differences	between	ASA	and	SQL	Server	at	steps	2,	7	and	12.	There
may	be	many	ramifications	of	these	differences	in	attempting	to	have	an
application	perform	the	same	way	on	both	databases.	For	example,	Step	7
implies	that	if	your	application	updates	a	record	and	doesn't	commit	it,	then	re-
reads	the	record,	on	SQL	Server	it	will	work.	When	you	then	execute	it	on	ASA,
it	will	timeout	if	a	LockTimeout	is	set,	otherwise	it	will	block.

Last	Record	Read	IO	access
This	is	a	different	set	of	steps	as	there	must	be	a	record	to	read	before	the	last

record	read	can	be	updated	or	deleted!	Hence	when	an	error	occurs,	the	record
must	be	fetched	again	like	in	Step	13.

StepAction	(User) IO$STSMessage

1 Insert	(1) OK IO	Operation	Succeeded

2 Insert	(2) ER Record	Locked

3 Commit	(1) 	 	

4 Fetch	(1),	Fetch	(2) OK IO	Operation	Succeeded

5 Update	(1) OK IO	Operation	Succeeded

6 Update	(2) ER Record	Locked

7 Fetch	(1) OK IO	Operation	Succeeded

8 Fetch	(2) ER Record	Locked

9 Commit	(1) 	 	

10 Fetch	(1),	Fetch	(2) OK IO	Operation	Succeeded

11 Delete	(1) OK IO	Operation	Succeeded

12 Insert	(2) ER Record	Locked

13 Fetch	(2)	Update	(2),	Fetch	(2)	Delete
(2)

ER Record	Locked

14 Commit	(1) 	 	

	

Note	that	step	13	gets	the	lock	timeout	on	the	Fetch	not	the	Update.	Compare
this	with	ASA	which	reports	the	row	does	not	exist	on	the	Fetch	and	Oracle
which	succeeds	on	the	Fetch	but	gets	the	lock	timeout	on	the	Update.

Oracle	10.2	-	Connection	Lock
ODBI=2	(READ_COMMITTED)

LockTimeout=2	(ORAODBC.INI)

WITH_KEY	IO	access
StepAction	(User) IO$STSMessage

1 Insert	(1) OK IO	Operation	Succeeded

2 Insert	(2) ER Record	Locked

3 Delete	(2) NR Record	not	found

4 Commit	(1) 	 	

5 Update	(1) OK IO	Operation	Succeeded

6 Update	(2) ER Record	Locked

7 Fetch	(1) OK IO	Operation	Succeeded

8 Fetch	(2) OK IO	Operation	Succeeded

9 Commit	(1) 	 	

10 Delete	(1) OK IO	Operation	Succeeded

11 Insert	(2) ER Record	Locked

12 Update	(2),	Delete	(2)ER Record	Locked

13 Commit	(1) 	 	

	

Note	the	differences	between	Oracle	and	SQL	Server	at	steps	3	and	8.

Last	Record	Read	IO	access
This	is	a	different	set	of	steps	as	there	must	be	a	record	to	read	before	the	last
record	read	can	be	updated	or	deleted!	Hence	when	an	error	occurs,	the	record
must	be	fetched	again	like	in	Step	13.

StepAction	(User) IO$STSMessage

1 Insert	(1) OK IO	Operation	Succeeded

2 Insert	(2) ER Record	Locked

3 Commit	(1) 	 	

4 Fetch	(1),	Fetch	(2) OK IO	Operation	Succeeded

5 Update	(1) OK IO	Operation	Succeeded

6 Update	(2) ER Record	Locked

7 Fetch	(1) OK IO	Operation	Succeeded

8 Fetch	(2) OK IO	Operation	Succeeded

9 Commit	(1) 	 	

10 Fetch	(1),	Fetch	(2) OK IO	Operation	Succeeded

11 Delete	(1) OK IO	Operation	Succeeded

12 Insert	(2) ER Record	Locked

13 Fetch	(2)	Update	(2),	Fetch	(2)	Delete
(2)

ER Record	Locked

14 Commit	(1) 	 	

	

Oracle	10.2	-	Statement	Lock
ODBI=2	(READ_COMMITTED)

FOR	UPDATE	WAIT	n	(X_DBMENV.DAT)
The	lock	timeout	is	only	set	for	SELECT	operations,	and	then	only	for	reads
before	UPDATE	and	DELETE.	Its	not	possible	to	put	the	lock	timeout	on	other
SELECTs	because	a	lock	is	applied	too	which	is	undesirable	for	all	SELECTS.
Only	specific	ones	should	be	locked.	INSERTS	do	not	provide	a	WAIT	option
and	thus	wait	for	the	row	to	be	unlocked	(block).

WITH_KEY	IO	access
StepAction	(User) IO$STSMessage

1 Insert	(1) OK IO	Operation	Succeeded

2 Insert	(2) Block 	

3 Delete	(2) NR Record	not	found

4 Commit	(1) 	 	

5 Update	(1) OK IO	Operation	Succeeded

6 Update	(2) ER Record	Locked

7 Fetch	(1) OK IO	Operation	Succeeded

8 Fetch	(2) OK IO	Operation	Succeeded

9 Commit	(1) 	 	

10 Delete	(1) OK IO	Operation	Succeeded

11 Insert	(2) Block 	

12 Update	(2),	Delete	(2)ER Record	Locked

13 Commit	(1) 	 	

	

Note	the	highlighted	lines	2	and	11	differ	from	Lock	Timeout	results	for	Oracle.
For	the	inserts,	it's	not	possible	to	set	a	timeout,	so	they	block	until	the
transaction	is	committed.

Last	Record	Read	IO	access
Same	results	as	for	WITH_KEY	in	terms	of	how	using	FOR	UPDATE	differs
from	a	LockTimeout.

StepAction	(User) IO$STSMessage

1 Insert	(1) OK IO	Operation	Succeeded

2 Insert	(2) Block 	

3 Commit	(1) 	 	

4 Fetch	(1),	Fetch	(2) OK IO	Operation	Succeeded

5 Update	(1) OK IO	Operation	Succeeded

6 Update	(2) ER Record	Locked

7 Fetch	(1) OK IO	Operation	Succeeded

8 Fetch	(2) OK IO	Operation	Succeeded

9 Commit	(1) 	 	

10 Fetch	(1),	Fetch	(2) OK IO	Operation	Succeeded

11 Delete	(1) OK IO	Operation	Succeeded

12 Insert	(2) Block 	

13 Fetch	(2)	Update	(2),	Fetch	(2)	Delete
(2)

ER Record	Locked

14 Commit	(1) 	 	

	

The	conclusion	drawn	from	this	testing	is	that	if	Oracle	is	being	used	on	Linux
and	Windows	then	use	the	FOR	UPDATE	option	on	BOTH	platforms.
Otherwise	use	a	LockTimeout.	And	even	so,	if	different	databases	are	used,	be
very	wary	that	behavior	is	different	for	different	databases	and	some	database
specific	code	may	be	required	in	some	situations.

PC	Other	Files
The	lock	timeout	is	separately	set	per	database	type.	Therefore	if	a	lock	timeout
is	set,	say,	for	Adaptive	Server	Anywhere,	it	will	be	set	on	all	PC	Other	Files
that	use	Adaptive	Server	Anywhere.
Full	set	of	tests	do	not	require	testing	every	database	with	every	other	database.
This	set	of	tests	should	be	sufficient:

	 Main	DB Other	DB Other	DB Other	DB

Test	Set	1 ASA SQL	Server Oracle	(C) MS	Access

Test	Set	2 SQL	Server ASA MySQL 	

Test	Set	3 Oracle	(C) 	 	 	

Test	Set	4 Oracle	(S) SQL	Server 	 	

	

The	first	3	tests	are	to	use	LOCK_TYPE=C	for	all	databases.
Test	Set	4	should	use	LOCK_TYPE=S	for	Oracle	and	of	course
LOCK_TYPE=C	for	SQL	Server.

17.8.3	Technical	Implementation	Details
The	LANSA	Database	Layer	will	use	LOCK_TYPE=C	to	set	a	lock	timeout	for
all	databases	except	Oracle	–	Oracle	requires	the	timeout	to	be	set	in
ORAODBC.INI.	Soon	after	the	connection	is	created	to	the	database,	the
command	setting	in	CMD_LOCK_TIMEOUT	will	be	executed	on	the
connection.
For	LOCK_TYPE=S,	all	databases	will	append	the	value	in
CMD_LOCK_TIMEOUT	to	the	selects	performed	before	UPDATE	and
DELETE.	These	statements	are	flagged	by	the	OAM	using		pX_Ids-
>chOAMRqsType	|=	X_LOCK_OPERATION.	This	has	only	been	tested
with	Oracle	so	far.

17.8.4	The	X_DBMENV.DAT	File
The	x_dbmenv.dat	file	defines	the	characteristics	of	the	various	DBMS
(Database	Management	Systems)	that	your	Visual	LANSA	applications	may
use.
This	file	is	shipped	with	your	installation	media	and	installed	automatically.	You
can	view	the	file	in	text	format	by	selecting	the	Settings	and	Administration	in
the	main	LANSA	program	group	and	selecting	Databases	from	the	list.
These	X_DBMENV.DAT	file	parameters:	LOCK_TYPE,
LOCK_TIMEOUT,CMD_LOCK_TIMEOUT	and
DBMS_RETCODE_ROW_LOCKED	are	described	in	detail	in	Lock	Timeout.
The	contents	of	this	file	should	only	ever	be	changed	if	you	receive	instructions,
in	writing,	from	your	LANSA	product	vendor.

17.9	User	Instructions	for	Microsoft	Exception	or	Dr	Watson
All	these	error	types	are	generically	called	exceptions.	When	an	exception
occurs,	it	is	not	due	to	a	program	error	on	your	part.	LANSA	specifically	traps
all	errors	that	you	may	cause	by	displaying	a	Fatal	Error	message	box	with	a
number	as	in	the	following	example:

If	you	experience	an	exception	during	the	execution	of	your	application	(similar
to	the	example	below),	you	should	follow	the	steps	below	to	gather	the
maximum	amount	of	information	for	reporting	this	error	to	your	LANSA
product	vendor.	Providing	as	much	information	as	possible	when	reporting	the
issue	can	significantly	increase	the	resolution	of	the	problem.	Failure	to	carry
out	these	steps	will	probably	delay	the	resolution	of	the	issue.	Armed	with	the
requested	information,	your	Product	Vendor	may	be	able	to	identify	a
workaround	overnight.
Note	that	instructions	on	how	to	set	the	ITRO	and	ITHP	command	line
parameters	in	a	deployed	environment	can	be	found	in	this	guide	by	searching
for	the	parameter	name.	In	a	development	environment,	these	options	are	asked
for	when	executing	a	Process,	Function	or	Form.
1.		Write	down	the	address	provided	in	the	message.
2.		Clean	up	any	existing	trace	files	by	searching	for	and	deleting	all	x_trace*
files	from	\x_win95\x_lansa.	DO	NOT	DELETE	X_ERR.LOG.

3.		Turn	tracing	on	(ITRO=Y).	Re-run	the	application	and	attempt	to	reproduce
the	exception.	This	will	produce	an	x_tracennn.txt	trace	file	in	the
x_win95\x_lansa	folder	(where	nnn	can	be	001,	002,	003	etc.).

4.		Turn	tracing	on	(ITRO=Y)	and	Pointer	Validation	(ITHP=P).	Re-run	the
application	and	attempt	to	reproduce	the	exception.	This	step	will	not
overwrite	the	previous	x_trace*	file(s)	but	will	create	a	new	x_tracennn.txt
file.

5.		If	step	3	does	not	reproduce	the	problem,	restrict	the	trace	to	just	heap
messages	(ITRC=HEP).	Re-run	the	application	and	attempt	to	reproduce	the
exception.	This	step	will	not	overwrite	the	previous	x_trace*	file(s)	but	will
create	a	new	x_tracennn.txt	file.

6.		Turn	tracing	on	(ITRO=Y)	and	validation	of	all	heaps	(ITHP=A).	Re-run	the
application	and	attempt	to	reproduce	the	exception.	This	step	will	not
overwrite	the	previous	x_trace*	file(s)	but	will	create	a	new	x_tracennn.txt
file.

7.		Send	ALL	the	x_trace*	files	in		\x_win95\x_lansa	to	ensure	that	your	product
vendor	receives	the	correct	ones.	Please	indicate	in	which	of	the	above	steps
you	were	able	to	reproduce	the	exception.

8.		Also	send	the	dump	file	and	the	x_err.log	file	which	are	in	the	directory
displayed	in	the	fatal	error	message.	In	the	sample	error	below,	the	x_err.log
file	is	located	on	c:\<path>\AppData\Local\Temp.	The	location	of	the
x_err.log	file	varies	from	machine	to	machine	and	user	to	user.	If	you	do	not
find	x_err.log	in	this	directory,	search	your	disk	drives	for	the	x_err.log	file.

					The	title	of	the	message	will	reflect	the	Windows	executable	that	you	are
currently	executing.	Other	examples	are	"LANSA"	and	"X_DLL".

9.		Report	the	LANSA	version	and	EPCs	that	you	have	installed.	This	is	as
critical	as	the	traces.
In	the	development	environment,	the	LANSA	version	and	EPC	level	can	be
obtained	from	the	Product	Information	menu	item	in	the	Help	menu.	In	the
deployment	environment,	you	can	obtain	the	build	number	from
\x_win95\x_pkgs\x_boot\nnnn.	Report	the	"nnnn"	part	of	the	directory	name,
e.g.	2208.	To	determine	the	EPCs,	navigate	into	this	directory,	if	there	is	an
EPC	directory	here,	go	into	that.	The	EPCs	will	be	listed	as	directory	names:
e.g.	EPC616.	Report	the	EPC	numbers	or	None	if	there	is	not	an	EPC
directory.	If	you	do	not	have	an	X_BOOT	directory,	ask	your	administrator	or

the	product	vendor	for	the	version	and	EPC	information.

	

	
	

18.	Error	Messages
You	will	link	directly	to	these	error	codes	provided	you	have	access	to	the
relevant	online	guide:
LANSA	Open	Error	Codes
Error	Code	23	-	CPI-C	Return	Codes	(Host	Integration	Server	2000,	Network
Services	for	DOS).
Communications	Error	Codes	in	the	LANSA	Communications	Setup	Guide.
Escape	Error	Message	in	the	LANSA	for	i	User	Guide.

its:LANSA035.CHM::/lansa/error_codes.HTM
its:LANSA035.CHM::/lansa/cpic_23_codes.HTM
its:lansa045.CHM::/lansa/connect_error_codes.HTM
its:lansa010.CHM::/lansa/ladugub1_0015.HTM

Appendix	A.	Other_Vendor	Built-In	Functions
	

Available	Built-In
Functions:

Id DLL Description

OV_FILE_DIALOG 997 U_BIF997 Presents	standard	File	dialog.

OV_FILE_SERVICE 992 U_BIF992 Requests	a	file/directory	service.

OV_INDEXED_SPACE 989 U_BIF989 Creates	and	manages	an	indexed
space.

OV_MESSAGE_BOX 998 U_BIF998 Presents	a	message	box.

OV_PASTE_CLIPBOARD 996 U_BIF996 Pastes	information	from	the
clipboard.

OV_POST_CLIPBOARD 995 U_BIF995 Posts	information	to	the	clipboard.

OV_QUERY_SYS_INFO 993 U_BIF993 Query	LANSA	system
information.

OV_SLEEP 986 U_BIF986 Pauses	the	program	for
milliseconds.

OV_SOUND_ALARM 999 U_BIF999 Sounds	an	alarm.

OV_SYSTEM_SERVICE 991 U_BIF991 Requests	a	system	service.

	

	

Disclaimer
These	Built-In	functions	are	provided	as	working	examples	and	demonstrations
for	your	use	(with	all	source	code).	No	warranty	is	expressed	or	implied	in	this
provision.
Your	attention	is	drawn	to	the	following	disclaimer	that	is	included	in	the	source
code	of	all	other	vendor	and	user	defined	Built-In	functions	:
						/*	===	*/
						/*	==========	USER	DEFINED	BUILTIN	FUNCTION	DEFINITION	=============	*/

						/*	===	*/
						/*																																																																			*/
						/*	This	is	a	sample	of	how	a	user	defined	builtin	function	may	be				*/
						/*	defined.	It	is	provided	as	an	example	only.	No	warranty	of	any				*/
						/*	kind	is	expressed	or	implied.	The	programmer	copying	this	code				*/
						/*	is	responsible	for	the	implementation	and	maintenance	of	this					*/
						/*	function,	both	initially	and	at	all	times	in	the	future.										*/
						/*																																																																			*/
						/*	User	defined	builtin	functions	are	a	powefull	facility.	However,		*/
						/*	you	should	note	that	YOU	are	responsible	for	any	impact	the							*/
						/*	use	of	a	user	defined	builtin	function	has	on	the	performance,				*/
						/*	security,	integrity,	portability	and	maintainability	of	your						*/
						/*	applications.																																																					*/
						/*																																																																			*/
						/*	N.B.	In	general,	do	not	use	MessageBox	api	or	any	other											*/
						/*	operating	system-specific	api	that	requires	user	input	if	the	BIF	*/
						/*	is	expected	to	work	in	Server	environments,	like	LANSA	for	Web.			*/
						/*	There	is	a	version	of	MessageBox	available	within	LANSA	that	DOES	*/
						/*	work	in	server	environments	-	X_PDF_PromptYesNoCancel	&											*/
						/*	X_PDF_PromptYesNo.		See	x_pdfpro.h	for	prototypes																	*/
						/*																																																																			*/
						/*	Note	that	MessageBox	has	been	allowed	in	User	Defined	BIFs,	unlike*/
						/*	the	rest	of	LANSA,	so	it	is	up	to	you,	the	developer,	to	ensure			*/
						/*	any	use	of	it	is	valid.	(x_glodef.h	automatically	allows	it	if				*/
						/*U_BIF_FUNCTION	is	defined).																																							*/
						/*	===	*/
	

Support,	Questions?
Any	problems	you	have	with	these	Built-In	Functions,	or	questions	that	your
have	about	their	use,	can	be	directed	through	your	LANSA	distributor	who	will
pass	the	details	directly	to	LANSA	Support.	Please	indicate	clearly	that	the
problem	or	question	relates	to	an	"Other	Vendor"	Built-In	function	so	that
LANSA	support	can	pass	the	details	on	to	the	vendor	who	supplied	the	Built-In
function.

OV_FILE_DIALOG

	Note:	Built-In	Function	Rules

Select	a	fully	qualified	file	name	from	a	file	dialog.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 997

DLL	Required
:

U_BIF997.DLL

For	use	with
Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

LANSA	for	i NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Dialog	title.
Default	is	"File".

1 25 	 	

2 A Opt Initial	path,	file	name	or
filter.
Default	is	"*.*"

1 255 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Fully	qualified	file	name. 1 255 	 	

2 A Req Return	value	indicating	if	a	file	was
successfully	selected.
OK	=	selection	was	successful
ER	=	selection	was	cancelled

2 2 	 	

	

OV_FILE_SERVICE

	Note:	Built-In	Function	Rules

Performs	basic	file	and	directory	services.
Note:	DO	NOT	ALTER	this	OV	Built-In	Function	as	it	is	used	by	LANSA
programs.	If	you	create	a	customized	version	of	this	Built-In	Function,	create	a
copy	and	amend	the	copy.
All	Windows	path	names	support	environment	variable	substitution.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 992

DLL	Required: U_BIF992.DLL

For	use	with
Visual	LANSA	for	WindowsYES	

Visual	LANSA	for	Linux YES	

LANSA	for	i Yes Only	available	for	RDMLX.

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Type	of	file	service	required.	Pass	as	one	of:
MAKE_DIR
		Make	Directory.
REMOVE_DIR
		Remove	Directory.
REMOVE_DIR_TREE
		Remove	a	directory	tree	recursively.	Be

1 256 	 	

careful!
CHECK_DIR
		Check	if	directory	exists.
CHECK_FILE
		Check	if	a	file	exists.
SET_FILE
		Set	a	file's	attribute	to	read	only	or	normal
(read/write).
COPY_FILE
		Copy	a	file	to	another	file.
REMOVE_FILE
		Remove	file.
GET_DIR
		Get	contents	of	a	directory.
COPY_DIR
		Copy	a	directory	and	all	its	sub-directories
to	another	directory.	Any	matching	files	in	the
target	directory	will	be	replaced.
COPY_PATTERN		
Copy	files	matching	the	specified	pattern	to
another	directory.	Any	matching	files	in	the
target	directory	will	be	replaced.

