
Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación

http://wiki.apache.org/httpd/FAQ
http://httpd.apache.org/docs-project/
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Versión	2.4	de	la	documentación	del	Servidor
de	HTTP	Apache

Esta	traducción	podría	estar	obsoleta.	Consulte	la	versión	en
inglés	de	la	documentación	para	comprobar	si	se	han
producido	cambios	recientemente.

	 Buscar	en	Google

Notas	de	la	Versión

Nuevas	funcionalidades	en	Apache	2.3/2.4
Nuevas	funcionalidades	en	Apache	2.1/2.2
Nuevas	funcionalidades	en	Apache	2.0
Actualizarse	a	la	versión	2.0	desde	la	1.3
Licencia	Apache

Manual	de	Referencia

Compilación	e	Instalación
Iniciar	Apache
Parar	y	reiniciar	Apache
Directivas	para	configurar	la	ejecución
Directivas	de	configuración	en	tiempo	de	ejecución
Módulos
Módulos	de	MultiProcesamiento	(MPMs)
Filtros
Handlers
Analizador	de	Expresiones
Programas	de	Soporte	y	Servidor
Glosario

Guía	del	Usuario

Empezando
Enlazando	Direcciones	y	Puertos
Ficheros	de	Configuración
Secciones	de	Configuración
Almacenamiento	de	Contenido	en	Caché
Negociación	de	Contenidos
Objetos	Compartidos	Dinámicamente	(DSO)
Variables	de	Entorno
Ficheros	de	Log
Mapear	URLs	a	ubicaciones	de	un	sistema	de	ficheros
Ajustes	para	conseguir	un	mejor	rendimiento
Consejos	de	Seguridad
Configuración	Básica	de	Apache
Encriptado	SSL/TLS
Ejecución	de	Suexec	para	CGIs
Reescritura	de	URL	con	mod_rewrite
Servidores	Virtuales

How-To	/	Tutoriales

Autenticación	y	Autorización
Control	de	Acceso
CGI:	Contenido	Dinámico
Ficheros	.htaccess
Server	Side	Includes	(SSI)
Directorios	web	para	cada	usuario	(public_html)
Reverse	proxy	setup	guide
Guía	de	HTTP/2

Notas	específicas	sobre	plataformas

Microsoft	Windows
Sistemas	Basados	en	RPM	(Redhat	/	CentOS	/	Fedora)
Novell	NetWare
EBCDIC	Port

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Otros	Temas

Preguntas	Frecuentes
Mapa	del	Sitio
Documentación	para	desarrolladores
Contribuir	en	la	Documentación
Otros	documentos
Wiki

http://httpd.apache.org/docs-project/
http://wiki.apache.org/httpd/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Upgrading	to	2.4	from	2.2

In	order	to	assist	folks	upgrading,	we	maintain	a	document	describing
information	critical	to	existing	Apache	HTTP	Server	users.	These	are
intended	to	be	brief	notes,	and	you	should	be	able	to	find	more
information	in	either	the	New	Features	document,	or	in	the
src/CHANGES	file.	Application	and	module	developers	can	find	a
summary	of	API	changes	in	the	API	updates	overview.

This	document	describes	changes	in	server	behavior	that	might
require	you	to	change	your	configuration	or	how	you	use	the	server	in
order	to	continue	using	2.4	as	you	are	currently	using	2.2.	To	take
advantage	of	new	features	in	2.4,	see	the	New	Features	document.

This	document	describes	only	the	changes	from	2.2	to	2.4.	If	you	are
upgrading	from	version	2.0,	you	should	also	consult	the	2.0	to	2.2
upgrading	document.

See	also
Overview	of	new	features	in	Apache	HTTP	Server	2.4

http://httpd.apache.org/docs/2.2/upgrading.html
https://www.apache.org/foundation/contributing.html

Compile-Time	Configuration	Changes

The	compilation	process	is	very	similar	to	the	one	used	in	version
2.2.	Your	old	configure	command	line	(as	found	in
build/config.nice	in	the	installed	server	directory)	can	be
used	in	most	cases.	There	are	some	changes	in	the	default
settings.	Some	details	of	changes:

These	modules	have	been	removed:	mod_authn_default,
mod_authz_default,	mod_mem_cache.	If	you	were	using
mod_mem_cache	in	2.2,	look	at	mod_cache_disk	in	2.4.
All	load	balancing	implementations	have	been	moved	to
individual,	self-contained	mod_proxy	submodules,	e.g.
mod_lbmethod_bybusyness.	You	might	need	to	build	and
load	any	of	these	that	your	configuration	uses.
Platform	support	has	been	removed	for	BeOS,	TPF,	and	even
older	platforms	such	as	A/UX,	Next,	and	Tandem.	These	were
believed	to	be	broken	anyway.
configure:	dynamic	modules	(DSO)	are	built	by	default
configure:	By	default,	only	a	basic	set	of	modules	is	loaded.
The	other	LoadModule	directives	are	commented	out	in	the
configuration	file.
configure:	the	"most"	module	set	gets	built	by	default
configure:	the	"reallyall"	module	set	adds	developer	modules
to	the	"all"	set

Run-Time	Configuration	Changes

There	have	been	significant	changes	in	authorization
configuration,	and	other	minor	configuration	changes,	that	could
require	changes	to	your	2.2	configuration	files	before	using	them
for	2.4.

Authorization
Any	configuration	file	that	uses	authorization	will	likely	need
changes.

You	should	review	the	Authentication,	Authorization	and	Access
Control	Howto,	especially	the	section	Beyond	just	authorization
which	explains	the	new	mechanisms	for	controlling	the	order	in
which	the	authorization	directives	are	applied.

Directives	that	control	how	authorization	modules	respond	when
they	don't	match	the	authenticated	user	have	been	removed:	This
includes	AuthzLDAPAuthoritative,	AuthzDBDAuthoritative,
AuthzDBMAuthoritative,	AuthzGroupFileAuthoritative,
AuthzUserAuthoritative,	and	AuthzOwnerAuthoritative.	These
directives	have	been	replaced	by	the	more	expressive
RequireAny,	RequireNone,	and	RequireAll.

If	you	use	mod_authz_dbm,	you	must	port	your	configuration	to
use	Require	dbm-group	...	in	place	of	Require	group
....

Access	control
In	2.2,	access	control	based	on	client	hostname,	IP	address,	and
other	characteristics	of	client	requests	was	done	using	the
directives	Order,	Allow,	Deny,	and	Satisfy.

In	2.4,	such	access	control	is	done	in	the	same	way	as	other
authorization	checks,	using	the	new	module	mod_authz_host.

The	old	access	control	idioms	should	be	replaced	by	the	new
authentication	mechanisms,	although	for	compatibility	with	old
configurations,	the	new	module	mod_access_compat	is
provided.

Mixing	old	and	new	directives

Mixing	old	directives	like	Order,	Allow	or	Deny	with	new	ones
like	Require	is	technically	possible	but	discouraged.
mod_access_compat	was	created	to	support	configurations
containing	only	old	directives	to	facilitate	the	2.4	upgrade.
Please	check	the	examples	below	to	get	a	better	idea	about
issues	that	might	arise.

Here	are	some	examples	of	old	and	new	ways	to	do	the	same
access	control.

In	this	example,	there	is	no	authentication	and	all	requests	are
denied.

2.2	configuration:
Order	deny,allow

Deny	from	all

2.4	configuration:
Require	all	denied

In	this	example,	there	is	no	authentication	and	all	requests	are
allowed.

2.2	configuration:
Order	allow,deny

Allow	from	all

2.4	configuration:
Require	all	granted

In	the	following	example,	there	is	no	authentication	and	all	hosts	in
the	example.org	domain	are	allowed	access;	all	other	hosts	are
denied	access.

2.2	configuration:
Order	Deny,Allow

Deny	from	all

Allow	from	example.org

2.4	configuration:
Require	host	example.org

In	the	following	example,	mixing	old	and	new	directives	leads	to
unexpected	results.

Mixing	old	and	new	directives:	NOT	WORKING	AS
EXPECTED
DocumentRoot	"/var/www/html"

<Directory	"/">

				AllowOverride	None

				Order	deny,allow

				Deny	from	all

</Directory>

<Location	"/server-status">

				SetHandler	server-status

				Require	local

</Location>

access.log	-	GET	/server-status	403	127.0.0.1

error.log	-	AH01797:	client	denied	by	server	configuration:	/var/www/html/server-status

Why	httpd	denies	access	to	servers-status	even	if	the

configuration	seems	to	allow	it?	Because	mod_access_compat
directives	take	precedence	over	the	mod_authz_host	one	in	this
configuration	merge	scenario.

This	example	conversely	works	as	expected:

Mixing	old	and	new	directives:	WORKING	AS	EXPECTED
DocumentRoot	"/var/www/html"

<Directory	"/">

				AllowOverride	None

				Require	all	denied

</Directory>

<Location	"/server-status">

				SetHandler	server-status

				Order	deny,allow

				Deny	from	all

				Allow	From	127.0.0.1

</Location>

access.log	-	GET	/server-status	200	127.0.0.1

So	even	if	mixing	configuration	is	still	possible,	please	try	to	avoid
it	when	upgrading:	either	keep	old	directives	and	then	migrate	to
the	new	ones	on	a	later	stage	or	just	migrate	everything	in	bulk.

In	many	configurations	with	authentication,	where	the	value	of	the
Satisfy	was	the	default	of	ALL,	snippets	that	simply	disabled
host-based	access	control	are	omitted:

2.2	configuration:
Order	Deny,Allow

Deny	from	all

AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

Require	valid-user

2.4	configuration:
#	No	replacement	needed

AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

Require	valid-user

In	configurations	where	both	authentication	and	access	control
were	meaningfully	combined,	the	access	control	directives	should
be	migrated.	This	example	allows	requests	meeting	both	criteria:

2.2	configuration:
Order	allow,deny

Deny	from	all

#	Satisfy	ALL	is	the	default

Satisfy	ALL

Allow	from	127.0.0.1

AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

Require	valid-user

2.4	configuration:
AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

<RequireAll>

		Require	valid-user

		Require	ip	127.0.0.1

</RequireAll>

In	configurations	where	both	authentication	and	access	control
were	meaningfully	combined,	the	access	control	directives	should
be	migrated.	This	example	allows	requests	meeting	either	criteria:

2.2	configuration:
Order	allow,deny

Deny	from	all

Satisfy	any

Allow	from	127.0.0.1

AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

Require	valid-user

2.4	configuration:
AuthBasicProvider	File

AuthUserFile	/example.com/conf/users.passwd

AuthName	secure

#	Implicitly	<RequireAny>

Require	valid-user

Require	ip	127.0.0.1

Other	configuration	changes
Some	other	small	adjustments	may	be	necessary	for	particular
configurations	as	discussed	below.

MaxRequestsPerChild	has	been	renamed	to
MaxConnectionsPerChild,	describes	more	accurately
what	it	does.	The	old	name	is	still	supported.
MaxClients	has	been	renamed	to	MaxRequestWorkers,
which	describes	more	accurately	what	it	does.	For	async
MPMs,	like	event,	the	maximum	number	of	clients	is	not
equivalent	than	the	number	of	worker	threads.	The	old	name
is	still	supported.
The	DefaultType	directive	no	longer	has	any	effect,	other
than	to	emit	a	warning	if	it's	used	with	any	value	other	than
none.	You	need	to	use	other	configuration	settings	to	replace
it	in	2.4.
AllowOverride	now	defaults	to	None.
EnableSendfile	now	defaults	to	Off.
FileETag	now	defaults	to	"MTime	Size"	(without	INode).
mod_dav_fs:	The	format	of	the	DavLockDB	file	has	changed
for	systems	with	inodes.	The	old	DavLockDB	file	must	be

deleted	on	upgrade.
KeepAlive	only	accepts	values	of	On	or	Off.	Previously,	any
value	other	than	"Off"	or	"0"	was	treated	as	"On".
Directives	AcceptMutex,	LockFile,	RewriteLock,	SSLMutex,
SSLStaplingMutex,	and	WatchdogMutexPath	have	been
replaced	with	a	single	Mutex	directive.	You	will	need	to
evaluate	any	use	of	these	removed	directives	in	your	2.2
configuration	to	determine	if	they	can	just	be	deleted	or	will
need	to	be	replaced	using	Mutex.
mod_cache:	CacheIgnoreURLSessionIdentifiers	now
does	an	exact	match	against	the	query	string	instead	of	a
partial	match.	If	your	configuration	was	using	partial	strings,
e.g.	using	sessionid	to	match
/someapplication/image.gif;jsessionid=123456789

then	you	will	need	to	change	to	the	full	string	jsessionid.
mod_cache:	The	second	parameter	to	CacheEnable	only
matches	forward	proxy	content	if	it	begins	with	the	correct
protocol.	In	2.2	and	earlier,	a	parameter	of	'/'	matched	all
content.
mod_ldap:	LDAPTrustedClientCert	is	now	consistently	a
per-directory	setting	only.	If	you	use	this	directive,	review	your
configuration	to	make	sure	it	is	present	in	all	the	necessary
directory	contexts.
mod_filter:	FilterProvider	syntax	has	changed	and
now	uses	a	boolean	expression	to	determine	if	a	filter	is
applied.
mod_include:

The	#if	expr	element	now	uses	the	new	expression
parser.	The	old	syntax	can	be	restored	with	the	new
directive	SSILegacyExprParser.
An	SSI*	config	directive	in	directory	scope	no	longer
causes	all	other	per-directory	SSI*	directives	to	be	reset
to	their	default	values.

mod_charset_lite:	The	DebugLevel	option	has	been
removed	in	favour	of	per-module	LogLevel	configuration.
mod_ext_filter:	The	DebugLevel	option	has	been
removed	in	favour	of	per-module	LogLevel	configuration.
mod_proxy_scgi:	The	default	setting	for	PATH_INFO	has
changed	from	httpd	2.2,	and	some	web	applications	will	no
longer	operate	properly	with	the	new	PATH_INFO	setting.	The
previous	setting	can	be	restored	by	configuring	the	proxy-
scgi-pathinfo	variable.
mod_ssl:	CRL	based	revocation	checking	now	needs	to	be
explicitly	configured	through	SSLCARevocationCheck.
mod_substitute:	The	maximum	line	length	is	now	limited	to
1MB.
mod_reqtimeout:	If	the	module	is	loaded,	it	will	now	set
some	default	timeouts.
mod_dumpio:	DumpIOLogLevel	is	no	longer	supported.
Data	is	always	logged	at	LogLevel	trace7.
On	Unix	platforms,	piped	logging	commands	configured	using
either	ErrorLog	or	CustomLog	were	invoked	using
/bin/sh	-c	in	2.2	and	earlier.	In	2.4	and	later,	piped	logging
commands	are	executed	directly.	To	restore	the	old	behaviour,
see	the	piped	logging	documentation.

Misc	Changes

mod_autoindex:	will	now	extract	titles	and	display
descriptions	for	.xhtml	files,	which	were	previously	ignored.
mod_ssl:	The	default	format	of	the	*_DN	variables	has
changed.	The	old	format	can	still	be	used	with	the	new
LegacyDNStringFormat	argument	to	SSLOptions.	The
SSLv2	protocol	is	no	longer	supported.
SSLProxyCheckPeerCN	and
SSLProxyCheckPeerExpire	now	default	to	On,	causing
proxy	requests	to	HTTPS	hosts	with	bad	or	outdated
certificates	to	fail	with	a	502	status	code	(Bad	gateway)
htpasswd	now	uses	MD5	hash	by	default	on	all	platforms.
The	NameVirtualHost	directive	no	longer	has	any	effect,
other	than	to	emit	a	warning.	Any	address/port	combination
appearing	in	multiple	virtual	hosts	is	implicitly	treated	as	a
name-based	virtual	host.
mod_deflate	will	now	skip	compression	if	it	knows	that	the
size	overhead	added	by	the	compression	is	larger	than	the
data	to	be	compressed.
Multi-language	error	documents	from	2.2.x	may	not	work
unless	they	are	adjusted	to	the	new	syntax	of
mod_include's	#if	expr=	element	or	the	directive
SSILegacyExprParser	is	enabled	for	the	directory
containing	the	error	documents.
The	functionality	provided	by	mod_authn_alias	in	previous
versions	(i.e.,	the	AuthnProviderAlias	directive)	has	been
moved	into	mod_authn_core.
The	RewriteLog	and	RewriteLogLevel	directives	have	been
removed.	This	functionality	is	now	provided	by	configuring	the
appropriate	level	of	logging	for	the	mod_rewrite	module
using	the	LogLevel	directive.	See	also	the	mod_rewrite
logging	section.

Third	Party	Modules

All	modules	must	be	recompiled	for	2.4	before	being	loaded.

Many	third-party	modules	designed	for	version	2.2	will	otherwise
work	unchanged	with	the	Apache	HTTP	Server	version	2.4.	Some
will	require	changes;	see	the	API	update	overview.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Common	problems	when	upgrading

Startup	errors:
Invalid	command	'User',	perhaps	misspelled

or	defined	by	a	module	not	included	in	the

server	configuration	-	load	module	mod_unixd
Invalid	command	'Require',	perhaps

misspelled	or	defined	by	a	module	not

included	in	the	server	configuration,	or
Invalid	command	'Order',	perhaps

misspelled	or	defined	by	a	module	not

included	in	the	server	configuration	-	load
module	mod_access_compat,	or	update	configuration
to	2.4	authorization	directives.
Ignoring	deprecated	use	of	DefaultType	in

line	NN	of	/path/to/httpd.conf	-	remove
DefaultType	and	replace	with	other	configuration
settings.
Invalid	command	'AddOutputFilterByType',

perhaps	misspelled	or	defined	by	a	module

not	included	in	the	server	configuration	-
AddOutputFilterByType	has	moved	from	the	core	to
mod_filter,	which	must	be	loaded.

Errors	serving	requests:
configuration	error:	couldn't	check	user:

/path	-	load	module	mod_authn_core.
.htaccess	files	aren't	being	processed	-	Check	for	an
appropriate	AllowOverride	directive;	the	default
changed	to	None	in	2.4.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Overview	of	new	features	in	Apache	HTTP
Server	2.0

This	document	describes	some	of	the	major	changes	between	the	1.3
and	2.0	versions	of	the	Apache	HTTP	Server.

See	also
Upgrading	to	2.0	from	1.3

https://www.apache.org/foundation/contributing.html

Core	Enhancements

Unix	Threading
On	Unix	systems	with	POSIX	threads	support,	Apache	httpd
can	now	run	in	a	hybrid	multiprocess,	multithreaded	mode.
This	improves	scalability	for	many,	but	not	all	configurations.

New	Build	System
The	build	system	has	been	rewritten	from	scratch	to	be	based
on	autoconf	and	libtool.	This	makes	Apache	httpd's
configuration	system	more	similar	to	that	of	other	packages.

Multiprotocol	Support
Apache	HTTP	Server	now	has	some	of	the	infrastructure	in
place	to	support	serving	multiple	protocols.	mod_echo	has
been	written	as	an	example.

Better	support	for	non-Unix	platforms
Apache	HTTP	Server	2.0	is	faster	and	more	stable	on	non-
Unix	platforms	such	as	BeOS,	OS/2,	and	Windows.	With	the
introduction	of	platform-specific	multi-processing	modules
(MPMs)	and	the	Apache	Portable	Runtime	(APR),	these
platforms	are	now	implemented	in	their	native	API,	avoiding
the	often	buggy	and	poorly	performing	POSIX-emulation
layers.

New	Apache	httpd	API
The	API	for	modules	has	changed	significantly	for	2.0.	Many
of	the	module-ordering/-priority	problems	from	1.3	should	be
gone.	2.0	does	much	of	this	automatically,	and	module
ordering	is	now	done	per-hook	to	allow	more	flexibility.	Also,
new	calls	have	been	added	that	provide	additional	module
capabilities	without	patching	the	core	Apache	HTTP	Server.

IPv6	Support
On	systems	where	IPv6	is	supported	by	the	underlying
Apache	Portable	Runtime	library,	Apache	httpd	gets	IPv6
listening	sockets	by	default.	Additionally,	the	Listen,

NameVirtualHost,	and	VirtualHost	directives	support
IPv6	numeric	address	strings	(e.g.,	"Listen
[2001:db8::1]:8080").

Filtering
Apache	httpd	modules	may	now	be	written	as	filters	which	act
on	the	stream	of	content	as	it	is	delivered	to	or	from	the
server.	This	allows,	for	example,	the	output	of	CGI	scripts	to
be	parsed	for	Server	Side	Include	directives	using	the
INCLUDES	filter	in	mod_include.	The	module
mod_ext_filter	allows	external	programs	to	act	as	filters
in	much	the	same	way	that	CGI	programs	can	act	as
handlers.

Multilanguage	Error	Responses
Error	response	messages	to	the	browser	are	now	provided	in
several	languages,	using	SSI	documents.	They	may	be
customized	by	the	administrator	to	achieve	a	consistent	look
and	feel.

Simplified	configuration
Many	confusing	directives	have	been	simplified.	The	often
confusing	Port	and	BindAddress	directives	are	gone;	only
the	Listen	directive	is	used	for	IP	address	binding;	the
ServerName	directive	specifies	the	server	name	and	port
number	only	for	redirection	and	vhost	recognition.

Native	Windows	NT	Unicode	Support
Apache	httpd	2.0	on	Windows	NT	now	uses	utf-8	for	all
filename	encodings.	These	directly	translate	to	the	underlying
Unicode	file	system,	providing	multilanguage	support	for	all
Windows	NT-based	installations,	including	Windows	2000	and
Windows	XP.	This	support	does	not	extend	to	Windows	95,	98
or	ME,	which	continue	to	use	the	machine's	local	codepage
for	filesystem	access.

Regular	Expression	Library	Updated

Apache	httpd	2.0	includes	the	Perl	Compatible	Regular
Expression	Library	(PCRE).	All	regular	expression	evaluation
now	uses	the	more	powerful	Perl	5	syntax.

http://www.pcre.org/

Module	Enhancements

mod_ssl

New	module	in	Apache	httpd	2.0.	This	module	is	an	interface
to	the	SSL/TLS	encryption	protocols	provided	by	OpenSSL.

mod_dav

New	module	in	Apache	httpd	2.0.	This	module	implements	the
HTTP	Distributed	Authoring	and	Versioning	(DAV)
specification	for	posting	and	maintaining	web	content.

mod_deflate

New	module	in	Apache	httpd	2.0.	This	module	allows
supporting	browsers	to	request	that	content	be	compressed
before	delivery,	saving	network	bandwidth.

mod_auth_ldap

New	module	in	Apache	httpd	2.0.41.	This	module	allows	an
LDAP	database	to	be	used	to	store	credentials	for	HTTP
Basic	Authentication.	A	companion	module,	mod_ldap
provides	connection	pooling	and	results	caching.

mod_auth_digest

Includes	additional	support	for	session	caching	across
processes	using	shared	memory.

mod_charset_lite

New	module	in	Apache	httpd	2.0.	This	experimental	module
allows	for	character	set	translation	or	recoding.

mod_file_cache

New	module	in	Apache	httpd	2.0.	This	module	includes	the
functionality	of	mod_mmap_static	in	Apache	HTTP	Server
version	1.3,	plus	adds	further	caching	abilities.

mod_headers

This	module	is	much	more	flexible	in	Apache	httpd	2.0.	It	can
now	modify	request	headers	used	by	mod_proxy,	and	it	can
conditionally	set	response	headers.

mod_proxy

The	proxy	module	has	been	completely	rewritten	to	take
advantage	of	the	new	filter	infrastructure	and	to	implement	a
more	reliable,	HTTP/1.1	compliant	proxy.	In	addition,	new
<Proxy>	configuration	sections	provide	more	readable	(and
internally	faster)	control	of	proxied	sites;	overloaded
<Directory	"proxy:...">	configuration	are	not
supported.	The	module	is	now	divided	into	specific	protocol
support	modules	including	proxy_connect,	proxy_ftp
and	proxy_http.

mod_negotiation

A	new	ForceLanguagePriority	directive	can	be	used	to
assure	that	the	client	receives	a	single	document	in	all	cases,
rather	than	NOT	ACCEPTABLE	or	MULTIPLE	CHOICES
responses.	In	addition,	the	negotiation	and	MultiViews
algorithms	have	been	cleaned	up	to	provide	more	consistent
results	and	a	new	form	of	type	map	that	can	include
document	content	is	provided.

mod_autoindex

Autoindex'ed	directory	listings	can	now	be	configured	to	use
HTML	tables	for	cleaner	formatting,	and	allow	finer-grained
control	of	sorting,	including	version-sorting,	and	wildcard
filtering	of	the	directory	listing.

mod_include

New	directives	allow	the	default	start	and	end	tags	for	SSI
elements	to	be	changed	and	allow	for	error	and	time	format
configuration	to	take	place	in	the	main	configuration	file	rather
than	in	the	SSI	document.	Results	from	regular	expression
parsing	and	grouping	(now	based	on	Perl's	regular	expression
syntax)	can	be	retrieved	using	mod_include's	variables	$0	..
$9.

mod_auth_dbm

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Now	supports	multiple	types	of	DBM-like	databases	using	the
AuthDBMType	directive.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

The	Apache	License,	Version	2.0

Apache	License
Version	2.0,	January	2004

http://www.apache.org/licenses/

TERMS	AND	CONDITIONS	FOR	USE,	REPRODUCTION,	AND
DISTRIBUTION

1.	 Definitions

"License"	shall	mean	the	terms	and	conditions	for	use,
reproduction,	and	distribution	as	defined	by	Sections	1	through	9
of	this	document.

"Licensor"	shall	mean	the	copyright	owner	or	entity	authorized	by
the	copyright	owner	that	is	granting	the	License.

"Legal	Entity"	shall	mean	the	union	of	the	acting	entity	and	all
other	entities	that	control,	are	controlled	by,	or	are	under	common
control	with	that	entity.	For	the	purposes	of	this	definition,
"control"	means	(i)	the	power,	direct	or	indirect,	to	cause	the
direction	or	management	of	such	entity,	whether	by	contract	or
otherwise,	or	(ii)	ownership	of	fifty	percent	(50%)	or	more	of	the
outstanding	shares,	or	(iii)	beneficial	ownership	of	such	entity.

"You"	(or	"Your")	shall	mean	an	individual	or	Legal	Entity
exercising	permissions	granted	by	this	License.

"Source"	form	shall	mean	the	preferred	form	for	making
modifications,	including	but	not	limited	to	software	source	code,
documentation	source,	and	configuration	files.

"Object"	form	shall	mean	any	form	resulting	from	mechanical
transformation	or	translation	of	a	Source	form,	including	but	not

http://www.apache.org/licenses/

limited	to	compiled	object	code,	generated	documentation,	and
conversions	to	other	media	types.

"Work"	shall	mean	the	work	of	authorship,	whether	in	Source	or
Object	form,	made	available	under	the	License,	as	indicated	by	a
copyright	notice	that	is	included	in	or	attached	to	the	work	(an
example	is	provided	in	the	Appendix	below).

"Derivative	Works"	shall	mean	any	work,	whether	in	Source	or
Object	form,	that	is	based	on	(or	derived	from)	the	Work	and	for
which	the	editorial	revisions,	annotations,	elaborations,	or	other
modifications	represent,	as	a	whole,	an	original	work	of
authorship.	For	the	purposes	of	this	License,	Derivative	Works
shall	not	include	works	that	remain	separable	from,	or	merely	link
(or	bind	by	name)	to	the	interfaces	of,	the	Work	and	Derivative
Works	thereof.

"Contribution"	shall	mean	any	work	of	authorship,	including	the
original	version	of	the	Work	and	any	modifications	or	additions	to
that	Work	or	Derivative	Works	thereof,	that	is	intentionally
submitted	to	Licensor	for	inclusion	in	the	Work	by	the	copyright
owner	or	by	an	individual	or	Legal	Entity	authorized	to	submit	on
behalf	of	the	copyright	owner.	For	the	purposes	of	this	definition,
"submitted"	means	any	form	of	electronic,	verbal,	or	written
communication	sent	to	the	Licensor	or	its	representatives,
including	but	not	limited	to	communication	on	electronic	mailing
lists,	source	code	control	systems,	and	issue	tracking	systems
that	are	managed	by,	or	on	behalf	of,	the	Licensor	for	the
purpose	of	discussing	and	improving	the	Work,	but	excluding
communication	that	is	conspicuously	marked	or	otherwise
designated	in	writing	by	the	copyright	owner	as	"Not	a
Contribution."

"Contributor"	shall	mean	Licensor	and	any	individual	or	Legal
Entity	on	behalf	of	whom	a	Contribution	has	been	received	by

Licensor	and	subsequently	incorporated	within	the	Work.

2.	 Grant	of	Copyright	License.	Subject	to	the	terms	and
conditions	of	this	License,	each	Contributor	hereby	grants	to	You
a	perpetual,	worldwide,	non-exclusive,	no-charge,	royalty-free,
irrevocable	copyright	license	to	reproduce,	prepare	Derivative
Works	of,	publicly	display,	publicly	perform,	sublicense,	and
distribute	the	Work	and	such	Derivative	Works	in	Source	or
Object	form.

3.	 Grant	of	Patent	License.	Subject	to	the	terms	and	conditions	of
this	License,	each	Contributor	hereby	grants	to	You	a	perpetual,
worldwide,	non-exclusive,	no-charge,	royalty-free,	irrevocable
(except	as	stated	in	this	section)	patent	license	to	make,	have
made,	use,	offer	to	sell,	sell,	import,	and	otherwise	transfer	the
Work,	where	such	license	applies	only	to	those	patent	claims
licensable	by	such	Contributor	that	are	necessarily	infringed	by
their	Contribution(s)	alone	or	by	combination	of	their
Contribution(s)	with	the	Work	to	which	such	Contribution(s)	was
submitted.	If	You	institute	patent	litigation	against	any	entity
(including	a	cross-claim	or	counterclaim	in	a	lawsuit)	alleging	that
the	Work	or	a	Contribution	incorporated	within	the	Work
constitutes	direct	or	contributory	patent	infringement,	then	any
patent	licenses	granted	to	You	under	this	License	for	that	Work
shall	terminate	as	of	the	date	such	litigation	is	filed.

4.	 Redistribution.	You	may	reproduce	and	distribute	copies	of	the
Work	or	Derivative	Works	thereof	in	any	medium,	with	or	without
modifications,	and	in	Source	or	Object	form,	provided	that	You
meet	the	following	conditions:

a.	 You	must	give	any	other	recipients	of	the	Work	or	Derivative
Works	a	copy	of	this	License;	and

b.	 You	must	cause	any	modified	files	to	carry	prominent	notices
stating	that	You	changed	the	files;	and

c.	 You	must	retain,	in	the	Source	form	of	any	Derivative	Works
that	You	distribute,	all	copyright,	patent,	trademark,	and
attribution	notices	from	the	Source	form	of	the	Work,
excluding	those	notices	that	do	not	pertain	to	any	part	of	the
Derivative	Works;	and

d.	 If	the	Work	includes	a	"NOTICE"	text	file	as	part	of	its
distribution,	then	any	Derivative	Works	that	You	distribute
must	include	a	readable	copy	of	the	attribution	notices
contained	within	such	NOTICE	file,	excluding	those	notices
that	do	not	pertain	to	any	part	of	the	Derivative	Works,	in	at
least	one	of	the	following	places:	within	a	NOTICE	text	file
distributed	as	part	of	the	Derivative	Works;	within	the	Source
form	or	documentation,	if	provided	along	with	the	Derivative
Works;	or,	within	a	display	generated	by	the	Derivative
Works,	if	and	wherever	such	third-party	notices	normally
appear.	The	contents	of	the	NOTICE	file	are	for	informational
purposes	only	and	do	not	modify	the	License.	You	may	add
Your	own	attribution	notices	within	Derivative	Works	that	You
distribute,	alongside	or	as	an	addendum	to	the	NOTICE	text
from	the	Work,	provided	that	such	additional	attribution
notices	cannot	be	construed	as	modifying	the	License.

You	may	add	Your	own	copyright	statement	to	Your	modifications
and	may	provide	additional	or	different	license	terms	and
conditions	for	use,	reproduction,	or	distribution	of	Your
modifications,	or	for	any	such	Derivative	Works	as	a	whole,
provided	Your	use,	reproduction,	and	distribution	of	the	Work
otherwise	complies	with	the	conditions	stated	in	this	License.

5.	 Submission	of	Contributions.	Unless	You	explicitly	state
otherwise,	any	Contribution	intentionally	submitted	for	inclusion	in
the	Work	by	You	to	the	Licensor	shall	be	under	the	terms	and
conditions	of	this	License,	without	any	additional	terms	or
conditions.	Notwithstanding	the	above,	nothing	herein	shall

supersede	or	modify	the	terms	of	any	separate	license
agreement	you	may	have	executed	with	Licensor	regarding	such
Contributions.

6.	 Trademarks.	This	License	does	not	grant	permission	to	use	the
trade	names,	trademarks,	service	marks,	or	product	names	of	the
Licensor,	except	as	required	for	reasonable	and	customary	use	in
describing	the	origin	of	the	Work	and	reproducing	the	content	of
the	NOTICE	file.

7.	 Disclaimer	of	Warranty.	Unless	required	by	applicable	law	or
agreed	to	in	writing,	Licensor	provides	the	Work	(and	each
Contributor	provides	its	Contributions)	on	an	"AS	IS"	BASIS,
WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,
either	express	or	implied,	including,	without	limitation,	any
warranties	or	conditions	of	TITLE,	NON-INFRINGEMENT,
MERCHANTABILITY,	or	FITNESS	FOR	A	PARTICULAR
PURPOSE.	You	are	solely	responsible	for	determining	the
appropriateness	of	using	or	redistributing	the	Work	and	assume
any	risks	associated	with	Your	exercise	of	permissions	under	this
License.

8.	 Limitation	of	Liability.	In	no	event	and	under	no	legal	theory,
whether	in	tort	(including	negligence),	contract,	or	otherwise,
unless	required	by	applicable	law	(such	as	deliberate	and	grossly
negligent	acts)	or	agreed	to	in	writing,	shall	any	Contributor	be
liable	to	You	for	damages,	including	any	direct,	indirect,	special,
incidental,	or	consequential	damages	of	any	character	arising	as
a	result	of	this	License	or	out	of	the	use	or	inability	to	use	the
Work	(including	but	not	limited	to	damages	for	loss	of	goodwill,
work	stoppage,	computer	failure	or	malfunction,	or	any	and	all
other	commercial	damages	or	losses),	even	if	such	Contributor
has	been	advised	of	the	possibility	of	such	damages.

9.	 Accepting	Warranty	or	Additional	Liability.	While	redistributing
the	Work	or	Derivative	Works	thereof,	You	may	choose	to	offer,
and	charge	a	fee	for,	acceptance	of	support,	warranty,	indemnity,

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

or	other	liability	obligations	and/or	rights	consistent	with	this
License.	However,	in	accepting	such	obligations,	You	may	act
only	on	Your	own	behalf	and	on	Your	sole	responsibility,	not	on
behalf	of	any	other	Contributor,	and	only	if	You	agree	to
indemnify,	defend,	and	hold	each	Contributor	harmless	for	any
liability	incurred	by,	or	claims	asserted	against,	such	Contributor
by	reason	of	your	accepting	any	such	warranty	or	additional
liability.

END	OF	TERMS	AND	CONDITIONS

APPENDIX:	How	to	apply	the	Apache	License	to	your	work.

To	apply	the	Apache	License	to	your	work,	attach	the	following
boilerplate	notice,	with	the	fields	enclosed	by	brackets	"[]"	replaced
with	your	own	identifying	information.	(Don't	include	the	brackets!)
The	text	should	be	enclosed	in	the	appropriate	comment	syntax	for
the	file	format.	We	also	recommend	that	a	file	or	class	name	and
description	of	purpose	be	included	on	the	same	"printed	page"	as	the
copyright	notice	for	easier	identification	within	third-party	archives.

Copyright	[yyyy]	[name	of	copyright	owner]

Licensed	under	the	Apache	License,	Version	2.0	(the	"License");

you	may	not	use	this	file	except	in	compliance	with	the	License.

You	may	obtain	a	copy	of	the	License	at

				http://www.apache.org/licenses/LICENSE-2.0

Unless	required	by	applicable	law	or	agreed	to	in	writing,	software

distributed	under	the	License	is	distributed	on	an	"AS	IS"	BASIS,

WITHOUT	WARRANTIES	OR	CONDITIONS	OF	ANY	KIND,	either	express	or	implied.

See	the	License	for	the	specific	language	governing	permissions	and

limitations	under	the	License.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Compilar	e	Instalar

Éste	documento	hace	referencia	a	la	compilación	y	la	instalación	del
Apache	HTTP	Server	sólo	para	los	sistemas	Unix	y	tipo	Unix.	Para	la
compilación	e	instalación	en	Windows	ir	a	Usando	Apache	HTTP
Server	con	Microsoft	Windows	y	Compilando	Apache	para	Microsoft
Windows.	Para	otras	plataformas	visite	la	documentación	sobre
plataformas.

Apache	httpd	usa	libtool	y	autoconf	para	crear	un	entorno	de
compilación	que	se	parece	a	muchos	otros	proyectos	de	código
abierto

Si	está	actualizando	desde	una	versión	menor	a	la	siguiente	(por
ejemplo,	2.4.8	a	2.4.9),	pasa	a	la	sección	de	actualización.

Consulte	también
Configuración	del	árbol	de	las	fuentes	de	código
Arrancando	Apache	httpd
Parada	y	Reinicio

https://www.apache.org/foundation/contributing.html

Descripción	general	para	los	impacientes

Descarga Descarga	la	última	versión	desde
http://httpd.apache.org/download.cgi

Extraer $	gzip	-d	httpd-NN.tar.gz

$	tar	xvf	httpd-NN.tar

$	cd	httpd-NN

Configura $./configure	--prefix=PREFIX

Compila $	make

Instala $	make	install

Personalizalo $	vi	PREFIX/conf/httpd.conf

Prueba $	PREFIX/bin/apachectl	-k	start

NN	hay	que	reemplazarlo	por	el	número	de	la	versión	menor,	y
PREFIX	hay	que	reemplazarlo	por	la	ruta	en	la	que	se	va	a
instalar	Apache.	Si	no	especifica	ningún	valor	en	PREFIX,	el	valor
por	defecto	que	se	toma	es	/usr/local/apache2.

Cada	parte	del	proceso	de	configuración	e	instalación	se	describe
detalladamente	más	abajo,	empezando	por	los	requisitos	para
compilar	e	instalar	Apache.

http://httpd.apache.org/download.cgi#apache24

Requisitos

Estos	son	los	requisitos	necesarios	para	compilar	Apache:

APR	y	APR-Util
Asegúrate	de	que	tiene	instalado	ya	en	su	sistema	APR	y
APR-Util.	Si	no	es	así,	o	no	quiere	utilizar	la	versión	que	le
proporciona	el	sistema,	puede	descargar	la	última	versión	de
ambos	APR	y	APR-Util	de	Apache	APR,	descomprimelo	en
/httpd_source_tree_root/srclib/apr	y
/httpd_source_tree_root/srclib/apr-util	(cerciórate	de
que	no	existen	directorios	con	números	de	versiones;	por
ejemplo,	la	distribución	de	APR	debe	estar	en
/httpd_source_tree_root/srclib/apr/)	y	usa	el	comando
./configure	--con-las-opciones-incluidas-en-
apr.	En	algunas	plataformas	deberás	instalar	la	parte
correspondiente	a	los	paquetes	-dev	para	permitir	que	httpd
se	genere	contra	la	instalación	de	la	copia	de	APR	y	APR-
Util.

Librería	Compatible	de	expresiones	regulares	de	Perl	(PCRE)
Esta	librería	es	requerida,	pero	ya	no	incluido	con	httpd.
Descarga	el	código	fuente	de	http://www.pcre.org,	o	instala	un
Port	o	un	Paquete.	Si	la	distrubución	de	su	sistema	no	puede
encontrar	el	escript	pcre-config	instalado	por	PCRE,
seleccione	utilizando	el	parámetro--with-pcre.En	algunas
plataformas,	deberás	instalar	la	correspondiente	versión	-
dev	del	paquete	para	permitir	a	httpd	que	se	genere	contra	la
instalación	de	la	copia	del	PCRE	que	se	ha	instalado.

Espacio	en	disco
Compruebe	que	tiene	disponibles	al	menos	50	MB	de	espacio
libre	en	disco.	Después	de	la	instalación,	Apache	ocupa
aproximadamente	10	MB.	No	obstante,	la	necesidad	real	de
espacio	en	disco	varía	considerablemente	en	función	de	las
opciones	de	configuración	que	elija	y	de	los	módulos	externos

http://apr.apache.org/
http://www.pcre.org/

que	use,	y	como	no	del	tamaño	de	la	página	web

Systema	de	compilación	ANSI-C
Compruebe	que	tiene	instalado	un	compilador	de	ANSI-C.	Se
recomienda	el	Compilador	GNU	C	(GCC)	de	la	Free	Software
Foundation	(FSF)	es	el	recomendado.	Si	no	tiene	instalado	el
GCC,	entonces	compruebe	que	el	compilador	que	va	a
utilizar	cumple	con	los	estándares	ANSI.	Además,	su	PATH
debe	contener	la	ubicación	donde	de	encuentran	las
herramientas	básicas	para	compilar	tales	como	make.

Ajuste	exacto	del	reloj	del	sistema
Los	elementos	del	protocolo	HTTP	están	expresados	según
la	hora	del	día.	Por	eso,	si	quiere	puede	investigar	como
instalar	alguna	utilidad	para	sincronizar	la	hora	de	su	sistema.
Para	esto,	normalmente,	se	usan	los	programas	ntpdate	o
xntpd,	que	están	basados	en	el	protocolo	"Network	Time
Protocol"	(NTP).	Consulte	elsitio	web	de	NTP	para	obtener
más	información	sobre	NTP	y	los	servidores	públicos	de
tiempo.

Perl	5[OPCIONAL]
Para	algunos	de	los	scripts	de	soporte	comoapxs	o
dbmmanage	(que	están	escritos	en	Perl)	es	necesario	el
intérprete	de	Perl	5	(las	versiones	5.003	o	posteriores	son
suficientes).	Si	el	escript	configure	no	se	encuentra,	no
podrá	usar	los	escripts	correspondientes	que	lo	necesiten.
Pero	por	supuesto	podrás	compilar	y	usar	Apache	httpd.

http://gcc.gnu.org/
http://www.gnu.org/
http://www.ntp.org
http://www.perl.org/

Descargar

Puede	descargar	Apache	desde	la	sección	de	descargas	del	sitio
web	de	Apache	el	cual	tiene	varios	mirrors.	Para	la	mayoría	de	los
usuarios	de	Apache	que	tienen	sistemas	tipo	Unix,	se	recomienda
que	se	descarguen	y	compilen	el	código	fuente.	El	proceso	de
compilación	(descrito	más	abajo)	es	fácil,	y	permite	adaptar	el
servidor	Apache	a	sus	necesidades.	Además,	las	versiones	de
disponibles	en	archivos	binarios	no	están	siempre	actualizadas
con	las	últimas	modificaciones	en	el	código	fuente.	Si	se	descarga
un	binario,	siga	las	instrucciones	contenidas	en	el	archivo
INSTALL.bindist	incluido	en	la	distribución

Después	de	la	descarga,	es	importante	que	verifique	que	el
archivo	descargado	del	servidor	HTTP	Apache	está	completo	y
sin	modificaciones.	Esto	puede	hacerlo	comparando	el	archivo
descargado	(.tgz)	con	su	firma	PGP.	Instrucciones	detalladas	de
cómo	hacer	esto	están	disponibles	en	la	sección	de	descargas
junto	con	un	ejemplo	de	cómo	usar	PGP.

http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi#verify
http://httpd.apache.org/dev/verification.html

Descomprimir

Extraer	el	código	fuente	del	archivo	.tgz	del	Servidor	Apache
HTTP	que	acabada	de	descargar	es	muy	fácil.	Ejecute	los
siguientes	comandos:

$	gzip	-d	httpd-NN.tar.gz

$	tar	xvf	httpd-NN.tar

Estos	comandos	crearán	un	nuevo	directorio	dentro	del	directorio
en	el	que	se	encuentra	y	que	contendrá	el	código	fuente	de
distribución.	Debe	cambiarse	a	ese	directorio	con	cd	para
proceder	a	compilar	el	servidor	Apache.

Configuración	de	la	estructura	de	directorios

El	siguiente	paso	es	configurar	la	estructura	de	directorios	para	su
plataforma	y	sus	necesidades	personales.	Esto	se	hace	usando	el
script	configure	incluido	en	el	directorio	raíz	de	la	distribución
que	acaba	de	descargar.	(Los	desarrolladores	que	se	descarguen
la	versión	del	CVS	de	la	estructura	de	directorios	necesitarán
tener	instalados	autoconf	y	libtool,	y	necesitarán	ejecutar
buildconf	antes	de	continuar	con	los	siguientes	pasos.	Esto	no
es	preciso	para	las	versiones	oficiales.)

Para	configurar	la	estructura	de	directorios	a	partir	del	código
fuente	usando	las	opciones	por	defecto,	solo	tiene	que	ejecutar
./configure.Para	cambiar	las	opciones	por	defecto,
configure	acepta	una	serie	de	variables	y	opciones	por	la	línea
de	comandos.

La	opción	más	importante	es	--prefix	que	es	el	directorio	en	el
que	Apache	va	a	ser	instalado	después,	porque	Apache	tiene	que
ser	configurado	para	el	directorio	que	se	especifique	para	que
funcione	correctamente.	Es	posible	lograr	un	mayor	control	del
lugar	donde	se	van	a	instalar	los	ficheros	de	Apache	con	otras
opciones	de	configuración.

Llegados	a	este	punto,	puede	especificar	que	características	o
funcionalidades	quiere	incluir	en	Apache	activando	o	desactivando
modules.Apache	vine	con	una	amplia	selección	de	módulos
incluidos	por	defecto.	Que	serán	compilados	como	.	Objetos
Compartidos	(DSOs)	Que	pueden	ser	activados	o	desactivados
en	tiempo	de	ejecución.	También	puede	elegir	por	compilar
módulos	de	forma	estática	usando	las	opciones	--enable-
module=static.

Se	pueden	activar	otros	módulos	usando	la	opción	--enable-
module,	where	module	es	el	nombre	del	módulo	sin	el	mod_	y

convirtiendo	los	guiones	bajos	que	tenga	en	guiones	normales.
Del	mismo	modo,	puede	desactivar	los	módulos	con	la	opción	--
disable-module.	Tenga	cuidado	al	utilizar	esta	opción,	ya	que
configure	no	le	avisará	si	el	módulo	que	especifica	no	existe;
simplemente	ignorará	esa	opción.

Además,	a	veces	es	necesario	pasarle	al	script	configure
información	adicional	sobre	donde	esta	su	compilador,	librerías	o
ficheros	de	cabecera.	Esto	se	puede	hacer,	tanto	pasando
variables	de	entorno,	como	pasandole	opciones	a	configure.
Para	más	información,	consulte	el	manual	de	configure.	O	use
configure	con	la	opción	--help.

Para	que	se	haga	una	idea	sobre	las	posibilidades	que	tiene,	aquí
tiene	un	ejemplo	típico	que	configura	Apache	para	la	ruta
/sw/pkg/apache	con	un	compilador	y	unos	flags	determinados,
y	además,	con	dos	módulos	adicionales	mod_ldap	y	mod_ldap
para	cargarlos	después	a	través	del	mecanismo	DSO:

$	CC="pgcc"	CFLAGS="-O2"	\

./configure	--prefix=/sw/pkg/apache	\

--enable-ldap=shared	\

--enable-lua=shared

Cuando	se	ejecuta	configure	se	comprueban	que
características	o	funcionalidades	están	disponibles	en	su	sistema
y	se	crean	los	Makefiles	que	serán	usados	a	continuación	para
compilar	el	servidor.	Esto	tardará	algunos	minutos.

Los	detalles	de	todas	las	opciones	de	configure	están
disponibles	en	el	manual	de	configure	.

Build

Ahora	puede	compilar	las	diferentes	partes	que	forman	Apache
simplemente	ejecutando	el	siguiente	comando:

$	make

Por	favor	sea	paciente	llegado	a	este	punto,	ya	que	una
configuración	básica	lleva	unos	minutos	para	su	compilación,	y	el
tiempo	puede	variar	mucho	dependiendo	de	su	hardware	y	del
número	de	módulos	que	haya	habilitado	para	la	compilación.(Se
recomienda	añadir	al	make	el	parámetro	-j3	como	mínimo	para
que	vaya	más	rápido)

Instalar

Ahora	es	el	momento	de	instalar	el	paquete	en	el	diretorio	elegido
en	PREFIX	(consulte	más	arriba	la	opción	--prefix)	ejecutando:

$	make	install

Este	paso	requiere	de	forma	típica	privilegios	de	root,	ya	que	el
directorio	de	PREFIX	es	normalmente	un	directorio	con
restricciones	de	permisos	escritura.

Si	lo	que	esta	es	sólo	actualizando,	la	instalación	no
sobreescribirá	los	archivos	de	configuración.

Personalizar	APACHE

Tras	la	instalación	puede	personalizarla,	editando	los	archivos	de
configuracion	en	el	directorio	de	PREFIX/conf/.

$	vi	PREFIX/conf/httpd.conf

Échele	un	vistazo	al	Manual	de	Apache	que	está	en
PREFIX/docs/manual/	o	consulta
http://httpd.apache.org/docs/2.4/	para	la	versión	más	reciente	de
este	manual	y	su	completa	referencia	de	las	directivas	de
configuracion	disponibles.

http://httpd.apache.org/docs/2.4/

Comprobar	que	la	instalación	funciona

Ahora	puedes	ejecutar	tu	Apache	HTTP	server	ejecutando
directamente:

$	PREFIX/bin/apachectl	-k	start

Ahora	debe	poder	acceder	a	su	primer	documento	bajo	la	URL
http://localhost/.	La	página	o	documento	que	ve	se
encuentra	en	DocumentRoot,	que	por	norma	general	casi
siempre	será	PREFIX/htdocs/.	Si	quiere	parar	el	servidor,
puede	hacerlo	ejecutando:

$	PREFIX/bin/apachectl	-k	stop

Actualizar	una	instalación	previa

El	primer	paso	para	actualizar	una	instalación	anterior	es	leer	las
especificaciones	de	la	versión	y	el	fichero	CHANGES	en	la
distribución	de	código	fuente	que	ha	descargado	para	encontrar
los	cambios	que	puedan	afectar	a	su	instalación	actual.	Cuando	el
cambio	sea	entre	versiones	mayores(por	ejemplo,	de	la	2.0	a	2.2
o	de	la	2.2	a	la	2.4),	entonces	es	más	probable	que	haya
diferencias	importantes	en	la	compilación	y	en	la	ejecución	que
necesitarán	ajustes	manuales.	Todos	los	módulos	necesitarán
también	ser	actualizados	para	adaptarse	a	los	cambios	en	el
interfaz	de	programación	(API)	de	módulos.

Actualizando	de	una	versión	menor	a	la	siguiente	(por	ejemplo,	de
la	2.2.55	a	la	2.2.57)	es	mas	fácil.	El	prodeso	de	realizar	el	make
install	no	sobreescribirá	ninguno	de	tus	documentos
existentes,archivos	log,	o	archivos	de	configuración.	De	hecho,	los
desarrolladores	están	haciendo	los	esfuerzos	necerarios	para
evitar	cambios	que	generen	incompatibilidades	en	las	opciones	de
configure,	la	configuración	al	ser	ejecutado,	o	el	módulo	de	la
API	entre	versiones	menores.	En	la	mayor	parte	de	los	casos
debe	poder	usar	un	comando	configure	idéntico,	un	fichero	de
configuración	idéntico,	y	todos	sus	módulos	deben	seguir
funcionando.

Para	actualizar	entre	versiones	menores,	empecemos
encontrando	el	archivo	de	configuración	config.nice	el
directorio	de	instalación	del	servidor	o	en	el	directorio	raiz	del
código	fuente	de	tu	antigua	instalación.	Este	archivo	contendrá	los
parámetros	exactos	para	pasarle	al	configure	que	usaste
anteriormente	para	configurar	tus	directorios.	Entonces,	para
actualizar	su	instalación	de	una	versión	a	la	siguinete,	solo	tiene
que	copiar	el	archivo	config.nice	a	la	estructura	de	directorios
del	código	fuente	de	la	nueva	versión,	editarlo,	hacer	cualquier
cambio	que	desee,	y	ejecutarlo	:

$./config.nice

$	make

$	make	install

$	PREFIX/bin/apachectl	-k	graceful-stop

$	PREFIX/bin/apachectl	-k	start

Tenga	en	cuenta	que	antes	de	poner	una	nueva	versión	de
Apache	en	producción,	debe	siempre	probarla	antes	en	un
entorno	de	pruebas.	Por	ejemplo,	puede	instalar	y	ejecutar	la
nueva	versión	junto	con	la	antigua	usando	un	--prefix
diferente	y	un	puerto	diferente	(modificando	la	directiva
Listen)	para	comprobar	que	no	existe	ninguna
incompatibilidad	antes	de	hacer	la	actualización	definitiva.

Puede	pasarle	argumentos	adicionales	a	config.nice,	que	se
agregarán	a	susopciones	originales	de	configure:

$./config.nice	--prefix=/home/test/apache	--with-port=90

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Paquetes	de	terceros

Un	gran	número	de	terceros	proporcionan	sus	propias
distribuciones	empaquetadas	del	Apache	HTTP	Server	para	su
instalación	en	plataformas	específicas.	Esto	incluye	las	distintas
distribuciones	de	Linux,	varios	paquetes	de	Windows	de	terceros,
Mac	OS	X,	Solaris,	y	muchos	más.

Nuestra	licencia	de	software	no	sólo	permite,	sino	que	anima,	este
tipo	de	redistribución.	Sin	embargo,	se	da	lugar	a	una	situación	en
la	que	el	diseño	y	la	configuración	de	los	valores	predeterminados
de	la	instalación	del	servidor	pueden	diferir	de	lo	que	se	indica	en
la	documentación.	Mientras	lamentablemente,	esta	situación	no
es	probable	que	cambie	a	corto	plazo.

Una	descripción	de	estas	distribuciones	de	terceros	está	siendo
actualizada	en	el	servidor	de	la	WIKI	de	HTTP	Server,	y	debería
reflejar	el	actual	estado	de	éstas	distribuciones	de	terceros.	Sin
embargo,	tendrá	que	familiarizarse	con	los	procedimientos	de
gestión	e	instalación	de	paquetes	de	su	plataforma	(SO)	en
particular.

http://wiki.apache.org/httpd/DistrosDefaultLayout
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Iniciar	Apache

En	Windows,	Apache	se	ejecuta	normalmente	como	un	servicio.	Para
obtener	más	información,	consulte	Ejecutar	Apache	como	un	servicio.

En	Unix,	el	programa	httpd	se	ejecuta	como	un	demonio	(daemon)
de	forma	contíniua	y	en	segundo	plano	y	atiende	las	peticiones	que	le
lleguen.	Este	documento	describe	cómo	invocar	el	programa	httpd.

Consulte	también
Parar	y	reiniciar	Apache
httpd

apachectl

https://www.apache.org/foundation/contributing.html

Cómo	iniciar	Apache

Si	el	puerto	especificado	en	la	directiva	Listen	del	fichero	de
configuración	es	el	que	viene	por	defecto,	es	decir,	el	puerto	80	(o
cualquier	otro	puerto	por	debajo	del	1024),	entonces	es	necesario
tener	privilegios	de	usuario	root	(superusuario)	para	iniciar
Apache,	de	modo	que	pueda	establecerse	una	conexión	a	través
de	esos	puertos	privilegiados.	Una	vez	que	el	servidor	Apache	se
ha	iniciado	y	ha	completado	algunas	tareas	preliminares,	tales
como	abrir	sus	ficheros	log,	lanzará	varios	procesos,	procesos
hijo,	que	hacen	el	trabajo	de	escuchar	y	atender	las	peticiones	de
los	clientes.	El	proceso	principal,	httpd	continúa	ejecutándose
con	el	usuario	root,	pero	los	procesos	hijo	se	ejecutan	con
menores	privilegios	de	usuario.	Esto	lo	controla	el	Módulo	de
MultiProcesamiento	(MPM)	seleccionado.

La	forma	recomendada	para	invocar	el	ejecutable	httpd	es
usando	el	script	de	control	apachectl.	Este	script	fija
determinadas	variables	de	entorno	que	son	necesarias	para	que
httpd	funcione	correctamente	en	el	sistema	operativo,	y	después
invoca	el	binario	httpd.	apachectl	pasa	a	httpd	cualquier
argumento	que	se	le	pase	a	través	de	la	línea	de	comandos,	de
forma	que	cualquier	opción	de	httpd	puede	ser	usada	también
con	apachectl.	Puede	editar	directamente	el	script	apachectl
y	cambiar	la	variable	HTTPD	variable	que	está	al	principio	y	que
especifica	la	ubicación	exacta	en	la	que	está	el	binario	httpd	y
cualquier	argumento	de	línea	de	comandos	que	quiera	que	esté
siempre	presente.

La	primera	cosa	que	hace	httpd	cuando	es	invocado	es	localizar
y	leer	el	fichero	de	configuración	httpd.conf.	El	lugar	en	el	que
está	ese	fichero	se	determina	al	compilar,	pero	también	es	posible
especificar	la	ubicación	en	la	que	se	encuentra	al	iniciar	el
servidor	Apache	usando	la	opción	de	línea	de	comandos	-f

/usr/local/apache2/bin/apachectl	-f

/usr/local/apache2/conf/httpd.conf

Si	todo	va	bien	durante	el	arranque,	la	sesión	de	terminal	se
suspenderá	un	momento	y	volverá	a	estar	activa	casi
inmediatamente.	Esto	quiere	decir	que	el	servidor	está	activo	y
funcionando.	Puede	usar	su	navegador	para	conectarse	al
servidor	y	ver	la	página	de	prueba	que	hay	en	el	directorio	de	la
directiva	DocumentRoot.

Errores	Durante	el	Arranque

Si	Apache	encuentra	una	error	irrecuperable	durante	el	arranque,
escribirá	un	mensaje	describiendo	el	problema	en	la	consola	o	en
el	archivo	ErrorLog	antes	de	abortar	la	ejecución.	Uno	de	los
mensajes	de	error	más	comunes	es	"Unable	to	bind	to
Port	...".	Cuando	se	recibe	este	mensaje	es	normalmente	por
alguna	de	las	siguientes	razones:

Está	intentando	iniciar	el	servidor	Apache	en	un	puerto
privilegiado	(del	0	al	1024)	sin	haber	hecho	login	como
usuario	root;	ó	bien
Está	intentando	iniciar	el	servidor	Apache	mientras	está	ya
ejecutando	Apache	o	algún	otro	servidor	web	en	el	mismo
puerto.

Puede	encontrar	más	información	sobre	cómo	solucionar
problemas,	en	la	sección	de	Preguntas	Frecuentes	de	Apache.

http://wiki.apache.org/httpd/FAQ

Iniciar	Apache	al	Iniciar	el	Sistema

Si	quiere	que	el	servidor	Apache	continúe	su	ejecución	después
de	reiniciar	el	sistema,	debe	añadir	una	llamada	a	apachectl	en
sus	archivos	de	arranque	(normalmente	rc.local	o	un	fichero
en	ese	directorio	del	tipo	rc.N).	Esto	iniciará	Apache	como
usuario	root.	Antes	de	hacer	esto,	asegúrese	de	que	la
configuración	de	seguridad	y	las	restricciones	de	acceso	de	su
servidor	Apache	están	correctamente	configuradas.

El	script	apachectl	está	diseñado	para	actuar	como	un	script
estándar	de	tipo	SysV	init;	puede	tomar	los	argumentos
start,	restart,	y	stop	y	traducirlos	en	las	señales	apropiadas
para	httpd.	De	esta	manera,	casi	siempre	puede	simplemente
enlazar	apachectlcon	el	directorio	init	adecuado.	Pero
asegúrese	de	comprobar	los	requisitos	exactos	de	su	sistema.

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Información	Adicional

En	la	sección	El	Servidor	y	Programas	de	Soporte	puede
encontrar	más	información	sobre	las	opciones	de	línea	de
comandos	que	puede	pasar	a	httpd	y	apachectl	así	como
sobre	otros	programas	de	soporte	incluidos	con	el	servidor
Apache.	También	hay	documentación	sobre	todos	los	módulos
incluidos	con	la	distribución	de	Apache	y	sus	correspondientes
directivas	asociadas.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Iniciar	y	Parar	el	servidor	Apache

Esta	traducción	podría	estar	obsoleta.	Consulte	la	versión	en
inglés	de	la	documentación	para	comprobar	si	se	han
producido	cambios	recientemente.

Este	documento	explica	como	iniciar	y	parar	el	servidor	Apache	en
sistemas	tipo	Unix.	Los	usuarios	de	Windows	NT,	2000	y	XP	deben
consultar	la	sección	Ejecutar	Apache	como	un	servicio	y	los	usuario
de	Windows	9x	y	ME	deben	consultar	Ejecutar	Apache	como	una
Aplicación	de	Consola	para	obtener	información	sobre	como	controlar
Apache	en	esas	plataformas.

Consulte	también
httpd
apachectl

https://www.apache.org/foundation/contributing.html

Introducción

Para	parar	y	reiniciar	Apache,	hay	que	enviar	la	señal	apropiada
al	proceso	padre	httpd	que	se	esté	ejecutando.	Hay	dos
maneras	de	enviar	estas	señales.	En	primer	lugar,	puede	usar	el
comando	de	Unix	kill	que	envía	señales	directamente	a	los
procesos.	Puede	que	tenga	varios	procesos	httpd	ejecutandose
en	su	sistema,	pero	las	señales	deben	enviarse	solamente	al
proceso	padre,	cuyo	pid	está	especificado	en	la	directiva
PidFile.	Esto	quiere	decir	que	no	debe	necesitar	enviar	señales
a	ningún	proceso	excepto	al	proceso	padre.	Hay	tres	señales	que
puede	enviar	al	proceso	padre:	TERM,	HUP,	y	USR1,	que	van	a	ser
descritas	a	continuación.

Para	enviar	una	señal	al	proceso	padre	debe	escribir	un	comando
como	el	que	se	muestra	en	el	ejemplo:

kill	-TERM	`cat	/usr/local/apache2/logs/httpd.pid`

La	segunda	manera	de	enviar	señales	a	los	procesos	httpd	es
usando	las	opciones	de	línea	de	comandos	-k:	stop,	restart,	y
graceful,	como	se	muestra	más	abajo.	Estas	opciones	se	le
pueden	pasar	al	binario	httpd,	pero	se	recomienda	que	se	pasen
al	script	de	control	apachectl,	que	a	su	vez	los	pasará	a	httpd.

Después	de	haber	enviado	las	señales	que	desee	a	httpd,
puede	ver	como	progresa	el	proceso	escribiendo:

tail	-f	/usr/local/apache2/logs/error_log

Modifique	estos	ejemplos	para	que	coincidan	con	la	configuración
que	tenga	especificada	en	las	directivas	ServerRoot	y	PidFile
en	su	fichero	principal	de	configuración.

Parar	Apache

Señal:	TERM
apachectl	-k	stop

Enviar	las	señales	TERM	o	stop	al	proceso	padre	hace	que	se
intenten	eliminar	todos	los	procesos	hijo	inmediatamente.	Esto
puede	tardar	algunos	minutos.	Una	vez	que	hayan	terminado
todos	los	procesos	hijo,	terminará	el	proceso	padre.	Cualquier
petición	en	proceso	terminará	inmediatanmente,	y	ninguna
petición	posterior	será	atendida.

Reinicio	Graceful

Señal:	USR1
apachectl	-k	graceful

Las	señales	USR1	o	graceful	hacen	que	el	proceso	padre
indique	a	sus	hijos	que	terminen	después	de	servir	la	petición	que
estén	atendiendo	en	ese	momento	(o	de	inmediato	si	no	están
sirviendo	ninguna	petición).	El	proceso	padre	lee	de	nuevo	sus
ficheros	de	configuración	y	vuelve	a	abrir	sus	ficheros	log.
Conforme	cada	hijo	va	terminando,	el	proceso	padre	lo	va
sustituyendo	con	un	hijo	de	una	nueva	generación	con	la	nueva
configuración,	que	empeciezan	a	servir	peticiones
inmediatamente.

En	algunas	plataformas	que	no	permiten	usar	USR1	para
reinicios	graceful,	puede	usarse	una	señal	alternativa	(como
WINCH).	Tambien	puede	usar	apachectl	graceful	y	el
script	de	control	enviará	la	señal	adecuada	para	su	plataforma.

Apache	está	diseñado	para	respetar	en	todo	momento	la	directiva
de	control	de	procesos	de	los	MPM,	así	como	para	que	el	número
de	procesos	y	hebras	disponibles	para	servir	a	los	clientes	se
mantenga	en	los	valores	adecuados	durante	el	proceso	de
reinicio.	Aún	más,	está	diseñado	para	respetar	la	directiva
StartServers	de	la	siguiente	manera:	si	después	de	al	menos
un	segundo	el	nuevo	hijo	de	la	directiva	StartServers	no	ha
sido	creado,	entonces	crea	los	suficientes	para	se	atienda	el
trabajo	que	queda	por	hacer.	Así,	se	intenta	mantener	tanto	el
número	de	hijos	adecuado	para	el	trabajo	que	el	servidor	tenga	en
ese	momento,	como	respetar	la	configuración	determinada	por	los
parámetros	de	la	directiva	StartServers.

Los	usuarios	del	módulo	mod_status	notarán	que	las
estadísticas	del	servidor	no	se	ponen	a	cero	cuando	se	usa	la

señal	USR1.	Apache	fue	escrito	tanto	para	minimizar	el	tiempo	en
el	que	el	servidor	no	puede	servir	nuevas	peticiones	(que	se
pondrán	en	cola	por	el	sistema	operativo,	de	modo	que	se	no	se
pierda	ningún	evento),	como	para	respetar	sus	parámetros	de
ajuste.	Para	hacer	esto,	tiene	que	guardar	el	scoreboard	usado
para	llevar	el	registro	de	los	procesos	hijo	a	través	de	las	distintas
generaciones.

El	mod_status	también	usa	una	G	para	indicar	que	esos	hijos
están	todavía	sirviendo	peticiones	previas	al	reinicio	graceful.

Actualmente	no	existe	ninguna	manera	de	que	un	script	con	un
log	de	rotación	usando	USR1	sepa	con	seguridad	que	todos	los
hijos	que	se	registraron	en	el	log	con	anterioridad	al	reinicio	han
terminado.	Se	aconseja	que	se	use	un	retardo	adecuado	después
de	enviar	la	señal	USR1	antes	de	hacer	nada	con	el	log	antiguo.
Por	ejemplo,	si	la	mayor	parte	las	visitas	que	recibe	de	usuarios
que	tienen	conexiones	de	baja	velocidad	tardan	menos	de	10
minutos	en	completarse,	entoces	espere	15	minutos	antes	de
hacer	nada	con	el	log	antiguo.

Si	su	fichero	de	configuración	tiene	errores	cuando	haga	el
reinicio,	entonces	el	proceso	padre	no	se	reinciciará	y	terminará
con	un	error.	En	caso	de	un	reinicio	graceful,	también	dejará	a
los	procesos	hijo	ejecutandose	mientras	existan.	(Estos	son	los
hijos	de	los	que	se	está	saliendo	de	forma	graceful	y	que	están
sirviendo	sus	últimas	peticiones.)	Esto	provocará	problemas	si
intenta	reiniciar	el	servidor	--	no	será	posible	conectarse	a	la
lista	de	puertos	de	escucha.	Antes	de	reiniciar,	puede
comprobar	que	la	sintaxis	de	sus	ficheros	de	configuracion	es
correcta	con	la	opción	de	línea	de	comandos	-t	(consulte
httpd).	No	obstante,	esto	no	garantiza	que	el	servidor	se	reinicie
correctamente.	Para	comprobar	que	no	hay	errores	en	los
ficheros	de	configuración,	puede	intentar	iniciar	httpd	con	un
usuario	diferente	a	root.	Si	no	hay	errores,	intentará	abrir	sus

sockets	y	logs	y	fallará	porque	el	usuario	no	es	root	(o	porque	el
httpd	que	se	está	ejecutando	en	ese	momento	ya	está
conectado	a	esos	puertos).	Si	falla	por	cualquier	otra	razón,
entonces	casi	seguro	que	hay	algún	error	en	alguno	de	los
ficheros	de	configuración	y	debe	corregir	ese	o	esos	errores
antes	de	hacer	un	reinicio	graceful.

Reiniciar	Apache

Señal:	HUP
apachectl	-k	restart

El	envío	de	las	señales	HUP	o	restart	al	proceso	padre	hace
que	los	procesos	hijo	terminen	como	si	le	enviá	ramos	la	señal
TERM,	para	eliminar	el	proceso	padre.	La	diferencia	está	en	que
estas	señales	vuelven	a	leer	los	archivos	de	configuración	y
vuelven	a	abrir	los	ficheros	log.	Se	genera	un	nuevo	conjunto	de
hijos	y	se	continúa	sirviendo	peticiones.

Los	usuarios	del	módulo	mod_status	notarán	que	las
estadísticas	del	servidor	se	ponen	a	cero	cuando	se	envía	la	señal
HUP.

Si	su	fichero	de	configuración	contiene	errores,	cuando	intente
reiniciar,	el	proceso	padre	del	servidor	no	se	reiniciará,	sino	que
terminará	con	un	error.	Consulte	más	arriba	cómo	puede
solucionar	este	problema.

Apéndice:	señales	y	race	conditions

Con	anterioridad	a	la	versión	de	Apache	1.2b9	había	varias	race
conditions	implicadas	en	las	señales	para	parar	y	reiniciar
procesos	(una	descripción	sencilla	de	una	race	condition	es:	un
problema	relacionado	con	el	momento	en	que	suceden	las	cosas,
como	si	algo	sucediera	en	momento	en	que	no	debe,	y	entonces
el	resultado	esperado	no	se	corresponde	con	el	obtenido).	Para
aquellas	arquitecturas	que	tienen	el	conjunto	de	características
"adecuadas",	se	han	eliminado	tantas	race	conditions	como	ha
sido	posible.	Pero	hay	que	tener	en	cuenta	que	todavía	existen
race	conditions	en	algunas	arquitecturas.

En	las	arquitecturas	que	usan	un	ScoreBoardFile	en	disco,
existe	la	posibilidad	de	que	se	corrompan	los	scoreboards.	Esto
puede	hacer	que	se	produzca	el	error	"bind:	Address	already	in
use"	(después	de	usarHUP)	o	el	error	"long	lost	child	came	home!"
(después	de	usar	USR1).	En	el	primer	caso	se	trata	de	un	error
irrecuperable,	mientras	que	en	el	segundo,	solo	ocurre	que	el
servidor	pierde	un	slot	del	scoreboard.	Por	lo	tanto,	sería
aconsejable	usar	reinicios	graceful,	y	solo	hacer	reinicios
normales	de	forma	ocasional.	Estos	problemas	son	bastante
complicados	de	solucionar,	pero	afortunadamente	casi	ninguna
arquitectura	necesita	un	fichero	scoreboard.	Consulte	la
documentación	de	la	directiva	ScoreBoardFile	para	ver	las
arquitecturas	que	la	usan.

Todas	las	arquitecturas	tienen	una	pequeña	race	condition	en
cada	proceso	hijo	implicada	en	la	segunda	y	subsiguientes
peticiones	en	una	conexión	HTTP	persistente	(KeepAlive).	Puede
ser	que	el	servidor	termine	después	de	leer	la	línea	de	petición
pero	antes	de	leer	cualquiera	de	las	cebeceras	de	petición.	Hay
una	solución	que	fue	descubierta	demasiado	tarde	para	la	incluirla
en	versión	1.2.	En	teoria	esto	no	debe	suponer	ningún	problema
porque	el	cliente	KeepAlive	ha	de	esperar	que	estas	cosas	pasen

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

debido	a	los	retardos	de	red	y	a	los	timeouts	que	a	veces	dan	los
servidores.	En	la	practica,	parece	que	no	afecta	a	nada	más	--	en
una	sesión	de	pruebas,	un	servidor	se	reinició	veinte	veces	por
segundo	y	los	clientes	pudieron	navegar	sin	problemas	por	el	sitio
web	sin	encontrar	problemas	ni	para	descargar	una	sola	imagen
ni	encontrar	un	solo	enlace	roto.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Configuration	Files

This	document	describes	the	files	used	to	configure	Apache	HTTP
Server.

Main	Configuration	Files

Related	Modules Related	Directives
mod_mime <IfDefine>

Include

TypesConfig

Apache	HTTP	Server	is	configured	by	placing	directives	in	plain
text	configuration	files.	The	main	configuration	file	is	usually	called
httpd.conf.	The	location	of	this	file	is	set	at	compile-time,	but
may	be	overridden	with	the	-f	command	line	flag.	In	addition,
other	configuration	files	may	be	added	using	the	Include
directive,	and	wildcards	can	be	used	to	include	many	configuration
files.	Any	directive	may	be	placed	in	any	of	these	configuration
files.	Changes	to	the	main	configuration	files	are	only	recognized
by	httpd	when	it	is	started	or	restarted.

The	server	also	reads	a	file	containing	mime	document	types;	the
filename	is	set	by	the	TypesConfig	directive,	and	is
mime.types	by	default.

Syntax	of	the	Configuration	Files

httpd	configuration	files	contain	one	directive	per	line.	The
backslash	"\"	may	be	used	as	the	last	character	on	a	line	to
indicate	that	the	directive	continues	onto	the	next	line.	There	must
be	no	other	characters	or	white	space	between	the	backslash	and
the	end	of	the	line.

Arguments	to	directives	are	separated	by	whitespace.	If	an
argument	contains	spaces,	you	must	enclose	that	argument	in
quotes.

Directives	in	the	configuration	files	are	case-insensitive,	but
arguments	to	directives	are	often	case	sensitive.	Lines	that	begin
with	the	hash	character	"#"	are	considered	comments,	and	are
ignored.	Comments	may	not	be	included	on	the	same	line	as	a
configuration	directive.	White	space	occurring	before	a	directive	is
ignored,	so	you	may	indent	directives	for	clarity.	Blank	lines	are
also	ignored.

The	values	of	variables	defined	with	the	Define	of	or	shell
environment	variables	can	be	used	in	configuration	file	lines	using
the	syntax	${VAR}.	If	"VAR"	is	the	name	of	a	valid	variable,	the
value	of	that	variable	is	substituted	into	that	spot	in	the
configuration	file	line,	and	processing	continues	as	if	that	text	were
found	directly	in	the	configuration	file.	Variables	defined	with
Define	take	precedence	over	shell	environment	variables.	If	the
"VAR"	variable	is	not	found,	the	characters	${VAR}	are	left
unchanged,	and	a	warning	is	logged.	Variable	names	may	not
contain	colon	":"	characters,	to	avoid	clashes	with	RewriteMap's
syntax.

Only	shell	environment	variables	defined	before	the	server	is
started	can	be	used	in	expansions.	Environment	variables	defined
in	the	configuration	file	itself,	for	example	with	SetEnv,	take	effect
too	late	to	be	used	for	expansions	in	the	configuration	file.

The	maximum	length	of	a	line	in	normal	configuration	files,	after
variable	substitution	and	joining	any	continued	lines,	is
approximately	16	MiB.	In	.htaccess	files,	the	maximum	length	is
8190	characters.

You	can	check	your	configuration	files	for	syntax	errors	without
starting	the	server	by	using	apachectl	configtest	or	the	-t
command	line	option.

You	can	use	mod_info's	-DDUMP_CONFIG	to	dump	the
configuration	with	all	included	files	and	environment	variables
resolved	and	all	comments	and	non-matching	<IfDefine>	and
<IfModule>	sections	removed.	However,	the	output	does	not
reflect	the	merging	or	overriding	that	may	happen	for	repeated
directives.

Modules

Related	Modules Related	Directives
mod_so <IfModule>

LoadModule

httpd	is	a	modular	server.	This	implies	that	only	the	most	basic
functionality	is	included	in	the	core	server.	Extended	features	are
available	through	modules	which	can	be	loaded	into	httpd.	By
default,	a	base	set	of	modules	is	included	in	the	server	at	compile-
time.	If	the	server	is	compiled	to	use	dynamically	loaded	modules,
then	modules	can	be	compiled	separately	and	added	at	any	time
using	the	LoadModule	directive.	Otherwise,	httpd	must	be
recompiled	to	add	or	remove	modules.	Configuration	directives
may	be	included	conditional	on	a	presence	of	a	particular	module
by	enclosing	them	in	an	<IfModule>	block.	However,
<IfModule>	blocks	are	not	required,	and	in	some	cases	may
mask	the	fact	that	you're	missing	an	important	module.

To	see	which	modules	are	currently	compiled	into	the	server,	you
can	use	the	-l	command	line	option.	You	can	also	see	what
modules	are	loaded	dynamically	using	the	-M	command	line
option.

Scope	of	Directives

Related	Modules Related	Directives
<Directory>

<DirectoryMatch>

<Files>

<FilesMatch>

<Location>

<LocationMatch>

<VirtualHost>

Directives	placed	in	the	main	configuration	files	apply	to	the	entire
server.	If	you	wish	to	change	the	configuration	for	only	a	part	of	the
server,	you	can	scope	your	directives	by	placing	them	in
<Directory>,	<DirectoryMatch>,	<Files>,
<FilesMatch>,	<Location>,	and	<LocationMatch>	sections.
These	sections	limit	the	application	of	the	directives	which	they
enclose	to	particular	filesystem	locations	or	URLs.	They	can	also
be	nested,	allowing	for	very	fine	grained	configuration.

httpd	has	the	capability	to	serve	many	different	websites
simultaneously.	This	is	called	Virtual	Hosting.	Directives	can	also
be	scoped	by	placing	them	inside	<VirtualHost>	sections,	so
that	they	will	only	apply	to	requests	for	a	particular	website.

Although	most	directives	can	be	placed	in	any	of	these	sections,
some	directives	do	not	make	sense	in	some	contexts.	For
example,	directives	controlling	process	creation	can	only	be
placed	in	the	main	server	context.	To	find	which	directives	can	be
placed	in	which	sections,	check	the	Context	of	the	directive.	For
further	information,	we	provide	details	on	How	Directory,	Location
and	Files	sections	work.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

.htaccess	Files

Related	Modules Related	Directives
AccessFileName

AllowOverride

httpd	allows	for	decentralized	management	of	configuration	via
special	files	placed	inside	the	web	tree.	The	special	files	are
usually	called	.htaccess,	but	any	name	can	be	specified	in	the
AccessFileName	directive.	Directives	placed	in	.htaccess	files
apply	to	the	directory	where	you	place	the	file,	and	all	sub-
directories.	The	.htaccess	files	follow	the	same	syntax	as	the
main	configuration	files.	Since	.htaccess	files	are	read	on	every
request,	changes	made	in	these	files	take	immediate	effect.

To	find	which	directives	can	be	placed	in	.htaccess	files,	check
the	Context	of	the	directive.	The	server	administrator	further
controls	what	directives	may	be	placed	in	.htaccess	files	by
configuring	the	AllowOverride	directive	in	the	main
configuration	files.

For	more	information	on	.htaccess	files,	see	the	.htaccess
tutorial.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Configuration	Sections

Directives	in	the	configuration	files	may	apply	to	the	entire	server,	or
they	may	be	restricted	to	apply	only	to	particular	directories,	files,
hosts,	or	URLs.	This	document	describes	how	to	use	configuration
section	containers	or	.htaccess	files	to	change	the	scope	of	other
configuration	directives.

Types	of	Configuration	Section	Containers

Related	Modules Related	Directives
core

mod_version

mod_proxy

<Directory>

<DirectoryMatch>

<Files>

<FilesMatch>

<If>

<IfDefine>

<IfModule>

<IfVersion>

<Location>

<LocationMatch>

<Proxy>

<ProxyMatch>

<VirtualHost>

There	are	two	basic	types	of	containers.	Most	containers	are
evaluated	for	each	request.	The	enclosed	directives	are	applied
only	for	those	requests	that	match	the	containers.	The
<IfDefine>,	<IfModule>,	and	<IfVersion>	containers,	on
the	other	hand,	are	evaluated	only	at	server	startup	and	restart.	If
their	conditions	are	true	at	startup,	then	the	enclosed	directives	will
apply	to	all	requests.	If	the	conditions	are	not	true,	the	enclosed
directives	will	be	ignored.

The	<IfDefine>	directive	encloses	directives	that	will	only	be
applied	if	an	appropriate	parameter	is	defined	on	the	httpd
command	line.	For	example,	with	the	following	configuration,	all
requests	will	be	redirected	to	another	site	only	if	the	server	is
started	using	httpd	-DClosedForNow:

<IfDefine	ClosedForNow>

				Redirect	"/"	"http://otherserver.example.com/"

</IfDefine>

The	<IfModule>	directive	is	very	similar,	except	it	encloses
directives	that	will	only	be	applied	if	a	particular	module	is
available	in	the	server.	The	module	must	either	be	statically
compiled	in	the	server,	or	it	must	be	dynamically	compiled	and	its
LoadModule	line	must	be	earlier	in	the	configuration	file.	This
directive	should	only	be	used	if	you	need	your	configuration	file	to
work	whether	or	not	certain	modules	are	installed.	It	should	not	be
used	to	enclose	directives	that	you	want	to	work	all	the	time,
because	it	can	suppress	useful	error	messages	about	missing
modules.

In	the	following	example,	the	MimeMagicFile	directive	will	be
applied	only	if	mod_mime_magic	is	available.

<IfModule	mod_mime_magic.c>

				MimeMagicFile	"conf/magic"

</IfModule>

The	<IfVersion>	directive	is	very	similar	to	<IfDefine>	and
<IfModule>,	except	it	encloses	directives	that	will	only	be
applied	if	a	particular	version	of	the	server	is	executing.	This
module	is	designed	for	the	use	in	test	suites	and	large	networks
which	have	to	deal	with	different	httpd	versions	and	different
configurations.

<IfVersion	>=	2.4>

				#	this	happens	only	in	versions	greater	or

				#	equal	2.4.0.

</IfVersion>

<IfDefine>,	<IfModule>,	and	the	<IfVersion>	can	apply
negative	conditions	by	preceding	their	test	with	"!".	Also,	these
sections	can	be	nested	to	achieve	more	complex	restrictions.

Filesystem,	Webspace,	and	Boolean	Expressions

The	most	commonly	used	configuration	section	containers	are	the
ones	that	change	the	configuration	of	particular	places	in	the
filesystem	or	webspace.	First,	it	is	important	to	understand	the
difference	between	the	two.	The	filesystem	is	the	view	of	your
disks	as	seen	by	your	operating	system.	For	example,	in	a	default
install,	Apache	httpd	resides	at	/usr/local/apache2	in	the
Unix	filesystem	or	"c:/Program	Files/Apache
Group/Apache2"	in	the	Windows	filesystem.	(Note	that	forward
slashes	should	always	be	used	as	the	path	separator	in	Apache
httpd	configuration	files,	even	for	Windows.)	In	contrast,	the
webspace	is	the	view	of	your	site	as	delivered	by	the	web	server
and	seen	by	the	client.	So	the	path	/dir/	in	the	webspace
corresponds	to	the	path	/usr/local/apache2/htdocs/dir/
in	the	filesystem	of	a	default	Apache	httpd	install	on	Unix.	The
webspace	need	not	map	directly	to	the	filesystem,	since
webpages	may	be	generated	dynamically	from	databases	or	other
locations.

Filesystem	Containers
The	<Directory>	and	<Files>	directives,	along	with	their
regex	counterparts,	apply	directives	to	parts	of	the	filesystem.
Directives	enclosed	in	a	<Directory>	section	apply	to	the
named	filesystem	directory	and	all	subdirectories	of	that	directory
(as	well	as	the	files	in	those	directories).	The	same	effect	can	be
obtained	using	.htaccess	files.	For	example,	in	the	following
configuration,	directory	indexes	will	be	enabled	for	the
/var/web/dir1	directory	and	all	subdirectories.

<Directory	"/var/web/dir1">

				Options	+Indexes

</Directory>

Directives	enclosed	in	a	<Files>	section	apply	to	any	file	with	the
specified	name,	regardless	of	what	directory	it	lies	in.	So	for
example,	the	following	configuration	directives	will,	when	placed	in
the	main	section	of	the	configuration	file,	deny	access	to	any	file
named	private.html	regardless	of	where	it	is	found.

<Files	"private.html">

				Require	all	denied

</Files>

To	address	files	found	in	a	particular	part	of	the	filesystem,	the
<Files>	and	<Directory>	sections	can	be	combined.	For
example,	the	following	configuration	will	deny	access	to
/var/web/dir1/private.html,
/var/web/dir1/subdir2/private.html,
/var/web/dir1/subdir3/private.html,	and	any	other
instance	of	private.html	found	under	the	/var/web/dir1/
directory.

<Directory	"/var/web/dir1">

				<Files	"private.html">

								Require	all	denied

				</Files>

</Directory>

Webspace	Containers
The	<Location>	directive	and	its	regex	counterpart,	on	the	other
hand,	change	the	configuration	for	content	in	the	webspace.	For
example,	the	following	configuration	prevents	access	to	any	URL-
path	that	begins	in	/private.	In	particular,	it	will	apply	to	requests	for
http://yoursite.example.com/private,
http://yoursite.example.com/private123,	and
http://yoursite.example.com/private/dir/file.html

as	well	as	any	other	requests	starting	with	the	/private	string.

<LocationMatch	"^/private">

				Require	all	denied

</LocationMatch>

The	<Location>	directive	need	not	have	anything	to	do	with	the
filesystem.	For	example,	the	following	example	shows	how	to	map
a	particular	URL	to	an	internal	Apache	HTTP	Server	handler
provided	by	mod_status.	No	file	called	server-status	needs
to	exist	in	the	filesystem.

<Location	"/server-status">

				SetHandler	server-status

</Location>

Overlapping	Webspace
In	order	to	have	two	overlapping	URLs	one	has	to	consider	the
order	in	which	certain	sections	or	directives	are	evaluated.	For
<Location>	this	would	be:

<Location	"/foo">

</Location>

<Location	"/foo/bar">

</Location>

<Alias>es	on	the	other	hand,	are	mapped	vice-versa:

Alias	"/foo/bar"	"/srv/www/uncommon/bar"

Alias	"/foo"	"/srv/www/common/foo"

The	same	is	true	for	the	ProxyPass	directives:

ProxyPass	"/special-area"	"http://special.example.com"	smax=5	max=10

ProxyPass	"/"	"balancer://mycluster/"	stickysession=JSESSIONID|jsessionid	nofailover=On

Wildcards	and	Regular	Expressions
The	<Directory>,	<Files>,	and	<Location>	directives	can
each	use	shell-style	wildcard	characters	as	in	fnmatch	from	the	C
standard	library.	The	character	"*"	matches	any	sequence	of
characters,	"?"	matches	any	single	character,	and	"[seq]"	matches
any	character	in	seq.	The	"/"	character	will	not	be	matched	by	any
wildcard;	it	must	be	specified	explicitly.

If	even	more	flexible	matching	is	required,	each	container	has	a
regular	expression	(regex)	counterpart	<DirectoryMatch>,
<FilesMatch>,	and	<LocationMatch>	that	allow	perl-
compatible	regular	expressions	to	be	used	in	choosing	the
matches.	But	see	the	section	below	on	configuration	merging	to
find	out	how	using	regex	sections	will	change	how	directives	are
applied.

A	non-regex	wildcard	section	that	changes	the	configuration	of	all
user	directories	could	look	as	follows:

<Directory	"/home/*/public_html">

				Options	Indexes

</Directory>

Using	regex	sections,	we	can	deny	access	to	many	types	of	image
files	at	once:

<FilesMatch	"\.(?i:gif|jpe?g|png)$">

				Require	all	denied

</FilesMatch>

Regular	expressions	containing	named	groups	and
backreferences	are	added	to	the	environment	with	the
corresponding	name	in	uppercase.	This	allows	elements	of
filename	paths	and	URLs	to	be	referenced	from	within	expressions
and	modules	like	mod_rewrite.

<DirectoryMatch	"^/var/www/combined/(?<SITENAME>[^/]+)">

				require	ldap-group	"cn=%{env:MATCH_SITENAME},ou=combined,o=Example"

</DirectoryMatch>

Boolean	expressions
The	<If>	directive	change	the	configuration	depending	on	a
condition	which	can	be	expressed	by	a	boolean	expression.	For
example,	the	following	configuration	denies	access	if	the	HTTP
Referer	header	does	not	start	with	"http://www.example.com/".

<If	"!(%{HTTP_REFERER}	-strmatch	'http://www.example.com/*')">

				Require	all	denied

</If>

What	to	use	When
Choosing	between	filesystem	containers	and	webspace	containers
is	actually	quite	easy.	When	applying	directives	to	objects	that
reside	in	the	filesystem	always	use	<Directory>	or	<Files>.
When	applying	directives	to	objects	that	do	not	reside	in	the
filesystem	(such	as	a	webpage	generated	from	a	database),	use
<Location>.

It	is	important	to	never	use	<Location>	when	trying	to	restrict
access	to	objects	in	the	filesystem.	This	is	because	many	different
webspace	locations	(URLs)	could	map	to	the	same	filesystem

location,	allowing	your	restrictions	to	be	circumvented.	For
example,	consider	the	following	configuration:

<Location	"/dir/">

				Require	all	denied

</Location>

This	works	fine	if	the	request	is	for
http://yoursite.example.com/dir/.	But	what	if	you	are	on
a	case-insensitive	filesystem?	Then	your	restriction	could	be	easily
circumvented	by	requesting
http://yoursite.example.com/DIR/.	The	<Directory>
directive,	in	contrast,	will	apply	to	any	content	served	from	that
location,	regardless	of	how	it	is	called.	(An	exception	is	filesystem
links.	The	same	directory	can	be	placed	in	more	than	one	part	of
the	filesystem	using	symbolic	links.	The	<Directory>	directive
will	follow	the	symbolic	link	without	resetting	the	pathname.
Therefore,	for	the	highest	level	of	security,	symbolic	links	should
be	disabled	with	the	appropriate	Options	directive.)

If	you	are,	perhaps,	thinking	that	none	of	this	applies	to	you
because	you	use	a	case-sensitive	filesystem,	remember	that	there
are	many	other	ways	to	map	multiple	webspace	locations	to	the
same	filesystem	location.	Therefore	you	should	always	use	the
filesystem	containers	when	you	can.	There	is,	however,	one
exception	to	this	rule.	Putting	configuration	restrictions	in	a
<Location	"/">	section	is	perfectly	safe	because	this	section
will	apply	to	all	requests	regardless	of	the	specific	URL.

Nesting	of	sections
Some	section	types	can	be	nested	inside	other	section	types.	On
the	one	hand,	<Files>	can	be	used	inside	<Directory>.	On
the	other	hand,	<If>	can	be	used	inside	<Directory>,

<Location>,	and	<Files>	sections	(but	not	inside	another
<If>).	The	regex	counterparts	of	the	named	section	behave
identically.

Nested	sections	are	merged	after	non-nested	sections	of	the	same
type.

Virtual	Hosts

The	<VirtualHost>	container	encloses	directives	that	apply	to
specific	hosts.	This	is	useful	when	serving	multiple	hosts	from	the
same	machine	with	a	different	configuration	for	each.	For	more
information,	see	the	Virtual	Host	Documentation.

Proxy

The	<Proxy>	and	<ProxyMatch>	containers	apply	enclosed
configuration	directives	only	to	sites	accessed	through
mod_proxy's	proxy	server	that	match	the	specified	URL.	For
example,	the	following	configuration	will	allow	only	a	subset	of
clients	to	access	the	www.example.com	website	using	the	proxy
server:

<Proxy	"http://www.example.com/*">

				Require	host	yournetwork.example.com

</Proxy>

What	Directives	are	Allowed?

To	find	out	what	directives	are	allowed	in	what	types	of
configuration	sections,	check	the	Context	of	the	directive.
Everything	that	is	allowed	in	<Directory>	sections	is	also
syntactically	allowed	in	<DirectoryMatch>,	<Files>,
<FilesMatch>,	<Location>,	<LocationMatch>,	<Proxy>,
and	<ProxyMatch>	sections.	There	are	some	exceptions,
however:

The	AllowOverride	directive	works	only	in	<Directory>
sections.
The	FollowSymLinks	and	SymLinksIfOwnerMatch
Options	work	only	in	<Directory>	sections	or	.htaccess
files.
The	Options	directive	cannot	be	used	in	<Files>	and
<FilesMatch>	sections.

How	the	sections	are	merged

The	configuration	sections	are	applied	in	a	very	particular	order.
Since	this	can	have	important	effects	on	how	configuration
directives	are	interpreted,	it	is	important	to	understand	how	this
works.

The	order	of	merging	is:

1.	 <Directory>	(except	regular	expressions)	and	.htaccess
done	simultaneously	(with	.htaccess,	if	allowed,	overriding
<Directory>)

2.	 <DirectoryMatch>	(and	<Directory	"~">)

3.	 <Files>	and	<FilesMatch>	done	simultaneously

4.	 <Location>	and	<LocationMatch>	done	simultaneously

5.	 <If>

Some	important	remarks:

Apart	from	<Directory>,	within	each	group	the	sections	are
processed	in	the	order	they	appear	in	the	configuration	files.
For	example,	a	request	for	/foo	will	match	<Location
"/foo/bar">	and	<Location	"/foo">	(group	4	in	this
case):	both	sections	will	be	evaluated	but	in	the	order	they
appear	in	the	configuration	files.
<Directory>	(group	1	above)	is	processed	in	the	order
shortest	directory	component	to	longest.	For	example,
<Directory	"/var/web/dir">	will	be	processed	before
<Directory	"/var/web/dir/subdir">.
If	multiple	<Directory>	sections	apply	to	the	same	directory
they	are	processed	in	the	configuration	file	order.
Configurations	included	via	the	Include	directive	will	be
treated	as	if	they	were	inside	the	including	file	at	the	location

of	the	Include	directive.
Sections	inside	<VirtualHost>	sections	are	applied	after
the	corresponding	sections	outside	the	virtual	host	definition.
This	allows	virtual	hosts	to	override	the	main	server
configuration.
When	the	request	is	served	by	mod_proxy,	the	<Proxy>
container	takes	the	place	of	the	<Directory>	container	in
the	processing	order.

Technical	Note
There	is	actually	a	<Location>/<LocationMatch>	sequence
performed	just	before	the	name	translation	phase	(where
Aliases	and	DocumentRoots	are	used	to	map	URLs	to
filenames).	The	results	of	this	sequence	are	completely	thrown
away	after	the	translation	has	completed.

Relationship	between	modules	and	configuration
sections
One	question	that	often	arises	after	reading	how	configuration
sections	are	merged	is	related	to	how	and	when	directives	of
specific	modules	like	mod_rewrite	are	processed.	The	answer	is
not	trivial	and	needs	a	bit	of	background.	Each	httpd	module
manages	its	own	configuration,	and	each	of	its	directives	in
httpd.conf	specify	one	piece	of	configuration	in	a	particular
context.	httpd	does	not	execute	a	command	as	it	is	read.

At	runtime,	the	core	of	httpd	iterates	over	the	defined	configuration
sections	in	the	order	described	above	to	determine	which	ones
apply	to	the	current	request.	When	the	first	section	matches,	it	is
considered	the	current	configuration	for	this	request.	If	a
subsequent	section	matches	too,	then	each	module	with	a
directive	in	either	of	the	sections	is	given	a	chance	to	merge	its
configuration	between	the	two	sections.	The	result	is	a	third

configuration,	and	the	process	goes	on	until	all	the	configuration
sections	are	evaluated.

After	the	above	step,	the	"real"	processing	of	the	HTTP	request
begins:	each	module	has	a	chance	to	run	and	perform	whatever
tasks	they	like.	They	can	retrieve	their	own	final	merged
configuration	from	the	core	of	the	httpd	to	determine	how	they
should	act.

An	example	can	help	to	visualize	the	whole	process.	The	following
configuration	uses	the	Header	directive	of	mod_headers	to	set	a
specific	HTTP	header.	What	value	will	httpd	set	in	the
CustomHeaderName	header	for	a	request	to
/example/index.html	?

<Directory	"/">

				Header	set	CustomHeaderName	one

				<FilesMatch	".*">

								Header	set	CustomHeaderName	three

				</FilesMatch>

</Directory>

<Directory	"/example">

				Header	set	CustomHeaderName	two

</Directory>

Directory	"/"	matches	and	an	initial	configuration	to	set	the
CustomHeaderName	header	with	the	value	one	is	created.
Directory	"/example"	matches,	and	since	mod_headers
specifies	in	its	code	to	override	in	case	of	a	merge,	a	new
configuration	is	created	to	set	the	CustomHeaderName
header	with	the	value	two.
FilesMatch	".*"	matches	and	another	merge	opportunity
arises,	causing	the	CustomHeaderName	header	to	be	set

with	the	value	three.
Eventually	during	the	next	steps	of	the	HTTP	request
processing	mod_headers	will	be	called	and	it	will	receive	the
configuration	to	set	the	CustomHeaderName	header	with	the
value	three.	mod_headers	normally	uses	this	configuration
to	perfom	its	job,	namely	setting	the	foo	header.	This	does	not
mean	that	a	module	can't	perform	a	more	complex	action	like
discarding	directives	because	not	needed	or	deprecated,	etc..

This	is	true	for	.htaccess	too	since	they	have	the	same	priority	as
Directory	in	the	merge	order.	The	important	concept	to
understand	is	that	configuration	sections	like	Directory	and
FilesMatch	are	not	comparable	to	module	specific	directives	like
Header	or	RewriteRule	because	they	operate	on	different
levels.

Some	useful	examples
Below	is	an	artificial	example	to	show	the	order	of	merging.
Assuming	they	all	apply	to	the	request,	the	directives	in	this
example	will	be	applied	in	the	order	A	>	B	>	C	>	D	>	E.

<Location	"/">

				E

</Location>

<Files	"f.html">

				D

</Files>

<VirtualHost	*>

<Directory	"/a/b">

				B

</Directory>

</VirtualHost>

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

<DirectoryMatch	"^.*b$">

				C

</DirectoryMatch>

<Directory	"/a/b">

				A

</Directory>

For	a	more	concrete	example,	consider	the	following.	Regardless
of	any	access	restrictions	placed	in	<Directory>	sections,	the
<Location>	section	will	be	evaluated	last	and	will	allow
unrestricted	access	to	the	server.	In	other	words,	order	of	merging
is	important,	so	be	careful!

<Location	"/">

				Require	all	granted

</Location>

#	Whoops!		This	<Directory>	section	will	have	no	effect

<Directory	"/">

				<RequireAll>

								Require	all	granted

								Require	not	host	badguy.example.com

				</RequireAll>

</Directory>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Server-Wide	Configuration

This	document	explains	some	of	the	directives	provided	by	the	core
server	which	are	used	to	configure	the	basic	operations	of	the	server.

Server	Identification

Related	Modules Related	Directives
ServerName

ServerAdmin

ServerSignature

ServerTokens

UseCanonicalName

UseCanonicalPhysicalPort

The	ServerAdmin	and	ServerTokens	directives	control	what
information	about	the	server	will	be	presented	in	server-generated
documents	such	as	error	messages.	The	ServerTokens
directive	sets	the	value	of	the	Server	HTTP	response	header	field.

The	ServerName,	UseCanonicalName	and
UseCanonicalPhysicalPort	directives	are	used	by	the	server
to	determine	how	to	construct	self-referential	URLs.	For	example,
when	a	client	requests	a	directory,	but	does	not	include	the	trailing
slash	in	the	directory	name,	httpd	must	redirect	the	client	to	the	full
name	including	the	trailing	slash	so	that	the	client	will	correctly
resolve	relative	references	in	the	document.

File	Locations

Related	Modules Related	Directives
CoreDumpDirectory

DocumentRoot

ErrorLog

Mutex

PidFile

ScoreBoardFile

ServerRoot

These	directives	control	the	locations	of	the	various	files	that	httpd
needs	for	proper	operation.	When	the	pathname	used	does	not
begin	with	a	slash	(/),	the	files	are	located	relative	to	the
ServerRoot.	Be	careful	about	locating	files	in	paths	which	are
writable	by	non-root	users.	See	the	security	tips	documentation	for
more	details.

Limiting	Resource	Usage

Related	Modules Related	Directives
LimitRequestBody

LimitRequestFields

LimitRequestFieldsize

LimitRequestLine

RLimitCPU

RLimitMEM

RLimitNPROC

ThreadStackSize

The	LimitRequest*	directives	are	used	to	place	limits	on	the
amount	of	resources	httpd	will	use	in	reading	requests	from
clients.	By	limiting	these	values,	some	kinds	of	denial	of	service
attacks	can	be	mitigated.

The	RLimit*	directives	are	used	to	limit	the	amount	of	resources
which	can	be	used	by	processes	forked	off	from	the	httpd	children.
In	particular,	this	will	control	resources	used	by	CGI	scripts	and
SSI	exec	commands.

The	ThreadStackSize	directive	is	used	with	some	platforms	to
control	the	stack	size.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Implementation	Choices

Related	Modules Related	Directives
Mutex

The	Mutex	directive	can	be	used	to	change	the	underlying
implementation	used	for	mutexes,	in	order	to	relieve	functional	or
performance	problems	with	APR's	default	choice.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Log	Files

In	order	to	effectively	manage	a	web	server,	it	is	necessary	to	get
feedback	about	the	activity	and	performance	of	the	server	as	well	as
any	problems	that	may	be	occurring.	The	Apache	HTTP	Server
provides	very	comprehensive	and	flexible	logging	capabilities.	This
document	describes	how	to	configure	its	logging	capabilities,	and	how
to	understand	what	the	logs	contain.

Overview

Related	Modules Related	Directives
mod_log_config

mod_log_forensic

mod_logio

mod_cgi

The	Apache	HTTP	Server	provides	a	variety	of	different
mechanisms	for	logging	everything	that	happens	on	your	server,
from	the	initial	request,	through	the	URL	mapping	process,	to	the
final	resolution	of	the	connection,	including	any	errors	that	may
have	occurred	in	the	process.	In	addition	to	this,	third-party
modules	may	provide	logging	capabilities,	or	inject	entries	into	the
existing	log	files,	and	applications	such	as	CGI	programs,	or	PHP
scripts,	or	other	handlers,	may	send	messages	to	the	server	error
log.

In	this	document	we	discuss	the	logging	modules	that	are	a
standard	part	of	the	http	server.

Security	Warning

Anyone	who	can	write	to	the	directory	where	Apache	httpd	is
writing	a	log	file	can	almost	certainly	gain	access	to	the	uid	that
the	server	is	started	as,	which	is	normally	root.	Do	NOT	give
people	write	access	to	the	directory	the	logs	are	stored	in	without
being	aware	of	the	consequences;	see	the	security	tips	document
for	details.

In	addition,	log	files	may	contain	information	supplied	directly	by
the	client,	without	escaping.	Therefore,	it	is	possible	for	malicious
clients	to	insert	control-characters	in	the	log	files,	so	care	must	be
taken	in	dealing	with	raw	logs.

Error	Log

Related	Modules Related	Directives
core ErrorLog

ErrorLogFormat

LogLevel

The	server	error	log,	whose	name	and	location	is	set	by	the
ErrorLog	directive,	is	the	most	important	log	file.	This	is	the
place	where	Apache	httpd	will	send	diagnostic	information	and
record	any	errors	that	it	encounters	in	processing	requests.	It	is
the	first	place	to	look	when	a	problem	occurs	with	starting	the
server	or	with	the	operation	of	the	server,	since	it	will	often	contain
details	of	what	went	wrong	and	how	to	fix	it.

The	error	log	is	usually	written	to	a	file	(typically	error_log	on
Unix	systems	and	error.log	on	Windows	and	OS/2).	On	Unix
systems	it	is	also	possible	to	have	the	server	send	errors	to
syslog	or	pipe	them	to	a	program.

The	format	of	the	error	log	is	defined	by	the	ErrorLogFormat
directive,	with	which	you	can	customize	what	values	are	logged.	A
default	is	format	defined	if	you	don't	specify	one.	A	typical	log
message	follows:

[Fri	Sep	09	10:42:29.902022	2011]	[core:error]	[pid	35708:tid

4328636416]	[client	72.15.99.187]	File	does	not	exist:

/usr/local/apache2/htdocs/favicon.ico

The	first	item	in	the	log	entry	is	the	date	and	time	of	the	message.
The	next	is	the	module	producing	the	message	(core,	in	this	case)
and	the	severity	level	of	that	message.	This	is	followed	by	the
process	ID	and,	if	appropriate,	the	thread	ID,	of	the	process	that
experienced	the	condition.	Next,	we	have	the	client	address	that
made	the	request.	And	finally	is	the	detailed	error	message,	which

in	this	case	indicates	a	request	for	a	file	that	did	not	exist.

A	very	wide	variety	of	different	messages	can	appear	in	the	error
log.	Most	look	similar	to	the	example	above.	The	error	log	will	also
contain	debugging	output	from	CGI	scripts.	Any	information	written
to	stderr	by	a	CGI	script	will	be	copied	directly	to	the	error	log.

Putting	a	%L	token	in	both	the	error	log	and	the	access	log	will
produce	a	log	entry	ID	with	which	you	can	correlate	the	entry	in
the	error	log	with	the	entry	in	the	access	log.	If	mod_unique_id
is	loaded,	its	unique	request	ID	will	be	used	as	the	log	entry	ID,
too.

During	testing,	it	is	often	useful	to	continuously	monitor	the	error
log	for	any	problems.	On	Unix	systems,	you	can	accomplish	this
using:

tail	-f	error_log

Per-module	logging

The	LogLevel	directive	allows	you	to	specify	a	log	severity	level
on	a	per-module	basis.	In	this	way,	if	you	are	troubleshooting	a
problem	with	just	one	particular	module,	you	can	turn	up	its
logging	volume	without	also	getting	the	details	of	other	modules
that	you're	not	interested	in.	This	is	particularly	useful	for	modules
such	as	mod_proxy	or	mod_rewrite	where	you	want	to	know
details	about	what	it's	trying	to	do.

Do	this	by	specifying	the	name	of	the	module	in	your	LogLevel
directive:

LogLevel	info	rewrite:trace5

This	sets	the	main	LogLevel	to	info,	but	turns	it	up	to	trace5	for
mod_rewrite.

This	replaces	the	per-module	logging	directives,	such	as
RewriteLog,	that	were	present	in	earlier	versions	of	the	server.

Access	Log

Related	Modules Related	Directives
mod_log_config

mod_setenvif

CustomLog

LogFormat

SetEnvIf

The	server	access	log	records	all	requests	processed	by	the
server.	The	location	and	content	of	the	access	log	are	controlled
by	the	CustomLog	directive.	The	LogFormat	directive	can	be
used	to	simplify	the	selection	of	the	contents	of	the	logs.	This
section	describes	how	to	configure	the	server	to	record	information
in	the	access	log.

Of	course,	storing	the	information	in	the	access	log	is	only	the	start
of	log	management.	The	next	step	is	to	analyze	this	information	to
produce	useful	statistics.	Log	analysis	in	general	is	beyond	the
scope	of	this	document,	and	not	really	part	of	the	job	of	the	web
server	itself.	For	more	information	about	this	topic,	and	for
applications	which	perform	log	analysis,	check	the	Open	Directory.

Various	versions	of	Apache	httpd	have	used	other	modules	and
directives	to	control	access	logging,	including	mod_log_referer,
mod_log_agent,	and	the	TransferLog	directive.	The
CustomLog	directive	now	subsumes	the	functionality	of	all	the
older	directives.

The	format	of	the	access	log	is	highly	configurable.	The	format	is
specified	using	a	format	string	that	looks	much	like	a	C-style
printf(1)	format	string.	Some	examples	are	presented	in	the	next
sections.	For	a	complete	list	of	the	possible	contents	of	the	format
string,	see	the	mod_log_config	format	strings.

Common	Log	Format

http://dmoz.org/Computers/Software/Internet/Site_Management/Log_Analysis/

A	typical	configuration	for	the	access	log	might	look	as	follows.

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common

CustomLog	logs/access_log	common

This	defines	the	nickname	common	and	associates	it	with	a
particular	log	format	string.	The	format	string	consists	of	percent
directives,	each	of	which	tell	the	server	to	log	a	particular	piece	of
information.	Literal	characters	may	also	be	placed	in	the	format
string	and	will	be	copied	directly	into	the	log	output.	The	quote
character	(")	must	be	escaped	by	placing	a	backslash	before	it	to
prevent	it	from	being	interpreted	as	the	end	of	the	format	string.
The	format	string	may	also	contain	the	special	control	characters
"\n"	for	new-line	and	"\t"	for	tab.

The	CustomLog	directive	sets	up	a	new	log	file	using	the	defined
nickname.	The	filename	for	the	access	log	is	relative	to	the
ServerRoot	unless	it	begins	with	a	slash.

The	above	configuration	will	write	log	entries	in	a	format	known	as
the	Common	Log	Format	(CLF).	This	standard	format	can	be
produced	by	many	different	web	servers	and	read	by	many	log
analysis	programs.	The	log	file	entries	produced	in	CLF	will	look
something	like	this:

127.0.0.1	-	frank	[10/Oct/2000:13:55:36	-0700]	"GET

/apache_pb.gif	HTTP/1.0"	200	2326

Each	part	of	this	log	entry	is	described	below.

127.0.0.1	(%h)
This	is	the	IP	address	of	the	client	(remote	host)	which	made
the	request	to	the	server.	If	HostnameLookups	is	set	to	On,
then	the	server	will	try	to	determine	the	hostname	and	log	it	in

place	of	the	IP	address.	However,	this	configuration	is	not
recommended	since	it	can	significantly	slow	the	server.
Instead,	it	is	best	to	use	a	log	post-processor	such	as
logresolve	to	determine	the	hostnames.	The	IP	address
reported	here	is	not	necessarily	the	address	of	the	machine	at
which	the	user	is	sitting.	If	a	proxy	server	exists	between	the
user	and	the	server,	this	address	will	be	the	address	of	the
proxy,	rather	than	the	originating	machine.

-	(%l)
The	"hyphen"	in	the	output	indicates	that	the	requested	piece
of	information	is	not	available.	In	this	case,	the	information
that	is	not	available	is	the	RFC	1413	identity	of	the	client
determined	by	identd	on	the	clients	machine.	This
information	is	highly	unreliable	and	should	almost	never	be
used	except	on	tightly	controlled	internal	networks.	Apache
httpd	will	not	even	attempt	to	determine	this	information
unless	IdentityCheck	is	set	to	On.

frank	(%u)
This	is	the	userid	of	the	person	requesting	the	document	as
determined	by	HTTP	authentication.	The	same	value	is
typically	provided	to	CGI	scripts	in	the	REMOTE_USER
environment	variable.	If	the	status	code	for	the	request	(see
below)	is	401,	then	this	value	should	not	be	trusted	because
the	user	is	not	yet	authenticated.	If	the	document	is	not
password	protected,	this	part	will	be	"-"	just	like	the	previous
one.

[10/Oct/2000:13:55:36	-0700]	(%t)
The	time	that	the	request	was	received.	The	format	is:

[day/month/year:hour:minute:second	zone]

day	=	2*digit

month	=	3*letter

year	=	4*digit

hour	=	2*digit

minute	=	2*digit

second	=	2*digit

zone	=	(`+'	|	`-')	4*digit

It	is	possible	to	have	the	time	displayed	in	another	format	by
specifying	%{format}t	in	the	log	format	string,	where
format	is	either	as	in	strftime(3)	from	the	C	standard
library,	or	one	of	the	supported	special	tokens.	For	details	see
the	mod_log_config	format	strings.

"GET	/apache_pb.gif	HTTP/1.0"	(\"%r\")
The	request	line	from	the	client	is	given	in	double	quotes.	The
request	line	contains	a	great	deal	of	useful	information.	First,
the	method	used	by	the	client	is	GET.	Second,	the	client
requested	the	resource	/apache_pb.gif,	and	third,	the
client	used	the	protocol	HTTP/1.0.	It	is	also	possible	to	log
one	or	more	parts	of	the	request	line	independently.	For
example,	the	format	string	"%m	%U%q	%H"	will	log	the	method,
path,	query-string,	and	protocol,	resulting	in	exactly	the	same
output	as	"%r".

200	(%>s)
This	is	the	status	code	that	the	server	sends	back	to	the
client.	This	information	is	very	valuable,	because	it	reveals
whether	the	request	resulted	in	a	successful	response	(codes
beginning	in	2),	a	redirection	(codes	beginning	in	3),	an	error
caused	by	the	client	(codes	beginning	in	4),	or	an	error	in	the
server	(codes	beginning	in	5).	The	full	list	of	possible	status
codes	can	be	found	in	the	HTTP	specification	(RFC2616
section	10).

2326	(%b)
The	last	part	indicates	the	size	of	the	object	returned	to	the
client,	not	including	the	response	headers.	If	no	content	was

http://www.w3.org/Protocols/rfc2616/rfc2616.txt

returned	to	the	client,	this	value	will	be	"-".	To	log	"0"	for	no
content,	use	%B	instead.

Combined	Log	Format
Another	commonly	used	format	string	is	called	the	Combined	Log
Format.	It	can	be	used	as	follows.

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-agent}i\""	combined

CustomLog	log/access_log	combined

This	format	is	exactly	the	same	as	the	Common	Log	Format,	with
the	addition	of	two	more	fields.	Each	of	the	additional	fields	uses
the	percent-directive	%{header}i,	where	header	can	be	any
HTTP	request	header.	The	access	log	under	this	format	will	look
like:

127.0.0.1	-	frank	[10/Oct/2000:13:55:36	-0700]	"GET

/apache_pb.gif	HTTP/1.0"	200	2326

"http://www.example.com/start.html"	"Mozilla/4.08	[en]	(Win98;

I	;Nav)"

The	additional	fields	are:

"http://www.example.com/start.html"	(\"%
{Referer}i\")

The	"Referer"	(sic)	HTTP	request	header.	This	gives	the	site
that	the	client	reports	having	been	referred	from.	(This	should
be	the	page	that	links	to	or	includes	/apache_pb.gif).

"Mozilla/4.08	[en]	(Win98;	I	;Nav)"	(\"%{User-
agent}i\")

The	User-Agent	HTTP	request	header.	This	is	the	identifying
information	that	the	client	browser	reports	about	itself.

Multiple	Access	Logs
Multiple	access	logs	can	be	created	simply	by	specifying	multiple
CustomLog	directives	in	the	configuration	file.	For	example,	the
following	directives	will	create	three	access	logs.	The	first	contains
the	basic	CLF	information,	while	the	second	and	third	contain
referer	and	browser	information.	The	last	two	CustomLog	lines
show	how	to	mimic	the	effects	of	the	ReferLog	and	AgentLog
directives.

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common

CustomLog	logs/access_log	common

CustomLog	logs/referer_log	"%{Referer}i	->	%U"

CustomLog	logs/agent_log	"%{User-agent}i"

This	example	also	shows	that	it	is	not	necessary	to	define	a
nickname	with	the	LogFormat	directive.	Instead,	the	log	format
can	be	specified	directly	in	the	CustomLog	directive.

Conditional	Logs
There	are	times	when	it	is	convenient	to	exclude	certain	entries
from	the	access	logs	based	on	characteristics	of	the	client	request.
This	is	easily	accomplished	with	the	help	of	environment	variables.
First,	an	environment	variable	must	be	set	to	indicate	that	the
request	meets	certain	conditions.	This	is	usually	accomplished
with	SetEnvIf.	Then	the	env=	clause	of	the	CustomLog
directive	is	used	to	include	or	exclude	requests	where	the
environment	variable	is	set.	Some	examples:

#	Mark	requests	from	the	loop-back	interface

SetEnvIf	Remote_Addr	"127\.0\.0\.1"	dontlog

#	Mark	requests	for	the	robots.txt	file

SetEnvIf	Request_URI	"^/robots\.txt$"	dontlog

#	Log	what	remains

CustomLog	logs/access_log	common	env=!dontlog

As	another	example,	consider	logging	requests	from	english-
speakers	to	one	log	file,	and	non-english	speakers	to	a	different
log	file.

SetEnvIf	Accept-Language	"en"	english

CustomLog	logs/english_log	common	env=english

CustomLog	logs/non_english_log	common	env=!english

In	a	caching	scenario	one	would	want	to	know	about	the	efficiency
of	the	cache.	A	very	simple	method	to	find	this	out	would	be:

SetEnv	CACHE_MISS	1

LogFormat	"%h	%l	%u	%t	"%r	"	%>s	%b	%{CACHE_MISS}e"	common-cache

CustomLog	logs/access_log	common-cache

mod_cache	will	run	before	mod_env	and,	when	successful,	will
deliver	the	content	without	it.	In	that	case	a	cache	hit	will	log	-,
while	a	cache	miss	will	log	1.

In	addition	to	the	env=	syntax,	LogFormat	supports	logging
values	conditional	upon	the	HTTP	response	code:

LogFormat	"%400,501{User-agent}i"	browserlog

LogFormat	"%!200,304,302{Referer}i"	refererlog

In	the	first	example,	the	User-agent	will	be	logged	if	the	HTTP
status	code	is	400	or	501.	In	other	cases,	a	literal	"-"	will	be	logged
instead.	Likewise,	in	the	second	example,	the	Referer	will	be

logged	if	the	HTTP	status	code	is	not	200,	204,	or	302.	(Note	the
"!"	before	the	status	codes.

Although	we	have	just	shown	that	conditional	logging	is	very
powerful	and	flexible,	it	is	not	the	only	way	to	control	the	contents
of	the	logs.	Log	files	are	more	useful	when	they	contain	a
complete	record	of	server	activity.	It	is	often	easier	to	simply	post-
process	the	log	files	to	remove	requests	that	you	do	not	want	to
consider.

Log	Rotation

On	even	a	moderately	busy	server,	the	quantity	of	information
stored	in	the	log	files	is	very	large.	The	access	log	file	typically
grows	1	MB	or	more	per	10,000	requests.	It	will	consequently	be
necessary	to	periodically	rotate	the	log	files	by	moving	or	deleting
the	existing	logs.	This	cannot	be	done	while	the	server	is	running,
because	Apache	httpd	will	continue	writing	to	the	old	log	file	as
long	as	it	holds	the	file	open.	Instead,	the	server	must	be	restarted
after	the	log	files	are	moved	or	deleted	so	that	it	will	open	new	log
files.

By	using	a	graceful	restart,	the	server	can	be	instructed	to	open
new	log	files	without	losing	any	existing	or	pending	connections
from	clients.	However,	in	order	to	accomplish	this,	the	server	must
continue	to	write	to	the	old	log	files	while	it	finishes	serving	old
requests.	It	is	therefore	necessary	to	wait	for	some	time	after	the
restart	before	doing	any	processing	on	the	log	files.	A	typical
scenario	that	simply	rotates	the	logs	and	compresses	the	old	logs
to	save	space	is:

mv	access_log	access_log.old

mv	error_log	error_log.old

apachectl	graceful

sleep	600

gzip	access_log.old	error_log.old

Another	way	to	perform	log	rotation	is	using	piped	logs	as
discussed	in	the	next	section.

Piped	Logs

Apache	httpd	is	capable	of	writing	error	and	access	log	files
through	a	pipe	to	another	process,	rather	than	directly	to	a	file.
This	capability	dramatically	increases	the	flexibility	of	logging,
without	adding	code	to	the	main	server.	In	order	to	write	logs	to	a
pipe,	simply	replace	the	filename	with	the	pipe	character	"|",
followed	by	the	name	of	the	executable	which	should	accept	log
entries	on	its	standard	input.	The	server	will	start	the	piped-log
process	when	the	server	starts,	and	will	restart	it	if	it	crashes	while
the	server	is	running.	(This	last	feature	is	why	we	can	refer	to	this
technique	as	"reliable	piped	logging".)

Piped	log	processes	are	spawned	by	the	parent	Apache	httpd
process,	and	inherit	the	userid	of	that	process.	This	means	that
piped	log	programs	usually	run	as	root.	It	is	therefore	very
important	to	keep	the	programs	simple	and	secure.

One	important	use	of	piped	logs	is	to	allow	log	rotation	without
having	to	restart	the	server.	The	Apache	HTTP	Server	includes	a
simple	program	called	rotatelogs	for	this	purpose.	For
example,	to	rotate	the	logs	every	24	hours,	you	can	use:

CustomLog	"|/usr/local/apache/bin/rotatelogs	/var/log/access_log	86400"	common

Notice	that	quotes	are	used	to	enclose	the	entire	command	that
will	be	called	for	the	pipe.	Although	these	examples	are	for	the
access	log,	the	same	technique	can	be	used	for	the	error	log.

As	with	conditional	logging,	piped	logs	are	a	very	powerful	tool,	but
they	should	not	be	used	where	a	simpler	solution	like	off-line	post-
processing	is	available.

By	default	the	piped	log	process	is	spawned	without	invoking	a
shell.	Use	"|$"	instead	of	"|"	to	spawn	using	a	shell	(usually	with

/bin/sh	-c):

#	Invoke	"rotatelogs"	using	a	shell

CustomLog	"|$/usr/local/apache/bin/rotatelogs			/var/log/access_log	86400"	common

This	was	the	default	behaviour	for	Apache	2.2.	Depending	on	the
shell	specifics	this	might	lead	to	an	additional	shell	process	for	the
lifetime	of	the	logging	pipe	program	and	signal	handling	problems
during	restart.	For	compatibility	reasons	with	Apache	2.2	the
notation	"||"	is	also	supported	and	equivalent	to	using	"|".

Windows	note

Note	that	on	Windows,	you	may	run	into	problems	when	running
many	piped	logger	processes,	especially	when	HTTPD	is
running	as	a	service.	This	is	caused	by	running	out	of	desktop
heap	space.	The	desktop	heap	space	given	to	each	service	is
specified	by	the	third	argument	to	the	SharedSection
parameter	in	the
HKEY_LOCAL_MACHINE\System\CurrentControlSet\Control\SessionManager\SubSystems\Windows
registry	value.	Change	this	value	with	care;	the	normal
caveats	for	changing	the	Windows	registry	apply,	but	you	might
also	exhaust	the	desktop	heap	pool	if	the	number	is	adjusted
too	high.

Virtual	Hosts

When	running	a	server	with	many	virtual	hosts,	there	are	several
options	for	dealing	with	log	files.	First,	it	is	possible	to	use	logs
exactly	as	in	a	single-host	server.	Simply	by	placing	the	logging
directives	outside	the	<VirtualHost>	sections	in	the	main
server	context,	it	is	possible	to	log	all	requests	in	the	same	access
log	and	error	log.	This	technique	does	not	allow	for	easy	collection
of	statistics	on	individual	virtual	hosts.

If	CustomLog	or	ErrorLog	directives	are	placed	inside	a
<VirtualHost>	section,	all	requests	or	errors	for	that	virtual	host
will	be	logged	only	to	the	specified	file.	Any	virtual	host	which	does
not	have	logging	directives	will	still	have	its	requests	sent	to	the
main	server	logs.	This	technique	is	very	useful	for	a	small	number
of	virtual	hosts,	but	if	the	number	of	hosts	is	very	large,	it	can	be
complicated	to	manage.	In	addition,	it	can	often	create	problems
with	insufficient	file	descriptors.

For	the	access	log,	there	is	a	very	good	compromise.	By	adding
information	on	the	virtual	host	to	the	log	format	string,	it	is	possible
to	log	all	hosts	to	the	same	log,	and	later	split	the	log	into
individual	files.	For	example,	consider	the	following	directives.

LogFormat	"%v	%l	%u	%t	\"%r\"	%>s	%b"	comonvhost

CustomLog	logs/access_log	comonvhost

The	%v	is	used	to	log	the	name	of	the	virtual	host	that	is	serving
the	request.	Then	a	program	like	split-logfile	can	be	used	to	post-
process	the	access	log	in	order	to	split	it	into	one	file	per	virtual
host.

Other	Log	Files

Related	Modules Related	Directives
mod_logio

mod_log_config

mod_log_forensic

mod_cgi

LogFormat

BufferedLogs

ForensicLog

PidFile

ScriptLog

ScriptLogBuffer

ScriptLogLength

Logging	actual	bytes	sent	and	received
mod_logio	adds	in	two	additional	LogFormat	fields	(%I	and
%O)	that	log	the	actual	number	of	bytes	received	and	sent	on	the
network.

Forensic	Logging
mod_log_forensic	provides	for	forensic	logging	of	client
requests.	Logging	is	done	before	and	after	processing	a	request,
so	the	forensic	log	contains	two	log	lines	for	each	request.	The
forensic	logger	is	very	strict	with	no	customizations.	It	can	be	an
invaluable	debugging	and	security	tool.

PID	File
On	startup,	Apache	httpd	saves	the	process	id	of	the	parent	httpd
process	to	the	file	logs/httpd.pid.	This	filename	can	be
changed	with	the	PidFile	directive.	The	process-id	is	for	use	by
the	administrator	in	restarting	and	terminating	the	daemon	by
sending	signals	to	the	parent	process;	on	Windows,	use	the	-k
command	line	option	instead.	For	more	information	see	the
Stopping	and	Restarting	page.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Script	Log
In	order	to	aid	in	debugging,	the	ScriptLog	directive	allows	you
to	record	the	input	to	and	output	from	CGI	scripts.	This	should	only
be	used	in	testing	-	not	for	live	servers.	More	information	is
available	in	the	mod_cgi	documentation.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Mapping	URLs	to	Filesystem	Locations

This	document	explains	how	the	Apache	HTTP	Server	uses	the	URL
of	a	request	to	determine	the	filesystem	location	from	which	to	serve	a
file.

Related	Modules	and	Directives

Related	Modules Related	Directives
mod_actions

mod_alias

mod_autoindex

mod_dir

mod_imagemap

mod_negotiation

mod_proxy

mod_rewrite

mod_speling

mod_userdir

mod_vhost_alias

Alias

AliasMatch

CheckSpelling

DirectoryIndex

DocumentRoot

ErrorDocument

Options

ProxyPass

ProxyPassReverse

ProxyPassReverseCookieDomain

ProxyPassReverseCookiePath

Redirect

RedirectMatch

RewriteCond

RewriteRule

ScriptAlias

ScriptAliasMatch

UserDir

DocumentRoot

In	deciding	what	file	to	serve	for	a	given	request,	httpd's	default
behavior	is	to	take	the	URL-Path	for	the	request	(the	part	of	the
URL	following	the	hostname	and	port)	and	add	it	to	the	end	of	the
DocumentRoot	specified	in	your	configuration	files.	Therefore,
the	files	and	directories	underneath	the	DocumentRoot	make	up
the	basic	document	tree	which	will	be	visible	from	the	web.

For	example,	if	DocumentRoot	were	set	to	/var/www/html
then	a	request	for
http://www.example.com/fish/guppies.html	would
result	in	the	file	/var/www/html/fish/guppies.html	being
served	to	the	requesting	client.

If	a	directory	is	requested	(i.e.	a	path	ending	with	/),	the	file
served	from	that	directory	is	defined	by	the	DirectoryIndex
directive.	For	example,	if	DocumentRoot	were	set	as	above,	and
you	were	to	set:

DirectoryIndex	index.html	index.php

Then	a	request	for	http://www.example.com/fish/	will
cause	httpd	to	attempt	to	serve	the	file
/var/www/html/fish/index.html.	In	the	event	that	that	file
does	not	exist,	it	will	next	attempt	to	serve	the	file
/var/www/html/fish/index.php.

If	neither	of	these	files	existed,	the	next	step	is	to	attempt	to
provide	a	directory	index,	if	mod_autoindex	is	loaded	and
configured	to	permit	that.

httpd	is	also	capable	of	Virtual	Hosting,	where	the	server	receives
requests	for	more	than	one	host.	In	this	case,	a	different
DocumentRoot	can	be	specified	for	each	virtual	host,	or

alternatively,	the	directives	provided	by	the	module
mod_vhost_alias	can	be	used	to	dynamically	determine	the
appropriate	place	from	which	to	serve	content	based	on	the
requested	IP	address	or	hostname.

The	DocumentRoot	directive	is	set	in	your	main	server
configuration	file	(httpd.conf)	and,	possibly,	once	per	additional
Virtual	Host	you	create.

Files	Outside	the	DocumentRoot

There	are	frequently	circumstances	where	it	is	necessary	to	allow
web	access	to	parts	of	the	filesystem	that	are	not	strictly
underneath	the	DocumentRoot.	httpd	offers	several	different
ways	to	accomplish	this.	On	Unix	systems,	symbolic	links	can
bring	other	parts	of	the	filesystem	under	the	DocumentRoot.	For
security	reasons,	httpd	will	follow	symbolic	links	only	if	the
Options	setting	for	the	relevant	directory	includes
FollowSymLinks	or	SymLinksIfOwnerMatch.

Alternatively,	the	Alias	directive	will	map	any	part	of	the
filesystem	into	the	web	space.	For	example,	with

Alias	"/docs"	"/var/web"

the	URL	http://www.example.com/docs/dir/file.html
will	be	served	from	/var/web/dir/file.html.	The
ScriptAlias	directive	works	the	same	way,	with	the	additional
effect	that	all	content	located	at	the	target	path	is	treated	as	CGI
scripts.

For	situations	where	you	require	additional	flexibility,	you	can	use
the	AliasMatch	and	ScriptAliasMatch	directives	to	do
powerful	regular	expression	based	matching	and	substitution.	For
example,

ScriptAliasMatch	"^/~([a-zA-Z0-9]+)/cgi-bin/(.+)"			"/home/$1/cgi-bin/$2"

will	map	a	request	to	http://example.com/~user/cgi-
bin/script.cgi	to	the	path	/home/user/cgi-
bin/script.cgi	and	will	treat	the	resulting	file	as	a	CGI	script.

User	Directories

Traditionally	on	Unix	systems,	the	home	directory	of	a	particular
user	can	be	referred	to	as	~user/.	The	module	mod_userdir
extends	this	idea	to	the	web	by	allowing	files	under	each	user's
home	directory	to	be	accessed	using	URLs	such	as	the	following.

http://www.example.com/~user/file.html

For	security	reasons,	it	is	inappropriate	to	give	direct	access	to	a
user's	home	directory	from	the	web.	Therefore,	the	UserDir
directive	specifies	a	directory	underneath	the	user's	home
directory	where	web	files	are	located.	Using	the	default	setting	of
Userdir	public_html,	the	above	URL	maps	to	a	file	at	a
directory	like	/home/user/public_html/file.html	where
/home/user/	is	the	user's	home	directory	as	specified	in
/etc/passwd.

There	are	also	several	other	forms	of	the	Userdir	directive	which
you	can	use	on	systems	where	/etc/passwd	does	not	contain
the	location	of	the	home	directory.

Some	people	find	the	"~"	symbol	(which	is	often	encoded	on	the
web	as	%7e)	to	be	awkward	and	prefer	to	use	an	alternate	string
to	represent	user	directories.	This	functionality	is	not	supported	by
mod_userdir.	However,	if	users'	home	directories	are	structured	in
a	regular	way,	then	it	is	possible	to	use	the	AliasMatch	directive
to	achieve	the	desired	effect.	For	example,	to	make
http://www.example.com/upages/user/file.html	map
to	/home/user/public_html/file.html,	use	the	following
AliasMatch	directive:

AliasMatch	"^/upages/([a-zA-Z0-9]+)(/(.*))?$"			"/home/$1/public_html/$3"

URL	Redirection

The	configuration	directives	discussed	in	the	above	sections	tell
httpd	to	get	content	from	a	specific	place	in	the	filesystem	and
return	it	to	the	client.	Sometimes,	it	is	desirable	instead	to	inform
the	client	that	the	requested	content	is	located	at	a	different	URL,
and	instruct	the	client	to	make	a	new	request	with	the	new	URL.
This	is	called	redirection	and	is	implemented	by	the	Redirect
directive.	For	example,	if	the	contents	of	the	directory	/foo/
under	the	DocumentRoot	are	moved	to	the	new	directory	/bar/,
you	can	instruct	clients	to	request	the	content	at	the	new	location
as	follows:

Redirect	permanent	"/foo/"			"http://www.example.com/bar/"

This	will	redirect	any	URL-Path	starting	in	/foo/	to	the	same	URL
path	on	the	www.example.com	server	with	/bar/	substituted	for
/foo/.	You	can	redirect	clients	to	any	server,	not	only	the	origin
server.

httpd	also	provides	a	RedirectMatch	directive	for	more
complicated	rewriting	problems.	For	example,	to	redirect	requests
for	the	site	home	page	to	a	different	site,	but	leave	all	other
requests	alone,	use	the	following	configuration:

RedirectMatch	permanent	"^/$"				"http://www.example.com/startpage.html"

Alternatively,	to	temporarily	redirect	all	pages	on	one	site	to	a
particular	page	on	another	site,	use	the	following:

RedirectMatch	temp	".*"		"http://othersite.example.com/startpage.html"

Reverse	Proxy

httpd	also	allows	you	to	bring	remote	documents	into	the	URL
space	of	the	local	server.	This	technique	is	called	reverse	proxying
because	the	web	server	acts	like	a	proxy	server	by	fetching	the
documents	from	a	remote	server	and	returning	them	to	the	client.
It	is	different	from	normal	(forward)	proxying	because,	to	the	client,
it	appears	the	documents	originate	at	the	reverse	proxy	server.

In	the	following	example,	when	clients	request	documents	under
the	/foo/	directory,	the	server	fetches	those	documents	from	the
/bar/	directory	on	internal.example.com	and	returns	them
to	the	client	as	if	they	were	from	the	local	server.

ProxyPass	"/foo/"	"http://internal.example.com/bar/"

ProxyPassReverse	"/foo/"	"http://internal.example.com/bar/"

ProxyPassReverseCookieDomain	internal.example.com	public.example.com

ProxyPassReverseCookiePath	"/foo/"	"/bar/"

The	ProxyPass	configures	the	server	to	fetch	the	appropriate
documents,	while	the	ProxyPassReverse	directive	rewrites
redirects	originating	at	internal.example.com	so	that	they
target	the	appropriate	directory	on	the	local	server.	Similarly,	the
ProxyPassReverseCookieDomain	and
ProxyPassReverseCookiePath	rewrite	cookies	set	by	the
backend	server.

It	is	important	to	note,	however,	that	links	inside	the	documents	will
not	be	rewritten.	So	any	absolute	links	on
internal.example.com	will	result	in	the	client	breaking	out	of
the	proxy	server	and	requesting	directly	from
internal.example.com.	You	can	modify	these	links	(and	other
content)	in	a	page	as	it	is	being	served	to	the	client	using
mod_substitute.

Substitute	"s/internal\.example\.com/www.example.com/i"

For	more	sophisticated	rewriting	of	links	in	HTML	and	XHTML,	the
mod_proxy_html	module	is	also	available.	It	allows	you	to	create
maps	of	URLs	that	need	to	be	rewritten,	so	that	complex	proxying
scenarios	can	be	handled.

Rewriting	Engine

When	even	more	powerful	substitution	is	required,	the	rewriting
engine	provided	by	mod_rewrite	can	be	useful.	The	directives
provided	by	this	module	can	use	characteristics	of	the	request
such	as	browser	type	or	source	IP	address	in	deciding	from	where
to	serve	content.	In	addition,	mod_rewrite	can	use	external
database	files	or	programs	to	determine	how	to	handle	a	request.
The	rewriting	engine	is	capable	of	performing	all	three	types	of
mappings	discussed	above:	internal	redirects	(aliases),	external
redirects,	and	proxying.	Many	practical	examples	employing
mod_rewrite	are	discussed	in	the	detailed	mod_rewrite
documentation.

File	Not	Found

Inevitably,	URLs	will	be	requested	for	which	no	matching	file	can
be	found	in	the	filesystem.	This	can	happen	for	several	reasons.	In
some	cases,	it	can	be	a	result	of	moving	documents	from	one
location	to	another.	In	this	case,	it	is	best	to	use	URL	redirection	to
inform	clients	of	the	new	location	of	the	resource.	In	this	way,	you
can	assure	that	old	bookmarks	and	links	will	continue	to	work,
even	though	the	resource	is	at	a	new	location.

Another	common	cause	of	"File	Not	Found"	errors	is	accidental
mistyping	of	URLs,	either	directly	in	the	browser,	or	in	HTML	links.
httpd	provides	the	module	mod_speling	(sic)	to	help	with	this
problem.	When	this	module	is	activated,	it	will	intercept	"File	Not
Found"	errors	and	look	for	a	resource	with	a	similar	filename.	If
one	such	file	is	found,	mod_speling	will	send	an	HTTP	redirect	to
the	client	informing	it	of	the	correct	location.	If	several	"close"	files
are	found,	a	list	of	available	alternatives	will	be	presented	to	the
client.

An	especially	useful	feature	of	mod_speling,	is	that	it	will	compare
filenames	without	respect	to	case.	This	can	help	systems	where
users	are	unaware	of	the	case-sensitive	nature	of	URLs	and	the
unix	filesystem.	But	using	mod_speling	for	anything	more	than	the
occasional	URL	correction	can	place	additional	load	on	the	server,
since	each	"incorrect"	request	is	followed	by	a	URL	redirection	and
a	new	request	from	the	client.

mod_dir	provides	FallbackResource,	which	can	be	used	to
map	virtual	URIs	to	a	real	resource,	which	then	serves	them.	This
is	a	very	useful	replacement	for	mod_rewrite	when
implementing	a	'front	controller'

If	all	attempts	to	locate	the	content	fail,	httpd	returns	an	error	page
with	HTTP	status	code	404	(file	not	found).	The	appearance	of	this
page	is	controlled	with	the	ErrorDocument	directive	and	can	be

customized	in	a	flexible	manner	as	discussed	in	the	Custom	error
responses	document.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Other	URL	Mapping	Modules

Other	modules	available	for	URL	mapping	include:

mod_actions	-	Maps	a	request	to	a	CGI	script	based	on	the
request	method,	or	resource	MIME	type.
mod_dir	-	Provides	basic	mapping	of	a	trailing	slash	into	an
index	file	such	as	index.html.
mod_imagemap	-	Maps	a	request	to	a	URL	based	on	where	a
user	clicks	on	an	image	embedded	in	a	HTML	document.
mod_negotiation	-	Selects	an	appropriate	document
based	on	client	preferences	such	as	language	or	content
compression.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Miscellaneous	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Security	Tips

Some	hints	and	tips	on	security	issues	in	setting	up	a	web	server.
Some	of	the	suggestions	will	be	general,	others	specific	to	Apache.

Keep	up	to	Date

The	Apache	HTTP	Server	has	a	good	record	for	security	and	a
developer	community	highly	concerned	about	security	issues.	But
it	is	inevitable	that	some	problems	--	small	or	large	--	will	be
discovered	in	software	after	it	is	released.	For	this	reason,	it	is
crucial	to	keep	aware	of	updates	to	the	software.	If	you	have
obtained	your	version	of	the	HTTP	Server	directly	from	Apache,
we	highly	recommend	you	subscribe	to	the	Apache	HTTP	Server
Announcements	List	where	you	can	keep	informed	of	new
releases	and	security	updates.	Similar	services	are	available	from
most	third-party	distributors	of	Apache	software.

Of	course,	most	times	that	a	web	server	is	compromised,	it	is	not
because	of	problems	in	the	HTTP	Server	code.	Rather,	it	comes
from	problems	in	add-on	code,	CGI	scripts,	or	the	underlying
Operating	System.	You	must	therefore	stay	aware	of	problems
and	updates	with	all	the	software	on	your	system.

http://httpd.apache.org/lists.html#http-announce

Denial	of	Service	(DoS)	attacks

All	network	servers	can	be	subject	to	denial	of	service	attacks	that
attempt	to	prevent	responses	to	clients	by	tying	up	the	resources
of	the	server.	It	is	not	possible	to	prevent	such	attacks	entirely,	but
you	can	do	certain	things	to	mitigate	the	problems	that	they	create.

Often	the	most	effective	anti-DoS	tool	will	be	a	firewall	or	other
operating-system	configurations.	For	example,	most	firewalls	can
be	configured	to	restrict	the	number	of	simultaneous	connections
from	any	individual	IP	address	or	network,	thus	preventing	a	range
of	simple	attacks.	Of	course	this	is	no	help	against	Distributed
Denial	of	Service	attacks	(DDoS).

There	are	also	certain	Apache	HTTP	Server	configuration	settings
that	can	help	mitigate	problems:

The	RequestReadTimeout	directive	allows	to	limit	the	time
a	client	may	take	to	send	the	request.
The	TimeOut	directive	should	be	lowered	on	sites	that	are
subject	to	DoS	attacks.	Setting	this	to	as	low	as	a	few
seconds	may	be	appropriate.	As	TimeOut	is	currently	used
for	several	different	operations,	setting	it	to	a	low	value
introduces	problems	with	long	running	CGI	scripts.
The	KeepAliveTimeout	directive	may	be	also	lowered	on
sites	that	are	subject	to	DoS	attacks.	Some	sites	even	turn	off
the	keepalives	completely	via	KeepAlive,	which	has	of
course	other	drawbacks	on	performance.
The	values	of	various	timeout-related	directives	provided	by
other	modules	should	be	checked.
The	directives	LimitRequestBody,
LimitRequestFields,	LimitRequestFieldSize,
LimitRequestLine,	and	LimitXMLRequestBody	should
be	carefully	configured	to	limit	resource	consumption
triggered	by	client	input.

On	operating	systems	that	support	it,	make	sure	that	you	use
the	AcceptFilter	directive	to	offload	part	of	the	request
processing	to	the	operating	system.	This	is	active	by	default	in
Apache	httpd,	but	may	require	reconfiguration	of	your	kernel.
Tune	the	MaxRequestWorkers	directive	to	allow	the	server
to	handle	the	maximum	number	of	simultaneous	connections
without	running	out	of	resources.	See	also	the	performance
tuning	documentation.
The	use	of	a	threaded	mpm	may	allow	you	to	handle	more
simultaneous	connections,	thereby	mitigating	DoS	attacks.
Further,	the	event	mpm	uses	asynchronous	processing	to
avoid	devoting	a	thread	to	each	connection.	Due	to	the	nature
of	the	OpenSSL	library	the	event	mpm	is	currently
incompatible	with	mod_ssl	and	other	input	filters.	In	these
cases	it	falls	back	to	the	behaviour	of	the	worker	mpm.
There	are	a	number	of	third-party	modules	available	through
http://modules.apache.org/	that	can	restrict	certain	client
behaviors	and	thereby	mitigate	DoS	problems.

http://modules.apache.org/

Permissions	on	ServerRoot	Directories

In	typical	operation,	Apache	is	started	by	the	root	user,	and	it
switches	to	the	user	defined	by	the	User	directive	to	serve	hits.	As
is	the	case	with	any	command	that	root	executes,	you	must	take
care	that	it	is	protected	from	modification	by	non-root	users.	Not
only	must	the	files	themselves	be	writeable	only	by	root,	but	so
must	the	directories,	and	parents	of	all	directories.	For	example,	if
you	choose	to	place	ServerRoot	in	/usr/local/apache	then	it
is	suggested	that	you	create	that	directory	as	root,	with	commands
like	these:

mkdir	/usr/local/apache	

cd	/usr/local/apache	

mkdir	bin	conf	logs	

chown	0	.	bin	conf	logs	

chgrp	0	.	bin	conf	logs	

chmod	755	.	bin	conf	logs

It	is	assumed	that	/,	/usr,	and	/usr/local	are	only	modifiable
by	root.	When	you	install	the	httpd	executable,	you	should
ensure	that	it	is	similarly	protected:

cp	httpd	/usr/local/apache/bin	

chown	0	/usr/local/apache/bin/httpd	

chgrp	0	/usr/local/apache/bin/httpd	

chmod	511	/usr/local/apache/bin/httpd

You	can	create	an	htdocs	subdirectory	which	is	modifiable	by
other	users	--	since	root	never	executes	any	files	out	of	there,	and
shouldn't	be	creating	files	in	there.

If	you	allow	non-root	users	to	modify	any	files	that	root	either
executes	or	writes	on	then	you	open	your	system	to	root
compromises.	For	example,	someone	could	replace	the	httpd
binary	so	that	the	next	time	you	start	it,	it	will	execute	some
arbitrary	code.	If	the	logs	directory	is	writeable	(by	a	non-root
user),	someone	could	replace	a	log	file	with	a	symlink	to	some

other	system	file,	and	then	root	might	overwrite	that	file	with
arbitrary	data.	If	the	log	files	themselves	are	writeable	(by	a	non-
root	user),	then	someone	may	be	able	to	overwrite	the	log	itself
with	bogus	data.

Server	Side	Includes

Server	Side	Includes	(SSI)	present	a	server	administrator	with
several	potential	security	risks.

The	first	risk	is	the	increased	load	on	the	server.	All	SSI-enabled
files	have	to	be	parsed	by	Apache,	whether	or	not	there	are	any
SSI	directives	included	within	the	files.	While	this	load	increase	is
minor,	in	a	shared	server	environment	it	can	become	significant.

SSI	files	also	pose	the	same	risks	that	are	associated	with	CGI
scripts	in	general.	Using	the	exec	cmd	element,	SSI-enabled	files
can	execute	any	CGI	script	or	program	under	the	permissions	of
the	user	and	group	Apache	runs	as,	as	configured	in
httpd.conf.

There	are	ways	to	enhance	the	security	of	SSI	files	while	still
taking	advantage	of	the	benefits	they	provide.

To	isolate	the	damage	a	wayward	SSI	file	can	cause,	a	server
administrator	can	enable	suexec	as	described	in	the	CGI	in
General	section.

Enabling	SSI	for	files	with	.html	or	.htm	extensions	can	be
dangerous.	This	is	especially	true	in	a	shared,	or	high	traffic,
server	environment.	SSI-enabled	files	should	have	a	separate
extension,	such	as	the	conventional	.shtml.	This	helps	keep
server	load	at	a	minimum	and	allows	for	easier	management	of
risk.

Another	solution	is	to	disable	the	ability	to	run	scripts	and
programs	from	SSI	pages.	To	do	this	replace	Includes	with
IncludesNOEXEC	in	the	Options	directive.	Note	that	users	may
still	use	<--#include	virtual="..."	-->	to	execute	CGI
scripts	if	these	scripts	are	in	directories	designated	by	a
ScriptAlias	directive.

CGI	in	General

First	of	all,	you	always	have	to	remember	that	you	must	trust	the
writers	of	the	CGI	scripts/programs	or	your	ability	to	spot	potential
security	holes	in	CGI,	whether	they	were	deliberate	or	accidental.
CGI	scripts	can	run	essentially	arbitrary	commands	on	your
system	with	the	permissions	of	the	web	server	user	and	can
therefore	be	extremely	dangerous	if	they	are	not	carefully
checked.

All	the	CGI	scripts	will	run	as	the	same	user,	so	they	have
potential	to	conflict	(accidentally	or	deliberately)	with	other	scripts
e.g.	User	A	hates	User	B,	so	he	writes	a	script	to	trash	User	B's
CGI	database.	One	program	which	can	be	used	to	allow	scripts	to
run	as	different	users	is	suEXEC	which	is	included	with	Apache	as
of	1.2	and	is	called	from	special	hooks	in	the	Apache	server	code.
Another	popular	way	of	doing	this	is	with	CGIWrap.

http://cgiwrap.sourceforge.net/

Non	Script	Aliased	CGI

Allowing	users	to	execute	CGI	scripts	in	any	directory	should	only
be	considered	if:

You	trust	your	users	not	to	write	scripts	which	will	deliberately
or	accidentally	expose	your	system	to	an	attack.
You	consider	security	at	your	site	to	be	so	feeble	in	other
areas,	as	to	make	one	more	potential	hole	irrelevant.
You	have	no	users,	and	nobody	ever	visits	your	server.

Script	Aliased	CGI

Limiting	CGI	to	special	directories	gives	the	admin	control	over
what	goes	into	those	directories.	This	is	inevitably	more	secure
than	non	script	aliased	CGI,	but	only	if	users	with	write	access	to
the	directories	are	trusted	or	the	admin	is	willing	to	test	each	new
CGI	script/program	for	potential	security	holes.

Most	sites	choose	this	option	over	the	non	script	aliased	CGI
approach.

Other	sources	of	dynamic	content

Embedded	scripting	options	which	run	as	part	of	the	server	itself,
such	as	mod_php,	mod_perl,	mod_tcl,	and	mod_python,	run
under	the	identity	of	the	server	itself	(see	the	User	directive),	and
therefore	scripts	executed	by	these	engines	potentially	can	access
anything	the	server	user	can.	Some	scripting	engines	may	provide
restrictions,	but	it	is	better	to	be	safe	and	assume	not.

Dynamic	content	security

When	setting	up	dynamic	content,	such	as	mod_php,	mod_perl
or	mod_python,	many	security	considerations	get	out	of	the
scope	of	httpd	itself,	and	you	need	to	consult	documentation
from	those	modules.	For	example,	PHP	lets	you	setup	Safe	Mode,
which	is	most	usually	disabled	by	default.	Another	example	is
Suhosin,	a	PHP	addon	for	more	security.	For	more	information
about	those,	consult	each	project	documentation.

At	the	Apache	level,	a	module	named	mod_security	can	be	seen
as	a	HTTP	firewall	and,	provided	you	configure	it	finely	enough,
can	help	you	enhance	your	dynamic	content	security.

http://www.php.net/manual/en/ini.sect.safe-mode.php
http://www.hardened-php.net/suhosin/
http://modsecurity.org/

Protecting	System	Settings

To	run	a	really	tight	ship,	you'll	want	to	stop	users	from	setting	up
.htaccess	files	which	can	override	security	features	you've
configured.	Here's	one	way	to	do	it.

In	the	server	configuration	file,	put

<Directory	"/">

				AllowOverride	None

</Directory>

This	prevents	the	use	of	.htaccess	files	in	all	directories	apart
from	those	specifically	enabled.

Note	that	this	setting	is	the	default	since	Apache	2.3.9.

Protect	Server	Files	by	Default

One	aspect	of	Apache	which	is	occasionally	misunderstood	is	the
feature	of	default	access.	That	is,	unless	you	take	steps	to	change
it,	if	the	server	can	find	its	way	to	a	file	through	normal	URL
mapping	rules,	it	can	serve	it	to	clients.

For	instance,	consider	the	following	example:

#	cd	/;	ln	-s	/	public_html	

Accessing	http://localhost/~root/

This	would	allow	clients	to	walk	through	the	entire	filesystem.	To
work	around	this,	add	the	following	block	to	your	server's
configuration:

<Directory	"/">

				Require	all	denied

</Directory>

This	will	forbid	default	access	to	filesystem	locations.	Add
appropriate	Directory	blocks	to	allow	access	only	in	those
areas	you	wish.	For	example,

<Directory	"/usr/users/*/public_html">

				Require	all	granted

</Directory>

<Directory	"/usr/local/httpd">

				Require	all	granted

</Directory>

Pay	particular	attention	to	the	interactions	of	Location	and
Directory	directives;	for	instance,	even	if	<Directory	"/">
denies	access,	a	<Location	"/">	directive	might	overturn	it.

Also	be	wary	of	playing	games	with	the	UserDir	directive;	setting

it	to	something	like	./	would	have	the	same	effect,	for	root,	as	the
first	example	above.	We	strongly	recommend	that	you	include	the
following	line	in	your	server	configuration	files:

UserDir	disabled	root

Watching	Your	Logs

To	keep	up-to-date	with	what	is	actually	going	on	against	your
server	you	have	to	check	the	Log	Files.	Even	though	the	log	files
only	reports	what	has	already	happened,	they	will	give	you	some
understanding	of	what	attacks	is	thrown	against	the	server	and
allow	you	to	check	if	the	necessary	level	of	security	is	present.

A	couple	of	examples:

grep	-c	"/jsp/source.jsp?/jsp/	/jsp/source.jsp??"	access_log	

grep	"client	denied"	error_log	|	tail	-n	10

The	first	example	will	list	the	number	of	attacks	trying	to	exploit	the
Apache	Tomcat	Source.JSP	Malformed	Request	Information
Disclosure	Vulnerability,	the	second	example	will	list	the	ten	last
denied	clients,	for	example:

[Thu	Jul	11	17:18:39	2002]	[error]	[client	foo.example.com]

client	denied	by	server	configuration:

/usr/local/apache/htdocs/.htpasswd

As	you	can	see,	the	log	files	only	report	what	already	has
happened,	so	if	the	client	had	been	able	to	access	the
.htpasswd	file	you	would	have	seen	something	similar	to:

foo.example.com	-	-	[12/Jul/2002:01:59:13	+0200]	"GET

/.htpasswd	HTTP/1.1"

in	your	Access	Log.	This	means	you	probably	commented	out	the
following	in	your	server	configuration	file:

<Files	".ht*">

				Require	all	denied

</Files>

http://online.securityfocus.com/bid/4876/info/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Merging	of	configuration	sections

The	merging	of	configuration	sections	is	complicated	and
sometimes	directive	specific.	Always	test	your	changes	when
creating	dependencies	on	how	directives	are	merged.

For	modules	that	don't	implement	any	merging	logic,	such	as
mod_access_compat,	the	behavior	in	later	sections	depends	on
whether	the	later	section	has	any	directives	from	the	module.	The
configuration	is	inherited	until	a	change	is	made,	at	which	point	the
configuration	is	replaced	and	not	merged.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Dynamic	Shared	Object	(DSO)	Support

The	Apache	HTTP	Server	is	a	modular	program	where	the
administrator	can	choose	the	functionality	to	include	in	the	server	by
selecting	a	set	of	modules.	Modules	will	be	compiled	as	Dynamic
Shared	Objects	(DSOs)	that	exist	separately	from	the	main	httpd
binary	file.	DSO	modules	may	be	compiled	at	the	time	the	server	is
built,	or	they	may	be	compiled	and	added	at	a	later	time	using	the
Apache	Extension	Tool	(apxs).

Alternatively,	the	modules	can	be	statically	compiled	into	the	httpd
binary	when	the	server	is	built.

This	document	describes	how	to	use	DSO	modules	as	well	as	the
theory	behind	their	use.

Implementation

Related	Modules Related	Directives
mod_so LoadModule

The	DSO	support	for	loading	individual	Apache	httpd	modules	is
based	on	a	module	named	mod_so	which	must	be	statically
compiled	into	the	Apache	httpd	core.	It	is	the	only	module	besides
core	which	cannot	be	put	into	a	DSO	itself.	Practically	all	other
distributed	Apache	httpd	modules	will	then	be	placed	into	a	DSO.
After	a	module	is	compiled	into	a	DSO	named	mod_foo.so	you
can	use	mod_so's	LoadModule	directive	in	your	httpd.conf	file
to	load	this	module	at	server	startup	or	restart.

The	DSO	builds	for	individual	modules	can	be	disabled	via
configure's	--enable-mods-static	option	as	discussed	in
the	install	documentation.

To	simplify	this	creation	of	DSO	files	for	Apache	httpd	modules
(especially	for	third-party	modules)	a	support	program	named
apxs	(APache	eXtenSion)	is	available.	It	can	be	used	to	build
DSO	based	modules	outside	of	the	Apache	httpd	source	tree.	The
idea	is	simple:	When	installing	Apache	HTTP	Server	the
configure's	make	install	procedure	installs	the	Apache
httpd	C	header	files	and	puts	the	platform-dependent	compiler	and
linker	flags	for	building	DSO	files	into	the	apxs	program.	This	way
the	user	can	use	apxs	to	compile	his	Apache	httpd	module
sources	without	the	Apache	httpd	distribution	source	tree	and
without	having	to	fiddle	with	the	platform-dependent	compiler	and
linker	flags	for	DSO	support.

Usage	Summary

To	give	you	an	overview	of	the	DSO	features	of	Apache	HTTP
Server	2.x,	here	is	a	short	and	concise	summary:

1.	 Build	and	install	a	distributed	Apache	httpd	module,	say
mod_foo.c,	into	its	own	DSO	mod_foo.so:

$./configure	--prefix=/path/to/install	--enable-foo

$	make	install

2.	 Configure	Apache	HTTP	Server	with	all	modules	enabled.
Only	a	basic	set	will	be	loaded	during	server	startup.	You	can
change	the	set	of	loaded	modules	by	activating	or
deactivating	the	LoadModule	directives	in	httpd.conf.

$./configure	--enable-mods-shared=all

$	make	install

3.	 Some	modules	are	only	useful	for	developers	and	will	not	be
build.	when	using	the	module	set	all.	To	build	all	available
modules	including	developer	modules	use	reallyall.	In	addition
the	LoadModule	directives	for	all	built	modules	can	be
activated	via	the	configure	option	--enable-load-all-
modules.

$./configure	--enable-mods-shared=reallyall	--enable-

load-all-modules

$	make	install

4.	 Build	and	install	a	third-party	Apache	httpd	module,	say
mod_foo.c,	into	its	own	DSO	mod_foo.so	outside	of	the
Apache	httpd	source	tree	using	apxs:

$	cd	/path/to/3rdparty

$	apxs	-cia	mod_foo.c

In	all	cases,	once	the	shared	module	is	compiled,	you	must	use	a
LoadModule	directive	in	httpd.conf	to	tell	Apache	httpd	to
activate	the	module.

See	the	apxs	documentation	for	more	details.

Background

On	modern	Unix	derivatives	there	exists	a	mechanism	called
dynamic	linking/loading	of	Dynamic	Shared	Objects	(DSO)	which
provides	a	way	to	build	a	piece	of	program	code	in	a	special
format	for	loading	it	at	run-time	into	the	address	space	of	an
executable	program.

This	loading	can	usually	be	done	in	two	ways:	automatically	by	a
system	program	called	ld.so	when	an	executable	program	is
started	or	manually	from	within	the	executing	program	via	a
programmatic	system	interface	to	the	Unix	loader	through	the
system	calls	dlopen()/dlsym().

In	the	first	way	the	DSO's	are	usually	called	shared	libraries	or
DSO	libraries	and	named	libfoo.so	or	libfoo.so.1.2.	They
reside	in	a	system	directory	(usually	/usr/lib)	and	the	link	to	the
executable	program	is	established	at	build-time	by	specifying	-
lfoo	to	the	linker	command.	This	hard-codes	library	references
into	the	executable	program	file	so	that	at	start-time	the	Unix
loader	is	able	to	locate	libfoo.so	in	/usr/lib,	in	paths	hard-
coded	via	linker-options	like	-R	or	in	paths	configured	via	the
environment	variable	LD_LIBRARY_PATH.	It	then	resolves	any
(yet	unresolved)	symbols	in	the	executable	program	which	are
available	in	the	DSO.

Symbols	in	the	executable	program	are	usually	not	referenced	by
the	DSO	(because	it's	a	reusable	library	of	general	code)	and
hence	no	further	resolving	has	to	be	done.	The	executable
program	has	no	need	to	do	anything	on	its	own	to	use	the	symbols
from	the	DSO	because	the	complete	resolving	is	done	by	the	Unix
loader.	(In	fact,	the	code	to	invoke	ld.so	is	part	of	the	run-time
startup	code	which	is	linked	into	every	executable	program	which
has	been	bound	non-static).	The	advantage	of	dynamic	loading	of
common	library	code	is	obvious:	the	library	code	needs	to	be

stored	only	once,	in	a	system	library	like	libc.so,	saving	disk
space	for	every	program.

In	the	second	way	the	DSO's	are	usually	called	shared	objects	or
DSO	files	and	can	be	named	with	an	arbitrary	extension	(although
the	canonical	name	is	foo.so).	These	files	usually	stay	inside	a
program-specific	directory	and	there	is	no	automatically
established	link	to	the	executable	program	where	they	are	used.
Instead	the	executable	program	manually	loads	the	DSO	at	run-
time	into	its	address	space	via	dlopen().	At	this	time	no
resolving	of	symbols	from	the	DSO	for	the	executable	program	is
done.	But	instead	the	Unix	loader	automatically	resolves	any	(yet
unresolved)	symbols	in	the	DSO	from	the	set	of	symbols	exported
by	the	executable	program	and	its	already	loaded	DSO	libraries
(especially	all	symbols	from	the	ubiquitous	libc.so).	This	way
the	DSO	gets	knowledge	of	the	executable	program's	symbol	set
as	if	it	had	been	statically	linked	with	it	in	the	first	place.

Finally,	to	take	advantage	of	the	DSO's	API	the	executable
program	has	to	resolve	particular	symbols	from	the	DSO	via
dlsym()	for	later	use	inside	dispatch	tables	etc.	In	other	words:
The	executable	program	has	to	manually	resolve	every	symbol	it
needs	to	be	able	to	use	it.	The	advantage	of	such	a	mechanism	is
that	optional	program	parts	need	not	be	loaded	(and	thus	do	not
spend	memory)	until	they	are	needed	by	the	program	in	question.
When	required,	these	program	parts	can	be	loaded	dynamically	to
extend	the	base	program's	functionality.

Although	this	DSO	mechanism	sounds	straightforward	there	is	at
least	one	difficult	step	here:	The	resolving	of	symbols	from	the
executable	program	for	the	DSO	when	using	a	DSO	to	extend	a
program	(the	second	way).	Why?	Because	"reverse	resolving"
DSO	symbols	from	the	executable	program's	symbol	set	is	against
the	library	design	(where	the	library	has	no	knowledge	about	the

programs	it	is	used	by)	and	is	neither	available	under	all	platforms
nor	standardized.	In	practice	the	executable	program's	global
symbols	are	often	not	re-exported	and	thus	not	available	for	use	in
a	DSO.	Finding	a	way	to	force	the	linker	to	export	all	global
symbols	is	the	main	problem	one	has	to	solve	when	using	DSO	for
extending	a	program	at	run-time.

The	shared	library	approach	is	the	typical	one,	because	it	is	what
the	DSO	mechanism	was	designed	for,	hence	it	is	used	for	nearly
all	types	of	libraries	the	operating	system	provides.

Advantages	and	Disadvantages

The	above	DSO	based	features	have	the	following	advantages:

The	server	package	is	more	flexible	at	run-time	because	the
server	process	can	be	assembled	at	run-time	via
LoadModule	httpd.conf	configuration	directives	instead	of
configure	options	at	build-time.	For	instance,	this	way	one
is	able	to	run	different	server	instances	(standard	&	SSL
version,	minimalistic	&	dynamic	version	[mod_perl,	mod_php],
etc.)	with	only	one	Apache	httpd	installation.
The	server	package	can	be	easily	extended	with	third-party
modules	even	after	installation.	This	is	a	great	benefit	for
vendor	package	maintainers,	who	can	create	an	Apache	httpd
core	package	and	additional	packages	containing	extensions
like	PHP,	mod_perl,	mod_security,	etc.
Easier	Apache	httpd	module	prototyping,	because	with	the
DSO/apxs	pair	you	can	both	work	outside	the	Apache	httpd
source	tree	and	only	need	an	apxs	-i	command	followed	by
an	apachectl	restart	to	bring	a	new	version	of	your
currently	developed	module	into	the	running	Apache	HTTP
Server.

DSO	has	the	following	disadvantages:

The	server	is	approximately	20%	slower	at	startup	time
because	of	the	symbol	resolving	overhead	the	Unix	loader
now	has	to	do.
The	server	is	approximately	5%	slower	at	execution	time
under	some	platforms,	because	position	independent	code
(PIC)	sometimes	needs	complicated	assembler	tricks	for
relative	addressing,	which	are	not	necessarily	as	fast	as
absolute	addressing.
Because	DSO	modules	cannot	be	linked	against	other	DSO-
based	libraries	(ld	-lfoo)	on	all	platforms	(for	instance

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

a.out-based	platforms	usually	don't	provide	this	functionality
while	ELF-based	platforms	do)	you	cannot	use	the	DSO
mechanism	for	all	types	of	modules.	Or	in	other	words,
modules	compiled	as	DSO	files	are	restricted	to	only	use
symbols	from	the	Apache	httpd	core,	from	the	C	library
(libc)	and	all	other	dynamic	or	static	libraries	used	by	the
Apache	httpd	core,	or	from	static	library	archives	(libfoo.a)
containing	position	independent	code.	The	only	chances	to
use	other	code	is	to	either	make	sure	the	httpd	core	itself
already	contains	a	reference	to	it	or	loading	the	code	yourself
via	dlopen().

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Content	Negotiation

Apache	HTTPD	supports	content	negotiation	as	described	in	the
HTTP/1.1	specification.	It	can	choose	the	best	representation	of	a
resource	based	on	the	browser-supplied	preferences	for	media	type,
languages,	character	set	and	encoding.	It	also	implements	a	couple	of
features	to	give	more	intelligent	handling	of	requests	from	browsers
that	send	incomplete	negotiation	information.

Content	negotiation	is	provided	by	the	mod_negotiation	module,
which	is	compiled	in	by	default.

About	Content	Negotiation

A	resource	may	be	available	in	several	different	representations.
For	example,	it	might	be	available	in	different	languages	or
different	media	types,	or	a	combination.	One	way	of	selecting	the
most	appropriate	choice	is	to	give	the	user	an	index	page,	and	let
them	select.	However	it	is	often	possible	for	the	server	to	choose
automatically.	This	works	because	browsers	can	send,	as	part	of
each	request,	information	about	what	representations	they	prefer.
For	example,	a	browser	could	indicate	that	it	would	like	to	see
information	in	French,	if	possible,	else	English	will	do.	Browsers
indicate	their	preferences	by	headers	in	the	request.	To	request
only	French	representations,	the	browser	would	send

Accept-Language:	fr

Note	that	this	preference	will	only	be	applied	when	there	is	a
choice	of	representations	and	they	vary	by	language.

As	an	example	of	a	more	complex	request,	this	browser	has	been
configured	to	accept	French	and	English,	but	prefer	French,	and	to
accept	various	media	types,	preferring	HTML	over	plain	text	or
other	text	types,	and	preferring	GIF	or	JPEG	over	other	media
types,	but	also	allowing	any	other	media	type	as	a	last	resort:

Accept-Language:	fr;	q=1.0,	en;	q=0.5

Accept:	text/html;	q=1.0,	text/*;	q=0.8,	image/gif;	q=0.6,

image/jpeg;	q=0.6,	image/*;	q=0.5,	*/*;	q=0.1

httpd	supports	'server	driven'	content	negotiation,	as	defined	in	the
HTTP/1.1	specification.	It	fully	supports	the	Accept,	Accept-
Language,	Accept-Charset	and	Accept-Encoding	request
headers.	httpd	also	supports	'transparent'	content	negotiation,
which	is	an	experimental	negotiation	protocol	defined	in	RFC	2295
and	RFC	2296.	It	does	not	offer	support	for	'feature	negotiation'	as
defined	in	these	RFCs.

A	resource	is	a	conceptual	entity	identified	by	a	URI	(RFC	2396).
An	HTTP	server	like	Apache	HTTP	Server	provides	access	to
representations	of	the	resource(s)	within	its	namespace,	with
each	representation	in	the	form	of	a	sequence	of	bytes	with	a
defined	media	type,	character	set,	encoding,	etc.	Each	resource
may	be	associated	with	zero,	one,	or	more	than	one
representation	at	any	given	time.	If	multiple	representations	are
available,	the	resource	is	referred	to	as	negotiable	and	each	of	its
representations	is	termed	a	variant.	The	ways	in	which	the
variants	for	a	negotiable	resource	vary	are	called	the	dimensions
of	negotiation.

Negotiation	in	httpd

In	order	to	negotiate	a	resource,	the	server	needs	to	be	given
information	about	each	of	the	variants.	This	is	done	in	one	of	two
ways:

Using	a	type	map	(i.e.,	a	*.var	file)	which	names	the	files
containing	the	variants	explicitly,	or
Using	a	'MultiViews'	search,	where	the	server	does	an	implicit
filename	pattern	match	and	chooses	from	among	the	results.

Using	a	type-map	file
A	type	map	is	a	document	which	is	associated	with	the	handler
named	type-map	(or,	for	backwards-compatibility	with	older	httpd
configurations,	the	MIME-type	application/x-type-map).
Note	that	to	use	this	feature,	you	must	have	a	handler	set	in	the
configuration	that	defines	a	file	suffix	as	type-map;	this	is	best
done	with

AddHandler	type-map	.var

in	the	server	configuration	file.

Type	map	files	should	have	the	same	name	as	the	resource	which
they	are	describing,	followed	by	the	extension	.var.	In	the
examples	shown	below,	the	resource	is	named	foo,	so	the	type
map	file	is	named	foo.var.

This	file	should	have	an	entry	for	each	available	variant;	these
entries	consist	of	contiguous	HTTP-format	header	lines.	Entries	for
different	variants	are	separated	by	blank	lines.	Blank	lines	are
illegal	within	an	entry.	It	is	conventional	to	begin	a	map	file	with	an
entry	for	the	combined	entity	as	a	whole	(although	this	is	not
required,	and	if	present	will	be	ignored).	An	example	map	file	is
shown	below.

URIs	in	this	file	are	relative	to	the	location	of	the	type	map	file.
Usually,	these	files	will	be	located	in	the	same	directory	as	the
type	map	file,	but	this	is	not	required.	You	may	provide	absolute	or
relative	URIs	for	any	file	located	on	the	same	server	as	the	map
file.

URI:	foo

URI:	foo.en.html

Content-type:	text/html

Content-language:	en

URI:	foo.fr.de.html

Content-type:	text/html;charset=iso-8859-2

Content-language:	fr,	de

Note	also	that	a	typemap	file	will	take	precedence	over	the
filename's	extension,	even	when	Multiviews	is	on.	If	the	variants
have	different	source	qualities,	that	may	be	indicated	by	the	"qs"
parameter	to	the	media	type,	as	in	this	picture	(available	as	JPEG,
GIF,	or	ASCII-art):

URI:	foo

URI:	foo.jpeg

Content-type:	image/jpeg;	qs=0.8

URI:	foo.gif

Content-type:	image/gif;	qs=0.5

URI:	foo.txt

Content-type:	text/plain;	qs=0.01

qs	values	can	vary	in	the	range	0.000	to	1.000.	Note	that	any
variant	with	a	qs	value	of	0.000	will	never	be	chosen.	Variants	with
no	'qs'	parameter	value	are	given	a	qs	factor	of	1.0.	The	qs
parameter	indicates	the	relative	'quality'	of	this	variant	compared
to	the	other	available	variants,	independent	of	the	client's
capabilities.	For	example,	a	JPEG	file	is	usually	of	higher	source

quality	than	an	ASCII	file	if	it	is	attempting	to	represent	a
photograph.	However,	if	the	resource	being	represented	is	an
original	ASCII	art,	then	an	ASCII	representation	would	have	a
higher	source	quality	than	a	JPEG	representation.	A	qs	value	is
therefore	specific	to	a	given	variant	depending	on	the	nature	of	the
resource	it	represents.

The	full	list	of	headers	recognized	is	available	in	the
mod_negotiation	typemap	documentation.

Multiviews
MultiViews	is	a	per-directory	option,	meaning	it	can	be	set	with
an	Options	directive	within	a	<Directory>,	<Location>	or
<Files>	section	in	httpd.conf,	or	(if	AllowOverride	is
properly	set)	in	.htaccess	files.	Note	that	Options	All	does
not	set	MultiViews;	you	have	to	ask	for	it	by	name.

The	effect	of	MultiViews	is	as	follows:	if	the	server	receives	a
request	for	/some/dir/foo,	if	/some/dir	has	MultiViews
enabled,	and	/some/dir/foo	does	not	exist,	then	the	server
reads	the	directory	looking	for	files	named	foo.*,	and	effectively
fakes	up	a	type	map	which	names	all	those	files,	assigning	them
the	same	media	types	and	content-encodings	it	would	have	if	the
client	had	asked	for	one	of	them	by	name.	It	then	chooses	the	best
match	to	the	client's	requirements.

MultiViews	may	also	apply	to	searches	for	the	file	named	by	the
DirectoryIndex	directive,	if	the	server	is	trying	to	index	a
directory.	If	the	configuration	files	specify

DirectoryIndex	index

then	the	server	will	arbitrate	between	index.html	and

index.html3	if	both	are	present.	If	neither	are	present,	and
index.cgi	is	there,	the	server	will	run	it.

If	one	of	the	files	found	when	reading	the	directory	does	not	have
an	extension	recognized	by	mod_mime	to	designate	its	Charset,
Content-Type,	Language,	or	Encoding,	then	the	result	depends	on
the	setting	of	the	MultiViewsMatch	directive.	This	directive
determines	whether	handlers,	filters,	and	other	extension	types
can	participate	in	MultiViews	negotiation.

The	Negotiation	Methods

After	httpd	has	obtained	a	list	of	the	variants	for	a	given	resource,
either	from	a	type-map	file	or	from	the	filenames	in	the	directory,	it
invokes	one	of	two	methods	to	decide	on	the	'best'	variant	to
return,	if	any.	It	is	not	necessary	to	know	any	of	the	details	of	how
negotiation	actually	takes	place	in	order	to	use	httpd's	content
negotiation	features.	However	the	rest	of	this	document	explains
the	methods	used	for	those	interested.

There	are	two	negotiation	methods:

1.	 Server	driven	negotiation	with	the	httpd	algorithm	is	used
in	the	normal	case.	The	httpd	algorithm	is	explained	in	more
detail	below.	When	this	algorithm	is	used,	httpd	can
sometimes	'fiddle'	the	quality	factor	of	a	particular	dimension
to	achieve	a	better	result.	The	ways	httpd	can	fiddle	quality
factors	is	explained	in	more	detail	below.

2.	 Transparent	content	negotiation	is	used	when	the	browser
specifically	requests	this	through	the	mechanism	defined	in
RFC	2295.	This	negotiation	method	gives	the	browser	full
control	over	deciding	on	the	'best'	variant,	the	result	is
therefore	dependent	on	the	specific	algorithms	used	by	the
browser.	As	part	of	the	transparent	negotiation	process,	the
browser	can	ask	httpd	to	run	the	'remote	variant	selection
algorithm'	defined	in	RFC	2296.

Dimensions	of	Negotiation
Dimension Notes
Media
Type

Browser	indicates	preferences	with	the	Accept
header	field.	Each	item	can	have	an	associated
quality	factor.	Variant	description	can	also	have	a
quality	factor	(the	"qs"	parameter).

Language Browser	indicates	preferences	with	the	Accept-

Language	header	field.	Each	item	can	have	a
quality	factor.	Variants	can	be	associated	with	none,
one	or	more	than	one	language.

Encoding Browser	indicates	preference	with	the	Accept-
Encoding	header	field.	Each	item	can	have	a
quality	factor.

Charset Browser	indicates	preference	with	the	Accept-
Charset	header	field.	Each	item	can	have	a	quality
factor.	Variants	can	indicate	a	charset	as	a
parameter	of	the	media	type.

httpd	Negotiation	Algorithm
httpd	can	use	the	following	algorithm	to	select	the	'best'	variant	(if
any)	to	return	to	the	browser.	This	algorithm	is	not	further
configurable.	It	operates	as	follows:

1.	 First,	for	each	dimension	of	the	negotiation,	check	the
appropriate	Accept*	header	field	and	assign	a	quality	to	each
variant.	If	the	Accept*	header	for	any	dimension	implies	that
this	variant	is	not	acceptable,	eliminate	it.	If	no	variants
remain,	go	to	step	4.

2.	 Select	the	'best'	variant	by	a	process	of	elimination.	Each	of
the	following	tests	is	applied	in	order.	Any	variants	not
selected	at	each	test	are	eliminated.	After	each	test,	if	only
one	variant	remains,	select	it	as	the	best	match	and	proceed
to	step	3.	If	more	than	one	variant	remains,	move	on	to	the
next	test.

1.	 Multiply	the	quality	factor	from	the	Accept	header	with
the	quality-of-source	factor	for	this	variants	media	type,
and	select	the	variants	with	the	highest	value.

2.	 Select	the	variants	with	the	highest	language	quality
factor.

3.	 Select	the	variants	with	the	best	language	match,	using
either	the	order	of	languages	in	the	Accept-Language
header	(if	present),	or	else	the	order	of	languages	in	the
LanguagePriority	directive	(if	present).

4.	 Select	the	variants	with	the	highest	'level'	media
parameter	(used	to	give	the	version	of	text/html	media
types).

5.	 Select	variants	with	the	best	charset	media	parameters,
as	given	on	the	Accept-Charset	header	line.	Charset
ISO-8859-1	is	acceptable	unless	explicitly	excluded.
Variants	with	a	text/*	media	type	but	not	explicitly
associated	with	a	particular	charset	are	assumed	to	be	in
ISO-8859-1.

6.	 Select	those	variants	which	have	associated	charset
media	parameters	that	are	not	ISO-8859-1.	If	there	are
no	such	variants,	select	all	variants	instead.

7.	 Select	the	variants	with	the	best	encoding.	If	there	are
variants	with	an	encoding	that	is	acceptable	to	the	user-
agent,	select	only	these	variants.	Otherwise	if	there	is	a
mix	of	encoded	and	non-encoded	variants,	select	only
the	unencoded	variants.	If	either	all	variants	are	encoded
or	all	variants	are	not	encoded,	select	all	variants.

8.	 Select	the	variants	with	the	smallest	content	length.

9.	 Select	the	first	variant	of	those	remaining.	This	will	be
either	the	first	listed	in	the	type-map	file,	or	when	variants
are	read	from	the	directory,	the	one	whose	file	name
comes	first	when	sorted	using	ASCII	code	order.

3.	 The	algorithm	has	now	selected	one	'best'	variant,	so	return	it
as	the	response.	The	HTTP	response	header	Vary	is	set	to
indicate	the	dimensions	of	negotiation	(browsers	and	caches
can	use	this	information	when	caching	the	resource).	End.

4.	 To	get	here	means	no	variant	was	selected	(because	none
are	acceptable	to	the	browser).	Return	a	406	status	(meaning
"No	acceptable	representation")	with	a	response	body
consisting	of	an	HTML	document	listing	the	available	variants.
Also	set	the	HTTP	Vary	header	to	indicate	the	dimensions	of
variance.

Fiddling	with	Quality	Values

httpd	sometimes	changes	the	quality	values	from	what	would	be
expected	by	a	strict	interpretation	of	the	httpd	negotiation
algorithm	above.	This	is	to	get	a	better	result	from	the	algorithm	for
browsers	which	do	not	send	full	or	accurate	information.	Some	of
the	most	popular	browsers	send	Accept	header	information
which	would	otherwise	result	in	the	selection	of	the	wrong	variant
in	many	cases.	If	a	browser	sends	full	and	correct	information
these	fiddles	will	not	be	applied.

Media	Types	and	Wildcards
The	Accept:	request	header	indicates	preferences	for	media
types.	It	can	also	include	'wildcard'	media	types,	such	as	"image/*"
or	"*/*"	where	the	*	matches	any	string.	So	a	request	including:

Accept:	image/*,	*/*

would	indicate	that	any	type	starting	"image/"	is	acceptable,	as	is
any	other	type.	Some	browsers	routinely	send	wildcards	in
addition	to	explicit	types	they	can	handle.	For	example:

Accept:	text/html,	text/plain,	image/gif,	image/jpeg,	*/*

The	intention	of	this	is	to	indicate	that	the	explicitly	listed	types	are
preferred,	but	if	a	different	representation	is	available,	that	is	ok
too.	Using	explicit	quality	values,	what	the	browser	really	wants	is
something	like:

Accept:	text/html,	text/plain,	image/gif,	image/jpeg,	*/*;

q=0.01

The	explicit	types	have	no	quality	factor,	so	they	default	to	a
preference	of	1.0	(the	highest).	The	wildcard	*/*	is	given	a	low
preference	of	0.01,	so	other	types	will	only	be	returned	if	no

variant	matches	an	explicitly	listed	type.

If	the	Accept:	header	contains	no	q	factors	at	all,	httpd	sets	the	q
value	of	"*/*",	if	present,	to	0.01	to	emulate	the	desired	behavior.	It
also	sets	the	q	value	of	wildcards	of	the	format	"type/*"	to	0.02	(so
these	are	preferred	over	matches	against	"*/*".	If	any	media	type
on	the	Accept:	header	contains	a	q	factor,	these	special	values
are	not	applied,	so	requests	from	browsers	which	send	the	explicit
information	to	start	with	work	as	expected.

Language	Negotiation	Exceptions
New	in	httpd	2.0,	some	exceptions	have	been	added	to	the
negotiation	algorithm	to	allow	graceful	fallback	when	language
negotiation	fails	to	find	a	match.

