
	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation

http://wiki.apache.org/httpd/FAQ
http://httpd.apache.org/docs-project/
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	HTTP	Server	Version	2.4	

				.	 					.

	 Google	

	2.0		
1.3	2.0		
	

	

	

	
	
	

	(MPM)

		

	

		

	
	(content	negotiation)
	(DSO)

URL		

	
		
SSL/TLS	
CGI	Suexec	
URL	(rewriting)	

How-To	/	

,	,	
CGI:			
.htaccess	
Server	Side	Includes	(SSI)
		 (public_html)

	

Microsoft	Windows
Novell	NetWare
EBCDIC	

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

			(FAQ)

		

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Upgrading	to	2.4	from	2.2

In	order	to	assist	folks	upgrading,	we	maintain	a	document	describing
information	critical	to	existing	Apache	HTTP	Server	users.	These	are
intended	to	be	brief	notes,	and	you	should	be	able	to	find	more
information	in	either	the	New	Features	document,	or	in	the
src/CHANGES	file.	Application	and	module	developers	can	find	a
summary	of	API	changes	in	the	API	updates	overview.

This	document	describes	changes	in	server	behavior	that	might
require	you	to	change	your	configuration	or	how	you	use	the	server	in
order	to	continue	using	2.4	as	you	are	currently	using	2.2.	To	take
advantage	of	new	features	in	2.4,	see	the	New	Features	document.

This	document	describes	only	the	changes	from	2.2	to	2.4.	If	you	are
upgrading	from	version	2.0,	you	should	also	consult	the	2.0	to	2.2
upgrading	document.

See	also
Overview	of	new	features	in	Apache	HTTP	Server	2.4

http://httpd.apache.org/docs/2.2/upgrading.html
https://www.apache.org/foundation/contributing.html

Compile-Time	Configuration	Changes

The	compilation	process	is	very	similar	to	the	one	used	in	version
2.2.	Your	old	configure	command	line	(as	found	in
build/config.nice	in	the	installed	server	directory)	can	be
used	in	most	cases.	There	are	some	changes	in	the	default
settings.	Some	details	of	changes:

These	modules	have	been	removed:	mod_authn_default,
mod_authz_default,	mod_mem_cache.	If	you	were	using
mod_mem_cache	in	2.2,	look	at	mod_cache_disk	in	2.4.
All	load	balancing	implementations	have	been	moved	to
individual,	self-contained	mod_proxy	submodules,	e.g.
mod_lbmethod_bybusyness.	You	might	need	to	build	and
load	any	of	these	that	your	configuration	uses.
Platform	support	has	been	removed	for	BeOS,	TPF,	and	even
older	platforms	such	as	A/UX,	Next,	and	Tandem.	These	were
believed	to	be	broken	anyway.
configure:	dynamic	modules	(DSO)	are	built	by	default
configure:	By	default,	only	a	basic	set	of	modules	is	loaded.
The	other	LoadModule	directives	are	commented	out	in	the
configuration	file.
configure:	the	"most"	module	set	gets	built	by	default
configure:	the	"reallyall"	module	set	adds	developer	modules
to	the	"all"	set

Run-Time	Configuration	Changes

There	have	been	significant	changes	in	authorization
configuration,	and	other	minor	configuration	changes,	that	could
require	changes	to	your	2.2	configuration	files	before	using	them
for	2.4.

Authorization
Any	configuration	file	that	uses	authorization	will	likely	need
changes.

You	should	review	the	Authentication,	Authorization	and	Access
Control	Howto,	especially	the	section	Beyond	just	authorization
which	explains	the	new	mechanisms	for	controlling	the	order	in
which	the	authorization	directives	are	applied.

Directives	that	control	how	authorization	modules	respond	when
they	don't	match	the	authenticated	user	have	been	removed:	This
includes	AuthzLDAPAuthoritative,	AuthzDBDAuthoritative,
AuthzDBMAuthoritative,	AuthzGroupFileAuthoritative,
AuthzUserAuthoritative,	and	AuthzOwnerAuthoritative.	These
directives	have	been	replaced	by	the	more	expressive
RequireAny,	RequireNone,	and	RequireAll.

If	you	use	mod_authz_dbm,	you	must	port	your	configuration	to
use	Require	dbm-group	...	in	place	of	Require	group
....

Access	control
In	2.2,	access	control	based	on	client	hostname,	IP	address,	and
other	characteristics	of	client	requests	was	done	using	the
directives	Order,	Allow,	Deny,	and	Satisfy.

In	2.4,	such	access	control	is	done	in	the	same	way	as	other
authorization	checks,	using	the	new	module	mod_authz_host.

The	old	access	control	idioms	should	be	replaced	by	the	new
authentication	mechanisms,	although	for	compatibility	with	old
configurations,	the	new	module	mod_access_compat	is
provided.

Mixing	old	and	new	directives

Mixing	old	directives	like	Order,	Allow	or	Deny	with	new	ones
like	Require	is	technically	possible	but	discouraged.
mod_access_compat	was	created	to	support	configurations
containing	only	old	directives	to	facilitate	the	2.4	upgrade.
Please	check	the	examples	below	to	get	a	better	idea	about
issues	that	might	arise.

Here	are	some	examples	of	old	and	new	ways	to	do	the	same
access	control.

In	this	example,	there	is	no	authentication	and	all	requests	are
denied.

2.2	configuration:
Order	deny,allow

Deny	from	all

2.4	configuration:
Require	all	denied

In	this	example,	there	is	no	authentication	and	all	requests	are
allowed.

2.2	configuration:
Order	allow,deny

Allow	from	all

2.4	configuration:
Require	all	granted

In	the	following	example,	there	is	no	authentication	and	all	hosts	in
the	example.org	domain	are	allowed	access;	all	other	hosts	are
denied	access.

2.2	configuration:
Order	Deny,Allow

Deny	from	all

Allow	from	example.org

2.4	configuration:
Require	host	example.org

In	the	following	example,	mixing	old	and	new	directives	leads	to
unexpected	results.

Mixing	old	and	new	directives:	NOT	WORKING	AS
EXPECTED
DocumentRoot	"/var/www/html"

<Directory	"/">

				AllowOverride	None

				Order	deny,allow

				Deny	from	all

</Directory>

<Location	"/server-status">

				SetHandler	server-status

				Require	local

</Location>

access.log	-	GET	/server-status	403	127.0.0.1

error.log	-	AH01797:	client	denied	by	server	configuration:	/var/www/html/server-status

Why	httpd	denies	access	to	servers-status	even	if	the

configuration	seems	to	allow	it?	Because	mod_access_compat
directives	take	precedence	over	the	mod_authz_host	one	in	this
configuration	merge	scenario.

This	example	conversely	works	as	expected:

Mixing	old	and	new	directives:	WORKING	AS	EXPECTED
DocumentRoot	"/var/www/html"

<Directory	"/">

				AllowOverride	None

				Require	all	denied

</Directory>

<Location	"/server-status">

				SetHandler	server-status

				Order	deny,allow

				Deny	from	all

				Allow	From	127.0.0.1

</Location>

access.log	-	GET	/server-status	200	127.0.0.1

So	even	if	mixing	configuration	is	still	possible,	please	try	to	avoid
it	when	upgrading:	either	keep	old	directives	and	then	migrate	to
the	new	ones	on	a	later	stage	or	just	migrate	everything	in	bulk.

In	many	configurations	with	authentication,	where	the	value	of	the
Satisfy	was	the	default	of	ALL,	snippets	that	simply	disabled
host-based	access	control	are	omitted:

2.2	configuration:
Order	Deny,Allow

Deny	from	all

AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

Require	valid-user

2.4	configuration:
#	No	replacement	needed

AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

Require	valid-user

In	configurations	where	both	authentication	and	access	control
were	meaningfully	combined,	the	access	control	directives	should
be	migrated.	This	example	allows	requests	meeting	both	criteria:

2.2	configuration:
Order	allow,deny

Deny	from	all

#	Satisfy	ALL	is	the	default

Satisfy	ALL

Allow	from	127.0.0.1

AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

Require	valid-user

2.4	configuration:
AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

<RequireAll>

		Require	valid-user

		Require	ip	127.0.0.1

</RequireAll>

In	configurations	where	both	authentication	and	access	control
were	meaningfully	combined,	the	access	control	directives	should
be	migrated.	This	example	allows	requests	meeting	either	criteria:

2.2	configuration:
Order	allow,deny

Deny	from	all

Satisfy	any

Allow	from	127.0.0.1

AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

Require	valid-user

2.4	configuration:
AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

#	Implicitly	<RequireAny>

Require	valid-user

Require	ip	127.0.0.1

Other	configuration	changes
Some	other	small	adjustments	may	be	necessary	for	particular
configurations	as	discussed	below.

MaxRequestsPerChild	has	been	renamed	to
MaxConnectionsPerChild,	describes	more	accurately
what	it	does.	The	old	name	is	still	supported.
MaxClients	has	been	renamed	to	MaxRequestWorkers,
which	describes	more	accurately	what	it	does.	For	async
MPMs,	like	event,	the	maximum	number	of	clients	is	not
equivalent	than	the	number	of	worker	threads.	The	old	name
is	still	supported.
The	DefaultType	directive	no	longer	has	any	effect,	other
than	to	emit	a	warning	if	it's	used	with	any	value	other	than
none.	You	need	to	use	other	configuration	settings	to	replace
it	in	2.4.
AllowOverride	now	defaults	to	None.
EnableSendfile	now	defaults	to	Off.
FileETag	now	defaults	to	"MTime	Size"	(without	INode).
mod_dav_fs:	The	format	of	the	DavLockDB	file	has	changed
for	systems	with	inodes.	The	old	DavLockDB	file	must	be

deleted	on	upgrade.
KeepAlive	only	accepts	values	of	On	or	Off.	Previously,	any
value	other	than	"Off"	or	"0"	was	treated	as	"On".
Directives	AcceptMutex,	LockFile,	RewriteLock,	SSLMutex,
SSLStaplingMutex,	and	WatchdogMutexPath	have	been
replaced	with	a	single	Mutex	directive.	You	will	need	to
evaluate	any	use	of	these	removed	directives	in	your	2.2
configuration	to	determine	if	they	can	just	be	deleted	or	will
need	to	be	replaced	using	Mutex.
mod_cache:	CacheIgnoreURLSessionIdentifiers	now
does	an	exact	match	against	the	query	string	instead	of	a
partial	match.	If	your	configuration	was	using	partial	strings,
e.g.	using	sessionid	to	match
/someapplication/image.gif;jsessionid=123456789

then	you	will	need	to	change	to	the	full	string	jsessionid.
mod_cache:	The	second	parameter	to	CacheEnable	only
matches	forward	proxy	content	if	it	begins	with	the	correct
protocol.	In	2.2	and	earlier,	a	parameter	of	'/'	matched	all
content.
mod_ldap:	LDAPTrustedClientCert	is	now	consistently	a
per-directory	setting	only.	If	you	use	this	directive,	review	your
configuration	to	make	sure	it	is	present	in	all	the	necessary
directory	contexts.
mod_filter:	FilterProvider	syntax	has	changed	and
now	uses	a	boolean	expression	to	determine	if	a	filter	is
applied.
mod_include:

The	#if	expr	element	now	uses	the	new	expression
parser.	The	old	syntax	can	be	restored	with	the	new
directive	SSILegacyExprParser.
An	SSI*	config	directive	in	directory	scope	no	longer
causes	all	other	per-directory	SSI*	directives	to	be	reset
to	their	default	values.

mod_charset_lite:	The	DebugLevel	option	has	been
removed	in	favour	of	per-module	LogLevel	configuration.
mod_ext_filter:	The	DebugLevel	option	has	been
removed	in	favour	of	per-module	LogLevel	configuration.
mod_proxy_scgi:	The	default	setting	for	PATH_INFO	has
changed	from	httpd	2.2,	and	some	web	applications	will	no
longer	operate	properly	with	the	new	PATH_INFO	setting.	The
previous	setting	can	be	restored	by	configuring	the	proxy-
scgi-pathinfo	variable.
mod_ssl:	CRL	based	revocation	checking	now	needs	to	be
explicitly	configured	through	SSLCARevocationCheck.
mod_substitute:	The	maximum	line	length	is	now	limited	to
1MB.
mod_reqtimeout:	If	the	module	is	loaded,	it	will	now	set
some	default	timeouts.
mod_dumpio:	DumpIOLogLevel	is	no	longer	supported.
Data	is	always	logged	at	LogLevel	trace7.
On	Unix	platforms,	piped	logging	commands	configured	using
either	ErrorLog	or	CustomLog	were	invoked	using
/bin/sh	-c	in	2.2	and	earlier.	In	2.4	and	later,	piped	logging
commands	are	executed	directly.	To	restore	the	old	behaviour,
see	the	piped	logging	documentation.

Misc	Changes

mod_autoindex:	will	now	extract	titles	and	display
descriptions	for	.xhtml	files,	which	were	previously	ignored.
mod_ssl:	The	default	format	of	the	*_DN	variables	has
changed.	The	old	format	can	still	be	used	with	the	new
LegacyDNStringFormat	argument	to	SSLOptions.	The
SSLv2	protocol	is	no	longer	supported.
SSLProxyCheckPeerCN	and
SSLProxyCheckPeerExpire	now	default	to	On,	causing
proxy	requests	to	HTTPS	hosts	with	bad	or	outdated
certificates	to	fail	with	a	502	status	code	(Bad	gateway)
htpasswd	now	uses	MD5	hash	by	default	on	all	platforms.
The	NameVirtualHost	directive	no	longer	has	any	effect,
other	than	to	emit	a	warning.	Any	address/port	combination
appearing	in	multiple	virtual	hosts	is	implicitly	treated	as	a
name-based	virtual	host.
mod_deflate	will	now	skip	compression	if	it	knows	that	the
size	overhead	added	by	the	compression	is	larger	than	the
data	to	be	compressed.
Multi-language	error	documents	from	2.2.x	may	not	work
unless	they	are	adjusted	to	the	new	syntax	of
mod_include's	#if	expr=	element	or	the	directive
SSILegacyExprParser	is	enabled	for	the	directory
containing	the	error	documents.
The	functionality	provided	by	mod_authn_alias	in	previous
versions	(i.e.,	the	AuthnProviderAlias	directive)	has	been
moved	into	mod_authn_core.
The	RewriteLog	and	RewriteLogLevel	directives	have	been
removed.	This	functionality	is	now	provided	by	configuring	the
appropriate	level	of	logging	for	the	mod_rewrite	module
using	the	LogLevel	directive.	See	also	the	mod_rewrite
logging	section.

Third	Party	Modules

All	modules	must	be	recompiled	for	2.4	before	being	loaded.

Many	third-party	modules	designed	for	version	2.2	will	otherwise
work	unchanged	with	the	Apache	HTTP	Server	version	2.4.	Some
will	require	changes;	see	the	API	update	overview.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Common	problems	when	upgrading

Startup	errors:
Invalid	command	'User',	perhaps	misspelled

or	defined	by	a	module	not	included	in	the

server	configuration	-	load	module	mod_unixd
Invalid	command	'Require',	perhaps

misspelled	or	defined	by	a	module	not

included	in	the	server	configuration,	or
Invalid	command	'Order',	perhaps

misspelled	or	defined	by	a	module	not

included	in	the	server	configuration	-	load
module	mod_access_compat,	or	update	configuration
to	2.4	authorization	directives.
Ignoring	deprecated	use	of	DefaultType	in

line	NN	of	/path/to/httpd.conf	-	remove
DefaultType	and	replace	with	other	configuration
settings.
Invalid	command	'AddOutputFilterByType',

perhaps	misspelled	or	defined	by	a	module

not	included	in	the	server	configuration	-
AddOutputFilterByType	has	moved	from	the	core	to
mod_filter,	which	must	be	loaded.

Errors	serving	requests:
configuration	error:	couldn't	check	user:

/path	-	load	module	mod_authn_core.
.htaccess	files	aren't	being	processed	-	Check	for	an
appropriate	AllowOverride	directive;	the	default
changed	to	None	in	2.4.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	2.0			

				.	 					.

				1.3		2.0				 .

1.3	2.0	

https://www.apache.org/foundation/contributing.html

			

	
POSIX						 							.	
		(scalability)	.

		
		 autoconf	 libtool		.						
.

		
								 .	 mod_echo			.

					
Apache	2.0	BeOS,	OS/2,				 			.				
					POSIX			 	API				
(MPM)	Apache	Portable	Runtime	(APR)		.

		API
	API	2.0		.	1.3			 			.	2.0		
	 ,						(hook)		.	 ,					
				 		.

IPv6	
	Apache	Portable	Runtine		IPv6		 			IPv6	
.	,	 Listen,	NameVirtualHost,	VirtualHost		
		.	(,	 "Listen	[2001:db8::1]:8080").

							 			.			
INCLUDES			CGI			 Server	Side	Include			
.	 mod_ext_filter		CGI		 							
		.

		
					SSI		 		.					
	.

	

				.			 	 Port	 BindAddress

	 Listen		 .	 ServerName							

Windows	NT			
Windows	NT	Apache	2.0					 utf-8	.		
			 ,	Windows	2000	Windows	XP			Windows
NT	 			.	 		Windows	95,	 98,	ME	,		
			 		.

		Updated
Apache	2.0	 Perl	 		(Perl	Compatible	Regular	Expression
Library)	(PCRE)	.				 		Perl	5				.

http://www.pcre.org/

		

mod_ssl

Apache	2.0		.			OpenSSL	 	SSL/TLS			
.

mod_dav

Apache	2.0		.				 		HTTP	Distributed
Authoring	and	Versioning	(DAV)		.

mod_deflate

Apache	2.0		.			 						

mod_auth_ldap

Apache	2.0.41		.			HTTP	 Basic	Authentication
		LDAP		 .		 mod_ldap		 (connection	pool)	,	
	.

mod_auth_digest

					.

mod_charset_lite

Apache	2.0		.				 					.

mod_file_cache

Apache	2.0		.			Apache	1.3	 mod_mmap_static

					 .

mod_headers

		Apache	2.0		.		 mod_proxy					
,							.

mod_proxy

									 HTTP/1.1				.		
<Proxy>							()	.	
<Directory	"proxy:...">				.	
proxy_connect,	proxy_ftp,	proxy_http		 		
.

mod_negotiation

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	 ForceLanguagePriority			NOT	ACCEPTABLE
MULTIPLE	CHOICES								.		
MultiViews					 	,								
map	.

mod_autoindex

								 	HTML					,		
		 				,				 		.

mod_include

			SSI					 				,			SSI	
					.	mod_include	(Perl)		
	 	 mod_include	 $0	...	$9				.

mod_auth_dbm

	 AuthDBMType				DBM		.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

The	Apache	License,	Version	2.0

Apache	License
Version	2.0,	January	2004

http://www.apache.org/licenses/

TERMS	AND	CONDITIONS	FOR	USE,	REPRODUCTION,	AND
DISTRIBUTION

1.	 Definitions

"License"	shall	mean	the	terms	and	conditions	for	use,
reproduction,	and	distribution	as	defined	by	Sections	1	through	9
of	this	document.

"Licensor"	shall	mean	the	copyright	owner	or	entity	authorized	by
the	copyright	owner	that	is	granting	the	License.

"Legal	Entity"	shall	mean	the	union	of	the	acting	entity	and	all
other	entities	that	control,	are	controlled	by,	or	are	under	common
control	with	that	entity.	For	the	purposes	of	this	definition,
"control"	means	(i)	the	power,	direct	or	indirect,	to	cause	the
direction	or	management	of	such	entity,	whether	by	contract	or
otherwise,	or	(ii)	ownership	of	fifty	percent	(50%)	or	more	of	the
outstanding	shares,	or	(iii)	beneficial	ownership	of	such	entity.

"You"	(or	"Your")	shall	mean	an	individual	or	Legal	Entity
exercising	permissions	granted	by	this	License.

"Source"	form	shall	mean	the	preferred	form	for	making
modifications,	including	but	not	limited	to	software	source	code,
documentation	source,	and	configuration	files.

"Object"	form	shall	mean	any	form	resulting	from	mechanical
transformation	or	translation	of	a	Source	form,	including	but	not

http://www.apache.org/licenses/

limited	to	compiled	object	code,	generated	documentation,	and
conversions	to	other	media	types.

"Work"	shall	mean	the	work	of	authorship,	whether	in	Source	or
Object	form,	made	available	under	the	License,	as	indicated	by	a
copyright	notice	that	is	included	in	or	attached	to	the	work	(an
example	is	provided	in	the	Appendix	below).

"Derivative	Works"	shall	mean	any	work,	whether	in	Source	or
Object	form,	that	is	based	on	(or	derived	from)	the	Work	and	for
which	the	editorial	revisions,	annotations,	elaborations,	or	other
modifications	represent,	as	a	whole,	an	original	work	of
authorship.	For	the	purposes	of	this	License,	Derivative	Works
shall	not	include	works	that	remain	separable	from,	or	merely	link
(or	bind	by	name)	to	the	interfaces	of,	the	Work	and	Derivative
Works	thereof.

"Contribution"	shall	mean	any	work	of	authorship,	including	the
original	version	of	the	Work	and	any	modifications	or	additions	to
that	Work	or	Derivative	Works	thereof,	that	is	intentionally
submitted	to	Licensor	for	inclusion	in	the	Work	by	the	copyright
owner	or	by	an	individual	or	Legal	Entity	authorized	to	submit	on
behalf	of	the	copyright	owner.	For	the	purposes	of	this	definition,
"submitted"	means	any	form	of	electronic,	verbal,	or	written
communication	sent	to	the	Licensor	or	its	representatives,
including	but	not	limited	to	communication	on	electronic	mailing
lists,	source	code	control	systems,	and	issue	tracking	systems
that	are	managed	by,	or	on	behalf	of,	the	Licensor	for	the
purpose	of	discussing	and	improving	the	Work,	but	excluding
communication	that	is	conspicuously	marked	or	otherwise
designated	in	writing	by	the	copyright	owner	as	"Not	a
Contribution."

"Contributor"	shall	mean	Licensor	and	any	individual	or	Legal
Entity	on	behalf	of	whom	a	Contribution	has	been	received	by

Licensor	and	subsequently	incorporated	within	the	Work.

2.	 Grant	of	Copyright	License.	Subject	to	the	terms	and
conditions	of	this	License,	each	Contributor	hereby	grants	to	You
a	perpetual,	worldwide,	non-exclusive,	no-charge,	royalty-free,
irrevocable	copyright	license	to	reproduce,	prepare	Derivative
Works	of,	publicly	display,	publicly	perform,	sublicense,	and
distribute	the	Work	and	such	Derivative	Works	in	Source	or
Object	form.

3.	 Grant	of	Patent	License.	Subject	to	the	terms	and	conditions	of
this	License,	each	Contributor	hereby	grants	to	You	a	perpetual,
worldwide,	non-exclusive,	no-charge,	royalty-free,	irrevocable
(except	as	stated	in	this	section)	patent	license	to	make,	have
made,	use,	offer	to	sell,	sell,	import,	and	otherwise	transfer	the
Work,	where	such	license	applies	only	to	those	patent	claims
licensable	by	such	Contributor	that	are	necessarily	infringed	by
their	Contribution(s)	alone	or	by	combination	of	their
Contribution(s)	with	the	Work	to	which	such	Contribution(s)	was
submitted.	If	You	institute	patent	litigation	against	any	entity
(including	a	cross-claim	or	counterclaim	in	a	lawsuit)	alleging	that
the	Work	or	a	Contribution	incorporated	within	the	Work
constitutes	direct	or	contributory	patent	infringement,	then	any
patent	licenses	granted	to	You	under	this	License	for	that	Work
shall	terminate	as	of	the	date	such	litigation	is	filed.

4.	 Redistribution.	You	may	reproduce	and	distribute	copies	of	the
Work	or	Derivative	Works	thereof	in	any	medium,	with	or	without
modifications,	and	in	Source	or	Object	form,	provided	that	You
meet	the	following	conditions:

a.	 You	must	give	any	other	recipients	of	the	Work	or	Derivative
Works	a	copy	of	this	License;	and

b.	 You	must	cause	any	modified	files	to	carry	prominent	notices
stating	that	You	changed	the	files;	and

c.	 You	must	retain,	in	the	Source	form	of	any	Derivative	Works
that	You	distribute,	all	copyright,	patent,	trademark,	and
attribution	notices	from	the	Source	form	of	the	Work,
excluding	those	notices	that	do	not	pertain	to	any	part	of	the
Derivative	Works;	and

d.	 If	the	Work	includes	a	"NOTICE"	text	file	as	part	of	its
distribution,	then	any	Derivative	Works	that	You	distribute
must	include	a	readable	copy	of	the	attribution	notices
contained	within	such	NOTICE	file,	excluding	those	notices
that	do	not	pertain	to	any	part	of	the	Derivative	Works,	in	at
least	one	of	the	following	places:	within	a	NOTICE	text	file
distributed	as	part	of	the	Derivative	Works;	within	the	Source
form	or	documentation,	if	provided	along	with	the	Derivative
Works;	or,	within	a	display	generated	by	the	Derivative
Works,	if	and	wherever	such	third-party	notices	normally
appear.	The	contents	of	the	NOTICE	file	are	for	informational
purposes	only	and	do	not	modify	the	License.	You	may	add
Your	own	attribution	notices	within	Derivative	Works	that	You
distribute,	alongside	or	as	an	addendum	to	the	NOTICE	text
from	the	Work,	provided	that	such	additional	attribution
notices	cannot	be	construed	as	modifying	the	License.

You	may	add	Your	own	copyright	statement	to	Your	modifications
and	may	provide	additional	or	different	license	terms	and
conditions	for	use,	reproduction,	or	distribution	of	Your
modifications,	or	for	any	such	Derivative	Works	as	a	whole,
provided	Your	use,	reproduction,	and	distribution	of	the	Work
otherwise	complies	with	the	conditions	stated	in	this	License.

5.	 Submission	of	Contributions.	Unless	You	explicitly	state
otherwise,	any	Contribution	intentionally	submitted	for	inclusion	in
the	Work	by	You	to	the	Licensor	shall	be	under	the	terms	and
conditions	of	this	License,	without	any	additional	terms	or
conditions.	Notwithstanding	the	above,	nothing	herein	shall

supersede	or	modify	the	terms	of	any	separate	license
agreement	you	may	have	executed	with	Licensor	regarding	such
Contributions.

6.	 Trademarks.	This	License	does	not	grant	permission	to	use	the
trade	names,	trademarks,	service	marks,	or	product	names	of	the
Licensor,	except	as	required	for	reasonable	and	customary	use	in
describing	the	origin	of	the	Work	and	reproducing	the	content	of
the	NOTICE	file.

7.	 Disclaimer	of	Warranty.	Unless	required	by	applicable	law	or
agreed	to	in	writing,	Licensor	provides	the	Work	(and	each
Contributor	provides	its	Contributions)	on	an	"AS	IS"	BASIS,
WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,
either	express	or	implied,	including,	without	limitation,	any
warranties	or	conditions	of	TITLE,	NON-INFRINGEMENT,
MERCHANTABILITY,	or	FITNESS	FOR	A	PARTICULAR
PURPOSE.	You	are	solely	responsible	for	determining	the
appropriateness	of	using	or	redistributing	the	Work	and	assume
any	risks	associated	with	Your	exercise	of	permissions	under	this
License.

8.	 Limitation	of	Liability.	In	no	event	and	under	no	legal	theory,
whether	in	tort	(including	negligence),	contract,	or	otherwise,
unless	required	by	applicable	law	(such	as	deliberate	and	grossly
negligent	acts)	or	agreed	to	in	writing,	shall	any	Contributor	be
liable	to	You	for	damages,	including	any	direct,	indirect,	special,
incidental,	or	consequential	damages	of	any	character	arising	as
a	result	of	this	License	or	out	of	the	use	or	inability	to	use	the
Work	(including	but	not	limited	to	damages	for	loss	of	goodwill,
work	stoppage,	computer	failure	or	malfunction,	or	any	and	all
other	commercial	damages	or	losses),	even	if	such	Contributor
has	been	advised	of	the	possibility	of	such	damages.

9.	 Accepting	Warranty	or	Additional	Liability.	While	redistributing
the	Work	or	Derivative	Works	thereof,	You	may	choose	to	offer,
and	charge	a	fee	for,	acceptance	of	support,	warranty,	indemnity,

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

or	other	liability	obligations	and/or	rights	consistent	with	this
License.	However,	in	accepting	such	obligations,	You	may	act
only	on	Your	own	behalf	and	on	Your	sole	responsibility,	not	on
behalf	of	any	other	Contributor,	and	only	if	You	agree	to
indemnify,	defend,	and	hold	each	Contributor	harmless	for	any
liability	incurred	by,	or	claims	asserted	against,	such	Contributor
by	reason	of	your	accepting	any	such	warranty	or	additional
liability.

END	OF	TERMS	AND	CONDITIONS

APPENDIX:	How	to	apply	the	Apache	License	to	your	work.

To	apply	the	Apache	License	to	your	work,	attach	the	following
boilerplate	notice,	with	the	fields	enclosed	by	brackets	"[]"	replaced
with	your	own	identifying	information.	(Don't	include	the	brackets!)
The	text	should	be	enclosed	in	the	appropriate	comment	syntax	for
the	file	format.	We	also	recommend	that	a	file	or	class	name	and
description	of	purpose	be	included	on	the	same	"printed	page"	as	the
copyright	notice	for	easier	identification	within	third-party	archives.

Copyright	[yyyy]	[name	of	copyright	owner]

Licensed	under	the	Apache	License,	Version	2.0	(the	"License");

you	may	not	use	this	file	except	in	compliance	with	the	License.

You	may	obtain	a	copy	of	the	License	at

				http://www.apache.org/licenses/LICENSE-2.0

Unless	required	by	applicable	law	or	agreed	to	in	writing,	software

distributed	under	the	License	is	distributed	on	an	"AS	IS"	BASIS,

WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.

See	the	License	for	the	specific	language	governing	permissions	and

limitations	under	the	License.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

							 		.					
		 		.

	2.0				1.3		.	 	1.3						.	
2.0								 	 libtool	 autoconf

					(,	 2.0.50	2.0.51),	 				.

		
	
		

https://www.apache.org/foundation/contributing.html

				

$	lynx	http://httpd.apache.org/download.cgi

$	gzip	-d	httpd-2_1_NN.tar.gz

$	tar	xvf	httpd-2_1_NN.tar

$./configure	--prefix=PREFIX

$	make

$	make	install

$	vi	PREFIX/conf/httpd.conf

$	PREFIX/bin/apachectl	start

NN				,	 PREFIX						.	 PREFIX
		 /usr/local/apache2	.

						 					.

					:

	
			50	MB		.	 			10	MB			.	
							 			.

ANSI-C			
ANSI-C			.	 Free	Software	Foundation	(FSF)	GNU	C
compiler	(GCC)	.	(2.7.2	.)	GCC	 			
ANSI		.	 	 PATH		 make						.

	
HTTP						.		 						.
	 		Network	Time	Protocol	(NTP)		 ntpdate	 xntpd

.	 NTP								 comp.protocols.time.ntp
NTP		.

Perl	5	[]
(Perl)	 apxs	dbmmanage		 			Perl	5		.
(5.003		.)	` configure'		 						2.0	
			.					 	.		Perl			(
Perl	4			Perl	5)	 ./configure				 --with-

perl		()		.

http://www.gnu.org/
http://www.gnu.org/software/gcc/gcc.html
news:comp.protocols.time.ntp
http://www.ntp.org
http://www.perl.org/

					 		 	 			.			
.		 ()			,					 		.	,				
			 .					 INSTALL.bindist			.

				 					.	
	.	 		 	 	,	 PGP	 				.

http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi#verify
http://httpd.apache.org/dev/verification.html

	

								 tar		:

$	gzip	-d	httpd-2_1_NN.tar.gz

$	tar	xvf	httpd-2_1_NN.tar

							 		.					

		

								 			.						
configure		.	(CVS					
libtool	,	 				 buildconf		 .				
.)

								 ./configure	.			
./configure					.

							 			
							 .

					 	.	 Base					.			
module			 .		 module			 mod_					.
--enable-module=shared			 						
object,	DSO)	.	 ,	 --disable-module			 Base			
.				 configure				 			.

	 configure		,	 ,							.	
configure			 	.			 configure	manpage

							 					DSO		
mod_rewrite	mod_speling		 /sw/pkg/apache			
	:

$	CC="pgcc"	CFLAGS="-O2"	\

./configure	--prefix=/sw/pkg/apache	\

--enable-rewrite=shared	\

--enable-speling=shared

configure					 					Makefile	

configure					 configure	manpage	.

								 	:

$	make

		.		III/	2.2		 				3		.			
		.

				(--prefix)				 PREFIX	:

$	make	install

							 	.

	 PREFIX/conf/		 			 	.

$	vi	PREFIX/conf/httpd.conf

	 	 									 docs/manual/
http://httpd.apache.org/docs/2.4/				 .

http://httpd.apache.org/docs/2.4/

					 		:

$	PREFIX/bin/apachectl	start

	URL	 http://localhost/			 .			
PREFIX/htdocs/	 DocumentRoot		.		 				

$	PREFIX/bin/apachectl	stop

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

								 					
,	1.3	2.0	2.0	2.2)										
		.				API		 		.

					(,	 2.0.55	2.0.57)	.	 make	install

	 	,	,			.	,	 			
				.			 	 configure	,			
			.	(2.0.41		.				

				,			 .					
			 configure				.					
config.nice		,	 				,			:

$./config.nice

$	make

$	make	install

$	PREFIX/bin/apachectl	stop

$	PREFIX/bin/apachectl	start

						 .		,						
prefix	(Listen)			 								
.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

		Windows	NT,	2000,	XP	,	 Windows	95	ME			.
	 	 	 	 	 		 	 .

	 httpd							 .			 httpd

		
httpd
apachectl

https://www.apache.org/foundation/contributing.html

		

	 Listen		80(1024)					
					 			,				
httpd			root		,	 						.		
.

apachectl			 httpd			 .			
	 	 httpd		.	 apachectl				,	
	 apachectl	.	,	 apachectl			 	 HTTPD

	 					 		.

httpd			 	httpd.conf		.						,		
	 -f					.

/usr/local/apache2/bin/apachectl	-f

/usr/local/apache2/conf/httpd.conf

			,			 					.			
	 DocumentRoot			 					()			

	

					,	 						
			 	" Unable	to	bind	to	Port	...".	 			
		:

root							 		.	
						 			.

				 FAQ	.

	

						,	 	(rc.local

	 apachectl		 .				root	.				
		.

apachectl		SysV	init			 	.			
restart,	stop				 	 httpd	.			 apachectl

	init			.	 					.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

httpd	 apachectl,			 					 		 		
	 			 			.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

							 	.		NT,	2000,	XP		
ME		 		 	 						.

httpd
apachectl

https://www.apache.org/foundation/contributing.html

					 httpd				.		
kill							.	 		 httpd

pid			 		(signal)		.	,		
.		 				,			 TERM,	HUP,	USR1.

				:

kill	-TERM	`cat	/usr/local/apache2/logs/httpd.pid`

httpd						 		 -k		.			
restart,	graceful	httpd		.	 			
apachectl		 	.

httpd		,			 			:

tail	-f	/usr/local/apache2/logs/error_log

			 ServerRoot	 PidFile			.

	

:	TERM
apachectl	-k	stop

TERM	 stop			 				.				
		.			 ,				.

	

:	USR1
apachectl	-k	graceful

USR1	 graceful		 							
)	 .			 			.				
	 				.

	(graceful	restart)	 USR1						(WINCH)	
			.	 apachectl	graceful				.

			MPM					 ,						
.		 StartServers,			 	StartServers				
StartServers				.	,			 					,
StartServers				 	.

mod_status		 USR1				0		 		 .				(
)				 					.	
				 scoreboard	.

status								 				 G

	 USR1				 								
	 						.		 								10	
			15	.

						 			.	,					
("	".)				 	.					
	.	 	 -t		(httpd)		 			.				
	 		.					 	root			
root		(httpd)				
		.		 						.	

	

:	HUP
apachectl	-k	restart

HUP	 restart		 		 TERM				 			.		
	 		.						 .

mod_status		 HUP				0				.

											.					
.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

:			

Apache	1.2b9						 	(race	condition) 	.	(
	,					 					.)	""	
			.	 							

ScoreBoardFile				scoreboard			
"bind:	Address	already	in	use"		(USR1)	"long	lost	child	came
home!"	 		.			,				 scoreboard	slot		
.					 			.					
scoreboard		 	.				 ScoreBoardFile

			HTTP		(KeepAlive)	 								
									 .						1.2			
					KeepAlive	 							
		20			 							

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

				.	 					.

						.

	 	
mod_mime <IfDefine>

Include

TypesConfig

				 			 .			 httpd.conf	 .				
,	 -f					.				 Include				
					 .							.	
	 .

	mime				.		 TypesConfig		 ,		
.

	

					.			 		"\"					.	
						.

				,		 				.		"#"	
				 			 .					 	,				(indent)
	.

apachectl	configtest	 -t		 							
	.

	 	
mod_so <IfModule>

LoadModule

		.					 			.		
	 base		.	 	 	 		 								
	 		.						 			.			
		 						.

						 -l			.

	

	

<Directory>

<DirectoryMatch>

<Files>

<FilesMatch>

<Location>

<LocationMatch>

<VirtualHost>

					.		 					
<DirectoryMatch>,	<Files>,	<FilesMatch>,	<Location>,
<LocationMatch>			.	 							
		.	,						 			.

						 	.		 	.	 	 <VirtualHost>

						.

					,			 			.						
				.		 							
Directory,	Location,	Files		 	.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

.htaccess	

	

AccessFileName

AllowOverride

					 ()			.					
	 AccessFileName		 		.	 .htaccess				
		.	 .htaccess					 .	
						.

		 .htaccess				 			 	.			
AllowOverride		 .htaccess							 		.

.htaccess						 .htaccess		.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

					,		,	,	,	URL			.				
					 .htaccess				.

		

	 	
core

mod_proxy

<Directory>

<DirectoryMatch>

<Files>

<FilesMatch>

<IfDefine>

<IfModule>

<Location>

<LocationMatch>

<Proxy>

<ProxyMatch>

<VirtualHost>

			.			.						.	,
<IfDefine>	 <IfModule>				.					
			.						.

<IfDefine>		 httpd									.		
		,		 httpd	-DClosedForNow						
:

<IfDefine	ClosedForNow>

Redirect	/	http://otherserver.example.com/

</IfDefine>

<IfModule>														
.									 LoadModule

									.								
							.

		 mod_mime_magic		 MimeMagicFiles		.

<IfModule	mod_mime_magic.c>

MimeMagicFile	conf/magic

</IfModule>

<IfDefine>	<IfModule>			"!"						.	,
									.

	

						(webspace)						.	
					.						.		,			
				 /usr/local/apache2,				 "c:/Program

Files/Apache	Group/Apache2"	.	(,		
,			.)								.					
					 /dir/		
/usr/local/apache2/htdocs/dir/	.					
							.

	
<Directory>	<Files>									.
<Directory>										.	 .htaccess	
		.				,		(index)	 /var/web/dir1

	(index)	.

<Directory	/var/web/dir1>

Options	+Indexes

</Directory>

<Files>												.		
				,			 private.html					.

<Files	private.html>

Order	allow,deny

Deny	from	all

</Files>

						 <Files>	 <Directory>			.		
		,	 /var/web/dir1/private.html,
/var/web/dir1/subdir2/private.html,
/var/web/dir1/subdir3/private.html	
/var/web/dir1/					 private.html			.

<Directory	/var/web/dir1>

<Files	private.html>

Order	allow,deny

Deny	from	all

</Files>

</Directory>

	
<Location>											.		
	,	/private		URL-		.	
http://yoursite.example.com/private,
http://yoursite.example.com/private123,
http://yoursite.example.com/private/dir/file.html

	 /private				.

<Location	/private>

Order	Allow,Deny

Deny	from	all

</Location>

<Location>					.					URL
mod_status						.		 server-status	
.

<Location	/server-status>

SetHandler	server-status

</Location>

	
<Directory>,	<Files>,	<Location>		C			 fnmatch

							.	"*"				,	"?"				
,	"[seq]"	 seq				.			"/"			.				
	.

				perl	 		 <DirectoryMatch>,	<FilesMatch>,

<LocationMatch>			.									
					.

									:

<Directory	/home/*/public_html>

Options	Indexes

</Directory>

											:

<FilesMatch	\.(?i:gif|jpe?g|png)$>

Order	allow,deny

Deny	from	all

</FilesMatch>

	
										.						
<Directory>	<Files>	.	()					
	 <Location>	.

					 <Location>			.				(URL)
						,						.				:

<Location	/dir/>

Order	allow,deny

Deny	from	all

</Location>

		 http://yoursite.example.com/dir/			.	
				?	 http://yoursite.example.com/DIR/

					.		 <Directory>								
	.	(.										.
<Directory>			.							 Options	
			.)

											.						
							.							.			
		.			 <Location	/>						URL		
			.

<VirtualHost>						.						
				.				 	 	.

<Proxy>	<ProxyMatch>			URL		 mod_proxy		
			.				,				 cnn.com

<Proxy	http://cnn.com/*>

Order	allow,deny

Deny	from	all

</Proxy>

					?

									 	.	 <Directory>		
<DirectoryMatch>,	<Files>,	<FilesMatch>,	<Location>,
<LocationMatch>,	<Proxy>,	<ProxyMatch>		.	,	
:

AllowOverride		<Directory>				.
FollowSymLinks,	SymLinksIfOwnerMatch,	Options
<Directory>		.htaccess				.
Options		<Files>	<FilesMatch>				.

		

					.													
	.

	:

1.	 ()	 <Directory>	 .htaccess			(
.htaccess	<Directory>)

2.	 <DirectoryMatch>	(<Directory	~>)

3.	 <Files>	 <FilesMatch>		

4.	 <Location>	 <LocationMatch>		

<Directory>				 			.	(1)
<Directory>		 					.			,
<Directory	/var/web/dir>	<Directory
/var/web/dir/subdir>		 .					 <Directory>

				.	 Include				 Include

		.

<VirtualHost>					 						 	.	
					.

mod_proxy		,	 <Proxy>		 	 <Directory>		.

						.

	
	 <Location>/<LocationMatch>	(Aliases
DocumentRoot		 URL)				.	
	.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

				.							A	>	B	>	C	>	D	>	E		
.

<Location	/>

E

</Location>

<Files	f.html>

D

</Files>

<VirtualHost	*>

<Directory	/a/b>

B

</Directory>

</VirtualHost>

<DirectoryMatch	"^.*b$">

C

</DirectoryMatch>

<Directory	/a/b>

A

</Directory>

				.	 <Location>				 <Directory>		
					.	,				!

<Location	/>

Order	deny,allow

Allow	from	all

</Location>

#	!	 	<Directory>				

<Directory	/>

Order	allow,deny

Allow	from	all

Deny	from	badguy.example.com

</Directory>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		

				.	 					.

		 core									.

	

	

ServerName

ServerAdmin

ServerSignature

ServerTokens

UseCanonicalName

ServerAdmin	ServerTokens		 									
.	 ServerTokens			HTTP			.

	 ServerName	UseCanonicalName				URL	.		
,	 						 								
		 		.

	

	

CoreDumpDirectory

DocumentRoot

ErrorLog

LockFile

PidFile

ScoreBoardFile

ServerRoot

						 			.		(/)		
		.	root				 				.				

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

	

LimitRequestBody

LimitRequestFields

LimitRequestFieldsize

LimitRequestLine

RLimitCPU

RLimitMEM

RLimitNPROC

ThreadStackSize

LimitRequest*			 						.		
of	service)		 		.

RLimit*				 				.		CGI	
		.

ThreadStackSize					Netware	.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

				.	 					.

							 				.					
.						 				.

	

						 	(root)			uid				
						 	 .			 	 		.

,							 .							
		.

		(Error	Log)

	

ErrorLog

LogLevel

ErrorLog		 								.	
			 		.					 							
		.

			(error_log,		OS/2	
		 		 syslog	 	 		 			.

					.		 							.	
			.

[Wed	Oct	11	14:32:52	2000]	[error]	[client	127.0.0.1]	client

denied	by	server	configuration:

/export/home/live/ap/htdocs/test

					.		 				.	
					.			 			IP	.				
				 	.			()	

								.	 		.	CGI					
.	CGI		 stderr		 				.

						.		 					 	
,			 	403				.			 								
				.

								 	.					:

tail	-f	error_log

		(Access	Log)

	 	
mod_log_config

mod_setenvif

CustomLog

LogFormat

SetEnvIf

							.	 CustomLog						.
LogFormat		 							.			 				
		.

									 .									
.								,	 						.		
		 					 Open	Directory	.

			mod_log_referer,	mod_log_agent,	 CustomLog

				.		 CustomLog						.

					.		C	 printf(1)						
	.			 			 mod_log_config		.

Common		
					.

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common

CustomLog	logs/access_log	common

				 	common	.			 	,					.	
					.	 	(")				
	 	" \n",		" \t"		 				.

CustomLog			 				 .					
ServerRoot	.

		(Common	Log	Format,	CLF)	 			.					

http://dmoz.org/Computers/Software/Internet/Site_Management/Log_Analysis/

			,					 		.	 CLF					:

127.0.0.1	-	frank	[10/Oct/2000:13:55:36	-0700]	"GET

/apache_pb.gif	HTTP/1.0"	200	2326

					.

127.0.0.1	(%h)
			()	IP	 .	 HostnameLookups

IP			 	.									 		.		
		 logresolve							.	 		IP			
			 		.					,	 					
	.

-	(%l)
	""				.	 							
		RFC	1413	 .						,		
			 .	 IdentityCheck	On						

frank	(%u)
	HTTP						 userid.				CGI	
REMOTE_USER		.		 	401	()				
			.			 							

[10/Oct/2000:13:55:36	-0700]	(%t)
			.	 :

[day/month/year:hour:minute:second	zone]

day	=		2

month	=		3

year	=		4

hour	=		2

minute	=		2

second	=		2

zone	=	(`+'	|	`-')		4

		 %{format}t		 					.	
	 strftime(3)	.

"GET	/apache_pb.gif	HTTP/1.0"	(\"%r\")
			.		 				.	,			
		 /apache_pb.gif	.	,		 HTTP/1.0

				.		,		 "%m	%U%q	%H"	" %r"		
,	,		.

200	(%>s)
				.		 	(2)		,	(4	
	,	(5)						.	 			
(RFC2616	section	10)			.

2326	(%b)
						 			.			
	 		" 0"			 %B	.

Combined		
				(Combined	 Log	Format).			.

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-

agent}i\""	combined

CustomLog	log/access_log	combined

								Common	 			.				
%{header}i	.		 header		 HTTP						 .		
				:

127.0.0.1	-	frank	[10/Oct/2000:13:55:36	-0700]	"GET

/apache_pb.gif	HTTP/1.0"	200	2326

"http://www.example.com/start.html"	"Mozilla/4.08	[en]	(Win98;

I	;Nav)"

	:

"http://www.example.com/start.html"	(\"%
{Referer}i\")

"Referer"	()	HTTP		.	 				.	
/apache_pb.gif			 .)

"Mozilla/4.08	[en]	(Win98;	I	;Nav)"	(\"%{User-
agent}i\")

User-Agent	HTTP		.			 			.

		
		 CustomLog		 				.		,		
.			CLF		 ,			referer			
		 	 ReferLog	 AgentLog		 				.

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common

CustomLog	logs/access_log	common

CustomLog	logs/referer_log	"%{Referer}i	->	%U"

CustomLog	logs/agent_log	"%{User-agent}i"

,			 LogFormat		 				.		 CustomLog

				.

	
								 			.	 			.	,		
		 		.				 SetEnvIf	.	 	
env=				 			.		:

#	loop-back			

SetEnvIf	Remote_Addr	"127\.0\.0\.1"	dontlog

#	robots.txt				

SetEnvIf	Request_URI	"^/robots\.txt$"	dontlog

#			

CustomLog	logs/access_log	common	env=!dontlog

							,	 							

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

SetEnvIf	Accept-Language	"en"	english

CustomLog	logs/english_log	common	env=english

CustomLog	logs/non_english_log	common	env=!english

				,			 				.			
.				 					.

		(Log	Rotation)

							 .						1MB		.		
						 		.						
			 	.						 ,				

					 									.	
					 				.			
.		 			,				 	:

mv	access_log	access_log.old

mv	error_log	error_log.old

apachectl	graceful

sleep	600

gzip	access_log.old	error_log.old

							 	 		.

		

								 							.		
					 			.					
				.			 					,		
	.	("				"	 .)

						httpd		 ,		userid	.	,				
	root	.				 				.

						.	 					,			.

								 			.					
		 	.			24		:

CustomLog	"|/usr/local/apache/bin/rotatelogs

/var/log/access_log	86400"	common

		 cronolog		 						.

							,	 									

http://www.cronolog.org/

	 			 						.	,	 						
.	 <VirtualHost>		 										
	.					 			.

<VirtualHost>			 CustomLog	ErrorLog		 			
			 	.							 			.					
			,					 .	,	 	

						.			 								
					.		 ,			.

LogFormat	"%v	%l	%u	%t	\"%r\"	%>s	%b"	comonvhost

CustomLog	logs/access_log	comonvhost

%v					 .		 split-logfile								.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

	 	
mod_cgi

mod_rewrite

PidFile

RewriteLog

RewriteLogLevel

ScriptLog

ScriptLogBuffer

ScriptLogLength

PID	
			 logs/httpd.pid			httpd		process	id	.		
	 PidFile				.	process-id				 				
.	 		-k		.			 	 	 		 .

	
		 ScriptLog			 CGI						.			
	.				 	.				 mod_cgi		.

	
mod_rewrite		 							 RewriteLog

.								 		.		
RewriteLogLevel		 .

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

URL			

				.	 					.

			URL					 				.

		

	 	
mod_alias

mod_proxy

mod_rewrite

mod_userdir

mod_speling

mod_vhost_alias

Alias

AliasMatch

CheckSpelling

DocumentRoot

ErrorDocument

Options

ProxyPass

ProxyPassReverse

ProxyPassReverseCookieDomain

ProxyPassReverseCookiePath

Redirect

RedirectMatch

RewriteCond

RewriteMatch

ScriptAlias

ScriptAliasMatch

UserDir

DocumentRoot

							 		URL-(URL				
	 DocumentRoot		.		 DocumentRoot		 				
	.

DocumentRoot			

		 DocumentRoot				 			.						
		.					 			 DocumentRoot

				 Options		 FollowSymLinks

SymLinksIfOwnerMatch				 .

,	 Alias						.		 		

Alias	/docs	/var/web

URL	http://www.example.com/docs/dir/file.html
/var/web/dir/file.html		.	 					CGI	
			 	 ScriptAlias				.

AliasMatch	ScriptAliasMatch								
	.		,

ScriptAliasMatch	^/~([a-zA-Z0-9]+)/cgi-bin/(.+)	/home/$1/cgi-

bin/$2

	 http://example.com/~user/cgi-bin/script.cgi	 	
	 /home/user/cgi-bin/script.cgi	,			CGI		.

	

					 user		 ~user/	.	 mod_userdir			
	 ,			URL					 			.

http://www.example.com/~user/file.html

								 .		 UserDir						
	 .			 Userdir	public_html		 /home/user/

/etc/passwd		 	,		URL	
/home/user/public_html/file.html	.

,	 Userdir		 /etc/passwd								
.

		(%7e)	 "~"								
mod_userdir	.		 				,	
			.		,		 AliasMatch		
http://www.example.com/upages/user/file.html

/home/user/public_html/file.html	:

AliasMatch	^/upages/([a-zA-Z0-9]+)/?(.*)

/home/$1/public_html/$2

URL	(Redirection)

							 					.		
URL			,	 			URL						
(redirection)	,	 Redirect		 .		,	 DocumentRoot

/foo/				 /bar/			 						:

Redirect	permanent	/foo/	http://www.example.com/bar/

	 www.example.com		 /foo/		URL-	 /foo/	 /bar/

URL	.					 				.

,							 RedirectMatch		.		,		
			 					:

RedirectMatch	permanent	^/$

http://www.example.com/startpage.html

								 :

RedirectMatch	temp	.*

http://othersite.example.com/startpage.html

(Reverse	Proxy)

						URL				.							
								 (reverse	proxying)
							.

			 /foo/			,		 internal.example.com

/bar/										.

ProxyPass	/foo/	http://internal.example.com/bar/

ProxyPassReverse	/foo/	http://internal.example.com/bar/

ProxyPass					,	 ProxyPassReverse	
internal.example.com										
.	,	 ProxyPassReverseCookieDomain

ProxyPassReverseCookieDomain							
.

							.	 internal.example.com		
				 internal.example.com			.		
mod_proxy_html			HTML	XHTML					.

http://apache.webthing.com/mod_proxy_html/

		(Rewriting	Engine)

				 mod_rewrite				.						
							 				.	,	mod_rewrite		
				 			.						
(alias),		,	 ,		.	mod_rewrite				

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

File	Not	Found

		URL					 	.				.				
				.				 URL				 				.		
		 				.

"File	Not	Found"						 		HTML		URL		
	.		 mod_speling	()		 			.			
"File	Not	Found"								.	 	
mod_speling				 HTTP	.	""				

mod_speling						 		.				URL	
						 .		mod_speling		URL	,	""	
URL					 			.

					HTTP	status	code	404	 (file	not	found)		.
			 ErrorDocument		 ,	 		 					.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Miscellaneous	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

							.	 		,					.

	

								 	.							
.					 	.				,	

			.	 							

							 	.			,	CGI	,			
		.				 				.

http://httpd.apache.org/lists.html#http-announce

ServerRoot		

	root				,			 User		 		.	root			,
root						.		 	root				,				
	,	ServerRoot	/usr/local/apache	 	root						

mkdir	/usr/local/apache	

cd	/usr/local/apache	

mkdir	bin	conf	logs	

chown	0	.	bin	conf	logs	

chgrp	0	.	bin	conf	logs	

chmod	755	.	bin	conf	logs

	/,	/usr,	/usr/local		root			.	 httpd						
:

cp	httpd	/usr/local/apache/bin	

chown	0	/usr/local/apache/bin/httpd	

chgrp	0	/usr/local/apache/bin/httpd	

chmod	511	/usr/local/apache/bin/httpd

htdocs							 			--	root				,		
.

root			root				 				root				.		
,		httpd					 			.	logs		(root		
				 		root						
	 						.

Server	Side	Includes

Server	Side	Includes	(SSI)					 	.

					.			 SSI						SSI			
		,						 			.

,	SSI			CGI				 .	SSI		"exec	cmd"	
httpd.conf	 						CGI	 				.

		SSI					 .

SSI								 	CGI 				

.html	.htm		SSI				.	 								

.	SSI					.shtml		 			.					
			.

		SSI					 		.	 Options

IncludesNOEXEC	.			 ScriptAlias		 			<--
#include	virtual="..."	-->		CGI					.

	CGI

			CGI	/			 ,			CGI					
.		CGI				 							

	CGI						 	()			.		
B		,		B	CGI	 					.		
		(hook)	 	 suEXEC		 				.			
CGIWrap	.

http://cgiwrap.unixtools.org/

ScriptAlias		CGI

						 CGI					:

							 			.
				,			 							.
	,					.

ScriptAlias	CGI

		CGI						 				.			scriptalias	
CGI		.	,				 		,			CGI	/	
		.

		scriptalias		CGI			 		.

				

mod_php,	mod_perl,	mod_tcl,	mod_python				 			
			(User)	,	 							
				.				 		,					.

		

					 .htaccess						
			 .

			

<Directory	/>	

AllowOverride	None	

</Directory>

						 .htaccess				.

				

							.	 ,			URL					
	,							 		.

	,			:

#	cd	/;	ln	-s	/	public_html	

http://localhost/~root/		

						.	 						:

<Directory	/>	

Order	Deny,Allow	

Deny	from	all	

</Directory>

						.	 							
	.

<Directory	/usr/users/*/public_html>	

Order	Deny,Allow	

Allow	from	all	

</Directory>	

<Directory	/usr/local/httpd>	

Order	Deny,Allow	

Allow	from	all	

</Directory>

Location	 Directory				 			.		,
<Directory	/>			 <Location	/>					

UserDir		 		.		"./"			 root						
	.	 	1.3								 	:

UserDir	disabled	root

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

							 		.		 			,			
	 						.

	:

grep	-c	"/jsp/source.jsp?/jsp/	/jsp/source.jsp??"	access_log	

grep	"client	denied"	error_log	|	tail	-n	10

		 	 Source.JSP						Tomcat	 				,	
		 				10			:

[Thu	Jul	11	17:18:39	2002]	[error]	[client	foo.bar.com]	client

denied	by	server	configuration:

/usr/local/apache/htdocs/.htpasswd

							.	 		 .htpasswd

				:

foo.bar.com	-	-	[12/Jul/2002:01:59:13	+0200]	"GET	/.htpasswd

HTTP/1.1"

,							 :

<Files	".ht*">	

Order	allow,deny	

Deny	from	all	

<Files>

http://online.securityfocus.com/bid/4876/info/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	(DSO)	

				.	 					.

							 					.			
		 	.			 httpd		 	(Dynamic	Shared	Objects,	DSO)	
	.	DSO				,	Apache	 Extension	Tool	(apxs
		.

		DSO					.

	 	
mod_so LoadModule

				 mod_so.c				 	DSO	.	
	DSO	 				.						 	 		 configure

--enable-module=shared			DSO			.	
mod_foo.so		DSO		 httpd.conf		 mod_so

LoadModule		 									 .

	()		DSO			 	 apxs	(APache
eXtenSion)				.			 			 	DSO			
	.			 configure	 make	install		C		,	DSO	
		 						 apxs		.		
	,		DSO					 								
		.

	

Apache	2.2	DSO					:

1.	 	 					 .			 mod_foo.c	DSO
mod_foo.so:

$./configure	--prefix=/path/to/install	--enable-

foo=shared

$	make	install

2.	 	 					 .			 mod_foo.c	DSO
mod_foo.so:

$./configure	--add-

module=module_type:/path/to/3rdparty/mod_foo.c	--enable-

foo=shared

$	make	install

3.	 		 	 			 :

$./configure	--enable-so

$	make	install

4.	 	 					 .	 apxs		 			 	mod_foo.c
mod_foo.so:

$	cd	/path/to/3rdparty

$	apxs	-c	mod_foo.c

$	apxs	-i	-a	-n	foo	mod_foo.la

					,	 httpd.conf	LoadModule		 			
	.

		 	(DSO)		/(dynamic	linking/loading)	,		 			
			 				.

					.			 	 ld.so				
		 dlopen()/dlsym()			(loader)	 					
.

		DSO		 (shared	libraries)		 DSO		,		 libfoo.so

	 libfoo.so.1.2		 	.			(/usr/lib

		 -lfoo		 	.						
		,		 LD_LIBRARY_PATH				 /usr/lib		
libfoo.so			.			 ((unresolved))	(symbol)
DSO	.

DSO						(DSO)			
					 	DSO				.	(
					 	.)						
	 		 libc.so				 					.

		DSO		 (shared	objects)		 DSO		,	(foo.so

)			.		 							
dlopen()		DSO		 		.			DSO		
						 			DSO	(
)	DSO	()	 	.		DSO				
	.

DSO	API				 dlsym()	DSO			,		
(dispatch)		 	.	 							.	
		 			()		.					
			.

	DSO			,				 .			DSO		DSO	
	.	?	DSO		 	"		"	(
,			 			.			 (global	symbol)		(export)	

DSO			.	DSO					 							
.

	DSO				 						.	
	.

1998					DSO			 		(XS		DynaLoader	
)	 Perl	5,	Netscape	Server		.		 								
					 			1.3				.	
DSO		 .

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		DSO					:

				 configure		 httpd.conf	 LoadModule

		 					.				 			(SSL
,		 			[mod_perl,	PHP3])		 	.
							 		.							
PHP3,	mod_perl,	mod_fastcgi								.
DSO	 apxs						 	 apxs	-i	 apachectl

restart									 							
			 .

DSO				:

						 						DSO	
							 	20%		.
	(position	independent	code,	PIC)	 	(absolute
addressing)		 (relative	addressing)				
		5%		.
DSO			DSO	(ld	-lfoo)						(
ELF	 		a.out)				DSO	
	.	 		DSO							 		C	(
	 /	,						 (libfoo.a

					,	 dlopen()				.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	(Content	Negotiation)

				.	 					.

	HTTP/1.1			(content	 negotiation)	.		media	type,	
,	,	 								 			.						
				.

		 mod_negotiation				.

	

						.		,		 		media	type				
			 	.								 					.
		 			.				 							
		,		 						.		
		 				.

Accept-Language:	fr

						.

								 		,			,		media	type	
	,				HTML,		media	type		 GIF	JPEG		
.

Accept-Language:	fr;	q=1.0,	en;	q=0.5

Accept:	text/html;	q=1.0,	text/*;	q=0.8,	image/gif;	q=0.6,

image/jpeg;	q=0.6,	image/*;	q=0.5,	*/*;	q=0.1

	HTTP/1.1			'	(server	driven)'	 	.		
Accept-Language,	Accept-Charset,	Accept-Encoding	
		.	 ,		RFC	2295	RFC	2296				
(transparent)'			.			 RFC		'	(feature
negotiation)'		 .

(resource)	(RFC	2396)	URI		 	.					
(representations)	.		 	media	type,	,					
			()	.	 					 (negotiable)
,		 		 (variant)	.	 					 (dimension)

	

							.	 					:

					type	map	(,	*.var)	,
						 		'MultiViews'	.

type-map		
type	map	 type-map			 (MIME
type	application/x-type-map)	.			 		
		 			.					 		.

AddHandler	type-map	.var

Type	map						,	 					.		
HTTP	 		.						 .					.	(
,)					 		map				.		
.				 foo.var,	 foo		.

URI:	foo

URI:	foo.en.html

Content-type:	text/html

Content-language:	en

URI:	foo.fr.de.html

Content-type:	text/html;charset=iso-8859-2

Content-language:	fr,	de

typemap				,		Multiviews	 ,			.			
		 ,			(JPEG,	GIF,	ASCII-art)	 media	type	"qs"	
(source	quality)		 	:

URI:	foo

URI:	foo.jpeg

Content-type:	image/jpeg;	qs=0.8

URI:	foo.gif

Content-type:	image/gif;	qs=0.5

URI:	foo.txt

Content-type:	text/plain;	qs=0.01

qs		0.000	1.000	.	qs		0.000		 			.	'qs'	
		1.0	 .	qs							 				''	.	
,	 			JPEG		ASCII			 		.				ASCII
art	 ASCII		JPEG							.	 			qs		
		 	.

				 mod_negotation	typemap		.

Multiviews
MultiViews		,	 httpd.conf	<Directory>,
<Location>,	<Files>			(AllowOverride)
.htaccess		 Options			 	.	 Options	All

MultiViews		.				.

MultiViews					:	 	 /some/dir/foo

	 /some/dir/foo	 MultiViews		 /some/dir/foo		 	
,	 			foo.*				 	type	map	.			media
type	content-encoding						.

MultiViews				 		 DirectoryIndex		
,

DirectoryIndex	index

index.html	 index.html3							.			
index.cgi	,			.

				Charset,	Content-Type,	 Language,	Encoding	
mod_mime		 	,		 MultiViewsMatch			
,	,			MultiViews	 			.

	type-map					 						''		
	.			 							
		.

		:

1.	 					 			.			
							 (quality	factor)	''.			
		.

2.	 (Transparent)			RFC	2295					 .			''
			 	.					
	'		(remote	variant	 selection	algorithm)'			.

	

Media
Type

	 Accept			.	 					.		
	 ("qs")			.

Language 	 Accept-Language			 .						.
	 			()		.

Encoding 	 Accept-Encoding			 .						.
Charset 	 Accept-Charset			 .						.	

media	type					.

		
			''		()	 			.				
:

1.	 ,						 Accept*		,				.		
Accept*						 .				4		.

2.	 			''		.		 			.				
						 		3		.				

1.	 Accept				 media	type							
	.

2.	 		(language)				 .

3.	 Accept-Language		()	 			
LanguagePriority		()						
		.

4.	 		(text/html	media	type)	 'level'	media		
		.

5.	 Accept-Charset				 	charset	media			
	.	 		ISO-8859-1			.	 text/*

type			 				ISO-8859-1	

6.	 ISO-8859-1	 	charset	media		 		.			,	
		 	.

7.	 					.	 user-agent					
		.					 					.		
				 .

8.	 content	length				.

9.	 				.		type-map	 		,			
	 	ASCII						.

3.	 		''		.			 .	HTTP			
.	(.)	.

4.	 			()	 				.	("No
acceptable	representation")		406			 		
HTML			.	,	HTML	 Vary				.

	

								 	.						
			.	 								
		 	,		.

Media	Type	
Accept:			media	type			 .	,	*			
"image/*"	 "*/*"		''	media	type			.		 		:

Accept:	image/*,	*/*

"image/"			type			type		 .			
	type			.	 	:

Accept:	text/html,	text/plain,	image/gif,	image/jpeg,	*/*

			type					 			.				
			.

Accept:	text/html,	text/plain,	image/gif,	image/jpeg,	*/*;

q=0.01

		type				()	 1.0	.		*/*			0.01
		 		type						type	 .

Accept:		q			 	"*/*"	,					q		0.01	
,	"type/*"			("*/*")	0.02	.	 Accept:

media	type						 .						

(language)		
	2.0							 					.

						 	 Accept-language

,						 "No	Acceptable	Variant"	"Multiple	Choices"

	.	 					 Accept-language						
	 				.	 ForceLanguagePriority					
			 LanguagePriority			.

,									 .						
		,	HTTP/1.1		 		 en				
		 				 Accept-Language		 en-GB		
			.				 			.)			
Acceptable	Variants"			 LanguagePriority		,		
		 en-GB	 en		.	 						
	 "en-GB;	q=0.9,	fr;	q=0.8"			"en"	"fr"	 	,	"fr"			
.		HTTP/1.1	 	,					 .

				(URL-)					2.0.47
mod_negotiation	 prefer-language	 	.			 		
,	 mod_negotiation				 .						.

SetEnvIf	Cookie	"language=(.+)"	prefer-language=$1

(transparent)		

						(RFC	2295)	.				 {encoding

..}		content-encoding			.	RVSA/1.0		(RFC	2296)
					,		 Accept-Encoding						
		.	RVSA/1.0									5		.

		

(language)						 								
.	(mod_mime		 .)

		MIME-type		(,	html),			encoding		(,	gz),	
					 				(,	en)	.

:

foo.en.html
foo.html.en
foo.en.html.gz

								 	:

	 	
foo.html.en foo

foo.html
-

foo.en.html foo foo.html
foo.html.en.gz foo

foo.html
foo.gz
foo.html.gz

foo.en.html.gz foo foo.html
foo.html.gz
foo.gz

foo.gz.html.en foo
foo.gz
foo.gz.html

foo.html

foo.html.gz.en foo
foo.html
foo.html.gz

foo.gz

								 (,	foo)					 		.		
							,	 	 				 html

				.

		MIME-type	(,	foo.html)			(encoding		 	
)			MIME-type		 	(,	foo.html.en)	.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

					URL	.	 		URL					.	
								 								.	
							 HTTP/1.0					.	,		
			HTTP/1.1			 .

CacheNegotiatedDocs		HTTP/1.0		()	
						.			 			,		.	
HTTP/1.1				.

HTTP/1.1						 	 Vary	HTTP		.			
					 		.						
.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		

				.	 					.

						 		.

							 		.

			"500	Server	Error"				 					(
)	 URL				.

	
NCSA	httpd	1.3					 .							.

	
						:

1.	 NCSA						

2.	 		URL	

3.	 		URL	.

		URL					,	 								

					CGI		 	:

REDIRECT_HTTP_ACCEPT=*/*,	image/gif,	image/x-xbitmap,

image/jpeg

REDIRECT_HTTP_USER_AGENT=Mozilla/1.1b2	(X11;	I;	HP-UX	A.09.05

9000/712)

REDIRECT_PATH=.:/bin:/usr/local/bin:/etc

REDIRECT_QUERY_STRING=

REDIRECT_REMOTE_ADDR=121.345.78.123

REDIRECT_REMOTE_HOST=ooh.ahhh.com

REDIRECT_SERVER_NAME=crash.bang.edu

REDIRECT_SERVER_PORT=80

REDIRECT_SERVER_SOFTWARE=Apache/0.8.15

REDIRECT_URL=/cgi-bin/buggy.pl

REDIRECT_		.

	 REDIRECT_URL	REDIRECT_QUERY_STRING	(cgi-script	 cgi-
include)		URL	.				 		 (; 		 REDIRECT_

) 			.	 ErrorDocument		(http:		(scheme)
)		 				 .

AllowOverride			.htaccess		 ErrorDocument

	...

ErrorDocument	500	/cgi-bin/crash-recover	

ErrorDocument	500	"Sorry,	our	script	crashed.	Oh	dear"	

ErrorDocument	500	http://xxx/	

ErrorDocument	404	/Lame_excuses/not_found.html	

ErrorDocument	401	/Subscription/how_to_subscribe.html

,

ErrorDocument	<3-digit-code>	<action>

	action,

1.	 	.		(")			.			 	.	 :				(")
	 .

2.	 		URL.

3.	 		URL.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

			

URL				 /server-include				.

	
			CGI		.	 					.

	
					 	.			 REDIRECT_

		CGI		 	 REDIRECT_		.	 	 ,	HTTP_USER_AGENT
REDIRECT_HTTP_USER_AGENT	.			 			URL	
	 REDIRECT_URL	 REDIRECT_STATUS	.		URL		URL	
		 		.

ErrorDocument				CGI		 ,					
"Status:"		 		.		,	Perl		ErrorDocument	
:

...	

print	"Content-type:	text/html\n";	

printf	"Status:	%s	Condition	Intercepted\n",

$ENV{"REDIRECT_STATUS"};	

...

404	Not	Found				 		,		 (;) 				
		.

()		 Location:		,		
Status:				.		 Location:						.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

			(Binding)

				.	 					.

					.

DNS	

https://www.apache.org/foundation/contributing.html

	 	
core

mpm_common

<VirtualHost>

Listen

							 ,			.			
			 					.				 			IP	,	,	
	 			.

Listen		 								 .	 Listen

			 		.		 Listen				
			 		.

	,		80	8000				 	:

Listen	80

Listen	8000

							 ,

Listen	192.0.2.1:80

Listen	192.0.2.5:8000

IPv6						:

Listen	[2001:db8::a00:20ff:fea7:ccea]:80

IPv6			

IPv6					APR				 IPv6	,		IPv6		
	IPv6	 				.

				IPv6		IPv4		 IPv6						.		
IPv4-(mapped)	IPv6			IPv6		IPv4	 	,	FreeBSD
NetBSD	OpenBSD			 		.				
			 	.

		Tru64				IPv4	IPv6	 				
	IPv4		IPv6	 		,	IPv4-	IPv6			
enable-v4-mapped	.

--enable-v4-mapped	FreeBSD,	NetBSD,	OpenBSD	 		
	,				 	.

	APR				IPv4		 ,					
	 :

Listen	0.0.0.0:80

Listen	192.0.2.1:80

						IPv4	 	IPv6			(IPv4-			
configure		 --disable-v4-mapped	.	 --disable-v4-

mapped	FreeBSD,	NetBSD,	 OpenBSD	.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		

Listen			.				 				.
<VirtualHost>		 	,						.	
<VirtualHost>				 					.			
				.		 							
.						 <VirtualHost>				.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		(MPM)

				.	 					.

				(Multi-Processing	Module)	,						
.

							 				.				
	,					 				.					
.				 								

Apache	2.0							 	.					,	
,					 			(Multi-Processing	Modules,	MPMs)	
	.

							 :

mpm_winnt	Apache	1.3		 POSIX						
	,	 							 		.				MPM			
	.
							.	 			(scalability)		
worker			MPM	,	 					
preforking	MPM				.	 						
(perchild)				 .

		MPM						 .							MPM
	 	.		MPM		 	 	 	.

MPM	

MPMs					.	 							
		MPM			 	,	MPM				

	MPM		./configure		 with-mpm=	NAME		.	 NAME
MPM	.

		 ./httpd	-l			 MPM			.	 		MPM		
	 		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

MPM	

					MPM	.						MPM	.

BeOS beos

Netware mpm_netware

OS/2 mpmt_os2

prefork

mpm_winnt

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

		 (environment	variable)	 				.					
	.	,		CGI		 					.				
.

		 	,		 		.						
Side	Include						.		 							
.

	

	 	
mod_env

mod_rewrite

mod_setenvif

mod_unique_id

BrowserMatch

BrowserMatchNoCase

PassEnv

RewriteRule

SetEnv

SetEnvIf

SetEnvIfNoCase

UnsetEnv

	
						 	 SetEnv			.	 PassEnv

				.

			
	,	mod_setenvif				 				.		,		
(User-Agent)			Referer	()							
	mod_rewrite		 RewriteRule	[E=...]						
	.

	
	mod_unique_id						 ""			()	
UNIQUE_ID		.

	CGI	
CGI		SSI					 					
		.

	

				CGI			 		.
suexec	CGI		 	,		CGI			 			.	
suexec.c	.
					,	,	 			.	,			
.	CGI		SSI	 					.

http://cgi-spec.golux.com/

	

	 	
mod_authz_host

mod_cgi

mod_ext_filter

mod_headers

mod_include

mod_log_config

mod_rewrite

Allow

CustomLog

Deny

ExtFilterDefine

Header

LogFormat

RewriteCond

RewriteRule

CGI	
				CGI			 	.						
			CGI		 .				 CGI	 	.

SSI	
mod_include	 INCLUDES			 	(SSI)		 echo			
,				 								
		CGI	 	.				 SSI		.

allow	from	env=	 deny	from	env=							
		.	 SetEnvIf			 							
,			(User-Agent)		 		.

	
LogFormat	%e						 		.	,	 CustomLog

						 				.	 SetEnvIf

				.		,	 	 gif				,	
			.

		
Header							 		HTTP					.		
						 					.

		
mod_ext_filter	 ExtFilterDefine				
disableenv=	enableenv=					 			.

URL	(Rewriting)
RewriteCond	TestString	 %{ENV:...}		 	mod_rewrite	
			 	.	mod_rewrite		 ENV:							
.	 						mod_rewrite		 .

		

					 				.		
	.		 SetEnv	 PassEnv	.

downgrade-1.0
				HTTP/1.0		 .

force-gzip
DEFLATE					 	accept-encoding				

force-no-vary
						 Vary		.				
		 .	,			 force-response-1.0	.

force-response-1.0
HTTP/1.0				HTTP/1.0		 .		AOL				.	
HTTP/1.0		HTTP/1.1				 	,				.

gzip-only-text/html
	"1"	 text/html		content-type	 	 mod_deflate

DEFLATE		 	.	(gzip			"identity")			
	 mod_negotiation			.

no-gzip
			 mod_deflate	DEFLATE			,
mod_negotiation			 	.

nokeepalive
KeepAlive	.

prefer-language
		 mod_negotiation		 	.		(en,	ja,	x-klingon
	,	 mod_negotiation					 	.					
	.

redirect-carefully
					.	 						
WebFolders		 DAV							

suppress-error-charset
2.0.40			

						 					(
	.	 							ISO-8859-1	

							 								
.		,		 			.

						 	,						

						
					 httpd.conf				.

#

#				HTTP		.

#			Netscape	2.x			

#	keepalive		.					.

#			HTTP/1.1			301	302

#	()			keepalive		

#		Microsoft	Internet	Explorer	4.0b2		.

#

BrowserMatch	"Mozilla/2"	nokeepalive

BrowserMatch	"MSIE	4\.0b2;"	nokeepalive	downgrade-1.0	force-response-1.0

#

#				HTTP/1.1			

#	HTTP/1.0				HTTP/1.1			.

#

BrowserMatch	"RealPlayer	4\.0"	force-response-1.0

BrowserMatch	"Java/1\.0"	force-response-1.0

BrowserMatch	"JDK/1\.0"	force-response-1.0

						
								 .								
				.

SetEnvIf	Request_URI	\.gif	image-request

SetEnvIf	Request_URI	\.jpg	image-request

SetEnvIf	Request_URI	\.png	image-request

CustomLog	logs/access_log	common	env=!image-request

"	"	
								 					.		
		.	 			/web/images				

SetEnvIf	Referer	"^http://www.example.com/"	local_referal

#	Referer					

SetEnvIf	Referer	"^$"	local_referal

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

<Directory	/web/images>

			Order	Deny,Allow

			Deny	from	all

			Allow	from	env=local_referal

</Directory>

					ApacheToday		" 	Keeping	Your	Images	from
Adorning	Other	Sites"	.

http://apachetoday.com/news_story.php3?ltsn=2000-06-14-002-01-PS
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		

				.	 					.

						.

	

	 	
mod_actions

mod_asis

mod_cgi

mod_imagemap

mod_info

mod_mime

mod_negotiation

mod_status

Action

AddHandler

RemoveHandler

SetHandler

						 "(handler)"	.					
	.					 	,					"(handled)".

Apache	1.1						.	 								
		.								 					.	(

)

			,	 Action			 	.							:

default-handler:			 				 default_handler()

		.	 (core)
send-as-is:	HTTP				 	.	(mod_asis)
cgi-script:		CGI	.	 (mod_cgi)
imap-file:	imagemap			 .	(mod_imagemap)
server-info:				 .	(mod_info)
server-status:			.	 (mod_status)
type-map:			 type	map	.	 (mod_negotiation

CGI					
			 html		 		 footer.pl	CGI		.

Action	add-footer	/cgi-bin/footer.pl

AddHandler	add-footer	.html

CGI		 (PATH_TRANSLATED)		 					.

HTTP			
		HTTP				 send-as-is		.
/web/htdocs/asis/					 			 send-as-is

.

<Directory	/web/htdocs/asis>

SetHandler	send-as-is

</Directory>

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		

				 Apache	API	.	 	 request_rec

char	*handler

		,		 invoke_handler			 r->handler

	.		content	type					 				.			
		 				,				 			.				
type		.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

				.	 					.

						.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	 	
mod_deflate

mod_ext_filter

mod_include

AddInputFilter

AddOutputFilter

RemoveInputFilter

RemoveOutputFilter

ExtFilterDefine

ExtFilterOptions

SetInputFilter

SetOutputFilter

(filter)					 	.					
		 (output	filter)	.						,			

	(byte-range)				 		.	,			
.	 SetInputFilter,	SetOutputFilter,	AddInputFilter,
AddOutputFilter,	RemoveInputFilter,
RemoveOutputFilter					.

									 		.

INCLUDES
mod_include		Server-Side	Includes

DEFLATE
mod_deflate			 			

,	 mod_ext_filter			 					.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

suEXEC	

				.	 					.

suEXEC			 CGI	SSI					ID	 			ID		.
	CGI	SSI		 						.

						CGI	SSI		 								
	suEXEC					 						.		
					suEXEC	 		.

	

							.

	 setuid	 setgid						.		 				.
suEXEC				 				.

,								 .		 setuid/setgid
					.

,	suEXEC		 			.				 suEXEC				
	.	 								 .								
		.							 							
		 	.

	,		suEXEC		 		 	.		
.	suEXEC	 							suEXEC	 		.	suEXEC	
					 						.	
		 	suEXEC				.

		?	?	.		!

suEXEC	

suEXEC							 .				suEXEC		
		 										 .

suEXEC				setuid	 "wrapper"			.		wrapper
	 		userid			CGI	SSI		 HTTP			.			
		suEXEC	 wrapper						 ID	.

	wrapper						.	 								
	.				:

1.	 wrapper					 ?

wrapper						 .

2.	 			wrapper	?

wrapper					.	 				.	wrapper
			 				suEXEC	 			.

3.	 		wrapper		?

		wrapper		?		 	()				
.

4.	 	CGI	SSI				 ?

	CGI	SSI		'/'			 '..'	?				.	
CGI/SSI		suEXEC		root	(--with-suexec-

docroot=DIR)	 		.

5.	 		?

		?

6.	 		?

		?

7.	 		superuser	 ?

	suEXEC	 root	CGI/SSI	 				.

8.	 	userid		ID		 ?

			ID		.		CGI/SSI	 				userid
		 	.	""			.

9.	 		superuser		 ?

	suEXEC	 root		CGI/SSI	 				.

10.	 	groupid		ID		 ?

			ID		.		CGI/SSI	 				groupid
		 	.	""			.

11.	 wrapper					 		?

			setuid	setgid			 			.	,			
				.

12.	 CGI/SSI					 		?

						.		 							

13.	 				?

							 suEXEC		root		?
UserDir			 		suEXEC	userdir		(
)		 	?

14.	 				 ?

				.		 					.

15.	 	CGI/SSI		?

			.

16.	 			CGI/SSI			 ?

		CGI/SSI			.

17.	 	CGI/SSI		setuid	setgid	 ?

			UID/GID		.

18.	 	/		/	?

		?

19.	 						 	?

suEXEC	()			PATH	,	 ()	
				 				.

20.	 		CGI/SSI			 	?

	suEXEC			CGI/SSI		.

	suEXEC	wrapper			.		 	CGI/SSI				,	
	 			.

									 suEXEC							
			 	 "		" 		 .

suEXEC		

			.

suEXEC		

--enable-suexec

					suEXEC	 	.	APACI	suEXEC		
enable-suexec		 --with-suexec-xxxxx				

--with-suexec-bin=PATH

suexec					 		.						
with-suexec-bin=/usr/sbin/suexec

--with-suexec-caller=UID

			 .		 				.

--with-suexec-userdir=DIR

suEXEC						 .							
,			""	.	(,		"*")	""	UserDir			
			.	UserDir		passwd		 				suEXEC
		 	.		"public_html".
			UserDir				 					,			
	.	 		,	"~userdir"	 cgi			!

--with-suexec-docroot=DIR

	DocumentRoot	.		suEXEC		 		(UserDirs	
)		.			 --datadir		"/htdocs"		.	
-datadir=/home/apache"	 	suEXEC	wrapper
document	root	"/home/apache/htdocs"		.

--with-suexec-uidmin=UID

suEXEC				UID	.	 		500	100	.	
100.

--with-suexec-gidmin=GID

suEXEC				GID	.	 		100				.

--with-suexec-logfile=FILE

	suEXEC			()	 		.			

"suexec_log"				 (--logfiledir)	.

--with-suexec-safepath=PATH

CGI				PATH		.	
"/usr/local/bin:/usr/bin:/bin".

suEXEC	wrapper		
--enable-suexec		suEXEC			 	 make			 suexec

	()		.
			 make	install		 			.		
			.	 		"/usr/local/apache2/sbin/suexec".
		 root			 .	wrapper		ID			
setuserid		 	.

	
suEXEC	wrapper						 --with-suexec-caller

				 	,				suEXEC			
.			 							 suEXEC						
.

	,				:

User	www

Group	webgroup

suexec	"/usr/local/apache2/sbin/suexec"	 ,			:

chgrp	webgroup	/usr/local/apache2/bin/suexec

chmod	4750	/usr/local/apache2/bin/suexec

					suEXEC	wrapper	 		.

suEXEC		

		 --sbindir			 	 suexec		(
"/usr/local/apache2/sbin/suexec")	.		 		suEXEC	wrapper
		(error	 log)			:

[notice]	suEXEC	mechanism	enabled	(wrapper:	/path/to/suexec)

								 wrapper			,		
		.

	suEXEC							 ,					.		
USR1					.

suEXEC		 suexec			 			.

suEXEC	

CGI				 SuexecUserGroup		 			
mod_userdir				suEXEC	wrapper	.

:
suEXEC	wrapper				 VirtualHost	
SuexecUserGroup		 	.					ID		
	 <VirtualHost>	 	 User	 Group	.		 	 <VirtualHost>

			 userid	.

	:
mod_userdir			suEXEC	 wrapper	,				
	 ID	CGI		.					 ID	CGI						
	.	 	 	--with-suexec-userdir	.

suEXEC	

suEXEC	wrapper					 --with-suexec-logfile	
		 .	wrapper						 			error_log	.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		:		

! 						.	 	 	 				.

wrapper							.	 suEXEC		""	
			.

suEXEC		
		

				suEXEC			 		document	root	
userdir			 		document	root			.		
			 suEXEC			document	root	
			.	 (.)

suEXEC	PATH	

			.	 				 		 		.	
			 		.

suEXEC		

	,						 	 			.			

http://httpd.apache.org/docs/2.4/suexec.html
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Miscellaneous	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

	2.0						 		.					
				.

	1.3		2.0			(scalability)	 			.				
						 				.				2.0			
			.			 								
	.

		

							.		 			"	"			
		.			 					.	 MaxClients

						 .		:	 top			 					
			 ,							 			.

	:			CPU,			,	 		,		"	"		
		 .

					.			 				:

						.	 				TCP				
	.

	 sendfile(2)		 ,						
		.	 Solaris	8				.)			
		CPU		 							.

		

	 	
mod_dir

mpm_common

mod_status

AllowOverride

DirectoryIndex

HostnameLookups

EnableMMAP

EnableSendfile

KeepAliveTimeout

MaxSpareServers

MinSpareServers

Options

StartServers

HostnameLookups	DNS			
	1.3		 HostnameLookups		 On.			DNS			
	.		1.3			 	 Off	.			
	 logresolve		.

							 							

Allow	from	domain	 Deny	from	domain			(,	IP			
)		-	DNS		()		.		
				IP	 	.

<Location	/server-status>			 					.		
			DNS		.		 .html	 .cgi		DNS		

HostnameLookups	off

<Files	~	"\.(html|cgi)$">

HostnameLookups	on

</Files>

	CGI	DNS		,			 CGI	 gethostbyname

	.

FollowSymLinks	SymLinksIfOwnerMatch
URL		 Options	FollowSymLinks		 Options

SymLinksIfOwnerMatch						
				 .		,			:

DocumentRoot	/www/htdocs

<Directory	/>

Options	SymLinksIfOwnerMatch

</Directory>

/index.html	URI				.	 		 /www,
/www/htdocs,	/www/htdocs/index.html			 lstat(2)

.	 lstats									 	.					
		 			:

DocumentRoot	/www/htdocs

<Directory	/>

Options	FollowSymLinks

</Directory>

<Directory	/www/htdocs>

Options	-FollowSymLinks	+SymLinksIfOwnerMatch

</Directory>

			 DocumentRoot			 .	DocumentRoot			
Alias	 RewriteRule		 				.			
	,	 FollowSymLinks	,	 SymLinksIfOwnerMatch

.

AllowOverride
URL		overrides		(.htaccess)				
.htaccess		.		,

DocumentRoot	/www/htdocs

<Directory	/>

AllowOverride	all

</Directory>

/index.html	URI				.	 	 /.htaccess,
/www/.htaccess,	/www/htdocs/.htaccess		.	 	
Options	FollowSymLinks		 .						
AllowOverride	None	.

							 .					.		
			:

DirectoryIndex	index

		:

DirectoryIndex	index.cgi	index.pl	index.shtml	index.html

				.

,				 MultiViews	,									 type-

map							 .

					 Options	MultiViews			 type-map	
.					 type-map				 		.

	(memory-mapping)
	,	server-side-include				 2.0				
mmap(2)				.

				.		 						

		 mmap	CPU		 	 read(2)				.	 	,	

Solaris			2.0	 	 mmap					 			.

NFS						 		NFS					
			 				bus	error		 	.

						 	 EnableMMAP	off		.	(:	
			.)

Sendfile
		 sendfile(2)		 	sendfile		--		,				
					.

		sendfile		read	send		 			.		sendfile
	 				:

sendfile						 			.				
sendfile				 		.

				NFS			 					.

				sendfile			 EnableSendfile	off

(:	 					.)

	
	1.3		 MinSpareServers,	MaxSpareServers,
StartServers			 				.				
	""		 .		 StartServers		 ,	 MinSpareServers

			.		 StartServers		 5			100			
				95	.	 						,	10	
	.

								 		.					
.						 			.		1.3			
	,	1	,	 	,	1	,		,				 	32			

.		 MinSpareServers			 	.

				 MinSpareServers,	MaxSpareServers,
StartServers				.		 	4			 ErrorLog

.			 					.	 mod_status				.

			 MaxRequestsPerChild		 	.						
0.			 30					,					 .	SunOS	
Solaris		,		 		 10000		.

(keep-alive)					 							
KeepAliveTimeout		 15				.		 				
	.	 			 			 		 60				.

http://www.research.digital.com/wrl/techreports/abstracts/95.4.html

		

MPM	
	2.x	 	(MPMs)						.		 	MPM		.
beos,	mpm_netware,	mpmt_os2,	mpm_winnt					
	MPM	.					MPM	 				.			
(scalability)		MPM		:

worker	MPM				 			.						
	worker	prefork	MPM			 					.
prefork	MPM				 		.					
	prefork		worker	 ,				.				
prefork		worker		 	:			(thread-safe)		
			,				 					.

	MPM		MPM					MPM	 		.

						 				.		
	 LoadModule			 .							

						 						

							 	.			.			
mod_dir,	mod_log_config			.				
mod_log_config		.			 .

Atomic	
mod_cache					 worker	MPM	APR	atomic	API	.
	API		 			atomic		.

	APR		/CPU				 				.		,		
CPU		atomic	compare-and-swap	(CAS)		 		.		
	APR		 			CPU					mutex	

		 			CPU		,	 		
atomics					atomic				:

./buildconf

./configure	--with-mpm=worker	--enable-nonportable-atomics=yes

--enable-nonportable-atomics			 			:

SPARC	Solaris
	APR	Solaris/SPARC	mutex	atomic	 .			
enable-nonportable-atomics		 APR		
compare-and-swap		SPARC	 v8plus		.			
atomic				(CPU),		
UltraSPARC				.
Linux	on	x86
	APR		mutex	atomic	 .			 --enable-

nonportable-atomics		 APR			compare-and-
swap		486	 	.			atomic		,	
	(386)	 		.

mod_status	ExtendedStatus	On
		 mod_status		 	 ExtendedStatus	On			
gettimeofday(2)(times(2))			(1.3)
time(2)			.			 		.				
ExtendedStatus	off	.

accept		-		

:

				2.0				 		.				,		
.

		API		.				 					
.	 						 select(2)	.	 select(2)

	 		 	 		.				,	 							.	
			(.	 			.):

for	(;;)	{

for	(;;)	{

fd_set	accept_fds;

FD_ZERO	(&accept_fds);

for	(i	=	first_socket;	i	<=	last_socket;	++i)	{

FD_SET	(i,	&accept_fds);

}

rc	=	select	(last_socket+1,	&accept_fds,	NULL,	NULL,

NULL);

if	(rc	<	1)	continue;

new_connection	=	-1;

for	(i	=	first_socket;	i	<=	last_socket;	++i)	{

if	(FD_ISSET	(i,	&accept_fds))	{

new_connection	=	accept	(i,	NULL,	NULL);

if	(new_connection	!=	-1)	break;

}

}

if	(new_connection	!=	-1)	break;

}

process	the	new_connection;

}

					(starvation)	 	.						,	
		 select	.		 								
).	 			 accept	.		
,		 accept	 . 				 				,				
			.	 			 PR#467		.				.

				(non-blocking)		 .				 accept

			.		CPU		.	 select			10	,			
		.				9		 	 accept				
select	.		 select							 			.
()	 			CPU						

http://bugs.apache.org/index/full/467

							 		.				(

for	(;;)	{

accept_mutex_on	();

for	(;;)	{

fd_set	accept_fds;

FD_ZERO	(&accept_fds);

for	(i	=	first_socket;	i	<=	last_socket;	++i)	{

FD_SET	(i,	&accept_fds);

}

rc	=	select	(last_socket+1,	&accept_fds,	NULL,	NULL,

NULL);

if	(rc	<	1)	continue;

new_connection	=	-1;

for	(i	=	first_socket;	i	<=	last_socket;	++i)	{

if	(FD_ISSET	(i,	&accept_fds))	{

new_connection	=	accept	(i,	NULL,	NULL);

if	(new_connection	!=	-1)	break;

}

}

if	(new_connection	!=	-1)	break;

}

accept_mutex_off	();

process	the	new_connection;

}

accept_mutex_on	 accept_mutex_off		mutex		 .		
			mutex			.	 mutex			.			(1.3	
src/conf.h	(1.3)	 src/include/ap_config.h	
.		 	(locking)			,		 		

	 AcceptMutex			 mutex				.

AcceptMutex	flock

				 flock(2)			(LockFile

AcceptMutex	fcntl

				 fcntl(2)			(LockFile

AcceptMutex	sysvsem

(1.3)			SysV			 mutex	.		SysV	

	 	.					 					(
).					uid		 CGI	(, 	suexec	cgiwrapper
			CGI)	 	API						
				(IRIX).

AcceptMutex	pthread

(1.3)			POSIX	mutex		 POSIX				
		 ,	(2.5)	Solaris			 		.				
		.		 						.

AcceptMutex	posixsem

(2.0)			POSIX		.	 mutex				
(segfault)						.

				(serialization)		 					APR			.

						 		.	,				
			 						 				.			,	
				.

				 Listen				 	.			.

accept		-		
				,			 	?					
		 		,			.			 				(non-blocking)	
		 "(spinning)"			.		TCP		 			
			.				 		,				
.			 				,		.			
	 .

							 		""		.				
.		(2.0.30,	 128Mb			Pentium	pro)					
						3%		 .							100ms	
.				LAN			 	.						
SINGLE_LISTEN_UNSERIALIZED_ACCEPT	.

Close	(lingering)
draft-ietf-http-connection-00.txt	8		 		,				
		(TCP		,).					
.

							 			.	TCP		
		,	 	.					1.2	 			
.	 							TCP/IP		 			.					
		(, 	SunOS4	--)					
.

	.				 SO_LINGER		.				TCP/IP		
			.				 	(, 		2.0.31)					
.

		(http_main.c)	 lingering_close		.			
		:

void	lingering_close	(int	s)

{

char	junk_buffer[2048];

/*	shutdown	the	sending	side	*/

shutdown	(s,	1);

signal	(SIGALRM,	lingering_death);

alarm	(30);

for	(;;)	{

select	(s	for	reading,	2	second	timeout);

if	(error)	break;

if	(s	is	ready	for	reading)	{

if	(read	(s,	junk_buffer,	sizeof	(junk_buffer))	<=	0)	{

break;

}

/*	just	toss	away	whatever	is	here	*/

}

}

close	(s);

}

http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

					CPU	,		 		.	HTTP/1.1				
		 (persistent),						 		.		
					 		,			.		HTTP/1.1	
) 		 lingering_close		(

).

Scoreboard	
			scoreboard				 .		scoreboard			
								 							.	
			.		 					().
src/main/conf.h				 	 USE_MMAP_SCOREBOARD

USE_SHMGET_SCOREBOARD	.		 	(HAVE_MMAP

HAVE_SHMGET)				 .					
src/main/http_main.c				 				(hook)	.
(.)

	:					1.2		 		.				
.

DYNAMIC_MODULE_LIMIT
				(
-DDYNAMIC_MODULE_LIMIT=0	.		 					.

http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

:				

	Solaris	8	worker	MPM			2.0.38	 	(trace).			
		 :

truss	-l	-p	httpd_child_pid.

-l			truss		 	LWP	(lightweight	process,		--Solaris	
)	ID		.

		 strace,	ktrace,	par					.		 .

			10KB			.	 								
	().

/67:				accept(3,	0x00200BEC,	0x00200C0C,	1)	(sleeping...)

/67:				accept(3,	0x00200BEC,	0x00200C0C,	1)												=	9

	(listener)		LWP	#67		 		.

accept(2)				.	 						worker	MPM	
			accept	.

/65:				lwp_park(0x00000000,	0)																									=	0

/67:				lwp_unpark(65,	1)																															=	0

	(accept)			 worker					.			
worker		LWP	#65			.

/65:				getsockname(9,	0x00200BA4,	0x00200BC4,	1)							=	0

					 (local)				.	(
)			 				.						

/65:				brk(0x002170E8)																																	=	0

/65:				brk(0x002190E8)																																	=	0

brk(2)		(heap)		.	 						
apr_bucket_alloc)							
		 			 malloc(3)	.

/65:				fcntl(9,	F_GETFL,	0x00000000)																			=	2

/65:				fstat64(9,	0xFAF7B818)																										=	0

/65:				getsockopt(9,	65535,	8192,	0xFAF7B918,	0xFAF7B910,	2190656)	=	0

/65:				fstat64(9,	0xFAF7B818)																										=	0

/65:				getsockopt(9,	65535,	8192,	0xFAF7B918,	0xFAF7B914,	2190656)	=	0

/65:				setsockopt(9,	65535,	8192,	0xFAF7B918,	4,	2190656)	=	0

/65:				fcntl(9,	F_SETFL,	0x00000082)																			=	0

	worker			(9)	 (non-blocking)		.
setsockopt(2)	getsockopt(2)		Solaris	libc		
fcntl(2)			.

/65:				read(9,	"	G	E	T			/	1	0	k	.	h	t	m"..,	8000)					=	97

worker					.

/65:				stat("/var/httpd/apache/httpd-8999/htdocs/10k.html",	0xFAF7B978)	=	0

/65:				open("/var/httpd/apache/httpd-8999/htdocs/10k.html",	O_RDONLY)	=	10

		 Options	FollowSymLinks	AllowOverride	None.	
			 			 lstat(2)	 .htaccess				.		
1)		,	2)			,	 stat(2)			.

/65:				sendfilev(0,	9,	0x00200F90,	2,	0xFAF7B53C)						=	10269

				 sendfilev(2)		 HTTP						.
Sendfile		 	.			 sendfile(2)				
write(2)	writev(2)		.

/65:				write(4,	"	1	2	7	.	0	.	0	.	1			-		"..,	78)						=	78

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

write(2)		(access	log)		 .			 time(2)

	1.3			2.0			 gettimeofday(3)	.
gettimeofday			Solaris		 					.

/65:				shutdown(9,	1,	1)																															=	0

/65:				poll(0xFAF7B980,	1,	2000)																							=	1

/65:				read(9,	0xFAF7BC20,	512)																								=	0

/65:				close(9)																																								=	0

worker			(lingering	close).

/65:				close(10)																																							=	0

/65:				lwp_park(0x00000000,	0)									(sleeping...)

	worker					,	 (listener)						

/67:				accept(3,	0x001FEB74,	0x001FEB94,	1)	(sleeping...)

				(worker		 			worker	MPM			
)	 worker							.	 			,	worker		
			 			 accept(2)	()			.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		

				.	 					.

							 .

IP		
				
			
		
ServerPath		

https://www.apache.org/foundation/contributing.html

		IP	

IP			IP				 	.						IP		
				 HTTP				.				
		.

		DNS					 IP				,				
				.		 			IP		.			
		 	.	IP			:

				 	.				
HTTP/1.1	,			HTTP/1.0		 	.					
							 	.
SSL			SSL			 			.
					IP			 					(bandwidth)	
.

		

	 	
core DocumentRoot

NameVirtualHost

ServerAlias

ServerName

ServerPath

<VirtualHost>

						 IP		()		.	
NameVirtualHost		.	 			IP		
NameVirtualHost		 *	.				 (,	SSL)	
*:80					.	 NameVirtualHost		IP		
	IP				 .			 	 			
		.

				 <VirtualHost>		 	.	 <VirtualHost>>	
	 NameVirtualHost		 (,	IP					
<VirtualHost>>			 				 ServerName

			 DocumentRoot		.

		

					 				 <VirtualHost>

	 ServerName	 DocumentRoot		 ServerName

DocumentRoot		.	 								

		 www.domain.tld			 		IP	
www.otherdomain.tld			 	.	 httpd.conf

:

NameVirtualHost	*:80

<VirtualHost	*:80>

ServerName	www.domain.tld

ServerAlias	domain.tld	*.domain.tld

DocumentRoot	/www/domain

</VirtualHost>

<VirtualHost	*:80>

ServerName	www.otherdomain.tld

DocumentRoot	/www/otherdomain

</VirtualHost>

NameVirtualHost	<VirtualHost>				 *			IP		
	.		,			IP				 	,			IP			
	.

							.		 <VirtualHost>		
ServerAlias			.					 <VirtualHost>

ServerAlias		 							:

ServerAlias	domain.tld	*.domain.tld

domain.tld						 	 www.domain.tld		.	
			 *	 ?			.		 ServerName	 ServerAlias

	.					 IP			DNS				.

	 <<VirtualHost>>			 						.	
	,				 .						
)	 					 					.

				 NameVirtualHost		IP	 	.			IP		
	 <VirtualHost>					 ServerName	
.				.	 		,	IP			

				 		.	IP		 NameVirtualHost		,	
DocumentRoot			.			 				
		 			.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		

						 				.			
		 ()	 .

			?

						.	 					.		
		 Host		.

				 ServerPath				:

	:

NameVirtualHost	111.22.33.44

<VirtualHost	111.22.33.44>

ServerName	www.domain.tld

ServerPath	/domain

DocumentRoot	/web/domain

</VirtualHost>

		?	" /domain"		 URI				 www.domain.tld

.	 ,	 Host:				 http://www.domain.tld/			,
http://www.domain.tld/domain/		 				.

						 http://www.domain.tld/domain/

	 .					(,	 "file.html"	
"../icons/image.gif")	
("http://www.domain.tld/domain/misc/file.html"
"/domain/misc/file.html")		 /domain/			.

								 								

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	IP		

				.	 					.

		

https://www.apache.org/foundation/contributing.html

	

IP				 IP					IP		
				 (.		"ip	aliases"	
"ifconfig")		.

	

						.	 						
			 	.

			:

2				1			 							.		
				 User,	Group,	Listen,	ServerRoot		
.
		,			IP		 (file	descriptor)		.	""	
	 Listen		.		 						,	(
)			

			:

						.
							 					.

		

			.		 Listen		 		IP	()	.		

Listen	www.smallco.com:80

		IP			.	 (DNS)

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

			

								 	.		
ServerAdmin,	ServerName,	DocumentRoot,	ErrorLog,
TransferLog,	CustomLog			.		,

<VirtualHost	www.smallco.com>

ServerAdmin	webmaster@mail.smallco.com

DocumentRoot	/groups/smallco/www

ServerName	www.smallco.com

ErrorLog	/groups/smallco/logs/error_log

TransferLog	/groups/smallco/logs/access_log

</VirtualHost>

<VirtualHost	www.baygroup.org>

ServerAdmin	webmaster@mail.baygroup.org

DocumentRoot	/groups/baygroup/www

ServerName	www.baygroup.org

ErrorLog	/groups/baygroup/logs/error_log

TransferLog	/groups/baygroup/logs/access_log

</VirtualHost>

		IP			.	 (DNS)

VirtualHost								 		 			
VirtualHost							 	 	 	 	.

suEXEC			VirtualHost			 User	 Group			.

: 						 						
.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

			

				.	 					.

			1.3				 		.

	 httpd.conf					 <VirtualHost>					
				:

NameVirtualHost	111.22.33.44

<VirtualHost	111.22.33.44>

ServerName	www.customer-1.com

DocumentRoot	/www/hosts/www.customer-1.com/docs

ScriptAlias	/cgi-bin/	/www/hosts/www.customer-1.com/cgi-bin

</VirtualHost>

<VirtualHost	111.22.33.44>

ServerName	www.customer-2.com

DocumentRoot	/www/hosts/www.customer-2.com/docs

ScriptAlias	/cgi-bin/	/www/hosts/www.customer-2.com/cgi-bin

</VirtualHost>

#			

<VirtualHost	111.22.33.44>

ServerName	www.customer-N.com

DocumentRoot	/www/hosts/www.customer-N.com/docs

ScriptAlias	/cgi-bin/	/www/hosts/www.customer-N.com/cgi-bin

</VirtualHost>

			 <VirtualHost>						.	 			:

1.	 						 	.

2.	 				 		DNS			.	,	

								 .							
			.		 fifo		,						
)		.

	IP		HTTP		 Host:			.			 					
	 	.			 mod_vhost_alias					,		1.3.6	
		 mod_rewrite		.				 				.				
				.

					 	`'	.						
.		 ServerName		,	CGI	 SERVER_NAME		.	
UseCanonicalName		.	 UseCanonicalName	Off	
Host:				.	 UseCanonicalName	DNS	 	IP		DNS
		.	 				,		IP	
					 ServerName				.

	`'		(DocumentRoot	,	 CGI	 DOCUMENT_ROOT)
.			core					 URI			,						
	(mod_vhost_alias	 mod_rewrite)					.		
		 DOCUMENT_ROOT				 CGI	SSI						
		 .

		

	 			 	 mod_vhost_alias				 .

#	Host:			

UseCanonicalName	Off

#									

LogFormat	"%V	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

CustomLog	logs/access_log	vcommon

#					

VirtualDocumentRoot	/www/hosts/%0/docs

VirtualScriptAlias	/www/hosts/%0/cgi-bin

		 UseCanonicalName	Off	UseCanonicalName	DNS	
		IP	 	.		IP			 					.

			

ISP						.			 		
www.user.isp.com		 /home/user/						
		.			 cgi-bin					 			.

#				.	

#				

VirtualDocumentRoot	/www/hosts/%2/docs

#		cgi-bin	

ScriptAlias	/cgi-bin/	/www/std-cgi/

mod_vhost_alias				 VirtualDocumentRoot			
.

				 	

						 <VirtualHost>				 				
.		,		 				IP		,		 		IP			.	
		 <VirtualHost>						 .

UseCanonicalName	Off

LogFormat	"%V	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

<Directory	/www/commercial>

Options	FollowSymLinks

AllowOverride	All

</Directory>

<Directory	/www/homepages>

Options	FollowSymLinks

AllowOverride	None

</Directory>

<VirtualHost	111.22.33.44>

ServerName	www.commercial.isp.com

CustomLog	logs/access_log.commercial	vcommon

VirtualDocumentRoot	/www/commercial/%0/docs

VirtualScriptAlias	/www/commercial/%0/cgi-bin

</VirtualHost>

<VirtualHost	111.22.33.45>

ServerName	www.homepages.isp.com

CustomLog	logs/access_log.homepages	vcommon

VirtualDocumentRoot	/www/homepages/%0/docs

ScriptAlias	/cgi-bin/	/www/std-cgi/

</VirtualHost>

		IP	

	 				 IP					.		 				DNS	
	.	 	IP						 					.			
,	DNS				.

#	IP		DNS			

UseCanonicalName	DNS

#					IP		

LogFormat	"%A	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

CustomLog	logs/access_log	vcommon

#		IP		

VirtualDocumentRootIP	/www/hosts/%0/docs

VirtualScriptAliasIP	/www/hosts/%0/cgi-bin

			

				1.3.6			 mod_vhost_alias	.
mod_vhost_alias					 		 mod_rewrite

	Host:-	,			.

					.		1.3.6	 		 %V	,		1.3.0	
		 %v			.		 	1.3.4			.			
.htaccess		 UseCanonicalName								
		.	 				 %{Host}i		 	 Host:					
.	 ,			 %V		 :port				.

mod_rewrite				

	 	 				 httpd.conf	.					 	,		
	 mod_rewrite				.					
.

				.		 mod_rewrite	(mod_alias)		
		.			URI			 				 mod_rewrite

.	 ,			 ScriptAlias		 				.

#	Host:			

UseCanonicalName	Off

#	splittable	logs

LogFormat	"%{Host}i	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

CustomLog	logs/access_log	vcommon

<Directory	/www/hosts>

#	ScriptAlias		CGI				

#		ExecCGI	

Options	FollowSymLinks	ExecCGI

</Directory>

#			

RewriteEngine	On

#	Host:							

RewriteMap	lowercase	int:tolower

##				:

#	Alias	/icons/			-		alias		

RewriteCond	%{REQUEST_URI}	!^/icons/

#	CGI	

RewriteCond	%{REQUEST_URI}	!^/cgi-bin/

#		

RewriteRule	^/(.*)$	/www/hosts/${lowercase:%

{SERVER_NAME}}/docs/$1

##		CGI		-	MIME	type		

RewriteCond	%{REQUEST_URI}	^/cgi-bin/

RewriteRule	^/(.*)$	/www/hosts/${lowercase:%{SERVER_NAME}}/cgi-

bin/$1	[T=application/x-httpd-cgi]

#	!

mod_rewrite			

	 	 			 .

RewriteEngine	on

RewriteMap	lowercase	int:tolower

#	CGI	

RewriteCond	%{REQUEST_URI}	!^/cgi-bin/

#	RewriteRule				

RewriteCond	${lowercase:%{SERVER_NAME}}	^www\.[a-z-

]+\.isp\.com$

#		URI		

#	[C]							

RewriteRule	^(.+)	${lowercase:%{SERVER_NAME}}$1	[C]

#				

RewriteRule	^www\.([a-z-]+)\.isp\.com/(.*)	/home/$1/$2

#		CGI		

ScriptAlias	/cgi-bin/	/www/std-cgi/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

			

	 mod_rewrite				 					.	
	.

vhost.map			:

www.customer-1.com	/www/customers/1

www.customer-2.com	/www/customers/2

#	...

www.customer-N.com	/www/customers/N

http.conf		:

RewriteEngine	on

RewriteMap	lowercase	int:tolower

#		

RewriteMap	vhost	txt:/www/conf/vhost.map

#			alias	

RewriteCond	%{REQUEST_URI}	!^/icons/

RewriteCond	%{REQUEST_URI}	!^/cgi-bin/

RewriteCond	${lowercase:%{SERVER_NAME}}	^(.+)$

#				

RewriteCond	${vhost:%1}	^(/.*)$

RewriteRule	^/(.*)$	%1/docs/$1

RewriteCond	%{REQUEST_URI}	^/cgi-bin/

RewriteCond	${lowercase:%{SERVER_NAME}}	^(.+)$

RewriteCond	${vhost:%1}	^(/.*)$

RewriteRule	^/(.*)$	%1/cgi-bin/$1

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

					 			.		 	 IP					
				 								 		.

IP					 	.

	IP			,	DNS		(CNAMES)	 		.		
www.example.com	www.example.org			.

Note

				 				DNS				
	.					 	.			 hosts			
hosts				 .

	
#			80	

Listen	80

#		IP				

NameVirtualHost	*:80

<VirtualHost	*:80>

DocumentRoot	/www/example1

ServerName	www.example.com

#			

</VirtualHost>

<VirtualHost	*:80>

DocumentRoot	/www/example2

ServerName	www.example.org

#			

</VirtualHost>

			,				 	.	 www.example.com

			,	 	 		.	 	 ServerName				
VirtualHost	.

	 *				IP	 			.			 VirtualHost	

NameVirtualHost			 :

NameVirtualHost	172.20.30.40

<VirtualHost	172.20.30.40>

#		...

	ISP		IP				 IP				 *		
	 ,	IP					 	.

						.	 		IP						

	IP			 .

			IP		 	.

	IP		.		 (172.20.30.40)	""		 server.domain.com

,			 (172.20.30.50)				 .

	
Listen	80

#	172.20.30.40		""

ServerName	server.domain.com

DocumentRoot	/www/mainserver

#		

NameVirtualHost	172.20.30.50

<VirtualHost	172.20.30.50>

DocumentRoot	/www/example1

ServerName	www.example.com

#				...

</VirtualHost>

<VirtualHost	172.20.30.50>

DocumentRoot	/www/example2

ServerName	www.example.org

#				...

</VirtualHost>

172.20.30.50					 	.		,		
172.20.30.50		 www.example.com	.

()	 	IP				.

		IP			(192.168.1.1	172.20.30.40)	.			(
)	 		()			.			 server.example.com

(172.20.30.40)	,				 			(192.168.1.1

	 VirtualHost					 					.

	
NameVirtualHost	192.168.1.1

NameVirtualHost	172.20.30.40

<VirtualHost	192.168.1.1	172.20.30.40>

DocumentRoot	/www/server1

ServerName	server.example.com

ServerAlias	server

</VirtualHost>

						 VirtualHost	.

:

				 server.example.com			 server

			IP			 *								 .

					 .

	IP							 .		"NameVirtualHost"				
.	NameVirtualHost	name:port	<VirtualHost	 name:port>	
Listen			.

	
Listen	80

Listen	8080

NameVirtualHost	172.20.30.40:80

NameVirtualHost	172.20.30.40:8080

<VirtualHost	172.20.30.40:80>

ServerName	www.example.com

DocumentRoot	/www/domain-80

</VirtualHost>

<VirtualHost	172.20.30.40:8080>

ServerName	www.example.com

DocumentRoot	/www/domain-8080

</VirtualHost>

<VirtualHost	172.20.30.40:80>

ServerName	www.example.org

DocumentRoot	/www/otherdomain-80

</VirtualHost>

<VirtualHost	172.20.30.40:8080>

ServerName	www.example.org

DocumentRoot	/www/otherdomain-8080

</VirtualHost>

IP	

		 www.example.com	www.example.org			IP	
(172.20.30.40	 172.20.30.50)	.

	
Listen	80

<VirtualHost	172.20.30.40>

DocumentRoot	/www/example1

ServerName	www.example.com

</VirtualHost>

<VirtualHost	172.20.30.50>

DocumentRoot	/www/example2

ServerName	www.example.org

</VirtualHost>

<VirtualHost>				 		(,	 localhost

				.

	ip		

		 www.example.com	www.example.org			IP	
(172.20.30.40	 172.20.30.50)	.		IP	80	8080		
.

	
Listen	172.20.30.40:80

Listen	172.20.30.40:8080

Listen	172.20.30.50:80

Listen	172.20.30.50:8080

<VirtualHost	172.20.30.40:80>

DocumentRoot	/www/example1-80

ServerName	www.example.com

</VirtualHost>

<VirtualHost	172.20.30.40:8080>

DocumentRoot	/www/example1-8080

ServerName	www.example.com

</VirtualHost>

<VirtualHost	172.20.30.50:80>

DocumentRoot	/www/example2-80

ServerName	www.example.org

</VirtualHost>

<VirtualHost	172.20.30.50:8080>

DocumentRoot	/www/example2-8080

ServerName	www.example.org

</VirtualHost>

	IP		

			,			IP	 		.

	
Listen	80

NameVirtualHost	172.20.30.40

<VirtualHost	172.20.30.40>

DocumentRoot	/www/example1

ServerName	www.example.com

</VirtualHost>

<VirtualHost	172.20.30.40>

DocumentRoot	/www/example2

ServerName	www.example.org

</VirtualHost>

<VirtualHost	172.20.30.40>

DocumentRoot	/www/example3

ServerName	www.example3.net

</VirtualHost>

#	IP-

<VirtualHost	172.20.30.50>

DocumentRoot	/www/example4

ServerName	www.example4.edu

</VirtualHost>

<VirtualHost	172.20.30.60>

DocumentRoot	/www/example5

ServerName	www.example5.gov

</VirtualHost>

default		

			 default	
			IP				 		.

	
<VirtualHost	_default_:*>

DocumentRoot	/www/default

</VirtualHost>

default()							 		.

default						 /			.				
				 (/)	.

AliasMatch	RewriteRule					()	
.

			 default	
		,					80	 			 _default_

	
<VirtualHost	_default_:80>

DocumentRoot	/www/default80

#	...

</VirtualHost>

<VirtualHost	_default_:*>

DocumentRoot	/www/default

#	...

</VirtualHost>

80			default		()	
			.	 				.

			 default	

80			default			.

	
<VirtualHost	_default_:80>

DocumentRoot	/www/default

...

</VirtualHost>

	80						 	,					

		IP	 	

()		 www.example.org				 	IP			.	
			 IP							 					.

	 VirtualHost			IP		 (172.20.30.50)		.

	
Listen	80

ServerName	www.example.com

DocumentRoot	/www/example1

NameVirtualHost	172.20.30.40

<VirtualHost	172.20.30.40	172.20.30.50>

DocumentRoot	/www/example2

ServerName	www.example.org

#	...

</VirtualHost>

<VirtualHost	172.20.30.40>

DocumentRoot	/www/example3

ServerName	www.example.net

ServerAlias	*.example.net

#	...

</VirtualHost>

	(IP)			()						

ServerPath		

					.		 				
HTTP/1.0								 						(
).					 			,			
.

	
NameVirtualHost	172.20.30.40

<VirtualHost	172.20.30.40>

#	primary	vhost

DocumentRoot	/www/subdomain

RewriteEngine	On

RewriteRule	^/.*	/www/subdomain/index.html

#	...

</VirtualHost>

<VirtualHost	172.20.30.40>

DocumentRoot	/www/subdomain/sub1

ServerName	www.sub1.domain.tld

ServerPath	/sub1/

RewriteEngine	On

RewriteRule	^(/sub1/.*)	/www/subdomain$1

#	...

</VirtualHost>

<VirtualHost	172.20.30.40>

DocumentRoot	/www/subdomain/sub2

ServerName	www.sub2.domain.tld

ServerPath	/sub2/

RewriteEngine	On

RewriteRule	^(/sub2/.*)	/www/subdomain$1

#	...

</VirtualHost>

ServerPath		 URL	http://www.sub1.domain.tld/sub1/
	 	 	subl-	.
		 Host:		,	 URL	http://www.sub1.domain.tld/
		 subl-	.		 Host:		 						

			:		 Host:		
http://www.sub2.domain.tld/sub1/			 subl-	.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

RewriteRule				 Host:			 	(
	URL				.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

				

				.	 					.

		 	1.3 			 .								
NameVirtualHost			 		1.3					.

				 		,	 	.

	

<VirtualHost>				 	.	 <VirtualHost>			
.

Listen,	ServerName,	ServerPath,	ServerAlias		 		
		.				 		()			.

	 Listen		80.		 ServerPath	 ServerAlias	 	.
ServerName			 IP	.

	Listen				.		 						.		
URI					.

							 			 .

VirtualHost					.	 					
.			 *			 	.	(DNS				 A

		 (address	set)	.

	IP			 NameVirtualHost			 					IP	
.	 IP			 *			.

					 	IP		 NameVirtualHost

NameVirtualHost				(CNAME)		

	IP:					 NameVirtualHost		,	
NameVirtualHost		 VirtualHost					.

NameVirtualHost	 VirtualHost								
(VirtualHost		.):

NameVirtualHost

111.22.33.44

<VirtualHost

111.22.33.44>

#		A

<VirtualHost

111.22.33.44>

#		A

</VirtualHost>

<VirtualHost

...

</VirtualHost>

<VirtualHost

111.22.33.44>

#		B

...

</VirtualHost>

NameVirtualHost

111.22.33.55

<VirtualHost

111.22.33.55>

#		C

...

</VirtualHost>

<VirtualHost

111.22.33.55>

#		D

...

</VirtualHost>

111.22.33.55>

#		C

...

</VirtualHost>

<VirtualHost

111.22.33.44>

#		B

...

</VirtualHost>

<VirtualHost

111.22.33.55>

#		D

...

</VirtualHost>

NameVirtualHost

111.22.33.44

NameVirtualHost

111.22.33.55

(.)

VirtualHost			,		 	 VirtualHost				
Listen	.

VirtualHost					 		 ServerAlias			
	 ServerAlias).	 			 Listen

		.

	IP					.	 NameVirtualHost		IP			
					.	 					
			.	IP		 			.

				IP			 		.			IP				

			.	:

1.	 	 ServerAdmin,	ResourceConfig,	AccessConfig,
Timeout,	KeepAliveTimeout,	KeepAlive,

MaxKeepAliveRequests,	SendBufferSize				
	.	(,	 		.)

2.	 				"	 (lookup	defaults)"			.	
(per-directory	configuration)		.

3.	 			(per-server	config)		 			.

				""		""	 .						.	
					.	 								

	 ServerName				 			.		
		IP		 	 	.

		 ServerName		 			 VirtualHost	
.

	 default			 			 ServerName

	

							 	:

	
				IP			IP	 	.

IP									 		,	
default		 			.

	IP					 NameVirtualHost	*			.			
.

	(IP),	 IP				.

IP	
					IP	.	 			,				.

	
							 	.					
.

		(IP)				,	
Host:				 .

	 Host:		,		 	 ServerName	 ServerAlias				
.	 Host:						 ,								

	 Host:		HTTP/1.0		 								
ServerPath		.	 					,			

				,	()	 		IP						
		.

	
IP				TCP/IP		 	,		KeepAlive/		 		 .	,	
				 				.

	URI
	URI		URI				 					,	
URI		//	 				URI	.		 			URI		
		 		.

		IP			 		.	IP				
	.		 	.			 NameVirtualHost

			.
IP		 ServerAlias	ServerPath			.
		,	IP	,	 _default_	,	 NameVirtualHost

		.				 			.		
	 			.
		 Host:				 			.				
	.
(Host:			 ,)	 ServerPath			
ServerPath			 						.
	IP				,		 				.			
	.					 			.
default			IP	 							.	
			 default			(Listen)			.	
			 (,	_default_:*)		 			.
NameVirtualHost	*		.
			IP				 	(_default_)	
.	,		 (_default_)		/				
.
	(,	NameVirtualHost)			()		
Host:							 			 	_default_			

.
		DNS				 VirtualHost		DNS		.	
			DNS			 		.			 	.
		 ServerName		 	.			DNS		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

DNS			 				:

			 VirtualHost			 .	(.		
	 							 				.)
				 NameVirtualHost	VirtualHost		.
ServerPath		 ServerPath				.					
			()			()	 		.	(
/abc"	"ServerPath	/abc/def"			 .

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

(file	descriptor)	

				.	 					.

							 	,			(file	
handle))				.				 				,				
		10-20		.			 						.			
			hard-limit			.

					,		 	:

1.	 	 setrlimit()		 	.

2.	 (Solaris	2.3)		 setrlimit(RLIMIT_NOFILE)			

3.	 			hard	limit		.

4.	 (Solaris	2)		stdio		256	 					

		:

		.	 <VirtualHost>			 				.	(
	 	.)
		()	1	2		,	 							

#!/bin/sh

ulimit	-S	-n	100

exec	httpd

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

													.				
			.

					.			 LogFormat		 %v		.			
		:

LogFormat	"%v	%h	%l	%u	%t	\"%r\"	%>s	%b"	vhost

CustomLog	logs/multiple_vhost_log	vhost

	common			(ServerName)					.	(
			 	 	.)

	()			 split-logfile		.				
support		.

			:

split-logfile	<	/logs/multiple_vhost_log

												.		
hostname.log.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

DNS			

				.	 					.

						.			 	DNS		.				
			()	 			(
(theft	of	service)		 		.

	

<VirtualHost	www.abc.dom>	

ServerAdmin	webgirl@abc.dom	

DocumentRoot	/www/abc	

</VirtualHost>

					 				.			
	IP	.			IP		 ,		DNS		 www.abc.dom

					 DNS					 		
(1.2		 				.)

www.abc.dom		192.0.2.1	.	 			:

<VirtualHost	192.0.2.1>	

ServerAdmin	webgirl@abc.dom	

DocumentRoot	/www/abc	

</VirtualHost>

				 ServerName		DNS		.				
.	(1.2			 			.)	,				 			,	ip	
.						 	URL				URL		.

					.

<VirtualHost	192.0.2.1>	

ServerName	www.abc.dom	

ServerAdmin	webgirl@abc.dom	

DocumentRoot	/www/abc	

</VirtualHost>

	(Denial	of	Service)

()						.	 	1.2						
				.	 DNS						.		,
abc.dom					DNS	 ,	 www.abc.dom				
)			.

				.			:

<VirtualHost	www.abc.dom>	

		ServerAdmin	webgirl@abc.dom	

		DocumentRoot	/www/abc	

</VirtualHost>	

<VirtualHost	www.def.dom>	

		ServerAdmin	webguy@def.dom	

		DocumentRoot	/www/def	

</VirtualHost>

	 www.abc.dom	192.0.2.1,	 www.def.dom	192.0.2.2		
.	 ,	 def.dom		DNS		.	 			 def.dom

abc.dom	 							.			 www.def.dom

192.0.2.1			.	 		DNS				
www.def.dom						 .

(http://www.abc.dom/whatever		 URL)
192.0.2.1				 def.dom			.			 				
		 					.	 		.

""	

	1.1	 	 	 				 		IP	()			.			
ServerName		C		 gethostname	("hostname"			
)	.				 DNS		.						.

DNS								 /etc/hosts				.	
					.)	 	DNS			 /etc/hosts

		 /etc/resolv.conf		 /etc/nsswitch.conf			.

			DNS			 HOSTRESORDER		"local"		
.	 mod_env							 CGI		.		manpage
FAQ		 	.

			

VirtualHost	IP	 	
Listen	IP		
			 ServerName		
			 <VirtualHost	_default_:*>		

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

:	

DNS					.		1.2	 	DNS					
	 	.				IP			 								

								 IP			DNS					
.	 							.			 DNS			.	(FTP	
TCP	wrapper	"-"	DNS						 	.)

	IP			DNS				 						.				
							 			.

HTTP/1.1				 Host				IP			
			 DNS				.		1997	3		
		 .

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	SSL/TLS

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSL/TLS	Strong	Encryption:	An	Introduction

As	an	introduction	this	chapter	is	aimed	at	readers	who	are	familiar
with	the	Web,	HTTP,	and	Apache,	but	are	not	security	experts.	It	is
not	intended	to	be	a	definitive	guide	to	the	SSL	protocol,	nor	does	it
discuss	specific	techniques	for	managing	certificates	in	an
organization,	or	the	important	legal	issues	of	patents	and	import	and
export	restrictions.	Rather,	it	is	intended	to	provide	a	common
background	to	mod_ssl	users	by	pulling	together	various	concepts,
definitions,	and	examples	as	a	starting	point	for	further	exploration.

Cryptographic	Techniques

Understanding	SSL	requires	an	understanding	of	cryptographic
algorithms,	message	digest	functions	(aka.	one-way	or	hash
functions),	and	digital	signatures.	These	techniques	are	the
subject	of	entire	books	(see	for	instance	[AC96])	and	provide	the
basis	for	privacy,	integrity,	and	authentication.

Cryptographic	Algorithms
Suppose	Alice	wants	to	send	a	message	to	her	bank	to	transfer
some	money.	Alice	would	like	the	message	to	be	private,	since	it
will	include	information	such	as	her	account	number	and	transfer
amount.	One	solution	is	to	use	a	cryptographic	algorithm,	a
technique	that	would	transform	her	message	into	an	encrypted
form,	unreadable	until	it	is	decrypted.	Once	in	this	form,	the
message	can	only	be	decrypted	by	using	a	secret	key.	Without	the
key	the	message	is	useless:	good	cryptographic	algorithms	make
it	so	difficult	for	intruders	to	decode	the	original	text	that	it	isn't
worth	their	effort.

There	are	two	categories	of	cryptographic	algorithms:	conventional
and	public	key.

Conventional	cryptography
also	known	as	symmetric	cryptography,	requires	the	sender
and	receiver	to	share	a	key:	a	secret	piece	of	information	that
may	be	used	to	encrypt	or	decrypt	a	message.	As	long	as	this
key	is	kept	secret,	nobody	other	than	the	sender	or	recipient
can	read	the	message.	If	Alice	and	the	bank	know	a	secret
key,	then	they	can	send	each	other	private	messages.	The
task	of	sharing	a	key	between	sender	and	recipient	before
communicating,	while	also	keeping	it	secret	from	others,	can
be	problematic.

Public	key	cryptography
also	known	as	asymmetric	cryptography,	solves	the	key

exchange	problem	by	defining	an	algorithm	which	uses	two
keys,	each	of	which	may	be	used	to	encrypt	a	message.	If
one	key	is	used	to	encrypt	a	message	then	the	other	must	be
used	to	decrypt	it.	This	makes	it	possible	to	receive	secure
messages	by	simply	publishing	one	key	(the	public	key)	and
keeping	the	other	secret	(the	private	key).

Anyone	can	encrypt	a	message	using	the	public	key,	but	only	the
owner	of	the	private	key	will	be	able	to	read	it.	In	this	way,	Alice
can	send	private	messages	to	the	owner	of	a	key-pair	(the	bank),
by	encrypting	them	using	their	public	key.	Only	the	bank	will	be
able	to	decrypt	them.

Message	Digests
Although	Alice	may	encrypt	her	message	to	make	it	private,	there
is	still	a	concern	that	someone	might	modify	her	original	message
or	substitute	it	with	a	different	one,	in	order	to	transfer	the	money
to	themselves,	for	instance.	One	way	of	guaranteeing	the	integrity
of	Alice's	message	is	for	her	to	create	a	concise	summary	of	her
message	and	send	this	to	the	bank	as	well.	Upon	receipt	of	the
message,	the	bank	creates	its	own	summary	and	compares	it	with
the	one	Alice	sent.	If	the	summaries	are	the	same	then	the
message	has	been	received	intact.

A	summary	such	as	this	is	called	a	message	digest,	one-way
function	or	hash	function.	Message	digests	are	used	to	create	a
short,	fixed-length	representation	of	a	longer,	variable-length
message.	Digest	algorithms	are	designed	to	produce	a	unique
digest	for	each	message.	Message	digests	are	designed	to	make
it	impractically	difficult	to	determine	the	message	from	the	digest
and	(in	theory)	impossible	to	find	two	different	messages	which
create	the	same	digest	--	thus	eliminating	the	possibility	of
substituting	one	message	for	another	while	maintaining	the	same
digest.

Another	challenge	that	Alice	faces	is	finding	a	way	to	send	the
digest	to	the	bank	securely;	if	the	digest	is	not	sent	securely,	its
integrity	may	be	compromised	and	with	it	the	possibility	for	the
bank	to	determine	the	integrity	of	the	original	message.	Only	if	the
digest	is	sent	securely	can	the	integrity	of	the	associated	message
be	determined.

One	way	to	send	the	digest	securely	is	to	include	it	in	a	digital
signature.

Digital	Signatures
When	Alice	sends	a	message	to	the	bank,	the	bank	needs	to
ensure	that	the	message	is	really	from	her,	so	an	intruder	cannot
request	a	transaction	involving	her	account.	A	digital	signature,
created	by	Alice	and	included	with	the	message,	serves	this
purpose.

Digital	signatures	are	created	by	encrypting	a	digest	of	the
message	and	other	information	(such	as	a	sequence	number)	with
the	sender's	private	key.	Though	anyone	can	decrypt	the	signature
using	the	public	key,	only	the	sender	knows	the	private	key.	This
means	that	only	the	sender	can	have	signed	the	message.
Including	the	digest	in	the	signature	means	the	signature	is	only
good	for	that	message;	it	also	ensures	the	integrity	of	the	message
since	no	one	can	change	the	digest	and	still	sign	it.

To	guard	against	interception	and	reuse	of	the	signature	by	an
intruder	at	a	later	date,	the	signature	contains	a	unique	sequence
number.	This	protects	the	bank	from	a	fraudulent	claim	from	Alice
that	she	did	not	send	the	message	--	only	she	could	have	signed	it
(non-repudiation).

Certificates

Although	Alice	could	have	sent	a	private	message	to	the	bank,
signed	it	and	ensured	the	integrity	of	the	message,	she	still	needs
to	be	sure	that	she	is	really	communicating	with	the	bank.	This
means	that	she	needs	to	be	sure	that	the	public	key	she	is	using	is
part	of	the	bank's	key-pair,	and	not	an	intruder's.	Similarly,	the
bank	needs	to	verify	that	the	message	signature	really	was	signed
by	the	private	key	that	belongs	to	Alice.

If	each	party	has	a	certificate	which	validates	the	other's	identity,
confirms	the	public	key	and	is	signed	by	a	trusted	agency,	then
both	can	be	assured	that	they	are	communicating	with	whom	they
think	they	are.	Such	a	trusted	agency	is	called	a	Certificate
Authority	and	certificates	are	used	for	authentication.

Certificate	Contents
A	certificate	associates	a	public	key	with	the	real	identity	of	an
individual,	server,	or	other	entity,	known	as	the	subject.	As	shown
in	Table	1,	information	about	the	subject	includes	identifying
information	(the	distinguished	name)	and	the	public	key.	It	also
includes	the	identification	and	signature	of	the	Certificate	Authority
that	issued	the	certificate	and	the	period	of	time	during	which	the
certificate	is	valid.	It	may	have	additional	information	(or
extensions)	as	well	as	administrative	information	for	the	Certificate
Authority's	use,	such	as	a	serial	number.

Table	1:	Certificate	Information

Subject Distinguished	Name,	Public	Key
Issuer Distinguished	Name,	Signature
Period	of	Validity Not	Before	Date,	Not	After	Date
Administrative
Information

Version,	Serial	Number

Extended	Information Basic	Constraints,	Netscape	Flags,

etc.

A	distinguished	name	is	used	to	provide	an	identity	in	a	specific
context	--	for	instance,	an	individual	might	have	a	personal
certificate	as	well	as	one	for	their	identity	as	an	employee.
Distinguished	names	are	defined	by	the	X.509	standard	[X509],
which	defines	the	fields,	field	names	and	abbreviations	used	to
refer	to	the	fields	(see	Table	2).

Table	2:	Distinguished	Name	Information

DN	Field Abbrev. Description Example
Common	Name CN Name	being	certified CN=Joe

Average
Organization	or
Company

O Name	is	associated
with	this
organization

O=Snake	Oil,
Ltd.

Organizational
Unit

OU Name	is	associated
with	this	
organization	unit,	such
as	a	department

OU=Research
Institute

City/Locality L Name	is	located	in	this
City

L=Snake	City

State/Province ST Name	is	located	in	this
State/Province

ST=Desert

Country C Name	is	located	in	this
Country	(ISO	code)

C=XZ

A	Certificate	Authority	may	define	a	policy	specifying	which
distinguished	field	names	are	optional	and	which	are	required.	It
may	also	place	requirements	upon	the	field	contents,	as	may
users	of	certificates.	For	example,	a	Netscape	browser	requires
that	the	Common	Name	for	a	certificate	representing	a	server
matches	a	wildcard	pattern	for	the	domain	name	of	that	server,

such	as	*.snakeoil.com.

The	binary	format	of	a	certificate	is	defined	using	the	ASN.1
notation	[ASN1]	[PKCS].	This	notation	defines	how	to	specify	the
contents	and	encoding	rules	define	how	this	information	is
translated	into	binary	form.	The	binary	encoding	of	the	certificate	is
defined	using	Distinguished	Encoding	Rules	(DER),	which	are
based	on	the	more	general	Basic	Encoding	Rules	(BER).	For
those	transmissions	which	cannot	handle	binary,	the	binary	form
may	be	translated	into	an	ASCII	form	by	using	Base64	encoding
[MIME].	When	placed	between	begin	and	end	delimiter	lines	(as
below),	this	encoded	version	is	called	a	PEM	("Privacy	Enhanced
Mail")	encoded	certificate.

Example	of	a	PEM-encoded	certificate	(snakeoil.crt)
-----BEGIN	CERTIFICATE-----

MIIC7jCCAlegAwIBAgIBATANBgkqhkiG9w0BAQQFADCBqTELMAkGA1UEBhMCWFkx

FTATBgNVBAgTDFNuYWtlIERlc2VydDETMBEGA1UEBxMKU25ha2UgVG93bjEXMBUG

A1UEChMOU25ha2UgT2lsLCBMdGQxHjAcBgNVBAsTFUNlcnRpZmljYXRlIEF1dGhv

cml0eTEVMBMGA1UEAxMMU25ha2UgT2lsIENBMR4wHAYJKoZIhvcNAQkBFg9jYUBz

bmFrZW9pbC5kb20wHhcNOTgxMDIxMDg1ODM2WhcNOTkxMDIxMDg1ODM2WjCBpzEL

MAkGA1UEBhMCWFkxFTATBgNVBAgTDFNuYWtlIERlc2VydDETMBEGA1UEBxMKU25h

a2UgVG93bjEXMBUGA1UEChMOU25ha2UgT2lsLCBMdGQxFzAVBgNVBAsTDldlYnNl

cnZlciBUZWFtMRkwFwYDVQQDExB3d3cuc25ha2VvaWwuZG9tMR8wHQYJKoZIhvcN

AQkBFhB3d3dAc25ha2VvaWwuZG9tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB

gQDH9Ge/s2zcH+da+rPTx/DPRp3xGjHZ4GG6pCmvADIEtBtKBFAcZ64n+Dy7Np8b

vKR+yy5DGQiijsH1D/j8HlGE+q4TZ8OFk7BNBFazHxFbYI4OKMiCxdKzdif1yfaa

lWoANFlAzlSdbxeGVHoT0K+gT5w3UxwZKv2DLbCTzLZyPwIDAQABoyYwJDAPBgNV

HRMECDAGAQH/AgEAMBEGCWCGSAGG+EIBAQQEAwIAQDANBgkqhkiG9w0BAQQFAAOB

gQAZUIHAL4D09oE6Lv2k56Gp38OBDuILvwLg1v1KL8mQR+KFjghCrtpqaztZqcDt

2q2QoyulCgSzHbEGmi0EsdkPfg6mp0penssIFePYNI+/8u9HT4LuKMJX15hxBam7

dUHzICxBVC1lnHyYGjDuAMhe396lYAn8bCld1/L4NMGBCQ==

-----END	CERTIFICATE-----

Certificate	Authorities
By	verifying	the	information	in	a	certificate	request	before	granting
the	certificate,	the	Certificate	Authority	assures	itself	of	the	identity
of	the	private	key	owner	of	a	key-pair.	For	instance,	if	Alice

requests	a	personal	certificate,	the	Certificate	Authority	must	first
make	sure	that	Alice	really	is	the	person	the	certificate	request
claims	she	is.

Certificate	Chains
A	Certificate	Authority	may	also	issue	a	certificate	for	another
Certificate	Authority.	When	examining	a	certificate,	Alice	may	need
to	examine	the	certificate	of	the	issuer,	for	each	parent	Certificate
Authority,	until	reaching	one	which	she	has	confidence	in.	She
may	decide	to	trust	only	certificates	with	a	limited	chain	of	issuers,
to	reduce	her	risk	of	a	"bad"	certificate	in	the	chain.

Creating	a	Root-Level	CA
As	noted	earlier,	each	certificate	requires	an	issuer	to	assert	the
validity	of	the	identity	of	the	certificate	subject,	up	to	the	top-level
Certificate	Authority	(CA).	This	presents	a	problem:	who	can
vouch	for	the	certificate	of	the	top-level	authority,	which	has	no
issuer?	In	this	unique	case,	the	certificate	is	"self-signed",	so	the
issuer	of	the	certificate	is	the	same	as	the	subject.	Browsers	are
preconfigured	to	trust	well-known	certificate	authorities,	but	it	is
important	to	exercise	extra	care	in	trusting	a	self-signed	certificate.
The	wide	publication	of	a	public	key	by	the	root	authority	reduces
the	risk	in	trusting	this	key	--	it	would	be	obvious	if	someone	else
publicized	a	key	claiming	to	be	the	authority.

A	number	of	companies,	such	as	Thawte	and	VeriSign	have
established	themselves	as	Certificate	Authorities.	These
companies	provide	the	following	services:

Verifying	certificate	requests
Processing	certificate	requests
Issuing	and	managing	certificates

It	is	also	possible	to	create	your	own	Certificate	Authority.
Although	risky	in	the	Internet	environment,	it	may	be	useful	within

http://www.thawte.com/
http://www.verisign.com/

an	Intranet	where	the	organization	can	easily	verify	the	identities
of	individuals	and	servers.

Certificate	Management
Establishing	a	Certificate	Authority	is	a	responsibility	which
requires	a	solid	administrative,	technical	and	management
framework.	Certificate	Authorities	not	only	issue	certificates,	they
also	manage	them	--	that	is,	they	determine	for	how	long
certificates	remain	valid,	they	renew	them	and	keep	lists	of
certificates	that	were	issued	in	the	past	but	are	no	longer	valid
(Certificate	Revocation	Lists,	or	CRLs).

For	example,	if	Alice	is	entitled	to	a	certificate	as	an	employee	of	a
company	but	has	now	left	that	company,	her	certificate	may	need
to	be	revoked.	Because	certificates	are	only	issued	after	the
subject's	identity	has	been	verified	and	can	then	be	passed
around	to	all	those	with	whom	the	subject	may	communicate,	it	is
impossible	to	tell	from	the	certificate	alone	that	it	has	been
revoked.	Therefore	when	examining	certificates	for	validity	it	is
necessary	to	contact	the	issuing	Certificate	Authority	to	check
CRLs	--	this	is	usually	not	an	automated	part	of	the	process.

Note

If	you	use	a	Certificate	Authority	that	browsers	are	not
configured	to	trust	by	default,	it	is	necessary	to	load	the
Certificate	Authority	certificate	into	the	browser,	enabling	the
browser	to	validate	server	certificates	signed	by	that	Certificate
Authority.	Doing	so	may	be	dangerous,	since	once	loaded,	the
browser	will	accept	all	certificates	signed	by	that	Certificate
Authority.

Secure	Sockets	Layer	(SSL)

The	Secure	Sockets	Layer	protocol	is	a	protocol	layer	which	may
be	placed	between	a	reliable	connection-oriented	network	layer
protocol	(e.g.	TCP/IP)	and	the	application	protocol	layer	(e.g.
HTTP).	SSL	provides	for	secure	communication	between	client
and	server	by	allowing	mutual	authentication,	the	use	of	digital
signatures	for	integrity	and	encryption	for	privacy.

The	protocol	is	designed	to	support	a	range	of	choices	for	specific
algorithms	used	for	cryptography,	digests	and	signatures.	This
allows	algorithm	selection	for	specific	servers	to	be	made	based
on	legal,	export	or	other	concerns	and	also	enables	the	protocol	to
take	advantage	of	new	algorithms.	Choices	are	negotiated
between	client	and	server	when	establishing	a	protocol	session.

Table	4:	Versions	of	the	SSL	protocol
Version Source Description
SSL
v2.0

Vendor
Standard
(from
Netscape
Corp.)

First	SSL	protocol	for	which
implementations	exist

SSL
v3.0

Expired
Internet	Draft
(from
Netscape
Corp.)	[SSL3]

Revisions	to	prevent	specific	security
attacks,	add	non-RSA	ciphers	and
support	for	certificate	chains

TLS
v1.0

Proposed
Internet
Standard
(from	IETF)
[TLS1]

Revision	of	SSL	3.0	to	update	the	MAC
layer	to	HMAC,	add	block	padding	for
block	ciphers,	message	order
standardization	and	more	alert
messages.

TLS Proposed Update	of	TLS	1.0	to	add	protection

v1.1 Internet
Standard
(from	IETF)
[TLS11]

against	Cipher	block	chaining	(CBC)
attacks.

TLS
v1.2

Proposed
Internet
Standard
(from	IETF)
[TLS12]

Update	of	TLS	1.1	deprecating	MD5	as
hash,	and	adding	incompatibility	to	SSL
so	it	will	never	negotiate	the	use	of
SSLv2.

There	are	a	number	of	versions	of	the	SSL	protocol,	as	shown	in
Table	4.	As	noted	there,	one	of	the	benefits	in	SSL	3.0	is	that	it
adds	support	of	certificate	chain	loading.	This	feature	allows	a
server	to	pass	a	server	certificate	along	with	issuer	certificates	to
the	browser.	Chain	loading	also	permits	the	browser	to	validate	the
server	certificate,	even	if	Certificate	Authority	certificates	are	not
installed	for	the	intermediate	issuers,	since	they	are	included	in	the
certificate	chain.	SSL	3.0	is	the	basis	for	the	Transport	Layer
Security	[TLS]	protocol	standard,	currently	in	development	by	the
Internet	Engineering	Task	Force	(IETF).

Establishing	a	Session
The	SSL	session	is	established	by	following	a	handshake
sequence	between	client	and	server,	as	shown	in	Figure	1.	This
sequence	may	vary,	depending	on	whether	the	server	is
configured	to	provide	a	server	certificate	or	request	a	client
certificate.	Although	cases	exist	where	additional	handshake	steps
are	required	for	management	of	cipher	information,	this	article
summarizes	one	common	scenario.	See	the	SSL	specification	for
the	full	range	of	possibilities.

Note

Once	an	SSL	session	has	been	established,	it	may	be	reused.

This	avoids	the	performance	penalty	of	repeating	the	many
steps	needed	to	start	a	session.	To	do	this,	the	server	assigns
each	SSL	session	a	unique	session	identifier	which	is	cached	in
the	server	and	which	the	client	can	use	in	future	connections	to
reduce	the	handshake	time	(until	the	session	identifier	expires
from	the	cache	of	the	server).

Figure	1:	Simplified	SSL	Handshake	Sequence

The	elements	of	the	handshake	sequence,	as	used	by	the	client
and	server,	are	listed	below:

1.	 Negotiate	the	Cipher	Suite	to	be	used	during	data	transfer

2.	 Establish	and	share	a	session	key	between	client	and	server

3.	 Optionally	authenticate	the	server	to	the	client

4.	 Optionally	authenticate	the	client	to	the	server

The	first	step,	Cipher	Suite	Negotiation,	allows	the	client	and
server	to	choose	a	Cipher	Suite	supported	by	both	of	them.	The
SSL3.0	protocol	specification	defines	31	Cipher	Suites.	A	Cipher
Suite	is	defined	by	the	following	components:

Key	Exchange	Method
Cipher	for	Data	Transfer
Message	Digest	for	creating	the	Message	Authentication
Code	(MAC)

These	three	elements	are	described	in	the	sections	that	follow.

Key	Exchange	Method
The	key	exchange	method	defines	how	the	shared	secret
symmetric	cryptography	key	used	for	application	data	transfer	will
be	agreed	upon	by	client	and	server.	SSL	2.0	uses	RSA	key
exchange	only,	while	SSL	3.0	supports	a	choice	of	key	exchange
algorithms	including	RSA	key	exchange	(when	certificates	are
used),	and	Diffie-Hellman	key	exchange	(for	exchanging	keys
without	certificates,	or	without	prior	communication	between	client
and	server).

One	variable	in	the	choice	of	key	exchange	methods	is	digital
signatures	--	whether	or	not	to	use	them,	and	if	so,	what	kind	of
signatures	to	use.	Signing	with	a	private	key	provides	protection
against	a	man-in-the-middle-attack	during	the	information
exchange	used	to	generating	the	shared	key	[AC96,	p516].

Cipher	for	Data	Transfer
SSL	uses	conventional	symmetric	cryptography,	as	described
earlier,	for	encrypting	messages	in	a	session.	There	are	nine
choices	of	how	to	encrypt,	including	the	option	not	to	encrypt:

No	encryption
Stream	Ciphers

RC4	with	40-bit	keys
RC4	with	128-bit	keys

CBC	Block	Ciphers

RC2	with	40	bit	key
DES	with	40	bit	key
DES	with	56	bit	key
Triple-DES	with	168	bit	key
Idea	(128	bit	key)
Fortezza	(96	bit	key)

"CBC"	refers	to	Cipher	Block	Chaining,	which	means	that	a	portion
of	the	previously	encrypted	cipher	text	is	used	in	the	encryption	of
the	current	block.	"DES"	refers	to	the	Data	Encryption	Standard
[AC96,	ch12],	which	has	a	number	of	variants	(including	DES40
and	3DES_EDE).	"Idea"	is	currently	one	of	the	best	and
cryptographically	strongest	algorithms	available,	and	"RC2"	is	a
proprietary	algorithm	from	RSA	DSI	[AC96,	ch13].

Digest	Function
The	choice	of	digest	function	determines	how	a	digest	is	created
from	a	record	unit.	SSL	supports	the	following:

No	digest	(Null	choice)
MD5,	a	128-bit	hash
Secure	Hash	Algorithm	(SHA-1),	a	160-bit	hash

The	message	digest	is	used	to	create	a	Message	Authentication
Code	(MAC)	which	is	encrypted	with	the	message	to	verify
integrity	and	to	protect	against	replay	attacks.

Handshake	Sequence	Protocol
The	handshake	sequence	uses	three	protocols:

The	SSL	Handshake	Protocol	for	performing	the	client	and
server	SSL	session	establishment.
The	SSL	Change	Cipher	Spec	Protocol	for	actually
establishing	agreement	on	the	Cipher	Suite	for	the	session.

The	SSL	Alert	Protocol	for	conveying	SSL	error	messages
between	client	and	server.

These	protocols,	as	well	as	application	protocol	data,	are
encapsulated	in	the	SSL	Record	Protocol,	as	shown	in	Figure	2.
An	encapsulated	protocol	is	transferred	as	data	by	the	lower	layer
protocol,	which	does	not	examine	the	data.	The	encapsulated
protocol	has	no	knowledge	of	the	underlying	protocol.

Figure	2:	SSL	Protocol	Stack

The	encapsulation	of	SSL	control	protocols	by	the	record	protocol
means	that	if	an	active	session	is	renegotiated	the	control
protocols	will	be	transmitted	securely.	If	there	was	no	previous
session,	the	Null	cipher	suite	is	used,	which	means	there	will	be
no	encryption	and	messages	will	have	no	integrity	digests,	until
the	session	has	been	established.

Data	Transfer
The	SSL	Record	Protocol,	shown	in	Figure	3,	is	used	to	transfer
application	and	SSL	Control	data	between	the	client	and	server,
where	necessary	fragmenting	this	data	into	smaller	units,	or
combining	multiple	higher	level	protocol	data	messages	into	single
units.	It	may	compress,	attach	digest	signatures,	and	encrypt
these	units	before	transmitting	them	using	the	underlying	reliable
transport	protocol	(Note:	currently,	no	major	SSL	implementations

include	support	for	compression).

Figure	3:	SSL	Record	Protocol

Securing	HTTP	Communication
One	common	use	of	SSL	is	to	secure	Web	HTTP	communication
between	a	browser	and	a	webserver.	This	does	not	preclude	the
use	of	non-secured	HTTP	-	the	secure	version	(called	HTTPS)	is
the	same	as	plain	HTTP	over	SSL,	but	uses	the	URL	scheme
https	rather	than	http,	and	a	different	server	port	(by	default,
port	443).	This	functionality	is	a	large	part	of	what	mod_ssl
provides	for	the	Apache	webserver.

References

[AC96]
Bruce	Schneier,	“Applied	Cryptography”,	2nd	Edition,	Wiley,
1996.	See	http://www.counterpane.com/	for	various	other
materials	by	Bruce	Schneier.

[ASN1]
ITU-T	Recommendation	X.208,	“Specification	of	Abstract
Syntax	Notation	One	(ASN.1)”,	last	updated	2008.	See
http://www.itu.int/ITU-T/asn1/.

[X509]
ITU-T	Recommendation	X.509,	“The	Directory	-
Authentication	Framework”.	For	references,	see
http://en.wikipedia.org/wiki/X.509.

[PKCS]
“Public	Key	Cryptography	Standards	(PKCS)”,	RSA
Laboratories	Technical	Notes,	See
http://www.rsasecurity.com/rsalabs/pkcs/.

[MIME]
N.	Freed,	N.	Borenstein,	“Multipurpose	Internet	Mail
Extensions	(MIME)	Part	One:	Format	of	Internet	Message
Bodies”,	RFC2045.	See	for	instance
http://tools.ietf.org/html/rfc2045.

[SSL3]
Alan	O.	Freier,	Philip	Karlton,	Paul	C.	Kocher,	“The	SSL
Protocol	Version	3.0”,	1996.	See
http://www.netscape.com/eng/ssl3/draft302.txt.

[TLS1]
Tim	Dierks,	Christopher	Allen,	“The	TLS	Protocol	Version
1.0”,	1999.	See	http://ietf.org/rfc/rfc2246.txt.

[TLS11]
“The	TLS	Protocol	Version	1.1”,	2006.	See

http://www.counterpane.com/
http://www.itu.int/ITU-T/asn1/
http://en.wikipedia.org/wiki/X.509
http://www.rsasecurity.com/rsalabs/pkcs/
http://tools.ietf.org/html/rfc2045
http://www.netscape.com/eng/ssl3/draft302.txt
http://ietf.org/rfc/rfc2246.txt

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://tools.ietf.org/html/rfc4346.

[TLS12]
“The	TLS	Protocol	Version	1.2”,	2008.	See
http://tools.ietf.org/html/rfc5246.

http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc5246
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	SSL/TLS

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSL/TLS	Strong	Encryption:	Compatibility

This	page	covers	backwards	compatibility	between	mod_ssl	and	other
SSL	solutions.	mod_ssl	is	not	the	only	SSL	solution	for	Apache;	four
additional	products	are	(or	were)	also	available:	Ben	Laurie's	freely
available	Apache-SSL	(from	where	mod_ssl	were	originally	derived	in
1998),	Red	Hat's	commercial	Secure	Web	Server	(which	was	based
on	mod_ssl),	Covalent's	commercial	Raven	SSL	Module	(also	based
on	mod_ssl)	and	finally	C2Net's	(now	Red	Hat's)	commercial	product
Stronghold	(based	on	a	different	evolution	branch,	named	Sioux	up	to
Stronghold	2.x,	and	based	on	mod_ssl	since	Stronghold	3.x).

mod_ssl	mostly	provides	a	superset	of	the	functionality	of	all	the	other
solutions,	so	it's	simple	to	migrate	from	one	of	the	older	modules	to
mod_ssl.	The	configuration	directives	and	environment	variable
names	used	by	the	older	SSL	solutions	vary	from	those	used	in
mod_ssl;	mapping	tables	are	included	here	to	give	the	equivalents
used	by	mod_ssl.

http://www.apache-ssl.org/
http://www.redhat.com/explore/stronghold/

Configuration	Directives

The	mapping	between	configuration	directives	used	by	Apache-
SSL	1.x	and	mod_ssl	2.0.x	is	given	in	Table	1.	The	mapping	from
Sioux	1.x	and	Stronghold	2.x	is	only	partial	because	of	special
functionality	in	these	interfaces	which	mod_ssl	doesn't	provide.

Table	1:	Configuration	Directive	Mapping
Old	Directive mod_ssl	Directive
Apache-SSL	1.x	&	mod_ssl	2.0.x	compatibility:
SSLEnable SSLEngine	on

SSLDisable SSLEngine	off

SSLLogFile	file

SSLRequiredCiphers	spec SSLCipherSuite	spec
SSLRequireCipher	c1	... SSLRequire	%{SSL_CIPHER}	in

{"c1",	...}
SSLBanCipher	c1	... SSLRequire	not	(%{SSL_CIPHER}

in	{"c1",	...})
SSLFakeBasicAuth SSLOptions	+FakeBasicAuth

SSLCacheServerPath	dir -
SSLCacheServerPort	integer -

Apache-SSL	1.x	compatibility:
SSLExportClientCertificates SSLOptions	+ExportCertData

SSLCacheServerRunDir	dir -

Sioux	1.x	compatibility:
SSL_CertFile	file SSLCertificateFile	file
SSL_KeyFile	file SSLCertificateKeyFile	
SSL_CipherSuite	arg SSLCipherSuite	arg

SSL_X509VerifyDir	arg SSLCACertificatePath	arg
SSL_Log	file -

SSL_Connect	flag SSLEngine	flag
SSL_ClientAuth	arg SSLVerifyClient	arg
SSL_X509VerifyDepth	arg SSLVerifyDepth	arg
SSL_FetchKeyPhraseFrom	arg -

SSL_SessionDir	dir -

SSL_Require	expr -

SSL_CertFileType	arg -

SSL_KeyFileType	arg -

SSL_X509VerifyPolicy	arg -

SSL_LogX509Attributes	arg -

Stronghold	2.x	compatibility:
StrongholdAccelerator	engine SSLCryptoDevice	engine
StrongholdKey	dir -

StrongholdLicenseFile	dir -

SSLFlag	flag SSLEngine	flag
SSLSessionLockFile	file SSLMutex	file

SSLCipherList	spec SSLCipherSuite	spec
RequireSSL SSLRequireSSL

SSLErrorFile	file -

SSLRoot	dir -

SSL_CertificateLogDir	dir -

AuthCertDir	dir -

SSL_Group	name -

SSLProxyMachineCertPath	dir SSLProxyMachineCertificatePath

dir
SSLProxyMachineCertFile	file SSLProxyMachineCertificateFile

file
SSLProxyCipherList	spec SSLProxyCipherSpec	spec

Environment	Variables

The	mapping	between	environment	variable	names	used	by	the
older	SSL	solutions	and	the	names	used	by	mod_ssl	is	given	in
Table	2.

Table	2:	Environment	Variable	Derivation
Old	Variable mod_ssl	Variable
SSL_PROTOCOL_VERSION SSL_PROTOCOL

SSLEAY_VERSION SSL_VERSION_LIBRARY

HTTPS_SECRETKEYSIZE SSL_CIPHER_USEKEYSIZE

HTTPS_KEYSIZE SSL_CIPHER_ALGKEYSIZE

HTTPS_CIPHER SSL_CIPHER

HTTPS_EXPORT SSL_CIPHER_EXPORT

SSL_SERVER_KEY_SIZE SSL_CIPHER_ALGKEYSIZE

SSL_SERVER_CERTIFICATE SSL_SERVER_CERT

SSL_SERVER_CERT_START SSL_SERVER_V_START

SSL_SERVER_CERT_END SSL_SERVER_V_END

SSL_SERVER_CERT_SERIAL SSL_SERVER_M_SERIAL

SSL_SERVER_SIGNATURE_ALGORITHM SSL_SERVER_A_SIG

SSL_SERVER_DN SSL_SERVER_S_DN

SSL_SERVER_CN SSL_SERVER_S_DN_CN

SSL_SERVER_EMAIL SSL_SERVER_S_DN_Email

SSL_SERVER_O SSL_SERVER_S_DN_O

SSL_SERVER_OU SSL_SERVER_S_DN_OU

SSL_SERVER_C SSL_SERVER_S_DN_C

SSL_SERVER_SP SSL_SERVER_S_DN_SP

SSL_SERVER_L SSL_SERVER_S_DN_L

SSL_SERVER_IDN SSL_SERVER_I_DN

SSL_SERVER_ICN SSL_SERVER_I_DN_CN

SSL_SERVER_IEMAIL SSL_SERVER_I_DN_Email

SSL_SERVER_IO SSL_SERVER_I_DN_O

SSL_SERVER_IOU SSL_SERVER_I_DN_OU

SSL_SERVER_IC SSL_SERVER_I_DN_C

SSL_SERVER_ISP SSL_SERVER_I_DN_SP

SSL_SERVER_IL SSL_SERVER_I_DN_L

SSL_CLIENT_CERTIFICATE SSL_CLIENT_CERT

SSL_CLIENT_CERT_START SSL_CLIENT_V_START

SSL_CLIENT_CERT_END SSL_CLIENT_V_END

SSL_CLIENT_CERT_SERIAL SSL_CLIENT_M_SERIAL

SSL_CLIENT_SIGNATURE_ALGORITHM SSL_CLIENT_A_SIG

SSL_CLIENT_DN SSL_CLIENT_S_DN

SSL_CLIENT_CN SSL_CLIENT_S_DN_CN

SSL_CLIENT_EMAIL SSL_CLIENT_S_DN_Email

SSL_CLIENT_O SSL_CLIENT_S_DN_O

SSL_CLIENT_OU SSL_CLIENT_S_DN_OU

SSL_CLIENT_C SSL_CLIENT_S_DN_C

SSL_CLIENT_SP SSL_CLIENT_S_DN_SP

SSL_CLIENT_L SSL_CLIENT_S_DN_L

SSL_CLIENT_IDN SSL_CLIENT_I_DN

SSL_CLIENT_ICN SSL_CLIENT_I_DN_CN

SSL_CLIENT_IEMAIL SSL_CLIENT_I_DN_Email

SSL_CLIENT_IO SSL_CLIENT_I_DN_O

SSL_CLIENT_IOU SSL_CLIENT_I_DN_OU

SSL_CLIENT_IC SSL_CLIENT_I_DN_C

SSL_CLIENT_ISP SSL_CLIENT_I_DN_SP

SSL_CLIENT_IL SSL_CLIENT_I_DN_L

SSL_EXPORT SSL_CIPHER_EXPORT

SSL_KEYSIZE SSL_CIPHER_ALGKEYSIZE

SSL_SECKEYSIZE SSL_CIPHER_USEKEYSIZE

SSL_SSLEAY_VERSION SSL_VERSION_LIBRARY

SSL_STRONG_CRYPTO -

SSL_SERVER_KEY_EXP -

SSL_SERVER_KEY_ALGORITHM -

SSL_SERVER_KEY_SIZE -

SSL_SERVER_SESSIONDIR -

SSL_SERVER_CERTIFICATELOGDIR -

SSL_SERVER_CERTFILE -

SSL_SERVER_KEYFILE -

SSL_SERVER_KEYFILETYPE -

SSL_CLIENT_KEY_EXP -

SSL_CLIENT_KEY_ALGORITHM -

SSL_CLIENT_KEY_SIZE -

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Custom	Log	Functions

When	mod_ssl	is	enabled,	additional	functions	exist	for	the
Custom	Log	Format	of	mod_log_config	as	documented	in	the
Reference	Chapter.	Beside	the	``%{varname}x''	eXtension	format
function	which	can	be	used	to	expand	any	variables	provided	by
any	module,	an	additional	Cryptography	``%{name}c''
cryptography	format	function	exists	for	backward	compatibility.	The
currently	implemented	function	calls	are	listed	in	Table	3.

Table	3:	Custom	Log	Cryptography	Function
Function	Call Description
%...{version}c SSL	protocol	version
%...{cipher}c SSL	cipher
%...

{subjectdn}c

Client	Certificate	Subject	Distinguished
Name

%...{issuerdn}c Client	Certificate	Issuer	Distinguished
Name

%...{errcode}c Certificate	Verification	Error	(numerical)
%...{errstr}c Certificate	Verification	Error	(string)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	SSL/TLS

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSL/TLS	Strong	Encryption:	How-To

This	document	is	intended	to	get	you	started,	and	get	a	few	things
working.	You	are	strongly	encouraged	to	read	the	rest	of	the	SSL
documentation,	and	arrive	at	a	deeper	understanding	of	the	material,
before	progressing	to	the	advanced	techniques.

Basic	Configuration	Example

Your	SSL	configuration	will	need	to	contain,	at	minimum,	the
following	directives.

LoadModule	ssl_module	modules/mod_ssl.so

Listen	443

<VirtualHost	*:443>

				ServerName	www.example.com

				SSLEngine	on

				SSLCertificateFile	"/path/to/www.example.com.cert"

				SSLCertificateKeyFile	"/path/to/www.example.com.key"

</VirtualHost>

Cipher	Suites	and	Enforcing	Strong	Security

How	can	I	create	an	SSL	server	which	accepts	strong
encryption	only?
How	can	I	create	an	SSL	server	which	accepts	all	types	of
ciphers	in	general,	but	requires	a	strong	cipher	for	access	to	a
particular	URL?

How	can	I	create	an	SSL	server	which	accepts	strong
encryption	only?
The	following	enables	only	the	strongest	ciphers:

SSLCipherSuite	HIGH:!aNULL:!MD5

While	with	the	following	configuration	you	specify	a	preference	for
specific	speed-optimized	ciphers	(which	will	be	selected	by
mod_ssl,	provided	that	they	are	supported	by	the	client):

SSLCipherSuite	RC4-SHA:AES128-SHA:HIGH:!aNULL:!MD5

SSLHonorCipherOrder	on

How	can	I	create	an	SSL	server	which	accepts	all
types	of	ciphers	in	general,	but	requires	a	strong
ciphers	for	access	to	a	particular	URL?
Obviously,	a	server-wide	SSLCipherSuite	which	restricts
ciphers	to	the	strong	variants,	isn't	the	answer	here.	However,
mod_ssl	can	be	reconfigured	within	Location	blocks,	to	give	a
per-directory	solution,	and	can	automatically	force	a	renegotiation
of	the	SSL	parameters	to	meet	the	new	configuration.	This	can	be
done	as	follows:

#	be	liberal	in	general

SSLCipherSuite	ALL:!aNULL:RC4+RSA:+HIGH:+MEDIUM:+LOW:+EXP:+eNULL

<Location	"/strong/area">

#	but	https://hostname/strong/area/	and	below

#	requires	strong	ciphers

SSLCipherSuite	HIGH:!aNULL:!MD5

</Location>

OCSP	Stapling

The	Online	Certificate	Status	Protocol	(OCSP)	is	a	mechanism	for
determining	whether	or	not	a	server	certificate	has	been	revoked,
and	OCSP	Stapling	is	a	special	form	of	this	in	which	the	server,
such	as	httpd	and	mod_ssl,	maintains	current	OCSP	responses
for	its	certificates	and	sends	them	to	clients	which	communicate
with	the	server.	Most	certificates	contain	the	address	of	an	OCSP
responder	maintained	by	the	issuing	Certificate	Authority,	and
mod_ssl	can	communicate	with	that	responder	to	obtain	a	signed
response	that	can	be	sent	to	clients	communicating	with	the
server.

Because	the	client	can	obtain	the	certificate	revocation	status	from
the	server,	without	requiring	an	extra	connection	from	the	client	to
the	Certificate	Authority,	OCSP	Stapling	is	the	preferred	way	for
the	revocation	status	to	be	obtained.	Other	benefits	of	eliminating
the	communication	between	clients	and	the	Certificate	Authority
are	that	the	client	browsing	history	is	not	exposed	to	the	Certificate
Authority	and	obtaining	status	is	more	reliable	by	not	depending
on	potentially	heavily	loaded	Certificate	Authority	servers.

Because	the	response	obtained	by	the	server	can	be	reused	for	all
clients	using	the	same	certificate	during	the	time	that	the	response
is	valid,	the	overhead	for	the	server	is	minimal.

Once	general	SSL	support	has	been	configured	properly,	enabling
OCSP	Stapling	generally	requires	only	very	minor	modifications	to
the	httpd	configuration	—	the	addition	of	these	two	directives:

SSLUseStapling	On

SSLStaplingCache	"shmcb:logs/ssl_stapling(32768)"

These	directives	are	placed	at	global	scope	(i.e.,	not	within	a
virtual	host	definition)	wherever	other	global	SSL	configuration

directives	are	placed,	such	as	in	conf/extra/httpd-ssl.conf
for	normal	open	source	builds	of	httpd,	/etc/apache2/mods-
enabled/ssl.conf	for	the	Ubuntu	or	Debian-bundled	httpd,	etc.

The	path	on	the	SSLStaplingCache	directive	(e.g.,	logs/)
should	match	the	one	on	the	SSLSessionCache	directive.	This
path	is	relative	to	ServerRoot.

This	particular	SSLStaplingCache	directive	requires
mod_socache_shmcb	(from	the	shmcb	prefix	on	the	directive's
argument).	This	module	is	usually	enabled	already	for
SSLSessionCache	or	on	behalf	of	some	module	other	than
mod_ssl.	If	you	enabled	an	SSL	session	cache	using	a
mechanism	other	than	mod_socache_shmcb,	use	that	alternative
mechanism	for	SSLStaplingCache	as	well.	For	example:

SSLSessionCache	"dbm:logs/ssl_scache"

SSLStaplingCache	"dbm:logs/ssl_stapling"

You	can	use	the	openssl	command-line	program	to	verify	that	an
OCSP	response	is	sent	by	your	server:

$	openssl	s_client	-connect	www.example.com:443	-status	-servername	www.example.com

...

OCSP	response:	

======================================

OCSP	Response	Data:

				OCSP	Response	Status:	successful	(0x0)

				Response	Type:	Basic	OCSP	Response

...

				Cert	Status:	Good

...

The	following	sections	highlight	the	most	common	situations	which
require	further	modification	to	the	configuration.	Refer	also	to	the

mod_ssl	reference	manual.

If	more	than	a	few	SSL	certificates	are	used	for	the
server
OCSP	responses	are	stored	in	the	SSL	stapling	cache.	While	the
responses	are	typically	a	few	hundred	to	a	few	thousand	bytes	in
size,	mod_ssl	supports	OCSP	responses	up	to	around	10K	bytes
in	size.	With	more	than	a	few	certificates,	the	stapling	cache	size
(32768	bytes	in	the	example	above)	may	need	to	be	increased.
Error	message	AH01929	will	be	logged	in	case	of	an	error	storing
a	response.

If	the	certificate	does	not	point	to	an	OCSP
responder,	or	if	a	different	address	must	be	used
Refer	to	the	SSLStaplingForceURL	directive.

You	can	confirm	that	a	server	certificate	points	to	an	OCSP
responder	using	the	openssl	command-line	program,	as	follows:

$	openssl	x509	-in	./www.example.com.crt	-text	|	grep	'OCSP.*http'

OCSP	-	URI:http://ocsp.example.com

If	the	OCSP	URI	is	provided	and	the	web	server	can	communicate
to	it	directly	without	using	a	proxy,	no	configuration	is	required.
Note	that	firewall	rules	that	control	outbound	connections	from	the
web	server	may	need	to	be	adjusted.

If	no	OCSP	URI	is	provided,	contact	your	Certificate	Authority	to
determine	if	one	is	available;	if	so,	configure	it	with
SSLStaplingForceURL	in	the	virtual	host	that	uses	the
certificate.

If	multiple	SSL-enabled	virtual	hosts	are	configured
and	OCSP	Stapling	should	be	disabled	for	some

Add	SSLUseStapling	Off	to	the	virtual	hosts	for	which	OCSP
Stapling	should	be	disabled.

If	the	OCSP	responder	is	slow	or	unreliable
Several	directives	are	available	to	handle	timeouts	and	errors.
Refer	to	the	documentation	for	the
SSLStaplingFakeTryLater,
SSLStaplingResponderTimeout,	and
SSLStaplingReturnResponderErrors	directives.

If	mod_ssl	logs	error	AH02217
AH02217:	ssl_stapling_init_cert:	Can't	retrieve	issuer	certificate!

In	order	to	support	OCSP	Stapling	when	a	particular	server
certificate	is	used,	the	certificate	chain	for	that	certificate	must	be
configured.	If	it	was	not	configured	as	part	of	enabling	SSL,	the
AH02217	error	will	be	issued	when	stapling	is	enabled,	and	an
OCSP	response	will	not	be	provided	for	clients	using	the
certificate.

Refer	to	the	SSLCertificateChainFile	and
SSLCertificateFile	for	instructions	for	configuring	the
certificate	chain.

Client	Authentication	and	Access	Control

How	can	I	force	clients	to	authenticate	using	certificates?
How	can	I	force	clients	to	authenticate	using	certificates	for	a
particular	URL,	but	still	allow	arbitrary	clients	to	access	the
rest	of	the	server?
How	can	I	allow	only	clients	who	have	certificates	to	access	a
particular	URL,	but	allow	all	clients	to	access	the	rest	of	the
server?
How	can	I	require	HTTPS	with	strong	ciphers,	and	either
basic	authentication	or	client	certificates,	for	access	to	part	of
the	Intranet	website,	for	clients	coming	from	the	Internet?

How	can	I	force	clients	to	authenticate	using
certificates?
When	you	know	all	of	your	users	(eg,	as	is	often	the	case	on	a
corporate	Intranet),	you	can	require	plain	certificate	authentication.
All	you	need	to	do	is	to	create	client	certificates	signed	by	your
own	CA	certificate	(ca.crt)	and	then	verify	the	clients	against
this	certificate.

#	require	a	client	certificate	which	has	to	be	directly

#	signed	by	our	CA	certificate	in	ca.crt

SSLVerifyClient	require

SSLVerifyDepth	1

SSLCACertificateFile	"conf/ssl.crt/ca.crt"

How	can	I	force	clients	to	authenticate	using
certificates	for	a	particular	URL,	but	still	allow
arbitrary	clients	to	access	the	rest	of	the	server?
To	force	clients	to	authenticate	using	certificates	for	a	particular
URL,	you	can	use	the	per-directory	reconfiguration	features	of
mod_ssl:

SSLVerifyClient	none

SSLCACertificateFile	"conf/ssl.crt/ca.crt"

<Location	"/secure/area">

SSLVerifyClient	require

SSLVerifyDepth	1

</Location>

How	can	I	allow	only	clients	who	have	certificates	to
access	a	particular	URL,	but	allow	all	clients	to
access	the	rest	of	the	server?
The	key	to	doing	this	is	checking	that	part	of	the	client	certificate
matches	what	you	expect.	Usually	this	means	checking	all	or	part
of	the	Distinguished	Name	(DN),	to	see	if	it	contains	some	known
string.	There	are	two	ways	to	do	this,	using	either
mod_auth_basic	or	SSLRequire.

The	mod_auth_basic	method	is	generally	required	when	the
certificates	are	completely	arbitrary,	or	when	their	DNs	have	no
common	fields	(usually	the	organisation,	etc.).	In	this	case,	you
should	establish	a	password	database	containing	all	clients
allowed,	as	follows:

SSLVerifyClient						none

SSLCACertificateFile	"conf/ssl.crt/ca.crt"

SSLCACertificatePath	"conf/ssl.crt"

<Directory	"/usr/local/apache2/htdocs/secure/area">

				SSLVerifyClient						require

				SSLVerifyDepth							5

				SSLOptions											+FakeBasicAuth

				SSLRequireSSL

				AuthName													"Snake	Oil	Authentication"

				AuthType													Basic

				AuthBasicProvider				file

				AuthUserFile									"/usr/local/apache2/conf/httpd.passwd"

				Require														valid-user

</Directory>

The	password	used	in	this	example	is	the	DES	encrypted	string
"password".	See	the	SSLOptions	docs	for	more	information.

httpd.passwd
/C=DE/L=Munich/O=Snake	Oil,	Ltd./OU=Staff/CN=Foo:xxj31ZMTZzkVA

/C=US/L=S.F./O=Snake	Oil,	Ltd./OU=CA/CN=Bar:xxj31ZMTZzkVA

/C=US/L=L.A./O=Snake	Oil,	Ltd./OU=Dev/CN=Quux:xxj31ZMTZzkVA

When	your	clients	are	all	part	of	a	common	hierarchy,	which	is
encoded	into	the	DN,	you	can	match	them	more	easily	using
SSLRequire,	as	follows:

SSLVerifyClient						none

SSLCACertificateFile	"conf/ssl.crt/ca.crt"

SSLCACertificatePath	"conf/ssl.crt"

<Directory	"/usr/local/apache2/htdocs/secure/area">

		SSLVerifyClient						require

		SSLVerifyDepth							5

		SSLOptions											+FakeBasicAuth

		SSLRequireSSL

		SSLRequire							%{SSL_CLIENT_S_DN_O}		eq	"Snake	Oil,	Ltd."	\

															and	%{SSL_CLIENT_S_DN_OU}	in	{"Staff",	"CA",	"Dev"}

</Directory>

How	can	I	require	HTTPS	with	strong	ciphers,	and
either	basic	authentication	or	client	certificates,	for
access	to	part	of	the	Intranet	website,	for	clients

coming	from	the	Internet?	I	still	want	to	allow	plain
HTTP	access	for	clients	on	the	Intranet.
These	examples	presume	that	clients	on	the	Intranet	have	IPs	in
the	range	192.168.1.0/24,	and	that	the	part	of	the	Intranet	website
you	want	to	allow	internet	access	to	is
/usr/local/apache2/htdocs/subarea.	This	configuration
should	remain	outside	of	your	HTTPS	virtual	host,	so	that	it
applies	to	both	HTTPS	and	HTTP.

SSLCACertificateFile	"conf/ssl.crt/company-ca.crt"

<Directory	"/usr/local/apache2/htdocs">

				#			Outside	the	subarea	only	Intranet	access	is	granted

				Require														ip	192.168.1.0/24

</Directory>

<Directory	"/usr/local/apache2/htdocs/subarea">

				#			Inside	the	subarea	any	Intranet	access	is	allowed

				#			but	from	the	Internet	only	HTTPS	+	Strong-Cipher	+	Password

				#			or	the	alternative	HTTPS	+	Strong-Cipher	+	Client-Certificate

				

				#			If	HTTPS	is	used,	make	sure	a	strong	cipher	is	used.

				#			Additionally	allow	client	certs	as	alternative	to	basic	auth.

				SSLVerifyClient						optional

				SSLVerifyDepth							1

				SSLOptions											+FakeBasicAuth	+StrictRequire

				SSLRequire											%{SSL_CIPHER_USEKEYSIZE}	>=	128

				

				#			Force	clients	from	the	Internet	to	use	HTTPS

				RewriteEngine								on

				RewriteCond										"%{REMOTE_ADDR}"	"!^192\.168\.1\.[0-9]+$"

				RewriteCond										"%{HTTPS}"	"!=on"

				RewriteRule										"."	"-"	[F]

				

				#			Allow	Network	Access	and/or	Basic	Auth

				Satisfy														any

				

				#			Network	Access	Control

				Require														ip	192.168.1.0/24

				

				#			HTTP	Basic	Authentication

				AuthType													basic

				AuthName													"Protected	Intranet	Area"

				AuthBasicProvider				file

				AuthUserFile									"conf/protected.passwd"

				Require														valid-user

</Directory>

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Logging

mod_ssl	can	log	extremely	verbose	debugging	information	to	the
error	log,	when	its	LogLevel	is	set	to	the	higher	trace	levels.	On
the	other	hand,	on	a	very	busy	server,	level	info	may	already	be
too	much.	Remember	that	you	can	configure	the	LogLevel	per
module	to	suite	your	needs.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	SSL/TLS

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSL/TLS	Strong	Encryption:	FAQ

The	wise	man	doesn't	give	the	right	answers,	he	poses	the	right
questions.

--	Claude	Levi-Strauss

Installation

Why	do	I	get	permission	errors	related	to	SSLMutex	when	I
start	Apache?
Why	does	mod_ssl	stop	with	the	error	"Failed	to	generate
temporary	512	bit	RSA	private	key"	when	I	start	Apache?

Why	do	I	get	permission	errors	related	to	SSLMutex
when	I	start	Apache?
Errors	such	as	``mod_ssl:	Child	could	not	open
SSLMutex	lockfile

/opt/apache/logs/ssl_mutex.18332	(System	error

follows)	[...]	System:	Permission	denied	(errno:

13)''	are	usually	caused	by	overly	restrictive	permissions	on	the
parent	directories.	Make	sure	that	all	parent	directories	(here
/opt,	/opt/apache	and	/opt/apache/logs)	have	the	x-bit
set	for,	at	minimum,	the	UID	under	which	Apache's	children	are
running	(see	the	User	directive).

Why	does	mod_ssl	stop	with	the	error	"Failed	to
generate	temporary	512	bit	RSA	private	key"	when	I
start	Apache?
Cryptographic	software	needs	a	source	of	unpredictable	data	to
work	correctly.	Many	open	source	operating	systems	provide	a
"randomness	device"	that	serves	this	purpose	(usually	named
/dev/random).	On	other	systems,	applications	have	to	seed	the
OpenSSL	Pseudo	Random	Number	Generator	(PRNG)	manually
with	appropriate	data	before	generating	keys	or	performing	public
key	encryption.	As	of	version	0.9.5,	the	OpenSSL	functions	that
need	randomness	report	an	error	if	the	PRNG	has	not	been
seeded	with	at	least	128	bits	of	randomness.

To	prevent	this	error,	mod_ssl	has	to	provide	enough	entropy	to
the	PRNG	to	allow	it	to	work	correctly.	This	can	be	done	via	the

SSLRandomSeed	directive.

Configuration

Is	it	possible	to	provide	HTTP	and	HTTPS	from	the	same
server?
Which	port	does	HTTPS	use?
How	do	I	speak	HTTPS	manually	for	testing	purposes?
Why	does	the	connection	hang	when	I	connect	to	my	SSL-
aware	Apache	server?
Why	do	I	get	``Connection	Refused''	errors,	when	trying	to
access	my	newly	installed	Apache+mod_ssl	server	via
HTTPS?
Why	are	the	SSL_XXX	variables	not	available	to	my	CGI	&
SSI	scripts?
How	can	I	switch	between	HTTP	and	HTTPS	in	relative
hyperlinks?

Is	it	possible	to	provide	HTTP	and	HTTPS	from	the
same	server?
Yes.	HTTP	and	HTTPS	use	different	server	ports	(HTTP	binds	to
port	80,	HTTPS	to	port	443),	so	there	is	no	direct	conflict	between
them.	You	can	either	run	two	separate	server	instances	bound	to
these	ports,	or	use	Apache's	elegant	virtual	hosting	facility	to
create	two	virtual	servers,	both	served	by	the	same	instance	of
Apache	-	one	responding	over	HTTP	to	requests	on	port	80,	and
the	other	responding	over	HTTPS	to	requests	on	port	443.

Which	port	does	HTTPS	use?
You	can	run	HTTPS	on	any	port,	but	the	standards	specify	port
443,	which	is	where	any	HTTPS	compliant	browser	will	look	by
default.	You	can	force	your	browser	to	look	on	a	different	port	by
specifying	it	in	the	URL.	For	example,	if	your	server	is	set	up	to
serve	pages	over	HTTPS	on	port	8080,	you	can	access	them	at
https://example.com:8080/

How	do	I	speak	HTTPS	manually	for	testing
purposes?
While	you	usually	just	use

$	telnet	localhost	80

GET	/	HTTP/1.0

for	simple	testing	of	Apache	via	HTTP,	it's	not	so	easy	for	HTTPS
because	of	the	SSL	protocol	between	TCP	and	HTTP.	With	the
help	of	OpenSSL's	s_client	command,	however,	you	can	do	a
similar	check	via	HTTPS:

$	openssl	s_client	-connect	localhost:443	-state	-debug

GET	/	HTTP/1.0

Before	the	actual	HTTP	response	you	will	receive	detailed
information	about	the	SSL	handshake.	For	a	more	general
command	line	client	which	directly	understands	both	HTTP	and
HTTPS,	can	perform	GET	and	POST	operations,	can	use	a	proxy,
supports	byte	ranges,	etc.	you	should	have	a	look	at	the	nifty
cURL	tool.	Using	this,	you	can	check	that	Apache	is	responding
correctly	to	requests	via	HTTP	and	HTTPS	as	follows:

$	curl	http://localhost/

$	curl	https://localhost/

Why	does	the	connection	hang	when	I	connect	to	my
SSL-aware	Apache	server?
This	can	happen	when	you	try	to	connect	to	a	HTTPS	server	(or
virtual	server)	via	HTTP	(eg,	using	http://example.com/
instead	of	https://example.com).	It	can	also	happen	when
trying	to	connect	via	HTTPS	to	a	HTTP	server	(eg,	using
https://example.com/	on	a	server	which	doesn't	support
HTTPS,	or	which	supports	it	on	a	non-standard	port).	Make	sure

http://curl.haxx.se/

that	you're	connecting	to	a	(virtual)	server	that	supports	SSL.

Why	do	I	get	``Connection	Refused''	messages,	when
trying	to	access	my	newly	installed	Apache+mod_ssl
server	via	HTTPS?
This	error	can	be	caused	by	an	incorrect	configuration.	Please
make	sure	that	your	Listen	directives	match	your
<VirtualHost>	directives.	If	all	else	fails,	please	start	afresh,
using	the	default	configuration	provided	by	mod_ssl.

Why	are	the	SSL_XXX	variables	not	available	to	my
CGI	&	SSI	scripts?
Please	make	sure	you	have	``SSLOptions	+StdEnvVars''
enabled	for	the	context	of	your	CGI/SSI	requests.

How	can	I	switch	between	HTTP	and	HTTPS	in
relative	hyperlinks?
Usually,	to	switch	between	HTTP	and	HTTPS,	you	have	to	use
fully-qualified	hyperlinks	(because	you	have	to	change	the	URL
scheme).	Using	mod_rewrite	however,	you	can	manipulate
relative	hyperlinks,	to	achieve	the	same	effect.

RewriteEngine	on

RewriteRule			"^/(.*)_SSL$"			"https://%{SERVER_NAME}/$1"	[R,L]

RewriteRule			"^/(.*)_NOSSL$"	"http://%{SERVER_NAME}/$1"		[R,L]

This	rewrite	ruleset	lets	you	use	hyperlinks	of	the	form	,	to	switch	to	HTTPS	in	a	relative
link.	(Replace	SSL	with	NOSSL	to	switch	to	HTTP.)

Certificates

What	are	RSA	Private	Keys,	CSRs	and	Certificates?
Is	there	a	difference	on	startup	between	a	non-SSL-aware
Apache	and	an	SSL-aware	Apache?
How	do	I	create	a	self-signed	SSL	Certificate	for	testing
purposes?
How	do	I	create	a	real	SSL	Certificate?
How	do	I	create	and	use	my	own	Certificate	Authority	(CA)?
How	can	I	change	the	pass-phrase	on	my	private	key	file?
How	can	I	get	rid	of	the	pass-phrase	dialog	at	Apache	startup
time?
How	do	I	verify	that	a	private	key	matches	its	Certificate?
How	can	I	convert	a	certificate	from	PEM	to	DER	format?
Why	do	browsers	complain	that	they	cannot	verify	my	server
certificate?

What	are	RSA	Private	Keys,	CSRs	and	Certificates?
An	RSA	private	key	file	is	a	digital	file	that	you	can	use	to	decrypt
messages	sent	to	you.	It	has	a	public	component	which	you
distribute	(via	your	Certificate	file)	which	allows	people	to	encrypt
those	messages	to	you.

A	Certificate	Signing	Request	(CSR)	is	a	digital	file	which	contains
your	public	key	and	your	name.	You	send	the	CSR	to	a	Certifying
Authority	(CA),	who	will	convert	it	into	a	real	Certificate,	by	signing
it.

A	Certificate	contains	your	RSA	public	key,	your	name,	the	name
of	the	CA,	and	is	digitally	signed	by	the	CA.	Browsers	that	know
the	CA	can	verify	the	signature	on	that	Certificate,	thereby
obtaining	your	RSA	public	key.	That	enables	them	to	send
messages	which	only	you	can	decrypt.

See	the	Introduction	chapter	for	a	general	description	of	the	SSL

protocol.

Is	there	a	difference	on	startup	between	a	non-SSL-
aware	Apache	and	an	SSL-aware	Apache?
Yes.	In	general,	starting	Apache	with	mod_ssl	built-in	is	just	like
starting	Apache	without	it.	However,	if	you	have	a	passphrase	on
your	SSL	private	key	file,	a	startup	dialog	will	pop	up	which	asks
you	to	enter	the	pass	phrase.

Having	to	manually	enter	the	passphrase	when	starting	the	server
can	be	problematic	-	for	example,	when	starting	the	server	from
the	system	boot	scripts.	In	this	case,	you	can	follow	the	steps
below	to	remove	the	passphrase	from	your	private	key.	Bear	in
mind	that	doing	so	brings	additional	security	risks	-	proceed	with
caution!

How	do	I	create	a	self-signed	SSL	Certificate	for
testing	purposes?
1.	 Make	sure	OpenSSL	is	installed	and	in	your	PATH.

2.	 Run	the	following	command,	to	create	server.key	and
server.crt	files:
$	openssl	req	-new	-x509	-nodes	-out

server.crt	-keyout	server.key

These	can	be	used	as	follows	in	your	httpd.conf	file:

SSLCertificateFile				"/path/to/this/server.crt"

SSLCertificateKeyFile	"/path/to/this/server.key"

3.	 It	is	important	that	you	are	aware	that	this	server.key	does
not	have	any	passphrase.	To	add	a	passphrase	to	the	key,

you	should	run	the	following	command,	and	enter	&	verify	the
passphrase	as	requested.
$	openssl	rsa	-des3	-in	server.key	-out

server.key.new

$	mv	server.key.new	server.key

Please	backup	the	server.key	file,	and	the	passphrase	you
entered,	in	a	secure	location.

How	do	I	create	a	real	SSL	Certificate?
Here	is	a	step-by-step	description:

1.	 Make	sure	OpenSSL	is	installed	and	in	your	PATH.	

2.	 Create	a	RSA	private	key	for	your	Apache	server	(will	be
Triple-DES	encrypted	and	PEM	formatted):

$	openssl	genrsa	-des3	-out	server.key	2048

Please	backup	this	server.key	file	and	the	pass-phrase	you
entered	in	a	secure	location.	You	can	see	the	details	of	this
RSA	private	key	by	using	the	command:

$	openssl	rsa	-noout	-text	-in	server.key

If	necessary,	you	can	also	create	a	decrypted	PEM	version
(not	recommended)	of	this	RSA	private	key	with:

$	openssl	rsa	-in	server.key	-out

server.key.unsecure

3.	 Create	a	Certificate	Signing	Request	(CSR)	with	the	server
RSA	private	key	(output	will	be	PEM	formatted):

$	openssl	req	-new	-key	server.key	-out

server.csr

Make	sure	you	enter	the	FQDN	("Fully	Qualified	Domain
Name")	of	the	server	when	OpenSSL	prompts	you	for	the
"CommonName",	i.e.	when	you	generate	a	CSR	for	a	website
which	will	be	later	accessed	via	https://www.foo.dom/,
enter	"www.foo.dom"	here.	You	can	see	the	details	of	this
CSR	by	using

$	openssl	req	-noout	-text	-in	server.csr

4.	 You	now	have	to	send	this	Certificate	Signing	Request	(CSR)
to	a	Certifying	Authority	(CA)	to	be	signed.	Once	the	CSR	has
been	signed,	you	will	have	a	real	Certificate,	which	can	be
used	by	Apache.	You	can	have	a	CSR	signed	by	a
commercial	CA,	or	you	can	create	your	own	CA	to	sign	it.
Commercial	CAs	usually	ask	you	to	post	the	CSR	into	a	web
form,	pay	for	the	signing,	and	then	send	a	signed	Certificate,
which	you	can	store	in	a	server.crt	file.
For	details	on	how	to	create	your	own	CA,	and	use	this	to	sign
a	CSR,	see	below.
Once	your	CSR	has	been	signed,	you	can	see	the	details	of
the	Certificate	as	follows:

$	openssl	x509	-noout	-text	-in	server.crt

5.	 You	should	now	have	two	files:	server.key	and
server.crt.	These	can	be	used	as	follows	in	your
httpd.conf	file:

SSLCertificateFile				"/path/to/this/server.crt"

SSLCertificateKeyFile	"/path/to/this/server.key"

The	server.csr	file	is	no	longer	needed.

How	do	I	create	and	use	my	own	Certificate	Authority
(CA)?
The	short	answer	is	to	use	the	CA.sh	or	CA.pl	script	provided	by
OpenSSL.	Unless	you	have	a	good	reason	not	to,	you	should	use
these	for	preference.	If	you	cannot,	you	can	create	a	self-signed
certificate	as	follows:

1.	 Create	a	RSA	private	key	for	your	server	(will	be	Triple-DES
encrypted	and	PEM	formatted):

$	openssl	genrsa	-des3	-out	server.key	2048

Please	backup	this	server.key	file	and	the	pass-phrase	you
entered	in	a	secure	location.	You	can	see	the	details	of	this
RSA	private	key	by	using	the	command:

$	openssl	rsa	-noout	-text	-in	server.key

If	necessary,	you	can	also	create	a	decrypted	PEM	version
(not	recommended)	of	this	RSA	private	key	with:

$	openssl	rsa	-in	server.key	-out

server.key.unsecure

2.	 Create	a	self-signed	certificate	(X509	structure)	with	the	RSA
key	you	just	created	(output	will	be	PEM	formatted):

$	openssl	req	-new	-x509	-nodes	-sha1	-days

365	-key	server.key	-out	server.crt	-

extensions	usr_cert

This	signs	the	server	CSR	and	results	in	a	server.crt	file.
You	can	see	the	details	of	this	Certificate	using:

$	openssl	x509	-noout	-text	-in	server.crt

How	can	I	change	the	pass-phrase	on	my	private	key
file?
You	simply	have	to	read	it	with	the	old	pass-phrase	and	write	it
again,	specifying	the	new	pass-phrase.	You	can	accomplish	this
with	the	following	commands:

$	openssl	rsa	-des3	-in	server.key	-out

server.key.new

$	mv	server.key.new	server.key

The	first	time	you're	asked	for	a	PEM	pass-phrase,	you	should
enter	the	old	pass-phrase.	After	that,	you'll	be	asked	again	to	enter
a	pass-phrase	-	this	time,	use	the	new	pass-phrase.	If	you	are
asked	to	verify	the	pass-phrase,	you'll	need	to	enter	the	new	pass-
phrase	a	second	time.

How	can	I	get	rid	of	the	pass-phrase	dialog	at	Apache
startup	time?
The	reason	this	dialog	pops	up	at	startup	and	every	re-start	is	that
the	RSA	private	key	inside	your	server.key	file	is	stored	in
encrypted	format	for	security	reasons.	The	pass-phrase	is	needed
to	decrypt	this	file,	so	it	can	be	read	and	parsed.	Removing	the
pass-phrase	removes	a	layer	of	security	from	your	server	-
proceed	with	caution!

1.	 Remove	the	encryption	from	the	RSA	private	key	(while
keeping	a	backup	copy	of	the	original	file):

$	cp	server.key	server.key.org

$	openssl	rsa	-in	server.key.org	-out

server.key

2.	 Make	sure	the	server.key	file	is	only	readable	by	root:

$	chmod	400	server.key

Now	server.key	contains	an	unencrypted	copy	of	the	key.	If	you
point	your	server	at	this	file,	it	will	not	prompt	you	for	a	pass-
phrase.	HOWEVER,	if	anyone	gets	this	key	they	will	be	able	to
impersonate	you	on	the	net.	PLEASE	make	sure	that	the
permissions	on	this	file	are	such	that	only	root	or	the	web	server
user	can	read	it	(preferably	get	your	web	server	to	start	as	root	but
run	as	another	user,	and	have	the	key	readable	only	by	root).

As	an	alternative	approach	you	can	use	the
``SSLPassPhraseDialog	exec:/path/to/program''	facility.
Bear	in	mind	that	this	is	neither	more	nor	less	secure,	of	course.

How	do	I	verify	that	a	private	key	matches	its
Certificate?
A	private	key	contains	a	series	of	numbers.	Two	of	these	numbers
form	the	"public	key",	the	others	are	part	of	the	"private	key".	The
"public	key"	bits	are	included	when	you	generate	a	CSR,	and
subsequently	form	part	of	the	associated	Certificate.

To	check	that	the	public	key	in	your	Certificate	matches	the	public
portion	of	your	private	key,	you	simply	need	to	compare	these

numbers.	To	view	the	Certificate	and	the	key	run	the	commands:

$	openssl	x509	-noout	-text	-in	server.crt

$	openssl	rsa	-noout	-text	-in	server.key

The	`modulus'	and	the	`public	exponent'	portions	in	the	key	and
the	Certificate	must	match.	As	the	public	exponent	is	usually
65537	and	it's	difficult	to	visually	check	that	the	long	modulus
numbers	are	the	same,	you	can	use	the	following	approach:

$	openssl	x509	-noout	-modulus	-in	server.crt	|

openssl	md5

$	openssl	rsa	-noout	-modulus	-in	server.key	|

openssl	md5

This	leaves	you	with	two	rather	shorter	numbers	to	compare.	It	is,
in	theory,	possible	that	these	numbers	may	be	the	same,	without
the	modulus	numbers	being	the	same,	but	the	chances	of	this	are
overwhelmingly	remote.

Should	you	wish	to	check	to	which	key	or	certificate	a	particular
CSR	belongs	you	can	perform	the	same	calculation	on	the	CSR
as	follows:

$	openssl	req	-noout	-modulus	-in	server.csr	|

openssl	md5

How	can	I	convert	a	certificate	from	PEM	to	DER
format?
The	default	certificate	format	for	OpenSSL	is	PEM,	which	is	simply
Base64	encoded	DER,	with	header	and	footer	lines.	For	some
applications	(e.g.	Microsoft	Internet	Explorer)	you	need	the
certificate	in	plain	DER	format.	You	can	convert	a	PEM	file
cert.pem	into	the	corresponding	DER	file	cert.der	using	the
following	command:	$	openssl	x509	-in	cert.pem	-out

cert.der	-outform	DER

Why	do	browsers	complain	that	they	cannot	verify	my
server	certificate?
One	reason	this	might	happen	is	because	your	server	certificate	is
signed	by	an	intermediate	CA.	Various	CAs,	such	as	Verisign	or
Thawte,	have	started	signing	certificates	not	with	their	root
certificate	but	with	intermediate	certificates.

Intermediate	CA	certificates	lie	between	the	root	CA	certificate
(which	is	installed	in	the	browsers)	and	the	server	certificate
(which	you	installed	on	the	server).	In	order	for	the	browser	to	be
able	to	traverse	and	verify	the	trust	chain	from	the	server
certificate	to	the	root	certificate	it	needs	need	to	be	given	the
intermediate	certificates.	The	CAs	should	be	able	to	provide	you
such	intermediate	certificate	packages	that	can	be	installed	on	the
server.

You	need	to	include	those	intermediate	certificates	with	the
SSLCertificateChainFile	directive.

The	SSL	Protocol

Why	do	I	get	lots	of	random	SSL	protocol	errors	under	heavy
server	load?
Why	does	my	webserver	have	a	higher	load,	now	that	it
serves	SSL	encrypted	traffic?
Why	do	HTTPS	connections	to	my	server	sometimes	take	up
to	30	seconds	to	establish	a	connection?
What	SSL	Ciphers	are	supported	by	mod_ssl?
Why	do	I	get	``no	shared	cipher''	errors,	when	trying	to	use
Anonymous	Diffie-Hellman	(ADH)	ciphers?
Why	do	I	get	a	'no	shared	ciphers'	error	when	connecting	to
my	newly	installed	server?
Why	can't	I	use	SSL	with	name-based/non-IP-based	virtual
hosts?
Is	it	possible	to	use	Name-Based	Virtual	Hosting	to	identify
different	SSL	virtual	hosts?
How	do	I	get	SSL	compression	working?
When	I	use	Basic	Authentication	over	HTTPS	the	lock	icon	in
Netscape	browsers	stays	unlocked	when	the	dialog	pops	up.
Does	this	mean	the	username/password	is	being	sent
unencrypted?
Why	do	I	get	I/O	errors	when	connecting	via	HTTPS	to	an
Apache+mod_ssl	server	with	Microsoft	Internet	Explorer
(MSIE)?
How	do	I	enable	TLS-SRP?
Why	do	I	get	handshake	failures	with	Java-based	clients
when	using	a	certificate	with	more	than	1024	bits?

Why	do	I	get	lots	of	random	SSL	protocol	errors
under	heavy	server	load?
There	can	be	a	number	of	reasons	for	this,	but	the	main	one	is
problems	with	the	SSL	session	Cache	specified	by	the
SSLSessionCache	directive.	The	DBM	session	cache	is	the	most

likely	source	of	the	problem,	so	using	the	SHM	session	cache	(or
no	cache	at	all)	may	help.

Why	does	my	webserver	have	a	higher	load,	now	that
it	serves	SSL	encrypted	traffic?
SSL	uses	strong	cryptographic	encryption,	which	necessitates	a
lot	of	number	crunching.	When	you	request	a	webpage	via
HTTPS,	everything	(even	the	images)	is	encrypted	before	it	is
transferred.	So	increased	HTTPS	traffic	leads	to	load	increases.

Why	do	HTTPS	connections	to	my	server	sometimes
take	up	to	30	seconds	to	establish	a	connection?
This	is	usually	caused	by	a	/dev/random	device	for
SSLRandomSeed	which	blocks	the	read(2)	call	until	enough
entropy	is	available	to	service	the	request.	More	information	is
available	in	the	reference	manual	for	the	SSLRandomSeed
directive.

What	SSL	Ciphers	are	supported	by	mod_ssl?
Usually,	any	SSL	ciphers	supported	by	the	version	of	OpenSSL	in
use,	are	also	supported	by	mod_ssl.	Which	ciphers	are	available
can	depend	on	the	way	you	built	OpenSSL.	Typically,	at	least	the
following	ciphers	are	supported:

1.	 RC4	with	SHA1

2.	 AES	with	SHA1

3.	 Triple-DES	with	SHA1

To	determine	the	actual	list	of	ciphers	available,	you	should	run	the
following:

$	openssl	ciphers	-v

Why	do	I	get	``no	shared	cipher''	errors,	when	trying
to	use	Anonymous	Diffie-Hellman	(ADH)	ciphers?
By	default,	OpenSSL	does	not	allow	ADH	ciphers,	for	security
reasons.	Please	be	sure	you	are	aware	of	the	potential	side-
effects	if	you	choose	to	enable	these	ciphers.

In	order	to	use	Anonymous	Diffie-Hellman	(ADH)	ciphers,	you
must	build	OpenSSL	with	``-DSSL_ALLOW_ADH'',	and	then	add
``ADH''	into	your	SSLCipherSuite.

Why	do	I	get	a	'no	shared	ciphers'	error	when
connecting	to	my	newly	installed	server?
Either	you	have	made	a	mistake	with	your	SSLCipherSuite
directive	(compare	it	with	the	pre-configured	example	in
extra/httpd-ssl.conf)	or	you	chose	to	use	DSA/DH
algorithms	instead	of	RSA	when	you	generated	your	private	key
and	ignored	or	overlooked	the	warnings.	If	you	have	chosen
DSA/DH,	then	your	server	cannot	communicate	using	RSA-based
SSL	ciphers	(at	least	until	you	configure	an	additional	RSA-based
certificate/key	pair).	Modern	browsers	like	NS	or	IE	can	only
communicate	over	SSL	using	RSA	ciphers.	The	result	is	the	"no
shared	ciphers"	error.	To	fix	this,	regenerate	your	server
certificate/key	pair,	using	the	RSA	algorithm.

Why	can't	I	use	SSL	with	name-based/non-IP-based
virtual	hosts?
The	reason	is	very	technical,	and	a	somewhat	"chicken	and	egg"
problem.	The	SSL	protocol	layer	stays	below	the	HTTP	protocol
layer	and	encapsulates	HTTP.	When	an	SSL	connection	(HTTPS)
is	established	Apache/mod_ssl	has	to	negotiate	the	SSL	protocol
parameters	with	the	client.	For	this,	mod_ssl	has	to	consult	the
configuration	of	the	virtual	server	(for	instance	it	has	to	look	for	the
cipher	suite,	the	server	certificate,	etc.).	But	in	order	to	go	to	the

correct	virtual	server	Apache	has	to	know	the	Host	HTTP	header
field.	To	do	this,	the	HTTP	request	header	has	to	be	read.	This
cannot	be	done	before	the	SSL	handshake	is	finished,	but	the
information	is	needed	in	order	to	complete	the	SSL	handshake
phase.	See	the	next	question	for	how	to	circumvent	this	issue.

Note	that	if	you	have	a	wildcard	SSL	certificate,	or	a	certificate	that
has	multiple	hostnames	on	it	using	subjectAltName	fields,	you	can
use	SSL	on	name-based	virtual	hosts	without	further	workarounds.

Is	it	possible	to	use	Name-Based	Virtual	Hosting	to
identify	different	SSL	virtual	hosts?
Name-Based	Virtual	Hosting	is	a	very	popular	method	of
identifying	different	virtual	hosts.	It	allows	you	to	use	the	same	IP
address	and	the	same	port	number	for	many	different	sites.	When
people	move	on	to	SSL,	it	seems	natural	to	assume	that	the	same
method	can	be	used	to	have	lots	of	different	SSL	virtual	hosts	on
the	same	server.

It	is	possible,	but	only	if	using	a	2.2.12	or	later	web	server,	built
with	0.9.8j	or	later	OpenSSL.	This	is	because	it	requires	a	feature
that	only	the	most	recent	revisions	of	the	SSL	specification	added,
called	Server	Name	Indication	(SNI).

Note	that	if	you	have	a	wildcard	SSL	certificate,	or	a	certificate	that
has	multiple	hostnames	on	it	using	subjectAltName	fields,	you	can
use	SSL	on	name-based	virtual	hosts	without	further	workarounds.

The	reason	is	that	the	SSL	protocol	is	a	separate	layer	which
encapsulates	the	HTTP	protocol.	So	the	SSL	session	is	a	separate
transaction,	that	takes	place	before	the	HTTP	session	has	begun.
The	server	receives	an	SSL	request	on	IP	address	X	and	port	Y
(usually	443).	Since	the	SSL	request	did	not	contain	any	Host:
field,	the	server	had	no	way	to	decide	which	SSL	virtual	host	to

use.	Usually,	it	just	used	the	first	one	it	found	which	matched	the
port	and	IP	address	specified.

If	you	are	using	a	version	of	the	web	server	and	OpenSSL	that
support	SNI,	though,	and	the	client's	browser	also	supports	SNI,
then	the	hostname	is	included	in	the	original	SSL	request,	and	the
web	server	can	select	the	correct	SSL	virtual	host.

You	can,	of	course,	use	Name-Based	Virtual	Hosting	to	identify
many	non-SSL	virtual	hosts	(all	on	port	80,	for	example)	and	then
have	a	single	SSL	virtual	host	(on	port	443).	But	if	you	do	this,	you
must	make	sure	to	put	the	non-SSL	port	number	on	the
NameVirtualHost	directive,	e.g.

NameVirtualHost	192.168.1.1:80

Other	workaround	solutions	include:

Using	separate	IP	addresses	for	different	SSL	hosts.	Using
different	port	numbers	for	different	SSL	hosts.

How	do	I	get	SSL	compression	working?
Although	SSL	compression	negotiation	was	defined	in	the
specification	of	SSLv2	and	TLS,	it	took	until	May	2004	for	RFC
3749	to	define	DEFLATE	as	a	negotiable	standard	compression
method.

OpenSSL	0.9.8	started	to	support	this	by	default	when	compiled
with	the	zlib	option.	If	both	the	client	and	the	server	support
compression,	it	will	be	used.	However,	most	clients	still	try	to
initially	connect	with	an	SSLv2	Hello.	As	SSLv2	did	not	include	an
array	of	preferred	compression	algorithms	in	its	handshake,
compression	cannot	be	negotiated	with	these	clients.	If	the	client
disables	support	for	SSLv2,	either	an	SSLv3	or	TLS	Hello	may	be

sent,	depending	on	which	SSL	library	is	used,	and	compression
may	be	set	up.	You	can	verify	whether	clients	make	use	of	SSL
compression	by	logging	the	%{SSL_COMPRESS_METHOD}x
variable.

When	I	use	Basic	Authentication	over	HTTPS	the	lock
icon	in	Netscape	browsers	stays	unlocked	when	the
dialog	pops	up.	Does	this	mean	the
username/password	is	being	sent	unencrypted?
No,	the	username/password	is	transmitted	encrypted.	The	icon	in
Netscape	browsers	is	not	actually	synchronized	with	the	SSL/TLS
layer.	It	only	toggles	to	the	locked	state	when	the	first	part	of	the
actual	webpage	data	is	transferred,	which	may	confuse	people.
The	Basic	Authentication	facility	is	part	of	the	HTTP	layer,	which	is
above	the	SSL/TLS	layer	in	HTTPS.	Before	any	HTTP	data
communication	takes	place	in	HTTPS,	the	SSL/TLS	layer	has
already	completed	its	handshake	phase,	and	switched	to
encrypted	communication.	So	don't	be	confused	by	this	icon.

Why	do	I	get	I/O	errors	when	connecting	via	HTTPS	to
an	Apache+mod_ssl	server	with	older	versions	of
Microsoft	Internet	Explorer	(MSIE)?
The	first	reason	is	that	the	SSL	implementation	in	some	MSIE
versions	has	some	subtle	bugs	related	to	the	HTTP	keep-alive
facility	and	the	SSL	close	notify	alerts	on	socket	connection	close.
Additionally	the	interaction	between	SSL	and	HTTP/1.1	features
are	problematic	in	some	MSIE	versions.	You	can	work	around
these	problems	by	forcing	Apache	not	to	use	HTTP/1.1,	keep-alive
connections	or	send	the	SSL	close	notify	messages	to	MSIE
clients.	This	can	be	done	by	using	the	following	directive	in	your
SSL-aware	virtual	host	section:

SetEnvIf	User-Agent	"MSIE	[2-5]"	\

									nokeepalive	ssl-unclean-shutdown	\

									downgrade-1.0	force-response-1.0

Further,	some	MSIE	versions	have	problems	with	particular
ciphers.	Unfortunately,	it	is	not	possible	to	implement	a	MSIE-
specific	workaround	for	this,	because	the	ciphers	are	needed	as
early	as	the	SSL	handshake	phase.	So	a	MSIE-specific
SetEnvIf	won't	solve	these	problems.	Instead,	you	will	have	to
make	more	drastic	adjustments	to	the	global	parameters.	Before
you	decide	to	do	this,	make	sure	your	clients	really	have	problems.
If	not,	do	not	make	these	changes	-	they	will	affect	all	your	clients,
MSIE	or	otherwise.

How	do	I	enable	TLS-SRP?
TLS-SRP	(Secure	Remote	Password	key	exchange	for	TLS,
specified	in	RFC	5054)	can	supplement	or	replace	certificates	in
authenticating	an	SSL	connection.	To	use	TLS-SRP,	set	the
SSLSRPVerifierFile	directive	to	point	to	an	OpenSSL	SRP
verifier	file.	To	create	the	verifier	file,	use	the	openssl	tool:

openssl	srp	-srpvfile	passwd.srpv	-add	username

After	creating	this	file,	specify	it	in	the	SSL	server	configuration:

SSLSRPVerifierFile	/path/to/passwd.srpv

To	force	clients	to	use	non-certificate	TLS-SRP	cipher	suites,	use
the	following	directive:

SSLCipherSuite	"!DSS:!aRSA:SRP"

Why	do	I	get	handshake	failures	with	Java-based

clients	when	using	a	certificate	with	more	than	1024
bits?
Beginning	with	version	2.4.7,	mod_ssl	will	use	DH	parameters
which	include	primes	with	lengths	of	more	than	1024	bits.	Java	7
and	earlier	limit	their	support	for	DH	prime	sizes	to	a	maximum	of
1024	bits,	however.

If	your	Java-based	client	aborts	with	exceptions	such	as
java.lang.RuntimeException:	Could	not	generate	DH

keypair	and
java.security.InvalidAlgorithmParameterException:

Prime	size	must	be	multiple	of	64,	and	can	only

range	from	512	to	1024	(inclusive),	and	httpd	logs
tlsv1	alert	internal	error	(SSL	alert	number	80)

(at	LogLevel	info	or	higher),	you	can	either	rearrange
mod_ssl's	cipher	list	with	SSLCipherSuite	(possibly	in
conjunction	with	SSLHonorCipherOrder),	or	you	can	use
custom	DH	parameters	with	a	1024-bit	prime,	which	will	always
have	precedence	over	any	of	the	built-in	DH	parameters.

To	generate	custom	DH	parameters,	use	the	openssl	dhparam
1024	command.	Alternatively,	you	can	use	the	following	standard
1024-bit	DH	parameters	from	RFC	2409,	section	6.2:

-----BEGIN	DH	PARAMETERS-----

MIGHAoGBAP//////////yQ/aoiFowjTExmKLgNwc0SkCTgiKZ8x0Agu+pjsTmyJR

Sgh5jjQE3e+VGbPNOkMbMCsKbfJfFDdP4TVtbVHCReSFtXZiXn7G9ExC6aY37WsL

/1y29Aa37e44a/taiZ+lrp8kEXxLH+ZJKGZR7OZTgf//////////AgEC

-----END	DH	PARAMETERS-----

Add	the	custom	parameters	including	the	"BEGIN	DH
PARAMETERS"	and	"END	DH	PARAMETERS"	lines	to	the	end	of
the	first	certificate	file	you	have	configured	using	the
SSLCertificateFile	directive.

http://www.ietf.org/rfc/rfc2409.txt

mod_ssl	Support

What	information	resources	are	available	in	case	of	mod_ssl
problems?
What	support	contacts	are	available	in	case	of	mod_ssl
problems?
What	information	should	I	provide	when	writing	a	bug	report?
I	had	a	core	dump,	can	you	help	me?
How	do	I	get	a	backtrace,	to	help	find	the	reason	for	my	core
dump?

What	information	resources	are	available	in	case	of
mod_ssl	problems?
The	following	information	resources	are	available.	In	case	of
problems	you	should	search	here	first.

Answers	in	the	User	Manual's	F.A.Q.	List	(this)
http://httpd.apache.org/docs/2.4/ssl/ssl_faq.html
First	check	the	F.A.Q.	(this	text).	If	your	problem	is	a	common
one,	it	may	have	been	answered	several	times	before,	and
been	included	in	this	doc.

What	support	contacts	are	available	in	case	of
mod_ssl	problems?
The	following	lists	all	support	possibilities	for	mod_ssl,	in	order	of
preference.	Please	go	through	these	possibilities	in	this	order	-
don't	just	pick	the	one	you	like	the	look	of.

1.	 Send	a	Problem	Report	to	the	Apache	httpd	Users	Support
Mailing	List
users@httpd.apache.org
This	is	the	second	way	of	submitting	your	problem	report.
Again,	you	must	subscribe	to	the	list	first,	but	you	can	then
easily	discuss	your	problem	with	the	whole	Apache	httpd	user

http://httpd.apache.org/docs/2.4/ssl/ssl_faq.html
mailto:users@httpd.apache.org

community.

2.	 Write	a	Problem	Report	in	the	Bug	Database
http://httpd.apache.org/bug_report.html
This	is	the	last	way	of	submitting	your	problem	report.	You
should	only	do	this	if	you've	already	posted	to	the	mailing
lists,	and	had	no	success.	Please	follow	the	instructions	on
the	above	page	carefully.

What	information	should	I	provide	when	writing	a	bug
report?
You	should	always	provide	at	least	the	following	information:

Apache	httpd	and	OpenSSL	version	information
The	Apache	version	can	be	determined	by	running	httpd	-
v.	The	OpenSSL	version	can	be	determined	by	running
openssl	version.	Alternatively,	if	you	have	Lynx	installed,
you	can	run	the	command	lynx	-mime_header
http://localhost/	|	grep	Server	to	gather	this
information	in	a	single	step.

The	details	on	how	you	built	and	installed	Apache	httpd	and
OpenSSL

For	this	you	can	provide	a	logfile	of	your	terminal	session
which	shows	the	configuration	and	install	steps.	If	this	is	not
possible,	you	should	at	least	provide	the	configure
command	line	you	used.

In	case	of	core	dumps	please	include	a	Backtrace
If	your	Apache	httpd	dumps	its	core,	please	attach	a	stack-
frame	``backtrace''	(see	below	for	information	on	how	to	get
this).	This	information	is	required	in	order	to	find	a	reason	for
your	core	dump.

A	detailed	description	of	your	problem
Don't	laugh,	we	really	mean	it!	Many	problem	reports	don't

http://httpd.apache.org/bug_report.html

include	a	description	of	what	the	actual	problem	is.	Without
this,	it's	very	difficult	for	anyone	to	help	you.	So,	it's	in	your
own	interest	(you	want	the	problem	be	solved,	don't	you?)	to
include	as	much	detail	as	possible,	please.	Of	course,	you
should	still	include	all	the	essentials	above	too.

I	had	a	core	dump,	can	you	help	me?
In	general	no,	at	least	not	unless	you	provide	more	details	about
the	code	location	where	Apache	dumped	core.	What	is	usually
always	required	in	order	to	help	you	is	a	backtrace	(see	next
question).	Without	this	information	it	is	mostly	impossible	to	find
the	problem	and	help	you	in	fixing	it.

How	do	I	get	a	backtrace,	to	help	find	the	reason	for
my	core	dump?
Following	are	the	steps	you	will	need	to	complete,	to	get	a
backtrace:

1.	 Make	sure	you	have	debugging	symbols	available,	at	least	in
Apache.	On	platforms	where	you	use	GCC/GDB,	you	will
have	to	build	Apache+mod_ssl	with	``OPTIM="-g	-ggdb3"''
to	get	this.	On	other	platforms	at	least	``OPTIM="-g"''	is
needed.

2.	 Start	the	server	and	try	to	reproduce	the	core-dump.	For	this
you	may	want	to	use	a	directive	like	``CoreDumpDirectory
/tmp''	to	make	sure	that	the	core-dump	file	can	be	written.
This	should	result	in	a	/tmp/core	or	/tmp/httpd.core
file.	If	you	don't	get	one	of	these,	try	running	your	server
under	a	non-root	UID.	Many	modern	kernels	do	not	allow	a
process	to	dump	core	after	it	has	done	a	setuid()	(unless	it
does	an	exec())	for	security	reasons	(there	can	be	privileged
information	left	over	in	memory).	If	necessary,	you	can	run

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

/path/to/httpd	-X	manually	to	force	Apache	to	not	fork.

3.	 Analyze	the	core-dump.	For	this,	run	gdb	/path/to/httpd
/tmp/httpd.core	or	a	similar	command.	In	GDB,	all	you
have	to	do	then	is	to	enter	bt,	and	voila,	you	get	the
backtrace.	For	other	debuggers	consult	your	local	debugger
manual.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	How-To	/	Tutorials

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

(Authentication),	(Authorization),	(Access
Control)

				.	 					.

(authentication)					 	.	(authorization)				
					.

		

	 	
mod_auth_basic

mod_authn_file

mod_authz_groupfile

mod_authz_host

Allow

AuthGroupFile

AuthName

AuthType

AuthUserFile

Deny

Options

Require

							 		,						
				.

							 	""		.

	

					(<Directory>)		(
)	 .

.htaccess						 					.			
						 AllowOverride		 .

			,			 AllowOverride		.

AllowOverride	AuthConfig

					,			 				.

							 			.			,		
.

	

							 .

			.					 				.				
	,		 /usr/local/apache/htdocs		()
/usr/local/apache/passwd	.

		 htpasswd			 	.						
		 	.

htpasswd	-c	/usr/local/apache/passwd/passwords	rbowen

htpasswd		,			 			.

#	htpasswd	-c	/usr/local/apache/passwd/passwords	rbowen

New	password:	mypassword

Re-type	new	password:	mypassword

Adding	password	for	user	rbowen

	 htpasswd				 				.			
/usr/local/apache/bin/htpasswd		 .

				,		 					.	
.htaccess			.		,
/usr/local/apache/htdocs/secret		 ,		
/usr/local/apache/htdocs/secret/.htaccess	
httpd.conf	<Directory
/usr/local/apache/apache/htdocs/secret>			 .

AuthType	Basic

AuthName	"Restricted	Files"

AuthUserFile	/usr/local/apache/passwd/passwords

Require	user	rbowen

		.	 AuthType				 	.				
mod_auth_basic	.		Basic	 						.	

						.	 	 AuthType	Digest

	 mod_auth_digest	,		 .				Digest			

AuthName		 		 (realm)	.		 		.						
	.					 						.

	,			 "Restricted	Files"			,				
"Restricted	Files"					 		.				
		 						.		 							
.

AuthUserFile				 htpasswd			 	.			
		 							 		.							
.	 mod_authn_dbm		 AuthDBMUserFile		 .	 dbmmanage
			.	 		 							

	 Require										 	.		
require		 			.

http://modules.apache.org/

	

			(rbowen)	 		.						
AuthGroupFile		.

								 				.			
			.		 	.

GroupName:	rbowen	dpitts	sungo	rshersey

							.

						

htpasswd	/usr/local/apache/passwd/passwords	dpitts

	,								 .	(-c).

	 .htaccess				.

AuthType	Basic

AuthName	"By	Invitation	Only"

AuthUserFile	/usr/local/apache/passwd/passwords

AuthGroupFile	/usr/local/apache/passwd/groups

Require	group	GroupName

	 GroupName			 password						 			.

						.		 						.

Require	valid-user

Require	user	rbowen					 						
	 .							 			.					(
		()				 .					,	
	 					.

			

Basic								 	.							
()			 				.				
.	 								 						.		
			.

								 	.							,	
						 	.

		?

					.			 								

Allow	Deny		 								 		.	
		 		,						 .

				.

Allow	from	address

	 address	IP	(IP)	 	().				
		.

	,							 				.

Deny	from	205.252.46.165

								 		.	IP								
.

Deny	from	host.example.com

,								 .

Deny	from	192.101.205

Deny	from	cyberthugs.com	moreidiots.com

Deny	from	ke

Order	Deny	 Allow			 						.

Order	deny,allow

Deny	from	all

Allow	from	dev.example.com

Allow		,						 							.	
	 		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		

mod_auth_basic	mod_authz_host				 				
.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	How-To	/	Tutorials

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	:	CGI				

				.	 					.

	 	
mod_alias

mod_cgi

AddHandler

Options

ScriptAlias

CGI	(Common	Gateway	Interface)			CGI		 	CGI		,
()		 			.			
	 	CGI			,	CGI		 .

CGI			

CGI				CGI			 		.			.

ScriptAlias
ScriptAlias						CGI		 .						
CGI							 	.

ScriptAlias				.

ScriptAlias	/cgi-bin/	/usr/local/apache2/cgi-bin/

							 httpd.conf			.	 ScriptAlias

	 Alias			URL	 			.	 Alias

DocumentRoot				 	.	 Alias	ScriptAlias
ScriptAlias		URL		 			CGI			.	
	 /cgi-bin/	 			 /usr/local/apache2/cgi-bin/

CGI			.

	,	URL	 http://www.example.com/cgi-bin/test.pl	
	 /usr/local/apache2/cgi-bin/test.pl		 		.		
			 				.				 	.

ScriptAlias				CGI
			CGI		 ScriptAlias		 .				CGI		
					.				 			CGI				
,	 UserDir			 						
cgi-bin			,		 	CGI				.

		CGI					 .	,	 AddHandler

	 cgi-script			.	,	 Options		 ExecCGI

Options			CGI		

			 Options				 	CGI				.

<Directory	/usr/local/apache2/htdocs/somedir>

Options	+ExecCGI

</Directory>

			CGI			.		 	CGI				.	
AddHandler			 	 cgi	 pl			 CGI		.

AddHandler	cgi-script	.cgi	.pl

.htaccess	

.htaccess		httpd.conf				CGI		 				

.

	
					 .cgi			CGI		.

<Directory	/home/*/public_html>

Options	+ExecCGI

AddHandler	cgi-script	.cgi

</Directory>

				 cgi-bin					CGI		.

<Directory	/home/*/public_html/cgi-bin>

Options	ExecCGI

SetHandler	cgi-script

</Directory>

CGI		

``''		CGI				 		.

		CGI						 MIME-type				.	HTTP		
						.	 		.

Content-type:	text/html

		HTML							 		.			HTML	,	
	gif			HTML				CGI	 			.

		CGI						 			.

		CGI	
					CGI		.	 	 first.pl		,	
	.

#!/usr/bin/perl

print	"Content-type:	text/html\n\n";

print	"Hello,	World.";

Perl								 .			()
/usr/bin/perl					 				.				
content-type			carriage-return		 	.				HTTP	
			 	,		.			"Hello,	World."	 	.		.

			

http://www.example.com/cgi-bin/first.pl

		,		 Hello,	World.			.		,				
						.

			!

	CGI							 		.

CGI		
!					.			 			,	CGI		
Content-Type		.

CGI				"POST	Method	Not	Allowed"	
CGI						 	.	 	 							.

"Forbidden"		
			.	 	 	 		 		.

"Internal	Server	Error"	
		 			 CGI					"Premature	end	of	
headers"		.						 			CGI		
HTTP		 		.

						.	 ,						(
www)	.	 						.	 	
					.

chmod	a+x	first.pl

,								 		.

		
						 	.		,	 PATH

.

		CGI			 PATH			.	(,	
			 								 .

				CGI					 		(perl

#!/usr/bin/perl

			.

,	CGI			 							 .

	
CGI							 .									
		.				 			.		,		

cd	/usr/local/apache2/cgi-bin

./first.pl

(perl			.		 					 	 			

			 Content-Type		 HTTP						.		
					 Premature	end	of	script	headers

.			 	 CGI		 	.

	
			.					 	.						.		
					,		 			.					,	
					.

Suexec
suexec			 								
		.	 Suexec				,			 		CGI			
Premature	end	of	script	headers	.

suexec				 apachectl	-V		 SUEXEC_BIN		.		
			suexec		,	suexec	 		.

suexec					.	 suexec			

suexec			()			.	 suexec
,	 suexec	-V		suexec	 							

			?

CGI							 	.						
	"Hello,	World."		 								

							 	.		path	(
),	,		 			.					

CGI						 	.					(Netscape,	IE,
Lynx),			(,	IIS,	WebSite),		CGI	 		.

CGI						,	 	-			.	
http://hoohoo.ncsa.uiuc.edu/cgi/env.html	.

		Perl	CGI					 	.			
		.			 		.					
			 		 		 .

#!/usr/bin/perl

print	"Content-type:	text/html\n\n";

foreach	$key	(keys	%ENV)	{

print	"$key	-->	$ENV{$key}
";

}

STDIN	STDOUT
,			(STDIN)	(STDOUT)	.			 STDIN			
	 ,	 STDOUT				.

CGI			(form)	 POST	 						CGI		
.				 							.

"	"		.				(=)	 ,						(&)	
.	,	,					 		16	.				

name=Rich%20Bowen&city=Lexington&state=KY&sidekick=Squirrel%20Monkey

http://hoohoo.ncsa.uiuc.edu/cgi/env.html

	URL					.				 	 QUERY_STRING

	 GET		.	 FORM		 METHOD			HTML	(form)	 	
POST	.

							 .	 					CGI			
			.

CGI	/

CGI							 					.			
					.

Perl	CGI			 CPAN				 	.	CGI				
	 CGI.pm.					 		 CGI::Lite				.

C	CGI					.		 	 http://www.boutell.com/cgic/
CGIC	.

http://www.cpan.org/
http://www.boutell.com/cgic/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		...

			CGI		.		 comp.infosystems.www.authoring.cgi
		 CGI				.	HTML	Writers	Guild	-servers	 		
			.	 http://www.hwg.org/lists/hwg-servers/				
	.

		CGI							 CGI				.	
	,			 Common	Gateway	Interface	RFC	 	.

					CGI			 					,			
,		,	CGI			 ,					.			

						CGI		 				

news:comp.infosystems.www.authoring.cgi
http://www.hwg.org/lists/hwg-servers/
http://hoohoo.ncsa.uiuc.edu/cgi/interface.html
http://web.golux.com/coar/cgi/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	How-To	/	Tutorials

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	:	Server	Side	Includes	

				.	 					.

Server-side	includes		HTML						.

	 	
mod_include

mod_cgi

mod_expires

Options

XBitHack

AddType

SetOutputFilter

BrowserMatchNoCase

			SSI		Server	Side	Includes	.	 SSI			
	HTML			 			SSI		.

			SSI					 .

SSI	?

SSI	(Server	Side	Includes)	HTML			,	 			.
SSI		CGI	 							 		HTML				
		 	.

SSI							 							
	.	SSI		 					.			 					
	 	.

SSI			

	SSI		 httpd.conf		 .htaccess					.

Options	+Includes

			SSI		.		 		 Options		
.		 				SSI			 	 Options

		SSI				.		 				.			.	
			 .shtml			 					.

AddType	text/html	.shtml

AddOutputFilter	INCLUDES	.shtml

						SSI			 	SSI			
					 	.

		 XBitHack			.

XBitHack	on

XBitHack				SSI		.			 		SSI					
	 chmod				.

chmod	+x	pagename.html

				.		 .shtml		 			 .html		SSI		
.				 XBitHack			 	.						
SSI		 							 .					,			.

						 		.

							 SSI			content	length	HTTP			
.							 	.			.

1.	 XBitHack	Full		.		 	(include)				
				.

2.	 mod_expires				 							

	SSI	

SSI				.

<!--#element	attribute=value	attribute=value	...	-->

HTML			SSI				 HTML				.	SSI		
		.

element		.						.	 	SSI					

	

<!--#echo	var="DATE_LOCAL"	-->

echo	element			.	 CGI								
set	element				 		.

					,			 config	element	 timefmt

attribute	.

<!--#config	timefmt="%A	%B	%d,	%Y"	-->

Today	is	<!--#echo	var="DATE_LOCAL"	-->

	

		<!--#flastmod	file="index.html"	-->		

	element	 timefmt			.

CGI			
	SSI		,			``	 ''		CGI			.

<!--#include	virtual="/cgi-bin/counter.pl"	-->

	

	HTML						SSI	.

				?
	SSI					 			.					.	
HTML						.	 			SSI			.

<!--#config	timefmt="%A	%B	%d,	%Y"	-->

		<!--#flastmod	file="ssi.shtml"	-->		;

	 ssi.shtml				 .							
LAST_MODIFIED		 .

<!--#config	timefmt="%D"	-->

This	file	last	modified	<!--#echo	var="LAST_MODIFIED"	-->

timefmt						 strftime	.		.

			
							 	,							

	(header)	(footer)			 					.		
include	SSI						 		.	 include

file	attribute	 virtual	attribute			.	 file	attribute	
	.	,	(/)	 			../			.			

		 virtual	attribute			.		/			,		
			.

<!--#include	virtual="/footer.html"	-->

									 LAST_MODIFIED		.		
SSI				,						 						.

				?

		 config()				 config()		.

	SSI						

[an	error	occurred	while	processing	this	directive]

				 config	element	errmsg	attribute		.

<!--#config	errmsg="[It	appears	that	you	don't	know	how	to	use

SSI]"	-->

				SSI				 					.	(?)

	 sizefmt	attribute			 	 config()		.			
bytes,		Kb	Mb		 	 abbrev	.

	

				CGI		SSI			 		.		 exec

						.	SSI			(/bin/sh	Win32	
DOS)		 	.		,				.

<pre>

<!--#exec	cmd="ls"	-->

</pre>

or,	on	Windows

<pre>

<!--#exec	cmd="dir"	-->

</pre>

dir				 ``<dir>''		,	 							.

		 exec					 				.	``''			
		,				 	.	 Options		 IncludesNOEXEC

SSI		 exec				.

	SSI	

					SSI			,	 						.

						1.2		 		.	,		1.2				

	
set						 		.					.	

<!--#set	var="name"	value="Rich"	-->

						 			(,	 LAST_MODIFIED)	
			 			.					($)	 				.

<!--#set	var="modified"	value="$LAST_MODIFIED"	-->

								 	.

<!--#set	var="cost"	value="\$100"	-->

								 				,			
			,			 	.)

<!--#set	var="date"	value="${DATE_LOCAL}_${DATE_GMT}"	-->

	
						.		 SSI				.	
			 if,	elif,	else,	endif		.							
	.

			.

<!--#if	expr="test_condition"	-->

<!--#elif	expr="test_condition"	-->

<!--#else	-->

<!--#endif	-->

test_condition				 	.				,			``''	
.	(.)		 			,	 mod_include

			.

			.

BrowserMatchNoCase	macintosh	Mac

BrowserMatchNoCase	MSIE	InternetExplorer

			Internet	Explorer	 	``Mac''	``InternetExplorer''		
.

	SSI				.

<!--#if	expr="${Mac}	&&	${InternetExplorer}"	-->

		

<!--#else	-->

		JavaScript		

<!--#endif	-->

		IE				.			 					JavaScript	
		 IE				.			 .

()				 		.		 SetEnvIf

			CGI			 				.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

SSI		CGI						 		.							
				.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	How-To	/	Tutorials

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	:	.htaccess	

				.	 					.

.htaccess							.

.htaccess	

	 	
core

mod_authn_file

mod_authz_groupfile

mod_cgi

mod_include

mod_mime

AccessFileName

AllowOverride

Options

AddHandler

SetHandler

AuthType

AuthName

AuthUserFile

AuthGroupFile

Require

/	

.htaccess	("	")	 					.				
				,				 		.

:

.htaccess				,	 AccessFileName		 			.
	,	 .config							.

AccessFileName	.config

	 .htaccess		 		 .	 AllowOverride							
	.			 .htaccess					.	 	
		,	 			Override				 AllowOverride

.

	,	 AddDefaultCharset						 .htaccess		
.	(.)	 Override		 FileInfo	.			
.htaccess				 AllowOverride	FileInfo

:

: ,	,	directory,
.htaccess

Override: FileInfo

		 .htaccess			 							".htaccess"	
	.

	.htaccess			 ()

							 .htaccess			.		,	
	 .htaccess			 				.			.		
		,			.

.htaccess					 						root		

.						 						 .htaccess

	.		,		 					ISP		
.

		 .htaccess			 	.	 .htaccess				
<Directory>				 .

				 .htaccess		 		.

	.	 AllowOverride	 .htaccess			,		
.htaccess		.		 .htaccess						
!	,	 .htaccess				.

							 			 .htaccess

	.)	 	 /www/htdocs/example			 	,				
.

/.htaccess

/www/.htaccess

/www/htdocs/.htaccess

/www/htdocs/example/.htaccess

								 			4			.	
.htaccess			 	.			.)

		.					 								.		
		.	,				 				.			
	 AllowOverride			 									

	 /www/htdocs/example		 .htaccess				

<Directory	/www/htdocs/example>	Directory				
.

/www/htdocs/example		 .htaccess	:

/www/htdocs/example		 .htaccess		
AddType	text/example	.exm

httpd.conf			
<Directory	/www/htdocs/example>

AddType	text/example	.exm

</Directory>

							 							

AllowOverride		 none		 .htaccess		 			.

AllowOverride	None

		

.htaccess						 		 .htaccess

		 .htaccess			.				.		
.htaccess			 	 .htaccess					
				 						.

:

/www/htdocs/example1				 .htaccess		.

Options	+ExecCGI

(:	 .htaccess		" Options"			 "AllowOverride
Options"	.)

/www/htdocs/example1/example2		 		 .htaccess

.

Options	Includes

		 .htaccess		 Options	Includes					
/www/htdocs/example1/example2		CGI			.

	

								 .				 .htaccess

	.			.	 	 <Directory>				
			 			 .htaccess			 .		
	 			 	.

			 .htaccess		 						.

.htaccess		.

AuthType	Basic

AuthName	"Password	Required"

AuthUserFile	/www/passwords/password.file

AuthGroupFile	/www/passwords/group.file

Require	Group	admins

			 AllowOverride	AuthConfig			

					 	 		.

Server	Side	Includes	

		 .htaccess			 		Server	Side	Includes			
		 .htaccess		 					.

Options	+Includes

AddType	text/html	shtml

AddHandler	server-parsed	shtml

			 AllowOverride	Options	AllowOverride
FileInfo			.

server-side	includes				 SSI			.

CGI	

	 .htaccess				 	CGI				,		

Options	+ExecCGI

AddHandler	cgi-script	cgi	pl

						CGI		 					.

Options	+ExecCGI

SetHandler	cgi-script

			 AllowOverride	Options	AllowOverride
FileInfo			.

CGI						 CGI			.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

.htaccess						 								.

							 AllowOverride			 .			
		 AllowOverride	None		.	 .htaccess			
						.	 						 AllowOverride

None		.

								 .		 .htaccess

	.						 .

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	How-To	/	Tutorials

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

				 UserDir			 								.	
http://example.com/~username/		 	" username"	
UserDir			 				.

URL		

https://www.apache.org/foundation/contributing.html

	

	 	
mod_userdir UserDir

DirectoryMatch

AllowOverride

UserDir		

UserDir						.		 		.

						 				.		,	

UserDir	public_html

URL	http://example.com/~rbowen/file.html		
/home/rbowen/public_html/file.html	.

						 				.		,		

UserDir	/var/html

URL	http://example.com/~rbowen/file.html		
/var/html/rbowen/file.html	.

	(*)						 		.		,			:

UserDir	/var/www/*/docs

URL	http://example.com/~rbowen/file.html		
/var/www/rbowen/docs/file.html	.

			

UserDir							 							:

UserDir	enabled

UserDir	disabled	root	jro	fish

		 disabled				 					.	,	
					 	:

UserDir	disabled

UserDir	enabled	rbowen	krietz

UserDir					.

		cgi		

	cgi-bin			 <Directory>		 					cgi		

<Directory	/home/*/public_html/cgi-bin/>

Options	ExecCGI

SetHandler	cgi-script

</Directory>

UserDir	 public_html	 ,						cgi	
example.cgi			.

http://example.com/~rbowen/cgi-bin/example.cgi

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

					

						,	 .htaccess					.
AllowOverride			 					.			
.htaccess	 	.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Microsoft	Windows		

				.	 					.

		Microsoft	Windows		2.0	,	,	 		.			
		 	,	 		 		.

						.	 ()				
Windows		 	.

	Microsoft	Windows				 				:

Windows	NT:	Windows	NT			 		Windows		.
Windows	NT,	Windows	2000,	Windows	XP,	Windows	.Net	Server
2003	.
Windows	9x:				 Windows		.	Windows	95	(OSR2	
),	Windows	 98,	Windows	ME	.

http://httpd.apache.org/bug_report.html

	

	2.0			Windows		Windows	 NT.			Intel	AMD
		x86		 	.		Windows	9x		 							
.

		TCP/IP			.	Windows	 95	,	Winsock	2		
.	 Windows	95	Winsock	2	 	 		.

Windows	NT	4.0			4	TCP/IP		 Winsock				,
	 6			.

http://www.microsoft.com/windows95/downloads/contents/WUAdminTools/S_WUNetworkingTools/W95Sockets2/Default.asp

Windows		

		 http://httpd.apache.org/download.cgi	 					
	.			 				,				
		.			 				.

Windows			 .msi	Windows	 			.				
				Microsoft	.			 	 .zip		.	Microsoft	Visual
C++	(Visual	Studio)						.

http://httpd.apache.org/download.cgi

Windows		

	Microsoft	Installer	1.2			.	 Windows	9x		
Installer	2.0				,	 Windows	NT	4.0	2000		
				.	Windows	XP		 	.

							 2.0					.		1.3	
				 		.					2.0			

			 .msi		.	 				:

1.	 		(Network	Domain). 			DNS		.		,		
DNS		 server.mydomain.net	 	 mydomain.net

2.	 	(Server	Name). 			 DNS	.			
server.mydomain.net	.

3.	 			(Administrator's	Email	 Address).				
	 	.					 		.

4.	 		(For	whom	to	install	 Apache)				80		
		 for	All	Users,	on	Port	80,	as	a	Service	-

Recommended	(,	80	,	 service	-)	.	
service		 (,).	 			80		
		 		 only	for	the	Current	User,	on	Port

8080,	when	started	Manually	(,	8080	 ,		
)	.

5.	 		(The	installation	type). 								
Typical	.	 Custom						 .				
		13		 	.					 	.

6.	 		(Where	to	install). 			 C:\Program

Files\Apache	Group,	 	 Apache2		.

			 conf		 						.		

	.	,	 					 .default	.		,
conf\httpd.conf			 conf\httpd.conf.default	
.	 	 .default				,	 				.

,		 htdocs\index.html		 		
(index.html.default).	,					
.					 ,					.

			 conf		 			.					
		 .								 .								.

http://www.microsoft.com/downloads/release.asp?ReleaseID=32831
http://www.microsoft.com/downloads/release.asp?ReleaseID=32832

Windows		

	 conf				 .				,	Windows		
				 	 	.

Windows			:

Windows				,	 						.	
	,					 	,	2.						

			:

MaxRequestsPerChild:		 ,							
						 				,		
	 MaxRequestsPerChild	0				 			.

:				 				.	 httpd.conf

						.

ThreadsPerChild:				.					
					 		,				
ThreadsPerChild	50.

						 	Windows			.				
				 	.					.		
.

Windows						 				.			
\Apache2\modules			 		.						
	 LoadModule		.	 	,	status			 (
	status)	 		:

LoadModule	status_module	modules/mod_status.so

			 	 			.

	Microsoft	IIS		Windows			 ISAPI	(Internet	Server
Application	Programming	Interface)		(,)		
	.	 			 .		ISAPI				 	.

CGI			 ScriptInterpreterSource		 			
		 		.

Windows	 .htaccess			 	,	 AccessFilename

		 				.

Windows	NT					Windows	 		.			
		 error.log						.	 Windows		
Windows	NT	4.0			 ,		Windows				MMC	
		.

Windows	9x	Windows				 				.

	Service	

Windows	NT		service			.	Windows	 9x			
		.

			service			.	"	 "	,		service	.	"	
"					service	 		.	service		Administrators
	 	.

	Apache	Service	Monitor		.		 						
	 				.	monitor		service	 		service	(
)		 .

	 bin				 				Windows	NT	service	:

apache	-k	install

	service						.	 							

apache	-k	install	-n	"MyServiceName"

service							 :

apache	-k	install	-n	"MyServiceName"	-f	"c:\files\my.conf"

-k	install					 ,	service		 Apache2		
conf\httpd.conf	.

	service		.	:

apache	-k	uninstall

				service			:

apache	-k	uninstall	-n	"MyServiceName"

		service	,	,		Apache	Service	 Monitor	 NET	START

Apache2,	NET	STOP	Apache2				Windows			
				service			 		:

apache	-n	"MyServiceName"	-t

			service			.		 	serivce	:

apache	-k	start

			service	:

apache	-k	stop

apache	-k	shutdown

	service					 		:

apache	-k	restart

			service			 (LocalSystem)			.
Windows		 LocalSystem		,	 named	pipes,	DCOM,
secure	RPC					 			.						

LocalSystem		 				!					
				 	.

	service						 .									
.

1.	 						.

2.	 			 	 				 		 .	Windows	NT	4.0	User
Manager	for	Domains	 			,	Windows	2000	XP	
"	"		.	"		"	MMC	 				.

3.	 			Users			.

4.	 				(htdocs	 cgi-bin)				 	(RX)
	.

5.	 	 logs			(RWXD)		 .

6.	 Apache.exe					(RX)	 	.

	service					(RWXD)	 		 logs

Apache2						(RX)			 	.

	"	"	"	"		,	 							
					 .					service			

Error	code	2186			 						service	""	
.	,					 .

	service		Windows	Service	Control	 Manager				.
	,		 ""								 		:

Could	not	start	the	Apache2	service	on	\\COMPUTER	

Error	1067;	The	process	terminated	unexpectedly.

	service						 	.							

Windows	9x		Windows	NT	service		 	.		
							 		.					

	service				:

				.	 	,						

apache	-n	"MyServiceName"	-k	start

service						 .	httpd.conf						
					.		 						.

Windows	9x	 NET	START	 NET	STOP			.		
			service		 .

	Windows	9x						 		.		Windows
9x			 .			Apache	Software	Foundation
Windows	9x							.	 					
	,	 							,	 Windows	9x		.