2 A Opt Requested	Service	Argument	1
When	Arg	1	is
						Pass	this	argument	as:
MAKE_DIR		
Name	of	directory	to	be	made.
REMOVE_DIR		
Name	of	directory	to	be	removed.
REMOVE_DIR_TREE
		Name	of	the	directory	to	be	removed.
CHECK_DIR
		Name	of	directory	to	be	checked	for.

1 256 	 	

CHECK_FILE
		Name	of	file	to	be	checked	for.
SET_FILE
		Name	of	file	to	be	set.
COPY_FILE		
Name	of	file	to	be	copied	from.
REMOVE_FILE
		Name	of	file	to	be	removed	/deleted.
GET_DIR
		Name	of	directory	whose	contents	are	to	be
returned.
COPY_DIR
		Name	of	the	directory	to	be	copied.
COPY_PATTERN
		Fully	qualified	path	with	file	pattern	to	be
copied.		Note	*	is	the	only	wildcard	that	is
supported.

3 A Opt Requested	Service	Argument	2.
When	Arg	1	is
						Pass	this	argument	as:
MAKE_DIR		
Not	required.	Do	not	pass.
REMOVE_DIR		
Not	required.	Do	not	pass.
REMOVE_DIR_TREE
		Optional	(only	supported	on	MS	Windows
and	Linux).
Pass	FORCE	to	delete	every	file	even	if	a
files	is	READ-ONLY.	Any	other	value,	or	no
value,	will	return	an	error	if	a	file	is	read-
only.
CHECK_DIR		
Not	required.	Do	not	pass.

1 256 	 	

CHECK_FILE		
Not	required.	Do	not	pass.
SET_FILE		
Pass	as	READ_ONLY	or	NORMAL.
COPY_FILE		
Name	of	file	to	be	copied	to.
REMOVE_FILE		
Optional.	(only	supported	on	32	bit	MS
Windows)
Pass	FORCE	to	delete	every	file	even	if	a	file
is	READ-ONLY.	Any	other	value,	or	no
value,	will	return	an	error	if	a	file	is	read-
only.
GET_DIR		
Optional	file	suffix	to	select	files	of	only	a
specific	type	when	retrieving	the	contents	of	a
directory	(e.g:	DLL,	EXE,	DOC).
Do	not	pass	or	pass	as	blanks	to	select	all
files.
COPY_DIR
		Name	of	the	directory	to	be	copied	to.
COPY_PATTERN
		Name	of	the	directory	to	be	copied	to.

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Basic	Return	Code.
OK	=	Completed	normally.
ER	=	Error	occurred.

2 2 	 	

2 N Opt Extended	Error	Code.	This	is	the	operating 1 15 0 0

system	error	code	(when	available)	that	may
aid	you	in	error	handling	or	error	reporting.

3 List Opt Returned	working	List.	This	list	is	only
returned	for	certain	argument	1	values	as
follows	:
MAKE_DIR
		Not	returned.
REMOVE_DIR
		Not	returned.
REMOVE_DIR_TREE
		Not	returned.
CHECK_DIR
		Not	returned.
CHECK_FILE
	Not	returned.
SET_FILE
		Not	returned.
COPY_FILE
		Not	returned.
REMOVE_FILE
		Not	returned.
GET_DIR
		The	working	list	that	is	to	contain	the
contents	of	the	directory.	It	can	contain	from
1	to	7	fields	(i.e.	columns)	which	will	be
returned	as	the	full	file	name.
These	are:	
the	real	name	(full	file	name)
the	file	name	(without	suffix),	
the	file	suffix,	
the	file	date	(format	YYYYMMDD),	
the	file	time	(format	HHMMSS),
the	file	size	(which	must	be	a	numeric	field),	
a	(sub)directory	indicator	(which	is	returned

	 	 	 	

as	Y	or	N)	and
Existing	contents	of	this	working	lists	are
cleared	by	this	Built-In	Function.	Refer	to	the
following	example	for	more	information.
COPY_DIR
		Not	returned.
COPY_PATTERN
		Not	returned.

	

Examples
The	following	sample	RDML	function	(which	can	be	copied	and	pasted	in	the
CS/400	free	form	function	editor)	requests	that	you	specify	a	directory	name
and	then	attempts	to	create	it.	The	basic	and	extended	return	codes	from	the
attempt	to	create	the	directory	are	displayed:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_DIRECT)	TYPE(*CHAR)	LENGTH(65);
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2);
DEFINE	FIELD(#OV_ERRNO)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	EDIT_CODE(4);
BEGIN_LOOP;
MESSAGE	MSGTXT('Specify	name	of	directory	to	be	created');
REQUEST	FIELDS((#OV_DIRECT	*NOID));
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(MAKE_DIR	#OV_DIRECT)	TO_GET(#OV_RETC	#OV_ERRNO);
MESSAGE	MSGTXT('Response	from	OV_FILE_SERVICE');
POP_UP	FIELDS(#OV_RETC	#OV_ERRNO);
END_LOOP;
	

The	following	sample	RDML	function	(which	can	be	copied	and		pasted	in	the
CS/400	free	form	function	editor)	creates	a	directory	called	C:\OV_DEMO	and
then	creates	directories	A,	B,	C	and	D	within	it.	It	then	destroys	all	the
directories	created.	Note	that	this	is	done	in	reverse	order	because	a	directory
must	be	empty	to	be	removed	(destroyed):
FUNCTION	OPTIONS(*DIRECT);
EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(MAKE_DIR	'C:\OV_DEMO');
EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(MAKE_DIR	'C:\OV_DEMO\A');

EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(MAKE_DIR	'C:\OV_DEMO\B');
EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(MAKE_DIR	'C:\OV_DEMO\C');
EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(MAKE_DIR	'C:\OV_DEMO\D');
MESSAGE	MSGTXT('Directories	all	created	use	OK	to	delete	them	now');
POP_UP	FIELDS((#DATE	*L3	*P2))	AT_LOC(8	23)	WITH_SIZE(55	10)	EXIT_KEY(*NO)	MENU_KEY(*NO)	PROMPT_KEY(*NO);
EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(REMOVE_DIR	'C:\OV_DEMO\A');
EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(REMOVE_DIR	'C:\OV_DEMO\B');
EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(REMOVE_DIR	'C:\OV_DEMO\C');
EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(REMOVE_DIR	'C:\OV_DEMO\D');
EXECUTE	SUBROUTINE(DIRECT)	WITH_PARMS(REMOVE_DIR	'C:\OV_DEMO');
MESSAGE	MSGTXT('Directories	all	deleted	use	OK	to	end	this	function');
POP_UP	FIELDS((#DATE	*L3	*P2))	AT_LOC(8	23)	WITH_SIZE(55	10)	EXIT_KEY(*NO)	MENU_KEY(*NO)	PROMPT_KEY(*NO);
	
SUBROUTINE	NAME(DIRECT)	PARMS((#OV_SERV	*RECEIVED)	(#OV_DIRECT	*RECEIVED));
DEFINE	FIELD(#OV_SERV)	TYPE(*CHAR)	LENGTH(20);
DEFINE	FIELD(#OV_DIRECT)	TYPE(*CHAR)	LENGTH(65);
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2);
DEFINE	FIELD(#OV_ERRNO)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	EDIT_CODE(4);
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(#OV_SERV	#OV_DIRECT)	TO_GET(#OV_RETC	#OV_ERRNO);
IF	COND('#OV_RETC	*NE	OK');
DISPLAY	FIELDS(#OV_SERV	(#OV_DIRECT	*NOID)	#OV_RETC	#OV_ERRNO)	EXIT_KEY(*NO)	MENU_KEY(*NO)	PROMPT_KEY(*NO);
ABORT	MSGTXT('Directory	Operation	failed');
ENDIF;
ENDROUTINE;
	

The	following	sample	RDML	function	(which	can	be	copied	and		pasted	in	the
CS/400	free	form	function	editor)	asks	you	to	nominate	a	directory	name.	If	it
does	not	already	exist	you	are	prompted	as	to	whether	you	want	to	create	it:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_DIRECT)	TYPE(*CHAR)	LENGTH(70);
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2);
DEFINE	FIELD(#OV_MBA)	TYPE(*CHAR)	LENGTH(1);
BEGIN_LOOP;
REQUEST	FIELDS((#OV_DIRECT	*NOID));
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(CHECK_DIR	#OV_DIRECT)	TO_GET(#OV_RETC);
IF	COND('#OV_RETC	=	OK');
MESSAGE	MSGTXT('This	directory	already	exists');
ELSE;

USE	BUILTIN(OV_MESSAGE_BOX)	WITH_ARGS('Do	you	want	to	create	this	directory	?'	'Create	?'	YN	Q)	TO_GET(#OV_MBA);
IF	COND('#OV_MBA	=	Y');
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(MAKE_DIR	#OV_DIRECT)	TO_GET(#OV_RETC);
IF	COND('#OV_RETC	*NE	OK');
MESSAGE	MSGTXT('Attempt	to	create	directory	failed');
ENDIF;
ENDIF;
ENDIF;
END_LOOP;
	

The	following	sample	RDML	function	(which	can	be	copied	and		pasted	in	the
CS/400	free	form	function	editor)	asks	you	to	nominate	a	file	name	and	then
indicates	whether	or	not	the	file	exists:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_DIRECT)	TYPE(*CHAR)	LENGTH(70);
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2);
BEGIN_LOOP;
MESSAGE	MSGTXT('Specify	name	of	file	whose	existence	is	to	be	checked	for');
REQUEST	FIELDS((#OV_DIRECT	*NOID));
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(CHECK_FILE	#OV_DIRECT)	TO_GET(#OV_RETC);
IF	COND('#OV_RETC	=	OK');
MESSAGE	MSGTXT('This	file	exists');
ELSE;
MESSAGE	MSGTXT('This	file	does	NOT	exist');
ENDIF;
DISPLAY	FIELDS((#OV_DIRECT	*NOID));
END_LOOP;
	

The	following	sample	RDML	function	(which	can	be	copied	and		pasted	in	the
CS/400	free	form	function	editor)	asks	you	to	nominate	a	file	name	and	whether
the	file	should	be	set	to	read	only	status	or	normal	(read/write)	status:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_FILE)	TYPE(*CHAR)	LENGTH(70);
DEFINE	FIELD(#OV_READ)	TYPE(*CHAR)	LENGTH(1)	LABEL('Read	Only')	INPUT_ATR(RB01)	DEFAULT(1);
DEFINE	FIELD(#OV_NORM)	TYPE(*CHAR)	LENGTH(1)	LABEL('Normal')	INPUT_ATR(RB01)	DEFAULT(0);
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2);
**********;
BEGIN_LOOP;

MESSAGE	MSGTXT('Specify	name	of	file	whose	attribute	is	to	be	changed	and	select	attribute');
REQUEST	FIELDS((#OV_FILE	*L3	*P2	*NOID)	(#OV_READ	*L5	*P3)	(#OV_NORM	*L7	*P3));
IF	COND('#ov_read	=	''1''');
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(SET_FILE	#OV_FILE	READ_ONLY)	TO_GET(#OV_RETC);
ELSE;
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(SET_FILE	#OV_FILE	NORMAL)	TO_GET(#OV_RETC);
ENDIF;
IF	COND('#OV_RETC	=	OK');
MESSAGE	MSGTXT('File	attribute	successfully	changed');
ELSE;
MESSAGE	MSGTXT('ERROR	:	File	attribute	was	NOT	changed');
ENDIF;
END_LOOP;
	

The	following	sample	RDML	function	(which	can	be	copied	and		pasted	in	the
CS/400	free	form	function	editor)	asks	you	to	nominate	a	from	and	to	file	name
and	then	attempts	to	perform	a	copy	operation:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_FROM)	TYPE(*CHAR)	LENGTH(60)	DEFAULT('C:\CONFIG.SYS');
DEFINE	FIELD(#OV_TO)	TYPE(*CHAR)	LENGTH(60)	DEFAULT('C:\CONFIG.SAV');
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2);
**********;
BEGIN_LOOP;
MESSAGE	MSGTXT('Specify	the	from	and	to	file	names');
REQUEST	FIELDS(#OV_FROM	#OV_TO);
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(COPY_FILE	#OV_FROM	#OV_TO)	TO_GET(#OV_RETC);
IF	COND('#OV_RETC	=	OK');
MESSAGE	MSGTXT('File	copied');
ELSE;
MESSAGE	MSGTXT('ERROR	:	File	was	NOT	copied	correctly');
ENDIF;
END_LOOP;
	

The	following	sample	RDML	function	asks	you	to	nominate	a	directory	name
and	then	retrieves	and	displays	its	contents.	The	resulting	contents	display	can
be	sorted	into	various	orders.	This	example	can	be	copied	and		pasted	into	the
CS/400	free	form	editor	but	the	long	REQUEST	command	may	have	to	be
"unfolded"	before	the	function	will	be	accepted	as	valid	RDML	code:

FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_DIRECT)	TYPE(*CHAR)	LENGTH(70);
DEFINE	FIELD(#OV_FILTER)	TYPE(*CHAR)	LENGTH(3)	LABEL('Optional	Filter');
DEFINE	FIELD(#OV_BYTES)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)	LABEL('Total	of	Sizes')	EDIT_CODE(3);
DEFINE	FIELD(#OV_OBJECT)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('Total	Objects')	EDIT_CODE(3);
DEF_COND	NAME(*OBJECTS)	COND('#ov_object	*gt	0');
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2);
DEFINE	FIELD(#OV_ERRN)	TYPE(*DEC)	LENGTH(15)	DECIMALS(0);
DEFINE	FIELD(#OV_NAME)	TYPE(*CHAR)	LENGTH(15);
DEFINE	FIELD(#OV_PREFIX)	TYPE(*CHAR)	LENGTH(12);
DEFINE	FIELD(#OV_SUFFIX)	TYPE(*CHAR)	LENGTH(3);
DEFINE	FIELD(#OV_DATE)	TYPE(*CHAR)	LENGTH(8);
DEFINE	FIELD(#OV_TIME)	TYPE(*CHAR)	LENGTH(6);
DEFINE	FIELD(#OV_ISDIR)	TYPE(*CHAR)	LENGTH(1);
DEFINE	FIELD(#OV_SIZE)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)	EDIT_CODE(3);
DEFINE	FIELD(#OV_PB01)	TYPE(*CHAR)	LENGTH(30)	INPUT_ATR(PB01)	DEFAULT('''Order	By	Name''');
DEFINE	FIELD(#OV_PB02)	TYPE(*CHAR)	LENGTH(30)	INPUT_ATR(PB02)	DEFAULT('''Order	By	Suffix''');
DEFINE	FIELD(#OV_PB03)	TYPE(*CHAR)	LENGTH(30)	INPUT_ATR(PB03)	DEFAULT('''Order	By	Date/Time''');
DEFINE	FIELD(#OV_PB04)	TYPE(*CHAR)	LENGTH(30)	INPUT_ATR(PB04)	DEFAULT('''Order	By	Size''');
DEF_LIST	NAME(#WLIST)	FIELDS(#OV_NAME	#OV_PREFIX	#OV_SUFFIX	#OV_DATE	#OV_TIME	#OV_SIZE	#OV_ISDIR)	TYPE(*WORKING)	ENTRYS(5000);
DEF_LIST	NAME(#DLIST)	FIELDS(#OV_NAME	#OV_PREFIX	#OV_SUFFIX	#OV_DATE	#OV_TIME	#OV_SIZE	#OV_ISDIR)	COUNTER(#OV_OBJECT);
**********;
EXECUTE	SUBROUTINE(WTOD);
BEGIN_LOOP;
REQUEST	FIELDS((#OV_DIRECT	*L3	*P2	*NOID)	(#OV_FILTER	*L4	*P2)	(#OV_PB01	*L6	*P2	*NOID	*OBJECTS	*IOCOND)	(#OV_PB02	*L8	*P2	*NOID	*OBJECTS	*IOCOND)	(#OV_PB03	*L6	*P38	*NOID	*OBJECTS	*IOCOND)
															(#OV_PB04	*L8	*P38	*NOID	*OBJECTS	*IOCOND)	(#OV_BYTES	*L4	*P22	*OUT)	(#OV_OBJECT	*L4	*P49	*OUT))	BROWSELIST(#DLIST);
CASE	OF_FIELD(#IO$KEY);
WHEN	VALUE_IS('=	B1');
SORT_LIST	NAMED(#WLIST)	BY_FIELDS(#OV_NAME);
EXECUTE	SUBROUTINE(WTOD);
WHEN	VALUE_IS('=	B2');
SORT_LIST	NAMED(#WLIST)	BY_FIELDS(#OV_SUFFIX	#OV_PREFIX);
EXECUTE	SUBROUTINE(WTOD);
WHEN	VALUE_IS('=	B3');
SORT_LIST	NAMED(#WLIST)	BY_FIELDS(#OV_DATE	#OV_TIME);
EXECUTE	SUBROUTINE(WTOD);
WHEN	VALUE_IS('=	B4');
SORT_LIST	NAMED(#WLIST)	BY_FIELDS(#OV_SIZE);
EXECUTE	SUBROUTINE(WTOD);

OTHERWISE;
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(GET_DIR	#OV_DIRECT	#OV_FILTER)	TO_GET(#OV_RETC	#OV_ERRN	#WLIST);
IF	COND('#OV_RETC	=		OK');
EXECUTE	SUBROUTINE(WTOD);
ELSE;
MESSAGE	MSGTXT('ERROR:	Unable	to	list	specified	directory	');
ENDIF;
ENDCASE;
END_LOOP;
**********;
SUBROUTINE	NAME(WTOD);
CLR_LIST	NAMED(#DLIST);
CHANGE	FIELD(#OV_BYTES)	TO(0);
SELECTLIST	NAMED(#WLIST);
CHANGE	FIELD(#OV_BYTES)	TO('#ov_bytes	+	#ov_size');
ADD_ENTRY	TO_LIST(#DLIST)	WITH_MODE(*DISPLAY);
ENDSELECT;
ENDROUTINE;
	

The	following	sample	RDML	function	asks	you	to	nominate	a	directory	name
and	then	retrieves	and	displays	its	contents.	The	resulting	contents	display	can
be	sorted	into	various	orders.	By	double	clicking	on	a	displayed	file	name	you
can	delete	it.	File	deletion	requests	must	be	confirmed	by	clicking	"Yes"	in	a
message	box.	This	example	can	be	copied	and		pasted	into	the	CS/400	free	form
editor	but	the	long	REQUEST	command	may	have	to	be	"unfolded"	before	the
function	will	be	accepted	as	valid	RDML	code:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_DIRECT)	TYPE(*CHAR)	LENGTH(70);
DEFINE	FIELD(#OV_PIRECT)	REFFLD(#OV_DIRECT);
DEFINE	FIELD(#OV_FILTER)	TYPE(*CHAR)	LENGTH(3)	LABEL('Optional	Filter');
DEFINE	FIELD(#OV_BYTES)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)	LABEL('Total	of	Sizes')	EDIT_CODE(3);
DEFINE	FIELD(#OV_OBJECT)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('Total	Objects')	EDIT_CODE(3);
DEFINE	FIELD(#OV_SELECT)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0);
DEF_COND	NAME(*OBJECTS)	COND('#ov_object	*gt	0');
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2);
DEFINE	FIELD(#OV_ERRN)	TYPE(*DEC)	LENGTH(15)	DECIMALS(0);
DEFINE	FIELD(#OV_NAME)	TYPE(*CHAR)	LENGTH(15);
DEFINE	FIELD(#OV_PREFIX)	TYPE(*CHAR)	LENGTH(12);