When	a	client	requests	a	page	on	your	server,	but	the	server
cannot	find	a	single	page	that	matches	the	Accept-language
sent	by	the	browser,	the	server	will	return	either	a	"No	Acceptable
Variant"	or	"Multiple	Choices"	response	to	the	client.	To	avoid
these	error	messages,	it	is	possible	to	configure	httpd	to	ignore	the
Accept-language	in	these	cases	and	provide	a	document	that
does	not	explicitly	match	the	client's	request.	The
ForceLanguagePriority	directive	can	be	used	to	override	one
or	both	of	these	error	messages	and	substitute	the	servers
judgement	in	the	form	of	the	LanguagePriority	directive.

The	server	will	also	attempt	to	match	language-subsets	when	no
other	match	can	be	found.	For	example,	if	a	client	requests
documents	with	the	language	en-GB	for	British	English,	the	server
is	not	normally	allowed	by	the	HTTP/1.1	standard	to	match	that
against	a	document	that	is	marked	as	simply	en.	(Note	that	it	is
almost	surely	a	configuration	error	to	include	en-GB	and	not	en	in
the	Accept-Language	header,	since	it	is	very	unlikely	that	a
reader	understands	British	English,	but	doesn't	understand

English	in	general.	Unfortunately,	many	current	clients	have
default	configurations	that	resemble	this.)	However,	if	no	other
language	match	is	possible	and	the	server	is	about	to	return	a	"No
Acceptable	Variants"	error	or	fallback	to	the	LanguagePriority,
the	server	will	ignore	the	subset	specification	and	match	en-GB
against	en	documents.	Implicitly,	httpd	will	add	the	parent
language	to	the	client's	acceptable	language	list	with	a	very	low
quality	value.	But	note	that	if	the	client	requests	"en-GB;	q=0.9,	fr;
q=0.8",	and	the	server	has	documents	designated	"en"	and	"fr",
then	the	"fr"	document	will	be	returned.	This	is	necessary	to
maintain	compliance	with	the	HTTP/1.1	specification	and	to	work
effectively	with	properly	configured	clients.

In	order	to	support	advanced	techniques	(such	as	cookies	or
special	URL-paths)	to	determine	the	user's	preferred	language,
since	httpd	2.0.47	mod_negotiation	recognizes	the
environment	variable	prefer-language.	If	it	exists	and	contains
an	appropriate	language	tag,	mod_negotiation	will	try	to	select
a	matching	variant.	If	there's	no	such	variant,	the	normal
negotiation	process	applies.

Example
SetEnvIf	Cookie	"language=(.+)"	prefer-language=$1

Header	append	Vary	cookie

Extensions	to	Transparent	Content	Negotiation

httpd	extends	the	transparent	content	negotiation	protocol	(RFC
2295)	as	follows.	A	new	{encoding	..}	element	is	used	in
variant	lists	to	label	variants	which	are	available	with	a	specific
content-encoding	only.	The	implementation	of	the	RVSA/1.0
algorithm	(RFC	2296)	is	extended	to	recognize	encoded	variants
in	the	list,	and	to	use	them	as	candidate	variants	whenever	their
encodings	are	acceptable	according	to	the	Accept-Encoding
request	header.	The	RVSA/1.0	implementation	does	not	round
computed	quality	factors	to	5	decimal	places	before	choosing	the
best	variant.

Note	on	hyperlinks	and	naming	conventions

If	you	are	using	language	negotiation	you	can	choose	between
different	naming	conventions,	because	files	can	have	more	than
one	extension,	and	the	order	of	the	extensions	is	normally
irrelevant	(see	the	mod_mime	documentation	for	details).

A	typical	file	has	a	MIME-type	extension	(e.g.,	html),	maybe	an
encoding	extension	(e.g.,	gz),	and	of	course	a	language	extension
(e.g.,	en)	when	we	have	different	language	variants	of	this	file.

Examples:

foo.en.html
foo.html.en
foo.en.html.gz

Here	some	more	examples	of	filenames	together	with	valid	and
invalid	hyperlinks:

Filename Valid	hyperlink Invalid	hyperlink
foo.html.en foo

foo.html
-

foo.en.html foo foo.html
foo.html.en.gz foo

foo.html
foo.gz
foo.html.gz

foo.en.html.gz foo foo.html
foo.html.gz
foo.gz

foo.gz.html.en foo
foo.gz
foo.gz.html

foo.html

foo.html.gz.en foo
foo.html
foo.html.gz

foo.gz

Looking	at	the	table	above,	you	will	notice	that	it	is	always	possible
to	use	the	name	without	any	extensions	in	a	hyperlink	(e.g.,	foo).
The	advantage	is	that	you	can	hide	the	actual	type	of	a	document
rsp.	file	and	can	change	it	later,	e.g.,	from	html	to	shtml	or	cgi
without	changing	any	hyperlink	references.

If	you	want	to	continue	to	use	a	MIME-type	in	your	hyperlinks	(e.g.
foo.html)	the	language	extension	(including	an	encoding
extension	if	there	is	one)	must	be	on	the	right	hand	side	of	the
MIME-type	extension	(e.g.,	foo.html.en).

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Note	on	Caching

When	a	cache	stores	a	representation,	it	associates	it	with	the
request	URL.	The	next	time	that	URL	is	requested,	the	cache	can
use	the	stored	representation.	But,	if	the	resource	is	negotiable	at
the	server,	this	might	result	in	only	the	first	requested	variant	being
cached	and	subsequent	cache	hits	might	return	the	wrong
response.	To	prevent	this,	httpd	normally	marks	all	responses	that
are	returned	after	content	negotiation	as	non-cacheable	by
HTTP/1.0	clients.	httpd	also	supports	the	HTTP/1.1	protocol
features	to	allow	caching	of	negotiated	responses.

For	requests	which	come	from	a	HTTP/1.0	compliant	client	(either
a	browser	or	a	cache),	the	directive	CacheNegotiatedDocs	can
be	used	to	allow	caching	of	responses	which	were	subject	to
negotiation.	This	directive	can	be	given	in	the	server	config	or
virtual	host,	and	takes	no	arguments.	It	has	no	effect	on	requests
from	HTTP/1.1	clients.

For	HTTP/1.1	clients,	httpd	sends	a	Vary	HTTP	response	header
to	indicate	the	negotiation	dimensions	for	the	response.	Caches
can	use	this	information	to	determine	whether	a	subsequent
request	can	be	served	from	the	local	copy.	To	encourage	a	cache
to	use	the	local	copy	regardless	of	the	negotiation	dimensions,	set
the	force-no-vary	environment	variable.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Respuestas	de	error	personalizadas

Apache	ofrece	la	posibilidad	de	que	los	webmasters	puedan
configurar	las	respuestas	que	muestra	el	servidor	Apache	cuando	se
producen	algunos	errores	o	problemas.

Las	respuestas	personalizadas	pueden	definirse	para	activarse	en
caso	de	que	el	servidor	detecte	un	error	o	problema.

Si	un	script	termina	de	forma	anormal	y	se	produce	una	respuesta
"500	Server	Error",	esta	respuesta	puede	ser	sustituida	por	otro	texto
de	su	elección	o	por	una	redirección	a	otra	URL	(local	o	externa).

Comportamiento

Comportamiento	anterior
NCSA	httpd	1.3	devolvía	mensajes	antiguos	del	error	o	problema
encontrado	que	con	frecuencia	no	tenían	significado	alguno	para
el	usuario,	y	que	no	incluían	en	los	logs	información	que	diera
pistas	sobre	las	causas	de	lo	sucedido.

Comportamiento	actual
Se	puede	hacer	que	el	servidor	siga	uno	de	los	siguientes
comportamientos:

1.	 Desplegar	un	texto	diferente,	en	lugar	de	los	mensajes	de	la
NCSA,	o

2.	 redireccionar	la	petición	a	una	URL	local,	o

3.	 redireccionar	la	petición	a	una	URL	externa.

Redireccionar	a	otra	URL	puede	resultar	de	utilidad,	pero	solo	si
con	ello	se	puede	también	pasar	alguna	información	que	pueda
explicar	el	error	o	problema	y/o	registrarlo	en	el	log
correspondiente	más	claramente.

Para	conseguir	esto,	Apache	define	ahora	variables	de	entorno
similares	a	las	de	los	CGI:

REDIRECT_HTTP_ACCEPT=*/*,	image/gif,	image/x-xbitmap,

image/jpeg

REDIRECT_HTTP_USER_AGENT=Mozilla/1.1b2	(X11;	I;	HP-UX	A.09.05

9000/712)

REDIRECT_PATH=.:/bin:/usr/local/bin:/etc

REDIRECT_QUERY_STRING=

REDIRECT_REMOTE_ADDR=121.345.78.123

REDIRECT_REMOTE_HOST=ooh.ahhh.com

REDIRECT_SERVER_NAME=crash.bang.edu

REDIRECT_SERVER_PORT=80

REDIRECT_SERVER_SOFTWARE=Apache/0.8.15

REDIRECT_URL=/cgi-bin/buggy.pl

Tenga	en	cuenta	el	prefijo	REDIRECT_.

Al	menos	REDIRECT_URL	y	REDIRECT_QUERY_STRING	se
pasarán	a	la	nueva	URL	(asumiendo	que	es	un	cgi-script	o	un	cgi-
include).	Las	otras	variables	existirán	solo	si	existían	antes	de
aparecer	el	error	o	problema.	Ninguna	de	estas	variables	se
creará	si	en	la	directiva	ErrorDocument	ha	especificado	una
redirección	externa	(cualquier	cosa	que	empiece	por	un	nombre
de	esquema	del	tipo	http:,	incluso	si	se	refiere	al	mismo
servidor).

Configuración

El	uso	de	ErrorDocument	está	activado	para	los	ficheros
.htaccess	cuando	AllowOverride	tiene	el	valor	adecuado.

Aquí	hay	algunos	ejemplos	más...

ErrorDocument	500	/cgi-bin/crash-recover	

ErrorDocument	500	"Sorry,	our	script	crashed.	Oh	dear"	

ErrorDocument	500	http://xxx/	

ErrorDocument	404	/Lame_excuses/not_found.html	

ErrorDocument	401	/Subscription/how_to_subscribe.html

La	sintaxis	es,

ErrorDocument	<3-digit-code>	<action>

donde	action	puede	ser,

1.	 Texto	a	mostrar.	Ponga	antes	del	texto	que	quiere	que	se
muestre	unas	comillas	(").	Lo	que	sea	que	siga	a	las	comillas
se	mostrará.	Nota:	las	comillas	(")	no	se	muestran.

2.	 Una	URL	local	a	la	que	se	redireccionará	la	petición.

3.	 Una	URL	externa	a	la	que	se	redireccionará	la	petición.

Mesajes	de	error	personalizados	y	redirecciones

El	comportamiento	de	Apache	en	cuanto	a	las	redirecciones	ha
cambiado	para	que	puedan	usarse	más	variables	de	entorno	con
los	script/server-include.

Antiguo	comportamiento
Las	variables	CGI	estándar	estaban	disponibles	para	el	script	al
que	se	hacía	la	redirección.	No	se	incluía	ninguna	indicación
sobre	la	precedencia	de	la	redirección.

Nuevo	comportamiento
Un	nuevo	grupo	de	variables	de	entorno	se	inicializa	para	que	las
use	el	script	al	que	ha	sido	redireccionado.	Cada	nueva	variable
tendrá	el	prefijo	REDIRECT_.	Las	variables	de	entorno
REDIRECT_	se	crean	a	partir	de	de	las	variables	de	entorno	CGI
que	existen	antes	de	la	redirección,	se	les	cambia	el	nombre
añadiéndoles	el	prefijo	REDIRECT_,	por	ejemplo,
HTTP_USER_AGENT	pasa	a	ser	REDIRECT_HTTP_USER_AGENT.
Además,	para	esas	nuevas	variables,	Apache	definirá
REDIRECT_URL	y	REDIRECT_STATUS	para	ayudar	al	script	a
seguir	su	origen.	Tanto	la	URL	original	como	la	URL	a	la	que	es
redirigida	la	petición	pueden	almacenarse	en	los	logs	de	acceso.

Si	ErrorDocument	especifica	una	redirección	local	a	un	script	CGI,
el	script	debe	incluir	una	campo	de	cabeceraa	"Status:"	en	el
resultado	final	para	asegurar	que	es	posible	hacer	llegar	al	cliente
de	vuelta	la	condición	de	error	que	lo	provocó.	Por	ejemplo,	un
script	en	Perl	para	usar	con	ErrorDocument	podría	incluir	lo
siguiente:

...	

print	"Content-type:	text/html\n";	

printf	"Status:	%s	Condition	Intercepted\n",

$ENV{"REDIRECT_STATUS"};	

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

...

Si	el	script	tiene	como	fin	tratar	una	determinada	condición	de
error,	por	ejemplo	404	Not	Found,	se	pueden	usar	los	códigos
de	error	y	textos	específicos	en	su	lugar.

Tenga	en	cuenta	que	el	script	debe	incluir	un	campo	de	cabecera
Status:	apropiado	(como	302	Found),	si	la	respuesta	contiene
un	campo	de	cabecera	Location:	(para	poder	enviar	una
redirección	que	se	interprete	en	el	cliente).	De	otra	manera,	la
cabecera	Location:	puede	que	no	tenga	efecto.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Binding	to	Addresses	and	Ports

Configuring	Apache	HTTP	Server	to	listen	on	specific	addresses	and
ports.

See	also
Virtual	Hosts
DNS	Issues

https://www.apache.org/foundation/contributing.html

Overview

Related	Modules Related	Directives
core

mpm_common

<VirtualHost>

Listen

When	httpd	starts,	it	binds	to	some	port	and	address	on	the	local
machine	and	waits	for	incoming	requests.	By	default,	it	listens	to
all	addresses	on	the	machine.	However,	it	may	need	to	be	told	to
listen	on	specific	ports,	or	only	on	selected	addresses,	or	a
combination	of	both.	This	is	often	combined	with	the	Virtual	Host
feature,	which	determines	how	httpd	responds	to	different	IP
addresses,	hostnames	and	ports.

The	Listen	directive	tells	the	server	to	accept	incoming	requests
only	on	the	specified	port(s)	or	address-and-port	combinations.	If
only	a	port	number	is	specified	in	the	Listen	directive,	the	server
listens	to	the	given	port	on	all	interfaces.	If	an	IP	address	is	given
as	well	as	a	port,	the	server	will	listen	on	the	given	port	and
interface.	Multiple	Listen	directives	may	be	used	to	specify	a
number	of	addresses	and	ports	to	listen	on.	The	server	will
respond	to	requests	from	any	of	the	listed	addresses	and	ports.

For	example,	to	make	the	server	accept	connections	on	both	port
80	and	port	8000,	on	all	interfaces,	use:

Listen	80

Listen	8000

To	make	the	server	accept	connections	on	port	80	for	one
interface,	and	port	8000	on	another,	use

Listen	192.0.2.1:80

Listen	192.0.2.5:8000

IPv6	addresses	must	be	enclosed	in	square	brackets,	as	in	the
following	example:

Listen	[2001:db8::a00:20ff:fea7:ccea]:80

Overlapping	Listen	directives	will	result	in	a	fatal	error	which
will	prevent	the	server	from	starting	up.

(48)Address	already	in	use:	make_sock:	could	not	bind	to

address	[::]:80

See	the	discussion	in	the	wiki	for	further	troubleshooting	tips.

http://wiki.apache.org/httpd/CouldNotBindToAddress

Special	IPv6	Considerations

A	growing	number	of	platforms	implement	IPv6,	and	APR	supports
IPv6	on	most	of	these	platforms,	allowing	httpd	to	allocate	IPv6
sockets,	and	to	handle	requests	sent	over	IPv6.

One	complicating	factor	for	httpd	administrators	is	whether	or	not
an	IPv6	socket	can	handle	both	IPv4	connections	and	IPv6
connections.	Handling	IPv4	connections	with	an	IPv6	socket	uses
IPv4-mapped	IPv6	addresses,	which	are	allowed	by	default	on
most	platforms,	but	are	disallowed	by	default	on	FreeBSD,
NetBSD,	and	OpenBSD,	in	order	to	match	the	system-wide	policy
on	those	platforms.	On	systems	where	it	is	disallowed	by	default,	a
special	configure	parameter	can	change	this	behavior	for	httpd.

On	the	other	hand,	on	some	platforms,	such	as	Linux	and	Tru64,
the	only	way	to	handle	both	IPv6	and	IPv4	is	to	use	mapped
addresses.	If	you	want	httpd	to	handle	IPv4	and	IPv6
connections	with	a	minimum	of	sockets,	which	requires	using
IPv4-mapped	IPv6	addresses,	specify	the	--enable-v4-
mapped	configure	option.

--enable-v4-mapped	is	the	default	on	all	platforms	except
FreeBSD,	NetBSD,	and	OpenBSD,	so	this	is	probably	how	your
httpd	was	built.

If	you	want	httpd	to	handle	IPv4	connections	only,	regardless	of
what	your	platform	and	APR	will	support,	specify	an	IPv4	address
on	all	Listen	directives,	as	in	the	following	examples:

Listen	0.0.0.0:80

Listen	192.0.2.1:80

If	your	platform	supports	it	and	you	want	httpd	to	handle	IPv4	and
IPv6	connections	on	separate	sockets	(i.e.,	to	disable	IPv4-
mapped	addresses),	specify	the	--disable-v4-mapped

configure	option.	--disable-v4-mapped	is	the	default	on
FreeBSD,	NetBSD,	and	OpenBSD.

Specifying	the	protocol	with	Listen

The	optional	second	protocol	argument	of	Listen	is	not	required
for	most	configurations.	If	not	specified,	https	is	the	default	for
port	443	and	http	the	default	for	all	other	ports.	The	protocol	is
used	to	determine	which	module	should	handle	a	request,	and	to
apply	protocol	specific	optimizations	with	the	AcceptFilter
directive.

You	only	need	to	set	the	protocol	if	you	are	running	on	non-
standard	ports.	For	example,	running	an	https	site	on	port	8443:

Listen	192.170.2.1:8443	https

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

How	This	Works	With	Virtual	Hosts

The	Listen	directive	does	not	implement	Virtual	Hosts	-	it	only
tells	the	main	server	what	addresses	and	ports	to	listen	on.	If	no
<VirtualHost>	directives	are	used,	the	server	will	behave	in	the
same	way	for	all	accepted	requests.	However,	<VirtualHost>
can	be	used	to	specify	a	different	behavior	for	one	or	more	of	the
addresses	or	ports.	To	implement	a	VirtualHost,	the	server	must
first	be	told	to	listen	to	the	address	and	port	to	be	used.	Then	a
<VirtualHost>	section	should	be	created	for	the	specified
address	and	port	to	set	the	behavior	of	this	virtual	host.	Note	that	if
the	<VirtualHost>	is	set	for	an	address	and	port	that	the	server
is	not	listening	to,	it	cannot	be	accessed.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Módulos	de	MultiProcesamiento	(MPMs)

Esta	traducción	podría	estar	obsoleta.	Consulte	la	versión	en
inglés	de	la	documentación	para	comprobar	si	se	han
producido	cambios	recientemente.

Este	documento	describe	que	es	un	Módulo	de	Multiprocesamiento	y
como	los	usa	Apache.

Introducción

Apache	está	diseñado	para	ser	un	servidor	web	potente	y	flexible
que	pueda	funcionar	en	la	más	amplia	variedad	de	plataformas	y
entornos.	Las	diferentes	plataformas	y	los	diferentes	entornos,
hacen	que	a	menudo	sean	necesarias	diferentes	características	o
funcionalidades,	o	que	una	misma	característica	o	funcionalidad
sea	implementada	de	diferente	manera	para	obtener	una	mayor
eficiencia.	Apache	se	ha	adaptado	siempre	a	una	gran	variedad
de	entornos	a	través	de	su	diseño	modular.	Este	diseño	permite	a
los	administradores	de	sitios	web	elegir	que	características	van	a
ser	incluidas	en	el	servidor	seleccionando	que	módulos	se	van	a
cargar,	ya	sea	al	compilar	o	al	ejecutar	el	servidor.

Apache	2.0	extiende	este	diseño	modular	hasta	las	funciones	más
básicas	de	un	servidor	web.	El	servidor	viene	con	una	serie	de
Módulos	de	MultiProcesamiento	que	son	responsables	de
conectar	con	los	puertos	de	red	de	la	máquina,	acceptar	las
peticiones,	y	generar	los	procesos	hijo	que	se	encargan	de
servirlas.

La	extensión	del	diseño	modular	a	este	nivel	del	servidor	ofrece
dos	beneficios	importantes:

Apache	puede	soportar	de	una	forma	más	fácil	y	eficiente	una
amplia	variedad	de	sistemas	operativos.	En	concreto,	la
versión	de	Windows	de	Apache	es	mucho	más	eficiente,
porque	el	módulo	mpm_winnt	puede	usar	funcionalidades
nativas	de	red	en	lugar	de	usar	la	capa	POSIX	como	hace
Apache	1.3.	Este	beneficio	se	extiende	también	a	otros
sistemas	operativos	que	implementan	sus	respectivos	MPMs.
El	servidor	puede	personalizarse	mejor	para	las	necesidades
de	cada	sitio	web.	Por	ejemplo,	los	sitios	web	que	necesitan
más	que	nada	escalibildad	pueden	usar	un	MPM	hebrado
como	worker,	mientras	que	los	sitios	web	que	requieran	por
encima	de	otras	cosas	estabilidad	o	compatibilidad	con

software	antiguo	pueden	usar	prefork.	Además,	se	pueden
configurar	funcionalidades	especiales	como	servir	diferentes
hosts	con	diferentes	identificadores	de	usuario	(perchild).

A	nivel	de	usuario,	los	MPMs	son	como	cualquier	otro	módulo	de
Apache.	La	diferencia	más	importante	es	que	solo	un	MPM	puede
estar	cargado	en	el	servidor	en	un	determinado	momento.	La	lista
de	MPMs	disponibles	está	en	la	sección	índice	de	Módulos.

Cómo	Elegir	un	MPM

Los	MPMs	deben	elegirse	durante	el	proceso	de	configuración,	y
deben	ser	compilados	en	el	servidor.	Los	compiladores	son
capaces	de	optimizar	muchas	funciones	si	se	usan	hebras,	pero
solo	si	se	sabe	que	se	están	usando	hebras.	Como	algunos	MPM
usan	hebras	en	Unix	y	otros	no,	Apache	tendrá	un	mejor
rendimiento	si	el	MPM	es	elegido	en	el	momento	de	compilar	y
está	incorporado	en	el	servidor.

Para	elegir	el	MPM	deseado,	use	el	argumento	--with-mpm=
NAME	con	el	script	./configure.	NAME	es	el	nombre	del	MPM
deseado.

Una	vez	que	el	servidor	ha	sido	compilado,	es	posible	determinar
que	MPM	ha	sido	elegido	usando	./httpd	-l.	Este	comando
lista	todos	los	módulos	compilados	en	el	servidor,	incluido	en
MPM.

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

MPM	por	defecto

En	la	siguiente	tabla	se	muestran	los	MPMs	por	defecto	para
varios	sistemas	operativos.	Estos	serán	los	MPM	seleccionados	si
no	se	especifica	lo	contrario	al	compilar.

BeOS beos

Netware mpm_netware

OS/2 mpmt_os2

Unix prefork

Windows mpm_winnt

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Environment	Variables	in	Apache

There	are	two	kinds	of	environment	variables	that	affect	the	Apache
HTTP	Server.

First,	there	are	the	environment	variables	controlled	by	the	underlying
operating	system.	These	are	set	before	the	server	starts.	They	can	be
used	in	expansions	in	configuration	files,	and	can	optionally	be
passed	to	CGI	scripts	and	SSI	using	the	PassEnv	directive.

Second,	the	Apache	HTTP	Server	provides	a	mechanism	for	storing
information	in	named	variables	that	are	also	called	environment
variables.	This	information	can	be	used	to	control	various	operations
such	as	logging	or	access	control.	The	variables	are	also	used	as	a
mechanism	to	communicate	with	external	programs	such	as	CGI
scripts.	This	document	discusses	different	ways	to	manipulate	and
use	these	variables.

Although	these	variables	are	referred	to	as	environment	variables,
they	are	not	the	same	as	the	environment	variables	controlled	by	the
underlying	operating	system.	Instead,	these	variables	are	stored	and
manipulated	in	an	internal	Apache	structure.	They	only	become	actual
operating	system	environment	variables	when	they	are	provided	to
CGI	scripts	and	Server	Side	Include	scripts.	If	you	wish	to	manipulate
the	operating	system	environment	under	which	the	server	itself	runs,
you	must	use	the	standard	environment	manipulation	mechanisms
provided	by	your	operating	system	shell.

Setting	Environment	Variables

Related	Modules Related	Directives
mod_cache

mod_env

mod_rewrite

mod_setenvif

mod_unique_id

BrowserMatch

BrowserMatchNoCase

PassEnv

RewriteRule

SetEnv

SetEnvIf

SetEnvIfNoCase

UnsetEnv

Basic	Environment	Manipulation
The	most	basic	way	to	set	an	environment	variable	in	Apache	is
using	the	unconditional	SetEnv	directive.	Variables	may	also	be
passed	from	the	environment	of	the	shell	which	started	the	server
using	the	PassEnv	directive.

Conditional	Per-Request	Settings
For	additional	flexibility,	the	directives	provided	by	mod_setenvif
allow	environment	variables	to	be	set	on	a	per-request	basis,
conditional	on	characteristics	of	particular	requests.	For	example,
a	variable	could	be	set	only	when	a	specific	browser	(User-Agent)
is	making	a	request,	or	only	when	a	specific	Referer	[sic]	header	is
found.	Even	more	flexibility	is	available	through	the
mod_rewrite's	RewriteRule	which	uses	the	[E=...]	option
to	set	environment	variables.

Unique	Identifiers
Finally,	mod_unique_id	sets	the	environment	variable
UNIQUE_ID	for	each	request	to	a	value	which	is	guaranteed	to	be
unique	across	"all"	requests	under	very	specific	conditions.

Standard	CGI	Variables
In	addition	to	all	environment	variables	set	within	the	Apache
configuration	and	passed	from	the	shell,	CGI	scripts	and	SSI
pages	are	provided	with	a	set	of	environment	variables	containing
meta-information	about	the	request	as	required	by	the	CGI
specification.

Some	Caveats
It	is	not	possible	to	override	or	change	the	standard	CGI
variables	using	the	environment	manipulation	directives.
When	suexec	is	used	to	launch	CGI	scripts,	the	environment
will	be	cleaned	down	to	a	set	of	safe	variables	before	CGI
scripts	are	launched.	The	list	of	safe	variables	is	defined	at
compile-time	in	suexec.c.
For	portability	reasons,	the	names	of	environment	variables
may	contain	only	letters,	numbers,	and	the	underscore
character.	In	addition,	the	first	character	may	not	be	a	number.
Characters	which	do	not	match	this	restriction	will	be	replaced
by	an	underscore	when	passed	to	CGI	scripts	and	SSI	pages.
A	special	case	are	HTTP	headers	which	are	passed	to	CGI
scripts	and	the	like	via	environment	variables	(see	below).
They	are	converted	to	uppercase	and	only	dashes	are
replaced	with	underscores;	if	the	header	contains	any	other
(invalid)	character,	the	whole	header	is	silently	dropped.	See
below	for	a	workaround.
The	SetEnv	directive	runs	late	during	request	processing
meaning	that	directives	such	as	SetEnvIf	and
RewriteCond	will	not	see	the	variables	set	with	it.
When	the	server	looks	up	a	path	via	an	internal	subrequest
such	as	looking	for	a	DirectoryIndex	or	generating	a
directory	listing	with	mod_autoindex,	per-request
environment	variables	are	not	inherited	in	the	subrequest.
Additionally,	SetEnvIf	directives	are	not	separately

http://www.ietf.org/rfc/rfc3875

evaluated	in	the	subrequest	due	to	the	API	phases
mod_setenvif	takes	action	in.

Using	Environment	Variables

Related	Modules Related	Directives
mod_authz_host

mod_cgi

mod_ext_filter

mod_headers

mod_include

mod_log_config

mod_rewrite

Require

CustomLog

Deny

ExtFilterDefine

Header

LogFormat

RewriteCond

RewriteRule

CGI	Scripts
One	of	the	primary	uses	of	environment	variables	is	to
communicate	information	to	CGI	scripts.	As	discussed	above,	the
environment	passed	to	CGI	scripts	includes	standard	meta-
information	about	the	request	in	addition	to	any	variables	set
within	the	Apache	configuration.	For	more	details,	see	the	CGI
tutorial.

SSI	Pages
Server-parsed	(SSI)	documents	processed	by	mod_include's
INCLUDES	filter	can	print	environment	variables	using	the	echo
element,	and	can	use	environment	variables	in	flow	control
elements	to	makes	parts	of	a	page	conditional	on	characteristics
of	a	request.	Apache	also	provides	SSI	pages	with	the	standard
CGI	environment	variables	as	discussed	above.	For	more	details,
see	the	SSI	tutorial.

Access	Control
Access	to	the	server	can	be	controlled	based	on	the	value	of
environment	variables	using	the	allow	from	env=	and	deny

from	env=	directives.	In	combination	with	SetEnvIf,	this	allows
for	flexible	control	of	access	to	the	server	based	on	characteristics
of	the	client.	For	example,	you	can	use	these	directives	to	deny
access	to	a	particular	browser	(User-Agent).

Conditional	Logging
Environment	variables	can	be	logged	in	the	access	log	using	the
LogFormat	option	%e.	In	addition,	the	decision	on	whether	or	not
to	log	requests	can	be	made	based	on	the	status	of	environment
variables	using	the	conditional	form	of	the	CustomLog	directive.	In
combination	with	SetEnvIf	this	allows	for	flexible	control	of	which
requests	are	logged.	For	example,	you	can	choose	not	to	log
requests	for	filenames	ending	in	gif,	or	you	can	choose	to	only
log	requests	from	clients	which	are	outside	your	subnet.

Conditional	Response	Headers
The	Header	directive	can	use	the	presence	or	absence	of	an
environment	variable	to	determine	whether	or	not	a	certain	HTTP
header	will	be	placed	in	the	response	to	the	client.	This	allows,	for
example,	a	certain	response	header	to	be	sent	only	if	a
corresponding	header	is	received	in	the	request	from	the	client.

External	Filter	Activation
External	filters	configured	by	mod_ext_filter	using	the
ExtFilterDefine	directive	can	by	activated	conditional	on	an
environment	variable	using	the	disableenv=	and	enableenv=
options.

URL	Rewriting
The	%{ENV:variable}	form	of	TestString	in	the	RewriteCond
allows	mod_rewrite's	rewrite	engine	to	make	decisions

conditional	on	environment	variables.	Note	that	the	variables
accessible	in	mod_rewrite	without	the	ENV:	prefix	are	not
actually	environment	variables.	Rather,	they	are	variables	special
to	mod_rewrite	which	cannot	be	accessed	from	other	modules.

Special	Purpose	Environment	Variables

Interoperability	problems	have	led	to	the	introduction	of
mechanisms	to	modify	the	way	Apache	behaves	when	talking	to
particular	clients.	To	make	these	mechanisms	as	flexible	as
possible,	they	are	invoked	by	defining	environment	variables,
typically	with	BrowserMatch,	though	SetEnv	and	PassEnv
could	also	be	used,	for	example.

downgrade-1.0
This	forces	the	request	to	be	treated	as	a	HTTP/1.0	request	even
if	it	was	in	a	later	dialect.

force-gzip
If	you	have	the	DEFLATE	filter	activated,	this	environment	variable
will	ignore	the	accept-encoding	setting	of	your	browser	and	will
send	compressed	output	unconditionally.

force-no-vary
This	causes	any	Vary	fields	to	be	removed	from	the	response
header	before	it	is	sent	back	to	the	client.	Some	clients	don't
interpret	this	field	correctly;	setting	this	variable	can	work	around
this	problem.	Setting	this	variable	also	implies	force-response-
1.0.

force-response-1.0
This	forces	an	HTTP/1.0	response	to	clients	making	an	HTTP/1.0
request.	It	was	originally	implemented	as	a	result	of	a	problem	with
AOL's	proxies.	Some	HTTP/1.0	clients	may	not	behave	correctly
when	given	an	HTTP/1.1	response,	and	this	can	be	used	to
interoperate	with	them.

gzip-only-text/html

When	set	to	a	value	of	"1",	this	variable	disables	the	DEFLATE
output	filter	provided	by	mod_deflate	for	content-types	other
than	text/html.	If	you'd	rather	use	statically	compressed	files,
mod_negotiation	evaluates	the	variable	as	well	(not	only	for
gzip,	but	for	all	encodings	that	differ	from	"identity").

no-gzip
When	set,	the	DEFLATE	filter	of	mod_deflate	will	be	turned	off
and	mod_negotiation	will	refuse	to	deliver	encoded	resources.

no-cache
Available	in	versions	2.2.12	and	later

When	set,	mod_cache	will	not	save	an	otherwise	cacheable
response.	This	environment	variable	does	not	influence	whether	a
response	already	in	the	cache	will	be	served	for	the	current
request.

nokeepalive
This	disables	KeepAlive	when	set.

prefer-language
This	influences	mod_negotiation's	behaviour.	If	it	contains	a
language	tag	(such	as	en,	ja	or	x-klingon),
mod_negotiation	tries	to	deliver	a	variant	with	that	language.	If
there's	no	such	variant,	the	normal	negotiation	process	applies.

redirect-carefully
This	forces	the	server	to	be	more	careful	when	sending	a	redirect
to	the	client.	This	is	typically	used	when	a	client	has	a	known
problem	handling	redirects.	This	was	originally	implemented	as	a

result	of	a	problem	with	Microsoft's	WebFolders	software	which
has	a	problem	handling	redirects	on	directory	resources	via	DAV
methods.

suppress-error-charset
Available	in	versions	after	2.0.54

When	Apache	issues	a	redirect	in	response	to	a	client	request,	the
response	includes	some	actual	text	to	be	displayed	in	case	the
client	can't	(or	doesn't)	automatically	follow	the	redirection.	Apache
ordinarily	labels	this	text	according	to	the	character	set	which	it
uses,	which	is	ISO-8859-1.

However,	if	the	redirection	is	to	a	page	that	uses	a	different
character	set,	some	broken	browser	versions	will	try	to	use	the
character	set	from	the	redirection	text	rather	than	the	actual	page.
This	can	result	in	Greek,	for	instance,	being	incorrectly	rendered.

Setting	this	environment	variable	causes	Apache	to	omit	the
character	set	for	the	redirection	text,	and	these	broken	browsers
will	then	correctly	use	that	of	the	destination	page.

Security	note

Sending	error	pages	without	a	specified	character	set	may	allow
a	cross-site-scripting	attack	for	existing	browsers	(MSIE)	which
do	not	follow	the	HTTP/1.1	specification	and	attempt	to	"guess"
the	character	set	from	the	content.	Such	browsers	can	be	easily
fooled	into	using	the	UTF-7	character	set,	and	UTF-7	content
from	input	data	(such	as	the	request-URI)	will	not	be	escaped
by	the	usual	escaping	mechanisms	designed	to	prevent	cross-
site-scripting	attacks.

force-proxy-request-1.0,	proxy-nokeepalive,	proxy-

sendchunked,	proxy-sendcl,	proxy-chain-auth,	proxy-
interim-response,	proxy-initial-not-pooled
These	directives	alter	the	protocol	behavior	of	mod_proxy.	See
the	mod_proxy	and	mod_proxy_http	documentation	for	more
details.

Examples

Passing	broken	headers	to	CGI	scripts
Starting	with	version	2.4,	Apache	is	more	strict	about	how	HTTP
headers	are	converted	to	environment	variables	in	mod_cgi	and
other	modules:	Previously	any	invalid	characters	in	header	names
were	simply	translated	to	underscores.	This	allowed	for	some
potential	cross-site-scripting	attacks	via	header	injection	(see
Unusual	Web	Bugs,	slide	19/20).

If	you	have	to	support	a	client	which	sends	broken	headers	and
which	can't	be	fixed,	a	simple	workaround	involving
mod_setenvif	and	mod_headers	allows	you	to	still	accept
these	headers:

#	

#	The	following	works	around	a	client	sending	a	broken	Accept_Encoding

#	header.

#

SetEnvIfNoCase	^Accept.Encoding$	^(.*)$	fix_accept_encoding=$1

RequestHeader	set	Accept-Encoding	%{fix_accept_encoding}e	env=fix_accept_encoding

Changing	protocol	behavior	with	misbehaving	clients
Earlier	versions	recommended	that	the	following	lines	be	included
in	httpd.conf	to	deal	with	known	client	problems.	Since	the	affected
clients	are	no	longer	seen	in	the	wild,	this	configuration	is	likely	no-
longer	necessary.

#

#	The	following	directives	modify	normal	HTTP	response	behavior.

#	The	first	directive	disables	keepalive	for	Netscape	2.x	and	browsers	that

#	spoof	it.	There	are	known	problems	with	these	browser	implementations.

#	The	second	directive	is	for	Microsoft	Internet	Explorer	4.0b2

http://events.ccc.de/congress/2007/Fahrplan/events/2212.en.html

#	which	has	a	broken	HTTP/1.1	implementation	and	does	not	properly

#	support	keepalive	when	it	is	used	on	301	or	302	(redirect)	responses.

#

BrowserMatch	"Mozilla/2"	nokeepalive

BrowserMatch	"MSIE	4\.0b2;"	nokeepalive	downgrade-1.0	force-response-1.0

#

#	The	following	directive	disables	HTTP/1.1	responses	to	browsers	which

#	are	in	violation	of	the	HTTP/1.0	spec	by	not	being	able	to	understand	a

#	basic	1.1	response.

#

BrowserMatch	"RealPlayer	4\.0"	force-response-1.0

BrowserMatch	"Java/1\.0"	force-response-1.0

BrowserMatch	"JDK/1\.0"	force-response-1.0

Do	not	log	requests	for	images	in	the	access	log
This	example	keeps	requests	for	images	from	appearing	in	the
access	log.	It	can	be	easily	modified	to	prevent	logging	of
particular	directories,	or	to	prevent	logging	of	requests	coming
from	particular	hosts.

SetEnvIf	Request_URI	\.gif	image-request

SetEnvIf	Request_URI	\.jpg	image-request

SetEnvIf	Request_URI	\.png	image-request

CustomLog	logs/access_log	common	env=!image-request

Prevent	"Image	Theft"
This	example	shows	how	to	keep	people	not	on	your	server	from
using	images	on	your	server	as	inline-images	on	their	pages.	This
is	not	a	recommended	configuration,	but	it	can	work	in	limited
circumstances.	We	assume	that	all	your	images	are	in	a	directory
called	/web/images.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SetEnvIf	Referer	"^http://www\.example\.com/"	local_referal

#	Allow	browsers	that	do	not	send	Referer	info

SetEnvIf	Referer	"^$"	local_referal

<Directory	"/web/images">

				Require	env	local_referal

</Directory>

For	more	information	about	this	technique,	see	the	"Keeping	Your
Images	from	Adorning	Other	Sites"	tutorial	on	ServerWatch.

http://www.serverwatch.com/tutorials/article.php/1132731
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Uso	de	los	Handlers	en	Apache

Este	documento	describe	el	uso	de	los	Handlers	en	Apache.

¿Qué	es	un	Handler?

Módulos	Relacionados Directivas	Relacionadas
mod_actions

mod_asis

mod_cgi

mod_imagemap

mod_info

mod_mime

mod_negotiation

mod_status

Action

AddHandler

RemoveHandler

SetHandler

Un	"handler"	es	una	representación	interna	de	Apache	de	una
acción	que	se	va	a	ejecutar	cuando	hay	una	llamada	a	un	fichero.
Generalmente,	los	ficheros	tienen	handlers	implícitos,	basados	en
el	tipo	de	fichero	de	que	se	trata.	Normalmente,	todos	los	ficheros
son	simplemente	servidos	por	el	servidor,	pero	algunos	tipos	de
ficheros	se	tratan	de	forma	diferente.

Handlers	pueden	ser	usados	de	manera	explicita,	basándose	en
la	extensión	del	fichero	o	en	la	ubicación	en	la	que	esté,	se
pueden	especificar	handlers	sin	tener	en	cuenta	el	tipo	de	fichero
que	se	trate.	Esto	es	una	ventaja	por	dos	razones.	Primero,	es
una	solución	más	elegante.	Segundo,	porque	a	un	fichero	se	le
pueden	asignar	tanto	un	tipo	como	un	handler.	(Consulte	también
la	sección	Ficheros	y	extensiones	múltiples.)

Los	Handlers	pueden	tanto	ser	compilados	con	el	servidor	como
incluidos	en	un	módulo,	o	añadidos	con	la	directiva	Action.	Los
handlers	que	vienen	incluidos	en	el	core	con	el	servidor	de	la
distribución	estándar	de	Apache	son:

default-handler:	Envía	el	fichero	usando	el
default_handler(),	que	es	el	handler	usado	por	defecto
para	tratar	contenido	estático.	(core)

send-as-is:	Envía	el	fichero	con	cabeceras	HTTP	tal	y	como
es.	(mod_asis)
cgi-script:	Trata	el	fichero	como	un	sript	CGI.	(mod_cgi)
imap-file:	Trata	el	fichero	como	un	mapa	de	imágenes.
(mod_imagemap)
server-info:	Extrae	la	información	de	configuración	del
servidor.	(mod_info)
server-status:	Extrae	el	informe	del	estado	del	servidor.
(mod_status)
type-map:	Trata	el	fichero	como	una	correspondencia	de
tipos	para	la	negociación	de	contenidos.
(mod_negotiation)

Ejemplos

Modificar	contenido	estático	usando	un	script	CGI
Las	siguientes	directivas	hacen	que	cuando	haya	una	petición	de
ficheros	con	la	extensión	html	se	lance	el	script	CGI	footer.pl.

Action	add-footer	/cgi-bin/footer.pl

AddHandler	add-footer	.html

En	este	caso,	el	script	CGI	es	el	responsable	de	enviar	el
documento	originalmente	solicitado	(contenido	en	la	variable	de
entorno	PATH_TRANSLATED)	y	de	hacer	cualquier	modificación	o
añadido	deseado.

Archivos	con	cabeceras	HTTP
Las	siguientes	directivas	activan	el	handler	send-as-is,	que	se
usa	para	ficheros	que	contienen	sus	propias	cabeceras	HTTP.
Todos	los	archivos	en	el	directorio	/web/htdocs/asis/	serán
procesados	por	el	handler	send-as-is,	sin	tener	en	cuenta	su
extension.

<Directory	"/web/htdocs/asis">

				SetHandler	send-as-is

</Directory>

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Nota	para	programadores

Para	implementar	las	funcionalidades	de	los	handlers,	se	ha
hecho	un	añadido	a	la	API	de	Apache	que	puede	que	quiera	usar.
Para	ser	más	específicos,	se	ha	añadido	un	nuevo	registro	a	la
estructura	request_rec:

char	*handler

Si	quiere	que	su	módulo	llame	a	un	handler	,	solo	tiene	que	añadir
r->handler	al	nombre	del	handler	en	cualquier	momento	antes
de	la	fase	invoke_handler	de	la	petición.	Los	handlers	se
implementan	siempre	como	se	hacía	antes,	aunque	usando	el
nombre	del	handler	en	vez	de	un	tipo	de	contenido.	Aunque	no	es
de	obligado	cumplimiento,	la	convención	de	nombres	para	los
handlers	es	que	se	usen	palabras	separadas	por	guiones,	sin
barras,	de	manera	que	no	se	invada	el	media	type	name-space.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Filtros

Este	documento	describe	cómo	usar	filtros	en	Apache.

Filtros	en	Apache	2

Módulos	Relacionados Directivas	Relacionadas
mod_filter

mod_deflate

mod_ext_filter

mod_include

mod_charset_lite

mod_reflector

mod_buffer

mod_data

mod_ratelimit

mod_reqtimeout

mod_request

mod_sed

mod_substitute

mod_xml2enc

mod_proxy_html

mod_policy

FilterChain

FilterDeclare

FilterProtocol

FilterProvider

AddInputFilter

AddOutputFilter

RemoveInputFilter

RemoveOutputFilter

ReflectorHeader

ExtFilterDefine

ExtFilterOptions

SetInputFilter

SetOutputFilter

La	cadena	de	filtrado	está	disponible	en	Apache	2.0	y	superiores.
Un	filtro	es	un	proceso	que	se	aplica	a	los	datos	que	se	reciben	o
se	envían	por	el	servidor.	Los	datos	enviados	por	los	clientes	al
servidor	son	procesados	por	filtros	de	entrada	mientras	que	los
datos	enviados	por	el	servidor	se	procesan	por	los	filtros	de
salida.	A	los	datos	se	les	pueden	aplicar	varios	filtros,	y	el	orden
en	que	se	aplica	cada	filtro	puede	especificarse	explícitamente.
Todo	este	proceso	es	independiente	de	las	tradicionales	fase	de
peticiones

Algunos	ejemplos	de	filtrado	en	la	distribución	estándar	de
Apache	son:

mod_include,	implementa	server-side	includes	(SSI).
mod_ssl,	implementa	cifrado	SSL	(https).
mod_deflate,	implementa	compresión	y	descompresión	en
el	acto.
mod_charset_lite,	transcodificación	entre	diferentes
juegos	de	caracteres.
mod_ext_filter,	ejecuta	un	programa	externo	como	filtro.

Los	filtros	se	usan	internamente	por	Apache	para	llevar	a	cabo
funciones	tales	como	chunking	y	servir	peticiones	de	byte-range.
Además,	los	módulos	contienen	filtros	que	se	pueden	seleccionar
usando	directivas	de	configuración	al	iniciar	el	servidor.

Una	mayor	amplitud	de	aplicaciones	son	implementadas	con
módulos	de	filtros	de	terceros	que	estan	disponibles	en
modules.apache.org	y	en	otros	lados.	algunos	de	ellos	son:

http://modules.apache.org/

Procesamiento	y	reescritura	de	HTML	y	XML.
Transformaciones	de	XSLT	y	XIncludes.
Soporte	de	espacios	de	nombres	en	XML.
Manipulación	de	carga	de	archivos	y	decodificación	de	los
formularios	HTML.
Procesamiento	de	imágenes.
Protección	de	aplicaciones	vulnerables,	tales	como	scripts
PHP
Edición	de	texto	de	búsqueda	y	remplazo.

Filtrado	Inteligente

mod_filter,	incluido	en	Apache	2.1	y	posterior,	habilita	la
cadena	de	filtrado	para	ser	configurada	dinámicamente	en	tiempo
de	ejecución.	Así,	por	ejemplo,	usted	puede	configurar	un	proxy
para	que	reescriba	HTML	con	un	filtro	de	HTML	y	imágenes	JPEG
con	filtros	completos	por	separado,	a	pesar	de	que	el	proxy	no
tiene	información	previa	sobre	lo	que	enviará	al	servidor	de
origen.	Esto	funciona	usando	un	engranaje	filtros,	que	envía	a
diferentes	proveedores	dependiendo	del	contenido	en	tiempo	de
ejecución.	Cualquier	filtro	puede	ser,	ya	sea	insertado
directamente	en	la	cadena	y	ejecutado	incondicionalmente,	o
usado	como	proveedor	y	añadido	dinámicamente	Por	ejemplo:

Un	filtro	de	procesamiento	de	HTML	sólo	se	ejecuta	si	el
contenido	es	text/html	o	application/xhtml	+	xml.
Un	filtro	de	compresión	sólo	se	ejecuta	si	la	entrada	es	un
tipo	compresible	y	no	está	ya	comprimida.
Se	insertará	un	filtro	de	conversión	de	juego	de	caracteres,	si
un	documento	de	texto	no	está	ya	en	el	juego	de	caracteres
deseado.

Filtros	expuestos	como	un	servicio	HTTP

Los	filtros	pueden	ser	usados	para	procesar	contenido	originado
desde	el	cliente	además	de	usarse	para	procesar	el	contenido
originado	desde	el	propio	servidor	usando	el	módulo
mod_reflector.

mod_reflector	acepta	peticiones	POST	de	los	clientes,	y	refleja
el	cuerpo	de	la	petición	POST	recibida,	dentro	del	contenido	de	la
respuesta	de	la	petición,	pasa	a	través	de	la	pila	del	filtro	de	salida
en	el	camino	de	vuelta	al	cliente.

Esta	técnica	se	puede	utilizar	como	una	alternativa	a	un	servicio
web	que	se	ejecuta	en	una	pila	de	de	aplicaciones	dentro	del
servidor,	en	donde	el	filtro	de	salida	proporciona	la	transformación
requerida	en	el	cuerpo	de	la	petición.	Por	ejemplo,	el	módulo
mod_deflate	puede	ser	usado	para	proporcionar	un	servicio	de
compresión	general,	o	un	filtro	de	transformación	de	imagen,
puede	ser	convertido	en	un	servicio	de	conversión	de	imágenes.

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Usando	los	Filtros

Hay	dos	formas	de	usar	el	filtrado:	de	forma	Simple	y	Dinámica.
Generalmente,	deberá	usar	una	forma	u	otra;	ya	que	mezclarlas
puede	causar	consecuencias	inesperadas	(a	pesar	de	que	reglas
de	Entrada	de	tipo	simple	pueden	ser	combinadas	libremente	con
reglas	de	filtrado	de	Salidas	de	tipo	simple	o	dinámico).

La	forma	más	sencilla	es	la	única	manera	de	configurar	filtros	de
Entrada,	y	es	suficiente	para	filtros	de	Salida	donde	se	necesita
una	cadena	de	filtros	estática.	Las	directivas	más	relevantes	son:
SetInputFilter,	SetOutputFilter,	AddInputFilter,
AddOutputFilter,	RemoveInputFilter,	and
RemoveOutputFilter.

La	forma	Dinámica	habilita	ambas	configuraciones	estática,	y
dinámica,	para	los	filtros	de	Salida,	como	se	plantea	en	la	página
mod_filter.	Las	directivas	más	relevantes	son:	FilterChain,
FilterDeclare,	and	FilterProvider.

Una	directiva	más	como	es	AddOutputFilterByType	sigue
siendo	soportada	pero	esta	obsoleta.	Usa	en	cambio	la
configuración	dinámica.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

suEXEC	Support

The	suEXEC	feature	provides	users	of	the	Apache	HTTP	Server	the
ability	to	run	CGI	and	SSI	programs	under	user	IDs	different	from	the
user	ID	of	the	calling	web	server.	Normally,	when	a	CGI	or	SSI
program	executes,	it	runs	as	the	same	user	who	is	running	the	web
server.

Used	properly,	this	feature	can	reduce	considerably	the	security	risks
involved	with	allowing	users	to	develop	and	run	private	CGI	or	SSI
programs.	However,	if	suEXEC	is	improperly	configured,	it	can	cause
any	number	of	problems	and	possibly	create	new	holes	in	your
computer's	security.	If	you	aren't	familiar	with	managing	setuid	root
programs	and	the	security	issues	they	present,	we	highly	recommend
that	you	not	consider	using	suEXEC.

Before	we	begin

Before	jumping	head-first	into	this	document,	you	should	be	aware
that	certain	assumptions	are	made	about	you	and	the	environment
in	which	you	will	be	using	suexec.

First,	it	is	assumed	that	you	are	using	a	UNIX	derivative	operating
system	that	is	capable	of	setuid	and	setgid	operations.	All
command	examples	are	given	in	this	regard.	Other	platforms,	if
they	are	capable	of	supporting	suEXEC,	may	differ	in	their
configuration.

Second,	it	is	assumed	you	are	familiar	with	some	basic	concepts
of	your	computer's	security	and	its	administration.	This	involves	an
understanding	of	setuid/setgid	operations	and	the	various	effects
they	may	have	on	your	system	and	its	level	of	security.

Third,	it	is	assumed	that	you	are	using	an	unmodified	version	of
suEXEC	code.	All	code	for	suEXEC	has	been	carefully	scrutinized
and	tested	by	the	developers	as	well	as	numerous	beta	testers.
Every	precaution	has	been	taken	to	ensure	a	simple	yet	solidly
safe	base	of	code.	Altering	this	code	can	cause	unexpected
problems	and	new	security	risks.	It	is	highly	recommended	you
not	alter	the	suEXEC	code	unless	you	are	well	versed	in	the
particulars	of	security	programming	and	are	willing	to	share	your
work	with	the	Apache	HTTP	Server	development	team	for
consideration.

Fourth,	and	last,	it	has	been	the	decision	of	the	Apache	HTTP
Server	development	team	to	NOT	make	suEXEC	part	of	the
default	installation	of	Apache	httpd.	To	this	end,	suEXEC
configuration	requires	of	the	administrator	careful	attention	to
details.	After	due	consideration	has	been	given	to	the	various
settings	for	suEXEC,	the	administrator	may	install	suEXEC
through	normal	installation	methods.	The	values	for	these	settings
need	to	be	carefully	determined	and	specified	by	the	administrator

to	properly	maintain	system	security	during	the	use	of	suEXEC
functionality.	It	is	through	this	detailed	process	that	we	hope	to
limit	suEXEC	installation	only	to	those	who	are	careful	and
determined	enough	to	use	it.

Still	with	us?	Yes?	Good.	Let's	move	on!

suEXEC	Security	Model

Before	we	begin	configuring	and	installing	suEXEC,	we	will	first
discuss	the	security	model	you	are	about	to	implement.	By	doing
so,	you	may	better	understand	what	exactly	is	going	on	inside
suEXEC	and	what	precautions	are	taken	to	ensure	your	system's
security.

suEXEC	is	based	on	a	setuid	"wrapper"	program	that	is	called	by
the	main	Apache	HTTP	Server.	This	wrapper	is	called	when	an
HTTP	request	is	made	for	a	CGI	or	SSI	program	that	the
administrator	has	designated	to	run	as	a	userid	other	than	that	of
the	main	server.	When	such	a	request	is	made,	Apache	httpd
provides	the	suEXEC	wrapper	with	the	program's	name	and	the
user	and	group	IDs	under	which	the	program	is	to	execute.

The	wrapper	then	employs	the	following	process	to	determine
success	or	failure	--	if	any	one	of	these	conditions	fail,	the	program
logs	the	failure	and	exits	with	an	error,	otherwise	it	will	continue:

1.	 Is	the	user	executing	this	wrapper	a	valid	user	of	this
system?

This	is	to	ensure	that	the	user	executing	the	wrapper	is
truly	a	user	of	the	system.

2.	 Was	the	wrapper	called	with	the	proper	number	of
arguments?

The	wrapper	will	only	execute	if	it	is	given	the	proper
number	of	arguments.	The	proper	argument	format	is
known	to	the	Apache	HTTP	Server.	If	the	wrapper	is	not
receiving	the	proper	number	of	arguments,	it	is	either
being	hacked,	or	there	is	something	wrong	with	the
suEXEC	portion	of	your	Apache	httpd	binary.

3.	 Is	this	valid	user	allowed	to	run	the	wrapper?

Is	this	user	the	user	allowed	to	run	this	wrapper?	Only
one	user	(the	Apache	user)	is	allowed	to	execute	this
program.

4.	 Does	the	target	CGI	or	SSI	program	have	an	unsafe
hierarchical	reference?

Does	the	target	CGI	or	SSI	program's	path	contain	a
leading	'/'	or	have	a	'..'	backreference?	These	are	not
allowed;	the	target	CGI/SSI	program	must	reside	within
suEXEC's	document	root	(see	--with-suexec-
docroot=DIR	below).

5.	 Is	the	target	user	name	valid?

Does	the	target	user	exist?

6.	 Is	the	target	group	name	valid?

Does	the	target	group	exist?

7.	 Is	the	target	user	NOT	superuser?

suEXEC	does	not	allow	root	to	execute	CGI/SSI
programs.

8.	 Is	the	target	userid	ABOVE	the	minimum	ID	number?

The	minimum	user	ID	number	is	specified	during
configuration.	This	allows	you	to	set	the	lowest	possible
userid	that	will	be	allowed	to	execute	CGI/SSI	programs.
This	is	useful	to	block	out	"system"	accounts.

9.	 Is	the	target	group	NOT	the	superuser	group?

Presently,	suEXEC	does	not	allow	the	root	group	to
execute	CGI/SSI	programs.

10.	 Is	the	target	groupid	ABOVE	the	minimum	ID	number?

The	minimum	group	ID	number	is	specified	during
configuration.	This	allows	you	to	set	the	lowest	possible
groupid	that	will	be	allowed	to	execute	CGI/SSI
programs.	This	is	useful	to	block	out	"system"	groups.

11.	 Can	the	wrapper	successfully	become	the	target	user	and
group?

Here	is	where	the	program	becomes	the	target	user	and
group	via	setuid	and	setgid	calls.	The	group	access	list	is
also	initialized	with	all	of	the	groups	of	which	the	user	is	a
member.

12.	 Can	we	change	directory	to	the	one	in	which	the	target
CGI/SSI	program	resides?

If	it	doesn't	exist,	it	can't	very	well	contain	files.	If	we	can't
change	directory	to	it,	it	might	as	well	not	exist.

13.	 Is	the	directory	within	the	httpd	webspace?

If	the	request	is	for	a	regular	portion	of	the	server,	is	the
requested	directory	within	suEXEC's	document	root?	If
the	request	is	for	a	UserDir,	is	the	requested	directory
within	the	directory	configured	as	suEXEC's	userdir	(see
suEXEC's	configuration	options)?

14.	 Is	the	directory	NOT	writable	by	anyone	else?

We	don't	want	to	open	up	the	directory	to	others;	only	the
owner	user	may	be	able	to	alter	this	directories	contents.

15.	 Does	the	target	CGI/SSI	program	exist?

If	it	doesn't	exists,	it	can't	very	well	be	executed.

16.	 Is	the	target	CGI/SSI	program	NOT	writable	by	anyone
else?

We	don't	want	to	give	anyone	other	than	the	owner	the
ability	to	change	the	CGI/SSI	program.

17.	 Is	the	target	CGI/SSI	program	NOT	setuid	or	setgid?

We	do	not	want	to	execute	programs	that	will	then
change	our	UID/GID	again.

18.	 Is	the	target	user/group	the	same	as	the	program's
user/group?

Is	the	user	the	owner	of	the	file?

19.	 Can	we	successfully	clean	the	process	environment	to
ensure	safe	operations?

suEXEC	cleans	the	process'	environment	by	establishing
a	safe	execution	PATH	(defined	during	configuration),	as
well	as	only	passing	through	those	variables	whose
names	are	listed	in	the	safe	environment	list	(also
created	during	configuration).

20.	 Can	we	successfully	become	the	target	CGI/SSI	program
and	execute?

Here	is	where	suEXEC	ends	and	the	target	CGI/SSI
program	begins.

This	is	the	standard	operation	of	the	suEXEC	wrapper's	security
model.	It	is	somewhat	stringent	and	can	impose	new	limitations
and	guidelines	for	CGI/SSI	design,	but	it	was	developed	carefully
step-by-step	with	security	in	mind.

For	more	information	as	to	how	this	security	model	can	limit	your

possibilities	in	regards	to	server	configuration,	as	well	as	what
security	risks	can	be	avoided	with	a	proper	suEXEC	setup,	see	the
"Beware	the	Jabberwock"	section	of	this	document.

Configuring	&	Installing	suEXEC

Here's	where	we	begin	the	fun.

suEXEC	configuration	options

--enable-suexec

This	option	enables	the	suEXEC	feature	which	is	never
installed	or	activated	by	default.	At	least	one	--with-
suexec-xxxxx	option	has	to	be	provided	together	with	the	-
-enable-suexec	option	to	let	APACI	accept	your	request
for	using	the	suEXEC	feature.

--with-suexec-bin=PATH

The	path	to	the	suexec	binary	must	be	hard-coded	in	the
server	for	security	reasons.	Use	this	option	to	override	the
default	path.	e.g.	--with-suexec-
bin=/usr/sbin/suexec

--with-suexec-caller=UID

The	username	under	which	httpd	normally	runs.	This	is	the
only	user	allowed	to	execute	the	suEXEC	wrapper.

--with-suexec-userdir=DIR

Define	to	be	the	subdirectory	under	users'	home	directories
where	suEXEC	access	should	be	allowed.	All	executables
under	this	directory	will	be	executable	by	suEXEC	as	the	user
so	they	should	be	"safe"	programs.	If	you	are	using	a	"simple"
UserDir	directive	(ie.	one	without	a	"*"	in	it)	this	should	be
set	to	the	same	value.	suEXEC	will	not	work	properly	in	cases
where	the	UserDir	directive	points	to	a	location	that	is	not
the	same	as	the	user's	home	directory	as	referenced	in	the
passwd	file.	Default	value	is	"public_html".
If	you	have	virtual	hosts	with	a	different	UserDir	for	each,
you	will	need	to	define	them	to	all	reside	in	one	parent
directory;	then	name	that	parent	directory	here.	If	this	is	not
defined	properly,	"~userdir"	cgi	requests	will	not	work!

--with-suexec-docroot=DIR

Define	as	the	DocumentRoot	set	for	httpd.	This	will	be	the
only	hierarchy	(aside	from	UserDirs)	that	can	be	used	for
suEXEC	behavior.	The	default	directory	is	the	--datadir
value	with	the	suffix	"/htdocs",	e.g.	if	you	configure	with	"--
datadir=/home/apache"	the	directory
"/home/apache/htdocs"	is	used	as	document	root	for	the
suEXEC	wrapper.

--with-suexec-uidmin=UID

Define	this	as	the	lowest	UID	allowed	to	be	a	target	user	for
suEXEC.	For	most	systems,	500	or	100	is	common.	Default
value	is	100.

--with-suexec-gidmin=GID

Define	this	as	the	lowest	GID	allowed	to	be	a	target	group	for
suEXEC.	For	most	systems,	100	is	common	and	therefore
used	as	default	value.

--with-suexec-logfile=FILE

This	defines	the	filename	to	which	all	suEXEC	transactions
and	errors	are	logged	(useful	for	auditing	and	debugging
purposes).	By	default	the	logfile	is	named	"suexec_log"	and
located	in	your	standard	logfile	directory	(--logfiledir).

--with-suexec-safepath=PATH

Define	a	safe	PATH	environment	to	pass	to	CGI	executables.
Default	value	is	"/usr/local/bin:/usr/bin:/bin".

Compiling	and	installing	the	suEXEC	wrapper
If	you	have	enabled	the	suEXEC	feature	with	the	--enable-
suexec	option	the	suexec	binary	(together	with	httpd	itself)	is
automatically	built	if	you	execute	the	make	command.

After	all	components	have	been	built	you	can	execute	the

command	make	install	to	install	them.	The	binary	image
suexec	is	installed	in	the	directory	defined	by	the	--sbindir
option.	The	default	location	is	"/usr/local/apache2/bin/suexec".

Please	note	that	you	need	root	privileges	for	the	installation	step.
In	order	for	the	wrapper	to	set	the	user	ID,	it	must	be	installed	as
owner	root	and	must	have	the	setuserid	execution	bit	set	for	file
modes.

Setting	paranoid	permissions
Although	the	suEXEC	wrapper	will	check	to	ensure	that	its	caller	is
the	correct	user	as	specified	with	the	--with-suexec-caller
configure	option,	there	is	always	the	possibility	that	a	system	or
library	call	suEXEC	uses	before	this	check	may	be	exploitable	on
your	system.	To	counter	this,	and	because	it	is	best-practise	in
general,	you	should	use	filesystem	permissions	to	ensure	that	only
the	group	httpd	runs	as	may	execute	suEXEC.

If	for	example,	your	web	server	is	configured	to	run	as:

User	www

Group	webgroup

and	suexec	is	installed	at	"/usr/local/apache2/bin/suexec",	you
should	run:

chgrp	webgroup	/usr/local/apache2/bin/suexec

chmod	4750	/usr/local/apache2/bin/suexec

This	will	ensure	that	only	the	group	httpd	runs	as	can	even
execute	the	suEXEC	wrapper.

Enabling	&	Disabling	suEXEC

Upon	startup	of	httpd,	it	looks	for	the	file	suexec	in	the	directory
defined	by	the	--sbindir	option	(default	is
"/usr/local/apache/sbin/suexec").	If	httpd	finds	a	properly
configured	suEXEC	wrapper,	it	will	print	the	following	message	to
the	error	log:

[notice]	suEXEC	mechanism	enabled	(wrapper:	/path/to/suexec)

If	you	don't	see	this	message	at	server	startup,	the	server	is	most
likely	not	finding	the	wrapper	program	where	it	expects	it,	or	the
executable	is	not	installed	setuid	root.

If	you	want	to	enable	the	suEXEC	mechanism	for	the	first	time	and
an	Apache	HTTP	Server	is	already	running	you	must	kill	and
restart	httpd.	Restarting	it	with	a	simple	HUP	or	USR1	signal	will
not	be	enough.

If	you	want	to	disable	suEXEC	you	should	kill	and	restart	httpd
after	you	have	removed	the	suexec	file.

Using	suEXEC

Requests	for	CGI	programs	will	call	the	suEXEC	wrapper	only	if
they	are	for	a	virtual	host	containing	a	SuexecUserGroup
directive	or	if	they	are	processed	by	mod_userdir.

Virtual	Hosts:
One	way	to	use	the	suEXEC	wrapper	is	through	the
SuexecUserGroup	directive	in	VirtualHost	definitions.	By
setting	this	directive	to	values	different	from	the	main	server	user
ID,	all	requests	for	CGI	resources	will	be	executed	as	the	User
and	Group	defined	for	that	<VirtualHost>.	If	this	directive	is	not
specified	for	a	<VirtualHost>	then	the	main	server	userid	is
assumed.

User	directories:
Requests	that	are	processed	by	mod_userdir	will	call	the
suEXEC	wrapper	to	execute	CGI	programs	under	the	userid	of	the
requested	user	directory.	The	only	requirement	needed	for	this
feature	to	work	is	for	CGI	execution	to	be	enabled	for	the	user	and
that	the	script	must	meet	the	scrutiny	of	the	security	checks	above.
See	also	the	--with-suexec-userdir	compile	time	option.

Debugging	suEXEC

The	suEXEC	wrapper	will	write	log	information	to	the	file	defined
with	the	--with-suexec-logfile	option	as	indicated	above.	If
you	feel	you	have	configured	and	installed	the	wrapper	properly,
have	a	look	at	this	log	and	the	error_log	for	the	server	to	see
where	you	may	have	gone	astray.

Copyright	2017	The	Apache	Software	Foundation.

Beware	the	Jabberwock:	Warnings	&	Examples

NOTE!	This	section	may	not	be	complete.	For	the	latest	revision	of
this	section	of	the	documentation,	see	the	Online	Documentation
version.

There	are	a	few	points	of	interest	regarding	the	wrapper	that	can
cause	limitations	on	server	setup.	Please	review	these	before
submitting	any	"bugs"	regarding	suEXEC.

suEXEC	Points	Of	Interest
Hierarchy	limitations

For	security	and	efficiency	reasons,	all	suEXEC	requests
must	remain	within	either	a	top-level	document	root	for
virtual	host	requests,	or	one	top-level	personal	document
root	for	userdir	requests.	For	example,	if	you	have	four
VirtualHosts	configured,	you	would	need	to	structure	all
of	your	VHosts'	document	roots	off	of	one	main	httpd
document	hierarchy	to	take	advantage	of	suEXEC	for
VirtualHosts.	(Example	forthcoming.)

suEXEC's	PATH	environment	variable

This	can	be	a	dangerous	thing	to	change.	Make	certain
every	path	you	include	in	this	define	is	a	trusted
directory.	You	don't	want	to	open	people	up	to	having
someone	from	across	the	world	running	a	trojan	horse	on
them.

Altering	the	suEXEC	code

Again,	this	can	cause	Big	Trouble	if	you	try	this	without
knowing	what	you	are	doing.	Stay	away	from	it	if	at	all
possible.

http://httpd.apache.org/docs/2.4/suexec.html

Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Miscellaneous	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Performance	Tuning

Apache	2.x	is	a	general-purpose	webserver,	designed	to	provide	a
balance	of	flexibility,	portability,	and	performance.	Although	it	has	not
been	designed	specifically	to	set	benchmark	records,	Apache	2.x	is
capable	of	high	performance	in	many	real-world	situations.

Compared	to	Apache	1.3,	release	2.x	contains	many	additional
optimizations	to	increase	throughput	and	scalability.	Most	of	these
improvements	are	enabled	by	default.	However,	there	are	compile-
time	and	run-time	configuration	choices	that	can	significantly	affect
performance.	This	document	describes	the	options	that	a	server
administrator	can	configure	to	tune	the	performance	of	an	Apache	2.x
installation.	Some	of	these	configuration	options	enable	the	httpd	to
better	take	advantage	of	the	capabilities	of	the	hardware	and	OS,
while	others	allow	the	administrator	to	trade	functionality	for	speed.

Hardware	and	Operating	System	Issues

The	single	biggest	hardware	issue	affecting	webserver
performance	is	RAM.	A	webserver	should	never	ever	have	to
swap,	as	swapping	increases	the	latency	of	each	request	beyond
a	point	that	users	consider	"fast	enough".	This	causes	users	to	hit
stop	and	reload,	further	increasing	the	load.	You	can,	and	should,
control	the	MaxRequestWorkers	setting	so	that	your	server	does
not	spawn	so	many	children	that	it	starts	swapping.	The	procedure
for	doing	this	is	simple:	determine	the	size	of	your	average	Apache
process,	by	looking	at	your	process	list	via	a	tool	such	as	top,	and
divide	this	into	your	total	available	memory,	leaving	some	room	for
other	processes.

Beyond	that	the	rest	is	mundane:	get	a	fast	enough	CPU,	a	fast
enough	network	card,	and	fast	enough	disks,	where	"fast	enough"
is	something	that	needs	to	be	determined	by	experimentation.

Operating	system	choice	is	largely	a	matter	of	local	concerns.	But
some	guidelines	that	have	proven	generally	useful	are:

Run	the	latest	stable	release	and	patch	level	of	the	operating
system	that	you	choose.	Many	OS	suppliers	have	introduced
significant	performance	improvements	to	their	TCP	stacks
and	thread	libraries	in	recent	years.

If	your	OS	supports	a	sendfile(2)	system	call,	make	sure
you	install	the	release	and/or	patches	needed	to	enable	it.
(With	Linux,	for	example,	this	means	using	Linux	2.4	or	later.
For	early	releases	of	Solaris	8,	you	may	need	to	apply	a
patch.)	On	systems	where	it	is	available,	sendfile	enables
Apache	2	to	deliver	static	content	faster	and	with	lower	CPU
utilization.

Run-Time	Configuration	Issues

Related	Modules Related	Directives
mod_dir

mpm_common

mod_status

AllowOverride

DirectoryIndex

HostnameLookups

EnableMMAP

EnableSendfile

KeepAliveTimeout

MaxSpareServers

MinSpareServers

Options

StartServers

HostnameLookups	and	other	DNS	considerations
Prior	to	Apache	1.3,	HostnameLookups	defaulted	to	On.	This
adds	latency	to	every	request	because	it	requires	a	DNS	lookup	to
complete	before	the	request	is	finished.	In	Apache	1.3	this	setting
defaults	to	Off.	If	you	need	to	have	addresses	in	your	log	files
resolved	to	hostnames,	use	the	logresolve	program	that	comes
with	Apache,	or	one	of	the	numerous	log	reporting	packages
which	are	available.

It	is	recommended	that	you	do	this	sort	of	postprocessing	of	your
log	files	on	some	machine	other	than	the	production	web	server
machine,	in	order	that	this	activity	not	adversely	affect	server
performance.

If	you	use	any	Allow	from	domain	or	Deny	from	domain	directives
(i.e.,	using	a	hostname,	or	a	domain	name,	rather	than	an	IP
address)	then	you	will	pay	for	two	DNS	lookups	(a	reverse,
followed	by	a	forward	lookup	to	make	sure	that	the	reverse	is	not
being	spoofed).	For	best	performance,	therefore,	use	IP

addresses,	rather	than	names,	when	using	these	directives,	if
possible.

Note	that	it's	possible	to	scope	the	directives,	such	as	within	a
<Location	"/server-status">	section.	In	this	case	the	DNS
lookups	are	only	performed	on	requests	matching	the	criteria.
Here's	an	example	which	disables	lookups	except	for	.html	and
.cgi	files:

HostnameLookups	off

<Files	~	"\.(html|cgi)$">

		HostnameLookups	on

</Files>

But	even	still,	if	you	just	need	DNS	names	in	some	CGIs	you	could
consider	doing	the	gethostbyname	call	in	the	specific	CGIs	that
need	it.

FollowSymLinks	and	SymLinksIfOwnerMatch
Wherever	in	your	URL-space	you	do	not	have	an	Options
FollowSymLinks,	or	you	do	have	an	Options
SymLinksIfOwnerMatch,	Apache	will	need	to	issue	extra
system	calls	to	check	up	on	symlinks.	(One	extra	call	per	filename
component.)	For	example,	if	you	had:

DocumentRoot	"/www/htdocs"

<Directory	"/">

		Options	SymLinksIfOwnerMatch

</Directory>

and	a	request	is	made	for	the	URI	/index.html,	then	Apache
will	perform	lstat(2)	on	/www,	/www/htdocs,	and
/www/htdocs/index.html.	The	results	of	these	lstats	are

never	cached,	so	they	will	occur	on	every	single	request.	If	you
really	desire	the	symlinks	security	checking,	you	can	do	something
like	this:

DocumentRoot	"/www/htdocs"

<Directory	"/">

		Options	FollowSymLinks

</Directory>

<Directory	"/www/htdocs">

		Options	-FollowSymLinks	+SymLinksIfOwnerMatch

</Directory>

This	at	least	avoids	the	extra	checks	for	the	DocumentRoot	path.
Note	that	you'll	need	to	add	similar	sections	if	you	have	any
Alias	or	RewriteRule	paths	outside	of	your	document	root.	For
highest	performance,	and	no	symlink	protection,	set
FollowSymLinks	everywhere,	and	never	set
SymLinksIfOwnerMatch.

AllowOverride
Wherever	in	your	URL-space	you	allow	overrides	(typically
.htaccess	files),	Apache	will	attempt	to	open	.htaccess	for
each	filename	component.	For	example,

DocumentRoot	"/www/htdocs"

<Directory	"/">

		AllowOverride	all

</Directory>

and	a	request	is	made	for	the	URI	/index.html.	Then	Apache
will	attempt	to	open	/.htaccess,	/www/.htaccess,	and
/www/htdocs/.htaccess.	The	solutions	are	similar	to	the

previous	case	of	Options	FollowSymLinks.	For	highest
performance	use	AllowOverride	None	everywhere	in	your
filesystem.

Negotiation
If	at	all	possible,	avoid	content	negotiation	if	you're	really
interested	in	every	last	ounce	of	performance.	In	practice	the
benefits	of	negotiation	outweigh	the	performance	penalties.
There's	one	case	where	you	can	speed	up	the	server.	Instead	of
using	a	wildcard	such	as:

DirectoryIndex	index

Use	a	complete	list	of	options:

DirectoryIndex	index.cgi	index.pl	index.shtml	index.html

where	you	list	the	most	common	choice	first.

Also	note	that	explicitly	creating	a	type-map	file	provides	better
performance	than	using	MultiViews,	as	the	necessary
information	can	be	determined	by	reading	this	single	file,	rather
than	having	to	scan	the	directory	for	files.

If	your	site	needs	content	negotiation,	consider	using	type-map
files,	rather	than	the	Options	MultiViews	directive	to
accomplish	the	negotiation.	See	the	Content	Negotiation
documentation	for	a	full	discussion	of	the	methods	of	negotiation,
and	instructions	for	creating	type-map	files.

Memory-mapping
In	situations	where	Apache	2.x	needs	to	look	at	the	contents	of	a

file	being	delivered--for	example,	when	doing	server-side-include
processing--it	normally	memory-maps	the	file	if	the	OS	supports
some	form	of	mmap(2).

On	some	platforms,	this	memory-mapping	improves	performance.
However,	there	are	cases	where	memory-mapping	can	hurt	the
performance	or	even	the	stability	of	the	httpd:

On	some	operating	systems,	mmap	does	not	scale	as	well	as
read(2)	when	the	number	of	CPUs	increases.	On
multiprocessor	Solaris	servers,	for	example,	Apache	2.x
sometimes	delivers	server-parsed	files	faster	when	mmap	is
disabled.

If	you	memory-map	a	file	located	on	an	NFS-mounted
filesystem	and	a	process	on	another	NFS	client	machine
deletes	or	truncates	the	file,	your	process	may	get	a	bus	error
the	next	time	it	tries	to	access	the	mapped	file	content.

For	installations	where	either	of	these	factors	applies,	you	should
use	EnableMMAP	off	to	disable	the	memory-mapping	of
delivered	files.	(Note:	This	directive	can	be	overridden	on	a	per-
directory	basis.)

Sendfile
In	situations	where	Apache	2.x	can	ignore	the	contents	of	the	file
to	be	delivered	--	for	example,	when	serving	static	file	content	--	it
normally	uses	the	kernel	sendfile	support	for	the	file	if	the	OS
supports	the	sendfile(2)	operation.

On	most	platforms,	using	sendfile	improves	performance	by
eliminating	separate	read	and	send	mechanics.	However,	there
are	cases	where	using	sendfile	can	harm	the	stability	of	the	httpd:

Some	platforms	may	have	broken	sendfile	support	that	the

build	system	did	not	detect,	especially	if	the	binaries	were
built	on	another	box	and	moved	to	such	a	machine	with
broken	sendfile	support.

With	an	NFS-mounted	filesystem,	the	kernel	may	be	unable	to
reliably	serve	the	network	file	through	its	own	cache.

For	installations	where	either	of	these	factors	applies,	you	should
use	EnableSendfile	off	to	disable	sendfile	delivery	of	file
contents.	(Note:	This	directive	can	be	overridden	on	a	per-
directory	basis.)

Process	Creation
Prior	to	Apache	1.3	the	MinSpareServers,	MaxSpareServers,
and	StartServers	settings	all	had	drastic	effects	on	benchmark
results.	In	particular,	Apache	required	a	"ramp-up"	period	in	order
to	reach	a	number	of	children	sufficient	to	serve	the	load	being
applied.	After	the	initial	spawning	of	StartServers	children,	only
one	child	per	second	would	be	created	to	satisfy	the
MinSpareServers	setting.	So	a	server	being	accessed	by	100
simultaneous	clients,	using	the	default	StartServers	of	5	would
take	on	the	order	of	95	seconds	to	spawn	enough	children	to
handle	the	load.	This	works	fine	in	practice	on	real-life	servers
because	they	aren't	restarted	frequently.	But	it	does	really	poorly
on	benchmarks	which	might	only	run	for	ten	minutes.

The	one-per-second	rule	was	implemented	in	an	effort	to	avoid
swamping	the	machine	with	the	startup	of	new	children.	If	the
machine	is	busy	spawning	children,	it	can't	service	requests.	But	it
has	such	a	drastic	effect	on	the	perceived	performance	of	Apache
that	it	had	to	be	replaced.	As	of	Apache	1.3,	the	code	will	relax	the
one-per-second	rule.	It	will	spawn	one,	wait	a	second,	then	spawn
two,	wait	a	second,	then	spawn	four,	and	it	will	continue
exponentially	until	it	is	spawning	32	children	per	second.	It	will

stop	whenever	it	satisfies	the	MinSpareServers	setting.

This	appears	to	be	responsive	enough	that	it's	almost
unnecessary	to	twiddle	the	MinSpareServers,
MaxSpareServers	and	StartServers	knobs.	When	more	than
4	children	are	spawned	per	second,	a	message	will	be	emitted	to
the	ErrorLog.	If	you	see	a	lot	of	these	errors,	then	consider
tuning	these	settings.	Use	the	mod_status	output	as	a	guide.

Related	to	process	creation	is	process	death	induced	by	the
MaxConnectionsPerChild	setting.	By	default	this	is	0,	which
means	that	there	is	no	limit	to	the	number	of	connections	handled
per	child.	If	your	configuration	currently	has	this	set	to	some	very
low	number,	such	as	30,	you	may	want	to	bump	this	up
significantly.	If	you	are	running	SunOS	or	an	old	version	of	Solaris,
limit	this	to	10000	or	so	because	of	memory	leaks.

When	keep-alives	are	in	use,	children	will	be	kept	busy	doing
nothing	waiting	for	more	requests	on	the	already	open	connection.
The	default	KeepAliveTimeout	of	5	seconds	attempts	to
minimize	this	effect.	The	tradeoff	here	is	between	network
bandwidth	and	server	resources.	In	no	event	should	you	raise	this
above	about	60	seconds,	as	most	of	the	benefits	are	lost.

http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-4.html

Compile-Time	Configuration	Issues

Choosing	an	MPM
Apache	2.x	supports	pluggable	concurrency	models,	called	Multi-
Processing	Modules	(MPMs).	When	building	Apache,	you	must
choose	an	MPM	to	use.	There	are	platform-specific	MPMs	for
some	platforms:	mpm_netware,	mpmt_os2,	and	mpm_winnt.	For
general	Unix-type	systems,	there	are	several	MPMs	from	which	to
choose.	The	choice	of	MPM	can	affect	the	speed	and	scalability	of
the	httpd:

The	worker	MPM	uses	multiple	child	processes	with	many
threads	each.	Each	thread	handles	one	connection	at	a	time.
Worker	generally	is	a	good	choice	for	high-traffic	servers
because	it	has	a	smaller	memory	footprint	than	the	prefork
MPM.
The	event	MPM	is	threaded	like	the	Worker	MPM,	but	is
designed	to	allow	more	requests	to	be	served	simultaneously
by	passing	off	some	processing	work	to	supporting	threads,
freeing	up	the	main	threads	to	work	on	new	requests.
The	prefork	MPM	uses	multiple	child	processes	with	one
thread	each.	Each	process	handles	one	connection	at	a	time.
On	many	systems,	prefork	is	comparable	in	speed	to	worker,
but	it	uses	more	memory.	Prefork's	threadless	design	has
advantages	over	worker	in	some	situations:	it	can	be	used
with	non-thread-safe	third-party	modules,	and	it	is	easier	to
debug	on	platforms	with	poor	thread	debugging	support.

For	more	information	on	these	and	other	MPMs,	please	see	the
MPM	documentation.

Modules
Since	memory	usage	is	such	an	important	consideration	in
performance,	you	should	attempt	to	eliminate	modules	that	you

are	not	actually	using.	If	you	have	built	the	modules	as	DSOs,
eliminating	modules	is	a	simple	matter	of	commenting	out	the
associated	LoadModule	directive	for	that	module.	This	allows	you
to	experiment	with	removing	modules	and	seeing	if	your	site	still
functions	in	their	absence.

If,	on	the	other	hand,	you	have	modules	statically	linked	into	your
Apache	binary,	you	will	need	to	recompile	Apache	in	order	to
remove	unwanted	modules.

An	associated	question	that	arises	here	is,	of	course,	what
modules	you	need,	and	which	ones	you	don't.	The	answer	here
will,	of	course,	vary	from	one	web	site	to	another.	However,	the
minimal	list	of	modules	which	you	can	get	by	with	tends	to	include
mod_mime,	mod_dir,	and	mod_log_config.	mod_log_config
is,	of	course,	optional,	as	you	can	run	a	web	site	without	log	files.
This	is,	however,	not	recommended.

Atomic	Operations
Some	modules,	such	as	mod_cache	and	recent	development
builds	of	the	worker	MPM,	use	APR's	atomic	API.	This	API
provides	atomic	operations	that	can	be	used	for	lightweight	thread
synchronization.

By	default,	APR	implements	these	operations	using	the	most
efficient	mechanism	available	on	each	target	OS/CPU	platform.
Many	modern	CPUs,	for	example,	have	an	instruction	that	does	an
atomic	compare-and-swap	(CAS)	operation	in	hardware.	On	some
platforms,	however,	APR	defaults	to	a	slower,	mutex-based
implementation	of	the	atomic	API	in	order	to	ensure	compatibility
with	older	CPU	models	that	lack	such	instructions.	If	you	are
building	Apache	for	one	of	these	platforms,	and	you	plan	to	run
only	on	newer	CPUs,	you	can	select	a	faster	atomic
implementation	at	build	time	by	configuring	Apache	with	the	--

enable-nonportable-atomics	option:

./buildconf

./configure	--with-mpm=worker	--enable-nonportable-atomics=yes

The	--enable-nonportable-atomics	option	is	relevant	for
the	following	platforms:

Solaris	on	SPARC
By	default,	APR	uses	mutex-based	atomics	on
Solaris/SPARC.	If	you	configure	with	--enable-
nonportable-atomics,	however,	APR	generates	code	that
uses	a	SPARC	v8plus	opcode	for	fast	hardware	compare-
and-swap.	If	you	configure	Apache	with	this	option,	the	atomic
operations	will	be	more	efficient	(allowing	for	lower	CPU
utilization	and	higher	concurrency),	but	the	resulting
executable	will	run	only	on	UltraSPARC	chips.
Linux	on	x86
By	default,	APR	uses	mutex-based	atomics	on	Linux.	If	you
configure	with	--enable-nonportable-atomics,
however,	APR	generates	code	that	uses	a	486	opcode	for	fast
hardware	compare-and-swap.	This	will	result	in	more	efficient
atomic	operations,	but	the	resulting	executable	will	run	only
on	486	and	later	chips	(and	not	on	386).

mod_status	and	ExtendedStatus	On
If	you	include	mod_status	and	you	also	set	ExtendedStatus
On	when	building	and	running	Apache,	then	on	every	request
Apache	will	perform	two	calls	to	gettimeofday(2)	(or
times(2)	depending	on	your	operating	system),	and	(pre-1.3)
several	extra	calls	to	time(2).	This	is	all	done	so	that	the	status
report	contains	timing	indications.	For	highest	performance,	set
ExtendedStatus	off	(which	is	the	default).

accept	Serialization	-	Multiple	Sockets

Warning:

This	section	has	not	been	fully	updated	to	take	into	account
changes	made	in	the	2.x	version	of	the	Apache	HTTP	Server.
Some	of	the	information	may	still	be	relevant,	but	please	use	it
with	care.

This	discusses	a	shortcoming	in	the	Unix	socket	API.	Suppose
your	web	server	uses	multiple	Listen	statements	to	listen	on
either	multiple	ports	or	multiple	addresses.	In	order	to	test	each
socket	to	see	if	a	connection	is	ready,	Apache	uses	select(2).
select(2)	indicates	that	a	socket	has	zero	or	at	least	one
connection	waiting	on	it.	Apache's	model	includes	multiple
children,	and	all	the	idle	ones	test	for	new	connections	at	the	same
time.	A	naive	implementation	looks	something	like	this	(these
examples	do	not	match	the	code,	they're	contrived	for	pedagogical
purposes):

								for	(;;)	{

										for	(;;)	{

												fd_set	accept_fds;

												FD_ZERO	(&accept_fds);

												for	(i	=	first_socket;	i	<=	last_socket;	++i)	{

														FD_SET	(i,	&accept_fds);

												}

												rc	=	select	(last_socket+1,	&accept_fds,	NULL,	NULL,	NULL);

												if	(rc	<	1)	continue;

												new_connection	=	-1;

												for	(i	=	first_socket;	i	<=	last_socket;	++i)	{

														if	(FD_ISSET	(i,	&accept_fds))	{

																new_connection	=	accept	(i,	NULL,	NULL);

																if	(new_connection	!=	-1)	break;

														}

												}

												if	(new_connection	!=	-1)	break;

										}

										process_the(new_connection);

								}

But	this	naive	implementation	has	a	serious	starvation	problem.
Recall	that	multiple	children	execute	this	loop	at	the	same	time,
and	so	multiple	children	will	block	at	select	when	they	are	in
between	requests.	All	those	blocked	children	will	awaken	and
return	from	select	when	a	single	request	appears	on	any	socket.
(The	number	of	children	which	awaken	varies	depending	on	the
operating	system	and	timing	issues.)	They	will	all	then	fall	down
into	the	loop	and	try	to	accept	the	connection.	But	only	one	will
succeed	(assuming	there's	still	only	one	connection	ready).	The
rest	will	be	blocked	in	accept.	This	effectively	locks	those
children	into	serving	requests	from	that	one	socket	and	no	other
sockets,	and	they'll	be	stuck	there	until	enough	new	requests
appear	on	that	socket	to	wake	them	all	up.	This	starvation	problem
was	first	documented	in	PR#467.	There	are	at	least	two	solutions.

One	solution	is	to	make	the	sockets	non-blocking.	In	this	case	the
accept	won't	block	the	children,	and	they	will	be	allowed	to
continue	immediately.	But	this	wastes	CPU	time.	Suppose	you
have	ten	idle	children	in	select,	and	one	connection	arrives.
Then	nine	of	those	children	will	wake	up,	try	to	accept	the
connection,	fail,	and	loop	back	into	select,	accomplishing
nothing.	Meanwhile	none	of	those	children	are	servicing	requests
that	occurred	on	other	sockets	until	they	get	back	up	to	the
select	again.	Overall	this	solution	does	not	seem	very	fruitful
unless	you	have	as	many	idle	CPUs	(in	a	multiprocessor	box)	as
you	have	idle	children	(not	a	very	likely	situation).

http://bugs.apache.org/index/full/467

Another	solution,	the	one	used	by	Apache,	is	to	serialize	entry	into
the	inner	loop.	The	loop	looks	like	this	(differences	highlighted):

								for	(;;)	{

										accept_mutex_on	();

										for	(;;)	{

												fd_set	accept_fds;

												

												FD_ZERO	(&accept_fds);

												for	(i	=	first_socket;	i	<=	last_socket;	++i)	{

														FD_SET	(i,	&accept_fds);

												}

												rc	=	select	(last_socket+1,	&accept_fds,	NULL,	NULL,	NULL);

												if	(rc	<	1)	continue;

												new_connection	=	-1;

												for	(i	=	first_socket;	i	<=	last_socket;	++i)	{

														if	(FD_ISSET	(i,	&accept_fds))	{

																new_connection	=	accept	(i,	NULL,	NULL);

																if	(new_connection	!=	-1)	break;

														}

												}

												if	(new_connection	!=	-1)	break;

										}

										accept_mutex_off	();

										process	the	new_connection;

								}

The	functions	accept_mutex_on	and	accept_mutex_off
implement	a	mutual	exclusion	semaphore.	Only	one	child	can
have	the	mutex	at	any	time.	There	are	several	choices	for
implementing	these	mutexes.	The	choice	is	defined	in
src/conf.h	(pre-1.3)	or	src/include/ap_config.h	(1.3	or
later).	Some	architectures	do	not	have	any	locking	choice	made,
on	these	architectures	it	is	unsafe	to	use	multiple	Listen
directives.

The	Mutex	directive	can	be	used	to	change	the	mutex
implementation	of	the	mpm-accept	mutex	at	run-time.	Special
considerations	for	different	mutex	implementations	are
documented	with	that	directive.

Another	solution	that	has	been	considered	but	never	implemented
is	to	partially	serialize	the	loop	--	that	is,	let	in	a	certain	number	of
processes.	This	would	only	be	of	interest	on	multiprocessor	boxes
where	it's	possible	that	multiple	children	could	run	simultaneously,
and	the	serialization	actually	doesn't	take	advantage	of	the	full
bandwidth.	This	is	a	possible	area	of	future	investigation,	but
priority	remains	low	because	highly	parallel	web	servers	are	not
the	norm.

Ideally	you	should	run	servers	without	multiple	Listen	statements
if	you	want	the	highest	performance.	But	read	on.

accept	Serialization	-	Single	Socket
The	above	is	fine	and	dandy	for	multiple	socket	servers,	but	what
about	single	socket	servers?	In	theory	they	shouldn't	experience
any	of	these	same	problems	because	all	the	children	can	just
block	in	accept(2)	until	a	connection	arrives,	and	no	starvation
results.	In	practice	this	hides	almost	the	same	"spinning"	behavior
discussed	above	in	the	non-blocking	solution.	The	way	that	most
TCP	stacks	are	implemented,	the	kernel	actually	wakes	up	all
processes	blocked	in	accept	when	a	single	connection	arrives.
One	of	those	processes	gets	the	connection	and	returns	to	user-
space.	The	rest	spin	in	the	kernel	and	go	back	to	sleep	when	they
discover	there's	no	connection	for	them.	This	spinning	is	hidden
from	the	user-land	code,	but	it's	there	nonetheless.	This	can	result
in	the	same	load-spiking	wasteful	behavior	that	a	non-blocking
solution	to	the	multiple	sockets	case	can.

For	this	reason	we	have	found	that	many	architectures	behave

more	"nicely"	if	we	serialize	even	the	single	socket	case.	So	this	is
actually	the	default	in	almost	all	cases.	Crude	experiments	under
Linux	(2.0.30	on	a	dual	Pentium	pro	166	w/128Mb	RAM)	have
shown	that	the	serialization	of	the	single	socket	case	causes	less
than	a	3%	decrease	in	requests	per	second	over	unserialized
single-socket.	But	unserialized	single-socket	showed	an	extra
100ms	latency	on	each	request.	This	latency	is	probably	a	wash
on	long	haul	lines,	and	only	an	issue	on	LANs.	If	you	want	to
override	the	single	socket	serialization,	you	can	define
SINGLE_LISTEN_UNSERIALIZED_ACCEPT,	and	then	single-
socket	servers	will	not	serialize	at	all.

Lingering	Close
As	discussed	in	draft-ietf-http-connection-00.txt	section	8,	in	order
for	an	HTTP	server	to	reliably	implement	the	protocol,	it	needs	to
shut	down	each	direction	of	the	communication	independently.
(Recall	that	a	TCP	connection	is	bi-directional.	Each	half	is
independent	of	the	other.)

When	this	feature	was	added	to	Apache,	it	caused	a	flurry	of
problems	on	various	versions	of	Unix	because	of
shortsightedness.	The	TCP	specification	does	not	state	that	the
FIN_WAIT_2	state	has	a	timeout,	but	it	doesn't	prohibit	it.	On
systems	without	the	timeout,	Apache	1.2	induces	many	sockets
stuck	forever	in	the	FIN_WAIT_2	state.	In	many	cases	this	can	be
avoided	by	simply	upgrading	to	the	latest	TCP/IP	patches	supplied
by	the	vendor.	In	cases	where	the	vendor	has	never	released
patches	(i.e.,	SunOS4	--	although	folks	with	a	source	license	can
patch	it	themselves),	we	have	decided	to	disable	this	feature.

There	are	two	ways	to	accomplish	this.	One	is	the	socket	option
SO_LINGER.	But	as	fate	would	have	it,	this	has	never	been
implemented	properly	in	most	TCP/IP	stacks.	Even	on	those
stacks	with	a	proper	implementation	(i.e.,	Linux	2.0.31),	this

http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

method	proves	to	be	more	expensive	(cputime)	than	the	next
solution.

For	the	most	part,	Apache	implements	this	in	a	function	called
lingering_close	(in	http_main.c).	The	function	looks
roughly	like	this:

								void	lingering_close	(int	s)

								{

										char	junk_buffer[2048];

										

										/*	shutdown	the	sending	side	*/

										shutdown	(s,	1);

										signal	(SIGALRM,	lingering_death);

										alarm	(30);

										for	(;;)	{

												select	(s	for	reading,	2	second	timeout);

												if	(error)	break;

												if	(s	is	ready	for	reading)	{

														if	(read	(s,	junk_buffer,	sizeof	(junk_buffer))	<=	0)	{

																break;

														}

														/*	just	toss	away	whatever	is	here	*/

												}

										}

										

										close	(s);

								}

This	naturally	adds	some	expense	at	the	end	of	a	connection,	but
it	is	required	for	a	reliable	implementation.	As	HTTP/1.1	becomes
more	prevalent,	and	all	connections	are	persistent,	this	expense
will	be	amortized	over	more	requests.	If	you	want	to	play	with	fire

and	disable	this	feature,	you	can	define	NO_LINGCLOSE,	but	this
is	not	recommended	at	all.	In	particular,	as	HTTP/1.1	pipelined
persistent	connections	come	into	use,	lingering_close	is	an
absolute	necessity	(and	pipelined	connections	are	faster,	so	you
want	to	support	them).

Scoreboard	File
Apache's	parent	and	children	communicate	with	each	other
through	something	called	the	scoreboard.	Ideally	this	should	be
implemented	in	shared	memory.	For	those	operating	systems	that
we	either	have	access	to,	or	have	been	given	detailed	ports	for,	it
typically	is	implemented	using	shared	memory.	The	rest	default	to
using	an	on-disk	file.	The	on-disk	file	is	not	only	slow,	but	it	is
unreliable	(and	less	featured).	Peruse	the	src/main/conf.h	file
for	your	architecture,	and	look	for	either	USE_MMAP_SCOREBOARD
or	USE_SHMGET_SCOREBOARD.	Defining	one	of	those	two	(as	well
as	their	companions	HAVE_MMAP	and	HAVE_SHMGET	respectively)
enables	the	supplied	shared	memory	code.	If	your	system	has
another	type	of	shared	memory,	edit	the	file
src/main/http_main.c	and	add	the	hooks	necessary	to	use	it
in	Apache.	(Send	us	back	a	patch	too,	please.)

Historical	note:	The	Linux	port	of	Apache	didn't	start	to	use
shared	memory	until	version	1.2	of	Apache.	This	oversight
resulted	in	really	poor	and	unreliable	behavior	of	earlier	versions
of	Apache	on	Linux.

DYNAMIC_MODULE_LIMIT
If	you	have	no	intention	of	using	dynamically	loaded	modules	(you
probably	don't	if	you're	reading	this	and	tuning	your	server	for
every	last	ounce	of	performance),	then	you	should	add	-
DDYNAMIC_MODULE_LIMIT=0	when	building	your	server.	This

http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

will	save	RAM	that's	allocated	only	for	supporting	dynamically
loaded	modules.

Appendix:	Detailed	Analysis	of	a	Trace

Here	is	a	system	call	trace	of	Apache	2.0.38	with	the	worker	MPM
on	Solaris	8.	This	trace	was	collected	using:

truss	-l	-p	httpd_child_pid.

The	-l	option	tells	truss	to	log	the	ID	of	the	LWP	(lightweight
process--Solaris'	form	of	kernel-level	thread)	that	invokes	each
system	call.

Other	systems	may	have	different	system	call	tracing	utilities	such
as	strace,	ktrace,	or	par.	They	all	produce	similar	output.

In	this	trace,	a	client	has	requested	a	10KB	static	file	from	the
httpd.	Traces	of	non-static	requests	or	requests	with	content
negotiation	look	wildly	different	(and	quite	ugly	in	some	cases).

/67:				accept(3,	0x00200BEC,	0x00200C0C,	1)	(sleeping...)

/67:				accept(3,	0x00200BEC,	0x00200C0C,	1)												=	9

In	this	trace,	the	listener	thread	is	running	within	LWP	#67.

Note	the	lack	of	accept(2)	serialization.	On	this	particular
platform,	the	worker	MPM	uses	an	unserialized	accept	by
default	unless	it	is	listening	on	multiple	ports.

/65:				lwp_park(0x00000000,	0)																									=	0

/67:				lwp_unpark(65,	1)																															=	0

Upon	accepting	the	connection,	the	listener	thread	wakes	up	a
worker	thread	to	do	the	request	processing.	In	this	trace,	the
worker	thread	that	handles	the	request	is	mapped	to	LWP	#65.

/65:				getsockname(9,	0x00200BA4,	0x00200BC4,	1)							=	0

In	order	to	implement	virtual	hosts,	Apache	needs	to	know	the
local	socket	address	used	to	accept	the	connection.	It	is	possible
to	eliminate	this	call	in	many	situations	(such	as	when	there	are	no
virtual	hosts,	or	when	Listen	directives	are	used	which	do	not
have	wildcard	addresses).	But	no	effort	has	yet	been	made	to	do
these	optimizations.

/65:				brk(0x002170E8)																																	=	0

/65:				brk(0x002190E8)																																	=	0

The	brk(2)	calls	allocate	memory	from	the	heap.	It	is	rare	to	see
these	in	a	system	call	trace,	because	the	httpd	uses	custom
memory	allocators	(apr_pool	and	apr_bucket_alloc)	for
most	request	processing.	In	this	trace,	the	httpd	has	just	been
started,	so	it	must	call	malloc(3)	to	get	the	blocks	of	raw
memory	with	which	to	create	the	custom	memory	allocators.

/65:				fcntl(9,	F_GETFL,	0x00000000)																			=	2

/65:				fstat64(9,	0xFAF7B818)																										=	0

/65:				getsockopt(9,	65535,	8192,	0xFAF7B918,	0xFAF7B910,	2190656)	=	0

/65:				fstat64(9,	0xFAF7B818)																										=	0

/65:				getsockopt(9,	65535,	8192,	0xFAF7B918,	0xFAF7B914,	2190656)	=	0

/65:				setsockopt(9,	65535,	8192,	0xFAF7B918,	4,	2190656)	=	0

/65:				fcntl(9,	F_SETFL,	0x00000082)																			=	0

Next,	the	worker	thread	puts	the	connection	to	the	client	(file
descriptor	9)	in	non-blocking	mode.	The	setsockopt(2)	and
getsockopt(2)	calls	are	a	side-effect	of	how	Solaris'	libc
handles	fcntl(2)	on	sockets.

/65:				read(9,	"	G	E	T			/	1	0	k	.	h	t	m"..,	8000)					=	97

The	worker	thread	reads	the	request	from	the	client.

/65:				stat("/var/httpd/apache/httpd-8999/htdocs/10k.html",	0xFAF7B978)	=	0

/65:				open("/var/httpd/apache/httpd-8999/htdocs/10k.html",	O_RDONLY)	=	10

This	httpd	has	been	configured	with	Options	FollowSymLinks
and	AllowOverride	None.	Thus	it	doesn't	need	to	lstat(2)
each	directory	in	the	path	leading	up	to	the	requested	file,	nor
check	for	.htaccess	files.	It	simply	calls	stat(2)	to	verify	that
the	file:	1)	exists,	and	2)	is	a	regular	file,	not	a	directory.

/65:				sendfilev(0,	9,	0x00200F90,	2,	0xFAF7B53C)						=	10269

In	this	example,	the	httpd	is	able	to	send	the	HTTP	response
header	and	the	requested	file	with	a	single	sendfilev(2)
system	call.	Sendfile	semantics	vary	among	operating	systems.
On	some	other	systems,	it	is	necessary	to	do	a	write(2)	or
writev(2)	call	to	send	the	headers	before	calling
sendfile(2).

/65:				write(4,	"	1	2	7	.	0	.	0	.	1			-		"..,	78)						=	78

This	write(2)	call	records	the	request	in	the	access	log.	Note
that	one	thing	missing	from	this	trace	is	a	time(2)	call.	Unlike
Apache	1.3,	Apache	2.x	uses	gettimeofday(3)	to	look	up	the
time.	On	some	operating	systems,	like	Linux	or	Solaris,
gettimeofday	has	an	optimized	implementation	that	doesn't
require	as	much	overhead	as	a	typical	system	call.

/65:				shutdown(9,	1,	1)																															=	0

/65:				poll(0xFAF7B980,	1,	2000)																							=	1

/65:				read(9,	0xFAF7BC20,	512)																								=	0

/65:				close(9)																																								=	0

The	worker	thread	does	a	lingering	close	of	the	connection.

/65:				close(10)																																							=	0

/65:				lwp_park(0x00000000,	0)									(sleeping...)

Finally	the	worker	thread	closes	the	file	that	it	has	just	delivered

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

and	blocks	until	the	listener	assigns	it	another	connection.

/67:				accept(3,	0x001FEB74,	0x001FEB94,	1)	(sleeping...)

Meanwhile,	the	listener	thread	is	able	to	accept	another
connection	as	soon	as	it	has	dispatched	this	connection	to	a
worker	thread	(subject	to	some	flow-control	logic	in	the	worker
MPM	that	throttles	the	listener	if	all	the	available	workers	are
busy).	Though	it	isn't	apparent	from	this	trace,	the	next
accept(2)	can	(and	usually	does,	under	high	load	conditions)
occur	in	parallel	with	the	worker	thread's	handling	of	the	just-
accepted	connection.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Virtual	Hosts

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Name-based	Virtual	Host	Support

This	document	describes	when	and	how	to	use	name-based	virtual
hosts.

See	also
IP-based	Virtual	Host	Support
An	In-Depth	Discussion	of	Virtual	Host	Matching
Dynamically	configured	mass	virtual	hosting
Virtual	Host	examples	for	common	setups

https://www.apache.org/foundation/contributing.html

Name-based	vs.	IP-based	Virtual	Hosts

IP-based	virtual	hosts	use	the	IP	address	of	the	connection	to
determine	the	correct	virtual	host	to	serve.	Therefore	you	need	to
have	a	separate	IP	address	for	each	host.

With	name-based	virtual	hosting,	the	server	relies	on	the	client	to
report	the	hostname	as	part	of	the	HTTP	headers.	Using	this
technique,	many	different	hosts	can	share	the	same	IP	address.

Name-based	virtual	hosting	is	usually	simpler,	since	you	need	only
configure	your	DNS	server	to	map	each	hostname	to	the	correct
IP	address	and	then	configure	the	Apache	HTTP	Server	to
recognize	the	different	hostnames.	Name-based	virtual	hosting
also	eases	the	demand	for	scarce	IP	addresses.	Therefore	you
should	use	name-based	virtual	hosting	unless	you	are	using
equipment	that	explicitly	demands	IP-based	hosting.	Historical
reasons	for	IP-based	virtual	hosting	based	on	client	support	are	no
longer	applicable	to	a	general-purpose	web	server.

Name-based	virtual	hosting	builds	off	of	the	IP-based	virtual	host
selection	algorithm,	meaning	that	searches	for	the	proper	server
name	occur	only	between	virtual	hosts	that	have	the	best	IP-based
address.

How	the	server	selects	the	proper	name-based
virtual	host

It	is	important	to	recognize	that	the	first	step	in	name-based	virtual
host	resolution	is	IP-based	resolution.	Name-based	virtual	host
resolution	only	chooses	the	most	appropriate	name-based	virtual
host	after	narrowing	down	the	candidates	to	the	best	IP-based
match.	Using	a	wildcard	(*)	for	the	IP	address	in	all	of	the
VirtualHost	directives	makes	this	IP-based	mapping	irrelevant.

When	a	request	arrives,	the	server	will	find	the	best	(most	specific)
matching	<VirtualHost>	argument	based	on	the	IP	address
and	port	used	by	the	request.	If	there	is	more	than	one	virtual	host
containing	this	best-match	address	and	port	combination,	Apache
will	further	compare	the	ServerName	and	ServerAlias
directives	to	the	server	name	present	in	the	request.

If	you	omit	the	ServerName	directive	from	any	name-based	virtual
host,	the	server	will	default	to	a	fully	qualified	domain	name
(FQDN)	derived	from	the	system	hostname.	This	implicitly	set
server	name	can	lead	to	counter-intuitive	virtual	host	matching	and
is	discouraged.

The	default	name-based	vhost	for	an	IP	and	port
combination
If	no	matching	ServerName	or	ServerAlias	is	found	in	the	set	of
virtual	hosts	containing	the	most	specific	matching	IP	address	and
port	combination,	then	the	first	listed	virtual	host	that	matches
that	will	be	used.

Using	Name-based	Virtual	Hosts

Related	Modules Related	Directives
core DocumentRoot

ServerAlias

ServerName

<VirtualHost>

The	first	step	is	to	create	a	<VirtualHost>	block	for	each
different	host	that	you	would	like	to	serve.	Inside	each
<VirtualHost>	block,	you	will	need	at	minimum	a	ServerName
directive	to	designate	which	host	is	served	and	a	DocumentRoot
directive	to	show	where	in	the	filesystem	the	content	for	that	host
lives.

Main	host	goes	away

Any	request	that	doesn't	match	an	existing	<VirtualHost>	is
handled	by	the	global	server	configuration,	regardless	of	the
hostname	or	ServerName.

When	you	add	a	name-based	virtual	host	to	an	existing	server,
and	the	virtual	host	arguments	match	preexisting	IP	and	port
combinations,	requests	will	now	be	handled	by	an	explicit	virtual
host.	In	this	case,	it's	usually	wise	to	create	a	default	virtual	host
with	a	ServerName	matching	that	of	the	base	server.	New
domains	on	the	same	interface	and	port,	but	requiring	separate
configurations,	can	then	be	added	as	subsequent	(non-default)
virtual	hosts.

ServerName	inheritance

It	is	best	to	always	explicitly	list	a	ServerName	in	every	name-
based	virtual	host.

If	a	VirtualHost	doesn't	specify	a	ServerName,	a	server

name	will	be	inherited	from	the	base	server	configuration.	If	no
server	name	was	specified	globally,	one	is	detected	at	startup
through	reverse	DNS	resolution	of	the	first	listening	address.	In
either	case,	this	inherited	server	name	will	influence	name-
based	virtual	host	resolution,	so	it	is	best	to	always	explicitly	list
a	ServerName	in	every	name-based	virtual	host.

For	example,	suppose	that	you	are	serving	the	domain
www.example.com	and	you	wish	to	add	the	virtual	host
other.example.com,	which	points	at	the	same	IP	address.
Then	you	simply	add	the	following	to	httpd.conf:

<VirtualHost	*:80>

				#	This	first-listed	virtual	host	is	also	the	default	for	*:80

				ServerName	www.example.com

				ServerAlias	example.com	

				DocumentRoot	"/www/domain"

</VirtualHost>

<VirtualHost	*:80>

				ServerName	other.example.com

				DocumentRoot	"/www/otherdomain"

</VirtualHost>

You	can	alternatively	specify	an	explicit	IP	address	in	place	of	the
*	in	<VirtualHost>	directives.	For	example,	you	might	want	to
do	this	in	order	to	run	some	name-based	virtual	hosts	on	one	IP
address,	and	either	IP-based,	or	another	set	of	name-based	virtual
hosts	on	another	address.

Many	servers	want	to	be	accessible	by	more	than	one	name.	This
is	possible	with	the	ServerAlias	directive,	placed	inside	the
<VirtualHost>	section.	For	example	in	the	first
<VirtualHost>	block	above,	the	ServerAlias	directive

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

indicates	that	the	listed	names	are	other	names	which	people	can
use	to	see	that	same	web	site:

ServerAlias	example.com	*.example.com

then	requests	for	all	hosts	in	the	example.com	domain	will	be
served	by	the	www.example.com	virtual	host.	The	wildcard
characters	*	and	?	can	be	used	to	match	names.	Of	course,	you
can't	just	make	up	names	and	place	them	in	ServerName	or
ServerAlias.	You	must	first	have	your	DNS	server	properly
configured	to	map	those	names	to	an	IP	address	associated	with
your	server.

Name-based	virtual	hosts	for	the	best-matching	set	of
<virtualhost>s	are	processed	in	the	order	they	appear	in	the
configuration.	The	first	matching	ServerName	or	ServerAlias
is	used,	with	no	different	precedence	for	wildcards	(nor	for
ServerName	vs.	ServerAlias).

The	complete	list	of	names	in	the	VirtualHost	directive	are
treated	just	like	a	(non	wildcard)	ServerAlias.

Finally,	you	can	fine-tune	the	configuration	of	the	virtual	hosts	by
placing	other	directives	inside	the	<VirtualHost>	containers.
Most	directives	can	be	placed	in	these	containers	and	will	then
change	the	configuration	only	of	the	relevant	virtual	host.	To	find
out	if	a	particular	directive	is	allowed,	check	the	Context	of	the
directive.	Configuration	directives	set	in	the	main	server	context
(outside	any	<VirtualHost>	container)	will	be	used	only	if	they
are	not	overridden	by	the	virtual	host	settings.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Virtual	Hosts

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	IP-based	Virtual	Host	Support

See	also
Name-based	Virtual	Hosts	Support

https://www.apache.org/foundation/contributing.html

What	is	IP-based	virtual	hosting

IP-based	virtual	hosting	is	a	method	to	apply	different	directives
based	on	the	IP	address	and	port	a	request	is	received	on.	Most
commonly,	this	is	used	to	serve	different	websites	on	different
ports	or	interfaces.

In	many	cases,	name-based	virtual	hosts	are	more	convenient,
because	they	allow	many	virtual	hosts	to	share	a	single
address/port.	See	Name-based	vs.	IP-based	Virtual	Hosts	to	help
you	decide.

System	requirements

As	the	term	IP-based	indicates,	the	server	must	have	a	different
IP	address/port	combination	for	each	IP-based	virtual	host.
This	can	be	achieved	by	the	machine	having	several	physical
network	connections,	or	by	use	of	virtual	interfaces	which	are
supported	by	most	modern	operating	systems	(see	system
documentation	for	details,	these	are	frequently	called	"ip	aliases",
and	the	"ifconfig"	command	is	most	commonly	used	to	set	them
up),	and/or	using	multiple	port	numbers.

In	the	terminology	of	Apache	HTTP	Server,	using	a	single	IP
address	but	multiple	TCP	ports,	is	also	IP-based	virtual	hosting.

How	to	set	up	Apache

There	are	two	ways	of	configuring	apache	to	support	multiple
hosts.	Either	by	running	a	separate	httpd	daemon	for	each
hostname,	or	by	running	a	single	daemon	which	supports	all	the
virtual	hosts.

Use	multiple	daemons	when:

There	are	security	partitioning	issues,	such	as	company1
does	not	want	anyone	at	company2	to	be	able	to	read	their
data	except	via	the	web.	In	this	case	you	would	need	two
daemons,	each	running	with	different	User,	Group,	Listen,
and	ServerRoot	settings.
You	can	afford	the	memory	and	file	descriptor	requirements	of
listening	to	every	IP	alias	on	the	machine.	It's	only	possible	to
Listen	to	the	"wildcard"	address,	or	to	specific	addresses.
So	if	you	have	a	need	to	listen	to	a	specific	address	for
whatever	reason,	then	you	will	need	to	listen	to	all	specific
addresses.	(Although	one	httpd	could	listen	to	N-1	of	the
addresses,	and	another	could	listen	to	the	remaining
address.)

Use	a	single	daemon	when:

Sharing	of	the	httpd	configuration	between	virtual	hosts	is
acceptable.
The	machine	services	a	large	number	of	requests,	and	so	the
performance	loss	in	running	separate	daemons	may	be
significant.

Setting	up	multiple	daemons

Create	a	separate	httpd	installation	for	each	virtual	host.	For
each	installation,	use	the	Listen	directive	in	the	configuration	file
to	select	which	IP	address	(or	virtual	host)	that	daemon	services.
e.g.

Listen	192.0.2.100:80

It	is	recommended	that	you	use	an	IP	address	instead	of	a
hostname	(see	DNS	caveats).

Setting	up	a	single	daemon	with	virtual	hosts

For	this	case,	a	single	httpd	will	service	requests	for	the	main
server	and	all	the	virtual	hosts.	The	VirtualHost	directive	in	the
configuration	file	is	used	to	set	the	values	of	ServerAdmin,
ServerName,	DocumentRoot,	ErrorLog	and	TransferLog	or
CustomLog	configuration	directives	to	different	values	for	each
virtual	host.	e.g.

<VirtualHost	172.20.30.40:80>

				ServerAdmin	webmaster@www1.example.com

				DocumentRoot	"/www/vhosts/www1"

				ServerName	www1.example.com

				ErrorLog	"/www/logs/www1/error_log"

				CustomLog	"/www/logs/www1/access_log"	combined

</VirtualHost>

<VirtualHost	172.20.30.50:80>

				ServerAdmin	webmaster@www2.example.org

				DocumentRoot	"/www/vhosts/www2"

				ServerName	www2.example.org

				ErrorLog	"/www/logs/www2/error_log"

				CustomLog	"/www/logs/www2/access_log"	combined

</VirtualHost>

It	is	recommended	that	you	use	an	IP	address	instead	of	a
hostname	in	the	<VirtualHost>	directive	(see	DNS	caveats).

Specific	IP	addresses	or	ports	have	precedence	over	their
wildcard	equivalents,	and	any	virtual	host	that	matches	has
precedence	over	the	servers	base	configuration.

Almost	any	configuration	directive	can	be	put	in	the	VirtualHost
directive,	with	the	exception	of	directives	that	control	process
creation	and	a	few	other	directives.	To	find	out	if	a	directive	can	be
used	in	the	VirtualHost	directive,	check	the	Context	using	the

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

directive	index.

SuexecUserGroup	may	be	used	inside	a	VirtualHost	directive	if
the	suEXEC	wrapper	is	used.

SECURITY:	When	specifying	where	to	write	log	files,	be	aware	of
some	security	risks	which	are	present	if	anyone	other	than	the
user	that	starts	Apache	has	write	access	to	the	directory	where
they	are	written.	See	the	security	tips	document	for	details.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Virtual	Hosts

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Dynamically	Configured	Mass	Virtual	Hosting

This	document	describes	how	to	efficiently	serve	an	arbitrary	number
of	virtual	hosts	with	the	Apache	HTTP	Server.	A	separate	document
discusses	using	mod_rewrite	to	create	dynamic	mass	virtual	hosts.

Motivation

The	techniques	described	here	are	of	interest	if	your	httpd.conf
contains	many	<VirtualHost>	sections	that	are	substantially
the	same,	for	example:

<VirtualHost	111.22.33.44>

				ServerName																	customer-1.example.com

				DocumentRoot								"/www/hosts/customer-1.example.com/docs"

				ScriptAlias		"/cgi-bin/"		"/www/hosts/customer-1.example.com/cgi-bin"

</VirtualHost>

<VirtualHost	111.22.33.44>

				ServerName																	customer-2.example.com

				DocumentRoot								"/www/hosts/customer-2.example.com/docs"

				ScriptAlias		"/cgi-bin/"		"/www/hosts/customer-2.example.com/cgi-bin"

</VirtualHost>

<VirtualHost	111.22.33.44>

				ServerName																	customer-N.example.com

				DocumentRoot								"/www/hosts/customer-N.example.com/docs"

				ScriptAlias		"/cgi-bin/"		"/www/hosts/customer-N.example.com/cgi-bin"

</VirtualHost>

We	wish	to	replace	these	multiple	<VirtualHost>	blocks	with	a
mechanism	that	works	them	out	dynamically.	This	has	a	number	of
advantages:

1.	 Your	configuration	file	is	smaller,	so	Apache	starts	more
quickly	and	uses	less	memory.	Perhaps	more	importantly,	the
smaller	configuration	is	easier	to	maintain,	and	leaves	less
room	for	errors.

2.	 Adding	virtual	hosts	is	simply	a	matter	of	creating	the
appropriate	directories	in	the	filesystem	and	entries	in	the
DNS	-	you	don't	need	to	reconfigure	or	restart	Apache.

The	main	disadvantage	is	that	you	cannot	have	a	different	log	file
for	each	virtual	host;	however,	if	you	have	many	virtual	hosts,
doing	this	can	be	a	bad	idea	anyway,	because	of	the	number	of
file	descriptors	needed.	It	is	better	to	log	to	a	pipe	or	a	fifo,	and
arrange	for	the	process	at	the	other	end	to	split	up	the	log	files	into
one	per	virtual	host.	One	example	of	such	a	process	can	be	found
in	the	split-logfile	utility.

Overview

A	virtual	host	is	defined	by	two	pieces	of	information:	its	IP
address,	and	the	contents	of	the	Host:	header	in	the	HTTP
request.	The	dynamic	mass	virtual	hosting	technique	used	here	is
based	on	automatically	inserting	this	information	into	the
pathname	of	the	file	that	is	used	to	satisfy	the	request.	This	can	be
most	easily	done	by	using	mod_vhost_alias	with	Apache	httpd.
Alternatively,	mod_rewrite	can	be	used.

Both	of	these	modules	are	disabled	by	default;	you	must	enable
one	of	them	when	configuring	and	building	Apache	httpd	if	you
want	to	use	this	technique.

A	couple	of	things	need	to	be	determined	from	the	request	in	order
to	make	the	dynamic	virtual	host	look	like	a	normal	one.	The	most
important	is	the	server	name,	which	is	used	by	the	server	to
generate	self-referential	URLs	etc.	It	is	configured	with	the
ServerName	directive,	and	it	is	available	to	CGIs	via	the
SERVER_NAME	environment	variable.	The	actual	value	used	at	run
time	is	controlled	by	the	UseCanonicalName	setting.	With
UseCanonicalName	Off,	the	server	name	is	taken	from	the
contents	of	the	Host:	header	in	the	request.	With
UseCanonicalName	DNS,	it	is	taken	from	a	reverse	DNS	lookup
of	the	virtual	host's	IP	address.	The	former	setting	is	used	for
name-based	dynamic	virtual	hosting,	and	the	latter	is	used	for	IP-
based	hosting.	If	httpd	cannot	work	out	the	server	name	because
there	is	no	Host:	header,	or	the	DNS	lookup	fails,	then	the	value
configured	with	ServerName	is	used	instead.

The	other	thing	to	determine	is	the	document	root	(configured	with
DocumentRoot	and	available	to	CGI	scripts	via	the
DOCUMENT_ROOT	environment	variable).	In	a	normal
configuration,	this	is	used	by	the	core	module	when	mapping	URIs
to	filenames,	but	when	the	server	is	configured	to	do	dynamic

virtual	hosting,	that	job	must	be	taken	over	by	another	module
(either	mod_vhost_alias	or	mod_rewrite),	which	has	a
different	way	of	doing	the	mapping.	Neither	of	these	modules	is
responsible	for	setting	the	DOCUMENT_ROOT	environment	variable
so	if	any	CGIs	or	SSI	documents	make	use	of	it,	they	will	get	a
misleading	value.

Dynamic	Virtual	Hosts	with	mod_vhost_alias

This	extract	from	httpd.conf	implements	the	virtual	host
arrangement	outlined	in	the	Motivation	section	above	using
mod_vhost_alias.

#	get	the	server	name	from	the	Host:	header

UseCanonicalName	Off

#	this	log	format	can	be	split	per-virtual-host	based	on	the	first	field

#	using	the	split-logfile	utility.

LogFormat	"%V	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

CustomLog	"logs/access_log"	vcommon

#	include	the	server	name	in	the	filenames	used	to	satisfy	requests

VirtualDocumentRoot	"/www/hosts/%0/docs"

VirtualScriptAlias		"/www/hosts/%0/cgi-bin"

This	configuration	can	be	changed	into	an	IP-based	virtual	hosting
solution	by	just	turning	UseCanonicalName	Off	into
UseCanonicalName	DNS.	The	server	name	that	is	inserted	into
the	filename	is	then	derived	from	the	IP	address	of	the	virtual	host.
The	variable	%0	references	the	requested	servername,	as
indicated	in	the	Host:	header.

See	the	mod_vhost_alias	documentation	for	more	usage
examples.

Simplified	Dynamic	Virtual	Hosts

This	is	an	adjustment	of	the	above	system,	tailored	for	an	ISP's
web	hosting	server.	Using	%2,	we	can	select	substrings	of	the
server	name	to	use	in	the	filename	so	that,	for	example,	the
documents	for	www.user.example.com	are	found	in
/home/user/www.	It	uses	a	single	cgi-bin	directory	instead	of
one	per	virtual	host.

UseCanonicalName	Off

LogFormat	"%V	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

CustomLog	logs/access_log	vcommon

#	include	part	of	the	server	name	in	the	filenames

VirtualDocumentRoot	"/home/%2/www"

#	single	cgi-bin	directory

ScriptAlias		"/cgi-bin/"		"/www/std-cgi/"

There	are	examples	of	more	complicated
VirtualDocumentRoot	settings	in	the	mod_vhost_alias
documentation.

Using	Multiple	Virtual	Hosting	Systems	on	the	Same
Server

With	more	complicated	setups,	you	can	use	httpd's	normal
<VirtualHost>	directives	to	control	the	scope	of	the	various
virtual	hosting	configurations.	For	example,	you	could	have	one	IP
address	for	general	customers'	homepages,	and	another	for
commercial	customers,	with	the	following	setup.	This	can	be
combined	with	conventional	<VirtualHost>	configuration
sections,	as	shown	below.

UseCanonicalName	Off

LogFormat	"%V	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

<Directory	"/www/commercial">

				Options	FollowSymLinks

				AllowOverride	All

</Directory>

<Directory	"/www/homepages">

				Options	FollowSymLinks

				AllowOverride	None

</Directory>

<VirtualHost	111.22.33.44>

				ServerName	www.commercial.example.com

				

				CustomLog	"logs/access_log.commercial"	vcommon

				

				VirtualDocumentRoot	"/www/commercial/%0/docs"

				VirtualScriptAlias		"/www/commercial/%0/cgi-bin"

</VirtualHost>

<VirtualHost	111.22.33.45>

				ServerName	www.homepages.example.com

				

				CustomLog	"logs/access_log.homepages"	vcommon

				

				VirtualDocumentRoot	"/www/homepages/%0/docs"

				ScriptAlias									"/cgi-bin/"	"/www/std-cgi/"

</VirtualHost>

Note

If	the	first	VirtualHost	block	does	not	include	a	ServerName
directive,	the	reverse	DNS	of	the	relevant	IP	will	be	used
instead.	If	this	is	not	the	server	name	you	wish	to	use,	a	bogus
entry	(eg.	ServerName	none.example.com)	can	be	added	to
get	around	this	behaviour.

More	Efficient	IP-Based	Virtual	Hosting

The	configuration	changes	suggested	to	turn	the	first	example	into
an	IP-based	virtual	hosting	setup	result	in	a	rather	inefficient
setup.	A	new	DNS	lookup	is	required	for	every	request.	To	avoid
this	overhead,	the	filesystem	can	be	arranged	to	correspond	to	the
IP	addresses,	instead	of	to	the	host	names,	thereby	negating	the
need	for	a	DNS	lookup.	Logging	will	also	have	to	be	adjusted	to	fit
this	system.

#	get	the	server	name	from	the	reverse	DNS	of	the	IP	address

UseCanonicalName	DNS

#	include	the	IP	address	in	the	logs	so	they	may	be	split

LogFormat	"%A	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

CustomLog	"logs/access_log"	vcommon

#	include	the	IP	address	in	the	filenames

VirtualDocumentRootIP	"/www/hosts/%0/docs"

VirtualScriptAliasIP		"/www/hosts/%0/cgi-bin"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Mass	virtual	hosts	with	mod_rewrite

Mass	virtual	hosting	may	also	be	accomplished	using
mod_rewrite,	either	using	simple	RewriteRule	directives,	or
using	more	complicated	techniques	such	as	storing	the	vhost
definitions	externally	and	accessing	them	via	RewriteMap.	These
techniques	are	discussed	in	the	rewrite	documentation.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Virtual	Hosts

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

VirtualHost	Examples

This	document	attempts	to	answer	the	commonly-asked	questions
about	setting	up	virtual	hosts.	These	scenarios	are	those	involving
multiple	web	sites	running	on	a	single	server,	via	name-based	or	IP-
based	virtual	hosts.

Running	several	name-based	web	sites	on	a	single
IP	address.

Your	server	has	multiple	hostnames	that	resolve	to	a	single
address,	and	you	want	to	respond	differently	for
www.example.com	and	www.example.org.

Note

Creating	virtual	host	configurations	on	your	Apache	server	does
not	magically	cause	DNS	entries	to	be	created	for	those	host
names.	You	must	have	the	names	in	DNS,	resolving	to	your	IP
address,	or	nobody	else	will	be	able	to	see	your	web	site.	You
can	put	entries	in	your	hosts	file	for	local	testing,	but	that	will
work	only	from	the	machine	with	those	hosts	entries.

#	Ensure	that	Apache	listens	on	port	80

Listen	80

<VirtualHost	*:80>

				DocumentRoot	"/www/example1"

				ServerName	www.example.com

				#	Other	directives	here

</VirtualHost>

<VirtualHost	*:80>

				DocumentRoot	"/www/example2"

				ServerName	www.example.org

				#	Other	directives	here

</VirtualHost>

The	asterisks	match	all	addresses,	so	the	main	server	serves	no
requests.	Due	to	the	fact	that	the	virtual	host	with	ServerName
www.example.com	is	first	in	the	configuration	file,	it	has	the
highest	priority	and	can	be	seen	as	the	default	or	primary	server.

That	means	that	if	a	request	is	received	that	does	not	match	one
of	the	specified	ServerName	directives,	it	will	be	served	by	this
first	<VirtualHost>.

The	above	configuration	is	what	you	will	want	to	use	in	almost	all
name-based	virtual	hosting	situations.	The	only	thing	that	this
configuration	will	not	work	for,	in	fact,	is	when	you	are	serving
different	content	based	on	differing	IP	addresses	or	ports.

Note

You	may	replace	*	with	a	specific	IP	address	on	the	system.
Such	virtual	hosts	will	only	be	used	for	HTTP	requests	received
on	connection	to	the	specified	IP	address.

However,	it	is	additionally	useful	to	use	*	on	systems	where	the
IP	address	is	not	predictable	-	for	example	if	you	have	a
dynamic	IP	address	with	your	ISP,	and	you	are	using	some
variety	of	dynamic	DNS	solution.	Since	*	matches	any	IP
address,	this	configuration	would	work	without	changes
whenever	your	IP	address	changes.

Name-based	hosts	on	more	than	one	IP	address.

Note

Any	of	the	techniques	discussed	here	can	be	extended	to	any
number	of	IP	addresses.

The	server	has	two	IP	addresses.	On	one	(172.20.30.40),	we
will	serve	the	"main"	server,	server.example.com	and	on	the
other	(172.20.30.50),	we	will	serve	two	or	more	virtual	hosts.

Listen	80

#	This	is	the	"main"	server	running	on	172.20.30.40

ServerName	server.example.com

DocumentRoot	"/www/mainserver"

<VirtualHost	172.20.30.50>

				DocumentRoot	"/www/example1"

				ServerName	www.example.com

				#	Other	directives	here	...

</VirtualHost>

<VirtualHost	172.20.30.50>

				DocumentRoot	"/www/example2"

				ServerName	www.example.org

				#	Other	directives	here	...

</VirtualHost>

Any	request	to	an	address	other	than	172.20.30.50	will	be
served	from	the	main	server.	A	request	to	172.20.30.50	with	an
unknown	hostname,	or	no	Host:	header,	will	be	served	from
www.example.com.

Serving	the	same	content	on	different	IP	addresses
(such	as	an	internal	and	external	address).

The	server	machine	has	two	IP	addresses	(192.168.1.1	and
172.20.30.40).	The	machine	is	sitting	between	an	internal
(intranet)	network	and	an	external	(internet)	network.	Outside	of
the	network,	the	name	server.example.com	resolves	to	the
external	address	(172.20.30.40),	but	inside	the	network,	that
same	name	resolves	to	the	internal	address	(192.168.1.1).

The	server	can	be	made	to	respond	to	internal	and	external
requests	with	the	same	content,	with	just	one	<VirtualHost>
section.

<VirtualHost	192.168.1.1	172.20.30.40>

				DocumentRoot	"/www/server1"

				ServerName	server.example.com

				ServerAlias	server

</VirtualHost>

Now	requests	from	both	networks	will	be	served	from	the	same
<VirtualHost>.

Note:

On	the	internal	network,	one	can	just	use	the	name	server
rather	than	the	fully	qualified	host	name
server.example.com.

Note	also	that,	in	the	above	example,	you	can	replace	the	list	of
IP	addresses	with	*,	which	will	cause	the	server	to	respond	the
same	on	all	addresses.

Running	different	sites	on	different	ports.

You	have	multiple	domains	going	to	the	same	IP	and	also	want	to
serve	multiple	ports.	The	example	below	illustrates	that	the	name-
matching	takes	place	after	the	best	matching	IP	address	and	port
combination	is	determined.

Listen	80

Listen	8080

<VirtualHost	172.20.30.40:80>

				ServerName	www.example.com

				DocumentRoot	"/www/domain-80"

</VirtualHost>

<VirtualHost	172.20.30.40:8080>

				ServerName	www.example.com

				DocumentRoot	"/www/domain-8080"

</VirtualHost>

<VirtualHost	172.20.30.40:80>

				ServerName	www.example.org

				DocumentRoot	"/www/otherdomain-80"

</VirtualHost>

<VirtualHost	172.20.30.40:8080>

				ServerName	www.example.org

				DocumentRoot	"/www/otherdomain-8080"

</VirtualHost>

IP-based	virtual	hosting

The	server	has	two	IP	addresses	(172.20.30.40	and
172.20.30.50)	which	resolve	to	the	names	www.example.com
and	www.example.org	respectively.

Listen	80

<VirtualHost	172.20.30.40>

				DocumentRoot	"/www/example1"

				ServerName	www.example.com

</VirtualHost>

<VirtualHost	172.20.30.50>

				DocumentRoot	"/www/example2"

				ServerName	www.example.org

</VirtualHost>

Requests	for	any	address	not	specified	in	one	of	the
<VirtualHost>	directives	(such	as	localhost,	for	example)
will	go	to	the	main	server,	if	there	is	one.

Mixed	port-based	and	ip-based	virtual	hosts

The	server	machine	has	two	IP	addresses	(172.20.30.40	and
172.20.30.50)	which	resolve	to	the	names	www.example.com
and	www.example.org	respectively.	In	each	case,	we	want	to
run	hosts	on	ports	80	and	8080.

Listen	172.20.30.40:80

Listen	172.20.30.40:8080

Listen	172.20.30.50:80

Listen	172.20.30.50:8080

<VirtualHost	172.20.30.40:80>

				DocumentRoot	"/www/example1-80"

				ServerName	www.example.com

</VirtualHost>

<VirtualHost	172.20.30.40:8080>

				DocumentRoot	"/www/example1-8080"

				ServerName	www.example.com

</VirtualHost>

<VirtualHost	172.20.30.50:80>

				DocumentRoot	"/www/example2-80"

				ServerName	www.example.org

</VirtualHost>

<VirtualHost	172.20.30.50:8080>

				DocumentRoot	"/www/example2-8080"

				ServerName	www.example.org

</VirtualHost>

Mixed	name-based	and	IP-based	vhosts

Any	address	mentioned	in	the	argument	to	a	virtualhost	that	never
appears	in	another	virtual	host	is	a	strictly	IP-based	virtual	host.

Listen	80

<VirtualHost	172.20.30.40>

				DocumentRoot	"/www/example1"

				ServerName	www.example.com

</VirtualHost>

<VirtualHost	172.20.30.40>

				DocumentRoot	"/www/example2"

				ServerName	www.example.org

</VirtualHost>

<VirtualHost	172.20.30.40>

				DocumentRoot	"/www/example3"

				ServerName	www.example.net

</VirtualHost>

#	IP-based

<VirtualHost	172.20.30.50>

				DocumentRoot	"/www/example4"

				ServerName	www.example.edu

</VirtualHost>

<VirtualHost	172.20.30.60>

				DocumentRoot	"/www/example5"

				ServerName	www.example.gov

</VirtualHost>

Using	Virtual_host	and	mod_proxy	together

The	following	example	allows	a	front-end	machine	to	proxy	a
virtual	host	through	to	a	server	running	on	another	machine.	In	the
example,	a	virtual	host	of	the	same	name	is	configured	on	a
machine	at	192.168.111.2.	The	ProxyPreserveHost	On
directive	is	used	so	that	the	desired	hostname	is	passed	through,
in	case	we	are	proxying	multiple	hostnames	to	a	single	machine.

<VirtualHost	*:*>

				ProxyPreserveHost	On

				ProxyPass								"/"	"http://192.168.111.2/"

				ProxyPassReverse	"/"	"http://192.168.111.2/"

				ServerName	hostname.example.com

</VirtualHost>

Using	_default_	vhosts

default	vhosts	for	all	ports
Catching	every	request	to	any	unspecified	IP	address	and	port,
i.e.,	an	address/port	combination	that	is	not	used	for	any	other
virtual	host.

<VirtualHost	_default_:*>

				DocumentRoot	"/www/default"

</VirtualHost>

Using	such	a	default	vhost	with	a	wildcard	port	effectively	prevents
any	request	going	to	the	main	server.

A	default	vhost	never	serves	a	request	that	was	sent	to	an
address/port	that	is	used	for	name-based	vhosts.	If	the	request
contained	an	unknown	or	no	Host:	header	it	is	always	served
from	the	primary	name-based	vhost	(the	vhost	for	that
address/port	appearing	first	in	the	configuration	file).

You	can	use	AliasMatch	or	RewriteRule	to	rewrite	any
request	to	a	single	information	page	(or	script).

default	vhosts	for	different	ports
Same	as	setup	1,	but	the	server	listens	on	several	ports	and	we
want	to	use	a	second	_default_	vhost	for	port	80.

<VirtualHost	_default_:80>

				DocumentRoot	"/www/default80"

				#	...

</VirtualHost>

<VirtualHost	_default_:*>

				DocumentRoot	"/www/default"

				#	...

</VirtualHost>

The	default	vhost	for	port	80	(which	must	appear	before	any
default	vhost	with	a	wildcard	port)	catches	all	requests	that	were
sent	to	an	unspecified	IP	address.	The	main	server	is	never	used
to	serve	a	request.

default	vhosts	for	one	port
We	want	to	have	a	default	vhost	for	port	80,	but	no	other	default
vhosts.

<VirtualHost	_default_:80>

				DocumentRoot	"/www/default"

...

</VirtualHost>

A	request	to	an	unspecified	address	on	port	80	is	served	from	the
default	vhost.	Any	other	request	to	an	unspecified	address	and
port	is	served	from	the	main	server.

Any	use	of	*	in	a	virtual	host	declaration	will	have	higher
precedence	than	_default_.

Migrating	a	name-based	vhost	to	an	IP-based	vhost

The	name-based	vhost	with	the	hostname	www.example.org
(from	our	name-based	example,	setup	2)	should	get	its	own	IP
address.	To	avoid	problems	with	name	servers	or	proxies	who
cached	the	old	IP	address	for	the	name-based	vhost	we	want	to
provide	both	variants	during	a	migration	phase.

The	solution	is	easy,	because	we	can	simply	add	the	new	IP
address	(172.20.30.50)	to	the	VirtualHost	directive.

Listen	80

ServerName	www.example.com

DocumentRoot	"/www/example1"

<VirtualHost	172.20.30.40	172.20.30.50>

				DocumentRoot	"/www/example2"

				ServerName	www.example.org

				#	...

</VirtualHost>

<VirtualHost	172.20.30.40>

				DocumentRoot	"/www/example3"

				ServerName	www.example.net

				ServerAlias	*.example.net

				#	...

</VirtualHost>

The	vhost	can	now	be	accessed	through	the	new	address	(as	an
IP-based	vhost)	and	through	the	old	address	(as	a	name-based
vhost).

Using	the	ServerPath	directive

We	have	a	server	with	two	name-based	vhosts.	In	order	to	match
the	correct	virtual	host	a	client	must	send	the	correct	Host:
header.	Old	HTTP/1.0	clients	do	not	send	such	a	header	and
Apache	has	no	clue	what	vhost	the	client	tried	to	reach	(and
serves	the	request	from	the	primary	vhost).	To	provide	as	much
backward	compatibility	as	possible	we	create	a	primary	vhost
which	returns	a	single	page	containing	links	with	an	URL	prefix	to
the	name-based	virtual	hosts.

<VirtualHost	172.20.30.40>

				#	primary	vhost

				DocumentRoot	"/www/subdomain"

				RewriteEngine	On

				RewriteRule	"."	"/www/subdomain/index.html"

				#	...

</VirtualHost>

<VirtualHost	172.20.30.40>

				DocumentRoot	"/www/subdomain/sub1"

				ServerName	www.sub1.domain.tld

				ServerPath	"/sub1/"

				RewriteEngine	On

				RewriteRule	"^(/sub1/.*)"	"/www/subdomain$1"

				#	...

</VirtualHost>

<VirtualHost	172.20.30.40>

				DocumentRoot	"/www/subdomain/sub2"

				ServerName	www.sub2.domain.tld

				ServerPath	"/sub2/"

				RewriteEngine	On

				RewriteRule	"^(/sub2/.*)"	"/www/subdomain$1"

				#	...

</VirtualHost>

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Due	to	the	ServerPath	directive	a	request	to	the	URL
http://www.sub1.domain.tld/sub1/	is	always	served	from
the	sub1-vhost.
A	request	to	the	URL	http://www.sub1.domain.tld/	is	only
served	from	the	sub1-vhost	if	the	client	sent	a	correct	Host:
header.	If	no	Host:	header	is	sent	the	client	gets	the	information
page	from	the	primary	host.

Please	note	that	there	is	one	oddity:	A	request	to
http://www.sub2.domain.tld/sub1/	is	also	served	from
the	sub1-vhost	if	the	client	sent	no	Host:	header.

The	RewriteRule	directives	are	used	to	make	sure	that	a	client
which	sent	a	correct	Host:	header	can	use	both	URL	variants,
i.e.,	with	or	without	URL	prefix.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Virtual	Hosts

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

An	In-Depth	Discussion	of	Virtual	Host
Matching

This	document	attempts	to	explain	exactly	what	Apache	HTTP	Server
does	when	deciding	what	virtual	host	to	serve	a	request	from.

Most	users	should	read	about	Name-based	vs.	IP-based	Virtual	Hosts
to	decide	which	type	they	want	to	use,	then	read	more	about	name-
based	or	IP-based	virtualhosts,	and	then	see	some	examples.

If	you	want	to	understand	all	the	details,	then	you	can	come	back	to
this	page.

See	also
IP-based	Virtual	Host	Support
Name-based	Virtual	Hosts	Support
Virtual	Host	examples	for	common	setups
Dynamically	configured	mass	virtual	hosting

https://www.apache.org/foundation/contributing.html

Configuration	File

There	is	a	main	server	which	consists	of	all	the	definitions
appearing	outside	of	<VirtualHost>	sections.

There	are	virtual	servers,	called	vhosts,	which	are	defined	by
<VirtualHost>	sections.

Each	VirtualHost	directive	includes	one	or	more	addresses
and	optional	ports.

Hostnames	can	be	used	in	place	of	IP	addresses	in	a	virtual	host
definition,	but	they	are	resolved	at	startup	and	if	any	name
resolutions	fail,	those	virtual	host	definitions	are	ignored.	This	is,
therefore,	not	recommended.

The	address	can	be	specified	as	*,	which	will	match	a	request	if
no	other	vhost	has	the	explicit	address	on	which	the	request	was
received.

The	address	appearing	in	the	VirtualHost	directive	can	have
an	optional	port.	If	the	port	is	unspecified,	it	is	treated	as	a
wildcard	port,	which	can	also	be	indicated	explicitly	using	*.	The
wildcard	port	matches	any	port.

(Port	numbers	specified	in	the	VirtualHost	directive	do	not
influence	what	port	numbers	Apache	will	listen	on,	they	only
control	which	VirtualHost	will	be	selected	to	handle	a	request.
Use	the	Listen	directive	to	control	the	addresses	and	ports	on
which	the	server	listens.)

Collectively	the	entire	set	of	addresses	(including	multiple	results
from	DNS	lookups)	are	called	the	vhost's	address	set.

Apache	automatically	discriminates	on	the	basis	of	the	HTTP
Host	header	supplied	by	the	client	whenever	the	most	specific

match	for	an	IP	address	and	port	combination	is	listed	in	multiple
virtual	hosts.

The	ServerName	directive	may	appear	anywhere	within	the
definition	of	a	server.	However,	each	appearance	overrides	the
previous	appearance	(within	that	server).	If	no	ServerName	is
specified,	the	server	attempts	to	deduce	it	from	the	server's	IP
address.

The	first	name-based	vhost	in	the	configuration	file	for	a	given
IP:port	pair	is	significant	because	it	is	used	for	all	requests
received	on	that	address	and	port	for	which	no	other	vhost	for	that
IP:port	pair	has	a	matching	ServerName	or	ServerAlias.	It	is	also
used	for	all	SSL	connections	if	the	server	does	not	support	Server
Name	Indication.

The	complete	list	of	names	in	the	VirtualHost	directive	are
treated	just	like	a	(non	wildcard)	ServerAlias	(but	are	not
overridden	by	any	ServerAlias	statement).

For	every	vhost	various	default	values	are	set.	In	particular:

1.	 If	a	vhost	has	no	ServerAdmin,	Timeout,
KeepAliveTimeout,	KeepAlive,
MaxKeepAliveRequests,	ReceiveBufferSize,	or
SendBufferSize	directive	then	the	respective	value	is
inherited	from	the	main	server.	(That	is,	inherited	from
whatever	the	final	setting	of	that	value	is	in	the	main	server.)

2.	 The	"lookup	defaults"	that	define	the	default	directory
permissions	for	a	vhost	are	merged	with	those	of	the	main
server.	This	includes	any	per-directory	configuration
information	for	any	module.

3.	 The	per-server	configs	for	each	module	from	the	main	server
are	merged	into	the	vhost	server.

Essentially,	the	main	server	is	treated	as	"defaults"	or	a	"base"	on
which	to	build	each	vhost.	But	the	positioning	of	these	main	server
definitions	in	the	config	file	is	largely	irrelevant	--	the	entire	config
of	the	main	server	has	been	parsed	when	this	final	merging
occurs.	So	even	if	a	main	server	definition	appears	after	a	vhost
definition	it	might	affect	the	vhost	definition.

If	the	main	server	has	no	ServerName	at	this	point,	then	the
hostname	of	the	machine	that	httpd	is	running	on	is	used
instead.	We	will	call	the	main	server	address	set	those	IP
addresses	returned	by	a	DNS	lookup	on	the	ServerName	of	the
main	server.

For	any	undefined	ServerName	fields,	a	name-based	vhost
defaults	to	the	address	given	first	in	the	VirtualHost	statement
defining	the	vhost.

Any	vhost	that	includes	the	magic	_default_	wildcard	is	given
the	same	ServerName	as	the	main	server.

Virtual	Host	Matching

The	server	determines	which	vhost	to	use	for	a	request	as	follows:

IP	address	lookup
When	the	connection	is	first	received	on	some	address	and	port,
the	server	looks	for	all	the	VirtualHost	definitions	that	have	the
same	IP	address	and	port.

If	there	are	no	exact	matches	for	the	address	and	port,	then
wildcard	(*)	matches	are	considered.

If	no	matches	are	found,	the	request	is	served	by	the	main	server.

If	there	are	VirtualHost	definitions	for	the	IP	address,	the	next
step	is	to	decide	if	we	have	to	deal	with	an	IP-based	or	a	name-
based	vhost.

IP-based	vhost
If	there	is	exactly	one	VirtualHost	directive	listing	the	IP
address	and	port	combination	that	was	determined	to	be	the	best
match,	no	further	actions	are	performed	and	the	request	is	served
from	the	matching	vhost.

Name-based	vhost
If	there	are	multiple	VirtualHost	directives	listing	the	IP	address
and	port	combination	that	was	determined	to	be	the	best	match,
the	"list"	in	the	remaining	steps	refers	to	the	list	of	vhosts	that
matched,	in	the	order	they	were	in	the	configuration	file.

If	the	connection	is	using	SSL,	the	server	supports	Server	Name
Indication,	and	the	SSL	client	handshake	includes	the	TLS
extension	with	the	requested	hostname,	then	that	hostname	is
used	below	just	like	the	Host:	header	would	be	used	on	a	non-

SSL	connection.	Otherwise,	the	first	name-based	vhost	whose
address	matched	is	used	for	SSL	connections.	This	is	significant
because	the	vhost	determines	which	certificate	the	server	will	use
for	the	connection.

If	the	request	contains	a	Host:	header	field,	the	list	is	searched
for	the	first	vhost	with	a	matching	ServerName	or	ServerAlias,
and	the	request	is	served	from	that	vhost.	A	Host:	header	field
can	contain	a	port	number,	but	Apache	always	ignores	it	and
matches	against	the	real	port	to	which	the	client	sent	the	request.

The	first	vhost	in	the	config	file	with	the	specified	IP	address	has
the	highest	priority	and	catches	any	request	to	an	unknown	server
name,	or	a	request	without	a	Host:	header	field	(such	as	a
HTTP/1.0	request).

Persistent	connections
The	IP	lookup	described	above	is	only	done	once	for	a	particular
TCP/IP	session	while	the	name	lookup	is	done	on	every	request
during	a	KeepAlive/persistent	connection.	In	other	words,	a	client
may	request	pages	from	different	name-based	vhosts	during	a
single	persistent	connection.

Absolute	URI
If	the	URI	from	the	request	is	an	absolute	URI,	and	its	hostname
and	port	match	the	main	server	or	one	of	the	configured	virtual
hosts	and	match	the	address	and	port	to	which	the	client	sent	the
request,	then	the	scheme/hostname/port	prefix	is	stripped	off	and
the	remaining	relative	URI	is	served	by	the	corresponding	main
server	or	virtual	host.	If	it	does	not	match,	then	the	URI	remains
untouched	and	the	request	is	taken	to	be	a	proxy	request.

Observations

Name-based	virtual	hosting	is	a	process	applied	after	the
server	has	selected	the	best	matching	IP-based	virtual	host.
If	you	don't	care	what	IP	address	the	client	has	connected	to,
use	a	"*"	as	the	address	of	every	virtual	host,	and	name-
based	virtual	hosting	is	applied	across	all	configured	virtual
hosts.
ServerName	and	ServerAlias	checks	are	never
performed	for	an	IP-based	vhost.
Only	the	ordering	of	name-based	vhosts	for	a	specific	address
set	is	significant.	The	one	name-based	vhosts	that	comes	first
in	the	configuration	file	has	the	highest	priority	for	its
corresponding	address	set.
Any	port	in	the	Host:	header	field	is	never	used	during	the
matching	process.	Apache	always	uses	the	real	port	to	which
the	client	sent	the	request.
If	two	vhosts	have	an	address	in	common,	those	common
addresses	act	as	name-based	virtual	hosts	implicitly.	This	is
new	behavior	as	of	2.3.11.
The	main	server	is	only	used	to	serve	a	request	if	the	IP
address	and	port	number	to	which	the	client	connected	does
not	match	any	vhost	(including	a	*	vhost).	In	other	words,	the
main	server	only	catches	a	request	for	an	unspecified
address/port	combination	(unless	there	is	a	_default_	vhost
which	matches	that	port).
You	should	never	specify	DNS	names	in	VirtualHost
directives	because	it	will	force	your	server	to	rely	on	DNS	to
boot.	Furthermore	it	poses	a	security	threat	if	you	do	not
control	the	DNS	for	all	the	domains	listed.	There's	more
information	available	on	this	and	the	next	two	topics.
ServerName	should	always	be	set	for	each	vhost.	Otherwise
a	DNS	lookup	is	required	for	each	vhost.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Tips

In	addition	to	the	tips	on	the	DNS	Issues	page,	here	are	some
further	tips:

Place	all	main	server	definitions	before	any	VirtualHost
definitions.	(This	is	to	aid	the	readability	of	the	configuration	--
the	post-config	merging	process	makes	it	non-obvious	that
definitions	mixed	in	around	virtual	hosts	might	affect	all	virtual
hosts.)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Virtual	Hosts

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

File	Descriptor	Limits

When	using	a	large	number	of	Virtual	Hosts,	Apache	may	run	out	of
available	file	descriptors	(sometimes	called	file	handles)	if	each	Virtual
Host	specifies	different	log	files.	The	total	number	of	file	descriptors
used	by	Apache	is	one	for	each	distinct	error	log	file,	one	for	every
other	log	file	directive,	plus	10-20	for	internal	use.	Unix	operating
systems	limit	the	number	of	file	descriptors	that	may	be	used	by	a
process;	the	limit	is	typically	64,	and	may	usually	be	increased	up	to	a
large	hard-limit.

Although	Apache	attempts	to	increase	the	limit	as	required,	this	may
not	work	if:

1.	 Your	system	does	not	provide	the	setrlimit()	system	call.

2.	 The	setrlimit(RLIMIT_NOFILE)	call	does	not	function	on
your	system	(such	as	Solaris	2.3)

3.	 The	number	of	file	descriptors	required	exceeds	the	hard	limit.

4.	 Your	system	imposes	other	limits	on	file	descriptors,	such	as	a
limit	on	stdio	streams	only	using	file	descriptors	below	256.
(Solaris	2)

In	the	event	of	problems	you	can:

Reduce	the	number	of	log	files;	don't	specify	log	files	in	the
<VirtualHost>	sections,	but	only	log	to	the	main	log	files.	(See
Splitting	up	your	log	files,	below,	for	more	information	on	doing
this.)
If	you	system	falls	into	1	or	2	(above),	then	increase	the	file
descriptor	limit	before	starting	Apache,	using	a	script	like

#!/bin/sh

ulimit	-S	-n	100

exec	httpd

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Splitting	up	your	log	files

If	you	want	to	log	multiple	virtual	hosts	to	the	same	log	file,	you
may	want	to	split	up	the	log	files	afterwards	in	order	to	run
statistical	analysis	of	the	various	virtual	hosts.	This	can	be
accomplished	in	the	following	manner.

First,	you	will	need	to	add	the	virtual	host	information	to	the	log
entries.	This	can	be	done	using	the	LogFormat	directive,	and	the
%v	variable.	Add	this	to	the	beginning	of	your	log	format	string:

LogFormat	"%v	%h	%l	%u	%t	\"%r\"	%>s	%b"	vhost

CustomLog	logs/multiple_vhost_log	vhost

This	will	create	a	log	file	in	the	common	log	format,	but	with	the
canonical	virtual	host	(whatever	appears	in	the	ServerName
directive)	prepended	to	each	line.	(See	mod_log_config	for
more	about	customizing	your	log	files.)

When	you	wish	to	split	your	log	file	into	its	component	parts	(one
file	per	virtual	host)	you	can	use	the	program	split-logfile	to
accomplish	this.	You'll	find	this	program	in	the	support	directory
of	the	Apache	distribution.

Run	this	program	with	the	command:

split-logfile	<	/logs/multiple_vhost_log

This	program,	when	run	with	the	name	of	your	vhost	log	file,	will
generate	one	file	for	each	virtual	host	that	appears	in	your	log	file.
Each	file	will	be	called	hostname.log.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Issues	Regarding	DNS	and	Apache	HTTP
Server

This	page	could	be	summarized	with	the	statement:	don't	configure
Apache	HTTP	Server	in	such	a	way	that	it	relies	on	DNS	resolution
for	parsing	of	the	configuration	files.	If	httpd	requires	DNS	resolution
to	parse	the	configuration	files	then	your	server	may	be	subject	to
reliability	problems	(ie.	it	might	not	start	up),	or	denial	and	theft	of
service	attacks	(including	virtual	hosts	able	to	steal	hits	from	other
virtual	hosts).

A	Simple	Example

#	This	is	a	misconfiguration	example,	do	not	use	on	your	server

<VirtualHost	www.example.dom>

		ServerAdmin	webgirl@example.dom

		DocumentRoot	"/www/example"

</VirtualHost>

In	order	for	the	server	to	function	properly,	it	absolutely	needs	to
have	two	pieces	of	information	about	each	virtual	host:	the
ServerName	and	at	least	one	IP	address	that	the	server	will	bind
and	respond	to.	The	above	example	does	not	include	the	IP
address,	so	httpd	must	use	DNS	to	find	the	address	of
www.example.dom.	If	for	some	reason	DNS	is	not	available	at
the	time	your	server	is	parsing	its	config	file,	then	this	virtual	host
will	not	be	configured.	It	won't	be	able	to	respond	to	any	hits	to
this	virtual	host.

Suppose	that	www.example.dom	has	address	192.0.2.1.	Then
consider	this	configuration	snippet:

#	This	is	a	misconfiguration	example,	do	not	use	on	your	server

<VirtualHost	192.0.2.1>

		ServerAdmin	webgirl@example.dom

		DocumentRoot	"/www/example"

</VirtualHost>

This	time	httpd	needs	to	use	reverse	DNS	to	find	the	ServerName
for	this	virtualhost.	If	that	reverse	lookup	fails	then	it	will	partially
disable	the	virtualhost.	If	the	virtual	host	is	name-based	then	it	will
effectively	be	totally	disabled,	but	if	it	is	IP-based	then	it	will	mostly
work.	However,	if	httpd	should	ever	have	to	generate	a	full	URL	for
the	server	which	includes	the	server	name	(such	as	when	a
Redirect	is	issued),	then	it	will	fail	to	generate	a	valid	URL.

Here	is	a	snippet	that	avoids	both	of	these	problems:

<VirtualHost	192.0.2.1>

		ServerName	www.example.dom

		ServerAdmin	webgirl@example.dom

		DocumentRoot	"/www/example"

</VirtualHost>

Denial	of	Service

Consider	this	configuration	snippet:

<VirtualHost	www.example1.dom>

		ServerAdmin	webgirl@example1.dom

		DocumentRoot	"/www/example1"

</VirtualHost>

<VirtualHost	www.example2.dom>

		ServerAdmin	webguy@example2.dom

		DocumentRoot	"/www/example2"

</VirtualHost>

Suppose	that	you've	assigned	192.0.2.1	to	www.example1.dom
and	192.0.2.2	to	www.example2.dom.	Furthermore,	suppose	that
example1.dom	has	control	of	their	own	DNS.	With	this	config	you
have	put	example1.dom	into	a	position	where	they	can	steal	all
traffic	destined	to	example2.dom.	To	do	so,	all	they	have	to	do	is
set	www.example1.dom	to	192.0.2.2.	Since	they	control	their
own	DNS	you	can't	stop	them	from	pointing	the
www.example1.dom	record	wherever	they	wish.

Requests	coming	in	to	192.0.2.2	(including	all	those	where	users
typed	in	URLs	of	the	form
http://www.example2.dom/whatever)	will	all	be	served	by
the	example1.dom	virtual	host.	To	better	understand	why	this
happens	requires	a	more	in-depth	discussion	of	how	httpd
matches	up	incoming	requests	with	the	virtual	host	that	will	serve
it.	A	rough	document	describing	this	is	available.

The	"main	server"	Address

Name-based	virtual	host	support	requires	httpd	to	know	the	IP
address(es)	of	the	host	that	httpd	is	running	on.	To	get	this
address	it	uses	either	the	global	ServerName	(if	present)	or	calls
the	C	function	gethostname	(which	should	return	the	same	as
typing	"hostname"	at	the	command	prompt).	Then	it	performs	a
DNS	lookup	on	this	address.	At	present	there	is	no	way	to	avoid
this	lookup.

If	you	fear	that	this	lookup	might	fail	because	your	DNS	server	is
down	then	you	can	insert	the	hostname	in	/etc/hosts	(where
you	probably	already	have	it	so	that	the	machine	can	boot
properly).	Then	ensure	that	your	machine	is	configured	to	use
/etc/hosts	in	the	event	that	DNS	fails.	Depending	on	what	OS
you	are	using	this	might	be	accomplished	by	editing
/etc/resolv.conf,	or	maybe	/etc/nsswitch.conf.

If	your	server	doesn't	have	to	perform	DNS	for	any	other	reason
then	you	might	be	able	to	get	away	with	running	httpd	with	the
HOSTRESORDER	environment	variable	set	to	"local".	This	all
depends	on	what	OS	and	resolver	libraries	you	are	using.	It	also
affects	CGIs	unless	you	use	mod_env	to	control	the	environment.
It's	best	to	consult	the	man	pages	or	FAQs	for	your	OS.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Tips	to	Avoid	These	Problems

use	IP	addresses	in	VirtualHost
use	IP	addresses	in	Listen
ensure	all	virtual	hosts	have	an	explicit	ServerName
create	a	<VirtualHost	_default_:*>	server	that	has	no
pages	to	serve

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	SSL/TLS

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSL/TLS	Strong	Encryption:	An	Introduction

As	an	introduction	this	chapter	is	aimed	at	readers	who	are	familiar
with	the	Web,	HTTP,	and	Apache,	but	are	not	security	experts.	It	is
not	intended	to	be	a	definitive	guide	to	the	SSL	protocol,	nor	does	it
discuss	specific	techniques	for	managing	certificates	in	an
organization,	or	the	important	legal	issues	of	patents	and	import	and
export	restrictions.	Rather,	it	is	intended	to	provide	a	common
background	to	mod_ssl	users	by	pulling	together	various	concepts,
definitions,	and	examples	as	a	starting	point	for	further	exploration.

Cryptographic	Techniques

Understanding	SSL	requires	an	understanding	of	cryptographic
algorithms,	message	digest	functions	(aka.	one-way	or	hash
functions),	and	digital	signatures.	These	techniques	are	the
subject	of	entire	books	(see	for	instance	[AC96])	and	provide	the
basis	for	privacy,	integrity,	and	authentication.

Cryptographic	Algorithms
Suppose	Alice	wants	to	send	a	message	to	her	bank	to	transfer
some	money.	Alice	would	like	the	message	to	be	private,	since	it
will	include	information	such	as	her	account	number	and	transfer
amount.	One	solution	is	to	use	a	cryptographic	algorithm,	a
technique	that	would	transform	her	message	into	an	encrypted
form,	unreadable	until	it	is	decrypted.	Once	in	this	form,	the
message	can	only	be	decrypted	by	using	a	secret	key.	Without	the
key	the	message	is	useless:	good	cryptographic	algorithms	make
it	so	difficult	for	intruders	to	decode	the	original	text	that	it	isn't
worth	their	effort.

There	are	two	categories	of	cryptographic	algorithms:	conventional
and	public	key.

Conventional	cryptography
also	known	as	symmetric	cryptography,	requires	the	sender
and	receiver	to	share	a	key:	a	secret	piece	of	information	that
may	be	used	to	encrypt	or	decrypt	a	message.	As	long	as	this
key	is	kept	secret,	nobody	other	than	the	sender	or	recipient
can	read	the	message.	If	Alice	and	the	bank	know	a	secret
key,	then	they	can	send	each	other	private	messages.	The
task	of	sharing	a	key	between	sender	and	recipient	before
communicating,	while	also	keeping	it	secret	from	others,	can
be	problematic.

Public	key	cryptography
also	known	as	asymmetric	cryptography,	solves	the	key

exchange	problem	by	defining	an	algorithm	which	uses	two
keys,	each	of	which	may	be	used	to	encrypt	a	message.	If
one	key	is	used	to	encrypt	a	message	then	the	other	must	be
used	to	decrypt	it.	This	makes	it	possible	to	receive	secure
messages	by	simply	publishing	one	key	(the	public	key)	and
keeping	the	other	secret	(the	private	key).

Anyone	can	encrypt	a	message	using	the	public	key,	but	only	the
owner	of	the	private	key	will	be	able	to	read	it.	In	this	way,	Alice
can	send	private	messages	to	the	owner	of	a	key-pair	(the	bank),
by	encrypting	them	using	their	public	key.	Only	the	bank	will	be
able	to	decrypt	them.

Message	Digests
Although	Alice	may	encrypt	her	message	to	make	it	private,	there
is	still	a	concern	that	someone	might	modify	her	original	message
or	substitute	it	with	a	different	one,	in	order	to	transfer	the	money
to	themselves,	for	instance.	One	way	of	guaranteeing	the	integrity
of	Alice's	message	is	for	her	to	create	a	concise	summary	of	her
message	and	send	this	to	the	bank	as	well.	Upon	receipt	of	the
message,	the	bank	creates	its	own	summary	and	compares	it	with
the	one	Alice	sent.	If	the	summaries	are	the	same	then	the
message	has	been	received	intact.

A	summary	such	as	this	is	called	a	message	digest,	one-way
function	or	hash	function.	Message	digests	are	used	to	create	a
short,	fixed-length	representation	of	a	longer,	variable-length
message.	Digest	algorithms	are	designed	to	produce	a	unique
digest	for	each	message.	Message	digests	are	designed	to	make
it	impractically	difficult	to	determine	the	message	from	the	digest
and	(in	theory)	impossible	to	find	two	different	messages	which
create	the	same	digest	--	thus	eliminating	the	possibility	of
substituting	one	message	for	another	while	maintaining	the	same
digest.

Another	challenge	that	Alice	faces	is	finding	a	way	to	send	the
digest	to	the	bank	securely;	if	the	digest	is	not	sent	securely,	its
integrity	may	be	compromised	and	with	it	the	possibility	for	the
bank	to	determine	the	integrity	of	the	original	message.	Only	if	the
digest	is	sent	securely	can	the	integrity	of	the	associated	message
be	determined.

One	way	to	send	the	digest	securely	is	to	include	it	in	a	digital
signature.

Digital	Signatures
When	Alice	sends	a	message	to	the	bank,	the	bank	needs	to
ensure	that	the	message	is	really	from	her,	so	an	intruder	cannot
request	a	transaction	involving	her	account.	A	digital	signature,
created	by	Alice	and	included	with	the	message,	serves	this
purpose.

Digital	signatures	are	created	by	encrypting	a	digest	of	the
message	and	other	information	(such	as	a	sequence	number)	with
the	sender's	private	key.	Though	anyone	can	decrypt	the	signature
using	the	public	key,	only	the	sender	knows	the	private	key.	This
means	that	only	the	sender	can	have	signed	the	message.
Including	the	digest	in	the	signature	means	the	signature	is	only
good	for	that	message;	it	also	ensures	the	integrity	of	the	message
since	no	one	can	change	the	digest	and	still	sign	it.

To	guard	against	interception	and	reuse	of	the	signature	by	an
intruder	at	a	later	date,	the	signature	contains	a	unique	sequence
number.	This	protects	the	bank	from	a	fraudulent	claim	from	Alice
that	she	did	not	send	the	message	--	only	she	could	have	signed	it
(non-repudiation).

Certificates

Although	Alice	could	have	sent	a	private	message	to	the	bank,
signed	it	and	ensured	the	integrity	of	the	message,	she	still	needs
to	be	sure	that	she	is	really	communicating	with	the	bank.	This
means	that	she	needs	to	be	sure	that	the	public	key	she	is	using	is
part	of	the	bank's	key-pair,	and	not	an	intruder's.	Similarly,	the
bank	needs	to	verify	that	the	message	signature	really	was	signed
by	the	private	key	that	belongs	to	Alice.

If	each	party	has	a	certificate	which	validates	the	other's	identity,
confirms	the	public	key	and	is	signed	by	a	trusted	agency,	then
both	can	be	assured	that	they	are	communicating	with	whom	they
think	they	are.	Such	a	trusted	agency	is	called	a	Certificate
Authority	and	certificates	are	used	for	authentication.

Certificate	Contents
A	certificate	associates	a	public	key	with	the	real	identity	of	an
individual,	server,	or	other	entity,	known	as	the	subject.	As	shown
in	Table	1,	information	about	the	subject	includes	identifying
information	(the	distinguished	name)	and	the	public	key.	It	also
includes	the	identification	and	signature	of	the	Certificate	Authority
that	issued	the	certificate	and	the	period	of	time	during	which	the
certificate	is	valid.	It	may	have	additional	information	(or
extensions)	as	well	as	administrative	information	for	the	Certificate
Authority's	use,	such	as	a	serial	number.

Table	1:	Certificate	Information

Subject Distinguished	Name,	Public	Key
Issuer Distinguished	Name,	Signature
Period	of	Validity Not	Before	Date,	Not	After	Date
Administrative
Information

Version,	Serial	Number

Extended	Information Basic	Constraints,	Netscape	Flags,

etc.

A	distinguished	name	is	used	to	provide	an	identity	in	a	specific
context	--	for	instance,	an	individual	might	have	a	personal
certificate	as	well	as	one	for	their	identity	as	an	employee.
Distinguished	names	are	defined	by	the	X.509	standard	[X509],
which	defines	the	fields,	field	names	and	abbreviations	used	to
refer	to	the	fields	(see	Table	2).

Table	2:	Distinguished	Name	Information

DN	Field Abbrev. Description Example
Common	Name CN Name	being	certified CN=Joe

Average
Organization	or
Company

O Name	is	associated
with	this
organization

O=Snake	Oil,
Ltd.

Organizational
Unit

OU Name	is	associated
with	this	
organization	unit,	such
as	a	department

OU=Research
Institute

City/Locality L Name	is	located	in	this
City

L=Snake	City

State/Province ST Name	is	located	in	this
State/Province

ST=Desert

Country C Name	is	located	in	this
Country	(ISO	code)

C=XZ

A	Certificate	Authority	may	define	a	policy	specifying	which
distinguished	field	names	are	optional	and	which	are	required.	It
may	also	place	requirements	upon	the	field	contents,	as	may
users	of	certificates.	For	example,	a	Netscape	browser	requires
that	the	Common	Name	for	a	certificate	representing	a	server
matches	a	wildcard	pattern	for	the	domain	name	of	that	server,

such	as	*.snakeoil.com.

The	binary	format	of	a	certificate	is	defined	using	the	ASN.1
notation	[ASN1]	[PKCS].	This	notation	defines	how	to	specify	the
contents	and	encoding	rules	define	how	this	information	is
translated	into	binary	form.	The	binary	encoding	of	the	certificate	is
defined	using	Distinguished	Encoding	Rules	(DER),	which	are
based	on	the	more	general	Basic	Encoding	Rules	(BER).	For
those	transmissions	which	cannot	handle	binary,	the	binary	form
may	be	translated	into	an	ASCII	form	by	using	Base64	encoding
[MIME].	When	placed	between	begin	and	end	delimiter	lines	(as
below),	this	encoded	version	is	called	a	PEM	("Privacy	Enhanced
Mail")	encoded	certificate.

Example	of	a	PEM-encoded	certificate	(snakeoil.crt)
-----BEGIN	CERTIFICATE-----

MIIC7jCCAlegAwIBAgIBATANBgkqhkiG9w0BAQQFADCBqTELMAkGA1UEBhMCWFkx

FTATBgNVBAgTDFNuYWtlIERlc2VydDETMBEGA1UEBxMKU25ha2UgVG93bjEXMBUG

A1UEChMOU25ha2UgT2lsLCBMdGQxHjAcBgNVBAsTFUNlcnRpZmljYXRlIEF1dGhv

cml0eTEVMBMGA1UEAxMMU25ha2UgT2lsIENBMR4wHAYJKoZIhvcNAQkBFg9jYUBz

bmFrZW9pbC5kb20wHhcNOTgxMDIxMDg1ODM2WhcNOTkxMDIxMDg1ODM2WjCBpzEL

MAkGA1UEBhMCWFkxFTATBgNVBAgTDFNuYWtlIERlc2VydDETMBEGA1UEBxMKU25h

a2UgVG93bjEXMBUGA1UEChMOU25ha2UgT2lsLCBMdGQxFzAVBgNVBAsTDldlYnNl

cnZlciBUZWFtMRkwFwYDVQQDExB3d3cuc25ha2VvaWwuZG9tMR8wHQYJKoZIhvcN

AQkBFhB3d3dAc25ha2VvaWwuZG9tMIGfMA0GCSqGSIb3DQEBAQUAA4GNADCBiQKB

gQDH9Ge/s2zcH+da+rPTx/DPRp3xGjHZ4GG6pCmvADIEtBtKBFAcZ64n+Dy7Np8b

vKR+yy5DGQiijsH1D/j8HlGE+q4TZ8OFk7BNBFazHxFbYI4OKMiCxdKzdif1yfaa

lWoANFlAzlSdbxeGVHoT0K+gT5w3UxwZKv2DLbCTzLZyPwIDAQABoyYwJDAPBgNV

HRMECDAGAQH/AgEAMBEGCWCGSAGG+EIBAQQEAwIAQDANBgkqhkiG9w0BAQQFAAOB

gQAZUIHAL4D09oE6Lv2k56Gp38OBDuILvwLg1v1KL8mQR+KFjghCrtpqaztZqcDt

2q2QoyulCgSzHbEGmi0EsdkPfg6mp0penssIFePYNI+/8u9HT4LuKMJX15hxBam7

dUHzICxBVC1lnHyYGjDuAMhe396lYAn8bCld1/L4NMGBCQ==

-----END	CERTIFICATE-----

Certificate	Authorities
By	verifying	the	information	in	a	certificate	request	before	granting
the	certificate,	the	Certificate	Authority	assures	itself	of	the	identity
of	the	private	key	owner	of	a	key-pair.	For	instance,	if	Alice

requests	a	personal	certificate,	the	Certificate	Authority	must	first
make	sure	that	Alice	really	is	the	person	the	certificate	request
claims	she	is.

Certificate	Chains
A	Certificate	Authority	may	also	issue	a	certificate	for	another
Certificate	Authority.	When	examining	a	certificate,	Alice	may	need
to	examine	the	certificate	of	the	issuer,	for	each	parent	Certificate
Authority,	until	reaching	one	which	she	has	confidence	in.	She
may	decide	to	trust	only	certificates	with	a	limited	chain	of	issuers,
to	reduce	her	risk	of	a	"bad"	certificate	in	the	chain.

Creating	a	Root-Level	CA
As	noted	earlier,	each	certificate	requires	an	issuer	to	assert	the
validity	of	the	identity	of	the	certificate	subject,	up	to	the	top-level
Certificate	Authority	(CA).	This	presents	a	problem:	who	can
vouch	for	the	certificate	of	the	top-level	authority,	which	has	no
issuer?	In	this	unique	case,	the	certificate	is	"self-signed",	so	the
issuer	of	the	certificate	is	the	same	as	the	subject.	Browsers	are
preconfigured	to	trust	well-known	certificate	authorities,	but	it	is
important	to	exercise	extra	care	in	trusting	a	self-signed	certificate.
The	wide	publication	of	a	public	key	by	the	root	authority	reduces
the	risk	in	trusting	this	key	--	it	would	be	obvious	if	someone	else
publicized	a	key	claiming	to	be	the	authority.

A	number	of	companies,	such	as	Thawte	and	VeriSign	have
established	themselves	as	Certificate	Authorities.	These
companies	provide	the	following	services:

Verifying	certificate	requests
Processing	certificate	requests
Issuing	and	managing	certificates

It	is	also	possible	to	create	your	own	Certificate	Authority.
Although	risky	in	the	Internet	environment,	it	may	be	useful	within

http://www.thawte.com/
http://www.verisign.com/

an	Intranet	where	the	organization	can	easily	verify	the	identities
of	individuals	and	servers.

Certificate	Management
Establishing	a	Certificate	Authority	is	a	responsibility	which
requires	a	solid	administrative,	technical	and	management
framework.	Certificate	Authorities	not	only	issue	certificates,	they
also	manage	them	--	that	is,	they	determine	for	how	long
certificates	remain	valid,	they	renew	them	and	keep	lists	of
certificates	that	were	issued	in	the	past	but	are	no	longer	valid
(Certificate	Revocation	Lists,	or	CRLs).

For	example,	if	Alice	is	entitled	to	a	certificate	as	an	employee	of	a
company	but	has	now	left	that	company,	her	certificate	may	need
to	be	revoked.	Because	certificates	are	only	issued	after	the
subject's	identity	has	been	verified	and	can	then	be	passed
around	to	all	those	with	whom	the	subject	may	communicate,	it	is
impossible	to	tell	from	the	certificate	alone	that	it	has	been
revoked.	Therefore	when	examining	certificates	for	validity	it	is
necessary	to	contact	the	issuing	Certificate	Authority	to	check
CRLs	--	this	is	usually	not	an	automated	part	of	the	process.

Note

If	you	use	a	Certificate	Authority	that	browsers	are	not
configured	to	trust	by	default,	it	is	necessary	to	load	the
Certificate	Authority	certificate	into	the	browser,	enabling	the
browser	to	validate	server	certificates	signed	by	that	Certificate
Authority.	Doing	so	may	be	dangerous,	since	once	loaded,	the
browser	will	accept	all	certificates	signed	by	that	Certificate
Authority.

Secure	Sockets	Layer	(SSL)

The	Secure	Sockets	Layer	protocol	is	a	protocol	layer	which	may
be	placed	between	a	reliable	connection-oriented	network	layer
protocol	(e.g.	TCP/IP)	and	the	application	protocol	layer	(e.g.
HTTP).	SSL	provides	for	secure	communication	between	client
and	server	by	allowing	mutual	authentication,	the	use	of	digital
signatures	for	integrity	and	encryption	for	privacy.

The	protocol	is	designed	to	support	a	range	of	choices	for	specific
algorithms	used	for	cryptography,	digests	and	signatures.	This
allows	algorithm	selection	for	specific	servers	to	be	made	based
on	legal,	export	or	other	concerns	and	also	enables	the	protocol	to
take	advantage	of	new	algorithms.	Choices	are	negotiated
between	client	and	server	when	establishing	a	protocol	session.

Table	4:	Versions	of	the	SSL	protocol
Version Source Description
SSL
v2.0

Vendor
Standard
(from
Netscape
Corp.)

First	SSL	protocol	for	which
implementations	exist

SSL
v3.0

Expired
Internet	Draft
(from
Netscape
Corp.)	[SSL3]

Revisions	to	prevent	specific	security
attacks,	add	non-RSA	ciphers	and
support	for	certificate	chains

TLS
v1.0

Proposed
Internet
Standard
(from	IETF)
[TLS1]

Revision	of	SSL	3.0	to	update	the	MAC
layer	to	HMAC,	add	block	padding	for
block	ciphers,	message	order
standardization	and	more	alert
messages.

TLS Proposed Update	of	TLS	1.0	to	add	protection

v1.1 Internet
Standard
(from	IETF)
[TLS11]

against	Cipher	block	chaining	(CBC)
attacks.

TLS
v1.2

Proposed
Internet
Standard
(from	IETF)
[TLS12]

Update	of	TLS	1.1	deprecating	MD5	as
hash,	and	adding	incompatibility	to	SSL
so	it	will	never	negotiate	the	use	of
SSLv2.

There	are	a	number	of	versions	of	the	SSL	protocol,	as	shown	in
Table	4.	As	noted	there,	one	of	the	benefits	in	SSL	3.0	is	that	it
adds	support	of	certificate	chain	loading.	This	feature	allows	a
server	to	pass	a	server	certificate	along	with	issuer	certificates	to
the	browser.	Chain	loading	also	permits	the	browser	to	validate	the
server	certificate,	even	if	Certificate	Authority	certificates	are	not
installed	for	the	intermediate	issuers,	since	they	are	included	in	the
certificate	chain.	SSL	3.0	is	the	basis	for	the	Transport	Layer
Security	[TLS]	protocol	standard,	currently	in	development	by	the
Internet	Engineering	Task	Force	(IETF).

Establishing	a	Session
The	SSL	session	is	established	by	following	a	handshake
sequence	between	client	and	server,	as	shown	in	Figure	1.	This
sequence	may	vary,	depending	on	whether	the	server	is
configured	to	provide	a	server	certificate	or	request	a	client
certificate.	Although	cases	exist	where	additional	handshake	steps
are	required	for	management	of	cipher	information,	this	article
summarizes	one	common	scenario.	See	the	SSL	specification	for
the	full	range	of	possibilities.

Note

Once	an	SSL	session	has	been	established,	it	may	be	reused.

This	avoids	the	performance	penalty	of	repeating	the	many
steps	needed	to	start	a	session.	To	do	this,	the	server	assigns
each	SSL	session	a	unique	session	identifier	which	is	cached	in
the	server	and	which	the	client	can	use	in	future	connections	to
reduce	the	handshake	time	(until	the	session	identifier	expires
from	the	cache	of	the	server).

Figure	1:	Simplified	SSL	Handshake	Sequence

The	elements	of	the	handshake	sequence,	as	used	by	the	client
and	server,	are	listed	below:

1.	 Negotiate	the	Cipher	Suite	to	be	used	during	data	transfer

2.	 Establish	and	share	a	session	key	between	client	and	server

3.	 Optionally	authenticate	the	server	to	the	client

4.	 Optionally	authenticate	the	client	to	the	server

The	first	step,	Cipher	Suite	Negotiation,	allows	the	client	and
server	to	choose	a	Cipher	Suite	supported	by	both	of	them.	The
SSL3.0	protocol	specification	defines	31	Cipher	Suites.	A	Cipher
Suite	is	defined	by	the	following	components:

Key	Exchange	Method
Cipher	for	Data	Transfer
Message	Digest	for	creating	the	Message	Authentication
Code	(MAC)

These	three	elements	are	described	in	the	sections	that	follow.

Key	Exchange	Method
The	key	exchange	method	defines	how	the	shared	secret
symmetric	cryptography	key	used	for	application	data	transfer	will
be	agreed	upon	by	client	and	server.	SSL	2.0	uses	RSA	key
exchange	only,	while	SSL	3.0	supports	a	choice	of	key	exchange
algorithms	including	RSA	key	exchange	(when	certificates	are
used),	and	Diffie-Hellman	key	exchange	(for	exchanging	keys
without	certificates,	or	without	prior	communication	between	client
and	server).

One	variable	in	the	choice	of	key	exchange	methods	is	digital
signatures	--	whether	or	not	to	use	them,	and	if	so,	what	kind	of
signatures	to	use.	Signing	with	a	private	key	provides	protection
against	a	man-in-the-middle-attack	during	the	information
exchange	used	to	generating	the	shared	key	[AC96,	p516].