					Windows	 NT				service	,	,	
	.	,	Apache	Service	Monitor		Windows	9x	 	service	
		.

			

		service		.		 					(Windows	9x	
).

			,			 	:

apache

	Control-C				.

,	 		-->		-->	Apache	HTTP	 Server	2.0.xx	-->

Control	Apache	Server		 Start	Apache	in	Console		
		.	 							.	 	service		,			
	Control-C					.	 				.	,	
service			service	.		service	 					.

								 		:

apache	-k	shutdown

									 	Control-C		.

,				.					 .					.		

apache	-k	restart

				:			 kill	-TERM	pid	 kill	-USR1	

	Windows.			 -k		 kill			 	.

									 -->				.			
apache				 	.		logs		,		
.		 				:

c:	

cd	"\Program	Files\Apache	Group\Apache2\bin"	

apache

				Control-C	.	 			:

cd	..\logs	

more	<	error.log

							 	.						

-f					 :

apache	-f	"c:\my	server	files\anotherconfig.conf"

apache	-f	files\anotherconfig.conf

-n		service	,		 service		:

apache	-n	"MyServiceName"

					 ServerRoot		.

-f	 -n			 ,		 conf\httpd.conf			
				 .			 -V			 	 SERVER_CONFIG_FILE

	 				:

apache	-V

			 ServerRoot	:

1.	 -C				 ServerRoot	.

2.	 -d		.

3.	 		.

4.	 					registry	.

5.	 		server	root.		 /apache,	 apache	-V	
HTTPD_ROOT				.

						 	.						.	install	
for	all	users		 HKEY_LOCAL_MACHINE					 	(
):

HKEY_LOCAL_MACHINE\SOFTWARE\Apache	Group\Apache\2.0.43

"	"				 HKEY_CURRENT_USER			.		
		:

HKEY_CURRENT_USER\SOFTWARE\Apache	Group\Apache\2.0.43

							 					.				
			.

								 			.						
			.

		 ServerRoot	,			 conf		 .				
httpd.conf		.				 ServerRoot		 				,
		 							.	
httpd.conf			 ServerRoot				 .

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		

(service)			(Listen		 		"	"		
)	80		.			URL		 			:

http://localhost/

							 .						,	
error.log		.	 				DNS	(Domain	Name	Service)	
				URL		:

http://127.0.0.1/

			 conf		 			.	,	Windows	NT		service	
							 		.

		TCP/IP						 					 	,	,		
.			 					.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Microsoft	Windows		

				.	 					.

					.		 Microsoft	Windows		 	.

					:

	

				50	MB		.		 						
MB		.					 								

Microsoft	Visual	C++	5.0	.

				Visual	Studio	IDE	 Workbench				.	
		 vcvars32			 PATH,	INCLUDE,	LIB			 :

"c:\Program	Files\DevStudio\VC\Bin\vcvars32.bat"

Windows	Platform	SDK.

				Visual	C++	5.0		 	Microsoft	Windows
Platform	SDK	.		 	 setenv		Platform	

"c:\Program	Files\Platform	SDK\setenv.bat"

Visual	C++	6.0			Platform	SDK		 .						
		 .

	 mod_isapi			 	Windows	Platform	SDK	.	
		 MSVC++	5.0	 mod_isapi			 			.
http://msdn.microsoft.com/downloads/sdks/platform/platform.asp
			.

awk		(awk,	gawk).

				 awk.exe						
)				 				awk	.	Brian	Kernighan
http://cm.bell-labs.com/cm/cs/who/bwk/		 	Win32	

http://msdn.microsoft.com/downloads/sdks/platform/platform.asp
http://cm.bell-labs.com/cm/cs/who/bwk/

http://cm.bell-labs.com/cm/cs/who/bwk/awk95.exe	.	
awk95.exe		 awk.exe		.

Developer	Studio	IDE	Tools		Options...	 Directories	
(Developer	Studio	7.0	Projects	 -	VC++	Directories	pane)
Executable	files			 awk.exe	.			 awk.exe		
,		 PATH		 .

Cygwin	(http://www.cygwin.com/)		 gawk.exe		awk
	,	 awk.exe		 gawk.exe		 	.	Windows		
	 		InstallBin		.	 	cygwin	
gawk.exe		 awk.exe	.

[]	OpenSSL		(mod_ssl	ab.exe	ssl)

:						 				.
				 					.	
Foundation	OpenSSL		OpenSSL	 			,	,	
	 			.	 			 	.					.

mod_ssl	(SSL		 ab.exe)	abs		,	OpenSSL
http://www.openssl.org/source/		 srclib	 openssl	
.	 release	debug				0.9.7	 					
,		 		:

perl	Configure	VC-WIN32

perl	util\mkfiles.pl	>MINFO

perl	util\mk1mf.pl	dll	no-asm	no-mdc2	no-rc5	no-idea	VC-

WIN32	>makefile

perl	util\mk1mf.pl	dll	debug	no-asm	no-mdc2	no-rc5	no-idea

VC-WIN32	>makefile.dbg

perl	util\mkdef.pl	32	libeay	no-asm	no-mdc2	no-rc5	no-idea

>ms\libeay32.def

perl	util\mkdef.pl	32	ssleay	no-asm	no-mdc2	no-rc5	no-idea

>ms\ssleay32.def

nmake

http://cm.bell-labs.com/cm/cs/who/bwk/awk95.exe
http://www.cygwin.com/
http://www.openssl.org/source/

nmake	-f	makefile.dbg

[]	zlib		(mod_deflate)

Zlib	 srclib	 zlib	 		,				
	 mod_deflate			.	 Zlib	 http://www.gzip.org/zlib/
			--	 mod_deflate	1.1.4			 .

http://www.gzip.org/zlib/

	

						.		 				

Makefile.win			makefile		 .	Windows	NT	 release

debug					:

nmake	/f	Makefile.win	_apacher

nmake	/f	Makefile.win	_apached

				.			 								

Developer	Studio	Workspace	IDE	

VC++	Visual	Studio						 	.				Visual
Studio	workspace	Apache.dsw	.		workspace		 		
	 .dsp		 	.	,					 		.

Apache.dsw	workspace		 InstallBin	(Release	Debug	
)	Active	Project	.	 InstallBin				,	
dll		 Makefile.win	.	 InstallBin	Settings,	General	,
Build	command	line			 INSTDIR=			.	 INSTDIR=

/Apache2	.	()		 			 BuildBin

.dsp			Visual	C++	6.0	.	 Visual	C++	5.0	(97)			
	.	Visual	 C++	7.0	(.net)	 Apache.dsw	 .dsp	
Apache.sln	 .msproj		.	 .dsp			 	
!		VC++	 7.0	IDE	 Apache.dsw				.

,	Visual	C++	7.0	(.net)		Build	,	Configuration	 Manager	
Debug	 Release	abs,	mod_ssl,	mod_deflate	Solution
modules			.	 srclib	openssl	 zlib			 	
	()	IDE	 BinBuild				

Export	 .mak		,	Visual	 C++	5.0		 mod_ssl,	abs	(SSL
	 ab),	mod_deflate		.	 VC++	7.0	(.net)		
nmake				.	VC++	5.0	 6.0	IDE			,	Project	
	Export	 for	all	makefiles	.					 					
		 		.					 					:

perl	srclib\apr\build\fixwin32mak.pl

httpd		 		 		.					
			.

			,		 Visual	Studio	6.0			.		,	
	7.0						 				.

	

Apache.dsw	workspace	 makefile.win	nmake				
		 .dsp		:

1.	 srclib\apr\apr.dsp

2.	 srclib\apr\libapr.dsp

3.	 srclib\apr-util\uri\gen_uri_delims.dsp

4.	 srclib\apr-util\xml\expat\lib\xml.dsp

5.	 srclib\apr-util\aprutil.dsp

6.	 srclib\apr-util\libaprutil.dsp

7.	 srclib\pcre\dftables.dsp

8.	 srclib\pcre\pcre.dsp

9.	 srclib\pcre\pcreposix.dsp

10.	 server\gen_test_char.dsp

11.	 libhttpd.dsp

12.	 Apache.dsp

,	 modules\				 		.

support\				 	,					
Windows				 support\win32\			.

1.	 support\ab.dsp

2.	 support\htdigest.dsp

3.	 support\htpasswd.dsp

4.	 support\logresolve.dsp

5.	 support\rotatelogs.dsp

6.	 support\win32\ApacheMonitor.dsp

7.	 support\win32\wintty.dsp

		server	root			.	 			

					 dir		 		 nmake			:

nmake	/f	Makefile.win	installr	INSTDIR=dir

nmake	/f	Makefile.win	installd	INSTDIR=dir

				

INSTDIR	 dir			 .		 \Apache2		.

		:

dir\bin\Apache.exe	-		
dir\bin\ApacheMonitor.exe	-					
dir\bin\htdigest.exe	-	Digest	auth		
dir\bin\htdbm.exe	-	SDBM	auth			
dir\bin\htpasswd.exe	-	Basic	auth		
dir\bin\logresolve.exe	-		 dns			
dir\bin\rotatelogs.exe	-		 	
dir\bin\wintty.exe	-		
dir\bin\libapr.dll	-	Apache	Portable	Runtime		
dir\bin\libaprutil.dll	-	Apache	Utility	Runtime		
dir\bin\libhttpd.dll	-	Apache	Core	
dir\modules\mod_*.so	-		 			
dir\conf	-		
dir\logs	-			
dir\include	-	C		
dir\lib	-		

				

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

.dsp		 release	 	.				 .mak				.	
NMAKE				 .dsp				.				 .mak

export	.	Microsoft	Developer	 Studio					.

,	makefile	export		 BuildBin		(_apacher

_apached)				.			 		.				
				.

	 .mak				 .mak	(.dep)	Platform	 SDK			.
DevStudio\SharedIDE\bin\	(VC5)
DevStudio\Common\MSDev98\bin\	(VC6)		 			
sysincl.dat		 .						 (sys/time.h
sys\time.h	,).		
		 					.	
srclib/apr/build/fixwin32mak.pl		 .mak					
.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Novell	NetWare		

				.	 					.

		Novell	NetWare	6.0			2.0	,	 ,			.			
		 ,	 	 	 		.

			dev-httpd				 				 .			
		 (FAQ)	,			.			 		,	NetWare			
	 							 novell.devsup.webserver				.

						.	 ()			
NetWare		 		.

http://httpd.apache.org/bug_report.html
news://developer-forums.novell.com/novell.devsup.webserver

	2.0	NetWare	6.0	service	pack	3			 .	SP3		service
pack			 NetWare	Libraries	for	C	(LibC)		.

NetWare	service	pack	 	.

	service	pack			 NetWare	Libraries	for	C	(LibC)	
NetWare	5.1		 NetWare		2.0			.	 : 	NetWare	
2.0						 .

http://developer.novell.com/ndk/libc.htm
http://support.novell.com/misc/patlst.htm#nw
http://developer.novell.com/ndk/libc.htm

NetWare		

					 http://www.apache.org/	 ()			.	
			 /	,			ftp			 .	NetWare		2.0		
	 	 		.

http://www.apache.org/
http://www.apache.org/dist/httpd/binaries/netware

NetWare		

	NetWare			.	NetWare	 	2.0							
.

		NetWare				 		(sys:/apache2

			 SYS:		 			()
httpd.conf			 ServerRoot	 ServerName		
	 	
	

SEARCH	ADD	SYS:\APACHE2

			 SYS:/APACHE2	

				NetWare			 			(sys:/apache2

):

NetWare		 Apache2		
APACHE2.NLM	 APRLIB.NLM	SYS:/APACHE2	
SYS:/APACHE2		 BIN	 	
HTDIGEST.NLM,	HTPASSWD.NLM,	HTDBM.NLM,
LOGRES.NLM,	ROTLOGS.NLM	 SYS:/APACHE2/BIN	
SYS:/APACHE2		 CONF	 	
HTTPD-STD.CONF		 SYS:/APACHE2/CONF		
HTTPD.CONF	
MIME.TYPES,	CHARSET.CONV,	MAGIC	
SYS:/APACHE2/CONF		
\HTTPD-2.0\DOCS\ICONS				
SYS:/APACHE2/ICONS	
\HTTPD-2.0\DOCS\MANUAL				
SYS:/APACHE2/MANUAL	
\HTTPD-2.0\DOCS\ERROR				
SYS:/APACHE2/ERROR	

\HTTPD-2.0\DOCS\DICROOT				
SYS:/APACHE2/HTDOCS	
	 SYS:/APACHE2/LOGS		
	 SYS:/APACHE2/APACHE2/CGI-BIN	 	
SYS:/APACHE2/MODULES			 	nlm		 modules

HTTPD.CONF			 @@Value@@				

SEARCH	ADD	SYS:\APACHE2

		 SYS:/APACHE2	

	 SYS						 		.

makefile		"install"				 	 DIST				
		NetWare				 			(NetWare	

NetWare		

			 apache		 .					.	
load		 	:

load	address	space	=	apache2	apache2

		apache2		.	 NetWare							
			.

		(Listen)		80	.				
				 .							
		 error_log		.

			 conf			 		.

						 		:

unload	apache2

apache2	shutdown

			unload		 	:

unload	address	space	=	apache2	apache2

						.	 				:

-f				

apache2	-f	"vol:/my	server/conf/my.conf"

apache	-f	test/test.conf

				 ServerRoot		.

-f			,		 			(conf/httpd.conf

		 SERVER_CONFIG_FILE		.	 			
:

-C		 ServerRoot	.
	 -d	.
	
		server	root.

		server	root		 sys:/apache2.	 -V		 		
		.

NetWare		2.0					 			.					
	.			 APACHE2		 	.

RESTART
					,		 					worker		.

VERSION
					.

MODULES
					.

DIRECTIVES
			.

SETTINGS
					.		 ,						.

SHUTDOWN
			.

HELP
		.

						 		.			,	

			 "apache2	Help"	.

NetWare		

		 conf				 .				,	NetWare		
.					 	 	.

NetWare			:

NetWare				,	 						.	
	:					 			worker	.

	""-		:

MaxRequestsPerChild	-			worker					
.			 MaxRequestsPerChild	0			 			.
			 NetWare			 0		 .

StartThreads	-								.	
StartThreads	50.

MinSpareThreads	-		(idle)						worker	
.			 MinSpareThreads	10.

MaxSpareThreads	-								worker		
.			 MaxSpareThreads	100.

MaxThreads	-			worker				.		
ThreadsPerChild	250.

ThreadStackSize	-		worker					.		
ThreadStackSize	65536.

						 	NetWare			.			
		 			.				 	.				
		.

NetWare							 			.			
\Apache2\modules					 .					

LoadModule		.	 		status		:

LoadModule	status_module	modules/status.nlm

		 		 			.

	NetWare		:
CGIMapExtension	-	CGI					.

SecureListen	-			SSL	.

NWSSLTrustedCerts	-						 (certificate)	.

NWSSLUpgradeable	-		/			SSL				

Netware		

		MetroWerks	CodeWarrior	6.x		 .				Netware	
	 	.		 sys:/Apache2	.

			 conf			 .		 conf			 HTTPD-STD.CONF

HTTPD.CONF	.	 HTTPD.CONF		 @@Value@@					.
conf/magic	conf/mime.types		.		makefile	
install					 .

:
NetWare		2.0				 :

Metrowerks	CodeWarrior	6.0		 NetWare	PDK	3.0	.
NetWare	Libraries	for	C	(LibC)
LDAP	Libraries	for	C
ZLIB			
AWK		(awk,	gawk).	AWK
http://developer.novell.com/ndk/apache.htm	 		.	
awk.exe		 			.
makefile		
http://developer.novell.com/ndk/apache.htm		GNU	make	
3.78.1	(GMake)	.

NetWare	makefile			:
NOVELLLIBC	

Set	NOVELLLIBC=c:\novell\ndk\libc

		NetWare	Libraries	for	C	SDK		.
METROWERKS	

Set	METROWERKS=C:\Program	Files\Metrowerks\CodeWarrior

http://developer.novell.com/ndk/cwpdk.htm
http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/cldap.htm
http://www.gzip.org/zlib/
http://developer.novell.com/ndk/apache.htm
http://developer.novell.com/ndk/apache.htm

		Metrowerks	CodeWarrior				 .			
Files\Metrowerks\CodeWarrior	,				.
LDAPSDK	

Set	LDAPSDK=c:\Novell\NDK\cldapsdk\NetWare\libc

		LDAP	Libraries	for	C			.
ZLIBSDK	

Set	ZLIBSDK=D:\NOVELL\zlib

		 ZLib				.
AP_WORK		 \httpd-2.0				.
APR_WORK		 \httpd-2.0\srclib\apr				
AWK		GNU	make	(gmake.exe)		 	 PATH			
					.
\httpd-2.0\srclib\apr-util\uri		 "gmake	-f
nwgnumakefile"		 GENURI.nlm	.
GENURI.nlm		NetWare		 SYS:		

SYS:\genuri	>	sys:\uri_delims.h

	.
uri_delims.h				 \httpd-2.0\srclib\apr-

util\uri		 .
\httpd-2.0\srclib\apr		 "gmake	-f
nwgnumakefile"		APR	 .
\httpd-2.0\srclib\pcre		 "gmake	-f
nwgnumakefile"		 DFTABLES.nlm	.
\httpd-2.0\server		 "gmake	-f	nwgnumakefile
GENCHARS.nlm	.
		 GENCHARS.nlm	DFTABLES.nlm		NetWare		 SYS:

				:

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

SYS:\genchars	>	sys:\test_char.h

SYS:\dftables	>	sys:\chartables.c

test_char.h	 chartables.c				 \httpd-

2.0\os\netware		.
\httpd-2.0		 "gmake	-f	nwgnumakefile"			

gmake	-f	nwgnumakefile	install

		install						 	.

	make	
gmake	-f	nwgnumakefile

		 	 \release		.

gmake	-f	nwgnumakefile	DEBUG=1

	 		 \debug		 .

gmake	-f	nwgnumakefile	install

\dist\Apache2		,	,	 						.

gmake	-f	nwgnumakefile	installdev

install	,	 \lib	\include				import	 	.

gmake	-f	nwgnumakefile	clean

DEBUG				 \release	\debug				 	.

gmake	-f	nwgnumakefile	clobber_all

clean			.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

HPUX			

				.	 					.

Date:	Wed,	05	Nov	1997	16:59:34	-0800

From:	Rick	Jones	<raj@cup.hp.com>

Reply-To:	raj@cup.hp.com

Organization:	Network	Performance

Subject:	HP-UX	tuning	tips

					HP-UX		.

HP-UX	9.X:	10.20	
HP-UX	10.[00|01|10]:	10.20	

HP-UX	10.20:

	ARPA	Transport			.		TCP	 					.		
,	2			.	adb		 *disc*			.		
tcp_hash_size		32	disc				16	 		"
"W"		.

		?	 ftp://ftp.cup.hp.com/dist/networking/tools/connhist		,
		TCP			.	 							(10)		
SPECweb96						.	 	 http://www.specbench.org/
HP-UX			1000	SPECweb96				 TIME_WAIT	60
60,000	TCP	""	 	.

ftp://ftp.cup.hp.com/dist/networking/misc/listenq							
.

PA-8000			,		 				"chatr".		
<> ".		 	GID	 MLOCK			.	 MLOCK		
Setprivgrp(1m)	.		Glance					
	.

mailto:raj@cup.hp.com
mailto:raj@cup.hp.com
ftp://ftp.cup.hp.com/dist/networking/tools/connhist
http://www.specbench.org/
ftp://ftp.cup.hp.com/dist/networking/misc/listenq

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

			,		 		 mpctl()

		.					 		.

FIN_WAIT_2			,	 nettune		 tcp_keepstart

.				-	4				.	 tcp_hash_size		,
FIN_WAIT_2			(2)	 	-						.

					,		.	 				.

	,

rick	jones

http://www.cup.hp.com/netperf/NetperfPage.html

http://www.cup.hp.com/netperf/NetperfPage.html
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	EBCDIC	

				.	 					.

				2.0		 			.				,	

	EBCDIC		

		1.3			EBCDIC		 			(-ASCII)			

(BS2000/OSD	 		SIEMENS			.	 				SVR4
	POSIX).

					

		 	 					
()		 CERN-3.0			 "	"		
			prefork			CERN	 accept-fork-serve			5
			 .

							.

http://www.siemens.de/servers/bs2osd/osdbc_us.htm
http://dev.apache.org/
http://www.w3.org/Daemon/

	

EBCDIC								 					(EBCDIC)
CERN			 	.		HTML		(CERN			
	(POSIX				.	 	 grep	 sed		POSIX	 			
)	EBCDIC				 			.						
		"	MIME	"	 ().						
handler"					.

	

	BUFF						 				BUFF					
					BUFF		 			BUFF		.			
				:

			 	(ASCII)
			content	type		 / 	(ASCII		 			
)
			 	(ASCII)
			content	type		 / 	()

	

1.	 			 #ifdef		 	:

#ifdef	CHARSET_EBCDIC

	EBCDIC			.	,	 				,	
HTTP		 					 .

#ifdef	_OSD_POSIX

SIEMENS	BS2000/OSD				 .	BS2000/OSD	
			 			.

2.	 		ASCII	EBCDIC		(BS2000	POSIX	 			
)	HTTP			 						
		(GET	,	Header:	,			 .)		ASCII	 ,			(
GIF	,	CGI	 	 .)			"	"		 .			"	"
"	",	 	 bgets()	 rvputs(),			 bgets()

rvputs()			.		 						.

(EBCDIC			ASCII)

3.	 		(EBCDIC)	 								
		.				ASCII	 escape	 \012	 \015	:	
	ASCII	 \n	 \r			ASCII			.	
	;	 	EBCDIC		ASCII			.

4.	 BUFF								 puts/write/get/gets	
"ebcdic/ascii		 "	,						 		.		(
	CGI)	 ()					 	:	

		EBCDIC			CGI			 	,				ASCII	
		(WWW					:		 	GIF).		EBCDIC
			 ;					type			 			ASCII	
	EBCDIC			 	.

5.	 (MIME	type	text/plain,	text/html)		 				ASCII	

,	(ASCII			 NFS)
	 		.

:

	 .ahtml				 	ASCII	 text/html		(
	ASCII	 text/plain)				 :

AddType	text/x-ascii-html	.ahtml	

AddType	text/x-ascii-plain	.ascii

,	 text/foo		MIME	type	 AddType	"text/x-ascii-
foo"		"	ASCII"			.

6.	 							""	 .	 	 ,	GIF/ZIP/AU		
	.			" rcp	-b"							

7.	 							 (,	EBCDIC)		,		

8.	 CGI			CGI				:	 	Content-Type	,	
,	 GIF					.			wwwcount	 		.

		

	
	 Content-Type:	 text/				 	 		 			.	
		GIF	,	gzip	 			.

					PC		 			ftp	"binary"	(
(rcp	-b)	 rcp	-b			.

	
			(,	Content-Type:	 text/)			
EBCDIC		 .

Server	Side	Include	
SSI			EBCDIC			.		 	ASCII		.

		

core +
mod_access +
mod_actions +
mod_alias +
mod_asis +
mod_auth +
mod_auth_anon +
mod_auth_dbm ? 	 libdb.a

mod_autoindex +
mod_cern_meta ?
mod_cgi +
mod_digest +
mod_dir +
mod_so - 	
mod_env +
mod_example - ()
mod_expires +
mod_headers +
mod_imagemap +
mod_include +
mod_info +
mod_log_agent +
mod_log_config +
mod_log_referer +
mod_mime +
mod_mime_magic ? 	

mod_negotiation +
mod_proxy +
mod_rewrite +
mod_setenvif +
mod_speling +
mod_status +
mod_unique_id +
mod_userdir +
mod_usertrack ?

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

			

JK	(mod_jserv) - JAVA	.
mod_php3 + mod_php3	LDAP,	GD,	FreeType		

.
mod_put ?
mod_session -

https://tomcat.apache.org/connectors-doc-archive/jk2/
http://www.php.net/
http://hpwww.ec-lyon.fr/~vincent/apache/mod_put.html
ftp://hachiman.vidya.com/pub/apache/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

httpd	-					

				.	 					.

httpd					 (HTTP)		.	(standalone)			
				 		.

	 httpd			 		 apachectl	,	 2000,	XP	
		 		.

	
	

	
apachectl

https://www.apache.org/foundation/contributing.html

httpd	[-d	serverroot]	[-f	config]	[-C

directive]	[-c	directive]	[-D	parameter]	[-

e	level]	[-E	file]	[-k

start|restart|graceful|stop]	[-R	directory]	[

-h]	[-l]	[-L]	[-S]	[-t]	[-v]	[-V]	[

-X]	[-M]

Windows		 					:

httpd	[-k	install|config|uninstall]	[-n	name]

[-w]

-d	serverroot

ServerRoot			 serverroot	.		ServerRoot		
				.		 /usr/local/apache2.

-f	config

	 config				.	 config	/			 ServerRoot

.		 conf/httpd.conf.

-k	start|restart|graceful|stop

httpd	,	,	.				 	 	.

-C	directive

		 directive		.

-c	directive

		 directive		.

-D	parameter

								 <IfDefine>			 parameter
	.

-e	level

		 LogLevel	level	.									
.

-E	file

		 file		.

-R	directory

	 SHARED_CORE						 directory	.

-h

							.

-l

					.	 LoadModule							 .

-L

								.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

-M

						.

-S

				().

-t

		.				()	0	()	0	
		.	-D	 DUMP_VHOSTS					.	-D
DUMP_MODULES					.

-v

httpd			.

-V

httpd					.

-X

			.					,				.

		 Windows				:

-k	install|config|uninstall

	Windows	NT		;					;				.

-n	name

		 name.

-w

					.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

ab	-				

				.	 					.

ab					(HTTP)	 		(benchmarking)	.			
	.						 		.

httpd

https://www.apache.org/foundation/contributing.html

ab	[-A	auth-username:password]	[-c	concurrency

]	[-C	cookie-name=value]	[-d]	[-e	csv-file]

[-g	gnuplot-file]	[-h]	[-H	custom-header]	[

-i]	[-k]	[-n	requests]	[-p	POST-file]	[-P

proxy-auth-username:password]	[-q]	[-s]	[-S

]	[-t	timelimit]	[-T	content-type]	[-v

verbosity]	[-V]	[-w]	[-x	<table>-attributes

]	[-X	proxy[:port]]	[-y	<tr>-attributes]	[-z

<td>-attributes]	[http://]hostname[:port]/path

-A	auth-username:password

	BASIC	Authentication		.	 :				base64		
			(,	401)			.

-c	concurrency

		.					 .

-C	cookie-name=value

	 Cookie:		.		 	 name=value		 .				
	.

-d

"percentage	served	within	XX	[ms]	table"		 .	().

-e	csv-file

			()		(1%	 100%)				(CSV)	.
		''	'gnuplot'				 .

-g	gnuplot-file

			'gnuplot'		TSV	(Tab	separate	values,)	
	.	Gnuplot,	IDL,	Mathematica,	 Igor,		Excel			
		 		.					.

-h

	.

-H	custom-header

		.					 	(,	"Accept-Encoding:
zip/zop;8bit")		 .

-i

GET		 HEAD		.

-k

HTTP	KeepAlive		.	 	 ,		HTTP				.	
KeepAlive		.

-n	requests

			.			 							.

-p	POST-file

POST		.

-P	proxy-auth-username:password

		BASIC	Authentication		.	 :				base64
	 .				(,	401)			.

-q

150				 ab	10%		 	100		 		.	 -q		
		.

-s

			(ab	-h)	 http			SSL		 https

.				 	.				.

-S

			,				 		/		.	
().

-t	timelimit

				.		 -n	50000	.					
			.

-T	content-type

POST		Content-type	.

-v	verbosity

			.	 4		 		,	 3		(404,	202,)	 ,	
(warning)	(info)	.

-V

		.

-w

	HTML		.					 		.

-x	<table>-attributes

<table>			.	 	 <table		>	.

-X	proxy[:port]

			.

-y	<tr>-attributes

<tr>			.

-z	<td>-attributes

<td>			.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

					.		 ,			,					
	.

		HTTP/1.x			;		 ''			.	
						;	 ,			 ab					

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

apachectl	-				

				.	 					.

apachectl				 	(HTTP)		.				

apachectl				.	 		 httpd				
				 	 httpd	.			 apachectl	SysV	init		,
start,	restart,	stop					 httpd	 		.

				,		 httpd		 apachectl		 	.	,	
	 			.					 .

apachectl				0,	 	>0	.					

	
	

	
httpd

https://www.apache.org/foundation/contributing.html

			,	 apachectl	httpd				.

apachectl	[httpd-argument]

SysV	init		,	 apachectl						.

apachectl	command

	SysV	init-		.			 httpd	manpage	.

start

	 httpd		.				.	 apachectl	-k	start	
.

stop

	 httpd		.	 apachectl	-k	stop	.

restart

	 httpd		.			,	.								
	 configtest				.	 apachectl	-k	restart

.

fullstatus

mod_status				.					 mod_status

,		 lynx				.				URL		 STATUSURL

				.

status

			.	 fullstatus		,						.

graceful

	 httpd		(gracefully)	.			,	.			
			.	,					.	,					,	
								.								
configtest				.	 apachectl	-k	graceful	
.

configtest

		.			 Syntax	Ok							.
apachectl	-t	.

				,			.

startssl

apachectl	-k	start	-DSSL	.						

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

SSL		 httpd.conf	 <IfDefine>			.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

apxs	-	APache	eXtenSion	

				.	 					.

apxs					 (HTTP)					.		
,	 mod_so	 LoadModule			 					(DSO)	.

					DSO		 		 httpd		
apxs						 .							

$	httpd	-l

	 mod_so			.		 	 apxs		DSO			 					
:

$	apxs	-i	-a	-c	mod_foo.c

gcc	-fpic	-DSHARED_MODULE	-I/path/to/apache/include	-c	mod_foo.c

ld	-Bshareable	-o	mod_foo.so	mod_foo.o

cp	mod_foo.so	/path/to/apache/modules/mod_foo.so

chmod	755	/path/to/apache/modules/mod_foo.so

[activating	module	`foo'	in	/path/to/apache/etc/httpd.conf]

$	apachectl	restart

/path/to/apache/sbin/apachectl	restart:	httpd	not	running,	trying

to	start

[Tue	Mar	31	11:27:55	1998]	[debug]	mod_so.c(303):	loaded	module

foo_module

/path/to/apache/sbin/apachectl	restart:	httpd	started

$	_

	 files	C		(.c)		 	(.o),		(.a)			.	
	C		 ,				.		 							
(PIC,	position	independent	code)		.	GCC		 -fpic		
.		C			 	 apxs			 		.

	DSO						 mod_so		
src/modules/standard/mod_so.c		.

apachectl
httpd

https://www.apache.org/foundation/contributing.html

apxs	-g	[-S	name=value]	-n	modname

apxs	-q	[-S	name=value]	query	...

apxs	-c	[-S	name=value]	[-o	dsofile]	[-I

incdir]	[-D	name=value]	[-L	libdir]	[-l

libname]	[-Wc,compiler-flags]	[-Wl,linker-

flags]	files	...

apxs	-i	[-S	name=value]	[-n	modname]	[-a]	[

-A]	dso-file	...

apxs	-e	[-S	name=value]	[-n	modname]	[-a]	[

-A]	dso-file	...

	
-n	modname

-i	(install)	 -g	(template	generation)					.		
				.	 -g						,	
	 	()				.

	
-q

apxs		.	 query	 			:	 CC,	CFLAGS,
CFLAGS_SHLIB,	INCLUDEDIR,	LD_SHLIB,
LDFLAGS_SHLIB,	LIBEXECDIR,	LIBS_SHLIB,	SBINDIR,
SYSCONFDIR,	TARGET.
			.

INC=-I`apxs	-q	INCLUDEDIR`

	,		C				 Makefile			.

	
-S	name=value

				apxs		.

(template)		
-g

	 name		(-n)				:			 mod_name

	,	 					apxs		 	.							
	 Makefile.

DSO		

-c

	.		 files	C	 (.c)	(.o)	,	 files		(.o	.a)	
	 dsofile	.	 -o			 files					
mod_name.so	.

-o	dsofile

				.		 	 files				
mod_unknown.so		 .

-D	name=value

					.	 		define	.

-I	incdir

					.	 	include			.

-L	libdir

					.	 				.

-l	libname

					.	 			.

-Wc,compiler-flags

				 compiler-flags	libtool	--mode=compile	
	.	 				.

-Wl,linker-flags

				 linker-flags	libtool	--mode=link		.
	 			.

DSO			
-i

	.				 modules		.

-a

	 httpd.conf			 LoadModule		 						
.

-A

-a	,	 LoadModule			 (#)	.	 ,		 					

	.

-e

	.	 -a		 -A					,	 -i		 			
httpd.conf		.

			 mod_foo.c	 			.					
		:

$	apxs	-c	mod_foo.c

/path/to/libtool	--mode=compile	gcc	...	-c	mod_foo.c

/path/to/libtool	--mode=link	gcc	...	-o	mod_foo.la	mod_foo.slo

$	_

				 LoadModule			 	.	 apxs			
		 httpd.conf		 				.			:

$	apxs	-i	-a	mod_foo.la

/path/to/instdso.sh	mod_foo.la	/path/to/apache/modules

/path/to/libtool	--mode=install	cp	mod_foo.la

/path/to/apache/modules	...	chmod	755

/path/to/apache/modules/mod_foo.so

[/path/to/apache/conf/httpd.conf	`foo']

$	_

			

LoadModule	foo_module	modules/mod_foo.so

		.					 	 -A		.	

$	apxs	-i	-A	mod_foo.c

apxs								 Makefile			:

$	apxs	-g	-n	foo

Creating	[DIR]	foo

Creating	[FILE]	foo/Makefile

Creating	[FILE]	foo/modules.mk

Creating	[FILE]	foo/mod_foo.c

Creating	[FILE]	foo/.deps

$	_

							 	:

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

$	cd	foo

$	make	all	reload

apxs	-c	mod_foo.c

/path/to/libtool	--mode=compile	gcc	...	-c	mod_foo.c

/path/to/libtool	--mode=link	gcc	...	-o	mod_foo.la	mod_foo.slo

apxs	-i	-a	-n	"foo"	mod_foo.la

/path/to/instdso.sh	mod_foo.la	/path/to/apache/modules

/path/to/libtool	--mode=install	cp	mod_foo.la

/path/to/apache/modules	...	chmod	755

/path/to/apache/modules/mod_foo.so

[/path/to/apache/conf/httpd.conf	`foo']

apachectl	restart

/path/to/apache/sbin/apachectl	restart:	httpd	not	running,

trying	to	start

[Tue	Mar	31	11:27:55	1998]	[debug]	mod_so.c(303):	loaded	module

foo_module

/path/to/apache/sbin/apachectl	restart:	httpd	started

$	_

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

configure	-			

				.	 					.

configure					 					.		
				 .

								 		.				

	

https://www.apache.org/foundation/contributing.html

configure				 		.

./configure	[OPTION]...	[VAR=VALUE]...

	(,	 CC,	CFLAGS,	...)	,	 VAR=VALUE		.	 			

	
	
	
	
			

	
		 configure				 .

-C

--config-cache

--cache-file=config.cache	.

--cache-file=FILE

		 FILE		.	 				.

-h

--help	[short|recursive]

		.	 short		 				.	 recursive

					 .

-n

--no-create

configure			,	 		.					makefile	
				.

-q

--quiet

	 checking

--srcdir=DIR

DIR				.	 	configure					

--silent

--quiet	.

-V

--version
			.

	
				.			 	(layout)		.

--prefix=PREFIX

			 PREFIX	.	 	 /usr/local/apache2.

--exec-prefix=EPREFIX

			 EPREFIX	.	 	 PREFIX	.

	 make	install	/usr/local/apache2/bin,
/usr/local/apache2/lib				 	.	 --

prefix=$HOME		 --prefix			 /usr/local/apache2

			 		.

		
--enable-layout=LAYOUT

		 LAYOUT			 			.			
			.	 config.layout					,	 		
			.		 		 <Layout	FOO>...</Layout>

,		 	 FOO			.	 		 Apache.

		 	
						.	 			 autoconf

	.

--bindir=DIR

		 DIR	.		 				 htpasswd

		.	 DIR		 EPREFIX/bin.

--datadir=DIR

				 DIR	.	 datadir		 PREFIX/share.
autoconf						 .

--includedir=DIR

C		 DIR	.	 includedir		 EPREFIX/include.

--infodir=DIR

info		 DIR	.	 infodir		 PREFIX/info.				
.

--libdir=DIR

		 DIR	.	 libdir		 EPREFIX/lib.

--libexecdir=DIR

		(,)	 DIR	.	 libexecdir		 EPREFIX/libexec

.

--localstatedir=DIR

			 DIR	.	 localstatedir		 PREFIX/var.
autoconf						 .

--mandir=DIR

man		 DIR	.	 mandir		 EPREFIX/man.

--oldincludedir=DIR

gcc				C		 DIR	.	 oldincludedir	
/usr/include.	 autoconf						.

--sbindir=DIR

			 DIR	.	 						
apachectl,	suexec				.	 sbindir	
EPREFIX/sbin.

--sharedstatedir=DIR

				 DIR	.	 sharedstatedir		 PREFIX/com

autoconf						 .

--sysconfdir=DIR

		 httpd.conf,	mime.types					 DIR	.
sysconfdir		 PREFIX/etc.

	
					 (cross-compile)		.		
,		 		.

--build=BUILD

				.		 config.guess		.

--host=HOST

				.	 HOST		 BUILD.

--target=TARGET

TARGET						 .		 HOST.	
				 	.

	
					.

	
						:

--disable-FEATURE

FEATURE		.	 --enable-FEATURE=no	.

--enable-FEATURE[=ARG]

FEATURE		.	 ARG		 yes.

--enable-MODULE=shared

		DSO		.

--enable-MODULE=static

				.		 				.

configure	 foo			 --enable-foo				 		
	.

		
						 		.						

--disable-actions

mod_actions				 			.

--disable-alias

mod_alias			 						

--disable-asis

mod_asis		as-is		 	.

--disable-auth

mod_auth				 		.					
HTTP	Basic	Authentication	 .

--disable-autoindex

mod_autoindex			 			.

--disable-access

mod_access			 			.

--disable-cgi

	MPM			CGI			 mod_cgi		.		
		.

--disable-cgid

	MPM	 worker	perchild				 mod_cgid	CGI	
	.	 			CGI		.

--disable-charset-lite

mod_charset_lite			 			.			EBCDIC
	 	.

--disable-dir

mod_dir				 			.

--disable-env

mod_env			/	 		.

--disable-http

HTTP			.	 http						.	
				 .	 					 				
:					.

--disable-imagemap

mod_imagemap			imagemap	 		.

--disable-include

mod_include		Server	Side	 Includes			.

--disable-log-config

mod_log_config			 		.						
	.

--disable-mime

mod_mime				 			(mime-type,	,	,	
.	()			 MIME						.

--disable-negotiation

mod_negotiation			 		.

--disable-setenvif

mod_setenvif			 					.

--disable-status

mod_status		/	 			.

--disable-userdir

mod_userdir				 				.

			
			,			 		 most	 all		
	 		.

--enable-auth-anon

mod_auth_anon			 		.

--enable-auth-dbm

mod_auth_dbm			 DBM				HTTP	Basic
Authentication	.				 	.

--enable-auth-digest

mod_auth_digest		RFC2617	 Digest	authentication	
.				 		.

--enable-authnz-ldap

mod_authnz_ldap		LDAP	 		.

--enable-cache

mod_cache				 			.					
					 	.			(storage	management
module)	(,	 mod_cache_disk	mod_mem_cache)	
	.

--enable-cern-meta

mod_cern_meta		CERN		 		.

--enable-charset-lite

mod_charset_lite			 		.			EBCDIC		
.					 .

--enable-dav

mod_dav		WebDAV		 		.		 mod_dav_fs

		.			 --enable-dav			.
:	 mod_dav	 http					.

--enable-dav-fs

mod_dav_fs		DAV		 			.			
				 --enable-dav		.

--enable-deflate

mod_deflate			 		.

--enable-disk-cache

mod_cache_disk			 		.

--enable-expires

mod_expires		Expires	 			.

--enable-ext-filter

mod_ext_filter			 			.

--enable-file-cache

mod_file_cache			 		.

--enable-headers

mod_headers		HTTP		 		.

--enable-info

mod_info				 .

--enable-ldap

mod_ldap		LDAP		 		.

--enable-logio

mod_logio				 				.

--enable-mem-cache

mod_mem_cache			 		.

--enable-mime-magic

mod_mime_magic		MIME	 type				.

--enable-isapi

mod_isapi		isapi		 .

--enable-proxy

mod_proxy		/	 	.	 CONNECT,	FTP
		 mod_proxy_connect,	mod_proxy_ftp,
mod_proxy_http		.	 --enable-proxy		 			
	.

--enable-proxy-connect

mod_proxy_connect		 CONNECT						

	 mod_proxy		 ,	 --enable-proxy			

--enable-proxy-ftp

mod_proxy_ftp		 FTP						.	
mod_proxy		,	 --enable-proxy			.

--enable-proxy-http

mod_proxy_http		 HTTP						.	
mod_proxy		,	 --enable-proxy			.

--enable-rewrite

mod_rewrite			 URL			.

--enable-so

mod_so		DSO		.	 --enable-mods-shared

			.

--enable-speling

mod_spelling		URL	 					.

--enable-ssl

mod_ssl		SSL/TLS		 .

--enable-unique-id

mod_unique_id			 				.

--enable-usertrack

mod_usertrack			 		.

--enable-vhost-alias

mod_vhost_alias			 		.

		
				,		 	.						.	
	.

--enable-bucketeer

mod_bucketeer		(bucket)	 		.

--enable-case-filter

mod_case_filter			 	.

--enable-case-filter-in

mod_case_filter_in			 	.

--enable-echo

mod_echo		ECHO		 .

--enable-example

		 mod_example	.

--enable-optional-fn-export

mod_optional_fn_export			 	(exporter)		
.

--enable-optional-fn-import

mod_optional_fn_import			 	(importer)		
.

--enable-optional-hook-export

mod_optional_hook_export		 	(hook)			.

--enable-optional-hook-import

mod_optional_hook_import		 				.

MPM			
						 		:

--with-module=module-type:module-file

							 .				
modules/module-type		 	 module-file		
.				 configure	 module-file				
		 .

								 .							

				DSO			 apxs	.

--with-mpm=MPM

		.			 		.	 				 	MPM
		MPM	 beos,	leader,	mpmt_os2,	perchild,
prefork,	threadpool,	worker	.

	
--enable-maintainer-mode

				.

--enable-mods-shared=MODULE-LIST

				.	,	 		 LoadModule

MODULE-LIST				 		.			
:

--enable-mods-shared='headers	rewrite	dav'

,			 all	 most			.		,

--enable-mods-shared=most

			DSO		.

--enable-modules=MODULE-LIST

--enable-mods-shared	,	 					.	,	
	 httpd				 	.	 LoadModule		 	.

--enable-v4-mapped

IPv6		IPv4					.

--with-port=PORT

httpd			.		 		 httpd.conf		

--with-program-name

		.		 httpd.

		
				.

	
							 :

--with-PACKAGE[=ARG]

	 PACKAGE	.	 ARG		 yes.

--without-PACKAGE

	 PACKAGE		.	 --with-PACKAGE=no	.
autoconf						 	.

	
--with-apr=DIR|FILE

httpd				Apache	Portable	 Runtime	(APR)		
	.	 			APR				 configure	
config				.	APR		,	 ,				.	
	 			 bin	apr-config		.

--with-apr-util=DIR|FILE

httpd				Apache	Portable	 Runtime	Utilities	(APU)
			 .				APU				
config				.	APU		,	 ,				.	
	 			 bin	apu-config		.

--with-ssl=DIR

mod_ssl			 configure		OpenSSL	.	 		
	SSL/TLS			 		.

--with-z=DIR

(mod_deflate)				 configure

	.		 						 		.

mod_authn_dbm	mod_rewrite	DBM	 RewriteMap			 	
						/	 	.	APU	SDBM			
	.			 					:

--with-gdbm[=path]

path		,	 configure				 GNU	DBM			
.		 path		 configure	path/lib	path/include	
		 .		 path			 								

--with-ndbm[=path]

--with-gdbm			New	DBM	 .

--with-berkeley-db[=path]

--with-gdbm			Berkeley	 DB	.

DBM		APU		APU			 .		 --with-apr-util

		APU		DBM			.

		DBM					.		 	DBM				.

			
--enable-static-support

					.	 ,						
		 		.

--enable-suexec

			uid	gid		 suexec		 		.	
						. 	suexec			 	.

							 			:

--enable-static-ab

ab			 	.

--enable-static-checkgid

checkgid				 .

--enable-static-htdbm

htdbm				 .

--enable-static-htdigest

htdigest				.

--enable-static-htpasswd

htpasswd				.

--enable-static-logresolve

logresolve				.

--enable-static-rotatelogs

rotatelogs				.

suexec		
		 suexec		.	 			 suEXEC		 	.

--with-suexec-bin

suexec			.		 --sbindir	(

--with-suexec-caller

suexec			.	 			 httpd			

--with-suexec-docroot

suexec					 					.		
datadir/htdocs.

--with-suexec-gidmin

suexec			GID	.	 	100.

--with-suexec-logfile

suexec		.		 	 suexec_log,	

--with-suexec-safepath

suexec			 PATH		.	
/usr/local/bin:/usr/bin:/bin.

--with-suexec-userdir

		 suexec		 		()		.	 		
(mod_userdir)		 			.		

--with-suexec-uidmin

suexec			UID	.	 	100.

--with-suexec-umask

suexec			 umask	.				

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

configure					 							

CC

		C			.

CFLAGS

			C			.

CPP

	C			.

CPPFLAGS

C/C++		.		,				 includedir			
Iincludedir	.

LDFLAGS

	.		,				 libdir			 -Llibdir

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

dbmmanage	-	DBM				

				.	 					.

dbmmanage	HTTP	basic	authentication	 				DBM			
.				 dbmmanage							.		
				.	 			 htpasswd	.

	manpage			.	 httpd				 				
http://httpd.apache.org/	 					.

httpd
mod_authn_dbm

mod_authz_dbm

http://httpd.apache.org
https://www.apache.org/foundation/contributing.html

dbmmanage	[encoding]	filename

add|adduser|check|delete|update	username	[

encpasswd	[group[,group...]	[comment]]]

dbmmanage	filename	view	[username]

dbmmanage	filename	import

filename

DBM		.		 .db,	.pag,	.dir		.

username

	.	 username	(:)			.

encpasswd

update	 add			 		.						
,	 update			(.)			 		.

group

		.		(:)			.						 		(
.	,	 update			(.)					.

comment

	,								.	 			.

-d

crypt		(Win32	Netware)

-m

MD5		(Win32	Netware)

-s

SHA1	

-p

			()

add

		 encpasswd		 filename	 username		.

adduser

		 filename	username		.

check

		 filename	username				.

delete

filename	 username		 .

import

STDIN	 username:password		 ()		 filename
			.

update

adduser		,	 filename		 username		 .

view

DBM			.	 username				.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		DBM						 						.	
	SDBM,	NDBM,	GNU		GDBM,	 Berkeley	DB	2.				
		 	.		 filename		 	 dbmmanage				
dbmmanage	DBM			 	.						,	
DBM		,					 DBM				.

dbmmanage				 @AnyDBM::ISA		DBM	.	
Berkeley	DB	2			 dbmmanage					
NDBM,	GDBM,	SDBM	.	 dbmmanage						
DBM			 .			Perl		 dbmopen()		 		Perl	
@AnyDBM::ISA		 	.					DBM			
.	C						 				.

			 file		 DBM				.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

htcacheclean	-			

				.	 					.

htcacheclean	 mod_cache_disk						.				
	(daemon)			.			 							
	.		TERM	 INT				.

mod_cache_disk

https://www.apache.org/foundation/contributing.html

htcacheclean	[-D]	[-v]	[-r]	[-n]	-ppath	-

llimit

htcacheclean	-b	[-n]	[-i]	-dinterval	-ppath	-

llimit

-dinterval

		 interval			 .			 -D,	-v,	-r					.	
		 		 SIGTERM		 SIGINT			.

-D

					.			 -d					.

-v

		.			 -d		 			.

-r

	.						 ().			
				.

-n

(nice)	.					 .	 htcacheclean

			(2)					 		.

-ppath

path					.	 CacheRoot						
.

-llimit

					 limit	.	 		(B)		
K,		 M		.

-i

					.		 	 -d					.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

htcacheclean					 ("")		0	,			

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

htdigest	-	digest	authentication			

				.	 					.

htdigest	HTTP		digest	authentication	 	,	,			
	 .				 htdigest							.

	manpage			.	 httpd	digest	authentication	 			
			 http://httpd.apache.org/	 					.

httpd
mod_auth_digest

http://httpd.apache.org
https://www.apache.org/foundation/contributing.html

htdigest	[-c]	passwdfile	realm	username

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

-c

passwdfile	.	 passwdfile					.

passwdfile

,	,			.	 -c						,				
.

realm

		.

username

passwdfile			.		 username			.			

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

htpasswd	-	basic	authentication			

				.	 					.

htpasswd	HTTP	basic	authentication		 					.
htpasswd					,	 				.

			 htpasswd			 				.				
.				 							.	DBM	
.

htpasswd			MD5			 crypt()			.	
					 			.	,			MD5			
			 						.

	manpage			.	 httpd				 				
http://httpd.apache.org/	 					.

httpd
	SHA1			.

http://httpd.apache.org
https://www.apache.org/foundation/contributing.html

htpasswd	[-c]	[-m]	[-D]	passwdfile	username

htpasswd	-b	[-c]	[-m	|	-d	|	-p	|	-s]	[-D]

passwdfile	username	password

htpasswd	-n	[-m	|	-d	|	-s	|	-p]	username

htpasswd	-nb	[-m	|	-d	|	-s	|	-p]	username

password

-b

(batch)		.	 	 ,		 		.		 	 	
.

-c

passwdfile	.	 passwdfile		,	.			 -n		
.

-n

				.	 						.	
passwdfile		 			.	 -c		 			.

-m

MD5			.	Windows,	Netware,	 TPF	.

-d

crypt()			.	 Windows,	Netware,	TPF			
	.	 		 htpasswd					 ,	Windows,	Netware,
TPF	 httpd					.

-s

	SHA	.	LDAP	(ldif)	 	Netscape					.

-p

		.			 htpasswd	,	Windows,	Netware,	TPF
httpd				.

-D

	.	htpasswd				 .

passwdfile

			.	 -c						,		.

username

passwdfile			.	 username					.	
	.

password

			.		 -b					.

htpasswd	 passwdfile		 					("")		
htpasswd				 		 1,					 2,				
			 			 3,				 4,	(,	,	,)	
			 5,)	 6,						
.

htpasswd	/usr/local/etc/apache/.htpasswd-users	jsmith

	 jsmith			.	 		.	Windows			
MD5			,	 		 crypt()		.		
			 .

htpasswd	-c	/home/doe/public_html/.htpasswd	jane

						 jane	.			.				 		,
htpasswd			 			.

htpasswd	-mb	/usr/web/.htpasswd-all	jones	Pwd4Steve

	(Pwd4Steve)	MD5		 			.

		

htpasswd						 URI			 .	,				

				 -b			.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

Windows	MPE		 htpasswd		 		 255		.			
255	.

htpasswd		MD5			 		.					
.

	 255			 :				.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

logresolve	-			IP-		

				.	 					.

logresolve				 IP-			.			
		 .	,	IP					.

			.				 	IP	,					.

logresolve	[-s	filename]	[-c]	<	access_log	>

access_log.new

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

-s	filename

			.

-c

logresolve		DNS			:	IP						
	IP								.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

rotatelogs	-						 	

				.	 					.

rotatelogs					 		.		:

CustomLog	"|bin/rotatelogs	/var/logs/logfile	86400"	common

	/var/logs/logfile.nnnn		.	nnnn	 			(
cron).		 (24)				.

CustomLog	"|bin/rotatelogs	/var/logs/logfile	5M"	common

				5			 .

ErrorLog	"|bin/rotatelogs	/var/logs/errorlog.%Y-%m-%d-%H_%M_%S	5M"

					5			 errorlog.YYYY-mm-dd-HH_MM_SS

		 			.

rotatelogs	[-l]	logfile	[rotationtime	[offset

]]	|	[filesizeM]

-l

	GMT			.	(BST	DST)	GMT				 -l

						!

logfile

		.	 logfile	'%'			 strftime(3)			.	'%'
					 .nnnnnnnnnn		.						
	.

rotationtime

			.

offset

UTC		.		0		UTC	.		,	UTC	-5		
		 -300	.

filesizeM

								 M	.	rotationtime	offset	
		.

					 strftime(3)			.			
strftime(3)	manpage	.

%A ()			
%a ()	3-		
%B ()			
%b ()	3-		
%c ()		
%d 2-	
%H 2-		(24		

)
%I 2-		(12		

)
%j 3-	
%M 2-	
%m 2-	
%p ()	12		

am/pm
%S 2-	
%U 2-		(

)
%W 2-		(

)
%w 1-		(

)
%X ()	
%x ()	
%Y 4-	
%y 2-	

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

%Z 	
%% 	`%'

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Other	Programs

				.	 					.

		manpage	,				 	.				.	
			 		.

log_server_status

	perl		cron				.	 						.	
				.		 					.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

split-logfile

	perl						 		.					("
,				 	+	" .log"	.

			.				 	.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Miscellaneous	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

								 			.

						:

http://purl.org/NET/http-errata	-	HTTP/1.1		
http://www.rfc-editor.org/errata.html	-	RFC	
http://ftp.ics.uci.edu/pub/ietf/http/#RFC	-	HTTP		RFC	

				.

http://purl.org/NET/http-errata
http://www.rfc-editor.org/errata.html
http://ftp.ics.uci.edu/pub/ietf/http/#RFC

HTTP	

						 			IETF	(recommendation)	:

RFC	1945	(Informational)
			(Hypertext	Transfer	Protocol,	 HTTP)	,	,	
				 		(application-level)	.	
.

RFC	2616	(Standards	Track)
			(Hypertext	Transfer	Protocol,	 HTTP)	,	,	
				 	.			HTTP/1.1	.

RFC	2396	(Standards	Track)
			(Uniform	Resource	Identifier,	URI)	 				
		.

http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2396.txt

HTML	

			(Hypertext	Markup	Language,	 HTML)			
IETF		W3C		:

RFC	2854	(Informational)
		HTML		,		W3C		 	"text/html"	MIME	type	
.

HTML	4.01		(Errata)
						 	(Hypertext	Markup	Language,	HTML)
.		 	HTML	4		HTML	4.01	.

HTML	3.2		
			(Hypertext	Markup	Language,	 HTML)			
			 	.	HTML		SGML		.

XHTML	1.1	-		XHTML 	()
		Modularization	of	XHTML			 			
XHTML	document	type	.

XHTML	1.0					(Extensible	HyperText	Markup
Language)	(Second	Edition)	()

		HTML	4	XML	1.0		XHTML	1.0	 		HTML	4	
		DTD	.

http://www.rfc-editor.org/rfc/rfc2854.txt
http://www.w3.org/TR/html401
http://www.w3.org/MarkUp/html4-updates/errata
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/xhtml11/
http://www.w3.org/2001/04/REC-xhtml-modularization-20060410-errata
http://www.w3.org/TR/xhtml1
http://www.w3.org/2002/08/REC-xhtml1-20060801-errata

				IETF		:

RFC	2617	(Draft	standard)
Basic	Access	Authentication			"HTTP/1.0".

http://www.rfc-editor.org/rfc/rfc2617.txt

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

/	

		ISO		/			:

ISO	639-2
ISO	639							 .		(639-1)				
	 ()			.

ISO	3166-1
		ISO	3166-1	ISO	3166-1-alpha-2			 		(
)		.

BCP	47	(Best	Current	Practice),	RFC	3066
								 							,		
			.

RFC	3282	(Standards	Track)
		MIME						RFC	822	 				
"Content-language:"	,				"Accept-Language:"		

http://www.loc.gov/standards/iso639-2/
http://www.iso.ch/iso/en/prods-services/iso3166ma/02iso-3166-code-lists/index.html
http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.rfc-editor.org/rfc/rfc3066.txt
http://www.rfc-editor.org/rfc/rfc3282.txt
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

			

			 		 		.

				.

						.	 ,								
.			:

MPM
	"MPM"		 	 .								 MPM	.	
					 	.

Base
	"Base"					,	 								
.

Extension
	"Extension"						 .							
				.

Experimental
"Experimental"					,	 			.			
	,	 			.

External
"External"							 ("		").			
	 		.

					.	 <IfModule>				.

		,				 LoadModule		 .				module		
.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

				2			,	 				.	,			
.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

			

				.	 					.

			 	 				.

https://www.apache.org/foundation/contributing.html

	(Description)

				.

	(Syntax)

				.			 		,					.	
				 .						
				"|"	.	 					,			
	 				"..."	.

					.			 			.

URL
http://www.example.com/path/to/file.html		
(scheme),	,				 	Uniform	Resource	Locator

URL-path
/path/to/file.html		 url	 				.	
								 .

file-path
/usr/local/apache/htdocs/path/to/file.html	
root					.		 ,			
	 .

directory-path
/usr/local/apache/htdocs/path/to/		 root		
		.

filename
file.html					.

regex
Perl		 (regular	 expression).		 regex		.

extension
	 filename				 	.						
filename				 					 (extension)
,	 	file.html.en	.html	 .en			 .		
extension		 						.	,	 extension
.

MIME-type

text/html			major	format	 type	minor	format	type
				 .

env-variable
			 	.				.			 	 	.

	(Default)

			(,		 							.)	 		.		
			 "None"	.					 httpd.conf					
	.

	(Context)

							 .					:

	(server	config)
			(,	httpd.conf)			,	 <VirtualHost>

<Directory>	 		 	.			 .htaccess				.

	(virtual	host)
			 <VirtualHost>				 	.

	(directory)
	 	 			,			 <Directory>,	<Location>
<Files>,	<Proxy>	 			.

.htaccess
	 	.htaccess					.					
			 .

		 			.		 								
,	 	 	,	 		.

								 (boolean)	OR	.	,	
config,	.htaccess"		 	 httpd.conf		 .htaccess

		,	 <Directory>	 <VirtualHost>			.

Override		(Override)

		 .htaccess			 	override				.		
.htaccess									 .

Overrides	 AllowOverride		,	 ()					
	 AllowOverride				 				.			
override		.

	(Status)

						 .	,						
	.	 			:

Core
	"Core"		,				 				.

MPM
"MPM"			 	 	.					 		MPM			

Base
						 							
"Base"	.

Extension
							 				"Extension"	.	
					 			.

Experimental
"Experimental"				,	 			.		,	
		.					 						.			
					.

	(Module)

					.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	(Compatibility)

				2			,	 					.	,		
		.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Core	Features

Description: Core	Apache	HTTP	Server	features	that	are	always
available

Status: Core

AcceptFilter	Directive

Description: Configures	optimizations	for	a	Protocol's	Listener
Sockets

Syntax: AcceptFilter	protocol	accept_filter

Context: server	config
Status: Core
Module: core

This	directive	enables	operating	system	specific	optimizations	for
a	listening	socket	by	the	Protocol	type.	The	basic	premise	is	for
the	kernel	to	not	send	a	socket	to	the	server	process	until	either
data	is	received	or	an	entire	HTTP	Request	is	buffered.	Only
FreeBSD's	Accept	Filters,	Linux's	more	primitive
TCP_DEFER_ACCEPT,	and	Windows'	optimized	AcceptEx()	are
currently	supported.

Using	none	for	an	argument	will	disable	any	accept	filters	for	that
protocol.	This	is	useful	for	protocols	that	require	a	server	send
data	first,	such	as	ftp:	or	nntp:

AcceptFilter	nntp	none

The	default	protocol	names	are	https	for	port	443	and	http	for
all	other	ports.	To	specify	that	another	protocol	is	being	used	with
a	listening	port,	add	the	protocol	argument	to	the	Listen
directive.

The	default	values	on	FreeBSD	are:

AcceptFilter	http	httpready

AcceptFilter	https	dataready

The	httpready	accept	filter	buffers	entire	HTTP	requests	at	the

http://www.freebsd.org/cgi/man.cgi?query=accept_filter&sektion=9

kernel	level.	Once	an	entire	request	is	received,	the	kernel	then
sends	it	to	the	server.	See	the	accf_http(9)	man	page	for	more
details.	Since	HTTPS	requests	are	encrypted,	only	the
accf_data(9)	filter	is	used.

The	default	values	on	Linux	are:

AcceptFilter	http	data

AcceptFilter	https	data

Linux's	TCP_DEFER_ACCEPT	does	not	support	buffering	http
requests.	Any	value	besides	none	will	enable
TCP_DEFER_ACCEPT	on	that	listener.	For	more	details	see	the
Linux	tcp(7)	man	page.

The	default	values	on	Windows	are:

AcceptFilter	http	connect

AcceptFilter	https	connect

Window's	mpm_winnt	interprets	the	AcceptFilter	to	toggle	the
AcceptEx()	API,	and	does	not	support	http	protocol	buffering.
connect	will	use	the	AcceptEx()	API,	also	retrieve	the	network
endpoint	addresses,	but	like	none	the	connect	option	does	not
wait	for	the	initial	data	transmission.

On	Windows,	none	uses	accept()	rather	than	AcceptEx()	and	will
not	recycle	sockets	between	connections.	This	is	useful	for
network	adapters	with	broken	driver	support,	as	well	as	some
virtual	network	providers	such	as	vpn	drivers,	or	spam,	virus	or
spyware	filters.

The	data	AcceptFilter	(Windows)

http://www.freebsd.org/cgi/man.cgi?query=accf_http&sektion=9
http://www.freebsd.org/cgi/man.cgi?query=accf_data&sektion=9
http://man7.org/linux/man-pages/man7/tcp.7.html

For	versions	2.4.23	and	prior,	the	Windows	data	accept	filter
waited	until	data	had	been	transmitted	and	the	initial	data	buffer
and	network	endpoint	addresses	had	been	retrieved	from	the
single	AcceptEx()	invocation.	This	implementation	was	subject
to	a	denial	of	service	attack	and	has	been	disabled.

Current	releases	of	httpd	default	to	the	connect	filter	on
Windows,	and	will	fall	back	to	connect	if	data	is	specified.
Users	of	prior	releases	are	encouraged	to	add	an	explicit	setting
of	connect	for	their	AcceptFilter,	as	shown	above.

See	also
Protocol

AcceptPathInfo	Directive

Description: Resources	accept	trailing	pathname	information
Syntax: AcceptPathInfo	On|Off|Default

Default: AcceptPathInfo	Default

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core

This	directive	controls	whether	requests	that	contain	trailing
pathname	information	that	follows	an	actual	filename	(or	non-
existent	file	in	an	existing	directory)	will	be	accepted	or	rejected.
The	trailing	pathname	information	can	be	made	available	to	scripts
in	the	PATH_INFO	environment	variable.

For	example,	assume	the	location	/test/	points	to	a	directory
that	contains	only	the	single	file	here.html.	Then	requests	for
/test/here.html/more	and	/test/nothere.html/more
both	collect	/more	as	PATH_INFO.

The	three	possible	arguments	for	the	AcceptPathInfo	directive
are:

Off

A	request	will	only	be	accepted	if	it	maps	to	a	literal	path	that
exists.	Therefore	a	request	with	trailing	pathname	information
after	the	true	filename	such	as	/test/here.html/more	in
the	above	example	will	return	a	404	NOT	FOUND	error.

On

A	request	will	be	accepted	if	a	leading	path	component	maps
to	a	file	that	exists.	The	above	example
/test/here.html/more	will	be	accepted	if
/test/here.html	maps	to	a	valid	file.

Default

The	treatment	of	requests	with	trailing	pathname	information
is	determined	by	the	handler	responsible	for	the	request.	The
core	handler	for	normal	files	defaults	to	rejecting	PATH_INFO
requests.	Handlers	that	serve	scripts,	such	as	cgi-script	and
isapi-handler,	generally	accept	PATH_INFO	by	default.

The	primary	purpose	of	the	AcceptPathInfo	directive	is	to	allow
you	to	override	the	handler's	choice	of	accepting	or	rejecting
PATH_INFO.	This	override	is	required,	for	example,	when	you	use
a	filter,	such	as	INCLUDES,	to	generate	content	based	on
PATH_INFO.	The	core	handler	would	usually	reject	the	request,	so
you	can	use	the	following	configuration	to	enable	such	a	script:

<Files	"mypaths.shtml">

		Options	+Includes

		SetOutputFilter	INCLUDES

		AcceptPathInfo	On

</Files>

AccessFileName	Directive

Description: Name	of	the	distributed	configuration	file
Syntax: AccessFileName	filename	[filename]

...

Default: AccessFileName	.htaccess

Context: server	config,	virtual	host
Status: Core
Module: core

While	processing	a	request,	the	server	looks	for	the	first	existing
configuration	file	from	this	list	of	names	in	every	directory	of	the
path	to	the	document,	if	distributed	configuration	files	are	enabled
for	that	directory.	For	example:

AccessFileName	.acl

Before	returning	the	document	/usr/local/web/index.html,
the	server	will	read	/.acl,	/usr/.acl,	/usr/local/.acl	and
/usr/local/web/.acl	for	directives	unless	they	have	been
disabled	with:

<Directory	"/">

				AllowOverride	None

</Directory>

See	also
AllowOverride

Configuration	Files
.htaccess	Files

AddDefaultCharset	Directive

Description: Default	charset	parameter	to	be	added	when	a
response	content-type	is	text/plain	or
text/html

Syntax: AddDefaultCharset	On|Off|charset

Default: AddDefaultCharset	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core

This	directive	specifies	a	default	value	for	the	media	type	charset
parameter	(the	name	of	a	character	encoding)	to	be	added	to	a
response	if	and	only	if	the	response's	content-type	is	either
text/plain	or	text/html.	This	should	override	any	charset
specified	in	the	body	of	the	response	via	a	META	element,	though
the	exact	behavior	is	often	dependent	on	the	user's	client
configuration.	A	setting	of	AddDefaultCharset	Off	disables
this	functionality.	AddDefaultCharset	On	enables	a	default
charset	of	iso-8859-1.	Any	other	value	is	assumed	to	be	the
charset	to	be	used,	which	should	be	one	of	the	IANA	registered
charset	values	for	use	in	Internet	media	types	(MIME	types).	For
example:

AddDefaultCharset	utf-8

AddDefaultCharset	should	only	be	used	when	all	of	the	text
resources	to	which	it	applies	are	known	to	be	in	that	character
encoding	and	it	is	too	inconvenient	to	label	their	charset
individually.	One	such	example	is	to	add	the	charset	parameter	to
resources	containing	generated	content,	such	as	legacy	CGI
scripts,	that	might	be	vulnerable	to	cross-site	scripting	attacks	due
to	user-provided	data	being	included	in	the	output.	Note,	however,

http://www.iana.org/assignments/character-sets

that	a	better	solution	is	to	just	fix	(or	delete)	those	scripts,	since
setting	a	default	charset	does	not	protect	users	that	have	enabled
the	"auto-detect	character	encoding"	feature	on	their	browser.

See	also
AddCharset

AllowEncodedSlashes	Directive

Description: Determines	whether	encoded	path	separators	in
URLs	are	allowed	to	be	passed	through

Syntax: AllowEncodedSlashes	On|Off|NoDecode

Default: AllowEncodedSlashes	Off

Context: server	config,	virtual	host
Status: Core
Module: core
Compatibility: NoDecode	option	available	in	2.3.12	and	later.

The	AllowEncodedSlashes	directive	allows	URLs	which
contain	encoded	path	separators	(%2F	for	/	and	additionally	%5C
for	\	on	accordant	systems)	to	be	used	in	the	path	info.

With	the	default	value,	Off,	such	URLs	are	refused	with	a	404
(Not	found)	error.

With	the	value	On,	such	URLs	are	accepted,	and	encoded	slashes
are	decoded	like	all	other	encoded	characters.

With	the	value	NoDecode,	such	URLs	are	accepted,	but	encoded
slashes	are	not	decoded	but	left	in	their	encoded	state.

Turning	AllowEncodedSlashes	On	is	mostly	useful	when	used
in	conjunction	with	PATH_INFO.

Note

If	encoded	slashes	are	needed	in	path	info,	use	of	NoDecode	is
strongly	recommended	as	a	security	measure.	Allowing	slashes
to	be	decoded	could	potentially	allow	unsafe	paths.

See	also

AcceptPathInfo

AllowOverride	Directive

Description: Types	of	directives	that	are	allowed	in	.htaccess
files

Syntax: AllowOverride	All|None|directive-type

[directive-type]	...

Default: AllowOverride	None	(2.3.9	and	later),

AllowOverride	All	(2.3.8	and	earlier)

Context: directory
Status: Core
Module: core

When	the	server	finds	an	.htaccess	file	(as	specified	by
AccessFileName),	it	needs	to	know	which	directives	declared	in
that	file	can	override	earlier	configuration	directives.

Only	available	in	<Directory>	sections
AllowOverride	is	valid	only	in	<Directory>	sections
specified	without	regular	expressions,	not	in	<Location>,
<DirectoryMatch>	or	<Files>	sections.

When	this	directive	is	set	to	None	and	AllowOverrideList	is
set	to	None,	.htaccess	files	are	completely	ignored.	In	this	case,
the	server	will	not	even	attempt	to	read	.htaccess	files	in	the
filesystem.

When	this	directive	is	set	to	All,	then	any	directive	which	has	the
.htaccess	Context	is	allowed	in	.htaccess	files.

The	directive-type	can	be	one	of	the	following	groupings	of
directives.	(See	the	override	class	index	for	an	up-to-date	listing	of
which	directives	are	enabled	by	each	directive-type.)

AuthConfig

Allow	use	of	the	authorization	directives
(AuthDBMGroupFile,	AuthDBMUserFile,
AuthGroupFile,	AuthName,	AuthType,	AuthUserFile,
Require,	etc.).

FileInfo
Allow	use	of	the	directives	controlling	document	types
(ErrorDocument,	ForceType,	LanguagePriority,
SetHandler,	SetInputFilter,	SetOutputFilter,	and
mod_mime	Add*	and	Remove*	directives),	document	meta
data	(Header,	RequestHeader,	SetEnvIf,
SetEnvIfNoCase,	BrowserMatch,	CookieExpires,
CookieDomain,	CookieStyle,	CookieTracking,
CookieName),	mod_rewrite	directives	(RewriteEngine,
RewriteOptions,	RewriteBase,	RewriteCond,
RewriteRule),	mod_alias	directives	(Redirect,
RedirectTemp,	RedirectPermanent,	RedirectMatch),
and	Action	from	mod_actions.

Indexes
Allow	use	of	the	directives	controlling	directory	indexing
(AddDescription,	AddIcon,	AddIconByEncoding,
AddIconByType,	DefaultIcon,	DirectoryIndex,
FancyIndexing,	HeaderName,	IndexIgnore,
IndexOptions,	ReadmeName,	etc.).

Limit
Allow	use	of	the	directives	controlling	host	access	(Allow,
Deny	and	Order).

Nonfatal=[Override|Unknown|All]
Allow	use	of	AllowOverride	option	to	treat	syntax	errors	in
.htaccess	as	nonfatal.	Instead	of	causing	an	Internal	Server
Error,	disallowed	or	unrecognised	directives	will	be	ignored
and	a	warning	logged:

Nonfatal=Override	treats	directives	forbidden	by
AllowOverride	as	nonfatal.
Nonfatal=Unknown	treats	unknown	directives	as
nonfatal.	This	covers	typos	and	directives	implemented
by	a	module	that's	not	present.
Nonfatal=All	treats	both	the	above	as	nonfatal.

Note	that	a	syntax	error	in	a	valid	directive	will	still	cause	an
internal	server	error.

Security

Nonfatal	errors	may	have	security	implications	for	.htaccess
users.	For	example,	if	AllowOverride	disallows	AuthConfig,
users'	configuration	designed	to	restrict	access	to	a	site	will
be	disabled.

Options[=Option,...]
Allow	use	of	the	directives	controlling	specific	directory
features	(Options	and	XBitHack).	An	equal	sign	may	be
given	followed	by	a	comma-separated	list,	without	spaces,	of
options	that	may	be	set	using	the	Options	command.

Implicit	disabling	of	Options

Even	though	the	list	of	options	that	may	be	used	in
.htaccess	files	can	be	limited	with	this	directive,	as	long	as
any	Options	directive	is	allowed	any	other	inherited	option
can	be	disabled	by	using	the	non-relative	syntax.	In	other
words,	this	mechanism	cannot	force	a	specific	option	to
remain	set	while	allowing	any	others	to	be	set.

AllowOverride	Options=Indexes,MultiViews

Example:

AllowOverride	AuthConfig	Indexes

In	the	example	above,	all	directives	that	are	neither	in	the	group
AuthConfig	nor	Indexes	cause	an	internal	server	error.

For	security	and	performance	reasons,	do	not	set
AllowOverride	to	anything	other	than	None	in	your
<Directory	"/">	block.	Instead,	find	(or	create)	the
<Directory>	block	that	refers	to	the	directory	where	you're
actually	planning	to	place	a	.htaccess	file.

See	also
AccessFileName

AllowOverrideList

Configuration	Files
.htaccess	Files
Override	Class	Index	for	.htaccess

AllowOverrideList	Directive

Description: Individual	directives	that	are	allowed	in
.htaccess	files

Syntax: AllowOverrideList	None|directive

[directive-type]	...

Default: AllowOverrideList	None

Context: directory
Status: Core
Module: core

When	the	server	finds	an	.htaccess	file	(as	specified	by
AccessFileName),	it	needs	to	know	which	directives	declared	in
that	file	can	override	earlier	configuration	directives.

Only	available	in	<Directory>	sections
AllowOverrideList	is	valid	only	in	<Directory>	sections
specified	without	regular	expressions,	not	in	<Location>,
<DirectoryMatch>	or	<Files>	sections.

When	this	directive	is	set	to	None	and	AllowOverride	is	set	to
None,	then	.htaccess	files	are	completely	ignored.	In	this	case,	the
server	will	not	even	attempt	to	read	.htaccess	files	in	the
filesystem.

Example:

AllowOverride	None

AllowOverrideList	Redirect	RedirectMatch

In	the	example	above,	only	the	Redirect	and	RedirectMatch
directives	are	allowed.	All	others	will	cause	an	internal	server
error.

Example:

AllowOverride	AuthConfig

AllowOverrideList	CookieTracking	CookieName

In	the	example	above,	AllowOverride	grants	permission	to	the
AuthConfig	directive	grouping	and	AllowOverrideList
grants	permission	to	only	two	directives	from	the	FileInfo
directive	grouping.	All	others	will	cause	an	internal	server	error.

See	also
AccessFileName

AllowOverride

Configuration	Files
.htaccess	Files

CGIMapExtension	Directive

Description: Technique	for	locating	the	interpreter	for	CGI
scripts

Syntax: CGIMapExtension	cgi-path	.extension

Context: directory,	.htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: NetWare	only

This	directive	is	used	to	control	how	Apache	httpd	finds	the
interpreter	used	to	run	CGI	scripts.	For	example,	setting
CGIMapExtension	sys:\foo.nlm	.foo	will	cause	all	CGI
script	files	with	a	.foo	extension	to	be	passed	to	the	FOO
interpreter.

CGIPassAuth	Directive

Description: Enables	passing	HTTP	authorization	headers	to
scripts	as	CGI	variables

Syntax: CGIPassAuth	On|Off

Default: CGIPassAuth	Off

Context: directory,	.htaccess
Override: AuthConfig
Status: Core
Module: core
Compatibility: Available	in	Apache	HTTP	Server	2.4.13	and

later

CGIPassAuth	allows	scripts	access	to	HTTP	authorization
headers	such	as	Authorization,	which	is	required	for	scripts
that	implement	HTTP	Basic	authentication.	Normally	these	HTTP
headers	are	hidden	from	scripts.	This	is	to	disallow	scripts	from
seeing	user	ids	and	passwords	used	to	access	the	server	when
HTTP	Basic	authentication	is	enabled	in	the	web	server.	This
directive	should	be	used	when	scripts	are	allowed	to	implement
HTTP	Basic	authentication.

This	directive	can	be	used	instead	of	the	compile-time	setting
SECURITY_HOLE_PASS_AUTHORIZATION	which	has	been
available	in	previous	versions	of	Apache	HTTP	Server.

The	setting	is	respected	by	any	modules	which	use
ap_add_common_vars(),	such	as	mod_cgi,	mod_cgid,
mod_proxy_fcgi,	mod_proxy_scgi,	and	so	on.	Notably,	it
affects	modules	which	don't	handle	the	request	in	the	usual	sense
but	still	use	this	API;	examples	of	this	are	mod_include	and
mod_ext_filter.	Third-party	modules	that	don't	use
ap_add_common_vars()	may	choose	to	respect	the	setting	as
well.

CGIVar	Directive

Description: Controls	how	some	CGI	variables	are	set
Syntax: CGIVar	variable	rule

Context: directory,	.htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Available	in	Apache	HTTP	Server	2.4.21	and

later

This	directive	controls	how	some	CGI	variables	are	set.

REQUEST_URI	rules:

original-uri	(default)
The	value	is	taken	from	the	original	request	line,	and	will	not
reflect	internal	redirects	or	subrequests	which	change	the
requested	resource.

current-uri

The	value	reflects	the	resource	currently	being	processed,
which	may	be	different	than	the	original	request	from	the
client	due	to	internal	redirects	or	subrequests.

ContentDigest	Directive

Description: Enables	the	generation	of	Content-MD5	HTTP
Response	headers

Syntax: ContentDigest	On|Off

Default: ContentDigest	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Core
Module: core

This	directive	enables	the	generation	of	Content-MD5	headers
as	defined	in	RFC1864	respectively	RFC2616.

MD5	is	an	algorithm	for	computing	a	"message	digest"	(sometimes
called	"fingerprint")	of	arbitrary-length	data,	with	a	high	degree	of
confidence	that	any	alterations	in	the	data	will	be	reflected	in
alterations	in	the	message	digest.

The	Content-MD5	header	provides	an	end-to-end	message
integrity	check	(MIC)	of	the	entity-body.	A	proxy	or	client	may
check	this	header	for	detecting	accidental	modification	of	the
entity-body	in	transit.	Example	header:

Content-MD5:	AuLb7Dp1rqtRtxz2m9kRpA==

Note	that	this	can	cause	performance	problems	on	your	server
since	the	message	digest	is	computed	on	every	request	(the
values	are	not	cached).

Content-MD5	is	only	sent	for	documents	served	by	the	core,
and	not	by	any	module.	For	example,	SSI	documents,	output	from
CGI	scripts,	and	byte	range	responses	do	not	have	this	header.

DefaultRuntimeDir	Directive

Description: Base	directory	for	the	server	run-time	files
Syntax: DefaultRuntimeDir	directory-path

Default: DefaultRuntimeDir

DEFAULT_REL_RUNTIMEDIR	(logs/)

Context: server	config
Status: Core
Module: core
Compatibility: Available	in	Apache	2.4.2	and	later

The	DefaultRuntimeDir	directive	sets	the	directory	in	which
the	server	will	create	various	run-time	files	(shared	memory,	locks,
etc.).	If	set	as	a	relative	path,	the	full	path	will	be	relative	to
ServerRoot.

Example

DefaultRuntimeDir	scratch/

The	default	location	of	DefaultRuntimeDir	may	be	modified	by
changing	the	DEFAULT_REL_RUNTIMEDIR	#define	at	build	time.

Note:	ServerRoot	should	be	specified	before	this	directive	is
used.	Otherwise,	the	default	value	of	ServerRoot	would	be	used
to	set	the	base	directory.

See	also
the	security	tips	for	information	on	how	to	properly	set
permissions	on	the	ServerRoot

DefaultType	Directive

Description: This	directive	has	no	effect	other	than	to	emit
warnings	if	the	value	is	not	none.	In	prior
versions,	DefaultType	would	specify	a	default
media	type	to	assign	to	response	content	for
which	no	other	media	type	configuration	could	be
found.

Syntax: DefaultType	media-type|none

Default: DefaultType	none

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: The	argument	none	is	available	in	Apache	httpd

2.2.7	and	later.	All	other	choices	are	DISABLED
for	2.3.x	and	later.

This	directive	has	been	disabled.	For	backwards	compatibility	of
configuration	files,	it	may	be	specified	with	the	value	none,
meaning	no	default	media	type.	For	example:

DefaultType	None

DefaultType	None	is	only	available	in	httpd-2.2.7	and	later.

Use	the	mime.types	configuration	file	and	the	AddType	to
configure	media	type	assignments	via	file	extensions,	or	the
ForceType	directive	to	configure	the	media	type	for	specific
resources.	Otherwise,	the	server	will	send	the	response	without	a
Content-Type	header	field	and	the	recipient	may	attempt	to	guess
the	media	type.

Define	Directive

Description: Define	a	variable
Syntax: Define	parameter-name	[parameter-

value]

Context: server	config,	virtual	host,	directory
Status: Core
Module: core

In	its	one	parameter	form,	Define	is	equivalent	to	passing	the	-D
argument	to	httpd.	It	can	be	used	to	toggle	the	use	of
<IfDefine>	sections	without	needing	to	alter	-D	arguments	in
any	startup	scripts.

In	addition	to	that,	if	the	second	parameter	is	given,	a	config
variable	is	set	to	this	value.	The	variable	can	be	used	in	the
configuration	using	the	${VAR}	syntax.	The	variable	is	always
globally	defined	and	not	limited	to	the	scope	of	the	surrounding
config	section.

<IfDefine	TEST>

		Define	servername	test.example.com

</IfDefine>

<IfDefine	!TEST>

		Define	servername	www.example.com

		Define	SSL

</IfDefine>

DocumentRoot	"/var/www/${servername}/htdocs"

Variable	names	may	not	contain	colon	":"	characters,	to	avoid
clashes	with	RewriteMap's	syntax.

Virtual	Host	scope	and	pitfalls

While	this	directive	is	supported	in	virtual	host	context,	the
changes	it	makes	are	visible	to	any	later	configuration
directives,	beyond	any	enclosing	virtual	host.

See	also
UnDefine

IfDefine

<Directory>	Directive

Description: Enclose	a	group	of	directives	that	apply	only	to	the
named	file-system	directory,	sub-directories,	and
their	contents.

Syntax: <Directory	directory-path>	...

</Directory>

Context: server	config,	virtual	host
Status: Core
Module: core

<Directory>	and	</Directory>	are	used	to	enclose	a	group
of	directives	that	will	apply	only	to	the	named	directory,	sub-
directories	of	that	directory,	and	the	files	within	the	respective
directories.	Any	directive	that	is	allowed	in	a	directory	context	may
be	used.	Directory-path	is	either	the	full	path	to	a	directory,	or	a
wild-card	string	using	Unix	shell-style	matching.	In	a	wild-card
string,	?	matches	any	single	character,	and	*	matches	any
sequences	of	characters.	You	may	also	use	[]	character	ranges.
None	of	the	wildcards	match	a	`/'	character,	so	<Directory
"/*/public_html">	will	not	match
/home/user/public_html,	but	<Directory
"/home/*/public_html">	will	match.	Example:

<Directory	"/usr/local/httpd/htdocs">

		Options	Indexes	FollowSymLinks

</Directory>

Directory	paths	may	be	quoted,	if	you	like,	however,	it	must	be
quoted	if	the	path	contains	spaces.	This	is	because	a	space	would
otherwise	indicate	the	end	of	an	argument.

Be	careful	with	the	directory-path	arguments:	They	have	to

literally	match	the	filesystem	path	which	Apache	httpd	uses	to
access	the	files.	Directives	applied	to	a	particular	<Directory>
will	not	apply	to	files	accessed	from	that	same	directory	via	a
different	path,	such	as	via	different	symbolic	links.

Regular	expressions	can	also	be	used,	with	the	addition	of	the	~
character.	For	example:

<Directory	~	"^/www/[0-9]{3}">

</Directory>

would	match	directories	in	/www/	that	consisted	of	three	numbers.

If	multiple	(non-regular	expression)	<Directory>	sections	match
the	directory	(or	one	of	its	parents)	containing	a	document,	then
the	directives	are	applied	in	the	order	of	shortest	match	first,
interspersed	with	the	directives	from	the	.htaccess	files.	For
example,	with

<Directory	"/">

		AllowOverride	None

</Directory>

<Directory	"/home">

		AllowOverride	FileInfo

</Directory>

for	access	to	the	document	/home/web/dir/doc.html	the
steps	are:

Apply	directive	AllowOverride	None	(disabling
.htaccess	files).
Apply	directive	AllowOverride	FileInfo	(for	directory

/home).
Apply	any	FileInfo	directives	in	/home/.htaccess,
/home/web/.htaccess	and	/home/web/dir/.htaccess
in	that	order.

Regular	expressions	are	not	considered	until	after	all	of	the	normal
sections	have	been	applied.	Then	all	of	the	regular	expressions
are	tested	in	the	order	they	appeared	in	the	configuration	file.	For
example,	with

<Directory	~	"abc$">

		#	...	directives	here	...

</Directory>

the	regular	expression	section	won't	be	considered	until	after	all
normal	<Directory>s	and	.htaccess	files	have	been	applied.
Then	the	regular	expression	will	match	on
/home/abc/public_html/abc	and	the	corresponding
<Directory>	will	be	applied.

Note	that	the	default	access	for	<Directory	"/">	is	to
permit	all	access.	This	means	that	Apache	httpd	will	serve
any	file	mapped	from	an	URL.	It	is	recommended	that	you
change	this	with	a	block	such	as

<Directory	"/">

		Require	all	denied

</Directory>

and	then	override	this	for	directories	you	want	accessible.
See	the	Security	Tips	page	for	more	details.

The	directory	sections	occur	in	the	httpd.conf	file.
<Directory>	directives	cannot	nest,	and	cannot	appear	in	a

<Limit>	or	<LimitExcept>	section.

See	also
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

<DirectoryMatch>	Directive

Description: Enclose	directives	that	apply	to	the	contents	of	file-
system	directories	matching	a	regular	expression.

Syntax: <DirectoryMatch	regex>	...

</DirectoryMatch>

Context: server	config,	virtual	host
Status: Core
Module: core

<DirectoryMatch>	and	</DirectoryMatch>	are	used	to
enclose	a	group	of	directives	which	will	apply	only	to	the	named
directory	(and	the	files	within),	the	same	as	<Directory>.
However,	it	takes	as	an	argument	a	regular	expression.	For
example:

<DirectoryMatch	"^/www/(.+/)?[0-9]{3}/">

				#	...

</DirectoryMatch>

matches	directories	in	/www/	(or	any	subdirectory	thereof)	that
consist	of	three	numbers.

Compatibility
Prior	to	2.3.9,	this	directive	implicitly	applied	to	sub-directories
(like	<Directory>)	and	could	not	match	the	end	of	line	symbol
($).	In	2.3.9	and	later,	only	directories	that	match	the	expression
are	affected	by	the	enclosed	directives.

Trailing	Slash
This	directive	applies	to	requests	for	directories	that	may	or	may
not	end	in	a	trailing	slash,	so	expressions	that	are	anchored	to
the	end	of	line	($)	must	be	written	with	care.

From	2.4.8	onwards,	named	groups	and	backreferences	are
captured	and	written	to	the	environment	with	the	corresponding
name	prefixed	with	"MATCH_"	and	in	upper	case.	This	allows
elements	of	paths	to	be	referenced	from	within	expressions	and
modules	like	mod_rewrite.	In	order	to	prevent	confusion,
numbered	(unnamed)	backreferences	are	ignored.	Use	named
groups	instead.

<DirectoryMatch	"^/var/www/combined/(?<sitename>[^/]+)">

				Require	ldap-group	cn=%{env:MATCH_SITENAME},ou=combined,o=Example

</DirectoryMatch>

See	also
<Directory>	for	a	description	of	how	regular	expressions
are	mixed	in	with	normal	<Directory>s
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

DocumentRoot	Directive

Description: Directory	that	forms	the	main	document	tree	visible
from	the	web

Syntax: DocumentRoot	directory-path

Default: DocumentRoot

"/usr/local/apache/htdocs"

Context: server	config,	virtual	host
Status: Core
Module: core

This	directive	sets	the	directory	from	which	httpd	will	serve	files.
Unless	matched	by	a	directive	like	Alias,	the	server	appends	the
path	from	the	requested	URL	to	the	document	root	to	make	the
path	to	the	document.	Example:

DocumentRoot	"/usr/web"

then	an	access	to	http://my.example.com/index.html
refers	to	/usr/web/index.html.	If	the	directory-path	is	not
absolute	then	it	is	assumed	to	be	relative	to	the	ServerRoot.

The	DocumentRoot	should	be	specified	without	a	trailing	slash.

See	also
Mapping	URLs	to	Filesystem	Locations

<Else>	Directive

Description: Contains	directives	that	apply	only	if	the	condition
of	a	previous	<If>	or	<ElseIf>	section	is	not
satisfied	by	a	request	at	runtime

Syntax: <Else>	...	</Else>

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core
Compatibility: Nested	conditions	are	evaluated	in	2.4.26	and

later

The	<Else>	applies	the	enclosed	directives	if	and	only	if	the	most
recent	<If>	or	<ElseIf>	section	in	the	same	scope	has	not
been	applied.	For	example:	In

<If	"-z	req('Host')">

		#	...

</If>

<Else>

		#	...

</Else>

The	<If>	would	match	HTTP/1.0	requests	without	a	Host:	header
and	the	<Else>	would	match	requests	with	a	Host:	header.

See	also
<If>

<ElseIf>

How	<Directory>,	<Location>,	<Files>	sections	work	for	an
explanation	of	how	these	different	sections	are	combined
when	a	request	is	received.	<If>,	<ElseIf>,	and	<Else>

are	applied	last.

<ElseIf>	Directive

Description: Contains	directives	that	apply	only	if	a	condition
is	satisfied	by	a	request	at	runtime	while	the
condition	of	a	previous	<If>	or	<ElseIf>
section	is	not	satisfied

Syntax: <ElseIf	expression>	...	</ElseIf>

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core
Compatibility: Nested	conditions	are	evaluated	in	2.4.26	and

later

The	<ElseIf>	applies	the	enclosed	directives	if	and	only	if	both
the	given	condition	evaluates	to	true	and	the	most	recent	<If>	or
<ElseIf>	section	in	the	same	scope	has	not	been	applied.	For
example:	In

<If	"-R	'10.1.0.0/16'">

		#...

</If>

<ElseIf	"-R	'10.0.0.0/8'">

		#...

</ElseIf>

<Else>

		#...

</Else>

The	<ElseIf>	would	match	if	the	remote	address	of	a	request
belongs	to	the	subnet	10.0.0.0/8	but	not	to	the	subnet	10.1.0.0/16.

See	also
Expressions	in	Apache	HTTP	Server,	for	a	complete

reference	and	more	examples.
<If>

<Else>

How	<Directory>,	<Location>,	<Files>	sections	work	for	an
explanation	of	how	these	different	sections	are	combined
when	a	request	is	received.	<If>,	<ElseIf>,	and	<Else>
are	applied	last.

EnableMMAP	Directive

Description: Use	memory-mapping	to	read	files	during	delivery
Syntax: EnableMMAP	On|Off

Default: EnableMMAP	On

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core

This	directive	controls	whether	the	httpd	may	use	memory-
mapping	if	it	needs	to	read	the	contents	of	a	file	during	delivery.	By
default,	when	the	handling	of	a	request	requires	access	to	the	data
within	a	file	--	for	example,	when	delivering	a	server-parsed	file
using	mod_include	--	Apache	httpd	memory-maps	the	file	if	the
OS	supports	it.

This	memory-mapping	sometimes	yields	a	performance
improvement.	But	in	some	environments,	it	is	better	to	disable	the
memory-mapping	to	prevent	operational	problems:

On	some	multiprocessor	systems,	memory-mapping	can
reduce	the	performance	of	the	httpd.
Deleting	or	truncating	a	file	while	httpd	has	it	memory-
mapped	can	cause	httpd	to	crash	with	a	segmentation	fault.

For	server	configurations	that	are	vulnerable	to	these	problems,
you	should	disable	memory-mapping	of	delivered	files	by
specifying:

EnableMMAP	Off

For	NFS	mounted	files,	this	feature	may	be	disabled	explicitly	for
the	offending	files	by	specifying:

<Directory	"/path-to-nfs-files">

		EnableMMAP	Off

</Directory>

EnableSendfile	Directive

Description: Use	the	kernel	sendfile	support	to	deliver	files	to
the	client

Syntax: EnableSendfile	On|Off

Default: EnableSendfile	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Default	changed	to	Off	in	version	2.3.9.

This	directive	controls	whether	httpd	may	use	the	sendfile
support	from	the	kernel	to	transmit	file	contents	to	the	client.	By
default,	when	the	handling	of	a	request	requires	no	access	to	the
data	within	a	file	--	for	example,	when	delivering	a	static	file	--
Apache	httpd	uses	sendfile	to	deliver	the	file	contents	without	ever
reading	the	file	if	the	OS	supports	it.

This	sendfile	mechanism	avoids	separate	read	and	send
operations,	and	buffer	allocations.	But	on	some	platforms	or	within
some	filesystems,	it	is	better	to	disable	this	feature	to	avoid
operational	problems:

Some	platforms	may	have	broken	sendfile	support	that	the
build	system	did	not	detect,	especially	if	the	binaries	were
built	on	another	box	and	moved	to	such	a	machine	with
broken	sendfile	support.
On	Linux	the	use	of	sendfile	triggers	TCP-checksum
offloading	bugs	on	certain	networking	cards	when	using	IPv6.
On	Linux	on	Itanium,	sendfile	may	be	unable	to	handle
files	over	2GB	in	size.
With	a	network-mounted	DocumentRoot	(e.g.,	NFS,	SMB,
CIFS,	FUSE),	the	kernel	may	be	unable	to	serve	the	network

file	through	its	own	cache.

For	server	configurations	that	are	not	vulnerable	to	these
problems,	you	may	enable	this	feature	by	specifying:

EnableSendfile	On

For	network	mounted	files,	this	feature	may	be	disabled	explicitly
for	the	offending	files	by	specifying:

<Directory	"/path-to-nfs-files">

		EnableSendfile	Off

</Directory>

Please	note	that	the	per-directory	and	.htaccess	configuration	of
EnableSendfile	is	not	supported	by	mod_cache_disk.	Only
global	definition	of	EnableSendfile	is	taken	into	account	by	the
module.

Error	Directive

Description: Abort	configuration	parsing	with	a	custom	error
message

Syntax: Error	message

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Core
Module: core
Compatibility: 2.3.9	and	later

If	an	error	can	be	detected	within	the	configuration,	this	directive
can	be	used	to	generate	a	custom	error	message,	and	halt
configuration	parsing.	The	typical	use	is	for	reporting	required
modules	which	are	missing	from	the	configuration.

#	Example

#	ensure	that	mod_include	is	loaded

<IfModule	!include_module>

		Error	"mod_include	is	required	by	mod_foo.		Load	it	with	LoadModule."

</IfModule>

#	ensure	that	exactly	one	of	SSL,NOSSL	is	defined

<IfDefine	SSL>

<IfDefine	NOSSL>

		Error	"Both	SSL	and	NOSSL	are	defined.		Define	only	one	of	them."

</IfDefine>

</IfDefine>

<IfDefine	!SSL>

<IfDefine	!NOSSL>

		Error	"Either	SSL	or	NOSSL	must	be	defined."

</IfDefine>

</IfDefine>

ErrorDocument	Directive

Description: What	the	server	will	return	to	the	client	in	case	of
an	error

Syntax: ErrorDocument	error-code	document

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core

In	the	event	of	a	problem	or	error,	Apache	httpd	can	be	configured
to	do	one	of	four	things,

1.	 output	a	simple	hardcoded	error	message

2.	 output	a	customized	message

3.	 internally	redirect	to	a	local	URL-path	to	handle	the
problem/error

4.	 redirect	to	an	external	URL	to	handle	the	problem/error

The	first	option	is	the	default,	while	options	2-4	are	configured
using	the	ErrorDocument	directive,	which	is	followed	by	the
HTTP	response	code	and	a	URL	or	a	message.	Apache	httpd	will
sometimes	offer	additional	information	regarding	the
problem/error.

From	2.4.13,	expression	syntax	can	be	used	inside	the	directive	to
produce	dynamic	strings	and	URLs.

URLs	can	begin	with	a	slash	(/)	for	local	web-paths	(relative	to	the
DocumentRoot),	or	be	a	full	URL	which	the	client	can	resolve.
Alternatively,	a	message	can	be	provided	to	be	displayed	by	the
browser.	Note	that	deciding	whether	the	parameter	is	an	URL,	a
path	or	a	message	is	performed	before	any	expression	is	parsed.
Examples:

ErrorDocument	500	http://example.com/cgi-bin/server-error.cgi

ErrorDocument	404	/errors/bad_urls.php

ErrorDocument	401	/subscription_info.html

ErrorDocument	403	"Sorry,	can't	allow	you	access	today"

ErrorDocument	403	Forbidden!

ErrorDocument	403	/errors/forbidden.py?referrer=%{escape:%{HTTP_REFERER}}

Additionally,	the	special	value	default	can	be	used	to	specify
Apache	httpd's	simple	hardcoded	message.	While	not	required
under	normal	circumstances,	default	will	restore	Apache	httpd's
simple	hardcoded	message	for	configurations	that	would
otherwise	inherit	an	existing	ErrorDocument.

ErrorDocument	404	/cgi-bin/bad_urls.pl

<Directory	"/web/docs">

		ErrorDocument	404	default

</Directory>

Note	that	when	you	specify	an	ErrorDocument	that	points	to	a
remote	URL	(ie.	anything	with	a	method	such	as	http	in	front	of
it),	Apache	HTTP	Server	will	send	a	redirect	to	the	client	to	tell	it
where	to	find	the	document,	even	if	the	document	ends	up	being
on	the	same	server.	This	has	several	implications,	the	most
important	being	that	the	client	will	not	receive	the	original	error
status	code,	but	instead	will	receive	a	redirect	status	code.	This	in
turn	can	confuse	web	robots	and	other	clients	which	try	to
determine	if	a	URL	is	valid	using	the	status	code.	In	addition,	if	you
use	a	remote	URL	in	an	ErrorDocument	401,	the	client	will	not
know	to	prompt	the	user	for	a	password	since	it	will	not	receive	the
401	status	code.	Therefore,	if	you	use	an	ErrorDocument	401
directive,	then	it	must	refer	to	a	local	document.

Microsoft	Internet	Explorer	(MSIE)	will	by	default	ignore	server-
generated	error	messages	when	they	are	"too	small"	and
substitute	its	own	"friendly"	error	messages.	The	size	threshold
varies	depending	on	the	type	of	error,	but	in	general,	if	you	make
your	error	document	greater	than	512	bytes,	then	MSIE	will	show
the	server-generated	error	rather	than	masking	it.	More
information	is	available	in	Microsoft	Knowledge	Base	article
Q294807.

Although	most	error	messages	can	be	overridden,	there	are
certain	circumstances	where	the	internal	messages	are	used
regardless	of	the	setting	of	ErrorDocument.	In	particular,	if	a
malformed	request	is	detected,	normal	request	processing	will	be
immediately	halted	and	the	internal	error	message	returned.	This
is	necessary	to	guard	against	security	problems	caused	by	bad
requests.

If	you	are	using	mod_proxy,	you	may	wish	to	enable
ProxyErrorOverride	so	that	you	can	provide	custom	error
messages	on	behalf	of	your	Origin	servers.	If	you	don't	enable
ProxyErrorOverride,	Apache	httpd	will	not	generate	custom	error
documents	for	proxied	content.

See	also
documentation	of	customizable	responses

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q294807

ErrorLog	Directive

Description: Location	where	the	server	will	log	errors
Syntax: ErrorLog	file-path|syslog[:[facility]

[:tag]]

Default: ErrorLog	logs/error_log	(Unix)

ErrorLog	logs/error.log	(Windows	and

OS/2)

Context: server	config,	virtual	host
Status: Core
Module: core

The	ErrorLog	directive	sets	the	name	of	the	file	to	which	the
server	will	log	any	errors	it	encounters.	If	the	file-path	is	not
absolute	then	it	is	assumed	to	be	relative	to	the	ServerRoot.

ErrorLog	"/var/log/httpd/error_log"

If	the	file-path	begins	with	a	pipe	character	"|"	then	it	is	assumed
to	be	a	command	to	spawn	to	handle	the	error	log.

ErrorLog	"|/usr/local/bin/httpd_errors"

See	the	notes	on	piped	logs	for	more	information.

Using	syslog	instead	of	a	filename	enables	logging	via
syslogd(8)	if	the	system	supports	it.	The	default	is	to	use	syslog
facility	local7,	but	you	can	override	this	by	using	the
syslog:facility	syntax	where	facility	can	be	one	of	the	names
usually	documented	in	syslog(1).	The	facility	is	effectively	global,
and	if	it	is	changed	in	individual	virtual	hosts,	the	final	facility
specified	affects	the	entire	server.	Same	rules	apply	for	the	syslog
tag,	which	by	default	uses	the	Apache	binary	name,	httpd	in
most	cases.	You	can	also	override	this	by	using	the

syslog::tag	syntax.

ErrorLog	syslog:user

ErrorLog	syslog:user:httpd.srv1

ErrorLog	syslog::httpd.srv2

Additional	modules	can	provide	their	own	ErrorLog	providers.	The
syntax	is	similar	to	the	syslog	example	above.

SECURITY:	See	the	security	tips	document	for	details	on	why	your
security	could	be	compromised	if	the	directory	where	log	files	are
stored	is	writable	by	anyone	other	than	the	user	that	starts	the
server.

Note

When	entering	a	file	path	on	non-Unix	platforms,	care	should	be
taken	to	make	sure	that	only	forward	slashes	are	used	even
though	the	platform	may	allow	the	use	of	back	slashes.	In
general	it	is	a	good	idea	to	always	use	forward	slashes
throughout	the	configuration	files.

See	also
LogLevel

Apache	HTTP	Server	Log	Files

ErrorLogFormat	Directive

Description: Format	specification	for	error	log	entries
Syntax: ErrorLogFormat	[connection|request]

format

Context: server	config,	virtual	host
Status: Core
Module: core

ErrorLogFormat	allows	to	specify	what	supplementary
information	is	logged	in	the	error	log	in	addition	to	the	actual	log
message.

#Simple	example

ErrorLogFormat	"[%t]	[%l]	[pid	%P]	%F:	%E:	[client	%a]	%M"

Specifying	connection	or	request	as	first	parameter	allows	to
specify	additional	formats,	causing	additional	information	to	be
logged	when	the	first	message	is	logged	for	a	specific	connection
or	request,	respectively.	This	additional	information	is	only	logged
once	per	connection/request.	If	a	connection	or	request	is
processed	without	causing	any	log	message,	the	additional
information	is	not	logged	either.

It	can	happen	that	some	format	string	items	do	not	produce	output.
For	example,	the	Referer	header	is	only	present	if	the	log
message	is	associated	to	a	request	and	the	log	message	happens
at	a	time	when	the	Referer	header	has	already	been	read	from	the
client.	If	no	output	is	produced,	the	default	behavior	is	to	delete
everything	from	the	preceding	space	character	to	the	next	space
character.	This	means	the	log	line	is	implicitly	divided	into	fields	on
non-whitespace	to	whitespace	transitions.	If	a	format	string	item
does	not	produce	output,	the	whole	field	is	omitted.	For	example,	if
the	remote	address	%a	in	the	log	format	[%t]	[%l]	[%a]	%M	

is	not	available,	the	surrounding	brackets	are	not	logged	either.
Space	characters	can	be	escaped	with	a	backslash	to	prevent
them	from	delimiting	a	field.	The	combination	'%	'	(percent	space)
is	a	zero-width	field	delimiter	that	does	not	produce	any	output.

The	above	behavior	can	be	changed	by	adding	modifiers	to	the
format	string	item.	A	-	(minus)	modifier	causes	a	minus	to	be
logged	if	the	respective	item	does	not	produce	any	output.	In
once-per-connection/request	formats,	it	is	also	possible	to	use	the
+	(plus)	modifier.	If	an	item	with	the	plus	modifier	does	not	produce
any	output,	the	whole	line	is	omitted.

A	number	as	modifier	can	be	used	to	assign	a	log	severity	level	to
a	format	item.	The	item	will	only	be	logged	if	the	severity	of	the	log
message	is	not	higher	than	the	specified	log	severity	level.	The
number	can	range	from	1	(alert)	over	4	(warn)	and	7	(debug)	to	15
(trace8).

For	example,	here's	what	would	happen	if	you	added	modifiers	to
the	%{Referer}i	token,	which	logs	the	Referer	request
header.

Modified
Token

Meaning

%-{Referer}i Logs	a	-	if	Referer	is	not	set.
%+{Referer}i Omits	the	entire	line	if	Referer	is	not	set.
%4{Referer}i Logs	the	Referer	only	if	the	log	message

severity	is	higher	than	4.

Some	format	string	items	accept	additional	parameters	in	braces.

Format	String Description
%% The	percent	sign
%a Client	IP	address	and	port	of	the	request

%{c}a Underlying	peer	IP	address	and	port	of	the
connection	(see	the	mod_remoteip	module)

%A Local	IP-address	and	port
%{name}e Request	environment	variable	name
%E APR/OS	error	status	code	and	string
%F Source	file	name	and	line	number	of	the	log	call
%{name}i Request	header	name
%k Number	of	keep-alive	requests	on	this	connection
%l Loglevel	of	the	message
%L Log	ID	of	the	request
%{c}L Log	ID	of	the	connection
%{C}L Log	ID	of	the	connection	if	used	in	connection

scope,	empty	otherwise
%m Name	of	the	module	logging	the	message
%M The	actual	log	message
%{name}n Request	note	name
%P Process	ID	of	current	process
%T Thread	ID	of	current	thread
%{g}T System	unique	thread	ID	of	current	thread	(the

same	ID	as	displayed	by	e.g.	top;	currently	Linux
only)

%t The	current	time
%{u}t The	current	time	including	micro-seconds
%{cu}t The	current	time	in	compact	ISO	8601	format,

including	micro-seconds
%v The	canonical	ServerName	of	the	current	server.
%V The	server	name	of	the	server	serving	the

request	according	to	the	UseCanonicalName
setting.

\		(backslash
space)

Non-field	delimiting	space

%		(percent
space)

Field	delimiter	(no	output)

The	log	ID	format	%L	produces	a	unique	id	for	a	connection	or
request.	This	can	be	used	to	correlate	which	log	lines	belong	to
the	same	connection	or	request,	which	request	happens	on	which
connection.	A	%L	format	string	is	also	available	in
mod_log_config	to	allow	to	correlate	access	log	entries	with
error	log	lines.	If	mod_unique_id	is	loaded,	its	unique	id	will	be
used	as	log	ID	for	requests.

#Example	(default	format	for	threaded	MPMs)

ErrorLogFormat	"[%{u}t]	[%-m:%l]	[pid	%P:tid	%T]	%7F:	%E:	[client\	%a]	%M%	,\	referer\	%{Referer}i"

This	would	result	in	error	messages	such	as:

[Thu	May	12	08:28:57.652118	2011]	[core:error]	[pid	8777:tid

4326490112]	[client	::1:58619]	File	does	not	exist:

/usr/local/apache2/htdocs/favicon.ico

Notice	that,	as	discussed	above,	some	fields	are	omitted	entirely
because	they	are	not	defined.

#Example	(similar	to	the	2.2.x	format)

ErrorLogFormat	"[%t]	[%l]	%7F:	%E:	[client\	%a]	%M%	,\	referer\	%{Referer}i"

#Advanced	example	with	request/connection	log	IDs

ErrorLogFormat	"[%{uc}t]	[%-m:%-l]	[R:%L]	[C:%{C}L]	%7F:	%E:	%M"

ErrorLogFormat	request	"[%{uc}t]	[R:%L]	Request	%k	on	C:%{c}L	pid:%P	tid:%T"

ErrorLogFormat	request	"[%{uc}t]	[R:%L]	UA:'%+{User-Agent}i'"

ErrorLogFormat	request	"[%{uc}t]	[R:%L]	Referer:'%+{Referer}i'"

ErrorLogFormat	connection	"[%{uc}t]	[C:%{c}L]	local\	%a	remote\	%A"

See	also
ErrorLog

LogLevel

Apache	HTTP	Server	Log	Files

ExtendedStatus	Directive

Description: Keep	track	of	extended	status	information	for	each
request

Syntax: ExtendedStatus	On|Off

Default: ExtendedStatus	Off[*]

Context: server	config
Status: Core
Module: core

This	option	tracks	additional	data	per	worker	about	the	currently
executing	request	and	creates	a	utilization	summary.	You	can	see
these	variables	during	runtime	by	configuring	mod_status.	Note
that	other	modules	may	rely	on	this	scoreboard.

This	setting	applies	to	the	entire	server	and	cannot	be	enabled	or
disabled	on	a	virtualhost-by-virtualhost	basis.	The	collection	of
extended	status	information	can	slow	down	the	server.	Also	note
that	this	setting	cannot	be	changed	during	a	graceful	restart.

Note	that	loading	mod_status	will	change	the	default	behavior
to	ExtendedStatus	On,	while	other	third	party	modules	may	do
the	same.	Such	modules	rely	on	collecting	detailed	information
about	the	state	of	all	workers.	The	default	is	changed	by
mod_status	beginning	with	version	2.3.6.	The	previous	default
was	always	Off.

FileETag	Directive

Description: File	attributes	used	to	create	the	ETag	HTTP
response	header	for	static	files

Syntax: FileETag	component	...

Default: FileETag	MTime	Size

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: The	default	used	to	be	"INode	MTime	Size"	in

2.3.14	and	earlier.

The	FileETag	directive	configures	the	file	attributes	that	are	used
to	create	the	ETag	(entity	tag)	response	header	field	when	the
document	is	based	on	a	static	file.	(The	ETag	value	is	used	in
cache	management	to	save	network	bandwidth.)	The	FileETag
directive	allows	you	to	choose	which	of	these	--	if	any	--	should	be
used.	The	recognized	keywords	are:

INode
The	file's	i-node	number	will	be	included	in	the	calculation

MTime
The	date	and	time	the	file	was	last	modified	will	be	included

Size
The	number	of	bytes	in	the	file	will	be	included

All
All	available	fields	will	be	used.	This	is	equivalent	to:

FileETag	INode	MTime	Size

None
If	a	document	is	file-based,	no	ETag	field	will	be	included	in

the	response

The	INode,	MTime,	and	Size	keywords	may	be	prefixed	with
either	+	or	-,	which	allow	changes	to	be	made	to	the	default
setting	inherited	from	a	broader	scope.	Any	keyword	appearing
without	such	a	prefix	immediately	and	completely	cancels	the
inherited	setting.

If	a	directory's	configuration	includes
FileETag	INode	MTime	Size,	and	a	subdirectory's	includes
FileETag	-INode,	the	setting	for	that	subdirectory	(which	will	be
inherited	by	any	sub-subdirectories	that	don't	override	it)	will	be
equivalent	to	FileETag	MTime	Size.

Warning
Do	not	change	the	default	for	directories	or	locations	that	have
WebDAV	enabled	and	use	mod_dav_fs	as	a	storage	provider.
mod_dav_fs	uses	MTime	Size	as	a	fixed	format	for	ETag
comparisons	on	conditional	requests.	These	conditional
requests	will	break	if	the	ETag	format	is	changed	via
FileETag.

Server	Side	Includes
An	ETag	is	not	generated	for	responses	parsed	by
mod_include	since	the	response	entity	can	change	without	a
change	of	the	INode,	MTime,	or	Size	of	the	static	file	with
embedded	SSI	directives.

<Files>	Directive

Description: Contains	directives	that	apply	to	matched
filenames

Syntax: <Files	filename>	...	</Files>

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core

The	<Files>	directive	limits	the	scope	of	the	enclosed	directives
by	filename.	It	is	comparable	to	the	<Directory>	and
<Location>	directives.	It	should	be	matched	with	a	</Files>
directive.	The	directives	given	within	this	section	will	be	applied	to
any	object	with	a	basename	(last	component	of	filename)
matching	the	specified	filename.	<Files>	sections	are	processed
in	the	order	they	appear	in	the	configuration	file,	after	the
<Directory>	sections	and	.htaccess	files	are	read,	but	before
<Location>	sections.	Note	that	<Files>	can	be	nested	inside
<Directory>	sections	to	restrict	the	portion	of	the	filesystem
they	apply	to.

The	filename	argument	should	include	a	filename,	or	a	wild-card
string,	where	?	matches	any	single	character,	and	*	matches	any
sequences	of	characters.

<Files	"cat.html">

				#	Insert	stuff	that	applies	to	cat.html	here

</Files>

<Files	"?at.*">

				#	This	would	apply	to	cat.html,	bat.html,	hat.php	and	so	on.

</Files>

Regular	expressions	can	also	be	used,	with	the	addition	of	the	~
character.	For	example:

<Files	~	"\.(gif|jpe?g|png)$">

				#...

</Files>

would	match	most	common	Internet	graphics	formats.
<FilesMatch>	is	preferred,	however.

Note	that	unlike	<Directory>	and	<Location>	sections,
<Files>	sections	can	be	used	inside	.htaccess	files.	This
allows	users	to	control	access	to	their	own	files,	at	a	file-by-file
level.

See	also
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

<FilesMatch>	Directive

Description: Contains	directives	that	apply	to	regular-expression
matched	filenames

Syntax: <FilesMatch	regex>	...	</FilesMatch>

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core

The	<FilesMatch>	directive	limits	the	scope	of	the	enclosed
directives	by	filename,	just	as	the	<Files>	directive	does.
However,	it	accepts	a	regular	expression.	For	example:

<FilesMatch	".+\.(gif|jpe?g|png)$">

				#	...

</FilesMatch>

would	match	most	common	Internet	graphics	formats.

The	.+	at	the	start	of	the	regex	ensures	that	files	named	.png,
or	.gif,	for	example,	are	not	matched.

From	2.4.8	onwards,	named	groups	and	backreferences	are
captured	and	written	to	the	environment	with	the	corresponding
name	prefixed	with	"MATCH_"	and	in	upper	case.	This	allows
elements	of	files	to	be	referenced	from	within	expressions	and
modules	like	mod_rewrite.	In	order	to	prevent	confusion,
numbered	(unnamed)	backreferences	are	ignored.	Use	named
groups	instead.

<FilesMatch	"^(?<sitename>[^/]+)">

				require	ldap-group	cn=%{env:MATCH_SITENAME},ou=combined,o=Example

</FilesMatch>

See	also
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

ForceType	Directive

Description: Forces	all	matching	files	to	be	served	with	the
specified	media	type	in	the	HTTP	Content-Type
header	field

Syntax: ForceType	media-type|None

Context: directory,	.htaccess
Override: FileInfo
Status: Core
Module: core

When	placed	into	an	.htaccess	file	or	a	<Directory>,	or
<Location>	or	<Files>	section,	this	directive	forces	all
matching	files	to	be	served	with	the	content	type	identification
given	by	media-type.	For	example,	if	you	had	a	directory	full	of	GIF
files,	but	did	not	want	to	label	them	all	with	.gif,	you	might	want
to	use:

ForceType	image/gif

Note	that	this	directive	overrides	other	indirect	media	type
associations	defined	in	mime.types	or	via	the	AddType.

You	can	also	override	more	general	ForceType	settings	by	using
the	value	of	None:

#	force	all	files	to	be	image/gif:

<Location	"/images">

		ForceType	image/gif

</Location>

#	but	normal	mime-type	associations	here:

<Location	"/images/mixed">

		ForceType	None

</Location>

This	directive	primarily	overrides	the	content	types	generated	for
static	files	served	out	of	the	filesystem.	For	resources	other	than
static	files,	where	the	generator	of	the	response	typically	specifies
a	Content-Type,	this	directive	has	no	effect.

Note

When	explicit	directives	such	as	SetHandler	or	AddHandler
do	not	apply	to	the	current	request,	the	internal	handler	name
normally	set	by	those	directives	is	set	to	match	the	content	type
specified	by	this	directive.	This	is	a	historical	behavior	that	some
third-party	modules	(such	as	mod_php)	may	use	"magic"
content	types	used	only	to	signal	the	module	to	take
responsibility	for	the	matching	request.	Configurations	that	rely
on	such	"magic"	types	should	be	avoided	by	the	use	of
SetHandler	or	AddHandler.

GprofDir	Directive

Description: Directory	to	write	gmon.out	profiling	data	to.
Syntax: GprofDir	/tmp/gprof/|/tmp/gprof/%

Context: server	config,	virtual	host
Status: Core
Module: core

When	the	server	has	been	compiled	with	gprof	profiling	support,
GprofDir	causes	gmon.out	files	to	be	written	to	the	specified
directory	when	the	process	exits.	If	the	argument	ends	with	a
percent	symbol	('%'),	subdirectories	are	created	for	each	process
id.

This	directive	currently	only	works	with	the	prefork	MPM.

HostnameLookups	Directive

Description: Enables	DNS	lookups	on	client	IP	addresses
Syntax: HostnameLookups	On|Off|Double

Default: HostnameLookups	Off

Context: server	config,	virtual	host,	directory
Status: Core
Module: core

This	directive	enables	DNS	lookups	so	that	host	names	can	be
logged	(and	passed	to	CGIs/SSIs	in	REMOTE_HOST).	The	value
Double	refers	to	doing	double-reverse	DNS	lookup.	That	is,	after
a	reverse	lookup	is	performed,	a	forward	lookup	is	then	performed
on	that	result.	At	least	one	of	the	IP	addresses	in	the	forward
lookup	must	match	the	original	address.	(In	"tcpwrappers"
terminology	this	is	called	PARANOID.)

Regardless	of	the	setting,	when	mod_authz_host	is	used	for
controlling	access	by	hostname,	a	double	reverse	lookup	will	be
performed.	This	is	necessary	for	security.	Note	that	the	result	of
this	double-reverse	isn't	generally	available	unless	you	set
HostnameLookups	Double.	For	example,	if	only
HostnameLookups	On	and	a	request	is	made	to	an	object	that	is
protected	by	hostname	restrictions,	regardless	of	whether	the
double-reverse	fails	or	not,	CGIs	will	still	be	passed	the	single-
reverse	result	in	REMOTE_HOST.

The	default	is	Off	in	order	to	save	the	network	traffic	for	those
sites	that	don't	truly	need	the	reverse	lookups	done.	It	is	also
better	for	the	end	users	because	they	don't	have	to	suffer	the	extra
latency	that	a	lookup	entails.	Heavily	loaded	sites	should	leave	this
directive	Off,	since	DNS	lookups	can	take	considerable	amounts
of	time.	The	utility	logresolve,	compiled	by	default	to	the	bin
subdirectory	of	your	installation	directory,	can	be	used	to	look	up

host	names	from	logged	IP	addresses	offline.

Finally,	if	you	have	hostname-based	Require	directives,	a
hostname	lookup	will	be	performed	regardless	of	the	setting	of
HostnameLookups.

HttpProtocolOptions	Directive

Description: Modify	restrictions	on	HTTP	Request	Messages
Syntax: HttpProtocolOptions	[Strict|Unsafe]

[RegisteredMethods|LenientMethods]

[Allow0.9|Require1.0]

Default: HttpProtocolOptions	Strict

LenientMethods	Allow0.9

Context: server	config,	virtual	host
Status: Core
Module: core
Compatibility: 2.2.32	or	2.4.24	and	later

This	directive	changes	the	rules	applied	to	the	HTTP	Request	Line
(RFC	7230	§3.1.1)	and	the	HTTP	Request	Header	Fields	(RFC
7230	§3.2),	which	are	now	applied	by	default	or	using	the	Strict
option.	Due	to	legacy	modules,	applications	or	custom	user-agents
which	must	be	deprecated	the	Unsafe	option	has	been	added	to
revert	to	the	legacy	behaviors.

These	rules	are	applied	prior	to	request	processing,	so	must	be
configured	at	the	global	or	default	(first)	matching	virtual	host
section,	by	IP/port	interface	(and	not	by	name)	to	be	honored.

The	directive	accepts	three	parameters	from	the	following	list	of
choices,	applying	the	default	to	the	ones	not	specified:

Strict|Unsafe
Prior	to	the	introduction	of	this	directive,	the	Apache	HTTP
Server	request	message	parsers	were	tolerant	of	a	number	of
forms	of	input	which	did	not	conform	to	the	protocol.	RFC
7230	§9.4	Request	Splitting	and	§9.5	Response	Smuggling
call	out	only	two	of	the	potential	risks	of	accepting	non-
conformant	request	messages,	while	RFC	7230	§3.5
"Message	Parsing	Robustness"	identify	the	risks	of	accepting

https://tools.ietf.org/html/rfc7230#section-3.1.1
https://tools.ietf.org/html/rfc7230#section-3.2
https://tools.ietf.org/html/rfc7230#section-9.4
https://tools.ietf.org/html/rfc7230#section-9.5
https://tools.ietf.org/html/rfc7230#section-3.5

obscure	whitespace	and	request	message	formatting.	As	of
the	introduction	of	this	directive,	all	grammar	rules	of	the
specification	are	enforced	in	the	default	Strict	operating
mode,	and	the	strict	whitespace	suggested	by	section	3.5	is
enforced	and	cannot	be	relaxed.

Security	risks	of	Unsafe

Users	are	strongly	cautioned	against	toggling	the	Unsafe
mode	of	operation,	particularly	on	outward-facing,	publicly
accessible	server	deployments.	If	an	interface	is	required
for	faulty	monitoring	or	other	custom	service	consumers
running	on	an	intranet,	users	should	toggle	the	Unsafe
option	only	on	a	specific	virtual	host	configured	to	service
their	internal	private	network.

Example	of	a	request	leading	to	HTTP	400	with	Strict
mode
#	Missing	CRLF

GET	/	HTTP/1.0\n\n

Command	line	tools	and	CRLF

Some	tools	need	to	be	forced	to	use	CRLF,	otherwise	httpd
will	return	a	HTTP	400	response	like	described	in	the
above	use	case.	For	example,	the	OpenSSL	s_client
needs	the	-crlf	parameter	to	work	properly.

The	DumpIOInput	directive	can	help	while	reviewing	the
HTTP	request	to	identify	issues	like	the	absence	of	CRLF.

RegisteredMethods|LenientMethods
RFC	7231	§4.1	"Request	Methods"	"Overview"	requires	that
origin	servers	shall	respond	with	a	HTTP	501	status	code

https://tools.ietf.org/html/rfc7231#section-4.1

when	an	unsupported	method	is	encountered	in	the	request
line.	This	already	happens	when	the	LenientMethods
option	is	used,	but	administrators	may	wish	to	toggle	the
RegisteredMethods	option	and	register	any	non-standard
methods	using	the	RegisterHttpMethod	directive,
particularly	if	the	Unsafe	option	has	been	toggled.

Forward	Proxy	compatibility

The	RegisteredMethods	option	should	not	be	toggled
for	forward	proxy	hosts,	as	the	methods	supported	by	the
origin	servers	are	unknown	to	the	proxy	server.

Example	of	a	request	leading	to	HTTP	501	with
LenientMethods	mode
#	Unknown	HTTP	method

WOW	/	HTTP/1.0\r\n\r\n

#	Lowercase	HTTP	method

get	/	HTTP/1.0\r\n\r\n

Allow0.9|Require1.0
RFC	2616	§19.6	"Compatibility	With	Previous	Versions"	had
encouraged	HTTP	servers	to	support	legacy	HTTP/0.9
requests.	RFC	7230	supersedes	this	with	"The	expectation	to
support	HTTP/0.9	requests	has	been	removed"	and	offers
additional	comments	in	RFC	7230	Appendix	A.	The
Require1.0	option	allows	the	user	to	remove	support	of	the
default	Allow0.9	option's	behavior.

Example	of	a	request	leading	to	HTTP	400	with
Require1.0	mode
#	Unsupported	HTTP	version

GET	/\r\n\r\n

https://tools.ietf.org/html/rfc2616#section-19.6
https://tools.ietf.org/html/rfc7230#appendix-A

Reviewing	the	messages	logged	to	the	ErrorLog,	configured
with	LogLevel	debug	level,	can	help	identify	such	faulty	requests
along	with	their	origin.	Users	should	pay	particular	attention	to	the
400	responses	in	the	access	log	for	invalid	requests	which	were
unexpectedly	rejected.

<If>	Directive

Description: Contains	directives	that	apply	only	if	a	condition
is	satisfied	by	a	request	at	runtime

Syntax: <If	expression>	...	</If>

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core
Compatibility: Nested	conditions	are	evaluated	in	2.4.26	and

later

The	<If>	directive	evaluates	an	expression	at	runtime,	and
applies	the	enclosed	directives	if	and	only	if	the	expression
evaluates	to	true.	For	example:

<If	"-z	req('Host')">

would	match	HTTP/1.0	requests	without	a	Host:	header.
Expressions	may	contain	various	shell-like	operators	for	string
comparison	(==,	!=,	<,	...),	integer	comparison	(-eq,	-ne,	...),	and
others	(-n,	-z,	-f,	...).	It	is	also	possible	to	use	regular
expressions,

<If	"%{QUERY_STRING}	=~	/(delete|commit)=.*?elem/">

shell-like	pattern	matches	and	many	other	operations.	These
operations	can	be	done	on	request	headers	(req),	environment
variables	(env),	and	a	large	number	of	other	properties.	The	full
documentation	is	available	in	Expressions	in	Apache	HTTP
Server.

Only	directives	that	support	the	directory	context	can	be	used

within	this	configuration	section.

Certain	variables,	such	as	CONTENT_TYPE	and	other	response
headers,	are	set	after	<If>	conditions	have	already	been
evaluated,	and	so	will	not	be	available	to	use	in	this	directive.

See	also
Expressions	in	Apache	HTTP	Server,	for	a	complete
reference	and	more	examples.
<ElseIf>

<Else>

How	<Directory>,	<Location>,	<Files>	sections	work	for	an
explanation	of	how	these	different	sections	are	combined
when	a	request	is	received.	<If>,	<ElseIf>,	and	<Else>
are	applied	last.

<IfDefine>	Directive

Description: Encloses	directives	that	will	be	processed	only	if	a
test	is	true	at	startup

Syntax: <IfDefine	[!]parameter-name>	...

</IfDefine>

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core

The	<IfDefine	test>...</IfDefine>	section	is	used	to
mark	directives	that	are	conditional.	The	directives	within	an
<IfDefine>	section	are	only	processed	if	the	test	is	true.	If	test	is
false,	everything	between	the	start	and	end	markers	is	ignored.

The	test	in	the	<IfDefine>	section	directive	can	be	one	of	two
forms:

parameter-name
!parameter-name

In	the	former	case,	the	directives	between	the	start	and	end
markers	are	only	processed	if	the	parameter	named	parameter-
name	is	defined.	The	second	format	reverses	the	test,	and	only
processes	the	directives	if	parameter-name	is	not	defined.

The	parameter-name	argument	is	a	define	as	given	on	the	httpd
command	line	via	-Dparameter	at	the	time	the	server	was
started	or	by	the	Define	directive.

<IfDefine>	sections	are	nest-able,	which	can	be	used	to
implement	simple	multiple-parameter	tests.	Example:

httpd	-DReverseProxy	-DUseCache	-DMemCache	...

<IfDefine	ReverseProxy>

		LoadModule	proxy_module			modules/mod_proxy.so

		LoadModule	proxy_http_module			modules/mod_proxy_http.so

		<IfDefine	UseCache>

				LoadModule	cache_module			modules/mod_cache.so

				<IfDefine	MemCache>

						LoadModule	mem_cache_module			modules/mod_mem_cache.so

				</IfDefine>

				<IfDefine	!MemCache>

						LoadModule	cache_disk_module			modules/mod_cache_disk.so

				</IfDefine>

		</IfDefine>

</IfDefine>

<IfModule>	Directive

Description: Encloses	directives	that	are	processed
conditional	on	the	presence	or	absence	of	a
specific	module

Syntax: <IfModule	[!]module-file|module-

identifier>	...	</IfModule>

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core
Compatibility: Module	identifiers	are	available	in	version	2.1

and	later.

The	<IfModule	test>...</IfModule>	section	is	used	to
mark	directives	that	are	conditional	on	the	presence	of	a	specific
module.	The	directives	within	an	<IfModule>	section	are	only
processed	if	the	test	is	true.	If	test	is	false,	everything	between	the
start	and	end	markers	is	ignored.

The	test	in	the	<IfModule>	section	directive	can	be	one	of	two
forms:

module
!module

In	the	former	case,	the	directives	between	the	start	and	end
markers	are	only	processed	if	the	module	named	module	is
included	in	Apache	httpd	--	either	compiled	in	or	dynamically
loaded	using	LoadModule.	The	second	format	reverses	the	test,
and	only	processes	the	directives	if	module	is	not	included.

The	module	argument	can	be	either	the	module	identifier	or	the	file
name	of	the	module,	at	the	time	it	was	compiled.	For	example,
rewrite_module	is	the	identifier	and	mod_rewrite.c	is	the	file

name.	If	a	module	consists	of	several	source	files,	use	the	name
of	the	file	containing	the	string	STANDARD20_MODULE_STUFF.

<IfModule>	sections	are	nest-able,	which	can	be	used	to
implement	simple	multiple-module	tests.

This	section	should	only	be	used	if	you	need	to	have	one
configuration	file	that	works	whether	or	not	a	specific	module	is
available.	In	normal	operation,	directives	need	not	be	placed	in
<IfModule>	sections.

Include	Directive

Description: Includes	other	configuration	files	from	within	the
server	configuration	files

Syntax: Include	file-path|directory-

path|wildcard

Context: server	config,	virtual	host,	directory
Status: Core
Module: core
Compatibility: Directory	wildcard	matching	available	in	2.3.6

and	later

This	directive	allows	inclusion	of	other	configuration	files	from
within	the	server	configuration	files.

Shell-style	(fnmatch())	wildcard	characters	can	be	used	in	the
filename	or	directory	parts	of	the	path	to	include	several	files	at
once,	in	alphabetical	order.	In	addition,	if	Include	points	to	a
directory,	rather	than	a	file,	Apache	httpd	will	read	all	files	in	that
directory	and	any	subdirectory.	However,	including	entire
directories	is	not	recommended,	because	it	is	easy	to	accidentally
leave	temporary	files	in	a	directory	that	can	cause	httpd	to	fail.
Instead,	we	encourage	you	to	use	the	wildcard	syntax	shown
below,	to	include	files	that	match	a	particular	pattern,	such	as
*.conf,	for	example.

The	Include	directive	will	fail	with	an	error	if	a	wildcard
expression	does	not	match	any	file.	The	IncludeOptional
directive	can	be	used	if	non-matching	wildcards	should	be	ignored.

The	file	path	specified	may	be	an	absolute	path,	or	may	be	relative
to	the	ServerRoot	directory.

Examples:

Include	/usr/local/apache2/conf/ssl.conf

Include	/usr/local/apache2/conf/vhosts/*.conf

Or,	providing	paths	relative	to	your	ServerRoot	directory:

Include	conf/ssl.conf

Include	conf/vhosts/*.conf

Wildcards	may	be	included	in	the	directory	or	file	portion	of	the
path.	This	example	will	fail	if	there	is	no	subdirectory	in	conf/vhosts
that	contains	at	least	one	*.conf	file:

Include	conf/vhosts/*/*.conf

Alternatively,	the	following	command	will	just	be	ignored	in	case	of
missing	files	or	directories:

IncludeOptional	conf/vhosts/*/*.conf

See	also
IncludeOptional

apachectl

IncludeOptional	Directive

Description: Includes	other	configuration	files	from	within	the
server	configuration	files

Syntax: IncludeOptional	file-path|directory-

path|wildcard

Context: server	config,	virtual	host,	directory
Status: Core
Module: core
Compatibility: Available	in	2.3.6	and	later

This	directive	allows	inclusion	of	other	configuration	files	from
within	the	server	configuration	files.	It	works	identically	to	the
Include	directive,	with	the	exception	that	if	wildcards	do	not
match	any	file	or	directory,	the	IncludeOptional	directive	will
be	silently	ignored	instead	of	causing	an	error.

See	also
Include

apachectl

KeepAlive	Directive

Description: Enables	HTTP	persistent	connections
Syntax: KeepAlive	On|Off

Default: KeepAlive	On

Context: server	config,	virtual	host
Status: Core
Module: core

The	Keep-Alive	extension	to	HTTP/1.0	and	the	persistent
connection	feature	of	HTTP/1.1	provide	long-lived	HTTP	sessions
which	allow	multiple	requests	to	be	sent	over	the	same	TCP
connection.	In	some	cases	this	has	been	shown	to	result	in	an
almost	50%	speedup	in	latency	times	for	HTML	documents	with
many	images.	To	enable	Keep-Alive	connections,	set	KeepAlive
On.

For	HTTP/1.0	clients,	Keep-Alive	connections	will	only	be	used	if
they	are	specifically	requested	by	a	client.	In	addition,	a	Keep-
Alive	connection	with	an	HTTP/1.0	client	can	only	be	used	when
the	length	of	the	content	is	known	in	advance.	This	implies	that
dynamic	content	such	as	CGI	output,	SSI	pages,	and	server-
generated	directory	listings	will	generally	not	use	Keep-Alive
connections	to	HTTP/1.0	clients.	For	HTTP/1.1	clients,	persistent
connections	are	the	default	unless	otherwise	specified.	If	the	client
requests	it,	chunked	encoding	will	be	used	in	order	to	send
content	of	unknown	length	over	persistent	connections.

When	a	client	uses	a	Keep-Alive	connection,	it	will	be	counted	as
a	single	"request"	for	the	MaxConnectionsPerChild	directive,
regardless	of	how	many	requests	are	sent	using	the	connection.

See	also
MaxKeepAliveRequests

KeepAliveTimeout	Directive

Description: Amount	of	time	the	server	will	wait	for	subsequent
requests	on	a	persistent	connection

Syntax: KeepAliveTimeout	num[ms]

Default: KeepAliveTimeout	5

Context: server	config,	virtual	host
Status: Core
Module: core

The	number	of	seconds	Apache	httpd	will	wait	for	a	subsequent
request	before	closing	the	connection.	By	adding	a	postfix	of	ms
the	timeout	can	be	also	set	in	milliseconds.	Once	a	request	has
been	received,	the	timeout	value	specified	by	the	Timeout
directive	applies.

Setting	KeepAliveTimeout	to	a	high	value	may	cause
performance	problems	in	heavily	loaded	servers.	The	higher	the
timeout,	the	more	server	processes	will	be	kept	occupied	waiting
on	connections	with	idle	clients.

If	KeepAliveTimeout	is	not	set	for	a	name-based	virtual	host,
the	value	of	the	first	defined	virtual	host	best	matching	the	local	IP
and	port	will	be	used.

<Limit>	Directive

Description: Restrict	enclosed	access	controls	to	only	certain
HTTP	methods

Syntax: <Limit	method	[method]	...	>	...

</Limit>

Context: directory,	.htaccess
Override: AuthConfig,	Limit
Status: Core
Module: core

Access	controls	are	normally	effective	for	all	access	methods,	and
this	is	the	usual	desired	behavior.	In	the	general	case,	access
control	directives	should	not	be	placed	within	a	<Limit>
section.

The	purpose	of	the	<Limit>	directive	is	to	restrict	the	effect	of	the
access	controls	to	the	nominated	HTTP	methods.	For	all	other
methods,	the	access	restrictions	that	are	enclosed	in	the	<Limit>
bracket	will	have	no	effect.	The	following	example	applies	the
access	control	only	to	the	methods	POST,	PUT,	and	DELETE,
leaving	all	other	methods	unprotected:

<Limit	POST	PUT	DELETE>

		Require	valid-user

</Limit>

The	method	names	listed	can	be	one	or	more	of:	GET,	POST,	PUT,
DELETE,	CONNECT,	OPTIONS,	PATCH,	PROPFIND,	PROPPATCH,
MKCOL,	COPY,	MOVE,	LOCK,	and	UNLOCK.	The	method	name	is
case-sensitive.	If	GET	is	used,	it	will	also	restrict	HEAD	requests.
The	TRACE	method	cannot	be	limited	(see	TraceEnable).

A	<LimitExcept>	section	should	always	be	used	in

preference	to	a	<Limit>	section	when	restricting	access,	since
a	<LimitExcept>	section	provides	protection	against	arbitrary
methods.

The	<Limit>	and	<LimitExcept>	directives	may	be	nested.	In
this	case,	each	successive	level	of	<Limit>	or	<LimitExcept>
directives	must	further	restrict	the	set	of	methods	to	which	access
controls	apply.

When	using	<Limit>	or	<LimitExcept>	directives	with	the
Require	directive,	note	that	the	first	Require	to	succeed
authorizes	the	request,	regardless	of	the	presence	of	other
Require	directives.

For	example,	given	the	following	configuration,	all	users	will	be
authorized	for	POST	requests,	and	the	Require	group
editors	directive	will	be	ignored	in	all	cases:

<LimitExcept	GET>

		Require	valid-user

</LimitExcept>

<Limit	POST>

		Require	group	editors

</Limit>

<LimitExcept>	Directive

Description: Restrict	access	controls	to	all	HTTP	methods
except	the	named	ones

Syntax: <LimitExcept	method	[method]	...	>

...	</LimitExcept>

Context: directory,	.htaccess
Override: AuthConfig,	Limit
Status: Core
Module: core

<LimitExcept>	and	</LimitExcept>	are	used	to	enclose	a
group	of	access	control	directives	which	will	then	apply	to	any
HTTP	access	method	not	listed	in	the	arguments;	i.e.,	it	is	the
opposite	of	a	<Limit>	section	and	can	be	used	to	control	both
standard	and	nonstandard/unrecognized	methods.	See	the
documentation	for	<Limit>	for	more	details.

For	example:

<LimitExcept	POST	GET>

		Require	valid-user

</LimitExcept>

LimitInternalRecursion	Directive

Description: Determine	maximum	number	of	internal	redirects
and	nested	subrequests

Syntax: LimitInternalRecursion	number

[number]

Default: LimitInternalRecursion	10

Context: server	config,	virtual	host
Status: Core
Module: core

An	internal	redirect	happens,	for	example,	when	using	the	Action
directive,	which	internally	redirects	the	original	request	to	a	CGI
script.	A	subrequest	is	Apache	httpd's	mechanism	to	find	out	what
would	happen	for	some	URI	if	it	were	requested.	For	example,
mod_dir	uses	subrequests	to	look	for	the	files	listed	in	the
DirectoryIndex	directive.

LimitInternalRecursion	prevents	the	server	from	crashing
when	entering	an	infinite	loop	of	internal	redirects	or	subrequests.
Such	loops	are	usually	caused	by	misconfigurations.

The	directive	stores	two	different	limits,	which	are	evaluated	on
per-request	basis.	The	first	number	is	the	maximum	number	of
internal	redirects	that	may	follow	each	other.	The	second	number
determines	how	deeply	subrequests	may	be	nested.	If	you	specify
only	one	number,	it	will	be	assigned	to	both	limits.

LimitInternalRecursion	5

LimitRequestBody	Directive

Description: Restricts	the	total	size	of	the	HTTP	request	body
sent	from	the	client

Syntax: LimitRequestBody	bytes

Default: LimitRequestBody	0

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core

This	directive	specifies	the	number	of	bytes	from	0	(meaning
unlimited)	to	2147483647	(2GB)	that	are	allowed	in	a	request
body.	See	the	note	below	for	the	limited	applicability	to	proxy
requests.

The	LimitRequestBody	directive	allows	the	user	to	set	a	limit
on	the	allowed	size	of	an	HTTP	request	message	body	within	the
context	in	which	the	directive	is	given	(server,	per-directory,	per-file
or	per-location).	If	the	client	request	exceeds	that	limit,	the	server
will	return	an	error	response	instead	of	servicing	the	request.	The
size	of	a	normal	request	message	body	will	vary	greatly	depending
on	the	nature	of	the	resource	and	the	methods	allowed	on	that
resource.	CGI	scripts	typically	use	the	message	body	for	retrieving
form	information.	Implementations	of	the	PUT	method	will	require	a
value	at	least	as	large	as	any	representation	that	the	server
wishes	to	accept	for	that	resource.

This	directive	gives	the	server	administrator	greater	control	over
abnormal	client	request	behavior,	which	may	be	useful	for	avoiding
some	forms	of	denial-of-service	attacks.

If,	for	example,	you	are	permitting	file	upload	to	a	particular
location	and	wish	to	limit	the	size	of	the	uploaded	file	to	100K,	you
might	use	the	following	directive:

LimitRequestBody	102400

For	a	full	description	of	how	this	directive	is	interpreted	by	proxy
requests,	see	the	mod_proxy	documentation.

LimitRequestFields	Directive

Description: Limits	the	number	of	HTTP	request	header	fields
that	will	be	accepted	from	the	client

Syntax: LimitRequestFields	number

Default: LimitRequestFields	100

Context: server	config,	virtual	host
Status: Core
Module: core

Number	is	an	integer	from	0	(meaning	unlimited)	to	32767.	The
default	value	is	defined	by	the	compile-time	constant
DEFAULT_LIMIT_REQUEST_FIELDS	(100	as	distributed).

The	LimitRequestFields	directive	allows	the	server
administrator	to	modify	the	limit	on	the	number	of	request	header
fields	allowed	in	an	HTTP	request.	A	server	needs	this	value	to	be
larger	than	the	number	of	fields	that	a	normal	client	request	might
include.	The	number	of	request	header	fields	used	by	a	client
rarely	exceeds	20,	but	this	may	vary	among	different	client
implementations,	often	depending	upon	the	extent	to	which	a	user
has	configured	their	browser	to	support	detailed	content
negotiation.	Optional	HTTP	extensions	are	often	expressed	using
request	header	fields.

This	directive	gives	the	server	administrator	greater	control	over
abnormal	client	request	behavior,	which	may	be	useful	for	avoiding
some	forms	of	denial-of-service	attacks.	The	value	should	be
increased	if	normal	clients	see	an	error	response	from	the	server
that	indicates	too	many	fields	were	sent	in	the	request.

For	example:

LimitRequestFields	50

Warning

When	name-based	virtual	hosting	is	used,	the	value	for	this
directive	is	taken	from	the	default	(first-listed)	virtual	host	for	the
local	IP	and	port	combination.

LimitRequestFieldSize	Directive

Description: Limits	the	size	of	the	HTTP	request	header	allowed
from	the	client

Syntax: LimitRequestFieldSize	bytes

Default: LimitRequestFieldSize	8190

Context: server	config,	virtual	host
Status: Core
Module: core

This	directive	specifies	the	number	of	bytes	that	will	be	allowed	in
an	HTTP	request	header.

The	LimitRequestFieldSize	directive	allows	the	server
administrator	to	set	the	limit	on	the	allowed	size	of	an	HTTP
request	header	field.	A	server	needs	this	value	to	be	large	enough
to	hold	any	one	header	field	from	a	normal	client	request.	The	size
of	a	normal	request	header	field	will	vary	greatly	among	different
client	implementations,	often	depending	upon	the	extent	to	which
a	user	has	configured	their	browser	to	support	detailed	content
negotiation.	SPNEGO	authentication	headers	can	be	up	to	12392
bytes.

This	directive	gives	the	server	administrator	greater	control	over
abnormal	client	request	behavior,	which	may	be	useful	for	avoiding
some	forms	of	denial-of-service	attacks.

For	example:

LimitRequestFieldSize	4094

Under	normal	conditions,	the	value	should	not	be	changed	from
the	default.

Warning

When	name-based	virtual	hosting	is	used,	the	value	for	this
directive	is	taken	from	the	default	(first-listed)	virtual	host	best
matching	the	current	IP	address	and	port	combination.

LimitRequestLine	Directive

Description: Limit	the	size	of	the	HTTP	request	line	that	will	be
accepted	from	the	client

Syntax: LimitRequestLine	bytes

Default: LimitRequestLine	8190

Context: server	config,	virtual	host
Status: Core
Module: core

This	directive	sets	the	number	of	bytes	that	will	be	allowed	on	the
HTTP	request-line.

The	LimitRequestLine	directive	allows	the	server	administrator
to	set	the	limit	on	the	allowed	size	of	a	client's	HTTP	request-line.
Since	the	request-line	consists	of	the	HTTP	method,	URI,	and
protocol	version,	the	LimitRequestLine	directive	places	a
restriction	on	the	length	of	a	request-URI	allowed	for	a	request	on
the	server.	A	server	needs	this	value	to	be	large	enough	to	hold
any	of	its	resource	names,	including	any	information	that	might	be
passed	in	the	query	part	of	a	GET	request.

This	directive	gives	the	server	administrator	greater	control	over
abnormal	client	request	behavior,	which	may	be	useful	for	avoiding
some	forms	of	denial-of-service	attacks.

For	example:

LimitRequestLine	4094

Under	normal	conditions,	the	value	should	not	be	changed	from
the	default.

Warning

When	name-based	virtual	hosting	is	used,	the	value	for	this
directive	is	taken	from	the	default	(first-listed)	virtual	host	best
matching	the	current	IP	address	and	port	combination.

LimitXMLRequestBody	Directive

Description: Limits	the	size	of	an	XML-based	request	body
Syntax: LimitXMLRequestBody	bytes

Default: LimitXMLRequestBody	1000000

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core

Limit	(in	bytes)	on	maximum	size	of	an	XML-based	request	body.
A	value	of	0	will	disable	any	checking.

Example:

LimitXMLRequestBody	0

<Location>	Directive

Description: Applies	the	enclosed	directives	only	to	matching
URLs

Syntax: <Location	URL-path|URL>	...

</Location>

Context: server	config,	virtual	host
Status: Core
Module: core

The	<Location>	directive	limits	the	scope	of	the	enclosed
directives	by	URL.	It	is	similar	to	the	<Directory>	directive,	and
starts	a	subsection	which	is	terminated	with	a	</Location>
directive.	<Location>	sections	are	processed	in	the	order	they
appear	in	the	configuration	file,	after	the	<Directory>	sections
and	.htaccess	files	are	read,	and	after	the	<Files>	sections.

<Location>	sections	operate	completely	outside	the	filesystem.
This	has	several	consequences.	Most	importantly,	<Location>
directives	should	not	be	used	to	control	access	to	filesystem
locations.	Since	several	different	URLs	may	map	to	the	same
filesystem	location,	such	access	controls	may	by	circumvented.

The	enclosed	directives	will	be	applied	to	the	request	if	the	path
component	of	the	URL	meets	any	of	the	following	criteria:

The	specified	location	matches	exactly	the	path	component	of
the	URL.
The	specified	location,	which	ends	in	a	forward	slash,	is	a
prefix	of	the	path	component	of	the	URL	(treated	as	a	context
root).
The	specified	location,	with	the	addition	of	a	trailing	slash,	is	a
prefix	of	the	path	component	of	the	URL	(also	treated	as	a
context	root).

In	the	example	below,	where	no	trailing	slash	is	used,	requests	to
/private1,	/private1/	and	/private1/file.txt	will	have	the	enclosed
directives	applied,	but	/private1other	would	not.

<Location	"/private1">

				#		...

</Location>

In	the	example	below,	where	a	trailing	slash	is	used,	requests	to
/private2/	and	/private2/file.txt	will	have	the	enclosed	directives
applied,	but	/private2	and	/private2other	would	not.

<Location	"/private2/">

				#	...

</Location>

When	to	use	<Location>

Use	<Location>	to	apply	directives	to	content	that	lives
outside	the	filesystem.	For	content	that	lives	in	the	filesystem,
use	<Directory>	and	<Files>.	An	exception	is	<Location
"/">,	which	is	an	easy	way	to	apply	a	configuration	to	the	entire
server.

For	all	origin	(non-proxy)	requests,	the	URL	to	be	matched	is	a
URL-path	of	the	form	/path/.	No	scheme,	hostname,	port,	or
query	string	may	be	included.	For	proxy	requests,	the	URL	to	be
matched	is	of	the	form	scheme://servername/path,	and	you
must	include	the	prefix.

The	URL	may	use	wildcards.	In	a	wild-card	string,	?	matches	any
single	character,	and	*	matches	any	sequences	of	characters.
Neither	wildcard	character	matches	a	/	in	the	URL-path.

Regular	expressions	can	also	be	used,	with	the	addition	of	the	~
character.	For	example:

<Location	~	"/(extra|special)/data">

				#...

</Location>

would	match	URLs	that	contained	the	substring	/extra/data	or
/special/data.	The	directive	<LocationMatch>	behaves
identical	to	the	regex	version	of	<Location>,	and	is	preferred,	for
the	simple	reason	that	~	is	hard	to	distinguish	from	-	in	many
fonts.

The	<Location>	functionality	is	especially	useful	when	combined
with	the	SetHandler	directive.	For	example,	to	enable	status
requests	but	allow	them	only	from	browsers	at	example.com,	you
might	use:

<Location	"/status">

		SetHandler	server-status

		Require	host	example.com

</Location>

Note	about	/	(slash)

The	slash	character	has	special	meaning	depending	on	where
in	a	URL	it	appears.	People	may	be	used	to	its	behavior	in	the
filesystem	where	multiple	adjacent	slashes	are	frequently
collapsed	to	a	single	slash	(i.e.,	/home///foo	is	the	same	as
/home/foo).	In	URL-space	this	is	not	necessarily	true.	The
<LocationMatch>	directive	and	the	regex	version	of
<Location>	require	you	to	explicitly	specify	multiple	slashes	if
that	is	your	intention.

For	example,	<LocationMatch	"^/abc">	would	match	the
request	URL	/abc	but	not	the	request	URL	//abc.	The	(non-
regex)	<Location>	directive	behaves	similarly	when	used	for
proxy	requests.	But	when	(non-regex)	<Location>	is	used	for
non-proxy	requests	it	will	implicitly	match	multiple	slashes	with	a
single	slash.	For	example,	if	you	specify	<Location
"/abc/def">	and	the	request	is	to	/abc//def	then	it	will
match.

See	also
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received.
LocationMatch

<LocationMatch>	Directive

Description: Applies	the	enclosed	directives	only	to	regular-
expression	matching	URLs

Syntax: <LocationMatch	regex>	...

</LocationMatch>

Context: server	config,	virtual	host
Status: Core
Module: core

The	<LocationMatch>	directive	limits	the	scope	of	the	enclosed
directives	by	URL,	in	an	identical	manner	to	<Location>.
However,	it	takes	a	regular	expression	as	an	argument	instead	of
a	simple	string.	For	example:

<LocationMatch	"/(extra|special)/data">

				#	...

</LocationMatch>

would	match	URLs	that	contained	the	substring	/extra/data	or
/special/data.

If	the	intent	is	that	a	URL	starts	with	/extra/data,	rather	than
merely	contains	/extra/data,	prefix	the	regular	expression
with	a	^	to	require	this.

<LocationMatch	"^/(extra|special)/data">

From	2.4.8	onwards,	named	groups	and	backreferences	are
captured	and	written	to	the	environment	with	the	corresponding
name	prefixed	with	"MATCH_"	and	in	upper	case.	This	allows
elements	of	URLs	to	be	referenced	from	within	expressions	and
modules	like	mod_rewrite.	In	order	to	prevent	confusion,

numbered	(unnamed)	backreferences	are	ignored.	Use	named
groups	instead.

<LocationMatch	"^/combined/(?<sitename>[^/]+)">

				require	ldap-group	cn=%{env:MATCH_SITENAME},ou=combined,o=Example

</LocationMatch>

See	also
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

LogLevel	Directive

Description: Controls	the	verbosity	of	the	ErrorLog
Syntax: LogLevel	[module:]level

[module:level]	...

Default: LogLevel	warn

Context: server	config,	virtual	host,	directory
Status: Core
Module: core
Compatibility: Per-module	and	per-directory	configuration	is

available	in	Apache	HTTP	Server	2.3.6	and	later

LogLevel	adjusts	the	verbosity	of	the	messages	recorded	in	the
error	logs	(see	ErrorLog	directive).	The	following	levels	are
available,	in	order	of	decreasing	significance:

Level Description Example
emerg Emergencies	-

system	is
unusable.

"Child	cannot	open	lock	file.	Exiting"

alert Action	must	be
taken	immediately.

"getpwuid:	couldn't	determine	user
name	from	uid"

crit Critical	Conditions. "socket:	Failed	to	get	a	socket,
exiting	child"

error Error	conditions. "Premature	end	of	script	headers"
warn Warning

conditions.
"child	process	1234	did	not	exit,
sending	another	SIGHUP"

notice Normal	but
significant
condition.

"httpd:	caught	SIGBUS,	attempting
to	dump	core	in	..."

info Informational. "Server	seems	busy,	(you	may	need
to	increase	StartServers,	or
Min/MaxSpareServers)..."

debug Debug-level
messages

"Opening	config	file	..."

trace1 Trace	messages "proxy:	FTP:	control	connection
complete"

trace2 Trace	messages "proxy:	CONNECT:	sending	the
CONNECT	request	to	the	remote
proxy"

trace3 Trace	messages "openssl:	Handshake:	start"
trace4 Trace	messages "read	from	buffered	SSL	brigade,

mode	0,	17	bytes"
trace5 Trace	messages "map	lookup	FAILED:

map=rewritemap	key=keyname"
trace6 Trace	messages "cache	lookup	FAILED,	forcing	new

map	lookup"
trace7 Trace	messages,

dumping	large
amounts	of	data

"|	0000:	02	23	44	30	13	40	ac	34	df
3d	bf	9a	19	49	39	15	|"

trace8 Trace	messages,
dumping	large
amounts	of	data

"|	0000:	02	23	44	30	13	40	ac	34	df
3d	bf	9a	19	49	39	15	|"

When	a	particular	level	is	specified,	messages	from	all	other	levels
of	higher	significance	will	be	reported	as	well.	E.g.,	when
LogLevel	info	is	specified,	then	messages	with	log	levels	of
notice	and	warn	will	also	be	posted.

Using	a	level	of	at	least	crit	is	recommended.

For	example:

LogLevel	notice

Note

When	logging	to	a	regular	file,	messages	of	the	level	notice
cannot	be	suppressed	and	thus	are	always	logged.	However,
this	doesn't	apply	when	logging	is	done	using	syslog.

Specifying	a	level	without	a	module	name	will	reset	the	level	for	all
modules	to	that	level.	Specifying	a	level	with	a	module	name	will
set	the	level	for	that	module	only.	It	is	possible	to	use	the	module
source	file	name,	the	module	identifier,	or	the	module	identifier
with	the	trailing	_module	omitted	as	module	specification.	This
means	the	following	three	specifications	are	equivalent:

LogLevel	info	ssl:warn

LogLevel	info	mod_ssl.c:warn

LogLevel	info	ssl_module:warn

It	is	also	possible	to	change	the	level	per	directory:

LogLevel	info

<Directory	"/usr/local/apache/htdocs/app">

		LogLevel	debug

</Directory>

Per	directory	loglevel	configuration	only	affects	messages	that
are	logged	after	the	request	has	been	parsed	and	that	are
associated	with	the	request.	Log	messages	which	are
associated	with	the	connection	or	the	server	are	not	affected.

See	also
ErrorLog

ErrorLogFormat

Apache	HTTP	Server	Log	Files

MaxKeepAliveRequests	Directive

Description: Number	of	requests	allowed	on	a	persistent
connection

Syntax: MaxKeepAliveRequests	number

Default: MaxKeepAliveRequests	100

Context: server	config,	virtual	host
Status: Core
Module: core

The	MaxKeepAliveRequests	directive	limits	the	number	of
requests	allowed	per	connection	when	KeepAlive	is	on.	If	it	is
set	to	0,	unlimited	requests	will	be	allowed.	We	recommend	that
this	setting	be	kept	to	a	high	value	for	maximum	server
performance.

For	example:

MaxKeepAliveRequests	500

MaxRangeOverlaps	Directive

Description: Number	of	overlapping	ranges	(eg:	100-
200,150-300)	allowed	before	returning	the
complete	resource

Syntax: MaxRangeOverlaps	default	|	unlimited

|	none	|	number-of-ranges

Default: MaxRangeOverlaps	20

Context: server	config,	virtual	host,	directory
Status: Core
Module: core
Compatibility: Available	in	Apache	HTTP	Server	2.3.15	and

later

The	MaxRangeOverlaps	directive	limits	the	number	of
overlapping	HTTP	ranges	the	server	is	willing	to	return	to	the
client.	If	more	overlapping	ranges	than	permitted	are	requested,
the	complete	resource	is	returned	instead.

default
Limits	the	number	of	overlapping	ranges	to	a	compile-time
default	of	20.

none
No	overlapping	Range	headers	are	allowed.

unlimited
The	server	does	not	limit	the	number	of	overlapping	ranges	it
is	willing	to	satisfy.

number-of-ranges
A	positive	number	representing	the	maximum	number	of
overlapping	ranges	the	server	is	willing	to	satisfy.

MaxRangeReversals	Directive

Description: Number	of	range	reversals	(eg:	100-200,50-
70)	allowed	before	returning	the	complete
resource

Syntax: MaxRangeReversals	default	|

unlimited	|	none	|	number-of-ranges

Default: MaxRangeReversals	20

Context: server	config,	virtual	host,	directory
Status: Core
Module: core
Compatibility: Available	in	Apache	HTTP	Server	2.3.15	and

later

The	MaxRangeReversals	directive	limits	the	number	of	HTTP
Range	reversals	the	server	is	willing	to	return	to	the	client.	If	more
ranges	reversals	than	permitted	are	requested,	the	complete
resource	is	returned	instead.

default
Limits	the	number	of	range	reversals	to	a	compile-time	default
of	20.

none
No	Range	reversals	headers	are	allowed.

unlimited
The	server	does	not	limit	the	number	of	range	reversals	it	is
willing	to	satisfy.

number-of-ranges
A	positive	number	representing	the	maximum	number	of
range	reversals	the	server	is	willing	to	satisfy.

MaxRanges	Directive

Description: Number	of	ranges	allowed	before	returning	the
complete	resource

Syntax: MaxRanges	default	|	unlimited	|	none

|	number-of-ranges

Default: MaxRanges	200

Context: server	config,	virtual	host,	directory
Status: Core
Module: core
Compatibility: Available	in	Apache	HTTP	Server	2.3.15	and

later

The	MaxRanges	directive	limits	the	number	of	HTTP	ranges	the
server	is	willing	to	return	to	the	client.	If	more	ranges	than
permitted	are	requested,	the	complete	resource	is	returned
instead.

default
Limits	the	number	of	ranges	to	a	compile-time	default	of	200.

none
Range	headers	are	ignored.

unlimited
The	server	does	not	limit	the	number	of	ranges	it	is	willing	to
satisfy.

number-of-ranges
A	positive	number	representing	the	maximum	number	of
ranges	the	server	is	willing	to	satisfy.

MergeTrailers	Directive

Description: Determines	whether	trailers	are	merged	into
headers

Syntax: MergeTrailers	[on|off]

Default: MergeTrailers	off

Context: server	config,	virtual	host
Status: Core
Module: core
Compatibility: 2.4.11	and	later

This	directive	controls	whether	HTTP	trailers	are	copied	into	the
internal	representation	of	HTTP	headers.	This	merging	occurs
when	the	request	body	has	been	completely	consumed,	long	after
most	header	processing	would	have	a	chance	to	examine	or
modify	request	headers.

This	option	is	provided	for	compatibility	with	releases	prior	to
2.4.11,	where	trailers	were	always	merged.

Mutex	Directive

Description: Configures	mutex	mechanism	and	lock	file
directory	for	all	or	specified	mutexes

Syntax: Mutex	mechanism	[default|mutex-name]

...	[OmitPID]

Default: Mutex	default

Context: server	config
Status: Core
Module: core
Compatibility: Available	in	Apache	HTTP	Server	2.3.4	and	later

The	Mutex	directive	sets	the	mechanism,	and	optionally	the	lock
file	location,	that	httpd	and	modules	use	to	serialize	access	to
resources.	Specify	default	as	the	second	argument	to	change
the	settings	for	all	mutexes;	specify	a	mutex	name	(see	table
below)	as	the	second	argument	to	override	defaults	only	for	that
mutex.

The	Mutex	directive	is	typically	used	in	the	following	exceptional
situations:

change	the	mutex	mechanism	when	the	default	mechanism
selected	by	APR	has	a	functional	or	performance	problem
change	the	directory	used	by	file-based	mutexes	when	the
default	directory	does	not	support	locking

Supported	modules

This	directive	only	configures	mutexes	which	have	been
registered	with	the	core	server	using	the
ap_mutex_register()	API.	All	modules	bundled	with	httpd
support	the	Mutex	directive,	but	third-party	modules	may	not.
Consult	the	documentation	of	the	third-party	module,	which
must	indicate	the	mutex	name(s)	which	can	be	configured	if	this

directive	is	supported.

The	following	mutex	mechanisms	are	available:

default	|	yes

This	selects	the	default	locking	implementation,	as
determined	by	APR.	The	default	locking	implementation	can
be	displayed	by	running	httpd	with	the	-V	option.

none	|	no

This	effectively	disables	the	mutex,	and	is	only	allowed	for	a
mutex	if	the	module	indicates	that	it	is	a	valid	choice.	Consult
the	module	documentation	for	more	information.

posixsem

This	is	a	mutex	variant	based	on	a	Posix	semaphore.

Warning

The	semaphore	ownership	is	not	recovered	if	a	thread	in
the	process	holding	the	mutex	segfaults,	resulting	in	a	hang
of	the	web	server.

sysvsem

This	is	a	mutex	variant	based	on	a	SystemV	IPC	semaphore.

Warning

It	is	possible	to	"leak"	SysV	semaphores	if	processes	crash
before	the	semaphore	is	removed.

Security

The	semaphore	API	allows	for	a	denial	of	service	attack	by
any	CGIs	running	under	the	same	uid	as	the	webserver

(i.e.,	all	CGIs,	unless	you	use	something	like	suexec	or
cgiwrapper).

sem

This	selects	the	"best"	available	semaphore	implementation,
choosing	between	Posix	and	SystemV	IPC	semaphores,	in
that	order.

pthread

This	is	a	mutex	variant	based	on	cross-process	Posix	thread
mutexes.

Warning

On	most	systems,	if	a	child	process	terminates	abnormally
while	holding	a	mutex	that	uses	this	implementation,	the
server	will	deadlock	and	stop	responding	to	requests.
When	this	occurs,	the	server	will	require	a	manual	restart	to
recover.

Solaris	and	Linux	are	notable	exceptions	as	they	provide	a
mechanism	which	usually	allows	the	mutex	to	be	recovered
after	a	child	process	terminates	abnormally	while	holding	a
mutex.

If	your	system	is	POSIX	compliant	or	if	it	implements	the
pthread_mutexattr_setrobust_np()	function,	you
may	be	able	to	use	the	pthread	option	safely.

fcntl:/path/to/mutex

This	is	a	mutex	variant	where	a	physical	(lock-)file	and	the
fcntl()	function	are	used	as	the	mutex.

Warning

When	multiple	mutexes	based	on	this	mechanism	are	used
within	multi-threaded,	multi-process	environments,
deadlock	errors	(EDEADLK)	can	be	reported	for	valid
mutex	operations	if	fcntl()	is	not	thread-aware,	such	as
on	Solaris.

flock:/path/to/mutex

This	is	similar	to	the	fcntl:/path/to/mutex	method	with
the	exception	that	the	flock()	function	is	used	to	provide	file
locking.

file:/path/to/mutex

This	selects	the	"best"	available	file	locking	implementation,
choosing	between	fcntl	and	flock,	in	that	order.

Most	mechanisms	are	only	available	on	selected	platforms,	where
the	underlying	platform	and	APR	support	it.	Mechanisms	which
aren't	available	on	all	platforms	are	posixsem,	sysvsem,	sem,
pthread,	fcntl,	flock,	and	file.

With	the	file-based	mechanisms	fcntl	and	flock,	the	path,	if
provided,	is	a	directory	where	the	lock	file	will	be	created.	The
default	directory	is	httpd's	run-time	file	directory	relative	to
ServerRoot.	Always	use	a	local	disk	filesystem	for
/path/to/mutex	and	never	a	directory	residing	on	a	NFS-	or
AFS-filesystem.	The	basename	of	the	file	will	be	the	mutex	type,
an	optional	instance	string	provided	by	the	module,	and	unless	the
OmitPID	keyword	is	specified,	the	process	id	of	the	httpd	parent
process	will	be	appended	to	make	the	file	name	unique,	avoiding
conflicts	when	multiple	httpd	instances	share	a	lock	file	directory.
For	example,	if	the	mutex	name	is	mpm-accept	and	the	lock	file
directory	is	/var/httpd/locks,	the	lock	file	name	for	the	httpd
instance	with	parent	process	id	12345	would	be
/var/httpd/locks/mpm-accept.12345.

Security

It	is	best	to	avoid	putting	mutex	files	in	a	world-writable	directory
such	as	/var/tmp	because	someone	could	create	a	denial	of
service	attack	and	prevent	the	server	from	starting	by	creating	a
lockfile	with	the	same	name	as	the	one	the	server	will	try	to
create.

The	following	table	documents	the	names	of	mutexes	used	by
httpd	and	bundled	modules.

Mutex	name Module(s) Protected	resource
mpm-accept prefork	and

worker	MPMs
incoming	connections,	to
avoid	the	thundering	herd
problem;	for	more
information,	refer	to	the
performance	tuning
documentation

authdigest-

client

mod_auth_digest client	list	in	shared	memory

authdigest-

opaque

mod_auth_digest counter	in	shared	memory

ldap-cache mod_ldap LDAP	result	cache
rewrite-map mod_rewrite communication	with

external	mapping	programs,
to	avoid	intermixed	I/O	from
multiple	requests

ssl-cache mod_ssl SSL	session	cache
ssl-

stapling

mod_ssl OCSP	stapling	response
cache

watchdog-

callback

mod_watchdog callback	function	of	a
particular	client	module

The	OmitPID	keyword	suppresses	the	addition	of	the	httpd	parent
process	id	from	the	lock	file	name.

In	the	following	example,	the	mutex	mechanism	for	the	MPM
accept	mutex	will	be	changed	from	the	compiled-in	default	to
fcntl,	with	the	associated	lock	file	created	in	directory
/var/httpd/locks.	The	mutex	mechanism	for	all	other
mutexes	will	be	changed	from	the	compiled-in	default	to	sysvsem.

Mutex	sysvsem	default

Mutex	fcntl:/var/httpd/locks	mpm-accept

NameVirtualHost	Directive

Description: DEPRECATED:	Designates	an	IP	address	for
name-virtual	hosting

Syntax: NameVirtualHost	addr[:port]

Context: server	config
Status: Core
Module: core

Prior	to	2.3.11,	NameVirtualHost	was	required	to	instruct	the
server	that	a	particular	IP	address	and	port	combination	was
usable	as	a	name-based	virtual	host.	In	2.3.11	and	later,	any	time
an	IP	address	and	port	combination	is	used	in	multiple	virtual
hosts,	name-based	virtual	hosting	is	automatically	enabled	for	that
address.

This	directive	currently	has	no	effect.

See	also
Virtual	Hosts	documentation

Options	Directive

Description: Configures	what	features	are	available	in	a
particular	directory

Syntax: Options	[+|-]option	[[+|-]option]

...

Default: Options	FollowSymlinks

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Core
Module: core
Compatibility: The	default	was	changed	from	All	to

FollowSymlinks	in	2.3.11

The	Options	directive	controls	which	server	features	are
available	in	a	particular	directory.

option	can	be	set	to	None,	in	which	case	none	of	the	extra
features	are	enabled,	or	one	or	more	of	the	following:

All

All	options	except	for	MultiViews.

ExecCGI

Execution	of	CGI	scripts	using	mod_cgi	is	permitted.

FollowSymLinks

The	server	will	follow	symbolic	links	in	this	directory.	This	is
the	default	setting.

Even	though	the	server	follows	the	symlink	it	does	not
change	the	pathname	used	to	match	against
<Directory>	sections.

The	FollowSymLinks	and	SymLinksIfOwnerMatch

Options	work	only	in	<Directory>	sections	or
.htaccess	files.

Omitting	this	option	should	not	be	considered	a	security
restriction,	since	symlink	testing	is	subject	to	race
conditions	that	make	it	circumventable.

Includes

Server-side	includes	provided	by	mod_include	are
permitted.

IncludesNOEXEC

Server-side	includes	are	permitted,	but	the	#exec	cmd	and
#exec	cgi	are	disabled.	It	is	still	possible	to	#include
virtual	CGI	scripts	from	ScriptAliased	directories.

Indexes

If	a	URL	which	maps	to	a	directory	is	requested	and	there	is
no	DirectoryIndex	(e.g.,	index.html)	in	that	directory,
then	mod_autoindex	will	return	a	formatted	listing	of	the
directory.

MultiViews

Content	negotiated	"MultiViews"	are	allowed	using
mod_negotiation.

Note

This	option	gets	ignored	if	set	anywhere	other	than
<Directory>,	as	mod_negotiation	needs	real
resources	to	compare	against	and	evaluate	from.

SymLinksIfOwnerMatch

The	server	will	only	follow	symbolic	links	for	which	the	target
file	or	directory	is	owned	by	the	same	user	id	as	the	link.

Note

The	FollowSymLinks	and	SymLinksIfOwnerMatch
Options	work	only	in	<Directory>	sections	or
.htaccess	files.

This	option	should	not	be	considered	a	security	restriction,
since	symlink	testing	is	subject	to	race	conditions	that	make
it	circumventable.

Normally,	if	multiple	Options	could	apply	to	a	directory,	then	the
most	specific	one	is	used	and	others	are	ignored;	the	options	are
not	merged.	(See	how	sections	are	merged.)	However	if	all	the
options	on	the	Options	directive	are	preceded	by	a	+	or	-
symbol,	the	options	are	merged.	Any	options	preceded	by	a	+	are
added	to	the	options	currently	in	force,	and	any	options	preceded
by	a	-	are	removed	from	the	options	currently	in	force.

Note

Mixing	Options	with	a	+	or	-	with	those	without	is	not	valid
syntax	and	will	be	rejected	during	server	startup	by	the	syntax
check	with	an	abort.

For	example,	without	any	+	and	-	symbols:

<Directory	"/web/docs">

		Options	Indexes	FollowSymLinks

</Directory>

<Directory	"/web/docs/spec">

		Options	Includes

</Directory>

then	only	Includes	will	be	set	for	the	/web/docs/spec

directory.	However	if	the	second	Options	directive	uses	the	+
and	-	symbols:

<Directory	"/web/docs">

		Options	Indexes	FollowSymLinks

</Directory>

<Directory	"/web/docs/spec">

		Options	+Includes	-Indexes

</Directory>

then	the	options	FollowSymLinks	and	Includes	are	set	for	the
/web/docs/spec	directory.

Note

Using	-IncludesNOEXEC	or	-Includes	disables	server-side
includes	completely	regardless	of	the	previous	setting.

The	default	in	the	absence	of	any	other	settings	is
FollowSymlinks.

Protocol	Directive

Description: Protocol	for	a	listening	socket
Syntax: Protocol	protocol

Context: server	config,	virtual	host
Status: Core
Module: core
Compatibility: Available	in	Apache	2.1.5	and	later.	On	Windows,

from	Apache	2.3.3	and	later.

This	directive	specifies	the	protocol	used	for	a	specific	listening
socket.	The	protocol	is	used	to	determine	which	module	should
handle	a	request	and	to	apply	protocol	specific	optimizations	with
the	AcceptFilter	directive.

You	only	need	to	set	the	protocol	if	you	are	running	on	non-
standard	ports;	otherwise,	http	is	assumed	for	port	80	and
https	for	port	443.

For	example,	if	you	are	running	https	on	a	non-standard	port,
specify	the	protocol	explicitly:

Protocol	https

You	can	also	specify	the	protocol	using	the	Listen	directive.

See	also
AcceptFilter

Listen

Protocols	Directive

Description: Protocols	available	for	a	server/virtual	host
Syntax: Protocols	protocol	...

Default: Protocols	http/1.1

Context: server	config,	virtual	host
Status: Core
Module: core
Compatibility: Only	available	from	Apache	2.4.17	and	later.

This	directive	specifies	the	list	of	protocols	supported	for	a
server/virtual	host.	The	list	determines	the	allowed	protocols	a
client	may	negotiate	for	this	server/host.

You	need	to	set	protocols	if	you	want	to	extend	the	available
protocols	for	a	server/host.	By	default,	only	the	http/1.1	protocol
(which	includes	the	compatibility	with	1.0	and	0.9	clients)	is
allowed.

For	example,	if	you	want	to	support	HTTP/2	for	a	server	with	TLS,
specify:

Protocols	h2	http/1.1

Valid	protocols	are	http/1.1	for	http	and	https	connections,	h2
on	https	connections	and	h2c	for	http	connections.	Modules	may
enable	more	protocols.

It	is	safe	to	specify	protocols	that	are	unavailable/disabled.	Such
protocol	names	will	simply	be	ignored.

Protocols	specified	in	base	servers	are	inherited	for	virtual	hosts
only	if	the	virtual	host	has	no	own	Protocols	directive.	Or,	the	other
way	around,	Protocols	directives	in	virtual	hosts	replace	any	such
directive	in	the	base	server.

See	also
ProtocolsHonorOrder

ProtocolsHonorOrder	Directive

Description: Determines	if	order	of	Protocols	determines
precedence	during	negotiation

Syntax: ProtocolsHonorOrder	On|Off

Default: ProtocolsHonorOrder	On

Context: server	config,	virtual	host
Status: Core
Module: core
Compatibility: Only	available	from	Apache	2.4.17	and	later.

This	directive	specifies	if	the	server	should	honor	the	order	in
which	the	Protocols	directive	lists	protocols.

If	configured	Off,	the	client	supplied	list	order	of	protocols	has
precedence	over	the	order	in	the	server	configuration.

With	ProtocolsHonorOrder	set	to	on	(default),	the	client
ordering	does	not	matter	and	only	the	ordering	in	the	server
settings	influences	the	outcome	of	the	protocol	negotiation.

See	also
Protocols

QualifyRedirectURL	Directive

Description: Controls	whether	the	REDIRECT_URL
environment	variable	is	fully	qualified

Syntax: QualifyRedirectURL	ON|OFF

Default: QualifyRedirectURL	OFF

Context: server	config,	virtual	host,	directory
Override: FileInfo
Status: Core
Module: core
Compatibility: Directive	supported	in	2.4.18	and	later.	2.4.17

acted	as	if	'QualifyRedirectURL	ON'	was
configured.

This	directive	controls	whether	the	server	will	ensure	that	the
REDIRECT_URL	environment	variable	is	fully	qualified.	By
default,	the	variable	contains	the	verbatim	URL	requested	by	the
client,	such	as	"/index.html".	With	QualifyRedirectURL	ON,
the	same	request	would	result	in	a	value	such	as
"http://www.example.com/index.html".

Even	without	this	directive	set,	when	a	request	is	issued	against	a
fully	qualified	URL,	REDIRECT_URL	will	remain	fully	qualified.

RegisterHttpMethod	Directive

Description: Register	non-standard	HTTP	methods
Syntax: RegisterHttpMethod	method	[method

[...]]

Context: server	config
Status: Core
Module: core

HTTP	Methods	that	are	not	conforming	to	the	relevant	RFCs	are
normally	rejected	by	request	processing	in	Apache	HTTPD.	To
avoid	this,	modules	can	register	non-standard	HTTP	methods	they
support.	The	RegisterHttpMethod	allows	to	register	such
methods	manually.	This	can	be	useful	for	if	such	methods	are
forwared	for	external	processing,	e.g.	to	a	CGI	script.

RLimitCPU	Directive

Description: Limits	the	CPU	consumption	of	processes
launched	by	Apache	httpd	children

Syntax: RLimitCPU	seconds|max	[seconds|max]

Default: Unset;	uses	operating	system	defaults

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core

Takes	1	or	2	parameters.	The	first	parameter	sets	the	soft
resource	limit	for	all	processes	and	the	second	parameter	sets	the
maximum	resource	limit.	Either	parameter	can	be	a	number,	or
max	to	indicate	to	the	server	that	the	limit	should	be	set	to	the
maximum	allowed	by	the	operating	system	configuration.	Raising
the	maximum	resource	limit	requires	that	the	server	is	running	as
root	or	in	the	initial	startup	phase.

This	applies	to	processes	forked	from	Apache	httpd	children
servicing	requests,	not	the	Apache	httpd	children	themselves.	This
includes	CGI	scripts	and	SSI	exec	commands,	but	not	any
processes	forked	from	the	Apache	httpd	parent,	such	as	piped
logs.

CPU	resource	limits	are	expressed	in	seconds	per	process.

See	also
RLimitMEM

RLimitNPROC

RLimitMEM	Directive

Description: Limits	the	memory	consumption	of	processes
launched	by	Apache	httpd	children

Syntax: RLimitMEM	bytes|max	[bytes|max]

Default: Unset;	uses	operating	system	defaults

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core

Takes	1	or	2	parameters.	The	first	parameter	sets	the	soft
resource	limit	for	all	processes	and	the	second	parameter	sets	the
maximum	resource	limit.	Either	parameter	can	be	a	number,	or
max	to	indicate	to	the	server	that	the	limit	should	be	set	to	the
maximum	allowed	by	the	operating	system	configuration.	Raising
the	maximum	resource	limit	requires	that	the	server	is	running	as
root	or	in	the	initial	startup	phase.

This	applies	to	processes	forked	from	Apache	httpd	children
servicing	requests,	not	the	Apache	httpd	children	themselves.	This
includes	CGI	scripts	and	SSI	exec	commands,	but	not	any
processes	forked	from	the	Apache	httpd	parent,	such	as	piped
logs.

Memory	resource	limits	are	expressed	in	bytes	per	process.

See	also
RLimitCPU

RLimitNPROC

RLimitNPROC	Directive

Description: Limits	the	number	of	processes	that	can	be
launched	by	processes	launched	by	Apache	httpd
children

Syntax: RLimitNPROC	number|max	[number|max]

Default: Unset;	uses	operating	system	defaults

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core

Takes	1	or	2	parameters.	The	first	parameter	sets	the	soft
resource	limit	for	all	processes,	and	the	second	parameter	sets	the
maximum	resource	limit.	Either	parameter	can	be	a	number,	or
max	to	indicate	to	the	server	that	the	limit	should	be	set	to	the
maximum	allowed	by	the	operating	system	configuration.	Raising
the	maximum	resource	limit	requires	that	the	server	is	running	as
root	or	in	the	initial	startup	phase.

This	applies	to	processes	forked	from	Apache	httpd	children
servicing	requests,	not	the	Apache	httpd	children	themselves.	This
includes	CGI	scripts	and	SSI	exec	commands,	but	not	any
processes	forked	from	the	Apache	httpd	parent,	such	as	piped
logs.

Process	limits	control	the	number	of	processes	per	user.

Note

If	CGI	processes	are	not	running	under	user	ids	other	than	the
web	server	user	id,	this	directive	will	limit	the	number	of
processes	that	the	server	itself	can	create.	Evidence	of	this
situation	will	be	indicated	by	cannot	fork	messages	in	the
error_log.

See	also
RLimitMEM

RLimitCPU

ScriptInterpreterSource	Directive

Description: Technique	for	locating	the	interpreter	for	CGI
scripts

Syntax: ScriptInterpreterSource

Registry|Registry-Strict|Script

Default: ScriptInterpreterSource	Script

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: Win32	only.

This	directive	is	used	to	control	how	Apache	httpd	finds	the
interpreter	used	to	run	CGI	scripts.	The	default	setting	is	Script.
This	causes	Apache	httpd	to	use	the	interpreter	pointed	to	by	the
shebang	line	(first	line,	starting	with	#!)	in	the	script.	On	Win32
systems	this	line	usually	looks	like:

#!C:/Perl/bin/perl.exe

or,	if	perl	is	in	the	PATH,	simply:

#!perl

Setting	ScriptInterpreterSource	Registry	will	cause	the
Windows	Registry	tree	HKEY_CLASSES_ROOT	to	be	searched
using	the	script	file	extension	(e.g.,	.pl)	as	a	search	key.	The
command	defined	by	the	registry	subkey
Shell\ExecCGI\Command	or,	if	it	does	not	exist,	by	the	subkey
Shell\Open\Command	is	used	to	open	the	script	file.	If	the
registry	keys	cannot	be	found,	Apache	httpd	falls	back	to	the
behavior	of	the	Script	option.

Security

Be	careful	when	using	ScriptInterpreterSource
Registry	with	ScriptAlias'ed	directories,	because	Apache
httpd	will	try	to	execute	every	file	within	this	directory.	The
Registry	setting	may	cause	undesired	program	calls	on	files
which	are	typically	not	executed.	For	example,	the	default	open
command	on	.htm	files	on	most	Windows	systems	will	execute
Microsoft	Internet	Explorer,	so	any	HTTP	request	for	an	.htm
file	existing	within	the	script	directory	would	start	the	browser	in
the	background	on	the	server.	This	is	a	good	way	to	crash	your
system	within	a	minute	or	so.

The	option	Registry-Strict	which	is	new	in	Apache	HTTP
Server	2.0	does	the	same	thing	as	Registry	but	uses	only	the
subkey	Shell\ExecCGI\Command.	The	ExecCGI	key	is	not	a
common	one.	It	must	be	configured	manually	in	the	windows
registry	and	hence	prevents	accidental	program	calls	on	your
system.

SeeRequestTail	Directive

Description: Determine	if	mod_status	displays	the	first	63
characters	of	a	request	or	the	last	63,	assuming
the	request	itself	is	greater	than	63	chars.

Syntax: SeeRequestTail	On|Off

Default: SeeRequestTail	Off

Context: server	config
Status: Core
Module: core
Compatibility: Available	in	Apache	httpd	2.2.7	and	later.

mod_status	with	ExtendedStatus	On	displays	the	actual
request	being	handled.	For	historical	purposes,	only	63	characters
of	the	request	are	actually	stored	for	display	purposes.	This
directive	controls	whether	the	1st	63	characters	are	stored	(the
previous	behavior	and	the	default)	or	if	the	last	63	characters	are.
This	is	only	applicable,	of	course,	if	the	length	of	the	request	is	64
characters	or	greater.

If	Apache	httpd	is	handling
GET	/disk1/storage/apache/htdocs/images/imagestore1/food/apples.jpg	HTTP/1.1

mod_status	displays	as	follows:

Off
(default)

GET	/disk1/storage/apache/htdocs/images/imagestore1/food/apples

On orage/apache/htdocs/images/imagestore1/food/apples.jpg	HTTP/1.1

ServerAdmin	Directive

Description: Email	address	that	the	server	includes	in	error
messages	sent	to	the	client

Syntax: ServerAdmin	email-address|URL

Context: server	config,	virtual	host
Status: Core
Module: core

The	ServerAdmin	sets	the	contact	address	that	the	server
includes	in	any	error	messages	it	returns	to	the	client.	If	the	httpd
doesn't	recognize	the	supplied	argument	as	an	URL,	it	assumes,
that	it's	an	email-address	and	prepends	it	with	mailto:	in
hyperlink	targets.	However,	it's	recommended	to	actually	use	an
email	address,	since	there	are	a	lot	of	CGI	scripts	that	make	that
assumption.	If	you	want	to	use	an	URL,	it	should	point	to	another
server	under	your	control.	Otherwise	users	may	not	be	able	to
contact	you	in	case	of	errors.

It	may	be	worth	setting	up	a	dedicated	address	for	this,	e.g.

ServerAdmin	www-admin@foo.example.com

as	users	do	not	always	mention	that	they	are	talking	about	the
server!

ServerAlias	Directive

Description: Alternate	names	for	a	host	used	when	matching
requests	to	name-virtual	hosts

Syntax: ServerAlias	hostname	[hostname]	...

Context: virtual	host
Status: Core
Module: core

The	ServerAlias	directive	sets	the	alternate	names	for	a	host,
for	use	with	name-based	virtual	hosts.	The	ServerAlias	may
include	wildcards,	if	appropriate.

<VirtualHost	*:80>

		ServerName	server.example.com

		ServerAlias	server	server2.example.com	server2

		ServerAlias	*.example.com

		UseCanonicalName	Off

		#	...

</VirtualHost>

Name-based	virtual	hosts	for	the	best-matching	set	of
<virtualhost>s	are	processed	in	the	order	they	appear	in	the
configuration.	The	first	matching	ServerName	or	ServerAlias
is	used,	with	no	different	precedence	for	wildcards	(nor	for
ServerName	vs.	ServerAlias).

The	complete	list	of	names	in	the	<VirtualHost>	directive	are
treated	just	like	a	(non	wildcard)	ServerAlias.

See	also
UseCanonicalName

Apache	HTTP	Server	Virtual	Host	documentation

ServerName	Directive

Description: Hostname	and	port	that	the	server	uses	to	identify
itself

Syntax: ServerName	[scheme://]domain-name|ip-

address[:port]

Context: server	config,	virtual	host
Status: Core
Module: core

The	ServerName	directive	sets	the	request	scheme,	hostname
and	port	that	the	server	uses	to	identify	itself.

ServerName	is	used	(possibly	in	conjunction	with	ServerAlias)
to	uniquely	identify	a	virtual	host,	when	using	name-based	virtual
hosts.

Additionally,	this	is	used	when	creating	self-referential	redirection
URLs	when	UseCanonicalName	is	set	to	a	non-default	value.

For	example,	if	the	name	of	the	machine	hosting	the	web	server	is
simple.example.com,	but	the	machine	also	has	the	DNS	alias
www.example.com	and	you	wish	the	web	server	to	be	so
identified,	the	following	directive	should	be	used:

ServerName	www.example.com

The	ServerName	directive	may	appear	anywhere	within	the
definition	of	a	server.	However,	each	appearance	overrides	the
previous	appearance	(within	that	server).

If	no	ServerName	is	specified,	the	server	attempts	to	deduce	the
client	visible	hostname	by	first	asking	the	operating	system	for	the
system	hostname,	and	if	that	fails,	performing	a	reverse	lookup	on
an	IP	address	present	on	the	system.

If	no	port	is	specified	in	the	ServerName,	then	the	server	will	use
the	port	from	the	incoming	request.	For	optimal	reliability	and
predictability,	you	should	specify	an	explicit	hostname	and	port
using	the	ServerName	directive.

If	you	are	using	name-based	virtual	hosts,	the	ServerName	inside
a	<VirtualHost>	section	specifies	what	hostname	must	appear
in	the	request's	Host:	header	to	match	this	virtual	host.

Sometimes,	the	server	runs	behind	a	device	that	processes	SSL,
such	as	a	reverse	proxy,	load	balancer	or	SSL	offload	appliance.
When	this	is	the	case,	specify	the	https://	scheme	and	the	port
number	to	which	the	clients	connect	in	the	ServerName	directive
to	make	sure	that	the	server	generates	the	correct	self-referential
URLs.

See	the	description	of	the	UseCanonicalName	and
UseCanonicalPhysicalPort	directives	for	settings	which
determine	whether	self-referential	URLs	(e.g.,	by	the	mod_dir
module)	will	refer	to	the	specified	port,	or	to	the	port	number	given
in	the	client's	request.

Failure	to	set	ServerName	to	a	name	that	your	server	can
resolve	to	an	IP	address	will	result	in	a	startup	warning.	httpd
will	then	use	whatever	hostname	it	can	determine,	using	the
system's	hostname	command.	This	will	almost	never	be	the
hostname	you	actually	want.

httpd:	Could	not	reliably	determine	the	server's	fully

qualified	domain	name,	using	rocinante.local	for

ServerName

See	also
Issues	Regarding	DNS	and	Apache	HTTP	Server
Apache	HTTP	Server	virtual	host	documentation
UseCanonicalName

UseCanonicalPhysicalPort

ServerAlias

ServerPath	Directive

Description: Legacy	URL	pathname	for	a	name-based	virtual
host	that	is	accessed	by	an	incompatible	browser

Syntax: ServerPath	URL-path

Context: virtual	host
Status: Core
Module: core

The	ServerPath	directive	sets	the	legacy	URL	pathname	for	a
host,	for	use	with	name-based	virtual	hosts.

See	also
Apache	HTTP	Server	Virtual	Host	documentation

ServerRoot	Directive

Description: Base	directory	for	the	server	installation
Syntax: ServerRoot	directory-path

Default: ServerRoot	/usr/local/apache

Context: server	config
Status: Core
Module: core

The	ServerRoot	directive	sets	the	directory	in	which	the	server
lives.	Typically	it	will	contain	the	subdirectories	conf/	and	logs/.
Relative	paths	in	other	configuration	directives	(such	as	Include
or	LoadModule,	for	example)	are	taken	as	relative	to	this
directory.

ServerRoot	"/home/httpd"

The	default	location	of	ServerRoot	may	be	modified	by	using	the
--prefix	argument	to	configure,	and	most	third-party
distributions	of	the	server	have	a	different	default	location	from	the
one	listed	above.

See	also
the	-d	option	to	httpd
the	security	tips	for	information	on	how	to	properly	set
permissions	on	the	ServerRoot

ServerSignature	Directive

Description: Configures	the	footer	on	server-generated
documents

Syntax: ServerSignature	On|Off|EMail

Default: ServerSignature	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Core
Module: core

The	ServerSignature	directive	allows	the	configuration	of	a
trailing	footer	line	under	server-generated	documents	(error
messages,	mod_proxy	ftp	directory	listings,	mod_info	output,
...).	The	reason	why	you	would	want	to	enable	such	a	footer	line	is
that	in	a	chain	of	proxies,	the	user	often	has	no	possibility	to	tell
which	of	the	chained	servers	actually	produced	a	returned	error
message.

The	Off	setting,	which	is	the	default,	suppresses	the	footer	line
(and	is	therefore	compatible	with	the	behavior	of	Apache-1.2	and
below).	The	On	setting	simply	adds	a	line	with	the	server	version
number	and	ServerName	of	the	serving	virtual	host,	and	the
EMail	setting	additionally	creates	a	"mailto:"	reference	to	the
ServerAdmin	of	the	referenced	document.

After	version	2.0.44,	the	details	of	the	server	version	number
presented	are	controlled	by	the	ServerTokens	directive.

See	also
ServerTokens

ServerTokens	Directive

Description: Configures	the	Server	HTTP	response	header
Syntax: ServerTokens

Major|Minor|Min[imal]|Prod[uctOnly]|OS|Full

Default: ServerTokens	Full

Context: server	config
Status: Core
Module: core

This	directive	controls	whether	Server	response	header	field
which	is	sent	back	to	clients	includes	a	description	of	the	generic
OS-type	of	the	server	as	well	as	information	about	compiled-in
modules.

ServerTokens	Full	(or	not	specified)
Server	sends	(e.g.):	Server:	Apache/2.4.2	(Unix)
PHP/4.2.2	MyMod/1.2

ServerTokens	Prod[uctOnly]

Server	sends	(e.g.):	Server:	Apache

ServerTokens	Major

Server	sends	(e.g.):	Server:	Apache/2

ServerTokens	Minor

Server	sends	(e.g.):	Server:	Apache/2.4

ServerTokens	Min[imal]

Server	sends	(e.g.):	Server:	Apache/2.4.2

ServerTokens	OS

Server	sends	(e.g.):	Server:	Apache/2.4.2	(Unix)

This	setting	applies	to	the	entire	server,	and	cannot	be	enabled	or
disabled	on	a	virtualhost-by-virtualhost	basis.

After	version	2.0.44,	this	directive	also	controls	the	information

presented	by	the	ServerSignature	directive.

Setting	ServerTokens	to	less	than	minimal	is	not
recommended	because	it	makes	it	more	difficult	to	debug
interoperational	problems.	Also	note	that	disabling	the	Server:
header	does	nothing	at	all	to	make	your	server	more	secure.
The	idea	of	"security	through	obscurity"	is	a	myth	and	leads	to	a
false	sense	of	safety.

See	also
ServerSignature

SetHandler	Directive

Description: Forces	all	matching	files	to	be	processed	by	a
handler

Syntax: SetHandler	handler-

name|none|expression

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core
Compatibility: expression	argument	2.4.19	and	later

When	placed	into	an	.htaccess	file	or	a	<Directory>	or
<Location>	section,	this	directive	forces	all	matching	files	to	be
parsed	through	the	handler	given	by	handler-name.	For	example,
if	you	had	a	directory	you	wanted	to	be	parsed	entirely	as
imagemap	rule	files,	regardless	of	extension,	you	might	put	the
following	into	an	.htaccess	file	in	that	directory:

SetHandler	imap-file

Another	example:	if	you	wanted	to	have	the	server	display	a	status
report	whenever	a	URL	of	http://servername/status	was
called,	you	might	put	the	following	into	httpd.conf:

<Location	"/status">

		SetHandler	server-status

</Location>

You	could	also	use	this	directive	to	configure	a	particular	handler
for	files	with	a	particular	file	extension.	For	example:

<FilesMatch	"\.php$">

				SetHandler	application/x-httpd-php

</FilesMatch>

String-valued	expressions	can	be	used	to	reference	per-request
variables,	including	backreferences	to	named	regular	expressions:

<LocationMatch	^/app/(?<sub>[^/]+)/>

					SetHandler	"proxy:unix:/var/run/app_%{env:MATCH_sub}.sock|fcgi://localhost:8080"

</LocationMatch>

You	can	override	an	earlier	defined	SetHandler	directive	by
using	the	value	None.

Note

Because	SetHandler	overrides	default	handlers,	normal
behavior	such	as	handling	of	URLs	ending	in	a	slash	(/)	as
directories	or	index	files	is	suppressed.

See	also
AddHandler

SetInputFilter	Directive

Description: Sets	the	filters	that	will	process	client	requests	and
POST	input

Syntax: SetInputFilter	filter[;filter...]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core

The	SetInputFilter	directive	sets	the	filter	or	filters	which	will
process	client	requests	and	POST	input	when	they	are	received
by	the	server.	This	is	in	addition	to	any	filters	defined	elsewhere,
including	the	AddInputFilter	directive.

If	more	than	one	filter	is	specified,	they	must	be	separated	by
semicolons	in	the	order	in	which	they	should	process	the	content.

See	also
Filters	documentation

SetOutputFilter	Directive

Description: Sets	the	filters	that	will	process	responses	from	the
server

Syntax: SetOutputFilter	filter[;filter...]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Core
Module: core

The	SetOutputFilter	directive	sets	the	filters	which	will
process	responses	from	the	server	before	they	are	sent	to	the
client.	This	is	in	addition	to	any	filters	defined	elsewhere,	including
the	AddOutputFilter	directive.

For	example,	the	following	configuration	will	process	all	files	in	the
/www/data/	directory	for	server-side	includes.

<Directory	"/www/data/">

		SetOutputFilter	INCLUDES

</Directory>

If	more	than	one	filter	is	specified,	they	must	be	separated	by
semicolons	in	the	order	in	which	they	should	process	the	content.

See	also
Filters	documentation

TimeOut	Directive

Description: Amount	of	time	the	server	will	wait	for	certain
events	before	failing	a	request

Syntax: TimeOut	seconds

Default: TimeOut	60

Context: server	config,	virtual	host
Status: Core
Module: core

The	TimeOut	directive	defines	the	length	of	time	Apache	httpd	will
wait	for	I/O	in	various	circumstances:

When	reading	data	from	the	client,	the	length	of	time	to	wait
for	a	TCP	packet	to	arrive	if	the	read	buffer	is	empty.

For	initial	data	on	a	new	connection,	this	directive	doesn't	take
effect	until	after	any	configured	AcceptFilter	has	passed
the	new	connection	to	the	server.

When	writing	data	to	the	client,	the	length	of	time	to	wait	for
an	acknowledgement	of	a	packet	if	the	send	buffer	is	full.
In	mod_cgi	and	mod_cgid,	the	length	of	time	to	wait	for	any
individual	block	of	output	from	a	CGI	script.
In	mod_ext_filter,	the	length	of	time	to	wait	for	output
from	a	filtering	process.
In	mod_proxy,	the	default	timeout	value	if	ProxyTimeout	is
not	configured.

TraceEnable	Directive

Description: Determines	the	behavior	on	TRACE	requests
Syntax: TraceEnable	[on|off|extended]

Default: TraceEnable	on

Context: server	config,	virtual	host
Status: Core
Module: core

This	directive	overrides	the	behavior	of	TRACE	for	both	the	core
server	and	mod_proxy.	The	default	TraceEnable	on	permits
TRACE	requests	per	RFC	2616,	which	disallows	any	request	body
to	accompany	the	request.	TraceEnable	off	causes	the	core
server	and	mod_proxy	to	return	a	405	(Method	not	allowed)	error
to	the	client.

Finally,	for	testing	and	diagnostic	purposes	only,	request	bodies
may	be	allowed	using	the	non-compliant	TraceEnable
extended	directive.	The	core	(as	an	origin	server)	will	restrict	the
request	body	to	64Kb	(plus	8Kb	for	chunk	headers	if	Transfer-
Encoding:	chunked	is	used).	The	core	will	reflect	the	full
headers	and	all	chunk	headers	with	the	response	body.	As	a	proxy
server,	the	request	body	is	not	restricted	to	64Kb.

Note

Despite	claims	to	the	contrary,	enabling	the	TRACE	method	does
not	expose	any	security	vulnerability	in	Apache	httpd.	The
TRACE	method	is	defined	by	the	HTTP/1.1	specification	and
implementations	are	expected	to	support	it.

UnDefine	Directive

Description: Undefine	the	existence	of	a	variable
Syntax: UnDefine	parameter-name

Context: server	config
Status: Core
Module: core

Undoes	the	effect	of	a	Define	or	of	passing	a	-D	argument	to
httpd.

This	directive	can	be	used	to	toggle	the	use	of	<IfDefine>
sections	without	needing	to	alter	-D	arguments	in	any	startup
scripts.

While	this	directive	is	supported	in	virtual	host	context,	the
changes	it	makes	are	visible	to	any	later	configuration	directives,
beyond	any	enclosing	virtual	host.

See	also
Define

IfDefine

UseCanonicalName	Directive

Description: Configures	how	the	server	determines	its	own
name	and	port

Syntax: UseCanonicalName	On|Off|DNS

Default: UseCanonicalName	Off

Context: server	config,	virtual	host,	directory
Status: Core
Module: core

In	many	situations	Apache	httpd	must	construct	a	self-referential
URL	--	that	is,	a	URL	that	refers	back	to	the	same	server.	With
UseCanonicalName	On	Apache	httpd	will	use	the	hostname	and
port	specified	in	the	ServerName	directive	to	construct	the
canonical	name	for	the	server.	This	name	is	used	in	all	self-
referential	URLs,	and	for	the	values	of	SERVER_NAME	and
SERVER_PORT	in	CGIs.

With	UseCanonicalName	Off	Apache	httpd	will	form	self-
referential	URLs	using	the	hostname	and	port	supplied	by	the
client	if	any	are	supplied	(otherwise	it	will	use	the	canonical	name,
as	defined	above).	These	values	are	the	same	that	are	used	to
implement	name-based	virtual	hosts	and	are	available	with	the
same	clients.	The	CGI	variables	SERVER_NAME	and
SERVER_PORT	will	be	constructed	from	the	client	supplied	values
as	well.

An	example	where	this	may	be	useful	is	on	an	intranet	server
where	you	have	users	connecting	to	the	machine	using	short
names	such	as	www.	You'll	notice	that	if	the	users	type	a
shortname	and	a	URL	which	is	a	directory,	such	as
http://www/splat,	without	the	trailing	slash,	then	Apache	httpd
will	redirect	them	to	http://www.example.com/splat/.	If	you
have	authentication	enabled,	this	will	cause	the	user	to	have	to

authenticate	twice	(once	for	www	and	once	again	for
www.example.com	--	see	the	FAQ	on	this	subject	for	more
information).	But	if	UseCanonicalName	is	set	Off,	then	Apache
httpd	will	redirect	to	http://www/splat/.

There	is	a	third	option,	UseCanonicalName	DNS,	which	is
intended	for	use	with	mass	IP-based	virtual	hosting	to	support
ancient	clients	that	do	not	provide	a	Host:	header.	With	this
option,	Apache	httpd	does	a	reverse	DNS	lookup	on	the	server	IP
address	that	the	client	connected	to	in	order	to	work	out	self-
referential	URLs.

Warning

If	CGIs	make	assumptions	about	the	values	of	SERVER_NAME,
they	may	be	broken	by	this	option.	The	client	is	essentially	free
to	give	whatever	value	they	want	as	a	hostname.	But	if	the	CGI
is	only	using	SERVER_NAME	to	construct	self-referential	URLs,
then	it	should	be	just	fine.

See	also
UseCanonicalPhysicalPort

ServerName

Listen

http://wiki.apache.org/httpd/FAQ#Why_does_Apache_ask_for_my_password_twice_before_serving_a_file.3F

UseCanonicalPhysicalPort	Directive

Description: Configures	how	the	server	determines	its	own	port
Syntax: UseCanonicalPhysicalPort	On|Off

Default: UseCanonicalPhysicalPort	Off

Context: server	config,	virtual	host,	directory
Status: Core
Module: core

In	many	situations	Apache	httpd	must	construct	a	self-referential
URL	--	that	is,	a	URL	that	refers	back	to	the	same	server.	With
UseCanonicalPhysicalPort	On,	Apache	httpd	will,	when
constructing	the	canonical	port	for	the	server	to	honor	the
UseCanonicalName	directive,	provide	the	actual	physical	port
number	being	used	by	this	request	as	a	potential	port.	With
UseCanonicalPhysicalPort	Off,	Apache	httpd	will	not	ever
use	the	actual	physical	port	number,	instead	relying	on	all
configured	information	to	construct	a	valid	port	number.

Note

The	ordering	of	the	lookup	when	the	physical	port	is	used	is	as
follows:

UseCanonicalName	On

1.	 Port	provided	in	Servername

2.	 Physical	port

3.	 Default	port

UseCanonicalName	Off	|	DNS

1.	 Parsed	port	from	Host:	header

2.	 Physical	port

3.	 Port	provided	in	Servername

4.	 Default	port

With	UseCanonicalPhysicalPort	Off,	the	physical	ports
are	removed	from	the	ordering.

See	also
UseCanonicalName

ServerName

Listen

<VirtualHost>	Directive

Description: Contains	directives	that	apply	only	to	a	specific
hostname	or	IP	address

Syntax: <VirtualHost	addr[:port]

[addr[:port]]	...>	...	</VirtualHost>

Context: server	config
Status: Core
Module: core

<VirtualHost>	and	</VirtualHost>	are	used	to	enclose	a
group	of	directives	that	will	apply	only	to	a	particular	virtual	host.
Any	directive	that	is	allowed	in	a	virtual	host	context	may	be	used.
When	the	server	receives	a	request	for	a	document	on	a	particular
virtual	host,	it	uses	the	configuration	directives	enclosed	in	the
<VirtualHost>	section.	Addr	can	be	any	of	the	following,
optionally	followed	by	a	colon	and	a	port	number	(or	*):

The	IP	address	of	the	virtual	host;
A	fully	qualified	domain	name	for	the	IP	address	of	the	virtual
host	(not	recommended);
The	character	*,	which	acts	as	a	wildcard	and	matches	any	IP
address.
The	string	_default_,	which	is	an	alias	for	*

<VirtualHost	10.1.2.3:80>

		ServerAdmin	webmaster@host.example.com

		DocumentRoot	"/www/docs/host.example.com"

		ServerName	host.example.com

		ErrorLog	"logs/host.example.com-error_log"

		TransferLog	"logs/host.example.com-access_log"

</VirtualHost>

IPv6	addresses	must	be	specified	in	square	brackets	because	the

optional	port	number	could	not	be	determined	otherwise.	An	IPv6
example	is	shown	below:

<VirtualHost	[2001:db8::a00:20ff:fea7:ccea]:80>

		ServerAdmin	webmaster@host.example.com

		DocumentRoot	"/www/docs/host.example.com"

		ServerName	host.example.com

		ErrorLog	"logs/host.example.com-error_log"

		TransferLog	"logs/host.example.com-access_log"

</VirtualHost>

Each	Virtual	Host	must	correspond	to	a	different	IP	address,
different	port	number,	or	a	different	host	name	for	the	server,	in	the
former	case	the	server	machine	must	be	configured	to	accept	IP
packets	for	multiple	addresses.	(If	the	machine	does	not	have
multiple	network	interfaces,	then	this	can	be	accomplished	with
the	ifconfig	alias	command	--	if	your	OS	supports	it).

Note

The	use	of	<VirtualHost>	does	not	affect	what	addresses
Apache	httpd	listens	on.	You	may	need	to	ensure	that	Apache
httpd	is	listening	on	the	correct	addresses	using	Listen.

A	ServerName	should	be	specified	inside	each	<VirtualHost>
block.	If	it	is	absent,	the	ServerName	from	the	"main"	server
configuration	will	be	inherited.

When	a	request	is	received,	the	server	first	maps	it	to	the	best
matching	<VirtualHost>	based	on	the	local	IP	address	and	port
combination	only.	Non-wildcards	have	a	higher	precedence.	If	no
match	based	on	IP	and	port	occurs	at	all,	the	"main"	server
configuration	is	used.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

If	multiple	virtual	hosts	contain	the	best	matching	IP	address	and
port,	the	server	selects	from	these	virtual	hosts	the	best	match
based	on	the	requested	hostname.	If	no	matching	name-based
virtual	host	is	found,	then	the	first	listed	virtual	host	that	matched
the	IP	address	will	be	used.	As	a	consequence,	the	first	listed
virtual	host	for	a	given	IP	address	and	port	combination	is	the
default	virtual	host	for	that	IP	and	port	combination.

Security

See	the	security	tips	document	for	details	on	why	your	security
could	be	compromised	if	the	directory	where	log	files	are	stored
is	writable	by	anyone	other	than	the	user	that	starts	the	server.

See	also
Apache	HTTP	Server	Virtual	Host	documentation
Issues	Regarding	DNS	and	Apache	HTTP	Server
Setting	which	addresses	and	ports	Apache	HTTP	Server	uses
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	Common	Directives

Description: A	collection	of	directives	that	are	implemented	by	more
than	one	multi-processing	module	(MPM)

Status: MPM

CoreDumpDirectory	Directive

Description: Directory	where	Apache	HTTP	Server	attempts	to
switch	before	dumping	core

Syntax: CoreDumpDirectory	directory

Default: See	usage	for	the	default	setting

Context: server	config
Status: MPM
Module: event,	worker,	prefork

This	controls	the	directory	to	which	Apache	httpd	attempts	to
switch	before	dumping	core.	If	your	operating	system	is	configured
to	create	core	files	in	the	working	directory	of	the	crashing
process,	CoreDumpDirectory	is	necessary	to	change	working
directory	from	the	default	ServerRoot	directory,	which	should	not
be	writable	by	the	user	the	server	runs	as.

If	you	want	a	core	dump	for	debugging,	you	can	use	this	directive
to	place	it	in	a	different	location.	This	directive	has	no	effect	if	your
operating	system	is	not	configured	to	write	core	files	to	the	working
directory	of	the	crashing	processes.

Core	Dumps	on	Linux

If	Apache	httpd	starts	as	root	and	switches	to	another	user,	the
Linux	kernel	disables	core	dumps	even	if	the	directory	is
writable	for	the	process.	Apache	httpd	(2.0.46	and	later)
reenables	core	dumps	on	Linux	2.4	and	beyond,	but	only	if	you
explicitly	configure	a	CoreDumpDirectory.

Core	Dumps	on	BSD

To	enable	core-dumping	of	suid-executables	on	BSD-systems
(such	as	FreeBSD),	set	kern.sugid_coredump	to	1.

Specific	signals

CoreDumpDirectory	processing	only	occurs	for	a	select	set
of	fatal	signals:	SIGFPE,	SIGILL,	SIGABORT,	SIGSEGV,	and
SIGBUS.

On	some	operating	systems,	SIGQUIT	also	results	in	a	core
dump	but	does	not	go	through	CoreDumpDirectory	or
EnableExceptionHook	processing,	so	the	core	location	is
dictated	entirely	by	the	operating	system.

EnableExceptionHook	Directive

Description: Enables	a	hook	that	runs	exception	handlers	after
a	crash

Syntax: EnableExceptionHook	On|Off

Default: EnableExceptionHook	Off

Context: server	config
Status: MPM
Module: event,	worker,	prefork

For	safety	reasons	this	directive	is	only	available	if	the	server	was
configured	with	the	--enable-exception-hook	option.	It
enables	a	hook	that	allows	external	modules	to	plug	in	and	do
something	after	a	child	crashed.

There	are	already	two	modules,	mod_whatkilledus	and
mod_backtrace	that	make	use	of	this	hook.	Please	have	a	look
at	Jeff	Trawick's	EnableExceptionHook	site	for	more	information
about	these.

https://emptyhammock.com/projects/httpd/diag/

GracefulShutdownTimeout	Directive

Description: Specify	a	timeout	after	which	a	gracefully
shutdown	server	will	exit.

Syntax: GracefulShutdownTimeout	seconds

Default: GracefulShutdownTimeout	0

Context: server	config
Status: MPM
Module: event,	worker,	prefork
Compatibility: Available	in	version	2.2	and	later

The	GracefulShutdownTimeout	specifies	how	many	seconds
after	receiving	a	"graceful-stop"	signal,	a	server	should	continue	to
run,	handling	the	existing	connections.

Setting	this	value	to	zero	means	that	the	server	will	wait
indefinitely	until	all	remaining	requests	have	been	fully	served.

Listen	Directive

Description: IP	addresses	and	ports	that	the	server	listens	to
Syntax: Listen	[IP-address:]portnumber

[protocol]

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2
Compatibility: The	protocol	argument	was	added	in	2.1.5

The	Listen	directive	instructs	Apache	httpd	to	listen	to	only
specific	IP	addresses	or	ports;	by	default	it	responds	to	requests
on	all	IP	interfaces.	Listen	is	now	a	required	directive.	If	it	is	not
in	the	config	file,	the	server	will	fail	to	start.	This	is	a	change	from
previous	versions	of	Apache	httpd.

The	Listen	directive	tells	the	server	to	accept	incoming	requests
on	the	specified	port	or	address-and-port	combination.	If	only	a
port	number	is	specified,	the	server	listens	to	the	given	port	on	all
interfaces.	If	an	IP	address	is	given	as	well	as	a	port,	the	server
will	listen	on	the	given	port	and	interface.

Multiple	Listen	directives	may	be	used	to	specify	a	number	of
addresses	and	ports	to	listen	to.	The	server	will	respond	to
requests	from	any	of	the	listed	addresses	and	ports.

For	example,	to	make	the	server	accept	connections	on	both	port
80	and	port	8000,	use:

Listen	80

Listen	8000

To	make	the	server	accept	connections	on	two	specified	interfaces
and	port	numbers,	use

Listen	192.170.2.1:80

Listen	192.170.2.5:8000

IPv6	addresses	must	be	surrounded	in	square	brackets,	as	in	the
following	example:

Listen	[2001:db8::a00:20ff:fea7:ccea]:80

The	optional	protocol	argument	is	not	required	for	most
configurations.	If	not	specified,	https	is	the	default	for	port	443
and	http	the	default	for	all	other	ports.	The	protocol	is	used	to
determine	which	module	should	handle	a	request,	and	to	apply
protocol	specific	optimizations	with	the	AcceptFilter	directive.

You	only	need	to	set	the	protocol	if	you	are	running	on	non-
standard	ports.	For	example,	running	an	https	site	on	port	8443:

Listen	192.170.2.1:8443	https

Error	condition
Multiple	Listen	directives	for	the	same	ip	address	and	port	will
result	in	an	Address	already	in	use	error	message.

See	also
DNS	Issues
Setting	which	addresses	and	ports	Apache	HTTP	Server	uses
Further	discussion	of	the	Address	already	in	use	error
message,	including	other	causes.

http://wiki.apache.org/httpd/CouldNotBindToAddress

ListenBackLog	Directive

Description: Maximum	length	of	the	queue	of	pending
connections

Syntax: ListenBacklog	backlog

Default: ListenBacklog	511

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2

The	maximum	length	of	the	queue	of	pending	connections.
Generally	no	tuning	is	needed	or	desired,	however	on	some
systems	it	is	desirable	to	increase	this	when	under	a	TCP	SYN
flood	attack.	See	the	backlog	parameter	to	the	listen(2)
system	call.

This	will	often	be	limited	to	a	smaller	number	by	the	operating
system.	This	varies	from	OS	to	OS.	Also	note	that	many	OSes	do
not	use	exactly	what	is	specified	as	the	backlog,	but	use	a	number
based	on	(but	normally	larger	than)	what	is	set.

ListenCoresBucketsRatio	Directive

Description: Ratio	between	the	number	of	CPU	cores	(online)
and	the	number	of	listeners'	buckets

Syntax: ListenCoresBucketsRatio	ratio

Default: ListenCoresBucketsRatio	0	(disabled)

Context: server	config
Status: MPM
Module: event,	worker,	prefork
Compatibility: Available	in	Apache	HTTP	Server	2.4.17,	with	a

kernel	supporting	the	socket	option
SO_REUSEPORT	and	distributing	new
connections	evenly	across	listening	processes'
(or	threads')	sockets	using	it	(eg.	Linux	3.9	and
later,	but	not	the	current	implementations	of
SO_REUSEPORT	in	*BSDs.

A	ratio	between	the	number	of	(online)	CPU	cores	and	the	number
of	listeners'	buckets	can	be	used	to	make	Apache	HTTP	Server
create	num_cpu_cores	/	ratio	listening	buckets,	each
containing	its	own	Listen-ing	socket(s)	on	the	same	port(s),	and
then	make	each	child	handle	a	single	bucket	(with	round-robin
distribution	of	the	buckets	at	children	creation	time).

Meaning	of	"online"	CPU	core

On	Linux	(and	also	BSD)	a	CPU	core	can	be	turned	on/off	if
Hotplug	is	configured,	therefore	ListenCoresBucketsRatio
needs	to	take	this	parameter	into	account	while	calculating	the
number	of	buckets	to	create.

ListenCoresBucketsRatio	can	improve	the	scalability	when
accepting	new	connections	is/becomes	the	bottleneck.	On
systems	with	a	large	number	of	CPU	cores,	enabling	this	feature

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

has	been	tested	to	show	significant	performances	improvement
and	shorter	responses	time.

There	must	be	at	least	twice	the	number	of	CPU	cores	than	the
configured	ratio	for	this	to	be	active.	The	recommended	ratio	is	8,
hence	at	least	16	cores	should	be	available	at	runtime	when	this
value	is	used.	The	right	ratio	to	obtain	maximum	performance
needs	to	be	calculated	for	each	target	system,	testing	multiple
values	and	observing	the	variations	in	your	key	performance
metrics.

This	directive	influences	the	calculation	of	the	MinSpareThreads
and	MaxSpareThreads	lower	bound	values.	The	number	of
children	processes	needs	to	be	a	multiple	of	the	number	of
buckets	to	optimally	accept	connections.

Multiple	Listeners	or	Apache	HTTP	servers	on	the	same	IP
address	and	port

Setting	the	SO_REUSEPORT	option	on	the	listening	socket(s)
consequently	allows	multiple	processes	(sharing	the	same
EUID,	e.g.	root)	to	bind	to	the	the	same	IP	address	and	port,
without	the	binding	error	raised	by	the	system	in	the	usual	case.

This	also	means	that	multiple	instances	of	Apache	httpd
configured	on	a	same	IP:port	and	with	a	positive
ListenCoresBucketsRatio	would	start	without	an	error	too,
and	then	run	with	incoming	connections	evenly	distributed
accross	both	instances	(this	is	NOT	a	recommendation	or	a
sensible	usage	in	any	case,	but	just	a	notice	that	it	would
prevent	such	possible	issues	to	be	detected).

Within	the	same	instance,	Apache	httpd	will	check	and	fail	to
start	if	multiple	Listen	directives	on	the	exact	same	IP	(or
hostname)	and	port	are	configured,	thus	avoiding	the	creation	of
some	duplicated	buckets	which	would	be	useless	and	kill

performances.	However	it	can't	(and	won't	try	harder	to)	catch
all	the	possible	overlapping	cases	(like	a	hostname	resolving	to
an	IP	used	elsewhere).

MaxConnectionsPerChild	Directive

Description: Limit	on	the	number	of	connections	that	an
individual	child	server	will	handle	during	its	life

Syntax: MaxConnectionsPerChild	number

Default: MaxConnectionsPerChild	0

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2
Compatibility: Available	Apache	HTTP	Server	2.3.9	and	later.

The	old	name	MaxRequestsPerChild	is	still
supported.

The	MaxConnectionsPerChild	directive	sets	the	limit	on	the
number	of	connections	that	an	individual	child	server	process	will
handle.	After	MaxConnectionsPerChild	connections,	the	child
process	will	die.	If	MaxConnectionsPerChild	is	0,	then	the
process	will	never	expire.

Setting	MaxConnectionsPerChild	to	a	non-zero	value	limits
the	amount	of	memory	that	process	can	consume	by	(accidental)
memory	leakage.

MaxMemFree	Directive

Description: Maximum	amount	of	memory	that	the	main
allocator	is	allowed	to	hold	without	calling	free()

Syntax: MaxMemFree	KBytes

Default: MaxMemFree	2048

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware

The	MaxMemFree	directive	sets	the	maximum	number	of	free
Kbytes	that	every	allocator	is	allowed	to	hold	without	calling
free().	In	threaded	MPMs,	every	thread	has	its	own	allocator.
When	set	to	zero,	the	threshold	will	be	set	to	unlimited.

MaxRequestWorkers	Directive

Description: Maximum	number	of	connections	that	will	be
processed	simultaneously

Syntax: MaxRequestWorkers	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	prefork

The	MaxRequestWorkers	directive	sets	the	limit	on	the	number
of	simultaneous	requests	that	will	be	served.	Any	connection
attempts	over	the	MaxRequestWorkers	limit	will	normally	be
queued,	up	to	a	number	based	on	the	ListenBacklog	directive.
Once	a	child	process	is	freed	at	the	end	of	a	different	request,	the
connection	will	then	be	serviced.

For	non-threaded	servers	(i.e.,	prefork),	MaxRequestWorkers
translates	into	the	maximum	number	of	child	processes	that	will	be
launched	to	serve	requests.	The	default	value	is	256;	to	increase
it,	you	must	also	raise	ServerLimit.

For	threaded	and	hybrid	servers	(e.g.	event	or	worker)
MaxRequestWorkers	restricts	the	total	number	of	threads	that
will	be	available	to	serve	clients.	For	hybrid	MPMs	the	default
value	is	16	(ServerLimit)	multiplied	by	the	value	of	25
(ThreadsPerChild).	Therefore,	to	increase
MaxRequestWorkers	to	a	value	that	requires	more	than	16
processes,	you	must	also	raise	ServerLimit.

MaxRequestWorkers	was	called	MaxClients	before	version
2.3.13.	The	old	name	is	still	supported.

MaxSpareThreads	Directive

Description: Maximum	number	of	idle	threads
Syntax: MaxSpareThreads	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	mpm_netware,	mpmt_os2

Maximum	number	of	idle	threads.	Different	MPMs	deal	with	this
directive	differently.

For	worker	and	event,	the	default	is	MaxSpareThreads	250.
These	MPMs	deal	with	idle	threads	on	a	server-wide	basis.	If	there
are	too	many	idle	threads	in	the	server	then	child	processes	are
killed	until	the	number	of	idle	threads	is	less	than	this	number.
Additional	processes/threads	might	be	created	if
ListenCoresBucketsRatio	is	enabled.

For	mpm_netware	the	default	is	MaxSpareThreads	100.	Since
this	MPM	runs	a	single-process,	the	spare	thread	count	is	also
server-wide.

mpmt_os2	works	similar	to	mpm_netware.	For	mpmt_os2	the
default	value	is	10.

Restrictions

The	range	of	the	MaxSpareThreads	value	is	restricted.
Apache	httpd	will	correct	the	given	value	automatically
according	to	the	following	rules:

mpm_netware	wants	the	value	to	be	greater	than
MinSpareThreads.
For	worker	and	event,	the	value	must	be	greater	or	equal

to	the	sum	of	MinSpareThreads	and
ThreadsPerChild.

See	also
MinSpareThreads

StartServers

MaxSpareServers

MinSpareThreads	Directive

Description: Minimum	number	of	idle	threads	available	to
handle	request	spikes

Syntax: MinSpareThreads	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	mpm_netware,	mpmt_os2

Minimum	number	of	idle	threads	to	handle	request	spikes.
Different	MPMs	deal	with	this	directive	differently.

worker	and	event	use	a	default	of	MinSpareThreads	75	and
deal	with	idle	threads	on	a	server-wide	basis.	If	there	aren't
enough	idle	threads	in	the	server	then	child	processes	are	created
until	the	number	of	idle	threads	is	greater	than	number.	Additional
processes/threads	might	be	created	if
ListenCoresBucketsRatio	is	enabled.

mpm_netware	uses	a	default	of	MinSpareThreads	10	and,
since	it	is	a	single-process	MPM,	tracks	this	on	a	server-wide
bases.

mpmt_os2	works	similar	to	mpm_netware.	For	mpmt_os2	the
default	value	is	5.

See	also
MaxSpareThreads

StartServers

MinSpareServers

PidFile	Directive

Description: File	where	the	server	records	the	process	ID	of	the
daemon

Syntax: PidFile	filename

Default: PidFile	logs/httpd.pid

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpmt_os2

The	PidFile	directive	sets	the	file	to	which	the	server	records	the
process	id	of	the	daemon.	If	the	filename	is	not	absolute	then	it	is
assumed	to	be	relative	to	the	ServerRoot.

Example
PidFile	/var/run/apache.pid

It	is	often	useful	to	be	able	to	send	the	server	a	signal,	so	that	it
closes	and	then	re-opens	its	ErrorLog	and	TransferLog,	and
re-reads	its	configuration	files.	This	is	done	by	sending	a	SIGHUP
(kill	-1)	signal	to	the	process	id	listed	in	the	PidFile.

The	PidFile	is	subject	to	the	same	warnings	about	log	file
placement	and	security.

Note

As	of	Apache	HTTP	Server	2,	we	recommended	that	you	only
use	the	apachectl	script,	or	the	init	script	that	your	OS
provides,	for	(re-)starting	or	stopping	the	server.

ReceiveBufferSize	Directive

Description: TCP	receive	buffer	size
Syntax: ReceiveBufferSize	bytes

Default: ReceiveBufferSize	0

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2

The	server	will	set	the	TCP	receive	buffer	size	to	the	number	of
bytes	specified.

If	set	to	the	value	of	0,	the	server	will	use	the	OS	default.

ScoreBoardFile	Directive

Description: Location	of	the	file	used	to	store	coordination	data
for	the	child	processes

Syntax: ScoreBoardFile	file-path

Default: ScoreBoardFile

logs/apache_runtime_status

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt

Apache	HTTP	Server	uses	a	scoreboard	to	communicate	between
its	parent	and	child	processes.	Some	architectures	require	a	file	to
facilitate	this	communication.	If	the	file	is	left	unspecified,	Apache
httpd	first	attempts	to	create	the	scoreboard	entirely	in	memory
(using	anonymous	shared	memory)	and,	failing	that,	will	attempt	to
create	the	file	on	disk	(using	file-based	shared	memory).
Specifying	this	directive	causes	Apache	httpd	to	always	create	the
file	on	the	disk.

Example
ScoreBoardFile	/var/run/apache_runtime_status

File-based	shared	memory	is	useful	for	third-party	applications
that	require	direct	access	to	the	scoreboard.

If	you	use	a	ScoreBoardFile	then	you	may	see	improved	speed
by	placing	it	on	a	RAM	disk.	But	be	careful	that	you	heed	the	same
warnings	about	log	file	placement	and	security.

See	also
Stopping	and	Restarting	Apache	HTTP	Server

SendBufferSize	Directive

Description: TCP	buffer	size
Syntax: SendBufferSize	bytes

Default: SendBufferSize	0

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2

Sets	the	server's	TCP	send	buffer	size	to	the	number	of	bytes
specified.	It	is	often	useful	to	set	this	past	the	OS's	standard
default	value	on	high	speed,	high	latency	connections	(i.e.,	100ms
or	so,	such	as	transcontinental	fast	pipes).

If	set	to	the	value	of	0,	the	server	will	use	the	default	value
provided	by	your	OS.

Further	configuration	of	your	operating	system	may	be	required	to
elicit	better	performance	on	high	speed,	high	latency	connections.

On	some	operating	systems,	changes	in	TCP	behavior	resulting
from	a	larger	SendBufferSize	may	not	be	seen	unless
EnableSendfile	is	set	to	OFF.	This	interaction	applies	only	to
static	files.

ServerLimit	Directive

Description: Upper	limit	on	configurable	number	of	processes
Syntax: ServerLimit	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	prefork

For	the	prefork	MPM,	this	directive	sets	the	maximum
configured	value	for	MaxRequestWorkers	for	the	lifetime	of	the
Apache	httpd	process.	For	the	worker	and	event	MPMs,	this
directive	in	combination	with	ThreadLimit	sets	the	maximum
configured	value	for	MaxRequestWorkers	for	the	lifetime	of	the
Apache	httpd	process.	For	the	event	MPM,	this	directive	also
defines	how	many	old	server	processes	may	keep	running	and
finish	processing	open	connections.	Any	attempts	to	change	this
directive	during	a	restart	will	be	ignored,	but
MaxRequestWorkers	can	be	modified	during	a	restart.

Special	care	must	be	taken	when	using	this	directive.	If
ServerLimit	is	set	to	a	value	much	higher	than	necessary,
extra,	unused	shared	memory	will	be	allocated.	If	both
ServerLimit	and	MaxRequestWorkers	are	set	to	values
higher	than	the	system	can	handle,	Apache	httpd	may	not	start	or
the	system	may	become	unstable.

With	the	prefork	MPM,	use	this	directive	only	if	you	need	to	set
MaxRequestWorkers	higher	than	256	(default).	Do	not	set	the
value	of	this	directive	any	higher	than	what	you	might	want	to	set
MaxRequestWorkers	to.

With	worker,	use	this	directive	only	if	your	MaxRequestWorkers
and	ThreadsPerChild	settings	require	more	than	16	server

processes	(default).	Do	not	set	the	value	of	this	directive	any
higher	than	the	number	of	server	processes	required	by	what	you
may	want	for	MaxRequestWorkers	and	ThreadsPerChild.

With	event,	increase	this	directive	if	the	process	number	defined
by	your	MaxRequestWorkers	and	ThreadsPerChild	settings,
plus	the	number	of	gracefully	shutting	down	processes,	is	more
than	16	server	processes	(default).

Note

There	is	a	hard	limit	of	ServerLimit	20000	compiled	into	the
server	(for	the	prefork	MPM	200000).	This	is	intended	to
avoid	nasty	effects	caused	by	typos.	To	increase	it	even	further
past	this	limit,	you	will	need	to	modify	the	value	of
MAX_SERVER_LIMIT	in	the	mpm	source	file	and	rebuild	the
server.

See	also
Stopping	and	Restarting	Apache	HTTP	Server

StartServers	Directive

Description: Number	of	child	server	processes	created	at
startup

Syntax: StartServers	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpmt_os2

The	StartServers	directive	sets	the	number	of	child	server
processes	created	on	startup.	As	the	number	of	processes	is
dynamically	controlled	depending	on	the	load,	(see
MinSpareThreads,	MaxSpareThreads,	MinSpareServers,
MaxSpareServers)	there	is	usually	little	reason	to	adjust	this
parameter.

The	default	value	differs	from	MPM	to	MPM.	worker	and	event
default	to	StartServers	3;	prefork	defaults	to	5;	mpmt_os2
defaults	to	2.

StartThreads	Directive

Description: Number	of	threads	created	on	startup
Syntax: StartThreads	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: mpm_netware

Number	of	threads	created	on	startup.	As	the	number	of	threads	is
dynamically	controlled	depending	on	the	load,	(see
MinSpareThreads,	MaxSpareThreads,	MinSpareServers,
MaxSpareServers)	there	is	usually	little	reason	to	adjust	this
parameter.

For	mpm_netware	the	default	is	StartThreads	50	and,	since
there	is	only	a	single	process,	this	is	the	total	number	of	threads
created	at	startup	to	serve	requests.

ThreadLimit	Directive

Description: Sets	the	upper	limit	on	the	configurable	number	of
threads	per	child	process

Syntax: ThreadLimit	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	mpm_winnt

This	directive	sets	the	maximum	configured	value	for
ThreadsPerChild	for	the	lifetime	of	the	Apache	httpd	process.
Any	attempts	to	change	this	directive	during	a	restart	will	be
ignored,	but	ThreadsPerChild	can	be	modified	during	a	restart
up	to	the	value	of	this	directive.

Special	care	must	be	taken	when	using	this	directive.	If
ThreadLimit	is	set	to	a	value	much	higher	than
ThreadsPerChild,	extra	unused	shared	memory	will	be
allocated.	If	both	ThreadLimit	and	ThreadsPerChild	are	set
to	values	higher	than	the	system	can	handle,	Apache	httpd	may
not	start	or	the	system	may	become	unstable.	Do	not	set	the	value
of	this	directive	any	higher	than	your	greatest	predicted	setting	of
ThreadsPerChild	for	the	current	run	of	Apache	httpd.

The	default	value	for	ThreadLimit	is	1920	when	used	with
mpm_winnt	and	64	when	used	with	the	others.

Note

There	is	a	hard	limit	of	ThreadLimit	20000	(or
ThreadLimit	100000	with	event,	ThreadLimit	15000
with	mpm_winnt)	compiled	into	the	server.	This	is	intended	to
avoid	nasty	effects	caused	by	typos.	To	increase	it	even	further
past	this	limit,	you	will	need	to	modify	the	value	of

MAX_THREAD_LIMIT	in	the	mpm	source	file	and	rebuild	the
server.

ThreadsPerChild	Directive

Description: Number	of	threads	created	by	each	child	process
Syntax: ThreadsPerChild	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	mpm_winnt

This	directive	sets	the	number	of	threads	created	by	each	child
process.	The	child	creates	these	threads	at	startup	and	never
creates	more.	If	using	an	MPM	like	mpm_winnt,	where	there	is
only	one	child	process,	this	number	should	be	high	enough	to
handle	the	entire	load	of	the	server.	If	using	an	MPM	like	worker,
where	there	are	multiple	child	processes,	the	total	number	of
threads	should	be	high	enough	to	handle	the	common	load	on	the
server.

The	default	value	for	ThreadsPerChild	is	64	when	used	with
mpm_winnt	and	25	when	used	with	the	others.

ThreadStackSize	Directive

Description: The	size	in	bytes	of	the	stack	used	by	threads
handling	client	connections

Syntax: ThreadStackSize	size

Default: 65536	on	NetWare;	varies	on	other

operating	systems

Context: server	config
Status: MPM
Module: event,	worker,	mpm_winnt,	mpm_netware,

mpmt_os2

Compatibility: Available	in	Apache	HTTP	Server	2.1	and	later

The	ThreadStackSize	directive	sets	the	size	of	the	stack	(for
autodata)	of	threads	which	handle	client	connections	and	call
modules	to	help	process	those	connections.	In	most	cases	the
operating	system	default	for	stack	size	is	reasonable,	but	there	are
some	conditions	where	it	may	need	to	be	adjusted:

On	platforms	with	a	relatively	small	default	thread	stack	size
(e.g.,	HP-UX),	Apache	httpd	may	crash	when	using	some
third-party	modules	which	use	a	relatively	large	amount	of
autodata	storage.	Those	same	modules	may	have	worked
fine	on	other	platforms	where	the	default	thread	stack	size	is
larger.	This	type	of	crash	is	resolved	by	setting
ThreadStackSize	to	a	value	higher	than	the	operating
system	default.	This	type	of	adjustment	is	necessary	only	if
the	provider	of	the	third-party	module	specifies	that	it	is
required,	or	if	diagnosis	of	an	Apache	httpd	crash	indicates
that	the	thread	stack	size	was	too	small.
On	platforms	where	the	default	thread	stack	size	is
significantly	larger	than	necessary	for	the	web	server
configuration,	a	higher	number	of	threads	per	child	process
will	be	achievable	if	ThreadStackSize	is	set	to	a	value

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

lower	than	the	operating	system	default.	This	type	of
adjustment	should	only	be	made	in	a	test	environment	which
allows	the	full	set	of	web	server	processing	can	be	exercised,
as	there	may	be	infrequent	requests	which	require	more	stack
to	process.	The	minimum	required	stack	size	strongly
depends	on	the	modules	used,	but	any	change	in	the	web
server	configuration	can	invalidate	the	current
ThreadStackSize	setting.
On	Linux,	this	directive	can	only	be	used	to	increase	the
default	stack	size,	as	the	underlying	system	call	uses	the
value	as	a	minimum	stack	size.	The	(often	large)	soft	limit	for
ulimit	-s	(8MB	if	unlimited)	is	used	as	the	default	stack
size.

It	is	recommended	to	not	reduce	ThreadStackSize	unless	a
high	number	of	threads	per	child	process	is	needed.	On	some
platforms	(including	Linux),	a	setting	of	128000	is	already	too
low	and	causes	crashes	with	some	common	modules.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	event

Description: A	variant	of	the	worker	MPM	with	the	goal	of
consuming	threads	only	for	connections	with
active	processing

Status: MPM
Module	Identifier: mpm_event_module
Source	File: event.c

Summary
The	event	Multi-Processing	Module	(MPM)	is	designed	to	allow
more	requests	to	be	served	simultaneously	by	passing	off	some
processing	work	to	the	listeners	threads,	freeing	up	the	worker
threads	to	serve	new	requests.

To	use	the	event	MPM,	add	--with-mpm=event	to	the
configure	script's	arguments	when	building	the	httpd.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
The	worker	MPM

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_event
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_event

Relationship	with	the	Worker	MPM

event	is	based	on	the	worker	MPM,	which	implements	a	hybrid
multi-process	multi-threaded	server.	A	single	control	process	(the
parent)	is	responsible	for	launching	child	processes.	Each	child
process	creates	a	fixed	number	of	server	threads	as	specified	in
the	ThreadsPerChild	directive,	as	well	as	a	listener	thread
which	listens	for	connections	and	passes	them	to	a	worker	thread
for	processing	when	they	arrive.

Run-time	configuration	directives	are	identical	to	those	provided	by
worker,	with	the	only	addition	of	the
AsyncRequestWorkerFactor.

How	it	Works

This	MPM	tries	to	fix	the	'keep	alive	problem'	in	HTTP.	After	a
client	completes	the	first	request,	it	can	keep	the	connection	open,
sending	further	requests	using	the	same	socket	and	saving
significant	overhead	in	creating	TCP	connections.	However,
Apache	HTTP	Server	traditionally	keeps	an	entire	child
process/thread	waiting	for	data	from	the	client,	which	brings	its
own	disadvantages.	To	solve	this	problem,	this	MPM	uses	a
dedicated	listener	thread	for	each	process	to	handle	both	the
Listening	sockets,	all	sockets	that	are	in	a	Keep	Alive	state,
sockets	where	the	handler	and	protocol	filters	have	done	their
work	and	the	ones	where	the	only	remaining	thing	to	do	is	send
the	data	to	the	client.

This	new	architecture,	leveraging	non-blocking	sockets	and
modern	kernel	features	exposed	by	APR	(like	Linux's	epoll),	no
longer	requires	the	mpm-accept	Mutex	configured	to	avoid	the
thundering	herd	problem.

The	total	amount	of	connections	that	a	single	process/threads
block	can	handle	is	regulated	by	the
AsyncRequestWorkerFactor	directive.

Async	connections
Async	connections	would	need	a	fixed	dedicated	worker	thread
with	the	previous	MPMs	but	not	with	event.	The	status	page	of
mod_status	shows	new	columns	under	the	Async	connections
section:

Writing
While	sending	the	response	to	the	client,	it	might	happen	that
the	TCP	write	buffer	fills	up	because	the	connection	is	too
slow.	Usually	in	this	case	a	write()	to	the	socket	returns
EWOULDBLOCK	or	EAGAIN,	to	become	writable	again	after	an

idle	time.	The	worker	holding	the	socket	might	be	able	to
offload	the	waiting	task	to	the	listener	thread,	that	in	turn	will
re-assign	it	to	the	first	idle	worker	thread	available	once	an
event	will	be	raised	for	the	socket	(for	example,	"the	socket	is
now	writable").	Please	check	the	Limitations	section	for	more
information.

Keep-alive
Keep	Alive	handling	is	the	most	basic	improvement	from	the
worker	MPM.	Once	a	worker	thread	finishes	to	flush	the
response	to	the	client,	it	can	offload	the	socket	handling	to	the
listener	thread,	that	in	turns	will	wait	for	any	event	from	the
OS,	like	"the	socket	is	readable".	If	any	new	request	comes
from	the	client,	then	the	listener	will	forward	it	to	the	first
worker	thread	available.	Conversely,	if	the
KeepAliveTimeout	occurs	then	the	socket	will	be	closed	by
the	listener.	In	this	way	the	worker	threads	are	not	responsible
for	idle	sockets	and	they	can	be	re-used	to	serve	other
requests.

Closing
Sometimes	the	MPM	needs	to	perform	a	lingering	close,
namely	sending	back	an	early	error	to	the	client	while	it	is	still
transmitting	data	to	httpd.	Sending	the	response	and	then
closing	the	connection	immediately	is	not	the	correct	thing	to
do	since	the	client	(still	trying	to	send	the	rest	of	the	request)
would	get	a	connection	reset	and	could	not	read	the	httpd's
response.	So	in	such	cases,	httpd	tries	to	read	the	rest	of	the
request	to	allow	the	client	to	consume	the	response.	The
lingering	close	is	time	bounded	but	it	can	take	relatively	long
time,	so	a	worker	thread	can	offload	this	work	to	the	listener.

These	improvements	are	valid	for	both	HTTP/HTTPS	connections.

Graceful	process	termination	and	Scoreboard	usage

This	mpm	showed	some	scalability	bottlenecks	in	the	past	leading
to	the	following	error:	"scoreboard	is	full,	not	at
MaxRequestWorkers".	MaxRequestWorkers	limits	the	number
of	simultaneous	requests	that	will	be	served	at	any	given	time	and
also	the	number	of	allowed	processes	(MaxRequestWorkers	/
ThreadsPerChild),	meanwhile	the	Scoreboard	is	a
representation	of	all	the	running	processes	and	the	status	of	their
worker	threads.	If	the	scoreboard	is	full	(so	all	the	threads	have	a
state	that	is	not	idle)	but	the	number	of	active	requests	served	is
not	MaxRequestWorkers,	it	means	that	some	of	them	are
blocking	new	requests	that	could	be	served	but	that	are	queued
instead	(up	to	the	limit	imposed	by	ListenBacklog).	Most	of	the
times	the	threads	are	stuck	in	the	Graceful	state,	namely	they	are
waiting	to	finish	their	work	with	a	TCP	connection	to	safely
terminate	and	free	up	a	scoreboard	slot	(for	example	handling	long
running	requests,	slow	clients	or	connections	with	keep-alive
enabled).	Two	scenarios	are	very	common:

During	a	graceful	restart.	The	parent	process	signals	all	its
children	to	complete	their	work	and	terminate,	while	it	reloads
the	config	and	forks	new	processes.	If	the	old	children	keep
running	for	a	while	before	stopping,	the	scoreboard	will	be
partially	occupied	until	their	slots	are	freed.
When	the	server	load	goes	down	in	a	way	that	causes	httpd
to	stop	some	processes	(for	example	due	to
MaxSpareThreads).	This	is	particularly	problematic	because
when	the	load	increases	again,	httpd	will	try	to	start	new
processes.	If	the	pattern	repeats,	the	number	of	processes
can	rise	quite	a	bit,	ending	up	in	a	mixture	of	old	processes
trying	to	stop	and	new	ones	trying	to	do	some	work.

From	2.4.24	onward,	mpm-event	is	smarter	and	it	is	able	to	handle
graceful	terminations	in	a	much	better	way.	Some	of	the
improvements	are:

Allow	the	use	of	all	the	scoreboard	slots	up	to	ServerLimit.
MaxRequestWorkers	and	ThreadsPerChild	are	used	to
limit	the	amount	of	active	processes,	meanwhile
ServerLimit	takes	also	into	account	the	ones	doing	a
graceful	close	to	allow	extra	slots	when	needed.	The	idea	is	to
use	ServerLimit	to	instruct	httpd	about	how	many	overall
processes	are	tolerated	before	impacting	the	system
resources.
Force	gracefully	finishing	processes	to	close	their	connections
in	keep-alive	state.
During	graceful	shutdown,	if	there	are	more	running	worker
threads	than	open	connections	for	a	given	process,	terminate
these	threads	to	free	resources	faster	(which	may	be	needed
for	new	processes).
If	the	scoreboard	is	full,	prevent	more	processes	to	finish
gracefully	due	to	reduced	load	until	old	processes	have
terminated	(otherwise	the	situation	would	get	worse	once	the
load	increases	again).

The	behavior	described	in	the	last	point	is	completely	observable
via	mod_status	in	the	connection	summary	table	through	two
new	columns:	"Slot"	and	"Stopping".	The	former	indicates	the	PID
and	the	latter	if	the	process	is	stopping	or	not;	the	extra	state	"Yes
(old	gen)"	indicates	a	process	still	running	after	a	graceful	restart.

Limitations
The	improved	connection	handling	may	not	work	for	certain
connection	filters	that	have	declared	themselves	as	incompatible
with	event.	In	these	cases,	this	MPM	will	fall	back	to	the	behavior
of	the	worker	MPM	and	reserve	one	worker	thread	per
connection.	All	modules	shipped	with	the	server	are	compatible
with	the	event	MPM.