DEFINE	FIELD(#OV_SUFFIX)	TYPE(*CHAR)	LENGTH(3);
DEFINE	FIELD(#OV_DATE)	TYPE(*CHAR)	LENGTH(8);
DEFINE	FIELD(#OV_TIME)	TYPE(*CHAR)	LENGTH(6);
DEFINE	FIELD(#OV_ISDIR)	TYPE(*CHAR)	LENGTH(1);
DEFINE	FIELD(#OV_SIZE)	TYPE(*DEC)	LENGTH(9)	DECIMALS(0)	EDIT_CODE(3);
DEFINE	FIELD(#OV_PB01)	TYPE(*CHAR)	LENGTH(30)	INPUT_ATR(PB01)	DEFAULT('''Order	By	Name''');
DEFINE	FIELD(#OV_PB02)	TYPE(*CHAR)	LENGTH(30)	INPUT_ATR(PB02)	DEFAULT('''Order	By	Suffix''');
DEFINE	FIELD(#OV_PB03)	TYPE(*CHAR)	LENGTH(30)	INPUT_ATR(PB03)	DEFAULT('''Order	By	Date/Time''');
DEFINE	FIELD(#OV_PB04)	TYPE(*CHAR)	LENGTH(30)	INPUT_ATR(PB04)	DEFAULT('''Order	By	Size''');
DEF_LIST	NAME(#WLIST)	FIELDS(#OV_NAME	#OV_PREFIX	#OV_SUFFIX	#OV_DATE	#OV_TIME	#OV_SIZE	#OV_ISDIR)	TYPE(*WORKING)	ENTRYS(5000);
DEF_LIST	NAME(#DLIST)	FIELDS(#OV_NAME	#OV_PREFIX	#OV_SUFFIX	#OV_DATE	#OV_TIME	#OV_SIZE	#OV_ISDIR)	COUNTER(#OV_OBJECT)	SEL_ENTRY(#OV_SELECT);
**********;
BEGIN_LOOP;
CHANGE	FIELD(#OV_PIRECT)	TO(#OV_DIRECT);
REQUEST	FIELDS((#OV_DIRECT	*L3	*P2	*NOID)	(#OV_FILTER	*L4	*P2)	(#OV_PB01	*L6	*P2	*NOID	*OBJECTS	*IOCOND)	(#OV_PB02	*L8	*P2	*NOID	*OBJECTS	*IOCOND)	(#OV_PB03	*L6	*P38	*NOID	*OBJECTS	*IOCOND)
															(#OV_PB04	*L8	*P38	*NOID	*OBJECTS	*IOCOND)	(#OV_BYTES	*L4	*P22	*OUT)	(#OV_OBJECT	*L4	*P49	*OUT))	BROWSELIST(#DLIST);
CASE	OF_FIELD(#IO$KEY);
WHEN	VALUE_IS('=	B1');
SORT_LIST	NAMED(#WLIST)	BY_FIELDS(#OV_NAME);
EXECUTE	SUBROUTINE(WTOD);
WHEN	VALUE_IS('=	B2');
SORT_LIST	NAMED(#WLIST)	BY_FIELDS(#OV_SUFFIX	#OV_PREFIX);
EXECUTE	SUBROUTINE(WTOD);
WHEN	VALUE_IS('=	B3');
SORT_LIST	NAMED(#WLIST)	BY_FIELDS(#OV_DATE	#OV_TIME);
EXECUTE	SUBROUTINE(WTOD);
WHEN	VALUE_IS('=	B4');
SORT_LIST	NAMED(#WLIST)	BY_FIELDS(#OV_SIZE);
EXECUTE	SUBROUTINE(WTOD);
OTHERWISE;
IF	COND('(#ov_pirect	=	#ov_direct)	*and	(#ov_select	*gt	0)	*and	(#ov_object	*gt	0)');
EXECUTE	SUBROUTINE(DELETE_FIL);
ELSE;
EXECUTE	SUBROUTINE(LOAD_DIR);
ENDIF;
ENDCASE;
END_LOOP;
**********;
SUBROUTINE	NAME(LOAD_DIR);

USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(GET_DIR	#OV_DIRECT	#OV_FILTER)	TO_GET(#OV_RETC	#OV_ERRN	#WLIST);
IF	COND('#OV_RETC	=		OK');
EXECUTE	SUBROUTINE(WTOD);
ELSE;
MESSAGE	MSGTXT('ERROR:	Unable	to	list	specified	directory	');
ENDIF;
ENDROUTINE;
**********;
SUBROUTINE	NAME(DELETE_FIL);
DEFINE	FIELD(#OV_MBA)	TYPE(*CHAR)	LENGTH(1);
DEFINE	FIELD(#OV_MSG)	TYPE(*CHAR)	LENGTH(100);
GET_ENTRY	NUMBER(#OV_SELECT)	FROM_LIST(#DLIST);
IF	COND('#ov_isdir	=	Y');
MESSAGE	MSGTXT('Selected	object	is	a	directory	and	cannot	be	deleted');
ELSE;
USE	BUILTIN(BCONCAT)	WITH_ARGS('Confirm	that	file'	#OV_NAME	'is	to	deleted')	TO_GET(#OV_MSG);
USE	BUILTIN(OV_MESSAGE_BOX)	WITH_ARGS(#OV_MSG	'Delete	File'	YN	Q)	TO_GET(#OV_MBA);
IF	COND('#OV_MBA	=	Y');
USE	BUILTIN(TCONCAT)	WITH_ARGS(#OV_DIRECT	'\'	#OV_NAME)	TO_GET(#OV_MSG);
USE	BUILTIN(OV_FILE_SERVICE)	WITH_ARGS(REMOVE_FILE	#OV_MSG)	TO_GET(#OV_RETC);
IF	COND('#OV_RETC	=		OK');
EXECUTE	SUBROUTINE(LOAD_DIR);
MESSAGE	MSGTXT('File	successfully	deleted');
ELSE;
MESSAGE	MSGTXT('ERROR	:	Attempt	to	delete	file	failed');
ENDIF;
ENDIF;
ENDIF;
ENDROUTINE;
**********;
SUBROUTINE	NAME(WTOD);
CLR_LIST	NAMED(#DLIST);
CHANGE	FIELD(#OV_BYTES)	TO(0);
SELECTLIST	NAMED(#WLIST);
CHANGE	FIELD(#OV_BYTES)	TO('#ov_bytes	+	#ov_size');
ADD_ENTRY	TO_LIST(#DLIST)	WITH_MODE(*DISPLAY);
ENDSELECT;
ENDROUTINE;
	

OV_INDEXED_SPACE

	Note:	Built-In	Function	Rules

Allows	you	to	define	and	manipulate	an	indexed	space.
Warning:	This	function	does	not	support	RDMLX	fields.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 989

DLL	Required: U_BIF989.DLL

For	use	with
Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

LANSA	for	i NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Type	of	indexed	space	operation	to	be
performed.
Pass	as	one	of:
CREATE
		Create	a	new	indexed	space.
INSERT
		Unconditionally	insert	a	new	entry	into	an
indexed	space.
PUT
		Insert	a	new	or	update	an	existing	entry	in

1 50 	 	

an	indexed	space.
GET
		Get	an	entry	from	an	indexed	space.
FIRST
		Get	the	first	entry	in	an	indexed	space.
NEXT
		Get	the	next	entry	in	an	indexed	space.
DESTROY
		Destroy	an	indexed	space	and	free
associated	system	resources.
Note	that	this	Built-In	Function	only	validates
and	acts	upon	the	first	character	of	the
requested	index	space	operation	(i.e.
C,I,P,G,F,N,D)	but	to	maximize	RDML
function	readability	it	is	recommended	that
you	use	the	full	words	CREATE,	INSERT,
PUT,	GET,	FIRST,	NEXT	and	DESTROY.

2 A Req Definition	string	or	indexed	space,	identifier
(or	handle).	An	identifier	(or	handle)	is	the
value	returned	to	you	in	argument	2	when	you
create	a	new	indexed	space	that	uniquely
identifies	the	indexed	space.
When	Arg	1	is
						Pass	this	argument	as:
CREATE
		The	indexed	space	definition	string.	See	the
following	information	for	details	of	definition
strings.
any	other
		The	identifier	(or	handle)	of	the	indexed
space	that	is	to	be	used	by	the	requested
operation	(the	identifier	or	handle	is	the	value
returned	in	return	value	2	when	a	new	index
space	is	created.	It	uniquely	identifies	the
indexed	space	which	you	wish	to	use).

1 256 	 	

3 A Opt Definition	string	continuation.
Only	valid	for	CREATE	operations,	ignored
for	other	operations.

1 256 	 	

4 A Opt Definition	string	continuation.
Only	valid	for	CREATE	operations,	ignored
for	other	operations.

1 256 	 	

5 A Opt Definition	string	continuation.
Only	valid	for	CREATE	operations,	ignored
for	other	operations.

1 256 	 	

6 A Opt Definition	string	continuation.
Only	valid	for	CREATE	operations,	ignored
for	other	operations.

1 256 	 	

7 A Opt Definition	string	continuation.
Only	valid	for	CREATE	operations,	ignored
for	other	operations.

1 256 	 	

8 A Opt Definition	string	continuation.
Only	valid	for	CREATE	operations,	ignored
for	other	operations.

1 256 	 	

9 A Opt Definition	string	continuation.
Only	valid	for	CREATE	operations,	ignored
for	other	operations.

1 256 	 	

10 A Opt Definition	string	continuation.
Only	valid	for	CREATE	operations,	ignored
for	other	operations.

1 256 	 	

11 A Opt Definition	string	continuation.
Only	valid	for	CREATE	operations,	ignored
for	other	operations.

1 256 	 	

	

Return	Values

NoTypeReq/
Opt

Description Min
Len

Max
Len

Min
Dec

Max
Dec

1 A Req Standard	Return	Code
OK	=	Completed	normally
NR	=	No	record	found
ER	=	Error		occurred.

2 2 	 	

2 A Opt Returned	indexed	space	identifier	or	handle.
This	return	value	is	mandatory	when
argument	1	is	passed		as	CREATE	because	it
returns	the	identifier	(or	handle)	of	the
indexed	space	that	was	created.

10 10 	 	

	

Technical	Notes
Indexed	Spaces	and	Indexed	Space	Definition	Strings
When	an	index	space	is	being	created	(i.e.	CREATE	is	used	in	argument	1)	then
arguments	2	through	11	must	specify	a	definition	string	for	the	indexed	space.
Arguments	2	through	11	are	concatenated	(trailing	blanks	in	each	separate
argument	are	ignored)	to	form	a	single	definition	string	that	must	be	formatted
thus	:
name	keyword(value),	name	keyword(value),	name	keyword(value),	name	keyword(value)
	

where:
"name"	is	the	name	of	a	valid	RDML	field	that	is	defined	in,	or	referenced	by,
the				RDML	function	that	is	creating	the	list.
"keyword"	specifies	the	use	of	the	field	specified	in	"name".	It	may	be	one	of
KEY,					DATA,	AVG,	MAX,	MIN,	COUNT	and	SUM.	If	a	keyword	is	not
specified	then	DATA	is				assumed	as	a	default	keyword.
"value"	specifies	the	name	of	a	valid	RDML	field	that	is	defined	in,	or
referenced	by,			the	RDML	function	defining	the	list.	It	is	used	to	specify,	for
certain	keyword	values	only,			the	field	upon	which	the	keyword	activity
should	take	place.	Thus	"..,	A	SUM(B),	.."	defines			that	indexed	space	field	A
is	to	contain	the	SUM	(or	total)	of	field	B.	Likewise,	the			string	"..,	X
AVG(Y),	.."	defines	that	indexed	space	field	X	is	to	contain	the	average			of

field	Y.
The	"keywords"	AVG,	MAX,	MIN	and	SUM	require	associated	"values"	and
thus	must	be	formatted	as	AVG(value),	MAX(value),	MIN(value)	and
SUM(value)	where	value	is	the	name	of	a	field	defined	in	the	invoking	RDML
function.
The	"keywords"	KEY,	DATA	and	COUNT	do	not	require	associated	"values"
and	they	should	only	be	specified	as	KEY(),	DATA()	and	COUNT().
An	indexed	space	is	best	visualized	as	a	table	or	grid.
The	definition	string	defines	what	the	columns	in	the	indexed	space	are	to	be
and	how	they	should	be	used.	The	following	examples	illustrate	this	concept:
Definition	String:	deptment	key(),	deptdes
Can	be	visualized	as	:

Department
(DEPTMENT)

Department	Description
(DEPTDESC)

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

where	DEPTMENT	is	the	single	key	to	each	table	or	grid	entry.	Note	that
"deptdesc"	adopts	the	default	keyword	"data()"	in	this	example.
Definition	String	:	deptment	key(),	section	key(),	secdesc
Can	be	visualized	as

Department
(DEPTMENT)

Section
(SECTION)

Section	Description
(SECDESC)

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	 	 	

	

where	DEPTMENT	and	SECTION	form	an	aggregate	to	each	table	or	grid
entry.	Note	that	"secdesc"	adopts	the	default	keyword	"data()"	in	this	example.
Definition	String:	deptment	key(),	empasal	avg(salary),	empxsal
max(salary),	empmsal	min(salary)
Can	be	visualized	as

Department
(DEPTMENT)

Average	Salary	
(EMPASAL)

Maximum	Salary	
(EMPXSAL)

Minimum	Salary
(EMPMSAL)

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	 	 	 	

	

			where	DEPTMENT	is	the	single	key	to	each	table	or	grid	entry.

Notes	/	Rules	/	Guidelines	for	use	of	OV_INDEXED_SPACE
Indexed	spaces	have	been	primarily	designed	to	support	"batch"	style
functions	that	process	large	volumes	of	information.	They	have	been	designed
to	provide:

An	optimized	way	of	accumulating	aggregate	multi-level	summary
information.
An	optimized	way	of	randomly	and	repeatedly	accessing	large	lists	of
information	without	the	overhead	of	a	database	row	access	(i.e.	you
can	load	the	required	information	into	an	indexed	space	at	the	start	of
your	function	and	then	repeatedly	(re)access	the	indexed	space	more
efficiently	than	you	can	by	accessing	the	DBMS	directly).

For	examples	of	these	types	of	usage	please	refer	to	the	following	examples.
An	indexed	space	must	have	at	least	one	key	field/column	defined.
An	indexed	space	can	have	at	most	20	key	fields/columns	defined.
An	indexed	space	must	have	at	least	one	non-key	field/column	defined.
An	index	space	can	have	at	most	100	non-key	fields/columns	defined.
The	aggregate	byte	length	of	all	key	fields/columns	in	an	indexed	space
definition	cannot	exceed	16K.	Note	that	if	you	are	coming	even	remotely
close	to	this	limit	then	you	should	consult	your	product	vendor	about
application	design.
The	aggregate	byte	length	of	all	non-key	fields/columns	in	an	indexed	space
definition	entry	cannot	exceed	16K.	Note	that	if	you	are	coming	even
remotely	close	to	this	limit	then	you	should	consult	your	product	vendor
about	application	design.
The	significance	of	defined	keys	decreases	with	the	order	of	their	definition.
Thus	the	definition	string	"aaa	key(),	bbb	key(),	ccc	key(),	xxx	data(),	yyy
data()"		defines	"aaa"	as	the	most	significant	key	and	"ccc"	as	the	least
significant	key.
Key	definitions	can	take	place	at	any	point	in	the	definition	string,	but	it	is
customary	to	place	them	at	the	beginning.
There	is	no	effective	limit	to	how	many	entries	can	be	place	into	an	indexed
space,	but	you	must	REMEMBER	AT	ALL	TIMES	that	indexed	spaces	use
allocated	system	memory.	The	more	entries	that	exist	in	an	index	space	the

more	overhead	you	are	placing	on	the	consumption	of	a	system	resource.
References	in	this	section	to	"no	effective	limit"	actually	mean	that	you	are
effectively	constrained	by	how	much	memory	your	system	can	viably	allocate
and	use.
The	operations	FIRST	and	NEXT	support	sequential	key	order	access,
however	they	can	only	be	used	with	indexed	spaces	where	there	are	less	than
63KB	/	6	(for	Windows	3.1)	or	32MB	/	6		(other	environments)	entries	in	the
indexed	space.	This	is	because	the	storage	of	the	indexed	entry's	key	always
takes	6	bytes	(regardless	of	the	actual	aggregate	length	of	the	key	fields).
If	you	try	to	use	FIRST/NEXT	sequential	processing	on	an	indexed	space	that
is	too	large	to	support	it	you	will	receive	a	specific	error	message	and	your
application	will	be	aborted.	GET,	PUT	and	INSERT	operations	are	not
subjected	to	this	limitation	and	can	be	used	with	no	effective	limit	on	the
number	of	entries	in	the	indexed	space.
An	indexed	space	can	only	be	used	by	the	function	that	creates	it.	Although
you	can	easily	pass	the	identifier	(or	handle)	of	an	indexed	space	to	another
function,	any	attempt	by	the	other	function	to	access	the	index	space	may	lead
to	application	failure	and	or	unpredictable	results.	Do	not	attempt	to	do	this.	It
will	not	work	because	when	you	CREATE	an	indexed	space,	a	unique	access
plan	to	data	fields	stored	in	the	creating	function	is	formed.	This	access	plan
is	unique	to	the	creating	function	and	cannot	be	effectively	used	by	any	other
RDML	function.
You	should	use	the	DESTROY	operation	in	your	functions.	However,	all
indexed	spaces	created	by	an	RDML	function	are	automatically	destroyed
when	it	terminates.
If	you	are	using	multiple	definition	strings	with	a	CREATE	operation	please
remember	that	trailing	blanks	are	ignored.	Therefore:
USE	OV_INDEXED_SPACE	(CREATE	'A	KEY(),	B	KEY(),	C	'	'KEY(),	D	DATA(),	E	DATA()')
	

						will	cause	a	run	time	syntax	error	because	the	strings	will	be	concatenated	to
form	the	definition	string:
A	KEY(),	B	KEY(),	CKEY(),	D	DATA(),	E	DATA()
	
Indexed	space	key	fields	are	treated	(and	sorted)	as	pure	binary	data.	The
indexed	space	has	no	sense	of	the	definition	of	a	field	as	alpha,	packed,
signed,	DBCS,	etc	and	will	not	account	for	this	in	any	operation.

The	PUT	and	INSERT	operations	are	significantly	different.	A	PUT	operation
checks	whether	an	entry	in	the	index	exists	with	the	specified	key	already.	If
it	does,	it	is	aggregated	and	updated	as	appropriate.	If	it	does	not	exist,	then	a
new	entry	is	created.	An	INSERT	operation	does	not	check.	It	unconditionally
creates	a	new	entry.
This	means	that	if	you	wish	to	fill	an	indexed	space	from	a	DBMS	table	when
you	know	you	are	creating	unique	entries,	then	using	INSERT	is	substantially
more	efficient	than	using	PUT.
You	can	put	duplicate	keys	into	an	indexed	space	(i.e.,	2	or	more	entries	that
have	exactly	the	same	key	values)	by	using	the	INSERT	operation.	However,
the	effects	of	doing	this	and/or	the	order	in	which	the	duplicates	are	processed
is	unspecified	and	may	vary	from	platform		to	platform.
The	aggregation	operations	AVG(),	MAX(),	MIN(),	SUM()	and	COUNT()
are	all	performed	with	a	maximum	of	15	significant	digits	of	precision.

You	must	not	use	arrays	or	array	indices	in	indexed	spaces.