Cipher	for	Data	Transfer
SSL	uses	conventional	symmetric	cryptography,	as	described
earlier,	for	encrypting	messages	in	a	session.	There	are	nine
choices	of	how	to	encrypt,	including	the	option	not	to	encrypt:

No	encryption
Stream	Ciphers

RC4	with	40-bit	keys
RC4	with	128-bit	keys

CBC	Block	Ciphers

RC2	with	40	bit	key
DES	with	40	bit	key
DES	with	56	bit	key
Triple-DES	with	168	bit	key
Idea	(128	bit	key)
Fortezza	(96	bit	key)

"CBC"	refers	to	Cipher	Block	Chaining,	which	means	that	a	portion
of	the	previously	encrypted	cipher	text	is	used	in	the	encryption	of
the	current	block.	"DES"	refers	to	the	Data	Encryption	Standard
[AC96,	ch12],	which	has	a	number	of	variants	(including	DES40
and	3DES_EDE).	"Idea"	is	currently	one	of	the	best	and
cryptographically	strongest	algorithms	available,	and	"RC2"	is	a
proprietary	algorithm	from	RSA	DSI	[AC96,	ch13].

Digest	Function
The	choice	of	digest	function	determines	how	a	digest	is	created
from	a	record	unit.	SSL	supports	the	following:

No	digest	(Null	choice)
MD5,	a	128-bit	hash
Secure	Hash	Algorithm	(SHA-1),	a	160-bit	hash

The	message	digest	is	used	to	create	a	Message	Authentication
Code	(MAC)	which	is	encrypted	with	the	message	to	verify
integrity	and	to	protect	against	replay	attacks.

Handshake	Sequence	Protocol
The	handshake	sequence	uses	three	protocols:

The	SSL	Handshake	Protocol	for	performing	the	client	and
server	SSL	session	establishment.
The	SSL	Change	Cipher	Spec	Protocol	for	actually
establishing	agreement	on	the	Cipher	Suite	for	the	session.

The	SSL	Alert	Protocol	for	conveying	SSL	error	messages
between	client	and	server.

These	protocols,	as	well	as	application	protocol	data,	are
encapsulated	in	the	SSL	Record	Protocol,	as	shown	in	Figure	2.
An	encapsulated	protocol	is	transferred	as	data	by	the	lower	layer
protocol,	which	does	not	examine	the	data.	The	encapsulated
protocol	has	no	knowledge	of	the	underlying	protocol.

Figure	2:	SSL	Protocol	Stack

The	encapsulation	of	SSL	control	protocols	by	the	record	protocol
means	that	if	an	active	session	is	renegotiated	the	control
protocols	will	be	transmitted	securely.	If	there	was	no	previous
session,	the	Null	cipher	suite	is	used,	which	means	there	will	be
no	encryption	and	messages	will	have	no	integrity	digests,	until
the	session	has	been	established.

Data	Transfer
The	SSL	Record	Protocol,	shown	in	Figure	3,	is	used	to	transfer
application	and	SSL	Control	data	between	the	client	and	server,
where	necessary	fragmenting	this	data	into	smaller	units,	or
combining	multiple	higher	level	protocol	data	messages	into	single
units.	It	may	compress,	attach	digest	signatures,	and	encrypt
these	units	before	transmitting	them	using	the	underlying	reliable
transport	protocol	(Note:	currently,	no	major	SSL	implementations

include	support	for	compression).

Figure	3:	SSL	Record	Protocol

Securing	HTTP	Communication
One	common	use	of	SSL	is	to	secure	Web	HTTP	communication
between	a	browser	and	a	webserver.	This	does	not	preclude	the
use	of	non-secured	HTTP	-	the	secure	version	(called	HTTPS)	is
the	same	as	plain	HTTP	over	SSL,	but	uses	the	URL	scheme
https	rather	than	http,	and	a	different	server	port	(by	default,
port	443).	This	functionality	is	a	large	part	of	what	mod_ssl
provides	for	the	Apache	webserver.

References

[AC96]
Bruce	Schneier,	“Applied	Cryptography”,	2nd	Edition,	Wiley,
1996.	See	http://www.counterpane.com/	for	various	other
materials	by	Bruce	Schneier.

[ASN1]
ITU-T	Recommendation	X.208,	“Specification	of	Abstract
Syntax	Notation	One	(ASN.1)”,	last	updated	2008.	See
http://www.itu.int/ITU-T/asn1/.

[X509]
ITU-T	Recommendation	X.509,	“The	Directory	-
Authentication	Framework”.	For	references,	see
http://en.wikipedia.org/wiki/X.509.

[PKCS]
“Public	Key	Cryptography	Standards	(PKCS)”,	RSA
Laboratories	Technical	Notes,	See
http://www.rsasecurity.com/rsalabs/pkcs/.

[MIME]
N.	Freed,	N.	Borenstein,	“Multipurpose	Internet	Mail
Extensions	(MIME)	Part	One:	Format	of	Internet	Message
Bodies”,	RFC2045.	See	for	instance
http://tools.ietf.org/html/rfc2045.

[SSL3]
Alan	O.	Freier,	Philip	Karlton,	Paul	C.	Kocher,	“The	SSL
Protocol	Version	3.0”,	1996.	See
http://www.netscape.com/eng/ssl3/draft302.txt.

[TLS1]
Tim	Dierks,	Christopher	Allen,	“The	TLS	Protocol	Version
1.0”,	1999.	See	http://ietf.org/rfc/rfc2246.txt.

[TLS11]
“The	TLS	Protocol	Version	1.1”,	2006.	See

http://www.counterpane.com/
http://www.itu.int/ITU-T/asn1/
http://en.wikipedia.org/wiki/X.509
http://www.rsasecurity.com/rsalabs/pkcs/
http://tools.ietf.org/html/rfc2045
http://www.netscape.com/eng/ssl3/draft302.txt
http://ietf.org/rfc/rfc2246.txt

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://tools.ietf.org/html/rfc4346.

[TLS12]
“The	TLS	Protocol	Version	1.2”,	2008.	See
http://tools.ietf.org/html/rfc5246.

http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc5246
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	SSL/TLS

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSL/TLS	Strong	Encryption:	Compatibility

This	page	covers	backwards	compatibility	between	mod_ssl	and	other
SSL	solutions.	mod_ssl	is	not	the	only	SSL	solution	for	Apache;	four
additional	products	are	(or	were)	also	available:	Ben	Laurie's	freely
available	Apache-SSL	(from	where	mod_ssl	were	originally	derived	in
1998),	Red	Hat's	commercial	Secure	Web	Server	(which	was	based
on	mod_ssl),	Covalent's	commercial	Raven	SSL	Module	(also	based
on	mod_ssl)	and	finally	C2Net's	(now	Red	Hat's)	commercial	product
Stronghold	(based	on	a	different	evolution	branch,	named	Sioux	up	to
Stronghold	2.x,	and	based	on	mod_ssl	since	Stronghold	3.x).

mod_ssl	mostly	provides	a	superset	of	the	functionality	of	all	the	other
solutions,	so	it's	simple	to	migrate	from	one	of	the	older	modules	to
mod_ssl.	The	configuration	directives	and	environment	variable
names	used	by	the	older	SSL	solutions	vary	from	those	used	in
mod_ssl;	mapping	tables	are	included	here	to	give	the	equivalents
used	by	mod_ssl.

http://www.apache-ssl.org/
http://www.redhat.com/explore/stronghold/

Configuration	Directives

The	mapping	between	configuration	directives	used	by	Apache-
SSL	1.x	and	mod_ssl	2.0.x	is	given	in	Table	1.	The	mapping	from
Sioux	1.x	and	Stronghold	2.x	is	only	partial	because	of	special
functionality	in	these	interfaces	which	mod_ssl	doesn't	provide.

Table	1:	Configuration	Directive	Mapping
Old	Directive mod_ssl	Directive
Apache-SSL	1.x	&	mod_ssl	2.0.x	compatibility:
SSLEnable SSLEngine	on

SSLDisable SSLEngine	off

SSLLogFile	file

SSLRequiredCiphers	spec SSLCipherSuite	spec
SSLRequireCipher	c1	... SSLRequire	%{SSL_CIPHER}	in

{"c1",	...}
SSLBanCipher	c1	... SSLRequire	not	(%{SSL_CIPHER}

in	{"c1",	...})
SSLFakeBasicAuth SSLOptions	+FakeBasicAuth

SSLCacheServerPath	dir -
SSLCacheServerPort	integer -

Apache-SSL	1.x	compatibility:
SSLExportClientCertificates SSLOptions	+ExportCertData

SSLCacheServerRunDir	dir -

Sioux	1.x	compatibility:
SSL_CertFile	file SSLCertificateFile	file
SSL_KeyFile	file SSLCertificateKeyFile	
SSL_CipherSuite	arg SSLCipherSuite	arg

SSL_X509VerifyDir	arg SSLCACertificatePath	arg
SSL_Log	file -

SSL_Connect	flag SSLEngine	flag
SSL_ClientAuth	arg SSLVerifyClient	arg
SSL_X509VerifyDepth	arg SSLVerifyDepth	arg
SSL_FetchKeyPhraseFrom	arg -

SSL_SessionDir	dir -

SSL_Require	expr -

SSL_CertFileType	arg -

SSL_KeyFileType	arg -

SSL_X509VerifyPolicy	arg -

SSL_LogX509Attributes	arg -

Stronghold	2.x	compatibility:
StrongholdAccelerator	engine SSLCryptoDevice	engine
StrongholdKey	dir -

StrongholdLicenseFile	dir -

SSLFlag	flag SSLEngine	flag
SSLSessionLockFile	file SSLMutex	file

SSLCipherList	spec SSLCipherSuite	spec
RequireSSL SSLRequireSSL

SSLErrorFile	file -

SSLRoot	dir -

SSL_CertificateLogDir	dir -

AuthCertDir	dir -

SSL_Group	name -

SSLProxyMachineCertPath	dir SSLProxyMachineCertificatePath

dir
SSLProxyMachineCertFile	file SSLProxyMachineCertificateFile

file
SSLProxyCipherList	spec SSLProxyCipherSpec	spec

Environment	Variables

The	mapping	between	environment	variable	names	used	by	the
older	SSL	solutions	and	the	names	used	by	mod_ssl	is	given	in
Table	2.

Table	2:	Environment	Variable	Derivation
Old	Variable mod_ssl	Variable
SSL_PROTOCOL_VERSION SSL_PROTOCOL

SSLEAY_VERSION SSL_VERSION_LIBRARY

HTTPS_SECRETKEYSIZE SSL_CIPHER_USEKEYSIZE

HTTPS_KEYSIZE SSL_CIPHER_ALGKEYSIZE

HTTPS_CIPHER SSL_CIPHER

HTTPS_EXPORT SSL_CIPHER_EXPORT

SSL_SERVER_KEY_SIZE SSL_CIPHER_ALGKEYSIZE

SSL_SERVER_CERTIFICATE SSL_SERVER_CERT

SSL_SERVER_CERT_START SSL_SERVER_V_START

SSL_SERVER_CERT_END SSL_SERVER_V_END

SSL_SERVER_CERT_SERIAL SSL_SERVER_M_SERIAL

SSL_SERVER_SIGNATURE_ALGORITHM SSL_SERVER_A_SIG

SSL_SERVER_DN SSL_SERVER_S_DN

SSL_SERVER_CN SSL_SERVER_S_DN_CN

SSL_SERVER_EMAIL SSL_SERVER_S_DN_Email

SSL_SERVER_O SSL_SERVER_S_DN_O

SSL_SERVER_OU SSL_SERVER_S_DN_OU

SSL_SERVER_C SSL_SERVER_S_DN_C

SSL_SERVER_SP SSL_SERVER_S_DN_SP

SSL_SERVER_L SSL_SERVER_S_DN_L

SSL_SERVER_IDN SSL_SERVER_I_DN

SSL_SERVER_ICN SSL_SERVER_I_DN_CN

SSL_SERVER_IEMAIL SSL_SERVER_I_DN_Email

SSL_SERVER_IO SSL_SERVER_I_DN_O

SSL_SERVER_IOU SSL_SERVER_I_DN_OU

SSL_SERVER_IC SSL_SERVER_I_DN_C

SSL_SERVER_ISP SSL_SERVER_I_DN_SP

SSL_SERVER_IL SSL_SERVER_I_DN_L

SSL_CLIENT_CERTIFICATE SSL_CLIENT_CERT

SSL_CLIENT_CERT_START SSL_CLIENT_V_START

SSL_CLIENT_CERT_END SSL_CLIENT_V_END

SSL_CLIENT_CERT_SERIAL SSL_CLIENT_M_SERIAL

SSL_CLIENT_SIGNATURE_ALGORITHM SSL_CLIENT_A_SIG

SSL_CLIENT_DN SSL_CLIENT_S_DN

SSL_CLIENT_CN SSL_CLIENT_S_DN_CN

SSL_CLIENT_EMAIL SSL_CLIENT_S_DN_Email

SSL_CLIENT_O SSL_CLIENT_S_DN_O

SSL_CLIENT_OU SSL_CLIENT_S_DN_OU

SSL_CLIENT_C SSL_CLIENT_S_DN_C

SSL_CLIENT_SP SSL_CLIENT_S_DN_SP

SSL_CLIENT_L SSL_CLIENT_S_DN_L

SSL_CLIENT_IDN SSL_CLIENT_I_DN

SSL_CLIENT_ICN SSL_CLIENT_I_DN_CN

SSL_CLIENT_IEMAIL SSL_CLIENT_I_DN_Email

SSL_CLIENT_IO SSL_CLIENT_I_DN_O

SSL_CLIENT_IOU SSL_CLIENT_I_DN_OU

SSL_CLIENT_IC SSL_CLIENT_I_DN_C

SSL_CLIENT_ISP SSL_CLIENT_I_DN_SP

SSL_CLIENT_IL SSL_CLIENT_I_DN_L

SSL_EXPORT SSL_CIPHER_EXPORT

SSL_KEYSIZE SSL_CIPHER_ALGKEYSIZE

SSL_SECKEYSIZE SSL_CIPHER_USEKEYSIZE

SSL_SSLEAY_VERSION SSL_VERSION_LIBRARY

SSL_STRONG_CRYPTO -

SSL_SERVER_KEY_EXP -

SSL_SERVER_KEY_ALGORITHM -

SSL_SERVER_KEY_SIZE -

SSL_SERVER_SESSIONDIR -

SSL_SERVER_CERTIFICATELOGDIR -

SSL_SERVER_CERTFILE -

SSL_SERVER_KEYFILE -

SSL_SERVER_KEYFILETYPE -

SSL_CLIENT_KEY_EXP -

SSL_CLIENT_KEY_ALGORITHM -

SSL_CLIENT_KEY_SIZE -

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Custom	Log	Functions

When	mod_ssl	is	enabled,	additional	functions	exist	for	the
Custom	Log	Format	of	mod_log_config	as	documented	in	the
Reference	Chapter.	Beside	the	``%{varname}x''	eXtension	format
function	which	can	be	used	to	expand	any	variables	provided	by
any	module,	an	additional	Cryptography	``%{name}c''
cryptography	format	function	exists	for	backward	compatibility.	The
currently	implemented	function	calls	are	listed	in	Table	3.

Table	3:	Custom	Log	Cryptography	Function
Function	Call Description
%...{version}c SSL	protocol	version
%...{cipher}c SSL	cipher
%...

{subjectdn}c

Client	Certificate	Subject	Distinguished
Name

%...{issuerdn}c Client	Certificate	Issuer	Distinguished
Name

%...{errcode}c Certificate	Verification	Error	(numerical)
%...{errstr}c Certificate	Verification	Error	(string)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	SSL/TLS

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSL/TLS	Strong	Encryption:	How-To

This	document	is	intended	to	get	you	started,	and	get	a	few	things
working.	You	are	strongly	encouraged	to	read	the	rest	of	the	SSL
documentation,	and	arrive	at	a	deeper	understanding	of	the	material,
before	progressing	to	the	advanced	techniques.

Basic	Configuration	Example

Your	SSL	configuration	will	need	to	contain,	at	minimum,	the
following	directives.

LoadModule	ssl_module	modules/mod_ssl.so

Listen	443

<VirtualHost	*:443>

				ServerName	www.example.com

				SSLEngine	on

				SSLCertificateFile	"/path/to/www.example.com.cert"

				SSLCertificateKeyFile	"/path/to/www.example.com.key"

</VirtualHost>

Cipher	Suites	and	Enforcing	Strong	Security

How	can	I	create	an	SSL	server	which	accepts	strong
encryption	only?
How	can	I	create	an	SSL	server	which	accepts	all	types	of
ciphers	in	general,	but	requires	a	strong	cipher	for	access	to	a
particular	URL?

How	can	I	create	an	SSL	server	which	accepts	strong
encryption	only?
The	following	enables	only	the	strongest	ciphers:

SSLCipherSuite	HIGH:!aNULL:!MD5

While	with	the	following	configuration	you	specify	a	preference	for
specific	speed-optimized	ciphers	(which	will	be	selected	by
mod_ssl,	provided	that	they	are	supported	by	the	client):

SSLCipherSuite	RC4-SHA:AES128-SHA:HIGH:!aNULL:!MD5

SSLHonorCipherOrder	on

How	can	I	create	an	SSL	server	which	accepts	all
types	of	ciphers	in	general,	but	requires	a	strong
ciphers	for	access	to	a	particular	URL?
Obviously,	a	server-wide	SSLCipherSuite	which	restricts
ciphers	to	the	strong	variants,	isn't	the	answer	here.	However,
mod_ssl	can	be	reconfigured	within	Location	blocks,	to	give	a
per-directory	solution,	and	can	automatically	force	a	renegotiation
of	the	SSL	parameters	to	meet	the	new	configuration.	This	can	be
done	as	follows:

#	be	liberal	in	general

SSLCipherSuite	ALL:!aNULL:RC4+RSA:+HIGH:+MEDIUM:+LOW:+EXP:+eNULL

<Location	"/strong/area">

#	but	https://hostname/strong/area/	and	below

#	requires	strong	ciphers

SSLCipherSuite	HIGH:!aNULL:!MD5

</Location>

OCSP	Stapling

The	Online	Certificate	Status	Protocol	(OCSP)	is	a	mechanism	for
determining	whether	or	not	a	server	certificate	has	been	revoked,
and	OCSP	Stapling	is	a	special	form	of	this	in	which	the	server,
such	as	httpd	and	mod_ssl,	maintains	current	OCSP	responses
for	its	certificates	and	sends	them	to	clients	which	communicate
with	the	server.	Most	certificates	contain	the	address	of	an	OCSP
responder	maintained	by	the	issuing	Certificate	Authority,	and
mod_ssl	can	communicate	with	that	responder	to	obtain	a	signed
response	that	can	be	sent	to	clients	communicating	with	the
server.

Because	the	client	can	obtain	the	certificate	revocation	status	from
the	server,	without	requiring	an	extra	connection	from	the	client	to
the	Certificate	Authority,	OCSP	Stapling	is	the	preferred	way	for
the	revocation	status	to	be	obtained.	Other	benefits	of	eliminating
the	communication	between	clients	and	the	Certificate	Authority
are	that	the	client	browsing	history	is	not	exposed	to	the	Certificate
Authority	and	obtaining	status	is	more	reliable	by	not	depending
on	potentially	heavily	loaded	Certificate	Authority	servers.

Because	the	response	obtained	by	the	server	can	be	reused	for	all
clients	using	the	same	certificate	during	the	time	that	the	response
is	valid,	the	overhead	for	the	server	is	minimal.

Once	general	SSL	support	has	been	configured	properly,	enabling
OCSP	Stapling	generally	requires	only	very	minor	modifications	to
the	httpd	configuration	—	the	addition	of	these	two	directives:

SSLUseStapling	On

SSLStaplingCache	"shmcb:logs/ssl_stapling(32768)"

These	directives	are	placed	at	global	scope	(i.e.,	not	within	a
virtual	host	definition)	wherever	other	global	SSL	configuration

directives	are	placed,	such	as	in	conf/extra/httpd-ssl.conf
for	normal	open	source	builds	of	httpd,	/etc/apache2/mods-
enabled/ssl.conf	for	the	Ubuntu	or	Debian-bundled	httpd,	etc.

The	path	on	the	SSLStaplingCache	directive	(e.g.,	logs/)
should	match	the	one	on	the	SSLSessionCache	directive.	This
path	is	relative	to	ServerRoot.

This	particular	SSLStaplingCache	directive	requires
mod_socache_shmcb	(from	the	shmcb	prefix	on	the	directive's
argument).	This	module	is	usually	enabled	already	for
SSLSessionCache	or	on	behalf	of	some	module	other	than
mod_ssl.	If	you	enabled	an	SSL	session	cache	using	a
mechanism	other	than	mod_socache_shmcb,	use	that	alternative
mechanism	for	SSLStaplingCache	as	well.	For	example:

SSLSessionCache	"dbm:logs/ssl_scache"

SSLStaplingCache	"dbm:logs/ssl_stapling"

You	can	use	the	openssl	command-line	program	to	verify	that	an
OCSP	response	is	sent	by	your	server:

$	openssl	s_client	-connect	www.example.com:443	-status	-servername	www.example.com

...

OCSP	response:	

======================================

OCSP	Response	Data:

				OCSP	Response	Status:	successful	(0x0)

				Response	Type:	Basic	OCSP	Response

...

				Cert	Status:	Good

...

The	following	sections	highlight	the	most	common	situations	which
require	further	modification	to	the	configuration.	Refer	also	to	the

mod_ssl	reference	manual.

If	more	than	a	few	SSL	certificates	are	used	for	the
server
OCSP	responses	are	stored	in	the	SSL	stapling	cache.	While	the
responses	are	typically	a	few	hundred	to	a	few	thousand	bytes	in
size,	mod_ssl	supports	OCSP	responses	up	to	around	10K	bytes
in	size.	With	more	than	a	few	certificates,	the	stapling	cache	size
(32768	bytes	in	the	example	above)	may	need	to	be	increased.
Error	message	AH01929	will	be	logged	in	case	of	an	error	storing
a	response.

If	the	certificate	does	not	point	to	an	OCSP
responder,	or	if	a	different	address	must	be	used
Refer	to	the	SSLStaplingForceURL	directive.

You	can	confirm	that	a	server	certificate	points	to	an	OCSP
responder	using	the	openssl	command-line	program,	as	follows:

$	openssl	x509	-in	./www.example.com.crt	-text	|	grep	'OCSP.*http'

OCSP	-	URI:http://ocsp.example.com

If	the	OCSP	URI	is	provided	and	the	web	server	can	communicate
to	it	directly	without	using	a	proxy,	no	configuration	is	required.
Note	that	firewall	rules	that	control	outbound	connections	from	the
web	server	may	need	to	be	adjusted.

If	no	OCSP	URI	is	provided,	contact	your	Certificate	Authority	to
determine	if	one	is	available;	if	so,	configure	it	with
SSLStaplingForceURL	in	the	virtual	host	that	uses	the
certificate.

If	multiple	SSL-enabled	virtual	hosts	are	configured
and	OCSP	Stapling	should	be	disabled	for	some

Add	SSLUseStapling	Off	to	the	virtual	hosts	for	which	OCSP
Stapling	should	be	disabled.

If	the	OCSP	responder	is	slow	or	unreliable
Several	directives	are	available	to	handle	timeouts	and	errors.
Refer	to	the	documentation	for	the
SSLStaplingFakeTryLater,
SSLStaplingResponderTimeout,	and
SSLStaplingReturnResponderErrors	directives.

If	mod_ssl	logs	error	AH02217
AH02217:	ssl_stapling_init_cert:	Can't	retrieve	issuer	certificate!

In	order	to	support	OCSP	Stapling	when	a	particular	server
certificate	is	used,	the	certificate	chain	for	that	certificate	must	be
configured.	If	it	was	not	configured	as	part	of	enabling	SSL,	the
AH02217	error	will	be	issued	when	stapling	is	enabled,	and	an
OCSP	response	will	not	be	provided	for	clients	using	the
certificate.

Refer	to	the	SSLCertificateChainFile	and
SSLCertificateFile	for	instructions	for	configuring	the
certificate	chain.

Client	Authentication	and	Access	Control

How	can	I	force	clients	to	authenticate	using	certificates?
How	can	I	force	clients	to	authenticate	using	certificates	for	a
particular	URL,	but	still	allow	arbitrary	clients	to	access	the
rest	of	the	server?
How	can	I	allow	only	clients	who	have	certificates	to	access	a
particular	URL,	but	allow	all	clients	to	access	the	rest	of	the
server?
How	can	I	require	HTTPS	with	strong	ciphers,	and	either
basic	authentication	or	client	certificates,	for	access	to	part	of
the	Intranet	website,	for	clients	coming	from	the	Internet?

How	can	I	force	clients	to	authenticate	using
certificates?
When	you	know	all	of	your	users	(eg,	as	is	often	the	case	on	a
corporate	Intranet),	you	can	require	plain	certificate	authentication.
All	you	need	to	do	is	to	create	client	certificates	signed	by	your
own	CA	certificate	(ca.crt)	and	then	verify	the	clients	against
this	certificate.

#	require	a	client	certificate	which	has	to	be	directly

#	signed	by	our	CA	certificate	in	ca.crt

SSLVerifyClient	require

SSLVerifyDepth	1

SSLCACertificateFile	"conf/ssl.crt/ca.crt"

How	can	I	force	clients	to	authenticate	using
certificates	for	a	particular	URL,	but	still	allow
arbitrary	clients	to	access	the	rest	of	the	server?
To	force	clients	to	authenticate	using	certificates	for	a	particular
URL,	you	can	use	the	per-directory	reconfiguration	features	of
mod_ssl:

SSLVerifyClient	none

SSLCACertificateFile	"conf/ssl.crt/ca.crt"

<Location	"/secure/area">

SSLVerifyClient	require

SSLVerifyDepth	1

</Location>

How	can	I	allow	only	clients	who	have	certificates	to
access	a	particular	URL,	but	allow	all	clients	to
access	the	rest	of	the	server?
The	key	to	doing	this	is	checking	that	part	of	the	client	certificate
matches	what	you	expect.	Usually	this	means	checking	all	or	part
of	the	Distinguished	Name	(DN),	to	see	if	it	contains	some	known
string.	There	are	two	ways	to	do	this,	using	either
mod_auth_basic	or	SSLRequire.

The	mod_auth_basic	method	is	generally	required	when	the
certificates	are	completely	arbitrary,	or	when	their	DNs	have	no
common	fields	(usually	the	organisation,	etc.).	In	this	case,	you
should	establish	a	password	database	containing	all	clients
allowed,	as	follows:

SSLVerifyClient						none

SSLCACertificateFile	"conf/ssl.crt/ca.crt"

SSLCACertificatePath	"conf/ssl.crt"

<Directory	"/usr/local/apache2/htdocs/secure/area">

				SSLVerifyClient						require

				SSLVerifyDepth							5

				SSLOptions											+FakeBasicAuth

				SSLRequireSSL

				AuthName													"Snake	Oil	Authentication"

				AuthType													Basic

				AuthBasicProvider				file

				AuthUserFile									"/usr/local/apache2/conf/httpd.passwd"

				Require														valid-user

</Directory>

The	password	used	in	this	example	is	the	DES	encrypted	string
"password".	See	the	SSLOptions	docs	for	more	information.

httpd.passwd
/C=DE/L=Munich/O=Snake	Oil,	Ltd./OU=Staff/CN=Foo:xxj31ZMTZzkVA

/C=US/L=S.F./O=Snake	Oil,	Ltd./OU=CA/CN=Bar:xxj31ZMTZzkVA

/C=US/L=L.A./O=Snake	Oil,	Ltd./OU=Dev/CN=Quux:xxj31ZMTZzkVA

When	your	clients	are	all	part	of	a	common	hierarchy,	which	is
encoded	into	the	DN,	you	can	match	them	more	easily	using
SSLRequire,	as	follows:

SSLVerifyClient						none

SSLCACertificateFile	"conf/ssl.crt/ca.crt"

SSLCACertificatePath	"conf/ssl.crt"

<Directory	"/usr/local/apache2/htdocs/secure/area">

		SSLVerifyClient						require

		SSLVerifyDepth							5

		SSLOptions											+FakeBasicAuth

		SSLRequireSSL

		SSLRequire							%{SSL_CLIENT_S_DN_O}		eq	"Snake	Oil,	Ltd."	\

															and	%{SSL_CLIENT_S_DN_OU}	in	{"Staff",	"CA",	"Dev"}

</Directory>

How	can	I	require	HTTPS	with	strong	ciphers,	and
either	basic	authentication	or	client	certificates,	for
access	to	part	of	the	Intranet	website,	for	clients

coming	from	the	Internet?	I	still	want	to	allow	plain
HTTP	access	for	clients	on	the	Intranet.
These	examples	presume	that	clients	on	the	Intranet	have	IPs	in
the	range	192.168.1.0/24,	and	that	the	part	of	the	Intranet	website
you	want	to	allow	internet	access	to	is
/usr/local/apache2/htdocs/subarea.	This	configuration
should	remain	outside	of	your	HTTPS	virtual	host,	so	that	it
applies	to	both	HTTPS	and	HTTP.

SSLCACertificateFile	"conf/ssl.crt/company-ca.crt"

<Directory	"/usr/local/apache2/htdocs">

				#			Outside	the	subarea	only	Intranet	access	is	granted

				Require														ip	192.168.1.0/24

</Directory>

<Directory	"/usr/local/apache2/htdocs/subarea">

				#			Inside	the	subarea	any	Intranet	access	is	allowed

				#			but	from	the	Internet	only	HTTPS	+	Strong-Cipher	+	Password

				#			or	the	alternative	HTTPS	+	Strong-Cipher	+	Client-Certificate

				

				#			If	HTTPS	is	used,	make	sure	a	strong	cipher	is	used.

				#			Additionally	allow	client	certs	as	alternative	to	basic	auth.

				SSLVerifyClient						optional

				SSLVerifyDepth							1

				SSLOptions											+FakeBasicAuth	+StrictRequire

				SSLRequire											%{SSL_CIPHER_USEKEYSIZE}	>=	128

				

				#			Force	clients	from	the	Internet	to	use	HTTPS

				RewriteEngine								on

				RewriteCond										"%{REMOTE_ADDR}"	"!^192\.168\.1\.[0-9]+$"

				RewriteCond										"%{HTTPS}"	"!=on"

				RewriteRule										"."	"-"	[F]

				

				#			Allow	Network	Access	and/or	Basic	Auth

				Satisfy														any

				

				#			Network	Access	Control

				Require														ip	192.168.1.0/24

				

				#			HTTP	Basic	Authentication

				AuthType													basic

				AuthName													"Protected	Intranet	Area"

				AuthBasicProvider				file

				AuthUserFile									"conf/protected.passwd"

				Require														valid-user

</Directory>

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Logging

mod_ssl	can	log	extremely	verbose	debugging	information	to	the
error	log,	when	its	LogLevel	is	set	to	the	higher	trace	levels.	On
the	other	hand,	on	a	very	busy	server,	level	info	may	already	be
too	much.	Remember	that	you	can	configure	the	LogLevel	per
module	to	suite	your	needs.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	SSL/TLS

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSL/TLS	Strong	Encryption:	FAQ

The	wise	man	doesn't	give	the	right	answers,	he	poses	the	right
questions.

--	Claude	Levi-Strauss

Installation

Why	do	I	get	permission	errors	related	to	SSLMutex	when	I
start	Apache?
Why	does	mod_ssl	stop	with	the	error	"Failed	to	generate
temporary	512	bit	RSA	private	key"	when	I	start	Apache?

Why	do	I	get	permission	errors	related	to	SSLMutex
when	I	start	Apache?
Errors	such	as	``mod_ssl:	Child	could	not	open
SSLMutex	lockfile

/opt/apache/logs/ssl_mutex.18332	(System	error

follows)	[...]	System:	Permission	denied	(errno:

13)''	are	usually	caused	by	overly	restrictive	permissions	on	the
parent	directories.	Make	sure	that	all	parent	directories	(here
/opt,	/opt/apache	and	/opt/apache/logs)	have	the	x-bit
set	for,	at	minimum,	the	UID	under	which	Apache's	children	are
running	(see	the	User	directive).

Why	does	mod_ssl	stop	with	the	error	"Failed	to
generate	temporary	512	bit	RSA	private	key"	when	I
start	Apache?
Cryptographic	software	needs	a	source	of	unpredictable	data	to
work	correctly.	Many	open	source	operating	systems	provide	a
"randomness	device"	that	serves	this	purpose	(usually	named
/dev/random).	On	other	systems,	applications	have	to	seed	the
OpenSSL	Pseudo	Random	Number	Generator	(PRNG)	manually
with	appropriate	data	before	generating	keys	or	performing	public
key	encryption.	As	of	version	0.9.5,	the	OpenSSL	functions	that
need	randomness	report	an	error	if	the	PRNG	has	not	been
seeded	with	at	least	128	bits	of	randomness.

To	prevent	this	error,	mod_ssl	has	to	provide	enough	entropy	to
the	PRNG	to	allow	it	to	work	correctly.	This	can	be	done	via	the

SSLRandomSeed	directive.

Configuration

Is	it	possible	to	provide	HTTP	and	HTTPS	from	the	same
server?
Which	port	does	HTTPS	use?
How	do	I	speak	HTTPS	manually	for	testing	purposes?
Why	does	the	connection	hang	when	I	connect	to	my	SSL-
aware	Apache	server?
Why	do	I	get	``Connection	Refused''	errors,	when	trying	to
access	my	newly	installed	Apache+mod_ssl	server	via
HTTPS?
Why	are	the	SSL_XXX	variables	not	available	to	my	CGI	&
SSI	scripts?
How	can	I	switch	between	HTTP	and	HTTPS	in	relative
hyperlinks?

Is	it	possible	to	provide	HTTP	and	HTTPS	from	the
same	server?
Yes.	HTTP	and	HTTPS	use	different	server	ports	(HTTP	binds	to
port	80,	HTTPS	to	port	443),	so	there	is	no	direct	conflict	between
them.	You	can	either	run	two	separate	server	instances	bound	to
these	ports,	or	use	Apache's	elegant	virtual	hosting	facility	to
create	two	virtual	servers,	both	served	by	the	same	instance	of
Apache	-	one	responding	over	HTTP	to	requests	on	port	80,	and
the	other	responding	over	HTTPS	to	requests	on	port	443.

Which	port	does	HTTPS	use?
You	can	run	HTTPS	on	any	port,	but	the	standards	specify	port
443,	which	is	where	any	HTTPS	compliant	browser	will	look	by
default.	You	can	force	your	browser	to	look	on	a	different	port	by
specifying	it	in	the	URL.	For	example,	if	your	server	is	set	up	to
serve	pages	over	HTTPS	on	port	8080,	you	can	access	them	at
https://example.com:8080/

How	do	I	speak	HTTPS	manually	for	testing
purposes?
While	you	usually	just	use

$	telnet	localhost	80

GET	/	HTTP/1.0

for	simple	testing	of	Apache	via	HTTP,	it's	not	so	easy	for	HTTPS
because	of	the	SSL	protocol	between	TCP	and	HTTP.	With	the
help	of	OpenSSL's	s_client	command,	however,	you	can	do	a
similar	check	via	HTTPS:

$	openssl	s_client	-connect	localhost:443	-state	-debug

GET	/	HTTP/1.0

Before	the	actual	HTTP	response	you	will	receive	detailed
information	about	the	SSL	handshake.	For	a	more	general
command	line	client	which	directly	understands	both	HTTP	and
HTTPS,	can	perform	GET	and	POST	operations,	can	use	a	proxy,
supports	byte	ranges,	etc.	you	should	have	a	look	at	the	nifty
cURL	tool.	Using	this,	you	can	check	that	Apache	is	responding
correctly	to	requests	via	HTTP	and	HTTPS	as	follows:

$	curl	http://localhost/

$	curl	https://localhost/

Why	does	the	connection	hang	when	I	connect	to	my
SSL-aware	Apache	server?
This	can	happen	when	you	try	to	connect	to	a	HTTPS	server	(or
virtual	server)	via	HTTP	(eg,	using	http://example.com/
instead	of	https://example.com).	It	can	also	happen	when
trying	to	connect	via	HTTPS	to	a	HTTP	server	(eg,	using
https://example.com/	on	a	server	which	doesn't	support
HTTPS,	or	which	supports	it	on	a	non-standard	port).	Make	sure

http://curl.haxx.se/

that	you're	connecting	to	a	(virtual)	server	that	supports	SSL.

Why	do	I	get	``Connection	Refused''	messages,	when
trying	to	access	my	newly	installed	Apache+mod_ssl
server	via	HTTPS?
This	error	can	be	caused	by	an	incorrect	configuration.	Please
make	sure	that	your	Listen	directives	match	your
<VirtualHost>	directives.	If	all	else	fails,	please	start	afresh,
using	the	default	configuration	provided	by	mod_ssl.

Why	are	the	SSL_XXX	variables	not	available	to	my
CGI	&	SSI	scripts?
Please	make	sure	you	have	``SSLOptions	+StdEnvVars''
enabled	for	the	context	of	your	CGI/SSI	requests.

How	can	I	switch	between	HTTP	and	HTTPS	in
relative	hyperlinks?
Usually,	to	switch	between	HTTP	and	HTTPS,	you	have	to	use
fully-qualified	hyperlinks	(because	you	have	to	change	the	URL
scheme).	Using	mod_rewrite	however,	you	can	manipulate
relative	hyperlinks,	to	achieve	the	same	effect.

RewriteEngine	on

RewriteRule			"^/(.*)_SSL$"			"https://%{SERVER_NAME}/$1"	[R,L]

RewriteRule			"^/(.*)_NOSSL$"	"http://%{SERVER_NAME}/$1"		[R,L]

This	rewrite	ruleset	lets	you	use	hyperlinks	of	the	form	,	to	switch	to	HTTPS	in	a	relative
link.	(Replace	SSL	with	NOSSL	to	switch	to	HTTP.)

Certificates

What	are	RSA	Private	Keys,	CSRs	and	Certificates?
Is	there	a	difference	on	startup	between	a	non-SSL-aware
Apache	and	an	SSL-aware	Apache?
How	do	I	create	a	self-signed	SSL	Certificate	for	testing
purposes?
How	do	I	create	a	real	SSL	Certificate?
How	do	I	create	and	use	my	own	Certificate	Authority	(CA)?
How	can	I	change	the	pass-phrase	on	my	private	key	file?
How	can	I	get	rid	of	the	pass-phrase	dialog	at	Apache	startup
time?
How	do	I	verify	that	a	private	key	matches	its	Certificate?
How	can	I	convert	a	certificate	from	PEM	to	DER	format?
Why	do	browsers	complain	that	they	cannot	verify	my	server
certificate?

What	are	RSA	Private	Keys,	CSRs	and	Certificates?
An	RSA	private	key	file	is	a	digital	file	that	you	can	use	to	decrypt
messages	sent	to	you.	It	has	a	public	component	which	you
distribute	(via	your	Certificate	file)	which	allows	people	to	encrypt
those	messages	to	you.

A	Certificate	Signing	Request	(CSR)	is	a	digital	file	which	contains
your	public	key	and	your	name.	You	send	the	CSR	to	a	Certifying
Authority	(CA),	who	will	convert	it	into	a	real	Certificate,	by	signing
it.

A	Certificate	contains	your	RSA	public	key,	your	name,	the	name
of	the	CA,	and	is	digitally	signed	by	the	CA.	Browsers	that	know
the	CA	can	verify	the	signature	on	that	Certificate,	thereby
obtaining	your	RSA	public	key.	That	enables	them	to	send
messages	which	only	you	can	decrypt.

See	the	Introduction	chapter	for	a	general	description	of	the	SSL

protocol.

Is	there	a	difference	on	startup	between	a	non-SSL-
aware	Apache	and	an	SSL-aware	Apache?
Yes.	In	general,	starting	Apache	with	mod_ssl	built-in	is	just	like
starting	Apache	without	it.	However,	if	you	have	a	passphrase	on
your	SSL	private	key	file,	a	startup	dialog	will	pop	up	which	asks
you	to	enter	the	pass	phrase.

Having	to	manually	enter	the	passphrase	when	starting	the	server
can	be	problematic	-	for	example,	when	starting	the	server	from
the	system	boot	scripts.	In	this	case,	you	can	follow	the	steps
below	to	remove	the	passphrase	from	your	private	key.	Bear	in
mind	that	doing	so	brings	additional	security	risks	-	proceed	with
caution!

How	do	I	create	a	self-signed	SSL	Certificate	for
testing	purposes?
1.	 Make	sure	OpenSSL	is	installed	and	in	your	PATH.

2.	 Run	the	following	command,	to	create	server.key	and
server.crt	files:
$	openssl	req	-new	-x509	-nodes	-out

server.crt	-keyout	server.key

These	can	be	used	as	follows	in	your	httpd.conf	file:

SSLCertificateFile				"/path/to/this/server.crt"

SSLCertificateKeyFile	"/path/to/this/server.key"

3.	 It	is	important	that	you	are	aware	that	this	server.key	does
not	have	any	passphrase.	To	add	a	passphrase	to	the	key,

you	should	run	the	following	command,	and	enter	&	verify	the
passphrase	as	requested.
$	openssl	rsa	-des3	-in	server.key	-out

server.key.new

$	mv	server.key.new	server.key

Please	backup	the	server.key	file,	and	the	passphrase	you
entered,	in	a	secure	location.

How	do	I	create	a	real	SSL	Certificate?
Here	is	a	step-by-step	description:

1.	 Make	sure	OpenSSL	is	installed	and	in	your	PATH.	

2.	 Create	a	RSA	private	key	for	your	Apache	server	(will	be
Triple-DES	encrypted	and	PEM	formatted):

$	openssl	genrsa	-des3	-out	server.key	2048

Please	backup	this	server.key	file	and	the	pass-phrase	you
entered	in	a	secure	location.	You	can	see	the	details	of	this
RSA	private	key	by	using	the	command:

$	openssl	rsa	-noout	-text	-in	server.key

If	necessary,	you	can	also	create	a	decrypted	PEM	version
(not	recommended)	of	this	RSA	private	key	with:

$	openssl	rsa	-in	server.key	-out

server.key.unsecure

3.	 Create	a	Certificate	Signing	Request	(CSR)	with	the	server
RSA	private	key	(output	will	be	PEM	formatted):

$	openssl	req	-new	-key	server.key	-out

server.csr

Make	sure	you	enter	the	FQDN	("Fully	Qualified	Domain
Name")	of	the	server	when	OpenSSL	prompts	you	for	the
"CommonName",	i.e.	when	you	generate	a	CSR	for	a	website
which	will	be	later	accessed	via	https://www.foo.dom/,
enter	"www.foo.dom"	here.	You	can	see	the	details	of	this
CSR	by	using

$	openssl	req	-noout	-text	-in	server.csr

4.	 You	now	have	to	send	this	Certificate	Signing	Request	(CSR)
to	a	Certifying	Authority	(CA)	to	be	signed.	Once	the	CSR	has
been	signed,	you	will	have	a	real	Certificate,	which	can	be
used	by	Apache.	You	can	have	a	CSR	signed	by	a
commercial	CA,	or	you	can	create	your	own	CA	to	sign	it.
Commercial	CAs	usually	ask	you	to	post	the	CSR	into	a	web
form,	pay	for	the	signing,	and	then	send	a	signed	Certificate,
which	you	can	store	in	a	server.crt	file.
For	details	on	how	to	create	your	own	CA,	and	use	this	to	sign
a	CSR,	see	below.
Once	your	CSR	has	been	signed,	you	can	see	the	details	of
the	Certificate	as	follows:

$	openssl	x509	-noout	-text	-in	server.crt

5.	 You	should	now	have	two	files:	server.key	and
server.crt.	These	can	be	used	as	follows	in	your
httpd.conf	file:

SSLCertificateFile				"/path/to/this/server.crt"

SSLCertificateKeyFile	"/path/to/this/server.key"

The	server.csr	file	is	no	longer	needed.

How	do	I	create	and	use	my	own	Certificate	Authority
(CA)?
The	short	answer	is	to	use	the	CA.sh	or	CA.pl	script	provided	by
OpenSSL.	Unless	you	have	a	good	reason	not	to,	you	should	use
these	for	preference.	If	you	cannot,	you	can	create	a	self-signed
certificate	as	follows:

1.	 Create	a	RSA	private	key	for	your	server	(will	be	Triple-DES
encrypted	and	PEM	formatted):

$	openssl	genrsa	-des3	-out	server.key	2048

Please	backup	this	server.key	file	and	the	pass-phrase	you
entered	in	a	secure	location.	You	can	see	the	details	of	this
RSA	private	key	by	using	the	command:

$	openssl	rsa	-noout	-text	-in	server.key

If	necessary,	you	can	also	create	a	decrypted	PEM	version
(not	recommended)	of	this	RSA	private	key	with:

$	openssl	rsa	-in	server.key	-out

server.key.unsecure

2.	 Create	a	self-signed	certificate	(X509	structure)	with	the	RSA
key	you	just	created	(output	will	be	PEM	formatted):

$	openssl	req	-new	-x509	-nodes	-sha1	-days

365	-key	server.key	-out	server.crt	-

extensions	usr_cert

This	signs	the	server	CSR	and	results	in	a	server.crt	file.
You	can	see	the	details	of	this	Certificate	using:

$	openssl	x509	-noout	-text	-in	server.crt

How	can	I	change	the	pass-phrase	on	my	private	key
file?
You	simply	have	to	read	it	with	the	old	pass-phrase	and	write	it
again,	specifying	the	new	pass-phrase.	You	can	accomplish	this
with	the	following	commands:

$	openssl	rsa	-des3	-in	server.key	-out

server.key.new

$	mv	server.key.new	server.key

The	first	time	you're	asked	for	a	PEM	pass-phrase,	you	should
enter	the	old	pass-phrase.	After	that,	you'll	be	asked	again	to	enter
a	pass-phrase	-	this	time,	use	the	new	pass-phrase.	If	you	are
asked	to	verify	the	pass-phrase,	you'll	need	to	enter	the	new	pass-
phrase	a	second	time.

How	can	I	get	rid	of	the	pass-phrase	dialog	at	Apache
startup	time?
The	reason	this	dialog	pops	up	at	startup	and	every	re-start	is	that
the	RSA	private	key	inside	your	server.key	file	is	stored	in
encrypted	format	for	security	reasons.	The	pass-phrase	is	needed
to	decrypt	this	file,	so	it	can	be	read	and	parsed.	Removing	the
pass-phrase	removes	a	layer	of	security	from	your	server	-
proceed	with	caution!

1.	 Remove	the	encryption	from	the	RSA	private	key	(while
keeping	a	backup	copy	of	the	original	file):

$	cp	server.key	server.key.org

$	openssl	rsa	-in	server.key.org	-out

server.key

2.	 Make	sure	the	server.key	file	is	only	readable	by	root:

$	chmod	400	server.key

Now	server.key	contains	an	unencrypted	copy	of	the	key.	If	you
point	your	server	at	this	file,	it	will	not	prompt	you	for	a	pass-
phrase.	HOWEVER,	if	anyone	gets	this	key	they	will	be	able	to
impersonate	you	on	the	net.	PLEASE	make	sure	that	the
permissions	on	this	file	are	such	that	only	root	or	the	web	server
user	can	read	it	(preferably	get	your	web	server	to	start	as	root	but
run	as	another	user,	and	have	the	key	readable	only	by	root).

As	an	alternative	approach	you	can	use	the
``SSLPassPhraseDialog	exec:/path/to/program''	facility.
Bear	in	mind	that	this	is	neither	more	nor	less	secure,	of	course.

How	do	I	verify	that	a	private	key	matches	its
Certificate?
A	private	key	contains	a	series	of	numbers.	Two	of	these	numbers
form	the	"public	key",	the	others	are	part	of	the	"private	key".	The
"public	key"	bits	are	included	when	you	generate	a	CSR,	and
subsequently	form	part	of	the	associated	Certificate.

To	check	that	the	public	key	in	your	Certificate	matches	the	public
portion	of	your	private	key,	you	simply	need	to	compare	these

numbers.	To	view	the	Certificate	and	the	key	run	the	commands:

$	openssl	x509	-noout	-text	-in	server.crt

$	openssl	rsa	-noout	-text	-in	server.key

The	`modulus'	and	the	`public	exponent'	portions	in	the	key	and
the	Certificate	must	match.	As	the	public	exponent	is	usually
65537	and	it's	difficult	to	visually	check	that	the	long	modulus
numbers	are	the	same,	you	can	use	the	following	approach:

$	openssl	x509	-noout	-modulus	-in	server.crt	|

openssl	md5

$	openssl	rsa	-noout	-modulus	-in	server.key	|

openssl	md5

This	leaves	you	with	two	rather	shorter	numbers	to	compare.	It	is,
in	theory,	possible	that	these	numbers	may	be	the	same,	without
the	modulus	numbers	being	the	same,	but	the	chances	of	this	are
overwhelmingly	remote.

Should	you	wish	to	check	to	which	key	or	certificate	a	particular
CSR	belongs	you	can	perform	the	same	calculation	on	the	CSR
as	follows:

$	openssl	req	-noout	-modulus	-in	server.csr	|

openssl	md5

How	can	I	convert	a	certificate	from	PEM	to	DER
format?
The	default	certificate	format	for	OpenSSL	is	PEM,	which	is	simply
Base64	encoded	DER,	with	header	and	footer	lines.	For	some
applications	(e.g.	Microsoft	Internet	Explorer)	you	need	the
certificate	in	plain	DER	format.	You	can	convert	a	PEM	file
cert.pem	into	the	corresponding	DER	file	cert.der	using	the
following	command:	$	openssl	x509	-in	cert.pem	-out

cert.der	-outform	DER

Why	do	browsers	complain	that	they	cannot	verify	my
server	certificate?
One	reason	this	might	happen	is	because	your	server	certificate	is
signed	by	an	intermediate	CA.	Various	CAs,	such	as	Verisign	or
Thawte,	have	started	signing	certificates	not	with	their	root
certificate	but	with	intermediate	certificates.

Intermediate	CA	certificates	lie	between	the	root	CA	certificate
(which	is	installed	in	the	browsers)	and	the	server	certificate
(which	you	installed	on	the	server).	In	order	for	the	browser	to	be
able	to	traverse	and	verify	the	trust	chain	from	the	server
certificate	to	the	root	certificate	it	needs	need	to	be	given	the
intermediate	certificates.	The	CAs	should	be	able	to	provide	you
such	intermediate	certificate	packages	that	can	be	installed	on	the
server.

You	need	to	include	those	intermediate	certificates	with	the
SSLCertificateChainFile	directive.

The	SSL	Protocol

Why	do	I	get	lots	of	random	SSL	protocol	errors	under	heavy
server	load?
Why	does	my	webserver	have	a	higher	load,	now	that	it
serves	SSL	encrypted	traffic?
Why	do	HTTPS	connections	to	my	server	sometimes	take	up
to	30	seconds	to	establish	a	connection?
What	SSL	Ciphers	are	supported	by	mod_ssl?
Why	do	I	get	``no	shared	cipher''	errors,	when	trying	to	use
Anonymous	Diffie-Hellman	(ADH)	ciphers?
Why	do	I	get	a	'no	shared	ciphers'	error	when	connecting	to
my	newly	installed	server?
Why	can't	I	use	SSL	with	name-based/non-IP-based	virtual
hosts?
Is	it	possible	to	use	Name-Based	Virtual	Hosting	to	identify
different	SSL	virtual	hosts?
How	do	I	get	SSL	compression	working?
When	I	use	Basic	Authentication	over	HTTPS	the	lock	icon	in
Netscape	browsers	stays	unlocked	when	the	dialog	pops	up.
Does	this	mean	the	username/password	is	being	sent
unencrypted?
Why	do	I	get	I/O	errors	when	connecting	via	HTTPS	to	an
Apache+mod_ssl	server	with	Microsoft	Internet	Explorer
(MSIE)?
How	do	I	enable	TLS-SRP?
Why	do	I	get	handshake	failures	with	Java-based	clients
when	using	a	certificate	with	more	than	1024	bits?

Why	do	I	get	lots	of	random	SSL	protocol	errors
under	heavy	server	load?
There	can	be	a	number	of	reasons	for	this,	but	the	main	one	is
problems	with	the	SSL	session	Cache	specified	by	the
SSLSessionCache	directive.	The	DBM	session	cache	is	the	most

likely	source	of	the	problem,	so	using	the	SHM	session	cache	(or
no	cache	at	all)	may	help.

Why	does	my	webserver	have	a	higher	load,	now	that
it	serves	SSL	encrypted	traffic?
SSL	uses	strong	cryptographic	encryption,	which	necessitates	a
lot	of	number	crunching.	When	you	request	a	webpage	via
HTTPS,	everything	(even	the	images)	is	encrypted	before	it	is
transferred.	So	increased	HTTPS	traffic	leads	to	load	increases.

Why	do	HTTPS	connections	to	my	server	sometimes
take	up	to	30	seconds	to	establish	a	connection?
This	is	usually	caused	by	a	/dev/random	device	for
SSLRandomSeed	which	blocks	the	read(2)	call	until	enough
entropy	is	available	to	service	the	request.	More	information	is
available	in	the	reference	manual	for	the	SSLRandomSeed
directive.

What	SSL	Ciphers	are	supported	by	mod_ssl?
Usually,	any	SSL	ciphers	supported	by	the	version	of	OpenSSL	in
use,	are	also	supported	by	mod_ssl.	Which	ciphers	are	available
can	depend	on	the	way	you	built	OpenSSL.	Typically,	at	least	the
following	ciphers	are	supported:

1.	 RC4	with	SHA1

2.	 AES	with	SHA1

3.	 Triple-DES	with	SHA1

To	determine	the	actual	list	of	ciphers	available,	you	should	run	the
following:

$	openssl	ciphers	-v

Why	do	I	get	``no	shared	cipher''	errors,	when	trying
to	use	Anonymous	Diffie-Hellman	(ADH)	ciphers?
By	default,	OpenSSL	does	not	allow	ADH	ciphers,	for	security
reasons.	Please	be	sure	you	are	aware	of	the	potential	side-
effects	if	you	choose	to	enable	these	ciphers.

In	order	to	use	Anonymous	Diffie-Hellman	(ADH)	ciphers,	you
must	build	OpenSSL	with	``-DSSL_ALLOW_ADH'',	and	then	add
``ADH''	into	your	SSLCipherSuite.

Why	do	I	get	a	'no	shared	ciphers'	error	when
connecting	to	my	newly	installed	server?
Either	you	have	made	a	mistake	with	your	SSLCipherSuite
directive	(compare	it	with	the	pre-configured	example	in
extra/httpd-ssl.conf)	or	you	chose	to	use	DSA/DH
algorithms	instead	of	RSA	when	you	generated	your	private	key
and	ignored	or	overlooked	the	warnings.	If	you	have	chosen
DSA/DH,	then	your	server	cannot	communicate	using	RSA-based
SSL	ciphers	(at	least	until	you	configure	an	additional	RSA-based
certificate/key	pair).	Modern	browsers	like	NS	or	IE	can	only
communicate	over	SSL	using	RSA	ciphers.	The	result	is	the	"no
shared	ciphers"	error.	To	fix	this,	regenerate	your	server
certificate/key	pair,	using	the	RSA	algorithm.

Why	can't	I	use	SSL	with	name-based/non-IP-based
virtual	hosts?
The	reason	is	very	technical,	and	a	somewhat	"chicken	and	egg"
problem.	The	SSL	protocol	layer	stays	below	the	HTTP	protocol
layer	and	encapsulates	HTTP.	When	an	SSL	connection	(HTTPS)
is	established	Apache/mod_ssl	has	to	negotiate	the	SSL	protocol
parameters	with	the	client.	For	this,	mod_ssl	has	to	consult	the
configuration	of	the	virtual	server	(for	instance	it	has	to	look	for	the
cipher	suite,	the	server	certificate,	etc.).	But	in	order	to	go	to	the

correct	virtual	server	Apache	has	to	know	the	Host	HTTP	header
field.	To	do	this,	the	HTTP	request	header	has	to	be	read.	This
cannot	be	done	before	the	SSL	handshake	is	finished,	but	the
information	is	needed	in	order	to	complete	the	SSL	handshake
phase.	See	the	next	question	for	how	to	circumvent	this	issue.

Note	that	if	you	have	a	wildcard	SSL	certificate,	or	a	certificate	that
has	multiple	hostnames	on	it	using	subjectAltName	fields,	you	can
use	SSL	on	name-based	virtual	hosts	without	further	workarounds.

Is	it	possible	to	use	Name-Based	Virtual	Hosting	to
identify	different	SSL	virtual	hosts?
Name-Based	Virtual	Hosting	is	a	very	popular	method	of
identifying	different	virtual	hosts.	It	allows	you	to	use	the	same	IP
address	and	the	same	port	number	for	many	different	sites.	When
people	move	on	to	SSL,	it	seems	natural	to	assume	that	the	same
method	can	be	used	to	have	lots	of	different	SSL	virtual	hosts	on
the	same	server.

It	is	possible,	but	only	if	using	a	2.2.12	or	later	web	server,	built
with	0.9.8j	or	later	OpenSSL.	This	is	because	it	requires	a	feature
that	only	the	most	recent	revisions	of	the	SSL	specification	added,
called	Server	Name	Indication	(SNI).

Note	that	if	you	have	a	wildcard	SSL	certificate,	or	a	certificate	that
has	multiple	hostnames	on	it	using	subjectAltName	fields,	you	can
use	SSL	on	name-based	virtual	hosts	without	further	workarounds.

The	reason	is	that	the	SSL	protocol	is	a	separate	layer	which
encapsulates	the	HTTP	protocol.	So	the	SSL	session	is	a	separate
transaction,	that	takes	place	before	the	HTTP	session	has	begun.
The	server	receives	an	SSL	request	on	IP	address	X	and	port	Y
(usually	443).	Since	the	SSL	request	did	not	contain	any	Host:
field,	the	server	had	no	way	to	decide	which	SSL	virtual	host	to

use.	Usually,	it	just	used	the	first	one	it	found	which	matched	the
port	and	IP	address	specified.

If	you	are	using	a	version	of	the	web	server	and	OpenSSL	that
support	SNI,	though,	and	the	client's	browser	also	supports	SNI,
then	the	hostname	is	included	in	the	original	SSL	request,	and	the
web	server	can	select	the	correct	SSL	virtual	host.

You	can,	of	course,	use	Name-Based	Virtual	Hosting	to	identify
many	non-SSL	virtual	hosts	(all	on	port	80,	for	example)	and	then
have	a	single	SSL	virtual	host	(on	port	443).	But	if	you	do	this,	you
must	make	sure	to	put	the	non-SSL	port	number	on	the
NameVirtualHost	directive,	e.g.

NameVirtualHost	192.168.1.1:80

Other	workaround	solutions	include:

Using	separate	IP	addresses	for	different	SSL	hosts.	Using
different	port	numbers	for	different	SSL	hosts.

How	do	I	get	SSL	compression	working?
Although	SSL	compression	negotiation	was	defined	in	the
specification	of	SSLv2	and	TLS,	it	took	until	May	2004	for	RFC
3749	to	define	DEFLATE	as	a	negotiable	standard	compression
method.

OpenSSL	0.9.8	started	to	support	this	by	default	when	compiled
with	the	zlib	option.	If	both	the	client	and	the	server	support
compression,	it	will	be	used.	However,	most	clients	still	try	to
initially	connect	with	an	SSLv2	Hello.	As	SSLv2	did	not	include	an
array	of	preferred	compression	algorithms	in	its	handshake,
compression	cannot	be	negotiated	with	these	clients.	If	the	client
disables	support	for	SSLv2,	either	an	SSLv3	or	TLS	Hello	may	be

sent,	depending	on	which	SSL	library	is	used,	and	compression
may	be	set	up.	You	can	verify	whether	clients	make	use	of	SSL
compression	by	logging	the	%{SSL_COMPRESS_METHOD}x
variable.

When	I	use	Basic	Authentication	over	HTTPS	the	lock
icon	in	Netscape	browsers	stays	unlocked	when	the
dialog	pops	up.	Does	this	mean	the
username/password	is	being	sent	unencrypted?
No,	the	username/password	is	transmitted	encrypted.	The	icon	in
Netscape	browsers	is	not	actually	synchronized	with	the	SSL/TLS
layer.	It	only	toggles	to	the	locked	state	when	the	first	part	of	the
actual	webpage	data	is	transferred,	which	may	confuse	people.
The	Basic	Authentication	facility	is	part	of	the	HTTP	layer,	which	is
above	the	SSL/TLS	layer	in	HTTPS.	Before	any	HTTP	data
communication	takes	place	in	HTTPS,	the	SSL/TLS	layer	has
already	completed	its	handshake	phase,	and	switched	to
encrypted	communication.	So	don't	be	confused	by	this	icon.

Why	do	I	get	I/O	errors	when	connecting	via	HTTPS	to
an	Apache+mod_ssl	server	with	older	versions	of
Microsoft	Internet	Explorer	(MSIE)?
The	first	reason	is	that	the	SSL	implementation	in	some	MSIE
versions	has	some	subtle	bugs	related	to	the	HTTP	keep-alive
facility	and	the	SSL	close	notify	alerts	on	socket	connection	close.
Additionally	the	interaction	between	SSL	and	HTTP/1.1	features
are	problematic	in	some	MSIE	versions.	You	can	work	around
these	problems	by	forcing	Apache	not	to	use	HTTP/1.1,	keep-alive
connections	or	send	the	SSL	close	notify	messages	to	MSIE
clients.	This	can	be	done	by	using	the	following	directive	in	your
SSL-aware	virtual	host	section:

SetEnvIf	User-Agent	"MSIE	[2-5]"	\

									nokeepalive	ssl-unclean-shutdown	\

									downgrade-1.0	force-response-1.0

Further,	some	MSIE	versions	have	problems	with	particular
ciphers.	Unfortunately,	it	is	not	possible	to	implement	a	MSIE-
specific	workaround	for	this,	because	the	ciphers	are	needed	as
early	as	the	SSL	handshake	phase.	So	a	MSIE-specific
SetEnvIf	won't	solve	these	problems.	Instead,	you	will	have	to
make	more	drastic	adjustments	to	the	global	parameters.	Before
you	decide	to	do	this,	make	sure	your	clients	really	have	problems.
If	not,	do	not	make	these	changes	-	they	will	affect	all	your	clients,
MSIE	or	otherwise.

How	do	I	enable	TLS-SRP?
TLS-SRP	(Secure	Remote	Password	key	exchange	for	TLS,
specified	in	RFC	5054)	can	supplement	or	replace	certificates	in
authenticating	an	SSL	connection.	To	use	TLS-SRP,	set	the
SSLSRPVerifierFile	directive	to	point	to	an	OpenSSL	SRP
verifier	file.	To	create	the	verifier	file,	use	the	openssl	tool:

openssl	srp	-srpvfile	passwd.srpv	-add	username

After	creating	this	file,	specify	it	in	the	SSL	server	configuration:

SSLSRPVerifierFile	/path/to/passwd.srpv

To	force	clients	to	use	non-certificate	TLS-SRP	cipher	suites,	use
the	following	directive:

SSLCipherSuite	"!DSS:!aRSA:SRP"

Why	do	I	get	handshake	failures	with	Java-based

clients	when	using	a	certificate	with	more	than	1024
bits?
Beginning	with	version	2.4.7,	mod_ssl	will	use	DH	parameters
which	include	primes	with	lengths	of	more	than	1024	bits.	Java	7
and	earlier	limit	their	support	for	DH	prime	sizes	to	a	maximum	of
1024	bits,	however.

If	your	Java-based	client	aborts	with	exceptions	such	as
java.lang.RuntimeException:	Could	not	generate	DH

keypair	and
java.security.InvalidAlgorithmParameterException:

Prime	size	must	be	multiple	of	64,	and	can	only

range	from	512	to	1024	(inclusive),	and	httpd	logs
tlsv1	alert	internal	error	(SSL	alert	number	80)

(at	LogLevel	info	or	higher),	you	can	either	rearrange
mod_ssl's	cipher	list	with	SSLCipherSuite	(possibly	in
conjunction	with	SSLHonorCipherOrder),	or	you	can	use
custom	DH	parameters	with	a	1024-bit	prime,	which	will	always
have	precedence	over	any	of	the	built-in	DH	parameters.

To	generate	custom	DH	parameters,	use	the	openssl	dhparam
1024	command.	Alternatively,	you	can	use	the	following	standard
1024-bit	DH	parameters	from	RFC	2409,	section	6.2:

-----BEGIN	DH	PARAMETERS-----

MIGHAoGBAP//////////yQ/aoiFowjTExmKLgNwc0SkCTgiKZ8x0Agu+pjsTmyJR

Sgh5jjQE3e+VGbPNOkMbMCsKbfJfFDdP4TVtbVHCReSFtXZiXn7G9ExC6aY37WsL

/1y29Aa37e44a/taiZ+lrp8kEXxLH+ZJKGZR7OZTgf//////////AgEC

-----END	DH	PARAMETERS-----

Add	the	custom	parameters	including	the	"BEGIN	DH
PARAMETERS"	and	"END	DH	PARAMETERS"	lines	to	the	end	of
the	first	certificate	file	you	have	configured	using	the
SSLCertificateFile	directive.

http://www.ietf.org/rfc/rfc2409.txt

mod_ssl	Support

What	information	resources	are	available	in	case	of	mod_ssl
problems?
What	support	contacts	are	available	in	case	of	mod_ssl
problems?
What	information	should	I	provide	when	writing	a	bug	report?
I	had	a	core	dump,	can	you	help	me?
How	do	I	get	a	backtrace,	to	help	find	the	reason	for	my	core
dump?

What	information	resources	are	available	in	case	of
mod_ssl	problems?
The	following	information	resources	are	available.	In	case	of
problems	you	should	search	here	first.

Answers	in	the	User	Manual's	F.A.Q.	List	(this)
http://httpd.apache.org/docs/2.4/ssl/ssl_faq.html
First	check	the	F.A.Q.	(this	text).	If	your	problem	is	a	common
one,	it	may	have	been	answered	several	times	before,	and
been	included	in	this	doc.

What	support	contacts	are	available	in	case	of
mod_ssl	problems?
The	following	lists	all	support	possibilities	for	mod_ssl,	in	order	of
preference.	Please	go	through	these	possibilities	in	this	order	-
don't	just	pick	the	one	you	like	the	look	of.

1.	 Send	a	Problem	Report	to	the	Apache	httpd	Users	Support
Mailing	List
users@httpd.apache.org
This	is	the	second	way	of	submitting	your	problem	report.
Again,	you	must	subscribe	to	the	list	first,	but	you	can	then
easily	discuss	your	problem	with	the	whole	Apache	httpd	user

http://httpd.apache.org/docs/2.4/ssl/ssl_faq.html
mailto:users@httpd.apache.org

community.

2.	 Write	a	Problem	Report	in	the	Bug	Database
http://httpd.apache.org/bug_report.html
This	is	the	last	way	of	submitting	your	problem	report.	You
should	only	do	this	if	you've	already	posted	to	the	mailing
lists,	and	had	no	success.	Please	follow	the	instructions	on
the	above	page	carefully.

What	information	should	I	provide	when	writing	a	bug
report?
You	should	always	provide	at	least	the	following	information:

Apache	httpd	and	OpenSSL	version	information
The	Apache	version	can	be	determined	by	running	httpd	-
v.	The	OpenSSL	version	can	be	determined	by	running
openssl	version.	Alternatively,	if	you	have	Lynx	installed,
you	can	run	the	command	lynx	-mime_header
http://localhost/	|	grep	Server	to	gather	this
information	in	a	single	step.

The	details	on	how	you	built	and	installed	Apache	httpd	and
OpenSSL

For	this	you	can	provide	a	logfile	of	your	terminal	session
which	shows	the	configuration	and	install	steps.	If	this	is	not
possible,	you	should	at	least	provide	the	configure
command	line	you	used.

In	case	of	core	dumps	please	include	a	Backtrace
If	your	Apache	httpd	dumps	its	core,	please	attach	a	stack-
frame	``backtrace''	(see	below	for	information	on	how	to	get
this).	This	information	is	required	in	order	to	find	a	reason	for
your	core	dump.

A	detailed	description	of	your	problem
Don't	laugh,	we	really	mean	it!	Many	problem	reports	don't

http://httpd.apache.org/bug_report.html

include	a	description	of	what	the	actual	problem	is.	Without
this,	it's	very	difficult	for	anyone	to	help	you.	So,	it's	in	your
own	interest	(you	want	the	problem	be	solved,	don't	you?)	to
include	as	much	detail	as	possible,	please.	Of	course,	you
should	still	include	all	the	essentials	above	too.

I	had	a	core	dump,	can	you	help	me?
In	general	no,	at	least	not	unless	you	provide	more	details	about
the	code	location	where	Apache	dumped	core.	What	is	usually
always	required	in	order	to	help	you	is	a	backtrace	(see	next
question).	Without	this	information	it	is	mostly	impossible	to	find
the	problem	and	help	you	in	fixing	it.

How	do	I	get	a	backtrace,	to	help	find	the	reason	for
my	core	dump?
Following	are	the	steps	you	will	need	to	complete,	to	get	a
backtrace:

1.	 Make	sure	you	have	debugging	symbols	available,	at	least	in
Apache.	On	platforms	where	you	use	GCC/GDB,	you	will
have	to	build	Apache+mod_ssl	with	``OPTIM="-g	-ggdb3"''
to	get	this.	On	other	platforms	at	least	``OPTIM="-g"''	is
needed.

2.	 Start	the	server	and	try	to	reproduce	the	core-dump.	For	this
you	may	want	to	use	a	directive	like	``CoreDumpDirectory
/tmp''	to	make	sure	that	the	core-dump	file	can	be	written.
This	should	result	in	a	/tmp/core	or	/tmp/httpd.core
file.	If	you	don't	get	one	of	these,	try	running	your	server
under	a	non-root	UID.	Many	modern	kernels	do	not	allow	a
process	to	dump	core	after	it	has	done	a	setuid()	(unless	it
does	an	exec())	for	security	reasons	(there	can	be	privileged
information	left	over	in	memory).	If	necessary,	you	can	run

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

/path/to/httpd	-X	manually	to	force	Apache	to	not	fork.

3.	 Analyze	the	core-dump.	For	this,	run	gdb	/path/to/httpd
/tmp/httpd.core	or	a	similar	command.	In	GDB,	all	you
have	to	do	then	is	to	enter	bt,	and	voila,	you	get	the
backtrace.	For	other	debuggers	consult	your	local	debugger
manual.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4	>	How-To	/	Tutoriales

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Autenticación	y	Autorización

Autenticación	es	cualquier	proceso	por	el	cuál	se	verifica	que	uno	es
quien	dice	ser.	Autorización	es	cualquier	proceso	en	el	cuál
cualquiera	está	permitido	a	estar	donde	se	quiera,	o	tener
información	la	cuál	se	quiera	tener.

Para	información	de	control	de	acceso	de	forma	genérica	visiteHow
to	de	Control	de	Acceso.

Módulos	y	Directivas	Relacionados

Hay	tres	tipos	de	módulos	involucrados	en	los	procesos	de	la
autenticación	y	autorización.	Normalmente	deberás	escoger	al
menos	un	módulo	de	cada	grupo.

Modos	de	Autenticación	(consulte	la	directiva	AuthType)
mod_auth_basic

mod_auth_digest

Proveedor	de	Autenticación	(consulte	la	directiva
AuthBasicProvider	y	AuthDigestProvider)

mod_authn_anon

mod_authn_dbd

mod_authn_dbm

mod_authn_file

mod_authnz_ldap

mod_authn_socache

Autorización	(consulte	la	directiva	Require)
mod_authnz_ldap

mod_authz_dbd

mod_authz_dbm

mod_authz_groupfile

mod_authz_host

mod_authz_owner

mod_authz_user

A	parte	de	éstos	módulos,	también	están	mod_authn_core	y
mod_authz_core.	Éstos	módulos	implementan	las	directivas
esenciales	que	son	el	centro	de	todos	los	módulos	de
autenticación.

El	módulo	mod_authnz_ldap	es	tanto	un	proveedor	de
autenticación	como	de	autorización.	El	módulo	mod_authz_host

proporciona	autorización	y	control	de	acceso	basado	en	el	nombre
del	Host,	la	dirección	IP	o	características	de	la	propia	petición,
pero	no	es	parte	del	sistema	proveedor	de	autenticación.	Para
tener	compatibilidad	inversa	con	el	mod_access,	hay	un	nuevo
modulo	llamado	mod_access_compat.

También	puedes	mirar	el	how-to	de	Control	de	Acceso	,	donde	se
plantean	varias	formas	del	control	de	acceso	al	servidor.

Introducción

Si	se	tiene	información	en	nuestra	página	web	que	sea
información	sensible	o	pensada	para	un	grupo	reducido	de
usuarios/personas,	las	técnicas	que	se	describen	en	este	manual,
le	servirán	de	ayuda	para	asegurarse	de	que	las	personas	que
ven	esas	páginas	sean	las	personas	que	uno	quiere.

Este	artículo	cubre	la	parte	"estándar"	de	cómo	proteger	partes	de
un	sitio	web	que	muchos	usarán.

Nota:

Si	de	verdad	es	necesario	que	tus	datos	estén	en	un	sitio
seguro,	considera	usar	mod_ssl	como	método	de
autenticación	adicional	a	cualquier	forma	de	autenticación.

Los	Prerequisitos

Las	directivas	que	se	usan	en	este	artículo	necesitaran	ponerse
ya	sea	en	el	fichero	de	configuración	principal	del	servidor	(
típicamente	en	la	sección	<Directory>	de	httpd.conf),	o	en
cada	uno	de	los	ficheros	de	configuraciones	del	propio	directorio
(los	archivos	.htaccess).

Si	planea	usar	los	ficheros	.htaccess	,	necesitarás	tener	en	la
configuración	global	del	servidor,	una	configuración	que	permita
poner	directivas	de	autenticación	en	estos	ficheros.	Esto	se	hace
con	la	directiva	AllowOverride,	la	cual	especifica	que
directivas,	en	su	caso,	pueden	ser	puestas	en	cada	fichero	de
configuración	por	directorio.

Ya	que	estamos	hablando	aquí	de	autenticación,	necesitarás	una
directiva	AllowOverride	como	la	siguiente:

AllowOverride	AuthConfig

O,	si	solo	se	van	a	poner	las	directivas	directamente	en	la
configuración	principal	del	servidor,	deberás	tener,	claro	está,
permisos	de	escritura	en	el	archivo.

Y	necesitarás	saber	un	poco	de	como	está	estructurado	el	árbol
de	directorios	de	tu	servidor,	para	poder	saber	donde	se
encuentran	algunos	archivos.	Esto	no	debería	ser	una	tarea	difícil,
aún	así	intentaremos	dejarlo	claro	llegado	el	momento	de
comentar	dicho	aspecto.

También	deberás	de	asegurarte	de	que	los	módulos
mod_authn_core	y	mod_authz_core	han	sido	incorporados,	o
añadidos	a	la	hora	de	compilar	en	tu	binario	httpd	o	cargados
mediante	el	archivo	de	configuración	httpd.conf.	Estos	dos
módulos	proporcionan	directivas	básicas	y	funcionalidades	que

son	críticas	para	la	configuración	y	uso	de	autenticación	y
autorización	en	el	servidor	web.

Conseguir	que	funcione

Aquí	está	lo	básico	de	cómo	proteger	con	contraseña	un	directorio
en	tu	servidor.

Primero,	necesitarás	crear	un	fichero	de	contraseña.	Dependiendo
de	que	proveedor	de	autenticación	se	haya	elegido,	se	hará	de
una	forma	u	otra.	Para	empezar,	usaremos	un	fichero	de
contraseña	de	tipo	texto.

Este	fichero	deberá	estar	en	un	sitio	que	no	se	pueda	tener
acceso	desde	la	web.	Esto	también	implica	que	nadie	pueda
descargarse	el	fichero	de	contraseñas.	Por	ejemplo,	si	tus
documentos	están	guardados	fuera	de
/usr/local/apache/htdocs,	querrás	poner	tu	archivo	de
contraseñas	en	/usr/local/apache/passwd.

Para	crear	el	fichero	de	contraseñas,	usa	la	utilidad	htpasswd
que	viene	con	Apache.	Esta	herramienta	se	encuentra	en	el
directorio	/bin	en	donde	sea	que	se	ha	instalado	el	Apache.	Si
ha	instalado	Apache	desde	un	paquete	de	terceros,	puede	ser
que	se	encuentre	en	su	ruta	de	ejecución.

Para	crear	el	fichero,	escribiremos:

htpasswd	-c	/usr/local/apache/passwd/passwords	rbowen

htpasswd	te	preguntará	por	una	contraseña,	y	después	te	pedirá
que	la	vuelvas	a	escribir	para	confirmarla:

$	htpasswd	-c	/usr/local/apache/passwd/passwords	rbowen

New	password:	mypassword

Re-type	new	password:	mypassword

Adding	password	for	user	rbowen

Si	htpasswd	no	está	en	tu	variable	de	entorno	"path"	del	sistema,
por	supuesto	deberás	escribir	la	ruta	absoluta	del	ejecutable	para

poder	hacer	que	se	ejecute.	En	una	instalación	por	defecto,	está
en:	/usr/local/apache2/bin/htpasswd

Lo	próximo	que	necesitas,	será	configurar	el	servidor	para	que
pida	una	contraseña	y	así	decirle	al	servidor	que	usuarios	están
autorizados	a	acceder.	Puedes	hacer	esto	ya	sea	editando	el
fichero	httpd.conf	de	configuración	o	usando	in	fichero
.htaccess.	Por	ejemplo,	si	quieres	proteger	el	directorio
/usr/local/apache/htdocs/secret,	puedes	usar	las
siguientes	directivas,	ya	sea	en	el	fichero	.htaccess	localizado
en	following	directives,	either	placed	in	the	file
/usr/local/apache/htdocs/secret/.htaccess,	o	en	la
configuración	global	del	servidor	httpd.conf	dentro	de	la
sección	<Directory	"/usr/local/apache/htdocs/secret">	,	como	se
muestra	a	continuación:

<Directory	"/usr/local/apache/htdocs/secret">

AuthType	Basic

AuthName	"Restricted	Files"

#	(Following	line	optional)

AuthBasicProvider	file

AuthUserFile	"/usr/local/apache/passwd/passwords"

Require	user	rbowen

</Directory>

Vamos	a	explicar	cada	una	de	las	directivas	individualmente.	La
directiva	AuthType	selecciona	el	método	que	se	usa	para
autenticar	al	usuario.	El	método	más	común	es	Basic,	y	éste	es
el	método	que	implementa	mod_auth_basic.	Es	muy	importante
ser	consciente,	de	que	la	autenticación	básica,	envía	las
contraseñas	desde	el	cliente	al	servidor	sin	cifrar.	Este	método	por
tanto,	no	debe	ser	utilizado	para	proteger	datos	muy	sensibles,	a
no	ser	que,	este	método	de	autenticación	básica,	sea

acompañado	del	módulo	mod_ssl.	Apache	soporta	otro	método
más	de	autenticación	que	es	del	tipo	AuthType	Digest.	Este
método,	es	implementado	por	el	módulo	mod_auth_digest	y
con	el	se	pretendía	crear	una	autenticación	más	segura.	Este	ya
no	es	el	caso,	ya	que	la	conexión	deberá	realizarse	con	mod_ssl
en	su	lugar.

La	directiva	AuthName	establece	el	Realm	para	ser	usado	en	la
autenticación.	El	Realm	tiene	dos	funciones	principales.	La
primera,	el	cliente	presenta	a	menudo	esta	información	al	usuario
como	parte	del	cuadro	de	diálogo	de	contraseña.	La	segunda,	que
es	utilizado	por	el	cliente	para	determinar	qué	contraseña	enviar	a
para	una	determinada	zona	de	autenticación.

Así	que,	por	ejemple,	una	vez	que	el	cliente	se	ha	autenticado	en
el	área	de	los	"Ficheros	Restringidos",	entonces	re-
intentará	automáticamente	la	misma	contraseña	para	cualquier
área	en	el	mismo	servidor	que	es	marcado	con	el	Realm	de
"Ficheros	Restringidos"	Por	lo	tanto,	puedes	prevenir	que
a	un	usuario	se	le	pida	mas	de	una	vez	por	su	contraseña,
compartiendo	así	varias	áreas	restringidas	el	mismo	Realm	Por
supuesto,	por	razones	de	seguridad,	el	cliente	pedirá	siempre	por
una	contraseña,	siempre	y	cuando	el	nombre	del	servidor	cambie.

La	directiva	AuthBasicProvider	es,	en	este	caso,	opcional,	ya
que	file	es	el	valor	por	defecto	para	esta	directiva.	Deberás	usar
esta	directiva	si	estas	usando	otro	medio	diferente	para	la
autenticación,	como	por	ejemplo	mod_authn_dbm	o
mod_authn_dbd.

La	directiva	AuthUserFile	establece	el	path	al	fichero	de
contraseñas	que	acabamos	de	crear	con	el	comando	htpasswd.
Si	tiene	un	número	muy	grande	de	usuarios,	puede	ser	realmente
lento	el	buscar	el	usuario	en	ese	fichero	de	texto	plano	para

autenticar	a	los	usuarios	en	cada	petición.	Apache	también	tiene
la	habilidad	de	almacenar	información	de	usuarios	en	unos
ficheros	de	rápido	acceso	a	modo	de	base	de	datos.	El	módulo
mod_authn_dbm	proporciona	la	directiva	AuthDBMUserFile.
Estos	ficheros	pueden	ser	creados	y	manipulados	con	el
programa	dbmmanage	y	htdbm.	Muchos	otros	métodos	de
autenticación	así	como	otras	opciones,	están	disponibles	en
módulos	de	terceros	Base	de	datos	de	Módulos	disponibles.

Finalmente,	la	directiva	Require	proporciona	la	parte	del	proceso
de	autorización	estableciendo	el	o	los	usuarios	que	se	les	está
permitido	acceder	a	una	región	del	servidor.	En	la	próxima
sección,	discutiremos	las	diferentes	vías	de	utilizar	la	directiva
Require.

http://modules.apache.org/

Dejar	que	más	de	una	persona	entre

Las	directivas	mencionadas	arriba	sólo	permiten	a	una	persona
(especialmente	con	un	usuario	que	en	ej	ejemplo	es	rbowen)	en
el	directorio.	En	la	mayoría	de	los	casos,	se	querrá	permitir	el
acceso	a	más	de	una	persona.	Aquí	es	donde	la	directiva
AuthGroupFile	entra	en	juego.

Si	lo	que	se	desea	es	permitir	a	más	de	una	persona	el	acceso,
necesitarás	crear	un	archivo	de	grupo	que	asocie	los	nombres	de
grupos	con	el	de	personas	para	permitirles	el	acceso.	El	formato
de	este	fichero	es	bastante	sencillo,	y	puedes	crearlo	con	tu	editor
de	texto	favorito.	El	contenido	del	fichero	se	parecerá	a:

GroupName:	rbowen	dpitts	sungo	rshersey

Básicamente	eso	es	la	lista	de	miembros	los	cuales	están	en	un
mismo	fichero	de	grupo	en	una	sola	linea	separados	por	espacios.

Para	añadir	un	usuario	a	tu	fichero	de	contraseñas	existente
teclee:

htpasswd	/usr/local/apache/passwd/passwords	dpitts

Te	responderá	lo	mismo	que	anteriormente,	pero	se	añadirá	al
fichero	existente	en	vez	de	crear	uno	nuevo.	(Es	decir	el	flag	-c
será	el	que	haga	que	se	genere	un	nuevo	fichero	de	contraseñas).

Ahora,	tendrá	que	modificar	su	fichero	.htaccess	para	que	sea
parecido	a	lo	siguiente:

AuthType	Basic

AuthName	"By	Invitation	Only"

#	Optional	line:

AuthBasicProvider	file

AuthUserFile	"/usr/local/apache/passwd/passwords"

AuthGroupFile	"/usr/local/apache/passwd/groups"

Require	group	GroupName

Ahora,	cualquiera	que	esté	listado	en	el	grupo	GroupName,	y
tiene	una	entrada	en	el	fichero	de	contraseñas,	se	les	permitirá
el	acceso,	si	introducen	su	contraseña	correctamente.

Hay	otra	manera	de	dejar	entrar	a	varios	usuarios,	que	es	menos
específica.	En	lugar	de	crear	un	archivo	de	grupo,	sólo	puede
utilizar	la	siguiente	directiva:

Require	valid-user

Usando	ésto	en	vez	de	la	línea	Require	user	rbowen
permitirá	a	cualquier	persona	acceder,	la	cuál	aparece	en	el
archivo	de	contraseñas,	y	que	introduzca	correctamente	su
contraseña.	Incluso	puede	emular	el	comportamiento	del	grupo
aquí,	sólo	manteniendo	un	fichero	de	contraseñas	independiente
para	cada	grupo.	La	ventaja	de	este	enfoque	es	que	Apache	sólo
tiene	que	comprobar	un	archivo,	en	lugar	de	dos.	La	desventaja
es	que	se	tiene	que	mantener	un	montón	de	ficheros	de
contraseña	de	grupo,	y	recuerde	hacer	referencia	al	fichero
correcto	en	la	directiva	AuthUserFile.

Posibles	Problemas

Debido	a	la	forma	en	que	se	especifica	la	autenticación	básica,	su
nombre	de	usuario	y	la	contraseña	deben	ser	verificados	cada	vez
que	se	solicita	un	documento	desde	el	servidor.	Esto	es,	incluso
si		se		vuelve	a	cargar	la	misma	página,	y	para	cada	imagen	de	la
página	(si					provienen	de	un	directorio	protegido).	Como	se
puede	imaginar,	esto					ralentiza	las	cosas	un	poco.	La	cantidad
que	ralentiza	las	cosas	es	proporcional	al	tamaño	del	archivo	de
contraseñas,	porque	tiene	que	abrir	ese	archivo,	recorrer	lista	de
usuarios	hasta	que	llega	a	su	nombre.	Y	tiene	que	hacer	esto
cada	vez	que	se	carga	una	página.

Una	consecuencia	de	esto,	es	que	hay	un	limite	práctico	de
cuantos	usuarios	puedes	introducir	en	el	fichero	de	contraseñas.
Este	límite	variará	dependiendo	de	la	máquina	en	la	que	tengas	el
servidor,	pero	puedes	notar	ralentizaciones	en	cuanto	se	metan
cientos	de	entradas,	y	por	lo	tanto	consideraremos	entonces	otro
método	de	autenticación	en	ese	momento.

Método	alternativo	de	almacenamiento	de	las
contraseñas

Debido	a	que	el	almacenamiento	de	las	contraseñas	en	texto
plano	tiene	el	problema	mencionado	anteriormente,	puede	que	se
prefiera	guardar	las	contraseñas	en	otro	lugar	como	por	ejemplo
una	base	de	datos.

Los	módulos	mod_authn_dbm	y	mod_authn_dbd	son	dos
módulos	que	hacen	esto	posible.	En	vez	de	seleccionar	la
directiva	de	fichero	AuthBasicProvider	,	en	su	lugar	se	puede
elegir	dbm	o	dbd	como	formato	de	almacenamiento.

Para	seleccionar	los	ficheros	de	tipo	dbm	en	vez	de	texto	plano,
podremos	hacer	algo	parecido	a	lo	siguiente:

<Directory	"/www/docs/private">

				AuthName	"Private"

				AuthType	Basic

				AuthBasicProvider	dbm

				AuthDBMUserFile	"/www/passwords/passwd.dbm"

				Require	valid-user

</Directory>

Hay	otras	opciones	disponibles.	Consulta	la	documentación	de
mod_authn_dbm	para	más	detalles.

Uso	de	múltiples	proveedores

Con	la	introducción	de	la	nueva	autenticación	basada	en	un
proveedor	y	una	arquitectura	de	autorización,	ya	no	estaremos
restringidos	a	un	único	método	de	autenticación	o	autorización.
De	hecho,	cualquier	número	de	los	proveedores	pueden	ser
mezclados	y	emparejados	para	ofrecerle	exactamente	el	esquema
que	se	adapte	a	sus	necesidades.	En	el	siguiente	ejemplo,
veremos	como	ambos	proveedores	tanto	el	fichero	como	el	LDAP
son	usados	en	la	autenticación:

<Directory	"/www/docs/private">

				AuthName	"Private"

				AuthType	Basic

				AuthBasicProvider	file	ldap

				AuthUserFile	"/usr/local/apache/passwd/passwords"

				AuthLDAPURL	ldap://ldaphost/o=yourorg

				Require	valid-user

</Directory>

En	este	ejemplo	el	fichero,	que	actúa	como	proveedor,	intentará
autenticar	primero	al	usuario.	Si	no	puede	autenticar	al	usuario,	el
proveedor	del	LDAP	será	llamado	para	que	realice	la
autenticación.	Esto	permite	al	ámbito	de	autenticación	ser	amplio,
si	su	organización	implementa	más	de	un	tipo	de	almacén	de
autenticación.	Otros	escenarios	de	autenticación	y	autorización
pueden	incluir	la	mezcla	de	un	tipo	de	autenticación	con	un	tipo
diferente	de	autorización.	Por	ejemplo,	autenticar	contra	un	fichero
de	contraseñas	pero	autorizando	dicho	acceso	mediante	el
directorio	del	LDAP.

Así	como	múltiples	métodos	y	proveedores	de	autenticación
pueden	ser	implementados,	también	pueden	usarse	múltiples
formas	de	autorización.	En	este	ejemplo	ambos	ficheros	de
autorización	de	grupo	así	como	autorización	de	grupo	mediante

LDAP	va	a	ser	usado:

<Directory	"/www/docs/private">

				AuthName	"Private"

				AuthType	Basic

				AuthBasicProvider	file

				AuthUserFile	"/usr/local/apache/passwd/passwords"

				AuthLDAPURL	ldap://ldaphost/o=yourorg

				AuthGroupFile	"/usr/local/apache/passwd/groups"

				Require	group	GroupName

				Require	ldap-group	cn=mygroup,o=yourorg

</Directory>

Para	llevar	la	autorización	un	poco	más	lejos,	las	directivas	de
autorización	de	contenedores	tales	como	<RequireAll>	and
<RequireAny>	nos	permiten	aplicar	una	lógica	de	en	qué	orden
se	manejará	la	autorización	dependiendo	de	la	configuración	y
controlada	a	través	de	ella.	Mire	también	Contenedores	de
Autorización	para	ejemplos	de	cómo	pueden	ser	aplicados.

Más	allá	de	la	Autorización

El	modo	en	que	la	autorización	puede	ser	aplicada	es	ahora
mucho	más	flexible	que	us	solo	chequeo	contra	un	almacén	de
datos	(contraseñas).	Ordenando	la	lógica	y	escoger	la	forma	en
que	la	autorización	es	realizada,	ahora	es	posible

Aplicando	la	lógica	y	ordenación
Controlar	el	cómo	y	en	qué	orden	se	va	a	aplicar	la	autorización
ha	sido	un	misterio	en	el	pasado.	En	Apache	2.2	un	proveedor	del
mecanismo	de	autenticación	fue	introducido	para	disociar	el
proceso	actual	de	autenticación	y	soportar	funcionalidad.	Uno	de
los	beneficios	secundarios	fue	que	los	proveedores	de
autenticación	podían	ser	configurados	y	llamados	en	un	orden
especifico	que	no	dependieran	en	el	orden	de	carga	del	propio
modulo.	Este	proveedor	de	dicho	mecanismo,	ha	sido	introducido
en	la	autorización	también.	Lo	que	esto	significa	es	que	la
directiva	Require	no	sólo	especifica	que	método	de	autorización
deberá	ser	usado,	si	no	también	especifica	el	orden	en	que	van	a
ser	llamados.	Múltiples	métodos	de	autorización	son	llamados	en
el	mismo	orden	en	que	la	directiva	Require	aparece	en	la
configuración.

Con	la	Introducción	del	contenedor	de	directivas	de	autorización
tales	como	<RequireAll>	y	<RequireAny>,	La	configuración
también	tiene	control	sobre	cuándo	se	llaman	a	los	métodos	de
autorización	y	qué	criterios	determinan	cuándo	se	concede	el
acceso.	Vease	Contenedores	de	autorización	Para	un	ejemplo	de
cómo	pueden	ser	utilizados	para	expresar	una	lógica	más
compleja	de	autorización.

Por	defecto	todas	las	directivas	Require	son	manejadas	como	si
estuvieran	contenidas	en	una	directiva	<RequireAny>.	En	otras
palabras,	Si	alguno	de	los	métodos	de	autorización	especificados
tiene	éxito,	se	concede	la	autorización.

Uso	de	los	proveedores	de	autorización	para	el
control	de	acceso
La	autenticación	de	nombre	de	usuario	y	contraseña	es	sólo	parte
de	toda	la	historia	que	conlleva	el	proceso.	Frecuentemente
quiere	dar	acceso	a	la	gente	en	base	a	algo	más	que	lo	que	son.
Algo	como	de	donde	vienen.

Los	proveedores	de	autorización	all,	env,	host	y	ip	te	permiten
denegar	o	permitir	el	acceso	basándose	en	otros	criterios	como	el
nombre	de	la	máquina	o	la	IP	de	la	máquina	que	realiza	la
consulta	para	un	documento.

El	uso	de	estos	proveedores	se	especifica	a	través	de	la	directiva
Require.	La	directiva	registra	los	proveedores	de	autorización
que	serán	llamados	durante	la	solicitud	de	la	fase	del	proceso	de
autorización.	Por	ejemplo:

Require	ip	address

								

Donde	address	es	una	dirección	IP	(o	una	dirección	IP	parcial)	o
bien:

Require	host	domain_name

								

Donde	domain_name	es	el	nombre	completamente	cualificado	de
un	nombre	de	dominio	(FQDN)	(o	un	nombre	parcial	del	dominio);
puede	proporcionar	múltiples	direcciones	o	nombres	de	dominio,
si	se	desea.

Por	ejemplo,	si	alguien	envía	spam	a	su	tablón	de	mensajes	y
desea	mantenerlos	alejados,	podría	hacer	lo	siguiente:

<RequireAll>

				Require	all	granted

				Require	not	ip	10.252.46.165

</RequireAll>

Visitantes	que	vengan	desde	esa	IP	no	serán	capaces	de	ver	el
contenido	que	cubre	esta	directiva.	Si,	en	cambio,	lo	que	se	tiene
es	el	nombre	de	la	máquina,	en	vez	de	la	dirección	IP,	podría
usar:

<RequireAll>

				Require	all	granted

				Require	not	host	host.example.com

</RequireAll>

Y,	si	lo	que	se	quiere	es	bloquear	el	acceso	desde	un	determinado
dominio	(bloquear	el	acceso	desde	el	dominio	entero),	puede
especificar	parte	de	la	dirección	o	del	propio	dominio	a	bloquear:

<RequireAll>

				Require	all	granted

				Require	not	ip	192.168.205

				Require	not	host	phishers.example.com	moreidiots.example

				Require	not	host	ke

</RequireAll>

Usando	<RequireAll>	con	múltiples	directivas	<Require>,
cada	una	negada	con	un	not,	Sólo	permitirá	el	acceso,	si	todas
las	condiciones	negadas	son	verdaderas.	En	otras	palabras,	el
acceso	será	bloqueado,	si	cualquiera	de	las	condiciones	negadas
fallara.

Compatibilidad	de	Control	de	Acceso	con	versiones

anteriores
Uno	de	los	efectos	secundarios	de	adoptar	proveedores	basados
en	mecanismos	de	autenticación	es	que	las	directivas	anteriores
Order,	Allow,	Deny	y	Satisfy	ya	no	son	necesarias.	Sin
embargo,	para	proporcionar	compatibilidad	con	configuraciones
antiguas,	estas	directivas	se	han	movido	al	módulo
mod_access_compat.

Nota:

Las	directivas	proporcionadas	por	mod_access_compat	han
quedado	obsoletas	por	mod_authz_host.	Mezclar	directivas
antiguas	como	Order,	Allow	ó	Deny	con	las	nuevas	como
Require	es	técnicamente	posible	pero	desaconsejable.	El
módulo	mod_access_compat	se	creó	para	soportar
configuraciones	que	contuvieran	sólo	directivas	antiguas	para
facilitar	la	actualización	a	la	versión	2.4.	Por	favor	revise	la
documentación	de	actualización	para	más	información	al
respecto.

Cache	de	Autenticación

Puede	haber	momentos	en	que	la	autenticación	ponga	una	carga
inaceptable	en	el	proveedor	(de	autenticación)	o	en	tu	red.	Esto
suele	afectar	a	los	usuarios	de	mod_authn_dbd	(u	otros
proveedores	de	terceros/personalizados).	Para	lidiar	con	este
problema,	HTTPD	2.3/2.4	introduce	un	nuevo	proveedor	de	caché
mod_authn_socache	para	cachear	las	credenciales	y	reducir	la
carga	en	el	proveedor(es)	original.

Esto	puede	ofrecer	un	aumento	de	rendimiento	sustancial	para
algunos	usuarios.

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Más	información

También	debería	leer	la	documentación	para	mod_auth_basic	y
mod_authz_host	la	cuál	contiene	más	información	de	como
funciona	todo	esto.	La	directiva	<AuthnProviderAlias>	puede
también	ayudar	a	la	hora	de	simplificar	ciertas	configuraciones	de
autenticación.

Los	diferentes	algoritmos	de	cifrado	que	están	soportados	por
Apache	para	la	autenticación	se	explican	en	Cifrado	de
Contraseñas.

Y	tal	vez	quiera	ojear	la	documentación	de	"how	to"	Control	de
Acceso	donde	se	mencionan	temas	relacionados.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4	>	How-To	/	Tutoriales

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Tutorial	de	Apache:	Contenido	Dinámico	con
CGI

Introducción

Módulos	Relacionados Directivas	Relacionadas
mod_alias

mod_cgi

mod_cgid

AddHandler

Options

ScriptAlias

CGI	(Common	Gateway	Interface)	es	un	método	por	el	cual	un
servidor	web	puede	interactuar	con	programas	externos	de
generación	de	contenido,	a	ellos	nos	referimos	comúnmente	como
programas	CGI	o	scripts	CGI.	Es	el	método	más	común	y	sencillo
de	mostrar	contenido	dinámico	en	su	sitio	web.	Este	documento
es	una	introducción	para	configurar	CGI	en	su	servidor	web
Apache,	y	de	iniciación	para	escribir	programas	CGI.

Configurando	Apache	para	permitir	CGI

Para	conseguir	que	sus	programas	CGI	funcionen	correctamente,
deberá	configurar	Apache	para	que	permita	la	ejecución	de	CGI.
Hay	distintas	formas	de	hacerlo.

Nota:	Si	Apache	ha	sido	compilado	con	soporte	de	módulos
compartidos,	necesitará	que	el	módulo	de	CGI	esté	cargado;	en
su	httpd.conf	tiene	que	asegurarse	de	que	la	directiva
LoadModule	no	ha	sido	comentada.	Una	directiva	configurada
correctamente	sería	así:

LoadModule	cgid_module	modules/mod_cgid.so

En	Windows,	o	si	usa	un	mpm	que	no	es	multihilo,	como
prefork,	una	directiva	configurada	correctamente	podría
definirse	así:

LoadModule	cgi_module	modules/mod_cgi.so

ScriptAlias
La	directiva	ScriptAlias	indica	a	Apache	que	un	directorio	se
ha	configurado	específicamente	para	programas	CGI.	Apache
asumirá	que	cada	fichero	en	este	directorio	es	un	programa	CGI,
e	intentará	ejecutarlos	cuando	un	cliente	solicita	este	recurso.

La	directiva	ScriptAlias	se	puede	definir	así:

ScriptAlias	"/cgi-bin/"	"/usr/local/apache2/cgi-bin/"

El	ejemplo	que	se	muestra	es	de	un	archivo	de	configuración
httpd.conf	por	defecto	si	usted	instaló	Apache	en	la	ubicación
por	defecto.	La	directiva	ScriptAlias	es	muy	parecida	a	la
directiva	Alias,	ésta	define	un	prefijo	de	URL	que	se	enlaza	a	un

directorio	en	particular.	Alias	y	ScriptAlias	se	usan
generalmente	para	directorios	que	se	encuentran	fuera	del
directorio	DocumentRoot.	La	diferencia	entre	Alias	y
ScriptAlias	es	que	en	ScriptAlias	cualquier	elemento
debajo	de	ese	prefijo	de	URL	será	considerado	un	programa	CGI.
Así,	el	ejemplo	de	más	arriba	le	indica	a	Apache	que	cualquier
solicitud	para	un	recurso	que	comience	con	/cgi-bin/	debería
servirse	desde	el	directorio	/usr/local/apache2/cgi-bin/,	y
debería	tratarse	como	un	programa	CGI.

Por	ejemplo,	si	se	solicita	la	URL
http://www.example.com/cgi-bin/test.pl,	Apache
intentará	ejecutar	el	archivo	/usr/local/apache2/cgi-
bin/test.pl	y	dar	el	resultado.	Por	supuesto	el	archivo	debe
existir	y	ser	ejecutable,	y	dar	el	resultado	de	una	manera
específica	o	Apache	devolverá	un	mensaje	de	error.

CGI	fuera	de	directorios	ScriptAlias
Los	programas	CGI	habitualmente	se	restringen	a	los	directorios
de	ScriptAlias	por	razones	de	seguridad.	De	esta	manera,	los
administradores	pueden	controlar	de	una	manera	más	segura
quien	puede	ejecutar	programas	CGI.	Aun	así,	si	no	se	toman
suficientes	precauciones,	no	hay	ninguna	razón	por	la	que
programas	CGI	no	se	puedan	ejecutar	desde	directorios
seleccionados	de	manera	arbitraria.	Por	ejemplo,	quizás	quiera
permitir	que	usuarios	del	sistema	tengan	contenido	web	en	sus
directorios	home	con	la	directiva	UserDir.	Si	quieren	tener	sus
propios	programas	CGI,	pero	no	tienen	acceso	al	directorio
principal	cgi-bin,	necesitarán	ser	capaces	de	ejecutar	sus
scripts	CGI	en	algún	otro	sitio.

Hay	dos	pasos	a	seguir	para	permitir	la	ejecución	CGI	en
directorios	seleccionados	de	manera	arbitraria.	Primero,	el	handler

cgi-script	debe	estar	activado	usando	la	directiva
AddHandler	o	la	directiva	SetHandler.	Segundo,	el	parámetro
ExecCGI	debe	estar	definido	en	la	directiva	Options.

Usando	Options	de	manera	explícita	para	permitir
ejecución	de	CGI
Puede	usar	la	directiva	Options,	en	el	archivo	de	configuración
principal	para	especificar	que	se	permite	la	ejecución	de	CGI	en
un	directorio	en	particular:

<Directory	"/usr/local/apache2/htdocs/somedir">

				Options	+ExecCGI

</Directory>

Esta	directiva	de	aquí	arriba	le	indica	a	Apache	que	debe	permitir
la	ejecución	de	archivos	CGI.	También	necesitará	indicarle	al
servidor	que	los	archivos	son	archivos	CGI.	La	directiva
AddHandler	le	indica	al	servidor	que	debe	tratar	a	todos	los
archivos	con	la	extensión	cgi	o	pl	como	programas	CGI:

AddHandler	cgi-script	.cgi	.pl

Ficheros	.htaccess
El	tutorial	.htaccess	enseña	como	activar	programas	CGI	si	no
tienes	acceso	a	httpd.conf.

Directorios	de	Usuario
Para	permitir	la	ejecución	de	programas	CGI	para	cualquier
archivo	que	acabe	en	.cgi	en	directorios	de	usuario,	puedes	usar
la	siguiente	configuración:

<Directory	"/home/*/public_html">

				Options	+ExecCGI

				AddHandler	cgi-script	.cgi

</Directory>

Si	quiere	designar	un	subdirectorio	cgi-bin	dentro	de	un
directorio	de	usuario	en	el	que	todos	los	ficheros	serán	tratados
como	un	programa	CGI,	puede	usar	lo	siguiente:

<Directory	"/home/*/public_html/cgi-bin">

				Options	ExecCGI

				SetHandler	cgi-script

</Directory>

Escribiendo	un	programa	CGI

Hay	dos	diferencias	principales	entre	programación	``regular''	y
programación	en	CGI.

Primera,	el	resultado	al	completo	de	tu	programa	CGI	debe	estar
precedido	de	una	cabecera	MIME-type.	Esta	cabecera	HTTP	le
indica	al	cliente	que	tipo	de	contenido	está	recibiendo.	La	mayor
parte	de	las	veces,	ésto	será	algo	como:

Content-type:	text/html

Segunda,	el	resultado	debe	estar	en	formato	HTML,	o	cualquier
otro	formato	que	su	navegador	sea	capaz	de	mostrar.	La	mayor
parte	de	las	veces,	será	HTML,	pero	otras	escribirá	un	programa
CGI	que	devuelve	una	imagen	gif,	u	otro	contenido	no-HTML.

Aparte	de	estas	dos	cosas,	escribir	un	programa	en	CGI	se
parecerá	bastante	a	cualquier	otro	programa	que	vaya	a	escribir.

Su	primer	programa	CGI
A	continuación	podrá	ver	un	ejemplo	de	programa	CGI	que
muestra	una	línea	de	texto	en	su	navegador.	Escriba	lo	siguiente,
guárdelo	en	un	archivo	con	el	nombre	first.pl,	y	póngalo	en	su
directorio	cgi-bin.

#!/usr/bin/perl

print	"Content-type:	text/html\n\n";

print	"Hola,	Mundo.";

Incluso	si	Perl	no	le	resulta	familiar,	podrá	ver	lo	que	está
ocurriendo	aquí.	La	primera	línea	le	dice	a	Apache	(o	a	cualquier
shell	en	la	que	se	esté	ejecutando)	que	este	programa	puede
ejecutarse	con	el	intérprete	en	la	ubicación	/usr/bin/perl.	La
segunda	línea	imprime	la	declaración	de	Content-Type	que

mencionamos	antes,	seguida	de	dos	pares	de	retornos	de	carro.
Esto	pone	una	línea	en	blanco	después	de	la	cabecera	para
indicar	el	final	de	las	cabeceras	HTTP,	y	el	comienzo	del	cuerpo
del	contenido.	La	tercera	imprime	la	cadena	de	caracteres	"Hola,
Mundo.".	Y	ese	es	el	final	del	programa.

Si	lo	abre	con	su	navegador	favorito	y	le	dice	que	solicite	la
dirección

http://www.example.com/cgi-bin/first.pl

o	donde	quiera	que	pusiera	el	archivo,	verá	una	línea	Hola,
Mundo.	aparecerán	la	ventana	del	navegador.	No	es	muy
emocionante,	pero	una	vez	que	consiga	que	funcione	podrá	hacer
lo	mismo	con	casi	cualquier	programa.

¡Pero	todavía	no	funciona!

Hay	4	cosas	básicas	que	puede	llegar	a	ver	en	su	navegador
cuando	intenta	acceder	a	un	programa	CGI	desde	la	web:

El	resultado	del	programa	CGI
¡Genial!	Esto	indica	que	todo	funcionó	correctamente.	Si	el
resultado	es	correcto,	pero	el	navegador	no	lo	procesa
correctamente,	asegúrese	de	que	tiene	especificado
correctamente	el	Content-Type	en	su	programa	CGI.

El	código	fuente	de	su	programa	CGI	o	un	mensaje	del	tipo
"POST	Method	Not	Allowed".

Eso	significa	que	no	ha	configurado	Apache	de	manera
apropiada	para	interpretar	su	programa	CGI.	Relea	la	sección
de	Configurando	Apache	e	intente	encontrar	qué	le	falta.

Un	mensaje	que	empieza	con	"Forbidden"
Eso	significa	que	hay	un	problema	de	permisos.	Compruebe
el	Log	de	Errores	de	Apache	y	la	sección	de	más	abajo	de
Permisos	de	Fichero.

Un	mensaje	indicando	"Internal	Server	Error"
Si	comprueba	el	Log	de	errores	de	Apache,	probablemente
encontrará	que	indica	"Premature	end	of	script	headers",
posiblemente	acompañado	de	otro	mensaje	de	error
generado	por	su	programa	CGI.	En	este	caso,	querrá
comprobar	cada	una	de	las	secciones	de	más	adelante	para
ver	qué	impide	que	su	programa	CGI	genere	las	cabeceras
HTTP	adecuadas.

Permisos	de	Fichero
Recuerde	que	el	servidor	no	se	ejecuta	con	su	usuario.	Es	decir,
cuando	el	servidor	arranca,	está	funcionando	con	un	usuario	sin
privilegios,	generalmente	el	usuario	nobody,	o	www-data,	así
que	necesitará	permisos	extra	para	ejecutar	los	archivos	de	los
que	usted	es	dueño.	Generalmente,	el	método	para	dar	permisos

suficientes	para	que	se	pueda	ejecutar	con	nobody	es	dar
permisos	de	ejecución	a	todo	el	mundo	en	el	fichero:

chmod	a+x	first.pl

Además,	si	su	programa	lee	desde	o	escribe	a	cualquier	otro/s
archivo/s,	esos	archivos	necesitarán	tener	los	permisos	correctos
para	permitir	esas	acciones.

Información	de	Ruta	y	Entorno
Cuando	ejecuta	un	programa	desde	la	línea	de	comandos,	usted
tiene	cierta	información	que	se	le	pasa	a	la	shell	sin	que	usted	se
percate	de	ello.	Por	ejemplo,	usted	tiene	un	PATH,	que	le	indica	a
la	shell	dónde	debe	buscar	archivos	a	los	que	usted	hace
referencia.

Cuando	un	programa	se	ejecuta	a	través	del	servidor	web	como
un	programa	CGI,	puede	que	no	tenga	el	mismo	PATH.	Cualquier
programa	que	invoque	desde	su	programa	CGI	(como	por	ejemplo
sendmail)	necesitará	que	se	le	indique	la	ruta	absoluta,	así	la
shell	puede	encontrarlos	cuando	intenta	ejecutar	su	programa
CGI.

Una	manifestación	común	de	esto	es	la	ruta	del	intérprete	del
script	(a	menudo	perl)	indicado	en	la	primera	línea	de	su
programa	CGI,	que	parecerá	algo	como:

#!/usr/bin/perl

Asegúrese	de	que	éste	es	de	hecho	el	path	de	su	intérprete.

Cuando	edita	scripts	CGI	en	Windows,	los	caracteres	de
retorno	de	carro	podrían	añadirse	a	la	línea	donde	se	especifica

el	intérprete.	Asegúrese	de	que	los	archivos	se	transfieren	al
servidor	en	modo	ASCII.	Fallar	en	esto	puede	acabar	con
avisos	del	tipo	"Command	not	found"	del	Sistema	Operativo,
debido	a	que	éste	no	reconoce	los	caracteres	de	final	de	línea
interpretados	como	parte	del	nombre	de	fichero	del	intérprete.

Faltan	Variables	de	Entorno
Si	su	programa	CGI	depende	de	variables	de	entorno	no	estándar,
necesitará	asegurarse	de	que	Apache	pasa	esas	variables.

Cuando	no	encuentra	ciertas	cabeceras	HTTP	del	entorno,
asegúrese	de	que	están	formateadas	según	el	RFC	2616,	sección
4.2:	Nombres	de	Cabeceras	deben	empezar	con	una	letra,
seguida	solo	de	letras,	números	o	guión.	Cualquier	cabecera	que
no	cumpla	esta	regla	será	ignorada	de	manera	silenciosa.

Errores	de	Programa
La	mayor	parte	de	las	veces	cuando	un	programa	CGI	falla,	es
por	un	problema	en	el	programa	mismo.	Esto	ocurre
generalmente	cuando	se	maneja	bien	con	"esto	del	CGI",	y	ya	no
comete	los	dos	errores	mencionados	más	arriba.	Lo	primero	que
hay	que	hacer	es	asegurarse	de	que	su	programa	se	ejecuta
correctamente	en	línea	de	comandos	antes	de	probarlo	a	través
del	servidor	web.	Por	ejemplo,	intente:

cd	/usr/local/apache2/cgi-bin

./first.pl

(No	llame	al	intérprete	de	perl.	La	consola	y	Apache	tienen	que
poder	encontrar	el	intérprete	usando	línea	línea	de	información	en
la	primera	línea	del	script.)

Lo	primero	que	debe	ver	escrito	por	su	programa	es	un	conjunto
de	cabeceras	HTTP,	incluyendo	el	Content-Type,	seguido	de

http://tools.ietf.org/html/rfc2616

una	línea	en	blanco.	Si	ve	alguna	otra	cosa,	Apache	devolverá	el
error	Premature	end	of	script	headers	si	intenta	lanzar	el
script	en	el	servidor	web.	Vea	Escribiendo	un	programa	CGI	más
arriba	para	más	detalle.

Log	de	Errores
El	log	de	errores	es	su	amigo.	Cualquier	cosa	que	vaya	mal
generará	un	mensaje	en	el	log	de	errores.	Debería	mirar	siempre
ahí	primero.	Si	el	lugar	donde	está	alojando	su	sitio	web	no
permite	que	acceda	al	log	de	errores,	probablemente	debería
alojarlo	en	otro	sitio.	Aprenda	a	leer	el	log	de	errores	y	se	dará
cuenta	de	que	enseguida	averiguará	el	motivo	del	error	y	lo
solucionará	rápidamente.

Suexec
El	programa	de	soporte	suexec	permite	que	programas	CGI	se
ejecuten	con	permisos	de	usuario	distintos,	dependiendo	del
virtualhost	o	el	directorio	home	donde	se	encuentren.	Suexec
tiene	una	comprobación	de	permisos	muy	estricta,	y	cualquier
fallo	en	esa	comprobación	dará	como	resultado	un	error	con	el
mensaje	Premature	end	of	script	headers.

Para	comprobar	si	está	usando	Suexec,	ejecute	apachectl	-V
y	compruebe	la	ubicación	de	SUEXEC_BIN.	Si	Apache	encuentra
un	binario	suexec	al	arrancar,	suexec	se	activará.

A	menos	que	comprenda	suxec	perfectamente,	no	debería	usarlo.
Para	desactivar	suexec,	basta	con	eliminar	el	binario	suexec	al
que	apunta	SUEXEC_BIN	y	reiniciar	el	servidor.	Si	después	de	leer
sobre	suexec	todavía	quiere	usarlo,	entonces	ejecute	suexec	-V
para	encontrar	la	ubicación	del	fichero	log	de	suexec,	y	use	ese
log	para	encontrar	que	política	no	está	cumpliendo.

¿Qué	ocurre	entre	bastidores?

En	cuanto	tenga	conocimiento	avanzado	de	programación	CGI,	le
será	útil	comprender	más	de	lo	que	ocurre	entre	bastidores.
Específicamente,	cómo	el	navegador	y	el	servidor	se	comunican
el	uno	con	el	otro.	Porque	aunque	esté	muy	bien	escribir	un
programa	que	diga	"Hola,	Mundo.",	no	tiene	una	gran	utilidad.

Variables	de	Entorno
Las	variables	de	entorno	son	valores	que	están	ahí	cuando	usa	el
ordenador.	Son	cosas	útiles	como	el	path	(donde	su	ordenador
busca	el	archivo	específico	que	se	lanza	cuando	usted	escribe	un
comando),	su	nombre	de	usuario,	el	tipo	de	terminal	que	usa,	etc.
Para	una	lista	completa	de	la	variables	de	entorno	normales	que
se	se	usan	en	su	día	a	día	escriba	env	en	la	línea	de	comandos.

Durante	la	transacción	CGI,	el	servidor	y	el	navegador	también
configuran	variables	de	entorno,	y	así	pueden	comunicarse	entre
ellos.	Cosas	como	el	tipo	de	navegador	(Netscape,	IE,	Lynx),	el
tipo	de	servidor	(Apache,	IIS,	WebSite),	el	nombre	del	programa
CGI	que	se	está	ejecutando,	etc.

Estas	variables	están	disponibles	para	el	programador	de	CGI,	y
son	la	mitad	de	la	historia	de	la	comunicación	cliente-servidor.	La
lista	completa	de	las	variables	necesarias	se	encuentra	en	el	RFC
de	Common	Gateway	Interface.

Este	sencillo	programa	CGI	en	Perl	mostrará	todas	las	variables
de	entorno	que	se	están	pasando	entre	el	cliente	y	el	navegador.
Dos	programas	similares	están	incluidos	en	el	directorio	cgi-bin
de	la	distribución	de	Apache.	Tenga	en	cuenta	que	algunas
variables	son	necesarias	mientras	que	otras	son	opcionales,	así
que	es	posible	que	vea	algunas	variables	que	no	están	en	la	lista
oficial.	Adicionalmente,	Apache	aporta	distintas	maneras
diferentes	para	que	pueda	añadir	sus	variables	de	entorno	a	las

http://www.ietf.org/rfc/rfc3875

básicas	que	se	proveen	por	defecto.

#!/usr/bin/perl

use	strict;

use	warnings;

print	"Content-type:	text/html\n\n";

										

foreach	my	$key	(keys	%ENV)	{

				print	"$key	-->	$ENV{$key}
";

}

STDIN	y	STDOUT
Otra	comunicación	entre	el	servidor	y	el	cliente	ocurre	en	la
entrada	estándar	(STDIN)	y	la	salida	estándar	(STDOUT).	En	el
contexto	normal	de	cada	día,	STDIN	es	la	entrada	con	el	teclado,
o	un	fichero	que	se	le	da	a	un	programa	para	que	actúe	sobre	él,
y	STDOUT	generalmente	es	la	consola	o	la	pantalla.

Cuando	hace	POST	con	un	formulario	de	web	a	un	programa	CGI,
los	datos	en	ese	formulario	se	empaquetan	en	un	formato
especial	que	se	entrega	a	su	programa	CGI	en	el	STDIN.
Entonces	el	programa	puede	procesar	la	información	como	si	le
llegara	desde	el	teclado,	o	desde	un	fichero.

El	"formato	especial"	es	muy	sencillo.	Un	nombre	de	campo	y	su
valor	se	asocian	juntos	con	el	signo	igual	(=),	y	pares	de	valores
se	asocian	juntos	con	el	ampersand	ó	et	en	español	(&).
Caracteres	inconvenientes	como	los	espacios,	ampersands	y
signos	de	igual,	se	convierten	en	su	equivalente	hexadecimal	para
no	impidan	el	funcionamiento	correcto	del	programa.	La	cadena
de	datos	al	completo	será	algo	como:

name=Rich%20Bowen&city=Lexington&state=KY&sidekick=Squirrel%20Monkey

A	veces	tendrá	este	tipo	de	cadena	de	caracteres	al	final	de	una
URL.	Cuando	esto	ocurre,	el	servidor	pone	esa	cadena	en	una
variable	de	entorno	que	se	llama	QUERY_STRING.	Esto	se	llama
solicitud	GET.	Su	formulario	HTML	especifica	si	se	usa	un	GET	o
un	POST	para	entregar	la	información,	configurando	el	atributo
METHOD	en	la	etiqueta	FORM.

Su	programa	es	el	responsable	de	convertir	esa	cadena	de
caracteres	en	información	útil.	Afortunadamente,	hay	librerías	y
módulos	disponibles	que	ayudan	a	procesar	la	información,	así
como	a	gestionar	los	distintos	aspectos	de	su	programa	CGI.

Módulos/librerías	CGI

Cuando	escribe	programas	CGI,	debería	considerar	usar	una
librería	de	código,	o	módulo,	para	hacer	todo	el	trabajo	más	arduo
por	usted.	Esto	lleva	a	tener	menos	errores	y	un	desarrollo	de
código	más	rápido.

Si	está	escribiendo	un	programa	CGI	en	Perl,	existen	módulos
disponibles	en	CPAN.	El	módulo	más	conocido	para	este
propósito	es	CGI.pm.	Quizás	quiera	considerar	CGI::Lite,	que
implementa	una	funcionalidad	mínima,	que	es	todo	lo	que	se
necesita	en	la	mayoría	de	los	programas.

Si	está	escribiendo	programas	CGI	en	C,	hay	varidad	de
opciones.	Una	de	estas	es	la	librería	CGIC,	de
http://www.boutell.com/cgic/.

http://www.cpan.org/
http://www.boutell.com/cgic/

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Para	más	información

La	especificación	actual	de	CGI	está	disponible	en	el	RFC	de
Common	Gateway	Interface.

Cuando	envíe	una	pregunta	sobre	un	problema	de	CGI,	o	bien	a
una	lista	de	correo,	o	a	un	grupo	de	noticias,	asegúrese	de	que
facilita	suficiente	información	de	lo	que	ha	ocurrido,	de	lo	que
espera	que	ocurra,	y	de	lo	que	está	ocurriendo	en	su	lugar	que	es
diferente,	el	servidor	que	está	ejecutando,	en	qué	lenguaje	CGI
está	hecho	su	programa,	y	si	es	posible,	el	código	que	falla.	Esto
hará	encontrar	el	problema	mucho	más	fácil.

Tenga	en	cuenta	que	las	preguntas	sobre	problemas	CGI	nunca
deberían	enviarse	a	la	base	de	datos	de	bugs	de	bugs	de	Apache
a	menos	que	esté	seguro	de	haber	encontrado	un	problema	en	el
código	fuente	de	Apache.

http://www.ietf.org/rfc/rfc3875
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	How-To	/	Tutorials

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	httpd	Tutorial:	Introduction	to	Server
Side	Includes

Server-side	includes	provide	a	means	to	add	dynamic	content	to
existing	HTML	documents.

Introduction

Related	Modules Related	Directives
mod_include

mod_cgi

mod_expires

Options

XBitHack

AddType

SetOutputFilter

BrowserMatchNoCase

This	article	deals	with	Server	Side	Includes,	usually	called	simply
SSI.	In	this	article,	I'll	talk	about	configuring	your	server	to	permit
SSI,	and	introduce	some	basic	SSI	techniques	for	adding	dynamic
content	to	your	existing	HTML	pages.

In	the	latter	part	of	the	article,	we'll	talk	about	some	of	the
somewhat	more	advanced	things	that	can	be	done	with	SSI,	such
as	conditional	statements	in	your	SSI	directives.

What	are	SSI?

SSI	(Server	Side	Includes)	are	directives	that	are	placed	in	HTML
pages,	and	evaluated	on	the	server	while	the	pages	are	being
served.	They	let	you	add	dynamically	generated	content	to	an
existing	HTML	page,	without	having	to	serve	the	entire	page	via	a
CGI	program,	or	other	dynamic	technology.

For	example,	you	might	place	a	directive	into	an	existing	HTML
page,	such	as:

<!--#echo	var="DATE_LOCAL"	-->

And,	when	the	page	is	served,	this	fragment	will	be	evaluated	and
replaced	with	its	value:

Tuesday,	15-Jan-2013	19:28:54	EST

The	decision	of	when	to	use	SSI,	and	when	to	have	your	page
entirely	generated	by	some	program,	is	usually	a	matter	of	how
much	of	the	page	is	static,	and	how	much	needs	to	be
recalculated	every	time	the	page	is	served.	SSI	is	a	great	way	to
add	small	pieces	of	information,	such	as	the	current	time	-	shown
above.	But	if	a	majority	of	your	page	is	being	generated	at	the	time
that	it	is	served,	you	need	to	look	for	some	other	solution.

Configuring	your	server	to	permit	SSI

To	permit	SSI	on	your	server,	you	must	have	the	following	directive
either	in	your	httpd.conf	file,	or	in	a	.htaccess	file:

Options	+Includes

This	tells	Apache	that	you	want	to	permit	files	to	be	parsed	for	SSI
directives.	Note	that	most	configurations	contain	multiple	Options
directives	that	can	override	each	other.	You	will	probably	need	to
apply	the	Options	to	the	specific	directory	where	you	want	SSI
enabled	in	order	to	assure	that	it	gets	evaluated	last.

Not	just	any	file	is	parsed	for	SSI	directives.	You	have	to	tell
Apache	which	files	should	be	parsed.	There	are	two	ways	to	do
this.	You	can	tell	Apache	to	parse	any	file	with	a	particular	file
extension,	such	as	.shtml,	with	the	following	directives:

AddType	text/html	.shtml

AddOutputFilter	INCLUDES	.shtml

One	disadvantage	to	this	approach	is	that	if	you	wanted	to	add
SSI	directives	to	an	existing	page,	you	would	have	to	change	the
name	of	that	page,	and	all	links	to	that	page,	in	order	to	give	it	a
.shtml	extension,	so	that	those	directives	would	be	executed.

The	other	method	is	to	use	the	XBitHack	directive:

XBitHack	on

XBitHack	tells	Apache	to	parse	files	for	SSI	directives	if	they
have	the	execute	bit	set.	So,	to	add	SSI	directives	to	an	existing
page,	rather	than	having	to	change	the	file	name,	you	would	just
need	to	make	the	file	executable	using	chmod.

chmod	+x	pagename.html

A	brief	comment	about	what	not	to	do.	You'll	occasionally	see
people	recommending	that	you	just	tell	Apache	to	parse	all	.html
files	for	SSI,	so	that	you	don't	have	to	mess	with	.shtml	file
names.	These	folks	have	perhaps	not	heard	about	XBitHack.
The	thing	to	keep	in	mind	is	that,	by	doing	this,	you're	requiring
that	Apache	read	through	every	single	file	that	it	sends	out	to
clients,	even	if	they	don't	contain	any	SSI	directives.	This	can	slow
things	down	quite	a	bit,	and	is	not	a	good	idea.

Of	course,	on	Windows,	there	is	no	such	thing	as	an	execute	bit	to
set,	so	that	limits	your	options	a	little.

In	its	default	configuration,	Apache	does	not	send	the	last	modified
date	or	content	length	HTTP	headers	on	SSI	pages,	because
these	values	are	difficult	to	calculate	for	dynamic	content.	This	can
prevent	your	document	from	being	cached,	and	result	in	slower
perceived	client	performance.	There	are	two	ways	to	solve	this:

1.	 Use	the	XBitHack	Full	configuration.	This	tells	Apache	to
determine	the	last	modified	date	by	looking	only	at	the	date	of
the	originally	requested	file,	ignoring	the	modification	date	of
any	included	files.

2.	 Use	the	directives	provided	by	mod_expires	to	set	an
explicit	expiration	time	on	your	files,	thereby	letting	browsers
and	proxies	know	that	it	is	acceptable	to	cache	them.

Basic	SSI	directives

SSI	directives	have	the	following	syntax:

<!--#function	attribute=value	attribute=value	...	-->

It	is	formatted	like	an	HTML	comment,	so	if	you	don't	have	SSI
correctly	enabled,	the	browser	will	ignore	it,	but	it	will	still	be	visible
in	the	HTML	source.	If	you	have	SSI	correctly	configured,	the
directive	will	be	replaced	with	its	results.

The	function	can	be	one	of	a	number	of	things,	and	we'll	talk	some
more	about	most	of	these	in	the	next	installment	of	this	series.	For
now,	here	are	some	examples	of	what	you	can	do	with	SSI

Today's	date

<!--#echo	var="DATE_LOCAL"	-->

The	echo	function	just	spits	out	the	value	of	a	variable.	There	are
a	number	of	standard	variables,	which	include	the	whole	set	of
environment	variables	that	are	available	to	CGI	programs.	Also,
you	can	define	your	own	variables	with	the	set	function.

If	you	don't	like	the	format	in	which	the	date	gets	printed,	you	can
use	the	config	function,	with	a	timefmt	attribute,	to	modify	that
formatting.

<!--#config	timefmt="%A	%B	%d,	%Y"	-->

Today	is	<!--#echo	var="DATE_LOCAL"	-->

Modification	date	of	the	file

This	document	last	modified	<!--#flastmod	file="index.html"	-->

This	function	is	also	subject	to	timefmt	format	configurations.

Including	the	results	of	a	CGI	program
This	is	one	of	the	more	common	uses	of	SSI	-	to	output	the	results
of	a	CGI	program,	such	as	everybody's	favorite,	a	``hit	counter.''

<!--#include	virtual="/cgi-bin/counter.pl"	-->

Additional	examples

Following	are	some	specific	examples	of	things	you	can	do	in	your
HTML	documents	with	SSI.

When	was	this	document	modified?
Earlier,	we	mentioned	that	you	could	use	SSI	to	inform	the	user
when	the	document	was	most	recently	modified.	However,	the
actual	method	for	doing	that	was	left	somewhat	in	question.	The
following	code,	placed	in	your	HTML	document,	will	put	such	a
time	stamp	on	your	page.	Of	course,	you	will	have	to	have	SSI
correctly	enabled,	as	discussed	above.

<!--#config	timefmt="%A	%B	%d,	%Y"	-->

This	file	last	modified	<!--#flastmod	file="ssi.shtml"	-->

Of	course,	you	will	need	to	replace	the	ssi.shtml	with	the	actual
name	of	the	file	that	you're	referring	to.	This	can	be	inconvenient	if
you're	just	looking	for	a	generic	piece	of	code	that	you	can	paste
into	any	file,	so	you	probably	want	to	use	the	LAST_MODIFIED
variable	instead:

<!--#config	timefmt="%D"	-->

This	file	last	modified	<!--#echo	var="LAST_MODIFIED"	-->

For	more	details	on	the	timefmt	format,	go	to	your	favorite
search	site	and	look	for	strftime.	The	syntax	is	the	same.

Including	a	standard	footer
If	you	are	managing	any	site	that	is	more	than	a	few	pages,	you
may	find	that	making	changes	to	all	those	pages	can	be	a	real
pain,	particularly	if	you	are	trying	to	maintain	some	kind	of
standard	look	across	all	those	pages.

Using	an	include	file	for	a	header	and/or	a	footer	can	reduce	the

burden	of	these	updates.	You	just	have	to	make	one	footer	file,
and	then	include	it	into	each	page	with	the	include	SSI
command.	The	include	function	can	determine	what	file	to
include	with	either	the	file	attribute,	or	the	virtual	attribute.
The	file	attribute	is	a	file	path,	relative	to	the	current	directory.
That	means	that	it	cannot	be	an	absolute	file	path	(starting	with	/),
nor	can	it	contain	../	as	part	of	that	path.	The	virtual	attribute	is
probably	more	useful,	and	should	specify	a	URL	relative	to	the
document	being	served.	It	can	start	with	a	/,	but	must	be	on	the
same	server	as	the	file	being	served.

<!--#include	virtual="/footer.html"	-->

I'll	frequently	combine	the	last	two	things,	putting	a
LAST_MODIFIED	directive	inside	a	footer	file	to	be	included.	SSI
directives	can	be	contained	in	the	included	file,	and	includes	can
be	nested	-	that	is,	the	included	file	can	include	another	file,	and
so	on.

What	else	can	I	config?

In	addition	to	being	able	to	config	the	time	format,	you	can	also
config	two	other	things.

Usually,	when	something	goes	wrong	with	your	SSI	directive,	you
get	the	message

[an	error	occurred	while	processing	this	directive]

If	you	want	to	change	that	message	to	something	else,	you	can	do
so	with	the	errmsg	attribute	to	the	config	function:

<!--#config	errmsg="[It	appears	that	you	don't	know	how	to	use

SSI]"	-->

Hopefully,	end	users	will	never	see	this	message,	because	you	will
have	resolved	all	the	problems	with	your	SSI	directives	before
your	site	goes	live.	(Right?)

And	you	can	config	the	format	in	which	file	sizes	are	returned
with	the	sizefmt	attribute.	You	can	specify	bytes	for	a	full	count
in	bytes,	or	abbrev	for	an	abbreviated	number	in	Kb	or	Mb,	as
appropriate.

Executing	commands

Here's	something	else	that	you	can	do	with	the	exec	function.	You
can	actually	have	SSI	execute	a	command	using	the	shell
(/bin/sh,	to	be	precise	-	or	the	DOS	shell,	if	you're	on	Win32).
The	following,	for	example,	will	give	you	a	directory	listing.

<pre>

<!--#exec	cmd="ls"	-->

</pre>

or,	on	Windows

<pre>

<!--#exec	cmd="dir"	-->

</pre>

You	might	notice	some	strange	formatting	with	this	directive	on
Windows,	because	the	output	from	dir	contains	the	string
``<dir>''	in	it,	which	confuses	browsers.

Note	that	this	feature	is	exceedingly	dangerous,	as	it	will	execute
whatever	code	happens	to	be	embedded	in	the	exec	tag.	If	you
have	any	situation	where	users	can	edit	content	on	your	web
pages,	such	as	with	a	``guestbook'',	for	example,	make	sure	that
you	have	this	feature	disabled.	You	can	allow	SSI,	but	not	the
exec	feature,	with	the	IncludesNOEXEC	argument	to	the
Options	directive.

Advanced	SSI	techniques

In	addition	to	spitting	out	content,	Apache	SSI	gives	you	the	option
of	setting	variables,	and	using	those	variables	in	comparisons	and
conditionals.

Setting	variables
Using	the	set	directive,	you	can	set	variables	for	later	use.	We'll
need	this	later	in	the	discussion,	so	we'll	talk	about	it	here.	The
syntax	of	this	is	as	follows:

<!--#set	var="name"	value="Rich"	-->

In	addition	to	merely	setting	values	literally	like	that,	you	can	use
any	other	variable,	including	environment	variables	or	the
variables	discussed	above	(like	LAST_MODIFIED,	for	example)	to
give	values	to	your	variables.	You	will	specify	that	something	is	a
variable,	rather	than	a	literal	string,	by	using	the	dollar	sign	($)
before	the	name	of	the	variable.

<!--#set	var="modified"	value="$LAST_MODIFIED"	-->

To	put	a	literal	dollar	sign	into	the	value	of	your	variable,	you	need
to	escape	the	dollar	sign	with	a	backslash.

<!--#set	var="cost"	value="\$100"	-->

Finally,	if	you	want	to	put	a	variable	in	the	midst	of	a	longer	string,
and	there's	a	chance	that	the	name	of	the	variable	will	run	up
against	some	other	characters,	and	thus	be	confused	with	those
characters,	you	can	place	the	name	of	the	variable	in	braces,	to
remove	this	confusion.	(It's	hard	to	come	up	with	a	really	good
example	of	this,	but	hopefully	you'll	get	the	point.)

<!--#set	var="date"	value="${DATE_LOCAL}_${DATE_GMT}"	-->

Conditional	expressions
Now	that	we	have	variables,	and	are	able	to	set	and	compare	their
values,	we	can	use	them	to	express	conditionals.	This	lets	SSI	be
a	tiny	programming	language	of	sorts.	mod_include	provides	an
if,	elif,	else,	endif	structure	for	building	conditional
statements.	This	allows	you	to	effectively	generate	multiple	logical
pages	out	of	one	actual	page.

The	structure	of	this	conditional	construct	is:

<!--#if	expr="test_condition"	-->

<!--#elif	expr="test_condition"	-->

<!--#else	-->

<!--#endif	-->

A	test_condition	can	be	any	sort	of	logical	comparison	-	either
comparing	values	to	one	another,	or	testing	the	``truth''	of	a
particular	value.	(A	given	string	is	true	if	it	is	nonempty.)	For	a	full
list	of	the	comparison	operators	available	to	you,	see	the
mod_include	documentation.

For	example,	if	you	wish	to	customize	the	text	on	your	web	page
based	on	the	time	of	day,	you	could	use	the	following	recipe,
placed	in	the	HTML	page:

Good	<!--#if	expr="%{TIME_HOUR}	<12"	-->

morning!

<!--#else	-->

afternoon!

<!--#endif	-->

Any	other	variable	(either	ones	that	you	define,	or	normal
environment	variables)	can	be	used	in	conditional	statements.	See
Expressions	in	Apache	HTTP	Server	for	more	information	on	the
expression	evaluation	engine.

With	Apache's	ability	to	set	environment	variables	with	the
SetEnvIf	directives,	and	other	related	directives,	this
functionality	can	let	you	do	a	wide	variety	of	dynamic	content	on
the	server	side	without	resorting	a	full	web	application.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Conclusion

SSI	is	certainly	not	a	replacement	for	CGI,	or	other	technologies
used	for	generating	dynamic	web	pages.	But	it	is	a	great	way	to
add	small	amounts	of	dynamic	content	to	pages,	without	doing	a
lot	of	extra	work.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4	>	How-To	/	Tutoriales

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Tutorial	del	Servidor	Apache	HTTP:	Ficheros
.htaccess

Los	ficheros	.htaccess	facilitan	una	forma	de	realizar	cambios	en	la
configuración	en	contexto	directorio.

Ficheros	.htaccess

Módulos	Relacionados Directivas	Relacionadas
core

mod_authn_file

mod_authz_groupfile

mod_cgi

mod_include

mod_mime

AccessFileName

AllowOverride

Options

AddHandler

SetHandler

AuthType

AuthName

AuthUserFile

AuthGroupFile

Require

Debería	evitar	usar	ficheros	.htaccess	completamente	si	tiene
acceso	al	fichero	de	configuración	principal	de	httpd.	Usar
ficheros	.htaccess	ralentiza	su	servidor	Apache	http.
Cualquier	directiva	que	pueda	incluir	en	un	fichero	.htaccess
estará	mejor	configurada	dentro	de	una	sección	Directory,
tendrá	el	mismo	efecto	y	mejor	rendimiento.

Qué	son/Cómo	usarlos

Los	ficheros	.htaccess	(o	"ficheros	de	configuración	distribuida")
facilitan	una	forma	de	realizar	cambios	en	la	configuración	en
contexto	directorio.	Un	fichero,	que	contiene	una	o	más	directivas,
se	coloca	en	un	documento	específico	de	un	directorio,	y	estas
directivas	aplican	a	ese	directorio	y	todos	sus	subdirectorios.

Nota:

Si	quiere	llamar	a	su	fichero	.htaccess	de	otra	manera,	puede
cambiar	el	nombre	del	fichero	usando	la	directiva
AccessFileName.	Por	ejemplo,	si	usted	prefiere	llamar	al
fichero	.config,	entonces	puede	poner	lo	siguiente	en	el
fichero	de	configuración	de	su	servidor:

AccessFileName	".config"

Generalmente,	los	ficheros	.htaccess	usan	la	misma	sintáxis
que	los	ficheros	de	la	configuración	principal.	Lo	que	puede	utilizar
en	estos	ficheros	lo	determina	la	directiva	AllowOverride.	Esta
directiva	especifica,	en	categorías,	qué	directivas	tendrán	efecto	si
se	encuentran	en	un	fichero	.htaccess.	Si	se	permite	una
directiva	en	un	fichero	.htaccess,	la	documentación	para	esa
directiva	contendrá	una	sección	Override,	especificando	qué	valor
debe	ir	en	AllowOverride	para	que	se	permita	esa	directiva.

Por	ejemplo,	si	busca	en	la	documentación	la	directiva
AddDefaultCharset,	encontrará	que	se	permite	en	ficheros
.htaccess.	(Vea	la	línea	de	Contexto	en	el	sumario	de	la
directiva.)	La	línea	Override	muestra	FileInfo.	De	este	modo,
debe	tener	al	menos	AllowOverride	FileInfo	para	que	esta
directiva	se	aplique	en	ficheros	.htaccess.

Ejemplo:

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo

Si	no	está	seguro	de	cuándo,	una	directiva	en	concreto,	se	puede
usar	en	un	fichero	.htaccess,	consulte	la	documentación	para
esa	directiva,	y	compruebe	la	línea	Context	buscando	".htaccess".

Cuando	(no)	usar	ficheros	.htaccess

Generalmente,	solo	debería	usar	ficheros	.htaccess	cuando	no
tiene	acceso	al	fichero	principal	de	configuración	del	servidor.	Hay,
por	ejemplo,	una	creencia	errónea	de	que	la	autenticación	de
usuario	debería	hacerse	siempre	dentro	de	ficheros	.htaccess,
y,	más	recientemente,	otra	creencia	errónea	de	que	las	directivas
de	mod_rewrite	deben	ir	en	ficheros	.htaccess.	Esto
sencillamente	no	es	el	caso.	Puede	poner	las	configuraciones	de
autenticación	de	usuario	en	la	configuración	principal	del	servidor,
y	esto	es	de	hecho,	el	método	preferido	de	configurar	Apache.	Del
mismo	modo,	las	directivas	mod_rewrite	funcionan	mejor,	en
muchos	sentidos,	en	el	fichero	de	configuración	principal	del
servidor.

Los	ficheros	.htaccess	deberían	usarse	cuando	su	proveedor
de	contenidos	le	permite	hacer	modificaciones	de	configuración
en	contexto	directorio,	pero	usted	no	tiene	acceso	de	root	en	el
servidor.	En	el	caso	de	que	el	administrador	no	esté	dispuesto	a
hacer	cambios	frecuentes	en	la	configuración,	puede	que	sea
necesario	permitir	a	usuarios	individuales	realizar	estos	cambios
de	configuración	en	ficheros	.htaccess	por	ellos	mismos.	Lo
cual	ocurre	a	menudo,	por	ejemplo,	en	casos	donde	los	ISP	están
albergando	múltiples	sitios	web	de	usuario	en	una	sola	máquina,	y
quieren	que	sus	usuarios	tengan	la	posibilidad	de	modificar	sus
configuraciones.

Aun	así,	generalmente,	el	uso	de	ficheros	.htaccess	debería
evitarse	cuando	sea	posible.	Cualquier	configuración	que
consideraría	poner	en	un	fichero	.htaccess,	puede	usarse	con
la	misma	efectividad	en	una	sección	<Directory>	en	el	fichero
de	configuración	del	servidor.

Hay	dos	razones	para	evitar	el	uso	de	ficheros	.htaccess.

La	primera	es	el	rendimiento.	Cuando	AllowOverride	está
configurado	para	permitir	el	uso	de	ficheros	.htaccess,	httpd
buscará	ficheros	.htaccess	en	cada	directorio.	Así,	permitiendo
ficheros	.htaccess	provoca	una	pérdida	de	rendimiento,	¡incluso
aunque	no	los	use!	Además,	los	ficheros	.htaccess	se	cargan
cada	vez	que	se	solicita	un	documento.

Además	tenga	en	cuenta	que	httpd	debe	buscar	ficheros
.htaccess	en	todos	los	directorios	de	mayor	jerarquía,	para
poder	terner	la	lista	completa	de	directivas	que	debe	aplicar.	(Vea
la	sección	sobre	Cómo	se	aplican	las	directivas.)	Así,	si	se	solicita
un	fichero	de	un	directorio	/www/htdocs/example,	httpd	debe
buscar	los	siguientes	ficheros:

/.htaccess

/www/.htaccess

/www/htdocs/.htaccess

/www/htdocs/example/.htaccess

De	esta	manera,	por	cada	acceso	a	un	fichero	de	ese	directorio,
hay	4	accesos	adicionales	al	sistema	de	ficheros,	incluso	si
ninguno	de	esos	ficheros	está	presente.	(Tenga	en	cuenta	que
este	caso	solo	se	daría	si	los	ficheros	.htaccess	están	activados
en	/,	que	generalmente	no	es	el	caso.).

En	el	caso	de	las	directivas	RewriteRule,	en	el	contexto	de
.htaccess	estas	expresiones	regulares	deben	recompilarse	con
cada	solicitud	a	ese	directorio,	cuando	en	el	contexto	de
configuración	del	servidor	solo	se	compilan	una	vez	y	se	cachean.
Adicionalmente,	las	reglas	en	sí	mismas	son	más	complicadas,
puesto	que	uno	debe	sortear	las	restricciones	que	vienen
acompañadas	del	contexto	directorio	y	mod_rewrite.	Consulte
la	Guía	de	Rewrite	para	un	mayor	detalle	sobre	este	tema.

La	segunda	consideración	es	de	seguridad.	Estará	permitiendo

que	usuarios	modifiquen	la	configuración	del	servidor,	lo	cual
puede	dar	lugar	a	cambios	sobre	los	que	usted	no	tendrá	ningún
control.	Medite	profundamente	si	debe	dar	a	sus	usuarios	ese
privilegio.	Además	tenga	en	cuenta	que	dar	a	los	usuarios	menos
privilegios	de	los	que	necesitan	dará	lugar	a	más	peticiones	de
soporte.	Asegúrese	de	que	le	indica	a	sus	usuarios	claramente	el
nivel	de	privilegios	que	les	está	dando.	Especificando
exactamente	cómo	ha	configurado	AllowOverride,	e	invíteles	a
revisar	la	documentación	relacionada,	lo	cual	le	ahorrará
bastantes	confusiones	más	adelante.

Tenga	en	cuenta	que	esto	es	equivalente	por	completo	a	poner	un
fichero	.htaccess	en	un	directorio	/www/htdocs/example	con
una	directiva,	y	poner	la	misma	directiva	en	una	sección	Directory
<Directory	"/www/htdocs/example">	en	su	configuración
principal	del	servidor:

Fichero	.htaccess	en	/www/htdocs/example:

Contenido	de	fichero	.htaccess	en	/www/htdocs/example
AddType	text/example	".exm"

Sección	de	su	fichero	httpd.conf
<Directory	"/www/htdocs/example">

				AddType	text/example	".exm"

</Directory>

Aun	así,	poniendo	ésta	en	el	fichero	de	configuración	dará	como
resultado	una	menor	pérdida	de	rendimiento,	y	como	la
configuración	se	carga	una	vez	cuando	el	httpd	arranca,	en	lugar
de	cada	vez	que	se	solicita	un	fichero.

El	uso	de	ficheros	.htaccess	puede	desactivarse	por	completo
configurando	la	directiva	AllowOverride	a	none:

AllowOverride	None

How	directives	are	applied

Las	directivas	de	configuración	que	se	encuentran	en	el	fichero
.htaccess	se	aplican	al	directorio	en	el	que	el	fichero
.htaccess	se	encuentra,	y	a	todos	sus	subdirectorios.	Sin
embargo,	es	importante	recordar	que	puede	haber	otros	ficheros
.htaccess	en	directorios	previos.	Las	directivas	se	aplican	en	el
orden	en	el	que	se	encuentran.	Por	lo	tanto,	un	fichero
.htaccess	puede	sobrescribir	directivas	que	se	encuentran	en
ficheros	.htaccess	que	se	encuentran	en	directorios	previos	del
árbol	de	directorios.	Y	estos,	en	cambio,	pueden	haber	sobrescrito
directivas	que	se	encontraban	más	arriba,	o	en	el	fichero	principal
de	configuración	del	servidor	mismo.

Ejemplo:

En	el	directorio	/www/htdocs/example1	tenemos	un	fichero
.htaccess	que	contiene	lo	siguiente:

Options	+ExecCGI

(Nota:	debe	terner	"AllowOverride	Options"	configurado	para
permitir	el	uso	de	la	directiva	"Options"	en	ficheros	.htaccess
files.)

En	el	directorio	/www/htdocs/example1/example2	tenemos
un	fichero	.htaccess	que	contiene:

Options	Includes

Por	este	segundo	fichero	.htaccess,	en	el	directorio
/www/htdocs/example1/example2,	la	ejecución	de	CGI
execution	no	está	permitida,	porque	solo	se	ha	definido	Options
Includes,	que	sobrescribe	completamente	una	configuración

previa	que	se	pudiera	haber	definido.

Incorporando	el	.htaccess	en	los	ficheros	de
configuración	principal
Como	se	ha	comentado	en	la	documentación	en	las	Secciones	de
Configuración,	los	ficheros	.htaccess	pueden	sobrescribir	las
secciones	<Directory>	por	el	directorio	correspondiente,	pero
se	sobrescribirán	por	otros	tipos	de	secciones	de	configuración	de
los	ficheros	de	configuración	principal.	Este	hecho	se	puede	usar
para	forzar	ciertas	configuraciones,	incluso	en	presencia	de	una
configuración	laxa	de	AllowOverride.	Por	ejemplo,	para
prevenir	la	ejecución	de	un	script	mientras	se	permite	cualquier
otra	cosa	en	.htaccess	puede	usar:

<Directory	"/www/htdocs">

				AllowOverride	All

</Directory>

<Location	"/">

				Options	+IncludesNoExec	-ExecCGI

</Location>

Este	ejemplo	asume	que	su	DocumentRoot	es	/www/htdocs.

Ejemplo	de	Autenticación

Si	saltó	directamente	a	esta	parte	del	documento	para	averiguar
como	hacer	la	autenticación,	es	important	que	tenga	en	cuenta
una	cosa.	Hay	una	creencia	errónea	de	que	necesita	usar	ficheros
.htaccess	para	configurar	autenticación	con	contraseña.	Este
no	es	el	caso.	Colocar	las	directivas	de	autenticación	en	una
sección	<Directory>,	en	su	fichero	de	configuración	principal,
es	el	método	recomendado	para	configurar	esto,	y	los	ficheros
.htaccess	deberían	usarse	solamente	si	no	tiene	acceso	al
fichero	de	configuración	principal	del	servidor.	Vea	más	arriba	una
explicación	de	cuando	debería	y	cuando	no	debería	usar	ficheros
.htaccess.

Dicho	esto,	si	todavía	cree	que	debe	usar	el	fichero	.htaccess,
podrá	ver	que	una	configuración	como	la	que	sigue	podría
servirle.

Contenido	del	fichero	.htaccess:

AuthType	Basic

AuthName	"Password	Required"

AuthUserFile	"/www/passwords/password.file"

AuthGroupFile	"/www/passwords/group.file"

Require	group	admins

Tenga	en	cuenta	que	AllowOverride	AuthConfig	debe	estar
habilitado	para	que	estas	directivas	tengan	algún	efecto.

Por	favor	vea	el	tutorial	de	autenticación	para	una	explicación	más
completa	de	la	autenticación	y	la	autorización.

Ejemplo	de	Server	Side	Includes

Otro	uso	común	de	ficheros	.htaccess	es	activar	Server	Side
Includes	para	un	directorio	en	particular.	Esto	puede	hacerse	con
las	siguientes	directivas	de	configuración,	colocadas	en	un	fichero
.htaccess	y	el	directorio	deseado:

Options	+Includes

AddType	text/html	"shtml"

AddHandler	server-parsed	shtml

Tenga	en	cuenta	que	AllowOverride	Options	y
AllowOverride	FileInfo	deben	estar	activadas	para	que
estas	directivas	tengan	efecto.

Por	favor	vea	el	tutorial	de	SSI	para	una	explicación	más	completa
de	server-side	includes.

Reglas	de	Rewrite	en	ficheros	.htaccess

Cuando	use	RewriteRule	en	ficheros	.htaccess,	tenga	en
cuenta	que	el	contexto	directorio	cambia	las	cosas	un	poco.	En
concreto,	las	reglas	son	relativas	al	directorio	actual,	en	lugar	de
serlo	de	la	petición	de	URI	solicitada	originalmente.	Considere	los
siguientes	ejemplos:

#	En	httpd.conf

RewriteRule	"^/images/(.+)\.jpg"	"/images/$1.png"

#	En	.htaccess	en	el	directorio	raíz

RewriteRule	"^images/(.+)\.jpg"	"images/$1.png"

#	En	.htaccess	en	images/

RewriteRule	"^(.+)\.jpg"	"$1.png"

En	un	.htaccess	en	cualquier	directorio	del	DocumentRoot,	la
barra	("/")	inicial	se	elimina	del	valor	facilitado	a	RewriteRule,	y
en	el	subdirectorio	images,	se	elimina	/images/	también	de
este	valor.	Así,	su	expresión	regular	necesita	omitir	también	esa
parte.

Consulte	la	documentación	de	mod_rewrite	para	más	detalles	al
usar	mod_rewrite.

Ejemplo	de	CGI

Finalmente,	puede	que	quiera	usar	un	fichero	.htaccess	para
permitir	la	ejecución	de	programas	CGI	en	un	directorio	en
particular.	Esto	se	puede	implementar	con	la	siguiente
configuración:

Options	+ExecCGI

AddHandler	cgi-script	"cgi"	"pl"

Alternativamente,	si	quiere	considerar	como	programas	CGI	todos
los	ficheros	de	un	directorio	concreto,	esto	se	puede	conseguir
con	la	siguiente	configuración:

Options	+ExecCGI

SetHandler	cgi-script

Tenga	en	cuenta	que	AllowOverride	Options	y
AllowOverride	FileInfo	deben	estar	ambas	activadas	para
que	estas	directivas	tengan	efecto.

Por	favor	vea	el	tutorial	CGI	para	mayor	detalle	sobre
programación	y	configuración	de	CGI.

Resolución	de	problemas

Cuando	pone	directivas	en	un	fichero	.htaccess	y	no	obtiene	el
efecto	deseado	hay	una	serie	de	cosas	que	pueden	haber	ido
mal.

El	problema	más	común	es	que	AllowOverride	no	está
configurada	para	que	sus	directivas	puedan	surtir	efecto.
Asegúrese	de	que	no	tiene	AllowOverride	None	configurado
para	el	directorio	en	cuestión.	Una	buena	forma	de	probar	esto	es
poner	"basura"	en	su	fichero	.htaccess	y	recargar	la	página.	Si
no	se	genera	un	error	en	el	servidor,	casi	seguro	que	tiene
configurado	AllowOverride	None.

Si,	por	otro	lado,	obtiene	errores	de	servidor	al	intentar	acceder	a
documentos,	compruebe	el	log	de	errores	de	httpd.	Seguramente
le	indiquen	que	la	directiva	en	uso	en	su	fichero	.htaccess	no
está	permitida.

[Fri	Sep	17	18:43:16	2010]	[alert]	[client	192.168.200.51]

/var/www/html/.htaccess:	DirectoryIndex	not	allowed	here

Esto	indicará	que	o	bien	ha	usado	una	directiva	que	no	se	permite
nunca	en	ficheros	.htaccess,	o	que	simplementa	no	tiene
AllowOverride	configurado	a	un	nivel	suficiente	para	la
directiva	que	ha	usado.	Consulte	la	documentación	para	esa
directiva	en	particular	para	determinar	cual	es	el	caso.

Alternativamente,	puede	que	le	indique	que	hay	un	error	de
sintaxis	en	el	uso	de	la	propia	directiva.

[Sat	Aug	09	16:22:34	2008]	[alert]	[client	192.168.200.51]

/var/www/html/.htaccess:	RewriteCond:	bad	flag	delimiters

En	este	caso,	el	mensaje	de	error	debería	ser	específico	para	el
error	de	sintaxis	concreto	que	ha	cometido.

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4	>	How-To	/	Tutorials

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Directorios	web	por	usuario

En	sistemas	con	múltiples	usuarios,	cada	usuario	puede	tener	un
website	en	su	directorio	home	usando	la	directiva	UserDir.	Los
visitantes	de	una	URL	http://example.com/~username/
recibirán	el	contenido	del	directorio	home	del	usuario	"username",	en
el	subdirectorio	especificado	por	la	directiva	UserDir.

Tenga	en	cuenta	que,	por	defecto,	el	acceso	a	estos	directorios	NO
está	activado.	Puede	permitir	acceso	cuando	usa	UserDir	quitando
el	comentario	de	la	línea:

#Include	conf/extra/httpd-userdir.conf

En	el	fichero	por	defecto	de	configuración	conf/httpd.conf,	y
adaptando	el	fichero	httpd-userdir.conf	según	sea	necesario,	o
incluyendo	las	directivas	apropiadas	en	un	bloque	<Directory>
dentro	del	fichero	principal	de	configuración.

Consulte	también
Mapeando	URLs	al	sistema	de	ficheros

https://www.apache.org/foundation/contributing.html

Directorios	web	por	usuario

Módulos	Relacionados Directivas	Relacionadas
mod_userdir UserDir

DirectoryMatch

AllowOverride

Configurando	la	ruta	del	fichero	con	UserDir

La	directiva	UserDir	especifica	un	directorio	del	que	cargar
contenido	por	usuario.	Esta	directiva	puede	tener	muchas	formas
distintas.

Si	se	especifica	una	ruta	que	no	empieza	con	una	barra	("/"),	se
asume	que	va	a	ser	una	ruta	de	directorio	relativa	al	directorio
home	del	usuario	especificado.	Dada	ésta	configuración:

UserDir	public_html

La	URL	http://example.com/~rbowen/file.html	se
traducirá	en	la	ruta	del	fichero
/home/rbowen/public_html/file.html

Si	la	ruta	que	se	especifica	comienza	con	una	barra	("/"),	la	ruta
del	directorio	se	construirá	usando	esa	ruta,	más	el	usuario
especificado	en	la	configuración:

UserDir	/var/html

La	URL	http://example.com/~rbowen/file.html	se
traducirá	en	la	ruta	del	fichero	/var/html/rbowen/file.html

Si	se	especifica	una	ruta	que	contiene	un	asterisco	(*),	se	usará
una	ruta	en	la	que	el	asterisco	se	reemplaza	con	el	nombre	de
usuario.	Dada	ésta	configuración:

UserDir	/var/www/*/docs

La	URL	http://example.com/~rbowen/file.html	se
traducirá	en	la	ruta	del	fichero
/var/www/rbowen/docs/file.html

También	se	pueden	configurar	múltiples	directorios	o	rutas	de
directorios.

UserDir	public_html	/var/html

Para	la	URL	http://example.com/~rbowen/file.html,
Apache	buscará	~rbowen.	Si	no	lo	encuentra,	Apache	buscará
rbowen	en	/var/html.	Si	lo	encuentra,	la	URL	de	más	arriba	se
traducirá	en	la	ruta	del	fichero	/var/html/rbowen/file.html

Redirigiendo	a	URLs	externas

La	directiva	UserDir	puede	usarse	para	redirigir	solcitudes	de
directorios	de	usuario	a	URLs	externas.

UserDir	http://example.org/users/*/

El	ejemplo	de	aquí	arriba	redirigirá	una	solicitud	para
http://example.com/~bob/abc.html	hacia
http://example.org/users/bob/abc.html.

Restringiendo	qué	usuarios	pueden	usar	esta
característica

Usando	la	sintaxis	que	se	muestra	en	la	documentación	de
UserDir,	usted	puede	restringir	a	qué	usuarios	se	les	permite	usar
esta	funcionalidad:

UserDir	disabled	root	jro	fish

La	configuración	de	aquí	arriba	permitirá	a	todos	los	usuarios
excepto	a	los	que	se	listan	con	la	declaración	disabled.	Usted
puede,	del	mismo	modo,	deshabilitar	esta	característica	para
todos	excepto	algunos	usuarios	usando	una	configuración	como
la	siguiente:

UserDir	disabled

UserDir	enabled	rbowen	krietz

Vea	la	documentación	de	UserDir	para	más	ejemplos.

Activando	un	directorio	cgi	para	cada	usuario

Para	dar	a	cada	usuario	su	propio	directorio	cgi-bin,	puede	usar
una	directiva	<Directory>	para	activar	cgi	en	un	subdirectorio
en	particular	del	directorio	home	del	usuario.

<Directory	"/home/*/public_html/cgi-bin/">

				Options	ExecCGI

				SetHandler	cgi-script

</Directory>

Entonces,	asumiendo	que	UserDir	está	configurado	con	la
declaración	public_html,	un	programa	cgi	example.cgi
podría	cargarse	de	ese	directorio	así:

http://example.com/~rbowen/cgi-bin/example.cgi

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Permitiendo	a	usuarios	cambiar	la	configuración

Si	quiere	permitir	que	usuarios	modifiquen	la	configuración	del
servidor	en	su	espacio	web,	necesitarán	usar	ficheros	.htaccess
para	hacer	estos	cambios.	Asegúrese	de	tener	configurado
AllowOverride	con	un	valor	suficiente	que	permita	a	los
usuarios	modificar	las	directivas	que	quiera	permitir.	Vea	el	tutorial
de	.htaccess	para	obtener	detalles	adicionales	sobre	cómo
funciona.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Using	Apache	HTTP	Server	on	Microsoft
Windows

This	document	explains	how	to	install,	configure	and	run	Apache	2.4
under	Microsoft	Windows.	If	you	have	questions	after	reviewing	the
documentation	(and	any	event	and	error	logs),	you	should	consult	the
peer-supported	users'	mailing	list.

This	document	assumes	that	you	are	installing	a	binary	distribution	of
Apache.	If	you	want	to	compile	Apache	yourself	(possibly	to	help	with
development	or	tracking	down	bugs),	see	Compiling	Apache	for
Microsoft	Windows.

http://httpd.apache.org/userslist.html

Operating	System	Requirements

The	primary	Windows	platform	for	running	Apache	2.4	is	Windows
2000	or	later.	Always	obtain	and	install	the	current	service	pack	to
avoid	operating	system	bugs.

Apache	HTTP	Server	versions	later	than	2.2	will	not	run	on	any
operating	system	earlier	than	Windows	2000.

Downloading	Apache	for	Windows

The	Apache	HTTP	Server	Project	itself	does	not	provide	binary
releases	of	software,	only	source	code.	Individual	committers	may
provide	binary	packages	as	a	convenience,	but	it	is	not	a	release
deliverable.

If	you	cannot	compile	the	Apache	HTTP	Server	yourself,	you	can
obtain	a	binary	package	from	numerous	binary	distributions
available	on	the	Internet.

Popular	options	for	deploying	Apache	httpd,	and,	optionally,	PHP
and	MySQL,	on	Microsoft	Windows,	include:

ApacheHaus
Apache	Lounge
BitNami	WAMP	Stack
WampServer
XAMPP

http://www.apachehaus.com/cgi-bin/download.plx
http://www.apachelounge.com/download/
http://bitnami.com/stack/wamp
http://www.wampserver.com/
http://www.apachefriends.org/en/xampp.html

Customizing	Apache	for	Windows

Apache	is	configured	by	the	files	in	the	conf	subdirectory.	These
are	the	same	files	used	to	configure	the	Unix	version,	but	there	are
a	few	different	directives	for	Apache	on	Windows.	See	the
directive	index	for	all	the	available	directives.

The	main	differences	in	Apache	for	Windows	are:

Because	Apache	for	Windows	is	multithreaded,	it	does	not
use	a	separate	process	for	each	request,	as	Apache	can	on
Unix.	Instead	there	are	usually	only	two	Apache	processes
running:	a	parent	process,	and	a	child	which	handles	the
requests.	Within	the	child	process	each	request	is	handled	by
a	separate	thread.

The	process	management	directives	are	also	different:

MaxConnectionsPerChild:	Like	the	Unix	directive,	this
controls	how	many	connections	a	single	child	process	will
serve	before	exiting.	However,	unlike	on	Unix,	a	replacement
process	is	not	instantly	available.	Use	the	default
MaxConnectionsPerChild	0,	unless	instructed	to	change
the	behavior	to	overcome	a	memory	leak	in	third	party
modules	or	in-process	applications.

Warning:	The	server	configuration	file	is	reread	when	a
new	child	process	is	started.	If	you	have	modified
httpd.conf,	the	new	child	may	not	start	or	you	may
receive	unexpected	results.

ThreadsPerChild:	This	directive	is	new.	It	tells	the	server
how	many	threads	it	should	use.	This	is	the	maximum	number
of	connections	the	server	can	handle	at	once,	so	be	sure	to
set	this	number	high	enough	for	your	site	if	you	get	a	lot	of

hits.	The	recommended	default	is	ThreadsPerChild	150,
but	this	must	be	adjusted	to	reflect	the	greatest	anticipated
number	of	simultaneous	connections	to	accept.

The	directives	that	accept	filenames	as	arguments	must	use
Windows	filenames	instead	of	Unix	ones.	However,	because
Apache	may	interpret	backslashes	as	an	"escape	character"
sequence,	you	should	consistently	use	forward	slashes	in
path	names,	not	backslashes.

While	filenames	are	generally	case-insensitive	on	Windows,
URLs	are	still	treated	internally	as	case-sensitive	before	they
are	mapped	to	the	filesystem.	For	example,	the	<Location>,
Alias,	and	ProxyPass	directives	all	use	case-sensitive
arguments.	For	this	reason,	it	is	particularly	important	to	use
the	<Directory>	directive	when	attempting	to	limit	access
to	content	in	the	filesystem,	since	this	directive	applies	to	any
content	in	a	directory,	regardless	of	how	it	is	accessed.	If	you
wish	to	assure	that	only	lowercase	is	used	in	URLs,	you	can
use	something	like:

RewriteEngine	On

RewriteMap	lowercase	int:tolower

RewriteCond	"%{REQUEST_URI}"	"[A-Z]"

RewriteRule	"(.*)"	"${lowercase:$1}"	[R,L]

When	running,	Apache	needs	write	access	only	to	the	logs
directory	and	any	configured	cache	directory	tree.	Due	to	the
issue	of	case	insensitive	and	short	8.3	format	names,	Apache
must	validate	all	path	names	given.	This	means	that	each
directory	which	Apache	evaluates,	from	the	drive	root	up	to
the	directory	leaf,	must	have	read,	list	and	traverse	directory
permissions.	If	Apache2.4	is	installed	at	C:\Program	Files,

then	the	root	directory,	Program	Files	and	Apache2.4	must	all
be	visible	to	Apache.

Apache	for	Windows	contains	the	ability	to	load	modules	at
runtime,	without	recompiling	the	server.	If	Apache	is	compiled
normally,	it	will	install	a	number	of	optional	modules	in	the
\Apache2.4\modules	directory.	To	activate	these	or	other
modules,	the	LoadModule	directive	must	be	used.	For
example,	to	activate	the	status	module,	use	the	following	(in
addition	to	the	status-activating	directives	in	access.conf):

LoadModule	status_module	modules/mod_status.so

Information	on	creating	loadable	modules	is	also	available.

Apache	can	also	load	ISAPI	(Internet	Server	Application
Programming	Interface)	extensions	such	as	those	used	by
Microsoft	IIS	and	other	Windows	servers.	More	information	is
available.	Note	that	Apache	cannot	load	ISAPI	Filters,	and
ISAPI	Handlers	with	some	Microsoft	feature	extensions	will
not	work.

When	running	CGI	scripts,	the	method	Apache	uses	to	find
the	interpreter	for	the	script	is	configurable	using	the
ScriptInterpreterSource	directive.

Since	it	is	often	difficult	to	manage	files	with	names	like
.htaccess	in	Windows,	you	may	find	it	useful	to	change	the
name	of	this	per-directory	configuration	file	using	the
AccessFilename	directive.

Any	errors	during	Apache	startup	are	logged	into	the
Windows	event	log	when	running	on	Windows	NT.	This
mechanism	acts	as	a	backup	for	those	situations	where

Apache	is	not	yet	prepared	to	use	the	error.log	file.	You
can	review	the	Windows	Application	Event	Log	by	using	the
Event	Viewer,	e.g.	Start	-	Settings	-	Control	Panel	-
Administrative	Tools	-	Event	Viewer.

Running	Apache	as	a	Service

Apache	comes	with	a	utility	called	the	Apache	Service	Monitor.
With	it	you	can	see	and	manage	the	state	of	all	installed	Apache
services	on	any	machine	on	your	network.	To	be	able	to	manage
an	Apache	service	with	the	monitor,	you	have	to	first	install	the
service	(either	automatically	via	the	installation	or	manually).

You	can	install	Apache	as	a	Windows	NT	service	as	follows	from
the	command	prompt	at	the	Apache	bin	subdirectory:

httpd.exe	-k	install

If	you	need	to	specify	the	name	of	the	service	you	want	to	install,
use	the	following	command.	You	have	to	do	this	if	you	have
several	different	service	installations	of	Apache	on	your	computer.
If	you	specify	a	name	during	the	install,	you	have	to	also	specify	it
during	any	other	-k	operation.

httpd.exe	-k	install	-n	"MyServiceName"

If	you	need	to	have	specifically	named	configuration	files	for
different	services,	you	must	use	this:

httpd.exe	-k	install	-n	"MyServiceName"	-f	"c:\files\my.conf"

If	you	use	the	first	command	without	any	special	parameters
except	-k	install,	the	service	will	be	called	Apache2.4	and
the	configuration	will	be	assumed	to	be	conf\httpd.conf.

Removing	an	Apache	service	is	easy.	Just	use:

httpd.exe	-k	uninstall

The	specific	Apache	service	to	be	uninstalled	can	be	specified	by

using:

httpd.exe	-k	uninstall	-n	"MyServiceName"

Normal	starting,	restarting	and	shutting	down	of	an	Apache	service
is	usually	done	via	the	Apache	Service	Monitor,	by	using
commands	like	NET	START	Apache2.4	and	NET	STOP
Apache2.4	or	via	normal	Windows	service	management.	Before
starting	Apache	as	a	service	by	any	means,	you	should	test	the
service's	configuration	file	by	using:

httpd.exe	-n	"MyServiceName"	-t

You	can	control	an	Apache	service	by	its	command	line	switches,
too.	To	start	an	installed	Apache	service	you'll	use	this:

httpd.exe	-k	start	-n	"MyServiceName"

To	stop	an	Apache	service	via	the	command	line	switches,	use
this:

httpd.exe	-k	stop	-n	"MyServiceName"

or

httpd.exe	-k	shutdown	-n	"MyServiceName"

You	can	also	restart	a	running	service	and	force	it	to	reread	its
configuration	file	by	using:

httpd.exe	-k	restart	-n	"MyServiceName"

By	default,	all	Apache	services	are	registered	to	run	as	the	system
user	(the	LocalSystem	account).	The	LocalSystem	account

has	no	privileges	to	your	network	via	any	Windows-secured
mechanism,	including	the	file	system,	named	pipes,	DCOM,	or
secure	RPC.	It	has,	however,	wide	privileges	locally.

Never	grant	any	network	privileges	to	the	LocalSystem
account!	If	you	need	Apache	to	be	able	to	access	network
resources,	create	a	separate	account	for	Apache	as	noted
below.

It	is	recommended	that	users	create	a	separate	account	for
running	Apache	service(s).	If	you	have	to	access	network
resources	via	Apache,	this	is	required.

1.	 Create	a	normal	domain	user	account,	and	be	sure	to
memorize	its	password.

2.	 Grant	the	newly-created	user	a	privilege	of	Log	on	as	a
service	and	Act	as	part	of	the	operating
system.	On	Windows	NT	4.0	these	privileges	are	granted	via
User	Manager	for	Domains,	but	on	Windows	2000	and	XP
you	probably	want	to	use	Group	Policy	for	propagating	these
settings.	You	can	also	manually	set	these	via	the	Local
Security	Policy	MMC	snap-in.

3.	 Confirm	that	the	created	account	is	a	member	of	the	Users
group.

4.	 Grant	the	account	read	and	execute	(RX)	rights	to	all
document	and	script	folders	(htdocs	and	cgi-bin	for
example).

5.	 Grant	the	account	change	(RWXD)	rights	to	the	Apache	logs
directory.

6.	 Grant	the	account	read	and	execute	(RX)	rights	to	the
httpd.exe	binary	executable.

It	is	usually	a	good	practice	to	grant	the	user	the	Apache	service
runs	as	read	and	execute	(RX)	access	to	the	whole	Apache2.4
directory,	except	the	logs	subdirectory,	where	the	user	has	to
have	at	least	change	(RWXD)	rights.

If	you	allow	the	account	to	log	in	as	a	user	and	as	a	service,	then
you	can	log	on	with	that	account	and	test	that	the	account	has	the
privileges	to	execute	the	scripts,	read	the	web	pages,	and	that	you
can	start	Apache	in	a	console	window.	If	this	works,	and	you	have
followed	the	steps	above,	Apache	should	execute	as	a	service
with	no	problems.

Error	code	2186	is	a	good	indication	that	you	need	to	review
the	"Log	On	As"	configuration	for	the	service,	since	Apache
cannot	access	a	required	network	resource.	Also,	pay	close
attention	to	the	privileges	of	the	user	Apache	is	configured	to
run	as.

When	starting	Apache	as	a	service	you	may	encounter	an	error
message	from	the	Windows	Service	Control	Manager.	For
example,	if	you	try	to	start	Apache	by	using	the	Services	applet	in
the	Windows	Control	Panel,	you	may	get	the	following	message:

Could	not	start	the	Apache2.4	service	on	\\COMPUTER	

Error	1067;	The	process	terminated	unexpectedly.

You	will	get	this	generic	error	if	there	is	any	problem	with	starting
the	Apache	service.	In	order	to	see	what	is	really	causing	the
problem	you	should	follow	the	instructions	for	Running	Apache	for
Windows	from	the	Command	Prompt.

If	you	are	having	problems	with	the	service,	it	is	suggested	you
follow	the	instructions	below	to	try	starting	httpd.exe	from	a
console	window,	and	work	out	the	errors	before	struggling	to	start

it	as	a	service	again.

Running	Apache	as	a	Console	Application

Running	Apache	as	a	service	is	usually	the	recommended	way	to
use	it,	but	it	is	sometimes	easier	to	work	from	the	command	line,
especially	during	initial	configuration	and	testing.

To	run	Apache	from	the	command	line	as	a	console	application,
use	the	following	command:

httpd.exe

Apache	will	execute,	and	will	remain	running	until	it	is	stopped	by
pressing	Control-C.

You	can	also	run	Apache	via	the	shortcut	Start	Apache	in	Console
placed	to	Start	Menu	-->	Programs	-->	Apache	HTTP
Server	2.4.xx	-->	Control	Apache	Server	during	the
installation.	This	will	open	a	console	window	and	start	Apache
inside	it.	If	you	don't	have	Apache	installed	as	a	service,	the
window	will	remain	visible	until	you	stop	Apache	by	pressing
Control-C	in	the	console	window	where	Apache	is	running	in.	The
server	will	exit	in	a	few	seconds.	However,	if	you	do	have	Apache
installed	as	a	service,	the	shortcut	starts	the	service.	If	the	Apache
service	is	running	already,	the	shortcut	doesn't	do	anything.

If	Apache	is	running	as	a	service,	you	can	tell	it	to	stop	by	opening
another	console	window	and	entering:

httpd.exe	-k	shutdown

Running	as	a	service	should	be	preferred	over	running	in	a
console	window	because	this	lets	Apache	end	any	current
operations	and	clean	up	gracefully.

But	if	the	server	is	running	in	a	console	window,	you	can	only	stop
it	by	pressing	Control-C	in	the	same	window.

You	can	also	tell	Apache	to	restart.	This	forces	it	to	reread	the
configuration	file.	Any	operations	in	progress	are	allowed	to
complete	without	interruption.	To	restart	Apache,	either	press
Control-Break	in	the	console	window	you	used	for	starting	Apache,
or	enter

httpd.exe	-k	restart

if	the	server	is	running	as	a	service.

Note	for	people	familiar	with	the	Unix	version	of	Apache:	these
commands	provide	a	Windows	equivalent	to	kill	-TERM	pid
and	kill	-USR1	pid.	The	command	line	option	used,	-k,
was	chosen	as	a	reminder	of	the	kill	command	used	on	Unix.

If	the	Apache	console	window	closes	immediately	or	unexpectedly
after	startup,	open	the	Command	Prompt	from	the	Start	Menu	-->
Programs.	Change	to	the	folder	to	which	you	installed	Apache,
type	the	command	httpd.exe,	and	read	the	error	message.
Then	change	to	the	logs	folder,	and	review	the	error.log	file	for
configuration	mistakes.	Assuming	httpd	was	installed	into
C:\Program	Files\Apache	Software

Foundation\Apache2.4\,	you	can	do	the	following:

c:	

cd	"\Program	Files\Apache	Software	Foundation\Apache2.4\bin"	

httpd.exe

Then	wait	for	Apache	to	stop,	or	press	Control-C.	Then	enter	the
following:

cd	..\logs	

more	<	error.log

When	working	with	Apache	it	is	important	to	know	how	it	will	find

the	configuration	file.	You	can	specify	a	configuration	file	on	the
command	line	in	two	ways:

-f	specifies	an	absolute	or	relative	path	to	a	particular
configuration	file:

httpd.exe	-f	"c:\my	server	files\anotherconfig.conf"

or

httpd.exe	-f	files\anotherconfig.conf

-n	specifies	the	installed	Apache	service	whose	configuration
file	is	to	be	used:

httpd.exe	-n	"MyServiceName"

In	both	of	these	cases,	the	proper	ServerRoot	should	be	set	in
the	configuration	file.

If	you	don't	specify	a	configuration	file	with	-f	or	-n,	Apache	will
use	the	file	name	compiled	into	the	server,	such	as
conf\httpd.conf.	This	built-in	path	is	relative	to	the	installation
directory.	You	can	verify	the	compiled	file	name	from	a	value
labelled	as	SERVER_CONFIG_FILE	when	invoking	Apache	with
the	-V	switch,	like	this:

httpd.exe	-V

Apache	will	then	try	to	determine	its	ServerRoot	by	trying	the
following,	in	this	order:

1.	 A	ServerRoot	directive	via	the	-C	command	line	switch.

2.	 The	-d	switch	on	the	command	line.

3.	 Current	working	directory.

4.	 A	registry	entry	which	was	created	if	you	did	a	binary
installation.

5.	 The	server	root	compiled	into	the	server.	This	is	/apache	by
default,	you	can	verify	it	by	using	httpd.exe	-V	and	looking
for	a	value	labelled	as	HTTPD_ROOT.

If	you	did	not	do	a	binary	install,	Apache	will	in	some	scenarios
complain	about	the	missing	registry	key.	This	warning	can	be
ignored	if	the	server	was	otherwise	able	to	find	its	configuration
file.

The	value	of	this	key	is	the	ServerRoot	directory	which	contains
the	conf	subdirectory.	When	Apache	starts	it	reads	the
httpd.conf	file	from	that	directory.	If	this	file	contains	a
ServerRoot	directive	which	contains	a	different	directory	from
the	one	obtained	from	the	registry	key	above,	Apache	will	forget
the	registry	key	and	use	the	directory	from	the	configuration	file.	If
you	copy	the	Apache	directory	or	configuration	files	to	a	new
location	it	is	vital	that	you	update	the	ServerRoot	directive	in	the
httpd.conf	file	to	reflect	the	new	location.

Testing	the	Installation

After	starting	Apache	(either	in	a	console	window	or	as	a	service)
it	will	be	listening	on	port	80	(unless	you	changed	the	Listen
directive	in	the	configuration	files	or	installed	Apache	only	for	the
current	user).	To	connect	to	the	server	and	access	the	default
page,	launch	a	browser	and	enter	this	URL:

http://localhost/

Apache	should	respond	with	a	welcome	page	and	you	should	see
"It	Works!".	If	nothing	happens	or	you	get	an	error,	look	in	the
error.log	file	in	the	logs	subdirectory.	If	your	host	is	not
connected	to	the	net,	or	if	you	have	serious	problems	with	your
DNS	(Domain	Name	Service)	configuration,	you	may	have	to	use
this	URL:

http://127.0.0.1/

If	you	happen	to	be	running	Apache	on	an	alternate	port,	you	need
to	explicitly	put	that	in	the	URL:

http://127.0.0.1:8080/

Once	your	basic	installation	is	working,	you	should	configure	it
properly	by	editing	the	files	in	the	conf	subdirectory.	Again,	if	you
change	the	configuration	of	the	Windows	NT	service	for	Apache,
first	attempt	to	start	it	from	the	command	line	to	make	sure	that	the
service	starts	with	no	errors.

Because	Apache	cannot	share	the	same	port	with	another	TCP/IP
application,	you	may	need	to	stop,	uninstall	or	reconfigure	certain
other	services	before	running	Apache.	These	conflicting	services
include	other	WWW	servers,	some	firewall	implementations,	and
even	some	client	applications	(such	as	Skype)	which	will	use	port

80	to	attempt	to	bypass	firewall	issues.

Configuring	Access	to	Network	Resources

Access	to	files	over	the	network	can	be	specified	using	two
mechanisms	provided	by	Windows:

Mapped	drive	letters
e.g.,	Alias	"/images/"	"Z:/"

UNC	paths
e.g.,	Alias	"/images/"	"//imagehost/www/images/"

Mapped	drive	letters	allow	the	administrator	to	maintain	the
mapping	to	a	specific	machine	and	path	outside	of	the	Apache
httpd	configuration.	However,	these	mappings	are	associated	only
with	interactive	sessions	and	are	not	directly	available	to	Apache
httpd	when	it	is	started	as	a	service.	Use	only	UNC	paths	for
network	resources	in	httpd.conf	so	that	the	resources	can	be
accessed	consistently	regardless	of	how	Apache	httpd	is	started.
(Arcane	and	error	prone	procedures	may	work	around	the
restriction	on	mapped	drive	letters,	but	this	is	not	recommended.)

Example	DocumentRoot	with	UNC	path
DocumentRoot	"//dochost/www/html/"

Example	DocumentRoot	with	IP	address	in	UNC	path
DocumentRoot	"//192.168.1.50/docs/"

Example	Alias	and	corresponding	Directory	with	UNC	path
Alias	"/images/"	"//imagehost/www/images/"

<Directory	"//imagehost/www/images/">

#...