A	similar	restriction	is	currently	present	for	requests	involving	an

output	filter	that	needs	to	read	and/or	modify	the	whole	response
body.	If	the	connection	to	the	client	blocks	while	the	filter	is
processing	the	data,	and	the	amount	of	data	produced	by	the	filter
is	too	big	to	be	buffered	in	memory,	the	thread	used	for	the
request	is	not	freed	while	httpd	waits	until	the	pending	data	is	sent
to	the	client.
To	illustrate	this	point	we	can	think	about	the	following	two
situations:	serving	a	static	asset	(like	a	CSS	file)	versus	serving
content	retrieved	from	FCGI/CGI	or	a	proxied	server.	The	former	is
predictable,	namely	the	event	MPM	has	full	visibility	on	the	end	of
the	content	and	it	can	use	events:	the	worker	thread	serving	the
response	content	can	flush	the	first	bytes	until	EWOULDBLOCK	or
EAGAIN	is	returned,	delegating	the	rest	to	the	listener.	This	one	in
turn	waits	for	an	event	on	the	socket,	and	delegates	the	work	to
flush	the	rest	of	the	content	to	the	first	idle	worker	thread.
Meanwhile	in	the	latter	example	(FCGI/CGI/proxied	content)	the
MPM	can't	predict	the	end	of	the	response	and	a	worker	thread
has	to	finish	its	work	before	returning	the	control	to	the	listener.
The	only	alternative	is	to	buffer	the	response	in	memory,	but	it
wouldn't	be	the	safest	option	for	the	sake	of	the	server's	stability
and	memory	footprint.

Background	material
The	event	model	was	made	possible	by	the	introduction	of	new
APIs	into	the	supported	operating	systems:

epoll	(Linux)
kqueue	(BSD)
event	ports	(Solaris)

Before	these	new	APIs	where	made	available,	the	traditional
select	and	poll	APIs	had	to	be	used.	Those	APIs	get	slow	if
used	to	handle	many	connections	or	if	the	set	of	connections	rate
of	change	is	high.	The	new	APIs	allow	to	monitor	much	more

connections	and	they	perform	way	better	when	the	set	of
connections	to	monitor	changes	frequently.	So	these	APIs	made	it
possible	to	write	the	event	MPM,	that	scales	much	better	with	the
typical	HTTP	pattern	of	many	idle	connections.

The	MPM	assumes	that	the	underlying	apr_pollset
implementation	is	reasonably	threadsafe.	This	enables	the	MPM
to	avoid	excessive	high	level	locking,	or	having	to	wake	up	the
listener	thread	in	order	to	send	it	a	keep-alive	socket.	This	is
currently	only	compatible	with	KQueue	and	EPoll.

Requirements

This	MPM	depends	on	APR's	atomic	compare-and-swap
operations	for	thread	synchronization.	If	you	are	compiling	for	an
x86	target	and	you	don't	need	to	support	386s,	or	you	are
compiling	for	a	SPARC	and	you	don't	need	to	run	on	pre-
UltraSPARC	chips,	add	--enable-nonportable-
atomics=yes	to	the	configure	script's	arguments.	This	will
cause	APR	to	implement	atomic	operations	using	efficient
opcodes	not	available	in	older	CPUs.

This	MPM	does	not	perform	well	on	older	platforms	which	lack
good	threading,	but	the	requirement	for	EPoll	or	KQueue	makes
this	moot.

To	use	this	MPM	on	FreeBSD,	FreeBSD	5.3	or	higher	is
recommended.	However,	it	is	possible	to	run	this	MPM	on
FreeBSD	5.2.1,	if	you	use	libkse	(see	man	libmap.conf).
For	NetBSD,	at	least	version	2.0	is	recommended.
For	Linux,	a	2.6	kernel	is	recommended.	It	is	also	necessary
to	ensure	that	your	version	of	glibc	has	been	compiled	with
support	for	EPoll.

AsyncRequestWorkerFactor	Directive

Description: Limit	concurrent	connections	per	process
Syntax: AsyncRequestWorkerFactor	factor

Default: 2

Context: server	config
Status: MPM
Module: event
Compatibility: Available	in	version	2.3.13	and	later

The	event	MPM	handles	some	connections	in	an	asynchronous
way,	where	request	worker	threads	are	only	allocated	for	short
periods	of	time	as	needed,	and	other	connections	with	one	request
worker	thread	reserved	per	connection.	This	can	lead	to	situations
where	all	workers	are	tied	up	and	no	worker	thread	is	available	to
handle	new	work	on	established	async	connections.

To	mitigate	this	problem,	the	event	MPM	does	two	things:

it	limits	the	number	of	connections	accepted	per	process,
depending	on	the	number	of	idle	request	workers;
if	all	workers	are	busy,	it	will	close	connections	in	keep-alive
state	even	if	the	keep-alive	timeout	has	not	expired.	This
allows	the	respective	clients	to	reconnect	to	a	different
process	which	may	still	have	worker	threads	available.

This	directive	can	be	used	to	fine-tune	the	per-process	connection
limit.	A	process	will	only	accept	new	connections	if	the	current
number	of	connections	(not	counting	connections	in	the	"closing"
state)	is	lower	than:

ThreadsPerChild	+	(AsyncRequestWorkerFactor	*
number	of	idle	workers)

An	estimation	of	the	maximum	concurrent	connections	across	all

the	processes	given	an	average	value	of	idle	worker	threads	can
be	calculated	with:

(ThreadsPerChild	+	(AsyncRequestWorkerFactor	*
number	of	idle	workers))	*	ServerLimit

Example

ThreadsPerChild	=	10

ServerLimit	=	4

AsyncRequestWorkerFactor	=	2

MaxRequestWorkers	=	40

idle_workers	=	4	(average	for	all	the	processes	to	keep	it	simple)

max_connections	=	(ThreadsPerChild	+	(AsyncRequestWorkerFactor	*	idle_workers))	*	ServerLimit

																=	(10	+	(2	*	4))	*	4	=	72

When	all	the	worker	threads	are	idle,	then	absolute	maximum
numbers	of	concurrent	connections	can	be	calculared	in	a	simpler
way:

(AsyncRequestWorkerFactor	+	1)	*
MaxRequestWorkers

Example

ThreadsPerChild	=	10

ServerLimit	=	4

MaxRequestWorkers	=	40

AsyncRequestWorkerFactor	=	2

If	all	the	processes	have	all	threads	idle	then:

idle_workers	=	10

We	can	calculate	the	absolute	maximum	numbers	of	concurrent
connections	in	two	ways:

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

max_connections	=	(ThreadsPerChild	+	(AsyncRequestWorkerFactor	*	idle_workers))	*	ServerLimit

																=	(10	+	(2	*	10))	*	4	=	120

max_connections	=	(AsyncRequestWorkerFactor	+	1)	*	MaxRequestWorkers

																=	(2	+	1)	*	40	=	120

Tuning	AsyncRequestWorkerFactor	requires	knowledge	about
the	traffic	handled	by	httpd	in	each	specific	use	case,	so	changing
the	default	value	requires	extensive	testing	and	data	gathering
from	mod_status.

MaxRequestWorkers	was	called	MaxClients	prior	to	version
2.3.13.	The	above	value	shows	that	the	old	name	did	not
accurately	describe	its	meaning	for	the	event	MPM.

AsyncRequestWorkerFactor	can	take	non-integer	arguments,
e.g	"1.5".

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	netware

Description: Multi-Processing	Module	implementing	an
exclusively	threaded	web	server	optimized	for
Novell	NetWare

Status: MPM
Module	Identifier: mpm_netware_module
Source	File: mpm_netware.c

Summary
This	Multi-Processing	Module	(MPM)	implements	an	exclusively
threaded	web	server	that	has	been	optimized	for	Novell	NetWare.

The	main	thread	is	responsible	for	launching	child	worker	threads
which	listen	for	connections	and	serve	them	when	they	arrive.	Apache
HTTP	Server	always	tries	to	maintain	several	spare	or	idle	worker
threads,	which	stand	ready	to	serve	incoming	requests.	In	this	way,
clients	do	not	need	to	wait	for	a	new	child	threads	to	be	spawned
before	their	requests	can	be	served.

The	StartThreads,	MinSpareThreads,	MaxSpareThreads,	and
MaxThreads	regulate	how	the	main	thread	creates	worker	threads	to
serve	requests.	In	general,	Apache	httpd	is	very	self-regulating,	so
most	sites	do	not	need	to	adjust	these	directives	from	their	default
values.	Sites	with	limited	memory	may	need	to	decrease
MaxThreads	to	keep	the	server	from	thrashing	(spawning	and
terminating	idle	threads).	More	information	about	tuning	process
creation	is	provided	in	the	performance	hints	documentation.

MaxConnectionsPerChild	controls	how	frequently	the	server
recycles	processes	by	killing	old	ones	and	launching	new	ones.	On
the	NetWare	OS	it	is	highly	recommended	that	this	directive	remain
set	to	0.	This	allows	worker	threads	to	continue	servicing	requests

indefinitely.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Setting	which	addresses	and	ports	Apache	httpd	uses

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_netware
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_netware

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MaxThreads	Directive

Description: Set	the	maximum	number	of	worker	threads
Syntax: MaxThreads	number

Default: MaxThreads	2048

Context: server	config
Status: MPM
Module: mpm_netware

The	MaxThreads	directive	sets	the	desired	maximum	number
worker	threads	allowable.	The	default	value	is	also	the	compiled	in
hard	limit.	Therefore	it	can	only	be	lowered,	for	example:

MaxThreads	512

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	os2

Description: Hybrid	multi-process,	multi-threaded	MPM	for
OS/2

Status: MPM
Module	Identifier: mpm_mpmt_os2_module
Source	File: mpmt_os2.c

Summary
The	Server	consists	of	a	main,	parent	process	and	a	small,	static
number	of	child	processes.

The	parent	process'	job	is	to	manage	the	child	processes.	This
involves	spawning	children	as	required	to	ensure	there	are	always
StartServers	processes	accepting	connections.

Each	child	process	consists	of	a	pool	of	worker	threads	and	a	main
thread	that	accepts	connections	and	passes	them	to	the	workers	via	a
work	queue.	The	worker	thread	pool	is	dynamic,	managed	by	a
maintenance	thread	so	that	the	number	of	idle	threads	is	kept
between	MinSpareThreads	and	MaxSpareThreads.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpmt_os2
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpmt_os2

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Setting	which	addresses	and	ports	Apache	uses

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	prefork

Description: Implements	a	non-threaded,	pre-forking	web
server

Status: MPM
Module	Identifier: mpm_prefork_module
Source	File: prefork.c

Summary
This	Multi-Processing	Module	(MPM)	implements	a	non-threaded,
pre-forking	web	server.	Each	server	process	may	answer	incoming
requests,	and	a	parent	process	manages	the	size	of	the	server	pool.	It
is	appropriate	for	sites	that	need	to	avoid	threading	for	compatibility
with	non-thread-safe	libraries.	It	is	also	the	best	MPM	for	isolating
each	request,	so	that	a	problem	with	a	single	request	will	not	affect
any	other.

This	MPM	is	very	self-regulating,	so	it	is	rarely	necessary	to	adjust	its
configuration	directives.	Most	important	is	that	MaxRequestWorkers
be	big	enough	to	handle	as	many	simultaneous	requests	as	you
expect	to	receive,	but	small	enough	to	assure	that	there	is	enough
physical	RAM	for	all	processes.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_prefork
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_prefork

See	also
Setting	which	addresses	and	ports	Apache	HTTP	Server	uses

How	it	Works

A	single	control	process	is	responsible	for	launching	child
processes	which	listen	for	connections	and	serve	them	when	they
arrive.	Apache	httpd	always	tries	to	maintain	several	spare	or	idle
server	processes,	which	stand	ready	to	serve	incoming	requests.
In	this	way,	clients	do	not	need	to	wait	for	a	new	child	processes	to
be	forked	before	their	requests	can	be	served.

The	StartServers,	MinSpareServers,	MaxSpareServers,
and	MaxRequestWorkers	regulate	how	the	parent	process
creates	children	to	serve	requests.	In	general,	Apache	httpd	is
very	self-regulating,	so	most	sites	do	not	need	to	adjust	these
directives	from	their	default	values.	Sites	which	need	to	serve
more	than	256	simultaneous	requests	may	need	to	increase
MaxRequestWorkers,	while	sites	with	limited	memory	may	need
to	decrease	MaxRequestWorkers	to	keep	the	server	from
thrashing	(swapping	memory	to	disk	and	back).	More	information
about	tuning	process	creation	is	provided	in	the	performance	hints
documentation.

While	the	parent	process	is	usually	started	as	root	under	Unix	in
order	to	bind	to	port	80,	the	child	processes	are	launched	by
Apache	httpd	as	a	less-privileged	user.	The	User	and	Group
directives	are	used	to	set	the	privileges	of	the	Apache	httpd	child
processes.	The	child	processes	must	be	able	to	read	all	the
content	that	will	be	served,	but	should	have	as	few	privileges
beyond	that	as	possible.

MaxConnectionsPerChild	controls	how	frequently	the	server
recycles	processes	by	killing	old	ones	and	launching	new	ones.

This	MPM	uses	the	mpm-accept	mutex	to	serialize	access	to
incoming	connections	when	subject	to	the	thundering	herd
problem	(generally,	when	there	are	multiple	listening	sockets).	The
implementation	aspects	of	this	mutex	can	be	configured	with	the

Mutex	directive.	The	performance	hints	documentation	has
additional	information	about	this	mutex.

MaxSpareServers	Directive

Description: Maximum	number	of	idle	child	server	processes
Syntax: MaxSpareServers	number

Default: MaxSpareServers	10

Context: server	config
Status: MPM
Module: prefork

The	MaxSpareServers	directive	sets	the	desired	maximum
number	of	idle	child	server	processes.	An	idle	process	is	one
which	is	not	handling	a	request.	If	there	are	more	than
MaxSpareServers	idle,	then	the	parent	process	will	kill	off	the
excess	processes.

Tuning	of	this	parameter	should	only	be	necessary	on	very	busy
sites.	Setting	this	parameter	to	a	large	number	is	almost	always	a
bad	idea.	If	you	are	trying	to	set	the	value	equal	to	or	lower	than
MinSpareServers,	Apache	HTTP	Server	will	automatically
adjust	it	to	MinSpareServers	+	1.

See	also
MinSpareServers

StartServers

MaxSpareThreads

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MinSpareServers	Directive

Description: Minimum	number	of	idle	child	server	processes
Syntax: MinSpareServers	number

Default: MinSpareServers	5

Context: server	config
Status: MPM
Module: prefork

The	MinSpareServers	directive	sets	the	desired	minimum
number	of	idle	child	server	processes.	An	idle	process	is	one
which	is	not	handling	a	request.	If	there	are	fewer	than
MinSpareServers	idle,	then	the	parent	process	creates	new
children:	It	will	spawn	one,	wait	a	second,	then	spawn	two,	wait	a
second,	then	spawn	four,	and	it	will	continue	exponentially	until	it
is	spawning	32	children	per	second.	It	will	stop	whenever	it
satisfies	the	MinSpareServers	setting.

Tuning	of	this	parameter	should	only	be	necessary	on	very	busy
sites.	Setting	this	parameter	to	a	large	number	is	almost	always	a
bad	idea.

See	also
MaxSpareServers

StartServers

MinSpareThreads

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	winnt

Description: Multi-Processing	Module	optimized	for	Windows
NT.

Status: MPM
Module	Identifier: mpm_winnt_module
Source	File: mpm_winnt.c

Summary
This	Multi-Processing	Module	(MPM)	is	the	default	for	the	Windows
NT	operating	systems.	It	uses	a	single	control	process	which
launches	a	single	child	process	which	in	turn	creates	threads	to
handle	requests

Capacity	is	configured	using	the	ThreadsPerChild	directive,	which
sets	the	maximum	number	of	concurrent	client	connections.

By	default,	this	MPM	uses	advanced	Windows	APIs	for	accepting	new
client	connections.	In	some	configurations,	third-party	products	may
interfere	with	this	implementation,	with	the	following	messages	written
to	the	web	server	log:

Child:	Encountered	too	many	AcceptEx	faults	accepting	client

connections.

winnt_mpm:	falling	back	to	'AcceptFilter	none'.

The	MPM	falls	back	to	a	safer	implementation,	but	some	client
requests	were	not	processed	correctly.	In	order	to	avoid	this	error,	use
AcceptFilter	with	accept	filter	none.

AcceptFilter	http	none

AcceptFilter	https	none

In	Apache	httpd	2.0	and	2.2,	Win32DisableAcceptEx	was	used	for
this	purpose.

The	WinNT	MPM	differs	from	the	Unix	MPMs	such	as	worker	and
event	in	several	areas:

When	a	child	process	is	exiting	due	to	shutdown,	restart,	or
MaxConnectionsPerChild,	active	requests	in	the	exiting
process	have	TimeOut	seconds	to	finish	before	processing	is
aborted.	Alternate	types	of	restart	and	shutdown	are	not
implemented.
New	child	processes	read	the	configuration	files	instead	of
inheriting	the	configuration	from	the	parent.	The	behavior	will	be
the	same	as	on	Unix	if	the	child	process	is	created	at	startup	or
restart,	but	if	a	child	process	is	created	because	the	prior	one
crashed	or	reached	MaxConnectionsPerChild,	any	pending
changes	to	the	configuration	will	become	active	in	the	child	at
that	point,	and	the	parent	and	child	will	be	using	a	different
configuration.	If	planned	configuration	changes	have	been
partially	implemented	and	the	current	configuration	cannot	be
parsed,	the	replacement	child	process	cannot	start	up	and	the
server	will	halt.	Because	of	this	behavior,	configuration	files
should	not	be	changed	until	the	time	of	a	server	restart.
The	monitor	and	fatal_exception	hooks	are	not	currently
implemented.
AcceptFilter	is	implemented	in	the	MPM	and	has	a	different
type	of	control	over	handling	of	new	connections.	(Refer	to	the
AcceptFilter	documentation	for	details.)

https://www.apache.org/foundation/contributing.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Using	Apache	HTTP	Server	on	Microsoft	Windows

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_winnt
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_winnt
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	worker

Description: Multi-Processing	Module	implementing	a	hybrid
multi-threaded	multi-process	web	server

Status: MPM
Module	Identifier: mpm_worker_module
Source	File: worker.c

Summary
This	Multi-Processing	Module	(MPM)	implements	a	hybrid	multi-
process	multi-threaded	server.	By	using	threads	to	serve	requests,	it
is	able	to	serve	a	large	number	of	requests	with	fewer	system
resources	than	a	process-based	server.	However,	it	retains	much	of
the	stability	of	a	process-based	server	by	keeping	multiple	processes
available,	each	with	many	threads.

The	most	important	directives	used	to	control	this	MPM	are
ThreadsPerChild,	which	controls	the	number	of	threads	deployed
by	each	child	process	and	MaxRequestWorkers,	which	controls	the
maximum	total	number	of	threads	that	may	be	launched.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_worker
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_worker

Setting	which	addresses	and	ports	Apache	HTTP	Server	uses

How	it	Works

A	single	control	process	(the	parent)	is	responsible	for	launching
child	processes.	Each	child	process	creates	a	fixed	number	of
server	threads	as	specified	in	the	ThreadsPerChild	directive,
as	well	as	a	listener	thread	which	listens	for	connections	and
passes	them	to	a	server	thread	for	processing	when	they	arrive.

Apache	HTTP	Server	always	tries	to	maintain	a	pool	of	spare	or
idle	server	threads,	which	stand	ready	to	serve	incoming	requests.
In	this	way,	clients	do	not	need	to	wait	for	a	new	threads	or
processes	to	be	created	before	their	requests	can	be	served.	The
number	of	processes	that	will	initially	launch	is	set	by	the
StartServers	directive.	During	operation,	the	server	assesses
the	total	number	of	idle	threads	in	all	processes,	and	forks	or	kills
processes	to	keep	this	number	within	the	boundaries	specified	by
MinSpareThreads	and	MaxSpareThreads.	Since	this	process
is	very	self-regulating,	it	is	rarely	necessary	to	modify	these
directives	from	their	default	values.	The	maximum	number	of
clients	that	may	be	served	simultaneously	(i.e.,	the	maximum	total
number	of	threads	in	all	processes)	is	determined	by	the
MaxRequestWorkers	directive.	The	maximum	number	of	active
child	processes	is	determined	by	the	MaxRequestWorkers
directive	divided	by	the	ThreadsPerChild	directive.

Two	directives	set	hard	limits	on	the	number	of	active	child
processes	and	the	number	of	server	threads	in	a	child	process,
and	can	only	be	changed	by	fully	stopping	the	server	and	then
starting	it	again.	ServerLimit	is	a	hard	limit	on	the	number	of
active	child	processes,	and	must	be	greater	than	or	equal	to	the
MaxRequestWorkers	directive	divided	by	the
ThreadsPerChild	directive.	ThreadLimit	is	a	hard	limit	of	the
number	of	server	threads,	and	must	be	greater	than	or	equal	to
the	ThreadsPerChild	directive.

In	addition	to	the	set	of	active	child	processes,	there	may	be
additional	child	processes	which	are	terminating,	but	where	at
least	one	server	thread	is	still	handling	an	existing	client
connection.	Up	to	MaxRequestWorkers	terminating	processes
may	be	present,	though	the	actual	number	can	be	expected	to	be
much	smaller.	This	behavior	can	be	avoided	by	disabling	the
termination	of	individual	child	processes,	which	is	achieved	using
the	following:

set	the	value	of	MaxConnectionsPerChild	to	zero
set	the	value	of	MaxSpareThreads	to	the	same	value	as
MaxRequestWorkers

A	typical	configuration	of	the	process-thread	controls	in	the
worker	MPM	could	look	as	follows:

ServerLimit									16

StartServers									2

MaxRequestWorkers		150

MinSpareThreads					25

MaxSpareThreads					75

ThreadsPerChild					25

While	the	parent	process	is	usually	started	as	root	under	Unix	in
order	to	bind	to	port	80,	the	child	processes	and	threads	are
launched	by	the	server	as	a	less-privileged	user.	The	User	and
Group	directives	are	used	to	set	the	privileges	of	the	Apache
HTTP	Server	child	processes.	The	child	processes	must	be	able
to	read	all	the	content	that	will	be	served,	but	should	have	as	few
privileges	beyond	that	as	possible.	In	addition,	unless	suexec	is
used,	these	directives	also	set	the	privileges	which	will	be
inherited	by	CGI	scripts.

MaxConnectionsPerChild	controls	how	frequently	the	server

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

recycles	processes	by	killing	old	ones	and	launching	new	ones.

This	MPM	uses	the	mpm-accept	mutex	to	serialize	access	to
incoming	connections	when	subject	to	the	thundering	herd
problem	(generally,	when	there	are	multiple	listening	sockets).	The
implementation	aspects	of	this	mutex	can	be	configured	with	the
Mutex	directive.	The	performance	hints	documentation	has
additional	information	about	this	mutex.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_access_compat

Description: Group	authorizations	based	on	host	(name	or	IP
address)

Status: Extension
Module	Identifier: access_compat_module
Source	File: mod_access_compat.c
Compatibility: Available	in	Apache	HTTP	Server	2.3	as	a

compatibility	module	with	previous	versions	of
Apache	httpd	2.x.	The	directives	provided	by	this
module	have	been	deprecated	by	the	new	authz
refactoring.	Please	see	mod_authz_host

Summary
The	directives	provided	by	mod_access_compat	are	used	in
<Directory>,	<Files>,	and	<Location>	sections	as	well	as
.htaccess	files	to	control	access	to	particular	parts	of	the	server.
Access	can	be	controlled	based	on	the	client	hostname,	IP	address,
or	other	characteristics	of	the	client	request,	as	captured	in
environment	variables.	The	Allow	and	Deny	directives	are	used	to
specify	which	clients	are	or	are	not	allowed	access	to	the	server,	while
the	Order	directive	sets	the	default	access	state,	and	configures	how
the	Allow	and	Deny	directives	interact	with	each	other.

Both	host-based	access	restrictions	and	password-based
authentication	may	be	implemented	simultaneously.	In	that	case,	the
Satisfy	directive	is	used	to	determine	how	the	two	sets	of
restrictions	interact.

Note

The	directives	provided	by	mod_access_compat	have	been

deprecated	by	mod_authz_host.	Mixing	old	directives	like	Order,
Allow	or	Deny	with	new	ones	like	Require	is	technically	possible
but	discouraged.	This	module	was	created	to	support
configurations	containing	only	old	directives	to	facilitate	the	2.4
upgrade.	Please	check	the	upgrading	guide	for	more	information.

In	general,	access	restriction	directives	apply	to	all	access	methods
(GET,	PUT,	POST,	etc).	This	is	the	desired	behavior	in	most	cases.
However,	it	is	possible	to	restrict	some	methods,	while	leaving	other
methods	unrestricted,	by	enclosing	the	directives	in	a	<Limit>
section.

Merging	of	configuration	sections

When	any	directive	provided	by	this	module	is	used	in	a	new
configuration	section,	no	directives	provided	by	this	module	are
inherited	from	previous	configuration	sections.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Require

mod_authz_host

mod_authz_core

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_access_compat
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_access_compat

Allow	Directive

Description: Controls	which	hosts	can	access	an	area	of	the
server

Syntax: Allow	from	all|host|env=[!]env-

variable	[host|env=[!]env-variable]

...

Context: directory,	.htaccess
Override: Limit
Status: Extension
Module: mod_access_compat

The	Allow	directive	affects	which	hosts	can	access	an	area	of	the
server.	Access	can	be	controlled	by	hostname,	IP	address,	IP
address	range,	or	by	other	characteristics	of	the	client	request
captured	in	environment	variables.

The	first	argument	to	this	directive	is	always	from.	The
subsequent	arguments	can	take	three	different	forms.	If	Allow
from	all	is	specified,	then	all	hosts	are	allowed	access,	subject
to	the	configuration	of	the	Deny	and	Order	directives	as
discussed	below.	To	allow	only	particular	hosts	or	groups	of	hosts
to	access	the	server,	the	host	can	be	specified	in	any	of	the
following	formats:

A	(partial)	domain-name

Allow	from	example.org

Allow	from	.net	example.edu

Hosts	whose	names	match,	or	end	in,	this	string	are	allowed
access.	Only	complete	components	are	matched,	so	the
above	example	will	match	foo.example.org	but	it	will	not
match	fooexample.org.	This	configuration	will	cause

Apache	httpd	to	perform	a	double	DNS	lookup	on	the	client	IP
address,	regardless	of	the	setting	of	the	HostnameLookups
directive.	It	will	do	a	reverse	DNS	lookup	on	the	IP	address	to
find	the	associated	hostname,	and	then	do	a	forward	lookup
on	the	hostname	to	assure	that	it	matches	the	original	IP
address.	Only	if	the	forward	and	reverse	DNS	are	consistent
and	the	hostname	matches	will	access	be	allowed.

A	full	IP	address

Allow	from	10.1.2.3

Allow	from	192.168.1.104	192.168.1.205

An	IP	address	of	a	host	allowed	access

A	partial	IP	address

Allow	from	10.1

Allow	from	10	172.20	192.168.2

The	first	1	to	3	bytes	of	an	IP	address,	for	subnet	restriction.

A	network/netmask	pair

Allow	from	10.1.0.0/255.255.0.0

A	network	a.b.c.d,	and	a	netmask	w.x.y.z.	For	more	fine-
grained	subnet	restriction.

A	network/nnn	CIDR	specification

Allow	from	10.1.0.0/16

Similar	to	the	previous	case,	except	the	netmask	consists	of

nnn	high-order	1	bits.

Note	that	the	last	three	examples	above	match	exactly	the	same
set	of	hosts.

IPv6	addresses	and	IPv6	subnets	can	be	specified	as	shown
below:

Allow	from	2001:db8::a00:20ff:fea7:ccea

Allow	from	2001:db8::a00:20ff:fea7:ccea/10

The	third	format	of	the	arguments	to	the	Allow	directive	allows
access	to	the	server	to	be	controlled	based	on	the	existence	of	an
environment	variable.	When	Allow	from	env=env-variable
is	specified,	then	the	request	is	allowed	access	if	the	environment
variable	env-variable	exists.	When	Allow	from	env=!env-
variable	is	specified,	then	the	request	is	allowed	access	if	the
environment	variable	env-variable	doesn't	exist.	The	server
provides	the	ability	to	set	environment	variables	in	a	flexible	way
based	on	characteristics	of	the	client	request	using	the	directives
provided	by	mod_setenvif.	Therefore,	this	directive	can	be	used
to	allow	access	based	on	such	factors	as	the	clients	User-Agent
(browser	type),	Referer,	or	other	HTTP	request	header	fields.

SetEnvIf	User-Agent	^KnockKnock/2\.0	let_me_in

<Directory	"/docroot">

				Order	Deny,Allow

				Deny	from	all

				Allow	from	env=let_me_in

</Directory>

In	this	case,	browsers	with	a	user-agent	string	beginning	with
KnockKnock/2.0	will	be	allowed	access,	and	all	others	will	be

denied.

Merging	of	configuration	sections

When	any	directive	provided	by	this	module	is	used	in	a	new
configuration	section,	no	directives	provided	by	this	module	are
inherited	from	previous	configuration	sections.

Deny	Directive

Description: Controls	which	hosts	are	denied	access	to	the
server

Syntax: Deny	from	all|host|env=[!]env-

variable	[host|env=[!]env-variable]

...

Context: directory,	.htaccess
Override: Limit
Status: Extension
Module: mod_access_compat

This	directive	allows	access	to	the	server	to	be	restricted	based	on
hostname,	IP	address,	or	environment	variables.	The	arguments
for	the	Deny	directive	are	identical	to	the	arguments	for	the	Allow
directive.

Order	Directive

Description: Controls	the	default	access	state	and	the	order	in
which	Allow	and	Deny	are	evaluated.

Syntax: Order	ordering

Default: Order	Deny,Allow

Context: directory,	.htaccess
Override: Limit
Status: Extension
Module: mod_access_compat

The	Order	directive,	along	with	the	Allow	and	Deny	directives,
controls	a	three-pass	access	control	system.	The	first	pass
processes	either	all	Allow	or	all	Deny	directives,	as	specified	by
the	Order	directive.	The	second	pass	parses	the	rest	of	the
directives	(Deny	or	Allow).	The	third	pass	applies	to	all	requests
which	do	not	match	either	of	the	first	two.

Note	that	all	Allow	and	Deny	directives	are	processed,	unlike	a
typical	firewall,	where	only	the	first	match	is	used.	The	last	match
is	effective	(also	unlike	a	typical	firewall).	Additionally,	the	order	in
which	lines	appear	in	the	configuration	files	is	not	significant	--	all
Allow	lines	are	processed	as	one	group,	all	Deny	lines	are
considered	as	another,	and	the	default	state	is	considered	by
itself.

Ordering	is	one	of:

Allow,Deny

First,	all	Allow	directives	are	evaluated;	at	least	one	must
match,	or	the	request	is	rejected.	Next,	all	Deny	directives	are
evaluated.	If	any	matches,	the	request	is	rejected.	Last,	any
requests	which	do	not	match	an	Allow	or	a	Deny	directive
are	denied	by	default.

Deny,Allow

First,	all	Deny	directives	are	evaluated;	if	any	match,	the
request	is	denied	unless	it	also	matches	an	Allow	directive.
Any	requests	which	do	not	match	any	Allow	or	Deny
directives	are	permitted.

Mutual-failure

This	order	has	the	same	effect	as	Order	Allow,Deny	and
is	deprecated	in	its	favor.

Keywords	may	only	be	separated	by	a	comma;	no	whitespace	is
allowed	between	them.

Match Allow,Deny	result Deny,Allow	result
Match	Allow
only

Request	allowed Request	allowed

Match	Deny
only

Request	denied Request	denied

No	match Default	to	second
directive:	Denied

Default	to	second
directive:	Allowed

Match	both
Allow	&	Deny

Final	match	controls:
Denied

Final	match	controls:
Allowed

In	the	following	example,	all	hosts	in	the	example.org	domain	are
allowed	access;	all	other	hosts	are	denied	access.

Order	Deny,Allow

Deny	from	all

Allow	from	example.org

In	the	next	example,	all	hosts	in	the	example.org	domain	are
allowed	access,	except	for	the	hosts	which	are	in	the
foo.example.org	subdomain,	who	are	denied	access.	All	hosts	not
in	the	example.org	domain	are	denied	access	because	the	default

state	is	to	Deny	access	to	the	server.

Order	Allow,Deny

Allow	from	example.org

Deny	from	foo.example.org

On	the	other	hand,	if	the	Order	in	the	last	example	is	changed	to
Deny,Allow,	all	hosts	will	be	allowed	access.	This	happens
because,	regardless	of	the	actual	ordering	of	the	directives	in	the
configuration	file,	the	Allow	from	example.org	will	be
evaluated	last	and	will	override	the	Deny	from
foo.example.org.	All	hosts	not	in	the	example.org	domain
will	also	be	allowed	access	because	the	default	state	is	Allow.

The	presence	of	an	Order	directive	can	affect	access	to	a	part	of
the	server	even	in	the	absence	of	accompanying	Allow	and	Deny
directives	because	of	its	effect	on	the	default	access	state.	For
example,

<Directory	"/www">

				Order	Allow,Deny

</Directory>

will	Deny	all	access	to	the	/www	directory	because	the	default
access	state	is	set	to	Deny.

The	Order	directive	controls	the	order	of	access	directive
processing	only	within	each	phase	of	the	server's	configuration
processing.	This	implies,	for	example,	that	an	Allow	or	Deny
directive	occurring	in	a	<Location>	section	will	always	be
evaluated	after	an	Allow	or	Deny	directive	occurring	in	a
<Directory>	section	or	.htaccess	file,	regardless	of	the
setting	of	the	Order	directive.	For	details	on	the	merging	of

configuration	sections,	see	the	documentation	on	How	Directory,
Location	and	Files	sections	work.

Merging	of	configuration	sections

When	any	directive	provided	by	this	module	is	used	in	a	new
configuration	section,	no	directives	provided	by	this	module	are
inherited	from	previous	configuration	sections.

Satisfy	Directive

Description: Interaction	between	host-level	access	control	and
user	authentication

Syntax: Satisfy	Any|All

Default: Satisfy	All

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_access_compat
Compatibility: Influenced	by	<Limit>	and	<LimitExcept>	in

version	2.0.51	and	later

Access	policy	if	both	Allow	and	Require	used.	The	parameter
can	be	either	All	or	Any.	This	directive	is	only	useful	if	access	to
a	particular	area	is	being	restricted	by	both	username/password
and	client	host	address.	In	this	case	the	default	behavior	(All)	is
to	require	that	the	client	passes	the	address	access	restriction	and
enters	a	valid	username	and	password.	With	the	Any	option	the
client	will	be	granted	access	if	they	either	pass	the	host	restriction
or	enter	a	valid	username	and	password.	This	can	be	used	to
password	restrict	an	area,	but	to	let	clients	from	particular
addresses	in	without	prompting	for	a	password.

For	example,	if	you	wanted	to	let	people	on	your	network	have
unrestricted	access	to	a	portion	of	your	website,	but	require	that
people	outside	of	your	network	provide	a	password,	you	could	use
a	configuration	similar	to	the	following:

Require	valid-user

Allow	from	192.168.1

Satisfy	Any

Another	frequent	use	of	the	Satisfy	directive	is	to	relax	access

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

restrictions	for	a	subdirectory:

<Directory	"/var/www/private">

				Require	valid-user

</Directory>

<Directory	"/var/www/private/public">

				Allow	from	all

				Satisfy	Any

</Directory>

In	the	above	example,	authentication	will	be	required	for	the
/var/www/private	directory,	but	will	not	be	required	for	the
/var/www/private/public	directory.

Since	version	2.0.51	Satisfy	directives	can	be	restricted	to
particular	methods	by	<Limit>	and	<LimitExcept>	sections.

Merging	of	configuration	sections

When	any	directive	provided	by	this	module	is	used	in	a	new
configuration	section,	no	directives	provided	by	this	module	are
inherited	from	previous	configuration	sections.

See	also
Allow

Require

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_actions

				.	 					.

: 				
CGI		.

: Base
: actions_module
: mod_actions.c

				.	 Action			 	MIME	content	type		CGI	
.	 Script		 					CGI		.	
		.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

mod_cgi

CGI			
		

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_actions
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_actions

Action	

: 		content-type		CGI		
: Action	action-type	cgi-script

[virtual]

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_actions
: virtual				2.1	

			 action-type	 cgi-script				.	 cgi-script
ScriptAlias	 AddHandler		CGI	 			URL.	
type	 	MIME	content	type	 		.			 PATH_INFO

PATH_TRANSLATED	CGI				 	URL		.
REDIRECT_HANDLER						.

#		MIME	content	type		:

Action	image/gif	/cgi-bin/images.cgi

#				

AddHandler	my-file-type	.xyz

Action	my-file-type	/cgi-bin/program.cgi

		MIME	content	type	 image/gif				cgi		
bin/images.cgi	.

			 .xyz			 	cgi		 /cgi-bin/program.cgi

In	the	second	example,	requests	for	files	with	a	file	extension	of
.xyz	are	handled	instead	by	the	specified	cgi	script	/cgi-
bin/program.cgi.

	 virtual				 				.		,		

		 	.

<Location	/news>

SetHandler	news-handler

Action	news-handler	/cgi-bin/news.cgi	virtual

</Location>

AddHandler

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

Script	

: 			CGI		.
: Script	method	cgi-script

: ,	,	directory
: Base
: mod_actions

			 method			 	 cgi-script				 .	
ScriptAlias	 AddHandler		CGI	 			URL.		
PATH_INFO	 PATH_TRANSLATED	CGI					URL	
.

					.	 		 	. 		 Script	PUT

put		.

Script				 	.	CGI		,			
	.	 GET		 Script			(,	foo.html?hi)		
.

#	<ISINDEX>		

Script	GET	/cgi-bin/search

#	CGI	PUT	

Script	PUT	/~bob/put.cgi

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_alias

				.	 					.

: 					
,	 URL		

: Base
: alias_module
: mod_alias.c

							 	URL				.	
ScriptAlias		URL	 		.		 DocumentRoot

		.	,	 ScriptAlias			 	CGI			.

Redirect		 		URL				.	 						
.

mod_alias		URL			 .						
		.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_alias
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_alias

mod_rewrite

URL		

	

			Alias	Redirect						 	 		.		
		(,		 <VirtualHost>)	Alias	Redirect		
		.

		Redirect			Alias	.		 Redirect

RedirectMatch				Alias	.		Alias	Redirect	
			.

															.	
,				:

Alias	/foo/bar	/baz

Alias	/foo	/gaq

						 /foo/bar	Alias		/foo	Alias			
		.

Alias	

: URL				
: Alias	URL-path	file-path|directory-path

: ,	
: Base
: mod_alias

Alias				 DocumentRoot			 			.	
(%)	URL	 directory-path		 	.

:
Alias	/image	/ftp/pub/image

http://myserver/image/foo.gif			 /ftp/pub/image/foo.gif		
.

url-path		/	,	URL		/	 			.	,	 Alias	/icons/

/usr/local/apache/icons/		url	 /icons		.

	 			 <Directory>		 	.			 <Directory>

		 ,					.	(<Location>						
		 URL				.)

	 DocumentRoot				 Alias	,		 				.

:
Alias	/image	/ftp/pub/image

<Directory	/ftp/pub/image>

Order	allow,deny

Allow	from	all

</Directory>

AliasMatch	

: 		URL			
: AliasMatch	regex	file-path|directory-path

: ,	
: Base
: mod_alias

		 Alias	,		URL						 .			URL	
	,	 						.	 	,			
:

AliasMatch	^/icons(.*)	/usr/local/apache/icons$1

Redirect	

: 		URL					
: Redirect	[status]	URL-path	URL

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_alias

Redirect			URL		URL	.	 		URL	,			
		.	(%)	 URL-path				(%)	
URL			.

:
Redirect	/service	http://foo2.bar.com/service

	http://myserver/service/foo.txt		
http://foo2.bar.com/service/foo.txt			 .

Redirect						Alias	ScriptAlias			.	,
.htaccess		 <Directory>			 URL-path				
URL		.

status		,	"	 (temporary)"	(HTTP		302)		.	,	
		.	 status				HTTP				:

permanent
							 (301)	.

temp
			(302)	.	.

seeother
			"	(See	Other)"		 (303)	.

gone
				"	(Gone)"		 (410)	.				
	.

status						 		.		300	399		
,			.	,		 				(http_protocol.c
send_error_response).

:
Redirect	permanent	/one	http://example.com/two

Redirect	303	/three	http://example.com/other

RedirectMatch	

: 	URL					
: RedirectMatch	[status]	regex	URL

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_alias

		 Redirect	,		 URL						.	
URL			,			 				.		,		
							 JPEG			:

RedirectMatch	(.*)\.gif$	http://www.anotherserver.com$1.jpg

RedirectPermanent	

: 		URL						
: RedirectPermanent	URL-path	URL

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_alias

					(301)	.	 Redirect	permanent

RedirectTemp	

: 		URL						
: RedirectTemp	URL-path	URL

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_alias

					(302)	.	 Redirect	temp

ScriptAlias	

: URL						CGI		
: ScriptAlias	URL-path	file-path|directory-path

: ,	
: Base
: mod_alias

ScriptAlias		 Alias		,	 			 mod_cgi

script			CGI			.	 URL-path		(%)	URL		
				.

:
ScriptAlias	/cgi-bin/	/web/cgi-bin/

http://myserver/cgi-bin/foo			 /web/cgi-

bin/foo		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

ScriptAliasMatch	

: 		URL						CGI		
: ScriptAliasMatch	regex	file-path|directory-

path

: ,	
: Base
: mod_alias

		 ScriptAlias	,		 URL						.	
	URL			,			 				.		,		
/cgi-bin			:

ScriptAliasMatch	^/cgi-bin(.*)	/usr/local/apache/cgi-bin$1

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_allowmethods

Description: Easily	restrict	what	HTTP	methods	can	be	used
on	the	server

Status: Experimental
Module	Identifier: allowmethods_module
Source	File: mod_allowmethods.c

Summary
This	module	makes	it	easy	to	restrict	what	HTTP	methods	can	be
used	on	a	server.	The	most	common	configuration	would	be:

<Location	"/">

			AllowMethods	GET	POST	OPTIONS

</Location>

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AllowMethods	Directive

Description: Restrict	access	to	the	listed	HTTP	methods
Syntax: AllowMethods	reset|HTTP-method	[HTTP-

method]...

Default: AllowMethods	reset

Context: directory
Status: Experimental
Module: mod_allowmethods

The	HTTP-methods	are	case	sensitive	and	are	generally,	as	per
RFC,	given	in	upper	case.	The	GET	and	HEAD	methods	are
treated	as	equivalent.	The	reset	keyword	can	be	used	to	turn	off
mod_allowmethods	in	a	deeper	nested	context:

<Location	"/svn">

			AllowMethods	reset

</Location>

Caution

The	TRACE	method	cannot	be	denied	by	this	module;	use
TraceEnable	instead.

mod_allowmethods	was	written	to	replace	the	rather	kludgy
implementation	of	Limit	and	LimitExcept.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_asis

				.	 					.

: HTTP		
		

: Base
: asis_module
: mod_asis.c

				HTTP				 			

		cgi		nph			 			HTTP							

			mime	type	 httpd/send-as-is		.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

mod_headers

mod_cern_meta

		

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_asis
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_asis

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

			 send-as-is		 	 			.

AddHandler	send-as-is	asis

	 .asis					 			.		HTTP	
Status:		.		 				HTTP				.

		 			 			.

Status:	301	Now	where	did	I	leave	that	URL

Location:	http://xyz.abc.com/foo/bar.html

Content-type:	text/html

<html>

<head>

<title>Lame	excuses'R'us</title>

</head>

<body>

<h1>Fred's	exceptionally	wonderful	page	has	moved	to

Joe's	site.

</h1>

</body>

</html>

:

					 Date:	Server:		,				 	.	
Last-Modified		 	 .						 .

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_auth_basic

				.	 					.

: Basic	authentication
: Base
: auth_basic_module
: mod_auth_basic.c
: 	2.1	

			(provider)			 		HTTP	Basic	Authentication	.
HTTP	Digest	Authentication	 mod_auth_digest	.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

AuthName

AuthType

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_auth_basic
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_auth_basic

AuthBasicAuthoritative	

: 					
: AuthBasicAuthoritative	On|Off

: AuthBasicAuthoritative	On

: directory,	.htaccess
Override	: AuthConfig
: Base
: mod_auth_basic

AuthBasicAuthoritative		 Off						
						(modules.c)			.			
						 ,		"Authentication	Required	()"	
.

							 	 Require		 		,				,
AuthBasicAuthoritative			 	.

		,				 		"Authentication	Required	()"		
.						,	 NCSA			.

AuthBasicFake	

: Fake	basic	authentication	using	the	given
expressions	for	username	and	password

: AuthBasicFake	off|username	[password]

: none

: directory,	.htaccess
Override	: AuthConfig
: Base
: mod_auth_basic
: Apache	HTTP	Server	2.4.5	and	later

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

AuthBasicProvider	

: 				
: AuthBasicProvider	On|Off|provider-name

[provider-name]	...

: AuthBasicProvider	On

: directory,	.htaccess
Override	: AuthConfig
: Base
: mod_auth_basic

AuthBasicProvider			 				.		
	.	 mod_authn_file		 file								

<Location	/secure>

AuthBasicProvider	dbm

AuthDBMType	SDBM

AuthDBMUserFile	/www/etc/dbmpasswd

Require	valid-user

</Location>

	 mod_authn_dbm	mod_authn_file	.

	 Off					 .

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

AuthBasicUseDigestAlgorithm	

: Check	passwords	against	the	authentication
providers	as	if	Digest	Authentication	was	in	force
instead	of	Basic	Authentication.

: AuthBasicUseDigestAlgorithm	MD5|Off

: AuthBasicUseDigestAlgorithm	Off

: directory,	.htaccess
Override	: AuthConfig
: Base
: mod_auth_basic
: Apache	HTTP	Server	2.4.7	and	later

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_auth_digest

				.	 					.

: MD5	Digest	Authentication	
.

: Experimental
: auth_digest_module
: mod_auth_digest.c

		HTTP	Digest	Authentication	.	 						.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

AuthName

AuthType

Require

Satisfy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_auth_digest
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_auth_digest

Digest	Authentication	

MD5	Digest	authentication					.	 AuthType

Basic	 AuthBasicProvider		 AuthType	Digest

AuthDigestProvider						.				
URI	 AuthDigestDomain		.

htdigest		 		()			.

:
<Location	/private/>

AuthType	Digest

AuthName	"private	area"

AuthDigestDomain	/private/	http://mirror.my.dom/private2/

AuthDigestProvider	file

AuthUserFile	/web/auth/.digest_pw

Require	valid-user

</Location>

Digest	authentication	Basic	authentication		 ,			.
2002	11		digest	 authentication			 Amaya,
Konqueror,	(Windows	 				-			"
Explorer		 ")	 Mac	OS	X	Windows	 MS	Internet
Explorer,	Mozilla,	Netscape		7,	 Opera,	Safari		.	 lynx
digest	authentication		 .	digest	authentication	basic
authentication						 						

http://www.w3.org/Amaya/
http://konqueror.kde.org/
http://www.microsoft.com/windows/ie/
http://www.mozilla.org
http://channels.netscape.com/ns/browsers/download.jsp
http://www.opera.com/
http://www.apple.com/safari/
http://lynx.isc.org/

MS	Internet	Explorer		

	Windows	Internet	Explorer	Digest	authentication	 		
GET		RFC		 		.							 .

				 GET		 POST			.			

,		2.0.51	 AuthDigestEnableQueryStringHack			
	.		 AuthDigestEnableQueryStringHack		 	MSIE	
					URI	digest	 	.					.

MSIE	Digest	Authentication	:
BrowserMatch	"MSIE"	AuthDigestEnableQueryStringHack=On

						 BrowserMatch		 .

AuthDigestAlgorithm	

: digest	authentication	challenge	response	hash
		

: AuthDigestAlgorithm	MD5|MD5-sess

: AuthDigestAlgorithm	MD5

: directory,	.htaccess
Override	: AuthConfig
: Experimental
: mod_auth_digest

AuthDigestAlgorithm		 challenge	response	hash		
.

MD5-sess				.

AuthDigestDomain	

: digest	authentication				URI
: AuthDigestDomain	URI	[URI]	...

: directory,	.htaccess
Override	: AuthConfig
: Experimental
: mod_auth_digest

AuthDigestDomain			 		(/	
.		URI		 .		URI	""		 	/		.	URI	
(scheme),	,)	 	URL		URI.

			 	,			 	URI()	 	.			 			
Authorization		 .				,	 AuthDigestNcCheck

				.

		URI	,	()		 						/	

AuthDigestNonceLifetime	

: 	nonce		
: AuthDigestNonceLifetime	seconds

: AuthDigestNonceLifetime	300

: directory,	.htaccess
Override	: AuthConfig
: Experimental
: mod_auth_digest

AuthDigestNonceLifetime		 	nonce			.		
nonce					 stale=true		401	.	 seconds
	nonce	 		.		10				.	 seconds
nonce			 .

AuthDigestProvider	

: 				
: AuthDigestProvider	On|Off|provider-

name	[provider-name]	...

: AuthDigestProvider	On

: directory,	.htaccess
Override	: AuthConfig
: Experimental
: mod_auth_digest

AuthDigestProvider			 				.		
	.	 mod_authn_file		 file								

	 mod_authn_dbm	mod_authn_file	.

	 Off					 .

AuthDigestQop	

: digest	authentication		(quality-of-protection)
.

: AuthDigestQop	none|auth|auth-int

[auth|auth-int]

: AuthDigestQop	auth

: directory,	.htaccess
Override	: AuthConfig
: Experimental
: mod_auth_digest

AuthDigestQop		 (quality-of-protection)	.	 auth	(/)	
	,	 auth-int				(MD5)	.	
)		RFC-2069	digest		.	 auth	 auth-int

.							.	 			challenge			
	.

auth-int			.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

AuthDigestShmemSize	

: 			
: AuthDigestShmemSize	size

: AuthDigestShmemSize	1000

:
: Experimental
: mod_auth_digest

AuthDigestShmemSize		 					
						 .					.			
AuthDigestShmemSize	 0	 				.

size			,		 K	 M		KBytes	MBytes	 		.		
,				:

AuthDigestShmemSize	1048576

AuthDigestShmemSize	1024K

AuthDigestShmemSize	1M

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_auth_form

Description: Form	authentication
Status: Base
Module	Identifier: auth_form_module
Source	File: mod_auth_form.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

Form	authentication	depends	on	the	mod_session	modules,	and
these	modules	make	use	of	HTTP	cookies,	and	as	such	can	fall
victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially	private
information	to	clients.	Please	ensure	that	the	relevant	risks	have
been	taken	into	account	before	enabling	the	session	functionality
on	your	server.

This	module	allows	the	use	of	an	HTML	login	form	to	restrict	access
by	looking	up	users	in	the	given	providers.	HTML	forms	require
significantly	more	configuration	than	the	alternatives,	however	an
HTML	login	form	can	provide	a	much	friendlier	experience	for	end
users.

HTTP	basic	authentication	is	provided	by	mod_auth_basic,	and
HTTP	digest	authentication	is	provided	by	mod_auth_digest.	This
module	should	be	combined	with	at	least	one	authentication	module
such	as	mod_authn_file	and	one	authorization	module	such	as
mod_authz_user.

Once	the	user	has	been	successfully	authenticated,	the	user's	login
details	will	be	stored	in	a	session	provided	by	mod_session.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session

AuthName

AuthType

Require

Authentication	howto

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_auth_form
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_auth_form

Basic	Configuration

To	protect	a	particular	URL	with	mod_auth_form,	you	need	to
decide	where	you	will	store	your	session,	and	you	will	need	to
decide	what	method	you	will	use	to	authenticate.	In	this	simple
example,	the	login	details	will	be	stored	in	a	session	based	on
mod_session_cookie,	and	authentication	will	be	attempted
against	a	file	using	mod_authn_file.	If	authentication	is
unsuccessful,	the	user	will	be	redirected	to	the	form	login	page.

Basic	example
<Location	"/admin">

				AuthFormProvider	file

				AuthUserFile	"conf/passwd"

				AuthType	form

				AuthName	"/admin"

				AuthFormLoginRequiredLocation	"http://example.com/login.html"

				Session	On

				SessionCookieName	session	path=/

				Require	valid-user

</Location>

The	directive	AuthType	will	enable	the	mod_auth_form
authentication	when	set	to	the	value	form.	The	directives
AuthFormProvider	and	AuthUserFile	specify	that
usernames	and	passwords	should	be	checked	against	the	chosen
file.

The	directives	Session	and	SessionCookieName	session
stored	within	an	HTTP	cookie	on	the	browser.	For	more
information	on	the	different	options	for	configuring	a	session,	read
the	documentation	for	mod_session.

You	can	optionally	add	a	SessionCryptoPassphrase	to	create
an	encrypted	session	cookie.	This	required	the	additional	module

mod_session_crypto	be	loaded.

In	the	simple	example	above,	a	URL	has	been	protected	by
mod_auth_form,	but	the	user	has	yet	to	be	given	an	opportunity
to	enter	their	username	and	password.	Options	for	doing	so
include	providing	a	dedicated	standalone	login	page	for	this
purpose,	or	for	providing	the	login	page	inline.

Standalone	Login

The	login	form	can	be	hosted	as	a	standalone	page,	or	can	be
provided	inline	on	the	same	page.

When	configuring	the	login	as	a	standalone	page,	unsuccessful
authentication	attempts	should	be	redirected	to	a	login	form
created	by	the	website	for	this	purpose,	using	the
AuthFormLoginRequiredLocation	directive.	Typically	this
login	page	will	contain	an	HTML	form,	asking	the	user	to	provide
their	usename	and	password.

Example	login	form
<form	method="POST"	action="/dologin.html">

		Username:	<input	type="text"	name="httpd_username"	value=""	/>

		Password:	<input	type="password"	name="httpd_password"	value=""	/>

		<input	type="submit"	name="login"	value="Login"	/>

</form>

The	part	that	does	the	actual	login	is	handled	by	the	form-login-
handler.	The	action	of	the	form	should	point	at	this	handler,	which
is	configured	within	Apache	httpd	as	follows:

Form	login	handler	example
<Location	"/dologin.html">

				SetHandler	form-login-handler

				AuthFormLoginRequiredLocation	"http://example.com/login.html"

				AuthFormLoginSuccessLocation	"http://example.com/admin/index.html"

				AuthFormProvider	file

				AuthUserFile	"conf/passwd"

				AuthType	form

				AuthName	/admin

				Session	On

				SessionCookieName	session	path=/

</Location>

The	URLs	specified	by	the	AuthFormLoginRequiredLocation
directive	will	typically	point	to	a	page	explaining	to	the	user	that

their	login	attempt	was	unsuccessful,	and	they	should	try	again.
The	AuthFormLoginSuccessLocation	directive	specifies	the
URL	the	user	should	be	redirected	to	upon	successful	login.

Alternatively,	the	URL	to	redirect	the	user	to	on	success	can	be
embedded	within	the	login	form,	as	in	the	example	below.	As	a
result,	the	same	form-login-handler	can	be	reused	for	different
areas	of	a	website.

Example	login	form	with	location
<form	method="POST"	action="/dologin.html">

		Username:	<input	type="text"	name="httpd_username"	value=""	/>

		Password:	<input	type="password"	name="httpd_password"	value=""	/>

		<input	type="submit"	name="login"	value="Login"	/>

		<input	type="hidden"	name="httpd_location"	value="http://example.com/success.html"	/>

</form>

Inline	Login

Warning

A	risk	exists	that	under	certain	circumstances,	the	login	form
configured	using	inline	login	may	be	submitted	more	than	once,
revealing	login	credentials	to	the	application	running
underneath.	The	administrator	must	ensure	that	the	underlying
application	is	properly	secured	to	prevent	abuse.	If	in	doubt,	use
the	standalone	login	configuration.

As	an	alternative	to	having	a	dedicated	login	page	for	a	website,	it
is	possible	to	configure	mod_auth_form	to	authenticate	users
inline,	without	being	redirected	to	another	page.	This	allows	the
state	of	the	current	page	to	be	preserved	during	the	login	attempt.
This	can	be	useful	in	a	situation	where	a	time	limited	session	is	in
force,	and	the	session	times	out	in	the	middle	of	the	user	request.
The	user	can	be	re-authenticated	in	place,	and	they	can	continue
where	they	left	off.

If	a	non-authenticated	user	attempts	to	access	a	page	protected
by	mod_auth_form	that	isn't	configured	with	a
AuthFormLoginRequiredLocation	directive,	a
HTTP_UNAUTHORIZED	status	code	is	returned	to	the	browser
indicating	to	the	user	that	they	are	not	authorized	to	view	the	page.

To	configure	inline	authentication,	the	administrator	overrides	the
error	document	returned	by	the	HTTP_UNAUTHORIZED	status
code	with	a	custom	error	document	containing	the	login	form,	as
follows:

Basic	inline	example
AuthFormProvider	file

ErrorDocument	401	"/login.shtml"

AuthUserFile	"conf/passwd"

AuthType	form

AuthName	realm

AuthFormLoginRequiredLocation	"http://example.com/login.html"

Session	On

SessionCookieName	session	path=/

The	error	document	page	should	contain	a	login	form	with	an
empty	action	property,	as	per	the	example	below.	This	has	the
effect	of	submitting	the	form	to	the	original	protected	URL,	without
the	page	having	to	know	what	that	URL	is.

Example	inline	login	form
<form	method="POST"	action="">

		Username:	<input	type="text"	name="httpd_username"	value=""	/>

		Password:	<input	type="password"	name="httpd_password"	value=""	/>

		<input	type="submit"	name="login"	value="Login"	/>

</form>

When	the	end	user	has	filled	in	their	login	details,	the	form	will
make	an	HTTP	POST	request	to	the	original	password	protected
URL.	mod_auth_form	will	intercept	this	POST	request,	and	if
HTML	fields	are	found	present	for	the	username	and	password,
the	user	will	be	logged	in,	and	the	original	password	protected
URL	will	be	returned	to	the	user	as	a	GET	request.

Inline	Login	with	Body	Preservation

A	limitation	of	the	inline	login	technique	described	above	is	that
should	an	HTML	form	POST	have	resulted	in	the	request	to
authenticate	or	reauthenticate,	the	contents	of	the	original	form
posted	by	the	browser	will	be	lost.	Depending	on	the	function	of
the	website,	this	could	present	significant	inconvenience	for	the
end	user.

mod_auth_form	addresses	this	by	allowing	the	method	and	body
of	the	original	request	to	be	embedded	in	the	login	form.	If
authentication	is	successful,	the	original	method	and	body	will	be
retried	by	Apache	httpd,	preserving	the	state	of	the	original
request.

To	enable	body	preservation,	add	three	additional	fields	to	the
login	form	as	per	the	example	below.

Example	with	body	preservation
<form	method="POST"	action="">

		Username:	<input	type="text"	name="httpd_username"	value=""	/>

		Password:	<input	type="password"	name="httpd_password"	value=""	/>

		<input	type="submit"	name="login"	value="Login"	/>

		

		<input	type="hidden"	name="httpd_method"	value="POST"	/>

		<input	type="hidden"	name="httpd_mimetype"	value="application/x-www-form-urlencoded"	/>

		<input	type="hidden"	name="httpd_body"	value="name1=value1&name2=value2"	/>

</form>

How	the	method,	mimetype	and	body	of	the	original	request	are
embedded	within	the	login	form	will	depend	on	the	platform	and
technology	being	used	within	the	website.

One	option	is	to	use	the	mod_include	module	along	with	the
KeptBodySize	directive,	along	with	a	suitable	CGI	script	to
embed	the	variables	in	the	form.

Another	option	is	to	render	the	login	form	using	a	CGI	script	or
other	dynamic	technology.

CGI	example
								AuthFormProvider	file

								ErrorDocument	401	"/cgi-bin/login.cgi"

								...

Logging	Out

To	enable	a	user	to	log	out	of	a	particular	session,	configure	a
page	to	be	handled	by	the	form-logout-handler.	Any	attempt	to
access	this	URL	will	cause	the	username	and	password	to	be
removed	from	the	current	session,	effectively	logging	the	user	out.

By	setting	the	AuthFormLogoutLocation	directive,	a	URL	can
be	specified	that	the	browser	will	be	redirected	to	on	successful
logout.	This	URL	might	explain	to	the	user	that	they	have	been
logged	out,	and	give	the	user	the	option	to	log	in	again.

Basic	logout	example
SetHandler	form-logout-handler

AuthName	realm

AuthFormLogoutLocation	"http://example.com/loggedout.html"

Session	On

SessionCookieName	session	path=/

Note	that	logging	a	user	out	does	not	delete	the	session;	it	merely
removes	the	username	and	password	from	the	session.	If	this
results	in	an	empty	session,	the	net	effect	will	be	the	removal	of
that	session,	but	this	is	not	guaranteed.	If	you	want	to	guarantee
the	removal	of	a	session,	set	the	SessionMaxAge	directive	to	a
small	value,	like	1	(setting	the	directive	to	zero	would	mean	no
session	age	limit).

Basic	session	expiry	example
SetHandler	form-logout-handler

AuthFormLogoutLocation	"http://example.com/loggedout.html"

Session	On

SessionMaxAge	1

SessionCookieName	session	path=/

Usernames	and	Passwords

Note	that	form	submission	involves	URLEncoding	the	form	data:	in
this	case	the	username	and	password.	You	should	therefore	pick
usernames	and	passwords	that	avoid	characters	that	are
URLencoded	in	form	submission,	or	you	may	get	unexpected
results.

AuthFormAuthoritative	Directive

Description: Sets	whether	authorization	and	authentication	are
passed	to	lower	level	modules

Syntax: AuthFormAuthoritative	On|Off

Default: AuthFormAuthoritative	On

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_auth_form

Normally,	each	authorization	module	listed	in
AuthFormProvider	will	attempt	to	verify	the	user,	and	if	the	user
is	not	found	in	any	provider,	access	will	be	denied.	Setting	the
AuthFormAuthoritative	directive	explicitly	to	Off	allows	for
both	authentication	and	authorization	to	be	passed	on	to	other
non-provider-based	modules	if	there	is	no	userID	or	rule
matching	the	supplied	userID.	This	should	only	be	necessary
when	combining	mod_auth_form	with	third-party	modules	that
are	not	configured	with	the	AuthFormProvider	directive.	When
using	such	modules,	the	order	of	processing	is	determined	in	the
modules'	source	code	and	is	not	configurable.

AuthFormBody	Directive

Description: The	name	of	a	form	field	carrying	the	body	of	the
request	to	attempt	on	successful	login

Syntax: AuthFormBody	fieldname

Default: httpd_body

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormMethod	directive	specifies	the	name	of	an	HTML
field	which,	if	present,	will	contain	the	method	of	the	request	to	to
submit	should	login	be	successful.

By	populating	the	form	with	fields	described	by
AuthFormMethod,	AuthFormMimetype	and	AuthFormBody,	a
website	can	retry	a	request	that	may	have	been	interrupted	by	the
login	screen,	or	by	a	session	timeout.

AuthFormDisableNoStore	Directive

Description: Disable	the	CacheControl	no-store	header	on	the
login	page

Syntax: AuthFormDisableNoStore	On|Off

Default: AuthFormDisableNoStore	Off

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormDisableNoStore	flag	disables	the	sending	of	a
Cache-Control	no-store	header	with	the	error	401	page
returned	when	the	user	is	not	yet	logged	in.	The	purpose	of	the
header	is	to	make	it	difficult	for	an	ecmascript	application	to
attempt	to	resubmit	the	login	form,	and	reveal	the	username	and
password	to	the	backend	application.	Disable	at	your	own	risk.

AuthFormFakeBasicAuth	Directive

Description: Fake	a	Basic	Authentication	header
Syntax: AuthFormFakeBasicAuth	On|Off

Default: AuthFormFakeBasicAuth	Off

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormFakeBasicAuth	flag	determines	whether	a
Basic	Authentication	header	will	be	added	to	the	request
headers.	This	can	be	used	to	expose	the	username	and	password
to	an	underlying	application,	without	the	underlying	application
having	to	be	aware	of	how	the	login	was	achieved.

AuthFormLocation	Directive

Description: The	name	of	a	form	field	carrying	a	URL	to
redirect	to	on	successful	login

Syntax: AuthFormLocation	fieldname

Default: httpd_location

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormLocation	directive	specifies	the	name	of	an
HTML	field	which,	if	present,	will	contain	a	URL	to	redirect	the
browser	to	should	login	be	successful.

AuthFormLoginRequiredLocation	Directive

Description: The	URL	of	the	page	to	be	redirected	to	should
login	be	required

Syntax: AuthFormLoginRequiredLocation	url

Default: none

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later.

The	use	of	the	expression	parser	has	been
added	in	2.4.4.

The	AuthFormLoginRequiredLocation	directive	specifies	the
URL	to	redirect	to	should	the	user	not	be	authorised	to	view	a
page.	The	value	is	parsed	using	the	ap_expr	parser	before	being
sent	to	the	client.	By	default,	if	a	user	is	not	authorised	to	view	a
page,	the	HTTP	response	code	HTTP_UNAUTHORIZED	will	be
returned	with	the	page	specified	by	the	ErrorDocument
directive.	This	directive	overrides	this	default.

Use	this	directive	if	you	have	a	dedicated	login	page	to	redirect
users	to.

AuthFormLoginSuccessLocation	Directive

Description: The	URL	of	the	page	to	be	redirected	to	should
login	be	successful

Syntax: AuthFormLoginSuccessLocation	url

Default: none

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later.

The	use	of	the	expression	parser	has	been
added	in	2.4.4.

The	AuthFormLoginSuccessLocation	directive	specifies	the
URL	to	redirect	to	should	the	user	have	logged	in	successfully.
The	value	is	parsed	using	the	ap_expr	parser	before	being	sent	to
the	client.	This	directive	can	be	overridden	if	a	form	field	has	been
defined	containing	another	URL	using	the	AuthFormLocation
directive.

Use	this	directive	if	you	have	a	dedicated	login	URL,	and	you	have
not	embedded	the	destination	page	in	the	login	form.

AuthFormLogoutLocation	Directive

Description: The	URL	to	redirect	to	after	a	user	has	logged
out

Syntax: AuthFormLogoutLocation	uri

Default: none

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later.

The	use	of	the	expression	parser	has	been
added	in	2.4.4.

The	AuthFormLogoutLocation	directive	specifies	the	URL	of	a
page	on	the	server	to	redirect	to	should	the	user	attempt	to	log
out.	The	value	is	parsed	using	the	ap_expr	parser	before	being
sent	to	the	client.

When	a	URI	is	accessed	that	is	served	by	the	handler	form-
logout-handler,	the	page	specified	by	this	directive	will	be
shown	to	the	end	user.	For	example:

Example
<Location	"/logout">

				SetHandler	form-logout-handler

				AuthFormLogoutLocation	"http://example.com/loggedout.html"

				Session	on

				#...

</Location>

An	attempt	to	access	the	URI	/logout/	will	result	in	the	user	being
logged	out,	and	the	page	/loggedout.html	will	be	displayed.	Make
sure	that	the	page	loggedout.html	is	not	password	protected,
otherwise	the	page	will	not	be	displayed.

AuthFormMethod	Directive

Description: The	name	of	a	form	field	carrying	the	method	of
the	request	to	attempt	on	successful	login

Syntax: AuthFormMethod	fieldname

Default: httpd_method

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormMethod	directive	specifies	the	name	of	an	HTML
field	which,	if	present,	will	contain	the	method	of	the	request	to	to
submit	should	login	be	successful.

By	populating	the	form	with	fields	described	by
AuthFormMethod,	AuthFormMimetype	and	AuthFormBody,	a
website	can	retry	a	request	that	may	have	been	interrupted	by	the
login	screen,	or	by	a	session	timeout.

AuthFormMimetype	Directive

Description: The	name	of	a	form	field	carrying	the	mimetype
of	the	body	of	the	request	to	attempt	on
successful	login

Syntax: AuthFormMimetype	fieldname

Default: httpd_mimetype

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormMethod	directive	specifies	the	name	of	an	HTML
field	which,	if	present,	will	contain	the	mimetype	of	the	request	to
submit	should	login	be	successful.

By	populating	the	form	with	fields	described	by
AuthFormMethod,	AuthFormMimetype	and	AuthFormBody,	a
website	can	retry	a	request	that	may	have	been	interrupted	by	the
login	screen,	or	by	a	session	timeout.

AuthFormPassword	Directive

Description: The	name	of	a	form	field	carrying	the	login
password

Syntax: AuthFormPassword	fieldname

Default: httpd_password

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormPassword	directive	specifies	the	name	of	an
HTML	field	which,	if	present,	will	contain	the	password	to	be	used
to	log	in.

AuthFormProvider	Directive

Description: Sets	the	authentication	provider(s)	for	this	location
Syntax: AuthFormProvider	provider-name

[provider-name]	...

Default: AuthFormProvider	file

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_auth_form

The	AuthFormProvider	directive	sets	which	provider	is	used	to
authenticate	the	users	for	this	location.	The	default	file	provider
is	implemented	by	the	mod_authn_file	module.	Make	sure	that
the	chosen	provider	module	is	present	in	the	server.

Example
<Location	"/secure">

				AuthType	form

				AuthName	"private	area"

				AuthFormProvider		dbm

				AuthDBMType								SDBM

				AuthDBMUserFile				"/www/etc/dbmpasswd"

				Require												valid-user

				#...

</Location>

Providers	are	implemented	by	mod_authn_dbm,
mod_authn_file,	mod_authn_dbd,	mod_authnz_ldap	and
mod_authn_socache.

AuthFormSitePassphrase	Directive

Description: Bypass	authentication	checks	for	high	traffic	sites
Syntax: AuthFormSitePassphrase	secret

Default: none

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormSitePassphrase	directive	specifies	a
passphrase	which,	if	present	in	the	user	session,	causes	Apache
httpd	to	bypass	authentication	checks	for	the	given	URL.	It	can	be
used	on	high	traffic	websites	to	reduce	the	load	induced	on
authentication	infrastructure.

The	passphrase	can	be	inserted	into	a	user	session	by	adding	this
directive	to	the	configuration	for	the	form-login-handler.	The	form-
login-handler	itself	will	always	run	the	authentication	checks,
regardless	of	whether	a	passphrase	is	specified	or	not.

Warning

If	the	session	is	exposed	to	the	user	through	the	use	of
mod_session_cookie,	and	the	session	is	not	protected	with
mod_session_crypto,	the	passphrase	is	open	to	potential
exposure	through	a	dictionary	attack.	Regardless	of	how	the
session	is	configured,	ensure	that	this	directive	is	not	used
within	URL	spaces	where	private	user	data	could	be	exposed,
or	sensitive	transactions	can	be	conducted.	Use	at	own	risk.

AuthFormSize	Directive

Description: The	largest	size	of	the	form	in	bytes	that	will	be
parsed	for	the	login	details

Syntax: AuthFormSize	size

Default: 8192

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormSize	directive	specifies	the	maximum	size	of	the
body	of	the	request	that	will	be	parsed	to	find	the	login	form.

If	a	login	request	arrives	that	exceeds	this	size,	the	whole	request
will	be	aborted	with	the	HTTP	response	code
HTTP_REQUEST_TOO_LARGE.

If	you	have	populated	the	form	with	fields	described	by
AuthFormMethod,	AuthFormMimetype	and	AuthFormBody,
you	probably	want	to	set	this	field	to	a	similar	size	as	the
KeptBodySize	directive.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthFormUsername	Directive

Description: The	name	of	a	form	field	carrying	the	login
username

Syntax: AuthFormUsername	fieldname

Default: httpd_username

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormUsername	directive	specifies	the	name	of	an
HTML	field	which,	if	present,	will	contain	the	username	to	be	used
to	log	in.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_authn_anon

				.	 					.

: 	"(anonymous)"	
		

: Extension
: authn_anon_module
: mod_authn_anon.c
: 	2.1	

		 mod_auth_basic			 	(''			'anonymous'	
)	-ftp			 		.						.

	()					 ''						
	 	URL	/					 	URL					.

mod_auth_basic		 AuthBasicProvider		 anon			
.

		""	htpasswd-			 				'(guest)'		
	:

				.	(Anonymous_NoUserID)
			.	(Anonymous_MustGiveEmail)
					.	 	 		'@'	'.'			.
(Anonymous_VerifyEmail)
		 anonymous	guest	www	test	welcome		,	
	 .	(Anonymous)
						 .	(Anonymous_LogEmail

<Directory	/foo>

AuthName	"		'anonymous'			"

AuthType	Basic

AuthBasicProvider	file	anon

AuthUserFile	/path/to/your/.htpasswd

Anonymous_NoUserID	off

Anonymous_MustGiveEmail	on

Anonymous_VerifyEmail	on

Anonymous_LogEmail	on

Anonymous	anonymous	guest	www	test	welcome

Order	Deny,Allow

Allow	from	all

Require	valid-user

</Directory>

Anonymous	

: 					
: Anonymous	user	[user]	...

: directory,	.htaccess
Override	: AuthConfig
: Extension
: mod_authn_anon

			''			.	 			.		'	"		
					.

	 	 	.
					 'anonymous'				.

:
Anonymous	anonymous	"Not	Registered"	"I	don't	know"

"anonymous",	"AnonyMous",	"Not	Registered",	"I	Don't	Know"		
					.

	2.1			" *"	 		.		 			 .

Anonymous_LogEmail	

: 				
: Anonymous_LogEmail	On|Off

: Anonymous_LogEmail	On

: directory,	.htaccess
Override	: AuthConfig
: Extension
: mod_authn_anon

	 On		()		''		.

Anonymous_MustGiveEmail	

: 			
: Anonymous_MustGiveEmail	On|Off

: Anonymous_MustGiveEmail	On

: directory,	.htaccess
Override	: AuthConfig
: Extension
: mod_authn_anon

							 .			.

Anonymous_NoUserID	

: 				
: Anonymous_NoUserID	On|Off

: Anonymous_NoUserID	Off

: directory,	.htaccess
Override	: AuthConfig
: Extension
: mod_authn_anon

On					 ()			.				
OK			MS-Explorer		 	.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

Anonymous_VerifyEmail	

: 						
: Anonymous_VerifyEmail	On|Off

: Anonymous_VerifyEmail	Off

: directory,	.htaccess
Override	: AuthConfig
: Extension
: mod_authn_anon

On					 			''		'@'	'.'		
Anonymous_LogEmail).

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authn_core

Description: Core	Authentication
Status: Base
Module	Identifier: authn_core_module
Source	File: mod_authn_core.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
This	module	provides	core	authentication	capabilities	to	allow	or	deny
access	to	portions	of	the	web	site.	mod_authn_core	provides
directives	that	are	common	to	all	authentication	providers.

Creating	Authentication	Provider	Aliases

Extended	authentication	providers	can	be	created	within	the
configuration	file	and	assigned	an	alias	name.	The	alias	providers
can	then	be	referenced	through	the	directives
AuthBasicProvider	or	AuthDigestProvider	in	the	same
way	as	a	base	authentication	provider.	Besides	the	ability	to	create
and	alias	an	extended	provider,	it	also	allows	the	same	extended
authentication	provider	to	be	reference	by	multiple	locations.

Examples
This	example	checks	for	passwords	in	two	different	text	files.

Checking	multiple	text	password	files
#	Check	here	first

<AuthnProviderAlias	file	file1>

				AuthUserFile	"/www/conf/passwords1"

</AuthnProviderAlias>

#	Then	check	here

<AuthnProviderAlias	file	file2>			

				AuthUserFile	"/www/conf/passwords2"

</AuthnProviderAlias>

<Directory	"/var/web/pages/secure">

				AuthBasicProvider	file1	file2

				

				AuthType	Basic

				AuthName	"Protected	Area"

				Require	valid-user

</Directory>

The	example	below	creates	two	different	ldap	authentication
provider	aliases	based	on	the	ldap	provider.	This	allows	a	single
authenticated	location	to	be	serviced	by	multiple	ldap	hosts:

Checking	multiple	LDAP	servers
<AuthnProviderAlias	ldap	ldap-alias1>

				AuthLDAPBindDN	cn=youruser,o=ctx

				AuthLDAPBindPassword	yourpassword

				AuthLDAPURL	ldap://ldap.host/o=ctx

</AuthnProviderAlias>

<AuthnProviderAlias	ldap	ldap-other-alias>

				AuthLDAPBindDN	cn=yourotheruser,o=dev

				AuthLDAPBindPassword	yourotherpassword

				AuthLDAPURL	ldap://other.ldap.host/o=dev?cn

</AuthnProviderAlias>

Alias	"/secure"	"/webpages/secure"

<Directory	"/webpages/secure">

				AuthBasicProvider	ldap-other-alias		ldap-alias1

				

				AuthType	Basic

				AuthName	"LDAP	Protected	Place"

				Require	valid-user

				#	Note	that	Require	ldap-*	would	not	work	here,	since	the	

				#	AuthnProviderAlias	does	not	provide	the	config	to	authorization	providers

				#	that	are	implemented	in	the	same	module	as	the	authentication	provider.

</Directory>

AuthName	Directive

Description: Authorization	realm	for	use	in	HTTP	authentication
Syntax: AuthName	auth-domain

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authn_core

This	directive	sets	the	name	of	the	authorization	realm	for	a
directory.	This	realm	is	given	to	the	client	so	that	the	user	knows
which	username	and	password	to	send.	AuthName	takes	a	single
argument;	if	the	realm	name	contains	spaces,	it	must	be	enclosed
in	quotation	marks.	It	must	be	accompanied	by	AuthType	and
Require	directives,	and	directives	such	as	AuthUserFile	and
AuthGroupFile	to	work.

For	example:

AuthName	"Top	Secret"

The	string	provided	for	the	AuthName	is	what	will	appear	in	the
password	dialog	provided	by	most	browsers.

See	also
Authentication,	Authorization,	and	Access	Control
mod_authz_core

<AuthnProviderAlias>	Directive

Description: Enclose	a	group	of	directives	that	represent	an
extension	of	a	base	authentication	provider	and
referenced	by	the	specified	alias

Syntax: <AuthnProviderAlias	baseProvider

Alias>	...	</AuthnProviderAlias>

Context: server	config
Status: Base
Module: mod_authn_core

<AuthnProviderAlias>	and	</AuthnProviderAlias>	are
used	to	enclose	a	group	of	authentication	directives	that	can	be
referenced	by	the	alias	name	using	one	of	the	directives
AuthBasicProvider	or	AuthDigestProvider.

This	directive	has	no	affect	on	authorization,	even	for	modules
that	provide	both	authentication	and	authorization.

AuthType	Directive

Description: Type	of	user	authentication
Syntax: AuthType	None|Basic|Digest|Form

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authn_core

This	directive	selects	the	type	of	user	authentication	for	a
directory.	The	authentication	types	available	are	None,	Basic
(implemented	by	mod_auth_basic),	Digest	(implemented	by
mod_auth_digest),	and	Form	(implemented	by
mod_auth_form).

To	implement	authentication,	you	must	also	use	the	AuthName
and	Require	directives.	In	addition,	the	server	must	have	an
authentication-provider	module	such	as	mod_authn_file	and	an
authorization	module	such	as	mod_authz_user.

The	authentication	type	None	disables	authentication.	When
authentication	is	enabled,	it	is	normally	inherited	by	each
subsequent	configuration	section,	unless	a	different	authentication
type	is	specified.	If	no	authentication	is	desired	for	a	subsection	of
an	authenticated	section,	the	authentication	type	None	may	be
used;	in	the	following	example,	clients	may	access	the
/www/docs/public	directory	without	authenticating:

<Directory	"/www/docs">

				AuthType	Basic

				AuthName	Documents

				AuthBasicProvider	file

				AuthUserFile	"/usr/local/apache/passwd/passwords"

				Require	valid-user

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

</Directory>

<Directory	"/www/docs/public">

				AuthType	None

				Require	all	granted

</Directory>

When	disabling	authentication,	note	that	clients	which	have
already	authenticated	against	another	portion	of	the	server's
document	tree	will	typically	continue	to	send	authentication
HTTP	headers	or	cookies	with	each	request,	regardless	of
whether	the	server	actually	requires	authentication	for	every
resource.

See	also
Authentication,	Authorization,	and	Access	Control

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authn_dbd

Description: User	authentication	using	an	SQL	database
Status: Extension
Module	Identifier: authn_dbd_module
Source	File: mod_authn_dbd.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	provides	authentication	front-ends	such	as
mod_auth_digest	and	mod_auth_basic	to	authenticate	users	by
looking	up	users	in	SQL	tables.	Similar	functionality	is	provided	by,	for
example,	mod_authn_file.

This	module	relies	on	mod_dbd	to	specify	the	backend	database
driver	and	connection	parameters,	and	manage	the	database
connections.

When	using	mod_auth_basic	or	mod_auth_digest,	this	module
is	invoked	via	the	AuthBasicProvider	or	AuthDigestProvider
with	the	dbd	value.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authn_dbd
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authn_dbd

See	also
AuthName

AuthType

AuthBasicProvider

AuthDigestProvider

DBDriver

DBDParams

Password	Formats

Performance	and	Cacheing

Some	users	of	DBD	authentication	in	HTTPD	2.2/2.4	have
reported	that	it	imposes	a	problematic	load	on	the	database.	This
is	most	likely	where	an	HTML	page	contains	hundreds	of	objects
(e.g.	images,	scripts,	etc)	each	of	which	requires	authentication.
Users	affected	(or	concerned)	by	this	kind	of	problem	should	use
mod_authn_socache	to	cache	credentials	and	take	most	of	the
load	off	the	database.

Configuration	Example

This	simple	example	shows	use	of	this	module	in	the	context	of
the	Authentication	and	DBD	frameworks.

#	mod_dbd	configuration

#	UPDATED	to	include	authentication	cacheing

DBDriver	pgsql

DBDParams	"dbname=apacheauth	user=apache	password=xxxxxx"

DBDMin		4

DBDKeep	8

DBDMax		20

DBDExptime	300

<Directory	"/usr/www/myhost/private">

		#	mod_authn_core	and	mod_auth_basic	configuration

		#	for	mod_authn_dbd

		AuthType	Basic

		AuthName	"My	Server"

		#	To	cache	credentials,	put	socache	ahead	of	dbd	here

		AuthBasicProvider	socache	dbd

		#	Also	required	for	caching:	tell	the	cache	to	cache	dbd	lookups!

		AuthnCacheProvideFor	dbd

		AuthnCacheContext	my-server

		#	mod_authz_core	configuration

		Require	valid-user

		#	mod_authn_dbd	SQL	query	to	authenticate	a	user

		AuthDBDUserPWQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s"

</Directory>

Exposing	Login	Information

If	httpd	was	built	against	APR	version	1.3.0	or	higher,	then
whenever	a	query	is	made	to	the	database	server,	all	column
values	in	the	first	row	returned	by	the	query	are	placed	in	the
environment,	using	environment	variables	with	the	prefix
"AUTHENTICATE_".

If	a	database	query	for	example	returned	the	username,	full	name
and	telephone	number	of	a	user,	a	CGI	program	will	have	access
to	this	information	without	the	need	to	make	a	second	independent
database	query	to	gather	this	additional	information.

This	has	the	potential	to	dramatically	simplify	the	coding	and
configuration	required	in	some	web	applications.

AuthDBDUserPWQuery	Directive

Description: SQL	query	to	look	up	a	password	for	a	user
Syntax: AuthDBDUserPWQuery	query

Context: directory
Status: Extension
Module: mod_authn_dbd

The	AuthDBDUserPWQuery	specifies	an	SQL	query	to	look	up	a
password	for	a	specified	user.	The	user's	ID	will	be	passed	as	a
single	string	parameter	when	the	SQL	query	is	executed.	It	may
be	referenced	within	the	query	statement	using	a	%s	format
specifier.

AuthDBDUserPWQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s"

The	first	column	value	of	the	first	row	returned	by	the	query
statement	should	be	a	string	containing	the	encrypted	password.
Subsequent	rows	will	be	ignored.	If	no	rows	are	returned,	the	user
will	not	be	authenticated	through	mod_authn_dbd.

If	httpd	was	built	against	APR	version	1.3.0	or	higher,	any
additional	column	values	in	the	first	row	returned	by	the	query
statement	will	be	stored	as	environment	variables	with	names	of
the	form	AUTHENTICATE_COLUMN.

The	encrypted	password	format	depends	on	which	authentication
frontend	(e.g.	mod_auth_basic	or	mod_auth_digest)	is	being
used.	See	Password	Formats	for	more	information.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

AuthDBDUserRealmQuery	Directive

Description: SQL	query	to	look	up	a	password	hash	for	a	user
and	realm.

Syntax: AuthDBDUserRealmQuery	query

Context: directory
Status: Extension
Module: mod_authn_dbd

The	AuthDBDUserRealmQuery	specifies	an	SQL	query	to	look
up	a	password	for	a	specified	user	and	realm	in	a	digest
authentication	process.	The	user's	ID	and	the	realm,	in	that	order,
will	be	passed	as	string	parameters	when	the	SQL	query	is
executed.	They	may	be	referenced	within	the	query	statement
using	%s	format	specifiers.

AuthDBDUserRealmQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s	AND	realm	=	%s"

The	first	column	value	of	the	first	row	returned	by	the	query
statement	should	be	a	string	containing	the	encrypted	password.
Subsequent	rows	will	be	ignored.	If	no	rows	are	returned,	the	user
will	not	be	authenticated	through	mod_authn_dbd.

If	httpd	was	built	against	APR	version	1.3.0	or	higher,	any
additional	column	values	in	the	first	row	returned	by	the	query
statement	will	be	stored	as	environment	variables	with	names	of
the	form	AUTHENTICATE_COLUMN.

The	encrypted	password	format	depends	on	which	authentication
frontend	(e.g.	mod_auth_basic	or	mod_auth_digest)	is	being
used.	See	Password	Formats	for	more	information.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_authn_dbm

				.	 					.

: DBM				
: Extension
: authn_dbm_module
: mod_authn_dbm.c
: 	2.1	

		 mod_auth_digest	mod_auth_basic			 dbm			
.	 mod_authn_file		.

mod_auth_basic	 mod_auth_digest		 AuthBasicProvider

AuthDigestProvider		 dbm				.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

AuthName

AuthType

AuthBasicProvider

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authn_dbm
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authn_dbm

AuthDigestProvider

AuthDBMType	

: 					
: AuthDBMType	default|SDBM|GDBM|NDBM|DB

: AuthDBMType	default

: directory,	.htaccess
Override	: AuthConfig
: Extension
: mod_authn_dbm

					.		 			.					
.

						 		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

AuthDBMUserFile	

: 							
: AuthDBMUserFile	file-path

: directory,	.htaccess
Override	: AuthConfig
: Extension
: mod_authn_dbm

AuthDBMUserFile			 						DBM		
path		.

			.				 	.								
				.

:

AuthDBMUserFile			 		.							
	,		 AuthDBMUserFile			 .

		:			 dbmopen				NULL		DBM		
	.	Netscape				 		NULL				
			.

	 dbmmanage	 Perl		.						 DBM			.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_authn_file

				.	 					.

: 			
: Base
: authn_file_module
: mod_authn_file.c
: 	2.1	

		 mod_auth_digest	mod_auth_basic				 			
		.	 mod_authn_dbm		.

mod_auth_basic	 mod_auth_digest		 AuthBasicProvider

AuthDigestProvider		 file				.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

AuthBasicProvider

AuthDigestProvider

htpasswd

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authn_file
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authn_file

htdigest

AuthUserFile	

: 						
: AuthUserFile	file-path

: directory,	.htaccess
Override	: AuthConfig
: Base
: mod_authn_file

AuthUserFile				 						.	
.			 	 ServerRoot		.

			,	,				 .						,
mod_authn_file				 .

		 src/support		 htpasswd		 HTTP	Basic
Authentication			.	 		 manpage	.	:

		 username			 Filename	.		:

htpasswd	-c	Filename	username

	 Filename	 username2		:

htpasswd	Filename	username2

				 		 .				 AuthDBMUserFile		

HTTP	Digest	Authentication		 htpasswd		.	 	 htdigest	
.	Digest	Authentication	Basic	Authentication	 				
			.

AuthUserFile			 		.						

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

,		 AuthUserFile			.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authn_socache

Description: Manages	a	cache	of	authentication	credentials	to
relieve	the	load	on	backends

Status: Base
Module	Identifier: authn_socache_module
Source	File: mod_authn_socache.c
Compatibility: Version	2.3	and	later

Summary
Maintains	a	cache	of	authentication	credentials,	so	that	a	new
backend	lookup	is	not	required	for	every	authenticated	request.

Authentication	Cacheing

Some	users	of	more	heavyweight	authentication	such	as	SQL
database	lookups	(mod_authn_dbd)	have	reported	it	putting	an
unacceptable	load	on	their	authentication	provider.	A	typical	case
in	point	is	where	an	HTML	page	contains	hundreds	of	objects
(images,	scripts,	stylesheets,	media,	etc),	and	a	request	to	the
page	generates	hundreds	of	effectively-immediate	requests	for
authenticated	additional	contents.

mod_authn_socache	provides	a	solution	to	this	problem	by
maintaining	a	cache	of	authentication	credentials.

Usage

The	authentication	cache	should	be	used	where	authentication
lookups	impose	a	significant	load	on	the	server,	or	a	backend	or
network.	Authentication	by	file	(mod_authn_file)	or	dbm
(mod_authn_dbm)	are	unlikely	to	benefit,	as	these	are	fast	and
lightweight	in	their	own	right	(though	in	some	cases,	such	as	a
network-mounted	file,	cacheing	may	be	worthwhile).	Other
providers	such	as	SQL	or	LDAP	based	authentication	are	more
likely	to	benefit,	particularly	where	there	is	an	observed
performance	issue.	Amongst	the	standard	modules,
mod_authnz_ldap	manages	its	own	cache,	so	only
mod_authn_dbd	will	usually	benefit	from	this	cache.

The	basic	rules	to	cache	for	a	provider	are:

1.	 Include	the	provider	you're	cacheing	for	in	an
AuthnCacheProvideFor	directive.

2.	 List	socache	ahead	of	the	provider	you're	cacheing	for	in	your
AuthBasicProvider	or	AuthDigestProvider	directive.

A	simple	usage	example	to	accelerate	mod_authn_dbd	using
dbm	as	a	cache	engine:

#AuthnCacheSOCache	is	optional.		If	specified,	it	is	server-wide

AuthnCacheSOCache	dbm

<Directory	"/usr/www/myhost/private">

				AuthType	Basic

				AuthName	"Cached	Authentication	Example"

				AuthBasicProvider	socache	dbd

				AuthDBDUserPWQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s"

				AuthnCacheProvideFor	dbd

				Require	valid-user

				#Optional

				AuthnCacheContext	dbd-authn-example

</Directory>

Cacheing	with	custom	modules

Module	developers	should	note	that	their	modules	must	be
enabled	for	cacheing	with	mod_authn_socache.	A	single	optional
API	function	ap_authn_cache_store	is	provided	to	cache
credentials	a	provider	has	just	looked	up	or	generated.	Usage
examples	are	available	in	r957072,	in	which	three	authn	providers
are	enabled	for	cacheing.

http://svn.eu.apache.org/viewvc?view=revision&revision=957072

AuthnCacheContext	Directive

Description: Specify	a	context	string	for	use	in	the	cache	key
Syntax: AuthnCacheContext

directory|server|custom-string

Default: directory

Context: directory
Status: Base
Module: mod_authn_socache

This	directive	specifies	a	string	to	be	used	along	with	the	supplied
username	(and	realm	in	the	case	of	Digest	Authentication)	in
constructing	a	cache	key.	This	serves	to	disambiguate	identical
usernames	serving	different	authentication	areas	on	the	server.

Two	special	values	for	this	are	directory,	which	uses	the	directory
context	of	the	request	as	a	string,	and	server	which	uses	the
virtual	host	name.

The	default	is	directory,	which	is	also	the	most	conservative
setting.	This	is	likely	to	be	less	than	optimal,	as	it	(for	example)
causes	$app-base,	$app-base/images,	$app-base/scripts	and
$app-base/media	each	to	have	its	own	separate	cache	key.	A
better	policy	is	to	name	the	AuthnCacheContext	for	the
password	provider:	for	example	a	htpasswd	file	or	database	table.

Contexts	can	be	shared	across	different	areas	of	a	server,	where
credentials	are	shared.	However,	this	has	potential	to	become	a
vector	for	cross-site	or	cross-application	security	breaches,	so	this
directive	is	not	permitted	in	.htaccess	contexts.

AuthnCacheEnable	Directive

Description: Enable	Authn	caching	configured	anywhere
Syntax: AuthnCacheEnable

Context: server	config
Override: None
Status: Base
Module: mod_authn_socache

This	directive	is	not	normally	necessary:	it	is	implied	if
authentication	cacheing	is	enabled	anywhere	in	httpd.conf.
However,	if	it	is	not	enabled	anywhere	in	httpd.conf	it	will	by
default	not	be	initialised,	and	is	therefore	not	available	in	a
.htaccess	context.	This	directive	ensures	it	is	initialised	so	it	can
be	used	in	.htaccess.

AuthnCacheProvideFor	Directive

Description: Specify	which	authn	provider(s)	to	cache	for
Syntax: AuthnCacheProvideFor	authn-provider

[...]

Default: None

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authn_socache

This	directive	specifies	an	authentication	provider	or	providers	to
cache	for.	Credentials	found	by	a	provider	not	listed	in	an
AuthnCacheProvideFor	directive	will	not	be	cached.

For	example,	to	cache	credentials	found	by	mod_authn_dbd	or
by	a	custom	provider	myprovider,	but	leave	those	looked	up	by
lightweight	providers	like	file	or	dbm	lookup	alone:

AuthnCacheProvideFor	dbd	myprovider

AuthnCacheSOCache	Directive

Description: Select	socache	backend	provider	to	use
Syntax: AuthnCacheSOCache	provider-

name[:provider-args]

Context: server	config
Override: None
Status: Base
Module: mod_authn_socache
Compatibility: Optional	provider	arguments	are	available	in

Apache	HTTP	Server	2.4.7	and	later

This	is	a	server-wide	setting	to	select	a	provider	for	the	shared
object	cache,	followed	by	optional	arguments	for	that	provider.
Some	possible	values	for	provider-name	are	"dbm",	"dc",
"memcache",	or	"shmcb",	each	subject	to	the	appropriate	module
being	loaded.	If	not	set,	your	platform's	default	will	be	used.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthnCacheTimeout	Directive

Description: Set	a	timeout	for	cache	entries
Syntax: AuthnCacheTimeout	timeout	(seconds)

Default: 300	(5	minutes)

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authn_socache

Cacheing	authentication	data	can	be	a	security	issue,	though
short-term	cacheing	is	unlikely	to	be	a	problem.	Typically	a	good
solution	is	to	cache	credentials	for	as	long	as	it	takes	to	relieve	the
load	on	a	backend,	but	no	longer,	though	if	changes	to	your	users
and	passwords	are	infrequent	then	a	longer	timeout	may	suit	you.
The	default	300	seconds	(5	minutes)	is	both	cautious	and	ample	to
keep	the	load	on	a	backend	such	as	dbd	(SQL	database	queries)
down.

This	should	not	be	confused	with	session	timeout,	which	is	an
entirely	separate	issue.	However,	you	may	wish	to	check	your
session-management	software	for	whether	cached	credentials	can
"accidentally"	extend	a	session,	and	bear	it	in	mind	when	setting
your	timeout.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authnz_fcgi

Description: Allows	a	FastCGI	authorizer	application	to
handle	Apache	httpd	authentication	and
authorization

Status: Extension
Module	Identifier: authnz_fcgi_module
Source	File: mod_authnz_fcgi.c
Compatibility: Available	in	version	2.4.10	and	later

Summary
This	module	allows	FastCGI	authorizer	applications	to	authenticate
users	and	authorize	access	to	resources.	It	supports	generic	FastCGI
authorizers	which	participate	in	a	single	phase	for	authentication	and
authorization	as	well	as	Apache	httpd-specific	authenticators	and
authorizors	which	participate	in	one	or	both	phases.

FastCGI	authorizers	can	authenticate	using	user	id	and	password,
such	as	for	Basic	authentication,	or	can	authenticate	using	arbitrary
mechanisms.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authnz_fcgi
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authnz_fcgi

Authentication,	Authorization,	and	Access	Control
mod_auth_basic

fcgistarter

mod_proxy_fcgi

Invocation	modes

The	invocation	modes	for	FastCGI	authorizers	supported	by	this
module	are	distinguished	by	two	characteristics,	type	and	auth
mechanism.

Type	is	simply	authn	for	authentication,	authz	for	authorization,
or	authnz	for	combined	authentication	and	authorization.

Auth	mechanism	refers	to	the	Apache	httpd	configuration
mechanisms	and	processing	phases,	and	can	be
AuthBasicProvider,	Require,	or	check_user_id.	The	first
two	of	these	correspond	to	the	directives	used	to	enable
participation	in	the	appropriate	processing	phase.

Descriptions	of	each	mode:

Type	authn,	mechanism	AuthBasicProvider
In	this	mode,	FCGI_ROLE	is	set	to	AUTHORIZER	and
FCGI_APACHE_ROLE	is	set	to	AUTHENTICATOR.	The
application	must	be	defined	as	provider	type	authn	using
AuthnzFcgiDefineProvider	and	enabled	with
AuthBasicProvider.	When	invoked,	the	application	is
expected	to	authenticate	the	client	using	the	provided	user	id
and	password.	Example	application:

#!/usr/bin/perl

use	FCGI;

my	$request	=	FCGI::Request();

while	($request->Accept()	>=	0)	{

				die	if	$ENV{'FCGI_APACHE_ROLE'}	ne	"AUTHENTICATOR";

				die	if	$ENV{'FCGI_ROLE'}								ne	"AUTHORIZER";

				die	if	!$ENV{'REMOTE_PASSWD'};

				die	if	!$ENV{'REMOTE_USER'};

				print	STDERR	"This	text	is	written	to	the	web	server	error	log.\n";

				if	(($ENV{'REMOTE_USER'	}	eq	"foo"	||	$ENV{'REMOTE_USER'}	eq	"foo1")	&&

								$ENV{'REMOTE_PASSWD'}	eq	"bar")	{

								print	"Status:	200\n";

								print	"Variable-AUTHN_1:	authn_01\n";

								print	"Variable-AUTHN_2:	authn_02\n";

								print	"\n";

				}

				else	{

								print	"Status:	401\n\n";

				}

}

Example	configuration:

AuthnzFcgiDefineProvider	authn	FooAuthn	fcgi://localhost:10102/

<Location	"/protected/">

		AuthType	Basic

		AuthName	"Restricted"

		AuthBasicProvider	FooAuthn

		Require	...

</Location>

Type	authz,	mechanism	Require
In	this	mode,	FCGI_ROLE	is	set	to	AUTHORIZER	and
FCGI_APACHE_ROLE	is	set	to	AUTHORIZER.	The	application
must	be	defined	as	provider	type	authz	using
AuthnzFcgiDefineProvider.	When	invoked,	the
application	is	expected	to	authorize	the	client	using	the
provided	user	id	and	other	request	data.	Example	application:

#!/usr/bin/perl

use	FCGI;

my	$request	=	FCGI::Request();

while	($request->Accept()	>=	0)	{

				die	if	$ENV{'FCGI_APACHE_ROLE'}	ne	"AUTHORIZER";

				die	if	$ENV{'FCGI_ROLE'}								ne	"AUTHORIZER";

				die	if	$ENV{'REMOTE_PASSWD'};

				print	STDERR	"This	text	is	written	to	the	web	server	error	log.\n";

				if	($ENV{'REMOTE_USER'}	eq	"foo1")	{

								print	"Status:	200\n";

								print	"Variable-AUTHZ_1:	authz_01\n";

								print	"Variable-AUTHZ_2:	authz_02\n";

								print	"\n";

				}

				else	{

								print	"Status:	403\n\n";

				}

}

Example	configuration:

AuthnzFcgiDefineProvider	authz	FooAuthz	fcgi://localhost:10103/

<Location	"/protected/">

		AuthType	...

		AuthName	...

		AuthBasicProvider	...

		Require	FooAuthz

</Location>

Type	authnz,	mechanism	AuthBasicProvider	+	Require

In	this	mode,	which	supports	the	web	server-agnostic
FastCGI	AUTHORIZER	protocol,	FCGI_ROLE	is	set	to
AUTHORIZER	and	FCGI_APACHE_ROLE	is	not	set.	The
application	must	be	defined	as	provider	type	authnz	using
AuthnzFcgiDefineProvider.	The	application	is	expected
to	handle	both	authentication	and	authorization	in	the	same
invocation	using	the	user	id,	password,	and	other	request
data.	The	invocation	occurs	during	the	Apache	httpd	API
authentication	phase.	If	the	application	returns	200	and	the
same	provider	is	invoked	during	the	authorization	phase	(via
Require),	mod_authnz_fcgi	will	return	success	for	the
authorization	phase	without	invoking	the	application.	Example
application:

#!/usr/bin/perl

use	FCGI;

my	$request	=	FCGI::Request();

while	($request->Accept()	>=	0)	{

				die	if	$ENV{'FCGI_APACHE_ROLE'};

				die	if	$ENV{'FCGI_ROLE'}	ne	"AUTHORIZER";

				die	if	!$ENV{'REMOTE_PASSWD'};

				die	if	!$ENV{'REMOTE_USER'};

				print	STDERR	"This	text	is	written	to	the	web	server	error	log.\n";

				if	(($ENV{'REMOTE_USER'	}	eq	"foo"	||	$ENV{'REMOTE_USER'}	eq	"foo1")	&&

								$ENV{'REMOTE_PASSWD'}	eq	"bar"	&&

								$ENV{'REQUEST_URI'}	=~	m%/bar/.*%)	{

								print	"Status:	200\n";

								print	"Variable-AUTHNZ_1:	authnz_01\n";

								print	"Variable-AUTHNZ_2:	authnz_02\n";

								print	"\n";

				}

				else	{

								print	"Status:	401\n\n";

				}

}

Example	configuration:

AuthnzFcgiDefineProvider	authnz	FooAuthnz	fcgi://localhost:10103/

<Location	"/protected/">

		AuthType	Basic

		AuthName	"Restricted"

		AuthBasicProvider	FooAuthnz

		Require	FooAuthnz

</Location>

Type	authn,	mechanism	check_user_id
In	this	mode,	FCGI_ROLE	is	set	to	AUTHORIZER	and
FCGI_APACHE_ROLE	is	set	to	AUTHENTICATOR.	The
application	must	be	defined	as	provider	type	authn	using
AuthnzFcgiDefineProvider.
AuthnzFcgiCheckAuthnProvider	specifies	when	it	is
called.	Example	application:

#!/usr/bin/perl

use	FCGI;

my	$request	=	FCGI::Request();

while	($request->Accept()	>=	0)	{

				die	if	$ENV{'FCGI_APACHE_ROLE'}	ne	"AUTHENTICATOR";

				die	if	$ENV{'FCGI_ROLE'}	ne	"AUTHORIZER";

				#	This	authorizer	assumes	that	the	RequireBasicAuth	option	of	

				#	AuthnzFcgiCheckAuthnProvider	is	On:

				die	if	!$ENV{'REMOTE_PASSWD'};

				die	if	!$ENV{'REMOTE_USER'};

				print	STDERR	"This	text	is	written	to	the	web	server	error	log.\n";

				if	(($ENV{'REMOTE_USER'	}	eq	"foo"	||	$ENV{'REMOTE_USER'}	eq	"foo1")	&&

								$ENV{'REMOTE_PASSWD'}	eq	"bar")	{

								print	"Status:	200\n";

								print	"Variable-AUTHNZ_1:	authnz_01\n";

								print	"Variable-AUTHNZ_2:	authnz_02\n";

								print	"\n";

				}

				else	{

								print	"Status:	401\n\n";

								#	If	a	response	body	is	written	here,	it	will	be	returned	to

								#	the	client.

				}

}

Example	configuration:

AuthnzFcgiDefineProvider	authn	FooAuthn	fcgi://localhost:10103/

<Location	"/protected/">

		AuthType	...

		AuthName	...

		AuthnzFcgiCheckAuthnProvider	FooAuthn	\

																															Authoritative	On	\

																															RequireBasicAuth	Off	\

																															UserExpr	"%{reqenv:REMOTE_USER}"

		Require	...

</Location>

Additional	examples

1.	 If	your	application	supports	the	separate	authentication	and
authorization	roles	(AUTHENTICATOR	and	AUTHORIZER),
define	separate	providers	as	follows,	even	if	they	map	to	the
same	application:

AuthnzFcgiDefineProvider	authn		FooAuthn		fcgi://localhost:10102/

AuthnzFcgiDefineProvider	authz		FooAuthz		fcgi://localhost:10102/

Specify	the	authn	provider	on	AuthBasicProvider	and	the
authz	provider	on	Require:

AuthType	Basic

AuthName	"Restricted"

AuthBasicProvider	FooAuthn

Require	FooAuthz

2.	 If	your	application	supports	the	generic	AUTHORIZER	role
(authentication	and	authorizer	in	one	invocation),	define	a
single	provider	as	follows:

AuthnzFcgiDefineProvider	authnz	FooAuthnz	fcgi://localhost:10103/

Specify	the	authnz	provider	on	both	AuthBasicProvider
and	Require:

AuthType	Basic

AuthName	"Restricted"

AuthBasicProvider	FooAuthnz

Require	FooAuthnz

Limitations

The	following	are	potential	features	which	are	not	currently
implemented:

Apache	httpd	access	checker
The	Apache	httpd	API	access	check	phase	is	a	separate
phase	from	authentication	and	authorization.	Some	other
FastCGI	implementations	implement	this	phase,	which	is
denoted	by	the	setting	of	FCGI_APACHE_ROLE	to
ACCESS_CHECKER.

Local	(Unix)	sockets	or	pipes
Only	TCP	sockets	are	currently	supported.

Support	for	mod_authn_socache
mod_authn_socache	interaction	should	be	implemented	for
applications	which	participate	in	Apache	httpd-style
authentication.

Support	for	digest	authentication	using	AuthDigestProvider
This	is	expected	to	be	a	permanent	limitation	as	there	is	no
authorizer	flow	for	retrieving	a	hash.

Application	process	management
This	is	expected	to	be	permanently	out	of	scope	for	this
module.	Application	processes	must	be	controlled	by	other
means.	For	example,	fcgistarter	can	be	used	to	start
them.

AP_AUTH_INTERNAL_PER_URI
All	providers	are	currently	registered	as
AP_AUTH_INTERNAL_PER_CONF,	which	means	that
checks	are	not	performed	again	for	internal	subrequests	with
the	same	access	control	configuration	as	the	initial	request.

Protocol	data	charset	conversion
If	mod_authnz_fcgi	runs	in	an	EBCDIC	compilation
environment,	all	FastCGI	protocol	data	is	written	in	EBCDIC

and	expected	to	be	received	in	EBCDIC.

Multiple	requests	per	connection
Currently	the	connection	to	the	FastCGI	authorizer	is	closed
after	every	phase	of	processing.	For	example,	if	the	authorizer
handles	separate	authn	and	authz	phases	then	two
connections	will	be	used.

URI	Mapping
URIs	from	clients	can't	be	mapped,	such	as	with	the
ProxyPass	used	with	FastCGI	responders.

Logging

1.	 Processing	errors	are	logged	at	log	level	error	and	higher.

2.	 Messages	written	by	the	application	are	logged	at	log	level
warn.

3.	 General	messages	for	debugging	are	logged	at	log	level
debug.

4.	 Environment	variables	passed	to	the	application	are	logged	at
log	level	trace2.	The	value	of	the	REMOTE_PASSWD	variable
will	be	obscured,	but	any	other	sensitive	data	will	be	visible
in	the	log.

5.	 All	I/O	between	the	module	and	the	FastCGI	application,
including	all	environment	variables,	will	be	logged	in	printable
and	hex	format	at	log	level	trace5.	All	sensitive	data	will
be	visible	in	the	log.

LogLevel	can	be	used	to	configure	a	log	level	specific	to
mod_authnz_fcgi.	For	example:

LogLevel	info	authnz_fcgi:trace8

AuthnzFcgiCheckAuthnProvider	Directive

Description: Enables	a	FastCGI	application	to	handle	the
check_authn	authentication	hook.

Syntax: AuthnzFcgiCheckAuthnProvider

provider-name|None	option	...
Default: none

Context: directory
Status: Extension
Module: mod_authnz_fcgi

This	directive	is	used	to	enable	a	FastCGI	authorizer	to	handle	a
specific	processing	phase	of	authentication	or	authorization.

Some	capabilities	of	FastCGI	authorizers	require	enablement
using	this	directive	instead	of	AuthBasicProvider:

Non-Basic	authentication;	generally,	determining	the	user	id	of
the	client	and	returning	it	from	the	authorizer;	see	the
UserExpr	option	below
Selecting	a	custom	response	code;	for	a	non-200	response
from	the	authorizer,	the	code	from	the	authorizer	will	be	the
status	of	the	response
Setting	the	body	of	a	non-200	response;	if	the	authorizer
provides	a	response	body	with	a	non-200	response,	that	body
will	be	returned	to	the	client;	up	to	8192	bytes	of	text	are
supported

provider-name
This	is	the	name	of	a	provider	defined	with
AuthnzFcgiDefineProvider.

None

Specify	None	to	disable	a	provider	enabled	with	this	directive
in	an	outer	scope,	such	as	in	a	parent	directory.

option
The	following	options	are	supported:

Authoritative	On|Off	(default	On)
This	controls	whether	or	not	other	modules	are	allowed	to
run	when	this	module	has	a	FastCGI	authorizer
configured	and	it	fails	the	request.

DefaultUser	userid
When	the	authorizer	returns	success	and	UserExpr	is
configured	and	evaluates	to	an	empty	string	(e.g.,
authorizer	didn't	return	a	variable),	this	value	will	be	used
as	the	user	id.	This	is	typically	used	when	the	authorizer
has	a	concept	of	guest,	or	unauthenticated,	users	and
guest	users	are	mapped	to	some	specific	user	id	for
logging	and	other	purposes.

RequireBasicAuth	On|Off	(default	Off)
This	controls	whether	or	not	Basic	auth	is	required	before
passing	the	request	to	the	authorizer.	If	required,	the
authorizer	won't	be	invoked	without	a	user	id	and
password;	401	will	be	returned	for	a	request	without	that.

UserExpr	expr	(no	default)
When	Basic	authentication	isn't	provided	by	the	client
and	the	authorizer	determines	the	user,	this	expression,
evaluated	after	calling	the	authorizer,	determines	the
user.	The	expression	follows	ap_expr	syntax	and	must
resolve	to	a	string.	A	typical	use	is	to	reference	a
Variable-XXX	setting	returned	by	the	authorizer	using
an	option	like	UserExpr	"%{reqenv:XXX}".	If	this
option	is	specified	and	the	user	id	can't	be	retrieved	using
the	expression	after	a	successful	authentication,	the
request	will	be	rejected	with	a	500	error.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthnzFcgiDefineProvider	Directive

Description: Defines	a	FastCGI	application	as	a	provider	for
authentication	and/or	authorization

Syntax: AuthnzFcgiDefineProvider	type

provider-name	backend-address

Default: none

Context: server	config
Status: Extension
Module: mod_authnz_fcgi

This	directive	is	used	to	define	a	FastCGI	application	as	a	provider
for	a	particular	phase	of	authentication	or	authorization.

type
This	must	be	set	to	authn	for	authentication,	authz	for
authorization,	or	authnz	for	a	generic	FastCGI	authorizer
which	performs	both	checks.

provider-name
This	is	used	to	assign	a	name	to	the	provider	which	is	used	in
other	directives	such	as	AuthBasicProvider	and
Require.

backend-address
This	specifies	the	address	of	the	application,	in	the	form
fcgi://hostname:port/.	The	application	process(es)	must	be
managed	independently,	such	as	with	fcgistarter.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authnz_ldap

Description: Allows	an	LDAP	directory	to	be	used	to	store	the
database	for	HTTP	Basic	authentication.

Status: Extension
Module	Identifier: authnz_ldap_module
Source	File: mod_authnz_ldap.c
Compatibility: Available	in	version	2.1	and	later

Summary
This	module	allows	authentication	front-ends	such	as
mod_auth_basic	to	authenticate	users	through	an	ldap	directory.

mod_authnz_ldap	supports	the	following	features:

Known	to	support	the	OpenLDAP	SDK	(both	1.x	and	2.x),	Novell
LDAP	SDK	and	the	iPlanet	(Netscape)	SDK.
Complex	authorization	policies	can	be	implemented	by
representing	the	policy	with	LDAP	filters.
Uses	extensive	caching	of	LDAP	operations	via	mod_ldap.
Support	for	LDAP	over	SSL	(requires	the	Netscape	SDK)	or	TLS
(requires	the	OpenLDAP	2.x	SDK	or	Novell	LDAP	SDK).

When	using	mod_auth_basic,	this	module	is	invoked	via	the
AuthBasicProvider	directive	with	the	ldap	value.

Bugfix	checklist

http://www.openldap.org/
http://developer.novell.com/ndk/cldap.htm
http://www.iplanet.com/downloads/developer/
https://www.apache.org/foundation/contributing.html

httpd	changelog
Known	issues
Report	a	bug

See	also
mod_ldap

mod_auth_basic

mod_authz_user

mod_authz_groupfile

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authnz_ldap
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authnz_ldap

Contents

General	caveats
Operation

The	Authentication	Phase
The	Authorization	Phase

The	Require	Directives
Require	ldap-user
Require	ldap-group
Require	ldap-dn
Require	ldap-attribute
Require	ldap-filter

Examples
Using	TLS
Using	SSL
Exposing	Login	Information
Using	Active	Directory
Using	Microsoft	FrontPage	with	mod_authnz_ldap

How	It	Works
Caveats

General	caveats

This	module	caches	authentication	and	authorization	results
based	on	the	configuration	of	mod_ldap.	Changes	made	to	the
backing	LDAP	server	will	not	be	immediately	reflected	on	the
HTTP	Server,	including	but	not	limited	to	user
lockouts/revocations,	password	changes,	or	changes	to	group
memberships.	Consult	the	directives	in	mod_ldap	for	details	of
the	cache	tunables.

Operation

There	are	two	phases	in	granting	access	to	a	user.	The	first	phase
is	authentication,	in	which	the	mod_authnz_ldap	authentication
provider	verifies	that	the	user's	credentials	are	valid.	This	is	also
called	the	search/bind	phase.	The	second	phase	is	authorization,
in	which	mod_authnz_ldap	determines	if	the	authenticated	user
is	allowed	access	to	the	resource	in	question.	This	is	also	known
as	the	compare	phase.

mod_authnz_ldap	registers	both	an	authn_ldap	authentication
provider	and	an	authz_ldap	authorization	handler.	The	authn_ldap
authentication	provider	can	be	enabled	through	the
AuthBasicProvider	directive	using	the	ldap	value.	The
authz_ldap	handler	extends	the	Require	directive's	authorization
types	by	adding	ldap-user,	ldap-dn	and	ldap-group	values.

The	Authentication	Phase
During	the	authentication	phase,	mod_authnz_ldap	searches	for
an	entry	in	the	directory	that	matches	the	username	that	the	HTTP
client	passes.	If	a	single	unique	match	is	found,	then
mod_authnz_ldap	attempts	to	bind	to	the	directory	server	using
the	DN	of	the	entry	plus	the	password	provided	by	the	HTTP
client.	Because	it	does	a	search,	then	a	bind,	it	is	often	referred	to
as	the	search/bind	phase.	Here	are	the	steps	taken	during	the
search/bind	phase.

1.	 Generate	a	search	filter	by	combining	the	attribute	and	filter
provided	in	the	AuthLDAPURL	directive	with	the	username
passed	by	the	HTTP	client.

2.	 Search	the	directory	using	the	generated	filter.	If	the	search
does	not	return	exactly	one	entry,	deny	or	decline	access.

3.	 Fetch	the	distinguished	name	of	the	entry	retrieved	from	the
search	and	attempt	to	bind	to	the	LDAP	server	using	that	DN

and	the	password	passed	by	the	HTTP	client.	If	the	bind	is
unsuccessful,	deny	or	decline	access.

The	following	directives	are	used	during	the	search/bind	phase

AuthLDAPURL Specifies	the	LDAP	server,	the	base
DN,	the	attribute	to	use	in	the	search,
as	well	as	the	extra	search	filter	to
use.

AuthLDAPBindDN An	optional	DN	to	bind	with	during
the	search	phase.

AuthLDAPBindPassword An	optional	password	to	bind	with
during	the	search	phase.

The	Authorization	Phase
During	the	authorization	phase,	mod_authnz_ldap	attempts	to
determine	if	the	user	is	authorized	to	access	the	resource.	Many	of
these	checks	require	mod_authnz_ldap	to	do	a	compare
operation	on	the	LDAP	server.	This	is	why	this	phase	is	often
referred	to	as	the	compare	phase.	mod_authnz_ldap	accepts
the	following	Require	directives	to	determine	if	the	credentials
are	acceptable:

Grant	access	if	there	is	a	Require	ldap-user	directive,
and	the	username	in	the	directive	matches	the	username
passed	by	the	client.
Grant	access	if	there	is	a	Require	ldap-dn	directive,	and
the	DN	in	the	directive	matches	the	DN	fetched	from	the
LDAP	directory.
Grant	access	if	there	is	a	Require	ldap-group	directive,
and	the	DN	fetched	from	the	LDAP	directory	(or	the	username
passed	by	the	client)	occurs	in	the	LDAP	group	or,	potentially,
in	one	of	its	sub-groups.

Grant	access	if	there	is	a	Require	ldap-attribute
directive,	and	the	attribute	fetched	from	the	LDAP	directory
matches	the	given	value.
Grant	access	if	there	is	a	Require	ldap-filter	directive,
and	the	search	filter	successfully	finds	a	single	user	object
that	matches	the	dn	of	the	authenticated	user.
otherwise,	deny	or	decline	access

Other	Require	values	may	also	be	used	which	may	require
loading	additional	authorization	modules.

Grant	access	to	all	successfully	authenticated	users	if	there	is
a	Require	valid-user	directive.	(requires
mod_authz_user)
Grant	access	if	there	is	a	Require	group	directive,	and
mod_authz_groupfile	has	been	loaded	with	the
AuthGroupFile	directive	set.
others...

mod_authnz_ldap	uses	the	following	directives	during	the
compare	phase:

AuthLDAPURL The	attribute	specified	in	the
URL	is	used	in	compare
operations	for	the	Require
ldap-user	operation.

AuthLDAPCompareDNOnServer Determines	the	behavior	of
the	Require	ldap-dn
directive.

AuthLDAPGroupAttribute Determines	the	attribute	to
use	for	comparisons	in	the
Require	ldap-group

directive.
AuthLDAPGroupAttributeIsDN Specifies	whether	to	use	the

user	DN	or	the	username
when	doing	comparisons	for
the	Require	ldap-group
directive.

AuthLDAPMaxSubGroupDepth Determines	the	maximum
depth	of	sub-groups	that	will
be	evaluated	during
comparisons	in	the	Require
ldap-group	directive.

AuthLDAPSubGroupAttribute Determines	the	attribute	to
use	when	obtaining	sub-
group	members	of	the
current	group	during
comparisons	in	the	Require
ldap-group	directive.

AuthLDAPSubGroupClass Specifies	the	LDAP
objectClass	values	used	to
identify	if	queried	directory
objects	really	are	group
objects	(as	opposed	to	user
objects)	during	the	Require
ldap-group	directive's	sub-
group	processing.

The	Require	Directives

Apache's	Require	directives	are	used	during	the	authorization
phase	to	ensure	that	a	user	is	allowed	to	access	a	resource.
mod_authnz_ldap	extends	the	authorization	types	with	ldap-
user,	ldap-dn,	ldap-group,	ldap-attribute	and	ldap-
filter.	Other	authorization	types	may	also	be	used	but	may
require	that	additional	authorization	modules	be	loaded.

Since	v2.4.8,	expressions	are	supported	within	the	LDAP	require
directives.

Require	ldap-user
The	Require	ldap-user	directive	specifies	what	usernames
can	access	the	resource.	Once	mod_authnz_ldap	has	retrieved
a	unique	DN	from	the	directory,	it	does	an	LDAP	compare
operation	using	the	username	specified	in	the	Require	ldap-
user	to	see	if	that	username	is	part	of	the	just-fetched	LDAP
entry.	Multiple	users	can	be	granted	access	by	putting	multiple
usernames	on	the	line,	separated	with	spaces.	If	a	username	has
a	space	in	it,	then	it	must	be	surrounded	with	double	quotes.
Multiple	users	can	also	be	granted	access	by	using	multiple
Require	ldap-user	directives,	with	one	user	per	line.	For
example,	with	a	AuthLDAPURL	of	ldap://ldap/o=Example?
cn	(i.e.,	cn	is	used	for	searches),	the	following	Require	directives
could	be	used	to	restrict	access:

Require	ldap-user	"Barbara	Jenson"

Require	ldap-user	"Fred	User"

Require	ldap-user	"Joe	Manager"

Because	of	the	way	that	mod_authnz_ldap	handles	this
directive,	Barbara	Jenson	could	sign	on	as	Barbara	Jenson,	Babs
Jenson	or	any	other	cn	that	she	has	in	her	LDAP	entry.	Only	the

single	Require	ldap-user	line	is	needed	to	support	all	values
of	the	attribute	in	the	user's	entry.

If	the	uid	attribute	was	used	instead	of	the	cn	attribute	in	the	URL
above,	the	above	three	lines	could	be	condensed	to

Require	ldap-user	bjenson	fuser	jmanager

Require	ldap-group
This	directive	specifies	an	LDAP	group	whose	members	are
allowed	access.	It	takes	the	distinguished	name	of	the	LDAP
group.	Note:	Do	not	surround	the	group	name	with	quotes.	For
example,	assume	that	the	following	entry	existed	in	the	LDAP
directory:

dn:	cn=Administrators,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Barbara	Jenson,	o=Example

uniqueMember:	cn=Fred	User,	o=Example

The	following	directive	would	grant	access	to	both	Fred	and
Barbara:

Require	ldap-group	cn=Administrators,	o=Example

Members	can	also	be	found	within	sub-groups	of	a	specified	LDAP
group	if	AuthLDAPMaxSubGroupDepth	is	set	to	a	value	greater
than	0.	For	example,	assume	the	following	entries	exist	in	the
LDAP	directory:

dn:	cn=Employees,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Managers,	o=Example

uniqueMember:	cn=Administrators,	o=Example

uniqueMember:	cn=Users,	o=Example

dn:	cn=Managers,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Bob	Ellis,	o=Example

uniqueMember:	cn=Tom	Jackson,	o=Example

dn:	cn=Administrators,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Barbara	Jenson,	o=Example

uniqueMember:	cn=Fred	User,	o=Example

dn:	cn=Users,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Allan	Jefferson,	o=Example

uniqueMember:	cn=Paul	Tilley,	o=Example

uniqueMember:	cn=Temporary	Employees,	o=Example

dn:	cn=Temporary	Employees,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Jim	Swenson,	o=Example

uniqueMember:	cn=Elliot	Rhodes,	o=Example

The	following	directives	would	allow	access	for	Bob	Ellis,	Tom
Jackson,	Barbara	Jenson,	Fred	User,	Allan	Jefferson,	and	Paul
Tilley	but	would	not	allow	access	for	Jim	Swenson,	or	Elliot
Rhodes	(since	they	are	at	a	sub-group	depth	of	2):

Require	ldap-group	cn=Employees,	o=Example

AuthLDAPMaxSubGroupDepth	1

Behavior	of	this	directive	is	modified	by	the
AuthLDAPGroupAttribute,
AuthLDAPGroupAttributeIsDN,
AuthLDAPMaxSubGroupDepth,
AuthLDAPSubGroupAttribute,	and
AuthLDAPSubGroupClass	directives.

Require	ldap-dn
The	Require	ldap-dn	directive	allows	the	administrator	to	grant

access	based	on	distinguished	names.	It	specifies	a	DN	that	must
match	for	access	to	be	granted.	If	the	distinguished	name	that	was
retrieved	from	the	directory	server	matches	the	distinguished
name	in	the	Require	ldap-dn,	then	authorization	is	granted.
Note:	do	not	surround	the	distinguished	name	with	quotes.

The	following	directive	would	grant	access	to	a	specific	DN:

Require	ldap-dn	cn=Barbara	Jenson,	o=Example

Behavior	of	this	directive	is	modified	by	the
AuthLDAPCompareDNOnServer	directive.

Require	ldap-attribute
The	Require	ldap-attribute	directive	allows	the
administrator	to	grant	access	based	on	attributes	of	the
authenticated	user	in	the	LDAP	directory.	If	the	attribute	in	the
directory	matches	the	value	given	in	the	configuration,	access	is
granted.

The	following	directive	would	grant	access	to	anyone	with	the
attribute	employeeType	=	active

Require	ldap-attribute	"employeeType=active"

Multiple	attribute/value	pairs	can	be	specified	on	the	same	line
separated	by	spaces	or	they	can	be	specified	in	multiple	Require
ldap-attribute	directives.	The	effect	of	listing	multiple
attribute/values	pairs	is	an	OR	operation.	Access	will	be	granted	if
any	of	the	listed	attribute	values	match	the	value	of	the
corresponding	attribute	in	the	user	object.	If	the	value	of	the
attribute	contains	a	space,	only	the	value	must	be	within	double

quotes.

The	following	directive	would	grant	access	to	anyone	with	the	city
attribute	equal	to	"San	Jose"	or	status	equal	to	"Active"

Require	ldap-attribute	city="San	Jose"	"status=active"

Require	ldap-filter
The	Require	ldap-filter	directive	allows	the	administrator	to
grant	access	based	on	a	complex	LDAP	search	filter.	If	the	dn
returned	by	the	filter	search	matches	the	authenticated	user	dn,
access	is	granted.

The	following	directive	would	grant	access	to	anyone	having	a	cell
phone	and	is	in	the	marketing	department

Require	ldap-filter	"&(cell=*)(department=marketing)"

The	difference	between	the	Require	ldap-filter	directive
and	the	Require	ldap-attribute	directive	is	that	ldap-
filter	performs	a	search	operation	on	the	LDAP	directory	using
the	specified	search	filter	rather	than	a	simple	attribute
comparison.	If	a	simple	attribute	comparison	is	all	that	is	required,
the	comparison	operation	performed	by	ldap-attribute	will	be
faster	than	the	search	operation	used	by	ldap-filter	especially
within	a	large	directory.

Examples

Grant	access	to	anyone	who	exists	in	the	LDAP	directory,
using	their	UID	for	searches.

AuthLDAPURL	"ldap://ldap1.example.com:389/ou=People,	o=Example?uid?sub?(objectClass=*)"

Require	valid-user

The	next	example	is	the	same	as	above;	but	with	the	fields
that	have	useful	defaults	omitted.	Also,	note	the	use	of	a
redundant	LDAP	server.

AuthLDAPURL	"ldap://ldap1.example.com	ldap2.example.com/ou=People,	o=Example"

Require	valid-user

The	next	example	is	similar	to	the	previous	one,	but	it	uses
the	common	name	instead	of	the	UID.	Note	that	this	could	be
problematical	if	multiple	people	in	the	directory	share	the
same	cn,	because	a	search	on	cn	must	return	exactly	one
entry.	That's	why	this	approach	is	not	recommended:	it's	a
better	idea	to	choose	an	attribute	that	is	guaranteed	unique	in
your	directory,	such	as	uid.

AuthLDAPURL	"ldap://ldap.example.com/ou=People,	o=Example?cn"

Require	valid-user

Grant	access	to	anybody	in	the	Administrators	group.	The
users	must	authenticate	using	their	UID.

AuthLDAPURL	ldap://ldap.example.com/o=Example?uid

Require	ldap-group	cn=Administrators,	o=Example

Grant	access	to	anybody	in	the	group	whose	name	matches
the	hostname	of	the	virtual	host.	In	this	example	an
expression	is	used	to	build	the	filter.

AuthLDAPURL	ldap://ldap.example.com/o=Example?uid

Require	ldap-group	cn=%{SERVER_NAME},	o=Example

The	next	example	assumes	that	everyone	at	Example	who
carries	an	alphanumeric	pager	will	have	an	LDAP	attribute	of
qpagePagerID.	The	example	will	grant	access	only	to
people	(authenticated	via	their	UID)	who	have	alphanumeric
pagers:

AuthLDAPURL	ldap://ldap.example.com/o=Example?uid??(qpagePagerID=*)

Require	valid-user

The	next	example	demonstrates	the	power	of	using	filters	to
accomplish	complicated	administrative	requirements.	Without
filters,	it	would	have	been	necessary	to	create	a	new	LDAP
group	and	ensure	that	the	group's	members	remain
synchronized	with	the	pager	users.	This	becomes	trivial	with
filters.	The	goal	is	to	grant	access	to	anyone	who	has	a	pager,
plus	grant	access	to	Joe	Manager,	who	doesn't	have	a	pager,
but	does	need	to	access	the	same	resource:

AuthLDAPURL	ldap://ldap.example.com/o=Example?uid??(|(qpagePagerID=*)(uid=jmanager))

Require	valid-user

This	last	may	look	confusing	at	first,	so	it	helps	to	evaluate
what	the	search	filter	will	look	like	based	on	who	connects,	as
shown	below.	If	Fred	User	connects	as	fuser,	the	filter	would

look	like

(&(|(qpagePagerID=*)(uid=jmanager))(uid=fuser))

The	above	search	will	only	succeed	if	fuser	has	a	pager.
When	Joe	Manager	connects	as	jmanager,	the	filter	looks	like

(&(|(qpagePagerID=*)(uid=jmanager))(uid=jmanager))

The	above	search	will	succeed	whether	jmanager	has	a	pager
or	not.

Using	TLS

To	use	TLS,	see	the	mod_ldap	directives
LDAPTrustedClientCert,	LDAPTrustedGlobalCert	and
LDAPTrustedMode.

An	optional	second	parameter	can	be	added	to	the	AuthLDAPURL
to	override	the	default	connection	type	set	by	LDAPTrustedMode.
This	will	allow	the	connection	established	by	an	ldap://	Url	to	be
upgraded	to	a	secure	connection	on	the	same	port.

Using	SSL

To	use	SSL,	see	the	mod_ldap	directives
LDAPTrustedClientCert,	LDAPTrustedGlobalCert	and
LDAPTrustedMode.

To	specify	a	secure	LDAP	server,	use	ldaps://	in	the
AuthLDAPURL	directive,	instead	of	ldap://.

Exposing	Login	Information

when	this	module	performs	authentication,	ldap	attributes
specified	in	the	authldapurl	directive	are	placed	in	environment
variables	with	the	prefix	"AUTHENTICATE_".

when	this	module	performs	authorization,	ldap	attributes	specified
in	the	authldapurl	directive	are	placed	in	environment	variables
with	the	prefix	"AUTHORIZE_".

If	the	attribute	field	contains	the	username,	common	name	and
telephone	number	of	a	user,	a	CGI	program	will	have	access	to
this	information	without	the	need	to	make	a	second	independent
LDAP	query	to	gather	this	additional	information.

This	has	the	potential	to	dramatically	simplify	the	coding	and
configuration	required	in	some	web	applications.

Using	Active	Directory

An	Active	Directory	installation	may	support	multiple	domains	at
the	same	time.	To	distinguish	users	between	domains,	an	identifier
called	a	User	Principle	Name	(UPN)	can	be	added	to	a	user's
entry	in	the	directory.	This	UPN	usually	takes	the	form	of	the	user's
account	name,	followed	by	the	domain	components	of	the
particular	domain,	for	example	somebody@nz.example.com.

You	may	wish	to	configure	the	mod_authnz_ldap	module	to
authenticate	users	present	in	any	of	the	domains	making	up	the
Active	Directory	forest.	In	this	way	both
somebody@nz.example.com	and	someone@au.example.com	can
be	authenticated	using	the	same	query	at	the	same	time.

To	make	this	practical,	Active	Directory	supports	the	concept	of	a
Global	Catalog.	This	Global	Catalog	is	a	read	only	copy	of
selected	attributes	of	all	the	Active	Directory	servers	within	the
Active	Directory	forest.	Querying	the	Global	Catalog	allows	all	the
domains	to	be	queried	in	a	single	query,	without	the	query
spanning	servers	over	potentially	slow	links.

If	enabled,	the	Global	Catalog	is	an	independent	directory	server
that	runs	on	port	3268	(3269	for	SSL).	To	search	for	a	user,	do	a
subtree	search	for	the	attribute	userPrincipalName,	with	an	empty
search	root,	like	so:

AuthLDAPBindDN	apache@example.com

AuthLDAPBindPassword	password

AuthLDAPURL	ldap://10.0.0.1:3268/?userPrincipalName?sub

Users	will	need	to	enter	their	User	Principal	Name	as	a	login,	in
the	form	somebody@nz.example.com.

Using	Microsoft	FrontPage	with	mod_authnz_ldap

Normally,	FrontPage	uses	FrontPage-web-specific	user/group	files
(i.e.,	the	mod_authn_file	and	mod_authz_groupfile
modules)	to	handle	all	authentication.	Unfortunately,	it	is	not
possible	to	just	change	to	LDAP	authentication	by	adding	the
proper	directives,	because	it	will	break	the	Permissions	forms	in
the	FrontPage	client,	which	attempt	to	modify	the	standard	text-
based	authorization	files.

Once	a	FrontPage	web	has	been	created,	adding	LDAP
authentication	to	it	is	a	matter	of	adding	the	following	directives	to
every	.htaccess	file	that	gets	created	in	the	web

AuthLDAPURL							"the	url"

AuthGroupFile					"mygroupfile"

Require	group					"mygroupfile"

How	It	Works
FrontPage	restricts	access	to	a	web	by	adding	the	Require
valid-user	directive	to	the	.htaccess	files.	The	Require
valid-user	directive	will	succeed	for	any	user	who	is	valid	as	far
as	LDAP	is	concerned.	This	means	that	anybody	who	has	an	entry
in	the	LDAP	directory	is	considered	a	valid	user,	whereas
FrontPage	considers	only	those	people	in	the	local	user	file	to	be
valid.	By	substituting	the	ldap-group	with	group	file	authorization,
Apache	is	allowed	to	consult	the	local	user	file	(which	is	managed
by	FrontPage)	-	instead	of	LDAP	-	when	handling	authorizing	the
user.

Once	directives	have	been	added	as	specified	above,	FrontPage
users	will	be	able	to	perform	all	management	operations	from	the
FrontPage	client.

Caveats
When	choosing	the	LDAP	URL,	the	attribute	to	use	for
authentication	should	be	something	that	will	also	be	valid	for
putting	into	a	mod_authn_file	user	file.	The	user	ID	is	ideal
for	this.
When	adding	users	via	FrontPage,	FrontPage	administrators
should	choose	usernames	that	already	exist	in	the	LDAP
directory	(for	obvious	reasons).	Also,	the	password	that	the
administrator	enters	into	the	form	is	ignored,	since	Apache	will
actually	be	authenticating	against	the	password	in	the	LDAP
database,	and	not	against	the	password	in	the	local	user	file.
This	could	cause	confusion	for	web	administrators.
Apache	must	be	compiled	with	mod_auth_basic,
mod_authn_file	and	mod_authz_groupfile	in	order	to
use	FrontPage	support.	This	is	because	Apache	will	still	use
the	mod_authz_groupfile	group	file	for	determine	the
extent	of	a	user's	access	to	the	FrontPage	web.
The	directives	must	be	put	in	the	.htaccess	files.	Attempting
to	put	them	inside	<Location>	or	<Directory>	directives
won't	work.	This	is	because	mod_authnz_ldap	has	to	be
able	to	grab	the	AuthGroupFile	directive	that	is	found	in
FrontPage	.htaccess	files	so	that	it	knows	where	to	look	for
the	valid	user	list.	If	the	mod_authnz_ldap	directives	aren't
in	the	same	.htaccess	file	as	the	FrontPage	directives,	then
the	hack	won't	work,	because	mod_authnz_ldap	will	never
get	a	chance	to	process	the	.htaccess	file,	and	won't	be
able	to	find	the	FrontPage-managed	user	file.

AuthLDAPAuthorizePrefix	Directive

Description: Specifies	the	prefix	for	environment	variables	set
during	authorization

Syntax: AuthLDAPAuthorizePrefix	prefix

Default: AuthLDAPAuthorizePrefix	AUTHORIZE_

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

This	directive	allows	you	to	override	the	prefix	used	for
environment	variables	set	during	LDAP	authorization.	If
AUTHENTICATE_	is	specified,	consumers	of	these	environment
variables	see	the	same	information	whether	LDAP	has	performed
authentication,	authorization,	or	both.

Note
No	authorization	variables	are	set	when	a	user	is	authorized	on
the	basis	of	Require	valid-user.

AuthLDAPBindAuthoritative	Directive

Description: Determines	if	other	authentication	providers	are
used	when	a	user	can	be	mapped	to	a	DN	but	the
server	cannot	successfully	bind	with	the	user's
credentials.

Syntax: AuthLDAPBindAuthoritative	off|on

Default: AuthLDAPBindAuthoritative	on

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

By	default,	subsequent	authentication	providers	are	only	queried	if
a	user	cannot	be	mapped	to	a	DN,	but	not	if	the	user	can	be
mapped	to	a	DN	and	their	password	cannot	be	verified	with	an
LDAP	bind.	If	AuthLDAPBindAuthoritative	is	set	to	off,	other
configured	authentication	modules	will	have	a	chance	to	validate
the	user	if	the	LDAP	bind	(with	the	current	user's	credentials)	fails
for	any	reason.

This	allows	users	present	in	both	LDAP	and	AuthUserFile	to
authenticate	when	the	LDAP	server	is	available	but	the	user's
account	is	locked	or	password	is	otherwise	unusable.

See	also
AuthUserFile

AuthBasicProvider

AuthLDAPBindDN	Directive

Description: Optional	DN	to	use	in	binding	to	the	LDAP	server
Syntax: AuthLDAPBindDN	distinguished-name

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

An	optional	DN	used	to	bind	to	the	server	when	searching	for
entries.	If	not	provided,	mod_authnz_ldap	will	use	an
anonymous	bind.

AuthLDAPBindPassword	Directive

Description: Password	used	in	conjunction	with	the	bind	DN
Syntax: AuthLDAPBindPassword	password

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: exec:	was	added	in	2.4.5.

A	bind	password	to	use	in	conjunction	with	the	bind	DN.	Note	that
the	bind	password	is	probably	sensitive	data,	and	should	be
properly	protected.	You	should	only	use	the	AuthLDAPBindDN
and	AuthLDAPBindPassword	if	you	absolutely	need	them	to
search	the	directory.

If	the	value	begins	with	exec:	the	resulting	command	will	be
executed	and	the	first	line	returned	to	standard	output	by	the
program	will	be	used	as	the	password.

#Password	used	as-is

AuthLDAPBindPassword	secret

#Run	/path/to/program	to	get	my	password

AuthLDAPBindPassword	exec:/path/to/program

#Run	/path/to/otherProgram	and	provide	arguments

AuthLDAPBindPassword	"exec:/path/to/otherProgram	argument1"

AuthLDAPCharsetConfig	Directive

Description: Language	to	charset	conversion	configuration	file
Syntax: AuthLDAPCharsetConfig	file-path

Context: server	config
Status: Extension
Module: mod_authnz_ldap

The	AuthLDAPCharsetConfig	directive	sets	the	location	of	the
language	to	charset	conversion	configuration	file.	File-path	is
relative	to	the	ServerRoot.	This	file	specifies	the	list	of	language
extensions	to	character	sets.	Most	administrators	use	the	provided
charset.conv	file,	which	associates	common	language
extensions	to	character	sets.

The	file	contains	lines	in	the	following	format:

Language-Extension	charset	[Language-String]	...

The	case	of	the	extension	does	not	matter.	Blank	lines,	and	lines
beginning	with	a	hash	character	(#)	are	ignored.

AuthLDAPCompareAsUser	Directive

Description: Use	the	authenticated	user's	credentials	to
perform	authorization	comparisons

Syntax: AuthLDAPCompareAsUser	on|off

Default: AuthLDAPCompareAsUser	off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

When	set,	and	mod_authnz_ldap	has	authenticated	the	user,
LDAP	comparisons	for	authorization	use	the	queried	distinguished
name	(DN)	and	HTTP	basic	authentication	password	of	the
authenticated	user	instead	of	the	servers	configured	credentials.

The	ldap-attribute,	ldap-user,	and	ldap-group	(single-level	only)
authorization	checks	use	comparisons.

This	directive	only	has	effect	on	the	comparisons	performed	during
nested	group	processing	when	AuthLDAPSearchAsUser	is	also
enabled.

This	directive	should	only	be	used	when	your	LDAP	server	doesn't
accept	anonymous	comparisons	and	you	cannot	use	a	dedicated
AuthLDAPBindDN.

See	also
AuthLDAPInitialBindAsUser

AuthLDAPSearchAsUser

AuthLDAPCompareDNOnServer	Directive

Description: Use	the	LDAP	server	to	compare	the	DNs
Syntax: AuthLDAPCompareDNOnServer	on|off

Default: AuthLDAPCompareDNOnServer	on

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

When	set,	mod_authnz_ldap	will	use	the	LDAP	server	to
compare	the	DNs.	This	is	the	only	foolproof	way	to	compare	DNs.
mod_authnz_ldap	will	search	the	directory	for	the	DN	specified
with	the	Require	dn	directive,	then,	retrieve	the	DN	and
compare	it	with	the	DN	retrieved	from	the	user	entry.	If	this
directive	is	not	set,	mod_authnz_ldap	simply	does	a	string
comparison.	It	is	possible	to	get	false	negatives	with	this
approach,	but	it	is	much	faster.	Note	the	mod_ldap	cache	can
speed	up	DN	comparison	in	most	situations.

AuthLDAPDereferenceAliases	Directive

Description: When	will	the	module	de-reference	aliases
Syntax: AuthLDAPDereferenceAliases

never|searching|finding|always

Default: AuthLDAPDereferenceAliases	always

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

This	directive	specifies	when	mod_authnz_ldap	will	de-
reference	aliases	during	LDAP	operations.	The	default	is	always.

AuthLDAPGroupAttribute	Directive

Description: LDAP	attributes	used	to	identify	the	user	members
of	groups.

Syntax: AuthLDAPGroupAttribute	attribute

Default: AuthLDAPGroupAttribute	member

uniquemember

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

This	directive	specifies	which	LDAP	attributes	are	used	to	check
for	user	members	within	groups.	Multiple	attributes	can	be	used	by
specifying	this	directive	multiple	times.	If	not	specified,	then
mod_authnz_ldap	uses	the	member	and	uniquemember
attributes.

AuthLDAPGroupAttributeIsDN	Directive

Description: Use	the	DN	of	the	client	username	when	checking
for	group	membership

Syntax: AuthLDAPGroupAttributeIsDN	on|off

Default: AuthLDAPGroupAttributeIsDN	on

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

When	set	on,	this	directive	says	to	use	the	distinguished	name	of
the	client	username	when	checking	for	group	membership.
Otherwise,	the	username	will	be	used.	For	example,	assume	that
the	client	sent	the	username	bjenson,	which	corresponds	to	the
LDAP	DN	cn=Babs	Jenson,	o=Example.	If	this	directive	is	set,
mod_authnz_ldap	will	check	if	the	group	has	cn=Babs
Jenson,	o=Example	as	a	member.	If	this	directive	is	not	set,
then	mod_authnz_ldap	will	check	if	the	group	has	bjenson	as
a	member.

AuthLDAPInitialBindAsUser	Directive

Description: Determines	if	the	server	does	the	initial	DN
lookup	using	the	basic	authentication	users'	own
username,	instead	of	anonymously	or	with	hard-
coded	credentials	for	the	server

Syntax: AuthLDAPInitialBindAsUser	off|on

Default: AuthLDAPInitialBindAsUser	off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

By	default,	the	server	either	anonymously,	or	with	a	dedicated	user
and	password,	converts	the	basic	authentication	username	into	an
LDAP	distinguished	name	(DN).	This	directive	forces	the	server	to
use	the	verbatim	username	and	password	provided	by	the
incoming	user	to	perform	the	initial	DN	search.

If	the	verbatim	username	can't	directly	bind,	but	needs	some
cosmetic	transformation,	see	AuthLDAPInitialBindPattern.

This	directive	should	only	be	used	when	your	LDAP	server	doesn't
accept	anonymous	searches	and	you	cannot	use	a	dedicated
AuthLDAPBindDN.

Not	available	with	authorization-only
This	directive	can	only	be	used	if	this	module	authenticates	the
user,	and	has	no	effect	when	this	module	is	used	exclusively	for
authorization.

See	also

AuthLDAPInitialBindPattern

AuthLDAPBindDN

AuthLDAPCompareAsUser

AuthLDAPSearchAsUser

AuthLDAPInitialBindPattern	Directive

Description: Specifies	the	transformation	of	the	basic
authentication	username	to	be	used	when
binding	to	the	LDAP	server	to	perform	a	DN
lookup

Syntax: AuthLDAPInitialBindPattern	regex

substitution

Default: AuthLDAPInitialBindPattern	(.*)	$1

(remote	username	used	verbatim)

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

If	AuthLDAPInitialBindAsUser	is	set	to	ON,	the	basic
authentication	username	will	be	transformed	according	to	the
regular	expression	and	substitution	arguments.

The	regular	expression	argument	is	compared	against	the	current
basic	authentication	username.	The	substitution	argument	may
contain	backreferences,	but	has	no	other	variable	interpolation.

This	directive	should	only	be	used	when	your	LDAP	server	doesn't
accept	anonymous	searches	and	you	cannot	use	a	dedicated
AuthLDAPBindDN.

AuthLDAPInitialBindPattern	(.+)	$1@example.com

AuthLDAPInitialBindPattern	(.+)	cn=$1,dc=example,dc=com

Not	available	with	authorization-only
This	directive	can	only	be	used	if	this	module	authenticates	the
user,	and	has	no	effect	when	this	module	is	used	exclusively	for
authorization.

debugging
The	substituted	DN	is	recorded	in	the	environment	variable
LDAP_BINDASUSER.	If	the	regular	expression	does	not	match
the	input,	the	verbatim	username	is	used.

See	also
AuthLDAPInitialBindAsUser

AuthLDAPBindDN

AuthLDAPMaxSubGroupDepth	Directive

Description: Specifies	the	maximum	sub-group	nesting	depth
that	will	be	evaluated	before	the	user	search	is
discontinued.

Syntax: AuthLDAPMaxSubGroupDepth	Number

Default: AuthLDAPMaxSubGroupDepth	10

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.0	and	later

When	this	directive	is	set	to	a	non-zero	value	X	combined	with	use
of	the	Require	ldap-group	someGroupDN	directive,	the
provided	user	credentials	will	be	searched	for	as	a	member	of	the
someGroupDN	directory	object	or	of	any	group	member	of	the
current	group	up	to	the	maximum	nesting	level	X	specified	by	this
directive.

See	the	Require	ldap-group	section	for	a	more	detailed
example.

Nested	groups	performance

When	AuthLDAPSubGroupAttribute	overlaps	with
AuthLDAPGroupAttribute	(as	it	does	by	default	and	as
required	by	common	LDAP	schemas),	uncached	searching	for
subgroups	in	large	groups	can	be	very	slow.	If	you	use	large,
non-nested	groups,	set	AuthLDAPMaxSubGroupDepth	to
zero.

AuthLDAPRemoteUserAttribute	Directive

Description: Use	the	value	of	the	attribute	returned	during	the
user	query	to	set	the	REMOTE_USER
environment	variable

Syntax: AuthLDAPRemoteUserAttribute	uid

Default: none

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

If	this	directive	is	set,	the	value	of	the	REMOTE_USER	environment
variable	will	be	set	to	the	value	of	the	attribute	specified.	Make
sure	that	this	attribute	is	included	in	the	list	of	attributes	in	the
AuthLDAPUrl	definition,	otherwise	this	directive	will	have	no	effect.
This	directive,	if	present,	takes	precedence	over
AuthLDAPRemoteUserIsDN.	This	directive	is	useful	should	you
want	people	to	log	into	a	website	using	an	email	address,	but	a
backend	application	expects	the	username	as	a	userid.

AuthLDAPRemoteUserIsDN	Directive

Description: Use	the	DN	of	the	client	username	to	set	the
REMOTE_USER	environment	variable

Syntax: AuthLDAPRemoteUserIsDN	on|off

Default: AuthLDAPRemoteUserIsDN	off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

If	this	directive	is	set	to	on,	the	value	of	the	REMOTE_USER
environment	variable	will	be	set	to	the	full	distinguished	name	of
the	authenticated	user,	rather	than	just	the	username	that	was
passed	by	the	client.	It	is	turned	off	by	default.

AuthLDAPSearchAsUser	Directive

Description: Use	the	authenticated	user's	credentials	to
perform	authorization	searches

Syntax: AuthLDAPSearchAsUser	on|off

Default: AuthLDAPSearchAsUser	off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

When	set,	and	mod_authnz_ldap	has	authenticated	the	user,
LDAP	searches	for	authorization	use	the	queried	distinguished
name	(DN)	and	HTTP	basic	authentication	password	of	the
authenticated	user	instead	of	the	servers	configured	credentials.

The	ldap-filter	and	ldap-dn	authorization	checks	use	searches.

This	directive	only	has	effect	on	the	comparisons	performed	during
nested	group	processing	when	AuthLDAPCompareAsUser	is
also	enabled.

This	directive	should	only	be	used	when	your	LDAP	server	doesn't
accept	anonymous	searches	and	you	cannot	use	a	dedicated
AuthLDAPBindDN.

See	also
AuthLDAPInitialBindAsUser

AuthLDAPCompareAsUser

AuthLDAPSubGroupAttribute	Directive

Description: Specifies	the	attribute	labels,	one	value	per
directive	line,	used	to	distinguish	the	members	of
the	current	group	that	are	groups.

Syntax: AuthLDAPSubGroupAttribute	attribute

Default: AuthLDAPSubgroupAttribute	member

uniquemember

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.0	and	later

An	LDAP	group	object	may	contain	members	that	are	users	and
members	that	are	groups	(called	nested	or	sub	groups).	The
AuthLDAPSubGroupAttribute	directive	identifies	the	labels	of
group	members	and	the	AuthLDAPGroupAttribute	directive
identifies	the	labels	of	the	user	members.	Multiple	attributes	can
be	used	by	specifying	this	directive	multiple	times.	If	not	specified,
then	mod_authnz_ldap	uses	the	member	and	uniqueMember
attributes.

AuthLDAPSubGroupClass	Directive

Description: Specifies	which	LDAP	objectClass	values	identify
directory	objects	that	are	groups	during	sub-
group	processing.

Syntax: AuthLDAPSubGroupClass

LdapObjectClass

Default: AuthLDAPSubGroupClass	groupOfNames

groupOfUniqueNames

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.0	and	later

An	LDAP	group	object	may	contain	members	that	are	users	and
members	that	are	groups	(called	nested	or	sub	groups).	The
AuthLDAPSubGroupAttribute	directive	identifies	the	labels	of
members	that	may	be	sub-groups	of	the	current	group	(as
opposed	to	user	members).	The	AuthLDAPSubGroupClass
directive	specifies	the	LDAP	objectClass	values	used	in	verifying
that	these	potential	sub-groups	are	in	fact	group	objects.	Verified
sub-groups	can	then	be	searched	for	more	user	or	sub-group
members.	Multiple	attributes	can	be	used	by	specifying	this
directive	multiple	times.	If	not	specified,	then	mod_authnz_ldap
uses	the	groupOfNames	and	groupOfUniqueNames	values.

AuthLDAPUrl	Directive

Description: URL	specifying	the	LDAP	search	parameters
Syntax: AuthLDAPUrl	url

[NONE|SSL|TLS|STARTTLS]

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

An	RFC	2255	URL	which	specifies	the	LDAP	search	parameters
to	use.	The	syntax	of	the	URL	is

ldap://host:port/basedn?attribute?scope?filter

If	you	want	to	specify	more	than	one	LDAP	URL	that	Apache
should	try	in	turn,	the	syntax	is:

AuthLDAPUrl	"ldap://ldap1.example.com	ldap2.example.com/dc=..."

Caveat:	If	you	specify	multiple	servers,	you	need	to	enclose	the
entire	URL	string	in	quotes;	otherwise	you	will	get	an	error:
"AuthLDAPURL	takes	one	argument,	URL	to	define	LDAP
connection.."	You	can	of	course	use	search	parameters	on	each	of
these.

ldap
For	regular	ldap,	use	the	string	ldap.	For	secure	LDAP,	use
ldaps	instead.	Secure	LDAP	is	only	available	if	Apache	was
linked	to	an	LDAP	library	with	SSL	support.

host:port
The	name/port	of	the	ldap	server	(defaults	to
localhost:389	for	ldap,	and	localhost:636	for

ldaps).	To	specify	multiple,	redundant	LDAP	servers,	just	list
all	servers,	separated	by	spaces.	mod_authnz_ldap	will	try
connecting	to	each	server	in	turn,	until	it	makes	a	successful
connection.	If	multiple	ldap	servers	are	specified,	then	entire
LDAP	URL	must	be	encapsulated	in	double	quotes.

Once	a	connection	has	been	made	to	a	server,	that
connection	remains	active	for	the	life	of	the	httpd	process,	or
until	the	LDAP	server	goes	down.

If	the	LDAP	server	goes	down	and	breaks	an	existing
connection,	mod_authnz_ldap	will	attempt	to	re-connect,
starting	with	the	primary	server,	and	trying	each	redundant
server	in	turn.	Note	that	this	is	different	than	a	true	round-
robin	search.

basedn
The	DN	of	the	branch	of	the	directory	where	all	searches
should	start	from.	At	the	very	least,	this	must	be	the	top	of
your	directory	tree,	but	could	also	specify	a	subtree	in	the
directory.

attribute
The	attribute	to	search	for.	Although	RFC	2255	allows	a
comma-separated	list	of	attributes,	only	the	first	attribute	will
be	used,	no	matter	how	many	are	provided.	If	no	attributes
are	provided,	the	default	is	to	use	uid.	It's	a	good	idea	to
choose	an	attribute	that	will	be	unique	across	all	entries	in	the
subtree	you	will	be	using.	All	attributes	listed	will	be	put	into
the	environment	with	an	AUTHENTICATE_	prefix	for	use	by
other	modules.

scope
The	scope	of	the	search.	Can	be	either	one	or	sub.	Note	that
a	scope	of	base	is	also	supported	by	RFC	2255,	but	is	not
supported	by	this	module.	If	the	scope	is	not	provided,	or	if

base	scope	is	specified,	the	default	is	to	use	a	scope	of	sub.

filter
A	valid	LDAP	search	filter.	If	not	provided,	defaults	to
(objectClass=*),	which	will	search	for	all	objects	in	the
tree.	Filters	are	limited	to	approximately	8000	characters	(the
definition	of	MAX_STRING_LEN	in	the	Apache	source	code).
This	should	be	more	than	sufficient	for	any	application.	In
2.4.10	and	later,	the	keyword	none	disables	the	use	of	a	filter;
this	is	required	by	some	primitive	LDAP	servers.

When	doing	searches,	the	attribute,	filter	and	username	passed	by
the	HTTP	client	are	combined	to	create	a	search	filter	that	looks
like	(&(filter)(attribute=username)).

For	example,	consider	an	URL	of
ldap://ldap.example.com/o=Example?cn?sub?

(posixid=*).	When	a	client	attempts	to	connect	using	a
username	of	Babs	Jenson,	the	resulting	search	filter	will	be	(&
(posixid=*)(cn=Babs	Jenson)).

An	optional	parameter	can	be	added	to	allow	the	LDAP	Url	to
override	the	connection	type.	This	parameter	can	be	one	of	the
following:

NONE
Establish	an	unsecure	connection	on	the	default	LDAP	port.
This	is	the	same	as	ldap://	on	port	389.

SSL
Establish	a	secure	connection	on	the	default	secure	LDAP
port.	This	is	the	same	as	ldaps://

TLS	|	STARTTLS
Establish	an	upgraded	secure	connection	on	the	default
LDAP	port.	This	connection	will	be	initiated	on	port	389	by

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

default	and	then	upgraded	to	a	secure	connection	on	the
same	port.

See	above	for	examples	of	AuthLDAPUrl	URLs.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_core

Description: Core	Authorization
Status: Base
Module	Identifier: authz_core_module
Source	File: mod_authz_core.c
Compatibility: Available	in	Apache	HTTPD	2.3	and	later

Summary
This	module	provides	core	authorization	capabilities	so	that
authenticated	users	can	be	allowed	or	denied	access	to	portions	of
the	web	site.	mod_authz_core	provides	the	functionality	to	register
various	authorization	providers.	It	is	usually	used	in	conjunction	with
an	authentication	provider	module	such	as	mod_authn_file	and	an
authorization	module	such	as	mod_authz_user.	It	also	allows	for
advanced	logic	to	be	applied	to	the	authorization	processing.

Creating	Authorization	Provider	Aliases

Extended	authorization	providers	can	be	created	within	the
configuration	file	and	assigned	an	alias	name.	The	alias	providers
can	then	be	referenced	through	the	Require	directive	in	the
same	way	as	a	base	authorization	provider.	Besides	the	ability	to
create	and	alias	an	extended	provider,	it	also	allows	the	same
extended	authorization	provider	to	be	referenced	by	multiple
locations.

Example
The	example	below	creates	two	different	ldap	authorization
provider	aliases	based	on	the	ldap-group	authorization	provider.
This	example	allows	a	single	authorization	location	to	check	group
membership	within	multiple	ldap	hosts:

<AuthzProviderAlias	ldap-group	ldap-group-alias1	cn=my-group,o=ctx>

				AuthLDAPBindDN	cn=youruser,o=ctx

				AuthLDAPBindPassword	yourpassword

				AuthLDAPURL	ldap://ldap.host/o=ctx

</AuthzProviderAlias>

<AuthzProviderAlias	ldap-group	ldap-group-alias2	cn=my-other-group,o=dev>

				AuthLDAPBindDN	cn=yourotheruser,o=dev

				AuthLDAPBindPassword	yourotherpassword

				AuthLDAPURL	ldap://other.ldap.host/o=dev?cn

</AuthzProviderAlias>

Alias	"/secure"	"/webpages/secure"

<Directory	"/webpages/secure">

				Require	all	granted

				

				AuthBasicProvider	file

				

				AuthType	Basic

				AuthName	LDAP_Protected_Place

				

				#implied	OR	operation

				Require	ldap-group-alias1

				Require	ldap-group-alias2

</Directory>

Authorization	Containers

The	authorization	container	directives	<RequireAll>,
<RequireAny>	and	<RequireNone>	may	be	combined	with
each	other	and	with	the	Require	directive	to	express	complex
authorization	logic.

The	example	below	expresses	the	following	authorization	logic.	In
order	to	access	the	resource,	the	user	must	either	be	the
superadmin	user,	or	belong	to	both	the	admins	group	and	the
Administrators	LDAP	group	and	either	belong	to	the	sales
group	or	have	the	LDAP	dept	attribute	sales.	Furthermore,	in
order	to	access	the	resource,	the	user	must	not	belong	to	either
the	temps	group	or	the	LDAP	group	Temporary	Employees.

<Directory	"/www/mydocs">

				<RequireAll>

								<RequireAny>

												Require	user	superadmin

												<RequireAll>

																Require	group	admins

																Require	ldap-group	cn=Administrators,o=Airius

																<RequireAny>

																				Require	group	sales

																				Require	ldap-attribute	dept="sales"

																</RequireAny>

												</RequireAll>

								</RequireAny>

								<RequireNone>

												Require	group	temps

												Require	ldap-group	cn=Temporary	Employees,o=Airius

								</RequireNone>

				</RequireAll>

</Directory>

The	Require	Directives

mod_authz_core	provides	some	generic	authorization	providers
which	can	be	used	with	the	Require	directive.

Require	env
The	env	provider	allows	access	to	the	server	to	be	controlled
based	on	the	existence	of	an	environment	variable.	When
Require	env	env-variable	is	specified,	then	the	request	is
allowed	access	if	the	environment	variable	env-variable	exists.
The	server	provides	the	ability	to	set	environment	variables	in	a
flexible	way	based	on	characteristics	of	the	client	request	using
the	directives	provided	by	mod_setenvif.	Therefore,	this
directive	can	be	used	to	allow	access	based	on	such	factors	as
the	clients	User-Agent	(browser	type),	Referer,	or	other	HTTP
request	header	fields.

SetEnvIf	User-Agent	^KnockKnock/2\.0	let_me_in

<Directory	"/docroot">

				Require	env	let_me_in

</Directory>

In	this	case,	browsers	with	a	user-agent	string	beginning	with
KnockKnock/2.0	will	be	allowed	access,	and	all	others	will	be
denied.

When	the	server	looks	up	a	path	via	an	internal	subrequest	such
as	looking	for	a	DirectoryIndex	or	generating	a	directory	listing
with	mod_autoindex,	per-request	environment	variables	are	not
inherited	in	the	subrequest.	Additionally,	SetEnvIf	directives	are
not	separately	evaluated	in	the	subrequest	due	to	the	API	phases
mod_setenvif	takes	action	in.

Require	all
The	all	provider	mimics	the	functionality	that	was	previously
provided	by	the	'Allow	from	all'	and	'Deny	from	all'	directives.	This
provider	can	take	one	of	two	arguments	which	are	'granted'	or
'denied'.	The	following	examples	will	grant	or	deny	access	to	all
requests.

Require	all	granted

Require	all	denied

Require	method
The	method	provider	allows	using	the	HTTP	method	in
authorization	decisions.	The	GET	and	HEAD	methods	are	treated
as	equivalent.	The	TRACE	method	is	not	available	to	this	provider,
use	TraceEnable	instead.

The	following	example	will	only	allow	GET,	HEAD,	POST,	and
OPTIONS	requests:

Require	method	GET	POST	OPTIONS

The	following	example	will	allow	GET,	HEAD,	POST,	and
OPTIONS	requests	without	authentication,	and	require	a	valid
user	for	all	other	methods:

<RequireAny>

					Require	method	GET	POST	OPTIONS

					Require	valid-user

</RequireAny>

Require	expr

The	expr	provider	allows	basing	authorization	decisions	on
arbitrary	expressions.

Require	expr	"%{TIME_HOUR}	-ge	9	&&	%{TIME_HOUR}	-le	17"

<RequireAll>

				Require	expr	"!(%{QUERY_STRING}	=~	/secret/)"

				Require	expr	"%{REQUEST_URI}	in	{	'/example.cgi',	'/other.cgi'	}"	

</RequireAll>

Require	expr	"!(%{QUERY_STRING}	=~	/secret/)	&&	%{REQUEST_URI}	in	{	'/example.cgi',	'/other.cgi'	}"

The	syntax	is	described	in	the	ap_expr	documentation.

Normally,	the	expression	is	evaluated	before	authentication.
However,	if	the	expression	returns	false	and	references	the
variable	%{REMOTE_USER},	authentication	will	be	performed	and
the	expression	will	be	re-evaluated.

AuthMerging	Directive

Description: Controls	the	manner	in	which	each	configuration
section's	authorization	logic	is	combined	with	that
of	preceding	configuration	sections.

Syntax: AuthMerging	Off	|	And	|	Or

Default: AuthMerging	Off

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

When	authorization	is	enabled,	it	is	normally	inherited	by	each
subsequent	configuration	section,	unless	a	different	set	of
authorization	directives	is	specified.	This	is	the	default	action,
which	corresponds	to	an	explicit	setting	of	AuthMerging	Off.

However,	there	may	be	circumstances	in	which	it	is	desirable	for	a
configuration	section's	authorization	to	be	combined	with	that	of	its
predecessor	while	configuration	sections	are	being	merged.	Two
options	are	available	for	this	case,	And	and	Or.

When	a	configuration	section	contains	AuthMerging	And	or
AuthMerging	Or,	its	authorization	logic	is	combined	with	that	of
the	nearest	predecessor	(according	to	the	overall	order	of
configuration	sections)	which	also	contains	authorization	logic	as	if
the	two	sections	were	jointly	contained	within	a	<RequireAll>	or
<RequireAny>	directive,	respectively.

The	setting	of	AuthMerging	is	not	inherited	outside	of	the
configuration	section	in	which	it	appears.	In	the	following
example,	only	users	belonging	to	group	alpha	may	access
/www/docs.	Users	belonging	to	either	groups	alpha	or	beta
may	access	/www/docs/ab.	However,	the	default	Off	setting

of	AuthMerging	applies	to	the	<Directory>	configuration
section	for	/www/docs/ab/gamma,	so	that	section's
authorization	directives	override	those	of	the	preceding	sections.
Thus	only	users	belong	to	the	group	gamma	may	access
/www/docs/ab/gamma.

<Directory	"/www/docs">

				AuthType	Basic

				AuthName	Documents

				AuthBasicProvider	file

				AuthUserFile	"/usr/local/apache/passwd/passwords"

				Require	group	alpha

</Directory>

<Directory	"/www/docs/ab">

				AuthMerging	Or

				Require	group	beta

</Directory>

<Directory	"/www/docs/ab/gamma">

				Require	group	gamma

</Directory>

<AuthzProviderAlias>	Directive

Description: Enclose	a	group	of	directives	that	represent	an
extension	of	a	base	authorization	provider	and
referenced	by	the	specified	alias

Syntax: <AuthzProviderAlias	baseProvider

Alias	Require-Parameters>	...

</AuthzProviderAlias>

Context: server	config
Status: Base
Module: mod_authz_core

<AuthzProviderAlias>	and	</AuthzProviderAlias>	are
used	to	enclose	a	group	of	authorization	directives	that	can	be
referenced	by	the	alias	name	using	the	directive	Require.

AuthzSendForbiddenOnFailure	Directive

Description: Send	'403	FORBIDDEN'	instead	of	'401
UNAUTHORIZED'	if	authentication	succeeds	but
authorization	fails

Syntax: AuthzSendForbiddenOnFailure	On|Off

Default: AuthzSendForbiddenOnFailure	Off

Context: directory,	.htaccess
Status: Base
Module: mod_authz_core
Compatibility: Available	in	Apache	HTTPD	2.3.11	and	later

If	authentication	succeeds	but	authorization	fails,	Apache	HTTPD
will	respond	with	an	HTTP	response	code	of	'401
UNAUTHORIZED'	by	default.	This	usually	causes	browsers	to
display	the	password	dialogue	to	the	user	again,	which	is	not
wanted	in	all	situations.	AuthzSendForbiddenOnFailure
allows	to	change	the	response	code	to	'403	FORBIDDEN'.

Security	Warning

Modifying	the	response	in	case	of	missing	authorization
weakens	the	security	of	the	password,	because	it	reveals	to	a
possible	attacker,	that	his	guessed	password	was	right.

Require	Directive

Description: Tests	whether	an	authenticated	user	is	authorized
by	an	authorization	provider.

Syntax: Require	[not]	entity-name	[entity-

name]	...

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

This	directive	tests	whether	an	authenticated	user	is	authorized
according	to	a	particular	authorization	provider	and	the	specified
restrictions.	mod_authz_core	provides	the	following	generic
authorization	providers:

Require	all	granted

Access	is	allowed	unconditionally.

Require	all	denied

Access	is	denied	unconditionally.

Require	env	env-var	[env-var]	...

Access	is	allowed	only	if	one	of	the	given	environment
variables	is	set.

Require	method	http-method	[http-method]	...

Access	is	allowed	only	for	the	given	HTTP	methods.

Require	expr	expression

Access	is	allowed	if	expression	evaluates	to	true.

Some	of	the	allowed	syntaxes	provided	by	mod_authz_user,
mod_authz_host,	and	mod_authz_groupfile	are:

Require	user	userid	[userid]	...

Only	the	named	users	can	access	the	resource.

Require	group	group-name	[group-name]	...

Only	users	in	the	named	groups	can	access	the	resource.

Require	valid-user

All	valid	users	can	access	the	resource.

Require	ip	10	172.20	192.168.2

Clients	in	the	specified	IP	address	ranges	can	access	the
resource.

Other	authorization	modules	that	implement	require	options
include	mod_authnz_ldap,	mod_authz_dbm,	mod_authz_dbd,
mod_authz_owner	and	mod_ssl.

In	most	cases,	for	a	complete	authentication	and	authorization
configuration,	Require	must	be	accompanied	by	AuthName,
AuthType	and	AuthBasicProvider	or	AuthDigestProvider
directives,	and	directives	such	as	AuthUserFile	and
AuthGroupFile	(to	define	users	and	groups)	in	order	to	work
correctly.	Example:

AuthType	Basic

AuthName	"Restricted	Resource"

AuthBasicProvider	file

AuthUserFile	"/web/users"

AuthGroupFile	"/web/groups"

Require	group	admin

Access	controls	which	are	applied	in	this	way	are	effective	for	all
methods.	This	is	what	is	normally	desired.	If	you	wish	to	apply
access	controls	only	to	specific	methods,	while	leaving	other
methods	unprotected,	then	place	the	Require	statement	into	a
<Limit>	section.

The	result	of	the	Require	directive	may	be	negated	through	the

use	of	the	not	option.	As	with	the	other	negated	authorization
directive	<RequireNone>,	when	the	Require	directive	is
negated	it	can	only	fail	or	return	a	neutral	result,	and	therefore
may	never	independently	authorize	a	request.

In	the	following	example,	all	users	in	the	alpha	and	beta	groups
are	authorized,	except	for	those	who	are	also	in	the	reject
group.

<Directory	"/www/docs">

				<RequireAll>

								Require	group	alpha	beta

								Require	not	group	reject

				</RequireAll>

</Directory>

When	multiple	Require	directives	are	used	in	a	single
configuration	section	and	are	not	contained	in	another
authorization	directive	like	<RequireAll>,	they	are	implicitly
contained	within	a	<RequireAny>	directive.	Thus	the	first	one	to
authorize	a	user	authorizes	the	entire	request,	and	subsequent
Require	directives	are	ignored.

Security	Warning

Exercise	caution	when	setting	authorization	directives	in
Location	sections	that	overlap	with	content	served	out	of	the
filesystem.	By	default,	these	configuration	sections	overwrite
authorization	configuration	in	Directory,	and	Files	sections.

The	AuthMerging	directive	can	be	used	to	control	how
authorization	configuration	sections	are	merged.

See	also

Access	control	howto
Authorization	Containers
mod_authn_core

mod_authz_host

<RequireAll>	Directive

Description: Enclose	a	group	of	authorization	directives	of
which	none	must	fail	and	at	least	one	must
succeed	for	the	enclosing	directive	to	succeed.

Syntax: <RequireAll>	...	</RequireAll>

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

<RequireAll>	and	</RequireAll>	are	used	to	enclose	a
group	of	authorization	directives	of	which	none	must	fail	and	at
least	one	must	succeed	in	order	for	the	<RequireAll>	directive
to	succeed.

If	none	of	the	directives	contained	within	the	<RequireAll>
directive	fails,	and	at	least	one	succeeds,	then	the
<RequireAll>	directive	succeeds.	If	none	succeed	and	none
fail,	then	it	returns	a	neutral	result.	In	all	other	cases,	it	fails.

See	also
Authorization	Containers
Authentication,	Authorization,	and	Access	Control

<RequireAny>	Directive

Description: Enclose	a	group	of	authorization	directives	of
which	one	must	succeed	for	the	enclosing	directive
to	succeed.

Syntax: <RequireAny>	...	</RequireAny>

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

<RequireAny>	and	</RequireAny>	are	used	to	enclose	a
group	of	authorization	directives	of	which	one	must	succeed	in
order	for	the	<RequireAny>	directive	to	succeed.

If	one	or	more	of	the	directives	contained	within	the
<RequireAny>	directive	succeed,	then	the	<RequireAny>
directive	succeeds.	If	none	succeed	and	none	fail,	then	it	returns	a
neutral	result.	In	all	other	cases,	it	fails.

Because	negated	authorization	directives	are	unable	to	return	a
successful	result,	they	can	not	significantly	influence	the	result
of	a	<RequireAny>	directive.	(At	most	they	could	cause	the
directive	to	fail	in	the	case	where	they	failed	and	all	other
directives	returned	a	neutral	value.)	Therefore	negated
authorization	directives	are	not	permitted	within	a
<RequireAny>	directive.

See	also
Authorization	Containers
Authentication,	Authorization,	and	Access	Control

Copyright	2017	The	Apache	Software	Foundation.

<RequireNone>	Directive

Description: Enclose	a	group	of	authorization	directives	of
which	none	must	succeed	for	the	enclosing
directive	to	not	fail.

Syntax: <RequireNone>	...	</RequireNone>

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

<RequireNone>	and	</RequireNone>	are	used	to	enclose	a
group	of	authorization	directives	of	which	none	must	succeed	in
order	for	the	<RequireNone>	directive	to	not	fail.

If	one	or	more	of	the	directives	contained	within	the
<RequireNone>	directive	succeed,	then	the	<RequireNone>
directive	fails.	In	all	other	cases,	it	returns	a	neutral	result.	Thus	as
with	the	other	negated	authorization	directive	Require	not,	it
can	never	independently	authorize	a	request	because	it	can	never
return	a	successful	result.	It	can	be	used,	however,	to	restrict	the
set	of	users	who	are	authorized	to	access	a	resource.

Because	negated	authorization	directives	are	unable	to	return	a
successful	result,	they	can	not	significantly	influence	the	result
of	a	<RequireNone>	directive.	Therefore	negated
authorization	directives	are	not	permitted	within	a
<RequireNone>	directive.

See	also
Authorization	Containers
Authentication,	Authorization,	and	Access	Control

Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_dbd

Description: Group	Authorization	and	Login	using	SQL
Status: Extension
Module	Identifier: authz_dbd_module
Source	File: mod_authz_dbd.c
Compatibility: Available	in	Apache	2.4	and	later

Summary
This	module	provides	authorization	capabilities	so	that	authenticated
users	can	be	allowed	or	denied	access	to	portions	of	the	web	site	by
group	membership.	Similar	functionality	is	provided	by
mod_authz_groupfile	and	mod_authz_dbm,	with	the	exception
that	this	module	queries	a	SQL	database	to	determine	whether	a	user
is	a	member	of	a	group.

This	module	can	also	provide	database-backed	user	login/logout
capabilities.	These	are	likely	to	be	of	most	value	when	used	in
conjunction	with	mod_authn_dbd.

This	module	relies	on	mod_dbd	to	specify	the	backend	database
driver	and	connection	parameters,	and	manage	the	database
connections.

Bugfix	checklist
httpd	changelog
Known	issues

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_dbd

Report	a	bug

See	also
Require

AuthDBDUserPWQuery

DBDriver

DBDParams

https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_dbd

The	Require	Directives

Apache's	Require	directives	are	used	during	the	authorization
phase	to	ensure	that	a	user	is	allowed	to	access	a	resource.
mod_authz_dbd	extends	the	authorization	types	with	dbd-group,
dbd-login	and	dbd-logout.

Since	v2.4.8,	expressions	are	supported	within	the	DBD	require
directives.

Require	dbd-group
This	directive	specifies	group	membership	that	is	required	for	the
user	to	gain	access.

Require	dbd-group	team

AuthzDBDQuery	"SELECT	group	FROM	authz	WHERE	user	=	%s"

Require	dbd-login
This	directive	specifies	a	query	to	be	run	indicating	the	user	has
logged	in.

Require	dbd-login

AuthzDBDQuery	"UPDATE	authn	SET	login	=	'true'	WHERE	user	=	%s"

Require	dbd-logout
This	directive	specifies	a	query	to	be	run	indicating	the	user	has
logged	out.

Require	dbd-logout

AuthzDBDQuery	"UPDATE	authn	SET	login	=	'false'	WHERE	user	=	%s"

Database	Login

In	addition	to	the	standard	authorization	function	of	checking	group
membership,	this	module	can	also	provide	server-side	user
session	management	via	database-backed	login/logout
capabilities.	Specifically,	it	can	update	a	user's	session	status	in
the	database	whenever	the	user	visits	designated	URLs	(subject
of	course	to	users	supplying	the	necessary	credentials).

This	works	by	defining	two	special	Require	types:	Require
dbd-login	and	Require	dbd-logout.	For	usage	details,	see
the	configuration	example	below.

Client	Login	integration

Some	administrators	may	wish	to	implement	client-side	session
management	that	works	in	concert	with	the	server-side
login/logout	capabilities	offered	by	this	module,	for	example,	by
setting	or	unsetting	an	HTTP	cookie	or	other	such	token	when	a
user	logs	in	or	out.

To	support	such	integration,	mod_authz_dbd	exports	an	optional
hook	that	will	be	run	whenever	a	user's	status	is	updated	in	the
database.	Other	session	management	modules	can	then	use	the
hook	to	implement	functions	that	start	and	end	client-side
sessions.

Configuration	example

#	mod_dbd	configuration

DBDriver	pgsql

DBDParams	"dbname=apacheauth	user=apache	pass=xxxxxx"

DBDMin		4

DBDKeep	8

DBDMax		20

DBDExptime	300

<Directory	"/usr/www/my.site/team-private/">

		#	mod_authn_core	and	mod_auth_basic	configuration

		#	for	mod_authn_dbd

		AuthType	Basic

		AuthName	Team

		AuthBasicProvider	dbd

		#	mod_authn_dbd	SQL	query	to	authenticate	a	logged-in	user

		AuthDBDUserPWQuery	\

				"SELECT	password	FROM	authn	WHERE	user	=	%s	AND	login	=	'true'"

		#	mod_authz_core	configuration	for	mod_authz_dbd

		Require	dbd-group	team

		#	mod_authz_dbd	configuration

		AuthzDBDQuery	"SELECT	group	FROM	authz	WHERE	user	=	%s"

		#	when	a	user	fails	to	be	authenticated	or	authorized,

		#	invite	them	to	login;	this	page	should	provide	a	link

		#	to	/team-private/login.html

		ErrorDocument	401	"/login-info.html"

		<Files	"login.html">

				#	don't	require	user	to	already	be	logged	in!

				AuthDBDUserPWQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s"

				#	dbd-login	action	executes	a	statement	to	log	user	in

				Require	dbd-login

				AuthzDBDQuery	"UPDATE	authn	SET	login	=	'true'	WHERE	user	=	%s"

				#	return	user	to	referring	page	(if	any)	after

				#	successful	login

				AuthzDBDLoginToReferer	On

		</Files>

		<Files	"logout.html">

				#	dbd-logout	action	executes	a	statement	to	log	user	out

				Require	dbd-logout

				AuthzDBDQuery	"UPDATE	authn	SET	login	=	'false'	WHERE	user	=	%s"

		</Files>

</Directory>

AuthzDBDLoginToReferer	Directive

Description: Determines	whether	to	redirect	the	Client	to	the
Referring	page	on	successful	login	or	logout	if	a
Referer	request	header	is	present

Syntax: AuthzDBDLoginToReferer	On|Off

Default: AuthzDBDLoginToReferer	Off

Context: directory
Status: Extension
Module: mod_authz_dbd

In	conjunction	with	Require	dbd-login	or	Require	dbd-
logout,	this	provides	the	option	to	redirect	the	client	back	to	the
Referring	page	(the	URL	in	the	Referer	HTTP	request	header,	if
present).	When	there	is	no	Referer	header,
AuthzDBDLoginToReferer	On	will	be	ignored.

AuthzDBDQuery	Directive

Description: Specify	the	SQL	Query	for	the	required	operation
Syntax: AuthzDBDQuery	query

Context: directory
Status: Extension
Module: mod_authz_dbd

The	AuthzDBDQuery	specifies	an	SQL	query	to	run.	The	purpose
of	the	query	depends	on	the	Require	directive	in	effect.

When	used	with	a	Require	dbd-group	directive,	it
specifies	a	query	to	look	up	groups	for	the	current	user.	This
is	the	standard	functionality	of	other	authorization	modules
such	as	mod_authz_groupfile	and	mod_authz_dbm.	The
first	column	value	of	each	row	returned	by	the	query
statement	should	be	a	string	containing	a	group	name.	Zero,
one,	or	more	rows	may	be	returned.

Require	dbd-group

AuthzDBDQuery	"SELECT	group	FROM	groups	WHERE	user	=	%s"

When	used	with	a	Require	dbd-login	or	Require	dbd-
logout	directive,	it	will	never	deny	access,	but	will	instead
execute	a	SQL	statement	designed	to	log	the	user	in	or	out.
The	user	must	already	be	authenticated	with
mod_authn_dbd.

Require	dbd-login

AuthzDBDQuery	"UPDATE	authn	SET	login	=	'true'	WHERE	user	=	%s"

In	all	cases,	the	user's	ID	will	be	passed	as	a	single	string

parameter	when	the	SQL	query	is	executed.	It	may	be	referenced
within	the	query	statement	using	a	%s	format	specifier.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthzDBDRedirectQuery	Directive

Description: Specify	a	query	to	look	up	a	login	page	for	the	user
Syntax: AuthzDBDRedirectQuery	query

Context: directory
Status: Extension
Module: mod_authz_dbd

Specifies	an	optional	SQL	query	to	use	after	successful	login	(or
logout)	to	redirect	the	user	to	a	URL,	which	may	be	specific	to	the
user.	The	user's	ID	will	be	passed	as	a	single	string	parameter
when	the	SQL	query	is	executed.	It	may	be	referenced	within	the
query	statement	using	a	%s	format	specifier.

AuthzDBDRedirectQuery	"SELECT	userpage	FROM	userpages	WHERE	user	=	%s"

The	first	column	value	of	the	first	row	returned	by	the	query
statement	should	be	a	string	containing	a	URL	to	which	to	redirect
the	client.	Subsequent	rows	will	be	ignored.	If	no	rows	are
returned,	the	client	will	not	be	redirected.

Note	that	AuthzDBDLoginToReferer	takes	precedence	if	both
are	set.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_authz_dbm

				.	 					.

: DBM				
: Extension
: authz_dbm_module
: mod_authz_dbm.c
: 	2.1	

								 				.
mod_authz_groupfile		.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

Require

Satisfy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_dbm
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_dbm

AuthDBMGroupFile	

: 								
: AuthDBMGroupFile	file-path

: directory,	.htaccess
Override	: AuthConfig
: Extension
: mod_authz_dbm

AuthDBMGroupFile			 					DBM		.	
path		.

			.					 				.				
.

AuthDBMGroupFile		 			.					
.		,		 AuthDBMGroupFile			 .

	DBM			DBM			:		 								
	.						.	 		DBM				.		
DBM		:

AuthDBMGroupFile	/www/userbase

AuthDBMUserFile	/www/userbase

		DBM		.			

		:			[:	()]

					.				 			.					
	 		.				.	 www.telescope.org					
.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

AuthzDBMType	

: 					
: AuthzDBMType	default|SDBM|GDBM|NDBM|DB

: AuthzDBMType	default

: directory,	.htaccess
Override	: AuthConfig
: Extension
: mod_authz_dbm

					.	 				.			
	 	.

						 		.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_authz_groupfile

				.	 					.

: 				
: Base
: authz_groupfile_module
: mod_authz_groupfile.c
: 	2.1	

							 					.	
.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

Require

Satisfy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_groupfile
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_groupfile

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

AuthGroupFile	

: 							
: AuthGroupFile	file-path

: directory,	.htaccess
Override	: AuthConfig
: Base
: mod_authz_groupfile

AuthGroupFile			 							
	.		 		 ServerRoot		.

			,	,			 		.

:
mygroup:	bob	joe	anne

							 		.	 AuthDBMGroupFile			
.

AuthGroupFile			 		.						
	,		 AuthGroupFile			.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_host

Description: Group	authorizations	based	on	host	(name	or	IP
address)

Status: Base
Module	Identifier: authz_host_module
Source	File: mod_authz_host.c
Compatibility: The	forward-dns	provider	was	addded	in

2.4.19

Summary
The	authorization	providers	implemented	by	mod_authz_host	are
registered	using	the	Require	directive.	The	directive	can	be
referenced	within	a	<Directory>,	<Files>,	or	<Location>
section	as	well	as	.htaccess	files	to	control	access	to	particular
parts	of	the	server.	Access	can	be	controlled	based	on	the	client
hostname	or	IP	address.

In	general,	access	restriction	directives	apply	to	all	access	methods
(GET,	PUT,	POST,	etc).	This	is	the	desired	behavior	in	most	cases.
However,	it	is	possible	to	restrict	some	methods,	while	leaving	other
methods	unrestricted,	by	enclosing	the	directives	in	a	<Limit>
section.

Bugfix	checklist
httpd	changelog
Known	issues

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_host

Report	a	bug

See	also
Authentication,	Authorization,	and	Access	Control
Require

https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_host

The	Require	Directives

Apache's	Require	directive	is	used	during	the	authorization
phase	to	ensure	that	a	user	is	allowed	or	denied	access	to	a
resource.	mod_authz_host	extends	the	authorization	types	with
ip,	host,	forward-dns	and	local.	Other	authorization	types
may	also	be	used	but	may	require	that	additional	authorization
modules	be	loaded.

These	authorization	providers	affect	which	hosts	can	access	an
area	of	the	server.	Access	can	be	controlled	by	hostname,	IP
Address,	or	IP	Address	range.

Since	v2.4.8,	expressions	are	supported	within	the	host	require
directives.

Require	ip
The	ip	provider	allows	access	to	the	server	to	be	controlled	based
on	the	IP	address	of	the	remote	client.	When	Require	ip	ip-
address	is	specified,	then	the	request	is	allowed	access	if	the	IP
address	matches.

A	full	IP	address:

Require	ip	10.1.2.3

Require	ip	192.168.1.104	192.168.1.205

An	IP	address	of	a	host	allowed	access

A	partial	IP	address:

Require	ip	10.1

Require	ip	10	172.20	192.168.2

The	first	1	to	3	bytes	of	an	IP	address,	for	subnet	restriction.

A	network/netmask	pair:

Require	ip	10.1.0.0/255.255.0.0

A	network	a.b.c.d,	and	a	netmask	w.x.y.z.	For	more	fine-grained
subnet	restriction.

A	network/nnn	CIDR	specification:

Require	ip	10.1.0.0/16

Similar	to	the	previous	case,	except	the	netmask	consists	of	nnn
high-order	1	bits.

Note	that	the	last	three	examples	above	match	exactly	the	same
set	of	hosts.

IPv6	addresses	and	IPv6	subnets	can	be	specified	as	shown
below:

Require	ip	2001:db8::a00:20ff:fea7:ccea

Require	ip	2001:db8:1:1::a

Require	ip	2001:db8:2:1::/64

Require	ip	2001:db8:3::/48

Note:	As	the	IP	addresses	are	parsed	on	startup,	expressions	are
not	evaluated	at	request	time.

Require	host
The	host	provider	allows	access	to	the	server	to	be	controlled
based	on	the	host	name	of	the	remote	client.	When	Require
host	host-name	is	specified,	then	the	request	is	allowed	access
if	the	host	name	matches.

A	(partial)	domain-name

Require	host	example.org

Require	host	.net	example.edu

Hosts	whose	names	match,	or	end	in,	this	string	are	allowed
access.	Only	complete	components	are	matched,	so	the	above
example	will	match	foo.example.org	but	it	will	not	match
fooexample.org.	This	configuration	will	cause	Apache	to
perform	a	double	reverse	DNS	lookup	on	the	client	IP	address,
regardless	of	the	setting	of	the	HostnameLookups	directive.	It	will
do	a	reverse	DNS	lookup	on	the	IP	address	to	find	the	associated
hostname,	and	then	do	a	forward	lookup	on	the	hostname	to
assure	that	it	matches	the	original	IP	address.	Only	if	the	forward
and	reverse	DNS	are	consistent	and	the	hostname	matches	will
access	be	allowed.

Require	forward-dns
The	forward-dns	provider	allows	access	to	the	server	to	be
controlled	based	on	simple	host	names.	When	Require
forward-dns	host-name	is	specified,	all	IP	addresses
corresponding	to	host-name	are	allowed	access.

In	contrast	to	the	host	provider,	this	provider	does	not	rely	on
reverse	DNS	lookups:	it	simply	queries	the	DNS	for	the	host	name
and	allows	a	client	if	its	IP	matches.	As	a	consequence,	it	will	only
work	with	host	names,	not	domain	names.	However,	as	the
reverse	DNS	is	not	used,	it	will	work	with	clients	which	use	a
dynamic	DNS	service.

Require	forward-dns	bla.example.org

A	client	the	IP	of	which	is	resolved	from	the	name

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

bla.example.org	will	be	granted	access.

The	forward-dns	provider	was	added	in	2.4.19.

Require	local
The	local	provider	allows	access	to	the	server	if	any	of	the
following	conditions	is	true:

the	client	address	matches	127.0.0.0/8
the	client	address	is	::1
both	the	client	and	the	server	address	of	the	connection	are
the	same

This	allows	a	convenient	way	to	match	connections	that	originate
from	the	local	host:

Require	local

Security	Note
If	you	are	proxying	content	to	your	server,	you	need	to	be	aware
that	the	client	address	will	be	the	address	of	your	proxy	server,	not
the	address	of	the	client,	and	so	using	the	Require	directive	in
this	context	may	not	do	what	you	mean.	See	mod_remoteip	for
one	possible	solution	to	this	problem.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_authz_owner

				.	 					.

: 			
: Extension
: authz_owner_module
: mod_authz_owner.c
: 	2.1	

		HTTP				()				/		
				 mod_auth_basic	 mod_auth_digest				
mod_authz_owner	 Require				,	 file-owner

file-group	:

file-owner

								 .	,					
				 	 jones	.

file-group

				 mod_authz_groupfile	 mod_authz_dbm

		 ,						.		,	 			
)	 		,			 accounts						
.

mod_authz_owner			 			(,)	,	

	 	 "MultiViews"			.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

Require

Satisfy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_owner
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_owner

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

Require	file-owner
							 ~/public_html/private

				 AuthDBMUserFile		,					
		.			 					.		
smith				 /home/smith/public_html/private	
		 		.

<Directory	/home/*/public_html/private>

AuthType	Basic

AuthName	MyPrivateFiles

AuthBasicProvider	dbm

AuthDBMUserFile	/usr/local/apache2/etc/.htdbm-all

Satisfy	All

Require	file-owner

</Directory>

Require	file-group
				 ~/public_html/project-foo			
		 foo	,							 AuthDBMGroupFile

, 		 foo	 		.	 jones	smith			 foo	,		
project-foo		 		.

<Directory	/home/*/public_html/project-foo>

AuthType	Basic

AuthName	"Project	Foo	Files"

AuthBasicProvider	dbm

#	combined	user/group	database

AuthDBMUserFile	/usr/local/apache2/etc/.htdbm-all

AuthDBMGroupFile	/usr/local/apache2/etc/.htdbm-all

Satisfy	All

Require	file-group

</Directory>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		mod_authz_user

				.	 					.

: 	
: Base
: authz_user_module
: mod_authz_user.c
: 	2.1	

			,				 				.	 mod_authz_user

Require	user							.	 ,	 require	valid-

user			 			.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

Require

Satisfy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_user
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_user
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_autoindex

				.	 					.

: 		 ls		Win32	 dir		
			

: Base
: autoindex_module
: mod_autoindex.c

				:

	 index.html			 	.				 DirectoryIndex

.			 mod_dir	.
			.					 	.	 AddIcon

AddIconByEncoding,	AddIconByType					.	
	 			.			 mod_autoindex	.

				,						 	()		.

			 Options	+Indexes	.	 		 Options		.

IndexOptions		 FancyIndexing		,				 			.
					 				.					 			.
IndexOptions		 SuppressColumnSorting						
.

"Size()"							 			.	,	1010			1011	
		"1K"			1010			 	.

Autoindex		

	2.0.23					,	 		.					
IndexOptions	IgnoreClient		.

									 .								
.

C=N		
C=M			,			
C=S		,			
C=D		,			

O=A			
O=D			

F=0	(FancyIndexed)			
F=1	FancyIndexed		
F=2	HTMLTable	FancyIndexed		

V=0				
V=1			

P=pattern		 pattern				

'P'attern			 IndexIgnore			 	,			autoindex	
	.	 mod_autoindex				 							.	
		 				.

header.html								 		.	submit				
	"X"		 mod_autoindex	X=Go					 		.

<form	action=""	method="get">

Show	me	a	<select	name="F">

<option	value="0">	Plain	list</option>

<option	value="1"	selected="selected">	Fancy	list</option>

<option	value="2">	Table	list</option>

</select>

Sorted	by	<select	name="C">

<option	value="N"	selected="selected">	Name</option>

<option	value="M">	Date	Modified</option>

<option	value="S">	Size</option>

<option	value="D">	Description</option>

</select>

<select	name="O">

<option	value="A"	selected="selected">	Ascending</option>

<option	value="D">	Descending</option>

</select>

<select	name="V">

<option	value="0"	selected="selected">	in	Normal

order</option>

<option	value="1">	in	Version	order</option>

</select>

Matching	<input	type="text"	name="P"	value="*"	/>

<input	type="submit"	name="X"	value="Go"	/>

</form>

AddAlt	

: 					
: AddAlt	string	file	[file]	...

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

AddAlt	 FancyIndexing	 					.	 File
,		,		,	 				.	 String		
.					,		 ,									.

AddAlt	"PDF	file"	*.pdf

AddAlt	Compressed	*.gz	*.zip	*.Z

AddAltByEncoding	

: MIME-encoding					
: AddAltByEncoding	string	MIME-encoding

[MIME-encoding]	...

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

AddAltByEncoding	 FancyIndexing	 					.
MIME-encoding	x-compress			content-encoding.	 String
			("		 ')		.			 		,		,				
				.

AddAltByEncoding	gzip	x-gzip

AddAltByType	

: MIME	content-type					
: AddAltByType	string	MIME-type	[MIME-

type]	...

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

AddAltByType	 FancyIndexing	 					.	
type	text/html			content-type.	 String			("	
')		.			 		,		,					
.

AddAltByType	'plain	text'	text/plain

AddDescription	

: 		
: AddDescription	string	file	[file]	...

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

		 FancyIndexing				.	 File				,
	,	 	,					.	 String	(")		.

AddDescription	"The	planet	Mars"	/web/pics/mars.gif

				23	.	 IndexOptions	SuppressIcon			
	6		 	,	 IndexOptions	SuppressSize		7	,
IndexOptions	SuppressLastModified		19	 		.	
			55	.

								 DescriptionWidth	IndexOptions
	.

AddDescription			 	character	entity (; 	<,	&		
) 	HTML			.			 				(
)							.

AddIcon	

: 				
: AddIcon	icon	name	[name]	...

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

		 FancyIndexing	 name		 				.	
escaped)		URL		 (alttext,url)	.	 	 alttext			
		 		.

Name			 ^^DIRECTORY^^,	()		
^^BLANKICON^^,		,		,	 						.

AddIcon	(IMG,/icons/image.xbm)	.gif	.jpg	.xbm

AddIcon	/icons/dir.xbm	^^DIRECTORY^^

AddIcon	/icons/backup.xbm	*~

	 AddIcon	 AddIconByType		.

AddIconByEncoding	

: MIME	content-encoding				
: AddIconByEncoding	icon	MIME-encoding

[MIME-encoding]	...

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

		 FancyIndexing	 				.	 Icon		(%-escaped)	
	URL		 (alttext,url)	.	 	 alttext						
.

MIME-encoding	content-encoding		 	.

AddIconByEncoding	/icons/compress.xbm	x-compress

AddIconByType	

: MIME	content-type				
: AddIconByType	icon	MIME-type	[MIME-

type]	...

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

		 FancyIndexing	 MIME-type					.	
	(%-escaped)		URL		 (alttext,url)	.	 	 alttext
				 		.

MIME-type	mime	type			 .

AddIconByType	(IMG,/icons/image.xbm)	image/*

DefaultIcon	

: 					
: DefaultIcon	url-path

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

DefaultIcon		 FancyIndexing	 						.
Icon		(%-escaped)		URL.

DefaultIcon	/icon/unknown.xbm

HeaderName	

: 				
: HeaderName	filename

: ,	,	directory,
.htaccess

Override	: Indexes
: Base
: mod_autoindex

HeaderName				 			.	 Filename		

HeaderName	HEADER.html

	HeaderName	 ReadmeName			 Filename			
URI		 .	 Filename			 DocumentRoot			 .

HeaderName	/include/HEADER.html

Filename	major	content	type	 text/*	(,	text/html,
text/plain,)			.	,		()			 type	
	 text/html		 filename	CGI				:

AddType	text/html	.cgi

Options	MultiViews		 	.	 filename	(CGI)	
text/html		 options	Includes	IncludesNOEXEC		
		 server-side	includes	.	(mod_include)

HeaderName			 (<html>,	<head>,)	HTML			

IndexOptions	+SuppressHTMLPreamble					
.

IndexHeadInsert	

: Inserts	text	in	the	HEAD	section	of	an	index	page.
:
: ,	,	directory,	.htaccess
: Base
: mod_autoindex

Documentation	not	yet	translated.	Please	see	English	version	of
document.

IndexIgnore	

: 				
: IndexIgnore	file	[file]	...

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

IndexIgnore			 			.	 File		
	 		.		IndexIgnore				 						.	
	 .	()	.

IndexIgnore	README	.htaccess	*.bak	*~

IndexIgnoreReset	

: Empties	the	list	of	files	to	hide	when	listing	a
directory

: IndexIgnoreReset	ON|OFF

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex
: 2.3.10	and	later

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

IndexOptions	

: 			
: IndexOptions	[+|-]option	[[+|-]option]

...

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

IndexOptions			 	.	 Option			

DescriptionWidth=[n	|	*]	(2.0.23)
DescriptionWidth				 				.
-DescriptionWidth		()	 mod_autoindex

	.
DescriptionWidth=n		 	 n		.
DescriptionWidth=*					 				.
					 AddDescription		.

FancyIndexing
	fancy		.

FoldersFirst	(2.0.23)
					 		,						.	 		
	,		 					.	
FoldersFirst			 Zed		 Beta		,		
	 Gamma	 Alpha		 .	 		 FancyIndexing				
.

HTMLTable	(,	 	2.0.23)
		FancyIndexing			HTML		 fancy			.		
			 				.			WinNT		
		()			.

IconsAreLinks
fancy					.

IconHeight[=pixels]
		IconWidth						 img		 height

width		.						 						.	
	 						.

IconWidth[=pixels]
		 IconHeight			 			 img		 height

width		.	 							
			 				.

IgnoreCase
						.	 	,			IgnoreCase		
Zeta		alfa			(:		GAMMA	 		gamma		
).

IgnoreClient
			 mod_autoindex							.
(SuppressColumnSorting	.)

NameWidth=[n	|	*]
NameWidth				 		.
-NameWidth		()	 mod_autoindex

NameWidth=n			 n		.
NameWidth=*				.

ScanHTMLTitles
fancy		HTML		title	.		 AddDescription			
			 title		.			CPU			.

SuppressColumnSorting
				FancyIndexed		 							.	
				,					 					.	
				. 		2.0.23	 IndexOptions	
			.

SuppressDescription
fancy					.		 			,				23	

			.				 	 AddDescription	.			
DescriptionWidth		.

SuppressHTMLPreamble
	 HeaderName		 							HTML	
(<html>,	<head>,	et	cetera)				.	
SuppressHTMLPreamble				 header			.	
	header			 HTML			.	header				

SuppressIcon	(2.0.23)
fancy			.	 SuppressIcon	SuppressRules		
,	(FancyIndexed)	 pre		 img	hr					
HTML	3.2			.

SuppressLastModified
fancy					.

SuppressRules	(2.0.23)
			(hr)	 	.	 SuppressIcon	SuppressRules
		,	(FancyIndexed)	 pre		 img	hr			
		HTML	3.2	 		.

SuppressSize
fancy				.

TrackModified	(2.0.23)
		HTTP		Last-Modified	ETag		 .					
stat()					.			OS2	 JFS,	Win32	NTFS	
.		,	OS2	Win32	 FAT	.						
					 	.								
				 		.	 			 					Last-
Modified		 . 						 	.

VersionSort	(2.0a3)
VersionSort					 		.					
					 .

:
foo-1.7

foo-1.7.2

foo-1.7.12

foo-1.8.2

foo-1.8.2a

foo-1.12

	0	,				:

foo-1.001

foo-1.002

foo-1.030

foo-1.04

XHTML	(2.0.49)
XHTML			 mod_autoindex	HTML	3.2		XHTML	1.0	
.

	IndexOptions
	1.3.3	 IndexOptions				.	:

					 IndexOptions			.	

<Directory	/foo>

IndexOptions	HTMLTable

IndexOptions	SuppressColumnsorting

</Directory>

	

IndexOptions	HTMLTable	SuppressColumnsorting

(,			 +	-)			.

		'+'	'-'					 ()	
.							 						.	

:

IndexOptions	+ScanHTMLTitles	-IconsAreLinks	FancyIndexing

IndexOptions	+SuppressSize

			 FancyIndexing		 						
IndexOptions	FancyIndexing	+SuppressSize	.

				 IndexOptions			 	 +	

IndexOrderDefault	

: 				
: IndexOrderDefault	Ascending|Descending

Name|Date|Size|Description

: IndexOrderDefault	Ascending	Name

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

IndexOrderDefault		 FancyIndexing				.	
fancyindexed		 		.	 IndexOrderDefault				
	.

IndexOrderDefault			 .					
)		 Descending	()		.	 						
Date,	Size,	Description		.			 		.

		 SuppressColumnSorting					 				
.				 					.

IndexStyleSheet	

: 		CSS		
: IndexStyleSheet	url-path

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_autoindex

IndexStyleSheet			 	CSS			.

Example
IndexStyleSheet	"/css/style.css"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

ReadmeName	

: 				
: ReadmeName	filename

: ,	,	directory,
.htaccess

Override	: Indexes
: Base
: mod_autoindex

ReadmeName				 			.	 Filename		
		.	 Filename			 DocumentRoot		.

ReadmeName	FOOTER.html

	2
ReadmeName	/include/FOOTER.html

				 HeaderName	.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_brotli

Description: Compress	content	via	Brotli	before	it	is	delivered
to	the	client

Status: Extension
Module	Identifier: brotli_module
Source	File: mod_brotli.c
Compatibility: Available	in	version	2.4.26	and	later.

Summary
The	mod_brotli	module	provides	the	BROTLI_COMPRESS	output
filter	that	allows	output	from	your	server	to	be	compressed	using	the
brotli	compression	format	before	being	sent	to	the	client	over	the
network.	This	module	uses	the	Brotli	library	found	at
https://github.com/google/brotli.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Filters

https://github.com/google/brotli
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_brotli
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_brotli

Sample	Configurations

Compression	and	TLS

Some	web	applications	are	vulnerable	to	an	information
disclosure	attack	when	a	TLS	connection	carries	compressed
data.	For	more	information,	review	the	details	of	the	"BREACH"
family	of	attacks.

This	is	a	simple	configuration	that	compresses	common	text-
based	content	types.

Compress	only	a	few	types
AddOutputFilterByType	BROTLI_COMPRESS	text/html	text/plain	text/xml	text/css	text/javascript	application/javascript

Enabling	Compression

Compression	and	TLS

Some	web	applications	are	vulnerable	to	an	information
disclosure	attack	when	a	TLS	connection	carries	compressed
data.	For	more	information,	review	the	details	of	the	"BREACH"
family	of	attacks.

Output	Compression
Compression	is	implemented	by	the	BROTLI_COMPRESS	filter.
The	following	directive	will	enable	compression	for	documents	in
the	container	where	it	is	placed:

SetOutputFilter	BROTLI_COMPRESS

SetEnvIfNoCase	Request_URI	\.(?:gif|jpe?g|png)$	no-brotli

If	you	want	to	restrict	the	compression	to	particular	MIME	types	in
general,	you	may	use	the	AddOutputFilterByType	directive.
Here	is	an	example	of	enabling	compression	only	for	the	html	files
of	the	Apache	documentation:

<Directory	"/your-server-root/manual">

				AddOutputFilterByType	BROTLI_COMPRESS	text/html

</Directory>

Note
The	BROTLI_COMPRESS	filter	is	always	inserted	after
RESOURCE	filters	like	PHP	or	SSI.	It	never	touches	internal
subrequests.

Note

There	is	an	environment	variable	no-brotli,	set	via	SetEnv,
which	will	disable	brotli	compression	for	a	particular	request,
even	if	it	is	supported	by	the	client.

Dealing	with	proxy	servers

The	mod_brotli	module	sends	a	Vary:	Accept-Encoding
HTTP	response	header	to	alert	proxies	that	a	cached	response
should	be	sent	only	to	clients	that	send	the	appropriate	Accept-
Encoding	request	header.	This	prevents	compressed	content
from	being	sent	to	a	client	that	will	not	understand	it.

If	you	use	some	special	exclusions	dependent	on,	for	example,	the
User-Agent	header,	you	must	manually	configure	an	addition	to
the	Vary	header	to	alert	proxies	of	the	additional	restrictions.	For
example,	in	a	typical	configuration	where	the	addition	of	the
BROTLI_COMPRESS	filter	depends	on	the	User-Agent,	you
should	add:

Header	append	Vary	User-Agent

If	your	decision	about	compression	depends	on	other	information
than	request	headers	(e.g.	HTTP	version),	you	have	to	set	the
Vary	header	to	the	value	*.	This	prevents	compliant	proxies	from
caching	entirely.

Example
Header	set	Vary	*

Serving	pre-compressed	content

Since	mod_brotli	re-compresses	content	each	time	a	request	is
made,	some	performance	benefit	can	be	derived	by	pre-
compressing	the	content	and	telling	mod_brotli	to	serve	them
without	re-compressing	them.	This	may	be	accomplished	using	a
configuration	like	the	following:

<IfModule	mod_headers.c>

				#	Serve	brotli	compressed	CSS	files	if	they	exist

				#	and	the	client	accepts	brotli.

				RewriteCond	"%{HTTP:Accept-encoding}"	"br"

				RewriteCond	"%{REQUEST_FILENAME}\.br"	"-s"

				RewriteRule	"^(.*)\.css"														"$1\.css\.br"	[QSA]

				#	Serve	brotli	compressed	JS	files	if	they	exist

				#	and	the	client	accepts	brotli.

				RewriteCond	"%{HTTP:Accept-encoding}"	"br"

				RewriteCond	"%{REQUEST_FILENAME}\.br"	"-s"

				RewriteRule	"^(.*)\.js"															"$1\.js\.br"	[QSA]

				#	Serve	correct	content	types,	and	prevent	double	compression.

				RewriteRule	"\.css\.br$"	"-"	[T=text/css,E=no-brotli:1]

				RewriteRule	"\.js\.br$"		"-"	[T=text/javascript,E=no-brotli:1]

				<FilesMatch	"(\.js\.br|\.css\.br)$">

						#	Serve	correct	encoding	type.

						Header	append	Content-Encoding	br

						#	Force	proxies	to	cache	brotli	&

						#	non-brotli	css/js	files	separately.

						Header	append	Vary	Accept-Encoding

				</FilesMatch>

</IfModule>

BrotliAlterETag	Directive

Description: How	the	outgoing	ETag	header	should	be	modified
during	compression

Syntax: BrotliAlterETag

AddSuffix|NoChange|Remove

Default: BrotliAlterETag	AddSuffix

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliAlterETag	directive	specifies	how	the	ETag	hader
should	be	altered	when	a	response	is	compressed.

AddSuffix
Append	the	compression	method	onto	the	end	of	the	ETag,
causing	compressed	and	uncompressed	representations	to
have	unique	ETags.	In	another	dynamic	compression	module,
mod_deflate,	this	has	been	the	default	since	2.4.0.	This
setting	prevents	serving	"HTTP	Not	Modified"	(304)
responses	to	conditional	requests	for	compressed	content.

NoChange
Don't	change	the	ETag	on	a	compressed	response.	In	another
dynamic	compression	module,	mod_deflate,	this	has	been	the
default	prior	to	2.4.0.	This	setting	does	not	satisfy	the
HTTP/1.1	property	that	all	representations	of	the	same
resource	have	unique	ETags.

Remove
Remove	the	ETag	header	from	compressed	responses.	This
prevents	some	conditional	requests	from	being	possible,	but
avoids	the	shortcomings	of	the	preceding	options.

BrotliCompressionMaxInputBlock	Directive

Description: Maximum	input	block	size
Syntax: BrotliCompressionMaxInputBlock	value

Default: (automatic)

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliCompressionMaxInputBlock	directive	specifies
the	maximum	input	block	size	between	16	and	24,	with	the	caveat
that	larger	block	sizes	require	more	memory.

BrotliCompressionQuality	Directive

Description: Compression	quality
Syntax: BrotliCompressionQuality	value

Default: BrotliCompressionQuality	5

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliCompressionQuality	directive	specifies	the
compression	quality	(a	value	between	0	and	11).	Higher	quality
values	result	in	better,	but	also	slower	compression.

BrotliCompressionWindow	Directive

Description: Brotli	sliding	compression	window	size
Syntax: BrotliCompressionWindow	value

Default: BrotliCompressionWindow	18

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliCompressionWindow	directive	specifies	the	brotli
sliding	compression	window	size	(a	value	between	10	and	24).
Larger	window	sizes	can	improve	compression	quality,	but	require
more	memory.

BrotliFilterNote	Directive

Description: Places	the	compression	ratio	in	a	note	for	logging
Syntax: BrotliFilterNote	[type]	notename

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliFilterNote	directive	specifies	that	a	note	about
compression	ratios	should	be	attached	to	the	request.	The	name
of	the	note	is	the	value	specified	for	the	directive.	You	can	use	that
note	for	statistical	purposes	by	adding	the	value	to	your	access
log.

Example
BrotliFilterNote	ratio

LogFormat	'"%r"	%b	(%{ratio}n)	"%{User-agent}i"'	brotli

CustomLog	"logs/brotli_log"	brotli

If	you	want	to	extract	more	accurate	values	from	your	logs,	you
can	use	the	type	argument	to	specify	the	type	of	data	left	as	a	note
for	logging.	type	can	be	one	of:

Input

Store	the	byte	count	of	the	filter's	input	stream	in	the	note.

Output

Store	the	byte	count	of	the	filter's	output	stream	in	the	note.

Ratio

Store	the	compression	ratio	(output/input	*	100)	in	the
note.	This	is	the	default,	if	the	type	argument	is	omitted.

Thus	you	may	log	it	this	way:

Accurate	Logging

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

BrotliFilterNote	Input	instream

BrotliFilterNote	Output	outstream

BrotliFilterNote	Ratio	ratio

LogFormat	'"%r"	%{outstream}n/%{instream}n	(%{ratio}n%%)'	brotli

CustomLog	"logs/brotli_log"	brotli

See	also
mod_log_config

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_buffer

Description: Support	for	request	buffering
Status: Extension
Module	Identifier: buffer_module
Source	File: mod_buffer.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
This	module	provides	the	ability	to	buffer	the	input	and	output	filter
stacks.

Under	certain	circumstances,	content	generators	might	create	content
in	small	chunks.	In	order	to	promote	memory	reuse,	in	memory
chunks	are	always	8k	in	size,	regardless	of	the	size	of	the	chunk
itself.	When	many	small	chunks	are	generated	by	a	request,	this	can
create	a	large	memory	footprint	while	the	request	is	being	processed,
and	an	unnecessarily	large	amount	of	data	on	the	wire.	The	addition
of	a	buffer	collapses	the	response	into	the	fewest	chunks	possible.

When	httpd	is	used	in	front	of	an	expensive	content	generator,
buffering	the	response	may	allow	the	backend	to	complete	processing
and	release	resources	sooner,	depending	on	how	the	backend	is
designed.

The	buffer	filter	may	be	added	to	either	the	input	or	the	output	filter
stacks,	as	appropriate,	using	the	SetInputFilter,
SetOutputFilter,	AddOutputFilter	or
AddOutputFilterByType	directives.

Using	buffer	with	mod_include
AddOutputFilterByType	INCLUDES;BUFFER	text/html

The	buffer	filters	read	the	request/response	into	RAM	and	then
repack	the	request/response	into	the	fewest	memory	buckets
possible,	at	the	cost	of	CPU	time.	When	the	request/response	is
already	efficiently	packed,	buffering	the	request/response	could
cause	the	request/response	to	be	slower	than	not	using	a	buffer	at
all.	These	filters	should	be	used	with	care,	and	only	where
necessary.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Filters

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_buffer
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_buffer

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

BufferSize	Directive

Description: Maximum	size	in	bytes	to	buffer	by	the	buffer	filter
Syntax: BufferSize	integer

Default: BufferSize	131072

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_buffer

The	BufferSize	directive	specifies	the	amount	of	data	in	bytes
that	will	be	buffered	before	being	read	from	or	written	to	each
request.	The	default	is	128	kilobytes.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_cache

				.	 					.

: URI		
	.

: Experimental
: cache_module
: mod_cache.c

		

mod_cache					 					 RFC	2616
.	 mod_cache		(storage	management	module)	.	
		:

mod_cache_disk

			.

mod_mem_cache

			.	 mod_mem_cache			
			 			.	 mod_mem_cache				,	(
proxy))	 ProxyPass		 mod_proxy				 		.

	URI						.	 			.

http://www.ietf.org/rfc/rfc2616.txt

		

	 	
mod_cache_disk

mod_mem_cache

CacheRoot

CacheSize

CacheGcInterval

CacheDirLevels

CacheDirLength

CacheExpiryCheck

CacheMinFileSize

CacheMaxFileSize

CacheTimeMargin

CacheGcDaily

CacheGcUnused

CacheGcClean

CacheGcMemUsage

MCacheSize

MCacheMaxObjectCount

MCacheMinObjectSize

MCacheMaxObjectSize

MCacheRemovalAlgorithm

MCacheMaxStreamingBuffer

Sample	httpd.conf
#

#			

#

LoadModule	cache_module	modules/mod_cache.so

<IfModule	mod_cache.c>

#LoadModule	cache_disk_module	modules/mod_cache_disk.so

<IfModule	mod_cache_disk.c>

CacheRoot	c:/cacheroot

CacheSize	256

CacheEnable	disk	/

CacheDirLevels	5

CacheDirLength	3

</IfModule>	

LoadModule	mem_cache_module	modules/mod_mem_cache.so

<IfModule	mod_mem_cache.c>

CacheEnable	mem	/

MCacheSize	4096

MCacheMaxObjectCount	100

MCacheMinObjectSize	1

MCacheMaxObjectSize	2048

</IfModule>

</IfModule>

CacheDefaultExpire	

: 					.
: CacheDefaultExpire	seconds

: CacheDefaultExpire	3600	(one	hour)

: ,	
: Experimental
: mod_cache

CacheDefaultExpire			 							
CacheMaxExpire						 .

CacheDefaultExpire	86400

CacheDetailHeader	

: Add	an	X-Cache-Detail	header	to	the	response.
:
: ,	,	directory,	.htaccess
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheDisable	

: 	URL		
: CacheDisable	url-string

: ,	
: Experimental
: mod_cache

CacheDisable			 mod_cache	 url-string		 url		

CacheDisable	/local_files

CacheEnable	

: 				URL	
: CacheEnable	cache_type	url-string

: ,	
: Experimental
: mod_cache

CacheEnable			 mod_cache	 url-string		 url	.		
cache_type		.	 cache_type	mem	mod_mem_cache			
.	 cache_type	disk	mod_cache_disk			 	.
cache_type	fd	mod_mem_cache				 .

()	URL			 CacheEnable				 			
			 .		 CacheEnable				.

CacheEnable	mem	/manual

CacheEnable	fd	/images

CacheEnable	disk	/

CacheHeader	

: Add	an	X-Cache	header	to	the	response.
:
: ,	,	directory,	.htaccess
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheIgnoreCacheControl	

: 				.
: CacheIgnoreCacheControl	On|Off

: CacheIgnoreCacheControl	Off

: ,	
: Experimental
: mod_cache

	no-cache	no-store					 .
CacheIgnoreCacheControl				.
CacheIgnoreCacheControl	On		 		no-cache	no-store
			 .				 		 .

CacheIgnoreCacheControl	On

CacheIgnoreHeaders	

: 		HTTP	()		
: CacheIgnoreHeaders	header-string	[header-

string]	...

: CacheIgnoreHeaders	None

: ,	
: Experimental
: mod_cache

RFC	2616		(hop-by-hop)	HTTP			 	.		HTTP	
			,	 CacheIgnoreHeaders			 				.

Connection

Keep-Alive

Proxy-Authenticate

Proxy-Authorization

TE

Trailers

Transfer-Encoding

Upgrade

CacheIgnoreHeaders			 	HTTP			.		,	
(cookie)					.

CacheIgnoreHeaders			 	HTTP					.
(RFC	2616)					,	 CacheIgnoreHeaders

	.

	1
CacheIgnoreHeaders	Set-Cookie

	2
CacheIgnoreHeaders	None

:
CacheIgnoreHeaders			 Expires							
,	mod_cache		.

CacheIgnoreNoLastMod	

: 	Last	Modified				.
: CacheIgnoreNoLastMod	On|Off

: CacheIgnoreNoLastMod	Off

: ,	
: Experimental
: mod_cache

					.			 	(mod_include

		.	 CacheIgnoreNoLastMod			 				.	
		 			 CacheDefaultExpire					.

CacheIgnoreNoLastMod	On

CacheIgnoreQueryString	

: Ignore	query	string	when	caching
:
: ,	
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheIgnoreURLSessionIdentifiers	

: Ignore	defined	session	identifiers	encoded	in	the	URL	when
caching

:
: ,	
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheKeyBaseURL	

: Override	the	base	URL	of	reverse	proxied	cache	keys.
:
: ,	
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheLastModifiedFactor	

: LastModified					.
: CacheLastModifiedFactor	float

: CacheLastModifiedFactor	0.1

: ,	
: Experimental
: mod_cache

							 				.
CacheLastModifiedFactor		 					
expiry-period	=	time-since-last-modified-date	*

factor	expiry-date	=	current-date	+	expiry-period

	,		10					 factor	0.1		10*01	=	1		.	
		 3:00pm		3:00pm	+	1	=	4:00pm.	 	
		 CacheMaxExpire	.

CacheLastModifiedFactor	0.5

CacheLock	

: Enable	the	thundering	herd	lock.
:
: ,	
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheLockMaxAge	

: Set	the	maximum	possible	age	of	a	cache	lock.
:
: ,	
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheLockPath	

: Set	the	lock	path	directory.
:
: ,	
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheMaxExpire	

: 			
: CacheMaxExpire	seconds

: CacheMaxExpire	86400	()

: ,	
: Experimental
: mod_cache

CacheMaxExpire				 		HTTP						
,					.	 					.

CacheMaxExpire	604800

CacheMinExpire	

: The	minimum	time	in	seconds	to	cache	a	document
:
: ,	,	directory,	.htaccess
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheQuickHandler	

: Run	the	cache	from	the	quick	handler.
:
: ,	
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheStaleOnError	

: Serve	stale	content	in	place	of	5xx	responses.
:
: ,	,	directory,	.htaccess
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheStoreExpired	

: Attempt	to	cache	responses	that	the	server	reports	as	expired
:
: ,	,	directory,	.htaccess
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheStoreNoStore	

: Attempt	to	cache	requests	or	responses	that	have	been
marked	as	no-store.

:
: ,	,	directory,	.htaccess
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

CacheStorePrivate	

: Attempt	to	cache	responses	that	the	server	has	marked	as
private

:
: ,	,	directory,	.htaccess
: Experimental
: mod_cache

Documentation	not	yet	translated.	Please	see	English	version	of
document.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_cache_disk

				.	 					.

: Content	cache	storage	manager	keyed	to	URIs
: Experimental
: cache_disk_module
: mod_cache_disk.c

		

mod_cache_disk			 .				 mod_proxy

	URI						.	 			.

:

mod_cache_disk	mod_cache	.

CacheDirLength	

: 	
: CacheDirLength	length

: CacheDirLength	2

: ,	
: Experimental
: mod_cache_disk

CacheDirLength			 				.

CacheDirLevels	CacheDirLength		20		 	.

CacheDirLength	4

CacheDirLevels	

: 		.
: CacheDirLevels	levels

: CacheDirLevels	3

: ,	
: Experimental
: mod_cache_disk

CacheDirLevels			 		.			
	.

CacheDirLevels	 CacheDirLength		20			.

CacheDirLevels	5

CacheMaxFileSize	

: 				()
: CacheMaxFileSize	bytes

: CacheMaxFileSize	1000000

: ,	
: Experimental
: mod_cache_disk

CacheMaxFileSize			 					.

CacheMaxFileSize	64000

CacheMinFileSize	

: 				()
: CacheMinFileSize	bytes

: CacheMinFileSize	1

: ,	
: Experimental
: mod_cache_disk

CacheMinFileSize			 					.

CacheMinFileSize	64

CacheReadSize	

: The	minimum	size	(in	bytes)	of	the	document	to	read	and	be
cached	before	sending	the	data	downstream

:
: ,	,	directory,	.htaccess
: Experimental
: mod_cache_disk

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CacheReadTime	

: The	minimum	time	(in	milliseconds)	that	should	elapse	while
reading	before	data	is	sent	downstream

:
: ,	,	directory,	.htaccess
: Experimental
: mod_cache_disk

Documentation	not	yet	translated.	Please	see	English	version	of
document.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

CacheRoot	

: 				root
: CacheRoot	directory

: ,	
: Experimental
: mod_cache_disk

CacheRoot			 				.	 mod_cache_disk

			 		 				.	 CacheRoot				
CacheDirLevels	 CacheDirLength		 			root		
	.

CacheRoot	c:/cacheroot

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_cache_socache

Description: Shared	object	cache	(socache)	based	storage
module	for	the	HTTP	caching	filter.

Status: Extension
Module	Identifier: cache_socache_module
Source	File: mod_cache_socache.c

Summary
mod_cache_socache	implements	a	shared	object	cache	(socache)
based	storage	manager	for	mod_cache.

The	headers	and	bodies	of	cached	responses	are	combined,	and
stored	underneath	a	single	key	in	the	shared	object	cache.	A	number
of	implementations	of	shared	object	caches	are	available	to	choose
from.

Multiple	content	negotiated	responses	can	be	stored	concurrently,
however	the	caching	of	partial	content	is	not	yet	supported	by	this
module.

#	Turn	on	caching

CacheSocache	shmcb

CacheSocacheMaxSize	102400

<Location	"/foo">

				CacheEnable	socache

</Location>

#	Fall	back	to	the	disk	cache

CacheSocache	shmcb

CacheSocacheMaxSize	102400

<Location	"/foo">

				CacheEnable	socache

				CacheEnable	disk

</Location>

Note:

mod_cache_socache	requires	the	services	of	mod_cache,	which
must	be	loaded	before	mod_cache_socache.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_cache

mod_cache_disk

Caching	Guide

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cache_socache
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cache_socache

CacheSocache	Directive

Description: The	shared	object	cache	implementation	to	use
Syntax: CacheSocache	type[:args]

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocache	directive	defines	the	name	of	the	shared
object	cache	implementation	to	use,	followed	by	optional
arguments	for	that	implementation.	A	number	of	implementations
of	shared	object	caches	are	available	to	choose	from.

CacheSocache	shmcb

CacheSocacheMaxSize	Directive

Description: The	maximum	size	(in	bytes)	of	an	entry	to	be
placed	in	the	cache

Syntax: CacheSocacheMaxSize	bytes

Default: CacheSocacheMaxSize	102400

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheMaxSize	directive	sets	the	maximum	size,	in
bytes,	for	the	combined	headers	and	body	of	a	document	to	be
considered	for	storage	in	the	cache.	The	larger	the	headers	that
are	stored	alongside	the	body,	the	smaller	the	body	may	be.

The	mod_cache_socache	module	will	only	attempt	to	cache
responses	that	have	an	explicit	content	length,	or	that	are	small
enough	to	be	written	in	one	pass.	This	is	done	to	allow	the
mod_cache_disk	module	to	have	an	opportunity	to	cache
responses	larger	than	those	cacheable	within
mod_cache_socache.

CacheSocacheMaxSize	102400

CacheSocacheMaxTime	Directive

Description: The	maximum	time	(in	seconds)	for	a	document
to	be	placed	in	the	cache

Syntax: CacheSocacheMaxTime	seconds

Default: CacheSocacheMaxTime	86400

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheMaxTime	directive	sets	the	maximum
freshness	lifetime,	in	seconds,	for	a	document	to	be	stored	in	the
cache.	This	value	overrides	the	freshness	lifetime	defined	for	the
document	by	the	HTTP	protocol.

CacheSocacheMaxTime	86400

CacheSocacheMinTime	Directive

Description: The	minimum	time	(in	seconds)	for	a	document
to	be	placed	in	the	cache

Syntax: CacheSocacheMinTime	seconds

Default: CacheSocacheMinTime	600

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheMinTime	directive	sets	the	amount	of
seconds	beyond	the	freshness	lifetime	of	the	response	that	the
response	should	be	cached	for	in	the	shared	object	cache.	If	a
response	is	only	stored	for	its	freshness	lifetime,	there	will	be	no
opportunity	to	revalidate	the	response	to	make	it	fresh	again.

CacheSocacheMinTime	600

CacheSocacheReadSize	Directive

Description: The	minimum	size	(in	bytes)	of	the	document	to
read	and	be	cached	before	sending	the	data
downstream

Syntax: CacheSocacheReadSize	bytes

Default: CacheSocacheReadSize	0

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheReadSize	directive	sets	the	minimum
amount	of	data,	in	bytes,	to	be	read	from	the	backend	before	the
data	is	sent	to	the	client.	The	default	of	zero	causes	all	data	read
of	any	size	to	be	passed	downstream	to	the	client	immediately	as
it	arrives.	Setting	this	to	a	higher	value	causes	the	disk	cache	to
buffer	at	least	this	amount	before	sending	the	result	to	the	client.
This	can	improve	performance	when	caching	content	from	a	slow
reverse	proxy.

This	directive	only	takes	effect	when	the	data	is	being	saved	to	the
cache,	as	opposed	to	data	being	served	from	the	cache.

CacheSocacheReadSize	102400

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

CacheSocacheReadTime	Directive

Description: The	minimum	time	(in	milliseconds)	that	should
elapse	while	reading	before	data	is	sent
downstream

Syntax: CacheSocacheReadTime	milliseconds

Default: CacheSocacheReadTime	0

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheReadTime	directive	sets	the	minimum
amount	of	elapsed	time	that	should	pass	before	making	an
attempt	to	send	data	downstream	to	the	client.	During	the	time
period,	data	will	be	buffered	before	sending	the	result	to	the	client.
This	can	improve	performance	when	caching	content	from	a
reverse	proxy.

The	default	of	zero	disables	this	option.

This	directive	only	takes	effect	when	the	data	is	being	saved	to	the
cache,	as	opposed	to	data	being	served	from	the	cache.	It	is
recommended	that	this	option	be	used	alongside	the
CacheSocacheReadSize	directive	to	ensure	that	the	server
does	not	buffer	excessively	should	data	arrive	faster	than
expected.

CacheSocacheReadTime	1000

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_cern_meta

				.	 					.

: CERN			
: Extension
: cern_meta_module
: mod_cern_meta.c

CERN			.			 						HTTP		
	,	Expires:		 						.				
		CERN		 			.

			 CERN	metafile	semantics	.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

mod_headers

mod_asis

http://www.w3.org/pub/WWW/Daemon/User/Config/General.html#MetaDir
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cern_meta
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cern_meta

MetaDir	

: CERN				
: MetaDir	directory

: MetaDir	.web

: ,	,	directory,
.htaccess

Override	: Indexes
: Extension
: mod_cern_meta

					.	 						''	
		 	:

MetaDir	.

				:

MetaDir	.meta

MetaFiles	

: CERN		
: MetaFiles	on|off

: MetaFiles	off

: ,	,	directory,
.htaccess

Override	: Indexes
: Extension
: mod_cern_meta

			.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

MetaSuffix	

: CERN				
: MetaSuffix	suffix

: MetaSuffix	.meta

: ,	,	directory,
.htaccess

Override	: Indexes
: Extension
: mod_cern_meta

				.		,	 				
DOCUMENT_ROOT/somedir/index.html	
DOCUMENT_ROOT/somedir/.web/index.html.meta		
MIME			.

:
MetaSuffix	.meta

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_cgi

				.	 					.

: CGI		
: Base
: cgi_module
: mod_cgi.c

	mime	type	 application/x-httpd-cgi	 (1.1)		
script		 	CGI		,	,				 .		
,	 ScriptAlias			 	CGI	.

	CGI			 DOCUMENT_ROOT	 	.			 DocumentRoot

.

	CGI						 CGI			 		 .

		MPM				 mod_cgid			.		

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cgi
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cgi

AcceptPathInfo

Options

ScriptAlias

AddHandler

		ID	CGI		
CGI	

http://hoohoo.ncsa.uiuc.edu/cgi/

CGI	

				 CGI			 CGI		:

PATH_INFO
		 AcceptPathInfo			 off			.
AcceptPathInfo					 					404
NOT	FOUND		,	 mod_cgi			(URI		 		
/more/path/info)	.	 AcceptPathInfo			 mod_cgi

		 AcceptPathInfo	 On	 		.

REMOTE_HOST
		 HostnameLookups	 on	(off),				DNS
			 		.

REMOTE_IDENT
		 IdentityCheck	 on,		 	ident				.	
									 ,							
	.

REMOTE_USER
CGI					.

http://hoohoo.ncsa.uiuc.edu/cgi/

CGI	

					()				CGI				
			 					.

CGI		
CGI					CGI	.	 		CGI						
.	 						:

%%	[]	

%%	HTTP-	CGI--

CGI								 				:

%%error

	()			 		,				:

%request

		HTTP	

()	POST	PUT	

%response

CGI				

%stdout

CGI	

%stderr

CGI	

(%stdout	%stderr).

ScriptLog	

: CGI			
: ScriptLog	file-path

: ,	
: Base
: mod_cgi,	mod_cgid

ScriptLog		CGI		 	.	 ScriptLog				.			
	CGI		.			 ServerRoot		 .

ScriptLog	logs/cgi_log

			,	 	User				 		.						
	,					 				.					
				 				 .

		CGI					 							
,		 							.

ScriptLogBuffer	

: 			PUT		POST	
	

: ScriptLogBuffer	bytes

: ScriptLogBuffer	1024

: ,	
: Base
: mod_cgi,	mod_cgid

									 		PUT		POST			
.		 1024			,				 		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

ScriptLogLength	

: CGI				
: ScriptLogLength	bytes

: ScriptLogLength	10385760

: ,	
: Base
: mod_cgi,	mod_cgid

ScriptLogLength	CGI		 		.	CGI			(
)				 					.				
		CGI			 	.							

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_cgid

				.	 					.

: 	CGI		
CGI		

: Base
: cgid_module
: mod_cgid.c
: 			MPMs

			 ScriptSock			 mod_cgid	 mod_cgi		.	
			 mod_cgi	.

							 (fork)							
CGI					 	 mod_cgid	CGI			 					.
		 	(unix	domain	socket)		.

		MPM			 mod_cgi				.		
mod_cgi	.			cgi					 			
.

Bugfix	checklist
httpd	changelog

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4

Known	issues
Report	a	bug

mod_cgi

		ID	CGI		

https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cgid
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cgid

CGIDScriptTimeout	

: The	length	of	time	to	wait	for	more	output	from	the	CGI
program

: CGIDScriptTimeout	time[s|ms]

: value	of	Timeout	directive	when	unset
: ,	,	directory,	.htaccess
: Base
: mod_cgid
: CGIDScriptTimeout	defaults	to	zero	in	releases	2.4	and

earlier

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

ScriptSock	

: cgi						
: ScriptSock	file-path

: ScriptSock	logs/cgisock

: ,	
: Base
: mod_cgid

		CGI							 .				(root)			
.	CGI								 					.

ScriptSock	/var/run/cgid.sock

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_charset_lite

				.	 					.

: 		
: Experimental
: charset_lite_module
: mod_charset_lite.c

		 	,		 	.				 mod_charset_lite		.

mod_charset_lite				 							
mod_charset_lite		 					.
mod_charset_lite	EBCDIC	ASCII		 		.	EBCDIC		
			 	ISO-8859-1			.	 mod_charset_lite

		.	ASCII					 	,				
	.

				 mod_charset				.

	

		
mod_charset_lite			 ARP		 CharsetSourceEnc

CharsetDefault							.		 		,	http	
			 	.		APR	iconv(3)	,	 		iconv(1)			
		 							:

iconv	-f	charsetsourceenc-value	-t	charsetdefault-value

				
							 			:

						 	.
						 	(,)			.

CharsetDefault	

: 	
: CharsetDefault	charset

: ,	,	directory,	.htaccess
Override	: FileInfo
: Experimental
: mod_charset_lite

CharsetDefault			 						.

charset		APR			 		.		iconv			

<Directory	/export/home/trawick/apacheinst/htdocs/convert>

CharsetSourceEnc	UTF-16BE

CharsetDefault	ISO-8859-1

</Directory>

CharsetOptions	

: 			
: CharsetOptions	option	[option]	...

: CharsetOptions	DebugLevel=0

NoImplicitAdd

: ,	,	directory,	.htaccess
Override	: FileInfo
: Experimental
: mod_charset_lite

CharsetOptions		 mod_charset_lite		.	 Option
				

DebugLevel=n

DebugLevel		 mod_charset_lite			 	.		
		.	 	 DebugLevel=0	.				
		.	 			 mod_charset_lite.c		
		.

ImplicitAdd	|	NoImplicitAdd

ImplicitAdd				 			 mod_charset_lite

.	 AddOutputFilter				 ,	 NoImplicitAdd

mod_charset_lite			 		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

CharsetSourceEnc	

: 		
: CharsetSourceEnc	charset

: ,	,	directory,	.htaccess
Override	: FileInfo
: Experimental
: mod_charset_lite

CharsetSourceEnc			 						.

charset		APR			 		.		iconv			

<Directory	/export/home/trawick/apacheinst/htdocs/convert>

CharsetSourceEnc	UTF-16BE

CharsetDefault	ISO-8859-1

</Directory>

Solaris	8	iconv				.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_data

Description: Convert	response	body	into	an	RFC2397	data
URL

Status: Extension
Module	Identifier: data_module
Source	File: mod_data.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
This	module	provides	the	ability	to	convert	a	response	into	an
RFC2397	data	URL.

Data	URLs	can	be	embedded	inline	within	web	pages	using
something	like	the	mod_include	module,	to	remove	the	need	for
clients	to	make	separate	connections	to	fetch	what	may	potentially	be
many	small	images.	Data	URLs	may	also	be	included	into	pages
generated	by	scripting	languages	such	as	PHP.

An	example	of	a	data	URL


AAAC8IyPqcvt3wCcDkiLc7C0qwyGHhSWpjQu5yqmCYsapyuvUUlvONmOZtfzgFz

ByTB10QgxOR0TqBQejhRNzOfkVJ+5YiUqrXF5Y5lKh/DeuNcP5yLWGsEbtLiOSp

a/TPg7JpJHxyendzWTBfX0cxOnKPjgBzi4diinWGdkF8kjdfnycQZXZeYGejmJl

ZeGl9i2icVqaNVailT6F5iJ90m6mvuTS4OK05M0vDk0Q4XUtwvKOzrcd3iq9uis

F81M1OIcR7lEewwcLp7tuNNkM3uNna3F2JQFo97Vriy/Xl4/f1cf5VWzXyym7PH

hhx4dbgYKAAA7

The	filter	takes	no	parameters,	and	can	be	added	to	the	filter	stack
using	the	SetOutputFilter	directive,	or	any	of	the	directives
supported	by	the	mod_filter	module.

Configuring	the	filter
<Location	"/data/images">

http://tools.ietf.org/html/rfc2397

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

				SetOutputFilter	DATA

</Location>

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Filters

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_data
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_data
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_dav

				.	 					.

: Distributed	Authoring	and	Versioning	(WebDAV)

: Extension
: dav_module
: mod_dav.c

			 WebDAV	('Web-based	Distributed	Authoring	and
Versioning')	class	1	class	2		.	WebDAV				 (collection)
	 (;) 	,	,	,		 		HTTP			.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

DavLockDB

LimitXMLRequestBody

WebDAV	

http://www.webdav.org/
http://www.webdav.org
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_dav
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_dav
http://www.webdav.org

WebDAV	

mod_dav		 httpd.conf				:

Dav	On

	 mod_dav_fs			DAV	 	(provider)	.				
	 LoadModule			 	.

,	DAV	(lock)			 httpd.conf				 DavLockDB	
	 	:

DavLockDB	/usr/local/apache2/var/DavLock

		 User	 Group			 					.

DAV					 <Location>		 	 <Limit>				.
DAV				 						 LimitXMLRequestBody

.	 ""	 LimitRequestBody		DAV		.

	
DavLockDB	/usr/local/apache2/var/DavLock

<Location	/foo>

Dav	On

AuthType	Basic

AuthName	DAV

AuthUserFile	user.passwd

<LimitExcept	GET	OPTIONS>

require	user	admin

</LimitExcept>

</Location>

mod_dav	Greg	Stein		 Apache	1.3	mod_dav 		.		
						 .

http://www.webdav.org/mod_dav/

	

DAV							 	,	 mod_dav			
		.

	DAV					.	 HTTP	Basic	Authentication		
.		 mod_auth_digest			HTTP	Digest	 Authentication	
	.			WebDAV		 			.		 SSL		Basic
Authentication			.

mod_dav		,		 	 User	Group		 					.
,			 	 User	Group		 .								.	DAV	
					.			 (FTP)			
.

mod_dav					 		.	 LimitXMLRequestBody

	DAV						.	 DavDepthInfinity				
				 PROPFIND				.			 						
	.	 					.			 	DAV			.

	

			(PHP	,	CGI)	 			 mod_dav

GET					 				.			
	URL		 ,		URL			DAV		 	.

Alias	/phparea	/home/gstein/php_files

Alias	/php-source	/home/gstein/php_files

<Location	/php-source>

DAV	On

ForceType	text/plain

</Location>

		 http://example.com/phparea	PHP			,
http://example.com/php-source	DAV		 			.

Dav	

: WebDAV	HTTP		
: Dav	On|Off|provider-name

: Dav	Off

: directory
: Extension
: mod_dav

		WebDAV	HTTP			 Dav		:

<Location	/foo>

Dav	On

</Location>

On			 mod_dav_fs					 filesystem	.		
DAV			DAV	 			 	.		 	

			WebDAV		.		 								
.

DavDepthInfinity	

: PROPFIND	Depth:	Infinity	
	

: DavDepthInfinity	on|off

: DavDepthInfinity	off

: ,	,	directory
: Extension
: mod_dav

DavDepthInfinity			 'Depth:	Infinity'			 PROPFIND

.							 			.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

DavMinTimeout	

: 	DAV					
: DavMinTimeout	seconds

: DavMinTimeout	0

: ,	,	directory
: Extension
: mod_dav

	DAV		(lock)			 									.	
	 	,						 					.

DavMinTimeout			 				()	.	Microsoft	Web
Folders		120		.	 DavMinTimeout	(600)			
			 						.

<Location	/MSWord>

DavMinTimeout	600

</Location>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_dav_fs

				.	 					.

: mod_dav	
	

: Extension
: dav_fs_module
: mod_dav_fs.c

		 mod_dav		 .	mod_dav					 					.
	(provider)	 	 filesystem.	 Dav			 mod_dav

Dav	filesystem

filesystem	 mod_dav				 On			.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

mod_dav

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_dav_fs
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_dav_fs

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

DavLockDB	

: DAV			
: DavLockDB	file-path

: ,	
: Extension
: mod_dav_fs

DavLockDB				 				.			
.	 mod_dav_fs		SDBM		 .

DavLockDB	var/DavLock

		 User	Group		 						.	
			 			.				 ServerRoot

			 DavLock		.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dav_lock

Description: Generic	locking	module	for	mod_dav
Status: Extension
Module	Identifier: dav_lock_module
Source	File: mod_dav_lock.c
Compatibility: Available	in	version	2.1	and	later

Summary
This	module	implements	a	generic	locking	API	which	can	be	used	by
any	backend	provider	of	mod_dav.	It	requires	at	least	the	service	of
mod_dav.	But	without	a	backend	provider	which	makes	use	of	it,	it's
useless	and	should	not	be	loaded	into	the	server.	A	sample	backend
module	which	actually	utilizes	mod_dav_lock	is	mod_dav_svn,	the
subversion	provider	module.

Note	that	mod_dav_fs	does	not	need	this	generic	locking	module,
because	it	uses	its	own	more	specialized	version.

In	order	to	make	mod_dav_lock	functional,	you	just	have	to	specify
the	location	of	the	lock	database	using	the	DavGenericLockDB
directive	described	below.

Developer's	Note

In	order	to	retrieve	the	pointer	to	the	locking	provider	function,	you
have	to	use	the	ap_lookup_provider	API	with	the	arguments
dav-lock,	generic,	and	0.

http://subversion.apache.org/

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_dav

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_dav_lock
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_dav_lock

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

DavGenericLockDB	Directive

Description: Location	of	the	DAV	lock	database
Syntax: DavGenericLockDB	file-path

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_dav_lock

Use	the	DavGenericLockDB	directive	to	specify	the	full	path	to
the	lock	database,	excluding	an	extension.	If	the	path	is	not
absolute,	it	will	be	interpreted	relative	to	ServerRoot.	The
implementation	of	mod_dav_lock	uses	a	SDBM	database	to
track	user	locks.