Examples
The	following	sample	RDML	function	(which	can	be	copy	and	pasted	into	the
L4W	free	form	function	editor)	is	designed	to	illustrate	the	relative	efficiency	of
indexed	spaces	for	random	access.	You	can	use	it	to	create	a	simple	indexed
space	of	up	to	100,000	entries,	and	then	cause	it	to	lookup	each	entry
individually:
FUNCTION	OPTIONS(*LIGHTUSAGE	*DIRECT);
**********	COMMENT(Define	the	index	space	columns);
DEFINE	FIELD(#OV_KEY01)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	EDIT_CODE(4);
DEFINE	FIELD(#OV_KEY02)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	EDIT_CODE(4);
DEFINE	FIELD(#OV_KEY03)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	EDIT_CODE(4);
DEFINE	FIELD(#OV_DATA01)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0);
DEFINE	FIELD(#OV_DATA02)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0);
DEFINE	FIELD(#OV_DATA03)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0);
DEFINE	FIELD(#OV_TOTAL)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	EDIT_CODE(4);
**********	COMMENT(Define	the	loop	test	limits);
DEFINE	FIELD(#OV_MKEY01)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('Outer	Loop')	EDIT_CODE(4);
DEFINE	FIELD(#OV_MKEY02)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('Middle	Loop')	EDIT_CODE(4);
DEFINE	FIELD(#OV_MKEY03)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('Inner	Loop')	EDIT_CODE(4);
**********	COMMENT(Define	other	variables);
DEFINE	FIELD(#OV_RC)	TYPE(*CHAR)	LENGTH(2);
DEFINE	FIELD(#OV_HANDLE)	TYPE(*CHAR)	LENGTH(10);

**********	COMMENT(Create	the	indexed	space);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(CREATE	'ov_key01	key(),	ov_key02	key(),	ov_key03	key(),'	'ov_data01,ov_data02,ov_data03')	TO_GET(#OV_RC	#OV_HANDLE);
**********	COMMENT(Request	details	of	how	the	list	is	to	be	initialized);
REQUEST	FIELDS(#OV_MKEY01	#OV_MKEY02	#OV_MKEY03);
BEGINCHECK;
CONDCHECK	FIELD(#OV_MKEY01)	COND('((#OV_MKEY01	*	#OV_MKEY02	*	#OV_MKEY03)	*LE	100000)')	MSGTXT('Loop	values	multiply	to	more	than	100000	iterations');
ENDCHECK;
**********	COMMENT(Initialize	the	indexed	space);
CHANGE	FIELD(#OV_TOTAL)	TO(0);
BEGIN_LOOP	USING(#OV_KEY01)	TO(#OV_MKEY01);
CHANGE	FIELD(#OV_DATA01)	TO(#OV_KEY01);
BEGIN_LOOP	USING(#OV_KEY02)	TO(#OV_MKEY02);
CHANGE	FIELD(#OV_DATA02)	TO(#OV_KEY02);
BEGIN_LOOP	USING(#OV_KEY03)	TO(#OV_MKEY03);
CHANGE	FIELD(#OV_DATA03)	TO(#OV_KEY03);
CHANGE	FIELD(#OV_TOTAL)	TO('#OV_TOTAL	+	1');
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(INSERT	#OV_HANDLE)	TO_GET(#OV_RC);
END_LOOP;
END_LOOP;
END_LOOP;
**********;
MESSAGE	MSGTXT('Index	area	initialized.	Total	entry's	is	shown.	Click	OK	to	do	lookup	speed	test');
DISPLAY	FIELDS(#OV_TOTAL);
**********;
CHANGE	FIELD(#OV_TOTAL)	TO(0);
BEGIN_LOOP	USING(#OV_KEY01)	TO(#OV_MKEY01);
BEGIN_LOOP	USING(#OV_KEY02)	TO(#OV_MKEY02);
BEGIN_LOOP	USING(#OV_KEY03)	TO(#OV_MKEY03);
CHANGE	FIELD(#OV_TOTAL)	TO('#OV_TOTAL	+	1');
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(GET	#OV_HANDLE)	TO_GET(#OV_RC);
IF	COND('(#OV_RC	*ne	OK)	*or	(#OV_DATA01	*ne	#OV_key01)		*or	(#OV_data02	*ne	#OV_key02)		*or	(#OV_data03	*ne	#OV_key03)');
MESSAGE	MSGTXT('Lookup	was	error	was	detected	for	key	values	shown');
REQUEST	FIELDS(#OV_KEY01	#OV_KEY02	#OV_KEY03	#OV_RC);
ENDIF;
END_LOOP;
END_LOOP;
END_LOOP;
MESSAGE	MSGTXT('Test	completed.	Total	number	of	lookup	tests	is	shown');
DISPLAY	FIELDS(#OV_TOTAL);

	
The	following	sample	RDML	function	uses	an	indexed	space	to	aggregate
details	of	employee	salary	information.	It	uses	the	standard	LANSA
demonstration	file	PSLMST	as	the	basis	of	employee	salary	information:
FUNCTION	OPTIONS(*LIGHTUSAGE	*DIRECT);
**********	COMMENT(Departmental	Summary	definitions);
DEFINE	FIELD(#OVTDEPSAL)	TYPE(*DEC)	LENGTH(15)	DECIMALS(2)	COLHDG('Total'	'Salary'	'Expenditure')	EDIT_CODE(3);
DEFINE	FIELD(#OVXDEPSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Maximum'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVNDEPSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Minimum'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVADEPSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Average'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVCDEPSAL)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	COLHDG('Total'	'Employees')	EDIT_CODE(3);
DEFINE	FIELD(#OVFDEPSAL)	TYPE(*CHAR)	LENGTH(256)	DECIMALS(0)	COLHDG('Indexed'	'Space'	'Definition');
CHANGE	FIELD(#OVFDEPSAL)	TO('deptment	key(),	ovtdepsal	sum(salary),	ovxdepsal	max(salary),	ovndepsal	min(salary),	ovadepsal	avg(salary),	ovcdepsal	count()');
DEFINE	FIELD(#OVHDEPSAL)	TYPE(*CHAR)	LENGTH(10)	LABEL('Space	Handle');
DEF_LIST	NAME(#OVSDEPSAL)	FIELDS(#DEPTMENT	#OVTDEPSAL	#OVCDEPSAL	#OVXDEPSAL	#OVNDEPSAL	#OVADEPSAL);
**********;
DEFINE	FIELD(#OV_RC)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	Code');
**********	COMMENT(Create	the	indexed	space);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(CREATE	#OVFDEPSAL)	TO_GET(#OV_RC	#OVHDEPSAL);
**********	COMMENT((Pass	over	the	data	and	update	the	summary	details');
SELECT	FIELDS(#DEPTMENT	#SALARY)	FROM_FILE(PSLMST);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(PUT	#OVHDEPSAL)	TO_GET(#OV_RC);
ENDSELECT;
**********	COMMENT(Now	load/show	a	browse	list	with	the	results);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(FIRST	#OVHDEPSAL)	TO_GET(#OV_RC);
DOWHILE	COND('#OV_RC	=	OK');
ADD_ENTRY	TO_LIST(#OVSDEPSAL);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(NEXT	#OVHDEPSAL)	TO_GET(#OV_RC);
ENDWHILE;
DISPLAY	BROWSELIST(#OVSDEPSAL);
**********	COMMENT(Destroy	the	indexed	space);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(DESTROY	#OVHDEPSAL)	TO_GET(#OV_RC);
	

The	following	sample	RDML	function	is	identical	to	the	previous	one	except
that	it	uses	a	second	indexed	space	to	aggregate	information	for	all	departments
and	then	adds	the	"grand"	aggregates	to	the	end	of	the	aggregate	list	that	is
displayed	to	the	user.	This	demonstrates	how	indexed	spaces	can	be	used	to
perform	multiple	level	totaling	by	using	multiple	indexed	spaces	:

	
FUNCTION	OPTIONS(*LIGHTUSAGE	*DIRECT);
**********	COMMENT(Departmental	Summary	definitions);
DEFINE	FIELD(#OVTDEPSAL)	TYPE(*DEC)	LENGTH(15)	DECIMALS(2)	COLHDG('Total'	'Salary'	'Expenditure')	EDIT_CODE(3);
DEFINE	FIELD(#OVXDEPSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Maximum'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVNDEPSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Minimum'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVADEPSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Average'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVCDEPSAL)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	COLHDG('Total'	'Employees')	EDIT_CODE(3);
DEFINE	FIELD(#OVFDEPSAL)	TYPE(*CHAR)	LENGTH(256)	DECIMALS(0)	COLHDG('Indexed'	'Space'	'Definition');
CHANGE	FIELD(#OVFDEPSAL)	TO('deptment	key(),	ovtdepsal	sum(salary),	ovxdepsal	max(salary),	ovndepsal	min(salary),	ovadepsal	avg(salary),	ovcdepsal	count()');
DEFINE	FIELD(#OVHDEPSAL)	TYPE(*CHAR)	LENGTH(10)	LABEL('Space	Handle');
DEF_LIST	NAME(#OVSDEPSAL)	FIELDS(#DEPTMENT	#OVTDEPSAL	#OVCDEPSAL	#OVXDEPSAL	#OVNDEPSAL	#OVADEPSAL);
**********;
DEFINE	FIELD(#OVFGRAND)	TYPE(*CHAR)	LENGTH(256)	DECIMALS(0)	COLHDG('Indexed'	'Space'	'Definition');
CHANGE	FIELD(#OVFGRAND)	TO('ovkgrand	key(),	ovtdepsal	sum(salary),	ovxdepsal	max(salary),	ovndepsal	min(salary),	ovadepsal	avg(salary),	ovcdepsal	count()');
DEFINE	FIELD(#OVHGRAND)	TYPE(*CHAR)	LENGTH(10)	LABEL('Space	Handle');
DEFINE	FIELD(#OVKGRAND)	REFFLD(#DEPTMENT)	LABEL('Invariant	Key')	DEFAULT('''*ALL''');
**********;
DEFINE	FIELD(#OV_RC)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	Code');
**********	COMMENT(Create	the	indexed	spaces);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(CREATE	#OVFDEPSAL)	TO_GET(#OV_RC	#OVHDEPSAL);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(CREATE	#OVFGRAND)	TO_GET(#OV_RC	#OVHGRAND);
**********	COMMENT((Pass	over	the	data	and	create	the	summary	indexes');
SELECT	FIELDS(#DEPTMENT	#SALARY)	FROM_FILE(PSLMST);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(PUT	#OVHDEPSAL)	TO_GET(#OV_RC);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(PUT	#OVHGRAND)	TO_GET(#OV_RC);
ENDSELECT;
**********	COMMENT(Now	load/show	a	browse	list	with	the	results);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(FIRST	#OVHDEPSAL)	TO_GET(#OV_RC);
DOWHILE	COND('#OV_RC	=	OK');
ADD_ENTRY	TO_LIST(#OVSDEPSAL);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(NEXT	#OVHDEPSAL)	TO_GET(#OV_RC);
ENDWHILE;
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(GET	#OVHGRAND)	TO_GET(#OV_RC);
CHANGE	FIELD(#DEPTMENT)	TO(#OVKGRAND);
ADD_ENTRY	TO_LIST(#OVSDEPSAL);
**********	COMMENT(Display	the	results);
DISPLAY	BROWSELIST(#OVSDEPSAL);
**********	COMMENT(Destroy	the	indexed	space);

USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(DESTROY	#OVHDEPSAL)	TO_GET(#OV_RC);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(DESTROY	#OVHGRAND)	TO_GET(#OV_RC);
	

The	following	example	RDML	function	is	again	very	similar	to	the	previous
two,	except	that	it	produces	two	additional	aggregation	lists	by	using	two
additional	indexed	spaces.	The	second	is	by	department/section	and	the	third	is
by	salary	(i.e.,	a	distribution	of	how	many	employees	earn	a	particular	salary
value)	:
FUNCTION	OPTIONS(*LIGHTUSAGE	*DIRECT);
**********	COMMENT(Departmental	Summary	definitions);
DEFINE	FIELD(#OVTDEPSAL)	TYPE(*DEC)	LENGTH(15)	DECIMALS(2)	COLHDG('Total'	'Salary'	'Expenditure')	EDIT_CODE(3);
DEFINE	FIELD(#OVXDEPSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Maximum'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVNDEPSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Minimum'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVADEPSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Average'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVCDEPSAL)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	COLHDG('Total'	'Employees')	EDIT_CODE(3);
DEFINE	FIELD(#OVFDEPSAL)	TYPE(*CHAR)	LENGTH(256)	DECIMALS(0)	COLHDG('Indexed'	'Space'	'Definition');
CHANGE	FIELD(#OVFDEPSAL)	TO('deptment	key(),	ovtdepsal	sum(salary),	ovxdepsal	max(salary),	ovndepsal	min(salary),	ovadepsal	avg(salary),	ovcdepsal	count()');
DEFINE	FIELD(#OVHDEPSAL)	TYPE(*CHAR)	LENGTH(10)	LABEL('Space	Handle');
DEF_LIST	NAME(#OVSDEPSAL)	FIELDS(#DEPTMENT	#OVTDEPSAL	#OVCDEPSAL	#OVXDEPSAL	#OVNDEPSAL	#OVADEPSAL);
**********	COMMENT(Section	Summary	definitions);
DEFINE	FIELD(#OVTSECSAL)	TYPE(*DEC)	LENGTH(15)	DECIMALS(2)	COLHDG('Total'	'Salary'	'Expenditure')	EDIT_CODE(3);
DEFINE	FIELD(#OVXSECSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Maximum'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVNSECSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Minimum'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVASECSAL)	TYPE(*DEC)	LENGTH(11)	DECIMALS(2)	COLHDG('Average'	'Salary')	EDIT_CODE(3);
DEFINE	FIELD(#OVCSECSAL)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	COLHDG('Total'	'Employees')	EDIT_CODE(3);
DEFINE	FIELD(#OVFSECSAL)	TYPE(*CHAR)	LENGTH(256)	DECIMALS(0)	COLHDG('Indexed'	'Space'	'Definition');
CHANGE	FIELD(#OVFSECSAL)	TO('deptment	key(),	section	key(),	ovtdepsal	sum(salary),	ovxdepsal	max(salary),	ovndepsal	min(salary),	ovadepsal	avg(salary),	ovcdepsal	count()');
DEFINE	FIELD(#OVHSECSAL)	TYPE(*CHAR)	LENGTH(10)	LABEL('Space	Handle');
DEF_LIST	NAME(#OVSSECSAL)	FIELDS(#DEPTMENT	#SECTION	#OVTDEPSAL	#OVCDEPSAL	#OVXDEPSAL	#OVNDEPSAL	#OVADEPSAL);
**********	COMMENT(Salary	Distribution	Definitions);
DEFINE	FIELD(#OVCSALSAL)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	COLHDG('Total'	'Employees')	EDIT_CODE(3);
DEFINE	FIELD(#OVFSALSAL)	TYPE(*CHAR)	LENGTH(256)	DECIMALS(0)	COLHDG('Indexed'	'Space'	'Definition');
CHANGE	FIELD(#OVFSALSAL)	TO('salary	key(),		ovcsalsal	count()');
DEFINE	FIELD(#OVHSALSAL)	TYPE(*CHAR)	LENGTH(10)	LABEL('Space	Handle');
DEF_LIST	NAME(#OVSSALSAL)	FIELDS(#SALARY	#OVCSALSAL);
**********;
DEFINE	FIELD(#OV_RC)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	Code');
**********	COMMENT(Create	the	indexed	space);

USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(CREATE	#OVFDEPSAL)	TO_GET(#OV_RC	#OVHDEPSAL);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(CREATE	#OVFSECSAL)	TO_GET(#OV_RC	#OVHSECSAL);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(CREATE	#OVFSALSAL)	TO_GET(#OV_RC	#OVHSALSAL);
**********	COMMENT((Pass	over	the	data	and	create	the	summary	indexes');
SELECT	FIELDS(#DEPTMENT	#SECTION	#SALARY)	FROM_FILE(PSLMST);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(PUT	#OVHDEPSAL)	TO_GET(#OV_RC);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(PUT	#OVHSECSAL)	TO_GET(#OV_RC);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(PUT	#OVHSALSAL)	TO_GET(#OV_RC);
ENDSELECT;
**********	COMMENT(Now	load/show	a	browse	list	with	the	results);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(FIRST	#OVHDEPSAL)	TO_GET(#OV_RC);
DOWHILE	COND('#OV_RC	=	OK');
ADD_ENTRY	TO_LIST(#OVSDEPSAL);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(NEXT	#OVHDEPSAL)	TO_GET(#OV_RC);
ENDWHILE;
DISPLAY	BROWSELIST(#OVSDEPSAL);
**********	COMMENT(Now	load/show	a	browse	list	with	the	results);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(FIRST	#OVHSECSAL)	TO_GET(#OV_RC);
DOWHILE	COND('#OV_RC	=	OK');
ADD_ENTRY	TO_LIST(#OVSSECSAL);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(NEXT	#OVHSECSAL)	TO_GET(#OV_RC);
ENDWHILE;
DISPLAY	BROWSELIST(#OVSSECSAL);
**********	COMMENT(Now	load/show	a	browse	list	with	the	results);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(FIRST	#OVHSALSAL)	TO_GET(#OV_RC);
DOWHILE	COND('#OV_RC	=	OK');
ADD_ENTRY	TO_LIST(#OVSSALSAL);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(NEXT	#OVHSALSAL)	TO_GET(#OV_RC);
ENDWHILE;
DISPLAY	BROWSELIST(#OVSSALSAL);
**********	COMMENT(Destroy	the	indexed	spaces);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(DESTROY	#OVHDEPSAL)	TO_GET(#OV_RC);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(DESTROY	#OVHSECSAL)	TO_GET(#OV_RC);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(DESTROY	#OVHSALSAL)	TO_GET(#OV_RC);
	

The	following	sample	RDML	function	is	designed	to	demonstrate	how	indexed
lists	can	be	used	to	improve	application	performance	in	"batch"	style	jobs
processing	large	amounts	of	information.

Logically,	the	"engine"	loop	of	this	function	is	like	this	:
			BEGIN_LOOP	TO(#OV_ITER);
						SELECT	FIELDS(#EMPNO	#SURNAME	#GIVENAME	#DEPTMENT	#SECTION)	FROM_FILE(PSLMST);
									FETCH	FIELDS(#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT);
									FETCH	FIELDS(#SECDESC)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT	#SECTION);
						ENDSELECT;
			END_LOOP;
	

This	loop	selects	all	the	employees	in	the	standard	shipped	demonstration	table
PSLMST	(repeated	for	a	specified	number	of	iterations).	It	does	this	to	attempt
to	emulate	the	processing	of	a	large	number	of	records	typically	found	in	a
"batch"	job.
For	each	row	selected	it	fetches	in	the	associated	department	and	section
description	from	the	DEPATB	and	SECTAB	tables.
However,	the	"engine"	loop	has	actually	been	coded	as:
			BEGIN_LOOP	TO(#OV_ITER);
						SELECT	FIELDS(#EMPNO	#SURNAME	#GIVENAME	#DEPTMENT	#SECTION)	FROM_FILE(PSLMST);
									IF	COND(*USEINDEX);
												USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(GET	#OV_DEPTAB)	TO_GET(#OV_RC);
												USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(GET	#OV_SECTAB)	TO_GET(#OV_RC);
									ELSE;
												FETCH	FIELDS(#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT);
												FETCH	FIELDS(#SECDESC)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT	#SECTION);
									ENDIF;
						ENDSELECT;
			END_LOOP;
	

which	allows	you	to	run	the	engine	loop	using	either	the	DBMS	(i.e.,	the
FETCH	commands)	or	an	indexed	space	(i.e.,	the	USE	OV_INDEXED_SPACE
commands)	to	get	the	department	and	section	descriptions.	By	doing	this	you
will	be	able	to	see	the	speed	advantage	that	an	indexed	space	provides	over
performing	a	full	DBMS	access	to	find	information.
The	full	sample	RDML	function	follows.
Notice	that	you	can	run	the	"engine"	loop	through	1	->	20	iterations	using	either
the	DBMS	(specify	D)	or	an	indexed	space	(specify	I)	to	fetch	the	department
and	section	description	details.	All	department	and	section	descriptions	are
loaded	into	their	associated	indexed	spaces	at	the	beginning	of	the	function:

FUNCTION	OPTIONS(*LIGHTUSAGE	*DIRECT);
**********	COMMENT(Define	and	load	the	department	indexed	space);
DEFINE	FIELD(#OV_DEPDEF)	TYPE(*CHAR)	LENGTH(50)	LABEL('Dept	Index');
CHANGE	FIELD(#OV_DEPDEF)	TO('deptment	key(),	deptdesc');
DEFINE	FIELD(#OV_DEPTAB)	TYPE(*CHAR)	LENGTH(10)	LABEL('Index	Handle');
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(CREATE	#OV_DEPDEF)	TO_GET(#OV_RC	#OV_DEPTAB);
SELECT	FIELDS(#DEPTMENT	#DEPTDESC)	FROM_FILE(DEPTAB);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(INSERT	#OV_DEPTAB)	TO_GET(#OV_RC);
ENDSELECT;
**********	COMMENT(Define	and	load	the	section	indexed	space);
DEFINE	FIELD(#OV_SECDEF)	TYPE(*CHAR)	LENGTH(50)	LABEL('	Section	Index');
CHANGE	FIELD(#OV_SECDEF)	TO('deptment	key(),	section	key(),	secdesc');
DEFINE	FIELD(#OV_SECTAB)	TYPE(*CHAR)	LENGTH(10)	LABEL('Index	Handle');
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(CREATE	#OV_SECDEF)	TO_GET(#OV_RC	#OV_SECTAB);
SELECT	FIELDS(#DEPTMENT	#SECTION	#SECDESC)	FROM_FILE(SECTAB);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(INSERT	#OV_SECTAB)	TO_GET(#OV_RC);
ENDSELECT;
**********	COMMENT(Define	other	variables);
OVERRIDE	FIELD(#GIVENAME)	LENGTH(10);
DEFINE	FIELD(#OV_RC)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	Code');
DEFINE	FIELD(#OV_MODE)	TYPE(*CHAR)	LENGTH(1)	LABEL('Mode	(D/I)')	DEFAULT(D);
DEFINE	FIELD(#OV_ITER)	TYPE(*DEC)	LENGTH(3)	DECIMALS(0)	LABEL('Iterations')	EDIT_CODE(3)	DEFAULT(5);
DEFINE	FIELD(#OV_TOTAL)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('PSLMST	Accesses')	EDIT_CODE(3);
DEF_COND	NAME(*USEINDEX)	COND('#OV_MODE	=	I');
DEF_LIST	NAME(#OV_LIST)	FIELDS(#SURNAME	#GIVENAME	#DEPTDESC	#SECDESC)	COUNTER(#OV_TOTAL);
**********	COMMENT(Repeat	testing	until	cancelled);
BEGIN_LOOP;
**********	COMMENT(Request	and	validate	testing	details);
POP_UP	FIELDS((#OV_MODE	*IN)	(#OV_ITER	*IN))	EXIT_KEY(*NO)	PROMPT_KEY(*NO);
BEGINCHECK;
VALUECHECK	FIELD(#OV_MODE)	WITH_LIST(D	I)	MSGTXT('Mode	must	be	D	(use	DBMS)	or	I	(use	indexed	space)');
RANGECHECK	FIELD(#OV_ITER)	RANGE((1	20))	MSGTXT(('Number	of	iterations	must	be	in	range	1	to	20'));
ENDCHECK;
**********	COMMENT(Repeat	the	test	for	the	number	of	iterations);
CLR_LIST	NAMED(#OV_LIST);
BEGIN_LOOP	TO(#OV_ITER);
SELECT	FIELDS(#EMPNO	#SURNAME	#GIVENAME	#DEPTMENT	#SECTION)	FROM_FILE(PSLMST);
IF	COND(*USEINDEX);
USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(GET	#OV_DEPTAB)	TO_GET(#OV_RC);