<Directory>

When	running	Apache	httpd	as	a	service,	you	must	create	a
separate	account	in	order	to	access	network	resources,	as

described	above.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Windows	Tuning

If	more	than	a	few	dozen	piped	loggers	are	used	on	an
operating	system	instance,	scaling	up	the	"desktop	heap"	is
often	necessary.	For	more	detailed	information,	refer	to	the
piped	logging	documentation.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Compiling	Apache	for	Microsoft	Windows

There	are	many	important	points	to	consider	before	you	begin
compiling	Apache	HTTP	Server	(httpd).	See	Using	Apache	HTTP
Server	on	Microsoft	Windows	before	you	begin.

httpd	can	be	built	on	Windows	using	a	cmake-based	build	system	or
with	Visual	Studio	project	files	maintained	by	httpd	developers.	The
cmake-based	build	system	directly	supports	more	versions	of	Visual
Studio	but	currently	has	considerable	functional	limitations.

Building	httpd	with	the	included	Visual	Studio
project	files

Requirements
Compiling	Apache	requires	the	following	environment	to	be
properly	installed:

Disk	Space

Make	sure	you	have	at	least	200	MB	of	free	disk	space
available.	After	installation	Apache	requires	approximately	80
MB	of	disk	space,	plus	space	for	log	and	cache	files,	which
can	grow	rapidly.	The	actual	disk	space	requirements	will	vary
considerably	based	on	your	chosen	configuration	and	any
third-party	modules	or	libraries,	especially	when	OpenSSL	is
also	built.	Because	many	files	are	text	and	very	easily
compressed,	NTFS	filesystem	compression	cuts	these
requirements	in	half.

Appropriate	Patches

The	httpd	binary	is	built	with	the	help	of	several	patches	to
third	party	packages,	which	ensure	the	released	code	is
buildable	and	debuggable.	These	patches	are	available	and
distributed	from
http://www.apache.org/dist/httpd/binaries/win32/patches_applied/
and	are	recommended	to	be	applied	to	obtain	identical	results
as	the	"official"	ASF	distributed	binaries.

Microsoft	Visual	C++	6.0	(Visual	Studio	97)	or	later.

Apache	can	be	built	using	the	command	line	tools,	or	from
within	the	Visual	Studio	IDE	Workbench.	The	command	line
build	requires	the	environment	to	reflect	the	PATH,	INCLUDE,
LIB	and	other	variables	that	can	be	configured	with	the

http://www.apache.org/dist/httpd/binaries/win32/patches_applied/

vcvars32.bat	script.

You	may	want	the	Visual	Studio	Processor	Pack	for	your
older	version	of	Visual	Studio,	or	a	full	(not	Express)	version
of	newer	Visual	Studio	editions,	for	the	ml.exe	assembler.
This	will	allow	you	to	build	OpenSSL,	if	desired,	using	the
more	efficient	assembly	code	implementation.

Only	the	Microsoft	compiler	tool	chain	is	actively	supported
by	the	active	httpd	contributors.	Although	the	project
regularly	accepts	patches	to	ensure	MinGW	and	other
alternative	builds	work	and	improve	upon	them,	they	are	not
actively	maintained	and	are	often	broken	in	the	course	of
normal	development.

Updated	Microsoft	Windows	Platform	SDK,	February	2003	or
later.

An	appropriate	Windows	Platform	SDK	is	included	by	default
in	the	full	(not	express/lite)	versions	of	Visual	C++	7.1	(Visual
Studio	2002)	and	later,	these	users	can	ignore	these	steps
unless	explicitly	choosing	a	newer	or	different	version	of	the
Platform	SDK.

To	use	Visual	C++	6.0	or	7.0	(Studio	2000	.NET),	the	Platform
SDK	environment	must	be	prepared	using	the	setenv.bat
script	(installed	by	the	Platform	SDK)	before	starting	the
command	line	build	or	launching	the	msdev/devenv	GUI
environment.	Installing	the	Platform	SDK	for	Visual	Studio
Express	versions	(2003	and	later)	should	adjust	the	default
environment	appropriately.

"c:\Program	Files\Microsoft	Visual

Studio\VC98\Bin\VCVARS32"

"c:\Program	Files\Platform	SDK\setenv.bat"

Perl	and	awk

Several	steps	recommended	here	require	a	perl	interpreter
during	the	build	preparation	process,	but	it	is	otherwise	not
required.

To	install	Apache	within	the	build	system,	several	files	are
modified	using	the	awk.exe	utility.	awk	was	chosen	since	it	is
a	very	small	download	(compared	with	Perl	or	WSH/VB)	and
accomplishes	the	task	of	modifying	configuration	files	upon
installation.	Brian	Kernighan's
http://www.cs.princeton.edu/~bwk/btl.mirror/	site	has	a
compiled	native	Win32	binary,
http://www.cs.princeton.edu/~bwk/btl.mirror/awk95.exe	which
you	must	save	with	the	name	awk.exe	(rather	than
awk95.exe).

If	awk.exe	is	not	found,	Makefile.win's	install	target	will	not
perform	substitutions	in	the	installed	.conf	files.	You	must
manually	modify	the	installed	.conf	files	to	allow	the	server
to	start.	Search	and	replace	all	"@token@"	tags	as
appropriate.

The	Visual	Studio	IDE	will	only	find	awk.exe	from	the
PATH,	or	executable	path	specified	in	the	menu	option
Tools	->	Options	->	(Projects	->)	Directories.	Ensure
awk.exe	is	in	your	system	path.

Also	note	that	if	you	are	using	Cygwin	tools
(http://www.cygwin.com/)	the	awk	utility	is	named
gawk.exe	and	that	the	file	awk.exe	is	really	a	symlink	to

http://www.cs.princeton.edu/~bwk/btl.mirror/
http://www.cs.princeton.edu/~bwk/btl.mirror/awk95.exe
http://www.cygwin.com/

the	gawk.exe	file.	The	Windows	command	shell	does	not
recognize	symlinks,	and	because	of	this	building	InstallBin
will	fail.	A	workaround	is	to	delete	awk.exe	from	the	cygwin
installation	and	copy	gawk.exe	to	awk.exe.	Also	note	the
cygwin/mingw	ports	of	gawk	3.0.x	were	buggy,	please
upgrade	to	3.1.x	before	attempting	to	use	any	gawk	port.

[Optional]	zlib	library	(for	mod_deflate)

Zlib	must	be	installed	into	a	srclib	subdirectory	named
zlib.	This	must	be	built	in-place.	Zlib	can	be	obtained	from
http://www.zlib.net/	--	the	mod_deflate	is	confirmed	to	work
correctly	with	version	1.2.3.

nmake	-f	win32\Makefile.msc

nmake	-f	win32\Makefile.msc	test

[Optional]	OpenSSL	libraries	(for	mod_ssl	and	ab.exe	with
ssl	support)

The	OpenSSL	library	is	cryptographic	software.	The	country
in	which	you	currently	reside	may	have	restrictions	on	the
import,	possession,	use,	and/or	re-export	to	another
country,	of	encryption	software.	BEFORE	using	any
encryption	software,	please	check	your	country's	laws,
regulations	and	policies	concerning	the	import,	possession,
or	use,	and	re-export	of	encryption	software,	to	see	if	this	is
permitted.	See	http://www.wassenaar.org/	for	more
information.

Configuring	and	building	OpenSSL	requires	perl	to	be
installed.

OpenSSL	must	be	installed	into	a	srclib	subdirectory

http://www.zlib.net/
http://www.wassenaar.org/

named	openssl,	obtained	from
http://www.openssl.org/source/,	in	order	to	compile	mod_ssl
or	the	abs.exe	project,	which	is	ab.c	with	SSL	support
enabled.	To	prepare	OpenSSL	to	be	linked	to	Apache
mod_ssl	or	abs.exe,	and	disable	patent	encumbered	features
in	OpenSSL,	you	might	use	the	following	build	commands:

perl	Configure	no-rc5	no-idea	enable-mdc2	enable-zlib	VC-

WIN32	-Ipath/to/srclib/zlib	-Lpath/to/srclib/zlib

ms\do_masm.bat

nmake	-f	ms\ntdll.mak

It	is	not	advisable	to	use	zlib-dynamic,	as	that	transfers	the
cost	of	deflating	SSL	streams	to	the	first	request	which
must	load	the	zlib	dll.	Note	the	suggested	patch	enables	the
-L	flag	to	work	with	windows	builds,	corrects	the	name	of
zdll.lib	and	ensures	.pdb	files	are	generated	for
troubleshooting.	If	the	assembler	is	not	installed,	you	would
add	no-asm	above	and	use	ms\do_ms.bat	instead	of	the
ms\do_masm.bat	script.

[Optional]	Database	libraries	(for	mod_dbd	and
mod_authn_dbm)

The	apr-util	library	exposes	dbm	(keyed	database)	and	dbd
(query	oriented	database)	client	functionality	to	the	httpd
server	and	its	modules,	such	as	authentication	and
authorization.	The	sdbm	dbm	and	odbc	dbd	providers	are
compiled	unconditionally.

The	dbd	support	includes	the	Oracle	instantclient	package,
MySQL,	PostgreSQL	and	sqlite.	To	build	these	all,	for
example,	set	up	the	LIB	to	include	the	library	path,	INCLUDE
to	include	the	headers	path,	and	PATH	to	include	the	dll	bin
path	of	all	four	SDK's,	and	set	the	DBD_LIST	environment

http://www.openssl.org/source/

variable	to	inform	the	build	which	client	driver	SDKs	are
installed	correctly,	e.g.;

set	DBD_LIST=sqlite3	pgsql	oracle	mysql

Similarly,	the	dbm	support	can	be	extended	with	DBM_LIST	to
build	a	Berkeley	DB	provider	(db)	and/or	gdbm	provider,	by
similarly	configuring	LIB,	INCLUDE	and	PATH	first	to	ensure
the	client	library	libs	and	headers	are	available.

set	DBM_LIST=db	gdbm

Depending	on	the	choice	of	database	distributions,	it	may
be	necessary	to	change	the	actual	link	target	name	(e.g.
gdbm.lib	vs.	libgdb.lib)	that	are	listed	in	the	corresponding
.dsp/.mak	files	within	the	directories	srclib\apr-util\dbd	or
...\dbm.

See	the	README-win32.txt	file	for	more	hints	on	obtaining
the	various	database	driver	SDKs.

Building	from	Unix	sources
The	policy	of	the	Apache	HTTP	Server	project	is	to	only	release
Unix	sources.	Windows	source	packages	made	available	for
download	have	been	supplied	by	volunteers	and	may	not	be
available	for	every	release.	You	can	still	build	the	server	on
Windows	from	the	Unix	source	tarball	with	just	a	few	additional
steps.

1.	 Download	and	unpack	the	Unix	source	tarball	for	the	latest
version.

2.	 Download	and	unpack	the	Unix	source	tarball	for	latest
version	of	APR,	AR-Util	and	APR-Iconv,	place	these	sources

in	directories	httpd-2.x.x\srclib\apr,	httpd-2.x.x\srclib\apr-util
and	httpd-2.x.x\srclib\apr-iconv

3.	 Open	a	Command	Prompt	and	CD	to	the	httpd-2.x.x	folder

4.	 Run	the	line	endings	conversion	utility	at	the	prompt;

perl	srclib\apr\build\lineends.pl

You	can	now	build	the	server	with	the	Visual	Studio	development
environment	using	the	IDE.	Command-Line	builds	of	the	server
are	not	possible	from	Unix	sources	unless	you	export	.mak	files	as
explained	below.

Command-Line	Build
Makefile.win	is	the	top	level	Apache	makefile.	To	compile
Apache	on	Windows,	simply	use	one	of	the	following	commands
to	build	the	release	or	debug	flavor:

nmake	/f	Makefile.win	_apacher

nmake	/f	Makefile.win	_apached

Either	command	will	compile	Apache.	The	latter	will	disable
optimization	of	the	resulting	files,	making	it	easier	to	single	step
the	code	to	find	bugs	and	track	down	problems.

You	can	add	your	apr-util	dbd	and	dbm	provider	choices	with	the
additional	make	(environment)	variables	DBD_LIST	and
DBM_LIST,	see	the	comments	about	[Optional]	Database	libraries,
above.	Review	the	initial	comments	in	Makefile.win	for	additional
options	that	can	be	provided	when	invoking	the	build.

Developer	Studio	Workspace	IDE	Build
Apache	can	also	be	compiled	using	VC++'s	Visual	Studio

development	environment.	To	simplify	this	process,	a	Visual
Studio	workspace,	Apache.dsw,	is	provided.	This	workspace
exposes	the	entire	list	of	working	.dsp	projects	that	are	required
for	the	complete	Apache	binary	release.	It	includes	dependencies
between	the	projects	to	assure	that	they	are	built	in	the
appropriate	order.

Open	the	Apache.dsw	workspace,	and	select	InstallBin
(Release	or	Debug	build,	as	desired)	as	the	Active	Project.
InstallBin	causes	all	related	project	to	be	built,	and	then
invokes	Makefile.win	to	move	the	compiled	executables	and
dlls.	You	may	personalize	the	INSTDIR=	choice	by	changing
InstallBin's	Settings,	General	tab,	Build	command	line	entry.
INSTDIR	defaults	to	the	/Apache2	directory.	If	you	only	want	a
test	compile	(without	installing)	you	may	build	the	BuildBin
project	instead.

The	.dsp	project	files	are	distributed	in	Visual	Studio	6.0	(98)
format.	Visual	C++	5.0	(97)	will	recognize	them.	Visual	Studio
2002	(.NET)	and	later	users	must	convert	Apache.dsw	plus	the
.dsp	files	into	an	Apache.sln	plus	.msproj	files.	Be	sure	you
reconvert	the	.msproj	file	again	if	its	source	.dsp	file	changes!
This	is	really	trivial,	just	open	Apache.dsw	in	the	VC++	7.0	IDE
once	again	and	reconvert.

There	is	a	flaw	in	the	.vcproj	conversion	of	.dsp	files.	devenv.exe
will	mis-parse	the	/D	flag	for	RC	flags	containing	long	quoted
/D'efines	which	contain	spaces.	The	command:

perl	srclib\apr\build\cvtdsp.pl	-2005

will	convert	the	/D	flags	for	RC	flags	to	use	an	alternate,
parseable	syntax;	unfortunately	this	syntax	isn't	supported	by

Visual	Studio	97	or	its	exported	.mak	files.	These	/D	flags	are
used	to	pass	the	long	description	of	the	mod_apachemodule.so
files	to	the	shared	.rc	resource	version-identifier	build.

Building	with	OpenSSL	1.1.0	and	up	Due	to	difference	in	the
build	structure	of	OpenSSL	begining	with	version	1.1.0	you	will
need	to	convert	the	dsp	files	affected	with	cvtdsp.pl	from	APR
1.6	or	greater.	The	command:

perl	srclib\apr\build\cvtdsp.pl	-ossl11

Visual	Studio	2002	(.NET)	and	later	users	should	also	use	the
Build	menu,	Configuration	Manager	dialog	to	uncheck	both	the
Debug	and	Release	Solution	modules	abs,	mod_deflate	and
mod_ssl	components,	as	well	as	every	component	starting	with
apr_db*.	These	modules	are	built	by	invoking	nmake,	or	the	IDE
directly	with	the	BinBuild	target,	which	builds	those	modules
conditionally	if	the	srclib	directories	openssl	and/or	zlib
exist,	and	based	on	the	setting	of	DBD_LIST	and	DBM_LIST
environment	variables.

Exporting	command-line	.mak	files
Exported	.mak	files	pose	a	greater	hassle,	but	they	are	required
for	Visual	C++	5.0	users	to	build	mod_ssl,	abs	(ab	with	SSL
support)	and/or	mod_deflate.	The	.mak	files	also	support	a
broader	range	of	C++	tool	chain	distributions,	such	as	Visual
Studio	Express.

You	must	first	build	all	projects	in	order	to	create	all	dynamic	auto-
generated	targets,	so	that	dependencies	can	be	parsed	correctly.
Build	the	entire	project	from	within	the	Visual	Studio	6.0	(98)	IDE,

using	the	BuildAll	target,	then	use	the	Project	Menu	Export	for
all	makefiles	(checking	on	"with	dependencies".)	Run	the	following
command	to	correct	absolute	paths	into	relative	paths	so	they	will
build	anywhere:

perl	srclib\apr\build\fixwin32mak.pl

You	must	type	this	command	from	the	top	level	directory	of	the
httpd	source	tree.	Every	.mak	and	.dep	project	file	within	the
current	directory	and	below	will	be	corrected,	and	the	timestamps
adjusted	to	reflect	the	.dsp.

Always	review	the	generated	.mak	and	.dep	files	for	Platform
SDK	or	other	local,	machine	specific	file	paths.	The
DevStudio\Common\MSDev98\bin\	(VC6)	directory	contains	a
sysincl.dat	file,	which	lists	all	exceptions.	Update	this	file
(including	both	forward	and	backslashed	paths,	such	as	both
sys/time.h	and	sys\time.h)	to	ignore	such	newer
dependencies.	Including	local-install	paths	in	a	distributed	.mak
file	will	cause	the	build	to	fail	completely.

If	you	contribute	back	a	patch	that	revises	project	files,	we	must
commit	project	files	in	Visual	Studio	6.0	format.	Changes	should
be	simple,	with	minimal	compilation	and	linkage	flags	that	can	be
recognized	by	all	Visual	Studio	environments.

Installation
Once	Apache	has	been	compiled,	it	needs	to	be	installed	in	its
server	root	directory.	The	default	is	the	\Apache2	directory,	of	the
same	drive.

To	build	and	install	all	the	files	into	the	desired	folder	dir
automatically,	use	one	of	the	following	nmake	commands:

nmake	/f	Makefile.win	installr	INSTDIR=dir

nmake	/f	Makefile.win	installd	INSTDIR=dir

The	dir	argument	to	INSTDIR	provides	the	installation	directory;	it
can	be	omitted	if	Apache	is	to	be	installed	into	\Apache22	(of	the
current	drive).

Warning	about	building	Apache	from	the
development	tree

Note	only	the	.dsp	files	are	maintained	between	release
builds.	The	.mak	files	are	NOT	regenerated,	due	to	the
tremendous	waste	of	reviewer's	time.	Therefore,	you	cannot	rely
on	the	NMAKE	commands	above	to	build	revised	.dsp	project
files	unless	you	then	export	all	.mak	files	yourself	from	the
project.	This	is	unnecessary	if	you	build	from	within	the
Microsoft	Developer	Studio	environment.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Building	httpd	with	cmake

The	primary	documentation	for	this	build	mechanism	is	in	the
README.cmake	file	in	the	source	distribution.	Refer	to	that	file	for
detailed	instructions.

Building	httpd	with	cmake	requires	building	APR	and	APR-util
separately.	Refer	to	their	README.cmake	files	for	instructions.

The	primary	limitations	of	the	cmake-based	build	are	inherited
from	the	APR-util	project,	and	are	listed	below	because	of	their
impact	on	httpd:

No	cmake	build	for	the	APR-iconv	subproject	is	available,	and
the	APR-util	cmake	build	cannot	consume	an	existing	APR-
iconv	build.	Thus,	mod_charset_lite	and	possibly	some
third-party	modules	cannot	be	used.
The	cmake	build	for	the	APR-util	subproject	does	not	support
most	of	the	optional	DBM	and	DBD	libraries	supported	by	the
included	Visual	Studio	project	files.	This	limits	the	database
backends	supported	by	a	number	of	bundled	and	third-party
modules.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Using	Apache	With	Novell	NetWare

This	document	explains	how	to	install,	configure	and	run	Apache	2.0
under	Novell	NetWare	6.0	and	above.	If	you	find	any	bugs,	or	wish	to
contribute	in	other	ways,	please	use	our	bug	reporting	page.

The	bug	reporting	page	and	dev-httpd	mailing	list	are	not	provided	to
answer	questions	about	configuration	or	running	Apache.	Before	you
submit	a	bug	report	or	request,	first	consult	this	document,	the
Frequently	Asked	Questions	page	and	the	other	relevant
documentation	topics.	If	you	still	have	a	question	or	problem,	post	it	to
the	novell.devsup.webserver	newsgroup,	where	many	Apache	users
are	more	than	willing	to	answer	new	and	obscure	questions	about
using	Apache	on	NetWare.

Most	of	this	document	assumes	that	you	are	installing	Apache	from	a
binary	distribution.	If	you	want	to	compile	Apache	yourself	(possibly	to
help	with	development,	or	to	track	down	bugs),	see	the	section	on
Compiling	Apache	for	NetWare	below.

http://httpd.apache.org/bug_report.html
http://wiki.apache.org/httpd/FAQ
news://developer-forums.novell.com/novell.devsup.webserver

Requirements

Apache	2.0	is	designed	to	run	on	NetWare	6.0	service	pack	3	and
above.	If	you	are	running	a	service	pack	less	than	SP3,	you	must
install	the	latest	NetWare	Libraries	for	C	(LibC).

NetWare	service	packs	are	available	here.

Apache	2.0	for	NetWare	can	also	be	run	in	a	NetWare	5.1
environment	as	long	as	the	latest	service	pack	or	the	latest	version
of	the	NetWare	Libraries	for	C	(LibC)	has	been	installed	.
WARNING:	Apache	2.0	for	NetWare	has	not	been	targeted	for	or
tested	in	this	environment.

http://developer.novell.com/ndk/libc.htm
http://support.novell.com/misc/patlst.htm#nw
http://developer.novell.com/ndk/libc.htm

Downloading	Apache	for	NetWare

Information	on	the	latest	version	of	Apache	can	be	found	on	the
Apache	web	server	at	http://www.apache.org/.	This	will	list	the
current	release,	any	more	recent	alpha	or	beta-test	releases,
together	with	details	of	mirror	web	and	anonymous	ftp	sites.	Binary
builds	of	the	latest	releases	of	Apache	2.0	for	NetWare	can	be
downloaded	from	here.

http://www.apache.org/
http://www.apache.org/dist/httpd/binaries/netware

Installing	Apache	for	NetWare

There	is	no	Apache	install	program	for	NetWare	currently.	If	you
are	building	Apache	2.0	for	NetWare	from	source,	you	will	need	to
copy	the	files	over	to	the	server	manually.

Follow	these	steps	to	install	Apache	on	NetWare	from	the	binary
download	(assuming	you	will	install	to	sys:/apache2):

Unzip	the	binary	download	file	to	the	root	of	the	SYS:	volume
(may	be	installed	to	any	volume)
Edit	the	httpd.conf	file	setting	ServerRoot	and
ServerName	along	with	any	file	path	values	to	reflect	your
correct	server	settings
Add	SYS:/APACHE2	to	the	search	path,	for	example:

SEARCH	ADD	SYS:\APACHE2

Follow	these	steps	to	install	Apache	on	NetWare	manually	from
your	own	build	source	(assuming	you	will	install	to
sys:/apache2):

Create	a	directory	called	Apache2	on	a	NetWare	volume
Copy	APACHE2.NLM,	APRLIB.NLM	to	SYS:/APACHE2
Create	a	directory	under	SYS:/APACHE2	called	BIN
Copy	HTDIGEST.NLM,	HTPASSWD.NLM,	HTDBM.NLM,
LOGRES.NLM,	ROTLOGS.NLM	to	SYS:/APACHE2/BIN
Create	a	directory	under	SYS:/APACHE2	called	CONF
Copy	the	HTTPD-STD.CONF	file	to	the	SYS:/APACHE2/CONF
directory	and	rename	to	HTTPD.CONF
Copy	the	MIME.TYPES,	CHARSET.CONV	and	MAGIC	files	to
SYS:/APACHE2/CONF	directory
Copy	all	files	and	subdirectories	in	\HTTPD-
2.0\DOCS\ICONS	to	SYS:/APACHE2/ICONS

Copy	all	files	and	subdirectories	in	\HTTPD-
2.0\DOCS\MANUAL	to	SYS:/APACHE2/MANUAL
Copy	all	files	and	subdirectories	in	\HTTPD-
2.0\DOCS\ERROR	to	SYS:/APACHE2/ERROR
Copy	all	files	and	subdirectories	in	\HTTPD-
2.0\DOCS\DOCROOT	to	SYS:/APACHE2/HTDOCS
Create	the	directory	SYS:/APACHE2/LOGS	on	the	server
Create	the	directory	SYS:/APACHE2/CGI-BIN	on	the	server
Create	the	directory	SYS:/APACHE2/MODULES	and	copy	all
nlm	modules	into	the	modules	directory
Edit	the	HTTPD.CONF	file	searching	for	all	@@Value@@
markers	and	replacing	them	with	the	appropriate	setting
Add	SYS:/APACHE2	to	the	search	path,	for	example:

SEARCH	ADD	SYS:\APACHE2

Apache	may	be	installed	to	other	volumes	besides	the	default	SYS
volume.

During	the	build	process,	adding	the	keyword	"install"	to	the
makefile	command	line	will	automatically	produce	a	complete
distribution	package	under	the	subdirectory	DIST.	Install	Apache
by	simply	copying	the	distribution	that	was	produced	by	the
makfiles	to	the	root	of	a	NetWare	volume	(see:	Compiling	Apache
for	NetWare	below).

Running	Apache	for	NetWare

To	start	Apache	just	type	apache	at	the	console.	This	will	load
apache	in	the	OS	address	space.	If	you	prefer	to	load	Apache	in	a
protected	address	space	you	may	specify	the	address	space	with
the	load	statement	as	follows:

load	address	space	=	apache2	apache2

This	will	load	Apache	into	an	address	space	called	apache2.
Running	multiple	instances	of	Apache	concurrently	on	NetWare	is
possible	by	loading	each	instance	into	its	own	protected	address
space.

After	starting	Apache,	it	will	be	listening	to	port	80	(unless	you
changed	the	Listen	directive	in	the	configuration	files).	To
connect	to	the	server	and	access	the	default	page,	launch	a
browser	and	enter	the	server's	name	or	address.	This	should
respond	with	a	welcome	page,	and	a	link	to	the	Apache	manual.	If
nothing	happens	or	you	get	an	error,	look	in	the	error_log	file	in
the	logs	directory.

Once	your	basic	installation	is	working,	you	should	configure	it
properly	by	editing	the	files	in	the	conf	directory.

To	unload	Apache	running	in	the	OS	address	space	just	type	the
following	at	the	console:

unload	apache2

or

apache2	shutdown

If	apache	is	running	in	a	protected	address	space	specify	the
address	space	in	the	unload	statement:

unload	address	space	=	apache2	apache2

When	working	with	Apache	it	is	important	to	know	how	it	will	find
the	configuration	files.	You	can	specify	a	configuration	file	on	the
command	line	in	two	ways:

-f	specifies	a	path	to	a	particular	configuration	file

apache2	-f	"vol:/my	server/conf/my.conf"

apache	-f	test/test.conf

In	these	cases,	the	proper	ServerRoot	should	be	set	in	the
configuration	file.

If	you	don't	specify	a	configuration	file	name	with	-f,	Apache	will
use	the	file	name	compiled	into	the	server,	usually
conf/httpd.conf.	Invoking	Apache	with	the	-V	switch	will
display	this	value	labeled	as	SERVER_CONFIG_FILE.	Apache	will
then	determine	its	ServerRoot	by	trying	the	following,	in	this
order:

A	ServerRoot	directive	via	a	-C	switch.
The	-d	switch	on	the	command	line.
Current	working	directory
The	server	root	compiled	into	the	server.

The	server	root	compiled	into	the	server	is	usually
sys:/apache2.	invoking	apache	with	the	-V	switch	will	display
this	value	labeled	as	HTTPD_ROOT.

Apache	2.0	for	NetWare	includes	a	set	of	command	line	directives
that	can	be	used	to	modify	or	display	information	about	the
running	instance	of	the	web	server.	These	directives	are	only

available	while	Apache	is	running.	Each	of	these	directives	must
be	preceded	by	the	keyword	APACHE2.

RESTART
Instructs	Apache	to	terminate	all	running	worker	threads	as
they	become	idle,	reread	the	configuration	file	and	restart
each	worker	thread	based	on	the	new	configuration.

VERSION
Displays	version	information	about	the	currently	running
instance	of	Apache.

MODULES
Displays	a	list	of	loaded	modules	both	built-in	and	external.

DIRECTIVES
Displays	a	list	of	all	available	directives.

SETTINGS
Enables	or	disables	the	thread	status	display	on	the	console.
When	enabled,	the	state	of	each	running	threads	is	displayed
on	the	Apache	console	screen.

SHUTDOWN
Terminates	the	running	instance	of	the	Apache	web	server.

HELP
Describes	each	of	the	runtime	directives.

By	default	these	directives	are	issued	against	the	instance	of
Apache	running	in	the	OS	address	space.	To	issue	a	directive
against	a	specific	instance	running	in	a	protected	address	space,
include	the	-p	parameter	along	with	the	name	of	the	address
space.	For	more	information	type	"apache2	Help"	on	the
command	line.

Configuring	Apache	for	NetWare

Apache	is	configured	by	reading	configuration	files	usually	stored
in	the	conf	directory.	These	are	the	same	as	files	used	to
configure	the	Unix	version,	but	there	are	a	few	different	directives
for	Apache	on	NetWare.	See	the	Apache	module	documentation
for	all	the	available	directives.

The	main	differences	in	Apache	for	NetWare	are:

Because	Apache	for	NetWare	is	multithreaded,	it	does	not
use	a	separate	process	for	each	request,	as	Apache	does	on
some	Unix	implementations.	Instead	there	are	only	threads
running:	a	parent	thread,	and	multiple	child	or	worker	threads
which	handle	the	requests.

Therefore	the	"process"-management	directives	are	different:

MaxConnectionsPerChild	-	Like	the	Unix	directive,	this
controls	how	many	connections	a	worker	thread	will	serve
before	exiting.	The	recommended	default,
MaxConnectionsPerChild	0,	causes	the	thread	to
continue	servicing	request	indefinitely.	It	is	recommended	on
NetWare,	unless	there	is	some	specific	reason,	that	this
directive	always	remain	set	to	0.

StartThreads	-	This	directive	tells	the	server	how	many
threads	it	should	start	initially.	The	recommended	default	is
StartThreads	50.

MinSpareThreads	-	This	directive	instructs	the	server	to
spawn	additional	worker	threads	if	the	number	of	idle	threads
ever	falls	below	this	value.	The	recommended	default	is
MinSpareThreads	10.

MaxSpareThreads	-	This	directive	instructs	the	server	to

begin	terminating	worker	threads	if	the	number	of	idle	threads
ever	exceeds	this	value.	The	recommended	default	is
MaxSpareThreads	100.

MaxThreads	-	This	directive	limits	the	total	number	of	work
threads	to	a	maximum	value.	The	recommended	default	is
ThreadsPerChild	250.

ThreadStackSize	-	This	directive	tells	the	server	what	size
of	stack	to	use	for	the	individual	worker	thread.	The
recommended	default	is	ThreadStackSize	65536.

The	directives	that	accept	filenames	as	arguments	must	use
NetWare	filenames	instead	of	Unix	names.	However,	because
Apache	uses	Unix-style	names	internally,	forward	slashes
must	be	used	rather	than	backslashes.	It	is	recommended
that	all	rooted	file	paths	begin	with	a	volume	name.	If	omitted,
Apache	will	assume	the	SYS:	volume	which	may	not	be
correct.

Apache	for	NetWare	has	the	ability	to	load	modules	at
runtime,	without	recompiling	the	server.	If	Apache	is	compiled
normally,	it	will	install	a	number	of	optional	modules	in	the
\Apache2\modules	directory.	To	activate	these,	or	other
modules,	the	LoadModule	directive	must	be	used.	For
example,	to	active	the	status	module,	use	the	following:

LoadModule	status_module	modules/status.nlm

Information	on	creating	loadable	modules	is	also	available.

Additional	NetWare	specific	directives:
CGIMapExtension	-	This	directive	maps	a	CGI	file	extension
to	a	script	interpreter.

SecureListen	-	Enables	SSL	encryption	for	a	specified	port.

NWSSLTrustedCerts	-	Adds	trusted	certificates	that	are
used	to	create	secure	connections	to	proxied	servers.

NWSSLUpgradeable	-	Allow	a	connection	created	on	the
specified	address/port	to	be	upgraded	to	an	SSL	connection.

Compiling	Apache	for	NetWare

Compiling	Apache	requires	MetroWerks	CodeWarrior	6.x	or
higher.	Once	Apache	has	been	built,	it	can	be	installed	to	the	root
of	any	NetWare	volume.	The	default	is	the	sys:/Apache2
directory.

Before	running	the	server	you	must	fill	out	the	conf	directory.
Copy	the	file	HTTPD-STD.CONF	from	the	distribution	conf
directory	and	rename	it	to	HTTPD.CONF.	Edit	the	HTTPD.CONF	file
searching	for	all	@@Value@@	markers	and	replacing	them	with	the
appropriate	setting.	Copy	over	the	conf/magic	and
conf/mime.types	files	as	well.	Alternatively,	a	complete
distribution	can	be	built	by	including	the	keyword	install	when
invoking	the	makefiles.

Requirements:
The	following	development	tools	are	required	to	build	Apache	2.0
for	NetWare:

Metrowerks	CodeWarrior	6.0	or	higher	with	the	NetWare	PDK
3.0	or	higher.
NetWare	Libraries	for	C	(LibC)
LDAP	Libraries	for	C
ZLIB	Compression	Library	source	code
AWK	utility	(awk,	gawk	or	similar).	AWK	can	be	downloaded
from	http://developer.novell.com/ndk/apache.htm.	The	utility
must	be	found	in	your	windows	path	and	must	be	named
awk.exe.
To	build	using	the	makefiles,	you	will	need	GNU	make	version
3.78.1	(GMake)	available	at
http://developer.novell.com/ndk/apache.htm.

Building	Apache	using	the	NetWare	makefiles:

http://developer.novell.com/ndk/cwpdk.htm
http://developer.novell.com/ndk/libc.htm
http://developer.novell.com/ndk/cldap.htm
http://www.gzip.org/zlib/
http://developer.novell.com/ndk/apache.htm
http://developer.novell.com/ndk/apache.htm

Set	the	environment	variable	NOVELLLIBC	to	the	location	of
the	NetWare	Libraries	for	C	SDK,	for	example:

Set	NOVELLLIBC=c:\novell\ndk\libc

Set	the	environment	variable	METROWERKS	to	the	location
where	you	installed	the	Metrowerks	CodeWarrior	compiler,	for
example:

Set	METROWERKS=C:\Program	Files\Metrowerks\CodeWarrior

If	you	installed	to	the	default	location	C:\Program
Files\Metrowerks\CodeWarrior,	you	don't	need	to	set
this.
Set	the	environment	variable	LDAPSDK	to	the	location	where
you	installed	the	LDAP	Libraries	for	C,	for	example:

Set	LDAPSDK=c:\Novell\NDK\cldapsdk\NetWare\libc

Set	the	environment	variable	ZLIBSDK	to	the	location	where
you	installed	the	source	code	for	the	ZLib	Library,	for
example:

Set	ZLIBSDK=D:\NOVELL\zlib

Set	the	environment	variable	PCRESDK	to	the	location	where
you	installed	the	source	code	for	the	PCRE	Library,	for
example:

Set	PCRESDK=D:\NOVELL\pcre

Set	the	environment	variable	AP_WORK	to	the	full	path	of	the
httpd	source	code	directory.

Set	AP_WORK=D:\httpd-2.0.x

Set	the	environment	variable	APR_WORK	to	the	full	path	of	the
apr	source	code	directory.	Typically	\httpd\srclib\apr
but	the	APR	project	can	be	outside	of	the	httpd	directory
structure.

Set	APR_WORK=D:\apr-1.x.x

Set	the	environment	variable	APU_WORK	to	the	full	path	of	the
apr-util	source	code	directory.	Typically
\httpd\srclib\apr-util	but	the	APR-UTIL	project	can
be	outside	of	the	httpd	directory	structure.

Set	APU_WORK=D:\apr-util-1.x.x

Make	sure	that	the	path	to	the	AWK	utility	and	the	GNU	make
utility	(gmake.exe)	have	been	included	in	the	system's	PATH
environment	variable.
Download	the	source	code	and	unzip	to	an	appropriate
directory	on	your	workstation.
Change	directory	to	\httpd-2.0	and	build	the	prebuild
utilities	by	running	"gmake	-f	nwgnumakefile
prebuild".	This	target	will	create	the	directory	\httpd-
2.0\nwprebuild	and	copy	each	of	the	utilities	to	this
location	that	are	necessary	to	complete	the	following	build
steps.
Copy	the	files	\httpd-2.0\nwprebuild\GENCHARS.nlm
and	\httpd-2.0\nwprebuild\DFTABLES.nlm	to	the
SYS:	volume	of	a	NetWare	server	and	run	them	using	the
following	commands:

SYS:\genchars	>	sys:\test_char.h

SYS:\dftables	sys:\chartables.c

Copy	the	files	test_char.h	and	chartables.c	to	the
directory	\httpd-2.0\os\netware	on	the	build	machine.
Change	directory	to	\httpd-2.0	and	build	Apache	by
running	"gmake	-f	nwgnumakefile".	You	can	create	a
distribution	directory	by	adding	an	install	parameter	to	the
command,	for	example:

gmake	-f	nwgnumakefile	install

Additional	make	options
gmake	-f	nwgnumakefile

Builds	release	versions	of	all	of	the	binaries	and	copies	them
to	a	\release	destination	directory.

gmake	-f	nwgnumakefile	DEBUG=1

Builds	debug	versions	of	all	of	the	binaries	and	copies	them	to
a	\debug	destination	directory.

gmake	-f	nwgnumakefile	install

Creates	a	complete	Apache	distribution	with	binaries,	docs
and	additional	support	files	in	a	\dist\Apache2	directory.

gmake	-f	nwgnumakefile	prebuild

Builds	all	of	the	prebuild	utilities	and	copies	them	to	the
\nwprebuild	directory.

gmake	-f	nwgnumakefile	installdev

Same	as	install	but	also	creates	a	\lib	and	\include
directory	in	the	destination	directory	and	copies	headers	and
import	files.

gmake	-f	nwgnumakefile	clean

Cleans	all	object	files	and	binaries	from	the	\release.o	or
\debug.o	build	areas	depending	on	whether	DEBUG	has
been	defined.

gmake	-f	nwgnumakefile	clobber_all

Same	as	clean	and	also	deletes	the	distribution	directory	if	it
exists.

Additional	environment	variable	options
To	build	all	of	the	experimental	modules,	set	the	environment
variable	EXPERIMENTAL:

Set	EXPERIMENTAL=1

To	build	Apache	using	standard	BSD	style	sockets	rather	than
Winsock,	set	the	environment	variable	USE_STDSOCKETS:

Set	USE_STDSOCKETS=1

Building	mod_ssl	for	the	NetWare	platform
By	default	Apache	for	NetWare	uses	the	built-in	module
mod_nw_ssl	to	provide	SSL	services.	This	module	simply
enables	the	native	SSL	services	implemented	in	NetWare	OS	to
handle	all	encryption	for	a	given	port.	Alternatively,	mod_ssl	can
also	be	used	in	the	same	manner	as	on	other	platforms.

Before	mod_ssl	can	be	built	for	the	NetWare	platform,	the
OpenSSL	libraries	must	be	provided.	This	can	be	done	through
the	following	steps:

Download	the	recent	OpenSSL	0.9.8	release	source	code
from	the	OpenSSL	Source	page	(older	0.9.7	versions	need	to
be	patched	and	are	therefore	not	recommended).

http://www.openssl.org/source/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Edit	the	file	NetWare/set_env.bat	and	modify	any	tools
and	utilities	paths	so	that	they	correspond	to	your	build
environment.
From	the	root	of	the	OpenSSL	source	directory,	run	the
following	scripts:

Netware\set_env	netware-libc

Netware\build	netware-libc

For	performance	reasons	you	should	enable	to	build	with
ASM	code.	Download	NASM	from	the	SF	site.	Then	configure
OpenSSL	to	use	ASM	code:

Netware\build	netware-libc	nw-nasm	enable-mdc2	enable-md5

Warning:	dont	use	the	CodeWarrior	Assembler	-	it	produces
broken	code!
Before	building	Apache,	set	the	environment	variable
OSSLSDK	to	the	full	path	to	the	root	of	the	openssl	source
code	directory,	and	set	WITH_MOD_SSL	to	1.

Set	OSSLSDK=d:\openssl-0.9.8x

Set	WITH_MOD_SSL=1

http://nasm.sourceforge.net/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Running	a	High-Performance	Web	Server	on
HPUX

Date:	Wed,	05	Nov	1997	16:59:34	-0800

From:	Rick	Jones	<raj@cup.hp.com>

Reply-To:	raj@cup.hp.com

Organization:	Network	Performance

Subject:	HP-UX	tuning	tips

Here	are	some	tuning	tips	for	HP-UX	to	add	to	the	tuning	page.

For	HP-UX	9.X:	Upgrade	to	10.20
For	HP-UX	10.[00|01|10]:	Upgrade	to	10.20

For	HP-UX	10.20:

Install	the	latest	cumulative	ARPA	Transport	Patch.	This	will	allow	you
to	configure	the	size	of	the	TCP	connection	lookup	hash	table.	The
default	is	256	buckets	and	must	be	set	to	a	power	of	two.	This	is
accomplished	with	adb	against	the	*disc*	image	of	the	kernel.	The
variable	name	is	tcp_hash_size.	Notice	that	it's	critically	important
that	you	use	"W"	to	write	a	32	bit	quantity,	not	"w"	to	write	a	16	bit
value	when	patching	the	disc	image	because	the	tcp_hash_size
variable	is	a	32	bit	quantity.

How	to	pick	the	value?	Examine	the	output	of
ftp://ftp.cup.hp.com/dist/networking/tools/connhist	and	see	how	many
total	TCP	connections	exist	on	the	system.	You	probably	want	that
number	divided	by	the	hash	table	size	to	be	reasonably	small,	say
less	than	10.	Folks	can	look	at	HP's	SPECweb96	disclosures	for
some	common	settings.	These	can	be	found	at
http://www.specbench.org/.	If	an	HP-UX	system	was	performing	at
1000	SPECweb96	connections	per	second,	the	TIME_WAIT	time	of
60	seconds	would	mean	60,000	TCP	"connections"	being	tracked.

mailto:raj@cup.hp.com
mailto:raj@cup.hp.com
ftp://ftp.cup.hp.com/dist/networking/tools/connhist
http://www.specbench.org/

Folks	can	check	their	listen	queue	depths	with
ftp://ftp.cup.hp.com/dist/networking/misc/listenq.

If	folks	are	running	Apache	on	a	PA-8000	based	system,	they	should
consider	"chatr'ing"	the	Apache	executable	to	have	a	large	page	size.
This	would	be	"chatr	+pi	L	<BINARY>".	The	GID	of	the	running
executable	must	have	MLOCK	privileges.	Setprivgrp(1m)	should
be	consulted	for	assigning	MLOCK.	The	change	can	be	validated	by
running	Glance	and	examining	the	memory	regions	of	the	server(s)	to
make	sure	that	they	show	a	non-trivial	fraction	of	the	text	segment
being	locked.

If	folks	are	running	Apache	on	MP	systems,	they	might	consider
writing	a	small	program	that	uses	mpctl()	to	bind	processes	to
processors.	A	simple	pid	%	numcpu	algorithm	is	probably	sufficient.
This	might	even	go	into	the	source	code.

If	folks	are	concerned	about	the	number	of	FIN_WAIT_2	connections,
they	can	use	nettune	to	shrink	the	value	of	tcp_keepstart.
However,	they	should	be	careful	there	-	certainly	do	not	make	it	less
than	oh	two	to	four	minutes.	If	tcp_hash_size	has	been	set	well,	it
is	probably	OK	to	let	the	FIN_WAIT_2's	take	longer	to	timeout
(perhaps	even	the	default	two	hours)	-	they	will	not	on	average	have	a
big	impact	on	performance.

There	are	other	things	that	could	go	into	the	code	base,	but	that	might
be	left	for	another	email.	Feel	free	to	drop	me	a	message	if	you	or
others	are	interested.

sincerely,

rick	jones

http://www.netperf.org/netperf/

ftp://ftp.cup.hp.com/dist/networking/misc/listenq
http://www.netperf.org/netperf/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

The	Apache	EBCDIC	Port

Warning:	This	document	has	not	been	updated	to	take	into
account	changes	made	in	the	2.0	version	of	the	Apache	HTTP
Server.	Some	of	the	information	may	still	be	relevant,	but	please
use	it	with	care.

Overview	of	the	Apache	EBCDIC	Port

Version	1.3	of	the	Apache	HTTP	Server	was	the	first	version	which
included	a	port	to	a	(non-ASCII)	mainframe	machine	which	uses
the	EBCDIC	character	set	as	its	native	codeset.

(It	is	the	SIEMENS	family	of	mainframes	running	the	BS2000/OSD
operating	system.	This	mainframe	OS	nowadays	features	a	SVR4-
derived	POSIX	subsystem).

The	port	was	started	initially	to

prove	the	feasibility	of	porting	the	Apache	HTTP	server	to	this
platform
find	a	"worthy	and	capable"	successor	for	the	venerable
CERN-3.0	daemon	(which	was	ported	a	couple	of	years	ago),
and	to
prove	that	Apache's	preforking	process	model	can	on	this
platform	easily	outperform	the	accept-fork-serve	model	used
by	CERN	by	a	factor	of	5	or	more.

This	document	serves	as	a	rationale	to	describe	some	of	the
design	decisions	of	the	port	to	this	machine.

http://www.siemens.de/servers/bs2osd/osdbc_us.htm
http://httpd.apache.org/
http://www.w3.org/Daemon/

Design	Goals

One	objective	of	the	EBCDIC	port	was	to	maintain	enough
backwards	compatibility	with	the	(EBCDIC)	CERN	server	to	make
the	transition	to	the	new	server	attractive	and	easy.	This	required
the	addition	of	a	configurable	method	to	define	whether	a	HTML
document	was	stored	in	ASCII	(the	only	format	accepted	by	the
old	server)	or	in	EBCDIC	(the	native	document	format	in	the
POSIX	subsystem,	and	therefore	the	only	realistic	format	in	which
the	other	POSIX	tools	like	grep	or	sed	could	operate	on	the
documents).	The	current	solution	to	this	is	a	"pseudo-MIME-
format"	which	is	intercepted	and	interpreted	by	the	Apache	server
(see	below).	Future	versions	might	solve	the	problem	by	defining
an	"ebcdic-handler"	for	all	documents	which	must	be	converted.

Technical	Solution

Since	all	Apache	input	and	output	is	based	upon	the	BUFF	data
type	and	its	methods,	the	easiest	solution	was	to	add	the
conversion	to	the	BUFF	handling	routines.	The	conversion	must
be	settable	at	any	time,	so	a	BUFF	flag	was	added	which	defines
whether	a	BUFF	object	has	currently	enabled	conversion	or	not.
This	flag	is	modified	at	several	points	in	the	HTTP	protocol:

set	before	a	request	is	received	(because	the	request	and	the
request	header	lines	are	always	in	ASCII	format)
set/unset	when	the	request	body	is	received	-	depending	on
the	content	type	of	the	request	body	(because	the	request
body	may	contain	ASCII	text	or	a	binary	file)
set	before	a	reply	header	is	sent	(because	the	response
header	lines	are	always	in	ASCII	format)
set/unset	when	the	response	body	is	sent	-	depending	on	the
content	type	of	the	response	body	(because	the	response
body	may	contain	text	or	a	binary	file)

Porting	Notes

1.	 The	relevant	changes	in	the	source	are	#ifdef'ed	into	two
categories:

#ifdef	CHARSET_EBCDIC

Code	which	is	needed	for	any	EBCDIC	based	machine.
This	includes	character	translations,	differences	in
contiguity	of	the	two	character	sets,	flags	which	indicate
which	part	of	the	HTTP	protocol	has	to	be	converted	and
which	part	doesn't	etc.

#ifdef	_OSD_POSIX

Code	which	is	needed	for	the	SIEMENS	BS2000/OSD
mainframe	platform	only.	This	deals	with	include	file
differences	and	socket	implementation	topics	which	are
only	required	on	the	BS2000/OSD	platform.

2.	 The	possibility	to	translate	between	ASCII	and	EBCDIC	at	the
socket	level	(on	BS2000	POSIX,	there	is	a	socket	option
which	supports	this)	was	intentionally	not	chosen,	because
the	byte	stream	at	the	HTTP	protocol	level	consists	of	a
mixture	of	protocol	related	strings	and	non-protocol	related
raw	file	data.	HTTP	protocol	strings	are	always	encoded	in
ASCII	(the	GET	request,	any	Header:	lines,	the	chunking
information	etc.)	whereas	the	file	transfer	parts	(i.e.,	GIF
images,	CGI	output	etc.)	should	usually	be	just	"passed
through"	by	the	server.	This	separation	between	"protocol
string"	and	"raw	data"	is	reflected	in	the	server	code	by
functions	like	bgets()	or	rvputs()	for	strings,	and
functions	like	bwrite()	for	binary	data.	A	global	translation
of	everything	would	therefore	be	inadequate.

(In	the	case	of	text	files	of	course,	provisions	must	be	made
so	that	EBCDIC	documents	are	always	served	in	ASCII)

3.	 This	port	therefore	features	a	built-in	protocol	level	conversion
for	the	server-internal	strings	(which	the	compiler	translated	to
EBCDIC	strings)	and	thus	for	all	server-generated	documents.
The	hard	coded	ASCII	escapes	\012	and	\015	which	are
ubiquitous	in	the	server	code	are	an	exception:	they	are
already	the	binary	encoding	of	the	ASCII	\n	and	\r	and	must
not	be	converted	to	ASCII	a	second	time.	This	exception	is
only	relevant	for	server-generated	strings;	and	external
EBCDIC	documents	are	not	expected	to	contain	ASCII
newline	characters.

4.	 By	examining	the	call	hierarchy	for	the	BUFF	management
routines,	I	added	an	"ebcdic/ascii	conversion	layer"	which
would	be	crossed	on	every	puts/write/get/gets,	and	a
conversion	flag	which	allowed	enabling/disabling	the
conversions	on-the-fly.	Usually,	a	document	crosses	this	layer
twice	from	its	origin	source	(a	file	or	CGI	output)	to	its
destination	(the	requesting	client):	file	->	Apache,	and
Apache	->	client.

The	server	can	now	read	the	header	lines	of	a	CGI-script
output	in	EBCDIC	format,	and	then	find	out	that	the	remainder
of	the	script's	output	is	in	ASCII	(like	in	the	case	of	the	output
of	a	WWW	Counter	program:	the	document	body	contains	a
GIF	image).	All	header	processing	is	done	in	the	native
EBCDIC	format;	the	server	then	determines,	based	on	the
type	of	document	being	served,	whether	the	document	body
(except	for	the	chunking	information,	of	course)	is	in	ASCII
already	or	must	be	converted	from	EBCDIC.

5.	 For	Text	documents	(MIME	types	text/plain,	text/html	etc.),	an
implicit	translation	to	ASCII	can	be	used,	or	(if	the	users	prefer
to	store	some	documents	in	raw	ASCII	form	for	faster	serving,
or	because	the	files	reside	on	a	NFS-mounted	directory	tree)
can	be	served	without	conversion.

Example:

to	serve	files	with	the	suffix	.ahtml	as	a	raw	ASCII
text/html	document	without	implicit	conversion	(and	suffix
.ascii	as	ASCII	text/plain),	use	the	directives:

AddType	text/x-ascii-html	.ahtml	

AddType	text/x-ascii-plain	.ascii

Similarly,	any	text/foo	MIME	type	can	be	served	as	"raw
ASCII"	by	configuring	a	MIME	type	"text/x-ascii-foo"	for
it	using	AddType.

6.	 Non-text	documents	are	always	served	"binary"	without
conversion.	This	seems	to	be	the	most	sensible	choice	for,
.e.g.,	GIF/ZIP/AU	file	types.	This	of	course	requires	the	user
to	copy	them	to	the	mainframe	host	using	the	"rcp	-b"
binary	switch.

7.	 Server	parsed	files	are	always	assumed	to	be	in	native	(i.e.,
EBCDIC)	format	as	used	on	the	machine,	and	are	converted
after	processing.

8.	 For	CGI	output,	the	CGI	script	determines	whether	a
conversion	is	needed	or	not:	by	setting	the	appropriate
Content-Type,	text	files	can	be	converted,	or	GIF	output	can
be	passed	through	unmodified.	An	example	for	the	latter	case
is	the	wwwcount	program	which	we	ported	as	well.

Document	Storage	Notes

Binary	Files
All	files	with	a	Content-Type:	which	does	not	start	with	text/
are	regarded	as	binary	files	by	the	server	and	are	not	subject	to
any	conversion.	Examples	for	binary	files	are	GIF	images,	gzip-
compressed	files	and	the	like.

When	exchanging	binary	files	between	the	mainframe	host	and	a
Unix	machine	or	Windows	PC,	be	sure	to	use	the	ftp	"binary"
(TYPE	I)	command,	or	use	the	rcp	-b	command	from	the
mainframe	host	(the	-b	switch	is	not	supported	in	unix	rcp's).

Text	Documents
The	default	assumption	of	the	server	is	that	Text	Files	(i.e.,	all	files
whose	Content-Type:	starts	with	text/)	are	stored	in	the
native	character	set	of	the	host,	EBCDIC.

Server	Side	Included	Documents
SSI	documents	must	currently	be	stored	in	EBCDIC	only.	No
provision	is	made	to	convert	it	from	ASCII	before	processing.

Apache	Modules'	Status

Module Status Notes
core +
mod_access +
mod_actions +
mod_alias +
mod_asis +
mod_auth +
mod_authn_anon +
mod_authn_dbm ? with	own	libdb.a
mod_authz_dbm ? with	own	libdb.a
mod_autoindex +
mod_cern_meta ?
mod_cgi +
mod_digest +
mod_dir +
mod_so - no	shared	libs
mod_env +
mod_example - (test	bed	only)
mod_expires +
mod_headers +
mod_imagemap +
mod_include +
mod_info +
mod_log_agent +
mod_log_config +
mod_log_referer +
mod_mime +
mod_mime_magic ? not	ported	yet

mod_negotiation +
mod_proxy +
mod_rewrite + untested
mod_setenvif +
mod_speling +
mod_status +
mod_unique_id +
mod_userdir +
mod_usertrack ? untested

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Third	Party	Modules'	Status

Module Status Notes
JK	(Formerly

mod_jserv)

- JAVA	still	being	ported.

mod_php3 + mod_php3	runs	fine,	with	LDAP	and
GD	and	FreeType	libraries.

mod_put ? untested
mod_session - untested

https://tomcat.apache.org/connectors-doc-archive/jk2/
http://www.php.net/
http://hpwww.ec-lyon.fr/~vincent/apache/mod_put.html
ftp://hachiman.vidya.com/pub/apache/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

httpd	-	Apache	Hypertext	Transfer	Protocol
Server

httpd	is	the	Apache	HyperText	Transfer	Protocol	(HTTP)	server
program.	It	is	designed	to	be	run	as	a	standalone	daemon	process.
When	used	like	this	it	will	create	a	pool	of	child	processes	or	threads
to	handle	requests.

In	general,	httpd	should	not	be	invoked	directly,	but	rather	should	be
invoked	via	apachectl	on	Unix-based	systems	or	as	a	service	on
Windows	NT,	2000	and	XP	and	as	a	console	application	on	Windows
9x	and	ME.

See	also
Starting	Apache	httpd
Stopping	Apache	httpd
Configuration	Files
Platform-specific	Documentation
apachectl

https://www.apache.org/foundation/contributing.html

Synopsis
httpd	[-d	serverroot]	[-f	config]	[-C

directive]	[-c	directive]	[-D	parameter]	[-

e	level]	[-E	file]	[-k

start|restart|graceful|stop|graceful-stop]	[-h

]	[-l]	[-L]	[-S]	[-t]	[-v]	[-V]	[-X

]	[-M]	[-T]

On	Windows	systems,	the	following	additional	arguments	are
available:

httpd	[-k	install|config|uninstall]	[-n	name]

[-w]

Options

-d	serverroot

Set	the	initial	value	for	the	ServerRoot	directive	to
serverroot.	This	can	be	overridden	by	the	ServerRoot
directive	in	the	configuration	file.	The	default	is
/usr/local/apache2.

-f	config

Uses	the	directives	in	the	file	config	on	startup.	If	config	does
not	begin	with	a	/,	then	it	is	taken	to	be	a	path	relative	to	the
ServerRoot.	The	default	is	conf/httpd.conf.

-k	start|restart|graceful|stop|graceful-stop

Signals	httpd	to	start,	restart,	or	stop.	See	Stopping	Apache
httpd	for	more	information.

-C	directive

Process	the	configuration	directive	before	reading	config	files.

-c	directive

Process	the	configuration	directive	after	reading	config	files.

-D	parameter

Sets	a	configuration	parameter	which	can	be	used	with
<IfDefine>	sections	in	the	configuration	files	to
conditionally	skip	or	process	commands	at	server	startup	and
restart.	Also	can	be	used	to	set	certain	less-common	startup
parameters	including	-DNO_DETACH	(prevent	the	parent	from
forking)	and	-DFOREGROUND	(prevent	the	parent	from	calling
setsid()	et	al).

-e	level

Sets	the	LogLevel	to	level	during	server	startup.	This	is
useful	for	temporarily	increasing	the	verbosity	of	the	error
messages	to	find	problems	during	startup.

-E	file

Send	error	messages	during	server	startup	to	file.

-h

Output	a	short	summary	of	available	command	line	options.

-l

Output	a	list	of	modules	compiled	into	the	server.	This	will	not
list	dynamically	loaded	modules	included	using	the
LoadModule	directive.

-L

Output	a	list	of	directives	provided	by	static	modules,	together
with	expected	arguments	and	places	where	the	directive	is
valid.	Directives	provided	by	shared	modules	are	not	listed.

-M

Dump	a	list	of	loaded	Static	and	Shared	Modules.

-S

Show	the	settings	as	parsed	from	the	config	file	(currently
only	shows	the	virtualhost	settings).

-T	(Available	in	2.3.8	and	later)
Skip	document	root	check	at	startup/restart.

-t

Run	syntax	tests	for	configuration	files	only.	The	program
immediately	exits	after	these	syntax	parsing	tests	with	either	a
return	code	of	0	(Syntax	OK)	or	return	code	not	equal	to	0
(Syntax	Error).	If	-D	DUMP_VHOSTS	is	also	set,	details	of	the
virtual	host	configuration	will	be	printed.	If	-D
DUMP_MODULES	is	set,	all	loaded	modules	will	be	printed.

-v

Print	the	version	of	httpd,	and	then	exit.

-V

Print	the	version	and	build	parameters	of	httpd,	and	then
exit.

-X

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Run	httpd	in	debug	mode.	Only	one	worker	will	be	started	and
the	server	will	not	detach	from	the	console.

The	following	arguments	are	available	only	on	the	Windows
platform:

-k	install|config|uninstall

Install	Apache	httpd	as	a	Windows	NT	service;	change	startup
options	for	the	Apache	httpd	service;	and	uninstall	the	Apache
httpd	service.

-n	name

The	name	of	the	Apache	httpd	service	to	signal.

-w

Keep	the	console	window	open	on	error	so	that	the	error
message	can	be	read.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

ab	-	Apache	HTTP	server	benchmarking	tool

ab	is	a	tool	for	benchmarking	your	Apache	Hypertext	Transfer
Protocol	(HTTP)	server.	It	is	designed	to	give	you	an	impression	of
how	your	current	Apache	installation	performs.	This	especially	shows
you	how	many	requests	per	second	your	Apache	installation	is
capable	of	serving.

See	also
httpd

https://www.apache.org/foundation/contributing.html

Synopsis
ab	[-A	auth-username:password]	[-b	windowsize

]	[-B	local-address]	[-c	concurrency]	[-C

cookie-name=value]	[-d]	[-e	csv-file]	[-f

protocol]	[-g	gnuplot-file]	[-h]	[-H

custom-header]	[-i]	[-k]	[-l]	[-m	HTTP-

method]	[-n	requests]	[-p	POST-file]	[-P

proxy-auth-username:password]	[-q]	[-r]	[-s

timeout]	[-S]	[-t	timelimit]	[-T	content-

type]	[-u	PUT-file]	[-v	verbosity]	[-V]	[-

w]	[-x	<table>-attributes]	[-X	proxy[:port]]

[-y	<tr>-attributes]	[-z	<td>-attributes]	[-

Z	ciphersuite]	[http[s]://]hostname[:port]/path

Options

-A	auth-username:password

Supply	BASIC	Authentication	credentials	to	the	server.	The
username	and	password	are	separated	by	a	single	:	and	sent
on	the	wire	base64	encoded.	The	string	is	sent	regardless	of
whether	the	server	needs	it	(i.e.,	has	sent	an	401
authentication	needed).

-b	windowsize

Size	of	TCP	send/receive	buffer,	in	bytes.

-B	local-address

Address	to	bind	to	when	making	outgoing	connections.

-c	concurrency

Number	of	multiple	requests	to	perform	at	a	time.	Default	is
one	request	at	a	time.

-C	cookie-name=value

Add	a	Cookie:	line	to	the	request.	The	argument	is	typically
in	the	form	of	a	name=value	pair.	This	field	is	repeatable.

-d

Do	not	display	the	"percentage	served	within	XX	[ms]	table".
(legacy	support).

-e	csv-file

Write	a	Comma	separated	value	(CSV)	file	which	contains	for
each	percentage	(from	1%	to	100%)	the	time	(in	milliseconds)
it	took	to	serve	that	percentage	of	the	requests.	This	is	usually
more	useful	than	the	'gnuplot'	file;	as	the	results	are	already
'binned'.

-f	protocol

Specify	SSL/TLS	protocol	(SSL2,	SSL3,	TLS1,	TLS1.1,
TLS1.2,	or	ALL).	TLS1.1	and	TLS1.2	support	available	in
2.4.4	and	later.

-g	gnuplot-file

Write	all	measured	values	out	as	a	'gnuplot'	or	TSV	(Tab
separate	values)	file.	This	file	can	easily	be	imported	into
packages	like	Gnuplot,	IDL,	Mathematica,	Igor	or	even	Excel.
The	labels	are	on	the	first	line	of	the	file.

-h

Display	usage	information.

-H	custom-header

Append	extra	headers	to	the	request.	The	argument	is
typically	in	the	form	of	a	valid	header	line,	containing	a	colon-
separated	field-value	pair	(i.e.,	"Accept-Encoding:
zip/zop;8bit").

-i

Do	HEAD	requests	instead	of	GET.

-k

Enable	the	HTTP	KeepAlive	feature,	i.e.,	perform	multiple
requests	within	one	HTTP	session.	Default	is	no	KeepAlive.

-l

Do	not	report	errors	if	the	length	of	the	responses	is	not
constant.	This	can	be	useful	for	dynamic	pages.	Available	in
2.4.7	and	later.

-m	HTTP-method

Custom	HTTP	method	for	the	requests.	Available	in	2.4.10
and	later.

-n	requests

Number	of	requests	to	perform	for	the	benchmarking	session.
The	default	is	to	just	perform	a	single	request	which	usually
leads	to	non-representative	benchmarking	results.

-p	POST-file

File	containing	data	to	POST.	Remember	to	also	set	-T.

-P	proxy-auth-username:password

Supply	BASIC	Authentication	credentials	to	a	proxy	en-route.
The	username	and	password	are	separated	by	a	single	:	and
sent	on	the	wire	base64	encoded.	The	string	is	sent
regardless	of	whether	the	proxy	needs	it	(i.e.,	has	sent	an	407
proxy	authentication	needed).

-q

When	processing	more	than	150	requests,	ab	outputs	a
progress	count	on	stderr	every	10%	or	100	requests	or	so.
The	-q	flag	will	suppress	these	messages.

-r

Don't	exit	on	socket	receive	errors.

-s	timeout

Maximum	number	of	seconds	to	wait	before	the	socket	times
out.	Default	is	30	seconds.	Available	in	2.4.4	and	later.

-S

Do	not	display	the	median	and	standard	deviation	values,	nor
display	the	warning/error	messages	when	the	average	and
median	are	more	than	one	or	two	times	the	standard	deviation
apart.	And	default	to	the	min/avg/max	values.	(legacy
support).

-t	timelimit

Maximum	number	of	seconds	to	spend	for	benchmarking.
This	implies	a	-n	50000	internally.	Use	this	to	benchmark
the	server	within	a	fixed	total	amount	of	time.	Per	default	there
is	no	timelimit.

-T	content-type

Content-type	header	to	use	for	POST/PUT	data,	eg.
application/x-www-form-urlencoded.	Default	is
text/plain.

-u	PUT-file

File	containing	data	to	PUT.	Remember	to	also	set	-T.

-v	verbosity

Set	verbosity	level	-	4	and	above	prints	information	on
headers,	3	and	above	prints	response	codes	(404,	200,	etc.),
2	and	above	prints	warnings	and	info.

-V

Display	version	number	and	exit.

-w

Print	out	results	in	HTML	tables.	Default	table	is	two	columns
wide,	with	a	white	background.

-x	<table>-attributes

String	to	use	as	attributes	for	<table>.	Attributes	are
inserted	<table	here	>.

-X	proxy[:port]

Use	a	proxy	server	for	the	requests.

-y	<tr>-attributes

String	to	use	as	attributes	for	<tr>.

-z	<td>-attributes

String	to	use	as	attributes	for	<td>.

-Z	ciphersuite

Specify	SSL/TLS	cipher	suite	(See	openssl	ciphers)

Output

The	following	list	describes	the	values	returned	by	ab:

Server	Software
The	value,	if	any,	returned	in	the	server	HTTP	header	of	the
first	successful	response.	This	includes	all	characters	in	the
header	from	beginning	to	the	point	a	character	with	decimal
value	of	32	(most	notably:	a	space	or	CR/LF)	is	detected.

Server	Hostname
The	DNS	or	IP	address	given	on	the	command	line

Server	Port
The	port	to	which	ab	is	connecting.	If	no	port	is	given	on	the
command	line,	this	will	default	to	80	for	http	and	443	for	https.

SSL/TLS	Protocol
The	protocol	parameters	negotiated	between	the	client	and
server.	This	will	only	be	printed	if	SSL	is	used.

Document	Path
The	request	URI	parsed	from	the	command	line	string.

Document	Length
This	is	the	size	in	bytes	of	the	first	successfully	returned
document.	If	the	document	length	changes	during	testing,	the
response	is	considered	an	error.

Concurrency	Level
The	number	of	concurrent	clients	used	during	the	test

Time	taken	for	tests
This	is	the	time	taken	from	the	moment	the	first	socket
connection	is	created	to	the	moment	the	last	response	is
received

Complete	requests
The	number	of	successful	responses	received

Failed	requests

The	number	of	requests	that	were	considered	a	failure.	If	the
number	is	greater	than	zero,	another	line	will	be	printed
showing	the	number	of	requests	that	failed	due	to	connecting,
reading,	incorrect	content	length,	or	exceptions.

Write	errors
The	number	of	errors	that	failed	during	write	(broken	pipe).

Non-2xx	responses
The	number	of	responses	that	were	not	in	the	200	series	of
response	codes.	If	all	responses	were	200,	this	field	is	not
printed.

Keep-Alive	requests
The	number	of	connections	that	resulted	in	Keep-Alive
requests

Total	body	sent
If	configured	to	send	data	as	part	of	the	test,	this	is	the	total
number	of	bytes	sent	during	the	tests.	This	field	is	omitted	if
the	test	did	not	include	a	body	to	send.

Total	transferred
The	total	number	of	bytes	received	from	the	server.	This
number	is	essentially	the	number	of	bytes	sent	over	the	wire.

HTML	transferred
The	total	number	of	document	bytes	received	from	the	server.
This	number	excludes	bytes	received	in	HTTP	headers

Requests	per	second
This	is	the	number	of	requests	per	second.	This	value	is	the
result	of	dividing	the	number	of	requests	by	the	total	time
taken

Time	per	request
The	average	time	spent	per	request.	The	first	value	is
calculated	with	the	formula	concurrency	*	timetaken	*
1000	/	done	while	the	second	value	is	calculated	with	the

formula	timetaken	*	1000	/	done

Transfer	rate
The	rate	of	transfer	as	calculated	by	the	formula	totalread
/	1024	/	timetaken

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Bugs

There	are	various	statically	declared	buffers	of	fixed	length.
Combined	with	the	lazy	parsing	of	the	command	line	arguments,
the	response	headers	from	the	server	and	other	external	inputs,
this	might	bite	you.

It	does	not	implement	HTTP/1.x	fully;	only	accepts	some
'expected'	forms	of	responses.	The	rather	heavy	use	of
strstr(3)	shows	up	top	in	profile,	which	might	indicate	a
performance	problem;	i.e.,	you	would	measure	the	ab
performance	rather	than	the	server's.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

apachectl	-	Apache	HTTP	Server	Control
Interface

apachectl	is	a	front	end	to	the	Apache	HyperText	Transfer	Protocol
(HTTP)	server.	It	is	designed	to	help	the	administrator	control	the
functioning	of	the	Apache	httpd	daemon.

The	apachectl	script	can	operate	in	two	modes.	First,	it	can	act	as	a
simple	front-end	to	the	httpd	command	that	simply	sets	any
necessary	environment	variables	and	then	invokes	httpd,	passing
through	any	command	line	arguments.	Second,	apachectl	can	act
as	a	SysV	init	script,	taking	simple	one-word	arguments	like	start,
restart,	and	stop,	and	translating	them	into	appropriate	signals	to
httpd.

If	your	Apache	installation	uses	non-standard	paths,	you	will	need	to
edit	the	apachectl	script	to	set	the	appropriate	paths	to	the	httpd
binary.	You	can	also	specify	any	necessary	httpd	command	line
arguments.	See	the	comments	in	the	script	for	details.

The	apachectl	script	returns	a	0	exit	value	on	success,	and	>0	if	an
error	occurs.	For	more	details,	view	the	comments	in	the	script.

See	also
Starting	Apache
Stopping	Apache
Configuration	Files
Platform	Docs

https://www.apache.org/foundation/contributing.html

httpd

Synopsis

When	acting	in	pass-through	mode,	apachectl	can	take	all	the
arguments	available	for	the	httpd	binary.

apachectl	[httpd-argument]

When	acting	in	SysV	init	mode,	apachectl	takes	simple,	one-
word	commands,	defined	below.

apachectl	command

Options

Only	the	SysV	init-style	options	are	defined	here.	Other	arguments
are	defined	on	the	httpd	manual	page.

start

Start	the	Apache	httpd	daemon.	Gives	an	error	if	it	is
already	running.	This	is	equivalent	to	apachectl	-k
start.

stop

Stops	the	Apache	httpd	daemon.	This	is	equivalent	to
apachectl	-k	stop.

restart

Restarts	the	Apache	httpd	daemon.	If	the	daemon	is	not
running,	it	is	started.	This	command	automatically	checks	the
configuration	files	as	in	configtest	before	initiating	the
restart	to	make	sure	the	daemon	doesn't	die.	This	is
equivalent	to	apachectl	-k	restart.

fullstatus

Displays	a	full	status	report	from	mod_status.	For	this	to
work,	you	need	to	have	mod_status	enabled	on	your	server
and	a	text-based	browser	such	as	lynx	available	on	your
system.	The	URL	used	to	access	the	status	report	can	be	set
by	editing	the	STATUSURL	variable	in	the	script.

status

Displays	a	brief	status	report.	Similar	to	the	fullstatus
option,	except	that	the	list	of	requests	currently	being	served
is	omitted.

graceful

Gracefully	restarts	the	Apache	httpd	daemon.	If	the	daemon
is	not	running,	it	is	started.	This	differs	from	a	normal	restart	in
that	currently	open	connections	are	not	aborted.	A	side	effect

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

is	that	old	log	files	will	not	be	closed	immediately.	This	means
that	if	used	in	a	log	rotation	script,	a	substantial	delay	may	be
necessary	to	ensure	that	the	old	log	files	are	closed	before
processing	them.	This	command	automatically	checks	the
configuration	files	as	in	configtest	before	initiating	the
restart	to	make	sure	Apache	doesn't	die.	This	is	equivalent	to
apachectl	-k	graceful.

graceful-stop

Gracefully	stops	the	Apache	httpd	daemon.	This	differs	from
a	normal	stop	in	that	currently	open	connections	are	not
aborted.	A	side	effect	is	that	old	log	files	will	not	be	closed
immediately.	This	is	equivalent	to	apachectl	-k
graceful-stop.

configtest

Run	a	configuration	file	syntax	test.	It	parses	the	configuration
files	and	either	reports	Syntax	Ok	or	detailed	information
about	the	particular	syntax	error.	This	is	equivalent	to
apachectl	-t.

The	following	option	was	available	in	earlier	versions	but	has	been
removed.

startssl

To	start	httpd	with	SSL	support,	you	should	edit	your
configuration	file	to	include	the	relevant	directives	and	then
use	the	normal	apachectl	start.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

apxs	-	APache	eXtenSion	tool

apxs	is	a	tool	for	building	and	installing	extension	modules	for	the
Apache	HyperText	Transfer	Protocol	(HTTP)	server.	This	is	achieved
by	building	a	dynamic	shared	object	(DSO)	from	one	or	more	source
or	object	files	which	then	can	be	loaded	into	the	Apache	server	under
runtime	via	the	LoadModule	directive	from	mod_so.

So	to	use	this	extension	mechanism	your	platform	has	to	support	the
DSO	feature	and	your	Apache	httpd	binary	has	to	be	built	with	the
mod_so	module.	The	apxs	tool	automatically	complains	if	this	is	not
the	case.	You	can	check	this	yourself	by	manually	running	the
command

$	httpd	-l

The	module	mod_so	should	be	part	of	the	displayed	list.	If	these
requirements	are	fulfilled	you	can	easily	extend	your	Apache	server's
functionality	by	installing	your	own	modules	with	the	DSO	mechanism
by	the	help	of	this	apxs	tool:

$	apxs	-i	-a	-c	mod_foo.c

gcc	-fpic	-DSHARED_MODULE	-I/path/to/apache/include	-c	mod_foo.c

ld	-Bshareable	-o	mod_foo.so	mod_foo.o

cp	mod_foo.so	/path/to/apache/modules/mod_foo.so

chmod	755	/path/to/apache/modules/mod_foo.so

[activating	module	`foo'	in	/path/to/apache/etc/httpd.conf]

$	apachectl	restart

/path/to/apache/sbin/apachectl	restart:	httpd	not	running,	trying

to	start

[Tue	Mar	31	11:27:55	1998]	[debug]	mod_so.c(303):	loaded	module

foo_module

/path/to/apache/sbin/apachectl	restart:	httpd	started

$	_

The	arguments	files	can	be	any	C	source	file	(.c),	a	object	file	(.o)	or
even	a	library	archive	(.a).	The	apxs	tool	automatically	recognizes

these	extensions	and	automatically	used	the	C	source	files	for
compilation	while	just	using	the	object	and	archive	files	for	the	linking
phase.	But	when	using	such	pre-compiled	objects	make	sure	they	are
compiled	for	position	independent	code	(PIC)	to	be	able	to	use	them
for	a	dynamically	loaded	shared	object.	For	instance	with	GCC	you
always	just	have	to	use	-fpic.	For	other	C	compilers	consult	its
manual	page	or	at	watch	for	the	flags	apxs	uses	to	compile	the	object
files.

For	more	details	about	DSO	support	in	Apache	read	the
documentation	of	mod_so	or	perhaps	even	read	the
src/modules/standard/mod_so.c	source	file.

See	also
apachectl

httpd

https://www.apache.org/foundation/contributing.html

Synopsis
apxs	-g	[-S	name=value]	-n	modname

apxs	-q	[-v]	[-S	name=value]	query	...

apxs	-c	[-S	name=value]	[-o	dsofile]	[-I

incdir]	[-D	name=value]	[-L	libdir]	[-l

libname]	[-Wc,compiler-flags]	[-Wl,linker-

flags]	files	...

apxs	-i	[-S	name=value]	[-n	modname]	[-a]	[

-A]	dso-file	...

apxs	-e	[-S	name=value]	[-n	modname]	[-a]	[

-A]	dso-file	...

Options

Common	Options
-n	modname

This	explicitly	sets	the	module	name	for	the	-i	(install)	and	-
g	(template	generation)	option.	Use	this	to	explicitly	specify
the	module	name.	For	option	-g	this	is	required,	for	option	-i
the	apxs	tool	tries	to	determine	the	name	from	the	source	or
(as	a	fallback)	at	least	by	guessing	it	from	the	filename.

Query	Options
-q

Performs	a	query	for	variables	and	environment	settings	used
to	build	httpd.	When	invoked	without	query	parameters,	it
prints	all	known	variables	and	their	values.	The	optional	-v
parameter	formats	the	list	output.
Use	this	to	manually	determine	settings	used	to	build	the
httpd	that	will	load	your	module.	For	instance	use

INC=-I`apxs	-q	INCLUDEDIR`

inside	your	own	Makefiles	if	you	need	manual	access	to
Apache's	C	header	files.

Configuration	Options
-S	name=value

This	option	changes	the	apxs	settings	described	above.

Template	Generation	Options
-g

This	generates	a	subdirectory	name	(see	option	-n)	and	there
two	files:	A	sample	module	source	file	named	mod_name.c

which	can	be	used	as	a	template	for	creating	your	own
modules	or	as	a	quick	start	for	playing	with	the	apxs
mechanism.	And	a	corresponding	Makefile	for	even	easier
build	and	installing	of	this	module.

DSO	Compilation	Options
-c

This	indicates	the	compilation	operation.	It	first	compiles	the	C
source	files	(.c)	of	files	into	corresponding	object	files	(.o)	and
then	builds	a	dynamically	shared	object	in	dsofile	by	linking
these	object	files	plus	the	remaining	object	files	(.o	and	.a)	of
files.	If	no	-o	option	is	specified	the	output	file	is	guessed
from	the	first	filename	in	files	and	thus	usually	defaults	to
mod_name.so.

-o	dsofile

Explicitly	specifies	the	filename	of	the	created	dynamically
shared	object.	If	not	specified	and	the	name	cannot	be
guessed	from	the	files	list,	the	fallback	name
mod_unknown.so	is	used.

-D	name=value

This	option	is	directly	passed	through	to	the	compilation
command(s).	Use	this	to	add	your	own	defines	to	the	build
process.

-I	incdir

This	option	is	directly	passed	through	to	the	compilation
command(s).	Use	this	to	add	your	own	include	directories	to
search	to	the	build	process.

-L	libdir

This	option	is	directly	passed	through	to	the	linker	command.
Use	this	to	add	your	own	library	directories	to	search	to	the
build	process.

-l	libname

This	option	is	directly	passed	through	to	the	linker	command.
Use	this	to	add	your	own	libraries	to	search	to	the	build
process.

-Wc,compiler-flags

This	option	passes	compiler-flags	as	additional	flags	to	the
libtool	--mode=compile	command.	Use	this	to	add	local
compiler-specific	options.

-Wl,linker-flags

This	option	passes	linker-flags	as	additional	flags	to	the
libtool	--mode=link	command.	Use	this	to	add	local
linker-specific	options.

-p

This	option	causes	apxs	to	link	against	the	apr/apr-util
libraries.	This	is	useful	when	compiling	helper	programs	that
use	the	apr/apr-util	libraries.

DSO	Installation	and	Configuration	Options
-i

This	indicates	the	installation	operation	and	installs	one	or
more	dynamically	shared	objects	into	the	server's	modules
directory.

-a

This	activates	the	module	by	automatically	adding	a
corresponding	LoadModule	line	to	Apache's	httpd.conf
configuration	file,	or	by	enabling	it	if	it	already	exists.

-A

Same	as	option	-a	but	the	created	LoadModule	directive	is
prefixed	with	a	hash	sign	(#),	i.e.,	the	module	is	just	prepared
for	later	activation	but	initially	disabled.

-e

This	indicates	the	editing	operation,	which	can	be	used	with
the	-a	and	-A	options	similarly	to	the	-i	operation	to	edit
Apache's	httpd.conf	configuration	file	without	attempting	to
install	the	module.

Examples

Assume	you	have	an	Apache	module	named	mod_foo.c
available	which	should	extend	Apache's	server	functionality.	To
accomplish	this	you	first	have	to	compile	the	C	source	into	a
shared	object	suitable	for	loading	into	the	Apache	server	under
runtime	via	the	following	command:

$	apxs	-c	mod_foo.c

/path/to/libtool	--mode=compile	gcc	...	-c	mod_foo.c

/path/to/libtool	--mode=link	gcc	...	-o	mod_foo.la	mod_foo.slo

$	_

Then	you	have	to	update	the	Apache	configuration	by	making	sure
a	LoadModule	directive	is	present	to	load	this	shared	object.	To
simplify	this	step	apxs	provides	an	automatic	way	to	install	the
shared	object	in	its	"modules"	directory	and	updating	the
httpd.conf	file	accordingly.	This	can	be	achieved	by	running:

$	apxs	-i	-a	mod_foo.la

/path/to/instdso.sh	mod_foo.la	/path/to/apache/modules

/path/to/libtool	--mode=install	cp	mod_foo.la

/path/to/apache/modules	...	chmod	755

/path/to/apache/modules/mod_foo.so

[activating	module	`foo'	in	/path/to/apache/conf/httpd.conf]

$	_

This	way	a	line	named

LoadModule	foo_module	modules/mod_foo.so

is	added	to	the	configuration	file	if	still	not	present.	If	you	want	to
have	this	disabled	per	default	use	the	-A	option,	i.e.

$	apxs	-i	-A	mod_foo.c

For	a	quick	test	of	the	apxs	mechanism	you	can	create	a	sample
Apache	module	template	plus	a	corresponding	Makefile	via:

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

$	apxs	-g	-n	foo

Creating	[DIR]	foo

Creating	[FILE]	foo/Makefile

Creating	[FILE]	foo/modules.mk

Creating	[FILE]	foo/mod_foo.c

Creating	[FILE]	foo/.deps

$	_

Then	you	can	immediately	compile	this	sample	module	into	a
shared	object	and	load	it	into	the	Apache	server:

$	cd	foo

$	make	all	reload

apxs	-c	mod_foo.c

/path/to/libtool	--mode=compile	gcc	...	-c	mod_foo.c

/path/to/libtool	--mode=link	gcc	...	-o	mod_foo.la	mod_foo.slo

apxs	-i	-a	-n	"foo"	mod_foo.la

/path/to/instdso.sh	mod_foo.la	/path/to/apache/modules

/path/to/libtool	--mode=install	cp	mod_foo.la

/path/to/apache/modules	...	chmod	755

/path/to/apache/modules/mod_foo.so

[activating	module	`foo'	in	/path/to/apache/conf/httpd.conf]

apachectl	restart

/path/to/apache/sbin/apachectl	restart:	httpd	not	running,

trying	to	start

[Tue	Mar	31	11:27:55	1998]	[debug]	mod_so.c(303):	loaded	module

foo_module

/path/to/apache/sbin/apachectl	restart:	httpd	started

$	_

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

configure	-	Configure	the	source	tree

The	configure	script	configures	the	source	tree	for	compiling	and
installing	the	Apache	HTTP	Server	on	your	particular	platform.
Various	options	allow	the	compilation	of	a	server	corresponding	to
your	personal	requirements.

This	script,	included	in	the	root	directory	of	the	source	distribution,	is
for	compilation	on	Unix	and	Unix-like	systems	only.	For	other
platforms,	see	the	platform	documentation.

See	also
Compiling	and	Installing

https://www.apache.org/foundation/contributing.html

Synopsis

You	should	call	the	configure	script	from	within	the	root
directory	of	the	distribution.

./configure	[OPTION]...	[VAR=VALUE]...

To	assign	environment	variables	(e.g.	CC,	CFLAGS	...),	specify
them	as	VAR=VALUE.	See	below	for	descriptions	of	some	of	the
useful	variables.

Options

Configuration	options
Installation	directories
System	types
Optional	features
Options	for	support	programs

Configuration	options
The	following	options	influence	the	behavior	of	configure	itself.

-C

--config-cache

This	is	an	alias	for	--cache-file=config.cache

--cache-file=FILE

The	test	results	will	be	cached	in	file	FILE.	This	option	is
disabled	by	default.

-h

--help	[short|recursive]

Output	the	help	and	exit.	With	the	argument	short	only
options	specific	to	this	package	will	displayed.	The	argument
recursive	displays	the	short	help	of	all	the	included
packages.

-n

--no-create

The	configure	script	is	run	normally	but	does	not	create
output	files.	This	is	useful	to	check	the	test	results	before
generating	makefiles	for	compilation.

-q

--quiet

Do	not	print	checking	...	messages	during	the	configure

process.

--srcdir=DIR

Defines	directory	DIR	to	be	the	source	file	directory.	Default	is
the	directory	where	configure	is	located,	or	the	parent
directory.

--silent

Same	as	--quiet

-V

--version
Display	copyright	information	and	exit.

Installation	directories
These	options	define	the	installation	directory.	The	installation	tree
depends	on	the	selected	layout.

--prefix=PREFIX

Install	architecture-independent	files	in	PREFIX.	By	default
the	installation	directory	is	set	to	/usr/local/apache2.

--exec-prefix=EPREFIX

Install	architecture-dependent	files	in	EPREFIX.	By	default	the
installation	directory	is	set	to	the	PREFIX	directory.

By	default,	make	install	will	install	all	the	files	in
/usr/local/apache2/bin,	/usr/local/apache2/lib	etc.
You	can	specify	an	installation	prefix	other	than
/usr/local/apache2	using	--prefix,	for	instance	--
prefix=$HOME.

Define	a	directory	layout
--enable-layout=LAYOUT

Configure	the	source	code	and	build	scripts	to	assume	an

installation	tree	based	on	the	layout	LAYOUT.	This	allows	you
to	separately	specify	the	locations	for	each	type	of	file	within
the	Apache	HTTP	Server	installation.	The	config.layout
file	contains	several	example	configurations,	and	you	can	also
create	your	own	custom	configuration	following	the	examples.
The	different	layouts	in	this	file	are	grouped	into	<Layout
FOO>...</Layout>	sections	and	referred	to	by	name	as	in
FOO.	The	default	layout	is	Apache.

Fine	tuning	of	the	installation	directories
For	better	control	of	the	installation	directories,	use	the	options
below.	Please	note	that	the	directory	defaults	are	set	by
autoconf	and	are	overwritten	by	the	corresponding	layout
setting.

--bindir=DIR

Install	user	executables	in	DIR.	The	user	executables	are
supporting	programs	like	htpasswd,	dbmmanage,	etc.	which
are	useful	for	site	administrators.	By	default	DIR	is	set	to
EPREFIX/bin.

--datadir=DIR

Install	read-only	architecture-independent	data	in	DIR.	By
default	datadir	is	set	to	PREFIX/share.	This	option	is
offered	by	autoconf	and	currently	unused.

--includedir=DIR

Install	C	header	files	in	DIR.	By	default	includedir	is	set	to
EPREFIX/include.

--infodir=DIR

Install	info	documentation	in	DIR.	By	default	infodir	is	set
to	PREFIX/info.	This	option	is	currently	unused.

--libdir=DIR

Install	object	code	libraries	in	DIR.	By	default	libdir	is	set	to

EPREFIX/lib.

--libexecdir=DIR

Install	the	program	executables	(i.e.,	shared	modules)	in	DIR.
By	default	libexecdir	is	set	to	EPREFIX/modules.

--localstatedir=DIR

Install	modifiable	single-machine	data	in	DIR.	By	default
localstatedir	is	set	to	PREFIX/var.	This	option	is
offered	by	autoconf	and	currently	unused.

--mandir=DIR

Install	the	man	documentation	in	DIR.	By	default	mandir	is
set	to	EPREFIX/man.

--oldincludedir=DIR

Install	C	header	files	for	non-gcc	in	DIR.	By	default
oldincludedir	is	set	to	/usr/include.	This	option	is
offered	by	autoconf	and	currently	unused.

--sbindir=DIR

Install	the	system	administrator	executables	in	DIR.	Those	are
server	programs	like	httpd,	apachectl,	suexec,	etc.	which
are	necessary	to	run	the	Apache	HTTP	Server.	By	default
sbindir	is	set	to	EPREFIX/sbin.

--sharedstatedir=DIR

Install	modifiable	architecture-independent	data	in	DIR.	By
default	sharedstatedir	is	set	to	PREFIX/com.	This	option
is	offered	by	autoconf	and	currently	unused.

--sysconfdir=DIR

Install	read-only	single-machine	data	like	the	server
configuration	files	httpd.conf,	mime.types,	etc.	in	DIR.
By	default	sysconfdir	is	set	to	PREFIX/conf.

System	types

These	options	are	used	to	cross-compile	the	Apache	HTTP	Server
to	run	on	another	system.	In	normal	cases,	when	building	and
running	the	server	on	the	same	system,	these	options	are	not
used.

--build=BUILD

Defines	the	system	type	of	the	system	on	which	the	tools	are
being	built.	It	defaults	to	the	result	of	the	script
config.guess.

--host=HOST

Defines	the	system	type	of	the	system	on	which	the	server	will
run.	HOST	defaults	to	BUILD.

--target=TARGET

Configure	for	building	compilers	for	the	system	type	TARGET.
It	defaults	to	HOST.	This	option	is	offered	by	autoconf	and
not	necessary	for	the	Apache	HTTP	Server.

Optional	Features
These	options	are	used	to	fine	tune	the	features	your	HTTP	server
will	have.

General	syntax
Generally	you	can	use	the	following	syntax	to	enable	or	disable	a
feature:

--disable-FEATURE

Do	not	include	FEATURE.	This	is	the	same	as	--enable-
FEATURE=no.

--enable-FEATURE[=ARG]

Include	FEATURE.	The	default	value	for	ARG	is	yes.

--enable-MODULE=shared

The	corresponding	module	will	be	build	as	DSO	module.	By

default	enabled	modules	are	linked	dynamically.

--enable-MODULE=static

The	corresponding	module	will	be	linked	statically.

Note
configure	will	not	complain	about	--enable-foo	even	if	foo
doesn't	exist,	so	you	need	to	type	carefully.

Choosing	modules	to	compile
Most	modules	are	compiled	by	default	and	have	to	be	disabled
explicitly	or	by	using	the	keyword	few	(see	--enable-modules,
--enable-mods-shared	and	--enable-mods-static	below
for	further	explanation)	or	--enable-modules=none	to	be
removed	as	a	group.

Other	modules	are	not	compiled	by	default	and	have	to	be
enabled	explicitly	or	by	using	the	keywords	all	or	reallyall	to
be	available.

To	find	out	which	modules	are	compiled	by	default,	run
./configure	-h	or	./configure	--help	and	look	under
Optional	Features.	Suppose	you	are	interested	in
mod_example1	and	mod_example2,	and	you	see	this:

Optional	Features:

		...

		--disable-example1					example	module	1

		--enable-example2						example	module	2

		...

Then	mod_example1	is	enabled	by	default,	and	you	would	use	-
-disable-example1	to	not	compile	it.	mod_example2	is
disabled	by	default,	and	you	would	use	--enable-example2	to
compile	it.

Multi-Processing	Modules
Multi-Processing	Modules,	or	MPMs,	implement	the	basic
behavior	of	the	server.	A	single	MPM	must	be	active	in	order	for
the	server	to	function.	The	list	of	available	MPMs	appears	on	the
module	index	page.

MPMs	can	be	built	as	DSOs	for	dynamic	loading	or	statically
linked	with	the	server,	and	are	enabled	using	the	following	options:

--with-mpm=MPM

Choose	the	default	MPM	for	your	server.	If	MPMs	are	built	as
DSO	modules	(see	--enable-mpms-shared),	this	directive
selects	the	MPM	which	will	be	loaded	in	the	default
configuration	file.	Otherwise,	this	directive	selects	the	only
available	MPM,	which	will	be	statically	linked	into	the	server.

If	this	option	is	omitted,	the	default	MPM	for	your	operating
system	will	be	used.

--enable-mpms-shared=MPM-LIST

Enable	a	list	of	MPMs	as	dynamic	shared	modules.	One	of
these	modules	must	be	loaded	dynamically	using	the
LoadModule	directive.

MPM-LIST	is	a	space-separated	list	of	MPM	names	enclosed
by	quotation	marks.	For	example:

--enable-mpms-shared='prefork	worker'

Additionally	you	can	use	the	special	keyword	all,	which	will
select	all	MPMs	which	support	dynamic	loading	on	the	current
platform	and	build	them	as	DSO	modules.	For	example:

--enable-mpms-shared=all

Third-party	modules
To	add	additional	third-party	modules	use	the	following	options:

--with-module=module-type:module-file[,	module-

type:module-file]

Add	one	or	more	third-party	modules	to	the	list	of	statically
linked	modules.	The	module	source	file	module-file	will	be
searched	in	the	modules/module-type	subdirectory	of
your	Apache	HTTP	server	source	tree.	If	it	is	not	found	there
configure	is	considering	module-file	to	be	an	absolute	file
path	and	tries	to	copy	the	source	file	into	the	module-type
subdirectory.	If	the	subdirectory	doesn't	exist	it	will	be	created
and	populated	with	a	standard	Makefile.in.

This	option	is	useful	to	add	small	external	modules	consisting
of	one	source	file.	For	more	complex	modules	you	should
read	the	vendor's	documentation.

Note

If	you	want	to	build	a	DSO	module	instead	of	a	statically
linked	use	apxs.

Cumulative	and	other	options
--enable-maintainer-mode

Turn	on	debugging	and	compile	time	warnings	and	load	all
compiled	modules.

--enable-mods-shared=MODULE-LIST

Defines	a	list	of	modules	to	be	enabled	and	build	as	dynamic
shared	modules.	This	mean,	these	module	have	to	be	loaded
dynamically	by	using	the	LoadModule	directive.

MODULE-LIST	is	a	space	separated	list	of	modulenames
enclosed	by	quotation	marks.	The	module	names	are	given

without	the	preceding	mod_.	For	example:

--enable-mods-shared='headers	rewrite	dav'

Additionally	you	can	use	the	special	keywords	reallyall,
all,	most	and	few.	For	example,

--enable-mods-shared=most

will	compile	most	modules	and	build	them	as	DSO	modules,

--enable-mods-shared=few

will	only	compile	a	very	basic	set	of	modules.

The	default	set	is	most.

The	LoadModule	directives	for	the	chosen	modules	will	be
automatically	generated	in	the	main	configuration	file.	By
default,	all	those	directives	will	be	commented	out	except	for
the	modules	that	are	either	required	or	explicitly	selected	by	a
configure	--enable-foo	argument.	You	can	change	the	set
of	loaded	modules	by	activating	or	deactivating	the
LoadModule	directives	in	httpd.conf.	In	addition	the
LoadModule	directives	for	all	built	modules	can	be	activated
via	the	configure	option	--enable-load-all-modules.

--enable-mods-static=MODULE-LIST

This	option	behaves	similar	to	--enable-mods-shared,	but
will	link	the	given	modules	statically.	This	mean,	these
modules	will	always	be	present	while	running	httpd.	They
need	not	be	loaded	with	LoadModule.

--enable-modules=MODULE-LIST

This	option	behaves	like	to	--enable-mods-shared,	and
will	also	link	the	given	modules	dynamically.	The	special
keyword	none	disables	the	build	of	all	modules.

--enable-v4-mapped

Allow	IPv6	sockets	to	handle	IPv4	connections.

--with-port=PORT

This	defines	the	port	on	which	httpd	will	listen.	This	port
number	is	used	when	generating	the	configuration	file
httpd.conf.	The	default	is	80.

--with-program-name

Define	an	alternative	executable	name.	The	default	is	httpd.

Optional	packages
These	options	are	used	to	define	optional	packages.

General	syntax
Generally	you	can	use	the	following	syntax	to	define	an	optional
package:

--with-PACKAGE[=ARG]

Use	the	package	PACKAGE.	The	default	value	for	ARG	is
yes.

--without-PACKAGE

Do	not	use	the	package	PACKAGE.	This	is	the	same	as	--
with-PACKAGE=no.	This	option	is	provided	by	autoconf
but	not	very	useful	for	the	Apache	HTTP	Server.

Specific	packages
--with-apr=DIR|FILE

The	Apache	Portable	Runtime	(APR)	is	part	of	the	httpd
source	distribution	and	will	automatically	be	build	together

with	the	HTTP	server.	If	you	want	to	use	an	already	installed
APR	instead	you	have	to	tell	configure	the	path	to	the
apr-config	script.	You	may	set	the	absolute	path	and	name
or	the	directory	to	the	installed	APR.	apr-config	must	exist
within	this	directory	or	the	subdirectory	bin.

--with-apr-util=DIR|FILE

The	Apache	Portable	Runtime	Utilities	(APU)	are	part	of	the
httpd	source	distribution	and	will	automatically	be	build
together	with	the	HTTP	server.	If	you	want	to	use	an	already
installed	APU	instead	you	have	to	tell	configure	the	path	to
the	apu-config	script.	You	may	set	the	absolute	path	and
name	or	the	directory	to	the	installed	APU.	apu-config	must
exist	within	this	directory	or	the	subdirectory	bin.

--with-ssl=DIR

If	mod_ssl	has	been	enabled	configure	searches	for	an
installed	OpenSSL.	You	can	set	the	directory	path	to	the
SSL/TLS	toolkit	instead.

--with-z=DIR

configure	searches	automatically	for	an	installed	zlib
library	if	your	source	configuration	requires	one	(e.g.,	when
mod_deflate	is	enabled).	You	can	set	the	directory	path	to
the	compression	library	instead.

Several	features	of	the	Apache	HTTP	Server,	including
mod_authn_dbm	and	mod_rewrite's	DBM	RewriteMap	use
simple	key/value	databases	for	quick	lookups	of	information.
SDBM	is	included	in	the	APU,	so	this	database	is	always
available.	If	you	would	like	to	use	other	database	types,	use	the
following	options	to	enable	them:

--with-gdbm[=path]

If	no	path	is	specified,	configure	will	search	for	the	include

files	and	libraries	of	a	GNU	DBM	installation	in	the	usual
search	paths.	An	explicit	path	will	cause	configure	to	look
in	path/lib	and	path/include	for	the	relevant	files.
Finally,	the	path	may	specify	specific	include	and	library	paths
separated	by	a	colon.

--with-ndbm[=path]

Like	--with-gdbm,	but	searches	for	a	New	DBM	installation.

--with-berkeley-db[=path]

Like	--with-gdbm,	but	searches	for	a	Berkeley	DB
installation.

Note

The	DBM	options	are	provided	by	the	APU	and	passed	through
to	its	configuration	script.	They	are	useless	when	using	an
already	installed	APU	defined	by	--with-apr-util.

You	may	use	more	then	one	DBM	implementation	together	with
your	HTTP	server.	The	appropriated	DBM	type	will	be
configured	within	the	runtime	configuration	at	each	time.

Options	for	support	programs
--enable-static-support

Build	a	statically	linked	version	of	the	support	binaries.	This
means,	a	stand-alone	executable	will	be	built	with	all	the
necessary	libraries	integrated.	Otherwise	the	support	binaries
are	linked	dynamically	by	default.

--enable-suexec

Use	this	option	to	enable	suexec,	which	allows	you	to	set	uid
and	gid	for	spawned	processes.	Do	not	use	this	option
unless	you	understand	all	the	security	implications	of
running	a	suid	binary	on	your	server.	Further	options	to
configure	suexec	are	described	below.

It	is	possible	to	create	a	statically	linked	binary	of	a	single	support
program	by	using	the	following	options:

--enable-static-ab

Build	a	statically	linked	version	of	ab.

--enable-static-checkgid

Build	a	statically	linked	version	of	checkgid.

--enable-static-htdbm

Build	a	statically	linked	version	of	htdbm.

--enable-static-htdigest

Build	a	statically	linked	version	of	htdigest.

--enable-static-htpasswd

Build	a	statically	linked	version	of	htpasswd.

--enable-static-logresolve

Build	a	statically	linked	version	of	logresolve.

--enable-static-rotatelogs

Build	a	statically	linked	version	of	rotatelogs.

suexec	configuration	options
The	following	options	are	used	to	fine	tune	the	behavior	of
suexec.	See	Configuring	and	installing	suEXEC	for	further
information.

--with-suexec-bin

This	defines	the	path	to	suexec	binary.	Default	is	--
sbindir	(see	Fine	tuning	of	installation	directories).

--with-suexec-caller

This	defines	the	user	allowed	to	call	suexec.	It	should	be	the
same	as	the	user	under	which	httpd	normally	runs.

--with-suexec-docroot

This	defines	the	directory	tree	under	which	suexec	access	is
allowed	for	executables.	Default	value	is	--
datadir/htdocs.

--with-suexec-gidmin

Define	this	as	the	lowest	GID	allowed	to	be	a	target	user	for
suexec.	The	default	value	is	100.

--with-suexec-logfile

This	defines	the	filename	of	the	suexec	logfile.	By	default	the
logfile	is	named	suexec_log	and	located	in	--logfiledir.

--with-suexec-safepath

Define	the	value	of	the	environment	variable	PATH	to	be	set
for	processes	started	by	suexec.	Default	value	is
/usr/local/bin:/usr/bin:/bin.

--with-suexec-userdir

This	defines	the	subdirectory	under	the	user's	directory	that
contains	all	executables	for	which	suexec	access	is	allowed.
This	setting	is	necessary	when	you	want	to	use	suexec
together	with	user-specific	directories	(as	provided	by
mod_userdir).	The	default	is	public_html.

--with-suexec-uidmin

Define	this	as	the	lowest	UID	allowed	to	be	a	target	user	for
suexec.	The	default	value	is	100.

--with-suexec-umask

Set	umask	for	processes	started	by	suexec.	It	defaults	to
your	system	settings.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Environment	variables

There	are	some	useful	environment	variables	to	override	the
choices	made	by	configure	or	to	help	it	to	find	libraries	and
programs	with	nonstandard	names	or	locations.

CC

Define	the	C	compiler	command	to	be	used	for	compilation.

CFLAGS

Set	C	compiler	flags	you	want	to	use	for	compilation.

CPP

Define	the	C	preprocessor	command	to	be	used.

CPPFLAGS

Set	C/C++	preprocessor	flags,	e.g.	-Iincludedir	if	you
have	headers	in	a	nonstandard	directory	includedir.

LDFLAGS

Set	linker	flags,	e.g.	-Llibdir	if	you	have	libraries	in	a
nonstandard	directory	libdir.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

dbmmanage	-	Manage	user	authentication
files	in	DBM	format

dbmmanage	is	used	to	create	and	update	the	DBM	format	files	used
to	store	usernames	and	password	for	basic	authentication	of	HTTP
users	via	mod_authn_dbm.	Resources	available	from	the	Apache
HTTP	server	can	be	restricted	to	just	the	users	listed	in	the	files
created	by	dbmmanage.	This	program	can	only	be	used	when	the
usernames	are	stored	in	a	DBM	file.	To	use	a	flat-file	database	see
htpasswd.

Another	tool	to	maintain	a	DBM	password	database	is	htdbm.

This	manual	page	only	lists	the	command	line	arguments.	For	details
of	the	directives	necessary	to	configure	user	authentication	in	httpd
see	the	httpd	manual,	which	is	part	of	the	Apache	distribution	or	can
be	found	at	http://httpd.apache.org/.

See	also
httpd

htdbm

mod_authn_dbm

mod_authz_dbm

http://httpd.apache.org/
https://www.apache.org/foundation/contributing.html

Synopsis
dbmmanage	[encoding]	filename

add|adduser|check|delete|update	username	[

encpasswd	[group[,group...]	[comment]]]

dbmmanage	filename	view	[username]

dbmmanage	filename	import

Options

filename

The	filename	of	the	DBM	format	file.	Usually	without	the
extension	.db,	.pag,	or	.dir.

username

The	user	for	which	the	operations	are	performed.	The
username	may	not	contain	a	colon	(:).

encpasswd

This	is	the	already	encrypted	password	to	use	for	the	update
and	add	commands.	You	may	use	a	hyphen	(-)	if	you	want	to
get	prompted	for	the	password,	but	fill	in	the	fields	afterwards.
Additionally	when	using	the	update	command,	a	period	(.)
keeps	the	original	password	untouched.

group

A	group,	which	the	user	is	member	of.	A	groupname	may	not
contain	a	colon	(:).	You	may	use	a	hyphen	(-)	if	you	don't
want	to	assign	the	user	to	a	group,	but	fill	in	the	comment
field.	Additionally	when	using	the	update	command,	a	period
(.)	keeps	the	original	groups	untouched.

comment

This	is	the	place	for	your	opaque	comments	about	the	user,
like	realname,	mailaddress	or	such	things.	The	server	will
ignore	this	field.

Encodings
-d

crypt	encryption	(default,	except	on	Win32,	Netware)

-m

MD5	encryption	(default	on	Win32,	Netware)

-s

SHA1	encryption

-p

plaintext	(not	recommended)

Commands
add

Adds	an	entry	for	username	to	filename	using	the	encrypted
password	encpasswd.

dbmmanage	passwords.dat	add	rbowen	foKntnEF3KSXA

adduser

Asks	for	a	password	and	then	adds	an	entry	for	username	to
filename.

dbmmanage	passwords.dat	adduser	krietz

check

Asks	for	a	password	and	then	checks	if	username	is	in
filename	and	if	it's	password	matches	the	specified	one.

dbmmanage	passwords.dat	check	rbowen

delete

Deletes	the	username	entry	from	filename.

dbmmanage	passwords.dat	delete	rbowen

import

Reads	username:password	entries	(one	per	line)	from
STDIN	and	adds	them	to	filename.	The	passwords	already
have	to	be	crypted.

update

Same	as	the	adduser	command,	except	that	it	makes	sure
username	already	exists	in	filename.

dbmmanage	passwords.dat	update	rbowen

view

Just	displays	the	contents	of	the	DBM	file.	If	you	specify	a
username,	it	displays	the	particular	record	only.

dbmmanage	passwords.dat	view

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Bugs

One	should	be	aware	that	there	are	a	number	of	different	DBM	file
formats	in	existence,	and	with	all	likelihood,	libraries	for	more	than
one	format	may	exist	on	your	system.	The	three	primary	examples
are	SDBM,	NDBM,	the	GNU	project's	GDBM,	and	Berkeley	DB	2.
Unfortunately,	all	these	libraries	use	different	file	formats,	and	you
must	make	sure	that	the	file	format	used	by	filename	is	the	same
format	that	dbmmanage	expects	to	see.	dbmmanage	currently	has
no	way	of	determining	what	type	of	DBM	file	it	is	looking	at.	If	used
against	the	wrong	format,	will	simply	return	nothing,	or	may	create
a	different	DBM	file	with	a	different	name,	or	at	worst,	it	may
corrupt	the	DBM	file	if	you	were	attempting	to	write	to	it.

dbmmanage	has	a	list	of	DBM	format	preferences,	defined	by	the
@AnyDBM::ISA	array	near	the	beginning	of	the	program.	Since
we	prefer	the	Berkeley	DB	2	file	format,	the	order	in	which
dbmmanage	will	look	for	system	libraries	is	Berkeley	DB	2,	then
NDBM,	then	GDBM	and	then	SDBM.	The	first	library	found	will	be
the	library	dbmmanage	will	attempt	to	use	for	all	DBM	file
transactions.	This	ordering	is	slightly	different	than	the	standard
@AnyDBM::ISA	ordering	in	Perl,	as	well	as	the	ordering	used	by
the	simple	dbmopen()	call	in	Perl,	so	if	you	use	any	other	utilities
to	manage	your	DBM	files,	they	must	also	follow	this	preference
ordering.	Similar	care	must	be	taken	if	using	programs	in	other
languages,	like	C,	to	access	these	files.

One	can	usually	use	the	file	program	supplied	with	most	Unix
systems	to	see	what	format	a	DBM	file	is	in.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

htcacheclean	-	Clean	up	the	disk	cache

htcacheclean	is	used	to	keep	the	size	of	mod_cache_disk's
storage	within	a	given	size	limit,	or	limit	on	inodes	in	use.	This	tool
can	run	either	manually	or	in	daemon	mode.	When	running	in	daemon
mode,	it	sleeps	in	the	background	and	checks	the	cache	directory	at
regular	intervals	for	cached	content	to	be	removed.	You	can	stop	the
daemon	cleanly	by	sending	it	a	TERM	or	INT	signal.	When	run
manually,	a	once	off	check	of	the	cache	directory	is	made	for	cached
content	to	be	removed.	If	one	or	more	URLs	are	specified,	each	URL
will	be	deleted	from	the	cache,	if	present.

See	also
mod_cache_disk

https://www.apache.org/foundation/contributing.html

Synopsis
htcacheclean	[-D]	[-v]	[-t]	[-r]	[-n]	[

-Rround]	-ppath	[-llimit|	-Llimit]

htcacheclean	[-n]	[-t]	[-i]	[-Ppidfile]	[

-Rround]	-dinterval	-ppath	[-llimit|	-Llimit]

htcacheclean	[-v]	[-Rround]	-ppath	[-a]	[-

A]

htcacheclean	[-D]	[-v]	[-t]	[-Rround]	-

ppath	url

Options

-dinterval

Daemonize	and	repeat	cache	cleaning	every	interval	minutes.
This	option	is	mutually	exclusive	with	the	-D,	-v	and	-r
options.	To	shutdown	the	daemon	cleanly,	just	send	it	a
SIGTERM	or	SIGINT.

-D

Do	a	dry	run	and	don't	delete	anything.	This	option	is	mutually
exclusive	with	the	-d	option.	When	doing	a	dry	run	and
deleting	directories	with	-t,	the	inodes	reported	deleted	in	the
stats	cannot	take	into	account	the	directories	deleted,	and	will
be	marked	as	an	estimate.

-v

Be	verbose	and	print	statistics.	This	option	is	mutually
exclusive	with	the	-d	option.

-r

Clean	thoroughly.	This	assumes	that	the	Apache	web	server
is	not	running	(otherwise	you	may	get	garbage	in	the	cache).
This	option	is	mutually	exclusive	with	the	-d	option	and
implies	the	-t	option.

-n

Be	nice.	This	causes	slower	processing	in	favour	of	other
processes.	htcacheclean	will	sleep	from	time	to	time	so
that	(a)	the	disk	IO	will	be	delayed	and	(b)	the	kernel	can
schedule	other	processes	in	the	meantime.

-t

Delete	all	empty	directories.	By	default	only	cache	files	are
removed,	however	with	some	configurations	the	large	number
of	directories	created	may	require	attention.	If	your
configuration	requires	a	very	large	number	of	directories,	to
the	point	that	inode	or	file	allocation	table	exhaustion	may

become	an	issue,	use	of	this	option	is	advised.

-ppath

Specify	path	as	the	root	directory	of	the	disk	cache.	This
should	be	the	same	value	as	specified	with	the	CacheRoot
directive.

-Ppidfile

Specify	pidfile	as	the	name	of	the	file	to	write	the	process	ID
to	when	daemonized.

-Rround

Specify	round	as	the	amount	to	round	sizes	up	to,	to
compensate	for	disk	block	sizes.	Set	to	the	block	size	of	the
cache	partition.

-llimit

Specify	limit	as	the	total	disk	cache	size	limit.	The	value	is
expressed	in	bytes	by	default	(or	attaching	B	to	the	number).
Attach	K	for	Kbytes	or	M	for	MBytes.

-Llimit

Specify	limit	as	the	total	disk	cache	inode	limit.

-i

Be	intelligent	and	run	only	when	there	was	a	modification	of
the	disk	cache.	This	option	is	only	possible	together	with	the	-
d	option.

-a

List	the	URLs	currently	stored	in	the	cache.	Variants	of	the
same	URL	will	be	listed	once	for	each	variant.

-A

List	the	URLs	currently	stored	in	the	cache,	along	with	their
attributes	in	the	following	order:	url,	header	size,	body	size,
status,	entity	version,	date,	expiry,	request	time,	response
time,	body	present,	head	request.

Deleting	a	specific	URL

If	htcacheclean	is	passed	one	or	more	URLs,	each	URL	will	be
deleted	from	the	cache.	If	multiple	variants	of	an	URL	exists,	all
variants	would	be	deleted.

When	a	reverse	proxied	URL	is	to	be	deleted,	the	effective	URL	is
constructed	from	the	Host	header,	the	port,	the	path	and	the
query.	Note	the	'?'	in	the	URL	must	always	be	specified	explicitly,
whether	a	query	string	is	present	or	not.	For	example,	an	attempt
to	delete	the	path	/	from	the	server	localhost,	the	URL	to	delete
would	be	http://localhost:80/?.

Listing	URLs	in	the	Cache

By	passing	the	-a	or	-A	options	to	htcacheclean,	the	URLs
within	the	cache	will	be	listed	as	they	are	found,	one	URL	per	line.
The	-A	option	dumps	the	full	cache	entry	after	the	URL,	with	fields
in	the	following	order:

url
The	URL	of	the	entry.

header	size
The	size	of	the	header	in	bytes.

body	size
The	size	of	the	body	in	bytes.

status
Status	of	the	cached	response.

entity	version
The	number	of	times	this	entry	has	been	revalidated	without
being	deleted.

date
Date	of	the	response.

expiry
Expiry	date	of	the	response.

request	time
Time	of	the	start	of	the	request.

response	time
Time	of	the	end	of	the	request.

body	present
If	0,	no	body	is	stored	with	this	request,	1	otherwise.

head	request
If	1,	the	entry	contains	a	cached	HEAD	request	with	no	body,
0	otherwise.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Exit	Status

htcacheclean	returns	a	zero	status	("true")	if	all	operations	were
successful,	1	otherwise.	If	an	URL	is	specified,	and	the	URL	was
cached	and	successfully	removed,	0	is	returned,	2	otherwise.	If	an
error	occurred	during	URL	removal,	1	is	returned.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

htdigest	-	manage	user	files	for	digest
authentication

htdigest	is	used	to	create	and	update	the	flat-files	used	to	store
usernames,	realm	and	password	for	digest	authentication	of	HTTP
users.	Resources	available	from	the	Apache	HTTP	server	can	be
restricted	to	just	the	users	listed	in	the	files	created	by	htdigest.

This	manual	page	only	lists	the	command	line	arguments.	For	details
of	the	directives	necessary	to	configure	digest	authentication	in
httpd	see	the	Apache	manual,	which	is	part	of	the	Apache
distribution	or	can	be	found	at	http://httpd.apache.org/.

See	also
httpd

mod_auth_digest

http://httpd.apache.org/
https://www.apache.org/foundation/contributing.html

Synopsis
htdigest	[-c]	passwdfile	realm	username

Options

-c

Create	the	passwdfile.	If	passwdfile	already	exists,	it	is
deleted	first.

passwdfile

Name	of	the	file	to	contain	the	username,	realm	and
password.	If	-c	is	given,	this	file	is	created	if	it	does	not
already	exist,	or	deleted	and	recreated	if	it	does	exist.

realm

The	realm	name	to	which	the	user	name	belongs.	See
http://tools.ietf.org/html/rfc2617#section-3.2.1	for	more	details.

username

The	user	name	to	create	or	update	in	passwdfile.	If	username
does	not	exist	is	this	file,	an	entry	is	added.	If	it	does	exist,	the
password	is	changed.

http://tools.ietf.org/html/rfc2617#section-3.2.1

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Security	Considerations

This	program	is	not	safe	as	a	setuid	executable.	Do	not	make	it
setuid.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

htpasswd	-	Manage	user	files	for	basic
authentication

htpasswd	is	used	to	create	and	update	the	flat-files	used	to	store
usernames	and	password	for	basic	authentication	of	HTTP	users.	If
htpasswd	cannot	access	a	file,	such	as	not	being	able	to	write	to	the
output	file	or	not	being	able	to	read	the	file	in	order	to	update	it,	it
returns	an	error	status	and	makes	no	changes.

Resources	available	from	the	Apache	HTTP	server	can	be	restricted
to	just	the	users	listed	in	the	files	created	by	htpasswd.	This	program
can	only	manage	usernames	and	passwords	stored	in	a	flat-file.	It	can
encrypt	and	display	password	information	for	use	in	other	types	of
data	stores,	though.	To	use	a	DBM	database	see	dbmmanage	or
htdbm.

htpasswd	encrypts	passwords	using	either	bcrypt,	a	version	of	MD5
modified	for	Apache,	SHA1,	or	the	system's	crypt()	routine.	Files
managed	by	htpasswd	may	contain	a	mixture	of	different	encoding
types	of	passwords;	some	user	records	may	have	bcrypt	or	MD5-
encrypted	passwords	while	others	in	the	same	file	may	have
passwords	encrypted	with	crypt().

This	manual	page	only	lists	the	command	line	arguments.	For	details
of	the	directives	necessary	to	configure	user	authentication	in	httpd
see	the	Apache	manual,	which	is	part	of	the	Apache	distribution	or
can	be	found	at	http://httpd.apache.org/.

http://httpd.apache.org
https://www.apache.org/foundation/contributing.html

See	also
httpd

htdbm

The	scripts	in	support/SHA1	which	come	with	the	distribution.

Synopsis
htpasswd	[-c]	[-i]	[-m	|	-B	|	-d	|	-s	|	-p]

[-C	cost]	[-D]	[-v]	passwdfile	username

htpasswd	-b	[-c]	[-m	|	-B	|	-d	|	-s	|	-p]	[-

C	cost]	[-D]	[-v]	passwdfile	username

password

htpasswd	-n	[-i]	[-m	|	-B	|	-d	|	-s	|	-p]	[-

C	cost]	username

htpasswd	-nb	[-m	|	-B	|	-d	|	-s	|	-p]	[-C	cost

]	username	password

Options

-b

Use	batch	mode;	i.e.,	get	the	password	from	the	command
line	rather	than	prompting	for	it.	This	option	should	be	used
with	extreme	care,	since	the	password	is	clearly	visible	on
the	command	line.	For	script	use	see	the	-i	option.	Available
in	2.4.4	and	later.

-i

Read	the	password	from	stdin	without	verification	(for	script
usage).

-c

Create	the	passwdfile.	If	passwdfile	already	exists,	it	is
rewritten	and	truncated.	This	option	cannot	be	combined	with
the	-n	option.

-n

Display	the	results	on	standard	output	rather	than	updating	a
file.	This	is	useful	for	generating	password	records	acceptable
to	Apache	for	inclusion	in	non-text	data	stores.	This	option
changes	the	syntax	of	the	command	line,	since	the	passwdfile
argument	(usually	the	first	one)	is	omitted.	It	cannot	be
combined	with	the	-c	option.

-m

Use	MD5	encryption	for	passwords.	This	is	the	default	(since
version	2.2.18).

-B

Use	bcrypt	encryption	for	passwords.	This	is	currently
considered	to	be	very	secure.

-C

This	flag	is	only	allowed	in	combination	with	-B	(bcrypt
encryption).	It	sets	the	computing	time	used	for	the	bcrypt
algorithm	(higher	is	more	secure	but	slower,	default:	5,	valid:	4

to	31).

-d

Use	crypt()	encryption	for	passwords.	This	is	not	supported
by	the	httpd	server	on	Windows	and	Netware.	This
algorithm	limits	the	password	length	to	8	characters.	This
algorithm	is	insecure	by	today's	standards.	It	used	to	be	the
default	algorithm	until	version	2.2.17.

-s

Use	SHA	encryption	for	passwords.	Facilitates	migration
from/to	Netscape	servers	using	the	LDAP	Directory
Interchange	Format	(ldif).	This	algorithm	is	insecure	by
today's	standards.

-p

Use	plaintext	passwords.	Though	htpasswd	will	support
creation	on	all	platforms,	the	httpd	daemon	will	only	accept
plain	text	passwords	on	Windows	and	Netware.

-D

Delete	user.	If	the	username	exists	in	the	specified	htpasswd
file,	it	will	be	deleted.

-v

Verify	password.	Verify	that	the	given	password	matches	the
password	of	the	user	stored	in	the	specified	htpasswd	file.
Available	in	2.4.5	and	later.

passwdfile

Name	of	the	file	to	contain	the	user	name	and	password.	If	-c
is	given,	this	file	is	created	if	it	does	not	already	exist,	or
rewritten	and	truncated	if	it	does	exist.

username

The	username	to	create	or	update	in	passwdfile.	If	username
does	not	exist	in	this	file,	an	entry	is	added.	If	it	does	exist,	the
password	is	changed.

password

The	plaintext	password	to	be	encrypted	and	stored	in	the	file.
Only	used	with	the	-b	flag.

Exit	Status

htpasswd	returns	a	zero	status	("true")	if	the	username	and
password	have	been	successfully	added	or	updated	in	the
passwdfile.	htpasswd	returns	1	if	it	encounters	some	problem
accessing	files,	2	if	there	was	a	syntax	problem	with	the	command
line,	3	if	the	password	was	entered	interactively	and	the
verification	entry	didn't	match,	4	if	its	operation	was	interrupted,	5
if	a	value	is	too	long	(username,	filename,	password,	or	final
computed	record),	6	if	the	username	contains	illegal	characters
(see	the	Restrictions	section),	and	7	if	the	file	is	not	a	valid
password	file.

Examples

htpasswd	/usr/local/etc/apache/.htpasswd-users	jsmith

Adds	or	modifies	the	password	for	user	jsmith.	The	user	is
prompted	for	the	password.	The	password	will	be	encrypted	using
the	modified	Apache	MD5	algorithm.	If	the	file	does	not	exist,
htpasswd	will	do	nothing	except	return	an	error.

htpasswd	-c	/home/doe/public_html/.htpasswd	jane

Creates	a	new	file	and	stores	a	record	in	it	for	user	jane.	The
user	is	prompted	for	the	password.	If	the	file	exists	and	cannot	be
read,	or	cannot	be	written,	it	is	not	altered	and	htpasswd	will
display	a	message	and	return	an	error	status.

htpasswd	-db	/usr/web/.htpasswd-all	jones	Pwd4Steve

Encrypts	the	password	from	the	command	line	(Pwd4Steve)
using	the	crypt()	algorithm,	and	stores	it	in	the	specified	file.

Security	Considerations

Web	password	files	such	as	those	managed	by	htpasswd	should
not	be	within	the	Web	server's	URI	space	--	that	is,	they	should	not
be	fetchable	with	a	browser.

This	program	is	not	safe	as	a	setuid	executable.	Do	not	make	it
setuid.

The	use	of	the	-b	option	is	discouraged,	since	when	it	is	used	the
unencrypted	password	appears	on	the	command	line.

When	using	the	crypt()	algorithm,	note	that	only	the	first	8
characters	of	the	password	are	used	to	form	the	password.	If	the
supplied	password	is	longer,	the	extra	characters	will	be	silently
discarded.

The	SHA	encryption	format	does	not	use	salting:	for	a	given
password,	there	is	only	one	encrypted	representation.	The
crypt()	and	MD5	formats	permute	the	representation	by
prepending	a	random	salt	string,	to	make	dictionary	attacks
against	the	passwords	more	difficult.

The	SHA	and	crypt()	formats	are	insecure	by	today's	standards.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Restrictions

On	the	Windows	platform,	passwords	encrypted	with	htpasswd
are	limited	to	no	more	than	255	characters	in	length.	Longer
passwords	will	be	truncated	to	255	characters.

The	MD5	algorithm	used	by	htpasswd	is	specific	to	the	Apache
software;	passwords	encrypted	using	it	will	not	be	usable	with
other	Web	servers.

Usernames	are	limited	to	255	bytes	and	may	not	include	the
character	:.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

logresolve	-	Resolve	IP-addresses	to
hostnames	in	Apache	log	files

logresolve	is	a	post-processing	program	to	resolve	IP-addresses	in
Apache's	access	logfiles.	To	minimize	impact	on	your	nameserver,
logresolve	has	its	very	own	internal	hash-table	cache.	This	means
that	each	IP	number	will	only	be	looked	up	the	first	time	it	is	found	in
the	log	file.

Takes	an	Apache	log	file	on	standard	input.	The	IP	addresses	must
be	the	first	thing	on	each	line	and	must	be	separated	from	the
remainder	of	the	line	by	a	space.

Synopsis
logresolve	[-s	filename]	[-c]	<	access_log	>

access_log.new

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Options

-s	filename

Specifies	a	filename	to	record	statistics.

-c

This	causes	logresolve	to	apply	some	DNS	checks:	after
finding	the	hostname	from	the	IP	address,	it	looks	up	the	IP
addresses	for	the	hostname	and	checks	that	one	of	these
matches	the	original	address.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

rotatelogs	-	Piped	logging	program	to	rotate
Apache	logs

rotatelogs	is	a	simple	program	for	use	in	conjunction	with
Apache's	piped	logfile	feature.	It	supports	rotation	based	on	a	time
interval	or	maximum	size	of	the	log.

Synopsis
rotatelogs	[-l]	[-L	linkname]	[-p	program]

[-f]	[-t]	[-v]	[-e]	[-c]	[-n	number-

of-files]	logfile	rotationtime|filesize(B|K|M|G)

[offset]

Options

-l

Causes	the	use	of	local	time	rather	than	GMT	as	the	base	for
the	interval	or	for	strftime(3)	formatting	with	size-based
rotation.

-L	linkname
Causes	a	hard	link	to	be	made	from	the	current	logfile	to	the
specified	link	name.	This	can	be	used	to	watch	the	log
continuously	across	rotations	using	a	command	like	tail	-F
linkname.

-p	program
If	given,	rotatelogs	will	execute	the	specified	program
every	time	a	new	log	file	is	opened.	The	filename	of	the	newly
opened	file	is	passed	as	the	first	argument	to	the	program.	If
executing	after	a	rotation,	the	old	log	file	is	passed	as	the
second	argument.	rotatelogs	does	not	wait	for	the
specified	program	to	terminate	before	continuing	to	operate,
and	will	not	log	any	error	code	returned	on	termination.	The
spawned	program	uses	the	same	stdin,	stdout,	and	stderr	as
rotatelogs	itself,	and	also	inherits	the	environment.

-f

Causes	the	logfile	to	be	opened	immediately,	as	soon	as
rotatelogs	starts,	instead	of	waiting	for	the	first	logfile	entry
to	be	read	(for	non-busy	sites,	there	may	be	a	substantial
delay	between	when	the	server	is	started	and	when	the	first
request	is	handled,	meaning	that	the	associated	logfile	does
not	"exist"	until	then,	which	causes	problems	from	some
automated	logging	tools)

-t

Causes	the	logfile	to	be	truncated	instead	of	rotated.	This	is
useful	when	a	log	is	processed	in	real	time	by	a	command	like
tail,	and	there	is	no	need	for	archived	data.	No	suffix	will	be

added	to	the	filename,	however	format	strings	containing	'%'
characters	will	be	respected.

-v

Produce	verbose	output	on	STDERR.	The	output	contains	the
result	of	the	configuration	parsing,	and	all	file	open	and	close
actions.

-e

Echo	logs	through	to	stdout.	Useful	when	logs	need	to	be
further	processed	in	real	time	by	a	further	tool	in	the	chain.

-c

Create	log	file	for	each	interval,	even	if	empty.

-n	number-of-files

Use	a	circular	list	of	filenames	without	timestamps.	With	-n	3,
the	series	of	log	files	opened	would	be	"logfile",	"logfile.1",
"logfile.2",	then	overwriting	"logfile".	Available	in	2.4.5	and
later.

logfile

The	path	plus	basename	of	the	logfile.	If	logfile	includes	any
'%'	characters,	it	is	treated	as	a	format	string	for
strftime(3).	Otherwise,	the	suffix	.nnnnnnnnnn	is
automatically	added	and	is	the	time	in	seconds	(unless	the	-t
option	is	used).	Both	formats	compute	the	start	time	from	the
beginning	of	the	current	period.	For	example,	if	a	rotation	time
of	86400	is	specified,	the	hour,	minute,	and	second	fields
created	from	the	strftime(3)	format	will	all	be	zero,
referring	to	the	beginning	of	the	current	24-hour	period
(midnight).

When	using	strftime(3)	filename	formatting,	be	sure	the
log	file	format	has	enough	granularity	to	produce	a	different
file	name	each	time	the	logs	are	rotated.	Otherwise	rotation
will	overwrite	the	same	file	instead	of	starting	a	new	one.	For

example,	if	logfile	was	/var/log/errorlog.%Y-%m-%d
with	log	rotation	at	5	megabytes,	but	5	megabytes	was
reached	twice	in	the	same	day,	the	same	log	file	name	would
be	produced	and	log	rotation	would	keep	writing	to	the	same
file.

rotationtime

The	time	between	log	file	rotations	in	seconds.	The	rotation
occurs	at	the	beginning	of	this	interval.	For	example,	if	the
rotation	time	is	3600,	the	log	file	will	be	rotated	at	the
beginning	of	every	hour;	if	the	rotation	time	is	86400,	the	log
file	will	be	rotated	every	night	at	midnight.	(If	no	data	is	logged
during	an	interval,	no	file	will	be	created.)

filesize(B|K|M|G)

The	maximum	file	size	in	followed	by	exactly	one	of	the	letters
B	(Bytes),	K	(KBytes),	M	(MBytes)	or	G	(GBytes).
When	time	and	size	are	specified,	the	size	must	be	given	after
the	time.	Rotation	will	occur	whenever	either	time	or	size
limits	are	reached.

offset

The	number	of	minutes	offset	from	UTC.	If	omitted,	zero	is
assumed	and	UTC	is	used.	For	example,	to	use	local	time	in
the	zone	UTC	-5	hours,	specify	a	value	of	-300	for	this
argument.	In	most	cases,	-l	should	be	used	instead	of
specifying	an	offset.

Examples

CustomLog	"|bin/rotatelogs	/var/log/logfile	86400"	common

This	creates	the	files	/var/log/logfile.nnnn	where	nnnn	is	the
system	time	at	which	the	log	nominally	starts	(this	time	will	always
be	a	multiple	of	the	rotation	time,	so	you	can	synchronize	cron
scripts	with	it).	At	the	end	of	each	rotation	time	(here	after	24
hours)	a	new	log	is	started.

CustomLog	"|bin/rotatelogs	-l	/var/log/logfile.%Y.%m.%d	86400"

common

This	creates	the	files	/var/log/logfile.yyyy.mm.dd	where	yyyy	is	the
year,	mm	is	the	month,	and	dd	is	the	day	of	the	month.	Logging
will	switch	to	a	new	file	every	day	at	midnight,	local	time.

CustomLog	"|bin/rotatelogs	/var/log/logfile	5M"	common

This	configuration	will	rotate	the	logfile	whenever	it	reaches	a	size
of	5	megabytes.

ErrorLog	"|bin/rotatelogs	/var/log/errorlog.%Y-%m-%d-%H_%M_%S

5M"

This	configuration	will	rotate	the	error	logfile	whenever	it	reaches	a
size	of	5	megabytes,	and	the	suffix	to	the	logfile	name	will	be
created	of	the	form	errorlog.YYYY-mm-dd-HH_MM_SS.

CustomLog	"|bin/rotatelogs	-t	/var/log/logfile	86400"	common

This	creates	the	file	/var/log/logfile,	truncating	the	file	at	startup
and	then	truncating	the	file	once	per	day.	It	is	expected	in	this
scenario	that	a	separate	process	(such	as	tail)	would	process	the
file	in	real	time.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Portability

The	following	logfile	format	string	substitutions	should	be
supported	by	all	strftime(3)	implementations,	see	the
strftime(3)	man	page	for	library-specific	extensions.

%A full	weekday	name	(localized)
%a 3-character	weekday	name	(localized)
%B full	month	name	(localized)
%b 3-character	month	name	(localized)
%c date	and	time	(localized)
%d 2-digit	day	of	month
%H 2-digit	hour	(24	hour	clock)
%I 2-digit	hour	(12	hour	clock)
%j 3-digit	day	of	year
%M 2-digit	minute
%m 2-digit	month
%p am/pm	of	12	hour	clock	(localized)
%S 2-digit	second
%U 2-digit	week	of	year	(Sunday	first	day	of	week)
%W 2-digit	week	of	year	(Monday	first	day	of	week)
%w 1-digit	weekday	(Sunday	first	day	of	week)
%X time	(localized)
%x date	(localized)
%Y 4-digit	year
%y 2-digit	year
%Z time	zone	name
%% literal	`%'

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Other	Programs

This	page	used	to	contain	documentation	for	programs	which	now
have	their	own	docs	pages.	Please	update	any	links.

log_server_status

split-logfile

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Miscellaneous	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Relevant	Standards

This	page	documents	all	the	relevant	standards	that	the	Apache
HTTP	Server	follows,	along	with	brief	descriptions.

In	addition	to	the	information	listed	below,	the	following	resources
should	be	consulted:

http://purl.org/NET/http-errata	-	HTTP/1.1	Specification	Errata
http://www.rfc-editor.org/errata.php	-	RFC	Errata
http://ftp.ics.uci.edu/pub/ietf/http/#RFC	-	A	pre-compiled	list	of
HTTP	related	RFCs

Notice

This	document	is	not	yet	complete.

http://purl.org/NET/http-errata
http://www.rfc-editor.org/errata.php
http://ftp.ics.uci.edu/pub/ietf/http/#RFC

HTTP	Recommendations

Regardless	of	what	modules	are	compiled	and	used,	Apache	as	a
basic	web	server	complies	with	the	following	IETF
recommendations:

RFC	1945	(Informational)
The	Hypertext	Transfer	Protocol	(HTTP)	is	an	application-
level	protocol	with	the	lightness	and	speed	necessary	for
distributed,	collaborative,	hypermedia	information	systems.
This	documents	HTTP/1.0.

RFC	2616	(Standards	Track)
The	Hypertext	Transfer	Protocol	(HTTP)	is	an	application-
level	protocol	for	distributed,	collaborative,	hypermedia
information	systems.	This	documents	HTTP/1.1.

RFC	2396	(Standards	Track)
A	Uniform	Resource	Identifier	(URI)	is	a	compact	string	of
characters	for	identifying	an	abstract	or	physical	resource.

RFC	4346	(Standards	Track)
The	TLS	protocol	provides	communications	security	over	the
Internet.	It	provides	encryption,	and	is	designed	to	prevent
eavesdropping,	tampering,	and	message	forgery.

http://www.rfc-editor.org/rfc/rfc1945.txt
http://www.rfc-editor.org/rfc/rfc2616.txt
http://www.rfc-editor.org/rfc/rfc2396.txt
http://www.rfc-editor.org/rfc/rfc4346.txt

HTML	Recommendations

Regarding	the	Hypertext	Markup	Language,	Apache	complies	with
the	following	IETF	and	W3C	recommendations:

RFC	2854	(Informational)
This	document	summarizes	the	history	of	HTML	development,
and	defines	the	"text/html"	MIME	type	by	pointing	to	the
relevant	W3C	recommendations.

HTML	4.01	Specification	(Errata)
This	specification	defines	the	HyperText	Markup	Language
(HTML),	the	publishing	language	of	the	World	Wide	Web.	This
specification	defines	HTML	4.01,	which	is	a	subversion	of
HTML	4.

HTML	3.2	Reference	Specification
The	HyperText	Markup	Language	(HTML)	is	a	simple	markup
language	used	to	create	hypertext	documents	that	are
portable	from	one	platform	to	another.	HTML	documents	are
SGML	documents.

XHTML	1.1	-	Module-based	XHTML	(Errata)
This	Recommendation	defines	a	new	XHTML	document	type
that	is	based	upon	the	module	framework	and	modules
defined	in	Modularization	of	XHTML.

XHTML	1.0	The	Extensible	HyperText	Markup	Language
(Second	Edition)	(Errata)

This	specification	defines	the	Second	Edition	of	XHTML	1.0,	a
reformulation	of	HTML	4	as	an	XML	1.0	application,	and	three
DTDs	corresponding	to	the	ones	defined	by	HTML	4.

http://www.rfc-editor.org/rfc/rfc2854.txt
http://www.w3.org/TR/html401
http://www.w3.org/MarkUp/html4-updates/errata
http://www.w3.org/TR/REC-html32
http://www.w3.org/TR/xhtml11/
http://www.w3.org/MarkUp/2009/xhtml11-2nd-edition-errata.html
http://www.w3.org/TR/xhtml1
http://www.w3.org/2002/08/REC-xhtml1-20020801-errata/

Authentication

Concerning	the	different	methods	of	authentication,	Apache
follows	the	following	IETF	recommendations:

RFC	2617	(Standards	Track)
"HTTP/1.0",	includes	the	specification	for	a	Basic	Access
Authentication	scheme.

http://www.rfc-editor.org/rfc/rfc2617.txt

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Language/Country	Codes

The	following	links	document	ISO	and	other	language	and	country
code	information:

ISO	639-2
ISO	639	provides	two	sets	of	language	codes,	one	as	a	two-
letter	code	set	(639-1)	and	another	as	a	three-letter	code	set
(this	part	of	ISO	639)	for	the	representation	of	names	of
languages.

ISO	3166-1
These	pages	document	the	country	names	(official	short
names	in	English)	in	alphabetical	order	as	given	in	ISO	3166-
1	and	the	corresponding	ISO	3166-1-alpha-2	code	elements.

BCP	47	(Best	Current	Practice),	RFC	3066
This	document	describes	a	language	tag	for	use	in	cases
where	it	is	desired	to	indicate	the	language	used	in	an
information	object,	how	to	register	values	for	use	in	this
language	tag,	and	a	construct	for	matching	such	language
tags.

RFC	3282	(Standards	Track)
This	document	defines	a	"Content-language:"	header,	for	use
in	cases	where	one	desires	to	indicate	the	language	of
something	that	has	RFC	822-like	headers,	like	MIME	body
parts	or	Web	documents,	and	an	"Accept-Language:"	header
for	use	in	cases	where	one	wishes	to	indicate	one's
preferences	with	regard	to	language.

http://www.loc.gov/standards/iso639-2/
http://www.iso.org/iso/country_codes
http://www.rfc-editor.org/rfc/bcp/bcp47.txt
http://www.rfc-editor.org/rfc/rfc3066.txt
http://www.rfc-editor.org/rfc/rfc3282.txt
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Terms	Used	to	Describe	Modules

This	document	describes	the	terms	that	are	used	to	describe	each
Apache	module.

Description

A	brief	description	of	the	purpose	of	the	module.

Status

This	indicates	how	tightly	bound	into	the	Apache	Web	server	the
module	is;	in	other	words,	you	may	need	to	recompile	the	server	in
order	to	gain	access	to	the	module	and	its	functionality.	Possible
values	for	this	attribute	are:

MPM
A	module	with	status	"MPM"	is	a	Multi-Processing	Module.
Unlike	the	other	types	of	modules,	Apache	must	have	one
and	only	one	MPM	in	use	at	any	time.	This	type	of	module	is
responsible	for	basic	request	handling	and	dispatching.

Base
A	module	labeled	as	having	"Base"	status	is	compiled	and
loaded	into	the	server	by	default,	and	is	therefore	normally
available	unless	you	have	taken	steps	to	remove	the	module
from	your	configuration.

Extension
A	module	with	"Extension"	status	is	not	normally	compiled	and
loaded	into	the	server.	To	enable	the	module	and	its
functionality,	you	may	need	to	change	the	server	build
configuration	files	and	re-compile	Apache.

Experimental
"Experimental"	status	indicates	that	the	module	is	available	as
part	of	the	Apache	kit,	but	you	are	on	your	own	if	you	try	to
use	it.	The	module	is	being	documented	for	completeness,
and	is	not	necessarily	supported.

External
Modules	which	are	not	included	with	the	base	Apache
distribution	("third-party	modules")	may	use	the	"External"
status.	We	are	not	responsible	for,	nor	do	we	support	such
modules.

Source	File

This	quite	simply	lists	the	name	of	the	source	file	which	contains
the	code	for	the	module.	This	is	also	the	name	used	by	the
<IfModule>	directive.

Module	Identifier

This	is	a	string	which	identifies	the	module	for	use	in	the
LoadModule	directive	when	dynamically	loading	modules.	In
particular,	it	is	the	name	of	the	external	variable	of	type	module	in
the	source	file.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Compatibility

If	the	module	was	not	part	of	the	original	Apache	version	2
distribution,	the	version	in	which	it	was	introduced	should	be	listed
here.	In	addition,	if	the	module	is	limited	to	particular	platforms,	the
details	will	be	listed	here.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Términos	que	se	Usan	para	Describir
Directivas

Este	documento	describe	los	términos	que	se	usan	para	describir
cada	directiva	de	configuración	de	Apache.

Consulte	también
Ficheros	de	Configuración

https://www.apache.org/foundation/contributing.html

Descripción

Una	breve	descripción	del	propósito	de	la	directiva.

Sintaxis

Indica	el	formato	de	la	directiva	tal	y	como	aparecería	en	un
fichero	de	configuración.	Esta	sintaxis	es	muy	específica	de	cada
directiva,	y	se	describe	con	detalle	en	la	definición	de	la	directiva.
Generalmente,	el	nombre	de	la	directiva	va	seguido	de	una	serie
de	uno	o	más	parámetros	separados	por	un	espacio.	Si	un
parámetro	contiene	un	espacio,	éste	debe	especificarse	entre
comillas	dobles.	Los	parámetros	opcionales	van	especificados
entre	corchetes.	Donde	un	parámetro	puede	tener	uno	o	más
valores,	los	valores	posibles	se	separan	con	barras	verticales	"|".
El	Texto	Literal	se	muestra	con	la	fuente	por	defecto,	mientras	que
los	distintos	tipos	de	parámetros	para	los	que	una	sustitución
resulta	necesaria	son	enfatizados.	Las	directivas	que	pueden
tomar	una	lista	variada	de	parámetros	acaban	en	"..."	indicando
que	el	último	parámetro	se	repite.

Las	Directivas	usan	un	gran	número	de	diferentes	tipos	de
parámetros.	A	continuación	definimos	algunos	de	los	más
comunes.

URL
Un	Localizador	de	Recursos	Uniforme,	incluye	un	esquema,
nombre	de	host,	y	un	path	opcional	como	en
http://www.example.com/path/to/file.html

Ruta	de	URL
La	parte	de	una	url	que	sigue	al	esquema	y	el	nombre	de	host
como	en	/path/to/file.html.	El	url-path	representa	una
vista-web	de	un	recurso,	en	contraposición	a	una	vista	de
sistema-de-ficheros.

Ruta	del	Fichero
La	ruta	a	un	fichero	en	el	sistema	de	ficheros	local	que
comienza	desde	el	directorio	raíz	como	en
/usr/local/apache/htdocs/path/to/file.html.	A
menos	que	se	especifique,	una	ruta	de	fichero	que	no

comienza	con	una	barra	"/"	se	tratará	como	una	ruta	relativa	a
ServerRoot.

Ruta	del	Directorio
La	ruta	a	un	directorio	en	el	sistema	de	ficheros	local	que
comienza	con	el	directorio	ráiz	como	en
/usr/local/apache/htdocs/path/to/.

Nombre	del	Fichero
El	nombre	de	un	fichero	sin	ir	acompañado	de	información	de
la	ruta	como	en	file.html.

regex
Una	expresión	regular	compatible	con	Perl.	La	definición	de
directiva	especificará	contra	qué	se	compara	la	regex.

extensión
En	general,	esta	es	la	parte	del	nombre	de	fichero	que	sigue
al	último	punto.	Sin	embargo,	Apache	reconoce	múltiples
extensiones	de	fichero,	así	que	si	un	nombre	de	fichero
contiene	más	de	un	punto,	cada	parte	separada	por	un	punto
del	nombre	de	fichero	después	del	primer	punto	es	una
extensión.	Por	ejemplo,	el	nombre	de	fichero	file.html.en
contiene	dos	extensiones:	.html	y	.en.	Para	las	directivas
de	Apache,	podrá	especificar	la	extensiones	con	o	sin	el
punto	inicial.	Además,	las	extensiones	no	son	sensibles	a
mayúsculas	o	minúsculas.

Tipo	MIME
Un	método	de	describir	el	formato	de	un	fichero	que	está
formado	por	un	tipo	de	formato	mayor	y	un	tipo	de	formato
menor,	separados	de	de	una	barra	como	en	text/html.

Variable	de	Entorno
El	nombre	de	una	variable	de	entorno	definida	en	el	proceso
de	configuración	de	Apache.	Tenga	en	cuenta	que	esto	no	es
necesariamente	lo	mismo	que	la	variable	de	entorno	de	un

sistema	operativo.	Vea	la	documentación	de	variable	de
entorno	para	más	detalles.

Por	defecto

Si	la	directiva	tiene	un	valor	por	defecto	(p.ej.,	si	la	omite	de	la
configuración	completamente,	el	servidor	Web	Apache	se
comportará	como	si	la	hubiera	configurado	con	un	valor	en
particular),	se	describe	aquí.	Si	no	tiene	valor	por	defecto,	esta
sección	debería	indicar	"Ninguno".	Tenga	en	cuenta	que	el	valor
por	defecto	listado	aquí	no	es	necesariamente	el	mismo	que	el
valor	que	toma	la	directiva	en	el	httpd.conf	por	defecto	distribuido
con	el	servidor.

Contexto

Esto	indica	dónde	se	acepta	la	directiva	en	los	ficheros	de
configuración.	Es	una	lista	separada	por	comas	para	uno	o	más
de	los	siguientes	valores:

server	config
Esto	indica	que	la	directiva	puede	usarse	en	los	ficheros	de
configuración	del	servidor	(p.ej.,	httpd.conf),	pero	not
dentro	de	cualquier	contenedor	<VirtualHost>	o
<Directory>.	No	se	permite	en	ficheros	.htaccess	de
ninguna	manera.

virtual	host
Este	contexto	significa	que	la	directiva	puede	aparecer	dentro
de	un	contenedor	<VirtualHost>	en	el	fichero	de
configuración	del	servidor.

directory
Una	directiva	marcada	como	válida	en	este	contexto	puede
usarse	dentro	de	contenedores	<Directory>,
<Location>,	<Files>,	<If>,	<Proxy>	en	los	ficheros	de
configuración	del	servidor,	sujeta	a	las	restricciones
destacadas	en	las	Secciones	de	Configuración.

.htaccess
Si	una	directiva	es	válida	en	este	contexto,	significa	que
puede	aparecer	dentro	de	ficheros	.htaccess	de	contexto
de	directorio.	Aunque	podría	no	ser	procesada,	dependiendo
de	la	configuración	activa	de	AllowOverride	en	ese	momento.

La	directiva	solo	se	permite	dentro	del	contexto	designado;	si
intenta	usarlo	en	algún	otro,	obtendrá	un	error	de	configuración
que	impedirá	que	el	servidor	gestione	correctamente	las
solicitudes	en	ese	contexto,	o	impedirá	que	el	servidor	pueda
funcionar	completamente	--	p.ej.,	el	servidor	no	arrancará.

Las	ubicaciones	válidas	para	la	directiva	son	actualmente	el
resultado	de	un	Boolean	OR	de	todos	los	contextos	listados.	En
otras	palabras,	una	directiva	que	está	marcada	como	válida	en
"server	config,	.htaccess"	puede	usarse	en	el	fichero
httpd.conf	y	en	ficheros	.htaccess,	pero	no	dentro	de
contenedores	<Directory>	o	<VirtualHost>.

Override

Este	atributo	de	directiva	indica	qué	Override	de	configuración
debe	estar	activo	para	que	la	directiva	se	procese	cuando	aparece
en	un	fichero	.htaccess.	Si	el	contexto	de	la	directiva	no	permite
que	aparezca	en	ficheros	.htaccess,	entonces	no	se	listará
ningún	contexto.

Los	Override	se	activan	con	la	directiva	AllowOverride,	si	se
aplican	a	un	ámbito	en	particular	(como	por	ejemplo	un	directorio)
y	todos	sus	descendientes,	a	menos	que	se	modifique	más
adelante	por	otras	directivas	AllowOverride	en	niveles
inferiores.	La	documentación	para	la	directiva	también	muestra
una	lista	de	los	posibles	nombres	de	Override	disponibles.

Estado

Esto	indica	cuan	vinculada	está	esta	directiva	al	servidor	Web	de
Apache;	o	en	otras	palabras,	puede	que	necesite	recompilar	el
servidor	con	un	conjunto	mejor	de	módulos	para	obtener	acceso	a
esta	directiva	y	su	funcionalidad.	Valores	posibles	para	estar
directiva	son:

Core
Si	una	directiva	aparece	listada	con	estado	"Core",	eso
significa	que	forma	parte	de	las	partes	más	internas	del
Servidor	Apache	Web,	y	que	siempre	está	disponible.

MPM
La	directivas	facilitadas	por	un	Módulo	de	Multi-Proceso	están
etiquetadas	con	Estado	"MPM".	Este	tipo	de	directiva	estará
disponible	si	y	sólo	si	está	usando	uno	de	los	MPM	listados
en	la	línea	Módulo	de	la	definición	de	la	directiva.

Base
Una	directiva	listada	con	estado	"Base"	está	facilitada	por	uno
de	los	módulos	estándar	de	Apache	que	están	compilados
con	el	servidor	por	defecto,	y	por	tanto	está	normalmente
disponible	a	menos	que	usted	haga	las	acciones	necesarias
para	eliminar	este	módulo	de	su	configuración.

Extensión
Una	directiva	con	estado	"Extensión"	está	facilitada	por	uno
de	los	módulos	incluidos	en	el	kit	del	servidor	Apache,	pero	el
módulo	no	está	compilado	generalmente	dentro	del	servidor.
Para	activar	esta	y	su	funcionalidad,	necesirará	cambiar	la
configuración	de	compilación	del	servidor	y	recompilar
Apache.

Experimental
El	estado	"Experimental"	indica	que	la	directiva	está
disponible	como	parte	del	kit	de	Apache,	pero	usted	tendrá
que	ir	por	su	cuenta	si	intenta	usarla.	La	directiva	se

documenta	para	aportar	información,	pero	no	tiene	por	qué
estar	soportada	de	manera	oficial.	El	módulo	que	provee	esta
directiva	puede	o	puede	que	no	esté	compilado	por	defecto,
compruebe	la	parte	superior	de	la	página	que	describe	la
direcitiva	y	el	módulo	para	ver	las	anotaciones	sobre	su
disponibilidad.

Módulo

Esto	simplemente	hace	referencia	al	nombre	del	módulo	original
que	provee	la	directiva.

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Compatibilidad

Si	la	directiva	no	era	parte	de	la	distribución	original	de	Apache
versión	2,	la	versión	en	la	que	se	introdujo	debería	estar	referida
aquí.	Además,	si	la	direcitva	solo	está	disponible	en	ciertas
plataformas,	se	verá	anotado	aquí.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4	>	Módulos

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Funcionalidad	Básica	de	Apache

Esta	traducción	podría	estar	obsoleta.	Consulte	la	versión	en
inglés	de	la	documentación	para	comprobar	si	se	han
producido	cambios	recientemente.

Descripción: Funcionalides	básicas	del	Servidor	HTTP	Apache	que
siempre	están	presentes.

Estado: Core

AcceptFilter	Directiva

Descripción: Configura	mejoras	para	un	Protocolo	de
Escucha	de	Sockets

Sintaxis: AcceptFilter	protocol	accept_filter

Contexto: server	config
Estado: Core
Módulo: core
Compatibilidad: Disponible	en	Apache	httpd	2.1.5	y	posteriores.

En	Windows	desde	Apache	httpd	2.3.3	y
posteriores.

Esta	directiva	hace	posible	mejoras	específicas	a	nivel	de	sistema
operativo	y	a	través	del	tipo	de	Protocolo	para	un	socket	que
escucha.	La	premisa	básica	es	que	el	kernel	no	envíe	un	socket	al
servidor	hasta	que	o	bien	los	datos	se	hayan	recibido	o	bien	se
haya	almacenado	en	el	buffer	una	Respuesta	HTTP	completa.
Actualmente	sólo	están	soportados	Accept	Filters	sobre	FreeBSD,
TCP_DEFER_ACCEPT	sobre	Linux,	y	AcceptEx()	sobre	Windows.

El	uso	de	none	para	un	argumento	desactiva	cualquier	filtro
aceptado	para	ese	protocolo.	Esto	es	útil	para	protocolos	que
requieren	que	un	servidor	envíe	datos	primeros,	tales	como	ftp:
o	nntp:

AcceptFilter	nntp	none

Los	nombres	de	protocolo	por	defecto	son	https	para	el	puerto
443	y	http	para	todos	los	demás	puertos.	Para	especificar	que
se	está	utilizando	otro	protocolo	con	un	puerto	escuchando,	añade
el	argumento	protocol	a	la	directiva	Listen.

Sobre	FreeBDS	los	valores	por	defecto:

AcceptFilter	http	httpready	

http://www.freebsd.org/cgi/man.cgi?query=accept_filter&sektion=9

AcceptFilter	https	dataready

El	filtro	httpready	almacena	en	el	buffer	peticiones	HTTP
completas	a	nivel	de	kernel.	Una	vez	que	la	petición	es	recibida,	el
kernel	la	envía	al	servidor.	Consulta	la	página	man	de	accf_http(9)
para	más	detalles.	Puesto	que	las	peticiones	HTTPS	están
encriptadas,	sólo	se	utiliza	el	filtro	accf_data(9).

Sobre	Linux	los	valores	por	defecto	son:

AcceptFilter	http	data	

AcceptFilter	https	data

En	Linux,	TCP_DEFER_ACCEPT	no	soporta	el	buffering	en
peticiones	http.	Cualquier	valor	además	de	none	habilitará
TCP_DEFER_ACCEPT	en	ese	socket.	Para	más	detalles	ver	la
página	man	de	Linux	tcp(7).

Sobre	Windows	los	valores	por	defecto	son:

AcceptFilter	http	data	

AcceptFilter	https	data

Sobre	Windows	mpm_winnt	interpreta	el	argumento	AcceptFilter
para	conmutar	la	API	AcceptEx(),	y	no	soporta	el	buffering	sobre
el	protocolo	http.	Hay	dos	valores	que	utilizan	la	API	Windows
AcceptEx()	y	que	recuperan	sockets	de	red	entre	conexciones.
data	espera	hasta	que	los	datos	han	sido	transmitidos	como	se
comentaba	anteriormente,	y	el	buffer	inicial	de	datos	y	las
direcciones	de	red	son	recuperadas	a	partir	de	una	única	llamada
AcceptEx().	connect	utiliza	la	API	AcceptEx()	API,	y	recupera
también	las	direcciones	de	red,	pero	a	diferencia	de	none	la
opción	connect	no	espera	a	la	transmisión	inicial	de	los	datos.

Sobre	Windows,	none	prefiere	accept()	antes	que	AcceptEx()	y	no

http://www.freebsd.org/cgi/man.cgi?query=accf_http&sektion=9
http://www.freebsd.org/cgi/man.cgi?query=accf_data&sektion=9
http://homepages.cwi.nl/~aeb/linux/man2html/man7/tcp.7.html

recuperará	sockets	entre	las	conexiones.	Lo	que	es	útil	para	los
adaptadores	de	red	con	un	soporte	precario	de	drivers,	así	como
para	algunos	proveedores	de	red	tales	como	drivers	vpn,	o	filtros
de	spam,	de	virus	o	de	spyware.

Consulte	también
Protocol

AcceptPathInfo	Directiva

Descripción: Los	recursos	aceptan	información	sobre	su
ruta

Sintaxis: AcceptPathInfo	On|Off|Default

Valor	por	defecto: AcceptPathInfo	Default
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core
Compatibilidad: Disponible	en	Apache	httpd	2.0.30	y

posteriores

Esta	directiva	controla	si	las	peticiones	que	contienen	información
sobre	la	ruta	que	sigue	un	fichero	que	existe	(o	un	fichero	que	no
existe	pero	en	un	directorio	que	sí	existe)	serán	aceptadas	o
denegadas.	La	información	de	ruta	puede	estar	disponible	para
los	scripts	en	la	variable	de	entorno	PATH_INFO.

Por	ejemplo,	asumamos	que	la	ubicación	/test/	apunta	a	un
directorio	que	contiene	únicamente	el	fichero	here.html.
Entonces,	las	peticiones	tanto	para	/test/here.html/more
como	para	/test/nothere.html/more	recogen	/more	como
PATH_INFO.

Los	tres	posibles	argumentos	para	la	directiva	AcceptPathInfo
son	los	siguientes:

Off

Una	petición	sólo	será	aceptada	si	se	corresponde	con	una
ruta	literal	que	existe.	Por	lo	tanto,	una	petición	con	una
información	de	ruta	después	del	nombre	de	fichero	tal	como
/test/here.html/more	en	el	ejemplo	anterior	devolverá

un	error	404	NOT	FOUND.

On

Una	petición	será	aceptada	si	una	ruta	principal	de	acceso	se
corresponde	con	un	fichero	que	existe.	El	ejemplo	anterior
/test/here.html/more	será	aceptado	si
/test/here.html	corresponde	a	un	fichero	válido.

Default

La	gestión	de	las	peticiones	con	información	de	ruta	está
determinada	por	el	controlador	responsable	de	la	petición.	El
controlador	principal	para	para	ficheros	normales	rechaza	por
defecto	peticiones	PATH_INFO.	Los	controladores	que	sirven
scripts,	tales	como	cgi-script	e	isapi-handler,	normalmente
aceptan	PATH_INFO	por	defecto.

El	objetivo	principal	de	la	directiva	AcceptPathInfo	es	permitirte
sobreescribir	la	opción	del	controlador	de	aceptar	or	rechazar
PATH_INFO.	Este	tipo	de	sobreescritura	se	necesita,	por	ejemplo,
cuando	utilizas	un	filtro,	tal	como	INCLUDES,	para	generar
contenido	basado	en	PATH_INFO.	El	controlador	principal
normalmente	rechazaría	la	petición,	de	modo	que	puedes	utilizar
la	siguiente	configuración	para	habilitarla	como	script:

<Files	"mypaths.shtml">

Options	+Includes

SetOutputFilter	INCLUDES

AcceptPathInfo	On

</Files>

AccessFileName	Directiva

Descripción: Nombre	del	fichero	distribuido	de
configuración

Sintaxis: AccessFileName	filename

[filename]	...

Valor	por	defecto: AccessFileName	.htaccess
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

Mientras	que	procesa	una	petición	el	servidor	busca	el	primer
fichero	de	configuración	existente	dentro	de	un	listado	de	nombres
en	cada	directorio	de	la	ruta	del	documento,	si	los	ficheros
distribuidos	de	configuración	están	habilitados	para	ese	directorio.
Por	ejemplo:

AccessFileName	.acl

antes	de	servir	el	documento	/usr/local/web/index.html,	el
servidor	leerá	/.acl,	/usr/.acl,	/usr/local/.acl	and
/usr/local/web/.acl	para	las	directivas,	salvo	que	estén
deshabilitadas	with

<Directory	/>

AllowOverride	None

</Directory>

Consulte	también
AllowOverride

Configuration	Files
.htaccess	Files

AddDefaultCharset	Directiva

Descripción: Default	charset	parameter	to	be	added	when
a	response	content-type	is	text/plain	or
text/html

Sintaxis: AddDefaultCharset	On|Off|charset

Valor	por	defecto: AddDefaultCharset	Off
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core

This	directive	specifies	a	default	value	for	the	media	type	charset
parameter	(the	name	of	a	character	encoding)	to	be	added	to	a
response	if	and	only	if	the	response's	content-type	is	either
text/plain	or	text/html.	This	should	override	any	charset
specified	in	the	body	of	the	response	via	a	META	element,	though
the	exact	behavior	is	often	dependent	on	the	user's	client
configuration.	A	setting	of	AddDefaultCharset	Off	disables
this	functionality.	AddDefaultCharset	On	enables	a	default
charset	of	iso-8859-1.	Any	other	value	is	assumed	to	be	the
charset	to	be	used,	which	should	be	one	of	the	IANA	registered
charset	values	for	use	in	Internet	media	types	(MIME	types).	For
example:

AddDefaultCharset	utf-8

AddDefaultCharset	should	only	be	used	when	all	of	the	text
resources	to	which	it	applies	are	known	to	be	in	that	character
encoding	and	it	is	too	inconvenient	to	label	their	charset
individually.	One	such	example	is	to	add	the	charset	parameter	to
resources	containing	generated	content,	such	as	legacy	CGI
scripts,	that	might	be	vulnerable	to	cross-site	scripting	attacks	due

http://www.iana.org/assignments/character-sets

to	user-provided	data	being	included	in	the	output.	Note,	however,
that	a	better	solution	is	to	just	fix	(or	delete)	those	scripts,	since
setting	a	default	charset	does	not	protect	users	that	have	enabled
the	"auto-detect	character	encoding"	feature	on	their	browser.

Consulte	también
AddCharset

AllowEncodedSlashes	Directiva

Descripción: Determines	whether	encoded	path
separators	in	URLs	are	allowed	to	be	passed
through

Sintaxis: AllowEncodedSlashes	On|Off

Valor	por	defecto: AllowEncodedSlashes	Off
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	httpd	2.0.46	and	later

The	AllowEncodedSlashes	directive	allows	URLs	which
contain	encoded	path	separators	(%2F	for	/	and	additionally	%5C
for	\	on	according	systems)	to	be	used.	Normally	such	URLs	are
refused	with	a	404	(Not	found)	error.

Turning	AllowEncodedSlashes	On	is	mostly	useful	when	used
in	conjunction	with	PATH_INFO.

Note

Allowing	encoded	slashes	does	not	imply	decoding.
Occurrences	of	%2F	or	%5C	(only	on	according	systems)	will	be
left	as	such	in	the	otherwise	decoded	URL	string.

Consulte	también
AcceptPathInfo

AllowOverride	Directiva

Descripción: Types	of	directives	that	are	allowed	in
.htaccess	files

Sintaxis: AllowOverride	All|None|directive-

type	[directive-type]	...

Valor	por	defecto: AllowOverride	None	(2.3.9	and
later),	AllowOverride	All	(2.3.8

and	earlier)

Contexto: directorio
Estado: Core
Módulo: core

When	the	server	finds	an	.htaccess	file	(as	specified	by
AccessFileName)	it	needs	to	know	which	directives	declared	in
that	file	can	override	earlier	configuration	directives.

Only	available	in	<Directory>	sections
AllowOverride	is	valid	only	in	<Directory>	sections
specified	without	regular	expressions,	not	in	<Location>,
<DirectoryMatch>	or	<Files>	sections.

When	this	directive	is	set	to	None,	then	.htaccess	files	are
completely	ignored.	In	this	case,	the	server	will	not	even	attempt	to
read	.htaccess	files	in	the	filesystem.

When	this	directive	is	set	to	All,	then	any	directive	which	has	the
.htaccess	Context	is	allowed	in	.htaccess	files.

The	directive-type	can	be	one	of	the	following	groupings	of
directives.

AuthConfig
Allow	use	of	the	authorization	directives

(AuthDBMGroupFile,	AuthDBMUserFile,
AuthGroupFile,	AuthName,	AuthType,	AuthUserFile,
Require,	etc.).

FileInfo
Allow	use	of	the	directives	controlling	document	types
(ErrorDocument,	ForceType,	LanguagePriority,
SetHandler,	SetInputFilter,	SetOutputFilter,	and
mod_mime	Add*	and	Remove*	directives),	document	meta
data	(Header,	RequestHeader,	SetEnvIf,
SetEnvIfNoCase,	BrowserMatch,	CookieExpires,
CookieDomain,	CookieStyle,	CookieTracking,
CookieName),	mod_rewrite	directives	RewriteEngine,
RewriteOptions,	RewriteBase,	RewriteCond,
RewriteRule)	and	Action	from	mod_actions.

Indexes
Allow	use	of	the	directives	controlling	directory	indexing
(AddDescription,	AddIcon,	AddIconByEncoding,
AddIconByType,	DefaultIcon,	DirectoryIndex,
FancyIndexing,	HeaderName,	IndexIgnore,
IndexOptions,	ReadmeName,	etc.).

Limit
Allow	use	of	the	directives	controlling	host	access	(Allow,
Deny	and	Order).

Options[=Option,...]
Allow	use	of	the	directives	controlling	specific	directory
features	(Options	and	XBitHack).	An	equal	sign	may	be
given	followed	by	a	comma	(but	no	spaces)	separated	lists	of
options	that	may	be	set	using	the	Options	command.

Example:

AllowOverride	AuthConfig	Indexes

In	the	example	above	all	directives	that	are	neither	in	the	group
AuthConfig	nor	Indexes	cause	an	internal	server	error.

For	security	and	performance	reasons,	do	not	set
AllowOverride	to	anything	other	than	None	in	your
<Directory	/>	block.	Instead,	find	(or	create)	the
<Directory>	block	that	refers	to	the	directory	where	you're
actually	planning	to	place	a	.htaccess	file.

Consulte	también
AccessFileName

Configuration	Files
.htaccess	Files

AllowOverrideList	Directiva

Descripción: Individual	directives	that	are	allowed	in
.htaccess	files

Sintaxis: AllowOverrideList	None|directive

[directive-type]	...

Valor	por	defecto: AllowOverrideList	None
Contexto: directorio
Estado: Core
Módulo: core

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

Consulte	también
AccessFileName

AllowOverride

Configuration	Files
.htaccess	Files

CGIMapExtension	Directiva

Descripción: Technique	for	locating	the	interpreter	for	CGI
scripts

Sintaxis: CGIMapExtension	cgi-path

.extension

Contexto: directorio,	.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core
Compatibilidad: NetWare	only

This	directive	is	used	to	control	how	Apache	httpd	finds	the
interpreter	used	to	run	CGI	scripts.	For	example,	setting
CGIMapExtension	sys:\foo.nlm	.foo	will	cause	all	CGI
script	files	with	a	.foo	extension	to	be	passed	to	the	FOO
interpreter.

CGIPassAuth	Directiva

Descripción: Enables	passing	HTTP	authorization	headers
to	scripts	as	CGI	variables

Sintaxis: CGIPassAuth	On|Off

Valor	por	defecto: CGIPassAuth	Off
Contexto: directorio,	.htaccess
Prevalece	sobre: AuthConfig
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	HTTP	Server	2.4.13	and

later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

CGIVar	Directiva

Descripción: Controls	how	some	CGI	variables	are	set
Sintaxis: CGIVar	variable	rule

Contexto: directorio,	.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	HTTP	Server	2.4.21	and

later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

ContentDigest	Directiva

Descripción: Enables	the	generation	of	Content-MD5
HTTP	Response	headers

Sintaxis: ContentDigest	On|Off

Valor	por	defecto: ContentDigest	Off
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: Options
Estado: Core
Módulo: core

This	directive	enables	the	generation	of	Content-MD5	headers
as	defined	in	RFC1864	respectively	RFC2616.

MD5	is	an	algorithm	for	computing	a	"message	digest"	(sometimes
called	"fingerprint")	of	arbitrary-length	data,	with	a	high	degree	of
confidence	that	any	alterations	in	the	data	will	be	reflected	in
alterations	in	the	message	digest.

The	Content-MD5	header	provides	an	end-to-end	message
integrity	check	(MIC)	of	the	entity-body.	A	proxy	or	client	may
check	this	header	for	detecting	accidental	modification	of	the
entity-body	in	transit.	Example	header:

Content-MD5:	AuLb7Dp1rqtRtxz2m9kRpA==

Note	that	this	can	cause	performance	problems	on	your	server
since	the	message	digest	is	computed	on	every	request	(the
values	are	not	cached).

Content-MD5	is	only	sent	for	documents	served	by	the	core,
and	not	by	any	module.	For	example,	SSI	documents,	output	from
CGI	scripts,	and	byte	range	responses	do	not	have	this	header.

DefaultRuntimeDir	Directiva

Descripción: Base	directory	for	the	server	run-time	files
Sintaxis: DefaultRuntimeDir	directory-path

Valor	por	defecto: DefaultRuntimeDir
DEFAULT_REL_RUNTIMEDIR	(logs/)

Contexto: server	config
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	2.4.2	and	later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

Consulte	también
the	security	tips	for	information	on	how	to	properly	set
permissions	on	the	ServerRoot

DefaultType	Directiva

Descripción: This	directive	has	no	effect	other	than	to	emit
warnings	if	the	value	is	not	none.	In	prior
versions,	DefaultType	would	specify	a	default
media	type	to	assign	to	response	content	for
which	no	other	media	type	configuration
could	be	found.

Sintaxis: DefaultType	media-type|none

Valor	por	defecto: DefaultType	none
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core
Compatibilidad: The	argument	none	is	available	in	Apache

httpd	2.2.7	and	later.	All	other	choices	are
DISABLED	for	2.3.x	and	later.

This	directive	has	been	disabled.	For	backwards	compatibility	of
configuration	files,	it	may	be	specified	with	the	value	none,
meaning	no	default	media	type.	For	example:

DefaultType	None

DefaultType	None	is	only	available	in	httpd-2.2.7	and	later.

Use	the	mime.types	configuration	file	and	the	AddType	to
configure	media	type	assignments	via	file	extensions,	or	the
ForceType	directive	to	configure	the	media	type	for	specific
resources.	Otherwise,	the	server	will	send	the	response	without	a
Content-Type	header	field	and	the	recipient	may	attempt	to	guess
the	media	type.

Define	Directiva

Descripción: Define	the	existence	of	a	variable
Sintaxis: Define	parameter-name

Contexto: server	config
Estado: Core
Módulo: core

Equivalent	to	passing	the	-D	argument	to	httpd.

This	directive	can	be	used	to	toggle	the	use	of	<IfDefine>
sections	without	needing	to	alter	-D	arguments	in	any	startup
scripts.

<Directory>	Directiva

Descripción: Enclose	a	group	of	directives	that	apply	only	to	the
named	file-system	directory,	sub-directories,	and
their	contents.

Sintaxis: <Directory	directory-path>	...

</Directory>

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

<Directory>	and	</Directory>	are	used	to	enclose	a	group
of	directives	that	will	apply	only	to	the	named	directory,	sub-
directories	of	that	directory,	and	the	files	within	the	respective
directories.	Any	directive	that	is	allowed	in	a	directory	context	may
be	used.	Directory-path	is	either	the	full	path	to	a	directory,	or	a
wild-card	string	using	Unix	shell-style	matching.	In	a	wild-card
string,	?	matches	any	single	character,	and	*	matches	any
sequences	of	characters.	You	may	also	use	[]	character	ranges.
None	of	the	wildcards	match	a	`/'	character,	so	<Directory
/*/public_html>	will	not	match	/home/user/public_html,
but	<Directory	/home/*/public_html>	will	match.
Example:

<Directory	/usr/local/httpd/htdocs>

Options	Indexes	FollowSymLinks

</Directory>

Be	careful	with	the	directory-path	arguments:	They	have	to
literally	match	the	filesystem	path	which	Apache	httpd	uses	to
access	the	files.	Directives	applied	to	a	particular	<Directory>
will	not	apply	to	files	accessed	from	that	same	directory	via	a
different	path,	such	as	via	different	symbolic	links.

Regular	expressions	can	also	be	used,	with	the	addition	of	the	~
character.	For	example:

<Directory	~	"^/www/.*/[0-9]{3}">

would	match	directories	in	/www/	that	consisted	of	three	numbers.

If	multiple	(non-regular	expression)	<Directory>	sections	match
the	directory	(or	one	of	its	parents)	containing	a	document,	then
the	directives	are	applied	in	the	order	of	shortest	match	first,
interspersed	with	the	directives	from	the	.htaccess	files.	For
example,	with

<Directory	/>

AllowOverride	None

</Directory>

<Directory	/home/>

AllowOverride	FileInfo

</Directory>

for	access	to	the	document	/home/web/dir/doc.html	the
steps	are:

Apply	directive	AllowOverride	None	(disabling
.htaccess	files).
Apply	directive	AllowOverride	FileInfo	(for	directory
/home).
Apply	any	FileInfo	directives	in	/home/.htaccess,
/home/web/.htaccess	and	/home/web/dir/.htaccess
in	that	order.

Regular	expressions	are	not	considered	until	after	all	of	the	normal
sections	have	been	applied.	Then	all	of	the	regular	expressions
are	tested	in	the	order	they	appeared	in	the	configuration	file.	For
example,	with

<Directory	~	abc$>

#	...	directives	here	...

</Directory>

the	regular	expression	section	won't	be	considered	until	after	all
normal	<Directory>s	and	.htaccess	files	have	been	applied.
Then	the	regular	expression	will	match	on
/home/abc/public_html/abc	and	the	corresponding
<Directory>	will	be	applied.

Note	that	the	default	access	for	<Directory	/>	is	Allow
from	All.	This	means	that	Apache	httpd	will	serve	any	file
mapped	from	an	URL.	It	is	recommended	that	you	change	this
with	a	block	such	as

<Directory	/>

Order	Deny,Allow

Deny	from	All

</Directory>

and	then	override	this	for	directories	you	want	accessible.
See	the	Security	Tips	page	for	more	details.

The	directory	sections	occur	in	the	httpd.conf	file.
<Directory>	directives	cannot	nest,	and	cannot	appear	in	a
<Limit>	or	<LimitExcept>	section.

Consulte	también
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

<DirectoryMatch>	Directiva

Descripción: Enclose	directives	that	apply	to	the	contents	of	file-
system	directories	matching	a	regular	expression.

Sintaxis: <DirectoryMatch	regex>	...

</DirectoryMatch>

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

<DirectoryMatch>	and	</DirectoryMatch>	are	used	to
enclose	a	group	of	directives	which	will	apply	only	to	the	named
directory	(and	the	files	within),	the	same	as	<Directory>.
However,	it	takes	as	an	argument	a	regular	expression.	For
example:

<DirectoryMatch	"^/www/(.+/)?[0-9]{3}">

would	match	directories	in	/www/	that	consisted	of	three	numbers.

Compatability
Prior	to	2.3.9,	this	directive	implicitly	applied	to	sub-directories
(like	<Directory>)	and	could	not	match	the	end	of	line	symbol
($).	In	2.3.9	and	later,	only	directories	that	match	the	expression
are	affected	by	the	enclosed	directives.

Trailing	Slash
This	directive	applies	to	requests	for	directories	that	may	or	may
not	end	in	a	trailing	slash,	so	expressions	that	are	anchored	to
the	end	of	line	($)	must	be	written	with	care.

Consulte	también
<Directory>	for	a	description	of	how	regular	expressions

are	mixed	in	with	normal	<Directory>s
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

DocumentRoot	Directiva

Descripción: Directory	that	forms	the	main	document	tree
visible	from	the	web

Sintaxis: DocumentRoot	directory-path

Valor	por	defecto: DocumentRoot
/usr/local/apache/htdocs

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

This	directive	sets	the	directory	from	which	httpd	will	serve	files.
Unless	matched	by	a	directive	like	Alias,	the	server	appends	the
path	from	the	requested	URL	to	the	document	root	to	make	the
path	to	the	document.	Example:

DocumentRoot	/usr/web

then	an	access	to	http://www.my.host.com/index.html
refers	to	/usr/web/index.html.	If	the	directory-path	is	not
absolute	then	it	is	assumed	to	be	relative	to	the	ServerRoot.

The	DocumentRoot	should	be	specified	without	a	trailing	slash.

Consulte	también
Mapping	URLs	to	Filesystem	Locations

<Else>	Directiva

Descripción: Contains	directives	that	apply	only	if	the
condition	of	a	previous	<If>	or	<ElseIf>
section	is	not	satisfied	by	a	request	at	runtime

Sintaxis: <Else>	...	</Else>

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core
Compatibilidad: Nested	conditions	are	evaluated	in	2.4.26	and

later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

Consulte	también
<If>

<ElseIf>

How	<Directory>,	<Location>,	<Files>	sections	work	for	an
explanation	of	how	these	different	sections	are	combined
when	a	request	is	received.	<If>,	<ElseIf>,	and	<Else>
are	applied	last.

<ElseIf>	Directiva

Descripción: Contains	directives	that	apply	only	if	a
condition	is	satisfied	by	a	request	at	runtime
while	the	condition	of	a	previous	<If>	or
<ElseIf>	section	is	not	satisfied

Sintaxis: <ElseIf	expression>	...	</ElseIf>

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core
Compatibilidad: Nested	conditions	are	evaluated	in	2.4.26	and

later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

Consulte	también
Expressions	in	Apache	HTTP	Server,	for	a	complete
reference	and	more	examples.
<If>

<Else>

How	<Directory>,	<Location>,	<Files>	sections	work	for	an
explanation	of	how	these	different	sections	are	combined
when	a	request	is	received.	<If>,	<ElseIf>,	and	<Else>
are	applied	last.

EnableMMAP	Directiva

Descripción: Use	memory-mapping	to	read	files	during
delivery

Sintaxis: EnableMMAP	On|Off

Valor	por	defecto: EnableMMAP	On
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core

This	directive	controls	whether	the	httpd	may	use	memory-
mapping	if	it	needs	to	read	the	contents	of	a	file	during	delivery.	By
default,	when	the	handling	of	a	request	requires	access	to	the	data
within	a	file	--	for	example,	when	delivering	a	server-parsed	file
using	mod_include	--	Apache	httpd	memory-maps	the	file	if	the
OS	supports	it.

This	memory-mapping	sometimes	yields	a	performance
improvement.	But	in	some	environments,	it	is	better	to	disable	the
memory-mapping	to	prevent	operational	problems:

On	some	multiprocessor	systems,	memory-mapping	can
reduce	the	performance	of	the	httpd.
Deleting	or	truncating	a	file	while	httpd	has	it	memory-
mapped	can	cause	httpd	to	crash	with	a	segmentation	fault.

For	server	configurations	that	are	vulnerable	to	these	problems,
you	should	disable	memory-mapping	of	delivered	files	by
specifying:

EnableMMAP	Off

For	NFS	mounted	files,	this	feature	may	be	disabled	explicitly	for

the	offending	files	by	specifying:

<Directory	"/path-to-nfs-files">

EnableMMAP	Off

</Directory>

EnableSendfile	Directiva

Descripción: Use	the	kernel	sendfile	support	to	deliver
files	to	the	client

Sintaxis: EnableSendfile	On|Off

Valor	por	defecto: EnableSendfile	Off
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core
Compatibilidad: Available	in	version	2.0.44	and	later.	Default

changed	to	Off	in	version	2.3.9.

This	directive	controls	whether	httpd	may	use	the	sendfile
support	from	the	kernel	to	transmit	file	contents	to	the	client.	By
default,	when	the	handling	of	a	request	requires	no	access	to	the
data	within	a	file	--	for	example,	when	delivering	a	static	file	--
Apache	httpd	uses	sendfile	to	deliver	the	file	contents	without	ever
reading	the	file	if	the	OS	supports	it.

This	sendfile	mechanism	avoids	separate	read	and	send
operations,	and	buffer	allocations.	But	on	some	platforms	or	within
some	filesystems,	it	is	better	to	disable	this	feature	to	avoid
operational	problems:

Some	platforms	may	have	broken	sendfile	support	that	the
build	system	did	not	detect,	especially	if	the	binaries	were
built	on	another	box	and	moved	to	such	a	machine	with
broken	sendfile	support.
On	Linux	the	use	of	sendfile	triggers	TCP-checksum
offloading	bugs	on	certain	networking	cards	when	using	IPv6.
On	Linux	on	Itanium,	sendfile	may	be	unable	to	handle	files
over	2GB	in	size.

With	a	network-mounted	DocumentRoot	(e.g.,	NFS,	SMB,
CIFS,	FUSE),	the	kernel	may	be	unable	to	serve	the	network
file	through	its	own	cache.

For	server	configurations	that	are	not	vulnerable	to	these
problems,	you	may	enable	this	feature	by	specifying:

EnableSendfile	On

For	network	mounted	files,	this	feature	may	be	disabled	explicitly
for	the	offending	files	by	specifying:

<Directory	"/path-to-nfs-files">

EnableSendfile	Off

</Directory>

Please	note	that	the	per-directory	and	.htaccess	configuration	of
EnableSendfile	is	not	supported	by	mod_cache_disk.	Only
global	definition	of	EnableSendfile	is	taken	into	account	by	the
module.

Error	Directiva

Descripción: Abort	configuration	parsing	with	a	custom	error
message

Sintaxis: Error	message

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Estado: Core
Módulo: core
Compatibilidad: 2.3.9	and	later

If	an	error	can	be	detected	within	the	configuration,	this	directive
can	be	used	to	generate	a	custom	error	message,	and	halt
configuration	parsing.	The	typical	use	is	for	reporting	required
modules	which	are	missing	from	the	configuration.

Example
#	ensure	that	mod_include	is	loaded

<IfModule	!include_module>

Error	mod_include	is	required	by	mod_foo.	Load	it	with

LoadModule.

</IfModule>

#	ensure	that	exactly	one	of	SSL,NOSSL	is	defined

<IfDefine	SSL>

<IfDefine	NOSSL>

Error	Both	SSL	and	NOSSL	are	defined.	Define	only	one	of	them.

</IfDefine>

</IfDefine>

<IfDefine	!SSL>

<IfDefine	!NOSSL>

Error	Either	SSL	or	NOSSL	must	be	defined.