Example
DavGenericLockDB	var/DavLock

The	directory	containing	the	lock	database	file	must	be	writable	by
the	User	and	Group	under	which	Apache	is	running.	For	security
reasons,	you	should	create	a	directory	for	this	purpose	rather	than
changing	the	permissions	on	an	existing	directory.	In	the	above
example,	Apache	will	create	files	in	the	var/	directory	under	the
ServerRoot	with	the	base	filename	DavLock	and	an	extension
added	by	the	server.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dbd

Description: Manages	SQL	database	connections
Status: Extension
Module	Identifier: dbd_module
Source	File: mod_dbd.c
Compatibility: Version	2.1	and	later

Summary
mod_dbd	manages	SQL	database	connections	using	APR.	It	provides
database	connections	on	request	to	modules	requiring	SQL	database
functions,	and	takes	care	of	managing	databases	with	optimal
efficiency	and	scalability	for	both	threaded	and	non-threaded	MPMs.
For	details,	see	the	APR	website	and	this	overview	of	the	Apache
DBD	Framework	by	its	original	developer.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Password	Formats

http://apr.apache.org/
http://people.apache.org/~niq/dbd.html
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_dbd
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_dbd

Connection	Pooling

This	module	manages	database	connections,	in	a	manner
optimised	for	the	platform.	On	non-threaded	platforms,	it	provides
a	persistent	connection	in	the	manner	of	classic	LAMP	(Linux,
Apache,	Mysql,	Perl/PHP/Python).	On	threaded	platform,	it
provides	an	altogether	more	scalable	and	efficient	connection
pool,	as	described	in	this	article	at	ApacheTutor.	Note	that
mod_dbd	supersedes	the	modules	presented	in	that	article.

http://www.apachetutor.org/dev/reslist

Connecting

To	connect	to	your	database,	you'll	need	to	specify	a	driver,	and
connection	parameters.	These	vary	from	one	database	engine	to
another.	For	example,	to	connect	to	mysql,	do	the	following:

DBDriver	mysql

DBDParams	host=localhost,dbname=pony,user=shetland,pass=appaloosa

You	can	then	use	this	connection	in	a	variety	of	other	modules,
including	mod_rewrite,	mod_authn_dbd,	and	mod_lua.
Further	usage	examples	appear	in	each	of	those	modules'
documentation.

See	DBDParams	for	connection	string	information	for	each	of	the
supported	database	drivers.

Apache	DBD	API

mod_dbd	exports	five	functions	for	other	modules	to	use.	The	API
is	as	follows:

typedef	struct	{

				apr_dbd_t	*handle;

				apr_dbd_driver_t	*driver;

				apr_hash_t	*prepared;

}	ap_dbd_t;

/*	Export	functions	to	access	the	database	*/

/*	acquire	a	connection	that	MUST	be	explicitly	closed.

	*	Returns	NULL	on	error

	*/

AP_DECLARE(ap_dbd_t*)	ap_dbd_open(apr_pool_t*,	server_rec*);

/*	release	a	connection	acquired	with	ap_dbd_open	*/

AP_DECLARE(void)	ap_dbd_close(server_rec*,	ap_dbd_t*);

/*	acquire	a	connection	that	will	have	the	lifetime	of	a	request

	*	and	MUST	NOT	be	explicitly	closed.		Return	NULL	on	error.

	*	This	is	the	preferred	function	for	most	applications.

	*/

AP_DECLARE(ap_dbd_t*)	ap_dbd_acquire(request_rec*);

/*	acquire	a	connection	that	will	have	the	lifetime	of	a	connection

	*	and	MUST	NOT	be	explicitly	closed.		Return	NULL	on	error.

	*/

AP_DECLARE(ap_dbd_t*)	ap_dbd_cacquire(conn_rec*);

/*	Prepare	a	statement	for	use	by	a	client	module	*/

AP_DECLARE(void)	ap_dbd_prepare(server_rec*,	const	char*,	const	char*);

/*	Also	export	them	as	optional	functions	for	modules	that	prefer	it	*/

APR_DECLARE_OPTIONAL_FN(ap_dbd_t*,	ap_dbd_open,	(apr_pool_t*,	server_rec*));

APR_DECLARE_OPTIONAL_FN(void,	ap_dbd_close,	(server_rec*,	ap_dbd_t*));

APR_DECLARE_OPTIONAL_FN(ap_dbd_t*,	ap_dbd_acquire,	(request_rec*));

APR_DECLARE_OPTIONAL_FN(ap_dbd_t*,	ap_dbd_cacquire,	(conn_rec*));

APR_DECLARE_OPTIONAL_FN(void,	ap_dbd_prepare,	(server_rec*,	const	char*,	const	char*));

SQL	Prepared	Statements

mod_dbd	supports	SQL	prepared	statements	on	behalf	of
modules	that	may	wish	to	use	them.	Each	prepared	statement
must	be	assigned	a	name	(label),	and	they	are	stored	in	a	hash:
the	prepared	field	of	an	ap_dbd_t.	Hash	entries	are	of	type
apr_dbd_prepared_t	and	can	be	used	in	any	of	the	apr_dbd
prepared	statement	SQL	query	or	select	commands.

It	is	up	to	dbd	user	modules	to	use	the	prepared	statements	and
document	what	statements	can	be	specified	in	httpd.conf,	or	to
provide	their	own	directives	and	use	ap_dbd_prepare.

Caveat
When	using	prepared	statements	with	a	MySQL	database,	it	is
preferred	to	set	reconnect	to	0	in	the	connection	string	as	to
avoid	errors	that	arise	from	the	MySQL	client	reconnecting
without	properly	resetting	the	prepared	statements.	If	set	to	1,
any	broken	connections	will	be	attempted	fixed,	but	as
mod_dbd	is	not	informed,	the	prepared	statements	will	be
invalidated.

SECURITY	WARNING

Any	web/database	application	needs	to	secure	itself	against	SQL
injection	attacks.	In	most	cases,	Apache	DBD	is	safe,	because
applications	use	prepared	statements,	and	untrusted	inputs	are
only	ever	used	as	data.	Of	course,	if	you	use	it	via	third-party
modules,	you	should	ascertain	what	precautions	they	may	require.

However,	the	FreeTDS	driver	is	inherently	unsafe.	The	underlying
library	doesn't	support	prepared	statements,	so	the	driver
emulates	them,	and	the	untrusted	input	is	merged	into	the	SQL
statement.

It	can	be	made	safe	by	untainting	all	inputs:	a	process	inspired	by
Perl's	taint	checking.	Each	input	is	matched	against	a	regexp,	and
only	the	match	is	used,	according	to	the	Perl	idiom:

		$untrusted	=~	/([a-z]+)/;

		$trusted	=	$1;

To	use	this,	the	untainting	regexps	must	be	included	in	the
prepared	statements	configured.	The	regexp	follows	immediately
after	the	%	in	the	prepared	statement,	and	is	enclosed	in	curly
brackets	{}.	For	example,	if	your	application	expects	alphanumeric
input,	you	can	use:

"SELECT	foo	FROM	bar	WHERE	input	=	%s"

with	other	drivers,	and	suffer	nothing	worse	than	a	failed	query.
But	with	FreeTDS	you'd	need:

"SELECT	foo	FROM	bar	WHERE	input	=	%{([A-Za-z0-9]+)}s"

Now	anything	that	doesn't	match	the	regexp's	$1	match	is
discarded,	so	the	statement	is	safe.

An	alternative	to	this	may	be	the	third-party	ODBC	driver,	which
offers	the	security	of	genuine	prepared	statements.

DBDExptime	Directive

Description: Keepalive	time	for	idle	connections
Syntax: DBDExptime	time-in-seconds

Default: DBDExptime	300

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Set	the	time	to	keep	idle	connections	alive	when	the	number	of
connections	specified	in	DBDKeep	has	been	exceeded	(threaded
platforms	only).

DBDInitSQL	Directive

Description: Execute	an	SQL	statement	after	connecting	to	a
database

Syntax: DBDInitSQL	"SQL	statement"

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Modules,	that	wish	it,	can	have	one	or	more	SQL	statements
executed	when	a	connection	to	a	database	is	created.	Example
usage	could	be	initializing	certain	values	or	adding	a	log	entry
when	a	new	connection	is	made	to	the	database.

DBDKeep	Directive

Description: Maximum	sustained	number	of	connections
Syntax: DBDKeep	number

Default: DBDKeep	2

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Set	the	maximum	number	of	connections	per	process	to	be
sustained,	other	than	for	handling	peak	demand	(threaded
platforms	only).

DBDMax	Directive

Description: Maximum	number	of	connections
Syntax: DBDMax	number

Default: DBDMax	10

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Set	the	hard	maximum	number	of	connections	per	process
(threaded	platforms	only).

DBDMin	Directive

Description: Minimum	number	of	connections
Syntax: DBDMin	number

Default: DBDMin	1

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Set	the	minimum	number	of	connections	per	process	(threaded
platforms	only).

DBDParams	Directive

Description: Parameters	for	database	connection
Syntax: DBDParams

param1=value1[,param2=value2]

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

As	required	by	the	underlying	driver.	Typically	this	will	be	used	to
pass	whatever	cannot	be	defaulted	amongst	username,	password,
database	name,	hostname	and	port	number	for	connection.

Connection	string	parameters	for	current	drivers	include:

FreeTDS	(for	MSSQL	and	SyBase)
username,	password,	appname,	dbname,	host,	charset,	lang,
server

MySQL
host,	port,	user,	pass,	dbname,	sock,	flags,	fldsz,	group,
reconnect

Oracle
user,	pass,	dbname,	server

PostgreSQL
The	connection	string	is	passed	straight	through	to
PQconnectdb

SQLite2
The	connection	string	is	split	on	a	colon,	and	part1:part2
is	used	as	sqlite_open(part1,	atoi(part2),	NULL)

SQLite3
The	connection	string	is	passed	straight	through	to
sqlite3_open

ODBC

datasource,	user,	password,	connect,	ctimeout,	stimeout,
access,	txmode,	bufsize

DBDPersist	Directive

Description: Whether	to	use	persistent	connections
Syntax: DBDPersist	On|Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

If	set	to	Off,	persistent	and	pooled	connections	are	disabled.	A
new	database	connection	is	opened	when	requested	by	a	client,
and	closed	immediately	on	release.	This	option	is	for	debugging
and	low-usage	servers.

The	default	is	to	enable	a	pool	of	persistent	connections	(or	a
single	LAMP-style	persistent	connection	in	the	case	of	a	non-
threaded	server),	and	should	almost	always	be	used	in	operation.

Prior	to	version	2.2.2,	this	directive	accepted	only	the	values	0	and
1	instead	of	Off	and	On,	respectively.

DBDPrepareSQL	Directive

Description: Define	an	SQL	prepared	statement
Syntax: DBDPrepareSQL	"SQL	statement"	label

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

For	modules	such	as	authentication	that	repeatedly	use	a	single
SQL	statement,	optimum	performance	is	achieved	by	preparing
the	statement	at	startup	rather	than	every	time	it	is	used.	This
directive	prepares	an	SQL	statement	and	assigns	it	a	label.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

DBDriver	Directive

Description: Specify	an	SQL	driver
Syntax: DBDriver	name

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Selects	an	apr_dbd	driver	by	name.	The	driver	must	be	installed
on	your	system	(on	most	systems,	it	will	be	a	shared	object	or	dll).
For	example,	DBDriver	mysql	will	select	the	MySQL	driver	in
apr_dbd_mysql.so.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_deflate

				.	 					.

: 			

: Extension
: deflate_module
: mod_deflate.c

mod_deflate					 				 DEFLATE

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_deflate
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_deflate

	

				.

	type	
AddOutputFilterByType	DEFLATE	text/html	text/plain	text/xml

				.			 		.

				
<Location	/>

#		

SetOutputFilter	DEFLATE

#	Netscape	4.x		...

BrowserMatch	^Mozilla/4	gzip-only-text/html

#	Netscape	4.06-4.08			

BrowserMatch	^Mozilla/4\.0[678]	no-gzip

#	MSIE	Netscape		,		

#	BrowserMatch	\bMSIE	!no-gzip	!gzip-only-text/html

#	:		2.0.48	mod_setenvif	

#				.		

#					:

BrowserMatch	\bMSI[E]	!no-gzip	!gzip-only-text/html

#			

SetEnvIfNoCase	Request_URI	\

\.(?:gif|jpe?g|png)$	no-gzip	dont-vary

#					

Header	append	Vary	User-Agent	env=!dont-vary

</Location>

	
DEFLATE			.							 :

SetOutputFilter	DEFLATE

							 html			()	
text/html	 1		 .		 1		 		 .

		MIME	type		 AddOutputFilterByType		.	 	
	html		:

<Directory	"/your-server-root/manual">

AddOutputFilterByType	DEFLATE	text/html

</Directory>

						 	 BrowserMatch

	 no-gzip	gzip-only-text/html				.	 		
	.			 	 		:

BrowserMatch	^Mozilla/4	gzip-only-text/html

BrowserMatch	^Mozilla/4\.0[678]	no-gzip

BrowserMatch	\bMSIE	!no-gzip	!gzip-only-text/html

	 User-Agent			Netscape	 Navigator		4.x	.		
text/html		type			.		4.06,	4.07,	4.08	 html		
			.			 		deflate			.

	 BrowserMatch		Microsoft	Internet	Explorer		"Mozilla/4"
						user	agent	 	.	 User-Agent

(\b	"	")			 			.

DEFLATE			PHP	SSI		RESOURCE	 		.	,	

	(subrequest)		 	.

SetEnv	force-gzip				 accept-encoding				
	.

	
mod_deflate		gzip		 				.				
SetOutputFilter	 AddOutputFilter		 	 INFLATE

.

<Location	/dav-area>

ProxyPass	http://example.com/

SetOutputFilter	INFLATE

</Location>

		example.com		gzip			 	,						
.

	
mod_deflate		gzip			 			.					
SetInputFilter	AddInputFilter			 DEFLATE

<Location	/dav-area>

SetInputFilter	DEFLATE

</Location>

	 Content-Encoding:	gzip			 			.	gzip		
		 	.			 WebDAV			 				.

Content-Length		

			,	 Content-Length		! 	Content-Length			
		,					 .

http://www.webdav.org

		

mod_deflate					 		 Accept-Encoding

	 		 Vary:	Accept-Encoding	HTTP			.		
						 	.

	,	 User-Agent					 		,					
Vary			.		,	 	 User-Agent		 DEFLATE

	:

Header	append	Vary	User-Agent

				(,	HTTP)	 			,	 Vary		 *		
.					 			.

Header	set	Vary	*

DeflateBufferSize	

: zlib			
: DeflateBufferSize	value

: DeflateBufferSize	8096

: ,	
: Extension
: mod_deflate

DeflateBufferSize		zlib	 			.

DeflateCompressionLevel	

: 		
: DeflateCompressionLevel	value

: Zlib's	default

: ,	
: Extension
: mod_deflate
: 	2.0.45	

DeflateCompressionLevel		 		.				,	
			.

()	1	()	9			.

DeflateFilterNote	

: 		
: DeflateFilterNote	[type]	notename

: ,	
: Extension
: mod_deflate
: type		2.0.4	

DeflateFilterNote			 				.				
		 	 				.

DeflateFilterNote	ratio

LogFormat	'"%r"	%b	(%{ratio}n)	"%{User-agent}i"'	deflate

CustomLog	logs/deflate_log	deflate

					 type		 		.	 type		:

Input

			.

Output

			..

Ratio

	(output/input	*	100)	.	 type				.

					:

	
DeflateFilterNote	Input	instream

DeflateFilterNote	Output	outstream

DeflateFilterNote	Ratio	ratio

LogFormat	'"%r"	%{outstream}n/%{instream}n	(%{ratio}n%%)'

deflate

CustomLog	logs/deflate_log	deflate

mod_log_config

DeflateInflateLimitRequestBody	

: Maximum	size	of	inflated	request	bodies
: DeflateInflateLimitRequestBodyvalue

: None,	but	LimitRequestBody	applies	after

deflation

: ,	,	directory,	.htaccess
: Extension
: mod_deflate
: 2.4.10	and	later

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

DeflateInflateRatioBurst	

: Maximum	number	of	times	the	inflation	ratio	for	request
bodies	can	be	crossed

: DeflateInflateRatioBurst	value

: 3

: ,	,	directory,	.htaccess
: Extension
: mod_deflate
: 2.4.10	and	later

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

DeflateInflateRatioLimit	

: Maximum	inflation	ratio	for	request	bodies
: DeflateInflateRatioLimit	value

: 200

: ,	,	directory,	.htaccess
: Extension
: mod_deflate
: 2.4.10	and	later

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

DeflateMemLevel	

: zlib			
: DeflateMemLevel	value

: DeflateMemLevel	9

: ,	
: Extension
: mod_deflate

DeflateMemLevel		zlib	 				.	(1	9		

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

DeflateWindowSize	

: Zlib		window	size
: DeflateWindowSize	value

: DeflateWindowSize	15

: ,	
: Extension
: mod_deflate

DeflateWindowSize		zlib	 	window	size	(1	15)	
.		 window	size			.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dialup

Description: Send	static	content	at	a	bandwidth	rate	limit,
defined	by	the	various	old	modem	standards

Status: Experimental
Module	Identifier: dialup_module
Source	File: mod_dialup.c

Summary
It	is	a	module	that	sends	static	content	at	a	bandwidth	rate	limit,
defined	by	the	various	old	modem	standards.	So,	you	can	browse
your	site	with	a	56k	V.92	modem,	by	adding	something	like	this:

<Location	"/mysite">

				ModemStandard	"V.92"

</Location>

Previously	to	do	bandwidth	rate	limiting	modules	would	have	to	block
an	entire	thread,	for	each	client,	and	insert	sleeps	to	slow	the
bandwidth	down.	Using	the	new	suspend	feature,	a	handler	can	get
callback	N	milliseconds	in	the	future,	and	it	will	be	invoked	by	the
Event	MPM	on	a	different	thread,	once	the	timer	hits.	From	there	the
handler	can	continue	to	send	data	to	the	client.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ModemStandard	Directive

Description: Modem	standard	to	simulate
Syntax: ModemStandard

V.21|V.26bis|V.32|V.34|V.92

Context: directory
Status: Experimental
Module: mod_dialup

Specify	what	modem	standard	you	wish	to	simulate.

<Location	"/mysite">

				ModemStandard	"V.26bis"

</Location>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_dir

				.	 					.

: "	"			
index		

: Base
: dir_module
: mod_dir.c

	index					:

			 index.html	 .	 DirectoryIndex					.
mod_dir			.
			.	 mod_autoindex			.

						index			 	()		.

dirname			URL	 http://servername/foo/dirname

	 "	"		.			 	.		
http://servername/foo/dirname/		 .

DirectoryCheckHandler	

: Toggle	how	this	module	responds	when	another
handler	is	configured

: DirectoryCheckHandler	On|Off

: DirectoryCheckHandler	Off

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_dir
: Available	in	2.4.8	and	later.	Releases	prior	to	2.4

implicitly	act	as	if	"DirectoryCheckHandler	ON"	was
specified.

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

DirectoryIndex	

: 					
: DirectoryIndex	local-url	[local-url]

...

: DirectoryIndex	index.html

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_dir

DirectoryIndex			 		/			index			
.	 Local-url			 		(%)	URL.			
			,				 			.					 Indexes

				 	.

DirectoryIndex	index.html

		 http://myserver/docs/	
http://myserver/docs/index.html			 ,			
.

					.

DirectoryIndex	index.html	index.txt	/cgi-bin/index.pl

			 index.html	 index.txt		CGI		 /cgi-

bin/index.pl	.

DirectoryIndexRedirect	

: Configures	an	external	redirect	for	directory
indexes.

: DirectoryIndexRedirect	on	|	off	|

permanent	|	temp	|	seeother	|	3xx-code

: DirectoryIndexRedirect	off

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_dir
: Available	in	version	2.3.14	and	later

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

DirectorySlash	

: 				
: DirectorySlash	On|Off

: DirectorySlash	On

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_dir
: 	2.0.51	

DirectorySlash		 mod_dir			URL		 	.

						 ,	 mod_dir					
.

				URL		
mod_autoindex		.		 								
.
DirectoryIndex					 	.
html				URL			.

				 				 								 	.

#				!

<Location	/some/path>

DirectorySlash	Off

SetHandler	some-handler

</Location>

	

							.	 (Options	+Indexes
mod_autoindex		 DirectoryIndex	(index.html)	
		 	URL						.	 					
index.html		.	 					 		

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

FallbackResource	

: Define	a	default	URL	for	requests	that	don't	map	to	a	file
:
: ,	,	directory,	.htaccess
: Base
: mod_dir

Documentation	not	yet	translated.	Please	see	English	version	of
document.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dumpio

Description: Dumps	all	I/O	to	error	log	as	desired.
Status: Extension
Module	Identifier: dumpio_module
Source	File: mod_dumpio.c

Summary
mod_dumpio	allows	for	the	logging	of	all	input	received	by	Apache
and/or	all	output	sent	by	Apache	to	be	logged	(dumped)	to	the
error.log	file.

The	data	logging	is	done	right	after	SSL	decoding	(for	input)	and	right
before	SSL	encoding	(for	output).	As	can	be	expected,	this	can
produce	extreme	volumes	of	data,	and	should	only	be	used	when
debugging	problems.

Enabling	dumpio	Support

To	enable	the	module,	it	should	be	compiled	and	loaded	in	to	your
running	Apache	configuration.	Logging	can	then	be	enabled	or
disabled	separately	for	input	and	output	via	the	below	directives.
Additionally,	mod_dumpio	needs	to	be	configured	to	LogLevel
trace7:

LogLevel	dumpio:trace7

DumpIOInput	Directive

Description: Dump	all	input	data	to	the	error	log
Syntax: DumpIOInput	On|Off

Default: DumpIOInput	Off

Context: server	config
Status: Extension
Module: mod_dumpio
Compatibility: DumpIOInput	is	only	available	in	Apache	2.1.3

and	later.

Enable	dumping	of	all	input.

Example
DumpIOInput	On

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

DumpIOOutput	Directive

Description: Dump	all	output	data	to	the	error	log
Syntax: DumpIOOutput	On|Off

Default: DumpIOOutput	Off

Context: server	config
Status: Extension
Module: mod_dumpio
Compatibility: DumpIOOutput	is	only	available	in	Apache	2.1.3

and	later.

Enable	dumping	of	all	output.

Example
DumpIOOutput	On

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_echo

				.	 					.

: 			
echo	

: Experimental
: echo_module
: mod_echo.c
: Apache	2.0	

						.	 			echo		.			telnet	
,					.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

ProtocolEcho	

: echo			
: ProtocolEcho	On|Off

: ,	
: Experimental
: mod_echo
: ProtocolEcho	2.0		

.

ProtocolEcho		echo		 	.

ProtocolEcho	On

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_env

				.	 					.

: CGI		SSI	
		

: Base
: env_module
: mod_env.c

		CGI		SSI				 .							.	
			.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_env
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_env

PassEnv	

: 		
: PassEnv	env-variable	[env-variable]

...

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_env

					CGI		 SSI		.

PassEnv	LD_LIBRARY_PATH

SetEnv	

: 	
: SetEnv	env-variable	value

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_env

CGI		SSI				.

SetEnv	SPECIAL_PATH	/foo/bin

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

UnsetEnv	

: 	
: UnsetEnv	env-variable	[env-variable]

...

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_env

CGI		SSI				.

UnsetEnv	LD_LIBRARY_PATH

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_example_hooks

				.	 					.

: 		API	
: Experimental
: example_hooks_module
: mod_example_hooks.c

		 modules/examples		 			API					

mod_example_hooks.c		(callback)		 			.		
			 		.		!

example				.				 			"example-hooks-
handler"			 		example						 .

example		

	example					:

1.	 --enable-example-hooks			 configure	.

2.	 		(" make").

			:

A.	 cp	modules/examples/mod_example_hooks.c
modules/new_module/mod_myexample.c

B.	 	.

C.	 modules/new_module/config.m4		.

1.	 APACHE_MODPATH_INIT(new_module)	.

2.	 modules/examples/config.m4		 "example_hooks"
	APACHE_MODULE		.

3.	 		"example_hooks"	 myexample	.

4.	 							 		.	 configure	--help

				.

5.	 			C		,		 ,				CFLAGS,
LDFLAGS,	LIBS	.	modules				 config.m4

	.

6.	 APACHE_MODPATH_FINISH	.

D.	 module/new_module/Makefile.in		 .				
,	 	 include	$(top_srcdir)/build/special.mk

.

E.	 		./buildconf		.

F.	 --enable-myexample				

mod_example_hooks		

example			 httpd.conf		 			:

<Location	/example-hooks-info>

SetHandler	example-hooks-handler

</Location>

	 .htaccess					,			"test.example"	

AddHandler	example-hooks-handler	.example

								 		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

Example	

: 		API			
: Example

: ,	,	directory,
.htaccess

: Experimental
: mod_example_hooks

Example		example		 					.			
example			URL	 							
.				 "Example	directive	declared	here:
YES/NO"	 		.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_expires

				.	 					.

: 				 Expires	Cache-Control
HTTP		

: Extension
: expires_module
: mod_expires.c

				 Expires	HTTP		 Cache-Control	HTTP		 max-

age			.						 							.

	HTTP				 		.				,	
	""			,			 		.

Header		 	 max-age			 Cache-Control	(RFC	2616,	14.9	
)			.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

		

ExpiresDefault	ExpiresByType								:

ExpiresDefault	"<base>	[plus]	{<num>	<type>}*"

ExpiresByType	type/encoding	"<base>	[plus]	{<num>	<type>}*"

<base>		:

access

now	('access')
modification

plus			.	<num>	 [atoi()]	.	 <type>	
:

years

months

weeks

days

hours

minutes

seconds

	,						1	 	:

ExpiresDefault	"access	plus	1	month"

ExpiresDefault	"access	plus	4	weeks"

ExpiresDefault	"access	plus	30	days"

'<num>	<type>'				 				:

ExpiresByType	text/html	"access	plus	1	month	15	days	2	hours"

ExpiresByType	image/gif	"modification	plus	5	hours	3	minutes"

	(modification)				 							Expires	

	 .					 	.

ExpiresActive	

: Expires		
: ExpiresActive	On|Off

: ,	,	directory,	.htaccess
Override	: Indexes
: Extension
: mod_expires

					(,	 .htaccess								.)
Expires	 Cache-Control		 		.	(.htaccess

)	 Off							
ExpiresByType	 ExpiresDefault		 ()					
			.

		 Expires	 Cache-Control			.						
					.

ExpiresByType	

: MIME	type	 Expires		
: ExpiresByType	MIME-type	<code>seconds

: ,	,	directory,	.htaccess
Override	: Indexes
: Extension
: mod_expires

				(,	text/html)			 Expires		 Cache-

Control		 max-age		.					
.	 Cache-Control:	max-age					,	

								 	.				
.	 M						 ,	 A				.

	.	 M				 				.				URL	
			.	 A					.				
		(,),	 .

:
#		

ExpiresActive	On

#			GIF				

ExpiresByType	image/gif	A2592000

#	HTML					 ExpiresByType	text/html	M604800

		 ExpiresActive	On		 	.	 ExpiresDefault

	MIME	type	 		 		.

		 	 		 			.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

ExpiresDefault	

: 			
: ExpiresDefault	<code>seconds

: ,	,	directory,	.htaccess
Override	: Indexes
: Extension
: mod_expires

								 			.	
			.				 				 	 	.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_ext_filter

				.	 					.

: 				
			

: Extension
: ext_filter_module
: mod_ext_filter.c

mod_ext_filter				 	 			.	 				(,		
)					.			 	API							
		,				:

			
							 	/				
							 	

			,	 mod_ext_filter					

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_ext_filter
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_ext_filter

	type		HTML	

#	mod_ext_filter		

#			/usr/bin/enscript	

#		text/c		HTML		

#	type	text/html			

ExtFilterDefine	c-to-html	mode=output	\

intype=text/c	outtype=text/html	\

cmd="/usr/bin/enscript	--color	-W	html	-Ec	-o	-	-"

<Directory	"/export/home/trawick/apacheinst/htdocs/c">

#					core	

SetOutputFilter	c-to-html

#	.c		type	text/c		mod_mime

#	

AddType	text/c	.c

#						

#				mod_ext_filter

#	

ExtFilterOptions	DebugLevel=1

</Directory>

content			
Note:		gzip						.	 			 mod_deflate

.

#				mod_ext_filter	

ExtFilterDefine	gzip	mode=output	cmd=/bin/gzip

<Location	/gzipped>

#		gzip			core	

SetOutputFilter	gzip

#	"Content-Encoding:	gzip"		

#	mod_header	

Header	set	Content-Encoding	gzip

</Location>

		

#	cat					

#	mod_ext_filter	;	cat		

#	;							

ExtFilterDefine	slowdown	mode=output	cmd=/bin/cat	\

preservescontentlength

<Location	/>

#		slowdown				core	

#

SetOutputFilter	slowdown;slowdown;slowdown

</Location>

sed				

#					

#	mod_ext_filter	

#

ExtFilterDefine	fixtext	mode=output	intype=text/html	\

cmd="/bin/sed	s/verdana/arial/g"

<Location	/>

#		fixtext			core	

SetOutputFilter	fixtext

</Location>

		

#					(IP	192.168.1.31)

#		mod_deflate				.

#			mod_deflate				.

ExtFilterDefine	tracebefore	\

cmd="/bin/tracefilter.pl	/tmp/tracebefore"	\

EnableEnv=trace_this_client

#			mod_deflate			.

#	ftype			,		

#	AP_FTYPE_RESOURCE			mod_deflate	**

#	.	AP_FTYPE_CONTENT_SET				

#		mod_deflate		.

ExtFilterDefine	traceafter	\

cmd="/bin/tracefilter.pl	/tmp/traceafter"	\

EnableEnv=trace_this_client	ftype=21

<Directory	/usr/local/docs>

SetEnvIf	Remote_Addr	192.168.1.31	trace_this_client

SetOutputFilter	tracebefore;deflate;traceafter

</Directory>

			:
#!/usr/local/bin/perl	-w

use	strict;

open(SAVE,	">$ARGV[0]")

or	die	"can't	open	$ARGV[0]:	$?";

while	(<STDIN>)	{

print	SAVE	$_;

print	$_;

}

close(SAVE);

ExtFilterDefine	

: 		
: ExtFilterDefine	filtername	parameters

:
: Extension
: mod_ext_filter

ExtFilterDefine			 			,		.

filtername				.	 		SetOutputFilter		.			
			.	 		API	 		.						

								 			.	,	
				:

cmd=cmdline

cmd=					.	 						
cmd="/bin/mypgm	arg1	arg2").					 			
	.		 		.				
			.		 		CGI			DOCUMENT_URI,
DOCUMENT_PATH_INFO,	QUERY_STRING_UNESCAPED
	.

mode=mode

			()	 mode=output	.				 mode=input

.	 mode=input		2.1	.

intype=imt

						media	 type(,	MIME	type)	.			
	.	 intype=		 	type				.

outtype=imt

						media	 type(,	MIME	type)	.			
media	type		.	,		 media	type		.

PreservesContentLength

PreservesContentLength			 content	length		.
		content	 length					.		
.

ftype=filtertype

						.	 		
AP_FTYPE_RESOURCE	.	 							
.				util_filter.h	 	AP_FTYPE_*		.

disableenv=env

						 	.

enableenv=env

							 .

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

ExtFilterOptions	

: mod_ext_filter		
: ExtFilterOptions	option	[option]	...

: ExtFilterOptions	DebugLevel=0	NoLogStderr

: directory
: Extension
: mod_ext_filter

ExtFilterOptions		 mod_ext_filter			.	
		.

DebugLevel=n

DebugLevel		 mod_ext_filter				 	.		
		.	 	 DebugLevel=0	.			 ,					
		 .				 mod_ext_filter.c			DBGLVL_	
		.
:				core		 LogLevel			 			.

LogStderr	|	NoLogStderr

LogStderr					 					.
NoLogStderr				.

ExtFilterOptions	LogStderr	DebugLevel=0

							 		,	 mod_ext_filter

.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_file_cache

				.	 					.

: 			
: Experimental
: file_cache_module
: mod_file_cache.c

				.	 mod_file_cache								
.

						 						.	 mod_file_cache		
					 .				 mod_file_cache		(open)	
			 	 	 		.				 					(
								 				.

:			CGI				 							.			
			 .

			1.3		 mod_mmap_static				.

mod_file_cache	

mod_file_cache			 MMapFile	 CacheFile			 	
			.

							.	 	,				
,	AIX						.	 								
				 			.					

MMapFile	
mod_file_cache	 MMapFile		 			 mmap()		
.				 			,			.	,	
		 						.

			 mmap().	 							
			 							
				.	 rdist	mv						.	
stat()			 								 	.

CacheFile	
mod_file_cache	 CacheFile		 			()			
(handle)		 	(file	descriptor) 		.						
API	sendfile()	(TransmitFile())	.

					.	 						
							 				.			
				 		.	 rdist	 mv						.

								
	 		:

find	/www/htdocs	-type	f	-print	\

|	sed	-e	's/.*/mmapfile	&/'	>	/www/conf/mmap.conf

CacheFile	

: 				
: CacheFile	file-path	[file-path]	...

:
: Experimental
: mod_file_cache

CacheFile				 		(open)				.	
			(close).	 						

file-path		.		 	URL-						
	 stat()			inode		 				.			
mod_rewrite					 		.

CacheFile	/usr/local/apache/htdocs/index.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

MMapFile	

: 				
: MMapFile	file-path	[file-path]	...

:
: Experimental
: mod_file_cache

MMapFile				 ()				
		(unmap).	 					 mmap()			
		.

file-path		.		 	URL-						
	 stat()			inode		 				.			
mod_rewrite					 		.

MMapFile	/usr/local/apache/htdocs/index.html

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_filter

Description: Context-sensitive	smart	filter	configuration
module

Status: Base
Module	Identifier: filter_module
Source	File: mod_filter.c
Compatibility: Version	2.1	and	later

Summary
This	module	enables	smart,	context-sensitive	configuration	of	output
content	filters.	For	example,	apache	can	be	configured	to	process
different	content-types	through	different	filters,	even	when	the
content-type	is	not	known	in	advance	(e.g.	in	a	proxy).

mod_filter	works	by	introducing	indirection	into	the	filter	chain.
Instead	of	inserting	filters	in	the	chain,	we	insert	a	filter	harness	which
in	turn	dispatches	conditionally	to	a	filter	provider.	Any	content	filter
may	be	used	as	a	provider	to	mod_filter;	no	change	to	existing
filter	modules	is	required	(although	it	may	be	possible	to	simplify
them).

Smart	Filtering

In	the	traditional	filtering	model,	filters	are	inserted	unconditionally
using	AddOutputFilter	and	family.	Each	filter	then	needs	to
determine	whether	to	run,	and	there	is	little	flexibility	available	for
server	admins	to	allow	the	chain	to	be	configured	dynamically.

mod_filter	by	contrast	gives	server	administrators	a	great	deal
of	flexibility	in	configuring	the	filter	chain.	In	fact,	filters	can	be
inserted	based	on	complex	boolean	expressions	This	generalises
the	limited	flexibility	offered	by	AddOutputFilterByType.

Filter	Declarations,	Providers	and	Chains

	Figure	1:	The	traditional	filter	model

In	the	traditional	model,	output	filters	are	a	simple	chain	from	the
content	generator	(handler)	to	the	client.	This	works	well	provided
the	filter	chain	can	be	correctly	configured,	but	presents	problems
when	the	filters	need	to	be	configured	dynamically	based	on	the
outcome	of	the	handler.

Figure	2:	The	mod_filter	model

mod_filter	works	by	introducing	indirection	into	the	filter	chain.
Instead	of	inserting	filters	in	the	chain,	we	insert	a	filter	harness
which	in	turn	dispatches	conditionally	to	a	filter	provider.	Any
content	filter	may	be	used	as	a	provider	to	mod_filter;	no
change	to	existing	filter	modules	is	required	(although	it	may	be
possible	to	simplify	them).	There	can	be	multiple	providers	for	one
filter,	but	no	more	than	one	provider	will	run	for	any	single	request.

A	filter	chain	comprises	any	number	of	instances	of	the	filter
harness,	each	of	which	may	have	any	number	of	providers.	A
special	case	is	that	of	a	single	provider	with	unconditional
dispatch:	this	is	equivalent	to	inserting	the	provider	filter	directly
into	the	chain.

Configuring	the	Chain

There	are	three	stages	to	configuring	a	filter	chain	with
mod_filter.	For	details	of	the	directives,	see	below.

Declare	Filters
The	FilterDeclare	directive	declares	a	filter,	assigning	it	a
name	and	filter	type.	Required	only	if	the	filter	is	not	the
default	type	AP_FTYPE_RESOURCE.

Register	Providers
The	FilterProvider	directive	registers	a	provider	with	a
filter.	The	filter	may	have	been	declared	with
FilterDeclare;	if	not,	FilterProvider	will	implicitly	declare	it
with	the	default	type	AP_FTYPE_RESOURCE.	The	provider
must	have	been	registered	with
ap_register_output_filter	by	some	module.	The	final
argument	to	FilterProvider	is	an	expression:	the	provider
will	be	selected	to	run	for	a	request	if	and	only	if	the
expression	evaluates	to	true.	The	expression	may	evaluate
HTTP	request	or	response	headers,	environment	variables,	or
the	Handler	used	by	this	request.	Unlike	earlier	versions,
mod_filter	now	supports	complex	expressions	involving
multiple	criteria	with	AND	/	OR	logic	(&&	/	||)	and	brackets.
The	details	of	the	expression	syntax	are	described	in	the
ap_expr	documentation.

Configure	the	Chain
The	above	directives	build	components	of	a	smart	filter	chain,
but	do	not	configure	it	to	run.	The	FilterChain	directive
builds	a	filter	chain	from	smart	filters	declared,	offering	the
flexibility	to	insert	filters	at	the	beginning	or	end	of	the	chain,
remove	a	filter,	or	clear	the	chain.

Filtering	and	Response	Status

mod_filter	normally	only	runs	filters	on	responses	with	HTTP
status	200	(OK).	If	you	want	to	filter	documents	with	other
response	statuses,	you	can	set	the	filter-errordocs	environment
variable,	and	it	will	work	on	all	responses	regardless	of	status.	To
refine	this	further,	you	can	use	expression	conditions	with
FilterProvider.

Upgrading	from	Apache	HTTP	Server	2.2
Configuration

The	FilterProvider	directive	has	changed	from	httpd	2.2:	the
match	and	dispatch	arguments	are	replaced	with	a	single	but	more
versatile	expression.	In	general,	you	can	convert	a	match/dispatch
pair	to	the	two	sides	of	an	expression,	using	something	like:

"dispatch	=	'match'"

The	Request	headers,	Response	headers	and	Environment
variables	are	now	interpreted	from	syntax	%{req:foo},	%{resp:foo}
and	%{env:foo}	respectively.	The	variables	%{HANDLER}	and	%
{CONTENT_TYPE}	are	also	supported.

Note	that	the	match	no	longer	support	substring	matches.	They
can	be	replaced	by	regular	expression	matches.

Examples

Server	side	Includes	(SSI)
A	simple	case	of	replacing	AddOutputFilterByType

FilterDeclare	SSI

FilterProvider	SSI	INCLUDES	"%{CONTENT_TYPE}	=~	m|^text/html|"

FilterChain	SSI

Server	side	Includes	(SSI)
The	same	as	the	above	but	dispatching	on	handler	(classic
SSI	behaviour;	.shtml	files	get	processed).

FilterProvider	SSI	INCLUDES	"%{HANDLER}	=	'server-parsed'"

FilterChain	SSI

Emulating	mod_gzip	with	mod_deflate
Insert	INFLATE	filter	only	if	"gzip"	is	NOT	in	the	Accept-
Encoding	header.	This	filter	runs	with	ftype	CONTENT_SET.

FilterDeclare	gzip	CONTENT_SET

FilterProvider	gzip	inflate	"%{req:Accept-Encoding}	!~	/gzip/"

FilterChain	gzip

Image	Downsampling
Suppose	we	want	to	downsample	all	web	images,	and	have
filters	for	GIF,	JPEG	and	PNG.

FilterProvider	unpack	jpeg_unpack	"%{CONTENT_TYPE}	=	'image/jpeg'"

FilterProvider	unpack	gif_unpack	"%{CONTENT_TYPE}	=	'image/gif'"

FilterProvider	unpack	png_unpack	"%{CONTENT_TYPE}	=	'image/png'"

FilterProvider	downsample	downsample_filter	"%{CONTENT_TYPE}	=	m|^image/(jpeg|gif|png)|"

FilterProtocol	downsample	"change=yes"

FilterProvider	repack	jpeg_pack	"%{CONTENT_TYPE}	=	'image/jpeg'"

FilterProvider	repack	gif_pack	"%{CONTENT_TYPE}	=	'image/gif'"

FilterProvider	repack	png_pack	"%{CONTENT_TYPE}	=	'image/png'"

<Location	"/image-filter">

				FilterChain	unpack	downsample	repack

</Location>

Protocol	Handling

Historically,	each	filter	is	responsible	for	ensuring	that	whatever
changes	it	makes	are	correctly	represented	in	the	HTTP	response
headers,	and	that	it	does	not	run	when	it	would	make	an	illegal
change.	This	imposes	a	burden	on	filter	authors	to	re-implement
some	common	functionality	in	every	filter:

Many	filters	will	change	the	content,	invalidating	existing
content	tags,	checksums,	hashes,	and	lengths.
Filters	that	require	an	entire,	unbroken	response	in	input	need
to	ensure	they	don't	get	byteranges	from	a	backend.
Filters	that	transform	output	in	a	filter	need	to	ensure	they
don't	violate	a	Cache-Control:	no-transform	header
from	the	backend.
Filters	may	make	responses	uncacheable.

mod_filter	aims	to	offer	generic	handling	of	these	details	of
filter	implementation,	reducing	the	complexity	required	of	content
filter	modules.	This	is	work-in-progress;	the	FilterProtocol
implements	some	of	this	functionality	for	back-compatibility	with
Apache	2.0	modules.	For	httpd	2.1	and	later,	the
ap_register_output_filter_protocol	and
ap_filter_protocol	API	enables	filter	modules	to	declare
their	own	behaviour.

At	the	same	time,	mod_filter	should	not	interfere	with	a	filter
that	wants	to	handle	all	aspects	of	the	protocol.	By	default	(i.e.	in
the	absence	of	any	FilterProtocol	directives),	mod_filter
will	leave	the	headers	untouched.

At	the	time	of	writing,	this	feature	is	largely	untested,	as	modules
in	common	use	are	designed	to	work	with	2.0.	Modules	using	it
should	test	it	carefully.

AddOutputFilterByType	Directive

Description: assigns	an	output	filter	to	a	particular	media-type
Syntax: AddOutputFilterByType

filter[;filter...]	media-type

[media-type]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_filter
Compatibility: Had	severe	limitations	before	being	moved	to

mod_filter	in	version	2.3.7

This	directive	activates	a	particular	output	filter	for	a	request
depending	on	the	response	media-type.

The	following	example	uses	the	DEFLATE	filter,	which	is	provided
by	mod_deflate.	It	will	compress	all	output	(either	static	or
dynamic)	which	is	labeled	as	text/html	or	text/plain	before
it	is	sent	to	the	client.

AddOutputFilterByType	DEFLATE	text/html	text/plain

If	you	want	the	content	to	be	processed	by	more	than	one	filter,
their	names	have	to	be	separated	by	semicolons.	It's	also	possible
to	use	one	AddOutputFilterByType	directive	for	each	of	these
filters.

The	configuration	below	causes	all	script	output	labeled	as
text/html	to	be	processed	at	first	by	the	INCLUDES	filter	and
then	by	the	DEFLATE	filter.

<Location	"/cgi-bin/">

				Options	Includes

				AddOutputFilterByType	INCLUDES;DEFLATE	text/html

</Location>

See	also
AddOutputFilter

SetOutputFilter

filters

FilterChain	Directive

Description: Configure	the	filter	chain
Syntax: FilterChain	[+=-@!]filter-name	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_filter

This	configures	an	actual	filter	chain,	from	declared	filters.
FilterChain	takes	any	number	of	arguments,	each	optionally
preceded	with	a	single-character	control	that	determines	what	to
do:

+filter-name

Add	filter-name	to	the	end	of	the	filter	chain

@filter-name

Insert	filter-name	at	the	start	of	the	filter	chain

-filter-name

Remove	filter-name	from	the	filter	chain

=filter-name

Empty	the	filter	chain	and	insert	filter-name

!

Empty	the	filter	chain

filter-name

Equivalent	to	+filter-name

FilterDeclare	Directive

Description: Declare	a	smart	filter
Syntax: FilterDeclare	filter-name	[type]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_filter

This	directive	declares	an	output	filter	together	with	a	header	or
environment	variable	that	will	determine	runtime	configuration.	The
first	argument	is	a	filter-name	for	use	in	FilterProvider,
FilterChain	and	FilterProtocol	directives.

The	final	(optional)	argument	is	the	type	of	filter,	and	takes	values
of	ap_filter_type	-	namely	RESOURCE	(the	default),
CONTENT_SET,	PROTOCOL,	TRANSCODE,	CONNECTION	or
NETWORK.

FilterProtocol	Directive

Description: Deal	with	correct	HTTP	protocol	handling
Syntax: FilterProtocol	filter-name	[provider-

name]	proto-flags

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_filter

This	directs	mod_filter	to	deal	with	ensuring	the	filter	doesn't
run	when	it	shouldn't,	and	that	the	HTTP	response	headers	are
correctly	set	taking	into	account	the	effects	of	the	filter.

There	are	two	forms	of	this	directive.	With	three	arguments,	it
applies	specifically	to	a	filter-name	and	a	provider-name	for	that
filter.	With	two	arguments	it	applies	to	a	filter-name	whenever	the
filter	runs	any	provider.

Flags	specified	with	this	directive	are	merged	with	the	flags	that
underlying	providers	may	have	registerd	with	mod_filter.	For
example,	a	filter	may	internally	specify	the	equivalent	of
change=yes,	but	a	particular	configuration	of	the	module	can
override	with	change=no.

proto-flags	is	one	or	more	of

change=yes|no

Specifies	whether	the	filter	changes	the	content,	including
possibly	the	content	length.	The	"no"	argument	is	supported	in
2.4.7	and	later.

change=1:1

The	filter	changes	the	content,	but	will	not	change	the	content
length

byteranges=no

The	filter	cannot	work	on	byteranges	and	requires	complete
input

proxy=no

The	filter	should	not	run	in	a	proxy	context

proxy=transform

The	filter	transforms	the	response	in	a	manner	incompatible
with	the	HTTP	Cache-Control:	no-transform	header.

cache=no

The	filter	renders	the	output	uncacheable	(eg	by	introducing
randomised	content	changes)

FilterProvider	Directive

Description: Register	a	content	filter
Syntax: FilterProvider	filter-name	provider-

name	expression

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_filter

This	directive	registers	a	provider	for	the	smart	filter.	The	provider
will	be	called	if	and	only	if	the	expression	declared	evaluates	to
true	when	the	harness	is	first	called.

provider-name	must	have	been	registered	by	loading	a	module
that	registers	the	name	with	ap_register_output_filter.

expression	is	an	ap_expr.

See	also
Expressions	in	Apache	HTTP	Server,	for	a	complete
reference	and	examples.
mod_include

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

FilterTrace	Directive

Description: Get	debug/diagnostic	information	from
mod_filter

Syntax: FilterTrace	filter-name	level

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_filter

This	directive	generates	debug	information	from	mod_filter.	It
is	designed	to	help	test	and	debug	providers	(filter	modules),
although	it	may	also	help	with	mod_filter	itself.

The	debug	output	depends	on	the	level	set:

0	(default)
No	debug	information	is	generated.

1

mod_filter	will	record	buckets	and	brigades	passing
through	the	filter	to	the	error	log,	before	the	provider	has
processed	them.	This	is	similar	to	the	information	generated
by	mod_diagnostics.

2	(not	yet	implemented)
Will	dump	the	full	data	passing	through	to	a	tempfile	before
the	provider.	For	single-user	debug	only;	this	will	not
support	concurrent	hits.

http://apache.webthing.com/mod_diagnostics/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_headers

				.	 					.

: HTTP					
: Extension
: headers_module
: mod_headers.c
: RequestHeader	

2.0	

		HTTP							 	.			,			.

	

mod_headers				 					,	
		.

	,				 	 		.	 						.

RequestHeader	append	MirrorID	"mirror	12"

RequestHeader	unset	MirrorID

			 MirrorID			 .			MirrorID		"mirror	12"	
.

(early)		(late)	

mod_headers					 	.							
						(late)	 	.							

(early)				/	.	 early						
,				 				,					

							 						
	 			 <Directory>	<Location>				

1.	 "TS"							.

Header	echo	^TS

2.	 								 	 MyHeader

					 				.

Header	add	MyHeader	"%D	%t"

				.

MyHeader:	D=3775428	t=991424704447256

3.	 Joe	

Header	add	MyHeader	"Hello	Joe.	It	took	%D	microseconds	\

for	Apache	to	serve	this	request."

				.

MyHeader:	Hello	Joe.	It	took	D=3775428	microseconds	for

Apache	to	serve	this	request.

4.	 	"MyRequestHeader"					 	 MyHeader

	 			.				 mod_setenvif

SetEnvIf	MyRequestHeader	value	HAVE_MyRequestHeader

Header	add	MyHeader	"%D	%t	mytext"

env=HAVE_MyRequestHeader

HTTP		 MyRequestHeader:	value		 ,				
.

MyHeader:	D=3775428	t=991424704447256	mytext

Header	

: HTTP			
: Header	[condition]

set|append|add|unset|echo	header

[value]	[early|env=[!]variable]

: ,	,	directory,	.htaccess
Override	: FileInfo
: Extension
: mod_headers

		HTTP				,	.	 								
			.

condition		,		 onsuccess		 always	.	
		.	 onsuccess	 2xx		 ,	 always	(2xx

				 		,							 .

				.			 					.

set

		.						 .	 value				.

append

						.		 			,						
	.					HTTP		.

add

					.			 			()			.	
		 						 append		.

unset

					.			 					.	
.

echo

							.	 header				.	

		.

		 header		.		 				,		.	 set,	append
add,	unset	 	.	 echo	 header							.

add,	append,	set				 value	.	 value					
	.	 value					,	 				.	
	.

%% 	
%t 				epoch	(1970	1	 1)				

.			 t=	.
%D 							 .			.			

.
%{FOOBAR}e 	FOOBAR	.
%{FOOBAR}s mod_ssl	,	 SSL		FOOBAR	.

%s				2.1		.	 		 SSLOptions	+StdEnvVars

		 		 %e				.		 	 SSLOptions	+StdEnvVars

		 ,	 %e	 %s				 .

Header					 				 	 			
.	 env=...					 		(env=!...				
Header		.	 							.

					 		 Header		.	 						
	 			.

RequestHeader	

: HTTP			
: RequestHeader	set|append|add|unset

header	[value]	[early|env=[!]variable]

: ,	,	directory,	.htaccess
Override	: FileInfo
: Extension
: mod_headers

		HTTP				,	.	 							
	.					.	 							.

set

		.						

append

						.		 			,						
	.					HTTP		.

add

					.			 			()			.	
		 						 append		.

unset

					.			 					.	
.

			.					 	,		.		.	
append,	set			 	 value	.	 value		 				.
unset		 value		.	 value		 			,				
.			 Header			 		.

RequestHeader				 					 	 			
			.	 env=...					 		(env=!

)	 RequestHeader		.							

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

			fixup		 					 RequestHeader

						 		.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_heartbeat

Description: Sends	messages	with	server	status	to	frontend
proxy

Status: Experimental
Module	Identifier: heartbeat_module
Source	File: mod_heartbeat
Compatibility: Available	in	Apache	2.3	and	later

Summary
mod_heartbeat	sends	multicast	messages	to	a
mod_heartmonitor	listener	that	advertises	the	servers	current
connection	count.	Usually,	mod_heartmonitor	will	be	running	on	a
proxy	server	with	mod_lbmethod_heartbeat	loaded,	which	allows
ProxyPass	to	use	the	"heartbeat"	lbmethod	inside	of	ProxyPass.

mod_heartbeat	itself	is	loaded	on	the	origin	server(s)	that	serve
requests	through	the	proxy	server(s).

To	use	mod_heartbeat,	mod_status	and	mod_watchdog	must
be	either	a	static	modules	or,	if	a	dynamic	module,	must	be	loaded
before	mod_heartbeat.

Consuming	mod_heartbeat	Output

Every	1	second,	this	module	generates	a	single	multicast	UDP
packet,	containing	the	number	of	busy	and	idle	workers.	The
packet	is	a	simple	ASCII	format,	similar	to	GET	query	parameters
in	HTTP.

An	Example	Packet
v=1&ready=75&busy=0

Consumers	should	handle	new	variables	besides	busy	and	ready,
separated	by	'&',	being	added	in	the	future.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

HeartbeatAddress	Directive

Description: Multicast	address	for	heartbeat	packets
Syntax: HeartbeatAddress	addr:port

Default: disabled

Context: server	config
Status: Experimental
Module: mod_heartbeat

The	HeartbeatAddress	directive	specifies	the	multicast	address
to	which	mod_heartbeat	will	send	status	information.	This
address	will	usually	correspond	to	a	configured
HeartbeatListen	on	a	frontend	proxy	system.

HeartbeatAddress	239.0.0.1:27999

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_heartmonitor

Description: Centralized	monitor	for	mod_heartbeat	origin
servers

Status: Experimental
Module	Identifier: heartmonitor_module
Source	File: mod_heartmonitor.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
mod_heartmonitor	listens	for	server	status	messages	generated
by	mod_heartbeat	enabled	origin	servers	and	makes	their	status
available	to	mod_lbmethod_heartbeat.	This	allows	ProxyPass	to
use	the	"heartbeat"	lbmethod	inside	of	ProxyPass.

This	module	uses	the	services	of	mod_slotmem_shm	when	available
instead	of	flat-file	storage.	No	configuration	is	required	to	use
mod_slotmem_shm.

To	use	mod_heartmonitor,	mod_status	and	mod_watchdog
must	be	either	a	static	modules	or,	if	a	dynamic	module,	it	must	be
loaded	before	mod_heartmonitor.

HeartbeatListen	Directive

Description: multicast	address	to	listen	for	incoming	heartbeat
requests

Syntax: HeartbeatListenaddr:port

Default: disabled

Context: server	config
Status: Experimental
Module: mod_heartmonitor

The	HeartbeatListen	directive	specifies	the	multicast	address
on	which	the	server	will	listen	for	status	information	from
mod_heartbeat-enabled	servers.	This	address	will	usually
correspond	to	a	configured	HeartbeatAddress	on	an	origin
server.

HeartbeatListen	239.0.0.1:27999

This	module	is	inactive	until	this	directive	is	used.

HeartbeatMaxServers	Directive

Description: Specifies	the	maximum	number	of	servers	that	will
be	sending	heartbeat	requests	to	this	server

Syntax: HeartbeatMaxServers	number-of-servers

Default: HeartbeatMaxServers	10

Context: server	config
Status: Experimental
Module: mod_heartmonitor

The	HeartbeatMaxServers	directive	specifies	the	maximum
number	of	servers	that	will	be	sending	requests	to	this	monitor
server.	It	is	used	to	control	the	size	of	the	shared	memory
allocated	to	store	the	heartbeat	info	when	mod_slotmem_shm	is
in	use.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

HeartbeatStorage	Directive

Description: Path	to	store	heartbeat	data
Syntax: HeartbeatStorage	file-path

Default: HeartbeatStorage	logs/hb.dat

Context: server	config
Status: Experimental
Module: mod_heartmonitor

The	HeartbeatStorage	directive	specifies	the	path	to	store
heartbeat	data.	This	flat-file	is	used	only	when
mod_slotmem_shm	is	not	loaded.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_http2

Description: Support	for	the	HTTP/2	transport	layer
Status: Extension
Module	Identifier: http2_module
Source	File: mod_http2.c
Compatibility: Available	in	version	2.4.17	and	later

Summary
This	module	provides	HTTP/2	(RFC	7540)	support	for	the	Apache
HTTP	Server.

This	module	relies	on	libnghttp2	to	provide	the	core	http/2	engine.

You	must	enable	HTTP/2	via	Protocols	in	order	to	use	the
functionality	described	in	this	document.	The	HTTP/2	protocol	does
not	require	the	use	of	encryption	so	two	schemes	are	available:	h2
(HTTP/2	over	TLS)	and	h2c	(HTTP/2	over	TCP).

Two	useful	configuration	schemes	are:

HTTP/2	in	a	VirtualHost	context	(TLS	only)

Protocols	h2	http/1.1

Allows	HTTP/2	negotiation	(h2)	via	TLS	ALPN	in	a	secure
<VirtualHost>.	HTTP/2	preamble	checking	(Direct	mode,	see
H2Direct)	is	disabled	by	default	for	h2.

HTTP/2	in	a	Server	context	(TLS	and	cleartext)

Protocols	h2	h2c	http/1.1

https://tools.ietf.org/html/rfc7540
http://nghttp2.org/
https://http2.github.io/faq/#does-http2-require-encryption

Allows	HTTP/2	negotiation	(h2)	via	TLS	ALPN	for	secure
<VirtualHost>.	Allows	HTTP/2	cleartext	negotiation	(h2c)
upgrading	from	an	initial	HTTP/1.1	connection	or	via	HTTP/2
preamble	checking	(Direct	mode,	see	H2Direct).

Refer	to	the	official	HTTP/2	FAQ	for	any	doubt	about	the	protocol.

https://http2.github.io/faq

How	it	works

HTTP/2	Dimensioning
Enabling	HTTP/2	on	your	Apache	Server	has	impact	on	the
resource	consumption	and	if	you	have	a	busy	site,	you	may	need
to	consider	carefully	the	implications.

The	first	noticeable	thing	after	enabling	HTTP/2	is	that	your	server
processes	will	start	additional	threads.	The	reason	for	this	is	that
HTTP/2	gives	all	requests	that	it	receives	to	its	own	Worker
threads	for	processing,	collects	the	results	and	streams	them	out
to	the	client.

In	the	current	implementation,	these	workers	use	a	separate
thread	pool	from	the	MPM	workers	that	you	might	be	familiar	with.
This	is	just	how	things	are	right	now	and	not	intended	to	be	like
this	forever.	(It	might	be	forever	for	the	2.4.x	release	line,	though.)
So,	HTTP/2	workers,	or	shorter	H2Workers,	will	not	show	up	in
mod_status.	They	are	also	not	counted	against	directives	such
as	ThreadsPerChild.	However	they	take	ThreadsPerChild
as	default	if	you	have	not	configured	something	else	via
H2MinWorkers	and	H2MaxWorkers.

Another	thing	to	watch	out	for	is	is	memory	consumption.	Since
HTTP/2	keeps	more	state	on	the	server	to	manage	all	the	open
request,	priorities	for	and	dependencies	between	them,	it	will
always	need	more	memory	than	HTTP/1.1	processing.	There	are
three	directives	which	steer	the	memory	footprint	of	a	HTTP/2
connection:	H2MaxSessionStreams,	H2WindowSize	and
H2StreamMaxMemSize.

H2MaxSessionStreams	limits	the	number	of	parallel	requests
that	a	client	can	make	on	a	HTTP/2	connection.	It	depends	on
your	site	how	many	you	should	allow.	The	default	is	100	which	is
plenty	and	unless	you	run	into	memory	problems,	I	would	keep	it

this	way.	Most	requests	that	browsers	send	are	GETs	without	a
body,	so	they	use	up	only	a	little	bit	of	memory	until	the	actual
processing	starts.

H2WindowSize	controls	how	much	the	client	is	allowed	to	send
as	body	of	a	request,	before	it	waits	for	the	server	to	encourage
more.	Or,	the	other	way	around,	it	is	the	amount	of	request	body
data	the	server	needs	to	be	able	to	buffer.	This	is	per	request.

And	last,	but	not	least,	H2StreamMaxMemSize	controls	how
much	response	data	shall	be	buffered.	The	request	sits	in	a
H2Worker	thread	and	is	producing	data,	the	HTTP/2	connection
tries	to	send	this	to	the	client.	If	the	client	does	not	read	fast
enough,	the	connection	will	buffer	this	amount	of	data	and	then
suspend	the	H2Worker.

Multiple	Hosts	and	Misdirected	Requests
Many	sites	use	the	same	TLS	certificate	for	multiple	virtual	hosts.
The	certificate	either	has	a	wildcard	name,	such	as	'*.example.org'
or	carries	several	alternate	names.	Browsers	using	HTTP/2	will
recognize	that	and	reuse	an	already	opened	connection	for	such
hosts.

While	this	is	great	for	performance,	it	comes	at	a	price:	such
vhosts	need	more	care	in	their	configuration.	The	problem	is	that
you	will	have	multiple	requests	for	multiple	hosts	on	the	same	TLS
connection.	And	that	makes	renegotiation	impossible,	in	face	the
HTTP/2	standard	forbids	it.

So,	if	you	have	several	virtual	hosts	using	the	same	certificate	and
want	to	use	HTTP/2	for	them,	you	need	to	make	sure	that	all
vhosts	have	exactly	the	same	SSL	configuration.	You	need	the
same	protocol,	ciphers	and	settings	for	client	verification.

If	you	mix	things,	Apache	httpd	will	detect	it	and	return	a	special

response	code,	421	Misdirected	Request,	to	the	client.

Environment	Variables
This	module	can	be	configured	to	provide	HTTP/2	related
information	as	additional	environment	variables	to	the	SSI	and
CGI	namespace,	as	well	as	in	custom	log	configurations	(see	%
{VAR_NAME}e).

Variable	Name: Value
Type:

Description:

HTTP2 flag HTTP/2	is	being	used.
H2PUSH flag HTTP/2	Server	Push	is	enabled	for

this	connection	and	also	supported	by
the	client.

H2_PUSH flag alternate	name	for	H2PUSH
H2_PUSHED string empty	or	PUSHED	for	a	request	being

pushed	by	the	server.
H2_PUSHED_ON number HTTP/2	stream	number	that	triggered

the	push	of	this	request.
H2_STREAM_ID number HTTP/2	stream	number	of	this

request.
H2_STREAM_TAG string HTTP/2	process	unique	stream

identifier,	consisting	of	connection	id
and	stream	id	separated	by	-.

H2CopyFiles	Directive

Description: Determine	file	handling	in	responses
Syntax: H2CopyFiles	on|off

Default: H2CopyFiles	off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.24	and	later.

This	directive	influences	how	file	content	is	handled	in	responses.
When	off,	which	is	the	default,	file	handles	are	passed	from	the
requestion	processing	down	to	the	main	connection,	using	the
usual	Apache	setaside	handling	for	managing	the	lifetime	of	the
file.

When	set	to	on,	file	content	is	copied	while	the	request	is	still
being	processed	and	the	buffered	data	is	passed	on	to	the	main
connection.	This	is	better	if	a	third	party	module	is	injecting	files
with	different	lifetimes	into	the	response.

An	example	for	such	a	module	is	mod_wsgi	that	may	place
Python	file	handles	into	the	response.	Those	files	get	close	down
when	Python	thinks	processing	has	finished.	That	may	be	well
before	mod_http2	is	done	with	them.

H2Direct	Directive

Description: H2	Direct	Protocol	Switch
Syntax: H2Direct	on|off

Default: H2Direct	on	for	h2c,	off	for	h2

protocol

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	toggles	the	usage	of	the	HTTP/2	Direct	Mode.	This
should	be	used	inside	a	<VirtualHost>	section	to	enable	direct
HTTP/2	communication	for	that	virtual	host.

Direct	communication	means	that	if	the	first	bytes	received	by	the
server	on	a	connection	match	the	HTTP/2	preamble,	the	HTTP/2
protocol	is	switched	to	immediately	without	further	negotiation.
This	mode	is	defined	in	RFC	7540	for	the	cleartext	(h2c)	case.	Its
use	on	TLS	connections	not	mandated	by	the	standard.

When	a	server/vhost	does	not	have	h2	or	h2c	enabled	via
Protocols,	the	connection	is	never	inspected	for	a	HTTP/2
preamble.	H2Direct	does	not	matter	then.	This	is	important	for
connections	that	use	protocols	where	an	initial	read	might	hang
indefinitely,	such	as	NNTP.

For	clients	that	have	out-of-band	knowledge	about	a	server
supporting	h2c,	direct	HTTP/2	saves	the	client	from	having	to
perform	an	HTTP/1.1	upgrade,	resulting	in	better	performance	and
avoiding	the	Upgrade	restrictions	on	request	bodies.

This	makes	direct	h2c	attractive	for	server	to	server
communication	as	well,	when	the	connection	can	be	trusted	or	is
secured	by	other	means.

Example
H2Direct	on

H2EarlyHints	Directive

Description: Determine	sending	of	103	status	codes
Syntax: H2EarlyHints	on|off

Default: H2EarlyHints	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.24	and	later.

This	setting	controls	if	HTTP	status	103	interim	responses	are
forwarded	to	the	client	or	not.	By	default,	this	is	currently	not	the
case	since	a	range	of	clients	still	have	trouble	with	unexpected
interim	responses.

When	set	to	on,	PUSH	resources	announced	with
H2PushResource	will	trigger	an	interim	103	response	before	the
final	response.	The	103	response	will	carry	Link	headers	that
advise	the	preload	of	such	resources.

H2MaxSessionStreams	Directive

Description: Maximum	number	of	active	streams	per	HTTP/2
session.

Syntax: H2MaxSessionStreams	n

Default: H2MaxSessionStreams	100

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	sets	the	maximum	number	of	active	streams	per
HTTP/2	session	(e.g.	connection)	that	the	server	allows.	A	stream
is	active	if	it	is	not	idle	or	closed	according	to	RFC	7540.

Example
H2MaxSessionStreams	20

H2MaxWorkerIdleSeconds	Directive

Description: Maximum	number	of	seconds	h2	workers	remain
idle	until	shut	down.

Syntax: H2MaxWorkerIdleSeconds	n

Default: H2MaxWorkerIdleSeconds	600

Context: server	config
Status: Extension
Module: mod_http2

This	directive	sets	the	maximum	number	of	seconds	a	h2	worker
may	idle	until	it	shuts	itself	down.	This	only	happens	while	the
number	of	h2	workers	exceeds	H2MinWorkers.

Example
H2MaxWorkerIdleSeconds	20

H2MaxWorkers	Directive

Description: Maximum	number	of	worker	threads	to	use	per
child	process.

Syntax: H2MaxWorkers	n

Context: server	config
Status: Extension
Module: mod_http2

This	directive	sets	the	maximum	number	of	worker	threads	to
spawn	per	child	process	for	HTTP/2	processing.	If	this	directive	is
not	used,	mod_http2	will	chose	a	value	suitable	for	the	mpm
module	loaded.

Example
H2MaxWorkers	20

H2MinWorkers	Directive

Description: Minimal	number	of	worker	threads	to	use	per	child
process.

Syntax: H2MinWorkers	n

Context: server	config
Status: Extension
Module: mod_http2

This	directive	sets	the	minimum	number	of	worker	threads	to
spawn	per	child	process	for	HTTP/2	processing.	If	this	directive	is
not	used,	mod_http2	will	chose	a	value	suitable	for	the	mpm
module	loaded.

Example
H2MinWorkers	10

H2ModernTLSOnly	Directive

Description: Require	HTTP/2	connections	to	be	"modern	TLS"
only

Syntax: H2ModernTLSOnly	on|off

Default: H2ModernTLSOnly	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.

This	directive	toggles	the	security	checks	on	HTTP/2	connections
in	TLS	mode	(https:).	This	can	be	used	server	wide	or	for	specific
<VirtualHost>s.

The	security	checks	require	that	the	TSL	protocol	is	at	least
TLSv1.2	and	that	none	of	the	ciphers	listed	in	RFC	7540,
Appendix	A	is	used.	These	checks	will	be	extended	once	new
security	requirements	come	into	place.

The	name	stems	from	the	Security/Server	Side	TLS	definitions	at
mozilla	where	"modern	compatibility"	is	defined.	Mozilla	Firefox
and	other	browsers	require	modern	compatibility	for	HTTP/2
connections.	As	everything	in	OpSec,	this	is	a	moving	target	and
can	be	expected	to	evolve	in	the	future.

One	purpose	of	having	these	checks	in	mod_http2	is	to	enforce
this	security	level	for	all	connections,	not	only	those	from
browsers.	The	other	purpose	is	to	prevent	the	negotiation	of
HTTP/2	as	a	protocol	should	the	requirements	not	be	met.

Ultimately,	the	security	of	the	TLS	connection	is	determined	by	the
server	configuration	directives	for	mod_ssl.

Example

https://wiki.mozilla.org/Security/Server_Side_TLS

H2ModernTLSOnly	off

H2Push	Directive

Description: H2	Server	Push	Switch
Syntax: H2Push	on|off

Default: H2Push	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.

This	directive	toggles	the	usage	of	the	HTTP/2	server	push
protocol	feature.

The	HTTP/2	protocol	allows	the	server	to	push	other	resources	to
a	client	when	it	asked	for	a	particular	one.	This	is	helpful	if	those
resources	are	connected	in	some	way	and	the	client	can	be
expected	to	ask	for	it	anyway.	The	pushing	then	saves	the	time	it
takes	the	client	to	ask	for	the	resources	itself.	On	the	other	hand,
pushing	resources	the	client	never	needs	or	already	has	is	a
waste	of	bandwidth.

Server	pushes	are	detected	by	inspecting	the	Link	headers	of
responses	(see	https://tools.ietf.org/html/rfc5988	for	the
specification).	When	a	link	thus	specified	has	the	rel=preload
attribute,	it	is	treated	as	a	resource	to	be	pushed.

Link	headers	in	responses	are	either	set	by	the	application	or	can
be	configured	via	mod_headers	as:

mod_headers	example
<Location	/index.html>

				Header	add	Link	"</css/site.css>;rel=preload"

				Header	add	Link	"</images/logo.jpg>;rel=preload"

</Location>

As	the	example	shows,	there	can	be	several	link	headers	added	to
a	response,	resulting	in	several	pushes	being	triggered.	There	are
no	checks	in	the	module	to	avoid	pushing	the	same	resource	twice
or	more	to	one	client.	Use	with	care.

HTTP/2	server	pushes	are	enabled	by	default.	This	directive
allows	it	to	be	switch	off	on	all	resources	of	this	server/virtual	host.

Example
H2Push	off

Last	but	not	least,	pushes	happen	only	when	the	client	signals	its
willingness	to	accept	those.	Most	browsers	do,	some,	like	Safari	9,
do	not.	Also,	pushes	also	only	happen	for	resources	from	the
same	authority	as	the	original	response	is	for.

H2PushDiarySize	Directive

Description: H2	Server	Push	Diary	Size
Syntax: H2PushDiarySize	n

Default: H2PushDiarySize	256

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.19	and	later.

This	directive	toggles	the	maximum	number	of	HTTP/2	server
pushes	that	are	remembered	per	HTTP/2	connection.	This	can	be
used	inside	the	<VirtualHost>	section	to	influence	the	number
for	all	connections	to	that	virtual	host.

The	push	diary	records	a	digest	(currently	using	a	64	bit	number)
of	pushed	resources	(their	URL)	to	avoid	duplicate	pushes	on	the
same	connection.	These	value	are	not	persisted,	so	clients
opening	a	new	connection	will	experience	known	pushes	again.
There	is	ongoing	work	to	enable	a	client	to	disclose	a	digest	of	the
resources	it	already	has,	so	the	diary	maybe	initialized	by	the
client	on	each	connection	setup.

If	the	maximum	size	is	reached,	newer	entries	replace	the	oldest
ones.	A	diary	entry	uses	8	bytes,	letting	a	default	diary	with	256
entries	consume	around	2	KB	of	memory.

A	size	of	0	will	effectively	disable	the	push	diary.

H2PushPriority	Directive

Description: H2	Server	Push	Priority
Syntax: H2PushPriority	mime-type

[after|before|interleaved]	[weight]

Default: H2PushPriority	*	After	16

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.	For	having

an	effect,	a	nghttp2	library	version	1.5.0	or	newer
is	necessary.

This	directive	defines	the	priority	handling	of	pushed	responses
based	on	the	content-type	of	the	response.	This	is	usually	defined
per	server	config,	but	may	also	appear	in	a	virtual	host.

HTTP/2	server	pushes	are	always	related	to	a	client	request.	Each
such	request/response	pairs,	or	streams	have	a	dependency	and
a	weight,	together	defining	the	priority	of	a	stream.

When	a	stream	depends	on	another,	say	X	depends	on	Y,	then	Y
gets	all	bandwidth	before	X	gets	any.	Note	that	this	does	not	mean
that	Y	will	block	X.	If	Y	has	no	data	to	send,	all	bandwidth
allocated	to	Y	can	be	used	by	X.

When	a	stream	has	more	than	one	dependant,	say	X1	and	X2
both	depend	on	Y,	the	weight	determines	the	bandwidth	allocation.
If	X1	and	X2	have	the	same	weight,	they	both	get	half	of	the
available	bandwidth.	If	the	weight	of	X1	is	twice	as	large	as	that	for
X2,	X1	gets	twice	the	bandwidth	of	X2.

Ultimately,	every	stream	depends	on	the	root	stream	which	gets	all
the	bandwidth	available,	but	never	sends	anything.	So	all	its
bandwidth	is	distributed	by	weight	among	its	children.	Which	either

have	data	to	send	or	distribute	the	bandwidth	to	their	own	children.
And	so	on.	If	none	of	the	children	have	data	to	send,	that
bandwidth	get	distributed	somewhere	else	according	to	the	same
rules.

The	purpose	of	this	priority	system	is	to	always	make	use	of
available	bandwidth	while	allowing	precedence	and	weight	to	be
given	to	specific	streams.	Since,	normally,	all	streams	are	initiated
by	the	client,	it	is	also	the	one	that	sets	these	priorities.

Only	when	such	a	stream	results	in	a	PUSH,	gets	the	server	to
decide	what	the	initial	priority	of	such	a	pushed	stream	is.	In	the
examples	below,	X	is	the	client	stream.	It	depends	on	Y	and	the
server	decides	to	PUSH	streams	P1	and	P2	onto	X.

The	default	priority	rule	is:

Default	Priority	Rule
H2PushPriority	*	After	16

which	reads	as	'Send	a	pushed	stream	of	any	content-type
depending	on	the	client	stream	with	weight	16'.	And	so	P1	and	P2
will	be	send	after	X	and,	as	they	have	equal	weight,	share
bandwidth	equally	among	themselves.

Interleaved	Priority	Rule
H2PushPriority	text/css	Interleaved	256

which	reads	as	'Send	any	CSS	resource	on	the	same	dependency
and	weight	as	the	client	stream'.	If	P1	has	content-type	'text/css',	it
will	depend	on	Y	(as	does	X)	and	its	effective	weight	will	be
calculated	as	P1ew	=	Xw	*	(P1w	/	256).	With	P1w	being
256,	this	will	make	the	effective	weight	the	same	as	the	weight	of
X.	If	both	X	and	P1	have	data	to	send,	bandwidth	will	be	allocated

to	both	equally.

With	Pw	specified	as	512,	a	pushed,	interleaved	stream	would	get
double	the	weight	of	X.	With	128	only	half	as	much.	Note	that
effective	weights	are	always	capped	at	256.

Before	Priority	Rule
H2PushPriority	application/json	Before

This	says	that	any	pushed	stream	of	content	type	'application/json'
should	be	send	out	before	X.	This	makes	P1	dependent	on	Y	and
X	dependent	on	P1.	So,	X	will	be	stalled	as	long	as	P1	has	data	to
send.	The	effective	weight	is	inherited	from	the	client	stream.
Specifying	a	weight	is	not	allowed.

Be	aware	that	the	effect	of	priority	specifications	is	limited	by	the
available	server	resources.	If	a	server	does	not	have	workers
available	for	pushed	streams,	the	data	for	the	stream	may	only
ever	arrive	when	other	streams	have	been	finished.

Last,	but	not	least,	there	are	some	specifics	of	the	syntax	to	be
used	in	this	directive:

1.	 '*'	is	the	only	special	content-type	that	matches	all	others.
'image/*'	will	not	work.

2.	 The	default	dependency	is	'After'.

3.	 There	are	also	default	weights:	for	'After'	it	is	16,	'interleaved'
is	256.

Shorter	Priority	Rules
H2PushPriority	application/json	32									#	an	After	rule

H2PushPriority	image/jpeg	before											#	weight	inherited

H2PushPriority	text/css			interleaved						#	weight	256	default

H2PushResource	Directive

Description: Declares	resources	for	early	pushing	to	the	client
Syntax: H2PushResource	[add]	path	[critical]

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.24	and	later.

When	added	to	a	directory/location	HTTP/2	PUSHes	will	be
attempted	for	all	paths	added	via	this	directive.	This	directive	can
be	used	several	times	for	the	same	location.

This	directive	pushes	resources	much	earlier	than	adding	Link
headers	via	mod_headers.	mod_http2	announces	these
resources	in	a	103	Early	Hints	interim	response	to	the	client.
That	means	that	clients	not	supporting	PUSH	will	still	get	early
preload	hints.

In	contrast	to	setting	Link	response	headers	via	mod_headers,
this	directive	will	only	take	effect	on	HTTP/2	connections.

By	adding	critical	to	such	a	resource,	the	server	will	give
processing	it	more	preference	and	send	its	data,	once	available,
before	the	data	from	the	main	request.

H2SerializeHeaders	Directive

Description: Serialize	Request/Response	Processing	Switch
Syntax: H2SerializeHeaders	on|off

Default: H2SerializeHeaders	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	toggles	if	HTTP/2	requests	shall	be	serialized	in
HTTP/1.1	format	for	processing	by	httpd	core	or	if	received
binary	data	shall	be	passed	into	the	request_recs	directly.

Serialization	will	lower	performance,	but	gives	more	backward
compatibility	in	case	custom	filters/hooks	need	it.

Example
H2SerializeHeaders	on

H2StreamMaxMemSize	Directive

Description: Maximum	amount	of	output	data	buffered	per
stream.

Syntax: H2StreamMaxMemSize	bytes

Default: H2StreamMaxMemSize	65536

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	sets	the	maximum	number	of	outgoing	data	bytes
buffered	in	memory	for	an	active	streams.	This	memory	is	not
allocated	per	stream	as	such.	Allocations	are	counted	against	this
limit	when	they	are	about	to	be	done.	Stream	processing	freezes
when	the	limit	has	been	reached	and	will	only	continue	when
buffered	data	has	been	sent	out	to	the	client.

Example
H2StreamMaxMemSize	128000

H2TLSCoolDownSecs	Directive

Description:
Syntax: H2TLSCoolDownSecs	seconds

Default: H2TLSCoolDownSecs	1

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.

This	directive	sets	the	number	of	seconds	of	idle	time	on	a	TLS
connection	before	the	TLS	write	size	falls	back	to	small	(~1300
bytes)	length.	This	can	be	used	server	wide	or	for	specific
<VirtualHost>s.

See	H2TLSWarmUpSize	for	a	description	of	TLS	warmup.
H2TLSCoolDownSecs	reflects	the	fact	that	connections	may
deteriorate	over	time	(and	TCP	flow	adjusts)	for	idle	connections
as	well.	It	is	beneficial	to	overall	performance	to	fall	back	to	the
pre-warmup	phase	after	a	number	of	seconds	that	no	data	has
been	sent.

In	deployments	where	connections	can	be	considered	reliable,	this
timer	can	be	disabled	by	setting	it	to	0.

The	following	example	sets	the	seconds	to	zero,	effectively
disabling	any	cool	down.	Warmed	up	TLS	connections	stay	on
maximum	record	size.

Example
H2TLSCoolDownSecs	0

H2TLSWarmUpSize	Directive

Description:
Syntax: H2TLSWarmUpSize	amount

Default: H2TLSWarmUpSize	1048576

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.

This	directive	sets	the	number	of	bytes	to	be	sent	in	small	TLS
records	(~1300	bytes)	until	doing	maximum	sized	writes	(16k)	on
https:	HTTP/2	connections.	This	can	be	used	server	wide	or	for
specific	<VirtualHost>s.

Measurements	by	google	performance	labs	show	that	best
performance	on	TLS	connections	is	reached,	if	initial	record	sizes
stay	below	the	MTU	level,	to	allow	a	complete	record	to	fit	into	an
IP	packet.

While	TCP	adjust	its	flow-control	and	window	sizes,	longer	TLS
records	can	get	stuck	in	queues	or	get	lost	and	need
retransmission.	This	is	of	course	true	for	all	packets.	TLS	however
needs	the	whole	record	in	order	to	decrypt	it.	Any	missing	bytes	at
the	end	will	stall	usage	of	the	received	ones.

After	a	sufficient	number	of	bytes	have	been	send	successfully,
the	TCP	state	of	the	connection	is	stable	and	maximum	TLS
record	sizes	(16	KB)	can	be	used	for	optimal	performance.

In	deployments	where	servers	are	reached	locally	or	over	reliable
connections	only,	the	value	might	be	decreased	with	0	disabling
any	warmup	phase	altogether.

The	following	example	sets	the	size	to	zero,	effectively	disabling

https://www.igvita.com

any	warmup	phase.

Example
H2TLSWarmUpSize	0

H2Upgrade	Directive

Description: H2	Upgrade	Protocol	Switch
Syntax: H2Upgrade	on|off

Default: H2Upgrade	on	for	h2c,	off	for	h2

protocol

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	toggles	the	usage	of	the	HTTP/1.1	Upgrade	method
for	switching	to	HTTP/2.	This	should	be	used	inside	a
<VirtualHost>	section	to	enable	Upgrades	to	HTTP/2	for	that
virtual	host.

This	method	of	switching	protocols	is	defined	in	HTTP/1.1	and
uses	the	"Upgrade"	header	(thus	the	name)	to	announce
willingness	to	use	another	protocol.	This	may	happen	on	any
request	of	a	HTTP/1.1	connection.

This	method	of	protocol	switching	is	enabled	by	default	on
cleartext	(potential	h2c)	connections	and	disabled	on	TLS
(potential	h2),	as	mandated	by	RFC	7540.

Please	be	aware	that	Upgrades	are	only	accepted	for	requests
that	carry	no	body.	POSTs	and	PUTs	with	content	will	never	trigger
an	upgrade	to	HTTP/2.	See	H2Direct	for	an	alternative	to
Upgrade.

This	mode	only	has	an	effect	when	h2	or	h2c	is	enabled	via	the
Protocols.

Example
H2Upgrade	on

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

H2WindowSize	Directive

Description: Size	of	Stream	Window	for	upstream	data.
Syntax: H2WindowSize	bytes

Default: H2WindowSize	65535

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	sets	the	size	of	the	window	that	is	used	for	flow
control	from	client	to	server	and	limits	the	amount	of	data	the
server	has	to	buffer.	The	client	will	stop	sending	on	a	stream	once
the	limit	has	been	reached	until	the	server	announces	more
available	space	(as	it	has	processed	some	of	the	data).

This	limit	affects	only	request	bodies,	not	its	meta	data	such	as
headers.	Also,	it	has	no	effect	on	response	bodies	as	the	window
size	for	those	are	managed	by	the	clients.

Example
H2WindowSize	128000

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_ident

: RFC	1413	ident

: Extension
: ident_module
: mod_ident.c
: 	2.1	

								 RFC	1413			.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

mod_log_config

http://www.ietf.org/rfc/rfc1413.txt
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_ident
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_ident

IdentityCheck	

: 		RFC	1413			
: IdentityCheck	On|Off

: IdentityCheck	Off

: ,	,	directory
: Extension
: mod_ident
: 	2.1	core		

		 RFC	1413				identd			 					.
	%...l						.

								.

								 				.				
					 IdentityCheckTimeout		 		.		
		 		.

http://www.ietf.org/rfc/rfc1413.txt

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

IdentityCheckTimeout	

: ident			
: IdentityCheckTimeout	seconds

: IdentityCheckTimeout	30

: ,	,	directory
: Extension
: mod_ident

		ident			.		 			 RFC	1413
				 		.

http://www.ietf.org/rfc/rfc1413.txt
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_imagemap

				.	 					.

: 	(imagemap)	
: Base
: imagemap_module
: mod_imagemap.c

		 imagemap	CGI			 .map		.			(AddHandler

SetHandler)	 imap-file					 	.

		 .map				 	.

AddHandler	imap-file	map

				.

AddType	application/x-httpd-imap	map

			"				MIME	 type"						.

	

							 		.

Referer:			URL	.
	 base				 <base>	.
imagemap.conf		.
(point)	.
			.

	

					.

directive	value	[x,y	...]

directive	value	"Menu	text"	[x,y	...]

directive	value	x,y	...	"Menu	text"

directive	 base,	default,	poly,	circle,	rect,	point		.
value		URL		 URL					.			
							.	 '#'			.

		
		6				.		 				,				

base	
<base	href="value">		.			URL		URL	
			URL	.	 base		 .htaccess			
ImapBase		 .	 ImapBase		 		 base	
http://server_name/.

base_uri	 base	.	URL	 		.

default	
		 poly,	circle,	rect				 point				
	.	 ImapDefault			 	 204	No	Content

nocontent.					 		.

poly	
					.			 							.

circle

						.		 					.

rect	
					.			 			.

point	
			.					 						point		
point				 			 default			

				
		value			.

URL
	URL		URL			.		URL	 '..'			,	
		 .

base			base	.	 ,	 base	mailto:				.

map

			URL	.			 ImapMenu	 none			.

menu

map	.

referer

()		URL	.	 Referer:			
http://servername/.

nocontent

					 204	No	Content		.	
			.

error

		 500	Server	Error	.	 base					
,	 default				.

0,0	200,200

			 x	 y	.	 			.				
	 0,0			 				.

		
"Menu	Text"

value								 	.						
.

Menu	text

								 	.

http://foo.com

			 "			.

	

#'formatted'	'semiformatted'			.

#		html				.	<hr>

base	referer

poly	map	"	."	0,0	0,10	10,10	10,0

rect	..	0,0	77,27	"			"

circle	http://www.inetnebr.com/lincoln/feedback/	195,0	305,27

rect	another_file	"				"	306,0	419,27

point	http://www.zyzzyva.com/	100,100

point	http://www.tripod.com/	200,200

rect	mailto:nate@tripod.com	100,150	200,0	"?"

	

HTML	

XHTML	

ImapBase	

: 		 base	
: ImapBase	map|referer|URL

: ImapBase	http://servername/

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_imagemap

ImapBase				 	 base		.			
	 	.			,	 base		 http://servername/.

UseCanonicalName

ImapDefault	

: 									
: ImapDefault

error|nocontent|map|referer|URL

: ImapDefault	nocontent

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_imagemap

ImapDefault			 		 default		.	
default			 			.			,	 default

No	Content		 nocontent.						 		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

ImapMenu	

: 				
: ImapMenu

none|formatted|semiformatted|unformatted

: ,	,	directory,	.htaccess
Override	: Indexes
: Base
: mod_imagemap

ImapMenu				 							.

none

ImapMenu	 none,			 default		.

formatted

formatted				.	 			.					
		.			,	 		.

semiformatted

semiformatted				 		.		HTML		.	
		,		 formatted		.

unformatted

	,		.			 		.						
.					 		,						
.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_include

Description: Server-parsed	html	documents	(Server	Side
Includes)

Status: Base
Module	Identifier: include_module
Source	File: mod_include.c

Summary
This	module	provides	a	filter	which	will	process	files	before	they	are
sent	to	the	client.	The	processing	is	controlled	by	specially	formatted
SGML	comments,	referred	to	as	elements.	These	elements	allow
conditional	text,	the	inclusion	of	other	files	or	programs,	as	well	as	the
setting	and	printing	of	environment	variables.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Options

AcceptPathInfo

Filters
SSI	Tutorial

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_include
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_include

Enabling	Server-Side	Includes

Server	Side	Includes	are	implemented	by	the	INCLUDES	filter.	If
documents	containing	server-side	include	directives	are	given	the
extension	.shtml,	the	following	directives	will	make	Apache	parse
them	and	assign	the	resulting	document	the	mime	type	of
text/html:

AddType	text/html	.shtml

AddOutputFilter	INCLUDES	.shtml

The	following	directive	must	be	given	for	the	directories	containing
the	shtml	files	(typically	in	a	<Directory>	section,	but	this
directive	is	also	valid	in	.htaccess	files	if	AllowOverride
Options	is	set):

Options	+Includes

For	backwards	compatibility,	the	server-parsed	handler	also
activates	the	INCLUDES	filter.	As	well,	Apache	will	activate	the
INCLUDES	filter	for	any	document	with	mime	type	text/x-
server-parsed-html	or	text/x-server-parsed-html3
(and	the	resulting	output	will	have	the	mime	type	text/html).

For	more	information,	see	our	Tutorial	on	Server	Side	Includes.

PATH_INFO	with	Server	Side	Includes

Files	processed	for	server-side	includes	no	longer	accept	requests
with	PATH_INFO	(trailing	pathname	information)	by	default.	You
can	use	the	AcceptPathInfo	directive	to	configure	the	server	to
accept	requests	with	PATH_INFO.

Available	Elements

The	document	is	parsed	as	an	HTML	document,	with	special
commands	embedded	as	SGML	comments.	A	command	has	the
syntax:

<!--#element	attribute=value	attribute=value	...	-->

The	value	will	often	be	enclosed	in	double	quotes,	but	single
quotes	(')	and	backticks	(`)	are	also	possible.	Many	commands
only	allow	a	single	attribute-value	pair.	Note	that	the	comment
terminator	(-->)	should	be	preceded	by	whitespace	to	ensure	that
it	isn't	considered	part	of	an	SSI	token.	Note	that	the	leading	<!--
#	is	one	token	and	may	not	contain	any	whitespaces.

The	allowed	elements	are	listed	in	the	following	table:

Element Description
comment SSI	comment
config configure	output	formats
echo print	variables
exec execute	external	programs
fsize print	size	of	a	file
flastmod print	last	modification	time	of	a	file
include include	a	file
printenv print	all	available	variables
set set	a	value	of	a	variable

SSI	elements	may	be	defined	by	modules	other	than
mod_include.	In	fact,	the	exec	element	is	provided	by
mod_cgi,	and	will	only	be	available	if	this	module	is	loaded.

The	comment	Element

This	command	doesn't	output	anything.	Its	only	use	is	to	add
comments	within	a	file.	These	comments	are	not	printed.

This	syntax	is	available	in	version	2.4.21	and	later.

<!--#comment	Blah	Blah	Blah	-->

The	config	Element
This	command	controls	various	aspects	of	the	parsing.	The	valid
attributes	are:

echomsg	(Apache	2.1	and	later)
The	value	is	a	message	that	is	sent	back	to	the	client	if	the
echo	element	attempts	to	echo	an	undefined	variable.	This
overrides	any	SSIUndefinedEcho	directives.

<!--#config	echomsg="[Value	Undefined]"	-->

errmsg

The	value	is	a	message	that	is	sent	back	to	the	client	if	an
error	occurs	while	parsing	the	document.	This	overrides	any
SSIErrorMsg	directives.

<!--#config	errmsg="[Oops,	something	broke.]"	-->

sizefmt

The	value	sets	the	format	to	be	used	when	displaying	the	size
of	a	file.	Valid	values	are	bytes	for	a	count	in	bytes,	or
abbrev	for	a	count	in	Kb	or	Mb	as	appropriate,	for	example	a
size	of	1024	bytes	will	be	printed	as	"1K".

<!--#config	sizefmt="abbrev"	-->

timefmt

The	value	is	a	string	to	be	used	by	the	strftime(3)	library
routine	when	printing	dates.

<!--#config	timefmt=""%R,	%B	%d,	%Y""	-->

The	echo	Element
This	command	prints	one	of	the	include	variables	defined	below.	If
the	variable	is	unset,	the	result	is	determined	by	the
SSIUndefinedEcho	directive.	Any	dates	printed	are	subject	to
the	currently	configured	timefmt.

Attributes:

var

The	value	is	the	name	of	the	variable	to	print.

decoding

Specifies	whether	Apache	should	strip	an	encoding	from	the
variable	before	processing	the	variable	further.	The	default	is
none,	where	no	decoding	will	be	done.	If	set	to	url,	then
URL	decoding	(also	known	as	%-encoding;	this	is	appropriate
for	use	within	URLs	in	links,	etc.)	will	be	performed.	If	set	to
urlencoded,	application/x-www-form-urlencoded	compatible
encoding	(found	in	query	strings)	will	be	stripped.	If	set	to
base64,	base64	will	be	decoded,	and	if	set	to	entity,	HTML
entity	encoding	will	be	stripped.	Decoding	is	done	prior	to	any
further	encoding	on	the	variable.	Multiple	encodings	can	be
stripped	by	specifying	more	than	one	comma	separated
encoding.	The	decoding	setting	will	remain	in	effect	until	the
next	decoding	attribute	is	encountered,	or	the	element	ends.

The	decoding	attribute	must	precede	the	corresponding	var
attribute	to	be	effective.

encoding

Specifies	how	Apache	should	encode	special	characters
contained	in	the	variable	before	outputting	them.	If	set	to
none,	no	encoding	will	be	done.	If	set	to	url,	then	URL
encoding	(also	known	as	%-encoding;	this	is	appropriate	for
use	within	URLs	in	links,	etc.)	will	be	performed.	If	set	to
urlencoded,	application/x-www-form-urlencoded	compatible
encoding	will	be	performed	instead,	and	should	be	used	with
query	strings.	If	set	to	base64,	base64	encoding	will	be
performed.	At	the	start	of	an	echo	element,	the	default	is	set
to	entity,	resulting	in	entity	encoding	(which	is	appropriate
in	the	context	of	a	block-level	HTML	element,	e.g.	a
paragraph	of	text).	This	can	be	changed	by	adding	an
encoding	attribute,	which	will	remain	in	effect	until	the	next
encoding	attribute	is	encountered	or	the	element	ends,
whichever	comes	first.

The	encoding	attribute	must	precede	the	corresponding	var
attribute	to	be	effective.

In	order	to	avoid	cross-site	scripting	issues,	you	should
always	encode	user	supplied	data.

Example
<!--#echo	encoding="entity"	var="QUERY_STRING"	-->

The	exec	Element
The	exec	command	executes	a	given	shell	command	or	CGI
script.	It	requires	mod_cgi	to	be	present	in	the	server.	If	Options
IncludesNOEXEC	is	set,	this	command	is	completely	disabled.
The	valid	attributes	are:

cgi

The	value	specifies	a	(%-encoded)	URL-path	to	the	CGI
script.	If	the	path	does	not	begin	with	a	slash	(/),	then	it	is
taken	to	be	relative	to	the	current	document.	The	document
referenced	by	this	path	is	invoked	as	a	CGI	script,	even	if	the
server	would	not	normally	recognize	it	as	such.	However,	the
directory	containing	the	script	must	be	enabled	for	CGI	scripts
(with	ScriptAlias	or	Options	ExecCGI).

The	CGI	script	is	given	the	PATH_INFO	and	query	string
(QUERY_STRING)	of	the	original	request	from	the	client;	these
cannot	be	specified	in	the	URL	path.	The	include	variables	will
be	available	to	the	script	in	addition	to	the	standard	CGI
environment.

Example
<!--#exec	cgi="/cgi-bin/example.cgi"	-->

If	the	script	returns	a	Location:	header	instead	of	output,
then	this	will	be	translated	into	an	HTML	anchor.

The	include	virtual	element	should	be	used	in
preference	to	exec	cgi.	In	particular,	if	you	need	to	pass
additional	arguments	to	a	CGI	program,	using	the	query
string,	this	cannot	be	done	with	exec	cgi,	but	can	be	done
with	include	virtual,	as	shown	here:

<!--#include	virtual="/cgi-bin/example.cgi?argument=value"

-->

cmd

The	server	will	execute	the	given	string	using	/bin/sh.	The
include	variables	are	available	to	the	command,	in	addition	to
the	usual	set	of	CGI	variables.

The	use	of	#include	virtual	is	almost	always	prefered	to
using	either	#exec	cgi	or	#exec	cmd.	The	former
(#include	virtual)	uses	the	standard	Apache	sub-
request	mechanism	to	include	files	or	scripts.	It	is	much	better
tested	and	maintained.

In	addition,	on	some	platforms,	like	Win32,	and	on	unix	when
using	suexec,	you	cannot	pass	arguments	to	a	command	in
an	exec	directive,	or	otherwise	include	spaces	in	the
command.	Thus,	while	the	following	will	work	under	a	non-
suexec	configuration	on	unix,	it	will	not	produce	the	desired
result	under	Win32,	or	when	running	suexec:

<!--#exec	cmd="perl	/path/to/perlscript	arg1	arg2"	-->

The	fsize	Element
This	command	prints	the	size	of	the	specified	file,	subject	to	the
sizefmt	format	specification.	Attributes:

file

The	value	is	a	path	relative	to	the	directory	containing	the
current	document	being	parsed.

This	file	is	<!--#fsize	file="mod_include.html"	-->	bytes.

The	value	of	file	cannot	start	with	a	slash	(/),	nor	can	it
contain	../	so	as	to	refer	to	a	file	above	the	current	directory
or	outside	of	the	document	root.	Attempting	to	so	will	result	in
the	error	message:	The	given	path	was	above	the
root	path.

virtual

The	value	is	a	(%-encoded)	URL-path.	If	it	does	not	begin
with	a	slash	(/)	then	it	is	taken	to	be	relative	to	the	current

document.	Note,	that	this	does	not	print	the	size	of	any	CGI
output,	but	the	size	of	the	CGI	script	itself.

This	file	is	<!--#fsize	virtual="/docs/mod/mod_include.html"	--

>	bytes.

Note	that	in	many	cases	these	two	are	exactly	the	same	thing.
However,	the	file	attribute	doesn't	respect	URL-space	aliases.

The	flastmod	Element
This	command	prints	the	last	modification	date	of	the	specified	file,
subject	to	the	timefmt	format	specification.	The	attributes	are	the
same	as	for	the	fsize	command.

The	include	Element
This	command	inserts	the	text	of	another	document	or	file	into	the
parsed	file.	Any	included	file	is	subject	to	the	usual	access	control.
If	the	directory	containing	the	parsed	file	has	Options
IncludesNOEXEC	set,	then	only	documents	with	a	text	MIME-
type	(text/plain,	text/html	etc.)	will	be	included.	Otherwise
CGI	scripts	are	invoked	as	normal	using	the	complete	URL	given
in	the	command,	including	any	query	string.

An	attribute	defines	the	location	of	the	document,	and	may	appear
more	than	once	in	an	include	element;	an	inclusion	is	done	for
each	attribute	given	to	the	include	command	in	turn.	The	valid
attributes	are:

file

The	value	is	a	path	relative	to	the	directory	containing	the
current	document	being	parsed.	It	cannot	contain	../,	nor
can	it	be	an	absolute	path.	Therefore,	you	cannot	include	files
that	are	outside	of	the	document	root,	or	above	the	current

document	in	the	directory	structure.	The	virtual	attribute
should	always	be	used	in	preference	to	this	one.

virtual

The	value	is	a	(%-encoded)	URL-path.	The	URL	cannot
contain	a	scheme	or	hostname,	only	a	path	and	an	optional
query	string.	If	it	does	not	begin	with	a	slash	(/)	then	it	is	taken
to	be	relative	to	the	current	document.

A	URL	is	constructed	from	the	attribute,	and	the	output	the
server	would	return	if	the	URL	were	accessed	by	the	client	is
included	in	the	parsed	output.	Thus	included	files	can	be
nested.

If	the	specified	URL	is	a	CGI	program,	the	program	will	be
executed	and	its	output	inserted	in	place	of	the	directive	in	the
parsed	file.	You	may	include	a	query	string	in	a	CGI	url:

<!--#include	virtual="/cgi-bin/example.cgi?argument=value"

-->

include	virtual	should	be	used	in	preference	to	exec
cgi	to	include	the	output	of	CGI	programs	into	an	HTML
document.

If	the	KeptBodySize	directive	is	correctly	configured	and
valid	for	this	included	file,	attempts	to	POST	requests	to	the
enclosing	HTML	document	will	be	passed	through	to
subrequests	as	POST	requests	as	well.	Without	the	directive,
all	subrequests	are	processed	as	GET	requests.

onerror

The	value	is	a	(%-encoded)	URL-path	which	is	shown	should
a	previous	attempt	to	include	a	file	or	virtual	attribute	failed.	To
be	effective,	this	attribute	must	be	specified	after	the	file	or
virtual	attributes	being	covered.	If	the	attempt	to	include	the

onerror	path	fails,	or	if	onerror	is	not	specified,	the	default
error	message	will	be	included.

#	Simple	example

<!--#include	virtual="/not-exist.html"

onerror="/error.html"	-->

#	Dedicated	onerror	paths

<!--#include	virtual="/path-a.html"	onerror="/error-

a.html"	virtual="/path-b.html"	onerror="/error-b.html"	-->

The	printenv	Element
This	prints	out	a	plain	text	listing	of	all	existing	variables	and	their
values.	Special	characters	are	entity	encoded	(see	the	echo
element	for	details)	before	being	output.	There	are	no	attributes.

Example
<pre>	<!--#printenv	-->	</pre>

The	set	Element
This	sets	the	value	of	a	variable.	Attributes:

var

The	name	of	the	variable	to	set.

value

The	value	to	give	a	variable.

decoding

Specifies	whether	Apache	should	strip	an	encoding	from	the
variable	before	processing	the	variable	further.	The	default	is
none,	where	no	decoding	will	be	done.	If	set	to	url,
urlencoded,	base64	or	entity,	URL	decoding,
application/x-www-form-urlencoded	decoding,	base64
decoding	or	HTML	entity	decoding	will	be	performed

respectively.	More	than	one	decoding	can	be	specified	by
separating	with	commas.	The	decoding	setting	will	remain	in
effect	until	the	next	decoding	attribute	is	encountered,	or	the
element	ends.	The	decoding	attribute	must	precede	the
corresponding	var	attribute	to	be	effective.

encoding

Specifies	how	Apache	should	encode	special	characters
contained	in	the	variable	before	setting	them.	The	default	is
none,	where	no	encoding	will	be	done.	If	set	to	url,
urlencoding,	base64	or	entity,	URL	encoding,
application/x-www-form-urlencoded	encoding,	base64
encoding	or	HTML	entity	encoding	will	be	performed
respectively.	More	than	one	encoding	can	be	specified	by
separating	with	commas.	The	encoding	setting	will	remain	in
effect	until	the	next	encoding	attribute	is	encountered,	or	the
element	ends.	The	encoding	attribute	must	precede	the
corresponding	var	attribute	to	be	effective.	Encodings	are
applied	after	all	decodings	have	been	stripped.

Example
<!--#set	var="category"	value="help"	-->

Include	Variables

In	addition	to	the	variables	in	the	standard	CGI	environment,	these
are	available	for	the	echo	command,	for	if	and	elif,	and	to	any
program	invoked	by	the	document.

DATE_GMT

The	current	date	in	Greenwich	Mean	Time.

DATE_LOCAL

The	current	date	in	the	local	time	zone.

DOCUMENT_ARGS

This	variable	contains	the	query	string	of	the	active	SSI
document,	or	the	empty	string	if	a	query	string	is	not	included.
For	subrequests	invoked	through	the	include	SSI	directive,
QUERY_STRING	will	represent	the	query	string	of	the
subrequest	and	DOCUMENT_ARGS	will	represent	the	query
string	of	the	SSI	document.	(Available	in	Apache	HTTP
Server	2.4.19	and	later.)

DOCUMENT_NAME

The	filename	(excluding	directories)	of	the	document
requested	by	the	user.

DOCUMENT_URI

The	(%-decoded)	URL	path	of	the	document	requested	by	the
user.	Note	that	in	the	case	of	nested	include	files,	this	is	not
the	URL	for	the	current	document.	Note	also	that	if	the	URL	is
modified	internally	(e.g.	by	an	alias	or	directoryindex),
the	modified	URL	is	shown.

LAST_MODIFIED

The	last	modification	date	of	the	document	requested	by	the
user.

QUERY_STRING_UNESCAPED

If	a	query	string	is	present	in	the	request	for	the	active	SSI
document,	this	variable	contains	the	(%-decoded)	query

string,	which	is	escaped	for	shell	usage	(special	characters
like	&	etc.	are	preceded	by	backslashes).	It	is	not	set	if	a
query	string	is	not	present.	Use	DOCUMENT_ARGS	if	shell
escaping	is	not	desired.

Variable	Substitution

Variable	substitution	is	done	within	quoted	strings	in	most	cases
where	they	may	reasonably	occur	as	an	argument	to	an	SSI
directive.	This	includes	the	config,	exec,	flastmod,	fsize,
include,	echo,	and	set	directives.	If	SSILegacyExprParser
is	set	to	on,	substitution	also	occurs	in	the	arguments	to
conditional	operators.	You	can	insert	a	literal	dollar	sign	into	the
string	using	backslash	quoting:

<!--#set	var="cur"	value="\$test"	-->

If	a	variable	reference	needs	to	be	substituted	in	the	middle	of	a
character	sequence	that	might	otherwise	be	considered	a	valid
identifier	in	its	own	right,	it	can	be	disambiguated	by	enclosing	the
reference	in	braces,	a	la	shell	substitution:

<!--#set	var="Zed"	value="${REMOTE_HOST}_${REQUEST_METHOD}"	-->

This	will	result	in	the	Zed	variable	being	set	to	"X_Y"	if
REMOTE_HOST	is	"X"	and	REQUEST_METHOD	is	"Y".

Flow	Control	Elements

The	basic	flow	control	elements	are:

<!--#if	expr="test_condition"	-->

<!--#elif	expr="test_condition"	-->

<!--#else	-->

<!--#endif	-->

The	if	element	works	like	an	if	statement	in	a	programming
language.	The	test	condition	is	evaluated	and	if	the	result	is	true,
then	the	text	until	the	next	elif,	else	or	endif	element	is
included	in	the	output	stream.

The	elif	or	else	statements	are	used	to	put	text	into	the	output
stream	if	the	original	test_condition	was	false.	These	elements	are
optional.

The	endif	element	ends	the	if	element	and	is	required.

test_condition	is	a	boolean	expression	which	follows	the	ap_expr
syntax.	The	syntax	can	be	changed	to	be	compatible	with	Apache
HTTPD	2.2.x	using	SSILegacyExprParser.

The	SSI	variables	set	with	the	var	element	are	exported	into	the
request	environment	and	can	be	accessed	with	the	reqenv
function.	As	a	short-cut,	the	function	name	v	is	also	available
inside	mod_include.

The	below	example	will	print	"from	local	net"	if	client	IP	address
belongs	to	the	10.0.0.0/8	subnet.

<!--#if	expr='-R	"10.0.0.0/8"'	-->

from	local	net

<!--#else	-->

from	somewhere	else

<!--#endif	-->

The	below	example	will	print	"foo	is	bar"	if	the	variable	foo	is	set
to	the	value	"bar".

<!--#if	expr='v("foo")	=	"bar"'	-->

foo	is	bar

<!--#endif	-->

Reference	Documentation

See	also:	Expressions	in	Apache	HTTP	Server,	for	a	complete
reference	and	examples.	The	restricted	functions	are	not
available	inside	mod_include

Legacy	expression	syntax

This	section	describes	the	syntax	of	the	#if	expr	element	if
SSILegacyExprParser	is	set	to	on.

string

true	if	string	is	not	empty

-A	string

true	if	the	URL	represented	by	the	string	is	accessible	by
configuration,	false	otherwise.	This	is	useful	where	content	on
a	page	is	to	be	hidden	from	users	who	are	not	authorized	to
view	the	URL,	such	as	a	link	to	that	URL.	Note	that	the	URL	is
only	tested	for	whether	access	would	be	granted,	not	whether
the	URL	exists.

Example
<!--#if	expr="-A	/private"	-->

Click	here	to	access	private

information.

<!--#endif	-->

string1	=	string2

string1	==	string2

string1	!=	string2

Compare	string1	with	string2.	If	string2	has	the	form
/string2/	then	it	is	treated	as	a	regular	expression.	Regular
expressions	are	implemented	by	the	PCRE	engine	and	have
the	same	syntax	as	those	in	perl	5.	Note	that	==	is	just	an
alias	for	=	and	behaves	exactly	the	same	way.

If	you	are	matching	positive	(=	or	==),	you	can	capture
grouped	parts	of	the	regular	expression.	The	captured	parts
are	stored	in	the	special	variables	$1	..	$9.	The	whole	string
matched	by	the	regular	expression	is	stored	in	the	special
variable	$0

http://www.pcre.org
http://www.perl.com

Example
<!--#if	expr="$QUERY_STRING	=	/^sid=([a-zA-Z0-9]+)/"	-->

<!--#set	var="session"	value="$1"	-->

<!--#endif	-->

string1	<	string2

string1	<=	string2

string1	>	string2

string1	>=	string2

Compare	string1	with	string2.	Note,	that	strings	are	compared
literally	(using	strcmp(3)).	Therefore	the	string	"100"	is	less
than	"20".

(test_condition)

true	if	test_condition	is	true

!	test_condition

true	if	test_condition	is	false

test_condition1	&&	test_condition2

true	if	both	test_condition1	and	test_condition2	are	true

test_condition1	||	test_condition2

true	if	either	test_condition1	or	test_condition2	is	true

"="	and	"!="	bind	more	tightly	than	"&&"	and	"||".	"!"	binds	most
tightly.	Thus,	the	following	are	equivalent:

<!--#if	expr="$a	=	test1	&&	$b	=	test2"	-->

<!--#if	expr="($a	=	test1)	&&	($b	=	test2)"	-->

The	boolean	operators	&&	and	||	share	the	same	priority.	So	if
you	want	to	bind	such	an	operator	more	tightly,	you	should	use
parentheses.

Anything	that's	not	recognized	as	a	variable	or	an	operator	is
treated	as	a	string.	Strings	can	also	be	quoted:	'string'.

Unquoted	strings	can't	contain	whitespace	(blanks	and	tabs)
because	it	is	used	to	separate	tokens	such	as	variables.	If	multiple
strings	are	found	in	a	row,	they	are	concatenated	using	blanks.	So,

string1				string2	results	in	string1	string2

and

'string1				string2'	results	in	string1				string2.

Optimization	of	Boolean	Expressions

If	the	expressions	become	more	complex	and	slow	down
processing	significantly,	you	can	try	to	optimize	them	according
to	the	evaluation	rules:

Expressions	are	evaluated	from	left	to	right
Binary	boolean	operators	(&&	and	||)	are	short	circuited
wherever	possible.	In	conclusion	with	the	rule	above	that
means,	mod_include	evaluates	at	first	the	left	expression.
If	the	left	result	is	sufficient	to	determine	the	end	result,
processing	stops	here.	Otherwise	it	evaluates	the	right	side
and	computes	the	end	result	from	both	left	and	right	results.
Short	circuit	evaluation	is	turned	off	as	long	as	there	are
regular	expressions	to	deal	with.	These	must	be	evaluated
to	fill	in	the	backreference	variables	($1	..	$9).

If	you	want	to	look	how	a	particular	expression	is	handled,	you
can	recompile	mod_include	using	the	-DDEBUG_INCLUDE
compiler	option.	This	inserts	for	every	parsed	expression
tokenizer	information,	the	parse	tree	and	how	it	is	evaluated	into
the	output	sent	to	the	client.

Escaping	slashes	in	regex	strings

All	slashes	which	are	not	intended	to	act	as	delimiters	in	your
regex	must	be	escaped.	This	is	regardless	of	their	meaning	to
the	regex	engine.

SSIEndTag	Directive

Description: String	that	ends	an	include	element
Syntax: SSIEndTag	tag

Default: SSIEndTag	"-->"

Context: server	config,	virtual	host
Status: Base
Module: mod_include

This	directive	changes	the	string	that	mod_include	looks	for	to
mark	the	end	of	an	include	element.

SSIEndTag	"%>"

See	also
SSIStartTag

SSIErrorMsg	Directive

Description: Error	message	displayed	when	there	is	an	SSI
error

Syntax: SSIErrorMsg	message

Default: SSIErrorMsg	"[an	error	occurred	while

processing	this	directive]"

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Base
Module: mod_include

The	SSIErrorMsg	directive	changes	the	error	message
displayed	when	mod_include	encounters	an	error.	For
production	servers	you	may	consider	changing	the	default	error
message	to	"<!--	Error	-->"	so	that	the	message	is	not
presented	to	the	user.

This	directive	has	the	same	effect	as	the	<!--#config
errmsg=message	-->	element.

SSIErrorMsg	"<!--	Error	-->"

SSIETag	Directive

Description: Controls	whether	ETags	are	generated	by	the
server.

Syntax: SSIETag	on|off

Default: SSIETag	off

Context: directory,	.htaccess
Status: Base
Module: mod_include
Compatibility: Available	in	version	2.2.15	and	later.

Under	normal	circumstances,	a	file	filtered	by	mod_include	may
contain	elements	that	are	either	dynamically	generated,	or	that
may	have	changed	independently	of	the	original	file.	As	a	result,
by	default	the	server	is	asked	not	to	generate	an	ETag	header	for
the	response	by	adding	no-etag	to	the	request	notes.

The	SSIETag	directive	suppresses	this	behaviour,	and	allows	the
server	to	generate	an	ETag	header.	This	can	be	used	to	enable
caching	of	the	output.	Note	that	a	backend	server	or	dynamic
content	generator	may	generate	an	ETag	of	its	own,	ignoring	no-
etag,	and	this	ETag	will	be	passed	by	mod_include	regardless
of	the	value	of	this	setting.	SSIETag	can	take	on	the	following
values:

off

no-etag	will	be	added	to	the	request	notes,	and	the	server	is
asked	not	to	generate	an	ETag.	Where	a	server	ignores	the
value	of	no-etag	and	generates	an	ETag	anyway,	the	ETag
will	be	respected.

on

Existing	ETags	will	be	respected,	and	ETags	generated	by	the
server	will	be	passed	on	in	the	response.

SSILastModified	Directive

Description: Controls	whether	Last-Modified	headers	are
generated	by	the	server.

Syntax: SSILastModified	on|off

Default: SSILastModified	off

Context: directory,	.htaccess
Status: Base
Module: mod_include
Compatibility: Available	in	version	2.2.15	and	later.

Under	normal	circumstances,	a	file	filtered	by	mod_include	may
contain	elements	that	are	either	dynamically	generated,	or	that
may	have	changed	independently	of	the	original	file.	As	a	result,
by	default	the	Last-Modified	header	is	stripped	from	the
response.

The	SSILastModified	directive	overrides	this	behaviour,	and
allows	the	Last-Modified	header	to	be	respected	if	already
present,	or	set	if	the	header	is	not	already	present.	This	can	be
used	to	enable	caching	of	the	output.	SSILastModified	can
take	on	the	following	values:

off

The	Last-Modified	header	will	be	stripped	from
responses,	unless	the	XBitHack	directive	is	set	to	full	as
described	below.

on

The	Last-Modified	header	will	be	respected	if	already
present	in	a	response,	and	added	to	the	response	if	the
response	is	a	file	and	the	header	is	missing.	The
SSILastModified	directive	takes	precedence	over
XBitHack.

SSILegacyExprParser	Directive

Description: Enable	compatibility	mode	for	conditional
expressions.

Syntax: SSILegacyExprParser	on|off

Default: SSILegacyExprParser	off

Context: directory,	.htaccess
Status: Base
Module: mod_include
Compatibility: Available	in	version	2.3.13	and	later.

As	of	version	2.3.13,	mod_include	has	switched	to	the	new
ap_expr	syntax	for	conditional	expressions	in	#if	flow	control
elements.	This	directive	allows	to	switch	to	the	old	syntax	which	is
compatible	with	Apache	HTTPD	version	2.2.x	and	earlier.

SSIStartTag	Directive

Description: String	that	starts	an	include	element
Syntax: SSIStartTag	tag

Default: SSIStartTag	"<!--#"

Context: server	config,	virtual	host
Status: Base
Module: mod_include

This	directive	changes	the	string	that	mod_include	looks	for	to
mark	an	include	element	to	process.

You	may	want	to	use	this	option	if	you	have	2	servers	parsing	the
output	of	a	file	each	processing	different	commands	(possibly	at
different	times).

SSIStartTag	"<%"

SSIEndTag			"%>"

The	example	given	above,	which	also	specifies	a	matching
SSIEndTag,	will	allow	you	to	use	SSI	directives	as	shown	in	the
example	below:

SSI	directives	with	alternate	start	and	end	tags
<%printenv	%>

See	also
SSIEndTag

SSITimeFormat	Directive

Description: Configures	the	format	in	which	date	strings	are
displayed

Syntax: SSITimeFormat	formatstring

Default: SSITimeFormat	"%A,	%d-%b-%Y	%H:%M:%S

%Z"

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Base
Module: mod_include

This	directive	changes	the	format	in	which	date	strings	are
displayed	when	echoing	DATE	environment	variables.	The
formatstring	is	as	in	strftime(3)	from	the	C	standard	library.

This	directive	has	the	same	effect	as	the	<!--#config
timefmt=formatstring	-->	element.

SSITimeFormat	"%R,	%B	%d,	%Y"

The	above	directive	would	cause	times	to	be	displayed	in	the
format	"22:26,	June	14,	2002".

SSIUndefinedEcho	Directive

Description: String	displayed	when	an	unset	variable	is	echoed
Syntax: SSIUndefinedEcho	string

Default: SSIUndefinedEcho	"(none)"

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Base
Module: mod_include

This	directive	changes	the	string	that	mod_include	displays
when	a	variable	is	not	set	and	"echoed".

SSIUndefinedEcho	"<!--	undef	-->"

XBitHack	Directive

Description: Parse	SSI	directives	in	files	with	the	execute	bit	set
Syntax: XBitHack	on|off|full

Default: XBitHack	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_include

The	XBitHack	directive	controls	the	parsing	of	ordinary	html
documents.	This	directive	only	affects	files	associated	with	the
MIME-type	text/html.	XBitHack	can	take	on	the	following
values:

off

No	special	treatment	of	executable	files.

on

Any	text/html	file	that	has	the	user-execute	bit	set	will	be
treated	as	a	server-parsed	html	document.

full

As	for	on	but	also	test	the	group-execute	bit.	If	it	is	set,	then
set	the	Last-modified	date	of	the	returned	file	to	be	the
last	modified	time	of	the	file.	If	it	is	not	set,	then	no	last-
modified	date	is	sent.	Setting	this	bit	allows	clients	and
proxies	to	cache	the	result	of	the	request.

Note

You	would	not	want	to	use	the	full	option,	unless	you	assure
the	group-execute	bit	is	unset	for	every	SSI	script	which
might	#include	a	CGI	or	otherwise	produces	different
output	on	each	hit	(or	could	potentially	change	on
subsequent	requests).

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	SSILastModified	directive	takes	precedence	over
the	XBitHack	directive	when	SSILastModified	is	set	to
on.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_info

				.	 					.

: 			
		

: Extension
: info_module
: mod_info.c

mod_info		 httpd.conf				.

<Location	/server-info>

SetHandler	server-info

</Location>

		 http://your.host.example.com/server-info			
			.

	

		 mod_info	,		 (,	.htaccess)		 				
		.	 						.

				,	/,		 								
.							 	 		.

		 mod_authz_host		 							.

	
<Location	/server-info>

SetHandler	server-info

Order	allow,deny

#				

Allow	from	127.0.0.1

#	,						

Allow	from	192.168.1.17

</Location>

		

							 			,			(hook),		
		.

server-info					 				.		,
http://your.host.example.com/server-info?config	
		.

?<module-name>

			

?config

		,	

?hooks

		(hook)	

?list

		

?server

		

	

mod_info					 						.		
			.

								 	.	 ServerRoot

LoadModule,	LoadFile			 	.
Include,	<IfModule>,	<IfDefine>		 				
.	 				.
		.	(.)
()	 .htaccess					.
	 <Directory>				,	 mod_info	
</Directory>		 		.
mod_perl					 				.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

AddModuleInfo	

: 				server-info			
: AddModuleInfo	module-name	string

: ,	
: Extension
: mod_info
: 	1.3	

module-name			 	 	string		HTML	.		,

AddModuleInfo	mod_deflate.c	'See	<a	\

href="http://www.apache.org/docs/2.4/mod/mod_deflate.html">\

http://www.apache.org/docs/docs/2.4/mod/mod_deflate.html'

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_isapi

				.	 					.

: Windows		ISAPI
Extension	

: Base
: isapi_module
: mod_isapi.c
: Win32	only

		Internet	Server	extension	API	.		 		Windows	
Internet	Server	extension	(, 	ISAPI	.dll)			.

ISAPI	extension	(.dll)		.	 Apache	Group				
,			 .	ISAPI	extension				ISAPI		 		.	
		 				 .

	 AddHandler			 ISAPI			 isapi-handler		.
.dll		ISAPI	extension		httpd.conf		 		.

AddHandler	isapi-handler	.dll

								.	 	httpd.conf					
	 		.

ISAPICacheFile	c:/WebWork/Scripts/ISAPI/mytest.dll

ISAPI	extension						 	ISAPI	extension	CGI	
		 	.	,	ISAPI	.dll				 Options	ExecCGI

mod_isapi	ISAPI				 		 	 	 	 	.

	

	ISAPI					"	 "			ISAPI	2.0			.	
		ISAPI					 				.	ISA					
		,					 		.					
ISAPILogNotSupported	Off			 		.

Microsoft	IIS			ISAPI	extension		 					
		 			.			 ISAPICacheFile			
ISAPI	extension			 .	,						
ISAPI					 							

,		ISAPI	Extension	,	 ISAPI	Filter		 	.			
,			.

	

	2.0	 mod_isapi		,	 ServerSupportFunction

	.

HSE_REQ_SEND_URL_REDIRECT_RESP

			.
	URL			(, 	http://server/location).

HSE_REQ_SEND_URL

			.
	URL	,						 (, 	/location
				.

			Microsoft		 HSE_REQ_SEND_URL				
	.				 						.

HSE_REQ_SEND_RESPONSE_HEADER

headers				()								
.	 headers		NULL	,			NULL	 		.

HSE_REQ_DONE_WITH_SESSION

ISAPI						 			.

HSE_REQ_MAP_URL_TO_PATH

			()		.

HSE_APPEND_LOG_PARAMETER

				.
CustomLog		 \"%{isapi-parameter}n\"	
ISAPIAppendLogToQuery	On			 %q		
ISAPIAppendLogToErrors	On				

		 %{isapi-parameter}n		 				.

HSE_REQ_IS_KEEP_CONN

	Keep-Alive		.

HSE_REQ_SEND_RESPONSE_HEADER_EX

fKeepConn					 		.

HSE_REQ_IS_CONNECTED

			false	.

		 ServerSupportFunction		 		 FALSE	
GetLastError		 ERROR_INVALID_PARAMETER	.

ReadClient	(ISAPIReadAheadBuffer)	 			
.	 ISAPIReadAheadBuffer		(ISAPI)		
	extension	 		.		,	ISAPI	extension	 ReadClient

				.

WriteClient	,	 HSE_IO_SYNC			(0)				
	.		 WriteClient		 FALSE		 ,	 GetLastError	
ERROR_INVALID_PARAMETER	.

GetServerVariable	,	()			.
GetServerVariable				 CGI		 ALL_HTTP

			.

	2.0	 mod_isapi		ISAPI		 			,		
TransmitFile			.	,	ISAPI	 .dll					
1.3	mod_isapi			.

ISAPIAppendLogToErrors	

: ISAPI	exntension	 HSE_APPEND_LOG_PARAMETER

			
: ISAPIAppendLogToErrors	on|off

: ISAPIAppendLogToErrors	off

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_isapi

ISAPI	exntension	 HSE_APPEND_LOG_PARAMETER				
.

ISAPIAppendLogToQuery	

: ISAPI	exntension	 HSE_APPEND_LOG_PARAMETER

		
: ISAPIAppendLogToQuery	on|off

: ISAPIAppendLogToQuery	on

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_isapi

ISAPI	exntension	 HSE_APPEND_LOG_PARAMETER			
(CustomLog	%q).

ISAPICacheFile	

: 				ISAPI	.dll	
: ISAPICacheFile	file-path	[file-path]	...

: ,	
: Base
: mod_isapi

							 					.		
			.		 		.				 ServerRoot

ISAPIFakeAsync	

: 	ISAPI			
: ISAPIFakeAsync	on|off

: ISAPIFakeAsync	off

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_isapi

on			ISAPI			.

ISAPILogNotSupported	

: ISAPI	extension					

: ISAPILogNotSupported	on|off

: ISAPILogNotSupported	off

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_isapi

ISAPI	extension						 		.					
.			ISAPI				 	off		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

ISAPIReadAheadBuffer	

: ISAPI	extension	(read	ahead
buffer)	

: ISAPIReadAheadBuffer	size

: ISAPIReadAheadBuffer	49152

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_isapi

ISAPI	extension						 .	()		
ReadClient				.		ISAPI	extension	 ReadClient

		.			 ISAPI	extension		.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lbmethod_bybusyness

Description: Pending	Request	Counting	load	balancer
scheduler	algorithm	for	mod_proxy_balancer

Status: Extension
Module	Identifier: lbmethod_bybusyness_module
Source	File: mod_lbmethod_bybusyness.c
Compatibility: Split	off	from	mod_proxy_balancer	in	2.3

Summary
This	module	does	not	provide	any	configuration	directives	of	its	own.
It	requires	the	services	of	mod_proxy_balancer,	and	provides	the
bybusyness	load	balancing	method.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

mod_proxy_balancer

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_lbmethod_bybusyness
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_lbmethod_bybusyness

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Pending	Request	Counting	Algorithm

Enabled	via	lbmethod=bybusyness,	this	scheduler	keeps	track
of	how	many	requests	each	worker	is	currently	assigned	at
present.	A	new	request	is	automatically	assigned	to	the	worker
with	the	lowest	number	of	active	requests.	This	is	useful	in	the
case	of	workers	that	queue	incoming	requests	independently	of
Apache,	to	ensure	that	queue	length	stays	even	and	a	request	is
always	given	to	the	worker	most	likely	to	service	it	the	fastest	and
reduce	latency.

In	the	case	of	multiple	least-busy	workers,	the	statistics	(and
weightings)	used	by	the	Request	Counting	method	are	used	to
break	the	tie.	Over	time,	the	distribution	of	work	will	come	to
resemble	that	characteristic	of	byrequests	(as	implemented	by
mod_lbmethod_byrequests).

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lbmethod_byrequests

Description: Request	Counting	load	balancer	scheduler
algorithm	for	mod_proxy_balancer

Status: Extension
Module	Identifier: lbmethod_byrequests_module
Source	File: mod_lbmethod_byrequests.c
Compatibility: Split	off	from	mod_proxy_balancer	in	2.3

Summary
This	module	does	not	provide	any	configuration	directives	of	its	own.
It	requires	the	services	of	mod_proxy_balancer,	and	provides	the
byrequests	load	balancing	method..

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

mod_proxy_balancer

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_lbmethod_byrequests
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_lbmethod_byrequests

Request	Counting	Algorithm

Enabled	via	lbmethod=byrequests,	the	idea	behind	this
scheduler	is	that	we	distribute	the	requests	among	the	various
workers	to	ensure	that	each	gets	their	configured	share	of	the
number	of	requests.	It	works	as	follows:

lbfactor	is	how	much	we	expect	this	worker	to	work,	or	the
workers'	work	quota.	This	is	a	normalized	value	representing	their
"share"	of	the	amount	of	work	to	be	done.

lbstatus	is	how	urgent	this	worker	has	to	work	to	fulfill	its	quota	of
work.

The	worker	is	a	member	of	the	load	balancer,	usually	a	remote
host	serving	one	of	the	supported	protocols.

We	distribute	each	worker's	work	quota	to	the	worker,	and	then
look	which	of	them	needs	to	work	most	urgently	(biggest	lbstatus).
This	worker	is	then	selected	for	work,	and	its	lbstatus	reduced	by
the	total	work	quota	we	distributed	to	all	workers.	Thus	the	sum	of
all	lbstatus	does	not	change(*)	and	we	distribute	the	requests	as
desired.

If	some	workers	are	disabled,	the	others	will	still	be	scheduled
correctly.

for	each	worker	in	workers

				worker	lbstatus	+=	worker	lbfactor

				total	factor				+=	worker	lbfactor

				if	worker	lbstatus	>	candidate	lbstatus

								candidate	=	worker

candidate	lbstatus	-=	total	factor

If	a	balancer	is	configured	as	follows:

worker a b c d

lbfactor 25 25 25 25

lbstatus 0 0 0 0

And	b	gets	disabled,	the	following	schedule	is	produced:

worker a b c d
lbstatus -50 0 25 25

lbstatus -25 0 -25 50

lbstatus 0 0 0 0

(repeat)

That	is	it	schedules:	a	c	d	a	c	d	a	c	d	...	Please	note	that:

worker a b c d
lbfactor 25 25 25 25

Has	the	exact	same	behavior	as:

worker a b c d
lbfactor 1 1 1 1

This	is	because	all	values	of	lbfactor	are	normalized	with	respect
to	the	others.	For:

worker a b c
lbfactor 1 4 1

worker	b	will,	on	average,	get	4	times	the	requests	that	a	and	c
will.

The	following	asymmetric	configuration	works	as	one	would
expect:

worker a b
70 30

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

lbfactor
	

lbstatus -30 30

lbstatus 40 -40

lbstatus 10 -10

lbstatus -20 20

lbstatus -50 50

lbstatus 20 -20

lbstatus -10 10

lbstatus -40 40

lbstatus 30 -30

lbstatus 0 0

(repeat)

That	is	after	10	schedules,	the	schedule	repeats	and	7	a	are
selected	with	3	b	interspersed.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lbmethod_bytraffic

Description: Weighted	Traffic	Counting	load	balancer
scheduler	algorithm	for	mod_proxy_balancer

Status: Extension
Module	Identifier: lbmethod_bytraffic_module
Source	File: mod_lbmethod_bytraffic.c
Compatibility: Split	off	from	mod_proxy_balancer	in	2.3

Summary
This	module	does	not	provide	any	configuration	directives	of	its	own.
It	requires	the	services	of	mod_proxy_balancer,	and	provides	the
bytraffic	load	balancing	method..

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

mod_proxy_balancer

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_lbmethod_bytraffic
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_lbmethod_bytraffic

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Weighted	Traffic	Counting	Algorithm

Enabled	via	lbmethod=bytraffic,	the	idea	behind	this
scheduler	is	very	similar	to	the	Request	Counting	method,	with	the
following	changes:

lbfactor	is	how	much	traffic,	in	bytes,	we	want	this	worker	to
handle.	This	is	also	a	normalized	value	representing	their	"share"
of	the	amount	of	work	to	be	done,	but	instead	of	simply	counting
the	number	of	requests,	we	take	into	account	the	amount	of	traffic
this	worker	has	either	seen	or	produced.

If	a	balancer	is	configured	as	follows:

worker a b c
lbfactor 1 2 1

Then	we	mean	that	we	want	b	to	process	twice	the	amount	of
bytes	than	a	or	c	should.	It	does	not	necessarily	mean	that	b
would	handle	twice	as	many	requests,	but	it	would	process	twice
the	I/O.	Thus,	the	size	of	the	request	and	response	are	applied	to
the	weighting	and	selection	algorithm.

Note:	input	and	output	bytes	are	weighted	the	same.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lbmethod_heartbeat

Description: Heartbeat	Traffic	Counting	load	balancer
scheduler	algorithm	for	mod_proxy_balancer

Status: Experimental
Module	Identifier: lbmethod_heartbeat_module
Source	File: mod_lbmethod_heartbeat.c
Compatibility: Available	in	version	2.3	and	later

Summary
lbmethod=heartbeat	uses	the	services	of	mod_heartmonitor	to
balance	between	origin	servers	that	are	providing	heartbeat	info	via
the	mod_heartbeat	module.

This	modules	load	balancing	algorithm	favors	servers	with	more	ready
(idle)	capacity	over	time,	but	does	not	select	the	server	with	the	most
ready	capacity	every	time.	Servers	that	have	0	active	clients	are
penalized,	with	the	assumption	that	they	are	not	fully	initialized.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

mod_proxy_balancer

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_lbmethod_heartbeat
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_lbmethod_heartbeat

mod_heartbeat

mod_heartmonitor

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

HeartbeatStorage	Directive

Description: Path	to	read	heartbeat	data
Syntax: HeartbeatStorage	file-path

Default: HeartbeatStorage	logs/hb.dat

Context: server	config
Status: Experimental
Module: mod_lbmethod_heartbeat

The	HeartbeatStorage	directive	specifies	the	path	to	read
heartbeat	data.	This	flat-file	is	used	only	when
mod_slotmem_shm	is	not	loaded.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_ldap

Description: LDAP	connection	pooling	and	result	caching
services	for	use	by	other	LDAP	modules

Status: Extension
Module	Identifier: ldap_module
Source	File: util_ldap.c

Summary
This	module	was	created	to	improve	the	performance	of	websites
relying	on	backend	connections	to	LDAP	servers.	In	addition	to	the
functions	provided	by	the	standard	LDAP	libraries,	this	module	adds
an	LDAP	connection	pool	and	an	LDAP	shared	memory	cache.

To	enable	this	module,	LDAP	support	must	be	compiled	into	apr-util.
This	is	achieved	by	adding	the	--with-ldap	flag	to	the	configure
script	when	building	Apache.

SSL/TLS	support	is	dependent	on	which	LDAP	toolkit	has	been	linked
to	APR.	As	of	this	writing,	APR-util	supports:	OpenLDAP	SDK	(2.x	or
later),	Novell	LDAP	SDK,	Mozilla	LDAP	SDK,	native	Solaris	LDAP
SDK	(Mozilla	based)	or	the	native	Microsoft	LDAP	SDK.	See	the	APR
website	for	details.

http://www.openldap.org/
http://developer.novell.com/ndk/cldap.htm
https://wiki.mozilla.org/LDAP_C_SDK
http://apr.apache.org

Example	Configuration

The	following	is	an	example	configuration	that	uses	mod_ldap	to
increase	the	performance	of	HTTP	Basic	authentication	provided
by	mod_authnz_ldap.

#	Enable	the	LDAP	connection	pool	and	shared

#	memory	cache.	Enable	the	LDAP	cache	status

#	handler.	Requires	that	mod_ldap	and	mod_authnz_ldap

#	be	loaded.	Change	the	"yourdomain.example.com"	to

#	match	your	domain.

LDAPSharedCacheSize	500000

LDAPCacheEntries	1024

LDAPCacheTTL	600

LDAPOpCacheEntries	1024

LDAPOpCacheTTL	600

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				AuthLDAPURL	"ldap://127.0.0.1/dc=example,dc=com?uid?one"

				Require	valid-user

</Location>

LDAP	Connection	Pool

LDAP	connections	are	pooled	from	request	to	request.	This	allows
the	LDAP	server	to	remain	connected	and	bound	ready	for	the
next	request,	without	the	need	to	unbind/connect/rebind.	The
performance	advantages	are	similar	to	the	effect	of	HTTP
keepalives.

On	a	busy	server	it	is	possible	that	many	requests	will	try	and
access	the	same	LDAP	server	connection	simultaneously.	Where
an	LDAP	connection	is	in	use,	Apache	will	create	a	new
connection	alongside	the	original	one.	This	ensures	that	the
connection	pool	does	not	become	a	bottleneck.

There	is	no	need	to	manually	enable	connection	pooling	in	the
Apache	configuration.	Any	module	using	this	module	for	access	to
LDAP	services	will	share	the	connection	pool.

LDAP	connections	can	keep	track	of	the	ldap	client	credentials
used	when	binding	to	an	LDAP	server.	These	credentials	can	be
provided	to	LDAP	servers	that	do	not	allow	anonymous	binds
during	referral	chasing.	To	control	this	feature,	see	the
LDAPReferrals	and	LDAPReferralHopLimit	directives.	By
default,	this	feature	is	enabled.

LDAP	Cache

For	improved	performance,	mod_ldap	uses	an	aggressive
caching	strategy	to	minimize	the	number	of	times	that	the	LDAP
server	must	be	contacted.	Caching	can	easily	double	or	triple	the
throughput	of	Apache	when	it	is	serving	pages	protected	with
mod_authnz_ldap.	In	addition,	the	load	on	the	LDAP	server	will	be
significantly	decreased.

mod_ldap	supports	two	types	of	LDAP	caching	during	the
search/bind	phase	with	a	search/bind	cache	and	during	the
compare	phase	with	two	operation	caches.	Each	LDAP	URL	that
is	used	by	the	server	has	its	own	set	of	these	three	caches.

The	Search/Bind	Cache
The	process	of	doing	a	search	and	then	a	bind	is	the	most	time-
consuming	aspect	of	LDAP	operation,	especially	if	the	directory	is
large.	The	search/bind	cache	is	used	to	cache	all	searches	that
resulted	in	successful	binds.	Negative	results	(i.e.,	unsuccessful
searches,	or	searches	that	did	not	result	in	a	successful	bind)	are
not	cached.	The	rationale	behind	this	decision	is	that	connections
with	invalid	credentials	are	only	a	tiny	percentage	of	the	total
number	of	connections,	so	by	not	caching	invalid	credentials,	the
size	of	the	cache	is	reduced.

mod_ldap	stores	the	username,	the	DN	retrieved,	the	password
used	to	bind,	and	the	time	of	the	bind	in	the	cache.	Whenever	a
new	connection	is	initiated	with	the	same	username,	mod_ldap
compares	the	password	of	the	new	connection	with	the	password
in	the	cache.	If	the	passwords	match,	and	if	the	cached	entry	is
not	too	old,	mod_ldap	bypasses	the	search/bind	phase.

The	search	and	bind	cache	is	controlled	with	the
LDAPCacheEntries	and	LDAPCacheTTL	directives.

Operation	Caches
During	attribute	and	distinguished	name	comparison	functions,
mod_ldap	uses	two	operation	caches	to	cache	the	compare
operations.	The	first	compare	cache	is	used	to	cache	the	results	of
compares	done	to	test	for	LDAP	group	membership.	The	second
compare	cache	is	used	to	cache	the	results	of	comparisons	done
between	distinguished	names.

Note	that,	when	group	membership	is	being	checked,	any	sub-
group	comparison	results	are	cached	to	speed	future	sub-group
comparisons.

The	behavior	of	both	of	these	caches	is	controlled	with	the
LDAPOpCacheEntries	and	LDAPOpCacheTTL	directives.

Monitoring	the	Cache
mod_ldap	has	a	content	handler	that	allows	administrators	to
monitor	the	cache	performance.	The	name	of	the	content	handler
is	ldap-status,	so	the	following	directives	could	be	used	to
access	the	mod_ldap	cache	information:

<Location	"/server/cache-info">

				SetHandler	ldap-status

</Location>

By	fetching	the	URL	http://servername/cache-info,	the
administrator	can	get	a	status	report	of	every	cache	that	is	used	by
mod_ldap	cache.	Note	that	if	Apache	does	not	support	shared
memory,	then	each	httpd	instance	has	its	own	cache,	so
reloading	the	URL	will	result	in	different	information	each	time,
depending	on	which	httpd	instance	processes	the	request.

Using	SSL/TLS

The	ability	to	create	an	SSL	and	TLS	connections	to	an	LDAP
server	is	defined	by	the	directives	LDAPTrustedGlobalCert,
LDAPTrustedClientCert	and	LDAPTrustedMode.	These
directives	specify	the	CA	and	optional	client	certificates	to	be	used,
as	well	as	the	type	of	encryption	to	be	used	on	the	connection
(none,	SSL	or	TLS/STARTTLS).

#	Establish	an	SSL	LDAP	connection	on	port	636.	Requires	that

#	mod_ldap	and	mod_authnz_ldap	be	loaded.	Change	the

#	"yourdomain.example.com"	to	match	your	domain.

LDAPTrustedGlobalCert	CA_DER	"/certs/certfile.der"

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				AuthLDAPURL	"ldaps://127.0.0.1/dc=example,dc=com?uid?one"

				Require	valid-user

</Location>

#	Establish	a	TLS	LDAP	connection	on	port	389.	Requires	that

#	mod_ldap	and	mod_authnz_ldap	be	loaded.	Change	the

#	"yourdomain.example.com"	to	match	your	domain.

LDAPTrustedGlobalCert	CA_DER	"/certs/certfile.der"

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				AuthLDAPURL	"ldap://127.0.0.1/dc=example,dc=com?uid?one"	TLS

				Require	valid-user

</Location>

SSL/TLS	Certificates

The	different	LDAP	SDKs	have	widely	different	methods	of	setting
and	handling	both	CA	and	client	side	certificates.

If	you	intend	to	use	SSL	or	TLS,	read	this	section	CAREFULLY	so
as	to	understand	the	differences	between	configurations	on	the
different	LDAP	toolkits	supported.

Netscape/Mozilla/iPlanet	SDK
CA	certificates	are	specified	within	a	file	called	cert7.db.	The	SDK
will	not	talk	to	any	LDAP	server	whose	certificate	was	not	signed
by	a	CA	specified	in	this	file.	If	client	certificates	are	required,	an
optional	key3.db	file	may	be	specified	with	an	optional	password.
The	secmod	file	can	be	specified	if	required.	These	files	are	in	the
same	format	as	used	by	the	Netscape	Communicator	or	Mozilla
web	browsers.	The	easiest	way	to	obtain	these	files	is	to	grab
them	from	your	browser	installation.

Client	certificates	are	specified	per	connection	using	the
LDAPTrustedClientCert	directive	by	referring	to	the	certificate
"nickname".	An	optional	password	may	be	specified	to	unlock	the
certificate's	private	key.

The	SDK	supports	SSL	only.	An	attempt	to	use	STARTTLS	will
cause	an	error	when	an	attempt	is	made	to	contact	the	LDAP
server	at	runtime.

#	Specify	a	Netscape	CA	certificate	file

LDAPTrustedGlobalCert	CA_CERT7_DB	"/certs/cert7.db"

#	Specify	an	optional	key3.db	file	for	client	certificate	support

LDAPTrustedGlobalCert	CERT_KEY3_DB	"/certs/key3.db"

#	Specify	the	secmod	file	if	required

LDAPTrustedGlobalCert	CA_SECMOD	"/certs/secmod"

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				LDAPTrustedClientCert	CERT_NICKNAME	<nickname>	[password]

				AuthLDAPURL	"ldaps://127.0.0.1/dc=example,dc=com?uid?one"

				Require	valid-user

</Location>

Novell	SDK
One	or	more	CA	certificates	must	be	specified	for	the	Novell	SDK
to	work	correctly.	These	certificates	can	be	specified	as	binary
DER	or	Base64	(PEM)	encoded	files.

Note:	Client	certificates	are	specified	globally	rather	than	per
connection,	and	so	must	be	specified	with	the
LDAPTrustedGlobalCert	directive	as	below.	Trying	to	set	client
certificates	via	the	LDAPTrustedClientCert	directive	will	cause	an
error	to	be	logged	when	an	attempt	is	made	to	connect	to	the
LDAP	server..

The	SDK	supports	both	SSL	and	STARTTLS,	set	using	the
LDAPTrustedMode	parameter.	If	an	ldaps://	URL	is	specified,	SSL
mode	is	forced,	override	this	directive.

#	Specify	two	CA	certificate	files

LDAPTrustedGlobalCert	CA_DER	"/certs/cacert1.der"

LDAPTrustedGlobalCert	CA_BASE64	"/certs/cacert2.pem"

#	Specify	a	client	certificate	file	and	key

LDAPTrustedGlobalCert	CERT_BASE64	"/certs/cert1.pem"

LDAPTrustedGlobalCert	KEY_BASE64	"/certs/key1.pem"	[password]

#	Do	not	use	this	directive,	as	it	will	throw	an	error

#LDAPTrustedClientCert	CERT_BASE64	"/certs/cert1.pem"

OpenLDAP	SDK
One	or	more	CA	certificates	must	be	specified	for	the	OpenLDAP
SDK	to	work	correctly.	These	certificates	can	be	specified	as
binary	DER	or	Base64	(PEM)	encoded	files.

Both	CA	and	client	certificates	may	be	specified	globally
(LDAPTrustedGlobalCert)	or	per-connection
(LDAPTrustedClientCert).	When	any	settings	are	specified	per-
connection,	the	global	settings	are	superseded.

The	documentation	for	the	SDK	claims	to	support	both	SSL	and
STARTTLS,	however	STARTTLS	does	not	seem	to	work	on	all
versions	of	the	SDK.	The	SSL/TLS	mode	can	be	set	using	the
LDAPTrustedMode	parameter.	If	an	ldaps://	URL	is	specified,	SSL
mode	is	forced.	The	OpenLDAP	documentation	notes	that	SSL
(ldaps://)	support	has	been	deprecated	to	be	replaced	with	TLS,
although	the	SSL	functionality	still	works.

#	Specify	two	CA	certificate	files

LDAPTrustedGlobalCert	CA_DER	"/certs/cacert1.der"

LDAPTrustedGlobalCert	CA_BASE64	"/certs/cacert2.pem"

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				LDAPTrustedClientCert	CERT_BASE64	"/certs/cert1.pem"

				LDAPTrustedClientCert	KEY_BASE64	"/certs/key1.pem"

				#	CA	certs	respecified	due	to	per-directory	client	certs

				LDAPTrustedClientCert	CA_DER	"/certs/cacert1.der"

				LDAPTrustedClientCert	CA_BASE64	"/certs/cacert2.pem"

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				AuthLDAPURL	"ldaps://127.0.0.1/dc=example,dc=com?uid?one"

				Require	valid-user

</Location>

Solaris	SDK
SSL/TLS	for	the	native	Solaris	LDAP	libraries	is	not	yet	supported.
If	required,	install	and	use	the	OpenLDAP	libraries	instead.

Microsoft	SDK
SSL/TLS	certificate	configuration	for	the	native	Microsoft	LDAP
libraries	is	done	inside	the	system	registry,	and	no	configuration
directives	are	required.

Both	SSL	and	TLS	are	supported	by	using	the	ldaps://	URL
format,	or	by	using	the	LDAPTrustedMode	directive	accordingly.

Note:	The	status	of	support	for	client	certificates	is	not	yet	known
for	this	toolkit.

LDAPCacheEntries	Directive

Description: Maximum	number	of	entries	in	the	primary	LDAP
cache

Syntax: LDAPCacheEntries	number

Default: LDAPCacheEntries	1024

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	maximum	size	of	the	primary	LDAP	cache.	This
cache	contains	successful	search/binds.	Set	it	to	0	to	turn	off
search/bind	caching.	The	default	size	is	1024	cached	searches.

LDAPCacheTTL	Directive

Description: Time	that	cached	items	remain	valid
Syntax: LDAPCacheTTL	seconds

Default: LDAPCacheTTL	600

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	time	(in	seconds)	that	an	item	in	the	search/bind
cache	remains	valid.	The	default	is	600	seconds	(10	minutes).

LDAPConnectionPoolTTL	Directive

Description: Discard	backend	connections	that	have	been
sitting	in	the	connection	pool	too	long

Syntax: LDAPConnectionPoolTTL	n

Default: LDAPConnectionPoolTTL	-1

Context: server	config,	virtual	host
Status: Extension
Module: mod_ldap
Compatibility: Apache	HTTP	Server	2.3.12	and	later

Specifies	the	maximum	age,	in	seconds,	that	a	pooled	LDAP
connection	can	remain	idle	and	still	be	available	for	use.
Connections	are	cleaned	up	when	they	are	next	needed,	not
asynchronously.

A	setting	of	0	causes	connections	to	never	be	saved	in	the
backend	connection	pool.	The	default	value	of	-1,	and	any	other
negative	value,	allows	connections	of	any	age	to	be	reused.

For	performance	reasons,	the	reference	time	used	by	this	directive
is	based	on	when	the	LDAP	connection	is	returned	to	the	pool,	not
the	time	of	the	last	successful	I/O	with	the	LDAP	server.

Since	2.4.10,	new	measures	are	in	place	to	avoid	the	reference
time	from	being	inflated	by	cache	hits	or	slow	requests.	First,	the
reference	time	is	not	updated	if	no	backend	LDAP	conncetions
were	needed.	Second,	the	reference	time	uses	the	time	the	HTTP
request	was	received	instead	of	the	time	the	request	is	completed.

This	timeout	defaults	to	units	of	seconds,	but	accepts	suffixes
for	milliseconds	(ms),	minutes	(min),	and	hours	(h).

LDAPConnectionTimeout	Directive

Description: Specifies	the	socket	connection	timeout	in	seconds
Syntax: LDAPConnectionTimeout	seconds

Context: server	config
Status: Extension
Module: mod_ldap

This	directive	configures	the	LDAP_OPT_NETWORK_TIMEOUT
(or	LDAP_OPT_CONNECT_TIMEOUT)	option	in	the	underlying
LDAP	client	library,	when	available.	This	value	typically	controls
how	long	the	LDAP	client	library	will	wait	for	the	TCP	connection	to
the	LDAP	server	to	complete.

If	a	connection	is	not	successful	with	the	timeout	period,	either	an
error	will	be	returned	or	the	LDAP	client	library	will	attempt	to
connect	to	a	secondary	LDAP	server	if	one	is	specified	(via	a
space-separated	list	of	hostnames	in	the	AuthLDAPURL).

The	default	is	10	seconds,	if	the	LDAP	client	library	linked	with	the
server	supports	the	LDAP_OPT_NETWORK_TIMEOUT	option.

LDAPConnectionTimeout	is	only	available	when	the	LDAP	client
library	linked	with	the	server	supports	the
LDAP_OPT_NETWORK_TIMEOUT	(or
LDAP_OPT_CONNECT_TIMEOUT)	option,	and	the	ultimate
behavior	is	dictated	entirely	by	the	LDAP	client	library.

LDAPLibraryDebug	Directive

Description: Enable	debugging	in	the	LDAP	SDK
Syntax: LDAPLibraryDebug	7

Default: disabled

Context: server	config
Status: Extension
Module: mod_ldap

Turns	on	SDK-specific	LDAP	debug	options	that	generally	cause
the	LDAP	SDK	to	log	verbose	trace	information	to	the	main
Apache	error	log.	The	trace	messages	from	the	LDAP	SDK
provide	gory	details	that	can	be	useful	during	debugging	of
connectivity	problems	with	backend	LDAP	servers

This	option	is	only	configurable	when	Apache	HTTP	Server	is
linked	with	an	LDAP	SDK	that	implements	LDAP_OPT_DEBUG	or
LDAP_OPT_DEBUG_LEVEL,	such	as	OpenLDAP	(a	value	of	7	is
verbose)	or	Tivoli	Directory	Server	(a	value	of	65535	is	verbose).

The	logged	information	will	likely	contain	plaintext	credentials
being	used	or	validated	by	LDAP	authentication,	so	care	should
be	taken	in	protecting	and	purging	the	error	log	when	this
directive	is	used.

LDAPOpCacheEntries	Directive

Description: Number	of	entries	used	to	cache	LDAP	compare
operations

Syntax: LDAPOpCacheEntries	number

Default: LDAPOpCacheEntries	1024

Context: server	config
Status: Extension
Module: mod_ldap

This	specifies	the	number	of	entries	mod_ldap	will	use	to	cache
LDAP	compare	operations.	The	default	is	1024	entries.	Setting	it
to	0	disables	operation	caching.

LDAPOpCacheTTL	Directive

Description: Time	that	entries	in	the	operation	cache	remain
valid

Syntax: LDAPOpCacheTTL	seconds

Default: LDAPOpCacheTTL	600

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	time	(in	seconds)	that	entries	in	the	operation	cache
remain	valid.	The	default	is	600	seconds.

LDAPReferralHopLimit	Directive

Description: The	maximum	number	of	referral	hops	to	chase
before	terminating	an	LDAP	query.

Syntax: LDAPReferralHopLimit	number

Default: SDK	dependent,	typically	between	5

and	10

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ldap

This	directive,	if	enabled	by	the	LDAPReferrals	directive,	limits
the	number	of	referral	hops	that	are	followed	before	terminating	an
LDAP	query.

Support	for	this	tunable	is	uncommon	in	LDAP	SDKs.

LDAPReferrals	Directive

Description: Enable	referral	chasing	during	queries	to	the
LDAP	server.

Syntax: LDAPReferrals	On|Off|default

Default: LDAPReferrals	On

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ldap
Compatibility: The	default	parameter	is	available	in	Apache

2.4.7	and	later

Some	LDAP	servers	divide	their	directory	among	multiple	domains
and	use	referrals	to	direct	a	client	when	a	domain	boundary	is
crossed.	This	is	similar	to	a	HTTP	redirect.	LDAP	client	libraries
may	or	may	not	chase	referrals	by	default.	This	directive	explicitly
configures	the	referral	chasing	in	the	underlying	SDK.

LDAPReferrals	takes	the	following	values:

"on"
When	set	to	"on",	the	underlying	SDK's	referral	chasing	state
is	enabled,	LDAPReferralHopLimit	is	used	to	override	the
SDK's	hop	limit,	and	an	LDAP	rebind	callback	is	registered.

"off"
When	set	to	"off",	the	underlying	SDK's	referral	chasing	state
is	disabled	completely.

"default"
When	set	to	"default",	the	underlying	SDK's	referral	chasing
state	is	not	changed,	LDAPReferralHopLimit	is	not	used
to	overide	the	SDK's	hop	limit,	and	no	LDAP	rebind	callback	is
registered.

The	directive	LDAPReferralHopLimit	works	in	conjunction	with
this	directive	to	limit	the	number	of	referral	hops	to	follow	before
terminating	the	LDAP	query.	When	referral	processing	is	enabled
by	a	value	of	"On",	client	credentials	will	be	provided,	via	a	rebind
callback,	for	any	LDAP	server	requiring	them.

LDAPRetries	Directive

Description: Configures	the	number	of	LDAP	server	retries.
Syntax: LDAPRetries	number-of-retries

Default: LDAPRetries	3

Context: server	config
Status: Extension
Module: mod_ldap

The	server	will	retry	failed	LDAP	requests	up	to	LDAPRetries
times.	Setting	this	directive	to	0	disables	retries.

LDAP	errors	such	as	timeouts	and	refused	connections	are
retryable.

LDAPRetryDelay	Directive

Description: Configures	the	delay	between	LDAP	server	retries.
Syntax: LDAPRetryDelay	seconds

Default: LDAPRetryDelay	0

Context: server	config
Status: Extension
Module: mod_ldap

If	LDAPRetryDelay	is	set	to	a	non-zero	value,	the	server	will
delay	retrying	an	LDAP	request	for	the	specified	amount	of	time.
Setting	this	directive	to	0	will	result	in	any	retry	to	occur	without
delay.

LDAP	errors	such	as	timeouts	and	refused	connections	are
retryable.

LDAPSharedCacheFile	Directive

Description: Sets	the	shared	memory	cache	file
Syntax: LDAPSharedCacheFile	directory-

path/filename

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	directory	path	and	file	name	of	the	shared	memory
cache	file.	If	not	set,	anonymous	shared	memory	will	be	used	if	the
platform	supports	it.

LDAPSharedCacheSize	Directive

Description: Size	in	bytes	of	the	shared-memory	cache
Syntax: LDAPSharedCacheSize	bytes

Default: LDAPSharedCacheSize	500000

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	number	of	bytes	to	allocate	for	the	shared	memory
cache.	The	default	is	500kb.	If	set	to	0,	shared	memory	caching
will	not	be	used	and	every	HTTPD	process	will	create	its	own
cache.

LDAPTimeout	Directive

Description: Specifies	the	timeout	for	LDAP	search	and	bind
operations,	in	seconds

Syntax: LDAPTimeout	seconds

Default: LDAPTimeout	60

Context: server	config
Status: Extension
Module: mod_ldap
Compatibility: Apache	HTTP	Server	2.3.5	and	later

This	directive	configures	the	timeout	for	bind	and	search
operations,	as	well	as	the	LDAP_OPT_TIMEOUT	option	in	the
underlying	LDAP	client	library,	when	available.

If	the	timeout	expires,	httpd	will	retry	in	case	an	existing
connection	has	been	silently	dropped	by	a	firewall.	However,
performance	will	be	much	better	if	the	firewall	is	configured	to
send	TCP	RST	packets	instead	of	silently	dropping	packets.

Timeouts	for	ldap	compare	operations	requires	an	SDK	with
LDAP_OPT_TIMEOUT,	such	as	OpenLDAP	>=	2.4.4.

LDAPTrustedClientCert	Directive

Description: Sets	the	file	containing	or	nickname	referring	to	a
per	connection	client	certificate.	Not	all	LDAP
toolkits	support	per	connection	client	certificates.

Syntax: LDAPTrustedClientCert	type	directory-

path/filename/nickname	[password]

Context: directory,	.htaccess
Status: Extension
Module: mod_ldap

It	specifies	the	directory	path,	file	name	or	nickname	of	a	per
connection	client	certificate	used	when	establishing	an	SSL	or	TLS
connection	to	an	LDAP	server.	Different	locations	or	directories
may	have	their	own	independent	client	certificate	settings.	Some
LDAP	toolkits	(notably	Novell)	do	not	support	per	connection	client
certificates,	and	will	throw	an	error	on	LDAP	server	connection	if
you	try	to	use	this	directive	(Use	the	LDAPTrustedGlobalCert
directive	instead	for	Novell	client	certificates	-	See	the	SSL/TLS
certificate	guide	above	for	details).	The	type	specifies	the	kind	of
certificate	parameter	being	set,	depending	on	the	LDAP	toolkit
being	used.	Supported	types	are:

CA_DER	-	binary	DER	encoded	CA	certificate
CA_BASE64	-	PEM	encoded	CA	certificate
CERT_DER	-	binary	DER	encoded	client	certificate
CERT_BASE64	-	PEM	encoded	client	certificate
CERT_NICKNAME	-	Client	certificate	"nickname"	(Netscape
SDK)
KEY_DER	-	binary	DER	encoded	private	key
KEY_BASE64	-	PEM	encoded	private	key

LDAPTrustedGlobalCert	Directive

Description: Sets	the	file	or	database	containing	global	trusted
Certificate	Authority	or	global	client	certificates

Syntax: LDAPTrustedGlobalCert	type	directory-

path/filename	[password]

Context: server	config
Status: Extension
Module: mod_ldap

It	specifies	the	directory	path	and	file	name	of	the	trusted	CA
certificates	and/or	system	wide	client	certificates	mod_ldap
should	use	when	establishing	an	SSL	or	TLS	connection	to	an
LDAP	server.	Note	that	all	certificate	information	specified	using
this	directive	is	applied	globally	to	the	entire	server	installation.
Some	LDAP	toolkits	(notably	Novell)	require	all	client	certificates
to	be	set	globally	using	this	directive.	Most	other	toolkits	require
clients	certificates	to	be	set	per	Directory	or	per	Location	using
LDAPTrustedClientCert.	If	you	get	this	wrong,	an	error	may	be
logged	when	an	attempt	is	made	to	contact	the	LDAP	server,	or
the	connection	may	silently	fail	(See	the	SSL/TLS	certificate	guide
above	for	details).	The	type	specifies	the	kind	of	certificate
parameter	being	set,	depending	on	the	LDAP	toolkit	being	used.
Supported	types	are:

CA_DER	-	binary	DER	encoded	CA	certificate
CA_BASE64	-	PEM	encoded	CA	certificate
CA_CERT7_DB	-	Netscape	cert7.db	CA	certificate	database
file
CA_SECMOD	-	Netscape	secmod	database	file
CERT_DER	-	binary	DER	encoded	client	certificate
CERT_BASE64	-	PEM	encoded	client	certificate
CERT_KEY3_DB	-	Netscape	key3.db	client	certificate
database	file
CERT_NICKNAME	-	Client	certificate	"nickname"	(Netscape

SDK)
CERT_PFX	-	PKCS#12	encoded	client	certificate	(Novell
SDK)
KEY_DER	-	binary	DER	encoded	private	key
KEY_BASE64	-	PEM	encoded	private	key
KEY_PFX	-	PKCS#12	encoded	private	key	(Novell	SDK)

LDAPTrustedMode	Directive

Description: Specifies	the	SSL/TLS	mode	to	be	used	when
connecting	to	an	LDAP	server.

Syntax: LDAPTrustedMode	type

Context: server	config,	virtual	host
Status: Extension
Module: mod_ldap

The	following	modes	are	supported:

NONE	-	no	encryption
SSL	-	ldaps://	encryption	on	default	port	636
TLS	-	STARTTLS	encryption	on	default	port	389

Not	all	LDAP	toolkits	support	all	the	above	modes.	An	error
message	will	be	logged	at	runtime	if	a	mode	is	not	supported,	and
the	connection	to	the	LDAP	server	will	fail.

If	an	ldaps://	URL	is	specified,	the	mode	becomes	SSL	and	the
setting	of	LDAPTrustedMode	is	ignored.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

LDAPVerifyServerCert	Directive

Description: Force	server	certificate	verification
Syntax: LDAPVerifyServerCert	On|Off

Default: LDAPVerifyServerCert	On

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	whether	to	force	the	verification	of	a	server	certificate
when	establishing	an	SSL	connection	to	the	LDAP	server.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_log_config

				.	 					.

: 			
: Base
: log_config_module
: mod_log_config.c

						.	 						,			
		.				 								.

				.	 TransferLog		 ,	 LogFormat			,
CustomLog			 		.	 TransferLog	CustomLog
					.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

	

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_log_config
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_log_config

		

LogFormat	CustomLog				.					
			 				C	"\n"	"\t"		 		.						
			.

				" %"		 	.						 .

	
%% 	
%...a 	IP-
%...A ()	IP-
%...B HTTP				.
%...b HTTP				.	CLF			 				0

	' -'	.
%...

{Foobar}C

			 Foobar		 .

%...D 				().
%...

{FOOBAR}e

	 FOOBAR	

%...f

%...h 	
%...H 	
%...

{Foobar}i

			 Foobar:		.

%...l (identd)		.	 mod_ident	
IdentityCheck	On			.

%...m 	
%...

{Foobar}n

			 Foobar	(note)	 .

%...

{Foobar}o

	 Foobar:		.

%...p 				
%...P 				ID.
%...

{format}P

				ID			 ID.	format	

%...q 	(?	,)
%...r 		
%...s (status).					**	 	.			

%...>s.
%...t common	log	format		()	
%...

{format}t

strftime(3)		format	.	()

%...T 				().
%...u 		(auth	,	(%s)	401						

)
%...U 			URL	.
%...v 				 ServerName.
%...V UseCanonicalName			.
%...X 			.

X	= 				.
+	= 			(keep

alive).
-	= 			.

(1.3					 %...c,		ssl	
{var}c			 .)

%...I 					0		.	 		
.

%...O 				0		.		 	 mod_logio

"..."	(,	"%h	%u	%r	%s	%b")		,			 		(
		"-").	 		"!"			HTTP			
"%400,501{User-agent}i"	400	(Bad	 Request)		501	(Not
Implemented)		 User-agent:		,
"%!200,304,302{Referer}i"			 				 Referer:

.

	"<"	">"					 						.		
%T,	%D,	%r			,		 %				.		 %>s

(status)	,	 %<u						 					.

2.0.46		httpd	2.0		 %...r,	%...i,	%...o				 .	
Common	Log	Format		.	 ,							
		.

		2.0.46							 \xhh	.		 hh	
	.					 		 "	 \,		C	 	(

						.

Common	Log	Format	(CLF)
"%h	%l	%u	%t	\"%r\"	%>s	%b"

			Common	Log	Format
"%v	%h	%l	%u	%t	\"%r\"	%>s	%b"

NCSA	extended/combined		
"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"

\"%{User-agent}i\""

Referer		
"%{Referer}i	->	%U"

Agent	()		
"%{User-agent}i"

				 ServerName	 Listen		 %v	%p	.		

		 						 				
.

		

							 								

BufferedLogs	

: Buffer	log	entries	in	memory	before	writing	to	disk
:
:
: Base
: mod_log_config

Documentation	not	yet	translated.	Please	see	English	version	of
document.

CustomLog	

: 			
: CustomLog	file|pipe	format|nickname	[env=

[!]environment-variable]

: ,	
: Base
: mod_log_config

				 CustomLog		.			,			
				.

							 		.

file
ServerRoot		.

pipe
	" |"				 			.

:

						 	.		root			
	.

						 					.	
		 .

					.	 	 LogFormat	 	
		 format				.

	,						.

#				CustomLog

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common

CustomLog	logs/access_log	common

#					CustomLog

CustomLog	logs/access_log	"%h	%l	%u	%t	\"%r\"	%>s	%b"

			,					 					.			
('env=!name')	 		.

mod_setenvif	 mod_rewrite							.		
	GIF								 		,

SetEnvIf	Request_URI	\.gif$	gif-image

CustomLog	gif-requests.log	common	env=gif-image

CustomLog	nongif-requests.log	common	env=!gif-image

GlobalLog	

: Sets	filename	and	format	of	log	file
: GlobalLogfile|pipe	format|nickname	[env=

[!]environment-variable|	expr=expression]

:
: Base
: mod_log_config
: Available	in	Apache	HTTP	Server	2.4.19	and	later

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

LogFormat	

: 			
: LogFormat	format|nickname	[nickname]

: LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"

: ,	
: Base
: mod_log_config

					.

LogFormat				 .							
			 	.				 	 	 			 format		
LogFormat				()	 nickname			.

LogFormat				 format	 nickname	.		 	
LogFormat	 CustomLog			 					
	.			 LogFormat		 					 .	,	 	,	
		 			.				 TransferLog

LogFormat				 		.				(%)				.

LogFormat	"%v	%h	%l	%u	%t	\"%r\"	%>s	%b"	vhost_common

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

TransferLog	

: 		
: TransferLog	file|pipe

: ,	
: Base
: mod_log_config

		 CustomLog			 	,							
	.					()	 LogFormat			 		.	
				Common	 Log	Format	.

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-

agent}i\""

TransferLog	logs/access_log

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_log_debug

Description: Additional	configurable	debug	logging
Status: Experimental
Module	Identifier: log_debug_module
Source	File: mod_log_debug.c
Compatibility: Available	in	Apache	2.3.14	and	later

Examples

1.	 Log	message	after	request	to	/foo/*	is	processed:

<Location	"/foo/">

		LogMessage	"/foo/	has	been	requested"

</Location>

2.	 Log	message	if	request	to	/foo/*	is	processed	in	a	sub-
request:

<Location	"/foo/">

		LogMessage	"subrequest	to	/foo/"	hook=type_checker	expr=%{IS_SUBREQ}

</Location>

The	default	log_transaction	hook	is	not	executed	for	sub-
requests,	therefore	we	have	to	use	a	different	hook.

3.	 Log	message	if	an	IPv6	client	causes	a	request	timeout:

LogMessage	"IPv6	timeout	from	%{REMOTE_ADDR}"	"expr=-T	%{IPV6}	&&	%{REQUEST_STATUS}	=	408"

Note	the	placing	of	the	double	quotes	for	the	expr=
argument.

4.	 Log	the	value	of	the	"X-Foo"	request	environment	variable	in
each	stage	of	the	request:

<Location	"/">

		LogMessage	"%{reqenv:X-Foo}"	hook=all

</Location>

Together	with	microsecond	time	stamps	in	the	error	log,
hook=all	also	lets	you	determine	the	times	spent	in	the

different	parts	of	the	request	processing.

LogMessage	Directive

Description: Log	user-defined	message	to	error	log
Syntax: LogMessage	message	[hook=hook]

[expr=expression]

Default: Unset

Context: directory
Status: Experimental
Module: mod_log_debug

This	directive	causes	a	user	defined	message	to	be	logged	to	the
error	log.	The	message	can	use	variables	and	functions	from	the
ap_expr	syntax.	References	to	HTTP	headers	will	not	cause
header	names	to	be	added	to	the	Vary	header.	The	messages	are
logged	at	loglevel	info.

The	hook	specifies	before	which	phase	of	request	processing	the
message	will	be	logged.	The	following	hooks	are	supported:

Name
translate_name

type_checker

quick_handler

map_to_storage

check_access

check_access_ex

insert_filter

check_authn

check_authz

fixups

handler

log_transaction

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	default	is	log_transaction.	The	special	value	all	is	also
supported,	causing	a	message	to	be	logged	at	each	phase.	Not	all
hooks	are	executed	for	every	request.

The	optional	expression	allows	to	restrict	the	message	if	a
condition	is	met.	The	details	of	the	expression	syntax	are
described	in	the	ap_expr	documentation.	References	to	HTTP
headers	will	not	cause	the	header	names	to	be	added	to	the	Vary
header.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_log_forensic

Description: Forensic	Logging	of	the	requests	made	to	the
server

Status: Extension
Module	Identifier: log_forensic_module
Source	File: mod_log_forensic.c
Compatibility: mod_unique_id	is	no	longer	required	since

version	2.1

Summary
This	module	provides	for	forensic	logging	of	client	requests.	Logging
is	done	before	and	after	processing	a	request,	so	the	forensic	log
contains	two	log	lines	for	each	request.	The	forensic	logger	is	very
strict,	which	means:

The	format	is	fixed.	You	cannot	modify	the	logging	format	at
runtime.
If	it	cannot	write	its	data,	the	child	process	exits	immediately	and
may	dump	core	(depending	on	your	CoreDumpDirectory
configuration).

The	check_forensic	script,	which	can	be	found	in	the	distribution's
support	directory,	may	be	helpful	in	evaluating	the	forensic	log	output.

Bugfix	checklist
httpd	changelog

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4

Known	issues
Report	a	bug

See	also
Apache	Log	Files
mod_log_config

https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_log_forensic
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_log_forensic

Forensic	Log	Format

Each	request	is	logged	two	times.	The	first	time	is	before	it's
processed	further	(that	is,	after	receiving	the	headers).	The
second	log	entry	is	written	after	the	request	processing	at	the
same	time	where	normal	logging	occurs.

In	order	to	identify	each	request,	a	unique	request	ID	is	assigned.
This	forensic	ID	can	be	cross	logged	in	the	normal	transfer	log
using	the	%{forensic-id}n	format	string.	If	you're	using
mod_unique_id,	its	generated	ID	will	be	used.

The	first	line	logs	the	forensic	ID,	the	request	line	and	all	received
headers,	separated	by	pipe	characters	(|).	A	sample	line	looks	like
the	following	(all	on	one	line):

+yQtJf8CoAB4AAFNXBIEAAAAA|GET	/manual/de/images/down.gif

HTTP/1.1|Host:localhost%3a8080|User-Agent:Mozilla/5.0	(X11;	U;

Linux	i686;	en-US;	rv%3a1.6)	Gecko/20040216

Firefox/0.8|Accept:image/png,	etc...

The	plus	character	at	the	beginning	indicates	that	this	is	the	first
log	line	of	this	request.	The	second	line	just	contains	a	minus
character	and	the	ID	again:

-yQtJf8CoAB4AAFNXBIEAAAAA

The	check_forensic	script	takes	as	its	argument	the	name	of
the	logfile.	It	looks	for	those	+/-	ID	pairs	and	complains	if	a
request	was	not	completed.

Security	Considerations

See	the	security	tips	document	for	details	on	why	your	security
could	be	compromised	if	the	directory	where	logfiles	are	stored	is
writable	by	anyone	other	than	the	user	that	starts	the	server.

The	log	files	may	contain	sensitive	data	such	as	the	contents	of
Authorization:	headers	(which	can	contain	passwords),	so
they	should	not	be	readable	by	anyone	except	the	user	that	starts
the	server.

ForensicLog	Directive

Description: Sets	filename	of	the	forensic	log
Syntax: ForensicLog	filename|pipe

Context: server	config,	virtual	host
Status: Extension
Module: mod_log_forensic

The	ForensicLog	directive	is	used	to	log	requests	to	the	server
for	forensic	analysis.	Each	log	entry	is	assigned	a	unique	ID	which
can	be	associated	with	the	request	using	the	normal	CustomLog
directive.	mod_log_forensic	creates	a	token	called
forensic-id,	which	can	be	added	to	the	transfer	log	using	the	%
{forensic-id}n	format	string.

The	argument,	which	specifies	the	location	to	which	the	logs	will
be	written,	can	take	one	of	the	following	two	types	of	values:

filename
A	filename,	relative	to	the	ServerRoot.

pipe
The	pipe	character	"|",	followed	by	the	path	to	a	program	to
receive	the	log	information	on	its	standard	input.	The	program
name	can	be	specified	relative	to	the	ServerRoot	directive.

Security:

If	a	program	is	used,	then	it	will	be	run	as	the	user	who
started	httpd.	This	will	be	root	if	the	server	was	started	by
root;	be	sure	that	the	program	is	secure	or	switches	to	a
less	privileged	user.

Note

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

When	entering	a	file	path	on	non-Unix	platforms,	care
should	be	taken	to	make	sure	that	only	forward	slashes	are
used	even	though	the	platform	may	allow	the	use	of	back
slashes.	In	general	it	is	a	good	idea	to	always	use	forward
slashes	throughout	the	configuration	files.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_logio

				.	 					.

: 			
: Extension
: logio_module
: mod_logio.c

					.		 				,			
	SSL/TLS	,	 		SSL/TLS					 	.

			 mod_log_config	.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

mod_log_config

	

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_logio
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_logio

		

					.		 		" %"			.	
:

%...I 				.	0
		.

%...O 			.	0	
.

			:

			:
"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"

\"%{User-agent}i\"	%I	%O"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

LogIOTrackTTFB	

: Enable	tracking	of	time	to	first	byte	(TTFB)
: LogIOTrackTTFB	ON|OFF

: LogIOTrackTTFB	OFF

: ,	,	directory,	.htaccess
Override	: none
: Extension
: mod_logio
: Apache	HTTP	Server	2.4.13	and	later

The	documentation	for	this	directive	has	not	been	translated	yet.
Please	have	a	look	at	the	English	version.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lua

Description: Provides	Lua	hooks	into	various	portions	of	the
httpd	request	processing

Status: Experimental
Module	Identifier: lua_module
Source	File: mod_lua.c
Compatibility: 2.3	and	later

Summary
This	module	allows	the	server	to	be	extended	with	scripts	written	in
the	Lua	programming	language.	The	extension	points	(hooks)
available	with	mod_lua	include	many	of	the	hooks	available	to
natively	compiled	Apache	HTTP	Server	modules,	such	as	mapping
requests	to	files,	generating	dynamic	responses,	access	control,
authentication,	and	authorization

More	information	on	the	Lua	programming	language	can	be	found	at
the	the	Lua	website.

mod_lua	is	still	in	experimental	state.	Until	it	is	declared	stable,
usage	and	behavior	may	change	at	any	time,	even	between	stable
releases	of	the	2.4.x	series.	Be	sure	to	check	the	CHANGES	file
before	upgrading.

Warning

This	module	holds	a	great	deal	of	power	over	httpd,	which	is	both	a
strength	and	a	potential	security	risk.	It	is	not	recommended	that
you	use	this	module	on	a	server	that	is	shared	with	users	you	do
not	trust,	as	it	can	be	abused	to	change	the	internal	workings	of
httpd.

http://www.lua.org/

Basic	Configuration

The	basic	module	loading	directive	is

LoadModule	lua_module	modules/mod_lua.so

mod_lua	provides	a	handler	named	lua-script,	which	can	be
used	with	a	SetHandler	or	AddHandler	directive:

<Files	"*.lua">

				SetHandler	lua-script

</Files>

This	will	cause	mod_lua	to	handle	requests	for	files	ending	in
.lua	by	invoking	that	file's	handle	function.

For	more	flexibility,	see	LuaMapHandler.

Writing	Handlers

In	the	Apache	HTTP	Server	API,	the	handler	is	a	specific	kind	of
hook	responsible	for	generating	the	response.	Examples	of
modules	that	include	a	handler	are	mod_proxy,	mod_cgi,	and
mod_status.

mod_lua	always	looks	to	invoke	a	Lua	function	for	the	handler,
rather	than	just	evaluating	a	script	body	CGI	style.	A	handler
function	looks	something	like	this:

example.lua

--	example	handler

require	"string"

--[[

					This	is	the	default	method	name	for	Lua	handlers,	see	the	optional

					function-name	in	the	LuaMapHandler	directive	to	choose	a	different

					entry	point.

--]]

function	handle(r)

				r.content_type	=	"text/plain"

				if	r.method	==	'GET'	then

								r:puts("Hello	Lua	World!\n")

								for	k,	v	in	pairs(r:parseargs())	do

												r:puts(string.format("%s:	%s\n",	k,	v))

								end

				elseif	r.method	==	'POST'	then

								r:puts("Hello	Lua	World!\n")

								for	k,	v	in	pairs(r:parsebody())	do

												r:puts(string.format("%s:	%s\n",	k,	v))

								end

				elseif	r.method	==	'PUT'	then

--	use	our	own	Error	contents

								r:puts("Unsupported	HTTP	method	"	..	r.method)

								r.status	=	405

								return	apache2.OK

				else

--	use	the	ErrorDocument

								return	501

				end

				return	apache2.OK

end

This	handler	function	just	prints	out	the	uri	or	form	encoded
arguments	to	a	plaintext	page.

This	means	(and	in	fact	encourages)	that	you	can	have	multiple
handlers	(or	hooks,	or	filters)	in	the	same	script.

Writing	Authorization	Providers

mod_authz_core	provides	a	high-level	interface	to	authorization
that	is	much	easier	to	use	than	using	into	the	relevant	hooks
directly.	The	first	argument	to	the	Require	directive	gives	the
name	of	the	responsible	authorization	provider.	For	any	Require
line,	mod_authz_core	will	call	the	authorization	provider	of	the
given	name,	passing	the	rest	of	the	line	as	parameters.	The
provider	will	then	check	authorization	and	pass	the	result	as	return
value.

The	authz	provider	is	normally	called	before	authentication.	If	it
needs	to	know	the	authenticated	user	name	(or	if	the	user	will	be
authenticated	at	all),	the	provider	must	return
apache2.AUTHZ_DENIED_NO_USER.	This	will	cause
authentication	to	proceed	and	the	authz	provider	to	be	called	a
second	time.

The	following	authz	provider	function	takes	two	arguments,	one	ip
address	and	one	user	name.	It	will	allow	access	from	the	given	ip
address	without	authentication,	or	if	the	authenticated	user
matches	the	second	argument:

authz_provider.lua

require	'apache2'

function	authz_check_foo(r,	ip,	user)

				if	r.useragent_ip	==	ip	then

								return	apache2.AUTHZ_GRANTED

				elseif	r.user	==	nil	then

								return	apache2.AUTHZ_DENIED_NO_USER

				elseif	r.user	==	user	then

								return	apache2.AUTHZ_GRANTED

				else

								return	apache2.AUTHZ_DENIED

				end

end

The	following	configuration	registers	this	function	as	provider	foo
and	configures	it	for	URL	/:

LuaAuthzProvider	foo	authz_provider.lua	authz_check_foo

<Location	"/">

		Require	foo	10.1.2.3	john_doe

</Location>

Writing	Hooks

Hook	functions	are	how	modules	(and	Lua	scripts)	participate	in
the	processing	of	requests.	Each	type	of	hook	exposed	by	the
server	exists	for	a	specific	purpose,	such	as	mapping	requests	to
the	file	system,	performing	access	control,	or	setting	mime	types:

Hook	phase mod_lua	directive Description
Quick
handler

LuaQuickHandler This	is	the	first	hook
that	will	be	called	after
a	request	has	been
mapped	to	a	host	or
virtual	host

Translate
name

LuaHookTranslateName This	phase	translates
the	requested	URI	into
a	filename	on	the
system.	Modules	such
as	mod_alias	and
mod_rewrite

operate	in	this	phase.
Map	to
storage

LuaHookMapToStorage This	phase	maps	files
to	their	physical,
cached	or
external/proxied
storage.	It	can	be	used
by	proxy	or	caching
modules

Check
Access

LuaHookAccessChecker This	phase	checks
whether	a	client	has
access	to	a	resource.
This	phase	is	run
before	the	user	is
authenticated,	so
beware.

Check	User
ID

LuaHookCheckUserID This	phase	it	used	to
check	the	negotiated
user	ID

Check
Authorization

LuaHookAuthChecker	or
LuaAuthzProvider

This	phase	authorizes
a	user	based	on	the
negotiated	credentials,
such	as	user	ID,	client
certificate	etc.

Check	Type LuaHookTypeChecker This	phase	checks	the
requested	file	and
assigns	a	content	type
and	a	handler	to	it

Fixups LuaHookFixups This	is	the	final	"fix
anything"	phase	before
the	content	handlers
are	run.	Any	last-
minute	changes	to	the
request	should	be
made	here.

Content
handler

fx.	.lua	files	or	through
LuaMapHandler

This	is	where	the
content	is	handled.
Files	are	read,	parsed,
some	are	run,	and	the
result	is	sent	to	the
client

Logging LuaHookLog Once	a	request	has
been	handled,	it	enters
several	logging
phases,	which	logs	the
request	in	either	the
error	or	access	log.
Mod_lua	is	able	to
hook	into	the	start	of

this	and	control
logging	output.

Hook	functions	are	passed	the	request	object	as	their	only
argument	(except	for	LuaAuthzProvider,	which	also	gets	passed
the	arguments	from	the	Require	directive).	They	can	return	any
value,	depending	on	the	hook,	but	most	commonly	they'll	return
OK,	DONE,	or	DECLINED,	which	you	can	write	in	Lua	as
apache2.OK,	apache2.DONE,	or	apache2.DECLINED,	or	else
an	HTTP	status	code.

translate_name.lua

--	example	hook	that	rewrites	the	URI	to	a	filesystem	path.

require	'apache2'

function	translate_name(r)

				if	r.uri	==	"/translate-name"	then

								r.filename	=	r.document_root	..	"/find_me.txt"

								return	apache2.OK

				end

				--	we	don't	care	about	this	URL,	give	another	module	a	chance

				return	apache2.DECLINED

end

translate_name2.lua

--[[example	hook	that	rewrites	one	URI	to	another	URI.	It	returns	a

					apache2.DECLINED	to	give	other	URL	mappers	a	chance	to	work	on	the

					substitution,	including	the	core	translate_name	hook	which	maps	based

					on	the	DocumentRoot.

					Note:	Use	the	early/late	flags	in	the	directive	to	make	it	run	before

											or	after	mod_alias.

--]]

require	'apache2'

function	translate_name(r)

				if	r.uri	==	"/translate-name"	then

								r.uri	=	"/find_me.txt"

								return	apache2.DECLINED

				end

				return	apache2.DECLINED

end

Data	Structures

request_rec
The	request_rec	is	mapped	in	as	a	userdata.	It	has	a
metatable	which	lets	you	do	useful	things	with	it.	For	the	most
part	it	has	the	same	fields	as	the	request_rec	struct,	many	of
which	are	writable	as	well	as	readable.	(The	table	fields'
content	can	be	changed,	but	the	fields	themselves	cannot	be
set	to	different	tables.)

Name Lua
type

Writable Description

allowoverrides string no The	AllowOverride	options	applied
to	the	current	request.

ap_auth_type string no If	an	authentication	check	was
made,	this	is	set	to	the	type	
authentication	(f.x.	

args string yes The	query	string	arguments
extracted	from	the	request	
foo=bar&name=johnsmith

assbackwards boolean no Set	to	true	if	this	is	an	HTTP/0.9
style	request	
no	headers))

auth_name string no The	realm	name	used	for
authorization	(if	applicable).

banner string no The	server	banner,	f.x.	
HTTP	Server/2.4.3

openssl/0.9.8c

basic_auth_pw string no The	basic	auth	password	sent	with
this	request,	if	any

canonical_filename string no The	canonical	filename	of	the
request

content_encoding string no The	content	encoding	of	the

current	request
content_type string yes The	content	type	of	the	current

request,	as	determined	in	the
type_check	phase	(f.x.
image/gif	or	

context_prefix string no
context_document_root string no
document_root string no The	document	root	of	the	host
err_headers_out table no MIME	header	environment	for	the

response,	printed	even	on	errors
and	persist	across	internal
redirects

filename string yes The	file	name	that	the	request
maps	to,	f.x.
/www/example.com/foo.txt.	This
can	be	changed	in	the	translate-
name	or	map-to-storage	phases	of
a	request	to	allow	the	
handler	(or	script	handlers)	to
serve	a	different	file	than	what	was
requested.

handler string yes The	name	of	the	
should	serve	this	request,	f.x.
lua-script

by	mod_lua.	This	is	typically	set	by
the	AddHandler
directives,	but	could	also	be	set	via
mod_lua	to	allow	another	handler
to	serve	up	a	specific	request	
would	otherwise	not	be	served	by
it.

headers_in table yes MIME	header	environment	from

the	request.	This	contains	headers
such	as	Host,	
Referer	and	so	on.

headers_out table yes MIME	header	environment	for	the
response.

hostname string no The	host	name,	as	set	by	the
Host:	header	or	by	a	full	URI.

is_https boolean no Whether	or	not	this	request	is
done	via	HTTPS

is_initial_req boolean no Whether	this	request	is	the	initial
request	or	a	sub-request

limit_req_body number no The	size	limit	of	the	request	body
for	this	request,	or	0	if	no	limit.

log_id string no The	ID	to	identify	request	in
access	and	error	log.

method string no The	request	method,	f.x.	
POST.

notes table yes A	list	of	notes	that	can	be	passed
on	from	one	module	to	another.

options string no The	Options	directive	applied	to
the	current	request.

path_info string no The	PATH_INFO	extracted	from
this	request.

port number no The	server	port	used	by	the
request.

protocol string no The	protocol	used,	f.x.	
proxyreq string yes Denotes	whether	this	is	a	proxy

request	or	not.	This	value	is
generally	set	in	
post_read_request/translate_name
phase	of	a	request.

range string no The	contents	of	the	
header.

remaining number no The	number	of	bytes	remaining	to
be	read	from	the	request	body.

server_built string no The	time	the	server	executable
was	built.

server_name string no The	server	name	for	this	request.
some_auth_required boolean no Whether	some	authorization

is/was	required	for	this	request.
subprocess_env table yes The	environment	variables	set	for

this	request.
started number no The	time	the	server	was

(re)started,	in	seconds	since	the
epoch	(Jan	1st,	1970)

status number yes The	(current)	HTTP	return	code	for
this	request,	f.x.	

the_request string no The	request	string	as	sent	by	the
client,	f.x.	GET	/foo/bar
HTTP/1.1.

unparsed_uri string no The	unparsed	URI	of	the	request
uri string yes The	URI	after	it	has	been	parsed

by	httpd
user string yes If	an	authentication	check	has

been	made,	this	is	set	to	the	name
of	the	authenticated	user.

useragent_ip string no The	IP	of	the	user	agent	making
the	request

Built	in	functions

The	request_rec	object	has	(at	least)	the	following	methods:

r:flush()			--	flushes	the	output	buffer.

												--	Returns	true	if	the	flush	was	successful,	false	otherwise.

while	we_have_stuff_to_send	do

				r:puts("Bla	bla	bla\n")	--	print	something	to	client

				r:flush()	--	flush	the	buffer	(send	to	client)

				r.usleep(500000)	--	fake	processing	time	for	0.5	sec.	and	repeat

end

r:addoutputfilter(name|function)	--	add	an	output	filter:

r:addoutputfilter("fooFilter")	--	add	the	fooFilter	to	the	output	stream

r:sendfile(filename)	--	sends	an	entire	file	to	the	client,	using	sendfile	if	supported	by	the	current	platform:

if	use_sendfile_thing	then

				r:sendfile("/var/www/large_file.img")

end

r:parseargs()	--	returns	two	tables;	one	standard	key/value	table	for	regular	GET	data,	

														--	and	one	for	multi-value	data	(fx.	foo=1&foo=2&foo=3):

local	GET,	GETMULTI	=	r:parseargs()

r:puts("Your	name	is:	"	..	GET['name']	or	"Unknown")

r:parsebody([sizeLimit])	--	parse	the	request	body	as	a	POST	and	return	two	lua	tables,

																									--	just	like	r:parseargs().

																									--	An	optional	number	may	be	passed	to	specify	the	maximum	number	

																									--	of	bytes	to	parse.	Default	is	8192	bytes:

																	

local	POST,	POSTMULTI	=	r:parsebody(1024*1024)

r:puts("Your	name	is:	"	..	POST['name']	or	"Unknown")

r:puts("hello",	"	world",	"!")	--	print	to	response	body,	self	explanatory

r:write("a	single	string")	--	print	to	response	body,	self	explanatory

r:escape_html("<html>test</html>")	--	Escapes	HTML	code	and	returns	the	escaped	result

r:base64_encode(string)	--	Encodes	a	string	using	the	Base64	encoding	standard:

local	encoded	=	r:base64_encode("This	is	a	test")	--	returns	VGhpcyBpcyBhIHRlc3Q=

r:base64_decode(string)	--	Decodes	a	Base64-encoded	string:

local	decoded	=	r:base64_decode("VGhpcyBpcyBhIHRlc3Q=")	--	returns	'This	is	a	test'

r:md5(string)	--	Calculates	and	returns	the	MD5	digest	of	a	string	(binary	safe):

local	hash	=	r:md5("This	is	a	test")	--	returns	ce114e4501d2f4e2dcea3e17b546f339

r:sha1(string)	--	Calculates	and	returns	the	SHA1	digest	of	a	string	(binary	safe):

local	hash	=	r:sha1("This	is	a	test")	--	returns	a54d88e06612d820bc3be72877c74f257b561b19

r:escape(string)	--	URL-Escapes	a	string:

local	url	=	"http://foo.bar/1	2	3	&	4	+	5"

local	escaped	=	r:escape(url)	--	returns	'http%3a%2f%2ffoo.bar%2f1+2+3+%26+4+%2b+5'

r:unescape(string)	--	Unescapes	an	URL-escaped	string:

local	url	=	"http%3a%2f%2ffoo.bar%2f1+2+3+%26+4+%2b+5"

local	unescaped	=	r:unescape(url)	--	returns	'http://foo.bar/1	2	3	&	4	+	5'

r:construct_url(string)	--	Constructs	an	URL	from	an	URI

local	url	=	r:construct_url(r.uri)

r.mpm_query(number)	--	Queries	the	server	for	MPM	information	using	ap_mpm_query:

local	mpm	=	r.mpm_query(14)

if	mpm	==	1	then

				r:puts("This	server	uses	the	Event	MPM")

end

r:expr(string)	--	Evaluates	an	expr	string.

if	r:expr("%{HTTP_HOST}	=~	/^www/")	then

				r:puts("This	host	name	starts	with	www")

end

r:scoreboard_process(a)	--	Queries	the	server	for	information	about	the	process	at	position	

local	process	=	r:scoreboard_process(1)

r:puts("Server	1	has	PID	"	..	process.pid)

r:scoreboard_worker(a,	b)	--	Queries	for	information	about	the	worker	thread,	

local	thread	=	r:scoreboard_worker(1,	1)

r:puts("Server	1's	thread	1	has	thread	ID	"	..	thread.tid	..	"	and	is	in	"	..	thread.status	..	"	status")

r:clock()	--	Returns	the	current	time	with	microsecond	precision

r:requestbody(filename)	--	Reads	and	returns	the	request	body	of	a	request.

																--	If	'filename'	is	specified,	it	instead	saves	the

																--	contents	to	that	file:

																

local	input	=	r:requestbody()

r:puts("You	sent	the	following	request	body	to	me:\n")

r:puts(input)

r:add_input_filter(filter_name)	--	Adds	'filter_name'	as	an	input	filter

r.module_info(module_name)	--	Queries	the	server	for	information	about	a	module

local	mod	=	r.module_info("mod_lua.c")

if	mod	then

				for	k,	v	in	pairs(mod.commands)	do

							r:puts(("%s:	%s\n"):format(k,v))	--	print	out	all	directives	accepted	by	this	module

				end

end

r:loaded_modules()	--	Returns	a	list	of	modules	loaded	by	httpd:

for	k,	module	in	pairs(r:loaded_modules())	do

				r:puts("I	have	loaded	module	"	..	module	..	"\n")

end

r:runtime_dir_relative(filename)	--	Compute	the	name	of	a	run-time	file	(e.g.,	shared	memory	"file")	

																									--	relative	to	the	appropriate	run-time	directory.

r:server_info()	--	Returns	a	table	containing	server	information,	such	as	

																--	the	name	of	the	httpd	executable	file,	mpm	used	etc.

r:set_document_root(file_path)	--	Sets	the	document	root	for	the	request	to	file_path

r:set_context_info(prefix,	docroot)	--	Sets	the	context	prefix	and	context	document	root	for	a	request

r:os_escape_path(file_path)	--	Converts	an	OS	path	to	a	URL	in	an	OS	dependent	way

r:escape_logitem(string)	--	Escapes	a	string	for	logging

r.strcmp_match(string,	pattern)	--	Checks	if	'string'	matches	'pattern'	using	strcmp_match	(globs).

																								--	fx.	whether	'www.example.com'	matches	'*.example.com':

																								

local	match	=	r.strcmp_match("foobar.com",	"foo*.com")

if	match	then	

				r:puts("foobar.com	matches	foo*.com")

end

r:set_keepalive()	--	Sets	the	keepalive	status	for	a	request.	Returns	true	if	possible,	false	otherwise.

r:make_etag()	--	Constructs	and	returns	the	etag	for	the	current	request.

r:send_interim_response(clear)	--	Sends	an	interim	(1xx)	response	to	the	client.

																							--	if	'clear'	is	true,	available	headers	will	be	sent	and	cleared.

r:custom_response(status_code,	string)	--	Construct	and	set	a	custom	response	for	a	given	status	code.

																															--	This	works	much	like	the	ErrorDocument	directive:

																															

r:custom_response(404,	"Baleted!")

r.exists_config_define(string)	--	Checks	whether	a	configuration	definition	exists	or	not:

if	r.exists_config_define("FOO")	then

				r:puts("httpd	was	probably	run	with	-DFOO,	or	it	was	defined	in	the	configuration")

end

r:state_query(string)	--	Queries	the	server	for	state	information

r:stat(filename	[,wanted])	--	Runs	stat()	on	a	file,	and	returns	a	table	with	file	information:

local	info	=	r:stat("/var/www/foo.txt")

if	info	then

				r:puts("This	file	exists	and	was	last	modified	at:	"	..	info.modified)

end

r:regex(string,	pattern	[,flags])	--	Runs	a	regular	expression	match	on	a	string,	returning	captures	if	matched:

local	matches	=	r:regex("foo	bar	baz",	[[foo	(\w+)	(\S*)]])

if	matches	then

				r:puts("The	regex	matched,	and	the	last	word	captured	($2)	was:	"	..	matches[2])

end

--	Example	ignoring	case	sensitivity:

local	matches	=	r:regex("FOO	bar	BAz",	[[(foo)	bar]],	1)

--	Flags	can	be	a	bitwise	combination	of:

--	0x01:	Ignore	case

--	0x02:	Multiline	search

r.usleep(number_of_microseconds)	--	Puts	the	script	to	sleep	for	a	given	number	of	microseconds.

r:dbacquire(dbType[,	dbParams])	--	Acquires	a	connection	to	a	database	and	returns	a	database	class.

																								--	See	'Database	connectivity

r:ivm_set("key",	value)	--	Set	an	Inter-VM	variable	to	hold	a	specific	value.

																								--	These	values	persist	even	though	the	VM	is	gone	or	not	being	used,

																								--	and	so	should	only	be	used	if	MaxConnectionsPerChild	is	>	0

																								--	Values	can	be	numbers,	strings	and	booleans,	and	are	stored	on	a	

																								--	per	process	basis	(so	they	won't	do	much	good	with	a	prefork	mpm)

																								

r:ivm_get("key")								--	Fetches	a	variable	set	by	ivm_set.	Returns	the	contents	of	the	variable

																								--	if	it	exists	or	nil	if	no	such	variable	exists.

																								

--	An	example	getter/setter	that	saves	a	global	variable	outside	the	VM:

function	handle(r)

				--	First	VM	to	call	this	will	get	no	value,	and	will	have	to	create	it

				local	foo	=	r:ivm_get("cached_data")

				if	not	foo	then

								foo	=	do_some_calcs()	--	fake	some	return	value

								r:ivm_set("cached_data",	foo)	--	set	it	globally

				end

				r:puts("Cached	data	is:	",	foo)

end

r:htpassword(string	[,algorithm	[,cost]])	--	Creates	a	password	hash	from	a	string.

																																										--	algorithm:	0	=	APMD5	(default),	1	=	SHA,	2	=	BCRYPT,	3	=	CRYPT.

																																										--	cost:	only	valid	with	BCRYPT	algorithm	(default	=	5).

r:mkdir(dir	[,mode])	--	Creates	a	directory	and	sets	mode	to	optional	mode	parameter.

r:mkrdir(dir	[,mode])	--	Creates	directories	recursive	and	sets	mode	to	optional	mode	parameter.

r:rmdir(dir)	--	Removes	a	directory.

r:touch(file	[,mtime])	--	Sets	the	file	modification	time	to	current	time	or	to	optional	mtime	msec	value.

r:get_direntries(dir)	--	Returns	a	table	with	all	directory	entries.

function	handle(r)

		local	dir	=	r.context_document_root

		for	_,	f	in	ipairs(r:get_direntries(dir))	do

				local	info	=	r:stat(dir	..	"/"	..	f)

				if	info	then

						local	mtime	=	os.date(fmt,	info.mtime	/	1000000)

						local	ftype	=	(info.filetype	==	2)	and	"[dir]	"	or	"[file]"

						r:puts(("%s	%s	%10i	%s\n"):format(ftype,	mtime,	info.size,	f))

				end

		end

end

r.date_parse_rfc(string)	--	Parses	a	date/time	string	and	returns	seconds	since	epoche.

r:getcookie(key)	--	Gets	a	HTTP	cookie

r:setcookie{

		key	=	[key],

		value	=	[value],

		expires	=	[expiry],

		secure	=	[boolean],

		httponly	=	[boolean],

		path	=	[path],

		domain	=	[domain]

}	--	Sets	a	HTTP	cookie,	for	instance:

r:setcookie{

		key	=	"cookie1",

		value	=	"HDHfa9eyffh396rt",

		expires	=	os.time()	+	86400,

		secure	=	true

}

r:wsupgrade()	--	Upgrades	a	connection	to	WebSockets	if	possible	(and	requested):

if	r:wsupgrade()	then	--	if	we	can	upgrade:

				r:wswrite("Welcome	to	websockets!")	--	write	something	to	the	client

				r:wsclose()		--	goodbye!

end

r:wsread()	--	Reads	a	WebSocket	frame	from	a	WebSocket	upgraded	connection	(see	above):

local	line,	isFinal	=	r:wsread()	--	isFinal	denotes	whether	this	is	the	final	frame.

																																	--	If	it	isn't,	then	more	frames	can	be	read

r:wswrite("You	wrote:	"	..	line)

r:wswrite(line)	--	Writes	a	frame	to	a	WebSocket	client:

r:wswrite("Hello,	world!")

r:wsclose()	--	Closes	a	WebSocket	request	and	terminates	it	for	httpd:

if	r:wsupgrade()	then

				r:wswrite("Write	something:	")

				local	line	=	r:wsread()	or	"nothing"

				r:wswrite("You	wrote:	"	..	line);

				r:wswrite("Goodbye!")

				r:wsclose()

end

Logging	Functions

--	examples	of	logging	messages

r:trace1("This	is	a	trace	log	message")	--	trace1	through	trace8	can	be	used

r:debug("This	is	a	debug	log	message")

r:info("This	is	an	info	log	message")

r:notice("This	is	a	notice	log	message")

r:warn("This	is	a	warn	log	message")

r:err("This	is	an	err	log	message")

r:alert("This	is	an	alert	log	message")

r:crit("This	is	a	crit	log	message")

r:emerg("This	is	an	emerg	log	message")

apache2	Package

A	package	named	apache2	is	available	with	(at	least)	the
following	contents.

apache2.OK
internal	constant	OK.	Handlers	should	return	this	if	they've
handled	the	request.

apache2.DECLINED
internal	constant	DECLINED.	Handlers	should	return	this	if
they	are	not	going	to	handle	the	request.

apache2.DONE
internal	constant	DONE.

apache2.version
Apache	HTTP	server	version	string

apache2.HTTP_MOVED_TEMPORARILY
HTTP	status	code

apache2.PROXYREQ_NONE,	apache2.PROXYREQ_PROXY,
apache2.PROXYREQ_REVERSE,
apache2.PROXYREQ_RESPONSE

internal	constants	used	by	mod_proxy

apache2.AUTHZ_DENIED,	apache2.AUTHZ_GRANTED,
apache2.AUTHZ_NEUTRAL,
apache2.AUTHZ_GENERAL_ERROR,
apache2.AUTHZ_DENIED_NO_USER

internal	constants	used	by	mod_authz_core

(Other	HTTP	status	codes	are	not	yet	implemented.)

Modifying	contents	with	Lua	filters

Filter	functions	implemented	via	LuaInputFilter	or
LuaOutputFilter	are	designed	as	three-stage	non-blocking
functions	using	coroutines	to	suspend	and	resume	a	function	as
buckets	are	sent	down	the	filter	chain.	The	core	structure	of	such	a
function	is:

function	filter(r)

				--	Our	first	yield	is	to	signal	that	we	are	ready	to	receive	buckets.

				--	Before	this	yield,	we	can	set	up	our	environment,	check	for	conditions,

				--	and,	if	we	deem	it	necessary,	decline	filtering	a	request	alltogether:

				if	something_bad	then

								return	--	This	would	skip	this	filter.

				end

				--	Regardless	of	whether	we	have	data	to	prepend,	a	yield	MUST	be	called	here.

				--	Note	that	only	output	filters	can	prepend	data.	Input	filters	must	use	the	

				--	final	stage	to	append	data	to	the	content.

				coroutine.yield([optional	header	to	be	prepended	to	the	content])

				

				--	After	we	have	yielded,	buckets	will	be	sent	to	us,	one	by	one,	and	we	can	

				--	do	whatever	we	want	with	them	and	then	pass	on	the	result.

				--	Buckets	are	stored	in	the	global	variable	'bucket',	so	we	create	a	loop

				--	that	checks	if	'bucket'	is	not	nil:

				while	bucket	~=	nil	do

								local	output	=	mangle(bucket)	--	Do	some	stuff	to	the	content

								coroutine.yield(output)	--	Return	our	new	content	to	the	filter	chain

				end

				--	Once	the	buckets	are	gone,	'bucket'	is	set	to	nil,	which	will	exit	the	

				--	loop	and	land	us	here.	Anything	extra	we	want	to	append	to	the	content

				--	can	be	done	by	doing	a	final	yield	here.	Both	input	and	output	filters	

				--	can	append	data	to	the	content	in	this	phase.

				coroutine.yield([optional	footer	to	be	appended	to	the	content])

end

Database	connectivity

Mod_lua	implements	a	simple	database	feature	for	querying	and
running	commands	on	the	most	popular	database	engines
(mySQL,	PostgreSQL,	FreeTDS,	ODBC,	SQLite,	Oracle)	as	well
as	mod_dbd.

The	example	below	shows	how	to	acquire	a	database	handle	and
return	information	from	a	table:

function	handle(r)

				--	Acquire	a	database	handle

				local	database,	err	=	r:dbacquire("mysql",	"server=localhost,user=someuser,pass=somepass,dbname=mydb")

				if	not	err	then

								--	Select	some	information	from	it

								local	results,	err	=	database:select(r,	"SELECT	`name`,	`age`	FROM	`people`	WHERE	1")

								if	not	err	then

												local	rows	=	results(0)	--	fetch	all	rows	synchronously

												for	k,	row	in	pairs(rows)	do

																r:puts(string.format("Name:	%s,	Age:	%s
",	row[1],	row[2]))

												end

								else

												r:puts("Database	query	error:	"	..	err)

								end

								database:close()

				else

								r:puts("Could	not	connect	to	the	database:	"	..	err)

				end

end

To	utilize	mod_dbd,	specify	mod_dbd	as	the	database	type,	or
leave	the	field	blank:

local	database	=	r:dbacquire("mod_dbd")

Database	object	and	contained	functions
The	database	object	returned	by	dbacquire	has	the	following
methods:

Normal	select	and	query	from	a	database:

--	Run	a	statement	and	return	the	number	of	rows	affected:

local	affected,	errmsg	=	database:query(r,	"DELETE	FROM	`tbl`	WHERE	1")

--	Run	a	statement	and	return	a	result	set	that	can	be	used	synchronously	or	async:

local	result,	errmsg	=	database:select(r,	"SELECT	*	FROM	`people`	WHERE	1")

Using	prepared	statements	(recommended):

--	Create	and	run	a	prepared	statement:

local	statement,	errmsg	=	database:prepare(r,	"DELETE	FROM	`tbl`	WHERE	`age`	>	%u")

if	not	errmsg	then

				local	result,	errmsg	=	statement:query(20)	--	run	the	statement	with	age	>	20

end

--	Fetch	a	prepared	statement	from	a	DBDPrepareSQL	directive:

local	statement,	errmsg	=	database:prepared(r,	"someTag")

if	not	errmsg	then

				local	result,	errmsg	=	statement:select("John	Doe",	123)	--	inject	the	values	"John	Doe"	and	123	into	the	statement

end

Escaping	values,	closing	databases	etc:

--	Escape	a	value	for	use	in	a	statement:

local	escaped	=	database:escape(r,	[["'|blabla]])

--	Close	a	database	connection	and	free	up	handles:

database:close()

--	Check	whether	a	database	connection	is	up	and	running:

local	connected	=	database:active()

Working	with	result	sets
The	result	set	returned	by	db:select	or	by	the	prepared
statement	functions	created	through	db:prepare	can	be	used	to
fetch	rows	synchronously	or	asynchronously,	depending	on	the
row	number	specified:
result(0)	fetches	all	rows	in	a	synchronous	manner,	returning	a
table	of	rows.
result(-1)	fetches	the	next	available	row	in	the	set,
asynchronously.
result(N)	fetches	row	number	N,	asynchronously:

--	fetch	a	result	set	using	a	regular	query:

local	result,	err	=	db:select(r,	"SELECT	*	FROM	`tbl`	WHERE	1")

local	rows	=	result(0)	--	Fetch	ALL	rows	synchronously

local	row	=	result(-1)	--	Fetch	the	next	available	row,	asynchronously

local	row	=	result(1234)	--	Fetch	row	number	1234,	asynchronously

local	row	=	result(-1,	true)	--	Fetch	the	next	available	row,	using	row	names	as	key	indexes.

One	can	construct	a	function	that	returns	an	iterative	function	to
iterate	over	all	rows	in	a	synchronous	or	asynchronous	way,
depending	on	the	async	argument:

function	rows(resultset,	async)

				local	a	=	0

				local	function	getnext()

								a	=	a	+	1

								local	row	=	resultset(-1)

								return	row	and	a	or	nil,	row

				end

				if	not	async	then

								return	pairs(resultset(0))

				else

								return	getnext,	self

				end

end

local	statement,	err	=	db:prepare(r,	"SELECT	*	FROM	`tbl`	WHERE	`age`	>	%u")

if	not	err	then

					--	fetch	rows	asynchronously:

				local	result,	err	=	statement:select(20)

				if	not	err	then

								for	index,	row	in	rows(result,	true)	do

											

								end

				end

					--	fetch	rows	synchronously:

				local	result,	err	=	statement:select(20)

				if	not	err	then

								for	index,	row	in	rows(result,	false)	do

											

								end

				end

end

Closing	a	database	connection
Database	handles	should	be	closed	using	database:close()
when	they	are	no	longer	needed.	If	you	do	not	close	them
manually,	they	will	eventually	be	garbage	collected	and	closed	by
mod_lua,	but	you	may	end	up	having	too	many	unused
connections	to	the	database	if	you	leave	the	closing	up	to
mod_lua.	Essentially,	the	following	two	measures	are	the	same:

--	Method	1:	Manually	close	a	handle

local	database	=	r:dbacquire("mod_dbd")

database:close()	--	All	done

--	Method	2:	Letting	the	garbage	collector	close	it

local	database	=	r:dbacquire("mod_dbd")

database	=	nil	--	throw	away	the	reference

collectgarbage()	--	close	the	handle	via	GC

Precautions	when	working	with	databases
Although	the	standard	query	and	run	functions	are	freely
available,	it	is	recommended	that	you	use	prepared	statements
whenever	possible,	to	both	optimize	performance	(if	your	db
handle	lives	on	for	a	long	time)	and	to	minimize	the	risk	of	SQL
injection	attacks.	run	and	query	should	only	be	used	when	there
are	no	variables	inserted	into	a	statement	(a	static	statement).
When	using	dynamic	statements,	use	db:prepare	or
db:prepared.

LuaAuthzProvider	Directive

Description: Plug	an	authorization	provider	function	into
mod_authz_core

Syntax: LuaAuthzProvider	provider_name

/path/to/lua/script.lua

function_name

Context: server	config
Status: Experimental
Module: mod_lua
Compatibility: 2.4.3	and	later

After	a	lua	function	has	been	registered	as	authorization	provider,
it	can	be	used	with	the	Require	directive:

LuaRoot	"/usr/local/apache2/lua"

LuaAuthzProvider	foo	authz.lua	authz_check_foo

<Location	"/">

		Require	foo	johndoe

</Location>

require	"apache2"

function	authz_check_foo(r,	who)

				if	r.user	~=	who	then	return	apache2.AUTHZ_DENIED

				return	apache2.AUTHZ_GRANTED

end

LuaCodeCache	Directive

Description: Configure	the	compiled	code	cache.
Syntax: LuaCodeCache	stat|forever|never

Default: LuaCodeCache	stat

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Specify	the	behavior	of	the	in-memory	code	cache.	The	default	is
stat,	which	stats	the	top	level	script	(not	any	included	ones)	each
time	that	file	is	needed,	and	reloads	it	if	the	modified	time	indicates
it	is	newer	than	the	one	it	has	already	loaded.	The	other	values
cause	it	to	keep	the	file	cached	forever	(don't	stat	and	replace)	or
to	never	cache	the	file.

In	general	stat	or	forever	is	good	for	production,	and	stat	or	never
for	development.

Examples:
LuaCodeCache	stat

LuaCodeCache	forever

LuaCodeCache	never

LuaHookAccessChecker	Directive

Description: Provide	a	hook	for	the	access_checker	phase	of
request	processing

Syntax: LuaHookAccessChecker

/path/to/lua/script.lua

hook_function_name	[early|late]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua
Compatibility: The	optional	third	argument	is	supported	in

2.3.15	and	later

Add	your	hook	to	the	access_checker	phase.	An	access	checker
hook	function	usually	returns	OK,	DECLINED,	or
HTTP_FORBIDDEN.

Ordering

The	optional	arguments	"early"	or	"late"	control	when	this	script
runs	relative	to	other	modules.

LuaHookAuthChecker	Directive

Description: Provide	a	hook	for	the	auth_checker	phase	of
request	processing

Syntax: LuaHookAuthChecker

/path/to/lua/script.lua

hook_function_name	[early|late]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua
Compatibility: The	optional	third	argument	is	supported	in

2.3.15	and	later

Invoke	a	lua	function	in	the	auth_checker	phase	of	processing	a
request.	This	can	be	used	to	implement	arbitrary	authentication
and	authorization	checking.	A	very	simple	example:

require	'apache2'

--	fake	authcheck	hook

--	If	request	has	no	auth	info,	set	the	response	header	and

--	return	a	401	to	ask	the	browser	for	basic	auth	info.

--	If	request	has	auth	info,	don't	actually	look	at	it,	just

--	pretend	we	got	userid	'foo'	and	validated	it.

--	Then	check	if	the	userid	is	'foo'	and	accept	the	request.

function	authcheck_hook(r)

			--	look	for	auth	info

			auth	=	r.headers_in['Authorization']

			if	auth	~=	nil	then

					--	fake	the	user

					r.user	=	'foo'

			end

			if	r.user	==	nil	then

						r:debug("authcheck:	user	is	nil,	returning	401")

						r.err_headers_out['WWW-Authenticate']	=	'Basic	realm="WallyWorld"'

						return	401

			elseif	r.user	==	"foo"	then

						r:debug('user	foo:	OK')

			else

						r:debug("authcheck:	user='"	..	r.user	..	"'")

						r.err_headers_out['WWW-Authenticate']	=	'Basic	realm="WallyWorld"'

						return	401

			end

			return	apache2.OK

end

Ordering

The	optional	arguments	"early"	or	"late"	control	when	this	script
runs	relative	to	other	modules.

LuaHookCheckUserID	Directive

Description: Provide	a	hook	for	the	check_user_id	phase	of
request	processing

Syntax: LuaHookCheckUserID

/path/to/lua/script.lua

hook_function_name	[early|late]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua
Compatibility: The	optional	third	argument	is	supported	in

2.3.15	and	later

...

Ordering

The	optional	arguments	"early"	or	"late"	control	when	this	script
runs	relative	to	other	modules.

LuaHookFixups	Directive

Description: Provide	a	hook	for	the	fixups	phase	of	a	request
processing

Syntax: LuaHookFixups	/path/to/lua/script.lua

hook_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Just	like	LuaHookTranslateName,	but	executed	at	the	fixups
phase

LuaHookInsertFilter	Directive

Description: Provide	a	hook	for	the	insert_filter	phase	of	request
processing

Syntax: LuaHookInsertFilter

/path/to/lua/script.lua

hook_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Not	Yet	Implemented

LuaHookLog	Directive

Description: Provide	a	hook	for	the	access	log	phase	of	a
request	processing

Syntax: LuaHookLog	/path/to/lua/script.lua

log_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

This	simple	logging	hook	allows	you	to	run	a	function	when	httpd
enters	the	logging	phase	of	a	request.	With	it,	you	can	append
data	to	your	own	logs,	manipulate	data	before	the	regular	log	is
written,	or	prevent	a	log	entry	from	being	created.	To	prevent	the
usual	logging	from	happening,	simply	return	apache2.DONE	in
your	logging	handler,	otherwise	return	apache2.OK	to	tell	httpd	to
log	as	normal.

Example:

LuaHookLog	"/path/to/script.lua"	logger

--	/path/to/script.lua	--

function	logger(r)

				--	flip	a	coin:

				--	If	1,	then	we	write	to	our	own	Lua	log	and	tell	httpd	not	to	log

				--	in	the	main	log.

				--	If	2,	then	we	just	sanitize	the	output	a	bit	and	tell	httpd	to	

				--	log	the	sanitized	bits.

				if	math.random(1,2)	==	1	then

								--	Log	stuff	ourselves	and	don't	log	in	the	regular	log

								local	f	=	io.open("/foo/secret.log",	"a")

								if	f	then

												f:write("Something	secret	happened	at	"	..	r.uri	..	"\n")

												f:close()

								end

								return	apache2.DONE	--	Tell	httpd	not	to	use	the	regular	logging	functions

				else

								r.uri	=	r.uri:gsub("somesecretstuff",	"")	--	sanitize	the	URI

								return	apache2.OK	--	tell	httpd	to	log	it.

				end

end

LuaHookMapToStorage	Directive

Description: Provide	a	hook	for	the	map_to_storage	phase	of
request	processing

Syntax: LuaHookMapToStorage

/path/to/lua/script.lua

hook_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Like	LuaHookTranslateName	but	executed	at	the	map-to-
storage	phase	of	a	request.	Modules	like	mod_cache	run	at	this
phase,	which	makes	for	an	interesting	example	on	what	to	do
here:

LuaHookMapToStorage	"/path/to/lua/script.lua"	check_cache

require"apache2"

cached_files	=	{}

function	read_file(filename)	

				local	input	=	io.open(filename,	"r")

				if	input	then

								local	data	=	input:read("*a")

								cached_files[filename]	=	data

								file	=	cached_files[filename]

								input:close()

				end

				return	cached_files[filename]

end

function	check_cache(r)

				if	r.filename:match("%.png$")	then	--	Only	match	PNG	files

								local	file	=	cached_files[r.filename]	--	Check	cache	entries

								if	not	file	then

												file	=	read_file(r.filename)		--	Read	file	into	cache

								end

								if	file	then	--	If	file	exists,	write	it	out

												r.status	=	200

												r:write(file)

												r:info(("Sent	%s	to	client	from	cache"):format(r.filename))

												return	apache2.DONE	--	skip	default	handler	for	PNG	files

								end

				end

				return	apache2.DECLINED	--	If	we	had	nothing	to	do,	let	others	serve	this.

end

LuaHookTranslateName	Directive

Description: Provide	a	hook	for	the	translate	name	phase	of
request	processing

Syntax: LuaHookTranslateName

/path/to/lua/script.lua

hook_function_name	[early|late]

Context: server	config,	virtual	host
Override: All
Status: Experimental
Module: mod_lua
Compatibility: The	optional	third	argument	is	supported	in

2.3.15	and	later

Add	a	hook	(at	APR_HOOK_MIDDLE)	to	the	translate	name
phase	of	request	processing.	The	hook	function	receives	a	single
argument,	the	request_rec,	and	should	return	a	status	code,	which
is	either	an	HTTP	error	code,	or	the	constants	defined	in	the
apache2	module:	apache2.OK,	apache2.DECLINED,	or
apache2.DONE.

For	those	new	to	hooks,	basically	each	hook	will	be	invoked	until
one	of	them	returns	apache2.OK.	If	your	hook	doesn't	want	to	do
the	translation	it	should	just	return	apache2.DECLINED.	If	the
request	should	stop	processing,	then	return	apache2.DONE.

Example:

#	httpd.conf

LuaHookTranslateName	"/scripts/conf/hooks.lua"	silly_mapper

--	/scripts/conf/hooks.lua	--

require	"apache2"

function	silly_mapper(r)

				if	r.uri	==	"/"	then

								r.filename	=	"/var/www/home.lua"

								return	apache2.OK

				else

								return	apache2.DECLINED

				end

end

Context

This	directive	is	not	valid	in	<Directory>,	<Files>,	or
htaccess	context.

Ordering

The	optional	arguments	"early"	or	"late"	control	when	this	script
runs	relative	to	other	modules.

LuaHookTypeChecker	Directive

Description: Provide	a	hook	for	the	type_checker	phase	of
request	processing

Syntax: LuaHookTypeChecker

/path/to/lua/script.lua

hook_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

This	directive	provides	a	hook	for	the	type_checker	phase	of	the
request	processing.	This	phase	is	where	requests	are	assigned	a
content	type	and	a	handler,	and	thus	can	be	used	to	modify	the
type	and	handler	based	on	input:

LuaHookTypeChecker	"/path/to/lua/script.lua"	type_checker

				function	type_checker(r)

								if	r.uri:match("%.to_gif$")	then	--	match	foo.png.to_gif

												r.content_type	=	"image/gif"	--	assign	it	the	image/gif	type

												r.handler	=	"gifWizard"						--	tell	the	gifWizard	module	to	handle	this

												r.filename	=	r.uri:gsub("%.to_gif$",	"")	--	fix	the	filename	requested

												return	apache2.OK

								end

								return	apache2.DECLINED

				end

LuaInherit	Directive

Description: Controls	how	parent	configuration	sections	are
merged	into	children

Syntax: LuaInherit	none|parent-first|parent-

last

Default: LuaInherit	parent-first

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua
Compatibility: 2.4.0	and	later

By	default,	if	LuaHook*	directives	are	used	in	overlapping
Directory	or	Location	configuration	sections,	the	scripts	defined	in
the	more	specific	section	are	run	after	those	defined	in	the	more
generic	section	(LuaInherit	parent-first).	You	can	reverse	this
order,	or	make	the	parent	context	not	apply	at	all.

In	previous	2.3.x	releases,	the	default	was	effectively	to	ignore
LuaHook*	directives	from	parent	configuration	sections.

LuaInputFilter	Directive

Description: Provide	a	Lua	function	for	content	input	filtering
Syntax: LuaInputFilter	filter_name

/path/to/lua/script.lua

function_name

Context: server	config
Status: Experimental
Module: mod_lua
Compatibility: 2.4.5	and	later

Provides	a	means	of	adding	a	Lua	function	as	an	input	filter.	As
with	output	filters,	input	filters	work	as	coroutines,	first	yielding
before	buffers	are	sent,	then	yielding	whenever	a	bucket	needs	to
be	passed	down	the	chain,	and	finally	(optionally)	yielding
anything	that	needs	to	be	appended	to	the	input	data.	The	global
variable	bucket	holds	the	buckets	as	they	are	passed	onto	the
Lua	script:

LuaInputFilter	myInputFilter	"/www/filter.lua"	input_filter

<Files	"*.lua">

		SetInputFilter	myInputFilter

</Files>

--[[

				Example	input	filter	that	converts	all	POST	data	to	uppercase.

]]--

function	input_filter(r)

				print("luaInputFilter	called")	--	debug	print

				coroutine.yield()	--	Yield	and	wait	for	buckets

				while	bucket	do	--	For	each	bucket,	do...

								local	output	=	string.upper(bucket)	--	Convert	all	POST	data	to	uppercase

								coroutine.yield(output)	--	Send	converted	data	down	the	chain

				end

				--	No	more	buckets	available.

				coroutine.yield("&filterSignature=1234")	--	Append	signature	at	the	end

end

The	input	filter	supports	denying/skipping	a	filter	if	it	is	deemed
unwanted:

function	input_filter(r)

				if	not	good	then

								return	--	Simply	deny	filtering,	passing	on	the	original	content	instead

				end

				coroutine.yield()	--	wait	for	buckets

				...	--	insert	filter	stuff	here

end

See	"Modifying	contents	with	Lua	filters"	for	more	information.

LuaMapHandler	Directive

Description: Map	a	path	to	a	lua	handler
Syntax: LuaMapHandler	uri-pattern

/path/to/lua/script.lua	[function-

name]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

This	directive	matches	a	uri	pattern	to	invoke	a	specific	handler
function	in	a	specific	file.	It	uses	PCRE	regular	expressions	to
match	the	uri,	and	supports	interpolating	match	groups	into	both
the	file	path	and	the	function	name.	Be	careful	writing	your	regular
expressions	to	avoid	security	issues.

Examples:
LuaMapHandler	"/(\w+)/(\w+)"	"/scripts/$1.lua"	"handle_$2"

This	would	match	uri's	such	as	/photos/show?id=9	to	the	file
/scripts/photos.lua	and	invoke	the	handler	function	handle_show
on	the	lua	vm	after	loading	that	file.

LuaMapHandler	"/bingo"	"/scripts/wombat.lua"

This	would	invoke	the	"handle"	function,	which	is	the	default	if	no
specific	function	name	is	provided.

LuaOutputFilter	Directive

Description: Provide	a	Lua	function	for	content	output	filtering
Syntax: LuaOutputFilter	filter_name

/path/to/lua/script.lua

function_name

Context: server	config
Status: Experimental
Module: mod_lua
Compatibility: 2.4.5	and	later

Provides	a	means	of	adding	a	Lua	function	as	an	output	filter.	As
with	input	filters,	output	filters	work	as	coroutines,	first	yielding
before	buffers	are	sent,	then	yielding	whenever	a	bucket	needs	to
be	passed	down	the	chain,	and	finally	(optionally)	yielding
anything	that	needs	to	be	appended	to	the	input	data.	The	global
variable	bucket	holds	the	buckets	as	they	are	passed	onto	the
Lua	script:

LuaOutputFilter	myOutputFilter	"/www/filter.lua"	output_filter

<Files	"*.lua">

		SetOutputFilter	myOutputFilter

</Files>

--[[

				Example	output	filter	that	escapes	all	HTML	entities	in	the	output

]]--

function	output_filter(r)

				coroutine.yield("(Handled	by	myOutputFilter)
\n")	--	Prepend	some	data	to	the	output,

																																																										--	yield	and	wait	for	buckets.

				while	bucket	do	--	For	each	bucket,	do...

								local	output	=	r:escape_html(bucket)	--	Escape	all	output

								coroutine.yield(output)	--	Send	converted	data	down	the	chain

				end

				--	No	more	buckets	available.

end

As	with	the	input	filter,	the	output	filter	supports	denying/skipping	a
filter	if	it	is	deemed	unwanted:

function	output_filter(r)

				if	not	r.content_type:match("text/html")	then

								return	--	Simply	deny	filtering,	passing	on	the	original	content	instead

				end

				coroutine.yield()	--	wait	for	buckets

				...	--	insert	filter	stuff	here

end

Lua	filters	with	mod_filter

When	a	Lua	filter	is	used	as	the	underlying	provider	via	the
FilterProvider	directive,	filtering	will	only	work	when	the
filter-name	is	identical	to	the	provider-name.

See	"Modifying	contents	with	Lua	filters"	for	more	information.

LuaPackageCPath	Directive

Description: Add	a	directory	to	lua's	package.cpath
Syntax: LuaPackageCPath

/path/to/include/?.soa

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Add	a	path	to	lua's	shared	library	search	path.	Follows	the	same
conventions	as	lua.	This	just	munges	the	package.cpath	in	the	lua
vms.

LuaPackagePath	Directive

Description: Add	a	directory	to	lua's	package.path
Syntax: LuaPackagePath	/path/to/include/?.lua

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Add	a	path	to	lua's	module	search	path.	Follows	the	same
conventions	as	lua.	This	just	munges	the	package.path	in	the	lua
vms.

Examples:
LuaPackagePath	"/scripts/lib/?.lua"

LuaPackagePath	"/scripts/lib/?/init.lua"

LuaQuickHandler	Directive

Description: Provide	a	hook	for	the	quick	handler	of	request
processing

Syntax: LuaQuickHandler	/path/to/script.lua

hook_function_name

Context: server	config,	virtual	host
Override: All
Status: Experimental
Module: mod_lua

This	phase	is	run	immediately	after	the	request	has	been	mapped
to	a	virtal	host,	and	can	be	used	to	either	do	some	request
processing	before	the	other	phases	kick	in,	or	to	serve	a	request
without	the	need	to	translate,	map	to	storage	et	cetera.	As	this
phase	is	run	before	anything	else,	directives	such	as	<Location>
or	<Directory>	are	void	in	this	phase,	just	as	URIs	have	not
been	properly	parsed	yet.

Context

This	directive	is	not	valid	in	<Directory>,	<Files>,	or
htaccess	context.

LuaRoot	Directive

Description: Specify	the	base	path	for	resolving	relative	paths
for	mod_lua	directives

Syntax: LuaRoot	/path/to/a/directory

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Specify	the	base	path	which	will	be	used	to	evaluate	all	relative
paths	within	mod_lua.	If	not	specified	they	will	be	resolved	relative
to	the	current	working	directory,	which	may	not	always	work	well
for	a	server.

LuaScope	Directive

Description: One	of	once,	request,	conn,	thread	--	default	is
once

Syntax: LuaScope

once|request|conn|thread|server	[min]

[max]

Default: LuaScope	once

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Specify	the	life	cycle	scope	of	the	Lua	interpreter	which	will	be
used	by	handlers	in	this	"Directory."	The	default	is	"once"

once:
use	the	interpreter	once	and	throw	it	away.

request:
use	the	interpreter	to	handle	anything	based	on	the	same	file
within	this	request,	which	is	also	request	scoped.

conn:
Same	as	request	but	attached	to	the	connection_rec

thread:
Use	the	interpreter	for	the	lifetime	of	the	thread	handling	the
request	(only	available	with	threaded	MPMs).

server:
This	one	is	different	than	others	because	the	server	scope	is
quite	long	lived,	and	multiple	threads	will	have	the	same
server_rec.	To	accommodate	this,	server	scoped	Lua	states
are	stored	in	an	apr	resource	list.	The	min	and	max
arguments	specify	the	minimum	and	maximum	number	of	Lua
states	to	keep	in	the	pool.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Generally	speaking,	the	thread	and	server	scopes	execute
roughly	2-3	times	faster	than	the	rest,	because	they	don't	have	to
spawn	new	Lua	states	on	every	request	(especially	with	the	event
MPM,	as	even	keepalive	requests	will	use	a	new	thread	for	each
request).	If	you	are	satisfied	that	your	scripts	will	not	have
problems	reusing	a	state,	then	the	thread	or	server	scopes
should	be	used	for	maximum	performance.	While	the	thread
scope	will	provide	the	fastest	responses,	the	server	scope	will
use	less	memory,	as	states	are	pooled,	allowing	f.x.	1000	threads
to	share	only	100	Lua	states,	thus	using	only	10%	of	the	memory
required	by	the	thread	scope.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_macro

Description: Provides	macros	within	apache	httpd	runtime
configuration	files

Status: Base
Module	Identifier: macro_module
Source	File: mod_macro.c

Summary
Provides	macros	within	Apache	httpd	runtime	configuration	files,	to
ease	the	process	of	creating	numerous	similar	configuration	blocks.
When	the	server	starts	up,	the	macros	are	expanded	using	the
provided	parameters,	and	the	result	is	processed	as	along	with	the
rest	of	the	configuration	file.

Usage

Macros	are	defined	using	<Macro>	blocks,	which	contain	the
portion	of	your	configuration	that	needs	to	be	repeated,	complete
with	variables	for	those	parts	that	will	need	to	be	substituted.

For	example,	you	might	use	a	macro	to	define	a	<VirtualHost>
block,	in	order	to	define	multiple	similar	virtual	hosts:

<Macro	VHost	$name	$domain>

<VirtualHost	*:80>

				ServerName	$domain

				ServerAlias	www.$domain

				DocumentRoot	"/var/www/vhosts/$name"

				ErrorLog	"/var/log/httpd/$name.error_log"

				CustomLog	"/var/log/httpd/$name.access_log"	combined

</VirtualHost>

</Macro>

Macro	names	are	case-insensitive,	like	httpd	configuration
directives.	However,	variable	names	are	case	sensitive.

You	would	then	invoke	this	macro	several	times	to	create	virtual
hosts:

Use	VHost	example	example.com

Use	VHost	myhost	hostname.org

Use	VHost	apache	apache.org

UndefMacro	VHost

At	server	startup	time,	each	of	these	Use	invocations	would	be
expanded	into	a	full	virtualhost,	as	described	by	the	<Macro>
definition.

The	UndefMacro	directive	is	used	so	that	later	macros	using	the
same	variable	names	don't	result	in	conflicting	definitions.

A	more	elaborate	version	of	this	example	may	be	seen	below	in
the	Examples	section.

Tips

Parameter	names	should	begin	with	a	sigil	such	as	$,	%,	or	@,	so
that	they	are	clearly	identifiable,	and	also	in	order	to	help	deal	with
interactions	with	other	directives,	such	as	the	core	Define
directive.	Failure	to	do	so	will	result	in	a	warning.	Nevertheless,
you	are	encouraged	to	have	a	good	knowledge	of	your	entire
server	configuration	in	order	to	avoid	reusing	the	same	variables	in
different	scopes,	which	can	cause	confusion.

Parameters	prefixed	with	either	$	or	%	are	not	escaped.
Parameters	prefixes	with	@	are	escaped	in	quotes.

Avoid	using	a	parameter	which	contains	another	parameter	as	a
prefix,	(For	example,	$win	and	$winter)	as	this	may	cause
confusion	at	expression	evaluation	time.	In	the	event	of	such
confusion,	the	longest	possible	parameter	name	is	used.

If	you	want	to	use	a	value	within	another	string,	it	is	useful	to
surround	the	parameter	in	braces,	to	avoid	confusion:

<Macro	DocRoot	${docroot}>

				DocumentRoot	"/var/www/${docroot}/htdocs"

</Macro>

Examples

Virtual	Host	Definition
A	common	usage	of	mod_macro	is	for	the	creation	of	dynamically-
generated	virtual	hosts.

##	Define	a	VHost	Macro	for	repetitive	configurations

<Macro	VHost	$host	$port	$dir>

		Listen	$port

		<VirtualHost	*:$port>

				ServerName	$host

				DocumentRoot	"$dir"

				#	Public	document	root

				<Directory	"$dir">

								Require	all	granted

				</Directory>

				#	limit	access	to	intranet	subdir.

				<Directory	"$dir/intranet">

						Require	ip	10.0.0.0/8

				</Directory>

		</VirtualHost>

</Macro>

##	Use	of	VHost	with	different	arguments.

Use	VHost	www.apache.org	80	/vhosts/apache/htdocs

Use	VHost	example.org	8080	/vhosts/example/htdocs

Use	VHost	www.example.fr	1234	/vhosts/example.fr/htdocs

Removal	of	a	macro	definition

It's	recommended	that	you	undefine	a	macro	once	you've	used	it.
This	avoids	confusion	in	a	complex	configuration	file	where	there
may	be	conflicts	in	variable	names.

<Macro	DirGroup	$dir	$group>

		<Directory	"$dir">

				Require	group	$group

		</Directory>

</Macro>

Use	DirGroup	/www/apache/private	private

Use	DirGroup	/www/apache/server		admin

UndefMacro	DirGroup

<Macro>	Directive

Description: Define	a	configuration	file	macro
Syntax: <Macro	name	[par1	..	parN]>	...

</Macro>

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_macro

The	<Macro>	directive	controls	the	definition	of	a	macro	within	the
server	runtime	configuration	files.	The	first	argument	is	the	name
of	the	macro.	Other	arguments	are	parameters	to	the	macro.	It	is
good	practice	to	prefix	parameter	names	with	any	of	'$%@',	and	not
macro	names	with	such	characters.

<Macro	LocalAccessPolicy>

				Require	ip	10.2.16.0/24

</Macro>

<Macro	RestrictedAccessPolicy	$ipnumbers>

				Require	ip	$ipnumbers

</Macro>

UndefMacro	Directive

Description: Undefine	a	macro
Syntax: UndefMacro	name

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_macro

The	UndefMacro	directive	undefines	a	macro	which	has	been
defined	before	hand.

UndefMacro	LocalAccessPolicy

UndefMacro	RestrictedAccessPolicy

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Use	Directive

Description: Use	a	macro
Syntax: Use	name	[value1	...	valueN]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_macro

The	Use	directive	controls	the	use	of	a	macro.	The	specified
macro	is	expanded.	It	must	be	given	the	same	number	of
arguments	as	in	the	macro	definition.	The	provided	values	are
associated	to	their	corresponding	initial	parameters	and	are
substituted	before	processing.

Use	LocalAccessPolicy

...

Use	RestrictedAccessPolicy	"192.54.172.0/24	192.54.148.0/24"

is	equivalent,	with	the	macros	defined	above,	to:

Require	ip	10.2.16.0/24

...

Require	ip	192.54.172.0/24	192.54.148.0/24

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_mime

Description: Associates	the	requested	filename's	extensions
with	the	file's	behavior	(handlers	and	filters)	and
content	(mime-type,	language,	character	set	and
encoding)

Status: Base
Module	Identifier: mime_module
Source	File: mod_mime.c

Summary
This	module	is	used	to	assign	content	metadata	to	the	content
selected	for	an	HTTP	response	by	mapping	patterns	in	the	URI	or
filenames	to	the	metadata	values.	For	example,	the	filename
extensions	of	content	files	often	define	the	content's	Internet	media
type,	language,	character	set,	and	content-encoding.	This	information
is	sent	in	HTTP	messages	containing	that	content	and	used	in	content
negotiation	when	selecting	alternatives,	such	that	the	user's
preferences	are	respected	when	choosing	one	of	several	possible
contents	to	serve.	See	mod_negotiation	for	more	information
about	content	negotiation.

The	directives	AddCharset,	AddEncoding,	AddLanguage	and
AddType	are	all	used	to	map	file	extensions	onto	the	metadata	for
that	file.	Respectively	they	set	the	character	set,	content-encoding,
content-language,	and	media-type	(content-type)	of	documents.	The
directive	TypesConfig	is	used	to	specify	a	file	which	also	maps
extensions	onto	media	types.

In	addition,	mod_mime	may	define	the	handler	and	filters	that
originate	and	process	content.	The	directives	AddHandler,
AddOutputFilter,	and	AddInputFilter	control	the	modules	or

scripts	that	serve	the	document.	The	MultiviewsMatch	directive
allows	mod_negotiation	to	consider	these	file	extensions	to	be
included	when	testing	Multiviews	matches.

While	mod_mime	associates	metadata	with	filename	extensions,	the
core	server	provides	directives	that	are	used	to	associate	all	the	files
in	a	given	container	(e.g.,	<Location>,	<Directory>,	or	<Files>)
with	particular	metadata.	These	directives	include	ForceType,
SetHandler,	SetInputFilter,	and	SetOutputFilter.	The	core
directives	override	any	filename	extension	mappings	defined	in
mod_mime.

Note	that	changing	the	metadata	for	a	file	does	not	change	the	value
of	the	Last-Modified	header.	Thus,	previously	cached	copies	may
still	be	used	by	a	client	or	proxy,	with	the	previous	headers.	If	you
change	the	metadata	(language,	content	type,	character	set	or
encoding)	you	may	need	to	'touch'	affected	files	(updating	their	last
modified	date)	to	ensure	that	all	visitors	are	receive	the	corrected
content	headers.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
MimeMagicFile

AddDefaultCharset

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_mime
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_mime

ForceType

SetHandler

SetInputFilter

SetOutputFilter

Files	with	Multiple	Extensions

Files	can	have	more	than	one	extension;	the	order	of	the
extensions	is	normally	irrelevant.	For	example,	if	the	file
welcome.html.fr	maps	onto	content	type	text/html	and
language	French	then	the	file	welcome.fr.html	will	map	onto
exactly	the	same	information.	If	more	than	one	extension	is	given
that	maps	onto	the	same	type	of	metadata,	then	the	one	to	the
right	will	be	used,	except	for	languages	and	content	encodings.
For	example,	if	.gif	maps	to	the	media-type	image/gif	and
.html	maps	to	the	media-type	text/html,	then	the	file
welcome.gif.html	will	be	associated	with	the	media-type
text/html.

Languages	and	content	encodings	are	treated	accumulative,
because	one	can	assign	more	than	one	language	or	encoding	to	a
particular	resource.	For	example,	the	file	welcome.html.en.de
will	be	delivered	with	Content-Language:	en,	de	and
Content-Type:	text/html.

Care	should	be	taken	when	a	file	with	multiple	extensions	gets
associated	with	both	a	media-type	and	a	handler.	This	will	usually
result	in	the	request	being	handled	by	the	module	associated	with
the	handler.	For	example,	if	the	.imap	extension	is	mapped	to	the
handler	imap-file	(from	mod_imagemap)	and	the	.html
extension	is	mapped	to	the	media-type	text/html,	then	the	file
world.imap.html	will	be	associated	with	both	the	imap-file
handler	and	text/html	media-type.	When	it	is	processed,	the
imap-file	handler	will	be	used,	and	so	it	will	be	treated	as	a
mod_imagemap	imagemap	file.

If	you	would	prefer	only	the	last	dot-separated	part	of	the	filename
to	be	mapped	to	a	particular	piece	of	meta-data,	then	do	not	use
the	Add*	directives.	For	example,	if	you	wish	to	have	the	file
foo.html.cgi	processed	as	a	CGI	script,	but	not	the	file

bar.cgi.html,	then	instead	of	using	AddHandler	cgi-
script	.cgi,	use

Configure	handler	based	on	final	extension	only
<FilesMatch	"[^.]+\.cgi$">

		SetHandler	cgi-script

</FilesMatch>

Content	encoding

A	file	of	a	particular	media-type	can	additionally	be	encoded	a
particular	way	to	simplify	transmission	over	the	Internet.	While	this
usually	will	refer	to	compression,	such	as	gzip,	it	can	also	refer	to
encryption,	such	a	pgp	or	to	an	encoding	such	as	UUencoding,
which	is	designed	for	transmitting	a	binary	file	in	an	ASCII	(text)
format.

The	HTTP/1.1	RFC,	section	14.11	puts	it	this	way:

The	Content-Encoding	entity-header	field	is	used	as	a
modifier	to	the	media-type.	When	present,	its	value	indicates
what	additional	content	codings	have	been	applied	to	the
entity-body,	and	thus	what	decoding	mechanisms	must	be
applied	in	order	to	obtain	the	media-type	referenced	by	the
Content-Type	header	field.	Content-Encoding	is	primarily
used	to	allow	a	document	to	be	compressed	without	losing
the	identity	of	its	underlying	media	type.

By	using	more	than	one	file	extension	(see	section	above	about
multiple	file	extensions),	you	can	indicate	that	a	file	is	of	a
particular	type,	and	also	has	a	particular	encoding.

For	example,	you	may	have	a	file	which	is	a	Microsoft	Word
document,	which	is	pkzipped	to	reduce	its	size.	If	the	.doc
extension	is	associated	with	the	Microsoft	Word	file	type,	and	the
.zip	extension	is	associated	with	the	pkzip	file	encoding,	then	the
file	Resume.doc.zip	would	be	known	to	be	a	pkzip'ed	Word
document.

Apache	sends	a	Content-encoding	header	with	the	resource,
in	order	to	tell	the	client	browser	about	the	encoding	method.

Content-encoding:	pkzip

http://www.ietf.org/rfc/rfc2616.txt

Character	sets	and	languages

In	addition	to	file	type	and	the	file	encoding,	another	important
piece	of	information	is	what	language	a	particular	document	is	in,
and	in	what	character	set	the	file	should	be	displayed.	For
example,	the	document	might	be	written	in	the	Vietnamese
alphabet,	or	in	Cyrillic,	and	should	be	displayed	as	such.	This
information,	also,	is	transmitted	in	HTTP	headers.

The	character	set,	language,	encoding	and	mime	type	are	all	used
in	the	process	of	content	negotiation	(See	mod_negotiation)	to
determine	which	document	to	give	to	the	client,	when	there	are
alternative	documents	in	more	than	one	character	set,	language,
encoding	or	mime	type.	All	filename	extensions	associations
created	with	AddCharset,	AddEncoding,	AddLanguage	and
AddType	directives	(and	extensions	listed	in	the
MimeMagicFile)	participate	in	this	select	process.	Filename
extensions	that	are	only	associated	using	the	AddHandler,
AddInputFilter	or	AddOutputFilter	directives	may	be
included	or	excluded	from	matching	by	using	the
MultiviewsMatch	directive.