USE	BUILTIN(OV_INDEXED_SPACE)	WITH_ARGS(GET	#OV_SECTAB)	TO_GET(#OV_RC);
ELSE;
FETCH	FIELDS(#DEPTDESC)	FROM_FILE(DEPTAB)	WITH_KEY(#DEPTMENT);
FETCH	FIELDS(#SECDESC)	FROM_FILE(SECTAB)	WITH_KEY(#DEPTMENT	#SECTION);
ENDIF;
ADD_ENTRY	TO_LIST(#OV_LIST);
ENDSELECT;
END_LOOP;
**********	COMMENT(display	the	results);
DISPLAY	FIELDS(#OV_TOTAL)	BROWSELIST(#OV_LIST)	EXIT_KEY(*NO)	MENU_KEY(*NO)	PROMPT_KEY(*NO);
END_LOOP;
	

OV_MESSAGE_BOX

	Note:	Built-In	Function	Rules

Present	a	message	box.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 998

DLL	Required: U_BIF998.DLL

For	use	with
Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

LANSA	for	i NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Text	to	display	in	message. 1 256 	 	

2 A Opt Title	to	display	in	message	box.
Default	is	the	function	description

1 40 	 	

3 A Opt Button(s)	to	be	enabled.
O			=	OK
OC		=	OK	&	CANCEL
C			=	OK	(CANCEL	in	OS2	operating
system,	which	is	no	longer	supported)
E			=	OK	(ENTER	in	OS2	operating	system,
which	is		no	longer	supported)

1 3 	 	

EC		=	OK	&	CANCEL	(ENTER	&	CANCEL
in	OS2	operating	system,	which	is	no	longer
supported)
RC		=	RETRY	&	CANCEL
ARI	=	ABORT,	RETRY	&	IGNORE
YN		=	YES	&	NO
Default	is	"O"

4 A Opt Icon	to	be	shown	in	message	box.
B1	=	button	1
B2	=	button	2
B3	=	button	3
Default	is	"B1"

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Button	that	was	used	by	the
user
E	=	ENTER
O	=	OKAY
C	=	CANCEL
A	=	ABORT
R	=	RETRY
I	=	IGNORE
Y	=	YES
N	=	NO
X	=	error

1 1 	 	

	

OV_PASTE_CLIPBOARD

	Note:	Built-In	Function	Rules

Paste	from	the	clipboard	to	a	working	list.
Warning::	This	function	does	not	support	RDMLX	fields.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 996

DLL	Required: U_BIF996.DLL
	

For	use	with
Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

LANSA	for	i NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt The	field	delimiter	that	was
used.
T	=	tab	character
C	=	comma	character
Other	=	blank	character
Default	is	'T'.

1 1 	 	

2 A Opt Alphanumeric	fields	were
quoted.
Y	=	yes

1 1 	 	

N	=	no
Default	is	'Y'

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 List Req The	name	of	the	working	list	whose	entries
are	to	be	pasted	from	the	clipboard.

2 10 	 	

2 A Req Return	value	indicating	if	the	paste	to	the
list	was	successful.
OK	=	paste	was	successful
ER	=	paste	was	unsuccessful

2 2 	 	

	

Technical	Notes
New	line	characters	in	the	data	pasted	from	the	clipboard	represent	the	end	of
each	working	list	entry.
List	entry	fields	that	are	not	present	in	the	data	will	be	initialized	to	blanks	or
zeroes.

OV_POST_CLIPBOARD

	Note:	Built-In	Function	Rules

Post	a	working	list	to	the	clipboard.
Warning:	This	function	does	not	support	RDMLX	fields.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 995

DLL	Required: U_BIF995.DLL

For	use	with
Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

LANSA	for	i NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 List Req The	name	of	the	working	list	whose	entries
are	to	be	posted	to	the	clipboard.

	 	 	 	

2 A Opt The	field	delimiter	to	be	used:
T	=	tab	character
C	=	comma	character
N	=	new	line	character
Other	=	blank	character
Default	is	'T'.

1 1 	 	

3 A Opt Alphanumeric	fields	are	to	be		quoted. 1 1 	 	

Y	=	yes
N	=	no
Default	is	'Y'

4 A Opt Append	Line	Feed
Y	=	yes.	Append	Line	Feed	after	each
entry.
N	=	no.	Do	not	append	Line	Feed	to	the
last	entry.
Default	is	'Y'.

1 1 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Return	value	indicating	if	the	post	of
the	list	was	successful.
OK	=	post	was	successful
ER	=	post	was	unsuccessful.

2 2 	 	

	

OV_QUERY_SYS_INFO

	Note:	Built-In	Function	Rules

Query	system	configuration	information.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 993

DLL	Required: U_BIF993.DLL

For	use	with
Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

LANSA	for	i NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Information	to	be
queried
Pass	as	one	of	:
SYS_DRIV
SYS_DIR
SYS_DIR_EXECUTE
SYS_DIR_SOURCE
SYS_DIR_OBJECT
PART_DRIV
PART_DIR

1 256 	 	

PART_DIR_EXECUTE
PART_DIR_SOURCE
PART_DIR_OBJECT
TEMP_DRIV
TEMP_DIR
DRIV_LIST
	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Information	returned.
SYS_DRIV
		Returns	the	drive	in	which	the	LANSA	system
is	located	as	a	drive	letter	followed	by	a	colon.
e.g:	C:	or	D:	or	E:
SYS_DIR
		Returns	the	root	directory	in	which	the
LANSA	system	is	located.	e.g:
D:\X_WIN95\X_LANSA\
SYS_DIR_EXECUTE
		Returns	the	directory	in	which	the	LANSA
system	EXECUTE	objects	are	located.	e.g:
D:\X_WIN95\X_LANSA\EXECUTE\
SYS_DIR_SOURCE
		Returns	the	directory	in	which	the	LANSA
system	SOURCE	objects	are	located.	e.g:
D:\X_WIN95\X_LANSA\SOURCE\
SYS_DIR_OBJECT
		Returns	the	directory	in	which	the	LANSA
system	OBJECT	objects	are	located.	e.g:
D:\X_WIN95\X_LANSA\OBJECT\

1 256 	 	

PART_DRIV
		Returns	the	drive	in	which	the	current
partitions	LANSA	system	is	located	as	a	drive
letter	followed	by	a	colon.	e.g:	C:	or	D:	or	E:
PART_DIR
		Returns	the	root	directory	in	which	the	current
partitions	system	is	located.	e.g.:
D:\X_WIN95\X_LANSA\X_DEM\
PART_DIR_EXECUTE
		Returns	the	directory	in	which	the	current
partitions	EXECUTE	objects	are	located.	e.g:
D:\X_WIN95\X_LANSA\X_DEM\EXECUTE\
PART_DIR_SOURCE
		Returns	the	directory	in	which	the	current
partitions	SOURCE	objects	are	located.	e.g:
D:\X_WIN95\X_LANSA\X_DEM\SOURCE\
PART_DIR_OBJECT
		Returns	the	directory	in	which	the	current
partitions	OBJECT	objects	are	located.	e.g:
D:\X_WIN95\X_LANSA\X_DEM\OBJECT\
TEMP_DRIV
		Returns	the	drive	in	which	temporary	files	/
objects	should	be	created	as	a	drive	letter
followed	by	a	colon.	e.g:	C:	or	D:	or	E:
TEMP_DIR
		Returns	the	directory	in	which	temporary
files/objects	should	be	created.	e.g:	D:\TEMP\
DRIV_LIST
		Returns	a	working	list	in	return	value	2.	This
value	(return	value	1)	must	be	passed	as	a
dummy	argument	when	making	a	DRIV_LIST
request.

2 List Opt Working	list	to	contained	returned	information.
Currently	only	required	for	a	DRIV_LIST
request.	Refer	to	the	following	examples	for	the

N/A 	 	 	

layout	and	format	of	the	returned	working	list
for	DRIV_LIST	requests.

	

Examples
The	following	sample	RDML	function	(which	can	be	copied	and	pasted	in	the
CS/400	free	form	function	editor)	queries	and	displays	all	possible	drive/path
combinations:
FUNCTION	OPTIONS(*DIRECT);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(SYS_DRIV);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(SYS_DIR);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(SYS_DIR_EXECUTE);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(SYS_DIR_OBJECT);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(SYS_DIR_SOURCE);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(PART_DRIV);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(PART_DIR);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(PART_DIR_EXECUTE);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(PART_DIR_OBJECT);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(PART_DIR_SOURCE);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(TEMP_DRIV);
EXECUTE	SUBROUTINE(SHOW_INFO)	WITH_PARMS(TEMP_DIR);
**********	COMMENT(Display	subroutine);
SUBROUTINE	NAME(SHOW_INFO)	PARMS(OV_QUERY);
DEFINE	FIELD(#OV_QUERY)	TYPE(*CHAR)	LENGTH(50);
DEFINE	FIELD(#OV_RESULT)	TYPE(*CHAR)	LENGTH(50);
USE	BUILTIN(OV_QUERY_SYS_INFO)	WITH_ARGS(#OV_QUERY)	TO_GET(#OV_RESULT);
DISPLAY	FIELDS(#OV_QUERY	#OV_RESULT);
ENDROUTINE;
	

This	sample	displays	the	drive	letters	and	drive	types	of	all	disk	drives	attached
to	the	current	PC.	Note	that	the	drive	type	is	returned	as	REM	(Removable
drive),	FIX	(Fixed	drive),	NET	(Network	drive),	CD	(CD-ROM	drive)	or	RAM
(RAM	Drive).
Under	Windows	3.1	the	available	drives	are	only	classified	as	type	REM,	FIX	or
NET.
Under	Windows	95/NT	the	available	drives	are	only	classified	as	type	REM,

FIX,	NET,	CD	or	RAM.
Note	also	that	in	this	sample	the	drive	letter	is	returned	as	a	char(2)	in	format
A:,	B:,	etc	:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_RESULT)	TYPE(*CHAR)	LENGTH(50);
DEFINE	FIELD(#OV_DRIVE)	TYPE(*CHAR)	LENGTH(2);
DEFINE	FIELD(#OV_TYPE)	TYPE(*CHAR)	LENGTH(3);
DEF_LIST	NAME(#OV_DRIVD)	FIELDS(#OV_DRIVE	#OV_TYPE);
DEF_LIST	NAME(#OV_DRIVW)	FIELDS(#OV_DRIVE	#OV_TYPE)	TYPE(*WORKING)	ENTRYS(26);
**********	COMMENT(Extract	list	off	drives	and	display);
USE	BUILTIN(OV_QUERY_SYS_INFO)	WITH_ARGS(DRIV_LIST)	TO_GET(#OV_RESULT	#OV_DRIVW);
CLR_LIST	NAMED(#OV_DRIVD);
SELECTLIST	NAMED(#OV_DRIVW);
ADD_ENTRY	TO_LIST(#OV_DRIVD);
ENDSELECT;
DISPLAY	BROWSELIST(#OV_DRIVD);
	

This	sample	requests	that	you	specify	the	drive	type	you	are	interested	in	as
REM,	FIX,	NET	or	ALL	and	displays	all	drives	of	the	requested	type	in	a	drop
down.	Note	that	in	this	sample	the	drive	letter	is	returned	as	a	char(1)	in	format
A,	B,	C,	etc	:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_RESULT)	TYPE(*CHAR)	LENGTH(50);
DEFINE	FIELD(#OV_DRIVE)	TYPE(*CHAR)	LENGTH(1)	INPUT_ATR(DDHD);
DEFINE	FIELD(#OV_WDRIVE)	TYPE(*CHAR)	LENGTH(1);
DEFINE	FIELD(#OV_TYPE)	TYPE(*CHAR)	LENGTH(3);
DEFINE	FIELD(#OV_WTYPE)	TYPE(*CHAR)	LENGTH(3);
DEFINE	FIELD(#OV_RC)	TYPE(*CHAR)	LENGTH(2);
DEFINE	FIELD(#OV_WCOUNT)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	DEFAULT(*zero);
DEF_LIST	NAME(#OV_DRIVW)	FIELDS(#OV_WDRIVE	#OV_WTYPE)	TYPE(*WORKING)	ENTRYS(26);
DEF_COND	NAME(*SHOWDRIV)	COND('#OV_wcount	*gt	0');
**********	COMMENT(Request	type	to	be	shown	in	Drop	Down);
BEGIN_LOOP;
REQUEST	FIELDS(#OV_TYPE	(#OV_DRIVE	*SHOWDRIV));
BEGINCHECK;
VALUECHECK	FIELD(#OV_TYPE)	WITH_LIST('REM'	'FIX'	'NET'	'ALL')	MSGTXT('Type	must	be	REM,	FIX,	NET	or	ALL');
ENDCHECK;
**********	COMMENT(Extract	list	off	drives	and	display);

USE	BUILTIN(OV_QUERY_SYS_INFO)	WITH_ARGS(DRIV_LIST)	TO_GET(#OV_RESULT	#OV_DRIVW);
USE	BUILTIN(DROP_DD_VALUES)	WITH_ARGS(DDHD)	TO_GET(#OV_RC);
CHANGE	FIELD(#OV_WCOUNT	#OV_DRIVE)	TO(*NULL);
SELECTLIST	NAMED(#OV_DRIVW);
IF	COND('(#OV_type	=	#OV_wtype)	*or	(#OV_type	=	ALL)');
CHANGE	FIELD(#OV_WCOUNT)	TO('#OV_wcount	+	1');
USE	BUILTIN(ADD_DD_VALUES)	WITH_ARGS(DDHD	*BLANKS	#OV_WDRIVE)	TO_GET(#OV_RC);
IF_NULL	FIELD(#OV_DRIVE);
CHANGE	FIELD(#OV_DRIVE)	TO(#OV_WDRIVE);
ENDIF;
ENDIF;
ENDSELECT;
IF	COND('#OV_wcount	<=	0');
MESSAGE	MSGTXT('No	drives	of	the	requested	type	exist	on	(or	are	accessible	to)	this	system');
ENDIF;
END_LOOP;
	

	

OV_SLEEP

	Note:	Built-In	Function	Rules

Pauses	the	program	for	the	specified	number	of	milliseconds.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 986

DLL	Required: U_BIF986.DLL

For	use	with
Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux YES

LANSA	for	i NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 N Req Time	to	wait	in
milliseconds

1 15 0 0

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Empty	is	always
returned.

2 2 	 	

	

Technical	Notes
On	Linux	the	time	to	wait	is	converted	from	milliseconds	to	seconds.

Example
To	sleep	in	5	seconds,	use	this	command:
USE	BUILTIN(OV_SLEEP)	WITH_ARGS(5000)	

	

OV_SOUND_ALARM

	Note:	Built-In	Function	Rules

Sound	the	device	alarm.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 999

DLL	Required: U_BIF999.DLL

For	use	with
Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

LANSA	for	i NO

	

Arguments
NoTypeReq/	OptDescription Min	LenMax	LenMin	DecMax	Dec

1 A Opt Alarm	option.
W	=	warning
E	=	error
N	=	note
Default	is	'N'

1 1 	 	

	

Return	Values
No	Return	Values

OV_SYSTEM_SERVICE

	Note:	Built-In	Function	Rules

Performs	a	basic	system	service.
Note:	The	user	of	this	Built-In	Function	is	responsible	for	any	impact	it	has	on
any	application.	No	warranty	of	any	kind	is	expressed	or	implied.	Refer	to	full
Disclaimer.

Function	No: 991

DLL	Required: U_BIF991.DLL

For	use	with
Visual	LANSA	for	WindowsYES

Visual	LANSA	for	Linux NO

LANSA	for	i NO

	

Arguments
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Req Type	of	system	service	required
Pass	as	one	of:
START
		Execute	another	(non-LANSA)	application.
START_LANSA
		Start	another	LANSA	application	executing.
START_UNIQUE
		Execute	another	(non-LANSA)	application
if	not	already	started.

1 50 	 	

2 A Opt Requested	Service	Argument	1 1 256 	 	

When	Arg	1	is
						Pass	this	argument	as:
START
		Name	of	application	(.EXE)	to	be	started.
You	may	use	a	fully	qualified	name	(i.e.	with
path	information)	or	just	the	.EXE	name.	If
you	do	not	suffix	the	name	with	.EXE	then
the	.EXE	suffix	will	be	automatically	added.
START_LANSA
		Name	of	the	LANSA	process,	process	and
function	or	form	that	is	to	be	started	as
another	independent	system	process	/	job.	
Pass	this	value	as	either
PROC=PPPPPPPPPP,	or,
PROC=PPPPPPPPPP	FUNC=FFFFFFF,	or,
FORM=OOOOOOOOOO
only	(where	PPPPPPPPPP	is	the	process
name,	FFFFFFF	is	the	function	name	and
OOOOOOOOO	is	the	form	name).
Do	NOT	under	any	circumstances	include
any	other
X_RUN	parameters	into	this	argument	(e.g:
PART=PPP,	DBID=XXXX,	etc).
START_UNIQUE
		Name	of	application	(.EXE)	to	be	started	if
it	is	not	already	started.	This	service	is	only
available	in	MS	Windows	environments.
You	should	NOT	use	a	fully	qualified	name
(i.e.	with	path	information),	just	the	.EXE
name.	If	you	do	not	suffix	the	name	with
.EXE	then	the	.EXE	suffix	will	be
automatically	added.
Note:
If	Arg	1	is	START	or	START_UNIQUE	and
arg	2	is	LCOADM32	or	LCOADM32.EXE

(ie	without	the	fully	qualified	path),
LCOADM32.EXE	will	be	found	in	the
LANSA\Connect	directory.

3 A Opt Requested	Service	Argument	2
When	Arg	1	is
						Pass	this	argument	as:
START
		Parameters	to	pass	to	application	being
started.
LANSA
		This	argument	is	not	required	and	any	value
specified	will	be	ignored.
START_UNIQUE		
Parameters	to	pass	to	the	application	if	it
needs	to	be	started.

1 256 	 	

	

Return	Values
NoTypeReq/

Opt
Description Min

Len
Max
Len

Min
Dec

Max
Dec

1 A Opt Basic	Return	Code
OK	=	Completed	(normally)
ER	=	Error	occurred.

2 2 	 	

2 N Opt Extended	Error	Code
This	is	the	operating	system	error	code	(when
available)	that	may	aid	you	in	error	handling
or	error	reporting.

	 	 	 	

3 List Opt Returned	as
OK	=	Completed	normally
ER	=	Error	occurred.
Only	returned	for	certain	argument	1	values
as	follows:
START

	 	 	 	

		Not	returned.
START_LANSA
		Not	returned.
START_UNIQUE
		Not	returned.