</IfDefine>

</IfDefine>

ErrorDocument	Directiva

Descripción: What	the	server	will	return	to	the	client	in	case
of	an	error

Sintaxis: ErrorDocument	error-code	document

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core

In	the	event	of	a	problem	or	error,	Apache	httpd	can	be	configured
to	do	one	of	four	things,

1.	 output	a	simple	hardcoded	error	message

2.	 output	a	customized	message

3.	 redirect	to	a	local	URL-path	to	handle	the	problem/error

4.	 redirect	to	an	external	URL	to	handle	the	problem/error

The	first	option	is	the	default,	while	options	2-4	are	configured
using	the	ErrorDocument	directive,	which	is	followed	by	the
HTTP	response	code	and	a	URL	or	a	message.	Apache	httpd	will
sometimes	offer	additional	information	regarding	the
problem/error.

URLs	can	begin	with	a	slash	(/)	for	local	web-paths	(relative	to	the
DocumentRoot),	or	be	a	full	URL	which	the	client	can	resolve.
Alternatively,	a	message	can	be	provided	to	be	displayed	by	the
browser.	Examples:

ErrorDocument	500	http://foo.example.com/cgi-bin/tester

ErrorDocument	404	/cgi-bin/bad_urls.pl

ErrorDocument	401	/subscription_info.html

ErrorDocument	403	"Sorry	can't	allow	you	access	today"

Additionally,	the	special	value	default	can	be	used	to	specify

Apache	httpd's	simple	hardcoded	message.	While	not	required
under	normal	circumstances,	default	will	restore	Apache	httpd's
simple	hardcoded	message	for	configurations	that	would
otherwise	inherit	an	existing	ErrorDocument.

ErrorDocument	404	/cgi-bin/bad_urls.pl

<Directory	/web/docs>

ErrorDocument	404	default

</Directory>

Note	that	when	you	specify	an	ErrorDocument	that	points	to	a
remote	URL	(ie.	anything	with	a	method	such	as	http	in	front	of
it),	Apache	HTTP	Server	will	send	a	redirect	to	the	client	to	tell	it
where	to	find	the	document,	even	if	the	document	ends	up	being
on	the	same	server.	This	has	several	implications,	the	most
important	being	that	the	client	will	not	receive	the	original	error
status	code,	but	instead	will	receive	a	redirect	status	code.	This	in
turn	can	confuse	web	robots	and	other	clients	which	try	to
determine	if	a	URL	is	valid	using	the	status	code.	In	addition,	if	you
use	a	remote	URL	in	an	ErrorDocument	401,	the	client	will	not
know	to	prompt	the	user	for	a	password	since	it	will	not	receive	the
401	status	code.	Therefore,	if	you	use	an	ErrorDocument	401
directive	then	it	must	refer	to	a	local	document.

Microsoft	Internet	Explorer	(MSIE)	will	by	default	ignore	server-
generated	error	messages	when	they	are	"too	small"	and
substitute	its	own	"friendly"	error	messages.	The	size	threshold
varies	depending	on	the	type	of	error,	but	in	general,	if	you	make
your	error	document	greater	than	512	bytes,	then	MSIE	will	show
the	server-generated	error	rather	than	masking	it.	More
information	is	available	in	Microsoft	Knowledge	Base	article
Q294807.

Although	most	error	messages	can	be	overriden,	there	are	certain

http://support.microsoft.com/default.aspx?scid=kb;en-us;Q294807

circumstances	where	the	internal	messages	are	used	regardless
of	the	setting	of	ErrorDocument.	In	particular,	if	a	malformed
request	is	detected,	normal	request	processing	will	be	immediately
halted	and	the	internal	error	message	returned.	This	is	necessary
to	guard	against	security	problems	caused	by	bad	requests.

If	you	are	using	mod_proxy,	you	may	wish	to	enable
ProxyErrorOverride	so	that	you	can	provide	custom	error
messages	on	behalf	of	your	Origin	servers.	If	you	don't	enable
ProxyErrorOverride,	Apache	httpd	will	not	generate	custom	error
documents	for	proxied	content.

Consulte	también
documentation	of	customizable	responses

ErrorLog	Directiva

Descripción: Location	where	the	server	will	log	errors
Sintaxis: ErrorLog	file-

path|syslog[:facility]

Valor	por	defecto: ErrorLog	logs/error_log	(Unix)
ErrorLog	logs/error.log	(Windows

and	OS/2)

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

The	ErrorLog	directive	sets	the	name	of	the	file	to	which	the
server	will	log	any	errors	it	encounters.	If	the	file-path	is	not
absolute	then	it	is	assumed	to	be	relative	to	the	ServerRoot.

Example
ErrorLog	/var/log/httpd/error_log

If	the	file-path	begins	with	a	pipe	character	"|"	then	it	is	assumed
to	be	a	command	to	spawn	to	handle	the	error	log.

Example
ErrorLog	"|/usr/local/bin/httpd_errors"

See	the	notes	on	piped	logs	for	more	information.

Using	syslog	instead	of	a	filename	enables	logging	via
syslogd(8)	if	the	system	supports	it.	The	default	is	to	use	syslog
facility	local7,	but	you	can	override	this	by	using	the
syslog:facility	syntax	where	facility	can	be	one	of	the	names
usually	documented	in	syslog(1).	The	facility	is	effectively	global,
and	if	it	is	changed	in	individual	virtual	hosts,	the	final	facility
specified	affects	the	entire	server.

Example
ErrorLog	syslog:user

SECURITY:	See	the	security	tips	document	for	details	on	why	your
security	could	be	compromised	if	the	directory	where	log	files	are
stored	is	writable	by	anyone	other	than	the	user	that	starts	the
server.

Note

When	entering	a	file	path	on	non-Unix	platforms,	care	should	be
taken	to	make	sure	that	only	forward	slashed	are	used	even
though	the	platform	may	allow	the	use	of	back	slashes.	In
general	it	is	a	good	idea	to	always	use	forward	slashes
throughout	the	configuration	files.

Consulte	también
LogLevel

Apache	HTTP	Server	Log	Files

ErrorLogFormat	Directiva

Descripción: Format	specification	for	error	log	entries
Sintaxis: ErrorLog	[connection|request]

format

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	httpd	2.3.9	and	later

ErrorLogFormat	allows	to	specify	what	supplementary
information	is	logged	in	the	error	log	in	addition	to	the	actual	log
message.

Simple	example
ErrorLogFormat	"[%t]	[%l]	[pid	%P]	%F:	%E:	[client	%a]	%M"

Specifying	connection	or	request	as	first	paramter	allows	to
specify	additional	formats,	causing	additional	information	to	be
logged	when	the	first	message	is	logged	for	a	specific	connection
or	request,	respectivly.	This	additional	information	is	only	logged
once	per	connection/request.	If	a	connection	or	request	is
processed	without	causing	any	log	message,	the	additional
information	is	not	logged	either.

It	can	happen	that	some	format	string	items	do	not	produce	output.
For	example,	the	Referer	header	is	only	present	if	the	log
message	is	associated	to	a	request	and	the	log	message	happens
at	a	time	when	the	Referer	header	has	already	been	read	from	the
client.	If	no	output	is	produced,	the	default	behaviour	is	to	delete
everything	from	the	preceeding	space	character	to	the	next	space
character.	This	means	the	log	line	is	implicitly	divided	into	fields	on
non-whitespace	to	whitespace	transitions.	If	a	format	string	item
does	not	produce	output,	the	whole	field	is	ommitted.	For	example,

if	the	remote	address	%a	in	the	log	format	[%t]	[%l]	[%a]	%M	
is	not	available,	the	surrounding	brackets	are	not	logged	either.
Space	characters	can	be	escaped	with	a	backslash	to	prevent
them	from	delimiting	a	field.	The	combination	'%	'	(percent	space)
is	a	zero-witdh	field	delimiter	that	does	not	produce	any	output.

The	above	behaviour	can	be	changed	by	adding	modifiers	to	the
format	string	item.	A	-	(minus)	modifier	causes	a	minus	to	be
logged	if	the	respective	item	does	not	produce	any	output.	In
once-per-connection/request	formats,	it	is	also	possible	to	use	the
+	(plus)	modifier.	If	an	item	with	the	plus	modifier	does	not	produce
any	output,	the	whole	line	is	ommitted.

A	number	as	modifier	can	be	used	to	assign	a	log	severity	level	to
a	format	item.	The	item	will	only	be	logged	if	the	severity	of	the	log
message	is	not	higher	than	the	specified	log	severity	level.	The
number	can	range	from	1	(alert)	over	4	(warn)	and	7	(debug)	to	15
(trace8).

Some	format	string	items	accept	additional	parameters	in	braces.

Format	String Description
%% The	percent	sign
%...a Remote	IP-address	and	port
%...A Local	IP-address	and	port
%...

{name}e

Request	environment	variable	name

%...E APR/OS	error	status	code	and	string
%...F Source	file	name	and	line	number	of	the	log	call
%...

{name}i

Request	header	name

%...k Number	of	keep-alive	requests	on	this	connection
%...l Loglevel	of	the	message

%...L Log	ID	of	the	request
%...{c}L Log	ID	of	the	connection
%...{C}L Log	ID	of	the	connection	if	used	in	connection

scope,	empty	otherwise
%...m Name	of	the	module	logging	the	message
%M The	actual	log	message
%...

{name}n

Request	note	name

%...P Process	ID	of	current	process
%...T Thread	ID	of	current	thread
%...t The	current	time
%...{u}t The	current	time	including	micro-seconds
%...{cu}t The	current	time	in	compact	ISO	8601	format,

including	micro-seconds
%...v The	canonical	ServerName	of	the	current	server.
%...V The	server	name	of	the	server	serving	the

request	according	to	the	UseCanonicalName
setting.

\		(backslash
space)

Non-field	delimiting	space

%		(percent
space)

Field	delimiter	(no	output)

The	log	ID	format	%L	produces	a	unique	id	for	a	connection	or
request.	This	can	be	used	to	correlate	which	log	lines	belong	to
the	same	connection	or	request,	which	request	happens	on	which
connection.	A	%L	format	string	is	also	available	in
mod_log_config,	to	allow	to	correlate	access	log	entries	with
error	log	lines.	If	mod_unique_id	is	loaded,	its	unique	id	will	be
used	as	log	ID	for	requests.

Example	(somewhat	similar	to	default	format)
ErrorLogFormat	"[%{u}t]	[%-m:%l]	[pid	%P]	%7F:	%E:	[client\	%a]

%M%	,\	referer\	%{Referer}i"

Example	(similar	to	the	2.2.x	format)
ErrorLogFormat	"[%t]	[%l]	%7F:	%E:	[client\	%a]

%M%	,\	referer\	%{Referer}i"

Advanced	example	with	request/connection	log	IDs
ErrorLogFormat	"[%{uc}t]	[%-m:%-l]	[R:%L]	[C:%{C}L]	%7F:	%E:

%M"

ErrorLogFormat	request	"[%{uc}t]	[R:%L]	Request	%k	on	C:%{c}L

pid:%P	tid:%T"

ErrorLogFormat	request	"[%{uc}t]	[R:%L]	UA:'%+{User-Agent}i'"

ErrorLogFormat	request	"[%{uc}t]	[R:%L]	Referer:'%+{Referer}i'"

ErrorLogFormat	connection	"[%{uc}t]	[C:%{c}L]	local\	%a	remote\

%A"

Consulte	también
ErrorLog

LogLevel

Apache	HTTP	Server	Log	Files

ExtendedStatus	Directiva

Descripción: Keep	track	of	extended	status	information	for
each	request

Sintaxis: ExtendedStatus	On|Off

Valor	por	defecto: ExtendedStatus	Off[*]
Contexto: server	config
Estado: Core
Módulo: core

This	option	tracks	additional	data	per	worker	about	the	currently
executing	request,	and	a	utilization	summary;	you	can	see	these
variables	during	runtime	by	configuring	mod_status.	Note	that
other	modules	may	rely	on	this	scoreboard.

This	setting	applies	to	the	entire	server,	and	cannot	be	enabled	or
disabled	on	a	virtualhost-by-virtualhost	basis.	The	collection	of
extended	status	information	can	slow	down	the	server.	Also	note
that	this	setting	cannot	be	changed	during	a	graceful	restart.

Note	that	loading	mod_status	will	change	the	default	behavior
to	ExtendedStatus	On,	while	other	third	party	modules	may	do
the	same.	Such	modules	rely	on	collecting	detailed	information
about	the	state	of	all	workers.	The	default	is	changed	by
mod_status	beginning	with	version	2.3.6;	the	previous	default
was	always	Off.

FileETag	Directiva

Descripción: File	attributes	used	to	create	the	ETag	HTTP
response	header	for	static	files

Sintaxis: FileETag	component	...

Valor	por	defecto: FileETag	INode	MTime	Size
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core

The	FileETag	directive	configures	the	file	attributes	that	are	used
to	create	the	ETag	(entity	tag)	response	header	field	when	the
document	is	based	on	a	static	file.	(The	ETag	value	is	used	in
cache	management	to	save	network	bandwidth.)	The	FileETag
directive	allows	you	to	choose	which	of	these	--	if	any	--	should	be
used.	The	recognized	keywords	are:

INode
The	file's	i-node	number	will	be	included	in	the	calculation

MTime
The	date	and	time	the	file	was	last	modified	will	be	included

Size
The	number	of	bytes	in	the	file	will	be	included

All
All	available	fields	will	be	used.	This	is	equivalent	to:

FileETag	INode	MTime	Size

None
If	a	document	is	file-based,	no	ETag	field	will	be	included	in
the	response

The	INode,	MTime,	and	Size	keywords	may	be	prefixed	with
either	+	or	-,	which	allow	changes	to	be	made	to	the	default
setting	inherited	from	a	broader	scope.	Any	keyword	appearing
without	such	a	prefix	immediately	and	completely	cancels	the
inherited	setting.

If	a	directory's	configuration	includes
FileETag	INode	MTime	Size,	and	a	subdirectory's	includes
FileETag	-INode,	the	setting	for	that	subdirectory	(which	will	be
inherited	by	any	sub-subdirectories	that	don't	override	it)	will	be
equivalent	to	FileETag	MTime	Size.

Warning
Do	not	change	the	default	for	directories	or	locations	that	have
WebDAV	enabled	and	use	mod_dav_fs	as	a	storage	provider.
mod_dav_fs	uses	INode	MTime	Size	as	a	fixed	format	for
ETag	comparisons	on	conditional	requests.	These	conditional
requests	will	break	if	the	ETag	format	is	changed	via
FileETag.

Server	Side	Includes
An	ETag	is	not	generated	for	responses	parsed	by
mod_include,	since	the	response	entity	can	change	without	a
change	of	the	INode,	MTime,	or	Size	of	the	static	file	with
embedded	SSI	directives.

<Files>	Directiva

Descripción: Contains	directives	that	apply	to	matched
filenames

Sintaxis: <Files	filename>	...	</Files>

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core

The	<Files>	directive	limits	the	scope	of	the	enclosed	directives
by	filename.	It	is	comparable	to	the	<Directory>	and
<Location>	directives.	It	should	be	matched	with	a	</Files>
directive.	The	directives	given	within	this	section	will	be	applied	to
any	object	with	a	basename	(last	component	of	filename)
matching	the	specified	filename.	<Files>	sections	are	processed
in	the	order	they	appear	in	the	configuration	file,	after	the
<Directory>	sections	and	.htaccess	files	are	read,	but	before
<Location>	sections.	Note	that	<Files>	can	be	nested	inside
<Directory>	sections	to	restrict	the	portion	of	the	filesystem
they	apply	to.

The	filename	argument	should	include	a	filename,	or	a	wild-card
string,	where	?	matches	any	single	character,	and	*	matches	any
sequences	of	characters.	Regular	expressions	can	also	be	used,
with	the	addition	of	the	~	character.	For	example:

<Files	~	"\.(gif|jpe?g|png)$">

would	match	most	common	Internet	graphics	formats.
<FilesMatch>	is	preferred,	however.

Note	that	unlike	<Directory>	and	<Location>	sections,
<Files>	sections	can	be	used	inside	.htaccess	files.	This

allows	users	to	control	access	to	their	own	files,	at	a	file-by-file
level.

Consulte	también
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

<FilesMatch>	Directiva

Descripción: Contains	directives	that	apply	to	regular-
expression	matched	filenames

Sintaxis: <FilesMatch	regex>	...

</FilesMatch>

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core

The	<FilesMatch>	directive	limits	the	scope	of	the	enclosed
directives	by	filename,	just	as	the	<Files>	directive	does.
However,	it	accepts	a	regular	expression.	For	example:

<FilesMatch	"\.(gif|jpe?g|png)$">

would	match	most	common	Internet	graphics	formats.

Consulte	también
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

ForceType	Directiva

Descripción: Forces	all	matching	files	to	be	served	with	the
specified	media	type	in	the	HTTP	Content-
Type	header	field

Sintaxis: ForceType	media-type|None

Contexto: directorio,	.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core
Compatibilidad: Moved	to	the	core	in	Apache	httpd	2.0

When	placed	into	an	.htaccess	file	or	a	<Directory>,	or
<Location>	or	<Files>	section,	this	directive	forces	all
matching	files	to	be	served	with	the	content	type	identification
given	by	media-type.	For	example,	if	you	had	a	directory	full	of	GIF
files,	but	did	not	want	to	label	them	all	with	.gif,	you	might	want
to	use:

ForceType	image/gif

Note	that	this	directive	overrides	other	indirect	media	type
associations	defined	in	mime.types	or	via	the	AddType.

You	can	also	override	more	general	ForceType	settings	by	using
the	value	of	None:

#	force	all	files	to	be	image/gif:

<Location	/images>

ForceType	image/gif

</Location>

#	but	normal	mime-type	associations	here:

<Location	/images/mixed>

ForceType	None

</Location>

This	directive	primarily	overrides	the	content	types	generated	for
static	files	served	out	of	the	filesystem.	For	resources	other	than
static	files,	where	the	generator	of	the	response	typically	specifies
a	Content-Type,	this	directive	has	no	effect.

GprofDir	Directiva

Descripción: Directory	to	write	gmon.out	profiling	data	to.
Sintaxis: GprofDir	/tmp/gprof/|/tmp/gprof/%

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

When	the	server	has	been	compiled	with	gprof	profiling	support,
GprofDir	causes	gmon.out	files	to	be	written	to	the	specified
directory	when	the	process	exits.	If	the	argument	ends	with	a
percent	symbol	('%'),	subdirectories	are	created	for	each	process
id.

This	directive	currently	only	works	with	the	prefork	MPM.

HostnameLookups	Directiva

Descripción: Enables	DNS	lookups	on	client	IP	addresses
Sintaxis: HostnameLookups	On|Off|Double

Valor	por	defecto: HostnameLookups	Off
Contexto: server	config,	virtual	host,	directorio
Estado: Core
Módulo: core

This	directive	enables	DNS	lookups	so	that	host	names	can	be
logged	(and	passed	to	CGIs/SSIs	in	REMOTE_HOST).	The	value
Double	refers	to	doing	double-reverse	DNS	lookup.	That	is,	after
a	reverse	lookup	is	performed,	a	forward	lookup	is	then	performed
on	that	result.	At	least	one	of	the	IP	addresses	in	the	forward
lookup	must	match	the	original	address.	(In	"tcpwrappers"
terminology	this	is	called	PARANOID.)

Regardless	of	the	setting,	when	mod_authz_host	is	used	for
controlling	access	by	hostname,	a	double	reverse	lookup	will	be
performed.	This	is	necessary	for	security.	Note	that	the	result	of
this	double-reverse	isn't	generally	available	unless	you	set
HostnameLookups	Double.	For	example,	if	only
HostnameLookups	On	and	a	request	is	made	to	an	object	that	is
protected	by	hostname	restrictions,	regardless	of	whether	the
double-reverse	fails	or	not,	CGIs	will	still	be	passed	the	single-
reverse	result	in	REMOTE_HOST.

The	default	is	Off	in	order	to	save	the	network	traffic	for	those
sites	that	don't	truly	need	the	reverse	lookups	done.	It	is	also
better	for	the	end	users	because	they	don't	have	to	suffer	the	extra
latency	that	a	lookup	entails.	Heavily	loaded	sites	should	leave	this
directive	Off,	since	DNS	lookups	can	take	considerable	amounts
of	time.	The	utility	logresolve,	compiled	by	default	to	the	bin
subdirectory	of	your	installation	directory,	can	be	used	to	look	up

host	names	from	logged	IP	addresses	offline.

HttpProtocolOptions	Directiva

Descripción: Modify	restrictions	on	HTTP	Request
Messages

Sintaxis: HttpProtocolOptions

[Strict|Unsafe]

[RegisteredMethods|LenientMethods]

[Allow0.9|Require1.0]

Valor	por	defecto: HttpProtocolOptions	Strict
LenientMethods	Allow0.9

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core
Compatibilidad: 2.2.32	or	2.4.24	and	later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

<If>	Directiva

Descripción: Contains	directives	that	apply	only	if	a
condition	is	satisfied	by	a	request	at	runtime

Sintaxis: <If	expression>	...	</If>

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core

The	<If>	directive	evaluates	an	expression	at	runtime,	and
applies	the	enclosed	directives	if	and	only	if	the	expression
evaluates	to	true.	For	example:

<If	"$req{Host}	=	''">

would	match	HTTP/1.0	requests	without	a	Host:	header.

You	may	compare	the	value	of	any	variable	in	the	request	headers
($req),	response	headers	($resp)	or	environment	($env)	in	your
expression.

Apart	from	=,	If	can	use	the	IN	operator	to	compare	if	the
expression	is	in	a	given	range:

<If	%{REQUEST_METHOD}	IN	GET,HEAD,OPTIONS>

Consulte	también
Expressions	in	Apache	HTTP	Server,	for	a	complete
reference	and	more	examples.
How	<Directory>,	<Location>,	<Files>	sections	work	for	an
explanation	of	how	these	different	sections	are	combined
when	a	request	is	received.	<If>	has	the	same	precedence
and	usage	as	<Files>

<IfDefine>	Directiva

Descripción: Encloses	directives	that	will	be	processed	only
if	a	test	is	true	at	startup

Sintaxis: <IfDefine	[!]parameter-name>	...

</IfDefine>

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core

The	<IfDefine	test>...</IfDefine>	section	is	used	to
mark	directives	that	are	conditional.	The	directives	within	an
<IfDefine>	section	are	only	processed	if	the	test	is	true.	If	test	is
false,	everything	between	the	start	and	end	markers	is	ignored.

The	test	in	the	<IfDefine>	section	directive	can	be	one	of	two
forms:

parameter-name
!parameter-name

In	the	former	case,	the	directives	between	the	start	and	end
markers	are	only	processed	if	the	parameter	named	parameter-
name	is	defined.	The	second	format	reverses	the	test,	and	only
processes	the	directives	if	parameter-name	is	not	defined.

The	parameter-name	argument	is	a	define	as	given	on	the	httpd
command	line	via	-Dparameter	at	the	time	the	server	was
started	or	by	the	Define	directive.

<IfDefine>	sections	are	nest-able,	which	can	be	used	to
implement	simple	multiple-parameter	tests.	Example:

httpd	-DReverseProxy	-DUseCache	-DMemCache	...

#	httpd.conf

<IfDefine	ReverseProxy>

LoadModule	proxy_module	modules/mod_proxy.so

LoadModule	proxy_http_module	modules/mod_proxy_http.so

<IfDefine	UseCache>

LoadModule	cache_module	modules/mod_cache.so

<IfDefine	MemCache>

LoadModule	mem_cache_module	modules/mod_mem_cache.so

</IfDefine>

<IfDefine	!MemCache>

LoadModule	cache_disk_module	modules/mod_cache_disk.so

</IfDefine>

</IfDefine>

</IfDefine>

<IfModule>	Directiva

Descripción: Encloses	directives	that	are	processed
conditional	on	the	presence	or	absence	of	a
specific	module

Sintaxis: <IfModule	[!]module-file|module-

identifier>	...	</IfModule>

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core
Compatibilidad: Module	identifiers	are	available	in	version	2.1

and	later.

The	<IfModule	test>...</IfModule>	section	is	used	to
mark	directives	that	are	conditional	on	the	presence	of	a	specific
module.	The	directives	within	an	<IfModule>	section	are	only
processed	if	the	test	is	true.	If	test	is	false,	everything	between	the
start	and	end	markers	is	ignored.

The	test	in	the	<IfModule>	section	directive	can	be	one	of	two
forms:

module
!module

In	the	former	case,	the	directives	between	the	start	and	end
markers	are	only	processed	if	the	module	named	module	is
included	in	Apache	httpd	--	either	compiled	in	or	dynamically
loaded	using	LoadModule.	The	second	format	reverses	the	test,
and	only	processes	the	directives	if	module	is	not	included.

The	module	argument	can	be	either	the	module	identifier	or	the	file
name	of	the	module,	at	the	time	it	was	compiled.	For	example,
rewrite_module	is	the	identifier	and	mod_rewrite.c	is	the	file

name.	If	a	module	consists	of	several	source	files,	use	the	name
of	the	file	containing	the	string	STANDARD20_MODULE_STUFF.

<IfModule>	sections	are	nest-able,	which	can	be	used	to
implement	simple	multiple-module	tests.

This	section	should	only	be	used	if	you	need	to	have	one
configuration	file	that	works	whether	or	not	a	specific	module	is
available.	In	normal	operation,	directives	need	not	be	placed	in
<IfModule>	sections.

Include	Directiva

Descripción: Includes	other	configuration	files	from	within
the	server	configuration	files

Sintaxis: Include	[optional|strict]	file-

path|directory-path|wildcard

Contexto: server	config,	virtual	host,	directorio
Estado: Core
Módulo: core
Compatibilidad: Wildcard	matching	available	in	2.0.41	and	later,

directory	wildcard	matching	available	in	2.3.6
and	later

This	directive	allows	inclusion	of	other	configuration	files	from
within	the	server	configuration	files.

Shell-style	(fnmatch())	wildcard	characters	can	be	used	in	the
filename	or	directory	parts	of	the	path	to	include	several	files	at
once,	in	alphabetical	order.	In	addition,	if	Include	points	to	a
directory,	rather	than	a	file,	Apache	httpd	will	read	all	files	in	that
directory	and	any	subdirectory.	However,	including	entire
directories	is	not	recommended,	because	it	is	easy	to	accidentally
leave	temporary	files	in	a	directory	that	can	cause	httpd	to	fail.
Instead,	we	encourage	you	to	use	the	wildcard	syntax	shown
below,	to	include	files	that	match	a	particular	pattern,	such	as
*.conf,	for	example.

When	a	wildcard	is	specified	for	a	file	component	of	the	path,	and
no	file	matches	the	wildcard,	the	Include	directive	will	be
silently	ignored.	When	a	wildcard	is	specified	for	a	directory
component	of	the	path,	and	no	directory	matches	the	wildcard,	the
Include	directive	will	fail	with	an	error	saying	the	directory
cannot	be	found.

For	further	control	over	the	behaviour	of	the	server	when	no	files

or	directories	match,	prefix	the	path	with	the	modifiers	optional	or
strict.	If	optional	is	specified,	any	wildcard	file	or	directory	that
does	not	match	will	be	silently	ignored.	If	strict	is	specified,	any
wildcard	file	or	directory	that	does	not	match	at	least	one	file	will
cause	server	startup	to	fail.

When	a	directory	or	file	component	of	the	path	is	specified	exactly,
and	that	directory	or	file	does	not	exist,	Include	directive	will	fail
with	an	error	saying	the	file	or	directory	cannot	be	found.

The	file	path	specified	may	be	an	absolute	path,	or	may	be	relative
to	the	ServerRoot	directory.

Examples:

Include	/usr/local/apache2/conf/ssl.conf

Include	/usr/local/apache2/conf/vhosts/*.conf

Or,	providing	paths	relative	to	your	ServerRoot	directory:

Include	conf/ssl.conf

Include	conf/vhosts/*.conf

Wildcards	may	be	included	in	the	directory	or	file	portion	of	the
path.	In	the	following	example,	the	server	will	fail	to	load	if	no
directories	match	conf/vhosts/*,	but	will	load	successfully	if	no	files
match	*.conf.

Include	conf/vhosts/*/vhost.conf

Include	conf/vhosts/*/*.conf

In	this	example,	the	server	will	fail	to	load	if	either	conf/vhosts/*
matches	no	directories,	or	if	*.conf	matches	no	files:

Include	strict	conf/vhosts/*/*.conf

In	this	example,	the	server	load	successfully	if	either	conf/vhosts/*
matches	no	directories,	or	if	*.conf	matches	no	files:

Include	optional	conf/vhosts/*/*.conf

Consulte	también
apachectl

IncludeOptional	Directiva

Descripción: Includes	other	configuration	files	from	within
the	server	configuration	files

Sintaxis: IncludeOptional	file-

path|directory-path|wildcard

Contexto: server	config,	virtual	host,	directorio
Estado: Core
Módulo: core
Compatibilidad: Available	in	2.3.6	and	later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

Consulte	también
Include

apachectl

KeepAlive	Directiva

Descripción: Enables	HTTP	persistent	connections
Sintaxis: KeepAlive	On|Off

Valor	por	defecto: KeepAlive	On
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

The	Keep-Alive	extension	to	HTTP/1.0	and	the	persistent
connection	feature	of	HTTP/1.1	provide	long-lived	HTTP	sessions
which	allow	multiple	requests	to	be	sent	over	the	same	TCP
connection.	In	some	cases	this	has	been	shown	to	result	in	an
almost	50%	speedup	in	latency	times	for	HTML	documents	with
many	images.	To	enable	Keep-Alive	connections,	set	KeepAlive
On.

For	HTTP/1.0	clients,	Keep-Alive	connections	will	only	be	used	if
they	are	specifically	requested	by	a	client.	In	addition,	a	Keep-
Alive	connection	with	an	HTTP/1.0	client	can	only	be	used	when
the	length	of	the	content	is	known	in	advance.	This	implies	that
dynamic	content	such	as	CGI	output,	SSI	pages,	and	server-
generated	directory	listings	will	generally	not	use	Keep-Alive
connections	to	HTTP/1.0	clients.	For	HTTP/1.1	clients,	persistent
connections	are	the	default	unless	otherwise	specified.	If	the	client
requests	it,	chunked	encoding	will	be	used	in	order	to	send
content	of	unknown	length	over	persistent	connections.

When	a	client	uses	a	Keep-Alive	connection	it	will	be	counted	as	a
single	"request"	for	the	MaxConnectionsPerChild	directive,
regardless	of	how	many	requests	are	sent	using	the	connection.

Consulte	también
MaxKeepAliveRequests

KeepAliveTimeout	Directiva

Descripción: Amount	of	time	the	server	will	wait	for
subsequent	requests	on	a	persistent
connection

Sintaxis: KeepAliveTimeout	num[ms]

Valor	por	defecto: KeepAliveTimeout	5
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core
Compatibilidad: Specifying	a	value	in	milliseconds	is

available	in	Apache	httpd	2.3.2	and	later

The	number	of	seconds	Apache	httpd	will	wait	for	a	subsequent
request	before	closing	the	connection.	By	adding	a	postfix	of	ms
the	timeout	can	be	also	set	in	milliseconds.	Once	a	request	has
been	received,	the	timeout	value	specified	by	the	Timeout
directive	applies.

Setting	KeepAliveTimeout	to	a	high	value	may	cause
performance	problems	in	heavily	loaded	servers.	The	higher	the
timeout,	the	more	server	processes	will	be	kept	occupied	waiting
on	connections	with	idle	clients.

In	a	name-based	virtual	host	context,	the	value	of	the	first	defined
virtual	host	(the	default	host)	in	a	set	of	NameVirtualHost	will
be	used.	The	other	values	will	be	ignored.

<Limit>	Directiva

Descripción: Restrict	enclosed	access	controls	to	only
certain	HTTP	methods

Sintaxis: <Limit	method	[method]	...	>	...

</Limit>

Contexto: directorio,	.htaccess
Prevalece	sobre: AuthConfig,	Limit
Estado: Core
Módulo: core

Access	controls	are	normally	effective	for	all	access	methods,	and
this	is	the	usual	desired	behavior.	In	the	general	case,	access
control	directives	should	not	be	placed	within	a	<Limit>
section.

The	purpose	of	the	<Limit>	directive	is	to	restrict	the	effect	of	the
access	controls	to	the	nominated	HTTP	methods.	For	all	other
methods,	the	access	restrictions	that	are	enclosed	in	the	<Limit>
bracket	will	have	no	effect.	The	following	example	applies	the
access	control	only	to	the	methods	POST,	PUT,	and	DELETE,
leaving	all	other	methods	unprotected:

<Limit	POST	PUT	DELETE>

Require	valid-user

</Limit>

The	method	names	listed	can	be	one	or	more	of:	GET,	POST,	PUT,
DELETE,	CONNECT,	OPTIONS,	PATCH,	PROPFIND,	PROPPATCH,
MKCOL,	COPY,	MOVE,	LOCK,	and	UNLOCK.	The	method	name	is
case-sensitive.	If	GET	is	used	it	will	also	restrict	HEAD	requests.
The	TRACE	method	cannot	be	limited	(see	TraceEnable).

A	<LimitExcept>	section	should	always	be	used	in

preference	to	a	<Limit>	section	when	restricting	access,	since
a	<LimitExcept>	section	provides	protection	against	arbitrary
methods.

The	<Limit>	and	<LimitExcept>	directives	may	be	nested.	In
this	case,	each	successive	level	of	<Limit>	or	<LimitExcept>
directives	must	further	restrict	the	set	of	methods	to	which	access
controls	apply.

When	using	<Limit>	or	<LimitExcept>	directives	with	the
Require	directive,	note	that	the	first	Require	to	succeed
authorizes	the	request,	regardless	of	the	presence	of	other
Require	directives.

For	example,	given	the	following	configuration,	all	users	will	be
authorized	for	POST	requests,	and	the	Require	group
editors	directive	will	be	ignored	in	all	cases:

<LimitExcept	GET>

Require	valid-user

</LimitExcept>

<Limit	POST>

Require	group	editors

</Limit>

<LimitExcept>	Directiva

Descripción: Restrict	access	controls	to	all	HTTP	methods
except	the	named	ones

Sintaxis: <LimitExcept	method	[method]	...	>

...	</LimitExcept>

Contexto: directorio,	.htaccess
Prevalece	sobre: AuthConfig,	Limit
Estado: Core
Módulo: core

<LimitExcept>	and	</LimitExcept>	are	used	to	enclose	a
group	of	access	control	directives	which	will	then	apply	to	any
HTTP	access	method	not	listed	in	the	arguments;	i.e.,	it	is	the
opposite	of	a	<Limit>	section	and	can	be	used	to	control	both
standard	and	nonstandard/unrecognized	methods.	See	the
documentation	for	<Limit>	for	more	details.

For	example:

<LimitExcept	POST	GET>

Require	valid-user

</LimitExcept>

LimitInternalRecursion	Directiva

Descripción: Determine	maximum	number	of	internal
redirects	and	nested	subrequests

Sintaxis: LimitInternalRecursion	number

[number]

Valor	por	defecto: LimitInternalRecursion	10
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	httpd	2.0.47	and	later

An	internal	redirect	happens,	for	example,	when	using	the	Action
directive,	which	internally	redirects	the	original	request	to	a	CGI
script.	A	subrequest	is	Apache	httpd's	mechanism	to	find	out	what
would	happen	for	some	URI	if	it	were	requested.	For	example,
mod_dir	uses	subrequests	to	look	for	the	files	listed	in	the
DirectoryIndex	directive.

LimitInternalRecursion	prevents	the	server	from	crashing
when	entering	an	infinite	loop	of	internal	redirects	or	subrequests.
Such	loops	are	usually	caused	by	misconfigurations.

The	directive	stores	two	different	limits,	which	are	evaluated	on
per-request	basis.	The	first	number	is	the	maximum	number	of
internal	redirects,	that	may	follow	each	other.	The	second	number
determines,	how	deep	subrequests	may	be	nested.	If	you	specify
only	one	number,	it	will	be	assigned	to	both	limits.

Example
LimitInternalRecursion	5

LimitRequestBody	Directiva

Descripción: Restricts	the	total	size	of	the	HTTP	request
body	sent	from	the	client

Sintaxis: LimitRequestBody	bytes

Valor	por	defecto: LimitRequestBody	0
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core

This	directive	specifies	the	number	of	bytes	from	0	(meaning
unlimited)	to	2147483647	(2GB)	that	are	allowed	in	a	request
body.	See	the	note	below	for	the	limited	applicability	to	proxy
requests.

The	LimitRequestBody	directive	allows	the	user	to	set	a	limit
on	the	allowed	size	of	an	HTTP	request	message	body	within	the
context	in	which	the	directive	is	given	(server,	per-directory,	per-file
or	per-location).	If	the	client	request	exceeds	that	limit,	the	server
will	return	an	error	response	instead	of	servicing	the	request.	The
size	of	a	normal	request	message	body	will	vary	greatly	depending
on	the	nature	of	the	resource	and	the	methods	allowed	on	that
resource.	CGI	scripts	typically	use	the	message	body	for	retrieving
form	information.	Implementations	of	the	PUT	method	will	require	a
value	at	least	as	large	as	any	representation	that	the	server
wishes	to	accept	for	that	resource.

This	directive	gives	the	server	administrator	greater	control	over
abnormal	client	request	behavior,	which	may	be	useful	for	avoiding
some	forms	of	denial-of-service	attacks.

If,	for	example,	you	are	permitting	file	upload	to	a	particular
location,	and	wish	to	limit	the	size	of	the	uploaded	file	to	100K,	you

might	use	the	following	directive:

LimitRequestBody	102400

For	a	full	description	of	how	this	directive	is	interpreted	by	proxy
requests,	see	the	mod_proxy	documentation.

LimitRequestFields	Directiva

Descripción: Limits	the	number	of	HTTP	request	header
fields	that	will	be	accepted	from	the	client

Sintaxis: LimitRequestFields	number

Valor	por	defecto: LimitRequestFields	100
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

Number	is	an	integer	from	0	(meaning	unlimited)	to	32767.	The
default	value	is	defined	by	the	compile-time	constant
DEFAULT_LIMIT_REQUEST_FIELDS	(100	as	distributed).

The	LimitRequestFields	directive	allows	the	server
administrator	to	modify	the	limit	on	the	number	of	request	header
fields	allowed	in	an	HTTP	request.	A	server	needs	this	value	to	be
larger	than	the	number	of	fields	that	a	normal	client	request	might
include.	The	number	of	request	header	fields	used	by	a	client
rarely	exceeds	20,	but	this	may	vary	among	different	client
implementations,	often	depending	upon	the	extent	to	which	a	user
has	configured	their	browser	to	support	detailed	content
negotiation.	Optional	HTTP	extensions	are	often	expressed	using
request	header	fields.

This	directive	gives	the	server	administrator	greater	control	over
abnormal	client	request	behavior,	which	may	be	useful	for	avoiding
some	forms	of	denial-of-service	attacks.	The	value	should	be
increased	if	normal	clients	see	an	error	response	from	the	server
that	indicates	too	many	fields	were	sent	in	the	request.

For	example:

LimitRequestFields	50

Warning

When	name-based	virtual	hosting	is	used,	the	value	for	this
directive	is	taken	from	the	default	(first-listed)	virtual	host	for	the
NameVirtualHost	the	connection	was	mapped	to.

LimitRequestFieldSize	Directiva

Descripción: Limits	the	size	of	the	HTTP	request	header
allowed	from	the	client

Sintaxis: LimitRequestFieldSize	bytes

Valor	por	defecto: LimitRequestFieldSize	8190
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

This	directive	specifies	the	number	of	bytes	that	will	be	allowed	in
an	HTTP	request	header.

The	LimitRequestFieldSize	directive	allows	the	server
administrator	to	reduce	or	increase	the	limit	on	the	allowed	size	of
an	HTTP	request	header	field.	A	server	needs	this	value	to	be
large	enough	to	hold	any	one	header	field	from	a	normal	client
request.	The	size	of	a	normal	request	header	field	will	vary	greatly
among	different	client	implementations,	often	depending	upon	the
extent	to	which	a	user	has	configured	their	browser	to	support
detailed	content	negotiation.	SPNEGO	authentication	headers	can
be	up	to	12392	bytes.

This	directive	gives	the	server	administrator	greater	control	over
abnormal	client	request	behavior,	which	may	be	useful	for	avoiding
some	forms	of	denial-of-service	attacks.

For	example:

LimitRequestFieldSize	4094

Under	normal	conditions,	the	value	should	not	be	changed	from
the	default.

Warning

When	name-based	virtual	hosting	is	used,	the	value	for	this
directive	is	taken	from	the	default	(first-listed)	virtual	host	for	the
NameVirtualHost	the	connection	was	mapped	to.

LimitRequestLine	Directiva

Descripción: Limit	the	size	of	the	HTTP	request	line	that
will	be	accepted	from	the	client

Sintaxis: LimitRequestLine	bytes

Valor	por	defecto: LimitRequestLine	8190
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

This	directive	sets	the	number	of	bytes	that	will	be	allowed	on	the
HTTP	request-line.

The	LimitRequestLine	directive	allows	the	server	administrator
to	reduce	or	increase	the	limit	on	the	allowed	size	of	a	client's
HTTP	request-line.	Since	the	request-line	consists	of	the	HTTP
method,	URI,	and	protocol	version,	the	LimitRequestLine
directive	places	a	restriction	on	the	length	of	a	request-URI
allowed	for	a	request	on	the	server.	A	server	needs	this	value	to
be	large	enough	to	hold	any	of	its	resource	names,	including	any
information	that	might	be	passed	in	the	query	part	of	a	GET
request.

This	directive	gives	the	server	administrator	greater	control	over
abnormal	client	request	behavior,	which	may	be	useful	for	avoiding
some	forms	of	denial-of-service	attacks.

For	example:

LimitRequestLine	4094

Under	normal	conditions,	the	value	should	not	be	changed	from
the	default.

Warning

When	name-based	virtual	hosting	is	used,	the	value	for	this
directive	is	taken	from	the	default	(first-listed)	virtual	host	for	the
NameVirtualHost	the	connection	was	mapped	to.

LimitXMLRequestBody	Directiva

Descripción: Limits	the	size	of	an	XML-based	request
body

Sintaxis: LimitXMLRequestBody	bytes

Valor	por	defecto: LimitXMLRequestBody	1000000
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core

Limit	(in	bytes)	on	maximum	size	of	an	XML-based	request	body.
A	value	of	0	will	disable	any	checking.

Example:

LimitXMLRequestBody	0

<Location>	Directiva

Descripción: Applies	the	enclosed	directives	only	to	matching
URLs

Sintaxis: <Location	URL-path|URL>	...

</Location>

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

The	<Location>	directive	limits	the	scope	of	the	enclosed
directives	by	URL.	It	is	similar	to	the	<Directory>	directive,	and
starts	a	subsection	which	is	terminated	with	a	</Location>
directive.	<Location>	sections	are	processed	in	the	order	they
appear	in	the	configuration	file,	after	the	<Directory>	sections
and	.htaccess	files	are	read,	and	after	the	<Files>	sections.

<Location>	sections	operate	completely	outside	the	filesystem.
This	has	several	consequences.	Most	importantly,	<Location>
directives	should	not	be	used	to	control	access	to	filesystem
locations.	Since	several	different	URLs	may	map	to	the	same
filesystem	location,	such	access	controls	may	by	circumvented.

The	enclosed	directives	will	be	applied	to	the	request	if	the	path
component	of	the	URL	meets	any	of	the	following	criteria:

The	specified	location	matches	exactly	the	path	component	of
the	URL.
The	specified	location,	which	ends	in	a	forward	slash,	is	a
prefix	of	the	path	component	of	the	URL	(treated	as	a	context
root).
The	specified	location,	with	the	addition	of	a	trailing	slash,	is	a
prefix	of	the	path	component	of	the	URL	(also	treated	as	a
context	root).

In	the	example	below,	where	no	trailing	slash	is	used,	requests	to
/private1,	/private1/	and	/private1/file.txt	will	have	the	enclosed
directives	applied,	but	/private1other	would	not.

<Location	/private1>	...

In	the	example	below,	where	a	trailing	slash	is	used,	requests	to
/private2/	and	/private2/file.txt	will	have	the	enclosed	directives
applied,	but	/private2	and	/private2other	would	not.

<Location	/private2/>	...

When	to	use	<Location>

Use	<Location>	to	apply	directives	to	content	that	lives
outside	the	filesystem.	For	content	that	lives	in	the	filesystem,
use	<Directory>	and	<Files>.	An	exception	is	<Location
/>,	which	is	an	easy	way	to	apply	a	configuration	to	the	entire
server.

For	all	origin	(non-proxy)	requests,	the	URL	to	be	matched	is	a
URL-path	of	the	form	/path/.	No	scheme,	hostname,	port,	or
query	string	may	be	included.	For	proxy	requests,	the	URL	to	be
matched	is	of	the	form	scheme://servername/path,	and	you
must	include	the	prefix.

The	URL	may	use	wildcards.	In	a	wild-card	string,	?	matches	any
single	character,	and	*	matches	any	sequences	of	characters.
Neither	wildcard	character	matches	a	/	in	the	URL-path.

Regular	expressions	can	also	be	used,	with	the	addition	of	the	~
character.	For	example:

<Location	~	"/(extra|special)/data">

would	match	URLs	that	contained	the	substring	/extra/data	or
/special/data.	The	directive	<LocationMatch>	behaves
identical	to	the	regex	version	of	<Location>,	and	is	preferred,	for
the	simple	reason	that	~	is	hard	to	distinguish	from	-	in	many
fonts.

The	<Location>	functionality	is	especially	useful	when	combined
with	the	SetHandler	directive.	For	example,	to	enable	status
requests,	but	allow	them	only	from	browsers	at	example.com,
you	might	use:

<Location	/status>

SetHandler	server-status

Require	host	example.com

</Location>

Note	about	/	(slash)

The	slash	character	has	special	meaning	depending	on	where
in	a	URL	it	appears.	People	may	be	used	to	its	behavior	in	the
filesystem	where	multiple	adjacent	slashes	are	frequently
collapsed	to	a	single	slash	(i.e.,	/home///foo	is	the	same	as
/home/foo).	In	URL-space	this	is	not	necessarily	true.	The
<LocationMatch>	directive	and	the	regex	version	of
<Location>	require	you	to	explicitly	specify	multiple	slashes	if
that	is	your	intention.

For	example,	<LocationMatch	^/abc>	would	match	the
request	URL	/abc	but	not	the	request	URL	//abc.	The	(non-
regex)	<Location>	directive	behaves	similarly	when	used	for
proxy	requests.	But	when	(non-regex)	<Location>	is	used	for
non-proxy	requests	it	will	implicitly	match	multiple	slashes	with	a
single	slash.	For	example,	if	you	specify	<Location
/abc/def>	and	the	request	is	to	/abc//def	then	it	will	match.

Consulte	también
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received.
LocationMatch

<LocationMatch>	Directiva

Descripción: Applies	the	enclosed	directives	only	to	regular-
expression	matching	URLs

Sintaxis: <LocationMatch	regex>	...

</LocationMatch>

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

The	<LocationMatch>	directive	limits	the	scope	of	the	enclosed
directives	by	URL,	in	an	identical	manner	to	<Location>.
However,	it	takes	a	regular	expression	as	an	argument	instead	of
a	simple	string.	For	example:

<LocationMatch	"/(extra|special)/data">

would	match	URLs	that	contained	the	substring	/extra/data	or
/special/data.

Consulte	también
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

LogLevel	Directiva

Descripción: Controls	the	verbosity	of	the	ErrorLog
Sintaxis: LogLevel	[module:]level

[module:level]	...

Valor	por	defecto: LogLevel	warn
Contexto: server	config,	virtual	host,	directorio
Estado: Core
Módulo: core
Compatibilidad: Per-module	and	per-directory	configuration	is

available	in	Apache	HTTP	Server	2.3.6	and
later

LogLevel	adjusts	the	verbosity	of	the	messages	recorded	in	the
error	logs	(see	ErrorLog	directive).	The	following	levels	are
available,	in	order	of	decreasing	significance:

Level Description Example
emerg Emergencies	-

system	is
unusable.

"Child	cannot	open	lock	file.	Exiting"

alert Action	must	be
taken	immediately.

"getpwuid:	couldn't	determine	user
name	from	uid"

crit Critical	Conditions. "socket:	Failed	to	get	a	socket,
exiting	child"

error Error	conditions. "Premature	end	of	script	headers"
warn Warning

conditions.
"child	process	1234	did	not	exit,
sending	another	SIGHUP"

notice Normal	but
significant
condition.

"httpd:	caught	SIGBUS,	attempting
to	dump	core	in	..."

info Informational. "Server	seems	busy,	(you	may	need
to	increase	StartServers,	or

Min/MaxSpareServers)..."
debug Debug-level

messages
"Opening	config	file	..."

trace1 Trace	messages "proxy:	FTP:	control	connection
complete"

trace2 Trace	messages "proxy:	CONNECT:	sending	the
CONNECT	request	to	the	remote
proxy"

trace3 Trace	messages "openssl:	Handshake:	start"
trace4 Trace	messages "read	from	buffered	SSL	brigade,

mode	0,	17	bytes"
trace5 Trace	messages "map	lookup	FAILED:

map=rewritemap	key=keyname"
trace6 Trace	messages "cache	lookup	FAILED,	forcing	new

map	lookup"
trace7 Trace	messages,

dumping	large
amounts	of	data

"|	0000:	02	23	44	30	13	40	ac	34	df
3d	bf	9a	19	49	39	15	|"

trace8 Trace	messages,
dumping	large
amounts	of	data

"|	0000:	02	23	44	30	13	40	ac	34	df
3d	bf	9a	19	49	39	15	|"

When	a	particular	level	is	specified,	messages	from	all	other	levels
of	higher	significance	will	be	reported	as	well.	E.g.,	when
LogLevel	info	is	specified,	then	messages	with	log	levels	of
notice	and	warn	will	also	be	posted.

Using	a	level	of	at	least	crit	is	recommended.

For	example:

LogLevel	notice

Note

When	logging	to	a	regular	file	messages	of	the	level	notice
cannot	be	suppressed	and	thus	are	always	logged.	However,
this	doesn't	apply	when	logging	is	done	using	syslog.

Specifying	a	level	without	a	module	name	will	reset	the	level	for	all
modules	to	that	level.	Specifying	a	level	with	a	module	name	will
set	the	level	for	that	module	only.	It	is	possible	to	use	the	module
source	file	name,	the	module	identifier,	or	the	module	identifier
with	the	trailing	_module	omitted	as	module	specification.	This
means	the	following	three	specifications	are	equivalent:

LogLevel	info	ssl:warn

LogLevel	info	mod_ssl.c:warn

LogLevel	info	ssl_module:warn

It	is	also	possible	to	change	the	level	per	directory:

LogLevel	info

<Directory	/usr/local/apache/htdocs/app>

		LogLevel	debug

</Files>

Per	directory	loglevel	configuration	only	affects	messages	that
are	logged	after	the	request	has	been	parsed	and	that	are
associated	with	the	request.	Log	messages	which	are
associated	with	the	connection	or	the	server	are	not	affected.

MaxKeepAliveRequests	Directiva

Descripción: Number	of	requests	allowed	on	a	persistent
connection

Sintaxis: MaxKeepAliveRequests	number

Valor	por	defecto: MaxKeepAliveRequests	100
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

The	MaxKeepAliveRequests	directive	limits	the	number	of
requests	allowed	per	connection	when	KeepAlive	is	on.	If	it	is
set	to	0,	unlimited	requests	will	be	allowed.	We	recommend	that
this	setting	be	kept	to	a	high	value	for	maximum	server
performance.

For	example:

MaxKeepAliveRequests	500

MaxRangeOverlaps	Directiva

Descripción: Number	of	overlapping	ranges	(eg:	100-
200,150-300)	allowed	before	returning	the
complete	resource

Sintaxis: MaxRangeOverlaps	default	|

unlimited	|	none	|	number-of-

ranges

Valor	por	defecto: MaxRangeOverlaps	20
Contexto: server	config,	virtual	host,	directorio
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	HTTP	Server	2.3.15	and

later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

MaxRangeReversals	Directiva

Descripción: Number	of	range	reversals	(eg:	100-
200,50-70)	allowed	before	returning	the
complete	resource

Sintaxis: MaxRangeReversals	default	|

unlimited	|	none	|	number-of-

ranges

Valor	por	defecto: MaxRangeReversals	20
Contexto: server	config,	virtual	host,	directorio
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	HTTP	Server	2.3.15	and

later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

MaxRanges	Directiva

Descripción: Number	of	ranges	allowed	before	returning
the	complete	resource

Sintaxis: MaxRanges	default	|	unlimited	|

none	|	number-of-ranges

Valor	por	defecto: MaxRanges	200
Contexto: server	config,	virtual	host,	directorio
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	HTTP	Server	2.3.15	and

later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

MergeTrailers	Directiva

Descripción: Determines	whether	trailers	are	merged	into
headers

Sintaxis: MergeTrailers	[on|off]

Valor	por	defecto: MergeTrailers	off
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core
Compatibilidad: 2.4.11	and	later

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

Mutex	Directiva

Descripción: Configures	mutex	mechanism	and	lock	file
directory	for	all	or	specified	mutexes

Sintaxis: Mutex	mechanism	[default|mutex-

name]	...	[OmitPID]

Valor	por	defecto: Mutex	default
Contexto: server	config
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	HTTP	Server	2.3.4	and

later

The	Mutex	directive	sets	the	mechanism,	and	optionally	the	lock
file	location,	that	httpd	and	modules	use	to	serialize	access	to
resources.	Specify	default	as	the	first	argument	to	change	the
settings	for	all	mutexes;	specify	a	mutex	name	(see	table	below)
as	the	first	argument	to	override	defaults	only	for	that	mutex.

The	Mutex	directive	is	typically	used	in	the	following	exceptional
situations:

change	the	mutex	mechanism	when	the	default	mechanism
selected	by	APR	has	a	functional	or	performance	problem
change	the	directory	used	by	file-based	mutexes	when	the
default	directory	does	not	support	locking

Supported	modules

This	directive	only	configures	mutexes	which	have	been
registered	with	the	core	server	using	the
ap_mutex_register()	API.	All	modules	bundled	with	httpd
support	the	Mutex	directive,	but	third-party	modules	may	not.
Consult	the	documentation	of	the	third-party	module,	which
must	indicate	the	mutex	name(s)	which	can	be	configured	if	this

directive	is	supported.

The	following	mutex	mechanisms	are	available:

default	|	yes

This	selects	the	default	locking	implementation,	as
determined	by	APR.	The	default	locking	implementation	can
be	displayed	by	running	httpd	with	the	-V	option.

none	|	no

This	effectively	disables	the	mutex,	and	is	only	allowed	for	a
mutex	if	the	module	indicates	that	it	is	a	valid	choice.	Consult
the	module	documentation	for	more	information.

posixsem

This	is	a	mutex	variant	based	on	a	Posix	semaphore.

Warning

The	semaphore	ownership	is	not	recovered	if	a	thread	in
the	process	holding	the	mutex	segfaults,	resulting	in	a	hang
of	the	web	server.

sysvsem

This	is	a	mutex	variant	based	on	a	SystemV	IPC	semaphore.

Warning

It	is	possible	to	"leak"	SysV	semaphores	if	processes	crash
before	the	semaphore	is	removed.

Security

The	semaphore	API	allows	for	a	denial	of	service	attack	by
any	CGIs	running	under	the	same	uid	as	the	webserver

(i.e.,	all	CGIs,	unless	you	use	something	like	suexec	or
cgiwrapper).

sem

This	selects	the	"best"	available	semaphore	implementation,
choosing	between	Posix	and	SystemV	IPC	semaphores,	in
that	order.

pthread

This	is	a	mutex	variant	based	on	cross-process	Posix	thread
mutexes.

Warning

On	most	systems,	if	a	child	process	terminates	abnormally
while	holding	a	mutex	that	uses	this	implementation,	the
server	will	deadlock	and	stop	responding	to	requests.
When	this	occurs,	the	server	will	require	a	manual	restart	to
recover.

Solaris	is	a	notable	exception	as	it	provides	a	mechanism
which	usually	allows	the	mutex	to	be	recovered	after	a	child
process	terminates	abnormally	while	holding	a	mutex.

If	your	system	implements	the
pthread_mutexattr_setrobust_np()	function,	you
may	be	able	to	use	the	pthread	option	safely.

fcntl:/path/to/mutex

This	is	a	mutex	variant	where	a	physical	(lock-)file	and	the
fcntl()	function	are	used	as	the	mutex.

Warning

When	multiple	mutexes	based	on	this	mechanism	are	used

within	multi-threaded,	multi-process	environments,
deadlock	errors	(EDEADLK)	can	be	reported	for	valid
mutex	operations	if	fcntl()	is	not	thread-aware,	such	as
on	Solaris.

flock:/path/to/mutex

This	is	similar	to	the	fcntl:/path/to/mutex	method	with
the	exception	that	the	flock()	function	is	used	to	provide	file
locking.

file:/path/to/mutex

This	selects	the	"best"	available	file	locking	implementation,
choosing	between	fcntl	and	flock,	in	that	order.

Most	mechanisms	are	only	available	on	selected	platforms,	where
the	underlying	platform	and	APR	support	it.	Mechanisms	which
aren't	available	on	all	platforms	are	posixsem,	sysvsem,	sem,
pthread,	fcntl,	flock,	and	file.

With	the	file-based	mechanisms	fcntl	and	flock,	the	path,	if
provided,	is	a	directory	where	the	lock	file	will	be	created.	The
default	directory	is	httpd's	run-time	file	directory	relative	to
ServerRoot.	Always	use	a	local	disk	filesystem	for
/path/to/mutex	and	never	a	directory	residing	on	a	NFS-	or
AFS-filesystem.	The	basename	of	the	file	will	be	the	mutex	type,
an	optional	instance	string	provided	by	the	module,	and	unless	the
OmitPID	keyword	is	specified,	the	process	id	of	the	httpd	parent
process	will	be	appended	to	to	make	the	file	name	unique,
avoiding	conflicts	when	multiple	httpd	instances	share	a	lock	file
directory.	For	example,	if	the	mutex	name	is	mpm-accept	and	the
lock	file	directory	is	/var/httpd/locks,	the	lock	file	name	for
the	httpd	instance	with	parent	process	id	12345	would	be
/var/httpd/locks/mpm-accept.12345.

Security

It	is	best	to	avoid	putting	mutex	files	in	a	world-writable	directory
such	as	/var/tmp	because	someone	could	create	a	denial	of
service	attack	and	prevent	the	server	from	starting	by	creating	a
lockfile	with	the	same	name	as	the	one	the	server	will	try	to
create.

The	following	table	documents	the	names	of	mutexes	used	by
httpd	and	bundled	modules.

Mutex	name Module(s) Protected	resource
mpm-accept prefork	and

worker	MPMs
incoming	connections,	to
avoid	the	thundering	herd
problem;	for	more
information,	refer	to	the
performance	tuning
documentation

authdigest-

client

mod_auth_digest client	list	in	shared	memory

authdigest-

opaque

mod_auth_digest counter	in	shared	memory

ldap-cache mod_ldap LDAP	result	cache
rewrite-map mod_rewrite communication	with

external	mapping	programs,
to	avoid	intermixed	I/O	from
multiple	requests

ssl-cache mod_ssl SSL	session	cache
ssl-

stapling

mod_ssl OCSP	stapling	response
cache

watchdog-

callback

mod_watchdog callback	function	of	a
particular	client	module

The	OmitPID	keyword	suppresses	the	addition	of	the	httpd	parent
process	id	from	the	lock	file	name.

In	the	following	example,	the	mutex	mechanism	for	the	MPM
accept	mutex	will	be	changed	from	the	compiled-in	default	to
fcntl,	with	the	associated	lock	file	created	in	directory
/var/httpd/locks.	The	mutex	mechanism	for	all	other
mutexes	will	be	changed	from	the	compiled-in	default	to	sysvsem.

Mutex	default	sysvsem

Mutex	mpm-accept	fcntl:/var/httpd/locks

NameVirtualHost	Directiva

Descripción: Designates	an	IP	address	for	name-virtual	hosting
Sintaxis: NameVirtualHost	addr[:port]

Contexto: server	config
Estado: Core
Módulo: core

A	single	NameVirtualHost	directive	identifies	a	set	of	identical
virtual	hosts	on	which	the	server	will	further	select	from	on	the
basis	of	the	hostname	requested	by	the	client.	The
NameVirtualHost	directive	is	a	required	directive	if	you	want	to
configure	name-based	virtual	hosts.

This	directive,	and	the	corresponding	VirtualHost,	must	be
qualified	with	a	port	number	if	the	server	supports	both	HTTP	and
HTTPS	connections.

Although	addr	can	be	a	hostname,	it	is	recommended	that	you
always	use	an	IP	address	or	a	wildcard.	A	wildcard
NameVirtualHost	matches	only	virtualhosts	that	also	have	a	literal
wildcard	as	their	argument.

In	cases	where	a	firewall	or	other	proxy	receives	the	requests	and
forwards	them	on	a	different	IP	address	to	the	server,	you	must
specify	the	IP	address	of	the	physical	interface	on	the	machine
which	will	be	servicing	the	requests.

In	the	example	below,	requests	received	on	interface	192.0.2.1
and	port	80	will	only	select	among	the	first	two	virtual	hosts.
Requests	received	on	port	80	on	any	other	interface	will	only
select	among	the	third	and	fourth	virtual	hosts.	In	the	common
case	where	the	interface	isn't	important	to	the	mapping,	only	the
"*:80"	NameVirtualHost	and	VirtualHost	directives	are	necessary.

NameVirtualHost	192.0.2.1:80

NameVirtualHost	*:80

<VirtualHost	192.0.2.1:80>

		ServerName	namebased-a.example.com

</VirtualHost>

<VirtualHost	192.0.2.1:80>

		Servername	namebased-b.example.com

</VirtualHost>

<VirtualHost	*:80>

		ServerName	namebased-c.example.com	

</VirtualHost>

<VirtualHost	*:80>

		ServerName	namebased-d.example.com	

</VirtualHost>

If	no	matching	virtual	host	is	found,	then	the	first	listed	virtual	host
that	matches	the	IP	address	and	port	will	be	used.

IPv6	addresses	must	be	enclosed	in	square	brackets,	as	shown	in
the	following	example:

NameVirtualHost	[2001:db8::a00:20ff:fea7:ccea]:8080

Argument	to	<VirtualHost>	directive

Note	that	the	argument	to	the	<VirtualHost>	directive	must
exactly	match	the	argument	to	the	NameVirtualHost
directive.

NameVirtualHost	192.0.2.2:80

<VirtualHost	192.0.2.2:80>

#	...

</VirtualHost>

Consulte	también
Virtual	Hosts	documentation

Options	Directiva

Descripción: Configures	what	features	are	available	in	a
particular	directory

Sintaxis: Options	[+|-]option	[[+|-]option]

...

Valor	por	defecto: Options	All
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: Options
Estado: Core
Módulo: core

The	Options	directive	controls	which	server	features	are
available	in	a	particular	directory.

option	can	be	set	to	None,	in	which	case	none	of	the	extra
features	are	enabled,	or	one	or	more	of	the	following:

All

All	options	except	for	MultiViews.	This	is	the	default	setting.

ExecCGI

Execution	of	CGI	scripts	using	mod_cgi	is	permitted.

FollowSymLinks

The	server	will	follow	symbolic	links	in	this	directory.

Even	though	the	server	follows	the	symlink	it	does	not
change	the	pathname	used	to	match	against
<Directory>	sections.

Note	also,	that	this	option	gets	ignored	if	set	inside	a
<Location>	section.

Omitting	this	option	should	not	be	considered	a	security

restriction,	since	symlink	testing	is	subject	to	race
conditions	that	make	it	circumventable.

Includes

Server-side	includes	provided	by	mod_include	are
permitted.

IncludesNOEXEC

Server-side	includes	are	permitted,	but	the	#exec	cmd	and
#exec	cgi	are	disabled.	It	is	still	possible	to	#include
virtual	CGI	scripts	from	ScriptAliased	directories.

Indexes

If	a	URL	which	maps	to	a	directory	is	requested,	and	there	is
no	DirectoryIndex	(e.g.,	index.html)	in	that	directory,
then	mod_autoindex	will	return	a	formatted	listing	of	the
directory.

MultiViews

Content	negotiated	"MultiViews"	are	allowed	using
mod_negotiation.

Note

This	option	gets	ignored	if	set	anywhere	other	than
<Directory>,	as	mod_negotiation	needs	real
resources	to	compare	against	and	evaluate	from.

SymLinksIfOwnerMatch

The	server	will	only	follow	symbolic	links	for	which	the	target
file	or	directory	is	owned	by	the	same	user	id	as	the	link.

Note

This	option	gets	ignored	if	set	inside	a	<Location>
section.

This	option	should	not	be	considered	a	security	restriction,
since	symlink	testing	is	subject	to	race	conditions	that	make
it	circumventable.

Normally,	if	multiple	Options	could	apply	to	a	directory,	then	the
most	specific	one	is	used	and	others	are	ignored;	the	options	are
not	merged.	(See	how	sections	are	merged.)	However	if	all	the
options	on	the	Options	directive	are	preceded	by	a	+	or	-
symbol,	the	options	are	merged.	Any	options	preceded	by	a	+	are
added	to	the	options	currently	in	force,	and	any	options	preceded
by	a	-	are	removed	from	the	options	currently	in	force.

Warning

Mixing	Options	with	a	+	or	-	with	those	without	is	not	valid
syntax,	and	is	likely	to	cause	unexpected	results.

For	example,	without	any	+	and	-	symbols:

<Directory	/web/docs>

Options	Indexes	FollowSymLinks

</Directory>

<Directory	/web/docs/spec>

Options	Includes

</Directory>

then	only	Includes	will	be	set	for	the	/web/docs/spec
directory.	However	if	the	second	Options	directive	uses	the	+
and	-	symbols:

<Directory	/web/docs>

Options	Indexes	FollowSymLinks

</Directory>

<Directory	/web/docs/spec>

Options	+Includes	-Indexes

</Directory>

then	the	options	FollowSymLinks	and	Includes	are	set	for	the
/web/docs/spec	directory.

Note

Using	-IncludesNOEXEC	or	-Includes	disables	server-side
includes	completely	regardless	of	the	previous	setting.

The	default	in	the	absence	of	any	other	settings	is	All.

Protocol	Directiva

Descripción: Protocol	for	a	listening	socket
Sintaxis: Protocol	protocol

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	2.1.5	and	later.	On

Windows	from	Apache	2.3.3	and	later.

This	directive	specifies	the	protocol	used	for	a	specific	listening
socket.	The	protocol	is	used	to	determine	which	module	should
handle	a	request,	and	to	apply	protocol	specific	optimizations	with
the	AcceptFilter	directive.

You	only	need	to	set	the	protocol	if	you	are	running	on	non-
standard	ports,	otherwise	http	is	assumed	for	port	80	and	https
for	port	443.

For	example,	if	you	are	running	https	on	a	non-standard	port,
specify	the	protocol	explicitly:

Protocol	https

You	can	also	specify	the	protocol	using	the	Listen	directive.

Consulte	también
AcceptFilter

Listen

Protocols	Directiva

Descripción: Protocols	available	for	a	server/virtual	host
Sintaxis: Protocols	protocol	...

Valor	por	defecto: Protocols	http/1.1
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core
Compatibilidad: Only	available	from	Apache	2.4.17	and	later.

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

Consulte	también
ProtocolsHonorOrder

ProtocolsHonorOrder	Directiva

Descripción: Determines	if	order	of	Protocols	determines
precedence	during	negotiation

Sintaxis: ProtocolsHonorOrder	On|Off

Valor	por	defecto: ProtocolsHonorOrder	On
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core
Compatibilidad: Only	available	from	Apache	2.4.17	and	later.

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

Consulte	también
Protocols

QualifyRedirectURL	Directiva

Descripción: Controls	whether	the	REDIRECT_URL
environment	variable	is	fully	qualified

Sintaxis: QualifyRedirectURL	ON|OFF

Valor	por	defecto: QualifyRedirectURL	OFF
Contexto: server	config,	virtual	host,	directorio
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core
Compatibilidad: Directive	supported	in	2.4.18	and	later.

2.4.17	acted	as	if	'QualifyRedirectURL	ON'
was	configured.

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

RegisterHttpMethod	Directiva

Descripción: Register	non-standard	HTTP	methods
Sintaxis: RegisterHttpMethod	method	[method

[...]]

Contexto: server	config
Estado: Core
Módulo: core

La	Documentación	para	esta	directiva	no	ha	sido	traducida	aún.
Por	favor	use	la	versión	en	inglés	mientras	tanto.

RLimitCPU	Directiva

Descripción: Limits	the	CPU	consumption	of	processes
launched	by	Apache	httpd	children

Sintaxis: RLimitCPU	seconds|max

[seconds|max]

Valor	por	defecto: Unset;	uses	operating	system
defaults

Contexto: server	config,	virtual	host,	directorio,
.htaccess

Prevalece	sobre: All
Estado: Core
Módulo: core

Takes	1	or	2	parameters.	The	first	parameter	sets	the	soft
resource	limit	for	all	processes	and	the	second	parameter	sets	the
maximum	resource	limit.	Either	parameter	can	be	a	number,	or
max	to	indicate	to	the	server	that	the	limit	should	be	set	to	the
maximum	allowed	by	the	operating	system	configuration.	Raising
the	maximum	resource	limit	requires	that	the	server	is	running	as
root,	or	in	the	initial	startup	phase.

This	applies	to	processes	forked	off	from	Apache	httpd	children
servicing	requests,	not	the	Apache	httpd	children	themselves.	This
includes	CGI	scripts	and	SSI	exec	commands,	but	not	any
processes	forked	off	from	the	Apache	httpd	parent	such	as	piped
logs.

CPU	resource	limits	are	expressed	in	seconds	per	process.

Consulte	también
RLimitMEM

RLimitNPROC

RLimitMEM	Directiva

Descripción: Limits	the	memory	consumption	of	processes
launched	by	Apache	httpd	children

Sintaxis: RLimitMEM	bytes|max	[bytes|max]

Valor	por	defecto: Unset;	uses	operating	system
defaults

Contexto: server	config,	virtual	host,	directorio,
.htaccess

Prevalece	sobre: All
Estado: Core
Módulo: core

Takes	1	or	2	parameters.	The	first	parameter	sets	the	soft
resource	limit	for	all	processes	and	the	second	parameter	sets	the
maximum	resource	limit.	Either	parameter	can	be	a	number,	or
max	to	indicate	to	the	server	that	the	limit	should	be	set	to	the
maximum	allowed	by	the	operating	system	configuration.	Raising
the	maximum	resource	limit	requires	that	the	server	is	running	as
root,	or	in	the	initial	startup	phase.

This	applies	to	processes	forked	off	from	Apache	httpd	children
servicing	requests,	not	the	Apache	httpd	children	themselves.	This
includes	CGI	scripts	and	SSI	exec	commands,	but	not	any
processes	forked	off	from	the	Apache	httpd	parent	such	as	piped
logs.

Memory	resource	limits	are	expressed	in	bytes	per	process.

Consulte	también
RLimitCPU

RLimitNPROC

RLimitNPROC	Directiva

Descripción: Limits	the	number	of	processes	that	can	be
launched	by	processes	launched	by	Apache
httpd	children

Sintaxis: RLimitNPROC	number|max

[number|max]

Valor	por	defecto: Unset;	uses	operating	system
defaults

Contexto: server	config,	virtual	host,	directorio,
.htaccess

Prevalece	sobre: All
Estado: Core
Módulo: core

Takes	1	or	2	parameters.	The	first	parameter	sets	the	soft
resource	limit	for	all	processes	and	the	second	parameter	sets	the
maximum	resource	limit.	Either	parameter	can	be	a	number,	or
max	to	indicate	to	the	server	that	the	limit	should	be	set	to	the
maximum	allowed	by	the	operating	system	configuration.	Raising
the	maximum	resource	limit	requires	that	the	server	is	running	as
root,	or	in	the	initial	startup	phase.

This	applies	to	processes	forked	off	from	Apache	httpd	children
servicing	requests,	not	the	Apache	httpd	children	themselves.	This
includes	CGI	scripts	and	SSI	exec	commands,	but	not	any
processes	forked	off	from	the	Apache	httpd	parent	such	as	piped
logs.

Process	limits	control	the	number	of	processes	per	user.

Note

If	CGI	processes	are	not	running	under	user	ids	other	than	the
web	server	user	id,	this	directive	will	limit	the	number	of

processes	that	the	server	itself	can	create.	Evidence	of	this
situation	will	be	indicated	by	cannot	fork	messages	in	the
error_log.

Consulte	también
RLimitMEM

RLimitCPU

ScriptInterpreterSource	Directiva

Descripción: Technique	for	locating	the	interpreter	for	CGI
scripts

Sintaxis: ScriptInterpreterSource

Registry|Registry-Strict|Script

Valor	por	defecto: ScriptInterpreterSource	Script
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core
Compatibilidad: Win32	only;	option	Registry-Strict	is

available	in	Apache	HTTP	Server	2.0	and
later

This	directive	is	used	to	control	how	Apache	httpd	finds	the
interpreter	used	to	run	CGI	scripts.	The	default	setting	is	Script.
This	causes	Apache	httpd	to	use	the	interpreter	pointed	to	by	the
shebang	line	(first	line,	starting	with	#!)	in	the	script.	On	Win32
systems	this	line	usually	looks	like:

#!C:/Perl/bin/perl.exe

or,	if	perl	is	in	the	PATH,	simply:

#!perl

Setting	ScriptInterpreterSource	Registry	will	cause	the
Windows	Registry	tree	HKEY_CLASSES_ROOT	to	be	searched
using	the	script	file	extension	(e.g.,	.pl)	as	a	search	key.	The
command	defined	by	the	registry	subkey
Shell\ExecCGI\Command	or,	if	it	does	not	exist,	by	the	subkey

Shell\Open\Command	is	used	to	open	the	script	file.	If	the
registry	keys	cannot	be	found,	Apache	httpd	falls	back	to	the
behavior	of	the	Script	option.

Security

Be	careful	when	using	ScriptInterpreterSource
Registry	with	ScriptAlias'ed	directories,	because	Apache
httpd	will	try	to	execute	every	file	within	this	directory.	The
Registry	setting	may	cause	undesired	program	calls	on	files
which	are	typically	not	executed.	For	example,	the	default	open
command	on	.htm	files	on	most	Windows	systems	will	execute
Microsoft	Internet	Explorer,	so	any	HTTP	request	for	an	.htm
file	existing	within	the	script	directory	would	start	the	browser	in
the	background	on	the	server.	This	is	a	good	way	to	crash	your
system	within	a	minute	or	so.

The	option	Registry-Strict	which	is	new	in	Apache	HTTP
Server	2.0	does	the	same	thing	as	Registry	but	uses	only	the
subkey	Shell\ExecCGI\Command.	The	ExecCGI	key	is	not	a
common	one.	It	must	be	configured	manually	in	the	windows
registry	and	hence	prevents	accidental	program	calls	on	your
system.

SeeRequestTail	Directiva

Descripción: Determine	if	mod_status	displays	the	first	63
characters	of	a	request	or	the	last	63,
assuming	the	request	itself	is	greater	than	63
chars.

Sintaxis: SeeRequestTail	On|Off

Valor	por	defecto: SeeRequestTail	Off
Contexto: server	config
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	httpd	2.2.7	and	later.

mod_status	with	ExtendedStatus	On	displays	the	actual
request	being	handled.	For	historical	purposes,	only	63	characters
of	the	request	are	actually	stored	for	display	purposes.	This
directive	controls	whether	the	1st	63	characters	are	stored	(the
previous	behavior	and	the	default)	or	if	the	last	63	characters	are.
This	is	only	applicable,	of	course,	if	the	length	of	the	request	is	64
characters	or	greater.

If	Apache	httpd	is	handling
GET	/disk1/storage/apache/htdocs/images/imagestore1/food/apples.jpg	HTTP/1.1

mod_status	displays	as	follows:

Off
(default)

GET	/disk1/storage/apache/htdocs/images/imagestore1/food/apples

On orage/apache/htdocs/images/imagestore1/food/apples.jpg	HTTP/1.1

ServerAdmin	Directiva

Descripción: Email	address	that	the	server	includes	in	error
messages	sent	to	the	client

Sintaxis: ServerAdmin	email-address|URL

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

The	ServerAdmin	sets	the	contact	address	that	the	server
includes	in	any	error	messages	it	returns	to	the	client.	If	the	httpd
doesn't	recognize	the	supplied	argument	as	an	URL,	it	assumes,
that	it's	an	email-address	and	prepends	it	with	mailto:	in
hyperlink	targets.	However,	it's	recommended	to	actually	use	an
email	address,	since	there	are	a	lot	of	CGI	scripts	that	make	that
assumption.	If	you	want	to	use	an	URL,	it	should	point	to	another
server	under	your	control.	Otherwise	users	may	not	be	able	to
contact	you	in	case	of	errors.

It	may	be	worth	setting	up	a	dedicated	address	for	this,	e.g.

ServerAdmin	www-admin@foo.example.com

as	users	do	not	always	mention	that	they	are	talking	about	the
server!

ServerAlias	Directiva

Descripción: Alternate	names	for	a	host	used	when	matching
requests	to	name-virtual	hosts

Sintaxis: ServerAlias	hostname	[hostname]	...

Contexto: virtual	host
Estado: Core
Módulo: core

The	ServerAlias	directive	sets	the	alternate	names	for	a	host,
for	use	with	name-based	virtual	hosts.	The	ServerAlias	may
include	wildcards,	if	appropriate.

<VirtualHost	*:80>

ServerName	server.domain.com

ServerAlias	server	server2.domain.com	server2

ServerAlias	*.example.com

UseCanonicalName	Off

#	...

</VirtualHost>

Consulte	también
UseCanonicalName

Apache	HTTP	Server	Virtual	Host	documentation

ServerName	Directiva

Descripción: Hostname	and	port	that	the	server	uses	to	identify
itself

Sintaxis: ServerName	[scheme://]fully-

qualified-domain-name[:port]

Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

The	ServerName	directive	sets	the	request	scheme,	hostname
and	port	that	the	server	uses	to	identify	itself.	This	is	used	when
creating	redirection	URLs.

Additionally,	ServerName	is	used	(possibly	in	conjunction	with
ServerAlias)	to	uniquely	identify	a	virtual	host,	when	using
name-based	virtual	hosts.

For	example,	if	the	name	of	the	machine	hosting	the	web	server	is
simple.example.com,	but	the	machine	also	has	the	DNS	alias
www.example.com	and	you	wish	the	web	server	to	be	so
identified,	the	following	directive	should	be	used:

ServerName	www.example.com:80

The	ServerName	directive	may	appear	anywhere	within	the
definition	of	a	server.	However,	each	appearance	overrides	the
previous	appearance	(within	that	server).

If	no	ServerName	is	specified,	then	the	server	attempts	to	deduce
the	hostname	by	performing	a	reverse	lookup	on	the	IP	address.	If
no	port	is	specified	in	the	ServerName,	then	the	server	will	use
the	port	from	the	incoming	request.	For	optimal	reliability	and
predictability,	you	should	specify	an	explicit	hostname	and	port
using	the	ServerName	directive.

If	you	are	using	name-based	virtual	hosts,	the	ServerName	inside
a	<VirtualHost>	section	specifies	what	hostname	must	appear
in	the	request's	Host:	header	to	match	this	virtual	host.

Sometimes,	the	server	runs	behind	a	device	that	processes	SSL,
such	as	a	reverse	proxy,	load	balancer	or	SSL	offload	appliance.
When	this	is	the	case,	specify	the	https://	scheme	and	the	port
number	to	which	the	clients	connect	in	the	ServerName	directive
to	make	sure	that	the	server	generates	the	correct	self-referential
URLs.

See	the	description	of	the	UseCanonicalName	and
UseCanonicalPhysicalPort	directives	for	settings	which
determine	whether	self-referential	URLs	(e.g.,	by	the	mod_dir
module)	will	refer	to	the	specified	port,	or	to	the	port	number	given
in	the	client's	request.

Failure	to	set	ServerName	to	a	name	that	your	server	can
resolve	to	an	IP	address	will	result	in	a	startup	warning.	httpd
will	then	use	whatever	hostname	it	can	determine,	using	the
system's	hostname	command.	This	will	almost	never	be	the
hostname	you	actually	want.

httpd:	Could	not	reliably	determine	the	server's	fully

qualified	domain	name,	using	rocinante.local	for

ServerName

Consulte	también
Issues	Regarding	DNS	and	Apache	HTTP	Server
Apache	HTTP	Server	virtual	host	documentation
UseCanonicalName

UseCanonicalPhysicalPort

NameVirtualHost

ServerAlias

ServerPath	Directiva

Descripción: Legacy	URL	pathname	for	a	name-based	virtual
host	that	is	accessed	by	an	incompatible	browser

Sintaxis: ServerPath	URL-path

Contexto: virtual	host
Estado: Core
Módulo: core

The	ServerPath	directive	sets	the	legacy	URL	pathname	for	a
host,	for	use	with	name-based	virtual	hosts.

Consulte	también
Apache	HTTP	Server	Virtual	Host	documentation

ServerRoot	Directiva

Descripción: Base	directory	for	the	server	installation
Sintaxis: ServerRoot	directory-path

Valor	por	defecto: ServerRoot	/usr/local/apache
Contexto: server	config
Estado: Core
Módulo: core

The	ServerRoot	directive	sets	the	directory	in	which	the	server
lives.	Typically	it	will	contain	the	subdirectories	conf/	and	logs/.
Relative	paths	in	other	configuration	directives	(such	as	Include
or	LoadModule,	for	example)	are	taken	as	relative	to	this
directory.

Example
ServerRoot	/home/httpd

Consulte	también
the	-d	option	to	httpd
the	security	tips	for	information	on	how	to	properly	set
permissions	on	the	ServerRoot

ServerSignature	Directiva

Descripción: Configures	the	footer	on	server-generated
documents

Sintaxis: ServerSignature	On|Off|EMail

Valor	por	defecto: ServerSignature	Off
Contexto: server	config,	virtual	host,	directorio,

.htaccess
Prevalece	sobre: All
Estado: Core
Módulo: core

The	ServerSignature	directive	allows	the	configuration	of	a
trailing	footer	line	under	server-generated	documents	(error
messages,	mod_proxy	ftp	directory	listings,	mod_info	output,
...).	The	reason	why	you	would	want	to	enable	such	a	footer	line	is
that	in	a	chain	of	proxies,	the	user	often	has	no	possibility	to	tell
which	of	the	chained	servers	actually	produced	a	returned	error
message.

The	Off	setting,	which	is	the	default,	suppresses	the	footer	line
(and	is	therefore	compatible	with	the	behavior	of	Apache-1.2	and
below).	The	On	setting	simply	adds	a	line	with	the	server	version
number	and	ServerName	of	the	serving	virtual	host,	and	the
EMail	setting	additionally	creates	a	"mailto:"	reference	to	the
ServerAdmin	of	the	referenced	document.

After	version	2.0.44,	the	details	of	the	server	version	number
presented	are	controlled	by	the	ServerTokens	directive.

Consulte	también
ServerTokens

ServerTokens	Directiva

Descripción: Configures	the	Server	HTTP	response	header
Sintaxis: ServerTokens

Major|Minor|Min[imal]|Prod[uctOnly]|OS|Full

Valor	por	defecto: ServerTokens	Full
Contexto: server	config
Estado: Core
Módulo: core

This	directive	controls	whether	Server	response	header	field
which	is	sent	back	to	clients	includes	a	description	of	the	generic
OS-type	of	the	server	as	well	as	information	about	compiled-in
modules.

ServerTokens	Full	(or	not	specified)
Server	sends	(e.g.):	Server:	Apache/2.4.1	(Unix)
PHP/4.2.2	MyMod/1.2

ServerTokens	Prod[uctOnly]

Server	sends	(e.g.):	Server:	Apache

ServerTokens	Major

Server	sends	(e.g.):	Server:	Apache/2

ServerTokens	Minor

Server	sends	(e.g.):	Server:	Apache/2.4

ServerTokens	Min[imal]

Server	sends	(e.g.):	Server:	Apache/2.4.1

ServerTokens	OS

Server	sends	(e.g.):	Server:	Apache/2.4.1	(Unix)

This	setting	applies	to	the	entire	server,	and	cannot	be	enabled	or
disabled	on	a	virtualhost-by-virtualhost	basis.

After	version	2.0.44,	this	directive	also	controls	the	information

presented	by	the	ServerSignature	directive.

Setting	ServerTokens	to	less	than	minimal	is	not
recommended	because	it	makes	it	more	difficult	to	debug
interoperational	problems.	Also	note	that	disabling	the	Server:
header	does	nothing	at	all	to	make	your	server	more	secure;	the
idea	of	"security	through	obscurity"	is	a	myth	and	leads	to	a
false	sense	of	safety.

Consulte	también
ServerSignature

SetHandler	Directiva

Descripción: Forces	all	matching	files	to	be	processed	by	a
handler

Sintaxis: SetHandler	handler-name|None

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core
Compatibilidad: Moved	into	the	core	in	Apache	httpd	2.0

When	placed	into	an	.htaccess	file	or	a	<Directory>	or
<Location>	section,	this	directive	forces	all	matching	files	to	be
parsed	through	the	handler	given	by	handler-name.	For	example,
if	you	had	a	directory	you	wanted	to	be	parsed	entirely	as
imagemap	rule	files,	regardless	of	extension,	you	might	put	the
following	into	an	.htaccess	file	in	that	directory:

SetHandler	imap-file

Another	example:	if	you	wanted	to	have	the	server	display	a	status
report	whenever	a	URL	of	http://servername/status	was
called,	you	might	put	the	following	into	httpd.conf:

<Location	/status>

SetHandler	server-status

</Location>

You	can	override	an	earlier	defined	SetHandler	directive	by
using	the	value	None.

Note:	because	SetHandler	overrides	default	handlers,	normal
behaviour	such	as	handling	of	URLs	ending	in	a	slash	(/)	as
directories	or	index	files	is	suppressed.

Consulte	también
AddHandler

SetInputFilter	Directiva

Descripción: Sets	the	filters	that	will	process	client	requests
and	POST	input

Sintaxis: SetInputFilter	filter[;filter...]

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core

The	SetInputFilter	directive	sets	the	filter	or	filters	which	will
process	client	requests	and	POST	input	when	they	are	received
by	the	server.	This	is	in	addition	to	any	filters	defined	elsewhere,
including	the	AddInputFilter	directive.

If	more	than	one	filter	is	specified,	they	must	be	separated	by
semicolons	in	the	order	in	which	they	should	process	the	content.

Consulte	también
Filters	documentation

SetOutputFilter	Directiva

Descripción: Sets	the	filters	that	will	process	responses
from	the	server

Sintaxis: SetOutputFilter	filter[;filter...]

Contexto: server	config,	virtual	host,	directorio,	.htaccess
Prevalece	sobre: FileInfo
Estado: Core
Módulo: core

The	SetOutputFilter	directive	sets	the	filters	which	will
process	responses	from	the	server	before	they	are	sent	to	the
client.	This	is	in	addition	to	any	filters	defined	elsewhere,	including
the	AddOutputFilter	directive.

For	example,	the	following	configuration	will	process	all	files	in	the
/www/data/	directory	for	server-side	includes.

<Directory	/www/data/>

SetOutputFilter	INCLUDES

</Directory>

If	more	than	one	filter	is	specified,	they	must	be	separated	by
semicolons	in	the	order	in	which	they	should	process	the	content.

Consulte	también
Filters	documentation

TimeOut	Directiva

Descripción: Amount	of	time	the	server	will	wait	for	certain
events	before	failing	a	request

Sintaxis: TimeOut	seconds

Valor	por	defecto: TimeOut	60
Contexto: server	config,	virtual	host
Estado: Core
Módulo: core

The	TimeOut	directive	defines	the	length	of	time	Apache	httpd	will
wait	for	I/O	in	various	circumstances:

1.	 When	reading	data	from	the	client,	the	length	of	time	to	wait
for	a	TCP	packet	to	arrive	if	the	read	buffer	is	empty.

2.	 When	writing	data	to	the	client,	the	length	of	time	to	wait	for
an	acknowledgement	of	a	packet	if	the	send	buffer	is	full.

3.	 In	mod_cgi,	the	length	of	time	to	wait	for	output	from	a	CGI
script.

4.	 In	mod_ext_filter,	the	length	of	time	to	wait	for	output
from	a	filtering	process.

5.	 In	mod_proxy,	the	default	timeout	value	if	ProxyTimeout	is
not	configured.

TraceEnable	Directiva

Descripción: Determines	the	behaviour	on	TRACE
requests

Sintaxis: TraceEnable	[on|off|extended]

Valor	por	defecto: TraceEnable	on
Contexto: server	config
Estado: Core
Módulo: core
Compatibilidad: Available	in	Apache	HTTP	Server	1.3.34,

2.0.55	and	later

This	directive	overrides	the	behavior	of	TRACE	for	both	the	core
server	and	mod_proxy.	The	default	TraceEnable	on	permits
TRACE	requests	per	RFC	2616,	which	disallows	any	request	body
to	accompany	the	request.	TraceEnable	off	causes	the	core
server	and	mod_proxy	to	return	a	405	(Method	not	allowed)	error
to	the	client.

Finally,	for	testing	and	diagnostic	purposes	only,	request	bodies
may	be	allowed	using	the	non-compliant	TraceEnable
extended	directive.	The	core	(as	an	origin	server)	will	restrict	the
request	body	to	64k	(plus	8k	for	chunk	headers	if	Transfer-
Encoding:	chunked	is	used).	The	core	will	reflect	the	full
headers	and	all	chunk	headers	with	the	response	body.	As	a	proxy
server,	the	request	body	is	not	restricted	to	64k.

UnDefine	Directiva

Descripción: Undefine	the	existence	of	a	variable
Sintaxis: UnDefine	parameter-name

Contexto: server	config
Estado: Core
Módulo: core

Undoes	the	effect	of	a	Define	or	of	passing	a	-D	argument	to
httpd.

This	directive	can	be	used	to	toggle	the	use	of	<IfDefine>
sections	without	needing	to	alter	-D	arguments	in	any	startup
scripts.

UseCanonicalName	Directiva

Descripción: Configures	how	the	server	determines	its
own	name	and	port

Sintaxis: UseCanonicalName	On|Off|DNS

Valor	por	defecto: UseCanonicalName	Off
Contexto: server	config,	virtual	host,	directorio
Estado: Core
Módulo: core

In	many	situations	Apache	httpd	must	construct	a	self-referential
URL	--	that	is,	a	URL	that	refers	back	to	the	same	server.	With
UseCanonicalName	On	Apache	httpd	will	use	the	hostname	and
port	specified	in	the	ServerName	directive	to	construct	the
canonical	name	for	the	server.	This	name	is	used	in	all	self-
referential	URLs,	and	for	the	values	of	SERVER_NAME	and
SERVER_PORT	in	CGIs.

With	UseCanonicalName	Off	Apache	httpd	will	form	self-
referential	URLs	using	the	hostname	and	port	supplied	by	the
client	if	any	are	supplied	(otherwise	it	will	use	the	canonical	name,
as	defined	above).	These	values	are	the	same	that	are	used	to
implement	name-based	virtual	hosts,	and	are	available	with	the
same	clients.	The	CGI	variables	SERVER_NAME	and
SERVER_PORT	will	be	constructed	from	the	client	supplied	values
as	well.

An	example	where	this	may	be	useful	is	on	an	intranet	server
where	you	have	users	connecting	to	the	machine	using	short
names	such	as	www.	You'll	notice	that	if	the	users	type	a
shortname,	and	a	URL	which	is	a	directory,	such	as
http://www/splat,	without	the	trailing	slash	then	Apache	httpd
will	redirect	them	to	http://www.domain.com/splat/.	If	you
have	authentication	enabled,	this	will	cause	the	user	to	have	to

authenticate	twice	(once	for	www	and	once	again	for
www.domain.com	--	see	the	FAQ	on	this	subject	for	more
information).	But	if	UseCanonicalName	is	set	Off,	then	Apache
httpd	will	redirect	to	http://www/splat/.

There	is	a	third	option,	UseCanonicalName	DNS,	which	is
intended	for	use	with	mass	IP-based	virtual	hosting	to	support
ancient	clients	that	do	not	provide	a	Host:	header.	With	this
option	Apache	httpd	does	a	reverse	DNS	lookup	on	the	server	IP
address	that	the	client	connected	to	in	order	to	work	out	self-
referential	URLs.

Warning

If	CGIs	make	assumptions	about	the	values	of	SERVER_NAME
they	may	be	broken	by	this	option.	The	client	is	essentially	free
to	give	whatever	value	they	want	as	a	hostname.	But	if	the	CGI
is	only	using	SERVER_NAME	to	construct	self-referential	URLs
then	it	should	be	just	fine.

Consulte	también
UseCanonicalPhysicalPort

ServerName

Listen

http://httpd.apache.org/docs/misc/FAQ.html#prompted-twice

UseCanonicalPhysicalPort	Directiva

Descripción: Configures	how	the	server	determines	its
own	name	and	port

Sintaxis: UseCanonicalPhysicalPort	On|Off

Valor	por	defecto: UseCanonicalPhysicalPort	Off
Contexto: server	config,	virtual	host,	directorio
Estado: Core
Módulo: core

In	many	situations	Apache	httpd	must	construct	a	self-referential
URL	--	that	is,	a	URL	that	refers	back	to	the	same	server.	With
UseCanonicalPhysicalPort	On	Apache	httpd	will,	when
constructing	the	canonical	port	for	the	server	to	honor	the
UseCanonicalName	directive,	provide	the	actual	physical	port
number	being	used	by	this	request	as	a	potential	port.	With
UseCanonicalPhysicalPort	Off	Apache	httpd	will	not	ever
use	the	actual	physical	port	number,	instead	relying	on	all
configured	information	to	construct	a	valid	port	number.

Note

The	ordering	of	when	the	physical	port	is	used	is	as	follows:

UseCanonicalName	On

Port	provided	in	Servername
Physical	port
Default	port

UseCanonicalName	Off	|	DNS

Parsed	port	from	Host:	header
Physical	port
Port	provided	in	Servername

Default	port

With	UseCanonicalPhysicalPort	Off,	the	physical	ports
are	removed	from	the	ordering.

Consulte	también
UseCanonicalName

ServerName

Listen

<VirtualHost>	Directiva

Descripción: Contains	directives	that	apply	only	to	a	specific
hostname	or	IP	address

Sintaxis: <VirtualHost	addr[:port]

[addr[:port]]	...>	...	</VirtualHost>

Contexto: server	config
Estado: Core
Módulo: core

<VirtualHost>	and	</VirtualHost>	are	used	to	enclose	a
group	of	directives	that	will	apply	only	to	a	particular	virtual	host.
Any	directive	that	is	allowed	in	a	virtual	host	context	may	be	used.
When	the	server	receives	a	request	for	a	document	on	a	particular
virtual	host,	it	uses	the	configuration	directives	enclosed	in	the
<VirtualHost>	section.	Addr	can	be:

The	IP	address	of	the	virtual	host;
A	fully	qualified	domain	name	for	the	IP	address	of	the	virtual
host	(not	recommended);
The	character	*,	which	is	used	only	in	combination	with
NameVirtualHost	*	to	match	all	IP	addresses;	or
The	string	_default_,	which	is	used	only	with	IP	virtual
hosting	to	catch	unmatched	IP	addresses.

Example
<VirtualHost	10.1.2.3>

ServerAdmin	webmaster@host.example.com

DocumentRoot	/www/docs/host.example.com

ServerName	host.example.com

ErrorLog	logs/host.example.com-error_log

TransferLog	logs/host.example.com-access_log

</VirtualHost>

IPv6	addresses	must	be	specified	in	square	brackets	because	the
optional	port	number	could	not	be	determined	otherwise.	An	IPv6

example	is	shown	below:

<VirtualHost	[2001:db8::a00:20ff:fea7:ccea]>

ServerAdmin	webmaster@host.example.com

DocumentRoot	/www/docs/host.example.com

ServerName	host.example.com

ErrorLog	logs/host.example.com-error_log

TransferLog	logs/host.example.com-access_log

</VirtualHost>

Each	Virtual	Host	must	correspond	to	a	different	IP	address,
different	port	number	or	a	different	host	name	for	the	server,	in	the
former	case	the	server	machine	must	be	configured	to	accept	IP
packets	for	multiple	addresses.	(If	the	machine	does	not	have
multiple	network	interfaces,	then	this	can	be	accomplished	with
the	ifconfig	alias	command	--	if	your	OS	supports	it).

Note

The	use	of	<VirtualHost>	does	not	affect	what	addresses
Apache	httpd	listens	on.	You	may	need	to	ensure	that	Apache
httpd	is	listening	on	the	correct	addresses	using	Listen.

When	using	IP-based	virtual	hosting,	the	special	name
default	can	be	specified	in	which	case	this	virtual	host	will
match	any	IP	address	that	is	not	explicitly	listed	in	another	virtual
host.	In	the	absence	of	any	_default_	virtual	host	the	"main"
server	config,	consisting	of	all	those	definitions	outside	any
VirtualHost	section,	is	used	when	no	IP-match	occurs.

You	can	specify	a	:port	to	change	the	port	that	is	matched.	If
unspecified	then	it	defaults	to	the	same	port	as	the	most	recent
Listen	statement	of	the	main	server.	You	may	also	specify	:*	to
match	all	ports	on	that	address.	(This	is	recommended	when	used
with	_default_.)

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

A	ServerName	should	be	specified	inside	each	<VirtualHost>
block.	If	it	is	absent,	the	ServerName	from	the	"main"	server
configuration	will	be	inherited.

If	no	matching	virtual	host	is	found,	then	the	first	listed	virtual	host
that	matches	the	IP	address	will	be	used.	As	a	consequence,	the
first	listed	virtual	host	is	the	default	virtual	host.

Security

See	the	security	tips	document	for	details	on	why	your	security
could	be	compromised	if	the	directory	where	log	files	are	stored
is	writable	by	anyone	other	than	the	user	that	starts	the	server.

Consulte	también
Apache	HTTP	Server	Virtual	Host	documentation
Issues	Regarding	DNS	and	Apache	HTTP	Server
Setting	which	addresses	and	ports	Apache	HTTP	Server	uses
How	<Directory>,	<Location>	and	<Files>	sections	work	for
an	explanation	of	how	these	different	sections	are	combined
when	a	request	is	received

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	Common	Directives

Description: A	collection	of	directives	that	are	implemented	by	more
than	one	multi-processing	module	(MPM)

Status: MPM

CoreDumpDirectory	Directive

Description: Directory	where	Apache	HTTP	Server	attempts	to
switch	before	dumping	core

Syntax: CoreDumpDirectory	directory

Default: See	usage	for	the	default	setting

Context: server	config
Status: MPM
Module: event,	worker,	prefork

This	controls	the	directory	to	which	Apache	httpd	attempts	to
switch	before	dumping	core.	If	your	operating	system	is	configured
to	create	core	files	in	the	working	directory	of	the	crashing
process,	CoreDumpDirectory	is	necessary	to	change	working
directory	from	the	default	ServerRoot	directory,	which	should	not
be	writable	by	the	user	the	server	runs	as.

If	you	want	a	core	dump	for	debugging,	you	can	use	this	directive
to	place	it	in	a	different	location.	This	directive	has	no	effect	if	your
operating	system	is	not	configured	to	write	core	files	to	the	working
directory	of	the	crashing	processes.

Core	Dumps	on	Linux

If	Apache	httpd	starts	as	root	and	switches	to	another	user,	the
Linux	kernel	disables	core	dumps	even	if	the	directory	is
writable	for	the	process.	Apache	httpd	(2.0.46	and	later)
reenables	core	dumps	on	Linux	2.4	and	beyond,	but	only	if	you
explicitly	configure	a	CoreDumpDirectory.

Core	Dumps	on	BSD

To	enable	core-dumping	of	suid-executables	on	BSD-systems
(such	as	FreeBSD),	set	kern.sugid_coredump	to	1.

Specific	signals

CoreDumpDirectory	processing	only	occurs	for	a	select	set
of	fatal	signals:	SIGFPE,	SIGILL,	SIGABORT,	SIGSEGV,	and
SIGBUS.

On	some	operating	systems,	SIGQUIT	also	results	in	a	core
dump	but	does	not	go	through	CoreDumpDirectory	or
EnableExceptionHook	processing,	so	the	core	location	is
dictated	entirely	by	the	operating	system.

EnableExceptionHook	Directive

Description: Enables	a	hook	that	runs	exception	handlers	after
a	crash

Syntax: EnableExceptionHook	On|Off

Default: EnableExceptionHook	Off

Context: server	config
Status: MPM
Module: event,	worker,	prefork

For	safety	reasons	this	directive	is	only	available	if	the	server	was
configured	with	the	--enable-exception-hook	option.	It
enables	a	hook	that	allows	external	modules	to	plug	in	and	do
something	after	a	child	crashed.

There	are	already	two	modules,	mod_whatkilledus	and
mod_backtrace	that	make	use	of	this	hook.	Please	have	a	look
at	Jeff	Trawick's	EnableExceptionHook	site	for	more	information
about	these.

https://emptyhammock.com/projects/httpd/diag/

GracefulShutdownTimeout	Directive

Description: Specify	a	timeout	after	which	a	gracefully
shutdown	server	will	exit.

Syntax: GracefulShutdownTimeout	seconds

Default: GracefulShutdownTimeout	0

Context: server	config
Status: MPM
Module: event,	worker,	prefork
Compatibility: Available	in	version	2.2	and	later

The	GracefulShutdownTimeout	specifies	how	many	seconds
after	receiving	a	"graceful-stop"	signal,	a	server	should	continue	to
run,	handling	the	existing	connections.

Setting	this	value	to	zero	means	that	the	server	will	wait
indefinitely	until	all	remaining	requests	have	been	fully	served.

Listen	Directive

Description: IP	addresses	and	ports	that	the	server	listens	to
Syntax: Listen	[IP-address:]portnumber

[protocol]

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2
Compatibility: The	protocol	argument	was	added	in	2.1.5

The	Listen	directive	instructs	Apache	httpd	to	listen	to	only
specific	IP	addresses	or	ports;	by	default	it	responds	to	requests
on	all	IP	interfaces.	Listen	is	now	a	required	directive.	If	it	is	not
in	the	config	file,	the	server	will	fail	to	start.	This	is	a	change	from
previous	versions	of	Apache	httpd.

The	Listen	directive	tells	the	server	to	accept	incoming	requests
on	the	specified	port	or	address-and-port	combination.	If	only	a
port	number	is	specified,	the	server	listens	to	the	given	port	on	all
interfaces.	If	an	IP	address	is	given	as	well	as	a	port,	the	server
will	listen	on	the	given	port	and	interface.

Multiple	Listen	directives	may	be	used	to	specify	a	number	of
addresses	and	ports	to	listen	to.	The	server	will	respond	to
requests	from	any	of	the	listed	addresses	and	ports.

For	example,	to	make	the	server	accept	connections	on	both	port
80	and	port	8000,	use:

Listen	80

Listen	8000

To	make	the	server	accept	connections	on	two	specified	interfaces
and	port	numbers,	use

Listen	192.170.2.1:80

Listen	192.170.2.5:8000

IPv6	addresses	must	be	surrounded	in	square	brackets,	as	in	the
following	example:

Listen	[2001:db8::a00:20ff:fea7:ccea]:80

The	optional	protocol	argument	is	not	required	for	most
configurations.	If	not	specified,	https	is	the	default	for	port	443
and	http	the	default	for	all	other	ports.	The	protocol	is	used	to
determine	which	module	should	handle	a	request,	and	to	apply
protocol	specific	optimizations	with	the	AcceptFilter	directive.

You	only	need	to	set	the	protocol	if	you	are	running	on	non-
standard	ports.	For	example,	running	an	https	site	on	port	8443:

Listen	192.170.2.1:8443	https

Error	condition
Multiple	Listen	directives	for	the	same	ip	address	and	port	will
result	in	an	Address	already	in	use	error	message.

See	also
DNS	Issues
Setting	which	addresses	and	ports	Apache	HTTP	Server	uses
Further	discussion	of	the	Address	already	in	use	error
message,	including	other	causes.

http://wiki.apache.org/httpd/CouldNotBindToAddress

ListenBackLog	Directive

Description: Maximum	length	of	the	queue	of	pending
connections

Syntax: ListenBacklog	backlog

Default: ListenBacklog	511

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2

The	maximum	length	of	the	queue	of	pending	connections.
Generally	no	tuning	is	needed	or	desired,	however	on	some
systems	it	is	desirable	to	increase	this	when	under	a	TCP	SYN
flood	attack.	See	the	backlog	parameter	to	the	listen(2)
system	call.

This	will	often	be	limited	to	a	smaller	number	by	the	operating
system.	This	varies	from	OS	to	OS.	Also	note	that	many	OSes	do
not	use	exactly	what	is	specified	as	the	backlog,	but	use	a	number
based	on	(but	normally	larger	than)	what	is	set.

ListenCoresBucketsRatio	Directive

Description: Ratio	between	the	number	of	CPU	cores	(online)
and	the	number	of	listeners'	buckets

Syntax: ListenCoresBucketsRatio	ratio

Default: ListenCoresBucketsRatio	0	(disabled)

Context: server	config
Status: MPM
Module: event,	worker,	prefork
Compatibility: Available	in	Apache	HTTP	Server	2.4.17,	with	a

kernel	supporting	the	socket	option
SO_REUSEPORT	and	distributing	new
connections	evenly	across	listening	processes'
(or	threads')	sockets	using	it	(eg.	Linux	3.9	and
later,	but	not	the	current	implementations	of
SO_REUSEPORT	in	*BSDs.

A	ratio	between	the	number	of	(online)	CPU	cores	and	the	number
of	listeners'	buckets	can	be	used	to	make	Apache	HTTP	Server
create	num_cpu_cores	/	ratio	listening	buckets,	each
containing	its	own	Listen-ing	socket(s)	on	the	same	port(s),	and
then	make	each	child	handle	a	single	bucket	(with	round-robin
distribution	of	the	buckets	at	children	creation	time).

Meaning	of	"online"	CPU	core

On	Linux	(and	also	BSD)	a	CPU	core	can	be	turned	on/off	if
Hotplug	is	configured,	therefore	ListenCoresBucketsRatio
needs	to	take	this	parameter	into	account	while	calculating	the
number	of	buckets	to	create.

ListenCoresBucketsRatio	can	improve	the	scalability	when
accepting	new	connections	is/becomes	the	bottleneck.	On
systems	with	a	large	number	of	CPU	cores,	enabling	this	feature

https://www.kernel.org/doc/Documentation/cpu-hotplug.txt

has	been	tested	to	show	significant	performances	improvement
and	shorter	responses	time.

There	must	be	at	least	twice	the	number	of	CPU	cores	than	the
configured	ratio	for	this	to	be	active.	The	recommended	ratio	is	8,
hence	at	least	16	cores	should	be	available	at	runtime	when	this
value	is	used.	The	right	ratio	to	obtain	maximum	performance
needs	to	be	calculated	for	each	target	system,	testing	multiple
values	and	observing	the	variations	in	your	key	performance
metrics.

This	directive	influences	the	calculation	of	the	MinSpareThreads
and	MaxSpareThreads	lower	bound	values.	The	number	of
children	processes	needs	to	be	a	multiple	of	the	number	of
buckets	to	optimally	accept	connections.

Multiple	Listeners	or	Apache	HTTP	servers	on	the	same	IP
address	and	port

Setting	the	SO_REUSEPORT	option	on	the	listening	socket(s)
consequently	allows	multiple	processes	(sharing	the	same
EUID,	e.g.	root)	to	bind	to	the	the	same	IP	address	and	port,
without	the	binding	error	raised	by	the	system	in	the	usual	case.

This	also	means	that	multiple	instances	of	Apache	httpd
configured	on	a	same	IP:port	and	with	a	positive
ListenCoresBucketsRatio	would	start	without	an	error	too,
and	then	run	with	incoming	connections	evenly	distributed
accross	both	instances	(this	is	NOT	a	recommendation	or	a
sensible	usage	in	any	case,	but	just	a	notice	that	it	would
prevent	such	possible	issues	to	be	detected).

Within	the	same	instance,	Apache	httpd	will	check	and	fail	to
start	if	multiple	Listen	directives	on	the	exact	same	IP	(or
hostname)	and	port	are	configured,	thus	avoiding	the	creation	of
some	duplicated	buckets	which	would	be	useless	and	kill

performances.	However	it	can't	(and	won't	try	harder	to)	catch
all	the	possible	overlapping	cases	(like	a	hostname	resolving	to
an	IP	used	elsewhere).

MaxConnectionsPerChild	Directive

Description: Limit	on	the	number	of	connections	that	an
individual	child	server	will	handle	during	its	life

Syntax: MaxConnectionsPerChild	number

Default: MaxConnectionsPerChild	0

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2
Compatibility: Available	Apache	HTTP	Server	2.3.9	and	later.

The	old	name	MaxRequestsPerChild	is	still
supported.

The	MaxConnectionsPerChild	directive	sets	the	limit	on	the
number	of	connections	that	an	individual	child	server	process	will
handle.	After	MaxConnectionsPerChild	connections,	the	child
process	will	die.	If	MaxConnectionsPerChild	is	0,	then	the
process	will	never	expire.

Setting	MaxConnectionsPerChild	to	a	non-zero	value	limits
the	amount	of	memory	that	process	can	consume	by	(accidental)
memory	leakage.

MaxMemFree	Directive

Description: Maximum	amount	of	memory	that	the	main
allocator	is	allowed	to	hold	without	calling	free()

Syntax: MaxMemFree	KBytes

Default: MaxMemFree	2048

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware

The	MaxMemFree	directive	sets	the	maximum	number	of	free
Kbytes	that	every	allocator	is	allowed	to	hold	without	calling
free().	In	threaded	MPMs,	every	thread	has	its	own	allocator.
When	set	to	zero,	the	threshold	will	be	set	to	unlimited.

MaxRequestWorkers	Directive

Description: Maximum	number	of	connections	that	will	be
processed	simultaneously

Syntax: MaxRequestWorkers	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	prefork

The	MaxRequestWorkers	directive	sets	the	limit	on	the	number
of	simultaneous	requests	that	will	be	served.	Any	connection
attempts	over	the	MaxRequestWorkers	limit	will	normally	be
queued,	up	to	a	number	based	on	the	ListenBacklog	directive.
Once	a	child	process	is	freed	at	the	end	of	a	different	request,	the
connection	will	then	be	serviced.

For	non-threaded	servers	(i.e.,	prefork),	MaxRequestWorkers
translates	into	the	maximum	number	of	child	processes	that	will	be
launched	to	serve	requests.	The	default	value	is	256;	to	increase
it,	you	must	also	raise	ServerLimit.

For	threaded	and	hybrid	servers	(e.g.	event	or	worker)
MaxRequestWorkers	restricts	the	total	number	of	threads	that
will	be	available	to	serve	clients.	For	hybrid	MPMs	the	default
value	is	16	(ServerLimit)	multiplied	by	the	value	of	25
(ThreadsPerChild).	Therefore,	to	increase
MaxRequestWorkers	to	a	value	that	requires	more	than	16
processes,	you	must	also	raise	ServerLimit.

MaxRequestWorkers	was	called	MaxClients	before	version
2.3.13.	The	old	name	is	still	supported.

MaxSpareThreads	Directive

Description: Maximum	number	of	idle	threads
Syntax: MaxSpareThreads	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	mpm_netware,	mpmt_os2

Maximum	number	of	idle	threads.	Different	MPMs	deal	with	this
directive	differently.

For	worker	and	event,	the	default	is	MaxSpareThreads	250.
These	MPMs	deal	with	idle	threads	on	a	server-wide	basis.	If	there
are	too	many	idle	threads	in	the	server	then	child	processes	are
killed	until	the	number	of	idle	threads	is	less	than	this	number.
Additional	processes/threads	might	be	created	if
ListenCoresBucketsRatio	is	enabled.

For	mpm_netware	the	default	is	MaxSpareThreads	100.	Since
this	MPM	runs	a	single-process,	the	spare	thread	count	is	also
server-wide.

mpmt_os2	works	similar	to	mpm_netware.	For	mpmt_os2	the
default	value	is	10.

Restrictions

The	range	of	the	MaxSpareThreads	value	is	restricted.
Apache	httpd	will	correct	the	given	value	automatically
according	to	the	following	rules:

mpm_netware	wants	the	value	to	be	greater	than
MinSpareThreads.
For	worker	and	event,	the	value	must	be	greater	or	equal

to	the	sum	of	MinSpareThreads	and
ThreadsPerChild.

See	also
MinSpareThreads

StartServers

MaxSpareServers

MinSpareThreads	Directive

Description: Minimum	number	of	idle	threads	available	to
handle	request	spikes

Syntax: MinSpareThreads	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	mpm_netware,	mpmt_os2

Minimum	number	of	idle	threads	to	handle	request	spikes.
Different	MPMs	deal	with	this	directive	differently.

worker	and	event	use	a	default	of	MinSpareThreads	75	and
deal	with	idle	threads	on	a	server-wide	basis.	If	there	aren't
enough	idle	threads	in	the	server	then	child	processes	are	created
until	the	number	of	idle	threads	is	greater	than	number.	Additional
processes/threads	might	be	created	if
ListenCoresBucketsRatio	is	enabled.

mpm_netware	uses	a	default	of	MinSpareThreads	10	and,
since	it	is	a	single-process	MPM,	tracks	this	on	a	server-wide
bases.

mpmt_os2	works	similar	to	mpm_netware.	For	mpmt_os2	the
default	value	is	5.

See	also
MaxSpareThreads

StartServers

MinSpareServers

PidFile	Directive

Description: File	where	the	server	records	the	process	ID	of	the
daemon

Syntax: PidFile	filename

Default: PidFile	logs/httpd.pid

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpmt_os2

The	PidFile	directive	sets	the	file	to	which	the	server	records	the
process	id	of	the	daemon.	If	the	filename	is	not	absolute	then	it	is
assumed	to	be	relative	to	the	ServerRoot.

Example
PidFile	/var/run/apache.pid

It	is	often	useful	to	be	able	to	send	the	server	a	signal,	so	that	it
closes	and	then	re-opens	its	ErrorLog	and	TransferLog,	and
re-reads	its	configuration	files.	This	is	done	by	sending	a	SIGHUP
(kill	-1)	signal	to	the	process	id	listed	in	the	PidFile.

The	PidFile	is	subject	to	the	same	warnings	about	log	file
placement	and	security.

Note

As	of	Apache	HTTP	Server	2,	we	recommended	that	you	only
use	the	apachectl	script,	or	the	init	script	that	your	OS
provides,	for	(re-)starting	or	stopping	the	server.

ReceiveBufferSize	Directive

Description: TCP	receive	buffer	size
Syntax: ReceiveBufferSize	bytes

Default: ReceiveBufferSize	0

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2

The	server	will	set	the	TCP	receive	buffer	size	to	the	number	of
bytes	specified.

If	set	to	the	value	of	0,	the	server	will	use	the	OS	default.

ScoreBoardFile	Directive

Description: Location	of	the	file	used	to	store	coordination	data
for	the	child	processes

Syntax: ScoreBoardFile	file-path

Default: ScoreBoardFile

logs/apache_runtime_status

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt

Apache	HTTP	Server	uses	a	scoreboard	to	communicate	between
its	parent	and	child	processes.	Some	architectures	require	a	file	to
facilitate	this	communication.	If	the	file	is	left	unspecified,	Apache
httpd	first	attempts	to	create	the	scoreboard	entirely	in	memory
(using	anonymous	shared	memory)	and,	failing	that,	will	attempt	to
create	the	file	on	disk	(using	file-based	shared	memory).
Specifying	this	directive	causes	Apache	httpd	to	always	create	the
file	on	the	disk.

Example
ScoreBoardFile	/var/run/apache_runtime_status

File-based	shared	memory	is	useful	for	third-party	applications
that	require	direct	access	to	the	scoreboard.

If	you	use	a	ScoreBoardFile	then	you	may	see	improved	speed
by	placing	it	on	a	RAM	disk.	But	be	careful	that	you	heed	the	same
warnings	about	log	file	placement	and	security.

See	also
Stopping	and	Restarting	Apache	HTTP	Server

SendBufferSize	Directive

Description: TCP	buffer	size
Syntax: SendBufferSize	bytes

Default: SendBufferSize	0

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpm_winnt,

mpm_netware,	mpmt_os2

Sets	the	server's	TCP	send	buffer	size	to	the	number	of	bytes
specified.	It	is	often	useful	to	set	this	past	the	OS's	standard
default	value	on	high	speed,	high	latency	connections	(i.e.,	100ms
or	so,	such	as	transcontinental	fast	pipes).

If	set	to	the	value	of	0,	the	server	will	use	the	default	value
provided	by	your	OS.

Further	configuration	of	your	operating	system	may	be	required	to
elicit	better	performance	on	high	speed,	high	latency	connections.

On	some	operating	systems,	changes	in	TCP	behavior	resulting
from	a	larger	SendBufferSize	may	not	be	seen	unless
EnableSendfile	is	set	to	OFF.	This	interaction	applies	only	to
static	files.

ServerLimit	Directive

Description: Upper	limit	on	configurable	number	of	processes
Syntax: ServerLimit	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	prefork

For	the	prefork	MPM,	this	directive	sets	the	maximum
configured	value	for	MaxRequestWorkers	for	the	lifetime	of	the
Apache	httpd	process.	For	the	worker	and	event	MPMs,	this
directive	in	combination	with	ThreadLimit	sets	the	maximum
configured	value	for	MaxRequestWorkers	for	the	lifetime	of	the
Apache	httpd	process.	For	the	event	MPM,	this	directive	also
defines	how	many	old	server	processes	may	keep	running	and
finish	processing	open	connections.	Any	attempts	to	change	this
directive	during	a	restart	will	be	ignored,	but
MaxRequestWorkers	can	be	modified	during	a	restart.

Special	care	must	be	taken	when	using	this	directive.	If
ServerLimit	is	set	to	a	value	much	higher	than	necessary,
extra,	unused	shared	memory	will	be	allocated.	If	both
ServerLimit	and	MaxRequestWorkers	are	set	to	values
higher	than	the	system	can	handle,	Apache	httpd	may	not	start	or
the	system	may	become	unstable.

With	the	prefork	MPM,	use	this	directive	only	if	you	need	to	set
MaxRequestWorkers	higher	than	256	(default).	Do	not	set	the
value	of	this	directive	any	higher	than	what	you	might	want	to	set
MaxRequestWorkers	to.

With	worker,	use	this	directive	only	if	your	MaxRequestWorkers
and	ThreadsPerChild	settings	require	more	than	16	server

processes	(default).	Do	not	set	the	value	of	this	directive	any
higher	than	the	number	of	server	processes	required	by	what	you
may	want	for	MaxRequestWorkers	and	ThreadsPerChild.

With	event,	increase	this	directive	if	the	process	number	defined
by	your	MaxRequestWorkers	and	ThreadsPerChild	settings,
plus	the	number	of	gracefully	shutting	down	processes,	is	more
than	16	server	processes	(default).

Note

There	is	a	hard	limit	of	ServerLimit	20000	compiled	into	the
server	(for	the	prefork	MPM	200000).	This	is	intended	to
avoid	nasty	effects	caused	by	typos.	To	increase	it	even	further
past	this	limit,	you	will	need	to	modify	the	value	of
MAX_SERVER_LIMIT	in	the	mpm	source	file	and	rebuild	the
server.

See	also
Stopping	and	Restarting	Apache	HTTP	Server

StartServers	Directive

Description: Number	of	child	server	processes	created	at
startup

Syntax: StartServers	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	prefork,	mpmt_os2

The	StartServers	directive	sets	the	number	of	child	server
processes	created	on	startup.	As	the	number	of	processes	is
dynamically	controlled	depending	on	the	load,	(see
MinSpareThreads,	MaxSpareThreads,	MinSpareServers,
MaxSpareServers)	there	is	usually	little	reason	to	adjust	this
parameter.

The	default	value	differs	from	MPM	to	MPM.	worker	and	event
default	to	StartServers	3;	prefork	defaults	to	5;	mpmt_os2
defaults	to	2.

StartThreads	Directive

Description: Number	of	threads	created	on	startup
Syntax: StartThreads	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: mpm_netware

Number	of	threads	created	on	startup.	As	the	number	of	threads	is
dynamically	controlled	depending	on	the	load,	(see
MinSpareThreads,	MaxSpareThreads,	MinSpareServers,
MaxSpareServers)	there	is	usually	little	reason	to	adjust	this
parameter.

For	mpm_netware	the	default	is	StartThreads	50	and,	since
there	is	only	a	single	process,	this	is	the	total	number	of	threads
created	at	startup	to	serve	requests.

ThreadLimit	Directive

Description: Sets	the	upper	limit	on	the	configurable	number	of
threads	per	child	process

Syntax: ThreadLimit	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	mpm_winnt

This	directive	sets	the	maximum	configured	value	for
ThreadsPerChild	for	the	lifetime	of	the	Apache	httpd	process.
Any	attempts	to	change	this	directive	during	a	restart	will	be
ignored,	but	ThreadsPerChild	can	be	modified	during	a	restart
up	to	the	value	of	this	directive.

Special	care	must	be	taken	when	using	this	directive.	If
ThreadLimit	is	set	to	a	value	much	higher	than
ThreadsPerChild,	extra	unused	shared	memory	will	be
allocated.	If	both	ThreadLimit	and	ThreadsPerChild	are	set
to	values	higher	than	the	system	can	handle,	Apache	httpd	may
not	start	or	the	system	may	become	unstable.	Do	not	set	the	value
of	this	directive	any	higher	than	your	greatest	predicted	setting	of
ThreadsPerChild	for	the	current	run	of	Apache	httpd.

The	default	value	for	ThreadLimit	is	1920	when	used	with
mpm_winnt	and	64	when	used	with	the	others.

Note

There	is	a	hard	limit	of	ThreadLimit	20000	(or
ThreadLimit	100000	with	event,	ThreadLimit	15000
with	mpm_winnt)	compiled	into	the	server.	This	is	intended	to
avoid	nasty	effects	caused	by	typos.	To	increase	it	even	further
past	this	limit,	you	will	need	to	modify	the	value	of

MAX_THREAD_LIMIT	in	the	mpm	source	file	and	rebuild	the
server.

ThreadsPerChild	Directive

Description: Number	of	threads	created	by	each	child	process
Syntax: ThreadsPerChild	number

Default: See	usage	for	details

Context: server	config
Status: MPM
Module: event,	worker,	mpm_winnt

This	directive	sets	the	number	of	threads	created	by	each	child
process.	The	child	creates	these	threads	at	startup	and	never
creates	more.	If	using	an	MPM	like	mpm_winnt,	where	there	is
only	one	child	process,	this	number	should	be	high	enough	to
handle	the	entire	load	of	the	server.	If	using	an	MPM	like	worker,
where	there	are	multiple	child	processes,	the	total	number	of
threads	should	be	high	enough	to	handle	the	common	load	on	the
server.

The	default	value	for	ThreadsPerChild	is	64	when	used	with
mpm_winnt	and	25	when	used	with	the	others.

ThreadStackSize	Directive

Description: The	size	in	bytes	of	the	stack	used	by	threads
handling	client	connections

Syntax: ThreadStackSize	size

Default: 65536	on	NetWare;	varies	on	other

operating	systems

Context: server	config
Status: MPM
Module: event,	worker,	mpm_winnt,	mpm_netware,

mpmt_os2

Compatibility: Available	in	Apache	HTTP	Server	2.1	and	later

The	ThreadStackSize	directive	sets	the	size	of	the	stack	(for
autodata)	of	threads	which	handle	client	connections	and	call
modules	to	help	process	those	connections.	In	most	cases	the
operating	system	default	for	stack	size	is	reasonable,	but	there	are
some	conditions	where	it	may	need	to	be	adjusted:

On	platforms	with	a	relatively	small	default	thread	stack	size
(e.g.,	HP-UX),	Apache	httpd	may	crash	when	using	some
third-party	modules	which	use	a	relatively	large	amount	of
autodata	storage.	Those	same	modules	may	have	worked
fine	on	other	platforms	where	the	default	thread	stack	size	is
larger.	This	type	of	crash	is	resolved	by	setting
ThreadStackSize	to	a	value	higher	than	the	operating
system	default.	This	type	of	adjustment	is	necessary	only	if
the	provider	of	the	third-party	module	specifies	that	it	is
required,	or	if	diagnosis	of	an	Apache	httpd	crash	indicates
that	the	thread	stack	size	was	too	small.
On	platforms	where	the	default	thread	stack	size	is
significantly	larger	than	necessary	for	the	web	server
configuration,	a	higher	number	of	threads	per	child	process
will	be	achievable	if	ThreadStackSize	is	set	to	a	value

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

lower	than	the	operating	system	default.	This	type	of
adjustment	should	only	be	made	in	a	test	environment	which
allows	the	full	set	of	web	server	processing	can	be	exercised,
as	there	may	be	infrequent	requests	which	require	more	stack
to	process.	The	minimum	required	stack	size	strongly
depends	on	the	modules	used,	but	any	change	in	the	web
server	configuration	can	invalidate	the	current
ThreadStackSize	setting.
On	Linux,	this	directive	can	only	be	used	to	increase	the
default	stack	size,	as	the	underlying	system	call	uses	the
value	as	a	minimum	stack	size.	The	(often	large)	soft	limit	for
ulimit	-s	(8MB	if	unlimited)	is	used	as	the	default	stack
size.

It	is	recommended	to	not	reduce	ThreadStackSize	unless	a
high	number	of	threads	per	child	process	is	needed.	On	some
platforms	(including	Linux),	a	setting	of	128000	is	already	too
low	and	causes	crashes	with	some	common	modules.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	event

Description: A	variant	of	the	worker	MPM	with	the	goal	of
consuming	threads	only	for	connections	with
active	processing

Status: MPM
Module	Identifier: mpm_event_module
Source	File: event.c

Summary
The	event	Multi-Processing	Module	(MPM)	is	designed	to	allow
more	requests	to	be	served	simultaneously	by	passing	off	some
processing	work	to	the	listeners	threads,	freeing	up	the	worker
threads	to	serve	new	requests.

To	use	the	event	MPM,	add	--with-mpm=event	to	the
configure	script's	arguments	when	building	the	httpd.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
The	worker	MPM

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_event
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_event

Relationship	with	the	Worker	MPM

event	is	based	on	the	worker	MPM,	which	implements	a	hybrid
multi-process	multi-threaded	server.	A	single	control	process	(the
parent)	is	responsible	for	launching	child	processes.	Each	child
process	creates	a	fixed	number	of	server	threads	as	specified	in
the	ThreadsPerChild	directive,	as	well	as	a	listener	thread
which	listens	for	connections	and	passes	them	to	a	worker	thread
for	processing	when	they	arrive.

Run-time	configuration	directives	are	identical	to	those	provided	by
worker,	with	the	only	addition	of	the
AsyncRequestWorkerFactor.

How	it	Works

This	MPM	tries	to	fix	the	'keep	alive	problem'	in	HTTP.	After	a
client	completes	the	first	request,	it	can	keep	the	connection	open,
sending	further	requests	using	the	same	socket	and	saving
significant	overhead	in	creating	TCP	connections.	However,
Apache	HTTP	Server	traditionally	keeps	an	entire	child
process/thread	waiting	for	data	from	the	client,	which	brings	its
own	disadvantages.	To	solve	this	problem,	this	MPM	uses	a
dedicated	listener	thread	for	each	process	to	handle	both	the
Listening	sockets,	all	sockets	that	are	in	a	Keep	Alive	state,
sockets	where	the	handler	and	protocol	filters	have	done	their
work	and	the	ones	where	the	only	remaining	thing	to	do	is	send
the	data	to	the	client.

This	new	architecture,	leveraging	non-blocking	sockets	and
modern	kernel	features	exposed	by	APR	(like	Linux's	epoll),	no
longer	requires	the	mpm-accept	Mutex	configured	to	avoid	the
thundering	herd	problem.

The	total	amount	of	connections	that	a	single	process/threads
block	can	handle	is	regulated	by	the
AsyncRequestWorkerFactor	directive.

Async	connections
Async	connections	would	need	a	fixed	dedicated	worker	thread
with	the	previous	MPMs	but	not	with	event.	The	status	page	of
mod_status	shows	new	columns	under	the	Async	connections
section:

Writing
While	sending	the	response	to	the	client,	it	might	happen	that
the	TCP	write	buffer	fills	up	because	the	connection	is	too
slow.	Usually	in	this	case	a	write()	to	the	socket	returns
EWOULDBLOCK	or	EAGAIN,	to	become	writable	again	after	an

idle	time.	The	worker	holding	the	socket	might	be	able	to
offload	the	waiting	task	to	the	listener	thread,	that	in	turn	will
re-assign	it	to	the	first	idle	worker	thread	available	once	an
event	will	be	raised	for	the	socket	(for	example,	"the	socket	is
now	writable").	Please	check	the	Limitations	section	for	more
information.

Keep-alive
Keep	Alive	handling	is	the	most	basic	improvement	from	the
worker	MPM.	Once	a	worker	thread	finishes	to	flush	the
response	to	the	client,	it	can	offload	the	socket	handling	to	the
listener	thread,	that	in	turns	will	wait	for	any	event	from	the
OS,	like	"the	socket	is	readable".	If	any	new	request	comes
from	the	client,	then	the	listener	will	forward	it	to	the	first
worker	thread	available.	Conversely,	if	the
KeepAliveTimeout	occurs	then	the	socket	will	be	closed	by
the	listener.	In	this	way	the	worker	threads	are	not	responsible
for	idle	sockets	and	they	can	be	re-used	to	serve	other
requests.

Closing
Sometimes	the	MPM	needs	to	perform	a	lingering	close,
namely	sending	back	an	early	error	to	the	client	while	it	is	still
transmitting	data	to	httpd.	Sending	the	response	and	then
closing	the	connection	immediately	is	not	the	correct	thing	to
do	since	the	client	(still	trying	to	send	the	rest	of	the	request)
would	get	a	connection	reset	and	could	not	read	the	httpd's
response.	So	in	such	cases,	httpd	tries	to	read	the	rest	of	the
request	to	allow	the	client	to	consume	the	response.	The
lingering	close	is	time	bounded	but	it	can	take	relatively	long
time,	so	a	worker	thread	can	offload	this	work	to	the	listener.

These	improvements	are	valid	for	both	HTTP/HTTPS	connections.

Graceful	process	termination	and	Scoreboard	usage

This	mpm	showed	some	scalability	bottlenecks	in	the	past	leading
to	the	following	error:	"scoreboard	is	full,	not	at
MaxRequestWorkers".	MaxRequestWorkers	limits	the	number
of	simultaneous	requests	that	will	be	served	at	any	given	time	and
also	the	number	of	allowed	processes	(MaxRequestWorkers	/
ThreadsPerChild),	meanwhile	the	Scoreboard	is	a
representation	of	all	the	running	processes	and	the	status	of	their
worker	threads.	If	the	scoreboard	is	full	(so	all	the	threads	have	a
state	that	is	not	idle)	but	the	number	of	active	requests	served	is
not	MaxRequestWorkers,	it	means	that	some	of	them	are
blocking	new	requests	that	could	be	served	but	that	are	queued
instead	(up	to	the	limit	imposed	by	ListenBacklog).	Most	of	the
times	the	threads	are	stuck	in	the	Graceful	state,	namely	they	are
waiting	to	finish	their	work	with	a	TCP	connection	to	safely
terminate	and	free	up	a	scoreboard	slot	(for	example	handling	long
running	requests,	slow	clients	or	connections	with	keep-alive
enabled).	Two	scenarios	are	very	common:

During	a	graceful	restart.	The	parent	process	signals	all	its
children	to	complete	their	work	and	terminate,	while	it	reloads
the	config	and	forks	new	processes.	If	the	old	children	keep
running	for	a	while	before	stopping,	the	scoreboard	will	be
partially	occupied	until	their	slots	are	freed.
When	the	server	load	goes	down	in	a	way	that	causes	httpd
to	stop	some	processes	(for	example	due	to
MaxSpareThreads).	This	is	particularly	problematic	because
when	the	load	increases	again,	httpd	will	try	to	start	new
processes.	If	the	pattern	repeats,	the	number	of	processes
can	rise	quite	a	bit,	ending	up	in	a	mixture	of	old	processes
trying	to	stop	and	new	ones	trying	to	do	some	work.

From	2.4.24	onward,	mpm-event	is	smarter	and	it	is	able	to	handle
graceful	terminations	in	a	much	better	way.	Some	of	the
improvements	are:

Allow	the	use	of	all	the	scoreboard	slots	up	to	ServerLimit.
MaxRequestWorkers	and	ThreadsPerChild	are	used	to
limit	the	amount	of	active	processes,	meanwhile
ServerLimit	takes	also	into	account	the	ones	doing	a
graceful	close	to	allow	extra	slots	when	needed.	The	idea	is	to
use	ServerLimit	to	instruct	httpd	about	how	many	overall
processes	are	tolerated	before	impacting	the	system
resources.
Force	gracefully	finishing	processes	to	close	their	connections
in	keep-alive	state.
During	graceful	shutdown,	if	there	are	more	running	worker
threads	than	open	connections	for	a	given	process,	terminate
these	threads	to	free	resources	faster	(which	may	be	needed
for	new	processes).
If	the	scoreboard	is	full,	prevent	more	processes	to	finish
gracefully	due	to	reduced	load	until	old	processes	have
terminated	(otherwise	the	situation	would	get	worse	once	the
load	increases	again).

The	behavior	described	in	the	last	point	is	completely	observable
via	mod_status	in	the	connection	summary	table	through	two
new	columns:	"Slot"	and	"Stopping".	The	former	indicates	the	PID
and	the	latter	if	the	process	is	stopping	or	not;	the	extra	state	"Yes
(old	gen)"	indicates	a	process	still	running	after	a	graceful	restart.

Limitations
The	improved	connection	handling	may	not	work	for	certain
connection	filters	that	have	declared	themselves	as	incompatible
with	event.	In	these	cases,	this	MPM	will	fall	back	to	the	behavior
of	the	worker	MPM	and	reserve	one	worker	thread	per
connection.	All	modules	shipped	with	the	server	are	compatible
with	the	event	MPM.

A	similar	restriction	is	currently	present	for	requests	involving	an

output	filter	that	needs	to	read	and/or	modify	the	whole	response
body.	If	the	connection	to	the	client	blocks	while	the	filter	is
processing	the	data,	and	the	amount	of	data	produced	by	the	filter
is	too	big	to	be	buffered	in	memory,	the	thread	used	for	the
request	is	not	freed	while	httpd	waits	until	the	pending	data	is	sent
to	the	client.
To	illustrate	this	point	we	can	think	about	the	following	two
situations:	serving	a	static	asset	(like	a	CSS	file)	versus	serving
content	retrieved	from	FCGI/CGI	or	a	proxied	server.	The	former	is
predictable,	namely	the	event	MPM	has	full	visibility	on	the	end	of
the	content	and	it	can	use	events:	the	worker	thread	serving	the
response	content	can	flush	the	first	bytes	until	EWOULDBLOCK	or
EAGAIN	is	returned,	delegating	the	rest	to	the	listener.	This	one	in
turn	waits	for	an	event	on	the	socket,	and	delegates	the	work	to
flush	the	rest	of	the	content	to	the	first	idle	worker	thread.
Meanwhile	in	the	latter	example	(FCGI/CGI/proxied	content)	the
MPM	can't	predict	the	end	of	the	response	and	a	worker	thread
has	to	finish	its	work	before	returning	the	control	to	the	listener.
The	only	alternative	is	to	buffer	the	response	in	memory,	but	it
wouldn't	be	the	safest	option	for	the	sake	of	the	server's	stability
and	memory	footprint.

Background	material
The	event	model	was	made	possible	by	the	introduction	of	new
APIs	into	the	supported	operating	systems:

epoll	(Linux)
kqueue	(BSD)
event	ports	(Solaris)

Before	these	new	APIs	where	made	available,	the	traditional
select	and	poll	APIs	had	to	be	used.	Those	APIs	get	slow	if
used	to	handle	many	connections	or	if	the	set	of	connections	rate
of	change	is	high.	The	new	APIs	allow	to	monitor	much	more

connections	and	they	perform	way	better	when	the	set	of
connections	to	monitor	changes	frequently.	So	these	APIs	made	it
possible	to	write	the	event	MPM,	that	scales	much	better	with	the
typical	HTTP	pattern	of	many	idle	connections.

The	MPM	assumes	that	the	underlying	apr_pollset
implementation	is	reasonably	threadsafe.	This	enables	the	MPM
to	avoid	excessive	high	level	locking,	or	having	to	wake	up	the
listener	thread	in	order	to	send	it	a	keep-alive	socket.	This	is
currently	only	compatible	with	KQueue	and	EPoll.

Requirements

This	MPM	depends	on	APR's	atomic	compare-and-swap
operations	for	thread	synchronization.	If	you	are	compiling	for	an
x86	target	and	you	don't	need	to	support	386s,	or	you	are
compiling	for	a	SPARC	and	you	don't	need	to	run	on	pre-
UltraSPARC	chips,	add	--enable-nonportable-
atomics=yes	to	the	configure	script's	arguments.	This	will
cause	APR	to	implement	atomic	operations	using	efficient
opcodes	not	available	in	older	CPUs.

This	MPM	does	not	perform	well	on	older	platforms	which	lack
good	threading,	but	the	requirement	for	EPoll	or	KQueue	makes
this	moot.

To	use	this	MPM	on	FreeBSD,	FreeBSD	5.3	or	higher	is
recommended.	However,	it	is	possible	to	run	this	MPM	on
FreeBSD	5.2.1,	if	you	use	libkse	(see	man	libmap.conf).
For	NetBSD,	at	least	version	2.0	is	recommended.
For	Linux,	a	2.6	kernel	is	recommended.	It	is	also	necessary
to	ensure	that	your	version	of	glibc	has	been	compiled	with
support	for	EPoll.

AsyncRequestWorkerFactor	Directive

Description: Limit	concurrent	connections	per	process
Syntax: AsyncRequestWorkerFactor	factor

Default: 2

Context: server	config
Status: MPM
Module: event
Compatibility: Available	in	version	2.3.13	and	later

The	event	MPM	handles	some	connections	in	an	asynchronous
way,	where	request	worker	threads	are	only	allocated	for	short
periods	of	time	as	needed,	and	other	connections	with	one	request
worker	thread	reserved	per	connection.	This	can	lead	to	situations
where	all	workers	are	tied	up	and	no	worker	thread	is	available	to
handle	new	work	on	established	async	connections.

To	mitigate	this	problem,	the	event	MPM	does	two	things:

it	limits	the	number	of	connections	accepted	per	process,
depending	on	the	number	of	idle	request	workers;
if	all	workers	are	busy,	it	will	close	connections	in	keep-alive
state	even	if	the	keep-alive	timeout	has	not	expired.	This
allows	the	respective	clients	to	reconnect	to	a	different
process	which	may	still	have	worker	threads	available.

This	directive	can	be	used	to	fine-tune	the	per-process	connection
limit.	A	process	will	only	accept	new	connections	if	the	current
number	of	connections	(not	counting	connections	in	the	"closing"
state)	is	lower	than:

ThreadsPerChild	+	(AsyncRequestWorkerFactor	*
number	of	idle	workers)

An	estimation	of	the	maximum	concurrent	connections	across	all

the	processes	given	an	average	value	of	idle	worker	threads	can
be	calculated	with:

(ThreadsPerChild	+	(AsyncRequestWorkerFactor	*
number	of	idle	workers))	*	ServerLimit

Example

ThreadsPerChild	=	10

ServerLimit	=	4

AsyncRequestWorkerFactor	=	2

MaxRequestWorkers	=	40

idle_workers	=	4	(average	for	all	the	processes	to	keep	it	simple)

max_connections	=	(ThreadsPerChild	+	(AsyncRequestWorkerFactor	*	idle_workers))	*	ServerLimit

																=	(10	+	(2	*	4))	*	4	=	72

When	all	the	worker	threads	are	idle,	then	absolute	maximum
numbers	of	concurrent	connections	can	be	calculared	in	a	simpler
way:

(AsyncRequestWorkerFactor	+	1)	*
MaxRequestWorkers

Example

ThreadsPerChild	=	10

ServerLimit	=	4

MaxRequestWorkers	=	40

AsyncRequestWorkerFactor	=	2

If	all	the	processes	have	all	threads	idle	then:

idle_workers	=	10

We	can	calculate	the	absolute	maximum	numbers	of	concurrent
connections	in	two	ways:

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

max_connections	=	(ThreadsPerChild	+	(AsyncRequestWorkerFactor	*	idle_workers))	*	ServerLimit

																=	(10	+	(2	*	10))	*	4	=	120

max_connections	=	(AsyncRequestWorkerFactor	+	1)	*	MaxRequestWorkers

																=	(2	+	1)	*	40	=	120

Tuning	AsyncRequestWorkerFactor	requires	knowledge	about
the	traffic	handled	by	httpd	in	each	specific	use	case,	so	changing
the	default	value	requires	extensive	testing	and	data	gathering
from	mod_status.

MaxRequestWorkers	was	called	MaxClients	prior	to	version
2.3.13.	The	above	value	shows	that	the	old	name	did	not
accurately	describe	its	meaning	for	the	event	MPM.

AsyncRequestWorkerFactor	can	take	non-integer	arguments,
e.g	"1.5".

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	netware

Description: Multi-Processing	Module	implementing	an
exclusively	threaded	web	server	optimized	for
Novell	NetWare

Status: MPM
Module	Identifier: mpm_netware_module
Source	File: mpm_netware.c

Summary
This	Multi-Processing	Module	(MPM)	implements	an	exclusively
threaded	web	server	that	has	been	optimized	for	Novell	NetWare.

The	main	thread	is	responsible	for	launching	child	worker	threads
which	listen	for	connections	and	serve	them	when	they	arrive.	Apache
HTTP	Server	always	tries	to	maintain	several	spare	or	idle	worker
threads,	which	stand	ready	to	serve	incoming	requests.	In	this	way,
clients	do	not	need	to	wait	for	a	new	child	threads	to	be	spawned
before	their	requests	can	be	served.

The	StartThreads,	MinSpareThreads,	MaxSpareThreads,	and
MaxThreads	regulate	how	the	main	thread	creates	worker	threads	to
serve	requests.	In	general,	Apache	httpd	is	very	self-regulating,	so
most	sites	do	not	need	to	adjust	these	directives	from	their	default
values.	Sites	with	limited	memory	may	need	to	decrease
MaxThreads	to	keep	the	server	from	thrashing	(spawning	and
terminating	idle	threads).	More	information	about	tuning	process
creation	is	provided	in	the	performance	hints	documentation.

MaxConnectionsPerChild	controls	how	frequently	the	server
recycles	processes	by	killing	old	ones	and	launching	new	ones.	On
the	NetWare	OS	it	is	highly	recommended	that	this	directive	remain
set	to	0.	This	allows	worker	threads	to	continue	servicing	requests

indefinitely.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Setting	which	addresses	and	ports	Apache	httpd	uses

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_netware
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_netware

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MaxThreads	Directive

Description: Set	the	maximum	number	of	worker	threads
Syntax: MaxThreads	number

Default: MaxThreads	2048

Context: server	config
Status: MPM
Module: mpm_netware

The	MaxThreads	directive	sets	the	desired	maximum	number
worker	threads	allowable.	The	default	value	is	also	the	compiled	in
hard	limit.	Therefore	it	can	only	be	lowered,	for	example:

MaxThreads	512

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	os2

Description: Hybrid	multi-process,	multi-threaded	MPM	for
OS/2

Status: MPM
Module	Identifier: mpm_mpmt_os2_module
Source	File: mpmt_os2.c

Summary
The	Server	consists	of	a	main,	parent	process	and	a	small,	static
number	of	child	processes.

The	parent	process'	job	is	to	manage	the	child	processes.	This
involves	spawning	children	as	required	to	ensure	there	are	always
StartServers	processes	accepting	connections.

Each	child	process	consists	of	a	pool	of	worker	threads	and	a	main
thread	that	accepts	connections	and	passes	them	to	the	workers	via	a
work	queue.	The	worker	thread	pool	is	dynamic,	managed	by	a
maintenance	thread	so	that	the	number	of	idle	threads	is	kept
between	MinSpareThreads	and	MaxSpareThreads.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpmt_os2
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpmt_os2

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Setting	which	addresses	and	ports	Apache	uses

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	prefork

Description: Implements	a	non-threaded,	pre-forking	web
server

Status: MPM
Module	Identifier: mpm_prefork_module
Source	File: prefork.c

Summary
This	Multi-Processing	Module	(MPM)	implements	a	non-threaded,
pre-forking	web	server.	Each	server	process	may	answer	incoming
requests,	and	a	parent	process	manages	the	size	of	the	server	pool.	It
is	appropriate	for	sites	that	need	to	avoid	threading	for	compatibility
with	non-thread-safe	libraries.	It	is	also	the	best	MPM	for	isolating
each	request,	so	that	a	problem	with	a	single	request	will	not	affect
any	other.

This	MPM	is	very	self-regulating,	so	it	is	rarely	necessary	to	adjust	its
configuration	directives.	Most	important	is	that	MaxRequestWorkers
be	big	enough	to	handle	as	many	simultaneous	requests	as	you
expect	to	receive,	but	small	enough	to	assure	that	there	is	enough
physical	RAM	for	all	processes.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_prefork
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_prefork

See	also
Setting	which	addresses	and	ports	Apache	HTTP	Server	uses

How	it	Works

A	single	control	process	is	responsible	for	launching	child
processes	which	listen	for	connections	and	serve	them	when	they
arrive.	Apache	httpd	always	tries	to	maintain	several	spare	or	idle
server	processes,	which	stand	ready	to	serve	incoming	requests.
In	this	way,	clients	do	not	need	to	wait	for	a	new	child	processes	to
be	forked	before	their	requests	can	be	served.

The	StartServers,	MinSpareServers,	MaxSpareServers,
and	MaxRequestWorkers	regulate	how	the	parent	process
creates	children	to	serve	requests.	In	general,	Apache	httpd	is
very	self-regulating,	so	most	sites	do	not	need	to	adjust	these
directives	from	their	default	values.	Sites	which	need	to	serve
more	than	256	simultaneous	requests	may	need	to	increase
MaxRequestWorkers,	while	sites	with	limited	memory	may	need
to	decrease	MaxRequestWorkers	to	keep	the	server	from
thrashing	(swapping	memory	to	disk	and	back).	More	information
about	tuning	process	creation	is	provided	in	the	performance	hints
documentation.

While	the	parent	process	is	usually	started	as	root	under	Unix	in
order	to	bind	to	port	80,	the	child	processes	are	launched	by
Apache	httpd	as	a	less-privileged	user.	The	User	and	Group
directives	are	used	to	set	the	privileges	of	the	Apache	httpd	child
processes.	The	child	processes	must	be	able	to	read	all	the
content	that	will	be	served,	but	should	have	as	few	privileges
beyond	that	as	possible.

MaxConnectionsPerChild	controls	how	frequently	the	server
recycles	processes	by	killing	old	ones	and	launching	new	ones.

This	MPM	uses	the	mpm-accept	mutex	to	serialize	access	to
incoming	connections	when	subject	to	the	thundering	herd
problem	(generally,	when	there	are	multiple	listening	sockets).	The
implementation	aspects	of	this	mutex	can	be	configured	with	the

Mutex	directive.	The	performance	hints	documentation	has
additional	information	about	this	mutex.

MaxSpareServers	Directive

Description: Maximum	number	of	idle	child	server	processes
Syntax: MaxSpareServers	number

Default: MaxSpareServers	10

Context: server	config
Status: MPM
Module: prefork

The	MaxSpareServers	directive	sets	the	desired	maximum
number	of	idle	child	server	processes.	An	idle	process	is	one
which	is	not	handling	a	request.	If	there	are	more	than
MaxSpareServers	idle,	then	the	parent	process	will	kill	off	the
excess	processes.

Tuning	of	this	parameter	should	only	be	necessary	on	very	busy
sites.	Setting	this	parameter	to	a	large	number	is	almost	always	a
bad	idea.	If	you	are	trying	to	set	the	value	equal	to	or	lower	than
MinSpareServers,	Apache	HTTP	Server	will	automatically
adjust	it	to	MinSpareServers	+	1.

See	also
MinSpareServers

StartServers

MaxSpareThreads

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MinSpareServers	Directive

Description: Minimum	number	of	idle	child	server	processes
Syntax: MinSpareServers	number

Default: MinSpareServers	5

Context: server	config
Status: MPM
Module: prefork

The	MinSpareServers	directive	sets	the	desired	minimum
number	of	idle	child	server	processes.	An	idle	process	is	one
which	is	not	handling	a	request.	If	there	are	fewer	than
MinSpareServers	idle,	then	the	parent	process	creates	new
children:	It	will	spawn	one,	wait	a	second,	then	spawn	two,	wait	a
second,	then	spawn	four,	and	it	will	continue	exponentially	until	it
is	spawning	32	children	per	second.	It	will	stop	whenever	it
satisfies	the	MinSpareServers	setting.

Tuning	of	this	parameter	should	only	be	necessary	on	very	busy
sites.	Setting	this	parameter	to	a	large	number	is	almost	always	a
bad	idea.

See	also
MaxSpareServers

StartServers

MinSpareThreads

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	winnt

Description: Multi-Processing	Module	optimized	for	Windows
NT.

Status: MPM
Module	Identifier: mpm_winnt_module
Source	File: mpm_winnt.c

Summary
This	Multi-Processing	Module	(MPM)	is	the	default	for	the	Windows
NT	operating	systems.	It	uses	a	single	control	process	which
launches	a	single	child	process	which	in	turn	creates	threads	to
handle	requests

Capacity	is	configured	using	the	ThreadsPerChild	directive,	which
sets	the	maximum	number	of	concurrent	client	connections.

By	default,	this	MPM	uses	advanced	Windows	APIs	for	accepting	new
client	connections.	In	some	configurations,	third-party	products	may
interfere	with	this	implementation,	with	the	following	messages	written
to	the	web	server	log:

Child:	Encountered	too	many	AcceptEx	faults	accepting	client

connections.

winnt_mpm:	falling	back	to	'AcceptFilter	none'.

The	MPM	falls	back	to	a	safer	implementation,	but	some	client
requests	were	not	processed	correctly.	In	order	to	avoid	this	error,	use
AcceptFilter	with	accept	filter	none.

AcceptFilter	http	none

AcceptFilter	https	none

In	Apache	httpd	2.0	and	2.2,	Win32DisableAcceptEx	was	used	for
this	purpose.

The	WinNT	MPM	differs	from	the	Unix	MPMs	such	as	worker	and
event	in	several	areas:

When	a	child	process	is	exiting	due	to	shutdown,	restart,	or
MaxConnectionsPerChild,	active	requests	in	the	exiting
process	have	TimeOut	seconds	to	finish	before	processing	is
aborted.	Alternate	types	of	restart	and	shutdown	are	not
implemented.
New	child	processes	read	the	configuration	files	instead	of
inheriting	the	configuration	from	the	parent.	The	behavior	will	be
the	same	as	on	Unix	if	the	child	process	is	created	at	startup	or
restart,	but	if	a	child	process	is	created	because	the	prior	one
crashed	or	reached	MaxConnectionsPerChild,	any	pending
changes	to	the	configuration	will	become	active	in	the	child	at
that	point,	and	the	parent	and	child	will	be	using	a	different
configuration.	If	planned	configuration	changes	have	been
partially	implemented	and	the	current	configuration	cannot	be
parsed,	the	replacement	child	process	cannot	start	up	and	the
server	will	halt.	Because	of	this	behavior,	configuration	files
should	not	be	changed	until	the	time	of	a	server	restart.
The	monitor	and	fatal_exception	hooks	are	not	currently
implemented.
AcceptFilter	is	implemented	in	the	MPM	and	has	a	different
type	of	control	over	handling	of	new	connections.	(Refer	to	the
AcceptFilter	documentation	for	details.)

https://www.apache.org/foundation/contributing.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Using	Apache	HTTP	Server	on	Microsoft	Windows

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_winnt
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_winnt
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	MPM	worker

Description: Multi-Processing	Module	implementing	a	hybrid
multi-threaded	multi-process	web	server

Status: MPM
Module	Identifier: mpm_worker_module
Source	File: worker.c

Summary
This	Multi-Processing	Module	(MPM)	implements	a	hybrid	multi-
process	multi-threaded	server.	By	using	threads	to	serve	requests,	it
is	able	to	serve	a	large	number	of	requests	with	fewer	system
resources	than	a	process-based	server.	However,	it	retains	much	of
the	stability	of	a	process-based	server	by	keeping	multiple	processes
available,	each	with	many	threads.

The	most	important	directives	used	to	control	this	MPM	are
ThreadsPerChild,	which	controls	the	number	of	threads	deployed
by	each	child	process	and	MaxRequestWorkers,	which	controls	the
maximum	total	number	of	threads	that	may	be	launched.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mpm_worker
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mpm_worker

Setting	which	addresses	and	ports	Apache	HTTP	Server	uses

How	it	Works

A	single	control	process	(the	parent)	is	responsible	for	launching
child	processes.	Each	child	process	creates	a	fixed	number	of
server	threads	as	specified	in	the	ThreadsPerChild	directive,
as	well	as	a	listener	thread	which	listens	for	connections	and
passes	them	to	a	server	thread	for	processing	when	they	arrive.

Apache	HTTP	Server	always	tries	to	maintain	a	pool	of	spare	or
idle	server	threads,	which	stand	ready	to	serve	incoming	requests.
In	this	way,	clients	do	not	need	to	wait	for	a	new	threads	or
processes	to	be	created	before	their	requests	can	be	served.	The
number	of	processes	that	will	initially	launch	is	set	by	the
StartServers	directive.	During	operation,	the	server	assesses
the	total	number	of	idle	threads	in	all	processes,	and	forks	or	kills
processes	to	keep	this	number	within	the	boundaries	specified	by
MinSpareThreads	and	MaxSpareThreads.	Since	this	process
is	very	self-regulating,	it	is	rarely	necessary	to	modify	these
directives	from	their	default	values.	The	maximum	number	of
clients	that	may	be	served	simultaneously	(i.e.,	the	maximum	total
number	of	threads	in	all	processes)	is	determined	by	the
MaxRequestWorkers	directive.	The	maximum	number	of	active
child	processes	is	determined	by	the	MaxRequestWorkers
directive	divided	by	the	ThreadsPerChild	directive.

Two	directives	set	hard	limits	on	the	number	of	active	child
processes	and	the	number	of	server	threads	in	a	child	process,
and	can	only	be	changed	by	fully	stopping	the	server	and	then
starting	it	again.	ServerLimit	is	a	hard	limit	on	the	number	of
active	child	processes,	and	must	be	greater	than	or	equal	to	the
MaxRequestWorkers	directive	divided	by	the
ThreadsPerChild	directive.	ThreadLimit	is	a	hard	limit	of	the
number	of	server	threads,	and	must	be	greater	than	or	equal	to
the	ThreadsPerChild	directive.

In	addition	to	the	set	of	active	child	processes,	there	may	be
additional	child	processes	which	are	terminating,	but	where	at
least	one	server	thread	is	still	handling	an	existing	client
connection.	Up	to	MaxRequestWorkers	terminating	processes
may	be	present,	though	the	actual	number	can	be	expected	to	be
much	smaller.	This	behavior	can	be	avoided	by	disabling	the
termination	of	individual	child	processes,	which	is	achieved	using
the	following:

set	the	value	of	MaxConnectionsPerChild	to	zero
set	the	value	of	MaxSpareThreads	to	the	same	value	as
MaxRequestWorkers

A	typical	configuration	of	the	process-thread	controls	in	the
worker	MPM	could	look	as	follows:

ServerLimit									16

StartServers									2

MaxRequestWorkers		150

MinSpareThreads					25

MaxSpareThreads					75

ThreadsPerChild					25

While	the	parent	process	is	usually	started	as	root	under	Unix	in
order	to	bind	to	port	80,	the	child	processes	and	threads	are
launched	by	the	server	as	a	less-privileged	user.	The	User	and
Group	directives	are	used	to	set	the	privileges	of	the	Apache
HTTP	Server	child	processes.	The	child	processes	must	be	able
to	read	all	the	content	that	will	be	served,	but	should	have	as	few
privileges	beyond	that	as	possible.	In	addition,	unless	suexec	is
used,	these	directives	also	set	the	privileges	which	will	be
inherited	by	CGI	scripts.

MaxConnectionsPerChild	controls	how	frequently	the	server

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

recycles	processes	by	killing	old	ones	and	launching	new	ones.

This	MPM	uses	the	mpm-accept	mutex	to	serialize	access	to
incoming	connections	when	subject	to	the	thundering	herd
problem	(generally,	when	there	are	multiple	listening	sockets).	The
implementation	aspects	of	this	mutex	can	be	configured	with	the
Mutex	directive.	The	performance	hints	documentation	has
additional	information	about	this	mutex.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_access_compat

Description: Group	authorizations	based	on	host	(name	or	IP
address)

Status: Extension
Module	Identifier: access_compat_module
Source	File: mod_access_compat.c
Compatibility: Available	in	Apache	HTTP	Server	2.3	as	a

compatibility	module	with	previous	versions	of
Apache	httpd	2.x.	The	directives	provided	by	this
module	have	been	deprecated	by	the	new	authz
refactoring.	Please	see	mod_authz_host

Summary
The	directives	provided	by	mod_access_compat	are	used	in
<Directory>,	<Files>,	and	<Location>	sections	as	well	as
.htaccess	files	to	control	access	to	particular	parts	of	the	server.
Access	can	be	controlled	based	on	the	client	hostname,	IP	address,
or	other	characteristics	of	the	client	request,	as	captured	in
environment	variables.	The	Allow	and	Deny	directives	are	used	to
specify	which	clients	are	or	are	not	allowed	access	to	the	server,	while
the	Order	directive	sets	the	default	access	state,	and	configures	how
the	Allow	and	Deny	directives	interact	with	each	other.

Both	host-based	access	restrictions	and	password-based
authentication	may	be	implemented	simultaneously.	In	that	case,	the
Satisfy	directive	is	used	to	determine	how	the	two	sets	of
restrictions	interact.

Note

The	directives	provided	by	mod_access_compat	have	been

deprecated	by	mod_authz_host.	Mixing	old	directives	like	Order,
Allow	or	Deny	with	new	ones	like	Require	is	technically	possible
but	discouraged.	This	module	was	created	to	support
configurations	containing	only	old	directives	to	facilitate	the	2.4
upgrade.	Please	check	the	upgrading	guide	for	more	information.

In	general,	access	restriction	directives	apply	to	all	access	methods
(GET,	PUT,	POST,	etc).	This	is	the	desired	behavior	in	most	cases.
However,	it	is	possible	to	restrict	some	methods,	while	leaving	other
methods	unrestricted,	by	enclosing	the	directives	in	a	<Limit>
section.

Merging	of	configuration	sections

When	any	directive	provided	by	this	module	is	used	in	a	new
configuration	section,	no	directives	provided	by	this	module	are
inherited	from	previous	configuration	sections.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Require

mod_authz_host

mod_authz_core

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_access_compat
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_access_compat

Allow	Directive

Description: Controls	which	hosts	can	access	an	area	of	the
server

Syntax: Allow	from	all|host|env=[!]env-

variable	[host|env=[!]env-variable]

...

Context: directory,	.htaccess
Override: Limit
Status: Extension
Module: mod_access_compat

The	Allow	directive	affects	which	hosts	can	access	an	area	of	the
server.	Access	can	be	controlled	by	hostname,	IP	address,	IP
address	range,	or	by	other	characteristics	of	the	client	request
captured	in	environment	variables.

The	first	argument	to	this	directive	is	always	from.	The
subsequent	arguments	can	take	three	different	forms.	If	Allow
from	all	is	specified,	then	all	hosts	are	allowed	access,	subject
to	the	configuration	of	the	Deny	and	Order	directives	as
discussed	below.	To	allow	only	particular	hosts	or	groups	of	hosts
to	access	the	server,	the	host	can	be	specified	in	any	of	the
following	formats:

A	(partial)	domain-name

Allow	from	example.org

Allow	from	.net	example.edu

Hosts	whose	names	match,	or	end	in,	this	string	are	allowed
access.	Only	complete	components	are	matched,	so	the
above	example	will	match	foo.example.org	but	it	will	not
match	fooexample.org.	This	configuration	will	cause

Apache	httpd	to	perform	a	double	DNS	lookup	on	the	client	IP
address,	regardless	of	the	setting	of	the	HostnameLookups
directive.	It	will	do	a	reverse	DNS	lookup	on	the	IP	address	to
find	the	associated	hostname,	and	then	do	a	forward	lookup
on	the	hostname	to	assure	that	it	matches	the	original	IP
address.	Only	if	the	forward	and	reverse	DNS	are	consistent
and	the	hostname	matches	will	access	be	allowed.

A	full	IP	address

Allow	from	10.1.2.3

Allow	from	192.168.1.104	192.168.1.205

An	IP	address	of	a	host	allowed	access

A	partial	IP	address

Allow	from	10.1

Allow	from	10	172.20	192.168.2

The	first	1	to	3	bytes	of	an	IP	address,	for	subnet	restriction.

A	network/netmask	pair

Allow	from	10.1.0.0/255.255.0.0

A	network	a.b.c.d,	and	a	netmask	w.x.y.z.	For	more	fine-
grained	subnet	restriction.

A	network/nnn	CIDR	specification

Allow	from	10.1.0.0/16

Similar	to	the	previous	case,	except	the	netmask	consists	of

nnn	high-order	1	bits.

Note	that	the	last	three	examples	above	match	exactly	the	same
set	of	hosts.

IPv6	addresses	and	IPv6	subnets	can	be	specified	as	shown
below:

Allow	from	2001:db8::a00:20ff:fea7:ccea

Allow	from	2001:db8::a00:20ff:fea7:ccea/10

The	third	format	of	the	arguments	to	the	Allow	directive	allows
access	to	the	server	to	be	controlled	based	on	the	existence	of	an
environment	variable.	When	Allow	from	env=env-variable
is	specified,	then	the	request	is	allowed	access	if	the	environment
variable	env-variable	exists.	When	Allow	from	env=!env-
variable	is	specified,	then	the	request	is	allowed	access	if	the
environment	variable	env-variable	doesn't	exist.	The	server
provides	the	ability	to	set	environment	variables	in	a	flexible	way
based	on	characteristics	of	the	client	request	using	the	directives
provided	by	mod_setenvif.	Therefore,	this	directive	can	be	used
to	allow	access	based	on	such	factors	as	the	clients	User-Agent
(browser	type),	Referer,	or	other	HTTP	request	header	fields.

SetEnvIf	User-Agent	^KnockKnock/2\.0	let_me_in

<Directory	"/docroot">

				Order	Deny,Allow

				Deny	from	all

				Allow	from	env=let_me_in

</Directory>

In	this	case,	browsers	with	a	user-agent	string	beginning	with
KnockKnock/2.0	will	be	allowed	access,	and	all	others	will	be

denied.

Merging	of	configuration	sections

When	any	directive	provided	by	this	module	is	used	in	a	new
configuration	section,	no	directives	provided	by	this	module	are
inherited	from	previous	configuration	sections.

Deny	Directive

Description: Controls	which	hosts	are	denied	access	to	the
server

Syntax: Deny	from	all|host|env=[!]env-

variable	[host|env=[!]env-variable]

...

Context: directory,	.htaccess
Override: Limit
Status: Extension
Module: mod_access_compat

This	directive	allows	access	to	the	server	to	be	restricted	based	on
hostname,	IP	address,	or	environment	variables.	The	arguments
for	the	Deny	directive	are	identical	to	the	arguments	for	the	Allow
directive.

Order	Directive

Description: Controls	the	default	access	state	and	the	order	in
which	Allow	and	Deny	are	evaluated.

Syntax: Order	ordering

Default: Order	Deny,Allow

Context: directory,	.htaccess
Override: Limit
Status: Extension
Module: mod_access_compat

The	Order	directive,	along	with	the	Allow	and	Deny	directives,
controls	a	three-pass	access	control	system.	The	first	pass
processes	either	all	Allow	or	all	Deny	directives,	as	specified	by
the	Order	directive.	The	second	pass	parses	the	rest	of	the
directives	(Deny	or	Allow).	The	third	pass	applies	to	all	requests
which	do	not	match	either	of	the	first	two.

Note	that	all	Allow	and	Deny	directives	are	processed,	unlike	a
typical	firewall,	where	only	the	first	match	is	used.	The	last	match
is	effective	(also	unlike	a	typical	firewall).	Additionally,	the	order	in
which	lines	appear	in	the	configuration	files	is	not	significant	--	all
Allow	lines	are	processed	as	one	group,	all	Deny	lines	are
considered	as	another,	and	the	default	state	is	considered	by
itself.

Ordering	is	one	of:

Allow,Deny

First,	all	Allow	directives	are	evaluated;	at	least	one	must
match,	or	the	request	is	rejected.	Next,	all	Deny	directives	are
evaluated.	If	any	matches,	the	request	is	rejected.	Last,	any
requests	which	do	not	match	an	Allow	or	a	Deny	directive
are	denied	by	default.

Deny,Allow

First,	all	Deny	directives	are	evaluated;	if	any	match,	the
request	is	denied	unless	it	also	matches	an	Allow	directive.
Any	requests	which	do	not	match	any	Allow	or	Deny
directives	are	permitted.

Mutual-failure

This	order	has	the	same	effect	as	Order	Allow,Deny	and
is	deprecated	in	its	favor.

Keywords	may	only	be	separated	by	a	comma;	no	whitespace	is
allowed	between	them.

Match Allow,Deny	result Deny,Allow	result
Match	Allow
only

Request	allowed Request	allowed

Match	Deny
only

Request	denied Request	denied

No	match Default	to	second
directive:	Denied

Default	to	second
directive:	Allowed

Match	both
Allow	&	Deny

Final	match	controls:
Denied

Final	match	controls:
Allowed

In	the	following	example,	all	hosts	in	the	example.org	domain	are
allowed	access;	all	other	hosts	are	denied	access.

Order	Deny,Allow

Deny	from	all

Allow	from	example.org

In	the	next	example,	all	hosts	in	the	example.org	domain	are
allowed	access,	except	for	the	hosts	which	are	in	the
foo.example.org	subdomain,	who	are	denied	access.	All	hosts	not
in	the	example.org	domain	are	denied	access	because	the	default

state	is	to	Deny	access	to	the	server.

Order	Allow,Deny

Allow	from	example.org

Deny	from	foo.example.org

On	the	other	hand,	if	the	Order	in	the	last	example	is	changed	to
Deny,Allow,	all	hosts	will	be	allowed	access.	This	happens
because,	regardless	of	the	actual	ordering	of	the	directives	in	the
configuration	file,	the	Allow	from	example.org	will	be
evaluated	last	and	will	override	the	Deny	from
foo.example.org.	All	hosts	not	in	the	example.org	domain
will	also	be	allowed	access	because	the	default	state	is	Allow.

The	presence	of	an	Order	directive	can	affect	access	to	a	part	of
the	server	even	in	the	absence	of	accompanying	Allow	and	Deny
directives	because	of	its	effect	on	the	default	access	state.	For
example,

<Directory	"/www">

				Order	Allow,Deny

</Directory>

will	Deny	all	access	to	the	/www	directory	because	the	default
access	state	is	set	to	Deny.

The	Order	directive	controls	the	order	of	access	directive
processing	only	within	each	phase	of	the	server's	configuration
processing.	This	implies,	for	example,	that	an	Allow	or	Deny
directive	occurring	in	a	<Location>	section	will	always	be
evaluated	after	an	Allow	or	Deny	directive	occurring	in	a
<Directory>	section	or	.htaccess	file,	regardless	of	the
setting	of	the	Order	directive.	For	details	on	the	merging	of

configuration	sections,	see	the	documentation	on	How	Directory,
Location	and	Files	sections	work.

Merging	of	configuration	sections

When	any	directive	provided	by	this	module	is	used	in	a	new
configuration	section,	no	directives	provided	by	this	module	are
inherited	from	previous	configuration	sections.

Satisfy	Directive

Description: Interaction	between	host-level	access	control	and
user	authentication

Syntax: Satisfy	Any|All

Default: Satisfy	All

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_access_compat
Compatibility: Influenced	by	<Limit>	and	<LimitExcept>	in

version	2.0.51	and	later

Access	policy	if	both	Allow	and	Require	used.	The	parameter
can	be	either	All	or	Any.	This	directive	is	only	useful	if	access	to
a	particular	area	is	being	restricted	by	both	username/password
and	client	host	address.	In	this	case	the	default	behavior	(All)	is
to	require	that	the	client	passes	the	address	access	restriction	and
enters	a	valid	username	and	password.	With	the	Any	option	the
client	will	be	granted	access	if	they	either	pass	the	host	restriction
or	enter	a	valid	username	and	password.	This	can	be	used	to
password	restrict	an	area,	but	to	let	clients	from	particular
addresses	in	without	prompting	for	a	password.

For	example,	if	you	wanted	to	let	people	on	your	network	have
unrestricted	access	to	a	portion	of	your	website,	but	require	that
people	outside	of	your	network	provide	a	password,	you	could	use
a	configuration	similar	to	the	following:

Require	valid-user

Allow	from	192.168.1

Satisfy	Any

Another	frequent	use	of	the	Satisfy	directive	is	to	relax	access

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

restrictions	for	a	subdirectory:

<Directory	"/var/www/private">

				Require	valid-user

</Directory>

<Directory	"/var/www/private/public">

				Allow	from	all

				Satisfy	Any

</Directory>

In	the	above	example,	authentication	will	be	required	for	the
/var/www/private	directory,	but	will	not	be	required	for	the
/var/www/private/public	directory.

Since	version	2.0.51	Satisfy	directives	can	be	restricted	to
particular	methods	by	<Limit>	and	<LimitExcept>	sections.

Merging	of	configuration	sections

When	any	directive	provided	by	this	module	is	used	in	a	new
configuration	section,	no	directives	provided	by	this	module	are
inherited	from	previous	configuration	sections.

See	also
Allow

Require

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_actions

Description: Execute	CGI	scripts	based	on	media	type	or
request	method.

Status: Base
Module	Identifier: actions_module
Source	File: mod_actions.c

Summary
This	module	has	two	directives.	The	Action	directive	lets	you	run
CGI	scripts	whenever	a	file	of	a	certain	MIME	content	type	is
requested.	The	Script	directive	lets	you	run	CGI	scripts	whenever	a
particular	method	is	used	in	a	request.	This	makes	it	much	easier	to
execute	scripts	that	process	files.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_cgi

Dynamic	Content	with	CGI
Apache	httpd's	Handler	Use

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_actions
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_actions

Action	Directive

Description: Activates	a	CGI	script	for	a	particular	handler	or
content-type

Syntax: Action	action-type	cgi-script

[virtual]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_actions
Compatibility: The	virtual	modifier	and	handler	passing	were

introduced	in	Apache	2.1

This	directive	adds	an	action,	which	will	activate	cgi-script	when
action-type	is	triggered	by	the	request.	The	cgi-script	is	the	URL-
path	to	a	resource	that	has	been	designated	as	a	CGI	script	using
ScriptAlias	or	AddHandler.	The	action-type	can	be	either	a
handler	or	a	MIME	content	type.	It	sends	the	URL	and	file	path	of
the	requested	document	using	the	standard	CGI	PATH_INFO	and
PATH_TRANSLATED	environment	variables.	The	handler	used	for
the	particular	request	is	passed	using	the	REDIRECT_HANDLER
variable.

Example:	MIME	type
#	Requests	for	files	of	a	particular	MIME	content	type:

Action	image/gif	/cgi-bin/images.cgi

In	this	example,	requests	for	files	with	a	MIME	content	type	of
image/gif	will	be	handled	by	the	specified	cgi	script	/cgi-
bin/images.cgi.

Example:	File	extension
#	Files	of	a	particular	file	extension

AddHandler	my-file-type	.xyz

Action	my-file-type	"/cgi-bin/program.cgi"

In	this	example,	requests	for	files	with	a	file	extension	of	.xyz	are
handled	by	the	specified	cgi	script	/cgi-bin/program.cgi.

The	optional	virtual	modifier	turns	off	the	check	whether	the
requested	file	really	exists.	This	is	useful,	for	example,	if	you	want
to	use	the	Action	directive	in	virtual	locations.

<Location	"/news">

				SetHandler	news-handler

				Action	news-handler	"/cgi-bin/news.cgi"	virtual

</Location>

See	also
AddHandler

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Script	Directive

Description: Activates	a	CGI	script	for	a	particular	request
method.

Syntax: Script	method	cgi-script

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_actions

This	directive	adds	an	action,	which	will	activate	cgi-script	when	a
file	is	requested	using	the	method	of	method.	The	cgi-script	is	the
URL-path	to	a	resource	that	has	been	designated	as	a	CGI	script
using	ScriptAlias	or	AddHandler.	The	URL	and	file	path	of
the	requested	document	is	sent	using	the	standard	CGI
PATH_INFO	and	PATH_TRANSLATED	environment	variables.

Any	arbitrary	method	name	may	be	used.	Method	names	are
case-sensitive,	so	Script	PUT	and	Script	put	have	two
entirely	different	effects.

Note	that	the	Script	command	defines	default	actions	only.	If	a
CGI	script	is	called,	or	some	other	resource	that	is	capable	of
handling	the	requested	method	internally,	it	will	do	so.	Also	note
that	Script	with	a	method	of	GET	will	only	be	called	if	there	are
query	arguments	present	(e.g.,	foo.html?hi).	Otherwise,	the
request	will	proceed	normally.

#	All	GET	requests	go	here

Script	GET	"/cgi-bin/search"

#	A	CGI	PUT	handler

Script	PUT	"/~bob/put.cgi"

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_alias

Description: Provides	for	mapping	different	parts	of	the	host
filesystem	in	the	document	tree	and	for	URL
redirection

Status: Base
Module	Identifier: alias_module
Source	File: mod_alias.c

Summary
The	directives	contained	in	this	module	allow	for	manipulation	and
control	of	URLs	as	requests	arrive	at	the	server.	The	Alias	and
ScriptAlias	directives	are	used	to	map	between	URLs	and
filesystem	paths.	This	allows	for	content	which	is	not	directly	under
the	DocumentRoot	served	as	part	of	the	web	document	tree.	The
ScriptAlias	directive	has	the	additional	effect	of	marking	the	target
directory	as	containing	only	CGI	scripts.

The	Redirect	directives	are	used	to	instruct	clients	to	make	a	new
request	with	a	different	URL.	They	are	often	used	when	a	resource
has	moved	to	a	new	location.

When	the	Alias,	ScriptAlias	and	Redirect	directives	are	used
within	a	<Location>	or	<LocationMatch>	section,	expression
syntax	can	be	used	to	manipulate	the	destination	path	or	URL.

mod_alias	is	designed	to	handle	simple	URL	manipulation	tasks.
For	more	complicated	tasks	such	as	manipulating	the	query	string,
use	the	tools	provided	by	mod_rewrite.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_rewrite

Mapping	URLs	to	the	filesystem

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_alias
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_alias

Order	of	Processing

Aliases	and	Redirects	occurring	in	different	contexts	are
processed	like	other	directives	according	to	standard	merging
rules.	But	when	multiple	Aliases	or	Redirects	occur	in	the	same
context	(for	example,	in	the	same	<VirtualHost>	section)	they
are	processed	in	a	particular	order.

First,	all	Redirects	are	processed	before	Aliases	are	processed,
and	therefore	a	request	that	matches	a	Redirect	or
RedirectMatch	will	never	have	Aliases	applied.	Second,	the
Aliases	and	Redirects	are	processed	in	the	order	they	appear	in
the	configuration	files,	with	the	first	match	taking	precedence.

For	this	reason,	when	two	or	more	of	these	directives	apply	to	the
same	sub-path,	you	must	list	the	most	specific	path	first	in	order
for	all	the	directives	to	have	an	effect.	For	example,	the	following
configuration	will	work	as	expected:

Alias	"/foo/bar"	"/baz"

Alias	"/foo"	"/gaq"

But	if	the	above	two	directives	were	reversed	in	order,	the	/foo
Alias	would	always	match	before	the	/foo/bar	Alias,	so	the
latter	directive	would	be	ignored.

When	the	Alias,	ScriptAlias	and	Redirect	directives	are
used	within	a	<Location>	or	<LocationMatch>	section,	these
directives	will	take	precedence	over	any	globally	defined	Alias,
ScriptAlias	and	Redirect	directives.

Alias	Directive

Description: Maps	URLs	to	filesystem	locations
Syntax: Alias	[URL-path]	file-path|directory-

path

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_alias

The	Alias	directive	allows	documents	to	be	stored	in	the	local
filesystem	other	than	under	the	DocumentRoot.	URLs	with	a	(%-
decoded)	path	beginning	with	URL-path	will	be	mapped	to	local
files	beginning	with	directory-path.	The	URL-path	is	case-
sensitive,	even	on	case-insensitive	file	systems.

Alias	"/image"	"/ftp/pub/image"

A	request	for	http://example.com/image/foo.gif	would
cause	the	server	to	return	the	file	/ftp/pub/image/foo.gif.
Only	complete	path	segments	are	matched,	so	the	above	alias
would	not	match	a	request	for
http://example.com/imagefoo.gif.	For	more	complex
matching	using	regular	expressions,	see	the	AliasMatch
directive.

Note	that	if	you	include	a	trailing	/	on	the	URL-path	then	the	server
will	require	a	trailing	/	in	order	to	expand	the	alias.	That	is,	if	you
use

Alias	"/icons/"	"/usr/local/apache/icons/"

then	the	URL	/icons	will	not	be	aliased,	as	it	lacks	that	trailing	/.
Likewise,	if	you	omit	the	slash	on	the	URL-path	then	you	must	also
omit	it	from	the	file-path.

Note	that	you	may	need	to	specify	additional	<Directory>
sections	which	cover	the	destination	of	aliases.	Aliasing	occurs
before	<Directory>	sections	are	checked,	so	only	the
destination	of	aliases	are	affected.	(Note	however	<Location>
sections	are	run	through	once	before	aliases	are	performed,	so
they	will	apply.)

In	particular,	if	you	are	creating	an	Alias	to	a	directory	outside	of
your	DocumentRoot,	you	may	need	to	explicitly	permit	access	to
the	target	directory.

Alias	"/image"	"/ftp/pub/image"

<Directory	"/ftp/pub/image">

				Require	all	granted

</Directory>

Any	number	slashes	in	the	URL-path	parameter	matches	any
number	of	slashes	in	the	requested	URL-path.

If	the	Alias	directive	is	used	within	a	<Location>	or
<LocationMatch>	section	the	URL-path	is	omitted,	and	the	file-
path	is	interpreted	using	expression	syntax.
This	syntax	is	available	in	Apache	2.4.19	and	later.

<Location	"/image">

				Alias	"/ftp/pub/image"

</Location>

<LocationMatch	"/error/(?<NUMBER>[0-9]+)">

				Alias	"/usr/local/apache/errors/%{env:MATCH_NUMBER}.html"

</LocationMatch>

AliasMatch	Directive

Description: Maps	URLs	to	filesystem	locations	using	regular
expressions

Syntax: AliasMatch	regex	file-path|directory-

path

Context: server	config,	virtual	host
Status: Base
Module: mod_alias

This	directive	is	equivalent	to	Alias,	but	makes	use	of	regular
expressions,	instead	of	simple	prefix	matching.	The	supplied
regular	expression	is	matched	against	the	URL-path,	and	if	it
matches,	the	server	will	substitute	any	parenthesized	matches	into
the	given	string	and	use	it	as	a	filename.	For	example,	to	activate
the	/icons	directory,	one	might	use:

AliasMatch	"^/icons(/|$)(.*)"	"/usr/local/apache/icons$1$2"

The	full	range	of	regular	expression	power	is	available.	For
example,	it	is	possible	to	construct	an	alias	with	case-insensitive
matching	of	the	URL-path:

AliasMatch	"(?i)^/image(.*)"	"/ftp/pub/image$1"

One	subtle	difference	between	Alias	and	AliasMatch	is	that
Alias	will	automatically	copy	any	additional	part	of	the	URI,	past
the	part	that	matched,	onto	the	end	of	the	file	path	on	the	right
side,	while	AliasMatch	will	not.	This	means	that	in	almost	all
cases,	you	will	want	the	regular	expression	to	match	the	entire
request	URI	from	beginning	to	end,	and	to	use	substitution	on	the
right	side.