Charset
To	convey	this	further	information,	Apache	optionally	sends	a
Content-Language	header,	to	specify	the	language	that	the
document	is	in,	and	can	append	additional	information	onto	the
Content-Type	header	to	indicate	the	particular	character	set	that
should	be	used	to	correctly	render	the	information.

Content-Language:	en,	fr	Content-Type:	text/plain;	charset=ISO-

8859-1

The	language	specification	is	the	two-letter	abbreviation	for	the
language.	The	charset	is	the	name	of	the	particular	character

set	which	should	be	used.

AddCharset	Directive

Description: Maps	the	given	filename	extensions	to	the
specified	content	charset

Syntax: AddCharset	charset	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddCharset	directive	maps	the	given	filename	extensions	to
the	specified	content	charset	(the	Internet	registered	name	for	a
given	character	encoding).	charset	is	the	media	type's	charset
parameter	for	resources	with	filenames	containing	extension.	This
mapping	is	added	to	any	already	in	force,	overriding	any	mappings
that	already	exist	for	the	same	extension.

Example
AddLanguage	ja	.ja

AddCharset	EUC-JP	.euc

AddCharset	ISO-2022-JP	.jis

AddCharset	SHIFT_JIS	.sjis

Then	the	document	xxxx.ja.jis	will	be	treated	as	being	a
Japanese	document	whose	charset	is	ISO-2022-JP	(as	will	the
document	xxxx.jis.ja).	The	AddCharset	directive	is	useful
for	both	to	inform	the	client	about	the	character	encoding	of	the
document	so	that	the	document	can	be	interpreted	and	displayed
appropriately,	and	for	content	negotiation,	where	the	server	returns
one	from	several	documents	based	on	the	client's	charset
preference.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple

http://www.iana.org/assignments/character-sets

extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

See	also
mod_negotiation

AddDefaultCharset

AddEncoding	Directive

Description: Maps	the	given	filename	extensions	to	the
specified	encoding	type

Syntax: AddEncoding	encoding	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddEncoding	directive	maps	the	given	filename	extensions
to	the	specified	HTTP	content-encoding.	encoding	is	the	HTTP
content	coding	to	append	to	the	value	of	the	Content-Encoding
header	field	for	documents	named	with	the	extension.	This
mapping	is	added	to	any	already	in	force,	overriding	any	mappings
that	already	exist	for	the	same	extension.

Example
AddEncoding	x-gzip	.gz

AddEncoding	x-compress	.Z

This	will	cause	filenames	containing	the	.gz	extension	to	be
marked	as	encoded	using	the	x-gzip	encoding,	and	filenames
containing	the	.Z	extension	to	be	marked	as	encoded	with	x-
compress.

Old	clients	expect	x-gzip	and	x-compress,	however	the
standard	dictates	that	they're	equivalent	to	gzip	and	compress
respectively.	Apache	does	content	encoding	comparisons	by
ignoring	any	leading	x-.	When	responding	with	an	encoding
Apache	will	use	whatever	form	(i.e.,	x-foo	or	foo)	the	client
requested.	If	the	client	didn't	specifically	request	a	particular	form
Apache	will	use	the	form	given	by	the	AddEncoding	directive.	To

make	this	long	story	short,	you	should	always	use	x-gzip	and	x-
compress	for	these	two	specific	encodings.	More	recent
encodings,	such	as	deflate,	should	be	specified	without	the	x-.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

AddHandler	Directive

Description: Maps	the	filename	extensions	to	the	specified
handler

Syntax: AddHandler	handler-name	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

Files	having	the	name	extension	will	be	served	by	the	specified
handler-name.	This	mapping	is	added	to	any	already	in	force,
overriding	any	mappings	that	already	exist	for	the	same	extension.
For	example,	to	activate	CGI	scripts	with	the	file	extension	.cgi,
you	might	use:

AddHandler	cgi-script	.cgi

Once	that	has	been	put	into	your	httpd.conf	file,	any	file	containing
the	.cgi	extension	will	be	treated	as	a	CGI	program.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

See	also
SetHandler

AddInputFilter	Directive

Description: Maps	filename	extensions	to	the	filters	that	will
process	client	requests

Syntax: AddInputFilter	filter[;filter...]

extension	[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

AddInputFilter	maps	the	filename	extension	extension	to	the
filters	which	will	process	client	requests	and	POST	input	when
they	are	received	by	the	server.	This	is	in	addition	to	any	filters
defined	elsewhere,	including	the	SetInputFilter	directive.	This
mapping	is	merged	over	any	already	in	force,	overriding	any
mappings	that	already	exist	for	the	same	extension.

If	more	than	one	filter	is	specified,	they	must	be	separated	by
semicolons	in	the	order	in	which	they	should	process	the	content.
The	filter	is	case-insensitive.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

See	also
RemoveInputFilter

SetInputFilter

AddLanguage	Directive

Description: Maps	the	given	filename	extension	to	the	specified
content	language

Syntax: AddLanguage	language-tag	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddLanguage	directive	maps	the	given	filename	extension	to
the	specified	content	language.	Files	with	the	filename	extension
are	assigned	an	HTTP	Content-Language	value	of	language-tag
corresponding	to	the	language	identifiers	defined	by	RFC	3066.
This	directive	overrides	any	mappings	that	already	exist	for	the
same	extension.

Example
AddEncoding	x-compress	.Z

AddLanguage	en	.en

AddLanguage	fr	.fr

Then	the	document	xxxx.en.Z	will	be	treated	as	being	a
compressed	English	document	(as	will	the	document
xxxx.Z.en).	Although	the	content	language	is	reported	to	the
client,	the	browser	is	unlikely	to	use	this	information.	The
AddLanguage	directive	is	more	useful	for	content	negotiation,
where	the	server	returns	one	from	several	documents	based	on
the	client's	language	preference.

If	multiple	language	assignments	are	made	for	the	same
extension,	the	last	one	encountered	is	the	one	that	is	used.	That
is,	for	the	case	of:

AddLanguage	en	.en

AddLanguage	en-gb	.en

AddLanguage	en-us	.en

documents	with	the	extension	.en	would	be	treated	as	being	en-
us.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

See	also
mod_negotiation

AddOutputFilter	Directive

Description: Maps	filename	extensions	to	the	filters	that	will
process	responses	from	the	server

Syntax: AddOutputFilter	filter[;filter...]

extension	[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddOutputFilter	directive	maps	the	filename	extension
extension	to	the	filters	which	will	process	responses	from	the
server	before	they	are	sent	to	the	client.	This	is	in	addition	to	any
filters	defined	elsewhere,	including	SetOutputFilter	and
AddOutputFilterByType	directive.	This	mapping	is	merged
over	any	already	in	force,	overriding	any	mappings	that	already
exist	for	the	same	extension.

For	example,	the	following	configuration	will	process	all	.shtml
files	for	server-side	includes	and	will	then	compress	the	output
using	mod_deflate.

AddOutputFilter	INCLUDES;DEFLATE	shtml

If	more	than	one	filter	is	specified,	they	must	be	separated	by
semicolons	in	the	order	in	which	they	should	process	the	content.
The	filter	argument	is	case-insensitive.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

Note	that	when	defining	a	set	of	filters	using	the

AddOutputFilter	directive,	any	definition	made	will	replace	any
previous	definition	made	by	the	AddOutputFilter	directive.

#	Effective	filter	"DEFLATE"

AddOutputFilter	DEFLATE	shtml

<Location	"/foo">

		#	Effective	filter	"INCLUDES",	replacing	"DEFLATE"

		AddOutputFilter	INCLUDES	shtml

</Location>

<Location	"/bar">

		#	Effective	filter	"INCLUDES;DEFLATE",	replacing	"DEFLATE"

		AddOutputFilter	INCLUDES;DEFLATE	shtml

</Location>

<Location	"/bar/baz">

		#	Effective	filter	"BUFFER",	replacing	"INCLUDES;DEFLATE"

		AddOutputFilter	BUFFER	shtml

</Location>

<Location	"/bar/baz/buz">

		#	No	effective	filter,	replacing	"BUFFER"

		RemoveOutputFilter	shtml

</Location>

See	also
RemoveOutputFilter

SetOutputFilter

AddType	Directive

Description: Maps	the	given	filename	extensions	onto	the
specified	content	type

Syntax: AddType	media-type	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddType	directive	maps	the	given	filename	extensions	onto
the	specified	content	type.	media-type	is	the	media	type	to	use	for
filenames	containing	extension.	This	mapping	is	added	to	any
already	in	force,	overriding	any	mappings	that	already	exist	for	the
same	extension.

It	is	recommended	that	new	media	types	be	added	using	the
AddType	directive	rather	than	changing	the	TypesConfig	file.

Example
AddType	image/gif	.gif

Or,	to	specify	multiple	file	extensions	in	one	directive:

Example
AddType	image/jpeg	jpeg	jpg	jpe

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

A	simmilar	effect	to	mod_negotiation's	LanguagePriority
can	be	achieved	by	qualifying	a	media-type	with	qs:

Example
AddType	application/rss+xml;qs=0.8	.xml

This	is	useful	in	situations,	e.g.	when	a	client	requesting	Accept:
/	can	not	actually	processes	the	content	returned	by	the	server.

This	directive	primarily	configures	the	content	types	generated	for
static	files	served	out	of	the	filesystem.	For	resources	other	than
static	files,	where	the	generator	of	the	response	typically	specifies
a	Content-Type,	this	directive	has	no	effect.

Note

If	no	handler	is	explicitly	set	for	a	request,	the	specified	content
type	will	also	be	used	as	the	handler	name.

When	explicit	directives	such	as	SetHandler	or	AddHandler
do	not	apply	to	the	current	request,	the	internal	handler	name
normally	set	by	those	directives	is	instead	set	to	the	content
type	specified	by	this	directive.

This	is	a	historical	behavior	that	may	be	used	by	some	third-
party	modules	(such	as	mod_php)	for	taking	responsibility	for
the	matching	request.

Configurations	that	rely	on	such	"synthetic"	types	should	be
avoided.	Additionally,	configurations	that	restrict	access	to
SetHandler	or	AddHandler	should	restrict	access	to	this
directive	as	well.

See	also
ForceType

mod_negotiation

DefaultLanguage	Directive

Description: Defines	a	default	language-tag	to	be	sent	in	the
Content-Language	header	field	for	all	resources	in
the	current	context	that	have	not	been	assigned	a
language-tag	by	some	other	means.

Syntax: DefaultLanguage	language-tag

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	DefaultLanguage	directive	tells	Apache	that	all	resources
in	the	directive's	scope	(e.g.,	all	resources	covered	by	the	current
<Directory>	container)	that	don't	have	an	explicit	language
extension	(such	as	.fr	or	.de	as	configured	by	AddLanguage)
should	be	assigned	a	Content-Language	of	language-tag.	This
allows	entire	directory	trees	to	be	marked	as	containing	Dutch
content,	for	instance,	without	having	to	rename	each	file.	Note	that
unlike	using	extensions	to	specify	languages,	DefaultLanguage
can	only	specify	a	single	language.

If	no	DefaultLanguage	directive	is	in	force	and	a	file	does	not
have	any	language	extensions	as	configured	by	AddLanguage,
then	no	Content-Language	header	field	will	be	generated.

Example
DefaultLanguage	en

See	also
mod_negotiation

ModMimeUsePathInfo	Directive

Description: Tells	mod_mime	to	treat	path_info	components
as	part	of	the	filename

Syntax: ModMimeUsePathInfo	On|Off

Default: ModMimeUsePathInfo	Off

Context: directory
Status: Base
Module: mod_mime

The	ModMimeUsePathInfo	directive	is	used	to	combine	the
filename	with	the	path_info	URL	component	to	apply
mod_mime's	directives	to	the	request.	The	default	value	is	Off	-
therefore,	the	path_info	component	is	ignored.

This	directive	is	recommended	when	you	have	a	virtual	filesystem.

Example
ModMimeUsePathInfo	On

If	you	have	a	request	for	/index.php/foo.shtml	mod_mime
will	now	treat	the	incoming	request	as	/index.php/foo.shtml
and	directives	like	AddOutputFilter	INCLUDES	.shtml	will
add	the	INCLUDES	filter	to	the	request.	If	ModMimeUsePathInfo
is	not	set,	the	INCLUDES	filter	will	not	be	added.	This	will	work
analogously	for	virtual	paths,	such	as	those	defined	by
<Location>

See	also
AcceptPathInfo

MultiviewsMatch	Directive

Description: The	types	of	files	that	will	be	included	when
searching	for	a	matching	file	with	MultiViews

Syntax: MultiviewsMatch

Any|NegotiatedOnly|Filters|Handlers

[Handlers|Filters]

Default: MultiviewsMatch	NegotiatedOnly

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

MultiviewsMatch	permits	three	different	behaviors	for
mod_negotiation's	Multiviews	feature.	Multiviews	allows	a	request
for	a	file,	e.g.	index.html,	to	match	any	negotiated	extensions
following	the	base	request,	e.g.	index.html.en,
index.html.fr,	or	index.html.gz.

The	NegotiatedOnly	option	provides	that	every	extension
following	the	base	name	must	correlate	to	a	recognized
mod_mime	extension	for	content	negotiation,	e.g.	Charset,
Content-Type,	Language,	or	Encoding.	This	is	the	strictest
implementation	with	the	fewest	unexpected	side	effects,	and	is	the
default	behavior.

To	include	extensions	associated	with	Handlers	and/or	Filters,	set
the	MultiviewsMatch	directive	to	either	Handlers,	Filters,
or	both	option	keywords.	If	all	other	factors	are	equal,	the	smallest
file	will	be	served,	e.g.	in	deciding	between	index.html.cgi	of
500	bytes	and	index.html.pl	of	1000	bytes,	the	.cgi	file
would	win	in	this	example.	Users	of	.asis	files	might	prefer	to
use	the	Handler	option,	if	.asis	files	are	associated	with	the
asis-handler.

You	may	finally	allow	Any	extensions	to	match,	even	if	mod_mime
doesn't	recognize	the	extension.	This	can	cause	unpredictable
results,	such	as	serving	.old	or	.bak	files	the	webmaster	never
expected	to	be	served.

For	example,	the	following	configuration	will	allow	handlers	and
filters	to	participate	in	Multviews,	but	will	exclude	unknown	files:

MultiviewsMatch	Handlers	Filters

MultiviewsMatch	is	not	allowed	in	a	<Location>	or
<LocationMatch>	section.

See	also
Options

mod_negotiation

RemoveCharset	Directive

Description: Removes	any	character	set	associations	for	a	set
of	file	extensions

Syntax: RemoveCharset	extension	[extension]

...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveCharset	directive	removes	any	character	set
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

Example
RemoveCharset	.html	.shtml

RemoveEncoding	Directive

Description: Removes	any	content	encoding	associations	for	a
set	of	file	extensions

Syntax: RemoveEncoding	extension	[extension]

...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveEncoding	directive	removes	any	encoding
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.	An
example	of	its	use	might	be:

/foo/.htaccess:
AddEncoding	x-gzip	.gz

AddType	text/plain	.asc

<Files	"*.gz.asc">

				RemoveEncoding	.gz

</Files>

This	will	cause	foo.gz	to	be	marked	as	being	encoded	with	the
gzip	method,	but	foo.gz.asc	as	an	unencoded	plaintext	file.

Note

RemoveEncoding	directives	are	processed	after	any
AddEncoding	directives,	so	it	is	possible	they	may	undo	the
effects	of	the	latter	if	both	occur	within	the	same	directory
configuration.

The	extension	argument	is	case-insensitive	and	can	be	specified

with	or	without	a	leading	dot.

RemoveHandler	Directive

Description: Removes	any	handler	associations	for	a	set	of	file
extensions

Syntax: RemoveHandler	extension	[extension]

...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveHandler	directive	removes	any	handler	associations
for	files	with	the	given	extensions.	This	allows	.htaccess	files	in
subdirectories	to	undo	any	associations	inherited	from	parent
directories	or	the	server	config	files.	An	example	of	its	use	might
be:

/foo/.htaccess:
AddHandler	server-parsed	.html

/foo/bar/.htaccess:
RemoveHandler	.html

This	has	the	effect	of	returning	.html	files	in	the	/foo/bar
directory	to	being	treated	as	normal	files,	rather	than	as
candidates	for	parsing	(see	the	mod_include	module).

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

RemoveInputFilter	Directive

Description: Removes	any	input	filter	associations	for	a	set	of
file	extensions

Syntax: RemoveInputFilter	extension

[extension]	...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveInputFilter	directive	removes	any	input	filter
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

See	also
AddInputFilter

SetInputFilter

RemoveLanguage	Directive

Description: Removes	any	language	associations	for	a	set	of
file	extensions

Syntax: RemoveLanguage	extension	[extension]

...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveLanguage	directive	removes	any	language
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

RemoveOutputFilter	Directive

Description: Removes	any	output	filter	associations	for	a	set	of
file	extensions

Syntax: RemoveOutputFilter	extension

[extension]	...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveOutputFilter	directive	removes	any	output	filter
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

Example
RemoveOutputFilter	shtml

See	also
AddOutputFilter

RemoveType	Directive

Description: Removes	any	content	type	associations	for	a	set	of
file	extensions

Syntax: RemoveType	extension	[extension]	...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveType	directive	removes	any	media	type	associations
for	files	with	the	given	extensions.	This	allows	.htaccess	files	in
subdirectories	to	undo	any	associations	inherited	from	parent
directories	or	the	server	config	files.	An	example	of	its	use	might
be:

/foo/.htaccess:
RemoveType	.cgi

This	will	remove	any	special	handling	of	.cgi	files	in	the	/foo/
directory	and	any	beneath	it,	causing	responses	containing	those
files	to	omit	the	HTTP	Content-Type	header	field.

Note

RemoveType	directives	are	processed	after	any	AddType
directives,	so	it	is	possible	they	may	undo	the	effects	of	the
latter	if	both	occur	within	the	same	directory	configuration.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

TypesConfig	Directive

Description: The	location	of	the	mime.types	file
Syntax: TypesConfig	file-path

Default: TypesConfig	conf/mime.types

Context: server	config
Status: Base
Module: mod_mime

The	TypesConfig	directive	sets	the	location	of	the	media	types
configuration	file.	File-path	is	relative	to	the	ServerRoot.	This	file
sets	the	default	list	of	mappings	from	filename	extensions	to
content	types.	Most	administrators	use	the	mime.types	file
provided	by	their	OS,	which	associates	common	filename
extensions	with	the	official	list	of	IANA	registered	media	types
maintained	at	http://www.iana.org/assignments/media-
types/index.html	as	well	as	a	large	number	of	unofficial	types.	This
simplifies	the	httpd.conf	file	by	providing	the	majority	of	media-
type	definitions,	and	may	be	overridden	by	AddType	directives	as
needed.	You	should	not	edit	the	mime.types	file,	because	it	may
be	replaced	when	you	upgrade	your	server.

The	file	contains	lines	in	the	format	of	the	arguments	to	an
AddType	directive:

media-type	[extension]	...

The	case	of	the	extension	does	not	matter.	Blank	lines,	and	lines
beginning	with	a	hash	character	(#)	are	ignored.	Empty	lines	are
there	for	completeness	(of	the	mime.types	file).	Apache	httpd	can
still	determine	these	types	with	mod_mime_magic.

Please	do	not	send	requests	to	the	Apache	HTTP	Server
Project	to	add	any	new	entries	in	the	distributed	mime.types

http://www.iana.org/assignments/media-types/index.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

file	unless	(1)	they	are	already	registered	with	IANA,	and	(2)
they	use	widely	accepted,	non-conflicting	filename	extensions
across	platforms.	category/x-subtype	requests	will	be
automatically	rejected,	as	will	any	new	two-letter	extensions	as
they	will	likely	conflict	later	with	the	already	crowded	language
and	character	set	namespace.

See	also
mod_mime_magic

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_mime_magic

Description: Determines	the	MIME	type	of	a	file	by	looking	at
a	few	bytes	of	its	contents

Status: Extension
Module	Identifier: mime_magic_module
Source	File: mod_mime_magic.c

Summary
This	module	determines	the	MIME	type	of	files	in	the	same	way	the
Unix	file(1)	command	works:	it	looks	at	the	first	few	bytes	of	the
file.	It	is	intended	as	a	"second	line	of	defense"	for	cases	that
mod_mime	can't	resolve.

This	module	is	derived	from	a	free	version	of	the	file(1)	command
for	Unix,	which	uses	"magic	numbers"	and	other	hints	from	a	file's
contents	to	figure	out	what	the	contents	are.	This	module	is	active
only	if	the	magic	file	is	specified	by	the	MimeMagicFile	directive.

Format	of	the	Magic	File

The	contents	of	the	file	are	plain	ASCII	text	in	4-5	columns.	Blank
lines	are	allowed	but	ignored.	Commented	lines	use	a	hash	mark
(#).	The	remaining	lines	are	parsed	for	the	following	columns:

Column Description
1 byte	number	to	begin	checking	from

">"	indicates	a	dependency	upon	the	previous	non-">"
line

2 type	of	data	to	match

byte single	character
short machine-order	16-bit	integer
long machine-order	32-bit	integer
string arbitrary-length	string
date long	integer	date	(seconds	since	Unix

epoch/1970)
beshort big-endian	16-bit	integer
belong big-endian	32-bit	integer
bedate big-endian	32-bit	integer	date
leshort little-endian	16-bit	integer
lelong little-endian	32-bit	integer
ledate little-endian	32-bit	integer	date

3 contents	of	data	to	match
4 MIME	type	if	matched
5 MIME	encoding	if	matched	(optional)

For	example,	the	following	magic	file	lines	would	recognize	some
audio	formats:

#	Sun/NeXT	audio	data

0						string						.snd

>12				belong						1							audio/basic

>12				belong						2							audio/basic

>12				belong						3							audio/basic

>12				belong						4							audio/basic

>12				belong						5							audio/basic

>12				belong						6							audio/basic

>12				belong						7							audio/basic

>12				belong					23							audio/x-adpcm

Or	these	would	recognize	the	difference	between	*.doc	files
containing	Microsoft	Word	or	FrameMaker	documents.	(These	are
incompatible	file	formats	which	use	the	same	file	suffix.)

#	Frame

0		string		\<MakerFile								application/x-frame

0		string		\<MIFFile										application/x-frame

0		string		\<MakerDictionary		application/x-frame

0		string		\<MakerScreenFon			application/x-frame

0		string		\<MML														application/x-frame

0		string		\<Book													application/x-frame

0		string		\<Maker												application/x-frame

#	MS-Word

0		string		\376\067\0\043												application/msword

0		string		\320\317\021\340\241\261		application/msword

0		string		\333\245-\0\0\0											application/msword

An	optional	MIME	encoding	can	be	included	as	a	fifth	column.	For
example,	this	can	recognize	gzipped	files	and	set	the	encoding	for
them.

#	gzip	(GNU	zip,	not	to	be	confused	with

#							[Info-ZIP/PKWARE]	zip	archiver)

0		string		\037\213		application/octet-stream		x-gzip

Performance	Issues

This	module	is	not	for	every	system.	If	your	system	is	barely
keeping	up	with	its	load	or	if	you're	performing	a	web	server
benchmark,	you	may	not	want	to	enable	this	because	the
processing	is	not	free.

However,	an	effort	was	made	to	improve	the	performance	of	the
original	file(1)	code	to	make	it	fit	in	a	busy	web	server.	It	was
designed	for	a	server	where	there	are	thousands	of	users	who
publish	their	own	documents.	This	is	probably	very	common	on
intranets.	Many	times,	it's	helpful	if	the	server	can	make	more
intelligent	decisions	about	a	file's	contents	than	the	file	name
allows	...even	if	just	to	reduce	the	"why	doesn't	my	page	work"
calls	when	users	improperly	name	their	own	files.	You	have	to
decide	if	the	extra	work	suits	your	environment.

Notes

The	following	notes	apply	to	the	mod_mime_magic	module	and
are	included	here	for	compliance	with	contributors'	copyright
restrictions	that	require	their	acknowledgment.

mod_mime_magic:	MIME	type	lookup	via	file	magic	numbers
Copyright	(c)	1996-1997	Cisco	Systems,	Inc.

This	software	was	submitted	by	Cisco	Systems	to	the	Apache
Group	in	July	1997.	Future	revisions	and	derivatives	of	this
source	code	must	acknowledge	Cisco	Systems	as	the	original
contributor	of	this	module.	All	other	licensing	and	usage
conditions	are	those	of	the	Apache	Group.

Some	of	this	code	is	derived	from	the	free	version	of	the	file
command	originally	posted	to	comp.sources.unix.	Copyright	info
for	that	program	is	included	below	as	required.

-	Copyright	(c)	Ian	F.	Darwin,	1987.	Written	by	Ian	F.	Darwin.

This	software	is	not	subject	to	any	license	of	the	American
Telephone	and	Telegraph	Company	or	of	the	Regents	of	the
University	of	California.

Permission	is	granted	to	anyone	to	use	this	software	for	any
purpose	on	any	computer	system,	and	to	alter	it	and	redistribute
it	freely,	subject	to	the	following	restrictions:

1.	 The	author	is	not	responsible	for	the	consequences	of	use
of	this	software,	no	matter	how	awful,	even	if	they	arise
from	flaws	in	it.

2.	 The	origin	of	this	software	must	not	be	misrepresented,
either	by	explicit	claim	or	by	omission.	Since	few	users	ever
read	sources,	credits	must	appear	in	the	documentation.

3.	 Altered	versions	must	be	plainly	marked	as	such,	and	must

not	be	misrepresented	as	being	the	original	software.	Since
few	users	ever	read	sources,	credits	must	appear	in	the
documentation.

4.	 This	notice	may	not	be	removed	or	altered.

For	compliance	with	Mr	Darwin's	terms:	this	has	been	very
significantly	modified	from	the	free	"file"	command.

all-in-one	file	for	compilation	convenience	when	moving
from	one	version	of	Apache	to	the	next.
Memory	allocation	is	done	through	the	Apache	API's	pool
structure.
All	functions	have	had	necessary	Apache	API	request	or
server	structures	passed	to	them	where	necessary	to	call
other	Apache	API	routines.	(i.e.,	usually	for	logging,	files,	or
memory	allocation	in	itself	or	a	called	function.)
struct	magic	has	been	converted	from	an	array	to	a	single-
ended	linked	list	because	it	only	grows	one	record	at	a	time,
it's	only	accessed	sequentially,	and	the	Apache	API	has	no
equivalent	of	realloc().
Functions	have	been	changed	to	get	their	parameters	from
the	server	configuration	instead	of	globals.	(It	should	be
reentrant	now	but	has	not	been	tested	in	a	threaded
environment.)
Places	where	it	used	to	print	results	to	stdout	now	saves
them	in	a	list	where	they're	used	to	set	the	MIME	type	in	the
Apache	request	record.
Command-line	flags	have	been	removed	since	they	will
never	be	used	here.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MimeMagicFile	Directive

Description: Enable	MIME-type	determination	based	on	file
contents	using	the	specified	magic	file

Syntax: MimeMagicFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_mime_magic

The	MimeMagicFile	directive	can	be	used	to	enable	this
module,	the	default	file	is	distributed	at	conf/magic.	Non-rooted
paths	are	relative	to	the	ServerRoot.	Virtual	hosts	will	use	the
same	file	as	the	main	server	unless	a	more	specific	setting	is
used,	in	which	case	the	more	specific	setting	overrides	the	main
server's	file.

Example
MimeMagicFile	conf/magic

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_negotiation

Description: Provides	for	content	negotiation
Status: Base
Module	Identifier: negotiation_module
Source	File: mod_negotiation.c

Summary
Content	negotiation,	or	more	accurately	content	selection,	is	the
selection	of	the	document	that	best	matches	the	clients	capabilities,
from	one	of	several	available	documents.	There	are	two
implementations	of	this.

A	type	map	(a	file	with	the	handler	type-map)	which	explicitly
lists	the	files	containing	the	variants.
A	Multiviews	search	(enabled	by	the	Multiviews	Options),
where	the	server	does	an	implicit	filename	pattern	match,	and
choose	from	amongst	the	results.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Options

mod_mime

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_negotiation
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_negotiation

Content	Negotiation
Environment	Variables

Type	maps

A	type	map	has	a	format	similar	to	RFC822	mail	headers.	It
contains	document	descriptions	separated	by	blank	lines,	with
lines	beginning	with	a	hash	character	('#')	treated	as	comments.	A
document	description	consists	of	several	header	records;	records
may	be	continued	on	multiple	lines	if	the	continuation	lines	start
with	spaces.	The	leading	space	will	be	deleted	and	the	lines
concatenated.	A	header	record	consists	of	a	keyword	name,	which
always	ends	in	a	colon,	followed	by	a	value.	Whitespace	is
allowed	between	the	header	name	and	value,	and	between	the
tokens	of	value.	The	headers	allowed	are:

Content-Encoding:

The	encoding	of	the	file.	Apache	only	recognizes	encodings
that	are	defined	by	an	AddEncoding	directive.	This	normally
includes	the	encodings	x-compress	for	compress'd	files,
and	x-gzip	for	gzip'd	files.	The	x-	prefix	is	ignored	for
encoding	comparisons.

Content-Language:

The	language(s)	of	the	variant,	as	an	Internet	standard
language	tag	(RFC	1766).	An	example	is	en,	meaning
English.	If	the	variant	contains	more	than	one	language,	they
are	separated	by	a	comma.

Content-Length:

The	length	of	the	file,	in	bytes.	If	this	header	is	not	present,
then	the	actual	length	of	the	file	is	used.

Content-Type:

The	MIME	media	type	of	the	document,	with	optional
parameters.	Parameters	are	separated	from	the	media	type
and	from	one	another	by	a	semi-colon,	with	a	syntax	of
name=value.	Common	parameters	include:

level

an	integer	specifying	the	version	of	the	media	type.	For

http://www.ietf.org/rfc/rfc1766.txt

text/html	this	defaults	to	2,	otherwise	0.

qs

a	floating-point	number	with	a	value	in	the	range	0[.000]
to	1[.000],	indicating	the	relative	'quality'	of	this	variant
compared	to	the	other	available	variants,	independent	of
the	client's	capabilities.	For	example,	a	jpeg	file	is	usually
of	higher	source	quality	than	an	ascii	file	if	it	is	attempting
to	represent	a	photograph.	However,	if	the	resource
being	represented	is	ascii	art,	then	an	ascii	file	would
have	a	higher	source	quality	than	a	jpeg	file.	All	qs
values	are	therefore	specific	to	a	given	resource.

Example
Content-Type:	image/jpeg;	qs=0.8

URI:

uri	of	the	file	containing	the	variant	(of	the	given	media	type,
encoded	with	the	given	content	encoding).	These	are
interpreted	as	URLs	relative	to	the	map	file;	they	must	be	on
the	same	server,	and	they	must	refer	to	files	to	which	the
client	would	be	granted	access	if	they	were	to	be	requested
directly.

Body:

The	actual	content	of	the	resource	may	be	included	in	the
type-map	file	using	the	Body	header.	This	header	must
contain	a	string	that	designates	a	delimiter	for	the	body
content.	Then	all	following	lines	in	the	type	map	file	will	be
considered	part	of	the	resource	body	until	the	delimiter	string
is	found.

Example:
Body:----xyz----

<html>

<body>

<p>Content	of	the	page.</p>

</body>

</html>

----xyz----

Consider,	for	example,	a	resource	called	document.html	which
is	available	in	English,	French,	and	German.	The	files	for	each	of
these	are	called	document.html.en,	document.html.fr,	and
document.html.de,	respectively.	The	type	map	file	will	be
called	document.html.var,	and	will	contain	the	following:

URI:	document.html

Content-language:	en

Content-type:	text/html

URI:	document.html.en

Content-language:	fr

Content-type:	text/html

URI:	document.html.fr

Content-language:	de

Content-type:	text/html

URI:	document.html.de

All	four	of	these	files	should	be	placed	in	the	same	directory,	and
the	.var	file	should	be	associated	with	the	type-map	handler
with	an	AddHandler	directive:

AddHandler	type-map	.var

A	request	for	document.html.var	in	this	directory	will	result	in
choosing	the	variant	which	most	closely	matches	the	language
preference	specified	in	the	user's	Accept-Language	request
header.

If	Multiviews	is	enabled,	and	MultiviewsMatch	is	set	to

"handlers"	or	"any",	a	request	to	document.html	will	discover
document.html.var	and	continue	negotiating	with	the	explicit
type	map.

Other	configuration	directives,	such	as	Alias	can	be	used	to	map
document.html	to	document.html.var.

Multiviews

A	Multiviews	search	is	enabled	by	the	Multiviews	Options.	If
the	server	receives	a	request	for	/some/dir/foo	and
/some/dir/foo	does	not	exist,	then	the	server	reads	the
directory	looking	for	all	files	named	foo.*,	and	effectively	fakes
up	a	type	map	which	names	all	those	files,	assigning	them	the
same	media	types	and	content-encodings	it	would	have	if	the
client	had	asked	for	one	of	them	by	name.	It	then	chooses	the	best
match	to	the	client's	requirements,	and	returns	that	document.

The	MultiviewsMatch	directive	configures	whether	Apache	will
consider	files	that	do	not	have	content	negotiation	meta-
information	assigned	to	them	when	choosing	files.

CacheNegotiatedDocs	Directive

Description: Allows	content-negotiated	documents	to	be	cached
by	proxy	servers

Syntax: CacheNegotiatedDocs	On|Off

Default: CacheNegotiatedDocs	Off

Context: server	config,	virtual	host
Status: Base
Module: mod_negotiation

If	set,	this	directive	allows	content-negotiated	documents	to	be
cached	by	proxy	servers.	This	could	mean	that	clients	behind
those	proxys	could	retrieve	versions	of	the	documents	that	are	not
the	best	match	for	their	abilities,	but	it	will	make	caching	more
efficient.

This	directive	only	applies	to	requests	which	come	from	HTTP/1.0
browsers.	HTTP/1.1	provides	much	better	control	over	the	caching
of	negotiated	documents,	and	this	directive	has	no	effect	in
responses	to	HTTP/1.1	requests.

ForceLanguagePriority	Directive

Description: Action	to	take	if	a	single	acceptable	document	is
not	found

Syntax: ForceLanguagePriority

None|Prefer|Fallback

[Prefer|Fallback]

Default: ForceLanguagePriority	Prefer

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_negotiation

The	ForceLanguagePriority	directive	uses	the	given
LanguagePriority	to	satisfy	negotiation	where	the	server	could
otherwise	not	return	a	single	matching	document.

ForceLanguagePriority	Prefer	uses	LanguagePriority
to	serve	a	one	valid	result,	rather	than	returning	an	HTTP	result
300	(MULTIPLE	CHOICES)	when	there	are	several	equally	valid
choices.	If	the	directives	below	were	given,	and	the	user's
Accept-Language	header	assigned	en	and	de	each	as	quality
.500	(equally	acceptable)	then	the	first	matching	variant,	en,	will
be	served.

LanguagePriority	en	fr	de

ForceLanguagePriority	Prefer

ForceLanguagePriority	Fallback	uses
LanguagePriority	to	serve	a	valid	result,	rather	than	returning
an	HTTP	result	406	(NOT	ACCEPTABLE).	If	the	directives	below
were	given,	and	the	user's	Accept-Language	only	permitted	an
es	language	response,	but	such	a	variant	isn't	found,	then	the	first
variant	from	the	LanguagePriority	list	below	will	be	served.

LanguagePriority	en	fr	de

ForceLanguagePriority	Fallback

Both	options,	Prefer	and	Fallback,	may	be	specified,	so	either
the	first	matching	variant	from	LanguagePriority	will	be	served
if	more	than	one	variant	is	acceptable,	or	first	available	document
will	be	served	if	none	of	the	variants	matched	the	client's
acceptable	list	of	languages.

See	also
AddLanguage

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

LanguagePriority	Directive

Description: The	precedence	of	language	variants	for	cases
where	the	client	does	not	express	a	preference

Syntax: LanguagePriority	MIME-lang	[MIME-

lang]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_negotiation

The	LanguagePriority	sets	the	precedence	of	language
variants	for	the	case	where	the	client	does	not	express	a
preference,	when	handling	a	Multiviews	request.	The	list	of	MIME-
lang	are	in	order	of	decreasing	preference.

LanguagePriority	en	fr	de

For	a	request	for	foo.html,	where	foo.html.fr	and
foo.html.de	both	existed,	but	the	browser	did	not	express	a
language	preference,	then	foo.html.fr	would	be	returned.

Note	that	this	directive	only	has	an	effect	if	a	'best'	language
cannot	be	determined	by	any	other	means	or	the
ForceLanguagePriority	directive	is	not	None.	In	general,	the
client	determines	the	language	preference,	not	the	server.

See	also
AddLanguage

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_nw_ssl

Description: Enable	SSL	encryption	for	NetWare
Status: Base
Module	Identifier: nwssl_module
Source	File: mod_nw_ssl.c
Compatibility: NetWare	only

Summary
This	module	enables	SSL	encryption	for	a	specified	port.	It	takes
advantage	of	the	SSL	encryption	functionality	that	is	built	into	the
NetWare	operating	system.

NWSSLTrustedCerts	Directive

Description: List	of	additional	client	certificates
Syntax: NWSSLTrustedCerts	filename	[filename]

...

Context: server	config
Status: Base
Module: mod_nw_ssl

Specifies	a	list	of	client	certificate	files	(DER	format)	that	are	used
when	creating	a	proxied	SSL	connection.	Each	client	certificate
used	by	a	server	must	be	listed	separately	in	its	own	.der	file.

NWSSLUpgradeable	Directive

Description: Allows	a	connection	to	be	upgraded	to	an	SSL
connection	upon	request

Syntax: NWSSLUpgradeable	[IP-

address:]portnumber

Context: server	config
Status: Base
Module: mod_nw_ssl

Allow	a	connection	that	was	created	on	the	specified	address
and/or	port	to	be	upgraded	to	an	SSL	connection	upon	request
from	the	client.	The	address	and/or	port	must	have	already	be
defined	previously	with	a	Listen	directive.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SecureListen	Directive

Description: Enables	SSL	encryption	for	the	specified	port
Syntax: SecureListen	[IP-address:]portnumber

Certificate-Name	[MUTUAL]

Context: server	config
Status: Base
Module: mod_nw_ssl

Specifies	the	port	and	the	eDirectory	based	certificate	name	that
will	be	used	to	enable	SSL	encryption.	An	optional	third	parameter
also	enables	mutual	authentication.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_privileges

Description: Support	for	Solaris	privileges	and	for	running
virtual	hosts	under	different	user	IDs.

Status: Experimental
Module	Identifier: privileges_module
Source	File: mod_privileges.c
Compatibility: Available	in	Apache	2.3	and	up,	on	Solaris	10

and	OpenSolaris	platforms

Summary
This	module	enables	different	Virtual	Hosts	to	run	with	different	Unix
User	and	Group	IDs,	and	with	different	Solaris	Privileges.	In	particular,
it	offers	a	solution	to	the	problem	of	privilege	separation	between
different	Virtual	Hosts,	first	promised	by	the	abandoned	perchild
MPM.	It	also	offers	other	security	enhancements.

Unlike	perchild,	mod_privileges	is	not	itself	an	MPM.	It	works
within	a	processing	model	to	set	privileges	and	User/Group	per
request	in	a	running	process.	It	is	therefore	not	compatible	with	a
threaded	MPM,	and	will	refuse	to	run	under	one.

mod_privileges	raises	security	issues	similar	to	those	of	suexec.
But	unlike	suexec,	it	applies	not	only	to	CGI	programs	but	to	the	entire
request	processing	cycle,	including	in-process	applications	and
subprocesses.	It	is	ideally	suited	to	running	PHP	applications	under
mod_php,	which	is	also	incompatible	with	threaded	MPMs.	It	is	also
well-suited	to	other	in-process	scripting	applications	such	as
mod_perl,	mod_python,	and	mod_ruby,	and	to	applications
implemented	in	C	as	apache	modules	where	privilege	separation	is
an	issue.

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

Security	Considerations

mod_privileges	introduces	new	security	concerns	in	situations
where	untrusted	code	may	be	run	within	the	webserver
process.	This	applies	to	untrusted	modules,	and	scripts	running
under	modules	such	as	mod_php	or	mod_perl.	Scripts	running
externally	(e.g.	as	CGI	or	in	an	appserver	behind	mod_proxy	or
mod_jk)	are	NOT	affected.

The	basic	security	concerns	with	mod_privileges	are:

Running	as	a	system	user	introduces	the	same	security
issues	as	mod_suexec,	and	near-equivalents	such	as	cgiwrap
and	suphp.
A	privileges-aware	malicious	user	extension	(module	or	script)
could	escalate	its	privileges	to	anything	available	to	the	httpd
process	in	any	virtual	host.	This	introduces	new	risks	if	(and
only	if)	mod_privileges	is	compiled	with	the
BIG_SECURITY_HOLE	option.
A	privileges-aware	malicious	user	extension	(module	or	script)
could	escalate	privileges	to	set	its	user	ID	to	another	system
user	(and/or	group).

The	PrivilegesMode	directive	allows	you	to	select	either	FAST
or	SECURE	mode.	You	can	mix	modes,	using	FAST	mode	for
trusted	users	and	fully-audited	code	paths,	while	imposing
SECURE	mode	where	an	untrusted	user	has	scope	to	introduce
code.

Before	describing	the	modes,	we	should	also	introduce	the	target
use	cases:	Benign	vs	Hostile.	In	a	benign	situation,	you	want	to
separate	users	for	their	convenience,	and	protect	them	and	the
server	against	the	risks	posed	by	honest	mistakes,	but	you	trust
your	users	are	not	deliberately	subverting	system	security.	In	a
hostile	situation	-	e.g.	commercial	hosting	-	you	may	have	users
deliberately	attacking	the	system	or	each	other.

FAST	mode
In	FAST	mode,	requests	are	run	in-process	with	the	selected
uid/gid	and	privileges,	so	the	overhead	is	negligible.	This	is
suitable	for	benign	situations,	but	is	not	secure	against	an
attacker	escalating	privileges	with	an	in-process	module	or
script.

SECURE	mode
A	request	in	SECURE	mode	forks	a	subprocess,	which	then
drops	privileges.	This	is	a	very	similar	case	to	running	CGI
with	suexec,	but	for	the	entire	request	cycle,	and	with	the
benefit	of	fine-grained	control	of	privileges.

You	can	select	different	PrivilegesModes	for	each	virtual	host,
and	even	in	a	directory	context	within	a	virtual	host.	FAST	mode	is
appropriate	where	the	user(s)	are	trusted	and/or	have	no	privilege
to	load	in-process	code.	SECURE	mode	is	appropriate	to	cases
where	untrusted	code	might	be	run	in-process.	However,	even	in
SECURE	mode,	there	is	no	protection	against	a	malicious	user
who	is	able	to	introduce	privileges-aware	code	running	before	the
start	of	the	request-processing	cycle.

DTracePrivileges	Directive

Description: Determines	whether	the	privileges	required	by
dtrace	are	enabled.

Syntax: DTracePrivileges	On|Off

Default: DTracePrivileges	Off

Context: server	config
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

This	server-wide	directive	determines	whether	Apache	will	run	with
the	privileges	required	to	run	dtrace.	Note	that	DTracePrivileges
On	will	not	in	itself	activate	DTrace,	but	DTracePrivileges	Off	will
prevent	it	working.

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp
http://sosc-dr.sun.com/bigadmin/content/dtrace/

PrivilegesMode	Directive

Description: Trade	off	processing	speed	and	efficiency	vs
security	against	malicious	privileges-aware	code.

Syntax: PrivilegesMode	FAST|SECURE|SELECTIVE

Default: PrivilegesMode	FAST

Context: server	config,	virtual	host,	directory
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

This	directive	trades	off	performance	vs	security	against	malicious,
privileges-aware	code.	In	SECURE	mode,	each	request	runs	in	a
secure	subprocess,	incurring	a	substantial	performance	penalty.	In
FAST	mode,	the	server	is	not	protected	against	escalation	of
privileges	as	discussed	above.

This	directive	differs	slightly	between	a	<Directory>	context
(including	equivalents	such	as	Location/Files/If)	and	a	top-level	or
<VirtualHost>.

At	top-level,	it	sets	a	default	that	will	be	inherited	by	virtualhosts.	In
a	virtual	host,	FAST	or	SECURE	mode	acts	on	the	entire	HTTP
request,	and	any	settings	in	a	<Directory>	context	will	be
ignored.	A	third	pseudo-mode	SELECTIVE	defers	the	choice	of
FAST	vs	SECURE	to	directives	in	a	<Directory>	context.

In	a	<Directory>	context,	it	is	applicable	only	where
SELECTIVE	mode	was	set	for	the	VirtualHost.	Only	FAST	or
SECURE	can	be	set	in	this	context	(SELECTIVE	would	be
meaningless).

Warning

Where	SELECTIVE	mode	is	selected	for	a	virtual	host,	the
activation	of	privileges	must	be	deferred	until	after	the	mapping
phase	of	request	processing	has	determined	what
<Directory>	context	applies	to	the	request.	This	might	give
an	attacker	opportunities	to	introduce	code	through	a
RewriteMap	running	at	top-level	or	<VirtualHost>	context
before	privileges	have	been	dropped	and	userid/gid	set.

VHostCGIMode	Directive

Description: Determines	whether	the	virtualhost	can	run
subprocesses,	and	the	privileges	available	to
subprocesses.

Syntax: VHostCGIMode	On|Off|Secure

Default: VHostCGIMode	On

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

Determines	whether	the	virtual	host	is	allowed	to	run	fork	and
exec,	the	privileges	required	to	run	subprocesses.	If	this	is	set	to
Off	the	virtualhost	is	denied	the	privileges	and	will	not	be	able	to
run	traditional	CGI	programs	or	scripts	under	the	traditional
mod_cgi,	nor	similar	external	programs	such	as	those	created	by
mod_ext_filter	or	RewriteMap	prog.	Note	that	it	does	not
prevent	CGI	programs	running	under	alternative	process	and
security	models	such	as	mod_fcgid,	which	is	a	recommended
solution	in	Solaris.

If	set	to	On	or	Secure,	the	virtual	host	is	permitted	to	run	external
programs	and	scripts	as	above.	Setting	VHostCGIMode	Secure
has	the	effect	of	denying	privileges	to	the	subprocesses,	as
described	for	VHostSecure.

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp
https://httpd.apache.org/mod_fcgid/

VHostCGIPrivs	Directive

Description: Assign	arbitrary	privileges	to	subprocesses
created	by	a	virtual	host.

Syntax: VHostPrivs	[+-]?privilege-name	[[+-

]?privilege-name]	...

Default: None

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM)
and	when	mod_privileges	is	compiled	with
the	BIG_SECURITY_HOLE	compile-time	option.

VHostCGIPrivs	can	be	used	to	assign	arbitrary	privileges	to
subprocesses	created	by	a	virtual	host,	as	discussed	under
VHostCGIMode.	Each	privilege-name	is	the	name	of	a	Solaris
privilege,	such	as	file_setid	or	sys_nfs.

A	privilege-name	may	optionally	be	prefixed	by	+	or	-,	which	will
respectively	allow	or	deny	a	privilege.	If	used	with	neither	+	nor	-,
all	privileges	otherwise	assigned	to	the	virtualhost	will	be	denied.
You	can	use	this	to	override	any	of	the	default	sets	and	construct
your	own	privilege	set.

Security

This	directive	can	open	huge	security	holes	in	apache
subprocesses,	up	to	and	including	running	them	with	root-level
powers.	Do	not	use	it	unless	you	fully	understand	what	you	are
doing!

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

VHostGroup	Directive

Description: Sets	the	Group	ID	under	which	a	virtual	host
runs.

Syntax: VHostGroup	unix-groupid

Default: Inherits	the	group	id	specified	in

Group

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

The	VHostGroup	directive	sets	the	Unix	group	under	which	the
server	will	process	requests	to	a	virtualhost.	The	group	is	set
before	the	request	is	processed	and	reset	afterwards	using	Solaris
Privileges.	Since	the	setting	applies	to	the	process,	this	is	not
compatible	with	threaded	MPMs.

Unix-group	is	one	of:

A	group	name
Refers	to	the	given	group	by	name.

#	followed	by	a	group	number.
Refers	to	a	group	by	its	number.

Security

This	directive	cannot	be	used	to	run	apache	as	root!
Nevertheless,	it	opens	potential	security	issues	similar	to	those
discussed	in	the	suexec	documentation.

See	also
Group

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

SuexecUserGroup

VHostPrivs	Directive

Description: Assign	arbitrary	privileges	to	a	virtual	host.
Syntax: VHostPrivs	[+-]?privilege-name	[[+-

]?privilege-name]	...

Default: None

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM)
and	when	mod_privileges	is	compiled	with
the	BIG_SECURITY_HOLE	compile-time	option.

VHostPrivs	can	be	used	to	assign	arbitrary	privileges	to	a	virtual
host.	Each	privilege-name	is	the	name	of	a	Solaris	privilege,	such
as	file_setid	or	sys_nfs.

A	privilege-name	may	optionally	be	prefixed	by	+	or	-,	which	will
respectively	allow	or	deny	a	privilege.	If	used	with	neither	+	nor	-,
all	privileges	otherwise	assigned	to	the	virtualhost	will	be	denied.
You	can	use	this	to	override	any	of	the	default	sets	and	construct
your	own	privilege	set.

Security

This	directive	can	open	huge	security	holes	in	apache,	up	to
and	including	running	requests	with	root-level	powers.	Do	not
use	it	unless	you	fully	understand	what	you	are	doing!

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

VHostSecure	Directive

Description: Determines	whether	the	server	runs	with
enhanced	security	for	the	virtualhost.

Syntax: VHostSecure	On|Off

Default: VHostSecure	On

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

Determines	whether	the	virtual	host	processes	requests	with
security	enhanced	by	removal	of	Privileges	that	are	rarely	needed
in	a	webserver,	but	which	are	available	by	default	to	a	normal	Unix
user	and	may	therefore	be	required	by	modules	and	applications.
It	is	recommended	that	you	retain	the	default	(On)	unless	it
prevents	an	application	running.	Since	the	setting	applies	to	the
process,	this	is	not	compatible	with	threaded	MPMs.

Note

If	VHostSecure	prevents	an	application	running,	this	may	be	a
warning	sign	that	the	application	should	be	reviewed	for
security.

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

VHostUser	Directive

Description: Sets	the	User	ID	under	which	a	virtual	host	runs.
Syntax: VHostUser	unix-userid

Default: Inherits	the	userid	specified	in

User

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

The	VHostUser	directive	sets	the	Unix	userid	under	which	the
server	will	process	requests	to	a	virtualhost.	The	userid	is	set
before	the	request	is	processed	and	reset	afterwards	using	Solaris
Privileges.	Since	the	setting	applies	to	the	process,	this	is	not
compatible	with	threaded	MPMs.

Unix-userid	is	one	of:

A	username
Refers	to	the	given	user	by	name.

#	followed	by	a	user	number.
Refers	to	a	user	by	its	number.

Security

This	directive	cannot	be	used	to	run	apache	as	root!
Nevertheless,	it	opens	potential	security	issues	similar	to	those
discussed	in	the	suexec	documentation.

See	also
User

SuexecUserGroup

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy

Description: Multi-protocol	proxy/gateway	server
Status: Extension
Module	Identifier: proxy_module
Source	File: mod_proxy.c

Summary

Warning

Do	not	enable	proxying	with	ProxyRequests	until	you	have
secured	your	server.	Open	proxy	servers	are	dangerous	both	to
your	network	and	to	the	Internet	at	large.

mod_proxy	and	related	modules	implement	a	proxy/gateway	for
Apache	HTTP	Server,	supporting	a	number	of	popular	protocols	as
well	as	several	different	load	balancing	algorithms.	Third-party
modules	can	add	support	for	additional	protocols	and	load	balancing
algorithms.

A	set	of	modules	must	be	loaded	into	the	server	to	provide	the
necessary	features.	These	modules	can	be	included	statically	at	build
time	or	dynamically	via	the	LoadModule	directive).	The	set	must
include:

mod_proxy,	which	provides	basic	proxy	capabilities
mod_proxy_balancer	and	one	or	more	balancer	modules	if
load	balancing	is	required.	(See	mod_proxy_balancer	for
more	information.)
one	or	more	proxy	scheme,	or	protocol,	modules:

Protocol Module
AJP13	(Apache	JServe	Protocol mod_proxy_ajp

version	1.3)
CONNECT	(for	SSL) mod_proxy_connect

FastCGI mod_proxy_fcgi

ftp mod_proxy_ftp

HTTP/0.9,	HTTP/1.0,	and	HTTP/1.1 mod_proxy_http

SCGI mod_proxy_scgi

WS	and	WSS	(Web-sockets) mod_proxy_wstunnel

In	addition,	extended	features	are	provided	by	other	modules.
Caching	is	provided	by	mod_cache	and	related	modules.	The	ability
to	contact	remote	servers	using	the	SSL/TLS	protocol	is	provided	by
the	SSLProxy*	directives	of	mod_ssl.	These	additional	modules	will
need	to	be	loaded	and	configured	to	take	advantage	of	these
features.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_cache

mod_proxy_ajp

mod_proxy_connect

mod_proxy_fcgi

mod_proxy_ftp

mod_proxy_http

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy

mod_proxy_scgi

mod_proxy_wstunnel

mod_proxy_balancer

mod_ssl

Forward	Proxies	and	Reverse	Proxies/Gateways

Apache	HTTP	Server	can	be	configured	in	both	a	forward	and
reverse	proxy	(also	known	as	gateway)	mode.

An	ordinary	forward	proxy	is	an	intermediate	server	that	sits
between	the	client	and	the	origin	server.	In	order	to	get	content
from	the	origin	server,	the	client	sends	a	request	to	the	proxy
naming	the	origin	server	as	the	target.	The	proxy	then	requests
the	content	from	the	origin	server	and	returns	it	to	the	client.	The
client	must	be	specially	configured	to	use	the	forward	proxy	to
access	other	sites.

A	typical	usage	of	a	forward	proxy	is	to	provide	Internet	access	to
internal	clients	that	are	otherwise	restricted	by	a	firewall.	The
forward	proxy	can	also	use	caching	(as	provided	by	mod_cache)
to	reduce	network	usage.

The	forward	proxy	is	activated	using	the	ProxyRequests
directive.	Because	forward	proxies	allow	clients	to	access	arbitrary
sites	through	your	server	and	to	hide	their	true	origin,	it	is	essential
that	you	secure	your	server	so	that	only	authorized	clients	can
access	the	proxy	before	activating	a	forward	proxy.

A	reverse	proxy	(or	gateway),	by	contrast,	appears	to	the	client
just	like	an	ordinary	web	server.	No	special	configuration	on	the
client	is	necessary.	The	client	makes	ordinary	requests	for	content
in	the	namespace	of	the	reverse	proxy.	The	reverse	proxy	then
decides	where	to	send	those	requests	and	returns	the	content	as	if
it	were	itself	the	origin.

A	typical	usage	of	a	reverse	proxy	is	to	provide	Internet	users
access	to	a	server	that	is	behind	a	firewall.	Reverse	proxies	can
also	be	used	to	balance	load	among	several	back-end	servers	or
to	provide	caching	for	a	slower	back-end	server.	In	addition,
reverse	proxies	can	be	used	simply	to	bring	several	servers	into

the	same	URL	space.

A	reverse	proxy	is	activated	using	the	ProxyPass	directive	or	the
[P]	flag	to	the	RewriteRule	directive.	It	is	not	necessary	to	turn
ProxyRequests	on	in	order	to	configure	a	reverse	proxy.

Basic	Examples

The	examples	below	are	only	a	very	basic	idea	to	help	you	get
started.	Please	read	the	documentation	on	the	individual
directives.

In	addition,	if	you	wish	to	have	caching	enabled,	consult	the
documentation	from	mod_cache.

Reverse	Proxy
ProxyPass	"/foo"	"http://foo.example.com/bar"

ProxyPassReverse	"/foo"	"http://foo.example.com/bar"

Forward	Proxy
ProxyRequests	On

ProxyVia	On

<Proxy	"*">

		Require	host	internal.example.com

</Proxy>

Access	via	Handler

You	can	also	force	a	request	to	be	handled	as	a	reverse-proxy
request,	by	creating	a	suitable	Handler	pass-through.	The
example	configuration	below	will	pass	all	requests	for	PHP	scripts
to	the	specified	FastCGI	server	using	reverse	proxy:

Reverse	Proxy	PHP	scripts
<FilesMatch	"\.php$">

				#	Unix	sockets	require	2.4.7	or	later

				SetHandler		"proxy:unix:/path/to/app.sock|fcgi://localhost/"

</FilesMatch>

This	feature	is	available	in	Apache	HTTP	Server	2.4.10	and	later.

Workers

The	proxy	manages	the	configuration	of	origin	servers	and	their
communication	parameters	in	objects	called	workers.	There	are
two	built-in	workers:	the	default	forward	proxy	worker	and	the
default	reverse	proxy	worker.	Additional	workers	can	be	configured
explicitly.

The	two	default	workers	have	a	fixed	configuration	and	will	be
used	if	no	other	worker	matches	the	request.	They	do	not	use
HTTP	Keep-Alive	or	connection	reuse.	The	TCP	connections	to
the	origin	server	will	instead	be	opened	and	closed	for	each
request.

Explicitly	configured	workers	are	identified	by	their	URL.	They	are
usually	created	and	configured	using	ProxyPass	or
ProxyPassMatch	when	used	for	a	reverse	proxy:

ProxyPass	"/example"	"http://backend.example.com"	connectiontimeout=5	timeout=30

This	will	create	a	worker	associated	with	the	origin	server	URL
http://backend.example.com	that	will	use	the	given	timeout
values.	When	used	in	a	forward	proxy,	workers	are	usually	defined
via	the	ProxySet	directive:

ProxySet	"http://backend.example.com"	connectiontimeout=5	timeout=30

or	alternatively	using	Proxy	and	ProxySet:

<Proxy	"http://backend.example.com">

		ProxySet	connectiontimeout=5	timeout=30

</Proxy>

Using	explicitly	configured	workers	in	the	forward	mode	is	not	very

common,	because	forward	proxies	usually	communicate	with
many	different	origin	servers.	Creating	explicit	workers	for	some	of
the	origin	servers	can	still	be	useful	if	they	are	used	very	often.
Explicitly	configured	workers	have	no	concept	of	forward	or
reverse	proxying	by	themselves.	They	encapsulate	a	common
concept	of	communication	with	origin	servers.	A	worker	created	by
ProxyPass	for	use	in	a	reverse	proxy	will	also	be	used	for
forward	proxy	requests	whenever	the	URL	to	the	origin	server
matches	the	worker	URL,	and	vice	versa.

The	URL	identifying	a	direct	worker	is	the	URL	of	its	origin	server
including	any	path	components	given:

ProxyPass	"/examples"	"http://backend.example.com/examples"

ProxyPass	"/docs"	"http://backend.example.com/docs"

This	example	defines	two	different	workers,	each	using	a	separate
connection	pool	and	configuration.

Worker	Sharing

Worker	sharing	happens	if	the	worker	URLs	overlap,	which
occurs	when	the	URL	of	some	worker	is	a	leading	substring	of
the	URL	of	another	worker	defined	later	in	the	configuration	file.
In	the	following	example

ProxyPass	"/apps"	"http://backend.example.com/"	timeout=60

ProxyPass	"/examples"	"http://backend.example.com/examples"	timeout=10

the	second	worker	isn't	actually	created.	Instead	the	first	worker
is	used.	The	benefit	is,	that	there	is	only	one	connection	pool,
so	connections	are	more	often	reused.	Note	that	all
configuration	attributes	given	explicitly	for	the	later	worker	will
be	ignored.	This	will	be	logged	as	a	warning.	In	the	above

example,	the	resulting	timeout	value	for	the	URL	/examples
will	be	60	instead	of	10!

If	you	want	to	avoid	worker	sharing,	sort	your	worker	definitions
by	URL	length,	starting	with	the	longest	worker	URLs.	If	you
want	to	maximize	worker	sharing,	use	the	reverse	sort	order.
See	also	the	related	warning	about	ordering	ProxyPass
directives.

Explicitly	configured	workers	come	in	two	flavors:	direct	workers
and	(load)	balancer	workers.	They	support	many	important
configuration	attributes	which	are	described	below	in	the
ProxyPass	directive.	The	same	attributes	can	also	be	set	using
ProxySet.

The	set	of	options	available	for	a	direct	worker	depends	on	the
protocol	which	is	specified	in	the	origin	server	URL.	Available
protocols	include	ajp,	fcgi,	ftp,	http	and	scgi.

Balancer	workers	are	virtual	workers	that	use	direct	workers
known	as	their	members	to	actually	handle	the	requests.	Each
balancer	can	have	multiple	members.	When	it	handles	a	request,
it	chooses	a	member	based	on	the	configured	load	balancing
algorithm.

A	balancer	worker	is	created	if	its	worker	URL	uses	balancer	as
the	protocol	scheme.	The	balancer	URL	uniquely	identifies	the
balancer	worker.	Members	are	added	to	a	balancer	using
BalancerMember.

DNS	resolution	for	origin	domains

DNS	resolution	happens	when	the	socket	to	the	origin	domain	is
created	for	the	first	time.	When	connection	reuse	is	enabled,
each	backend	domain	is	resolved	only	once	per	child	process,

and	cached	for	all	further	connections	until	the	child	is	recycled.
This	information	should	to	be	considered	while	planning	DNS
maintenance	tasks	involving	backend	domains.	Please	also
check	ProxyPass	parameters	for	more	details	about
connection	reuse.

Controlling	Access	to	Your	Proxy

You	can	control	who	can	access	your	proxy	via	the	<Proxy>
control	block	as	in	the	following	example:

<Proxy	"*">

		Require	ip	192.168.0

</Proxy>

For	more	information	on	access	control	directives,	see
mod_authz_host.

Strictly	limiting	access	is	essential	if	you	are	using	a	forward	proxy
(using	the	ProxyRequests	directive).	Otherwise,	your	server	can
be	used	by	any	client	to	access	arbitrary	hosts	while	hiding	his	or
her	true	identity.	This	is	dangerous	both	for	your	network	and	for
the	Internet	at	large.	When	using	a	reverse	proxy	(using	the
ProxyPass	directive	with	ProxyRequests	Off),	access	control
is	less	critical	because	clients	can	only	contact	the	hosts	that	you
have	specifically	configured.

See	Also	the	Proxy-Chain-Auth	environment	variable.

Slow	Startup

If	you're	using	the	ProxyBlock	directive,	hostnames'	IP
addresses	are	looked	up	and	cached	during	startup	for	later	match
test.	This	may	take	a	few	seconds	(or	more)	depending	on	the
speed	with	which	the	hostname	lookups	occur.

Intranet	Proxy

An	Apache	httpd	proxy	server	situated	in	an	intranet	needs	to
forward	external	requests	through	the	company's	firewall	(for	this,
configure	the	ProxyRemote	directive	to	forward	the	respective
scheme	to	the	firewall	proxy).	However,	when	it	has	to	access
resources	within	the	intranet,	it	can	bypass	the	firewall	when
accessing	hosts.	The	NoProxy	directive	is	useful	for	specifying
which	hosts	belong	to	the	intranet	and	should	be	accessed
directly.

Users	within	an	intranet	tend	to	omit	the	local	domain	name	from
their	WWW	requests,	thus	requesting	"http://somehost/"	instead	of
http://somehost.example.com/.	Some	commercial	proxy
servers	let	them	get	away	with	this	and	simply	serve	the	request,
implying	a	configured	local	domain.	When	the	ProxyDomain
directive	is	used	and	the	server	is	configured	for	proxy	service,
Apache	httpd	can	return	a	redirect	response	and	send	the	client	to
the	correct,	fully	qualified,	server	address.	This	is	the	preferred
method	since	the	user's	bookmark	files	will	then	contain	fully
qualified	hosts.

Protocol	Adjustments

For	circumstances	where	mod_proxy	is	sending	requests	to	an
origin	server	that	doesn't	properly	implement	keepalives	or
HTTP/1.1,	there	are	two	environment	variables	that	can	force	the
request	to	use	HTTP/1.0	with	no	keepalive.	These	are	set	via	the
SetEnv	directive.

These	are	the	force-proxy-request-1.0	and	proxy-
nokeepalive	notes.

<Location	"/buggyappserver/">

		ProxyPass	"http://buggyappserver:7001/foo/"

		SetEnv	force-proxy-request-1.0	1

		SetEnv	proxy-nokeepalive	1

</Location>

In	2.4.26	and	later,	the	"no-proxy"	environment	variable	can	be	set
to	disable	mod_proxy	processing	the	current	request.	This
variable	should	be	set	with	SetEnvIf,	as	SetEnv	is	not
evaluated	early	enough.

Request	Bodies

Some	request	methods	such	as	POST	include	a	request	body.
The	HTTP	protocol	requires	that	requests	which	include	a	body
either	use	chunked	transfer	encoding	or	send	a	Content-
Length	request	header.	When	passing	these	requests	on	to	the
origin	server,	mod_proxy_http	will	always	attempt	to	send	the
Content-Length.	But	if	the	body	is	large	and	the	original
request	used	chunked	encoding,	then	chunked	encoding	may	also
be	used	in	the	upstream	request.	You	can	control	this	selection
using	environment	variables.	Setting	proxy-sendcl	ensures
maximum	compatibility	with	upstream	servers	by	always	sending
the	Content-Length,	while	setting	proxy-sendchunked
minimizes	resource	usage	by	using	chunked	encoding.

Under	some	circumstances,	the	server	must	spool	request	bodies
to	disk	to	satisfy	the	requested	handling	of	request	bodies.	For
example,	this	spooling	will	occur	if	the	original	body	was	sent	with
chunked	encoding	(and	is	large),	but	the	administrator	has	asked
for	backend	requests	to	be	sent	with	Content-Length	or	as
HTTP/1.0.	This	spooling	can	also	occur	if	the	request	body	already
has	a	Content-Length	header,	but	the	server	is	configured	to	filter
incoming	request	bodies.

LimitRequestBody	only	applies	to	request	bodies	that	the
server	will	spool	to	disk

Reverse	Proxy	Request	Headers

When	acting	in	a	reverse-proxy	mode	(using	the	ProxyPass
directive,	for	example),	mod_proxy_http	adds	several	request
headers	in	order	to	pass	information	to	the	origin	server.	These
headers	are:

X-Forwarded-For

The	IP	address	of	the	client.

X-Forwarded-Host

The	original	host	requested	by	the	client	in	the	Host	HTTP
request	header.

X-Forwarded-Server

The	hostname	of	the	proxy	server.

Be	careful	when	using	these	headers	on	the	origin	server,	since
they	will	contain	more	than	one	(comma-separated)	value	if	the
original	request	already	contained	one	of	these	headers.	For
example,	you	can	use	%{X-Forwarded-For}i	in	the	log	format
string	of	the	origin	server	to	log	the	original	clients	IP	address,	but
you	may	get	more	than	one	address	if	the	request	passes	through
several	proxies.

See	also	the	ProxyPreserveHost	and	ProxyVia	directives,
which	control	other	request	headers.

Note:	If	you	need	to	specify	custom	request	headers	to	be	added
to	the	forwarded	request,	use	the	RequestHeader	directive.

BalancerGrowth	Directive

Description: Number	of	additional	Balancers	that	can	be
added	Post-configuration

Syntax: BalancerGrowth	#

Default: BalancerGrowth	5

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: BalancerGrowth	is	only	available	in	Apache

HTTP	Server	2.3.13	and	later.

This	directive	allows	for	growth	potential	in	the	number	of
Balancers	available	for	a	virtualhost	in	addition	to	the	number	pre-
configured.	It	only	takes	effect	if	there	is	at	least	one	pre-
configured	Balancer.

BalancerInherit	Directive

Description: Inherit	ProxyPassed	Balancers/Workers	from	the
main	server

Syntax: BalancerInherit	On|Off

Default: BalancerInherit	On

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: BalancerInherit	is	only	available	in	Apache	HTTP

Server	2.4.5	and	later.

This	directive	will	cause	the	current	server/vhost	to	"inherit"
ProxyPass	Balancers	and	Workers	defined	in	the	main	server.
This	can	cause	issues	and	inconsistent	behavior	if	using	the
Balancer	Manager	and	so	should	be	disabled	if	using	that	feature.

The	setting	in	the	global	server	defines	the	default	for	all	vhosts.

BalancerMember	Directive

Description: Add	a	member	to	a	load	balancing	group
Syntax: BalancerMember	[balancerurl]	url

[key=value	[key=value	...]]

Context: directory
Status: Extension
Module: mod_proxy
Compatibility: BalancerMember	is	only	available	in	Apache

HTTP	Server	2.2	and	later.

This	directive	adds	a	member	to	a	load	balancing	group.	It	can	be
used	within	a	<Proxy	balancer://...>	container	directive
and	can	take	any	of	the	key	value	pair	parameters	available	to
ProxyPass	directives.

One	additional	parameter	is	available	only	to	BalancerMember
directives:	loadfactor.	This	is	the	member	load	factor	-	a	decimal
number	between	1.0	(default)	and	100.0,	which	defines	the
weighted	load	to	be	applied	to	the	member	in	question.

The	balancerurl	is	only	needed	when	not	within	a	<Proxy
balancer://...>	container	directive.	It	corresponds	to	the	url
of	a	balancer	defined	in	ProxyPass	directive.

The	path	component	of	the	balancer	URL	in	any	<Proxy
balancer://...>	container	directive	is	ignored.

Trailing	slashes	should	typically	be	removed	from	the	URL	of	a
BalancerMember.

BalancerPersist	Directive

Description: Attempt	to	persist	changes	made	by	the	Balancer
Manager	across	restarts.

Syntax: BalancerPersist	On|Off

Default: BalancerPersist	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: BalancerPersist	is	only	available	in	Apache

HTTP	Server	2.4.4	and	later.

This	directive	will	cause	the	shared	memory	storage	associated
with	the	balancers	and	balancer	members	to	be	persisted	across
restarts.	This	allows	these	local	changes	to	not	be	lost	during	the
normal	restart/graceful	state	transitions.

NoProxy	Directive

Description: Hosts,	domains,	or	networks	that	will	be	connected
to	directly

Syntax: NoProxy	host	[host]	...

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	directive	is	only	useful	for	Apache	httpd	proxy	servers	within
intranets.	The	NoProxy	directive	specifies	a	list	of	subnets,	IP
addresses,	hosts	and/or	domains,	separated	by	spaces.	A	request
to	a	host	which	matches	one	or	more	of	these	is	always	served
directly,	without	forwarding	to	the	configured	ProxyRemote	proxy
server(s).

Example
ProxyRemote		"*"		"http://firewall.example.com:81"

NoProxy									".example.com"	"192.168.112.0/21"

The	host	arguments	to	the	NoProxy	directive	are	one	of	the
following	type	list:

Domain
A	Domain	is	a	partially	qualified	DNS	domain	name,	preceded
by	a	period.	It	represents	a	list	of	hosts	which	logically	belong
to	the	same	DNS	domain	or	zone	(i.e.,	the	suffixes	of	the
hostnames	are	all	ending	in	Domain).

Examples
.com	.example.org.

To	distinguish	Domains	from	Hostnames	(both	syntactically
and	semantically;	a	DNS	domain	can	have	a	DNS	A	record,

too!),	Domains	are	always	written	with	a	leading	period.

Note

Domain	name	comparisons	are	done	without	regard	to	the
case,	and	Domains	are	always	assumed	to	be	anchored	in
the	root	of	the	DNS	tree;	therefore,	the	two	domains
.ExAmple.com	and	.example.com.	(note	the	trailing
period)	are	considered	equal.	Since	a	domain	comparison
does	not	involve	a	DNS	lookup,	it	is	much	more	efficient
than	subnet	comparison.

SubNet
A	SubNet	is	a	partially	qualified	internet	address	in	numeric
(dotted	quad)	form,	optionally	followed	by	a	slash	and	the
netmask,	specified	as	the	number	of	significant	bits	in	the
SubNet.	It	is	used	to	represent	a	subnet	of	hosts	which	can	be
reached	over	a	common	network	interface.	In	the	absence	of
the	explicit	net	mask	it	is	assumed	that	omitted	(or	zero
valued)	trailing	digits	specify	the	mask.	(In	this	case,	the
netmask	can	only	be	multiples	of	8	bits	wide.)	Examples:

192.168	or	192.168.0.0
the	subnet	192.168.0.0	with	an	implied	netmask	of	16
valid	bits	(sometimes	used	in	the	netmask	form
255.255.0.0)

192.168.112.0/21

the	subnet	192.168.112.0/21	with	a	netmask	of	21
valid	bits	(also	used	in	the	form	255.255.248.0)

As	a	degenerate	case,	a	SubNet	with	32	valid	bits	is	the
equivalent	to	an	IPAddr,	while	a	SubNet	with	zero	valid	bits
(e.g.,	0.0.0.0/0)	is	the	same	as	the	constant	_Default_,
matching	any	IP	address.

IPAddr
A	IPAddr	represents	a	fully	qualified	internet	address	in
numeric	(dotted	quad)	form.	Usually,	this	address	represents
a	host,	but	there	need	not	necessarily	be	a	DNS	domain
name	connected	with	the	address.

Example
192.168.123.7

Note

An	IPAddr	does	not	need	to	be	resolved	by	the	DNS
system,	so	it	can	result	in	more	effective	apache
performance.

Hostname
A	Hostname	is	a	fully	qualified	DNS	domain	name	which	can
be	resolved	to	one	or	more	IPAddrs	via	the	DNS	domain
name	service.	It	represents	a	logical	host	(in	contrast	to
Domains,	see	above)	and	must	be	resolvable	to	at	least	one
IPAddr	(or	often	to	a	list	of	hosts	with	different	IPAddrs).

Examples
prep.ai.example.edu

www.example.org

Note

In	many	situations,	it	is	more	effective	to	specify	an	IPAddr
in	place	of	a	Hostname	since	a	DNS	lookup	can	be
avoided.	Name	resolution	in	Apache	httpd	can	take	a
remarkable	deal	of	time	when	the	connection	to	the	name
server	uses	a	slow	PPP	link.

Hostname	comparisons	are	done	without	regard	to	the

case,	and	Hostnames	are	always	assumed	to	be	anchored
in	the	root	of	the	DNS	tree;	therefore,	the	two	hosts
WWW.ExAmple.com	and	www.example.com.	(note	the
trailing	period)	are	considered	equal.

See	also
DNS	Issues

<Proxy>	Directive

Description: Container	for	directives	applied	to	proxied
resources

Syntax: <Proxy	wildcard-url>	...</Proxy>

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

Directives	placed	in	<Proxy>	sections	apply	only	to	matching
proxied	content.	Shell-style	wildcards	are	allowed.

For	example,	the	following	will	allow	only	hosts	in
yournetwork.example.com	to	access	content	via	your	proxy
server:

<Proxy	"*">

		Require	host	yournetwork.example.com

</Proxy>

The	following	example	will	process	all	files	in	the	foo	directory	of
example.com	through	the	INCLUDES	filter	when	they	are	sent
through	the	proxy	server:

<Proxy	"http://example.com/foo/*">

		SetOutputFilter	INCLUDES

</Proxy>

Differences	from	the	Location	configuration	section

A	backend	URL	matches	the	configuration	section	if	it	begins
with	the	the	wildcard-url	string,	even	if	the	last	path	segment	in
the	directive	only	matches	a	prefix	of	the	backend	URL.	For
example,	<Proxy	"http://example.com/foo">	matches	all	of
http://example.com/foo,	http://example.com/foo/bar,	and

http://example.com/foobar.	The	matching	of	the	final	URL	differs
from	the	behavior	of	the	<Location>	section,	which	for
purposes	of	this	note	treats	the	final	path	component	as	if	it
ended	in	a	slash.

For	more	control	over	the	matching,	see	<ProxyMatch>.

See	also
<ProxyMatch>

ProxyAddHeaders	Directive

Description: Add	proxy	information	in	X-Forwarded-*	headers
Syntax: ProxyAddHeaders	Off|On

Default: ProxyAddHeaders	On

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy
Compatibility: Available	in	version	2.3.10	and	later

This	directive	determines	whether	or	not	proxy	related	information
should	be	passed	to	the	backend	server	through	X-Forwarded-For,
X-Forwarded-Host	and	X-Forwarded-Server	HTTP	headers.

Effectiveness

This	option	is	of	use	only	for	HTTP	proxying,	as	handled	by
mod_proxy_http.

ProxyBadHeader	Directive

Description: Determines	how	to	handle	bad	header	lines	in	a
response

Syntax: ProxyBadHeader

IsError|Ignore|StartBody

Default: ProxyBadHeader	IsError

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyBadHeader	directive	determines	the	behavior	of
mod_proxy	if	it	receives	syntactically	invalid	response	header
lines	(i.e.	containing	no	colon)	from	the	origin	server.	The	following
arguments	are	possible:

IsError

Abort	the	request	and	end	up	with	a	502	(Bad	Gateway)
response.	This	is	the	default	behavior.

Ignore

Treat	bad	header	lines	as	if	they	weren't	sent.

StartBody

When	receiving	the	first	bad	header	line,	finish	reading	the
headers	and	treat	the	remainder	as	body.	This	helps	to	work
around	buggy	backend	servers	which	forget	to	insert	an
empty	line	between	the	headers	and	the	body.

ProxyBlock	Directive

Description: Words,	hosts,	or	domains	that	are	banned	from
being	proxied

Syntax: ProxyBlock	*|word|host|domain

[word|host|domain]	...

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyBlock	directive	specifies	a	list	of	words,	hosts	and/or
domains,	separated	by	spaces.	HTTP,	HTTPS,	and	FTP	document
requests	to	sites	whose	names	contain	matched	words,	hosts	or
domains	are	blocked	by	the	proxy	server.	The	proxy	module	will
also	attempt	to	determine	IP	addresses	of	list	items	which	may	be
hostnames	during	startup,	and	cache	them	for	match	test	as	well.
That	may	slow	down	the	startup	time	of	the	server.

Example
ProxyBlock	"news.example.com"	"auctions.example.com"	"friends.example.com"

Note	that	example	would	also	be	sufficient	to	match	any	of	these
sites.

Hosts	would	also	be	matched	if	referenced	by	IP	address.

Note	also	that

ProxyBlock	"*"

blocks	connections	to	all	sites.

ProxyDomain	Directive

Description: Default	domain	name	for	proxied	requests
Syntax: ProxyDomain	Domain

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	directive	is	only	useful	for	Apache	httpd	proxy	servers	within
intranets.	The	ProxyDomain	directive	specifies	the	default
domain	which	the	apache	proxy	server	will	belong	to.	If	a	request
to	a	host	without	a	domain	name	is	encountered,	a	redirection
response	to	the	same	host	with	the	configured	Domain	appended
will	be	generated.

Example
ProxyRemote		"*"		"http://firewall.example.com:81"

NoProxy									".example.com"	"192.168.112.0/21"

ProxyDomain					".example.com"

ProxyErrorOverride	Directive

Description: Override	error	pages	for	proxied	content
Syntax: ProxyErrorOverride	On|Off

Default: ProxyErrorOverride	Off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

This	directive	is	useful	for	reverse-proxy	setups	where	you	want	to
have	a	common	look	and	feel	on	the	error	pages	seen	by	the	end
user.	This	also	allows	for	included	files	(via	mod_include's	SSI)
to	get	the	error	code	and	act	accordingly.	(Default	behavior	would
display	the	error	page	of	the	proxied	server.	Turning	this	on	shows
the	SSI	Error	message.)

This	directive	does	not	affect	the	processing	of	informational	(1xx),
normal	success	(2xx),	or	redirect	(3xx)	responses.

ProxyIOBufferSize	Directive

Description: Determine	size	of	internal	data	throughput	buffer
Syntax: ProxyIOBufferSize	bytes

Default: ProxyIOBufferSize	8192

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyIOBufferSize	directive	adjusts	the	size	of	the
internal	buffer	which	is	used	as	a	scratchpad	for	the	data	between
input	and	output.	The	size	must	be	at	least	512.

In	almost	every	case,	there's	no	reason	to	change	that	value.

If	used	with	AJP,	this	directive	sets	the	maximum	AJP	packet	size
in	bytes.	Values	larger	than	65536	are	set	to	65536.	If	you	change
it	from	the	default,	you	must	also	change	the	packetSize
attribute	of	your	AJP	connector	on	the	Tomcat	side!	The	attribute
packetSize	is	only	available	in	Tomcat	5.5.20+	and	6.0.2+

Normally	it	is	not	necessary	to	change	the	maximum	packet	size.
Problems	with	the	default	value	have	been	reported	when	sending
certificates	or	certificate	chains.

<ProxyMatch>	Directive

Description: Container	for	directives	applied	to	regular-
expression-matched	proxied	resources

Syntax: <ProxyMatch	regex>	...</ProxyMatch>

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	<ProxyMatch>	directive	is	identical	to	the	<Proxy>
directive,	except	that	it	matches	URLs	using	regular	expressions.

From	2.4.8	onwards,	named	groups	and	backreferences	are
captured	and	written	to	the	environment	with	the	corresponding
name	prefixed	with	"MATCH_"	and	in	upper	case.	This	allows
elements	of	URLs	to	be	referenced	from	within	expressions	and
modules	like	mod_rewrite.	In	order	to	prevent	confusion,
numbered	(unnamed)	backreferences	are	ignored.	Use	named
groups	instead.

<ProxyMatch	"^http://(?<sitename>[^/]+)">

				Require	ldap-group	cn=%{env:MATCH_SITENAME},ou=combined,o=Example

</ProxyMatch>

See	also
<Proxy>

ProxyMaxForwards	Directive

Description: Maximium	number	of	proxies	that	a	request	can
be	forwarded	through

Syntax: ProxyMaxForwards	number

Default: ProxyMaxForwards	-1

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: Default	behaviour	changed	in	2.2.7

The	ProxyMaxForwards	directive	specifies	the	maximum
number	of	proxies	through	which	a	request	may	pass	if	there's	no
Max-Forwards	header	supplied	with	the	request.	This	may	be
set	to	prevent	infinite	proxy	loops	or	a	DoS	attack.

Example
ProxyMaxForwards	15

Note	that	setting	ProxyMaxForwards	is	a	violation	of	the
HTTP/1.1	protocol	(RFC2616),	which	forbids	a	Proxy	setting	Max-
Forwards	if	the	Client	didn't	set	it.	Earlier	Apache	httpd	versions
would	always	set	it.	A	negative	ProxyMaxForwards	value,
including	the	default	-1,	gives	you	protocol-compliant	behavior	but
may	leave	you	open	to	loops.

ProxyPass	Directive

Description: Maps	remote	servers	into	the	local	server	URL-
space

Syntax: ProxyPass	[path]	!|url	[key=value

[key=value	...]]	[nocanon]

[interpolate]	[noquery]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy
Compatibility: Unix	Domain	Socket	(UDS)	support	added	in

2.4.7

This	directive	allows	remote	servers	to	be	mapped	into	the	space
of	the	local	server.	The	local	server	does	not	act	as	a	proxy	in	the
conventional	sense	but	appears	to	be	a	mirror	of	the	remote
server.	The	local	server	is	often	called	a	reverse	proxy	or	gateway.
The	path	is	the	name	of	a	local	virtual	path;	url	is	a	partial	URL	for
the	remote	server	and	cannot	include	a	query	string.

It	is	strongly	suggested	to	review	the	concept	of	a	Worker	before
proceeding	any	further	with	this	section.

This	directive	is	not	supported	within	<Directory>	and
<Files>	containers.

The	ProxyRequests	directive	should	usually	be	set	off	when
using	ProxyPass.

In	2.4.7	and	later,	support	for	using	a	Unix	Domain	Socket	is
available	by	using	a	target	which	prepends
unix:/path/lis.sock|.	For	example,	to	proxy	HTTP	and
target	the	UDS	at	/home/www/socket,	you	would	use

unix:/home/www.socket|http://localhost/whatever/.

Note:	The	path	associated	with	the	unix:	URL	is
DefaultRuntimeDir	aware.

When	used	inside	a	<Location>	section,	the	first	argument	is
omitted	and	the	local	directory	is	obtained	from	the	<Location>.
The	same	will	occur	inside	a	<LocationMatch>	section;
however,	ProxyPass	does	not	interpret	the	regexp	as	such,	so	it	is
necessary	to	use	ProxyPassMatch	in	this	situation	instead.

Suppose	the	local	server	has	address	http://example.com/;
then

<Location	"/mirror/foo/">

				ProxyPass	"http://backend.example.com/"

</Location>

will	cause	a	local	request	for
http://example.com/mirror/foo/bar	to	be	internally
converted	into	a	proxy	request	to
http://backend.example.com/bar.

If	you	require	a	more	flexible	reverse-proxy	configuration,	see	the
RewriteRule	directive	with	the	[P]	flag.

The	following	alternative	syntax	is	possible;	however,	it	can	carry	a
performance	penalty	when	present	in	very	large	numbers.	The
advantage	of	the	below	syntax	is	that	it	allows	for	dynamic	control
via	the	Balancer	Manager	interface:

ProxyPass	"/mirror/foo/"	"http://backend.example.com/"

If	the	first	argument	ends	with	a	trailing	/,	the	second	argument
should	also	end	with	a	trailing	/,	and	vice	versa.	Otherwise,	the
resulting	requests	to	the	backend	may	miss	some	needed
slashes	and	do	not	deliver	the	expected	results.

The	!	directive	is	useful	in	situations	where	you	don't	want	to
reverse-proxy	a	subdirectory,	e.g.

<Location	"/mirror/foo/">

				ProxyPass	"http://backend.example.com/"

</Location>

<Location	"/mirror/foo/i">

				ProxyPass	"!"

</Location>

ProxyPass	"/mirror/foo/i"	"!"

ProxyPass	"/mirror/foo"	"http://backend.example.com"

will	proxy	all	requests	to	/mirror/foo	to
backend.example.com	except	requests	made	to
/mirror/foo/i.

Ordering	ProxyPass	Directives

The	configured	ProxyPass	and	ProxyPassMatch	rules	are
checked	in	the	order	of	configuration.	The	first	rule	that	matches
wins.	So	usually	you	should	sort	conflicting	ProxyPass	rules
starting	with	the	longest	URLs	first.	Otherwise,	later	rules	for
longer	URLS	will	be	hidden	by	any	earlier	rule	which	uses	a
leading	substring	of	the	URL.	Note	that	there	is	some	relation
with	worker	sharing.	In	contrast,	only	one	ProxyPass	directive
can	be	placed	in	a	Location	block,	and	the	most	specific

location	will	take	precedence.

For	the	same	reasons,	exclusions	must	come	before	the
general	ProxyPass	directives.	In	2.4.26	and	later,	the	"no-
proxy"	environment	variable	is	an	alternative	to	exclusions,	and
is	the	only	way	to	configure	an	exclusion	of	a	ProxyPass
directive	in	Location	context.	This	variable	should	be	set	with
SetEnvIf,	as	SetEnv	is	not	evaluated	early	enough.

ProxyPass	key=value	Parameters

In	Apache	HTTP	Server	2.1	and	later,	mod_proxy	supports	pooled
connections	to	a	backend	server.	Connections	created	on	demand
can	be	retained	in	a	pool	for	future	use.	Limits	on	the	pool	size	and
other	settings	can	be	coded	on	the	ProxyPass	directive	using
key=value	parameters,	described	in	the	tables	below.

Maximum	connections	to	the	backend

By	default,	mod_proxy	will	allow	and	retain	the	maximum
number	of	connections	that	could	be	used	simultaneously	by
that	web	server	child	process.	Use	the	max	parameter	to	reduce
the	number	from	the	default.	The	pool	of	connections	is
maintained	per	web	server	child	process,	and	max	and	other
settings	are	not	coordinated	among	all	child	processes,	except
when	only	one	child	process	is	allowed	by	configuration	or	MPM
design.

Use	the	ttl	parameter	to	set	an	optional	time	to	live;	connections
which	have	been	unused	for	at	least	ttl	seconds	will	be	closed.
ttl	can	be	used	to	avoid	using	a	connection	which	is	subject	to
closing	because	of	the	backend	server's	keep-alive	timeout.

Example

ProxyPass	"/example"	"http://backend.example.com"	max=20	ttl=120	retry=300

Worker|BalancerMember	parameters

Parameter Default Description
min 0 Minimum	number	of

connection	pool	entries,
unrelated	to	the	actual
number	of	connections.	This
only	needs	to	be	modified
from	the	default	for	special
circumstances	where	heap
memory	associated	with	the
backend	connections	should
be	preallocated	or	retained.

max 1...n Maximum	number	of
connections	that	will	be
allowed	to	the	backend
server.	The	default	for	this
limit	is	the	number	of	threads
per	process	in	the	active
MPM.	In	the	Prefork	MPM,
this	is	always	1,	while	with
other	MPMs,	it	is	controlled
by	the	ThreadsPerChild
directive.

smax max Retained	connection	pool
entries	above	this	limit	are
freed	during	certain
operations	if	they	have	been
unused	for	longer	than	the
time	to	live,	controlled	by	the
ttl	parameter.	If	the

connection	pool	entry	has	an
associated	connection,	it	will
be	closed.	This	only	needs	to
be	modified	from	the	default
for	special	circumstances
where	connection	pool
entries	and	any	associated
connections	which	have
exceeded	the	time	to	live
need	to	be	freed	or	closed
more	aggressively.

acquire - If	set,	this	will	be	the
maximum	time	to	wait	for	a
free	connection	in	the
connection	pool,	in
milliseconds.	If	there	are	no
free	connections	in	the	pool,
the	Apache	httpd	will	return
SERVER_BUSY	status	to	the
client.

connectiontimeout timeout Connect	timeout	in	seconds.
The	number	of	seconds
Apache	httpd	waits	for	the
creation	of	a	connection	to
the	backend	to	complete.	By
adding	a	postfix	of	ms,	the
timeout	can	be	also	set	in
milliseconds.

disablereuse Off This	parameter	should	be
used	when	you	want	to	force
mod_proxy	to	immediately
close	a	connection	to	the
backend	after	being	used,
and	thus,	disable	its

persistent	connection	and
pool	for	that	backend.	This
helps	in	various	situations
where	a	firewall	between
Apache	httpd	and	the
backend	server	(regardless
of	protocol)	tends	to	silently
drop	connections	or	when
backends	themselves	may	be
under	round-	robin	DNS.
When	connection	reuse	is
enabled	each	backend
domain	is	resolved	(with	a
DNS	query)	only	once	per
child	process	and	cached	for
all	further	connections	until
the	child	is	recycled.	To
disable	connection	reuse,	set
this	property	value	to	On.

enablereuse On This	is	the	inverse	of
'disablereuse'	above,
provided	as	a	convenience
for	scheme	handlers	that
require	opt-in	for	connection
reuse	(such	as
mod_proxy_fcgi).	2.4.11
and	later	only.

flushpackets off Determines	whether	the
proxy	module	will	auto-flush
the	output	brigade	after	each
"chunk"	of	data.	'off'	means
that	it	will	flush	only	when
needed;	'on'	means	after
each	chunk	is	sent;	and	'auto'

means	poll/wait	for	a	period
of	time	and	flush	if	no	input
has	been	received	for
'flushwait'	milliseconds.
Currently,	this	is	in	effect	only
for	AJP.

flushwait 10 The	time	to	wait	for	additional
input,	in	milliseconds,	before
flushing	the	output	brigade	if
'flushpackets'	is	'auto'.

iobuffersize 8192 Adjusts	the	size	of	the
internal	scratchpad	IO	buffer.
This	allows	you	to	override
the	ProxyIOBufferSize
for	a	specific	worker.	This
must	be	at	least	512	or	set	to
0	for	the	system	default	of
8192.

keepalive Off This	parameter	should	be
used	when	you	have	a
firewall	between	your	Apache
httpd	and	the	backend	server,
which	tends	to	drop	inactive
connections.	This	flag	will	tell
the	Operating	System	to
send	KEEP_ALIVE
messages	on	inactive
connections	and	thus	prevent
the	firewall	from	dropping	the
connection.	To	enable
keepalive,	set	this	property
value	to	On.

The	frequency	of	initial	and

subsequent	TCP	keepalive
probes	depends	on	global
OS	settings,	and	may	be	as
high	as	2	hours.	To	be	useful,
the	frequency	configured	in
the	OS	must	be	smaller	than
the	threshold	used	by	the
firewall.

lbset 0 Sets	the	load	balancer	cluster
set	that	the	worker	is	a
member	of.	The	load
balancer	will	try	all	members
of	a	lower	numbered	lbset
before	trying	higher
numbered	ones.

ping 0 Ping	property	tells	the
webserver	to	"test"	the
connection	to	the	backend
before	forwarding	the
request.	For	AJP,	it	causes
mod_proxy_ajp	to	send	a
CPING	request	on	the	ajp13
connection	(implemented	on
Tomcat	3.3.2+,	4.1.28+	and
5.0.13+).	For	HTTP,	it	causes
mod_proxy_http	to	send	a
100-Continue	to	the
backend	(only	valid	for
HTTP/1.1	-	for	non	HTTP/1.1
backends,	this	property	has
no	effect).	In	both	cases,	the
parameter	is	the	delay	in
seconds	to	wait	for	the	reply.

This	feature	has	been	added
to	avoid	problems	with	hung
and	busy	backends.	This	will
increase	the	network	traffic
during	the	normal	operation
which	could	be	an	issue,	but
it	will	lower	the	traffic	in	case
some	of	the	cluster	nodes	are
down	or	busy.	By	adding	a
postfix	of	ms,	the	delay	can
be	also	set	in	milliseconds.

receivebuffersize 0 Adjusts	the	size	of	the	explicit
(TCP/IP)	network	buffer	size
for	proxied	connections.	This
allows	you	to	override	the
ProxyReceiveBufferSize

for	a	specific	worker.	This
must	be	at	least	512	or	set	to
0	for	the	system	default.

redirect - Redirection	Route	of	the
worker.	This	value	is	usually
set	dynamically	to	enable
safe	removal	of	the	node
from	the	cluster.	If	set,	all
requests	without	session	id
will	be	redirected	to	the
BalancerMember	that	has
route	parameter	equal	to	this
value.

retry 60 Connection	pool	worker	retry
timeout	in	seconds.	If	the
connection	pool	worker	to	the
backend	server	is	in	the	error
state,	Apache	httpd	will	not

forward	any	requests	to	that
server	until	the	timeout
expires.	This	enables	to	shut
down	the	backend	server	for
maintenance	and	bring	it
back	online	later.	A	value	of	0
means	always	retry	workers
in	an	error	state	with	no
timeout.

route - Route	of	the	worker	when
used	inside	load	balancer.
The	route	is	a	value
appended	to	session	id.

status - Single	letter	value	defining
the	initial	status	of	this
worker.

D:	Worker	is	disabled	and
will	not	accept	any	requests.
S:	Worker	is	administratively
stopped.
I:	Worker	is	in	ignore-errors
mode	and	will	always	be
considered	available.
H:	Worker	is	in	hot-standby
mode	and	will	only	be	used
if	no	other	viable	workers
are	available.
E:	Worker	is	in	an	error
state.
N:	Worker	is	in	drain	mode
and	will	only	accept	existing
sticky	sessions	destined	for
itself	and	ignore	all	other

requests.

Status	can	be	set	(which	is
the	default)	by	prepending
with	'+'	or	cleared	by
prepending	with	'-'.	Thus,	a
setting	of	'S-E'	sets	this
worker	to	Stopped	and	clears
the	in-error	flag.

timeout ProxyTimeout Connection	timeout	in
seconds.	The	number	of
seconds	Apache	httpd	waits
for	data	sent	by	/	to	the
backend.

ttl - Time	to	live	for	inactive
connections	and	associated
connection	pool	entries,	in
seconds.	Once	reaching	this
limit,	a	connection	will	not	be
used	again;	it	will	be	closed
at	some	later	time.

flusher flush Name	of	the	provider	used	by
mod_proxy_fdpass.	See
the	documentation	of	this
module	for	more	details.

secret - Value	of	secret	used	by
mod_proxy_ajp.	See	the
documentation	of	this	module
for	more	details.

upgrade WebSocket Protocol	accepted	in	the
Upgrade	header	by
mod_proxy_wstunnel.	See

the	documentation	of	this
module	for	more	details.

If	the	Proxy	directive	scheme	starts	with	the	balancer://	(eg:
balancer://cluster,	any	path	information	is	ignored),	then	a
virtual	worker	that	does	not	really	communicate	with	the	backend
server	will	be	created.	Instead,	it	is	responsible	for	the
management	of	several	"real"	workers.	In	that	case,	the	special
set	of	parameters	can	be	added	to	this	virtual	worker.	See
mod_proxy_balancer	for	more	information	about	how	the
balancer	works.

Balancer	parameters

Parameter Default Description
lbmethod byrequests Balancer	load-balance	method.	Select

the	load-balancing	scheduler	method	to
use.	Either	byrequests,	to	perform
weighted	request	counting;	bytraffic
to	perform	weighted	traffic	byte	count
balancing;	or	bybusyness,	to	perform
pending	request	balancing.	The	default
is	byrequests.

maxattempts One	less
than	the
number	of
workers,
or	1	with	a
single
worker.

Maximum	number	of	failover	attempts
before	giving	up.

nofailover Off If	set	to	On,	the	session	will	break	if	the
worker	is	in	error	state	or	disabled.	Set

this	value	to	On	if	backend	servers	do
not	support	session	replication.

stickysession - Balancer	sticky	session	name.	The
value	is	usually	set	to	something	like
JSESSIONID	or	PHPSESSIONID,	and	it
depends	on	the	backend	application
server	that	support	sessions.	If	the
backend	application	server	uses
different	name	for	cookies	and	url
encoded	id	(like	servlet	containers)	use	|
to	separate	them.	The	first	part	is	for	the
cookie	the	second	for	the	path.
Available	in	Apache	HTTP	Server	2.4.4
and	later.

stickysessionsep "." Sets	the	separation	symbol	in	the
session	cookie.	Some	backend
application	servers	do	not	use	the	'.'	as
the	symbol.	For	example,	the	Oracle
Weblogic	server	uses	'!'.	The	correct
symbol	can	be	set	using	this	option.	The
setting	of	'Off'	signifies	that	no	symbol	is
used.

scolonpathdelim Off If	set	to	On,	the	semi-colon	character	';'
will	be	used	as	an	additional	sticky
session	path	delimiter/separator.	This	
mainly	used	to	emulate	mod_jk's
behavior	when	dealing	with	paths	such
as
JSESSIONID=6736bcf34;foo=aabfa

timeout 0 Balancer	timeout	in	seconds.	If	set,	this
will	be	the	maximum	time	to	wait	for	a
free	worker.	The	default	is	to	not	wait.

failonstatus - A	single	or	comma-separated	list	of

HTTP	status	codes.	If	set,	this	will	force
the	worker	into	error	state	when	the
backend	returns	any	status	code	in	the
list.	Worker	recovery	behaves	the	same
as	other	worker	errors.

failontimeout Off If	set,	an	IO	read	timeout	after	a	request
is	sent	to	the	backend	will	force	the
worker	into	error	state.	Worker	recovery
behaves	the	same	as	other	worker
errors.
Available	in	Apache	HTTP	Server	2.4.5
and	later.

nonce <auto> The	protective	nonce	used	in	the
balancer-manager	application	page.
The	default	is	to	use	an	automatically
determined	UUID-based	nonce,	to
provide	for	further	protection	for	the
page.	If	set,	then	the	nonce	is	set	to	that
value.	A	setting	of	None	disables	all
nonce	checking.

Note

In	addition	to	the	nonce,	the
balancer-manager	page
should	be	protected	via	an	ACL.

growth 0 Number	of	additional	BalancerMembers
to	allow	to	be	added	to	this	balancer	in
addition	to	those	defined	at
configuration.

forcerecovery On Force	the	immediate	recovery	of	all
workers	without	considering	the	retry
parameter	of	the	workers	if	all	workers

of	a	balancer	are	in	error	state.	There
might	be	cases	where	an	already
overloaded	backend	can	get	into	deeper
trouble	if	the	recovery	of	all	workers	is
enforced	without	considering	the	retry
parameter	of	each	worker.	In	this	case,
set	to	Off.
Available	in	Apache	HTTP	Server	2.4.2
and	later.

A	sample	balancer	setup:

ProxyPass	"/special-area"	"http://special.example.com"	smax=5	max=10

ProxyPass	"/"	"balancer://mycluster/"	stickysession=JSESSIONID|jsessionid	nofailover=On

<Proxy	"balancer://mycluster">

				BalancerMember	"ajp://1.2.3.4:8009"

				BalancerMember	"ajp://1.2.3.5:8009"	loadfactor=20

				#	Less	powerful	server,	don't	send	as	many	requests	there,

				BalancerMember	"ajp://1.2.3.6:8009"	loadfactor=5

</Proxy>

Setting	up	a	hot-standby	that	will	only	be	used	if	no	other
members	are	available:

ProxyPass	"/"	"balancer://hotcluster/"

<Proxy	"balancer://hotcluster">

				BalancerMember	"ajp://1.2.3.4:8009"	loadfactor=1

				BalancerMember	"ajp://1.2.3.5:8009"	loadfactor=2.25

				#	The	server	below	is	on	hot	standby

				BalancerMember	"ajp://1.2.3.6:8009"	status=+H

				ProxySet	lbmethod=bytraffic

</Proxy>

Additional	ProxyPass	Keywords

Normally,	mod_proxy	will	canonicalise	ProxyPassed	URLs.	But
this	may	be	incompatible	with	some	backends,	particularly	those
that	make	use	of	PATH_INFO.	The	optional	nocanon	keyword
suppresses	this	and	passes	the	URL	path	"raw"	to	the	backend.
Note	that	this	keyword	may	affect	the	security	of	your	backend,	as
it	removes	the	normal	limited	protection	against	URL-based
attacks	provided	by	the	proxy.

Normally,	mod_proxy	will	include	the	query	string	when	generating
the	SCRIPT_FILENAME	environment	variable.	The	optional
noquery	keyword	(available	in	httpd	2.4.1	and	later)	prevents	this.

The	optional	interpolate	keyword,	in	combination	with
ProxyPassInterpolateEnv,	causes	the	ProxyPass	to
interpolate	environment	variables,	using	the	syntax	${VARNAME}.
Note	that	many	of	the	standard	CGI-derived	environment	variables
will	not	exist	when	this	interpolation	happens,	so	you	may	still
have	to	resort	to	mod_rewrite	for	complex	rules.	Also	note	that
interpolation	is	not	supported	within	the	scheme	portion	of	a	URL.
Dynamic	determination	of	the	scheme	can	be	accomplished	with
mod_rewrite	as	in	the	following	example.

RewriteEngine	On

RewriteCond	"%{HTTPS}"	=off

RewriteRule	"."	"-"	[E=protocol:http]

RewriteCond	"%{HTTPS}"	=on

RewriteRule	"."	"-"	[E=protocol:https]

RewriteRule	"^/mirror/foo/(.*)"	"%{ENV:protocol}://backend.example.com/$1"	[P]

ProxyPassReverse		"/mirror/foo/"	"http://backend.example.com/"

ProxyPassReverse		"/mirror/foo/"	"https://backend.example.com/"

ProxyPassInherit	Directive

Description: Inherit	ProxyPass	directives	defined	from	the
main	server

Syntax: ProxyPassInherit	On|Off

Default: ProxyPassInherit	On

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: ProxyPassInherit	is	only	available	in	Apache

HTTP	Server	2.4.5	and	later.

This	directive	will	cause	the	current	server/vhost	to	"inherit"
ProxyPass	directives	defined	in	the	main	server.	This	can	cause
issues	and	inconsistent	behavior	if	using	the	Balancer	Manager	for
dynamic	changes	and	so	should	be	disabled	if	using	that	feature.

The	setting	in	the	global	server	defines	the	default	for	all	vhosts.

Disabling	ProxyPassInherit	also	disables	BalancerInherit.

ProxyPassInterpolateEnv	Directive

Description: Enable	Environment	Variable	interpolation	in
Reverse	Proxy	configurations

Syntax: ProxyPassInterpolateEnv	On|Off

Default: ProxyPassInterpolateEnv	Off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy
Compatibility: Available	in	httpd	2.2.9	and	later

This	directive,	together	with	the	interpolate	argument	to
ProxyPass,	ProxyPassReverse,
ProxyPassReverseCookieDomain,	and
ProxyPassReverseCookiePath,	enables	reverse	proxies	to	be
dynamically	configured	using	environment	variables	which	may	be
set	by	another	module	such	as	mod_rewrite.	It	affects	the
ProxyPass,	ProxyPassReverse,
ProxyPassReverseCookieDomain,	and
ProxyPassReverseCookiePath	directives	and	causes	them	to
substitute	the	value	of	an	environment	variable	varname	for	the
string	${varname}	in	configuration	directives	if	the	interpolate
option	is	set.

Keep	this	turned	off	(for	server	performance)	unless	you	need	it!

ProxyPassMatch	Directive

Description: Maps	remote	servers	into	the	local	server	URL-
space	using	regular	expressions

Syntax: ProxyPassMatch	[regex]	!|url

[key=value	[key=value	...]]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

This	directive	is	equivalent	to	ProxyPass	but	makes	use	of
regular	expressions	instead	of	simple	prefix	matching.	The
supplied	regular	expression	is	matched	against	the	url,	and	if	it
matches,	the	server	will	substitute	any	parenthesized	matches	into
the	given	string	and	use	it	as	a	new	url.

Note:	This	directive	cannot	be	used	within	a	<Directory>
context.

Suppose	the	local	server	has	address	http://example.com/;
then

ProxyPassMatch	"^/(.*\.gif)$"	"http://backend.example.com/$1"

will	cause	a	local	request	for
http://example.com/foo/bar.gif	to	be	internally	converted
into	a	proxy	request	to
http://backend.example.com/foo/bar.gif.

Note

The	URL	argument	must	be	parsable	as	a	URL	before	regexp
substitutions	(as	well	as	after).	This	limits	the	matches	you	can
use.	For	instance,	if	we	had	used

ProxyPassMatch	"^(/.*\.gif)$"	"http://backend.example.com:8000$1"

in	our	previous	example,	it	would	fail	with	a	syntax	error	at
server	startup.	This	is	a	bug	(PR	46665	in	the	ASF	bugzilla),
and	the	workaround	is	to	reformulate	the	match:

ProxyPassMatch	"^/(.*\.gif)$"	"http://backend.example.com:8000/$1"

The	!	directive	is	useful	in	situations	where	you	don't	want	to
reverse-proxy	a	subdirectory.

When	used	inside	a	<LocationMatch>	section,	the	first
argument	is	omitted	and	the	regexp	is	obtained	from	the
<LocationMatch>.

If	you	require	a	more	flexible	reverse-proxy	configuration,	see	the
RewriteRule	directive	with	the	[P]	flag.

Default	Substitution

When	the	URL	parameter	doesn't	use	any	backreferences	into
the	regular	expression,	the	original	URL	will	be	appended	to	the
URL	parameter.

Security	Warning

Take	care	when	constructing	the	target	URL	of	the	rule,
considering	the	security	impact	from	allowing	the	client
influence	over	the	set	of	URLs	to	which	your	server	will	act	as	a
proxy.	Ensure	that	the	scheme	and	hostname	part	of	the	URL	is
either	fixed	or	does	not	allow	the	client	undue	influence.

ProxyPassReverse	Directive

Description: Adjusts	the	URL	in	HTTP	response	headers	sent
from	a	reverse	proxied	server

Syntax: ProxyPassReverse	[path]	url

[interpolate]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

This	directive	lets	Apache	httpd	adjust	the	URL	in	the	Location,
Content-Location	and	URI	headers	on	HTTP	redirect
responses.	This	is	essential	when	Apache	httpd	is	used	as	a
reverse	proxy	(or	gateway)	to	avoid	bypassing	the	reverse	proxy
because	of	HTTP	redirects	on	the	backend	servers	which	stay
behind	the	reverse	proxy.

Only	the	HTTP	response	headers	specifically	mentioned	above
will	be	rewritten.	Apache	httpd	will	not	rewrite	other	response
headers,	nor	will	it	by	default	rewrite	URL	references	inside	HTML
pages.	This	means	that	if	the	proxied	content	contains	absolute
URL	references,	they	will	bypass	the	proxy.	To	rewrite	HTML
content	to	match	the	proxy,	you	must	load	and	enable
mod_proxy_html.

path	is	the	name	of	a	local	virtual	path;	url	is	a	partial	URL	for	the
remote	server.	These	parameters	are	used	the	same	way	as	for
the	ProxyPass	directive.

For	example,	suppose	the	local	server	has	address
http://example.com/;	then

ProxyPass									"/mirror/foo/"	"http://backend.example.com/"

ProxyPassReverse		"/mirror/foo/"	"http://backend.example.com/"

ProxyPassReverseCookieDomain		"backend.example.com"		"public.example.com"

ProxyPassReverseCookiePath		"/"		"/mirror/foo/"

will	not	only	cause	a	local	request	for	the
http://example.com/mirror/foo/bar	to	be	internally
converted	into	a	proxy	request	to
http://backend.example.com/bar	(the	functionality	which
ProxyPass	provides	here).	It	also	takes	care	of	redirects	which
the	server	backend.example.com	sends	when	redirecting
http://backend.example.com/bar	to
http://backend.example.com/quux	.	Apache	httpd	adjusts
this	to	http://example.com/mirror/foo/quux	before
forwarding	the	HTTP	redirect	response	to	the	client.	Note	that	the
hostname	used	for	constructing	the	URL	is	chosen	in	respect	to
the	setting	of	the	UseCanonicalName	directive.

Note	that	this	ProxyPassReverse	directive	can	also	be	used	in
conjunction	with	the	proxy	feature	(RewriteRule	...	[P])	from
mod_rewrite	because	it	doesn't	depend	on	a	corresponding
ProxyPass	directive.

The	optional	interpolate	keyword,	used	together	with
ProxyPassInterpolateEnv,	enables	interpolation	of
environment	variables	specified	using	the	format	${VARNAME}.
Note	that	interpolation	is	not	supported	within	the	scheme	portion
of	a	URL.

When	used	inside	a	<Location>	section,	the	first	argument	is
omitted	and	the	local	directory	is	obtained	from	the	<Location>.
The	same	occurs	inside	a	<LocationMatch>	section,	but	will
probably	not	work	as	intended,	as	ProxyPassReverse	will	interpret
the	regexp	literally	as	a	path;	if	needed	in	this	situation,	specify	the
ProxyPassReverse	outside	the	section	or	in	a	separate
<Location>	section.

This	directive	is	not	supported	in	<Directory>	or	<Files>
sections.

ProxyPassReverseCookieDomain	Directive

Description: Adjusts	the	Domain	string	in	Set-Cookie	headers
from	a	reverse-	proxied	server

Syntax: ProxyPassReverseCookieDomain

internal-domain	public-domain

[interpolate]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

Usage	is	basically	similar	to	ProxyPassReverse,	but	instead	of
rewriting	headers	that	are	a	URL,	this	rewrites	the	domain	string
in	Set-Cookie	headers.

ProxyPassReverseCookiePath	Directive

Description: Adjusts	the	Path	string	in	Set-Cookie	headers	from
a	reverse-	proxied	server

Syntax: ProxyPassReverseCookiePath	internal-

path	public-path	[interpolate]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

Useful	in	conjunction	with	ProxyPassReverse	in	situations
where	backend	URL	paths	are	mapped	to	public	paths	on	the
reverse	proxy.	This	directive	rewrites	the	path	string	in	Set-
Cookie	headers.	If	the	beginning	of	the	cookie	path	matches
internal-path,	the	cookie	path	will	be	replaced	with	public-path.

In	the	example	given	with	ProxyPassReverse,	the	directive:

ProxyPassReverseCookiePath		"/"		"/mirror/foo/"

will	rewrite	a	cookie	with	backend	path	/	(or	/example	or,	in	fact,
anything)	to	/mirror/foo/.

ProxyPreserveHost	Directive

Description: Use	incoming	Host	HTTP	request	header	for
proxy	request

Syntax: ProxyPreserveHost	On|Off

Default: ProxyPreserveHost	Off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy
Compatibility: Usable	in	directory	context	in	2.3.3	and	later.

When	enabled,	this	option	will	pass	the	Host:	line	from	the
incoming	request	to	the	proxied	host,	instead	of	the	hostname
specified	in	the	ProxyPass	line.

This	option	should	normally	be	turned	Off.	It	is	mostly	useful	in
special	configurations	like	proxied	mass	name-based	virtual
hosting,	where	the	original	Host	header	needs	to	be	evaluated	by
the	backend	server.

ProxyReceiveBufferSize	Directive

Description: Network	buffer	size	for	proxied	HTTP	and	FTP
connections

Syntax: ProxyReceiveBufferSize	bytes

Default: ProxyReceiveBufferSize	0

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyReceiveBufferSize	directive	specifies	an	explicit
(TCP/IP)	network	buffer	size	for	proxied	HTTP	and	FTP
connections,	for	increased	throughput.	It	has	to	be	greater	than
512	or	set	to	0	to	indicate	that	the	system's	default	buffer	size
should	be	used.

Example
ProxyReceiveBufferSize	2048

ProxyRemote	Directive

Description: Remote	proxy	used	to	handle	certain	requests
Syntax: ProxyRemote	match	remote-server

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	defines	remote	proxies	to	this	proxy.	match	is	either	the	name
of	a	URL-scheme	that	the	remote	server	supports,	or	a	partial	URL
for	which	the	remote	server	should	be	used,	or	*	to	indicate	the
server	should	be	contacted	for	all	requests.	remote-server	is	a
partial	URL	for	the	remote	server.	Syntax:

remote-server	=	scheme://hostname[:port]

scheme	is	effectively	the	protocol	that	should	be	used	to
communicate	with	the	remote	server;	only	http	and	https	are
supported	by	this	module.	When	using	https,	the	requests	are
forwarded	through	the	remote	proxy	using	the	HTTP	CONNECT
method.

Example
ProxyRemote	"http://goodguys.example.com/"	"http://mirrorguys.example.com:8000"

ProxyRemote	"*"	"http://cleverproxy.localdomain"

ProxyRemote	"ftp"	"http://ftpproxy.mydomain:8080"

In	the	last	example,	the	proxy	will	forward	FTP	requests,
encapsulated	as	yet	another	HTTP	proxy	request,	to	another
proxy	which	can	handle	them.

This	option	also	supports	reverse	proxy	configuration;	a	backend
webserver	can	be	embedded	within	a	virtualhost	URL	space	even
if	that	server	is	hidden	by	another	forward	proxy.

ProxyRemoteMatch	Directive

Description: Remote	proxy	used	to	handle	requests	matched	by
regular	expressions

Syntax: ProxyRemoteMatch	regex	remote-server

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyRemoteMatch	is	identical	to	the	ProxyRemote
directive,	except	that	the	first	argument	is	a	regular	expression
match	against	the	requested	URL.

ProxyRequests	Directive

Description: Enables	forward	(standard)	proxy	requests
Syntax: ProxyRequests	On|Off

Default: ProxyRequests	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	allows	or	prevents	Apache	httpd	from	functioning	as	a
forward	proxy	server.	(Setting	ProxyRequests	to	Off	does	not
disable	use	of	the	ProxyPass	directive.)

In	a	typical	reverse	proxy	or	gateway	configuration,	this	option
should	be	set	to	Off.

In	order	to	get	the	functionality	of	proxying	HTTP	or	FTP	sites,	you
need	also	mod_proxy_http	or	mod_proxy_ftp	(or	both)
present	in	the	server.

In	order	to	get	the	functionality	of	(forward)	proxying	HTTPS	sites,
you	need	mod_proxy_connect	enabled	in	the	server.

Warning

Do	not	enable	proxying	with	ProxyRequests	until	you	have
secured	your	server.	Open	proxy	servers	are	dangerous	both	to
your	network	and	to	the	Internet	at	large.

See	also
Forward	and	Reverse	Proxies/Gateways

ProxySet	Directive

Description: Set	various	Proxy	balancer	or	member
parameters

Syntax: ProxySet	url	key=value	[key=value

...]

Context: directory
Status: Extension
Module: mod_proxy
Compatibility: ProxySet	is	only	available	in	Apache	HTTP

Server	2.2	and	later.

This	directive	is	used	as	an	alternate	method	of	setting	any	of	the
parameters	available	to	Proxy	balancers	and	workers	normally
done	via	the	ProxyPass	directive.	If	used	within	a	<Proxy
balancer	url|worker	url>	container	directive,	the	url
argument	is	not	required.	As	a	side	effect	the	respective	balancer
or	worker	gets	created.	This	can	be	useful	when	doing	reverse
proxying	via	a	RewriteRule	instead	of	a	ProxyPass	directive.

<Proxy	"balancer://hotcluster">

				BalancerMember	"http://www2.example.com:8080"	loadfactor=1

				BalancerMember	"http://www3.example.com:8080"	loadfactor=2

				ProxySet	lbmethod=bytraffic

</Proxy>

<Proxy	"http://backend">

				ProxySet	keepalive=On

</Proxy>

ProxySet	"balancer://foo"	lbmethod=bytraffic	timeout=15

ProxySet	"ajp://backend:7001"	timeout=15

Warning

Keep	in	mind	that	the	same	parameter	key	can	have	a	different
meaning	depending	whether	it	is	applied	to	a	balancer	or	a
worker,	as	shown	by	the	two	examples	above	regarding
timeout.

ProxySourceAddress	Directive

Description: Set	local	IP	address	for	outgoing	proxy
connections

Syntax: ProxySourceAddress	address

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: Available	in	version	2.3.9	and	later

This	directive	allows	to	set	a	specific	local	address	to	bind	to	when
connecting	to	a	backend	server.

ProxyStatus	Directive

Description: Show	Proxy	LoadBalancer	status	in	mod_status
Syntax: ProxyStatus	Off|On|Full

Default: ProxyStatus	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: Available	in	version	2.2	and	later

This	directive	determines	whether	or	not	proxy	loadbalancer	status
data	is	displayed	via	the	mod_status	server-status	page.

Note

Full	is	synonymous	with	On

ProxyTimeout	Directive

Description: Network	timeout	for	proxied	requests
Syntax: ProxyTimeout	seconds

Default: Value	of	Timeout

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	directive	allows	a	user	to	specifiy	a	timeout	on	proxy
requests.	This	is	useful	when	you	have	a	slow/buggy	appserver
which	hangs,	and	you	would	rather	just	return	a	timeout	and	fail
gracefully	instead	of	waiting	however	long	it	takes	the	server	to
return.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ProxyVia	Directive

Description: Information	provided	in	the	Via	HTTP	response
header	for	proxied	requests

Syntax: ProxyVia	On|Off|Full|Block

Default: ProxyVia	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	directive	controls	the	use	of	the	Via:	HTTP	header	by	the
proxy.	Its	intended	use	is	to	control	the	flow	of	proxy	requests
along	a	chain	of	proxy	servers.	See	RFC	2616	(HTTP/1.1),	section
14.45	for	an	explanation	of	Via:	header	lines.

If	set	to	Off,	which	is	the	default,	no	special	processing	is
performed.	If	a	request	or	reply	contains	a	Via:	header,	it	is
passed	through	unchanged.
If	set	to	On,	each	request	and	reply	will	get	a	Via:	header
line	added	for	the	current	host.
If	set	to	Full,	each	generated	Via:	header	line	will
additionally	have	the	Apache	httpd	server	version	shown	as	a
Via:	comment	field.
If	set	to	Block,	every	proxy	request	will	have	all	its	Via:
header	lines	removed.	No	new	Via:	header	will	be
generated.

http://www.ietf.org/rfc/rfc2616.txt
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_ajp

Description: AJP	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_ajp_module
Source	File: mod_proxy_ajp.c
Compatibility: Available	in	version	2.1	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	Apache	JServ	Protocol	version	1.3	(hereafter
AJP13).

Thus,	in	order	to	get	the	ability	of	handling	AJP13	protocol,
mod_proxy	and	mod_proxy_ajp	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_ajp
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_ajp

See	also
mod_proxy

Environment	Variable	documentation

Usage

This	module	is	used	to	reverse	proxy	to	a	backend	application
server	(e.g.	Apache	Tomcat)	using	the	AJP13	protocol.	The	usage
is	similar	to	an	HTTP	reverse	proxy,	but	uses	the	ajp://	prefix:

Simple	Reverse	Proxy
ProxyPass	"/app"	"ajp://backend.example.com:8009/app"

Balancers	may	also	be	used:

Balancer	Reverse	Proxy
<Proxy	"balancer://cluster">

				BalancerMember	"ajp://app1.example.com:8009"	loadfactor=1

				BalancerMember	"ajp://app2.example.com:8009"	loadfactor=2

				ProxySet	lbmethod=bytraffic

</Proxy>

ProxyPass	"/app"	"balancer://cluster/app"

Note	that	usually	no	ProxyPassReverse	directive	is	necessary.
The	AJP	request	includes	the	original	host	header	given	to	the
proxy,	and	the	application	server	can	be	expected	to	generate	self-
referential	headers	relative	to	this	host,	so	no	rewriting	is
necessary.

The	main	exception	is	when	the	URL	path	on	the	proxy	differs
from	that	on	the	backend.	In	this	case,	a	redirect	header	can	be
rewritten	relative	to	the	original	host	URL	(not	the	backend
ajp://	URL),	for	example:

Rewriting	Proxied	Path
ProxyPass	"/apps/foo"	"ajp://backend.example.com:8009/foo"

ProxyPassReverse	"/apps/foo"	"http://www.example.com/foo"

However,	it	is	usually	better	to	deploy	the	application	on	the
backend	server	at	the	same	path	as	the	proxy	rather	than	to	take

this	approach.

Environment	Variables

Environment	variables	whose	names	have	the	prefix	AJP_	are
forwarded	to	the	origin	server	as	AJP	request	attributes	(with	the
AJP_	prefix	removed	from	the	name	of	the	key).

Overview	of	the	protocol

The	AJP13	protocol	is	packet-oriented.	A	binary	format	was
presumably	chosen	over	the	more	readable	plain	text	for	reasons
of	performance.	The	web	server	communicates	with	the	servlet
container	over	TCP	connections.	To	cut	down	on	the	expensive
process	of	socket	creation,	the	web	server	will	attempt	to	maintain
persistent	TCP	connections	to	the	servlet	container,	and	to	reuse	a
connection	for	multiple	request/response	cycles.

Once	a	connection	is	assigned	to	a	particular	request,	it	will	not	be
used	for	any	others	until	the	request-handling	cycle	has
terminated.	In	other	words,	requests	are	not	multiplexed	over
connections.	This	makes	for	much	simpler	code	at	either	end	of
the	connection,	although	it	does	cause	more	connections	to	be
open	at	once.

Once	the	web	server	has	opened	a	connection	to	the	servlet
container,	the	connection	can	be	in	one	of	the	following	states:

Idle	
No	request	is	being	handled	over	this	connection.
Assigned	
The	connection	is	handling	a	specific	request.

Once	a	connection	is	assigned	to	handle	a	particular	request,	the
basic	request	information	(e.g.	HTTP	headers,	etc)	is	sent	over	the
connection	in	a	highly	condensed	form	(e.g.	common	strings	are
encoded	as	integers).	Details	of	that	format	are	below	in	Request
Packet	Structure.	If	there	is	a	body	to	the	request	(content-
length	>	0),	that	is	sent	in	a	separate	packet	immediately	after.

At	this	point,	the	servlet	container	is	presumably	ready	to	start
processing	the	request.	As	it	does	so,	it	can	send	the	following
messages	back	to	the	web	server:

SEND_HEADERS	
Send	a	set	of	headers	back	to	the	browser.
SEND_BODY_CHUNK	
Send	a	chunk	of	body	data	back	to	the	browser.
GET_BODY_CHUNK	
Get	further	data	from	the	request	if	it	hasn't	all	been
transferred	yet.	This	is	necessary	because	the	packets	have	a
fixed	maximum	size	and	arbitrary	amounts	of	data	can	be
included	the	body	of	a	request	(for	uploaded	files,	for
example).	(Note:	this	is	unrelated	to	HTTP	chunked	transfer).
END_RESPONSE	
Finish	the	request-handling	cycle.

Each	message	is	accompanied	by	a	differently	formatted	packet	of
data.	See	Response	Packet	Structures	below	for	details.

Basic	Packet	Structure

There	is	a	bit	of	an	XDR	heritage	to	this	protocol,	but	it	differs	in
lots	of	ways	(no	4	byte	alignment,	for	example).

AJP13	uses	network	byte	order	for	all	data	types.

There	are	four	data	types	in	the	protocol:	bytes,	booleans,	integers
and	strings.

Byte
A	single	byte.

Boolean
A	single	byte,	1	=	true,	0	=	false.	Using	other	non-zero
values	as	true	(i.e.	C-style)	may	work	in	some	places,	but	it
won't	in	others.

Integer
A	number	in	the	range	of	0	to	2^16	(32768).	Stored	in	2
bytes	with	the	high-order	byte	first.

String
A	variable-sized	string	(length	bounded	by	2^16).	Encoded
with	the	length	packed	into	two	bytes	first,	followed	by	the
string	(including	the	terminating	'\0').	Note	that	the	encoded
length	does	not	include	the	trailing	'\0'	--	it	is	like	strlen.
This	is	a	touch	confusing	on	the	Java	side,	which	is	littered
with	odd	autoincrement	statements	to	skip	over	these
terminators.	I	believe	the	reason	this	was	done	was	to	allow
the	C	code	to	be	extra	efficient	when	reading	strings	which
the	servlet	container	is	sending	back	--	with	the	terminating	\0
character,	the	C	code	can	pass	around	references	into	a
single	buffer,	without	copying.	if	the	\0	was	missing,	the	C
code	would	have	to	copy	things	out	in	order	to	get	its	notion	of
a	string.

Packet	Size
According	to	much	of	the	code,	the	max	packet	size	is	8	*	1024
bytes	(8K).	The	actual	length	of	the	packet	is	encoded	in	the
header.

Packet	Headers
Packets	sent	from	the	server	to	the	container	begin	with	0x1234.
Packets	sent	from	the	container	to	the	server	begin	with	AB	(that's
the	ASCII	code	for	A	followed	by	the	ASCII	code	for	B).	After	those
first	two	bytes,	there	is	an	integer	(encoded	as	above)	with	the
length	of	the	payload.	Although	this	might	suggest	that	the
maximum	payload	could	be	as	large	as	2^16,	in	fact,	the	code	sets
the	maximum	to	be	8K.

Packet	Format	(Server->Container)
Byte 0 1 2 3 4...(n+3)
Contents 0x12 0x34 Data	Length	(n) Data

Packet	Format	(Container->Server)
Byte 0 1 2 3 4...(n+3)
Contents A B Data	Length	(n) Data

For	most	packets,	the	first	byte	of	the	payload	encodes	the	type	of
message.	The	exception	is	for	request	body	packets	sent	from	the
server	to	the	container	--	they	are	sent	with	a	standard	packet
header	(0x1234	and	then	length	of	the	packet),	but	without	any
prefix	code	after	that.

The	web	server	can	send	the	following	messages	to	the	servlet
container:

Code Type	of
Packet

Meaning

2 Forward
Request

Begin	the	request-processing	cycle	with	the
following	data

7 Shutdown The	web	server	asks	the	container	to	shut
itself	down.

8 Ping The	web	server	asks	the	container	to	take
control	(secure	login	phase).

10 CPing The	web	server	asks	the	container	to	respond
quickly	with	a	CPong.

none Data Size	(2	bytes)	and	corresponding	body	data.

To	ensure	some	basic	security,	the	container	will	only	actually	do
the	Shutdown	if	the	request	comes	from	the	same	machine	on
which	it's	hosted.

The	first	Data	packet	is	send	immediately	after	the	Forward
Request	by	the	web	server.

The	servlet	container	can	send	the	following	types	of	messages	to
the	webserver:

Code Type	of
Packet

Meaning

3 Send
Body
Chunk

Send	a	chunk	of	the	body	from	the	servlet
container	to	the	web	server	(and	presumably,
onto	the	browser).

4 Send
Headers

Send	the	response	headers	from	the	servlet
container	to	the	web	server	(and	presumably,
onto	the	browser).

5 End
Response

Marks	the	end	of	the	response	(and	thus	the
request-handling	cycle).

6 Get	Body
Chunk

Get	further	data	from	the	request	if	it	hasn't	all
been	transferred	yet.

9 CPong The	reply	to	a	CPing	request

Reply

Each	of	the	above	messages	has	a	different	internal	structure,
detailed	below.

Request	Packet	Structure

For	messages	from	the	server	to	the	container	of	type	Forward
Request:

AJP13_FORWARD_REQUEST	:=

				prefix_code						(byte)	0x02	=	JK_AJP13_FORWARD_REQUEST

				method											(byte)

				protocol									(string)

				req_uri										(string)

				remote_addr						(string)

				remote_host						(string)

				server_name						(string)

				server_port						(integer)

				is_ssl											(boolean)

				num_headers						(integer)

				request_headers	*(req_header_name	req_header_value)

				attributes						*(attribut_name	attribute_value)

				request_terminator	(byte)	OxFF

The	request_headers	have	the	following	structure:

req_header_name	:=

				sc_req_header_name	|	(string)		[see	below	for	how	this	is	parsed]

sc_req_header_name	:=	0xA0xx	(integer)

req_header_value	:=	(string)

The	attributes	are	optional	and	have	the	following	structure:

attribute_name	:=	sc_a_name	|	(sc_a_req_attribute	string)

attribute_value	:=	(string)

Not	that	the	all-important	header	is	content-length,	because	it
determines	whether	or	not	the	container	looks	for	another	packet
immediately.

Detailed	description	of	the	elements	of	Forward
Request

Request	prefix
For	all	requests,	this	will	be	2.	See	above	for	details	on	other
Prefix	codes.

Method
The	HTTP	method,	encoded	as	a	single	byte:

Command	Name Code
OPTIONS 1
GET 2
HEAD 3
POST 4
PUT 5
DELETE 6
TRACE 7
PROPFIND 8
PROPPATCH 9
MKCOL 10
COPY 11
MOVE 12
LOCK 13
UNLOCK 14
ACL 15
REPORT 16
VERSION-CONTROL 17
CHECKIN 18
CHECKOUT 19
UNCHECKOUT 20
SEARCH 21
MKWORKSPACE 22

UPDATE 23
LABEL 24
MERGE 25
BASELINE_CONTROL 26
MKACTIVITY 27

Later	version	of	ajp13,	will	transport	additional	methods,	even	if
they	are	not	in	this	list.

protocol,	req_uri,	remote_addr,	remote_host,
server_name,	server_port,	is_ssl
These	are	all	fairly	self-explanatory.	Each	of	these	is	required,	and
will	be	sent	for	every	request.

Headers
The	structure	of	request_headers	is	the	following:	First,	the
number	of	headers	num_headers	is	encoded.	Then,	a	series	of
header	name	req_header_name	/	value	req_header_value
pairs	follows.	Common	header	names	are	encoded	as	integers,	to
save	space.	If	the	header	name	is	not	in	the	list	of	basic	headers,
it	is	encoded	normally	(as	a	string,	with	prefixed	length).	The	list	of
common	headers	sc_req_header_nameand	their	codes	is	as
follows	(all	are	case-sensitive):

Name Code	value Code	name
accept 0xA001 SC_REQ_ACCEPT
accept-charset 0xA002 SC_REQ_ACCEPT_CHARSET
accept-encoding 0xA003 SC_REQ_ACCEPT_ENCODING
accept-language 0xA004 SC_REQ_ACCEPT_LANGUAGE
authorization 0xA005 SC_REQ_AUTHORIZATION
connection 0xA006 SC_REQ_CONNECTION

content-type 0xA007 SC_REQ_CONTENT_TYPE
content-length 0xA008 SC_REQ_CONTENT_LENGTH
cookie 0xA009 SC_REQ_COOKIE
cookie2 0xA00A SC_REQ_COOKIE2
host 0xA00B SC_REQ_HOST
pragma 0xA00C SC_REQ_PRAGMA
referer 0xA00D SC_REQ_REFERER
user-agent 0xA00E SC_REQ_USER_AGENT

The	Java	code	that	reads	this	grabs	the	first	two-byte	integer	and
if	it	sees	an	'0xA0'	in	the	most	significant	byte,	it	uses	the	integer
in	the	second	byte	as	an	index	into	an	array	of	header	names.	If
the	first	byte	is	not	0xA0,	it	assumes	that	the	two-byte	integer	is
the	length	of	a	string,	which	is	then	read	in.

This	works	on	the	assumption	that	no	header	names	will	have
length	greater	than	0x9FFF	(==0xA000	-	1),	which	is	perfectly
reasonable,	though	somewhat	arbitrary.

Note:
The	content-length	header	is	extremely	important.	If	it	is
present	and	non-zero,	the	container	assumes	that	the	request
has	a	body	(a	POST	request,	for	example),	and	immediately
reads	a	separate	packet	off	the	input	stream	to	get	that	body.

Attributes
The	attributes	prefixed	with	a	?	(e.g.	?context)	are	all	optional.
For	each,	there	is	a	single	byte	code	to	indicate	the	type	of
attribute,	and	then	its	value	(string	or	integer).	They	can	be	sent	in
any	order	(though	the	C	code	always	sends	them	in	the	order
listed	below).	A	special	terminating	code	is	sent	to	signal	the	end
of	the	list	of	optional	attributes.	The	list	of	byte	codes	is:

Information Code
Value

Type	Of
Value

Note

?context 0x01 - Not	currently	implemented
?
servlet_path

0x02 - Not	currently	implemented

?
remote_user

0x03 String

?auth_type 0x04 String
?
query_string

0x05 String

?jvm_route 0x06 String
?ssl_cert 0x07 String
?ssl_cipher 0x08 String
?
ssl_session

0x09 String

?
req_attribute

0x0A String Name	(the	name	of	the
attribute	follows)

?
ssl_key_size

0x0B Integer

are_done 0xFF - request_terminator

The	context	and	servlet_path	are	not	currently	set	by	the	C
code,	and	most	of	the	Java	code	completely	ignores	whatever	is
sent	over	for	those	fields	(and	some	of	it	will	actually	break	if	a
string	is	sent	along	after	one	of	those	codes).	I	don't	know	if	this	is
a	bug	or	an	unimplemented	feature	or	just	vestigial	code,	but	it's
missing	from	both	sides	of	the	connection.

The	remote_user	and	auth_type	presumably	refer	to	HTTP-
level	authentication,	and	communicate	the	remote	user's
username	and	the	type	of	authentication	used	to	establish	their
identity	(e.g.	Basic,	Digest).

The	query_string,	ssl_cert,	ssl_cipher,	and
ssl_session	refer	to	the	corresponding	pieces	of	HTTP	and
HTTPS.

The	jvm_route,	is	used	to	support	sticky	sessions	--	associating
a	user's	sesson	with	a	particular	Tomcat	instance	in	the	presence
of	multiple,	load-balancing	servers.

Beyond	this	list	of	basic	attributes,	any	number	of	other	attributes
can	be	sent	via	the	req_attribute	code	0x0A.	A	pair	of	strings
to	represent	the	attribute	name	and	value	are	sent	immediately
after	each	instance	of	that	code.	Environment	values	are	passed
in	via	this	method.

Finally,	after	all	the	attributes	have	been	sent,	the	attribute
terminator,	0xFF,	is	sent.	This	signals	both	the	end	of	the	list	of
attributes	and	also	then	end	of	the	Request	Packet.

Response	Packet	Structure

for	messages	which	the	container	can	send	back	to	the	server.

AJP13_SEND_BODY_CHUNK	:=

		prefix_code			3

		chunk_length		(integer)

		chunk								*(byte)

		chunk_terminator	(byte)	Ox00

AJP13_SEND_HEADERS	:=

		prefix_code							4

		http_status_code		(integer)

		http_status_msg			(string)

		num_headers							(integer)

		response_headers	*(res_header_name	header_value)

res_header_name	:=

				sc_res_header_name	|	(string)			[see	below	for	how	this	is	parsed]

sc_res_header_name	:=	0xA0	(byte)

header_value	:=	(string)

AJP13_END_RESPONSE	:=

		prefix_code							5

		reuse													(boolean)

AJP13_GET_BODY_CHUNK	:=

		prefix_code							6

		requested_length		(integer)

Details:
Send	Body	Chunk
The	chunk	is	basically	binary	data,	and	is	sent	directly	back	to	the
browser.

Send	Headers
The	status	code	and	message	are	the	usual	HTTP	things	(e.g.
200	and	OK).	The	response	header	names	are	encoded	the	same

way	the	request	header	names	are.	See	header_encoding	above
for	details	about	how	the	codes	are	distinguished	from	the	strings.
The	codes	for	common	headers	are:

Name Code	value
Content-Type 0xA001
Content-Language 0xA002
Content-Length 0xA003
Date 0xA004
Last-Modified 0xA005
Location 0xA006
Set-Cookie 0xA007
Set-Cookie2 0xA008
Servlet-Engine 0xA009
Status 0xA00A
WWW-Authenticate 0xA00B

After	the	code	or	the	string	header	name,	the	header	value	is
immediately	encoded.

End	Response
Signals	the	end	of	this	request-handling	cycle.	If	the	reuse	flag	is
true	(anything	other	than	0	in	the	actual	C	code),
this	TCP	connection	can	now	be	used	to	handle	new	incoming
requests.	If	reuse	is	false	(==0),	the	connection	should	be	closed.

Get	Body	Chunk
The	container	asks	for	more	data	from	the	request	(If	the	body
was	too	large	to	fit	in	the	first	packet	sent	over	or	when	the	request
is	chunked).	The	server	will	send	a	body	packet	back	with	an
amount	of	data	which	is	the	minimum	of	the	request_length,

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

the	maximum	send	body	size	(8186	(8	Kbytes	-	6)),	and
the	number	of	bytes	actually	left	to	send	from	the	request	body.
If	there	is	no	more	data	in	the	body	(i.e.	the	servlet	container	is
trying	to	read	past	the	end	of	the	body),	the	server	will	send	back
an	empty	packet,	which	is	a	body	packet	with	a	payload	length	of
0.	(0x12,0x34,0x00,0x00)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_balancer

Description: mod_proxy	extension	for	load	balancing
Status: Extension
Module	Identifier: proxy_balancer_module
Source	File: mod_proxy_balancer.c
Compatibility: Available	in	version	2.1	and	later

Summary
This	module	requires	the	service	of	mod_proxy	and	it	provides	load
balancing	for	all	the	supported	protocols.	The	most	important	ones
are:

HTTP,	using	mod_proxy_http
FTP,	using	mod_proxy_ftp
AJP13,	using	mod_proxy_ajp
WebSocket,	using	mod_proxy_wstunnel

The	Load	balancing	scheduler	algorithm	is	not	provided	by	this
module	but	from	other	ones	such	as:

mod_lbmethod_byrequests

mod_lbmethod_bytraffic

mod_lbmethod_bybusyness

mod_lbmethod_heartbeat

Thus,	in	order	to	get	the	ability	of	load	balancing,	mod_proxy,
mod_proxy_balancer	and	at	least	one	of	load	balancing	scheduler
algorithm	modules	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open

proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

BalancerMember

BalancerGrowth

BalancerPersist

BalancerInherit

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_balancer
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_balancer

Load	balancer	scheduler	algorithm

At	present,	there	are	3	load	balancer	scheduler	algorithms
available	for	use:	Request	Counting,	Weighted	Traffic	Counting
and	Pending	Request	Counting.	These	are	controlled	via	the
lbmethod	value	of	the	Balancer	definition.	See	the	ProxyPass
directive	for	more	information,	especially	regarding	how	to
configure	the	Balancer	and	BalancerMembers.

Load	balancer	stickyness

The	balancer	supports	stickyness.	When	a	request	is	proxied	to
some	back-end,	then	all	following	requests	from	the	same	user
should	be	proxied	to	the	same	back-end.	Many	load	balancers
implement	this	feature	via	a	table	that	maps	client	IP	addresses	to
back-ends.	This	approach	is	transparent	to	clients	and	back-ends,
but	suffers	from	some	problems:	unequal	load	distribution	if	clients
are	themselves	hidden	behind	proxies,	stickyness	errors	when	a
client	uses	a	dynamic	IP	address	that	changes	during	a	session
and	loss	of	stickyness,	if	the	mapping	table	overflows.

The	module	mod_proxy_balancer	implements	stickyness	on
top	of	two	alternative	means:	cookies	and	URL	encoding.
Providing	the	cookie	can	be	either	done	by	the	back-end	or	by	the
Apache	web	server	itself.	The	URL	encoding	is	usually	done	on
the	back-end.

Examples	of	a	balancer	configuration

Before	we	dive	into	the	technical	details,	here's	an	example	of	how
you	might	use	mod_proxy_balancer	to	provide	load	balancing
between	two	back-end	servers:

<Proxy	"balancer://mycluster">

				BalancerMember	"http://192.168.1.50:80"

				BalancerMember	"http://192.168.1.51:80"

</Proxy>

ProxyPass	"/test"	"balancer://mycluster"

ProxyPassReverse	"/test"	"balancer://mycluster"

Another	example	of	how	to	provide	load	balancing	with	stickyness
using	mod_headers,	even	if	the	back-end	server	does	not	set	a
suitable	session	cookie:

Header	add	Set-Cookie	"ROUTEID=.%{BALANCER_WORKER_ROUTE}e;	path=/"	env=BALANCER_ROUTE_CHANGED

<Proxy	"balancer://mycluster">

				BalancerMember	"http://192.168.1.50:80"	route=1

				BalancerMember	"http://192.168.1.51:80"	route=2

				ProxySet	stickysession=ROUTEID

</Proxy>

ProxyPass	"/test"	"balancer://mycluster"

ProxyPassReverse	"/test"	"balancer://mycluster"

Exported	Environment	Variables

At	present	there	are	6	environment	variables	exported:

BALANCER_SESSION_STICKY
This	is	assigned	the	stickysession	value	used	for	the	current
request.	It	is	the	name	of	the	cookie	or	request	parameter
used	for	sticky	sessions

BALANCER_SESSION_ROUTE
This	is	assigned	the	route	parsed	from	the	current	request.

BALANCER_NAME
This	is	assigned	the	name	of	the	balancer	used	for	the	current
request.	The	value	is	something	like	balancer://foo.

BALANCER_WORKER_NAME
This	is	assigned	the	name	of	the	worker	used	for	the	current
request.	The	value	is	something	like	http://hostA:1234.

BALANCER_WORKER_ROUTE
This	is	assigned	the	route	of	the	worker	that	will	be	used	for
the	current	request.

BALANCER_ROUTE_CHANGED
This	is	set	to	1	if	the	session	route	does	not	match	the	worker
route	(BALANCER_SESSION_ROUTE	!=
BALANCER_WORKER_ROUTE)	or	the	session	does	not	yet
have	an	established	route.	This	can	be	used	to	determine
when/if	the	client	needs	to	be	sent	an	updated	route	when
sticky	sessions	are	used.

Enabling	Balancer	Manager	Support

This	module	requires	the	service	of	mod_status.	Balancer
manager	enables	dynamic	update	of	balancer	members.	You	can
use	balancer	manager	to	change	the	balance	factor	of	a	particular
member,	or	put	it	in	the	off	line	mode.

Thus,	in	order	to	get	the	ability	of	load	balancer	management,
mod_status	and	mod_proxy_balancer	have	to	be	present	in
the	server.

To	enable	load	balancer	management	for	browsers	from	the
example.com	domain	add	this	code	to	your	httpd.conf
configuration	file

<Location	"/balancer-manager">

				SetHandler	balancer-manager

				Require	host	example.com

</Location>

You	can	now	access	load	balancer	manager	by	using	a	Web
browser	to	access	the	page
http://your.server.name/balancer-manager.	Please
note	that	only	Balancers	defined	outside	of	<Location	...>
containers	can	be	dynamically	controlled	by	the	Manager.

Details	on	load	balancer	stickyness

When	using	cookie	based	stickyness,	you	need	to	configure	the
name	of	the	cookie	that	contains	the	information	about	which
back-end	to	use.	This	is	done	via	the	stickysession	attribute	added
to	either	ProxyPass	or	ProxySet.	The	name	of	the	cookie	is
case-sensitive.	The	balancer	extracts	the	value	of	the	cookie	and
looks	for	a	member	worker	with	route	equal	to	that	value.	The
route	must	also	be	set	in	either	ProxyPass	or	ProxySet.	The
cookie	can	either	be	set	by	the	back-end,	or	as	shown	in	the
above	example	by	the	Apache	web	server	itself.

Some	back-ends	use	a	slightly	different	form	of	stickyness	cookie,
for	instance	Apache	Tomcat.	Tomcat	adds	the	name	of	the	Tomcat
instance	to	the	end	of	its	session	id	cookie,	separated	with	a	dot
(.)	from	the	session	id.	Thus	if	the	Apache	web	server	finds	a	dot
in	the	value	of	the	stickyness	cookie,	it	only	uses	the	part	behind
the	dot	to	search	for	the	route.	In	order	to	let	Tomcat	know	about
its	instance	name,	you	need	to	set	the	attribute	jvmRoute	inside
the	Tomcat	configuration	file	conf/server.xml	to	the	value	of
the	route	of	the	worker	that	connects	to	the	respective	Tomcat.
The	name	of	the	session	cookie	used	by	Tomcat	(and	more
generally	by	Java	web	applications	based	on	servlets)	is
JSESSIONID	(upper	case)	but	can	be	configured	to	something
else.

The	second	way	of	implementing	stickyness	is	URL	encoding.	The
web	server	searches	for	a	query	parameter	in	the	URL	of	the
request.	The	name	of	the	parameter	is	specified	again	using
stickysession.	The	value	of	the	parameter	is	used	to	lookup	a
member	worker	with	route	equal	to	that	value.	Since	it	is	not	easy
to	extract	and	manipulate	all	URL	links	contained	in	responses,
generally	the	work	of	adding	the	parameters	to	each	link	is	done
by	the	back-end	generating	the	content.	In	some	cases	it	might	be
feasible	doing	this	via	the	web	server	using	mod_substitute	or

mod_sed.	This	can	have	negative	impact	on	performance	though.

The	Java	standards	implement	URL	encoding	slightly	different.
They	use	a	path	info	appended	to	the	URL	using	a	semicolon	(;)
as	the	separator	and	add	the	session	id	behind.	As	in	the	cookie
case,	Apache	Tomcat	can	include	the	configured	jvmRoute	in	this
path	info.	To	let	Apache	find	this	sort	of	path	info,	you	neet	to	set
scolonpathdelim	to	On	in	ProxyPass	or	ProxySet.

Finally	you	can	support	cookies	and	URL	encoding	at	the	same
time,	by	configuring	the	name	of	the	cookie	and	the	name	of	the
URL	parameter	separated	by	a	vertical	bar	(|)	as	in	the	following
example:

ProxyPass	"/test"	"balancer://mycluster"	stickysession=JSESSIONID|jsessionid	scolonpathdelim=On

<Proxy	"balancer://mycluster">

				BalancerMember	"http://192.168.1.50:80"	route=node1

				BalancerMember	"http://192.168.1.51:80"	route=node2

</Proxy>

If	the	cookie	and	the	request	parameter	both	provide	routing
information	for	the	same	request,	the	information	from	the	request
parameter	is	used.

Troubleshooting	load	balancer	stickyness

If	you	experience	stickyness	errors,	e.g.	users	lose	their
application	sessions	and	need	to	login	again,	you	first	want	to
check	whether	this	is	because	the	back-ends	are	sometimes
unavailable	or	whether	your	configuration	is	wrong.	To	find	out
about	possible	stability	problems	with	the	back-ends,	check	your
Apache	error	log	for	proxy	error	messages.

To	verify	your	configuration,	first	check,	whether	the	stickyness	is
based	on	a	cookie	or	on	URL	encoding.	Next	step	would	be
logging	the	appropriate	data	in	the	access	log	by	using	an
enhanced	LogFormat.	The	following	fields	are	useful:

%{MYCOOKIE}C

The	value	contained	in	the	cookie	with	name	MYCOOKIE.	The
name	should	be	the	same	given	in	the	stickysession	attribute.

%{Set-Cookie}o

This	logs	any	cookie	set	by	the	back-end.	You	can	track,
whether	the	back-end	sets	the	session	cookie	you	expect,
and	to	which	value	it	is	set.

%{BALANCER_SESSION_STICKY}e

The	name	of	the	cookie	or	request	parameter	used	to	lookup
the	routing	information.

%{BALANCER_SESSION_ROUTE}e

The	route	information	found	in	the	request.

%{BALANCER_WORKER_ROUTE}e

The	route	of	the	worker	chosen.

%{BALANCER_ROUTE_CHANGED}e

Set	to	1	if	the	route	in	the	request	is	different	from	the	route	of
the	worker,	i.e.	the	request	couldn't	be	handled	sticky.

Common	reasons	for	loss	of	session	are	session	timeouts,	which
are	usually	configurable	on	the	back-end	server.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	balancer	also	logs	detailed	information	about	handling
stickyness	to	the	error	log,	if	the	log	level	is	set	to	debug	or	higher.
This	is	an	easy	way	to	troubleshoot	stickyness	problems,	but	the
log	volume	might	be	to	high	for	production	servers	under	high
load.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_connect

Description: mod_proxy	extension	for	CONNECT	request
handling

Status: Extension
Module	Identifier: proxy_connect_module
Source	File: mod_proxy_connect.c

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	CONNECT	HTTP	method.	This	method	is	mainly	used	to	tunnel
SSL	requests	through	proxy	servers.

Thus,	in	order	to	get	the	ability	of	handling	CONNECT	requests,
mod_proxy	and	mod_proxy_connect	have	to	be	present	in	the
server.

CONNECT	is	also	used	when	the	server	needs	to	send	an	HTTPS
request	through	a	forward	proxy.	In	this	case	the	server	acts	as	a
CONNECT	client.	This	functionality	is	part	of	mod_proxy	and
mod_proxy_connect	is	not	needed	in	this	case.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

https://www.apache.org/foundation/contributing.html

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_connect
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_connect

Request	notes

mod_proxy_connect	creates	the	following	request	notes	for
logging	using	the	%{VARNAME}n	format	in	LogFormat	or
ErrorLogFormat:

proxy-source-port
The	local	port	used	for	the	connection	to	the	backend	server.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AllowCONNECT	Directive

Description: Ports	that	are	allowed	to	CONNECT	through	the
proxy

Syntax: AllowCONNECT	port[-port]	[port[-

port]]	...

Default: AllowCONNECT	443	563

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_connect
Compatibility: Moved	from	mod_proxy	in	Apache	2.3.5.	Port

ranges	available	since	Apache	2.3.7.

The	AllowCONNECT	directive	specifies	a	list	of	port	numbers	or
ranges	to	which	the	proxy	CONNECT	method	may	connect.	Today's
browsers	use	this	method	when	a	https	connection	is	requested
and	proxy	tunneling	over	HTTP	is	in	effect.

By	default,	only	the	default	https	port	(443)	and	the	default	snews
port	(563)	are	enabled.	Use	the	AllowCONNECT	directive	to
override	this	default	and	allow	connections	to	the	listed	ports	only.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_express

Description: Dynamic	mass	reverse	proxy	extension	for
mod_proxy

Status: Extension
Module	Identifier: proxy_express_module
Source	File: mod_proxy_express.c

Summary
This	module	creates	dynamically	configured	mass	reverse	proxies,	by
mapping	the	Host:	header	of	the	HTTP	request	to	a	server	name	and
backend	URL	stored	in	a	DBM	file.	This	allows	for	easy	use	of	a	huge
number	of	reverse	proxies	with	no	configuration	changes.	It	is	much
less	feature-full	than	mod_proxy_balancer,	which	also	provides
dynamic	growth,	but	is	intended	to	handle	much,	much	larger
numbers	of	backends.	It	is	ideally	suited	as	a	front-end	HTTP	switch
and	for	micro-services	architectures.

This	module	requires	the	service	of	mod_proxy.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Limitations

This	module	is	not	intended	to	replace	the	dynamic	capability
of	mod_proxy_balancer.	Instead,	it	is	intended	to	be	mostly
a	lightweight	and	fast	alternative	to	using	mod_rewrite	with
RewriteMap	and	the	[P]	flag	for	mapped	reverse	proxying.
It	does	not	support	regex	or	pattern	matching	at	all.

It	emulates:

<VirtualHost	*:80>

			ServerName	front.end.server

			ProxyPass	"/"	"back.end.server:port"

			ProxyPassReverse	"/"	"back.end.server:port"

</VirtualHost>

That	is,	the	entire	URL	is	appended	to	the	mapped	backend
URL.	This	is	in	keeping	with	the	intent	of	being	a	simple	but
fast	reverse	proxy	switch.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

BalancerMember

BalancerGrowth

BalancerPersist

BalancerInherit

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_express
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_express

ProxyExpressDBMFile	Directive

Description: Pathname	to	DBM	file.
Syntax: ProxyExpressDBMFile	<pathname>

Default: None

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_express
Compatibility: Available	in	Apache	2.3.13	and	later

The	ProxyExpressDBMFile	directive	points	to	the	location	of
the	Express	map	DBM	file.	This	file	serves	to	map	the	incoming
server	name,	obtained	from	the	Host:	header,	to	a	backend	URL.

Note

The	file	is	constructed	from	a	plain	text	file	format	using	the
httxt2dbm	utility.

ProxyExpress	map	file
##

##express-map.txt:

##

www1.example.com	http://192.168.211.2:8080

www2.example.com	http://192.168.211.12:8088

www3.example.com	http://192.168.212.10

Create	DBM	file
httxt2dbm	-i	express-map.txt	-o	emap

Configuration
ProxyExpressEnable	on

ProxyExpressDBMFile	emap

ProxyExpressDBMType	Directive

Description: DBM	type	of	file.
Syntax: ProxyExpressDBMFile	<type>

Default: "default"

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_express
Compatibility: Available	in	Apache	2.3.13	and	later

The	ProxyExpressDBMType	directive	controls	the	DBM	type
expected	by	the	module.	The	default	is	the	default	DBM	type
created	with	httxt2dbm.

Possible	values	are	(not	all	may	be	available	at	run	time):

Value Description
db Berkeley	DB	files
gdbm GDBM	files
ndbm NDBM	files
sdbm SDBM	files	(always	available)
default default	DBM	type

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ProxyExpressEnable	Directive

Description: Enable	the	module	functionality.
Syntax: ProxyExpressEnable	[on|off]

Default: off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_express
Compatibility: Available	in	Apache	2.3.13	and	later

The	ProxyExpressEnable	directive	controls	whether	the
module	will	be	active.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_fcgi

Description: FastCGI	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_fcgi_module
Source	File: mod_proxy_fcgi.c
Compatibility: Available	in	version	2.3	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	FastCGI	protocol.

Thus,	in	order	to	get	the	ability	of	handling	the	FastCGI	protocol,
mod_proxy	and	mod_proxy_fcgi	have	to	be	present	in	the	server.

Unlike	mod_fcgid	and	mod_fastcgi,	mod_proxy_fcgi	has	no
provision	for	starting	the	application	process;	fcgistarter	is
provided	(on	some	platforms)	for	that	purpose.	Alternatively,	external
launching	or	process	management	may	be	available	in	the	FastCGI
application	framework	in	use.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

http://www.fastcgi.com/
http://httpd.apache.org/mod_fcgid/
http://www.fastcgi.com/
https://www.apache.org/foundation/contributing.html

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
fcgistarter

mod_proxy

mod_authnz_fcgi

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_fcgi
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_fcgi

Examples

Remember,	in	order	to	make	the	following	examples	work,	you
have	to	enable	mod_proxy	and	mod_proxy_fcgi.

Single	application	instance
ProxyPass	"/myapp/"	"fcgi://localhost:4000/"

mod_proxy_fcgi	disables	connection	reuse	by	default,	so	after
a	request	has	been	completed	the	connection	will	NOT	be	held
open	by	that	httpd	child	process	and	won't	be	reused.	If	the
FastCGI	application	is	able	to	handle	concurrent	connections	from
httpd,	you	can	opt-in	to	connection	reuse	as	shown	in	the	following
example:

Single	application	instance,	connection	reuse	(2.4.11	and
later)
ProxyPass	"/myapp/"	"fcgi://localhost:4000/"	enablereuse=on

The	following	example	passes	the	request	URI	as	a	filesystem
path	for	the	PHP-FPM	daemon	to	run.	The	request	URL	is
implicitly	added	to	the	2nd	parameter.	The	hostname	and	port
following	fcgi://	are	where	PHP-FPM	is	listening.	Connection
pooling/reuse	is	enabled.

PHP-FPM
ProxyPassMatch	"^/myapp/.*\.php(/.*)?$"	"fcgi://localhost:9000/var/www/"	enablereuse=on

The	following	example	passes	the	request	URI	as	a	filesystem
path	for	the	PHP-FPM	daemon	to	run.	In	this	case,	PHP-FPM	is
listening	on	a	unix	domain	socket	(UDS).	Requires	2.4.9	or	later.
With	this	syntax,	the	hostname	and	optional	port	following	fcgi://
are	ignored.

PHP-FPM	with	UDS
ProxyPassMatch	"^/(.*\.php(/.*)?)$"	"unix:/var/run/php5-fpm.sock|fcgi://localhost/var/www/"

The	balanced	gateway	needs	mod_proxy_balancer	and	at
least	one	load	balancer	algorithm	module,	such	as
mod_lbmethod_byrequests,	in	addition	to	the	proxy	modules
listed	above.	mod_lbmethod_byrequests	is	the	default,	and
will	be	used	for	this	example	configuration.

Balanced	gateway	to	multiple	application	instances
ProxyPass	"/myapp/"	"balancer://myappcluster/"

<Proxy	"balancer://myappcluster/">

				BalancerMember	"fcgi://localhost:4000"

				BalancerMember	"fcgi://localhost:4001"

</Proxy>

You	can	also	force	a	request	to	be	handled	as	a	reverse-proxy
request,	by	creating	a	suitable	Handler	pass-through.	The
example	configuration	below	will	pass	all	requests	for	PHP	scripts
to	the	specified	FastCGI	server	using	reverse	proxy.	This	feature
is	available	in	Apache	HTTP	Server	2.4.10	and	later.	For
performance	reasons,	you	will	want	to	define	a	worker
representing	the	same	fcgi://	backend.	The	benefit	of	this	form	is
that	it	allows	the	normal	mapping	of	URI	to	filename	to	occur	in	the
server,	and	the	local	filesystem	result	is	passed	to	the	backend.
When	FastCGI	is	configured	this	way,	the	server	can	calculate	the
most	accurate	PATH_INFO.

Proxy	via	Handler
<FilesMatch	"\.php$">

				#	Note:	The	only	part	that	varies	is	/path/to/app.sock

				SetHandler		"proxy:unix:/path/to/app.sock|fcgi://localhost/"

</FilesMatch>

#	Define	a	matching	worker.

#	The	part	that	is	matched	to	the	SetHandler	is	the	part	that

#	follows	the	pipe.	If	you	need	to	distinguish,	"localhost;	can

#	be	anything	unique.

<Proxy	"fcgi://localhost/"	enablereuse=on	max=10>

</Proxy>

<FilesMatch	...>

				SetHandler		"proxy:fcgi://localhost:9000"

</FilesMatch>

<FilesMatch	...>

				SetHandler		"proxy:balancer://myappcluster/"

</FilesMatch>

Environment	Variables

In	addition	to	the	configuration	directives	that	control	the	behaviour
of	mod_proxy,	there	are	a	number	of	environment	variables	that
control	the	FCGI	protocol	provider:

proxy-fcgi-pathinfo
When	configured	via	ProxyPass	or	ProxyPassMatch,
mod_proxy_fcgi	will	not	set	the	PATH_INFO	environment
variable.	This	allows	the	backend	FCGI	server	to	correctly
determine	SCRIPT_NAME	and	Script-URI	and	be	compliant
with	RFC	3875	section	3.3.	If	instead	you	need
mod_proxy_fcgi	to	generate	a	"best	guess"	for
PATH_INFO,	set	this	env-var.	This	is	a	workaround	for	a	bug
in	some	FCGI	implementations.	This	variable	can	be	set	to
multiple	values	to	tweak	at	how	the	best	guess	is	chosen	(In
2.4.11	and	later	only):

first-dot
PATH_INFO	is	split	from	the	slash	following	the	first	"."	in
the	URL.

last-dot
PATH_INFO	is	split	from	the	slash	following	the	last	"."	in
the	URL.

full
PATH_INFO	is	calculated	by	an	attempt	to	map	the	URL
to	the	local	filesystem.

unescape
PATH_INFO	is	the	path	component	of	the	URL,
unescaped	/	decoded.

any	other	value
PATH_INFO	is	the	same	as	the	path	component	of	the
URL.	Originally,	this	was	the	only	proxy-fcgi-pathinfo
option.

ProxyFCGIBackendType	Directive

Description: Specify	the	type	of	backend	FastCGI	application
Syntax: ProxyFCGIBackendType	FPM|GENERIC

Default: ProxyFCGIBackendType	FPM

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_proxy_fcgi
Compatibility: Available	in	version	2.4.26	and	later

This	directive	allows	the	type	of	backend	FastCGI	application	to	be
specified.	Some	FastCGI	servers,	such	as	PHP-FPM,	use
historical	quirks	of	environment	variables	to	identify	the	type	of
proxy	server	being	used.	Set	this	directive	to	"GENERIC"	if	your
non	PHP-FPM	application	has	trouble	interpreting	environment
variables	such	as	SCRIPT_FILENAME	or	PATH_TRANSLATED
as	set	by	the	server.

One	example	of	values	that	change	based	on	the	setting	of	this
directive	is	SCRIPT_FILENAME.	When	using	mod_proxy_fcgi
historically,	SCRIPT_FILENAME	was	prefixed	with	the	string
"proxy:fcgi://".	This	variable	is	what	some	generic	FastCGI
applications	would	read	as	their	script	input,	but	PHP-FPM	would
strip	the	prefix	then	remember	it	was	talking	to	Apache.	In	2.4.21
through	2.4.25,	this	prefix	was	automatically	stripped	by	the
server,	breaking	the	ability	of	PHP-FPM	to	detect	and	interoperate
with	Apache	in	some	scenarios.

ProxyFCGISetEnvIf	Directive

Description: Allow	variables	sent	to	FastCGI	servers	to	be
fixed	up

Syntax: ProxyFCGISetEnvIf	conditional-

expression	[!]environment-variable-

name	[value-expression]

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_proxy_fcgi
Compatibility: Available	in	version	2.4.26	and	later

Just	before	passing	a	request	to	the	configured	FastCGI	server,
the	core	of	the	web	server	sets	a	number	of	environment	variables
based	on	details	of	the	current	request.	FastCGI	programs	often
uses	these	environment	variables	as	inputs	that	determine	what
underlying	scripts	they	will	process,	or	what	output	they	directly
produce.

Examples	of	noteworthy	environment	variables	are:

SCRIPT_NAME
SCRIPT_FILENAME
REQUEST_URI
PATH_INFO
PATH_TRANSLATED

This	directive	allows	the	environment	variables	above,	or	any
others	of	interest,	to	be	overridden.	This	directive	is	evaluated
after	the	initial	values	for	these	variables	are	set,	so	they	can	be
used	as	input	into	both	the	condition	expressions	and	value
expressions.

Parameter	syntax:

conditional-expression

Specifies	an	expression	that	controls	whether	the
environment	variable	that	follows	will	be	modified.	For
information	on	the	expression	syntax,	see	the	examples	that
follow	or	the	full	specification	at	the	ap_expr	documentation.

environment-variable-name
Specifies	the	CGI	environment	variable	to	change,	such	as
PATH_INFO.	If	preceded	by	an	exclamation	point,	the
variable	will	be	unset.

value-expression
Specifies	the	replacement	value	for	the	preceding
environment	variable.	Backreferences,	such	as	"$1",	can	be
included	from	regular	expression	captures	in	conditional-
expression.	If	omitted,	the	variable	is	set	(or	overridden)	to	an
empty	string	—	but	see	the	Note	below.

#	A	basic,	unconditional	override

ProxyFCGISetEnvIf	"true"	PATH_INFO	"/example"

#	Use	an	environment	variable	in	the	value

ProxyFCGISetEnvIf	"true"	PATH_INFO	"%{reqenv:SCRIPT_NAME}"

#	Use	captures	in	the	conditions	and	backreferences	in	the	replacement

ProxyFCGISetEnvIf	"reqenv('PATH_TRANSLATED')	=~	m|(/.*prefix)(\d+)(.*)|"	PATH_TRANSLATED	"$1$3"

Note:	Unset	vs.	Empty
The	following	will	unset	VARIABLE,	preventing	it	from	being
sent	to	the	FastCGI	server:

ProxyFCGISetEnvIf	true	!VARIABLE

Whereas	the	following	will	erase	any	existing	value	of
VARIABLE	(by	setting	it	to	the	empty	string),	but	the	empty
VARIABLE	will	still	be	sent	to	the	server:

ProxyFCGISetEnvIf	true	VARIABLE

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	CGI/1.1	specification	does	not	distinguish	between	a
variable	with	an	empty	value	and	a	variable	that	does	not	exist.
However,	many	CGI	and	FastCGI	implementations	distinguish
(or	allow	scripts	to	distinguish)	between	the	two.	The	choice	of
which	to	use	is	dependent	upon	your	implementation	and	your
reason	for	modifying	the	variable.

https://tools.ietf.org/html/rfc3875#section-4.1
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_fdpass

Description: fdpass	external	process	support	module	for
mod_proxy

Status: Extension
Module	Identifier: proxy_fdpass_module
Source	File: mod_proxy_fdpass.c
Compatibility: Available	for	unix	in	version	2.3	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	passing	the	socket	of	the	client	to	another	process.

mod_proxy_fdpass	uses	the	ability	of	AF_UNIX	domain	sockets	to
pass	an	open	file	descriptor	to	allow	another	process	to	finish
handling	a	request.

The	module	has	a	proxy_fdpass_flusher	provider	interface,
which	allows	another	module	to	optionally	send	the	response
headers,	or	even	the	start	of	the	response	body.	The	default	flush
provider	disables	keep-alive,	and	sends	the	response	headers,	letting
the	external	process	just	send	a	response	body.

In	order	to	use	another	provider,	you	have	to	set	the	flusher
parameter	in	the	ProxyPass	directive.

At	this	time	the	only	data	passed	to	the	external	process	is	the	client
socket.	To	receive	a	client	socket,	call	recvfrom	with	an	allocated
struct	cmsghdr.	Future	versions	of	this	module	may	include	more
data	after	the	client	socket,	but	this	is	not	implemented	at	this	time.

http://www.freebsd.org/cgi/man.cgi?query=recv
http://www.kernel.org/doc/man-pages/online/pages/man3/cmsg.3.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_fdpass
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_fdpass
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_ftp

Description: FTP	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_ftp_module
Source	File: mod_proxy_ftp.c

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	proxying	FTP	sites.	Note	that	FTP	support	is	currently	limited
to	the	GET	method.

Thus,	in	order	to	get	the	ability	of	handling	FTP	proxy	requests,
mod_proxy	and	mod_proxy_ftp	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_ftp
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_ftp

mod_proxy

Why	doesn't	file	type	xxx	download	via	FTP?

You	probably	don't	have	that	particular	file	type	defined	as
application/octet-stream	in	your	proxy's	mime.types
configuration	file.	A	useful	line	can	be

application/octet-stream			bin	dms	lha	lzh	exe	class	tgz	taz

Alternatively	you	may	prefer	to	default	everything	to	binary:

ForceType	application/octet-stream

How	can	I	force	an	FTP	ASCII	download	of	File	xxx?

In	the	rare	situation	where	you	must	download	a	specific	file	using
the	FTP	ASCII	transfer	method	(while	the	default	transfer	is	in
binary	mode),	you	can	override	mod_proxy's	default	by
suffixing	the	request	with	;type=a	to	force	an	ASCII	transfer.
(FTP	Directory	listings	are	always	executed	in	ASCII	mode,
however.)

How	can	I	do	FTP	upload?

Currently,	only	GET	is	supported	for	FTP	in	mod_proxy.	You	can	of
course	use	HTTP	upload	(POST	or	PUT)	through	an	Apache
proxy.

How	can	I	access	FTP	files	outside	of	my	home
directory?

An	FTP	URI	is	interpreted	relative	to	the	home	directory	of	the
user	who	is	logging	in.	Alas,	to	reach	higher	directory	levels	you
cannot	use	/../,	as	the	dots	are	interpreted	by	the	browser	and	not
actually	sent	to	the	FTP	server.	To	address	this	problem,	the	so
called	Squid	%2f	hack	was	implemented	in	the	Apache	FTP	proxy;
it	is	a	solution	which	is	also	used	by	other	popular	proxy	servers
like	the	Squid	Proxy	Cache.	By	prepending	/%2f	to	the	path	of
your	request,	you	can	make	such	a	proxy	change	the	FTP	starting
directory	to	/	(instead	of	the	home	directory).	For	example,	to
retrieve	the	file	/etc/motd,	you	would	use	the	URL:

ftp://user@host/%2f/etc/motd

http://www.squid-cache.org/

How	can	I	hide	the	FTP	cleartext	password	in	my
browser's	URL	line?

To	log	in	to	an	FTP	server	by	username	and	password,	Apache
uses	different	strategies.	In	absence	of	a	user	name	and	password
in	the	URL	altogether,	Apache	sends	an	anonymous	login	to	the
FTP	server,	i.e.,

user:	anonymous

password:	apache_proxy@

This	works	for	all	popular	FTP	servers	which	are	configured	for
anonymous	access.

For	a	personal	login	with	a	specific	username,	you	can	embed	the
user	name	into	the	URL,	like	in:

ftp://username@host/myfile

If	the	FTP	server	asks	for	a	password	when	given	this	username
(which	it	should),	then	Apache	will	reply	with	a	401	(Authorization
required)	response,	which	causes	the	Browser	to	pop	up	the
username/password	dialog.	Upon	entering	the	password,	the
connection	attempt	is	retried,	and	if	successful,	the	requested
resource	is	presented.	The	advantage	of	this	procedure	is	that
your	browser	does	not	display	the	password	in	cleartext	(which	it
would	if	you	had	used

ftp://username:password@host/myfile

in	the	first	place).

Note

The	password	which	is	transmitted	in	such	a	way	is	not
encrypted	on	its	way.	It	travels	between	your	browser	and	the

Apache	proxy	server	in	a	base64-encoded	cleartext	string,	and
between	the	Apache	proxy	and	the	FTP	server	as	plaintext.	You
should	therefore	think	twice	before	accessing	your	FTP	server
via	HTTP	(or	before	accessing	your	personal	files	via	FTP	at
all!)	When	using	insecure	channels,	an	eavesdropper	might
intercept	your	password	on	its	way.

Why	do	I	get	a	file	listing	when	I	expected	a	file	to	be
downloaded?

In	order	to	allow	both	browsing	the	directories	on	an	FTP	server
and	downloading	files,	Apache	looks	at	the	request	URL.	If	it	looks
like	a	directory,	or	contains	wildcard	characters	("*?[{~"),	then	it
guesses	that	a	listing	is	wanted	instead	of	a	download.

You	can	disable	the	special	handling	of	names	with	wildcard
characters.	See	the	ProxyFtpListOnWildcard	directive.

ProxyFtpDirCharset	Directive

Description: Define	the	character	set	for	proxied	FTP	listings
Syntax: ProxyFtpDirCharset	character	set

Default: ProxyFtpDirCharset	ISO-8859-1

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_ftp
Compatibility: Available	in	Apache	2.2.7	and	later.	Moved	from

mod_proxy	in	Apache	2.3.5.

The	ProxyFtpDirCharset	directive	defines	the	character	set	to
be	set	for	FTP	directory	listings	in	HTML	generated	by
mod_proxy_ftp.

ProxyFtpEscapeWildcards	Directive

Description: Whether	wildcards	in	requested	filenames	are
escaped	when	sent	to	the	FTP	server

Syntax: ProxyFtpEscapeWildcards	[on|off]

Default: on

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_ftp
Compatibility: Available	in	Apache	2.3.3	and	later

The	ProxyFtpEscapeWildcards	directive	controls	whether
wildcard	characters	("*?[{~")	in	requested	filenames	are	escaped
with	backslash	before	sending	them	to	the	FTP	server.	That	is	the
default	behavior,	but	many	FTP	servers	don't	know	about	the
escaping	and	try	to	serve	the	literal	filenames	they	were	sent,
including	the	backslashes	in	the	names.

Set	to	"off"	to	allow	downloading	files	with	wildcards	in	their	names
from	FTP	servers	that	don't	understand	wildcard	escaping.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ProxyFtpListOnWildcard	Directive

Description: Whether	wildcards	in	requested	filenames	trigger
a	file	listing

Syntax: ProxyFtpListOnWildcard	[on|off]

Default: on

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_ftp
Compatibility: Available	in	Apache	2.3.3	and	later

The	ProxyFtpListOnWildcard	directive	controls	whether
wildcard	characters	("*?[{~")	in	requested	filenames	cause
mod_proxy_ftp	to	return	a	listing	of	files	instead	of	downloading
a	file.	By	default	(value	on),	they	do.	Set	to	"off"	to	allow
downloading	files	even	if	they	have	wildcard	characters	in	their
names.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_hcheck

Description: Dynamic	health	check	of	Balancer	members
(workers)	for	mod_proxy

Status: Extension
Module	Identifier: proxy_hcheck_module
Source	File: mod_proxy_hcheck.c
Compatibility: Available	in	Apache	2.4.21	and	later

Summary
This	module	provides	for	dynamic	health	checking	of	balancer
members	(workers).	This	can	be	enabled	on	a	worker-by-worker
basis.	The	health	check	is	done	independently	of	the	actual	reverse
proxy	requests.

This	module	requires	the	service	of	mod_watchdog.

Parameters

The	health	check	mechanism	is	enabled	via	the	use	of	additional
BalancerMember	parameters,	which	are	configured	in	the	standard
way	via	ProxyPass:

A	new	BalancerMember	status	state	(flag)	is	defined	via	this
module:	"C".	When	the	worker	is	taken	offline	due	to	failures	as
determined	by	the	health	check	module,	this	flag	is	set,	and	can	be
seen	(and	modified)	via	the	balancer-manager.

Parameter Default Description
hcmethod None No	dynamic	health	check	performed.	Choices

are:

Method Description Note
None No	dynamic	health

checking	done
TCP Check	that	a	socket	to	the

backend	can	be	created:
e.g.	"are	you	up"

OPTIONS Send	an	HTTP	OPTIONS
request	to	the	backend

*

HEAD Send	an	HTTP	HEAD
request	to	the	backend

*

GET Send	an	HTTP	GET
request	to	the	backend

*

*:	Unless	hcexpr	is	used,	a	2xx	or	3xx
HTTP	status	will	be	interpreted	as	passing
the	health	check

hcpasses 1 Number	of	successful	health	check	tests
before	worker	is	re-enabled

hcfails 1 Number	of	failed	health	check	tests	before
worker	is	disabled

hcinterval 30 Period	of	health	checks	in	seconds	(e.g.
performed	every	30	seconds)

hcuri 	 Additional	URI	to	be	appended	to	the	worker
URL	for	the	health	check.

hctemplate 	 Name	of	template,	created	via
ProxyHCTemplate	to	use	for	setting	health
check	parameters	for	this	worker

hcexpr 	 Name	of	expression,	created	via
ProxyHCExpr,	used	to	check	response
headers	for	health.
If	not	used,	2xx	thru	3xx	status	codes	imply
success

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_hcheck
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_hcheck

Usage	examples

The	following	example	shows	how	one	might	configured	health
checking	for	various	backend	servers:

ProxyHCExpr	ok234	{%{REQUEST_STATUS}	=~	/^[234]/}

ProxyHCExpr	gdown	{%{REQUEST_STATUS}	=~	/^[5]/}

ProxyHCExpr	in_maint	{hc('body')	!~	/Under	maintenance/}

<Proxy	balancer://foo>

		BalancerMember	http://www.example.com/		hcmethod=GET	hcexpr=in_maint	hcuri=/status.php

		BalancerMember	http://www2.example.com/		hcmethod=HEAD	hcexpr=ok234	hcinterval=10

		BalancerMember	http://www3.example.com/	hcmethod=TCP	hcinterval=5	hcpasses=2	hcfails=3

		BalancerMember	http://www4.example.com/

</Proxy>

ProxyPass	"/"	"balancer://foo"

ProxyPassReverse	"/"	"balancer://foo"

In	this	scenario,	http://www.example.com/	is	health	checked
by	sending	a	GET	/status.php	request	to	that	server	and
seeing	that	the	returned	page	does	not	include	the	string	Under
maintenance.	If	it	does,	that	server	is	put	in	health-check	fail
mode,	and	disabled.	This	dynamic	check	is	performed	every	30
seconds,	which	is	the	default.

http://www2.example.com/	is	checked	by	sending	a	simple
HEAD	request	every	10	seconds	and	making	sure	that	the
response	status	is	2xx,	3xx	or	4xx.
http://www3.example.com/	is	checked	every	5	seconds	by
simply	ensuring	that	the	socket	to	that	server	is	up.	If	the	backend
is	marked	as	"down"	and	it	passes	2	health	check,	it	will	be	re-
enabled	and	added	back	into	the	load	balancer.	It	takes	3	back-to-
back	health	check	failures	to	disable	the	server	and	move	it	out	of
rotation.	Finally,	http://www4.example.com/	is	not

dynamically	checked	at	all.

ProxyHCExpr	Directive

Description: Creates	a	named	condition	expression	to	use	to
determine	health	of	the	backend	based	on	its
response.

Syntax: ProxyHCExpr	name	{ap_expr	expression}

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_hcheck

The	ProxyHCExpr	directive	allows	for	creating	a	named	condition
expression	that	checks	the	response	headers	of	the	backend
server	to	determine	its	health.	This	named	condition	can	then	be
assigned	to	balancer	members	via	the	hcexpr	parameter

ProxyHCExpr:	Allow	for	2xx/3xx/4xx	as	passing
ProxyHCExpr	ok234	{%{REQUEST_STATUS}	=~	/^[234]/}

ProxyPass	"/apps"					"http://backend.example.com/"	hcexpr=ok234

The	expression	can	use	curly-parens	("{}")	as	quoting
deliminators	in	addition	to	normal	quotes.

If	using	a	health	check	method	(eg:	GET)	which	results	in	a
response	body,	that	body	itself	can	be	checked	via	ap_expr	using
the	hc()	expression	function,	which	is	unique	to	this	module.

In	the	following	example,	we	send	the	backend	a	GET	request	and
if	the	response	body	contains	the	phrase	Under	maintenance,	we
want	to	disable	the	backend.

ProxyHCExpr:	Checking	response	body
ProxyHCExpr	in_maint	{hc('body')	!~	/Under	maintenance/}

ProxyPass	"/apps"					"http://backend.example.com/"	hcexpr=in_maint	hcmethod=get	hcuri=/status.php

NOTE:	Since	response	body	can	quite	large,	it	is	best	if	used
against	specific	status	pages.

ProxyHCTemplate	Directive

Description: Creates	a	named	template	for	setting	various
health	check	parameters

Syntax: ProxyHCTemplate	name

parameter=setting	<...>

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_hcheck

The	ProxyHCTemplate	directive	allows	for	creating	a	named	set
(template)	of	health	check	parameters	that	can	then	be	assigned
to	balancer	members	via	the	hctemplate	parameter

ProxyHCTemplate
ProxyHCTemplate	tcp5	hcmethod=tcp	hcinterval=5

ProxyPass	"/apps"					"http://backend.example.com/"	hctemplate=tcp5

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ProxyHCTPsize	Directive

Description: Sets	the	total	server-wide	size	of	the	threadpool
used	for	the	health	check	workers.

Syntax: ProxyHCTPsize	<size>

Context: server	config
Status: Extension
Module: mod_proxy_hcheck

If	Apache	httpd	and	APR	are	built	with	thread	support,	the	health
check	module	will	offload	the	work	of	the	actual	checking	to	a
threadpool	associated	with	the	Watchdog	process,	allowing	for
parallel	checks.	The	ProxyHCTPsize	directive	determines	the
size	of	this	threadpool.	If	set	to	0,	no	threadpool	is	used	at	all,
resulting	in	serialized	health	checks.	The	default	size	is	16.

ProxyHCTPsize
ProxyHCTPsize	32

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_html

Description: Rewrite	HTML	links	in	to	ensure	they	are
addressable	from	Clients'	networks	in	a	proxy
context.

Status: Base
Module	Identifier: proxy_html_module
Source	File: mod_proxy_html.c
Compatibility: Version	2.4	and	later.	Available	as	a	third-party

module	for	earlier	2.x	versions

Summary
This	module	provides	an	output	filter	to	rewrite	HTML	links	in	a	proxy
situation,	to	ensure	that	links	work	for	users	outside	the	proxy.	It
serves	the	same	purpose	as	Apache's	ProxyPassReverse	directive
does	for	HTTP	headers,	and	is	an	essential	component	of	a	reverse
proxy.

For	example,	if	a	company	has	an	application	server	at
appserver.example.com	that	is	only	visible	from	within	the
company's	internal	network,	and	a	public	webserver
www.example.com,	they	may	wish	to	provide	a	gateway	to	the
application	server	at	http://www.example.com/appserver/.
When	the	application	server	links	to	itself,	those	links	need	to	be
rewritten	to	work	through	the	gateway.	mod_proxy_html	serves	to
rewrite	foobar

to	foobar

making	it	accessible	from	outside.

mod_proxy_html	was	originally	developed	at	WebÞing,	whose
extensive	documentation	may	be	useful	to	users.

http://apache.webthing.com/mod_proxy_html/

ProxyHTMLBufSize	Directive

Description: Sets	the	buffer	size	increment	for	buffering	inline
scripts	and	stylesheets.

Syntax: ProxyHTMLBufSize	bytes

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

In	order	to	parse	non-HTML	content	(stylesheets	and	scripts)
embedded	in	HTML	documents,	mod_proxy_html	has	to	read	the
entire	script	or	stylesheet	into	a	buffer.	This	buffer	will	be
expanded	as	necessary	to	hold	the	largest	script	or	stylesheet	in	a
page,	in	increments	of	bytes	as	set	by	this	directive.

The	default	is	8192,	and	will	work	well	for	almost	all	pages.
However,	if	you	know	you're	proxying	pages	containing
stylesheets	and/or	scripts	bigger	than	8K	(that	is,	for	a	single	script
or	stylesheet,	NOT	in	total),	it	will	be	more	efficient	to	set	a	larger
buffer	size	and	avoid	the	need	to	resize	the	buffer	dynamically
during	a	request.

ProxyHTMLCharsetOut	Directive

Description: Specify	a	charset	for	mod_proxy_html	output.
Syntax: ProxyHTMLCharsetOut	Charset	|	*

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

This	selects	an	encoding	for	mod_proxy_html	output.	It	should	not
normally	be	used,	as	any	change	from	the	default	UTF-8	(Unicode
-	as	used	internally	by	libxml2)	will	impose	an	additional
processing	overhead.	The	special	token	ProxyHTMLCharsetOut
*	will	generate	output	using	the	same	encoding	as	the	input.

Note	that	this	relies	on	mod_xml2enc	being	loaded.

ProxyHTMLDocType	Directive

Description: Sets	an	HTML	or	XHTML	document	type
declaration.

Syntax: ProxyHTMLDocType	HTML|XHTML	[Legacy]

OR	

ProxyHTMLDocType	fpi	[SGML|XML]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

In	the	first	form,	documents	will	be	declared	as	HTML	4.01	or
XHTML	1.0	according	to	the	option	selected.	This	option	also
determines	whether	HTML	or	XHTML	syntax	is	used	for	output.
Note	that	the	format	of	the	documents	coming	from	the	backend
server	is	immaterial:	the	parser	will	deal	with	it	automatically.	If	the
optional	second	argument	is	set	to	"Legacy",	documents	will	be
declared	"Transitional",	an	option	that	may	be	necessary	if	you	are
proxying	pre-1998	content	or	working	with	defective
authoring/publishing	tools.

In	the	second	form,	it	will	insert	your	own	FPI.	The	optional	second
argument	determines	whether	SGML/HTML	or	XML/XHTML
syntax	will	be	used.

The	default	is	changed	to	omitting	any	FPI,	on	the	grounds	that	no
FPI	is	better	than	a	bogus	one.	If	your	backend	generates	decent
HTML	or	XHTML,	set	it	accordingly.

If	the	first	form	is	used,	mod_proxy_html	will	also	clean	up	the
HTML	to	the	specified	standard.	It	cannot	fix	every	error,	but	it	will
strip	out	bogus	elements	and	attributes.	It	will	also	optionally	log
other	errors	at	LogLevel	Debug.

ProxyHTMLEnable	Directive

Description: Turns	the	proxy_html	filter	on	or	off.
Syntax: ProxyHTMLEnable	On|Off

Default: ProxyHTMLEnable	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

module	for	earlier	2.x	versions.

A	simple	switch	to	enable	or	disable	the	proxy_html	filter.	If
mod_xml2enc	is	loaded	it	will	also	automatically	set	up
internationalisation	support.

Note	that	the	proxy_html	filter	will	only	act	on	HTML	data	(Content-
Type	text/html	or	application/xhtml+xml)	and	when	the	data	are
proxied.	You	can	override	this	(at	your	own	risk)	by	setting	the
PROXY_HTML_FORCE	environment	variable.

ProxyHTMLEvents	Directive

Description: Specify	attributes	to	treat	as	scripting	events.
Syntax: ProxyHTMLEvents	attribute	[attribute

...]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

Specifies	one	or	more	attributes	to	treat	as	scripting	events	and
apply	ProxyHTMLURLMaps	to	where	enabled.	You	can	specify
any	number	of	attributes	in	one	or	more	ProxyHTMLEvents
directives.

Normally	you'll	set	this	globally.	If	you	set	ProxyHTMLEvents	in
more	than	one	scope	so	that	one	overrides	the	other,	you'll	need
to	specify	a	complete	set	in	each	of	those	scopes.

A	default	configuration	is	supplied	in	proxy-html.conf	and	defines
the	events	in	standard	HTML	4	and	XHTML	1.

ProxyHTMLExtended	Directive

Description: Determines	whether	to	fix	links	in	inline	scripts,
stylesheets,	and	scripting	events.

Syntax: ProxyHTMLExtended	On|Off

Default: ProxyHTMLExtended	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

Set	to	Off,	HTML	links	are	rewritten	according	to	the
ProxyHTMLURLMap	directives,	but	links	appearing	in	Javascript
and	CSS	are	ignored.

Set	to	On,	all	scripting	events	(as	determined	by
ProxyHTMLEvents)	and	embedded	scripts	or	stylesheets	are
also	processed	by	the	ProxyHTMLURLMap	rules,	according	to	the
flags	set	for	each	rule.	Since	this	requires	more	parsing,
performance	will	be	best	if	you	only	enable	it	when	strictly
necessary.

You'll	also	need	to	take	care	over	patterns	matched,	since	the
parser	has	no	knowledge	of	what	is	a	URL	within	an	embedded
script	or	stylesheet.	In	particular,	extended	matching	of	/	is	likely
to	lead	to	false	matches.

ProxyHTMLFixups	Directive

Description: Fixes	for	simple	HTML	errors.
Syntax: ProxyHTMLFixups	[lowercase]

[dospath]	[reset]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

This	directive	takes	one	to	three	arguments	as	follows:

lowercase	Urls	are	rewritten	to	lowercase
dospath	Backslashes	in	URLs	are	rewritten	to	forward
slashes.
reset	Unset	any	options	set	at	a	higher	level	in	the
configuration.

Take	care	when	using	these.	The	fixes	will	correct	certain
authoring	mistakes,	but	risk	also	erroneously	fixing	links	that	were
correct	to	start	with.	Only	use	them	if	you	know	you	have	a	broken
backend	server.

ProxyHTMLInterp	Directive

Description: Enables	per-request	interpolation	of
ProxyHTMLURLMap	rules.

Syntax: ProxyHTMLInterp	On|Off

Default: ProxyHTMLInterp	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

This	enables	per-request	interpolation	in	ProxyHTMLURLMap	to-
and	from-	patterns.

If	interpolation	is	not	enabled,	all	rules	are	pre-compiled	at	startup.
With	interpolation,	they	must	be	re-compiled	for	every	request,
which	implies	an	extra	processing	overhead.	It	should	therefore	be
enabled	only	when	necessary.

ProxyHTMLLinks	Directive

Description: Specify	HTML	elements	that	have	URL	attributes
to	be	rewritten.

Syntax: ProxyHTMLLinks	element	attribute

[attribute2	...]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

Specifies	elements	that	have	URL	attributes	that	should	be
rewritten	using	standard	ProxyHTMLURLMaps.	You	will	need	one
ProxyHTMLLinks	directive	per	element,	but	it	can	have	any
number	of	attributes.

Normally	you'll	set	this	globally.	If	you	set	ProxyHTMLLinks	in
more	than	one	scope	so	that	one	overrides	the	other,	you'll	need
to	specify	a	complete	set	in	each	of	those	scopes.

A	default	configuration	is	supplied	in	proxy-html.conf	and	defines
the	HTML	links	for	standard	HTML	4	and	XHTML	1.

Examples	from	proxy-html.conf
ProxyHTMLLinks		a										href

ProxyHTMLLinks		area							href

ProxyHTMLLinks		link							href

ProxyHTMLLinks		img								src	longdesc	usemap

ProxyHTMLLinks		object					classid	codebase	data	usemap

ProxyHTMLLinks		q										cite

ProxyHTMLLinks		blockquote	cite

ProxyHTMLLinks		ins								cite

ProxyHTMLLinks		del								cite

ProxyHTMLLinks		form							action

ProxyHTMLLinks		input						src	usemap

ProxyHTMLLinks		head							profile

ProxyHTMLLinks		base							href

ProxyHTMLLinks		script					src	for

ProxyHTMLMeta	Directive

Description: Turns	on	or	off	extra	pre-parsing	of	metadata	in
HTML	<head>	sections.

Syntax: ProxyHTMLMeta	On|Off

Default: ProxyHTMLMeta	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

module	for	earlier	2.x	versions.

This	turns	on	or	off	pre-parsing	of	metadata	in	HTML	<head>
sections.

If	not	required,	turning	ProxyHTMLMeta	Off	will	give	a	small
performance	boost	by	skipping	this	parse	step.	However,	it	is
sometimes	necessary	for	internationalisation	to	work	correctly.

ProxyHTMLMeta	has	two	effects.	Firstly	and	most	importantly	it
enables	detection	of	character	encodings	declared	in	the	form

<meta	http-equiv="Content-Type"	content="text/html;charset=

or,	in	the	case	of	an	XHTML	document,	an	XML	declaration.	It	is
NOT	required	if	the	charset	is	declared	in	a	real	HTTP	header
(which	is	always	preferable)	from	the	backend	server,	nor	if	the
document	is	utf-8	(unicode)	or	a	subset	such	as	ASCII.	You	may
also	be	able	to	dispense	with	it	where	documents	use	a	default
declared	using	xml2EncDefault,	but	that	risks	propagating	an
incorrect	declaration.	A	ProxyHTMLCharsetOut	can	remove	that
risk,	but	is	likely	to	be	a	bigger	processing	overhead	than	enabling
ProxyHTMLMeta.

The	other	effect	of	enabling	ProxyHTMLMeta	is	to	parse	all	<meta

http-equiv=...>	declarations	and	convert	them	to	real	HTTP
headers,	in	keeping	with	the	original	purpose	of	this	form	of	the
HTML	<meta>	element.

Warning
Because	ProxyHTMLMeta	promotes	all	http-equiv	elements
to	HTTP	headers,	it	is	important	that	you	only	enable	it	in	cases
where	you	trust	the	HTML	content	as	much	as	you	trust	the
upstream	server.	If	the	HTML	is	controlled	by	bad	actors,	it	will
be	possible	for	them	to	inject	arbitrary,	possibly	malicious,	HTTP
headers	into	your	server's	responses.

ProxyHTMLStripComments	Directive

Description: Determines	whether	to	strip	HTML	comments.
Syntax: ProxyHTMLStripComments	On|Off

Default: ProxyHTMLStripComments	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

This	directive	will	cause	mod_proxy_html	to	strip	HTML
comments.	Note	that	this	will	also	kill	off	any	scripts	or	styles
embedded	in	comments	(a	bogosity	introduced	in	1995/6	with
Netscape	2	for	the	benefit	of	then-older	browsers,	but	still	in	use
today).	It	may	also	interfere	with	comment-based	processors	such
as	SSI	or	ESI:	be	sure	to	run	any	of	those	before	mod_proxy_html
in	the	filter	chain	if	stripping	comments!

ProxyHTMLURLMap	Directive

Description: Defines	a	rule	to	rewrite	HTML	links
Syntax: ProxyHTMLURLMap	from-pattern	to-

pattern	[flags]	[cond]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

module	for	earlier	2.x	versions.

This	is	the	key	directive	for	rewriting	HTML	links.	When	parsing	a
document,	whenever	a	link	target	matches	from-pattern,	the
matching	portion	will	be	rewritten	to	to-pattern,	as	modified	by	any
flags	supplied	and	by	the	ProxyHTMLExtended	directive.	Only
the	elements	specified	using	the	ProxyHTMLLinks	directive	will
be	considered	as	HTML	links.

The	optional	third	argument	may	define	any	of	the	following	Flags.
Flags	are	case-sensitive.

h
Ignore	HTML	links	(pass	through	unchanged)

e
Ignore	scripting	events	(pass	through	unchanged)

c
Pass	embedded	script	and	style	sections	through	untouched.

L
Last-match.	If	this	rule	matches,	no	more	rules	are	applied
(note	that	this	happens	automatically	for	HTML	links).

l
Opposite	to	L.	Overrides	the	one-change-only	default

behaviour	with	HTML	links.

R
Use	Regular	Expression	matching-and-replace.	from-
pattern	is	a	regexp,	and	to-pattern	a	replacement	string
that	may	be	based	on	the	regexp.	Regexp	memory	is
supported:	you	can	use	brackets	()	in	the	from-pattern
and	retrieve	the	matches	with	$1	to	$9	in	the	to-pattern.

If	R	is	not	set,	it	will	use	string-literal	search-and-replace.	The
logic	is	starts-with	in	HTML	links,	but	contains	in	scripting
events	and	embedded	script	and	style	sections.

x
Use	POSIX	extended	Regular	Expressions.	Only	applicable
with	R.

i
Case-insensitive	matching.	Only	applicable	with	R.

n
Disable	regexp	memory	(for	speed).	Only	applicable	with	R.

s
Line-based	regexp	matching.	Only	applicable	with	R.

^
Match	at	start	only.	This	applies	only	to	string	matching	(not
regexps)	and	is	irrelevant	to	HTML	links.

$
Match	at	end	only.	This	applies	only	to	string	matching	(not
regexps)	and	is	irrelevant	to	HTML	links.

V
Interpolate	environment	variables	in	to-pattern.	A	string	of

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

the	form	${varname|default}	will	be	replaced	by	the
value	of	environment	variable	varname.	If	that	is	unset,	it	is
replaced	by	default.	The	|default	is	optional.

NOTE:	interpolation	will	only	be	enabled	if
ProxyHTMLInterp	is	On.

v
Interpolate	environment	variables	in	from-pattern.
Patterns	supported	are	as	above.

NOTE:	interpolation	will	only	be	enabled	if
ProxyHTMLInterp	is	On.

The	optional	fourth	cond	argument	defines	a	condition	that	will	be
evaluated	per	Request,	provided	ProxyHTMLInterp	is	On.	If	the
condition	evaluates	FALSE	the	map	will	not	be	applied	in	this
request.	If	TRUE,	or	if	no	condition	is	defined,	the	map	is	applied.

A	cond	is	evaluated	by	the	Expression	Parser.	In	addition,	the
simpler	syntax	of	conditions	in	mod_proxy_html	3.x	for	HTTPD	2.0
and	2.2	is	also	supported.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_http

Description: HTTP	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_http_module
Source	File: mod_proxy_http.c

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	the
features	used	for	proxying	HTTP	and	HTTPS	requests.
mod_proxy_http	supports	HTTP/0.9,	HTTP/1.0	and	HTTP/1.1.	It
does	not	provide	any	caching	abilities.	If	you	want	to	set	up	a	caching
proxy,	you	might	want	to	use	the	additional	service	of	the	mod_cache
module.

Thus,	in	order	to	get	the	ability	of	handling	HTTP	proxy	requests,
mod_proxy	and	mod_proxy_http	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_http

Report	a	bug

See	also
mod_proxy

mod_proxy_connect

https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_http

Environment	Variables

In	addition	to	the	configuration	directives	that	control	the	behaviour
of	mod_proxy,	there	are	a	number	of	environment	variables	that
control	the	HTTP	protocol	provider.	Environment	variables	below
that	don't	specify	specific	values	are	enabled	when	set	to	any
value.

proxy-sendextracrlf
Causes	proxy	to	send	an	extra	CR-LF	newline	on	the	end	of	a
request.	This	is	a	workaround	for	a	bug	in	some	browsers.

force-proxy-request-1.0
Forces	the	proxy	to	send	requests	to	the	backend	as
HTTP/1.0	and	disables	HTTP/1.1	features.

proxy-nokeepalive
Forces	the	proxy	to	close	the	backend	connection	after	each
request.

proxy-chain-auth
If	the	proxy	requires	authentication,	it	will	read	and	consume
the	proxy	authentication	credentials	sent	by	the	client.	With
proxy-chain-auth	it	will	also	forward	the	credentials	to	the	next
proxy	in	the	chain.	This	may	be	necessary	if	you	have	a	chain
of	proxies	that	share	authentication	information.	Security
Warning:	Do	not	set	this	unless	you	know	you	need	it,	as	it
forwards	sensitive	information!

proxy-sendcl
HTTP/1.0	required	all	HTTP	requests	that	include	a	body	(e.g.
POST	requests)	to	include	a	Content-Length	header.	This
environment	variable	forces	the	Apache	proxy	to	send	this
header	to	the	backend	server,	regardless	of	what	the	Client
sent	to	the	proxy.	It	ensures	compatibility	when	proxying	for
an	HTTP/1.0	or	unknown	backend.	However,	it	may	require
the	entire	request	to	be	buffered	by	the	proxy,	so	it	becomes
very	inefficient	for	large	requests.

proxy-sendchunks	or	proxy-sendchunked
This	is	the	opposite	of	proxy-sendcl.	It	allows	request	bodies
to	be	sent	to	the	backend	using	chunked	transfer	encoding.
This	allows	the	request	to	be	efficiently	streamed,	but	requires
that	the	backend	server	supports	HTTP/1.1.

proxy-interim-response
This	variable	takes	values	RFC	(the	default)	or	Suppress.
Earlier	httpd	versions	would	suppress	HTTP	interim	(1xx)
responses	sent	from	the	backend.	This	is	technically	a
violation	of	the	HTTP	protocol.	In	practice,	if	a	backend	sends
an	interim	response,	it	may	itself	be	extending	the	protocol	in
a	manner	we	know	nothing	about,	or	just	broken.	So	this	is
now	configurable:	set	proxy-interim-response	RFC	to
be	fully	protocol	compliant,	or	proxy-interim-response
Suppress	to	suppress	interim	responses.

proxy-initial-not-pooled
If	this	variable	is	set,	no	pooled	connection	will	be	reused	if
the	client	request	is	the	initial	request	on	the	frontend
connection.	This	avoids	the	"proxy:	error	reading	status	line
from	remote	server"	error	message	caused	by	the	race
condition	that	the	backend	server	closed	the	pooled
connection	after	the	connection	check	by	the	proxy	and
before	data	sent	by	the	proxy	reached	the	backend.	It	has	to
be	kept	in	mind	that	setting	this	variable	downgrades
performance,	especially	with	HTTP/1.0	clients.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Request	notes

mod_proxy_http	creates	the	following	request	notes	for	logging
using	the	%{VARNAME}n	format	in	LogFormat	or
ErrorLogFormat:

proxy-source-port
The	local	port	used	for	the	connection	to	the	backend	server.

proxy-status
The	HTTP	status	received	from	the	backend	server.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_http2

Description: HTTP/2	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_http2_module
Source	File: mod_proxy_http2.c

Summary
mod_proxy_http2	supports	HTTP/2	only,	it	does	not	provide	any
downgrades	to	HTTP/1.1.	This	means	that	the	backend	needs	to
support	HTTP/2	because	HTTP/1.1	will	not	be	used	instead.

This	module	requires	the	service	of	mod_proxy,	so	in	order	to	get	the
ability	of	handling	HTTP/2	proxy	requests,	mod_proxy	and
mod_proxy_http2	need	to	be	both	loaded	by	the	server.

mod_proxy_http2	works	with	incoming	fronted	requests	using
HTTP/1.1	or	HTTP/2.	In	both	cases,	requests	proxied	to	the	same
backend	are	sent	over	a	single	TCP	connection	whenever	possible
(namely	when	the	connection	can	be	re-used).

Caveat:	there	will	be	no	attemp	to	consolidate	multiple	HTTP/1.1
frontend	requests	(configured	to	be	proxied	to	the	same	backend)	into
HTTP/2	streams	belonging	to	the	same	HTTP/2	request.	Each
HTTP/1.1	frontend	request	will	be	proxied	to	the	backend	using	a
separate	HTTP/2	request	(trying	to	re-use	the	same	TCP	connection
if	possible).

This	module	relies	on	libnghttp2	to	provide	the	core	http/2	engine.

Warning

This	module	is	experimental.	Its	behaviors,	directives,	and	defaults
are	subject	to	more	change	from	release	to	release	relative	to	other

http://nghttp2.org/

standard	modules.	Users	are	encouraged	to	consult	the
"CHANGES"	file	for	potential	updates.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_http2

mod_proxy

mod_proxy_connect

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_http2
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_http2

Basic	Examples

The	examples	below	demonstrate	how	to	configure	HTTP/2	for
backend	connections	for	a	reverse	proxy.

HTTP/2	(TLS)
ProxyPass	"/app"	"h2://app.example.com"

ProxyPassReverse	"/app"	"https://app.example.com"

HTTP/2	(cleartext)
ProxyPass	"/app"	"h2c://app.example.com"

ProxyPassReverse	"/app"	"http://app.example.com"

The	schemes	to	configure	above	in	ProxyPassReverse	for
reverse	proxying	h2	(or	h2c)	protocols	are	the	usual	https
(resp.	http)	as	expected/used	by	the	user	agent.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Request	notes

mod_proxy_http	creates	the	following	request	notes	for	logging
using	the	%{VARNAME}n	format	in	LogFormat	or
ErrorLogFormat:

proxy-source-port
The	local	port	used	for	the	connection	to	the	backend	server.

proxy-status
The	HTTP/2	status	received	from	the	backend	server.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_scgi

Description: SCGI	gateway	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_scgi_module
Source	File: mod_proxy_scgi.c
Compatibility: Available	in	version	2.2.14	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	SCGI	protocol,	version	1.

Thus,	in	order	to	get	the	ability	of	handling	the	SCGI	protocol,
mod_proxy	and	mod_proxy_scgi	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

http://python.ca/scgi/protocol.txt
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_scgi
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_scgi

mod_proxy

mod_proxy_balancer

Examples

Remember,	in	order	to	make	the	following	examples	work,	you
have	to	enable	mod_proxy	and	mod_proxy_scgi.

Simple	gateway
ProxyPass	/scgi-bin/	scgi://localhost:4000/

The	balanced	gateway	needs	mod_proxy_balancer	and	at
least	one	load	balancer	algorithm	module,	such	as
mod_lbmethod_byrequests,	in	addition	to	the	proxy	modules
listed	above.	mod_lbmethod_byrequests	is	the	default,	and
will	be	used	for	this	example	configuration.

Balanced	gateway
ProxyPass	"/scgi-bin/"	"balancer://somecluster/"

<Proxy	"balancer://somecluster">

				BalancerMember	"scgi://localhost:4000"

				BalancerMember	"scgi://localhost:4001"

</Proxy>

Environment	Variables

In	addition	to	the	configuration	directives	that	control	the	behaviour
of	mod_proxy,	an	environment	variable	may	also	control	the
SCGI	protocol	provider:

proxy-scgi-pathinfo
By	default	mod_proxy_scgi	will	neither	create	nor	export
the	PATH_INFO	environment	variable.	This	allows	the
backend	SCGI	server	to	correctly	determine	SCRIPT_NAME
and	Script-URI	and	be	compliant	with	RFC	3875	section	3.3.
If	instead	you	need	mod_proxy_scgi	to	generate	a	"best
guess"	for	PATH_INFO,	set	this	env-var.	The	variable	must	be
set	before	SetEnv	is	effective.	SetEnvIf	can	be	used
instead:	SetEnvIf	Request_URI	.	proxy-scgi-
pathinfo

ProxySCGIInternalRedirect	Directive

Description: Enable	or	disable	internal	redirect	responses
from	the	backend

Syntax: ProxySCGIInternalRedirect

On|Off|Headername

Default: ProxySCGIInternalRedirect	On

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_scgi
Compatibility: The	Headername	feature	is	available	in	version

2.4.13	and	later

The	ProxySCGIInternalRedirect	enables	the	backend	to
internally	redirect	the	gateway	to	a	different	URL.	This	feature
originates	in	mod_cgi,	which	internally	redirects	the	response	if
the	response	status	is	OK	(200)	and	the	response	contains	a
Location	(or	configured	alternate	header)	and	its	value	starts
with	a	slash	(/).	This	value	is	interpreted	as	a	new	local	URL	that
Apache	httpd	internally	redirects	to.

mod_proxy_scgi	does	the	same	as	mod_cgi	in	this	regard,
except	that	you	can	turn	off	the	feature	or	specify	the	use	of	a
header	other	than	Location.

Example
				ProxySCGIInternalRedirect	Off

#	Django	and	some	other	frameworks	will	fully	qualify	"local	URLs"

#	set	by	the	application,	so	an	alternate	header	must	be	used.

<Location	/django-app/>

				ProxySCGIInternalRedirect	X-Location

</Location>

ProxySCGISendfile	Directive

Description: Enable	evaluation	of	X-Sendfile	pseudo	response
header

Syntax: ProxySCGISendfile	On|Off|Headername

Default: ProxySCGISendfile	Off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_scgi

The	ProxySCGISendfile	directive	enables	the	SCGI	backend
to	let	files	be	served	directly	by	the	gateway.	This	is	useful	for
performance	purposes	—	httpd	can	use	sendfile	or	other
optimizations,	which	are	not	possible	if	the	file	comes	over	the
backend	socket.	Additionally,	the	file	contents	are	not	transmitted
twice.

The	ProxySCGISendfile	argument	determines	the	gateway
behaviour:

Off

No	special	handling	takes	place.

On

The	gateway	looks	for	a	backend	response	header	called	X-
Sendfile	and	interprets	the	value	as	the	filename	to	serve.
The	header	is	removed	from	the	final	response	headers.	This
is	equivalent	to	ProxySCGISendfile	X-Sendfile.

anything	else
Similar	to	On,	but	instead	of	the	hardcoded	header	name	X-
Sendfile,	the	argument	is	used	as	the	header	name.

Example
#	Use	the	default	header	(X-Sendfile)

ProxySCGISendfile	On

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

				

#	Use	a	different	header

ProxySCGISendfile	X-Send-Static

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_wstunnel

Description: Websockets	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_wstunnel_module
Source	File: mod_proxy_wstunnel.c
Compatibility: Available	in	httpd	2.4.5	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	tunnelling	of	web	socket	connections	to	a	backend	websockets
server.	The	connection	is	automatically	upgraded	to	a	websocket
connection:

HTTP	Response
Upgrade:	WebSocket

Connection:	Upgrade

Proxying	requests	to	a	websockets	server	like
echo.websocket.org	can	be	done	using	the	ProxyPass	directive:

ProxyPass	"/ws2/"		"ws://echo.websocket.org/"

ProxyPass	"/wss2/"	"wss://echo.websocket.org/"

Load	balancing	for	multiple	backends	can	be	achieved	using
mod_proxy_balancer.

In	fact	the	module	can	be	used	to	upgrade	to	other	protocols,	you	can
set	the	upgrade	parameter	in	the	ProxyPass	directive	to	allow	the
module	to	accept	other	protocol.	NONE	means	you	bypass	the	check
for	the	header	but	still	upgrade	to	WebSocket.	ANY	means	that

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Upgrade	will	read	in	the	request	headers	and	use	in	the	response
Upgrade

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_wstunnel
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_wstunnel
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_ratelimit

Description: Bandwidth	Rate	Limiting	for	Clients
Status: Extension
Module	Identifier: ratelimit_module
Source	File: mod_ratelimit.c
Compatibility: rate-initial-burst	available	in	httpd	2.4.24

and	later.

Summary
Provides	a	filter	named	RATE_LIMIT	to	limit	client	bandwidth.	The
throttling	is	applied	to	each	HTTP	response	while	it	is	transferred	to
the	client,	and	not	aggregated	at	IP/client	level.	The	connection	speed
to	be	simulated	is	specified,	in	KiB/s,	using	the	environment	variable
rate-limit.

Optionally,	an	initial	amount	of	burst	data,	in	KiB,	may	be	configured
to	be	passed	at	full	speed	before	throttling	to	the	specified	rate	limit.
This	value	is	optional,	and	is	set	using	the	environment	variable
rate-initial-burst.

Example	Configuration
<Location	"/downloads">

				SetOutputFilter	RATE_LIMIT

				SetEnv	rate-limit	400	

				SetEnv	rate-initial-burst	512

</Location>

If	the	value	specified	for	rate-limit	causes	integer	overflow,
the	rate-limited	will	be	disabled.	If	the	value	specified	for	rate-
limit-burst	causes	integer	overflow,	the	burst	will	be
disabled.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_reflector

Description: Reflect	a	request	body	as	a	response	via	the
output	filter	stack.

Status: Base
Module	Identifier: reflector_module
Source	File: mod_reflector.c
Compatibility: Version	2.3	and	later

Summary
This	module	allows	request	bodies	to	be	reflected	back	to	the	client,
in	the	process	passing	the	request	through	the	output	filter	stack.	A
suitably	configured	chain	of	filters	can	be	used	to	transform	the
request	into	a	response.	This	module	can	be	used	to	turn	an	output
filter	into	an	HTTP	service.

Examples

Compression	service
Pass	the	request	body	through	the	DEFLATE	filter	to
compress	the	body.	This	request	requires	a	Content-Encoding
request	header	containing	"gzip"	for	the	filter	to	return
compressed	data.

<Location	"/compress">

				SetHandler	reflector

				SetOutputFilter	DEFLATE

</Location>

Image	downsampling	service
Pass	the	request	body	through	an	image	downsampling	filter,
and	reflect	the	results	to	the	caller.

<Location	"/downsample">

				SetHandler	reflector

				SetOutputFilter	DOWNSAMPLE

</Location>

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ReflectorHeader	Directive

Description: Reflect	an	input	header	to	the	output	headers
Syntax: ReflectorHeader	inputheader

[outputheader]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_reflector

This	directive	controls	the	reflection	of	request	headers	to	the
response.	The	first	argument	is	the	name	of	the	request	header	to
copy.	If	the	optional	second	argument	is	specified,	it	will	be	used
as	the	name	of	the	response	header,	otherwise	the	original
request	header	name	will	be	used.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_remoteip

Description: Replaces	the	original	client	IP	address	for	the
connection	with	the	useragent	IP	address	list
presented	by	a	proxies	or	a	load	balancer	via	the
request	headers.

Status: Base
Module	Identifier: remoteip_module
Source	File: mod_remoteip.c

Summary
This	module	is	used	to	treat	the	useragent	which	initiated	the	request
as	the	originating	useragent	as	identified	by	httpd	for	the	purposes	of
authorization	and	logging,	even	where	that	useragent	is	behind	a	load
balancer,	front	end	server,	or	proxy	server.

The	module	overrides	the	client	IP	address	for	the	connection	with	the
useragent	IP	address	reported	in	the	request	header	configured	with
the	RemoteIPHeader	directive.

Once	replaced	as	instructed,	this	overridden	useragent	IP	address	is
then	used	for	the	mod_authz_host	Require	ip	feature,	is
reported	by	mod_status,	and	is	recorded	by	mod_log_config	%a
and	core	%a	format	strings.	The	underlying	client	IP	of	the
connection	is	available	in	the	%{c}a	format	string.

It	is	critical	to	only	enable	this	behavior	from	intermediate	hosts
(proxies,	etc)	which	are	trusted	by	this	server,	since	it	is	trivial	for
the	remote	useragent	to	impersonate	another	useragent.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_authz_host

mod_status

mod_log_config

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_remoteip
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_remoteip

Remote	IP	Processing

Apache	by	default	identifies	the	useragent	with	the	connection's
client_ip	value,	and	the	connection	remote_host	and
remote_logname	are	derived	from	this	value.	These	fields	play	a
role	in	authentication,	authorization	and	logging	and	other
purposes	by	other	loadable	modules.

mod_remoteip	overrides	the	client	IP	of	the	connection	with	the
advertised	useragent	IP	as	provided	by	a	proxy	or	load	balancer,
for	the	duration	of	the	request.	A	load	balancer	might	establish	a
long	lived	keepalive	connection	with	the	server,	and	each	request
will	have	the	correct	useragent	IP,	even	though	the	underlying
client	IP	address	of	the	load	balancer	remains	unchanged.

When	multiple,	comma	delimited	useragent	IP	addresses	are
listed	in	the	header	value,	they	are	processed	in	Right-to-Left
order.	Processing	halts	when	a	given	useragent	IP	address	is	not
trusted	to	present	the	preceding	IP	address.	The	header	field	is
updated	to	this	remaining	list	of	unconfirmed	IP	addresses,	or	if	all
IP	addresses	were	trusted,	this	header	is	removed	from	the
request	altogether.

In	overriding	the	client	IP,	the	module	stores	the	list	of	intermediate
hosts	in	a	remoteip-proxy-ip-list	note,	which	mod_log_config
can	record	using	the	%{remoteip-proxy-ip-list}n	format
token.	If	the	administrator	needs	to	store	this	as	an	additional
header,	this	same	value	can	also	be	recording	as	a	header	using
the	directive	RemoteIPProxiesHeader.

IPv4-over-IPv6	Mapped	Addresses
As	with	httpd	in	general,	any	IPv4-over-IPv6	mapped	addresses
are	recorded	in	their	IPv4	representation.

Internal	(Private)	Addresses

All	internal	addresses	10/8,	172.16/12,	192.168/16,	169.254/16
and	127/8	blocks	(and	IPv6	addresses	outside	of	the	public
2000::/3	block)	are	only	evaluated	by	mod_remoteip	when
RemoteIPInternalProxy	internal	(intranet)	proxies	are
registered.

RemoteIPHeader	Directive

Description: Declare	the	header	field	which	should	be	parsed
for	useragent	IP	addresses

Syntax: RemoteIPHeader	header-field

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPHeader	directive	triggers	mod_remoteip	to	treat
the	value	of	the	specified	header-field	header	as	the	useragent	IP
address,	or	list	of	intermediate	useragent	IP	addresses,	subject	to
further	configuration	of	the	RemoteIPInternalProxy	and
RemoteIPTrustedProxy	directives.	Unless	these	other
directives	are	used,	mod_remoteip	will	trust	all	hosts	presenting
a	RemoteIPHeader	IP	value.

Internal	(Load	Balancer)	Example
RemoteIPHeader	X-Client-IP

Proxy	Example
RemoteIPHeader	X-Forwarded-For

RemoteIPInternalProxy	Directive

Description: Declare	client	intranet	IP	addresses	trusted	to
present	the	RemoteIPHeader	value

Syntax: RemoteIPInternalProxy	proxy-ip|proxy-

ip/subnet|hostname	...

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPInternalProxy	directive	adds	one	or	more
addresses	(or	address	blocks)	to	trust	as	presenting	a	valid
RemoteIPHeader	value	of	the	useragent	IP.	Unlike	the
RemoteIPTrustedProxy	directive,	any	IP	address	presented	in
this	header,	including	private	intranet	addresses,	are	trusted	when
passed	from	these	proxies.

Internal	(Load	Balancer)	Example
RemoteIPHeader	X-Client-IP

RemoteIPInternalProxy	10.0.2.0/24

RemoteIPInternalProxy	gateway.localdomain

RemoteIPInternalProxyList	Directive

Description: Declare	client	intranet	IP	addresses	trusted	to
present	the	RemoteIPHeader	value

Syntax: RemoteIPInternalProxyList	filename

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPInternalProxyList	directive	specifies	a	file
parsed	at	startup,	and	builds	a	list	of	addresses	(or	address
blocks)	to	trust	as	presenting	a	valid	RemoteIPHeader	value	of	the
useragent	IP.

The	'#'	hash	character	designates	a	comment	line,	otherwise	each
whitespace	or	newline	separated	entry	is	processed	identically	to
the	RemoteIPInternalProxy	directive.

Internal	(Load	Balancer)	Example
RemoteIPHeader	X-Client-IP

RemoteIPInternalProxyList	conf/trusted-proxies.lst

conf/trusted-proxies.lst	contents
#	Our	internally	trusted	proxies;

10.0.2.0/24									#Everyone	in	the	testing	group

gateway.localdomain	#The	front	end	balancer

RemoteIPProxiesHeader	Directive

Description: Declare	the	header	field	which	will	record	all
intermediate	IP	addresses

Syntax: RemoteIPProxiesHeader	HeaderFieldName

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPProxiesHeader	directive	specifies	a	header	into
which	mod_remoteip	will	collect	a	list	of	all	of	the	intermediate
client	IP	addresses	trusted	to	resolve	the	useragent	IP	of	the
request.	Note	that	intermediate	RemoteIPTrustedProxy
addresses	are	recorded	in	this	header,	while	any	intermediate
RemoteIPInternalProxy	addresses	are	discarded.

Example
RemoteIPHeader	X-Forwarded-For

RemoteIPProxiesHeader	X-Forwarded-By

RemoteIPTrustedProxy	Directive

Description: Declare	client	intranet	IP	addresses	trusted	to
present	the	RemoteIPHeader	value

Syntax: RemoteIPTrustedProxy	proxy-ip|proxy-

ip/subnet|hostname	...

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPTrustedProxy	directive	adds	one	or	more
addresses	(or	address	blocks)	to	trust	as	presenting	a	valid
RemoteIPHeader	value	of	the	useragent	IP.	Unlike	the
RemoteIPInternalProxy	directive,	any	intranet	or	private	IP
address	reported	by	such	proxies,	including	the	10/8,	172.16/12,
192.168/16,	169.254/16	and	127/8	blocks	(or	outside	of	the	IPv6
public	2000::/3	block)	are	not	trusted	as	the	useragent	IP,	and	are
left	in	the	RemoteIPHeader	header's	value.

Trusted	(Load	Balancer)	Example
RemoteIPHeader	X-Forwarded-For

RemoteIPTrustedProxy	10.0.2.16/28

RemoteIPTrustedProxy	proxy.example.com

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

RemoteIPTrustedProxyList	Directive

Description: Declare	client	intranet	IP	addresses	trusted	to
present	the	RemoteIPHeader	value

Syntax: RemoteIPTrustedProxyList	filename

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPTrustedProxyList	directive	specifies	a	file
parsed	at	startup,	and	builds	a	list	of	addresses	(or	address
blocks)	to	trust	as	presenting	a	valid	RemoteIPHeader	value	of	the
useragent	IP.

The	'#'	hash	character	designates	a	comment	line,	otherwise	each
whitespace	or	newline	separated	entry	is	processed	identically	to
the	RemoteIPTrustedProxy	directive.

Trusted	(Load	Balancer)	Example
RemoteIPHeader	X-Forwarded-For

RemoteIPTrustedProxyList	conf/trusted-proxies.lst

conf/trusted-proxies.lst	contents
#	Identified	external	proxies;

192.0.2.16/28	#wap	phone	group	of	proxies

proxy.isp.example.com	#some	well	known	ISP

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_reqtimeout

Description: Set	timeout	and	minimum	data	rate	for	receiving
requests

Status: Extension
Module	Identifier: reqtimeout_module
Source	File: mod_reqtimeout.c
Compatibility: Available	in	Apache	HTTPD	2.2.15	and	later

Examples

1.	 Allow	10	seconds	to	receive	the	request	including	the	headers
and	30	seconds	for	receiving	the	request	body:

RequestReadTimeout	header=10	body=30

2.	 Allow	at	least	10	seconds	to	receive	the	request	body.	If	the
client	sends	data,	increase	the	timeout	by	1	second	for	every
1000	bytes	received,	with	no	upper	limit	for	the	timeout
(except	for	the	limit	given	indirectly	by	LimitRequestBody):

RequestReadTimeout	body=10,MinRate=1000

3.	 Allow	at	least	10	seconds	to	receive	the	request	including	the
headers.	If	the	client	sends	data,	increase	the	timeout	by	1
second	for	every	500	bytes	received.	But	do	not	allow	more
than	30	seconds	for	the	request	including	the	headers:

RequestReadTimeout	header=10-30,MinRate=500

4.	 Usually,	a	server	should	have	both	header	and	body	timeouts
configured.	If	a	common	configuration	is	used	for	http	and
https	virtual	hosts,	the	timeouts	should	not	be	set	too	low:

RequestReadTimeout	header=20-40,MinRate=500	body=20,MinRate=500

RequestReadTimeout	Directive

Description: Set	timeout	values	for	receiving	request	headers
and	body	from	client.

Syntax: RequestReadTimeout	[header=timeout[-

maxtimeout][,MinRate=rate]

[body=timeout[-maxtimeout]

[,MinRate=rate]

Default: header=20-40,MinRate=500

body=20,MinRate=500

Context: server	config,	virtual	host
Status: Extension
Module: mod_reqtimeout
Compatibility: Available	in	version	2.2.15	and	later;	defaulted	to

disabled	in	version	2.3.14	and	earlier.

This	directive	can	set	various	timeouts	for	receiving	the	request
headers	and	the	request	body	from	the	client.	If	the	client	fails	to
send	headers	or	body	within	the	configured	time,	a	408	REQUEST
TIME	OUT	error	is	sent.

For	SSL	virtual	hosts,	the	header	timeout	values	include	the	time
needed	to	do	the	initial	SSL	handshake.	If	the	user's	browser	is
configured	to	query	certificate	revocation	lists	and	the	CRL	server
is	not	reachable,	the	initial	SSL	handshake	may	take	a	significant
time	until	the	browser	gives	up	waiting	for	the	CRL.	Therefore	the
header	timeout	values	should	not	be	set	to	very	low	values	for
SSL	virtual	hosts.	The	body	timeout	values	include	the	time
needed	for	SSL	renegotiation	(if	necessary).

When	an	AcceptFilter	is	in	use	(usually	the	case	on	Linux	and
FreeBSD),	the	socket	is	not	sent	to	the	server	process	before	at
least	one	byte	(or	the	whole	request	for	httpready)	is	received.
The	header	timeout	configured	with	RequestReadTimeout	is

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

only	effective	after	the	server	process	has	received	the	socket.

For	each	of	the	two	timeout	types	(header	or	body),	there	are
three	ways	to	specify	the	timeout:

Fixed	timeout	value:

type=timeout

The	time	in	seconds	allowed	for	reading	all	of	the	request
headers	or	body,	respectively.	A	value	of	0	means	no	limit.

Disable	module	for	a	vhost::

header=0	body=0

This	disables	mod_reqtimeout	completely.

Timeout	value	that	is	increased	when	data	is	received:

type=timeout,MinRate=data_rate

Same	as	above,	but	whenever	data	is	received,	the	timeout
value	is	increased	according	to	the	specified	minimum	data
rate	(in	bytes	per	second).

Timeout	value	that	is	increased	when	data	is	received,
with	an	upper	bound:

type=timeout-maxtimeout,MinRate=data_rate

Same	as	above,	but	the	timeout	will	not	be	increased	above
the	second	value	of	the	specified	timeout	range.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_request

Description: Filters	to	handle	and	make	available	HTTP
request	bodies

Status: Base
Module	Identifier: request_module
Source	File: mod_request.c
Compatibility: Available	in	Apache	2.3	and	later

KeptBodySize	Directive

Description: Keep	the	request	body	instead	of	discarding	it	up
to	the	specified	maximum	size,	for	potential	use	by
filters	such	as	mod_include.

Syntax: KeptBodySize	maximum	size	in	bytes

Default: KeptBodySize	0

Context: directory
Status: Base
Module: mod_request

Under	normal	circumstances,	request	handlers	such	as	the	default
handler	for	static	files	will	discard	the	request	body	when	it	is	not
needed	by	the	request	handler.	As	a	result,	filters	such	as
mod_include	are	limited	to	making	GET	requests	only	when
including	other	URLs	as	subrequests,	even	if	the	original	request
was	a	POST	request,	as	the	discarded	request	body	is	no	longer
available	once	filter	processing	is	taking	place.

When	this	directive	has	a	value	greater	than	zero,	request
handlers	that	would	otherwise	discard	request	bodies	will	instead
set	the	request	body	aside	for	use	by	filters	up	to	the	maximum
size	specified.	In	the	case	of	the	mod_include	filter,	an	attempt	to
POST	a	request	to	the	static	shtml	file	will	cause	any	subrequests
to	be	POST	requests,	instead	of	GET	requests	as	before.

This	feature	makes	it	possible	to	break	up	complex	web	pages
and	web	applications	into	small	individual	components,	and
combine	the	components	and	the	surrounding	web	page	structure
together	using	mod_include.	The	components	can	take	the	form
of	CGI	programs,	scripted	languages,	or	URLs	reverse	proxied
into	the	URL	space	from	another	server	using	mod_proxy.

Note:	Each	request	set	aside	has	to	be	set	aside	in	temporary
RAM	until	the	request	is	complete.	As	a	result,	care	should	be

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

taken	to	ensure	sufficient	RAM	is	available	on	the	server	to
support	the	intended	load.	Use	of	this	directive	should	be	limited	to
where	needed	on	targeted	parts	of	your	URL	space,	and	with	the
lowest	possible	value	that	is	still	big	enough	to	hold	a	request
body.

If	the	request	size	sent	by	the	client	exceeds	the	maximum	size
allocated	by	this	directive,	the	server	will	return	413	Request
Entity	Too	Large.

See	also
mod_include	documentation
mod_auth_form	documentation

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_rewrite

Description: Provides	a	rule-based	rewriting	engine	to	rewrite
requested	URLs	on	the	fly

Status: Extension
Module	Identifier: rewrite_module
Source	File: mod_rewrite.c

Summary
The	mod_rewrite	module	uses	a	rule-based	rewriting	engine,	based
on	a	PCRE	regular-expression	parser,	to	rewrite	requested	URLs	on
the	fly.	By	default,	mod_rewrite	maps	a	URL	to	a	filesystem	path.
However,	it	can	also	be	used	to	redirect	one	URL	to	another	URL,	or
to	invoke	an	internal	proxy	fetch.

mod_rewrite	provides	a	flexible	and	powerful	way	to	manipulate
URLs	using	an	unlimited	number	of	rules.	Each	rule	can	have	an
unlimited	number	of	attached	rule	conditions,	to	allow	you	to	rewrite
URL	based	on	server	variables,	environment	variables,	HTTP
headers,	or	time	stamps.

mod_rewrite	operates	on	the	full	URL	path,	including	the	path-info
section.	A	rewrite	rule	can	be	invoked	in	httpd.conf	or	in
.htaccess.	The	path	generated	by	a	rewrite	rule	can	include	a	query
string,	or	can	lead	to	internal	sub-processing,	external	request
redirection,	or	internal	proxy	throughput.

Further	details,	discussion,	and	examples,	are	provided	in	the	detailed
mod_rewrite	documentation.

Logging

mod_rewrite	offers	detailed	logging	of	its	actions	at	the	trace1
to	trace8	log	levels.	The	log	level	can	be	set	specifically	for
mod_rewrite	using	the	LogLevel	directive:	Up	to	level	debug,
no	actions	are	logged,	while	trace8	means	that	practically	all
actions	are	logged.

Using	a	high	trace	log	level	for	mod_rewrite	will	slow	down
your	Apache	HTTP	Server	dramatically!	Use	a	log	level	higher
than	trace2	only	for	debugging!

Example
LogLevel	alert	rewrite:trace3

RewriteLog

Those	familiar	with	earlier	versions	of	mod_rewrite	will	no
doubt	be	looking	for	the	RewriteLog	and	RewriteLogLevel
directives.	This	functionality	has	been	completely	replaced	by
the	new	per-module	logging	configuration	mentioned	above.

To	get	just	the	mod_rewrite-specific	log	messages,	pipe	the
log	file	through	grep:

tail	-f	error_log|fgrep	'[rewrite:'

RewriteBase	Directive

Description: Sets	the	base	URL	for	per-directory	rewrites
Syntax: RewriteBase	URL-path

Default: None

Context: directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteBase	directive	specifies	the	URL	prefix	to	be	used
for	per-directory	(htaccess)	RewriteRule	directives	that
substitute	a	relative	path.

This	directive	is	required	when	you	use	a	relative	path	in	a
substitution	in	per-directory	(htaccess)	context	unless	any	of	the
following	conditions	are	true:

The	original	request,	and	the	substitution,	are	underneath	the
DocumentRoot	(as	opposed	to	reachable	by	other	means,
such	as	Alias).
The	filesystem	path	to	the	directory	containing	the
RewriteRule,	suffixed	by	the	relative	substitution	is	also
valid	as	a	URL	path	on	the	server	(this	is	rare).
In	Apache	HTTP	Server	2.4.16	and	later,	this	directive	may	be
omitted	when	the	request	is	mapped	via	Alias	or
mod_userdir.

In	the	example	below,	RewriteBase	is	necessary	to	avoid
rewriting	to	http://example.com/opt/myapp-1.2.3/welcome.html
since	the	resource	was	not	relative	to	the	document	root.	This
misconfiguration	would	normally	cause	the	server	to	look	for	an
"opt"	directory	under	the	document	root.

DocumentRoot	"/var/www/example.com"

AliasMatch	"^/myapp"	"/opt/myapp-1.2.3"

<Directory	"/opt/myapp-1.2.3">

				RewriteEngine	On

				RewriteBase	"/myapp/"

				RewriteRule	"^index\.html$"		"welcome.html"

</Directory>

RewriteCond	Directive

Description: Defines	a	condition	under	which	rewriting	will	take
place

Syntax: RewriteCond	TestString	CondPattern

[flags]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteCond	directive	defines	a	rule	condition.	One	or	more
RewriteCond	can	precede	a	RewriteRule	directive.	The
following	rule	is	then	only	used	if	both	the	current	state	of	the	URI
matches	its	pattern,	and	if	these	conditions	are	met.

TestString	is	a	string	which	can	contain	the	following	expanded
constructs	in	addition	to	plain	text:

RewriteRule	backreferences:	These	are	backreferences	of
the	form	$N	(0	<=	N	<=	9).	$1	to	$9	provide	access	to	the
grouped	parts	(in	parentheses)	of	the	pattern,	from	the
RewriteRule	which	is	subject	to	the	current	set	of
RewriteCond	conditions.	$0	provides	access	to	the	whole
string	matched	by	that	pattern.
RewriteCond	backreferences:	These	are	backreferences	of
the	form	%N	(0	<=	N	<=	9).	%1	to	%9	provide	access	to	the
grouped	parts	(again,	in	parentheses)	of	the	pattern,	from	the
last	matched	RewriteCond	in	the	current	set	of	conditions.
%0	provides	access	to	the	whole	string	matched	by	that
pattern.
RewriteMap	expansions:	These	are	expansions	of	the	form
${mapname:key|default}.	See	the	documentation	for
RewriteMap	for	more	details.

Server-Variables:	These	are	variables	of	the	form	%{
NAME_OF_VARIABLE	}	where	NAME_OF_VARIABLE	can
be	a	string	taken	from	the	following	list:

HTTP	headers: connection	&	request:
HTTP_ACCEPT
HTTP_COOKIE
HTTP_FORWARDED
HTTP_HOST
HTTP_PROXY_CONNECTION
HTTP_REFERER
HTTP_USER_AGENT

AUTH_TYPE
CONN_REMOTE_ADDR
CONTEXT_PREFIX
CONTEXT_DOCUMENT_ROOT
IPV6
PATH_INFO
QUERY_STRING
REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT
REMOTE_PORT
REMOTE_USER
REQUEST_METHOD
SCRIPT_FILENAME

server	internals: date	and	time:
DOCUMENT_ROOT
SCRIPT_GROUP
SCRIPT_USER
SERVER_ADDR
SERVER_ADMIN
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE

TIME_YEAR
TIME_MON
TIME_DAY
TIME_HOUR
TIME_MIN
TIME_SEC
TIME_WDAY
TIME

These	variables	all	correspond	to	the	similarly	named	HTTP
MIME-headers,	C	variables	of	the	Apache	HTTP	Server	or
struct	tm	fields	of	the	Unix	system.	Most	are	documented
here	or	elsewhere	in	the	Manual	or	in	the	CGI	specification.

SERVER_NAME	and	SERVER_PORT	depend	on	the	values
of	UseCanonicalName	and	UseCanonicalPhysicalPort
respectively.

Those	that	are	special	to	mod_rewrite	include	those	below.

API_VERSION

This	is	the	version	of	the	Apache	httpd	module	API	(the
internal	interface	between	server	and	module)	in	the
current	httpd	build,	as	defined	in	include/ap_mmn.h.	The
module	API	version	corresponds	to	the	version	of	Apache
httpd	in	use	(in	the	release	version	of	Apache	httpd
1.3.14,	for	instance,	it	is	19990320:10),	but	is	mainly	of
interest	to	module	authors.

CONN_REMOTE_ADDR

Since	2.4.8:	The	peer	IP	address	of	the	connection	(see
the	mod_remoteip	module).

HTTPS

Will	contain	the	text	"on"	if	the	connection	is	using
SSL/TLS,	or	"off"	otherwise.	(This	variable	can	be	safely
used	regardless	of	whether	or	not	mod_ssl	is	loaded).

IS_SUBREQ

Will	contain	the	text	"true"	if	the	request	currently	being
processed	is	a	sub-request,	"false"	otherwise.	Sub-
requests	may	be	generated	by	modules	that	need	to
resolve	additional	files	or	URIs	in	order	to	complete	their
tasks.

REMOTE_ADDR

The	IP	address	of	the	remote	host	(see	the
mod_remoteip	module).

REQUEST_FILENAME

The	full	local	filesystem	path	to	the	file	or	script	matching

the	request,	if	this	has	already	been	determined	by	the
server	at	the	time	REQUEST_FILENAME	is	referenced.
Otherwise,	such	as	when	used	in	virtual	host	context,	the
same	value	as	REQUEST_URI.	Depending	on	the	value
of	AcceptPathInfo,	the	server	may	have	only	used
some	leading	components	of	the	REQUEST_URI	to	map
the	request	to	a	file.

REQUEST_SCHEME

Will	contain	the	scheme	of	the	request	(usually	"http"	or
"https").	This	value	can	be	influenced	with	ServerName.

REQUEST_URI

The	path	component	of	the	requested	URI,	such	as
"/index.html".	This	notably	excludes	the	query	string
which	is	available	as	its	own	variable	named
QUERY_STRING.

THE_REQUEST

The	full	HTTP	request	line	sent	by	the	browser	to	the
server	(e.g.,	"GET	/index.html	HTTP/1.1").	This
does	not	include	any	additional	headers	sent	by	the
browser.	This	value	has	not	been	unescaped	(decoded),
unlike	most	other	variables	below.

If	the	TestString	has	the	special	value	expr,	the	CondPattern	will
be	treated	as	an	ap_expr.	HTTP	headers	referenced	in	the
expression	will	be	added	to	the	Vary	header	if	the	novary	flag	is
not	given.

Other	things	you	should	be	aware	of:

1.	 The	variables	SCRIPT_FILENAME	and
REQUEST_FILENAME	contain	the	same	value	-	the	value	of
the	filename	field	of	the	internal	request_rec	structure	of
the	Apache	HTTP	Server.	The	first	name	is	the	commonly

known	CGI	variable	name	while	the	second	is	the	appropriate
counterpart	of	REQUEST_URI	(which	contains	the	value	of
the	uri	field	of	request_rec).

If	a	substitution	occurred	and	the	rewriting	continues,	the
value	of	both	variables	will	be	updated	accordingly.

If	used	in	per-server	context	(i.e.,	before	the	request	is
mapped	to	the	filesystem)	SCRIPT_FILENAME	and
REQUEST_FILENAME	cannot	contain	the	full	local	filesystem
path	since	the	path	is	unknown	at	this	stage	of	processing.
Both	variables	will	initially	contain	the	value	of
REQUEST_URI	in	that	case.	In	order	to	obtain	the	full	local
filesystem	path	of	the	request	in	per-server	context,	use	an
URL-based	look-ahead	%{LA-U:REQUEST_FILENAME}	to
determine	the	final	value	of	REQUEST_FILENAME.

2.	 %{ENV:variable},	where	variable	can	be	any	environment
variable,	is	also	available.	This	is	looked-up	via	internal
Apache	httpd	structures	and	(if	not	found	there)	via
getenv()	from	the	Apache	httpd	server	process.

3.	 %{SSL:variable},	where	variable	is	the	name	of	an	SSL
environment	variable,	can	be	used	whether	or	not	mod_ssl	is
loaded,	but	will	always	expand	to	the	empty	string	if	it	is	not.
Example:	%{SSL:SSL_CIPHER_USEKEYSIZE}	may	expand
to	128.	These	variables	are	available	even	without	setting	the
StdEnvVars	option	of	the	SSLOptions	directive.

4.	 %{HTTP:header},	where	header	can	be	any	HTTP	MIME-
header	name,	can	always	be	used	to	obtain	the	value	of	a
header	sent	in	the	HTTP	request.	Example:	%{HTTP:Proxy-
Connection}	is	the	value	of	the	HTTP	header	``Proxy-
Connection:''.
If	a	HTTP	header	is	used	in	a	condition	this	header	is	added

to	the	Vary	header	of	the	response	in	case	the	condition
evaluates	to	true	for	the	request.	It	is	not	added	if	the
condition	evaluates	to	false	for	the	request.	Adding	the	HTTP
header	to	the	Vary	header	of	the	response	is	needed	for
proper	caching.

It	has	to	be	kept	in	mind	that	conditions	follow	a	short	circuit
logic	in	the	case	of	the	'ornext|OR'	flag	so	that	certain
conditions	might	not	be	evaluated	at	all.

5.	 %{LA-U:variable}	can	be	used	for	look-aheads	which
perform	an	internal	(URL-based)	sub-request	to	determine	the
final	value	of	variable.	This	can	be	used	to	access	variable	for
rewriting	which	is	not	available	at	the	current	stage,	but	will	be
set	in	a	later	phase.
For	instance,	to	rewrite	according	to	the	REMOTE_USER
variable	from	within	the	per-server	context	(httpd.conf	file)
you	must	use	%{LA-U:REMOTE_USER}	-	this	variable	is	set
by	the	authorization	phases,	which	come	after	the	URL
translation	phase	(during	which	mod_rewrite	operates).

On	the	other	hand,	because	mod_rewrite	implements	its	per-
directory	context	(.htaccess	file)	via	the	Fixup	phase	of	the
API	and	because	the	authorization	phases	come	before	this
phase,	you	just	can	use	%{REMOTE_USER}	in	that	context.

6.	 %{LA-F:variable}	can	be	used	to	perform	an	internal
(filename-based)	sub-request,	to	determine	the	final	value	of
variable.	Most	of	the	time,	this	is	the	same	as	LA-U	above.

CondPattern	is	the	condition	pattern,	a	regular	expression	which	is
applied	to	the	current	instance	of	the	TestString.	TestString	is	first
evaluated,	before	being	matched	against	CondPattern.

CondPattern	is	usually	a	perl	compatible	regular	expression,	but

there	is	additional	syntax	available	to	perform	other	useful	tests
against	the	Teststring:

1.	 You	can	prefix	the	pattern	string	with	a	'!'	character
(exclamation	mark)	to	negate	the	result	of	the	condition,	no
matter	what	kind	of	CondPattern	is	used.

2.	 You	can	perform	lexicographical	string	comparisons:

<CondPattern
Lexicographically	precedes
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString
lexicographically	precedes	CondPattern.

>CondPattern
Lexicographically	follows
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString
lexicographically	follows	CondPattern.

=CondPattern
Lexicographically	equal
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString	is
lexicographically	equal	to	CondPattern	(the	two	strings
are	exactly	equal,	character	for	character).	If	CondPattern
is	""	(two	quotation	marks)	this	compares	TestString	to
the	empty	string.

<=CondPattern
Lexicographically	less	than	or	equal	to
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString
lexicographically	precedes	CondPattern,	or	is	equal	to
CondPattern	(the	two	strings	are	equal,	character	for
character).

>=CondPattern
Lexicographically	greater	than	or	equal	to
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString
lexicographically	follows	CondPattern,	or	is	equal	to
CondPattern	(the	two	strings	are	equal,	character	for
character).

3.	 You	can	perform	integer	comparisons:

-eq
Is	numerically	equal	to
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	two	are
numerically	equal.

-ge
Is	numerically	greater	than	or	equal	to
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	TestString	is
numerically	greater	than	or	equal	to	the	CondPattern.

-gt
Is	numerically	greater	than
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	TestString	is
numerically	greater	than	the	CondPattern.