	

Example
The	following	sample	RDML	function	(which	can	be	copied	and	pasted	into	the
L4W	free	form	function	editor)	requests	that	you	specify	a	program	(.EXE)
name	and	any	parameters	to	be	passed	to	it.	An	attempt	is	then	made	to	start	the
specified	program	executing:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_PGM)	TYPE(*CHAR)	LENGTH(50)	LABEL('Program');
DEFINE	FIELD(#OV_PARMS)	TYPE(*CHAR)	LENGTH(50)	LABEL('Parameters')	INPUT_ATR(LC);
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	Code');
DEFINE	FIELD(#OV_ERRN)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('Error	Code');
**********;
BEGIN_LOOP;
REQUEST	FIELDS(#OV_PGM	#OV_PARMS	(#OV_RETC	*OUT)	(#OV_ERRN	*OUT));
USE	BUILTIN(OV_SYSTEM_SERVICE)	WITH_ARGS(START	#OV_PGM	#OV_PARMS)	TO_GET(#OV_RETC	#OV_ERRN);
IF	COND('#OV_RETC	=	OK');
MESSAGE	MSGTXT('Program	started');
ELSE;
MESSAGE	MSGTXT('Error	detected	when	attempting	to	start	program');
ENDIF;
END_LOOP;
	

The	following	sample	RDML	function	requests	that	you	specify	up	to	100	lines
of	text.	The	lines	you	specify	are	transferred	into	a	file,	and	then	either	the	EPM
(OS/2)	or	NOTEPAD	(Windows)	source	line	editors	are	started	against	the	file
created:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_TEMP)	TYPE(*CHAR)	LENGTH(20)	LABEL('Temp	File	Name')	DEFAULT('C:\TEMP.TXT');
DEFINE	FIELD(#OV_EDITOR)	TYPE(*CHAR)	LENGTH(20)	LABEL('Editor	Name');

IF	COND('*CPUTYPE	=	OS2');
CHANGE	FIELD(#OV_EDITOR)	TO(EPM);
ELSE;
CHANGE	FIELD(#OV_EDITOR)	TO(NOTEPAD);
ENDIF;
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	Code');
DEFINE	FIELD(#OV_TEXT)	TYPE(*CHAR)	LENGTH(70)	COLHDG('Text	Details');
DEF_LIST	NAME(#OV_LISTD)	FIELDS(#OV_TEXT);
DEF_LIST	NAME(#OV_LISTW)	FIELDS(#OV_TEXT)	TYPE(*WORKING)	ENTRYS(100);
**********;
INZ_LIST	NAMED(#OV_LISTD)	NUM_ENTRYS(100)	WITH_MODE(*CHANGE);
MESSAGE	MSGTXT('Type	in	lines	of	text	to	be	edited');
REQUEST	BROWSELIST(#OV_LISTD);
SELECTLIST	NAMED(#OV_LISTD)	GET_ENTRYS(*NOTNULL);
ADD_ENTRY	TO_LIST(#OV_LISTW);
ENDSELECT;
USE	BUILTIN(TRANSFORM_LIST)	WITH_ARGS(#OV_LISTW	#OV_TEMP	C	B	Y)	TO_GET(#OV_RETC);
USE	BUILTIN(OV_SYSTEM_SERVICE)	WITH_ARGS(START	#OV_EDITOR	#OV_TEMP);
	

The	following	sample	RDML	function	requests	that	you	specify	a	program
(.EXE)	name	and	any	parameters	to	be	passed	to	it.	An	attempt	is	then	made	to
start	the	specified	program	executing.	You	may	start	the	application	by	using	the
START	or	the	START_UNIQUE	option	thus	allowing	you	to	see	the
differences	between	these	options	when	starting	a	program	that	is	already
active:
FUNCTION	OPTIONS(*DIRECT);
DEFINE	FIELD(#OV_PGM)	TYPE(*CHAR)	LENGTH(50)	LABEL('Program')	DEFAULT('NOTEPAD.EXE');
DEFINE	FIELD(#OV_PARMS)	TYPE(*CHAR)	LENGTH(50)	LABEL('Parameters')	INPUT_ATR(LC);
DEFINE	FIELD(#OV_RETC)	TYPE(*CHAR)	LENGTH(2)	LABEL('Return	Code');
DEFINE	FIELD(#OV_ERRN)	TYPE(*DEC)	LENGTH(7)	DECIMALS(0)	LABEL('Error	Code');
DEFINE	FIELD(#OV_REQUST)	TYPE(*CHAR)	LENGTH(20)	LABEL('Start	Type')	DEFAULT(START_UNIQUE);
**********;
BEGIN_LOOP;
REQUEST	FIELDS(#OV_REQUST	#OV_PGM	#OV_PARMS	(#OV_RETC	*OUT)	(#OV_ERRN	*OUT));
BEGINCHECK;
VALUECHECK	FIELD(#OV_REQUST)	WITH_LIST(START	START_UNIQUE)	MSGTXT('Request	value	must	be	START	or	START_UNIQUE');
ENDCHECK;
USE	BUILTIN(OV_SYSTEM_SERVICE)	WITH_ARGS(#OV_REQUST	#OV_PGM	#OV_PARMS)	TO_GET(#OV_RETC	#OV_ERRN);

IF	COND('#OV_RETC	=	OK');
MESSAGE	MSGTXT('Program	started	or	it	is	already	started');
ELSE;
MESSAGE	MSGTXT('Error	detected	when	attempting	to	start	program');
ENDIF;
END_LOOP;
	

	

	Technical Reference Guide
	Quick Reference
	RDML Commands
	RDMLX Commands
	Built-In Functions by Category
	Application Execution Control Built-In Functions
	Authority Built-In Functions
	Client/Server Support Built-In Functions
	Data Area Built-In Functions
	Data Queue Built-In Functions
	Date and Time Built-In Functions
	Domino Integration Built-In Functions
	Email Handling Built-In Functions
	Enhanced 5250 User Interface Built-In Functions
	Exchange List Built-In Functions
	Export/Import/Deployment Built-In Functions
	Field and Component Related Built-In Functions
	File Related Built-In Functions
	Function Related Built-In Functions
	LANSA Composer Built-In Functions
	LANSA Integrator Built-In Functions
	List Handling Built-In Functions
	Locking Built-In Functions
	Mathematical Built-In Functions
	Messages and Message Handling Built-In Functions
	Message Box Built-in Functions
	Miscellaneous Built-In Functions
	Other Vendor Built-In Functions
	Process Related Built-In Functions
	Rule/Trigger Related Built-In Functions
	Space Built-In Functions
	Spool File Built-In Functions
	String Handling Built-In Functions
	Template Related Built-In Functions
	Unique Operating System and Platform Access Built-In Functions
	Web Built-In Functions
	Zip Built-In Functions

	System Variables
	Formats, Values and Codes

	1. Fields
	1.1 Field Types
	1.1.1 Field Type Considerations
	Field Type Use Recommendations
	Field Type Conversions
	RDMLX Enabled Partition
	SQL Null Handling
	ASQN (Allow SQL Nulls) attribute
	*SQLNULL Keyword
	Intrinsic Property .IsSqlNull
	Intrinsic Method .AsValue
	Assignment, Conditions, and Expressions with Fields allowing SQL Null

	What Classifies a Field as RDML?

	1.1.2 Alpha
	1.1.3 String
	1.1.4 NVarChar
	1.1.5 Char
	1.1.6 NChar
	1.1.7 Packed
	1.1.8 Signed
	1.1.9 Integer
	1.1.10 Float
	1.1.11 Date
	1.1.12 Time
	1.1.13 DateTime
	1.1.14 Binary
	1.1.15 VarBinary
	1.1.16 DBCS Graphic String
	1.1.17 BLOB
	1.1.18 CLOB
	1.1.19 Boolean

	1.2 Field Definitions
	1.2.1 Field Name
	1.2.2 Field Identifier
	1.2.3 Field Type
	1.2.4 Field Length
	1.2.5 Decimals
	1.2.6 Default Value
	1.2.7 Reference Field
	1.2.8 Field Description
	1.2.9 Field Label
	1.2.10 Field Column Heading
	1.2.11 Allocated Length (IBM i only)
	1.2.12 Edit Mask
	1.2.13 Keyboard Shift
	1.2.14 Enable Field for RDMLX
	1.2.15 System Field
	1.2.16 Field Attributes
	1.2.17 Input Attributes
	1.2.18 Output Attributes
	1.2.19 Prompting
	1.2.20 Alias Name

	1.3 Field Visualizations
	1.4 Field Rules and Triggers
	1.5 Field Help Text

	2. Rules and Triggers
	2.1 Rule Definitions
	2.1.1 Rule Sequence
	2.1.2 Rule Description
	2.1.3 Validation Usage
	2.1.4 Define Rules (by type)
	2.1.5 Validation Actions
	2.1.6 Error Message

	2.2 List of Values Checks
	2.2.1 Value
	2.2.2 List Examples

	2.3 Range of Values Checks
	2.3.1 Range: From value / To value
	2.3.2 Range of Values Examples

	2.4 Date Format/Range Check
	2.4.1 Date Format
	2.4.2 Number of Days Allowed into the Past
	2.4.3 Number of Days Allowed into the Future
	2.4.4 Date Format/Range Check Examples

	2.5 Code File/Table Lookup Checks
	2.5.1 Lookup File Name
	2.5.2 Key Field or Literal
	2.5.3 Code File/Table Lookup Check Examples

	2.6 Simple Logic Check
	2.6.1 Condition to Check
	2.6.2 Simple Logic Check Examples

	2.7 Complex Logic Check
	2.7.1 Program to Call
	2.7.2 Program to Call: Function
	2.7.3 Program to Call: 3GL Program
	2.7.4 3GL Parameters
	2.7.5 Complex Logic Check Examples

	2.8 Triggers
	2.8.1 Trigger Definition
	Trigger Description
	Trigger Function Name
	Trigger Points
	Trigger Definition Example

	2.8.2 Trigger Condition
	And/Or Logic
	Field Name
	Operator
	Compare to value
	Trigger Sequence

	2.8.3 Trigger Functions
	What is a Trigger Function?
	Create a Trigger Function
	Activate a Trigger Function
	Exactly When Are Triggers Invoked?
	The TRIG_OPER and TRIG_RETC Variables and TRIG_LIST Working List
	What Codes Are Passed in TRIG_OPER to the Trigger?
	How Many Entries Are Passed in the TRIG_LIST?
	What Return Codes Are Used in TRIG_RETC and How Can They Be Set?
	Triggers - A Classic Example
	Examples of Trigger use
	Triggers - Restrictions and Limitations
	Triggers - Some Do's and Don'ts

	3. Files
	3.1 File Definition
	3.1.1 File Type
	3.1.2 File Name
	3.1.3 File Identifier
	3.1.4 File Library
	3.1.5 File Description

	3.2 Real Fields in File
	3.2.1 Field Name
	3.2.2 Field Sequence
	3.2.3 Field Key Position
	3.2.4 Virtual Field Flag

	3.3 Virtual Fields in File
	3.3.1 Virtual Field Definition
	Virtual Field Name
	Virtual Field Type
	Virtual Field Sequence
	Derive value when record is read
	Populate real field when writing to file

	3.3.2 Date Conversion
	Source Field
	Source Format
	Target Format

	3.3.3 Substring
	Substring from Field
	Start Position

	3.3.4 Concatenation
	Concatenated Field Names
	Concatenation Example

	3.3.5 Mathematical Calculations
	Factor 1
	Operator
	Factor 2
	Result
	Mathematical Calculation Example

	3.3.6 Code Fragment
	Code Fragment Virtual Field Derivation
	Code Fragment Real Field Derivation

	3.4 Logical Views
	3.4.1 Logical View Definition
	Logical View Name
	Logical View Description
	Unique Key
	Access Path
	Dynamic Select
	Alt. Seq.
	Record Format
	CRTLF/CHGLF Parameters

	3.4.2 Logical View Keys
	Key Field Name
	Key Field Details
	Numeric Ordering
	Key Order
	Key Position

	3.4.3 Select/Omit Criterion
	Select/Omit
	Select/Omit And/Or
	Select/Omit Type
	Select/Omit Field Name
	S/O Operator
	S/O Value
	S/O Range

	3.5 Access Routes
	3.5.1 Access Route Definitions
	Access Route Name
	Access Route Description
	Accessed File
	Association Type
	Association Rule
	Documentation Only
	Maximum Records
	Keep Last
	Default Action
	Derivation
	Key Fields/Values
	Key Field Details
	Target Field Details
	Key Position

	3.5.2 Predetermined Join Field Definitions
	PJF Field
	PJF Field Details
	PJF Type
	PJF Source Field

	3.6 File Attributes
	3.6.1 File Library
	3.6.2 Record Format Name
	3.6.3 I/O Module Library
	3.6.4 File Uses SQL On IBM i
	3.6.5 Alternate Collating Table (ALTSEQ)
	3.6.6 Enable Files for RDMLX
	3.6.7 Share
	3.6.8 Secure
	3.6.9 Strip Debug
	3.6.10 Suppress IOM0034 Message
	3.6.11 Ignore Decimal Errors
	3.6.12 IOM Required
	3.6.13 Create Batch Control
	3.6.14 IBM i High Speed Table
	3.6.15 Auto RRN Creation
	3.6.16 Create RRNO Column
	3.6.17 Convert Special Characters in Field Names
	3.6.18 Commitment Control
	3.6.19 Auto Commit
	3.6.20 CRTPF and CHGPF Parameter
	3.6.21 Readonly Access
	3.6.22 Database File Trigger
	3.6.23 File Description

	3.7 The @@UPID Field in LANSA Created Files
	3.8 Batch Control
	3.8.1 Batch Control Definition
	Batch Control File Name
	Batch Control Description
	Batch Control Key Field
	Batch Control Key Sequence
	Batch Control Source Field
	Batch Control Target Field
	Batch Control Field Details

	3.9 Virtual Derivation
	3.9.1 I/O Module Section
	3.9.2 Virtual Code

	3.10 File Rules and Triggers
	3.11 File Compile Options
	3.11.1 Compile only if necessary
	3.11.2 Rebuild table
	3.11.3 Rebuild indexes and views
	3.11.4 Rebuild OAMs
	3.11.5 Strip debug information
	3.11.6 Keep generated source
	3.11.7 Keep saved data (DAT file)
	3.11.8 Drop existing tables/indexes
	3.11.9 Save table data
	3.11.10 Reload table data

	3.12 Load Other File
	3.12.1 Loading IBM i Files
	3.12.2 Loading Files From Other Data Sources
	3.12.3 IBM i Load Options
	3.12.4 Other Data Sources Load Options

	4. Components
	4.1 Component Concepts
	4.2 Component Definition
	4.2.1 Component Name
	4.2.2 Component Identifier
	4.2.3 Component Description
	4.2.4 Enable Components for RDMLX
	4.2.5 Framework
	4.2.6 Group
	4.2.7 Open In Editor
	4.2.8 Close
	4.2.9 Layout Weblet

	4.3 Component Types
	4.3.1 Form
	4.3.2 Reusable Part
	4.3.3 WAM
	4.3.4 Visual Style
	4.3.5 Icon
	4.3.6 Bitmap
	4.3.7 Cursor
	4.3.8 ActiveX
	4.3.9 .NET Components

	4.4 Component Help Text
	4.5 Component Compile Options
	4.5.1 Compile Component only if necessary
	4.5.2 Keep Generated Source
	4.5.3 Debug Enabled
	4.5.4 Web Application Module Options
	Generate XSL
	Technology Services

	4.6 Technology Services
	4.6.1 Technology Service Name
	4.6.2 Technology Service Provider Name
	4.6.3 Technology Service Caption
	4.6.4 Technology Service Description
	4.6.5 Technology Service Properties
	MIME Type
	Document Extension
	Edit Numeric
	Designable in Editor
	Maximum Footprint
	Device Skin Image
	Script Location
	Style Location

	5. Weblets
	5.1 Weblet Name
	5.2 Weblet Description
	5.3 Weblet Group
	5.4 Layout Weblet
	5.5 Webroutine Service Name

	6. Processes and Functions
	6.1 Process Definition
	6.1.1 Process Name
	6.1.2 Process Identifier
	6.1.3 Process Description
	6.1.4 Menu Style
	6.1.5 Anticipated Usage
	6.1.6 Optimize for remote communications
	6.1.7 Enable for Web
	6.1.8 Generate XML

	6.2 Function Control Table
	6.2.1 Function Description
	6.2.2 Display on Menu
	6.2.3 Menu Sequence
	6.2.4 Next Function
	6.2.5 Allowable Next Function(s)

	6.3 Special Entries
	6.3.1 Description
	6.3.2 Sequence
	6.3.3 Runtime Prompt
	6.3.4 Command

	6.4 Attached Processes/Functions
	6.4.1 Process Name
	6.4.2 Function Name
	6.4.3 Sequence
	6.4.4 Process Parameters

	6.5 Action Bar Table
	6.5.1 Action Bar Item Description
	6.5.2 AB$OPT
	6.5.3 Action Bar Item Sequence
	6.5.4 Pull Down Item Description
	6.5.5 Accelerator Key
	6.5.6 PD$OPT
	6.5.7 Pull Down Item Sequence
	6.5.8 Initially Enabled
	6.5.9 Association Type
	Function Name
	Attachment
	Special Entry
	Undefined

	6.6 Process Help Text
	6.7 Function Definition
	6.7.1 Function Name
	6.7.2 Function Identifier
	6.7.3 Function Description
	6.7.4 Template
	6.7.5 Enable Functions for RDMLX

	6.8 Function Help Text
	6.9 Process/Function Compile Options
	6.9.1 Compile Process only if necessary
	6.9.2 Compile All Process Functions
	6.9.3 Compile Functions Only if Necessary
	6.9.4 Keep Generated Source
	6.9.5 Debug Enabled
	6.9.6 Generate HTML
	Validate Numeric Values

	6.9.7 Generate XML
	6.9.8 Use Default Settings

	7. RDML Commands
	7.1 ABORT
	7.1.1 ABORT Parameters
	7.1.2 ABORT Examples

	7.2 ADD_ENTRY
	7.2.1 ADD_ENTRY Parameters
	7.2.2 ADD_ENTRY Comments / Warnings
	7.2.3 ADD_ENTRY Examples

	7.3 BEGIN_LOOP
	7.3.1 BEGIN_LOOP Parameters
	7.3.2 BEGIN_LOOP Examples

	7.4 BEGINCHECK
	7.4.1 BEGINCHECK Parameters
	7.4.2 BEGINCHECK Examples

	7.5 BROWSE
	7.5.1 BROWSE Parameters
	7.5.2 BROWSE Examples

	7.6 CALL
	7.6.1 CALL Parameters
	7.6.2 CALL Comments / Warnings
	7.6.3 CALL Examples

	7.7 CALLCHECK
	7.7.1 CALLCHECK Parameters
	7.7.2 CALLCHECK Comments / Warnings
	7.7.3 CALLCHECK Examples

	7.8 CASE
	7.8.1 CASE Parameters
	7.8.2 CASE Comments / Warnings
	7.8.3 CASE Examples

	7.9 CHANGE
	7.9.1 CHANGE Parameters
	7.9.2 CHANGE Comments/Warnings
	7.9.3 CHANGE Examples

	7.10 CHECK_FOR
	7.10.1 CHECK_FOR Parameters
	7.10.2 CHECK_FOR Comments / Warnings
	7.10.3 CHECK_FOR Examples

	7.11 CLOSE
	7.11.1 CLOSE Parameters
	7.11.2 CLOSE Comments / Warnings
	7.11.3 CLOSE Examples

	7.12 CLR_LIST
	7.12.1 CLR_LIST Parameters
	7.12.2 CLR_LIST Example

	7.13 COMMIT
	7.13.1 COMMIT Parameters
	7.13.2 COMMIT Example

	7.14 CONDCHECK
	7.14.1 CONDCHECK Parameters
	7.14.2 CONDCHECK Comments / Warnings
	7.14.3 CONDCHECK Examples

	7.15 CONTINUE
	7.15.1 CONTINUE Parameters
	7.15.2 CONTINUE Comments / Warnings
	7.15.3 CONTINUE Examples

	7.16 DATECHECK
	7.16.1 DATECHECK Parameters
	7.16.2 DATECHECK Comments / Warnings
	7.16.3 DATECHECK Examples

	7.17 DEF_ARRAY
	7.17.1 DEF_ARRAY Parameters
	7.17.2 DEF_ARRAY Comments / Warnings
	7.17.3 DEF_ARRAY Examples

	7.18 DEF_BREAK
	7.18.1 DEF_BREAK Parameters
	7.18.2 DEF_BREAK Comments / Warnings
	7.18.3 DEF_BREAK Example

	7.19 DEF_COND
	7.19.1 DEF_COND Parameters
	7.19.2 DEF_COND Examples

	7.20 DEF_FOOT
	7.20.1 DEF_FOOT Parameters
	7.20.2 DEF_FOOT Comments / Warnings
	7.20.3 DEF_FOOT Examples

	7.21 DEF_HEAD
	7.21.1 DEF_HEAD Parameters
	7.21.2 DEF_HEAD Comments / Warnings
	7.21.3 DEF_HEAD Examples

	7.22 DEF_LINE
	7.22.1 DEF_LINE Parameters
	7.22.2 DEF_LINE Comments / Warnings
	7.22.3 DEF_LINE Examples

	7.23 DEF_LIST
	7.23.1 DEF_LIST Parameters
	7.23.2 DEF_LIST Description
	7.23.3 DEF_LIST Comments / Warnings
	7.23.4 DEF_LIST Examples