In	other	words,	just	changing	Alias	to	AliasMatch	will	not	have
the	same	effect.	At	a	minimum,	you	need	to	add	^	to	the	beginning
of	the	regular	expression	and	add	(.*)$	to	the	end,	and	add	$1
to	the	end	of	the	replacement.

For	example,	suppose	you	want	to	replace	this	with	AliasMatch:

Alias	"/image/"	"/ftp/pub/image/"

This	is	NOT	equivalent	-	don't	do	this!	This	will	send	all	requests
that	have	/image/	anywhere	in	them	to	/ftp/pub/image/:

AliasMatch	"/image/"	"/ftp/pub/image/"

This	is	what	you	need	to	get	the	same	effect:

AliasMatch	"^/image/(.*)$"	"/ftp/pub/image/$1"

Of	course,	there's	no	point	in	using	AliasMatch	where	Alias
would	work.	AliasMatch	lets	you	do	more	complicated	things.
For	example,	you	could	serve	different	kinds	of	files	from	different
directories:

AliasMatch	"^/image/(.*)\.jpg$"	"/files/jpg.images/$1.jpg"

AliasMatch	"^/image/(.*)\.gif$"	"/files/gif.images/$1.gif"

Multiple	leading	slashes	in	the	requested	URL	are	discarded	by
the	server	before	directives	from	this	module	compares	against
the	requested	URL-path.

Redirect	Directive

Description: Sends	an	external	redirect	asking	the	client	to	fetch
a	different	URL

Syntax: Redirect	[status]	[URL-path]	URL

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_alias

The	Redirect	directive	maps	an	old	URL	into	a	new	one	by
asking	the	client	to	refetch	the	resource	at	the	new	location.

The	old	URL-path	is	a	case-sensitive	(%-decoded)	path	beginning
with	a	slash.	A	relative	path	is	not	allowed.

The	new	URL	may	be	either	an	absolute	URL	beginning	with	a
scheme	and	hostname,	or	a	URL-path	beginning	with	a	slash.	In
this	latter	case	the	scheme	and	hostname	of	the	current	server	will
be	added.

Then	any	request	beginning	with	URL-path	will	return	a	redirect
request	to	the	client	at	the	location	of	the	target	URL.	Additional
path	information	beyond	the	matched	URL-path	will	be	appended
to	the	target	URL.

#	Redirect	to	a	URL	on	a	different	host

Redirect	"/service"	"http://foo2.example.com/service"

#	Redirect	to	a	URL	on	the	same	host

Redirect	"/one"	"/two"

If	the	client	requests
http://example.com/service/foo.txt,	it	will	be	told	to

access	http://foo2.example.com/service/foo.txt
instead.	This	includes	requests	with	GET	parameters,	such	as
http://example.com/service/foo.pl?q=23&a=42,	it	will
be	redirected	to
http://foo2.example.com/service/foo.pl?q=23&a=42.
Note	that	POSTs	will	be	discarded.
Only	complete	path	segments	are	matched,	so	the	above	example
would	not	match	a	request	for
http://example.com/servicefoo.txt.	For	more	complex
matching	using	the	expression	syntax,	omit	the	URL-path
argument	as	described	below.	Alternatively,	for	matching	using
regular	expressions,	see	the	RedirectMatch	directive.

Note

Redirect	directives	take	precedence	over	Alias	and
ScriptAlias	directives,	irrespective	of	their	ordering	in	the
configuration	file.	Redirect	directives	inside	a	Location	take
precedence	over	Redirect	and	Alias	directives	with	an	URL-
path.

If	no	status	argument	is	given,	the	redirect	will	be	"temporary"
(HTTP	status	302).	This	indicates	to	the	client	that	the	resource
has	moved	temporarily.	The	status	argument	can	be	used	to	return
other	HTTP	status	codes:

permanent
Returns	a	permanent	redirect	status	(301)	indicating	that	the
resource	has	moved	permanently.

temp
Returns	a	temporary	redirect	status	(302).	This	is	the	default.

seeother
Returns	a	"See	Other"	status	(303)	indicating	that	the

resource	has	been	replaced.

gone
Returns	a	"Gone"	status	(410)	indicating	that	the	resource	has
been	permanently	removed.	When	this	status	is	used	the	URL
argument	should	be	omitted.

Other	status	codes	can	be	returned	by	giving	the	numeric	status
code	as	the	value	of	status.	If	the	status	is	between	300	and	399,
the	URL	argument	must	be	present.	If	the	status	is	not	between
300	and	399,	the	URL	argument	must	be	omitted.	The	status	must
be	a	valid	HTTP	status	code,	known	to	the	Apache	HTTP	Server
(see	the	function	send_error_response	in	http_protocol.c).

Redirect	permanent	"/one"	"http://example.com/two"

Redirect	303	"/three"	"http://example.com/other"

If	the	Redirect	directive	is	used	within	a	<Location>	or
<LocationMatch>	section	with	the	URL-path	omitted,	then	the
URL	parameter	will	be	interpreted	using	expression	syntax.
This	syntax	is	available	in	Apache	2.4.19	and	later.

<Location	"/one">

				Redirect	permanent	"http://example.com/two"

</Location>

<Location	"/three">

				Redirect	303	"http://example.com/other"

</Location>

<LocationMatch	"/error/(?<NUMBER>[0-9]+)">

				Redirect	permanent	"http://example.com/errors/%{env:MATCH_NUMBER}.html"

</LocationMatch>

RedirectMatch	Directive

Description: Sends	an	external	redirect	based	on	a	regular
expression	match	of	the	current	URL

Syntax: RedirectMatch	[status]	regex	URL

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_alias

This	directive	is	equivalent	to	Redirect,	but	makes	use	of	regular
expressions,	instead	of	simple	prefix	matching.	The	supplied
regular	expression	is	matched	against	the	URL-path,	and	if	it
matches,	the	server	will	substitute	any	parenthesized	matches	into
the	given	string	and	use	it	as	a	filename.	For	example,	to	redirect
all	GIF	files	to	like-named	JPEG	files	on	another	server,	one	might
use:

RedirectMatch	"(.*)\.gif$"	"http://other.example.com$1.jpg"

The	considerations	related	to	the	difference	between	Alias	and
AliasMatch	also	apply	to	the	difference	between	Redirect	and
RedirectMatch.	See	AliasMatch	for	details.

RedirectPermanent	Directive

Description: Sends	an	external	permanent	redirect	asking	the
client	to	fetch	a	different	URL

Syntax: RedirectPermanent	URL-path	URL

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_alias

This	directive	makes	the	client	know	that	the	Redirect	is
permanent	(status	301).	Exactly	equivalent	to	Redirect
permanent.

RedirectTemp	Directive

Description: Sends	an	external	temporary	redirect	asking	the
client	to	fetch	a	different	URL

Syntax: RedirectTemp	URL-path	URL

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_alias

This	directive	makes	the	client	know	that	the	Redirect	is	only
temporary	(status	302).	Exactly	equivalent	to	Redirect	temp.

ScriptAlias	Directive

Description: Maps	a	URL	to	a	filesystem	location	and
designates	the	target	as	a	CGI	script

Syntax: ScriptAlias	[URL-path]	file-

path|directory-path

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_alias

The	ScriptAlias	directive	has	the	same	behavior	as	the	Alias
directive,	except	that	in	addition	it	marks	the	target	directory	as
containing	CGI	scripts	that	will	be	processed	by	mod_cgi's	cgi-
script	handler.	URLs	with	a	case-sensitive	(%-decoded)	path
beginning	with	URL-path	will	be	mapped	to	scripts	beginning	with
the	second	argument,	which	is	a	full	pathname	in	the	local
filesystem.

ScriptAlias	"/cgi-bin/"	"/web/cgi-bin/"

A	request	for	http://example.com/cgi-bin/foo	would
cause	the	server	to	run	the	script	/web/cgi-bin/foo.	This
configuration	is	essentially	equivalent	to:

Alias	"/cgi-bin/"	"/web/cgi-bin/"

<Location	"/cgi-bin">

				SetHandler	cgi-script

				Options	+ExecCGI

</Location>

ScriptAlias	can	also	be	used	in	conjunction	with	a	script	or
handler	you	have.	For	example:

ScriptAlias	"/cgi-bin/"	"/web/cgi-handler.pl"

In	this	scenario	all	files	requested	in	/cgi-bin/	will	be	handled
by	the	file	you	have	configured,	this	allows	you	to	use	your	own
custom	handler.	You	may	want	to	use	this	as	a	wrapper	for	CGI	so
that	you	can	add	content,	or	some	other	bespoke	action.

It	is	safer	to	avoid	placing	CGI	scripts	under	the
DocumentRoot	in	order	to	avoid	accidentally	revealing	their
source	code	if	the	configuration	is	ever	changed.	The
ScriptAlias	makes	this	easy	by	mapping	a	URL	and
designating	CGI	scripts	at	the	same	time.	If	you	do	choose	to
place	your	CGI	scripts	in	a	directory	already	accessible	from	the
web,	do	not	use	ScriptAlias.	Instead,	use	<Directory>,
SetHandler,	and	Options	as	in:

<Directory	"/usr/local/apache2/htdocs/cgi-bin">

				SetHandler	cgi-script

				Options	ExecCGI

</Directory>

This	is	necessary	since	multiple	URL-paths	can	map	to	the
same	filesystem	location,	potentially	bypassing	the
ScriptAlias	and	revealing	the	source	code	of	the	CGI	scripts
if	they	are	not	restricted	by	a	Directory	section.

If	the	ScriptAlias	directive	is	used	within	a	<Location>	or
<LocationMatch>	section	with	the	URL-path	omitted,	then	the
URL	parameter	will	be	interpreted	using	expression	syntax.
This	syntax	is	available	in	Apache	2.4.19	and	later.

<Location	"/cgi-bin">

				ScriptAlias	"/web/cgi-bin/"

</Location>

<LocationMatch	"/cgi-bin/errors/(?<NUMBER>[0-9]+)">

				ScriptAlias	"/web/cgi-bin/errors/%{env:MATCH_NUMBER}.cgi"

</LocationMatch>

See	also
CGI	Tutorial

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

ScriptAliasMatch	Directive

Description: Maps	a	URL	to	a	filesystem	location	using	a
regular	expression	and	designates	the	target	as	a
CGI	script

Syntax: ScriptAliasMatch	regex	file-

path|directory-path

Context: server	config,	virtual	host
Status: Base
Module: mod_alias

This	directive	is	equivalent	to	ScriptAlias,	but	makes	use	of
regular	expressions,	instead	of	simple	prefix	matching.	The
supplied	regular	expression	is	matched	against	the	URL-path,	and
if	it	matches,	the	server	will	substitute	any	parenthesized	matches
into	the	given	string	and	use	it	as	a	filename.	For	example,	to
activate	the	standard	/cgi-bin,	one	might	use:

ScriptAliasMatch	"^/cgi-bin(.*)"	"/usr/local/apache/cgi-bin$1"

As	for	AliasMatch,	the	full	range	of	regular	expression	power	is
available.	For	example,	it	is	possible	to	construct	an	alias	with
case-insensitive	matching	of	the	URL-path:

ScriptAliasMatch	"(?i)^/cgi-bin(.*)"	"/usr/local/apache/cgi-bin$1"

The	considerations	related	to	the	difference	between	Alias	and
AliasMatch	also	apply	to	the	difference	between	ScriptAlias
and	ScriptAliasMatch.	See	AliasMatch	for	details.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_allowmethods

Description: Easily	restrict	what	HTTP	methods	can	be	used
on	the	server

Status: Experimental
Module	Identifier: allowmethods_module
Source	File: mod_allowmethods.c

Summary
This	module	makes	it	easy	to	restrict	what	HTTP	methods	can	be
used	on	a	server.	The	most	common	configuration	would	be:

<Location	"/">

			AllowMethods	GET	POST	OPTIONS

</Location>

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AllowMethods	Directive

Description: Restrict	access	to	the	listed	HTTP	methods
Syntax: AllowMethods	reset|HTTP-method	[HTTP-

method]...

Default: AllowMethods	reset

Context: directory
Status: Experimental
Module: mod_allowmethods

The	HTTP-methods	are	case	sensitive	and	are	generally,	as	per
RFC,	given	in	upper	case.	The	GET	and	HEAD	methods	are
treated	as	equivalent.	The	reset	keyword	can	be	used	to	turn	off
mod_allowmethods	in	a	deeper	nested	context:

<Location	"/svn">

			AllowMethods	reset

</Location>

Caution

The	TRACE	method	cannot	be	denied	by	this	module;	use
TraceEnable	instead.

mod_allowmethods	was	written	to	replace	the	rather	kludgy
implementation	of	Limit	and	LimitExcept.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_asis

Description: Sends	files	that	contain	their	own	HTTP	headers
Status: Base
Module	Identifier: asis_module
Source	File: mod_asis.c

Summary
This	module	provides	the	handler	send-as-is	which	causes	Apache
HTTP	Server	to	send	the	document	without	adding	most	of	the	usual
HTTP	headers.

This	can	be	used	to	send	any	kind	of	data	from	the	server,	including
redirects	and	other	special	HTTP	responses,	without	requiring	a	cgi-
script	or	an	nph	script.

For	historical	reasons,	this	module	will	also	process	any	file	with	the
mime	type	httpd/send-as-is.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_headers

mod_cern_meta

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_asis
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_asis

Apache	httpd's	Handler	Use

Usage

In	the	server	configuration	file,	associate	files	with	the	send-as-
is	handler	e.g.

AddHandler	send-as-is	asis

The	contents	of	any	file	with	a	.asis	extension	will	then	be	sent
by	Apache	httpd	to	the	client	with	almost	no	changes.	In	particular,
HTTP	headers	are	derived	from	the	file	itself	according	to
mod_cgi	rules,	so	an	asis	file	must	include	valid	headers,	and
may	also	use	the	CGI	Status:	header	to	determine	the	HTTP
response	code.	The	Content-Length:	header	will	automatically
be	inserted	or,	if	included,	corrected	by	httpd.

Here's	an	example	of	a	file	whose	contents	are	sent	as	is	so	as	to
tell	the	client	that	a	file	has	redirected.

Status:	301	Now	where	did	I	leave	that	URL

Location:	http://xyz.example.com/foo/bar.html

Content-type:	text/html

<html>

<head>

<title>Lame	excuses'R'us</title>

</head>

<body>

<h1>Fred's	exceptionally	wonderful	page	has	moved	to

Joe's	site.

</h1>

</body>

</html>

Notes:

The	server	always	adds	a	Date:	and	Server:	header	to	the
data	returned	to	the	client,	so	these	should	not	be	included	in
the	file.	The	server	does	not	add	a	Last-Modified	header;	it
probably	should.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_auth_basic

Description: Basic	HTTP	authentication
Status: Base
Module	Identifier: auth_basic_module
Source	File: mod_auth_basic.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	allows	the	use	of	HTTP	Basic	Authentication	to	restrict
access	by	looking	up	users	in	the	given	providers.	HTTP	Digest
Authentication	is	provided	by	mod_auth_digest.	This	module
should	usually	be	combined	with	at	least	one	authentication	module
such	as	mod_authn_file	and	one	authorization	module	such	as
mod_authz_user.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
AuthName

AuthType

Require

Authentication	howto

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_auth_basic
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_auth_basic

AuthBasicAuthoritative	Directive

Description: Sets	whether	authorization	and	authentication	are
passed	to	lower	level	modules

Syntax: AuthBasicAuthoritative	On|Off

Default: AuthBasicAuthoritative	On

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_auth_basic

Normally,	each	authorization	module	listed	in
AuthBasicProvider	will	attempt	to	verify	the	user,	and	if	the
user	is	not	found	in	any	provider,	access	will	be	denied.	Setting	the
AuthBasicAuthoritative	directive	explicitly	to	Off	allows	for
both	authentication	and	authorization	to	be	passed	on	to	other
non-provider-based	modules	if	there	is	no	userID	or	rule
matching	the	supplied	userID.	This	should	only	be	necessary
when	combining	mod_auth_basic	with	third-party	modules	that
are	not	configured	with	the	AuthBasicProvider	directive.	When
using	such	modules,	the	order	of	processing	is	determined	in	the
modules'	source	code	and	is	not	configurable.

AuthBasicFake	Directive

Description: Fake	basic	authentication	using	the	given
expressions	for	username	and	password

Syntax: AuthBasicFake	off|username

[password]

Default: none

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_auth_basic
Compatibility: Apache	HTTP	Server	2.4.5	and	later

The	username	and	password	specified	are	combined	into	an
Authorization	header,	which	is	passed	to	the	server	or	service
behind	the	webserver.	Both	the	username	and	password	fields	are
interpreted	using	the	expression	parser,	which	allows	both	the
username	and	password	to	be	set	based	on	request	parameters.

If	the	password	is	not	specified,	the	default	value	"password"	will
be	used.	To	disable	fake	basic	authentication	for	an	URL	space,
specify	"AuthBasicFake	off".

In	this	example,	we	pass	a	fixed	username	and	password	to	a
backend	server.

Fixed	Example
<Location	"/demo">

				AuthBasicFake	demo	demopass

</Location>

In	this	example,	we	pass	the	email	address	extracted	from	a	client
certificate,	extending	the	functionality	of	the	FakeBasicAuth	option
within	the	SSLOptions	directive.	Like	the	FakeBasicAuth	option,
the	password	is	set	to	the	fixed	string	"password".

Certificate	Example
<Location	"/secure">

				AuthBasicFake	"%{SSL_CLIENT_S_DN_Email}"

</Location>

Extending	the	above	example,	we	generate	a	password	by
hashing	the	email	address	with	a	fixed	passphrase,	and	passing
the	hash	to	the	backend	server.	This	can	be	used	to	gate	into
legacy	systems	that	do	not	support	client	certificates.

Password	Example
<Location	"/secure">

				AuthBasicFake	"%{SSL_CLIENT_S_DN_Email}"	"%{sha1:passphrase-%{SSL_CLIENT_S_DN_Email}}"

</Location>

Exclusion	Example
<Location	"/public">

				AuthBasicFake	off

</Location>

AuthBasicProvider	Directive

Description: Sets	the	authentication	provider(s)	for	this	location
Syntax: AuthBasicProvider	provider-name

[provider-name]	...

Default: AuthBasicProvider	file

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_auth_basic

The	AuthBasicProvider	directive	sets	which	provider	is	used
to	authenticate	the	users	for	this	location.	The	default	file
provider	is	implemented	by	the	mod_authn_file	module.	Make
sure	that	the	chosen	provider	module	is	present	in	the	server.

Example
<Location	"/secure">

				AuthType	basic

				AuthName	"private	area"

				AuthBasicProvider		dbm

				AuthDBMType								SDBM

				AuthDBMUserFile				"/www/etc/dbmpasswd"

				Require												valid-user

</Location>

Providers	are	queried	in	order	until	a	provider	finds	a	match	for	the
requested	username,	at	which	point	this	sole	provider	will	attempt
to	check	the	password.	A	failure	to	verify	the	password	does	not
result	in	control	being	passed	on	to	subsequent	providers.

Providers	are	implemented	by	mod_authn_dbm,
mod_authn_file,	mod_authn_dbd,	mod_authnz_ldap	and
mod_authn_socache.

AuthBasicUseDigestAlgorithm	Directive

Description: Check	passwords	against	the	authentication
providers	as	if	Digest	Authentication	was	in	force
instead	of	Basic	Authentication.

Syntax: AuthBasicUseDigestAlgorithm	MD5|Off

Default: AuthBasicUseDigestAlgorithm	Off

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_auth_basic
Compatibility: Apache	HTTP	Server	2.4.7	and	later

Normally,	when	using	Basic	Authentication,	the	providers	listed	in
AuthBasicProvider	attempt	to	verify	a	user	by	checking	their
data	stores	for	a	matching	username	and	associated	password.
The	stored	passwords	are	usually	encrypted,	but	not	necessarily
so;	each	provider	may	choose	its	own	storage	scheme	for
passwords.

When	using	AuthDigestProvider	and	Digest	Authentication,
providers	perform	a	similar	check	to	find	a	matching	username	in
their	data	stores.	However,	unlike	in	the	Basic	Authentication	case,
the	value	associated	with	each	stored	username	must	be	an
encrypted	string	composed	from	the	username,	realm	name,	and
password.	(See	RFC	2617,	Section	3.2.2.2	for	more	details	on	the
format	used	for	this	encrypted	string.)

As	a	consequence	of	the	difference	in	the	stored	values	between
Basic	and	Digest	Authentication,	converting	from	Digest
Authentication	to	Basic	Authentication	generally	requires	that	all
users	be	assigned	new	passwords,	as	their	existing	passwords
cannot	be	recovered	from	the	password	storage	scheme	imposed
on	those	providers	which	support	Digest	Authentication.

http://tools.ietf.org/html/rfc2617#section-3.2.2.2

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Setting	the	AuthBasicUseDigestAlgorithm	directive	to	MD5
will	cause	the	user's	Basic	Authentication	password	to	be	checked
using	the	same	encrypted	format	as	for	Digest	Authentication.
First	a	string	composed	from	the	username,	realm	name,	and
password	is	hashed	with	MD5;	then	the	username	and	this
encrypted	string	are	passed	to	the	providers	listed	in
AuthBasicProvider	as	if	AuthType	was	set	to	Digest	and
Digest	Authentication	was	in	force.

Through	the	use	of	AuthBasicUseDigestAlgorithm	a	site
may	switch	from	Digest	to	Basic	Authentication	without	requiring
users	to	be	assigned	new	passwords.

The	inverse	process	of	switching	from	Basic	to	Digest
Authentication	without	assigning	new	passwords	is	generally	not
possible.	Only	if	the	Basic	Authentication	passwords	have	been
stored	in	plain	text	or	with	a	reversable	encryption	scheme	will	it
be	possible	to	recover	them	and	generate	a	new	data	store
following	the	Digest	Authentication	password	storage	scheme.

Only	providers	which	support	Digest	Authentication	will	be	able
to	authenticate	users	when	AuthBasicUseDigestAlgorithm
is	set	to	MD5.	Use	of	other	providers	will	result	in	an	error
response	and	the	client	will	be	denied	access.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_auth_digest

Description: User	authentication	using	MD5	Digest
Authentication

Status: Extension
Module	Identifier: auth_digest_module
Source	File: mod_auth_digest.c

Summary
This	module	implements	HTTP	Digest	Authentication	(RFC2617),	and
provides	an	alternative	to	mod_auth_basic	where	the	password	is
not	transmitted	as	cleartext.	However,	this	does	not	lead	to	a
significant	security	advantage	over	basic	authentication.	On	the	other
hand,	the	password	storage	on	the	server	is	much	less	secure	with
digest	authentication	than	with	basic	authentication.	Therefore,	using
basic	auth	and	encrypting	the	whole	connection	using	mod_ssl	is	a
much	better	alternative.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
AuthName

AuthType

Require

http://www.faqs.org/rfcs/rfc2617.html
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_auth_digest
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_auth_digest

Authentication	howto

Using	Digest	Authentication

To	use	MD5	Digest	authentication,	configure	the	location	to	be
protected	as	shown	in	the	below	example:

Example:
<Location	"/private/">

				AuthType	Digest

				AuthName	"private	area"

				AuthDigestDomain	"/private/"	"http://mirror.my.dom/private2/"

				

				AuthDigestProvider	file

				AuthUserFile	"/web/auth/.digest_pw"

				Require	valid-user

</Location>

AuthDigestDomain	should	list	the	locations	that	will	be
protected	by	this	configuration.

The	pasword	file	referenced	in	the	AuthUserFile	directive	may
be	created	and	managed	using	the	htdigest	tool.

Note

Digest	authentication	was	intended	to	be	more	secure	than
basic	authentication,	but	no	longer	fulfills	that	design	goal.	A
man-in-the-middle	attacker	can	trivially	force	the	browser	to
downgrade	to	basic	authentication.	And	even	a	passive
eavesdropper	can	brute-force	the	password	using	today's
graphics	hardware,	because	the	hashing	algorithm	used	by
digest	authentication	is	too	fast.	Another	problem	is	that	the
storage	of	the	passwords	on	the	server	is	insecure.	The
contents	of	a	stolen	htdigest	file	can	be	used	directly	for	digest
authentication.	Therefore	using	mod_ssl	to	encrypt	the	whole
connection	is	strongly	recommended.

mod_auth_digest	only	works	properly	on	platforms	where
APR	supports	shared	memory.

AuthDigestAlgorithm	Directive

Description: Selects	the	algorithm	used	to	calculate	the
challenge	and	response	hashes	in	digest
authentication

Syntax: AuthDigestAlgorithm	MD5|MD5-sess

Default: AuthDigestAlgorithm	MD5

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_digest

The	AuthDigestAlgorithm	directive	selects	the	algorithm	used
to	calculate	the	challenge	and	response	hashes.

MD5-sess	is	not	correctly	implemented	yet.

AuthDigestDomain	Directive

Description: URIs	that	are	in	the	same	protection	space	for
digest	authentication

Syntax: AuthDigestDomain	URI	[URI]	...

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_digest

The	AuthDigestDomain	directive	allows	you	to	specify	one	or
more	URIs	which	are	in	the	same	protection	space	(i.e.	use	the
same	realm	and	username/password	info).	The	specified	URIs	are
prefixes;	the	client	will	assume	that	all	URIs	"below"	these	are	also
protected	by	the	same	username/password.	The	URIs	may	be
either	absolute	URIs	(i.e.	including	a	scheme,	host,	port,	etc.)	or
relative	URIs.

This	directive	should	always	be	specified	and	contain	at	least	the
(set	of)	root	URI(s)	for	this	space.	Omitting	to	do	so	will	cause	the
client	to	send	the	Authorization	header	for	every	request	sent	to
this	server.

The	URIs	specified	can	also	point	to	different	servers,	in	which
case	clients	(which	understand	this)	will	then	share
username/password	info	across	multiple	servers	without
prompting	the	user	each	time.

AuthDigestNonceLifetime	Directive

Description: How	long	the	server	nonce	is	valid
Syntax: AuthDigestNonceLifetime	seconds

Default: AuthDigestNonceLifetime	300

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_digest

The	AuthDigestNonceLifetime	directive	controls	how	long
the	server	nonce	is	valid.	When	the	client	contacts	the	server
using	an	expired	nonce	the	server	will	send	back	a	401	with
stale=true.	If	seconds	is	greater	than	0	then	it	specifies	the
amount	of	time	for	which	the	nonce	is	valid;	this	should	probably
never	be	set	to	less	than	10	seconds.	If	seconds	is	less	than	0
then	the	nonce	never	expires.

AuthDigestProvider	Directive

Description: Sets	the	authentication	provider(s)	for	this	location
Syntax: AuthDigestProvider	provider-name

[provider-name]	...

Default: AuthDigestProvider	file

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_digest

The	AuthDigestProvider	directive	sets	which	provider	is	used
to	authenticate	the	users	for	this	location.	The	default	file
provider	is	implemented	by	the	mod_authn_file	module.	Make
sure	that	the	chosen	provider	module	is	present	in	the	server.

See	mod_authn_dbm,	mod_authn_file,	mod_authn_dbd	and
mod_authn_socache	for	providers.

AuthDigestQop	Directive

Description: Determines	the	quality-of-protection	to	use	in
digest	authentication

Syntax: AuthDigestQop	none|auth|auth-int

[auth|auth-int]

Default: AuthDigestQop	auth

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_auth_digest

The	AuthDigestQop	directive	determines	the	quality-of-
protection	to	use.	auth	will	only	do	authentication
(username/password);	auth-int	is	authentication	plus	integrity
checking	(an	MD5	hash	of	the	entity	is	also	computed	and
checked);	none	will	cause	the	module	to	use	the	old	RFC-2069
digest	algorithm	(which	does	not	include	integrity	checking).	Both
auth	and	auth-int	may	be	specified,	in	which	the	case	the
browser	will	choose	which	of	these	to	use.	none	should	only	be
used	if	the	browser	for	some	reason	does	not	like	the	challenge	it
receives	otherwise.

auth-int	is	not	implemented	yet.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthDigestShmemSize	Directive

Description: The	amount	of	shared	memory	to	allocate	for
keeping	track	of	clients

Syntax: AuthDigestShmemSize	size

Default: AuthDigestShmemSize	1000

Context: server	config
Status: Extension
Module: mod_auth_digest

The	AuthDigestShmemSize	directive	defines	the	amount	of
shared	memory,	that	will	be	allocated	at	the	server	startup	for
keeping	track	of	clients.	Note	that	the	shared	memory	segment
cannot	be	set	less	than	the	space	that	is	necessary	for	tracking	at
least	one	client.	This	value	is	dependent	on	your	system.	If	you
want	to	find	out	the	exact	value,	you	may	simply	set
AuthDigestShmemSize	to	the	value	of	0	and	read	the	error
message	after	trying	to	start	the	server.

The	size	is	normally	expressed	in	Bytes,	but	you	may	follow	the
number	with	a	K	or	an	M	to	express	your	value	as	KBytes	or
MBytes.	For	example,	the	following	directives	are	all	equivalent:

AuthDigestShmemSize	1048576

AuthDigestShmemSize	1024K

AuthDigestShmemSize	1M

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_auth_form

Description: Form	authentication
Status: Base
Module	Identifier: auth_form_module
Source	File: mod_auth_form.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

Form	authentication	depends	on	the	mod_session	modules,	and
these	modules	make	use	of	HTTP	cookies,	and	as	such	can	fall
victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially	private
information	to	clients.	Please	ensure	that	the	relevant	risks	have
been	taken	into	account	before	enabling	the	session	functionality
on	your	server.

This	module	allows	the	use	of	an	HTML	login	form	to	restrict	access
by	looking	up	users	in	the	given	providers.	HTML	forms	require
significantly	more	configuration	than	the	alternatives,	however	an
HTML	login	form	can	provide	a	much	friendlier	experience	for	end
users.

HTTP	basic	authentication	is	provided	by	mod_auth_basic,	and
HTTP	digest	authentication	is	provided	by	mod_auth_digest.	This
module	should	be	combined	with	at	least	one	authentication	module
such	as	mod_authn_file	and	one	authorization	module	such	as
mod_authz_user.

Once	the	user	has	been	successfully	authenticated,	the	user's	login
details	will	be	stored	in	a	session	provided	by	mod_session.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session

AuthName

AuthType

Require

Authentication	howto

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_auth_form
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_auth_form

Basic	Configuration

To	protect	a	particular	URL	with	mod_auth_form,	you	need	to
decide	where	you	will	store	your	session,	and	you	will	need	to
decide	what	method	you	will	use	to	authenticate.	In	this	simple
example,	the	login	details	will	be	stored	in	a	session	based	on
mod_session_cookie,	and	authentication	will	be	attempted
against	a	file	using	mod_authn_file.	If	authentication	is
unsuccessful,	the	user	will	be	redirected	to	the	form	login	page.

Basic	example
<Location	"/admin">

				AuthFormProvider	file

				AuthUserFile	"conf/passwd"

				AuthType	form

				AuthName	"/admin"

				AuthFormLoginRequiredLocation	"http://example.com/login.html"

				Session	On

				SessionCookieName	session	path=/

				Require	valid-user

</Location>

The	directive	AuthType	will	enable	the	mod_auth_form
authentication	when	set	to	the	value	form.	The	directives
AuthFormProvider	and	AuthUserFile	specify	that
usernames	and	passwords	should	be	checked	against	the	chosen
file.

The	directives	Session	and	SessionCookieName	session
stored	within	an	HTTP	cookie	on	the	browser.	For	more
information	on	the	different	options	for	configuring	a	session,	read
the	documentation	for	mod_session.

You	can	optionally	add	a	SessionCryptoPassphrase	to	create
an	encrypted	session	cookie.	This	required	the	additional	module

mod_session_crypto	be	loaded.

In	the	simple	example	above,	a	URL	has	been	protected	by
mod_auth_form,	but	the	user	has	yet	to	be	given	an	opportunity
to	enter	their	username	and	password.	Options	for	doing	so
include	providing	a	dedicated	standalone	login	page	for	this
purpose,	or	for	providing	the	login	page	inline.

Standalone	Login

The	login	form	can	be	hosted	as	a	standalone	page,	or	can	be
provided	inline	on	the	same	page.

When	configuring	the	login	as	a	standalone	page,	unsuccessful
authentication	attempts	should	be	redirected	to	a	login	form
created	by	the	website	for	this	purpose,	using	the
AuthFormLoginRequiredLocation	directive.	Typically	this
login	page	will	contain	an	HTML	form,	asking	the	user	to	provide
their	usename	and	password.

Example	login	form
<form	method="POST"	action="/dologin.html">

		Username:	<input	type="text"	name="httpd_username"	value=""	/>

		Password:	<input	type="password"	name="httpd_password"	value=""	/>

		<input	type="submit"	name="login"	value="Login"	/>

</form>

The	part	that	does	the	actual	login	is	handled	by	the	form-login-
handler.	The	action	of	the	form	should	point	at	this	handler,	which
is	configured	within	Apache	httpd	as	follows:

Form	login	handler	example
<Location	"/dologin.html">

				SetHandler	form-login-handler

				AuthFormLoginRequiredLocation	"http://example.com/login.html"

				AuthFormLoginSuccessLocation	"http://example.com/admin/index.html"

				AuthFormProvider	file

				AuthUserFile	"conf/passwd"

				AuthType	form

				AuthName	/admin

				Session	On

				SessionCookieName	session	path=/

</Location>

The	URLs	specified	by	the	AuthFormLoginRequiredLocation
directive	will	typically	point	to	a	page	explaining	to	the	user	that

their	login	attempt	was	unsuccessful,	and	they	should	try	again.
The	AuthFormLoginSuccessLocation	directive	specifies	the
URL	the	user	should	be	redirected	to	upon	successful	login.

Alternatively,	the	URL	to	redirect	the	user	to	on	success	can	be
embedded	within	the	login	form,	as	in	the	example	below.	As	a
result,	the	same	form-login-handler	can	be	reused	for	different
areas	of	a	website.

Example	login	form	with	location
<form	method="POST"	action="/dologin.html">

		Username:	<input	type="text"	name="httpd_username"	value=""	/>

		Password:	<input	type="password"	name="httpd_password"	value=""	/>

		<input	type="submit"	name="login"	value="Login"	/>

		<input	type="hidden"	name="httpd_location"	value="http://example.com/success.html"	/>

</form>

Inline	Login

Warning

A	risk	exists	that	under	certain	circumstances,	the	login	form
configured	using	inline	login	may	be	submitted	more	than	once,
revealing	login	credentials	to	the	application	running
underneath.	The	administrator	must	ensure	that	the	underlying
application	is	properly	secured	to	prevent	abuse.	If	in	doubt,	use
the	standalone	login	configuration.

As	an	alternative	to	having	a	dedicated	login	page	for	a	website,	it
is	possible	to	configure	mod_auth_form	to	authenticate	users
inline,	without	being	redirected	to	another	page.	This	allows	the
state	of	the	current	page	to	be	preserved	during	the	login	attempt.
This	can	be	useful	in	a	situation	where	a	time	limited	session	is	in
force,	and	the	session	times	out	in	the	middle	of	the	user	request.
The	user	can	be	re-authenticated	in	place,	and	they	can	continue
where	they	left	off.

If	a	non-authenticated	user	attempts	to	access	a	page	protected
by	mod_auth_form	that	isn't	configured	with	a
AuthFormLoginRequiredLocation	directive,	a
HTTP_UNAUTHORIZED	status	code	is	returned	to	the	browser
indicating	to	the	user	that	they	are	not	authorized	to	view	the	page.

To	configure	inline	authentication,	the	administrator	overrides	the
error	document	returned	by	the	HTTP_UNAUTHORIZED	status
code	with	a	custom	error	document	containing	the	login	form,	as
follows:

Basic	inline	example
AuthFormProvider	file

ErrorDocument	401	"/login.shtml"

AuthUserFile	"conf/passwd"

AuthType	form

AuthName	realm

AuthFormLoginRequiredLocation	"http://example.com/login.html"

Session	On

SessionCookieName	session	path=/

The	error	document	page	should	contain	a	login	form	with	an
empty	action	property,	as	per	the	example	below.	This	has	the
effect	of	submitting	the	form	to	the	original	protected	URL,	without
the	page	having	to	know	what	that	URL	is.

Example	inline	login	form
<form	method="POST"	action="">

		Username:	<input	type="text"	name="httpd_username"	value=""	/>

		Password:	<input	type="password"	name="httpd_password"	value=""	/>

		<input	type="submit"	name="login"	value="Login"	/>

</form>

When	the	end	user	has	filled	in	their	login	details,	the	form	will
make	an	HTTP	POST	request	to	the	original	password	protected
URL.	mod_auth_form	will	intercept	this	POST	request,	and	if
HTML	fields	are	found	present	for	the	username	and	password,
the	user	will	be	logged	in,	and	the	original	password	protected
URL	will	be	returned	to	the	user	as	a	GET	request.

Inline	Login	with	Body	Preservation

A	limitation	of	the	inline	login	technique	described	above	is	that
should	an	HTML	form	POST	have	resulted	in	the	request	to
authenticate	or	reauthenticate,	the	contents	of	the	original	form
posted	by	the	browser	will	be	lost.	Depending	on	the	function	of
the	website,	this	could	present	significant	inconvenience	for	the
end	user.

mod_auth_form	addresses	this	by	allowing	the	method	and	body
of	the	original	request	to	be	embedded	in	the	login	form.	If
authentication	is	successful,	the	original	method	and	body	will	be
retried	by	Apache	httpd,	preserving	the	state	of	the	original
request.

To	enable	body	preservation,	add	three	additional	fields	to	the
login	form	as	per	the	example	below.

Example	with	body	preservation
<form	method="POST"	action="">

		Username:	<input	type="text"	name="httpd_username"	value=""	/>

		Password:	<input	type="password"	name="httpd_password"	value=""	/>

		<input	type="submit"	name="login"	value="Login"	/>

		

		<input	type="hidden"	name="httpd_method"	value="POST"	/>

		<input	type="hidden"	name="httpd_mimetype"	value="application/x-www-form-urlencoded"	/>

		<input	type="hidden"	name="httpd_body"	value="name1=value1&name2=value2"	/>

</form>

How	the	method,	mimetype	and	body	of	the	original	request	are
embedded	within	the	login	form	will	depend	on	the	platform	and
technology	being	used	within	the	website.

One	option	is	to	use	the	mod_include	module	along	with	the
KeptBodySize	directive,	along	with	a	suitable	CGI	script	to
embed	the	variables	in	the	form.

Another	option	is	to	render	the	login	form	using	a	CGI	script	or
other	dynamic	technology.

CGI	example
								AuthFormProvider	file

								ErrorDocument	401	"/cgi-bin/login.cgi"

								...

Logging	Out

To	enable	a	user	to	log	out	of	a	particular	session,	configure	a
page	to	be	handled	by	the	form-logout-handler.	Any	attempt	to
access	this	URL	will	cause	the	username	and	password	to	be
removed	from	the	current	session,	effectively	logging	the	user	out.

By	setting	the	AuthFormLogoutLocation	directive,	a	URL	can
be	specified	that	the	browser	will	be	redirected	to	on	successful
logout.	This	URL	might	explain	to	the	user	that	they	have	been
logged	out,	and	give	the	user	the	option	to	log	in	again.

Basic	logout	example
SetHandler	form-logout-handler

AuthName	realm

AuthFormLogoutLocation	"http://example.com/loggedout.html"

Session	On

SessionCookieName	session	path=/

Note	that	logging	a	user	out	does	not	delete	the	session;	it	merely
removes	the	username	and	password	from	the	session.	If	this
results	in	an	empty	session,	the	net	effect	will	be	the	removal	of
that	session,	but	this	is	not	guaranteed.	If	you	want	to	guarantee
the	removal	of	a	session,	set	the	SessionMaxAge	directive	to	a
small	value,	like	1	(setting	the	directive	to	zero	would	mean	no
session	age	limit).

Basic	session	expiry	example
SetHandler	form-logout-handler

AuthFormLogoutLocation	"http://example.com/loggedout.html"

Session	On

SessionMaxAge	1

SessionCookieName	session	path=/

Usernames	and	Passwords

Note	that	form	submission	involves	URLEncoding	the	form	data:	in
this	case	the	username	and	password.	You	should	therefore	pick
usernames	and	passwords	that	avoid	characters	that	are
URLencoded	in	form	submission,	or	you	may	get	unexpected
results.

AuthFormAuthoritative	Directive

Description: Sets	whether	authorization	and	authentication	are
passed	to	lower	level	modules

Syntax: AuthFormAuthoritative	On|Off

Default: AuthFormAuthoritative	On

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_auth_form

Normally,	each	authorization	module	listed	in
AuthFormProvider	will	attempt	to	verify	the	user,	and	if	the	user
is	not	found	in	any	provider,	access	will	be	denied.	Setting	the
AuthFormAuthoritative	directive	explicitly	to	Off	allows	for
both	authentication	and	authorization	to	be	passed	on	to	other
non-provider-based	modules	if	there	is	no	userID	or	rule
matching	the	supplied	userID.	This	should	only	be	necessary
when	combining	mod_auth_form	with	third-party	modules	that
are	not	configured	with	the	AuthFormProvider	directive.	When
using	such	modules,	the	order	of	processing	is	determined	in	the
modules'	source	code	and	is	not	configurable.

AuthFormBody	Directive

Description: The	name	of	a	form	field	carrying	the	body	of	the
request	to	attempt	on	successful	login

Syntax: AuthFormBody	fieldname

Default: httpd_body

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormMethod	directive	specifies	the	name	of	an	HTML
field	which,	if	present,	will	contain	the	method	of	the	request	to	to
submit	should	login	be	successful.

By	populating	the	form	with	fields	described	by
AuthFormMethod,	AuthFormMimetype	and	AuthFormBody,	a
website	can	retry	a	request	that	may	have	been	interrupted	by	the
login	screen,	or	by	a	session	timeout.

AuthFormDisableNoStore	Directive

Description: Disable	the	CacheControl	no-store	header	on	the
login	page

Syntax: AuthFormDisableNoStore	On|Off

Default: AuthFormDisableNoStore	Off

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormDisableNoStore	flag	disables	the	sending	of	a
Cache-Control	no-store	header	with	the	error	401	page
returned	when	the	user	is	not	yet	logged	in.	The	purpose	of	the
header	is	to	make	it	difficult	for	an	ecmascript	application	to
attempt	to	resubmit	the	login	form,	and	reveal	the	username	and
password	to	the	backend	application.	Disable	at	your	own	risk.

AuthFormFakeBasicAuth	Directive

Description: Fake	a	Basic	Authentication	header
Syntax: AuthFormFakeBasicAuth	On|Off

Default: AuthFormFakeBasicAuth	Off

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormFakeBasicAuth	flag	determines	whether	a
Basic	Authentication	header	will	be	added	to	the	request
headers.	This	can	be	used	to	expose	the	username	and	password
to	an	underlying	application,	without	the	underlying	application
having	to	be	aware	of	how	the	login	was	achieved.

AuthFormLocation	Directive

Description: The	name	of	a	form	field	carrying	a	URL	to
redirect	to	on	successful	login

Syntax: AuthFormLocation	fieldname

Default: httpd_location

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormLocation	directive	specifies	the	name	of	an
HTML	field	which,	if	present,	will	contain	a	URL	to	redirect	the
browser	to	should	login	be	successful.

AuthFormLoginRequiredLocation	Directive

Description: The	URL	of	the	page	to	be	redirected	to	should
login	be	required

Syntax: AuthFormLoginRequiredLocation	url

Default: none

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later.

The	use	of	the	expression	parser	has	been
added	in	2.4.4.

The	AuthFormLoginRequiredLocation	directive	specifies	the
URL	to	redirect	to	should	the	user	not	be	authorised	to	view	a
page.	The	value	is	parsed	using	the	ap_expr	parser	before	being
sent	to	the	client.	By	default,	if	a	user	is	not	authorised	to	view	a
page,	the	HTTP	response	code	HTTP_UNAUTHORIZED	will	be
returned	with	the	page	specified	by	the	ErrorDocument
directive.	This	directive	overrides	this	default.

Use	this	directive	if	you	have	a	dedicated	login	page	to	redirect
users	to.

AuthFormLoginSuccessLocation	Directive

Description: The	URL	of	the	page	to	be	redirected	to	should
login	be	successful

Syntax: AuthFormLoginSuccessLocation	url

Default: none

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later.

The	use	of	the	expression	parser	has	been
added	in	2.4.4.

The	AuthFormLoginSuccessLocation	directive	specifies	the
URL	to	redirect	to	should	the	user	have	logged	in	successfully.
The	value	is	parsed	using	the	ap_expr	parser	before	being	sent	to
the	client.	This	directive	can	be	overridden	if	a	form	field	has	been
defined	containing	another	URL	using	the	AuthFormLocation
directive.

Use	this	directive	if	you	have	a	dedicated	login	URL,	and	you	have
not	embedded	the	destination	page	in	the	login	form.

AuthFormLogoutLocation	Directive

Description: The	URL	to	redirect	to	after	a	user	has	logged
out

Syntax: AuthFormLogoutLocation	uri

Default: none

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later.

The	use	of	the	expression	parser	has	been
added	in	2.4.4.

The	AuthFormLogoutLocation	directive	specifies	the	URL	of	a
page	on	the	server	to	redirect	to	should	the	user	attempt	to	log
out.	The	value	is	parsed	using	the	ap_expr	parser	before	being
sent	to	the	client.

When	a	URI	is	accessed	that	is	served	by	the	handler	form-
logout-handler,	the	page	specified	by	this	directive	will	be
shown	to	the	end	user.	For	example:

Example
<Location	"/logout">

				SetHandler	form-logout-handler

				AuthFormLogoutLocation	"http://example.com/loggedout.html"

				Session	on

				#...

</Location>

An	attempt	to	access	the	URI	/logout/	will	result	in	the	user	being
logged	out,	and	the	page	/loggedout.html	will	be	displayed.	Make
sure	that	the	page	loggedout.html	is	not	password	protected,
otherwise	the	page	will	not	be	displayed.

AuthFormMethod	Directive

Description: The	name	of	a	form	field	carrying	the	method	of
the	request	to	attempt	on	successful	login

Syntax: AuthFormMethod	fieldname

Default: httpd_method

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormMethod	directive	specifies	the	name	of	an	HTML
field	which,	if	present,	will	contain	the	method	of	the	request	to	to
submit	should	login	be	successful.

By	populating	the	form	with	fields	described	by
AuthFormMethod,	AuthFormMimetype	and	AuthFormBody,	a
website	can	retry	a	request	that	may	have	been	interrupted	by	the
login	screen,	or	by	a	session	timeout.

AuthFormMimetype	Directive

Description: The	name	of	a	form	field	carrying	the	mimetype
of	the	body	of	the	request	to	attempt	on
successful	login

Syntax: AuthFormMimetype	fieldname

Default: httpd_mimetype

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormMethod	directive	specifies	the	name	of	an	HTML
field	which,	if	present,	will	contain	the	mimetype	of	the	request	to
submit	should	login	be	successful.

By	populating	the	form	with	fields	described	by
AuthFormMethod,	AuthFormMimetype	and	AuthFormBody,	a
website	can	retry	a	request	that	may	have	been	interrupted	by	the
login	screen,	or	by	a	session	timeout.

AuthFormPassword	Directive

Description: The	name	of	a	form	field	carrying	the	login
password

Syntax: AuthFormPassword	fieldname

Default: httpd_password

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormPassword	directive	specifies	the	name	of	an
HTML	field	which,	if	present,	will	contain	the	password	to	be	used
to	log	in.

AuthFormProvider	Directive

Description: Sets	the	authentication	provider(s)	for	this	location
Syntax: AuthFormProvider	provider-name

[provider-name]	...

Default: AuthFormProvider	file

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_auth_form

The	AuthFormProvider	directive	sets	which	provider	is	used	to
authenticate	the	users	for	this	location.	The	default	file	provider
is	implemented	by	the	mod_authn_file	module.	Make	sure	that
the	chosen	provider	module	is	present	in	the	server.

Example
<Location	"/secure">

				AuthType	form

				AuthName	"private	area"

				AuthFormProvider		dbm

				AuthDBMType								SDBM

				AuthDBMUserFile				"/www/etc/dbmpasswd"

				Require												valid-user

				#...

</Location>

Providers	are	implemented	by	mod_authn_dbm,
mod_authn_file,	mod_authn_dbd,	mod_authnz_ldap	and
mod_authn_socache.

AuthFormSitePassphrase	Directive

Description: Bypass	authentication	checks	for	high	traffic	sites
Syntax: AuthFormSitePassphrase	secret

Default: none

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormSitePassphrase	directive	specifies	a
passphrase	which,	if	present	in	the	user	session,	causes	Apache
httpd	to	bypass	authentication	checks	for	the	given	URL.	It	can	be
used	on	high	traffic	websites	to	reduce	the	load	induced	on
authentication	infrastructure.

The	passphrase	can	be	inserted	into	a	user	session	by	adding	this
directive	to	the	configuration	for	the	form-login-handler.	The	form-
login-handler	itself	will	always	run	the	authentication	checks,
regardless	of	whether	a	passphrase	is	specified	or	not.

Warning

If	the	session	is	exposed	to	the	user	through	the	use	of
mod_session_cookie,	and	the	session	is	not	protected	with
mod_session_crypto,	the	passphrase	is	open	to	potential
exposure	through	a	dictionary	attack.	Regardless	of	how	the
session	is	configured,	ensure	that	this	directive	is	not	used
within	URL	spaces	where	private	user	data	could	be	exposed,
or	sensitive	transactions	can	be	conducted.	Use	at	own	risk.

AuthFormSize	Directive

Description: The	largest	size	of	the	form	in	bytes	that	will	be
parsed	for	the	login	details

Syntax: AuthFormSize	size

Default: 8192

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormSize	directive	specifies	the	maximum	size	of	the
body	of	the	request	that	will	be	parsed	to	find	the	login	form.

If	a	login	request	arrives	that	exceeds	this	size,	the	whole	request
will	be	aborted	with	the	HTTP	response	code
HTTP_REQUEST_TOO_LARGE.

If	you	have	populated	the	form	with	fields	described	by
AuthFormMethod,	AuthFormMimetype	and	AuthFormBody,
you	probably	want	to	set	this	field	to	a	similar	size	as	the
KeptBodySize	directive.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthFormUsername	Directive

Description: The	name	of	a	form	field	carrying	the	login
username

Syntax: AuthFormUsername	fieldname

Default: httpd_username

Context: directory
Status: Base
Module: mod_auth_form
Compatibility: Available	in	Apache	HTTP	Server	2.3.0	and	later

The	AuthFormUsername	directive	specifies	the	name	of	an
HTML	field	which,	if	present,	will	contain	the	username	to	be	used
to	log	in.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authn_anon

Description: Allows	"anonymous"	user	access	to
authenticated	areas

Status: Extension
Module	Identifier: authn_anon_module
Source	File: mod_authn_anon.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	provides	authentication	front-ends	such	as
mod_auth_basic	to	authenticate	users	similar	to	anonymous-ftp
sites,	i.e.	have	a	'magic'	user	id	'anonymous'	and	the	email	address
as	a	password.	These	email	addresses	can	be	logged.

Combined	with	other	(database)	access	control	methods,	this	allows
for	effective	user	tracking	and	customization	according	to	a	user
profile	while	still	keeping	the	site	open	for	'unregistered'	users.	One
advantage	of	using	Auth-based	user	tracking	is	that,	unlike	magic-
cookies	and	funny	URL	pre/postfixes,	it	is	completely	browser
independent	and	it	allows	users	to	share	URLs.

When	using	mod_auth_basic,	this	module	is	invoked	via	the
AuthBasicProvider	directive	with	the	anon	value.

Example

The	example	below	is	combined	with	"normal"	htpasswd-file	based
authentication	and	allows	users	in	additionally	as	'guests'	with	the
following	properties:

It	insists	that	the	user	enters	a	userID.
(Anonymous_NoUserID)
It	insists	that	the	user	enters	a	password.
(Anonymous_MustGiveEmail)
The	password	entered	must	be	a	valid	email	address,	i.e.
contain	at	least	one	'@'	and	a	'.'.
(Anonymous_VerifyEmail)
The	userID	must	be	one	of	anonymous	guest	www	test
welcome	and	comparison	is	not	case	sensitive.
(Anonymous)
And	the	Email	addresses	entered	in	the	passwd	field	are
logged	to	the	error	log	file.	(Anonymous_LogEmail)

Example
<Directory	"/var/www/html/private">

				AuthName	"Use	'anonymous'	&	Email	address	for	guest	entry"

				AuthType	Basic

				AuthBasicProvider	file	anon

				AuthUserFile	"/path/to/your/.htpasswd"

				

				Anonymous_NoUserID	off

				Anonymous_MustGiveEmail	on

				Anonymous_VerifyEmail	on

				Anonymous_LogEmail	on

				Anonymous	anonymous	guest	www	test	welcome

				

				Require	valid-user

</Directory>

Anonymous	Directive

Description: Specifies	userIDs	that	are	allowed	access	without
password	verification

Syntax: Anonymous	user	[user]	...

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authn_anon

A	list	of	one	or	more	'magic'	userIDs	which	are	allowed	access
without	password	verification.	The	userIDs	are	space	separated.	It
is	possible	to	use	the	'	and	"	quotes	to	allow	a	space	in	a	userID
as	well	as	the	\	escape	character.

Please	note	that	the	comparison	is	case-IN-sensitive.
It's	strongly	recommended	that	the	magic	username	'anonymous'
is	always	one	of	the	allowed	userIDs.

Example:
Anonymous	anonymous	"Not	Registered"	"I	don't	know"

This	would	allow	the	user	to	enter	without	password	verification	by
using	the	userIDs	"anonymous",	"AnonyMous",	"Not	Registered"
and	"I	Don't	Know".

As	of	Apache	2.1	it	is	possible	to	specify	the	userID	as	"*".	That
allows	any	supplied	userID	to	be	accepted.

Anonymous_LogEmail	Directive

Description: Sets	whether	the	password	entered	will	be	logged
in	the	error	log

Syntax: Anonymous_LogEmail	On|Off

Default: Anonymous_LogEmail	On

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authn_anon

When	set	On,	the	default,	the	'password'	entered	(which	hopefully
contains	a	sensible	email	address)	is	logged	in	the	error	log.

Anonymous_MustGiveEmail	Directive

Description: Specifies	whether	blank	passwords	are	allowed
Syntax: Anonymous_MustGiveEmail	On|Off

Default: Anonymous_MustGiveEmail	On

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authn_anon

Specifies	whether	the	user	must	specify	an	email	address	as	the
password.	This	prohibits	blank	passwords.

Anonymous_NoUserID	Directive

Description: Sets	whether	the	userID	field	may	be	empty
Syntax: Anonymous_NoUserID	On|Off

Default: Anonymous_NoUserID	Off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authn_anon

When	set	On,	users	can	leave	the	userID	(and	perhaps	the
password	field)	empty.	This	can	be	very	convenient	for	MS-
Explorer	users	who	can	just	hit	return	or	click	directly	on	the	OK
button;	which	seems	a	natural	reaction.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Anonymous_VerifyEmail	Directive

Description: Sets	whether	to	check	the	password	field	for	a
correctly	formatted	email	address

Syntax: Anonymous_VerifyEmail	On|Off

Default: Anonymous_VerifyEmail	Off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authn_anon

When	set	On	the	'password'	entered	is	checked	for	at	least	one
'@'	and	a	'.'	to	encourage	users	to	enter	valid	email	addresses
(see	the	above	Anonymous_LogEmail).

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authn_core

Description: Core	Authentication
Status: Base
Module	Identifier: authn_core_module
Source	File: mod_authn_core.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
This	module	provides	core	authentication	capabilities	to	allow	or	deny
access	to	portions	of	the	web	site.	mod_authn_core	provides
directives	that	are	common	to	all	authentication	providers.

Creating	Authentication	Provider	Aliases

Extended	authentication	providers	can	be	created	within	the
configuration	file	and	assigned	an	alias	name.	The	alias	providers
can	then	be	referenced	through	the	directives
AuthBasicProvider	or	AuthDigestProvider	in	the	same
way	as	a	base	authentication	provider.	Besides	the	ability	to	create
and	alias	an	extended	provider,	it	also	allows	the	same	extended
authentication	provider	to	be	reference	by	multiple	locations.

Examples
This	example	checks	for	passwords	in	two	different	text	files.

Checking	multiple	text	password	files
#	Check	here	first

<AuthnProviderAlias	file	file1>

				AuthUserFile	"/www/conf/passwords1"

</AuthnProviderAlias>

#	Then	check	here

<AuthnProviderAlias	file	file2>			

				AuthUserFile	"/www/conf/passwords2"

</AuthnProviderAlias>

<Directory	"/var/web/pages/secure">

				AuthBasicProvider	file1	file2

				

				AuthType	Basic

				AuthName	"Protected	Area"

				Require	valid-user

</Directory>

The	example	below	creates	two	different	ldap	authentication
provider	aliases	based	on	the	ldap	provider.	This	allows	a	single
authenticated	location	to	be	serviced	by	multiple	ldap	hosts:

Checking	multiple	LDAP	servers
<AuthnProviderAlias	ldap	ldap-alias1>

				AuthLDAPBindDN	cn=youruser,o=ctx

				AuthLDAPBindPassword	yourpassword

				AuthLDAPURL	ldap://ldap.host/o=ctx

</AuthnProviderAlias>

<AuthnProviderAlias	ldap	ldap-other-alias>

				AuthLDAPBindDN	cn=yourotheruser,o=dev

				AuthLDAPBindPassword	yourotherpassword

				AuthLDAPURL	ldap://other.ldap.host/o=dev?cn

</AuthnProviderAlias>

Alias	"/secure"	"/webpages/secure"

<Directory	"/webpages/secure">

				AuthBasicProvider	ldap-other-alias		ldap-alias1

				

				AuthType	Basic

				AuthName	"LDAP	Protected	Place"

				Require	valid-user

				#	Note	that	Require	ldap-*	would	not	work	here,	since	the	

				#	AuthnProviderAlias	does	not	provide	the	config	to	authorization	providers

				#	that	are	implemented	in	the	same	module	as	the	authentication	provider.

</Directory>

AuthName	Directive

Description: Authorization	realm	for	use	in	HTTP	authentication
Syntax: AuthName	auth-domain

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authn_core

This	directive	sets	the	name	of	the	authorization	realm	for	a
directory.	This	realm	is	given	to	the	client	so	that	the	user	knows
which	username	and	password	to	send.	AuthName	takes	a	single
argument;	if	the	realm	name	contains	spaces,	it	must	be	enclosed
in	quotation	marks.	It	must	be	accompanied	by	AuthType	and
Require	directives,	and	directives	such	as	AuthUserFile	and
AuthGroupFile	to	work.

For	example:

AuthName	"Top	Secret"

The	string	provided	for	the	AuthName	is	what	will	appear	in	the
password	dialog	provided	by	most	browsers.

See	also
Authentication,	Authorization,	and	Access	Control
mod_authz_core

<AuthnProviderAlias>	Directive

Description: Enclose	a	group	of	directives	that	represent	an
extension	of	a	base	authentication	provider	and
referenced	by	the	specified	alias

Syntax: <AuthnProviderAlias	baseProvider

Alias>	...	</AuthnProviderAlias>

Context: server	config
Status: Base
Module: mod_authn_core

<AuthnProviderAlias>	and	</AuthnProviderAlias>	are
used	to	enclose	a	group	of	authentication	directives	that	can	be
referenced	by	the	alias	name	using	one	of	the	directives
AuthBasicProvider	or	AuthDigestProvider.

This	directive	has	no	affect	on	authorization,	even	for	modules
that	provide	both	authentication	and	authorization.

AuthType	Directive

Description: Type	of	user	authentication
Syntax: AuthType	None|Basic|Digest|Form

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authn_core

This	directive	selects	the	type	of	user	authentication	for	a
directory.	The	authentication	types	available	are	None,	Basic
(implemented	by	mod_auth_basic),	Digest	(implemented	by
mod_auth_digest),	and	Form	(implemented	by
mod_auth_form).

To	implement	authentication,	you	must	also	use	the	AuthName
and	Require	directives.	In	addition,	the	server	must	have	an
authentication-provider	module	such	as	mod_authn_file	and	an
authorization	module	such	as	mod_authz_user.

The	authentication	type	None	disables	authentication.	When
authentication	is	enabled,	it	is	normally	inherited	by	each
subsequent	configuration	section,	unless	a	different	authentication
type	is	specified.	If	no	authentication	is	desired	for	a	subsection	of
an	authenticated	section,	the	authentication	type	None	may	be
used;	in	the	following	example,	clients	may	access	the
/www/docs/public	directory	without	authenticating:

<Directory	"/www/docs">

				AuthType	Basic

				AuthName	Documents

				AuthBasicProvider	file

				AuthUserFile	"/usr/local/apache/passwd/passwords"

				Require	valid-user

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

</Directory>

<Directory	"/www/docs/public">

				AuthType	None

				Require	all	granted

</Directory>

When	disabling	authentication,	note	that	clients	which	have
already	authenticated	against	another	portion	of	the	server's
document	tree	will	typically	continue	to	send	authentication
HTTP	headers	or	cookies	with	each	request,	regardless	of
whether	the	server	actually	requires	authentication	for	every
resource.

See	also
Authentication,	Authorization,	and	Access	Control

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authn_dbd

Description: User	authentication	using	an	SQL	database
Status: Extension
Module	Identifier: authn_dbd_module
Source	File: mod_authn_dbd.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	provides	authentication	front-ends	such	as
mod_auth_digest	and	mod_auth_basic	to	authenticate	users	by
looking	up	users	in	SQL	tables.	Similar	functionality	is	provided	by,	for
example,	mod_authn_file.

This	module	relies	on	mod_dbd	to	specify	the	backend	database
driver	and	connection	parameters,	and	manage	the	database
connections.

When	using	mod_auth_basic	or	mod_auth_digest,	this	module
is	invoked	via	the	AuthBasicProvider	or	AuthDigestProvider
with	the	dbd	value.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authn_dbd
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authn_dbd

See	also
AuthName

AuthType

AuthBasicProvider

AuthDigestProvider

DBDriver

DBDParams

Password	Formats

Performance	and	Cacheing

Some	users	of	DBD	authentication	in	HTTPD	2.2/2.4	have
reported	that	it	imposes	a	problematic	load	on	the	database.	This
is	most	likely	where	an	HTML	page	contains	hundreds	of	objects
(e.g.	images,	scripts,	etc)	each	of	which	requires	authentication.
Users	affected	(or	concerned)	by	this	kind	of	problem	should	use
mod_authn_socache	to	cache	credentials	and	take	most	of	the
load	off	the	database.

Configuration	Example

This	simple	example	shows	use	of	this	module	in	the	context	of
the	Authentication	and	DBD	frameworks.

#	mod_dbd	configuration

#	UPDATED	to	include	authentication	cacheing

DBDriver	pgsql

DBDParams	"dbname=apacheauth	user=apache	password=xxxxxx"

DBDMin		4

DBDKeep	8

DBDMax		20

DBDExptime	300

<Directory	"/usr/www/myhost/private">

		#	mod_authn_core	and	mod_auth_basic	configuration

		#	for	mod_authn_dbd

		AuthType	Basic

		AuthName	"My	Server"

		#	To	cache	credentials,	put	socache	ahead	of	dbd	here

		AuthBasicProvider	socache	dbd

		#	Also	required	for	caching:	tell	the	cache	to	cache	dbd	lookups!

		AuthnCacheProvideFor	dbd

		AuthnCacheContext	my-server

		#	mod_authz_core	configuration

		Require	valid-user

		#	mod_authn_dbd	SQL	query	to	authenticate	a	user

		AuthDBDUserPWQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s"

</Directory>

Exposing	Login	Information

If	httpd	was	built	against	APR	version	1.3.0	or	higher,	then
whenever	a	query	is	made	to	the	database	server,	all	column
values	in	the	first	row	returned	by	the	query	are	placed	in	the
environment,	using	environment	variables	with	the	prefix
"AUTHENTICATE_".

If	a	database	query	for	example	returned	the	username,	full	name
and	telephone	number	of	a	user,	a	CGI	program	will	have	access
to	this	information	without	the	need	to	make	a	second	independent
database	query	to	gather	this	additional	information.

This	has	the	potential	to	dramatically	simplify	the	coding	and
configuration	required	in	some	web	applications.

AuthDBDUserPWQuery	Directive

Description: SQL	query	to	look	up	a	password	for	a	user
Syntax: AuthDBDUserPWQuery	query

Context: directory
Status: Extension
Module: mod_authn_dbd

The	AuthDBDUserPWQuery	specifies	an	SQL	query	to	look	up	a
password	for	a	specified	user.	The	user's	ID	will	be	passed	as	a
single	string	parameter	when	the	SQL	query	is	executed.	It	may
be	referenced	within	the	query	statement	using	a	%s	format
specifier.

AuthDBDUserPWQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s"

The	first	column	value	of	the	first	row	returned	by	the	query
statement	should	be	a	string	containing	the	encrypted	password.
Subsequent	rows	will	be	ignored.	If	no	rows	are	returned,	the	user
will	not	be	authenticated	through	mod_authn_dbd.

If	httpd	was	built	against	APR	version	1.3.0	or	higher,	any
additional	column	values	in	the	first	row	returned	by	the	query
statement	will	be	stored	as	environment	variables	with	names	of
the	form	AUTHENTICATE_COLUMN.

The	encrypted	password	format	depends	on	which	authentication
frontend	(e.g.	mod_auth_basic	or	mod_auth_digest)	is	being
used.	See	Password	Formats	for	more	information.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

AuthDBDUserRealmQuery	Directive

Description: SQL	query	to	look	up	a	password	hash	for	a	user
and	realm.

Syntax: AuthDBDUserRealmQuery	query

Context: directory
Status: Extension
Module: mod_authn_dbd

The	AuthDBDUserRealmQuery	specifies	an	SQL	query	to	look
up	a	password	for	a	specified	user	and	realm	in	a	digest
authentication	process.	The	user's	ID	and	the	realm,	in	that	order,
will	be	passed	as	string	parameters	when	the	SQL	query	is
executed.	They	may	be	referenced	within	the	query	statement
using	%s	format	specifiers.

AuthDBDUserRealmQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s	AND	realm	=	%s"

The	first	column	value	of	the	first	row	returned	by	the	query
statement	should	be	a	string	containing	the	encrypted	password.
Subsequent	rows	will	be	ignored.	If	no	rows	are	returned,	the	user
will	not	be	authenticated	through	mod_authn_dbd.

If	httpd	was	built	against	APR	version	1.3.0	or	higher,	any
additional	column	values	in	the	first	row	returned	by	the	query
statement	will	be	stored	as	environment	variables	with	names	of
the	form	AUTHENTICATE_COLUMN.

The	encrypted	password	format	depends	on	which	authentication
frontend	(e.g.	mod_auth_basic	or	mod_auth_digest)	is	being
used.	See	Password	Formats	for	more	information.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authn_dbm

Description: User	authentication	using	DBM	files
Status: Extension
Module	Identifier: authn_dbm_module
Source	File: mod_authn_dbm.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	provides	authentication	front-ends	such	as
mod_auth_digest	and	mod_auth_basic	to	authenticate	users	by
looking	up	users	in	dbm	password	files.	Similar	functionality	is
provided	by	mod_authn_file.

When	using	mod_auth_basic	or	mod_auth_digest,	this	module
is	invoked	via	the	AuthBasicProvider	or	AuthDigestProvider
with	the	dbm	value.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
AuthName

AuthType

AuthBasicProvider

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authn_dbm
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authn_dbm

AuthDigestProvider

htpasswd

htdbm

Password	Formats

AuthDBMType	Directive

Description: Sets	the	type	of	database	file	that	is	used	to	store
passwords

Syntax: AuthDBMType	default|SDBM|GDBM|NDBM|DB

Default: AuthDBMType	default

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authn_dbm

Sets	the	type	of	database	file	that	is	used	to	store	the	passwords.
The	default	database	type	is	determined	at	compile	time.	The
availability	of	other	types	of	database	files	also	depends	on
compile-time	settings.

For	example,	in	order	to	enable	the	support	for	Berkeley	DB
(correspondent	to	the	db	type)	the	--with-berkeley-db	option
needs	to	be	added	to	httpd's	configure	to	generate	the	necessary
DSO.

It	is	crucial	that	whatever	program	you	use	to	create	your
password	files	is	configured	to	use	the	same	type	of	database.

AuthDBMUserFile	Directive

Description: Sets	the	name	of	a	database	file	containing	the	list
of	users	and	passwords	for	authentication

Syntax: AuthDBMUserFile	file-path

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authn_dbm

The	AuthDBMUserFile	directive	sets	the	name	of	a	DBM	file
containing	the	list	of	users	and	passwords	for	user	authentication.
File-path	is	the	absolute	path	to	the	user	file.

The	user	file	is	keyed	on	the	username.	The	value	for	a	user	is	the
encrypted	password,	optionally	followed	by	a	colon	and	arbitrary
data.	The	colon	and	the	data	following	it	will	be	ignored	by	the
server.

Security:

Make	sure	that	the	AuthDBMUserFile	is	stored	outside	the
document	tree	of	the	web-server;	do	not	put	it	in	the	directory
that	it	protects.	Otherwise,	clients	will	be	able	to	download	the
AuthDBMUserFile.

The	encrypted	password	format	depends	on	which	authentication
frontend	(e.g.	mod_auth_basic	or	mod_auth_digest)	is	being
used.	See	Password	Formats	for	more	information.

Important	compatibility	note:	The	implementation	of	dbmopen	in
the	Apache	modules	reads	the	string	length	of	the	hashed	values
from	the	DBM	data	structures,	rather	than	relying	upon	the	string
being	NULL-appended.	Some	applications,	such	as	the	Netscape
web	server,	rely	upon	the	string	being	NULL-appended,	so	if	you

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

are	having	trouble	using	DBM	files	interchangeably	between
applications	this	may	be	a	part	of	the	problem.

A	perl	script	called	dbmmanage	is	included	with	Apache.	This
program	can	be	used	to	create	and	update	DBM	format	password
files	for	use	with	this	module.	Another	tool	for	maintaining	the	DBM
files	is	the	included	program	htdbm.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authn_file

Description: User	authentication	using	text	files
Status: Base
Module	Identifier: authn_file_module
Source	File: mod_authn_file.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	provides	authentication	front-ends	such	as
mod_auth_digest	and	mod_auth_basic	to	authenticate	users	by
looking	up	users	in	plain	text	password	files.	Similar	functionality	is
provided	by	mod_authn_dbm.

When	using	mod_auth_basic	or	mod_auth_digest,	this	module
is	invoked	via	the	AuthBasicProvider	or	AuthDigestProvider
with	the	file	value.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
AuthBasicProvider

AuthDigestProvider

htpasswd

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authn_file
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authn_file

htdigest

Password	Formats

AuthUserFile	Directive

Description: Sets	the	name	of	a	text	file	containing	the	list	of
users	and	passwords	for	authentication

Syntax: AuthUserFile	file-path

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authn_file

The	AuthUserFile	directive	sets	the	name	of	a	textual	file
containing	the	list	of	users	and	passwords	for	user	authentication.
File-path	is	the	path	to	the	user	file.	If	it	is	not	absolute,	it	is	treated
as	relative	to	the	ServerRoot.

Each	line	of	the	user	file	contains	a	username	followed	by	a	colon,
followed	by	the	encrypted	password.	If	the	same	user	ID	is	defined
multiple	times,	mod_authn_file	will	use	the	first	occurrence	to
verify	the	password.

The	encrypted	password	format	depends	on	which	authentication
frontend	(e.g.	mod_auth_basic	or	mod_auth_digest)	is	being
used.	See	Password	Formats	for	more	information.

For	mod_auth_basic,	use	the	utility	htpasswd	which	is	installed
as	part	of	the	binary	distribution,	or	which	can	be	found	in
src/support.	See	the	man	page	for	more	details.	In	short:

Create	a	password	file	Filename	with	username	as	the	initial	ID.
It	will	prompt	for	the	password:

htpasswd	-c	Filename	username

Add	or	modify	username2	in	the	password	file	Filename:

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

htpasswd	Filename	username2

Note	that	searching	large	text	files	is	very	inefficient;
AuthDBMUserFile	should	be	used	instead.

For	mod_auth_digest,	use	htdigest	instead.	Note	that	you
cannot	mix	user	data	for	Digest	Authentication	and	Basic
Authentication	within	the	same	file.

Security

Make	sure	that	the	AuthUserFile	is	stored	outside	the
document	tree	of	the	web-server.	Do	not	put	it	in	the	directory
that	it	protects.	Otherwise,	clients	may	be	able	to	download	the
AuthUserFile.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authn_socache

Description: Manages	a	cache	of	authentication	credentials	to
relieve	the	load	on	backends

Status: Base
Module	Identifier: authn_socache_module
Source	File: mod_authn_socache.c
Compatibility: Version	2.3	and	later

Summary
Maintains	a	cache	of	authentication	credentials,	so	that	a	new
backend	lookup	is	not	required	for	every	authenticated	request.

Authentication	Cacheing

Some	users	of	more	heavyweight	authentication	such	as	SQL
database	lookups	(mod_authn_dbd)	have	reported	it	putting	an
unacceptable	load	on	their	authentication	provider.	A	typical	case
in	point	is	where	an	HTML	page	contains	hundreds	of	objects
(images,	scripts,	stylesheets,	media,	etc),	and	a	request	to	the
page	generates	hundreds	of	effectively-immediate	requests	for
authenticated	additional	contents.

mod_authn_socache	provides	a	solution	to	this	problem	by
maintaining	a	cache	of	authentication	credentials.

Usage

The	authentication	cache	should	be	used	where	authentication
lookups	impose	a	significant	load	on	the	server,	or	a	backend	or
network.	Authentication	by	file	(mod_authn_file)	or	dbm
(mod_authn_dbm)	are	unlikely	to	benefit,	as	these	are	fast	and
lightweight	in	their	own	right	(though	in	some	cases,	such	as	a
network-mounted	file,	cacheing	may	be	worthwhile).	Other
providers	such	as	SQL	or	LDAP	based	authentication	are	more
likely	to	benefit,	particularly	where	there	is	an	observed
performance	issue.	Amongst	the	standard	modules,
mod_authnz_ldap	manages	its	own	cache,	so	only
mod_authn_dbd	will	usually	benefit	from	this	cache.

The	basic	rules	to	cache	for	a	provider	are:

1.	 Include	the	provider	you're	cacheing	for	in	an
AuthnCacheProvideFor	directive.

2.	 List	socache	ahead	of	the	provider	you're	cacheing	for	in	your
AuthBasicProvider	or	AuthDigestProvider	directive.

A	simple	usage	example	to	accelerate	mod_authn_dbd	using
dbm	as	a	cache	engine:

#AuthnCacheSOCache	is	optional.		If	specified,	it	is	server-wide

AuthnCacheSOCache	dbm

<Directory	"/usr/www/myhost/private">

				AuthType	Basic

				AuthName	"Cached	Authentication	Example"

				AuthBasicProvider	socache	dbd

				AuthDBDUserPWQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s"

				AuthnCacheProvideFor	dbd

				Require	valid-user

				#Optional

				AuthnCacheContext	dbd-authn-example

</Directory>

Cacheing	with	custom	modules

Module	developers	should	note	that	their	modules	must	be
enabled	for	cacheing	with	mod_authn_socache.	A	single	optional
API	function	ap_authn_cache_store	is	provided	to	cache
credentials	a	provider	has	just	looked	up	or	generated.	Usage
examples	are	available	in	r957072,	in	which	three	authn	providers
are	enabled	for	cacheing.

http://svn.eu.apache.org/viewvc?view=revision&revision=957072

AuthnCacheContext	Directive

Description: Specify	a	context	string	for	use	in	the	cache	key
Syntax: AuthnCacheContext

directory|server|custom-string

Default: directory

Context: directory
Status: Base
Module: mod_authn_socache

This	directive	specifies	a	string	to	be	used	along	with	the	supplied
username	(and	realm	in	the	case	of	Digest	Authentication)	in
constructing	a	cache	key.	This	serves	to	disambiguate	identical
usernames	serving	different	authentication	areas	on	the	server.

Two	special	values	for	this	are	directory,	which	uses	the	directory
context	of	the	request	as	a	string,	and	server	which	uses	the
virtual	host	name.

The	default	is	directory,	which	is	also	the	most	conservative
setting.	This	is	likely	to	be	less	than	optimal,	as	it	(for	example)
causes	$app-base,	$app-base/images,	$app-base/scripts	and
$app-base/media	each	to	have	its	own	separate	cache	key.	A
better	policy	is	to	name	the	AuthnCacheContext	for	the
password	provider:	for	example	a	htpasswd	file	or	database	table.

Contexts	can	be	shared	across	different	areas	of	a	server,	where
credentials	are	shared.	However,	this	has	potential	to	become	a
vector	for	cross-site	or	cross-application	security	breaches,	so	this
directive	is	not	permitted	in	.htaccess	contexts.

AuthnCacheEnable	Directive

Description: Enable	Authn	caching	configured	anywhere
Syntax: AuthnCacheEnable

Context: server	config
Override: None
Status: Base
Module: mod_authn_socache

This	directive	is	not	normally	necessary:	it	is	implied	if
authentication	cacheing	is	enabled	anywhere	in	httpd.conf.
However,	if	it	is	not	enabled	anywhere	in	httpd.conf	it	will	by
default	not	be	initialised,	and	is	therefore	not	available	in	a
.htaccess	context.	This	directive	ensures	it	is	initialised	so	it	can
be	used	in	.htaccess.

AuthnCacheProvideFor	Directive

Description: Specify	which	authn	provider(s)	to	cache	for
Syntax: AuthnCacheProvideFor	authn-provider

[...]

Default: None

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authn_socache

This	directive	specifies	an	authentication	provider	or	providers	to
cache	for.	Credentials	found	by	a	provider	not	listed	in	an
AuthnCacheProvideFor	directive	will	not	be	cached.

For	example,	to	cache	credentials	found	by	mod_authn_dbd	or
by	a	custom	provider	myprovider,	but	leave	those	looked	up	by
lightweight	providers	like	file	or	dbm	lookup	alone:

AuthnCacheProvideFor	dbd	myprovider

AuthnCacheSOCache	Directive

Description: Select	socache	backend	provider	to	use
Syntax: AuthnCacheSOCache	provider-

name[:provider-args]

Context: server	config
Override: None
Status: Base
Module: mod_authn_socache
Compatibility: Optional	provider	arguments	are	available	in

Apache	HTTP	Server	2.4.7	and	later

This	is	a	server-wide	setting	to	select	a	provider	for	the	shared
object	cache,	followed	by	optional	arguments	for	that	provider.
Some	possible	values	for	provider-name	are	"dbm",	"dc",
"memcache",	or	"shmcb",	each	subject	to	the	appropriate	module
being	loaded.	If	not	set,	your	platform's	default	will	be	used.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthnCacheTimeout	Directive

Description: Set	a	timeout	for	cache	entries
Syntax: AuthnCacheTimeout	timeout	(seconds)

Default: 300	(5	minutes)

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authn_socache

Cacheing	authentication	data	can	be	a	security	issue,	though
short-term	cacheing	is	unlikely	to	be	a	problem.	Typically	a	good
solution	is	to	cache	credentials	for	as	long	as	it	takes	to	relieve	the
load	on	a	backend,	but	no	longer,	though	if	changes	to	your	users
and	passwords	are	infrequent	then	a	longer	timeout	may	suit	you.
The	default	300	seconds	(5	minutes)	is	both	cautious	and	ample	to
keep	the	load	on	a	backend	such	as	dbd	(SQL	database	queries)
down.

This	should	not	be	confused	with	session	timeout,	which	is	an
entirely	separate	issue.	However,	you	may	wish	to	check	your
session-management	software	for	whether	cached	credentials	can
"accidentally"	extend	a	session,	and	bear	it	in	mind	when	setting
your	timeout.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authnz_fcgi

Description: Allows	a	FastCGI	authorizer	application	to
handle	Apache	httpd	authentication	and
authorization

Status: Extension
Module	Identifier: authnz_fcgi_module
Source	File: mod_authnz_fcgi.c
Compatibility: Available	in	version	2.4.10	and	later

Summary
This	module	allows	FastCGI	authorizer	applications	to	authenticate
users	and	authorize	access	to	resources.	It	supports	generic	FastCGI
authorizers	which	participate	in	a	single	phase	for	authentication	and
authorization	as	well	as	Apache	httpd-specific	authenticators	and
authorizors	which	participate	in	one	or	both	phases.

FastCGI	authorizers	can	authenticate	using	user	id	and	password,
such	as	for	Basic	authentication,	or	can	authenticate	using	arbitrary
mechanisms.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authnz_fcgi
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authnz_fcgi

Authentication,	Authorization,	and	Access	Control
mod_auth_basic

fcgistarter

mod_proxy_fcgi

Invocation	modes

The	invocation	modes	for	FastCGI	authorizers	supported	by	this
module	are	distinguished	by	two	characteristics,	type	and	auth
mechanism.

Type	is	simply	authn	for	authentication,	authz	for	authorization,
or	authnz	for	combined	authentication	and	authorization.

Auth	mechanism	refers	to	the	Apache	httpd	configuration
mechanisms	and	processing	phases,	and	can	be
AuthBasicProvider,	Require,	or	check_user_id.	The	first
two	of	these	correspond	to	the	directives	used	to	enable
participation	in	the	appropriate	processing	phase.

Descriptions	of	each	mode:

Type	authn,	mechanism	AuthBasicProvider
In	this	mode,	FCGI_ROLE	is	set	to	AUTHORIZER	and
FCGI_APACHE_ROLE	is	set	to	AUTHENTICATOR.	The
application	must	be	defined	as	provider	type	authn	using
AuthnzFcgiDefineProvider	and	enabled	with
AuthBasicProvider.	When	invoked,	the	application	is
expected	to	authenticate	the	client	using	the	provided	user	id
and	password.	Example	application:

#!/usr/bin/perl

use	FCGI;

my	$request	=	FCGI::Request();

while	($request->Accept()	>=	0)	{

				die	if	$ENV{'FCGI_APACHE_ROLE'}	ne	"AUTHENTICATOR";

				die	if	$ENV{'FCGI_ROLE'}								ne	"AUTHORIZER";

				die	if	!$ENV{'REMOTE_PASSWD'};

				die	if	!$ENV{'REMOTE_USER'};

				print	STDERR	"This	text	is	written	to	the	web	server	error	log.\n";

				if	(($ENV{'REMOTE_USER'	}	eq	"foo"	||	$ENV{'REMOTE_USER'}	eq	"foo1")	&&

								$ENV{'REMOTE_PASSWD'}	eq	"bar")	{

								print	"Status:	200\n";

								print	"Variable-AUTHN_1:	authn_01\n";

								print	"Variable-AUTHN_2:	authn_02\n";

								print	"\n";

				}

				else	{

								print	"Status:	401\n\n";

				}

}

Example	configuration:

AuthnzFcgiDefineProvider	authn	FooAuthn	fcgi://localhost:10102/

<Location	"/protected/">

		AuthType	Basic

		AuthName	"Restricted"

		AuthBasicProvider	FooAuthn

		Require	...

</Location>

Type	authz,	mechanism	Require
In	this	mode,	FCGI_ROLE	is	set	to	AUTHORIZER	and
FCGI_APACHE_ROLE	is	set	to	AUTHORIZER.	The	application
must	be	defined	as	provider	type	authz	using
AuthnzFcgiDefineProvider.	When	invoked,	the
application	is	expected	to	authorize	the	client	using	the
provided	user	id	and	other	request	data.	Example	application:

#!/usr/bin/perl

use	FCGI;

my	$request	=	FCGI::Request();

while	($request->Accept()	>=	0)	{

				die	if	$ENV{'FCGI_APACHE_ROLE'}	ne	"AUTHORIZER";

				die	if	$ENV{'FCGI_ROLE'}								ne	"AUTHORIZER";

				die	if	$ENV{'REMOTE_PASSWD'};

				print	STDERR	"This	text	is	written	to	the	web	server	error	log.\n";

				if	($ENV{'REMOTE_USER'}	eq	"foo1")	{

								print	"Status:	200\n";

								print	"Variable-AUTHZ_1:	authz_01\n";

								print	"Variable-AUTHZ_2:	authz_02\n";

								print	"\n";

				}

				else	{

								print	"Status:	403\n\n";

				}

}

Example	configuration:

AuthnzFcgiDefineProvider	authz	FooAuthz	fcgi://localhost:10103/

<Location	"/protected/">

		AuthType	...

		AuthName	...

		AuthBasicProvider	...

		Require	FooAuthz

</Location>

Type	authnz,	mechanism	AuthBasicProvider	+	Require

In	this	mode,	which	supports	the	web	server-agnostic
FastCGI	AUTHORIZER	protocol,	FCGI_ROLE	is	set	to
AUTHORIZER	and	FCGI_APACHE_ROLE	is	not	set.	The
application	must	be	defined	as	provider	type	authnz	using
AuthnzFcgiDefineProvider.	The	application	is	expected
to	handle	both	authentication	and	authorization	in	the	same
invocation	using	the	user	id,	password,	and	other	request
data.	The	invocation	occurs	during	the	Apache	httpd	API
authentication	phase.	If	the	application	returns	200	and	the
same	provider	is	invoked	during	the	authorization	phase	(via
Require),	mod_authnz_fcgi	will	return	success	for	the
authorization	phase	without	invoking	the	application.	Example
application:

#!/usr/bin/perl

use	FCGI;

my	$request	=	FCGI::Request();

while	($request->Accept()	>=	0)	{

				die	if	$ENV{'FCGI_APACHE_ROLE'};

				die	if	$ENV{'FCGI_ROLE'}	ne	"AUTHORIZER";

				die	if	!$ENV{'REMOTE_PASSWD'};

				die	if	!$ENV{'REMOTE_USER'};

				print	STDERR	"This	text	is	written	to	the	web	server	error	log.\n";

				if	(($ENV{'REMOTE_USER'	}	eq	"foo"	||	$ENV{'REMOTE_USER'}	eq	"foo1")	&&

								$ENV{'REMOTE_PASSWD'}	eq	"bar"	&&

								$ENV{'REQUEST_URI'}	=~	m%/bar/.*%)	{

								print	"Status:	200\n";

								print	"Variable-AUTHNZ_1:	authnz_01\n";

								print	"Variable-AUTHNZ_2:	authnz_02\n";

								print	"\n";

				}

				else	{

								print	"Status:	401\n\n";

				}

}

Example	configuration:

AuthnzFcgiDefineProvider	authnz	FooAuthnz	fcgi://localhost:10103/

<Location	"/protected/">

		AuthType	Basic

		AuthName	"Restricted"

		AuthBasicProvider	FooAuthnz

		Require	FooAuthnz

</Location>

Type	authn,	mechanism	check_user_id
In	this	mode,	FCGI_ROLE	is	set	to	AUTHORIZER	and
FCGI_APACHE_ROLE	is	set	to	AUTHENTICATOR.	The
application	must	be	defined	as	provider	type	authn	using
AuthnzFcgiDefineProvider.
AuthnzFcgiCheckAuthnProvider	specifies	when	it	is
called.	Example	application:

#!/usr/bin/perl

use	FCGI;

my	$request	=	FCGI::Request();

while	($request->Accept()	>=	0)	{

				die	if	$ENV{'FCGI_APACHE_ROLE'}	ne	"AUTHENTICATOR";

				die	if	$ENV{'FCGI_ROLE'}	ne	"AUTHORIZER";

				#	This	authorizer	assumes	that	the	RequireBasicAuth	option	of	

				#	AuthnzFcgiCheckAuthnProvider	is	On:

				die	if	!$ENV{'REMOTE_PASSWD'};

				die	if	!$ENV{'REMOTE_USER'};

				print	STDERR	"This	text	is	written	to	the	web	server	error	log.\n";

				if	(($ENV{'REMOTE_USER'	}	eq	"foo"	||	$ENV{'REMOTE_USER'}	eq	"foo1")	&&

								$ENV{'REMOTE_PASSWD'}	eq	"bar")	{

								print	"Status:	200\n";

								print	"Variable-AUTHNZ_1:	authnz_01\n";

								print	"Variable-AUTHNZ_2:	authnz_02\n";

								print	"\n";

				}

				else	{

								print	"Status:	401\n\n";

								#	If	a	response	body	is	written	here,	it	will	be	returned	to

								#	the	client.

				}

}

Example	configuration:

AuthnzFcgiDefineProvider	authn	FooAuthn	fcgi://localhost:10103/

<Location	"/protected/">

		AuthType	...

		AuthName	...

		AuthnzFcgiCheckAuthnProvider	FooAuthn	\

																															Authoritative	On	\

																															RequireBasicAuth	Off	\

																															UserExpr	"%{reqenv:REMOTE_USER}"

		Require	...

</Location>

Additional	examples

1.	 If	your	application	supports	the	separate	authentication	and
authorization	roles	(AUTHENTICATOR	and	AUTHORIZER),
define	separate	providers	as	follows,	even	if	they	map	to	the
same	application:

AuthnzFcgiDefineProvider	authn		FooAuthn		fcgi://localhost:10102/

AuthnzFcgiDefineProvider	authz		FooAuthz		fcgi://localhost:10102/

Specify	the	authn	provider	on	AuthBasicProvider	and	the
authz	provider	on	Require:

AuthType	Basic

AuthName	"Restricted"

AuthBasicProvider	FooAuthn

Require	FooAuthz

2.	 If	your	application	supports	the	generic	AUTHORIZER	role
(authentication	and	authorizer	in	one	invocation),	define	a
single	provider	as	follows:

AuthnzFcgiDefineProvider	authnz	FooAuthnz	fcgi://localhost:10103/

Specify	the	authnz	provider	on	both	AuthBasicProvider
and	Require:

AuthType	Basic

AuthName	"Restricted"

AuthBasicProvider	FooAuthnz

Require	FooAuthnz

Limitations

The	following	are	potential	features	which	are	not	currently
implemented:

Apache	httpd	access	checker
The	Apache	httpd	API	access	check	phase	is	a	separate
phase	from	authentication	and	authorization.	Some	other
FastCGI	implementations	implement	this	phase,	which	is
denoted	by	the	setting	of	FCGI_APACHE_ROLE	to
ACCESS_CHECKER.

Local	(Unix)	sockets	or	pipes
Only	TCP	sockets	are	currently	supported.

Support	for	mod_authn_socache
mod_authn_socache	interaction	should	be	implemented	for
applications	which	participate	in	Apache	httpd-style
authentication.

Support	for	digest	authentication	using	AuthDigestProvider
This	is	expected	to	be	a	permanent	limitation	as	there	is	no
authorizer	flow	for	retrieving	a	hash.

Application	process	management
This	is	expected	to	be	permanently	out	of	scope	for	this
module.	Application	processes	must	be	controlled	by	other
means.	For	example,	fcgistarter	can	be	used	to	start
them.

AP_AUTH_INTERNAL_PER_URI
All	providers	are	currently	registered	as
AP_AUTH_INTERNAL_PER_CONF,	which	means	that
checks	are	not	performed	again	for	internal	subrequests	with
the	same	access	control	configuration	as	the	initial	request.

Protocol	data	charset	conversion
If	mod_authnz_fcgi	runs	in	an	EBCDIC	compilation
environment,	all	FastCGI	protocol	data	is	written	in	EBCDIC

and	expected	to	be	received	in	EBCDIC.

Multiple	requests	per	connection
Currently	the	connection	to	the	FastCGI	authorizer	is	closed
after	every	phase	of	processing.	For	example,	if	the	authorizer
handles	separate	authn	and	authz	phases	then	two
connections	will	be	used.

URI	Mapping
URIs	from	clients	can't	be	mapped,	such	as	with	the
ProxyPass	used	with	FastCGI	responders.

Logging

1.	 Processing	errors	are	logged	at	log	level	error	and	higher.

2.	 Messages	written	by	the	application	are	logged	at	log	level
warn.

3.	 General	messages	for	debugging	are	logged	at	log	level
debug.

4.	 Environment	variables	passed	to	the	application	are	logged	at
log	level	trace2.	The	value	of	the	REMOTE_PASSWD	variable
will	be	obscured,	but	any	other	sensitive	data	will	be	visible
in	the	log.

5.	 All	I/O	between	the	module	and	the	FastCGI	application,
including	all	environment	variables,	will	be	logged	in	printable
and	hex	format	at	log	level	trace5.	All	sensitive	data	will
be	visible	in	the	log.

LogLevel	can	be	used	to	configure	a	log	level	specific	to
mod_authnz_fcgi.	For	example:

LogLevel	info	authnz_fcgi:trace8

AuthnzFcgiCheckAuthnProvider	Directive

Description: Enables	a	FastCGI	application	to	handle	the
check_authn	authentication	hook.

Syntax: AuthnzFcgiCheckAuthnProvider

provider-name|None	option	...
Default: none

Context: directory
Status: Extension
Module: mod_authnz_fcgi

This	directive	is	used	to	enable	a	FastCGI	authorizer	to	handle	a
specific	processing	phase	of	authentication	or	authorization.

Some	capabilities	of	FastCGI	authorizers	require	enablement
using	this	directive	instead	of	AuthBasicProvider:

Non-Basic	authentication;	generally,	determining	the	user	id	of
the	client	and	returning	it	from	the	authorizer;	see	the
UserExpr	option	below
Selecting	a	custom	response	code;	for	a	non-200	response
from	the	authorizer,	the	code	from	the	authorizer	will	be	the
status	of	the	response
Setting	the	body	of	a	non-200	response;	if	the	authorizer
provides	a	response	body	with	a	non-200	response,	that	body
will	be	returned	to	the	client;	up	to	8192	bytes	of	text	are
supported

provider-name
This	is	the	name	of	a	provider	defined	with
AuthnzFcgiDefineProvider.

None

Specify	None	to	disable	a	provider	enabled	with	this	directive
in	an	outer	scope,	such	as	in	a	parent	directory.

option
The	following	options	are	supported:

Authoritative	On|Off	(default	On)
This	controls	whether	or	not	other	modules	are	allowed	to
run	when	this	module	has	a	FastCGI	authorizer
configured	and	it	fails	the	request.

DefaultUser	userid
When	the	authorizer	returns	success	and	UserExpr	is
configured	and	evaluates	to	an	empty	string	(e.g.,
authorizer	didn't	return	a	variable),	this	value	will	be	used
as	the	user	id.	This	is	typically	used	when	the	authorizer
has	a	concept	of	guest,	or	unauthenticated,	users	and
guest	users	are	mapped	to	some	specific	user	id	for
logging	and	other	purposes.

RequireBasicAuth	On|Off	(default	Off)
This	controls	whether	or	not	Basic	auth	is	required	before
passing	the	request	to	the	authorizer.	If	required,	the
authorizer	won't	be	invoked	without	a	user	id	and
password;	401	will	be	returned	for	a	request	without	that.

UserExpr	expr	(no	default)
When	Basic	authentication	isn't	provided	by	the	client
and	the	authorizer	determines	the	user,	this	expression,
evaluated	after	calling	the	authorizer,	determines	the
user.	The	expression	follows	ap_expr	syntax	and	must
resolve	to	a	string.	A	typical	use	is	to	reference	a
Variable-XXX	setting	returned	by	the	authorizer	using
an	option	like	UserExpr	"%{reqenv:XXX}".	If	this
option	is	specified	and	the	user	id	can't	be	retrieved	using
the	expression	after	a	successful	authentication,	the
request	will	be	rejected	with	a	500	error.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthnzFcgiDefineProvider	Directive

Description: Defines	a	FastCGI	application	as	a	provider	for
authentication	and/or	authorization

Syntax: AuthnzFcgiDefineProvider	type

provider-name	backend-address

Default: none

Context: server	config
Status: Extension
Module: mod_authnz_fcgi

This	directive	is	used	to	define	a	FastCGI	application	as	a	provider
for	a	particular	phase	of	authentication	or	authorization.

type
This	must	be	set	to	authn	for	authentication,	authz	for
authorization,	or	authnz	for	a	generic	FastCGI	authorizer
which	performs	both	checks.

provider-name
This	is	used	to	assign	a	name	to	the	provider	which	is	used	in
other	directives	such	as	AuthBasicProvider	and
Require.

backend-address
This	specifies	the	address	of	the	application,	in	the	form
fcgi://hostname:port/.	The	application	process(es)	must	be
managed	independently,	such	as	with	fcgistarter.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authnz_ldap

Description: Allows	an	LDAP	directory	to	be	used	to	store	the
database	for	HTTP	Basic	authentication.

Status: Extension
Module	Identifier: authnz_ldap_module
Source	File: mod_authnz_ldap.c
Compatibility: Available	in	version	2.1	and	later

Summary
This	module	allows	authentication	front-ends	such	as
mod_auth_basic	to	authenticate	users	through	an	ldap	directory.

mod_authnz_ldap	supports	the	following	features:

Known	to	support	the	OpenLDAP	SDK	(both	1.x	and	2.x),	Novell
LDAP	SDK	and	the	iPlanet	(Netscape)	SDK.
Complex	authorization	policies	can	be	implemented	by
representing	the	policy	with	LDAP	filters.
Uses	extensive	caching	of	LDAP	operations	via	mod_ldap.
Support	for	LDAP	over	SSL	(requires	the	Netscape	SDK)	or	TLS
(requires	the	OpenLDAP	2.x	SDK	or	Novell	LDAP	SDK).

When	using	mod_auth_basic,	this	module	is	invoked	via	the
AuthBasicProvider	directive	with	the	ldap	value.

Bugfix	checklist

http://www.openldap.org/
http://developer.novell.com/ndk/cldap.htm
http://www.iplanet.com/downloads/developer/
https://www.apache.org/foundation/contributing.html

httpd	changelog
Known	issues
Report	a	bug

See	also
mod_ldap

mod_auth_basic

mod_authz_user

mod_authz_groupfile

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authnz_ldap
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authnz_ldap

Contents

General	caveats
Operation

The	Authentication	Phase
The	Authorization	Phase

The	Require	Directives
Require	ldap-user
Require	ldap-group
Require	ldap-dn
Require	ldap-attribute
Require	ldap-filter

Examples
Using	TLS
Using	SSL
Exposing	Login	Information
Using	Active	Directory
Using	Microsoft	FrontPage	with	mod_authnz_ldap

How	It	Works
Caveats

General	caveats

This	module	caches	authentication	and	authorization	results
based	on	the	configuration	of	mod_ldap.	Changes	made	to	the
backing	LDAP	server	will	not	be	immediately	reflected	on	the
HTTP	Server,	including	but	not	limited	to	user
lockouts/revocations,	password	changes,	or	changes	to	group
memberships.	Consult	the	directives	in	mod_ldap	for	details	of
the	cache	tunables.

Operation

There	are	two	phases	in	granting	access	to	a	user.	The	first	phase
is	authentication,	in	which	the	mod_authnz_ldap	authentication
provider	verifies	that	the	user's	credentials	are	valid.	This	is	also
called	the	search/bind	phase.	The	second	phase	is	authorization,
in	which	mod_authnz_ldap	determines	if	the	authenticated	user
is	allowed	access	to	the	resource	in	question.	This	is	also	known
as	the	compare	phase.

mod_authnz_ldap	registers	both	an	authn_ldap	authentication
provider	and	an	authz_ldap	authorization	handler.	The	authn_ldap
authentication	provider	can	be	enabled	through	the
AuthBasicProvider	directive	using	the	ldap	value.	The
authz_ldap	handler	extends	the	Require	directive's	authorization
types	by	adding	ldap-user,	ldap-dn	and	ldap-group	values.

The	Authentication	Phase
During	the	authentication	phase,	mod_authnz_ldap	searches	for
an	entry	in	the	directory	that	matches	the	username	that	the	HTTP
client	passes.	If	a	single	unique	match	is	found,	then
mod_authnz_ldap	attempts	to	bind	to	the	directory	server	using
the	DN	of	the	entry	plus	the	password	provided	by	the	HTTP
client.	Because	it	does	a	search,	then	a	bind,	it	is	often	referred	to
as	the	search/bind	phase.	Here	are	the	steps	taken	during	the
search/bind	phase.

1.	 Generate	a	search	filter	by	combining	the	attribute	and	filter
provided	in	the	AuthLDAPURL	directive	with	the	username
passed	by	the	HTTP	client.

2.	 Search	the	directory	using	the	generated	filter.	If	the	search
does	not	return	exactly	one	entry,	deny	or	decline	access.

3.	 Fetch	the	distinguished	name	of	the	entry	retrieved	from	the
search	and	attempt	to	bind	to	the	LDAP	server	using	that	DN

and	the	password	passed	by	the	HTTP	client.	If	the	bind	is
unsuccessful,	deny	or	decline	access.

The	following	directives	are	used	during	the	search/bind	phase

AuthLDAPURL Specifies	the	LDAP	server,	the	base
DN,	the	attribute	to	use	in	the	search,
as	well	as	the	extra	search	filter	to
use.

AuthLDAPBindDN An	optional	DN	to	bind	with	during
the	search	phase.

AuthLDAPBindPassword An	optional	password	to	bind	with
during	the	search	phase.

The	Authorization	Phase
During	the	authorization	phase,	mod_authnz_ldap	attempts	to
determine	if	the	user	is	authorized	to	access	the	resource.	Many	of
these	checks	require	mod_authnz_ldap	to	do	a	compare
operation	on	the	LDAP	server.	This	is	why	this	phase	is	often
referred	to	as	the	compare	phase.	mod_authnz_ldap	accepts
the	following	Require	directives	to	determine	if	the	credentials
are	acceptable:

Grant	access	if	there	is	a	Require	ldap-user	directive,
and	the	username	in	the	directive	matches	the	username
passed	by	the	client.
Grant	access	if	there	is	a	Require	ldap-dn	directive,	and
the	DN	in	the	directive	matches	the	DN	fetched	from	the
LDAP	directory.
Grant	access	if	there	is	a	Require	ldap-group	directive,
and	the	DN	fetched	from	the	LDAP	directory	(or	the	username
passed	by	the	client)	occurs	in	the	LDAP	group	or,	potentially,
in	one	of	its	sub-groups.

Grant	access	if	there	is	a	Require	ldap-attribute
directive,	and	the	attribute	fetched	from	the	LDAP	directory
matches	the	given	value.
Grant	access	if	there	is	a	Require	ldap-filter	directive,
and	the	search	filter	successfully	finds	a	single	user	object
that	matches	the	dn	of	the	authenticated	user.
otherwise,	deny	or	decline	access

Other	Require	values	may	also	be	used	which	may	require
loading	additional	authorization	modules.

Grant	access	to	all	successfully	authenticated	users	if	there	is
a	Require	valid-user	directive.	(requires
mod_authz_user)
Grant	access	if	there	is	a	Require	group	directive,	and
mod_authz_groupfile	has	been	loaded	with	the
AuthGroupFile	directive	set.
others...

mod_authnz_ldap	uses	the	following	directives	during	the
compare	phase:

AuthLDAPURL The	attribute	specified	in	the
URL	is	used	in	compare
operations	for	the	Require
ldap-user	operation.

AuthLDAPCompareDNOnServer Determines	the	behavior	of
the	Require	ldap-dn
directive.

AuthLDAPGroupAttribute Determines	the	attribute	to
use	for	comparisons	in	the
Require	ldap-group

directive.
AuthLDAPGroupAttributeIsDN Specifies	whether	to	use	the

user	DN	or	the	username
when	doing	comparisons	for
the	Require	ldap-group
directive.

AuthLDAPMaxSubGroupDepth Determines	the	maximum
depth	of	sub-groups	that	will
be	evaluated	during
comparisons	in	the	Require
ldap-group	directive.

AuthLDAPSubGroupAttribute Determines	the	attribute	to
use	when	obtaining	sub-
group	members	of	the
current	group	during
comparisons	in	the	Require
ldap-group	directive.

AuthLDAPSubGroupClass Specifies	the	LDAP
objectClass	values	used	to
identify	if	queried	directory
objects	really	are	group
objects	(as	opposed	to	user
objects)	during	the	Require
ldap-group	directive's	sub-
group	processing.

The	Require	Directives

Apache's	Require	directives	are	used	during	the	authorization
phase	to	ensure	that	a	user	is	allowed	to	access	a	resource.
mod_authnz_ldap	extends	the	authorization	types	with	ldap-
user,	ldap-dn,	ldap-group,	ldap-attribute	and	ldap-
filter.	Other	authorization	types	may	also	be	used	but	may
require	that	additional	authorization	modules	be	loaded.

Since	v2.4.8,	expressions	are	supported	within	the	LDAP	require
directives.

Require	ldap-user
The	Require	ldap-user	directive	specifies	what	usernames
can	access	the	resource.	Once	mod_authnz_ldap	has	retrieved
a	unique	DN	from	the	directory,	it	does	an	LDAP	compare
operation	using	the	username	specified	in	the	Require	ldap-
user	to	see	if	that	username	is	part	of	the	just-fetched	LDAP
entry.	Multiple	users	can	be	granted	access	by	putting	multiple
usernames	on	the	line,	separated	with	spaces.	If	a	username	has
a	space	in	it,	then	it	must	be	surrounded	with	double	quotes.
Multiple	users	can	also	be	granted	access	by	using	multiple
Require	ldap-user	directives,	with	one	user	per	line.	For
example,	with	a	AuthLDAPURL	of	ldap://ldap/o=Example?
cn	(i.e.,	cn	is	used	for	searches),	the	following	Require	directives
could	be	used	to	restrict	access:

Require	ldap-user	"Barbara	Jenson"

Require	ldap-user	"Fred	User"

Require	ldap-user	"Joe	Manager"

Because	of	the	way	that	mod_authnz_ldap	handles	this
directive,	Barbara	Jenson	could	sign	on	as	Barbara	Jenson,	Babs
Jenson	or	any	other	cn	that	she	has	in	her	LDAP	entry.	Only	the

single	Require	ldap-user	line	is	needed	to	support	all	values
of	the	attribute	in	the	user's	entry.

If	the	uid	attribute	was	used	instead	of	the	cn	attribute	in	the	URL
above,	the	above	three	lines	could	be	condensed	to

Require	ldap-user	bjenson	fuser	jmanager

Require	ldap-group
This	directive	specifies	an	LDAP	group	whose	members	are
allowed	access.	It	takes	the	distinguished	name	of	the	LDAP
group.	Note:	Do	not	surround	the	group	name	with	quotes.	For
example,	assume	that	the	following	entry	existed	in	the	LDAP
directory:

dn:	cn=Administrators,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Barbara	Jenson,	o=Example

uniqueMember:	cn=Fred	User,	o=Example

The	following	directive	would	grant	access	to	both	Fred	and
Barbara:

Require	ldap-group	cn=Administrators,	o=Example

Members	can	also	be	found	within	sub-groups	of	a	specified	LDAP
group	if	AuthLDAPMaxSubGroupDepth	is	set	to	a	value	greater
than	0.	For	example,	assume	the	following	entries	exist	in	the
LDAP	directory:

dn:	cn=Employees,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Managers,	o=Example

uniqueMember:	cn=Administrators,	o=Example

uniqueMember:	cn=Users,	o=Example

dn:	cn=Managers,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Bob	Ellis,	o=Example

uniqueMember:	cn=Tom	Jackson,	o=Example

dn:	cn=Administrators,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Barbara	Jenson,	o=Example

uniqueMember:	cn=Fred	User,	o=Example

dn:	cn=Users,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Allan	Jefferson,	o=Example

uniqueMember:	cn=Paul	Tilley,	o=Example

uniqueMember:	cn=Temporary	Employees,	o=Example

dn:	cn=Temporary	Employees,	o=Example

objectClass:	groupOfUniqueNames

uniqueMember:	cn=Jim	Swenson,	o=Example

uniqueMember:	cn=Elliot	Rhodes,	o=Example

The	following	directives	would	allow	access	for	Bob	Ellis,	Tom
Jackson,	Barbara	Jenson,	Fred	User,	Allan	Jefferson,	and	Paul
Tilley	but	would	not	allow	access	for	Jim	Swenson,	or	Elliot
Rhodes	(since	they	are	at	a	sub-group	depth	of	2):

Require	ldap-group	cn=Employees,	o=Example

AuthLDAPMaxSubGroupDepth	1

Behavior	of	this	directive	is	modified	by	the
AuthLDAPGroupAttribute,
AuthLDAPGroupAttributeIsDN,
AuthLDAPMaxSubGroupDepth,
AuthLDAPSubGroupAttribute,	and
AuthLDAPSubGroupClass	directives.

Require	ldap-dn
The	Require	ldap-dn	directive	allows	the	administrator	to	grant

access	based	on	distinguished	names.	It	specifies	a	DN	that	must
match	for	access	to	be	granted.	If	the	distinguished	name	that	was
retrieved	from	the	directory	server	matches	the	distinguished
name	in	the	Require	ldap-dn,	then	authorization	is	granted.
Note:	do	not	surround	the	distinguished	name	with	quotes.

The	following	directive	would	grant	access	to	a	specific	DN:

Require	ldap-dn	cn=Barbara	Jenson,	o=Example

Behavior	of	this	directive	is	modified	by	the
AuthLDAPCompareDNOnServer	directive.

Require	ldap-attribute
The	Require	ldap-attribute	directive	allows	the
administrator	to	grant	access	based	on	attributes	of	the
authenticated	user	in	the	LDAP	directory.	If	the	attribute	in	the
directory	matches	the	value	given	in	the	configuration,	access	is
granted.

The	following	directive	would	grant	access	to	anyone	with	the
attribute	employeeType	=	active

Require	ldap-attribute	"employeeType=active"

Multiple	attribute/value	pairs	can	be	specified	on	the	same	line
separated	by	spaces	or	they	can	be	specified	in	multiple	Require
ldap-attribute	directives.	The	effect	of	listing	multiple
attribute/values	pairs	is	an	OR	operation.	Access	will	be	granted	if
any	of	the	listed	attribute	values	match	the	value	of	the
corresponding	attribute	in	the	user	object.	If	the	value	of	the
attribute	contains	a	space,	only	the	value	must	be	within	double

quotes.

The	following	directive	would	grant	access	to	anyone	with	the	city
attribute	equal	to	"San	Jose"	or	status	equal	to	"Active"

Require	ldap-attribute	city="San	Jose"	"status=active"

Require	ldap-filter
The	Require	ldap-filter	directive	allows	the	administrator	to
grant	access	based	on	a	complex	LDAP	search	filter.	If	the	dn
returned	by	the	filter	search	matches	the	authenticated	user	dn,
access	is	granted.

The	following	directive	would	grant	access	to	anyone	having	a	cell
phone	and	is	in	the	marketing	department

Require	ldap-filter	"&(cell=*)(department=marketing)"

The	difference	between	the	Require	ldap-filter	directive
and	the	Require	ldap-attribute	directive	is	that	ldap-
filter	performs	a	search	operation	on	the	LDAP	directory	using
the	specified	search	filter	rather	than	a	simple	attribute
comparison.	If	a	simple	attribute	comparison	is	all	that	is	required,
the	comparison	operation	performed	by	ldap-attribute	will	be
faster	than	the	search	operation	used	by	ldap-filter	especially
within	a	large	directory.

Examples

Grant	access	to	anyone	who	exists	in	the	LDAP	directory,
using	their	UID	for	searches.

AuthLDAPURL	"ldap://ldap1.example.com:389/ou=People,	o=Example?uid?sub?(objectClass=*)"

Require	valid-user

The	next	example	is	the	same	as	above;	but	with	the	fields
that	have	useful	defaults	omitted.	Also,	note	the	use	of	a
redundant	LDAP	server.

AuthLDAPURL	"ldap://ldap1.example.com	ldap2.example.com/ou=People,	o=Example"

Require	valid-user

The	next	example	is	similar	to	the	previous	one,	but	it	uses
the	common	name	instead	of	the	UID.	Note	that	this	could	be
problematical	if	multiple	people	in	the	directory	share	the
same	cn,	because	a	search	on	cn	must	return	exactly	one
entry.	That's	why	this	approach	is	not	recommended:	it's	a
better	idea	to	choose	an	attribute	that	is	guaranteed	unique	in
your	directory,	such	as	uid.

AuthLDAPURL	"ldap://ldap.example.com/ou=People,	o=Example?cn"

Require	valid-user

Grant	access	to	anybody	in	the	Administrators	group.	The
users	must	authenticate	using	their	UID.

AuthLDAPURL	ldap://ldap.example.com/o=Example?uid

Require	ldap-group	cn=Administrators,	o=Example

Grant	access	to	anybody	in	the	group	whose	name	matches
the	hostname	of	the	virtual	host.	In	this	example	an
expression	is	used	to	build	the	filter.

AuthLDAPURL	ldap://ldap.example.com/o=Example?uid

Require	ldap-group	cn=%{SERVER_NAME},	o=Example

The	next	example	assumes	that	everyone	at	Example	who
carries	an	alphanumeric	pager	will	have	an	LDAP	attribute	of
qpagePagerID.	The	example	will	grant	access	only	to
people	(authenticated	via	their	UID)	who	have	alphanumeric
pagers:

AuthLDAPURL	ldap://ldap.example.com/o=Example?uid??(qpagePagerID=*)

Require	valid-user

The	next	example	demonstrates	the	power	of	using	filters	to
accomplish	complicated	administrative	requirements.	Without
filters,	it	would	have	been	necessary	to	create	a	new	LDAP
group	and	ensure	that	the	group's	members	remain
synchronized	with	the	pager	users.	This	becomes	trivial	with
filters.	The	goal	is	to	grant	access	to	anyone	who	has	a	pager,
plus	grant	access	to	Joe	Manager,	who	doesn't	have	a	pager,
but	does	need	to	access	the	same	resource:

AuthLDAPURL	ldap://ldap.example.com/o=Example?uid??(|(qpagePagerID=*)(uid=jmanager))

Require	valid-user

This	last	may	look	confusing	at	first,	so	it	helps	to	evaluate
what	the	search	filter	will	look	like	based	on	who	connects,	as
shown	below.	If	Fred	User	connects	as	fuser,	the	filter	would

look	like

(&(|(qpagePagerID=*)(uid=jmanager))(uid=fuser))

The	above	search	will	only	succeed	if	fuser	has	a	pager.
When	Joe	Manager	connects	as	jmanager,	the	filter	looks	like

(&(|(qpagePagerID=*)(uid=jmanager))(uid=jmanager))

The	above	search	will	succeed	whether	jmanager	has	a	pager
or	not.

Using	TLS

To	use	TLS,	see	the	mod_ldap	directives
LDAPTrustedClientCert,	LDAPTrustedGlobalCert	and
LDAPTrustedMode.

An	optional	second	parameter	can	be	added	to	the	AuthLDAPURL
to	override	the	default	connection	type	set	by	LDAPTrustedMode.
This	will	allow	the	connection	established	by	an	ldap://	Url	to	be
upgraded	to	a	secure	connection	on	the	same	port.

Using	SSL

To	use	SSL,	see	the	mod_ldap	directives
LDAPTrustedClientCert,	LDAPTrustedGlobalCert	and
LDAPTrustedMode.

To	specify	a	secure	LDAP	server,	use	ldaps://	in	the
AuthLDAPURL	directive,	instead	of	ldap://.

Exposing	Login	Information

when	this	module	performs	authentication,	ldap	attributes
specified	in	the	authldapurl	directive	are	placed	in	environment
variables	with	the	prefix	"AUTHENTICATE_".

when	this	module	performs	authorization,	ldap	attributes	specified
in	the	authldapurl	directive	are	placed	in	environment	variables
with	the	prefix	"AUTHORIZE_".

If	the	attribute	field	contains	the	username,	common	name	and
telephone	number	of	a	user,	a	CGI	program	will	have	access	to
this	information	without	the	need	to	make	a	second	independent
LDAP	query	to	gather	this	additional	information.

This	has	the	potential	to	dramatically	simplify	the	coding	and
configuration	required	in	some	web	applications.

Using	Active	Directory

An	Active	Directory	installation	may	support	multiple	domains	at
the	same	time.	To	distinguish	users	between	domains,	an	identifier
called	a	User	Principle	Name	(UPN)	can	be	added	to	a	user's
entry	in	the	directory.	This	UPN	usually	takes	the	form	of	the	user's
account	name,	followed	by	the	domain	components	of	the
particular	domain,	for	example	somebody@nz.example.com.

You	may	wish	to	configure	the	mod_authnz_ldap	module	to
authenticate	users	present	in	any	of	the	domains	making	up	the
Active	Directory	forest.	In	this	way	both
somebody@nz.example.com	and	someone@au.example.com	can
be	authenticated	using	the	same	query	at	the	same	time.

To	make	this	practical,	Active	Directory	supports	the	concept	of	a
Global	Catalog.	This	Global	Catalog	is	a	read	only	copy	of
selected	attributes	of	all	the	Active	Directory	servers	within	the
Active	Directory	forest.	Querying	the	Global	Catalog	allows	all	the
domains	to	be	queried	in	a	single	query,	without	the	query
spanning	servers	over	potentially	slow	links.

If	enabled,	the	Global	Catalog	is	an	independent	directory	server
that	runs	on	port	3268	(3269	for	SSL).	To	search	for	a	user,	do	a
subtree	search	for	the	attribute	userPrincipalName,	with	an	empty
search	root,	like	so:

AuthLDAPBindDN	apache@example.com

AuthLDAPBindPassword	password

AuthLDAPURL	ldap://10.0.0.1:3268/?userPrincipalName?sub

Users	will	need	to	enter	their	User	Principal	Name	as	a	login,	in
the	form	somebody@nz.example.com.

Using	Microsoft	FrontPage	with	mod_authnz_ldap

Normally,	FrontPage	uses	FrontPage-web-specific	user/group	files
(i.e.,	the	mod_authn_file	and	mod_authz_groupfile
modules)	to	handle	all	authentication.	Unfortunately,	it	is	not
possible	to	just	change	to	LDAP	authentication	by	adding	the
proper	directives,	because	it	will	break	the	Permissions	forms	in
the	FrontPage	client,	which	attempt	to	modify	the	standard	text-
based	authorization	files.

Once	a	FrontPage	web	has	been	created,	adding	LDAP
authentication	to	it	is	a	matter	of	adding	the	following	directives	to
every	.htaccess	file	that	gets	created	in	the	web

AuthLDAPURL							"the	url"

AuthGroupFile					"mygroupfile"

Require	group					"mygroupfile"

How	It	Works
FrontPage	restricts	access	to	a	web	by	adding	the	Require
valid-user	directive	to	the	.htaccess	files.	The	Require
valid-user	directive	will	succeed	for	any	user	who	is	valid	as	far
as	LDAP	is	concerned.	This	means	that	anybody	who	has	an	entry
in	the	LDAP	directory	is	considered	a	valid	user,	whereas
FrontPage	considers	only	those	people	in	the	local	user	file	to	be
valid.	By	substituting	the	ldap-group	with	group	file	authorization,
Apache	is	allowed	to	consult	the	local	user	file	(which	is	managed
by	FrontPage)	-	instead	of	LDAP	-	when	handling	authorizing	the
user.

Once	directives	have	been	added	as	specified	above,	FrontPage
users	will	be	able	to	perform	all	management	operations	from	the
FrontPage	client.

Caveats
When	choosing	the	LDAP	URL,	the	attribute	to	use	for
authentication	should	be	something	that	will	also	be	valid	for
putting	into	a	mod_authn_file	user	file.	The	user	ID	is	ideal
for	this.
When	adding	users	via	FrontPage,	FrontPage	administrators
should	choose	usernames	that	already	exist	in	the	LDAP
directory	(for	obvious	reasons).	Also,	the	password	that	the
administrator	enters	into	the	form	is	ignored,	since	Apache	will
actually	be	authenticating	against	the	password	in	the	LDAP
database,	and	not	against	the	password	in	the	local	user	file.
This	could	cause	confusion	for	web	administrators.
Apache	must	be	compiled	with	mod_auth_basic,
mod_authn_file	and	mod_authz_groupfile	in	order	to
use	FrontPage	support.	This	is	because	Apache	will	still	use
the	mod_authz_groupfile	group	file	for	determine	the
extent	of	a	user's	access	to	the	FrontPage	web.
The	directives	must	be	put	in	the	.htaccess	files.	Attempting
to	put	them	inside	<Location>	or	<Directory>	directives
won't	work.	This	is	because	mod_authnz_ldap	has	to	be
able	to	grab	the	AuthGroupFile	directive	that	is	found	in
FrontPage	.htaccess	files	so	that	it	knows	where	to	look	for
the	valid	user	list.	If	the	mod_authnz_ldap	directives	aren't
in	the	same	.htaccess	file	as	the	FrontPage	directives,	then
the	hack	won't	work,	because	mod_authnz_ldap	will	never
get	a	chance	to	process	the	.htaccess	file,	and	won't	be
able	to	find	the	FrontPage-managed	user	file.

AuthLDAPAuthorizePrefix	Directive

Description: Specifies	the	prefix	for	environment	variables	set
during	authorization

Syntax: AuthLDAPAuthorizePrefix	prefix

Default: AuthLDAPAuthorizePrefix	AUTHORIZE_

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

This	directive	allows	you	to	override	the	prefix	used	for
environment	variables	set	during	LDAP	authorization.	If
AUTHENTICATE_	is	specified,	consumers	of	these	environment
variables	see	the	same	information	whether	LDAP	has	performed
authentication,	authorization,	or	both.

Note
No	authorization	variables	are	set	when	a	user	is	authorized	on
the	basis	of	Require	valid-user.

AuthLDAPBindAuthoritative	Directive

Description: Determines	if	other	authentication	providers	are
used	when	a	user	can	be	mapped	to	a	DN	but	the
server	cannot	successfully	bind	with	the	user's
credentials.

Syntax: AuthLDAPBindAuthoritative	off|on

Default: AuthLDAPBindAuthoritative	on

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

By	default,	subsequent	authentication	providers	are	only	queried	if
a	user	cannot	be	mapped	to	a	DN,	but	not	if	the	user	can	be
mapped	to	a	DN	and	their	password	cannot	be	verified	with	an
LDAP	bind.	If	AuthLDAPBindAuthoritative	is	set	to	off,	other
configured	authentication	modules	will	have	a	chance	to	validate
the	user	if	the	LDAP	bind	(with	the	current	user's	credentials)	fails
for	any	reason.

This	allows	users	present	in	both	LDAP	and	AuthUserFile	to
authenticate	when	the	LDAP	server	is	available	but	the	user's
account	is	locked	or	password	is	otherwise	unusable.

See	also
AuthUserFile

AuthBasicProvider

AuthLDAPBindDN	Directive

Description: Optional	DN	to	use	in	binding	to	the	LDAP	server
Syntax: AuthLDAPBindDN	distinguished-name

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

An	optional	DN	used	to	bind	to	the	server	when	searching	for
entries.	If	not	provided,	mod_authnz_ldap	will	use	an
anonymous	bind.

AuthLDAPBindPassword	Directive

Description: Password	used	in	conjunction	with	the	bind	DN
Syntax: AuthLDAPBindPassword	password

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: exec:	was	added	in	2.4.5.

A	bind	password	to	use	in	conjunction	with	the	bind	DN.	Note	that
the	bind	password	is	probably	sensitive	data,	and	should	be
properly	protected.	You	should	only	use	the	AuthLDAPBindDN
and	AuthLDAPBindPassword	if	you	absolutely	need	them	to
search	the	directory.

If	the	value	begins	with	exec:	the	resulting	command	will	be
executed	and	the	first	line	returned	to	standard	output	by	the
program	will	be	used	as	the	password.

#Password	used	as-is

AuthLDAPBindPassword	secret

#Run	/path/to/program	to	get	my	password

AuthLDAPBindPassword	exec:/path/to/program

#Run	/path/to/otherProgram	and	provide	arguments

AuthLDAPBindPassword	"exec:/path/to/otherProgram	argument1"

AuthLDAPCharsetConfig	Directive

Description: Language	to	charset	conversion	configuration	file
Syntax: AuthLDAPCharsetConfig	file-path

Context: server	config
Status: Extension
Module: mod_authnz_ldap

The	AuthLDAPCharsetConfig	directive	sets	the	location	of	the
language	to	charset	conversion	configuration	file.	File-path	is
relative	to	the	ServerRoot.	This	file	specifies	the	list	of	language
extensions	to	character	sets.	Most	administrators	use	the	provided
charset.conv	file,	which	associates	common	language
extensions	to	character	sets.

The	file	contains	lines	in	the	following	format:

Language-Extension	charset	[Language-String]	...

The	case	of	the	extension	does	not	matter.	Blank	lines,	and	lines
beginning	with	a	hash	character	(#)	are	ignored.

AuthLDAPCompareAsUser	Directive

Description: Use	the	authenticated	user's	credentials	to
perform	authorization	comparisons

Syntax: AuthLDAPCompareAsUser	on|off

Default: AuthLDAPCompareAsUser	off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

When	set,	and	mod_authnz_ldap	has	authenticated	the	user,
LDAP	comparisons	for	authorization	use	the	queried	distinguished
name	(DN)	and	HTTP	basic	authentication	password	of	the
authenticated	user	instead	of	the	servers	configured	credentials.

The	ldap-attribute,	ldap-user,	and	ldap-group	(single-level	only)
authorization	checks	use	comparisons.

This	directive	only	has	effect	on	the	comparisons	performed	during
nested	group	processing	when	AuthLDAPSearchAsUser	is	also
enabled.

This	directive	should	only	be	used	when	your	LDAP	server	doesn't
accept	anonymous	comparisons	and	you	cannot	use	a	dedicated
AuthLDAPBindDN.

See	also
AuthLDAPInitialBindAsUser

AuthLDAPSearchAsUser

AuthLDAPCompareDNOnServer	Directive

Description: Use	the	LDAP	server	to	compare	the	DNs
Syntax: AuthLDAPCompareDNOnServer	on|off

Default: AuthLDAPCompareDNOnServer	on

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

When	set,	mod_authnz_ldap	will	use	the	LDAP	server	to
compare	the	DNs.	This	is	the	only	foolproof	way	to	compare	DNs.
mod_authnz_ldap	will	search	the	directory	for	the	DN	specified
with	the	Require	dn	directive,	then,	retrieve	the	DN	and
compare	it	with	the	DN	retrieved	from	the	user	entry.	If	this
directive	is	not	set,	mod_authnz_ldap	simply	does	a	string
comparison.	It	is	possible	to	get	false	negatives	with	this
approach,	but	it	is	much	faster.	Note	the	mod_ldap	cache	can
speed	up	DN	comparison	in	most	situations.

AuthLDAPDereferenceAliases	Directive

Description: When	will	the	module	de-reference	aliases
Syntax: AuthLDAPDereferenceAliases

never|searching|finding|always

Default: AuthLDAPDereferenceAliases	always

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

This	directive	specifies	when	mod_authnz_ldap	will	de-
reference	aliases	during	LDAP	operations.	The	default	is	always.

AuthLDAPGroupAttribute	Directive

Description: LDAP	attributes	used	to	identify	the	user	members
of	groups.

Syntax: AuthLDAPGroupAttribute	attribute

Default: AuthLDAPGroupAttribute	member

uniquemember

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

This	directive	specifies	which	LDAP	attributes	are	used	to	check
for	user	members	within	groups.	Multiple	attributes	can	be	used	by
specifying	this	directive	multiple	times.	If	not	specified,	then
mod_authnz_ldap	uses	the	member	and	uniquemember
attributes.

AuthLDAPGroupAttributeIsDN	Directive

Description: Use	the	DN	of	the	client	username	when	checking
for	group	membership

Syntax: AuthLDAPGroupAttributeIsDN	on|off

Default: AuthLDAPGroupAttributeIsDN	on

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

When	set	on,	this	directive	says	to	use	the	distinguished	name	of
the	client	username	when	checking	for	group	membership.
Otherwise,	the	username	will	be	used.	For	example,	assume	that
the	client	sent	the	username	bjenson,	which	corresponds	to	the
LDAP	DN	cn=Babs	Jenson,	o=Example.	If	this	directive	is	set,
mod_authnz_ldap	will	check	if	the	group	has	cn=Babs
Jenson,	o=Example	as	a	member.	If	this	directive	is	not	set,
then	mod_authnz_ldap	will	check	if	the	group	has	bjenson	as
a	member.

AuthLDAPInitialBindAsUser	Directive

Description: Determines	if	the	server	does	the	initial	DN
lookup	using	the	basic	authentication	users'	own
username,	instead	of	anonymously	or	with	hard-
coded	credentials	for	the	server

Syntax: AuthLDAPInitialBindAsUser	off|on

Default: AuthLDAPInitialBindAsUser	off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

By	default,	the	server	either	anonymously,	or	with	a	dedicated	user
and	password,	converts	the	basic	authentication	username	into	an
LDAP	distinguished	name	(DN).	This	directive	forces	the	server	to
use	the	verbatim	username	and	password	provided	by	the
incoming	user	to	perform	the	initial	DN	search.

If	the	verbatim	username	can't	directly	bind,	but	needs	some
cosmetic	transformation,	see	AuthLDAPInitialBindPattern.

This	directive	should	only	be	used	when	your	LDAP	server	doesn't
accept	anonymous	searches	and	you	cannot	use	a	dedicated
AuthLDAPBindDN.

Not	available	with	authorization-only
This	directive	can	only	be	used	if	this	module	authenticates	the
user,	and	has	no	effect	when	this	module	is	used	exclusively	for
authorization.

See	also

AuthLDAPInitialBindPattern

AuthLDAPBindDN

AuthLDAPCompareAsUser

AuthLDAPSearchAsUser

AuthLDAPInitialBindPattern	Directive

Description: Specifies	the	transformation	of	the	basic
authentication	username	to	be	used	when
binding	to	the	LDAP	server	to	perform	a	DN
lookup

Syntax: AuthLDAPInitialBindPattern	regex

substitution

Default: AuthLDAPInitialBindPattern	(.*)	$1

(remote	username	used	verbatim)

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

If	AuthLDAPInitialBindAsUser	is	set	to	ON,	the	basic
authentication	username	will	be	transformed	according	to	the
regular	expression	and	substitution	arguments.

The	regular	expression	argument	is	compared	against	the	current
basic	authentication	username.	The	substitution	argument	may
contain	backreferences,	but	has	no	other	variable	interpolation.

This	directive	should	only	be	used	when	your	LDAP	server	doesn't
accept	anonymous	searches	and	you	cannot	use	a	dedicated
AuthLDAPBindDN.

AuthLDAPInitialBindPattern	(.+)	$1@example.com

AuthLDAPInitialBindPattern	(.+)	cn=$1,dc=example,dc=com

Not	available	with	authorization-only
This	directive	can	only	be	used	if	this	module	authenticates	the
user,	and	has	no	effect	when	this	module	is	used	exclusively	for
authorization.

debugging
The	substituted	DN	is	recorded	in	the	environment	variable
LDAP_BINDASUSER.	If	the	regular	expression	does	not	match
the	input,	the	verbatim	username	is	used.

See	also
AuthLDAPInitialBindAsUser

AuthLDAPBindDN

AuthLDAPMaxSubGroupDepth	Directive

Description: Specifies	the	maximum	sub-group	nesting	depth
that	will	be	evaluated	before	the	user	search	is
discontinued.

Syntax: AuthLDAPMaxSubGroupDepth	Number

Default: AuthLDAPMaxSubGroupDepth	10

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.0	and	later

When	this	directive	is	set	to	a	non-zero	value	X	combined	with	use
of	the	Require	ldap-group	someGroupDN	directive,	the
provided	user	credentials	will	be	searched	for	as	a	member	of	the
someGroupDN	directory	object	or	of	any	group	member	of	the
current	group	up	to	the	maximum	nesting	level	X	specified	by	this
directive.

See	the	Require	ldap-group	section	for	a	more	detailed
example.

Nested	groups	performance

When	AuthLDAPSubGroupAttribute	overlaps	with
AuthLDAPGroupAttribute	(as	it	does	by	default	and	as
required	by	common	LDAP	schemas),	uncached	searching	for
subgroups	in	large	groups	can	be	very	slow.	If	you	use	large,
non-nested	groups,	set	AuthLDAPMaxSubGroupDepth	to
zero.

AuthLDAPRemoteUserAttribute	Directive

Description: Use	the	value	of	the	attribute	returned	during	the
user	query	to	set	the	REMOTE_USER
environment	variable

Syntax: AuthLDAPRemoteUserAttribute	uid

Default: none

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

If	this	directive	is	set,	the	value	of	the	REMOTE_USER	environment
variable	will	be	set	to	the	value	of	the	attribute	specified.	Make
sure	that	this	attribute	is	included	in	the	list	of	attributes	in	the
AuthLDAPUrl	definition,	otherwise	this	directive	will	have	no	effect.
This	directive,	if	present,	takes	precedence	over
AuthLDAPRemoteUserIsDN.	This	directive	is	useful	should	you
want	people	to	log	into	a	website	using	an	email	address,	but	a
backend	application	expects	the	username	as	a	userid.

AuthLDAPRemoteUserIsDN	Directive

Description: Use	the	DN	of	the	client	username	to	set	the
REMOTE_USER	environment	variable

Syntax: AuthLDAPRemoteUserIsDN	on|off

Default: AuthLDAPRemoteUserIsDN	off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

If	this	directive	is	set	to	on,	the	value	of	the	REMOTE_USER
environment	variable	will	be	set	to	the	full	distinguished	name	of
the	authenticated	user,	rather	than	just	the	username	that	was
passed	by	the	client.	It	is	turned	off	by	default.

AuthLDAPSearchAsUser	Directive

Description: Use	the	authenticated	user's	credentials	to
perform	authorization	searches

Syntax: AuthLDAPSearchAsUser	on|off

Default: AuthLDAPSearchAsUser	off

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.6	and	later

When	set,	and	mod_authnz_ldap	has	authenticated	the	user,
LDAP	searches	for	authorization	use	the	queried	distinguished
name	(DN)	and	HTTP	basic	authentication	password	of	the
authenticated	user	instead	of	the	servers	configured	credentials.

The	ldap-filter	and	ldap-dn	authorization	checks	use	searches.

This	directive	only	has	effect	on	the	comparisons	performed	during
nested	group	processing	when	AuthLDAPCompareAsUser	is
also	enabled.

This	directive	should	only	be	used	when	your	LDAP	server	doesn't
accept	anonymous	searches	and	you	cannot	use	a	dedicated
AuthLDAPBindDN.

See	also
AuthLDAPInitialBindAsUser

AuthLDAPCompareAsUser

AuthLDAPSubGroupAttribute	Directive

Description: Specifies	the	attribute	labels,	one	value	per
directive	line,	used	to	distinguish	the	members	of
the	current	group	that	are	groups.

Syntax: AuthLDAPSubGroupAttribute	attribute

Default: AuthLDAPSubgroupAttribute	member

uniquemember

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.0	and	later

An	LDAP	group	object	may	contain	members	that	are	users	and
members	that	are	groups	(called	nested	or	sub	groups).	The
AuthLDAPSubGroupAttribute	directive	identifies	the	labels	of
group	members	and	the	AuthLDAPGroupAttribute	directive
identifies	the	labels	of	the	user	members.	Multiple	attributes	can
be	used	by	specifying	this	directive	multiple	times.	If	not	specified,
then	mod_authnz_ldap	uses	the	member	and	uniqueMember
attributes.

AuthLDAPSubGroupClass	Directive

Description: Specifies	which	LDAP	objectClass	values	identify
directory	objects	that	are	groups	during	sub-
group	processing.

Syntax: AuthLDAPSubGroupClass

LdapObjectClass

Default: AuthLDAPSubGroupClass	groupOfNames

groupOfUniqueNames

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap
Compatibility: Available	in	version	2.3.0	and	later

An	LDAP	group	object	may	contain	members	that	are	users	and
members	that	are	groups	(called	nested	or	sub	groups).	The
AuthLDAPSubGroupAttribute	directive	identifies	the	labels	of
members	that	may	be	sub-groups	of	the	current	group	(as
opposed	to	user	members).	The	AuthLDAPSubGroupClass
directive	specifies	the	LDAP	objectClass	values	used	in	verifying
that	these	potential	sub-groups	are	in	fact	group	objects.	Verified
sub-groups	can	then	be	searched	for	more	user	or	sub-group
members.	Multiple	attributes	can	be	used	by	specifying	this
directive	multiple	times.	If	not	specified,	then	mod_authnz_ldap
uses	the	groupOfNames	and	groupOfUniqueNames	values.

AuthLDAPUrl	Directive

Description: URL	specifying	the	LDAP	search	parameters
Syntax: AuthLDAPUrl	url

[NONE|SSL|TLS|STARTTLS]

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authnz_ldap

An	RFC	2255	URL	which	specifies	the	LDAP	search	parameters
to	use.	The	syntax	of	the	URL	is

ldap://host:port/basedn?attribute?scope?filter

If	you	want	to	specify	more	than	one	LDAP	URL	that	Apache
should	try	in	turn,	the	syntax	is:

AuthLDAPUrl	"ldap://ldap1.example.com	ldap2.example.com/dc=..."

Caveat:	If	you	specify	multiple	servers,	you	need	to	enclose	the
entire	URL	string	in	quotes;	otherwise	you	will	get	an	error:
"AuthLDAPURL	takes	one	argument,	URL	to	define	LDAP
connection.."	You	can	of	course	use	search	parameters	on	each	of
these.

ldap
For	regular	ldap,	use	the	string	ldap.	For	secure	LDAP,	use
ldaps	instead.	Secure	LDAP	is	only	available	if	Apache	was
linked	to	an	LDAP	library	with	SSL	support.

host:port
The	name/port	of	the	ldap	server	(defaults	to
localhost:389	for	ldap,	and	localhost:636	for

ldaps).	To	specify	multiple,	redundant	LDAP	servers,	just	list
all	servers,	separated	by	spaces.	mod_authnz_ldap	will	try
connecting	to	each	server	in	turn,	until	it	makes	a	successful
connection.	If	multiple	ldap	servers	are	specified,	then	entire
LDAP	URL	must	be	encapsulated	in	double	quotes.

Once	a	connection	has	been	made	to	a	server,	that
connection	remains	active	for	the	life	of	the	httpd	process,	or
until	the	LDAP	server	goes	down.

If	the	LDAP	server	goes	down	and	breaks	an	existing
connection,	mod_authnz_ldap	will	attempt	to	re-connect,
starting	with	the	primary	server,	and	trying	each	redundant
server	in	turn.	Note	that	this	is	different	than	a	true	round-
robin	search.

basedn
The	DN	of	the	branch	of	the	directory	where	all	searches
should	start	from.	At	the	very	least,	this	must	be	the	top	of
your	directory	tree,	but	could	also	specify	a	subtree	in	the
directory.

attribute
The	attribute	to	search	for.	Although	RFC	2255	allows	a
comma-separated	list	of	attributes,	only	the	first	attribute	will
be	used,	no	matter	how	many	are	provided.	If	no	attributes
are	provided,	the	default	is	to	use	uid.	It's	a	good	idea	to
choose	an	attribute	that	will	be	unique	across	all	entries	in	the
subtree	you	will	be	using.	All	attributes	listed	will	be	put	into
the	environment	with	an	AUTHENTICATE_	prefix	for	use	by
other	modules.

scope
The	scope	of	the	search.	Can	be	either	one	or	sub.	Note	that
a	scope	of	base	is	also	supported	by	RFC	2255,	but	is	not
supported	by	this	module.	If	the	scope	is	not	provided,	or	if

base	scope	is	specified,	the	default	is	to	use	a	scope	of	sub.

filter
A	valid	LDAP	search	filter.	If	not	provided,	defaults	to
(objectClass=*),	which	will	search	for	all	objects	in	the
tree.	Filters	are	limited	to	approximately	8000	characters	(the
definition	of	MAX_STRING_LEN	in	the	Apache	source	code).
This	should	be	more	than	sufficient	for	any	application.	In
2.4.10	and	later,	the	keyword	none	disables	the	use	of	a	filter;
this	is	required	by	some	primitive	LDAP	servers.

When	doing	searches,	the	attribute,	filter	and	username	passed	by
the	HTTP	client	are	combined	to	create	a	search	filter	that	looks
like	(&(filter)(attribute=username)).

For	example,	consider	an	URL	of
ldap://ldap.example.com/o=Example?cn?sub?

(posixid=*).	When	a	client	attempts	to	connect	using	a
username	of	Babs	Jenson,	the	resulting	search	filter	will	be	(&
(posixid=*)(cn=Babs	Jenson)).

An	optional	parameter	can	be	added	to	allow	the	LDAP	Url	to
override	the	connection	type.	This	parameter	can	be	one	of	the
following:

NONE
Establish	an	unsecure	connection	on	the	default	LDAP	port.
This	is	the	same	as	ldap://	on	port	389.

SSL
Establish	a	secure	connection	on	the	default	secure	LDAP
port.	This	is	the	same	as	ldaps://

TLS	|	STARTTLS
Establish	an	upgraded	secure	connection	on	the	default
LDAP	port.	This	connection	will	be	initiated	on	port	389	by

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

default	and	then	upgraded	to	a	secure	connection	on	the
same	port.

See	above	for	examples	of	AuthLDAPUrl	URLs.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_core

Description: Core	Authorization
Status: Base
Module	Identifier: authz_core_module
Source	File: mod_authz_core.c
Compatibility: Available	in	Apache	HTTPD	2.3	and	later

Summary
This	module	provides	core	authorization	capabilities	so	that
authenticated	users	can	be	allowed	or	denied	access	to	portions	of
the	web	site.	mod_authz_core	provides	the	functionality	to	register
various	authorization	providers.	It	is	usually	used	in	conjunction	with
an	authentication	provider	module	such	as	mod_authn_file	and	an
authorization	module	such	as	mod_authz_user.	It	also	allows	for
advanced	logic	to	be	applied	to	the	authorization	processing.

Creating	Authorization	Provider	Aliases

Extended	authorization	providers	can	be	created	within	the
configuration	file	and	assigned	an	alias	name.	The	alias	providers
can	then	be	referenced	through	the	Require	directive	in	the
same	way	as	a	base	authorization	provider.	Besides	the	ability	to
create	and	alias	an	extended	provider,	it	also	allows	the	same
extended	authorization	provider	to	be	referenced	by	multiple
locations.

Example
The	example	below	creates	two	different	ldap	authorization
provider	aliases	based	on	the	ldap-group	authorization	provider.
This	example	allows	a	single	authorization	location	to	check	group
membership	within	multiple	ldap	hosts:

<AuthzProviderAlias	ldap-group	ldap-group-alias1	cn=my-group,o=ctx>

				AuthLDAPBindDN	cn=youruser,o=ctx

				AuthLDAPBindPassword	yourpassword

				AuthLDAPURL	ldap://ldap.host/o=ctx

</AuthzProviderAlias>

<AuthzProviderAlias	ldap-group	ldap-group-alias2	cn=my-other-group,o=dev>

				AuthLDAPBindDN	cn=yourotheruser,o=dev

				AuthLDAPBindPassword	yourotherpassword

				AuthLDAPURL	ldap://other.ldap.host/o=dev?cn

</AuthzProviderAlias>

Alias	"/secure"	"/webpages/secure"

<Directory	"/webpages/secure">

				Require	all	granted

				

				AuthBasicProvider	file

				

				AuthType	Basic

				AuthName	LDAP_Protected_Place

				

				#implied	OR	operation

				Require	ldap-group-alias1

				Require	ldap-group-alias2

</Directory>

Authorization	Containers

The	authorization	container	directives	<RequireAll>,
<RequireAny>	and	<RequireNone>	may	be	combined	with
each	other	and	with	the	Require	directive	to	express	complex
authorization	logic.

The	example	below	expresses	the	following	authorization	logic.	In
order	to	access	the	resource,	the	user	must	either	be	the
superadmin	user,	or	belong	to	both	the	admins	group	and	the
Administrators	LDAP	group	and	either	belong	to	the	sales
group	or	have	the	LDAP	dept	attribute	sales.	Furthermore,	in
order	to	access	the	resource,	the	user	must	not	belong	to	either
the	temps	group	or	the	LDAP	group	Temporary	Employees.

<Directory	"/www/mydocs">

				<RequireAll>

								<RequireAny>

												Require	user	superadmin

												<RequireAll>

																Require	group	admins

																Require	ldap-group	cn=Administrators,o=Airius

																<RequireAny>

																				Require	group	sales

																				Require	ldap-attribute	dept="sales"

																</RequireAny>

												</RequireAll>

								</RequireAny>

								<RequireNone>

												Require	group	temps

												Require	ldap-group	cn=Temporary	Employees,o=Airius

								</RequireNone>

				</RequireAll>

</Directory>

The	Require	Directives

mod_authz_core	provides	some	generic	authorization	providers
which	can	be	used	with	the	Require	directive.

Require	env
The	env	provider	allows	access	to	the	server	to	be	controlled
based	on	the	existence	of	an	environment	variable.	When
Require	env	env-variable	is	specified,	then	the	request	is
allowed	access	if	the	environment	variable	env-variable	exists.
The	server	provides	the	ability	to	set	environment	variables	in	a
flexible	way	based	on	characteristics	of	the	client	request	using
the	directives	provided	by	mod_setenvif.	Therefore,	this
directive	can	be	used	to	allow	access	based	on	such	factors	as
the	clients	User-Agent	(browser	type),	Referer,	or	other	HTTP
request	header	fields.

SetEnvIf	User-Agent	^KnockKnock/2\.0	let_me_in

<Directory	"/docroot">

				Require	env	let_me_in

</Directory>

In	this	case,	browsers	with	a	user-agent	string	beginning	with
KnockKnock/2.0	will	be	allowed	access,	and	all	others	will	be
denied.

When	the	server	looks	up	a	path	via	an	internal	subrequest	such
as	looking	for	a	DirectoryIndex	or	generating	a	directory	listing
with	mod_autoindex,	per-request	environment	variables	are	not
inherited	in	the	subrequest.	Additionally,	SetEnvIf	directives	are
not	separately	evaluated	in	the	subrequest	due	to	the	API	phases
mod_setenvif	takes	action	in.

Require	all
The	all	provider	mimics	the	functionality	that	was	previously
provided	by	the	'Allow	from	all'	and	'Deny	from	all'	directives.	This
provider	can	take	one	of	two	arguments	which	are	'granted'	or
'denied'.	The	following	examples	will	grant	or	deny	access	to	all
requests.

Require	all	granted

Require	all	denied

Require	method
The	method	provider	allows	using	the	HTTP	method	in
authorization	decisions.	The	GET	and	HEAD	methods	are	treated
as	equivalent.	The	TRACE	method	is	not	available	to	this	provider,
use	TraceEnable	instead.

The	following	example	will	only	allow	GET,	HEAD,	POST,	and
OPTIONS	requests:

Require	method	GET	POST	OPTIONS

The	following	example	will	allow	GET,	HEAD,	POST,	and
OPTIONS	requests	without	authentication,	and	require	a	valid
user	for	all	other	methods:

<RequireAny>

					Require	method	GET	POST	OPTIONS

					Require	valid-user

</RequireAny>

Require	expr

The	expr	provider	allows	basing	authorization	decisions	on
arbitrary	expressions.

Require	expr	"%{TIME_HOUR}	-ge	9	&&	%{TIME_HOUR}	-le	17"

<RequireAll>

				Require	expr	"!(%{QUERY_STRING}	=~	/secret/)"

				Require	expr	"%{REQUEST_URI}	in	{	'/example.cgi',	'/other.cgi'	}"	

</RequireAll>

Require	expr	"!(%{QUERY_STRING}	=~	/secret/)	&&	%{REQUEST_URI}	in	{	'/example.cgi',	'/other.cgi'	}"

The	syntax	is	described	in	the	ap_expr	documentation.

Normally,	the	expression	is	evaluated	before	authentication.
However,	if	the	expression	returns	false	and	references	the
variable	%{REMOTE_USER},	authentication	will	be	performed	and
the	expression	will	be	re-evaluated.

AuthMerging	Directive

Description: Controls	the	manner	in	which	each	configuration
section's	authorization	logic	is	combined	with	that
of	preceding	configuration	sections.

Syntax: AuthMerging	Off	|	And	|	Or

Default: AuthMerging	Off

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

When	authorization	is	enabled,	it	is	normally	inherited	by	each
subsequent	configuration	section,	unless	a	different	set	of
authorization	directives	is	specified.	This	is	the	default	action,
which	corresponds	to	an	explicit	setting	of	AuthMerging	Off.

However,	there	may	be	circumstances	in	which	it	is	desirable	for	a
configuration	section's	authorization	to	be	combined	with	that	of	its
predecessor	while	configuration	sections	are	being	merged.	Two
options	are	available	for	this	case,	And	and	Or.

When	a	configuration	section	contains	AuthMerging	And	or
AuthMerging	Or,	its	authorization	logic	is	combined	with	that	of
the	nearest	predecessor	(according	to	the	overall	order	of
configuration	sections)	which	also	contains	authorization	logic	as	if
the	two	sections	were	jointly	contained	within	a	<RequireAll>	or
<RequireAny>	directive,	respectively.

The	setting	of	AuthMerging	is	not	inherited	outside	of	the
configuration	section	in	which	it	appears.	In	the	following
example,	only	users	belonging	to	group	alpha	may	access
/www/docs.	Users	belonging	to	either	groups	alpha	or	beta
may	access	/www/docs/ab.	However,	the	default	Off	setting

of	AuthMerging	applies	to	the	<Directory>	configuration
section	for	/www/docs/ab/gamma,	so	that	section's
authorization	directives	override	those	of	the	preceding	sections.
Thus	only	users	belong	to	the	group	gamma	may	access
/www/docs/ab/gamma.

<Directory	"/www/docs">

				AuthType	Basic

				AuthName	Documents

				AuthBasicProvider	file

				AuthUserFile	"/usr/local/apache/passwd/passwords"

				Require	group	alpha

</Directory>

<Directory	"/www/docs/ab">

				AuthMerging	Or

				Require	group	beta

</Directory>

<Directory	"/www/docs/ab/gamma">

				Require	group	gamma

</Directory>

<AuthzProviderAlias>	Directive

Description: Enclose	a	group	of	directives	that	represent	an
extension	of	a	base	authorization	provider	and
referenced	by	the	specified	alias

Syntax: <AuthzProviderAlias	baseProvider

Alias	Require-Parameters>	...

</AuthzProviderAlias>

Context: server	config
Status: Base
Module: mod_authz_core

<AuthzProviderAlias>	and	</AuthzProviderAlias>	are
used	to	enclose	a	group	of	authorization	directives	that	can	be
referenced	by	the	alias	name	using	the	directive	Require.

AuthzSendForbiddenOnFailure	Directive

Description: Send	'403	FORBIDDEN'	instead	of	'401
UNAUTHORIZED'	if	authentication	succeeds	but
authorization	fails

Syntax: AuthzSendForbiddenOnFailure	On|Off

Default: AuthzSendForbiddenOnFailure	Off

Context: directory,	.htaccess
Status: Base
Module: mod_authz_core
Compatibility: Available	in	Apache	HTTPD	2.3.11	and	later

If	authentication	succeeds	but	authorization	fails,	Apache	HTTPD
will	respond	with	an	HTTP	response	code	of	'401
UNAUTHORIZED'	by	default.	This	usually	causes	browsers	to
display	the	password	dialogue	to	the	user	again,	which	is	not
wanted	in	all	situations.	AuthzSendForbiddenOnFailure
allows	to	change	the	response	code	to	'403	FORBIDDEN'.

Security	Warning

Modifying	the	response	in	case	of	missing	authorization
weakens	the	security	of	the	password,	because	it	reveals	to	a
possible	attacker,	that	his	guessed	password	was	right.

Require	Directive

Description: Tests	whether	an	authenticated	user	is	authorized
by	an	authorization	provider.

Syntax: Require	[not]	entity-name	[entity-

name]	...

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

This	directive	tests	whether	an	authenticated	user	is	authorized
according	to	a	particular	authorization	provider	and	the	specified
restrictions.	mod_authz_core	provides	the	following	generic
authorization	providers:

Require	all	granted

Access	is	allowed	unconditionally.

Require	all	denied

Access	is	denied	unconditionally.

Require	env	env-var	[env-var]	...

Access	is	allowed	only	if	one	of	the	given	environment
variables	is	set.

Require	method	http-method	[http-method]	...

Access	is	allowed	only	for	the	given	HTTP	methods.

Require	expr	expression

Access	is	allowed	if	expression	evaluates	to	true.

Some	of	the	allowed	syntaxes	provided	by	mod_authz_user,
mod_authz_host,	and	mod_authz_groupfile	are:

Require	user	userid	[userid]	...

Only	the	named	users	can	access	the	resource.

Require	group	group-name	[group-name]	...

Only	users	in	the	named	groups	can	access	the	resource.

Require	valid-user

All	valid	users	can	access	the	resource.

Require	ip	10	172.20	192.168.2

Clients	in	the	specified	IP	address	ranges	can	access	the
resource.

Other	authorization	modules	that	implement	require	options
include	mod_authnz_ldap,	mod_authz_dbm,	mod_authz_dbd,
mod_authz_owner	and	mod_ssl.

In	most	cases,	for	a	complete	authentication	and	authorization
configuration,	Require	must	be	accompanied	by	AuthName,
AuthType	and	AuthBasicProvider	or	AuthDigestProvider
directives,	and	directives	such	as	AuthUserFile	and
AuthGroupFile	(to	define	users	and	groups)	in	order	to	work
correctly.	Example:

AuthType	Basic

AuthName	"Restricted	Resource"

AuthBasicProvider	file

AuthUserFile	"/web/users"

AuthGroupFile	"/web/groups"

Require	group	admin

Access	controls	which	are	applied	in	this	way	are	effective	for	all
methods.	This	is	what	is	normally	desired.	If	you	wish	to	apply
access	controls	only	to	specific	methods,	while	leaving	other
methods	unprotected,	then	place	the	Require	statement	into	a
<Limit>	section.

The	result	of	the	Require	directive	may	be	negated	through	the

use	of	the	not	option.	As	with	the	other	negated	authorization
directive	<RequireNone>,	when	the	Require	directive	is
negated	it	can	only	fail	or	return	a	neutral	result,	and	therefore
may	never	independently	authorize	a	request.

In	the	following	example,	all	users	in	the	alpha	and	beta	groups
are	authorized,	except	for	those	who	are	also	in	the	reject
group.

<Directory	"/www/docs">

				<RequireAll>

								Require	group	alpha	beta

								Require	not	group	reject

				</RequireAll>

</Directory>

When	multiple	Require	directives	are	used	in	a	single
configuration	section	and	are	not	contained	in	another
authorization	directive	like	<RequireAll>,	they	are	implicitly
contained	within	a	<RequireAny>	directive.	Thus	the	first	one	to
authorize	a	user	authorizes	the	entire	request,	and	subsequent
Require	directives	are	ignored.

Security	Warning

Exercise	caution	when	setting	authorization	directives	in
Location	sections	that	overlap	with	content	served	out	of	the
filesystem.	By	default,	these	configuration	sections	overwrite
authorization	configuration	in	Directory,	and	Files	sections.

The	AuthMerging	directive	can	be	used	to	control	how
authorization	configuration	sections	are	merged.

See	also

Access	control	howto
Authorization	Containers
mod_authn_core

mod_authz_host

<RequireAll>	Directive

Description: Enclose	a	group	of	authorization	directives	of
which	none	must	fail	and	at	least	one	must
succeed	for	the	enclosing	directive	to	succeed.

Syntax: <RequireAll>	...	</RequireAll>

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

<RequireAll>	and	</RequireAll>	are	used	to	enclose	a
group	of	authorization	directives	of	which	none	must	fail	and	at
least	one	must	succeed	in	order	for	the	<RequireAll>	directive
to	succeed.

If	none	of	the	directives	contained	within	the	<RequireAll>
directive	fails,	and	at	least	one	succeeds,	then	the
<RequireAll>	directive	succeeds.	If	none	succeed	and	none
fail,	then	it	returns	a	neutral	result.	In	all	other	cases,	it	fails.

See	also
Authorization	Containers
Authentication,	Authorization,	and	Access	Control

<RequireAny>	Directive

Description: Enclose	a	group	of	authorization	directives	of
which	one	must	succeed	for	the	enclosing	directive
to	succeed.

Syntax: <RequireAny>	...	</RequireAny>

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

<RequireAny>	and	</RequireAny>	are	used	to	enclose	a
group	of	authorization	directives	of	which	one	must	succeed	in
order	for	the	<RequireAny>	directive	to	succeed.

If	one	or	more	of	the	directives	contained	within	the
<RequireAny>	directive	succeed,	then	the	<RequireAny>
directive	succeeds.	If	none	succeed	and	none	fail,	then	it	returns	a
neutral	result.	In	all	other	cases,	it	fails.

Because	negated	authorization	directives	are	unable	to	return	a
successful	result,	they	can	not	significantly	influence	the	result
of	a	<RequireAny>	directive.	(At	most	they	could	cause	the
directive	to	fail	in	the	case	where	they	failed	and	all	other
directives	returned	a	neutral	value.)	Therefore	negated
authorization	directives	are	not	permitted	within	a
<RequireAny>	directive.

See	also
Authorization	Containers
Authentication,	Authorization,	and	Access	Control

Copyright	2017	The	Apache	Software	Foundation.

<RequireNone>	Directive

Description: Enclose	a	group	of	authorization	directives	of
which	none	must	succeed	for	the	enclosing
directive	to	not	fail.

Syntax: <RequireNone>	...	</RequireNone>

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_core

<RequireNone>	and	</RequireNone>	are	used	to	enclose	a
group	of	authorization	directives	of	which	none	must	succeed	in
order	for	the	<RequireNone>	directive	to	not	fail.

If	one	or	more	of	the	directives	contained	within	the
<RequireNone>	directive	succeed,	then	the	<RequireNone>
directive	fails.	In	all	other	cases,	it	returns	a	neutral	result.	Thus	as
with	the	other	negated	authorization	directive	Require	not,	it
can	never	independently	authorize	a	request	because	it	can	never
return	a	successful	result.	It	can	be	used,	however,	to	restrict	the
set	of	users	who	are	authorized	to	access	a	resource.

Because	negated	authorization	directives	are	unable	to	return	a
successful	result,	they	can	not	significantly	influence	the	result
of	a	<RequireNone>	directive.	Therefore	negated
authorization	directives	are	not	permitted	within	a
<RequireNone>	directive.

See	also
Authorization	Containers
Authentication,	Authorization,	and	Access	Control

Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_dbd

Description: Group	Authorization	and	Login	using	SQL
Status: Extension
Module	Identifier: authz_dbd_module
Source	File: mod_authz_dbd.c
Compatibility: Available	in	Apache	2.4	and	later

Summary
This	module	provides	authorization	capabilities	so	that	authenticated
users	can	be	allowed	or	denied	access	to	portions	of	the	web	site	by
group	membership.	Similar	functionality	is	provided	by
mod_authz_groupfile	and	mod_authz_dbm,	with	the	exception
that	this	module	queries	a	SQL	database	to	determine	whether	a	user
is	a	member	of	a	group.

This	module	can	also	provide	database-backed	user	login/logout
capabilities.	These	are	likely	to	be	of	most	value	when	used	in
conjunction	with	mod_authn_dbd.

This	module	relies	on	mod_dbd	to	specify	the	backend	database
driver	and	connection	parameters,	and	manage	the	database
connections.

Bugfix	checklist
httpd	changelog
Known	issues

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_dbd

Report	a	bug

See	also
Require

AuthDBDUserPWQuery

DBDriver

DBDParams

https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_dbd

The	Require	Directives

Apache's	Require	directives	are	used	during	the	authorization
phase	to	ensure	that	a	user	is	allowed	to	access	a	resource.
mod_authz_dbd	extends	the	authorization	types	with	dbd-group,
dbd-login	and	dbd-logout.

Since	v2.4.8,	expressions	are	supported	within	the	DBD	require
directives.

Require	dbd-group
This	directive	specifies	group	membership	that	is	required	for	the
user	to	gain	access.

Require	dbd-group	team

AuthzDBDQuery	"SELECT	group	FROM	authz	WHERE	user	=	%s"

Require	dbd-login
This	directive	specifies	a	query	to	be	run	indicating	the	user	has
logged	in.

Require	dbd-login

AuthzDBDQuery	"UPDATE	authn	SET	login	=	'true'	WHERE	user	=	%s"

Require	dbd-logout
This	directive	specifies	a	query	to	be	run	indicating	the	user	has
logged	out.

Require	dbd-logout

AuthzDBDQuery	"UPDATE	authn	SET	login	=	'false'	WHERE	user	=	%s"

Database	Login

In	addition	to	the	standard	authorization	function	of	checking	group
membership,	this	module	can	also	provide	server-side	user
session	management	via	database-backed	login/logout
capabilities.	Specifically,	it	can	update	a	user's	session	status	in
the	database	whenever	the	user	visits	designated	URLs	(subject
of	course	to	users	supplying	the	necessary	credentials).

This	works	by	defining	two	special	Require	types:	Require
dbd-login	and	Require	dbd-logout.	For	usage	details,	see
the	configuration	example	below.

Client	Login	integration

Some	administrators	may	wish	to	implement	client-side	session
management	that	works	in	concert	with	the	server-side
login/logout	capabilities	offered	by	this	module,	for	example,	by
setting	or	unsetting	an	HTTP	cookie	or	other	such	token	when	a
user	logs	in	or	out.

To	support	such	integration,	mod_authz_dbd	exports	an	optional
hook	that	will	be	run	whenever	a	user's	status	is	updated	in	the
database.	Other	session	management	modules	can	then	use	the
hook	to	implement	functions	that	start	and	end	client-side
sessions.

Configuration	example

#	mod_dbd	configuration

DBDriver	pgsql

DBDParams	"dbname=apacheauth	user=apache	pass=xxxxxx"

DBDMin		4

DBDKeep	8

DBDMax		20

DBDExptime	300

<Directory	"/usr/www/my.site/team-private/">

		#	mod_authn_core	and	mod_auth_basic	configuration

		#	for	mod_authn_dbd

		AuthType	Basic

		AuthName	Team

		AuthBasicProvider	dbd

		#	mod_authn_dbd	SQL	query	to	authenticate	a	logged-in	user

		AuthDBDUserPWQuery	\

				"SELECT	password	FROM	authn	WHERE	user	=	%s	AND	login	=	'true'"

		#	mod_authz_core	configuration	for	mod_authz_dbd

		Require	dbd-group	team

		#	mod_authz_dbd	configuration

		AuthzDBDQuery	"SELECT	group	FROM	authz	WHERE	user	=	%s"

		#	when	a	user	fails	to	be	authenticated	or	authorized,

		#	invite	them	to	login;	this	page	should	provide	a	link

		#	to	/team-private/login.html

		ErrorDocument	401	"/login-info.html"

		<Files	"login.html">

				#	don't	require	user	to	already	be	logged	in!

				AuthDBDUserPWQuery	"SELECT	password	FROM	authn	WHERE	user	=	%s"

				#	dbd-login	action	executes	a	statement	to	log	user	in

				Require	dbd-login

				AuthzDBDQuery	"UPDATE	authn	SET	login	=	'true'	WHERE	user	=	%s"

				#	return	user	to	referring	page	(if	any)	after

				#	successful	login

				AuthzDBDLoginToReferer	On

		</Files>

		<Files	"logout.html">

				#	dbd-logout	action	executes	a	statement	to	log	user	out

				Require	dbd-logout

				AuthzDBDQuery	"UPDATE	authn	SET	login	=	'false'	WHERE	user	=	%s"

		</Files>

</Directory>

AuthzDBDLoginToReferer	Directive

Description: Determines	whether	to	redirect	the	Client	to	the
Referring	page	on	successful	login	or	logout	if	a
Referer	request	header	is	present

Syntax: AuthzDBDLoginToReferer	On|Off

Default: AuthzDBDLoginToReferer	Off

Context: directory
Status: Extension
Module: mod_authz_dbd

In	conjunction	with	Require	dbd-login	or	Require	dbd-
logout,	this	provides	the	option	to	redirect	the	client	back	to	the
Referring	page	(the	URL	in	the	Referer	HTTP	request	header,	if
present).	When	there	is	no	Referer	header,
AuthzDBDLoginToReferer	On	will	be	ignored.

AuthzDBDQuery	Directive

Description: Specify	the	SQL	Query	for	the	required	operation
Syntax: AuthzDBDQuery	query

Context: directory
Status: Extension
Module: mod_authz_dbd

The	AuthzDBDQuery	specifies	an	SQL	query	to	run.	The	purpose
of	the	query	depends	on	the	Require	directive	in	effect.

When	used	with	a	Require	dbd-group	directive,	it
specifies	a	query	to	look	up	groups	for	the	current	user.	This
is	the	standard	functionality	of	other	authorization	modules
such	as	mod_authz_groupfile	and	mod_authz_dbm.	The
first	column	value	of	each	row	returned	by	the	query
statement	should	be	a	string	containing	a	group	name.	Zero,
one,	or	more	rows	may	be	returned.

Require	dbd-group

AuthzDBDQuery	"SELECT	group	FROM	groups	WHERE	user	=	%s"

When	used	with	a	Require	dbd-login	or	Require	dbd-
logout	directive,	it	will	never	deny	access,	but	will	instead
execute	a	SQL	statement	designed	to	log	the	user	in	or	out.
The	user	must	already	be	authenticated	with
mod_authn_dbd.

Require	dbd-login

AuthzDBDQuery	"UPDATE	authn	SET	login	=	'true'	WHERE	user	=	%s"

In	all	cases,	the	user's	ID	will	be	passed	as	a	single	string

parameter	when	the	SQL	query	is	executed.	It	may	be	referenced
within	the	query	statement	using	a	%s	format	specifier.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthzDBDRedirectQuery	Directive

Description: Specify	a	query	to	look	up	a	login	page	for	the	user
Syntax: AuthzDBDRedirectQuery	query

Context: directory
Status: Extension
Module: mod_authz_dbd

Specifies	an	optional	SQL	query	to	use	after	successful	login	(or
logout)	to	redirect	the	user	to	a	URL,	which	may	be	specific	to	the
user.	The	user's	ID	will	be	passed	as	a	single	string	parameter
when	the	SQL	query	is	executed.	It	may	be	referenced	within	the
query	statement	using	a	%s	format	specifier.

AuthzDBDRedirectQuery	"SELECT	userpage	FROM	userpages	WHERE	user	=	%s"

The	first	column	value	of	the	first	row	returned	by	the	query
statement	should	be	a	string	containing	a	URL	to	which	to	redirect
the	client.	Subsequent	rows	will	be	ignored.	If	no	rows	are
returned,	the	client	will	not	be	redirected.

Note	that	AuthzDBDLoginToReferer	takes	precedence	if	both
are	set.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_dbm

Description: Group	authorization	using	DBM	files
Status: Extension
Module	Identifier: authz_dbm_module
Source	File: mod_authz_dbm.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	provides	authorization	capabilities	so	that	authenticated
users	can	be	allowed	or	denied	access	to	portions	of	the	web	site	by
group	membership.	Similar	functionality	is	provided	by
mod_authz_groupfile.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Require

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_dbm
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_dbm

The	Require	Directives

Apache's	Require	directives	are	used	during	the	authorization
phase	to	ensure	that	a	user	is	allowed	to	access	a	resource.
mod_authz_dbm	extends	the	authorization	types	with	dbm-
group.

Since	v2.4.8,	expressions	are	supported	within	the	DBM	require
directives.

Require	dbm-group
This	directive	specifies	group	membership	that	is	required	for	the
user	to	gain	access.

Require	dbm-group	admin

Require	dbm-file-group
When	this	directive	is	specified,	the	user	must	be	a	member	of	the
group	assigned	to	the	file	being	accessed.

Require	dbm-file-group

Example	usage

Note	that	using	mod_authz_dbm	requires	you	to	require	dbm-
group	instead	of	group:

<Directory	"/foo/bar">

		AuthType	Basic

		AuthName	"Secure	Area"

		AuthBasicProvider	dbm

		AuthDBMUserFile	"site/data/users"

		AuthDBMGroupFile	"site/data/users"

		Require	dbm-group	admin

</Directory>

AuthDBMGroupFile	Directive

Description: Sets	the	name	of	the	database	file	containing	the
list	of	user	groups	for	authorization

Syntax: AuthDBMGroupFile	file-path

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authz_dbm

The	AuthDBMGroupFile	directive	sets	the	name	of	a	DBM	file
containing	the	list	of	user	groups	for	user	authorization.	File-path	is
the	absolute	path	to	the	group	file.

The	group	file	is	keyed	on	the	username.	The	value	for	a	user	is	a
comma-separated	list	of	the	groups	to	which	the	users	belongs.
There	must	be	no	whitespace	within	the	value,	and	it	must	never
contain	any	colons.

Security

Make	sure	that	the	AuthDBMGroupFile	is	stored	outside	the
document	tree	of	the	web-server.	Do	not	put	it	in	the	directory
that	it	protects.	Otherwise,	clients	will	be	able	to	download	the
AuthDBMGroupFile	unless	otherwise	protected.

Combining	Group	and	Password	DBM	files:	In	some	cases	it	is
easier	to	manage	a	single	database	which	contains	both	the
password	and	group	details	for	each	user.	This	simplifies	any
support	programs	that	need	to	be	written:	they	now	only	have	to
deal	with	writing	to	and	locking	a	single	DBM	file.	This	can	be
accomplished	by	first	setting	the	group	and	password	files	to	point
to	the	same	DBM:

AuthDBMGroupFile	"/www/userbase"

AuthDBMUserFile	"/www/userbase"

The	key	for	the	single	DBM	is	the	username.	The	value	consists	of

Encrypted	Password	:	List	of	Groups	[:	(ignored)]

The	password	section	contains	the	encrypted	password	as	before.
This	is	followed	by	a	colon	and	the	comma	separated	list	of
groups.	Other	data	may	optionally	be	left	in	the	DBM	file	after
another	colon;	it	is	ignored	by	the	authorization	module.	This	is
what	www.telescope.org	uses	for	its	combined	password	and
group	database.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthzDBMType	Directive

Description: Sets	the	type	of	database	file	that	is	used	to	store
list	of	user	groups

Syntax: AuthzDBMType

default|SDBM|GDBM|NDBM|DB

Default: AuthzDBMType	default

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_authz_dbm

Sets	the	type	of	database	file	that	is	used	to	store	the	list	of	user
groups.	The	default	database	type	is	determined	at	compile	time.
The	availability	of	other	types	of	database	files	also	depends	on
compile-time	settings.

It	is	crucial	that	whatever	program	you	use	to	create	your	group
files	is	configured	to	use	the	same	type	of	database.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_groupfile

Description: Group	authorization	using	plaintext	files
Status: Base
Module	Identifier: authz_groupfile_module
Source	File: mod_authz_groupfile.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	provides	authorization	capabilities	so	that	authenticated
users	can	be	allowed	or	denied	access	to	portions	of	the	web	site	by
group	membership.	Similar	functionality	is	provided	by
mod_authz_dbm.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Require

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_groupfile
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_groupfile

The	Require	Directives

Apache's	Require	directives	are	used	during	the	authorization
phase	to	ensure	that	a	user	is	allowed	to	access	a	resource.
mod_authz_groupfile	extends	the	authorization	types	with	group
and	group-file.

Since	v2.4.8,	expressions	are	supported	within	the	groupfile
require	directives.

Require	group
This	directive	specifies	group	membership	that	is	required	for	the
user	to	gain	access.

Require	group	admin

Require	file-group
When	this	directive	is	specified,	the	filesystem	permissions	on	the
file	being	accessed	are	consulted.	The	user	must	be	a	member	of
a	group	with	the	same	name	as	the	group	that	owns	the	file.	See
mod_authz_owner	for	more	details.

Require	file-group

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AuthGroupFile	Directive

Description: Sets	the	name	of	a	text	file	containing	the	list	of
user	groups	for	authorization

Syntax: AuthGroupFile	file-path

Context: directory,	.htaccess
Override: AuthConfig
Status: Base
Module: mod_authz_groupfile

The	AuthGroupFile	directive	sets	the	name	of	a	textual	file
containing	the	list	of	user	groups	for	user	authorization.	File-path	is
the	path	to	the	group	file.	If	it	is	not	absolute,	it	is	treated	as
relative	to	the	ServerRoot.

Each	line	of	the	group	file	contains	a	groupname	followed	by	a
colon,	followed	by	the	member	usernames	separated	by	spaces.

Example:
mygroup:	bob	joe	anne

Note	that	searching	large	text	files	is	very	inefficient;
AuthDBMGroupFile	provides	a	much	better	performance.

Security

Make	sure	that	the	AuthGroupFile	is	stored	outside	the
document	tree	of	the	web-server;	do	not	put	it	in	the	directory
that	it	protects.	Otherwise,	clients	may	be	able	to	download	the
AuthGroupFile.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_host

Description: Group	authorizations	based	on	host	(name	or	IP
address)

Status: Base
Module	Identifier: authz_host_module
Source	File: mod_authz_host.c
Compatibility: The	forward-dns	provider	was	addded	in

2.4.19

Summary
The	authorization	providers	implemented	by	mod_authz_host	are
registered	using	the	Require	directive.	The	directive	can	be
referenced	within	a	<Directory>,	<Files>,	or	<Location>
section	as	well	as	.htaccess	files	to	control	access	to	particular
parts	of	the	server.	Access	can	be	controlled	based	on	the	client
hostname	or	IP	address.

In	general,	access	restriction	directives	apply	to	all	access	methods
(GET,	PUT,	POST,	etc).	This	is	the	desired	behavior	in	most	cases.
However,	it	is	possible	to	restrict	some	methods,	while	leaving	other
methods	unrestricted,	by	enclosing	the	directives	in	a	<Limit>
section.

Bugfix	checklist
httpd	changelog
Known	issues

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_host

Report	a	bug

See	also
Authentication,	Authorization,	and	Access	Control
Require

https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_host

The	Require	Directives

Apache's	Require	directive	is	used	during	the	authorization
phase	to	ensure	that	a	user	is	allowed	or	denied	access	to	a
resource.	mod_authz_host	extends	the	authorization	types	with
ip,	host,	forward-dns	and	local.	Other	authorization	types
may	also	be	used	but	may	require	that	additional	authorization
modules	be	loaded.

These	authorization	providers	affect	which	hosts	can	access	an
area	of	the	server.	Access	can	be	controlled	by	hostname,	IP
Address,	or	IP	Address	range.

Since	v2.4.8,	expressions	are	supported	within	the	host	require
directives.

Require	ip
The	ip	provider	allows	access	to	the	server	to	be	controlled	based
on	the	IP	address	of	the	remote	client.	When	Require	ip	ip-
address	is	specified,	then	the	request	is	allowed	access	if	the	IP
address	matches.

A	full	IP	address:

Require	ip	10.1.2.3

Require	ip	192.168.1.104	192.168.1.205

An	IP	address	of	a	host	allowed	access

A	partial	IP	address:

Require	ip	10.1

Require	ip	10	172.20	192.168.2

The	first	1	to	3	bytes	of	an	IP	address,	for	subnet	restriction.

A	network/netmask	pair:

Require	ip	10.1.0.0/255.255.0.0

A	network	a.b.c.d,	and	a	netmask	w.x.y.z.	For	more	fine-grained
subnet	restriction.

A	network/nnn	CIDR	specification:

Require	ip	10.1.0.0/16

Similar	to	the	previous	case,	except	the	netmask	consists	of	nnn
high-order	1	bits.

Note	that	the	last	three	examples	above	match	exactly	the	same
set	of	hosts.

IPv6	addresses	and	IPv6	subnets	can	be	specified	as	shown
below:

Require	ip	2001:db8::a00:20ff:fea7:ccea

Require	ip	2001:db8:1:1::a

Require	ip	2001:db8:2:1::/64

Require	ip	2001:db8:3::/48

Note:	As	the	IP	addresses	are	parsed	on	startup,	expressions	are
not	evaluated	at	request	time.

Require	host
The	host	provider	allows	access	to	the	server	to	be	controlled
based	on	the	host	name	of	the	remote	client.	When	Require
host	host-name	is	specified,	then	the	request	is	allowed	access
if	the	host	name	matches.

A	(partial)	domain-name

Require	host	example.org

Require	host	.net	example.edu

Hosts	whose	names	match,	or	end	in,	this	string	are	allowed
access.	Only	complete	components	are	matched,	so	the	above
example	will	match	foo.example.org	but	it	will	not	match
fooexample.org.	This	configuration	will	cause	Apache	to
perform	a	double	reverse	DNS	lookup	on	the	client	IP	address,
regardless	of	the	setting	of	the	HostnameLookups	directive.	It	will
do	a	reverse	DNS	lookup	on	the	IP	address	to	find	the	associated
hostname,	and	then	do	a	forward	lookup	on	the	hostname	to
assure	that	it	matches	the	original	IP	address.	Only	if	the	forward
and	reverse	DNS	are	consistent	and	the	hostname	matches	will
access	be	allowed.

Require	forward-dns
The	forward-dns	provider	allows	access	to	the	server	to	be
controlled	based	on	simple	host	names.	When	Require
forward-dns	host-name	is	specified,	all	IP	addresses
corresponding	to	host-name	are	allowed	access.

In	contrast	to	the	host	provider,	this	provider	does	not	rely	on
reverse	DNS	lookups:	it	simply	queries	the	DNS	for	the	host	name
and	allows	a	client	if	its	IP	matches.	As	a	consequence,	it	will	only
work	with	host	names,	not	domain	names.	However,	as	the
reverse	DNS	is	not	used,	it	will	work	with	clients	which	use	a
dynamic	DNS	service.

Require	forward-dns	bla.example.org

A	client	the	IP	of	which	is	resolved	from	the	name

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

bla.example.org	will	be	granted	access.

The	forward-dns	provider	was	added	in	2.4.19.

Require	local
The	local	provider	allows	access	to	the	server	if	any	of	the
following	conditions	is	true:

the	client	address	matches	127.0.0.0/8
the	client	address	is	::1
both	the	client	and	the	server	address	of	the	connection	are
the	same

This	allows	a	convenient	way	to	match	connections	that	originate
from	the	local	host:

Require	local

Security	Note
If	you	are	proxying	content	to	your	server,	you	need	to	be	aware
that	the	client	address	will	be	the	address	of	your	proxy	server,	not
the	address	of	the	client,	and	so	using	the	Require	directive	in
this	context	may	not	do	what	you	mean.	See	mod_remoteip	for
one	possible	solution	to	this	problem.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_owner

Description: Authorization	based	on	file	ownership
Status: Extension
Module	Identifier: authz_owner_module
Source	File: mod_authz_owner.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	authorizes	access	to	files	by	comparing	the	userid	used
for	HTTP	authentication	(the	web	userid)	with	the	file-system	owner	or
group	of	the	requested	file.	The	supplied	username	and	password
must	be	already	properly	verified	by	an	authentication	module,	such
as	mod_auth_basic	or	mod_auth_digest.	mod_authz_owner
recognizes	two	arguments	for	the	Require	directive,	file-owner
and	file-group,	as	follows:

file-owner

The	supplied	web-username	must	match	the	system's	name	for
the	owner	of	the	file	being	requested.	That	is,	if	the	operating
system	says	the	requested	file	is	owned	by	jones,	then	the
username	used	to	access	it	through	the	web	must	be	jones	as
well.

file-group

The	name	of	the	system	group	that	owns	the	file	must	be	present
in	a	group	database,	which	is	provided,	for	example,	by
mod_authz_groupfile	or	mod_authz_dbm,	and	the	web-
username	must	be	a	member	of	that	group.	For	example,	if	the
operating	system	says	the	requested	file	is	owned	by	(system)
group	accounts,	the	group	accounts	must	appear	in	the	group
database	and	the	web-username	used	in	the	request	must	be	a
member	of	that	group.

Note

If	mod_authz_owner	is	used	in	order	to	authorize	a	resource	that
is	not	actually	present	in	the	filesystem	(i.e.	a	virtual	resource),	it
will	deny	the	access.

Particularly	it	will	never	authorize	content	negotiated	"MultiViews"
resources.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Require

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_owner
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_owner

Configuration	Examples

Require	file-owner
Consider	a	multi-user	system	running	the	Apache	Web	server,
with	each	user	having	his	or	her	own	files	in
~/public_html/private.	Assuming	that	there	is	a	single
AuthDBMUserFile	database	that	lists	all	of	their	web-
usernames,	and	that	these	usernames	match	the	system's
usernames	that	actually	own	the	files	on	the	server,	then	the
following	stanza	would	allow	only	the	user	himself	access	to	his
own	files.	User	jones	would	not	be	allowed	to	access	files	in
/home/smith/public_html/private	unless	they	were
owned	by	jones	instead	of	smith.