-le
Is	numerically	less	than	or	equal	to
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	TestString	is
numerically	less	than	or	equal	to	the	CondPattern.	Avoid
confusion	with	the	-l	by	using	the	-L	or	-h	variant.

-lt
Is	numerically	less	than
The	TestString	is	treated	as	an	integer,	and	is	numerically

compared	to	the	CondPattern.	True	if	the	TestString	is
numerically	less	than	the	CondPattern.	Avoid	confusion
with	the	-l	by	using	the	-L	or	-h	variant.

-ne
Is	numerically	not	equal	to
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	two	are
numerically	different.	This	is	equivalent	to	!-eq.

4.	 You	can	perform	various	file	attribute	tests:

-d
Is	directory.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	is	a	directory.

-f
Is	regular	file.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	is	a	regular	file.

-F
Is	existing	file,	via	subrequest.
Checks	whether	or	not	TestString	is	a	valid	file,
accessible	via	all	the	server's	currently-configured	access
controls	for	that	path.	This	uses	an	internal	subrequest	to
do	the	check,	so	use	it	with	care	-	it	can	impact	your
server's	performance!

-h
Is	symbolic	link,	bash	convention.
See	-l.

-l
Is	symbolic	link.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	is	a	symbolic	link.	May	also	use	the

bash	convention	of	-L	or	-h	if	there's	a	possibility	of
confusion	such	as	when	using	the	-lt	or	-le	tests.

-L
Is	symbolic	link,	bash	convention.
See	-l.

-s
Is	regular	file,	with	size.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	is	a	regular	file	with	size	greater	than
zero.

-U
Is	existing	URL,	via	subrequest.
Checks	whether	or	not	TestString	is	a	valid	URL,
accessible	via	all	the	server's	currently-configured	access
controls	for	that	path.	This	uses	an	internal	subrequest	to
do	the	check,	so	use	it	with	care	-	it	can	impact	your
server's	performance!

This	flag	only	returns	information	about	things	like	access
control,	authentication,	and	authorization.	This	flag	does
not	return	information	about	the	status	code	the
configured	handler	(static	file,	CGI,	proxy,	etc.)	would
have	returned.

-x
Has	executable	permissions.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	has	executable	permissions.	These
permissions	are	determined	according	to	the	underlying
OS.

For	example:

RewriteCond	/var/www/%{REQUEST_URI}	!-f

RewriteRule	^(.+)	/other/archive/$1	[R]

5.	 If	the	TestString	has	the	special	value	expr,	the	CondPattern
will	be	treated	as	an	ap_expr.

In	the	below	example,	-strmatch	is	used	to	compare	the
REFERER	against	the	site	hostname,	to	block	unwanted
hotlinking.

RewriteCond	expr	"!	%{HTTP_REFERER}	-strmatch	'*://%{HTTP_HOST}/*'"

RewriteRule	"^/images"	"-"	[F]

You	can	also	set	special	flags	for	CondPattern	by	appending
[flags]	as	the	third	argument	to	the	RewriteCond	directive,
where	flags	is	a	comma-separated	list	of	any	of	the	following	flags:

'nocase|NC'	(no	case)
This	makes	the	test	case-insensitive	-	differences	between	'A-
Z'	and	'a-z'	are	ignored,	both	in	the	expanded	TestString	and
the	CondPattern.	This	flag	is	effective	only	for	comparisons
between	TestString	and	CondPattern.	It	has	no	effect	on
filesystem	and	subrequest	checks.
'ornext|OR'	(or	next	condition)
Use	this	to	combine	rule	conditions	with	a	local	OR	instead	of
the	implicit	AND.	Typical	example:

RewriteCond	"%{REMOTE_HOST}"		"^host1"		[OR]

RewriteCond	"%{REMOTE_HOST}"		"^host2"		[OR]

RewriteCond	"%{REMOTE_HOST}"		"^host3"

RewriteRule	...some	special	stuff	for	any	of	these	hosts...

Without	this	flag	you	would	have	to	write	the	condition/rule

pair	three	times.
'novary|NV'	(no	vary)
If	a	HTTP	header	is	used	in	the	condition,	this	flag	prevents
this	header	from	being	added	to	the	Vary	header	of	the
response.	
Using	this	flag	might	break	proper	caching	of	the	response	if
the	representation	of	this	response	varies	on	the	value	of	this
header.	So	this	flag	should	be	only	used	if	the	meaning	of	the
Vary	header	is	well	understood.

Example:

To	rewrite	the	Homepage	of	a	site	according	to	the	``User-
Agent:''	header	of	the	request,	you	can	use	the	following:

RewriteCond		"%{HTTP_USER_AGENT}"		"(iPhone|Blackberry|Android)"

RewriteRule		"^/$"																	"/homepage.mobile.html"		[L]

RewriteRule		"^/$"																	"/homepage.std.html"					[L]

Explanation:	If	you	use	a	browser	which	identifies	itself	as	a
mobile	browser	(note	that	the	example	is	incomplete,	as	there	are
many	other	mobile	platforms),	the	mobile	version	of	the	homepage
is	served.	Otherwise,	the	standard	page	is	served.

RewriteEngine	Directive

Description: Enables	or	disables	runtime	rewriting	engine
Syntax: RewriteEngine	on|off

Default: RewriteEngine	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteEngine	directive	enables	or	disables	the	runtime
rewriting	engine.	If	it	is	set	to	off	this	module	does	no	runtime
processing	at	all.	It	does	not	even	update	the	SCRIPT_URx
environment	variables.

Use	this	directive	to	disable	rules	in	a	particular	context,	rather
than	commenting	out	all	the	RewriteRule	directives.

Note	that	rewrite	configurations	are	not	inherited	by	virtual	hosts.
This	means	that	you	need	to	have	a	RewriteEngine	on
directive	for	each	virtual	host	in	which	you	wish	to	use	rewrite
rules.

RewriteMap	directives	of	the	type	prg	are	not	started	during
server	initialization	if	they're	defined	in	a	context	that	does	not
have	RewriteEngine	set	to	on

RewriteMap	Directive

Description: Defines	a	mapping	function	for	key-lookup
Syntax: RewriteMap	MapName	MapType:MapSource

Context: server	config,	virtual	host
Status: Extension
Module: mod_rewrite

The	RewriteMap	directive	defines	a	Rewriting	Map	which	can	be
used	inside	rule	substitution	strings	by	the	mapping-functions	to
insert/substitute	fields	through	a	key	lookup.	The	source	of	this
lookup	can	be	of	various	types.

The	MapName	is	the	name	of	the	map	and	will	be	used	to	specify
a	mapping-function	for	the	substitution	strings	of	a	rewriting	rule
via	one	of	the	following	constructs:

${	MapName	:	LookupKey	}
${	MapName	:	LookupKey	|	DefaultValue	}

When	such	a	construct	occurs,	the	map	MapName	is	consulted
and	the	key	LookupKey	is	looked-up.	If	the	key	is	found,	the	map-
function	construct	is	substituted	by	SubstValue.	If	the	key	is	not
found	then	it	is	substituted	by	DefaultValue	or	by	the	empty	string
if	no	DefaultValue	was	specified.	Empty	values	behave	as	if	the
key	was	absent,	therefore	it	is	not	possible	to	distinguish	between
empty-valued	keys	and	absent	keys.

For	example,	you	might	define	a	RewriteMap	as:

RewriteMap	examplemap	"txt:/path/to/file/map.txt"

You	would	then	be	able	to	use	this	map	in	a	RewriteRule	as
follows:

RewriteRule	"^/ex/(.*)"	"${examplemap:$1}"

The	following	combinations	for	MapType	and	MapSource	can	be
used:

txt
A	plain	text	file	containing	space-separated	key-value	pairs,
one	per	line.	(Details	...)

rnd
Randomly	selects	an	entry	from	a	plain	text	file	(Details	...)

dbm
Looks	up	an	entry	in	a	dbm	file	containing	name,	value	pairs.
Hash	is	constructed	from	a	plain	text	file	format	using	the
httxt2dbm	utility.	(Details	...)

int
One	of	the	four	available	internal	functions	provided	by
RewriteMap:	toupper,	tolower,	escape	or	unescape.	(Details
...)

prg
Calls	an	external	program	or	script	to	process	the	rewriting.
(Details	...)

dbd	or	fastdbd
A	SQL	SELECT	statement	to	be	performed	to	look	up	the
rewrite	target.	(Details	...)

Further	details,	and	numerous	examples,	may	be	found	in	the
RewriteMap	HowTo

RewriteOptions	Directive

Description: Sets	some	special	options	for	the	rewrite	engine
Syntax: RewriteOptions	Options

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteOptions	directive	sets	some	special	options	for	the
current	per-server	or	per-directory	configuration.	The	Option	string
can	currently	only	be	one	of	the	following:

Inherit

This	forces	the	current	configuration	to	inherit	the
configuration	of	the	parent.	In	per-virtual-server	context,	this
means	that	the	maps,	conditions	and	rules	of	the	main	server
are	inherited.	In	per-directory	context	this	means	that
conditions	and	rules	of	the	parent	directory's	.htaccess
configuration	or	<Directory>	sections	are	inherited.	The
inherited	rules	are	virtually	copied	to	the	section	where	this
directive	is	being	used.	If	used	in	combination	with	local	rules,
the	inherited	rules	are	copied	behind	the	local	rules.	The
position	of	this	directive	-	below	or	above	of	local	rules	-	has
no	influence	on	this	behavior.	If	local	rules	forced	the	rewriting
to	stop,	the	inherited	rules	won't	be	processed.

Rules	inherited	from	the	parent	scope	are	applied	after
rules	specified	in	the	child	scope.

InheritBefore

Like	Inherit	above,	but	the	rules	from	the	parent	scope	are
applied	before	rules	specified	in	the	child	scope.
Available	in	Apache	HTTP	Server	2.3.10	and	later.

InheritDown

If	this	option	is	enabled,	all	child	configurations	will	inherit	the
configuration	of	the	current	configuration.	It	is	equivalent	to
specifying	RewriteOptions	Inherit	in	all	child
configurations.	See	the	Inherit	option	for	more	details	on
how	the	parent-child	relationships	are	handled.
Available	in	Apache	HTTP	Server	2.4.8	and	later.

InheritDownBefore

Like	InheritDown	above,	but	the	rules	from	the	current
scope	are	applied	before	rules	specified	in	any	child's	scope.
Available	in	Apache	HTTP	Server	2.4.8	and	later.

IgnoreInherit

This	option	forces	the	current	and	child	configurations	to
ignore	all	rules	that	would	be	inherited	from	a	parent
specifying	InheritDown	or	InheritDownBefore.
Available	in	Apache	HTTP	Server	2.4.8	and	later.

AllowNoSlash

By	default,	mod_rewrite	will	ignore	URLs	that	map	to	a
directory	on	disk	but	lack	a	trailing	slash,	in	the	expectation
that	the	mod_dir	module	will	issue	the	client	with	a	redirect
to	the	canonical	URL	with	a	trailing	slash.

When	the	DirectorySlash	directive	is	set	to	off,	the
AllowNoSlash	option	can	be	enabled	to	ensure	that	rewrite
rules	are	no	longer	ignored.	This	option	makes	it	possible	to
apply	rewrite	rules	within	.htaccess	files	that	match	the
directory	without	a	trailing	slash,	if	so	desired.
Available	in	Apache	HTTP	Server	2.4.0	and	later.

AllowAnyURI

When	RewriteRule	is	used	in	VirtualHost	or	server
context	with	version	2.2.22	or	later	of	httpd,	mod_rewrite

will	only	process	the	rewrite	rules	if	the	request	URI	is	a	URL-
path.	This	avoids	some	security	issues	where	particular	rules
could	allow	"surprising"	pattern	expansions	(see	CVE-2011-
3368	and	CVE-2011-4317).	To	lift	the	restriction	on	matching
a	URL-path,	the	AllowAnyURI	option	can	be	enabled,	and
mod_rewrite	will	apply	the	rule	set	to	any	request	URI
string,	regardless	of	whether	that	string	matches	the	URL-
path	grammar	required	by	the	HTTP	specification.
Available	in	Apache	HTTP	Server	2.4.3	and	later.

Security	Warning

Enabling	this	option	will	make	the	server	vulnerable	to
security	issues	if	used	with	rewrite	rules	which	are	not
carefully	authored.	It	is	strongly	recommended	that	this
option	is	not	used.	In	particular,	beware	of	input	strings
containing	the	'@'	character	which	could	change	the
interpretation	of	the	transformed	URI,	as	per	the	above
CVE	names.

MergeBase

With	this	option,	the	value	of	RewriteBase	is	copied	from
where	it's	explicitly	defined	into	any	sub-directory	or	sub-
location	that	doesn't	define	its	own	RewriteBase.	This	was
the	default	behavior	in	2.4.0	through	2.4.3,	and	the	flag	to
restore	it	is	available	Apache	HTTP	Server	2.4.4	and	later.

IgnoreContextInfo

When	a	relative	substitution	is	made	in	directory	(htaccess)
context	and	RewriteBase	has	not	been	set,	this	module
uses	some	extended	URL	and	filesystem	context	information
to	change	the	relative	substitution	back	into	a	URL.	Modules
such	as	mod_userdir	and	mod_alias	supply	this	extended
context	info.	Available	in	2.4.16	and	later.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3368
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4317

LegacyPrefixDocRoot

Prior	to	2.4.26,	if	a	substitution	was	an	absolute	URL	that
matched	the	current	virtual	host,	the	URL	might	first	be
reduced	to	a	URL-path	and	then	later	reduced	to	a	local	path.
Since	the	URL	can	be	reduced	to	a	local	path,	the	path	should
be	prefixed	with	the	document	root.	This	prevents	a	file	such
as	/tmp/myfile	from	being	accessed	when	a	request	is	made
to	http://host/file/myfile	with	the	following	RewriteRule.

RewriteRule	/file/(.*)	http://localhost/tmp/$1

This	option	allows	the	old	behavior	to	be	used	where	the
document	root	is	not	prefixed	to	a	local	path	that	was	reduced
from	a	URL.	Available	in	2.4.26	and	later.

RewriteRule	Directive

Description: Defines	rules	for	the	rewriting	engine
Syntax: RewriteRule	Pattern	Substitution

[flags]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteRule	directive	is	the	real	rewriting	workhorse.	The
directive	can	occur	more	than	once,	with	each	instance	defining	a
single	rewrite	rule.	The	order	in	which	these	rules	are	defined	is
important	-	this	is	the	order	in	which	they	will	be	applied	at	run-
time.

Pattern	is	a	perl	compatible	regular	expression.	What	this	pattern
is	compared	against	varies	depending	on	where	the
RewriteRule	directive	is	defined.

What	is	matched?

In	VirtualHost	context,	The	Pattern	will	initially	be
matched	against	the	part	of	the	URL	after	the	hostname
and	port,	and	before	the	query	string	(e.g.
"/app1/index.html").	This	is	the	(%-decoded)	URL-path.

In	per-directory	context	(Directory	and	.htaccess),	the
Pattern	is	matched	against	only	a	partial	path,	for	example
a	request	of	"/app1/index.html"	may	result	in	comparison
against	"app1/index.html"	or	"index.html"	depending	on
where	the	RewriteRule	is	defined.

The	directory	path	where	the	rule	is	defined	is	stripped	from
the	currently	mapped	filesystem	path	before	comparison
(up	to	and	including	a	trailing	slash).	The	net	result	of	this

per-directory	prefix	stripping	is	that	rules	in	this	context	only
match	against	the	portion	of	the	currently	mapped
filesystem	path	"below"	where	the	rule	is	defined.

Directives	such	as	DocumentRoot	and	Alias,	or	even	the
result	of	previous	RewriteRule	substitutions,	determine
the	currently	mapped	filesystem	path.

If	you	wish	to	match	against	the	hostname,	port,	or	query
string,	use	a	RewriteCond	with	the	%{HTTP_HOST},	%
{SERVER_PORT},	or	%{QUERY_STRING}	variables
respectively.

Per-directory	Rewrites

The	rewrite	engine	may	be	used	in	.htaccess	files	and	in
<Directory>	sections,	with	some	additional	complexity.
To	enable	the	rewrite	engine	in	this	context,	you	need	to	set
"RewriteEngine	On"	and	"Options
FollowSymLinks"	must	be	enabled.	If	your	administrator
has	disabled	override	of	FollowSymLinks	for	a	user's
directory,	then	you	cannot	use	the	rewrite	engine.	This
restriction	is	required	for	security	reasons.
See	the	RewriteBase	directive	for	more	information
regarding	what	prefix	will	be	added	back	to	relative
substitutions.
If	you	wish	to	match	against	the	full	URL-path	in	a	per-
directory	(htaccess)	RewriteRule,	use	the	%
{REQUEST_URI}	variable	in	a	RewriteCond.
The	removed	prefix	always	ends	with	a	slash,	meaning	the
matching	occurs	against	a	string	which	never	has	a	leading
slash.	Therefore,	a	Pattern	with	^/	never	matches	in	per-
directory	context.
Although	rewrite	rules	are	syntactically	permitted	in

<Location>	and	<Files>	sections	(including	their
regular	expression	counterparts),	this	should	never	be
necessary	and	is	unsupported.	A	likely	feature	to	break	in
these	contexts	is	relative	substitutions.

For	some	hints	on	regular	expressions,	see	the	mod_rewrite
Introduction.

In	mod_rewrite,	the	NOT	character	('!')	is	also	available	as	a
possible	pattern	prefix.	This	enables	you	to	negate	a	pattern;	to
say,	for	instance:	``if	the	current	URL	does	NOT	match	this
pattern''.	This	can	be	used	for	exceptional	cases,	where	it	is	easier
to	match	the	negative	pattern,	or	as	a	last	default	rule.

Note
When	using	the	NOT	character	to	negate	a	pattern,	you	cannot
include	grouped	wildcard	parts	in	that	pattern.	This	is	because,
when	the	pattern	does	NOT	match	(ie,	the	negation	matches),
there	are	no	contents	for	the	groups.	Thus,	if	negated	patterns
are	used,	you	cannot	use	$N	in	the	substitution	string!

The	Substitution	of	a	rewrite	rule	is	the	string	that	replaces	the
original	URL-path	that	was	matched	by	Pattern.	The	Substitution
may	be	a:

file-system	path
Designates	the	location	on	the	file-system	of	the	resource	to
be	delivered	to	the	client.	Substitutions	are	only	treated	as	a
file-system	path	when	the	rule	is	configured	in	server
(virtualhost)	context	and	the	first	component	of	the	path	in	the
substitution	exists	in	the	file-system

URL-path
A	DocumentRoot-relative	path	to	the	resource	to	be	served.

Note	that	mod_rewrite	tries	to	guess	whether	you	have
specified	a	file-system	path	or	a	URL-path	by	checking	to	see
if	the	first	segment	of	the	path	exists	at	the	root	of	the	file-
system.	For	example,	if	you	specify	a	Substitution	string	of
/www/file.html,	then	this	will	be	treated	as	a	URL-path
unless	a	directory	named	www	exists	at	the	root	or	your	file-
system	(or,	in	the	case	of	using	rewrites	in	a	.htaccess	file,
relative	to	your	document	root),	in	which	case	it	will	be	treated
as	a	file-system	path.	If	you	wish	other	URL-mapping
directives	(such	as	Alias)	to	be	applied	to	the	resulting	URL-
path,	use	the	[PT]	flag	as	described	below.

Absolute	URL
If	an	absolute	URL	is	specified,	mod_rewrite	checks	to	see
whether	the	hostname	matches	the	current	host.	If	it	does,	the
scheme	and	hostname	are	stripped	out	and	the	resulting	path
is	treated	as	a	URL-path.	Otherwise,	an	external	redirect	is
performed	for	the	given	URL.	To	force	an	external	redirect
back	to	the	current	host,	see	the	[R]	flag	below.

-	(dash)
A	dash	indicates	that	no	substitution	should	be	performed	(the
existing	path	is	passed	through	untouched).	This	is	used
when	a	flag	(see	below)	needs	to	be	applied	without	changing
the	path.

In	addition	to	plain	text,	the	Substitution	string	can	include

1.	 back-references	($N)	to	the	RewriteRule	pattern

2.	 back-references	(%N)	to	the	last	matched	RewriteCond	pattern

3.	 server-variables	as	in	rule	condition	test-strings	(%
{VARNAME})

4.	 mapping-function	calls	(${mapname:key|default})

Back-references	are	identifiers	of	the	form	$N	(N=0..9),	which	will
be	replaced	by	the	contents	of	the	Nth	group	of	the	matched
Pattern.	The	server-variables	are	the	same	as	for	the	TestString	of
a	RewriteCond	directive.	The	mapping-functions	come	from	the
RewriteMap	directive	and	are	explained	there.	These	three	types
of	variables	are	expanded	in	the	order	above.

Rewrite	rules	are	applied	to	the	results	of	previous	rewrite	rules,	in
the	order	in	which	they	are	defined	in	the	config	file.	The	URL-path
or	file-system	path	(see	"What	is	matched?",	above)	is	completely
replaced	by	the	Substitution	and	the	rewriting	process	continues
until	all	rules	have	been	applied,	or	it	is	explicitly	terminated	by	an
L	flag,	or	other	flag	which	implies	immediate	termination,	such	as
END	or	F.

Modifying	the	Query	String

By	default,	the	query	string	is	passed	through	unchanged.	You
can,	however,	create	URLs	in	the	substitution	string	containing	a
query	string	part.	Simply	use	a	question	mark	inside	the
substitution	string	to	indicate	that	the	following	text	should	be	re-
injected	into	the	query	string.	When	you	want	to	erase	an
existing	query	string,	end	the	substitution	string	with	just	a
question	mark.	To	combine	new	and	old	query	strings,	use	the
[QSA]	flag.

Additionally	you	can	set	special	actions	to	be	performed	by
appending	[flags]	as	the	third	argument	to	the	RewriteRule
directive.	Flags	is	a	comma-separated	list,	surround	by	square
brackets,	of	any	of	the	flags	in	the	following	table.	More	details,
and	examples,	for	each	flag,	are	available	in	the	Rewrite	Flags
document.

Flag	and	syntax Function

B Escape	non-alphanumeric	characters	in	backreferences
before	applying	the	transformation.	details	...

backrefnoplus|BNP If	backreferences	are	being	escaped,	spaces	should	be
escaped	to	%20	instead	of	+.	Useful	when	the
backreference	will	be	used	in	the	path	component	rather
than	the	query	string.details	...

chain|C Rule	is	chained	to	the	following	rule.	If	the	rule	fails,	
rule(s)	chained	to	it	will	be	skipped.	details	...

cookie|CO=NAME:VAL Sets	a	cookie	in	the	client	browser.	Full	syntax	is:
CO=NAME:VAL:domain[:lifetime[:path[:secure
details	...

discardpath|DPI Causes	the	PATH_INFO	portion	of	the	rewritten	URI	to	be
discarded.	details	...

END Stop	the	rewriting	process	immediately	and	don't	apply
any	more	rules.	Also	prevents	further	execution	of	rewrite
rules	in	per-directory	and	.htaccess	context.	(Available	in
2.3.9	and	later)	details	...

env|E=[!]VAR[:VAL] Causes	an	environment	variable	VAR	to	be	set	(to	the
value	VAL	if	provided).	The	form	!VAR	causes	
environment	variable	VAR	to	be	unset.	details	...

forbidden|F Returns	a	403	FORBIDDEN	response	to	the	client
browser.	details	...

gone|G Returns	a	410	GONE	response	to	the	client	browser.
details	...

Handler|H=Content-
handler

Causes	the	resulting	URI	to	be	sent	to	the	specified
Content-handler	for	processing.	details	...

last|L Stop	the	rewriting	process	immediately	and	don't	apply
any	more	rules.	Especially	note	caveats	for	per-directory
and	.htaccess	context	(see	also	the	END	flag).	

next|N Re-run	the	rewriting	process,	starting	again	with	the	first
rule,	using	the	result	of	the	ruleset	so	far	as	a	starting
point.	details	...

nocase|NC Makes	the	pattern	comparison	case-insensitive.	
noescape|NE Prevent	mod_rewrite	from	applying	hexcode	escaping	of

special	characters	in	the	result	of	the	rewrite.	
nosubreq|NS Causes	a	rule	to	be	skipped	if	the	current	request	is	an

internal	sub-request.	details	...
proxy|P Force	the	substitution	URL	to	be	internally	sent	as	a

proxy	request.	details	...
passthrough|PT Forces	the	resulting	URI	to	be	passed	back	to	the	URL

mapping	engine	for	processing	of	other	URI-to-filename
translators,	such	as	Alias	or	Redirect.	

qsappend|QSA Appends	any	query	string	from	the	original	request	URL
to	any	query	string	created	in	the	rewrite	target.

qsdiscard|QSD Discard	any	query	string	attached	to	the	incoming	URI.
details	...

qslast|QSL Interpret	the	last	(right-most)	question	mark	as	the	query
string	delimiter,	instead	of	the	first	(left-most)	as	normally
used.	Available	in	2.4.19	and	later.	details	

redirect|R[=code] Forces	an	external	redirect,	optionally	with	the	specified
HTTP	status	code.	details	...

skip|S=num Tells	the	rewriting	engine	to	skip	the	next	num
current	rule	matches.	details	...

type|T=MIME-type Force	the	MIME-type	of	the	target	file	to	be	the	specified
type.	details	...

Home	directory	expansion

When	the	substitution	string	begins	with	a	string	resembling
"/~user"	(via	explicit	text	or	backreferences),	mod_rewrite
performs	home	directory	expansion	independent	of	the
presence	or	configuration	of	mod_userdir.

This	expansion	does	not	occur	when	the	PT	flag	is	used	on	the
RewriteRule	directive.

Here	are	all	possible	substitution	combinations	and	their
meanings:

Inside	per-server	configuration	(httpd.conf)
for	request	``GET	/somepath/pathinfo'':

Given	Rule Resulting	Substitution
^/somepath(.*)	otherpath$1 invalid,	not	supported
^/somepath(.*)	otherpath$1
[R]

invalid,	not	supported

^/somepath(.*)	otherpath$1
[P]

invalid,	not	supported

^/somepath(.*)
/otherpath$1

/otherpath/pathinfo

^/somepath(.*)
/otherpath$1	[R]

http://thishost/otherpath/pathinfo	via
external	redirection

^/somepath(.*)
/otherpath$1	[P]

doesn't	make	sense,	not	supported

^/somepath(.*)
http://thishost/otherpath$1

/otherpath/pathinfo

^/somepath(.*)
http://thishost/otherpath$1
[R]

http://thishost/otherpath/pathinfo	via
external	redirection

^/somepath(.*)
http://thishost/otherpath$1
[P]

doesn't	make	sense,	not	supported

^/somepath(.*)
http://otherhost/otherpath$1

http://otherhost/otherpath/pathinfo
via	external	redirection

^/somepath(.*)
http://otherhost/otherpath$1
[R]

http://otherhost/otherpath/pathinfo
via	external	redirection	(the	[R]	flag
is	redundant)

^/somepath(.*) http://otherhost/otherpath/pathinfo

http://otherhost/otherpath$1
[P]

via	internal	proxy

Inside	per-directory	configuration	for	/somepath
(/physical/path/to/somepath/.htaccess,	with
RewriteBase	"/somepath")
for	request	``GET	/somepath/localpath/pathinfo'':

Given	Rule Resulting	Substitution
^localpath(.*)	otherpath$1 /somepath/otherpath/pathinfo
^localpath(.*)	otherpath$1
[R]

http://thishost/somepath/otherpath/pathinfo
via	external	redirection

^localpath(.*)	otherpath$1
[P]

doesn't	make	sense,	not	supported

^localpath(.*)	/otherpath$1 /otherpath/pathinfo
^localpath(.*)	/otherpath$1
[R]

http://thishost/otherpath/pathinfo	via
external	redirection

^localpath(.*)	/otherpath$1
[P]

doesn't	make	sense,	not	supported

^localpath(.*)
http://thishost/otherpath$1

/otherpath/pathinfo

^localpath(.*)
http://thishost/otherpath$1
[R]

http://thishost/otherpath/pathinfo	via
external	redirection

^localpath(.*)
http://thishost/otherpath$1
[P]

doesn't	make	sense,	not	supported

^localpath(.*)
http://otherhost/otherpath$1

http://otherhost/otherpath/pathinfo	via
external	redirection

^localpath(.*)
http://otherhost/otherpath$1
[R]

http://otherhost/otherpath/pathinfo	via
external	redirection	(the	[R]	flag	is
redundant)

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

^localpath(.*)
http://otherhost/otherpath$1
[P]

http://otherhost/otherpath/pathinfo	via
internal	proxy

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_sed

Description: Filter	Input	(request)	and	Output	(response)
content	using	sed	syntax

Status: Experimental
Module	Identifier: sed_module
Source	File: mod_sed.c	sed0.c	sed1.c	regexp.c	regexp.h

sed.h
Compatibility: Available	in	Apache	2.3	and	later

Summary
mod_sed	is	an	in-process	content	filter.	The	mod_sed	filter
implements	the	sed	editing	commands	implemented	by	the	Solaris	10
sed	program	as	described	in	the	manual	page.	However,	unlike	sed,
mod_sed	doesn't	take	data	from	standard	input.	Instead,	the	filter	acts
on	the	entity	data	sent	between	client	and	server.	mod_sed	can	be
used	as	an	input	or	output	filter.	mod_sed	is	a	content	filter,	which
means	that	it	cannot	be	used	to	modify	client	or	server	http	headers.

The	mod_sed	output	filter	accepts	a	chunk	of	data,	executes	the	sed
scripts	on	the	data,	and	generates	the	output	which	is	passed	to	the
next	filter	in	the	chain.

The	mod_sed	input	filter	reads	the	data	from	the	next	filter	in	the
chain,	executes	the	sed	scripts,	and	returns	the	generated	data	to	the
caller	filter	in	the	filter	chain.

Both	the	input	and	output	filters	only	process	the	data	if	newline
characters	are	seen	in	the	content.	At	the	end	of	the	data,	the	rest	of
the	data	is	treated	as	the	last	line.

A	tutorial	article	on	mod_sed,	and	why	it	is	more	powerful	than	simple
string	or	regular	expression	search	and	replace,	is	available	on	the

http://www.gnu.org/software/sed/manual/sed.txt
https://blogs.oracle.com/basant/entry/using_mod_sed_to_filter

author's	blog.

Sample	Configuration

Adding	an	output	filter
#	In	the	following	example,	the	sed	filter	will	change	the	string

#	"monday"	to	"MON"	and	the	string	"sunday"	to	SUN	in	html	documents

#	before	sending	to	the	client.

<Directory	"/var/www/docs/sed">	

				AddOutputFilter	Sed	html	

				OutputSed	"s/monday/MON/g"	

				OutputSed	"s/sunday/SUN/g"	

</Directory>

Adding	an	input	filter
#	In	the	following	example,	the	sed	filter	will	change	the	string

#	"monday"	to	"MON"	and	the	string	"sunday"	to	SUN	in	the	POST	data

#	sent	to	PHP.

<Directory	"/var/www/docs/sed">	

				AddInputFilter	Sed	php	

				InputSed	"s/monday/MON/g"	

				InputSed	"s/sunday/SUN/g"	

</Directory>

Sed	Commands

Complete	details	of	the	sed	command	can	be	found	from	the	sed
manual	page.

b

Branch	to	the	label	specified	(similar	to	goto).

h

Copy	the	current	line	to	the	hold	buffer.

H

Append	the	current	line	to	the	hold	buffer.

g

Copy	the	hold	buffer	to	the	current	line.

G

Append	the	hold	buffer	to	the	current	line.

x

Swap	the	contents	of	the	hold	buffer	and	the	current	line.

http://www.gnu.org/software/sed/manual/sed.txt

InputSed	Directive

Description: Sed	command	to	filter	request	data	(typically	POST
data)

Syntax: InputSed	sed-command

Context: directory,	.htaccess
Status: Experimental
Module: mod_sed

The	InputSed	directive	specifies	the	sed	command	to	execute
on	the	request	data	e.g.,	POST	data.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

OutputSed	Directive

Description: Sed	command	for	filtering	response	content
Syntax: OutputSed	sed-command

Context: directory,	.htaccess
Status: Experimental
Module: mod_sed

The	OutputSed	directive	specifies	the	sed	command	to	execute
on	the	response.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_session

Description: Session	support
Status: Extension
Module	Identifier: session_module
Source	File: mod_session.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

The	session	modules	make	use	of	HTTP	cookies,	and	as	such	can
fall	victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially
private	information	to	clients.	Please	ensure	that	the	relevant	risks
have	been	taken	into	account	before	enabling	the	session
functionality	on	your	server.

This	module	provides	support	for	a	server	wide	per	user	session
interface.	Sessions	can	be	used	for	keeping	track	of	whether	a	user
has	been	logged	in,	or	for	other	per	user	information	that	should	be
kept	available	across	requests.

Sessions	may	be	stored	on	the	server,	or	may	be	stored	on	the
browser.	Sessions	may	also	be	optionally	encrypted	for	added
security.	These	features	are	divided	into	several	modules	in	addition
to	mod_session;	mod_session_crypto,	mod_session_cookie
and	mod_session_dbd.	Depending	on	the	server	requirements,	load
the	appropriate	modules	into	the	server	(either	statically	at	compile
time	or	dynamically	via	the	LoadModule	directive).

Sessions	may	be	manipulated	from	other	modules	that	depend	on	the
session,	or	the	session	may	be	read	from	and	written	to	using

environment	variables	and	HTTP	headers,	as	appropriate.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session_cookie

mod_session_crypto

mod_session_dbd

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_session
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_session

What	is	a	session?

At	the	core	of	the	session	interface	is	a	table	of	key	and	value
pairs	that	are	made	accessible	across	browser	requests.	These
pairs	can	be	set	to	any	valid	string,	as	needed	by	the	application
making	use	of	the	session.

The	"session"	is	a	application/x-www-form-urlencoded	string
containing	these	key	value	pairs,	as	defined	by	the	HTML
specification.

The	session	can	optionally	be	encrypted	and	base64	encoded
before	being	written	to	the	storage	mechanism,	as	defined	by	the
administrator.

http://www.w3.org/TR/html4/

Who	can	use	a	session?

The	session	interface	is	primarily	developed	for	the	use	by	other
server	modules,	such	as	mod_auth_form,	however	CGI	based
applications	can	optionally	be	granted	access	to	the	contents	of
the	session	via	the	HTTP_SESSION	environment	variable.
Sessions	have	the	option	to	be	modified	and/or	updated	by
inserting	an	HTTP	response	header	containing	the	new	session
parameters.

Keeping	sessions	on	the	server

Apache	can	be	configured	to	keep	track	of	per	user	sessions
stored	on	a	particular	server	or	group	of	servers.	This	functionality
is	similar	to	the	sessions	available	in	typical	application	servers.

If	configured,	sessions	are	tracked	through	the	use	of	a	session	ID
that	is	stored	inside	a	cookie,	or	extracted	from	the	parameters
embedded	within	the	URL	query	string,	as	found	in	a	typical	GET
request.

As	the	contents	of	the	session	are	stored	exclusively	on	the
server,	there	is	an	expectation	of	privacy	of	the	contents	of	the
session.	This	does	have	performance	and	resource	implications
should	a	large	number	of	sessions	be	present,	or	where	a	large
number	of	webservers	have	to	share	sessions	with	one	another.

The	mod_session_dbd	module	allows	the	storage	of	user
sessions	within	a	SQL	database	via	mod_dbd.

Keeping	sessions	on	the	browser

In	high	traffic	environments	where	keeping	track	of	a	session	on	a
server	is	too	resource	intensive	or	inconvenient,	the	option	exists
to	store	the	contents	of	the	session	within	a	cookie	on	the	client
browser	instead.

This	has	the	advantage	that	minimal	resources	are	required	on	the
server	to	keep	track	of	sessions,	and	multiple	servers	within	a
server	farm	have	no	need	to	share	session	information.

The	contents	of	the	session	however	are	exposed	to	the	client,
with	a	corresponding	risk	of	a	loss	of	privacy.	The
mod_session_crypto	module	can	be	configured	to	encrypt	the
contents	of	the	session	before	writing	the	session	to	the	client.

The	mod_session_cookie	allows	the	storage	of	user	sessions
on	the	browser	within	an	HTTP	cookie.

Basic	Examples

Creating	a	session	is	as	simple	as	turning	the	session	on,	and
deciding	where	the	session	will	be	stored.	In	this	example,	the
session	will	be	stored	on	the	browser,	in	a	cookie	called	session.

Browser	based	session
Session	On

SessionCookieName	session	path=/

The	session	is	not	useful	unless	it	can	be	written	to	or	read	from.
The	following	example	shows	how	values	can	be	injected	into	the
session	through	the	use	of	a	predetermined	HTTP	response
header	called	X-Replace-Session.

Writing	to	a	session
Session	On

SessionCookieName	session	path=/

SessionHeader	X-Replace-Session

The	header	should	contain	name	value	pairs	expressed	in	the
same	format	as	a	query	string	in	a	URL,	as	in	the	example	below.
Setting	a	key	to	the	empty	string	has	the	effect	of	removing	that
key	from	the	session.

CGI	to	write	to	a	session
#!/bin/bash

echo	"Content-Type:	text/plain"

echo	"X-Replace-Session:	key1=foo&key2=&key3=bar"

echo

env

If	configured,	the	session	can	be	read	back	from	the
HTTP_SESSION	environment	variable.	By	default,	the	session	is
kept	private,	so	this	has	to	be	explicitly	turned	on	with	the
SessionEnv	directive.

Read	from	a	session
Session	On

SessionEnv	On

SessionCookieName	session	path=/

SessionHeader	X-Replace-Session

Once	read,	the	CGI	variable	HTTP_SESSION	should	contain	the
value	key1=foo&key3=bar.

Session	Privacy

Using	the	"show	cookies"	feature	of	your	browser,	you	would	have
seen	a	clear	text	representation	of	the	session.	This	could
potentially	be	a	problem	should	the	end	user	need	to	be	kept
unaware	of	the	contents	of	the	session,	or	where	a	third	party
could	gain	unauthorised	access	to	the	data	within	the	session.

The	contents	of	the	session	can	be	optionally	encrypted	before
being	placed	on	the	browser	using	the	mod_session_crypto
module.

Browser	based	encrypted	session
Session	On

SessionCryptoPassphrase	secret

SessionCookieName	session	path=/

The	session	will	be	automatically	decrypted	on	load,	and
encrypted	on	save	by	Apache,	the	underlying	application	using	the
session	need	have	no	knowledge	that	encryption	is	taking	place.

Sessions	stored	on	the	server	rather	than	on	the	browser	can	also
be	encrypted	as	needed,	offering	privacy	where	potentially
sensitive	information	is	being	shared	between	webservers	in	a
server	farm	using	the	mod_session_dbd	module.

Cookie	Privacy

The	HTTP	cookie	mechanism	also	offers	privacy	features,	such	as
the	ability	to	restrict	cookie	transport	to	SSL	protected	pages	only,
or	to	prevent	browser	based	javascript	from	gaining	access	to	the
contents	of	the	cookie.

Warning

Some	of	the	HTTP	cookie	privacy	features	are	either	non-
standard,	or	are	not	implemented	consistently	across	browsers.
The	session	modules	allow	you	to	set	cookie	parameters,	but	it
makes	no	guarantee	that	privacy	will	be	respected	by	the
browser.	If	security	is	a	concern,	use	the
mod_session_crypto	to	encrypt	the	contents	of	the	session,
or	store	the	session	on	the	server	using	the
mod_session_dbd	module.

Standard	cookie	parameters	can	be	specified	after	the	name	of
the	cookie,	as	in	the	example	below.

Setting	cookie	parameters
Session	On

SessionCryptoPassphrase	secret

SessionCookieName	session	path=/private;domain=example.com;httponly;secure;

In	cases	where	the	Apache	server	forms	the	frontend	for	backend
origin	servers,	it	is	possible	to	have	the	session	cookies	removed
from	the	incoming	HTTP	headers	using	the
SessionCookieRemove	directive.	This	keeps	the	contents	of	the
session	cookies	from	becoming	accessible	from	the	backend
server.

Session	Support	for	Authentication

As	is	possible	within	many	application	servers,	authentication
modules	can	use	a	session	for	storing	the	username	and
password	after	login.	The	mod_auth_form	saves	the	user's	login
name	and	password	within	the	session.

Form	based	authentication
Session	On

SessionCryptoPassphrase	secret

SessionCookieName	session	path=/

AuthFormProvider	file

AuthUserFile	"conf/passwd"

AuthType	form

AuthName	realm

#...

See	the	mod_auth_form	module	for	documentation	and
complete	examples.

Integrating	Sessions	with	External	Applications

In	order	for	sessions	to	be	useful,	it	must	be	possible	to	share	the
contents	of	a	session	with	external	applications,	and	it	must	be
possible	for	an	external	application	to	write	a	session	of	its	own.

A	typical	example	might	be	an	application	that	changes	a	user's
password	set	by	mod_auth_form.	This	application	would	need	to
read	the	current	username	and	password	from	the	session,	make
the	required	changes	to	the	user's	password,	and	then	write	the
new	password	to	the	session	in	order	to	provide	a	seamless
transition	to	the	new	password.

A	second	example	might	involve	an	application	that	registers	a
new	user	for	the	first	time.	When	registration	is	complete,	the
username	and	password	is	written	to	the	session,	providing	a
seamless	transition	to	being	logged	in.

Apache	modules
Modules	within	the	server	that	need	access	to	the	session	can
use	the	mod_session.h	API	in	order	to	read	from	and	write	to
the	session.	This	mechanism	is	used	by	modules	like
mod_auth_form.

CGI	programs	and	scripting	languages
Applications	that	run	within	the	webserver	can	optionally
retrieve	the	value	of	the	session	from	the	HTTP_SESSION
environment	variable.	The	session	should	be	encoded	as	a
application/x-www-form-urlencoded	string	as	described	by
the	HTML	specification.	The	environment	variable	is
controlled	by	the	setting	of	the	SessionEnv	directive.	The
session	can	be	written	to	by	the	script	by	returning	a
application/x-www-form-urlencoded	response	header	with
a	name	set	by	the	SessionHeader	directive.	In	both	cases,
any	encryption	or	decryption,	and	the	reading	the	session
from	or	writing	the	session	to	the	chosen	storage	mechanism

http://www.w3.org/TR/html4/

is	handled	by	the	mod_session	modules	and	corresponding
configuration.

Applications	behind	mod_proxy
If	the	SessionHeader	directive	is	used	to	define	an	HTTP
request	header,	the	session,	encoded	as	a	application/x-
www-form-urlencoded	string,	will	be	made	available	to	the
application.	If	the	same	header	is	provided	in	the	response,
the	value	of	this	response	header	will	be	used	to	replace	the
session.	As	above,	any	encryption	or	decryption,	and	the
reading	the	session	from	or	writing	the	session	to	the	chosen
storage	mechanism	is	handled	by	the	mod_session	modules
and	corresponding	configuration.

Standalone	applications
Applications	might	choose	to	manipulate	the	session	outside
the	control	of	the	Apache	HTTP	server.	In	this	case,	it	is	the
responsibility	of	the	application	to	read	the	session	from	the
chosen	storage	mechanism,	decrypt	the	session,	update	the
session,	encrypt	the	session	and	write	the	session	to	the
chosen	storage	mechanism,	as	appropriate.

Session	Directive

Description: Enables	a	session	for	the	current	directory	or
location

Syntax: Session	On|Off

Default: Session	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

The	Session	directive	enables	a	session	for	the	directory	or
location	container.	Further	directives	control	where	the	session	will
be	stored	and	how	privacy	is	maintained.

SessionEnv	Directive

Description: Control	whether	the	contents	of	the	session	are
written	to	the	HTTP_SESSION	environment
variable

Syntax: SessionEnv	On|Off

Default: SessionEnv	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

If	set	to	On,	the	SessionEnv	directive	causes	the	contents	of	the
session	to	be	written	to	a	CGI	environment	variable	called
HTTP_SESSION.

The	string	is	written	in	the	URL	query	format,	for	example:

key1=foo&key3=bar

SessionExclude	Directive

Description: Define	URL	prefixes	for	which	a	session	is	ignored
Syntax: SessionExclude	path

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session

The	SessionExclude	directive	allows	sessions	to	be	disabled
relative	to	URL	prefixes	only.	This	can	be	used	to	make	a	website
more	efficient,	by	targeting	a	more	precise	URL	space	for	which	a
session	should	be	maintained.	By	default,	all	URLs	within	the
directory	or	location	are	included	in	the	session.	The
SessionExclude	directive	takes	precedence	over	the
SessionInclude	directive.

Warning

This	directive	has	a	similar	purpose	to	the	path	attribute	in
HTTP	cookies,	but	should	not	be	confused	with	this	attribute.
This	directive	does	not	set	the	path	attribute,	which	must	be
configured	separately.

SessionHeader	Directive

Description: Import	session	updates	from	a	given	HTTP
response	header

Syntax: SessionHeader	header

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

The	SessionHeader	directive	defines	the	name	of	an	HTTP
response	header	which,	if	present,	will	be	parsed	and	written	to
the	current	session.

The	header	value	is	expected	to	be	in	the	URL	query	format,	for
example:

key1=foo&key2=&key3=bar

Where	a	key	is	set	to	the	empty	string,	that	key	will	be	removed
from	the	session.

SessionInclude	Directive

Description: Define	URL	prefixes	for	which	a	session	is	valid
Syntax: SessionInclude	path

Default: all	URLs

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

The	SessionInclude	directive	allows	sessions	to	be	made	valid
for	specific	URL	prefixes	only.	This	can	be	used	to	make	a	website
more	efficient,	by	targeting	a	more	precise	URL	space	for	which	a
session	should	be	maintained.	By	default,	all	URLs	within	the
directory	or	location	are	included	in	the	session.

Warning

This	directive	has	a	similar	purpose	to	the	path	attribute	in
HTTP	cookies,	but	should	not	be	confused	with	this	attribute.
This	directive	does	not	set	the	path	attribute,	which	must	be
configured	separately.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SessionMaxAge	Directive

Description: Define	a	maximum	age	in	seconds	for	a	session
Syntax: SessionMaxAge	maxage

Default: SessionMaxAge	0

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

The	SessionMaxAge	directive	defines	a	time	limit	for	which	a
session	will	remain	valid.	When	a	session	is	saved,	this	time	limit
is	reset	and	an	existing	session	can	be	continued.	If	a	session
becomes	older	than	this	limit	without	a	request	to	the	server	to
refresh	the	session,	the	session	will	time	out	and	be	removed.
Where	a	session	is	used	to	stored	user	login	details,	this	has	the
effect	of	logging	the	user	out	automatically	after	the	given	time.

Setting	the	maxage	to	zero	disables	session	expiry.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_session_cookie

Description: Cookie	based	session	support
Status: Extension
Module	Identifier: session_cookie_module
Source	File: mod_session_cookie.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

The	session	modules	make	use	of	HTTP	cookies,	and	as	such	can
fall	victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially
private	information	to	clients.	Please	ensure	that	the	relevant	risks
have	been	taken	into	account	before	enabling	the	session
functionality	on	your	server.

This	submodule	of	mod_session	provides	support	for	the	storage	of
user	sessions	on	the	remote	browser	within	HTTP	cookies.

Using	cookies	to	store	a	session	removes	the	need	for	the	server	or	a
group	of	servers	to	store	the	session	locally,	or	collaborate	to	share	a
session,	and	can	be	useful	for	high	traffic	environments	where	a
server	based	session	might	be	too	resource	intensive.

If	session	privacy	is	required,	the	mod_session_crypto	module
can	be	used	to	encrypt	the	contents	of	the	session	before	writing	the
session	to	the	client.

For	more	details	on	the	session	interface,	see	the	documentation	for
the	mod_session	module.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session

mod_session_crypto

mod_session_dbd

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_session_cookie
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_session_cookie

Basic	Examples

To	create	a	simple	session	and	store	it	in	a	cookie	called	session,
configure	the	session	as	follows:

Browser	based	session
Session	On

SessionCookieName	session	path=/

For	more	examples	on	how	the	session	can	be	configured	to	be
read	from	and	written	to	by	a	CGI	application,	see	the
mod_session	examples	section.

For	documentation	on	how	the	session	can	be	used	to	store
username	and	password	details,	see	the	mod_auth_form
module.

SessionCookieName	Directive

Description: Name	and	attributes	for	the	RFC2109	cookie
storing	the	session

Syntax: SessionCookieName	name	attributes

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_cookie

The	SessionCookieName	directive	specifies	the	name	and
optional	attributes	of	an	RFC2109	compliant	cookie	inside	which
the	session	will	be	stored.	RFC2109	cookies	are	set	using	the
Set-Cookie	HTTP	header.

An	optional	list	of	cookie	attributes	can	be	specified,	as	per	the
example	below.	These	attributes	are	inserted	into	the	cookie	as	is,
and	are	not	interpreted	by	Apache.	Ensure	that	your	attributes	are
defined	correctly	as	per	the	cookie	specification.

Cookie	with	attributes
Session	On

SessionCookieName	session	path=/private;domain=example.com;httponly;secure;version=1;

SessionCookieName2	Directive

Description: Name	and	attributes	for	the	RFC2965	cookie
storing	the	session

Syntax: SessionCookieName2	name	attributes

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_cookie

The	SessionCookieName2	directive	specifies	the	name	and
optional	attributes	of	an	RFC2965	compliant	cookie	inside	which
the	session	will	be	stored.	RFC2965	cookies	are	set	using	the
Set-Cookie2	HTTP	header.

An	optional	list	of	cookie	attributes	can	be	specified,	as	per	the
example	below.	These	attributes	are	inserted	into	the	cookie	as	is,
and	are	not	interpreted	by	Apache.	Ensure	that	your	attributes	are
defined	correctly	as	per	the	cookie	specification.

Cookie2	with	attributes
Session	On

SessionCookieName2	session	path=/private;domain=example.com;httponly;secure;version=1;

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SessionCookieRemove	Directive

Description: Control	for	whether	session	cookies	should	be
removed	from	incoming	HTTP	headers

Syntax: SessionCookieRemove	On|Off

Default: SessionCookieRemove	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_cookie

The	SessionCookieRemove	flag	controls	whether	the	cookies
containing	the	session	will	be	removed	from	the	headers	during
request	processing.

In	a	reverse	proxy	situation	where	the	Apache	server	acts	as	a
server	frontend	for	a	backend	origin	server,	revealing	the	contents
of	the	session	cookie	to	the	backend	could	be	a	potential	privacy
violation.	When	set	to	on,	the	session	cookie	will	be	removed	from
the	incoming	HTTP	headers.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_session_crypto

Description: Session	encryption	support
Status: Experimental
Module	Identifier: session_crypto_module
Source	File: mod_session_crypto.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

The	session	modules	make	use	of	HTTP	cookies,	and	as	such	can
fall	victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially
private	information	to	clients.	Please	ensure	that	the	relevant	risks
have	been	taken	into	account	before	enabling	the	session
functionality	on	your	server.

This	submodule	of	mod_session	provides	support	for	the	encryption
of	user	sessions	before	being	written	to	a	local	database,	or	written	to
a	remote	browser	via	an	HTTP	cookie.

This	can	help	provide	privacy	to	user	sessions	where	the	contents	of
the	session	should	be	kept	private	from	the	user,	or	where	protection
is	needed	against	the	effects	of	cross	site	scripting	attacks.

For	more	details	on	the	session	interface,	see	the	documentation	for
the	mod_session	module.

https://www.apache.org/foundation/contributing.html

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session

mod_session_cookie

mod_session_dbd

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_session_crypto
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_session_crypto

Basic	Usage

To	create	a	simple	encrypted	session	and	store	it	in	a	cookie
called	session,	configure	the	session	as	follows:

Browser	based	encrypted	session
Session	On

SessionCookieName	session	path=/

SessionCryptoPassphrase	secret

The	session	will	be	encrypted	with	the	given	key.	Different	servers
can	be	configured	to	share	sessions	by	ensuring	the	same
encryption	key	is	used	on	each	server.

If	the	encryption	key	is	changed,	sessions	will	be	invalidated
automatically.

For	documentation	on	how	the	session	can	be	used	to	store
username	and	password	details,	see	the	mod_auth_form
module.

SessionCryptoCipher	Directive

Description: The	crypto	cipher	to	be	used	to	encrypt	the
session

Syntax: SessionCryptoCipher	name

Default: aes256

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Experimental
Module: mod_session_crypto
Compatibility: Available	in	Apache	2.3.0	and	later

The	SessionCryptoCipher	directive	allows	the	cipher	to	be
used	during	encryption.	If	not	specified,	the	cipher	defaults	to
aes256.

Possible	values	depend	on	the	crypto	driver	in	use,	and	could	be
one	of:

3des192
aes128
aes192
aes256

SessionCryptoDriver	Directive

Description: The	crypto	driver	to	be	used	to	encrypt	the
session

Syntax: SessionCryptoDriver	name

[param[=value]]

Default: none

Context: server	config
Status: Experimental
Module: mod_session_crypto
Compatibility: Available	in	Apache	2.3.0	and	later

The	SessionCryptoDriver	directive	specifies	the	name	of	the
crypto	driver	to	be	used	for	encryption.	If	not	specified,	the	driver
defaults	to	the	recommended	driver	compiled	into	APR-util.

The	NSS	crypto	driver	requires	some	parameters	for	configuration,
which	are	specified	as	parameters	with	optional	values	after	the
driver	name.

NSS	without	a	certificate	database
SessionCryptoDriver	nss

NSS	with	certificate	database
SessionCryptoDriver	nss	dir=certs

NSS	with	certificate	database	and	parameters
SessionCryptoDriver	nss	dir=certs	key3=key3.db	cert7=cert7.db	secmod=secmod

NSS	with	paths	containing	spaces
SessionCryptoDriver	nss	"dir=My	Certs"	key3=key3.db	cert7=cert7.db	secmod=secmod

The	NSS	crypto	driver	might	have	already	been	configured	by
another	part	of	the	server,	for	example	from	mod_nss	or
mod_ldap.	If	found	to	have	already	been	configured,	a	warning
will	be	logged,	and	the	existing	configuration	will	have	taken	affect.
To	avoid	this	warning,	use	the	noinit	parameter	as	follows.

NSS	with	certificate	database
SessionCryptoDriver	nss	noinit

To	prevent	confusion,	ensure	that	all	modules	requiring	NSS	are
configured	with	identical	parameters.

The	openssl	crypto	driver	supports	an	optional	parameter	to
specify	the	engine	to	be	used	for	encryption.

OpenSSL	with	engine	support
SessionCryptoDriver	openssl	engine=name

SessionCryptoPassphrase	Directive

Description: The	key	used	to	encrypt	the	session
Syntax: SessionCryptoPassphrase	secret	[

secret	...]

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Experimental
Module: mod_session_crypto
Compatibility: Available	in	Apache	2.3.0	and	later

The	SessionCryptoPassphrase	directive	specifies	the	keys	to
be	used	to	enable	symmetrical	encryption	on	the	contents	of	the
session	before	writing	the	session,	or	decrypting	the	contents	of
the	session	after	reading	the	session.

Keys	are	more	secure	when	they	are	long,	and	consist	of	truly
random	characters.	Changing	the	key	on	a	server	has	the	effect	of
invalidating	all	existing	sessions.

Multiple	keys	can	be	specified	in	order	to	support	key	rotation.	The
first	key	listed	will	be	used	for	encryption,	while	all	keys	listed	will
be	attempted	for	decryption.	To	rotate	keys	across	multiple	servers
over	a	period	of	time,	add	a	new	secret	to	the	end	of	the	list,	and
once	rolled	out	completely	to	all	servers,	remove	the	first	key	from
the	start	of	the	list.

As	of	version	2.4.7	if	the	value	begins	with	exec:	the	resulting
command	will	be	executed	and	the	first	line	returned	to	standard
output	by	the	program	will	be	used	as	the	key.

#key	used	as-is

SessionCryptoPassphrase	secret

#Run	/path/to/program	to	get	key

SessionCryptoPassphrase	exec:/path/to/program

#Run	/path/to/otherProgram	and	provide	arguments

SessionCryptoPassphrase	"exec:/path/to/otherProgram	argument1"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SessionCryptoPassphraseFile	Directive

Description: File	containing	keys	used	to	encrypt	the	session
Syntax: SessionCryptoPassphraseFile	filename

Default: none

Context: server	config,	virtual	host,	directory
Status: Experimental
Module: mod_session_crypto
Compatibility: Available	in	Apache	2.3.0	and	later

The	SessionCryptoPassphraseFile	directive	specifies	the
name	of	a	configuration	file	containing	the	keys	to	use	for
encrypting	or	decrypting	the	session,	specified	one	per	line.	The
file	is	read	on	server	start,	and	a	graceful	restart	will	be	necessary
for	httpd	to	pick	up	changes	to	the	keys.

Unlike	the	SessionCryptoPassphrase	directive,	the	keys	are
not	exposed	within	the	httpd	configuration	and	can	be	hidden	by
protecting	the	file	appropriately.

Multiple	keys	can	be	specified	in	order	to	support	key	rotation.	The
first	key	listed	will	be	used	for	encryption,	while	all	keys	listed	will
be	attempted	for	decryption.	To	rotate	keys	across	multiple	servers
over	a	period	of	time,	add	a	new	secret	to	the	end	of	the	list,	and
once	rolled	out	completely	to	all	servers,	remove	the	first	key	from
the	start	of	the	list.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_session_dbd

Description: DBD/SQL	based	session	support
Status: Extension
Module	Identifier: session_dbd_module
Source	File: mod_session_dbd.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

The	session	modules	make	use	of	HTTP	cookies,	and	as	such	can
fall	victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially
private	information	to	clients.	Please	ensure	that	the	relevant	risks
have	been	taken	into	account	before	enabling	the	session
functionality	on	your	server.

This	submodule	of	mod_session	provides	support	for	the	storage	of
user	sessions	within	a	SQL	database	using	the	mod_dbd	module.

Sessions	can	either	be	anonymous,	where	the	session	is	keyed	by	a
unique	UUID	string	stored	on	the	browser	in	a	cookie,	or	per	user,
where	the	session	is	keyed	against	the	userid	of	the	logged	in	user.

SQL	based	sessions	are	hidden	from	the	browser,	and	so	offer	a
measure	of	privacy	without	the	need	for	encryption.

Different	webservers	within	a	server	farm	may	choose	to	share	a
database,	and	so	share	sessions	with	one	another.

For	more	details	on	the	session	interface,	see	the	documentation	for
the	mod_session	module.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session

mod_session_crypto

mod_session_cookie

mod_dbd

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_session_dbd
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_session_dbd

DBD	Configuration

Before	the	mod_session_dbd	module	can	be	configured	to
maintain	a	session,	the	mod_dbd	module	must	be	configured	to
make	the	various	database	queries	available	to	the	server.

There	are	four	queries	required	to	keep	a	session	maintained,	to
select	an	existing	session,	to	update	an	existing	session,	to	insert
a	new	session,	and	to	delete	an	expired	or	empty	session.	These
queries	are	configured	as	per	the	example	below.

Sample	DBD	configuration
DBDriver	pgsql

DBDParams	"dbname=apachesession	user=apache	password=xxxxx	host=localhost"

DBDPrepareSQL	"delete	from	session	where	key	=	%s"	deletesession

DBDPrepareSQL	"update	session	set	value	=	%s,	expiry	=	%lld,	key	=	%s	where	key	=	%s"	updatesession

DBDPrepareSQL	"insert	into	session	(value,	expiry,	key)	values	(%s,	%lld,	%s)"	insertsession

DBDPrepareSQL	"select	value	from	session	where	key	=	%s	and	(expiry	=	0	or	expiry	>	%lld)"	selectsession

DBDPrepareSQL	"delete	from	session	where	expiry	!=	0	and	expiry	<	%lld"	cleansession

Anonymous	Sessions

Anonymous	sessions	are	keyed	against	a	unique	UUID,	and
stored	on	the	browser	within	an	HTTP	cookie.	This	method	is
similar	to	that	used	by	most	application	servers	to	store	session
information.

To	create	a	simple	anonymous	session	and	store	it	in	a	postgres
database	table	called	apachesession,	and	save	the	session	ID	in	a
cookie	called	session,	configure	the	session	as	follows:

SQL	based	anonymous	session
Session	On

SessionDBDCookieName	session	path=/

For	more	examples	on	how	the	session	can	be	configured	to	be
read	from	and	written	to	by	a	CGI	application,	see	the
mod_session	examples	section.

For	documentation	on	how	the	session	can	be	used	to	store
username	and	password	details,	see	the	mod_auth_form
module.

Per	User	Sessions

Per	user	sessions	are	keyed	against	the	username	of	a
successfully	authenticated	user.	It	offers	the	most	privacy,	as	no
external	handle	to	the	session	exists	outside	of	the	authenticated
realm.

Per	user	sessions	work	within	a	correctly	configured	authenticated
environment,	be	that	using	basic	authentication,	digest
authentication	or	SSL	client	certificates.	Due	to	the	limitations	of
who	came	first,	the	chicken	or	the	egg,	per	user	sessions	cannot
be	used	to	store	authentication	credentials	from	a	module	like
mod_auth_form.

To	create	a	simple	per	user	session	and	store	it	in	a	postgres
database	table	called	apachesession,	and	with	the	session	keyed
to	the	userid,	configure	the	session	as	follows:

SQL	based	per	user	session
Session	On

SessionDBDPerUser	On

Database	Housekeeping

Over	the	course	of	time,	the	database	can	be	expected	to	start
accumulating	expired	sessions.	At	this	point,	the
mod_session_dbd	module	is	not	yet	able	to	handle	session
expiry	automatically.

Warning

The	administrator	will	need	to	set	up	an	external	process	via
cron	to	clean	out	expired	sessions.

SessionDBDCookieName	Directive

Description: Name	and	attributes	for	the	RFC2109	cookie
storing	the	session	ID

Syntax: SessionDBDCookieName	name	attributes

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDCookieName	directive	specifies	the	name	and
optional	attributes	of	an	RFC2109	compliant	cookie	inside	which
the	session	ID	will	be	stored.	RFC2109	cookies	are	set	using	the
Set-Cookie	HTTP	header.

An	optional	list	of	cookie	attributes	can	be	specified,	as	per	the
example	below.	These	attributes	are	inserted	into	the	cookie	as	is,
and	are	not	interpreted	by	Apache.	Ensure	that	your	attributes	are
defined	correctly	as	per	the	cookie	specification.

Cookie	with	attributes
Session	On

SessionDBDCookieName	session	path=/private;domain=example.com;httponly;secure;version=1;

SessionDBDCookieName2	Directive

Description: Name	and	attributes	for	the	RFC2965	cookie
storing	the	session	ID

Syntax: SessionDBDCookieName2	name	attributes

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDCookieName2	directive	specifies	the	name	and
optional	attributes	of	an	RFC2965	compliant	cookie	inside	which
the	session	ID	will	be	stored.	RFC2965	cookies	are	set	using	the
Set-Cookie2	HTTP	header.

An	optional	list	of	cookie	attributes	can	be	specified,	as	per	the
example	below.	These	attributes	are	inserted	into	the	cookie	as	is,
and	are	not	interpreted	by	Apache.	Ensure	that	your	attributes	are
defined	correctly	as	per	the	cookie	specification.

Cookie2	with	attributes
Session	On

SessionDBDCookieName2	session	path=/private;domain=example.com;httponly;secure;version=1;

SessionDBDCookieRemove	Directive

Description: Control	for	whether	session	ID	cookies	should	be
removed	from	incoming	HTTP	headers

Syntax: SessionDBDCookieRemove	On|Off

Default: SessionDBDCookieRemove	On

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDCookieRemove	flag	controls	whether	the
cookies	containing	the	session	ID	will	be	removed	from	the
headers	during	request	processing.

In	a	reverse	proxy	situation	where	the	Apache	server	acts	as	a
server	frontend	for	a	backend	origin	server,	revealing	the	contents
of	the	session	ID	cookie	to	the	backend	could	be	a	potential
privacy	violation.	When	set	to	on,	the	session	ID	cookie	will	be
removed	from	the	incoming	HTTP	headers.

SessionDBDDeleteLabel	Directive

Description: The	SQL	query	to	use	to	remove	sessions	from	the
database

Syntax: SessionDBDDeleteLabel	label

Default: SessionDBDDeleteLabel	deletesession

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDDeleteLabel	directive	sets	the	default	delete
query	label	to	be	used	to	delete	an	expired	or	empty	session.	This
label	must	have	been	previously	defined	using	the
DBDPrepareSQL	directive.

SessionDBDInsertLabel	Directive

Description: The	SQL	query	to	use	to	insert	sessions	into	the
database

Syntax: SessionDBDInsertLabel	label

Default: SessionDBDInsertLabel	insertsession

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDInsertLabel	directive	sets	the	default	insert
query	label	to	be	used	to	load	in	a	session.	This	label	must	have
been	previously	defined	using	the	DBDPrepareSQL	directive.

If	an	attempt	to	update	the	session	affects	no	rows,	this	query	will
be	called	to	insert	the	session	into	the	database.

SessionDBDPerUser	Directive

Description: Enable	a	per	user	session
Syntax: SessionDBDPerUser	On|Off

Default: SessionDBDPerUser	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDPerUser	flag	enables	a	per	user	session	keyed
against	the	user's	login	name.	If	the	user	is	not	logged	in,	this
directive	will	be	ignored.

SessionDBDSelectLabel	Directive

Description: The	SQL	query	to	use	to	select	sessions	from	the
database

Syntax: SessionDBDSelectLabel	label

Default: SessionDBDSelectLabel	selectsession

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDSelectLabel	directive	sets	the	default	select
query	label	to	be	used	to	load	in	a	session.	This	label	must	have
been	previously	defined	using	the	DBDPrepareSQL	directive.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SessionDBDUpdateLabel	Directive

Description: The	SQL	query	to	use	to	update	existing	sessions
in	the	database

Syntax: SessionDBDUpdateLabel	label

Default: SessionDBDUpdateLabel	updatesession

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDUpdateLabel	directive	sets	the	default	update
query	label	to	be	used	to	load	in	a	session.	This	label	must	have
been	previously	defined	using	the	DBDPrepareSQL	directive.

If	an	attempt	to	update	the	session	affects	no	rows,	the	insert
query	will	be	called	to	insert	the	session	into	the	database.	If	the
database	supports	InsertOrUpdate,	override	this	query	to	perform
the	update	in	one	query	instead	of	two.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_setenvif

				.	 					.

: 				
	

: Base
: setenvif_module
: mod_setenvif.c

mod_setenvif				 				.		
		.

				.		 	MSIE		mozilla		
							.

BrowserMatch	^Mozilla	netscape

BrowserMatch	MSIE	!netscape

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

	

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_setenvif
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_setenvif

BrowserMatch	

: HTTP	User-Agent			
: BrowserMatch	regex	[!]env-

variable[=value]	[[!]env-

variable[=value]]	...

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_setenvif

BrowserMatch	 SetEnvIf			 ,	HTTP			 User-

Agent			 .				:

BrowserMatchNoCase	Robot	is_a_robot

SetEnvIfNoCase	User-Agent	Robot	is_a_robot

	:

BrowserMatch	^Mozilla	forms	jpeg=yes	browser=netscape

BrowserMatch	"^Mozilla/[2-3]"	tables	agif	frames	javascript

BrowserMatch	MSIE	!javascript

BrowserMatchNoCase	

: 		User-Agent			
: BrowserMatchNoCase	regex	[!]env-

variable[=value]	[[!]env-

variable[=value]]	...

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_setenvif

BrowserMatchNoCase		 BrowserMatch		 	.			
	.	 	:

BrowserMatchNoCase	mac	platform=macintosh

BrowserMatchNoCase	win	platform=windows

BrowserMatch	BrowserMatchNoCase		 SetEnvIf

SetEnvIfNoCase			.				:

BrowserMatchNoCase	Robot	is_a_robot

SetEnvIfNoCase	User-Agent	Robot	is_a_robot

SetEnvIf	

: 				
: SetEnvIf	attribute	regex	[!]env-

variable[=value]	[[!]env-

variable[=value]]	...

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_setenvif

SetEnvIf				 		.			 attribute

1.	 HTTP			(RFC2616);		:	 Host,	User-
Agent,	Referer,	Accept-Language.		 				
	.

2.	 			:

Remote_Host	-	()			

Remote_Addr	-			IP	

Server_Addr	-				IP		 (2.0.43)

Request_Method	-				 (GET,	POST,)

Request_Protocol	-				 	(,	"HTTP/0.9",
"HTTP/1.1",	.)

Request_URI	-	HTTP				 --		URL			
(scheme)			

3.	 			.		 SetEnvIf							.	
SetEnvIf[NoCase]						.	''	()
								.						
	.

		(regex)	Perl		 .		POSIX.2	egrep		.	 regex

http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.pcre.org/

attribute				.

				()	.			

1.	 varname,	

2.	 !varname,	

3.	 varname=value

			"1"	.				 				,			
value	.		2.0.51	 value		 $1..$9	regex			.

:
SetEnvIf	Request_URI	"\.gif$"	object_is_image=gif

SetEnvIf	Request_URI	"\.jpg$"	object_is_image=jpg

SetEnvIf	Request_URI	"\.xbm$"	object_is_image=xbm

:

SetEnvIf	Referer	www\.mydomain\.com	intra_site_referral

:

SetEnvIf	object_is_image	xbm	XBIT_PROCESSING=1

:

SetEnvIf	^TS*	^[a-z].*	HAVE_TS

								 object_is_image	.			
www.mydomain.com				 intra_site_referral

				"TS"			[a-z]	 						
HAVE_TS	.

	 				.

SetEnvIfExpr	

: Sets	environment	variables	based	on	an	ap_expr	expression
:
: ,	,	directory,	.htaccess
: Base
: mod_setenvif

Documentation	not	yet	translated.	Please	see	English	version	of
document.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

SetEnvIfNoCase	

: 						
: SetEnvIfNoCase	attribute	regex	[!]env-

variable[=value]	[[!]env-

variable[=value]]	...

: ,	,	directory,	.htaccess
Override	: FileInfo
: Base
: mod_setenvif

SetEnvIfNoCase		 SetEnvIf		,	 			.		
:

SetEnvIfNoCase	Host	Apache\.Org	site=apache

		HTTP			 Host:	Apache.Org,	apache.org		
site		" apache"	.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_slotmem_plain

Description: Slot-based	shared	memory	provider.
Status: Extension
Module	Identifier: slotmem_plain_module
Source	File: mod_slotmem_plain.c

Summary
mod_slotmem_plain	is	a	memory	provider	which	provides	for
creation	and	access	to	a	plain	memory	segment	in	which	the	datasets
are	organized	in	"slots."

If	the	memory	needs	to	be	shared	between	threads	and	processes,	a
better	provider	would	be	mod_slotmem_shm.

mod_slotmem_plain	provides	the	following	API	functions:

apr_status_t	doall(ap_slotmem_instance_t	*s,
ap_slotmem_callback_fn_t	*func,	void	*data,	apr_pool_t	*pool)

call	the	callback	on	all	worker	slots

apr_status_t	create(ap_slotmem_instance_t	**new,	const	char
*name,	apr_size_t	item_size,	unsigned	int	item_num,
ap_slotmem_type_t	type,	apr_pool_t	*pool)

create	a	new	slotmem	with	each	item	size	is	item_size.

apr_status_t	attach(ap_slotmem_instance_t	**new,	const	char
*name,	apr_size_t	*item_size,	unsigned	int	*item_num,
apr_pool_t	*pool)

attach	to	an	existing	slotmem.

apr_status_t	dptr(ap_slotmem_instance_t	*s,	unsigned	int
item_id,	void**mem)

get	the	direct	pointer	to	the	memory	associated	with	this	worker
slot.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

apr_status_t	get(ap_slotmem_instance_t	*s,	unsigned	int
item_id,	unsigned	char	*dest,	apr_size_t	dest_len)

get/read	the	memory	from	this	slot	to	dest

apr_status_t	put(ap_slotmem_instance_t	*slot,	unsigned	int
item_id,	unsigned	char	*src,	apr_size_t	src_len)

put/write	the	data	from	src	to	this	slot

unsigned	int	num_slots(ap_slotmem_instance_t	*s)
return	the	total	number	of	slots	in	the	segment

apr_size_t	slot_size(ap_slotmem_instance_t	*s)
return	the	total	data	size,	in	bytes,	of	a	slot	in	the	segment

apr_status_t	grab(ap_slotmem_instance_t	*s,	unsigned	int
*item_id);

grab	or	allocate	the	first	free	slot	and	mark	as	in-use	(does	not	do
any	data	copying)

apr_status_t	fgrab(ap_slotmem_instance_t	*s,	unsigned	int
item_id);

forced	grab	or	allocate	the	specified	slot	and	mark	as	in-use
(does	not	do	any	data	copying)

apr_status_t	release(ap_slotmem_instance_t	*s,	unsigned	int
item_id);

release	or	free	a	slot	and	mark	as	not	in-use	(does	not	do	any
data	copying)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_slotmem_shm

Description: Slot-based	shared	memory	provider.
Status: Extension
Module	Identifier: slotmem_shm_module
Source	File: mod_slotmem_shm.c

Summary
mod_slotmem_shm	is	a	memory	provider	which	provides	for	creation
and	access	to	a	shared	memory	segment	in	which	the	datasets	are
organized	in	"slots."

All	shared	memory	is	cleared	and	cleaned	with	each	restart,	whether
graceful	or	not.	The	data	itself	is	stored	and	restored	within	a	file
noted	by	the	name	parameter	in	the	create	and	attach	calls.	If	not
specified	with	an	absolute	path,	the	file	will	be	created	relative	to	the
path	specified	by	the	DefaultRuntimeDir	directive.

mod_slotmem_shm	provides	the	following	API	functions:

apr_status_t	doall(ap_slotmem_instance_t	*s,
ap_slotmem_callback_fn_t	*func,	void	*data,	apr_pool_t	*pool)

call	the	callback	on	all	worker	slots

apr_status_t	create(ap_slotmem_instance_t	**new,	const	char
*name,	apr_size_t	item_size,	unsigned	int	item_num,
ap_slotmem_type_t	type,	apr_pool_t	*pool)

create	a	new	slotmem	with	each	item	size	is	item_size.	name	is
used	to	generate	a	filename	for	the	persistent	store	of	the	shared
memory	if	configured.	Values	are:

"none"

Anonymous	shared	memory	and	no	persistent

store

"file-name"

[DefaultRuntimeDir]/file-name

"/absolute-file-name"

Absolute	file	name

apr_status_t	attach(ap_slotmem_instance_t	**new,	const	char
*name,	apr_size_t	*item_size,	unsigned	int	*item_num,
apr_pool_t	*pool)

attach	to	an	existing	slotmem.	See	create	for	description	of
name	parameter.

apr_status_t	dptr(ap_slotmem_instance_t	*s,	unsigned	int
item_id,	void**mem)

get	the	direct	pointer	to	the	memory	associated	with	this	worker
slot.

apr_status_t	get(ap_slotmem_instance_t	*s,	unsigned	int
item_id,	unsigned	char	*dest,	apr_size_t	dest_len)

get/read	the	memory	from	this	slot	to	dest

apr_status_t	put(ap_slotmem_instance_t	*slot,	unsigned	int
item_id,	unsigned	char	*src,	apr_size_t	src_len)

put/write	the	data	from	src	to	this	slot

unsigned	int	num_slots(ap_slotmem_instance_t	*s)
return	the	total	number	of	slots	in	the	segment

apr_size_t	slot_size(ap_slotmem_instance_t	*s)
return	the	total	data	size,	in	bytes,	of	a	slot	in	the	segment

apr_status_t	grab(ap_slotmem_instance_t	*s,	unsigned	int
*item_id);

grab	or	allocate	the	first	free	slot	and	mark	as	in-use	(does	not	do
any	data	copying)

apr_status_t	fgrab(ap_slotmem_instance_t	*s,	unsigned	int
item_id);

forced	grab	or	allocate	the	specified	slot	and	mark	as	in-use
(does	not	do	any	data	copying)

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

apr_status_t	release(ap_slotmem_instance_t	*s,	unsigned	int
item_id);

release	or	free	a	slot	and	mark	as	not	in-use	(does	not	do	any
data	copying)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_so

				.	 					.

: 				
		

: Extension
: so_module
: mod_so.c
: 	()	Base

.

			 	(DSO)								 			.

	,		(.so)		,		 .so		 .dll

	1.3			2.0			.	 	2.0						

			

				1.3.15	2.0	.	 		mod_foo.so.

mod_so		ApacheModuleFoo.dll				 	,			
	.		2.0		 		2.0				.

		API					 .		API						
					 						.

						.		 					.			
Configure			 		ApacheCore			,	
os\win32\modules.c			.

				 LoadModule		 						DLL	
	DLL				 							.

	DLL						 .	DLL	module	record	export	.
()	 			module	record		()
AP_MODULE_DECLARE_DATA	.	 	,				:

module	foo_module;

		:

module	AP_MODULE_DECLARE_DATA	foo_module;

						 				.	,	
module	record	export	 	.

			DLL	.			 libhttpd.dll			libhttpd.lib	export
	 .							 		.		modules			
.				 		.dsp						.dsp	
.

		DLL	.			 modules		,	 LoadModule

.

LoadFile	

: 			
: LoadFile	filename	[filename]	...

:
: Extension
: mod_so

LoadFile						 		(link	in).			
		 .	 Filename		 ServerRoot		.

	:

LoadFile	libexec/libxmlparse.so

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

LoadModule	

: 		,				
: LoadModule	module	filename

:
: Extension
: mod_so

LoadModule					 filename	,				 module
	.	 Module		 module		,			 	.		:

LoadModule	status_module	modules/mod_status.so

ServerRoot	modules				.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	Module	mod_socache_dbm

Description: DBM	based	shared	object	cache	provider.
Status: Extension
Module	Identifier: socache_dbm_module
Source	File: mod_socache_dbm.c

Summary
mod_socache_dbm	is	a	shared	object	cache	provider	which	provides
for	creation	and	access	to	a	cache	backed	by	a	DBM	database.

dbm:/path/to/datafile

Details	of	other	shared	object	cache	providers	can	be	found	here.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	Module	mod_socache_dc

Description: Distcache	based	shared	object	cache	provider.
Status: Extension
Module	Identifier: socache_dc_module
Source	File: mod_socache_dc.c

Summary
mod_socache_dc	is	a	shared	object	cache	provider	which	provides
for	creation	and	access	to	a	cache	backed	by	the	distcache
distributed	session	caching	libraries.

Details	of	other	shared	object	cache	providers	can	be	found	here.

http://distcache.sourceforge.net/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_socache_memcache

Description: Memcache	based	shared	object	cache	provider.
Status: Extension
Module	Identifier: socache_memcache_module
Source	File: mod_socache_memcache.c

Summary
mod_socache_memcache	is	a	shared	object	cache	provider	which
provides	for	creation	and	access	to	a	cache	backed	by	the
memcached	high-performance,	distributed	memory	object	caching
system.

This	shared	object	cache	provider's	"create"	method	requires	a
comma	separated	list	of	memcached	host/port	specifications.	If	using
this	provider	via	another	modules	configuration	(such	as
SSLSessionCache),	provide	the	list	of	servers	as	the	optional	"arg"
parameter.

SSLSessionCache	memcache:memcache.example.com:12345,memcache2.example.com:12345

Details	of	other	shared	object	cache	providers	can	be	found	here.

http://memcached.org/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MemcacheConnTTL	Directive

Description: Keepalive	time	for	idle	connections
Syntax: MemcacheConnTTL	num[units]

Default: MemcacheConnTTL	15s

Context: server	config,	virtual	host
Status: Extension
Module: mod_socache_memcache
Compatibility: Available	in	Apache	2.4.17	and	later

Set	the	time	to	keep	idle	connections	with	the	memcache	server(s)
alive	(threaded	platforms	only).

Valid	values	for	MemcacheConnTTL	are	times	up	to	one	hour.	0
means	no	timeout.

This	timeout	defaults	to	units	of	seconds,	but	accepts	suffixes
for	milliseconds	(ms),	seconds	(s),	minutes	(min),	and	hours	(h).

Before	Apache	2.4.17,	this	timeout	was	hardcoded	and	its	value
was	600	usec.	So,	the	closest	configuration	to	match	the	legacy
behaviour	is	to	set	MemcacheConnTTL	to	1ms.

#	Set	a	timeout	of	10	minutes

MemcacheConnTTL	10min

#	Set	a	timeout	of	60	seconds

MemcacheConnTTL	60

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	Module	mod_socache_shmcb

Description: shmcb	based	shared	object	cache	provider.
Status: Extension
Module	Identifier: socache_shmcb_module
Source	File: mod_socache_shmcb.c

Summary
mod_socache_shmcb	is	a	shared	object	cache	provider	which
provides	for	creation	and	access	to	a	cache	backed	by	a	high-
performance	cyclic	buffer	inside	a	shared	memory	segment.

shmcb:/path/to/datafile(512000)

Details	of	other	shared	object	cache	providers	can	be	found	here.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_speling

				.	 					.

: 								
		URL		

: Extension
: speling_module
: mod_speling.c

							 						.				
			.		 								
)	 			 	.				.

		,

	,			"document	not	 found	()"		.
	""					,		 			.
				,			 					.

CheckCaseOnly	

: Limits	the	action	of	the	speling	module	to	case	corrections
:
: ,	,	directory,	.htaccess
: Extension
: mod_speling

Documentation	not	yet	translated.	Please	see	English	version	of
document.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

CheckSpelling	

: 		
: CheckSpelling	on|off

: CheckSpelling	Off

: ,	,	directory,	.htaccess
Override	: Options
: Extension
: mod_speling
: 	1.1	CheckSpelling		,					

.		1.3				.		1.3.2	
CheckSpelling		""	""				.

					.		 	

							 						.
		""					 		.
					,	 (http://my.host/~apahce/
			.
				.		 <Location	/status>

"/stats.html"			 	.

DAV			 mod_speling		.				
		 doc34.html			,	DAV	 					"	"	
.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_ssl

Description: Strong	cryptography	using	the	Secure	Sockets
Layer	(SSL)	and	Transport	Layer	Security	(TLS)
protocols

Status: Extension
Module	Identifier: ssl_module
Source	File: mod_ssl.c

Summary
This	module	provides	SSL	v3	and	TLS	v1.x	support	for	the	Apache
HTTP	Server.	SSL	v2	is	no	longer	supported.

This	module	relies	on	OpenSSL	to	provide	the	cryptography	engine.

Further	details,	discussion,	and	examples	are	provided	in	the	SSL
documentation.

http://www.openssl.org/

Environment	Variables

This	module	can	be	configured	to	provide	several	items	of	SSL
information	as	additional	environment	variables	to	the	SSI	and
CGI	namespace.	This	information	is	not	provided	by	default	for
performance	reasons.	(See	SSLOptions	StdEnvVars,	below.)
The	generated	variables	are	listed	in	the	table	below.	For
backward	compatibility	the	information	can	be	made	available
under	different	names,	too.	Look	in	the	Compatibility	chapter	for
details	on	the	compatibility	variables.

Variable	Name: Value
Type:

Description:

HTTPS flag HTTPS	is	being	used.
SSL_PROTOCOL string The	SSL	protocol	version

(SSLv3,	TLSv1,
TLSv1.1,	TLSv1.2)

SSL_SESSION_ID string The	hex-encoded	SSL
session	id

SSL_SESSION_RESUMED string Initial	or	Resumed	SSL
Session.	Note:	multiple
requests	may	be	served
over	the	same	(Initial	or
Resumed)	SSL	session	if
HTTP	KeepAlive	is	in
use

SSL_SECURE_RENEG string true	if	secure
renegotiation	is
supported,	else	false

SSL_CIPHER string The	cipher	specification
name

SSL_CIPHER_EXPORT string true	if	cipher	is	an
export	cipher

SSL_CIPHER_USEKEYSIZE number Number	of	cipher	bits
(actually	used)

SSL_CIPHER_ALGKEYSIZE number Number	of	cipher	bits
(possible)

SSL_COMPRESS_METHOD string SSL	compression
method	negotiated

SSL_VERSION_INTERFACE string The	mod_ssl	program
version

SSL_VERSION_LIBRARY string The	OpenSSL	program
version

SSL_CLIENT_M_VERSION string The	version	of	the	client
certificate

SSL_CLIENT_M_SERIAL string The	serial	of	the	client
certificate

SSL_CLIENT_S_DN string Subject	DN	in	client's
certificate

SSL_CLIENT_S_DN_x509 string Component	of	client's
Subject	DN

SSL_CLIENT_SAN_Email_n string Client	certificate's
subjectAltName
extension	entries	of	type
rfc822Name

SSL_CLIENT_SAN_DNS_n string Client	certificate's
subjectAltName
extension	entries	of	type
dNSName

SSL_CLIENT_SAN_OTHER_msUPN_n string Client	certificate's
subjectAltName
extension	entries	of	type
otherName,	Microsoft
User	Principal	Name
form	(OID

1.3.6.1.4.1.311.20.2.3)
SSL_CLIENT_I_DN string Issuer	DN	of	client's

certificate
SSL_CLIENT_I_DN_x509 string Component	of	client's

Issuer	DN
SSL_CLIENT_V_START string Validity	of	client's

certificate	(start	time)
SSL_CLIENT_V_END string Validity	of	client's

certificate	(end	time)
SSL_CLIENT_V_REMAIN string Number	of	days	until

client's	certificate	expires
SSL_CLIENT_A_SIG string Algorithm	used	for	the

signature	of	client's
certificate

SSL_CLIENT_A_KEY string Algorithm	used	for	the
public	key	of	client's
certificate

SSL_CLIENT_CERT string PEM-encoded	client
certificate

SSL_CLIENT_CERT_CHAIN_n string PEM-encoded
certificates	in	client
certificate	chain

SSL_CLIENT_CERT_RFC4523_CEA string Serial	number	and	issuer
of	the	certificate.	The
format	matches	that	of
the
CertificateExactAssertion
in	RFC4523

SSL_CLIENT_VERIFY string NONE,	SUCCESS,
GENEROUS	or
FAILED:reason

SSL_SERVER_M_VERSION string The	version	of	the	server

certificate
SSL_SERVER_M_SERIAL string The	serial	of	the	server

certificate
SSL_SERVER_S_DN string Subject	DN	in	server's

certificate
SSL_SERVER_SAN_Email_n string Server	certificate's

subjectAltName
extension	entries	of	type
rfc822Name

SSL_SERVER_SAN_DNS_n string Server	certificate's
subjectAltName
extension	entries	of	type
dNSName

SSL_SERVER_SAN_OTHER_dnsSRV_n string Server	certificate's
subjectAltName
extension	entries	of	type
otherName,	SRVName
form	(OID
1.3.6.1.5.5.7.8.7,	RFC
4985)

SSL_SERVER_S_DN_x509 string Component	of	server's
Subject	DN

SSL_SERVER_I_DN string Issuer	DN	of	server's
certificate

SSL_SERVER_I_DN_x509 string Component	of	server's
Issuer	DN

SSL_SERVER_V_START string Validity	of	server's
certificate	(start	time)

SSL_SERVER_V_END string Validity	of	server's
certificate	(end	time)

SSL_SERVER_A_SIG string Algorithm	used	for	the
signature	of	server's

certificate
SSL_SERVER_A_KEY string Algorithm	used	for	the

public	key	of	server's
certificate

SSL_SERVER_CERT string PEM-encoded	server
certificate

SSL_SRP_USER string SRP	username
SSL_SRP_USERINFO string SRP	user	info
SSL_TLS_SNI string Contents	of	the	SNI	TLS

extension	(if	supplied
with	ClientHello)

x509	specifies	a	component	of	an	X.509	DN;	one	of
C,ST,L,O,OU,CN,T,I,G,S,D,UID,Email.	In	Apache	2.1	and
later,	x509	may	also	include	a	numeric	_n	suffix.	If	the	DN	in
question	contains	multiple	attributes	of	the	same	name,	this	suffix
is	used	as	a	zero-based	index	to	select	a	particular	attribute.	For
example,	where	the	server	certificate	subject	DN	included	two	OU
attributes,	SSL_SERVER_S_DN_OU_0	and
SSL_SERVER_S_DN_OU_1	could	be	used	to	reference	each.	A
variable	name	without	a	_n	suffix	is	equivalent	to	that	name	with	a
_0	suffix;	the	first	(or	only)	attribute.	When	the	environment	table	is
populated	using	the	StdEnvVars	option	of	the	SSLOptions
directive,	the	first	(or	only)	attribute	of	any	DN	is	added	only	under
a	non-suffixed	name;	i.e.	no	_0	suffixed	entries	are	added.

The	format	of	the	*_DN	variables	has	changed	in	Apache	HTTPD
2.3.11.	See	the	LegacyDNStringFormat	option	for
SSLOptions	for	details.

SSL_CLIENT_V_REMAIN	is	only	available	in	version	2.1	and	later.

A	number	of	additional	environment	variables	can	also	be	used	in

SSLRequire	expressions,	or	in	custom	log	formats:

HTTP_USER_AGENT								PATH_INFO													AUTH_TYPE

HTTP_REFERER											QUERY_STRING										SERVER_SOFTWARE

HTTP_COOKIE												REMOTE_HOST											API_VERSION

HTTP_FORWARDED									REMOTE_IDENT										TIME_YEAR

HTTP_HOST														IS_SUBREQ													TIME_MON

HTTP_PROXY_CONNECTION		DOCUMENT_ROOT									TIME_DAY

HTTP_ACCEPT												SERVER_ADMIN										TIME_HOUR

THE_REQUEST												SERVER_NAME											TIME_MIN

REQUEST_FILENAME							SERVER_PORT											TIME_SEC

REQUEST_METHOD									SERVER_PROTOCOL							TIME_WDAY

REQUEST_SCHEME									REMOTE_ADDR											TIME

REQUEST_URI												REMOTE_USER

In	these	contexts,	two	special	formats	can	also	be	used:

ENV:variablename

This	will	expand	to	the	standard	environment	variable
variablename.

HTTP:headername

This	will	expand	to	the	value	of	the	request	header	with	name
headername.

Custom	Log	Formats

When	mod_ssl	is	built	into	Apache	or	at	least	loaded	(under	DSO
situation)	additional	functions	exist	for	the	Custom	Log	Format	of
mod_log_config.	First	there	is	an	additional	``%{varname}x''
eXtension	format	function	which	can	be	used	to	expand	any
variables	provided	by	any	module,	especially	those	provided	by
mod_ssl	which	can	you	find	in	the	above	table.

For	backward	compatibility	there	is	additionally	a	special	``%
{name}c''	cryptography	format	function	provided.	Information
about	this	function	is	provided	in	the	Compatibility	chapter.

Example
CustomLog	"logs/ssl_request_log"	"%t	%h	%{SSL_PROTOCOL}x	%{SSL_CIPHER}x	\"%r\"	%b"

These	formats	even	work	without	setting	the	StdEnvVars	option
of	the	SSLOptions	directive.

Request	Notes

mod_ssl	sets	"notes"	for	the	request	which	can	be	used	in
logging	with	the	%{name}n	format	string	in	mod_log_config.

The	notes	supported	are	as	follows:

ssl-access-forbidden

This	note	is	set	to	the	value	1	if	access	was	denied	due	to	an
SSLRequire	or	SSLRequireSSL	directive.

ssl-secure-reneg

If	mod_ssl	is	built	against	a	version	of	OpenSSL	which
supports	the	secure	renegotiation	extension,	this	note	is	set	to
the	value	1	if	SSL	is	in	used	for	the	current	connection,	and
the	client	also	supports	the	secure	renegotiation	extension.	If
the	client	does	not	support	the	secure	renegotiation
extension,	the	note	is	set	to	the	value	0.	If	mod_ssl	is	not
built	against	a	version	of	OpenSSL	which	supports	secure
renegotiation,	or	if	SSL	is	not	in	use	for	the	current
connection,	the	note	is	not	set.

Expression	Parser	Extension

When	mod_ssl	is	built	into	Apache	or	at	least	loaded	(under	DSO
situation)	any	variables	provided	by	mod_ssl	can	be	used	in
expressions	for	the	ap_expr	Expression	Parser.	The	variables	can
be	referenced	using	the	syntax	``%{varname}''.	Starting	with
version	2.4.18	one	can	also	use	the	mod_rewrite	style	syntax
``%{SSL:varname}''	or	the	function	style	syntax
``ssl(varname)''.

Example	(using	mod_headers)
Header	set	X-SSL-PROTOCOL	"expr=%{SSL_PROTOCOL}"

Header	set	X-SSL-CIPHER	"expr=%{SSL:SSL_CIPHER}"

This	feature	even	works	without	setting	the	StdEnvVars	option	of
the	SSLOptions	directive.

Authorization	providers	for	use	with	Require

mod_ssl	provides	a	few	authentication	providers	for	use	with
mod_authz_core's	Require	directive.

Require	ssl
The	ssl	provider	denies	access	if	a	connection	is	not	encrypted
with	SSL.	This	is	similar	to	the	SSLRequireSSL	directive.

Require	ssl

Require	ssl-verify-client
The	ssl	provider	allows	access	if	the	user	is	authenticated	with	a
valid	client	certificate.	This	is	only	useful	if	SSLVerifyClient
optional	is	in	effect.

The	following	example	grants	access	if	the	user	is	authenticated
either	with	a	client	certificate	or	by	username	and	password.

Require	ssl-verify-client

Require	valid-user

SSLCACertificateFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	Certificates
for	Client	Auth

Syntax: SSLCACertificateFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	can	assemble	the
Certificates	of	Certification	Authorities	(CA)	whose	clients	you	deal
with.	These	are	used	for	Client	Authentication.	Such	a	file	is	simply
the	concatenation	of	the	various	PEM-encoded	Certificate	files,	in
order	of	preference.	This	can	be	used	alternatively	and/or
additionally	to	SSLCACertificatePath.

Example
SSLCACertificateFile	"/usr/local/apache2/conf/ssl.crt/ca-bundle-client.crt"

SSLCACertificatePath	Directive

Description: Directory	of	PEM-encoded	CA	Certificates	for
Client	Auth

Syntax: SSLCACertificatePath	directory-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	Certificates	of
Certification	Authorities	(CAs)	whose	clients	you	deal	with.	These
are	used	to	verify	the	client	certificate	on	Client	Authentication.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	can't	just	place
the	Certificate	files	there:	you	also	have	to	create	symbolic	links
named	hash-value.N.	And	you	should	always	make	sure	this
directory	contains	the	appropriate	symbolic	links.

Example
SSLCACertificatePath	"/usr/local/apache2/conf/ssl.crt/"

SSLCADNRequestFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	Certificates
for	defining	acceptable	CA	names

Syntax: SSLCADNRequestFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

When	a	client	certificate	is	requested	by	mod_ssl,	a	list	of
acceptable	Certificate	Authority	names	is	sent	to	the	client	in	the
SSL	handshake.	These	CA	names	can	be	used	by	the	client	to
select	an	appropriate	client	certificate	out	of	those	it	has	available.

If	neither	of	the	directives	SSLCADNRequestPath	or
SSLCADNRequestFile	are	given,	then	the	set	of	acceptable	CA
names	sent	to	the	client	is	the	names	of	all	the	CA	certificates
given	by	the	SSLCACertificateFile	and
SSLCACertificatePath	directives;	in	other	words,	the	names
of	the	CAs	which	will	actually	be	used	to	verify	the	client
certificate.

In	some	circumstances,	it	is	useful	to	be	able	to	send	a	set	of
acceptable	CA	names	which	differs	from	the	actual	CAs	used	to
verify	the	client	certificate	-	for	example,	if	the	client	certificates	are
signed	by	intermediate	CAs.	In	such	cases,
SSLCADNRequestPath	and/or	SSLCADNRequestFile	can	be
used;	the	acceptable	CA	names	are	then	taken	from	the	complete
set	of	certificates	in	the	directory	and/or	file	specified	by	this	pair	of
directives.

SSLCADNRequestFile	must	specify	an	all-in-one	file	containing
a	concatenation	of	PEM-encoded	CA	certificates.

Example

SSLCADNRequestFile	"/usr/local/apache2/conf/ca-names.crt"

SSLCADNRequestPath	Directive

Description: Directory	of	PEM-encoded	CA	Certificates	for
defining	acceptable	CA	names

Syntax: SSLCADNRequestPath	directory-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	optional	directive	can	be	used	to	specify	the	set	of	acceptable
CA	names	which	will	be	sent	to	the	client	when	a	client	certificate
is	requested.	See	the	SSLCADNRequestFile	directive	for	more
details.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	can't	just	place
the	Certificate	files	there:	you	also	have	to	create	symbolic	links
named	hash-value.N.	And	you	should	always	make	sure	this
directory	contains	the	appropriate	symbolic	links.

Example
SSLCADNRequestPath	"/usr/local/apache2/conf/ca-names.crt/"

SSLCARevocationCheck	Directive

Description: Enable	CRL-based	revocation	checking
Syntax: SSLCARevocationCheck	chain|leaf|none

flags

Default: SSLCARevocationCheck	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Optional	flags	available	in	httpd	2.4.21	or	later

Enables	certificate	revocation	list	(CRL)	checking.	At	least	one	of
SSLCARevocationFile	or	SSLCARevocationPath	must	be
configured.	When	set	to	chain	(recommended	setting),	CRL
checks	are	applied	to	all	certificates	in	the	chain,	while	setting	it	to
leaf	limits	the	checks	to	the	end-entity	cert.

The	available	flags	are:

no_crl_for_cert_ok

Prior	to	version	2.3.15,	CRL	checking	in	mod_ssl	also
succeeded	when	no	CRL(s)	for	the	checked	certificate(s)
were	found	in	any	of	the	locations	configured	with
SSLCARevocationFile	or	SSLCARevocationPath.

With	the	introduction	of	SSLCARevocationFile,	the
behavior	has	been	changed:	by	default	with	chain	or	leaf,
CRLs	must	be	present	for	the	validation	to	succeed	-
otherwise	it	will	fail	with	an	"unable	to	get
certificate	CRL"	error.

The	flag	no_crl_for_cert_ok	allows	to	restore	previous
behaviour.

Example
SSLCARevocationCheck	chain

Compatibility	with	versions	2.2
SSLCARevocationCheck	chain	no_crl_for_cert_ok

SSLCARevocationFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	CRLs	for
Client	Auth

Syntax: SSLCARevocationFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	can	assemble	the
Certificate	Revocation	Lists	(CRL)	of	Certification	Authorities	(CA)
whose	clients	you	deal	with.	These	are	used	for	Client
Authentication.	Such	a	file	is	simply	the	concatenation	of	the
various	PEM-encoded	CRL	files,	in	order	of	preference.	This	can
be	used	alternatively	and/or	additionally	to
SSLCARevocationPath.

Example
SSLCARevocationFile	"/usr/local/apache2/conf/ssl.crl/ca-bundle-client.crl"

SSLCARevocationPath	Directive

Description: Directory	of	PEM-encoded	CA	CRLs	for	Client	Auth
Syntax: SSLCARevocationPath	directory-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	Certificate
Revocation	Lists	(CRL)	of	Certification	Authorities	(CAs)	whose
clients	you	deal	with.	These	are	used	to	revoke	the	client
certificate	on	Client	Authentication.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	have	not	only	to
place	the	CRL	files	there.	Additionally	you	have	to	create	symbolic
links	named	hash-value.rN.	And	you	should	always	make	sure
this	directory	contains	the	appropriate	symbolic	links.

Example
SSLCARevocationPath	"/usr/local/apache2/conf/ssl.crl/"

SSLCertificateChainFile	Directive

Description: File	of	PEM-encoded	Server	CA	Certificates
Syntax: SSLCertificateChainFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

SSLCertificateChainFile	is	deprecated

SSLCertificateChainFile	became	obsolete	with	version
2.4.8,	when	SSLCertificateFile	was	extended	to	also	load
intermediate	CA	certificates	from	the	server	certificate	file.

This	directive	sets	the	optional	all-in-one	file	where	you	can
assemble	the	certificates	of	Certification	Authorities	(CA)	which
form	the	certificate	chain	of	the	server	certificate.	This	starts	with
the	issuing	CA	certificate	of	the	server	certificate	and	can	range	up
to	the	root	CA	certificate.	Such	a	file	is	simply	the	concatenation	of
the	various	PEM-encoded	CA	Certificate	files,	usually	in	certificate
chain	order.

This	should	be	used	alternatively	and/or	additionally	to
SSLCACertificatePath	for	explicitly	constructing	the	server
certificate	chain	which	is	sent	to	the	browser	in	addition	to	the
server	certificate.	It	is	especially	useful	to	avoid	conflicts	with	CA
certificates	when	using	client	authentication.	Because	although
placing	a	CA	certificate	of	the	server	certificate	chain	into
SSLCACertificatePath	has	the	same	effect	for	the	certificate
chain	construction,	it	has	the	side-effect	that	client	certificates
issued	by	this	same	CA	certificate	are	also	accepted	on	client
authentication.

But	be	careful:	Providing	the	certificate	chain	works	only	if	you	are
using	a	single	RSA	or	DSA	based	server	certificate.	If	you	are

using	a	coupled	RSA+DSA	certificate	pair,	this	will	work	only	if
actually	both	certificates	use	the	same	certificate	chain.	Else	the
browsers	will	be	confused	in	this	situation.

Example
SSLCertificateChainFile	"/usr/local/apache2/conf/ssl.crt/ca.crt"

SSLCertificateFile	Directive

Description: Server	PEM-encoded	X.509	certificate	data	file
Syntax: SSLCertificateFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	points	to	a	file	with	certificate	data	in	PEM	format.	At
a	minimum,	the	file	must	include	an	end-entity	(leaf)	certificate.
The	directive	can	be	used	multiple	times	(referencing	different
filenames)	to	support	multiple	algorithms	for	server	authentication
-	typically	RSA,	DSA,	and	ECC.	The	number	of	supported
algorithms	depends	on	the	OpenSSL	version	being	used	for
mod_ssl:	with	version	1.0.0	or	later,	openssl	list-public-
key-algorithms	will	output	a	list	of	supported	algorithms,	see
also	the	note	below	about	limitations	of	OpenSSL	versions	prior	to
1.0.2	and	the	ways	to	work	around	them.

The	files	may	also	include	intermediate	CA	certificates,	sorted
from	leaf	to	root.	This	is	supported	with	version	2.4.8	and	later,
and	obsoletes	SSLCertificateChainFile.	When	running	with
OpenSSL	1.0.2	or	later,	this	allows	to	configure	the	intermediate
CA	chain	on	a	per-certificate	basis.

Custom	DH	parameters	and	an	EC	curve	name	for	ephemeral
keys,	can	also	be	added	to	end	of	the	first	file	configured	using
SSLCertificateFile.	This	is	supported	in	version	2.4.7	or
later.	Such	parameters	can	be	generated	using	the	commands
openssl	dhparam	and	openssl	ecparam.	The	parameters
can	be	added	as-is	to	the	end	of	the	first	certificate	file.	Only	the
first	file	can	be	used	for	custom	parameters,	as	they	are	applied
independently	of	the	authentication	algorithm	type.

Finally	the	end-entity	certificate's	private	key	can	also	be	added	to

the	certificate	file	instead	of	using	a	separate
SSLCertificateKeyFile	directive.	This	practice	is	highly
discouraged.	If	it	is	used,	the	certificate	files	using	such	an
embedded	key	must	be	configured	after	the	certificates	using	a
separate	key	file.	If	the	private	key	is	encrypted,	the	pass	phrase
dialog	is	forced	at	startup	time.

DH	parameter	interoperability	with	primes	>	1024	bit

Beginning	with	version	2.4.7,	mod_ssl	makes	use	of
standardized	DH	parameters	with	prime	lengths	of	2048,	3072
and	4096	bits	and	with	additional	prime	lengths	of	6144	and
8192	bits	beginning	with	version	2.4.10	(from	RFC	3526),	and
hands	them	out	to	clients	based	on	the	length	of	the	certificate's
RSA/DSA	key.	With	Java-based	clients	in	particular	(Java	7	or
earlier),	this	may	lead	to	handshake	failures	-	see	this	FAQ
answer	for	working	around	such	issues.

Default	DH	parameters	when	using	multiple	certificates	and
OpenSSL	versions	prior	to	1.0.2

When	using	multiple	certificates	to	support	different
authentication	algorithms	(like	RSA,	DSA,	but	mainly	ECC)	and
OpenSSL	prior	to	1.0.2,	it	is	recommended	to	either	use	custom
DH	parameters	(preferably)	by	adding	them	to	the	first	certificate
file	(as	described	above),	or	to	order	the
SSLCertificateFile	directives	such	that	RSA/DSA
certificates	are	placed	after	the	ECC	one.

This	is	due	to	a	limitation	in	older	versions	of	OpenSSL	which
don't	let	the	Apache	HTTP	Server	determine	the	currently
selected	certificate	at	handshake	time	(when	the	DH	parameters
must	be	sent	to	the	peer)	but	instead	always	provide	the	last
configured	certificate.	Consequently,	the	server	may	select
default	DH	parameters	based	on	the	length	of	the	wrong

http://www.ietf.org/rfc/rfc3526.txt

certificate's	key	(ECC	keys	are	much	smaller	than	RSA/DSA
ones	and	their	length	is	not	relevant	for	selecting	DH	primes).

Since	custom	DH	parameters	always	take	precedence	over	the
default	ones,	this	issue	can	be	avoided	by	creating	and
configuring	them	(as	described	above),	thus	using	a
custom/suitable	length.

Example
SSLCertificateFile	"/usr/local/apache2/conf/ssl.crt/server.crt"

SSLCertificateKeyFile	Directive

Description: Server	PEM-encoded	private	key	file
Syntax: SSLCertificateKeyFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	points	to	the	PEM-encoded	private	key	file	for	the
server.	If	the	contained	private	key	is	encrypted,	the	pass	phrase
dialog	is	forced	at	startup	time.

The	directive	can	be	used	multiple	times	(referencing	different
filenames)	to	support	multiple	algorithms	for	server	authentication.
For	each	SSLCertificateKeyFile	directive,	there	must	be	a
matching	SSLCertificateFile	directive.

The	private	key	may	also	be	combined	with	the	certificate	in	the
file	given	by	SSLCertificateFile,	but	this	practice	is	highly
discouraged.	If	it	is	used,	the	certificate	files	using	such	an
embedded	key	must	be	configured	after	the	certificates	using	a
separate	key	file.

Example
SSLCertificateKeyFile	"/usr/local/apache2/conf/ssl.key/server.key"

SSLCipherSuite	Directive

Description: Cipher	Suite	available	for	negotiation	in	SSL
handshake

Syntax: SSLCipherSuite	cipher-spec

Default: SSLCipherSuite	DEFAULT	(depends	on

OpenSSL	version)

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	complex	directive	uses	a	colon-separated	cipher-spec	string
consisting	of	OpenSSL	cipher	specifications	to	configure	the
Cipher	Suite	the	client	is	permitted	to	negotiate	in	the	SSL
handshake	phase.	Notice	that	this	directive	can	be	used	both	in
per-server	and	per-directory	context.	In	per-server	context	it
applies	to	the	standard	SSL	handshake	when	a	connection	is
established.	In	per-directory	context	it	forces	a	SSL	renegotiation
with	the	reconfigured	Cipher	Suite	after	the	HTTP	request	was
read	but	before	the	HTTP	response	is	sent.

An	SSL	cipher	specification	in	cipher-spec	is	composed	of	4	major
attributes	plus	a	few	extra	minor	ones:

Key	Exchange	Algorithm:
RSA,	Diffie-Hellman,	Elliptic	Curve	Diffie-Hellman,	Secure
Remote	Password
Authentication	Algorithm:
RSA,	Diffie-Hellman,	DSS,	ECDSA,	or	none.
Cipher/Encryption	Algorithm:
AES,	DES,	Triple-DES,	RC4,	RC2,	IDEA,	etc.
MAC	Digest	Algorithm:
MD5,	SHA	or	SHA1,	SHA256,	SHA384.

An	SSL	cipher	can	also	be	an	export	cipher.	SSLv2	ciphers	are	no
longer	supported.	To	specify	which	ciphers	to	use,	one	can	either
specify	all	the	Ciphers,	one	at	a	time,	or	use	aliases	to	specify	the
preference	and	order	for	the	ciphers	(see	Table	1).	The	actually
available	ciphers	and	aliases	depends	on	the	used	openssl
version.	Newer	openssl	versions	may	include	additional	ciphers.

Tag Description
Key	Exchange	Algorithm:
kRSA RSA	key	exchange
kDHr Diffie-Hellman	key	exchange	with	RSA	key
kDHd Diffie-Hellman	key	exchange	with	DSA	key
kEDH Ephemeral	(temp.key)	Diffie-Hellman	key	exchange

(no	cert)
kSRP Secure	Remote	Password	(SRP)	key	exchange
Authentication	Algorithm:
aNULL No	authentication
aRSA RSA	authentication
aDSS DSS	authentication
aDH Diffie-Hellman	authentication
Cipher	Encoding	Algorithm:
eNULL No	encryption
NULL alias	for	eNULL
AES AES	encryption
DES DES	encryption
3DES Triple-DES	encryption
RC4 RC4	encryption
RC2 RC2	encryption
IDEA IDEA	encryption
MAC	Digest	Algorithm:

MD5 MD5	hash	function
SHA1 SHA1	hash	function
SHA alias	for	SHA1
SHA256 SHA256	hash	function
SHA384 SHA384	hash	function
Aliases:
SSLv3 all	SSL	version	3.0	ciphers
TLSv1 all	TLS	version	1.0	ciphers
EXP all	export	ciphers
EXPORT40 all	40-bit	export	ciphers	only
EXPORT56 all	56-bit	export	ciphers	only
LOW all	low	strength	ciphers	(no	export,	single	DES)
MEDIUM all	ciphers	with	128	bit	encryption
HIGH all	ciphers	using	Triple-DES
RSA all	ciphers	using	RSA	key	exchange
DH all	ciphers	using	Diffie-Hellman	key	exchange
EDH all	ciphers	using	Ephemeral	Diffie-Hellman	key

exchange
ECDH Elliptic	Curve	Diffie-Hellman	key	exchange
ADH all	ciphers	using	Anonymous	Diffie-Hellman	key

exchange
AECDH all	ciphers	using	Anonymous	Elliptic	Curve	Diffie-

Hellman	key	exchange
SRP all	ciphers	using	Secure	Remote	Password	(SRP)

key	exchange
DSS all	ciphers	using	DSS	authentication
ECDSA all	ciphers	using	ECDSA	authentication
aNULL all	ciphers	using	no	authentication

Now	where	this	becomes	interesting	is	that	these	can	be	put

together	to	specify	the	order	and	ciphers	you	wish	to	use.	To
speed	this	up	there	are	also	aliases	(SSLv3,	TLSv1,	EXP,
LOW,	MEDIUM,	HIGH)	for	certain	groups	of	ciphers.	These	tags
can	be	joined	together	with	prefixes	to	form	the	cipher-spec.
Available	prefixes	are:

none:	add	cipher	to	list
+:	move	matching	ciphers	to	the	current	location	in	list
-:	remove	cipher	from	list	(can	be	added	later	again)
!:	kill	cipher	from	list	completely	(can	not	be	added	later
again)

aNULL,	eNULL	and	EXP	ciphers	are	always	disabled

Beginning	with	version	2.4.7,	null	and	export-grade	ciphers	are
always	disabled,	as	mod_ssl	unconditionally	adds
!aNULL:!eNULL:!EXP	to	any	cipher	string	at	initialization.

A	simpler	way	to	look	at	all	of	this	is	to	use	the	``openssl
ciphers	-v''	command	which	provides	a	nice	way	to
successively	create	the	correct	cipher-spec	string.	The	default
cipher-spec	string	depends	on	the	version	of	the	OpenSSL
libraries	used.	Let's	suppose	it	is	``RC4-SHA:AES128-
SHA:HIGH:MEDIUM:!aNULL:!MD5''	which	means	the	following:
Put	RC4-SHA	and	AES128-SHA	at	the	beginning.	We	do	this,
because	these	ciphers	offer	a	good	compromise	between	speed
and	security.	Next,	include	high	and	medium	security	ciphers.
Finally,	remove	all	ciphers	which	do	not	authenticate,	i.e.	for	SSL
the	Anonymous	Diffie-Hellman	ciphers,	as	well	as	all	ciphers
which	use	MD5	as	hash	algorithm,	because	it	has	been	proven
insufficient.

$	openssl	ciphers	-v	'RC4-SHA:AES128-SHA:HIGH:MEDIUM:!aNULL:!MD5'

RC4-SHA																	SSLv3	Kx=RSA						Au=RSA		Enc=RC4(128)		Mac=SHA1

AES128-SHA														SSLv3	Kx=RSA						Au=RSA		Enc=AES(128)		Mac=SHA1

DHE-RSA-AES256-SHA						SSLv3	Kx=DH							Au=RSA		Enc=AES(256)		Mac=SHA1

...																				

SEED-SHA																SSLv3	Kx=RSA						Au=RSA		Enc=SEED(128)	Mac=SHA1

PSK-RC4-SHA													SSLv3	Kx=PSK						Au=PSK		Enc=RC4(128)		Mac=SHA1

KRB5-RC4-SHA												SSLv3	Kx=KRB5					Au=KRB5	Enc=RC4(128)		Mac=SHA1

The	complete	list	of	particular	RSA	&	DH	ciphers	for	SSL	is	given
in	Table	2.

Example
SSLCipherSuite	RSA:!EXP:!NULL:+HIGH:+MEDIUM:-LOW

Cipher-
Tag

Protocol Key	Ex. Auth. Enc. MAC Type

RSA	Ciphers:
DES-

CBC3-SHA

SSLv3 RSA RSA 3DES(168) SHA1

IDEA-

CBC-SHA

SSLv3 RSA RSA IDEA(128) SHA1

RC4-SHA SSLv3 RSA RSA RC4(128) SHA1
RC4-MD5 SSLv3 RSA RSA RC4(128) MD5
DES-CBC-

SHA

SSLv3 RSA RSA DES(56) SHA1

EXP-DES-

CBC-SHA

SSLv3 RSA(512) RSA DES(40) SHA1 export

EXP-RC2-

CBC-MD5

SSLv3 RSA(512) RSA RC2(40) MD5 export

EXP-RC4-

MD5

SSLv3 RSA(512) RSA RC4(40) MD5 export

NULL-SHA SSLv3 RSA RSA None SHA1
NULL-MD5 SSLv3 RSA RSA None MD5
Diffie-Hellman	Ciphers:
ADH-DES- SSLv3 DH None 3DES(168) SHA1

CBC3-SHA

ADH-DES-

CBC-SHA

SSLv3 DH None DES(56) SHA1

ADH-RC4-

MD5

SSLv3 DH None RC4(128) MD5

EDH-RSA-

DES-

CBC3-SHA

SSLv3 DH RSA 3DES(168) SHA1

EDH-DSS-

DES-

CBC3-SHA

SSLv3 DH DSS 3DES(168) SHA1

EDH-RSA-

DES-CBC-

SHA

SSLv3 DH RSA DES(56) SHA1

EDH-DSS-

DES-CBC-

SHA

SSLv3 DH DSS DES(56) SHA1

EXP-EDH-

RSA-DES-

CBC-SHA

SSLv3 DH(512) RSA DES(40) SHA1 export

EXP-EDH-

DSS-DES-

CBC-SHA

SSLv3 DH(512) DSS DES(40) SHA1 export

EXP-ADH-

DES-CBC-

SHA

SSLv3 DH(512) None DES(40) SHA1 export

EXP-ADH-

RC4-MD5

SSLv3 DH(512) None RC4(40) MD5 export

SSLCompression	Directive

Description: Enable	compression	on	the	SSL	level
Syntax: SSLCompression	on|off

Default: SSLCompression	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.3	and	later,	if	using

OpenSSL	0.9.8	or	later;	virtual	host	scope
available	if	using	OpenSSL	1.0.0	or	later.	The
default	used	to	be	on	in	version	2.4.3.

This	directive	allows	to	enable	compression	on	the	SSL	level.

Enabling	compression	causes	security	issues	in	most	setups
(the	so	called	CRIME	attack).

SSLCryptoDevice	Directive

Description: Enable	use	of	a	cryptographic	hardware
accelerator

Syntax: SSLCryptoDevice	engine

Default: SSLCryptoDevice	builtin

Context: server	config
Status: Extension
Module: mod_ssl

This	directive	enables	use	of	a	cryptographic	hardware	accelerator
board	to	offload	some	of	the	SSL	processing	overhead.	This
directive	can	only	be	used	if	the	SSL	toolkit	is	built	with	"engine"
support;	OpenSSL	0.9.7	and	later	releases	have	"engine"	support
by	default,	the	separate	"-engine"	releases	of	OpenSSL	0.9.6	must
be	used.

To	discover	which	engine	names	are	supported,	run	the	command
"openssl	engine".

Example
#	For	a	Broadcom	accelerator:

SSLCryptoDevice	ubsec

SSLEngine	Directive

Description: SSL	Engine	Operation	Switch
Syntax: SSLEngine	on|off|optional

Default: SSLEngine	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	toggles	the	usage	of	the	SSL/TLS	Protocol	Engine.
This	is	should	be	used	inside	a	<VirtualHost>	section	to
enable	SSL/TLS	for	a	that	virtual	host.	By	default	the	SSL/TLS
Protocol	Engine	is	disabled	for	both	the	main	server	and	all
configured	virtual	hosts.

Example
<VirtualHost	_default_:443>

SSLEngine	on

#...

</VirtualHost>

In	Apache	2.1	and	later,	SSLEngine	can	be	set	to	optional.
This	enables	support	for	RFC	2817,	Upgrading	to	TLS	Within
HTTP/1.1.	At	this	time	no	web	browsers	support	RFC	2817.

http://www.ietf.org/rfc/rfc2817.txt

SSLFIPS	Directive

Description: SSL	FIPS	mode	Switch
Syntax: SSLFIPS	on|off

Default: SSLFIPS	off

Context: server	config
Status: Extension
Module: mod_ssl

This	directive	toggles	the	usage	of	the	SSL	library	FIPS_mode
flag.	It	must	be	set	in	the	global	server	context	and	cannot	be
configured	with	conflicting	settings	(SSLFIPS	on	followed	by
SSLFIPS	off	or	similar).	The	mode	applies	to	all	SSL	library
operations.

If	httpd	was	compiled	against	an	SSL	library	which	did	not	support
the	FIPS_mode	flag,	SSLFIPS	on	will	fail.	Refer	to	the	FIPS	140-
2	Security	Policy	document	of	the	SSL	provider	library	for	specific
requirements	to	use	mod_ssl	in	a	FIPS	140-2	approved	mode	of
operation;	note	that	mod_ssl	itself	is	not	validated,	but	may	be
described	as	using	FIPS	140-2	validated	cryptographic	module,
when	all	components	are	assembled	and	operated	under	the
guidelines	imposed	by	the	applicable	Security	Policy.

SSLHonorCipherOrder	Directive

Description: Option	to	prefer	the	server's	cipher	preference
order

Syntax: SSLHonorCipherOrder	on|off

Default: SSLHonorCipherOrder	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

When	choosing	a	cipher	during	an	SSLv3	or	TLSv1	handshake,
normally	the	client's	preference	is	used.	If	this	directive	is	enabled,
the	server's	preference	will	be	used	instead.

Example
SSLHonorCipherOrder	on

SSLInsecureRenegotiation	Directive

Description: Option	to	enable	support	for	insecure
renegotiation

Syntax: SSLInsecureRenegotiation	on|off

Default: SSLInsecureRenegotiation	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.2.15	and	later,	if	using

OpenSSL	0.9.8m	or	later

As	originally	specified,	all	versions	of	the	SSL	and	TLS	protocols
(up	to	and	including	TLS/1.2)	were	vulnerable	to	a	Man-in-the-
Middle	attack	(CVE-2009-3555)	during	a	renegotiation.	This
vulnerability	allowed	an	attacker	to	"prefix"	a	chosen	plaintext	to
the	HTTP	request	as	seen	by	the	web	server.	A	protocol	extension
was	developed	which	fixed	this	vulnerability	if	supported	by	both
client	and	server.

If	mod_ssl	is	linked	against	OpenSSL	version	0.9.8m	or	later,	by
default	renegotiation	is	only	supported	with	clients	supporting	the
new	protocol	extension.	If	this	directive	is	enabled,	renegotiation
will	be	allowed	with	old	(unpatched)	clients,	albeit	insecurely.

Security	warning

If	this	directive	is	enabled,	SSL	connections	will	be	vulnerable	to
the	Man-in-the-Middle	prefix	attack	as	described	in	CVE-2009-
3555.

Example
SSLInsecureRenegotiation	on

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

The	SSL_SECURE_RENEG	environment	variable	can	be	used	from
an	SSI	or	CGI	script	to	determine	whether	secure	renegotiation	is
supported	for	a	given	SSL	connection.

SSLOCSPDefaultResponder	Directive

Description: Set	the	default	responder	URI	for	OCSP	validation
Syntax: SSLOCSDefaultResponder	uri

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	sets	the	default	OCSP	responder	to	use.	If
SSLOCSPOverrideResponder	is	not	enabled,	the	URI	given	will
be	used	only	if	no	responder	URI	is	specified	in	the	certificate
being	verified.

SSLOCSPEnable	Directive

Description: Enable	OCSP	validation	of	the	client	certificate
chain

Syntax: SSLOCSPEnable	on|off

Default: SSLOCSPEnable	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	enables	OCSP	validation	of	the	client	certificate	chain.
If	this	option	is	enabled,	certificates	in	the	client's	certificate	chain
will	be	validated	against	an	OCSP	responder	after	normal
verification	(including	CRL	checks)	have	taken	place.

The	OCSP	responder	used	is	either	extracted	from	the	certificate
itself,	or	derived	by	configuration;	see	the
SSLOCSPDefaultResponder	and
SSLOCSPOverrideResponder	directives.

Example
SSLVerifyClient	on

SSLOCSPEnable	on

SSLOCSPDefaultResponder	"http://responder.example.com:8888/responder"

SSLOCSPOverrideResponder	on

SSLOCSPNoverify	Directive

Description: skip	the	OCSP	responder	certificates	verification
Syntax: SSLOCSPNoverify	On/Off

Default: SSLOCSPNoverify	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.26	and	later,	if	using

OpenSSL	0.9.7	or	later

Skip	the	OCSP	responder	certificates	verification,	mostly	useful
when	testing	an	OCSP	server.

SSLOCSPOverrideResponder	Directive

Description: Force	use	of	the	default	responder	URI	for	OCSP
validation

Syntax: SSLOCSPOverrideResponder	on|off

Default: SSLOCSPOverrideResponder	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	forces	the	configured	default	OCSP	responder	to	be
used	during	OCSP	certificate	validation,	regardless	of	whether	the
certificate	being	validated	references	an	OCSP	responder.

SSLOCSPProxyURL	Directive

Description: Proxy	URL	to	use	for	OCSP	requests
Syntax: SSLOCSPProxyURL	url

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.19	and	later

This	option	allows	to	set	the	URL	of	a	HTTP	proxy	that	should	be
used	for	all	queries	to	OCSP	responders.

SSLOCSPResponderCertificateFile	Directive

Description: Set	of	trusted	PEM	encoded	OCSP	responder
certificates

Syntax: SSLOCSPResponderCertificateFile	file

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.26	and	later,	if	using

OpenSSL	0.9.7	or	later

This	supplies	a	list	of	trusted	OCSP	responder	certificates	to	be
used	during	OCSP	responder	certificate	validation.	The	supplied
certificates	are	implicitly	trusted	without	any	further	validation.	This
is	typically	used	where	the	OCSP	responder	certificate	is	self
signed	or	omitted	from	the	OCSP	response.

SSLOCSPResponderTimeout	Directive

Description: Timeout	for	OCSP	queries
Syntax: SSLOCSPResponderTimeout	seconds

Default: SSLOCSPResponderTimeout	10

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	sets	the	timeout	for	queries	to	OCSP	responders,
when	SSLOCSPEnable	is	turned	on.

SSLOCSPResponseMaxAge	Directive

Description: Maximum	allowable	age	for	OCSP	responses
Syntax: SSLOCSPResponseMaxAge	seconds

Default: SSLOCSPResponseMaxAge	-1

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	sets	the	maximum	allowable	age	("freshness")	for
OCSP	responses.	The	default	value	(-1)	does	not	enforce	a
maximum	age,	which	means	that	OCSP	responses	are	considered
valid	as	long	as	their	nextUpdate	field	is	in	the	future.

SSLOCSPResponseTimeSkew	Directive

Description: Maximum	allowable	time	skew	for	OCSP	response
validation

Syntax: SSLOCSPResponseTimeSkew	seconds

Default: SSLOCSPResponseTimeSkew	300

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	sets	the	maximum	allowable	time	skew	for	OCSP
responses	(when	checking	their	thisUpdate	and	nextUpdate
fields).

SSLOCSPUseRequestNonce	Directive

Description: Use	a	nonce	within	OCSP	queries
Syntax: SSLOCSPUseRequestNonce	on|off

Default: SSLOCSPUseRequestNonce	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.10	and	later

This	option	determines	whether	queries	to	OCSP	responders
should	contain	a	nonce	or	not.	By	default,	a	query	nonce	is	always
used	and	checked	against	the	response's	one.	When	the
responder	does	not	use	nonces	(e.g.	Microsoft	OCSP	Responder),
this	option	should	be	turned	off.

SSLOpenSSLConfCmd	Directive

Description: Configure	OpenSSL	parameters	through	its
SSL_CONF	API

Syntax: SSLOpenSSLConfCmd	command-name

command-value

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.8	and	later,	if	using

OpenSSL	1.0.2	or	later

This	directive	exposes	OpenSSL's	SSL_CONF	API	to	mod_ssl,
allowing	a	flexible	configuration	of	OpenSSL	parameters	without
the	need	of	implementing	additional	mod_ssl	directives	when
new	features	are	added	to	OpenSSL.

The	set	of	available	SSLOpenSSLConfCmd	commands	depends
on	the	OpenSSL	version	being	used	for	mod_ssl	(at	least	version
1.0.2	is	required).	For	a	list	of	supported	command	names,	see	the
section	Supported	configuration	file	commands	in	the
SSL_CONF_cmd(3)	manual	page	for	OpenSSL.

Some	of	the	SSLOpenSSLConfCmd	commands	can	be	used	as	an
alternative	to	existing	directives	(such	as	SSLCipherSuite	or
SSLProtocol),	though	it	should	be	noted	that	the	syntax	/
allowable	values	for	the	parameters	may	sometimes	differ.

Examples
SSLOpenSSLConfCmd	Options	-SessionTicket,ServerPreference

SSLOpenSSLConfCmd	ECDHParameters	brainpoolP256r1

SSLOpenSSLConfCmd	ServerInfoFile	"/usr/local/apache2/conf/server-info.pem"

SSLOpenSSLConfCmd	Protocol	"-ALL,	TLSv1.2"

SSLOpenSSLConfCmd	SignatureAlgorithms	RSA+SHA384:ECDSA+SHA256

http://www.openssl.org/docs/man1.0.2/ssl/SSL_CONF_cmd.html#SUPPORTED-CONFIGURATION-FILE-COMMANDS

SSLOptions	Directive

Description: Configure	various	SSL	engine	run-time	options
Syntax: SSLOptions	[+|-]option	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Extension
Module: mod_ssl

This	directive	can	be	used	to	control	various	run-time	options	on	a
per-directory	basis.	Normally,	if	multiple	SSLOptions	could	apply
to	a	directory,	then	the	most	specific	one	is	taken	completely;	the
options	are	not	merged.	However	if	all	the	options	on	the
SSLOptions	directive	are	preceded	by	a	plus	(+)	or	minus	(-)
symbol,	the	options	are	merged.	Any	options	preceded	by	a	+	are
added	to	the	options	currently	in	force,	and	any	options	preceded
by	a	-	are	removed	from	the	options	currently	in	force.

The	available	options	are:

StdEnvVars

When	this	option	is	enabled,	the	standard	set	of	SSL	related
CGI/SSI	environment	variables	are	created.	This	per	default	is
disabled	for	performance	reasons,	because	the	information
extraction	step	is	a	rather	expensive	operation.	So	one
usually	enables	this	option	for	CGI	and	SSI	requests	only.

ExportCertData

When	this	option	is	enabled,	additional	CGI/SSI	environment
variables	are	created:	SSL_SERVER_CERT,
SSL_CLIENT_CERT	and	SSL_CLIENT_CERT_CHAIN_n	(with
n	=	0,1,2,..).	These	contain	the	PEM-encoded	X.509
Certificates	of	server	and	client	for	the	current	HTTPS
connection	and	can	be	used	by	CGI	scripts	for	deeper
Certificate	checking.	Additionally	all	other	certificates	of	the

client	certificate	chain	are	provided,	too.	This	bloats	up	the
environment	a	little	bit	which	is	why	you	have	to	use	this
option	to	enable	it	on	demand.

FakeBasicAuth

When	this	option	is	enabled,	the	Subject	Distinguished	Name
(DN)	of	the	Client	X509	Certificate	is	translated	into	a	HTTP
Basic	Authorization	username.	This	means	that	the	standard
Apache	authentication	methods	can	be	used	for	access
control.	The	user	name	is	just	the	Subject	of	the	Client's	X509
Certificate	(can	be	determined	by	running	OpenSSL's
openssl	x509	command:	openssl	x509	-noout	-
subject	-in	certificate.crt).	Note	that	no	password	is
obtained	from	the	user.	Every	entry	in	the	user	file	needs	this
password:	``xxj31ZMTZzkVA'',	which	is	the	DES-encrypted
version	of	the	word	`password''.	Those	who	live	under	MD5-
based	encryption	(for	instance	under	FreeBSD	or	BSD/OS,
etc.)	should	use	the	following	MD5	hash	of	the	same	word:
``1OXLyS...$Owx8s2/m9/gfkcRVXzgoE/''.

Note	that	the	AuthBasicFake	directive	within
mod_auth_basic	can	be	used	as	a	more	general
mechanism	for	faking	basic	authentication,	giving	control	over
the	structure	of	both	the	username	and	password.

StrictRequire

This	forces	forbidden	access	when	SSLRequireSSL	or
SSLRequire	successfully	decided	that	access	should	be
forbidden.	Usually	the	default	is	that	in	the	case	where	a
``Satisfy	any''	directive	is	used,	and	other	access
restrictions	are	passed,	denial	of	access	due	to
SSLRequireSSL	or	SSLRequire	is	overridden	(because
that's	how	the	Apache	Satisfy	mechanism	should	work.)
But	for	strict	access	restriction	you	can	use	SSLRequireSSL

and/or	SSLRequire	in	combination	with	an	``SSLOptions
+StrictRequire''.	Then	an	additional	``Satisfy	Any''	has
no	chance	once	mod_ssl	has	decided	to	deny	access.

OptRenegotiate

This	enables	optimized	SSL	connection	renegotiation
handling	when	SSL	directives	are	used	in	per-directory
context.	By	default	a	strict	scheme	is	enabled	where	every
per-directory	reconfiguration	of	SSL	parameters	causes	a	full
SSL	renegotiation	handshake.	When	this	option	is	used
mod_ssl	tries	to	avoid	unnecessary	handshakes	by	doing
more	granular	(but	still	safe)	parameter	checks.	Nevertheless
these	granular	checks	sometimes	may	not	be	what	the	user
expects,	so	enable	this	on	a	per-directory	basis	only,	please.

LegacyDNStringFormat

This	option	influences	how	values	of	the
SSL_{CLIENT,SERVER}_{I,S}_DN	variables	are
formatted.	Since	version	2.3.11,	Apache	HTTPD	uses	a	RFC
2253	compatible	format	by	default.	This	uses	commas	as
delimiters	between	the	attributes,	allows	the	use	of	non-ASCII
characters	(which	are	converted	to	UTF8),	escapes	various
special	characters	with	backslashes,	and	sorts	the	attributes
with	the	"C"	attribute	last.

If	LegacyDNStringFormat	is	set,	the	old	format	will	be
used	which	sorts	the	"C"	attribute	first,	uses	slashes	as
separators,	and	does	not	handle	non-ASCII	and	special
characters	in	any	consistent	way.

Example
SSLOptions	+FakeBasicAuth	-StrictRequire

<Files	~	"\.(cgi|shtml)$">

				SSLOptions	+StdEnvVars	-ExportCertData

</Files>

SSLPassPhraseDialog	Directive

Description: Type	of	pass	phrase	dialog	for	encrypted	private
keys

Syntax: SSLPassPhraseDialog	type

Default: SSLPassPhraseDialog	builtin

Context: server	config
Status: Extension
Module: mod_ssl

When	Apache	starts	up	it	has	to	read	the	various	Certificate	(see
SSLCertificateFile)	and	Private	Key	(see
SSLCertificateKeyFile)	files	of	the	SSL-enabled	virtual
servers.	Because	for	security	reasons	the	Private	Key	files	are
usually	encrypted,	mod_ssl	needs	to	query	the	administrator	for	a
Pass	Phrase	in	order	to	decrypt	those	files.	This	query	can	be
done	in	two	ways	which	can	be	configured	by	type:

builtin

This	is	the	default	where	an	interactive	terminal	dialog	occurs
at	startup	time	just	before	Apache	detaches	from	the	terminal.
Here	the	administrator	has	to	manually	enter	the	Pass	Phrase
for	each	encrypted	Private	Key	file.	Because	a	lot	of	SSL-
enabled	virtual	hosts	can	be	configured,	the	following	reuse-
scheme	is	used	to	minimize	the	dialog:	When	a	Private	Key
file	is	encrypted,	all	known	Pass	Phrases	(at	the	beginning
there	are	none,	of	course)	are	tried.	If	one	of	those	known
Pass	Phrases	succeeds	no	dialog	pops	up	for	this	particular
Private	Key	file.	If	none	succeeded,	another	Pass	Phrase	is
queried	on	the	terminal	and	remembered	for	the	next	round
(where	it	perhaps	can	be	reused).

This	scheme	allows	mod_ssl	to	be	maximally	flexible
(because	for	N	encrypted	Private	Key	files	you	can	use	N
different	Pass	Phrases	-	but	then	you	have	to	enter	all	of

them,	of	course)	while	minimizing	the	terminal	dialog	(i.e.
when	you	use	a	single	Pass	Phrase	for	all	N	Private	Key	files
this	Pass	Phrase	is	queried	only	once).

|/path/to/program	[args...]

This	mode	allows	an	external	program	to	be	used	which	acts
as	a	pipe	to	a	particular	input	device;	the	program	is	sent	the
standard	prompt	text	used	for	the	builtin	mode	on	stdin,
and	is	expected	to	write	password	strings	on	stdout.	If
several	passwords	are	needed	(or	an	incorrect	password	is
entered),	additional	prompt	text	will	be	written	subsequent	to
the	first	password	being	returned,	and	more	passwords	must
then	be	written	back.

exec:/path/to/program

Here	an	external	program	is	configured	which	is	called	at
startup	for	each	encrypted	Private	Key	file.	It	is	called	with	two
arguments	(the	first	is	of	the	form
``servername:portnumber'',	the	second	is	either	``RSA'',
``DSA'',	``ECC''	or	an	integer	index	starting	at	3	if	more	than
three	keys	are	configured),	which	indicate	for	which	server
and	algorithm	it	has	to	print	the	corresponding	Pass	Phrase	to
stdout.	In	versions	2.4.8	(unreleased)	and	2.4.9,	it	is	called
with	one	argument,	a	string	of	the	form
``servername:portnumber:index''	(with	index	being	a
zero-based	integer	number),	which	indicate	the	server,	TCP
port	and	certificate	number.	The	intent	is	that	this	external
program	first	runs	security	checks	to	make	sure	that	the
system	is	not	compromised	by	an	attacker,	and	only	when
these	checks	were	passed	successfully	it	provides	the	Pass
Phrase.

Both	these	security	checks,	and	the	way	the	Pass	Phrase	is
determined,	can	be	as	complex	as	you	like.	Mod_ssl	just

defines	the	interface:	an	executable	program	which	provides
the	Pass	Phrase	on	stdout.	Nothing	more	or	less!	So,	if
you're	really	paranoid	about	security,	here	is	your	interface.
Anything	else	has	to	be	left	as	an	exercise	to	the
administrator,	because	local	security	requirements	are	so
different.

The	reuse-algorithm	above	is	used	here,	too.	In	other	words:
The	external	program	is	called	only	once	per	unique	Pass
Phrase.

Example
SSLPassPhraseDialog	"exec:/usr/local/apache/sbin/pp-filter"

SSLProtocol	Directive

Description: Configure	usable	SSL/TLS	protocol	versions
Syntax: SSLProtocol	[+|-]protocol	...

Default: SSLProtocol	all	-SSLv3	(up	to	2.4.16:

all)

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	can	be	used	to	control	which	versions	of	the
SSL/TLS	protocol	will	be	accepted	in	new	connections.

The	available	(case-insensitive)	protocols	are:

SSLv3

This	is	the	Secure	Sockets	Layer	(SSL)	protocol,	version	3.0,
from	the	Netscape	Corporation.	It	is	the	successor	to	SSLv2
and	the	predecessor	to	TLSv1,	but	is	deprecated	in	RFC
7568.

TLSv1

This	is	the	Transport	Layer	Security	(TLS)	protocol,	version
1.0.	It	is	the	successor	to	SSLv3	and	is	defined	in	RFC	2246.
It	is	supported	by	nearly	every	client.

TLSv1.1	(when	using	OpenSSL	1.0.1	and	later)
A	revision	of	the	TLS	1.0	protocol,	as	defined	in	RFC	4346.

TLSv1.2	(when	using	OpenSSL	1.0.1	and	later)
A	revision	of	the	TLS	1.1	protocol,	as	defined	in	RFC	5246.

all

This	is	a	shortcut	for	``+SSLv3	+TLSv1''	or	-	when	using
OpenSSL	1.0.1	and	later	-	``+SSLv3	+TLSv1	+TLSv1.1

http://www.ietf.org/rfc/rfc7568.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt

+TLSv1.2'',	respectively	(except	for	OpenSSL	versions
compiled	with	the	``no-ssl3''	configuration	option,	where	all
does	not	include	+SSLv3).

Example
SSLProtocol	TLSv1

SSLProxyCACertificateFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	Certificates
for	Remote	Server	Auth

Syntax: SSLProxyCACertificateFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	can	assemble	the
Certificates	of	Certification	Authorities	(CA)	whose	remote	servers
you	deal	with.	These	are	used	for	Remote	Server	Authentication.
Such	a	file	is	simply	the	concatenation	of	the	various	PEM-
encoded	Certificate	files,	in	order	of	preference.	This	can	be	used
alternatively	and/or	additionally	to
SSLProxyCACertificatePath.

Example
SSLProxyCACertificateFile	"/usr/local/apache2/conf/ssl.crt/ca-bundle-remote-server.crt"

SSLProxyCACertificatePath	Directive

Description: Directory	of	PEM-encoded	CA	Certificates	for
Remote	Server	Auth

Syntax: SSLProxyCACertificatePath	directory-

path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	Certificates	of
Certification	Authorities	(CAs)	whose	remote	servers	you	deal
with.	These	are	used	to	verify	the	remote	server	certificate	on
Remote	Server	Authentication.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	can't	just	place
the	Certificate	files	there:	you	also	have	to	create	symbolic	links
named	hash-value.N.	And	you	should	always	make	sure	this
directory	contains	the	appropriate	symbolic	links.

Example
SSLProxyCACertificatePath	"/usr/local/apache2/conf/ssl.crt/"

SSLProxyCARevocationCheck	Directive

Description: Enable	CRL-based	revocation	checking	for
Remote	Server	Auth

Syntax: SSLProxyCARevocationCheck

chain|leaf|none

Default: SSLProxyCARevocationCheck	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

Enables	certificate	revocation	list	(CRL)	checking	for	the	remote
servers	you	deal	with.	At	least	one	of
SSLProxyCARevocationFile	or
SSLProxyCARevocationPath	must	be	configured.	When	set	to
chain	(recommended	setting),	CRL	checks	are	applied	to	all
certificates	in	the	chain,	while	setting	it	to	leaf	limits	the	checks	to
the	end-entity	cert.

When	set	to	chain	or	leaf,	CRLs	must	be	available	for
successful	validation

Prior	to	version	2.3.15,	CRL	checking	in	mod_ssl	also
succeeded	when	no	CRL(s)	were	found	in	any	of	the	locations
configured	with	SSLProxyCARevocationFile	or
SSLProxyCARevocationPath.	With	the	introduction	of	this
directive,	the	behavior	has	been	changed:	when	checking	is
enabled,	CRLs	must	be	present	for	the	validation	to	succeed	-
otherwise	it	will	fail	with	an	"unable	to	get	certificate
CRL"	error.

Example
SSLProxyCARevocationCheck	chain

SSLProxyCARevocationFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	CRLs	for
Remote	Server	Auth

Syntax: SSLProxyCARevocationFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	can	assemble	the
Certificate	Revocation	Lists	(CRL)	of	Certification	Authorities	(CA)
whose	remote	servers	you	deal	with.	These	are	used	for	Remote
Server	Authentication.	Such	a	file	is	simply	the	concatenation	of
the	various	PEM-encoded	CRL	files,	in	order	of	preference.	This
can	be	used	alternatively	and/or	additionally	to
SSLProxyCARevocationPath.

Example
SSLProxyCARevocationFile	"/usr/local/apache2/conf/ssl.crl/ca-bundle-remote-server.crl"

SSLProxyCARevocationPath	Directive

Description: Directory	of	PEM-encoded	CA	CRLs	for	Remote
Server	Auth

Syntax: SSLProxyCARevocationPath	directory-

path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	Certificate
Revocation	Lists	(CRL)	of	Certification	Authorities	(CAs)	whose
remote	servers	you	deal	with.	These	are	used	to	revoke	the
remote	server	certificate	on	Remote	Server	Authentication.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	have	not	only	to
place	the	CRL	files	there.	Additionally	you	have	to	create	symbolic
links	named	hash-value.rN.	And	you	should	always	make	sure
this	directory	contains	the	appropriate	symbolic	links.

Example
SSLProxyCARevocationPath	"/usr/local/apache2/conf/ssl.crl/"

SSLProxyCheckPeerCN	Directive

Description: Whether	to	check	the	remote	server	certificate's
CN	field

Syntax: SSLProxyCheckPeerCN	on|off

Default: SSLProxyCheckPeerCN	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	whether	the	remote	server	certificate's	CN	field
is	compared	against	the	hostname	of	the	request	URL.	If	both	are
not	equal	a	502	status	code	(Bad	Gateway)	is	sent.
SSLProxyCheckPeerCN	is	superseded	by
SSLProxyCheckPeerName	in	release	2.4.5	and	later.

In	all	releases	2.4.5	through	2.4.20,	setting
SSLProxyCheckPeerName	off	was	sufficient	to	enable	this
behavior	(as	the	SSLProxyCheckPeerCN	default	was	on.)	In
these	releases,	both	directives	must	be	set	to	off	to	completely
avoid	remote	server	certificate	name	validation.	Many	users
reported	this	to	be	very	confusing.

As	of	release	2.4.21,	all	configurations	which	enable	either	one	of
the	SSLProxyCheckPeerName	or	SSLProxyCheckPeerCN
options	will	use	the	new	SSLProxyCheckPeerName	behavior,
and	all	configurations	which	disable	either	one	of	the
SSLProxyCheckPeerName	or	SSLProxyCheckPeerCN	options
will	suppress	all	remote	server	certificate	name	validation.	Only
the	following	configuration	will	trigger	the	legacy	certificate	CN
comparison	in	2.4.21	and	later	releases;

Example
SSLProxyCheckPeerCN	on

SSLProxyCheckPeerName	off

SSLProxyCheckPeerExpire	Directive

Description: Whether	to	check	if	remote	server	certificate	is
expired

Syntax: SSLProxyCheckPeerExpire	on|off

Default: SSLProxyCheckPeerExpire	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	whether	it	is	checked	if	the	remote	server
certificate	is	expired	or	not.	If	the	check	fails	a	502	status	code
(Bad	Gateway)	is	sent.

Example
SSLProxyCheckPeerExpire	on

SSLProxyCheckPeerName	Directive

Description: Configure	host	name	checking	for	remote	server
certificates

Syntax: SSLProxyCheckPeerName	on|off

Default: SSLProxyCheckPeerName	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Apache	HTTP	Server	2.4.5	and	later

This	directive	configures	host	name	checking	for	server	certificates
when	mod_ssl	is	acting	as	an	SSL	client.	The	check	will	succeed	if
the	host	name	from	the	request	URI	matches	one	of	the	CN
attribute(s)	of	the	certificate's	subject,	or	matches	the
subjectAltName	extension.	If	the	check	fails,	the	SSL	request	is
aborted	and	a	502	status	code	(Bad	Gateway)	is	returned.

Wildcard	matching	is	supported	for	specific	cases:	an
subjectAltName	entry	of	type	dNSName,	or	CN	attributes	starting
with	*.	will	match	with	any	host	name	of	the	same	number	of
name	elements	and	the	same	suffix.	E.g.	*.example.org	will
match	foo.example.org,	but	will	not	match
foo.bar.example.org,	because	the	number	of	elements	in	the
respective	host	names	differs.

This	feature	was	introduced	in	2.4.5	and	superseded	the	behavior
of	the	SSLProxyCheckPeerCN	directive,	which	only	tested	the
exact	value	in	the	first	CN	attribute	against	the	host	name.
However,	many	users	were	confused	by	the	behavior	of	using
these	directives	individually,	so	the	mutual	behavior	of
SSLProxyCheckPeerName	and	SSLProxyCheckPeerCN
directives	were	improved	in	release	2.4.21.	See	the
SSLProxyCheckPeerCN	directive	description	for	the	original

behavior	and	details	of	these	improvements.

SSLProxyCipherSuite	Directive

Description: Cipher	Suite	available	for	negotiation	in	SSL	proxy
handshake

Syntax: SSLProxyCipherSuite	cipher-spec

Default: SSLProxyCipherSuite

ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+EXP

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

Equivalent	to	SSLCipherSuite,	but	for	the	proxy	connection.
Please	refer	to	SSLCipherSuite	for	additional	information.

SSLProxyEngine	Directive

Description: SSL	Proxy	Engine	Operation	Switch
Syntax: SSLProxyEngine	on|off

Default: SSLProxyEngine	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	toggles	the	usage	of	the	SSL/TLS	Protocol	Engine
for	proxy.	This	is	usually	used	inside	a	<VirtualHost>	section	to
enable	SSL/TLS	for	proxy	usage	in	a	particular	virtual	host.	By
default	the	SSL/TLS	Protocol	Engine	is	disabled	for	proxy	both	for
the	main	server	and	all	configured	virtual	hosts.

Note	that	the	SSLProxyEngine	directive	should	not,	in	general,
be	included	in	a	virtual	host	that	will	be	acting	as	a	forward	proxy
(using	<Proxy>	or	ProxyRequests	directives).
SSLProxyEngine	is	not	required	to	enable	a	forward	proxy
server	to	proxy	SSL/TLS	requests.

Example
<VirtualHost	_default_:443>

				SSLProxyEngine	on

				#...

</VirtualHost>

SSLProxyMachineCertificateChainFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	certificates
to	be	used	by	the	proxy	for	choosing	a	certificate

Syntax: SSLProxyMachineCertificateChainFile

filename

Context: server	config
Override: Not	applicable
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	keep	the	certificate
chain	for	all	of	the	client	certs	in	use.	This	directive	will	be	needed
if	the	remote	server	presents	a	list	of	CA	certificates	that	are	not
direct	signers	of	one	of	the	configured	client	certificates.

This	referenced	file	is	simply	the	concatenation	of	the	various
PEM-encoded	certificate	files.	Upon	startup,	each	client	certificate
configured	will	be	examined	and	a	chain	of	trust	will	be
constructed.

Security	warning

If	this	directive	is	enabled,	all	of	the	certificates	in	the	file	will	be
trusted	as	if	they	were	also	in
SSLProxyCACertificateFile.

Example
SSLProxyMachineCertificateChainFile	"/usr/local/apache2/conf/ssl.crt/proxyCA.pem"

SSLProxyMachineCertificateFile	Directive

Description: File	of	concatenated	PEM-encoded	client
certificates	and	keys	to	be	used	by	the	proxy

Syntax: SSLProxyMachineCertificateFile

filename

Context: server	config
Override: Not	applicable
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	keep	the
certificates	and	keys	used	for	authentication	of	the	proxy	server	to
remote	servers.

This	referenced	file	is	simply	the	concatenation	of	the	various
PEM-encoded	certificate	files,	in	order	of	preference.	Use	this
directive	alternatively	or	additionally	to
SSLProxyMachineCertificatePath.

Currently	there	is	no	support	for	encrypted	private	keys

Example
SSLProxyMachineCertificateFile	"/usr/local/apache2/conf/ssl.crt/proxy.pem"

SSLProxyMachineCertificatePath	Directive

Description: Directory	of	PEM-encoded	client	certificates	and
keys	to	be	used	by	the	proxy

Syntax: SSLProxyMachineCertificatePath

directory

Context: server	config
Override: Not	applicable
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	certificates
and	keys	used	for	authentication	of	the	proxy	server	to	remote
servers.

The	files	in	this	directory	must	be	PEM-encoded	and	are	accessed
through	hash	filenames.	Additionally,	you	must	create	symbolic
links	named	hash-value.N.	And	you	should	always	make	sure
this	directory	contains	the	appropriate	symbolic	links.

Currently	there	is	no	support	for	encrypted	private	keys

Example
SSLProxyMachineCertificatePath	"/usr/local/apache2/conf/proxy.crt/"

SSLProxyProtocol	Directive

Description: Configure	usable	SSL	protocol	flavors	for	proxy
usage

Syntax: SSLProxyProtocol	[+|-]protocol	...

Default: SSLProxyProtocol	all	-SSLv3	(up	to

2.4.16:	all)

Context: server	config,	virtual	host
Override: Options
Status: Extension
Module: mod_ssl

This	directive	can	be	used	to	control	the	SSL	protocol	flavors
mod_ssl	should	use	when	establishing	its	server	environment	for
proxy	.	It	will	only	connect	to	servers	using	one	of	the	provided
protocols.

Please	refer	to	SSLProtocol	for	additional	information.

SSLProxyVerify	Directive

Description: Type	of	remote	server	Certificate	verification
Syntax: SSLProxyVerify	level

Default: SSLProxyVerify	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

When	a	proxy	is	configured	to	forward	requests	to	a	remote	SSL
server,	this	directive	can	be	used	to	configure	certificate
verification	of	the	remote	server.

The	following	levels	are	available	for	level:

none:	no	remote	server	Certificate	is	required	at	all
optional:	the	remote	server	may	present	a	valid	Certificate
require:	the	remote	server	has	to	present	a	valid	Certificate
optional_no_ca:	the	remote	server	may	present	a	valid
Certificate
but	it	need	not	to	be	(successfully)	verifiable.

In	practice	only	levels	none	and	require	are	really	interesting,
because	level	optional	doesn't	work	with	all	servers	and	level
optional_no_ca	is	actually	against	the	idea	of	authentication	(but
can	be	used	to	establish	SSL	test	pages,	etc.)

Example
SSLProxyVerify	require

SSLProxyVerifyDepth	Directive

Description: Maximum	depth	of	CA	Certificates	in	Remote
Server	Certificate	verification

Syntax: SSLProxyVerifyDepth	number

Default: SSLProxyVerifyDepth	1

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	how	deeply	mod_ssl	should	verify	before
deciding	that	the	remote	server	does	not	have	a	valid	certificate.

The	depth	actually	is	the	maximum	number	of	intermediate
certificate	issuers,	i.e.	the	number	of	CA	certificates	which	are	max
allowed	to	be	followed	while	verifying	the	remote	server	certificate.
A	depth	of	0	means	that	self-signed	remote	server	certificates	are
accepted	only,	the	default	depth	of	1	means	the	remote	server
certificate	can	be	self-signed	or	has	to	be	signed	by	a	CA	which	is
directly	known	to	the	server	(i.e.	the	CA's	certificate	is	under
SSLProxyCACertificatePath),	etc.

Example
SSLProxyVerifyDepth	10

SSLRandomSeed	Directive

Description: Pseudo	Random	Number	Generator	(PRNG)
seeding	source

Syntax: SSLRandomSeed	context	source	[bytes]

Context: server	config
Status: Extension
Module: mod_ssl

This	configures	one	or	more	sources	for	seeding	the	Pseudo
Random	Number	Generator	(PRNG)	in	OpenSSL	at	startup	time
(context	is	startup)	and/or	just	before	a	new	SSL	connection	is
established	(context	is	connect).	This	directive	can	only	be	used
in	the	global	server	context	because	the	PRNG	is	a	global	facility.

The	following	source	variants	are	available:

builtin

This	is	the	always	available	builtin	seeding	source.	Its	usage
consumes	minimum	CPU	cycles	under	runtime	and	hence
can	be	always	used	without	drawbacks.	The	source	used	for
seeding	the	PRNG	contains	of	the	current	time,	the	current
process	id	and	(when	applicable)	a	randomly	chosen	1KB
extract	of	the	inter-process	scoreboard	structure	of	Apache.
The	drawback	is	that	this	is	not	really	a	strong	source	and	at
startup	time	(where	the	scoreboard	is	still	not	available)	this
source	just	produces	a	few	bytes	of	entropy.	So	you	should
always,	at	least	for	the	startup,	use	an	additional	seeding
source.

file:/path/to/source

This	variant	uses	an	external	file	/path/to/source	as	the
source	for	seeding	the	PRNG.	When	bytes	is	specified,	only
the	first	bytes	number	of	bytes	of	the	file	form	the	entropy
(and	bytes	is	given	to	/path/to/source	as	the	first

argument).	When	bytes	is	not	specified	the	whole	file	forms
the	entropy	(and	0	is	given	to	/path/to/source	as	the	first
argument).	Use	this	especially	at	startup	time,	for	instance
with	an	available	/dev/random	and/or	/dev/urandom
devices	(which	usually	exist	on	modern	Unix	derivatives	like
FreeBSD	and	Linux).

But	be	careful:	Usually	/dev/random	provides	only	as	much
entropy	data	as	it	actually	has,	i.e.	when	you	request	512
bytes	of	entropy,	but	the	device	currently	has	only	100	bytes
available	two	things	can	happen:	On	some	platforms	you
receive	only	the	100	bytes	while	on	other	platforms	the	read
blocks	until	enough	bytes	are	available	(which	can	take	a	long
time).	Here	using	an	existing	/dev/urandom	is	better,
because	it	never	blocks	and	actually	gives	the	amount	of
requested	data.	The	drawback	is	just	that	the	quality	of	the
received	data	may	not	be	the	best.

exec:/path/to/program

This	variant	uses	an	external	executable
/path/to/program	as	the	source	for	seeding	the	PRNG.
When	bytes	is	specified,	only	the	first	bytes	number	of	bytes
of	its	stdout	contents	form	the	entropy.	When	bytes	is	not
specified,	the	entirety	of	the	data	produced	on	stdout	form
the	entropy.	Use	this	only	at	startup	time	when	you	need	a
very	strong	seeding	with	the	help	of	an	external	program	(for
instance	as	in	the	example	above	with	the	truerand	utility
you	can	find	in	the	mod_ssl	distribution	which	is	based	on	the
AT&T	truerand	library).	Using	this	in	the	connection	context
slows	down	the	server	too	dramatically,	of	course.	So	usually
you	should	avoid	using	external	programs	in	that	context.

egd:/path/to/egd-socket	(Unix	only)
This	variant	uses	the	Unix	domain	socket	of	the	external

Entropy	Gathering	Daemon	(EGD)	(see
http://www.lothar.com/tech	/crypto/)	to	seed	the	PRNG.	Use
this	if	no	random	device	exists	on	your	platform.

Example
SSLRandomSeed	startup	builtin

SSLRandomSeed	startup	"file:/dev/random"

SSLRandomSeed	startup	"file:/dev/urandom"	1024

SSLRandomSeed	startup	"exec:/usr/local/bin/truerand"	16

SSLRandomSeed	connect	builtin

SSLRandomSeed	connect	"file:/dev/random"

SSLRandomSeed	connect	"file:/dev/urandom"	1024

http://www.lothar.com/tech/crypto/

SSLRenegBufferSize	Directive

Description: Set	the	size	for	the	SSL	renegotiation	buffer
Syntax: SSLRenegBufferSize	bytes

Default: SSLRenegBufferSize	131072

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

If	an	SSL	renegotiation	is	required	in	per-location	context,	for
example,	any	use	of	SSLVerifyClient	in	a	Directory	or
Location	block,	then	mod_ssl	must	buffer	any	HTTP	request	body
into	memory	until	the	new	SSL	handshake	can	be	performed.	This
directive	can	be	used	to	set	the	amount	of	memory	that	will	be
used	for	this	buffer.

Note	that	in	many	configurations,	the	client	sending	the	request
body	will	be	untrusted	so	a	denial	of	service	attack	by
consumption	of	memory	must	be	considered	when	changing
this	configuration	setting.

Example
SSLRenegBufferSize	262144

SSLRequire	Directive

Description: Allow	access	only	when	an	arbitrarily	complex
boolean	expression	is	true

Syntax: SSLRequire	expression

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

SSLRequire	is	deprecated

SSLRequire	is	deprecated	and	should	in	general	be	replaced
by	Require	expr.	The	so	called	ap_expr	syntax	of	Require
expr	is	a	superset	of	the	syntax	of	SSLRequire,	with	the
following	exception:

In	SSLRequire,	the	comparison	operators	<,	<=,	...	are
completely	equivalent	to	the	operators	lt,	le,	...	and	work	in	a
somewhat	peculiar	way	that	first	compares	the	length	of	two
strings	and	then	the	lexical	order.	On	the	other	hand,	ap_expr
has	two	sets	of	comparison	operators:	The	operators	<,	<=,	...
do	lexical	string	comparison,	while	the	operators	-lt,	-le,	...
do	integer	comparison.	For	the	latter,	there	are	also	aliases
without	the	leading	dashes:	lt,	le,	...

This	directive	specifies	a	general	access	requirement	which	has	to
be	fulfilled	in	order	to	allow	access.	It	is	a	very	powerful	directive
because	the	requirement	specification	is	an	arbitrarily	complex
boolean	expression	containing	any	number	of	access	checks.

The	expression	must	match	the	following	syntax	(given	as	a	BNF
grammar	notation):

expr					::=	"true"	|	"false"

											|	"!"	expr

											|	expr	"&&"	expr

											|	expr	"||"	expr

											|	"("	expr	")"

											|	comp

comp					::=	word	"=="	word	|	word	"eq"	word

											|	word	"!="	word	|	word	"ne"	word

											|	word	"<"		word	|	word	"lt"	word

											|	word	"<="	word	|	word	"le"	word

											|	word	">"		word	|	word	"gt"	word

											|	word	">="	word	|	word	"ge"	word

											|	word	"in"	"{"	wordlist	"}"

											|	word	"in"	"PeerExtList("	word	")"

											|	word	"=~"	regex

											|	word	"!~"	regex

wordlist	::=	word

											|	wordlist	","	word

word					::=	digit

											|	cstring

											|	variable

											|	function

digit				::=	[0-9]+

cstring		::=	"..."

variable	::=	"%{"	varname	"}"

function	::=	funcname	"("	funcargs	")"

For	varname	any	of	the	variables	described	in	Environment
Variables	can	be	used.	For	funcname	the	available	functions	are
listed	in	the	ap_expr	documentation.

The	expression	is	parsed	into	an	internal	machine	representation
when	the	configuration	is	loaded,	and	then	evaluated	during
request	processing.	In	.htaccess	context,	the	expression	is	both

parsed	and	executed	each	time	the	.htaccess	file	is	encountered
during	request	processing.

Example
SSLRequire	(%{SSL_CIPHER}	!~	m/^(EXP|NULL)-/																			\

												and	%{SSL_CLIENT_S_DN_O}	eq	"Snake	Oil,	Ltd."										\

												and	%{SSL_CLIENT_S_DN_OU}	in	{"Staff",	"CA",	"Dev"}				\

												and	%{TIME_WDAY}	-ge	1	and	%{TIME_WDAY}	-le	5										\

												and	%{TIME_HOUR}	-ge	8	and	%{TIME_HOUR}	-le	20)	\

											or	%{REMOTE_ADDR}	=~	m/^192\.76\.162\.[0-9]+$/

The	PeerExtList(object-ID)	function	expects	to	find	zero	or
more	instances	of	the	X.509	certificate	extension	identified	by	the
given	object	ID	(OID)	in	the	client	certificate.	The	expression
evaluates	to	true	if	the	left-hand	side	string	matches	exactly
against	the	value	of	an	extension	identified	with	this	OID.	(If
multiple	extensions	with	the	same	OID	are	present,	at	least	one
extension	must	match).

Example
SSLRequire	"foobar"	in	PeerExtList("1.2.3.4.5.6")

Notes	on	the	PeerExtList	function

The	object	ID	can	be	specified	either	as	a	descriptive	name
recognized	by	the	SSL	library,	such	as	"nsComment",	or
as	a	numeric	OID,	such	as	"1.2.3.4.5.6".

Expressions	with	types	known	to	the	SSL	library	are
rendered	to	a	string	before	comparison.	For	an	extension
with	a	type	not	recognized	by	the	SSL	library,	mod_ssl	will
parse	the	value	if	it	is	one	of	the	primitive	ASN.1	types
UTF8String,	IA5String,	VisibleString,	or	BMPString.	For	an
extension	of	one	of	these	types,	the	string	value	will	be
converted	to	UTF-8	if	necessary,	then	compared	against

the	left-hand-side	expression.

See	also
Environment	Variables	in	Apache	HTTP	Server,	for	additional
examples.
Require	expr
Generic	expression	syntax	in	Apache	HTTP	Server

SSLRequireSSL	Directive

Description: Deny	access	when	SSL	is	not	used	for	the	HTTP
request

Syntax: SSLRequireSSL

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	directive	forbids	access	unless	HTTP	over	SSL	(i.e.	HTTPS)
is	enabled	for	the	current	connection.	This	is	very	handy	inside	the
SSL-enabled	virtual	host	or	directories	for	defending	against
configuration	errors	that	expose	stuff	that	should	be	protected.
When	this	directive	is	present	all	requests	are	denied	which	are
not	using	SSL.

Example
SSLRequireSSL

SSLSessionCache	Directive

Description: Type	of	the	global/inter-process	SSL	Session
Cache

Syntax: SSLSessionCache	type

Default: SSLSessionCache	none

Context: server	config
Status: Extension
Module: mod_ssl

This	configures	the	storage	type	of	the	global/inter-process	SSL
Session	Cache.	This	cache	is	an	optional	facility	which	speeds	up
parallel	request	processing.	For	requests	to	the	same	server
process	(via	HTTP	keep-alive),	OpenSSL	already	caches	the	SSL
session	information	locally.	But	because	modern	clients	request
inlined	images	and	other	data	via	parallel	requests	(usually	up	to
four	parallel	requests	are	common)	those	requests	are	served	by
different	pre-forked	server	processes.	Here	an	inter-process	cache
helps	to	avoid	unnecessary	session	handshakes.

The	following	five	storage	types	are	currently	supported:

none

This	disables	the	global/inter-process	Session	Cache.	This
will	incur	a	noticeable	speed	penalty	and	may	cause	problems
if	using	certain	browsers,	particularly	if	client	certificates	are
enabled.	This	setting	is	not	recommended.

nonenotnull

This	disables	any	global/inter-process	Session	Cache.
However	it	does	force	OpenSSL	to	send	a	non-null	session	ID
to	accommodate	buggy	clients	that	require	one.

dbm:/path/to/datafile

This	makes	use	of	a	DBM	hashfile	on	the	local	disk	to

synchronize	the	local	OpenSSL	memory	caches	of	the	server
processes.	This	session	cache	may	suffer	reliability	issues
under	high	load.	To	use	this,	ensure	that	mod_socache_dbm
is	loaded.

shmcb:/path/to/datafile[(size)]
This	makes	use	of	a	high-performance	cyclic	buffer	(approx.
size	bytes	in	size)	inside	a	shared	memory	segment	in	RAM
(established	via	/path/to/datafile)	to	synchronize	the
local	OpenSSL	memory	caches	of	the	server	processes.	This
is	the	recommended	session	cache.	To	use	this,	ensure	that
mod_socache_shmcb	is	loaded.

dc:UNIX:/path/to/socket

This	makes	use	of	the	distcache	distributed	session	caching
libraries.	The	argument	should	specify	the	location	of	the
server	or	proxy	to	be	used	using	the	distcache	address
syntax;	for	example,	UNIX:/path/to/socket	specifies	a
UNIX	domain	socket	(typically	a	local	dc_client	proxy);
IP:server.example.com:9001	specifies	an	IP	address.
To	use	this,	ensure	that	mod_socache_dc	is	loaded.

Examples
SSLSessionCache	"dbm:/usr/local/apache/logs/ssl_gcache_data"

SSLSessionCache	"shmcb:/usr/local/apache/logs/ssl_gcache_data(512000)"

The	ssl-cache	mutex	is	used	to	serialize	access	to	the	session
cache	to	prevent	corruption.	This	mutex	can	be	configured	using
the	Mutex	directive.

http://distcache.sourceforge.net/

SSLSessionCacheTimeout	Directive

Description: Number	of	seconds	before	an	SSL	session
expires	in	the	Session	Cache

Syntax: SSLSessionCacheTimeout	seconds

Default: SSLSessionCacheTimeout	300

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Applies	also	to	RFC	5077	TLS	session

resumption	in	Apache	2.4.10	and	later

This	directive	sets	the	timeout	in	seconds	for	the	information
stored	in	the	global/inter-process	SSL	Session	Cache,	the
OpenSSL	internal	memory	cache	and	for	sessions	resumed	by
TLS	session	resumption	(RFC	5077).	It	can	be	set	as	low	as	15	for
testing,	but	should	be	set	to	higher	values	like	300	in	real	life.

Example
SSLSessionCacheTimeout	600

SSLSessionTicketKeyFile	Directive

Description: Persistent	encryption/decryption	key	for	TLS
session	tickets

Syntax: SSLSessionTicketKeyFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.0	and	later,	if	using

OpenSSL	0.9.8h	or	later

Optionally	configures	a	secret	key	for	encrypting	and	decrypting
TLS	session	tickets,	as	defined	in	RFC	5077.	Primarily	suitable	for
clustered	environments	where	TLS	sessions	information	should	be
shared	between	multiple	nodes.	For	single-instance	httpd	setups,
it	is	recommended	to	not	configure	a	ticket	key	file,	but	to	rely	on
(random)	keys	generated	by	mod_ssl	at	startup,	instead.

The	ticket	key	file	must	contain	48	bytes	of	random	data,
preferrably	created	from	a	high-entropy	source.	On	a	Unix-based
system,	a	ticket	key	file	can	be	created	as	follows:

dd	if=/dev/random	of=/path/to/file.tkey	bs=1	count=48

Ticket	keys	should	be	rotated	(replaced)	on	a	frequent	basis,	as
this	is	the	only	way	to	invalidate	an	existing	session	ticket	-
OpenSSL	currently	doesn't	allow	to	specify	a	limit	for	ticket
lifetimes.	A	new	ticket	key	only	gets	used	after	restarting	the	web
server.	All	existing	session	tickets	become	invalid	after	a	restart.

The	ticket	key	file	contains	sensitive	keying	material	and	should
be	protected	with	file	permissions	similar	to	those	used	for
SSLCertificateKeyFile.

http://www.ietf.org/rfc/rfc5077.txt

SSLSessionTickets	Directive

Description: Enable	or	disable	use	of	TLS	session	tickets
Syntax: SSLSessionTickets	on|off

Default: SSLSessionTickets	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.11	and	later,	if	using

OpenSSL	0.9.8f	or	later.

This	directive	allows	to	enable	or	disable	the	use	of	TLS	session
tickets	(RFC	5077).

TLS	session	tickets	are	enabled	by	default.	Using	them	without
restarting	the	web	server	with	an	appropriate	frequency	(e.g.
daily)	compromises	perfect	forward	secrecy.

SSLSRPUnknownUserSeed	Directive

Description: SRP	unknown	user	seed
Syntax: SSLSRPUnknownUserSeed	secret-string

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.4	and	later,	if	using

OpenSSL	1.0.1	or	later

This	directive	sets	the	seed	used	to	fake	SRP	user	parameters	for
unknown	users,	to	avoid	leaking	whether	a	given	user	exists.
Specify	a	secret	string.	If	this	directive	is	not	used,	then	Apache
will	return	the	UNKNOWN_PSK_IDENTITY	alert	to	clients	who
specify	an	unknown	username.

Example
SSLSRPUnknownUserSeed	"secret"

SSLSRPVerifierFile	Directive

Description: Path	to	SRP	verifier	file
Syntax: SSLSRPVerifierFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.4	and	later,	if	using

OpenSSL	1.0.1	or	later

This	directive	enables	TLS-SRP	and	sets	the	path	to	the	OpenSSL
SRP	(Secure	Remote	Password)	verifier	file	containing	TLS-SRP
usernames,	verifiers,	salts,	and	group	parameters.

Example
SSLSRPVerifierFile	"/path/to/file.srpv"

The	verifier	file	can	be	created	with	the	openssl	command	line
utility:

Creating	the	SRP	verifier	file
openssl	srp	-srpvfile	passwd.srpv	-userinfo	"some	info"	-add

username

The	value	given	with	the	optional	-userinfo	parameter	is
avalable	in	the	SSL_SRP_USERINFO	request	environment
variable.

SSLStaplingCache	Directive

Description: Configures	the	OCSP	stapling	cache
Syntax: SSLStaplingCache	type

Context: server	config
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

Configures	the	cache	used	to	store	OCSP	responses	which	get
included	in	the	TLS	handshake	if	SSLUseStapling	is	enabled.
Configuration	of	a	cache	is	mandatory	for	OCSP	stapling.	With	the
exception	of	none	and	nonenotnull,	the	same	storage	types
are	supported	as	with	SSLSessionCache.

SSLStaplingErrorCacheTimeout	Directive

Description: Number	of	seconds	before	expiring	invalid
responses	in	the	OCSP	stapling	cache

Syntax: SSLStaplingErrorCacheTimeout	seconds

Default: SSLStaplingErrorCacheTimeout	600

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

Sets	the	timeout	in	seconds	before	invalid	responses	in	the	OCSP
stapling	cache	(configured	through	SSLStaplingCache)	will
expire.	To	set	the	cache	timeout	for	valid	responses,	see
SSLStaplingStandardCacheTimeout.

SSLStaplingFakeTryLater	Directive

Description: Synthesize	"tryLater"	responses	for	failed	OCSP
stapling	queries

Syntax: SSLStaplingFakeTryLater	on|off

Default: SSLStaplingFakeTryLater	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

When	enabled	and	a	query	to	an	OCSP	responder	for	stapling
purposes	fails,	mod_ssl	will	synthesize	a	"tryLater"	response	for
the	client.	Only	effective	if
SSLStaplingReturnResponderErrors	is	also	enabled.

SSLStaplingForceURL	Directive

Description: Override	the	OCSP	responder	URI	specified	in
the	certificate's	AIA	extension

Syntax: SSLStaplingForceURL	uri

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	directive	overrides	the	URI	of	an	OCSP	responder	as
obtained	from	the	authorityInfoAccess	(AIA)	extension	of	the
certificate.	One	potential	use	is	when	a	proxy	is	used	for	retrieving
OCSP	queries.

SSLStaplingResponderTimeout	Directive

Description: Timeout	for	OCSP	stapling	queries
Syntax: SSLStaplingResponderTimeout	seconds

Default: SSLStaplingResponderTimeout	10

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	option	sets	the	timeout	for	queries	to	OCSP	responders	when
SSLUseStapling	is	enabled	and	mod_ssl	is	querying	a
responder	for	OCSP	stapling	purposes.

SSLStaplingResponseMaxAge	Directive

Description: Maximum	allowable	age	for	OCSP	stapling
responses

Syntax: SSLStaplingResponseMaxAge	seconds

Default: SSLStaplingResponseMaxAge	-1

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	option	sets	the	maximum	allowable	age	("freshness")	when
considering	OCSP	responses	for	stapling	purposes,	i.e.	when
SSLUseStapling	is	turned	on.	The	default	value	(-1)	does	not
enforce	a	maximum	age,	which	means	that	OCSP	responses	are
considered	valid	as	long	as	their	nextUpdate	field	is	in	the	future.

SSLStaplingResponseTimeSkew	Directive

Description: Maximum	allowable	time	skew	for	OCSP	stapling
response	validation

Syntax: SSLStaplingResponseTimeSkew	seconds

Default: SSLStaplingResponseTimeSkew	300

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	option	sets	the	maximum	allowable	time	skew	when	mod_ssl
checks	the	thisUpdate	and	nextUpdate	fields	of	OCSP
responses	which	get	included	in	the	TLS	handshake	(OCSP
stapling).	Only	applicable	if	SSLUseStapling	is	turned	on.

SSLStaplingReturnResponderErrors	Directive

Description: Pass	stapling	related	OCSP	errors	on	to	client
Syntax: SSLStaplingReturnResponderErrors

on|off

Default: SSLStaplingReturnResponderErrors	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

When	enabled,	mod_ssl	will	pass	responses	from	unsuccessful
stapling	related	OCSP	queries	(such	as	responses	with	an	overall
status	other	than	"successful",	responses	with	a	certificate	status
other	than	"good",	expired	responses	etc.)	on	to	the	client.	If	set	to
off,	only	responses	indicating	a	certificate	status	of	"good"	will	be
included	in	the	TLS	handshake.

SSLStaplingStandardCacheTimeout	Directive

Description: Number	of	seconds	before	expiring	responses	in
the	OCSP	stapling	cache

Syntax: SSLStaplingStandardCacheTimeout

seconds

Default: SSLStaplingStandardCacheTimeout	3600

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

Sets	the	timeout	in	seconds	before	responses	in	the	OCSP
stapling	cache	(configured	through	SSLStaplingCache)	will
expire.	This	directive	applies	to	valid	responses,	while
SSLStaplingErrorCacheTimeout	is	used	for	controlling	the
timeout	for	invalid/unavailable	responses.

SSLStrictSNIVHostCheck	Directive

Description: Whether	to	allow	non-SNI	clients	to	access	a
name-based	virtual	host.

Syntax: SSLStrictSNIVHostCheck	on|off

Default: SSLStrictSNIVHostCheck	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	Apache	2.2.12	and	later

This	directive	sets	whether	a	non-SNI	client	is	allowed	to	access	a
name-based	virtual	host.	If	set	to	on	in	the	default	name-based
virtual	host,	clients	that	are	SNI	unaware	will	not	be	allowed	to
access	any	virtual	host,	belonging	to	this	particular	IP	/	port
combination.	If	set	to	on	in	any	other	virtual	host,	SNI	unaware
clients	are	not	allowed	to	access	this	particular	virtual	host.

This	option	is	only	available	if	httpd	was	compiled	against	an
SNI	capable	version	of	OpenSSL.

Example
SSLStrictSNIVHostCheck	on

SSLUserName	Directive

Description: Variable	name	to	determine	user	name
Syntax: SSLUserName	varname

Context: server	config,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	directive	sets	the	"user"	field	in	the	Apache	request	object.
This	is	used	by	lower	modules	to	identify	the	user	with	a	character
string.	In	particular,	this	may	cause	the	environment	variable
REMOTE_USER	to	be	set.	The	varname	can	be	any	of	the	SSL
environment	variables.

Note	that	this	directive	has	no	effect	if	the	FakeBasicAuth	option
is	used	(see	SSLOptions).

Example
SSLUserName	SSL_CLIENT_S_DN_CN

SSLUseStapling	Directive

Description: Enable	stapling	of	OCSP	responses	in	the	TLS
handshake

Syntax: SSLUseStapling	on|off

Default: SSLUseStapling	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	option	enables	OCSP	stapling,	as	defined	by	the	"Certificate
Status	Request"	TLS	extension	specified	in	RFC	6066.	If	enabled
(and	requested	by	the	client),	mod_ssl	will	include	an	OCSP
response	for	its	own	certificate	in	the	TLS	handshake.	Configuring
an	SSLStaplingCache	is	a	prerequisite	for	enabling	OCSP
stapling.

OCSP	stapling	relieves	the	client	of	querying	the	OCSP	responder
on	its	own,	but	it	should	be	noted	that	with	the	RFC	6066
specification,	the	server's	CertificateStatus	reply	may	only
include	an	OCSP	response	for	a	single	cert.	For	server	certificates
with	intermediate	CA	certificates	in	their	chain	(the	typical	case
nowadays),	stapling	in	its	current	implementation	therefore	only
partially	achieves	the	stated	goal	of	"saving	roundtrips	and
resources"	-	see	also	RFC	6961	(TLS	Multiple	Certificate	Status
Extension).

When	OCSP	stapling	is	enabled,	the	ssl-stapling	mutex	is
used	to	control	access	to	the	OCSP	stapling	cache	in	order	to
prevent	corruption,	and	the	sss-stapling-refresh	mutex	is
used	to	control	refreshes	of	OCSP	responses.	These	mutexes	can
be	configured	using	the	Mutex	directive.

http://www.ietf.org/rfc/rfc6961.txt

SSLVerifyClient	Directive

Description: Type	of	Client	Certificate	verification
Syntax: SSLVerifyClient	level

Default: SSLVerifyClient	none

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	directive	sets	the	Certificate	verification	level	for	the	Client
Authentication.	Notice	that	this	directive	can	be	used	both	in	per-
server	and	per-directory	context.	In	per-server	context	it	applies	to
the	client	authentication	process	used	in	the	standard	SSL
handshake	when	a	connection	is	established.	In	per-directory
context	it	forces	a	SSL	renegotiation	with	the	reconfigured	client
verification	level	after	the	HTTP	request	was	read	but	before	the
HTTP	response	is	sent.

The	following	levels	are	available	for	level:

none:	no	client	Certificate	is	required	at	all
optional:	the	client	may	present	a	valid	Certificate
require:	the	client	has	to	present	a	valid	Certificate
optional_no_ca:	the	client	may	present	a	valid	Certificate
but	it	need	not	to	be	(successfully)	verifiable.	This	option
cannot	be	relied	upon	for	client	authentication.

Example
SSLVerifyClient	require

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

SSLVerifyDepth	Directive

Description: Maximum	depth	of	CA	Certificates	in	Client
Certificate	verification

Syntax: SSLVerifyDepth	number

Default: SSLVerifyDepth	1

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	directive	sets	how	deeply	mod_ssl	should	verify	before
deciding	that	the	clients	don't	have	a	valid	certificate.	Notice	that
this	directive	can	be	used	both	in	per-server	and	per-directory
context.	In	per-server	context	it	applies	to	the	client	authentication
process	used	in	the	standard	SSL	handshake	when	a	connection
is	established.	In	per-directory	context	it	forces	a	SSL
renegotiation	with	the	reconfigured	client	verification	depth	after
the	HTTP	request	was	read	but	before	the	HTTP	response	is	sent.

The	depth	actually	is	the	maximum	number	of	intermediate
certificate	issuers,	i.e.	the	number	of	CA	certificates	which	are	max
allowed	to	be	followed	while	verifying	the	client	certificate.	A	depth
of	0	means	that	self-signed	client	certificates	are	accepted	only,
the	default	depth	of	1	means	the	client	certificate	can	be	self-
signed	or	has	to	be	signed	by	a	CA	which	is	directly	known	to	the
server	(i.e.	the	CA's	certificate	is	under
SSLCACertificatePath),	etc.

Example
SSLVerifyDepth	10

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_status

				.	 					.

: 			
	

: Base
: status_module
: mod_status.c

Status						.	 				HTML				.	
()			 		.								
.

	:

		worker	
	(idle)	worker	
	worker	,	worker				 worker				(*)
					(*)
					
		,					 		(*)
				worker	CPU		(*)
					(*)

		"(*)"					.	 						.

Status	

foo.com						 httpd.conf				

<Location	/server-status>

SetHandler	server-status

Order	Deny,Allow

Deny	from	all

Allow	from	.foo.com

</Location>

		 http://your.server.name/server-status		
			.

	

	""		status			 		.	N		
http://your.server.name/server-status?refresh=N	
.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

				Status	

http://your.server.name/server-status?auto	 		
			status				.		 		 /support		
log_server_status	Perl				 		.

mod_status			 	 		(,	.htaccess
.			 				.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_substitute

Description: Perform	search	and	replace	operations	on
response	bodies

Status: Extension
Module	Identifier: substitute_module
Source	File: mod_substitute.c
Compatibility: Available	in	Apache	HTTP	Server	2.2.7	and	later

Summary
mod_substitute	provides	a	mechanism	to	perform	both	regular
expression	and	fixed	string	substitutions	on	response	bodies.

Substitute	Directive

Description: Pattern	to	filter	the	response	content
Syntax: Substitute

s/pattern/substitution/[infq]

Context: directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_substitute

The	Substitute	directive	specifies	a	search	and	replace	pattern
to	apply	to	the	response	body.

The	meaning	of	the	pattern	can	be	modified	by	using	any
combination	of	these	flags:

i

Perform	a	case-insensitive	match.

n

By	default	the	pattern	is	treated	as	a	regular	expression.
Using	the	n	flag	forces	the	pattern	to	be	treated	as	a	fixed
string.

f

The	f	flag	causes	mod_substitute	to	flatten	the	result	of	a
substitution	allowing	for	later	substitutions	to	take	place	on	the
boundary	of	this	one.	This	is	the	default.

q

The	q	flag	causes	mod_substitute	to	not	flatten	the
buckets	after	each	substitution.	This	can	result	in	much	faster
response	and	a	decrease	in	memory	utilization,	but	should
only	be	used	if	there	is	no	possibility	that	the	result	of	one
substitution	will	ever	match	a	pattern	or	regex	of	a	subsequent
one.

Example
<Location	"/">

				AddOutputFilterByType	SUBSTITUTE	text/html

				Substitute	"s/foo/bar/ni"

</Location>

If	either	the	pattern	or	the	substitution	contain	a	slash	character
then	an	alternative	delimiter	should	be	used:

Example	of	using	an	alternate	delimiter
<Location	"/">

				AddOutputFilterByType	SUBSTITUTE	text/html

				Substitute	"s|<BR	*/?>|
|i"

</Location>

Backreferences	can	be	used	in	the	comparison	and	in	the
substitution,	when	regular	expressions	are	used,	as	illustrated	in
the	following	example:

Example	of	using	backreferences	and	captures
<Location	"/">

				AddOutputFilterByType	SUBSTITUTE	text/html

				#	"foo=k,bar=k"	->	"foo/bar=k"

				Substitute	"s|foo=(\w+),bar=\1|foo/bar=$1"

</Location>

A	common	use	scenario	for	mod_substitute	is	the	situation	in
which	a	front-end	server	proxies	requests	to	a	back-end	server
which	returns	HTML	with	hard-coded	embedded	URLs	that	refer	to
the	back-end	server.	These	URLs	don't	work	for	the	end-user,
since	the	back-end	server	is	unreachable.

In	this	case,	mod_substitute	can	be	used	to	rewrite	those
URLs	into	something	that	will	work	from	the	front	end:

Rewriting	URLs	embedded	in	proxied	content

ProxyPass								"/blog/"	"http://internal.blog.example.com"

ProxyPassReverse	"/blog/"	"http://internal.blog.example.com/"

Substitute	"s|http://internal.blog.example.com/|http://www.example.com/blog/|i"

ProxyPassReverse	modifies	any	Location	(redirect)	headers
that	are	sent	by	the	back-end	server,	and,	in	this	example,
Substitute	takes	care	of	the	rest	of	the	problem	by	fixing	up	the
HTML	response	as	well.

SubstituteInheritBefore	Directive

Description: Change	the	merge	order	of	inherited	patterns
Syntax: SubstituteInheritBefore	on|off

Default: SubstituteInheritBefore	off

Context: directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_substitute
Compatibility: Available	in	httpd	2.4.17	and	later

Whether	to	apply	the	inherited	Substitute	patterns	first	(on),	or
after	the	ones	of	the	current	context	(off).
SubstituteInheritBefore	is	itself	inherited,	hence	contexts
that	inherit	it	(those	that	don't	specify	their	own
SubstituteInheritBefore	value)	will	apply	the	closest
defined	merge	order.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SubstituteMaxLineLength	Directive

Description: Set	the	maximum	line	size
Syntax: SubstituteMaxLineLength

bytes(b|B|k|K|m|M|g|G)

Default: SubstituteMaxLineLength	1m

Context: directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_substitute
Compatibility: Available	in	httpd	2.4.11	and	later

The	maximum	line	size	handled	by	mod_substitute	is	limited	to
restrict	memory	use.	The	limit	can	be	configured	using
SubstituteMaxLineLength.	The	value	can	be	given	as	the
number	of	bytes	and	can	be	suffixed	with	a	single	letter	b,	B,	k,	K,
m,	M,	g,	G	to	provide	the	size	in	bytes,	kilobytes,	megabytes	or
gigabytes	respectively.

Example
<Location	"/">

				AddOutputFilterByType	SUBSTITUTE	text/html

				SubstituteMaxLineLength	10m

				Substitute	"s/foo/bar/ni"

</Location>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_suexec

				.	 					.

: CGI			
		

: Extension
: suexec_module
: mod_suexec.c
: 	2.0	

		 suexec		 		CGI					 	.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

SuEXEC	

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_suexec
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_suexec

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

SuexecUserGroup	

: CGI					
: SuexecUserGroup	User	Group

: ,	
: Extension
: mod_suexec
: SuexecUserGroup	2.0		.

SuexecUserGroup		CGI		 			.	CGI			
User				.				 1.3	VirtualHost			User
Group		 .

SuexecUserGroup	nobody	nogroup

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_unique_id

				.	 					.

: 				
	

: Extension
: unique_id_module
: mod_unique_id.c

					""		 		(identifier)			.	
					 	.				 UNIQUE_ID	.				
,					.

							 	.	Windows	NT					.	
				,			 			.					
				 		.			httpd		 .

				(cluster)	 .							.			
,						 							.

						.	 (NTP		

		NTP					 .
			.			 							

	pid	(id)	32		 .		pid	32				

								 		httpd				httpd		
.		IP		httpd		pid	 			.						
			.

			(timestamp,			 1970	1	1)	16	
.	 		,				65536	 .	 (ip_addr,	pid,	time_stamp,
counter)			httpd				65536			 	.			pid
			 .

httpd				(10)	 65536			.	(
		 						.)	 								
			().

		(fork)			pid	 ,	pid				.	(pid			
		32	.)			 		pid			.				pid	
			.	,			 		65536				.	
32768				pid		 			,				.)

				.	,		 					(
)	.			 pid					.				
	.					 		,					

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

seed		 rand()			,					 	seed			.)	
		.

				?				 		500	(
								 .)		.				
.			 					500				 .		pid			500
			 500									 1000.		()	
		 			1.5%.				,	
		 				()		32	 .

		"	"			.	 					(UTC),			
			.	x86		 		.			UTC		
NTP					 UTC			.

	 UNIQUE_ID	MIME	base64		 		112	(32	IP	,	32
pid,	32	 ,	16)			 [A-Za-z0-9@-]	.		MIME
base64		 [A-Za-z0-9+/]	 +	/	URL				.	
					 			.				
				 ,							 	.			
			,		 UNIQUE_ID				.

			 UNIQUE_ID		 						.	
	,			 				.					
			 				 	(flag	second) 	 .						
		 .

								 	.			Windows	NT			
	,						 .									
		.		 					(NTP),	httpd		
		 (pid).			 									
.	(,			32	IP		 		,						

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_unixd

Description: Basic	(required)	security	for	Unix-family
platforms.

Status: Base
Module	Identifier: unixd_module
Source	File: mod_unixd.c

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
suEXEC	support

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_unixd
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_unixd

ChrootDir	Directive

Description: Directory	for	apache	to	run	chroot(8)	after
startup.

Syntax: ChrootDir	/path/to/directory

Default: none

Context: server	config
Status: Base
Module: mod_unixd

Compatibility: Available	in	Apache	2.2.10	and	later

This	directive	tells	the	server	to	chroot(8)	to	the	specified	directory
after	startup,	but	before	accepting	requests	over	the	'net.

Note	that	running	the	server	under	chroot	is	not	simple,	and
requires	additional	setup,	particularly	if	you	are	running	scripts
such	as	CGI	or	PHP.	Please	make	sure	you	are	properly	familiar
with	the	operation	of	chroot	before	attempting	to	use	this	feature.

Group	Directive

Description: Group	under	which	the	server	will	answer	requests
Syntax: Group	unix-group

Default: Group	#-1

Context: server	config
Status: Base
Module: mod_unixd

The	Group	directive	sets	the	group	under	which	the	server	will
answer	requests.	In	order	to	use	this	directive,	the	server	must	be
run	initially	as	root.	If	you	start	the	server	as	a	non-root	user,	it
will	fail	to	change	to	the	specified	group,	and	will	instead	continue
to	run	as	the	group	of	the	original	user.	Unix-group	is	one	of:

A	group	name
Refers	to	the	given	group	by	name.

#	followed	by	a	group	number.
Refers	to	a	group	by	its	number.

Example
Group	www-group

It	is	recommended	that	you	set	up	a	new	group	specifically	for
running	the	server.	Some	admins	use	user	nobody,	but	this	is	not
always	possible	or	desirable.

Security

Don't	set	Group	(or	User)	to	root	unless	you	know	exactly
what	you	are	doing,	and	what	the	dangers	are.

See	also

VHostGroup

SuexecUserGroup

Suexec	Directive

Description: Enable	or	disable	the	suEXEC	feature
Syntax: Suexec	On|Off

Default: On	if	suexec	binary	exists	with

proper	owner	and	mode,	Off	otherwise

Context: server	config
Status: Base
Module: mod_unixd

When	On,	startup	will	fail	if	the	suexec	binary	doesn't	exist	or	has
an	invalid	owner	or	file	mode.

When	Off,	suEXEC	will	be	disabled	even	if	the	suexec	binary
exists	and	has	a	valid	owner	and	file	mode.

User	Directive

Description: The	userid	under	which	the	server	will	answer
requests

Syntax: User	unix-userid

Default: User	#-1

Context: server	config
Status: Base
Module: mod_unixd

The	User	directive	sets	the	user	ID	as	which	the	server	will
answer	requests.	In	order	to	use	this	directive,	the	server	must	be
run	initially	as	root.	If	you	start	the	server	as	a	non-root	user,	it
will	fail	to	change	to	the	lesser	privileged	user,	and	will	instead
continue	to	run	as	that	original	user.	If	you	do	start	the	server	as
root,	then	it	is	normal	for	the	parent	process	to	remain	running	as
root.	Unix-userid	is	one	of:

A	username
Refers	to	the	given	user	by	name.

#	followed	by	a	user	number.
Refers	to	a	user	by	its	number.

The	user	should	have	no	privileges	that	result	in	it	being	able	to
access	files	that	are	not	intended	to	be	visible	to	the	outside	world,
and	similarly,	the	user	should	not	be	able	to	execute	code	that	is
not	meant	for	HTTP	requests.	It	is	recommended	that	you	set	up	a
new	user	and	group	specifically	for	running	the	server.	Some
admins	use	user	nobody,	but	this	is	not	always	desirable,	since
the	nobody	user	can	have	other	uses	on	the	system.

Security

Don't	set	User	(or	Group)	to	root	unless	you	know	exactly
what	you	are	doing,	and	what	the	dangers	are.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

See	also
VHostUser

SuexecUserGroup

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_userdir

				.	 					.

: 	
: Base
: userdir_module
: mod_userdir.c

			 http://example.com/~user/						.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

URL		
public_html	

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_userdir
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_userdir

UserDir	

: 		
: UserDir	directory-filename

: UserDir	public_html

: ,	
: Base
: mod_userdir

UserDir													.
Directory-filename			:

				.
disabled	.	 enabled		()					 	-
		.
disabled						.		 enabled			
,								 .
enabled						.		disable		
disabled		,			.

Userdir		 enabled	disabled			,					
.	 http://www.foo.com/~bob/one/two.html				
	:

	UserDir	 	
UserDir	public_html ~bob/public_html/one/two.html
UserDir	/usr/web /usr/web/bob/one/two.html
UserDir	/home/*/www /home/bob/www/one/two.html

				:

	UserDir	 	
UserDir
http://www.foo.com/users

http://www.foo.com/users/bob/one/two.html

UserDir
http://www.foo.com/*/usr

http://www.foo.com/bob/usr/one/two.html

UserDir
http://www.foo.com/~*/

http://www.foo.com/~bob/one/two.html

			;		,	 "UserDir	./"	 "/~root"		
	 "/"	.		" UserDir	disabled	root"			.	
			 Directory		 	 	.

	:

		 UserDir		,		:

UserDir	disabled

UserDir	enabled	user1	user2	user3

		 UserDir				,		:

UserDir	enabled

UserDir	disabled	user4	user5	user6

					.				:

Userdir	public_html	/usr/web	http://www.foo.com/

http://www.foo.com/~bob/one/two.html		,	
~bob/public_html/one/two.html		,	/usr/web/bob/one/two.html
		,		http://www.foo.com/bob/one/two.html		.

					.						,						
	.

public_html	

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_usertrack

Description: Clickstream	logging	of	user	activity	on	a	site
Status: Extension
Module	Identifier: usertrack_module
Source	File: mod_usertrack.c

Summary
Provides	tracking	of	a	user	through	your	website	via	browser	cookies.

Logging

mod_usertrack	sets	a	cookie	which	can	be	logged	via
mod_log_config	configurable	logging	formats:

LogFormat	"%{Apache}n	%r	%t"	usertrack

CustomLog	logs/clickstream.log	usertrack

CookieDomain	Directive

Description: The	domain	to	which	the	tracking	cookie	applies
Syntax: CookieDomain	domain

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

This	directive	controls	the	setting	of	the	domain	to	which	the
tracking	cookie	applies.	If	not	present,	no	domain	is	included	in	the
cookie	header	field.

The	domain	string	must	begin	with	a	dot,	and	must	include	at
least	one	embedded	dot.	That	is,	.example.com	is	legal,	but
www.example.com	and	.com	are	not.

Most	browsers	in	use	today	will	not	allow	cookies	to	be	set	for	a
two-part	top	level	domain,	such	as	.co.uk,	although	such	a
domain	ostensibly	fulfills	the	requirements	above.
These	domains	are	equivalent	to	top	level	domains	such	as
.com,	and	allowing	such	cookies	may	be	a	security	risk.	Thus,	if
you	are	under	a	two-part	top	level	domain,	you	should	still	use
your	actual	domain,	as	you	would	with	any	other	top	level
domain	(for	example	.example.co.uk).

CookieDomain	.example.com

CookieExpires	Directive

Description: Expiry	time	for	the	tracking	cookie
Syntax: CookieExpires	expiry-period

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

When	used,	this	directive	sets	an	expiry	time	on	the	cookie
generated	by	the	usertrack	module.	The	expiry-period	can	be
given	either	as	a	number	of	seconds,	or	in	the	format	such	as	"2
weeks	3	days	7	hours".	Valid	denominations	are:	years,	months,
weeks,	days,	hours,	minutes	and	seconds.	If	the	expiry	time	is	in
any	format	other	than	one	number	indicating	the	number	of
seconds,	it	must	be	enclosed	by	double	quotes.

If	this	directive	is	not	used,	cookies	last	only	for	the	current
browser	session.

CookieExpires	"3	weeks"

CookieName	Directive

Description: Name	of	the	tracking	cookie
Syntax: CookieName	token

Default: CookieName	Apache

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

This	directive	allows	you	to	change	the	name	of	the	cookie	this
module	uses	for	its	tracking	purposes.	By	default	the	cookie	is
named	"Apache".

You	must	specify	a	valid	cookie	name;	results	are	unpredictable	if
you	use	a	name	containing	unusual	characters.	Valid	characters
include	A-Z,	a-z,	0-9,	"_",	and	"-".

CookieName	clicktrack

CookieStyle	Directive

Description: Format	of	the	cookie	header	field
Syntax: CookieStyle

Netscape|Cookie|Cookie2|RFC2109|RFC2965

Default: CookieStyle	Netscape

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

This	directive	controls	the	format	of	the	cookie	header	field.	The
three	formats	allowed	are:

Netscape,	which	is	the	original	but	now	deprecated	syntax.
This	is	the	default,	and	the	syntax	Apache	has	historically
used.
Cookie	or	RFC2109,	which	is	the	syntax	that	superseded	the
Netscape	syntax.
Cookie2	or	RFC2965,	which	is	the	most	current	cookie
syntax.

Not	all	clients	can	understand	all	of	these	formats,	but	you	should
use	the	newest	one	that	is	generally	acceptable	to	your	users'
browsers.	At	the	time	of	writing,	most	browsers	support	all	three	of
these	formats,	with	Cookie2	being	the	preferred	format.

CookieStyle	Cookie2

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

CookieTracking	Directive

Description: Enables	tracking	cookie
Syntax: CookieTracking	on|off

Default: CookieTracking	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

When	mod_usertrack	is	loaded,	and	CookieTracking	on	is
set,	Apache	will	send	a	user-tracking	cookie	for	all	new	requests.
This	directive	can	be	used	to	turn	this	behavior	on	or	off	on	a	per-
server	or	per-directory	basis.	By	default,	enabling
mod_usertrack	will	not	activate	cookies.

CookieTracking	on

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		mod_version

				.	 					.

: 	
: Extension
: version_module
: mod_version.c
: 	2.1	

									 				.			
			 <IfVersion>	.

<IfVersion	2.1.0>

#					2.1.0

</IfVersion>

<IfVersion	>=	2.2>

#					:-)

</IfVersion>

			.

<IfVersion>	

: 		
: <IfVersion	[[!]operator]	version>	...

</IfVersion>

: ,	,	directory,	.htaccess
Override	: All
: Extension
: mod_version

<IfVersion>		 								
version		 2.1.0	 2.2		 major[.minor[.patch]]	.	
	 patch		.	 			0	.				 operator

operator
=		 == 	

> 		
	

>= 	
	

< 	
	

<= 	
	

<IfVersion	>=	2.1>

#		2.1.0			

#	.

</IfVersion>

							 	.				.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

operator
=		 == version	/regex/

~ version	regex	

<IfVersion	=	/^2.1.[01234]$/>

#		,								

</IfVersion>

		(!)				 .

<IfVersion	!~	^2.1.[01234]$>

#			

</IfVersion>

operator		 =	 .

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_vhost_alias

Description: Provides	for	dynamically	configured	mass	virtual
hosting

Status: Extension
Module	Identifier: vhost_alias_module
Source	File: mod_vhost_alias.c

Summary
This	module	creates	dynamically	configured	virtual	hosts,	by	allowing
the	IP	address	and/or	the	Host:	header	of	the	HTTP	request	to	be
used	as	part	of	the	pathname	to	determine	what	files	to	serve.	This
allows	for	easy	use	of	a	huge	number	of	virtual	hosts	with	similar
configurations.

Note

If	mod_alias	or	mod_userdir	are	used	for	translating	URIs	to
filenames,	they	will	override	the	directives	of	mod_vhost_alias
described	below.	For	example,	the	following	configuration	will	map
/cgi-bin/script.pl	to	/usr/local/apache2/cgi-
bin/script.pl	in	all	cases:

ScriptAlias	"/cgi-bin/"	"/usr/local/apache2/cgi-bin/"

VirtualScriptAlias	"/never/found/%0/cgi-bin/"

Bugfix	checklist

https://www.apache.org/foundation/contributing.html

httpd	changelog
Known	issues
Report	a	bug

See	also
UseCanonicalName

Dynamically	configured	mass	virtual	hosting

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_vhost_alias
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_vhost_alias

Directory	Name	Interpolation

All	the	directives	in	this	module	interpolate	a	string	into	a
pathname.	The	interpolated	string	(henceforth	called	the	"name")
may	be	either	the	server	name	(see	the	UseCanonicalName
directive	for	details	on	how	this	is	determined)	or	the	IP	address	of
the	virtual	host	on	the	server	in	dotted-quad	format.	The
interpolation	is	controlled	by	specifiers	inspired	by	printf	which
have	a	number	of	formats:

%% insert	a	%
%p insert	the	port	number	of	the	virtual	host
%N.M insert	(part	of)	the	name

N	and	M	are	used	to	specify	substrings	of	the	name.	N	selects	from
the	dot-separated	components	of	the	name,	and	M	selects
characters	within	whatever	N	has	selected.	M	is	optional	and
defaults	to	zero	if	it	isn't	present;	the	dot	must	be	present	if	and
only	if	M	is	present.	The	interpretation	is	as	follows:

0 the	whole	name
1 the	first	part
2 the	second	part
-1 the	last	part
-2 the	penultimate	part
2+ the	second	and	all	subsequent	parts
-2+ the	penultimate	and	all	preceding	parts
1+	and	-1+ the	same	as	0

If	N	or	M	is	greater	than	the	number	of	parts	available	a	single
underscore	is	interpolated.

Examples

For	simple	name-based	virtual	hosts	you	might	use	the	following
directives	in	your	server	configuration	file:

UseCanonicalName				Off

VirtualDocumentRoot	"/usr/local/apache/vhosts/%0"

A	request	for
http://www.example.com/directory/file.html	will	be
satisfied	by	the	file
/usr/local/apache/vhosts/www.example.com/directory/file.html

For	a	very	large	number	of	virtual	hosts	it	is	a	good	idea	to	arrange
the	files	to	reduce	the	size	of	the	vhosts	directory.	To	do	this	you
might	use	the	following	in	your	configuration	file:

UseCanonicalName				Off

VirtualDocumentRoot	"/usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2"

A	request	for
http://www.domain.example.com/directory/file.html

will	be	satisfied	by	the	file
/usr/local/apache/vhosts/example.com/d/o/m/domain/directory/file.html

A	more	even	spread	of	files	can	be	achieved	by	hashing	from	the
end	of	the	name,	for	example:

VirtualDocumentRoot	"/usr/local/apache/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2"

The	example	request	would	come	from
/usr/local/apache/vhosts/example.com/n/i/a/domain/directory/file.html

Alternatively	you	might	use:

VirtualDocumentRoot	"/usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+"

The	example	request	would	come	from
/usr/local/apache/vhosts/example.com/d/o/m/ain/directory/file.html

A	very	common	request	by	users	is	the	ability	to	point	multiple
domains	to	multiple	document	roots	without	having	to	worry	about
the	length	or	number	of	parts	of	the	hostname	being	requested.	If
the	requested	hostname	is	sub.www.domain.example.com
instead	of	simply	www.domain.example.com,	then	using	%3+
will	result	in	the	document	root	being
/usr/local/apache/vhosts/domain.example.com/...

instead	of	the	intended	example.com	directory.	In	such	cases,	it
can	be	beneficial	to	use	the	combination	%-2.0.%-1.0,	which	will
always	yield	the	domain	name	and	the	tld,	for	example
example.com	regardless	of	the	number	of	subdomains	appended
to	the	hostname.	As	such,	one	can	make	a	configuration	that	will
direct	all	first,	second	or	third	level	subdomains	to	the	same
directory:

VirtualDocumentRoot	"/usr/local/apache/vhosts/%-2.0.%-1.0"

In	the	example	above,	both	www.example.com	as	well	as
www.sub.example.com	or	example.com	will	all	point	to
/usr/local/apache/vhosts/example.com.

For	IP-based	virtual	hosting	you	might	use	the	following	in	your
configuration	file:

UseCanonicalName	DNS

VirtualDocumentRootIP	"/usr/local/apache/vhosts/%1/%2/%3/%4/docs"

VirtualScriptAliasIP		"/usr/local/apache/vhosts/%1/%2/%3/%4/cgi-bin"

A	request	for
http://www.domain.example.com/directory/file.html

would	be	satisfied	by	the	file
/usr/local/apache/vhosts/10/20/30/40/docs/directory/file.html

if	the	IP	address	of	www.domain.example.com	were
10.20.30.40.	A	request	for
http://www.domain.example.com/cgi-bin/script.pl

would	be	satisfied	by	executing	the	program
/usr/local/apache/vhosts/10/20/30/40/cgi-

bin/script.pl.

If	you	want	to	include	the	.	character	in	a
VirtualDocumentRoot	directive,	but	it	clashes	with	a	%
directive,	you	can	work	around	the	problem	in	the	following	way:

VirtualDocumentRoot	"/usr/local/apache/vhosts/%2.0.%3.0"

A	request	for
http://www.domain.example.com/directory/file.html

will	be	satisfied	by	the	file
/usr/local/apache/vhosts/domain.example/directory/file.html

The	LogFormat	directives	%V	and	%A	are	useful	in	conjunction
with	this	module.

VirtualDocumentRoot	Directive

Description: Dynamically	configure	the	location	of	the	document
root	for	a	given	virtual	host

Syntax: VirtualDocumentRoot	interpolated-

directory|none

Default: VirtualDocumentRoot	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_vhost_alias

The	VirtualDocumentRoot	directive	allows	you	to	determine
where	Apache	HTTP	Server	will	find	your	documents	based	on	the
value	of	the	server	name.	The	result	of	expanding	interpolated-
directory	is	used	as	the	root	of	the	document	tree	in	a	similar
manner	to	the	DocumentRoot	directive's	argument.	If
interpolated-directory	is	none	then	VirtualDocumentRoot	is
turned	off.	This	directive	cannot	be	used	in	the	same	context	as
VirtualDocumentRootIP.

Note
VirtualDocumentRoot	will	override	any	DocumentRoot
directives	you	may	have	put	in	the	same	context	or	child
contexts.	Putting	a	VirtualDocumentRoot	in	the	global
server	scope	will	effectively	override	DocumentRoot	directives
in	any	virtual	hosts	defined	later	on,	unless	you	set
VirtualDocumentRoot	to	None	in	each	virtual	host.

VirtualDocumentRootIP	Directive

Description: Dynamically	configure	the	location	of	the	document
root	for	a	given	virtual	host

Syntax: VirtualDocumentRootIP	interpolated-

directory|none

Default: VirtualDocumentRootIP	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_vhost_alias

The	VirtualDocumentRootIP	directive	is	like	the
VirtualDocumentRoot	directive,	except	that	it	uses	the	IP
address	of	the	server	end	of	the	connection	for	directory
interpolation	instead	of	the	server	name.

VirtualScriptAlias	Directive

Description: Dynamically	configure	the	location	of	the	CGI
directory	for	a	given	virtual	host

Syntax: VirtualScriptAlias	interpolated-

directory|none

Default: VirtualScriptAlias	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_vhost_alias

The	VirtualScriptAlias	directive	allows	you	to	determine
where	Apache	httpd	will	find	CGI	scripts	in	a	similar	manner	to
VirtualDocumentRoot	does	for	other	documents.	It	matches
requests	for	URIs	starting	/cgi-bin/,	much	like	ScriptAlias
/cgi-bin/	would.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

VirtualScriptAliasIP	Directive

Description: Dynamically	configure	the	location	of	the	CGI
directory	for	a	given	virtual	host

Syntax: VirtualScriptAliasIP	interpolated-

directory|none

Default: VirtualScriptAliasIP	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_vhost_alias

The	VirtualScriptAliasIP	directive	is	like	the
VirtualScriptAlias	directive,	except	that	it	uses	the	IP
address	of	the	server	end	of	the	connection	for	directory
interpolation	instead	of	the	server	name.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_watchdog

Description: provides	infrastructure	for	other	modules	to
periodically	run	tasks

Status: Base
Module	Identifier: watchdog_module
Source	File: mod_watchdog.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
mod_watchdog	defines	programmatic	hooks	for	other	modules	to
periodically	run	tasks.	These	modules	can	register	handlers	for
mod_watchdog	hooks.	Currently,	the	following	modules	in	the
Apache	distribution	use	this	functionality:

mod_heartbeat

mod_heartmonitor

To	allow	a	module	to	use	mod_watchdog	functionality,
mod_watchdog	itself	must	be	statically	linked	to	the	server	core	or,
if	a	dynamic	module,	be	loaded	before	the	calling	module.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

WatchdogInterval	Directive

Description: Watchdog	interval	in	seconds
Syntax: WatchdogInterval	number-of-seconds

Default: WatchdogInterval	1

Context: server	config
Status: Base
Module: mod_watchdog

Sets	the	interval	at	which	the	watchdog_step	hook	runs.	Default	is
to	run	every	second.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_xml2enc

Description: Enhanced	charset/internationalisation	support	for
libxml2-based	filter	modules

Status: Base
Module	Identifier: xml2enc_module
Source	File: mod_xml2enc.c
Compatibility: Version	2.4	and	later.	Available	as	a	third-party

module	for	2.2.x	versions

Summary
This	module	provides	enhanced	internationalisation	support	for
markup-aware	filter	modules	such	as	mod_proxy_html.	It	can
automatically	detect	the	encoding	of	input	data	and	ensure	they	are
correctly	processed	by	the	libxml2	parser,	including	converting	to
Unicode	(UTF-8)	where	necessary.	It	can	also	convert	data	to	an
encoding	of	choice	after	markup	processing,	and	will	ensure	the
correct	charset	value	is	set	in	the	HTTP	Content-Type	header.

http://xmlsoft.org/

Usage

There	are	two	usage	scenarios:	with	modules	programmed	to
work	with	mod_xml2enc,	and	with	those	that	are	not	aware	of	it:

Filter	modules	enabled	for	mod_xml2enc
Modules	such	as	mod_proxy_html	version	3.1	and	up	use
the	xml2enc_charset	optional	function	to	retrieve	the
charset	argument	to	pass	to	the	libxml2	parser,	and	may	use
the	xml2enc_filter	optional	function	to	postprocess	to
another	encoding.	Using	mod_xml2enc	with	an	enabled
module,	no	configuration	is	necessary:	the	other	module	will
configure	mod_xml2enc	for	you	(though	you	may	still	want	to
customise	it	using	the	configuration	directives	below).

Non-enabled	modules
To	use	it	with	a	libxml2-based	module	that	isn't	explicitly
enabled	for	mod_xml2enc,	you	will	have	to	configure	the	filter
chain	yourself.	So	to	use	it	with	a	filter	foo	provided	by	a
module	mod_foo	to	improve	the	latter's	i18n	support	with
HTML	and	XML,	you	could	use

				FilterProvider	iconv				xml2enc	Content-Type	$text/html

				FilterProvider	iconv				xml2enc	Content-Type	$xml

				FilterProvider	markup			foo	Content-Type	$text/html

				FilterProvider	markup			foo	Content-Type	$xml

				FilterChain					iconv	markup

				

mod_foo	will	now	support	any	character	set	supported	by
either	(or	both)	of	libxml2	or	apr_xlate/iconv.

Programming	API

Programmers	writing	libxml2-based	filter	modules	are	encouraged
to	enable	them	for	mod_xml2enc,	to	provide	strong	i18n	support
for	your	users	without	reinventing	the	wheel.	The	programming
API	is	exposed	in	mod_xml2enc.h,	and	a	usage	example	is
mod_proxy_html.

Detecting	an	Encoding

Unlike	mod_charset_lite,	mod_xml2enc	is	designed	to	work
with	data	whose	encoding	cannot	be	known	in	advance	and	thus
configured.	It	therefore	uses	'sniffing'	techniques	to	detect	the
encoding	of	HTTP	data	as	follows:

1.	 If	the	HTTP	Content-Type	header	includes	a	charset
parameter,	that	is	used.

2.	 If	the	data	start	with	an	XML	Byte	Order	Mark	(BOM)	or	an
XML	encoding	declaration,	that	is	used.

3.	 If	an	encoding	is	declared	in	an	HTML	<META>	element,	that
is	used.

4.	 If	none	of	the	above	match,	the	default	value	set	by
xml2EncDefault	is	used.

The	rules	are	applied	in	order.	As	soon	as	a	match	is	found,	it	is
used	and	detection	is	stopped.

Output	Encoding

libxml2	always	uses	UTF-8	(Unicode)	internally,	and	libxml2-based
filter	modules	will	output	that	by	default.	mod_xml2enc	can	change
the	output	encoding	through	the	API,	but	there	is	currently	no	way
to	configure	that	directly.

Changing	the	output	encoding	should	(in	theory,	at	least)	never	be
necessary,	and	is	not	recommended	due	to	the	extra	processing
load	on	the	server	of	an	unnecessary	conversion.

http://xmlsoft.org/

Unsupported	Encodings

If	you	are	working	with	encodings	that	are	not	supported	by	any	of
the	conversion	methods	available	on	your	platform,	you	can	still
alias	them	to	a	supported	encoding	using	xml2EncAlias.

xml2EncAlias	Directive

Description: Recognise	Aliases	for	encoding	values
Syntax: xml2EncAlias	charset	alias	[alias

...]

Context: server	config
Status: Base
Module: mod_xml2enc

This	server-wide	directive	aliases	one	or	more	encoding	to	another
encoding.	This	enables	encodings	not	recognised	by	libxml2	to	be
handled	internally	by	libxml2's	encoding	support	using	the
translation	table	for	a	recognised	encoding.	This	serves	two
purposes:	to	support	character	sets	(or	names)	not	recognised
either	by	libxml2	or	iconv,	and	to	skip	conversion	for	an	encoding
where	it	is	known	to	be	unnecessary.

xml2EncDefault	Directive

Description: Sets	a	default	encoding	to	assume	when
absolutely	no	information	can	be	automatically
detected

Syntax: xml2EncDefault	name

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Base
Module: mod_xml2enc
Compatibility: Version	2.4.0	and	later;	available	as	a	third-party

module	for	earlier	versions.

If	you	are	processing	data	with	known	encoding	but	no	encoding
information,	you	can	set	this	default	to	help	mod_xml2enc	process
the	data	correctly.	For	example,	to	work	with	the	default	value	of
Latin1	(iso-8859-1	specified	in	HTTP/1.0,	use

xml2EncDefault	iso-8859-1

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

xml2StartParse	Directive

Description: Advise	the	parser	to	skip	leading	junk.
Syntax: xml2StartParse	element	[element	...]

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Base
Module: mod_xml2enc

Specify	that	the	markup	parser	should	start	at	the	first	instance	of
any	of	the	elements	specified.	This	can	be	used	as	a	workaround
where	a	broken	backend	inserts	leading	junk	that	messes	up	the
parser	(example	here).

It	should	never	be	used	for	XML,	nor	well-formed	HTML.

http://bahumbug.wordpress.com/2006/10/12/mod_proxy_html-revisited/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	1.3	API	notes

Warning

This	document	has	not	been	updated	to	take	into	account	changes
made	in	the	2.0	version	of	the	Apache	HTTP	Server.	Some	of	the
information	may	still	be	relevant,	but	please	use	it	with	care.

These	are	some	notes	on	the	Apache	API	and	the	data	structures	you
have	to	deal	with,	etc.	They	are	not	yet	nearly	complete,	but	hopefully,
they	will	help	you	get	your	bearings.	Keep	in	mind	that	the	API	is	still
subject	to	change	as	we	gain	experience	with	it.	(See	the	TODO	file
for	what	might	be	coming).	However,	it	will	be	easy	to	adapt	modules
to	any	changes	that	are	made.	(We	have	more	modules	to	adapt	than
you	do).

A	few	notes	on	general	pedagogical	style	here.	In	the	interest	of
conciseness,	all	structure	declarations	here	are	incomplete	--	the	real
ones	have	more	slots	that	I'm	not	telling	you	about.	For	the	most	part,
these	are	reserved	to	one	component	of	the	server	core	or	another,
and	should	be	altered	by	modules	with	caution.	However,	in	some
cases,	they	really	are	things	I	just	haven't	gotten	around	to	yet.
Welcome	to	the	bleeding	edge.

Finally,	here's	an	outline,	to	give	you	some	bare	idea	of	what's	coming
up,	and	in	what	order:

Basic	concepts.
Handlers,	Modules,	and	Requests
A	brief	tour	of	a	module

How	handlers	work
A	brief	tour	of	the	request_rec
Where	request_rec	structures	come	from

Handling	requests,	declining,	and	returning	error	codes
Special	considerations	for	response	handlers
Special	considerations	for	authentication	handlers
Special	considerations	for	logging	handlers

Resource	allocation	and	resource	pools
Configuration,	commands	and	the	like

Per-directory	configuration	structures
Command	handling
Side	notes	---	per-server	configuration,	virtual	servers,	etc.

Basic	concepts

We	begin	with	an	overview	of	the	basic	concepts	behind	the	API,
and	how	they	are	manifested	in	the	code.

Handlers,	Modules,	and	Requests
Apache	breaks	down	request	handling	into	a	series	of	steps,	more
or	less	the	same	way	the	Netscape	server	API	does	(although	this
API	has	a	few	more	stages	than	NetSite	does,	as	hooks	for	stuff	I
thought	might	be	useful	in	the	future).	These	are:

URI	->	Filename	translation
Auth	ID	checking	[is	the	user	who	they	say	they	are?]
Auth	access	checking	[is	the	user	authorized	here?]
Access	checking	other	than	auth
Determining	MIME	type	of	the	object	requested
`Fixups'	--	there	aren't	any	of	these	yet,	but	the	phase	is
intended	as	a	hook	for	possible	extensions	like	SetEnv,
which	don't	really	fit	well	elsewhere.
Actually	sending	a	response	back	to	the	client.
Logging	the	request

These	phases	are	handled	by	looking	at	each	of	a	succession	of
modules,	looking	to	see	if	each	of	them	has	a	handler	for	the
phase,	and	attempting	invoking	it	if	so.	The	handler	can	typically
do	one	of	three	things:

Handle	the	request,	and	indicate	that	it	has	done	so	by
returning	the	magic	constant	OK.
Decline	to	handle	the	request,	by	returning	the	magic	integer
constant	DECLINED.	In	this	case,	the	server	behaves	in	all
respects	as	if	the	handler	simply	hadn't	been	there.
Signal	an	error,	by	returning	one	of	the	HTTP	error	codes.
This	terminates	normal	handling	of	the	request,	although	an
ErrorDocument	may	be	invoked	to	try	to	mop	up,	and	it	will	be

logged	in	any	case.

Most	phases	are	terminated	by	the	first	module	that	handles	them;
however,	for	logging,	`fixups',	and	non-access	authentication
checking,	all	handlers	always	run	(barring	an	error).	Also,	the
response	phase	is	unique	in	that	modules	may	declare	multiple
handlers	for	it,	via	a	dispatch	table	keyed	on	the	MIME	type	of	the
requested	object.	Modules	may	declare	a	response-phase	handler
which	can	handle	any	request,	by	giving	it	the	key	*/*	(i.e.,	a
wildcard	MIME	type	specification).	However,	wildcard	handlers	are
only	invoked	if	the	server	has	already	tried	and	failed	to	find	a
more	specific	response	handler	for	the	MIME	type	of	the
requested	object	(either	none	existed,	or	they	all	declined).

The	handlers	themselves	are	functions	of	one	argument	(a
request_rec	structure.	vide	infra),	which	returns	an	integer,	as
above.

A	brief	tour	of	a	module
At	this	point,	we	need	to	explain	the	structure	of	a	module.	Our
candidate	will	be	one	of	the	messier	ones,	the	CGI	module	--	this
handles	both	CGI	scripts	and	the	ScriptAlias	config	file
command.	It's	actually	a	great	deal	more	complicated	than	most
modules,	but	if	we're	going	to	have	only	one	example,	it	might	as
well	be	the	one	with	its	fingers	in	every	place.

Let's	begin	with	handlers.	In	order	to	handle	the	CGI	scripts,	the
module	declares	a	response	handler	for	them.	Because	of
ScriptAlias,	it	also	has	handlers	for	the	name	translation
phase	(to	recognize	ScriptAliased	URIs),	the	type-checking
phase	(any	ScriptAliased	request	is	typed	as	a	CGI	script).

The	module	needs	to	maintain	some	per	(virtual)	server
information,	namely,	the	ScriptAliases	in	effect;	the	module

structure	therefore	contains	pointers	to	a	functions	which	builds
these	structures,	and	to	another	which	combines	two	of	them	(in
case	the	main	server	and	a	virtual	server	both	have
ScriptAliases	declared).

Finally,	this	module	contains	code	to	handle	the	ScriptAlias
command	itself.	This	particular	module	only	declares	one
command,	but	there	could	be	more,	so	modules	have	command
tables	which	declare	their	commands,	and	describe	where	they
are	permitted,	and	how	they	are	to	be	invoked.

A	final	note	on	the	declared	types	of	the	arguments	of	some	of
these	commands:	a	pool	is	a	pointer	to	a	resource	pool	structure;
these	are	used	by	the	server	to	keep	track	of	the	memory	which
has	been	allocated,	files	opened,	etc.,	either	to	service	a	particular
request,	or	to	handle	the	process	of	configuring	itself.	That	way,
when	the	request	is	over	(or,	for	the	configuration	pool,	when	the
server	is	restarting),	the	memory	can	be	freed,	and	the	files
closed,	en	masse,	without	anyone	having	to	write	explicit	code	to
track	them	all	down	and	dispose	of	them.	Also,	a	cmd_parms
structure	contains	various	information	about	the	config	file	being
read,	and	other	status	information,	which	is	sometimes	of	use	to
the	function	which	processes	a	config-file	command	(such	as
ScriptAlias).	With	no	further	ado,	the	module	itself:

/*	Declarations	of	handlers.	*/

int	translate_scriptalias	(request_rec	*);

int	type_scriptalias	(request_rec	*);

int	cgi_handler	(request_rec	*);

/*	Subsidiary	dispatch	table	for	response-phase	

	*	handlers,	by	MIME	type	*/

handler_rec	cgi_handlers[]	=	{

{	"application/x-httpd-cgi",	cgi_handler	},

{	NULL	}

};

/*	Declarations	of	routines	to	manipulate	the	

	*	module's	configuration	info.	Note	that	these	are

	*	returned,	and	passed	in,	as	void	*'s;	the	server

	*	core	keeps	track	of	them,	but	it	doesn't,	and	can't,

	*	know	their	internal	structure.

	*/

void	*make_cgi_server_config	(pool	*);

void	*merge_cgi_server_config	(pool	*,	void	*,	void	*);

/*	Declarations	of	routines	to	handle	config-file	commands	*/

extern	char	*script_alias(cmd_parms	*,	void	*per_dir_config,

char	*fake,	char	*real);

command_rec	cgi_cmds[]	=	{

{	"ScriptAlias",	script_alias,	NULL,	RSRC_CONF,	TAKE2,

"a	fakename	and	a	realname"},

{	NULL	}

};

module	cgi_module	=	{

		STANDARD_MODULE_STUFF,

		NULL,																					/*	initializer	*/

		NULL,																					/*	dir	config	creator	*/

		NULL,																					/*	dir	merger	*/

		make_cgi_server_config,			/*	server	config	*/

		merge_cgi_server_config,		/*	merge	server	config	*/

		cgi_cmds,																	/*	command	table	*/

		cgi_handlers,													/*	handlers	*/

		translate_scriptalias,				/*	filename	translation	*/

		NULL,																					/*	check_user_id	*/

		NULL,																					/*	check	auth	*/

		NULL,																					/*	check	access	*/

		type_scriptalias,									/*	type_checker	*/

		NULL,																					/*	fixups	*/

		NULL,																					/*	logger	*/

		NULL																						/*	header	parser	*/

};

How	handlers	work

The	sole	argument	to	handlers	is	a	request_rec	structure.	This
structure	describes	a	particular	request	which	has	been	made	to
the	server,	on	behalf	of	a	client.	In	most	cases,	each	connection	to
the	client	generates	only	one	request_rec	structure.

A	brief	tour	of	the	request_rec
The	request_rec	contains	pointers	to	a	resource	pool	which	will
be	cleared	when	the	server	is	finished	handling	the	request;	to
structures	containing	per-server	and	per-connection	information,
and	most	importantly,	information	on	the	request	itself.

The	most	important	such	information	is	a	small	set	of	character
strings	describing	attributes	of	the	object	being	requested,
including	its	URI,	filename,	content-type	and	content-encoding
(these	being	filled	in	by	the	translation	and	type-check	handlers
which	handle	the	request,	respectively).

Other	commonly	used	data	items	are	tables	giving	the	MIME
headers	on	the	client's	original	request,	MIME	headers	to	be	sent
back	with	the	response	(which	modules	can	add	to	at	will),	and
environment	variables	for	any	subprocesses	which	are	spawned
off	in	the	course	of	servicing	the	request.	These	tables	are
manipulated	using	the	ap_table_get	and	ap_table_set
routines.

Note	that	the	Content-type	header	value	cannot	be	set	by
module	content-handlers	using	the	ap_table_*()	routines.
Rather,	it	is	set	by	pointing	the	content_type	field	in	the
request_rec	structure	to	an	appropriate	string.	e.g.,

r->content_type	=	"text/html";

Finally,	there	are	pointers	to	two	data	structures	which,	in	turn,
point	to	per-module	configuration	structures.	Specifically,	these
hold	pointers	to	the	data	structures	which	the	module	has	built	to
describe	the	way	it	has	been	configured	to	operate	in	a	given
directory	(via	.htaccess	files	or	<Directory>	sections),	for
private	data	it	has	built	in	the	course	of	servicing	the	request	(so
modules'	handlers	for	one	phase	can	pass	`notes'	to	their	handlers
for	other	phases).	There	is	another	such	configuration	vector	in	the
server_rec	data	structure	pointed	to	by	the	request_rec,
which	contains	per	(virtual)	server	configuration	data.

Here	is	an	abridged	declaration,	giving	the	fields	most	commonly
used:

struct	request_rec	{

pool	*pool;

conn_rec	*connection;

server_rec	*server;

/*	What	object	is	being	requested	*/

char	*uri;

char	*filename;

char	*path_info;

char	*args;											/*	QUERY_ARGS,	if	any	*/

struct	stat	finfo;				/*	Set	by	server	core;

																							*	st_mode	set	to	zero	if	no	such	file	*/

char	*content_type;

char	*content_encoding;

/*	MIME	header	environments,	in	and	out.	Also,	

	*	an	array	containing	environment	variables	to

	*	be	passed	to	subprocesses,	so	people	can	write

	*	modules	to	add	to	that	environment.

	*

	*	The	difference	between	headers_out	and	

	*	err_headers_out	is	that	the	latter	are	printed	

	*	even	on	error,	and	persist	across	internal

	*	redirects	(so	the	headers	printed	for	

	*	ErrorDocument	handlers	will	have	them).

	*/

table	*headers_in;
table	*headers_out;
table	*err_headers_out;
table	*subprocess_env;

/*	Info	about	the	request	itself...	*/

int	header_only;					/*	HEAD	request,	as	opposed	to	GET	*/

char	*protocol;						/*	Protocol,	as	given	to	us,	or	HTTP/0.9	*/

char	*method;								/*	GET,	HEAD,	POST,	etc.	*/

int	method_number;			/*	M_GET,	M_POST,	etc.	*/

/*	Info	for	logging	*/

char	*the_request;

int	bytes_sent;

/*	A	flag	which	modules	can	set,	to	indicate	that

	*	the	data	being	returned	is	volatile,	and	clients

	*	should	be	told	not	to	cache	it.

	*/

int	no_cache;

/*	Various	other	config	info	which	may	change

	*	with	.htaccess	files

	*	These	are	config	vectors,	with	one	void*

	*	pointer	for	each	module	(the	thing	pointed

	*	to	being	the	module's	business).

	*/

void	*per_dir_config;			/*	Options	set	in	config	files,	etc.	*/

void	*request_config;			/*	Notes	on	*this*	request	*/

};

Where	request_rec	structures	come	from
Most	request_rec	structures	are	built	by	reading	an	HTTP
request	from	a	client,	and	filling	in	the	fields.	However,	there	are	a
few	exceptions:

If	the	request	is	to	an	imagemap,	a	type	map	(i.e.,	a	*.var

file),	or	a	CGI	script	which	returned	a	local	`Location:',	then
the	resource	which	the	user	requested	is	going	to	be
ultimately	located	by	some	URI	other	than	what	the	client
originally	supplied.	In	this	case,	the	server	does	an	internal
redirect,	constructing	a	new	request_rec	for	the	new	URI,
and	processing	it	almost	exactly	as	if	the	client	had	requested
the	new	URI	directly.
If	some	handler	signaled	an	error,	and	an	ErrorDocument	is
in	scope,	the	same	internal	redirect	machinery	comes	into
play.
Finally,	a	handler	occasionally	needs	to	investigate	`what
would	happen	if'	some	other	request	were	run.	For	instance,
the	directory	indexing	module	needs	to	know	what	MIME	type
would	be	assigned	to	a	request	for	each	directory	entry,	in
order	to	figure	out	what	icon	to	use.

Such	handlers	can	construct	a	sub-request,	using	the
functions	ap_sub_req_lookup_file,
ap_sub_req_lookup_uri,	and
ap_sub_req_method_uri;	these	construct	a	new
request_rec	structure	and	processes	it	as	you	would
expect,	up	to	but	not	including	the	point	of	actually	sending	a
response.	(These	functions	skip	over	the	access	checks	if	the
sub-request	is	for	a	file	in	the	same	directory	as	the	original
request).

(Server-side	includes	work	by	building	sub-requests	and	then
actually	invoking	the	response	handler	for	them,	via	the
function	ap_run_sub_req).

Handling	requests,	declining,	and	returning	error
codes
As	discussed	above,	each	handler,	when	invoked	to	handle	a

particular	request_rec,	has	to	return	an	int	to	indicate	what
happened.	That	can	either	be

OK	--	the	request	was	handled	successfully.	This	may	or	may
not	terminate	the	phase.
DECLINED	--	no	erroneous	condition	exists,	but	the	module
declines	to	handle	the	phase;	the	server	tries	to	find	another.
an	HTTP	error	code,	which	aborts	handling	of	the	request.

Note	that	if	the	error	code	returned	is	REDIRECT,	then	the	module
should	put	a	Location	in	the	request's	headers_out,	to
indicate	where	the	client	should	be	redirected	to.

Special	considerations	for	response	handlers
Handlers	for	most	phases	do	their	work	by	simply	setting	a	few
fields	in	the	request_rec	structure	(or,	in	the	case	of	access
checkers,	simply	by	returning	the	correct	error	code).	However,
response	handlers	have	to	actually	send	a	request	back	to	the
client.

They	should	begin	by	sending	an	HTTP	response	header,	using
the	function	ap_send_http_header.	(You	don't	have	to	do
anything	special	to	skip	sending	the	header	for	HTTP/0.9
requests;	the	function	figures	out	on	its	own	that	it	shouldn't	do
anything).	If	the	request	is	marked	header_only,	that's	all	they
should	do;	they	should	return	after	that,	without	attempting	any
further	output.

Otherwise,	they	should	produce	a	request	body	which	responds	to
the	client	as	appropriate.	The	primitives	for	this	are	ap_rputc	and
ap_rprintf,	for	internally	generated	output,	and	ap_send_fd,
to	copy	the	contents	of	some	FILE	*	straight	to	the	client.

At	this	point,	you	should	more	or	less	understand	the	following

piece	of	code,	which	is	the	handler	which	handles	GET	requests
which	have	no	more	specific	handler;	it	also	shows	how
conditional	GETs	can	be	handled,	if	it's	desirable	to	do	so	in	a
particular	response	handler	--	ap_set_last_modified	checks
against	the	If-modified-since	value	supplied	by	the	client,	if
any,	and	returns	an	appropriate	code	(which	will,	if	nonzero,	be
USE_LOCAL_COPY).	No	similar	considerations	apply	for
ap_set_content_length,	but	it	returns	an	error	code	for
symmetry.

int	default_handler	(request_rec	*r)

{

int	errstatus;

FILE	*f;

if	(r->method_number	!=	M_GET)	return	DECLINED;

if	(r->finfo.st_mode	==	0)	return	NOT_FOUND;

if	((errstatus	=	ap_set_content_length	(r,	r-

>finfo.st_size))

				||	(errstatus	=	ap_set_last_modified	(r,	r-

>finfo.st_mtime)))

return	errstatus;

f	=	fopen	(r->filename,	"r");

if	(f	==	NULL)	{

log_reason("file	permissions	deny	server	access",	r-

>filename,	r);

return	FORBIDDEN;

}

register_timeout	("send",	r);

ap_send_http_header	(r);

if	(!r->header_only)	send_fd	(f,	r);

ap_pfclose	(r->pool,	f);

return	OK;

}

Finally,	if	all	of	this	is	too	much	of	a	challenge,	there	are	a	few
ways	out	of	it.	First	off,	as	shown	above,	a	response	handler	which

has	not	yet	produced	any	output	can	simply	return	an	error	code,
in	which	case	the	server	will	automatically	produce	an	error
response.	Secondly,	it	can	punt	to	some	other	handler	by	invoking
ap_internal_redirect,	which	is	how	the	internal	redirection
machinery	discussed	above	is	invoked.	A	response	handler	which
has	internally	redirected	should	always	return	OK.

(Invoking	ap_internal_redirect	from	handlers	which	are	not
response	handlers	will	lead	to	serious	confusion).

Special	considerations	for	authentication	handlers
Stuff	that	should	be	discussed	here	in	detail:

Authentication-phase	handlers	not	invoked	unless	auth	is
configured	for	the	directory.
Common	auth	configuration	stored	in	the	core	per-dir
configuration;	it	has	accessors	ap_auth_type,
ap_auth_name,	and	ap_requires.
Common	routines,	to	handle	the	protocol	end	of	things,	at
least	for	HTTP	basic	authentication
(ap_get_basic_auth_pw,	which	sets	the	connection-
>user	structure	field	automatically,	and
ap_note_basic_auth_failure,	which	arranges	for	the
proper	WWW-Authenticate:	header	to	be	sent	back).

Special	considerations	for	logging	handlers
When	a	request	has	internally	redirected,	there	is	the	question	of
what	to	log.	Apache	handles	this	by	bundling	the	entire	chain	of
redirects	into	a	list	of	request_rec	structures	which	are	threaded
through	the	r->prev	and	r->next	pointers.	The	request_rec
which	is	passed	to	the	logging	handlers	in	such	cases	is	the	one
which	was	originally	built	for	the	initial	request	from	the	client;	note
that	the	bytes_sent	field	will	only	be	correct	in	the	last	request	in

the	chain	(the	one	for	which	a	response	was	actually	sent).

Resource	allocation	and	resource	pools

One	of	the	problems	of	writing	and	designing	a	server-pool	server
is	that	of	preventing	leakage,	that	is,	allocating	resources
(memory,	open	files,	etc.),	without	subsequently	releasing	them.
The	resource	pool	machinery	is	designed	to	make	it	easy	to
prevent	this	from	happening,	by	allowing	resource	to	be	allocated
in	such	a	way	that	they	are	automatically	released	when	the	server
is	done	with	them.

The	way	this	works	is	as	follows:	the	memory	which	is	allocated,
file	opened,	etc.,	to	deal	with	a	particular	request	are	tied	to	a
resource	pool	which	is	allocated	for	the	request.	The	pool	is	a	data
structure	which	itself	tracks	the	resources	in	question.

When	the	request	has	been	processed,	the	pool	is	cleared.	At	that
point,	all	the	memory	associated	with	it	is	released	for	reuse,	all
files	associated	with	it	are	closed,	and	any	other	clean-up
functions	which	are	associated	with	the	pool	are	run.	When	this	is
over,	we	can	be	confident	that	all	the	resource	tied	to	the	pool
have	been	released,	and	that	none	of	them	have	leaked.

Server	restarts,	and	allocation	of	memory	and	resources	for	per-
server	configuration,	are	handled	in	a	similar	way.	There	is	a
configuration	pool,	which	keeps	track	of	resources	which	were
allocated	while	reading	the	server	configuration	files,	and	handling
the	commands	therein	(for	instance,	the	memory	that	was
allocated	for	per-server	module	configuration,	log	files	and	other
files	that	were	opened,	and	so	forth).	When	the	server	restarts,
and	has	to	reread	the	configuration	files,	the	configuration	pool	is
cleared,	and	so	the	memory	and	file	descriptors	which	were	taken
up	by	reading	them	the	last	time	are	made	available	for	reuse.

It	should	be	noted	that	use	of	the	pool	machinery	isn't	generally
obligatory,	except	for	situations	like	logging	handlers,	where	you
really	need	to	register	cleanups	to	make	sure	that	the	log	file	gets

closed	when	the	server	restarts	(this	is	most	easily	done	by	using
the	function	ap_pfopen,	which	also	arranges	for	the	underlying
file	descriptor	to	be	closed	before	any	child	processes,	such	as	for
CGI	scripts,	are	execed),	or	in	case	you	are	using	the	timeout
machinery	(which	isn't	yet	even	documented	here).	However,
there	are	two	benefits	to	using	it:	resources	allocated	to	a	pool
never	leak	(even	if	you	allocate	a	scratch	string,	and	just	forget
about	it);	also,	for	memory	allocation,	ap_palloc	is	generally
faster	than	malloc.

We	begin	here	by	describing	how	memory	is	allocated	to	pools,
and	then	discuss	how	other	resources	are	tracked	by	the	resource
pool	machinery.

Allocation	of	memory	in	pools
Memory	is	allocated	to	pools	by	calling	the	function	ap_palloc,
which	takes	two	arguments,	one	being	a	pointer	to	a	resource	pool
structure,	and	the	other	being	the	amount	of	memory	to	allocate
(in	chars).	Within	handlers	for	handling	requests,	the	most
common	way	of	getting	a	resource	pool	structure	is	by	looking	at
the	pool	slot	of	the	relevant	request_rec;	hence	the	repeated
appearance	of	the	following	idiom	in	module	code:

int	my_handler(request_rec	*r)

{

struct	my_structure	*foo;

...

foo	=	(foo	*)ap_palloc	(r->pool,	sizeof(my_structure));

}

Note	that	there	is	no	ap_pfree	--	ap_palloced	memory	is	freed
only	when	the	associated	resource	pool	is	cleared.	This	means
that	ap_palloc	does	not	have	to	do	as	much	accounting	as
malloc();	all	it	does	in	the	typical	case	is	to	round	up	the	size,

bump	a	pointer,	and	do	a	range	check.

(It	also	raises	the	possibility	that	heavy	use	of	ap_palloc	could
cause	a	server	process	to	grow	excessively	large.	There	are	two
ways	to	deal	with	this,	which	are	dealt	with	below;	briefly,	you	can
use	malloc,	and	try	to	be	sure	that	all	of	the	memory	gets
explicitly	freed,	or	you	can	allocate	a	sub-pool	of	the	main	pool,
allocate	your	memory	in	the	sub-pool,	and	clear	it	out	periodically.
The	latter	technique	is	discussed	in	the	section	on	sub-pools
below,	and	is	used	in	the	directory-indexing	code,	in	order	to	avoid
excessive	storage	allocation	when	listing	directories	with
thousands	of	files).

Allocating	initialized	memory
There	are	functions	which	allocate	initialized	memory,	and	are
frequently	useful.	The	function	ap_pcalloc	has	the	same
interface	as	ap_palloc,	but	clears	out	the	memory	it	allocates
before	it	returns	it.	The	function	ap_pstrdup	takes	a	resource
pool	and	a	char	*	as	arguments,	and	allocates	memory	for	a
copy	of	the	string	the	pointer	points	to,	returning	a	pointer	to	the
copy.	Finally	ap_pstrcat	is	a	varargs-style	function,	which	takes
a	pointer	to	a	resource	pool,	and	at	least	two	char	*	arguments,
the	last	of	which	must	be	NULL.	It	allocates	enough	memory	to	fit
copies	of	each	of	the	strings,	as	a	unit;	for	instance:

ap_pstrcat	(r->pool,	"foo",	"/",	"bar",	NULL);

returns	a	pointer	to	8	bytes	worth	of	memory,	initialized	to
"foo/bar".

Commonly-used	pools	in	the	Apache	Web	server
A	pool	is	really	defined	by	its	lifetime	more	than	anything	else.

There	are	some	static	pools	in	http_main	which	are	passed	to
various	non-http_main	functions	as	arguments	at	opportune	times.
Here	they	are:

permanent_pool

never	passed	to	anything	else,	this	is	the	ancestor	of	all	pools

pconf

subpool	of	permanent_pool
created	at	the	beginning	of	a	config	"cycle";	exists	until
the	server	is	terminated	or	restarts;	passed	to	all	config-
time	routines,	either	via	cmd->pool,	or	as	the	"pool	*p"
argument	on	those	which	don't	take	pools
passed	to	the	module	init()	functions

ptemp

sorry	I	lie,	this	pool	isn't	called	this	currently	in	1.3,	I
renamed	it	this	in	my	pthreads	development.	I'm	referring
to	the	use	of	ptrans	in	the	parent...	contrast	this	with	the
later	definition	of	ptrans	in	the	child.
subpool	of	permanent_pool
created	at	the	beginning	of	a	config	"cycle";	exists	until
the	end	of	config	parsing;	passed	to	config-time	routines
via	cmd->temp_pool.	Somewhat	of	a	"bastard	child"
because	it	isn't	available	everywhere.	Used	for	temporary
scratch	space	which	may	be	needed	by	some	config
routines	but	which	is	deleted	at	the	end	of	config.

pchild

subpool	of	permanent_pool
created	when	a	child	is	spawned	(or	a	thread	is	created);
lives	until	that	child	(thread)	is	destroyed
passed	to	the	module	child_init	functions
destruction	happens	right	after	the	child_exit	functions
are	called...	(which	may	explain	why	I	think	child_exit	is

redundant	and	unneeded)

ptrans

should	be	a	subpool	of	pchild,	but	currently	is	a	subpool
of	permanent_pool,	see	above
cleared	by	the	child	before	going	into	the	accept()	loop	to
receive	a	connection
used	as	connection->pool

r->pool

for	the	main	request	this	is	a	subpool	of	connection-
>pool;	for	subrequests	it	is	a	subpool	of	the	parent
request's	pool.
exists	until	the	end	of	the	request	(i.e.,
ap_destroy_sub_req,	or	in	child_main	after
process_request	has	finished)
note	that	r	itself	is	allocated	from	r->pool;	i.e.,	r->pool	is
first	created	and	then	r	is	the	first	thing	palloc()d	from	it

For	almost	everything	folks	do,	r->pool	is	the	pool	to	use.	But
you	can	see	how	other	lifetimes,	such	as	pchild,	are	useful	to
some	modules...	such	as	modules	that	need	to	open	a	database
connection	once	per	child,	and	wish	to	clean	it	up	when	the	child
dies.