	7.24 DEF_REPORT
	7.24.1 DEF_REPORT Parameters
	7.24.2 DEF_REPORT Comments / Warnings
	7.24.3 DEF_REPORT Examples

	7.25 DEFINE
	7.25.1 DEFINE Parameters
	7.25.2 DEFINE Examples

	7.26 DELETE
	7.26.1 DELETE Parameters
	7.26.2 DELETE Comments / Warnings
	7.26.3 DELETE Examples

	7.27 DISPLAY
	7.27.1 DISPLAY Parameters
	7.27.2 DISPLAY Comments / Warnings
	7.27.3 DISPLAY Examples

	7.28 DLT_ENTRY
	7.28.1 DLT_ENTRY Parameters
	7.28.2 DLT_ENTRY Comments / Warnings
	7.28.3 DLT_ENTRY Examples

	7.29 DLT_LIST
	7.29.1 DLT_LIST Parameters
	7.29.2 DLT_LIST Examples

	7.30 DOUNTIL
	7.30.1 DOUNTIL Parameters
	7.30.2 DOUNTIL Examples

	7.31 DOWHILE
	7.31.1 DOWHILE Parameters
	7.31.2 DOWHILE Examples

	7.32 ELSE
	7.32.1 ELSE Parameters
	7.32.2 ELSE Examples

	7.33 END_LOOP
	7.33.1 END_LOOP Parameters
	7.33.2 END_LOOP Examples

	7.34 ENDCASE
	7.34.1 ENDCASE Parameters
	7.34.2 ENDCASE Examples

	7.35 ENDCHECK
	7.35.1 ENDCHECK Parameters
	7.35.2 ENDCHECK Comments / Warnings
	7.35.3 ENDCHECK Examples

	7.36 ENDIF
	7.36.1 ENDIF Parameters
	7.36.2 ENDIF Examples

	7.37 ENDPRINT
	7.37.1 ENDPRINT Parameters
	7.37.2 ENDPRINT Examples

	7.38 ENDROUTINE
	7.38.1 ENDROUTINE Parameters
	7.38.2 ENDROUTINE Examples

	7.39 ENDSELECT
	7.39.1 ENDSELECT Parameters
	7.39.2 ENDSELECT Examples

	7.40 ENDUNTIL
	7.40.1 ENDUNTIL Parameters
	7.40.2 ENDUNTIL Examples

	7.41 ENDWHILE
	7.41.1 ENDWHILE Parameters
	7.41.2 ENDWHILE Examples

	7.42 EXCHANGE
	7.42.1 EXCHANGE Parameters
	7.42.2 EXCHANGE Comments / Warnings
	7.42.3 EXCHANGE Accessing the Exchange List from RPG/COBOL
	7.42.4 EXCHANGE Examples

	7.43 EXEC_CPF
	7.44 EXEC_OS400
	7.44.1 EXEC_OS400 Parameters
	7.44.2 EXEC_OS400 Comments / Warnings
	7.44.3 EXEC_OS400 Example

	7.45 EXECUTE
	7.45.1 EXECUTE Parameters
	7.45.2 EXECUTE Examples

	7.46 EXIT
	7.46.1 EXIT Parameters
	7.46.2 EXIT Examples

	7.47 FETCH
	7.47.1 FETCH Parameters
	7.47.2 FETCH Examples

	7.48 FILECHECK
	7.48.1 FILECHECK Parameters
	7.48.2 FILECHECK Comments / Warnings
	7.48.3 FILECHECK Examples

	7.49 FUNCTION
	7.49.1 FUNCTION Parameters
	7.49.2 FUNCTION Examples

	7.50 GET_ENTRY
	7.50.1 GET_ENTRY Parameters
	7.50.2 GET_ENTRY Examples

	7.51 GOTO
	7.51.1 GOTO Parameters
	7.51.2 GOTO Examples

	7.52 GROUP_BY
	7.52.1 GROUP_BY Parameters
	7.52.2 GROUP_BY Comments / Warnings
	7.52.3 GROUP_BY Examples
	7.52.4 GROUP_BY Examples of Expandable Groups

	7.53 IF
	7.53.1 IF Parameters
	7.53.2 IF Examples

	7.54 IF_ERROR
	7.54.1 IF_ERROR Parameters
	7.54.2 IF_ERROR Examples

	7.55 IF_KEY
	7.55.1 IF_KEY Parameters
	7.55.2 IF_KEY Comments / Warnings
	7.55.3 IF_KEY Examples

	7.56 IF_MODE
	7.56.1 IF_MODE Parameters
	7.56.2 IF_MODE Examples

	7.57 IF_NULL
	7.57.1 IF_NULL Parameters
	7.57.2 IF_NULL Comments / Warnings
	7.57.3 IF_NULL Examples

	7.58 IF_STATUS
	7.58.1 IF_STATUS Parameters
	7.58.2 IF_STATUS Comments / Warnings
	7.58.3 IF_STATUS Examples

	7.59 INCLUDE
	7.59.1 INCLUDE Parameters
	7.59.2 INCLUDE Comments / Warnings
	7.59.3 INCLUDE Examples

	7.60 INSERT
	7.60.1 INSERT Parameters
	7.60.2 INSERT Comments / Warnings
	7.60.3 INSERT Examples

	7.61 INZ_LIST
	7.61.1 INZ_LIST Parameters
	7.61.2 INZ_LIST Comments / Warnings
	7.61.3 INZ_LIST Examples

	7.62 KEEP_AVG
	7.62.1 KEEP_AVG Parameters
	7.62.2 KEEP_AVG Comments / Warnings
	7.62.3 KEEP_AVG Examples

	7.63 KEEP_COUNT
	7.63.1 KEEP_COUNT Parameters
	7.63.2 KEEP_COUNT Comments / Warnings
	7.63.3 KEEP_COUNT Example

	7.64 KEEP_MAX
	7.64.1 KEEP_MAX Parameters
	7.64.2 KEEP_MAX Comments / Warnings
	7.64.3 KEEP_MAX Example

	7.65 KEEP_MIN
	7.65.1 KEEP_MIN Parameters
	7.65.2 KEEP_MIN Comments / Warnings
	7.65.3 KEEP_MIN Example

	7.66 KEEP_TOTAL
	7.66.1 KEEP_TOTAL Parameters
	7.66.2 KEEP_TOTAL Comments / Warnings
	7.66.3 KEEP_TOTAL Examples

	7.67 LEAVE
	7.67.1 LEAVE Parameters
	7.67.2 LEAVE Comments / Warnings
	7.67.3 LEAVE Examples

	7.68 LOC_ENTRY
	7.68.1 LOC_ENTRY Parameters
	7.68.2 LOC_ENTRY Examples

	7.69 MENU
	7.69.1 MENU Parameters
	7.69.2 MENU Examples

	7.70 MESSAGE
	7.70.1 MESSAGE Parameters
	7.70.2 MESSAGE Comments / Warnings
	7.70.3 MESSAGE Examples

	7.71 ON_ERROR
	7.71.1 ON_ERROR Parameters
	7.71.2 ON_ERROR Comments / Warnings
	7.71.3 ON_ERROR Examples

	7.72 OPEN
	7.72.1 OPEN Parameters
	7.72.2 OPEN Comments / Warnings
	7.72.3 OPEN Examples

	7.73 OTHERWISE
	7.73.1 OTHERWISE Parameters
	7.73.2 OTHERWISE Examples

	7.74 OVERRIDE
	7.74.1 OVERRIDE Parameters
	7.74.2 OVERRIDE Examples

	7.75 POINT
	7.75.1 POINT Parameters
	7.75.2 POINT Comments/Warnings
	7.75.3 POINT Examples

	7.76 POP_UP
	7.76.1 POP_UP Parameters
	7.76.2 POP_UP Comments / Warnings
	7.76.3 POP_UP Examples

	7.77 PRINT
	7.77.1 PRINT Parameters
	7.77.2 PRINT Examples

	7.78 RANGECHECK
	7.78.1 RANGECHECK Parameters
	7.78.2 RANGECHECK Examples

	7.79 RENAME
	7.79.1 RENAME Parameters
	7.79.2 RENAME Comments / Warnings
	7.79.3 RENAME Examples

	7.80 REQUEST
	7.80.1 REQUEST Parameters
	7.80.2 REQUEST Comments / Warnings
	7.80.3 REQUEST Examples

	7.81 RETURN
	7.81.1 RETURN Parameters
	7.81.2 RETURN Examples

	7.82 ROLLBACK
	7.82.1 ROLLBACK Parameters
	7.82.2 ROLLBACK Examples

	7.83 SELECT
	7.83.1 SELECT Parameters
	7.83.2 SELECT Comments / Warnings
	7.83.3 SELECT Examples

	7.84 SELECTLIST
	7.84.1 SELECTLIST Parameters
	7.84.2 SELECTLIST Examples

	7.85 SELECT_SQL
	7.85.1 SELECT_SQL Parameters
	7.85.2 SELECT_SQL Column Names versus Column Values
	7.85.3 SELECT_SQL Examples
	7.85.4 SELECT_SQL References
	7.85.5 SELECT_SQL Coercions

	7.86 SET_ERROR
	7.86.1 SET_ERROR Parameters
	7.86.2 SET_ERROR Examples

	7.87 SET_MODE
	7.87.1 SET_MODE Parameters
	7.87.2 SET_MODE Examples

	7.88 SKIP
	7.88.1 SKIP Parameters
	7.88.2 SKIP Examples

	7.89 SORT_LIST
	7.89.1 SORT_LIST Parameters
	7.89.2 SORT_LIST Examples

	7.90 SPACE
	7.90.1 SPACE Parameters
	7.90.2 SPACE Examples

	7.91 SUBMIT
	7.91.1 SUBMIT Parameters
	7.91.2 SUBMIT Comments / Warnings
	7.91.3 SUBMIT Examples

	7.92 SUBROUTINE
	7.92.1 SUBROUTINE Parameters
	7.92.2 SUBROUTINE Comments / Warnings
	7.92.3 SUBROUTINE Examples - Part 1
	7.92.4 SUBROUTINE Examples - Part 2

	7.93 SUBSTRING
	7.93.1 SUBSTRING Parameters
	7.93.2 SUBSTRING Examples

	7.94 TRANSFER
	7.94.1 TRANSFER Parameters
	7.94.2 TRANSFER Comments / Warnings
	7.94.3 TRANSFER Examples

	7.95 UPD_ENTRY
	7.95.1 UPD_ENTRY Parameters
	7.95.2 UPD_ENTRY Comments / Warnings
	7.95.3 UPD_ENTRY Examples

	7.96 UPDATE
	7.96.1 UPDATE Parameters
	7.96.2 UPDATE Comments / Warnings
	7.96.3 UPDATE Examples

	7.97 UPRINT
	7.97.1 UPRINT Parameters
	7.97.2 UPRINT Examples

	7.98 USE
	7.98.1 USE Parameters
	7.98.2 USE Examples

	7.99 VALUECHECK
	7.99.1 VALUECHECK Parameters
	7.99.2 VALUECHECK Examples

	7.100 WHEN
	7.100.1 WHEN Parameters
	7.100.2 WHEN Examples

	8. RDMLX Commands and RDMLX Features
	8.1 ASSIGN
	8.1.1 ASSIGN Parameters
	8.1.2 ASSIGN Examples

	8.2 ATTRIBUTE
	8.2.1 ATTRIBUTE Parameters
	8.2.2 ATTRIBUTE Examples

	8.3 BEGIN_COM
	8.3.1 BEGIN_COM Parameters
	8.3.2 BEGIN_COM Examples

	8.4 DEFINE_COM
	8.4.1 DEFINE_COM Parameters
	8.4.2 DEFINE_COM Examples

	8.5 DEFINE_EVT
	8.5.1 DEFINE_EVT Parameters
	8.5.2 DEFINE_EVT Examples

	8.6 DEFINE_MAP
	8.6.1 DEFINE_MAP Parameters
	8.6.2 DEFINE_MAP with DEFINE_EVT
	8.6.3 DEFINE_MAP in MTHROUTINE
	8.6.4 DEFINE_MAP in PTYROUTINE

	8.7 DEFINE_PTY
	8.7.1 DEFINE_PTY Parameters
	8.7.2 DEFINE_PTY Examples

	8.8 END_COM
	8.8.1 END_COM Parameters
	8.8.2 END_COM Examples

	8.9 ENDFOR
	8.9.1 ENDFOR Parameters
	8.9.2 ENDFOR Examples

	8.10 ENDROUTINE
	8.10.1 ENDROUTINE Parameters
	8.10.2 ENDROUTINE Examples

	8.11 EVTROUTINE
	8.11.1 EVTROUTINE Parameters
	8.11.2 EVTROUTINE Examples

	8.12 FOR
	8.12.1 FOR Parameters
	8.12.2 FOR Examples

	8.13 IF_REF
	8.13.1 IF_REF Parameters
	8.13.2 IF_REF Examples

	8.14 IMPORT
	8.14.1 IMPORT Parameters
	8.14.2 IMPORT Examples

	8.15 INVOKE
	8.15.1 INVOKE Parameters
	8.15.2 INVOKE Examples

	8.16 MTHROUTINE
	8.16.1 MTHROUTINE Parameters
	8.16.2 MTHROUTINE Examples

	8.17 PERFORM
	8.17.1 PERFORM Parameters
	8.17.2 PERFORM Examples

	8.18 PTYROUTINE
	8.18.1 PTYROUTINE Parameters
	8.18.2 PTYROUTINE Examples

	8.19 SELECT_SQL Free Format
	8.19.1 SELECT_SQL Free Format Parameters
	8.19.2 SELECT_SQL Free Format Examples
	8.19.3 SELECT_SQL Free Format References
	8.19.4 SELECT_SQL Free Format Coercions

	8.20 SET
	8.20.1 SET Parameters
	8.20.2 SET Examples

	8.21 SET_REF
	8.21.1 SET_REF Parameters
	8.21.2 SET_REF Examples

	8.22 SIGNAL
	8.22.1 SIGNAL Parameters
	8.22.2 SIGNAL Examples

	8.23 WEB_MAP
	8.23.1 WEB_MAP Parameters
	8.23.2 WEB_MAP Examples

	8.24 WEBROUTINE
	8.24.1 WEBROUTINE Parameters
	8.24.2 WEBROUTINE Examples

	8.25 Component Variables and Values
	8.25.1 Referring to Property Values
	8.25.2 Com_Owner, Com_Ancestor and Com_Self - Generic References to Components
	8.25.3 Variant Variable
	8.25.4 Qualified Properties

	8.26 Function Libraries
	8.27 Variant Handling
	8.27.1 VarAsBoolean
	8.27.2 VarAsDecimal
	8.27.3 VarAsInteger
	8.27.4 VarAsReference
	8.27.5 VarAsString
	8.27.6 VarIsBoolean
	8.27.7 VarIsEmpty
	8.27.8 VarIsNull
	8.27.9 VarIsNullReference
	8.27.10 VarIsNumber
	8.27.11 VarIsReference
	8.27.12 VarIsString
	8.27.13 VarType

	8.28 Enhanced Expressions
	8.28.1 Expressions as Values
	8.28.2 Methods in Expressions
	8.28.3 Method Results
	8.28.4 Named Parameters
	8.28.5 *Not Operator
	8.28.6 *IS and *ISNOT Operator
	8.28.7 *IsEqualTo and *IsOfType Operators
	8.28.8 *AS Operator
	8.28.9 *ANDIF and *ORIF Logical Operators

	9. Built-In Functions
	9.1 Built-In Function Rules
	9.2 Development Environment only Built-In Functions
	9.3 ACCESS_FILE
	9.4 ACCESS_RTE
	9.5 ACCESS_RTE_KEY
	9.6 ADD_DD_VALUES
	9.7 ALLOW_EXTRA_USER_KEY
	9.8 BCONCAT
	9.9 BINTOHEX
	9.10 BUILD_WORK_OPTIONS
	9.11 CALL_SERVER_FUNCTION
	9.12 CENTRE
	9.13 CHANGE_IBMI_SIGNON
	9.14 CHECK_AUTHORITY
	9.15 CHECK_IBMI_SIGNON
	9.16 CHECKNUMERIC
	9.17 CHECKSTRING
	9.18 CLR_MESSAGES
	9.19 COMPARE_FILE_DEF
	9.20 COMPILE_PROCESS
	9.21 COMPILE_COMPONENT
	9.22 COMPOSER_CALLF
	9.23 COMPOSER_RUN
	9.24 COMPOSER_USE
	9.25 CONCAT
	9.26 CONNECT_FILE
	9.27 CONNECT_SERVER
	9.28 CONVERTDATE
	9.29 CONVERTDATE_NUMERIC
	9.30 CONVERT_STRING
	9.31 CREATE_SPACE
	9.32 CREATE_PROMPT_FILE
	9.33 DATEDIFFERENCE
	9.34 DATEDIFFERENCE_ALPHA
	9.35 DECRYPT
	9.36 DEFINE_ANY_SERVER
	9.37 DEFINE_DB_SERVER
	9.38 DEFINE_OVERRIDE_FILE
	9.39 DEFINE_OS_400_SERVER
	9.40 DEFINE_OTHER_SERVER
	9.41 DEFINE_SPACE_CELL
	9.42 DELETE_CHECKS
	9.43 DELETE_FUNCTION
	9.44 DELETE_IN_SPACE
	9.45 DELETE_PROCESS
	9.46 DELETE_SAVED_LIST
	9.47 DELETE_TRIGGERS
	9.48 DELETE_WEB_COMPONENT
	9.49 DESTROY_SPACE
	9.50 DISCONNECT_FILE
	9.51 DISCONNECT_SERVER
	9.52 DLL
	9.53 DLT_FIELD
	9.54 DLT_FILE
	9.55 DLT_PROCESS_ATTACH
	9.56 DOM_ADD_FIELD
	9.57 DOM_ADD_ITEM
	9.58 DOM_CLOSE_DATABASE
	9.59 DOM_CLOSE_DOCUMENT
	9.60 DOM_CLOSE_FILE
	9.61 DOM_CREATE_DOCUMENT
	9.62 DOM_DELETE_DOCUMENT
	9.63 DOM_DELETE_FIELD
	9.64 DOM_DELETE_ITEM
	9.65 DOM_END_SEARCH_DOCS
	9.66 DOM_EXECUTE_AGENT
	9.67 DOM_GET_FIELD
	9.68 DOM_GET_ITEM
	9.69 DOM_GET_NXT_DOCUMENT
	9.70 DOM_OPEN_DATABASE
	9.71 DOM_OPEN_DOCUMENT
	9.72 DOM_OPEN_FILE
	9.73 DOM_SEARCH_DOCUMENTS
	9.74 DOM_UPDATE_DOCUMENT
	9.75 DOM_UPDATE_FIELD
	9.76 DOM_UPDATE_ITEM
	9.77 DROP_DD_VALUES
	9.78 DROP_EXTRA_USER_KEYS
	9.79 ENCRYPT
	9.80 END_FILE_EDIT
	9.81 END_FUNCTION_EDIT
	9.82 END_PROCESS_EDIT
	9.83 END_RTV_SPLF_LIST
	9.84 EXCHANGE_ALPHA_VAR
	9.85 EXCHANGE_NUMERIC_VAR
	9.86 EXCHANGE_VARIABLE
	9.87 EXECUTE_TEMPLATE
	9.88 EXPONENTIAL
	9.89 EXPORT_OBJECTS
	9.90 FETCH_IN_SPACE
	9.91 FILE_FIELD
	9.92 FILE_FIELD_VIRTUAL
	9.93 FILLSTRING
	9.94 FINDDATE
	9.95 FINDDATE_ALPHA
	9.96 FORMAT_STRING
	9.97 GET_AUTHORITIES
	9.98 GET_BIF_LIST
	9.99 GET_CHAR_AREA
	9.100 GET_COMPONENT_LIST
	9.101 GET_COMPOSITION
	9.102 GET_ENVIRONMENTS
	9.103 GET_FIELD
	9.104 GET_FIELD_INFO
	9.105 GET_FIELD_LIST
	9.106 GET_FILE_INFO
	9.107 GET_FUNCTION_ATTR
	9.108 GET_FUNCTION_INFO
	9.109 GET_FUNCTION_LIST
	9.110 GET_FUNCTION_RDML
	9.111 GET_HELP
	9.112 GET_ILENTRY_LIST
	9.113 GET_KEYWORD_STRING
	9.114 GET_LICENSE_STATUS
	9.115 GET_LOGICAL_LIST
	9.116 GET_MESSAGE
	9.117 GET_MESSAGE_DESC
	9.118 GET_MESSAGE_LIST
	9.119 GET_ML_VARIABLE
	9.120 GET_MULTVAR_LIST
	9.121 GET_NUM_AREA
	9.122 GET_PHYSICAL_LIST
	9.123 GET_PROCESS_ATTR
	9.124 GET_PROCESS_INFO
	9.125 GET_PROCESS_LIST
	9.126 GET_PRODUCT_ATTRIBS
	9.127 GET_PROPERTIES
	9.128 GET_REGISTRY_VALUE
	9.129 GET_SESSION_VALUE
	9.130 GET_SPLF_LIST_ENTRY
	9.131 GET_SYSTEM_VARIABLE
	9.132 GET_SYSVAR_LIST
	9.133 GET_TASK_DETAILS
	9.134 GET_TASK_LIST
	9.135 GET_TEMPLATE_LIST
	9.136 GET_WEB_COMPONENT
	9.137 HEXTOBIN
	9.138 IMPORT_OBJECTS
	9.139 INSERT_IN_SPACE
	9.140 ISSUEINQUIRY
	9.141 ISSUEMESSAGE
	9.142 JSM_CLOSE
	9.143 JSM_COMMAND
	9.144 JSM_OPEN
	9.145 JSMX_CLOSE
	9.146 JSMX_COMMAND
	9.147 JSMX_OPEN
	9.148 LEFT
	9.149 LIST_PRINTERS
	9.150 LOAD_FILE_DATA
	9.151 LOAD_OTHER_FILE
	9.152 LOCK_OBJECT
	9.153 LOGICAL_KEY
	9.154 LOGICAL_VIEW
	9.155 MAIL_ADD_ATTACHMENT
	9.156 MAIL_ADD_ORIGINATOR
	9.157 MAIL_ADD_RECIPIENT
	9.158 MAIL_ADD_TEXT
	9.159 MAIL_SEND
	9.160 MAIL_SET_OPTION
	9.161 MAIL_SET_SUBJECT
	9.162 MAIL_START
	9.163 MAKE_FILE_OPERATIONL
	9.164 MAKE_SOUND
	9.165 MESSAGE_BOX_ADD
	9.166 MESSAGE_BOX_APPEND
	9.167 MESSAGE_BOX_CLEAR
	9.168 MESSAGE_BOX_SHOW
	9.169 MESSAGE_COLLECTOR
	9.170 NUMERIC_STRING
	9.171 OBJECT_PROPAGATE
	9.172 PACKAGE_BUILD
	9.173 PACKAGE_CREATE
	9.174 PHYSICAL_KEY
	9.175 PUT_CHAR_AREA
	9.176 PUT_COND_CHECK
	9.177 PUT_DATE_CHECK
	9.178 PUT_FIELD
	9.179 PUT_FIELD_ML
	9.180 PUT_FILE_CHECK
	9.181 PUT_FILE_ML
	9.182 PUT_FUNCTION_ATTR
	9.183 PUT_FUNCTION_ML
	9.184 PUT_FUNCTION_RDML
	9.185 PUT_HELP
	9.186 PUT_ML_VARIABLE
	9.187 PUT_NUM_AREA
	9.188 PUT_PROCESS_ACTIONS
	9.189 PUT_PROCESS_ATTACH
	9.190 PUT_PROCESS_ATTR
	9.191 PUT_PROCESS_ML
	9.192 PUT_PROGRAM_CHECK
	9.193 PUT_RANGE_CHECK
	9.194 PUT_REGISTRY_VALUE
	9.195 PUT_SYSTEM_VARIABLE
	9.196 PUT_TRIGGER
	9.197 PUT_VALUE_CHECK
	9.198 PUT_WEB_COMPONENT
	9.199 RANDOM_NUM_GENERATOR
	9.200 RCV_FROM_DATA_QUEUE
	9.201 REBUILD_FILE
	9.202 REBUILD_TABLE_INDEX
	9.203 RESET_@@UPID
	9.204 RESTORE_SAVED_LIST
	9.205 REVERSE
	9.206 RIGHT
	9.207 ROUND
	9.208 SAVE_LIST
	9.209 SCANSTRING
	9.210 SELECT_IN_SPACE
	9.211 SELECTNEXT_IN_SPACE
	9.212 SET_ACTION_BAR
	9.213 SET_AUTHORITY
	9.214 SET_DD_ATTRIBUTES
	9.215 SET_FILE_ATTRIBUTE
	9.216 SET_FOR_HEAVY_USAGE
	9.217 SET_FOR_LIGHT_USAGE
	9.218 SET_SESSION_VALUE
	9.219 SHOW_HELP
	9.220 SND_TO_DATA_QUEUE
	9.221 SPACE_OPERATION
	9.222 SQUARE_ROOT
	9.223 START_FILE_EDIT
	9.224 START_FUNCTION_EDIT
	9.225 START_PROCESS_EDIT
	9.226 START_RTV_SPLF_LIST
	9.227 STM_FILE_CLOSE
	9.228 STM_FILE_OPEN
	9.229 STM_FILE_READ
	9.230 STM_FILE_WRITE
	9.231 STM_FILE_WRITE_CTL
	9.232 SYSTEM_COMMAND
	9.233 TCONCAT
	9.234 TEMPLATE_@@ADD_LST
	9.235 TEMPLATE_@@CANSNNN
	9.236 TEMPLATE_@@CLR_LST
	9.237 TEMPLATE_@@GET_FILS
	9.238 TEMPLATE_@@NANSNNN
	9.239 TEMPLATE_@@SET_FILS
	9.240 TEMPLATE_@@SET_IDX
	9.241 TRANSFORM_FILE
	9.242 TRANSFORM_LIST
	9.242.1 Output File Formats
	dBASE III PLUS Field Format Supported