<Directory	"/home/*/public_html/private">

				AuthType	Basic

				AuthName	MyPrivateFiles

				AuthBasicProvider	dbm

				AuthDBMUserFile	"/usr/local/apache2/etc/.htdbm-all"

				Require	file-owner

</Directory>

Require	file-group
Consider	a	system	similar	to	the	one	described	above,	but	with
some	users	that	share	their	project	files	in
~/public_html/project-foo.	The	files	are	owned	by	the
system	group	foo	and	there	is	a	single	AuthDBMGroupFile
database	that	contains	all	of	the	web-usernames	and	their	group
membership,	i.e.	they	must	be	at	least	member	of	a	group	named
foo.	So	if	jones	and	smith	are	both	member	of	the	group	foo,
then	both	will	be	authorized	to	access	the	project-foo
directories	of	each	other.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

<Directory	"/home/*/public_html/project-foo">

				AuthType	Basic

				AuthName	"Project	Foo	Files"

				AuthBasicProvider	dbm

				

				#	combined	user/group	database

				AuthDBMUserFile		"/usr/local/apache2/etc/.htdbm-all"

				AuthDBMGroupFile	"/usr/local/apache2/etc/.htdbm-all"

				

				Satisfy	All

				Require	file-group

</Directory>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_authz_user

Description: User	Authorization
Status: Base
Module	Identifier: authz_user_module
Source	File: mod_authz_user.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	provides	authorization	capabilities	so	that	authenticated
users	can	be	allowed	or	denied	access	to	portions	of	the	web	site.
mod_authz_user	grants	access	if	the	authenticated	user	is	listed	in
a	Require	user	directive.	Alternatively	Require	valid-user	can
be	used	to	grant	access	to	all	successfully	authenticated	users.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Require

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_authz_user
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_authz_user

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	Require	Directives

Apache's	Require	directives	are	used	during	the	authorization
phase	to	ensure	that	a	user	is	allowed	to	access	a	resource.
mod_authz_user	extends	the	authorization	types	with	user	and
valid-user.

Since	v2.4.8,	expressions	are	supported	within	the	user	require
directives.

Require	user
This	directive	specifies	a	list	of	users	that	are	allowed	to	gain
access.

Require	user	john	paul	george	ringo

Require	valid-user
When	this	directive	is	specified,	any	successfully	authenticated
user	will	be	allowed	to	gain	access.

Require	valid-user

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_autoindex

Description: Generates	directory	indexes,	automatically,
similar	to	the	Unix	ls	command	or	the	Win32
dir	shell	command

Status: Base
Module	Identifier: autoindex_module
Source	File: mod_autoindex.c

Summary
The	index	of	a	directory	can	come	from	one	of	two	sources:

A	file	located	in	that	directory,	typically	called	index.html.	The
DirectoryIndex	directive	sets	the	name	of	the	file	or	files	to	be
used.	This	is	controlled	by	mod_dir.
Otherwise,	a	listing	generated	by	the	server.	The	other	directives
control	the	format	of	this	listing.	The	AddIcon,
AddIconByEncoding	and	AddIconByType	are	used	to	set	a
list	of	icons	to	display	for	various	file	types;	for	each	file	listed,	the
first	icon	listed	that	matches	the	file	is	displayed.	These	are
controlled	by	mod_autoindex.

The	two	functions	are	separated	so	that	you	can	completely	remove
(or	replace)	automatic	index	generation	should	you	want	to.

Automatic	index	generation	is	enabled	with	using	Options
+Indexes.	See	the	Options	directive	for	more	details.

If	the	FancyIndexing	option	is	given	with	the	IndexOptions
directive,	the	column	headers	are	links	that	control	the	order	of	the
display.	If	you	select	a	header	link,	the	listing	will	be	regenerated,
sorted	by	the	values	in	that	column.	Selecting	the	same	header
repeatedly	toggles	between	ascending	and	descending	order.	These

column	header	links	are	suppressed	with	the	IndexOptions
directive's	SuppressColumnSorting	option.

Note	that	when	the	display	is	sorted	by	"Size",	it's	the	actual	size	of
the	files	that's	used,	not	the	displayed	value	-	so	a	1010-byte	file	will
always	be	displayed	before	a	1011-byte	file	(if	in	ascending	order)
even	though	they	both	are	shown	as	"1K".

Autoindex	Request	Query	Arguments

Various	query	string	arguments	are	available	to	give	the	client
some	control	over	the	ordering	of	the	directory	listing,	as	well	as
what	files	are	listed.	If	you	do	not	wish	to	give	the	client	this
control,	the	IndexOptions	IgnoreClient	option	disables	that
functionality.

The	column	sorting	headers	themselves	are	self-referencing
hyperlinks	that	add	the	sort	query	options	shown	below.	Any
option	below	may	be	added	to	any	request	for	the	directory
resource.

C=N	sorts	the	directory	by	file	name
C=M	sorts	the	directory	by	last-modified	date,	then	file	name
C=S	sorts	the	directory	by	size,	then	file	name
C=D	sorts	the	directory	by	description,	then	file	name

O=A	sorts	the	listing	in	Ascending	Order
O=D	sorts	the	listing	in	Descending	Order

F=0	formats	the	listing	as	a	simple	list	(not	FancyIndexed)
F=1	formats	the	listing	as	a	FancyIndexed	list
F=2	formats	the	listing	as	an	HTMLTable	FancyIndexed	list

V=0	disables	version	sorting
V=1	enables	version	sorting

P=pattern	lists	only	files	matching	the	given	pattern

Note	that	the	'P'attern	query	argument	is	tested	after	the	usual
IndexIgnore	directives	are	processed,	and	all	file	names	are	still
subjected	to	the	same	criteria	as	any	other	autoindex	listing.	The
Query	Arguments	parser	in	mod_autoindex	will	stop	abruptly
when	an	unrecognized	option	is	encountered.	The	Query
Arguments	must	be	well	formed,	according	to	the	table	above.

The	simple	example	below,	which	can	be	clipped	and	saved	in	a
header.html	file,	illustrates	these	query	options.	Note	that	the
unknown	"X"	argument,	for	the	submit	button,	is	listed	last	to
assure	the	arguments	are	all	parsed	before	mod_autoindex
encounters	the	X=Go	input.

<form	action=""	method="get">

Show	me	a	<select	name="F">

<option	value="0">	Plain	list</option>

<option	value="1"	selected="selected">	Fancy	list</option>

<option	value="2">	Table	list</option>

</select>

Sorted	by	<select	name="C">

<option	value="N"	selected="selected">	Name</option>

<option	value="M">	Date	Modified</option>

<option	value="S">	Size</option>

<option	value="D">	Description</option>

</select>

<select	name="O">

<option	value="A"	selected="selected">	Ascending</option>

<option	value="D">	Descending</option>

</select>

<select	name="V">

<option	value="0"	selected="selected">	in	Normal

order</option>

<option	value="1">	in	Version	order</option>

</select>

Matching	<input	type="text"	name="P"	value="*"	/>

<input	type="submit"	name="X"	value="Go"	/>

</form>

AddAlt	Directive

Description: Alternate	text	to	display	for	a	file,	instead	of	an	icon
selected	by	filename

Syntax: AddAlt	string	file	[file]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

AddAlt	provides	the	alternate	text	to	display	for	a	file,	instead	of
an	icon,	for	FancyIndexing.	File	is	a	file	extension,	partial
filename,	wild-card	expression	or	full	filename	for	files	to	describe.
If	String	contains	any	whitespace,	you	have	to	enclose	it	in	quotes
("	or	').	This	alternate	text	is	displayed	if	the	client	is	image-
incapable,	has	image	loading	disabled,	or	fails	to	retrieve	the	icon.

AddAlt	"PDF	file"	*.pdf

AddAlt	Compressed	*.gz	*.zip	*.Z

AddAltByEncoding	Directive

Description: Alternate	text	to	display	for	a	file	instead	of	an	icon
selected	by	MIME-encoding

Syntax: AddAltByEncoding	string	MIME-encoding

[MIME-encoding]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

AddAltByEncoding	provides	the	alternate	text	to	display	for	a
file,	instead	of	an	icon,	for	FancyIndexing.	MIME-encoding	is	a
valid	content-encoding,	such	as	x-compress.	If	String	contains
any	whitespace,	you	have	to	enclose	it	in	quotes	("	or	').	This
alternate	text	is	displayed	if	the	client	is	image-incapable,	has
image	loading	disabled,	or	fails	to	retrieve	the	icon.

AddAltByEncoding	gzip	x-gzip

AddAltByType	Directive

Description: Alternate	text	to	display	for	a	file,	instead	of	an	icon
selected	by	MIME	content-type

Syntax: AddAltByType	string	MIME-type	[MIME-

type]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

AddAltByType	sets	the	alternate	text	to	display	for	a	file,	instead
of	an	icon,	for	FancyIndexing.	MIME-type	is	a	valid	content-
type,	such	as	text/html.	If	String	contains	any	whitespace,	you
have	to	enclose	it	in	quotes	("	or	').	This	alternate	text	is
displayed	if	the	client	is	image-incapable,	has	image	loading
disabled,	or	fails	to	retrieve	the	icon.

AddAltByType	'plain	text'	text/plain

AddDescription	Directive

Description: Description	to	display	for	a	file
Syntax: AddDescription	string	file	[file]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This	sets	the	description	to	display	for	a	file,	for	FancyIndexing.
File	is	a	file	extension,	partial	filename,	wild-card	expression	or	full
filename	for	files	to	describe.	String	is	enclosed	in	double	quotes
(").

AddDescription	"The	planet	Mars"	mars.gif

AddDescription	"My	friend	Marshall"	friends/mars.gif

The	typical,	default	description	field	is	23	bytes	wide.	6	more	bytes
are	added	by	the	IndexOptions	SuppressIcon	option,	7
bytes	are	added	by	the	IndexOptions	SuppressSize	option,
and	19	bytes	are	added	by	the	IndexOptions
SuppressLastModified	option.	Therefore,	the	widest	default
the	description	column	is	ever	assigned	is	55	bytes.

Since	the	File	argument	may	be	a	partial	file	name,	please
remember	that	a	too-short	partial	filename	may	match	unintended
files.	For	example,	le.html	will	match	the	file	le.html	but	will
also	match	the	file	example.html.	In	the	event	that	there	may	be
ambiguity,	use	as	complete	a	filename	as	you	can,	but	keep	in
mind	that	the	first	match	encountered	will	be	used,	and	order	your
list	of	AddDescription	directives	accordingly.

See	the	DescriptionWidth	IndexOptions	keyword	for	details	on

overriding	the	size	of	this	column,	or	allowing	descriptions	of
unlimited	length.

Caution

Descriptive	text	defined	with	AddDescription	may	contain
HTML	markup,	such	as	tags	and	character	entities.	If	the	width
of	the	description	column	should	happen	to	truncate	a	tagged
element	(such	as	cutting	off	the	end	of	a	bolded	phrase),	the
results	may	affect	the	rest	of	the	directory	listing.

Arguments	with	path	information

Absolute	paths	are	not	currently	supported	and	do	not	match
anything	at	runtime.	Arguments	with	relative	path	information,
which	would	normally	only	be	used	in	htaccess	context,	are
implicitly	prefixed	with	'*/'	to	avoid	matching	partial	directory
names.

AddIcon	Directive

Description: Icon	to	display	for	a	file	selected	by	name
Syntax: AddIcon	icon	name	[name]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This	sets	the	icon	to	display	next	to	a	file	ending	in	name	for
FancyIndexing.	Icon	is	either	a	(%-escaped)	relative	URL	to	the
icon,	a	fully	qualified	remote	URL,	or	of	the	format
(alttext,url)	where	alttext	is	the	text	tag	given	for	an	icon	for
non-graphical	browsers.

Name	is	either	^^DIRECTORY^^	for	directories,	^^BLANKICON^^
for	blank	lines	(to	format	the	list	correctly),	a	file	extension,	a
wildcard	expression,	a	partial	filename	or	a	complete	filename.

^^BLANKICON^^	is	only	used	for	formatting,	and	so	is
unnecessary	if	you're	using	IndexOptions	HTMLTable.

#Examples

AddIcon	(IMG,/icons/image.png)	.gif	.jpg	.png

AddIcon	/icons/dir.png	^^DIRECTORY^^

AddIcon	/icons/backup.png	*~

AddIconByType	should	be	used	in	preference	to	AddIcon,	when
possible.

AddIconByEncoding	Directive

Description: Icon	to	display	next	to	files	selected	by	MIME
content-encoding

Syntax: AddIconByEncoding	icon	MIME-encoding

[MIME-encoding]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This	sets	the	icon	to	display	next	to	files	with	FancyIndexing.
Icon	is	either	a	(%-escaped)	relative	URL	to	the	icon,	a	fully
qualified	remote	URL,	or	of	the	format	(alttext,url)	where
alttext	is	the	text	tag	given	for	an	icon	for	non-graphical	browsers.

MIME-encoding	is	a	valid	content-encoding,	such	as	x-
compress.

AddIconByEncoding	/icons/compress.png	x-compress

AddIconByType	Directive

Description: Icon	to	display	next	to	files	selected	by	MIME
content-type

Syntax: AddIconByType	icon	MIME-type	[MIME-

type]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

This	sets	the	icon	to	display	next	to	files	of	type	MIME-type	for
FancyIndexing.	Icon	is	either	a	(%-escaped)	relative	URL	to	the
icon,	a	fully	qualified	remote	URL,	or	of	the	format
(alttext,url)	where	alttext	is	the	text	tag	given	for	an	icon	for
non-graphical	browsers.

MIME-type	is	a	wildcard	expression	matching	required	the	mime
types.

AddIconByType	(IMG,/icons/image.png)	image/*

DefaultIcon	Directive

Description: Icon	to	display	for	files	when	no	specific	icon	is
configured

Syntax: DefaultIcon	url-path

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The	DefaultIcon	directive	sets	the	icon	to	display	for	files	when
no	specific	icon	is	known,	for	FancyIndexing.	Url-path	is	a	(%-
escaped)	relative	URL	to	the	icon,	or	a	fully	qualified	remote	URL.

DefaultIcon	/icon/unknown.png

HeaderName	Directive

Description: Name	of	the	file	that	will	be	inserted	at	the	top	of
the	index	listing

Syntax: HeaderName	filename

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The	HeaderName	directive	sets	the	name	of	the	file	that	will	be
inserted	at	the	top	of	the	index	listing.	Filename	is	the	name	of	the
file	to	include.

HeaderName	HEADER.html

Both	HeaderName	and	ReadmeName	now	treat	Filename	as	a
URI	path	relative	to	the	one	used	to	access	the	directory	being
indexed.	If	Filename	begins	with	a	slash,	it	will	be	taken	to	be
relative	to	the	DocumentRoot.

HeaderName	/include/HEADER.html

Filename	must	resolve	to	a	document	with	a	major	content	type
of	text/*	(e.g.,	text/html,	text/plain,	etc.).	This	means
that	filename	may	refer	to	a	CGI	script	if	the	script's	actual	file
type	(as	opposed	to	its	output)	is	marked	as	text/html	such
as	with	a	directive	like:

AddType	text/html	.cgi

Content	negotiation	will	be	performed	if	Options	MultiViews
is	in	effect.	If	filename	resolves	to	a	static	text/html
document	(not	a	CGI	script)	and	either	one	of	the	options

Includes	or	IncludesNOEXEC	is	enabled,	the	file	will	be
processed	for	server-side	includes	(see	the	mod_include
documentation).

If	the	file	specified	by	HeaderName	contains	the	beginnings	of	an
HTML	document	(<html>,	<head>,	etc.)	then	you	will	probably
want	to	set	IndexOptions	+SuppressHTMLPreamble,	so	that
these	tags	are	not	repeated.

See	also
ReadmeName

IndexHeadInsert	Directive

Description: Inserts	text	in	the	HEAD	section	of	an	index	page.
Syntax: IndexHeadInsert	"markup	..."

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The	IndexHeadInsert	directive	specifies	a	string	to	insert	in	the
<head>	section	of	the	HTML	generated	for	the	index	page.

IndexHeadInsert	"<link	rel=\"sitemap\"	href=\"/sitemap.html\">"

IndexIgnore	Directive

Description: Adds	to	the	list	of	files	to	hide	when	listing	a
directory

Syntax: IndexIgnore	file	[file]	...

Default: IndexIgnore	"."

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The	IndexIgnore	directive	adds	to	the	list	of	files	to	hide	when
listing	a	directory.	File	is	a	shell-style	wildcard	expression	or	full
filename.	Multiple	IndexIgnore	directives	add	to	the	list,	rather	than
replacing	the	list	of	ignored	files.	By	default,	the	list	contains	.	(the
current	directory).

IndexIgnore	.??*	*~	*#	HEADER*	README*	RCS	CVS	*,v	*,t

Regular	Expressions

This	directive	does	not	currently	work	in	configuration	sections
that	have	regular	expression	arguments,	such	as
<DirectoryMatch>

IndexIgnoreReset	Directive

Description: Empties	the	list	of	files	to	hide	when	listing	a
directory

Syntax: IndexIgnoreReset	ON|OFF

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex
Compatibility: 2.3.10	and	later

The	IndexIgnoreReset	directive	removes	any	files	ignored	by
IndexIgnore	otherwise	inherited	from	other	configuration
sections.

<Directory	"/var/www">

				IndexIgnore	*.bak	.??*	*~	*#	HEADER*	README*	RCS	CVS	*,v	*,t

</Directory>

<Directory	"/var/www/backups">

				IndexIgnoreReset	ON

				IndexIgnore	.??*	*#	HEADER*	README*	RCS	CVS	*,v	*,t

</Directory>

Review	the	default	configuration	for	a	list	of	patterns	that	you
might	want	to	explicitly	ignore	after	using	this	directive.

IndexOptions	Directive

Description: Various	configuration	settings	for	directory	indexing
Syntax: IndexOptions	[+|-]option	[[+|-

]option]	...

Default: By	default,	no	options	are	enabled.

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The	IndexOptions	directive	specifies	the	behavior	of	the
directory	indexing.	Option	can	be	one	of

AddAltClass
Adds	an	additional	CSS	class	declaration	to	each	row	of	the
directory	listing	table	when	IndexOptions	HTMLTable	is	in
effect	and	an	IndexStyleSheet	is	defined.	Rather	than	the
standard	even	and	odd	classes	that	would	otherwise	be
applied	to	each	row	of	the	table,	a	class	of	even-ALT	or
odd-ALT	where	ALT	is	either	the	standard	alt	text	associated
with	the	file	style	(eg.	snd,	txt,	img,	etc)	or	the	alt	text	defined
by	one	of	the	various	AddAlt*	directives.

Charset=character-set	(Apache	HTTP	Server	2.0.61	and	later)
The	Charset	keyword	allows	you	to	specify	the	character	set
of	the	generated	page.	The	default	is	UTF-8	on	Windows	and
Mac	OS	X,	and	ISO-8859-1	elsewhere.	(It	depends	on
whether	the	underlying	file	system	uses	Unicode	filenames	or
not.)

IndexOptions	Charset=UTF-8

DescriptionWidth=[n	|	*]

The	DescriptionWidth	keyword	allows	you	to	specify	the
width	of	the	description	column	in	characters.

-DescriptionWidth	(or	unset)	allows	mod_autoindex	to
calculate	the	best	width.

DescriptionWidth=n	fixes	the	column	width	to	n	bytes
wide.
DescriptionWidth=*	grows	the	column	to	the	width
necessary	to	accommodate	the	longest	description	string.
See	the	section	on	AddDescription	for	dangers	inherent
in	truncating	descriptions.

FancyIndexing
This	turns	on	fancy	indexing	of	directories.

FoldersFirst
If	this	option	is	enabled,	subdirectory	listings	will	always
appear	first,	followed	by	normal	files	in	the	directory.	The
listing	is	basically	broken	into	two	components,	the	files	and
the	subdirectories,	and	each	is	sorted	separately	and	then
displayed	subdirectories-first.	For	instance,	if	the	sort	order	is
descending	by	name,	and	FoldersFirst	is	enabled,
subdirectory	Zed	will	be	listed	before	subdirectory	Beta,
which	will	be	listed	before	normal	files	Gamma	and	Alpha.
This	option	only	has	an	effect	if	FancyIndexing	is	also
enabled.

HTMLTable
This	option	with	FancyIndexing	constructs	a	simple	table
for	the	fancy	directory	listing.	It	is	necessary	for	utf-8	enabled
platforms	or	if	file	names	or	description	text	will	alternate
between	left-to-right	and	right-to-left	reading	order.

IconsAreLinks
This	makes	the	icons	part	of	the	anchor	for	the	filename,	for
fancy	indexing.

IconHeight[=pixels]
Presence	of	this	option,	when	used	with	IconWidth,	will
cause	the	server	to	include	height	and	width	attributes	in
the	img	tag	for	the	file	icon.	This	allows	browser	to
precalculate	the	page	layout	without	having	to	wait	until	all	the
images	have	been	loaded.	If	no	value	is	given	for	the	option,	it
defaults	to	the	standard	height	of	the	icons	supplied	with	the
Apache	httpd	software.	This	option	only	has	an	effect	if
FancyIndexing	is	also	enabled.

IconWidth[=pixels]
Presence	of	this	option,	when	used	with	IconHeight,	will
cause	the	server	to	include	height	and	width	attributes	in
the	img	tag	for	the	file	icon.	This	allows	browser	to
precalculate	the	page	layout	without	having	to	wait	until	all	the
images	have	been	loaded.	If	no	value	is	given	for	the	option,	it
defaults	to	the	standard	width	of	the	icons	supplied	with	the
Apache	httpd	software.

IgnoreCase
If	this	option	is	enabled,	names	are	sorted	in	a	case-
insensitive	manner.	For	instance,	if	the	sort	order	is	ascending
by	name,	and	IgnoreCase	is	enabled,	file	Zeta	will	be	listed
after	file	alfa	(Note:	file	GAMMA	will	always	be	listed	before
file	gamma).

IgnoreClient
This	option	causes	mod_autoindex	to	ignore	all	query
variables	from	the	client,	including	sort	order	(implies
SuppressColumnSorting.)

NameWidth=[n	|	*]
The	NameWidth	keyword	allows	you	to	specify	the	width	of
the	filename	column	in	bytes.
-NameWidth	(or	unset)	allows	mod_autoindex	to	calculate
the	best	width,	but	only	up	to	20	bytes	wide.

NameWidth=n	fixes	the	column	width	to	n	bytes	wide.
NameWidth=*	grows	the	column	to	the	necessary	width.

ScanHTMLTitles
This	enables	the	extraction	of	the	title	from	HTML	documents
for	fancy	indexing.	If	the	file	does	not	have	a	description	given
by	AddDescription	then	httpd	will	read	the	document	for
the	value	of	the	title	element.	This	is	CPU	and	disk
intensive.

ShowForbidden
If	specified,	Apache	httpd	will	show	files	normally	hidden
because	the	subrequest	returned	HTTP_UNAUTHORIZED	or
HTTP_FORBIDDEN

SuppressColumnSorting
If	specified,	Apache	httpd	will	not	make	the	column	headings
in	a	FancyIndexed	directory	listing	into	links	for	sorting.	The
default	behavior	is	for	them	to	be	links;	selecting	the	column
heading	will	sort	the	directory	listing	by	the	values	in	that
column.	However,	query	string	arguments	which	are
appended	to	the	URL	will	still	be	honored.	That	behavior	is
controlled	by	IndexOptions	IgnoreClient.

SuppressDescription
This	will	suppress	the	file	description	in	fancy	indexing
listings.	By	default,	no	file	descriptions	are	defined,	and	so	the
use	of	this	option	will	regain	23	characters	of	screen	space	to
use	for	something	else.	See	AddDescription	for
information	about	setting	the	file	description.	See	also	the
DescriptionWidth	index	option	to	limit	the	size	of	the
description	column.	This	option	only	has	an	effect	if
FancyIndexing	is	also	enabled.

SuppressHTMLPreamble
If	the	directory	actually	contains	a	file	specified	by	the

HeaderName	directive,	the	module	usually	includes	the
contents	of	the	file	after	a	standard	HTML	preamble	(<html>,
<head>,	et	cetera).	The	SuppressHTMLPreamble	option
disables	this	behaviour,	causing	the	module	to	start	the
display	with	the	header	file	contents.	The	header	file	must
contain	appropriate	HTML	instructions	in	this	case.	If	there	is
no	header	file,	the	preamble	is	generated	as	usual.	If	you	also
specify	a	ReadmeName,	and	if	that	file	exists,	The	closing
</body></html>	tags	are	also	ommitted	from	the	output,	under
the	assumption	that	you'll	likely	put	those	closing	tags	in	that
file.

SuppressIcon
This	will	suppress	the	icon	in	fancy	indexing	listings.
Combining	both	SuppressIcon	and	SuppressRules	yields
proper	HTML	3.2	output,	which	by	the	final	specification
prohibits	img	and	hr	elements	from	the	pre	block	(used	to
format	FancyIndexed	listings.)

SuppressLastModified
This	will	suppress	the	display	of	the	last	modification	date,	in
fancy	indexing	listings.	This	option	only	has	an	effect	if
FancyIndexing	is	also	enabled.

SuppressRules
This	will	suppress	the	horizontal	rule	lines	(hr	elements)	in
directory	listings.	Combining	both	SuppressIcon	and
SuppressRules	yields	proper	HTML	3.2	output,	which	by
the	final	specification	prohibits	img	and	hr	elements	from	the
pre	block	(used	to	format	FancyIndexed	listings.)	This
option	only	has	an	effect	if	FancyIndexing	is	also
enabled.

SuppressSize
This	will	suppress	the	file	size	in	fancy	indexing	listings.	This
option	only	has	an	effect	if	FancyIndexing	is	also

enabled.

TrackModified
This	returns	the	Last-Modified	and	ETag	values	for	the
listed	directory	in	the	HTTP	header.	It	is	only	valid	if	the
operating	system	and	file	system	return	appropriate	stat()
results.	Some	Unix	systems	do	so,	as	do	OS2's	JFS	and
Win32's	NTFS	volumes.	OS2	and	Win32	FAT	volumes,	for
example,	do	not.	Once	this	feature	is	enabled,	the	client	or
proxy	can	track	changes	to	the	list	of	files	when	they	perform
a	HEAD	request.	Note	some	operating	systems	correctly	track
new	and	removed	files,	but	do	not	track	changes	for	sizes	or
dates	of	the	files	within	the	directory.	Changes	to	the	size	or
date	stamp	of	an	existing	file	will	not	update	the	Last-
Modified	header	on	all	Unix	platforms.	If	this	is	a	concern,
leave	this	option	disabled.

Type=MIME	content-type	(Apache	HTTP	Server	2.0.61	and
later)

The	Type	keyword	allows	you	to	specify	the	MIME	content-
type	of	the	generated	page.	The	default	is	text/html.

IndexOptions	Type=text/plain

UseOldDateFormat	(Apache	HTTP	Server	2.4.26	and	later)
The	date	format	used	for	the	Last	Modified	field	was
inadvertently	changed	to	"%Y-%m-%d	%H:%M"	from	"%d-
%b-%Y	%H:%M"	in	2.4.0.	Setting	this	option	restores	the	date
format	from	2.2	and	earlier.

VersionSort	(Apache	HTTP	Server	2.0a3	and	later)
The	VersionSort	keyword	causes	files	containing	version
numbers	to	sort	in	a	natural	way.	Strings	are	sorted	as	usual,
except	that	substrings	of	digits	in	the	name	and	description
are	compared	according	to	their	numeric	value.

Example:
foo-1.7

foo-1.7.2

foo-1.7.12

foo-1.8.2

foo-1.8.2a

foo-1.12

If	the	number	starts	with	a	zero,	then	it	is	considered	to	be	a
fraction:

foo-1.001

foo-1.002

foo-1.030

foo-1.04

XHTML	(Apache	HTTP	Server	2.0.49	and	later)
The	XHTML	keyword	forces	mod_autoindex	to	emit	XHTML
1.0	code	instead	of	HTML	3.2.	This	option	only	has	an
effect	if	FancyIndexing	is	also	enabled.

Incremental	IndexOptions
Be	aware	of	how	multiple	IndexOptions	are	handled.

Multiple	IndexOptions	directives	for	a	single	directory
are	now	merged	together.	The	result	of:

<Directory	"/foo">

				IndexOptions	HTMLTable

				IndexOptions	SuppressColumnsorting

</Directory>

will	be	the	equivalent	of

IndexOptions	HTMLTable	SuppressColumnsorting

The	addition	of	the	incremental	syntax	(i.e.,	prefixing
keywords	with	+	or	-).

Whenever	a	'+'	or	'-'	prefixed	keyword	is	encountered,	it	is
applied	to	the	current	IndexOptions	settings	(which	may
have	been	inherited	from	an	upper-level	directory).	However,
whenever	an	unprefixed	keyword	is	processed,	it	clears	all
inherited	options	and	any	incremental	settings	encountered	so
far.	Consider	the	following	example:

IndexOptions	+ScanHTMLTitles	-IconsAreLinks	FancyIndexing

IndexOptions	+SuppressSize

The	net	effect	is	equivalent	to	IndexOptions
FancyIndexing	+SuppressSize,	because	the	unprefixed
FancyIndexing	discarded	the	incremental	keywords	before
it,	but	allowed	them	to	start	accumulating	again	afterward.

To	unconditionally	set	the	IndexOptions	for	a	particular
directory,	clearing	the	inherited	settings,	specify	keywords
without	any	+	or	-	prefixes.

IndexOrderDefault	Directive

Description: Sets	the	default	ordering	of	the	directory	index
Syntax: IndexOrderDefault

Ascending|Descending

Name|Date|Size|Description

Default: IndexOrderDefault	Ascending	Name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The	IndexOrderDefault	directive	is	used	in	combination	with
the	FancyIndexing	index	option.	By	default,	fancyindexed
directory	listings	are	displayed	in	ascending	order	by	filename;	the
IndexOrderDefault	allows	you	to	change	this	initial	display
order.

IndexOrderDefault	takes	two	arguments.	The	first	must	be
either	Ascending	or	Descending,	indicating	the	direction	of	the
sort.	The	second	argument	must	be	one	of	the	keywords	Name,
Date,	Size,	or	Description,	and	identifies	the	primary	key.	The
secondary	key	is	always	the	ascending	filename.

You	can,	if	desired,	prevent	the	client	from	reordering	the	list	by
also	adding	the	SuppressColumnSorting	index	option	to
remove	the	sort	link	from	the	top	of	the	column,	along	with	the
IgnoreClient	index	option	to	prevent	them	from	manually
adding	sort	options	to	the	query	string	in	order	to	override	your
ordering	preferences.

IndexStyleSheet	Directive

Description: Adds	a	CSS	stylesheet	to	the	directory	index
Syntax: IndexStyleSheet	url-path

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The	IndexStyleSheet	directive	sets	the	name	of	the	file	that	will
be	used	as	the	CSS	for	the	index	listing.

IndexStyleSheet	"/css/style.css"

Using	this	directive	in	conjunction	with	IndexOptions
HTMLTable	adds	a	number	of	CSS	classes	to	the	resulting	HTML.
The	entire	table	is	given	a	CSS	id	of	indexlist	and	the	following
classes	are	associated	with	the	various	parts	of	the	listing:

Class Definition
tr.indexhead Header	row	of	listing
th.indexcolicon	and
td.indexcolicon

Icon	column

th.indexcolname	and
td.indexcolname

File	name	column

th.indexcollastmod	and
td.indexcollastmod

Last	modified	column

th.indexcolsize	and
td.indexcolsize

File	size	column

th.indexcoldesc	and
td.indexcoldesc

Description	column

tr.breakrow Horizontal	rule	at	the	bottom	of
the	table

tr.odd	and	tr.even Alternating	even	and	odd	rows

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ReadmeName	Directive

Description: Name	of	the	file	that	will	be	inserted	at	the	end	of
the	index	listing

Syntax: ReadmeName	filename

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_autoindex

The	ReadmeName	directive	sets	the	name	of	the	file	that	will	be
appended	to	the	end	of	the	index	listing.	Filename	is	the	name	of
the	file	to	include,	and	is	taken	to	be	relative	to	the	location	being
indexed.	If	Filename	begins	with	a	slash,	as	in	example	2,	it	will	be
taken	to	be	relative	to	the	DocumentRoot.

#	Example	1

ReadmeName	FOOTER.html

#	Example	2

ReadmeName	/include/FOOTER.html

See	also	HeaderName,	where	this	behavior	is	described	in	greater
detail.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_brotli

Description: Compress	content	via	Brotli	before	it	is	delivered
to	the	client

Status: Extension
Module	Identifier: brotli_module
Source	File: mod_brotli.c
Compatibility: Available	in	version	2.4.26	and	later.

Summary
The	mod_brotli	module	provides	the	BROTLI_COMPRESS	output
filter	that	allows	output	from	your	server	to	be	compressed	using	the
brotli	compression	format	before	being	sent	to	the	client	over	the
network.	This	module	uses	the	Brotli	library	found	at
https://github.com/google/brotli.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Filters

https://github.com/google/brotli
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_brotli
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_brotli

Sample	Configurations

Compression	and	TLS

Some	web	applications	are	vulnerable	to	an	information
disclosure	attack	when	a	TLS	connection	carries	compressed
data.	For	more	information,	review	the	details	of	the	"BREACH"
family	of	attacks.

This	is	a	simple	configuration	that	compresses	common	text-
based	content	types.

Compress	only	a	few	types
AddOutputFilterByType	BROTLI_COMPRESS	text/html	text/plain	text/xml	text/css	text/javascript	application/javascript

Enabling	Compression

Compression	and	TLS

Some	web	applications	are	vulnerable	to	an	information
disclosure	attack	when	a	TLS	connection	carries	compressed
data.	For	more	information,	review	the	details	of	the	"BREACH"
family	of	attacks.

Output	Compression
Compression	is	implemented	by	the	BROTLI_COMPRESS	filter.
The	following	directive	will	enable	compression	for	documents	in
the	container	where	it	is	placed:

SetOutputFilter	BROTLI_COMPRESS

SetEnvIfNoCase	Request_URI	\.(?:gif|jpe?g|png)$	no-brotli

If	you	want	to	restrict	the	compression	to	particular	MIME	types	in
general,	you	may	use	the	AddOutputFilterByType	directive.
Here	is	an	example	of	enabling	compression	only	for	the	html	files
of	the	Apache	documentation:

<Directory	"/your-server-root/manual">

				AddOutputFilterByType	BROTLI_COMPRESS	text/html

</Directory>

Note
The	BROTLI_COMPRESS	filter	is	always	inserted	after
RESOURCE	filters	like	PHP	or	SSI.	It	never	touches	internal
subrequests.

Note

There	is	an	environment	variable	no-brotli,	set	via	SetEnv,
which	will	disable	brotli	compression	for	a	particular	request,
even	if	it	is	supported	by	the	client.

Dealing	with	proxy	servers

The	mod_brotli	module	sends	a	Vary:	Accept-Encoding
HTTP	response	header	to	alert	proxies	that	a	cached	response
should	be	sent	only	to	clients	that	send	the	appropriate	Accept-
Encoding	request	header.	This	prevents	compressed	content
from	being	sent	to	a	client	that	will	not	understand	it.

If	you	use	some	special	exclusions	dependent	on,	for	example,	the
User-Agent	header,	you	must	manually	configure	an	addition	to
the	Vary	header	to	alert	proxies	of	the	additional	restrictions.	For
example,	in	a	typical	configuration	where	the	addition	of	the
BROTLI_COMPRESS	filter	depends	on	the	User-Agent,	you
should	add:

Header	append	Vary	User-Agent

If	your	decision	about	compression	depends	on	other	information
than	request	headers	(e.g.	HTTP	version),	you	have	to	set	the
Vary	header	to	the	value	*.	This	prevents	compliant	proxies	from
caching	entirely.

Example
Header	set	Vary	*

Serving	pre-compressed	content

Since	mod_brotli	re-compresses	content	each	time	a	request	is
made,	some	performance	benefit	can	be	derived	by	pre-
compressing	the	content	and	telling	mod_brotli	to	serve	them
without	re-compressing	them.	This	may	be	accomplished	using	a
configuration	like	the	following:

<IfModule	mod_headers.c>

				#	Serve	brotli	compressed	CSS	files	if	they	exist

				#	and	the	client	accepts	brotli.

				RewriteCond	"%{HTTP:Accept-encoding}"	"br"

				RewriteCond	"%{REQUEST_FILENAME}\.br"	"-s"

				RewriteRule	"^(.*)\.css"														"$1\.css\.br"	[QSA]

				#	Serve	brotli	compressed	JS	files	if	they	exist

				#	and	the	client	accepts	brotli.

				RewriteCond	"%{HTTP:Accept-encoding}"	"br"

				RewriteCond	"%{REQUEST_FILENAME}\.br"	"-s"

				RewriteRule	"^(.*)\.js"															"$1\.js\.br"	[QSA]

				#	Serve	correct	content	types,	and	prevent	double	compression.

				RewriteRule	"\.css\.br$"	"-"	[T=text/css,E=no-brotli:1]

				RewriteRule	"\.js\.br$"		"-"	[T=text/javascript,E=no-brotli:1]

				<FilesMatch	"(\.js\.br|\.css\.br)$">

						#	Serve	correct	encoding	type.

						Header	append	Content-Encoding	br

						#	Force	proxies	to	cache	brotli	&

						#	non-brotli	css/js	files	separately.

						Header	append	Vary	Accept-Encoding

				</FilesMatch>

</IfModule>

BrotliAlterETag	Directive

Description: How	the	outgoing	ETag	header	should	be	modified
during	compression

Syntax: BrotliAlterETag

AddSuffix|NoChange|Remove

Default: BrotliAlterETag	AddSuffix

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliAlterETag	directive	specifies	how	the	ETag	hader
should	be	altered	when	a	response	is	compressed.

AddSuffix
Append	the	compression	method	onto	the	end	of	the	ETag,
causing	compressed	and	uncompressed	representations	to
have	unique	ETags.	In	another	dynamic	compression	module,
mod_deflate,	this	has	been	the	default	since	2.4.0.	This
setting	prevents	serving	"HTTP	Not	Modified"	(304)
responses	to	conditional	requests	for	compressed	content.

NoChange
Don't	change	the	ETag	on	a	compressed	response.	In	another
dynamic	compression	module,	mod_deflate,	this	has	been	the
default	prior	to	2.4.0.	This	setting	does	not	satisfy	the
HTTP/1.1	property	that	all	representations	of	the	same
resource	have	unique	ETags.

Remove
Remove	the	ETag	header	from	compressed	responses.	This
prevents	some	conditional	requests	from	being	possible,	but
avoids	the	shortcomings	of	the	preceding	options.

BrotliCompressionMaxInputBlock	Directive

Description: Maximum	input	block	size
Syntax: BrotliCompressionMaxInputBlock	value

Default: (automatic)

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliCompressionMaxInputBlock	directive	specifies
the	maximum	input	block	size	between	16	and	24,	with	the	caveat
that	larger	block	sizes	require	more	memory.

BrotliCompressionQuality	Directive

Description: Compression	quality
Syntax: BrotliCompressionQuality	value

Default: BrotliCompressionQuality	5

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliCompressionQuality	directive	specifies	the
compression	quality	(a	value	between	0	and	11).	Higher	quality
values	result	in	better,	but	also	slower	compression.

BrotliCompressionWindow	Directive

Description: Brotli	sliding	compression	window	size
Syntax: BrotliCompressionWindow	value

Default: BrotliCompressionWindow	18

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliCompressionWindow	directive	specifies	the	brotli
sliding	compression	window	size	(a	value	between	10	and	24).
Larger	window	sizes	can	improve	compression	quality,	but	require
more	memory.

BrotliFilterNote	Directive

Description: Places	the	compression	ratio	in	a	note	for	logging
Syntax: BrotliFilterNote	[type]	notename

Context: server	config,	virtual	host
Status: Extension
Module: mod_brotli

The	BrotliFilterNote	directive	specifies	that	a	note	about
compression	ratios	should	be	attached	to	the	request.	The	name
of	the	note	is	the	value	specified	for	the	directive.	You	can	use	that
note	for	statistical	purposes	by	adding	the	value	to	your	access
log.

Example
BrotliFilterNote	ratio

LogFormat	'"%r"	%b	(%{ratio}n)	"%{User-agent}i"'	brotli

CustomLog	"logs/brotli_log"	brotli

If	you	want	to	extract	more	accurate	values	from	your	logs,	you
can	use	the	type	argument	to	specify	the	type	of	data	left	as	a	note
for	logging.	type	can	be	one	of:

Input

Store	the	byte	count	of	the	filter's	input	stream	in	the	note.

Output

Store	the	byte	count	of	the	filter's	output	stream	in	the	note.

Ratio

Store	the	compression	ratio	(output/input	*	100)	in	the
note.	This	is	the	default,	if	the	type	argument	is	omitted.

Thus	you	may	log	it	this	way:

Accurate	Logging

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

BrotliFilterNote	Input	instream

BrotliFilterNote	Output	outstream

BrotliFilterNote	Ratio	ratio

LogFormat	'"%r"	%{outstream}n/%{instream}n	(%{ratio}n%%)'	brotli

CustomLog	"logs/brotli_log"	brotli

See	also
mod_log_config

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_buffer

Description: Support	for	request	buffering
Status: Extension
Module	Identifier: buffer_module
Source	File: mod_buffer.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
This	module	provides	the	ability	to	buffer	the	input	and	output	filter
stacks.

Under	certain	circumstances,	content	generators	might	create	content
in	small	chunks.	In	order	to	promote	memory	reuse,	in	memory
chunks	are	always	8k	in	size,	regardless	of	the	size	of	the	chunk
itself.	When	many	small	chunks	are	generated	by	a	request,	this	can
create	a	large	memory	footprint	while	the	request	is	being	processed,
and	an	unnecessarily	large	amount	of	data	on	the	wire.	The	addition
of	a	buffer	collapses	the	response	into	the	fewest	chunks	possible.

When	httpd	is	used	in	front	of	an	expensive	content	generator,
buffering	the	response	may	allow	the	backend	to	complete	processing
and	release	resources	sooner,	depending	on	how	the	backend	is
designed.

The	buffer	filter	may	be	added	to	either	the	input	or	the	output	filter
stacks,	as	appropriate,	using	the	SetInputFilter,
SetOutputFilter,	AddOutputFilter	or
AddOutputFilterByType	directives.

Using	buffer	with	mod_include
AddOutputFilterByType	INCLUDES;BUFFER	text/html

The	buffer	filters	read	the	request/response	into	RAM	and	then
repack	the	request/response	into	the	fewest	memory	buckets
possible,	at	the	cost	of	CPU	time.	When	the	request/response	is
already	efficiently	packed,	buffering	the	request/response	could
cause	the	request/response	to	be	slower	than	not	using	a	buffer	at
all.	These	filters	should	be	used	with	care,	and	only	where
necessary.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Filters

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_buffer
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_buffer

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

BufferSize	Directive

Description: Maximum	size	in	bytes	to	buffer	by	the	buffer	filter
Syntax: BufferSize	integer

Default: BufferSize	131072

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_buffer

The	BufferSize	directive	specifies	the	amount	of	data	in	bytes
that	will	be	buffered	before	being	read	from	or	written	to	each
request.	The	default	is	128	kilobytes.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_cache

Description: RFC	2616	compliant	HTTP	caching	filter.
Status: Extension
Module	Identifier: cache_module
Source	File: mod_cache.c

Summary

This	module	should	be	used	with	care,	as	when	the
CacheQuickHandler	directive	is	in	its	default	value	of	on,	the
Allow	and	Deny	directives	will	be	circumvented.	You	should	not
enable	quick	handler	caching	for	any	content	to	which	you	wish	to
limit	access	by	client	host	name,	address	or	environment	variable.

mod_cache	implements	an	RFC	2616	compliant	HTTP	content
caching	filter,	with	support	for	the	caching	of	content	negotiated
responses	containing	the	Vary	header.

RFC	2616	compliant	caching	provides	a	mechanism	to	verify	whether
stale	or	expired	content	is	still	fresh,	and	can	represent	a	significant
performance	boost	when	the	origin	server	supports	conditional
requests	by	honouring	the	If-None-Match	HTTP	request	header.
Content	is	only	regenerated	from	scratch	when	the	content	has
changed,	and	not	when	the	cached	entry	expires.

As	a	filter,	mod_cache	can	be	placed	in	front	of	content	originating
from	any	handler,	including	flat	files	(served	from	a	slow	disk	cached
on	a	fast	disk),	the	output	of	a	CGI	script	or	dynamic	content
generator,	or	content	proxied	from	another	server.

In	the	default	configuration,	mod_cache	inserts	the	caching	filter	as
far	forward	as	possible	within	the	filter	stack,	utilising	the	quick

http://www.ietf.org/rfc/rfc2616.txt
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.26

handler	to	bypass	all	per	request	processing	when	returning	content
to	the	client.	In	this	mode	of	operation,	mod_cache	may	be	thought	of
as	a	caching	proxy	server	bolted	to	the	front	of	the	webserver,	while
running	within	the	webserver	itself.

When	the	quick	handler	is	switched	off	using	the
CacheQuickHandler	directive,	it	becomes	possible	to	insert	the
CACHE	filter	at	a	point	in	the	filter	stack	chosen	by	the	administrator.
This	provides	the	opportunity	to	cache	content	before	that	content	is
personalised	by	the	mod_include	filter,	or	optionally	compressed	by
the	mod_deflate	filter.

Under	normal	operation,	mod_cache	will	respond	to	and	can	be
controlled	by	the	Cache-Control	and	Pragma	headers	sent	from	a
client	in	a	request,	or	from	a	server	within	a	response.	Under
exceptional	circumstances,	mod_cache	can	be	configured	to	override
these	headers	and	force	site	specific	behaviour,	however	such
behaviour	will	be	limited	to	this	cache	only,	and	will	not	affect	the
operation	of	other	caches	that	may	exist	between	the	client	and
server,	and	as	a	result	is	not	recommended	unless	strictly	necessary.

RFC	2616	allows	for	the	cache	to	return	stale	data	while	the	existing
stale	entry	is	refreshed	from	the	origin	server,	and	this	is	supported	by
mod_cache	when	the	CacheLock	directive	is	suitably	configured.
Such	responses	will	contain	a	Warning	HTTP	header	with	a	110
response	code.	RFC	2616	also	allows	a	cache	to	return	stale	data
when	the	attempt	made	to	refresh	the	stale	data	returns	an	error	500
or	above,	and	this	behaviour	is	supported	by	default	by	mod_cache.
Such	responses	will	contain	a	Warning	HTTP	header	with	a	111
response	code.

mod_cache	requires	the	services	of	one	or	more	storage
management	modules.	The	following	storage	management	modules
are	included	in	the	base	Apache	distribution:

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.32
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.46
http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.46

mod_cache_disk

Implements	a	disk	based	storage	manager.	Headers	and	bodies
are	stored	separately	on	disk,	in	a	directory	structure	derived
from	the	md5	hash	of	the	cached	URL.	Multiple	content
negotiated	responses	can	be	stored	concurrently,	however	the
caching	of	partial	content	is	not	supported	by	this	module.	The
htcacheclean	tool	is	provided	to	list	cached	URLs,	remove
cached	URLs,	or	to	maintain	the	size	of	the	disk	cache	within	size
and	inode	limits.

mod_cache_socache

Implements	a	shared	object	cache	based	storage	manager.
Headers	and	bodies	are	stored	together	beneath	a	single	key
based	on	the	URL	of	the	response	being	cached.	Multiple	content
negotiated	responses	can	be	stored	concurrently,	however	the
caching	of	partial	content	is	not	supported	by	this	module.

Further	details,	discussion,	and	examples,	are	provided	in	the
Caching	Guide.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Caching	Guide

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cache
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cache

Related	Modules	and	Directives

Related	Modules Related	Directives
mod_cache_disk

mod_cache_socache

CacheRoot

CacheDirLevels

CacheDirLength

CacheMinFileSize

CacheMaxFileSize

CacheSocache

CacheSocacheMaxTime

CacheSocacheMinTime

CacheSocacheMaxSize

CacheSocacheReadSize

CacheSocacheReadTime

Sample	Configuration

Sample	httpd.conf
#

#	Sample	Cache	Configuration

#

LoadModule	cache_module	modules/mod_cache.so

<IfModule	mod_cache.c>

				LoadModule	cache_disk_module	modules/mod_cache_disk.so

				<IfModule	mod_cache_disk.c>

								CacheRoot	"c:/cacheroot"

								CacheEnable	disk		"/"

								CacheDirLevels	5

								CacheDirLength	3

				</IfModule>

				#	When	acting	as	a	proxy,	don't	cache	the	list	of	security	updates

				CacheDisable	"http://security.update.server/update-list/"

</IfModule>

Avoiding	the	Thundering	Herd

When	a	cached	entry	becomes	stale,	mod_cache	will	submit	a
conditional	request	to	the	backend,	which	is	expected	to	confirm
whether	the	cached	entry	is	still	fresh,	and	send	an	updated	entity
if	not.

A	small	but	finite	amount	of	time	exists	between	the	time	the
cached	entity	becomes	stale,	and	the	time	the	stale	entity	is	fully
refreshed.	On	a	busy	server,	a	significant	number	of	requests
might	arrive	during	this	time,	and	cause	a	thundering	herd	of
requests	to	strike	the	backend	suddenly	and	unpredictably.

To	keep	the	thundering	herd	at	bay,	the	CacheLock	directive	can
be	used	to	define	a	directory	in	which	locks	are	created	for	URLs
in	flight.	The	lock	is	used	as	a	hint	by	other	requests	to	either
suppress	an	attempt	to	cache	(someone	else	has	gone	to	fetch
the	entity),	or	to	indicate	that	a	stale	entry	is	being	refreshed	(stale
content	will	be	returned	in	the	mean	time).

Initial	caching	of	an	entry
When	an	entity	is	cached	for	the	first	time,	a	lock	will	be	created
for	the	entity	until	the	response	has	been	fully	cached.	During	the
lifetime	of	the	lock,	the	cache	will	suppress	the	second	and
subsequent	attempt	to	cache	the	same	entity.	While	this	doesn't
hold	back	the	thundering	herd,	it	does	stop	the	cache	attempting
to	cache	the	same	entity	multiple	times	simultaneously.

Refreshment	of	a	stale	entry
When	an	entity	reaches	its	freshness	lifetime	and	becomes	stale,
a	lock	will	be	created	for	the	entity	until	the	response	has	either
been	confirmed	as	still	fresh,	or	replaced	by	the	backend.	During
the	lifetime	of	the	lock,	the	second	and	subsequent	incoming
request	will	cause	stale	data	to	be	returned,	and	the	thundering
herd	is	kept	at	bay.

Locks	and	Cache-Control:	no-cache
Locks	are	used	as	a	hint	only	to	enable	the	cache	to	be	more
gentle	on	backend	servers,	however	the	lock	can	be	overridden	if
necessary.	If	the	client	sends	a	request	with	a	Cache-Control
header	forcing	a	reload,	any	lock	that	may	be	present	will	be
ignored,	and	the	client's	request	will	be	honored	immediately	and
the	cached	entry	refreshed.

As	a	further	safety	mechanism,	locks	have	a	configurable
maximum	age.	Once	this	age	has	been	reached,	the	lock	is
removed,	and	a	new	request	is	given	the	opportunity	to	create	a
new	lock.	This	maximum	age	can	be	set	using	the
CacheLockMaxAge	directive,	and	defaults	to	5	seconds.

Example	configuration

Enabling	the	cache	lock
#

#	Enable	the	cache	lock

#

<IfModule	mod_cache.c>

				CacheLock	on

				CacheLockPath	"/tmp/mod_cache-lock"

				CacheLockMaxAge	5

</IfModule>

Fine	Control	with	the	CACHE	Filter

Under	the	default	mode	of	cache	operation,	the	cache	runs	as	a
quick	handler,	short	circuiting	the	majority	of	server	processing
and	offering	the	highest	cache	performance	available.

In	this	mode,	the	cache	bolts	onto	the	front	of	the	server,	acting
as	if	a	free	standing	RFC	2616	caching	proxy	had	been	placed	in
front	of	the	server.

While	this	mode	offers	the	best	performance,	the	administrator
may	find	that	under	certain	circumstances	they	may	want	to
perform	further	processing	on	the	request	after	the	request	is
cached,	such	as	to	inject	personalisation	into	the	cached	page,	or
to	apply	authorisation	restrictions	to	the	content.	Under	these
circumstances,	an	administrator	is	often	forced	to	place
independent	reverse	proxy	servers	either	behind	or	in	front	of	the
caching	server	to	achieve	this.

To	solve	this	problem	the	CacheQuickHandler	directive	can	be
set	to	off,	and	the	server	will	process	all	phases	normally	handled
by	a	non-cached	request,	including	the	authentication	and
authorisation	phases.

In	addition,	the	administrator	may	optionally	specify	the	precise
point	within	the	filter	chain	where	caching	is	to	take	place	by
adding	the	CACHE	filter	to	the	output	filter	chain.

For	example,	to	cache	content	before	applying	compression	to	the
response,	place	the	CACHE	filter	before	the	DEFLATE	filter	as	in
the	example	below:

#	Cache	content	before	optional	compression

CacheQuickHandler	off

AddOutputFilterByType	CACHE;DEFLATE	text/plain

Another	option	is	to	have	content	cached	before	personalisation	is
applied	by	mod_include	(or	another	content	processing	filter).	In
this	example	templates	containing	tags	understood	by
mod_include	are	cached	before	being	parsed:

#	Cache	content	before	mod_include	and	mod_deflate

CacheQuickHandler	off

AddOutputFilterByType	CACHE;INCLUDES;DEFLATE	text/html

You	may	place	the	CACHE	filter	anywhere	you	wish	within	the
filter	chain.	In	this	example,	content	is	cached	after	being	parsed
by	mod_include,	but	before	being	processed	by	mod_deflate:

#	Cache	content	between	mod_include	and	mod_deflate

CacheQuickHandler	off

AddOutputFilterByType	INCLUDES;CACHE;DEFLATE	text/html

Warning:
If	the	location	of	the	CACHE	filter	in	the	filter	chain	is	changed
for	any	reason,	you	may	need	to	flush	your	cache	to	ensure
that	your	data	served	remains	consistent.	mod_cache	is	not	in
a	position	to	enforce	this	for	you.

Cache	Status	and	Logging

Once	mod_cache	has	made	a	decision	as	to	whether	or	not	an
entity	is	to	be	served	from	cache,	the	detailed	reason	for	the
decision	is	written	to	the	subprocess	environment	within	the
request	under	the	cache-status	key.	This	reason	can	be	logged
by	the	LogFormat	directive	as	follows:

LogFormat	"%{cache-status}e	..."

Based	on	the	caching	decision	made,	the	reason	is	also	written	to
the	subprocess	environment	under	one	the	following	four	keys,	as
appropriate:

cache-hit
The	response	was	served	from	cache.

cache-revalidate
The	response	was	stale	and	was	successfully	revalidated,
then	served	from	cache.

cache-miss
The	response	was	served	from	the	upstream	server.

cache-invalidate
The	cached	entity	was	invalidated	by	a	request	method	other
than	GET	or	HEAD.

This	makes	it	possible	to	support	conditional	logging	of	cached
requests	as	per	the	following	example:

CustomLog	"cached-requests.log"	common	env=cache-hit

CustomLog	"uncached-requests.log"	common	env=cache-miss

CustomLog	"revalidated-requests.log"	common	env=cache-revalidate

CustomLog	"invalidated-requests.log"	common	env=cache-invalidate

For	module	authors,	a	hook	called	cache_status	is	available,

allowing	modules	to	respond	to	the	caching	outcomes	above	in
customised	ways.

CacheDefaultExpire	Directive

Description: The	default	duration	to	cache	a	document	when	no
expiry	date	is	specified.

Syntax: CacheDefaultExpire	seconds

Default: CacheDefaultExpire	3600	(one	hour)

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache

The	CacheDefaultExpire	directive	specifies	a	default	time,	in
seconds,	to	cache	a	document	if	neither	an	expiry	date	nor	last-
modified	date	are	provided	with	the	document.	The	value	specified
with	the	CacheMaxExpire	directive	does	not	override	this	setting.

CacheDefaultExpire	86400

CacheDetailHeader	Directive

Description: Add	an	X-Cache-Detail	header	to	the	response.
Syntax: CacheDetailHeader	on|off

Default: CacheDetailHeader	off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache
Compatibility: Available	in	Apache	2.3.9	and	later

When	the	CacheDetailHeader	directive	is	switched	on,	an	X-
Cache-Detail	header	will	be	added	to	the	response	containing	the
detailed	reason	for	a	particular	caching	decision.

It	can	be	useful	during	development	of	cached	RESTful	services	to
have	additional	information	about	the	caching	decision	written	to
the	response	headers,	so	as	to	confirm	whether	Cache-Control
and	other	headers	have	been	correctly	used	by	the	service	and
client.

If	the	normal	handler	is	used,	this	directive	may	appear	within	a
<Directory>	or	<Location>	directive.	If	the	quick	handler	is
used,	this	directive	must	appear	within	a	server	or	virtual	host
context,	otherwise	the	setting	will	be	ignored.

#	Enable	the	X-Cache-Detail	header

CacheDetailHeader	on

X-Cache-Detail:	"conditional	cache	hit:	entity	refreshed"	from

localhost

CacheDisable	Directive

Description: Disable	caching	of	specified	URLs
Syntax: CacheDisable	url-string	|	on

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache

The	CacheDisable	directive	instructs	mod_cache	to	not	cache
urls	at	or	below	url-string.

Example
CacheDisable	"/local_files"

If	used	in	a	<Location>	directive,	the	path	needs	to	be	specified
below	the	Location,	or	if	the	word	"on"	is	used,	caching	for	the
whole	location	will	be	disabled.

Example
<Location	"/foo">

				CacheDisable	on

</Location>

The	no-cache	environment	variable	can	be	set	to	disable
caching	on	a	finer	grained	set	of	resources	in	versions	2.2.12	and
later.

See	also
Environment	Variables	in	Apache

CacheEnable	Directive

Description: Enable	caching	of	specified	URLs	using	a
specified	storage	manager

Syntax: CacheEnable	cache_type	[url-string]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_cache
Compatibility: A	url-string	of	'/'	applied	to	forward	proxy	content

in	2.2	and	earlier.

The	CacheEnable	directive	instructs	mod_cache	to	cache	urls	at
or	below	url-string.	The	cache	storage	manager	is	specified	with
the	cache_type	argument.	The	CacheEnable	directive	can
alternatively	be	placed	inside	either	<Location>	or
<LocationMatch>	sections	to	indicate	the	content	is	cacheable.
cache_type	disk	instructs	mod_cache	to	use	the	disk	based
storage	manager	implemented	by	mod_cache_disk.	cache_type
socache	instructs	mod_cache	to	use	the	shared	object	cache
based	storage	manager	implemented	by	mod_cache_socache.

In	the	event	that	the	URL	space	overlaps	between	different
CacheEnable	directives	(as	in	the	example	below),	each	possible
storage	manager	will	be	run	until	the	first	one	that	actually
processes	the	request.	The	order	in	which	the	storage	managers
are	run	is	determined	by	the	order	of	the	CacheEnable	directives
in	the	configuration	file.	CacheEnable	directives	within
<Location>	or	<LocationMatch>	sections	are	processed
before	globally	defined	CacheEnable	directives.

When	acting	as	a	forward	proxy	server,	url-string	must	minimally
begin	with	a	protocol	for	which	caching	should	be	enabled.

#	Cache	content	(normal	handler	only)

CacheQuickHandler	off

<Location	"/foo">

				CacheEnable	disk

</Location>

#	Cache	regex	(normal	handler	only)

CacheQuickHandler	off

<LocationMatch	"foo$">

				CacheEnable	disk

</LocationMatch>

#	Cache	all	but	forward	proxy	url's	(normal	or	quick	handler)

CacheEnable		disk		/

#	Cache	FTP-proxied	url's	(normal	or	quick	handler)

CacheEnable		disk		ftp://

#	Cache	forward	proxy	content	from	www.example.org	(normal	or	quick	handler)

CacheEnable		disk		http://www.example.org/

A	hostname	starting	with	a	"*"	matches	all	hostnames	with	that
suffix.	A	hostname	starting	with	"."	matches	all	hostnames
containing	the	domain	components	that	follow.

#	Match	www.example.org,	and	fooexample.org

CacheEnable		disk		"http://*example.org/"

#	Match	www.example.org,	but	not	fooexample.org

CacheEnable		disk		"http://.example.org/"

The	no-cache	environment	variable	can	be	set	to	disable
caching	on	a	finer	grained	set	of	resources	in	versions	2.2.12	and
later.

See	also

Environment	Variables	in	Apache

CacheHeader	Directive

Description: Add	an	X-Cache	header	to	the	response.
Syntax: CacheHeader	on|off

Default: CacheHeader	off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache
Compatibility: Available	in	Apache	2.3.9	and	later

When	the	CacheHeader	directive	is	switched	on,	an	X-Cache
header	will	be	added	to	the	response	with	the	cache	status	of	this
response.	If	the	normal	handler	is	used,	this	directive	may	appear
within	a	<Directory>	or	<Location>	directive.	If	the	quick
handler	is	used,	this	directive	must	appear	within	a	server	or
virtual	host	context,	otherwise	the	setting	will	be	ignored.

HIT
The	entity	was	fresh,	and	was	served	from	cache.

REVALIDATE
The	entity	was	stale,	was	successfully	revalidated	and	was
served	from	cache.

MISS
The	entity	was	fetched	from	the	upstream	server	and	was	not
served	from	cache.

#	Enable	the	X-Cache	header

CacheHeader	on

X-Cache:	HIT	from	localhost

CacheIgnoreCacheControl	Directive

Description: Ignore	request	to	not	serve	cached	content	to	client
Syntax: CacheIgnoreCacheControl	On|Off

Default: CacheIgnoreCacheControl	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache

Ordinarily,	requests	containing	a	Cache-Control:	no-cache	or
Pragma:	no-cache	header	value	will	not	be	served	from	the	cache.
The	CacheIgnoreCacheControl	directive	allows	this	behavior
to	be	overridden.	CacheIgnoreCacheControl	On	tells	the
server	to	attempt	to	serve	the	resource	from	the	cache	even	if	the
request	contains	no-cache	header	values.	Resources	requiring
authorization	will	never	be	cached.

CacheIgnoreCacheControl	On

Warning:
This	directive	will	allow	serving	from	the	cache	even	if	the	client
has	requested	that	the	document	not	be	served	from	the	cache.
This	might	result	in	stale	content	being	served.

See	also
CacheStorePrivate

CacheStoreNoStore

CacheIgnoreHeaders	Directive

Description: Do	not	store	the	given	HTTP	header(s)	in	the
cache.

Syntax: CacheIgnoreHeaders	header-string

[header-string]	...

Default: CacheIgnoreHeaders	None

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache

According	to	RFC	2616,	hop-by-hop	HTTP	headers	are	not	stored
in	the	cache.	The	following	HTTP	headers	are	hop-by-hop
headers	and	thus	do	not	get	stored	in	the	cache	in	any	case
regardless	of	the	setting	of	CacheIgnoreHeaders:

Connection

Keep-Alive

Proxy-Authenticate

Proxy-Authorization

TE

Trailers

Transfer-Encoding

Upgrade

CacheIgnoreHeaders	specifies	additional	HTTP	headers	that
should	not	to	be	stored	in	the	cache.	For	example,	it	makes	sense
in	some	cases	to	prevent	cookies	from	being	stored	in	the	cache.

CacheIgnoreHeaders	takes	a	space	separated	list	of	HTTP
headers	that	should	not	be	stored	in	the	cache.	If	only	hop-by-hop
headers	not	should	be	stored	in	the	cache	(the	RFC	2616
compliant	behaviour),	CacheIgnoreHeaders	can	be	set	to
None.

Example	1
CacheIgnoreHeaders	Set-Cookie

Example	2
CacheIgnoreHeaders	None

Warning:
If	headers	like	Expires	which	are	needed	for	proper	cache
management	are	not	stored	due	to	a	CacheIgnoreHeaders
setting,	the	behaviour	of	mod_cache	is	undefined.

CacheIgnoreNoLastMod	Directive

Description: Ignore	the	fact	that	a	response	has	no	Last
Modified	header.

Syntax: CacheIgnoreNoLastMod	On|Off

Default: CacheIgnoreNoLastMod	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache

Ordinarily,	documents	without	a	last-modified	date	are	not	cached.
Under	some	circumstances	the	last-modified	date	is	removed
(during	mod_include	processing	for	example)	or	not	provided	at
all.	The	CacheIgnoreNoLastMod	directive	provides	a	way	to
specify	that	documents	without	last-modified	dates	should	be
considered	for	caching,	even	without	a	last-modified	date.	If
neither	a	last-modified	date	nor	an	expiry	date	are	provided	with
the	document	then	the	value	specified	by	the
CacheDefaultExpire	directive	will	be	used	to	generate	an
expiration	date.

CacheIgnoreNoLastMod	On

CacheIgnoreQueryString	Directive

Description: Ignore	query	string	when	caching
Syntax: CacheIgnoreQueryString	On|Off

Default: CacheIgnoreQueryString	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache

Ordinarily,	requests	with	query	string	parameters	are	cached
separately	for	each	unique	query	string.	This	is	according	to	RFC
2616/13.9	done	only	if	an	expiration	time	is	specified.	The
CacheIgnoreQueryString	directive	tells	the	cache	to	cache
requests	even	if	no	expiration	time	is	specified,	and	to	reply	with	a
cached	reply	even	if	the	query	string	differs.	From	a	caching	point
of	view	the	request	is	treated	as	if	having	no	query	string	when	this
directive	is	enabled.

CacheIgnoreQueryString	On

CacheIgnoreURLSessionIdentifiers	Directive

Description: Ignore	defined	session	identifiers	encoded	in	the
URL	when	caching

Syntax: CacheIgnoreURLSessionIdentifiers

identifier	[identifier]	...

Default: CacheIgnoreURLSessionIdentifiers	None

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache

Sometimes	applications	encode	the	session	identifier	into	the	URL
like	in	the	following	Examples:

/someapplication/image.gif;jsessionid=123456789

/someapplication/image.gif?

PHPSESSIONID=12345678

This	causes	cacheable	resources	to	be	stored	separately	for	each
session,	which	is	often	not	desired.
CacheIgnoreURLSessionIdentifiers	lets	define	a	list	of
identifiers	that	are	removed	from	the	key	that	is	used	to	identify	an
entity	in	the	cache,	such	that	cacheable	resources	are	not	stored
separately	for	each	session.

CacheIgnoreURLSessionIdentifiers	None	clears	the	list	of
ignored	identifiers.	Otherwise,	each	identifier	is	added	to	the	list.

Example	1
CacheIgnoreURLSessionIdentifiers	jsessionid

Example	2
CacheIgnoreURLSessionIdentifiers	None

CacheKeyBaseURL	Directive

Description: Override	the	base	URL	of	reverse	proxied	cache
keys.

Syntax: CacheKeyBaseURL	URL

Default: CacheKeyBaseURL	http://example.com

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache
Compatibility: Available	in	Apache	2.3.9	and	later

When	the	CacheKeyBaseURL	directive	is	specified,	the	URL
provided	will	be	used	as	the	base	URL	to	calculate	the	URL	of	the
cache	keys	in	the	reverse	proxy	configuration.	When	not	specified,
the	scheme,	hostname	and	port	of	the	current	virtual	host	is	used
to	construct	the	cache	key.	When	a	cluster	of	machines	is	present,
and	all	cached	entries	should	be	cached	beneath	the	same	cache
key,	a	new	base	URL	can	be	specified	with	this	directive.

#	Override	the	base	URL	of	the	cache	key.

CacheKeyBaseURL	"http://www.example.com/"

Take	care	when	setting	this	directive.	If	two	separate	virtual
hosts	are	accidentally	given	the	same	base	URL,	entries	from
one	virtual	host	will	be	served	to	the	other.

CacheLastModifiedFactor	Directive

Description: The	factor	used	to	compute	an	expiry	date	based
on	the	LastModified	date.

Syntax: CacheLastModifiedFactor	float

Default: CacheLastModifiedFactor	0.1

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache

In	the	event	that	a	document	does	not	provide	an	expiry	date	but
does	provide	a	last-modified	date,	an	expiry	date	can	be
calculated	based	on	the	time	since	the	document	was	last
modified.	The	CacheLastModifiedFactor	directive	specifies	a
factor	to	be	used	in	the	generation	of	this	expiry	date	according	to
the	following	formula:	expiry-period	=	time-since-last-
modified-date	*	factor	expiry-date	=	current-date

+	expiry-period	For	example,	if	the	document	was	last
modified	10	hours	ago,	and	factor	is	0.1	then	the	expiry-period	will
be	set	to	10*0.1	=	1	hour.	If	the	current	time	was	3:00pm	then	the
computed	expiry-date	would	be	3:00pm	+	1hour	=	4:00pm.	If	the
expiry-period	would	be	longer	than	that	set	by	CacheMaxExpire,
then	the	latter	takes	precedence.

CacheLastModifiedFactor	0.5

CacheLock	Directive

Description: Enable	the	thundering	herd	lock.
Syntax: CacheLock	on|off

Default: CacheLock	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache
Compatibility: Available	in	Apache	2.2.15	and	later

The	CacheLock	directive	enables	the	thundering	herd	lock	for	the
given	URL	space.

In	a	minimal	configuration	the	following	directive	is	all	that	is
needed	to	enable	the	thundering	herd	lock	in	the	default	system
temp	directory.

#	Enable	cache	lock

CacheLock	on

CacheLockMaxAge	Directive

Description: Set	the	maximum	possible	age	of	a	cache	lock.
Syntax: CacheLockMaxAge	integer

Default: CacheLockMaxAge	5

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache

The	CacheLockMaxAge	directive	specifies	the	maximum	age	of
any	cache	lock.

A	lock	older	than	this	value	in	seconds	will	be	ignored,	and	the
next	incoming	request	will	be	given	the	opportunity	to	re-establish
the	lock.	This	mechanism	prevents	a	slow	client	taking	an
excessively	long	time	to	refresh	an	entity.

CacheLockPath	Directive

Description: Set	the	lock	path	directory.
Syntax: CacheLockPath	directory

Default: CacheLockPath	/tmp/mod_cache-lock

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache

The	CacheLockPath	directive	allows	you	to	specify	the	directory
in	which	the	locks	are	created.	By	default,	the	system's	temporary
folder	is	used.	Locks	consist	of	empty	files	that	only	exist	for	stale
URLs	in	flight,	so	is	significantly	less	resource	intensive	than	the
traditional	disk	cache.

CacheMaxExpire	Directive

Description: The	maximum	time	in	seconds	to	cache	a
document

Syntax: CacheMaxExpire	seconds

Default: CacheMaxExpire	86400	(one	day)

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache

The	CacheMaxExpire	directive	specifies	the	maximum	number
of	seconds	for	which	cacheable	HTTP	documents	will	be	retained
without	checking	the	origin	server.	Thus,	documents	will	be	out	of
date	at	most	this	number	of	seconds.	This	maximum	value	is
enforced	even	if	an	expiry	date	was	supplied	with	the	document.

CacheMaxExpire	604800

CacheMinExpire	Directive

Description: The	minimum	time	in	seconds	to	cache	a
document

Syntax: CacheMinExpire	seconds

Default: CacheMinExpire	0

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache

The	CacheMinExpire	directive	specifies	the	minimum	number	of
seconds	for	which	cacheable	HTTP	documents	will	be	retained
without	checking	the	origin	server.	This	is	only	used	if	no	valid
expire	time	was	supplied	with	the	document.

CacheMinExpire	3600

CacheQuickHandler	Directive

Description: Run	the	cache	from	the	quick	handler.
Syntax: CacheQuickHandler	on|off

Default: CacheQuickHandler	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache
Compatibility: Apache	HTTP	Server	2.3.3	and	later

The	CacheQuickHandler	directive	controls	the	phase	in	which
the	cache	is	handled.

In	the	default	enabled	configuration,	the	cache	operates	within	the
quick	handler	phase.	This	phase	short	circuits	the	majority	of
server	processing,	and	represents	the	most	performant	mode	of
operation	for	a	typical	server.	The	cache	bolts	onto	the	front	of
the	server,	and	the	majority	of	server	processing	is	avoided.

When	disabled,	the	cache	operates	as	a	normal	handler,	and	is
subject	to	the	full	set	of	phases	when	handling	a	server	request.
While	this	mode	is	slower	than	the	default,	it	allows	the	cache	to
be	used	in	cases	where	full	processing	is	required,	such	as	when
content	is	subject	to	authorisation.

#	Run	cache	as	a	normal	handler

CacheQuickHandler	off

It	is	also	possible,	when	the	quick	handler	is	disabled,	for	the
administrator	to	choose	the	precise	location	within	the	filter	chain
where	caching	is	to	be	performed,	by	adding	the	CACHE	filter	to
the	chain.

#	Cache	content	before	mod_include	and	mod_deflate

CacheQuickHandler	off

AddOutputFilterByType	CACHE;INCLUDES;DEFLATE	text/html

If	the	CACHE	filter	is	specified	more	than	once,	the	last	instance
will	apply.

CacheStaleOnError	Directive

Description: Serve	stale	content	in	place	of	5xx	responses.
Syntax: CacheStaleOnError	on|off

Default: CacheStaleOnError	on

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache
Compatibility: Available	in	Apache	2.3.9	and	later

When	the	CacheStaleOnError	directive	is	switched	on,	and
when	stale	data	is	available	in	the	cache,	the	cache	will	respond	to
5xx	responses	from	the	backend	by	returning	the	stale	data
instead	of	the	5xx	response.	While	the	Cache-Control	headers
sent	by	clients	will	be	respected,	and	the	raw	5xx	responses
returned	to	the	client	on	request,	the	5xx	response	so	returned	to
the	client	will	not	invalidate	the	content	in	the	cache.

#	Serve	stale	data	on	error.

CacheStaleOnError	on

CacheStoreExpired	Directive

Description: Attempt	to	cache	responses	that	the	server	reports
as	expired

Syntax: CacheStoreExpired	On|Off

Default: CacheStoreExpired	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache

Since	httpd	2.2.4,	responses	which	have	already	expired	are	not
stored	in	the	cache.	The	CacheStoreExpired	directive	allows
this	behavior	to	be	overridden.	CacheStoreExpired	On	tells	the
server	to	attempt	to	cache	the	resource	if	it	is	stale.	Subsequent
requests	would	trigger	an	If-Modified-Since	request	of	the	origin
server,	and	the	response	may	be	fulfilled	from	cache	if	the
backend	resource	has	not	changed.

CacheStoreExpired	On

CacheStoreNoStore	Directive

Description: Attempt	to	cache	requests	or	responses	that	have
been	marked	as	no-store.

Syntax: CacheStoreNoStore	On|Off

Default: CacheStoreNoStore	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache

Ordinarily,	requests	or	responses	with	Cache-Control:	no-store
header	values	will	not	be	stored	in	the	cache.	The
CacheStoreNoStore	directive	allows	this	behavior	to	be
overridden.	CacheStoreNoStore	On	tells	the	server	to	attempt
to	cache	the	resource	even	if	it	contains	no-store	header	values.
Resources	requiring	authorization	will	never	be	cached.

CacheStoreNoStore	On

Warning:
As	described	in	RFC	2616,	the	no-store	directive	is	intended	to
"prevent	the	inadvertent	release	or	retention	of	sensitive
information	(for	example,	on	backup	tapes)."	Enabling	this
option	could	store	sensitive	information	in	the	cache.	You	are
hereby	warned.

See	also
CacheIgnoreCacheControl

CacheStorePrivate

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

CacheStorePrivate	Directive

Description: Attempt	to	cache	responses	that	the	server	has
marked	as	private

Syntax: CacheStorePrivate	On|Off

Default: CacheStorePrivate	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache

Ordinarily,	responses	with	Cache-Control:	private	header	values
will	not	be	stored	in	the	cache.	The	CacheStorePrivate
directive	allows	this	behavior	to	be	overridden.
CacheStorePrivate	On	tells	the	server	to	attempt	to	cache	the
resource	even	if	it	contains	private	header	values.	Resources
requiring	authorization	will	never	be	cached.

CacheStorePrivate	On

Warning:
This	directive	will	allow	caching	even	if	the	upstream	server	has
requested	that	the	resource	not	be	cached.	This	directive	is	only
ideal	for	a	'private'	cache.

See	also
CacheIgnoreCacheControl

CacheStoreNoStore

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_cache_disk

Description: Disk	based	storage	module	for	the	HTTP
caching	filter.

Status: Extension
Module	Identifier: cache_disk_module
Source	File: mod_cache_disk.c

Summary
mod_cache_disk	implements	a	disk	based	storage	manager	for
mod_cache.

The	headers	and	bodies	of	cached	responses	are	stored	separately
on	disk,	in	a	directory	structure	derived	from	the	md5	hash	of	the
cached	URL.

Multiple	content	negotiated	responses	can	be	stored	concurrently,
however	the	caching	of	partial	content	is	not	yet	supported	by	this
module.

Atomic	cache	updates	to	both	header	and	body	files	are	achieved
without	the	need	for	locking	by	storing	the	device	and	inode	numbers
of	the	body	file	within	the	header	file.	This	has	the	side	effect	that
cache	entries	manually	moved	into	the	cache	will	be	ignored.

The	htcacheclean	tool	is	provided	to	list	cached	URLs,	remove
cached	URLs,	or	to	maintain	the	size	of	the	disk	cache	within	size
and/or	inode	limits.	The	tool	can	be	run	on	demand,	or	can	be
daemonized	to	offer	continuous	monitoring	of	directory	sizes.

Note:

mod_cache_disk	requires	the	services	of	mod_cache,	which
must	be	loaded	before	mod_cache_disk.

Note:

mod_cache_disk	uses	the	sendfile	feature	to	serve	files	from	the
cache	when	supported	by	the	platform,	and	when	enabled	with
EnableSendfile.	However,	per-directory	and	.htaccess
configuration	of	EnableSendfile	are	ignored	by
mod_cache_disk	as	the	corresponding	settings	are	not	available
to	the	module	when	a	request	is	being	served	from	the	cache.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_cache

mod_cache_socache

Caching	Guide

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cache_disk
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cache_disk

CacheDirLength	Directive

Description: The	number	of	characters	in	subdirectory	names
Syntax: CacheDirLength	length

Default: CacheDirLength	2

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache_disk

The	CacheDirLength	directive	sets	the	number	of	characters	for
each	subdirectory	name	in	the	cache	hierarchy.	It	can	be	used	in
conjunction	with	CacheDirLevels	to	determine	the	approximate
structure	of	your	cache	hierarchy.

A	high	value	for	CacheDirLength	combined	with	a	low	value	for
CacheDirLevels	will	result	in	a	relatively	flat	hierarchy,	with	a
large	number	of	subdirectories	at	each	level.

The	result	of	CacheDirLevels*	CacheDirLength	must	not
be	higher	than	20.

CacheDirLevels	Directive

Description: The	number	of	levels	of	subdirectories	in	the
cache.

Syntax: CacheDirLevels	levels

Default: CacheDirLevels	2

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache_disk

The	CacheDirLevels	directive	sets	the	number	of	subdirectory
levels	in	the	cache.	Cached	data	will	be	saved	this	many	directory
levels	below	the	CacheRoot	directory.

A	high	value	for	CacheDirLevels	combined	with	a	low	value	for
CacheDirLength	will	result	in	a	relatively	deep	hierarchy,	with	a
small	number	of	subdirectories	at	each	level.

The	result	of	CacheDirLevels*	CacheDirLength	must	not
be	higher	than	20.

CacheMaxFileSize	Directive

Description: The	maximum	size	(in	bytes)	of	a	document	to	be
placed	in	the	cache

Syntax: CacheMaxFileSize	bytes

Default: CacheMaxFileSize	1000000

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_disk

The	CacheMaxFileSize	directive	sets	the	maximum	size,	in
bytes,	for	a	document	to	be	considered	for	storage	in	the	cache.

CacheMaxFileSize	64000

CacheMinFileSize	Directive

Description: The	minimum	size	(in	bytes)	of	a	document	to	be
placed	in	the	cache

Syntax: CacheMinFileSize	bytes

Default: CacheMinFileSize	1

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_disk

The	CacheMinFileSize	directive	sets	the	minimum	size,	in
bytes,	for	a	document	to	be	considered	for	storage	in	the	cache.

CacheMinFileSize	64

CacheReadSize	Directive

Description: The	minimum	size	(in	bytes)	of	the	document	to
read	and	be	cached	before	sending	the	data
downstream

Syntax: CacheReadSize	bytes

Default: CacheReadSize	0

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_disk

The	CacheReadSize	directive	sets	the	minimum	amount	of	data,
in	bytes,	to	be	read	from	the	backend	before	the	data	is	sent	to	the
client.	The	default	of	zero	causes	all	data	read	of	any	size	to	be
passed	downstream	to	the	client	immediately	as	it	arrives.	Setting
this	to	a	higher	value	causes	the	disk	cache	to	buffer	at	least	this
amount	before	sending	the	result	to	the	client.	This	can	improve
performance	when	caching	content	from	a	reverse	proxy.

This	directive	only	takes	effect	when	the	data	is	being	saved	to	the
cache,	as	opposed	to	data	being	served	from	the	cache.

CacheReadSize	102400

CacheReadTime	Directive

Description: The	minimum	time	(in	milliseconds)	that	should
elapse	while	reading	before	data	is	sent
downstream

Syntax: CacheReadTime	milliseconds

Default: CacheReadTime	0

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_disk

The	CacheReadTime	directive	sets	the	minimum	amount	of
elapsed	time	that	should	pass	before	making	an	attempt	to	send
data	downstream	to	the	client.	During	the	time	period,	data	will	be
buffered	before	sending	the	result	to	the	client.	This	can	improve
performance	when	caching	content	from	a	reverse	proxy.

The	default	of	zero	disables	this	option.

This	directive	only	takes	effect	when	the	data	is	being	saved	to	the
cache,	as	opposed	to	data	being	served	from	the	cache.	It	is
recommended	that	this	option	be	used	alongside	the
CacheReadSize	directive	to	ensure	that	the	server	does	not
buffer	excessively	should	data	arrive	faster	than	expected.

CacheReadTime	1000

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

CacheRoot	Directive

Description: The	directory	root	under	which	cache	files	are
stored

Syntax: CacheRoot	directory

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache_disk

The	CacheRoot	directive	defines	the	name	of	the	directory	on	the
disk	to	contain	cache	files.	If	the	mod_cache_disk	module	has
been	loaded	or	compiled	in	to	the	Apache	server,	this	directive
must	be	defined.	Failing	to	provide	a	value	for	CacheRoot	will
result	in	a	configuration	file	processing	error.	The
CacheDirLevels	and	CacheDirLength	directives	define	the
structure	of	the	directories	under	the	specified	root	directory.

CacheRoot	c:/cacheroot

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_cache_socache

Description: Shared	object	cache	(socache)	based	storage
module	for	the	HTTP	caching	filter.

Status: Extension
Module	Identifier: cache_socache_module
Source	File: mod_cache_socache.c

Summary
mod_cache_socache	implements	a	shared	object	cache	(socache)
based	storage	manager	for	mod_cache.

The	headers	and	bodies	of	cached	responses	are	combined,	and
stored	underneath	a	single	key	in	the	shared	object	cache.	A	number
of	implementations	of	shared	object	caches	are	available	to	choose
from.

Multiple	content	negotiated	responses	can	be	stored	concurrently,
however	the	caching	of	partial	content	is	not	yet	supported	by	this
module.

#	Turn	on	caching

CacheSocache	shmcb

CacheSocacheMaxSize	102400

<Location	"/foo">

				CacheEnable	socache

</Location>

#	Fall	back	to	the	disk	cache

CacheSocache	shmcb

CacheSocacheMaxSize	102400

<Location	"/foo">

				CacheEnable	socache

				CacheEnable	disk

</Location>

Note:

mod_cache_socache	requires	the	services	of	mod_cache,	which
must	be	loaded	before	mod_cache_socache.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_cache

mod_cache_disk

Caching	Guide

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cache_socache
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cache_socache

CacheSocache	Directive

Description: The	shared	object	cache	implementation	to	use
Syntax: CacheSocache	type[:args]

Context: server	config,	virtual	host
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocache	directive	defines	the	name	of	the	shared
object	cache	implementation	to	use,	followed	by	optional
arguments	for	that	implementation.	A	number	of	implementations
of	shared	object	caches	are	available	to	choose	from.

CacheSocache	shmcb

CacheSocacheMaxSize	Directive

Description: The	maximum	size	(in	bytes)	of	an	entry	to	be
placed	in	the	cache

Syntax: CacheSocacheMaxSize	bytes

Default: CacheSocacheMaxSize	102400

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheMaxSize	directive	sets	the	maximum	size,	in
bytes,	for	the	combined	headers	and	body	of	a	document	to	be
considered	for	storage	in	the	cache.	The	larger	the	headers	that
are	stored	alongside	the	body,	the	smaller	the	body	may	be.

The	mod_cache_socache	module	will	only	attempt	to	cache
responses	that	have	an	explicit	content	length,	or	that	are	small
enough	to	be	written	in	one	pass.	This	is	done	to	allow	the
mod_cache_disk	module	to	have	an	opportunity	to	cache
responses	larger	than	those	cacheable	within
mod_cache_socache.

CacheSocacheMaxSize	102400

CacheSocacheMaxTime	Directive

Description: The	maximum	time	(in	seconds)	for	a	document
to	be	placed	in	the	cache

Syntax: CacheSocacheMaxTime	seconds

Default: CacheSocacheMaxTime	86400

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheMaxTime	directive	sets	the	maximum
freshness	lifetime,	in	seconds,	for	a	document	to	be	stored	in	the
cache.	This	value	overrides	the	freshness	lifetime	defined	for	the
document	by	the	HTTP	protocol.

CacheSocacheMaxTime	86400

CacheSocacheMinTime	Directive

Description: The	minimum	time	(in	seconds)	for	a	document
to	be	placed	in	the	cache

Syntax: CacheSocacheMinTime	seconds

Default: CacheSocacheMinTime	600

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheMinTime	directive	sets	the	amount	of
seconds	beyond	the	freshness	lifetime	of	the	response	that	the
response	should	be	cached	for	in	the	shared	object	cache.	If	a
response	is	only	stored	for	its	freshness	lifetime,	there	will	be	no
opportunity	to	revalidate	the	response	to	make	it	fresh	again.

CacheSocacheMinTime	600

CacheSocacheReadSize	Directive

Description: The	minimum	size	(in	bytes)	of	the	document	to
read	and	be	cached	before	sending	the	data
downstream

Syntax: CacheSocacheReadSize	bytes

Default: CacheSocacheReadSize	0

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheReadSize	directive	sets	the	minimum
amount	of	data,	in	bytes,	to	be	read	from	the	backend	before	the
data	is	sent	to	the	client.	The	default	of	zero	causes	all	data	read
of	any	size	to	be	passed	downstream	to	the	client	immediately	as
it	arrives.	Setting	this	to	a	higher	value	causes	the	disk	cache	to
buffer	at	least	this	amount	before	sending	the	result	to	the	client.
This	can	improve	performance	when	caching	content	from	a	slow
reverse	proxy.

This	directive	only	takes	effect	when	the	data	is	being	saved	to	the
cache,	as	opposed	to	data	being	served	from	the	cache.

CacheSocacheReadSize	102400

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

CacheSocacheReadTime	Directive

Description: The	minimum	time	(in	milliseconds)	that	should
elapse	while	reading	before	data	is	sent
downstream

Syntax: CacheSocacheReadTime	milliseconds

Default: CacheSocacheReadTime	0

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_cache_socache
Compatibility: Available	in	Apache	2.4.5	and	later

The	CacheSocacheReadTime	directive	sets	the	minimum
amount	of	elapsed	time	that	should	pass	before	making	an
attempt	to	send	data	downstream	to	the	client.	During	the	time
period,	data	will	be	buffered	before	sending	the	result	to	the	client.
This	can	improve	performance	when	caching	content	from	a
reverse	proxy.

The	default	of	zero	disables	this	option.

This	directive	only	takes	effect	when	the	data	is	being	saved	to	the
cache,	as	opposed	to	data	being	served	from	the	cache.	It	is
recommended	that	this	option	be	used	alongside	the
CacheSocacheReadSize	directive	to	ensure	that	the	server
does	not	buffer	excessively	should	data	arrive	faster	than
expected.

CacheSocacheReadTime	1000

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_cern_meta

Description: CERN	httpd	metafile	semantics
Status: Extension
Module	Identifier: cern_meta_module
Source	File: mod_cern_meta.c

Summary
Emulate	the	CERN	HTTPD	Meta	file	semantics.	Meta	files	are	HTTP
headers	that	can	be	output	in	addition	to	the	normal	range	of	headers
for	each	file	accessed.	They	appear	rather	like	the	Apache	.asis	files,
and	are	able	to	provide	a	crude	way	of	influencing	the	Expires:
header,	as	well	as	providing	other	curiosities.	There	are	many	ways	to
manage	meta	information,	this	one	was	chosen	because	there	is
already	a	large	number	of	CERN	users	who	can	exploit	this	module.

More	information	on	the	CERN	metafile	semantics	is	available.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_headers

mod_asis

http://www.w3.org/pub/WWW/Daemon/User/Config/General.html#MetaDir
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cern_meta
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cern_meta

MetaDir	Directive

Description: Name	of	the	directory	to	find	CERN-style	meta
information	files

Syntax: MetaDir	directory

Default: MetaDir	.web

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Extension
Module: mod_cern_meta

Specifies	the	name	of	the	directory	in	which	Apache	can	find	meta
information	files.	The	directory	is	usually	a	'hidden'	subdirectory	of
the	directory	that	contains	the	file	being	accessed.	Set	to	"."	to
look	in	the	same	directory	as	the	file:

MetaDir	.

Or,	to	set	it	to	a	subdirectory	of	the	directory	containing	the	files:

MetaDir	.meta

MetaFiles	Directive

Description: Activates	CERN	meta-file	processing
Syntax: MetaFiles	on|off

Default: MetaFiles	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Extension
Module: mod_cern_meta

Turns	on/off	Meta	file	processing	on	a	per-directory	basis.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MetaSuffix	Directive

Description: File	name	suffix	for	the	file	containing	CERN-style
meta	information

Syntax: MetaSuffix	suffix

Default: MetaSuffix	.meta

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Extension
Module: mod_cern_meta

Specifies	the	file	name	suffix	for	the	file	containing	the	meta
information.	For	example,	the	default	values	for	the	two	directives
will	cause	a	request	to	DOCUMENT_ROOT/somedir/index.html
to	look	in	DOCUMENT_ROOT/somedir/.web/index.html.meta
and	will	use	its	contents	to	generate	additional	MIME	header
information.

Example:
MetaSuffix	.meta

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_cgi

Description: Execution	of	CGI	scripts
Status: Base
Module	Identifier: cgi_module
Source	File: mod_cgi.c

Summary
Any	file	that	has	the	handler	cgi-script	will	be	treated	as	a	CGI
script,	and	run	by	the	server,	with	its	output	being	returned	to	the
client.	Files	acquire	this	handler	either	by	having	a	name	containing
an	extension	defined	by	the	AddHandler	directive,	or	by	being	in	a
ScriptAlias	directory.

For	an	introduction	to	using	CGI	scripts	with	Apache,	see	our	tutorial
on	Dynamic	Content	With	CGI.

When	using	a	multi-threaded	MPM	under	unix,	the	module	mod_cgid
should	be	used	in	place	of	this	module.	At	the	user	level,	the	two
modules	are	essentially	identical.

For	backward-compatibility,	the	cgi-script	handler	will	also	be
activated	for	any	file	with	the	mime-type	application/x-httpd-
cgi.	The	use	of	the	magic	mime-type	is	deprecated.

Bugfix	checklist
httpd	changelog

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4

Known	issues
Report	a	bug

See	also
AcceptPathInfo

Options	ExecCGI
ScriptAlias

AddHandler

Running	CGI	programs	under	different	user	IDs
CGI	Specification

https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cgi
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cgi
http://www.ietf.org/rfc/rfc3875

CGI	Environment	variables

The	server	will	set	the	CGI	environment	variables	as	described	in
the	CGI	specification,	with	the	following	provisions:

PATH_INFO
This	will	not	be	available	if	the	AcceptPathInfo	directive	is
explicitly	set	to	off.	The	default	behavior,	if
AcceptPathInfo	is	not	given,	is	that	mod_cgi	will	accept
path	info	(trailing	/more/path/info	following	the	script
filename	in	the	URI),	while	the	core	server	will	return	a	404
NOT	FOUND	error	for	requests	with	additional	path	info.
Omitting	the	AcceptPathInfo	directive	has	the	same	effect
as	setting	it	On	for	mod_cgi	requests.

REMOTE_HOST
This	will	only	be	set	if	HostnameLookups	is	set	to	on	(it	is	off
by	default),	and	if	a	reverse	DNS	lookup	of	the	accessing
host's	address	indeed	finds	a	host	name.

REMOTE_IDENT
This	will	only	be	set	if	IdentityCheck	is	set	to	on	and	the
accessing	host	supports	the	ident	protocol.	Note	that	the
contents	of	this	variable	cannot	be	relied	upon	because	it	can
easily	be	faked,	and	if	there	is	a	proxy	between	the	client	and
the	server,	it	is	usually	totally	useless.

REMOTE_USER
This	will	only	be	set	if	the	CGI	script	is	subject	to
authentication.

This	module	also	leverages	the	core	functions
ap_add_common_vars	and	ap_add_cgi_vars	to	add	environment
variables	like:

DOCUMENT_ROOT
Set	with	the	content	of	the	related	DocumentRoot	directive.

http://www.ietf.org/rfc/rfc3875
https://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__SCRIPT.html#ga0e81f9571a8a73f5da0e89e1f46d34b1
https://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__SCRIPT.html#ga6b975cd7ff27a338cb8752381a4cc14f

SERVER_NAME
The	fully	qualified	domain	name	related	to	the	request.

SERVER_ADDR
The	IP	address	of	the	Virtual	Host	serving	the	request.

SERVER_ADMIN
Set	with	the	content	of	the	related	ServerAdmin	directive.

For	an	exhaustive	list	it	is	suggested	to	write	a	basic	CGI	script
that	dumps	all	the	environment	variables	passed	by	Apache	in	a
convenient	format.

CGI	Debugging

Debugging	CGI	scripts	has	traditionally	been	difficult,	mainly
because	it	has	not	been	possible	to	study	the	output	(standard
output	and	error)	for	scripts	which	are	failing	to	run	properly.	These
directives	provide	more	detailed	logging	of	errors	when	they	occur.

CGI	Logfile	Format
When	configured,	the	CGI	error	log	logs	any	CGI	which	does	not
execute	properly.	Each	CGI	script	which	fails	to	operate	causes
several	lines	of	information	to	be	logged.	The	first	two	lines	are
always	of	the	format:

%%	[time]	request-line

%%	HTTP-status	CGI-script-filename

If	the	error	is	that	CGI	script	cannot	be	run,	the	log	file	will	contain
an	extra	two	lines:

%%error

error-message

Alternatively,	if	the	error	is	the	result	of	the	script	returning
incorrect	header	information	(often	due	to	a	bug	in	the	script),	the
following	information	is	logged:

%request

All	HTTP	request	headers	received

POST	or	PUT	entity	(if	any)

%response

All	headers	output	by	the	CGI	script

%stdout

CGI	standard	output

%stderr

CGI	standard	error

(The	%stdout	and	%stderr	parts	may	be	missing	if	the	script	did
not	output	anything	on	standard	output	or	standard	error).

ScriptLog	Directive

Description: Location	of	the	CGI	script	error	logfile
Syntax: ScriptLog	file-path

Context: server	config,	virtual	host
Status: Base
Module: mod_cgi,	mod_cgid

The	ScriptLog	directive	sets	the	CGI	script	error	logfile.	If	no
ScriptLog	is	given,	no	error	log	is	created.	If	given,	any	CGI
errors	are	logged	into	the	filename	given	as	argument.	If	this	is	a
relative	file	or	path	it	is	taken	relative	to	the	ServerRoot.

Example
ScriptLog	logs/cgi_log

This	log	will	be	opened	as	the	user	the	child	processes	run	as,	i.e.
the	user	specified	in	the	main	User	directive.	This	means	that
either	the	directory	the	script	log	is	in	needs	to	be	writable	by	that
user	or	the	file	needs	to	be	manually	created	and	set	to	be	writable
by	that	user.	If	you	place	the	script	log	in	your	main	logs	directory,
do	NOT	change	the	directory	permissions	to	make	it	writable	by
the	user	the	child	processes	run	as.

Note	that	script	logging	is	meant	to	be	a	debugging	feature	when
writing	CGI	scripts,	and	is	not	meant	to	be	activated	continuously
on	running	servers.	It	is	not	optimized	for	speed	or	efficiency,	and
may	have	security	problems	if	used	in	a	manner	other	than	that	for
which	it	was	designed.

ScriptLogBuffer	Directive

Description: Maximum	amount	of	PUT	or	POST	requests	that
will	be	recorded	in	the	scriptlog

Syntax: ScriptLogBuffer	bytes

Default: ScriptLogBuffer	1024

Context: server	config,	virtual	host
Status: Base
Module: mod_cgi,	mod_cgid

The	size	of	any	PUT	or	POST	entity	body	that	is	logged	to	the	file
is	limited,	to	prevent	the	log	file	growing	too	big	too	quickly	if	large
bodies	are	being	received.	By	default,	up	to	1024	bytes	are
logged,	but	this	can	be	changed	with	this	directive.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ScriptLogLength	Directive

Description: Size	limit	of	the	CGI	script	logfile
Syntax: ScriptLogLength	bytes

Default: ScriptLogLength	10385760

Context: server	config,	virtual	host
Status: Base
Module: mod_cgi,	mod_cgid

ScriptLogLength	can	be	used	to	limit	the	size	of	the	CGI	script
logfile.	Since	the	logfile	logs	a	lot	of	information	per	CGI	error	(all
request	headers,	all	script	output)	it	can	grow	to	be	a	big	file.	To
prevent	problems	due	to	unbounded	growth,	this	directive	can	be
used	to	set	an	maximum	file-size	for	the	CGI	logfile.	If	the	file
exceeds	this	size,	no	more	information	will	be	written	to	it.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_cgid

Description: Execution	of	CGI	scripts	using	an	external	CGI
daemon

Status: Base
Module	Identifier: cgid_module
Source	File: mod_cgid.c
Compatibility: Unix	threaded	MPMs	only

Summary
Except	for	the	optimizations	and	the	additional	ScriptSock	directive
noted	below,	mod_cgid	behaves	similarly	to	mod_cgi.	See	the
mod_cgi	summary	for	additional	details	about	Apache	and	CGI.

On	certain	unix	operating	systems,	forking	a	process	from	a	multi-
threaded	server	is	a	very	expensive	operation	because	the	new
process	will	replicate	all	the	threads	of	the	parent	process.	In	order	to
avoid	incurring	this	expense	on	each	CGI	invocation,	mod_cgid
creates	an	external	daemon	that	is	responsible	for	forking	child
processes	to	run	CGI	scripts.	The	main	server	communicates	with	this
daemon	using	a	unix	domain	socket.

This	module	is	used	by	default	instead	of	mod_cgi	whenever	a	multi-
threaded	MPM	is	selected	during	the	compilation	process.	At	the	user
level,	this	module	is	identical	in	configuration	and	operation	to
mod_cgi.	The	only	exception	is	the	additional	directive	ScriptSock
which	gives	the	name	of	the	socket	to	use	for	communication	with	the
cgi	daemon.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_cgi

Running	CGI	programs	under	different	user	IDs

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_cgid
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_cgid

CGIDScriptTimeout	Directive

Description: The	length	of	time	to	wait	for	more	output	from
the	CGI	program

Syntax: CGIDScriptTimeout	time[s|ms]

Default: value	of	Timeout	directive	when	unset
Context: server	config,	virtual	host,	directory,	.htaccess
Status: Base
Module: mod_cgid
Compatibility: CGIDScriptTimeout	defaults	to	zero	in	releases

2.4	and	earlier

This	directive	limits	the	length	of	time	to	wait	for	more	output	from
the	CGI	program.	If	the	time	is	exceeded,	the	request	and	CGI	are
terminated.

Example
CGIDScriptTimeout	20

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ScriptSock	Directive

Description: The	filename	prefix	of	the	socket	to	use	for
communication	with	the	cgi	daemon

Syntax: ScriptSock	file-path

Default: ScriptSock	cgisock

Context: server	config
Status: Base
Module: mod_cgid

This	directive	sets	the	filename	prefix	of	the	socket	to	use	for
communication	with	the	CGI	daemon,	an	extension	corresponding
to	the	process	ID	of	the	server	will	be	appended.	The	socket	will
be	opened	using	the	permissions	of	the	user	who	starts	Apache
(usually	root).	To	maintain	the	security	of	communications	with
CGI	scripts,	it	is	important	that	no	other	user	has	permission	to
write	in	the	directory	where	the	socket	is	located.

If	file-path	is	not	an	absolute	path,	the	location	specified	will	be
relative	to	the	value	of	DefaultRuntimeDir.

Example
ScriptSock	/var/run/cgid.sock

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_charset_lite

Description: Specify	character	set	translation	or	recoding
Status: Extension
Module	Identifier: charset_lite_module
Source	File: mod_charset_lite.c

Summary
mod_charset_lite	allows	the	server	to	change	the	character	set	of
responses	before	sending	them	to	the	client.	In	an	EBCDIC
environment,	Apache	always	translates	HTTP	protocol	content	(e.g.
response	headers)	from	the	code	page	of	the	Apache	process	locale
to	ISO-8859-1,	but	not	the	body	of	responses.	In	any	environment,
mod_charset_lite	can	be	used	to	specify	that	response	bodies
should	be	translated.	For	example,	if	files	are	stored	in	EBCDIC,	then
mod_charset_lite	can	translate	them	to	ISO-8859-1	before
sending	them	to	the	client.

This	module	provides	a	small	subset	of	configuration	mechanisms
implemented	by	Russian	Apache	and	its	associated	mod_charset.

Common	Problems

Invalid	character	set	names
The	character	set	name	parameters	of	CharsetSourceEnc	and
CharsetDefault	must	be	acceptable	to	the	translation
mechanism	used	by	APR	on	the	system	where
mod_charset_lite	is	deployed.	These	character	set	names	are
not	standardized	and	are	usually	not	the	same	as	the
corresponding	values	used	in	http	headers.	Currently,	APR	can
only	use	iconv(3),	so	you	can	easily	test	your	character	set	names
using	the	iconv(1)	program,	as	follows:

iconv	-f	charsetsourceenc-value	-t	charsetdefault-value

Mismatch	between	character	set	of	content	and
translation	rules
If	the	translation	rules	don't	make	sense	for	the	content,	translation
can	fail	in	various	ways,	including:

The	translation	mechanism	may	return	a	bad	return	code,	and
the	connection	will	be	aborted.
The	translation	mechanism	may	silently	place	special
characters	(e.g.,	question	marks)	in	the	output	buffer	when	it
cannot	translate	the	input	buffer.

CharsetDefault	Directive

Description: Charset	to	translate	into
Syntax: CharsetDefault	charset

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_charset_lite

The	CharsetDefault	directive	specifies	the	charset	that	content
in	the	associated	container	should	be	translated	to.

The	value	of	the	charset	argument	must	be	accepted	as	a	valid
character	set	name	by	the	character	set	support	in	APR.
Generally,	this	means	that	it	must	be	supported	by	iconv.

Example
<Directory	"/export/home/trawick/apacheinst/htdocs/convert">

				CharsetSourceEnc		UTF-16BE

				CharsetDefault				ISO-8859-1

</Directory>

Specifying	the	same	charset	for	both	CharsetSourceEnc	and
CharsetDefault	disables	translation.	The	charset	need	not
match	the	charset	of	the	response,	but	it	must	be	a	valid	charset
on	the	system.

CharsetOptions	Directive

Description: Configures	charset	translation	behavior
Syntax: CharsetOptions	option	[option]	...

Default: CharsetOptions	ImplicitAdd

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_charset_lite

The	CharsetOptions	directive	configures	certain	behaviors	of
mod_charset_lite.	Option	can	be	one	of

ImplicitAdd	|	NoImplicitAdd

The	ImplicitAdd	keyword	specifies	that
mod_charset_lite	should	implicitly	insert	its	filter	when	the
configuration	specifies	that	the	character	set	of	content	should
be	translated.	If	the	filter	chain	is	explicitly	configured	using
the	AddOutputFilter	directive,	NoImplicitAdd	should
be	specified	so	that	mod_charset_lite	doesn't	add	its
filter.

TranslateAllMimeTypes	|	NoTranslateAllMimeTypes

Normally,	mod_charset_lite	will	only	perform	translation
on	a	small	subset	of	possible	mimetypes.	When	the
TranslateAllMimeTypes	keyword	is	specified	for	a	given
configuration	section,	translation	is	performed	without	regard
for	mimetype.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

CharsetSourceEnc	Directive

Description: Source	charset	of	files
Syntax: CharsetSourceEnc	charset

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_charset_lite

The	CharsetSourceEnc	directive	specifies	the	source	charset	of
files	in	the	associated	container.

The	value	of	the	charset	argument	must	be	accepted	as	a	valid
character	set	name	by	the	character	set	support	in	APR.
Generally,	this	means	that	it	must	be	supported	by	iconv.

Example
<Directory	"/export/home/trawick/apacheinst/htdocs/convert">

				CharsetSourceEnc		UTF-16BE

				CharsetDefault				ISO-8859-1

</Directory>

The	character	set	names	in	this	example	work	with	the	iconv
translation	support	in	Solaris	8.

Specifying	the	same	charset	for	both	CharsetSourceEnc	and
CharsetDefault	disables	translation.	The	charset	need	not
match	the	charset	of	the	response,	but	it	must	be	a	valid	charset
on	the	system.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_data

Description: Convert	response	body	into	an	RFC2397	data
URL

Status: Extension
Module	Identifier: data_module
Source	File: mod_data.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
This	module	provides	the	ability	to	convert	a	response	into	an
RFC2397	data	URL.

Data	URLs	can	be	embedded	inline	within	web	pages	using
something	like	the	mod_include	module,	to	remove	the	need	for
clients	to	make	separate	connections	to	fetch	what	may	potentially	be
many	small	images.	Data	URLs	may	also	be	included	into	pages
generated	by	scripting	languages	such	as	PHP.

An	example	of	a	data	URL


AAAC8IyPqcvt3wCcDkiLc7C0qwyGHhSWpjQu5yqmCYsapyuvUUlvONmOZtfzgFz

ByTB10QgxOR0TqBQejhRNzOfkVJ+5YiUqrXF5Y5lKh/DeuNcP5yLWGsEbtLiOSp

a/TPg7JpJHxyendzWTBfX0cxOnKPjgBzi4diinWGdkF8kjdfnycQZXZeYGejmJl

ZeGl9i2icVqaNVailT6F5iJ90m6mvuTS4OK05M0vDk0Q4XUtwvKOzrcd3iq9uis

F81M1OIcR7lEewwcLp7tuNNkM3uNna3F2JQFo97Vriy/Xl4/f1cf5VWzXyym7PH

hhx4dbgYKAAA7

The	filter	takes	no	parameters,	and	can	be	added	to	the	filter	stack
using	the	SetOutputFilter	directive,	or	any	of	the	directives
supported	by	the	mod_filter	module.

Configuring	the	filter
<Location	"/data/images">

http://tools.ietf.org/html/rfc2397

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

				SetOutputFilter	DATA

</Location>

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Filters

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_data
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_data
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dav

Description: Distributed	Authoring	and	Versioning	(WebDAV)
functionality

Status: Extension
Module	Identifier: dav_module
Source	File: mod_dav.c

Summary
This	module	provides	class	1	and	class	2	WebDAV	('Web-based
Distributed	Authoring	and	Versioning')	functionality	for	Apache.	This
extension	to	the	HTTP	protocol	allows	creating,	moving,	copying,	and
deleting	resources	and	collections	on	a	remote	web	server.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
DavLockDB

LimitXMLRequestBody

WebDAV	Resources

http://www.webdav.org/
http://www.webdav.org
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_dav
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_dav
http://www.webdav.org

Enabling	WebDAV

To	enable	mod_dav,	add	the	following	to	a	container	in	your
httpd.conf	file:

Dav	On

This	enables	the	DAV	file	system	provider,	which	is	implemented
by	the	mod_dav_fs	module.	Therefore,	that	module	must	be
compiled	into	the	server	or	loaded	at	runtime	using	the
LoadModule	directive.

In	addition,	a	location	for	the	DAV	lock	database	must	be	specified
in	the	global	section	of	your	httpd.conf	file	using	the
DavLockDB	directive:

DavLockDB	/usr/local/apache2/var/DavLock

The	directory	containing	the	lock	database	file	must	be	writable	by
the	User	and	Group	under	which	Apache	is	running.

You	may	wish	to	add	a	<Limit>	clause	inside	the	<Location>
directive	to	limit	access	to	DAV-enabled	locations.	If	you	want	to
set	the	maximum	amount	of	bytes	that	a	DAV	client	can	send	at
one	request,	you	have	to	use	the	LimitXMLRequestBody
directive.	The	"normal"	LimitRequestBody	directive	has	no
effect	on	DAV	requests.

Full	Example
DavLockDB	"/usr/local/apache2/var/DavLock"

<Directory	"/usr/local/apache2/htdocs/foo">

				Require	all	granted

				Dav	On

				AuthType	Basic

				AuthName	DAV

				AuthUserFile	"user.passwd"

				<LimitExcept	GET	POST	OPTIONS>

								Require	user	admin

				</LimitExcept>

</Directory>

Security	Issues

Since	DAV	access	methods	allow	remote	clients	to	manipulate
files	on	the	server,	you	must	take	particular	care	to	assure	that
your	server	is	secure	before	enabling	mod_dav.

Any	location	on	the	server	where	DAV	is	enabled	should	be
protected	by	authentication.	The	use	of	HTTP	Basic	Authentication
is	not	recommended.	You	should	use	at	least	HTTP	Digest
Authentication,	which	is	provided	by	the	mod_auth_digest
module.	Nearly	all	WebDAV	clients	support	this	authentication
method.	An	alternative	is	Basic	Authentication	over	an	SSL
enabled	connection.

In	order	for	mod_dav	to	manage	files,	it	must	be	able	to	write	to
the	directories	and	files	under	its	control	using	the	User	and
Group	under	which	Apache	is	running.	New	files	created	will	also
be	owned	by	this	User	and	Group.	For	this	reason,	it	is	important
to	control	access	to	this	account.	The	DAV	repository	is
considered	private	to	Apache;	modifying	files	outside	of	Apache
(for	example	using	FTP	or	filesystem-level	tools)	should	not	be
allowed.

mod_dav	may	be	subject	to	various	kinds	of	denial-of-service
attacks.	The	LimitXMLRequestBody	directive	can	be	used	to
limit	the	amount	of	memory	consumed	in	parsing	large	DAV
requests.	The	DavDepthInfinity	directive	can	be	used	to
prevent	PROPFIND	requests	on	a	very	large	repository	from
consuming	large	amounts	of	memory.	Another	possible	denial-of-
service	attack	involves	a	client	simply	filling	up	all	available	disk
space	with	many	large	files.	There	is	no	direct	way	to	prevent	this
in	Apache,	so	you	should	avoid	giving	DAV	access	to	untrusted
users.

Complex	Configurations

One	common	request	is	to	use	mod_dav	to	manipulate	dynamic
files	(PHP	scripts,	CGI	scripts,	etc).	This	is	difficult	because	a	GET
request	will	always	run	the	script,	rather	than	downloading	its
contents.	One	way	to	avoid	this	is	to	map	two	different	URLs	to	the
content,	one	of	which	will	run	the	script,	and	one	of	which	will	allow
it	to	be	downloaded	and	manipulated	with	DAV.

Alias	"/phparea"	"/home/gstein/php_files"

Alias	"/php-source"	"/home/gstein/php_files"

<Location	"/php-source">

				Dav	On

				ForceType	text/plain

</Location>

With	this	setup,	http://example.com/phparea	can	be	used
to	access	the	output	of	the	PHP	scripts,	and
http://example.com/php-source	can	be	used	with	a	DAV
client	to	manipulate	them.

Dav	Directive

Description: Enable	WebDAV	HTTP	methods
Syntax: Dav	On|Off|provider-name

Default: Dav	Off

Context: directory
Status: Extension
Module: mod_dav

Use	the	Dav	directive	to	enable	the	WebDAV	HTTP	methods	for
the	given	container:

<Location	"/foo">

				Dav	On

</Location>

The	value	On	is	actually	an	alias	for	the	default	provider
filesystem	which	is	served	by	the	mod_dav_fs	module.	Note,
that	once	you	have	DAV	enabled	for	some	location,	it	cannot	be
disabled	for	sublocations.	For	a	complete	configuration	example
have	a	look	at	the	section	above.

Do	not	enable	WebDAV	until	you	have	secured	your	server.
Otherwise	everyone	will	be	able	to	distribute	files	on	your
system.

DavDepthInfinity	Directive

Description: Allow	PROPFIND,	Depth:	Infinity	requests
Syntax: DavDepthInfinity	on|off

Default: DavDepthInfinity	off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_dav

Use	the	DavDepthInfinity	directive	to	allow	the	processing	of
PROPFIND	requests	containing	the	header	'Depth:	Infinity'.
Because	this	type	of	request	could	constitute	a	denial-of-service
attack,	by	default	it	is	not	allowed.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

DavMinTimeout	Directive

Description: Minimum	amount	of	time	the	server	holds	a	lock	on
a	DAV	resource

Syntax: DavMinTimeout	seconds

Default: DavMinTimeout	0

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_dav

When	a	client	requests	a	DAV	resource	lock,	it	can	also	specify	a
time	when	the	lock	will	be	automatically	removed	by	the	server.
This	value	is	only	a	request,	and	the	server	can	ignore	it	or	inform
the	client	of	an	arbitrary	value.

Use	the	DavMinTimeout	directive	to	specify,	in	seconds,	the
minimum	lock	timeout	to	return	to	a	client.	Microsoft	Web	Folders
defaults	to	a	timeout	of	120	seconds;	the	DavMinTimeout	can
override	this	to	a	higher	value	(like	600	seconds)	to	reduce	the
chance	of	the	client	losing	the	lock	due	to	network	latency.

Example
<Location	"/MSWord">

				DavMinTimeout	600

</Location>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dav_fs

Description: Filesystem	provider	for	mod_dav
Status: Extension
Module	Identifier: dav_fs_module
Source	File: mod_dav_fs.c

Summary
This	module	requires	the	service	of	mod_dav.	It	acts	as	a	support
module	for	mod_dav	and	provides	access	to	resources	located	in	the
server's	file	system.	The	formal	name	of	this	provider	is	filesystem.
mod_dav	backend	providers	will	be	invoked	by	using	the	Dav
directive:

Example
Dav	filesystem

Since	filesystem	is	the	default	provider	for	mod_dav,	you	may
simply	use	the	value	On	instead.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_dav_fs
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_dav_fs

mod_dav

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

DavLockDB	Directive

Description: Location	of	the	DAV	lock	database
Syntax: DavLockDB	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_dav_fs

Use	the	DavLockDB	directive	to	specify	the	full	path	to	the	lock
database,	excluding	an	extension.	If	the	path	is	not	absolute,	it	will
be	taken	relative	to	ServerRoot.	The	implementation	of
mod_dav_fs	uses	a	SDBM	database	to	track	user	locks.

Example
DavLockDB	"var/DavLock"

The	directory	containing	the	lock	database	file	must	be	writable	by
the	User	and	Group	under	which	Apache	is	running.	For	security
reasons,	you	should	create	a	directory	for	this	purpose	rather	than
changing	the	permissions	on	an	existing	directory.	In	the	above
example,	Apache	will	create	files	in	the	var/	directory	under	the
ServerRoot	with	the	base	filename	DavLock	and	extension
name	chosen	by	the	server.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dav_lock

Description: Generic	locking	module	for	mod_dav
Status: Extension
Module	Identifier: dav_lock_module
Source	File: mod_dav_lock.c
Compatibility: Available	in	version	2.1	and	later

Summary
This	module	implements	a	generic	locking	API	which	can	be	used	by
any	backend	provider	of	mod_dav.	It	requires	at	least	the	service	of
mod_dav.	But	without	a	backend	provider	which	makes	use	of	it,	it's
useless	and	should	not	be	loaded	into	the	server.	A	sample	backend
module	which	actually	utilizes	mod_dav_lock	is	mod_dav_svn,	the
subversion	provider	module.

Note	that	mod_dav_fs	does	not	need	this	generic	locking	module,
because	it	uses	its	own	more	specialized	version.

In	order	to	make	mod_dav_lock	functional,	you	just	have	to	specify
the	location	of	the	lock	database	using	the	DavGenericLockDB
directive	described	below.

Developer's	Note

In	order	to	retrieve	the	pointer	to	the	locking	provider	function,	you
have	to	use	the	ap_lookup_provider	API	with	the	arguments
dav-lock,	generic,	and	0.

http://subversion.apache.org/

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_dav

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_dav_lock
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_dav_lock

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

DavGenericLockDB	Directive

Description: Location	of	the	DAV	lock	database
Syntax: DavGenericLockDB	file-path

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_dav_lock

Use	the	DavGenericLockDB	directive	to	specify	the	full	path	to
the	lock	database,	excluding	an	extension.	If	the	path	is	not
absolute,	it	will	be	interpreted	relative	to	ServerRoot.	The
implementation	of	mod_dav_lock	uses	a	SDBM	database	to
track	user	locks.

Example
DavGenericLockDB	var/DavLock

The	directory	containing	the	lock	database	file	must	be	writable	by
the	User	and	Group	under	which	Apache	is	running.	For	security
reasons,	you	should	create	a	directory	for	this	purpose	rather	than
changing	the	permissions	on	an	existing	directory.	In	the	above
example,	Apache	will	create	files	in	the	var/	directory	under	the
ServerRoot	with	the	base	filename	DavLock	and	an	extension
added	by	the	server.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dbd

Description: Manages	SQL	database	connections
Status: Extension
Module	Identifier: dbd_module
Source	File: mod_dbd.c
Compatibility: Version	2.1	and	later

Summary
mod_dbd	manages	SQL	database	connections	using	APR.	It	provides
database	connections	on	request	to	modules	requiring	SQL	database
functions,	and	takes	care	of	managing	databases	with	optimal
efficiency	and	scalability	for	both	threaded	and	non-threaded	MPMs.
For	details,	see	the	APR	website	and	this	overview	of	the	Apache
DBD	Framework	by	its	original	developer.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Password	Formats

http://apr.apache.org/
http://people.apache.org/~niq/dbd.html
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_dbd
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_dbd

Connection	Pooling

This	module	manages	database	connections,	in	a	manner
optimised	for	the	platform.	On	non-threaded	platforms,	it	provides
a	persistent	connection	in	the	manner	of	classic	LAMP	(Linux,
Apache,	Mysql,	Perl/PHP/Python).	On	threaded	platform,	it
provides	an	altogether	more	scalable	and	efficient	connection
pool,	as	described	in	this	article	at	ApacheTutor.	Note	that
mod_dbd	supersedes	the	modules	presented	in	that	article.

http://www.apachetutor.org/dev/reslist

Connecting

To	connect	to	your	database,	you'll	need	to	specify	a	driver,	and
connection	parameters.	These	vary	from	one	database	engine	to
another.	For	example,	to	connect	to	mysql,	do	the	following:

DBDriver	mysql

DBDParams	host=localhost,dbname=pony,user=shetland,pass=appaloosa

You	can	then	use	this	connection	in	a	variety	of	other	modules,
including	mod_rewrite,	mod_authn_dbd,	and	mod_lua.
Further	usage	examples	appear	in	each	of	those	modules'
documentation.

See	DBDParams	for	connection	string	information	for	each	of	the
supported	database	drivers.

Apache	DBD	API

mod_dbd	exports	five	functions	for	other	modules	to	use.	The	API
is	as	follows:

typedef	struct	{

				apr_dbd_t	*handle;

				apr_dbd_driver_t	*driver;

				apr_hash_t	*prepared;

}	ap_dbd_t;

/*	Export	functions	to	access	the	database	*/

/*	acquire	a	connection	that	MUST	be	explicitly	closed.

	*	Returns	NULL	on	error

	*/

AP_DECLARE(ap_dbd_t*)	ap_dbd_open(apr_pool_t*,	server_rec*);

/*	release	a	connection	acquired	with	ap_dbd_open	*/

AP_DECLARE(void)	ap_dbd_close(server_rec*,	ap_dbd_t*);

/*	acquire	a	connection	that	will	have	the	lifetime	of	a	request

	*	and	MUST	NOT	be	explicitly	closed.		Return	NULL	on	error.

	*	This	is	the	preferred	function	for	most	applications.

	*/

AP_DECLARE(ap_dbd_t*)	ap_dbd_acquire(request_rec*);

/*	acquire	a	connection	that	will	have	the	lifetime	of	a	connection

	*	and	MUST	NOT	be	explicitly	closed.		Return	NULL	on	error.

	*/

AP_DECLARE(ap_dbd_t*)	ap_dbd_cacquire(conn_rec*);

/*	Prepare	a	statement	for	use	by	a	client	module	*/

AP_DECLARE(void)	ap_dbd_prepare(server_rec*,	const	char*,	const	char*);

/*	Also	export	them	as	optional	functions	for	modules	that	prefer	it	*/

APR_DECLARE_OPTIONAL_FN(ap_dbd_t*,	ap_dbd_open,	(apr_pool_t*,	server_rec*));

APR_DECLARE_OPTIONAL_FN(void,	ap_dbd_close,	(server_rec*,	ap_dbd_t*));

APR_DECLARE_OPTIONAL_FN(ap_dbd_t*,	ap_dbd_acquire,	(request_rec*));

APR_DECLARE_OPTIONAL_FN(ap_dbd_t*,	ap_dbd_cacquire,	(conn_rec*));

APR_DECLARE_OPTIONAL_FN(void,	ap_dbd_prepare,	(server_rec*,	const	char*,	const	char*));

SQL	Prepared	Statements

mod_dbd	supports	SQL	prepared	statements	on	behalf	of
modules	that	may	wish	to	use	them.	Each	prepared	statement
must	be	assigned	a	name	(label),	and	they	are	stored	in	a	hash:
the	prepared	field	of	an	ap_dbd_t.	Hash	entries	are	of	type
apr_dbd_prepared_t	and	can	be	used	in	any	of	the	apr_dbd
prepared	statement	SQL	query	or	select	commands.

It	is	up	to	dbd	user	modules	to	use	the	prepared	statements	and
document	what	statements	can	be	specified	in	httpd.conf,	or	to
provide	their	own	directives	and	use	ap_dbd_prepare.

Caveat
When	using	prepared	statements	with	a	MySQL	database,	it	is
preferred	to	set	reconnect	to	0	in	the	connection	string	as	to
avoid	errors	that	arise	from	the	MySQL	client	reconnecting
without	properly	resetting	the	prepared	statements.	If	set	to	1,
any	broken	connections	will	be	attempted	fixed,	but	as
mod_dbd	is	not	informed,	the	prepared	statements	will	be
invalidated.

SECURITY	WARNING

Any	web/database	application	needs	to	secure	itself	against	SQL
injection	attacks.	In	most	cases,	Apache	DBD	is	safe,	because
applications	use	prepared	statements,	and	untrusted	inputs	are
only	ever	used	as	data.	Of	course,	if	you	use	it	via	third-party
modules,	you	should	ascertain	what	precautions	they	may	require.

However,	the	FreeTDS	driver	is	inherently	unsafe.	The	underlying
library	doesn't	support	prepared	statements,	so	the	driver
emulates	them,	and	the	untrusted	input	is	merged	into	the	SQL
statement.

It	can	be	made	safe	by	untainting	all	inputs:	a	process	inspired	by
Perl's	taint	checking.	Each	input	is	matched	against	a	regexp,	and
only	the	match	is	used,	according	to	the	Perl	idiom:

		$untrusted	=~	/([a-z]+)/;

		$trusted	=	$1;

To	use	this,	the	untainting	regexps	must	be	included	in	the
prepared	statements	configured.	The	regexp	follows	immediately
after	the	%	in	the	prepared	statement,	and	is	enclosed	in	curly
brackets	{}.	For	example,	if	your	application	expects	alphanumeric
input,	you	can	use:

"SELECT	foo	FROM	bar	WHERE	input	=	%s"

with	other	drivers,	and	suffer	nothing	worse	than	a	failed	query.
But	with	FreeTDS	you'd	need:

"SELECT	foo	FROM	bar	WHERE	input	=	%{([A-Za-z0-9]+)}s"

Now	anything	that	doesn't	match	the	regexp's	$1	match	is
discarded,	so	the	statement	is	safe.

An	alternative	to	this	may	be	the	third-party	ODBC	driver,	which
offers	the	security	of	genuine	prepared	statements.

DBDExptime	Directive

Description: Keepalive	time	for	idle	connections
Syntax: DBDExptime	time-in-seconds

Default: DBDExptime	300

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Set	the	time	to	keep	idle	connections	alive	when	the	number	of
connections	specified	in	DBDKeep	has	been	exceeded	(threaded
platforms	only).

DBDInitSQL	Directive

Description: Execute	an	SQL	statement	after	connecting	to	a
database

Syntax: DBDInitSQL	"SQL	statement"

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Modules,	that	wish	it,	can	have	one	or	more	SQL	statements
executed	when	a	connection	to	a	database	is	created.	Example
usage	could	be	initializing	certain	values	or	adding	a	log	entry
when	a	new	connection	is	made	to	the	database.

DBDKeep	Directive

Description: Maximum	sustained	number	of	connections
Syntax: DBDKeep	number

Default: DBDKeep	2

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Set	the	maximum	number	of	connections	per	process	to	be
sustained,	other	than	for	handling	peak	demand	(threaded
platforms	only).

DBDMax	Directive

Description: Maximum	number	of	connections
Syntax: DBDMax	number

Default: DBDMax	10

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Set	the	hard	maximum	number	of	connections	per	process
(threaded	platforms	only).

DBDMin	Directive

Description: Minimum	number	of	connections
Syntax: DBDMin	number

Default: DBDMin	1

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Set	the	minimum	number	of	connections	per	process	(threaded
platforms	only).

DBDParams	Directive

Description: Parameters	for	database	connection
Syntax: DBDParams

param1=value1[,param2=value2]

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

As	required	by	the	underlying	driver.	Typically	this	will	be	used	to
pass	whatever	cannot	be	defaulted	amongst	username,	password,
database	name,	hostname	and	port	number	for	connection.

Connection	string	parameters	for	current	drivers	include:

FreeTDS	(for	MSSQL	and	SyBase)
username,	password,	appname,	dbname,	host,	charset,	lang,
server

MySQL
host,	port,	user,	pass,	dbname,	sock,	flags,	fldsz,	group,
reconnect

Oracle
user,	pass,	dbname,	server

PostgreSQL
The	connection	string	is	passed	straight	through	to
PQconnectdb

SQLite2
The	connection	string	is	split	on	a	colon,	and	part1:part2
is	used	as	sqlite_open(part1,	atoi(part2),	NULL)

SQLite3
The	connection	string	is	passed	straight	through	to
sqlite3_open

ODBC

datasource,	user,	password,	connect,	ctimeout,	stimeout,
access,	txmode,	bufsize

DBDPersist	Directive

Description: Whether	to	use	persistent	connections
Syntax: DBDPersist	On|Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

If	set	to	Off,	persistent	and	pooled	connections	are	disabled.	A
new	database	connection	is	opened	when	requested	by	a	client,
and	closed	immediately	on	release.	This	option	is	for	debugging
and	low-usage	servers.

The	default	is	to	enable	a	pool	of	persistent	connections	(or	a
single	LAMP-style	persistent	connection	in	the	case	of	a	non-
threaded	server),	and	should	almost	always	be	used	in	operation.

Prior	to	version	2.2.2,	this	directive	accepted	only	the	values	0	and
1	instead	of	Off	and	On,	respectively.

DBDPrepareSQL	Directive

Description: Define	an	SQL	prepared	statement
Syntax: DBDPrepareSQL	"SQL	statement"	label

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

For	modules	such	as	authentication	that	repeatedly	use	a	single
SQL	statement,	optimum	performance	is	achieved	by	preparing
the	statement	at	startup	rather	than	every	time	it	is	used.	This
directive	prepares	an	SQL	statement	and	assigns	it	a	label.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

DBDriver	Directive

Description: Specify	an	SQL	driver
Syntax: DBDriver	name

Context: server	config,	virtual	host
Status: Extension
Module: mod_dbd

Selects	an	apr_dbd	driver	by	name.	The	driver	must	be	installed
on	your	system	(on	most	systems,	it	will	be	a	shared	object	or	dll).
For	example,	DBDriver	mysql	will	select	the	MySQL	driver	in
apr_dbd_mysql.so.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_deflate

Description: Compress	content	before	it	is	delivered	to	the
client

Status: Extension
Module	Identifier: deflate_module
Source	File: mod_deflate.c

Summary
The	mod_deflate	module	provides	the	DEFLATE	output	filter	that
allows	output	from	your	server	to	be	compressed	before	being	sent	to
the	client	over	the	network.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Filters

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_deflate
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_deflate

Supported	Encodings

The	gzip	encoding	is	the	only	one	supported	to	ensure	complete
compatibility	with	old	browser	implementations.	The	deflate
encoding	is	not	supported,	please	check	the	zlib's	documentation
for	a	complete	explanation.

http://www.gzip.org/zlib/zlib_faq.html#faq38

Sample	Configurations

Compression	and	TLS

Some	web	applications	are	vulnerable	to	an	information
disclosure	attack	when	a	TLS	connection	carries	deflate
compressed	data.	For	more	information,	review	the	details	of
the	"BREACH"	family	of	attacks.

This	is	a	simple	configuration	that	compresses	common	text-
based	content	types.

Compress	only	a	few	types
AddOutputFilterByType	DEFLATE	text/html	text/plain	text/xml	text/css	text/javascript	application/javascript

Enabling	Compression

Compression	and	TLS

Some	web	applications	are	vulnerable	to	an	information
disclosure	attack	when	a	TLS	connection	carries	deflate
compressed	data.	For	more	information,	review	the	details	of
the	"BREACH"	family	of	attacks.

Output	Compression
Compression	is	implemented	by	the	DEFLATE	filter.	The	following
directive	will	enable	compression	for	documents	in	the	container
where	it	is	placed:

SetOutputFilter	DEFLATE

SetEnvIfNoCase	Request_URI	"\.(?:gif|jpe?g|png)$"	no-gzip

If	you	want	to	restrict	the	compression	to	particular	MIME	types	in
general,	you	may	use	the	AddOutputFilterByType	directive.
Here	is	an	example	of	enabling	compression	only	for	the	html	files
of	the	Apache	documentation:

<Directory	"/your-server-root/manual">

				AddOutputFilterByType	DEFLATE	text/html

</Directory>

Note
The	DEFLATE	filter	is	always	inserted	after	RESOURCE	filters
like	PHP	or	SSI.	It	never	touches	internal	subrequests.

Note

There	is	an	environment	variable	force-gzip,	set	via	SetEnv,
which	will	ignore	the	accept-encoding	setting	of	your	browser
and	will	send	compressed	output.

Output	Decompression
The	mod_deflate	module	also	provides	a	filter	for
inflating/uncompressing	a	gzip	compressed	response	body.	In
order	to	activate	this	feature	you	have	to	insert	the	INFLATE	filter
into	the	output	filter	chain	using	SetOutputFilter	or
AddOutputFilter,	for	example:

<Location	"/dav-area">

				ProxyPass	"http://example.com/"

				SetOutputFilter	INFLATE

</Location>

This	Example	will	uncompress	gzip'ed	output	from	example.com,
so	other	filters	can	do	further	processing	with	it.

Input	Decompression
The	mod_deflate	module	also	provides	a	filter	for
decompressing	a	gzip	compressed	request	body	.	In	order	to
activate	this	feature	you	have	to	insert	the	DEFLATE	filter	into	the
input	filter	chain	using	SetInputFilter	or	AddInputFilter,
for	example:

<Location	"/dav-area">

				SetInputFilter	DEFLATE

</Location>

Now	if	a	request	contains	a	Content-Encoding:	gzip	header,
the	body	will	be	automatically	decompressed.	Few	browsers	have

the	ability	to	gzip	request	bodies.	However,	some	special
applications	actually	do	support	request	compression,	for	instance
some	WebDAV	clients.

Note	on	Content-Length

If	you	evaluate	the	request	body	yourself,	don't	trust	the
Content-Length	header!	The	Content-Length	header	reflects
the	length	of	the	incoming	data	from	the	client	and	not	the	byte
count	of	the	decompressed	data	stream.

http://www.webdav.org

Dealing	with	proxy	servers

The	mod_deflate	module	sends	a	Vary:	Accept-Encoding
HTTP	response	header	to	alert	proxies	that	a	cached	response
should	be	sent	only	to	clients	that	send	the	appropriate	Accept-
Encoding	request	header.	This	prevents	compressed	content
from	being	sent	to	a	client	that	will	not	understand	it.

If	you	use	some	special	exclusions	dependent	on,	for	example,	the
User-Agent	header,	you	must	manually	configure	an	addition	to
the	Vary	header	to	alert	proxies	of	the	additional	restrictions.	For
example,	in	a	typical	configuration	where	the	addition	of	the
DEFLATE	filter	depends	on	the	User-Agent,	you	should	add:

Header	append	Vary	User-Agent

If	your	decision	about	compression	depends	on	other	information
than	request	headers	(e.g.	HTTP	version),	you	have	to	set	the
Vary	header	to	the	value	*.	This	prevents	compliant	proxies	from
caching	entirely.

Example
Header	set	Vary	*

Serving	pre-compressed	content

Since	mod_deflate	re-compresses	content	each	time	a	request
is	made,	some	performance	benefit	can	be	derived	by	pre-
compressing	the	content	and	telling	mod_deflate	to	serve	them
without	re-compressing	them.	This	may	be	accomplished	using	a
configuration	like	the	following:

<IfModule	mod_headers.c>

				#	Serve	gzip	compressed	CSS	files	if	they	exist	

				#	and	the	client	accepts	gzip.

				RewriteCond	"%{HTTP:Accept-encoding}"	"gzip"

				RewriteCond	"%{REQUEST_FILENAME}\.gz"	-s

				RewriteRule	"^(.*)\.css"	"$1\.css\.gz"	[QSA]

				#	Serve	gzip	compressed	JS	files	if	they	exist	

				#	and	the	client	accepts	gzip.

				RewriteCond	"%{HTTP:Accept-encoding}"	"gzip"

				RewriteCond	"%{REQUEST_FILENAME}\.gz"	-s

				RewriteRule	"^(.*)\.js"	"$1\.js\.gz"	[QSA]

				#	Serve	correct	content	types,	and	prevent	mod_deflate	double	gzip.

				RewriteRule	"\.css\.gz$"	"-"	[T=text/css,E=no-gzip:1]

				RewriteRule	"\.js\.gz$"	"-"	[T=text/javascript,E=no-gzip:1]

				<FilesMatch	"(\.js\.gz|\.css\.gz)$">

						#	Serve	correct	encoding	type.

						Header	append	Content-Encoding	gzip

						#	Force	proxies	to	cache	gzipped	&	

						#	non-gzipped	css/js	files	separately.

						Header	append	Vary	Accept-Encoding

				</FilesMatch>

</IfModule>

DeflateBufferSize	Directive

Description: Fragment	size	to	be	compressed	at	one	time	by
zlib

Syntax: DeflateBufferSize	value

Default: DeflateBufferSize	8096

Context: server	config,	virtual	host
Status: Extension
Module: mod_deflate

The	DeflateBufferSize	directive	specifies	the	size	in	bytes	of
the	fragments	that	zlib	should	compress	at	one	time.	If	the
compressed	response	size	is	bigger	than	the	one	specified	by	this
directive	then	httpd	will	switch	to	chunked	encoding	(HTTP	header
Transfer-Encoding	set	to	Chunked),	with	the	side	effect	of	not
setting	any	Content-Length	HTTP	header.	This	is	particularly
important	when	httpd	works	behind	reverse	caching	proxies	or
when	httpd	is	configured	with	mod_cache	and	mod_cache_disk
because	HTTP	responses	without	any	Content-Length	header
might	not	be	cached.

DeflateCompressionLevel	Directive

Description: How	much	compression	do	we	apply	to	the	output
Syntax: DeflateCompressionLevel	value

Default: Zlib's	default

Context: server	config,	virtual	host
Status: Extension
Module: mod_deflate

The	DeflateCompressionLevel	directive	specifies	what	level
of	compression	should	be	used,	the	higher	the	value,	the	better
the	compression,	but	the	more	CPU	time	is	required	to	achieve
this.

The	value	must	between	1	(less	compression)	and	9	(more
compression).

DeflateFilterNote	Directive

Description: Places	the	compression	ratio	in	a	note	for	logging
Syntax: DeflateFilterNote	[type]	notename

Context: server	config,	virtual	host
Status: Extension
Module: mod_deflate

The	DeflateFilterNote	directive	specifies	that	a	note	about
compression	ratios	should	be	attached	to	the	request.	The	name
of	the	note	is	the	value	specified	for	the	directive.	You	can	use	that
note	for	statistical	purposes	by	adding	the	value	to	your	access
log.

Example
						DeflateFilterNote	ratio

				

						LogFormat	'"%r"	%b	(%{ratio}n)	"%{User-agent}i"'	deflate

						CustomLog	"logs/deflate_log"	deflate

If	you	want	to	extract	more	accurate	values	from	your	logs,	you
can	use	the	type	argument	to	specify	the	type	of	data	left	as	a	note
for	logging.	type	can	be	one	of:

Input

Store	the	byte	count	of	the	filter's	input	stream	in	the	note.

Output

Store	the	byte	count	of	the	filter's	output	stream	in	the	note.

Ratio

Store	the	compression	ratio	(output/input	*	100)	in	the
note.	This	is	the	default,	if	the	type	argument	is	omitted.

Thus	you	may	log	it	this	way:

Accurate	Logging

DeflateFilterNote	Input	instream

DeflateFilterNote	Output	outstream

DeflateFilterNote	Ratio	ratio

LogFormat	'"%r"	%{outstream}n/%{instream}n	(%{ratio}n%%)'	deflate

CustomLog	"logs/deflate_log"	deflate

See	also
mod_log_config

DeflateInflateLimitRequestBody	Directive

Description: Maximum	size	of	inflated	request	bodies
Syntax: DeflateInflateLimitRequestBodyvalue

Default: None,	but	LimitRequestBody	applies

after	deflation

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_deflate
Compatibility: 2.4.10	and	later

The	DeflateInflateLimitRequestBody	directive	specifies
the	maximum	size	of	an	inflated	request	body.	If	it	is	unset,
LimitRequestBody	is	applied	to	the	inflated	body.

DeflateInflateRatioBurst	Directive

Description: Maximum	number	of	times	the	inflation	ratio	for
request	bodies	can	be	crossed

Syntax: DeflateInflateRatioBurst	value

Default: 3

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_deflate
Compatibility: 2.4.10	and	later

The	DeflateInflateRatioBurst	directive	specifies	the
maximum	number	of	times	the	DeflateInflateRatioLimit
can	be	crossed	before	terminating	the	request.

DeflateInflateRatioLimit	Directive

Description: Maximum	inflation	ratio	for	request	bodies
Syntax: DeflateInflateRatioLimit	value

Default: 200

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_deflate
Compatibility: 2.4.10	and	later

The	DeflateInflateRatioLimit	directive	specifies	the
maximum	ratio	of	deflated	to	inflated	size	of	an	inflated	request
body.	This	ratio	is	checked	as	the	body	is	streamed	in,	and	if
crossed	more	than	DeflateInflateRatioBurst	times,	the
request	will	be	terminated.

DeflateMemLevel	Directive

Description: How	much	memory	should	be	used	by	zlib	for
compression

Syntax: DeflateMemLevel	value

Default: DeflateMemLevel	9

Context: server	config,	virtual	host
Status: Extension
Module: mod_deflate

The	DeflateMemLevel	directive	specifies	how	much	memory
should	be	used	by	zlib	for	compression	(a	value	between	1	and	9).

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

DeflateWindowSize	Directive

Description: Zlib	compression	window	size
Syntax: DeflateWindowSize	value

Default: DeflateWindowSize	15

Context: server	config,	virtual	host
Status: Extension
Module: mod_deflate

The	DeflateWindowSize	directive	specifies	the	zlib
compression	window	size	(a	value	between	1	and	15).	Generally,
the	higher	the	window	size,	the	higher	can	the	compression	ratio
be	expected.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dialup

Description: Send	static	content	at	a	bandwidth	rate	limit,
defined	by	the	various	old	modem	standards

Status: Experimental
Module	Identifier: dialup_module
Source	File: mod_dialup.c

Summary
It	is	a	module	that	sends	static	content	at	a	bandwidth	rate	limit,
defined	by	the	various	old	modem	standards.	So,	you	can	browse
your	site	with	a	56k	V.92	modem,	by	adding	something	like	this:

<Location	"/mysite">

				ModemStandard	"V.92"

</Location>

Previously	to	do	bandwidth	rate	limiting	modules	would	have	to	block
an	entire	thread,	for	each	client,	and	insert	sleeps	to	slow	the
bandwidth	down.	Using	the	new	suspend	feature,	a	handler	can	get
callback	N	milliseconds	in	the	future,	and	it	will	be	invoked	by	the
Event	MPM	on	a	different	thread,	once	the	timer	hits.	From	there	the
handler	can	continue	to	send	data	to	the	client.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ModemStandard	Directive

Description: Modem	standard	to	simulate
Syntax: ModemStandard

V.21|V.26bis|V.32|V.34|V.92

Context: directory
Status: Experimental
Module: mod_dialup

Specify	what	modem	standard	you	wish	to	simulate.

<Location	"/mysite">

				ModemStandard	"V.26bis"

</Location>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dir

Description: Provides	for	"trailing	slash"	redirects	and	serving
directory	index	files

Status: Base
Module	Identifier: dir_module
Source	File: mod_dir.c

Summary
The	index	of	a	directory	can	come	from	one	of	two	sources:

A	file	written	by	the	user,	typically	called	index.html.	The
DirectoryIndex	directive	sets	the	name	of	this	file.	This	is
controlled	by	mod_dir.
Otherwise,	a	listing	generated	by	the	server.	This	is	provided	by
mod_autoindex.

The	two	functions	are	separated	so	that	you	can	completely	remove
(or	replace)	automatic	index	generation	should	you	want	to.

A	"trailing	slash"	redirect	is	issued	when	the	server	receives	a	request
for	a	URL	http://servername/foo/dirname	where	dirname	is
a	directory.	Directories	require	a	trailing	slash,	so	mod_dir	issues	a
redirect	to	http://servername/foo/dirname/.

DirectoryCheckHandler	Directive

Description: Toggle	how	this	module	responds	when	another
handler	is	configured

Syntax: DirectoryCheckHandler	On|Off

Default: DirectoryCheckHandler	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_dir
Compatibility: Available	in	2.4.8	and	later.	Releases	prior	to	2.4

implicitly	act	as	if	"DirectoryCheckHandler	ON"
was	specified.

The	DirectoryCheckHandler	directive	determines	whether
mod_dir	should	check	for	directory	indexes	or	add	trailing
slashes	when	some	other	handler	has	been	configured	for	the
current	URL.	Handlers	can	be	set	by	directives	such	as
SetHandler	or	by	other	modules,	such	as	mod_rewrite	during
per-directory	substitutions.

In	releases	prior	to	2.4,	this	module	did	not	take	any	action	if	any
other	handler	was	configured	for	a	URL.	This	allows	directory
indexes	to	be	served	even	when	a	SetHandler	directive	is
specified	for	an	entire	directory,	but	it	can	also	result	in	some
conflicts	with	modules	such	as	mod_rewrite.

DirectoryIndex	Directive

Description: List	of	resources	to	look	for	when	the	client
requests	a	directory

Syntax: DirectoryIndex	disabled	|	local-url

[local-url]	...

Default: DirectoryIndex	index.html

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_dir

The	DirectoryIndex	directive	sets	the	list	of	resources	to	look
for,	when	the	client	requests	an	index	of	the	directory	by	specifying
a	/	at	the	end	of	the	directory	name.	Local-url	is	the	(%-encoded)
URL	of	a	document	on	the	server	relative	to	the	requested
directory;	it	is	usually	the	name	of	a	file	in	the	directory.	Several
URLs	may	be	given,	in	which	case	the	server	will	return	the	first
one	that	it	finds.	If	none	of	the	resources	exist	and	the	Indexes
option	is	set,	the	server	will	generate	its	own	listing	of	the
directory.

Example
DirectoryIndex	index.html

then	a	request	for	http://example.com/docs/	would	return
http://example.com/docs/index.html	if	it	exists,	or	would
list	the	directory	if	it	did	not.

Note	that	the	documents	do	not	need	to	be	relative	to	the
directory;

DirectoryIndex	index.html	index.txt		/cgi-bin/index.pl

would	cause	the	CGI	script	/cgi-bin/index.pl	to	be	executed
if	neither	index.html	or	index.txt	existed	in	a	directory.

A	single	argument	of	"disabled"	prevents	mod_dir	from	searching
for	an	index.	An	argument	of	"disabled"	will	be	interpreted	literally
if	it	has	any	arguments	before	or	after	it,	even	if	they	are	"disabled"
as	well.

Note:	Multiple	DirectoryIndex	directives	within	the	same
context	will	add	to	the	list	of	resources	to	look	for	rather	than
replace:

#	Example	A:	Set	index.html	as	an	index	page,	then	add	index.php	to	that	list	as	well.

<Directory	"/foo">

				DirectoryIndex	index.html

				DirectoryIndex	index.php

</Directory>

#	Example	B:	This	is	identical	to	example	A,	except	it's	done	with	a	single	directive.

<Directory	"/foo">

				DirectoryIndex	index.html	index.php

</Directory>

#	Example	C:	To	replace	the	list,	you	must	explicitly	reset	it	first:

#	In	this	example,	only	index.php	will	remain	as	an	index	resource.

<Directory	"/foo">

				DirectoryIndex	index.html

				DirectoryIndex	disabled

				DirectoryIndex	index.php

</Directory>

DirectoryIndexRedirect	Directive

Description: Configures	an	external	redirect	for	directory
indexes.

Syntax: DirectoryIndexRedirect	on	|	off	|

permanent	|	temp	|	seeother	|	3xx-

code

Default: DirectoryIndexRedirect	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_dir
Compatibility: Available	in	version	2.3.14	and	later

By	default,	the	DirectoryIndex	is	selected	and	returned
transparently	to	the	client.	DirectoryIndexRedirect	causes
an	external	redirect	to	instead	be	issued.

The	argument	can	be:

on:	issues	a	302	redirection	to	the	index	resource.
off:	does	not	issue	a	redirection.	This	is	the	legacy
behaviour	of	mod_dir.
permanent:	issues	a	301	(permanent)	redirection	to	the
index	resource.
temp:	this	has	the	same	effect	as	on
seeother:	issues	a	303	redirection	(also	known	as	"See
Other")	to	the	index	resource.
3xx-code:	issues	a	redirection	marked	by	the	chosen	3xx
code.

Example
DirectoryIndexRedirect	on

A	request	for	http://example.com/docs/	would	return	a
temporary	redirect	to
http://example.com/docs/index.html	if	it	exists.

DirectorySlash	Directive

Description: Toggle	trailing	slash	redirects	on	or	off
Syntax: DirectorySlash	On|Off

Default: DirectorySlash	On

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_dir

The	DirectorySlash	directive	determines	whether	mod_dir
should	fixup	URLs	pointing	to	a	directory	or	not.

Typically	if	a	user	requests	a	resource	without	a	trailing	slash,
which	points	to	a	directory,	mod_dir	redirects	him	to	the	same
resource,	but	with	trailing	slash	for	some	good	reasons:

The	user	is	finally	requesting	the	canonical	URL	of	the
resource
mod_autoindex	works	correctly.	Since	it	doesn't	emit	the
path	in	the	link,	it	would	point	to	the	wrong	path.
DirectoryIndex	will	be	evaluated	only	for	directories
requested	with	trailing	slash.
Relative	URL	references	inside	html	pages	will	work	correctly.

If	you	don't	want	this	effect	and	the	reasons	above	don't	apply	to
you,	you	can	turn	off	the	redirect	as	shown	below.	However,	be
aware	that	there	are	possible	security	implications	to	doing	this.

#	see	security	warning	below!

<Location	"/some/path">

				DirectorySlash	Off

				SetHandler	some-handler

</Location>

Security	Warning

Turning	off	the	trailing	slash	redirect	may	result	in	an	information
disclosure.	Consider	a	situation	where	mod_autoindex	is
active	(Options	+Indexes)	and	DirectoryIndex	is	set	to	a
valid	resource	(say,	index.html)	and	there's	no	other	special
handler	defined	for	that	URL.	In	this	case	a	request	with	a
trailing	slash	would	show	the	index.html	file.	But	a	request
without	trailing	slash	would	list	the	directory	contents.

Also	note	that	some	browsers	may	erroneously	change	POST
requests	into	GET	(thus	discarding	POST	data)	when	a	redirect	is
issued.

FallbackResource	Directive

Description: Define	a	default	URL	for	requests	that	don't	map
to	a	file

Syntax: FallbackResource	disabled	|	local-

url

Default: disabled	-	httpd	will	return	404

(Not	Found)

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_dir
Compatibility: The	disabled	argument	is	available	in	version

2.4.4	and	later

Use	this	to	set	a	handler	for	any	URL	that	doesn't	map	to	anything
in	your	filesystem,	and	would	otherwise	return	HTTP	404	(Not
Found).	For	example

FallbackResource	/not-404.php

will	cause	requests	for	non-existent	files	to	be	handled	by	not-
404.php,	while	requests	for	files	that	exist	are	unaffected.

It	is	frequently	desirable	to	have	a	single	file	or	resource	handle	all
requests	to	a	particular	directory,	except	those	requests	that
correspond	to	an	existing	file	or	script.	This	is	often	referred	to	as
a	'front	controller.'

In	earlier	versions	of	httpd,	this	effect	typically	required
mod_rewrite,	and	the	use	of	the	-f	and	-d	tests	for	file	and
directory	existence.	This	now	requires	only	one	line	of
configuration.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

FallbackResource	/index.php

Existing	files,	such	as	images,	css	files,	and	so	on,	will	be	served
normally.

Use	the	disabled	argument	to	disable	that	feature	if	inheritance
from	a	parent	directory	is	not	desired.

In	a	sub-URI,	such	as	http://example.com/blog/	this	sub-URI	has
to	be	supplied	as	local-url:

<Directory	"/web/example.com/htdocs/blog">

				FallbackResource	/blog/index.php

</Directory>

<Directory	"/web/example.com/htdocs/blog/images">

				FallbackResource	disabled

</Directory>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_dumpio

Description: Dumps	all	I/O	to	error	log	as	desired.
Status: Extension
Module	Identifier: dumpio_module
Source	File: mod_dumpio.c

Summary
mod_dumpio	allows	for	the	logging	of	all	input	received	by	Apache
and/or	all	output	sent	by	Apache	to	be	logged	(dumped)	to	the
error.log	file.

The	data	logging	is	done	right	after	SSL	decoding	(for	input)	and	right
before	SSL	encoding	(for	output).	As	can	be	expected,	this	can
produce	extreme	volumes	of	data,	and	should	only	be	used	when
debugging	problems.

Enabling	dumpio	Support

To	enable	the	module,	it	should	be	compiled	and	loaded	in	to	your
running	Apache	configuration.	Logging	can	then	be	enabled	or
disabled	separately	for	input	and	output	via	the	below	directives.
Additionally,	mod_dumpio	needs	to	be	configured	to	LogLevel
trace7:

LogLevel	dumpio:trace7

DumpIOInput	Directive

Description: Dump	all	input	data	to	the	error	log
Syntax: DumpIOInput	On|Off

Default: DumpIOInput	Off

Context: server	config
Status: Extension
Module: mod_dumpio
Compatibility: DumpIOInput	is	only	available	in	Apache	2.1.3

and	later.

Enable	dumping	of	all	input.

Example
DumpIOInput	On

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

DumpIOOutput	Directive

Description: Dump	all	output	data	to	the	error	log
Syntax: DumpIOOutput	On|Off

Default: DumpIOOutput	Off

Context: server	config
Status: Extension
Module: mod_dumpio
Compatibility: DumpIOOutput	is	only	available	in	Apache	2.1.3

and	later.

Enable	dumping	of	all	output.

Example
DumpIOOutput	On

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_echo

Description: A	simple	echo	server	to	illustrate	protocol
modules

Status: Experimental
Module	Identifier: echo_module
Source	File: mod_echo.c

Summary
This	module	provides	an	example	protocol	module	to	illustrate	the
concept.	It	provides	a	simple	echo	server.	Telnet	to	it	and	type	stuff,
and	it	will	echo	it.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ProtocolEcho	Directive

Description: Turn	the	echo	server	on	or	off
Syntax: ProtocolEcho	On|Off

Default: ProtocolEcho	Off

Context: server	config,	virtual	host
Status: Experimental
Module: mod_echo

The	ProtocolEcho	directive	enables	or	disables	the	echo	server.

Example
ProtocolEcho	On

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_env

Description: Modifies	the	environment	which	is	passed	to	CGI
scripts	and	SSI	pages

Status: Base
Module	Identifier: env_module
Source	File: mod_env.c

Summary
This	module	allows	for	control	of	internal	environment	variables	that
are	used	by	various	Apache	HTTP	Server	modules.	These	variables
are	also	provided	to	CGI	scripts	as	native	system	environment
variables,	and	available	for	use	in	SSI	pages.	Environment	variables
may	be	passed	from	the	shell	which	invoked	the	httpd	process.
Alternatively,	environment	variables	may	be	set	or	unset	within	the
configuration	process.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Environment	Variables
SetEnvIf

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_env
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_env

PassEnv	Directive

Description: Passes	environment	variables	from	the	shell
Syntax: PassEnv	env-variable	[env-variable]

...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_env

Specifies	one	or	more	native	system	environment	variables	to
make	available	as	internal	environment	variables,	which	are
available	to	Apache	HTTP	Server	modules	as	well	as	propagated
to	CGI	scripts	and	SSI	pages.	Values	come	from	the	native	OS
environment	of	the	shell	which	invoked	the	httpd	process.

Example
PassEnv	LD_LIBRARY_PATH

SetEnv	Directive

Description: Sets	environment	variables
Syntax: SetEnv	env-variable	[value]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_env

Sets	an	internal	environment	variable,	which	is	then	available	to
Apache	HTTP	Server	modules,	and	passed	on	to	CGI	scripts	and
SSI	pages.

Example
SetEnv	SPECIAL_PATH	/foo/bin

If	you	omit	the	value	argument,	the	variable	is	set	to	an	empty
string.

The	internal	environment	variables	set	by	this	directive	are	set
after	most	early	request	processing	directives	are	run,	such	as
access	control	and	URI-to-filename	mapping.	If	the	environment
variable	you're	setting	is	meant	as	input	into	this	early	phase	of
processing	such	as	the	RewriteRule	directive,	you	should
instead	set	the	environment	variable	with	SetEnvIf.

See	also
Environment	Variables

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

UnsetEnv	Directive

Description: Removes	variables	from	the	environment
Syntax: UnsetEnv	env-variable	[env-variable]

...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_env

Removes	one	or	more	internal	environment	variables	from	those
passed	on	to	CGI	scripts	and	SSI	pages.

Example
UnsetEnv	LD_LIBRARY_PATH

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_example_hooks

Description: Illustrates	the	Apache	module	API
Status: Experimental
Module	Identifier: example_hooks_module
Source	File: mod_example_hooks.c

Summary
The	files	in	the	modules/examples	directory	under	the	Apache
distribution	directory	tree	are	provided	as	an	example	to	those	that
wish	to	write	modules	that	use	the	Apache	API.

The	main	file	is	mod_example_hooks.c,	which	illustrates	all	the
different	callback	mechanisms	and	call	syntaxes.	By	no	means	does
an	add-on	module	need	to	include	routines	for	all	of	the	callbacks	-
quite	the	contrary!

The	example	module	is	an	actual	working	module.	If	you	link	it	into
your	server,	enable	the	"example-hooks-handler"	handler	for	a
location,	and	then	browse	to	that	location,	you	will	see	a	display	of
some	of	the	tracing	the	example	module	did	as	the	various	callbacks
were	made.

Compiling	the	example_hooks	module

To	include	the	example_hooks	module	in	your	server,	follow	the
steps	below:

1.	 Run	configure	with	--enable-example-hooks	option.

2.	 Make	the	server	(run	"make").

To	add	another	module	of	your	own:

A.	 cp	modules/examples/mod_example_hooks.c
modules/new_module/mod_myexample.c

B.	 Modify	the	file.

C.	 Create	modules/new_module/config.m4.

1.	 Add	APACHE_MODPATH_INIT(new_module).

2.	 Copy	APACHE_MODULE	line	with	"example_hooks"
from	modules/examples/config.m4.

3.	 Replace	the	first	argument	"example_hooks"	with
myexample.

4.	 Replace	the	second	argument	with	brief	description	of
your	module.	It	will	be	used	in	configure	--help.

5.	 If	your	module	needs	additional	C	compiler	flags,	linker
flags	or	libraries,	add	them	to	CFLAGS,	LDFLAGS	and
LIBS	accordingly.	See	other	config.m4	files	in	modules
directory	for	examples.

6.	 Add	APACHE_MODPATH_FINISH.

D.	 Create	module/new_module/Makefile.in.	If	your
module	doesn't	need	special	build	instructions,	all	you	need	to
have	in	that	file	is	include
$(top_srcdir)/build/special.mk.

E.	 Run	./buildconf	from	the	top-level	directory.

F.	 Build	the	server	with	--enable-myexample

Using	the	mod_example_hooks	Module

To	activate	the	example_hooks	module,	include	a	block	similar	to
the	following	in	your	httpd.conf	file:

<Location	"/example-hooks-info">

			SetHandler	example-hooks-handler

</Location>

As	an	alternative,	you	can	put	the	following	into	a	.htaccess	file
and	then	request	the	file	"test.example"	from	that	location:

AddHandler	example-hooks-handler	".example"

After	reloading/restarting	your	server,	you	should	be	able	to
browse	to	this	location	and	see	the	brief	display	mentioned	earlier.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Example	Directive

Description: Demonstration	directive	to	illustrate	the	Apache
module	API

Syntax: Example

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Experimental
Module: mod_example_hooks

The	Example	directive	just	sets	a	demonstration	flag	which	the
example	module's	content	handler	displays.	It	takes	no
arguments.	If	you	browse	to	an	URL	to	which	the	example-hooks
content-handler	applies,	you	will	get	a	display	of	the	routines
within	the	module	and	how	and	in	what	order	they	were	called	to
service	the	document	request.	The	effect	of	this	directive	one	can
observe	under	the	point	"Example	directive	declared
here:	YES/NO".

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_expires

Description: Generation	of	Expires	and	Cache-Control
HTTP	headers	according	to	user-specified
criteria

Status: Extension
Module	Identifier: expires_module
Source	File: mod_expires.c

Summary
This	module	controls	the	setting	of	the	Expires	HTTP	header	and
the	max-age	directive	of	the	Cache-Control	HTTP	header	in
server	responses.	The	expiration	date	can	set	to	be	relative	to	either
the	time	the	source	file	was	last	modified,	or	to	the	time	of	the	client
access.

These	HTTP	headers	are	an	instruction	to	the	client	about	the
document's	validity	and	persistence.	If	cached,	the	document	may	be
fetched	from	the	cache	rather	than	from	the	source	until	this	time	has
passed.	After	that,	the	cache	copy	is	considered	"expired"	and	invalid,
and	a	new	copy	must	be	obtained	from	the	source.

To	modify	Cache-Control	directives	other	than	max-age	(see	RFC
2616	section	14.9),	you	can	use	the	Header	directive.

When	the	Expires	header	is	already	part	of	the	response	generated
by	the	server,	for	example	when	generated	by	a	CGI	script	or	proxied
from	an	origin	server,	this	module	does	not	change	or	add	an
Expires	or	Cache-Control	header.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec14.html#sec14.9

Alternate	Interval	Syntax

The	ExpiresDefault	and	ExpiresByType	directives	can	also
be	defined	in	a	more	readable	syntax	of	the	form:

ExpiresDefault	"base		[plus	num	type]	[num	type

ExpiresByType	type/encoding	"base		[plus	num	type

where	base	is	one	of:

access

now	(equivalent	to	'access')
modification

The	plus	keyword	is	optional.	num	should	be	an	integer	value
[acceptable	to	atoi()],	and	type	is	one	of:

years

months

weeks

days

hours

minutes

seconds

For	example,	any	of	the	following	directives	can	be	used	to	make
documents	expire	1	month	after	being	accessed,	by	default:

ExpiresDefault	"access	plus	1	month"

ExpiresDefault	"access	plus	4	weeks"

ExpiresDefault	"access	plus	30	days"

The	expiry	time	can	be	fine-tuned	by	adding	several	'num	type'
clauses:

ExpiresByType	text/html	"access	plus	1	month	15	days	2	hours"

ExpiresByType	image/gif	"modification	plus	5	hours	3	minutes"

Note	that	if	you	use	a	modification	date	based	setting,	the	Expires
header	will	not	be	added	to	content	that	does	not	come	from	a	file
on	disk.	This	is	due	to	the	fact	that	there	is	no	modification	time	for
such	content.

ExpiresActive	Directive

Description: Enables	generation	of	Expires	headers
Syntax: ExpiresActive	On|Off

Default: ExpiresActive	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Extension
Module: mod_expires

This	directive	enables	or	disables	the	generation	of	the	Expires
and	Cache-Control	headers	for	the	document	realm	in
question.	(That	is,	if	found	in	an	.htaccess	file,	for	instance,	it
applies	only	to	documents	generated	from	that	directory.)	If	set	to
Off,	the	headers	will	not	be	generated	for	any	document	in	the
realm	(unless	overridden	at	a	lower	level,	such	as	an	.htaccess
file	overriding	a	server	config	file).	If	set	to	On,	the	headers	will	be
added	to	served	documents	according	to	the	criteria	defined	by
the	ExpiresByType	and	ExpiresDefault	directives	(q.v.).

Note	that	this	directive	does	not	guarantee	that	an	Expires	or
Cache-Control	header	will	be	generated.	If	the	criteria	aren't
met,	no	header	will	be	sent,	and	the	effect	will	be	as	though	this
directive	wasn't	even	specified.

ExpiresByType	Directive

Description: Value	of	the	Expires	header	configured	by	MIME
type

Syntax: ExpiresByType	MIME-type	<code>seconds

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Extension
Module: mod_expires

This	directive	defines	the	value	of	the	Expires	header	and	the
max-age	directive	of	the	Cache-Control	header	generated	for
documents	of	the	specified	type	(e.g.,	text/html).	The	second
argument	sets	the	number	of	seconds	that	will	be	added	to	a	base
time	to	construct	the	expiration	date.	The	Cache-Control:
max-age	is	calculated	by	subtracting	the	request	time	from	the
expiration	date	and	expressing	the	result	in	seconds.

The	base	time	is	either	the	last	modification	time	of	the	file,	or	the
time	of	the	client's	access	to	the	document.	Which	should	be	used
is	specified	by	the	<code>	field;	M	means	that	the	file's	last
modification	time	should	be	used	as	the	base	time,	and	A	means
the	client's	access	time	should	be	used.

The	difference	in	effect	is	subtle.	If	M	is	used,	all	current	copies	of
the	document	in	all	caches	will	expire	at	the	same	time,	which	can
be	good	for	something	like	a	weekly	notice	that's	always	found	at
the	same	URL.	If	A	is	used,	the	date	of	expiration	is	different	for
each	client;	this	can	be	good	for	image	files	that	don't	change	very
often,	particularly	for	a	set	of	related	documents	that	all	refer	to	the
same	images	(i.e.,	the	images	will	be	accessed	repeatedly	within	a
relatively	short	timespan).

Example:

#	enable	expirations

ExpiresActive	On

#	expire	GIF	images	after	a	month	in	the	client's	cache

ExpiresByType	image/gif	A2592000

#	HTML	documents	are	good	for	a	week	from	the

#	time	they	were	changed

ExpiresByType	text/html	M604800

Note	that	this	directive	only	has	effect	if	ExpiresActive	On	has
been	specified.	It	overrides,	for	the	specified	MIME	type	only,	any
expiration	date	set	by	the	ExpiresDefault	directive.

You	can	also	specify	the	expiration	time	calculation	using	an
alternate	syntax,	described	earlier	in	this	document.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ExpiresDefault	Directive

Description: Default	algorithm	for	calculating	expiration	time
Syntax: ExpiresDefault	<code>seconds

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Extension
Module: mod_expires

This	directive	sets	the	default	algorithm	for	calculating	the
expiration	time	for	all	documents	in	the	affected	realm.	It	can	be
overridden	on	a	type-by-type	basis	by	the	ExpiresByType
directive.	See	the	description	of	that	directive	for	details	about	the
syntax	of	the	argument,	and	the	alternate	syntax	description	as
well.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_ext_filter

Description: Pass	the	response	body	through	an	external
program	before	delivery	to	the	client

Status: Extension
Module	Identifier: ext_filter_module
Source	File: mod_ext_filter.c

Summary
mod_ext_filter	presents	a	simple	and	familiar	programming
model	for	filters.	With	this	module,	a	program	which	reads	from	stdin
and	writes	to	stdout	(i.e.,	a	Unix-style	filter	command)	can	be	a	filter
for	Apache.	This	filtering	mechanism	is	much	slower	than	using	a	filter
which	is	specially	written	for	the	Apache	API	and	runs	inside	of	the
Apache	server	process,	but	it	does	have	the	following	benefits:

the	programming	model	is	much	simpler
any	programming/scripting	language	can	be	used,	provided	that	it
allows	the	program	to	read	from	standard	input	and	write	to
standard	output
existing	programs	can	be	used	unmodified	as	Apache	filters

Even	when	the	performance	characteristics	are	not	suitable	for
production	use,	mod_ext_filter	can	be	used	as	a	prototype
environment	for	filters.

Bugfix	checklist
httpd	changelog

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4

Known	issues
Report	a	bug

See	also
Filters

https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_ext_filter
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_ext_filter

Examples

Generating	HTML	from	some	other	type	of	response

#	mod_ext_filter	directive	to	define	a	filter

#	to	HTML-ize	text/c	files	using	the	external

#	program	/usr/bin/enscript,	with	the	type	of

#	the	result	set	to	text/html

ExtFilterDefine	c-to-html	mode=output	\

				intype=text/c	outtype=text/html	\

				cmd="/usr/bin/enscript	--color	-W	html	-Ec	-o	-	-"

<Directory	"/export/home/trawick/apacheinst/htdocs/c">

				#	core	directive	to	cause	the	new	filter	to

				#	be	run	on	output

				SetOutputFilter	c-to-html

				

				#	mod_mime	directive	to	set	the	type	of	.c

				#	files	to	text/c

				AddType	text/c	.c

</Directory>

Implementing	a	content	encoding	filter
Note:	this	gzip	example	is	just	for	the	purposes	of	illustration.
Please	refer	to	mod_deflate	for	a	practical	implementation.

#	mod_ext_filter	directive	to	define	the	external	filter

ExtFilterDefine	gzip	mode=output	cmd=/bin/gzip

<Location	"/gzipped">

				

				#	core	directive	to	cause	the	gzip	filter	to	be

				#	run	on	output

				SetOutputFilter	gzip

				

				#	mod_headers	directive	to	add

				#	"Content-Encoding:	gzip"	header	field

				Header	set	Content-Encoding	gzip

</Location>

Slowing	down	the	server

#	mod_ext_filter	directive	to	define	a	filter

#	which	runs	everything	through	cat;	cat	doesn't

#	modify	anything;	it	just	introduces	extra	pathlength

#	and	consumes	more	resources

ExtFilterDefine	slowdown	mode=output	cmd=/bin/cat	\

				preservescontentlength

<Location	"/">

				#	core	directive	to	cause	the	slowdown	filter	to

				#	be	run	several	times	on	output

				#

				SetOutputFilter	slowdown;slowdown;slowdown

</Location>

Using	sed	to	replace	text	in	the	response

#	mod_ext_filter	directive	to	define	a	filter	which

#	replaces	text	in	the	response

#

ExtFilterDefine	fixtext	mode=output	intype=text/html	\

				cmd="/bin/sed	s/verdana/arial/g"

<Location	"/">

				#	core	directive	to	cause	the	fixtext	filter	to

				#	be	run	on	output

				SetOutputFilter	fixtext

</Location>

You	can	do	the	same	thing	using	mod_substitute	without
invoking	an	external	process.

Tracing	another	filter

#	Trace	the	data	read	and	written	by	mod_deflate

#	for	a	particular	client	(IP	192.168.1.31)

#	experiencing	compression	problems.

#	This	filter	will	trace	what	goes	into	mod_deflate.

ExtFilterDefine	tracebefore	\

				cmd="/bin/tracefilter.pl	/tmp/tracebefore"	\

				EnableEnv=trace_this_client

#	This	filter	will	trace	what	goes	after	mod_deflate.

#	Note	that	without	the	ftype	parameter,	the	default

#	filter	type	of	AP_FTYPE_RESOURCE	would	cause	the

#	filter	to	be	placed	*before*	mod_deflate	in	the	filter

#	chain.		Giving	it	a	numeric	value	slightly	higher	than

#	AP_FTYPE_CONTENT_SET	will	ensure	that	it	is	placed

#	after	mod_deflate.

ExtFilterDefine	traceafter	\

				cmd="/bin/tracefilter.pl	/tmp/traceafter"	\

				EnableEnv=trace_this_client	ftype=21

<Directory	"/usr/local/docs">

				SetEnvIf	Remote_Addr	192.168.1.31	trace_this_client

				SetOutputFilter	tracebefore;deflate;traceafter

</Directory>

Here	is	the	filter	which	traces	the	data:
#!/usr/local/bin/perl	-w

use	strict;

open(SAVE,	">$ARGV[0]")

				or	die	"can't	open	$ARGV[0]:	$?";

while	(<STDIN>)	{

				print	SAVE	$_;

				print	$_;

}

close(SAVE);

ExtFilterDefine	Directive

Description: Define	an	external	filter
Syntax: ExtFilterDefine	filtername	parameters

Context: server	config
Status: Extension
Module: mod_ext_filter

The	ExtFilterDefine	directive	defines	the	characteristics	of	an
external	filter,	including	the	program	to	run	and	its	arguments.

filtername	specifies	the	name	of	the	filter	being	defined.	This	name
can	then	be	used	in	SetOutputFilter	directives.	It	must	be
unique	among	all	registered	filters.	At	the	present	time,	no	error	is
reported	by	the	register-filter	API,	so	a	problem	with	duplicate
names	isn't	reported	to	the	user.

Subsequent	parameters	can	appear	in	any	order	and	define	the
external	command	to	run	and	certain	other	characteristics.	The
only	required	parameter	is	cmd=.	These	parameters	are:

cmd=cmdline

The	cmd=	keyword	allows	you	to	specify	the	external
command	to	run.	If	there	are	arguments	after	the	program
name,	the	command	line	should	be	surrounded	in	quotation
marks	(e.g.,	cmd="/bin/mypgm	arg1	arg2".)	Normal
shell	quoting	is	not	necessary	since	the	program	is	run
directly,	bypassing	the	shell.	Program	arguments	are	blank-
delimited.	A	backslash	can	be	used	to	escape	blanks	which
should	be	part	of	a	program	argument.	Any	backslashes
which	are	part	of	the	argument	must	be	escaped	with
backslash	themselves.	In	addition	to	the	standard	CGI
environment	variables,	DOCUMENT_URI,
DOCUMENT_PATH_INFO,	and
QUERY_STRING_UNESCAPED	will	also	be	set	for	the

program.

mode=mode

Use	mode=output	(the	default)	for	filters	which	process	the
response.	Use	mode=input	for	filters	which	process	the
request.	mode=input	is	available	in	Apache	2.1	and	later.

intype=imt

This	parameter	specifies	the	internet	media	type	(i.e.,	MIME
type)	of	documents	which	should	be	filtered.	By	default,	all
documents	are	filtered.	If	intype=	is	specified,	the	filter	will
be	disabled	for	documents	of	other	types.

outtype=imt

This	parameter	specifies	the	internet	media	type	(i.e.,	MIME
type)	of	filtered	documents.	It	is	useful	when	the	filter	changes
the	internet	media	type	as	part	of	the	filtering	operation.	By
default,	the	internet	media	type	is	unchanged.

PreservesContentLength

The	PreservesContentLength	keyword	specifies	that	the
filter	preserves	the	content	length.	This	is	not	the	default,	as
most	filters	change	the	content	length.	In	the	event	that	the
filter	doesn't	modify	the	length,	this	keyword	should	be
specified.

ftype=filtertype

This	parameter	specifies	the	numeric	value	for	filter	type	that
the	filter	should	be	registered	as.	The	default	value,
AP_FTYPE_RESOURCE,	is	sufficient	in	most	cases.	If	the
filter	needs	to	operate	at	a	different	point	in	the	filter	chain
than	resource	filters,	then	this	parameter	will	be	necessary.
See	the	AP_FTYPE_foo	definitions	in	util_filter.h	for
appropriate	values.

disableenv=env

This	parameter	specifies	the	name	of	an	environment	variable

which,	if	set,	will	disable	the	filter.

enableenv=env

This	parameter	specifies	the	name	of	an	environment	variable
which	must	be	set,	or	the	filter	will	be	disabled.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ExtFilterOptions	Directive

Description: Configure	mod_ext_filter	options
Syntax: ExtFilterOptions	option	[option]	...

Default: ExtFilterOptions	NoLogStderr

Context: directory
Status: Extension
Module: mod_ext_filter

The	ExtFilterOptions	directive	specifies	special	processing
options	for	mod_ext_filter.	Option	can	be	one	of

LogStderr	|	NoLogStderr

The	LogStderr	keyword	specifies	that	messages	written	to
standard	error	by	the	external	filter	program	will	be	saved	in
the	Apache	error	log.	NoLogStderr	disables	this	feature.

Onfail=[abort|remove]

Determines	how	to	proceed	if	the	external	filter	program
cannot	be	started.	With	abort	(the	default	value)	the	request
will	be	aborted.	With	remove,	the	filter	is	removed	and	the
request	continues	without	it.

ExtFilterOptions	LogStderr

Messages	written	to	the	filter's	standard	error	will	be	stored	in	the
Apache	error	log.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_file_cache

Description: Caches	a	static	list	of	files	in	memory
Status: Experimental
Module	Identifier: file_cache_module
Source	File: mod_file_cache.c

Summary

This	module	should	be	used	with	care.	You	can	easily	create	a
broken	site	using	mod_file_cache,	so	read	this	document
carefully.

Caching	frequently	requested	files	that	change	very	infrequently	is	a
technique	for	reducing	server	load.	mod_file_cache	provides	two
techniques	for	caching	frequently	requested	static	files.	Through
configuration	directives,	you	can	direct	mod_file_cache	to	either
open	then	mmap()	a	file,	or	to	pre-open	a	file	and	save	the	file's	open
file	handle.	Both	techniques	reduce	server	load	when	processing
requests	for	these	files	by	doing	part	of	the	work	(specifically,	the	file
I/O)	for	serving	the	file	when	the	server	is	started	rather	than	during
each	request.

Notice:	You	cannot	use	this	for	speeding	up	CGI	programs	or	other
files	which	are	served	by	special	content	handlers.	It	can	only	be	used
for	regular	files	which	are	usually	served	by	the	Apache	core	content
handler.

This	module	is	an	extension	of	and	borrows	heavily	from	the
mod_mmap_static	module	in	Apache	1.3.

Using	mod_file_cache

mod_file_cache	caches	a	list	of	statically	configured	files	via
MMapFile	or	CacheFile	directives	in	the	main	server
configuration.

Not	all	platforms	support	both	directives.	You	will	receive	an	error
message	in	the	server	error	log	if	you	attempt	to	use	an
unsupported	directive.	If	given	an	unsupported	directive,	the
server	will	start	but	the	file	will	not	be	cached.	On	platforms	that
support	both	directives,	you	should	experiment	with	both	to	see
which	works	best	for	you.

MMapFile	Directive
The	MMapFile	directive	of	mod_file_cache	maps	a	list	of
statically	configured	files	into	memory	through	the	system	call
mmap().	This	system	call	is	available	on	most	modern	Unix
derivatives,	but	not	on	all.	There	are	sometimes	system-specific
limits	on	the	size	and	number	of	files	that	can	be	mmap()ed,
experimentation	is	probably	the	easiest	way	to	find	out.

This	mmap()ing	is	done	once	at	server	start	or	restart,	only.	So
whenever	one	of	the	mapped	files	changes	on	the	filesystem	you
have	to	restart	the	server	(see	the	Stopping	and	Restarting
documentation).	To	reiterate	that	point:	if	the	files	are	modified	in
place	without	restarting	the	server	you	may	end	up	serving
requests	that	are	completely	bogus.	You	should	update	files	by
unlinking	the	old	copy	and	putting	a	new	copy	in	place.	Most	tools
such	as	rdist	and	mv	do	this.	The	reason	why	this	modules
doesn't	take	care	of	changes	to	the	files	is	that	this	check	would
need	an	extra	stat()	every	time	which	is	a	waste	and	against
the	intent	of	I/O	reduction.

CacheFile	Directive

The	CacheFile	directive	of	mod_file_cache	opens	an	active
handle	or	file	descriptor	to	the	file	(or	files)	listed	in	the
configuration	directive	and	places	these	open	file	handles	in	the
cache.	When	the	file	is	requested,	the	server	retrieves	the	handle
from	the	cache	and	passes	it	to	the	sendfile()	(or
TransmitFile()	on	Windows),	socket	API.

This	file	handle	caching	is	done	once	at	server	start	or	restart,
only.	So	whenever	one	of	the	cached	files	changes	on	the
filesystem	you	have	to	restart	the	server	(see	the	Stopping	and
Restarting	documentation).	To	reiterate	that	point:	if	the	files	are
modified	in	place	without	restarting	the	server	you	may	end	up
serving	requests	that	are	completely	bogus.	You	should	update
files	by	unlinking	the	old	copy	and	putting	a	new	copy	in	place.
Most	tools	such	as	rdist	and	mv	do	this.

Note

Don't	bother	asking	for	a	directive	which	recursively	caches	all
the	files	in	a	directory.	Try	this	instead...	See	the	Include
directive,	and	consider	this	command:

find	/www/htdocs	-type	f	-print	\

|	sed	-e	's/.*/mmapfile	&/'	>	/www/conf/mmap.conf

CacheFile	Directive

Description: Cache	a	list	of	file	handles	at	startup	time
Syntax: CacheFile	file-path	[file-path]	...

Context: server	config
Status: Experimental
Module: mod_file_cache

The	CacheFile	directive	opens	handles	to	one	or	more	files
(given	as	whitespace	separated	arguments)	and	places	these
handles	into	the	cache	at	server	startup	time.	Handles	to	cached
files	are	automatically	closed	on	a	server	shutdown.	When	the	files
have	changed	on	the	filesystem,	the	server	should	be	restarted	to
re-cache	them.

Be	careful	with	the	file-path	arguments:	They	have	to	literally
match	the	filesystem	path	Apache's	URL-to-filename	translation
handlers	create.	We	cannot	compare	inodes	or	other	stuff	to
match	paths	through	symbolic	links	etc.	because	that	again	would
cost	extra	stat()	system	calls	which	is	not	acceptable.	This
module	may	or	may	not	work	with	filenames	rewritten	by
mod_alias	or	mod_rewrite.

Example
CacheFile	/usr/local/apache/htdocs/index.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MMapFile	Directive

Description: Map	a	list	of	files	into	memory	at	startup	time
Syntax: MMapFile	file-path	[file-path]	...

Context: server	config
Status: Experimental
Module: mod_file_cache

The	MMapFile	directive	maps	one	or	more	files	(given	as
whitespace	separated	arguments)	into	memory	at	server	startup
time.	They	are	automatically	unmapped	on	a	server	shutdown.
When	the	files	have	changed	on	the	filesystem	at	least	a	HUP	or
USR1	signal	should	be	send	to	the	server	to	re-mmap()	them.

Be	careful	with	the	file-path	arguments:	They	have	to	literally
match	the	filesystem	path	Apache's	URL-to-filename	translation
handlers	create.	We	cannot	compare	inodes	or	other	stuff	to
match	paths	through	symbolic	links	etc.	because	that	again	would
cost	extra	stat()	system	calls	which	is	not	acceptable.	This
module	may	or	may	not	work	with	filenames	rewritten	by
mod_alias	or	mod_rewrite.