You	can	also	see	how	some	bugs	have	manifested	themself,	such
as	setting	connection->user	to	a	value	from	r->pool	--	in	this
case	connection	exists	for	the	lifetime	of	ptrans,	which	is	longer
than	r->pool	(especially	if	r->pool	is	a	subrequest!).	So	the
correct	thing	to	do	is	to	allocate	from	connection->pool.

And	there	was	another	interesting	bug	in	mod_include	/
mod_cgi.	You'll	see	in	those	that	they	do	this	test	to	decide	if	they
should	use	r->pool	or	r->main->pool.	In	this	case	the
resource	that	they	are	registering	for	cleanup	is	a	child	process.	If

it	were	registered	in	r->pool,	then	the	code	would	wait()	for
the	child	when	the	subrequest	finishes.	With	mod_include	this
could	be	any	old	#include,	and	the	delay	can	be	up	to	3
seconds...	and	happened	quite	frequently.	Instead	the	subprocess
is	registered	in	r->main->pool	which	causes	it	to	be	cleaned	up
when	the	entire	request	is	done	--	i.e.,	after	the	output	has	been
sent	to	the	client	and	logging	has	happened.

Tracking	open	files,	etc.
As	indicated	above,	resource	pools	are	also	used	to	track	other
sorts	of	resources	besides	memory.	The	most	common	are	open
files.	The	routine	which	is	typically	used	for	this	is	ap_pfopen,
which	takes	a	resource	pool	and	two	strings	as	arguments;	the
strings	are	the	same	as	the	typical	arguments	to	fopen,	e.g.,

...

FILE	*f	=	ap_pfopen	(r->pool,	r->filename,	"r");

if	(f	==	NULL)	{	...	}	else	{	...	}

There	is	also	a	ap_popenf	routine,	which	parallels	the	lower-level
open	system	call.	Both	of	these	routines	arrange	for	the	file	to	be
closed	when	the	resource	pool	in	question	is	cleared.

Unlike	the	case	for	memory,	there	are	functions	to	close	files
allocated	with	ap_pfopen,	and	ap_popenf,	namely
ap_pfclose	and	ap_pclosef.	(This	is	because,	on	many
systems,	the	number	of	files	which	a	single	process	can	have
open	is	quite	limited).	It	is	important	to	use	these	functions	to	close
files	allocated	with	ap_pfopen	and	ap_popenf,	since	to	do
otherwise	could	cause	fatal	errors	on	systems	such	as	Linux,
which	react	badly	if	the	same	FILE*	is	closed	more	than	once.

(Using	the	close	functions	is	not	mandatory,	since	the	file	will

eventually	be	closed	regardless,	but	you	should	consider	it	in
cases	where	your	module	is	opening,	or	could	open,	a	lot	of	files).

Other	sorts	of	resources	--	cleanup	functions
More	text	goes	here.	Describe	the	cleanup	primitives	in	terms	of
which	the	file	stuff	is	implemented;	also,	spawn_process.

Pool	cleanups	live	until	clear_pool()	is	called:
clear_pool(a)	recursively	calls	destroy_pool()	on	all
subpools	of	a;	then	calls	all	the	cleanups	for	a;	then	releases	all
the	memory	for	a.	destroy_pool(a)	calls	clear_pool(a)	and
then	releases	the	pool	structure	itself.	i.e.,	clear_pool(a)
doesn't	delete	a,	it	just	frees	up	all	the	resources	and	you	can	start
using	it	again	immediately.

Fine	control	--	creating	and	dealing	with	sub-pools,
with	a	note	on	sub-requests
On	rare	occasions,	too-free	use	of	ap_palloc()	and	the
associated	primitives	may	result	in	undesirably	profligate	resource
allocation.	You	can	deal	with	such	a	case	by	creating	a	sub-pool,
allocating	within	the	sub-pool	rather	than	the	main	pool,	and
clearing	or	destroying	the	sub-pool,	which	releases	the	resources
which	were	associated	with	it.	(This	really	is	a	rare	situation;	the
only	case	in	which	it	comes	up	in	the	standard	module	set	is	in
case	of	listing	directories,	and	then	only	with	very	large	directories.
Unnecessary	use	of	the	primitives	discussed	here	can	hair	up	your
code	quite	a	bit,	with	very	little	gain).

The	primitive	for	creating	a	sub-pool	is	ap_make_sub_pool,
which	takes	another	pool	(the	parent	pool)	as	an	argument.	When
the	main	pool	is	cleared,	the	sub-pool	will	be	destroyed.	The	sub-
pool	may	also	be	cleared	or	destroyed	at	any	time,	by	calling	the
functions	ap_clear_pool	and	ap_destroy_pool,	respectively.

(The	difference	is	that	ap_clear_pool	frees	resources
associated	with	the	pool,	while	ap_destroy_pool	also
deallocates	the	pool	itself.	In	the	former	case,	you	can	allocate
new	resources	within	the	pool,	and	clear	it	again,	and	so	forth;	in
the	latter	case,	it	is	simply	gone).

One	final	note	--	sub-requests	have	their	own	resource	pools,
which	are	sub-pools	of	the	resource	pool	for	the	main	request.	The
polite	way	to	reclaim	the	resources	associated	with	a	sub	request
which	you	have	allocated	(using	the	ap_sub_req_...	functions)
is	ap_destroy_sub_req,	which	frees	the	resource	pool.	Before
calling	this	function,	be	sure	to	copy	anything	that	you	care	about
which	might	be	allocated	in	the	sub-request's	resource	pool	into
someplace	a	little	less	volatile	(for	instance,	the	filename	in	its
request_rec	structure).

(Again,	under	most	circumstances,	you	shouldn't	feel	obliged	to
call	this	function;	only	2K	of	memory	or	so	are	allocated	for	a
typical	sub	request,	and	it	will	be	freed	anyway	when	the	main
request	pool	is	cleared.	It	is	only	when	you	are	allocating	many,
many	sub-requests	for	a	single	main	request	that	you	should
seriously	consider	the	ap_destroy_...	functions).

Configuration,	commands	and	the	like

One	of	the	design	goals	for	this	server	was	to	maintain	external
compatibility	with	the	NCSA	1.3	server	---	that	is,	to	read	the	same
configuration	files,	to	process	all	the	directives	therein	correctly,
and	in	general	to	be	a	drop-in	replacement	for	NCSA.	On	the	other
hand,	another	design	goal	was	to	move	as	much	of	the	server's
functionality	into	modules	which	have	as	little	as	possible	to	do
with	the	monolithic	server	core.	The	only	way	to	reconcile	these
goals	is	to	move	the	handling	of	most	commands	from	the	central
server	into	the	modules.

However,	just	giving	the	modules	command	tables	is	not	enough
to	divorce	them	completely	from	the	server	core.	The	server	has	to
remember	the	commands	in	order	to	act	on	them	later.	That
involves	maintaining	data	which	is	private	to	the	modules,	and
which	can	be	either	per-server,	or	per-directory.	Most	things	are
per-directory,	including	in	particular	access	control	and
authorization	information,	but	also	information	on	how	to
determine	file	types	from	suffixes,	which	can	be	modified	by
AddType	and	ForceType	directives,	and	so	forth.	In	general,	the
governing	philosophy	is	that	anything	which	can	be	made
configurable	by	directory	should	be;	per-server	information	is
generally	used	in	the	standard	set	of	modules	for	information	like
Aliases	and	Redirects	which	come	into	play	before	the
request	is	tied	to	a	particular	place	in	the	underlying	file	system.

Another	requirement	for	emulating	the	NCSA	server	is	being	able
to	handle	the	per-directory	configuration	files,	generally	called
.htaccess	files,	though	even	in	the	NCSA	server	they	can
contain	directives	which	have	nothing	at	all	to	do	with	access
control.	Accordingly,	after	URI	->	filename	translation,	but	before
performing	any	other	phase,	the	server	walks	down	the	directory
hierarchy	of	the	underlying	filesystem,	following	the	translated
pathname,	to	read	any	.htaccess	files	which	might	be	present.

The	information	which	is	read	in	then	has	to	be	merged	with	the
applicable	information	from	the	server's	own	config	files	(either
from	the	<Directory>	sections	in	access.conf,	or	from
defaults	in	srm.conf,	which	actually	behaves	for	most	purposes
almost	exactly	like	<Directory	/>).

Finally,	after	having	served	a	request	which	involved	reading
.htaccess	files,	we	need	to	discard	the	storage	allocated	for
handling	them.	That	is	solved	the	same	way	it	is	solved	wherever
else	similar	problems	come	up,	by	tying	those	structures	to	the
per-transaction	resource	pool.

Per-directory	configuration	structures
Let's	look	out	how	all	of	this	plays	out	in	mod_mime.c,	which
defines	the	file	typing	handler	which	emulates	the	NCSA	server's
behavior	of	determining	file	types	from	suffixes.	What	we'll	be
looking	at,	here,	is	the	code	which	implements	the	AddType	and
AddEncoding	commands.	These	commands	can	appear	in
.htaccess	files,	so	they	must	be	handled	in	the	module's	private
per-directory	data,	which	in	fact,	consists	of	two	separate	tables
for	MIME	types	and	encoding	information,	and	is	declared	as
follows:

typedef	struct	{

				table	*forced_types;						/*	Additional	AddTyped	stuff	*/

				table	*encoding_types;				/*	Added	with	AddEncoding...	*/

}	mime_dir_config;

When	the	server	is	reading	a	configuration	file,	or	<Directory>
section,	which	includes	one	of	the	MIME	module's	commands,	it
needs	to	create	a	mime_dir_config	structure,	so	those
commands	have	something	to	act	on.	It	does	this	by	invoking	the
function	it	finds	in	the	module's	`create	per-dir	config	slot',	with	two
arguments:	the	name	of	the	directory	to	which	this	configuration

information	applies	(or	NULL	for	srm.conf),	and	a	pointer	to	a
resource	pool	in	which	the	allocation	should	happen.

(If	we	are	reading	a	.htaccess	file,	that	resource	pool	is	the	per-
request	resource	pool	for	the	request;	otherwise	it	is	a	resource
pool	which	is	used	for	configuration	data,	and	cleared	on	restarts.
Either	way,	it	is	important	for	the	structure	being	created	to	vanish
when	the	pool	is	cleared,	by	registering	a	cleanup	on	the	pool	if
necessary).

For	the	MIME	module,	the	per-dir	config	creation	function	just
ap_pallocs	the	structure	above,	and	a	creates	a	couple	of	tables
to	fill	it.	That	looks	like	this:

void	*create_mime_dir_config	(pool	*p,	char	*dummy)

{

mime_dir_config	*new	=

(mime_dir_config	*)	ap_palloc	(p,

sizeof(mime_dir_config));

new->forced_types	=	ap_make_table	(p,	4);

new->encoding_types	=	ap_make_table	(p,	4);

return	new;

}

Now,	suppose	we've	just	read	in	a	.htaccess	file.	We	already
have	the	per-directory	configuration	structure	for	the	next	directory
up	in	the	hierarchy.	If	the	.htaccess	file	we	just	read	in	didn't
have	any	AddType	or	AddEncoding	commands,	its	per-directory
config	structure	for	the	MIME	module	is	still	valid,	and	we	can	just
use	it.	Otherwise,	we	need	to	merge	the	two	structures	somehow.

To	do	that,	the	server	invokes	the	module's	per-directory	config
merge	function,	if	one	is	present.	That	function	takes	three
arguments:	the	two	structures	being	merged,	and	a	resource	pool
in	which	to	allocate	the	result.	For	the	MIME	module,	all	that	needs

to	be	done	is	overlay	the	tables	from	the	new	per-directory	config
structure	with	those	from	the	parent:

void	*merge_mime_dir_configs	(pool	*p,	void	*parent_dirv,	void

*subdirv)

{

mime_dir_config	*parent_dir	=	(mime_dir_config

*)parent_dirv;

mime_dir_config	*subdir	=	(mime_dir_config	*)subdirv;

mime_dir_config	*new	=

(mime_dir_config	*)ap_palloc	(p,	sizeof(mime_dir_config));

new->forced_types	=	ap_overlay_tables	(p,	subdir-

>forced_types,

parent_dir->forced_types);

new->encoding_types	=	ap_overlay_tables	(p,	subdir-

>encoding_types,

parent_dir->encoding_types);

return	new;

}

As	a	note	--	if	there	is	no	per-directory	merge	function	present,	the
server	will	just	use	the	subdirectory's	configuration	info,	and	ignore
the	parent's.	For	some	modules,	that	works	just	fine	(e.g.,	for	the
includes	module,	whose	per-directory	configuration	information
consists	solely	of	the	state	of	the	XBITHACK),	and	for	those
modules,	you	can	just	not	declare	one,	and	leave	the
corresponding	structure	slot	in	the	module	itself	NULL.

Command	handling
Now	that	we	have	these	structures,	we	need	to	be	able	to	figure
out	how	to	fill	them.	That	involves	processing	the	actual	AddType
and	AddEncoding	commands.	To	find	commands,	the	server
looks	in	the	module's	command	table.	That	table	contains
information	on	how	many	arguments	the	commands	take,	and	in
what	formats,	where	it	is	permitted,	and	so	forth.	That	information
is	sufficient	to	allow	the	server	to	invoke	most	command-handling
functions	with	pre-parsed	arguments.	Without	further	ado,	let's

look	at	the	AddType	command	handler,	which	looks	like	this	(the
AddEncoding	command	looks	basically	the	same,	and	won't	be
shown	here):

char	*add_type(cmd_parms	*cmd,	mime_dir_config	*m,	char	*ct,

char	*ext)

{

if	(*ext	==	'.')	++ext;

ap_table_set	(m->forced_types,	ext,	ct);

return	NULL;

}

This	command	handler	is	unusually	simple.	As	you	can	see,	it
takes	four	arguments,	two	of	which	are	pre-parsed	arguments,	the
third	being	the	per-directory	configuration	structure	for	the	module
in	question,	and	the	fourth	being	a	pointer	to	a	cmd_parms
structure.	That	structure	contains	a	bunch	of	arguments	which	are
frequently	of	use	to	some,	but	not	all,	commands,	including	a
resource	pool	(from	which	memory	can	be	allocated,	and	to	which
cleanups	should	be	tied),	and	the	(virtual)	server	being	configured,
from	which	the	module's	per-server	configuration	data	can	be
obtained	if	required.

Another	way	in	which	this	particular	command	handler	is	unusually
simple	is	that	there	are	no	error	conditions	which	it	can	encounter.
If	there	were,	it	could	return	an	error	message	instead	of	NULL;
this	causes	an	error	to	be	printed	out	on	the	server's	stderr,
followed	by	a	quick	exit,	if	it	is	in	the	main	config	files;	for	a
.htaccess	file,	the	syntax	error	is	logged	in	the	server	error	log
(along	with	an	indication	of	where	it	came	from),	and	the	request	is
bounced	with	a	server	error	response	(HTTP	error	status,	code
500).

The	MIME	module's	command	table	has	entries	for	these
commands,	which	look	like	this:

command_rec	mime_cmds[]	=	{

{	"AddType",	add_type,	NULL,	OR_FILEINFO,	TAKE2,

"a	mime	type	followed	by	a	file	extension"	},

{	"AddEncoding",	add_encoding,	NULL,	OR_FILEINFO,	TAKE2,

"an	encoding	(e.g.,	gzip),	followed	by	a	file	extension"

},

{	NULL	}

};

The	entries	in	these	tables	are:

The	name	of	the	command
The	function	which	handles	it
a	(void	*)	pointer,	which	is	passed	in	the	cmd_parms
structure	to	the	command	handler	---	this	is	useful	in	case
many	similar	commands	are	handled	by	the	same	function.
A	bit	mask	indicating	where	the	command	may	appear.	There
are	mask	bits	corresponding	to	each	AllowOverride	option,
and	an	additional	mask	bit,	RSRC_CONF,	indicating	that	the
command	may	appear	in	the	server's	own	config	files,	but	not
in	any	.htaccess	file.
A	flag	indicating	how	many	arguments	the	command	handler
wants	pre-parsed,	and	how	they	should	be	passed	in.	TAKE2
indicates	two	pre-parsed	arguments.	Other	options	are
TAKE1,	which	indicates	one	pre-parsed	argument,	FLAG,
which	indicates	that	the	argument	should	be	On	or	Off,	and	is
passed	in	as	a	boolean	flag,	RAW_ARGS,	which	causes	the
server	to	give	the	command	the	raw,	unparsed	arguments
(everything	but	the	command	name	itself).	There	is	also
ITERATE,	which	means	that	the	handler	looks	the	same	as
TAKE1,	but	that	if	multiple	arguments	are	present,	it	should	be
called	multiple	times,	and	finally	ITERATE2,	which	indicates
that	the	command	handler	looks	like	a	TAKE2,	but	if	more
arguments	are	present,	then	it	should	be	called	multiple	times,
holding	the	first	argument	constant.

Finally,	we	have	a	string	which	describes	the	arguments	that
should	be	present.	If	the	arguments	in	the	actual	config	file
are	not	as	required,	this	string	will	be	used	to	help	give	a	more
specific	error	message.	(You	can	safely	leave	this	NULL).

Finally,	having	set	this	all	up,	we	have	to	use	it.	This	is	ultimately
done	in	the	module's	handlers,	specifically	for	its	file-typing
handler,	which	looks	more	or	less	like	this;	note	that	the	per-
directory	configuration	structure	is	extracted	from	the
request_rec's	per-directory	configuration	vector	by	using	the
ap_get_module_config	function.

int	find_ct(request_rec	*r)

{

int	i;

char	*fn	=	ap_pstrdup	(r->pool,	r->filename);

mime_dir_config	*conf	=	(mime_dir_config	*)

ap_get_module_config(r->per_dir_config,	&mime_module);

char	*type;

if	(S_ISDIR(r->finfo.st_mode))	{

r->content_type	=	DIR_MAGIC_TYPE;

return	OK;

}

if((i=ap_rind(fn,'.'))	<	0)	return	DECLINED;

++i;

if	((type	=	ap_table_get	(conf->encoding_types,	&fn[i])))

{

r->content_encoding	=	type;

/*	go	back	to	previous	extension	to	try	to	use	it	as	a

type	*/

fn[i-1]	=	'\0';

if((i=ap_rind(fn,'.'))	<	0)	return	OK;

++i;

}

if	((type	=	ap_table_get	(conf->forced_types,	&fn[i])))

{

r->content_type	=	type;

}

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

return	OK;

}

Side	notes	--	per-server	configuration,	virtual	servers,
etc.
The	basic	ideas	behind	per-server	module	configuration	are
basically	the	same	as	those	for	per-directory	configuration;	there	is
a	creation	function	and	a	merge	function,	the	latter	being	invoked
where	a	virtual	server	has	partially	overridden	the	base	server
configuration,	and	a	combined	structure	must	be	computed.	(As
with	per-directory	configuration,	the	default	if	no	merge	function	is
specified,	and	a	module	is	configured	in	some	virtual	server,	is	that
the	base	configuration	is	simply	ignored).

The	only	substantial	difference	is	that	when	a	command	needs	to
configure	the	per-server	private	module	data,	it	needs	to	go	to	the
cmd_parms	data	to	get	at	it.	Here's	an	example,	from	the	alias
module,	which	also	indicates	how	a	syntax	error	can	be	returned
(note	that	the	per-directory	configuration	argument	to	the
command	handler	is	declared	as	a	dummy,	since	the	module
doesn't	actually	have	per-directory	config	data):

char	*add_redirect(cmd_parms	*cmd,	void	*dummy,	char	*f,	char

*url)

{

server_rec	*s	=	cmd->server;

alias_server_conf	*conf	=	(alias_server_conf	*)

ap_get_module_config(s->module_config,&alias_module);

alias_entry	*new	=	ap_push_array	(conf->redirects);

if	(!ap_is_url	(url))	return	"Redirect	to	non-URL";

new->fake	=	f;	new->real	=	url;

return	NULL;

}

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Debugging	Memory	Allocation	in	APR

This	document	has	been	removed.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Documenting	code	in	Apache	2.4

Apache	2.4	uses	Doxygen	to	document	the	APIs	and	global	variables
in	the	code.	This	will	explain	the	basics	of	how	to	document	using
Doxygen.

http://www.doxygen.org/

Brief	Description

To	start	a	documentation	block,	use	/**
To	end	a	documentation	block,	use	*/

In	the	middle	of	the	block,	there	are	multiple	tags	we	can	use:

Description	of	this	functions	purpose

@param	parameter_name	description

@return	description

@deffunc	signature	of	the	function

The	deffunc	is	not	always	necessary.	DoxyGen	does	not	have	a
full	parser	in	it,	so	any	prototype	that	use	a	macro	in	the	return
type	declaration	is	too	complex	for	scandoc.	Those	functions
require	a	deffunc.	An	example	(using	>	rather	than	>):

/**

	*	return	the	final	element	of	the	pathname

	*	@param	pathname	The	path	to	get	the	final	element	of

	*	@return	the	final	element	of	the	path

	*	@tip	Examples:

	*	<pre>

	*	"/foo/bar/gum"	->	"gum"

	*	"/foo/bar/gum/"	->	""

	*	"gum"	->	"gum"

	*	"wi\\n32\\stuff"	->	"stuff"

	*	</pre>

	*	@deffunc	const	char	*	ap_filename_of_pathname(const	char

*pathname)

	*/

At	the	top	of	the	header	file,	always	include:

/**

	*	@package	Name	of	library	header

	*/

Doxygen	uses	a	new	HTML	file	for	each	package.	The	HTML	files
are	named	{Name_of_library_header}.html,	so	try	to	be	concise
with	your	names.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

For	a	further	discussion	of	the	possibilities	please	refer	to	the
Doxygen	site.

http://www.doxygen.org/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Hook	Functions	in	the	Apache	HTTP	Server
2.x

Warning

This	document	is	still	in	development	and	may	be	partially	out	of
date.

In	general,	a	hook	function	is	one	that	the	Apache	HTTP	Server	will
call	at	some	point	during	the	processing	of	a	request.	Modules	can
provide	functions	that	are	called,	and	specify	when	they	get	called	in
comparison	to	other	modules.

Core	Hooks

The	httpd's	core	modules	offer	a	predefinined	list	of	hooks	used
during	the	standard	request	processing	phase.	Creating	a	new
hook	will	expose	a	function	that	implements	it	(see	sections	below)
but	it	is	essential	to	undestand	that	you	will	not	extend	the	httpd's
core	hooks.	Their	presence	and	order	in	the	request	processing	is
in	fact	a	consequence	of	how	they	are	called	in
server/request.c	(check	this	section	for	an	overview).	The
core	hooks	are	listed	in	the	doxygen	documentation.

Reading	guide	for	developing	modules	and	request	processing
before	proceeding	is	highly	recomended.

https://ci.apache.org/projects/httpd/trunk/doxygen/group__hooks.html

Creating	a	hook	function

In	order	to	create	a	new	hook,	four	things	need	to	be	done:

Declare	the	hook	function
Use	the	AP_DECLARE_HOOK	macro,	which	needs	to	be	given	the
return	type	of	the	hook	function,	the	name	of	the	hook,	and	the
arguments.	For	example,	if	the	hook	returns	an	int	and	takes	a
request_rec	*	and	an	int	and	is	called	do_something,	then
declare	it	like	this:

AP_DECLARE_HOOK(int,	do_something,	(request_rec	*r,	int	n))

This	should	go	in	a	header	which	modules	will	include	if	they	want
to	use	the	hook.

Create	the	hook	structure
Each	source	file	that	exports	a	hook	has	a	private	structure	which
is	used	to	record	the	module	functions	that	use	the	hook.	This	is
declared	as	follows:

APR_HOOK_STRUCT(

		APR_HOOK_LINK(do_something)

		...

)

Implement	the	hook	caller
The	source	file	that	exports	the	hook	has	to	implement	a	function
that	will	call	the	hook.	There	are	currently	three	possible	ways	to
do	this.	In	all	cases,	the	calling	function	is	called
ap_run_hookname().

Void	hooks
If	the	return	value	of	a	hook	is	void,	then	all	the	hooks	are	called,
and	the	caller	is	implemented	like	this:

AP_IMPLEMENT_HOOK_VOID(do_something,	(request_rec	*r,	int	n),	(r,	n))

The	second	and	third	arguments	are	the	dummy	argument
declaration	and	the	dummy	arguments	as	they	will	be	used	when
calling	the	hook.	In	other	words,	this	macro	expands	to	something
like	this:

void	ap_run_do_something(request_rec	*r,	int	n)

{

				...

				do_something(r,	n);

}

Hooks	that	return	a	value
If	the	hook	returns	a	value,	then	it	can	either	be	run	until	the	first
hook	that	does	something	interesting,	like	so:

AP_IMPLEMENT_HOOK_RUN_FIRST(int,	do_something,	(request_rec	*r,	int	n),	(r,	n),	DECLINED)

The	first	hook	that	does	not	return	DECLINED	stops	the	loop	and
its	return	value	is	returned	from	the	hook	caller.	Note	that
DECLINED	is	the	traditional	hook	return	value	meaning	"I	didn't	do
anything",	but	it	can	be	whatever	suits	you.

Alternatively,	all	hooks	can	be	run	until	an	error	occurs.	This	boils
down	to	permitting	two	return	values,	one	of	which	means	"I	did
something,	and	it	was	OK"	and	the	other	meaning	"I	did	nothing".

The	first	function	that	returns	a	value	other	than	one	of	those	two
stops	the	loop,	and	its	return	is	the	return	value.	Declare	these	like
so:

AP_IMPLEMENT_HOOK_RUN_ALL(int,	do_something,	(request_rec	*r,	int	n),	(r,	n),	OK,	DECLINED)

Again,	OK	and	DECLINED	are	the	traditional	values.	You	can	use
what	you	want.

Call	the	hook	callers
At	appropriate	moments	in	the	code,	call	the	hook	caller,	like	so:

int	n,	ret;

request_rec	*r;

ret=ap_run_do_something(r,	n);

Hooking	the	hook

A	module	that	wants	a	hook	to	be	called	needs	to	do	two	things.

Implement	the	hook	function
Include	the	appropriate	header,	and	define	a	static	function	of	the
correct	type:

static	int	my_something_doer(request_rec	*r,	int	n)

{

				...

				return	OK;

}

Add	a	hook	registering	function
During	initialisation,	the	server	will	call	each	modules	hook
registering	function,	which	is	included	in	the	module	structure:

static	void	my_register_hooks()

{

				ap_hook_do_something(my_something_doer,	NULL,	NULL,	APR_HOOK_MIDDLE);

}

mode	MODULE_VAR_EXPORT	my_module	=

{

				...

				my_register_hooks							/*	register	hooks	*/

};

Controlling	hook	calling	order
In	the	example	above,	we	didn't	use	the	three	arguments	in	the
hook	registration	function	that	control	calling	order	of	all	the

functions	registered	within	the	hook.	There	are	two	mechanisms
for	doing	this.	The	first,	rather	crude,	method,	allows	us	to	specify
roughly	where	the	hook	is	run	relative	to	other	modules.	The	final
argument	control	this.	There	are	three	possible	values:
APR_HOOK_FIRST,	APR_HOOK_MIDDLE	and	APR_HOOK_LAST.

All	modules	using	any	particular	value	may	be	run	in	any	order
relative	to	each	other,	but,	of	course,	all	modules	using
APR_HOOK_FIRST	will	be	run	before	APR_HOOK_MIDDLE	which
are	before	APR_HOOK_LAST.	Modules	that	don't	care	when	they
are	run	should	use	APR_HOOK_MIDDLE.	These	values	are	spaced
out,	so	that	positions	like	APR_HOOK_FIRST-2	are	possible	to
hook	slightly	earlier	than	other	functions.

Note	that	there	are	two	more	values,	APR_HOOK_REALLY_FIRST
and	APR_HOOK_REALLY_LAST.	These	should	only	be	used	by	the
hook	exporter.

The	other	method	allows	finer	control.	When	a	module	knows	that
it	must	be	run	before	(or	after)	some	other	modules,	it	can	specify
them	by	name.	The	second	(third)	argument	is	a	NULL-terminated
array	of	strings	consisting	of	the	names	of	modules	that	must	be
run	before	(after)	the	current	module.	For	example,	suppose	we
want	"mod_xyz.c"	and	"mod_abc.c"	to	run	before	we	do,	then	we'd
hook	as	follows:

static	void	register_hooks()

{

				static	const	char	*	const	aszPre[]	=	{	"mod_xyz.c",	"mod_abc.c",	NULL	};

				ap_hook_do_something(my_something_doer,	aszPre,	NULL,	APR_HOOK_MIDDLE);

}

Note	that	the	sort	used	to	achieve	this	is	stable,	so	ordering	set	by

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

APR_HOOK_ORDER	is	preserved,	as	far	as	is	possible.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Converting	Modules	from	Apache	1.3	to
Apache	2.0

This	is	a	first	attempt	at	writing	the	lessons	I	learned	when	trying	to
convert	the	mod_mmap_static	module	to	Apache	2.0.	It's	by	no
means	definitive	and	probably	won't	even	be	correct	in	some	ways,
but	it's	a	start.

The	easier	changes	...

Cleanup	Routines
These	now	need	to	be	of	type	apr_status_t	and	return	a	value
of	that	type.	Normally	the	return	value	will	be	APR_SUCCESS
unless	there	is	some	need	to	signal	an	error	in	the	cleanup.	Be
aware	that	even	though	you	signal	an	error	not	all	code	yet	checks
and	acts	upon	the	error.

Initialisation	Routines
These	should	now	be	renamed	to	better	signify	where	they	sit	in
the	overall	process.	So	the	name	gets	a	small	change	from
mmap_init	to	mmap_post_config.	The	arguments	passed
have	undergone	a	radical	change	and	now	look	like

apr_pool_t	*p

apr_pool_t	*plog

apr_pool_t	*ptemp

server_rec	*s

Data	Types
A	lot	of	the	data	types	have	been	moved	into	the	APR.	This	means
that	some	have	had	a	name	change,	such	as	the	one	shown
above.	The	following	is	a	brief	list	of	some	of	the	changes	that	you
are	likely	to	have	to	make.

pool	becomes	apr_pool_t
table	becomes	apr_table_t

http://apr.apache.org/

The	messier	changes...

Register	Hooks
The	new	architecture	uses	a	series	of	hooks	to	provide	for	calling
your	functions.	These	you'll	need	to	add	to	your	module	by	way	of
a	new	function,	static	void	register_hooks(void).	The
function	is	really	reasonably	straightforward	once	you	understand
what	needs	to	be	done.	Each	function	that	needs	calling	at	some
stage	in	the	processing	of	a	request	needs	to	be	registered,
handlers	do	not.	There	are	a	number	of	phases	where	functions
can	be	added,	and	for	each	you	can	specify	with	a	high	degree	of
control	the	relative	order	that	the	function	will	be	called	in.

This	is	the	code	that	was	added	to	mod_mmap_static:

static	void	register_hooks(void)

{

				static	const	char	*	const	aszPre[]={	"http_core.c",NULL	};

				ap_hook_post_config(mmap_post_config,NULL,NULL,HOOK_MIDDLE);

				ap_hook_translate_name(mmap_static_xlat,aszPre,NULL,HOOK_LAST);

};

This	registers	2	functions	that	need	to	be	called,	one	in	the
post_config	stage	(virtually	every	module	will	need	this	one)
and	one	for	the	translate_name	phase.	note	that	while	there
are	different	function	names	the	format	of	each	is	identical.	So
what	is	the	format?

ap_hook_phase_name(function_name,	predecessors,	successors,

position);

There	are	3	hook	positions	defined...

HOOK_FIRST

HOOK_MIDDLE

HOOK_LAST

To	define	the	position	you	use	the	position	and	then	modify	it	with
the	predecessors	and	successors.	Each	of	the	modifiers	can	be	a
list	of	functions	that	should	be	called,	either	before	the	function	is
run	(predecessors)	or	after	the	function	has	run	(successors).

In	the	mod_mmap_static	case	I	didn't	care	about	the
post_config	stage,	but	the	mmap_static_xlat	must	be
called	after	the	core	module	had	done	its	name	translation,	hence
the	use	of	the	aszPre	to	define	a	modifier	to	the	position
HOOK_LAST.

Module	Definition
There	are	now	a	lot	fewer	stages	to	worry	about	when	creating
your	module	definition.	The	old	definition	looked	like

module	MODULE_VAR_EXPORT	module_name_module	=

{

				STANDARD_MODULE_STUFF,

				/*	initializer	*/

				/*	dir	config	creater	*/

				/*	dir	merger	---	default	is	to	override	*/

				/*	server	config	*/

				/*	merge	server	config	*/

				/*	command	handlers	*/

				/*	handlers	*/

				/*	filename	translation	*/

				/*	check_user_id	*/

				/*	check	auth	*/

				/*	check	access	*/

				/*	type_checker	*/

				/*	fixups	*/

				/*	logger	*/

				/*	header	parser	*/

				/*	child_init	*/

				/*	child_exit	*/

				/*	post	read-request	*/

};

The	new	structure	is	a	great	deal	simpler...

module	MODULE_VAR_EXPORT	module_name_module	=

{

				STANDARD20_MODULE_STUFF,

				/*	create	per-directory	config	structures	*/

				/*	merge	per-directory	config	structures		*/

				/*	create	per-server	config	structures				*/

				/*	merge	per-server	config	structures					*/

				/*	command	handlers	*/

				/*	handlers	*/

				/*	register	hooks	*/

};

Some	of	these	read	directly	across,	some	don't.	I'll	try	to
summarise	what	should	be	done	below.

The	stages	that	read	directly	across	:

/*	dir	config	creater	*/

/*	create	per-directory	config	structures	*/

/*	server	config	*/

/*	create	per-server	config	structures	*/

/*	dir	merger	*/

/*	merge	per-directory	config	structures	*/

/*	merge	server	config	*/

/*	merge	per-server	config	structures	*/

/*	command	table	*/

/*	command	apr_table_t	*/

/*	handlers	*/

/*	handlers	*/

The	remainder	of	the	old	functions	should	be	registered	as	hooks.
There	are	the	following	hook	stages	defined	so	far...

ap_hook_pre_config

do	any	setup	required	prior	to	processing	configuration
directives

ap_hook_check_config

review	configuration	directive	interdependencies

ap_hook_test_config

executes	only	with	-t	option

ap_hook_open_logs

open	any	specified	logs

ap_hook_post_config

this	is	where	the	old	_init	routines	get	registered

ap_hook_http_method

retrieve	the	http	method	from	a	request.	(legacy)

ap_hook_auth_checker

check	if	the	resource	requires	authorization

ap_hook_access_checker

check	for	module-specific	restrictions

ap_hook_check_user_id

check	the	user-id	and	password

ap_hook_default_port

retrieve	the	default	port	for	the	server

ap_hook_pre_connection

do	any	setup	required	just	before	processing,	but	after
accepting

ap_hook_process_connection

run	the	correct	protocol

ap_hook_child_init

call	as	soon	as	the	child	is	started

ap_hook_create_request

??

ap_hook_fixups

last	chance	to	modify	things	before	generating	content

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ap_hook_handler

generate	the	content

ap_hook_header_parser

lets	modules	look	at	the	headers,	not	used	by	most	modules,
because	they	use	post_read_request	for	this

ap_hook_insert_filter

to	insert	filters	into	the	filter	chain

ap_hook_log_transaction

log	information	about	the	request

ap_hook_optional_fn_retrieve

retrieve	any	functions	registered	as	optional

ap_hook_post_read_request

called	after	reading	the	request,	before	any	other	phase

ap_hook_quick_handler

called	before	any	request	processing,	used	by	cache
modules.

ap_hook_translate_name

translate	the	URI	into	a	filename

ap_hook_type_checker

determine	and/or	set	the	doc	type

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Request	Processing	in	the	Apache	HTTP
Server	2.x

Warning

Warning	-	this	is	a	first	(fast)	draft	that	needs	further	revision!

Several	changes	in	2.0	and	above	affect	the	internal	request
processing	mechanics.	Module	authors	need	to	be	aware	of	these
changes	so	they	may	take	advantage	of	the	optimizations	and
security	enhancements.

The	first	major	change	is	to	the	subrequest	and	redirect	mechanisms.
There	were	a	number	of	different	code	paths	in	the	Apache	HTTP
Server	1.3	to	attempt	to	optimize	subrequest	or	redirect	behavior.	As
patches	were	introduced	to	2.0,	these	optimizations	(and	the	server
behavior)	were	quickly	broken	due	to	this	duplication	of	code.	All
duplicate	code	has	been	folded	back	into
ap_process_request_internal()	to	prevent	the	code	from
falling	out	of	sync	again.

This	means	that	much	of	the	existing	code	was	'unoptimized'.	It	is	the
Apache	HTTP	Project's	first	goal	to	create	a	robust	and	correct
implementation	of	the	HTTP	server	RFC.	Additional	goals	include
security,	scalability	and	optimization.	New	methods	were	sought	to
optimize	the	server	(beyond	the	performance	of	1.3)	without
introducing	fragile	or	insecure	code.

The	Request	Processing	Cycle

All	requests	pass	through	ap_process_request_internal()
in	server/request.c,	including	subrequests	and	redirects.	If	a
module	doesn't	pass	generated	requests	through	this	code,	the
author	is	cautioned	that	the	module	may	be	broken	by	future
changes	to	request	processing.

To	streamline	requests,	the	module	author	can	take	advantage	of
the	hooks	offered	to	drop	out	of	the	request	cycle	early,	or	to
bypass	core	hooks	which	are	irrelevant	(and	costly	in	terms	of
CPU.)

The	Request	Parsing	Phase

Unescapes	the	URL
The	request's	parsed_uri	path	is	unescaped,	once	and	only
once,	at	the	beginning	of	internal	request	processing.

This	step	is	bypassed	if	the	proxyreq	flag	is	set,	or	the
parsed_uri.path	element	is	unset.	The	module	has	no	further
control	of	this	one-time	unescape	operation,	either	failing	to
unescape	or	multiply	unescaping	the	URL	leads	to	security
repercussions.

Strips	Parent	and	This	Elements	from	the	URI
All	/../	and	/./	elements	are	removed	by	ap_getparents().
This	helps	to	ensure	the	path	is	(nearly)	absolute	before	the
request	processing	continues.

This	step	cannot	be	bypassed.

Initial	URI	Location	Walk
Every	request	is	subject	to	an	ap_location_walk()	call.	This
ensures	that	<Location>	sections	are	consistently	enforced	for
all	requests.	If	the	request	is	an	internal	redirect	or	a	sub-request,
it	may	borrow	some	or	all	of	the	processing	from	the	previous	or
parent	request's	ap_location_walk,	so	this	step	is	generally	very
efficient	after	processing	the	main	request.

translate_name
Modules	can	determine	the	file	name,	or	alter	the	given	URI	in	this
step.	For	example,	mod_vhost_alias	will	translate	the	URI's
path	into	the	configured	virtual	host,	mod_alias	will	translate	the
path	to	an	alias	path,	and	if	the	request	falls	back	on	the	core,	the

DocumentRoot	is	prepended	to	the	request	resource.

If	all	modules	DECLINE	this	phase,	an	error	500	is	returned	to	the
browser,	and	a	"couldn't	translate	name"	error	is	logged
automatically.

Hook:	map_to_storage
After	the	file	or	correct	URI	was	determined,	the	appropriate	per-
dir	configurations	are	merged	together.	For	example,	mod_proxy
compares	and	merges	the	appropriate	<Proxy>	sections.	If	the
URI	is	nothing	more	than	a	local	(non-proxy)	TRACE	request,	the
core	handles	the	request	and	returns	DONE.	If	no	module	answers
this	hook	with	OK	or	DONE,	the	core	will	run	the	request	filename
against	the	<Directory>	and	<Files>	sections.	If	the	request
'filename'	isn't	an	absolute,	legal	filename,	a	note	is	set	for	later
termination.

URI	Location	Walk
Every	request	is	hardened	by	a	second	ap_location_walk()
call.	This	reassures	that	a	translated	request	is	still	subjected	to
the	configured	<Location>	sections.	The	request	again	borrows
some	or	all	of	the	processing	from	its	previous	location_walk
above,	so	this	step	is	almost	always	very	efficient	unless	the
translated	URI	mapped	to	a	substantially	different	path	or	Virtual
Host.

Hook:	header_parser
The	main	request	then	parses	the	client's	headers.	This	prepares
the	remaining	request	processing	steps	to	better	serve	the	client's
request.

The	Security	Phase

Needs	Documentation.	Code	is:

if	((access_status	=	ap_run_access_checker(r))	!=	0)	{

				return	decl_die(access_status,	"check	access",	r);

}

if	((access_status	=	ap_run_check_user_id(r))	!=	0)	{

				return	decl_die(access_status,	"check	user",	r);

}

if	((access_status	=	ap_run_auth_checker(r))	!=	0)	{

				return	decl_die(access_status,	"check	authorization",	r);

}

The	Preparation	Phase

Hook:	type_checker
The	modules	have	an	opportunity	to	test	the	URI	or	filename
against	the	target	resource,	and	set	mime	information	for	the
request.	Both	mod_mime	and	mod_mime_magic	use	this	phase	to
compare	the	file	name	or	contents	against	the	administrator's
configuration	and	set	the	content	type,	language,	character	set
and	request	handler.	Some	modules	may	set	up	their	filters	or
other	request	handling	parameters	at	this	time.

If	all	modules	DECLINE	this	phase,	an	error	500	is	returned	to	the
browser,	and	a	"couldn't	find	types"	error	is	logged	automatically.

Hook:	fixups
Many	modules	are	'trounced'	by	some	phase	above.	The	fixups
phase	is	used	by	modules	to	'reassert'	their	ownership	or	force	the
request's	fields	to	their	appropriate	values.	It	isn't	always	the
cleanest	mechanism,	but	occasionally	it's	the	only	option.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	Handler	Phase

This	phase	is	not	part	of	the	processing	in
ap_process_request_internal().	Many	modules	prepare
one	or	more	subrequests	prior	to	creating	any	content	at	all.	After
the	core,	or	a	module	calls	ap_process_request_internal()
it	then	calls	ap_invoke_handler()	to	generate	the	request.

Hook:	insert_filter
Modules	that	transform	the	content	in	some	way	can	insert	their
values	and	override	existing	filters,	such	that	if	the	user	configured
a	more	advanced	filter	out-of-order,	then	the	module	can	move	its
order	as	need	be.	There	is	no	result	code,	so	actions	in	this	hook
better	be	trusted	to	always	succeed.

Hook:	handler
The	module	finally	has	a	chance	to	serve	the	request	in	its	handler
hook.	Note	that	not	every	prepared	request	is	sent	to	the	handler
hook.	Many	modules,	such	as	mod_autoindex,	will	create
subrequests	for	a	given	URI,	and	then	never	serve	the	subrequest,
but	simply	lists	it	for	the	user.	Remember	not	to	put	required
teardown	from	the	hooks	above	into	this	module,	but	register	pool
cleanups	against	the	request	pool	to	free	resources	as	required.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

How	filters	work	in	Apache	2.0

Warning

This	is	a	cut	'n	paste	job	from	an	email
(<022501c1c529$f63a9550$7f00000a@KOJ>)	and	only
reformatted	for	better	readability.	It's	not	up	to	date	but	may	be	a
good	start	for	further	research.

Filter	Types

There	are	three	basic	filter	types	(each	of	these	is	actually	broken
down	into	two	categories,	but	that	comes	later).

CONNECTION

Filters	of	this	type	are	valid	for	the	lifetime	of	this	connection.
(AP_FTYPE_CONNECTION,	AP_FTYPE_NETWORK)

PROTOCOL

Filters	of	this	type	are	valid	for	the	lifetime	of	this	request	from
the	point	of	view	of	the	client,	this	means	that	the	request	is
valid	from	the	time	that	the	request	is	sent	until	the	time	that
the	response	is	received.	(AP_FTYPE_PROTOCOL,
AP_FTYPE_TRANSCODE)

RESOURCE

Filters	of	this	type	are	valid	for	the	time	that	this	content	is
used	to	satisfy	a	request.	For	simple	requests,	this	is	identical
to	PROTOCOL,	but	internal	redirects	and	sub-requests	can
change	the	content	without	ending	the	request.
(AP_FTYPE_RESOURCE,	AP_FTYPE_CONTENT_SET)

It	is	important	to	make	the	distinction	between	a	protocol	and	a
resource	filter.	A	resource	filter	is	tied	to	a	specific	resource,	it	may
also	be	tied	to	header	information,	but	the	main	binding	is	to	a
resource.	If	you	are	writing	a	filter	and	you	want	to	know	if	it	is
resource	or	protocol,	the	correct	question	to	ask	is:	"Can	this	filter
be	removed	if	the	request	is	redirected	to	a	different	resource?"	If
the	answer	is	yes,	then	it	is	a	resource	filter.	If	it	is	no,	then	it	is
most	likely	a	protocol	or	connection	filter.	I	won't	go	into
connection	filters,	because	they	seem	to	be	well	understood.	With
this	definition,	a	few	examples	might	help:

Byterange
We	have	coded	it	to	be	inserted	for	all	requests,	and	it	is
removed	if	not	used.	Because	this	filter	is	active	at	the

beginning	of	all	requests,	it	can	not	be	removed	if	it	is
redirected,	so	this	is	a	protocol	filter.

http_header
This	filter	actually	writes	the	headers	to	the	network.	This	is
obviously	a	required	filter	(except	in	the	asis	case	which	is
special	and	will	be	dealt	with	below)	and	so	it	is	a	protocol
filter.

Deflate
The	administrator	configures	this	filter	based	on	which	file	has
been	requested.	If	we	do	an	internal	redirect	from	an
autoindex	page	to	an	index.html	page,	the	deflate	filter	may
be	added	or	removed	based	on	config,	so	this	is	a	resource
filter.

The	further	breakdown	of	each	category	into	two	more	filter	types
is	strictly	for	ordering.	We	could	remove	it,	and	only	allow	for	one
filter	type,	but	the	order	would	tend	to	be	wrong,	and	we	would
need	to	hack	things	to	make	it	work.	Currently,	the	RESOURCE
filters	only	have	one	filter	type,	but	that	should	change.

How	are	filters	inserted?

This	is	actually	rather	simple	in	theory,	but	the	code	is	complex.
First	of	all,	it	is	important	that	everybody	realize	that	there	are
three	filter	lists	for	each	request,	but	they	are	all	concatenated
together:

r->output_filters	(corresponds	to	RESOURCE)
r->proto_output_filters	(corresponds	to	PROTOCOL)
r->connection->output_filters	(corresponds	to
CONNECTION)

The	problem	previously,	was	that	we	used	a	singly	linked	list	to
create	the	filter	stack,	and	we	started	from	the	"correct"	location.
This	means	that	if	I	had	a	RESOURCE	filter	on	the	stack,	and	I
added	a	CONNECTION	filter,	the	CONNECTION	filter	would	be
ignored.	This	should	make	sense,	because	we	would	insert	the
connection	filter	at	the	top	of	the	c->output_filters	list,	but
the	end	of	r->output_filters	pointed	to	the	filter	that	used	to
be	at	the	front	of	c->output_filters.	This	is	obviously	wrong.
The	new	insertion	code	uses	a	doubly	linked	list.	This	has	the
advantage	that	we	never	lose	a	filter	that	has	been	inserted.
Unfortunately,	it	comes	with	a	separate	set	of	headaches.

The	problem	is	that	we	have	two	different	cases	were	we	use
subrequests.	The	first	is	to	insert	more	data	into	a	response.	The
second	is	to	replace	the	existing	response	with	an	internal	redirect.
These	are	two	different	cases	and	need	to	be	treated	as	such.

In	the	first	case,	we	are	creating	the	subrequest	from	within	a
handler	or	filter.	This	means	that	the	next	filter	should	be	passed	to
make_sub_request	function,	and	the	last	resource	filter	in	the
sub-request	will	point	to	the	next	filter	in	the	main	request.	This
makes	sense,	because	the	sub-request's	data	needs	to	flow
through	the	same	set	of	filters	as	the	main	request.	A	graphical

representation	might	help:

Default_handler	-->	includes_filter	-->	byterange	-->	...

If	the	includes	filter	creates	a	sub	request,	then	we	don't	want	the
data	from	that	sub-request	to	go	through	the	includes	filter,
because	it	might	not	be	SSI	data.	So,	the	subrequest	adds	the
following:

Default_handler	-->	includes_filter	-/->	byterange	-->	...

																																				/

Default_handler	-->	sub_request_core

What	happens	if	the	subrequest	is	SSI	data?	Well,	that's	easy,	the
includes_filter	is	a	resource	filter,	so	it	will	be	added	to	the
sub	request	in	between	the	Default_handler	and	the
sub_request_core	filter.

The	second	case	for	sub-requests	is	when	one	sub-request	is
going	to	become	the	real	request.	This	happens	whenever	a	sub-
request	is	created	outside	of	a	handler	or	filter,	and	NULL	is
passed	as	the	next	filter	to	the	make_sub_request	function.

In	this	case,	the	resource	filters	no	longer	make	sense	for	the	new
request,	because	the	resource	has	changed.	So,	instead	of
starting	from	scratch,	we	simply	point	the	front	of	the	resource
filters	for	the	sub-request	to	the	front	of	the	protocol	filters	for	the
old	request.	This	means	that	we	won't	lose	any	of	the	protocol
filters,	neither	will	we	try	to	send	this	data	through	a	filter	that
shouldn't	see	it.

The	problem	is	that	we	are	using	a	doubly-linked	list	for	our	filter
stacks	now.	But,	you	should	notice	that	it	is	possible	for	two	lists	to
intersect	in	this	model.	So,	you	do	you	handle	the	previous
pointer?	This	is	a	very	difficult	question	to	answer,	because	there

is	no	"right"	answer,	either	method	is	equally	valid.	I	looked	at	why
we	use	the	previous	pointer.	The	only	reason	for	it	is	to	allow	for
easier	addition	of	new	servers.	With	that	being	said,	the	solution	I
chose	was	to	make	the	previous	pointer	always	stay	on	the
original	request.

This	causes	some	more	complex	logic,	but	it	works	for	all	cases.
My	concern	in	having	it	move	to	the	sub-request,	is	that	for	the
more	common	case	(where	a	sub-request	is	used	to	add	data	to	a
response),	the	main	filter	chain	would	be	wrong.	That	didn't	seem
like	a	good	idea	to	me.

Asis

The	final	topic.	:-)	Mod_Asis	is	a	bit	of	a	hack,	but	the	handler
needs	to	remove	all	filters	except	for	connection	filters,	and	send
the	data.	If	you	are	using	mod_asis,	all	other	bets	are	off.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Explanations

The	absolutely	last	point	is	that	the	reason	this	code	was	so	hard
to	get	right,	was	because	we	had	hacked	so	much	to	force	it	to
work.	I	wrote	most	of	the	hacks	originally,	so	I	am	very	much	to
blame.	However,	now	that	the	code	is	right,	I	have	started	to
remove	some	hacks.	Most	people	should	have	seen	that	the
reset_filters	and	add_required_filters	functions	are
gone.	Those	inserted	protocol	level	filters	for	error	conditions,	in
fact,	both	functions	did	the	same	thing,	one	after	the	other,	it	was
really	strange.	Because	we	don't	lose	protocol	filters	for	error
cases	any	more,	those	hacks	went	away.	The	HTTP_HEADER,
Content-length,	and	Byterange	filters	are	all	added	in	the
insert_filters	phase,	because	if	they	were	added	earlier,	we
had	some	interesting	interactions.	Now,	those	could	all	be	moved
to	be	inserted	with	the	HTTP_IN,	CORE,	and	CORE_IN	filters.	That
would	make	the	code	easier	to	follow.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

				.	 					.

					,			,		.							.	 (
; 						,		.		 		.)

http://www.whiterabbitpress.com/osp/apache/

	(Access	Control)
				.				 URL			.
:	 ,	,	

	(Algorithm)
								.					 (Ciphers)
.

APache	eXtension	Tool	(apxs)
	(module)			(DSO)							perl	.
:	 Manpage:	apxs

	(Authentication)
,	,						.
:	 ,	,	

	(Certificate)
						.	 		(subject),		
(Certificate	Authority)	(issuer),		 ,	CA				
X.509		.			CA			 	.
:	 SSL/TLS	

			(Certificate	Signing	Request ,	CSR)
	(Certification	Authority) 		CA	 	(Certificate) 		(Private
Key)				 .	CSR				.
:	 SSL/TLS	

	(Certification	Authority ,	CA)
								.					CA		
			.
:	 SSL/TLS	

	(Cipher)
			.		,	DES,	IDEA,	RC4		.
:	 SSL/TLS	

	(Ciphertext)
	(Plaintext) 	 	(Cipher)		.

:	 SSL/TLS	

			(Common	Gateway	Interface ,	CGI)
												.			 NCSA
,	 RFC		.
:	 CGI			

		(Configuration	Directive)
:	

	(Configuration	File)
		 	(directive) 		.
:	

CONNECT
HTTP				HTTP	 	(method).	SSL					
.

	(Context)
	(configuration	file) 		 	(directive) 				.
:	 				

	(Digital	Signature)
					.	 	(Certification	 Authority)	
(Certificate)		 	(Public	Key) 				 	(Private	Key)
		.	 	CA					,	CA	
				 	.
:	 SSL/TLS	

	(Directive)
					.		 	(Configuration	File) 	.
:	 	

	(Dynamic	Shared	Object) 	(DSO)
	httpd								 	(Module)
:	 	

	(Environment	Variable) 	(env-variable)
								.					,			
		.

http://hoohoo.ncsa.uiuc.edu/cgi/overview.html
http://cgi-spec.golux.com/

:	 	

	(Export-Crippled)
	(Export	Administration	Regulations,	EAR)	 	()	
	.			 				,	 	 (Ciphertext)
force)			.
:	 SSL/TLS		(SSL/TLS	Encryption)

	(Filter)
					.						,					
	.		,	 INCLUDES			 Server	Side	Includes	
.
:	

		(Fully-Qualified	Domain-Name) 	(FQDN)
IP		,							.		,	 www	
example.com	,	 www.example.com		.

	(Handler)
							.								
.						,					"(handled)".		
,	 cgi-script		 CGI			.
:	 		

	(Header)
HTTP											.

.htaccess
			 	(configuration	file) ,		 	(directive) 			
		.														.
:	

httpd.conf
		 	(configuration	file) .		
/usr/local/apache2/conf/httpd.conf,				
			.
:	

HyperText	Transfer	Protocol	(HTTP)

				.		 RFC	2616		HTTP/1.1		1.1		
.

HTTPS
			,	HyperText	Transfer	 Protocol	(Secure).		
SSL		HTTP.
:	 SSL/TLS	

	(Method)
		 HTTP					.	HTTP		 GET,	POST,	PUT	
.

		(Message	Digest)
						 	.
:	 SSL/TLS	

MIME-type
				.	Multipurpose	Internet	Mail	Extensions		
			.				major	type	minor	type	.		,
text/html,	image/gif,	application/octet-stream	
.	MIME-type	HTTP	 Content-Type		(header) 	.
:	 mod_mime

	(Module)
		.										.		httpd		
			 		,									 	 		 DSO
.				 base		.			 	(tarball) 				
			.		 	(third-party)	 	.
:	 	

		(Module	Magic	Number) 	(MMN)
					,				.							
					,		API				.	MMN		
						.								.

OpenSSL
SSL/TLS			
	 http://www.openssl.org/

http://ietf.org/rfc/rfc2616.txt
http://www.openssl.org/

Pass	Phrase
			.									.		
(Ciphers)			/	.
:	 SSL/TLS	

	(Plaintext)
		.

	(Private	Key)
						 		(Public	Key	Cryptography) 		.
:	 SSL/TLS	

	(Proxy)
		 				.						,				
		.														
		.
:	 mod_proxy

	(Public	Key)
		(Public	Key	Cryptography) 								
				.
:	 SSL/TLS	

		(Public	Key	Cryptography)
						(asymmetric)					.	
				(key	pair)	.			.
:	 SSL/TLS	

	(Regular	Expression) 	(Regex)
			.		,	"	A			",	"	10	",
	"			Q		"				.					
						.		,	"images"				
.gif	.jpg		" /images/.*(jpg|gif)$"			.	
PCRE			Perl		.

	(Reverse	Proxy)
	 	 		 	(proxy) 	.									
.

http://www.pcre.org/

Secure	Sockets	Layer	(SSL)
Netscape	Communications	TCP/IP						
	.				 HTTPS	(HyperText	Transfer	Protocol
(HTTP)	over	SSL).
:	 SSL/TLS	

Server	Side	Includes	(SSI)
HTML					.
:	 Server	Side	Includes	

	(Session)
		(context)	.

SSLeay
Eric	A.	Young			SSL/TLS		

		(Symmetric	Cryptography)
						 	 (Ciphers)			.
:	 SSL/TLS	Encryption

	(Tarball)
tar					.		tar			pkzip		.

Transport	Layer	Security	(TLS)
		(Internet	Engineering	Task	Force,	IETF)	TCP/IP	
						SSL		.	TLS		1	SSL		3
	.
:	 SSL/TLS	

Uniform	Resource	Locator	(URL)
			/.		 Uniform	Resource	Identifier			
		.		URL	 http	 https	(scheme),	,		.
		URL
http://httpd.apache.org/docs/2.4/glossary.html

.

Uniform	Resource	Identifier	(URI)
						.		 RFC	2396	.			URI
	 URL	.

http://www.ietf.org/rfc/rfc2396.txt

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	(Virtual	Hosting)
				.	 IP			IP		.	 (name-based)		
		IP						.
:	 		

X.509
(International	Telecommunication	Union,	ITU-T)			.
SSL/TLS		.
:	 SSL/TLS	

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

						.	 			,				

				 	 	.

	A		|		B		|		C		|		D		|		E		|		F		|		G		|		H		|		I		|		K		|		L		|		M		|		N		|		O		|		P		|
	Q		|		R		|		S		|		T		|		U		|		V		|		W		|		X	

AcceptFilter
AcceptPathInfo
AccessFileName
Action
AddAlt
AddAltByEncoding
AddAltByType
AddCharset
AddDefaultCharset
AddDescription
AddEncoding
AddHandler
AddIcon
AddIconByEncoding
AddIconByType
AddInputFilter
AddLanguage
AddModuleInfo
AddOutputFilter
AddOutputFilterByType
AddType
Alias
AliasMatch
Allow
AllowCONNECT

AllowEncodedSlashes
AllowMethods
AllowOverride
AllowOverrideList
Anonymous
Anonymous_LogEmail
Anonymous_MustGiveEmail
Anonymous_NoUserID
Anonymous_VerifyEmail
AsyncRequestWorkerFactor
AuthBasicAuthoritative
AuthBasicFake
AuthBasicProvider
AuthBasicUseDigestAlgorithm
AuthDBDUserPWQuery
AuthDBDUserRealmQuery
AuthDBMGroupFile
AuthDBMType
AuthDBMUserFile
AuthDigestAlgorithm
AuthDigestDomain
AuthDigestNonceLifetime
AuthDigestProvider
AuthDigestQop
AuthDigestShmemSize
AuthFormAuthoritative
AuthFormBody
AuthFormDisableNoStore
AuthFormFakeBasicAuth
AuthFormLocation
AuthFormLoginRequiredLocation
AuthFormLoginSuccessLocation
AuthFormLogoutLocation
AuthFormMethod

AuthFormMimetype
AuthFormPassword
AuthFormProvider
AuthFormSitePassphrase
AuthFormSize
AuthFormUsername
AuthGroupFile
AuthLDAPAuthorizePrefix
AuthLDAPBindAuthoritative
AuthLDAPBindDN
AuthLDAPBindPassword
AuthLDAPCharsetConfig
AuthLDAPCompareAsUser
AuthLDAPCompareDNOnServer
AuthLDAPDereferenceAliases
AuthLDAPGroupAttribute
AuthLDAPGroupAttributeIsDN
AuthLDAPInitialBindAsUser
AuthLDAPInitialBindPattern
AuthLDAPMaxSubGroupDepth
AuthLDAPRemoteUserAttribute
AuthLDAPRemoteUserIsDN
AuthLDAPSearchAsUser
AuthLDAPSubGroupAttribute
AuthLDAPSubGroupClass
AuthLDAPUrl
AuthMerging
AuthName
AuthnCacheContext
AuthnCacheEnable
AuthnCacheProvideFor
AuthnCacheSOCache
AuthnCacheTimeout
<AuthnProviderAlias>

AuthnzFcgiCheckAuthnProvider
AuthnzFcgiDefineProvider
AuthType
AuthUserFile
AuthzDBDLoginToReferer
AuthzDBDQuery
AuthzDBDRedirectQuery
AuthzDBMType
<AuthzProviderAlias>
AuthzSendForbiddenOnFailure
BalancerGrowth
BalancerInherit
BalancerMember
BalancerPersist
BrotliAlterETag
BrotliCompressionMaxInputBlock
BrotliCompressionQuality
BrotliCompressionWindow
BrotliFilterNote
BrowserMatch
BrowserMatchNoCase
BufferedLogs
BufferSize
CacheDefaultExpire
CacheDetailHeader
CacheDirLength
CacheDirLevels
CacheDisable
CacheEnable
CacheFile
CacheHeader
CacheIgnoreCacheControl
CacheIgnoreHeaders
CacheIgnoreNoLastMod

CacheIgnoreQueryString
CacheIgnoreURLSessionIdentifiers
CacheKeyBaseURL
CacheLastModifiedFactor
CacheLock
CacheLockMaxAge
CacheLockPath
CacheMaxExpire
CacheMaxFileSize
CacheMinExpire
CacheMinFileSize
CacheNegotiatedDocs
CacheQuickHandler
CacheReadSize
CacheReadTime
CacheRoot
CacheSocache
CacheSocacheMaxSize
CacheSocacheMaxTime
CacheSocacheMinTime
CacheSocacheReadSize
CacheSocacheReadTime
CacheStaleOnError
CacheStoreExpired
CacheStoreNoStore
CacheStorePrivate
CGIDScriptTimeout
CGIMapExtension
CGIPassAuth
CGIVar
CharsetDefault
CharsetOptions
CharsetSourceEnc
CheckCaseOnly

CheckSpelling
ChrootDir
ContentDigest
CookieDomain
CookieExpires
CookieName
CookieStyle
CookieTracking
CoreDumpDirectory
CustomLog
Dav
DavDepthInfinity
DavGenericLockDB
DavLockDB
DavMinTimeout
DBDExptime
DBDInitSQL
DBDKeep
DBDMax
DBDMin
DBDParams
DBDPersist
DBDPrepareSQL
DBDriver
DefaultIcon
DefaultLanguage
DefaultRuntimeDir
DefaultType
Define
DeflateBufferSize
DeflateCompressionLevel
DeflateFilterNote
DeflateInflateLimitRequestBody
DeflateInflateRatioBurst

DeflateInflateRatioLimit
DeflateMemLevel
DeflateWindowSize
Deny
<Directory>
DirectoryCheckHandler
DirectoryIndex
DirectoryIndexRedirect
<DirectoryMatch>
DirectorySlash
DocumentRoot
DTracePrivileges
DumpIOInput
DumpIOOutput
<Else>
<ElseIf>
EnableExceptionHook
EnableMMAP
EnableSendfile
Error
ErrorDocument
ErrorLog
ErrorLogFormat
Example
ExpiresActive
ExpiresByType
ExpiresDefault
ExtendedStatus
ExtFilterDefine
ExtFilterOptions
FallbackResource
FileETag
<Files>
<FilesMatch>

FilterChain
FilterDeclare
FilterProtocol
FilterProvider
FilterTrace
ForceLanguagePriority
ForceType
ForensicLog
GlobalLog
GprofDir
GracefulShutdownTimeout
Group
H2CopyFiles
H2Direct
H2EarlyHints
H2MaxSessionStreams
H2MaxWorkerIdleSeconds
H2MaxWorkers
H2MinWorkers
H2ModernTLSOnly
H2Push
H2PushDiarySize
H2PushPriority
H2PushResource
H2SerializeHeaders
H2StreamMaxMemSize
H2TLSCoolDownSecs
H2TLSWarmUpSize
H2Upgrade
H2WindowSize
Header
HeaderName
HeartbeatAddress
HeartbeatListen

HeartbeatMaxServers
HeartbeatStorage
HeartbeatStorage
HostnameLookups
HttpProtocolOptions
IdentityCheck
IdentityCheckTimeout
<If>
<IfDefine>
<IfModule>
<IfVersion>
ImapBase
ImapDefault
ImapMenu
Include
IncludeOptional
IndexHeadInsert
IndexIgnore
IndexIgnoreReset
IndexOptions
IndexOrderDefault
IndexStyleSheet
InputSed
ISAPIAppendLogToErrors
ISAPIAppendLogToQuery
ISAPICacheFile
ISAPIFakeAsync
ISAPILogNotSupported
ISAPIReadAheadBuffer
KeepAlive
KeepAliveTimeout
KeptBodySize
LanguagePriority
LDAPCacheEntries

LDAPCacheTTL
LDAPConnectionPoolTTL
LDAPConnectionTimeout
LDAPLibraryDebug
LDAPOpCacheEntries
LDAPOpCacheTTL
LDAPReferralHopLimit
LDAPReferrals
LDAPRetries
LDAPRetryDelay
LDAPSharedCacheFile
LDAPSharedCacheSize
LDAPTimeout
LDAPTrustedClientCert
LDAPTrustedGlobalCert
LDAPTrustedMode
LDAPVerifyServerCert
<Limit>
<LimitExcept>
LimitInternalRecursion
LimitRequestBody
LimitRequestFields
LimitRequestFieldSize
LimitRequestLine
LimitXMLRequestBody
Listen
ListenBackLog
ListenCoresBucketsRatio
LoadFile
LoadModule
<Location>
<LocationMatch>
LogFormat
LogIOTrackTTFB

LogLevel
LogMessage
LuaAuthzProvider
LuaCodeCache
LuaHookAccessChecker
LuaHookAuthChecker
LuaHookCheckUserID
LuaHookFixups
LuaHookInsertFilter
LuaHookLog
LuaHookMapToStorage
LuaHookTranslateName
LuaHookTypeChecker
LuaInherit
LuaInputFilter
LuaMapHandler
LuaOutputFilter
LuaPackageCPath
LuaPackagePath
LuaQuickHandler
LuaRoot
LuaScope
<Macro>
MaxConnectionsPerChild
MaxKeepAliveRequests
MaxMemFree
MaxRangeOverlaps
MaxRangeReversals
MaxRanges
MaxRequestWorkers
MaxSpareServers
MaxSpareThreads
MaxThreads
MemcacheConnTTL

MergeTrailers
MetaDir
MetaFiles
MetaSuffix
MimeMagicFile
MinSpareServers
MinSpareThreads
MMapFile
ModemStandard
ModMimeUsePathInfo
MultiviewsMatch
Mutex
NameVirtualHost
NoProxy
NWSSLTrustedCerts
NWSSLUpgradeable
Options
Order
OutputSed
PassEnv
PidFile
PrivilegesMode
Protocol
ProtocolEcho
Protocols
ProtocolsHonorOrder
<Proxy>
ProxyAddHeaders
ProxyBadHeader
ProxyBlock
ProxyDomain
ProxyErrorOverride
ProxyExpressDBMFile
ProxyExpressDBMType

ProxyExpressEnable
ProxyFCGIBackendType
ProxyFCGISetEnvIf
ProxyFtpDirCharset
ProxyFtpEscapeWildcards
ProxyFtpListOnWildcard
ProxyHCExpr
ProxyHCTemplate
ProxyHCTPsize
ProxyHTMLBufSize
ProxyHTMLCharsetOut
ProxyHTMLDocType
ProxyHTMLEnable
ProxyHTMLEvents
ProxyHTMLExtended
ProxyHTMLFixups
ProxyHTMLInterp
ProxyHTMLLinks
ProxyHTMLMeta
ProxyHTMLStripComments
ProxyHTMLURLMap
ProxyIOBufferSize
<ProxyMatch>
ProxyMaxForwards
ProxyPass
ProxyPassInherit
ProxyPassInterpolateEnv
ProxyPassMatch
ProxyPassReverse
ProxyPassReverseCookieDomain
ProxyPassReverseCookiePath
ProxyPreserveHost
ProxyReceiveBufferSize
ProxyRemote

ProxyRemoteMatch
ProxyRequests
ProxySCGIInternalRedirect
ProxySCGISendfile
ProxySet
ProxySourceAddress
ProxyStatus
ProxyTimeout
ProxyVia
QualifyRedirectURL
ReadmeName
ReceiveBufferSize
Redirect
RedirectMatch
RedirectPermanent
RedirectTemp
ReflectorHeader
RegisterHttpMethod
RemoteIPHeader
RemoteIPInternalProxy
RemoteIPInternalProxyList
RemoteIPProxiesHeader
RemoteIPTrustedProxy
RemoteIPTrustedProxyList
RemoveCharset
RemoveEncoding
RemoveHandler
RemoveInputFilter
RemoveLanguage
RemoveOutputFilter
RemoveType
RequestHeader
RequestReadTimeout
Require

<RequireAll>
<RequireAny>
<RequireNone>
RewriteBase
RewriteCond
RewriteEngine
RewriteMap
RewriteOptions
RewriteRule
RLimitCPU
RLimitMEM
RLimitNPROC
Satisfy
ScoreBoardFile
Script
ScriptAlias
ScriptAliasMatch
ScriptInterpreterSource
ScriptLog
ScriptLogBuffer
ScriptLogLength
ScriptSock
SecureListen
SeeRequestTail
SendBufferSize
ServerAdmin
ServerAlias
ServerLimit
ServerName
ServerPath
ServerRoot
ServerSignature
ServerTokens
Session

SessionCookieName
SessionCookieName2
SessionCookieRemove
SessionCryptoCipher
SessionCryptoDriver
SessionCryptoPassphrase
SessionCryptoPassphraseFile
SessionDBDCookieName
SessionDBDCookieName2
SessionDBDCookieRemove
SessionDBDDeleteLabel
SessionDBDInsertLabel
SessionDBDPerUser
SessionDBDSelectLabel
SessionDBDUpdateLabel
SessionEnv
SessionExclude
SessionHeader
SessionInclude
SessionMaxAge
SetEnv
SetEnvIf
SetEnvIfExpr
SetEnvIfNoCase
SetHandler
SetInputFilter
SetOutputFilter
SSIEndTag
SSIErrorMsg
SSIETag
SSILastModified
SSILegacyExprParser
SSIStartTag
SSITimeFormat

SSIUndefinedEcho
SSLCACertificateFile
SSLCACertificatePath
SSLCADNRequestFile
SSLCADNRequestPath
SSLCARevocationCheck
SSLCARevocationFile
SSLCARevocationPath
SSLCertificateChainFile
SSLCertificateFile
SSLCertificateKeyFile
SSLCipherSuite
SSLCompression
SSLCryptoDevice
SSLEngine
SSLFIPS
SSLHonorCipherOrder
SSLInsecureRenegotiation
SSLOCSPDefaultResponder
SSLOCSPEnable
SSLOCSPNoverify
SSLOCSPOverrideResponder
SSLOCSPProxyURL
SSLOCSPResponderCertificateFile
SSLOCSPResponderTimeout
SSLOCSPResponseMaxAge
SSLOCSPResponseTimeSkew
SSLOCSPUseRequestNonce
SSLOpenSSLConfCmd
SSLOptions
SSLPassPhraseDialog
SSLProtocol
SSLProxyCACertificateFile
SSLProxyCACertificatePath

SSLProxyCARevocationCheck
SSLProxyCARevocationFile
SSLProxyCARevocationPath
SSLProxyCheckPeerCN
SSLProxyCheckPeerExpire
SSLProxyCheckPeerName
SSLProxyCipherSuite
SSLProxyEngine
SSLProxyMachineCertificateChainFile
SSLProxyMachineCertificateFile
SSLProxyMachineCertificatePath
SSLProxyProtocol
SSLProxyVerify
SSLProxyVerifyDepth
SSLRandomSeed
SSLRenegBufferSize
SSLRequire
SSLRequireSSL
SSLSessionCache
SSLSessionCacheTimeout
SSLSessionTicketKeyFile
SSLSessionTickets
SSLSRPUnknownUserSeed
SSLSRPVerifierFile
SSLStaplingCache
SSLStaplingErrorCacheTimeout
SSLStaplingFakeTryLater
SSLStaplingForceURL
SSLStaplingResponderTimeout
SSLStaplingResponseMaxAge
SSLStaplingResponseTimeSkew
SSLStaplingReturnResponderErrors
SSLStaplingStandardCacheTimeout
SSLStrictSNIVHostCheck

SSLUserName
SSLUseStapling
SSLVerifyClient
SSLVerifyDepth
StartServers
StartThreads
Substitute
SubstituteInheritBefore
SubstituteMaxLineLength
Suexec
SuexecUserGroup
ThreadLimit
ThreadsPerChild
ThreadStackSize
TimeOut
TraceEnable
TransferLog
TypesConfig
UnDefine
UndefMacro
UnsetEnv
Use
UseCanonicalName
UseCanonicalPhysicalPort
User
UserDir
VHostCGIMode
VHostCGIPrivs
VHostGroup
VHostPrivs
VHostSecure
VHostUser
VirtualDocumentRoot
VirtualDocumentRootIP

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

<VirtualHost>
VirtualScriptAlias
VirtualScriptAliasIP
WatchdogInterval
XBitHack
xml2EncAlias
xml2EncDefault
xml2StartParse

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

					,	,	,	 	.		 	 	.

					.			 				.			
	.

									 					.

	A		|		B		|		C		|		D		|		E		|		F		|		G		|		H		|
	I		|		K		|		L		|		M		|		N		|		O		|		P		|		Q		|
	R		|		S		|		T		|		U		|		V		|		W		|		X	

s

v

d directory

h .htaccess

C Core
M MPM
B Base
E Extension
X Experimental
T External

AcceptFilter	protocol	accept_filter
Configures	optimizations	for	a	Protocol's	Listener	Sockets

AcceptPathInfo	On|Off|Default Default
Resources	accept	trailing	pathname	information

AccessFileName	filename	[filename]htaccess
Name	of	the	distributed	configuration	file

Action	action-type	cgi-script	[virtual]
		content-type		CGI		

AddAlt	string	file	[file]	...
					

AddAltByEncoding	string	MIME-encoding
[MIME-encoding]	...
MIME-encoding					

AddAltByType	string	MIME-type	[MIME-type]
...
MIME	content-type					

AddCharset	charset	extension	[extension]	...
Maps	the	given	filename	extensions	to	the	specified	content	charset

AddDefaultCharset	On|Off|charset Off
Default	charset	parameter	to	be	added	when	a	response	content-type	is	text/plain	or	text/html

AddDescription	string	file	[file]	...
		

AddEncoding	encoding	extension	[extension]
...
Maps	the	given	filename	extensions	to	the	specified	encoding	type

AddHandler	handler-name	extension
[extension]	...
Maps	the	filename	extensions	to	the	specified	handler

AddIcon	icon	name	[name]	...
				

AddIconByEncoding	icon	MIME-encoding
[MIME-encoding]	...
MIME	content-encoding				

AddIconByType	icon	MIME-type	[MIME-type]
...
MIME	content-type				

AddInputFilter	filter[;filter...]	extension
[extension]	...
Maps	filename	extensions	to	the	filters	that	will	process	client	requests

AddLanguage	language-tag	extension
[extension]	...
Maps	the	given	filename	extension	to	the	specified	content	language

AddModuleInfo	module-name	string
				server-info			

AddOutputFilter	filter[;filter...]	extension
[extension]	...
Maps	filename	extensions	to	the	filters	that	will	process	responses	from	the	server

AddOutputFilterByType	filter[;filter...]	media-
type	[media-type]	...
assigns	an	output	filter	to	a	particular	media-type

AddType	media-type	extension	[extension]	...

Maps	the	given	filename	extensions	onto	the	specified	content	type

Alias	URL-path	file-path|directory-path
URL				

AliasMatch	regex	file-path|directory-path
		URL			

Allow	from	all|host|env=[!]env-variable
[host|env=[!]env-variable]	...
Controls	which	hosts	can	access	an	area	of	the	server

AllowCONNECT	port[-port]	[port[-port]]	... 443	563
Ports	that	are	allowed	to	CONNECT	through	the	proxy

AllowEncodedSlashes	On|Off|NoDecode Off
Determines	whether	encoded	path	separators	in	URLs	are	allowed	to	be	passed	through

AllowMethods	reset|HTTP-method	[HTTP-
method]...

reset

Restrict	access	to	the	listed	HTTP	methods

AllowOverride	All|None|directive-type
[directive-type]	...

None	(2.3.9	and	lat	+

Types	of	directives	that	are	allowed	in	.htaccess	files

AllowOverrideList	None|directive	[directive-
type]	...

None

Individual	directives	that	are	allowed	in	.htaccess	files

Anonymous	user	[user]	...
					

Anonymous_LogEmail	On|Off On
				

Anonymous_MustGiveEmail	On|Off On
			

Anonymous_NoUserID	On|Off Off
				

Anonymous_VerifyEmail	On|Off Off
						

AsyncRequestWorkerFactor	factor
Limit	concurrent	connections	per	process

AuthBasicAuthoritative	On|Off On
					

AuthBasicFake	off|username	[password]
Fake	basic	authentication	using	the	given	expressions	for	username	and	password

AuthBasicProvider	On|Off|provider-name
[provider-name]	...

On

				

AuthBasicUseDigestAlgorithm	MD5|Off Off
Check	passwords	against	the	authentication	providers	as	if	Digest	Authentication	was	in	force	instead	of
Basic	Authentication.

AuthDBDUserPWQuery	query
SQL	query	to	look	up	a	password	for	a	user

AuthDBDUserRealmQuery	query
SQL	query	to	look	up	a	password	hash	for	a	user	and	realm.

AuthDBMGroupFile	file-path
								

AuthDBMType
default|SDBM|GDBM|NDBM|DB

default

					

AuthDBMUserFile	file-path
							

AuthDigestAlgorithm	MD5|MD5-sess MD5
digest	authentication	challenge	response	hash			

AuthDigestDomain	URI	[URI]	...
digest	authentication				URI

AuthDigestNonceLifetime	seconds 300
	nonce		

AuthDigestProvider	On|Off|provider-name
[provider-name]	...

On

				

AuthDigestQop	none|auth|auth-int	[auth|auth-
int]

auth

digest	authentication		(quality-of-protection)	.

AuthDigestShmemSize	size 1000
			

AuthFormAuthoritative	On|Off On
Sets	whether	authorization	and	authentication	are	passed	to	lower	level	modules

AuthFormBody	fieldname
The	name	of	a	form	field	carrying	the	body	of	the	request	to	attempt	on	successful	login

AuthFormDisableNoStore	On|Off Off
Disable	the	CacheControl	no-store	header	on	the	login	page

AuthFormFakeBasicAuth	On|Off Off
Fake	a	Basic	Authentication	header

AuthFormLocation	fieldname
The	name	of	a	form	field	carrying	a	URL	to	redirect	to	on	successful	login

AuthFormLoginRequiredLocation	url
The	URL	of	the	page	to	be	redirected	to	should	login	be	required

AuthFormLoginSuccessLocation	url
The	URL	of	the	page	to	be	redirected	to	should	login	be	successful

AuthFormLogoutLocation	uri
The	URL	to	redirect	to	after	a	user	has	logged	out

AuthFormMethod	fieldname
The	name	of	a	form	field	carrying	the	method	of	the	request	to	attempt	on	successful	login

AuthFormMimetype	fieldname
The	name	of	a	form	field	carrying	the	mimetype	of	the	body	of	the	request	to	attempt	on	successful	login

AuthFormPassword	fieldname
The	name	of	a	form	field	carrying	the	login	password

AuthFormProvider	provider-name	[provider-
name]	...

file

Sets	the	authentication	provider(s)	for	this	location

AuthFormSitePassphrase	secret
Bypass	authentication	checks	for	high	traffic	sites

AuthFormSize	size
The	largest	size	of	the	form	in	bytes	that	will	be	parsed	for	the	login	details

AuthFormUsername	fieldname
The	name	of	a	form	field	carrying	the	login	username

AuthGroupFile	file-path
							

AuthLDAPAuthorizePrefix	prefix AUTHORIZE_
Specifies	the	prefix	for	environment	variables	set	during	authorization

AuthLDAPBindAuthoritative	off|on on
Determines	if	other	authentication	providers	are	used	when	a	user	can	be	mapped	to	a	DN	but	the	server

cannot	successfully	bind	with	the	user's	credentials.

AuthLDAPBindDN	distinguished-name
Optional	DN	to	use	in	binding	to	the	LDAP	server

AuthLDAPBindPassword	password
Password	used	in	conjunction	with	the	bind	DN

AuthLDAPCharsetConfig	file-path
Language	to	charset	conversion	configuration	file

AuthLDAPCompareAsUser	on|off off
Use	the	authenticated	user's	credentials	to	perform	authorization	comparisons

AuthLDAPCompareDNOnServer	on|off on
Use	the	LDAP	server	to	compare	the	DNs

AuthLDAPDereferenceAliases
never|searching|finding|always

always

When	will	the	module	de-reference	aliases

AuthLDAPGroupAttribute	attribute member	uniquemember	+
LDAP	attributes	used	to	identify	the	user	members	of	groups.

AuthLDAPGroupAttributeIsDN	on|off on
Use	the	DN	of	the	client	username	when	checking	for	group	membership

AuthLDAPInitialBindAsUser	off|on off
Determines	if	the	server	does	the	initial	DN	lookup	using	the	basic	authentication	users'	own	username,
instead	of	anonymously	or	with	hard-coded	credentials	for	the	server

AuthLDAPInitialBindPattern	regex	substitution (.*)	$1	(remote	use	+
Specifies	the	transformation	of	the	basic	authentication	username	to	be	used	when	binding	to	the	LDAP
server	to	perform	a	DN	lookup

AuthLDAPMaxSubGroupDepth	Number 10
Specifies	the	maximum	sub-group	nesting	depth	that	will	be	evaluated	before	the	user	search	is	discontinued.

AuthLDAPRemoteUserAttribute	uid
Use	the	value	of	the	attribute	returned	during	the	user	query	to	set	the	REMOTE_USER	environment	variable

AuthLDAPRemoteUserIsDN	on|off off
Use	the	DN	of	the	client	username	to	set	the	REMOTE_USER	environment	variable

AuthLDAPSearchAsUser	on|off off
Use	the	authenticated	user's	credentials	to	perform	authorization	searches

AuthLDAPSubGroupAttribute	attribute
Specifies	the	attribute	labels,	one	value	per	directive	line,	used	to	distinguish	the	members	of	the	current
group	that	are	groups.

AuthLDAPSubGroupClass	LdapObjectClass groupOfNames	groupO	+

Specifies	which	LDAP	objectClass	values	identify	directory	objects	that	are	groups	during	sub-group
processing.

AuthLDAPUrl	url	[NONE|SSL|TLS|STARTTLS]
URL	specifying	the	LDAP	search	parameters

AuthMerging	Off	|	And	|	Or Off
Controls	the	manner	in	which	each	configuration	section's	authorization	logic	is	combined	with	that	of
preceding	configuration	sections.

AuthName	auth-domain
Authorization	realm	for	use	in	HTTP	authentication

AuthnCacheContext	directory|server|custom-
string
Specify	a	context	string	for	use	in	the	cache	key

AuthnCacheEnable
Enable	Authn	caching	configured	anywhere

AuthnCacheProvideFor	authn-provider	[...]
Specify	which	authn	provider(s)	to	cache	for

AuthnCacheSOCache	provider-
name[:provider-args]
Select	socache	backend	provider	to	use

AuthnCacheTimeout	timeout	(seconds)
Set	a	timeout	for	cache	entries

<AuthnProviderAlias	baseProvider	Alias>	...
</AuthnProviderAlias>
Enclose	a	group	of	directives	that	represent	an	extension	of	a	base	authentication	provider	and	referenced	by
the	specified	alias

AuthnzFcgiCheckAuthnProvider	provider-
name|None	option	...
Enables	a	FastCGI	application	to	handle	the	check_authn	authentication	hook.

AuthnzFcgiDefineProvider	type	provider-name
backend-address
Defines	a	FastCGI	application	as	a	provider	for	authentication	and/or	authorization

AuthType	None|Basic|Digest|Form
Type	of	user	authentication

AuthUserFile	file-path
						

AuthzDBDLoginToReferer	On|Off Off

Determines	whether	to	redirect	the	Client	to	the	Referring	page	on	successful	login	or	logout	if	a	
request	header	is	present

AuthzDBDQuery	query
Specify	the	SQL	Query	for	the	required	operation

AuthzDBDRedirectQuery	query
Specify	a	query	to	look	up	a	login	page	for	the	user

AuthzDBMType
default|SDBM|GDBM|NDBM|DB

default

					

<AuthzProviderAlias	baseProvider	Alias
Require-Parameters>	...
</AuthzProviderAlias>
Enclose	a	group	of	directives	that	represent	an	extension	of	a	base	authorization	provider	and	referenced	by
the	specified	alias

AuthzSendForbiddenOnFailure	On|Off Off
Send	'403	FORBIDDEN'	instead	of	'401	UNAUTHORIZED'	if	authentication	succeeds	but	authorization	fails

BalancerGrowth	# 5
Number	of	additional	Balancers	that	can	be	added	Post-configuration

BalancerInherit	On|Off On
Inherit	ProxyPassed	Balancers/Workers	from	the	main	server

BalancerMember	[balancerurl]	url	[key=value
[key=value	...]]
Add	a	member	to	a	load	balancing	group

BalancerPersist	On|Off Off
Attempt	to	persist	changes	made	by	the	Balancer	Manager	across	restarts.

BrotliAlterETag	AddSuffix|NoChange|Remove AddSuffix
How	the	outgoing	ETag	header	should	be	modified	during	compression

BrotliCompressionMaxInputBlock	value
Maximum	input	block	size

BrotliCompressionQuality	value 5
Compression	quality

BrotliCompressionWindow	value 18
Brotli	sliding	compression	window	size

BrotliFilterNote	[type]	notename
Places	the	compression	ratio	in	a	note	for	logging

BrowserMatch	regex	[!]env-variable[=value]
[[!]env-variable[=value]]	...
HTTP	User-Agent			

BrowserMatchNoCase	regex	[!]env-
variable[=value]	[[!]env-variable[=value]]	...
		User-Agent			

Buffer	log	entries	in	memory	before	writing	to	disk

BufferSize	integer 131072
Maximum	size	in	bytes	to	buffer	by	the	buffer	filter

CacheDefaultExpire	seconds 3600	(one	hour)
					.

Add	an	X-Cache-Detail	header	to	the	response.

CacheDirLength	length 2
	

CacheDirLevels	levels 3
		.

CacheDisable	url-string
	URL		

CacheEnable	cache_type	url-string
				URL	

CacheFile	file-path	[file-path]	...
				

Add	an	X-Cache	header	to	the	response.

CacheIgnoreCacheControl	On|Off Off
				.

CacheIgnoreHeaders	header-string	[header-
string]	...

None

		HTTP	()		

CacheIgnoreNoLastMod	On|Off Off
	Last	Modified				.

Ignore	query	string	when	caching

Ignore	defined	session	identifiers	encoded	in	the	URL	when	caching

Override	the	base	URL	of	reverse	proxied	cache	keys.

CacheLastModifiedFactor	float 0.1
LastModified					.

Enable	the	thundering	herd	lock.

Set	the	maximum	possible	age	of	a	cache	lock.

Set	the	lock	path	directory.

CacheMaxExpire	seconds 86400	()
			

CacheMaxFileSize	bytes 1000000
				()

The	minimum	time	in	seconds	to	cache	a	document

CacheMinFileSize	bytes 1
				()

CacheNegotiatedDocs	On|Off Off
Allows	content-negotiated	documents	to	be	cached	by	proxy	servers

Run	the	cache	from	the	quick	handler.

The	minimum	size	(in	bytes)	of	the	document	to	read	and	be	cached	before	sending	the	data	downstream

The	minimum	time	(in	milliseconds)	that	should	elapse	while	reading	before	data	is	sent	downstream

CacheRoot	directory
				root

CacheSocache	type[:args]
The	shared	object	cache	implementation	to	use

CacheSocacheMaxSize	bytes 102400
The	maximum	size	(in	bytes)	of	an	entry	to	be	placed	in	the	cache

CacheSocacheMaxTime	seconds 86400

The	maximum	time	(in	seconds)	for	a	document	to	be	placed	in	the	cache

CacheSocacheMinTime	seconds 600
The	minimum	time	(in	seconds)	for	a	document	to	be	placed	in	the	cache

CacheSocacheReadSize	bytes 0
The	minimum	size	(in	bytes)	of	the	document	to	read	and	be	cached	before	sending	the	data	downstream

CacheSocacheReadTime	milliseconds 0
The	minimum	time	(in	milliseconds)	that	should	elapse	while	reading	before	data	is	sent	downstream

Serve	stale	content	in	place	of	5xx	responses.

Attempt	to	cache	responses	that	the	server	reports	as	expired

Attempt	to	cache	requests	or	responses	that	have	been	marked	as	no-store.

Attempt	to	cache	responses	that	the	server	has	marked	as	private

CGIDScriptTimeout	time[s|ms]
The	length	of	time	to	wait	for	more	output	from	the	CGI	program

CGIMapExtension	cgi-path	.extension
Technique	for	locating	the	interpreter	for	CGI	scripts

CGIPassAuth	On|Off Off
Enables	passing	HTTP	authorization	headers	to	scripts	as	CGI	variables

CGIVar	variable	rule
Controls	how	some	CGI	variables	are	set

CharsetDefault	charset
	

CharsetOptions	option	[option]	... DebugLevel=0	NoImpl	+
			

CharsetSourceEnc	charset
		

Limits	the	action	of	the	speling	module	to	case	corrections

CheckSpelling	on|off Off
		

ChrootDir	/path/to/directory
Directory	for	apache	to	run	chroot(8)	after	startup.

ContentDigest	On|Off Off
Enables	the	generation	of	Content-MD5	HTTP	Response	headers

CookieDomain	domain
The	domain	to	which	the	tracking	cookie	applies

CookieExpires	expiry-period
Expiry	time	for	the	tracking	cookie

CookieName	token Apache
Name	of	the	tracking	cookie

CookieStyle
Netscape|Cookie|Cookie2|RFC2109|RFC2965

Netscape

Format	of	the	cookie	header	field

CookieTracking	on|off off
Enables	tracking	cookie

CoreDumpDirectory	directory
Directory	where	Apache	HTTP	Server	attempts	to	switch	before	dumping	core

CustomLog	file|pipe	format|nickname	[env=
[!]environment-variable]
			

Dav	On|Off|provider-name Off
WebDAV	HTTP		

DavDepthInfinity	on|off off
PROPFIND	Depth:	Infinity		

DavGenericLockDB	file-path
Location	of	the	DAV	lock	database

DavLockDB	file-path
DAV			

DavMinTimeout	seconds 0
	DAV					

DBDExptime	time-in-seconds 300
Keepalive	time	for	idle	connections

DBDInitSQL	"SQL	statement"
Execute	an	SQL	statement	after	connecting	to	a	database

DBDKeep	number 2
Maximum	sustained	number	of	connections

DBDMax	number 10

Maximum	number	of	connections

DBDMin	number 1
Minimum	number	of	connections

DBDParams	param1=value1[,param2=value2]
Parameters	for	database	connection

DBDPersist	On|Off
Whether	to	use	persistent	connections

DBDPrepareSQL	"SQL	statement"	label
Define	an	SQL	prepared	statement

DBDriver	name
Specify	an	SQL	driver

DefaultIcon	url-path
					

DefaultLanguage	language-tag
Defines	a	default	language-tag	to	be	sent	in	the	Content-Language	header	field	for	all	resources	in	the	current
context	that	have	not	been	assigned	a	language-tag	by	some	other	means.

DefaultRuntimeDir	directory-path DEFAULT_REL_RUNTIME
+

Base	directory	for	the	server	run-time	files

DefaultType	media-type|none none
This	directive	has	no	effect	other	than	to	emit	warnings	if	the	value	is	not	none.	In	prior	versions,	DefaultType
would	specify	a	default	media	type	to	assign	to	response	content	for	which	no	other	media	type	configuration
could	be	found.

Define	parameter-name	[parameter-value]
Define	a	variable

DeflateBufferSize	value 8096
zlib			

DeflateCompressionLevel	value
		

DeflateFilterNote	[type]	notename
		

DeflateInflateLimitRequestBodyvalue
Maximum	size	of	inflated	request	bodies

DeflateInflateRatioBurst	value
Maximum	number	of	times	the	inflation	ratio	for	request	bodies	can	be	crossed

DeflateInflateRatioLimit	value

Maximum	inflation	ratio	for	request	bodies

DeflateMemLevel	value 9
zlib			

DeflateWindowSize	value 15
Zlib		window	size

Deny	from	all|host|env=[!]env-variable
[host|env=[!]env-variable]	...
Controls	which	hosts	are	denied	access	to	the	server

<Directory	directory-path>	...	</Directory>
Enclose	a	group	of	directives	that	apply	only	to	the	named	file-system	directory,	sub-directories,	and	their
contents.

DirectoryCheckHandler	On|Off Off
Toggle	how	this	module	responds	when	another	handler	is	configured

DirectoryIndex	local-url	[local-url]	... index.html
					

DirectoryIndexRedirect	on	|	off	|	permanent	|
temp	|	seeother	|	3xx-code

off

Configures	an	external	redirect	for	directory	indexes.

<DirectoryMatch	regex>	...	</DirectoryMatch>
Enclose	directives	that	apply	to	the	contents	of	file-system	directories	matching	a	regular	expression.

DirectorySlash	On|Off On
				

DocumentRoot	directory-path "/usr/local/apache/	+
Directory	that	forms	the	main	document	tree	visible	from	the	web

DTracePrivileges	On|Off Off
Determines	whether	the	privileges	required	by	dtrace	are	enabled.

DumpIOInput	On|Off Off
Dump	all	input	data	to	the	error	log

DumpIOOutput	On|Off Off
Dump	all	output	data	to	the	error	log

<Else>	...	</Else>
Contains	directives	that	apply	only	if	the	condition	of	a	previous	<If>	or	<ElseIf>	section	is	not	satisfied	by
a	request	at	runtime

<ElseIf	expression>	...	</ElseIf>
Contains	directives	that	apply	only	if	a	condition	is	satisfied	by	a	request	at	runtime	while	the	condition	of	a
previous	<If>	or	<ElseIf>	section	is	not	satisfied

EnableExceptionHook	On|Off Off
Enables	a	hook	that	runs	exception	handlers	after	a	crash

EnableMMAP	On|Off On
Use	memory-mapping	to	read	files	during	delivery

EnableSendfile	On|Off Off
Use	the	kernel	sendfile	support	to	deliver	files	to	the	client

Error	message
Abort	configuration	parsing	with	a	custom	error	message

ErrorDocument	error-code	document
What	the	server	will	return	to	the	client	in	case	of	an	error

ErrorLog	file-path|syslog[:[facility][:tag]] logs/error_log	(Uni	+
Location	where	the	server	will	log	errors

ErrorLogFormat	[connection|request]	format
Format	specification	for	error	log	entries

Example
		API			

ExpiresActive	On|Off
Expires		

ExpiresByType	MIME-type	<code>seconds
MIME	type	 Expires		

ExpiresDefault	<code>seconds
			

ExtendedStatus	On|Off Off[*]
Keep	track	of	extended	status	information	for	each	request

ExtFilterDefine	filtername	parameters
		

ExtFilterOptions	option	[option]	... DebugLevel=0	NoLogS	+
mod_ext_filter		

Define	a	default	URL	for	requests	that	don't	map	to	a	file

FileETag	component	... MTime	Size
File	attributes	used	to	create	the	ETag	HTTP	response	header	for	static	files

<Files	filename>	...	</Files>
Contains	directives	that	apply	to	matched	filenames

<FilesMatch	regex>	...	</FilesMatch>

Contains	directives	that	apply	to	regular-expression	matched	filenames

FilterChain	[+=-@!]filter-name	...
Configure	the	filter	chain

FilterDeclare	filter-name	[type]
Declare	a	smart	filter

FilterProtocol	filter-name	[provider-name]
proto-flags
Deal	with	correct	HTTP	protocol	handling

FilterProvider	filter-name	provider-name
expression
Register	a	content	filter

FilterTrace	filter-name	level
Get	debug/diagnostic	information	from	mod_filter

ForceLanguagePriority	None|Prefer|Fallback
[Prefer|Fallback]

Prefer

Action	to	take	if	a	single	acceptable	document	is	not	found

ForceType	media-type|None
Forces	all	matching	files	to	be	served	with	the	specified	media	type	in	the	HTTP	Content-Type	header	field

ForensicLog	filename|pipe
Sets	filename	of	the	forensic	log

GlobalLogfile|pipe	format|nickname	[env=
[!]environment-variable|	expr=expression]
Sets	filename	and	format	of	log	file

GprofDir	/tmp/gprof/|/tmp/gprof/%
Directory	to	write	gmon.out	profiling	data	to.

GracefulShutdownTimeout	seconds 0
Specify	a	timeout	after	which	a	gracefully	shutdown	server	will	exit.

Group	unix-group #-1
Group	under	which	the	server	will	answer	requests

H2CopyFiles	on|off off
Determine	file	handling	in	responses

H2Direct	on|off on	for	h2c,	off	for	+
H2	Direct	Protocol	Switch

H2EarlyHints	on|off off
Determine	sending	of	103	status	codes

H2MaxSessionStreams	n 100
Maximum	number	of	active	streams	per	HTTP/2	session.

H2MaxWorkerIdleSeconds	n 600
Maximum	number	of	seconds	h2	workers	remain	idle	until	shut	down.

H2MaxWorkers	n
Maximum	number	of	worker	threads	to	use	per	child	process.

H2MinWorkers	n
Minimal	number	of	worker	threads	to	use	per	child	process.

H2ModernTLSOnly	on|off on
Require	HTTP/2	connections	to	be	"modern	TLS"	only

H2Push	on|off on
H2	Server	Push	Switch

H2PushDiarySize	n 256
H2	Server	Push	Diary	Size

H2PushPriority	mime-type
[after|before|interleaved]	[weight]

*	After	16

H2	Server	Push	Priority

H2PushResource	[add]	path	[critical]
Declares	resources	for	early	pushing	to	the	client

H2SerializeHeaders	on|off off
Serialize	Request/Response	Processing	Switch

H2StreamMaxMemSize	bytes 65536
Maximum	amount	of	output	data	buffered	per	stream.

H2TLSCoolDownSecs	seconds 1
-

H2TLSWarmUpSize	amount 1048576
-

H2Upgrade	on|off on	for	h2c,	off	for	+
H2	Upgrade	Protocol	Switch

H2WindowSize	bytes 65535
Size	of	Stream	Window	for	upstream	data.

Header	[condition]	set|append|add|unset|echo
header	[value]	[early|env=[!]variable]
HTTP			

HeaderName	filename

				

HeartbeatAddress	addr:port
Multicast	address	for	heartbeat	packets

HeartbeatListenaddr:port
multicast	address	to	listen	for	incoming	heartbeat	requests

HeartbeatMaxServers	number-of-servers 10
Specifies	the	maximum	number	of	servers	that	will	be	sending	heartbeat	requests	to	this	server

HeartbeatStorage	file-path logs/hb.dat
Path	to	store	heartbeat	data

HeartbeatStorage	file-path logs/hb.dat
Path	to	read	heartbeat	data

HostnameLookups	On|Off|Double Off
Enables	DNS	lookups	on	client	IP	addresses

HttpProtocolOptions	[Strict|Unsafe]
[RegisteredMethods|LenientMethods]
[Allow0.9|Require1.0]

Strict	LenientMetho	+

Modify	restrictions	on	HTTP	Request	Messages

IdentityCheck	On|Off Off
		RFC	1413			

IdentityCheckTimeout	seconds 30
ident			

<If	expression>	...	</If>
Contains	directives	that	apply	only	if	a	condition	is	satisfied	by	a	request	at	runtime

<IfDefine	[!]parameter-name>	...	</IfDefine>
Encloses	directives	that	will	be	processed	only	if	a	test	is	true	at	startup

<IfModule	[!]module-file|module-identifier>	...
</IfModule>
Encloses	directives	that	are	processed	conditional	on	the	presence	or	absence	of	a	specific	module

<IfVersion	[[!]operator]	version>	...
</IfVersion>
		

ImapBase	map|referer|URL http://servername/
		 base	

ImapDefault	error|nocontent|map|referer|URL nocontent
									

ImapMenu
none|formatted|semiformatted|unformatted
				

Include	file-path|directory-path|wildcard
Includes	other	configuration	files	from	within	the	server	configuration	files

IncludeOptional	file-path|directory-
path|wildcard
Includes	other	configuration	files	from	within	the	server	configuration	files

Inserts	text	in	the	HEAD	section	of	an	index	page.

IndexIgnore	file	[file]	...
				

IndexIgnoreReset	ON|OFF
Empties	the	list	of	files	to	hide	when	listing	a	directory

IndexOptions	[+|-]option	[[+|-]option]	...
			

IndexOrderDefault	Ascending|Descending
Name|Date|Size|Description

Ascending	Name

				

IndexStyleSheet	url-path
		CSS		

InputSed	sed-command
Sed	command	to	filter	request	data	(typically	POST	data)

ISAPIAppendLogToErrors	on|off off
ISAPI	exntension	 HSE_APPEND_LOG_PARAMETER				

ISAPIAppendLogToQuery	on|off on
ISAPI	exntension	 HSE_APPEND_LOG_PARAMETER			

ISAPICacheFile	file-path	[file-path]	...
				ISAPI	.dll	

ISAPIFakeAsync	on|off off
	ISAPI			

ISAPILogNotSupported	on|off off
ISAPI	extension						

ISAPIReadAheadBuffer	size 49152
ISAPI	extension	(read	ahead	buffer)	

KeepAlive	On|Off On
Enables	HTTP	persistent	connections

KeepAliveTimeout	num[ms] 5
Amount	of	time	the	server	will	wait	for	subsequent	requests	on	a	persistent	connection

KeptBodySize	maximum	size	in	bytes 0
Keep	the	request	body	instead	of	discarding	it	up	to	the	specified	maximum	size,	for	potential	use	by	filters
such	as	mod_include.

LanguagePriority	MIME-lang	[MIME-lang]	...
The	precedence	of	language	variants	for	cases	where	the	client	does	not	express	a	preference

LDAPCacheEntries	number 1024
Maximum	number	of	entries	in	the	primary	LDAP	cache

LDAPCacheTTL	seconds 600
Time	that	cached	items	remain	valid

LDAPConnectionPoolTTL	n -1
Discard	backend	connections	that	have	been	sitting	in	the	connection	pool	too	long

LDAPConnectionTimeout	seconds
Specifies	the	socket	connection	timeout	in	seconds

LDAPLibraryDebug	7
Enable	debugging	in	the	LDAP	SDK

LDAPOpCacheEntries	number 1024
Number	of	entries	used	to	cache	LDAP	compare	operations

LDAPOpCacheTTL	seconds 600
Time	that	entries	in	the	operation	cache	remain	valid

LDAPReferralHopLimit	number
The	maximum	number	of	referral	hops	to	chase	before	terminating	an	LDAP	query.

LDAPReferrals	On|Off|default On
Enable	referral	chasing	during	queries	to	the	LDAP	server.

LDAPRetries	number-of-retries 3
Configures	the	number	of	LDAP	server	retries.

LDAPRetryDelay	seconds 0
Configures	the	delay	between	LDAP	server	retries.

LDAPSharedCacheFile	directory-
path/filename
Sets	the	shared	memory	cache	file

LDAPSharedCacheSize	bytes 500000

Size	in	bytes	of	the	shared-memory	cache

LDAPTimeout	seconds 60
Specifies	the	timeout	for	LDAP	search	and	bind	operations,	in	seconds

LDAPTrustedClientCert	type	directory-
path/filename/nickname	[password]
Sets	the	file	containing	or	nickname	referring	to	a	per	connection	client	certificate.	Not	all	LDAP	toolkits
support	per	connection	client	certificates.

LDAPTrustedGlobalCert	type	directory-
path/filename	[password]
Sets	the	file	or	database	containing	global	trusted	Certificate	Authority	or	global	client	certificates

LDAPTrustedMode	type
Specifies	the	SSL/TLS	mode	to	be	used	when	connecting	to	an	LDAP	server.

LDAPVerifyServerCert	On|Off On
Force	server	certificate	verification

<Limit	method	[method]	...	>	...	</Limit>
Restrict	enclosed	access	controls	to	only	certain	HTTP	methods

<LimitExcept	method	[method]	...	>	...
</LimitExcept>
Restrict	access	controls	to	all	HTTP	methods	except	the	named	ones

LimitInternalRecursion	number	[number] 10
Determine	maximum	number	of	internal	redirects	and	nested	subrequests

LimitRequestBody	bytes 0
Restricts	the	total	size	of	the	HTTP	request	body	sent	from	the	client

LimitRequestFields	number 100
Limits	the	number	of	HTTP	request	header	fields	that	will	be	accepted	from	the	client

LimitRequestFieldSize	bytes 8190
Limits	the	size	of	the	HTTP	request	header	allowed	from	the	client

LimitRequestLine	bytes 8190
Limit	the	size	of	the	HTTP	request	line	that	will	be	accepted	from	the	client

LimitXMLRequestBody	bytes 1000000
Limits	the	size	of	an	XML-based	request	body

Listen	[IP-address:]portnumber	[protocol]
IP	addresses	and	ports	that	the	server	listens	to

ListenBacklog	backlog
Maximum	length	of	the	queue	of	pending	connections

ListenCoresBucketsRatio	ratio 0	(disabled)
Ratio	between	the	number	of	CPU	cores	(online)	and	the	number	of	listeners'	buckets

LoadFile	filename	[filename]	...
			

LoadModule	module	filename
		,				

<Location	URL-path|URL>	...	</Location>
Applies	the	enclosed	directives	only	to	matching	URLs

<LocationMatch	regex>	...	</LocationMatch>
Applies	the	enclosed	directives	only	to	regular-expression	matching	URLs

LogFormat	format|nickname	[nickname] "%h	%l	%u	%t	\"%r\"	+
			

LogIOTrackTTFB	ON|OFF OFF
Enable	tracking	of	time	to	first	byte	(TTFB)

LogLevel	[module:]level	[module:level]	... warn
Controls	the	verbosity	of	the	ErrorLog

LogMessage	message	[hook=hook]
[expr=expression]
Log	user-defined	message	to	error	log

LuaAuthzProvider	provider_name
/path/to/lua/script.lua	function_name
Plug	an	authorization	provider	function	into	mod_authz_core

LuaCodeCache	stat|forever|never stat
Configure	the	compiled	code	cache.

LuaHookAccessChecker	/path/to/lua/script.lua
hook_function_name	[early|late]
Provide	a	hook	for	the	access_checker	phase	of	request	processing

LuaHookAuthChecker	/path/to/lua/script.lua
hook_function_name	[early|late]
Provide	a	hook	for	the	auth_checker	phase	of	request	processing

LuaHookCheckUserID	/path/to/lua/script.lua
hook_function_name	[early|late]
Provide	a	hook	for	the	check_user_id	phase	of	request	processing

LuaHookFixups	/path/to/lua/script.lua
hook_function_name

Provide	a	hook	for	the	fixups	phase	of	a	request	processing

LuaHookInsertFilter	/path/to/lua/script.lua
hook_function_name
Provide	a	hook	for	the	insert_filter	phase	of	request	processing

LuaHookLog	/path/to/lua/script.lua
log_function_name
Provide	a	hook	for	the	access	log	phase	of	a	request	processing

LuaHookMapToStorage	/path/to/lua/script.lua
hook_function_name
Provide	a	hook	for	the	map_to_storage	phase	of	request	processing

LuaHookTranslateName	/path/to/lua/script.lua
hook_function_name	[early|late]
Provide	a	hook	for	the	translate	name	phase	of	request	processing

LuaHookTypeChecker	/path/to/lua/script.lua
hook_function_name
Provide	a	hook	for	the	type_checker	phase	of	request	processing

LuaInherit	none|parent-first|parent-last parent-first
Controls	how	parent	configuration	sections	are	merged	into	children

LuaInputFilter	filter_name
/path/to/lua/script.lua	function_name
Provide	a	Lua	function	for	content	input	filtering

LuaMapHandler	uri-pattern
/path/to/lua/script.lua	[function-name]
Map	a	path	to	a	lua	handler

LuaOutputFilter	filter_name
/path/to/lua/script.lua	function_name
Provide	a	Lua	function	for	content	output	filtering

LuaPackageCPath	/path/to/include/?.soa
Add	a	directory	to	lua's	package.cpath

LuaPackagePath	/path/to/include/?.lua
Add	a	directory	to	lua's	package.path

LuaQuickHandler	/path/to/script.lua
hook_function_name
Provide	a	hook	for	the	quick	handler	of	request	processing

LuaRoot	/path/to/a/directory

Specify	the	base	path	for	resolving	relative	paths	for	mod_lua	directives

LuaScope	once|request|conn|thread|server
[min]	[max]

once

One	of	once,	request,	conn,	thread	--	default	is	once

<Macro	name	[par1	..	parN]>	...	</Macro>
Define	a	configuration	file	macro

MaxConnectionsPerChild	number 0
Limit	on	the	number	of	connections	that	an	individual	child	server	will	handle	during	its	life

MaxKeepAliveRequests	number 100
Number	of	requests	allowed	on	a	persistent	connection

MaxMemFree	KBytes 2048
Maximum	amount	of	memory	that	the	main	allocator	is	allowed	to	hold	without	calling	free()

MaxRangeOverlaps	default	|	unlimited	|	none	|
number-of-ranges

20

Number	of	overlapping	ranges	(eg:	100-200,150-300)	allowed	before	returning	the	complete	

MaxRangeReversals	default	|	unlimited	|	none
|	number-of-ranges

20

Number	of	range	reversals	(eg:	100-200,50-70)	allowed	before	returning	the	complete	resource

MaxRanges	default	|	unlimited	|	none	|
number-of-ranges

200

Number	of	ranges	allowed	before	returning	the	complete	resource

MaxRequestWorkers	number
Maximum	number	of	connections	that	will	be	processed	simultaneously

MaxSpareServers	number 10
Maximum	number	of	idle	child	server	processes

MaxSpareThreads	number
Maximum	number	of	idle	threads

MaxThreads	number 2048
Set	the	maximum	number	of	worker	threads

MemcacheConnTTL	num[units] 15s
Keepalive	time	for	idle	connections

MergeTrailers	[on|off] off
Determines	whether	trailers	are	merged	into	headers

MetaDir	directory .web
CERN				

MetaFiles	on|off off
CERN		

MetaSuffix	suffix .meta
CERN				

MimeMagicFile	file-path
Enable	MIME-type	determination	based	on	file	contents	using	the	specified	magic	file

MinSpareServers	number 5
Minimum	number	of	idle	child	server	processes

MinSpareThreads	number
Minimum	number	of	idle	threads	available	to	handle	request	spikes

MMapFile	file-path	[file-path]	...
				

ModemStandard	V.21|V.26bis|V.32|V.34|V.92
Modem	standard	to	simulate

ModMimeUsePathInfo	On|Off Off
Tells	mod_mime	to	treat	path_info	components	as	part	of	the	filename

MultiviewsMatch
Any|NegotiatedOnly|Filters|Handlers
[Handlers|Filters]

NegotiatedOnly

The	types	of	files	that	will	be	included	when	searching	for	a	matching	file	with	MultiViews

Mutex	mechanism	[default|mutex-name]	...
[OmitPID]

default

Configures	mutex	mechanism	and	lock	file	directory	for	all	or	specified	mutexes

NameVirtualHost	addr[:port]
DEPRECATED:	Designates	an	IP	address	for	name-virtual	hosting

NoProxy	host	[host]	...
Hosts,	domains,	or	networks	that	will	be	connected	to	directly

NWSSLTrustedCerts	filename	[filename]	...
List	of	additional	client	certificates

NWSSLUpgradeable	[IP-address:]portnumber
Allows	a	connection	to	be	upgraded	to	an	SSL	connection	upon	request

Options	[+|-]option	[[+|-]option]	... FollowSymlinks
Configures	what	features	are	available	in	a	particular	directory

Order	ordering Deny,Allow
Controls	the	default	access	state	and	the	order	in	which	Allow	and	Deny	are	evaluated.

OutputSed	sed-command
Sed	command	for	filtering	response	content

PassEnv	env-variable	[env-variable]	...
		

PidFile	filename logs/httpd.pid
File	where	the	server	records	the	process	ID	of	the	daemon

PrivilegesMode	FAST|SECURE|SELECTIVE FAST
Trade	off	processing	speed	and	efficiency	vs	security	against	malicious	privileges-aware	code.

Protocol	protocol
Protocol	for	a	listening	socket

ProtocolEcho	On|Off
echo			

Protocols	protocol	... http/1.1
Protocols	available	for	a	server/virtual	host

ProtocolsHonorOrder	On|Off On
Determines	if	order	of	Protocols	determines	precedence	during	negotiation

<Proxy	wildcard-url>	...</Proxy>
Container	for	directives	applied	to	proxied	resources

ProxyAddHeaders	Off|On On
Add	proxy	information	in	X-Forwarded-*	headers

ProxyBadHeader	IsError|Ignore|StartBody IsError
Determines	how	to	handle	bad	header	lines	in	a	response

ProxyBlock	*|word|host|domain
[word|host|domain]	...
Words,	hosts,	or	domains	that	are	banned	from	being	proxied

ProxyDomain	Domain
Default	domain	name	for	proxied	requests

ProxyErrorOverride	On|Off Off
Override	error	pages	for	proxied	content

ProxyExpressDBMFile	<pathname>
Pathname	to	DBM	file.

ProxyExpressDBMFile	<type>
DBM	type	of	file.

ProxyExpressEnable	[on|off]
Enable	the	module	functionality.

ProxyFCGIBackendType	FPM|GENERIC FPM
Specify	the	type	of	backend	FastCGI	application

ProxyFCGISetEnvIf	conditional-expression
[!]environment-variable-name	[value-
expression]
Allow	variables	sent	to	FastCGI	servers	to	be	fixed	up

ProxyFtpDirCharset	character	set ISO-8859-1
Define	the	character	set	for	proxied	FTP	listings

ProxyFtpEscapeWildcards	[on|off]
Whether	wildcards	in	requested	filenames	are	escaped	when	sent	to	the	FTP	server

ProxyFtpListOnWildcard	[on|off]
Whether	wildcards	in	requested	filenames	trigger	a	file	listing

ProxyHCExpr	name	{ap_expr	expression}
Creates	a	named	condition	expression	to	use	to	determine	health	of	the	backend	based	on	its	response.

ProxyHCTemplate	name	parameter=setting
<...>
Creates	a	named	template	for	setting	various	health	check	parameters

ProxyHCTPsize	<size>
Sets	the	total	server-wide	size	of	the	threadpool	used	for	the	health	check	workers.

ProxyHTMLBufSize	bytes
Sets	the	buffer	size	increment	for	buffering	inline	scripts	and	stylesheets.

ProxyHTMLCharsetOut	Charset	|	*
Specify	a	charset	for	mod_proxy_html	output.

ProxyHTMLDocType	HTML|XHTML	[Legacy]
OR	
ProxyHTMLDocType	fpi	[SGML|XML]
Sets	an	HTML	or	XHTML	document	type	declaration.

ProxyHTMLEnable	On|Off Off
Turns	the	proxy_html	filter	on	or	off.

ProxyHTMLEvents	attribute	[attribute	...]
Specify	attributes	to	treat	as	scripting	events.

ProxyHTMLExtended	On|Off Off
Determines	whether	to	fix	links	in	inline	scripts,	stylesheets,	and	scripting	events.

ProxyHTMLFixups	[lowercase]	[dospath]
[reset]

Fixes	for	simple	HTML	errors.

ProxyHTMLInterp	On|Off Off
Enables	per-request	interpolation	of	ProxyHTMLURLMap	rules.

ProxyHTMLLinks	element	attribute	[attribute2
...]
Specify	HTML	elements	that	have	URL	attributes	to	be	rewritten.

ProxyHTMLMeta	On|Off Off
Turns	on	or	off	extra	pre-parsing	of	metadata	in	HTML	<head>	sections.

ProxyHTMLStripComments	On|Off Off
Determines	whether	to	strip	HTML	comments.

ProxyHTMLURLMap	from-pattern	to-pattern
[flags]	[cond]
Defines	a	rule	to	rewrite	HTML	links

ProxyIOBufferSize	bytes 8192
Determine	size	of	internal	data	throughput	buffer

<ProxyMatch	regex>	...</ProxyMatch>
Container	for	directives	applied	to	regular-expression-matched	proxied	resources

ProxyMaxForwards	number -1
Maximium	number	of	proxies	that	a	request	can	be	forwarded	through

ProxyPass	[path]	!|url	[key=value	[key=value
...]]	[nocanon]	[interpolate]	[noquery]
Maps	remote	servers	into	the	local	server	URL-space

ProxyPassInherit	On|Off On
Inherit	ProxyPass	directives	defined	from	the	main	server

ProxyPassInterpolateEnv	On|Off Off
Enable	Environment	Variable	interpolation	in	Reverse	Proxy	configurations

ProxyPassMatch	[regex]	!|url	[key=value
[key=value	...]]
Maps	remote	servers	into	the	local	server	URL-space	using	regular	expressions

ProxyPassReverse	[path]	url	[interpolate]
Adjusts	the	URL	in	HTTP	response	headers	sent	from	a	reverse	proxied	server

ProxyPassReverseCookieDomain	internal-
domain	public-domain	[interpolate]
Adjusts	the	Domain	string	in	Set-Cookie	headers	from	a	reverse-	proxied	server

ProxyPassReverseCookiePath	internal-path

public-path	[interpolate]
Adjusts	the	Path	string	in	Set-Cookie	headers	from	a	reverse-	proxied	server

ProxyPreserveHost	On|Off Off
Use	incoming	Host	HTTP	request	header	for	proxy	request

ProxyReceiveBufferSize	bytes 0
Network	buffer	size	for	proxied	HTTP	and	FTP	connections

ProxyRemote	match	remote-server
Remote	proxy	used	to	handle	certain	requests

ProxyRemoteMatch	regex	remote-server
Remote	proxy	used	to	handle	requests	matched	by	regular	expressions

ProxyRequests	On|Off Off
Enables	forward	(standard)	proxy	requests

ProxySCGIInternalRedirect
On|Off|Headername

On

Enable	or	disable	internal	redirect	responses	from	the	backend

ProxySCGISendfile	On|Off|Headername Off
Enable	evaluation	of	X-Sendfile	pseudo	response	header

ProxySet	url	key=value	[key=value	...]
Set	various	Proxy	balancer	or	member	parameters

ProxySourceAddress	address
Set	local	IP	address	for	outgoing	proxy	connections

ProxyStatus	Off|On|Full Off
Show	Proxy	LoadBalancer	status	in	mod_status

ProxyTimeout	seconds
Network	timeout	for	proxied	requests

ProxyVia	On|Off|Full|Block Off
Information	provided	in	the	Via	HTTP	response	header	for	proxied	requests

QualifyRedirectURL	ON|OFF OFF
Controls	whether	the	REDIRECT_URL	environment	variable	is	fully	qualified

ReadmeName	filename
				

ReceiveBufferSize	bytes 0
TCP	receive	buffer	size

Redirect	[status]	URL-path	URL
		URL					

RedirectMatch	[status]	regex	URL
	URL					

RedirectPermanent	URL-path	URL
		URL						

RedirectTemp	URL-path	URL
		URL						

ReflectorHeader	inputheader	[outputheader]
Reflect	an	input	header	to	the	output	headers

RegisterHttpMethod	method	[method	[...]]
Register	non-standard	HTTP	methods

RemoteIPHeader	header-field
Declare	the	header	field	which	should	be	parsed	for	useragent	IP	addresses

RemoteIPInternalProxy	proxy-ip|proxy-
ip/subnet|hostname	...
Declare	client	intranet	IP	addresses	trusted	to	present	the	RemoteIPHeader	value

RemoteIPInternalProxyList	filename
Declare	client	intranet	IP	addresses	trusted	to	present	the	RemoteIPHeader	value

RemoteIPProxiesHeader	HeaderFieldName
Declare	the	header	field	which	will	record	all	intermediate	IP	addresses

RemoteIPTrustedProxy	proxy-ip|proxy-
ip/subnet|hostname	...
Declare	client	intranet	IP	addresses	trusted	to	present	the	RemoteIPHeader	value

RemoteIPTrustedProxyList	filename
Declare	client	intranet	IP	addresses	trusted	to	present	the	RemoteIPHeader	value

RemoveCharset	extension	[extension]	...
Removes	any	character	set	associations	for	a	set	of	file	extensions

RemoveEncoding	extension	[extension]	...
Removes	any	content	encoding	associations	for	a	set	of	file	extensions

RemoveHandler	extension	[extension]	...
Removes	any	handler	associations	for	a	set	of	file	extensions

RemoveInputFilter	extension	[extension]	...
Removes	any	input	filter	associations	for	a	set	of	file	extensions

RemoveLanguage	extension	[extension]	...
Removes	any	language	associations	for	a	set	of	file	extensions

RemoveOutputFilter	extension	[extension]	...

Removes	any	output	filter	associations	for	a	set	of	file	extensions

RemoveType	extension	[extension]	...
Removes	any	content	type	associations	for	a	set	of	file	extensions

RequestHeader	set|append|add|unset	header
[value]	[early|env=[!]variable]
HTTP			

RequestReadTimeout	[header=timeout[-
maxtimeout][,MinRate=rate]	[body=timeout[-
maxtimeout][,MinRate=rate]
Set	timeout	values	for	receiving	request	headers	and	body	from	client.

Require	[not]	entity-name	[entity-name]	...
Tests	whether	an	authenticated	user	is	authorized	by	an	authorization	provider.

<RequireAll>	...	</RequireAll>
Enclose	a	group	of	authorization	directives	of	which	none	must	fail	and	at	least	one	must	succeed	for	the
enclosing	directive	to	succeed.

<RequireAny>	...	</RequireAny>
Enclose	a	group	of	authorization	directives	of	which	one	must	succeed	for	the	enclosing	directive	to	succeed.

<RequireNone>	...	</RequireNone>
Enclose	a	group	of	authorization	directives	of	which	none	must	succeed	for	the	enclosing	directive	to	not	fail.

RewriteBase	URL-path
Sets	the	base	URL	for	per-directory	rewrites

RewriteCond	TestString	CondPattern	[flags]
Defines	a	condition	under	which	rewriting	will	take	place

RewriteEngine	on|off off
Enables	or	disables	runtime	rewriting	engine

RewriteMap	MapName	MapType:MapSource
Defines	a	mapping	function	for	key-lookup

RewriteOptions	Options
Sets	some	special	options	for	the	rewrite	engine

RewriteRule	Pattern	Substitution	[flags]
Defines	rules	for	the	rewriting	engine

RLimitCPU	seconds|max	[seconds|max]
Limits	the	CPU	consumption	of	processes	launched	by	Apache	httpd	children

RLimitMEM	bytes|max	[bytes|max]
Limits	the	memory	consumption	of	processes	launched	by	Apache	httpd	children

RLimitNPROC	number|max	[number|max]
Limits	the	number	of	processes	that	can	be	launched	by	processes	launched	by	Apache	httpd	children

Satisfy	Any|All All
Interaction	between	host-level	access	control	and	user	authentication

ScoreBoardFile	file-path logs/apache_runtime	+
Location	of	the	file	used	to	store	coordination	data	for	the	child	processes

Script	method	cgi-script
			CGI		.

ScriptAlias	URL-path	file-path|directory-path
URL						CGI		

ScriptAliasMatch	regex	file-path|directory-path
		URL						CGI		

ScriptInterpreterSource	Registry|Registry-
Strict|Script

Script

Technique	for	locating	the	interpreter	for	CGI	scripts

ScriptLog	file-path
CGI			

ScriptLogBuffer	bytes 1024
			PUT		POST		

ScriptLogLength	bytes 10385760
CGI				

ScriptSock	file-path logs/cgisock
cgi						

SecureListen	[IP-address:]portnumber
Certificate-Name	[MUTUAL]
Enables	SSL	encryption	for	the	specified	port

SeeRequestTail	On|Off Off
Determine	if	mod_status	displays	the	first	63	characters	of	a	request	or	the	last	63,	assuming	the	request	itself
is	greater	than	63	chars.

SendBufferSize	bytes 0
TCP	buffer	size

ServerAdmin	email-address|URL
Email	address	that	the	server	includes	in	error	messages	sent	to	the	client

ServerAlias	hostname	[hostname]	...
Alternate	names	for	a	host	used	when	matching	requests	to	name-virtual	hosts

ServerLimit	number
Upper	limit	on	configurable	number	of	processes

ServerName	[scheme://]domain-name|ip-
address[:port]
Hostname	and	port	that	the	server	uses	to	identify	itself

ServerPath	URL-path
Legacy	URL	pathname	for	a	name-based	virtual	host	that	is	accessed	by	an	incompatible	browser

ServerRoot	directory-path /usr/local/apache
Base	directory	for	the	server	installation

ServerSignature	On|Off|EMail Off
Configures	the	footer	on	server-generated	documents

ServerTokens
Major|Minor|Min[imal]|Prod[uctOnly]|OS|Full

Full

Configures	the	Server	HTTP	response	header

Session	On|Off Off
Enables	a	session	for	the	current	directory	or	location

SessionCookieName	name	attributes
Name	and	attributes	for	the	RFC2109	cookie	storing	the	session

SessionCookieName2	name	attributes
Name	and	attributes	for	the	RFC2965	cookie	storing	the	session

SessionCookieRemove	On|Off Off
Control	for	whether	session	cookies	should	be	removed	from	incoming	HTTP	headers

SessionCryptoCipher	name
The	crypto	cipher	to	be	used	to	encrypt	the	session

SessionCryptoDriver	name	[param[=value]]
The	crypto	driver	to	be	used	to	encrypt	the	session

SessionCryptoPassphrase	secret	[secret	...]
The	key	used	to	encrypt	the	session

SessionCryptoPassphraseFile	filename
File	containing	keys	used	to	encrypt	the	session

SessionDBDCookieName	name	attributes
Name	and	attributes	for	the	RFC2109	cookie	storing	the	session	ID

SessionDBDCookieName2	name	attributes
Name	and	attributes	for	the	RFC2965	cookie	storing	the	session	ID

SessionDBDCookieRemove	On|Off On

Control	for	whether	session	ID	cookies	should	be	removed	from	incoming	HTTP	headers

SessionDBDDeleteLabel	label deletesession
The	SQL	query	to	use	to	remove	sessions	from	the	database

SessionDBDInsertLabel	label insertsession
The	SQL	query	to	use	to	insert	sessions	into	the	database

SessionDBDPerUser	On|Off Off
Enable	a	per	user	session

SessionDBDSelectLabel	label selectsession
The	SQL	query	to	use	to	select	sessions	from	the	database

SessionDBDUpdateLabel	label updatesession
The	SQL	query	to	use	to	update	existing	sessions	in	the	database

SessionEnv	On|Off Off
Control	whether	the	contents	of	the	session	are	written	to	the	HTTP_SESSION	environment	variable

SessionExclude	path
Define	URL	prefixes	for	which	a	session	is	ignored

SessionHeader	header
Import	session	updates	from	a	given	HTTP	response	header

SessionInclude	path
Define	URL	prefixes	for	which	a	session	is	valid

SessionMaxAge	maxage 0
Define	a	maximum	age	in	seconds	for	a	session

SetEnv	env-variable	value
	

SetEnvIf	attribute	regex	[!]env-variable[=value]
[[!]env-variable[=value]]	...
				

Sets	environment	variables	based	on	an	ap_expr	expression

SetEnvIfNoCase	attribute	regex	[!]env-
variable[=value]	[[!]env-variable[=value]]	...
						

SetHandler	handler-name|none|expression
Forces	all	matching	files	to	be	processed	by	a	handler

SetInputFilter	filter[;filter...]
Sets	the	filters	that	will	process	client	requests	and	POST	input

SetOutputFilter	filter[;filter...]
Sets	the	filters	that	will	process	responses	from	the	server

SSIEndTag	tag "-->"
String	that	ends	an	include	element

SSIErrorMsg	message "[an	error	occurred	+
Error	message	displayed	when	there	is	an	SSI	error

SSIETag	on|off off
Controls	whether	ETags	are	generated	by	the	server.

SSILastModified	on|off off
Controls	whether	Last-Modified	headers	are	generated	by	the	server.

SSILegacyExprParser	on|off off
Enable	compatibility	mode	for	conditional	expressions.

SSIStartTag	tag "<!--#"
String	that	starts	an	include	element

SSITimeFormat	formatstring "%A,	%d-%b-%Y	%H:%M
+

Configures	the	format	in	which	date	strings	are	displayed

SSIUndefinedEcho	string "(none)"
String	displayed	when	an	unset	variable	is	echoed

SSLCACertificateFile	file-path
File	of	concatenated	PEM-encoded	CA	Certificates	for	Client	Auth

SSLCACertificatePath	directory-path
Directory	of	PEM-encoded	CA	Certificates	for	Client	Auth

SSLCADNRequestFile	file-path
File	of	concatenated	PEM-encoded	CA	Certificates	for	defining	acceptable	CA	names

SSLCADNRequestPath	directory-path
Directory	of	PEM-encoded	CA	Certificates	for	defining	acceptable	CA	names

SSLCARevocationCheck	chain|leaf|none	flags none
Enable	CRL-based	revocation	checking

SSLCARevocationFile	file-path
File	of	concatenated	PEM-encoded	CA	CRLs	for	Client	Auth

SSLCARevocationPath	directory-path
Directory	of	PEM-encoded	CA	CRLs	for	Client	Auth

SSLCertificateChainFile	file-path
File	of	PEM-encoded	Server	CA	Certificates

SSLCertificateFile	file-path
Server	PEM-encoded	X.509	certificate	data	file

SSLCertificateKeyFile	file-path
Server	PEM-encoded	private	key	file

SSLCipherSuite	cipher-spec DEFAULT	(depends	on	+
Cipher	Suite	available	for	negotiation	in	SSL	handshake

SSLCompression	on|off off
Enable	compression	on	the	SSL	level

SSLCryptoDevice	engine builtin
Enable	use	of	a	cryptographic	hardware	accelerator

SSLEngine	on|off|optional off
SSL	Engine	Operation	Switch

SSLFIPS	on|off off
SSL	FIPS	mode	Switch

SSLHonorCipherOrder	on|off off
Option	to	prefer	the	server's	cipher	preference	order

SSLInsecureRenegotiation	on|off off
Option	to	enable	support	for	insecure	renegotiation

SSLOCSDefaultResponder	uri
Set	the	default	responder	URI	for	OCSP	validation

SSLOCSPEnable	on|off off
Enable	OCSP	validation	of	the	client	certificate	chain

SSLOCSPNoverify	On/Off Off
skip	the	OCSP	responder	certificates	verification

SSLOCSPOverrideResponder	on|off off
Force	use	of	the	default	responder	URI	for	OCSP	validation

SSLOCSPProxyURL	url
Proxy	URL	to	use	for	OCSP	requests

SSLOCSPResponderCertificateFile	file
Set	of	trusted	PEM	encoded	OCSP	responder	certificates

SSLOCSPResponderTimeout	seconds 10
Timeout	for	OCSP	queries

SSLOCSPResponseMaxAge	seconds -1
Maximum	allowable	age	for	OCSP	responses

SSLOCSPResponseTimeSkew	seconds 300

Maximum	allowable	time	skew	for	OCSP	response	validation

SSLOCSPUseRequestNonce	on|off on
Use	a	nonce	within	OCSP	queries

SSLOpenSSLConfCmd	command-name
command-value
Configure	OpenSSL	parameters	through	its	SSL_CONF	API

SSLOptions	[+|-]option	...
Configure	various	SSL	engine	run-time	options

SSLPassPhraseDialog	type builtin
Type	of	pass	phrase	dialog	for	encrypted	private	keys

SSLProtocol	[+|-]protocol	... all	-SSLv3	(up	to	2	+
Configure	usable	SSL/TLS	protocol	versions

SSLProxyCACertificateFile	file-path
File	of	concatenated	PEM-encoded	CA	Certificates	for	Remote	Server	Auth

SSLProxyCACertificatePath	directory-path
Directory	of	PEM-encoded	CA	Certificates	for	Remote	Server	Auth

SSLProxyCARevocationCheck
chain|leaf|none

none

Enable	CRL-based	revocation	checking	for	Remote	Server	Auth

SSLProxyCARevocationFile	file-path
File	of	concatenated	PEM-encoded	CA	CRLs	for	Remote	Server	Auth

SSLProxyCARevocationPath	directory-path
Directory	of	PEM-encoded	CA	CRLs	for	Remote	Server	Auth

SSLProxyCheckPeerCN	on|off on
Whether	to	check	the	remote	server	certificate's	CN	field

SSLProxyCheckPeerExpire	on|off on
Whether	to	check	if	remote	server	certificate	is	expired

SSLProxyCheckPeerName	on|off on
Configure	host	name	checking	for	remote	server	certificates

SSLProxyCipherSuite	cipher-spec ALL:!ADH:RC4+RSA:+H	+
Cipher	Suite	available	for	negotiation	in	SSL	proxy	handshake

SSLProxyEngine	on|off off
SSL	Proxy	Engine	Operation	Switch

SSLProxyMachineCertificateChainFile
filename

File	of	concatenated	PEM-encoded	CA	certificates	to	be	used	by	the	proxy	for	choosing	a	certificate

SSLProxyMachineCertificateFile	filename
File	of	concatenated	PEM-encoded	client	certificates	and	keys	to	be	used	by	the	proxy

SSLProxyMachineCertificatePath	directory
Directory	of	PEM-encoded	client	certificates	and	keys	to	be	used	by	the	proxy

SSLProxyProtocol	[+|-]protocol	... all	-SSLv3	(up	to	2	+
Configure	usable	SSL	protocol	flavors	for	proxy	usage

SSLProxyVerify	level none
Type	of	remote	server	Certificate	verification

SSLProxyVerifyDepth	number 1
Maximum	depth	of	CA	Certificates	in	Remote	Server	Certificate	verification

SSLRandomSeed	context	source	[bytes]
Pseudo	Random	Number	Generator	(PRNG)	seeding	source

SSLRenegBufferSize	bytes 131072
Set	the	size	for	the	SSL	renegotiation	buffer

SSLRequire	expression
Allow	access	only	when	an	arbitrarily	complex	boolean	expression	is	true

SSLRequireSSL
Deny	access	when	SSL	is	not	used	for	the	HTTP	request

SSLSessionCache	type none
Type	of	the	global/inter-process	SSL	Session	Cache

SSLSessionCacheTimeout	seconds 300
Number	of	seconds	before	an	SSL	session	expires	in	the	Session	Cache

SSLSessionTicketKeyFile	file-path
Persistent	encryption/decryption	key	for	TLS	session	tickets

SSLSessionTickets	on|off on
Enable	or	disable	use	of	TLS	session	tickets

SSLSRPUnknownUserSeed	secret-string
SRP	unknown	user	seed

SSLSRPVerifierFile	file-path
Path	to	SRP	verifier	file

SSLStaplingCache	type
Configures	the	OCSP	stapling	cache

SSLStaplingErrorCacheTimeout	seconds 600
Number	of	seconds	before	expiring	invalid	responses	in	the	OCSP	stapling	cache

SSLStaplingFakeTryLater	on|off on
Synthesize	"tryLater"	responses	for	failed	OCSP	stapling	queries

SSLStaplingForceURL	uri
Override	the	OCSP	responder	URI	specified	in	the	certificate's	AIA	extension

SSLStaplingResponderTimeout	seconds 10
Timeout	for	OCSP	stapling	queries

SSLStaplingResponseMaxAge	seconds -1
Maximum	allowable	age	for	OCSP	stapling	responses

SSLStaplingResponseTimeSkew	seconds 300
Maximum	allowable	time	skew	for	OCSP	stapling	response	validation

SSLStaplingReturnResponderErrors	on|off on
Pass	stapling	related	OCSP	errors	on	to	client

SSLStaplingStandardCacheTimeout	seconds 3600
Number	of	seconds	before	expiring	responses	in	the	OCSP	stapling	cache

SSLStrictSNIVHostCheck	on|off off
Whether	to	allow	non-SNI	clients	to	access	a	name-based	virtual	host.

SSLUserName	varname
Variable	name	to	determine	user	name

SSLUseStapling	on|off off
Enable	stapling	of	OCSP	responses	in	the	TLS	handshake

SSLVerifyClient	level none
Type	of	Client	Certificate	verification

SSLVerifyDepth	number 1
Maximum	depth	of	CA	Certificates	in	Client	Certificate	verification

StartServers	number
Number	of	child	server	processes	created	at	startup

StartThreads	number
Number	of	threads	created	on	startup

Substitute	s/pattern/substitution/[infq]
Pattern	to	filter	the	response	content

SubstituteInheritBefore	on|off off
Change	the	merge	order	of	inherited	patterns

SubstituteMaxLineLength
bytes(b|B|k|K|m|M|g|G)

1m

Set	the	maximum	line	size

Suexec	On|Off
Enable	or	disable	the	suEXEC	feature

SuexecUserGroup	User	Group
CGI					

ThreadLimit	number
Sets	the	upper	limit	on	the	configurable	number	of	threads	per	child	process

ThreadsPerChild	number
Number	of	threads	created	by	each	child	process

ThreadStackSize	size
The	size	in	bytes	of	the	stack	used	by	threads	handling	client	connections

TimeOut	seconds 60
Amount	of	time	the	server	will	wait	for	certain	events	before	failing	a	request

TraceEnable	[on|off|extended] on
Determines	the	behavior	on	TRACE	requests

TransferLog	file|pipe
		

TypesConfig	file-path conf/mime.types
The	location	of	the	mime.types	file

UnDefine	parameter-name
Undefine	the	existence	of	a	variable

UndefMacro	name
Undefine	a	macro

UnsetEnv	env-variable	[env-variable]	...
	

Use	name	[value1	...	valueN]
Use	a	macro

UseCanonicalName	On|Off|DNS Off
Configures	how	the	server	determines	its	own	name	and	port

UseCanonicalPhysicalPort	On|Off Off
Configures	how	the	server	determines	its	own	port

User	unix-userid #-1
The	userid	under	which	the	server	will	answer	requests

UserDir	directory-filename public_html
		

VHostCGIMode	On|Off|Secure On

Determines	whether	the	virtualhost	can	run	subprocesses,	and	the	privileges	available	to	subprocesses.

VHostPrivs	[+-]?privilege-name	[[+-]?privilege-
name]	...
Assign	arbitrary	privileges	to	subprocesses	created	by	a	virtual	host.

VHostGroup	unix-groupid
Sets	the	Group	ID	under	which	a	virtual	host	runs.

VHostPrivs	[+-]?privilege-name	[[+-]?privilege-
name]	...
Assign	arbitrary	privileges	to	a	virtual	host.

VHostSecure	On|Off On
Determines	whether	the	server	runs	with	enhanced	security	for	the	virtualhost.

VHostUser	unix-userid
Sets	the	User	ID	under	which	a	virtual	host	runs.

VirtualDocumentRoot	interpolated-
directory|none

none

Dynamically	configure	the	location	of	the	document	root	for	a	given	virtual	host

VirtualDocumentRootIP	interpolated-
directory|none

none

Dynamically	configure	the	location	of	the	document	root	for	a	given	virtual	host

<VirtualHost	addr[:port]	[addr[:port]]	...>	...
</VirtualHost>
Contains	directives	that	apply	only	to	a	specific	hostname	or	IP	address

VirtualScriptAlias	interpolated-directory|none none
Dynamically	configure	the	location	of	the	CGI	directory	for	a	given	virtual	host

VirtualScriptAliasIP	interpolated-
directory|none

none

Dynamically	configure	the	location	of	the	CGI	directory	for	a	given	virtual	host

WatchdogInterval	number-of-seconds 1
Watchdog	interval	in	seconds

XBitHack	on|off|full off
Parse	SSI	directives	in	files	with	the	execute	bit	set

xml2EncAlias	charset	alias	[alias	...]
Recognise	Aliases	for	encoding	values

xml2EncDefault	name
Sets	a	default	encoding	to	assume	when	absolutely	no	information	can	be	automatically	detected

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

xml2StartParse	element	[element	...]
Advise	the	parser	to	skip	leading	junk.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

						.	 		 		 .

	(MPM)
	

			

core
Core	Apache	HTTP	Server	features	that	are	always	available

mpm_common
A	collection	of	directives	that	are	implemented	by	more	than
one	multi-processing	module	(MPM)

event
A	variant	of	the	worker	MPM	with	the	goal	of	consuming
threads	only	for	connections	with	active	processing

mpm_netware
Multi-Processing	Module	implementing	an	exclusively
threaded	web	server	optimized	for	Novell	NetWare

mpmt_os2
Hybrid	multi-process,	multi-threaded	MPM	for	OS/2

prefork
Implements	a	non-threaded,	pre-forking	web	server

mpm_winnt
Multi-Processing	Module	optimized	for	Windows	NT.

worker
Multi-Processing	Module	implementing	a	hybrid	multi-
threaded	multi-process	web	server

	

	A		|		B		|		C		|		D		|		E		|		F		|		H		|		I		|		L		|		M		|		N		|		P		|		R		|		S		|
	U		|		V		|		W		|		X	

mod_access_compat
Group	authorizations	based	on	host	(name	or	IP	address)

mod_actions
					CGI		.

mod_alias
					,	 URL		

mod_allowmethods
Easily	restrict	what	HTTP	methods	can	be	used	on	the	server

mod_asis
HTTP				

mod_auth_basic
Basic	authentication

mod_auth_digest
MD5	Digest	Authentication		.

mod_auth_form
Form	authentication

mod_authn_anon
	"(anonymous)"			

mod_authn_core
Core	Authentication

mod_authn_dbd
User	authentication	using	an	SQL	database

mod_authn_dbm
DBM				

mod_authn_file
			

mod_authn_socache
Manages	a	cache	of	authentication	credentials	to	relieve	the
load	on	backends

mod_authnz_fcgi
Allows	a	FastCGI	authorizer	application	to	handle	Apache
httpd	authentication	and	authorization

mod_authnz_ldap
Allows	an	LDAP	directory	to	be	used	to	store	the	database	for
HTTP	Basic	authentication.

mod_authz_core
Core	Authorization

mod_authz_dbd
Group	Authorization	and	Login	using	SQL

mod_authz_dbm
DBM				

mod_authz_groupfile
				

mod_authz_host
Group	authorizations	based	on	host	(name	or	IP	address)

mod_authz_owner
			

mod_authz_user
	

mod_autoindex
		 ls		Win32	 dir					

mod_brotli
Compress	content	via	Brotli	before	it	is	delivered	to	the	client

mod_buffer
Support	for	request	buffering

mod_cache
URI				.

mod_cache_disk
Content	cache	storage	manager	keyed	to	URIs

mod_cache_socache
Shared	object	cache	(socache)	based	storage	module	for	the
HTTP	caching	filter.

mod_cern_meta
CERN			

mod_cgi
CGI		

mod_cgid
	CGI			CGI		

mod_charset_lite
		

mod_data
Convert	response	body	into	an	RFC2397	data	URL

mod_dav
Distributed	Authoring	and	Versioning	(WebDAV)	

mod_dav_fs
mod_dav			

mod_dav_lock
Generic	locking	module	for	mod_dav

mod_dbd
Manages	SQL	database	connections

mod_deflate
				

mod_dialup
Send	static	content	at	a	bandwidth	rate	limit,	defined	by	the

http://www.webdav.org/

various	old	modem	standards

mod_dir
"	"				index		

mod_dumpio
Dumps	all	I/O	to	error	log	as	desired.

mod_echo
				echo	

mod_env
CGI		SSI				

mod_example_hooks
		API	

mod_expires
				 Expires	Cache-Control	HTTP		

mod_ext_filter
							

mod_file_cache
			

mod_filter
Context-sensitive	smart	filter	configuration	module

mod_headers
HTTP					

mod_heartbeat
Sends	messages	with	server	status	to	frontend	proxy

mod_heartmonitor
Centralized	monitor	for	mod_heartbeat	origin	servers

mod_http2
Support	for	the	HTTP/2	transport	layer

mod_ident
RFC	1413	ident	

mod_imagemap
	(imagemap)	

mod_include
Server-parsed	html	documents	(Server	Side	Includes)

mod_info
					

mod_isapi
Windows		ISAPI	Extension	

mod_lbmethod_bybusyness
Pending	Request	Counting	load	balancer	scheduler	algorithm
for	mod_proxy_balancer

mod_lbmethod_byrequests
Request	Counting	load	balancer	scheduler	algorithm	for
mod_proxy_balancer

mod_lbmethod_bytraffic
Weighted	Traffic	Counting	load	balancer	scheduler	algorithm
for	mod_proxy_balancer

mod_lbmethod_heartbeat
Heartbeat	Traffic	Counting	load	balancer	scheduler	algorithm
for	mod_proxy_balancer

mod_ldap
LDAP	connection	pooling	and	result	caching	services	for	use
by	other	LDAP	modules

mod_log_config
			

mod_log_debug
Additional	configurable	debug	logging

mod_log_forensic
Forensic	Logging	of	the	requests	made	to	the	server

mod_logio
			

mod_lua
Provides	Lua	hooks	into	various	portions	of	the	httpd	request
processing

mod_macro
Provides	macros	within	apache	httpd	runtime	configuration
files

mod_mime
Associates	the	requested	filename's	extensions	with	the	file's
behavior	(handlers	and	filters)	and	content	(mime-type,
language,	character	set	and	encoding)

mod_mime_magic
Determines	the	MIME	type	of	a	file	by	looking	at	a	few	bytes
of	its	contents

mod_negotiation
Provides	for	content	negotiation

mod_nw_ssl
Enable	SSL	encryption	for	NetWare

mod_privileges
Support	for	Solaris	privileges	and	for	running	virtual	hosts
under	different	user	IDs.

mod_proxy
Multi-protocol	proxy/gateway	server

mod_proxy_ajp
AJP	support	module	for	mod_proxy

mod_proxy_balancer
mod_proxy	extension	for	load	balancing

mod_proxy_connect
mod_proxy	extension	for	CONNECT	request	handling

mod_proxy_express
Dynamic	mass	reverse	proxy	extension	for	mod_proxy

mod_proxy_fcgi
FastCGI	support	module	for	mod_proxy

mod_proxy_fdpass
fdpass	external	process	support	module	for	mod_proxy

mod_proxy_ftp
FTP	support	module	for	mod_proxy

mod_proxy_hcheck
Dynamic	health	check	of	Balancer	members	(workers)	for
mod_proxy

mod_proxy_html
Rewrite	HTML	links	in	to	ensure	they	are	addressable	from
Clients'	networks	in	a	proxy	context.

mod_proxy_http
HTTP	support	module	for	mod_proxy

mod_proxy_http2
HTTP/2	support	module	for	mod_proxy

mod_proxy_scgi
SCGI	gateway	module	for	mod_proxy

mod_proxy_wstunnel
Websockets	support	module	for	mod_proxy

mod_ratelimit
Bandwidth	Rate	Limiting	for	Clients

mod_reflector
Reflect	a	request	body	as	a	response	via	the	output	filter
stack.

mod_remoteip
Replaces	the	original	client	IP	address	for	the	connection	with

the	useragent	IP	address	list	presented	by	a	proxies	or	a	load
balancer	via	the	request	headers.

mod_reqtimeout
Set	timeout	and	minimum	data	rate	for	receiving	requests

mod_request
Filters	to	handle	and	make	available	HTTP	request	bodies

mod_rewrite
Provides	a	rule-based	rewriting	engine	to	rewrite	requested
URLs	on	the	fly

mod_sed
Filter	Input	(request)	and	Output	(response)	content	using
sed	syntax

mod_session
Session	support

mod_session_cookie
Cookie	based	session	support

mod_session_crypto
Session	encryption	support

mod_session_dbd
DBD/SQL	based	session	support

mod_setenvif
					

mod_slotmem_plain
Slot-based	shared	memory	provider.

mod_slotmem_shm
Slot-based	shared	memory	provider.

mod_so
							

mod_socache_dbm

DBM	based	shared	object	cache	provider.

mod_socache_dc
Distcache	based	shared	object	cache	provider.

mod_socache_memcache
Memcache	based	shared	object	cache	provider.

mod_socache_shmcb
shmcb	based	shared	object	cache	provider.

mod_speling
										URL		

mod_ssl
Strong	cryptography	using	the	Secure	Sockets	Layer	(SSL)
and	Transport	Layer	Security	(TLS)	protocols

mod_status
					

mod_substitute
Perform	search	and	replace	operations	on	response	bodies

mod_suexec
CGI						

mod_unique_id
						

mod_unixd
Basic	(required)	security	for	Unix-family	platforms.

mod_userdir
	

mod_usertrack
Clickstream	logging	of	user	activity	on	a	site

mod_version
	

mod_vhost_alias

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

Provides	for	dynamically	configured	mass	virtual	hosting

mod_watchdog
provides	infrastructure	for	other	modules	to	periodically	run
tasks

mod_xml2enc
Enhanced	charset/internationalisation	support	for	libxml2-
based	filter	modules

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

				.	 					.

			 Apache	HTTP	Server	Version	2.4			.

1.3	2.0	
	2.0		
	

		

		
	
		

	Directory,	Location,	Files		
		

URL		
	
	(DSO)	
	(content	negotiation)
		
				
	(MPM)
	
		

suEXEC	
	
URL	(rewriting)	

		

	
IP		
			
	
				
(file	descriptor)	
DNS			

					

	SSL/TLS	

SSL/TLS	:	
SSL/TLS	:	
SSL/TLS	:	How-To
SSL/TLS	:	FAQ

,	,	HowTo

CGI			
Server	Side	Includes	
.htaccess	
	

	

Microsoft	Windows		
Microsoft	Windows		
Novell	NetWare		
HPUX			
	EBCDIC	

			

Manpage:	httpd
Manpage:	ab
Manpage:	apachectl
Manpage:	apxs
Manpage:	configure
Manpage:	dbmmanage
Manpage:	htcacheclean
Manpage:	htdigest
Manpage:	htpasswd
Manpage:	logresolve
Manpage:	rotatelogs
Manpage:	suexec
	

		

	

	

				
				

		
	MPM		
	MPM	event
	MPM	netware
	MPM	os2
	MPM	prefork
	MPM	winnt
	MPM	worker

		mod_access_compat
		mod_actions
		mod_alias
		mod_allowmethods
		mod_asis
		mod_auth_basic
		mod_auth_digest
		mod_auth_form
		mod_authn_anon
		mod_authn_core
		mod_authn_dbd
		mod_authn_dbm
		mod_authn_file
		mod_authn_socache
		mod_authnz_fcgi
		mod_authnz_ldap
		mod_authz_core
		mod_authz_dbd
		mod_authz_dbm
		mod_authz_groupfile
		mod_authz_host

		mod_authz_owner
		mod_authz_user
		mod_autoindex
		mod_brotli
		mod_buffer
		mod_cache
		mod_cache_disk
		mod_cache_socache
		mod_cern_meta
		mod_cgi
		mod_cgid
		mod_charset_lite
		mod_data
		mod_dav
		mod_dav_fs
		mod_dav_lock
		mod_dbd
		mod_deflate
		mod_dialup
		mod_dir
		mod_dumpio
		mod_echo
		mod_env
		mod_example_hooks
		mod_expires
		mod_ext_filter
		mod_file_cache
		mod_filter
		mod_headers
		mod_heartbeat
		mod_heartmonitor
		mod_http2
		mod_ident
		mod_imagemap

		mod_include
		mod_info
		mod_isapi
		mod_lbmethod_bybusyness
		mod_lbmethod_byrequests
		mod_lbmethod_bytraffic
		mod_lbmethod_heartbeat
		mod_ldap
		mod_log_config
		mod_log_debug
		mod_log_forensic
		mod_logio
		mod_lua
		mod_macro
		mod_mime
		mod_mime_magic
		mod_negotiation
		mod_nw_ssl
		mod_privileges
		mod_proxy
		mod_proxy_ajp
		mod_proxy_balancer
		mod_proxy_connect
		mod_proxy_express
		mod_proxy_fcgi
		mod_proxy_fdpass
		mod_proxy_ftp
		mod_proxy_hcheck
		mod_proxy_html
		mod_proxy_http
		mod_proxy_http2
		mod_proxy_scgi
		mod_proxy_wstunnel
		mod_ratelimit

		mod_reflector
		mod_remoteip
		mod_reqtimeout
		mod_request
		mod_rewrite
		mod_sed
		mod_session
		mod_session_cookie
		mod_session_crypto
		mod_session_dbd
		mod_setenvif
		mod_slotmem_plain
		mod_slotmem_shm
		mod_so
		mod_socache_dbm
		mod_socache_dc
		mod_socache_memcache
		mod_socache_shmcb
		mod_speling
		mod_ssl
		mod_status
		mod_substitute
		mod_suexec
		mod_unique_id
		mod_unixd
		mod_userdir
		mod_usertrack
		mod_version
		mod_vhost_alias
		mod_watchdog
		mod_xml2enc

	

Apache	API	
APR		
Apache	2.0	
Apache	2.0	(hook)	
Apache	1.3	Apache	2.0		
Apache	2.0	
Apache	2.0		

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

	
	
	

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		

				.	 					.

			.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

httpd
				

apachectl
			

ab
			

apxs
			(APache	eXtenSion	tool)

configure
		

dbmmanage
basic	authentication		DBM			 		

htcacheclean
		

htdigest
digest	authentication				 	

htpasswd
basic	authentication					

logresolve
		IP-		

rotatelogs
				

suexec
				(Switch	User	For	Exec)

	
manpage			.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	SSL/TLS	Encryption

The	Apache	HTTP	Server	module	mod_ssl	provides	an	interface	to
the	OpenSSL	library,	which	provides	Strong	Encryption	using	the
Secure	Sockets	Layer	and	Transport	Layer	Security	protocols.

http://www.openssl.org/

Documentation

mod_ssl	Configuration	How-To
Introduction	To	SSL
Compatibility
Frequently	Asked	Questions
Glossary

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

mod_ssl

Extensive	documentation	on	the	directives	and	environment
variables	provided	by	this	module	is	provided	in	the	mod_ssl
reference	documentation.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	mod_rewrite

mod_rewrite	provides	a	way	to	modify	incoming	URL	requests,
dynamically,	based	on	regular	expression	rules.	This	allows	you	to
map	arbitrary	URLs	onto	your	internal	URL	structure	in	any	way	you
like.

It	supports	an	unlimited	number	of	rules	and	an	unlimited	number	of
attached	rule	conditions	for	each	rule	to	provide	a	really	flexible	and
powerful	URL	manipulation	mechanism.	The	URL	manipulations	can
depend	on	various	tests:	server	variables,	environment	variables,
HTTP	headers,	time	stamps,	external	database	lookups,	and	various
other	external	programs	or	handlers,	can	be	used	to	achieve	granular
URL	matching.

Rewrite	rules	can	operate	on	the	full	URLs,	including	the	path-info
and	query	string	portions,	and	may	be	used	in	per-server	context
(httpd.conf),	per-virtualhost	context	(<VirtualHost>	blocks),	or
per-directory	context	(.htaccess	files	and	<Directory>	blocks).
The	rewritten	result	can	lead	to	further	rules,	internal	sub-processing,
external	request	redirection,	or	proxy	passthrough,	depending	on
what	flags	you	attach	to	the	rules.

Since	mod_rewrite	is	so	powerful,	it	can	indeed	be	rather	complex.
This	document	supplements	the	reference	documentation,	and
attempts	to	allay	some	of	that	complexity,	and	provide	highly
annotated	examples	of	common	scenarios	that	you	may	handle	with
mod_rewrite.	But	we	also	attempt	to	show	you	when	you	should	not
use	mod_rewrite,	and	use	other	standard	Apache	features	instead,
thus	avoiding	this	unnecessary	complexity.

mod_rewrite	reference	documentation
Introduction	to	regular	expressions	and	mod_rewrite
Using	mod_rewrite	for	redirection	and	remapping	of	URLs

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Using	mod_rewrite	to	control	access
Dynamic	virtual	hosts	with	mod_rewrite
Dynamic	proxying	with	mod_rewrite
Using	RewriteMap
Advanced	techniques
When	NOT	to	use	mod_rewrite
RewriteRule	Flags
Technical	details

See	also
mod_rewrite	reference	documentation
Mapping	URLs	to	the	Filesystem
mod_rewrite	wiki
Glossary

https://www.apache.org/foundation/contributing.html
http://wiki.apache.org/httpd/Rewrite
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

		

				.	 					.

	(Virtual	Host) 			 		(,	 www.company1.com

www.company2.com)		.	 				IP			
based)"			 IP					" 	(name-based) "		 .			
				 	.

		IP				 	.			1.1		IP		
(host-based)		 IP		 (non-IP	virtual	hosts)	.

			1.3					 	.

mod_vhost_alias

	
IP	
	
	
	
				

https://www.apache.org/foundation/contributing.html

	

	 	(IP)
IP	 	(IP)
		
(file	descriptor)	 	(,)
			
				

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

<VirtualHost>

NameVirtualHost

ServerName

ServerAlias

ServerPath

				 -S			.	,			:

/usr/local/apache2/bin/httpd	-S

						 	.	IP						
(httpd		 	.)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Frequently	Asked	Questions

The	FAQ	has	been	moved	to	the	HTTP	Server	Wiki.

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Developer	Documentation	for	the	Apache
HTTP	Server	2.4

Warning

Many	of	the	documents	listed	here	are	in	need	of	update.	They	are
in	different	stages	of	progress.	Please	be	patient	and	follow	this	link
to	propose	a	fix	or	point	out	any	error/discrepancy.

https://httpd.apache.org/docs-project/

2.4	development	documents

Developing	modules	for	the	Apache	HTTP	Server	2.4
Hook	Functions	in	2.4
Request	Processing	in	2.4
How	filters	work	in	2.4
Guidelines	for	output	filters	in	2.4
Documenting	code	in	2.4
Thread	Safety	Issues	in	2.4

Upgrading	to	2.4

API	changes	in	2.3/2.4
Converting	Modules	from	1.3	to	2.x

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

External	Resources

Autogenerated	Apache	HTTP	Server	(trunk)	code
documentation	(the	link	is	built	by	this	job).
Developer	articles	at	apachetutor	include:

Request	Processing
Configuration	for	Modules
Resource	Management
Connection	Pooling
Introduction	to	Buckets	and	Brigades

http://ci.apache.org/projects/httpd/trunk/doxygen/
https://ci.apache.org/builders/httpd-doxygen-nightly
http://www.apachetutor.org/
http://www.apachetutor.org/dev/request
http://www.apachetutor.org/dev/config
http://www.apachetutor.org/dev/pools
http://www.apachetutor.org/dev/reslist
http://www.apachetutor.org/dev/brigades
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

		

				.	 					.

								 .

				2.1				 		.				,		

	

				(,)	 		.						
)					 .

	

				"	"	"	 		".

URL		

		 mod_rewrite		 	.	 							
				 mod_rewrite		.

	

						.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Overview	of	new	features	in	Apache	HTTP
Server	2.4

This	document	describes	some	of	the	major	changes	between	the	2.2
and	2.4	versions	of	the	Apache	HTTP	Server.	For	new	features	since
version	2.0,	see	the	2.2	new	features	document.

Core	Enhancements

Run-time	Loadable	MPMs
Multiple	MPMs	can	now	be	built	as	loadable	modules	at
compile	time.	The	MPM	of	choice	can	be	configured	at	run
time	via	LoadModule	directive.

Event	MPM
The	Event	MPM	is	no	longer	experimental	but	is	now	fully
supported.

Asynchronous	support
Better	support	for	asynchronous	read/write	for	supporting
MPMs	and	platforms.

Per-module	and	per-directory	LogLevel	configuration
The	LogLevel	can	now	be	configured	per	module	and	per
directory.	New	levels	trace1	to	trace8	have	been	added
above	the	debug	log	level.

Per-request	configuration	sections
<If>,	<ElseIf>,	and	<Else>	sections	can	be	used	to	set
the	configuration	based	on	per-request	criteria.

General-purpose	expression	parser
A	new	expression	parser	allows	to	specify	complex	conditions
using	a	common	syntax	in	directives	like	SetEnvIfExpr,
RewriteCond,	Header,	<If>,	and	others.

KeepAliveTimeout	in	milliseconds
It	is	now	possible	to	specify	KeepAliveTimeout	in
milliseconds.

NameVirtualHost	directive
No	longer	needed	and	is	now	deprecated.

Override	Configuration
The	new	AllowOverrideList	directive	allows	more	fine
grained	control	which	directives	are	allowed	in	.htaccess

files.

Config	file	variables
It	is	now	possible	to	Define	variables	in	the	configuration,
allowing	a	clearer	representation	if	the	same	value	is	used	at
many	places	in	the	configuration.

Reduced	memory	usage
Despite	many	new	features,	2.4.x	tends	to	use	less	memory
than	2.2.x.

New	Modules

mod_proxy_fcgi

FastCGI	Protocol	backend	for	mod_proxy

mod_proxy_scgi

SCGI	Protocol	backend	for	mod_proxy

mod_proxy_express

Provides	dynamically	configured	mass	reverse	proxies	for
mod_proxy

mod_remoteip

Replaces	the	apparent	client	remote	IP	address	and
hostname	for	the	request	with	the	IP	address	list	presented	by
a	proxies	or	a	load	balancer	via	the	request	headers.

mod_heartmonitor,	mod_lbmethod_heartbeat
Allow	mod_proxy_balancer	to	base	loadbalancing
decisions	on	the	number	of	active	connections	on	the
backend	servers.

mod_proxy_html

Formerly	a	third-party	module,	this	supports	fixing	of	HTML
links	in	a	reverse	proxy	situation,	where	the	backend
generates	URLs	that	are	not	valid	for	the	proxy's	clients.

mod_sed

An	advanced	replacement	of	mod_substitute,	allows	to
edit	the	response	body	with	the	full	power	of	sed.

mod_auth_form

Enables	form-based	authentication.

mod_session

Enables	the	use	of	session	state	for	clients,	using	cookie	or
database	storage.

mod_allowmethods

New	module	to	restrict	certain	HTTP	methods	without

interfering	with	authentication	or	authorization.

mod_lua

Embeds	the	Lua	language	into	httpd,	for	configuration	and
small	business	logic	functions.	(Experimental)

mod_log_debug

Allows	the	addition	of	customizable	debug	logging	at	different
phases	of	the	request	processing.

mod_buffer

Provides	for	buffering	the	input	and	output	filter	stacks

mod_data

Convert	response	body	into	an	RFC2397	data	URL

mod_ratelimit

Provides	Bandwidth	Rate	Limiting	for	Clients

mod_request

Provides	Filters	to	handle	and	make	available	HTTP	request
bodies

mod_reflector

Provides	Reflection	of	a	request	body	as	a	response	via	the
output	filter	stack.

mod_slotmem_shm

Provides	a	Slot-based	shared	memory	provider	(ala	the
scoreboard).

mod_xml2enc

Formerly	a	third-party	module,	this	supports
internationalisation	in	libxml2-based	(markup-aware)	filter
modules.

mod_macro	(available	since	2.4.5)
Provide	macros	within	configuration	files.

mod_proxy_wstunnel	(available	since	2.4.5)
Support	web-socket	tunnels.

http://www.lua.org/

mod_authnz_fcgi	(available	since	2.4.10)
Enable	FastCGI	authorizer	applications	to	authenticate	and/or
authorize	clients.

mod_http2	(available	since	2.4.17)
Support	for	the	HTTP/2	transport	layer.

mod_proxy_hcheck	(available	since	2.4.21)
Support	independent	dynamic	health	checks	for	remote	proxiy
backend	servers.

Module	Enhancements

mod_ssl

mod_ssl	can	now	be	configured	to	use	an	OCSP	server	to
check	the	validation	status	of	a	client	certificate.	The	default
responder	is	configurable,	along	with	the	decision	on	whether
to	prefer	the	responder	designated	in	the	client	certificate
itself.
mod_ssl	now	also	supports	OCSP	stapling,	where	the	server
pro-actively	obtains	an	OCSP	verification	of	its	certificate	and
transmits	that	to	the	client	during	the	handshake.
mod_ssl	can	now	be	configured	to	share	SSL	Session	data
between	servers	through	memcached
EC	keys	are	now	supported	in	addition	to	RSA	and	DSA.
Support	for	TLS-SRP	(available	in	2.4.4	and	later).

mod_proxy

The	ProxyPass	directive	is	now	most	optimally	configured
within	a	Location	or	LocationMatch	block,	and	offers	a
significant	performance	advantage	over	the	traditional	two-
parameter	syntax	when	present	in	large	numbers.
The	source	address	used	for	proxy	requests	is	now
configurable.
Support	for	Unix	domain	sockets	to	the	backend	(available	in
2.4.7	and	later).

mod_proxy_balancer

More	runtime	configuration	changes	for	BalancerMembers	via
balancer-manager
Additional	BalancerMembers	can	be	added	at	runtime	via
balancer-manager
Runtime	configuration	of	a	subset	of	Balancer	parameters
BalancerMembers	can	be	set	to	'Drain'	so	that	they	only
respond	to	existing	sticky	sessions,	allowing	them	to	be	taken
gracefully	offline.
Balancer	settings	can	be	persistent	after	restarts.

mod_cache

The	mod_cache	CACHE	filter	can	be	optionally	inserted	at	a
given	point	in	the	filter	chain	to	provide	fine	control	over
caching.
mod_cache	can	now	cache	HEAD	requests.
Where	possible,	mod_cache	directives	can	now	be	set	per
directory,	instead	of	per	server.
The	base	URL	of	cached	URLs	can	be	customised,	so	that	a
cluster	of	caches	can	share	the	same	endpoint	URL	prefix.
mod_cache	is	now	capable	of	serving	stale	cached	data
when	a	backend	is	unavailable	(error	5xx).
mod_cache	can	now	insert	HIT/MISS/REVALIDATE	into	an
X-Cache	header.

mod_include

Support	for	the	'onerror'	attribute	within	an	'include'	element,
allowing	an	error	document	to	be	served	on	error	instead	of
the	default	error	string.

mod_cgi,	mod_include,	mod_isapi,	...
Translation	of	headers	to	environment	variables	is	more	strict
than	before	to	mitigate	some	possible	cross-site-scripting
attacks	via	header	injection.	Headers	containing	invalid
characters	(including	underscores)	are	now	silently	dropped.
Environment	Variables	in	Apache	has	some	pointers	on	how
to	work	around	broken	legacy	clients	which	require	such
headers.	(This	affects	all	modules	which	use	these
environment	variables.)

mod_authz_core	Authorization	Logic	Containers
Advanced	authorization	logic	may	now	be	specified	using	the
Require	directive	and	the	related	container	directives,	such
as	<RequireAll>.

mod_rewrite

mod_rewrite	adds	the	[QSD]	(Query	String	Discard)	and

[END]	flags	for	RewriteRule	to	simplify	common	rewriting
scenarios.
Adds	the	possibility	to	use	complex	boolean	expressions	in
RewriteCond.
Allows	the	use	of	SQL	queries	as	RewriteMap	functions.

mod_ldap,	mod_authnz_ldap
mod_authnz_ldap	adds	support	for	nested	groups.
mod_ldap	adds	LDAPConnectionPoolTTL,
LDAPTimeout,	and	other	improvements	in	the	handling	of
timeouts.	This	is	especially	useful	for	setups	where	a	stateful
firewall	drops	idle	connections	to	the	LDAP	server.
mod_ldap	adds	LDAPLibraryDebug	to	log	debug
information	provided	by	the	used	LDAP	toolkit.

mod_info

mod_info	can	now	dump	the	pre-parsed	configuration	to
stdout	during	server	startup.

mod_auth_basic

New	generic	mechanism	to	fake	basic	authentication
(available	in	2.4.5	and	later).

Program	Enhancements

fcgistarter

New	FastCGI	daemon	starter	utility

htcacheclean

Current	cached	URLs	can	now	be	listed,	with	optional
metadata	included.
Allow	explicit	deletion	of	individual	cached	URLs	from	the
cache.
File	sizes	can	now	be	rounded	up	to	the	given	block	size,
making	the	size	limits	map	more	closely	to	the	real	size	on
disk.
Cache	size	can	now	be	limited	by	the	number	of	inodes,
instead	of	or	in	addition	to	being	limited	by	the	size	of	the	files
on	disk.

rotatelogs

May	now	create	a	link	to	the	current	log	file.
May	now	invoke	a	custom	post-rotate	script.

htpasswd,	htdbm
Support	for	the	bcrypt	algorithm	(available	in	2.4.4	and	later).

Documentation

mod_rewrite
The	mod_rewrite	documentation	has	been	rearranged	and
almost	completely	rewritten,	with	a	focus	on	examples	and
common	usage,	as	well	as	on	showing	you	when	other
solutions	are	more	appropriate.	The	Rewrite	Guide	is	now	a
top-level	section	with	much	more	detail	and	better
organization.

mod_ssl
The	mod_ssl	documentation	has	been	greatly	enhanced,
with	more	examples	at	the	getting	started	level,	in	addition	to
the	previous	focus	on	technical	details.

Caching	Guide
The	Caching	Guide	has	been	rewritten	to	properly	distinguish
between	the	RFC2616	HTTP/1.1	caching	features	provided
by	mod_cache,	and	the	generic	key/value	caching	provided
by	the	socache	interface,	as	well	as	to	cover	specialised
caching	provided	by	mechanisms	such	as	mod_file_cache.

Module	Developer	Changes

Check	Configuration	Hook	Added
A	new	hook,	check_config,	has	been	added	which	runs
between	the	pre_config	and	open_logs	hooks.	It	also
runs	before	the	test_config	hook	when	the	-t	option	is
passed	to	httpd.	The	check_config	hook	allows	modules
to	review	interdependent	configuration	directive	values	and
adjust	them	while	messages	can	still	be	logged	to	the
console.	The	user	can	thus	be	alerted	to	misconfiguration
problems	before	the	core	open_logs	hook	function	redirects
console	output	to	the	error	log.

Expression	Parser	Added
We	now	have	a	general-purpose	expression	parser,	whose
API	is	exposed	in	ap_expr.h.	This	is	adapted	from	the
expression	parser	previously	implemented	in	mod_ssl.

Authorization	Logic	Containers
Authorization	modules	now	register	as	a	provider,	via
ap_register_auth_provider(),	to	support	advanced
authorization	logic,	such	as	<RequireAll>.

Small-Object	Caching	Interface
The	ap_socache.h	header	exposes	a	provider-based	interface
for	caching	small	data	objects,	based	on	the	previous
implementation	of	the	mod_ssl	session	cache.	Providers
using	a	shared-memory	cyclic	buffer,	disk-based	dbm	files,
and	a	memcache	distributed	cache	are	currently	supported.

Cache	Status	Hook	Added
The	mod_cache	module	now	includes	a	new	cache_status
hook,	which	is	called	when	the	caching	decision	becomes
known.	A	default	implementation	is	provided	which	adds	an
optional	X-Cache	and	X-Cache-Detail	header	to	the
response.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	developer	documentation	contains	a	detailed	list	of	API
changes.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

API	Changes	in	Apache	HTTP	Server	2.4
since	2.2

This	document	describes	changes	to	the	Apache	HTTPD	API	from
version	2.2	to	2.4,	that	may	be	of	interest	to	module/application
developers	and	core	hacks.	As	of	the	first	GA	release	of	the	2.4
branch	API	compatibility	is	preserved	for	the	life	of	the	2.4	branch.
(The	VERSIONING	description	for	the	2.4	release	provides	more
information	about	API	compatibility.)

API	changes	fall	into	two	categories:	APIs	that	are	altogether	new,
and	existing	APIs	that	are	expanded	or	changed.	The	latter	are	further
divided	into	those	where	all	changes	are	backwards-compatible	(so
existing	modules	can	ignore	them),	and	those	that	might	require
attention	by	maintainers.	As	with	the	transition	from	HTTPD	2.0	to	2.2,
existing	modules	and	applications	will	require	recompiling	and	may
call	for	some	attention,	but	most	should	not	require	any	substantial
updating	(although	some	may	be	able	to	take	advantage	of	API
changes	to	offer	significant	improvements).

For	the	purpose	of	this	document,	the	API	is	split	according	to	the
public	header	files.	These	headers	are	themselves	the	reference
documentation,	and	can	be	used	to	generate	a	browsable	HTML
reference	with	make	docs.

http://svn.apache.org/repos/asf/httpd/httpd/branches/2.4.x/VERSIONING

Changed	APIs

ap_expr	(NEW!)
Introduces	a	new	API	to	parse	and	evaluate	boolean	and	algebraic
expressions,	including	provision	for	a	standard	syntax	and
customised	variants.

ap_listen	(changed;	backwards-compatible)
Introduces	a	new	API	to	enable	httpd	child	processes	to	serve
different	purposes.

ap_mpm	(changed)
ap_mpm_run	is	replaced	by	a	new	mpm	hook.	Also
ap_graceful_stop_signalled	is	lost,	and
ap_mpm_register_timed_callback	is	new.

ap_regex	(changed)
In	addition	to	the	existing	regexp	wrapper,	a	new	higher-level	API
ap_rxplus	is	now	provided.	This	provides	the	capability	to
compile	Perl-style	expressions	like
s/regexp/replacement/flags	and	to	execute	them	against
arbitrary	strings.	Support	for	regexp	backreferences	is	also	added.

ap_slotmem	(NEW!)
Introduces	an	API	for	modules	to	allocate	and	manage	memory
slots,	most	commonly	for	shared	memory.

ap_socache	(NEW!)
API	to	manage	a	shared	object	cache.

heartbeat	(NEW!)

common	structures	for	heartbeat	modules

ap_parse_htaccess	(changed)
The	function	signature	for	ap_parse_htaccess	has	been
changed.	A	apr_table_t	of	individual	directives	allowed	for
override	must	now	be	passed	(override	remains).

http_config	(changed)
Introduces	per-module,	per-directory	loglevels,	including
macro	wrappers.
New	AP_DECLARE_MODULE	macro	to	declare	all	modules.
New	APLOG_USE_MODULE	macro	necessary	for	per-module
loglevels	in	multi-file	modules.
New	API	to	retain	data	across	module	unload/load
New	check_config	hook
New	ap_process_fnmatch_configs()	function	to
process	wildcards
Change	ap_configfile_t,	ap_cfg_getline(),
ap_cfg_getc()	to	return	error	codes,	and	add
ap_pcfg_strerror()	for	retrieving	an	error	description.
Any	config	directive	permitted	in	ACCESS_CONF	context
must	now	correctly	handle	being	called	from	an	.htaccess	file
via	the	new	AllowOverrideList	directive.
ap_check_cmd_context()	accepts	a	new	flag
NOT_IN_HTACCESS	to	detect	this	case.

http_core	(changed)
REMOVED	ap_default_type,	ap_requires,	all	2.2
authnz	API
Introduces	Optional	Functions	for	logio	and	authnz
New	function	ap_get_server_name_for_url	to	support
IPv6	literals.

New	function	ap_register_errorlog_handler	to
register	error	log	format	string	handlers.
Arguments	of	error_log	hook	have	changed.	Declaration
has	moved	to	http_core.h.
New	function	ap_state_query	to	determine	if	the	server	is
in	the	initial	configuration	preflight	phase	or	not.	This	is	both
easier	to	use	and	more	correct	than	the	old	method	of
creating	a	pool	userdata	entry	in	the	process	pool.
New	function	ap_get_conn_socket	to	get	the	socket
descriptor	for	a	connection.	This	should	be	used	instead	of
accessing	the	core	connection	config	directly.

httpd	(changed)
Introduce	per-directory,	per-module	loglevel
New	loglevels	APLOG_TRACEn
Introduce	errorlog	ids	for	requests	and	connections
Support	for	mod_request	kept_body
Support	buffering	filter	data	for	async	requests
New	CONN_STATE	values
Function	changes:	ap_escape_html	updated;
ap_unescape_all,	ap_escape_path_segment_buffer
Modules	that	load	other	modules	later	than	the
EXEC_ON_READ	config	reading	stage	need	to	call
ap_reserve_module_slots()	or
ap_reserve_module_slots_directive()	in	their
pre_config	hook.
The	useragent	IP	address	per	request	can	now	be	tracked
independently	of	the	client	IP	address	of	the	connection,	for
support	of	deployments	with	load	balancers.

http_log	(changed)
Introduce	per-directory,	per-module	loglevel

New	loglevels	APLOG_TRACEn
ap_log_*error	become	macro	wrappers	(backwards-
compatible	if	APLOG_MARK	macro	is	used,	except	that	is	no
longer	possible	to	use	#ifdef	inside	the	argument	list)
piped	logging	revamped
module_index	added	to	error_log	hook
new	function:	ap_log_command_line

http_request	(changed)
New	auth_internal	API	and	auth_provider	API
New	EOR	bucket	type
New	function	ap_process_async_request
New	flags	AP_AUTH_INTERNAL_PER_CONF	and
AP_AUTH_INTERNAL_PER_URI

New	access_checker_ex	hook	to	apply	additional	access
control	and/or	bypass	authentication.
New	functions	ap_hook_check_access_ex,
ap_hook_check_access,	ap_hook_check_authn,
ap_hook_check_authz	which	accept
AP_AUTH_INTERNAL_PER_*	flags
DEPRECATED	direct	use	of	ap_hook_access_checker,
access_checker_ex,	ap_hook_check_user_id,
ap_hook_auth_checker

When	possible,	registering	all	access	control	hooks	(including
authentication	and	authorization	hooks)	using
AP_AUTH_INTERNAL_PER_CONF	is	recommended.	If	all	modules'
access	control	hooks	are	registered	with	this	flag,	then	whenever
the	server	handles	an	internal	sub-request	that	matches	the	same
set	of	access	control	configuration	directives	as	the	initial	request
(which	is	the	common	case),	it	can	avoid	invoking	the	access
control	hooks	another	time.

If	your	module	requires	the	old	behavior	and	must	perform	access
control	checks	on	every	sub-request	with	a	different	URI	from	the
initial	request,	even	if	that	URI	matches	the	same	set	of	access
control	configuration	directives,	then	use
AP_AUTH_INTERNAL_PER_URI.

mod_auth	(NEW!)
Introduces	the	new	provider	framework	for	authn	and	authz

mod_cache	(changed)
Introduces	a	commit_entity()	function	to	the	cache	provider
interface,	allowing	atomic	writes	to	cache.	Add	a
cache_status()	hook	to	report	the	cache	decision.	All	private
structures	and	functions	were	removed.

mod_core	(NEW!)
This	introduces	low-level	APIs	to	send	arbitrary	headers,	and
exposes	functions	to	handle	HTTP	OPTIONS	and	TRACE.

mod_cache_disk	(changed)
Changes	the	disk	format	of	the	disk	cache	to	support	atomic	cache
updates	without	locking.	The	device/inode	pair	of	the	body	file	is
embedded	in	the	header	file,	allowing	confirmation	that	the	header
and	body	belong	to	one	another.

mod_disk_cache	(renamed)
The	mod_disk_cache	module	has	been	renamed	to
mod_cache_disk	in	order	to	be	consistent	with	the	naming	of	other
modules	within	the	server.

mod_request	(NEW!)

The	API	for	mod_request,	to	make	input	data	available	to
multiple	application/handler	modules	where	required,	and	to	parse
HTML	form	data.

mpm_common	(changed)
REMOVES:	accept,	lockfile,	lock_mech,
set_scoreboard	(locking	uses	the	new	ap_mutex	API)
NEW	API	to	drop	privileges	(delegates	this	platform-
dependent	function	to	modules)
NEW	Hooks:	mpm_query,	timed_callback,	and
get_name

CHANGED	interfaces:	monitor	hook,
ap_reclaim_child_processes,
ap_relieve_child_processes

scoreboard	(changed)
ap_get_scoreboard_worker	is	made	non-backwards-
compatible	as	an	alternative	version	is	introduced.	Additional
proxy_balancer	support.	Child	status	stuff	revamped.

util_cookies	(NEW!)
Introduces	a	new	API	for	managing	HTTP	Cookies.

util_ldap	(changed)
no	description	available

util_mutex	(NEW!)
A	wrapper	for	APR	proc	and	global	mutexes	in	httpd,	providing
common	configuration	for	the	underlying	mechanism	and	location
of	lock	files.

util_script	(changed)
NEW:	ap_args_to_table

util_time	(changed)
NEW:	ap_recent_ctime_ex

Specific	information	on	upgrading	modules	from	2.2

Logging
In	order	to	take	advantage	of	per-module	loglevel	configuration,
any	source	file	that	calls	the	ap_log_*	functions	should	declare
which	module	it	belongs	to.	If	the	module's	module_struct	is	called
foo_module,	the	following	code	can	be	used	to	remain	backward
compatible	with	HTTPD	2.0	and	2.2:

#include	<http_log.h>

#ifdef	APLOG_USE_MODULE

APLOG_USE_MODULE(foo);

#endif

Note:	This	is	absolutely	required	for	C++-language	modules.	It	can
be	skipped	for	C-language	modules,	though	that	breaks	module-
specific	log	level	support	for	files	without	it.

The	number	of	parameters	of	the	ap_log_*	functions	and	the
definition	of	APLOG_MARK	has	changed.	Normally,	the	change	is
completely	transparent.	However,	changes	are	required	if	a
module	uses	APLOG_MARK	as	a	parameter	to	its	own	functions	or
if	a	module	calls	ap_log_*	without	passing	APLOG_MARK.	A
module	which	uses	wrappers	around	ap_log_*	typically	uses
both	of	these	constructs.

The	easiest	way	to	change	code	which	passes	APLOG_MARK	to	its
own	functions	is	to	define	and	use	a	different	macro	that	expands
to	the	parameters	required	by	those	functions,	as	APLOG_MARK
should	only	be	used	when	calling	ap_log_*	directly.	In	this	way,
the	code	will	remain	compatible	with	HTTPD	2.0	and	2.2.

Code	which	calls	ap_log_*	without	passing	APLOG_MARK	will
necessarily	differ	between	2.4	and	earlier	releases,	as	2.4	requires

a	new	third	argument,	APLOG_MODULE_INDEX.

/*	code	for	httpd	2.0/2.2	*/

ap_log_perror(file,	line,	APLOG_ERR,	0,	p,	"Failed	to	allocate

dynamic	lock	structure");

/*	code	for	httpd	2.4	*/

ap_log_perror(file,	line,	APLOG_MODULE_INDEX,	APLOG_ERR,	0,	p,

"Failed	to	allocate	dynamic	lock	structure");

ap_log_*error	are	now	implemented	as	macros.	This	means
that	it	is	no	longer	possible	to	use	#ifdef	inside	the	argument	list
of	ap_log_*error,	as	this	would	cause	undefined	behavor
according	to	C99.

A	server_rec	pointer	must	be	passed	to	ap_log_error()
when	called	after	startup.	This	was	always	appropriate,	but	there
are	even	more	limitations	with	a	NULL	server_rec	in	2.4	than	in
previous	releases.	Beginning	with	2.3.12,	the	global	variable
ap_server_conf	can	always	be	used	as	the	server_rec
parameter,	as	it	will	be	NULL	only	when	it	is	valid	to	pass	NULL	to
ap_log_error().	ap_server_conf	should	be	used	only	when
a	more	appropriate	server_rec	is	not	available.

Consider	the	following	changes	to	take	advantage	of	the	new
APLOG_TRACE1..8	log	levels:

Check	current	use	of	APLOG_DEBUG	and	consider	if	one	of
the	APLOG_TRACEn	levels	is	more	appropriate.
If	your	module	currently	has	a	mechanism	for	configuring	the
amount	of	debug	logging	which	is	performed,	consider
eliminating	that	mechanism	and	relying	on	the	use	of	different
APLOG_TRACEn	levels.	If	expensive	trace	processing	needs
to	be	bypassed	depending	on	the	configured	log	level,	use	the
APLOGtracen	and	APLOGrtracen	macros	to	first	check	if

tracing	is	enabled.

Modules	sometimes	add	process	id	and/or	thread	id	to	their	log
messages.	These	ids	are	now	logged	by	default,	so	it	may	not	be
necessary	for	the	module	to	log	them	explicitly.	(Users	may
remove	them	from	the	error	log	format,	but	they	can	be	instructed
to	add	it	back	if	necessary	for	problem	diagnosis.)

If	your	module	uses	these	existing	APIs...
ap_default_type()

This	is	no	longer	available;	Content-Type	must	be	configured
explicitly	or	added	by	the	application.

ap_get_server_name()

If	the	returned	server	name	is	used	in	a	URL,	use
ap_get_server_name_for_url()	instead.	This	new
function	handles	the	odd	case	where	the	server	name	is	an
IPv6	literal	address.

ap_get_server_version()

For	logging	purposes,	where	detailed	information	is
appropriate,	use	ap_get_server_description().	When
generating	output,	where	the	amount	of	information	should	be
configurable	by	ServerTokens,	use
ap_get_server_banner().

ap_graceful_stop_signalled()

Replace	with	a	call	to
ap_mpm_query(AP_MPMQ_MPM_STATE)	and	checking	for
state	AP_MPMQ_STOPPING.

ap_max_daemons_limit,	ap_my_generation,	and
ap_threads_per_child

Use	ap_mpm_query()	query	codes
AP_MPMQ_MAX_DAEMON_USED,	AP_MPMQ_GENERATION,	and
AP_MPMQ_MAX_THREADS,	respectively.

ap_mpm_query()

Ensure	that	it	is	not	used	until	after	the	register-hooks	hook
has	completed.	Otherwise,	an	MPM	built	as	a	DSO	would	not
have	had	a	chance	to	enable	support	for	this	function.

ap_requires()

The	core	server	now	provides	better	infrastructure	for
handling	Require	configuration.	Register	an	auth	provider
function	for	each	supported	entity	using
ap_register_auth_provider().	The	function	will	be
called	as	necessary	during	Require	processing.	(Consult
bundled	modules	for	detailed	examples.)

ap_server_conf->process->pool	userdata
Optional:

If	your	module	uses	this	to	determine	which	pass	of	the
startup	hooks	is	being	run,	use
ap_state_query(AP_SQ_MAIN_STATE).
If	your	module	uses	this	to	maintain	data	across	the
unloading	and	reloading	of	your	module,	use
ap_retained_data_create()	and
ap_retained_data_get().

apr_global_mutex_create(),	apr_proc_mutex_create()
Optional:	See	ap_mutex_register(),
ap_global_mutex_create(),	and
ap_proc_mutex_create();	these	allow	your	mutexes	to
be	configurable	with	the	Mutex	directive;	you	can	also
remove	any	configuration	mechanisms	in	your	module	for
such	mutexes

CORE_PRIVATE

This	is	now	unnecessary	and	ignored.

dav_new_error()	and	dav_new_error_tag()
Previously,	these	assumed	that	errno	contained	information

describing	the	failure.	Now,	an	apr_status_t	parameter
must	be	provided.	Pass	0/APR_SUCCESS	if	there	is	no	such
error	information,	or	a	valid	apr_status_t	value	otherwise.

mpm_default.h,	DEFAULT_LOCKFILE,
DEFAULT_THREAD_LIMIT,	DEFAULT_PIDLOG,	etc.

The	header	file	and	most	of	the	default	configuration	values
set	in	it	are	no	longer	visible	to	modules.	(Most	can	still	be
overridden	at	build	time.)	DEFAULT_PIDLOG	and
DEFAULT_REL_RUNTIMEDIR	are	now	universally	available
via	ap_config.h.

unixd_config

This	has	been	renamed	to	ap_unixd_config.

unixd_setup_child()

This	has	been	renamed	to	ap_unixd_setup_child(),	but	most
callers	should	call	the	added	ap_run_drop_privileges()	hook.

conn_rec->remote_ip	and	conn_rec->remote_addr
These	fields	have	been	renamed	in	order	to	distinguish
between	the	client	IP	address	of	the	connection	and	the
useragent	IP	address	of	the	request	(potentially	overridden	by
a	load	balancer	or	proxy).	References	to	either	of	these	fields
must	be	updated	with	one	of	the	following	options,	as
appropriate	for	the	module:

When	you	require	the	IP	address	of	the	user	agent,	which
might	be	connected	directly	to	the	server,	or	might
optionally	be	separated	from	the	server	by	a	transparent
load	balancer	or	proxy,	use	request_rec-
>useragent_ip	and	request_rec-
>useragent_addr.
When	you	require	the	IP	address	of	the	client	that	is
connected	directly	to	the	server,	which	might	be	the
useragent	or	might	be	the	load	balancer	or	proxy	itself,
use	conn_rec->client_ip	and	conn_rec-

>client_addr.

If	your	module	interfaces	with	this	feature...
suEXEC

Optional:	If	your	module	logs	an	error	when
ap_unixd_config.suexec_enabled	is	0,	also	log	the
value	of	the	new	field	suexec_disabled_reason,	which
contains	an	explanation	of	why	it	is	not	available.

Extended	status	data	in	the	scoreboard
In	previous	releases,	ExtendedStatus	had	to	be	set	to	On,
which	in	turn	required	that	mod_status	was	loaded.	In	2.4,	just
set	ap_extended_status	to	1	in	a	pre-config	hook	and	the
extended	status	data	will	be	available.

Does	your	module...
Parse	query	args

Consider	if	ap_args_to_table()	would	be	helpful.

Parse	form	data...
Use	ap_parse_form_data().

Check	for	request	header	fields	Content-Length	and
Transfer-Encoding	to	see	if	a	body	was	specified

Use	ap_request_has_body().

Implement	cleanups	which	clear	pointer	variables
Use	ap_pool_cleanup_set_null().

Create	run-time	files	such	as	shared	memory	files,	pid	files,
etc.

Use	ap_runtime_dir_relative()	so	that	the	global
configuration	for	the	location	of	such	files,	either	by	the
DEFAULT_REL_RUNTIMEDIR	compile	setting	or	the
DefaultRuntimeDir	directive,	will	be	respected.	Apache

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

httpd	2.4.2	and	above.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Expressions	in	Apache	HTTP	Server

Historically,	there	are	several	syntax	variants	for	expressions	used	to
express	a	condition	in	the	different	modules	of	the	Apache	HTTP
Server.	There	is	some	ongoing	effort	to	only	use	a	single	variant,
called	ap_expr,	for	all	configuration	directives.	This	document
describes	the	ap_expr	expression	parser.

The	ap_expr	expression	is	intended	to	replace	most	other	expression
variants	in	HTTPD.	For	example,	the	deprecated	SSLRequire
expressions	can	be	replaced	by	Require	expr.

See	also
<If>

<ElseIf>

<Else>

ErrorDocument

Alias

ScriptAlias

Redirect

AuthBasicFake

AuthFormLoginRequiredLocation

AuthFormLoginSuccessLocation

AuthFormLogoutLocation

RewriteCond

SetEnvIfExpr

Header

https://www.apache.org/foundation/contributing.html

RequestHeader

FilterProvider

Require	expr
Require	ldap-user
Require	ldap-group
Require	ldap-dn
Require	ldap-attribute
Require	ldap-filter
Require	dbd-group
Require	dbm-group
Require	group
Require	host
SSLRequire

LogMessage

mod_include

Grammar	in	Backus-Naur	Form	notation

Backus-Naur	Form	(BNF)	is	a	notation	technique	for	context-free
grammars,	often	used	to	describe	the	syntax	of	languages	used	in
computing.	In	most	cases,	expressions	are	used	to	express
boolean	values.	For	these,	the	starting	point	in	the	BNF	is	expr.
However,	a	few	directives	like	LogMessage	accept	expressions
that	evaluate	to	a	string	value.	For	those,	the	starting	point	in	the
BNF	is	string.

expr								::=	"true"	|	"false"

														|	"!"	expr

														|	expr	"&&"	expr

														|	expr	"||"	expr

														|	"("	expr	")"

														|	comp

comp								::=	stringcomp

														|	integercomp

														|	unaryop	word

														|	word	binaryop	word

														|	word	"in"	"{"	wordlist	"}"

														|	word	"in"	listfunction

														|	word	"=~"	regex

														|	word	"!~"	regex

stringcomp		::=	word	"=="	word

														|	word	"!="	word

														|	word	"<"		word

														|	word	"<="	word

														|	word	">"		word

														|	word	">="	word

integercomp	::=	word	"-eq"	word	|	word	"eq"	word

														|	word	"-ne"	word	|	word	"ne"	word

														|	word	"-lt"	word	|	word	"lt"	word

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

														|	word	"-le"	word	|	word	"le"	word

														|	word	"-gt"	word	|	word	"gt"	word

														|	word	"-ge"	word	|	word	"ge"	word

wordlist				::=	word

														|	wordlist	","	word

word								::=	word	"."	word

														|	digit

														|	"'"	string	"'"

														|	"""	string	"""

														|	variable

														|	rebackref

														|	function

string						::=	stringpart

														|	string	stringpart

stringpart		::=	cstring

														|	variable

														|	rebackref

cstring					::=	...

digit							::=	[0-9]+

variable				::=	"%{"	varname	"}"

														|	"%{"	funcname	":"	funcargs	"}"

rebackref			::=	"$"	[0-9]

function					::=	funcname	"("	word	")"

listfunction	::=	listfuncname	"("	word	")"

Variables

The	expression	parser	provides	a	number	of	variables	of	the	form
%{HTTP_HOST}.	Note	that	the	value	of	a	variable	may	depend	on
the	phase	of	the	request	processing	in	which	it	is	evaluated.	For
example,	an	expression	used	in	an	<If	>	directive	is	evaluated
before	authentication	is	done.	Therefore,	%{REMOTE_USER}	will
not	be	set	in	this	case.

The	following	variables	provide	the	values	of	the	named	HTTP
request	headers.	The	values	of	other	headers	can	be	obtained
with	the	req	function.	Using	these	variables	may	cause	the
header	name	to	be	added	to	the	Vary	header	of	the	HTTP
response,	except	where	otherwise	noted	for	the	directive
accepting	the	expression.	The	req_novary	function	may	be	used
to	circumvent	this	behavior.

Name
HTTP_ACCEPT

HTTP_COOKIE

HTTP_FORWARDED

HTTP_HOST

HTTP_PROXY_CONNECTION

HTTP_REFERER

HTTP_USER_AGENT

Other	request	related	variables

Name Description
REQUEST_METHOD The	HTTP	method	of	the	incoming

request	(e.g.	GET)
REQUEST_SCHEME The	scheme	part	of	the	request's

URI

REQUEST_URI The	path	part	of	the	request's	URI
DOCUMENT_URI Same	as	REQUEST_URI
REQUEST_FILENAME The	full	local	filesystem	path	to	the

file	or	script	matching	the	request,	if
this	has	already	been	determined
by	the	server	at	the	time
REQUEST_FILENAME	is	referenced.
Otherwise,	such	as	when	used	in
virtual	host	context,	the	same	value
as	REQUEST_URI

SCRIPT_FILENAME Same	as	REQUEST_FILENAME
LAST_MODIFIED The	date	and	time	of	last

modification	of	the	file	in	the	format
20101231235959,	if	this	has
already	been	determined	by	the
server	at	the	time	LAST_MODIFIED
is	referenced.

SCRIPT_USER The	user	name	of	the	owner	of	the
script.

SCRIPT_GROUP The	group	name	of	the	group	of	the
script.

PATH_INFO The	trailing	path	name	information,
see	AcceptPathInfo

QUERY_STRING The	query	string	of	the	current
request

IS_SUBREQ "true"	if	the	current	request	is	a
subrequest,	"false"	otherwise

THE_REQUEST The	complete	request	line	(e.g.,
"GET	/index.html	HTTP/1.1")

REMOTE_ADDR The	IP	address	of	the	remote	host
REMOTE_PORT The	port	of	the	remote	host	(2.4.26

and	later)
REMOTE_HOST The	host	name	of	the	remote	host
REMOTE_USER The	name	of	the	authenticated

user,	if	any	(not	available	during
<If	>)

REMOTE_IDENT The	user	name	set	by	mod_ident
SERVER_NAME The	ServerName	of	the	current

vhost
SERVER_PORT The	server	port	of	the	current	vhost,

see	ServerName
SERVER_ADMIN The	ServerAdmin	of	the	current

vhost
SERVER_PROTOCOL The	protocol	used	by	the	request
DOCUMENT_ROOT The	DocumentRoot	of	the	current

vhost
AUTH_TYPE The	configured	AuthType	(e.g.

"basic")
CONTENT_TYPE The	content	type	of	the	response

(not	available	during	<If	>)
HANDLER The	name	of	the	handler	creating

the	response
HTTP2 "on"	if	the	request	uses	http/2,

"off"	otherwise
HTTPS "on"	if	the	request	uses	https,	"off"

otherwise
IPV6 "on"	if	the	connection	uses	IPv6,

"off"	otherwise
REQUEST_STATUS The	HTTP	error	status	of	the

request	(not	available	during	<If
>)

REQUEST_LOG_ID The	error	log	id	of	the	request	(see
ErrorLogFormat)

CONN_LOG_ID The	error	log	id	of	the	connection
(see	ErrorLogFormat)

CONN_REMOTE_ADDR The	peer	IP	address	of	the
connection	(see	the
mod_remoteip	module)

CONTEXT_PREFIX

CONTEXT_DOCUMENT_ROOT

Misc	variables

Name Description
TIME_YEAR The	current	year	(e.g.	2010)
TIME_MON The	current	month	(01,	...,	12)
TIME_DAY The	current	day	of	the	month	(01,	...)
TIME_HOUR The	hour	part	of	the	current	time	(00,	...,

23)
TIME_MIN The	minute	part	of	the	current	time
TIME_SEC The	second	part	of	the	current	time
TIME_WDAY The	day	of	the	week	(starting	with	0	for

Sunday)
TIME The	date	and	time	in	the	format

20101231235959

SERVER_SOFTWARE The	server	version	string
API_VERSION The	date	of	the	API	version	(module	magic

number)

Some	modules	register	additional	variables,	see	e.g.	mod_ssl.

Binary	operators

With	the	exception	of	some	built-in	comparison	operators,	binary
operators	have	the	form	"-[a-zA-Z][a-zA-Z0-9_]+",	i.e.	a
minus	and	at	least	two	characters.	The	name	is	not	case	sensitive.
Modules	may	register	additional	binary	operators.

Comparison	operators
Name Alternative Description
== = String	equality
!= String	inequality
< String	less	than
<= String	less	than	or	equal
> String	greater	than
>= String	greater	than	or	equal
=~ String	matches	the	regular	expression
!~ String	does	not	match	the	regular	expression
-eq eq Integer	equality
-ne ne Integer	inequality
-lt lt Integer	less	than
-le le Integer	less	than	or	equal
-gt gt Integer	greater	than
-ge ge Integer	greater	than	or	equal

Other	binary	operators
Name Description
-ipmatch IP	address	matches	address/netmask
-strmatch left	string	matches	pattern	given	by	right	string

(containing	wildcards	*,	?,	[])
- same	as	-strmatch,	but	case	insensitive

strcmatch

-fnmatch same	as	-strmatch,	but	slashes	are	not	matched
by	wildcards

Unary	operators

Unary	operators	take	one	argument	and	have	the	form	"-[a-zA-
Z]",	i.e.	a	minus	and	one	character.	The	name	is	case	sensitive.
Modules	may	register	additional	unary	operators.

Name Description Restricted
-d The	argument	is	treated	as	a	filename.	True	if

the	file	exists	and	is	a	directory
yes

-e The	argument	is	treated	as	a	filename.	True	if
the	file	(or	dir	or	special)	exists

yes

-f The	argument	is	treated	as	a	filename.	True	if
the	file	exists	and	is	regular	file

yes

-s The	argument	is	treated	as	a	filename.	True	if
the	file	exists	and	is	not	empty

yes

-L The	argument	is	treated	as	a	filename.	True	if
the	file	exists	and	is	symlink

yes

-h The	argument	is	treated	as	a	filename.	True	if
the	file	exists	and	is	symlink	(same	as	-L)

yes

-F True	if	string	is	a	valid	file,	accessible	via	all
the	server's	currently-configured	access
controls	for	that	path.	This	uses	an	internal
subrequest	to	do	the	check,	so	use	it	with
care	-	it	can	impact	your	server's
performance!

-U True	if	string	is	a	valid	URL,	accessible	via	all
the	server's	currently-configured	access
controls	for	that	path.	This	uses	an	internal
subrequest	to	do	the	check,	so	use	it	with
care	-	it	can	impact	your	server's
performance!

-A Alias	for	-U
-n True	if	string	is	not	empty

-z True	if	string	is	empty
-T False	if	string	is	empty,	"0",	"off",	"false",

or	"no"	(case	insensitive).	True	otherwise.
-R Same	as	"%{REMOTE_ADDR}	-ipmatch

...",	but	more	efficient

The	operators	marked	as	"restricted"	are	not	available	in	some
modules	like	mod_include.

Functions

Normal	string-valued	functions	take	one	string	as	argument	and
return	a	string.	Functions	names	are	not	case	sensitive.	Modules
may	register	additional	functions.

Name Description Special
notes

req,	http Get	HTTP	request	header;	header
names	may	be	added	to	the	Vary
header,	see	below

req_novary Same	as	req,	but	header	names	will
not	be	added	to	the	Vary	header

resp Get	HTTP	response	header
reqenv Lookup	request	environment	variable

(as	a	shortcut,	v	can	also	be	used	to
access	variables).

ordering

osenv Lookup	operating	system	environment
variable

note Lookup	request	note ordering
env Return	first	match	of	note,	reqenv,

osenv

ordering

tolower Convert	string	to	lower	case
toupper Convert	string	to	upper	case
escape Escape	special	characters	in	%hex

encoding
unescape Unescape	%hex	encoded	string,	leaving

encoded	slashes	alone;	return	empty
string	if	%00	is	found

base64 Encode	the	string	using	base64
encoding

unbase64 Decode	base64	encoded	string,	return
truncated	string	if	0x00	is	found

md5 Hash	the	string	using	MD5,	then	encode
the	hash	with	hexadecimal	encoding

sha1 Hash	the	string	using	SHA1,	then
encode	the	hash	with	hexadecimal
encoding

file Read	contents	from	a	file	(including	line
endings,	when	present)

restricted

filemod Return	last	modification	time	of	a	file	(or
0	if	file	does	not	exist	or	is	not	regular
file)

restricted

filesize Return	size	of	a	file	(or	0	if	file	does	not
exist	or	is	not	regular	file)

restricted

The	functions	marked	as	"restricted"	in	the	final	column	are	not
available	in	some	modules	like	mod_include.

The	functions	marked	as	"ordering"	in	the	final	column	require
some	consideration	for	the	ordering	of	different	components	of	the
server,	especially	when	the	function	is	used	within	the	<If>
directive	which	is	evaluated	relatively	early.

Environment	variable	ordering
When	environment	variables	are	looked	up	within	an	<If>
condition,	it's	important	to	consider	how	extremely	early	in
request	processing	that	this	resolution	occurs.	As	a	guideline,
any	directive	defined	outside	of	virtual	host	context	(directory,
location,	htaccess)	is	not	likely	to	have	yet	had	a	chance	to
execute.	SetEnvIf	in	virtual	host	scope	is	one	directive	that
runs	prior	to	this	resolution	

When	reqenv	is	used	outside	of	<If>,	the	resolution	will
generally	occur	later,	but	the	exact	timing	depends	on	the
directive	the	expression	has	been	used	within.

When	the	functions	req	or	http	are	used,	the	header	name	will
automatically	be	added	to	the	Vary	header	of	the	HTTP	response,
except	where	otherwise	noted	for	the	directive	accepting	the
expression.	The	req_novary	function	can	be	used	to	prevent
names	from	being	added	to	the	Vary	header.

In	addition	to	string-valued	functions,	there	are	also	list-valued
functions	which	take	one	string	as	argument	and	return	a	wordlist,
i.e.	a	list	of	strings.	The	wordlist	can	be	used	with	the	special	-in
operator.	Functions	names	are	not	case	sensitive.	Modules	may
register	additional	functions.

There	are	no	built-in	list-valued	functions.	mod_ssl	provides
PeerExtList.	See	the	description	of	SSLRequire	for	details
(but	PeerExtList	is	also	usable	outside	of	SSLRequire).

Example	expressions

The	following	examples	show	how	expressions	might	be	used	to
evaluate	requests:

#	Compare	the	host	name	to	example.com	and	redirect	to	www.example.com	if	it	matches

<If	"%{HTTP_HOST}	==	'example.com'">

				Redirect	permanent	"/"	"http://www.example.com/"

</If>

#	Force	text/plain	if	requesting	a	file	with	the	query	string	contains	'forcetext'

<If	"%{QUERY_STRING}	=~	/forcetext/">

				ForceType	text/plain

</If>

#	Only	allow	access	to	this	content	during	business	hours

<Directory	"/foo/bar/business">

				Require	expr	%{TIME_HOUR}	-gt	9	&&	%{TIME_HOUR}	-lt	17

</Directory>

#	Check	a	HTTP	header	for	a	list	of	values

<If	"%{HTTP:X-example-header}	in	{	'foo',	'bar',	'baz'	}">

				Header	set	matched	true

</If>

#	Check	an	environment	variable	for	a	regular	expression,	negated.

<If	"!	reqenv('REDIRECT_FOO')	=~	/bar/">

				Header	set	matched	true

</If>

#	Check	result	of	URI	mapping	by	running	in	Directory	context	with	-f

<Directory	"/var/www">

				AddEncoding	x-gzip	gz

<If	"-f	'%{REQUEST_FILENAME}.unzipme'	&&	!	%{HTTP:Accept-Encoding}	=~	/gzip/">

						SetOutputFilter	INFLATE

</If>

</Directory>

#	Check	against	the	client	IP

<If	"-R	'192.168.1.0/24'">

				Header	set	matched	true

</If>

#	Function	example	in	boolean	context

<If	"md5('foo')	==	'acbd18db4cc2f85cedef654fccc4a4d8'">

		Header	set	checksum-matched	true

</If>

#	Function	example	in	string	context

Header	set	foo-checksum	"expr=%{md5:foo}"

#	This	delays	the	evaluation	of	the	condition	clause	compared	to	<If>

Header	always	set	CustomHeader	my-value	"expr=%{REQUEST_URI}	=~	m#^/special_path\.php$#"

Other

Name Alternative Description
-in in string	contained	in	wordlist
/regexp/ m#regexp# Regular	expression	(the	second	form

allows	different	delimiters	than	/)
/regexp/i m#regexp#i Case	insensitive	regular	expression
$0	...	$9 Regular	expression	backreferences

Regular	expression	backreferences
The	strings	$0	...	$9	allow	to	reference	the	capture	groups	from	a
previously	executed,	successfully	matching	regular	expressions.
They	can	normally	only	be	used	in	the	same	expression	as	the
matching	regex,	but	some	modules	allow	special	uses.

Comparison	with	SSLRequire

The	ap_expr	syntax	is	mostly	a	superset	of	the	syntax	of	the
deprecated	SSLRequire	directive.	The	differences	are	described
in	SSLRequire's	documentation.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Version	History

The	req_novary	function	is	available	for	versions	2.4.4	and	later.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	

				.	 					.

Microsoft	Windows

	
		Microsoft	Windows		2.0	,	 ,			.

:	 Microsoft	Windows	 	

	
					.			 	.

:	 Microsoft	Windows		

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

	

Novell	NetWare
		Novell	NetWare	5.1			2.0	 ,	,			.

:	 Novell	NetWare		

EBCDIC
		1.3			EBCDIC		 			(-ASCII)			

: 			 		2.0					.	 			,		
	.

:	 	EBCDIC	

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

How-To	/	

				.	 					.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

How-To	/	

(authentication)					 	.	(authorization)	
	 							.

:	 ,	,	

CGI				
CGI	(Common	Gateway	Interface)			CGI	 		CGI	
	,	()					.	
.					CGI			 ,	CGI		.

:	 CGI:			

.htaccess	
.htaccess				 			.						
	,					 	.

:	 .htaccess	

Server	Side	Includes	
SSI	(Server	Side	Includes)	HTML			 ,				.
SSI		CGI						 				HTML			
			.

:	 Server	Side	Includes	(SSI)

	
				 UserDir			 								
URL	http://example.com/~username/		
"username"		 UserDir							

:	 		 (public_html)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

suexec	-						

				.	 					.

		CGI						 	 suexec	.			
.			 	 root				 suexec		setuid			
root	 				.

suexec					suexec	
(http://httpd.apache.org/docs/2.4/suexec.html)	.

http://httpd.apache.org/docs/2.4/suexec.html

suexec	-V

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

-V

root		 suexec			.								
.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Override	Class	Index	for	.htaccess

This	is	an	index	of	the	directives	that	are	allowed	in	.htaccess	files	for
various	AllowOverride	settings,	organized	by	class.	Its	intended
purpose	is	to	help	server	administrators	verify	the	privileges	they're
granting	to	.htaccess	users.	For	an	overview	of	how	.htaccess	works,
see	the	.htaccess	tutorial.

To	determine	the	set	of	directives	that	your	server	configuration	allows
.htaccess	users	to	use:

1.	 Start	with	the	set	of	directives	in	the	AllowOverrideList	for
the	directory	in	question.	(By	default,	this	is	set	to	None.)

2.	 Find	the	AllowOverride	setting	for	the	directory	in	question.
(By	default,	it	is	set	to	None.)	There	are	two	special	cases:

1.	 If	your	AllowOverride	setting	is	All,	add	every	directive
listed	on	this	page	to	the	list.

2.	 If	your	AllowOverride	setting	is	None,	you're	done.	Only
the	directives	in	the	AllowOverrideList	(if	any)	will	be
allowed.

3.	 For	each	override	class	listed	in	AllowOverride,	look	up	the
corresponding	set	of	directives	below	and	add	them	to	the	list.

4.	 Finally,	add	the	set	of	directives	that	is	always	allowed	in
.htaccess	(these	are	listed	in	the	All	section,	below).

Several	of	the	override	classes	are	quite	powerful	and	give	.htaccess
users	a	large	amount	of	control	over	the	server.	For	a	stricter
approach,	set	AllowOverride	None	and	use
AllowOverrideList	to	specify	the	exact	list	of	directives	that
.htaccess	users	are	allowed	to	use.

All

The	following	directives	are	allowed	in	any	.htaccess	file,	as	long
as	overrides	are	enabled	in	the	server	configuration.

<Else> core
Contains	directives	that	apply	only	if	the	condition	of	a	previous	<If>	or	<ElseIf>
section	is	not	satisfied	by	a	request	at	runtime

<ElseIf> core
Contains	directives	that	apply	only	if	a	condition	is	satisfied	by	a	request	at	runtime
while	the	condition	of	a	previous	<If>	or	<ElseIf>	section	is	not	satisfied

<Files> core
Contains	directives	that	apply	to	matched	filenames

<FilesMatch> core
Contains	directives	that	apply	to	regular-expression	matched	filenames

<If> core
Contains	directives	that	apply	only	if	a	condition	is	satisfied	by	a	request	at	runtime

<IfDefine> core
Encloses	directives	that	will	be	processed	only	if	a	test	is	true	at	startup

<IfModule> core
Encloses	directives	that	are	processed	conditional	on	the	presence	or	absence	of	a
specific	module

<IfVersion> mod_version
contains	version	dependent	configuration

LimitRequestBody core
Restricts	the	total	size	of	the	HTTP	request	body	sent	from	the	client

LimitXMLRequestBody core
Limits	the	size	of	an	XML-based	request	body

LuaCodeCache mod_lua
Configure	the	compiled	code	cache.

LuaHookAccessChecker mod_lua
Provide	a	hook	for	the	access_checker	phase	of	request	processing

LuaHookAuthChecker mod_lua
Provide	a	hook	for	the	auth_checker	phase	of	request	processing

LuaHookCheckUserID mod_lua
Provide	a	hook	for	the	check_user_id	phase	of	request	processing

LuaHookFixups mod_lua

Provide	a	hook	for	the	fixups	phase	of	a	request	processing

LuaHookInsertFilter mod_lua
Provide	a	hook	for	the	insert_filter	phase	of	request	processing

LuaHookLog mod_lua
Provide	a	hook	for	the	access	log	phase	of	a	request	processing

LuaHookMapToStorage mod_lua
Provide	a	hook	for	the	map_to_storage	phase	of	request	processing

LuaHookTranslateName mod_lua
Provide	a	hook	for	the	translate	name	phase	of	request	processing

LuaHookTypeChecker mod_lua
Provide	a	hook	for	the	type_checker	phase	of	request	processing

LuaInherit mod_lua
Controls	how	parent	configuration	sections	are	merged	into	children

LuaMapHandler mod_lua
Map	a	path	to	a	lua	handler

LuaPackageCPath mod_lua
Add	a	directory	to	lua's	package.cpath

LuaPackagePath mod_lua
Add	a	directory	to	lua's	package.path

LuaQuickHandler mod_lua
Provide	a	hook	for	the	quick	handler	of	request	processing

LuaRoot mod_lua
Specify	the	base	path	for	resolving	relative	paths	for	mod_lua	directives

LuaScope mod_lua
One	of	once,	request,	conn,	thread	--	default	is	once

RLimitCPU core
Limits	the	CPU	consumption	of	processes	launched	by	Apache	httpd	children

RLimitMEM core
Limits	the	memory	consumption	of	processes	launched	by	Apache	httpd	children

RLimitNPROC core
Limits	the	number	of	processes	that	can	be	launched	by	processes	launched	by
Apache	httpd	children

ServerSignature core
Configures	the	footer	on	server-generated	documents

SSIErrorMsg mod_include

Error	message	displayed	when	there	is	an	SSI	error

SSITimeFormat mod_include
Configures	the	format	in	which	date	strings	are	displayed

SSIUndefinedEcho mod_include
String	displayed	when	an	unset	variable	is	echoed

AuthConfig

The	following	directives	are	allowed	in	.htaccess	files	when
AllowOverride	AuthConfig	is	in	effect.	They	give	.htaccess
users	control	over	the	authentication	and	authorization	methods
that	are	applied	to	their	directory	subtrees,	including	several
related	utility	directives	for	session	handling	and	TLS	settings.

Anonymous mod_authn_anon
Specifies	userIDs	that	are	allowed	access	without	password	verification

Anonymous_LogEmail mod_authn_anon
Sets	whether	the	password	entered	will	be	logged	in	the	error	log

Anonymous_MustGiveEmail mod_authn_anon
Specifies	whether	blank	passwords	are	allowed

Anonymous_NoUserID mod_authn_anon
Sets	whether	the	userID	field	may	be	empty

Anonymous_VerifyEmail mod_authn_anon
Sets	whether	to	check	the	password	field	for	a	correctly	formatted	email	address

AuthBasicAuthoritative mod_auth_basic
Sets	whether	authorization	and	authentication	are	passed	to	lower	level	modules

AuthBasicFake mod_auth_basic
Fake	basic	authentication	using	the	given	expressions	for	username	and	password

AuthBasicProvider mod_auth_basic
Sets	the	authentication	provider(s)	for	this	location

AuthBasicUseDigestAlgorithm mod_auth_basic
Check	passwords	against	the	authentication	providers	as	if	Digest	Authentication	was
in	force	instead	of	Basic	Authentication.

AuthDBMGroupFile mod_authz_dbm
Sets	the	name	of	the	database	file	containing	the	list	of	user	groups	for	authorization

AuthDBMType mod_authn_dbm
Sets	the	type	of	database	file	that	is	used	to	store	passwords

AuthDBMUserFile mod_authn_dbm
Sets	the	name	of	a	database	file	containing	the	list	of	users	and	passwords	for
authentication

AuthDigestAlgorithm mod_auth_digest
Selects	the	algorithm	used	to	calculate	the	challenge	and	response	hashes	in	digest
authentication

AuthDigestDomain mod_auth_digest
URIs	that	are	in	the	same	protection	space	for	digest	authentication

AuthDigestNonceLifetime mod_auth_digest
How	long	the	server	nonce	is	valid

AuthDigestProvider mod_auth_digest
Sets	the	authentication	provider(s)	for	this	location

AuthDigestQop mod_auth_digest
Determines	the	quality-of-protection	to	use	in	digest	authentication

AuthFormAuthoritative mod_auth_form
Sets	whether	authorization	and	authentication	are	passed	to	lower	level	modules

AuthFormProvider mod_auth_form
Sets	the	authentication	provider(s)	for	this	location

AuthGroupFile mod_authz_groupfile
Sets	the	name	of	a	text	file	containing	the	list	of	user	groups	for	authorization

AuthLDAPAuthorizePrefix mod_authnz_ldap
Specifies	the	prefix	for	environment	variables	set	during	authorization

AuthLDAPBindAuthoritative mod_authnz_ldap
Determines	if	other	authentication	providers	are	used	when	a	user	can	be	mapped	to
a	DN	but	the	server	cannot	successfully	bind	with	the	user's	credentials.

AuthLDAPBindDN mod_authnz_ldap
Optional	DN	to	use	in	binding	to	the	LDAP	server

AuthLDAPBindPassword mod_authnz_ldap
Password	used	in	conjunction	with	the	bind	DN

AuthLDAPCompareAsUser mod_authnz_ldap
Use	the	authenticated	user's	credentials	to	perform	authorization	comparisons

AuthLDAPCompareDNOnServer mod_authnz_ldap
Use	the	LDAP	server	to	compare	the	DNs

AuthLDAPDereferenceAliases mod_authnz_ldap
When	will	the	module	de-reference	aliases

AuthLDAPGroupAttribute mod_authnz_ldap
LDAP	attributes	used	to	identify	the	user	members	of	groups.

AuthLDAPGroupAttributeIsDN mod_authnz_ldap
Use	the	DN	of	the	client	username	when	checking	for	group	membership

AuthLDAPInitialBindAsUser mod_authnz_ldap
Determines	if	the	server	does	the	initial	DN	lookup	using	the	basic	authentication

users'	own	username,	instead	of	anonymously	or	with	hard-coded	credentials	for	the
server

AuthLDAPInitialBindPattern mod_authnz_ldap
Specifies	the	transformation	of	the	basic	authentication	username	to	be	used	when
binding	to	the	LDAP	server	to	perform	a	DN	lookup

AuthLDAPMaxSubGroupDepth mod_authnz_ldap
Specifies	the	maximum	sub-group	nesting	depth	that	will	be	evaluated	before	the	user
search	is	discontinued.

AuthLDAPRemoteUserAttribute mod_authnz_ldap
Use	the	value	of	the	attribute	returned	during	the	user	query	to	set	the
REMOTE_USER	environment	variable

AuthLDAPRemoteUserIsDN mod_authnz_ldap
Use	the	DN	of	the	client	username	to	set	the	REMOTE_USER	environment	variable

AuthLDAPSearchAsUser mod_authnz_ldap
Use	the	authenticated	user's	credentials	to	perform	authorization	searches

AuthLDAPSubGroupAttribute mod_authnz_ldap
Specifies	the	attribute	labels,	one	value	per	directive	line,	used	to	distinguish	the
members	of	the	current	group	that	are	groups.

AuthLDAPSubGroupClass mod_authnz_ldap
Specifies	which	LDAP	objectClass	values	identify	directory	objects	that	are	groups
during	sub-group	processing.

AuthLDAPUrl mod_authnz_ldap
URL	specifying	the	LDAP	search	parameters

AuthMerging mod_authz_core
Controls	the	manner	in	which	each	configuration	section's	authorization	logic	is
combined	with	that	of	preceding	configuration	sections.

AuthName mod_authn_core
Authorization	realm	for	use	in	HTTP	authentication

AuthnCacheProvideFor mod_authn_socache
Specify	which	authn	provider(s)	to	cache	for

AuthnCacheTimeout mod_authn_socache
Set	a	timeout	for	cache	entries

AuthType mod_authn_core
Type	of	user	authentication

AuthUserFile mod_authn_file
Sets	the	name	of	a	text	file	containing	the	list	of	users	and	passwords	for
authentication

AuthzDBMType mod_authz_dbm
Sets	the	type	of	database	file	that	is	used	to	store	list	of	user	groups

CGIPassAuth core
Enables	passing	HTTP	authorization	headers	to	scripts	as	CGI	variables

LDAPReferralHopLimit mod_ldap
The	maximum	number	of	referral	hops	to	chase	before	terminating	an	LDAP	query.

LDAPReferrals mod_ldap
Enable	referral	chasing	during	queries	to	the	LDAP	server.

<Limit> core
Restrict	enclosed	access	controls	to	only	certain	HTTP	methods

<LimitExcept> core
Restrict	access	controls	to	all	HTTP	methods	except	the	named	ones

Require mod_authz_core
Tests	whether	an	authenticated	user	is	authorized	by	an	authorization	provider.

<RequireAll> mod_authz_core
Enclose	a	group	of	authorization	directives	of	which	none	must	fail	and	at	least	one
must	succeed	for	the	enclosing	directive	to	succeed.

<RequireAny> mod_authz_core
Enclose	a	group	of	authorization	directives	of	which	one	must	succeed	for	the
enclosing	directive	to	succeed.

<RequireNone> mod_authz_core
Enclose	a	group	of	authorization	directives	of	which	none	must	succeed	for	the
enclosing	directive	to	not	fail.

Satisfy mod_access_compat
Interaction	between	host-level	access	control	and	user	authentication

Session mod_session
Enables	a	session	for	the	current	directory	or	location

SessionEnv mod_session
Control	whether	the	contents	of	the	session	are	written	to	the	HTTP_SESSION
environment	variable

SessionHeader mod_session
Import	session	updates	from	a	given	HTTP	response	header

SessionInclude mod_session
Define	URL	prefixes	for	which	a	session	is	valid

SessionMaxAge mod_session
Define	a	maximum	age	in	seconds	for	a	session

SSLCipherSuite mod_ssl
Cipher	Suite	available	for	negotiation	in	SSL	handshake

SSLProxyCipherSuite mod_ssl
Cipher	Suite	available	for	negotiation	in	SSL	proxy	handshake

SSLRenegBufferSize mod_ssl
Set	the	size	for	the	SSL	renegotiation	buffer

SSLRequire mod_ssl
Allow	access	only	when	an	arbitrarily	complex	boolean	expression	is	true

SSLRequireSSL mod_ssl
Deny	access	when	SSL	is	not	used	for	the	HTTP	request

SSLUserName mod_ssl
Variable	name	to	determine	user	name

SSLVerifyClient mod_ssl
Type	of	Client	Certificate	verification

SSLVerifyDepth mod_ssl
Maximum	depth	of	CA	Certificates	in	Client	Certificate	verification

FileInfo

The	following	directives	are	allowed	in	.htaccess	files	when
AllowOverride	FileInfo	is	in	effect.	They	give	.htaccess
users	a	wide	range	of	control	over	the	responses	and	metadata
given	by	the	server.

AcceptPathInfo core
Resources	accept	trailing	pathname	information

Action mod_actions
Activates	a	CGI	script	for	a	particular	handler	or	content-type

AddCharset mod_mime
Maps	the	given	filename	extensions	to	the	specified	content	charset

AddDefaultCharset core
Default	charset	parameter	to	be	added	when	a	response	content-type	is
text/plain	or	text/html

AddEncoding mod_mime
Maps	the	given	filename	extensions	to	the	specified	encoding	type

AddHandler mod_mime
Maps	the	filename	extensions	to	the	specified	handler

AddInputFilter mod_mime
Maps	filename	extensions	to	the	filters	that	will	process	client	requests

AddLanguage mod_mime
Maps	the	given	filename	extension	to	the	specified	content	language

AddOutputFilter mod_mime
Maps	filename	extensions	to	the	filters	that	will	process	responses	from	the	server

AddOutputFilterByType mod_filter
assigns	an	output	filter	to	a	particular	media-type

AddType mod_mime
Maps	the	given	filename	extensions	onto	the	specified	content	type

BrowserMatch mod_setenvif
Sets	environment	variables	conditional	on	HTTP	User-Agent

BrowserMatchNoCase mod_setenvif
Sets	environment	variables	conditional	on	User-Agent	without	respect	to	case

CGIMapExtension core
Technique	for	locating	the	interpreter	for	CGI	scripts

CGIVar core
Controls	how	some	CGI	variables	are	set

CharsetDefault mod_charset_lite
Charset	to	translate	into

CharsetOptions mod_charset_lite
Configures	charset	translation	behavior

CharsetSourceEnc mod_charset_lite
Source	charset	of	files

CookieDomain mod_usertrack
The	domain	to	which	the	tracking	cookie	applies

CookieExpires mod_usertrack
Expiry	time	for	the	tracking	cookie

CookieName mod_usertrack
Name	of	the	tracking	cookie

CookieStyle mod_usertrack
Format	of	the	cookie	header	field

CookieTracking mod_usertrack
Enables	tracking	cookie

DefaultLanguage mod_mime
Defines	a	default	language-tag	to	be	sent	in	the	Content-Language	header	field	for	all
resources	in	the	current	context	that	have	not	been	assigned	a	language-tag	by	some
other	means.

DefaultType core
This	directive	has	no	effect	other	than	to	emit	warnings	if	the	value	is	not	none.	In
prior	versions,	DefaultType	would	specify	a	default	media	type	to	assign	to	response
content	for	which	no	other	media	type	configuration	could	be	found.

EnableMMAP core
Use	memory-mapping	to	read	files	during	delivery

EnableSendfile core
Use	the	kernel	sendfile	support	to	deliver	files	to	the	client

ErrorDocument core
What	the	server	will	return	to	the	client	in	case	of	an	error

FileETag core
File	attributes	used	to	create	the	ETag	HTTP	response	header	for	static	files

ForceLanguagePriority mod_negotiation
Action	to	take	if	a	single	acceptable	document	is	not	found

ForceType core

Forces	all	matching	files	to	be	served	with	the	specified	media	type	in	the	HTTP
Content-Type	header	field

Header mod_headers
Configure	HTTP	response	headers

ISAPIAppendLogToErrors mod_isapi
Record	HSE_APPEND_LOG_PARAMETER	requests	from	ISAPI	extensions	to	the	error
log

ISAPIAppendLogToQuery mod_isapi
Record	HSE_APPEND_LOG_PARAMETER	requests	from	ISAPI	extensions	to	the	query
field

ISAPIFakeAsync mod_isapi
Fake	asynchronous	support	for	ISAPI	callbacks

ISAPILogNotSupported mod_isapi
Log	unsupported	feature	requests	from	ISAPI	extensions

ISAPIReadAheadBuffer mod_isapi
Size	of	the	Read	Ahead	Buffer	sent	to	ISAPI	extensions

LanguagePriority mod_negotiation
The	precedence	of	language	variants	for	cases	where	the	client	does	not	express	a
preference

MultiviewsMatch mod_mime
The	types	of	files	that	will	be	included	when	searching	for	a	matching	file	with
MultiViews

PassEnv mod_env
Passes	environment	variables	from	the	shell

QualifyRedirectURL core
Controls	whether	the	REDIRECT_URL	environment	variable	is	fully	qualified

Redirect mod_alias
Sends	an	external	redirect	asking	the	client	to	fetch	a	different	URL

RedirectMatch mod_alias
Sends	an	external	redirect	based	on	a	regular	expression	match	of	the	current	URL

RedirectPermanent mod_alias
Sends	an	external	permanent	redirect	asking	the	client	to	fetch	a	different	URL

RedirectTemp mod_alias
Sends	an	external	temporary	redirect	asking	the	client	to	fetch	a	different	URL

RemoveCharset mod_mime
Removes	any	character	set	associations	for	a	set	of	file	extensions

RemoveEncoding mod_mime
Removes	any	content	encoding	associations	for	a	set	of	file	extensions

RemoveHandler mod_mime
Removes	any	handler	associations	for	a	set	of	file	extensions

RemoveInputFilter mod_mime
Removes	any	input	filter	associations	for	a	set	of	file	extensions

RemoveLanguage mod_mime
Removes	any	language	associations	for	a	set	of	file	extensions

RemoveOutputFilter mod_mime
Removes	any	output	filter	associations	for	a	set	of	file	extensions

RemoveType mod_mime
Removes	any	content	type	associations	for	a	set	of	file	extensions

RequestHeader mod_headers
Configure	HTTP	request	headers

RewriteBase mod_rewrite
Sets	the	base	URL	for	per-directory	rewrites

RewriteCond mod_rewrite
Defines	a	condition	under	which	rewriting	will	take	place

RewriteEngine mod_rewrite
Enables	or	disables	runtime	rewriting	engine

RewriteOptions mod_rewrite
Sets	some	special	options	for	the	rewrite	engine

RewriteRule mod_rewrite
Defines	rules	for	the	rewriting	engine

ScriptInterpreterSource core
Technique	for	locating	the	interpreter	for	CGI	scripts

SetEnv mod_env
Sets	environment	variables

SetEnvIf mod_setenvif
Sets	environment	variables	based	on	attributes	of	the	request

SetEnvIfExpr mod_setenvif
Sets	environment	variables	based	on	an	ap_expr	expression

SetEnvIfNoCase mod_setenvif

Sets	environment	variables	based	on	attributes	of	the	request	without	respect	to	case

SetHandler core

Forces	all	matching	files	to	be	processed	by	a	handler

SetInputFilter core
Sets	the	filters	that	will	process	client	requests	and	POST	input

SetOutputFilter core
Sets	the	filters	that	will	process	responses	from	the	server

Substitute mod_substitute
Pattern	to	filter	the	response	content

SubstituteInheritBefore mod_substitute
Change	the	merge	order	of	inherited	patterns

SubstituteMaxLineLength mod_substitute
Set	the	maximum	line	size

UnsetEnv mod_env
Removes	variables	from	the	environment

Indexes

The	following	directives	are	allowed	in	.htaccess	files	when
AllowOverride	Indexes	is	in	effect.	They	allow	.htaccess
users	to	control	aspects	of	the	directory	index	pages	provided	by
the	server,	including	autoindex	generation.

AddAlt mod_autoindex
Alternate	text	to	display	for	a	file,	instead	of	an	icon	selected	by	filename

AddAltByEncoding mod_autoindex
Alternate	text	to	display	for	a	file	instead	of	an	icon	selected	by	MIME-encoding

AddAltByType mod_autoindex
Alternate	text	to	display	for	a	file,	instead	of	an	icon	selected	by	MIME	content-type

AddDescription mod_autoindex
Description	to	display	for	a	file

AddIcon mod_autoindex
Icon	to	display	for	a	file	selected	by	name

AddIconByEncoding mod_autoindex
Icon	to	display	next	to	files	selected	by	MIME	content-encoding

AddIconByType mod_autoindex
Icon	to	display	next	to	files	selected	by	MIME	content-type

DefaultIcon mod_autoindex
Icon	to	display	for	files	when	no	specific	icon	is	configured

DirectoryCheckHandler mod_dir
Toggle	how	this	module	responds	when	another	handler	is	configured

DirectoryIndex mod_dir
List	of	resources	to	look	for	when	the	client	requests	a	directory

DirectoryIndexRedirect mod_dir
Configures	an	external	redirect	for	directory	indexes.

DirectorySlash mod_dir
Toggle	trailing	slash	redirects	on	or	off

ExpiresActive mod_expires
Enables	generation	of	Expires	headers

ExpiresByType mod_expires
Value	of	the	Expires	header	configured	by	MIME	type

ExpiresDefault mod_expires

Default	algorithm	for	calculating	expiration	time

FallbackResource mod_dir
Define	a	default	URL	for	requests	that	don't	map	to	a	file

HeaderName mod_autoindex
Name	of	the	file	that	will	be	inserted	at	the	top	of	the	index	listing

ImapBase mod_imagemap
Default	base	for	imagemap	files

ImapDefault mod_imagemap
Default	action	when	an	imagemap	is	called	with	coordinates	that	are	not	explicitly
mapped

ImapMenu mod_imagemap
Action	if	no	coordinates	are	given	when	calling	an	imagemap

IndexHeadInsert mod_autoindex
Inserts	text	in	the	HEAD	section	of	an	index	page.

IndexIgnore mod_autoindex
Adds	to	the	list	of	files	to	hide	when	listing	a	directory

IndexIgnoreReset mod_autoindex
Empties	the	list	of	files	to	hide	when	listing	a	directory

IndexOptions mod_autoindex
Various	configuration	settings	for	directory	indexing

IndexOrderDefault mod_autoindex
Sets	the	default	ordering	of	the	directory	index

IndexStyleSheet mod_autoindex
Adds	a	CSS	stylesheet	to	the	directory	index

MetaDir mod_cern_meta
Name	of	the	directory	to	find	CERN-style	meta	information	files

MetaFiles mod_cern_meta
Activates	CERN	meta-file	processing

MetaSuffix mod_cern_meta
File	name	suffix	for	the	file	containing	CERN-style	meta	information

ReadmeName mod_autoindex
Name	of	the	file	that	will	be	inserted	at	the	end	of	the	index	listing

Limit

The	following	directives	are	allowed	in	.htaccess	files	when
AllowOverride	Limit	is	in	effect.	This	extremely	narrow
override	type	mostly	allows	the	use	of	the	legacy	authorization
directives	provided	by	mod_access_compat.

Allow mod_access_compat
Controls	which	hosts	can	access	an	area	of	the	server

Deny mod_access_compat
Controls	which	hosts	are	denied	access	to	the	server

<Limit> core
Restrict	enclosed	access	controls	to	only	certain	HTTP	methods

<LimitExcept> core
Restrict	access	controls	to	all	HTTP	methods	except	the	named	ones

Order mod_access_compat
Controls	the	default	access	state	and	the	order	in	which	Allow	and	Deny	are
evaluated.

none

[This	section	has	no	description.	It's	possible	that	the
documentation	is	incomplete,	or	that	the	directives	here	have	an
incorrect	or	misspelled	Override	type.	Please	consider	reporting
this	in	the	comments	section.]

LogIOTrackTTFB mod_logio
Enable	tracking	of	time	to	first	byte	(TTFB)

None

[This	section	has	no	description.	It's	possible	that	the
documentation	is	incomplete,	or	that	the	directives	here	have	an
incorrect	or	misspelled	Override	type.	Please	consider	reporting
this	in	the	comments	section.]

AuthnCacheEnable mod_authn_socache
Enable	Authn	caching	configured	anywhere

AuthnCacheSOCache mod_authn_socache
Select	socache	backend	provider	to	use

Not	applicable

[This	section	has	no	description.	It's	possible	that	the
documentation	is	incomplete,	or	that	the	directives	here	have	an
incorrect	or	misspelled	Override	type.	Please	consider	reporting
this	in	the	comments	section.]

SSLProxyMachineCertificateChainFile mod_ssl
File	of	concatenated	PEM-encoded	CA	certificates	to	be	used	by	the	proxy	for
choosing	a	certificate

SSLProxyMachineCertificateFile mod_ssl
File	of	concatenated	PEM-encoded	client	certificates	and	keys	to	be	used	by	the
proxy

SSLProxyMachineCertificatePath mod_ssl
Directory	of	PEM-encoded	client	certificates	and	keys	to	be	used	by	the	proxy

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Options

The	following	directives	are	allowed	in	.htaccess	files	when
AllowOverride	Options	is	in	effect.	They	give	.htaccess	users
access	to	Options	and	similar	directives,	as	well	as	directives
that	control	the	filter	chain.

CheckCaseOnly mod_speling
Limits	the	action	of	the	speling	module	to	case	corrections

CheckSpelling mod_speling
Enables	the	spelling	module

ContentDigest core
Enables	the	generation	of	Content-MD5	HTTP	Response	headers

FilterChain mod_filter
Configure	the	filter	chain

FilterDeclare mod_filter
Declare	a	smart	filter

FilterProtocol mod_filter
Deal	with	correct	HTTP	protocol	handling

FilterProvider mod_filter
Register	a	content	filter

Options core
Configures	what	features	are	available	in	a	particular	directory

ReflectorHeader mod_reflector
Reflect	an	input	header	to	the	output	headers

SSLOptions mod_ssl
Configure	various	SSL	engine	run-time	options

SSLProxyProtocol mod_ssl
Configure	usable	SSL	protocol	flavors	for	proxy	usage

XBitHack mod_include
Parse	SSI	directives	in	files	with	the	execute	bit	set

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Miscellaneous	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Password	Formats

Notes	about	the	password	encryption	formats	generated	and
understood	by	Apache.

Basic	Authentication

There	are	five	formats	that	Apache	recognizes	for	basic-
authentication	passwords.	Note	that	not	all	formats	work	on	every
platform:

bcrypt
"$2y$"	+	the	result	of	the	crypt_blowfish	algorithm.	See	the
APR	source	file	crypt_blowfish.c	for	the	details	of	the
algorithm.

MD5
"$apr1$"	+	the	result	of	an	Apache-specific	algorithm	using	an
iterated	(1,000	times)	MD5	digest	of	various	combinations	of	a
random	32-bit	salt	and	the	password.	See	the	APR	source	file
apr_md5.c	for	the	details	of	the	algorithm.

SHA1
"{SHA}"	+	Base64-encoded	SHA-1	digest	of	the	password.
Insecure.

CRYPT
Unix	only.	Uses	the	traditional	Unix	crypt(3)	function	with	a
randomly-generated	32-bit	salt	(only	12	bits	used)	and	the	first
8	characters	of	the	password.	Insecure.

PLAIN	TEXT	(i.e.	unencrypted)
Windows	&	Netware	only.	Insecure.

Generating	values	with	htpasswd

bcrypt
$	htpasswd	-nbB	myName	myPassword

myName:$2y$05$c4WoMPo3SXsafkva.HHa6uXQZWr7oboPiC2bT/r7q1BB8I2s0BRqC

MD5
$	htpasswd	-nbm	myName	myPassword

myName:$apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

http://svn.apache.org/viewvc/apr/apr/trunk/crypto/crypt_blowfish.c?view=markup
http://svn.apache.org/viewvc/apr/apr/trunk/crypto/apr_md5.c?view=markup

SHA1
$	htpasswd	-nbs	myName	myPassword

myName:{SHA}VBPuJHI7uixaa6LQGWx4s+5GKNE=

CRYPT
$	htpasswd	-nbd	myName	myPassword

myName:rqXexS6ZhobKA

Generating	CRYPT	and	MD5	values	with	the	OpenSSL
command-line	program
OpenSSL	knows	the	Apache-specific	MD5	algorithm.

MD5
$	openssl	passwd	-apr1	myPassword

$apr1$qHDFfhPC$nITSVHgYbDAK1Y0acGRnY0

CRYPT
openssl	passwd	-crypt	myPassword

qQ5vTYO3c8dsU

Validating	CRYPT	or	MD5	passwords	with	the
OpenSSL	command	line	program
The	salt	for	a	CRYPT	password	is	the	first	two	characters
(converted	to	a	binary	value).	To	validate	myPassword	against
rqXexS6ZhobKA

CRYPT
$	openssl	passwd	-crypt	-salt	rq	myPassword

Warning:	truncating	password	to	8	characters

rqXexS6ZhobKA

Note	that	using	myPasswo	instead	of	myPassword	will	produce
the	same	result	because	only	the	first	8	characters	of	CRYPT
passwords	are	considered.

The	salt	for	an	MD5	password	is	between	$apr1$	and	the
following	$	(as	a	Base64-encoded	binary	value	-	max	8	chars).	To
validate	myPassword	against
$apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

MD5
$	openssl	passwd	-apr1	-salt	r31.....	myPassword

$apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

Database	password	fields	for	mod_dbd
The	SHA1	variant	is	probably	the	most	useful	format	for	DBD
authentication.	Since	the	SHA1	and	Base64	functions	are
commonly	available,	other	software	can	populate	a	database	with
encrypted	passwords	that	are	usable	by	Apache	basic
authentication.

To	create	Apache	SHA1-variant	basic-authentication	passwords	in
various	languages:

PHP
'{SHA}'	.	base64_encode(sha1($password,	TRUE))

Java
"{SHA}"	+	new

sun.misc.BASE64Encoder().encode(java.security.MessageDigest.getInstance("SHA1").digest(password.getBytes()))

ColdFusion
"{SHA}"	&	ToBase64(BinaryDecode(Hash(password,	"SHA1"),	"Hex"))

Ruby
require	'digest/sha1'

require	'base64'

'{SHA}'	+	Base64.encode64(Digest::SHA1.digest(password))

C	or	C++
Use	the	APR	function:	apr_sha1_base64

Python
import	base64

import	hashlib

"{SHA}"	+

format(base64.b64encode(hashlib.sha1(password).digest()))

PostgreSQL	(with	the	contrib/pgcrypto	functions	installed)
'{SHA}'||encode(digest(password,'sha1'),'base64')

Digest	Authentication

Apache	recognizes	one	format	for	digest-authentication
passwords	-	the	MD5	hash	of	the	string	user:realm:password
as	a	32-character	string	of	hexadecimal	digits.	realm	is	the
Authorization	Realm	argument	to	the	AuthName	directive	in
httpd.conf.

Database	password	fields	for	mod_dbd
Since	the	MD5	function	is	commonly	available,	other	software	can
populate	a	database	with	encrypted	passwords	that	are	usable	by
Apache	digest	authentication.