	9.242.2 Other Parameters

	9.243 UNLOAD_FILE_DATA
	9.244 UNLOCK_OBJECT
	9.245 UPDATE_IN_SPACE
	9.246 UPPERCASE
	9.247 ZIP_ADD
	9.248 ZIP_DELETE
	9.249 ZIP_EXTRACT
	9.250 ZIP_GET_INFO
	9.251 ZIP_MAKE_EXE

	10. Intrinsic Functions
	10.1 Understanding Intrinsic Functions
	10.2 Chaining Multiple Intrinsic Functions
	10.3 Isxxxxxx Intrinsic Functions
	10.4 Asxxxxxx Intrinsic Functions
	10.5 Field Intrinsic Functions
	10.5.1 FieldDecimals
	10.5.2 FieldLength
	10.5.3 FieldType
	10.5.4 IsDefault
	10.5.5 FieldAttributeAsString

	10.6 Alphanumeric/String Intrinsic Functions
	10.6.1 AsBoolean
	10.6.2 AsDate
	10.6.3 AsDateTime
	10.6.4 AsDBCSFixedChar
	10.6.5 AsDBCSString
	10.6.6 AsFixedChar
	10.6.7 AsFloat
	10.6.8 AsInteger
	10.6.9 AsNumber
	10.6.10 AsSBCSString
	10.6.11 AsTime
	10.6.12 AsValue
	10.6.13 BlankConcat
	10.6.14 ByteTypeAt
	10.6.15 Center and Centre
	10.6.16 CharTypeAt
	10.6.17 Concat
	10.6.18 Contains
	10.6.19 ContainsOnly
	10.6.20 CurChars
	10.6.21 CurEbcdicSize
	10.6.22 CurSize
	10.6.23 DeleteSubstring
	10.6.24 FieldDefault
	10.6.25 InsertString
	10.6.26 IsBoolean
	10.6.27 IsDate
	10.6.28 IsDateTime
	10.6.29 IsDbcs
	10.6.30 IsFloat
	10.6.31 IsMixed
	10.6.32 IsNull
	10.6.33 IsNumber
	10.6.34 IsSbcs
	10.6.35 IsSqlNull
	10.6.36 IsTime
	10.6.37 LastPositionIn
	10.6.38 LastPositionOf
	10.6.39 LeftMost
	10.6.40 LeftTrim
	10.6.41 LowerCase
	10.6.42 OccurencesIn
	10.6.43 OccurencesOf
	10.6.44 PositionIn
	10.6.45 PositionOf
	10.6.46 Remove
	10.6.47 RemoveAll
	10.6.48 RemoveCharacters
	10.6.49 Repeat
	10.6.50 Replace
	10.6.51 ReplaceAll
	10.6.52 ReplaceSubstring
	10.6.53 Reverse
	10.6.54 RightAdjust
	10.6.55 RightMost
	10.6.56 RightTrim
	10.6.57 Substitute
	10.6.58 Substring
	10.6.59 TranslateCharacters
	10.6.60 Trim
	10.6.61 TrimBlankConcat
	10.6.62 TrimConcat
	10.6.63 TrimSubstitute
	10.6.64 UpperCase

	10.7 Boolean Intrinsic Functions
	10.7.1 And
	10.7.2 AsNumber
	10.7.3 AsString
	10.7.4 AsValue
	10.7.5 IsFalse
	10.7.6 IsNull
	10.7.7 IsSqlNull
	10.7.8 IsTrue
	10.7.9 Not
	10.7.10 Or

	10.8 Date Intrinsic Functions
	10.8.1 Adjust
	10.8.2 AsDateTime
	10.8.3 AsDayofWeek
	10.8.4 AsDays
	10.8.5 AsDisplayString
	10.8.6 AsNumber
	10.8.7 AsString
	10.8.8 AsValue
	10.8.9 Day
	10.8.10 Difference
	10.8.11 IsNull
	10.8.12 IsSqlNull
	10.8.13 Month
	10.8.14 Now
	10.8.15 Year

	10.9 DateTime Intrinsic Functions
	10.9.1 AsDisplayString
	10.9.2 AsCustomDisplayString
	10.9.3 AsLocalizedDateTime
	10.9.4 AsNumber
	10.9.5 AsSeconds
	10.9.6 AsString
	10.9.7 AsUniversalDateTime
	10.9.8 AsValue
	10.9.9 Date
	10.9.10 FractionalSeconds
	10.9.11 IsNull
	10.9.12 IsSqlNull
	10.9.13 Now
	10.9.14 Time

	10.10 Time Intrinsic Functions
	10.10.1 Adjust
	10.10.2 AsDateTime
	10.10.3 AsDisplayString
	10.10.4 AsNumber
	10.10.5 AsSeconds
	10.10.6 AsString
	10.10.7 AsValue
	10.10.8 Difference
	10.10.9 Hour
	10.10.10 IsNull
	10.10.11 IsSqlNull
	10.10.12 Minute
	10.10.13 Now
	10.10.14 Second

	10.11 Large Object Intrinsic Functions
	10.11.1 AsValue
	10.11.2 Filename
	10.11.3 IsNull
	10.11.4 IsSqlNull

	10.12 Binary Intrinsic Functions
	10.12.1 AsByte
	10.12.2 AsInteger
	10.12.3 AsString
	10.12.4 CurSize
	10.12.5 IsNull
	10.12.6 IsSqlNull
	10.12.7 AsHexString
	10.12.8 AsHexToInt

	10.13 Decimal Intrinsic Functions
	10.13.1 AsValue

	10.14 Fixed Point Intrinsic Functions
	10.14.1 AsFloat
	10.14.2 AsString
	10.14.3 Bound
	10.14.4 IsBetween
	10.14.5 Max
	10.14.6 Min
	10.14.7 Pred
	10.14.8 Round
	10.14.9 Succ

	10.15 Floating Point Intrinsic Functions
	10.15.1 Add
	10.15.2 AsDecimal
	10.15.3 AsString
	10.15.4 AsValue
	10.15.5 Bound
	10.15.6 Divide
	10.15.7 IsBetween
	10.15.8 Max
	10.15.9 Min
	10.15.10 Multiply
	10.15.11 Pred
	10.15.12 Subtract
	10.15.13 Succ
	10.15.14 Sine
	10.15.15 ArcSine
	10.15.16 SineH
	10.15.17 Cosine
	10.15.18 ArcCosine
	10.15.19 CosineH
	10.15.20 Tangent
	10.15.21 ArcTangent
	10.15.22 TangentH
	10.15.23 ArcTangent2
	10.15.24 FAbs
	10.15.25 FMod
	10.15.26 Power
	10.15.27 SQRT
	10.15.28 Exponential
	10.15.29 Logarithm
	10.15.30 Logarithm10
	10.15.31 IsNANorND

	10.16 Integer Intrinsic Functions
	10.16.1 BinaryString Conversions
	10.16.2 AsBinString
	10.16.3 AsByte
	10.16.4 AsChar
	10.16.5 AsValue
	10.16.6 BitAnd
	10.16.7 BitNot
	10.16.8 BitOr
	10.16.9 BitXOr
	10.16.10 Mod
	10.16.11 Div
	10.16.12 AsUnicodeString

	10.17 Unicode String Functions
	10.17.1 AsCodePoint
	10.17.2 AsNativeString

	11. System and Multilingual Variables
	11.1 System Variable Definition
	11.1.1 Variable Name
	11.1.2 Description
	11.1.3 Derivation Method
	11.1.4 Data Type
	11.1.5 Length
	11.1.6 Decimals
	11.1.7 Program Type
	11.1.8 Program Name

	11.2 Shipped System Variables
	11.2.1 General Variables
	*GUID System Variable

	11.2.2 Authenticating User System Variables
	11.2.3 Function Only Variables
	11.2.4 Special Variables
	System Variables for use in System Evaluation Programs
	System Variables to test I/O Status

	11.2.5 SuperServer System Variables
	11.2.6 Built-In Function Variables

	11.3 Multilingual Text Variables
	11.3.1 MTXT Variable Name
	11.3.2 Maximum Length
	11.3.3 Value

	12. Formats, Values and Codes
	12.1 LANSA Object Names
	12.2 Date Formats
	12.3 Standard Field Edit Codes
	12.4 RDML Field Attributes and their Use
	12.4.1 Output Only Attributes
	12.4.2 Field Conditioning Attributes
	12.4.3 Field Display Attributes
	12.4.4 Field Identification Attributes
	12.4.5 Field Position Attributes
	12.4.6 Hidden Field Attribute and the Select Field Attribute
	12.4.7 New Format Attribute and Repeat Attributes
	12.4.8 Print Control Attributes

	12.5 RDML I/O Return Codes
	12.6 Help Text Enhancement & Substitution Values
	12.6.1 Substitution/Control Values
	12.6.2 Substitution/Control Values - Visual LANSA only
	12.6.3 Help Text Attributes

	13. Common RDML Parameters & BIF Notes
	13.1 RDML Command Parameters
	13.1.1 I/O Commands
	Specifying File Names in I/O Commands
	Specifying File Key Lists in I/O Commands
	Specifying WHERE Parameter in I/O Commands
	I/O Command Return Codes Table
	I/O Status Record Locked

	13.1.2 Field Groups and Expandable Groups
	Expandable Groups
	Special Considerations for Expandable Groups
	Expandable Group Expressions
	Expandable Group Examples

	13.1.3 RDML Screen Modes and Mode Sensitive Commands
	Modes and Fields that Can Be Changed
	Modes, Function Keys and Processing Logic
	Mode Sensitive Commands

	13.1.4 Specifying Conditions and Expressions
	13.1.5 Arithmetic and Expression Operators
	13.1.6 Quotes and Quoted Strings
	13.1.7 Prompt_Key Processing

	13.2 Built-In Function Notes
	13.2.1 Database Connection
	13.2.2 Email Built-In Functions Notes
	13.2.3 Zip Built-in Functions

	14. Template Commands and Variables
	14.1 @@CLR_LST Command
	14.2 @@CMP_IDX Command
	14.2.1 @@CMP_IDX Examples

	14.3 @@COMMENT Command
	14.4 @@DEC_IDX Command
	14.5 @@GET_FILS Command
	14.6 @@GOTO Command
	14.7 @@IF Command
	14.8 @@INC_IDX Command
	14.9 @@LABEL Command
	14.10 @@MAK_LSTS Command
	14.11 @@MRG_LSTS Command
	14.12 @@QUESTION Command
	14.13 @@RTV_FLDS Command
	14.14 @@RTV_KEYS Command
	14.15 @@RTV_RELN Command
	14.16 @@SET_IDX Command
	14.17 General Template Variables
	14.18 Question and Answer Template Variables
	14.19 File Template Variables
	14.20 List Template Variables
	14.21 Template Error Messages
	14.22 Tips for Template Programming
	14.22.1 Accepting Errors On Commands
	14.22.2 Forcing EDTSRC/SEU to Update With Errors
	14.22.3 The Double Bracket Trap
	14.22.4 Testing with an Alternate Session
	14.22.5 Special Template Variable Notes

	14.23 Sample Application Templates
	14.23.1 Simple data entry program
	14.23.2 Header/Detail style inquiry program

	15. External Resource Definitions
	15.1 External Resource Name
	15.2 External Resource LANSA Folder
	15.3 External Resource File Name
	15.4 External Resource Description
	15.5 External Resource Content Type
	15.6 External Resource Encoding

	16. Windows and Linux Considerations
	16.1 Reporting Considerations
	16.2 "Job" Numbers
	16.3 Batch Jobs
	16.4 IBM i Job Queue Emulation
	16.4.1 Establishing the X_JOBQ.DAT File
	16.4.2 Starting, Stopping, Holding and Releasing Job Queues
	16.4.3 Job Queue Priorities
	16.4.4 Additional Job Queue Monitor Parameters
	16.4.5 Submitting Jobs Across a Network
	16.4.6 Implementation, Performance and Throughput
	16.4.7 Encrypting the Job Queue Details

	16.5 The RUNSQL Utility
	16.5.1 Configuration Notes - Creating Tables and Indexes

	16.6 Font Considerations
	16.7 Sizing RDML Windows
	16.8 Windows 64-bit Support
	16.9 Linux Differences
	16.10 Code Page Considerations
	16.11 Regional Settings

	17. Execution Control
	17.1 Using X_START as a Front End to X_RUN
	17.1.1 Rules, Limitations and Guidelines
	17.1.2 Commands and Special Variables

	17.2 The X_RUN Command
	17.3 X_RUN Parameter Summary
	17.4 X_RUN Parameter Details
	17.4.1 User ID and Password Default Values
	17.4.2 DBCF Flags
	Connection Algorithm
	SQL Anywhere
	Oracle
	SQL Server
	Other Databases

	17.4.3 DBID, DBUT, DBII and DBIT Parameters
	17.4.4 DBSS Parameter - Performance Tuning
	17.4.5 FXQX Parameters
	17.4.6 HSKC Parameter
	17.4.7 INIT and TERM Parameters
	17.4.8 ITxx - Trace Parameters
	17.4.9 ODBA Parameter
	17.4.10 ODBI Parameter
	17.4.11 PROG Parameter
	17.4.12 PSxx Server Parameters
	PSUS Notes (Primary Server User)
	PSEA Notes (Primary Server Exceptional Arguments)
	PSRA Notes (Primary Server Route Authority)
	PSRR Notes (Primary Server Route Repository)
	PSTC Notes (Primary Server Trusted Connection)
	PSTY Notes (Primary Server Type)

	17.4.13 QUET & FATL Parameters (Quiet Mode of Operation & Fatal)
	17.4.14 RRNA and RRNB Parameters - Performance Tuning
	17.4.15 TPTH Parameter
	17.4.16 WDTM Parameter (Windows Desktop Heap)
	17.4.17 WPxx - Windows Printing Extensions
	WPEN (Windows Printing Enabled)
	WPPN (Windows Printing Printer Name)
	WPPS (Windows Printing Setup File)
	WPPD (Windows Printing Print Dialog)
	WPFD (Windows Printing Font Dialog)
	WPDF (Windows Printing Default Font)
	WPDS (Windows Printing Default Font Size)
	WPFO (Windows Printing Fixed Pitch Only)
	WPAS (Windows Printing Automatic Stretching)
	Questions and Answers

	17.4.18 XCMD Parameter

	17.5 Permanently Specify X_RUN Parameters
	17.5.1 Why not put your X_RUN Commands behind Icons?
	17.5.2 Using an Environment Variable
	17.5.3 Using an X_LANSA.PRO Profile File

	17.6 Database Connections
	17.7 The .XQ* Files
	17.7.1 Tips for Setting up and Using .XQ* Files

	17.8 Lock Timeout
	17.8.1 Lock Timeout Configuration
	17.8.2 Lock Timeout Behavior Examples
	Adaptive Server Anywhere 9.0
	SQL Server 2005
	Oracle 10.2 - Connection Lock
	Oracle 10.2 - Statement Lock
	PC Other Files

	17.8.3 Technical Implementation Details
	17.8.4 The X_DBMENV.DAT File

	17.9 User Instructions for Microsoft Exception or Dr Watson

	18. Error Messages
	Appendix A. Other_Vendor Built-In Functions
	OV_FILE_DIALOG
	OV_FILE_SERVICE
	OV_INDEXED_SPACE
	OV_MESSAGE_BOX
	OV_PASTE_CLIPBOARD
	OV_POST_CLIPBOARD
	OV_QUERY_SYS_INFO
	OV_SLEEP
	OV_SOUND_ALARM
	OV_SYSTEM_SERVICE