To	create	Apache	digest-authentication	passwords	in	various
languages:

PHP
md5($user	.	':'	.	$realm	.	':'	.$password)

Java
byte	b[]	=

java.security.MessageDigest.getInstance("MD5").digest((user	+

":"	+	realm	+	":"	+	password).getBytes());

java.math.BigInteger	bi	=	new	java.math.BigInteger(1,	b);

String	s	=	bi.toString(16);

while	(s.length()	<	32)

s	=	"0"	+	s;

//	String	s	is	the	encrypted	password

ColdFusion
LCase(Hash((user	&	":"	&	realm	&	":"	&	password)	,	"MD5"))

Ruby
require	'digest/md5'

Digest::MD5.hexdigest(user	+	':'	+	realm	+	':'	+	password)

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

PostgreSQL	(with	the	contrib/pgcrypto	functions	installed)
encode(digest(user	||	':'	||	realm	||	':'	||	password	,

'md5'),	'hex')

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Shared	Object	Cache	in	Apache	HTTP	Server

The	Shared	Object	Cache	provides	a	means	to	share	simple	data
across	all	a	server's	workers,	regardless	of	thread	and	process
models.	It	is	used	where	the	advantages	of	sharing	data	across
processes	outweigh	the	performance	overhead	of	inter-process
communication.

Shared	Object	Cache	Providers

The	shared	object	cache	as	such	is	an	abstraction.	Four	different
modules	implement	it.	To	use	the	cache,	one	or	more	of	these
modules	must	be	present,	and	configured.

The	only	configuration	required	is	to	select	which	cache	provider
to	use.	This	is	the	responsibility	of	modules	using	the	cache,	and
they	enable	selection	using	directives	such	as	CacheSocache,
AuthnCacheSOCache,	SSLSessionCache,	and
SSLStaplingCache.

Currently	available	providers	are:

"dbm"	(mod_socache_dbm)
This	makes	use	of	a	DBM	hash	file.	The	choice	of	underlying
DBM	used	may	be	configurable	if	the	installed	APR	version
supports	multiple	DBM	implementations.

"dc"	(mod_socache_dc)
This	makes	use	of	the	distcache	distributed	session	caching
libraries.

"memcache"	(mod_socache_memcache)
This	makes	use	of	the	memcached	high-performance,
distributed	memory	object	caching	system.

"shmcb"	(mod_socache_shmcb)
This	makes	use	of	a	high-performance	cyclic	buffer	inside	a
shared	memory	segment.

The	API	provides	the	following	functions:

const	char	*create(ap_socache_instance_t	**instance,	const
char	*arg,	apr_pool_t	*tmp,	apr_pool_t	*p);

Create	a	session	cache	based	on	the	given	configuration
string.	The	instance	pointer	returned	in	the	instance
parameter	will	be	passed	as	the	first	argument	to	subsequent

http://distcache.sourceforge.net/
http://memcached.org/

invocations.

apr_status_t	init(ap_socache_instance_t	*instance,	const
char	*cname,	const	struct	ap_socache_hints	*hints,
server_rec	*s,	apr_pool_t	*pool)

Initialize	the	cache.	The	cname	must	be	of	maximum	length
16	characters,	and	uniquely	identifies	the	consumer	of	the
cache	within	the	server;	using	the	module	name	is
recommended,	e.g.	"mod_ssl-sess".	This	string	may	be	used
within	a	filesystem	path	so	use	of	only	alphanumeric	[a-z0-9_-
]	characters	is	recommended.	If	hints	is	non-NULL,	it	gives	a
set	of	hints	for	the	provider.	Return	APR	error	code.

void	destroy(ap_socache_instance_t	*instance,	server_rec	*s)
Destroy	a	given	cache	instance	object.

apr_status_t	store(ap_socache_instance_t	*instance,
server_rec	*s,	const	unsigned	char	*id,	unsigned	int	idlen,
apr_time_t	expiry,	unsigned	char	*data,	unsigned	int	datalen,
apr_pool_t	*pool)

Store	an	object	in	a	cache	instance.

apr_status_t	retrieve(ap_socache_instance_t	*instance,
server_rec	*s,	const	unsigned	char	*id,	unsigned	int	idlen,
unsigned	char	*data,	unsigned	int	*datalen,	apr_pool_t	*pool)

Retrieve	a	cached	object.

apr_status_t	remove(ap_socache_instance_t	*instance,
server_rec	*s,	const	unsigned	char	*id,	unsigned	int	idlen,
apr_pool_t	*pool)

Remove	an	object	from	the	cache.

void	status(ap_socache_instance_t	*instance,	request_rec	*r,
int	flags)

Dump	the	status	of	a	cache	instance	for	mod_status.

apr_status_t	iterate(ap_socache_instance_t	*instance,
server_rec	*s,	void	*userctx,	ap_socache_iterator_t	*iterator,

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

apr_pool_t	*pool)
Dump	all	cached	objects	through	an	iterator	callback.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

fcgistarter	-	Start	a	FastCGI	program

See	also
mod_proxy_fcgi

https://www.apache.org/foundation/contributing.html

Note

Currently	only	works	on	Unix	systems.

Synopsis
fcgistarter	-c	command	-p	port	[-i	interface]	-

N	num

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Options

-c	command

FastCGI	program

-p	port

Port	which	the	program	will	listen	on

-i	interface

Interface	which	the	program	will	listen	on

-N	num

Number	of	instances	of	the	program

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	How-To	/	Tutorials

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Access	Control

Access	control	refers	to	any	means	of	controlling	access	to	any
resource.	This	is	separate	from	authentication	and	authorization.

Related	Modules	and	Directives

Access	control	can	be	done	by	several	different	modules.	The
most	important	of	these	are	mod_authz_core	and
mod_authz_host.	Also	discussed	in	this	document	is	access
control	using	mod_rewrite.

Access	control	by	host

If	you	wish	to	restrict	access	to	portions	of	your	site	based	on	the
host	address	of	your	visitors,	this	is	most	easily	done	using
mod_authz_host.

The	Require	provides	a	variety	of	different	ways	to	allow	or	deny
access	to	resources.	In	conjunction	with	the	RequireAll,
RequireAny,	and	RequireNone	directives,	these	requirements
may	be	combined	in	arbitrarily	complex	ways,	to	enforce	whatever
your	access	policy	happens	to	be.

The	Allow,	Deny,	and	Order	directives,	provided	by
mod_access_compat,	are	deprecated	and	will	go	away	in	a
future	version.	You	should	avoid	using	them,	and	avoid	outdated
tutorials	recommending	their	use.

The	usage	of	these	directives	is:

Require	host	address

Require	ip	ip.address

In	the	first	form,	address	is	a	fully	qualified	domain	name	(or	a
partial	domain	name);	you	may	provide	multiple	addresses	or
domain	names,	if	desired.

In	the	second	form,	ip.address	is	an	IP	address,	a	partial	IP
address,	a	network/netmask	pair,	or	a	network/nnn	CIDR
specification.	Either	IPv4	or	IPv6	addresses	may	be	used.

See	the	mod_authz_host	documentation	for	further	examples	of
this	syntax.

You	can	insert	not	to	negate	a	particular	requirement.	Note,	that
since	a	not	is	a	negation	of	a	value,	it	cannot	be	used	by	itself	to

allow	or	deny	a	request,	as	not	true	does	not	constitute	false.
Thus,	to	deny	a	visit	using	a	negation,	the	block	must	have	one
element	that	evaluates	as	true	or	false.	For	example,	if	you	have
someone	spamming	your	message	board,	and	you	want	to	keep
them	out,	you	could	do	the	following:

<RequireAll>

				Require	all	granted

				Require	not	ip	10.252.46.165

</RequireAll>

Visitors	coming	from	that	address	(10.252.46.165)	will	not	be
able	to	see	the	content	covered	by	this	directive.	If,	instead,	you
have	a	machine	name,	rather	than	an	IP	address,	you	can	use
that.

Require	not	host	host.example.com

				

And,	if	you'd	like	to	block	access	from	an	entire	domain,	you	can
specify	just	part	of	an	address	or	domain	name:

Require	not	ip	192.168.205

Require	not	host	phishers.example.com	moreidiots.example

Require	not	host	gov

Use	of	the	RequireAll,	RequireAny,	and	RequireNone
directives	may	be	used	to	enforce	more	complex	sets	of
requirements.

Access	control	by	arbitrary	variables

Using	the	<If>,	you	can	allow	or	deny	access	based	on	arbitrary
environment	variables	or	request	header	values.	For	example,	to
deny	access	based	on	user-agent	(the	browser	type)	you	might	do
the	following:

<If	"%{HTTP_USER_AGENT}	==	'BadBot'">

				Require	all	denied

</If>

Using	the	Require	expr	syntax,	this	could	also	be	written	as:

Require	expr	%{HTTP_USER_AGENT}	!=	'BadBot'

Warning:

Access	control	by	User-Agent	is	an	unreliable	technique,
since	the	User-Agent	header	can	be	set	to	anything	at	all,	at
the	whim	of	the	end	user.

See	the	expressions	document	for	a	further	discussion	of	what
expression	syntaxes	and	variables	are	available	to	you.

Access	control	with	mod_rewrite

The	[F]	RewriteRule	flag	causes	a	403	Forbidden	response	to
be	sent.	Using	this,	you	can	deny	access	to	a	resource	based	on
arbitrary	criteria.

For	example,	if	you	wish	to	block	access	to	a	resource	between
8pm	and	7am,	you	can	do	this	using	mod_rewrite.

RewriteEngine	On

RewriteCond	"%{TIME_HOUR}"	">=20"	[OR]

RewriteCond	"%{TIME_HOUR}"	"<07"

RewriteRule	"^/fridge"					"-"	[F]

This	will	return	a	403	Forbidden	response	for	any	request	after
8pm	or	before	7am.	This	technique	can	be	used	for	any	criteria
that	you	wish	to	check.	You	can	also	redirect,	or	otherwise	rewrite
these	requests,	if	that	approach	is	preferred.

The	<If>	directive,	added	in	2.4,	replaces	many	things	that
mod_rewrite	has	traditionally	been	used	to	do,	and	you	should
probably	look	there	first	before	resorting	to	mod_rewrite.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

More	information

The	expression	engine	gives	you	a	great	deal	of	power	to	do	a
variety	of	things	based	on	arbitrary	server	variables,	and	you
should	consult	that	document	for	more	detail.

Also,	you	should	read	the	mod_authz_core	documentation	for
examples	of	combining	multiple	access	requirements	and
specifying	how	they	interact.

See	also	the	Authentication	and	Authorization	howto.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Caching	Guide

This	document	supplements	the	mod_cache,	mod_cache_disk,
mod_file_cache	and	htcacheclean	reference	documentation.	It
describes	how	to	use	the	Apache	HTTP	Server's	caching	features	to
accelerate	web	and	proxy	serving,	while	avoiding	common	problems
and	misconfigurations.

Introduction

The	Apache	HTTP	server	offers	a	range	of	caching	features	that
are	designed	to	improve	the	performance	of	the	server	in	various
ways.

Three-state	RFC2616	HTTP	caching
mod_cache	and	its	provider	modules	mod_cache_disk
provide	intelligent,	HTTP-aware	caching.	The	content	itself	is
stored	in	the	cache,	and	mod_cache	aims	to	honor	all	of	the
various	HTTP	headers	and	options	that	control	the
cacheability	of	content	as	described	in	Section	13	of
RFC2616.	mod_cache	is	aimed	at	both	simple	and	complex
caching	configurations,	where	you	are	dealing	with	proxied
content,	dynamic	local	content	or	have	a	need	to	speed	up
access	to	local	files	on	a	potentially	slow	disk.

Two-state	key/value	shared	object	caching
The	shared	object	cache	API	(socache)	and	its	provider
modules	provide	a	server	wide	key/value	based	shared	object
cache.	These	modules	are	designed	to	cache	low	level	data
such	as	SSL	sessions	and	authentication	credentials.
Backends	allow	the	data	to	be	stored	server	wide	in	shared
memory,	or	datacenter	wide	in	a	cache	such	as	memcache	or
distcache.

Specialized	file	caching
mod_file_cache	offers	the	ability	to	pre-load	files	into
memory	on	server	startup,	and	can	improve	access	times	and
save	file	handles	on	files	that	are	accessed	often,	as	there	is
no	need	to	go	to	disk	on	each	request.

To	get	the	most	from	this	document,	you	should	be	familiar	with
the	basics	of	HTTP,	and	have	read	the	Users'	Guides	to	Mapping
URLs	to	the	Filesystem	and	Content	negotiation.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

Three-state	RFC2616	HTTP	caching

Related	Modules Related	Directives
mod_cache

mod_cache_disk

CacheEnable

CacheDisable

UseCanonicalName

CacheNegotiatedDocs

The	HTTP	protocol	contains	built	in	support	for	an	in-line	caching
mechanism	described	by	section	13	of	RFC2616,	and	the
mod_cache	module	can	be	used	to	take	advantage	of	this.

Unlike	a	simple	two	state	key/value	cache	where	the	content
disappears	completely	when	no	longer	fresh,	an	HTTP	cache
includes	a	mechanism	to	retain	stale	content,	and	to	ask	the	origin
server	whether	this	stale	content	has	changed	and	if	not,	make	it
fresh	again.

An	entry	in	an	HTTP	cache	exists	in	one	of	three	states:

Fresh
If	the	content	is	new	enough	(younger	than	its	freshness
lifetime),	it	is	considered	fresh.	An	HTTP	cache	is	free	to
serve	fresh	content	without	making	any	calls	to	the	origin
server	at	all.

Stale
If	the	content	is	too	old	(older	than	its	freshness	lifetime),	it
is	considered	stale.	An	HTTP	cache	should	contact	the	origin
server	and	check	whether	the	content	is	still	fresh	before
serving	stale	content	to	a	client.	The	origin	server	will	either
respond	with	replacement	content	if	not	still	valid,	or	ideally,
the	origin	server	will	respond	with	a	code	to	tell	the	cache	the
content	is	still	fresh,	without	the	need	to	generate	or	send	the
content	again.	The	content	becomes	fresh	again	and	the
cycle	continues.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

The	HTTP	protocol	does	allow	the	cache	to	serve	stale	data
under	certain	circumstances,	such	as	when	an	attempt	to
freshen	the	data	with	an	origin	server	has	failed	with	a	5xx
error,	or	when	another	request	is	already	in	the	process	of
freshening	the	given	entry.	In	these	cases	a	Warning	header
is	added	to	the	response.

Non	Existent
If	the	cache	gets	full,	it	reserves	the	option	to	delete	content
from	the	cache	to	make	space.	Content	can	be	deleted	at	any
time,	and	can	be	stale	or	fresh.	The	htcacheclean	tool	can	be
run	on	a	once	off	basis,	or	deployed	as	a	daemon	to	keep	the
size	of	the	cache	within	the	given	size,	or	the	given	number	of
inodes.	The	tool	attempts	to	delete	stale	content	before
attempting	to	delete	fresh	content.

Full	details	of	how	HTTP	caching	works	can	be	found	in	Section
13	of	RFC2616.

Interaction	with	the	Server
The	mod_cache	module	hooks	into	the	server	in	two	possible
places	depending	on	the	value	of	the	CacheQuickHandler
directive:

Quick	handler	phase
This	phase	happens	very	early	on	during	the	request
processing,	just	after	the	request	has	been	parsed.	If	the
content	is	found	within	the	cache,	it	is	served	immediately	and
almost	all	request	processing	is	bypassed.

In	this	scenario,	the	cache	behaves	as	if	it	has	been	"bolted
on"	to	the	front	of	the	server.

This	mode	offers	the	best	performance,	as	the	majority	of
server	processing	is	bypassed.	This	mode	however	also

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

bypasses	the	authentication	and	authorization	phases	of
server	processing,	so	this	mode	should	be	chosen	with	care
when	this	is	important.

Requests	with	an	"Authorization"	header	(for	example,	HTTP
Basic	Authentication)	are	neither	cacheable	nor	served	from
the	cache	when	mod_cache	is	running	in	this	phase.

Normal	handler	phase
This	phase	happens	late	in	the	request	processing,	after	all
the	request	phases	have	completed.

In	this	scenario,	the	cache	behaves	as	if	it	has	been	"bolted
on"	to	the	back	of	the	server.

This	mode	offers	the	most	flexibility,	as	the	potential	exists	for
caching	to	occur	at	a	precisely	controlled	point	in	the	filter
chain,	and	cached	content	can	be	filtered	or	personalized
before	being	sent	to	the	client.

If	the	URL	is	not	found	within	the	cache,	mod_cache	will	add	a
filter	to	the	filter	stack	in	order	to	record	the	response	to	the	cache,
and	then	stand	down,	allowing	normal	request	processing	to
continue.	If	the	content	is	determined	to	be	cacheable,	the	content
will	be	saved	to	the	cache	for	future	serving,	otherwise	the	content
will	be	ignored.

If	the	content	found	within	the	cache	is	stale,	the	mod_cache
module	converts	the	request	into	a	conditional	request.	If	the
origin	server	responds	with	a	normal	response,	the	normal
response	is	cached,	replacing	the	content	already	cached.	If	the
origin	server	responds	with	a	304	Not	Modified	response,	the
content	is	marked	as	fresh	again,	and	the	cached	content	is
served	by	the	filter	instead	of	saving	it.

Improving	Cache	Hits
When	a	virtual	host	is	known	by	one	of	many	different	server
aliases,	ensuring	that	UseCanonicalName	is	set	to	On	can
dramatically	improve	the	ratio	of	cache	hits.	This	is	because	the
hostname	of	the	virtual-host	serving	the	content	is	used	within	the
cache	key.	With	the	setting	set	to	On	virtual-hosts	with	multiple
server	names	or	aliases	will	not	produce	differently	cached
entities,	and	instead	content	will	be	cached	as	per	the	canonical
hostname.

Freshness	Lifetime
Well	formed	content	that	is	intended	to	be	cached	should	declare
an	explicit	freshness	lifetime	with	the	Cache-Control	header's
max-age	or	s-maxage	fields,	or	by	including	an	Expires
header.

At	the	same	time,	the	origin	server	defined	freshness	lifetime	can
be	overridden	by	a	client	when	the	client	presents	their	own
Cache-Control	header	within	the	request.	In	this	case,	the
lowest	freshness	lifetime	between	request	and	response	wins.

When	this	freshness	lifetime	is	missing	from	the	request	or	the
response,	a	default	freshness	lifetime	is	applied.	The	default
freshness	lifetime	for	cached	entities	is	one	hour,	however	this	can
be	easily	over-ridden	by	using	the	CacheDefaultExpire
directive.

If	a	response	does	not	include	an	Expires	header	but	does
include	a	Last-Modified	header,	mod_cache	can	infer	a
freshness	lifetime	based	on	a	heuristic,	which	can	be	controlled
through	the	use	of	the	CacheLastModifiedFactor	directive.

For	local	content,	or	for	remote	content	that	does	not	define	its

own	Expires	header,	mod_expires	may	be	used	to	fine-tune
the	freshness	lifetime	by	adding	max-age	and	Expires.

The	maximum	freshness	lifetime	may	also	be	controlled	by	using
the	CacheMaxExpire.

A	Brief	Guide	to	Conditional	Requests
When	content	expires	from	the	cache	and	becomes	stale,	rather
than	pass	on	the	original	request,	httpd	will	modify	the	request	to
make	it	conditional	instead.

When	an	ETag	header	exists	in	the	original	cached	response,
mod_cache	will	add	an	If-None-Match	header	to	the	request	to
the	origin	server.	When	a	Last-Modified	header	exists	in	the
original	cached	response,	mod_cache	will	add	an	If-
Modified-Since	header	to	the	request	to	the	origin	server.
Performing	either	of	these	actions	makes	the	request	conditional.

When	a	conditional	request	is	received	by	an	origin	server,	the
origin	server	should	check	whether	the	ETag	or	the	Last-Modified
parameter	has	changed,	as	appropriate	for	the	request.	If	not,	the
origin	should	respond	with	a	terse	"304	Not	Modified"	response.
This	signals	to	the	cache	that	the	stale	content	is	still	fresh	should
be	used	for	subsequent	requests	until	the	content's	new	freshness
lifetime	is	reached	again.

If	the	content	has	changed,	then	the	content	is	served	as	if	the
request	were	not	conditional	to	begin	with.

Conditional	requests	offer	two	benefits.	Firstly,	when	making	such
a	request	to	the	origin	server,	if	the	content	from	the	origin
matches	the	content	in	the	cache,	this	can	be	determined	easily
and	without	the	overhead	of	transferring	the	entire	resource.

Secondly,	a	well	designed	origin	server	will	be	designed	in	such	a
way	that	conditional	requests	will	be	significantly	cheaper	to
produce	than	a	full	response.	For	static	files,	typically	all	that	is
involved	is	a	call	to	stat()	or	similar	system	call,	to	see	if	the	file
has	changed	in	size	or	modification	time.	As	such,	even	local
content	may	still	be	served	faster	from	the	cache	if	it	has	not
changed.

Origin	servers	should	make	every	effort	to	support	conditional
requests	as	is	practical,	however	if	conditional	requests	are	not
supported,	the	origin	will	respond	as	if	the	request	was	not
conditional,	and	the	cache	will	respond	as	if	the	content	had
changed	and	save	the	new	content	to	the	cache.	In	this	case,	the
cache	will	behave	like	a	simple	two	state	cache,	where	content	is
effectively	either	fresh	or	deleted.

What	Can	be	Cached?
The	full	definition	of	which	responses	can	be	cached	by	an	HTTP
cache	is	defined	in	RFC2616	Section	13.4	Response	Cacheability,
and	can	be	summed	up	as	follows:

1.	 Caching	must	be	enabled	for	this	URL.	See	the
CacheEnable	and	CacheDisable	directives.

2.	 The	response	must	have	a	HTTP	status	code	of	200,	203,
300,	301	or	410.

3.	 The	request	must	be	a	HTTP	GET	request.

4.	 If	the	response	contains	an	"Authorization:"	header,	it	must
also	contain	an	"s-maxage",	"must-revalidate"	or	"public"
option	in	the	"Cache-Control:"	header,	or	it	won't	be	cached.

5.	 If	the	URL	included	a	query	string	(e.g.	from	a	HTML	form
GET	method)	it	will	not	be	cached	unless	the	response
specifies	an	explicit	expiration	by	including	an	"Expires:"

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.4

header	or	the	max-age	or	s-maxage	directive	of	the	"Cache-
Control:"	header,	as	per	RFC2616	sections	13.9	and	13.2.1.

6.	 If	the	response	has	a	status	of	200	(OK),	the	response	must
also	include	at	least	one	of	the	"Etag",	"Last-Modified"	or	the
"Expires"	headers,	or	the	max-age	or	s-maxage	directive	of
the	"Cache-Control:"	header,	unless	the
CacheIgnoreNoLastMod	directive	has	been	used	to	require
otherwise.

7.	 If	the	response	includes	the	"private"	option	in	a	"Cache-
Control:"	header,	it	will	not	be	stored	unless	the
CacheStorePrivate	has	been	used	to	require	otherwise.

8.	 Likewise,	if	the	response	includes	the	"no-store"	option	in	a
"Cache-Control:"	header,	it	will	not	be	stored	unless	the
CacheStoreNoStore	has	been	used.

9.	 A	response	will	not	be	stored	if	it	includes	a	"Vary:"	header
containing	the	match-all	"*".

What	Should	Not	be	Cached?
It	should	be	up	to	the	client	creating	the	request,	or	the	origin
server	constructing	the	response	to	decide	whether	or	not	the
content	should	be	cacheable	or	not	by	correctly	setting	the
Cache-Control	header,	and	mod_cache	should	be	left	alone	to
honor	the	wishes	of	the	client	or	server	as	appropriate.

Content	that	is	time	sensitive,	or	which	varies	depending	on	the
particulars	of	the	request	that	are	not	covered	by	HTTP
negotiation,	should	not	be	cached.	This	content	should	declare
itself	uncacheable	using	the	Cache-Control	header.

If	content	changes	often,	expressed	by	a	freshness	lifetime	of
minutes	or	seconds,	the	content	can	still	be	cached,	however	it	is
highly	desirable	that	the	origin	server	supports	conditional

requests	correctly	to	ensure	that	full	responses	do	not	have	to	be
generated	on	a	regular	basis.

Content	that	varies	based	on	client	provided	request	headers	can
be	cached	through	intelligent	use	of	the	Vary	response	header.

Variable/Negotiated	Content
When	the	origin	server	is	designed	to	respond	with	different
content	based	on	the	value	of	headers	in	the	request,	for	example
to	serve	multiple	languages	at	the	same	URL,	HTTP's	caching
mechanism	makes	it	possible	to	cache	multiple	variants	of	the
same	page	at	the	same	URL.

This	is	done	by	the	origin	server	adding	a	Vary	header	to	indicate
which	headers	must	be	taken	into	account	by	a	cache	when
determining	whether	two	variants	are	different	from	one	another.

If	for	example,	a	response	is	received	with	a	vary	header	such	as;

Vary:	negotiate,accept-language,accept-charset

mod_cache	will	only	serve	the	cached	content	to	requesters	with
accept-language	and	accept-charset	headers	matching	those	of
the	original	request.

Multiple	variants	of	the	content	can	be	cached	side	by	side,
mod_cache	uses	the	Vary	header	and	the	corresponding	values
of	the	request	headers	listed	by	Vary	to	decide	on	which	of	many
variants	to	return	to	the	client.

Cache	Setup	Examples

Related	Modules Related	Directives
mod_cache

mod_cache_disk

mod_cache_socache

mod_socache_memcache

CacheEnable

CacheRoot

CacheDirLevels

CacheDirLength

CacheSocache

Caching	to	Disk
The	mod_cache	module	relies	on	specific	backend	store
implementations	in	order	to	manage	the	cache,	and	for	caching	to
disk	mod_cache_disk	is	provided	to	support	this.

Typically	the	module	will	be	configured	as	so;

CacheRoot			"/var/cache/apache/"

CacheEnable	disk	/

CacheDirLevels	2

CacheDirLength	1

Importantly,	as	the	cached	files	are	locally	stored,	operating
system	in-memory	caching	will	typically	be	applied	to	their	access
also.	So	although	the	files	are	stored	on	disk,	if	they	are	frequently
accessed	it	is	likely	the	operating	system	will	ensure	that	they	are
actually	served	from	memory.

Understanding	the	Cache-Store
To	store	items	in	the	cache,	mod_cache_disk	creates	a	22
character	hash	of	the	URL	being	requested.	This	hash
incorporates	the	hostname,	protocol,	port,	path	and	any	CGI
arguments	to	the	URL,	as	well	as	elements	defined	by	the	Vary
header	to	ensure	that	multiple	URLs	do	not	collide	with	one

another.

Each	character	may	be	any	one	of	64-different	characters,	which
mean	that	overall	there	are	64^22	possible	hashes.	For	example,
a	URL	might	be	hashed	to	xyTGxSMO2b68mBCykqkp1w.	This
hash	is	used	as	a	prefix	for	the	naming	of	the	files	specific	to	that
URL	within	the	cache,	however	first	it	is	split	up	into	directories	as
per	the	CacheDirLevels	and	CacheDirLength	directives.

CacheDirLevels	specifies	how	many	levels	of	subdirectory
there	should	be,	and	CacheDirLength	specifies	how	many
characters	should	be	in	each	directory.	With	the	example	settings
given	above,	the	hash	would	be	turned	into	a	filename	prefix	as
/var/cache/apache/x/y/TGxSMO2b68mBCykqkp1w.

The	overall	aim	of	this	technique	is	to	reduce	the	number	of
subdirectories	or	files	that	may	be	in	a	particular	directory,	as	most
file-systems	slow	down	as	this	number	increases.	With	setting	of
"1"	for	CacheDirLength	there	can	at	most	be	64	subdirectories
at	any	particular	level.	With	a	setting	of	2	there	can	be	64	*	64
subdirectories,	and	so	on.	Unless	you	have	a	good	reason	not	to,
using	a	setting	of	"1"	for	CacheDirLength	is	recommended.

Setting	CacheDirLevels	depends	on	how	many	files	you
anticipate	to	store	in	the	cache.	With	the	setting	of	"2"	used	in	the
above	example,	a	grand	total	of	4096	subdirectories	can	ultimately
be	created.	With	1	million	files	cached,	this	works	out	at	roughly
245	cached	URLs	per	directory.

Each	URL	uses	at	least	two	files	in	the	cache-store.	Typically	there
is	a	".header"	file,	which	includes	meta-information	about	the	URL,
such	as	when	it	is	due	to	expire	and	a	".data"	file	which	is	a
verbatim	copy	of	the	content	to	be	served.

In	the	case	of	a	content	negotiated	via	the	"Vary"	header,	a	".vary"

directory	will	be	created	for	the	URL	in	question.	This	directory	will
have	multiple	".data"	files	corresponding	to	the	differently
negotiated	content.

Maintaining	the	Disk	Cache
The	mod_cache_disk	module	makes	no	attempt	to	regulate	the
amount	of	disk	space	used	by	the	cache,	although	it	will	gracefully
stand	down	on	any	disk	error	and	behave	as	if	the	cache	was
never	present.

Instead,	provided	with	httpd	is	the	htcacheclean	tool	which	allows
you	to	clean	the	cache	periodically.	Determining	how	frequently	to
run	htcacheclean	and	what	target	size	to	use	for	the	cache	is
somewhat	complex	and	trial	and	error	may	be	needed	to	select
optimal	values.

htcacheclean	has	two	modes	of	operation.	It	can	be	run	as
persistent	daemon,	or	periodically	from	cron.	htcacheclean	can
take	up	to	an	hour	or	more	to	process	very	large	(tens	of
gigabytes)	caches	and	if	you	are	running	it	from	cron	it	is
recommended	that	you	determine	how	long	a	typical	run	takes,	to
avoid	running	more	than	one	instance	at	a	time.

It	is	also	recommended	that	an	appropriate	"nice"	level	is	chosen
for	htcacheclean	so	that	the	tool	does	not	cause	excessive	disk	io
while	the	server	is	running.

Figure	1:	Typical	cache	growth	/	clean	sequence.

Because	mod_cache_disk	does	not	itself	pay	attention	to	how
much	space	is	used	you	should	ensure	that	htcacheclean	is
configured	to	leave	enough	"grow	room"	following	a	clean.

Caching	to	memcached
Using	the	mod_cache_socache	module,	mod_cache	can	cache
data	from	a	variety	of	implementations	(aka:	"providers").	Using
the	mod_socache_memcache	module,	for	example,	one	can
specify	that	memcached	is	to	be	used	as	the	the	backend	storage
mechanism.

Typically	the	module	will	be	configured	as	so:

CacheEnable	socache	/

CacheSocache	memcache:memcd.example.com:11211

http://memcached.org

Additional	memcached	servers	can	be	specified	by	appending
them	to	the	end	of	the	CacheSocache	memcache:	line
separated	by	commas:

CacheEnable	socache	/

CacheSocache	memcache:mem1.example.com:11211,mem2.example.com:11212

This	format	is	also	used	with	the	other	various
mod_cache_socache	providers.	For	example:

CacheEnable	socache	/

CacheSocache	shmcb:/path/to/datafile(512000)

CacheEnable	socache	/

CacheSocache	dbm:/path/to/datafile

General	Two-state	Key/Value	Shared	Object	Caching

Related	Modules Related	Directives
mod_authn_socache

mod_socache_dbm

mod_socache_dc

mod_socache_memcache

mod_socache_shmcb

mod_ssl

AuthnCacheSOCache

SSLSessionCache

SSLStaplingCache

The	Apache	HTTP	server	offers	a	low	level	shared	object	cache
for	caching	information	such	as	SSL	sessions,	or	authentication
credentials,	within	the	socache	interface.

Additional	modules	are	provided	for	each	implementation,	offering
the	following	backends:

mod_socache_dbm

DBM	based	shared	object	cache.

mod_socache_dc

Distcache	based	shared	object	cache.

mod_socache_memcache

Memcache	based	shared	object	cache.

mod_socache_shmcb

Shared	memory	based	shared	object	cache.

Caching	Authentication	Credentials

Related	Modules Related	Directives
mod_authn_socache AuthnCacheSOCache

The	mod_authn_socache	module	allows	the	result	of
authentication	to	be	cached,	relieving	load	on	authentication

backends.

Caching	SSL	Sessions

Related	Modules Related	Directives
mod_ssl SSLSessionCache

SSLStaplingCache

The	mod_ssl	module	uses	the	socache	interface	to	provide	a
session	cache	and	a	stapling	cache.

Specialized	File	Caching

Related	Modules Related	Directives
mod_file_cache CacheFile

MMapFile

On	platforms	where	a	filesystem	might	be	slow,	or	where	file
handles	are	expensive,	the	option	exists	to	pre-load	files	into
memory	on	startup.

On	systems	where	opening	files	is	slow,	the	option	exists	to	open
the	file	on	startup	and	cache	the	file	handle.	These	options	can
help	on	systems	where	access	to	static	files	is	slow.

File-Handle	Caching
The	act	of	opening	a	file	can	itself	be	a	source	of	delay,	particularly
on	network	filesystems.	By	maintaining	a	cache	of	open	file
descriptors	for	commonly	served	files,	httpd	can	avoid	this	delay.
Currently	httpd	provides	one	implementation	of	File-Handle
Caching.

CacheFile
The	most	basic	form	of	caching	present	in	httpd	is	the	file-handle
caching	provided	by	mod_file_cache.	Rather	than	caching	file-
contents,	this	cache	maintains	a	table	of	open	file	descriptors.
Files	to	be	cached	in	this	manner	are	specified	in	the	configuration
file	using	the	CacheFile	directive.

The	CacheFile	directive	instructs	httpd	to	open	the	file	when	it	is
started	and	to	re-use	this	file-handle	for	all	subsequent	access	to
this	file.

CacheFile	/usr/local/apache2/htdocs/index.html

If	you	intend	to	cache	a	large	number	of	files	in	this	manner,	you
must	ensure	that	your	operating	system's	limit	for	the	number	of
open	files	is	set	appropriately.

Although	using	CacheFile	does	not	cause	the	file-contents	to	be
cached	per-se,	it	does	mean	that	if	the	file	changes	while	httpd	is
running	these	changes	will	not	be	picked	up.	The	file	will	be
consistently	served	as	it	was	when	httpd	was	started.

If	the	file	is	removed	while	httpd	is	running,	it	will	continue	to
maintain	an	open	file	descriptor	and	serve	the	file	as	it	was	when
httpd	was	started.	This	usually	also	means	that	although	the	file
will	have	been	deleted,	and	not	show	up	on	the	filesystem,	extra
free	space	will	not	be	recovered	until	httpd	is	stopped	and	the	file
descriptor	closed.

In-Memory	Caching
Serving	directly	from	system	memory	is	universally	the	fastest
method	of	serving	content.	Reading	files	from	a	disk	controller	or,
even	worse,	from	a	remote	network	is	orders	of	magnitude	slower.
Disk	controllers	usually	involve	physical	processes,	and	network
access	is	limited	by	your	available	bandwidth.	Memory	access	on
the	other	hand	can	take	mere	nano-seconds.

System	memory	isn't	cheap	though,	byte	for	byte	it's	by	far	the
most	expensive	type	of	storage	and	it's	important	to	ensure	that	it
is	used	efficiently.	By	caching	files	in	memory	you	decrease	the
amount	of	memory	available	on	the	system.	As	we'll	see,	in	the
case	of	operating	system	caching,	this	is	not	so	much	of	an	issue,
but	when	using	httpd's	own	in-memory	caching	it	is	important	to
make	sure	that	you	do	not	allocate	too	much	memory	to	a	cache.
Otherwise	the	system	will	be	forced	to	swap	out	memory,	which
will	likely	degrade	performance.

Operating	System	Caching
Almost	all	modern	operating	systems	cache	file-data	in	memory
managed	directly	by	the	kernel.	This	is	a	powerful	feature,	and	for
the	most	part	operating	systems	get	it	right.	For	example,	on
Linux,	let's	look	at	the	difference	in	the	time	it	takes	to	read	a	file
for	the	first	time	and	the	second	time;

colm@coroebus:~$	time	cat	testfile	>	/dev/null

real				0m0.065s

user				0m0.000s

sys					0m0.001s

colm@coroebus:~$	time	cat	testfile	>	/dev/null

real				0m0.003s

user				0m0.003s

sys					0m0.000s

Even	for	this	small	file,	there	is	a	huge	difference	in	the	amount	of
time	it	takes	to	read	the	file.	This	is	because	the	kernel	has	cached
the	file	contents	in	memory.

By	ensuring	there	is	"spare"	memory	on	your	system,	you	can
ensure	that	more	and	more	file-contents	will	be	stored	in	this
cache.	This	can	be	a	very	efficient	means	of	in-memory	caching,
and	involves	no	extra	configuration	of	httpd	at	all.

Additionally,	because	the	operating	system	knows	when	files	are
deleted	or	modified,	it	can	automatically	remove	file	contents	from
the	cache	when	necessary.	This	is	a	big	advantage	over	httpd's	in-
memory	caching	which	has	no	way	of	knowing	when	a	file	has
changed.

Despite	the	performance	and	advantages	of	automatic	operating
system	caching	there	are	some	circumstances	in	which	in-memory
caching	may	be	better	performed	by	httpd.

MMapFile	Caching
mod_file_cache	provides	the	MMapFile	directive,	which	allows

you	to	have	httpd	map	a	static	file's	contents	into	memory	at	start
time	(using	the	mmap	system	call).	httpd	will	use	the	in-memory
contents	for	all	subsequent	accesses	to	this	file.

MMapFile	/usr/local/apache2/htdocs/index.html

As	with	the	CacheFile	directive,	any	changes	in	these	files	will
not	be	picked	up	by	httpd	after	it	has	started.

The	MMapFile	directive	does	not	keep	track	of	how	much
memory	it	allocates,	so	you	must	ensure	not	to	over-use	the
directive.	Each	httpd	child	process	will	replicate	this	memory,	so	it
is	critically	important	to	ensure	that	the	files	mapped	are	not	so
large	as	to	cause	the	system	to	swap	memory.

Security	Considerations

Authorization	and	Access	Control
Using	mod_cache	in	its	default	state	where
CacheQuickHandler	is	set	to	On	is	very	much	like	having	a
caching	reverse-proxy	bolted	to	the	front	of	the	server.	Requests
will	be	served	by	the	caching	module	unless	it	determines	that	the
origin	server	should	be	queried	just	as	an	external	cache	would,
and	this	drastically	changes	the	security	model	of	httpd.

As	traversing	a	filesystem	hierarchy	to	examine	potential
.htaccess	files	would	be	a	very	expensive	operation,	partially
defeating	the	point	of	caching	(to	speed	up	requests),	mod_cache
makes	no	decision	about	whether	a	cached	entity	is	authorised	for
serving.	In	other	words;	if	mod_cache	has	cached	some	content,
it	will	be	served	from	the	cache	as	long	as	that	content	has	not
expired.

If,	for	example,	your	configuration	permits	access	to	a	resource	by
IP	address	you	should	ensure	that	this	content	is	not	cached.	You
can	do	this	by	using	the	CacheDisable	directive,	or
mod_expires.	Left	unchecked,	mod_cache	-	very	much	like	a
reverse	proxy	-	would	cache	the	content	when	served	and	then
serve	it	to	any	client,	on	any	IP	address.

When	the	CacheQuickHandler	directive	is	set	to	Off,	the	full
set	of	request	processing	phases	are	executed	and	the	security
model	remains	unchanged.

Local	exploits
As	requests	to	end-users	can	be	served	from	the	cache,	the	cache
itself	can	become	a	target	for	those	wishing	to	deface	or	interfere
with	content.	It	is	important	to	bear	in	mind	that	the	cache	must	at
all	times	be	writable	by	the	user	which	httpd	is	running	as.	This	is

in	stark	contrast	to	the	usually	recommended	situation	of
maintaining	all	content	unwritable	by	the	Apache	user.

If	the	Apache	user	is	compromised,	for	example	through	a	flaw	in
a	CGI	process,	it	is	possible	that	the	cache	may	be	targeted.
When	using	mod_cache_disk,	it	is	relatively	easy	to	insert	or
modify	a	cached	entity.

This	presents	a	somewhat	elevated	risk	in	comparison	to	the	other
types	of	attack	it	is	possible	to	make	as	the	Apache	user.	If	you
are	using	mod_cache_disk	you	should	bear	this	in	mind	-	ensure
you	upgrade	httpd	when	security	upgrades	are	announced	and	run
CGI	processes	as	a	non-Apache	user	using	suEXEC	if	possible.

Cache	Poisoning
When	running	httpd	as	a	caching	proxy	server,	there	is	also	the
potential	for	so-called	cache	poisoning.	Cache	Poisoning	is	a
broad	term	for	attacks	in	which	an	attacker	causes	the	proxy
server	to	retrieve	incorrect	(and	usually	undesirable)	content	from
the	origin	server.

For	example	if	the	DNS	servers	used	by	your	system	running	httpd
are	vulnerable	to	DNS	cache	poisoning,	an	attacker	may	be	able
to	control	where	httpd	connects	to	when	requesting	content	from
the	origin	server.	Another	example	is	so-called	HTTP	request-
smuggling	attacks.

This	document	is	not	the	correct	place	for	an	in-depth	discussion
of	HTTP	request	smuggling	(instead,	try	your	favourite	search
engine)	however	it	is	important	to	be	aware	that	it	is	possible	to
make	a	series	of	requests,	and	to	exploit	a	vulnerability	on	an
origin	webserver	such	that	the	attacker	can	entirely	control	the
content	retrieved	by	the	proxy.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Denial	of	Service	/	Cachebusting
The	Vary	mechanism	allows	multiple	variants	of	the	same	URL	to
be	cached	side	by	side.	Depending	on	header	values	provided	by
the	client,	the	cache	will	select	the	correct	variant	to	return	to	the
client.	This	mechanism	can	become	a	problem	when	an	attempt	is
made	to	vary	on	a	header	that	is	known	to	contain	a	wide	range	of
possible	values	under	normal	use,	for	example	the	User-Agent
header.	Depending	on	the	popularity	of	the	particular	web	site
thousands	or	millions	of	duplicate	cache	entries	could	be	created
for	the	same	URL,	crowding	out	other	entries	in	the	cache.

In	other	cases,	there	may	be	a	need	to	change	the	URL	of	a
particular	resource	on	every	request,	usually	by	adding	a
"cachebuster"	string	to	the	URL.	If	this	content	is	declared
cacheable	by	a	server	for	a	significant	freshness	lifetime,	these
entries	can	crowd	out	legitimate	entries	in	a	cache.	While
mod_cache	provides	a
CacheIgnoreURLSessionIdentifiers	directive,	this	directive
should	be	used	with	care	to	ensure	that	downstream	proxy	or
browser	caches	aren't	subjected	to	the	same	denial	of	service
issue.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

httxt2dbm	-	Generate	dbm	files	for	use	with
RewriteMap

httxt2dbm	is	used	to	generate	dbm	files	from	text	input,	for	use	in
RewriteMap	with	the	dbm	map	type.

If	the	output	file	already	exists,	it	will	not	be	truncated.	New	keys	will
be	added	and	existing	keys	will	be	updated.

See	also
httpd

mod_rewrite

https://www.apache.org/foundation/contributing.html

Synopsis
httxt2dbm	[-v]	[-f	DBM_TYPE]	-i	SOURCE_TXT	-o

OUTPUT_DBM

Options

-v

More	verbose	output

-f	DBM_TYPE

Specify	the	DBM	type	to	be	used	for	the	output.	If	not
specified,	will	use	the	APR	Default.	Available	types	are:	GDBM
for	GDBM	files,	SDBM	for	SDBM	files,	DB	for	berkeley	DB	files,
NDBM	for	NDBM	files,	default	for	the	default	DBM	type.

-i	SOURCE_TXT

Input	file	from	which	the	dbm	is	to	be	created.	The	file	should
be	formated	with	one	record	per	line,	of	the	form:	key
value.	See	the	documentation	for	RewriteMap	for	further
details	of	this	file's	format	and	meaning.

-o	OUTPUT_DBM

Name	of	the	output	dbm	files.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Examples

httxt2dbm	-i	rewritemap.txt	-o	rewritemap.dbm

httxt2dbm	-f	SDBM	-i	rewritemap.txt	-o	rewritemap.dbm

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Using	RewriteMap

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	the	use	of	the	RewriteMap	directive,
and	provides	examples	of	each	of	the	various	RewriteMap	types.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Introduction

The	RewriteMap	directive	defines	an	external	function	which	can
be	called	in	the	context	of	RewriteRule	or	RewriteCond
directives	to	perform	rewriting	that	is	too	complicated,	or	too
specialized	to	be	performed	just	by	regular	expressions.	The
source	of	this	lookup	can	be	any	of	the	types	listed	in	the	sections
below,	and	enumerated	in	the	RewriteMap	reference
documentation.

The	syntax	of	the	RewriteMap	directive	is	as	follows:

RewriteMap	MapName	MapType:MapSource

The	MapName	is	an	arbitray	name	that	you	assign	to	the	map,
and	which	you	will	use	in	directives	later	on.	Arguments	are
passed	to	the	map	via	the	following	syntax:

${	MapName	:	LookupKey	}	${	MapName	:	LookupKey	|
DefaultValue	}

When	such	a	construct	occurs,	the	map	MapName	is	consulted
and	the	key	LookupKey	is	looked-up.	If	the	key	is	found,	the	map-
function	construct	is	substituted	by	SubstValue.	If	the	key	is	not
found	then	it	is	substituted	by	DefaultValue	or	by	the	empty	string
if	no	DefaultValue	was	specified.

For	example,	you	can	define	a	RewriteMap	as:

RewriteMap	examplemap	"txt:/path/to/file/map.txt"

You	would	then	be	able	to	use	this	map	in	a	RewriteRule	as
follows:

RewriteRule	"^/ex/(.*)"	"${examplemap:$1}"

A	default	value	can	be	specified	in	the	event	that	nothing	is	found
in	the	map:

RewriteRule	"^/ex/(.*)"	"${examplemap:$1|/not_found.html}"

Per-directory	and	.htaccess	context

The	RewriteMap	directive	may	not	be	used	in	<Directory>
sections	or	.htaccess	files.	You	must	declare	the	map	in
server	or	virtualhost	context.	You	may	use	the	map,	once
created,	in	your	RewriteRule	and	RewriteCond	directives	in
those	scopes.	You	just	can't	declare	it	in	those	scopes.

The	sections	that	follow	describe	the	various	MapTypes	that	may
be	used,	and	give	examples	of	each.

int:	Internal	Function

When	a	MapType	of	int	is	used,	the	MapSource	is	one	of	the
available	internal	RewriteMap	functions.	Module	authors	can
provide	additional	internal	functions	by	registering	them	with	the
ap_register_rewrite_mapfunc	API.	The	functions	that	are
provided	by	default	are:

toupper:
Converts	the	key	to	all	upper	case.
tolower:
Converts	the	key	to	all	lower	case.
escape:
Translates	special	characters	in	the	key	to	hex-encodings.
unescape:
Translates	hex-encodings	in	the	key	back	to	special
characters.

To	use	one	of	these	functions,	create	a	RewriteMap	referencing
the	int	function,	and	then	use	that	in	your	RewriteRule:

Redirect	a	URI	to	an	all-lowercase	version	of	itself

RewriteMap	lc	int:tolower

RewriteRule	"(.*)"	"${lc:$1}"	[R]

Please	note	that	the	example	offered	here	is	for	illustration
purposes	only,	and	is	not	a	recommendation.	If	you	want	to
make	URLs	case-insensitive,	consider	using	mod_speling
instead.

txt:	Plain	text	maps

When	a	MapType	of	txt	is	used,	the	MapSource	is	a	filesystem
path	to	a	plain-text	mapping	file,	containing	one	space-separated
key/value	pair	per	line.	Optionally,	a	line	may	contain	a	comment,
starting	with	a	'#'	character.

A	valid	text	rewrite	map	file	will	have	the	following	syntax:

#	Comment	line

MatchingKey	SubstValue

MatchingKey	SubstValue	#	comment

When	the	RewriteMap	is	invoked	the	argument	is	looked	for	in
the	first	argument	of	a	line,	and,	if	found,	the	substitution	value	is
returned.

For	example,	we	can	use	a	mapfile	to	translate	product	names	to
product	IDs	for	easier-to-remember	URLs,	using	the	following
recipe:

Product	to	ID	configuration

RewriteMap	product2id	"txt:/etc/apache2/productmap.txt"

RewriteRule	"^/product/(.*)"	"/prods.php?id=${product2id:$1|NOTFOUND}"	[PT]

We	assume	here	that	the	prods.php	script	knows	what	to	do
when	it	received	an	argument	of	id=NOTFOUND	when	a	product	is
not	found	in	the	lookup	map.

The	file	/etc/apache2/productmap.txt	then	contains	the
following:

Product	to	ID	map
##

##	productmap.txt	-	Product	to	ID	map	file

##

television	993

stereo	198

fishingrod	043

basketball	418

telephone	328

Thus,	when	http://example.com/product/television	is
requested,	the	RewriteRule	is	applied,	and	the	request	is
internally	mapped	to	/prods.php?id=993.

Note:	.htaccess	files
The	example	given	is	crafted	to	be	used	in	server	or	virtualhost
scope.	If	you're	planning	to	use	this	in	a	.htaccess	file,	you'll
need	to	remove	the	leading	slash	from	the	rewrite	pattern	in
order	for	it	to	match	anything:

RewriteRule	"^product/(.*)"	"/prods.php?id=${product2id:$1|NOTFOUND}"	[PT]

Cached	lookups

The	looked-up	keys	are	cached	by	httpd	until	the	mtime
(modified	time)	of	the	mapfile	changes,	or	the	httpd	server	is
restarted.	This	ensures	better	performance	on	maps	that	are
called	by	many	requests.

rnd:	Randomized	Plain	Text

When	a	MapType	of	rnd	is	used,	the	MapSource	is	a	filesystem
path	to	a	plain-text	mapping	file,	each	line	of	which	contains	a	key,
and	one	or	more	values	separated	by	|.	One	of	these	values	will
be	chosen	at	random	if	the	key	is	matched.

For	example,	you	can	use	the	following	map	file	and	directives	to
provide	a	random	load	balancing	between	several	back-end
servers,	via	a	reverse-proxy.	Images	are	sent	to	one	of	the	servers
in	the	'static'	pool,	while	everything	else	is	sent	to	one	of	the
'dynamic'	pool.

Rewrite	map	file
##

##	map.txt	--	rewriting	map

##

static	www1|www2|www3|www4

dynamic	www5|www6

Configuration	directives

RewriteMap	servers	"rnd:/path/to/file/map.txt"

RewriteRule	"^/(.*\.(png|gif|jpg))"	"http://${servers:static}/$1"		[NC,P,L]

RewriteRule	"^/(.*)"																"http://${servers:dynamic}/$1"	[P,L]

So,	when	an	image	is	requested	and	the	first	of	these	rules	is
matched,	RewriteMap	looks	up	the	string	static	in	the	map	file,
which	returns	one	of	the	specified	hostnames	at	random,	which	is
then	used	in	the	RewriteRule	target.

If	you	wanted	to	have	one	of	the	servers	more	likely	to	be	chosen
(for	example,	if	one	of	the	server	has	more	memory	than	the
others,	and	so	can	handle	more	requests)	simply	list	it	more	times

in	the	map	file.

static	www1|www1|www2|www3|www4

dbm:	DBM	Hash	File

When	a	MapType	of	dbm	is	used,	the	MapSource	is	a	filesystem
path	to	a	DBM	database	file	containing	key/value	pairs	to	be	used
in	the	mapping.	This	works	exactly	the	same	way	as	the	txt	map,
but	is	much	faster,	because	a	DBM	is	indexed,	whereas	a	text	file
is	not.	This	allows	more	rapid	access	to	the	desired	key.

You	may	optionally	specify	a	particular	dbm	type:

RewriteMap	examplemap	"dbm=sdbm:/etc/apache/mapfile.dbm"

The	type	can	be	sdbm,	gdbm,	ndbm	or	db.	However,	it	is
recommended	that	you	just	use	the	httxt2dbm	utility	that	is
provided	with	Apache	HTTP	Server,	as	it	will	use	the	correct	DBM
library,	matching	the	one	that	was	used	when	httpd	itself	was	built.

To	create	a	dbm	file,	first	create	a	text	map	file	as	described	in	the
txt	section.	Then	run	httxt2dbm:

$	httxt2dbm	-i	mapfile.txt	-o	mapfile.map

You	can	then	reference	the	resulting	file	in	your	RewriteMap
directive:

RewriteMap	mapname	"dbm:/etc/apache/mapfile.map"

Note	that	with	some	dbm	types,	more	than	one	file	is	generated,
with	a	common	base	name.	For	example,	you	may	have	two
files	named	mapfile.map.dir	and	mapfiile.map.pag.
This	is	normal,	and	you	need	only	use	the	base	name
mapfile.map	in	your	RewriteMap	directive.

Cached	lookups

The	looked-up	keys	are	cached	by	httpd	until	the	mtime
(modified	time)	of	the	mapfile	changes,	or	the	httpd	server	is
restarted.	This	ensures	better	performance	on	maps	that	are
called	by	many	requests.

prg:	External	Rewriting	Program

When	a	MapType	of	prg	is	used,	the	MapSource	is	a	filesystem
path	to	an	executable	program	which	will	providing	the	mapping
behavior.	This	can	be	a	compiled	binary	file,	or	a	program	in	an
interpreted	language	such	as	Perl	or	Python.

This	program	is	started	once,	when	the	Apache	HTTP	Server	is
started,	and	then	communicates	with	the	rewriting	engine	via
STDIN	and	STDOUT.	That	is,	for	each	map	function	lookup,	it
expects	one	argument	via	STDIN,	and	should	return	one	new-line
terminated	response	string	on	STDOUT.	If	there	is	no
corresponding	lookup	value,	the	map	program	should	return	the
four-character	string	"NULL"	to	indicate	this.

External	rewriting	programs	are	not	started	if	they're	defined	in	a
context	that	does	not	have	RewriteEngine	set	to	on.

This	feature	utilizes	the	rewrite-map	mutex,	which	is	required
for	reliable	communication	with	the	program.	The	mutex
mechanism	and	lock	file	can	be	configured	with	the	Mutex
directive.

A	simple	example	is	shown	here	which	will	replace	all	dashes	with
underscores	in	a	request	URI.

Rewrite	configuration

RewriteMap	d2u	"prg:/www/bin/dash2under.pl"

RewriteRule	"-"	"${d2u:%{REQUEST_URI}}"

dash2under.pl

#!/usr/bin/perl

$|	=	1;	#	Turn	off	I/O	buffering

while	(<STDIN>)	{

				s/-/_/g;	#	Replace	dashes	with	underscores

				print	$_;

}

Caution!

Keep	your	rewrite	map	program	as	simple	as	possible.	If
the	program	hangs,	it	will	cause	httpd	to	wait	indefinitely	for
a	response	from	the	map,	which	will,	in	turn,	cause	httpd	to
stop	responding	to	requests.
Be	sure	to	turn	off	buffering	in	your	program.	In	Perl	this	is
done	by	the	second	line	in	the	example	script:	$|	=	1;
This	will	of	course	vary	in	other	languages.	Buffered	I/O	will
cause	httpd	to	wait	for	the	output,	and	so	it	will	hang.
Remember	that	there	is	only	one	copy	of	the	program,
started	at	server	startup.	All	requests	will	need	to	go
through	this	one	bottleneck.	This	can	cause	significant
slowdowns	if	many	requests	must	go	through	this	process,
or	if	the	script	itself	is	very	slow.

dbd	or	fastdbd:	SQL	Query

When	a	MapType	of	dbd	or	fastdbd	is	used,	the	MapSource	is	a
SQL	SELECT	statement	that	takes	a	single	argument	and	returns
a	single	value.

mod_dbd	will	need	to	be	configured	to	point	at	the	right	database
for	this	statement	to	be	executed.

There	are	two	forms	of	this	MapType.	Using	a	MapType	of	dbd
causes	the	query	to	be	executed	with	each	map	request,	while
using	fastdbd	caches	the	database	lookups	internally.	So,	while
fastdbd	is	more	efficient,	and	therefore	faster,	it	won't	pick	up	on
changes	to	the	database	until	the	server	is	restarted.

If	a	query	returns	more	than	one	row,	a	random	row	from	the	result
set	is	used.

Example
RewriteMap	myquery	"fastdbd:SELECT	destination	FROM	rewrite	WHERE	source	=	%s"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Summary

The	RewriteMap	directive	can	occur	more	than	once.	For	each
mapping-function	use	one	RewriteMap	directive	to	declare	its
rewriting	mapfile.

While	you	cannot	declare	a	map	in	per-directory	context
(.htaccess	files	or	<Directory>	blocks)	it	is	possible	to	use
this	map	in	per-directory	context.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	mod_rewrite	Introduction

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	the	basic	concepts	necessary	for	use	of
mod_rewrite.	Other	documents	go	into	greater	detail,	but	this	doc
should	help	the	beginner	get	their	feet	wet.

See	also
Module	documentation
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Introduction

The	Apache	module	mod_rewrite	is	a	very	powerful	and
sophisticated	module	which	provides	a	way	to	do	URL
manipulations.	With	it,	you	can	do	nearly	all	types	of	URL	rewriting
that	you	may	need.	It	is,	however,	somewhat	complex,	and	may	be
intimidating	to	the	beginner.	There	is	also	a	tendency	to	treat
rewrite	rules	as	magic	incantation,	using	them	without	actually
understanding	what	they	do.

This	document	attempts	to	give	sufficient	background	so	that	what
follows	is	understood,	rather	than	just	copied	blindly.

Remember	that	many	common	URL-manipulation	tasks	don't
require	the	full	power	and	complexity	of	mod_rewrite.	For	simple
tasks,	see	mod_alias	and	the	documentation	on	mapping	URLs
to	the	filesystem.

Finally,	before	proceeding,	be	sure	to	configure	mod_rewrite's
log	level	to	one	of	the	trace	levels	using	the	LogLevel	directive.
Although	this	can	give	an	overwhelming	amount	of	information,	it
is	indispensable	in	debugging	problems	with	mod_rewrite
configuration,	since	it	will	tell	you	exactly	how	each	rule	is
processed.

Regular	Expressions

mod_rewrite	uses	the	Perl	Compatible	Regular	Expression
vocabulary.	In	this	document,	we	do	not	attempt	to	provide	a
detailed	reference	to	regular	expressions.	For	that,	we	recommend
the	PCRE	man	pages,	the	Perl	regular	expression	man	page,	and
Mastering	Regular	Expressions,	by	Jeffrey	Friedl.

In	this	document,	we	attempt	to	provide	enough	of	a	regex
vocabulary	to	get	you	started,	without	being	overwhelming,	in	the
hope	that	RewriteRules	will	be	scientific	formulae,	rather	than
magical	incantations.

Regex	vocabulary
The	following	are	the	minimal	building	blocks	you	will	need,	in
order	to	write	regular	expressions	and	RewriteRules.	They
certainly	do	not	represent	a	complete	regular	expression
vocabulary,	but	they	are	a	good	place	to	start,	and	should	help	you
read	basic	regular	expressions,	as	well	as	write	your	own.

Character Meaning Example
. Matches	any	single

character
c.t	will	match	cat,	cot,
cut,	etc.

+ Repeats	the	previous
match	one	or	more	times

a+	matches	a,	aa,	aaa,	etc

* Repeats	the	previous
match	zero	or	more
times.

a*	matches	all	the	same
things	a+	matches,	but	will
also	match	an	empty
string.

? Makes	the	match
optional.

colou?r	will	match	color
and	colour.

^ Called	an	anchor,
matches	the	beginning	of
the	string

^a	matches	a	string	that
begins	with	a

http://pcre.org/
http://pcre.org/pcre.txt
http://perldoc.perl.org/perlre.html
http://shop.oreilly.com/product/9780596528126.do

$ The	other	anchor,	this
matches	the	end	of	the
string.

a$	matches	a	string	that
ends	with	a.

() Groups	several
characters	into	a	single
unit,	and	captures	a
match	for	use	in	a
backreference.

(ab)+	matches	ababab	-
that	is,	the	+	applies	to	the
group.	For	more	on
backreferences	see	below.

[] A	character	class	-
matches	one	of	the
characters

c[uoa]t	matches	cut,
cot	or	cat.

[^] Negative	character	class
-	matches	any	character
not	specified

c[^/]t	matches	cat	or
c=t	but	not	c/t

In	mod_rewrite	the	!	character	can	be	used	before	a	regular
expression	to	negate	it.	This	is,	a	string	will	be	considered	to	have
matched	only	if	it	does	not	match	the	rest	of	the	expression.

Regex	Back-Reference	Availability
One	important	thing	here	has	to	be	remembered:	Whenever	you
use	parentheses	in	Pattern	or	in	one	of	the	CondPattern,	back-
references	are	internally	created	which	can	be	used	with	the
strings	$N	and	%N	(see	below).	These	are	available	for	creating	the
Substitution	parameter	of	a	RewriteRule	or	the	TestString
parameter	of	a	RewriteCond.

Captures	in	the	RewriteRule	patterns	are	(counterintuitively)
available	to	all	preceding	RewriteCond	directives,	because	the
RewriteRule	expression	is	evaluated	before	the	individual
conditions.

Figure	1	shows	to	which	locations	the	back-references	are

transferred	for	expansion	as	well	as	illustrating	the	flow	of	the
RewriteRule,	RewriteCond	matching.	In	the	next	chapters,	we	will
be	exploring	how	to	use	these	back-references,	so	do	not	fret	if	it
seems	a	bit	alien	to	you	at	first.

Figure	1:	The	back-reference	flow	through	a	rule.
In	this	example,	a	request	for	/test/1234	would	be
transformed	into	/admin.foo?
page=test&id=1234&host=admin.example.com.

RewriteRule	Basics

A	RewriteRule	consists	of	three	arguments	separated	by
spaces.	The	arguments	are

1.	 Pattern:	which	incoming	URLs	should	be	affected	by	the	rule;

2.	 Substitution:	where	should	the	matching	requests	be	sent;

3.	 [flags]:	options	affecting	the	rewritten	request.

The	Pattern	is	a	regular	expression.	It	is	initially	(for	the	first
rewrite	rule	or	until	a	substitution	occurs)	matched	against	the
URL-path	of	the	incoming	request	(the	part	after	the	hostname	but
before	any	question	mark	indicating	the	beginning	of	a	query
string)	or,	in	per-directory	context,	against	the	request's	path
relative	to	the	directory	for	which	the	rule	is	defined.	Once	a
substitution	has	occurred,	the	rules	that	follow	are	matched
against	the	substituted	value.

Figure	2:	Syntax	of	the	RewriteRule	directive.

The	Substitution	can	itself	be	one	of	three	things:

A	full	filesystem	path	to	a	resource

RewriteRule	"^/games"	"/usr/local/games/web"

This	maps	a	request	to	an	arbitrary	location	on	your
filesystem,	much	like	the	Alias	directive.

A	web-path	to	a	resource

RewriteRule	"^/foo$"	"/bar"

If	DocumentRoot	is	set	to	/usr/local/apache2/htdocs,
then	this	directive	would	map	requests	for
http://example.com/foo	to	the	path
/usr/local/apache2/htdocs/bar.

An	absolute	URL

RewriteRule	"^/product/view$"	"http://site2.example.com/seeproduct.html"	[R]

This	tells	the	client	to	make	a	new	request	for	the	specified
URL.

The	Substitution	can	also	contain	back-references	to	parts	of	the
incoming	URL-path	matched	by	the	Pattern.	Consider	the
following:

RewriteRule	"^/product/(.*)/view$"	"/var/web/productdb/$1"

The	variable	$1	will	be	replaced	with	whatever	text	was	matched
by	the	expression	inside	the	parenthesis	in	the	Pattern.	For
example,	a	request	for
http://example.com/product/r14df/view	will	be	mapped

to	the	path	/var/web/productdb/r14df.

If	there	is	more	than	one	expression	in	parenthesis,	they	are
available	in	order	in	the	variables	$1,	$2,	$3,	and	so	on.

Rewrite	Flags

The	behavior	of	a	RewriteRule	can	be	modified	by	the
application	of	one	or	more	flags	to	the	end	of	the	rule.	For
example,	the	matching	behavior	of	a	rule	can	be	made	case-
insensitive	by	the	application	of	the	[NC]	flag:

RewriteRule	"^puppy.html"	"smalldog.html"	[NC]

For	more	details	on	the	available	flags,	their	meanings,	and
examples,	see	the	Rewrite	Flags	document.

Rewrite	Conditions

One	or	more	RewriteCond	directives	can	be	used	to	restrict	the
types	of	requests	that	will	be	subject	to	the	following
RewriteRule.	The	first	argument	is	a	variable	describing	a
characteristic	of	the	request,	the	second	argument	is	a	regular
expression	that	must	match	the	variable,	and	a	third	optional
argument	is	a	list	of	flags	that	modify	how	the	match	is	evaluated.

Figure	3:	Syntax	of	the	RewriteCond	directive

For	example,	to	send	all	requests	from	a	particular	IP	range	to	a
different	server,	you	could	use:

RewriteCond	"%{REMOTE_ADDR}"	"^10\.2\."

RewriteRule	"(.*)"	"http://intranet.example.com$1"

When	more	than	one	RewriteCond	is	specified,	they	must	all
match	for	the	RewriteRule	to	be	applied.	For	example,	to	deny
requests	that	contain	the	word	"hack"	in	their	query	string,	unless
they	also	contain	a	cookie	containing	the	word	"go",	you	could
use:

RewriteCond	"%{QUERY_STRING}"	"hack"

RewriteCond	"%{HTTP_COOKIE}"	"!go"

RewriteRule	"."	"-"	[F]

Notice	that	the	exclamation	mark	specifies	a	negative	match,	so
the	rule	is	only	applied	if	the	cookie	does	not	contain	"go".

Matches	in	the	regular	expressions	contained	in	the
RewriteConds	can	be	used	as	part	of	the	Substitution	in	the
RewriteRule	using	the	variables	%1,	%2,	etc.	For	example,	this
will	direct	the	request	to	a	different	directory	depending	on	the
hostname	used	to	access	the	site:

RewriteCond	"%{HTTP_HOST}"	"(.*)"

RewriteRule	"^/(.*)"	"/sites/%1/$1"

If	the	request	was	for	http://example.com/foo/bar,	then	%1
would	contain	example.com	and	$1	would	contain	foo/bar.

Rewrite	maps

The	RewriteMap	directive	provides	a	way	to	call	an	external
function,	so	to	speak,	to	do	your	rewriting	for	you.	This	is
discussed	in	greater	detail	in	the	RewriteMap	supplementary
documentation.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

.htaccess	files

Rewriting	is	typically	configured	in	the	main	server	configuration
setting	(outside	any	<Directory>	section)	or	inside
<VirtualHost>	containers.	This	is	the	easiest	way	to	do
rewriting	and	is	recommended.	It	is	possible,	however,	to	do
rewriting	inside	<Directory>	sections	or	.htaccess	files	at	the
expense	of	some	additional	complexity.	This	technique	is	called
per-directory	rewrites.

The	main	difference	with	per-server	rewrites	is	that	the	path	prefix
of	the	directory	containing	the	.htaccess	file	is	stripped	before
matching	in	the	RewriteRule.	In	addition,	the	RewriteBase
should	be	used	to	assure	the	request	is	properly	mapped.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

RewriteRule	Flags

This	document	discusses	the	flags	which	are	available	to	the
RewriteRule	directive,	providing	detailed	explanations	and
examples.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Introduction

A	RewriteRule	can	have	its	behavior	modified	by	one	or	more
flags.	Flags	are	included	in	square	brackets	at	the	end	of	the	rule,
and	multiple	flags	are	separated	by	commas.

RewriteRule	pattern	target	[Flag1,Flag2,Flag3]

Each	flag	(with	a	few	exceptions)	has	a	short	form,	such	as	CO,	as
well	as	a	longer	form,	such	as	cookie.	While	it	is	most	common
to	use	the	short	form,	it	is	recommended	that	you	familiarize
yourself	with	the	long	form,	so	that	you	remember	what	each	flag
is	supposed	to	do.	Some	flags	take	one	or	more	arguments.	Flags
are	not	case	sensitive.

Flags	that	alter	metadata	associated	with	the	request	(T=,	H=,	E=)
have	no	affect	in	per-directory	and	htaccess	context,	when	a
substitution	(other	than	'-')	is	performed	during	the	same	round	of
rewrite	processing.

Presented	here	are	each	of	the	available	flags,	along	with	an
example	of	how	you	might	use	them.

B	(escape	backreferences)

The	[B]	flag	instructs	RewriteRule	to	escape	non-alphanumeric
characters	before	applying	the	transformation.

In	2.4.26	and	later,	you	can	limit	the	escaping	to	specific
characters	in	backreferences	by	listing	them:	[B=#?;].	Note:	The
space	character	can	be	used	in	the	list	of	characters	to	escape,
but	it	cannot	be	the	last	character	in	the	list.

mod_rewrite	has	to	unescape	URLs	before	mapping	them,	so
backreferences	are	unescaped	at	the	time	they	are	applied.	Using
the	B	flag,	non-alphanumeric	characters	in	backreferences	will	be
escaped.	For	example,	consider	the	rule:

RewriteRule	"^search/(.*)$"	"/search.php?term=$1"

Given	a	search	term	of	'x	&	y/z',	a	browser	will	encode	it	as
'x%20%26%20y%2Fz',	making	the	request
'search/x%20%26%20y%2Fz'.	Without	the	B	flag,	this	rewrite	rule
will	map	to	'search.php?term=x	&	y/z',	which	isn't	a	valid	URL,	and
so	would	be	encoded	as	search.php?term=x%20&y%2Fz=,
which	is	not	what	was	intended.

With	the	B	flag	set	on	this	same	rule,	the	parameters	are	re-
encoded	before	being	passed	on	to	the	output	URL,	resulting	in	a
correct	mapping	to	/search.php?term=x%20%26%20y%2Fz.

RewriteRule	"^search/(.*)$"	"/search.php?term=$1"	[B,PT]

Note	that	you	may	also	need	to	set	AllowEncodedSlashes	to
On	to	get	this	particular	example	to	work,	as	httpd	does	not	allow
encoded	slashes	in	URLs,	and	returns	a	404	if	it	sees	one.

This	escaping	is	particularly	necessary	in	a	proxy	situation,	when
the	backend	may	break	if	presented	with	an	unescaped	URL.

An	alternative	to	this	flag	is	using	a	RewriteCond	to	capture
against	%{THE_REQUEST}	which	will	capture	strings	in	the
encoded	form.

BNP|backrefnoplus	(don't	escape	space	to	+)

The	[BNP]	flag	instructs	RewriteRule	to	escape	the	space
character	in	a	backreference	to	%20	rather	than	'+'.	Useful	when
the	backreference	will	be	used	in	the	path	component	rather	than
the	query	string.

This	flag	is	available	in	version	2.4.26	and	later.

C|chain

The	[C]	or	[chain]	flag	indicates	that	the	RewriteRule	is	chained
to	the	next	rule.	That	is,	if	the	rule	matches,	then	it	is	processed	as
usual	and	control	moves	on	to	the	next	rule.	However,	if	it	does	not
match,	then	the	next	rule,	and	any	other	rules	that	are	chained
together,	are	skipped.

CO|cookie

The	[CO],	or	[cookie]	flag,	allows	you	to	set	a	cookie	when	a
particular	RewriteRule	matches.	The	argument	consists	of	three
required	fields	and	four	optional	fields.

The	full	syntax	for	the	flag,	including	all	attributes,	is	as	follows:

[CO=NAME:VALUE:DOMAIN:lifetime:path:secure:httponly]

If	a	literal	':'	character	is	needed	in	any	of	the	cookie	fields,	an
alternate	syntax	is	available.	To	opt-in	to	the	alternate	syntax,	the
cookie	"Name"	should	be	preceded	with	a	';'	character,	and	field
separators	should	be	specified	as	';'.

[CO=;NAME;VALUE:MOREVALUE;DOMAIN;lifetime;path;secure;httponly]

You	must	declare	a	name,	a	value,	and	a	domain	for	the	cookie	to
be	set.

Domain
The	domain	for	which	you	want	the	cookie	to	be	valid.	This
may	be	a	hostname,	such	as	www.example.com,	or	it	may
be	a	domain,	such	as	.example.com.	It	must	be	at	least	two
parts	separated	by	a	dot.	That	is,	it	may	not	be	merely	.com
or	.net.	Cookies	of	that	kind	are	forbidden	by	the	cookie
security	model.

You	may	optionally	also	set	the	following	values:

Lifetime
The	time	for	which	the	cookie	will	persist,	in	minutes.
A	value	of	0	indicates	that	the	cookie	will	persist	only	for	the
current	browser	session.	This	is	the	default	value	if	none	is
specified.

Path
The	path,	on	the	current	website,	for	which	the	cookie	is	valid,
such	as	/customers/	or	/files/download/.
By	default,	this	is	set	to	/	-	that	is,	the	entire	website.

Secure
If	set	to	secure,	true,	or	1,	the	cookie	will	only	be	permitted
to	be	translated	via	secure	(https)	connections.

httponly
If	set	to	HttpOnly,	true,	or	1,	the	cookie	will	have	the
HttpOnly	flag	set,	which	means	that	the	cookie	is
inaccessible	to	JavaScript	code	on	browsers	that	support	this
feature.

Consider	this	example:

RewriteEngine	On

RewriteRule	"^/index\.html"	"-"	[CO=frontdoor:yes:.example.com:1440:/]

In	the	example	give,	the	rule	doesn't	rewrite	the	request.	The	"-"
rewrite	target	tells	mod_rewrite	to	pass	the	request	through
unchanged.	Instead,	it	sets	a	cookie	called	'frontdoor'	to	a	value	of
'yes'.	The	cookie	is	valid	for	any	host	in	the	.example.com
domain.	It	is	set	to	expire	in	1440	minutes	(24	hours)	and	is
returned	for	all	URIs.

DPI|discardpath

The	DPI	flag	causes	the	PATH_INFO	portion	of	the	rewritten	URI
to	be	discarded.

This	flag	is	available	in	version	2.2.12	and	later.

In	per-directory	context,	the	URI	each	RewriteRule	compares
against	is	the	concatenation	of	the	current	values	of	the	URI	and
PATH_INFO.

The	current	URI	can	be	the	initial	URI	as	requested	by	the	client,
the	result	of	a	previous	round	of	mod_rewrite	processing,	or	the
result	of	a	prior	rule	in	the	current	round	of	mod_rewrite
processing.

In	contrast,	the	PATH_INFO	that	is	appended	to	the	URI	before
each	rule	reflects	only	the	value	of	PATH_INFO	before	this	round
of	mod_rewrite	processing.	As	a	consequence,	if	large	portions	of
the	URI	are	matched	and	copied	into	a	substitution	in	multiple
RewriteRule	directives,	without	regard	for	which	parts	of	the
URI	came	from	the	current	PATH_INFO,	the	final	URI	may	have
multiple	copies	of	PATH_INFO	appended	to	it.

Use	this	flag	on	any	substitution	where	the	PATH_INFO	that
resulted	from	the	previous	mapping	of	this	request	to	the
filesystem	is	not	of	interest.	This	flag	permanently	forgets	the
PATH_INFO	established	before	this	round	of	mod_rewrite
processing	began.	PATH_INFO	will	not	be	recalculated	until	the
current	round	of	mod_rewrite	processing	completes.	Subsequent
rules	during	this	round	of	processing	will	see	only	the	direct	result
of	substitutions,	without	any	PATH_INFO	appended.

E|env

With	the	[E],	or	[env]	flag,	you	can	set	the	value	of	an	environment
variable.	Note	that	some	environment	variables	may	be	set	after
the	rule	is	run,	thus	unsetting	what	you	have	set.	See	the
Environment	Variables	document	for	more	details	on	how
Environment	variables	work.

The	full	syntax	for	this	flag	is:

[E=VAR:VAL]

[E=!VAR]

VAL	may	contain	backreferences	($N	or	%N)	which	are	expanded.

Using	the	short	form

[E=VAR]

you	can	set	the	environment	variable	named	VAR	to	an	empty
value.

The	form

[E=!VAR]

allows	to	unset	a	previously	set	environment	variable	named	VAR.

Environment	variables	can	then	be	used	in	a	variety	of	contexts,
including	CGI	programs,	other	RewriteRule	directives,	or
CustomLog	directives.

The	following	example	sets	an	environment	variable	called	'image'
to	a	value	of	'1'	if	the	requested	URI	is	an	image	file.	Then,	that
environment	variable	is	used	to	exclude	those	requests	from	the
access	log.

RewriteRule	"\.(png|gif|jpg)$"	"-"	[E=image:1]

CustomLog	"logs/access_log"	combined	env=!image

Note	that	this	same	effect	can	be	obtained	using	SetEnvIf.	This
technique	is	offered	as	an	example,	not	as	a	recommendation.

END

Using	the	[END]	flag	terminates	not	only	the	current	round	of
rewrite	processing	(like	[L])	but	also	prevents	any	subsequent
rewrite	processing	from	occurring	in	per-directory	(htaccess)
context.

This	does	not	apply	to	new	requests	resulting	from	external
redirects.

F|forbidden

Using	the	[F]	flag	causes	the	server	to	return	a	403	Forbidden
status	code	to	the	client.	While	the	same	behavior	can	be
accomplished	using	the	Deny	directive,	this	allows	more	flexibility
in	assigning	a	Forbidden	status.

The	following	rule	will	forbid	.exe	files	from	being	downloaded
from	your	server.

RewriteRule	"\.exe"	"-"	[F]

This	example	uses	the	"-"	syntax	for	the	rewrite	target,	which
means	that	the	requested	URI	is	not	modified.	There's	no	reason
to	rewrite	to	another	URI,	if	you're	going	to	forbid	the	request.

When	using	[F],	an	[L]	is	implied	-	that	is,	the	response	is	returned
immediately,	and	no	further	rules	are	evaluated.

G|gone

The	[G]	flag	forces	the	server	to	return	a	410	Gone	status	with	the
response.	This	indicates	that	a	resource	used	to	be	available,	but
is	no	longer	available.

As	with	the	[F]	flag,	you	will	typically	use	the	"-"	syntax	for	the
rewrite	target	when	using	the	[G]	flag:

RewriteRule	"oldproduct"	"-"	[G,NC]

When	using	[G],	an	[L]	is	implied	-	that	is,	the	response	is	returned
immediately,	and	no	further	rules	are	evaluated.

H|handler

Forces	the	resulting	request	to	be	handled	with	the	specified
handler.	For	example,	one	might	use	this	to	force	all	files	without	a
file	extension	to	be	parsed	by	the	php	handler:

RewriteRule	"!\."	"-"	[H=application/x-httpd-php]

The	regular	expression	above	-	!\.	-	will	match	any	request	that
does	not	contain	the	literal	.	character.

This	can	be	also	used	to	force	the	handler	based	on	some
conditions.	For	example,	the	following	snippet	used	in	per-server
context	allows	.php	files	to	be	displayed	by	mod_php	if	they	are
requested	with	the	.phps	extension:

RewriteRule	"^(/source/.+\.php)s$"	"$1"	[H=application/x-httpd-php-source]

The	regular	expression	above	-	^(/source/.+\.php)s$	-	will
match	any	request	that	starts	with	/source/	followed	by	1	or	n
characters	followed	by	.phps	literally.	The	backreference	$1
referrers	to	the	captured	match	within	parenthesis	of	the	regular
expression.

L|last

The	[L]	flag	causes	mod_rewrite	to	stop	processing	the	rule	set.
In	most	contexts,	this	means	that	if	the	rule	matches,	no	further
rules	will	be	processed.	This	corresponds	to	the	last	command	in
Perl,	or	the	break	command	in	C.	Use	this	flag	to	indicate	that	the
current	rule	should	be	applied	immediately	without	considering
further	rules.

If	you	are	using	RewriteRule	in	either	.htaccess	files	or	in
<Directory>	sections,	it	is	important	to	have	some
understanding	of	how	the	rules	are	processed.	The	simplified	form
of	this	is	that	once	the	rules	have	been	processed,	the	rewritten
request	is	handed	back	to	the	URL	parsing	engine	to	do	what	it
may	with	it.	It	is	possible	that	as	the	rewritten	request	is	handled,
the	.htaccess	file	or	<Directory>	section	may	be	encountered
again,	and	thus	the	ruleset	may	be	run	again	from	the	start.	Most
commonly	this	will	happen	if	one	of	the	rules	causes	a	redirect	-
either	internal	or	external	-	causing	the	request	process	to	start
over.

It	is	therefore	important,	if	you	are	using	RewriteRule	directives
in	one	of	these	contexts,	that	you	take	explicit	steps	to	avoid	rules
looping,	and	not	count	solely	on	the	[L]	flag	to	terminate	execution
of	a	series	of	rules,	as	shown	below.

An	alternative	flag,	[END],	can	be	used	to	terminate	not	only	the
current	round	of	rewrite	processing	but	prevent	any	subsequent
rewrite	processing	from	occurring	in	per-directory	(htaccess)
context.	This	does	not	apply	to	new	requests	resulting	from
external	redirects.

The	example	given	here	will	rewrite	any	request	to	index.php,
giving	the	original	request	as	a	query	string	argument	to
index.php,	however,	the	RewriteCond	ensures	that	if	the

request	is	already	for	index.php,	the	RewriteRule	will	be
skipped.

RewriteBase	"/"

RewriteCond	"%{REQUEST_URI}"	"!=/index.php"

RewriteRule	"^(.*)"	"/index.php?req=$1"	[L,PT]

N|next

The	[N]	flag	causes	the	ruleset	to	start	over	again	from	the	top,
using	the	result	of	the	ruleset	so	far	as	a	starting	point.	Use	with
extreme	caution,	as	it	may	result	in	loop.

The	[Next]	flag	could	be	used,	for	example,	if	you	wished	to
replace	a	certain	string	or	letter	repeatedly	in	a	request.	The
example	shown	here	will	replace	A	with	B	everywhere	in	a
request,	and	will	continue	doing	so	until	there	are	no	more	As	to
be	replaced.

RewriteRule	"(.*)A(.*)"	"$1B$2"	[N]

You	can	think	of	this	as	a	while	loop:	While	this	pattern	still
matches	(i.e.,	while	the	URI	still	contains	an	A),	perform	this
substitution	(i.e.,	replace	the	A	with	a	B).

In	2.4.8	and	later,	this	module	returns	an	error	after	32,000
iterations	to	protect	against	unintended	looping.	An	alternative
maximum	number	of	iterations	can	be	specified	by	adding	to	the	N
flag.

#	Be	willing	to	replace	1	character	in	each	pass	of	the	loop

RewriteRule	"(.+)[><;]$"	"$1"	[N=64000]

#	...	or,	give	up	if	after	10	loops

RewriteRule	"(.+)[><;]$"	"$1"	[N=10]

NC|nocase

Use	of	the	[NC]	flag	causes	the	RewriteRule	to	be	matched	in	a
case-insensitive	manner.	That	is,	it	doesn't	care	whether	letters
appear	as	upper-case	or	lower-case	in	the	matched	URI.

In	the	example	below,	any	request	for	an	image	file	will	be	proxied
to	your	dedicated	image	server.	The	match	is	case-insensitive,	so
that	.jpg	and	.JPG	files	are	both	acceptable,	for	example.

RewriteRule	"(.*\.(jpg|gif|png))$"	"http://images.example.com$1"	[P,NC]

NE|noescape

By	default,	special	characters,	such	as	&	and	?,	for	example,	will
be	converted	to	their	hexcode	equivalent.	Using	the	[NE]	flag
prevents	that	from	happening.

RewriteRule	"^/anchor/(.+)"	"/bigpage.html#$1"	[NE,R]

The	above	example	will	redirect	/anchor/xyz	to
/bigpage.html#xyz.	Omitting	the	[NE]	will	result	in	the	#	being
converted	to	its	hexcode	equivalent,	%23,	which	will	then	result	in
a	404	Not	Found	error	condition.

NS|nosubreq

Use	of	the	[NS]	flag	prevents	the	rule	from	being	used	on
subrequests.	For	example,	a	page	which	is	included	using	an	SSI
(Server	Side	Include)	is	a	subrequest,	and	you	may	want	to	avoid
rewrites	happening	on	those	subrequests.	Also,	when	mod_dir
tries	to	find	out	information	about	possible	directory	default	files
(such	as	index.html	files),	this	is	an	internal	subrequest,	and
you	often	want	to	avoid	rewrites	on	such	subrequests.	On
subrequests,	it	is	not	always	useful,	and	can	even	cause	errors,	if
the	complete	set	of	rules	are	applied.	Use	this	flag	to	exclude
problematic	rules.

To	decide	whether	or	not	to	use	this	rule:	if	you	prefix	URLs	with
CGI-scripts,	to	force	them	to	be	processed	by	the	CGI-script,	it's
likely	that	you	will	run	into	problems	(or	significant	overhead)	on
sub-requests.	In	these	cases,	use	this	flag.

Images,	javascript	files,	or	css	files,	loaded	as	part	of	an	HTML
page,	are	not	subrequests	-	the	browser	requests	them	as
separate	HTTP	requests.

P|proxy

Use	of	the	[P]	flag	causes	the	request	to	be	handled	by
mod_proxy,	and	handled	via	a	proxy	request.	For	example,	if	you
wanted	all	image	requests	to	be	handled	by	a	back-end	image
server,	you	might	do	something	like	the	following:

RewriteRule	"/(.*)\.(jpg|gif|png)$"	"http://images.example.com/$1.$2"	[P]

Use	of	the	[P]	flag	implies	[L]	-	that	is,	the	request	is	immediately
pushed	through	the	proxy,	and	any	following	rules	will	not	be
considered.

You	must	make	sure	that	the	substitution	string	is	a	valid	URI
(typically	starting	with	http://hostname)	which	can	be	handled
by	the	mod_proxy.	If	not,	you	will	get	an	error	from	the	proxy
module.	Use	this	flag	to	achieve	a	more	powerful	implementation
of	the	ProxyPass	directive,	to	map	remote	content	into	the
namespace	of	the	local	server.

Security	Warning

Take	care	when	constructing	the	target	URL	of	the	rule,
considering	the	security	impact	from	allowing	the	client
influence	over	the	set	of	URLs	to	which	your	server	will	act	as	a
proxy.	Ensure	that	the	scheme	and	hostname	part	of	the	URL	is
either	fixed,	or	does	not	allow	the	client	undue	influence.

Performance	warning

Using	this	flag	triggers	the	use	of	mod_proxy,	without	handling
of	persistent	connections.	This	means	the	performance	of	your
proxy	will	be	better	if	you	set	it	up	with	ProxyPass	or
ProxyPassMatch

This	is	because	this	flag	triggers	the	use	of	the	default	worker,
which	does	not	handle	connection	pooling/reuse.

Avoid	using	this	flag	and	prefer	those	directives,	whenever	you
can.

Note:	mod_proxy	must	be	enabled	in	order	to	use	this	flag.

PT|passthrough

The	target	(or	substitution	string)	in	a	RewriteRule	is	assumed	to
be	a	file	path,	by	default.	The	use	of	the	[PT]	flag	causes	it	to	be
treated	as	a	URI	instead.	That	is	to	say,	the	use	of	the	[PT]	flag
causes	the	result	of	the	RewriteRule	to	be	passed	back	through
URL	mapping,	so	that	location-based	mappings,	such	as	Alias,
Redirect,	or	ScriptAlias,	for	example,	might	have	a	chance
to	take	effect.

If,	for	example,	you	have	an	Alias	for	/icons,	and	have	a
RewriteRule	pointing	there,	you	should	use	the	[PT]	flag	to
ensure	that	the	Alias	is	evaluated.

Alias	"/icons"	"/usr/local/apache/icons"

RewriteRule	"/pics/(.+)\.jpg$"	"/icons/$1.gif"	[PT]

Omission	of	the	[PT]	flag	in	this	case	will	cause	the	Alias	to	be
ignored,	resulting	in	a	'File	not	found'	error	being	returned.

The	PT	flag	implies	the	L	flag:	rewriting	will	be	stopped	in	order	to
pass	the	request	to	the	next	phase	of	processing.

Note	that	the	PT	flag	is	implied	in	per-directory	contexts	such	as
<Directory>	sections	or	in	.htaccess	files.	The	only	way	to
circumvent	that	is	to	rewrite	to	-.

QSA|qsappend

When	the	replacement	URI	contains	a	query	string,	the	default
behavior	of	RewriteRule	is	to	discard	the	existing	query	string,
and	replace	it	with	the	newly	generated	one.	Using	the	[QSA]	flag
causes	the	query	strings	to	be	combined.

Consider	the	following	rule:

RewriteRule	"/pages/(.+)"	"/page.php?page=$1"	[QSA]

With	the	[QSA]	flag,	a	request	for	/pages/123?one=two	will	be
mapped	to	/page.php?page=123&one=two.	Without	the	[QSA]
flag,	that	same	request	will	be	mapped	to	/page.php?page=123
-	that	is,	the	existing	query	string	will	be	discarded.

QSD|qsdiscard

When	the	requested	URI	contains	a	query	string,	and	the	target
URI	does	not,	the	default	behavior	of	RewriteRule	is	to	copy
that	query	string	to	the	target	URI.	Using	the	[QSD]	flag	causes
the	query	string	to	be	discarded.

This	flag	is	available	in	version	2.4.0	and	later.

Using	[QSD]	and	[QSA]	together	will	result	in	[QSD]	taking
precedence.

If	the	target	URI	has	a	query	string,	the	default	behavior	will	be
observed	-	that	is,	the	original	query	string	will	be	discarded	and
replaced	with	the	query	string	in	the	RewriteRule	target	URI.

QSL|qslast

By	default,	the	first	(left-most)	question	mark	in	the	substitution
delimits	the	path	from	the	query	string.	Using	the	[QSL]	flag
instructs	RewriteRule	to	instead	split	the	two	components	using
the	last	(right-most)	question	mark.

This	is	useful	when	mapping	to	files	that	have	literal	question
marks	in	their	filename.	If	no	query	string	is	used	in	the
substitution,	a	question	mark	can	be	appended	to	it	in	combination
with	this	flag.

This	flag	is	available	in	version	2.4.19	and	later.

R|redirect

Use	of	the	[R]	flag	causes	a	HTTP	redirect	to	be	issued	to	the
browser.	If	a	fully-qualified	URL	is	specified	(that	is,	including
http://servername/)	then	a	redirect	will	be	issued	to	that
location.	Otherwise,	the	current	protocol,	servername,	and	port
number	will	be	used	to	generate	the	URL	sent	with	the	redirect.

Any	valid	HTTP	response	status	code	may	be	specified,	using	the
syntax	[R=305],	with	a	302	status	code	being	used	by	default	if
none	is	specified.	The	status	code	specified	need	not	necessarily
be	a	redirect	(3xx)	status	code.	However,	if	a	status	code	is
outside	the	redirect	range	(300-399)	then	the	substitution	string	is
dropped	entirely,	and	rewriting	is	stopped	as	if	the	L	were	used.

In	addition	to	response	status	codes,	you	may	also	specify	redirect
status	using	their	symbolic	names:	temp	(default),	permanent,	or
seeother.

You	will	almost	always	want	to	use	[R]	in	conjunction	with	[L]	(that
is,	use	[R,L])	because	on	its	own,	the	[R]	flag	prepends
http://thishost[:thisport]	to	the	URI,	but	then	passes
this	on	to	the	next	rule	in	the	ruleset,	which	can	often	result	in
'Invalid	URI	in	request'	warnings.

S|skip

The	[S]	flag	is	used	to	skip	rules	that	you	don't	want	to	run.	The
syntax	of	the	skip	flag	is	[S=N],	where	N	signifies	the	number	of
rules	to	skip	(provided	the	RewriteRule	matches).	This	can	be
thought	of	as	a	goto	statement	in	your	rewrite	ruleset.	In	the
following	example,	we	only	want	to	run	the	RewriteRule	if	the
requested	URI	doesn't	correspond	with	an	actual	file.

#	Is	the	request	for	a	non-existent	file?

RewriteCond	"%{REQUEST_FILENAME}"	"!-f"

RewriteCond	"%{REQUEST_FILENAME}"	"!-d"

#	If	so,	skip	these	two	RewriteRules

RewriteRule	".?"	"-"	[S=2]

RewriteRule	"(.*\.gif)"	"images.php?$1"

RewriteRule	"(.*\.html)"	"docs.php?$1"

This	technique	is	useful	because	a	RewriteCond	only	applies	to
the	RewriteRule	immediately	following	it.	Thus,	if	you	want	to
make	a	RewriteCond	apply	to	several	RewriteRules,	one
possible	technique	is	to	negate	those	conditions	and	add	a
RewriteRule	with	a	[Skip]	flag.	You	can	use	this	to	make	pseudo
if-then-else	constructs:	The	last	rule	of	the	then-clause	becomes
skip=N,	where	N	is	the	number	of	rules	in	the	else-clause:

#	Does	the	file	exist?

RewriteCond	"%{REQUEST_FILENAME}"	"!-f"

RewriteCond	"%{REQUEST_FILENAME}"	"!-d"

#	Create	an	if-then-else	construct	by	skipping	3	lines	if	we	meant	to	go	to	the	"else"	stanza.

RewriteRule	".?"	"-"	[S=3]

#	IF	the	file	exists,	then:

				RewriteRule	"(.*\.gif)"	"images.php?$1"

				RewriteRule	"(.*\.html)"	"docs.php?$1"

				#	Skip	past	the	"else"	stanza.

				RewriteRule	".?"	"-"	[S=1]

#	ELSE...

				RewriteRule	"(.*)"	"404.php?file=$1"

#	END

It	is	probably	easier	to	accomplish	this	kind	of	configuration	using
the	<If>,	<ElseIf>,	and	<Else>	directives	instead.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

T|type

Sets	the	MIME	type	with	which	the	resulting	response	will	be	sent.
This	has	the	same	effect	as	the	AddType	directive.

For	example,	you	might	use	the	following	technique	to	serve	Perl
source	code	as	plain	text,	if	requested	in	a	particular	way:

#	Serve	.pl	files	as	plain	text

RewriteRule	"\.pl$"	"-"	[T=text/plain]

Or,	perhaps,	if	you	have	a	camera	that	produces	jpeg	images
without	file	extensions,	you	could	force	those	images	to	be	served
with	the	correct	MIME	type	by	virtue	of	their	file	names:

#	Files	with	'IMG'	in	the	name	are	jpg	images.

RewriteRule	"IMG"	"-"	[T=image/jpg]

Please	note	that	this	is	a	trivial	example,	and	could	be	better	done
using	<FilesMatch>	instead.	Always	consider	the	alternate
solutions	to	a	problem	before	resorting	to	rewrite,	which	will
invariably	be	a	less	efficient	solution	than	the	alternatives.

If	used	in	per-directory	context,	use	only	-	(dash)	as	the
substitution	for	the	entire	round	of	mod_rewrite	processing,
otherwise	the	MIME-type	set	with	this	flag	is	lost	due	to	an	internal
re-processing	(including	subsequent	rounds	of	mod_rewrite
processing).	The	L	flag	can	be	useful	in	this	context	to	end	the
current	round	of	mod_rewrite	processing.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Developing	modules	for	the	Apache	HTTP
Server	2.4

This	document	explains	how	you	can	develop	modules	for	the	Apache
HTTP	Server	2.4

See	also
Request	Processing	in	Apache	2.4
Apache	2.x	Hook	Functions

https://www.apache.org/foundation/contributing.html

Introduction

What	we	will	be	discussing	in	this	document
This	document	will	discuss	how	you	can	create	modules	for	the
Apache	HTTP	Server	2.4,	by	exploring	an	example	module	called
mod_example.	In	the	first	part	of	this	document,	the	purpose	of
this	module	will	be	to	calculate	and	print	out	various	digest	values
for	existing	files	on	your	web	server,	whenever	we	access	the	URL
http://hostname/filename.sum.	For	instance,	if	we	want	to
know	the	MD5	digest	value	of	the	file	located	at
http://www.example.com/index.html,	we	would	visit
http://www.example.com/index.html.sum.

In	the	second	part	of	this	document,	which	deals	with	configuration
directive	and	context	awareness,	we	will	be	looking	at	a	module
that	simply	writes	out	its	own	configuration	to	the	client.

Prerequisites
First	and	foremost,	you	are	expected	to	have	a	basic	knowledge	of
how	the	C	programming	language	works.	In	most	cases,	we	will
try	to	be	as	pedagogical	as	possible	and	link	to	documents
describing	the	functions	used	in	the	examples,	but	there	are	also
many	cases	where	it	is	necessary	to	either	just	assume	that	"it
works"	or	do	some	digging	yourself	into	what	the	hows	and	whys
of	various	function	calls.

Lastly,	you	will	need	to	have	a	basic	understanding	of	how
modules	are	loaded	and	configured	in	the	Apache	HTTP	Server,
as	well	as	how	to	get	the	headers	for	Apache	if	you	do	not	have
them	already,	as	these	are	needed	for	compiling	new	modules.

Compiling	your	module
To	compile	the	source	code	we	are	building	in	this	document,	we

will	be	using	APXS.	Assuming	your	source	file	is	called
mod_example.c,	compiling,	installing	and	activating	the	module	is
as	simple	as:

apxs	-i	-a	-c	mod_example.c

Defining	a	module

	Every	module	starts	with
the	same	declaration,	or	name	tag	if	you	will,	that	defines	a
module	as	a	separate	entity	within	Apache:

module	AP_MODULE_DECLARE_DATA			example_module	=

{	

				STANDARD20_MODULE_STUFF,

				create_dir_conf,	/*	Per-directory	configuration	handler	*/

				merge_dir_conf,		/*	Merge	handler	for	per-directory	configurations	*/

				create_svr_conf,	/*	Per-server	configuration	handler	*/

				merge_svr_conf,		/*	Merge	handler	for	per-server	configurations	*/

				directives,						/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks			/*	Our	hook	registering	function	*/

};

This	bit	of	code	lets	the	server	know	that	we	have	now	registered
a	new	module	in	the	system,	and	that	its	name	is
example_module.	The	name	of	the	module	is	used	primarily	for
two	things:

Letting	the	server	know	how	to	load	the	module	using	the
LoadModule
Setting	up	a	namespace	for	the	module	to	use	in
configurations

For	now,	we're	only	concerned	with	the	first	purpose	of	the	module
name,	which	comes	into	play	when	we	need	to	load	the	module:

LoadModule	example_module	modules/mod_example.so

In	essence,	this	tells	the	server	to	open	up	mod_example.so	and
look	for	a	module	called	example_module.

Within	this	name	tag	of	ours	is	also	a	bunch	of	references	to	how
we	would	like	to	handle	things:	Which	directives	do	we	respond	to
in	a	configuration	file	or	.htaccess,	how	do	we	operate	within
specific	contexts,	and	what	handlers	are	we	interested	in
registering	with	the	Apache	HTTP	service.	We'll	return	to	all	these
elements	later	in	this	document.

Getting	started:	Hooking	into	the	server

An	introduction	to	hooks
When	handling	requests	in	Apache	HTTP	Server	2.4,	the	first
thing	you	will	need	to	do	is	create	a	hook	into	the	request	handling
process.	A	hook	is	essentially	a	message	telling	the	server	that
you	are	willing	to	either	serve	or	at	least	take	a	glance	at	certain
requests	given	by	clients.	All	handlers,	whether	it's	mod_rewrite,
mod_authn_*,	mod_proxy	and	so	on,	are	hooked	into	specific
parts	of	the	request	process.	As	you	are	probably	aware,	modules
serve	different	purposes;	Some	are	authentication/authorization
handlers,	others	are	file	or	script	handlers	while	some	third
modules	rewrite	URIs	or	proxies	content.	Furthermore,	in	the	end,
it	is	up	to	the	user	of	the	server	how	and	when	each	module	will
come	into	place.	Thus,	the	server	itself	does	not	presume	to	know
which	module	is	responsible	for	handling	a	specific	request,	and
will	ask	each	module	whether	they	have	an	interest	in	a	given
request	or	not.	It	is	then	up	to	each	module	to	either	gently	decline
serving	a	request,	accept	serving	it	or	flat	out	deny	the	request
from	being	served,	as	authentication/authorization	modules	do:	

To	make	it	a	bit	easier	for	handlers	such	as	our	mod_example	to
know	whether	the	client	is	requesting	content	we	should	handle	or
not,	the	server	has	directives	for	hinting	to	modules	whether	their

assistance	is	needed	or	not.	Two	of	these	are	AddHandler	and
SetHandler.	Let's	take	a	look	at	an	example	using
AddHandler.	In	our	example	case,	we	want	every	request	ending
with	.sum	to	be	served	by	mod_example,	so	we'll	add	a
configuration	directive	that	tells	the	server	to	do	just	that:

AddHandler	example-handler	.sum

What	this	tells	the	server	is	the	following:	Whenever	we	receive	a
request	for	a	URI	ending	in	.sum,	we	are	to	let	all	modules	know
that	we	are	looking	for	whoever	goes	by	the	name	of	"example-
handler"	.	Thus,	when	a	request	is	being	served	that	ends	in	.sum,
the	server	will	let	all	modules	know,	that	this	request	should	be
served	by	"example-handler	".	As	you	will	see	later,	when	we	start
building	mod_example,	we	will	check	for	this	handler	tag	relayed
by	AddHandler	and	reply	to	the	server	based	on	the	value	of	this
tag.

Hooking	into	httpd
To	begin	with,	we	only	want	to	create	a	simple	handler,	that	replies
to	the	client	browser	when	a	specific	URL	is	requested,	so	we
won't	bother	setting	up	configuration	handlers	and	directives	just
yet.	Our	initial	module	definition	will	look	like	this:

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				NULL,

				NULL,

				NULL,

				NULL,

				NULL,

				register_hooks			/*	Our	hook	registering	function	*/

};

This	lets	the	server	know	that	we	are	not	interested	in	anything
fancy,	we	just	want	to	hook	onto	the	requests	and	possibly	handle
some	of	them.

The	reference	in	our	example	declaration,	register_hooks	is
the	name	of	a	function	we	will	create	to	manage	how	we	hook	onto
the	request	process.	In	this	example	module,	the	function	has	just
one	purpose;	To	create	a	simple	hook	that	gets	called	after	all	the
rewrites,	access	control	etc	has	been	handled.	Thus,	we	will	let
the	server	know,	that	we	want	to	hook	into	its	process	as	one	of
the	last	modules:

static	void	register_hooks(apr_pool_t	*pool)

{

				/*	Create	a	hook	in	the	request	handler,	so	we	get	called	when	a	request	arrives	*/

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

The	example_handler	reference	is	the	function	that	will	handle
the	request.	We	will	discuss	how	to	create	a	handler	in	the	next
chapter.

Other	useful	hooks
Hooking	into	the	request	handling	phase	is	but	one	of	many	hooks
that	you	can	create.	Some	other	ways	of	hooking	are:

ap_hook_child_init:	Place	a	hook	that	executes	when	a
child	process	is	spawned	(commonly	used	for	initializing
modules	after	the	server	has	forked)
ap_hook_pre_config:	Place	a	hook	that	executes	before
any	configuration	data	has	been	read	(very	early	hook)

ap_hook_post_config:	Place	a	hook	that	executes	after
configuration	has	been	parsed,	but	before	the	server	has
forked
ap_hook_translate_name:	Place	a	hook	that	executes
when	a	URI	needs	to	be	translated	into	a	filename	on	the
server	(think	mod_rewrite)
ap_hook_quick_handler:	Similar	to	ap_hook_handler,
except	it	is	run	before	any	other	request	hooks	(translation,
auth,	fixups	etc)
ap_hook_log_transaction:	Place	a	hook	that	executes
when	the	server	is	about	to	add	a	log	entry	of	the	current
request

Building	a	handler

A	handler	is	essentially	a	function	that	receives	a	callback	when	a
request	to	the	server	is	made.	It	is	passed	a	record	of	the	current
request	(how	it	was	made,	which	headers	and	requests	were
passed	along,	who's	giving	the	request	and	so	on),	and	is	put	in
charge	of	either	telling	the	server	that	it's	not	interested	in	the
request	or	handle	the	request	with	the	tools	provided.

A	simple	"Hello,	world!"	handler
Let's	start	off	by	making	a	very	simple	request	handler	that	does
the	following:

1.	 Check	that	this	is	a	request	that	should	be	served	by
"example-handler"

2.	 Set	the	content	type	of	our	output	to	text/html

3.	 Write	"Hello,	world!"	back	to	the	client	browser

4.	 Let	the	server	know	that	we	took	care	of	this	request	and
everything	went	fine

In	C	code,	our	example	handler	will	now	look	like	this:

static	int	example_handler(request_rec	*r)

{

				/*	First	off,	we	need	to	check	if	this	is	a	call	for	the	"example-handler"	handler.

					*	If	it	is,	we	accept	it	and	do	our	things,	if	not,	we	simply	return	DECLINED,

					*	and	the	server	will	try	somewhere	else.

					*/

				if	(!r->handler	||	strcmp(r->handler,	"example-handler"))	return	(DECLINED);

				

				/*	Now	that	we	are	handling	this	request,	we'll	write	out	"Hello,	world!"	to	the	client.

					*	To	do	so,	we	must	first	set	the	appropriate	content	type,	followed	by	our	output.

					*/

				ap_set_content_type(r,	"text/html");

				ap_rprintf(r,	"Hello,	world!");

				

				/*	Lastly,	we	must	tell	the	server	that	we	took	care	of	this	request	and	everything	went	fine.

					*	We	do	so	by	simply	returning	the	value	OK	to	the	server.

					*/

				return	OK;

}

Now,	we	put	all	we	have	learned	together	and	end	up	with	a
program	that	looks	like	mod_example_1.c	.	The	functions	used	in
this	example	will	be	explained	later	in	the	section	"Some	useful
functions	you	should	know".

The	request_rec	structure
The	most	essential	part	of	any	request	is	the	request	record	.	In	a
call	to	a	handler	function,	this	is	represented	by	the
request_rec*	structure	passed	along	with	every	call	that	is
made.	This	struct,	typically	just	referred	to	as	r	in	modules,
contains	all	the	information	you	need	for	your	module	to	fully
process	any	HTTP	request	and	respond	accordingly.

Some	key	elements	of	the	request_rec	structure	are:

r->handler	(char*):	Contains	the	name	of	the	handler
the	server	is	currently	asking	to	do	the	handling	of	this	request
r->method	(char*):	Contains	the	HTTP	method	being
used,	f.x.	GET	or	POST
r->filename	(char*):	Contains	the	translated	filename
the	client	is	requesting
r->args	(char*):	Contains	the	query	string	of	the
request,	if	any
r->headers_in	(apr_table_t*):	Contains	all	the
headers	sent	by	the	client
r->connection	(conn_rec*):	A	record	containing

http://people.apache.org/~humbedooh/mods/examples/mod_example_1.c

information	about	the	current	connection
r->user	(char*):	If	the	URI	requires	authentication,	this
is	set	to	the	username	provided
r->useragent_ip	(char*):	The	IP	address	of	the	client
connecting	to	us
r->pool	(apr_pool_t*):	The	memory	pool	of	this
request.	We'll	discuss	this	in	the	"Memory	management"
chapter.

A	complete	list	of	all	the	values	contained	within	the
request_rec	structure	can	be	found	in	the	httpd.h	header	file
or	at
http://ci.apache.org/projects/httpd/trunk/doxygen/structrequest__rec.html

Let's	try	out	some	of	these	variables	in	another	example	handler:

static	int	example_handler(request_rec	*r)

{

				/*	Set	the	appropriate	content	type	*/

				ap_set_content_type(r,	"text/html");

				/*	Print	out	the	IP	address	of	the	client	connecting	to	us:	*/

				ap_rprintf(r,	"<h2>Hello,	%s!</h2>",	r->useragent_ip);

				

				/*	If	we	were	reached	through	a	GET	or	a	POST	request,	be	happy,	else	sad.	*/

				if	(!strcmp(r->method,	"POST")	||	!strcmp(r->method,	"GET"))	{

								ap_rputs("You	used	a	GET	or	a	POST	method,	that	makes	us	happy!
",	r);

				}

				else	{

								ap_rputs("You	did	not	use	POST	or	GET,	that	makes	us	sad	:(
",	r);

				}

				/*	Lastly,	if	there	was	a	query	string,	let's	print	that	too!	*/

				if	(r->args)	{

								ap_rprintf(r,	"Your	query	string	was:	%s",	r->args);

				}

http://svn.apache.org/repos/asf/httpd/httpd/trunk/include/httpd.h
http://ci.apache.org/projects/httpd/trunk/doxygen/structrequest__rec.html

				return	OK;

}

Return	values
Apache	relies	on	return	values	from	handlers	to	signify	whether	a
request	was	handled	or	not,	and	if	so,	whether	the	request	went
well	or	not.	If	a	module	is	not	interested	in	handling	a	specific
request,	it	should	always	return	the	value	DECLINED.	If	it	is
handling	a	request,	it	should	either	return	the	generic	value	OK,	or
a	specific	HTTP	status	code,	for	example:

static	int	example_handler(request_rec	*r)

{

				/*	Return	404:	Not	found	*/

				return	HTTP_NOT_FOUND;

}

Returning	OK	or	a	HTTP	status	code	does	not	necessarily	mean
that	the	request	will	end.	The	server	may	still	have	other	handlers
that	are	interested	in	this	request,	for	instance	the	logging	modules
which,	upon	a	successful	request,	will	write	down	a	summary	of
what	was	requested	and	how	it	went.	To	do	a	full	stop	and	prevent
any	further	processing	after	your	module	is	done,	you	can	return
the	value	DONE	to	let	the	server	know	that	it	should	cease	all
activity	on	this	request	and	carry	on	with	the	next,	without
informing	other	handlers.	
General	response	codes:

DECLINED:	We	are	not	handling	this	request
OK:	We	handled	this	request	and	it	went	well
DONE:	We	handled	this	request	and	the	server	should	just
close	this	thread	without	further	processing

HTTP	specific	return	codes	(excerpt):

HTTP_OK	(200):	Request	was	okay
HTTP_MOVED_PERMANENTLY	(301):	The	resource	has
moved	to	a	new	URL
HTTP_UNAUTHORIZED	(401):	Client	is	not	authorized	to
visit	this	page
HTTP_FORBIDDEN	(403):	Permission	denied
HTTP_NOT_FOUND	(404):	File	not	found
HTTP_INTERNAL_SERVER_ERROR	(500):	Internal	server
error	(self	explanatory)

Some	useful	functions	you	should	know
ap_rputs(const	char	*string,	request_rec	*r):	
Sends	a	string	of	text	to	the	client.	This	is	a	shorthand	version
of	ap_rwrite.

ap_rputs("Hello,	world!",	r);

ap_rprintf:	
This	function	works	just	like	printf,	except	it	sends	the
result	to	the	client.

ap_rprintf(r,	"Hello,	%s!",	r->useragent_ip);

ap_set_content_type(request_rec	*r,	const

char	*type):	
Sets	the	content	type	of	the	output	you	are	sending.

ap_set_content_type(r,	"text/plain");	/*	force	a	raw	text	output	*/

http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__PROTO.html#gac827cd0537d2b6213a7c06d7c26cc36e
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__PROTO.html#ga5e91eb6ca777c9a427b2e82bf1eeb81d
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__PROTO.html#gaa2f8412c400197338ec509f4a45e4579

Memory	management
Managing	your	resources	in	Apache	HTTP	Server	2.4	is	quite
easy,	thanks	to	the	memory	pool	system.	In	essence,	each	server,
connection	and	request	have	their	own	memory	pool	that	gets
cleaned	up	when	its	scope	ends,	e.g.	when	a	request	is	done	or
when	a	server	process	shuts	down.	All	your	module	needs	to	do	is
latch	onto	this	memory	pool,	and	you	won't	have	to	worry	about
having	to	clean	up	after	yourself	-	pretty	neat,	huh?

In	our	module,	we	will	primarily	be	allocating	memory	for	each
request,	so	it's	appropriate	to	use	the	r->pool	reference	when
creating	new	objects.	A	few	of	the	functions	for	allocating	memory
within	a	pool	are:

void*	apr_palloc(apr_pool_t	*p,	apr_size_t

size):	Allocates	size	number	of	bytes	in	the	pool	for	you
void*	apr_pcalloc(apr_pool_t	*p,	apr_size_t

size):	Allocates	size	number	of	bytes	in	the	pool	for	you
and	sets	all	bytes	to	0
char*	apr_pstrdup(apr_pool_t	*p,	const	char

*s):	Creates	a	duplicate	of	the	string	s.	This	is	useful	for
copying	constant	values	so	you	can	edit	them
char*	apr_psprintf(apr_pool_t	*p,	const	char

*fmt,	...):	Similar	to	sprintf,	except	the	server	supplies
you	with	an	appropriately	allocated	target	variable

Let's	put	these	functions	into	an	example	handler:

static	int	example_handler(request_rec	*r)

{

				const	char	*original	=	"You	can't	edit	this!";

				char	*copy;

				int	*integers;

				

http://apr.apache.org/docs/apr/1.4/group__apr__pools.html#ga85f1e193c31d109affda72f9a92c6915
http://apr.apache.org/docs/apr/1.4/group__apr__pools.html#gaf61c098ad258069d64cdf8c0a9369f9e
http://apr.apache.org/docs/apr/1.4/group__apr__strings.html#gabc79e99ff19abbd7cfd18308c5f85d47
http://apr.apache.org/docs/apr/1.4/group__apr__strings.html#ga3eca76b8d293c5c3f8021e45eda813d8

				/*	Allocate	space	for	10	integer	values	and	set	them	all	to	zero.	*/

				integers	=	apr_pcalloc(r->pool,	sizeof(int)*10);	

				

				/*	Create	a	copy	of	the	'original'	variable	that	we	can	edit.	*/

				copy	=	apr_pstrdup(r->pool,	original);

				return	OK;

}

This	is	all	well	and	good	for	our	module,	which	won't	need	any	pre-
initialized	variables	or	structures.	However,	if	we	wanted	to
initialize	something	early	on,	before	the	requests	come	rolling	in,
we	could	simply	add	a	call	to	a	function	in	our	register_hooks
function	to	sort	it	out:

static	void	register_hooks(apr_pool_t	*pool)

{

				/*	Call	a	function	that	initializes	some	stuff	*/

				example_init_function(pool);

				/*	Create	a	hook	in	the	request	handler,	so	we	get	called	when	a	request	arrives	*/

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

In	this	pre-request	initialization	function	we	would	not	be	using	the
same	pool	as	we	did	when	allocating	resources	for	request-based
functions.	Instead,	we	would	use	the	pool	given	to	us	by	the	server
for	allocating	memory	on	a	per-process	based	level.

Parsing	request	data
In	our	example	module,	we	would	like	to	add	a	feature,	that
checks	which	type	of	digest,	MD5	or	SHA1	the	client	would	like	to
see.	This	could	be	solved	by	adding	a	query	string	to	the	request.
A	query	string	is	typically	comprised	of	several	keys	and	values
put	together	in	a	string,	for	instance

valueA=yes&valueB=no&valueC=maybe.	It	is	up	to	the
module	itself	to	parse	these	and	get	the	data	it	requires.	In	our
example,	we'll	be	looking	for	a	key	called	digest,	and	if	set	to
md5,	we'll	produce	an	MD5	digest,	otherwise	we'll	produce	a	SHA1
digest.

Since	the	introduction	of	Apache	HTTP	Server	2.4,	parsing
request	data	from	GET	and	POST	requests	have	never	been
easier.	All	we	require	to	parse	both	GET	and	POST	data	is	four
simple	lines:

apr_table_t	*GET;	

apr_array_header_t*POST;	

ap_args_to_table(r,	&GET);	

ap_parse_form_data(r,	NULL,	&POST,	-1,	8192);

In	our	specific	example	module,	we're	looking	for	the	digest
value	from	the	query	string,	which	now	resides	inside	a	table
called	GET.	To	extract	this	value,	we	need	only	perform	a	simple
operation:

/*	Get	the	"digest"	key	from	the	query	string,	if	any.	*/

const	char	*digestType	=	apr_table_get(GET,	"digest");

/*	If	no	key	was	returned,	we	will	set	a	default	value	instead.	*/

if	(!digestType)	digestType	=	"sha1";

The	structures	used	for	the	POST	and	GET	data	are	not	exactly
the	same,	so	if	we	were	to	fetch	a	value	from	POST	data	instead

http://ci.apache.org/projects/httpd/trunk/doxygen/group__apr__tables.html#gad7ea82d6608a4a633fc3775694ab71e4
http://ci.apache.org/projects/httpd/trunk/doxygen/structapr__array__header__t.html
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__SCRIPT.html#gaed25877b529623a4d8f99f819ba1b7bd
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__DAEMON.html#ga9d426b6382b49754d4f87c55f65af202

of	the	query	string,	we	would	have	to	resort	to	a	few	more	lines,	as
outlined	in	this	example	in	the	last	chapter	of	this	document.

Making	an	advanced	handler
Now	that	we	have	learned	how	to	parse	form	data	and	manage
our	resources,	we	can	move	on	to	creating	an	advanced	version	of
our	module,	that	spits	out	the	MD5	or	SHA1	digest	of	files:

static	int	example_handler(request_rec	*r)

{

				int	rc,	exists;

				apr_finfo_t	finfo;

				apr_file_t	*file;

				char	*filename;

				char	buffer[256];

				apr_size_t	readBytes;

				int	n;

				apr_table_t	*GET;

				apr_array_header_t	*POST;

				const	char	*digestType;

				

				

				/*	Check	that	the	"example-handler"	handler	is	being	called.	*/

				if	(!r->handler	||	strcmp(r->handler,	"example-handler"))	return	(DECLINED);

				

				/*	Figure	out	which	file	is	being	requested	by	removing	the	.sum	from	it	*/

				filename	=	apr_pstrdup(r->pool,	r->filename);

				filename[strlen(filename)-4]	=	0;	/*	Cut	off	the	last	4	characters.	*/

				

				/*	Figure	out	if	the	file	we	request	a	sum	on	exists	and	isn't	a	directory	*/

				rc	=	apr_stat(&finfo,	filename,	APR_FINFO_MIN,	r->pool);

				if	(rc	==	APR_SUCCESS)	{

								exists	=

								(

												(finfo.filetype	!=	APR_NOFILE)

								&&		!(finfo.filetype	&	APR_DIR)

);

								if	(!exists)	return	HTTP_NOT_FOUND;	/*	Return	a	404	if	not	found.	*/

				}

				/*	If	apr_stat	failed,	we're	probably	not	allowed	to	check	this	file.	*/

				else	return	HTTP_FORBIDDEN;

				

				/*	Parse	the	GET	and,	optionally,	the	POST	data	sent	to	us	*/

				

				ap_args_to_table(r,	&GET);

				ap_parse_form_data(r,	NULL,	&POST,	-1,	8192);

				

				/*	Set	the	appropriate	content	type	*/

				ap_set_content_type(r,	"text/html");

				

				/*	Print	a	title	and	some	general	information	*/

				ap_rprintf(r,	"<h2>Information	on	%s:</h2>",	filename);

				ap_rprintf(r,	"Size:	%u	bytes
",	finfo.size);

				

				/*	Get	the	digest	type	the	client	wants	to	see	*/

				digestType	=	apr_table_get(GET,	"digest");

				if	(!digestType)	digestType	=	"MD5";

				

				

				rc	=	apr_file_open(&file,	filename,	APR_READ,	APR_OS_DEFAULT,	r->pool);

				if	(rc	==	APR_SUCCESS)	{

								

								/*	Are	we	trying	to	calculate	the	MD5	or	the	SHA1	digest?	*/

								if	(!strcasecmp(digestType,	"md5"))	{

												/*	Calculate	the	MD5	sum	of	the	file	*/

												union	{

																char						chr[16];

																uint32_t		num[4];

												}	digest;

												apr_md5_ctx_t	md5;

												apr_md5_init(&md5);

												readBytes	=	256;

												while	(apr_file_read(file,	buffer,	&readBytes)	==	APR_SUCCESS)	{

																apr_md5_update(&md5,	buffer,	readBytes);

												}

												apr_md5_final(digest.chr,	&md5);

												

												/*	Print	out	the	MD5	digest	*/

												ap_rputs("MD5:	<code>",	r);

												for	(n	=	0;	n	<	APR_MD5_DIGESTSIZE/4;	n++)	{

																ap_rprintf(r,	"%08x",	digest.num[n]);

												}

												ap_rputs("</code>",	r);

												/*	Print	a	link	to	the	SHA1	version	*/

												ap_rputs("
View	the	SHA1	hash	instead",	r);

								}

								else	{

												/*	Calculate	the	SHA1	sum	of	the	file	*/

												union	{

																char						chr[20];

																uint32_t		num[5];

												}	digest;

												apr_sha1_ctx_t	sha1;

												apr_sha1_init(&sha1);

												readBytes	=	256;

												while	(apr_file_read(file,	buffer,	&readBytes)	==	APR_SUCCESS)	{

																apr_sha1_update(&sha1,	buffer,	readBytes);

												}

												apr_sha1_final(digest.chr,	&sha1);

												

												/*	Print	out	the	SHA1	digest	*/

												ap_rputs("SHA1:	<code>",	r);

												for	(n	=	0;	n	<	APR_SHA1_DIGESTSIZE/4;	n++)	{

																ap_rprintf(r,	"%08x",	digest.num[n]);

												}

												ap_rputs("</code>",	r);

												

												/*	Print	a	link	to	the	MD5	version	*/

												ap_rputs("
View	the	MD5	hash	instead",	r);

								}

								apr_file_close(file);

								

				}				

				/*	Let	the	server	know	that	we	responded	to	this	request.	*/

				return	OK;

}

This	version	in	its	entirety	can	be	found	here:	mod_example_2.c.

http://people.apache.org/~humbedooh/mods/examples/mod_example_2.c

Adding	configuration	options

In	this	next	segment	of	this	document,	we	will	turn	our	eyes	away
from	the	digest	module	and	create	a	new	example	module,	whose
only	function	is	to	write	out	its	own	configuration.	The	purpose	of
this	is	to	examine	how	the	server	works	with	configuration,	and
what	happens	when	you	start	writing	advanced	configurations	for
your	modules.

An	introduction	to	configuration	directives
If	you	are	reading	this,	then	you	probably	already	know	what	a
configuration	directive	is.	Simply	put,	a	directive	is	a	way	of	telling
an	individual	module	(or	a	set	of	modules)	how	to	behave,	such	as
these	directives	control	how	mod_rewrite	works:

RewriteEngine	On

RewriteCond	"%{REQUEST_URI}"	"^/foo/bar"

RewriteRule	"^/foo/bar/(.*)$"	"/foobar?page=$1"

Each	of	these	configuration	directives	are	handled	by	a	separate
function,	that	parses	the	parameters	given	and	sets	up	a
configuration	accordingly.

Making	an	example	configuration
To	begin	with,	we'll	create	a	basic	configuration	in	C-space:

typedef	struct	{

				int									enabled;						/*	Enable	or	disable	our	module	*/

				const	char	*path;									/*	Some	path	to...something	*/

				int									typeOfAction;	/*	1	means	action	A,	2	means	action	B	and	so	on	*/

}	example_config;

Now,	let's	put	this	into	perspective	by	creating	a	very	small	module

that	just	prints	out	a	hard-coded	configuration.	You'll	notice	that	we
use	the	register_hooks	function	for	initializing	the	configuration
values	to	their	defaults:

typedef	struct	{

				int									enabled;						/*	Enable	or	disable	our	module	*/

				const	char	*path;									/*	Some	path	to...something	*/

				int									typeOfAction;	/*	1	means	action	A,	2	means	action	B	and	so	on	*/

}	example_config;

static	example_config	config;

static	int	example_handler(request_rec	*r)

{

				if	(!r->handler	||	strcmp(r->handler,	"example-handler"))	return(DECLINED);

				ap_set_content_type(r,	"text/plain");

				ap_rprintf(r,	"Enabled:	%u\n",	config.enabled);

				ap_rprintf(r,	"Path:	%s\n",	config.path);

				ap_rprintf(r,	"TypeOfAction:	%x\n",	config.typeOfAction);

				return	OK;

}

static	void	register_hooks(apr_pool_t	*pool)	

{

				config.enabled	=	1;

				config.path	=	"/foo/bar";

				config.typeOfAction	=	0x00;

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

/*	Define	our	module	as	an	entity	and	assign	a	function	for	registering	hooks		*/

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				NULL,												/*	Per-directory	configuration	handler	*/

				NULL,												/*	Merge	handler	for	per-directory	configurations	*/

				NULL,												/*	Per-server	configuration	handler	*/

				NULL,												/*	Merge	handler	for	per-server	configurations	*/

				NULL,												/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks			/*	Our	hook	registering	function	*/

};

So	far	so	good.	To	access	our	new	handler,	we	could	add	the
following	to	our	configuration:

<Location	"/example">

				SetHandler	example-handler

</Location>

When	we	visit,	we'll	see	our	current	configuration	being	spit	out	by
our	module.

Registering	directives	with	the	server
What	if	we	want	to	change	our	configuration,	not	by	hard-coding
new	values	into	the	module,	but	by	using	either	the	httpd.conf	file
or	possibly	a	.htaccess	file?	It's	time	to	let	the	server	know	that	we
want	this	to	be	possible.	To	do	so,	we	must	first	change	our	name
tag	to	include	a	reference	to	the	configuration	directives	we	want
to	register	with	the	server:

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				NULL,															/*	Per-directory	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-directory	configurations	*/

				NULL,															/*	Per-server	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-server	configurations	*/

				example_directives,	/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks						/*	Our	hook	registering	function	*/

};

This	will	tell	the	server	that	we	are	now	accepting	directives	from
the	configuration	files,	and	that	the	structure	called
example_directives	holds	information	on	what	our	directives
are	and	how	they	work.	Since	we	have	three	different	variables	in
our	module	configuration,	we	will	add	a	structure	with	three
directives	and	a	NULL	at	the	end:

static	const	command_rec								example_directives[]	=

{

				AP_INIT_TAKE1("exampleEnabled",	example_set_enabled,	NULL,	RSRC_CONF,	"Enable	or	disable	mod_example"),

				AP_INIT_TAKE1("examplePath",	example_set_path,	NULL,	RSRC_CONF,	"The	path	to	whatever"),

				AP_INIT_TAKE2("exampleAction",	example_set_action,	NULL,	RSRC_CONF,	"Special	action	value!"),

				{	NULL	}

};

As	you	can	see,	each	directive	needs	at	least	5	parameters	set:

1.	 AP_INIT_TAKE1:	This	is	a	macro	that	tells	the	server	that
this	directive	takes	one	and	only	one	argument.	If	we	required
two	arguments,	we	could	use	the	macro	AP_INIT_TAKE2
and	so	on	(refer	to	httpd_conf.h	for	more	macros).

2.	 exampleEnabled:	This	is	the	name	of	our	directive.	More
precisely,	it	is	what	the	user	must	put	in	his/her	configuration
in	order	to	invoke	a	configuration	change	in	our	module.

3.	 example_set_enabled:	This	is	a	reference	to	a	C	function
that	parses	the	directive	and	sets	the	configuration

http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__CONFIG.html#ga07c7d22ae17805e61204463326cf9c34
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__CONFIG.html#gafaec43534fcf200f37d9fecbf9247c21

accordingly.	We	will	discuss	how	to	make	this	in	the	following
paragraph.

4.	 RSRC_CONF:	This	tells	the	server	where	the	directive	is
permitted.	We'll	go	into	details	on	this	value	in	the	later
chapters,	but	for	now,	RSRC_CONF	means	that	the	server	will
only	accept	these	directives	in	a	server	context.

5.	 "Enable	or	disable....":	This	is	simply	a	brief
description	of	what	the	directive	does.

(The	"missing"	parameter	in	our	definition,	which	is	usually	set	to
NULL,	is	an	optional	function	that	can	be	run	after	the	initial
function	to	parse	the	arguments	have	been	run.	This	is	usually
omitted,	as	the	function	for	verifying	arguments	might	as	well	be
used	to	set	them.)

The	directive	handler	function
Now	that	we	have	told	the	server	to	expect	some	directives	for	our
module,	it's	time	to	make	a	few	functions	for	handling	these.	What
the	server	reads	in	the	configuration	file(s)	is	text,	and	so	naturally,
what	it	passes	along	to	our	directive	handler	is	one	or	more
strings,	that	we	ourselves	need	to	recognize	and	act	upon.	You'll
notice,	that	since	we	set	our	exampleAction	directive	to	accept
two	arguments,	its	C	function	also	has	an	additional	parameter
defined:

/*	Handler	for	the	"exampleEnabled"	directive	*/

const	char	*example_set_enabled(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				if(!strcasecmp(arg,	"on"))	config.enabled	=	1;

				else	config.enabled	=	0;

				return	NULL;

}

/*	Handler	for	the	"examplePath"	directive	*/

const	char	*example_set_path(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				config.path	=	arg;

				return	NULL;

}

/*	Handler	for	the	"exampleAction"	directive	*/

/*	Let's	pretend	this	one	takes	one	argument	(file	or	db),	and	a	second	(deny	or	allow),	*/

/*	and	we	store	it	in	a	bit-wise	manner.	*/

const	char	*example_set_action(cmd_parms	*cmd,	void	*cfg,	const	char	*arg1,	const	char	*arg2)

{

				if(!strcasecmp(arg1,	"file"))	config.typeOfAction	=	0x01;

				else	config.typeOfAction	=	0x02;

				

				if(!strcasecmp(arg2,	"deny"))	config.typeOfAction	+=	0x10;

				else	config.typeOfAction	+=	0x20;

				return	NULL;

}

Putting	it	all	together
Now	that	we	have	our	directives	set	up,	and	handlers	configured
for	them,	we	can	assemble	our	module	into	one	big	file:

/*	mod_example_config_simple.c:	*/

#include	<stdio.h>

#include	"apr_hash.h"

#include	"ap_config.h"

#include	"ap_provider.h"

#include	"httpd.h"

#include	"http_core.h"

#include	"http_config.h"

#include	"http_log.h"

#include	"http_protocol.h"

#include	"http_request.h"

/*

	==

	Our	configuration	prototype	and	declaration:

	==

	*/

typedef	struct	{

				int									enabled;						/*	Enable	or	disable	our	module	*/

				const	char	*path;									/*	Some	path	to...something	*/

				int									typeOfAction;	/*	1	means	action	A,	2	means	action	B	and	so	on	*/

}	example_config;

static	example_config	config;

/*

	==

	Our	directive	handlers:

	==

	*/

/*	Handler	for	the	"exampleEnabled"	directive	*/

const	char	*example_set_enabled(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				if(!strcasecmp(arg,	"on"))	config.enabled	=	1;

				else	config.enabled	=	0;

				return	NULL;

}

/*	Handler	for	the	"examplePath"	directive	*/

const	char	*example_set_path(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				config.path	=	arg;

				return	NULL;

}

/*	Handler	for	the	"exampleAction"	directive	*/

/*	Let's	pretend	this	one	takes	one	argument	(file	or	db),	and	a	second	(deny	or	allow),	*/

/*	and	we	store	it	in	a	bit-wise	manner.	*/

const	char	*example_set_action(cmd_parms	*cmd,	void	*cfg,	const	char	*arg1,	const	char	*arg2)

{

				if(!strcasecmp(arg1,	"file"))	config.typeOfAction	=	0x01;

				else	config.typeOfAction	=	0x02;

				

				if(!strcasecmp(arg2,	"deny"))	config.typeOfAction	+=	0x10;

				else	config.typeOfAction	+=	0x20;

				return	NULL;

}

/*

	==

	The	directive	structure	for	our	name	tag:

	==

	*/

static	const	command_rec								example_directives[]	=

{

				AP_INIT_TAKE1("exampleEnabled",	example_set_enabled,	NULL,	RSRC_CONF,	"Enable	or	disable	mod_example"),

				AP_INIT_TAKE1("examplePath",	example_set_path,	NULL,	RSRC_CONF,	"The	path	to	whatever"),

				AP_INIT_TAKE2("exampleAction",	example_set_action,	NULL,	RSRC_CONF,	"Special	action	value!"),

				{	NULL	}

};

/*

	==

	Our	module	handler:

	==

	*/

static	int	example_handler(request_rec	*r)

{

				if(!r->handler	||	strcmp(r->handler,	"example-handler"))	return(DECLINED);

				ap_set_content_type(r,	"text/plain");

				ap_rprintf(r,	"Enabled:	%u\n",	config.enabled);

				ap_rprintf(r,	"Path:	%s\n",	config.path);

				ap_rprintf(r,	"TypeOfAction:	%x\n",	config.typeOfAction);

				return	OK;

}

/*

	==

	The	hook	registration	function	(also	initializes	the	default	config	values):

	==

	*/

static	void	register_hooks(apr_pool_t	*pool)	

{

				config.enabled	=	1;

				config.path	=	"/foo/bar";

				config.typeOfAction	=	3;

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

/*

	==

	Our	module	name	tag:

	==

	*/

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				NULL,															/*	Per-directory	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-directory	configurations	*/

				NULL,															/*	Per-server	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-server	configurations	*/

				example_directives,	/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks						/*	Our	hook	registering	function	*/

};

In	our	httpd.conf	file,	we	can	now	change	the	hard-coded
configuration	by	adding	a	few	lines:

ExampleEnabled	On

ExamplePath	"/usr/bin/foo"

ExampleAction	file	allow

And	thus	we	apply	the	configuration,	visit	/example	on	our	web
site,	and	we	see	the	configuration	has	adapted	to	what	we	wrote	in
our	configuration	file.

Context	aware	configurations

Introduction	to	context	aware	configurations
In	Apache	HTTP	Server	2.4,	different	URLs,	virtual	hosts,
directories	etc	can	have	very	different	meanings	to	the	user	of	the
server,	and	thus	different	contexts	within	which	modules	must
operate.	For	example,	let's	assume	you	have	this	configuration	set
up	for	mod_rewrite:

<Directory	"/var/www">

				RewriteCond	"%{HTTP_HOST}"	"^example.com$"

				RewriteRule	"(.*)"	"http://www.example.com/$1"

</Directory>

<Directory	"/var/www/sub">

				RewriteRule	"^foobar$"	"index.php?foobar=true"

</Directory>

In	this	example,	you	will	have	set	up	two	different	contexts	for
mod_rewrite:

1.	 Inside	/var/www,	all	requests	for	http://example.com
must	go	to	http://www.example.com

2.	 Inside	/var/www/sub,	all	requests	for	foobar	must	go	to
index.php?foobar=true

If	mod_rewrite	(or	the	entire	server	for	that	matter)	wasn't	context
aware,	then	these	rewrite	rules	would	just	apply	to	every	and	any
request	made,	regardless	of	where	and	how	they	were	made,	but
since	the	module	can	pull	the	context	specific	configuration
straight	from	the	server,	it	does	not	need	to	know	itself,	which	of
the	directives	are	valid	in	this	context,	since	the	server	takes	care
of	this.

So	how	does	a	module	get	the	specific	configuration	for	the	server,

directory	or	location	in	question?	It	does	so	by	making	one	simple
call:

example_config	*config	=	(example_config*)	ap_get_module_config

That's	it!	Of	course,	a	whole	lot	goes	on	behind	the	scenes,	which
we	will	discuss	in	this	chapter,	starting	with	how	the	server	came
to	know	what	our	configuration	looks	like,	and	how	it	came	to	be
set	up	as	it	is	in	the	specific	context.

Our	basic	configuration	setup
In	this	chapter,	we	will	be	working	with	a	slightly	modified	version
of	our	previous	context	structure.	We	will	set	a	context	variable
that	we	can	use	to	track	which	context	configuration	is	being	used
by	the	server	in	various	places:

typedef	struct	{

				char								context[256];

				char								path[256];

				int									typeOfAction;

				int									enabled;

}	example_config;

Our	handler	for	requests	will	also	be	modified,	yet	still	very	simple:

static	int	example_handler(request_rec	*r)

{

				if(!r->handler	||	strcmp(r->handler,	"example-handler"))	return(DECLINED);

				example_config	*config	=	(example_config*)	ap_get_module_config(r->per_dir_config,	&example_module);

				ap_set_content_type(r,	"text/plain");

				ap_rprintf("Enabled:	%u\n",	config->enabled);

				ap_rprintf("Path:	%s\n",	config->path);

				ap_rprintf("TypeOfAction:	%x\n",	config->typeOfAction);

http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__CONFIG.html#ga1093a5908a384eacc929b028c79f2a02

				ap_rprintf("Context:	%s\n",	config->context);

				return	OK;

}

Choosing	a	context
Before	we	can	start	making	our	module	context	aware,	we	must
first	define,	which	contexts	we	will	accept.	As	we	saw	in	the
previous	chapter,	defining	a	directive	required	five	elements	be
set:

AP_INIT_TAKE1("exampleEnabled",	example_set_enabled,	NULL,	RSRC_CONF,	"Enable	or	disable	mod_example"),

The	RSRC_CONF	definition	told	the	server	that	we	would	only	allow
this	directive	in	a	global	server	context,	but	since	we	are	now
trying	out	a	context	aware	version	of	our	module,	we	should	set
this	to	something	more	lenient,	namely	the	value	ACCESS_CONF,
which	lets	us	use	the	directive	inside	<Directory>	and	<Location>
blocks.	For	more	control	over	the	placement	of	your	directives,	you
can	combine	the	following	restrictions	together	to	form	a	specific
rule:

RSRC_CONF:	Allow	in	.conf	files	(not	.htaccess)	outside
<Directory>	or	<Location>
ACCESS_CONF:	Allow	in	.conf	files	(not	.htaccess)	inside
<Directory>	or	<Location>
OR_OPTIONS:	Allow	in	.conf	files	and	.htaccess	when
AllowOverride	Options	is	set
OR_FILEINFO:	Allow	in	.conf	files	and	.htaccess	when
AllowOverride	FileInfo	is	set
OR_AUTHCFG:	Allow	in	.conf	files	and	.htaccess	when
AllowOverride	AuthConfig	is	set

OR_INDEXES:	Allow	in	.conf	files	and	.htaccess	when
AllowOverride	Indexes	is	set
OR_ALL:	Allow	anywhere	in	.conf	files	and	.htaccess

Using	the	server	to	allocate	configuration	slots
A	much	smarter	way	to	manage	your	configurations	is	by	letting
the	server	help	you	create	them.	To	do	so,	we	must	first	start	off	by
changing	our	name	tag	to	let	the	server	know,	that	it	should	assist
us	in	creating	and	managing	our	configurations.	Since	we	have
chosen	the	per-directory	(or	per-location)	context	for	our	module
configurations,	we'll	add	a	per-directory	creator	and	merger
function	reference	in	our	tag:

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				create_dir_conf,	/*	Per-directory	configuration	handler	*/

				merge_dir_conf,		/*	Merge	handler	for	per-directory	configurations	*/

				NULL,												/*	Per-server	configuration	handler	*/

				NULL,												/*	Merge	handler	for	per-server	configurations	*/

				directives,						/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks			/*	Our	hook	registering	function	*/

};

Creating	new	context	configurations
Now	that	we	have	told	the	server	to	help	us	create	and	manage
configurations,	our	first	step	is	to	make	a	function	for	creating	new,
blank	configurations.	We	do	so	by	creating	the	function	we	just
referenced	in	our	name	tag	as	the	Per-directory	configuration
handler:

void	*create_dir_conf(apr_pool_t	*pool,	char	*context)	{

				context	=	context	?	context	:	"(undefined	context)";

				example_config	*cfg	=	apr_pcalloc(pool,	sizeof(example_config));

				if(cfg)	{

								/*	Set	some	default	values	*/

								strcpy(cfg->context,	context);

								cfg->enabled	=	0;

								cfg->path	=	"/foo/bar";

								cfg->typeOfAction	=	0x11;

				}

				return	cfg;

}

Merging	configurations
Our	next	step	in	creating	a	context	aware	configuration	is	merging
configurations.	This	part	of	the	process	particularly	applies	to
scenarios	where	you	have	a	parent	configuration	and	a	child,	such
as	the	following:

<Directory	"/var/www">

				ExampleEnabled	On

				ExamplePath	"/foo/bar"

				ExampleAction	file	allow

</Directory>

<Directory	"/var/www/subdir">

				ExampleAction	file	deny

</Directory>

In	this	example,	it	is	natural	to	assume	that	the	directory
/var/www/subdir	should	inherit	the	values	set	for	the
/var/www	directory,	as	we	did	not	specify	an	ExampleEnabled
nor	an	ExamplePath	for	this	directory.	The	server	does	not
presume	to	know	if	this	is	true,	but	cleverly	does	the	following:

1.	 Creates	a	new	configuration	for	/var/www

2.	 Sets	the	configuration	values	according	to	the	directives	given
for	/var/www

3.	 Creates	a	new	configuration	for	/var/www/subdir

4.	 Sets	the	configuration	values	according	to	the	directives	given
for	/var/www/subdir

5.	 Proposes	a	merge	of	the	two	configurations	into	a	new
configuration	for	/var/www/subdir

This	proposal	is	handled	by	the	merge_dir_conf	function	we
referenced	in	our	name	tag.	The	purpose	of	this	function	is	to
assess	the	two	configurations	and	decide	how	they	are	to	be
merged:

void	*merge_dir_conf(apr_pool_t	*pool,	void	*BASE,	void	*ADD)	{

				example_config	*base	=	(example_config	*)	BASE	;	/*	This	is	what	was	set	in	the	parent	context	*/

				example_config	*add	=	(example_config	*)	ADD	;			/*	This	is	what	is	set	in	the	new	context	*/

				example_config	*conf	=	(example_config	*)	create_dir_conf(pool,	"Merged	configuration");	/*	This	will	be	the	merged	configuration	*/

				

				/*	Merge	configurations	*/

				conf->enabled	=	(add->enabled	==	0)	?	base->enabled	:	add->enabled	;

				conf->typeOfAction	=	add->typeOfAction	?	add->typeOfAction	:	base->typeOfAction;

				strcpy(conf->path,	strlen(add->path)	?	add->path	:	base->path);

				

				return	conf	;

}

Trying	out	our	new	context	aware	configurations
Now,	let's	try	putting	it	all	together	to	create	a	new	module	that	is
context	aware.	First	off,	we'll	create	a	configuration	that	lets	us	test
how	the	module	works:

<Location	"/a">

				SetHandler	example-handler

				ExampleEnabled	on

				ExamplePath	"/foo/bar"

				ExampleAction	file	allow

</Location>

<Location	"/a/b">

				ExampleAction	file	deny

				ExampleEnabled	off

</Location>

<Location	"/a/b/c">

				ExampleAction	db	deny

				ExamplePath	"/foo/bar/baz"

				ExampleEnabled	on

</Location>

Then	we'll	assemble	our	module	code.	Note,	that	since	we	are
now	using	our	name	tag	as	reference	when	fetching	configurations
in	our	handler,	I	have	added	some	prototypes	to	keep	the	compiler
happy:

/*$6

	+++

	*	mod_example_config.c

	+++

	*/

#include	<stdio.h>

#include	"apr_hash.h"

#include	"ap_config.h"

#include	"ap_provider.h"

#include	"httpd.h"

#include	"http_core.h"

#include	"http_config.h"

#include	"http_log.h"

#include	"http_protocol.h"

#include	"http_request.h"

/*$1

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

				Configuration	structure

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	*/

typedef	struct

{

				char				context[256];

				char				path[256];

				int					typeOfAction;

				int					enabled;

}	example_config;

/*$1

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

				Prototypes

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	*/

static	int				example_handler(request_rec	*r);

const	char				*example_set_enabled(cmd_parms	*cmd,	void	*cfg,	const	char	*arg);

const	char				*example_set_path(cmd_parms	*cmd,	void	*cfg,	const	char	*arg);

const	char				*example_set_action(cmd_parms	*cmd,	void	*cfg,	const	char	*arg1,	const	char	*arg2);

void										*create_dir_conf(apr_pool_t	*pool,	char	*context);

void										*merge_dir_conf(apr_pool_t	*pool,	void	*BASE,	void	*ADD);

static	void			register_hooks(apr_pool_t	*pool);

/*$1

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

				Configuration	directives

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	*/

static	const	command_rec				directives[]	=

{

				AP_INIT_TAKE1("exampleEnabled",	example_set_enabled,	NULL,	ACCESS_CONF,	"Enable	or	disable	mod_example"),

				AP_INIT_TAKE1("examplePath",	example_set_path,	NULL,	ACCESS_CONF,	"The	path	to	whatever"),

				AP_INIT_TAKE2("exampleAction",	example_set_action,	NULL,	ACCESS_CONF,	"Special	action	value!"),

				{	NULL	}

};

/*$1

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

				Our	name	tag

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	*/

module	AP_MODULE_DECLARE_DATA				example_module	=

{

				STANDARD20_MODULE_STUFF,

				create_dir_conf,				/*	Per-directory	configuration	handler	*/

				merge_dir_conf,					/*	Merge	handler	for	per-directory	configurations	*/

				NULL,															/*	Per-server	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-server	configurations	*/

				directives,									/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks						/*	Our	hook	registering	function	*/

};

/*

	===

				Hook	registration	function

	===

	*/

static	void	register_hooks(apr_pool_t	*pool)

{

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

/*

	===

				Our	example	web	service	handler

	===

	*/

static	int	example_handler(request_rec	*r)

{

				if(!r->handler	||	strcmp(r->handler,	"example-handler"))	return(DECLINED);

				/*~~*/

				example_config				*config	=	(example_config	*)	ap_get_module_config(r->per_dir_config,	&example_module);

				/*~~*/

				ap_set_content_type(r,	"text/plain");

				ap_rprintf(r,	"Enabled:	%u\n",	config->enabled);

				ap_rprintf(r,	"Path:	%s\n",	config->path);

				ap_rprintf(r,	"TypeOfAction:	%x\n",	config->typeOfAction);

				ap_rprintf(r,	"Context:	%s\n",	config->context);

				return	OK;

}

/*

	===

				Handler	for	the	"exampleEnabled"	directive

	===

	*/

const	char	*example_set_enabled(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				/*~~~*/

				example_config				*conf	=	(example_config	*)	cfg;

				/*~~~*/

				if(conf)

				{

								if(!strcasecmp(arg,	"on"))

												conf->enabled	=	1;

								else

												conf->enabled	=	0;

				}

				return	NULL;

}

/*

	===

				Handler	for	the	"examplePath"	directive

	===

	*/

const	char	*example_set_path(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				/*~~~*/

				example_config				*conf	=	(example_config	*)	cfg;

				/*~~~*/

				if(conf)

				{

								strcpy(conf->path,	arg);

				}

				return	NULL;

}

/*

	===

				Handler	for	the	"exampleAction"	directive	;

				Let's	pretend	this	one	takes	one	argument	(file	or	db),	and	a	second	(deny	or	allow),	;

				and	we	store	it	in	a	bit-wise	manner.

	===

	*/

const	char	*example_set_action(cmd_parms	*cmd,	void	*cfg,	const	char	*arg1,	const	char	*arg2)

{

				/*~~~*/

				example_config				*conf	=	(example_config	*)	cfg;

				/*~~~*/

				if(conf)

				{

								{

												if(!strcasecmp(arg1,	"file"))

																conf->typeOfAction	=	0x01;

												else

																conf->typeOfAction	=	0x02;

												if(!strcasecmp(arg2,	"deny"))

																conf->typeOfAction	+=	0x10;

												else

																conf->typeOfAction	+=	0x20;

								}

				}

				return	NULL;

}

/*

	===

				Function	for	creating	new	configurations	for	per-directory	contexts

	===

	*/

void	*create_dir_conf(apr_pool_t	*pool,	char	*context)

{

				context	=	context	?	context	:	"Newly	created	configuration";

				/*~~~*/

				example_config				*cfg	=	apr_pcalloc(pool,	sizeof(example_config));

				/*~~~*/

				if(cfg)

				{

								{

												/*	Set	some	default	values	*/

												strcpy(cfg->context,	context);

												cfg->enabled	=	0;

												memset(cfg->path,	0,	256);

												cfg->typeOfAction	=	0x00;

								}

				}

				return	cfg;

}

/*

	===

				Merging	function	for	configurations

	===

	*/

void	*merge_dir_conf(apr_pool_t	*pool,	void	*BASE,	void	*ADD)

{

				/*~~*/

				example_config				*base	=	(example_config	*)	BASE;

				example_config				*add	=	(example_config	*)	ADD;

				example_config				*conf	=	(example_config	*)	create_dir_conf(pool,	"Merged	configuration");

				/*~~*/

				conf->enabled	=	(add->enabled	==	0)	?	base->enabled	:	add->enabled;

				conf->typeOfAction	=	add->typeOfAction	?	add->typeOfAction	:	base->typeOfAction;

				strcpy(conf->path,	strlen(add->path)	?	add->path	:	base->path);

				return	conf;

}

Summing	up

We	have	now	looked	at	how	to	create	simple	modules	for	Apache
HTTP	Server	2.4	and	configuring	them.	What	you	do	next	is
entirely	up	to	you,	but	it	is	my	hope	that	something	valuable	has
come	out	of	reading	this	documentation.	If	you	have	questions	on
how	to	further	develop	modules,	you	are	welcome	to	join	our
mailing	lists	or	check	out	the	rest	of	our	documentation	for	further
tips.

http://httpd.apache.org/lists.html

Some	useful	snippets	of	code

Retrieve	variables	from	POST	form	data

typedef	struct	{

				const	char	*key;

				const	char	*value;

}	keyValuePair;

keyValuePair	*readPost(request_rec	*r)	{

				apr_array_header_t	*pairs	=	NULL;

				apr_off_t	len;

				apr_size_t	size;

				int	res;

				int	i	=	0;

				char	*buffer;

				keyValuePair	*kvp;

				res	=	ap_parse_form_data(r,	NULL,	&pairs,	-1,	HUGE_STRING_LEN);

				if	(res	!=	OK	||	!pairs)	return	NULL;	/*	Return	NULL	if	we	failed	or	if	there	are	is	no	POST	data	*/

				kvp	=	apr_pcalloc(r->pool,	sizeof(keyValuePair)	*	(pairs->nelts	+	1));

				while	(pairs	&&	!apr_is_empty_array(pairs))	{

								ap_form_pair_t	*pair	=	(ap_form_pair_t	*)	apr_array_pop(pairs);

								apr_brigade_length(pair->value,	1,	&len);

								size	=	(apr_size_t)	len;

								buffer	=	apr_palloc(r->pool,	size	+	1);

								apr_brigade_flatten(pair->value,	buffer,	&size);

								buffer[len]	=	0;

								kvp[i].key	=	apr_pstrdup(r->pool,	pair->name);

								kvp[i].value	=	buffer;

								i++;

				}

				return	kvp;

}

static	int	example_handler(request_rec	*r)

{

				/*~~~~~~~~~~~~~~~~~~~~~~*/

				keyValuePair	*formData;

				/*~~~~~~~~~~~~~~~~~~~~~~*/

				formData	=	readPost(r);

				if	(formData)	{

								int	i;

								for	(i	=	0;	&formData[i];	i++)	{

												if	(formData[i].key	&&	formData[i].value)	{

																ap_rprintf(r,	"%s	=	%s\n",	formData[i].key,	formData[i].value);

												}	else	if	(formData[i].key)	{

																ap_rprintf(r,	"%s\n",	formData[i].key);

												}	else	if	(formData[i].value)	{

																ap_rprintf(r,	"=	%s\n",	formData[i].value);

												}	else	{

																break;

												}

								}

				}

				return	OK;

}

Printing	out	every	HTTP	header	received

static	int	example_handler(request_rec	*r)

{

				/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

				const	apr_array_header_t				*fields;

				int																									i;

				apr_table_entry_t											*e	=	0;

				/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

				fields	=	apr_table_elts(r->headers_in);

				e	=	(apr_table_entry_t	*)	fields->elts;

				for(i	=	0;	i	<	fields->nelts;	i++)	{

								ap_rprintf(r,	"%s:	%s\n",	e[i].key,	e[i].val);

				}

				return	OK;

}

Reading	the	request	body	into	memory

static	int	util_read(request_rec	*r,	const	char	**rbuf,	apr_off_t	*size)

{

				/*~~~~~~~~*/

				int	rc	=	OK;

				/*~~~~~~~~*/

				if((rc	=	ap_setup_client_block(r,	REQUEST_CHUNKED_ERROR)))	{

								return(rc);

				}

				if(ap_should_client_block(r))	{

								/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

								char									argsbuffer[HUGE_STRING_LEN];

								apr_off_t				rsize,	len_read,	rpos	=	0;

								apr_off_t	length	=	r->remaining;

								/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

								*rbuf	=	(const	char	*)	apr_pcalloc(r->pool,	(apr_size_t)	(length	+	1));

								*size	=	length;

								while((len_read	=	ap_get_client_block(r,	argsbuffer,	sizeof(argsbuffer)))	>	0)	{

												if((rpos	+	len_read)	>	length)	{

																rsize	=	length	-	rpos;

												}

												else	{

																rsize	=	len_read;

												}

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

												memcpy((char	*)	*rbuf	+	rpos,	argsbuffer,	(size_t)	rsize);

												rpos	+=	rsize;

								}

				}

				return(rc);

}

static	int	example_handler(request_rec	*r)	

{

				/*~~~~~~~~~~~~~~~~*/

				apr_off_t			size;

				const	char		*buffer;

				/*~~~~~~~~~~~~~~~~*/

				if(util_read(r,	&buffer,	&size)	==	OK)	{

								ap_rprintf(r,	"We	read	a	request	body	that	was	%"	APR_OFF_T_FMT	"	bytes	long",	size);

				}

				return	OK;

}

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Redirecting	and	Remapping	with
mod_rewrite

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	how	you	can	use	mod_rewrite	to
redirect	and	remap	request.	This	includes	many	examples	of	common
uses	of	mod_rewrite,	including	detailed	descriptions	of	how	each
works.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

See	also
Module	documentation
mod_rewrite	introduction
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

From	Old	to	New	(internal)

Description:
Assume	we	have	recently	renamed	the	page	foo.html	to
bar.html	and	now	want	to	provide	the	old	URL	for	backward
compatibility.	However,	we	want	that	users	of	the	old	URL
even	not	recognize	that	the	pages	was	renamed	-	that	is,	we
don't	want	the	address	to	change	in	their	browser.

Solution:
We	rewrite	the	old	URL	to	the	new	one	internally	via	the
following	rule:

RewriteEngine		on

RewriteRule				"^/foo\.html$"		"/bar.html"	[PT]

Rewriting	From	Old	to	New	(external)

Description:
Assume	again	that	we	have	recently	renamed	the	page
foo.html	to	bar.html	and	now	want	to	provide	the	old
URL	for	backward	compatibility.	But	this	time	we	want	that	the
users	of	the	old	URL	get	hinted	to	the	new	one,	i.e.	their
browsers	Location	field	should	change,	too.

Solution:
We	force	a	HTTP	redirect	to	the	new	URL	which	leads	to	a
change	of	the	browsers	and	thus	the	users	view:

RewriteEngine		on

RewriteRule				"^/foo\.html$"		"bar.html"		[

Discussion
In	this	example,	as	contrasted	to	the	internal	example	above,
we	can	simply	use	the	Redirect	directive.	mod_rewrite	was
used	in	that	earlier	example	in	order	to	hide	the	redirect	from
the	client:

Redirect	"/foo.html"	"/bar.html"

Resource	Moved	to	Another	Server

Description:
If	a	resource	has	moved	to	another	server,	you	may	wish	to
have	URLs	continue	to	work	for	a	time	on	the	old	server	while
people	update	their	bookmarks.

Solution:
You	can	use	mod_rewrite	to	redirect	these	URLs	to	the	new
server,	but	you	might	also	consider	using	the	Redirect	or
RedirectMatch	directive.

#With	mod_rewrite

RewriteEngine	on

RewriteRule			"^/docs/(.+)"		"http://new.example.com/docs/$1"		[R,L]

#With	RedirectMatch

RedirectMatch	"^/docs/(.*)"	"http://new.example.com/docs/$1"

#With	Redirect

Redirect	"/docs/"	"http://new.example.com/docs/"

From	Static	to	Dynamic

Description:
How	can	we	transform	a	static	page	foo.html	into	a
dynamic	variant	foo.cgi	in	a	seamless	way,	i.e.	without
notice	by	the	browser/user.

Solution:
We	just	rewrite	the	URL	to	the	CGI-script	and	force	the
handler	to	be	cgi-script	so	that	it	is	executed	as	a	CGI
program.	This	way	a	request	to	/~quux/foo.html	internally
leads	to	the	invocation	of	/~quux/foo.cgi.

RewriteEngine		on

RewriteBase				"/~quux/"

RewriteRule				"^foo\.html$"		"foo.cgi"		[H=

Backward	Compatibility	for	file	extension	change

Description:
How	can	we	make	URLs	backward	compatible	(still	existing
virtually)	after	migrating	document.YYYY	to
document.XXXX,	e.g.	after	translating	a	bunch	of	.html	files
to	.php?

Solution:
We	rewrite	the	name	to	its	basename	and	test	for	existence	of
the	new	extension.	If	it	exists,	we	take	that	name,	else	we
rewrite	the	URL	to	its	original	state.

#			backward	compatibility	ruleset	for

#			rewriting	document.html	to	document.php

#			when	and	only	when	document.php	exists

<Directory	"/var/www/htdocs">

				RewriteEngine	on

				RewriteBase	"/var/www/htdocs"

				RewriteCond	"$1.php"	-f

				RewriteCond	"$1.html"	!-f

				RewriteRule	"^(.*).html$"	"$1.php"

</Directory>

Discussion
This	example	uses	an	often-overlooked	feature	of
mod_rewrite,	by	taking	advantage	of	the	order	of	execution	of
the	ruleset.	In	particular,	mod_rewrite	evaluates	the	left-hand-
side	of	the	RewriteRule	before	it	evaluates	the	RewriteCond
directives.	Consequently,	$1	is	already	defined	by	the	time	the
RewriteCond	directives	are	evaluated.	This	allows	us	to	test
for	the	existence	of	the	original	(document.html)	and	target
(document.php)	files	using	the	same	base	filename.

This	ruleset	is	designed	to	use	in	a	per-directory	context	(In	a
<Directory>	block	or	in	a	.htaccess	file),	so	that	the	-f	checks
are	looking	at	the	correct	directory	path.	You	may	need	to	set
a	RewriteBase	directive	to	specify	the	directory	base	that
you're	working	in.

Canonical	Hostnames

Description:
The	goal	of	this	rule	is	to	force	the	use	of	a	particular
hostname,	in	preference	to	other	hostnames	which	may	be
used	to	reach	the	same	site.	For	example,	if	you	wish	to	force
the	use	of	www.example.com	instead	of	example.com,	you
might	use	a	variant	of	the	following	recipe.

Solution:
The	very	best	way	to	solve	this	doesn't	involve	mod_rewrite	at
all,	but	rather	uses	the	Redirect	directive	placed	in	a	virtual
host	for	the	non-canonical	hostname(s).

<VirtualHost	*:80>

		ServerName	undesired.example.com

		ServerAlias	example.com	notthis.example.com

		Redirect	"/"	"http://www.example.com/"

</VirtualHost>

<VirtualHost	*:80>

		ServerName	www.example.com

</VirtualHost>

You	can	alternatively	accomplish	this	using	the	<If>
directive:

<If	"%{HTTP_HOST}	!=	'www.example.com'">

				Redirect	"/"	"http://www.example.com/"

</If>

Or,	for	example,	to	redirect	a	portion	of	your	site	to	HTTPS,
you	might	do	the	following:

<If	"%{SERVER_PROTOCOL}	!=	'HTTPS'">

				Redirect	"/admin/"	"https://www.example.com/admin/"

</If>

If,	for	whatever	reason,	you	still	want	to	use	mod_rewrite	-
if,	for	example,	you	need	this	to	work	with	a	larger	set	of
RewriteRules	-	you	might	use	one	of	the	recipes	below.

For	sites	running	on	a	port	other	than	80:

RewriteCond	"%{HTTP_HOST}"			"!^www\.example\.com"	[NC]

RewriteCond	"%{HTTP_HOST}"			"!^$"

RewriteCond	"%{SERVER_PORT}"	"!^80$"

RewriteRule	"^/?(.*)"								"http://www.example.com:%{SERVER_PORT}/$1"	[L,R,NE]

And	for	a	site	running	on	port	80

RewriteCond	"%{HTTP_HOST}"			"!^www\.example\.com"	[NC]

RewriteCond	"%{HTTP_HOST}"			"!^$"

RewriteRule	"^/?(.*)"								"http://www.example.com/$1"	[L,R,NE]

If	you	wanted	to	do	this	generically	for	all	domain	names	-	that
is,	if	you	want	to	redirect	example.com	to
www.example.com	for	all	possible	values	of	example.com,
you	could	use	the	following	recipe:

RewriteCond	"%{HTTP_HOST}"	"!^www\."	[NC]

RewriteCond	"%{HTTP_HOST}"	"!^$"

RewriteRule	"^/?(.*)"						"http://www.%{HTTP_HOST}/$1"	[L,R,NE]

These	rulesets	will	work	either	in	your	main	server
configuration	file,	or	in	a	.htaccess	file	placed	in	the
DocumentRoot	of	the	server.

Search	for	pages	in	more	than	one	directory

Description:
A	particular	resource	might	exist	in	one	of	several	places,	and
we	want	to	look	in	those	places	for	the	resource	when	it	is
requested.	Perhaps	we've	recently	rearranged	our	directory
structure,	dividing	content	into	several	locations.

Solution:
The	following	ruleset	searches	in	two	directories	to	find	the
resource,	and,	if	not	finding	it	in	either	place,	will	attempt	to
just	serve	it	out	of	the	location	requested.

RewriteEngine	on

#			first	try	to	find	it	in	dir1/...

#			...and	if	found	stop	and	be	happy:

RewriteCond									"%{DOCUMENT_ROOT}/dir1/%{REQUEST_URI}"		-f

RewriteRule	"^(.+)"	"%{DOCUMENT_ROOT}/dir1/$1"		[L]

#			second	try	to	find	it	in	dir2/...

#			...and	if	found	stop	and	be	happy:

RewriteCond									"%{DOCUMENT_ROOT}/dir2/%{REQUEST_URI}"		-f

RewriteRule	"^(.+)"	"%{DOCUMENT_ROOT}/dir2/$1"		[L]

#			else	go	on	for	other	Alias	or	ScriptAlias	directives,

#			etc.

RewriteRule			"^"		"-"		[PT]

Redirecting	to	Geographically	Distributed	Servers

Description:
We	have	numerous	mirrors	of	our	website,	and	want	to
redirect	people	to	the	one	that	is	located	in	the	country	where
they	are	located.

Solution:
Looking	at	the	hostname	of	the	requesting	client,	we
determine	which	country	they	are	coming	from.	If	we	can't	do
a	lookup	on	their	IP	address,	we	fall	back	to	a	default	server.

We'll	use	a	RewriteMap	directive	to	build	a	list	of	servers
that	we	wish	to	use.

HostnameLookups	on

RewriteEngine	on

RewriteMap				multiplex									"txt:/path/to/map.mirrors"

RewriteCond			"%{REMOTE_HOST}"		"([a-z]+)$"	[NC]

RewriteRule			"^/(.*)$"		"${multiplex:%1|http://www.example.com/}$1"		[R,L]

##	map.mirrors	--	Multiplexing	Map

de	http://www.example.de/

uk	http://www.example.uk/

com	http://www.example.com/

##EOF##

Discussion

This	ruleset	relies	on	HostNameLookups	being	set	on,
which	can	be	a	significant	performance	hit.

The	RewriteCond	directive	captures	the	last	portion	of	the
hostname	of	the	requesting	client	-	the	country	code	-	and	the

following	RewriteRule	uses	that	value	to	look	up	the
appropriate	mirror	host	in	the	map	file.

Browser	Dependent	Content

Description:
We	wish	to	provide	different	content	based	on	the	browser,	or
user-agent,	which	is	requesting	the	content.

Solution:
We	have	to	decide,	based	on	the	HTTP	header	"User-Agent",
which	content	to	serve.	The	following	config	does	the
following:	If	the	HTTP	header	"User-Agent"	contains
"Mozilla/3",	the	page	foo.html	is	rewritten	to	foo.NS.html
and	the	rewriting	stops.	If	the	browser	is	"Lynx"	or	"Mozilla"	of
version	1	or	2,	the	URL	becomes	foo.20.html.	All	other
browsers	receive	page	foo.32.html.	This	is	done	with	the
following	ruleset:

RewriteCond	"%{HTTP_USER_AGENT}"		"^Mozilla/3

RewriteRule	"^foo\.html$"									"foo.NS.html"										[

RewriteCond	"%{HTTP_USER_AGENT}"		"^Lynx/"	[OR]

RewriteCond	"%{HTTP_USER_AGENT}"		"^Mozilla/[12]"

RewriteRule	"^foo\.html$"									"foo.20.html"										[

RewriteRule	"^foo\.html$"									"foo.32.html"										[

Canonical	URLs

Description:
On	some	webservers	there	is	more	than	one	URL	for	a
resource.	Usually	there	are	canonical	URLs	(which	are	be
actually	used	and	distributed)	and	those	which	are	just
shortcuts,	internal	ones,	and	so	on.	Independent	of	which
URL	the	user	supplied	with	the	request,	they	should	finally
see	the	canonical	one	in	their	browser	address	bar.

Solution:
We	do	an	external	HTTP	redirect	for	all	non-canonical	URLs
to	fix	them	in	the	location	view	of	the	Browser	and	for	all
subsequent	requests.	In	the	example	ruleset	below	we
replace	/puppies	and	/canines	by	the	canonical	/dogs.

RewriteRule			"^/(puppies|canines)/(.*)"				"/dogs/$2"		[R]

Discussion:
This	should	really	be	accomplished	with	Redirect	or
RedirectMatch	directives:

RedirectMatch	"^/(puppies|canines)/(.*)"	"/dogs/$2"

Moved	DocumentRoot

Description:
Usually	the	DocumentRoot	of	the	webserver	directly	relates
to	the	URL	"/".	But	often	this	data	is	not	really	of	top-level
priority.	For	example,	you	may	wish	for	visitors,	on	first
entering	a	site,	to	go	to	a	particular	subdirectory	/about/.
This	may	be	accomplished	using	the	following	ruleset:

Solution:
We	redirect	the	URL	/	to	/about/:

RewriteEngine	on

RewriteRule			"^/$"		"/about/"		[R]

Note	that	this	can	also	be	handled	using	the
RedirectMatch	directive:

RedirectMatch	"^/$"	"http://example.com/about/"

Note	also	that	the	example	rewrites	only	the	root	URL.	That
is,	it	rewrites	a	request	for	http://example.com/,	but	not
a	request	for	http://example.com/page.html.	If	you
have	in	fact	changed	your	document	root	-	that	is,	if	all	of	your
content	is	in	fact	in	that	subdirectory,	it	is	greatly	preferable	to
simply	change	your	DocumentRoot	directive,	or	move	all	of
the	content	up	one	directory,	rather	than	rewriting	URLs.

Fallback	Resource

Description:
You	want	a	single	resource	(say,	a	certain	file,	like	index.php)
to	handle	all	requests	that	come	to	a	particular	directory,
except	those	that	should	go	to	an	existing	resource	such	as
an	image,	or	a	css	file.

Solution:
As	of	version	2.2.16,	you	should	use	the
FallbackResource	directive	for	this:

<Directory	"/var/www/my_blog">

		FallbackResource	"index.php"

</Directory>

However,	in	earlier	versions	of	Apache,	or	if	your	needs	are
more	complicated	than	this,	you	can	use	a	variation	of	the
following	rewrite	set	to	accomplish	the	same	thing:

<Directory	"/var/www/my_blog">

		RewriteBase	"/my_blog"

		RewriteCond	"/var/www/my_blog/%{REQUEST_FILENAME}"	!-f

		RewriteCond	"/var/www/my_blog/%{REQUEST_FILENAME}"	!-d

		RewriteRule	"^"	"index.php"	[PT]

</Directory>

If,	on	the	other	hand,	you	wish	to	pass	the	requested	URI	as	a
query	string	argument	to	index.php,	you	can	replace	that
RewriteRule	with:

RewriteRule	"(.*)"	"index.php?$1"	[PT,QSA]

Note	that	these	rulesets	can	be	used	in	a	.htaccess	file,	as
well	as	in	a	<Directory>	block.

Rewrite	query	string

Description:
You	want	to	capture	a	particular	value	from	a	query	string	and
either	replace	it	or	incorporate	it	into	another	component	of
the	URL.

Solutions:
Many	of	the	solutions	in	this	section	will	all	use	the	same
condition,	which	leaves	the	matched	value	in	the	%2
backreference.	%1	is	the	beginining	of	the	query	string	(up	to
the	key	of	intererest),	and	%3	is	the	remainder.	This	condition
is	a	bit	complex	for	flexibility	and	to	avoid	double	'&&'	in	the
substitutions.

This	solution	removes	the	matching	key	and	value:

#	Remove	mykey=???

RewriteCond	"%{QUERY_STRING}"	"(.*(?:^|&))mykey=([^&]*)&?(.*)&?$"

RewriteRule	"(.*)"	"$1?%1%3"

This	solution	uses	the	captured	value	in	the	URL
subsitution,	discarding	the	rest	of	the	original	query	by
appending	a	'?':

#	Copy	from	query	string	to	PATH_INFO

RewriteCond	"%{QUERY_STRING}"	"(.*(?:^|&))mykey=([^&]*)&?(.*)&?$"

RewriteRule	"(.*)"	"$1/products/%2/?"	[PT]

This	solution	checks	the	captured	value	in	a	subsequent
condition:

#	Capture	the	value	of	mykey	in	the	query	string

RewriteCond	"%{QUERY_STRING}"	"(.*(?:^|&))mykey=([^&]*)&?(.*)&?$"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

RewriteCond	"%2"	!=not-so-secret-value	

RewriteRule	"(.*)"	-	[F]

This	solution	shows	the	reverse	of	the	previous	ones,
copying	path	components	(perhaps	PATH_INFO)	from
the	URL	into	the	query	string.

#	The	desired	URL	might	be	/products/kitchen-sink,	and	the	script	expects

#	/path?products=kitchen-sink.

RewriteRule	"^/?path/([^/]+)/([^/]+)"	"/path?$1=$2"	[PT]

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Using	mod_rewrite	to	control	access

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	how	you	can	use	mod_rewrite	to
control	access	to	various	resources,	and	other	related	techniques.
This	includes	many	examples	of	common	uses	of	mod_rewrite,
including	detailed	descriptions	of	how	each	works.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Forbidding	Image	"Hotlinking"

Description:
The	following	technique	forbids	the	practice	of	other	sites
including	your	images	inline	in	their	pages.	This	practice	is
often	referred	to	as	"hotlinking",	and	results	in	your	bandwidth
being	used	to	serve	content	for	someone	else's	site.

Solution:
This	technique	relies	on	the	value	of	the	HTTP_REFERER
variable,	which	is	optional.	As	such,	it's	possible	for	some
people	to	circumvent	this	limitation.	However,	most	users	will
experience	the	failed	request,	which	should,	over	time,	result
in	the	image	being	removed	from	that	other	site.

There	are	several	ways	that	you	can	handle	this	situation.

In	this	first	example,	we	simply	deny	the	request,	if	it	didn't
initiate	from	a	page	on	our	site.	For	the	purpose	of	this
example,	we	assume	that	our	site	is	www.example.com.

RewriteCond	"%{HTTP_REFERER}"	"!^$"

RewriteCond	"%{HTTP_REFERER}"	"!www.example.com"	[NC]

RewriteRule	"\.(gif|jpg|png)$"				"-"			[F,NC]

In	this	second	example,	instead	of	failing	the	request,	we
display	an	alternate	image	instead.

RewriteCond	"%{HTTP_REFERER}"	"!^$"

RewriteCond	"%{HTTP_REFERER}"	"!www.example.com"	[NC]

RewriteRule	"\.(gif|jpg|png)$"				"/images/go-away.png"			[R,NC]

In	the	third	example,	we	redirect	the	request	to	an	image	on
some	other	site.

RewriteCond	"%{HTTP_REFERER}"	"!^$"

RewriteCond	"%{HTTP_REFERER}"	"!www.example.com"	[NC]

RewriteRule	"\.(gif|jpg|png)$"	"http://other.example.com/image.gif"			[R,NC]

Of	these	techniques,	the	last	two	tend	to	be	the	most	effective
in	getting	people	to	stop	hotlinking	your	images,	because	they
will	simply	not	see	the	image	that	they	expected	to	see.

Discussion:
If	all	you	wish	to	do	is	deny	access	to	the	resource,	rather
than	redirecting	that	request	elsewhere,	this	can	be
accomplished	without	the	use	of	mod_rewrite:

SetEnvIf	Referer	"example\.com"	localreferer

<FilesMatch	"\.(jpg|png|gif)$">

				Require	env	localreferer

</FilesMatch>

Blocking	of	Robots

Description:
In	this	recipe,	we	discuss	how	to	block	persistent	requests
from	a	particular	robot,	or	user	agent.

The	standard	for	robot	exclusion	defines	a	file,	/robots.txt
that	specifies	those	portions	of	your	website	where	you	wish
to	exclude	robots.	However,	some	robots	do	not	honor	these
files.

Note	that	there	are	methods	of	accomplishing	this	which	do
not	use	mod_rewrite.	Note	also	that	any	technique	that	relies
on	the	clients	USER_AGENT	string	can	be	circumvented	very
easily,	since	that	string	can	be	changed.

Solution:
We	use	a	ruleset	that	specifies	the	directory	to	be	protected,
and	the	client	USER_AGENT	that	identifies	the	malicious	or
persistent	robot.

In	this	example,	we	are	blocking	a	robot	called
NameOfBadRobot	from	a	location	/secret/files.	You
may	also	specify	an	IP	address	range,	if	you	are	trying	to
block	that	user	agent	only	from	the	particular	source.

RewriteCond	"%{HTTP_USER_AGENT}"			"^NameOfBadRobot"

RewriteCond	"%{REMOTE_ADDR}"							"=123\.45\.67\.[8-9]"

RewriteRule	"^/secret/files/"			"-"			[F]

Discussion:
Rather	than	using	mod_rewrite	for	this,	you	can	accomplish
the	same	end	using	alternate	means,	as	illustrated	here:

SetEnvIfNoCase	User-Agent	"^NameOfBadRobot"	goaway

<Location	"/secret/files">

				<RequireAll>

								Require	all	granted

								Require	not	env	goaway

				</RequireAll>

</Location>

As	noted	above,	this	technique	is	trivial	to	circumvent,	by
simply	modifying	the	USER_AGENT	request	header.	If	you	are
experiencing	a	sustained	attack,	you	should	consider	blocking
it	at	a	higher	level,	such	as	at	your	firewall.

Denying	Hosts	in	a	Blacklist

Description:
We	wish	to	maintain	a	blacklist	of	hosts,	rather	like
hosts.deny,	and	have	those	hosts	blocked	from	accessing
our	server.

Solution:

RewriteEngine	on

RewriteMap				hosts-deny		"txt:/path/to/hosts.deny"

RewriteCond			"${hosts-deny:%{REMOTE_ADDR}|NOT-FOUND}"	"!=NOT-FOUND"	[OR]

RewriteCond			"${hosts-deny:%{REMOTE_HOST}|NOT-FOUND}"	"!=NOT-FOUND"

RewriteRule			"^"		"-"		[F]

##

##	hosts.deny

##

##	ATTENTION!	This	is	a	map,	not	a	list,	even	when	we

treat	it	as	such.

##	mod_rewrite	parses	it	for	key/value	pairs,	so	at	least

a

##	dummy	value	"-"	must	be	present	for	each	entry.

##

193.102.180.41	-

bsdti1.sdm.de	-

192.76.162.40	-

Discussion:
The	second	RewriteCond	assumes	that	you	have
HostNameLookups	turned	on,	so	that	client	IP	addresses	will
be	resolved.	If	that's	not	the	case,	you	should	drop	the	second
RewriteCond,	and	drop	the	[OR]	flag	from	the	first
RewriteCond.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Referer-based	Deflector

Description:
Redirect	requests	based	on	the	Referer	from	which	the
request	came,	with	different	targets	per	Referer.

Solution:
The	following	ruleset	uses	a	map	file	to	associate	each
Referer	with	a	redirection	target.

RewriteMap		deflector	"txt:/path/to/deflector.map"

RewriteCond	"%{HTTP_REFERER}"	!=""

RewriteCond	"${deflector:%{HTTP_REFERER}}"	"=-"

RewriteRule	"^"	"%{HTTP_REFERER}"	[R,L]

RewriteCond	"%{HTTP_REFERER}"	!=""

RewriteCond	"${deflector:%{HTTP_REFERER}|NOT-FOUND}"	"!=NOT-FOUND"

RewriteRule	"^"	"${deflector:%{HTTP_REFERER}}"	[R,L]

The	map	file	lists	redirection	targets	for	each	referer,	or,	if	we
just	wish	to	redirect	back	to	where	they	came	from,	a	"-"	is
placed	in	the	map:

##

##		deflector.map

##

http://badguys.example.com/bad/index.html				-

http://badguys.example.com/bad/index2.html			-

http://badguys.example.com/bad/index3.html			http://somewhere.example.com/

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Dynamic	mass	virtual	hosts	with
mod_rewrite

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	how	you	can	use	mod_rewrite	to
create	dynamically	configured	virtual	hosts.

mod_rewrite	is	not	the	best	way	to	configure	virtual	hosts.	You
should	first	consider	the	alternatives	before	resorting	to
mod_rewrite.	See	also	the	"how	to	avoid	mod_rewrite	document.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Proxying
RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Virtual	Hosts	For	Arbitrary	Hostnames

Description:
We	want	to	automatically	create	a	virtual	host	for	every
hostname	which	resolves	in	our	domain,	without	having	to
create	new	VirtualHost	sections.

In	this	recipe,	we	assume	that	we'll	be	using	the	hostname
www.SITE.example.com	for	each	user,	and	serve	their
content	out	of	/home/SITE/www.

Solution:

RewriteEngine	on

RewriteMap				lowercase	int:tolower

RewriteCond			"${lowercase:%{HTTP_HOST}}"			"^www\.

RewriteRule			"^(.*)"	"/home/%1/www$1"

Discussion

You	will	need	to	take	care	of	the	DNS	resolution	-	Apache
does	not	handle	name	resolution.	You'll	need	either	to
create	CNAME	records	for	each	hostname,	or	a	DNS
wildcard	record.	Creating	DNS	records	is	beyond	the	scope
of	this	document.

The	internal	tolower	RewriteMap	directive	is	used	to	ensure
that	the	hostnames	being	used	are	all	lowercase,	so	that
there	is	no	ambiguity	in	the	directory	structure	which	must	be
created.

Parentheses	used	in	a	RewriteCond	are	captured	into	the

backreferences	%1,	%2,	etc,	while	parentheses	used	in
RewriteRule	are	captured	into	the	backreferences	$1,	$2,
etc.

As	with	many	techniques	discussed	in	this	document,
mod_rewrite	really	isn't	the	best	way	to	accomplish	this	task.
You	should,	instead,	consider	using	mod_vhost_alias
instead,	as	it	will	much	more	gracefully	handle	anything
beyond	serving	static	files,	such	as	any	dynamic	content,	and
Alias	resolution.

Dynamic	Virtual	Hosts	Using	mod_rewrite

This	extract	from	httpd.conf	does	the	same	thing	as	the	first
example.	The	first	half	is	very	similar	to	the	corresponding	part
above,	except	for	some	changes,	required	for	backward
compatibility	and	to	make	the	mod_rewrite	part	work	properly;
the	second	half	configures	mod_rewrite	to	do	the	actual	work.

Because	mod_rewrite	runs	before	other	URI	translation
modules	(e.g.,	mod_alias),	mod_rewrite	must	be	told	to
explicitly	ignore	any	URLs	that	would	have	been	handled	by	those
modules.	And,	because	these	rules	would	otherwise	bypass	any
ScriptAlias	directives,	we	must	have	mod_rewrite	explicitly
enact	those	mappings.

#	get	the	server	name	from	the	Host:	header

UseCanonicalName	Off

#	splittable	logs

LogFormat	"%{Host}i	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

CustomLog	"logs/access_log"	vcommon

<Directory	"/www/hosts">

				#	ExecCGI	is	needed	here	because	we	can't	force

				#	CGI	execution	in	the	way	that	ScriptAlias	does

				Options	FollowSymLinks	ExecCGI

</Directory>

RewriteEngine	On

#	a	ServerName	derived	from	a	Host:	header	may	be	any	case	at	all

RewriteMap		lowercase		int:tolower

##	deal	with	normal	documents	first:

#	allow	Alias	"/icons/"	to	work	-	repeat	for	other	aliases

RewriteCond		"%{REQUEST_URI}"		"!^/icons/"

#	allow	CGIs	to	work

RewriteCond		"%{REQUEST_URI}"		"!^/cgi-bin/"

#	do	the	magic

RewriteRule		"^/(.*)$"		"/www/hosts/${lowercase:%{SERVER_NAME}}/docs/$1"

##	and	now	deal	with	CGIs	-	we	have	to	force	a	handler

RewriteCond		"%{REQUEST_URI}"		"^/cgi-bin/"

RewriteRule		"^/(.*)$"		"/www/hosts/${lowercase:%{SERVER_NAME}}/cgi-bin/$1"		[H=cgi-script]

Copyright	2017	The	Apache	Software	Foundation.

Using	a	Separate	Virtual	Host	Configuration	File

This	arrangement	uses	more	advanced	mod_rewrite	features	to
work	out	the	translation	from	virtual	host	to	document	root,	from	a
separate	configuration	file.	This	provides	more	flexibility,	but
requires	more	complicated	configuration.

The	vhost.map	file	should	look	something	like	this:

customer-1.example.com	/www/customers/1

customer-2.example.com	/www/customers/2

#	...

customer-N.example.com	/www/customers/N

The	httpd.conf	should	contain	the	following:

RewriteEngine	on

RewriteMap			lowercase		int:tolower

#	define	the	map	file

RewriteMap			vhost						"txt:/www/conf/vhost.map"

#	deal	with	aliases	as	above

RewriteCond		"%{REQUEST_URI}"															"!^/icons/"

RewriteCond		"%{REQUEST_URI}"															"!^/cgi-bin/"

RewriteCond		"${lowercase:%{SERVER_NAME}}"		"^(.+)$"

#	this	does	the	file-based	remap

RewriteCond		"${vhost:%1}"																		"^(/.*)$"

RewriteRule		"^/(.*)$"																						"%1/docs/$1"

RewriteCond		"%{REQUEST_URI}"															"^/cgi-bin/"

RewriteCond		"${lowercase:%{SERVER_NAME}}"		"^(.+)$"

RewriteCond		"${vhost:%1}"																		"^(/.*)$"

RewriteRule		"^/cgi-bin/(.*)$"																						"%1/cgi-bin/$1"	[H=cgi-script]

Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Using	mod_rewrite	for	Proxying

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	how	to	use	the	RewriteRule's	[P]	flag	to
proxy	content	to	another	server.	A	number	of	recipes	are	provided	that
describe	common	scenarios.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Proxying	Content	with	mod_rewrite

Description:
mod_rewrite	provides	the	[P]	flag,	which	allows	URLs	to	be
passed,	via	mod_proxy,	to	another	server.	Two	examples	are
given	here.	In	one	example,	a	URL	is	passed	directly	to
another	server,	and	served	as	though	it	were	a	local	URL.	In
the	other	example,	we	proxy	missing	content	to	a	back-end
server.

Solution:
To	simply	map	a	URL	to	another	server,	we	use	the	[P]	flag,
as	follows:

RewriteEngine		on

RewriteBase				"/products/"

RewriteRule				"^widget/(.*)$"		"http://product.example.com/widget/$1"		[P]

ProxyPassReverse	"/products/widget/"	"http://product.example.com/widget/"

In	the	second	example,	we	proxy	the	request	only	if	we	can't
find	the	resource	locally.	This	can	be	very	useful	when	you're
migrating	from	one	server	to	another,	and	you're	not	sure	if	all
the	content	has	been	migrated	yet.

RewriteCond	"%{REQUEST_FILENAME}"							!-f

RewriteCond	"%{REQUEST_FILENAME}"							!-d

RewriteRule	"^/(.*)"	"http://old.example.com/$1"	[P]

ProxyPassReverse	"/"	"http://old.example.com/"

Discussion:
In	each	case,	we	add	a	ProxyPassReverse	directive	to
ensure	that	any	redirects	issued	by	the	backend	are	correctly
passed	on	to	the	client.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Consider	using	either	ProxyPass	or	ProxyPassMatch
whenever	possible	in	preference	to	mod_rewrite.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Advanced	Techniques	with	mod_rewrite

This	document	supplements	the	mod_rewrite	reference
documentation.	It	provides	a	few	advanced	techniques	using
mod_rewrite.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

URL-based	sharding	across	multiple	backends

Description:
A	common	technique	for	distributing	the	burden	of	server	load
or	storage	space	is	called	"sharding".	When	using	this
method,	a	front-end	server	will	use	the	url	to	consistently
"shard"	users	or	objects	to	separate	backend	servers.

Solution:
A	mapping	is	maintained,	from	users	to	target	servers,	in
external	map	files.	They	look	like:

user1	physical_host_of_user1

user2	physical_host_of_user2

:	:

We	put	this	into	a	map.users-to-hosts	file.	The	aim	is	to
map;

/u/user1/anypath

to

http://physical_host_of_user1/u/user/anypath

thus	every	URL	path	need	not	be	valid	on	every	backend
physical	host.	The	following	ruleset	does	this	for	us	with	the
help	of	the	map	files	assuming	that	server0	is	a	default	server
which	will	be	used	if	a	user	has	no	entry	in	the	map:

RewriteEngine	on

RewriteMap						users-to-hosts			"txt:/path/to/map.users-to-hosts"

RewriteRule			"^/u/([^/]+)/?(.*)"			"http://${users-to-hosts:$1|server0}/u/$1/$2"

See	the	RewriteMap	documentation	for	more	discussion	of	the

syntax	of	this	directive.

On-the-fly	Content-Regeneration

Description:
We	wish	to	dynamically	generate	content,	but	store	it	statically
once	it	is	generated.	This	rule	will	check	for	the	existence	of
the	static	file,	and	if	it's	not	there,	generate	it.	The	static	files
can	be	removed	periodically,	if	desired	(say,	via	cron)	and	will
be	regenerated	on	demand.

Solution:
This	is	done	via	the	following	ruleset:

#	This	example	is	valid	in	per-directory	context	only

RewriteCond	"%{REQUEST_URI}"			"!-U"

RewriteRule	"^(.+)\.html$"										"/regenerate_page.cgi"			[PT,L]

The	-U	operator	determines	whether	the	test	string	(in	this
case,	REQUEST_URI)	is	a	valid	URL.	It	does	this	via	a
subrequest.	In	the	event	that	this	subrequest	fails	-	that	is,	the
requested	resource	doesn't	exist	-	this	rule	invokes	the	CGI
program	/regenerate_page.cgi,	which	generates	the
requested	resource	and	saves	it	into	the	document	directory,
so	that	the	next	time	it	is	requested,	a	static	copy	can	be
served.

In	this	way,	documents	that	are	infrequently	updated	can	be
served	in	static	form.	if	documents	need	to	be	refreshed,	they
can	be	deleted	from	the	document	directory,	and	they	will	then
be	regenerated	the	next	time	they	are	requested.

Load	Balancing

Description:
We	wish	to	randomly	distribute	load	across	several	servers
using	mod_rewrite.

Solution:
We'll	use	RewriteMap	and	a	list	of	servers	to	accomplish
this.

RewriteEngine	on

RewriteMap	lb	"rnd:/path/to/serverlist.txt"

RewriteRule	"^/(.*)"	"http://${lb:servers}/$1"	[P,L]

serverlist.txt	will	contain	a	list	of	the	servers:

##	serverlist.txt

servers	one.example.com|two.example.com|three.example.com

If	you	want	one	particular	server	to	get	more	of	the	load	than
the	others,	add	it	more	times	to	the	list.

Discussion
Apache	comes	with	a	load-balancing	module	-
mod_proxy_balancer	-	which	is	far	more	flexible	and
featureful	than	anything	you	can	cobble	together	using
mod_rewrite.

Structured	Userdirs

Description:
Some	sites	with	thousands	of	users	use	a	structured	homedir
layout,	i.e.	each	homedir	is	in	a	subdirectory	which	begins	(for
instance)	with	the	first	character	of	the	username.	So,
/~larry/anypath	is
/home/l/larry/public_html/anypath	while
/~waldo/anypath	is
/home/w/waldo/public_html/anypath.

Solution:
We	use	the	following	ruleset	to	expand	the	tilde	URLs	into	the
above	layout.

RewriteEngine	on

RewriteRule			"^/~(([a-z])[a-z0-9]+)(.*)"		"/home/

Redirecting	Anchors

Description:
By	default,	redirecting	to	an	HTML	anchor	doesn't	work,
because	mod_rewrite	escapes	the	#	character,	turning	it	into
%23.	This,	in	turn,	breaks	the	redirection.

Solution:
Use	the	[NE]	flag	on	the	RewriteRule.	NE	stands	for	No
Escape.

Discussion:
This	technique	will	of	course	also	work	with	other	special
characters	that	mod_rewrite,	by	default,	URL-encodes.

Time-Dependent	Rewriting

Description:
We	wish	to	use	mod_rewrite	to	serve	different	content	based
on	the	time	of	day.

Solution:
There	are	a	lot	of	variables	named	TIME_xxx	for	rewrite
conditions.	In	conjunction	with	the	special	lexicographic
comparison	patterns	<STRING,	>STRING	and	=STRING	we
can	do	time-dependent	redirects:

RewriteEngine	on

RewriteCond			"%{TIME_HOUR}%{TIME_MIN}"	">0700"

RewriteCond			"%{TIME_HOUR}%{TIME_MIN}"	"<1900"

RewriteRule			"^foo\.html$"													"foo.day.html"	[L]

RewriteRule			"^foo\.html$"													"foo.night.html"

This	provides	the	content	of	foo.day.html	under	the	URL
foo.html	from	07:01-18:59	and	at	the	remaining	time	the
contents	of	foo.night.html.

mod_cache,	intermediate	proxies	and	browsers	may	each
cache	responses	and	cause	the	either	page	to	be	shown
outside	of	the	time-window	configured.	mod_expires	may
be	used	to	control	this	effect.	You	are,	of	course,	much
better	off	simply	serving	the	content	dynamically,	and
customizing	it	based	on	the	time	of	day.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Set	Environment	Variables	Based	On	URL	Parts

Description:
At	time,	we	want	to	maintain	some	kind	of	status	when	we
perform	a	rewrite.	For	example,	you	want	to	make	a	note	that
you've	done	that	rewrite,	so	that	you	can	check	later	to	see	if
a	request	can	via	that	rewrite.	One	way	to	do	this	is	by	setting
an	environment	variable.

Solution:
Use	the	[E]	flag	to	set	an	environment	variable.

RewriteEngine	on

RewriteRule			"^/horse/(.*)"			"/pony/$1"	[E=

Later	in	your	ruleset	you	might	check	for	this	environment
variable	using	a	RewriteCond:

RewriteCond	"%{ENV:rewritten}"	"=1"

Note	that	environment	variables	do	not	survive	an	external
redirect.	You	might	consider	using	the	[CO]	flag	to	set	a
cookie.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

When	not	to	use	mod_rewrite

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	perhaps	one	of	the	most	important
concepts	about	mod_rewrite	-	namely,	when	to	avoid	using	it.

mod_rewrite	should	be	considered	a	last	resort,	when	other
alternatives	are	found	wanting.	Using	it	when	there	are	simpler
alternatives	leads	to	configurations	which	are	confusing,	fragile,	and
hard	to	maintain.	Understanding	what	other	alternatives	are	available
is	a	very	important	step	towards	mod_rewrite	mastery.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

The	most	common	situation	in	which	mod_rewrite	is	the	right	tool	is
when	the	very	best	solution	requires	access	to	the	server
configuration	files,	and	you	don't	have	that	access.	Some
configuration	directives	are	only	available	in	the	server	configuration
file.	So	if	you	are	in	a	hosting	situation	where	you	only	have	.htaccess
files	to	work	with,	you	may	need	to	resort	to	mod_rewrite.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping

https://www.apache.org/foundation/contributing.html

Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques

Simple	Redirection

mod_alias	provides	the	Redirect	and	RedirectMatch
directives,	which	provide	a	means	to	redirect	one	URL	to	another.
This	kind	of	simple	redirection	of	one	URL,	or	a	class	of	URLs,	to
somewhere	else,	should	be	accomplished	using	these	directives
rather	than	RewriteRule.	RedirectMatch	allows	you	to
include	a	regular	expression	in	your	redirection	criteria,	providing
many	of	the	benefits	of	using	RewriteRule.

A	common	use	for	RewriteRule	is	to	redirect	an	entire	class	of
URLs.	For	example,	all	URLs	in	the	/one	directory	must	be
redirected	to	http://one.example.com/,	or	perhaps	all	http
requests	must	be	redirected	to	https.

These	situations	are	better	handled	by	the	Redirect	directive.
Remember	that	Redirect	preserves	path	information.	That	is	to
say,	a	redirect	for	a	URL	/one	will	also	redirect	all	URLs	under
that,	such	as	/one/two.html	and	/one/three/four.html.

To	redirect	URLs	under	/one	to	http://one.example.com,	do
the	following:

Redirect	"/one/"	"http://one.example.com/"

To	redirect	one	hostname	to	another,	for	example	example.com
to	www.example.com,	see	the	Canonical	Hostnames	recipe.

To	redirect	http	URLs	to	https,	do	the	following:

<VirtualHost	*:80>

				ServerName	www.example.com

				Redirect	"/"	"https://www.example.com/"

</VirtualHost>

<VirtualHost	*:443>

				ServerName	www.example.com

				#	...	SSL	configuration	goes	here

</VirtualHost>

The	use	of	RewriteRule	to	perform	this	task	may	be	appropriate
if	there	are	other	RewriteRule	directives	in	the	same	scope.
This	is	because,	when	there	are	Redirect	and	RewriteRule
directives	in	the	same	scope,	the	RewriteRule	directives	will	run
first,	regardless	of	the	order	of	appearance	in	the	configuration	file.

In	the	case	of	the	http-to-https	redirection,	the	use	of
RewriteRule	would	be	appropriate	if	you	don't	have	access	to
the	main	server	configuration	file,	and	are	obliged	to	perform	this
task	in	a	.htaccess	file	instead.

URL	Aliasing

The	Alias	directive	provides	mapping	from	a	URI	to	a	directory	-
usually	a	directory	outside	of	your	DocumentRoot.	Although	it	is
possible	to	perform	this	mapping	with	mod_rewrite,	Alias	is
the	preferred	method,	for	reasons	of	simplicity	and	performance.

Using	Alias
Alias	"/cats"	"/var/www/virtualhosts/felines/htdocs"

The	use	of	mod_rewrite	to	perform	this	mapping	may	be
appropriate	when	you	do	not	have	access	to	the	server
configuration	files.	Alias	may	only	be	used	in	server	or	virtualhost
context,	and	not	in	a	.htaccess	file.

Symbolic	links	would	be	another	way	to	accomplish	the	same
thing,	if	you	have	Options	FollowSymLinks	enabled	on	your
server.

Virtual	Hosting

Although	it	is	possible	to	handle	virtual	hosts	with	mod_rewrite,	it
is	seldom	the	right	way.	Creating	individual	<VirtualHost>
blocks	is	almost	always	the	right	way	to	go.	In	the	event	that	you
have	an	enormous	number	of	virtual	hosts,	consider	using
mod_vhost_alias	to	create	these	hosts	automatically.

Modules	such	as	mod_macro	are	also	useful	for	creating	a	large
number	of	virtual	hosts	dynamically.

Using	mod_rewrite	for	vitualhost	creation	may	be	appropriate	if
you	are	using	a	hosting	service	that	does	not	provide	you	access
to	the	server	configuration	files,	and	you	are	therefore	restricted	to
configuration	using	.htaccess	files.

See	the	virtual	hosts	with	mod_rewrite	document	for	more	details
on	how	you	might	accomplish	this	if	it	still	seems	like	the	right
approach.

Simple	Proxying

RewriteRule	provides	the	[P]	flag	to	pass	rewritten	URIs	through
mod_proxy.

RewriteRule	"^/?images(.*)"	"http://imageserver.local/images$1"	[P]

However,	in	many	cases,	when	there	is	no	actual	pattern	matching
needed,	as	in	the	example	shown	above,	the	ProxyPass	directive
is	a	better	choice.	The	example	here	could	be	rendered	as:

ProxyPass	"/images/"	"http://imageserver.local/images/"

Note	that	whether	you	use	RewriteRule	or	ProxyPass,	you'll
still	need	to	use	the	ProxyPassReverse	directive	to	catch
redirects	issued	from	the	back-end	server:

ProxyPassReverse	"/images/"	"http://imageserver.local/images/"

You	may	need	to	use	RewriteRule	instead	when	there	are	other
RewriteRules	in	effect	in	the	same	scope,	as	a	RewriteRule
will	usually	take	effect	before	a	ProxyPass,	and	so	may	preempt
what	you're	trying	to	accomplish.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Environment	Variable	Testing

mod_rewrite	is	frequently	used	to	take	a	particular	action	based
on	the	presence	or	absence	of	a	particular	environment	variable	or
request	header.	This	can	be	done	more	efficiently	using	the	<If>.

Consider,	for	example,	the	common	scenario	where
RewriteRule	is	used	to	enforce	a	canonical	hostname,	such	as
www.example.com	instead	of	example.com.	This	can	be	done
using	the	<If>	directive,	as	shown	here:

<If	"req('Host')	!=	'www.example.com'">

				Redirect	"/"	"http://www.example.com/"

</If>

This	technique	can	be	used	to	take	actions	based	on	any	request
header,	response	header,	or	environment	variable,	replacing
mod_rewrite	in	many	common	scenarios.

See	especially	the	expression	evaluation	documentation	for	a
overview	of	what	types	of	expressions	you	can	use	in	<If>
sections,	and	in	certain	other	directives.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	mod_rewrite	Technical	Details

This	document	discusses	some	of	the	technical	details	of	mod_rewrite
and	URL	matching.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

API	Phases

The	Apache	HTTP	Server	handles	requests	in	several	phases.	At
each	of	these	phases,	one	or	more	modules	may	be	called	upon
to	handle	that	portion	of	the	request	lifecycle.	Phases	include
things	like	URL-to-filename	translation,	authentication,
authorization,	content,	and	logging.	(This	is	not	an	exhaustive	list.)

mod_rewrite	acts	in	two	of	these	phases	(or	"hooks",	as	they	are
often	called)	to	influence	how	URLs	may	be	rewritten.

First,	it	uses	the	URL-to-filename	translation	hook,	which	occurs
after	the	HTTP	request	has	been	read,	but	before	any
authorization	starts.	Secondly,	it	uses	the	Fixup	hook,	which	is
after	the	authorization	phases,	and	after	per-directory
configuration	files	(.htaccess	files)	have	been	read,	but	before
the	content	handler	is	called.

So,	after	a	request	comes	in	and	a	corresponding	server	or	virtual
host	has	been	determined,	the	rewriting	engine	starts	processing
any	mod_rewrite	directives	appearing	in	the	per-server
configuration.	(i.e.,	in	the	main	server	configuration	file	and
<Virtualhost>	sections.)	This	happens	in	the	URL-to-filename
phase.

A	few	steps	later,	once	the	final	data	directories	have	been	found,
the	per-directory	configuration	directives	(.htaccess	files	and
<Directory>	blocks)	are	applied.	This	happens	in	the	Fixup
phase.

In	each	of	these	cases,	mod_rewrite	rewrites	the	REQUEST_URI
either	to	a	new	URL,	or	to	a	filename.

In	per-directory	context	(i.e.,	within	.htaccess	files	and
Directory	blocks),	these	rules	are	being	applied	after	a	URL	has
already	been	translated	to	a	filename.	Because	of	this,	the	URL-

path	that	mod_rewrite	initially	compares	RewriteRule	directives
against	is	the	full	filesystem	path	to	the	translated	filename	with
the	current	directories	path	(including	a	trailing	slash)	removed
from	the	front.

To	illustrate:	If	rules	are	in	/var/www/foo/.htaccess	and	a	request
for	/foo/bar/baz	is	being	processed,	an	expression	like	^bar/baz$
would	match.

If	a	substitution	is	made	in	per-directory	context,	a	new	internal
subrequest	is	issued	with	the	new	URL,	which	restarts	processing
of	the	request	phases.	If	the	substitution	is	a	relative	path,	the
RewriteBase	directive	determines	the	URL-path	prefix
prepended	to	the	substitution.	In	per-directory	context,	care	must
be	taken	to	create	rules	which	will	eventually	(in	some	future
"round"	of	per-directory	rewrite	processing)	not	perform	a
substitution	to	avoid	looping.	(See	RewriteLooping	for	further
discussion	of	this	problem.)

Because	of	this	further	manipulation	of	the	URL	in	per-directory
context,	you'll	need	to	take	care	to	craft	your	rewrite	rules
differently	in	that	context.	In	particular,	remember	that	the	leading
directory	path	will	be	stripped	off	of	the	URL	that	your	rewrite	rules
will	see.	Consider	the	examples	below	for	further	clarification.

Location	of	rule Rule
VirtualHost	section RewriteRule	"^/images/(.+)\.jpg"

"/images/$1.gif"
.htaccess	file	in	document
root

RewriteRule	"^images/(.+)\.jpg"
"images/$1.gif"

.htaccess	file	in	images
directory

RewriteRule	"^(.+)\.jpg"	"$1.gif"

For	even	more	insight	into	how	mod_rewrite	manipulates	URLs	in

http://wiki.apache.org/httpd/RewriteLooping

different	contexts,	you	should	consult	the	log	entries	made	during
rewriting.

Ruleset	Processing

Now	when	mod_rewrite	is	triggered	in	these	two	API	phases,	it
reads	the	configured	rulesets	from	its	configuration	structure
(which	itself	was	either	created	on	startup	for	per-server	context	or
during	the	directory	walk	of	the	Apache	kernel	for	per-directory
context).	Then	the	URL	rewriting	engine	is	started	with	the
contained	ruleset	(one	or	more	rules	together	with	their
conditions).	The	operation	of	the	URL	rewriting	engine	itself	is
exactly	the	same	for	both	configuration	contexts.	Only	the	final
result	processing	is	different.

The	order	of	rules	in	the	ruleset	is	important	because	the	rewriting
engine	processes	them	in	a	special	(and	not	very	obvious)	order.
The	rule	is	this:	The	rewriting	engine	loops	through	the	ruleset	rule
by	rule	(RewriteRule	directives)	and	when	a	particular	rule
matches	it	optionally	loops	through	existing	corresponding
conditions	(RewriteCond	directives).	For	historical	reasons	the
conditions	are	given	first,	and	so	the	control	flow	is	a	little	bit	long-
winded.	See	Figure	1	for	more	details.

	Figure
1:The	control	flow	through	the	rewriting	ruleset

First	the	URL	is	matched	against	the	Pattern	of	each	rule.	If	it	fails,
mod_rewrite	immediately	stops	processing	this	rule,	and	continues
with	the	next	rule.	If	the	Pattern	matches,	mod_rewrite	looks	for
corresponding	rule	conditions	(RewriteCond	directives,	appearing
immediately	above	the	RewriteRule	in	the	configuration).	If	none
are	present,	it	substitutes	the	URL	with	a	new	value,	which	is
constructed	from	the	string	Substitution,	and	goes	on	with	its	rule-
looping.	But	if	conditions	exist,	it	starts	an	inner	loop	for
processing	them	in	the	order	that	they	are	listed.	For	conditions,
the	logic	is	different:	we	don't	match	a	pattern	against	the	current
URL.	Instead	we	first	create	a	string	TestString	by	expanding
variables,	back-references,	map	lookups,	etc.	and	then	we	try	to
match	CondPattern	against	it.	If	the	pattern	doesn't	match,	the
complete	set	of	conditions	and	the	corresponding	rule	fails.	If	the
pattern	matches,	then	the	next	condition	is	processed	until	no

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

more	conditions	are	available.	If	all	conditions	match,	processing
is	continued	with	the	substitution	of	the	URL	with	Substitution.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Guide	to	writing	output	filters

There	are	a	number	of	common	pitfalls	encountered	when	writing
output	filters;	this	page	aims	to	document	best	practice	for	authors	of
new	or	existing	filters.

This	document	is	applicable	to	both	version	2.0	and	version	2.2	of	the
Apache	HTTP	Server;	it	specifically	targets	RESOURCE-level	or
CONTENT_SET-level	filters	though	some	advice	is	generic	to	all	types
of	filter.

Filters	and	bucket	brigades

Each	time	a	filter	is	invoked,	it	is	passed	a	bucket	brigade,
containing	a	sequence	of	buckets	which	represent	both	data
content	and	metadata.	Every	bucket	has	a	bucket	type;	a	number
of	bucket	types	are	defined	and	used	by	the	httpd	core	modules
(and	the	apr-util	library	which	provides	the	bucket	brigade
interface),	but	modules	are	free	to	define	their	own	types.

Output	filters	must	be	prepared	to	process	buckets	of	non-
standard	types;	with	a	few	exceptions,	a	filter	need	not	care
about	the	types	of	buckets	being	filtered.

A	filter	can	tell	whether	a	bucket	represents	either	data	or
metadata	using	the	APR_BUCKET_IS_METADATA	macro.
Generally,	all	metadata	buckets	should	be	passed	down	the	filter
chain	by	an	output	filter.	Filters	may	transform,	delete,	and	insert
data	buckets	as	appropriate.

There	are	two	metadata	bucket	types	which	all	filters	must	pay
attention	to:	the	EOS	bucket	type,	and	the	FLUSH	bucket	type.	An
EOS	bucket	indicates	that	the	end	of	the	response	has	been
reached	and	no	further	buckets	need	be	processed.	A	FLUSH
bucket	indicates	that	the	filter	should	flush	any	buffered	buckets	(if
applicable)	down	the	filter	chain	immediately.

FLUSH	buckets	are	sent	when	the	content	generator	(or	an
upstream	filter)	knows	that	there	may	be	a	delay	before	more
content	can	be	sent.	By	passing	FLUSH	buckets	down	the	filter
chain	immediately,	filters	ensure	that	the	client	is	not	kept
waiting	for	pending	data	longer	than	necessary.

Filters	can	create	FLUSH	buckets	and	pass	these	down	the	filter
chain	if	desired.	Generating	FLUSH	buckets	unnecessarily,	or	too
frequently,	can	harm	network	utilisation	since	it	may	force	large

numbers	of	small	packets	to	be	sent,	rather	than	a	small	number
of	larger	packets.	The	section	on	Non-blocking	bucket	reads
covers	a	case	where	filters	are	encouraged	to	generate	FLUSH
buckets.

Example	bucket	brigade
HEAP	FLUSH	FILE	EOS

This	shows	a	bucket	brigade	which	may	be	passed	to	a	filter;	it
contains	two	metadata	buckets	(FLUSH	and	EOS),	and	two	data
buckets	(HEAP	and	FILE).

Filter	invocation

For	any	given	request,	an	output	filter	might	be	invoked	only	once
and	be	given	a	single	brigade	representing	the	entire	response.	It
is	also	possible	that	the	number	of	times	a	filter	is	invoked	for	a
single	response	is	proportional	to	the	size	of	the	content	being
filtered,	with	the	filter	being	passed	a	brigade	containing	a	single
bucket	each	time.	Filters	must	operate	correctly	in	either	case.

An	output	filter	which	allocates	long-lived	memory	every	time	it
is	invoked	may	consume	memory	proportional	to	response	size.
Output	filters	which	need	to	allocate	memory	should	do	so	once
per	response;	see	Maintaining	state	below.

An	output	filter	can	distinguish	the	final	invocation	for	a	given
response	by	the	presence	of	an	EOS	bucket	in	the	brigade.	Any
buckets	in	the	brigade	after	an	EOS	should	be	ignored.

An	output	filter	should	never	pass	an	empty	brigade	down	the	filter
chain.	To	be	defensive,	filters	should	be	prepared	to	accept	an
empty	brigade,	and	should	return	success	without	passing	this
brigade	on	down	the	filter	chain.	The	handling	of	an	empty	brigade
should	have	no	side	effects	(such	as	changing	any	state	private	to
the	filter).

How	to	handle	an	empty	brigade
apr_status_t	dummy_filter(ap_filter_t	*f,	apr_bucket_brigade	*bb)

{

				if	(APR_BRIGADE_EMPTY(bb))	{

								return	APR_SUCCESS;

				}

				...

Brigade	structure

A	bucket	brigade	is	a	doubly-linked	list	of	buckets.	The	list	is
terminated	(at	both	ends)	by	a	sentinel	which	can	be	distinguished
from	a	normal	bucket	by	comparing	it	with	the	pointer	returned	by
APR_BRIGADE_SENTINEL.	The	list	sentinel	is	in	fact	not	a	valid
bucket	structure;	any	attempt	to	call	normal	bucket	functions	(such
as	apr_bucket_read)	on	the	sentinel	will	have	undefined
behaviour	(i.e.	will	crash	the	process).

There	are	a	variety	of	functions	and	macros	for	traversing	and
manipulating	bucket	brigades;	see	the	apr_buckets.h	header	for
complete	coverage.	Commonly	used	macros	include:

APR_BRIGADE_FIRST(bb)

returns	the	first	bucket	in	brigade	bb

APR_BRIGADE_LAST(bb)

returns	the	last	bucket	in	brigade	bb

APR_BUCKET_NEXT(e)

gives	the	next	bucket	after	bucket	e

APR_BUCKET_PREV(e)

gives	the	bucket	before	bucket	e

The	apr_bucket_brigade	structure	itself	is	allocated	out	of	a
pool,	so	if	a	filter	creates	a	new	brigade,	it	must	ensure	that
memory	use	is	correctly	bounded.	A	filter	which	allocates	a	new
brigade	out	of	the	request	pool	(r->pool)	on	every	invocation,	for
example,	will	fall	foul	of	the	warning	above	concerning	memory
use.	Such	a	filter	should	instead	create	a	brigade	on	the	first
invocation	per	request,	and	store	that	brigade	in	its	state	structure.

It	is	generally	never	advisable	to	use	apr_brigade_destroy
to	"destroy"	a	brigade	unless	you	know	for	certain	that	the
brigade	will	never	be	used	again,	even	then,	it	should	be	used

http://apr.apache.org/docs/apr-util/trunk/group___a_p_r___util___bucket___brigades.html

rarely.	The	memory	used	by	the	brigade	structure	will	not	be
released	by	calling	this	function	(since	it	comes	from	a	pool),	but
the	associated	pool	cleanup	is	unregistered.	Using
apr_brigade_destroy	can	in	fact	cause	memory	leaks;	if	a
"destroyed"	brigade	contains	buckets	when	its	containing	pool	is
destroyed,	those	buckets	will	not	be	immediately	destroyed.

In	general,	filters	should	use	apr_brigade_cleanup	in
preference	to	apr_brigade_destroy.

Processing	buckets

When	dealing	with	non-metadata	buckets,	it	is	important	to
understand	that	the	"apr_bucket	*"	object	is	an	abstract
representation	of	data:

1.	 The	amount	of	data	represented	by	the	bucket	may	or	may
not	have	a	determinate	length;	for	a	bucket	which	represents
data	of	indeterminate	length,	the	->length	field	is	set	to	the
value	(apr_size_t)-1.	For	example,	buckets	of	the	PIPE
bucket	type	have	an	indeterminate	length;	they	represent	the
output	from	a	pipe.

2.	 The	data	represented	by	a	bucket	may	or	may	not	be	mapped
into	memory.	The	FILE	bucket	type,	for	example,	represents
data	stored	in	a	file	on	disk.

Filters	read	the	data	from	a	bucket	using	the	apr_bucket_read
function.	When	this	function	is	invoked,	the	bucket	may	morph	into
a	different	bucket	type,	and	may	also	insert	a	new	bucket	into	the
bucket	brigade.	This	must	happen	for	buckets	which	represent
data	not	mapped	into	memory.

To	give	an	example;	consider	a	bucket	brigade	containing	a	single
FILE	bucket	representing	an	entire	file,	24	kilobytes	in	size:

FILE(0K-24K)

When	this	bucket	is	read,	it	will	read	a	block	of	data	from	the	file,
morph	into	a	HEAP	bucket	to	represent	that	data,	and	return	the
data	to	the	caller.	It	also	inserts	a	new	FILE	bucket	representing
the	remainder	of	the	file;	after	the	apr_bucket_read	call,	the
brigade	looks	like:

HEAP(8K)	FILE(8K-24K)

Filtering	brigades

The	basic	function	of	any	output	filter	will	be	to	iterate	through	the
passed-in	brigade	and	transform	(or	simply	examine)	the	content
in	some	manner.	The	implementation	of	the	iteration	loop	is	critical
to	producing	a	well-behaved	output	filter.

Taking	an	example	which	loops	through	the	entire	brigade	as
follows:

Bad	output	filter	--	do	not	imitate!
apr_bucket	*e	=	APR_BRIGADE_FIRST(bb);

const	char	*data;

apr_size_t	length;

while	(e	!=	APR_BRIGADE_SENTINEL(bb))	{

				apr_bucket_read(e,	&data,	&length,	APR_BLOCK_READ);

				e	=	APR_BUCKET_NEXT(e);

}

return	ap_pass_brigade(bb);

The	above	implementation	would	consume	memory	proportional
to	content	size.	If	passed	a	FILE	bucket,	for	example,	the	entire
file	contents	would	be	read	into	memory	as	each
apr_bucket_read	call	morphed	a	FILE	bucket	into	a	HEAP
bucket.

In	contrast,	the	implementation	below	will	consume	a	fixed	amount
of	memory	to	filter	any	brigade;	a	temporary	brigade	is	needed
and	must	be	allocated	only	once	per	response,	see	the
Maintaining	state	section.

Better	output	filter
apr_bucket	*e;

const	char	*data;

apr_size_t	length;

while	((e	=	APR_BRIGADE_FIRST(bb))	!=	APR_BRIGADE_SENTINEL(bb))	{

				rv	=	apr_bucket_read(e,	&data,	&length,	APR_BLOCK_READ);

				if	(rv)	...;

				/*	Remove	bucket	e	from	bb.	*/

				APR_BUCKET_REMOVE(e);

				/*	Insert	it	into		temporary	brigade.	*/

				APR_BRIGADE_INSERT_HEAD(tmpbb,	e);

				/*	Pass	brigade	downstream.	*/

				rv	=	ap_pass_brigade(f->next,	tmpbb);

				if	(rv)	...;

				apr_brigade_cleanup(tmpbb);

}

Maintaining	state

A	filter	which	needs	to	maintain	state	over	multiple	invocations	per
response	can	use	the	->ctx	field	of	its	ap_filter_t	structure.	It
is	typical	to	store	a	temporary	brigade	in	such	a	structure,	to	avoid
having	to	allocate	a	new	brigade	per	invocation	as	described	in	the
Brigade	structure	section.

Example	code	to	maintain	filter	state
struct	dummy_state	{

				apr_bucket_brigade	*tmpbb;

				int	filter_state;

				...

};

apr_status_t	dummy_filter(ap_filter_t	*f,	apr_bucket_brigade	*bb)

{

				struct	dummy_state	*state;

				

				state	=	f->ctx;

				if	(state	==	NULL)	{

				

								/*	First	invocation	for	this	response:	initialise	state	structure.

									*/

								f->ctx	=	state	=	apr_palloc(f->r->pool,	sizeof	*state);

								state->tmpbb	=	apr_brigade_create(f->r->pool,	f->c->bucket_alloc);

								state->filter_state	=	...;

				}

				...

Buffering	buckets

If	a	filter	decides	to	store	buckets	beyond	the	duration	of	a	single
filter	function	invocation	(for	example	storing	them	in	its	->ctx
state	structure),	those	buckets	must	be	set	aside.	This	is
necessary	because	some	bucket	types	provide	buckets	which
represent	temporary	resources	(such	as	stack	memory)	which	will
fall	out	of	scope	as	soon	as	the	filter	chain	completes	processing
the	brigade.

To	setaside	a	bucket,	the	apr_bucket_setaside	function	can
be	called.	Not	all	bucket	types	can	be	setaside,	but	if	successful,
the	bucket	will	have	morphed	to	ensure	it	has	a	lifetime	at	least	as
long	as	the	pool	given	as	an	argument	to	the
apr_bucket_setaside	function.

Alternatively,	the	ap_save_brigade	function	can	be	used,	which
will	move	all	the	buckets	into	a	separate	brigade	containing
buckets	with	a	lifetime	as	long	as	the	given	pool	argument.	This
function	must	be	used	with	care,	taking	into	account	the	following
points:

1.	 On	return,	ap_save_brigade	guarantees	that	all	the
buckets	in	the	returned	brigade	will	represent	data	mapped
into	memory.	If	given	an	input	brigade	containing,	for
example,	a	PIPE	bucket,	ap_save_brigade	will	consume
an	arbitrary	amount	of	memory	to	store	the	entire	output	of
the	pipe.

2.	 When	ap_save_brigade	reads	from	buckets	which	cannot
be	setaside,	it	will	always	perform	blocking	reads,	removing
the	opportunity	to	use	Non-blocking	bucket	reads.

3.	 If	ap_save_brigade	is	used	without	passing	a	non-NULL
"saveto"	(destination)	brigade	parameter,	the	function	will
create	a	new	brigade,	which	may	cause	memory	use	to	be

proportional	to	content	size	as	described	in	the	Brigade
structure	section.

Filters	must	ensure	that	any	buffered	data	is	processed	and
passed	down	the	filter	chain	during	the	last	invocation	for	a
given	response	(a	brigade	containing	an	EOS	bucket).
Otherwise	such	data	will	be	lost.

Non-blocking	bucket	reads

The	apr_bucket_read	function	takes	an	apr_read_type_e
argument	which	determines	whether	a	blocking	or	non-blocking
read	will	be	performed	from	the	data	source.	A	good	filter	will	first
attempt	to	read	from	every	data	bucket	using	a	non-blocking	read;
if	that	fails	with	APR_EAGAIN,	then	send	a	FLUSH	bucket	down	the
filter	chain,	and	retry	using	a	blocking	read.

This	mode	of	operation	ensures	that	any	filters	further	down	the
filter	chain	will	flush	any	buffered	buckets	if	a	slow	content	source
is	being	used.

A	CGI	script	is	an	example	of	a	slow	content	source	which	is
implemented	as	a	bucket	type.	mod_cgi	will	send	PIPE	buckets
which	represent	the	output	from	a	CGI	script;	reading	from	such	a
bucket	will	block	when	waiting	for	the	CGI	script	to	produce	more
output.

Example	code	using	non-blocking	bucket	reads
apr_bucket	*e;

apr_read_type_e	mode	=	APR_NONBLOCK_READ;

while	((e	=	APR_BRIGADE_FIRST(bb))	!=	APR_BRIGADE_SENTINEL(bb))	{

				apr_status_t	rv;

				rv	=	apr_bucket_read(e,	&data,	&length,	mode);

				if	(rv	==	APR_EAGAIN	&&	mode	==	APR_NONBLOCK_READ)	{

								/*	Pass	down	a	brigade	containing	a	flush	bucket:	*/

								APR_BRIGADE_INSERT_TAIL(tmpbb,	apr_bucket_flush_create(...));

								rv	=	ap_pass_brigade(f->next,	tmpbb);

								apr_brigade_cleanup(tmpbb);

								if	(rv	!=	APR_SUCCESS)	return	rv;

								/*	Retry,	using	a	blocking	read.	*/

								mode	=	APR_BLOCK_READ;

								continue;

				}

				else	if	(rv	!=	APR_SUCCESS)	{

								/*	handle	errors	*/

				}

				/*	Next	time,	try	a	non-blocking	read	first.	*/

				mode	=	APR_NONBLOCK_READ;

				...

}

Ten	rules	for	output	filters

In	summary,	here	is	a	set	of	rules	for	all	output	filters	to	follow:

1.	 Output	filters	should	not	pass	empty	brigades	down	the	filter
chain,	but	should	be	tolerant	of	being	passed	empty	brigades.

2.	 Output	filters	must	pass	all	metadata	buckets	down	the	filter
chain;	FLUSH	buckets	should	be	respected	by	passing	any
pending	or	buffered	buckets	down	the	filter	chain.

3.	 Output	filters	should	ignore	any	buckets	following	an	EOS
bucket.

4.	 Output	filters	must	process	a	fixed	amount	of	data	at	a	time,
to	ensure	that	memory	consumption	is	not	proportional	to	the
size	of	the	content	being	filtered.

5.	 Output	filters	should	be	agnostic	with	respect	to	bucket	types,
and	must	be	able	to	process	buckets	of	unfamiliar	type.

6.	 After	calling	ap_pass_brigade	to	pass	a	brigade	down	the
filter	chain,	output	filters	should	call	apr_brigade_cleanup
to	ensure	the	brigade	is	empty	before	reusing	that	brigade
structure;	output	filters	should	never	use
apr_brigade_destroy	to	"destroy"	brigades.

7.	 Output	filters	must	setaside	any	buckets	which	are	preserved
beyond	the	duration	of	the	filter	function.

8.	 Output	filters	must	not	ignore	the	return	value	of
ap_pass_brigade,	and	must	return	appropriate	errors	back
up	the	filter	chain.

9.	 Output	filters	must	only	create	a	fixed	number	of	bucket
brigades	for	each	response,	rather	than	one	per	invocation.

10.	 Output	filters	should	first	attempt	non-blocking	reads	from
each	data	bucket,	and	send	a	FLUSH	bucket	down	the	filter
chain	if	the	read	blocks,	before	retrying	with	a	blocking	read.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	HTTP	Server	2.x	Thread	Safety
Issues

When	using	any	of	the	threaded	mpms	in	the	Apache	HTTP	Server
2.x	it	is	important	that	every	function	called	from	Apache	be	thread
safe.	When	linking	in	3rd	party	extensions	it	can	be	difficult	to
determine	whether	the	resulting	server	will	be	thread	safe.	Casual
testing	generally	won't	tell	you	this	either	as	thread	safety	problems
can	lead	to	subtle	race	conditions	that	may	only	show	up	in	certain
conditions	under	heavy	load.

Global	and	static	variables

When	writing	your	module	or	when	trying	to	determine	if	a	module
or	3rd	party	library	is	thread	safe	there	are	some	common	things
to	keep	in	mind.

First,	you	need	to	recognize	that	in	a	threaded	model	each
individual	thread	has	its	own	program	counter,	stack	and	registers.
Local	variables	live	on	the	stack,	so	those	are	fine.	You	need	to
watch	out	for	any	static	or	global	variables.	This	doesn't	mean	that
you	are	absolutely	not	allowed	to	use	static	or	global	variables.
There	are	times	when	you	actually	want	something	to	affect	all
threads,	but	generally	you	need	to	avoid	using	them	if	you	want
your	code	to	be	thread	safe.

In	the	case	where	you	have	a	global	variable	that	needs	to	be
global	and	accessed	by	all	threads,	be	very	careful	when	you
update	it.	If,	for	example,	it	is	an	incrementing	counter,	you	need	to
atomically	increment	it	to	avoid	race	conditions	with	other	threads.
You	do	this	using	a	mutex	(mutual	exclusion).	Lock	the	mutex,
read	the	current	value,	increment	it	and	write	it	back	and	then
unlock	the	mutex.	Any	other	thread	that	wants	to	modify	the	value
has	to	first	check	the	mutex	and	block	until	it	is	cleared.

If	you	are	using	APR,	have	a	look	at	the	apr_atomic_*	functions
and	the	apr_thread_mutex_*	functions.

http://apr.apache.org/

errno

This	is	a	common	global	variable	that	holds	the	error	number	of
the	last	error	that	occurred.	If	one	thread	calls	a	low-level	function
that	sets	errno	and	then	another	thread	checks	it,	we	are	bleeding
error	numbers	from	one	thread	into	another.	To	solve	this,	make
sure	your	module	or	library	defines	_REENTRANT	or	is	compiled
with	-D_REENTRANT.	This	will	make	errno	a	per-thread	variable
and	should	hopefully	be	transparent	to	the	code.	It	does	this	by
doing	something	like	this:

#define	errno	(*(__errno_location()))

which	means	that	accessing	errno	will	call
__errno_location()	which	is	provided	by	the	libc.	Setting
_REENTRANT	also	forces	redefinition	of	some	other	functions	to
their	*_r	equivalents	and	sometimes	changes	the	common
getc/putc	macros	into	safer	function	calls.	Check	your	libc
documentation	for	specifics.	Instead	of,	or	in	addition	to
_REENTRANT	the	symbols	that	may	affect	this	are
_POSIX_C_SOURCE,	_THREAD_SAFE,	_SVID_SOURCE,	and
_BSD_SOURCE.

Common	standard	troublesome	functions

Not	only	do	things	have	to	be	thread	safe,	but	they	also	have	to	be
reentrant.	strtok()	is	an	obvious	one.	You	call	it	the	first	time
with	your	delimiter	which	it	then	remembers	and	on	each
subsequent	call	it	returns	the	next	token.	Obviously	if	multiple
threads	are	calling	it	you	will	have	a	problem.	Most	systems	have
a	reentrant	version	of	the	function	called	strtok_r()	where	you
pass	in	an	extra	argument	which	contains	an	allocated	char	*
which	the	function	will	use	instead	of	its	own	static	storage	for
maintaining	the	tokenizing	state.	If	you	are	using	APR	you	can	use
apr_strtok().

crypt()	is	another	function	that	tends	to	not	be	reentrant,	so	if
you	run	across	calls	to	that	function	in	a	library,	watch	out.	On
some	systems	it	is	reentrant	though,	so	it	is	not	always	a	problem.
If	your	system	has	crypt_r()	chances	are	you	should	be	using
that,	or	if	possible	simply	avoid	the	whole	mess	by	using	md5
instead.

http://apr.apache.org/

Common	3rd	Party	Libraries

The	following	is	a	list	of	common	libraries	that	are	used	by	3rd
party	Apache	modules.	You	can	check	to	see	if	your	module	is
using	a	potentially	unsafe	library	by	using	tools	such	as	ldd(1)
and	nm(1).	For	PHP,	for	example,	try	this:

%	ldd	libphp4.so

libsablot.so.0	=>	/usr/local/lib/libsablot.so.0	(0x401f6000)

libexpat.so.0	=>	/usr/lib/libexpat.so.0	(0x402da000)

libsnmp.so.0	=>	/usr/lib/libsnmp.so.0	(0x402f9000)

libpdf.so.1	=>	/usr/local/lib/libpdf.so.1	(0x40353000)

libz.so.1	=>	/usr/lib/libz.so.1	(0x403e2000)

libpng.so.2	=>	/usr/lib/libpng.so.2	(0x403f0000)

libmysqlclient.so.11	=>	/usr/lib/libmysqlclient.so.11

(0x40411000)

libming.so	=>	/usr/lib/libming.so	(0x40449000)

libm.so.6	=>	/lib/libm.so.6	(0x40487000)

libfreetype.so.6	=>	/usr/lib/libfreetype.so.6	(0x404a8000)

libjpeg.so.62	=>	/usr/lib/libjpeg.so.62	(0x404e7000)

libcrypt.so.1	=>	/lib/libcrypt.so.1	(0x40505000)

libssl.so.2	=>	/lib/libssl.so.2	(0x40532000)

libcrypto.so.2	=>	/lib/libcrypto.so.2	(0x40560000)

libresolv.so.2	=>	/lib/libresolv.so.2	(0x40624000)

libdl.so.2	=>	/lib/libdl.so.2	(0x40634000)

libnsl.so.1	=>	/lib/libnsl.so.1	(0x40637000)

libc.so.6	=>	/lib/libc.so.6	(0x4064b000)

/lib/ld-linux.so.2	=>	/lib/ld-linux.so.2	(0x80000000)

In	addition	to	these	libraries	you	will	need	to	have	a	look	at	any
libraries	linked	statically	into	the	module.	You	can	use	nm(1)	to
look	for	individual	symbols	in	the	module.

http://www.php.net/

Library	List

Please	drop	a	note	to	dev@httpd.apache.org	if	you	have	additions
or	corrections	to	this	list.

Library Version Thread
Safe?

Notes

ASpell/PSpell ?
Berkeley	DB 3.x,	4.x Yes Be	careful	about	sharing	a	connection	across	threads.
bzip2 Yes Both	low-level	and	high-level	APIs	are	thread-safe.

However,	high-level	API	requires	thread-safe	access	to
errno.

cdb ?
C-Client Perhaps c-client	uses	strtok()	and	gethostbyname()

are	not	thread-safe	on	most	C	library	implementations.	
client's	static	data	is	meant	to	be	shared	
If	strtok()	and	gethostbyname()
your	OS,	c-client	may	be	thread-safe.

libcrypt ?
Expat Yes Need	a	separate	parser	instance	per	thread
FreeTDS ?
FreeType ?
GD	1.8.x ?
GD	2.0.x ?
gdbm No Errors	returned	via	a	static	gdbm_error

ImageMagick 5.2.2 Yes ImageMagick	docs	claim	it	is	thread	safe	since	version
5.2.2	(see	Change	log).

Imlib2 ?
libjpeg v6b ?
libmysqlclient Yes Use	mysqlclient_r	library	variant	to	ensure	thread-safety.

For	more	information,	please	read
http://dev.mysql.com/doc/mysql/en/Threaded_clients.html

http://httpd.apache.org/lists.html#http-dev
http://aspell.sourceforge.net/
http://www.sleepycat.com/
http://sources.redhat.com/bzip2/index.html
http://cr.yp.to/cdb.html
http://www.washington.edu/imap/
http://www.ijg.org/files/
http://expat.sourceforge.net/
http://www.freetds.org/
http://www.freetype.org/
http://www.boutell.com/gd/
http://www.boutell.com/gd/
http://www.gnu.org/software/gdbm/gdbm.html
http://www.imagemagick.org/
http://www.imagemagick.com/www/changelog.html
http://www.enlightenment.org/p.php?p=about/efl&l=en
http://www.ijg.org/files/
http://mysql.com
http://dev.mysql.com/doc/mysql/en/Threaded_clients.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Ming 0.2a ?
Net-SNMP 5.0.x ?
OpenLDAP 2.1.x Yes Use	ldap_r	library	variant	to	ensure	

OpenSSL 0.9.6g Yes Requires	proper	usage	of	CRYPTO_num_locks
CRYPTO_set_locking_callback

CRYPTO_set_id_callback

liboci8
(Oracle	8+)

8.x,9.x ?

pdflib 5.0.x Yes PDFLib	docs	claim	it	is	thread	safe;	changes.txt	indicates
it	has	been	partially	thread-safe	since	V1.91:
http://www.pdflib.com/products/pdflib-family/pdflib/

libpng 1.0.x ?
libpng 1.2.x ?
libpq
(PostgreSQL)

8.x Yes Don't	share	connections	across	threads	and	watch	out	for
crypt()	calls

Sablotron 0.95 ?
zlib 1.1.4 Yes Relies	upon	thread-safe	zalloc	and	zfree	functions	

is	to	use	libc's	calloc/free	which	are	thread-safe.

http://www.opaque.net/ming/
http://net-snmp.sourceforge.net/
http://www.openldap.org/
http://www.openssl.org/
http://www.oracle.com/
http://pdflib.com/
http://www.pdflib.com/products/pdflib-family/pdflib/
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
http://www.postgresql.org/docs/8.4/static/libpq-threading.html
http://www.gingerall.com/charlie/ga/xml/p_sab.xml
http://www.gzip.org/zlib/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	|		|	FAQ	|		|	

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

	2.2			

				.	 					.

				2.0		2.2				 .	1.3					
	 .

			

Authn/Authz
...

...

	 mod_proxy_balancer		 mod_proxy				.	
	 mod_proxy_ajp		 	 		 Apache	JServ	Protocol

1.3	 	.

	
mod_filter			 		.			,		,		
			,	2.0			 			.

http://tomcat.apache.org/

		

mod_authnz_ldap

		2.0	 mod_auth_ldap		 2.2	 Authn/Authz		
.	 Require		LDAP	 (attribute)								
.

mod_info

						 	 ?config		.		
	 httpd	-V		 		.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

	|		|	FAQ	|		|

			

APR	1.0	API
	2.2	APR	1.0	API	.	 APR	APR-Util				
.			 APR		.

			
						 	 ap_log_cerror

	IP		.

			
	httpd	 -t				 					 test_config

	MPM		
		MPM			 ThreadStackSize			.		
						 		.

			
								 				.		
ap_register_output_filter_protocol	
ap_filter_protocol				 		 mod_filter

.

http://apr.apache.org/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

htdbm	-	Manipulate	DBM	password
databases

htdbm	is	used	to	manipulate	the	DBM	format	files	used	to	store
usernames	and	password	for	basic	authentication	of	HTTP	users	via
mod_authn_dbm.	See	the	dbmmanage	documentation	for	more
information	about	these	DBM	files.

See	also
httpd

dbmmanage

mod_authn_dbm

https://www.apache.org/foundation/contributing.html

Synopsis
htdbm	[-TDBTYPE]	[-i]	[-c]	[-m	|	-B	|	-d	|

-s	|	-p]	[-C	cost]	[-t]	[-v]	filename

username

htdbm	-b	[-TDBTYPE]	[-c]	[-m	|	-B	|	-d	|	-s

|	-p]	[-C	cost]	[-t]	[-v]	filename

username	password

htdbm	-n	[-i]	[-c]	[-m	|	-B	|	-d	|	-s	|	-p]

[-C	cost]	[-t]	[-v]	username

htdbm	-nb	[-c]	[-m	|	-B	|	-d	|	-s	|	-p]	[-C

cost]	[-t]	[-v]	username	password

htdbm	-v	[-TDBTYPE]	[-i]	[-c]	[-m	|	-B	|	-

d	|	-s	|	-p]	[-C	cost]	[-t]	[-v]	filename

username

htdbm	-vb	[-TDBTYPE]	[-c]	[-m	|	-B	|	-d	|	-s

|	-p]	[-C	cost]	[-t]	[-v]	filename

username	password

htdbm	-x	[-TDBTYPE]	filename	username

htdbm	-l	[-TDBTYPE]

Options

-b

Use	batch	mode;	i.e.,	get	the	password	from	the	command
line	rather	than	prompting	for	it.	This	option	should	be	used
with	extreme	care,	since	the	password	is	clearly	visible	on
the	command	line.	For	script	use	see	the	-i	option.

-i

Read	the	password	from	stdin	without	verification	(for	script
usage).

-c

Create	the	passwdfile.	If	passwdfile	already	exists,	it	is
rewritten	and	truncated.	This	option	cannot	be	combined	with
the	-n	option.

-n

Display	the	results	on	standard	output	rather	than	updating	a
database.	This	option	changes	the	syntax	of	the	command
line,	since	the	passwdfile	argument	(usually	the	first	one)	is
omitted.	It	cannot	be	combined	with	the	-c	option.

-m

Use	MD5	encryption	for	passwords.	On	Windows	and
Netware,	this	is	the	default.

-B

Use	bcrypt	encryption	for	passwords.	This	is	currently
considered	to	be	very	secure.

-C

This	flag	is	only	allowed	in	combination	with	-B	(bcrypt
encryption).	It	sets	the	computing	time	used	for	the	bcrypt
algorithm	(higher	is	more	secure	but	slower,	default:	5,	valid:	4
to	31).

-d

Use	crypt()	encryption	for	passwords.	The	default	on	all

platforms	but	Windows	and	Netware.	Though	possibly
supported	by	htdbm	on	all	platforms,	it	is	not	supported	by
the	httpd	server	on	Windows	and	Netware.	This	algorithm	is
insecure	by	today's	standards.

-s

Use	SHA	encryption	for	passwords.	Facilitates	migration
from/to	Netscape	servers	using	the	LDAP	Directory
Interchange	Format	(ldif).	This	algorithm	is	insecure	by
today's	standards.

-p

Use	plaintext	passwords.	Though	htdbm	will	support	creation
on	all	platforms,	the	httpd	daemon	will	only	accept	plain	text
passwords	on	Windows	and	Netware.

-l

Print	each	of	the	usernames	and	comments	from	the
database	on	stdout.

-v

Verify	the	username	and	password.	The	program	will	print	a
message	indicating	whether	the	supplied	password	is	valid.	If
the	password	is	invalid,	the	program	exits	with	error	code	3.

-x

Delete	user.	If	the	username	exists	in	the	specified	DBM	file,	it
will	be	deleted.

-t

Interpret	the	final	parameter	as	a	comment.	When	this	option
is	specified,	an	additional	string	can	be	appended	to	the
command	line;	this	string	will	be	stored	in	the	"Comment"	field
of	the	database,	associated	with	the	specified	username.

filename

The	filename	of	the	DBM	format	file.	Usually	without	the
extension	.db,	.pag,	or	.dir.	If	-c	is	given,	the	DBM	file	is

created	if	it	does	not	already	exist,	or	updated	if	it	does	exist.

username

The	username	to	create	or	update	in	passwdfile.	If	username
does	not	exist	in	this	file,	an	entry	is	added.	If	it	does	exist,	the
password	is	changed.

password

The	plaintext	password	to	be	encrypted	and	stored	in	the
DBM	file.	Used	only	with	the	-b	flag.

-TDBTYPE

Type	of	DBM	file	(SDBM,	GDBM,	DB,	or	"default").

Bugs

One	should	be	aware	that	there	are	a	number	of	different	DBM	file
formats	in	existence,	and	with	all	likelihood,	libraries	for	more	than
one	format	may	exist	on	your	system.	The	three	primary	examples
are	SDBM,	NDBM,	GNU	GDBM,	and	Berkeley/Sleepycat	DB
2/3/4.	Unfortunately,	all	these	libraries	use	different	file	formats,
and	you	must	make	sure	that	the	file	format	used	by	filename	is
the	same	format	that	htdbm	expects	to	see.	htdbm	currently	has
no	way	of	determining	what	type	of	DBM	file	it	is	looking	at.	If	used
against	the	wrong	format,	will	simply	return	nothing,	or	may	create
a	different	DBM	file	with	a	different	name,	or	at	worst,	it	may
corrupt	the	DBM	file	if	you	were	attempting	to	write	to	it.

One	can	usually	use	the	file	program	supplied	with	most	Unix
systems	to	see	what	format	a	DBM	file	is	in.

Exit	Status

htdbm	returns	a	zero	status	("true")	if	the	username	and	password
have	been	successfully	added	or	updated	in	the	DBM	File.	htdbm
returns	1	if	it	encounters	some	problem	accessing	files,	2	if	there
was	a	syntax	problem	with	the	command	line,	3	if	the	password
was	entered	interactively	and	the	verification	entry	didn't	match,	4
if	its	operation	was	interrupted,	5	if	a	value	is	too	long	(username,
filename,	password,	or	final	computed	record),	6	if	the	username
contains	illegal	characters	(see	the	Restrictions	section),	and	7	if
the	file	is	not	a	valid	DBM	password	file.

Examples

htdbm	/usr/local/etc/apache/.htdbm-users	jsmith

Adds	or	modifies	the	password	for	user	jsmith.	The	user	is
prompted	for	the	password.	If	executed	on	a	Windows	system,	the
password	will	be	encrypted	using	the	modified	Apache	MD5
algorithm;	otherwise,	the	system's	crypt()	routine	will	be	used.	If
the	file	does	not	exist,	htdbm	will	do	nothing	except	return	an
error.

htdbm	-c	/home/doe/public_html/.htdbm	jane

Creates	a	new	file	and	stores	a	record	in	it	for	user	jane.	The
user	is	prompted	for	the	password.	If	the	file	exists	and	cannot	be
read,	or	cannot	be	written,	it	is	not	altered	and	htdbm	will	display	a
message	and	return	an	error	status.

htdbm	-mb	/usr/web/.htdbm-all	jones	Pwd4Steve

Encrypts	the	password	from	the	command	line	(Pwd4Steve)
using	the	MD5	algorithm,	and	stores	it	in	the	specified	file.

Security	Considerations

Web	password	files	such	as	those	managed	by	htdbm	should	not
be	within	the	Web	server's	URI	space	--	that	is,	they	should	not	be
fetchable	with	a	browser.

The	use	of	the	-b	option	is	discouraged,	since	when	it	is	used	the
unencrypted	password	appears	on	the	command	line.

When	using	the	crypt()	algorithm,	note	that	only	the	first	8
characters	of	the	password	are	used	to	form	the	password.	If	the
supplied	password	is	longer,	the	extra	characters	will	be	silently
discarded.

The	SHA	encryption	format	does	not	use	salting:	for	a	given
password,	there	is	only	one	encrypted	representation.	The
crypt()	and	MD5	formats	permute	the	representation	by
prepending	a	random	salt	string,	to	make	dictionary	attacks
against	the	passwords	more	difficult.

The	SHA	and	crypt()	formats	are	insecure	by	today's	standards.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Restrictions

On	the	Windows	platform,	passwords	encrypted	with	htdbm	are
limited	to	no	more	than	255	characters	in	length.	Longer
passwords	will	be	truncated	to	255	characters.

The	MD5	algorithm	used	by	htdbm	is	specific	to	the	Apache
software;	passwords	encrypted	using	it	will	not	be	usable	with
other	Web	servers.

Usernames	are	limited	to	255	bytes	and	may	not	include	the
character	:.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	Apache HTTP Server Version 2.4