Example
MMapFile	/usr/local/apache/htdocs/index.html

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_filter

Description: Context-sensitive	smart	filter	configuration
module

Status: Base
Module	Identifier: filter_module
Source	File: mod_filter.c
Compatibility: Version	2.1	and	later

Summary
This	module	enables	smart,	context-sensitive	configuration	of	output
content	filters.	For	example,	apache	can	be	configured	to	process
different	content-types	through	different	filters,	even	when	the
content-type	is	not	known	in	advance	(e.g.	in	a	proxy).

mod_filter	works	by	introducing	indirection	into	the	filter	chain.
Instead	of	inserting	filters	in	the	chain,	we	insert	a	filter	harness	which
in	turn	dispatches	conditionally	to	a	filter	provider.	Any	content	filter
may	be	used	as	a	provider	to	mod_filter;	no	change	to	existing
filter	modules	is	required	(although	it	may	be	possible	to	simplify
them).

Smart	Filtering

In	the	traditional	filtering	model,	filters	are	inserted	unconditionally
using	AddOutputFilter	and	family.	Each	filter	then	needs	to
determine	whether	to	run,	and	there	is	little	flexibility	available	for
server	admins	to	allow	the	chain	to	be	configured	dynamically.

mod_filter	by	contrast	gives	server	administrators	a	great	deal
of	flexibility	in	configuring	the	filter	chain.	In	fact,	filters	can	be
inserted	based	on	complex	boolean	expressions	This	generalises
the	limited	flexibility	offered	by	AddOutputFilterByType.

Filter	Declarations,	Providers	and	Chains

	Figure	1:	The	traditional	filter	model

In	the	traditional	model,	output	filters	are	a	simple	chain	from	the
content	generator	(handler)	to	the	client.	This	works	well	provided
the	filter	chain	can	be	correctly	configured,	but	presents	problems
when	the	filters	need	to	be	configured	dynamically	based	on	the
outcome	of	the	handler.

Figure	2:	The	mod_filter	model

mod_filter	works	by	introducing	indirection	into	the	filter	chain.
Instead	of	inserting	filters	in	the	chain,	we	insert	a	filter	harness
which	in	turn	dispatches	conditionally	to	a	filter	provider.	Any
content	filter	may	be	used	as	a	provider	to	mod_filter;	no
change	to	existing	filter	modules	is	required	(although	it	may	be
possible	to	simplify	them).	There	can	be	multiple	providers	for	one
filter,	but	no	more	than	one	provider	will	run	for	any	single	request.

A	filter	chain	comprises	any	number	of	instances	of	the	filter
harness,	each	of	which	may	have	any	number	of	providers.	A
special	case	is	that	of	a	single	provider	with	unconditional
dispatch:	this	is	equivalent	to	inserting	the	provider	filter	directly
into	the	chain.

Configuring	the	Chain

There	are	three	stages	to	configuring	a	filter	chain	with
mod_filter.	For	details	of	the	directives,	see	below.

Declare	Filters
The	FilterDeclare	directive	declares	a	filter,	assigning	it	a
name	and	filter	type.	Required	only	if	the	filter	is	not	the
default	type	AP_FTYPE_RESOURCE.

Register	Providers
The	FilterProvider	directive	registers	a	provider	with	a
filter.	The	filter	may	have	been	declared	with
FilterDeclare;	if	not,	FilterProvider	will	implicitly	declare	it
with	the	default	type	AP_FTYPE_RESOURCE.	The	provider
must	have	been	registered	with
ap_register_output_filter	by	some	module.	The	final
argument	to	FilterProvider	is	an	expression:	the	provider
will	be	selected	to	run	for	a	request	if	and	only	if	the
expression	evaluates	to	true.	The	expression	may	evaluate
HTTP	request	or	response	headers,	environment	variables,	or
the	Handler	used	by	this	request.	Unlike	earlier	versions,
mod_filter	now	supports	complex	expressions	involving
multiple	criteria	with	AND	/	OR	logic	(&&	/	||)	and	brackets.
The	details	of	the	expression	syntax	are	described	in	the
ap_expr	documentation.

Configure	the	Chain
The	above	directives	build	components	of	a	smart	filter	chain,
but	do	not	configure	it	to	run.	The	FilterChain	directive
builds	a	filter	chain	from	smart	filters	declared,	offering	the
flexibility	to	insert	filters	at	the	beginning	or	end	of	the	chain,
remove	a	filter,	or	clear	the	chain.

Filtering	and	Response	Status

mod_filter	normally	only	runs	filters	on	responses	with	HTTP
status	200	(OK).	If	you	want	to	filter	documents	with	other
response	statuses,	you	can	set	the	filter-errordocs	environment
variable,	and	it	will	work	on	all	responses	regardless	of	status.	To
refine	this	further,	you	can	use	expression	conditions	with
FilterProvider.

Upgrading	from	Apache	HTTP	Server	2.2
Configuration

The	FilterProvider	directive	has	changed	from	httpd	2.2:	the
match	and	dispatch	arguments	are	replaced	with	a	single	but	more
versatile	expression.	In	general,	you	can	convert	a	match/dispatch
pair	to	the	two	sides	of	an	expression,	using	something	like:

"dispatch	=	'match'"

The	Request	headers,	Response	headers	and	Environment
variables	are	now	interpreted	from	syntax	%{req:foo},	%{resp:foo}
and	%{env:foo}	respectively.	The	variables	%{HANDLER}	and	%
{CONTENT_TYPE}	are	also	supported.

Note	that	the	match	no	longer	support	substring	matches.	They
can	be	replaced	by	regular	expression	matches.

Examples

Server	side	Includes	(SSI)
A	simple	case	of	replacing	AddOutputFilterByType

FilterDeclare	SSI

FilterProvider	SSI	INCLUDES	"%{CONTENT_TYPE}	=~	m|^text/html|"

FilterChain	SSI

Server	side	Includes	(SSI)
The	same	as	the	above	but	dispatching	on	handler	(classic
SSI	behaviour;	.shtml	files	get	processed).

FilterProvider	SSI	INCLUDES	"%{HANDLER}	=	'server-parsed'"

FilterChain	SSI

Emulating	mod_gzip	with	mod_deflate
Insert	INFLATE	filter	only	if	"gzip"	is	NOT	in	the	Accept-
Encoding	header.	This	filter	runs	with	ftype	CONTENT_SET.

FilterDeclare	gzip	CONTENT_SET

FilterProvider	gzip	inflate	"%{req:Accept-Encoding}	!~	/gzip/"

FilterChain	gzip

Image	Downsampling
Suppose	we	want	to	downsample	all	web	images,	and	have
filters	for	GIF,	JPEG	and	PNG.

FilterProvider	unpack	jpeg_unpack	"%{CONTENT_TYPE}	=	'image/jpeg'"

FilterProvider	unpack	gif_unpack	"%{CONTENT_TYPE}	=	'image/gif'"

FilterProvider	unpack	png_unpack	"%{CONTENT_TYPE}	=	'image/png'"

FilterProvider	downsample	downsample_filter	"%{CONTENT_TYPE}	=	m|^image/(jpeg|gif|png)|"

FilterProtocol	downsample	"change=yes"

FilterProvider	repack	jpeg_pack	"%{CONTENT_TYPE}	=	'image/jpeg'"

FilterProvider	repack	gif_pack	"%{CONTENT_TYPE}	=	'image/gif'"

FilterProvider	repack	png_pack	"%{CONTENT_TYPE}	=	'image/png'"

<Location	"/image-filter">

				FilterChain	unpack	downsample	repack

</Location>

Protocol	Handling

Historically,	each	filter	is	responsible	for	ensuring	that	whatever
changes	it	makes	are	correctly	represented	in	the	HTTP	response
headers,	and	that	it	does	not	run	when	it	would	make	an	illegal
change.	This	imposes	a	burden	on	filter	authors	to	re-implement
some	common	functionality	in	every	filter:

Many	filters	will	change	the	content,	invalidating	existing
content	tags,	checksums,	hashes,	and	lengths.
Filters	that	require	an	entire,	unbroken	response	in	input	need
to	ensure	they	don't	get	byteranges	from	a	backend.
Filters	that	transform	output	in	a	filter	need	to	ensure	they
don't	violate	a	Cache-Control:	no-transform	header
from	the	backend.
Filters	may	make	responses	uncacheable.

mod_filter	aims	to	offer	generic	handling	of	these	details	of
filter	implementation,	reducing	the	complexity	required	of	content
filter	modules.	This	is	work-in-progress;	the	FilterProtocol
implements	some	of	this	functionality	for	back-compatibility	with
Apache	2.0	modules.	For	httpd	2.1	and	later,	the
ap_register_output_filter_protocol	and
ap_filter_protocol	API	enables	filter	modules	to	declare
their	own	behaviour.

At	the	same	time,	mod_filter	should	not	interfere	with	a	filter
that	wants	to	handle	all	aspects	of	the	protocol.	By	default	(i.e.	in
the	absence	of	any	FilterProtocol	directives),	mod_filter
will	leave	the	headers	untouched.

At	the	time	of	writing,	this	feature	is	largely	untested,	as	modules
in	common	use	are	designed	to	work	with	2.0.	Modules	using	it
should	test	it	carefully.

AddOutputFilterByType	Directive

Description: assigns	an	output	filter	to	a	particular	media-type
Syntax: AddOutputFilterByType

filter[;filter...]	media-type

[media-type]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_filter
Compatibility: Had	severe	limitations	before	being	moved	to

mod_filter	in	version	2.3.7

This	directive	activates	a	particular	output	filter	for	a	request
depending	on	the	response	media-type.

The	following	example	uses	the	DEFLATE	filter,	which	is	provided
by	mod_deflate.	It	will	compress	all	output	(either	static	or
dynamic)	which	is	labeled	as	text/html	or	text/plain	before
it	is	sent	to	the	client.

AddOutputFilterByType	DEFLATE	text/html	text/plain

If	you	want	the	content	to	be	processed	by	more	than	one	filter,
their	names	have	to	be	separated	by	semicolons.	It's	also	possible
to	use	one	AddOutputFilterByType	directive	for	each	of	these
filters.

The	configuration	below	causes	all	script	output	labeled	as
text/html	to	be	processed	at	first	by	the	INCLUDES	filter	and
then	by	the	DEFLATE	filter.

<Location	"/cgi-bin/">

				Options	Includes

				AddOutputFilterByType	INCLUDES;DEFLATE	text/html

</Location>

See	also
AddOutputFilter

SetOutputFilter

filters

FilterChain	Directive

Description: Configure	the	filter	chain
Syntax: FilterChain	[+=-@!]filter-name	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_filter

This	configures	an	actual	filter	chain,	from	declared	filters.
FilterChain	takes	any	number	of	arguments,	each	optionally
preceded	with	a	single-character	control	that	determines	what	to
do:

+filter-name

Add	filter-name	to	the	end	of	the	filter	chain

@filter-name

Insert	filter-name	at	the	start	of	the	filter	chain

-filter-name

Remove	filter-name	from	the	filter	chain

=filter-name

Empty	the	filter	chain	and	insert	filter-name

!

Empty	the	filter	chain

filter-name

Equivalent	to	+filter-name

FilterDeclare	Directive

Description: Declare	a	smart	filter
Syntax: FilterDeclare	filter-name	[type]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_filter

This	directive	declares	an	output	filter	together	with	a	header	or
environment	variable	that	will	determine	runtime	configuration.	The
first	argument	is	a	filter-name	for	use	in	FilterProvider,
FilterChain	and	FilterProtocol	directives.

The	final	(optional)	argument	is	the	type	of	filter,	and	takes	values
of	ap_filter_type	-	namely	RESOURCE	(the	default),
CONTENT_SET,	PROTOCOL,	TRANSCODE,	CONNECTION	or
NETWORK.

FilterProtocol	Directive

Description: Deal	with	correct	HTTP	protocol	handling
Syntax: FilterProtocol	filter-name	[provider-

name]	proto-flags

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_filter

This	directs	mod_filter	to	deal	with	ensuring	the	filter	doesn't
run	when	it	shouldn't,	and	that	the	HTTP	response	headers	are
correctly	set	taking	into	account	the	effects	of	the	filter.

There	are	two	forms	of	this	directive.	With	three	arguments,	it
applies	specifically	to	a	filter-name	and	a	provider-name	for	that
filter.	With	two	arguments	it	applies	to	a	filter-name	whenever	the
filter	runs	any	provider.

Flags	specified	with	this	directive	are	merged	with	the	flags	that
underlying	providers	may	have	registerd	with	mod_filter.	For
example,	a	filter	may	internally	specify	the	equivalent	of
change=yes,	but	a	particular	configuration	of	the	module	can
override	with	change=no.

proto-flags	is	one	or	more	of

change=yes|no

Specifies	whether	the	filter	changes	the	content,	including
possibly	the	content	length.	The	"no"	argument	is	supported	in
2.4.7	and	later.

change=1:1

The	filter	changes	the	content,	but	will	not	change	the	content
length

byteranges=no

The	filter	cannot	work	on	byteranges	and	requires	complete
input

proxy=no

The	filter	should	not	run	in	a	proxy	context

proxy=transform

The	filter	transforms	the	response	in	a	manner	incompatible
with	the	HTTP	Cache-Control:	no-transform	header.

cache=no

The	filter	renders	the	output	uncacheable	(eg	by	introducing
randomised	content	changes)

FilterProvider	Directive

Description: Register	a	content	filter
Syntax: FilterProvider	filter-name	provider-

name	expression

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_filter

This	directive	registers	a	provider	for	the	smart	filter.	The	provider
will	be	called	if	and	only	if	the	expression	declared	evaluates	to
true	when	the	harness	is	first	called.

provider-name	must	have	been	registered	by	loading	a	module
that	registers	the	name	with	ap_register_output_filter.

expression	is	an	ap_expr.

See	also
Expressions	in	Apache	HTTP	Server,	for	a	complete
reference	and	examples.
mod_include

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

FilterTrace	Directive

Description: Get	debug/diagnostic	information	from
mod_filter

Syntax: FilterTrace	filter-name	level

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_filter

This	directive	generates	debug	information	from	mod_filter.	It
is	designed	to	help	test	and	debug	providers	(filter	modules),
although	it	may	also	help	with	mod_filter	itself.

The	debug	output	depends	on	the	level	set:

0	(default)
No	debug	information	is	generated.

1

mod_filter	will	record	buckets	and	brigades	passing
through	the	filter	to	the	error	log,	before	the	provider	has
processed	them.	This	is	similar	to	the	information	generated
by	mod_diagnostics.

2	(not	yet	implemented)
Will	dump	the	full	data	passing	through	to	a	tempfile	before
the	provider.	For	single-user	debug	only;	this	will	not
support	concurrent	hits.

http://apache.webthing.com/mod_diagnostics/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_headers

Description: Customization	of	HTTP	request	and	response
headers

Status: Extension
Module	Identifier: headers_module
Source	File: mod_headers.c

Summary
This	module	provides	directives	to	control	and	modify	HTTP	request
and	response	headers.	Headers	can	be	merged,	replaced	or
removed.

Order	of	Processing

The	directives	provided	by	mod_headers	can	occur	almost
anywhere	within	the	server	configuration,	and	can	be	limited	in
scope	by	enclosing	them	in	configuration	sections.

Order	of	processing	is	important	and	is	affected	both	by	the	order
in	the	configuration	file	and	by	placement	in	configuration	sections.
These	two	directives	have	a	different	effect	if	reversed:

RequestHeader	append	MirrorID	"mirror	12"

RequestHeader	unset	MirrorID

This	way	round,	the	MirrorID	header	is	not	set.	If	reversed,	the
MirrorID	header	is	set	to	"mirror	12".

Early	and	Late	Processing

mod_headers	can	be	applied	either	early	or	late	in	the	request.
The	normal	mode	is	late,	when	Request	Headers	are	set
immediately	before	running	the	content	generator	and	Response
Headers	just	as	the	response	is	sent	down	the	wire.	Always	use
Late	mode	in	an	operational	server.

Early	mode	is	designed	as	a	test/debugging	aid	for	developers.
Directives	defined	using	the	early	keyword	are	set	right	at	the
beginning	of	processing	the	request.	This	means	they	can	be	used
to	simulate	different	requests	and	set	up	test	cases,	but	it	also
means	that	headers	may	be	changed	at	any	time	by	other
modules	before	generating	a	Response.

Because	early	directives	are	processed	before	the	request	path's
configuration	is	traversed,	early	headers	can	only	be	set	in	a	main
server	or	virtual	host	context.	Early	directives	cannot	depend	on	a
request	path,	so	they	will	fail	in	contexts	such	as	<Directory>	or
<Location>.

Examples

1.	 Copy	all	request	headers	that	begin	with	"TS"	to	the	response
headers:

Header	echo	^TS

2.	 Add	a	header,	MyHeader,	to	the	response	including	a
timestamp	for	when	the	request	was	received	and	how	long	it
took	to	begin	serving	the	request.	This	header	can	be	used	by
the	client	to	intuit	load	on	the	server	or	in	isolating	bottlenecks
between	the	client	and	the	server.

Header	set	MyHeader	"%D	%t"

results	in	this	header	being	added	to	the	response:

MyHeader:	D=3775428	t=991424704447256

3.	 Say	hello	to	Joe

Header	set	MyHeader	"Hello	Joe.	It	took	%D	microseconds	for	Apache	to	serve	this	request."

results	in	this	header	being	added	to	the	response:

MyHeader:	Hello	Joe.	It	took	D=3775428	microseconds	for

Apache	to	serve	this	request.

4.	 Conditionally	send	MyHeader	on	the	response	if	and	only	if
header	MyRequestHeader	is	present	on	the	request.	This	is
useful	for	constructing	headers	in	response	to	some	client
stimulus.	Note	that	this	example	requires	the	services	of	the
mod_setenvif	module.

SetEnvIf	MyRequestHeader	myvalue	HAVE_MyRequestHeader

Header	set	MyHeader	"%D	%t	mytext"	env=HAVE_MyRequestHeader

If	the	header	MyRequestHeader:	myvalue	is	present	on
the	HTTP	request,	the	response	will	contain	the	following
header:

MyHeader:	D=3775428	t=991424704447256	mytext

5.	 Enable	DAV	to	work	with	Apache	running	HTTP	through	SSL
hardware	(problem	description)	by	replacing	https:	with	http:
in	the	Destination	header:

RequestHeader	edit	Destination	^https:	http:	early

6.	 Set	the	same	header	value	under	multiple	nonexclusive
conditions,	but	do	not	duplicate	the	value	in	the	final	header.	If
all	of	the	following	conditions	applied	to	a	request	(i.e.,	if	the
CGI,	NO_CACHE	and	NO_STORE	environment	variables	all
existed	for	the	request):

Header	merge	Cache-Control	no-cache	env=CGI

Header	merge	Cache-Control	no-cache	env=NO_CACHE

Header	merge	Cache-Control	no-store	env=NO_STORE

then	the	response	would	contain	the	following	header:

Cache-Control:	no-cache,	no-store

If	append	was	used	instead	of	merge,	then	the	response
would	contain	the	following	header:

http://svn.haxx.se/users/archive-2006-03/0549.shtml

Cache-Control:	no-cache,	no-cache,	no-store

7.	 Set	a	test	cookie	if	and	only	if	the	client	didn't	send	us	a
cookie

Header	set	Set-Cookie	testcookie	"expr=-z	%{req:Cookie}"

8.	 Append	a	Caching	header	for	responses	with	a	HTTP	status
code	of	200

Header	append	Cache-Control	s-maxage=600	"expr=%{REQUEST_STATUS}	==	200"

Header	Directive

Description: Configure	HTTP	response	headers
Syntax: Header	[condition]

add|append|echo|edit|edit*|merge|set|setifempty|unset|note

header	[[expr=]value	[replacement]	[early|env=

[!]varname|expr=expression]]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_headers
Compatibility: SetIfEmpty	available	in	2.4.7	and	later,	expr=value	

This	directive	can	replace,	merge	or	remove	HTTP	response
headers.	The	header	is	modified	just	after	the	content	handler	and
output	filters	are	run,	allowing	outgoing	headers	to	be	modified.

The	optional	condition	argument	determines	which	internal	table	of
responses	headers	this	directive	will	operate	against.	Despite	the
name,	the	default	value	of	onsuccess	does	not	limit	an	action	to
responses	with	a	2xx	status	code.	Headers	set	under	this
condition	are	still	used	when,	for	example,	a	request	is
successfully	proxied	or	generated	by	CGI,	even	when	they	have
generated	a	failing	status	code.

When	your	action	is	a	function	of	an	existing	header,	you	may
need	to	specify	a	condition	of	always,	depending	on	which
internal	table	the	original	header	was	set	in.	The	table	that
corresponds	to	always	is	used	for	locally	generated	error
responses	as	well	as	successful	responses.	Note	also	that
repeating	this	directive	with	both	conditions	makes	sense	in	some
scenarios	because	always	is	not	a	superset	of	onsuccess	with
respect	to	existing	headers:

You're	adding	a	header	to	a	locally	generated	non-success

(non-2xx)	response,	such	as	a	redirect,	in	which	case	only	the
table	corresponding	to	always	is	used	in	the	ultimate
response.
You're	modifying	or	removing	a	header	generated	by	a	CGI
script,	in	which	case	the	CGI	scripts	are	in	the	table
corresponding	to	always	and	not	in	the	default	table.
You're	modifying	or	removing	a	header	generated	by	some
piece	of	the	server	but	that	header	is	not	being	found	by	the
default	onsuccess	condition.

Separately	from	the	condition	parameter	described	above,	you	can
limit	an	action	based	on	HTTP	status	codes	for	e.g.	proxied	or	CGI
requests.	See	the	example	that	uses	%{REQUEST_STATUS}	in
the	section	above.

The	action	it	performs	is	determined	by	the	first	argument	(second
argument	if	a	condition	is	specified).	This	can	be	one	of	the
following	values:

add

The	response	header	is	added	to	the	existing	set	of	headers,
even	if	this	header	already	exists.	This	can	result	in	two	(or
more)	headers	having	the	same	name.	This	can	lead	to
unforeseen	consequences,	and	in	general	set,	append	or
merge	should	be	used	instead.

append

The	response	header	is	appended	to	any	existing	header	of
the	same	name.	When	a	new	value	is	merged	onto	an
existing	header	it	is	separated	from	the	existing	header	with	a
comma.	This	is	the	HTTP	standard	way	of	giving	a	header
multiple	values.

echo

Request	headers	with	this	name	are	echoed	back	in	the
response	headers.	header	may	be	a	regular	expression.	value

must	be	omitted.

edit

edit*

If	this	response	header	exists,	its	value	is	transformed
according	to	a	regular	expression	search-and-replace.	The
value	argument	is	a	regular	expression,	and	the	replacement
is	a	replacement	string,	which	may	contain	backreferences	or
format	specifiers.	The	edit	form	will	match	and	replace
exactly	once	in	a	header	value,	whereas	the	edit*	form	will
replace	every	instance	of	the	search	pattern	if	it	appears	more
than	once.

merge

The	response	header	is	appended	to	any	existing	header	of
the	same	name,	unless	the	value	to	be	appended	already
appears	in	the	header's	comma-delimited	list	of	values.	When
a	new	value	is	merged	onto	an	existing	header	it	is	separated
from	the	existing	header	with	a	comma.	This	is	the	HTTP
standard	way	of	giving	a	header	multiple	values.	Values	are
compared	in	a	case	sensitive	manner,	and	after	all	format
specifiers	have	been	processed.	Values	in	double	quotes	are
considered	different	from	otherwise	identical	unquoted	values.

set

The	response	header	is	set,	replacing	any	previous	header
with	this	name.	The	value	may	be	a	format	string.

setifempty

The	request	header	is	set,	but	only	if	there	is	no	previous
header	with	this	name.

The	Content-Type	header	is	a	special	use	case	since	there
might	be	the	chance	that	its	value	have	been	determined
but	the	header	is	not	part	of	the	response	when
setifempty	is	evaluated.	It	is	safer	to	use	set	for	this	use

case	like	in	the	following	example:

Header	set	Content-Type	"text/plain"	"expr=-z	%{CONTENT_TYPE}"

unset

The	response	header	of	this	name	is	removed,	if	it	exists.	If
there	are	multiple	headers	of	the	same	name,	all	will	be
removed.	value	must	be	omitted.

note

The	value	of	the	named	response	header	is	copied	into	an
internal	note	whose	name	is	given	by	value.	This	is	useful	if	a
header	sent	by	a	CGI	or	proxied	resource	is	configured	to	be
unset	but	should	also	be	logged.
Available	in	2.4.7	and	later.

This	argument	is	followed	by	a	header	name,	which	can	include
the	final	colon,	but	it	is	not	required.	Case	is	ignored	for	set,
append,	merge,	add,	unset	and	edit.	The	header	name	for
echo	is	case	sensitive	and	may	be	a	regular	expression.

For	set,	append,	merge	and	add	a	value	is	specified	as	the	next
argument.	If	value	contains	spaces,	it	should	be	surrounded	by
double	quotes.	value	may	be	a	character	string,	a	string	containing
mod_headers	specific	format	specifiers	(and	character	literals),	or
an	ap_expr	expression	prefixed	with	expr=

The	following	format	specifiers	are	supported	in	value:

Format Description
%% The	percent	sign
%t The	time	the	request	was	received	in	Universal

Coordinated	Time	since	the	epoch	(Jan.	1,	1970)

measured	in	microseconds.	The	value	is	preceded
by	t=.

%D The	time	from	when	the	request	was	received	to
the	time	the	headers	are	sent	on	the	wire.	This	is	a
measure	of	the	duration	of	the	request.	The	value
is	preceded	by	D=.	The	value	is	measured	in
microseconds.

%l The	current	load	averages	of	the	actual	server
itself.	It	is	designed	to	expose	the	values	obtained
by	getloadavg()	and	this	represents	the	current
load	average,	the	5	minute	average,	and	the	15
minute	average.	The	value	is	preceded	by	l=	with
each	average	separated	by	/.
Available	in	2.4.4	and	later.

%i The	current	idle	percentage	of	httpd	(0	to	100)
based	on	available	processes	and	threads.	The
value	is	preceded	by	i=.
Available	in	2.4.4	and	later.

%b The	current	busy	percentage	of	httpd	(0	to	100)
based	on	available	processes	and	threads.	The
value	is	preceded	by	b=.
Available	in	2.4.4	and	later.

%

{VARNAME}e

The	contents	of	the	environment	variable
VARNAME.

%

{VARNAME}s

The	contents	of	the	SSL	environment	variable
VARNAME,	if	mod_ssl	is	enabled.

Note

The	%s	format	specifier	is	only	available	in	Apache	2.1	and	later;
it	can	be	used	instead	of	%e	to	avoid	the	overhead	of	enabling
SSLOptions	+StdEnvVars.	If	SSLOptions	+StdEnvVars

must	be	enabled	anyway	for	some	other	reason,	%e	will	be	more
efficient	than	%s.

Note	on	expression	values

When	the	value	parameter	uses	the	ap_expr	parser,	some
expression	syntax	will	differ	from	examples	that	evaluate
boolean	expressions	such	as	<If>:

The	starting	point	of	the	grammar	is	'string'	rather	than
'expr'.
Function	calls	use	the	%{funcname:arg}	syntax	rather	than
funcname(arg).
Multi-argument	functions	are	not	currently	accessible	from
this	starting	point
Quote	the	entire	parameter,	such	as

Header	set	foo-checksum	"expr=%{md5:foo}"

For	edit	there	is	both	a	value	argument	which	is	a	regular
expression,	and	an	additional	replacement	string.	As	of	version
2.4.7	the	replacement	string	may	also	contain	format	specifiers.

The	Header	directive	may	be	followed	by	an	additional	argument,
which	may	be	any	of:

early

Specifies	early	processing.

env=[!]varname

The	directive	is	applied	if	and	only	if	the	environment	variable
varname	exists.	A	!	in	front	of	varname	reverses	the	test,	so
the	directive	applies	only	if	varname	is	unset.

expr=expression

The	directive	is	applied	if	and	only	if	expression	evaluates	to
true.	Details	of	expression	syntax	and	evaluation	are
documented	in	the	ap_expr	documentation.

#	This	delays	the	evaluation	of	the	condition	clause	compared	to	<If>

Header	always	set	CustomHeader	my-value	"expr=%{REQUEST_URI}	=~	m#^/special_path.php$#"

Except	in	early	mode,	the	Header	directives	are	processed	just
before	the	response	is	sent	to	the	network.	This	means	that	it	is
possible	to	set	and/or	override	most	headers,	except	for	some
headers	added	by	the	HTTP	header	filter.	Prior	to	2.2.12,	it	was
not	possible	to	change	the	Content-Type	header	with	this	directive.

RequestHeader	Directive

Description: Configure	HTTP	request	headers
Syntax: RequestHeader

add|append|edit|edit*|merge|set|setifempty|unset

header	[[expr=]value	[replacement]	[early|env=

[!]varname|expr=expression]]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_headers
Compatibility: SetIfEmpty	available	in	2.4.7	and	later,	expr=value	

2.4.10	and	later

This	directive	can	replace,	merge,	change	or	remove	HTTP
request	headers.	The	header	is	modified	just	before	the	content
handler	is	run,	allowing	incoming	headers	to	be	modified.	The
action	it	performs	is	determined	by	the	first	argument.	This	can	be
one	of	the	following	values:

add

The	request	header	is	added	to	the	existing	set	of	headers,
even	if	this	header	already	exists.	This	can	result	in	two	(or
more)	headers	having	the	same	name.	This	can	lead	to
unforeseen	consequences,	and	in	general	set,	append	or
merge	should	be	used	instead.

append

The	request	header	is	appended	to	any	existing	header	of	the
same	name.	When	a	new	value	is	merged	onto	an	existing
header	it	is	separated	from	the	existing	header	with	a	comma.
This	is	the	HTTP	standard	way	of	giving	a	header	multiple
values.

edit

edit*

If	this	request	header	exists,	its	value	is	transformed
according	to	a	regular	expression	search-and-replace.	The
value	argument	is	a	regular	expression,	and	the	replacement
is	a	replacement	string,	which	may	contain	backreferences	or
format	specifiers.	The	edit	form	will	match	and	replace
exactly	once	in	a	header	value,	whereas	the	edit*	form	will
replace	every	instance	of	the	search	pattern	if	it	appears	more
than	once.

merge

The	request	header	is	appended	to	any	existing	header	of	the
same	name,	unless	the	value	to	be	appended	already
appears	in	the	existing	header's	comma-delimited	list	of
values.	When	a	new	value	is	merged	onto	an	existing	header
it	is	separated	from	the	existing	header	with	a	comma.	This	is
the	HTTP	standard	way	of	giving	a	header	multiple	values.
Values	are	compared	in	a	case	sensitive	manner,	and	after	all
format	specifiers	have	been	processed.	Values	in	double
quotes	are	considered	different	from	otherwise	identical
unquoted	values.

set

The	request	header	is	set,	replacing	any	previous	header	with
this	name

setifempty

The	request	header	is	set,	but	only	if	there	is	no	previous
header	with	this	name.
Available	in	2.4.7	and	later.

unset

The	request	header	of	this	name	is	removed,	if	it	exists.	If
there	are	multiple	headers	of	the	same	name,	all	will	be
removed.	value	must	be	omitted.

This	argument	is	followed	by	a	header	name,	which	can	include

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

the	final	colon,	but	it	is	not	required.	Case	is	ignored.	For	set,
append,	merge	and	add	a	value	is	given	as	the	third	argument.	If
a	value	contains	spaces,	it	should	be	surrounded	by	double
quotes.	For	unset,	no	value	should	be	given.	value	may	be	a
character	string,	a	string	containing	format	specifiers	or	a
combination	of	both.	The	supported	format	specifiers	are	the	same
as	for	the	Header,	please	have	a	look	there	for	details.	For	edit
both	a	value	and	a	replacement	are	required,	and	are	a	regular
expression	and	a	replacement	string	respectively.

The	RequestHeader	directive	may	be	followed	by	an	additional
argument,	which	may	be	any	of:

early

Specifies	early	processing.

env=[!]varname

The	directive	is	applied	if	and	only	if	the	environment	variable
varname	exists.	A	!	in	front	of	varname	reverses	the	test,	so
the	directive	applies	only	if	varname	is	unset.

expr=expression

The	directive	is	applied	if	and	only	if	expression	evaluates	to
true.	Details	of	expression	syntax	and	evaluation	are
documented	in	the	ap_expr	documentation.

Except	in	early	mode,	the	RequestHeader	directive	is	processed
just	before	the	request	is	run	by	its	handler	in	the	fixup	phase.	This
should	allow	headers	generated	by	the	browser,	or	by	Apache
input	filters	to	be	overridden	or	modified.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_heartbeat

Description: Sends	messages	with	server	status	to	frontend
proxy

Status: Experimental
Module	Identifier: heartbeat_module
Source	File: mod_heartbeat
Compatibility: Available	in	Apache	2.3	and	later

Summary
mod_heartbeat	sends	multicast	messages	to	a
mod_heartmonitor	listener	that	advertises	the	servers	current
connection	count.	Usually,	mod_heartmonitor	will	be	running	on	a
proxy	server	with	mod_lbmethod_heartbeat	loaded,	which	allows
ProxyPass	to	use	the	"heartbeat"	lbmethod	inside	of	ProxyPass.

mod_heartbeat	itself	is	loaded	on	the	origin	server(s)	that	serve
requests	through	the	proxy	server(s).

To	use	mod_heartbeat,	mod_status	and	mod_watchdog	must
be	either	a	static	modules	or,	if	a	dynamic	module,	must	be	loaded
before	mod_heartbeat.

Consuming	mod_heartbeat	Output

Every	1	second,	this	module	generates	a	single	multicast	UDP
packet,	containing	the	number	of	busy	and	idle	workers.	The
packet	is	a	simple	ASCII	format,	similar	to	GET	query	parameters
in	HTTP.

An	Example	Packet
v=1&ready=75&busy=0

Consumers	should	handle	new	variables	besides	busy	and	ready,
separated	by	'&',	being	added	in	the	future.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

HeartbeatAddress	Directive

Description: Multicast	address	for	heartbeat	packets
Syntax: HeartbeatAddress	addr:port

Default: disabled

Context: server	config
Status: Experimental
Module: mod_heartbeat

The	HeartbeatAddress	directive	specifies	the	multicast	address
to	which	mod_heartbeat	will	send	status	information.	This
address	will	usually	correspond	to	a	configured
HeartbeatListen	on	a	frontend	proxy	system.

HeartbeatAddress	239.0.0.1:27999

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_heartmonitor

Description: Centralized	monitor	for	mod_heartbeat	origin
servers

Status: Experimental
Module	Identifier: heartmonitor_module
Source	File: mod_heartmonitor.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
mod_heartmonitor	listens	for	server	status	messages	generated
by	mod_heartbeat	enabled	origin	servers	and	makes	their	status
available	to	mod_lbmethod_heartbeat.	This	allows	ProxyPass	to
use	the	"heartbeat"	lbmethod	inside	of	ProxyPass.

This	module	uses	the	services	of	mod_slotmem_shm	when	available
instead	of	flat-file	storage.	No	configuration	is	required	to	use
mod_slotmem_shm.

To	use	mod_heartmonitor,	mod_status	and	mod_watchdog
must	be	either	a	static	modules	or,	if	a	dynamic	module,	it	must	be
loaded	before	mod_heartmonitor.

HeartbeatListen	Directive

Description: multicast	address	to	listen	for	incoming	heartbeat
requests

Syntax: HeartbeatListenaddr:port

Default: disabled

Context: server	config
Status: Experimental
Module: mod_heartmonitor

The	HeartbeatListen	directive	specifies	the	multicast	address
on	which	the	server	will	listen	for	status	information	from
mod_heartbeat-enabled	servers.	This	address	will	usually
correspond	to	a	configured	HeartbeatAddress	on	an	origin
server.

HeartbeatListen	239.0.0.1:27999

This	module	is	inactive	until	this	directive	is	used.

HeartbeatMaxServers	Directive

Description: Specifies	the	maximum	number	of	servers	that	will
be	sending	heartbeat	requests	to	this	server

Syntax: HeartbeatMaxServers	number-of-servers

Default: HeartbeatMaxServers	10

Context: server	config
Status: Experimental
Module: mod_heartmonitor

The	HeartbeatMaxServers	directive	specifies	the	maximum
number	of	servers	that	will	be	sending	requests	to	this	monitor
server.	It	is	used	to	control	the	size	of	the	shared	memory
allocated	to	store	the	heartbeat	info	when	mod_slotmem_shm	is
in	use.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

HeartbeatStorage	Directive

Description: Path	to	store	heartbeat	data
Syntax: HeartbeatStorage	file-path

Default: HeartbeatStorage	logs/hb.dat

Context: server	config
Status: Experimental
Module: mod_heartmonitor

The	HeartbeatStorage	directive	specifies	the	path	to	store
heartbeat	data.	This	flat-file	is	used	only	when
mod_slotmem_shm	is	not	loaded.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_http2

Description: Support	for	the	HTTP/2	transport	layer
Status: Extension
Module	Identifier: http2_module
Source	File: mod_http2.c
Compatibility: Available	in	version	2.4.17	and	later

Summary
This	module	provides	HTTP/2	(RFC	7540)	support	for	the	Apache
HTTP	Server.

This	module	relies	on	libnghttp2	to	provide	the	core	http/2	engine.

You	must	enable	HTTP/2	via	Protocols	in	order	to	use	the
functionality	described	in	this	document.	The	HTTP/2	protocol	does
not	require	the	use	of	encryption	so	two	schemes	are	available:	h2
(HTTP/2	over	TLS)	and	h2c	(HTTP/2	over	TCP).

Two	useful	configuration	schemes	are:

HTTP/2	in	a	VirtualHost	context	(TLS	only)

Protocols	h2	http/1.1

Allows	HTTP/2	negotiation	(h2)	via	TLS	ALPN	in	a	secure
<VirtualHost>.	HTTP/2	preamble	checking	(Direct	mode,	see
H2Direct)	is	disabled	by	default	for	h2.

HTTP/2	in	a	Server	context	(TLS	and	cleartext)

Protocols	h2	h2c	http/1.1

https://tools.ietf.org/html/rfc7540
http://nghttp2.org/
https://http2.github.io/faq/#does-http2-require-encryption

Allows	HTTP/2	negotiation	(h2)	via	TLS	ALPN	for	secure
<VirtualHost>.	Allows	HTTP/2	cleartext	negotiation	(h2c)
upgrading	from	an	initial	HTTP/1.1	connection	or	via	HTTP/2
preamble	checking	(Direct	mode,	see	H2Direct).

Refer	to	the	official	HTTP/2	FAQ	for	any	doubt	about	the	protocol.

https://http2.github.io/faq

How	it	works

HTTP/2	Dimensioning
Enabling	HTTP/2	on	your	Apache	Server	has	impact	on	the
resource	consumption	and	if	you	have	a	busy	site,	you	may	need
to	consider	carefully	the	implications.

The	first	noticeable	thing	after	enabling	HTTP/2	is	that	your	server
processes	will	start	additional	threads.	The	reason	for	this	is	that
HTTP/2	gives	all	requests	that	it	receives	to	its	own	Worker
threads	for	processing,	collects	the	results	and	streams	them	out
to	the	client.

In	the	current	implementation,	these	workers	use	a	separate
thread	pool	from	the	MPM	workers	that	you	might	be	familiar	with.
This	is	just	how	things	are	right	now	and	not	intended	to	be	like
this	forever.	(It	might	be	forever	for	the	2.4.x	release	line,	though.)
So,	HTTP/2	workers,	or	shorter	H2Workers,	will	not	show	up	in
mod_status.	They	are	also	not	counted	against	directives	such
as	ThreadsPerChild.	However	they	take	ThreadsPerChild
as	default	if	you	have	not	configured	something	else	via
H2MinWorkers	and	H2MaxWorkers.

Another	thing	to	watch	out	for	is	is	memory	consumption.	Since
HTTP/2	keeps	more	state	on	the	server	to	manage	all	the	open
request,	priorities	for	and	dependencies	between	them,	it	will
always	need	more	memory	than	HTTP/1.1	processing.	There	are
three	directives	which	steer	the	memory	footprint	of	a	HTTP/2
connection:	H2MaxSessionStreams,	H2WindowSize	and
H2StreamMaxMemSize.

H2MaxSessionStreams	limits	the	number	of	parallel	requests
that	a	client	can	make	on	a	HTTP/2	connection.	It	depends	on
your	site	how	many	you	should	allow.	The	default	is	100	which	is
plenty	and	unless	you	run	into	memory	problems,	I	would	keep	it

this	way.	Most	requests	that	browsers	send	are	GETs	without	a
body,	so	they	use	up	only	a	little	bit	of	memory	until	the	actual
processing	starts.

H2WindowSize	controls	how	much	the	client	is	allowed	to	send
as	body	of	a	request,	before	it	waits	for	the	server	to	encourage
more.	Or,	the	other	way	around,	it	is	the	amount	of	request	body
data	the	server	needs	to	be	able	to	buffer.	This	is	per	request.

And	last,	but	not	least,	H2StreamMaxMemSize	controls	how
much	response	data	shall	be	buffered.	The	request	sits	in	a
H2Worker	thread	and	is	producing	data,	the	HTTP/2	connection
tries	to	send	this	to	the	client.	If	the	client	does	not	read	fast
enough,	the	connection	will	buffer	this	amount	of	data	and	then
suspend	the	H2Worker.

Multiple	Hosts	and	Misdirected	Requests
Many	sites	use	the	same	TLS	certificate	for	multiple	virtual	hosts.
The	certificate	either	has	a	wildcard	name,	such	as	'*.example.org'
or	carries	several	alternate	names.	Browsers	using	HTTP/2	will
recognize	that	and	reuse	an	already	opened	connection	for	such
hosts.

While	this	is	great	for	performance,	it	comes	at	a	price:	such
vhosts	need	more	care	in	their	configuration.	The	problem	is	that
you	will	have	multiple	requests	for	multiple	hosts	on	the	same	TLS
connection.	And	that	makes	renegotiation	impossible,	in	face	the
HTTP/2	standard	forbids	it.

So,	if	you	have	several	virtual	hosts	using	the	same	certificate	and
want	to	use	HTTP/2	for	them,	you	need	to	make	sure	that	all
vhosts	have	exactly	the	same	SSL	configuration.	You	need	the
same	protocol,	ciphers	and	settings	for	client	verification.

If	you	mix	things,	Apache	httpd	will	detect	it	and	return	a	special

response	code,	421	Misdirected	Request,	to	the	client.

Environment	Variables
This	module	can	be	configured	to	provide	HTTP/2	related
information	as	additional	environment	variables	to	the	SSI	and
CGI	namespace,	as	well	as	in	custom	log	configurations	(see	%
{VAR_NAME}e).

Variable	Name: Value
Type:

Description:

HTTP2 flag HTTP/2	is	being	used.
H2PUSH flag HTTP/2	Server	Push	is	enabled	for

this	connection	and	also	supported	by
the	client.

H2_PUSH flag alternate	name	for	H2PUSH
H2_PUSHED string empty	or	PUSHED	for	a	request	being

pushed	by	the	server.
H2_PUSHED_ON number HTTP/2	stream	number	that	triggered

the	push	of	this	request.
H2_STREAM_ID number HTTP/2	stream	number	of	this

request.
H2_STREAM_TAG string HTTP/2	process	unique	stream

identifier,	consisting	of	connection	id
and	stream	id	separated	by	-.

H2CopyFiles	Directive

Description: Determine	file	handling	in	responses
Syntax: H2CopyFiles	on|off

Default: H2CopyFiles	off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.24	and	later.

This	directive	influences	how	file	content	is	handled	in	responses.
When	off,	which	is	the	default,	file	handles	are	passed	from	the
requestion	processing	down	to	the	main	connection,	using	the
usual	Apache	setaside	handling	for	managing	the	lifetime	of	the
file.

When	set	to	on,	file	content	is	copied	while	the	request	is	still
being	processed	and	the	buffered	data	is	passed	on	to	the	main
connection.	This	is	better	if	a	third	party	module	is	injecting	files
with	different	lifetimes	into	the	response.

An	example	for	such	a	module	is	mod_wsgi	that	may	place
Python	file	handles	into	the	response.	Those	files	get	close	down
when	Python	thinks	processing	has	finished.	That	may	be	well
before	mod_http2	is	done	with	them.

H2Direct	Directive

Description: H2	Direct	Protocol	Switch
Syntax: H2Direct	on|off

Default: H2Direct	on	for	h2c,	off	for	h2

protocol

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	toggles	the	usage	of	the	HTTP/2	Direct	Mode.	This
should	be	used	inside	a	<VirtualHost>	section	to	enable	direct
HTTP/2	communication	for	that	virtual	host.

Direct	communication	means	that	if	the	first	bytes	received	by	the
server	on	a	connection	match	the	HTTP/2	preamble,	the	HTTP/2
protocol	is	switched	to	immediately	without	further	negotiation.
This	mode	is	defined	in	RFC	7540	for	the	cleartext	(h2c)	case.	Its
use	on	TLS	connections	not	mandated	by	the	standard.

When	a	server/vhost	does	not	have	h2	or	h2c	enabled	via
Protocols,	the	connection	is	never	inspected	for	a	HTTP/2
preamble.	H2Direct	does	not	matter	then.	This	is	important	for
connections	that	use	protocols	where	an	initial	read	might	hang
indefinitely,	such	as	NNTP.

For	clients	that	have	out-of-band	knowledge	about	a	server
supporting	h2c,	direct	HTTP/2	saves	the	client	from	having	to
perform	an	HTTP/1.1	upgrade,	resulting	in	better	performance	and
avoiding	the	Upgrade	restrictions	on	request	bodies.

This	makes	direct	h2c	attractive	for	server	to	server
communication	as	well,	when	the	connection	can	be	trusted	or	is
secured	by	other	means.

Example
H2Direct	on

H2EarlyHints	Directive

Description: Determine	sending	of	103	status	codes
Syntax: H2EarlyHints	on|off

Default: H2EarlyHints	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.24	and	later.

This	setting	controls	if	HTTP	status	103	interim	responses	are
forwarded	to	the	client	or	not.	By	default,	this	is	currently	not	the
case	since	a	range	of	clients	still	have	trouble	with	unexpected
interim	responses.

When	set	to	on,	PUSH	resources	announced	with
H2PushResource	will	trigger	an	interim	103	response	before	the
final	response.	The	103	response	will	carry	Link	headers	that
advise	the	preload	of	such	resources.

H2MaxSessionStreams	Directive

Description: Maximum	number	of	active	streams	per	HTTP/2
session.

Syntax: H2MaxSessionStreams	n

Default: H2MaxSessionStreams	100

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	sets	the	maximum	number	of	active	streams	per
HTTP/2	session	(e.g.	connection)	that	the	server	allows.	A	stream
is	active	if	it	is	not	idle	or	closed	according	to	RFC	7540.

Example
H2MaxSessionStreams	20

H2MaxWorkerIdleSeconds	Directive

Description: Maximum	number	of	seconds	h2	workers	remain
idle	until	shut	down.

Syntax: H2MaxWorkerIdleSeconds	n

Default: H2MaxWorkerIdleSeconds	600

Context: server	config
Status: Extension
Module: mod_http2

This	directive	sets	the	maximum	number	of	seconds	a	h2	worker
may	idle	until	it	shuts	itself	down.	This	only	happens	while	the
number	of	h2	workers	exceeds	H2MinWorkers.

Example
H2MaxWorkerIdleSeconds	20

H2MaxWorkers	Directive

Description: Maximum	number	of	worker	threads	to	use	per
child	process.

Syntax: H2MaxWorkers	n

Context: server	config
Status: Extension
Module: mod_http2

This	directive	sets	the	maximum	number	of	worker	threads	to
spawn	per	child	process	for	HTTP/2	processing.	If	this	directive	is
not	used,	mod_http2	will	chose	a	value	suitable	for	the	mpm
module	loaded.

Example
H2MaxWorkers	20

H2MinWorkers	Directive

Description: Minimal	number	of	worker	threads	to	use	per	child
process.

Syntax: H2MinWorkers	n

Context: server	config
Status: Extension
Module: mod_http2

This	directive	sets	the	minimum	number	of	worker	threads	to
spawn	per	child	process	for	HTTP/2	processing.	If	this	directive	is
not	used,	mod_http2	will	chose	a	value	suitable	for	the	mpm
module	loaded.

Example
H2MinWorkers	10

H2ModernTLSOnly	Directive

Description: Require	HTTP/2	connections	to	be	"modern	TLS"
only

Syntax: H2ModernTLSOnly	on|off

Default: H2ModernTLSOnly	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.

This	directive	toggles	the	security	checks	on	HTTP/2	connections
in	TLS	mode	(https:).	This	can	be	used	server	wide	or	for	specific
<VirtualHost>s.

The	security	checks	require	that	the	TSL	protocol	is	at	least
TLSv1.2	and	that	none	of	the	ciphers	listed	in	RFC	7540,
Appendix	A	is	used.	These	checks	will	be	extended	once	new
security	requirements	come	into	place.

The	name	stems	from	the	Security/Server	Side	TLS	definitions	at
mozilla	where	"modern	compatibility"	is	defined.	Mozilla	Firefox
and	other	browsers	require	modern	compatibility	for	HTTP/2
connections.	As	everything	in	OpSec,	this	is	a	moving	target	and
can	be	expected	to	evolve	in	the	future.

One	purpose	of	having	these	checks	in	mod_http2	is	to	enforce
this	security	level	for	all	connections,	not	only	those	from
browsers.	The	other	purpose	is	to	prevent	the	negotiation	of
HTTP/2	as	a	protocol	should	the	requirements	not	be	met.

Ultimately,	the	security	of	the	TLS	connection	is	determined	by	the
server	configuration	directives	for	mod_ssl.

Example

https://wiki.mozilla.org/Security/Server_Side_TLS

H2ModernTLSOnly	off

H2Push	Directive

Description: H2	Server	Push	Switch
Syntax: H2Push	on|off

Default: H2Push	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.

This	directive	toggles	the	usage	of	the	HTTP/2	server	push
protocol	feature.

The	HTTP/2	protocol	allows	the	server	to	push	other	resources	to
a	client	when	it	asked	for	a	particular	one.	This	is	helpful	if	those
resources	are	connected	in	some	way	and	the	client	can	be
expected	to	ask	for	it	anyway.	The	pushing	then	saves	the	time	it
takes	the	client	to	ask	for	the	resources	itself.	On	the	other	hand,
pushing	resources	the	client	never	needs	or	already	has	is	a
waste	of	bandwidth.

Server	pushes	are	detected	by	inspecting	the	Link	headers	of
responses	(see	https://tools.ietf.org/html/rfc5988	for	the
specification).	When	a	link	thus	specified	has	the	rel=preload
attribute,	it	is	treated	as	a	resource	to	be	pushed.

Link	headers	in	responses	are	either	set	by	the	application	or	can
be	configured	via	mod_headers	as:

mod_headers	example
<Location	/index.html>

				Header	add	Link	"</css/site.css>;rel=preload"

				Header	add	Link	"</images/logo.jpg>;rel=preload"

</Location>

As	the	example	shows,	there	can	be	several	link	headers	added	to
a	response,	resulting	in	several	pushes	being	triggered.	There	are
no	checks	in	the	module	to	avoid	pushing	the	same	resource	twice
or	more	to	one	client.	Use	with	care.

HTTP/2	server	pushes	are	enabled	by	default.	This	directive
allows	it	to	be	switch	off	on	all	resources	of	this	server/virtual	host.

Example
H2Push	off

Last	but	not	least,	pushes	happen	only	when	the	client	signals	its
willingness	to	accept	those.	Most	browsers	do,	some,	like	Safari	9,
do	not.	Also,	pushes	also	only	happen	for	resources	from	the
same	authority	as	the	original	response	is	for.

H2PushDiarySize	Directive

Description: H2	Server	Push	Diary	Size
Syntax: H2PushDiarySize	n

Default: H2PushDiarySize	256

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.19	and	later.

This	directive	toggles	the	maximum	number	of	HTTP/2	server
pushes	that	are	remembered	per	HTTP/2	connection.	This	can	be
used	inside	the	<VirtualHost>	section	to	influence	the	number
for	all	connections	to	that	virtual	host.

The	push	diary	records	a	digest	(currently	using	a	64	bit	number)
of	pushed	resources	(their	URL)	to	avoid	duplicate	pushes	on	the
same	connection.	These	value	are	not	persisted,	so	clients
opening	a	new	connection	will	experience	known	pushes	again.
There	is	ongoing	work	to	enable	a	client	to	disclose	a	digest	of	the
resources	it	already	has,	so	the	diary	maybe	initialized	by	the
client	on	each	connection	setup.

If	the	maximum	size	is	reached,	newer	entries	replace	the	oldest
ones.	A	diary	entry	uses	8	bytes,	letting	a	default	diary	with	256
entries	consume	around	2	KB	of	memory.

A	size	of	0	will	effectively	disable	the	push	diary.

H2PushPriority	Directive

Description: H2	Server	Push	Priority
Syntax: H2PushPriority	mime-type

[after|before|interleaved]	[weight]

Default: H2PushPriority	*	After	16

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.	For	having

an	effect,	a	nghttp2	library	version	1.5.0	or	newer
is	necessary.

This	directive	defines	the	priority	handling	of	pushed	responses
based	on	the	content-type	of	the	response.	This	is	usually	defined
per	server	config,	but	may	also	appear	in	a	virtual	host.

HTTP/2	server	pushes	are	always	related	to	a	client	request.	Each
such	request/response	pairs,	or	streams	have	a	dependency	and
a	weight,	together	defining	the	priority	of	a	stream.

When	a	stream	depends	on	another,	say	X	depends	on	Y,	then	Y
gets	all	bandwidth	before	X	gets	any.	Note	that	this	does	not	mean
that	Y	will	block	X.	If	Y	has	no	data	to	send,	all	bandwidth
allocated	to	Y	can	be	used	by	X.

When	a	stream	has	more	than	one	dependant,	say	X1	and	X2
both	depend	on	Y,	the	weight	determines	the	bandwidth	allocation.
If	X1	and	X2	have	the	same	weight,	they	both	get	half	of	the
available	bandwidth.	If	the	weight	of	X1	is	twice	as	large	as	that	for
X2,	X1	gets	twice	the	bandwidth	of	X2.

Ultimately,	every	stream	depends	on	the	root	stream	which	gets	all
the	bandwidth	available,	but	never	sends	anything.	So	all	its
bandwidth	is	distributed	by	weight	among	its	children.	Which	either

have	data	to	send	or	distribute	the	bandwidth	to	their	own	children.
And	so	on.	If	none	of	the	children	have	data	to	send,	that
bandwidth	get	distributed	somewhere	else	according	to	the	same
rules.

The	purpose	of	this	priority	system	is	to	always	make	use	of
available	bandwidth	while	allowing	precedence	and	weight	to	be
given	to	specific	streams.	Since,	normally,	all	streams	are	initiated
by	the	client,	it	is	also	the	one	that	sets	these	priorities.

Only	when	such	a	stream	results	in	a	PUSH,	gets	the	server	to
decide	what	the	initial	priority	of	such	a	pushed	stream	is.	In	the
examples	below,	X	is	the	client	stream.	It	depends	on	Y	and	the
server	decides	to	PUSH	streams	P1	and	P2	onto	X.

The	default	priority	rule	is:

Default	Priority	Rule
H2PushPriority	*	After	16

which	reads	as	'Send	a	pushed	stream	of	any	content-type
depending	on	the	client	stream	with	weight	16'.	And	so	P1	and	P2
will	be	send	after	X	and,	as	they	have	equal	weight,	share
bandwidth	equally	among	themselves.

Interleaved	Priority	Rule
H2PushPriority	text/css	Interleaved	256

which	reads	as	'Send	any	CSS	resource	on	the	same	dependency
and	weight	as	the	client	stream'.	If	P1	has	content-type	'text/css',	it
will	depend	on	Y	(as	does	X)	and	its	effective	weight	will	be
calculated	as	P1ew	=	Xw	*	(P1w	/	256).	With	P1w	being
256,	this	will	make	the	effective	weight	the	same	as	the	weight	of
X.	If	both	X	and	P1	have	data	to	send,	bandwidth	will	be	allocated

to	both	equally.

With	Pw	specified	as	512,	a	pushed,	interleaved	stream	would	get
double	the	weight	of	X.	With	128	only	half	as	much.	Note	that
effective	weights	are	always	capped	at	256.

Before	Priority	Rule
H2PushPriority	application/json	Before

This	says	that	any	pushed	stream	of	content	type	'application/json'
should	be	send	out	before	X.	This	makes	P1	dependent	on	Y	and
X	dependent	on	P1.	So,	X	will	be	stalled	as	long	as	P1	has	data	to
send.	The	effective	weight	is	inherited	from	the	client	stream.
Specifying	a	weight	is	not	allowed.

Be	aware	that	the	effect	of	priority	specifications	is	limited	by	the
available	server	resources.	If	a	server	does	not	have	workers
available	for	pushed	streams,	the	data	for	the	stream	may	only
ever	arrive	when	other	streams	have	been	finished.

Last,	but	not	least,	there	are	some	specifics	of	the	syntax	to	be
used	in	this	directive:

1.	 '*'	is	the	only	special	content-type	that	matches	all	others.
'image/*'	will	not	work.

2.	 The	default	dependency	is	'After'.

3.	 There	are	also	default	weights:	for	'After'	it	is	16,	'interleaved'
is	256.

Shorter	Priority	Rules
H2PushPriority	application/json	32									#	an	After	rule

H2PushPriority	image/jpeg	before											#	weight	inherited

H2PushPriority	text/css			interleaved						#	weight	256	default

H2PushResource	Directive

Description: Declares	resources	for	early	pushing	to	the	client
Syntax: H2PushResource	[add]	path	[critical]

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.24	and	later.

When	added	to	a	directory/location	HTTP/2	PUSHes	will	be
attempted	for	all	paths	added	via	this	directive.	This	directive	can
be	used	several	times	for	the	same	location.

This	directive	pushes	resources	much	earlier	than	adding	Link
headers	via	mod_headers.	mod_http2	announces	these
resources	in	a	103	Early	Hints	interim	response	to	the	client.
That	means	that	clients	not	supporting	PUSH	will	still	get	early
preload	hints.

In	contrast	to	setting	Link	response	headers	via	mod_headers,
this	directive	will	only	take	effect	on	HTTP/2	connections.

By	adding	critical	to	such	a	resource,	the	server	will	give
processing	it	more	preference	and	send	its	data,	once	available,
before	the	data	from	the	main	request.

H2SerializeHeaders	Directive

Description: Serialize	Request/Response	Processing	Switch
Syntax: H2SerializeHeaders	on|off

Default: H2SerializeHeaders	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	toggles	if	HTTP/2	requests	shall	be	serialized	in
HTTP/1.1	format	for	processing	by	httpd	core	or	if	received
binary	data	shall	be	passed	into	the	request_recs	directly.

Serialization	will	lower	performance,	but	gives	more	backward
compatibility	in	case	custom	filters/hooks	need	it.

Example
H2SerializeHeaders	on

H2StreamMaxMemSize	Directive

Description: Maximum	amount	of	output	data	buffered	per
stream.

Syntax: H2StreamMaxMemSize	bytes

Default: H2StreamMaxMemSize	65536

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	sets	the	maximum	number	of	outgoing	data	bytes
buffered	in	memory	for	an	active	streams.	This	memory	is	not
allocated	per	stream	as	such.	Allocations	are	counted	against	this
limit	when	they	are	about	to	be	done.	Stream	processing	freezes
when	the	limit	has	been	reached	and	will	only	continue	when
buffered	data	has	been	sent	out	to	the	client.

Example
H2StreamMaxMemSize	128000

H2TLSCoolDownSecs	Directive

Description:
Syntax: H2TLSCoolDownSecs	seconds

Default: H2TLSCoolDownSecs	1

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.

This	directive	sets	the	number	of	seconds	of	idle	time	on	a	TLS
connection	before	the	TLS	write	size	falls	back	to	small	(~1300
bytes)	length.	This	can	be	used	server	wide	or	for	specific
<VirtualHost>s.

See	H2TLSWarmUpSize	for	a	description	of	TLS	warmup.
H2TLSCoolDownSecs	reflects	the	fact	that	connections	may
deteriorate	over	time	(and	TCP	flow	adjusts)	for	idle	connections
as	well.	It	is	beneficial	to	overall	performance	to	fall	back	to	the
pre-warmup	phase	after	a	number	of	seconds	that	no	data	has
been	sent.

In	deployments	where	connections	can	be	considered	reliable,	this
timer	can	be	disabled	by	setting	it	to	0.

The	following	example	sets	the	seconds	to	zero,	effectively
disabling	any	cool	down.	Warmed	up	TLS	connections	stay	on
maximum	record	size.

Example
H2TLSCoolDownSecs	0

H2TLSWarmUpSize	Directive

Description:
Syntax: H2TLSWarmUpSize	amount

Default: H2TLSWarmUpSize	1048576

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2
Compatibility: Available	in	version	2.4.18	and	later.

This	directive	sets	the	number	of	bytes	to	be	sent	in	small	TLS
records	(~1300	bytes)	until	doing	maximum	sized	writes	(16k)	on
https:	HTTP/2	connections.	This	can	be	used	server	wide	or	for
specific	<VirtualHost>s.

Measurements	by	google	performance	labs	show	that	best
performance	on	TLS	connections	is	reached,	if	initial	record	sizes
stay	below	the	MTU	level,	to	allow	a	complete	record	to	fit	into	an
IP	packet.

While	TCP	adjust	its	flow-control	and	window	sizes,	longer	TLS
records	can	get	stuck	in	queues	or	get	lost	and	need
retransmission.	This	is	of	course	true	for	all	packets.	TLS	however
needs	the	whole	record	in	order	to	decrypt	it.	Any	missing	bytes	at
the	end	will	stall	usage	of	the	received	ones.

After	a	sufficient	number	of	bytes	have	been	send	successfully,
the	TCP	state	of	the	connection	is	stable	and	maximum	TLS
record	sizes	(16	KB)	can	be	used	for	optimal	performance.

In	deployments	where	servers	are	reached	locally	or	over	reliable
connections	only,	the	value	might	be	decreased	with	0	disabling
any	warmup	phase	altogether.

The	following	example	sets	the	size	to	zero,	effectively	disabling

https://www.igvita.com

any	warmup	phase.

Example
H2TLSWarmUpSize	0

H2Upgrade	Directive

Description: H2	Upgrade	Protocol	Switch
Syntax: H2Upgrade	on|off

Default: H2Upgrade	on	for	h2c,	off	for	h2

protocol

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	toggles	the	usage	of	the	HTTP/1.1	Upgrade	method
for	switching	to	HTTP/2.	This	should	be	used	inside	a
<VirtualHost>	section	to	enable	Upgrades	to	HTTP/2	for	that
virtual	host.

This	method	of	switching	protocols	is	defined	in	HTTP/1.1	and
uses	the	"Upgrade"	header	(thus	the	name)	to	announce
willingness	to	use	another	protocol.	This	may	happen	on	any
request	of	a	HTTP/1.1	connection.

This	method	of	protocol	switching	is	enabled	by	default	on
cleartext	(potential	h2c)	connections	and	disabled	on	TLS
(potential	h2),	as	mandated	by	RFC	7540.

Please	be	aware	that	Upgrades	are	only	accepted	for	requests
that	carry	no	body.	POSTs	and	PUTs	with	content	will	never	trigger
an	upgrade	to	HTTP/2.	See	H2Direct	for	an	alternative	to
Upgrade.

This	mode	only	has	an	effect	when	h2	or	h2c	is	enabled	via	the
Protocols.

Example
H2Upgrade	on

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

H2WindowSize	Directive

Description: Size	of	Stream	Window	for	upstream	data.
Syntax: H2WindowSize	bytes

Default: H2WindowSize	65535

Context: server	config,	virtual	host
Status: Extension
Module: mod_http2

This	directive	sets	the	size	of	the	window	that	is	used	for	flow
control	from	client	to	server	and	limits	the	amount	of	data	the
server	has	to	buffer.	The	client	will	stop	sending	on	a	stream	once
the	limit	has	been	reached	until	the	server	announces	more
available	space	(as	it	has	processed	some	of	the	data).

This	limit	affects	only	request	bodies,	not	its	meta	data	such	as
headers.	Also,	it	has	no	effect	on	response	bodies	as	the	window
size	for	those	are	managed	by	the	clients.

Example
H2WindowSize	128000

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_ident

Description: RFC	1413	ident	lookups
Status: Extension
Module	Identifier: ident_module
Source	File: mod_ident.c
Compatibility: Available	in	Apache	2.1	and	later

Summary
This	module	queries	an	RFC	1413	compatible	daemon	on	a	remote
host	to	look	up	the	owner	of	a	connection.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_log_config

http://www.ietf.org/rfc/rfc1413.txt
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_ident
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_ident

IdentityCheck	Directive

Description: Enables	logging	of	the	RFC	1413	identity	of	the
remote	user

Syntax: IdentityCheck	On|Off

Default: IdentityCheck	Off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_ident
Compatibility: Moved	out	of	core	in	Apache	2.1

This	directive	enables	RFC	1413-compliant	logging	of	the	remote
user	name	for	each	connection,	where	the	client	machine	runs
identd	or	something	similar.	This	information	is	logged	in	the
access	log	using	the	%...l	format	string.

The	information	should	not	be	trusted	in	any	way	except	for
rudimentary	usage	tracking.

Note	that	this	can	cause	serious	latency	problems	accessing	your
server	since	every	request	requires	one	of	these	lookups	to	be
performed.	When	firewalls	or	proxy	servers	are	involved,	each
lookup	might	possibly	fail	and	add	a	latency	duration	as	defined	by
the	IdentityCheckTimeout	directive	to	each	hit.	So	in	general
this	is	not	very	useful	on	public	servers	accessible	from	the
Internet.

http://www.ietf.org/rfc/rfc1413.txt

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

IdentityCheckTimeout	Directive

Description: Determines	the	timeout	duration	for	ident	requests
Syntax: IdentityCheckTimeout	seconds

Default: IdentityCheckTimeout	30

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_ident

This	directive	specifies	the	timeout	duration	of	an	ident	request.
The	default	value	of	30	seconds	is	recommended	by	RFC	1413,
mainly	because	of	possible	network	latency.	However,	you	may
want	to	adjust	the	timeout	value	according	to	your	local	network
speed.

http://www.ietf.org/rfc/rfc1413.txt
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_imagemap

Description: Server-side	imagemap	processing
Status: Base
Module	Identifier: imagemap_module
Source	File: mod_imagemap.c

Summary
This	module	processes	.map	files,	thereby	replacing	the	functionality
of	the	imagemap	CGI	program.	Any	directory	or	document	type
configured	to	use	the	handler	imap-file	(using	either	AddHandler
or	SetHandler)	will	be	processed	by	this	module.

The	following	directive	will	activate	files	ending	with	.map	as
imagemap	files:

AddHandler	imap-file	map

Note	that	the	following	is	still	supported:

AddType	application/x-httpd-imap	map

However,	we	are	trying	to	phase	out	"magic	MIME	types"	so	we	are
deprecating	this	method.

New	Features

The	imagemap	module	adds	some	new	features	that	were	not
possible	with	previously	distributed	imagemap	programs.

URL	references	relative	to	the	Referer:	information.
Default	<base>	assignment	through	a	new	map	directive
base.
No	need	for	imagemap.conf	file.
Point	references.
Configurable	generation	of	imagemap	menus.

Imagemap	File

The	lines	in	the	imagemap	files	can	have	one	of	several	formats:

directive	value	[x,y	...]

directive	value	"Menu	text"	[x,y	...]

directive	value	x,y	...	"Menu	text"

The	directive	is	one	of	base,	default,	poly,	circle,	rect,	or
point.	The	value	is	an	absolute	or	relative	URL,	or	one	of	the
special	values	listed	below.	The	coordinates	are	x,y	pairs
separated	by	whitespace.	The	quoted	text	is	used	as	the	text	of
the	link	if	a	imagemap	menu	is	generated.	Lines	beginning	with	'#'
are	comments.

Imagemap	File	Directives
There	are	six	directives	allowed	in	the	imagemap	file.	The
directives	can	come	in	any	order,	but	are	processed	in	the	order
they	are	found	in	the	imagemap	file.

base	Directive
Has	the	effect	of	<base	href="value">	.	The	non-
absolute	URLs	of	the	map-file	are	taken	relative	to	this	value.
The	base	directive	overrides	ImapBase	as	set	in	a
.htaccess	file	or	in	the	server	configuration	files.	In	the
absence	of	an	ImapBase	configuration	directive,	base
defaults	to	http://server_name/.

base_uri	is	synonymous	with	base.	Note	that	a	trailing
slash	on	the	URL	is	significant.

default	Directive
The	action	taken	if	the	coordinates	given	do	not	fit	any	of	the
poly,	circle	or	rect	directives,	and	there	are	no	point
directives.	Defaults	to	nocontent	in	the	absence	of	an

ImapDefault	configuration	setting,	causing	a	status	code	of
204	No	Content	to	be	returned.	The	client	should	keep	the
same	page	displayed.

poly	Directive
Takes	three	to	one-hundred	points,	and	is	obeyed	if	the	user
selected	coordinates	fall	within	the	polygon	defined	by	these
points.

circle

Takes	the	center	coordinates	of	a	circle	and	a	point	on	the
circle.	Is	obeyed	if	the	user	selected	point	is	with	the	circle.

rect	Directive
Takes	the	coordinates	of	two	opposing	corners	of	a	rectangle.
Obeyed	if	the	point	selected	is	within	this	rectangle.

point	Directive
Takes	a	single	point.	The	point	directive	closest	to	the	user
selected	point	is	obeyed	if	no	other	directives	are	satisfied.
Note	that	default	will	not	be	followed	if	a	point	directive	is
present	and	valid	coordinates	are	given.

Values
The	values	for	each	of	the	directives	can	be	any	of	the	following:

a	URL
The	URL	can	be	relative	or	absolute	URL.	Relative	URLs	can
contain	'..'	syntax	and	will	be	resolved	relative	to	the	base
value.

base	itself	will	not	be	resolved	according	to	the	current	value.
A	statement	base	mailto:	will	work	properly,	though.

map

Equivalent	to	the	URL	of	the	imagemap	file	itself.	No

coordinates	are	sent	with	this,	so	a	menu	will	be	generated
unless	ImapMenu	is	set	to	none.

menu

Synonymous	with	map.

referer

Equivalent	to	the	URL	of	the	referring	document.	Defaults	to
http://servername/	if	no	Referer:	header	was	present.

nocontent

Sends	a	status	code	of	204	No	Content,	telling	the	client	to
keep	the	same	page	displayed.	Valid	for	all	but	base.

error

Fails	with	a	500	Server	Error.	Valid	for	all	but	base,	but
sort	of	silly	for	anything	but	default.

Coordinates
0,0	200,200

A	coordinate	consists	of	an	x	and	a	y	value	separated	by	a
comma.	The	coordinates	are	separated	from	each	other	by
whitespace.	To	accommodate	the	way	Lynx	handles
imagemaps,	should	a	user	select	the	coordinate	0,0,	it	is	as	if
no	coordinate	had	been	selected.

Quoted	Text
"Menu	Text"

After	the	value	or	after	the	coordinates,	the	line	optionally	may
contain	text	within	double	quotes.	This	string	is	used	as	the
text	for	the	link	if	a	menu	is	generated:

Menu	text

If	no	quoted	text	is	present,	the	name	of	the	link	will	be	used

as	the	text:

http://example.com

If	you	want	to	use	double	quotes	within	this	text,	you	have	to
write	them	as	".

Example	Mapfile

#Comments	are	printed	in	a	'formatted'	or	'semiformatted'	menu.

#And	can	contain	html	tags.	<hr>

base	referer

poly	map	"Could	I	have	a	menu,	please?"	0,0	0,10	10,10	10,0

rect	..	0,0	77,27	"the	directory	of	the	referer"

circle	http://www.inetnebr.example.com/lincoln/feedback/	195,0

305,27

rect	another_file	"in	same	directory	as	referer"	306,0	419,27

point	http://www.zyzzyva.example.com/	100,100

point	http://www.tripod.example.com/	200,200

rect	mailto:nate@tripod.example.com	100,150	200,0	"Bugs?"

Referencing	your	mapfile

HTML	example

XHTML	example

ImapBase	Directive

Description: Default	base	for	imagemap	files
Syntax: ImapBase	map|referer|URL

Default: ImapBase	http://servername/

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_imagemap

The	ImapBase	directive	sets	the	default	base	used	in	the
imagemap	files.	Its	value	is	overridden	by	a	base	directive	within
the	imagemap	file.	If	not	present,	the	base	defaults	to
http://servername/.

See	also
UseCanonicalName

ImapDefault	Directive

Description: Default	action	when	an	imagemap	is	called	with
coordinates	that	are	not	explicitly	mapped

Syntax: ImapDefault

error|nocontent|map|referer|URL

Default: ImapDefault	nocontent

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_imagemap

The	ImapDefault	directive	sets	the	default	default	used	in	the
imagemap	files.	Its	value	is	overridden	by	a	default	directive
within	the	imagemap	file.	If	not	present,	the	default	action	is
nocontent,	which	means	that	a	204	No	Content	is	sent	to	the
client.	In	this	case,	the	client	should	continue	to	display	the	original
page.

ImapMenu	Directive

Description: Action	if	no	coordinates	are	given	when	calling	an
imagemap

Syntax: ImapMenu

none|formatted|semiformatted|unformatted

Default: ImapMenu	formatted

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Indexes
Status: Base
Module: mod_imagemap

The	ImapMenu	directive	determines	the	action	taken	if	an
imagemap	file	is	called	without	valid	coordinates.

none

If	ImapMenu	is	none,	no	menu	is	generated,	and	the
default	action	is	performed.

formatted

A	formatted	menu	is	the	simplest	menu.	Comments	in	the
imagemap	file	are	ignored.	A	level	one	header	is	printed,	then
an	hrule,	then	the	links	each	on	a	separate	line.	The	menu
has	a	consistent,	plain	look	close	to	that	of	a	directory	listing.

semiformatted

In	the	semiformatted	menu,	comments	are	printed	where
they	occur	in	the	imagemap	file.	Blank	lines	are	turned	into
HTML	breaks.	No	header	or	hrule	is	printed,	but	otherwise	the
menu	is	the	same	as	a	formatted	menu.

unformatted

Comments	are	printed,	blank	lines	are	ignored.	Nothing	is
printed	that	does	not	appear	in	the	imagemap	file.	All	breaks
and	headers	must	be	included	as	comments	in	the	imagemap
file.	This	gives	you	the	most	flexibility	over	the	appearance	of

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

your	menus,	but	requires	you	to	treat	your	map	files	as	HTML
instead	of	plaintext.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_include

Description: Server-parsed	html	documents	(Server	Side
Includes)

Status: Base
Module	Identifier: include_module
Source	File: mod_include.c

Summary
This	module	provides	a	filter	which	will	process	files	before	they	are
sent	to	the	client.	The	processing	is	controlled	by	specially	formatted
SGML	comments,	referred	to	as	elements.	These	elements	allow
conditional	text,	the	inclusion	of	other	files	or	programs,	as	well	as	the
setting	and	printing	of	environment	variables.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Options

AcceptPathInfo

Filters
SSI	Tutorial

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_include
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_include

Enabling	Server-Side	Includes

Server	Side	Includes	are	implemented	by	the	INCLUDES	filter.	If
documents	containing	server-side	include	directives	are	given	the
extension	.shtml,	the	following	directives	will	make	Apache	parse
them	and	assign	the	resulting	document	the	mime	type	of
text/html:

AddType	text/html	.shtml

AddOutputFilter	INCLUDES	.shtml

The	following	directive	must	be	given	for	the	directories	containing
the	shtml	files	(typically	in	a	<Directory>	section,	but	this
directive	is	also	valid	in	.htaccess	files	if	AllowOverride
Options	is	set):

Options	+Includes

For	backwards	compatibility,	the	server-parsed	handler	also
activates	the	INCLUDES	filter.	As	well,	Apache	will	activate	the
INCLUDES	filter	for	any	document	with	mime	type	text/x-
server-parsed-html	or	text/x-server-parsed-html3
(and	the	resulting	output	will	have	the	mime	type	text/html).

For	more	information,	see	our	Tutorial	on	Server	Side	Includes.

PATH_INFO	with	Server	Side	Includes

Files	processed	for	server-side	includes	no	longer	accept	requests
with	PATH_INFO	(trailing	pathname	information)	by	default.	You
can	use	the	AcceptPathInfo	directive	to	configure	the	server	to
accept	requests	with	PATH_INFO.

Available	Elements

The	document	is	parsed	as	an	HTML	document,	with	special
commands	embedded	as	SGML	comments.	A	command	has	the
syntax:

<!--#element	attribute=value	attribute=value	...	-->

The	value	will	often	be	enclosed	in	double	quotes,	but	single
quotes	(')	and	backticks	(`)	are	also	possible.	Many	commands
only	allow	a	single	attribute-value	pair.	Note	that	the	comment
terminator	(-->)	should	be	preceded	by	whitespace	to	ensure	that
it	isn't	considered	part	of	an	SSI	token.	Note	that	the	leading	<!--
#	is	one	token	and	may	not	contain	any	whitespaces.

The	allowed	elements	are	listed	in	the	following	table:

Element Description
comment SSI	comment
config configure	output	formats
echo print	variables
exec execute	external	programs
fsize print	size	of	a	file
flastmod print	last	modification	time	of	a	file
include include	a	file
printenv print	all	available	variables
set set	a	value	of	a	variable

SSI	elements	may	be	defined	by	modules	other	than
mod_include.	In	fact,	the	exec	element	is	provided	by
mod_cgi,	and	will	only	be	available	if	this	module	is	loaded.

The	comment	Element

This	command	doesn't	output	anything.	Its	only	use	is	to	add
comments	within	a	file.	These	comments	are	not	printed.

This	syntax	is	available	in	version	2.4.21	and	later.

<!--#comment	Blah	Blah	Blah	-->

The	config	Element
This	command	controls	various	aspects	of	the	parsing.	The	valid
attributes	are:

echomsg	(Apache	2.1	and	later)
The	value	is	a	message	that	is	sent	back	to	the	client	if	the
echo	element	attempts	to	echo	an	undefined	variable.	This
overrides	any	SSIUndefinedEcho	directives.

<!--#config	echomsg="[Value	Undefined]"	-->

errmsg

The	value	is	a	message	that	is	sent	back	to	the	client	if	an
error	occurs	while	parsing	the	document.	This	overrides	any
SSIErrorMsg	directives.

<!--#config	errmsg="[Oops,	something	broke.]"	-->

sizefmt

The	value	sets	the	format	to	be	used	when	displaying	the	size
of	a	file.	Valid	values	are	bytes	for	a	count	in	bytes,	or
abbrev	for	a	count	in	Kb	or	Mb	as	appropriate,	for	example	a
size	of	1024	bytes	will	be	printed	as	"1K".

<!--#config	sizefmt="abbrev"	-->

timefmt

The	value	is	a	string	to	be	used	by	the	strftime(3)	library
routine	when	printing	dates.

<!--#config	timefmt=""%R,	%B	%d,	%Y""	-->

The	echo	Element
This	command	prints	one	of	the	include	variables	defined	below.	If
the	variable	is	unset,	the	result	is	determined	by	the
SSIUndefinedEcho	directive.	Any	dates	printed	are	subject	to
the	currently	configured	timefmt.

Attributes:

var

The	value	is	the	name	of	the	variable	to	print.

decoding

Specifies	whether	Apache	should	strip	an	encoding	from	the
variable	before	processing	the	variable	further.	The	default	is
none,	where	no	decoding	will	be	done.	If	set	to	url,	then
URL	decoding	(also	known	as	%-encoding;	this	is	appropriate
for	use	within	URLs	in	links,	etc.)	will	be	performed.	If	set	to
urlencoded,	application/x-www-form-urlencoded	compatible
encoding	(found	in	query	strings)	will	be	stripped.	If	set	to
base64,	base64	will	be	decoded,	and	if	set	to	entity,	HTML
entity	encoding	will	be	stripped.	Decoding	is	done	prior	to	any
further	encoding	on	the	variable.	Multiple	encodings	can	be
stripped	by	specifying	more	than	one	comma	separated
encoding.	The	decoding	setting	will	remain	in	effect	until	the
next	decoding	attribute	is	encountered,	or	the	element	ends.

The	decoding	attribute	must	precede	the	corresponding	var
attribute	to	be	effective.

encoding

Specifies	how	Apache	should	encode	special	characters
contained	in	the	variable	before	outputting	them.	If	set	to
none,	no	encoding	will	be	done.	If	set	to	url,	then	URL
encoding	(also	known	as	%-encoding;	this	is	appropriate	for
use	within	URLs	in	links,	etc.)	will	be	performed.	If	set	to
urlencoded,	application/x-www-form-urlencoded	compatible
encoding	will	be	performed	instead,	and	should	be	used	with
query	strings.	If	set	to	base64,	base64	encoding	will	be
performed.	At	the	start	of	an	echo	element,	the	default	is	set
to	entity,	resulting	in	entity	encoding	(which	is	appropriate
in	the	context	of	a	block-level	HTML	element,	e.g.	a
paragraph	of	text).	This	can	be	changed	by	adding	an
encoding	attribute,	which	will	remain	in	effect	until	the	next
encoding	attribute	is	encountered	or	the	element	ends,
whichever	comes	first.

The	encoding	attribute	must	precede	the	corresponding	var
attribute	to	be	effective.

In	order	to	avoid	cross-site	scripting	issues,	you	should
always	encode	user	supplied	data.

Example
<!--#echo	encoding="entity"	var="QUERY_STRING"	-->

The	exec	Element
The	exec	command	executes	a	given	shell	command	or	CGI
script.	It	requires	mod_cgi	to	be	present	in	the	server.	If	Options
IncludesNOEXEC	is	set,	this	command	is	completely	disabled.
The	valid	attributes	are:

cgi

The	value	specifies	a	(%-encoded)	URL-path	to	the	CGI
script.	If	the	path	does	not	begin	with	a	slash	(/),	then	it	is
taken	to	be	relative	to	the	current	document.	The	document
referenced	by	this	path	is	invoked	as	a	CGI	script,	even	if	the
server	would	not	normally	recognize	it	as	such.	However,	the
directory	containing	the	script	must	be	enabled	for	CGI	scripts
(with	ScriptAlias	or	Options	ExecCGI).

The	CGI	script	is	given	the	PATH_INFO	and	query	string
(QUERY_STRING)	of	the	original	request	from	the	client;	these
cannot	be	specified	in	the	URL	path.	The	include	variables	will
be	available	to	the	script	in	addition	to	the	standard	CGI
environment.

Example
<!--#exec	cgi="/cgi-bin/example.cgi"	-->

If	the	script	returns	a	Location:	header	instead	of	output,
then	this	will	be	translated	into	an	HTML	anchor.

The	include	virtual	element	should	be	used	in
preference	to	exec	cgi.	In	particular,	if	you	need	to	pass
additional	arguments	to	a	CGI	program,	using	the	query
string,	this	cannot	be	done	with	exec	cgi,	but	can	be	done
with	include	virtual,	as	shown	here:

<!--#include	virtual="/cgi-bin/example.cgi?argument=value"

-->

cmd

The	server	will	execute	the	given	string	using	/bin/sh.	The
include	variables	are	available	to	the	command,	in	addition	to
the	usual	set	of	CGI	variables.

The	use	of	#include	virtual	is	almost	always	prefered	to
using	either	#exec	cgi	or	#exec	cmd.	The	former
(#include	virtual)	uses	the	standard	Apache	sub-
request	mechanism	to	include	files	or	scripts.	It	is	much	better
tested	and	maintained.

In	addition,	on	some	platforms,	like	Win32,	and	on	unix	when
using	suexec,	you	cannot	pass	arguments	to	a	command	in
an	exec	directive,	or	otherwise	include	spaces	in	the
command.	Thus,	while	the	following	will	work	under	a	non-
suexec	configuration	on	unix,	it	will	not	produce	the	desired
result	under	Win32,	or	when	running	suexec:

<!--#exec	cmd="perl	/path/to/perlscript	arg1	arg2"	-->

The	fsize	Element
This	command	prints	the	size	of	the	specified	file,	subject	to	the
sizefmt	format	specification.	Attributes:

file

The	value	is	a	path	relative	to	the	directory	containing	the
current	document	being	parsed.

This	file	is	<!--#fsize	file="mod_include.html"	-->	bytes.

The	value	of	file	cannot	start	with	a	slash	(/),	nor	can	it
contain	../	so	as	to	refer	to	a	file	above	the	current	directory
or	outside	of	the	document	root.	Attempting	to	so	will	result	in
the	error	message:	The	given	path	was	above	the
root	path.

virtual

The	value	is	a	(%-encoded)	URL-path.	If	it	does	not	begin
with	a	slash	(/)	then	it	is	taken	to	be	relative	to	the	current

document.	Note,	that	this	does	not	print	the	size	of	any	CGI
output,	but	the	size	of	the	CGI	script	itself.

This	file	is	<!--#fsize	virtual="/docs/mod/mod_include.html"	--

>	bytes.

Note	that	in	many	cases	these	two	are	exactly	the	same	thing.
However,	the	file	attribute	doesn't	respect	URL-space	aliases.

The	flastmod	Element
This	command	prints	the	last	modification	date	of	the	specified	file,
subject	to	the	timefmt	format	specification.	The	attributes	are	the
same	as	for	the	fsize	command.

The	include	Element
This	command	inserts	the	text	of	another	document	or	file	into	the
parsed	file.	Any	included	file	is	subject	to	the	usual	access	control.
If	the	directory	containing	the	parsed	file	has	Options
IncludesNOEXEC	set,	then	only	documents	with	a	text	MIME-
type	(text/plain,	text/html	etc.)	will	be	included.	Otherwise
CGI	scripts	are	invoked	as	normal	using	the	complete	URL	given
in	the	command,	including	any	query	string.

An	attribute	defines	the	location	of	the	document,	and	may	appear
more	than	once	in	an	include	element;	an	inclusion	is	done	for
each	attribute	given	to	the	include	command	in	turn.	The	valid
attributes	are:

file

The	value	is	a	path	relative	to	the	directory	containing	the
current	document	being	parsed.	It	cannot	contain	../,	nor
can	it	be	an	absolute	path.	Therefore,	you	cannot	include	files
that	are	outside	of	the	document	root,	or	above	the	current

document	in	the	directory	structure.	The	virtual	attribute
should	always	be	used	in	preference	to	this	one.

virtual

The	value	is	a	(%-encoded)	URL-path.	The	URL	cannot
contain	a	scheme	or	hostname,	only	a	path	and	an	optional
query	string.	If	it	does	not	begin	with	a	slash	(/)	then	it	is	taken
to	be	relative	to	the	current	document.

A	URL	is	constructed	from	the	attribute,	and	the	output	the
server	would	return	if	the	URL	were	accessed	by	the	client	is
included	in	the	parsed	output.	Thus	included	files	can	be
nested.

If	the	specified	URL	is	a	CGI	program,	the	program	will	be
executed	and	its	output	inserted	in	place	of	the	directive	in	the
parsed	file.	You	may	include	a	query	string	in	a	CGI	url:

<!--#include	virtual="/cgi-bin/example.cgi?argument=value"

-->

include	virtual	should	be	used	in	preference	to	exec
cgi	to	include	the	output	of	CGI	programs	into	an	HTML
document.

If	the	KeptBodySize	directive	is	correctly	configured	and
valid	for	this	included	file,	attempts	to	POST	requests	to	the
enclosing	HTML	document	will	be	passed	through	to
subrequests	as	POST	requests	as	well.	Without	the	directive,
all	subrequests	are	processed	as	GET	requests.

onerror

The	value	is	a	(%-encoded)	URL-path	which	is	shown	should
a	previous	attempt	to	include	a	file	or	virtual	attribute	failed.	To
be	effective,	this	attribute	must	be	specified	after	the	file	or
virtual	attributes	being	covered.	If	the	attempt	to	include	the

onerror	path	fails,	or	if	onerror	is	not	specified,	the	default
error	message	will	be	included.

#	Simple	example

<!--#include	virtual="/not-exist.html"

onerror="/error.html"	-->

#	Dedicated	onerror	paths

<!--#include	virtual="/path-a.html"	onerror="/error-

a.html"	virtual="/path-b.html"	onerror="/error-b.html"	-->

The	printenv	Element
This	prints	out	a	plain	text	listing	of	all	existing	variables	and	their
values.	Special	characters	are	entity	encoded	(see	the	echo
element	for	details)	before	being	output.	There	are	no	attributes.

Example
<pre>	<!--#printenv	-->	</pre>

The	set	Element
This	sets	the	value	of	a	variable.	Attributes:

var

The	name	of	the	variable	to	set.

value

The	value	to	give	a	variable.

decoding

Specifies	whether	Apache	should	strip	an	encoding	from	the
variable	before	processing	the	variable	further.	The	default	is
none,	where	no	decoding	will	be	done.	If	set	to	url,
urlencoded,	base64	or	entity,	URL	decoding,
application/x-www-form-urlencoded	decoding,	base64
decoding	or	HTML	entity	decoding	will	be	performed

respectively.	More	than	one	decoding	can	be	specified	by
separating	with	commas.	The	decoding	setting	will	remain	in
effect	until	the	next	decoding	attribute	is	encountered,	or	the
element	ends.	The	decoding	attribute	must	precede	the
corresponding	var	attribute	to	be	effective.

encoding

Specifies	how	Apache	should	encode	special	characters
contained	in	the	variable	before	setting	them.	The	default	is
none,	where	no	encoding	will	be	done.	If	set	to	url,
urlencoding,	base64	or	entity,	URL	encoding,
application/x-www-form-urlencoded	encoding,	base64
encoding	or	HTML	entity	encoding	will	be	performed
respectively.	More	than	one	encoding	can	be	specified	by
separating	with	commas.	The	encoding	setting	will	remain	in
effect	until	the	next	encoding	attribute	is	encountered,	or	the
element	ends.	The	encoding	attribute	must	precede	the
corresponding	var	attribute	to	be	effective.	Encodings	are
applied	after	all	decodings	have	been	stripped.

Example
<!--#set	var="category"	value="help"	-->

Include	Variables

In	addition	to	the	variables	in	the	standard	CGI	environment,	these
are	available	for	the	echo	command,	for	if	and	elif,	and	to	any
program	invoked	by	the	document.

DATE_GMT

The	current	date	in	Greenwich	Mean	Time.

DATE_LOCAL

The	current	date	in	the	local	time	zone.

DOCUMENT_ARGS

This	variable	contains	the	query	string	of	the	active	SSI
document,	or	the	empty	string	if	a	query	string	is	not	included.
For	subrequests	invoked	through	the	include	SSI	directive,
QUERY_STRING	will	represent	the	query	string	of	the
subrequest	and	DOCUMENT_ARGS	will	represent	the	query
string	of	the	SSI	document.	(Available	in	Apache	HTTP
Server	2.4.19	and	later.)

DOCUMENT_NAME

The	filename	(excluding	directories)	of	the	document
requested	by	the	user.

DOCUMENT_URI

The	(%-decoded)	URL	path	of	the	document	requested	by	the
user.	Note	that	in	the	case	of	nested	include	files,	this	is	not
the	URL	for	the	current	document.	Note	also	that	if	the	URL	is
modified	internally	(e.g.	by	an	alias	or	directoryindex),
the	modified	URL	is	shown.

LAST_MODIFIED

The	last	modification	date	of	the	document	requested	by	the
user.

QUERY_STRING_UNESCAPED

If	a	query	string	is	present	in	the	request	for	the	active	SSI
document,	this	variable	contains	the	(%-decoded)	query

string,	which	is	escaped	for	shell	usage	(special	characters
like	&	etc.	are	preceded	by	backslashes).	It	is	not	set	if	a
query	string	is	not	present.	Use	DOCUMENT_ARGS	if	shell
escaping	is	not	desired.

Variable	Substitution

Variable	substitution	is	done	within	quoted	strings	in	most	cases
where	they	may	reasonably	occur	as	an	argument	to	an	SSI
directive.	This	includes	the	config,	exec,	flastmod,	fsize,
include,	echo,	and	set	directives.	If	SSILegacyExprParser
is	set	to	on,	substitution	also	occurs	in	the	arguments	to
conditional	operators.	You	can	insert	a	literal	dollar	sign	into	the
string	using	backslash	quoting:

<!--#set	var="cur"	value="\$test"	-->

If	a	variable	reference	needs	to	be	substituted	in	the	middle	of	a
character	sequence	that	might	otherwise	be	considered	a	valid
identifier	in	its	own	right,	it	can	be	disambiguated	by	enclosing	the
reference	in	braces,	a	la	shell	substitution:

<!--#set	var="Zed"	value="${REMOTE_HOST}_${REQUEST_METHOD}"	-->

This	will	result	in	the	Zed	variable	being	set	to	"X_Y"	if
REMOTE_HOST	is	"X"	and	REQUEST_METHOD	is	"Y".

Flow	Control	Elements

The	basic	flow	control	elements	are:

<!--#if	expr="test_condition"	-->

<!--#elif	expr="test_condition"	-->

<!--#else	-->

<!--#endif	-->

The	if	element	works	like	an	if	statement	in	a	programming
language.	The	test	condition	is	evaluated	and	if	the	result	is	true,
then	the	text	until	the	next	elif,	else	or	endif	element	is
included	in	the	output	stream.

The	elif	or	else	statements	are	used	to	put	text	into	the	output
stream	if	the	original	test_condition	was	false.	These	elements	are
optional.

The	endif	element	ends	the	if	element	and	is	required.

test_condition	is	a	boolean	expression	which	follows	the	ap_expr
syntax.	The	syntax	can	be	changed	to	be	compatible	with	Apache
HTTPD	2.2.x	using	SSILegacyExprParser.

The	SSI	variables	set	with	the	var	element	are	exported	into	the
request	environment	and	can	be	accessed	with	the	reqenv
function.	As	a	short-cut,	the	function	name	v	is	also	available
inside	mod_include.

The	below	example	will	print	"from	local	net"	if	client	IP	address
belongs	to	the	10.0.0.0/8	subnet.

<!--#if	expr='-R	"10.0.0.0/8"'	-->

from	local	net

<!--#else	-->

from	somewhere	else

<!--#endif	-->

The	below	example	will	print	"foo	is	bar"	if	the	variable	foo	is	set
to	the	value	"bar".

<!--#if	expr='v("foo")	=	"bar"'	-->

foo	is	bar

<!--#endif	-->

Reference	Documentation

See	also:	Expressions	in	Apache	HTTP	Server,	for	a	complete
reference	and	examples.	The	restricted	functions	are	not
available	inside	mod_include

Legacy	expression	syntax

This	section	describes	the	syntax	of	the	#if	expr	element	if
SSILegacyExprParser	is	set	to	on.

string

true	if	string	is	not	empty

-A	string

true	if	the	URL	represented	by	the	string	is	accessible	by
configuration,	false	otherwise.	This	is	useful	where	content	on
a	page	is	to	be	hidden	from	users	who	are	not	authorized	to
view	the	URL,	such	as	a	link	to	that	URL.	Note	that	the	URL	is
only	tested	for	whether	access	would	be	granted,	not	whether
the	URL	exists.

Example
<!--#if	expr="-A	/private"	-->

Click	here	to	access	private

information.

<!--#endif	-->

string1	=	string2

string1	==	string2

string1	!=	string2

Compare	string1	with	string2.	If	string2	has	the	form
/string2/	then	it	is	treated	as	a	regular	expression.	Regular
expressions	are	implemented	by	the	PCRE	engine	and	have
the	same	syntax	as	those	in	perl	5.	Note	that	==	is	just	an
alias	for	=	and	behaves	exactly	the	same	way.

If	you	are	matching	positive	(=	or	==),	you	can	capture
grouped	parts	of	the	regular	expression.	The	captured	parts
are	stored	in	the	special	variables	$1	..	$9.	The	whole	string
matched	by	the	regular	expression	is	stored	in	the	special
variable	$0

http://www.pcre.org
http://www.perl.com

Example
<!--#if	expr="$QUERY_STRING	=	/^sid=([a-zA-Z0-9]+)/"	-->

<!--#set	var="session"	value="$1"	-->

<!--#endif	-->

string1	<	string2

string1	<=	string2

string1	>	string2

string1	>=	string2

Compare	string1	with	string2.	Note,	that	strings	are	compared
literally	(using	strcmp(3)).	Therefore	the	string	"100"	is	less
than	"20".

(test_condition)

true	if	test_condition	is	true

!	test_condition

true	if	test_condition	is	false

test_condition1	&&	test_condition2

true	if	both	test_condition1	and	test_condition2	are	true

test_condition1	||	test_condition2

true	if	either	test_condition1	or	test_condition2	is	true

"="	and	"!="	bind	more	tightly	than	"&&"	and	"||".	"!"	binds	most
tightly.	Thus,	the	following	are	equivalent:

<!--#if	expr="$a	=	test1	&&	$b	=	test2"	-->

<!--#if	expr="($a	=	test1)	&&	($b	=	test2)"	-->

The	boolean	operators	&&	and	||	share	the	same	priority.	So	if
you	want	to	bind	such	an	operator	more	tightly,	you	should	use
parentheses.

Anything	that's	not	recognized	as	a	variable	or	an	operator	is
treated	as	a	string.	Strings	can	also	be	quoted:	'string'.

Unquoted	strings	can't	contain	whitespace	(blanks	and	tabs)
because	it	is	used	to	separate	tokens	such	as	variables.	If	multiple
strings	are	found	in	a	row,	they	are	concatenated	using	blanks.	So,

string1				string2	results	in	string1	string2

and

'string1				string2'	results	in	string1				string2.

Optimization	of	Boolean	Expressions

If	the	expressions	become	more	complex	and	slow	down
processing	significantly,	you	can	try	to	optimize	them	according
to	the	evaluation	rules:

Expressions	are	evaluated	from	left	to	right
Binary	boolean	operators	(&&	and	||)	are	short	circuited
wherever	possible.	In	conclusion	with	the	rule	above	that
means,	mod_include	evaluates	at	first	the	left	expression.
If	the	left	result	is	sufficient	to	determine	the	end	result,
processing	stops	here.	Otherwise	it	evaluates	the	right	side
and	computes	the	end	result	from	both	left	and	right	results.
Short	circuit	evaluation	is	turned	off	as	long	as	there	are
regular	expressions	to	deal	with.	These	must	be	evaluated
to	fill	in	the	backreference	variables	($1	..	$9).

If	you	want	to	look	how	a	particular	expression	is	handled,	you
can	recompile	mod_include	using	the	-DDEBUG_INCLUDE
compiler	option.	This	inserts	for	every	parsed	expression
tokenizer	information,	the	parse	tree	and	how	it	is	evaluated	into
the	output	sent	to	the	client.

Escaping	slashes	in	regex	strings

All	slashes	which	are	not	intended	to	act	as	delimiters	in	your
regex	must	be	escaped.	This	is	regardless	of	their	meaning	to
the	regex	engine.

SSIEndTag	Directive

Description: String	that	ends	an	include	element
Syntax: SSIEndTag	tag

Default: SSIEndTag	"-->"

Context: server	config,	virtual	host
Status: Base
Module: mod_include

This	directive	changes	the	string	that	mod_include	looks	for	to
mark	the	end	of	an	include	element.

SSIEndTag	"%>"

See	also
SSIStartTag

SSIErrorMsg	Directive

Description: Error	message	displayed	when	there	is	an	SSI
error

Syntax: SSIErrorMsg	message

Default: SSIErrorMsg	"[an	error	occurred	while

processing	this	directive]"

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Base
Module: mod_include

The	SSIErrorMsg	directive	changes	the	error	message
displayed	when	mod_include	encounters	an	error.	For
production	servers	you	may	consider	changing	the	default	error
message	to	"<!--	Error	-->"	so	that	the	message	is	not
presented	to	the	user.

This	directive	has	the	same	effect	as	the	<!--#config
errmsg=message	-->	element.

SSIErrorMsg	"<!--	Error	-->"

SSIETag	Directive

Description: Controls	whether	ETags	are	generated	by	the
server.

Syntax: SSIETag	on|off

Default: SSIETag	off

Context: directory,	.htaccess
Status: Base
Module: mod_include
Compatibility: Available	in	version	2.2.15	and	later.

Under	normal	circumstances,	a	file	filtered	by	mod_include	may
contain	elements	that	are	either	dynamically	generated,	or	that
may	have	changed	independently	of	the	original	file.	As	a	result,
by	default	the	server	is	asked	not	to	generate	an	ETag	header	for
the	response	by	adding	no-etag	to	the	request	notes.

The	SSIETag	directive	suppresses	this	behaviour,	and	allows	the
server	to	generate	an	ETag	header.	This	can	be	used	to	enable
caching	of	the	output.	Note	that	a	backend	server	or	dynamic
content	generator	may	generate	an	ETag	of	its	own,	ignoring	no-
etag,	and	this	ETag	will	be	passed	by	mod_include	regardless
of	the	value	of	this	setting.	SSIETag	can	take	on	the	following
values:

off

no-etag	will	be	added	to	the	request	notes,	and	the	server	is
asked	not	to	generate	an	ETag.	Where	a	server	ignores	the
value	of	no-etag	and	generates	an	ETag	anyway,	the	ETag
will	be	respected.

on

Existing	ETags	will	be	respected,	and	ETags	generated	by	the
server	will	be	passed	on	in	the	response.

SSILastModified	Directive

Description: Controls	whether	Last-Modified	headers	are
generated	by	the	server.

Syntax: SSILastModified	on|off

Default: SSILastModified	off

Context: directory,	.htaccess
Status: Base
Module: mod_include
Compatibility: Available	in	version	2.2.15	and	later.

Under	normal	circumstances,	a	file	filtered	by	mod_include	may
contain	elements	that	are	either	dynamically	generated,	or	that
may	have	changed	independently	of	the	original	file.	As	a	result,
by	default	the	Last-Modified	header	is	stripped	from	the
response.

The	SSILastModified	directive	overrides	this	behaviour,	and
allows	the	Last-Modified	header	to	be	respected	if	already
present,	or	set	if	the	header	is	not	already	present.	This	can	be
used	to	enable	caching	of	the	output.	SSILastModified	can
take	on	the	following	values:

off

The	Last-Modified	header	will	be	stripped	from
responses,	unless	the	XBitHack	directive	is	set	to	full	as
described	below.

on

The	Last-Modified	header	will	be	respected	if	already
present	in	a	response,	and	added	to	the	response	if	the
response	is	a	file	and	the	header	is	missing.	The
SSILastModified	directive	takes	precedence	over
XBitHack.

SSILegacyExprParser	Directive

Description: Enable	compatibility	mode	for	conditional
expressions.

Syntax: SSILegacyExprParser	on|off

Default: SSILegacyExprParser	off

Context: directory,	.htaccess
Status: Base
Module: mod_include
Compatibility: Available	in	version	2.3.13	and	later.

As	of	version	2.3.13,	mod_include	has	switched	to	the	new
ap_expr	syntax	for	conditional	expressions	in	#if	flow	control
elements.	This	directive	allows	to	switch	to	the	old	syntax	which	is
compatible	with	Apache	HTTPD	version	2.2.x	and	earlier.

SSIStartTag	Directive

Description: String	that	starts	an	include	element
Syntax: SSIStartTag	tag

Default: SSIStartTag	"<!--#"

Context: server	config,	virtual	host
Status: Base
Module: mod_include

This	directive	changes	the	string	that	mod_include	looks	for	to
mark	an	include	element	to	process.

You	may	want	to	use	this	option	if	you	have	2	servers	parsing	the
output	of	a	file	each	processing	different	commands	(possibly	at
different	times).

SSIStartTag	"<%"

SSIEndTag			"%>"

The	example	given	above,	which	also	specifies	a	matching
SSIEndTag,	will	allow	you	to	use	SSI	directives	as	shown	in	the
example	below:

SSI	directives	with	alternate	start	and	end	tags
<%printenv	%>

See	also
SSIEndTag

SSITimeFormat	Directive

Description: Configures	the	format	in	which	date	strings	are
displayed

Syntax: SSITimeFormat	formatstring

Default: SSITimeFormat	"%A,	%d-%b-%Y	%H:%M:%S

%Z"

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Base
Module: mod_include

This	directive	changes	the	format	in	which	date	strings	are
displayed	when	echoing	DATE	environment	variables.	The
formatstring	is	as	in	strftime(3)	from	the	C	standard	library.

This	directive	has	the	same	effect	as	the	<!--#config
timefmt=formatstring	-->	element.

SSITimeFormat	"%R,	%B	%d,	%Y"

The	above	directive	would	cause	times	to	be	displayed	in	the
format	"22:26,	June	14,	2002".

SSIUndefinedEcho	Directive

Description: String	displayed	when	an	unset	variable	is	echoed
Syntax: SSIUndefinedEcho	string

Default: SSIUndefinedEcho	"(none)"

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Base
Module: mod_include

This	directive	changes	the	string	that	mod_include	displays
when	a	variable	is	not	set	and	"echoed".

SSIUndefinedEcho	"<!--	undef	-->"

XBitHack	Directive

Description: Parse	SSI	directives	in	files	with	the	execute	bit	set
Syntax: XBitHack	on|off|full

Default: XBitHack	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_include

The	XBitHack	directive	controls	the	parsing	of	ordinary	html
documents.	This	directive	only	affects	files	associated	with	the
MIME-type	text/html.	XBitHack	can	take	on	the	following
values:

off

No	special	treatment	of	executable	files.

on

Any	text/html	file	that	has	the	user-execute	bit	set	will	be
treated	as	a	server-parsed	html	document.

full

As	for	on	but	also	test	the	group-execute	bit.	If	it	is	set,	then
set	the	Last-modified	date	of	the	returned	file	to	be	the
last	modified	time	of	the	file.	If	it	is	not	set,	then	no	last-
modified	date	is	sent.	Setting	this	bit	allows	clients	and
proxies	to	cache	the	result	of	the	request.

Note

You	would	not	want	to	use	the	full	option,	unless	you	assure
the	group-execute	bit	is	unset	for	every	SSI	script	which
might	#include	a	CGI	or	otherwise	produces	different
output	on	each	hit	(or	could	potentially	change	on
subsequent	requests).

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	SSILastModified	directive	takes	precedence	over
the	XBitHack	directive	when	SSILastModified	is	set	to
on.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_info

Description: Provides	a	comprehensive	overview	of	the
server	configuration

Status: Extension
Module	Identifier: info_module
Source	File: mod_info.c

Summary
To	configure	mod_info,	add	the	following	to	your	httpd.conf	file.

<Location	"/server-info">

				SetHandler	server-info

</Location>

You	may	wish	to	use	mod_authz_host	inside	the	<Location>
directive	to	limit	access	to	your	server	configuration	information:

<Location	"/server-info">

				SetHandler	server-info

				Require	host	example.com

</Location>

Once	configured,	the	server	information	is	obtained	by	accessing
http://your.host.example.com/server-info

Security	Issues

Once	mod_info	is	loaded	into	the	server,	its	handler	capability	is
available	in	all	configuration	files,	including	per-directory	files	(e.g.,
.htaccess).	This	may	have	security-related	ramifications	for	your
site.

In	particular,	this	module	can	leak	sensitive	information	from	the
configuration	directives	of	other	Apache	modules	such	as	system
paths,	usernames/passwords,	database	names,	etc.	Therefore,
this	module	should	only	be	used	in	a	controlled	environment	and
always	with	caution.

You	will	probably	want	to	use	mod_authz_host	to	limit	access	to
your	server	configuration	information.

Access	control
<Location	"/server-info">

				SetHandler	server-info

				#	Allow	access	from	server	itself

				Require	ip	127.0.0.1

				#	Additionally,	allow	access	from	local	workstation

				Require	ip	192.168.1.17

</Location>

Selecting	the	information	shown

By	default,	the	server	information	includes	a	list	of	all	enabled
modules,	and	for	each	module,	a	description	of	the	directives
understood	by	that	module,	the	hooks	implemented	by	that
module,	and	the	relevant	directives	from	the	current	configuration.

Other	views	of	the	configuration	information	are	available	by
appending	a	query	to	the	server-info	request.	For	example,
http://your.host.example.com/server-info?config

will	show	all	configuration	directives.

?<module-name>

Only	information	relevant	to	the	named	module

?config

Just	the	configuration	directives,	not	sorted	by	module

?hooks

Only	the	list	of	Hooks	each	module	is	attached	to

?list

Only	a	simple	list	of	enabled	modules

?server

Only	the	basic	server	information

?providers

List	the	providers	that	are	available	on	your	server

Dumping	the	configuration	on	startup

If	the	config	define	-DDUMP_CONFIG	is	set,	mod_info	will	dump
the	pre-parsed	configuration	to	stdout	during	server	startup.

httpd	-DDUMP_CONFIG	-k	start

Pre-parsed	means	that	directives	like	<IfDefine>	and
<IfModule>	are	evaluated	and	environment	variables	are
replaced.	However	it	does	not	represent	the	final	state	of	the
configuration.	In	particular,	it	does	not	represent	the	merging	or
overriding	that	may	happen	for	repeated	directives.

This	is	roughly	equivalent	to	the	?config	query.

Known	Limitations

mod_info	provides	its	information	by	reading	the	parsed
configuration,	rather	than	reading	the	original	configuration	file.
There	are	a	few	limitations	as	a	result	of	the	way	the	parsed
configuration	tree	is	created:

Directives	which	are	executed	immediately	rather	than	being
stored	in	the	parsed	configuration	are	not	listed.	These
include	ServerRoot,	LoadModule,	and	LoadFile.
Directives	which	control	the	configuration	file	itself,	such	as
Include,	<IfModule>	and	<IfDefine>	are	not	listed,	but
the	included	configuration	directives	are.
Comments	are	not	listed.	(This	may	be	considered	a	feature.)
Configuration	directives	from	.htaccess	files	are	not	listed
(since	they	do	not	form	part	of	the	permanent	server
configuration).
Container	directives	such	as	<Directory>	are	listed
normally,	but	mod_info	cannot	figure	out	the	line	number	for
the	closing	</Directory>.
Directives	generated	by	third	party	modules	such	as	mod_perl
might	not	be	listed.

http://perl.apache.org

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AddModuleInfo	Directive

Description: Adds	additional	information	to	the	module
information	displayed	by	the	server-info	handler

Syntax: AddModuleInfo	module-name	string

Context: server	config,	virtual	host
Status: Extension
Module: mod_info

This	allows	the	content	of	string	to	be	shown	as	HTML	interpreted,
Additional	Information	for	the	module	module-name.	Example:

AddModuleInfo	mod_deflate.c	'See	<a	\

				href="http://httpd.apache.org/docs/2.4/mod/mod_deflate.html">\

				http://httpd.apache.org/docs/2.4/mod/mod_deflate.html'

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_isapi

Description: ISAPI	Extensions	within	Apache	for	Windows
Status: Base
Module	Identifier: isapi_module
Source	File: mod_isapi.c
Compatibility: Win32	only

Summary
This	module	implements	the	Internet	Server	extension	API.	It	allows
Internet	Server	extensions	(e.g.	ISAPI	.dll	modules)	to	be	served	by
Apache	for	Windows,	subject	to	the	noted	restrictions.

ISAPI	extension	modules	(.dll	files)	are	written	by	third	parties.	The
Apache	Group	does	not	author	these	modules,	so	we	provide	no
support	for	them.	Please	contact	the	ISAPI's	author	directly	if	you	are
experiencing	problems	running	their	ISAPI	extension.	Please	do	not
post	such	problems	to	Apache's	lists	or	bug	reporting	pages.

Usage

In	the	server	configuration	file,	use	the	AddHandler	directive	to
associate	ISAPI	files	with	the	isapi-handler	handler,	and	map
it	to	them	with	their	file	extensions.	To	enable	any	.dll	file	to	be
processed	as	an	ISAPI	extension,	edit	the	httpd.conf	file	and	add
the	following	line:

AddHandler	isapi-handler	.dll

In	older	versions	of	the	Apache	server,	isapi-isa	was	the
proper	handler	name,	rather	than	isapi-handler.	As	of	2.3
development	versions	of	the	Apache	server,	isapi-isa	is	no
longer	valid.	You	will	need	to	change	your	configuration	to	use
isapi-handler	instead.

There	is	no	capability	within	the	Apache	server	to	leave	a
requested	module	loaded.	However,	you	may	preload	and	keep	a
specific	module	loaded	by	using	the	following	syntax	in	your
httpd.conf:

ISAPICacheFile	c:/WebWork/Scripts/ISAPI/mytest.dll

Whether	or	not	you	have	preloaded	an	ISAPI	extension,	all	ISAPI
extensions	are	governed	by	the	same	permissions	and	restrictions
as	CGI	scripts.	That	is,	Options	ExecCGI	must	be	set	for	the
directory	that	contains	the	ISAPI	.dll	file.

Review	the	Additional	Notes	and	the	Programmer's	Journal	for
additional	details	and	clarification	of	the	specific	ISAPI	support
offered	by	mod_isapi.

Additional	Notes

Apache's	ISAPI	implementation	conforms	to	all	of	the	ISAPI	2.0
specification,	except	for	some	"Microsoft-specific"	extensions
dealing	with	asynchronous	I/O.	Apache's	I/O	model	does	not	allow
asynchronous	reading	and	writing	in	a	manner	that	the	ISAPI
could	access.	If	an	ISA	tries	to	access	unsupported	features,
including	async	I/O,	a	message	is	placed	in	the	error	log	to	help
with	debugging.	Since	these	messages	can	become	a	flood,	the
directive	ISAPILogNotSupported	Off	exists	to	quiet	this
noise.

Some	servers,	like	Microsoft	IIS,	load	the	ISAPI	extension	into	the
server	and	keep	it	loaded	until	memory	usage	is	too	high,	or
unless	configuration	options	are	specified.	Apache	currently	loads
and	unloads	the	ISAPI	extension	each	time	it	is	requested,	unless
the	ISAPICacheFile	directive	is	specified.	This	is	inefficient,	but
Apache's	memory	model	makes	this	the	most	effective	method.
Many	ISAPI	modules	are	subtly	incompatible	with	the	Apache
server,	and	unloading	these	modules	helps	to	ensure	the	stability
of	the	server.

Also,	remember	that	while	Apache	supports	ISAPI	Extensions,	it
does	not	support	ISAPI	Filters.	Support	for	filters	may	be	added
at	a	later	date,	but	no	support	is	planned	at	this	time.

Programmer's	Journal

If	you	are	programming	Apache	2.0	mod_isapi	modules,	you
must	limit	your	calls	to	ServerSupportFunction	to	the
following	directives:

HSE_REQ_SEND_URL_REDIRECT_RESP

Redirect	the	user	to	another	location.
This	must	be	a	fully	qualified	URL	(e.g.
http://server/location).

HSE_REQ_SEND_URL

Redirect	the	user	to	another	location.
This	cannot	be	a	fully	qualified	URL,	you	are	not	allowed	to
pass	the	protocol	or	a	server	name	(e.g.	simply	/location).
This	redirection	is	handled	by	the	server,	not	the	browser.

Warning

In	their	recent	documentation,	Microsoft	appears	to	have
abandoned	the	distinction	between	the	two
HSE_REQ_SEND_URL	functions.	Apache	continues	to	treat
them	as	two	distinct	functions	with	different	requirements
and	behaviors.

HSE_REQ_SEND_RESPONSE_HEADER

Apache	accepts	a	response	body	following	the	header	if	it
follows	the	blank	line	(two	consecutive	newlines)	in	the
headers	string	argument.	This	body	cannot	contain	NULLs,
since	the	headers	argument	is	NULL	terminated.

HSE_REQ_DONE_WITH_SESSION

Apache	considers	this	a	no-op,	since	the	session	will	be
finished	when	the	ISAPI	returns	from	processing.

HSE_REQ_MAP_URL_TO_PATH

Apache	will	translate	a	virtual	name	to	a	physical	name.

HSE_APPEND_LOG_PARAMETER

This	logged	message	may	be	captured	in	any	of	the	following
logs:

in	the	\"%{isapi-parameter}n\"	component	in	a
CustomLog	directive
in	the	%q	log	component	with	the
ISAPIAppendLogToQuery	On	directive
in	the	error	log	with	the	ISAPIAppendLogToErrors	On
directive

The	first	option,	the	%{isapi-parameter}n	component,	is
always	available	and	preferred.

HSE_REQ_IS_KEEP_CONN

Will	return	the	negotiated	Keep-Alive	status.

HSE_REQ_SEND_RESPONSE_HEADER_EX

Will	behave	as	documented,	although	the	fKeepConn	flag	is
ignored.

HSE_REQ_IS_CONNECTED

Will	report	false	if	the	request	has	been	aborted.

Apache	returns	FALSE	to	any	unsupported	call	to
ServerSupportFunction,	and	sets	the	GetLastError	value
to	ERROR_INVALID_PARAMETER.

ReadClient	retrieves	the	request	body	exceeding	the	initial
buffer	(defined	by	ISAPIReadAheadBuffer).	Based	on	the
ISAPIReadAheadBuffer	setting	(number	of	bytes	to	buffer	prior
to	calling	the	ISAPI	handler)	shorter	requests	are	sent	complete	to
the	extension	when	it	is	invoked.	If	the	request	is	longer,	the	ISAPI
extension	must	use	ReadClient	to	retrieve	the	remaining
request	body.

WriteClient	is	supported,	but	only	with	the	HSE_IO_SYNC	flag
or	no	option	flag	(value	of	0).	Any	other	WriteClient	request	will
be	rejected	with	a	return	value	of	FALSE,	and	a	GetLastError
value	of	ERROR_INVALID_PARAMETER.

GetServerVariable	is	supported,	although	extended	server
variables	do	not	exist	(as	defined	by	other	servers.)	All	the	usual
Apache	CGI	environment	variables	are	available	from
GetServerVariable,	as	well	as	the	ALL_HTTP	and	ALL_RAW
values.

Since	httpd	2.0,	mod_isapi	supports	additional	features
introduced	in	later	versions	of	the	ISAPI	specification,	as	well	as
limited	emulation	of	async	I/O	and	the	TransmitFile	semantics.
Apache	httpd	also	supports	preloading	ISAPI	.dlls	for
performance.

ISAPIAppendLogToErrors	Directive

Description: Record	HSE_APPEND_LOG_PARAMETER	requests
from	ISAPI	extensions	to	the	error	log

Syntax: ISAPIAppendLogToErrors	on|off

Default: ISAPIAppendLogToErrors	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_isapi

Record	HSE_APPEND_LOG_PARAMETER	requests	from	ISAPI
extensions	to	the	server	error	log.

ISAPIAppendLogToQuery	Directive

Description: Record	HSE_APPEND_LOG_PARAMETER	requests
from	ISAPI	extensions	to	the	query	field

Syntax: ISAPIAppendLogToQuery	on|off

Default: ISAPIAppendLogToQuery	on

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_isapi

Record	HSE_APPEND_LOG_PARAMETER	requests	from	ISAPI
extensions	to	the	query	field	(appended	to	the	CustomLog	%q
component).

ISAPICacheFile	Directive

Description: ISAPI	.dll	files	to	be	loaded	at	startup
Syntax: ISAPICacheFile	file-path	[file-path]

...

Context: server	config,	virtual	host
Status: Base
Module: mod_isapi

Specifies	a	space-separated	list	of	file	names	to	be	loaded	when
the	Apache	server	is	launched,	and	remain	loaded	until	the	server
is	shut	down.	This	directive	may	be	repeated	for	every	ISAPI	.dll
file	desired.	The	full	path	name	of	each	file	should	be	specified.	If
the	path	name	is	not	absolute,	it	will	be	treated	relative	to
ServerRoot.

ISAPIFakeAsync	Directive

Description: Fake	asynchronous	support	for	ISAPI	callbacks
Syntax: ISAPIFakeAsync	on|off

Default: ISAPIFakeAsync	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_isapi

While	set	to	on,	asynchronous	support	for	ISAPI	callbacks	is
simulated.

ISAPILogNotSupported	Directive

Description: Log	unsupported	feature	requests	from	ISAPI
extensions

Syntax: ISAPILogNotSupported	on|off

Default: ISAPILogNotSupported	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_isapi

Logs	all	requests	for	unsupported	features	from	ISAPI	extensions
in	the	server	error	log.	This	may	help	administrators	to	track	down
problems.	Once	set	to	on	and	all	desired	ISAPI	modules	are
functioning,	it	should	be	set	back	to	off.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ISAPIReadAheadBuffer	Directive

Description: Size	of	the	Read	Ahead	Buffer	sent	to	ISAPI
extensions

Syntax: ISAPIReadAheadBuffer	size

Default: ISAPIReadAheadBuffer	49152

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_isapi

Defines	the	maximum	size	of	the	Read	Ahead	Buffer	sent	to	ISAPI
extensions	when	they	are	initially	invoked.	All	remaining	data	must
be	retrieved	using	the	ReadClient	callback;	some	ISAPI
extensions	may	not	support	the	ReadClient	function.	Refer
questions	to	the	ISAPI	extension's	author.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lbmethod_bybusyness

Description: Pending	Request	Counting	load	balancer
scheduler	algorithm	for	mod_proxy_balancer

Status: Extension
Module	Identifier: lbmethod_bybusyness_module
Source	File: mod_lbmethod_bybusyness.c
Compatibility: Split	off	from	mod_proxy_balancer	in	2.3

Summary
This	module	does	not	provide	any	configuration	directives	of	its	own.
It	requires	the	services	of	mod_proxy_balancer,	and	provides	the
bybusyness	load	balancing	method.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

mod_proxy_balancer

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_lbmethod_bybusyness
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_lbmethod_bybusyness

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Pending	Request	Counting	Algorithm

Enabled	via	lbmethod=bybusyness,	this	scheduler	keeps	track
of	how	many	requests	each	worker	is	currently	assigned	at
present.	A	new	request	is	automatically	assigned	to	the	worker
with	the	lowest	number	of	active	requests.	This	is	useful	in	the
case	of	workers	that	queue	incoming	requests	independently	of
Apache,	to	ensure	that	queue	length	stays	even	and	a	request	is
always	given	to	the	worker	most	likely	to	service	it	the	fastest	and
reduce	latency.

In	the	case	of	multiple	least-busy	workers,	the	statistics	(and
weightings)	used	by	the	Request	Counting	method	are	used	to
break	the	tie.	Over	time,	the	distribution	of	work	will	come	to
resemble	that	characteristic	of	byrequests	(as	implemented	by
mod_lbmethod_byrequests).

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lbmethod_byrequests

Description: Request	Counting	load	balancer	scheduler
algorithm	for	mod_proxy_balancer

Status: Extension
Module	Identifier: lbmethod_byrequests_module
Source	File: mod_lbmethod_byrequests.c
Compatibility: Split	off	from	mod_proxy_balancer	in	2.3

Summary
This	module	does	not	provide	any	configuration	directives	of	its	own.
It	requires	the	services	of	mod_proxy_balancer,	and	provides	the
byrequests	load	balancing	method..

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

mod_proxy_balancer

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_lbmethod_byrequests
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_lbmethod_byrequests

Request	Counting	Algorithm

Enabled	via	lbmethod=byrequests,	the	idea	behind	this
scheduler	is	that	we	distribute	the	requests	among	the	various
workers	to	ensure	that	each	gets	their	configured	share	of	the
number	of	requests.	It	works	as	follows:

lbfactor	is	how	much	we	expect	this	worker	to	work,	or	the
workers'	work	quota.	This	is	a	normalized	value	representing	their
"share"	of	the	amount	of	work	to	be	done.

lbstatus	is	how	urgent	this	worker	has	to	work	to	fulfill	its	quota	of
work.

The	worker	is	a	member	of	the	load	balancer,	usually	a	remote
host	serving	one	of	the	supported	protocols.

We	distribute	each	worker's	work	quota	to	the	worker,	and	then
look	which	of	them	needs	to	work	most	urgently	(biggest	lbstatus).
This	worker	is	then	selected	for	work,	and	its	lbstatus	reduced	by
the	total	work	quota	we	distributed	to	all	workers.	Thus	the	sum	of
all	lbstatus	does	not	change(*)	and	we	distribute	the	requests	as
desired.

If	some	workers	are	disabled,	the	others	will	still	be	scheduled
correctly.

for	each	worker	in	workers

				worker	lbstatus	+=	worker	lbfactor

				total	factor				+=	worker	lbfactor

				if	worker	lbstatus	>	candidate	lbstatus

								candidate	=	worker

candidate	lbstatus	-=	total	factor

If	a	balancer	is	configured	as	follows:

worker a b c d

lbfactor 25 25 25 25

lbstatus 0 0 0 0

And	b	gets	disabled,	the	following	schedule	is	produced:

worker a b c d
lbstatus -50 0 25 25

lbstatus -25 0 -25 50

lbstatus 0 0 0 0

(repeat)

That	is	it	schedules:	a	c	d	a	c	d	a	c	d	...	Please	note	that:

worker a b c d
lbfactor 25 25 25 25

Has	the	exact	same	behavior	as:

worker a b c d
lbfactor 1 1 1 1

This	is	because	all	values	of	lbfactor	are	normalized	with	respect
to	the	others.	For:

worker a b c
lbfactor 1 4 1

worker	b	will,	on	average,	get	4	times	the	requests	that	a	and	c
will.

The	following	asymmetric	configuration	works	as	one	would
expect:

worker a b
70 30

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

lbfactor
	

lbstatus -30 30

lbstatus 40 -40

lbstatus 10 -10

lbstatus -20 20

lbstatus -50 50

lbstatus 20 -20

lbstatus -10 10

lbstatus -40 40

lbstatus 30 -30

lbstatus 0 0

(repeat)

That	is	after	10	schedules,	the	schedule	repeats	and	7	a	are
selected	with	3	b	interspersed.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lbmethod_bytraffic

Description: Weighted	Traffic	Counting	load	balancer
scheduler	algorithm	for	mod_proxy_balancer

Status: Extension
Module	Identifier: lbmethod_bytraffic_module
Source	File: mod_lbmethod_bytraffic.c
Compatibility: Split	off	from	mod_proxy_balancer	in	2.3

Summary
This	module	does	not	provide	any	configuration	directives	of	its	own.
It	requires	the	services	of	mod_proxy_balancer,	and	provides	the
bytraffic	load	balancing	method..

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

mod_proxy_balancer

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_lbmethod_bytraffic
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_lbmethod_bytraffic

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Weighted	Traffic	Counting	Algorithm

Enabled	via	lbmethod=bytraffic,	the	idea	behind	this
scheduler	is	very	similar	to	the	Request	Counting	method,	with	the
following	changes:

lbfactor	is	how	much	traffic,	in	bytes,	we	want	this	worker	to
handle.	This	is	also	a	normalized	value	representing	their	"share"
of	the	amount	of	work	to	be	done,	but	instead	of	simply	counting
the	number	of	requests,	we	take	into	account	the	amount	of	traffic
this	worker	has	either	seen	or	produced.

If	a	balancer	is	configured	as	follows:

worker a b c
lbfactor 1 2 1

Then	we	mean	that	we	want	b	to	process	twice	the	amount	of
bytes	than	a	or	c	should.	It	does	not	necessarily	mean	that	b
would	handle	twice	as	many	requests,	but	it	would	process	twice
the	I/O.	Thus,	the	size	of	the	request	and	response	are	applied	to
the	weighting	and	selection	algorithm.

Note:	input	and	output	bytes	are	weighted	the	same.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lbmethod_heartbeat

Description: Heartbeat	Traffic	Counting	load	balancer
scheduler	algorithm	for	mod_proxy_balancer

Status: Experimental
Module	Identifier: lbmethod_heartbeat_module
Source	File: mod_lbmethod_heartbeat.c
Compatibility: Available	in	version	2.3	and	later

Summary
lbmethod=heartbeat	uses	the	services	of	mod_heartmonitor	to
balance	between	origin	servers	that	are	providing	heartbeat	info	via
the	mod_heartbeat	module.

This	modules	load	balancing	algorithm	favors	servers	with	more	ready
(idle)	capacity	over	time,	but	does	not	select	the	server	with	the	most
ready	capacity	every	time.	Servers	that	have	0	active	clients	are
penalized,	with	the	assumption	that	they	are	not	fully	initialized.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

mod_proxy_balancer

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_lbmethod_heartbeat
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_lbmethod_heartbeat

mod_heartbeat

mod_heartmonitor

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

HeartbeatStorage	Directive

Description: Path	to	read	heartbeat	data
Syntax: HeartbeatStorage	file-path

Default: HeartbeatStorage	logs/hb.dat

Context: server	config
Status: Experimental
Module: mod_lbmethod_heartbeat

The	HeartbeatStorage	directive	specifies	the	path	to	read
heartbeat	data.	This	flat-file	is	used	only	when
mod_slotmem_shm	is	not	loaded.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_ldap

Description: LDAP	connection	pooling	and	result	caching
services	for	use	by	other	LDAP	modules

Status: Extension
Module	Identifier: ldap_module
Source	File: util_ldap.c

Summary
This	module	was	created	to	improve	the	performance	of	websites
relying	on	backend	connections	to	LDAP	servers.	In	addition	to	the
functions	provided	by	the	standard	LDAP	libraries,	this	module	adds
an	LDAP	connection	pool	and	an	LDAP	shared	memory	cache.

To	enable	this	module,	LDAP	support	must	be	compiled	into	apr-util.
This	is	achieved	by	adding	the	--with-ldap	flag	to	the	configure
script	when	building	Apache.

SSL/TLS	support	is	dependent	on	which	LDAP	toolkit	has	been	linked
to	APR.	As	of	this	writing,	APR-util	supports:	OpenLDAP	SDK	(2.x	or
later),	Novell	LDAP	SDK,	Mozilla	LDAP	SDK,	native	Solaris	LDAP
SDK	(Mozilla	based)	or	the	native	Microsoft	LDAP	SDK.	See	the	APR
website	for	details.

http://www.openldap.org/
http://developer.novell.com/ndk/cldap.htm
https://wiki.mozilla.org/LDAP_C_SDK
http://apr.apache.org

Example	Configuration

The	following	is	an	example	configuration	that	uses	mod_ldap	to
increase	the	performance	of	HTTP	Basic	authentication	provided
by	mod_authnz_ldap.

#	Enable	the	LDAP	connection	pool	and	shared

#	memory	cache.	Enable	the	LDAP	cache	status

#	handler.	Requires	that	mod_ldap	and	mod_authnz_ldap

#	be	loaded.	Change	the	"yourdomain.example.com"	to

#	match	your	domain.

LDAPSharedCacheSize	500000

LDAPCacheEntries	1024

LDAPCacheTTL	600

LDAPOpCacheEntries	1024

LDAPOpCacheTTL	600

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				AuthLDAPURL	"ldap://127.0.0.1/dc=example,dc=com?uid?one"

				Require	valid-user

</Location>

LDAP	Connection	Pool

LDAP	connections	are	pooled	from	request	to	request.	This	allows
the	LDAP	server	to	remain	connected	and	bound	ready	for	the
next	request,	without	the	need	to	unbind/connect/rebind.	The
performance	advantages	are	similar	to	the	effect	of	HTTP
keepalives.

On	a	busy	server	it	is	possible	that	many	requests	will	try	and
access	the	same	LDAP	server	connection	simultaneously.	Where
an	LDAP	connection	is	in	use,	Apache	will	create	a	new
connection	alongside	the	original	one.	This	ensures	that	the
connection	pool	does	not	become	a	bottleneck.

There	is	no	need	to	manually	enable	connection	pooling	in	the
Apache	configuration.	Any	module	using	this	module	for	access	to
LDAP	services	will	share	the	connection	pool.

LDAP	connections	can	keep	track	of	the	ldap	client	credentials
used	when	binding	to	an	LDAP	server.	These	credentials	can	be
provided	to	LDAP	servers	that	do	not	allow	anonymous	binds
during	referral	chasing.	To	control	this	feature,	see	the
LDAPReferrals	and	LDAPReferralHopLimit	directives.	By
default,	this	feature	is	enabled.

LDAP	Cache

For	improved	performance,	mod_ldap	uses	an	aggressive
caching	strategy	to	minimize	the	number	of	times	that	the	LDAP
server	must	be	contacted.	Caching	can	easily	double	or	triple	the
throughput	of	Apache	when	it	is	serving	pages	protected	with
mod_authnz_ldap.	In	addition,	the	load	on	the	LDAP	server	will	be
significantly	decreased.

mod_ldap	supports	two	types	of	LDAP	caching	during	the
search/bind	phase	with	a	search/bind	cache	and	during	the
compare	phase	with	two	operation	caches.	Each	LDAP	URL	that
is	used	by	the	server	has	its	own	set	of	these	three	caches.

The	Search/Bind	Cache
The	process	of	doing	a	search	and	then	a	bind	is	the	most	time-
consuming	aspect	of	LDAP	operation,	especially	if	the	directory	is
large.	The	search/bind	cache	is	used	to	cache	all	searches	that
resulted	in	successful	binds.	Negative	results	(i.e.,	unsuccessful
searches,	or	searches	that	did	not	result	in	a	successful	bind)	are
not	cached.	The	rationale	behind	this	decision	is	that	connections
with	invalid	credentials	are	only	a	tiny	percentage	of	the	total
number	of	connections,	so	by	not	caching	invalid	credentials,	the
size	of	the	cache	is	reduced.

mod_ldap	stores	the	username,	the	DN	retrieved,	the	password
used	to	bind,	and	the	time	of	the	bind	in	the	cache.	Whenever	a
new	connection	is	initiated	with	the	same	username,	mod_ldap
compares	the	password	of	the	new	connection	with	the	password
in	the	cache.	If	the	passwords	match,	and	if	the	cached	entry	is
not	too	old,	mod_ldap	bypasses	the	search/bind	phase.

The	search	and	bind	cache	is	controlled	with	the
LDAPCacheEntries	and	LDAPCacheTTL	directives.

Operation	Caches
During	attribute	and	distinguished	name	comparison	functions,
mod_ldap	uses	two	operation	caches	to	cache	the	compare
operations.	The	first	compare	cache	is	used	to	cache	the	results	of
compares	done	to	test	for	LDAP	group	membership.	The	second
compare	cache	is	used	to	cache	the	results	of	comparisons	done
between	distinguished	names.

Note	that,	when	group	membership	is	being	checked,	any	sub-
group	comparison	results	are	cached	to	speed	future	sub-group
comparisons.

The	behavior	of	both	of	these	caches	is	controlled	with	the
LDAPOpCacheEntries	and	LDAPOpCacheTTL	directives.

Monitoring	the	Cache
mod_ldap	has	a	content	handler	that	allows	administrators	to
monitor	the	cache	performance.	The	name	of	the	content	handler
is	ldap-status,	so	the	following	directives	could	be	used	to
access	the	mod_ldap	cache	information:

<Location	"/server/cache-info">

				SetHandler	ldap-status

</Location>

By	fetching	the	URL	http://servername/cache-info,	the
administrator	can	get	a	status	report	of	every	cache	that	is	used	by
mod_ldap	cache.	Note	that	if	Apache	does	not	support	shared
memory,	then	each	httpd	instance	has	its	own	cache,	so
reloading	the	URL	will	result	in	different	information	each	time,
depending	on	which	httpd	instance	processes	the	request.

Using	SSL/TLS

The	ability	to	create	an	SSL	and	TLS	connections	to	an	LDAP
server	is	defined	by	the	directives	LDAPTrustedGlobalCert,
LDAPTrustedClientCert	and	LDAPTrustedMode.	These
directives	specify	the	CA	and	optional	client	certificates	to	be	used,
as	well	as	the	type	of	encryption	to	be	used	on	the	connection
(none,	SSL	or	TLS/STARTTLS).

#	Establish	an	SSL	LDAP	connection	on	port	636.	Requires	that

#	mod_ldap	and	mod_authnz_ldap	be	loaded.	Change	the

#	"yourdomain.example.com"	to	match	your	domain.

LDAPTrustedGlobalCert	CA_DER	"/certs/certfile.der"

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				AuthLDAPURL	"ldaps://127.0.0.1/dc=example,dc=com?uid?one"

				Require	valid-user

</Location>

#	Establish	a	TLS	LDAP	connection	on	port	389.	Requires	that

#	mod_ldap	and	mod_authnz_ldap	be	loaded.	Change	the

#	"yourdomain.example.com"	to	match	your	domain.

LDAPTrustedGlobalCert	CA_DER	"/certs/certfile.der"

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				AuthLDAPURL	"ldap://127.0.0.1/dc=example,dc=com?uid?one"	TLS

				Require	valid-user

</Location>

SSL/TLS	Certificates

The	different	LDAP	SDKs	have	widely	different	methods	of	setting
and	handling	both	CA	and	client	side	certificates.

If	you	intend	to	use	SSL	or	TLS,	read	this	section	CAREFULLY	so
as	to	understand	the	differences	between	configurations	on	the
different	LDAP	toolkits	supported.

Netscape/Mozilla/iPlanet	SDK
CA	certificates	are	specified	within	a	file	called	cert7.db.	The	SDK
will	not	talk	to	any	LDAP	server	whose	certificate	was	not	signed
by	a	CA	specified	in	this	file.	If	client	certificates	are	required,	an
optional	key3.db	file	may	be	specified	with	an	optional	password.
The	secmod	file	can	be	specified	if	required.	These	files	are	in	the
same	format	as	used	by	the	Netscape	Communicator	or	Mozilla
web	browsers.	The	easiest	way	to	obtain	these	files	is	to	grab
them	from	your	browser	installation.

Client	certificates	are	specified	per	connection	using	the
LDAPTrustedClientCert	directive	by	referring	to	the	certificate
"nickname".	An	optional	password	may	be	specified	to	unlock	the
certificate's	private	key.

The	SDK	supports	SSL	only.	An	attempt	to	use	STARTTLS	will
cause	an	error	when	an	attempt	is	made	to	contact	the	LDAP
server	at	runtime.

#	Specify	a	Netscape	CA	certificate	file

LDAPTrustedGlobalCert	CA_CERT7_DB	"/certs/cert7.db"

#	Specify	an	optional	key3.db	file	for	client	certificate	support

LDAPTrustedGlobalCert	CERT_KEY3_DB	"/certs/key3.db"

#	Specify	the	secmod	file	if	required

LDAPTrustedGlobalCert	CA_SECMOD	"/certs/secmod"

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				LDAPTrustedClientCert	CERT_NICKNAME	<nickname>	[password]

				AuthLDAPURL	"ldaps://127.0.0.1/dc=example,dc=com?uid?one"

				Require	valid-user

</Location>

Novell	SDK
One	or	more	CA	certificates	must	be	specified	for	the	Novell	SDK
to	work	correctly.	These	certificates	can	be	specified	as	binary
DER	or	Base64	(PEM)	encoded	files.

Note:	Client	certificates	are	specified	globally	rather	than	per
connection,	and	so	must	be	specified	with	the
LDAPTrustedGlobalCert	directive	as	below.	Trying	to	set	client
certificates	via	the	LDAPTrustedClientCert	directive	will	cause	an
error	to	be	logged	when	an	attempt	is	made	to	connect	to	the
LDAP	server..

The	SDK	supports	both	SSL	and	STARTTLS,	set	using	the
LDAPTrustedMode	parameter.	If	an	ldaps://	URL	is	specified,	SSL
mode	is	forced,	override	this	directive.

#	Specify	two	CA	certificate	files

LDAPTrustedGlobalCert	CA_DER	"/certs/cacert1.der"

LDAPTrustedGlobalCert	CA_BASE64	"/certs/cacert2.pem"

#	Specify	a	client	certificate	file	and	key

LDAPTrustedGlobalCert	CERT_BASE64	"/certs/cert1.pem"

LDAPTrustedGlobalCert	KEY_BASE64	"/certs/key1.pem"	[password]

#	Do	not	use	this	directive,	as	it	will	throw	an	error

#LDAPTrustedClientCert	CERT_BASE64	"/certs/cert1.pem"

OpenLDAP	SDK
One	or	more	CA	certificates	must	be	specified	for	the	OpenLDAP
SDK	to	work	correctly.	These	certificates	can	be	specified	as
binary	DER	or	Base64	(PEM)	encoded	files.

Both	CA	and	client	certificates	may	be	specified	globally
(LDAPTrustedGlobalCert)	or	per-connection
(LDAPTrustedClientCert).	When	any	settings	are	specified	per-
connection,	the	global	settings	are	superseded.

The	documentation	for	the	SDK	claims	to	support	both	SSL	and
STARTTLS,	however	STARTTLS	does	not	seem	to	work	on	all
versions	of	the	SDK.	The	SSL/TLS	mode	can	be	set	using	the
LDAPTrustedMode	parameter.	If	an	ldaps://	URL	is	specified,	SSL
mode	is	forced.	The	OpenLDAP	documentation	notes	that	SSL
(ldaps://)	support	has	been	deprecated	to	be	replaced	with	TLS,
although	the	SSL	functionality	still	works.

#	Specify	two	CA	certificate	files

LDAPTrustedGlobalCert	CA_DER	"/certs/cacert1.der"

LDAPTrustedGlobalCert	CA_BASE64	"/certs/cacert2.pem"

<Location	"/ldap-status">

				SetHandler	ldap-status

				Require	host	yourdomain.example.com

				LDAPTrustedClientCert	CERT_BASE64	"/certs/cert1.pem"

				LDAPTrustedClientCert	KEY_BASE64	"/certs/key1.pem"

				#	CA	certs	respecified	due	to	per-directory	client	certs

				LDAPTrustedClientCert	CA_DER	"/certs/cacert1.der"

				LDAPTrustedClientCert	CA_BASE64	"/certs/cacert2.pem"

				Satisfy	any

				AuthType	Basic

				AuthName	"LDAP	Protected"

				AuthBasicProvider	ldap

				AuthLDAPURL	"ldaps://127.0.0.1/dc=example,dc=com?uid?one"

				Require	valid-user

</Location>

Solaris	SDK
SSL/TLS	for	the	native	Solaris	LDAP	libraries	is	not	yet	supported.
If	required,	install	and	use	the	OpenLDAP	libraries	instead.

Microsoft	SDK
SSL/TLS	certificate	configuration	for	the	native	Microsoft	LDAP
libraries	is	done	inside	the	system	registry,	and	no	configuration
directives	are	required.

Both	SSL	and	TLS	are	supported	by	using	the	ldaps://	URL
format,	or	by	using	the	LDAPTrustedMode	directive	accordingly.

Note:	The	status	of	support	for	client	certificates	is	not	yet	known
for	this	toolkit.

LDAPCacheEntries	Directive

Description: Maximum	number	of	entries	in	the	primary	LDAP
cache

Syntax: LDAPCacheEntries	number

Default: LDAPCacheEntries	1024

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	maximum	size	of	the	primary	LDAP	cache.	This
cache	contains	successful	search/binds.	Set	it	to	0	to	turn	off
search/bind	caching.	The	default	size	is	1024	cached	searches.

LDAPCacheTTL	Directive

Description: Time	that	cached	items	remain	valid
Syntax: LDAPCacheTTL	seconds

Default: LDAPCacheTTL	600

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	time	(in	seconds)	that	an	item	in	the	search/bind
cache	remains	valid.	The	default	is	600	seconds	(10	minutes).

LDAPConnectionPoolTTL	Directive

Description: Discard	backend	connections	that	have	been
sitting	in	the	connection	pool	too	long

Syntax: LDAPConnectionPoolTTL	n

Default: LDAPConnectionPoolTTL	-1

Context: server	config,	virtual	host
Status: Extension
Module: mod_ldap
Compatibility: Apache	HTTP	Server	2.3.12	and	later

Specifies	the	maximum	age,	in	seconds,	that	a	pooled	LDAP
connection	can	remain	idle	and	still	be	available	for	use.
Connections	are	cleaned	up	when	they	are	next	needed,	not
asynchronously.

A	setting	of	0	causes	connections	to	never	be	saved	in	the
backend	connection	pool.	The	default	value	of	-1,	and	any	other
negative	value,	allows	connections	of	any	age	to	be	reused.

For	performance	reasons,	the	reference	time	used	by	this	directive
is	based	on	when	the	LDAP	connection	is	returned	to	the	pool,	not
the	time	of	the	last	successful	I/O	with	the	LDAP	server.

Since	2.4.10,	new	measures	are	in	place	to	avoid	the	reference
time	from	being	inflated	by	cache	hits	or	slow	requests.	First,	the
reference	time	is	not	updated	if	no	backend	LDAP	conncetions
were	needed.	Second,	the	reference	time	uses	the	time	the	HTTP
request	was	received	instead	of	the	time	the	request	is	completed.

This	timeout	defaults	to	units	of	seconds,	but	accepts	suffixes
for	milliseconds	(ms),	minutes	(min),	and	hours	(h).

LDAPConnectionTimeout	Directive

Description: Specifies	the	socket	connection	timeout	in	seconds
Syntax: LDAPConnectionTimeout	seconds

Context: server	config
Status: Extension
Module: mod_ldap

This	directive	configures	the	LDAP_OPT_NETWORK_TIMEOUT
(or	LDAP_OPT_CONNECT_TIMEOUT)	option	in	the	underlying
LDAP	client	library,	when	available.	This	value	typically	controls
how	long	the	LDAP	client	library	will	wait	for	the	TCP	connection	to
the	LDAP	server	to	complete.

If	a	connection	is	not	successful	with	the	timeout	period,	either	an
error	will	be	returned	or	the	LDAP	client	library	will	attempt	to
connect	to	a	secondary	LDAP	server	if	one	is	specified	(via	a
space-separated	list	of	hostnames	in	the	AuthLDAPURL).

The	default	is	10	seconds,	if	the	LDAP	client	library	linked	with	the
server	supports	the	LDAP_OPT_NETWORK_TIMEOUT	option.

LDAPConnectionTimeout	is	only	available	when	the	LDAP	client
library	linked	with	the	server	supports	the
LDAP_OPT_NETWORK_TIMEOUT	(or
LDAP_OPT_CONNECT_TIMEOUT)	option,	and	the	ultimate
behavior	is	dictated	entirely	by	the	LDAP	client	library.

LDAPLibraryDebug	Directive

Description: Enable	debugging	in	the	LDAP	SDK
Syntax: LDAPLibraryDebug	7

Default: disabled

Context: server	config
Status: Extension
Module: mod_ldap

Turns	on	SDK-specific	LDAP	debug	options	that	generally	cause
the	LDAP	SDK	to	log	verbose	trace	information	to	the	main
Apache	error	log.	The	trace	messages	from	the	LDAP	SDK
provide	gory	details	that	can	be	useful	during	debugging	of
connectivity	problems	with	backend	LDAP	servers

This	option	is	only	configurable	when	Apache	HTTP	Server	is
linked	with	an	LDAP	SDK	that	implements	LDAP_OPT_DEBUG	or
LDAP_OPT_DEBUG_LEVEL,	such	as	OpenLDAP	(a	value	of	7	is
verbose)	or	Tivoli	Directory	Server	(a	value	of	65535	is	verbose).

The	logged	information	will	likely	contain	plaintext	credentials
being	used	or	validated	by	LDAP	authentication,	so	care	should
be	taken	in	protecting	and	purging	the	error	log	when	this
directive	is	used.

LDAPOpCacheEntries	Directive

Description: Number	of	entries	used	to	cache	LDAP	compare
operations

Syntax: LDAPOpCacheEntries	number

Default: LDAPOpCacheEntries	1024

Context: server	config
Status: Extension
Module: mod_ldap

This	specifies	the	number	of	entries	mod_ldap	will	use	to	cache
LDAP	compare	operations.	The	default	is	1024	entries.	Setting	it
to	0	disables	operation	caching.

LDAPOpCacheTTL	Directive

Description: Time	that	entries	in	the	operation	cache	remain
valid

Syntax: LDAPOpCacheTTL	seconds

Default: LDAPOpCacheTTL	600

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	time	(in	seconds)	that	entries	in	the	operation	cache
remain	valid.	The	default	is	600	seconds.

LDAPReferralHopLimit	Directive

Description: The	maximum	number	of	referral	hops	to	chase
before	terminating	an	LDAP	query.

Syntax: LDAPReferralHopLimit	number

Default: SDK	dependent,	typically	between	5

and	10

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ldap

This	directive,	if	enabled	by	the	LDAPReferrals	directive,	limits
the	number	of	referral	hops	that	are	followed	before	terminating	an
LDAP	query.

Support	for	this	tunable	is	uncommon	in	LDAP	SDKs.

LDAPReferrals	Directive

Description: Enable	referral	chasing	during	queries	to	the
LDAP	server.

Syntax: LDAPReferrals	On|Off|default

Default: LDAPReferrals	On

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ldap
Compatibility: The	default	parameter	is	available	in	Apache

2.4.7	and	later

Some	LDAP	servers	divide	their	directory	among	multiple	domains
and	use	referrals	to	direct	a	client	when	a	domain	boundary	is
crossed.	This	is	similar	to	a	HTTP	redirect.	LDAP	client	libraries
may	or	may	not	chase	referrals	by	default.	This	directive	explicitly
configures	the	referral	chasing	in	the	underlying	SDK.

LDAPReferrals	takes	the	following	values:

"on"
When	set	to	"on",	the	underlying	SDK's	referral	chasing	state
is	enabled,	LDAPReferralHopLimit	is	used	to	override	the
SDK's	hop	limit,	and	an	LDAP	rebind	callback	is	registered.

"off"
When	set	to	"off",	the	underlying	SDK's	referral	chasing	state
is	disabled	completely.

"default"
When	set	to	"default",	the	underlying	SDK's	referral	chasing
state	is	not	changed,	LDAPReferralHopLimit	is	not	used
to	overide	the	SDK's	hop	limit,	and	no	LDAP	rebind	callback	is
registered.

The	directive	LDAPReferralHopLimit	works	in	conjunction	with
this	directive	to	limit	the	number	of	referral	hops	to	follow	before
terminating	the	LDAP	query.	When	referral	processing	is	enabled
by	a	value	of	"On",	client	credentials	will	be	provided,	via	a	rebind
callback,	for	any	LDAP	server	requiring	them.

LDAPRetries	Directive

Description: Configures	the	number	of	LDAP	server	retries.
Syntax: LDAPRetries	number-of-retries

Default: LDAPRetries	3

Context: server	config
Status: Extension
Module: mod_ldap

The	server	will	retry	failed	LDAP	requests	up	to	LDAPRetries
times.	Setting	this	directive	to	0	disables	retries.

LDAP	errors	such	as	timeouts	and	refused	connections	are
retryable.

LDAPRetryDelay	Directive

Description: Configures	the	delay	between	LDAP	server	retries.
Syntax: LDAPRetryDelay	seconds

Default: LDAPRetryDelay	0

Context: server	config
Status: Extension
Module: mod_ldap

If	LDAPRetryDelay	is	set	to	a	non-zero	value,	the	server	will
delay	retrying	an	LDAP	request	for	the	specified	amount	of	time.
Setting	this	directive	to	0	will	result	in	any	retry	to	occur	without
delay.

LDAP	errors	such	as	timeouts	and	refused	connections	are
retryable.

LDAPSharedCacheFile	Directive

Description: Sets	the	shared	memory	cache	file
Syntax: LDAPSharedCacheFile	directory-

path/filename

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	directory	path	and	file	name	of	the	shared	memory
cache	file.	If	not	set,	anonymous	shared	memory	will	be	used	if	the
platform	supports	it.

LDAPSharedCacheSize	Directive

Description: Size	in	bytes	of	the	shared-memory	cache
Syntax: LDAPSharedCacheSize	bytes

Default: LDAPSharedCacheSize	500000

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	the	number	of	bytes	to	allocate	for	the	shared	memory
cache.	The	default	is	500kb.	If	set	to	0,	shared	memory	caching
will	not	be	used	and	every	HTTPD	process	will	create	its	own
cache.

LDAPTimeout	Directive

Description: Specifies	the	timeout	for	LDAP	search	and	bind
operations,	in	seconds

Syntax: LDAPTimeout	seconds

Default: LDAPTimeout	60

Context: server	config
Status: Extension
Module: mod_ldap
Compatibility: Apache	HTTP	Server	2.3.5	and	later

This	directive	configures	the	timeout	for	bind	and	search
operations,	as	well	as	the	LDAP_OPT_TIMEOUT	option	in	the
underlying	LDAP	client	library,	when	available.

If	the	timeout	expires,	httpd	will	retry	in	case	an	existing
connection	has	been	silently	dropped	by	a	firewall.	However,
performance	will	be	much	better	if	the	firewall	is	configured	to
send	TCP	RST	packets	instead	of	silently	dropping	packets.

Timeouts	for	ldap	compare	operations	requires	an	SDK	with
LDAP_OPT_TIMEOUT,	such	as	OpenLDAP	>=	2.4.4.

LDAPTrustedClientCert	Directive

Description: Sets	the	file	containing	or	nickname	referring	to	a
per	connection	client	certificate.	Not	all	LDAP
toolkits	support	per	connection	client	certificates.

Syntax: LDAPTrustedClientCert	type	directory-

path/filename/nickname	[password]

Context: directory,	.htaccess
Status: Extension
Module: mod_ldap

It	specifies	the	directory	path,	file	name	or	nickname	of	a	per
connection	client	certificate	used	when	establishing	an	SSL	or	TLS
connection	to	an	LDAP	server.	Different	locations	or	directories
may	have	their	own	independent	client	certificate	settings.	Some
LDAP	toolkits	(notably	Novell)	do	not	support	per	connection	client
certificates,	and	will	throw	an	error	on	LDAP	server	connection	if
you	try	to	use	this	directive	(Use	the	LDAPTrustedGlobalCert
directive	instead	for	Novell	client	certificates	-	See	the	SSL/TLS
certificate	guide	above	for	details).	The	type	specifies	the	kind	of
certificate	parameter	being	set,	depending	on	the	LDAP	toolkit
being	used.	Supported	types	are:

CA_DER	-	binary	DER	encoded	CA	certificate
CA_BASE64	-	PEM	encoded	CA	certificate
CERT_DER	-	binary	DER	encoded	client	certificate
CERT_BASE64	-	PEM	encoded	client	certificate
CERT_NICKNAME	-	Client	certificate	"nickname"	(Netscape
SDK)
KEY_DER	-	binary	DER	encoded	private	key
KEY_BASE64	-	PEM	encoded	private	key

LDAPTrustedGlobalCert	Directive

Description: Sets	the	file	or	database	containing	global	trusted
Certificate	Authority	or	global	client	certificates

Syntax: LDAPTrustedGlobalCert	type	directory-

path/filename	[password]

Context: server	config
Status: Extension
Module: mod_ldap

It	specifies	the	directory	path	and	file	name	of	the	trusted	CA
certificates	and/or	system	wide	client	certificates	mod_ldap
should	use	when	establishing	an	SSL	or	TLS	connection	to	an
LDAP	server.	Note	that	all	certificate	information	specified	using
this	directive	is	applied	globally	to	the	entire	server	installation.
Some	LDAP	toolkits	(notably	Novell)	require	all	client	certificates
to	be	set	globally	using	this	directive.	Most	other	toolkits	require
clients	certificates	to	be	set	per	Directory	or	per	Location	using
LDAPTrustedClientCert.	If	you	get	this	wrong,	an	error	may	be
logged	when	an	attempt	is	made	to	contact	the	LDAP	server,	or
the	connection	may	silently	fail	(See	the	SSL/TLS	certificate	guide
above	for	details).	The	type	specifies	the	kind	of	certificate
parameter	being	set,	depending	on	the	LDAP	toolkit	being	used.
Supported	types	are:

CA_DER	-	binary	DER	encoded	CA	certificate
CA_BASE64	-	PEM	encoded	CA	certificate
CA_CERT7_DB	-	Netscape	cert7.db	CA	certificate	database
file
CA_SECMOD	-	Netscape	secmod	database	file
CERT_DER	-	binary	DER	encoded	client	certificate
CERT_BASE64	-	PEM	encoded	client	certificate
CERT_KEY3_DB	-	Netscape	key3.db	client	certificate
database	file
CERT_NICKNAME	-	Client	certificate	"nickname"	(Netscape

SDK)
CERT_PFX	-	PKCS#12	encoded	client	certificate	(Novell
SDK)
KEY_DER	-	binary	DER	encoded	private	key
KEY_BASE64	-	PEM	encoded	private	key
KEY_PFX	-	PKCS#12	encoded	private	key	(Novell	SDK)

LDAPTrustedMode	Directive

Description: Specifies	the	SSL/TLS	mode	to	be	used	when
connecting	to	an	LDAP	server.

Syntax: LDAPTrustedMode	type

Context: server	config,	virtual	host
Status: Extension
Module: mod_ldap

The	following	modes	are	supported:

NONE	-	no	encryption
SSL	-	ldaps://	encryption	on	default	port	636
TLS	-	STARTTLS	encryption	on	default	port	389

Not	all	LDAP	toolkits	support	all	the	above	modes.	An	error
message	will	be	logged	at	runtime	if	a	mode	is	not	supported,	and
the	connection	to	the	LDAP	server	will	fail.

If	an	ldaps://	URL	is	specified,	the	mode	becomes	SSL	and	the
setting	of	LDAPTrustedMode	is	ignored.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

LDAPVerifyServerCert	Directive

Description: Force	server	certificate	verification
Syntax: LDAPVerifyServerCert	On|Off

Default: LDAPVerifyServerCert	On

Context: server	config
Status: Extension
Module: mod_ldap

Specifies	whether	to	force	the	verification	of	a	server	certificate
when	establishing	an	SSL	connection	to	the	LDAP	server.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_log_config

Description: Logging	of	the	requests	made	to	the	server
Status: Base
Module	Identifier: log_config_module
Source	File: mod_log_config.c

Summary
This	module	provides	for	flexible	logging	of	client	requests.	Logs	are
written	in	a	customizable	format,	and	may	be	written	directly	to	a	file,
or	to	an	external	program.	Conditional	logging	is	provided	so	that
individual	requests	may	be	included	or	excluded	from	the	logs	based
on	characteristics	of	the	request.

Three	directives	are	provided	by	this	module:	TransferLog	to	create
a	log	file,	LogFormat	to	set	a	custom	format,	and	CustomLog	to
define	a	log	file	and	format	in	one	step.	The	TransferLog	and
CustomLog	directives	can	be	used	multiple	times	in	each	server	to
cause	each	request	to	be	logged	to	multiple	files.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Apache	Log	Files

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_log_config
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_log_config

Custom	Log	Formats

The	format	argument	to	the	LogFormat	and	CustomLog
directives	is	a	string.	This	string	is	used	to	log	each	request	to	the
log	file.	It	can	contain	literal	characters	copied	into	the	log	files	and
the	C-style	control	characters	"\n"	and	"\t"	to	represent	new-lines
and	tabs.	Literal	quotes	and	backslashes	should	be	escaped	with
backslashes.

The	characteristics	of	the	request	itself	are	logged	by	placing	"%"
directives	in	the	format	string,	which	are	replaced	in	the	log	file	by
the	values	as	follows:

Format	String Description
%% The	percent	sign.
%a Client	IP	address	of	the	request	(see	the

mod_remoteip	module).
%{c}a Underlying	peer	IP	address	of	the	connection

(see	the	mod_remoteip	module).
%A Local	IP-address.
%B Size	of	response	in	bytes,	excluding	HTTP

headers.
%b Size	of	response	in	bytes,	excluding	HTTP

headers.	In	CLF	format,	i.e.	a	'-'	rather	than	a	0
when	no	bytes	are	sent.

%{VARNAME}C The	contents	of	cookie	VARNAME	in	the
request	sent	to	the	server.	Only	version	0
cookies	are	fully	supported.

%D The	time	taken	to	serve	the	request,	in
microseconds.

%{VARNAME}e The	contents	of	the	environment	variable
VARNAME.

%f Filename.

%h Remote	hostname.	Will	log	the	IP	address	if
HostnameLookups	is	set	to	Off,	which	is	the
default.	If	it	logs	the	hostname	for	only	a	few
hosts,	you	probably	have	access	control
directives	mentioning	them	by	name.	See	the
Require	host	documentation.

%H The	request	protocol.
%{VARNAME}i The	contents	of	VARNAME:	header	line(s)	in	the

request	sent	to	the	server.	Changes	made	by
other	modules	(e.g.	mod_headers)	affect	this.
If	you're	interested	in	what	the	request	header
was	prior	to	when	most	modules	would	have
modified	it,	use	mod_setenvif	to	copy	the
header	into	an	internal	environment	variable
and	log	that	value	with	the	%{VARNAME}e
described	above.

%k Number	of	keepalive	requests	handled	on	this
connection.	Interesting	if	KeepAlive	is	being
used,	so	that,	for	example,	a	'1'	means	the	first
keepalive	request	after	the	initial	one,	'2'	the
second,	etc...;	otherwise	this	is	always	0
(indicating	the	initial	request).

%l Remote	logname	(from	identd,	if	supplied).	This
will	return	a	dash	unless	mod_ident	is	present
and	IdentityCheck	is	set	On.

%L The	request	log	ID	from	the	error	log	(or	'-'	if
nothing	has	been	logged	to	the	error	log	for	this
request).	Look	for	the	matching	error	log	line	to
see	what	request	caused	what	error.

%m The	request	method.
%{VARNAME}n The	contents	of	note	VARNAME	from	another

module.

%{VARNAME}o The	contents	of	VARNAME:	header	line(s)	in	the
reply.

%p The	canonical	port	of	the	server	serving	the
request.

%{format}p The	canonical	port	of	the	server	serving	the
request,	or	the	server's	actual	port,	or	the
client's	actual	port.	Valid	formats	are
canonical,	local,	or	remote.

%P The	process	ID	of	the	child	that	serviced	the
request.

%{format}P The	process	ID	or	thread	ID	of	the	child	that
serviced	the	request.	Valid	formats	are	pid,
tid,	and	hextid.	hextid	requires	APR	1.2.0
or	higher.

%q The	query	string	(prepended	with	a	?	if	a	query
string	exists,	otherwise	an	empty	string).

%r First	line	of	request.
%R The	handler	generating	the	response	(if	any).
%s Status.	For	requests	that	have	been	internally

redirected,	this	is	the	status	of	the	original
request.	Use	%>s	for	the	final	status.

%t Time	the	request	was	received,	in	the	format
[18/Sep/2011:19:18:28	-0400].	The	last
number	indicates	the	timezone	offset	from	GMT

%{format}t The	time,	in	the	form	given	by	format,	which
should	be	in	an	extended	strftime(3)	format
(potentially	localized).	If	the	format	starts	with
begin:	(default)	the	time	is	taken	at	the
beginning	of	the	request	processing.	If	it	starts
with	end:	it	is	the	time	when	the	log	entry	gets
written,	close	to	the	end	of	the	request

processing.	In	addition	to	the	formats	supported
by	strftime(3),	the	following	format	tokens
are	supported:

sec number	of	seconds	since	the
Epoch

msec number	of	milliseconds	since	the
Epoch

usec number	of	microseconds	since
the	Epoch

msec_frac millisecond	fraction
usec_frac microsecond	fraction

These	tokens	can	not	be	combined	with	each
other	or	strftime(3)	formatting	in	the	same
format	string.	You	can	use	multiple	%
{format}t	tokens	instead.

%T The	time	taken	to	serve	the	request,	in	seconds.
%{UNIT}T The	time	taken	to	serve	the	request,	in	a	time

unit	given	by	UNIT.	Valid	units	are	ms	for
milliseconds,	us	for	microseconds,	and	s	for
seconds.	Using	s	gives	the	same	result	as	%T
without	any	format;	using	us	gives	the	same
result	as	%D.	Combining	%T	with	a	unit	is
available	in	2.4.13	and	later.

%u Remote	user	if	the	request	was	authenticated.
May	be	bogus	if	return	status	(%s)	is	401
(unauthorized).

%U The	URL	path	requested,	not	including	any
query	string.

%v The	canonical	ServerName	of	the	server
serving	the	request.

%V The	server	name	according	to	the
UseCanonicalName	setting.

%X Connection	status	when	response	is	completed:

X

=
Connection	aborted	before	the	response
completed.

+

=
Connection	may	be	kept	alive	after	the
response	is	sent.

-

=
Connection	will	be	closed	after	the
response	is	sent.

%I Bytes	received,	including	request	and	headers.
Cannot	be	zero.	You	need	to	enable
mod_logio	to	use	this.

%O Bytes	sent,	including	headers.	May	be	zero	in
rare	cases	such	as	when	a	request	is	aborted
before	a	response	is	sent.	You	need	to	enable
mod_logio	to	use	this.

%S Bytes	transferred	(received	and	sent),	including
request	and	headers,	cannot	be	zero.	This	is
the	combination	of	%I	and	%O.	You	need	to
enable	mod_logio	to	use	this.

%

{VARNAME}^ti

The	contents	of	VARNAME:	trailer	line(s)	in	the
request	sent	to	the	server.

%

{VARNAME}^to

The	contents	of	VARNAME:	trailer	line(s)	in	the
response	sent	from	the	server.

Modifiers
Particular	items	can	be	restricted	to	print	only	for	responses	with
specific	HTTP	status	codes	by	placing	a	comma-separated	list	of
status	codes	immediately	following	the	"%".	The	status	code	list
may	be	preceded	by	a	"!"	to	indicate	negation.

Format	String Meaning
%400,501{User-agent}i Logs	User-agent	on	400	errors

and	501	errors	only.	For	other
status	codes,	the	literal	string	"-
"	will	be	logged.

%!200,304,302{Referer}i Logs	Referer	on	all	requests
that	do	not	return	one	of	the
three	specified	codes,	"-"
otherwise.

The	modifiers	"<"	and	">"	can	be	used	for	requests	that	have	been
internally	redirected	to	choose	whether	the	original	or	final
(respectively)	request	should	be	consulted.	By	default,	the	%
directives	%s,	%U,	%T,	%D,	and	%r	look	at	the	original	request
while	all	others	look	at	the	final	request.	So	for	example,	%>s	can
be	used	to	record	the	final	status	of	the	request	and	%<u	can	be
used	to	record	the	original	authenticated	user	on	a	request	that	is
internally	redirected	to	an	unauthenticated	resource.

Format	Notes
For	security	reasons,	starting	with	version	2.0.46,	non-printable
and	other	special	characters	in	%r,	%i	and	%o	are	escaped	using
\xhh	sequences,	where	hh	stands	for	the	hexadecimal
representation	of	the	raw	byte.	Exceptions	from	this	rule	are	"	and
\,	which	are	escaped	by	prepending	a	backslash,	and	all
whitespace	characters,	which	are	written	in	their	C-style	notation
(\n,	\t,	etc).	In	versions	prior	to	2.0.46,	no	escaping	was
performed	on	these	strings	so	you	had	to	be	quite	careful	when
dealing	with	raw	log	files.

Since	httpd	2.0,	unlike	1.3,	the	%b	and	%B	format	strings	do	not
represent	the	number	of	bytes	sent	to	the	client,	but	simply	the

size	in	bytes	of	the	HTTP	response	(which	will	differ,	for	instance,
if	the	connection	is	aborted,	or	if	SSL	is	used).	The	%O	format
provided	by	mod_logio	will	log	the	actual	number	of	bytes	sent
over	the	network.

Note:	mod_cache	is	implemented	as	a	quick-handler	and	not	as
a	standard	handler.	Therefore,	the	%R	format	string	will	not
return	any	handler	information	when	content	caching	is	involved.

Examples
Some	commonly	used	log	format	strings	are:

Common	Log	Format	(CLF)
"%h	%l	%u	%t	\"%r\"	%>s	%b"

Common	Log	Format	with	Virtual	Host
"%v	%h	%l	%u	%t	\"%r\"	%>s	%b"

NCSA	extended/combined	log	format
"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"

\"%{User-agent}i\""

Referer	log	format
"%{Referer}i	->	%U"

Agent	(Browser)	log	format
"%{User-agent}i"

You	can	use	the	%{format}t	directive	multiple	times	to	build	up
a	time	format	using	the	extended	format	tokens	like	msec_frac:

Timestamp	including	milliseconds
"%{%d/%b/%Y	%T}t.%{msec_frac}t	%{%z}t"

Security	Considerations

See	the	security	tips	document	for	details	on	why	your	security
could	be	compromised	if	the	directory	where	logfiles	are	stored	is
writable	by	anyone	other	than	the	user	that	starts	the	server.

BufferedLogs	Directive

Description: Buffer	log	entries	in	memory	before	writing	to	disk
Syntax: BufferedLogs	On|Off

Default: BufferedLogs	Off

Context: server	config
Status: Base
Module: mod_log_config

The	BufferedLogs	directive	causes	mod_log_config	to	store
several	log	entries	in	memory	and	write	them	together	to	disk,
rather	than	writing	them	after	each	request.	On	some	systems,	this
may	result	in	more	efficient	disk	access	and	hence	higher
performance.	It	may	be	set	only	once	for	the	entire	server;	it
cannot	be	configured	per	virtual-host.

This	directive	should	be	used	with	caution	as	a	crash	might
cause	loss	of	logging	data.

CustomLog	Directive

Description: Sets	filename	and	format	of	log	file
Syntax: CustomLog	file|pipe	format|nickname

[env=[!]environment-variable|

expr=expression]

Context: server	config,	virtual	host
Status: Base
Module: mod_log_config

The	CustomLog	directive	is	used	to	log	requests	to	the	server.	A
log	format	is	specified,	and	the	logging	can	optionally	be	made
conditional	on	request	characteristics	using	environment	variables.

The	first	argument,	which	specifies	the	location	to	which	the	logs
will	be	written,	can	take	one	of	the	following	two	types	of	values:

file
A	filename,	relative	to	the	ServerRoot.

pipe
The	pipe	character	"|",	followed	by	the	path	to	a	program	to
receive	the	log	information	on	its	standard	input.	See	the
notes	on	piped	logs	for	more	information.

Security:

If	a	program	is	used,	then	it	will	be	run	as	the	user	who
started	httpd.	This	will	be	root	if	the	server	was	started	by
root;	be	sure	that	the	program	is	secure.

Note

When	entering	a	file	path	on	non-Unix	platforms,	care
should	be	taken	to	make	sure	that	only	forward	slashed	are
used	even	though	the	platform	may	allow	the	use	of	back

slashes.	In	general	it	is	a	good	idea	to	always	use	forward
slashes	throughout	the	configuration	files.

The	second	argument	specifies	what	will	be	written	to	the	log	file.
It	can	specify	either	a	nickname	defined	by	a	previous	LogFormat
directive,	or	it	can	be	an	explicit	format	string	as	described	in	the
log	formats	section.

For	example,	the	following	two	sets	of	directives	have	exactly	the
same	effect:

#	CustomLog	with	format	nickname

LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"	common

CustomLog	"logs/access_log"	common

#	CustomLog	with	explicit	format	string

CustomLog	"logs/access_log"	"%h	%l	%u	%t	\"%r\"	%>s	%b"

The	third	argument	is	optional	and	controls	whether	or	not	to	log	a
particular	request.	The	condition	can	be	the	presence	or	absence
(in	the	case	of	a	'env=!name'	clause)	of	a	particular	variable	in	the
server	environment.	Alternatively,	the	condition	can	be	expressed
as	arbitrary	boolean	expression.	If	the	condition	is	not	satisfied,
the	request	will	not	be	logged.	References	to	HTTP	headers	in	the
expression	will	not	cause	the	header	names	to	be	added	to	the
Vary	header.

Environment	variables	can	be	set	on	a	per-request	basis	using	the
mod_setenvif	and/or	mod_rewrite	modules.	For	example,	if
you	want	to	record	requests	for	all	GIF	images	on	your	server	in	a
separate	logfile	but	not	in	your	main	log,	you	can	use:

SetEnvIf	Request_URI	\.gif$	gif-image

CustomLog	"gif-requests.log"	common	env=gif-image

CustomLog	"nongif-requests.log"	common	env=!gif-image

Or,	to	reproduce	the	behavior	of	the	old	RefererIgnore	directive,
you	might	use	the	following:

SetEnvIf	Referer	example\.com	localreferer

CustomLog	"referer.log"	referer	env=!localreferer

GlobalLog	Directive

Description: Sets	filename	and	format	of	log	file
Syntax: GlobalLogfile|pipe	format|nickname

[env=[!]environment-variable|

expr=expression]

Context: server	config
Status: Base
Module: mod_log_config
Compatibility: Available	in	Apache	HTTP	Server	2.4.19	and

later

The	GlobalLog	directive	defines	a	log	shared	by	the	main	server
configuration	and	all	defined	virtual	hosts.

The	GlobalLog	directive	is	identical	to	the	CustomLog	directive,
apart	from	the	following	differences:

GlobalLog	is	not	valid	in	virtual	host	context.
GlobalLog	is	used	by	virtual	hosts	that	define	their	own
CustomLog,	unlike	a	globally	specified	CustomLog.

LogFormat	Directive

Description: Describes	a	format	for	use	in	a	log	file
Syntax: LogFormat	format|nickname	[nickname]

Default: LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b"

Context: server	config,	virtual	host
Status: Base
Module: mod_log_config

This	directive	specifies	the	format	of	the	access	log	file.

The	LogFormat	directive	can	take	one	of	two	forms.	In	the	first
form,	where	only	one	argument	is	specified,	this	directive	sets	the
log	format	which	will	be	used	by	logs	specified	in	subsequent
TransferLog	directives.	The	single	argument	can	specify	an
explicit	format	as	discussed	in	the	custom	log	formats	section
above.	Alternatively,	it	can	use	a	nickname	to	refer	to	a	log	format
defined	in	a	previous	LogFormat	directive	as	described	below.

The	second	form	of	the	LogFormat	directive	associates	an
explicit	format	with	a	nickname.	This	nickname	can	then	be	used
in	subsequent	LogFormat	or	CustomLog	directives	rather	than
repeating	the	entire	format	string.	A	LogFormat	directive	that
defines	a	nickname	does	nothing	else	--	that	is,	it	only	defines
the	nickname,	it	doesn't	actually	apply	the	format	and	make	it	the
default.	Therefore,	it	will	not	affect	subsequent	TransferLog
directives.	In	addition,	LogFormat	cannot	use	one	nickname	to
define	another	nickname.	Note	that	the	nickname	should	not
contain	percent	signs	(%).

Example
LogFormat	"%v	%h	%l	%u	%t	\"%r\"	%>s	%b"	vhost_common

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

TransferLog	Directive

Description: Specify	location	of	a	log	file
Syntax: TransferLog	file|pipe

Context: server	config,	virtual	host
Status: Base
Module: mod_log_config

This	directive	has	exactly	the	same	arguments	and	effect	as	the
CustomLog	directive,	with	the	exception	that	it	does	not	allow	the
log	format	to	be	specified	explicitly	or	for	conditional	logging	of
requests.	Instead,	the	log	format	is	determined	by	the	most
recently	specified	LogFormat	directive	which	does	not	define	a
nickname.	Common	Log	Format	is	used	if	no	other	format	has
been	specified.

Example
LogFormat	"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-agent}i\""

TransferLog	logs/access_log

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_log_debug

Description: Additional	configurable	debug	logging
Status: Experimental
Module	Identifier: log_debug_module
Source	File: mod_log_debug.c
Compatibility: Available	in	Apache	2.3.14	and	later

Examples

1.	 Log	message	after	request	to	/foo/*	is	processed:

<Location	"/foo/">

		LogMessage	"/foo/	has	been	requested"

</Location>

2.	 Log	message	if	request	to	/foo/*	is	processed	in	a	sub-
request:

<Location	"/foo/">

		LogMessage	"subrequest	to	/foo/"	hook=type_checker	expr=%{IS_SUBREQ}

</Location>

The	default	log_transaction	hook	is	not	executed	for	sub-
requests,	therefore	we	have	to	use	a	different	hook.

3.	 Log	message	if	an	IPv6	client	causes	a	request	timeout:

LogMessage	"IPv6	timeout	from	%{REMOTE_ADDR}"	"expr=-T	%{IPV6}	&&	%{REQUEST_STATUS}	=	408"

Note	the	placing	of	the	double	quotes	for	the	expr=
argument.

4.	 Log	the	value	of	the	"X-Foo"	request	environment	variable	in
each	stage	of	the	request:

<Location	"/">

		LogMessage	"%{reqenv:X-Foo}"	hook=all

</Location>

Together	with	microsecond	time	stamps	in	the	error	log,
hook=all	also	lets	you	determine	the	times	spent	in	the

different	parts	of	the	request	processing.

LogMessage	Directive

Description: Log	user-defined	message	to	error	log
Syntax: LogMessage	message	[hook=hook]

[expr=expression]

Default: Unset

Context: directory
Status: Experimental
Module: mod_log_debug

This	directive	causes	a	user	defined	message	to	be	logged	to	the
error	log.	The	message	can	use	variables	and	functions	from	the
ap_expr	syntax.	References	to	HTTP	headers	will	not	cause
header	names	to	be	added	to	the	Vary	header.	The	messages	are
logged	at	loglevel	info.

The	hook	specifies	before	which	phase	of	request	processing	the
message	will	be	logged.	The	following	hooks	are	supported:

Name
translate_name

type_checker

quick_handler

map_to_storage

check_access

check_access_ex

insert_filter

check_authn

check_authz

fixups

handler

log_transaction

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	default	is	log_transaction.	The	special	value	all	is	also
supported,	causing	a	message	to	be	logged	at	each	phase.	Not	all
hooks	are	executed	for	every	request.

The	optional	expression	allows	to	restrict	the	message	if	a
condition	is	met.	The	details	of	the	expression	syntax	are
described	in	the	ap_expr	documentation.	References	to	HTTP
headers	will	not	cause	the	header	names	to	be	added	to	the	Vary
header.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_log_forensic

Description: Forensic	Logging	of	the	requests	made	to	the
server

Status: Extension
Module	Identifier: log_forensic_module
Source	File: mod_log_forensic.c
Compatibility: mod_unique_id	is	no	longer	required	since

version	2.1

Summary
This	module	provides	for	forensic	logging	of	client	requests.	Logging
is	done	before	and	after	processing	a	request,	so	the	forensic	log
contains	two	log	lines	for	each	request.	The	forensic	logger	is	very
strict,	which	means:

The	format	is	fixed.	You	cannot	modify	the	logging	format	at
runtime.
If	it	cannot	write	its	data,	the	child	process	exits	immediately	and
may	dump	core	(depending	on	your	CoreDumpDirectory
configuration).

The	check_forensic	script,	which	can	be	found	in	the	distribution's
support	directory,	may	be	helpful	in	evaluating	the	forensic	log	output.

Bugfix	checklist
httpd	changelog

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4

Known	issues
Report	a	bug

See	also
Apache	Log	Files
mod_log_config

https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_log_forensic
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_log_forensic

Forensic	Log	Format

Each	request	is	logged	two	times.	The	first	time	is	before	it's
processed	further	(that	is,	after	receiving	the	headers).	The
second	log	entry	is	written	after	the	request	processing	at	the
same	time	where	normal	logging	occurs.

In	order	to	identify	each	request,	a	unique	request	ID	is	assigned.
This	forensic	ID	can	be	cross	logged	in	the	normal	transfer	log
using	the	%{forensic-id}n	format	string.	If	you're	using
mod_unique_id,	its	generated	ID	will	be	used.

The	first	line	logs	the	forensic	ID,	the	request	line	and	all	received
headers,	separated	by	pipe	characters	(|).	A	sample	line	looks	like
the	following	(all	on	one	line):

+yQtJf8CoAB4AAFNXBIEAAAAA|GET	/manual/de/images/down.gif

HTTP/1.1|Host:localhost%3a8080|User-Agent:Mozilla/5.0	(X11;	U;

Linux	i686;	en-US;	rv%3a1.6)	Gecko/20040216

Firefox/0.8|Accept:image/png,	etc...

The	plus	character	at	the	beginning	indicates	that	this	is	the	first
log	line	of	this	request.	The	second	line	just	contains	a	minus
character	and	the	ID	again:

-yQtJf8CoAB4AAFNXBIEAAAAA

The	check_forensic	script	takes	as	its	argument	the	name	of
the	logfile.	It	looks	for	those	+/-	ID	pairs	and	complains	if	a
request	was	not	completed.

Security	Considerations

See	the	security	tips	document	for	details	on	why	your	security
could	be	compromised	if	the	directory	where	logfiles	are	stored	is
writable	by	anyone	other	than	the	user	that	starts	the	server.

The	log	files	may	contain	sensitive	data	such	as	the	contents	of
Authorization:	headers	(which	can	contain	passwords),	so
they	should	not	be	readable	by	anyone	except	the	user	that	starts
the	server.

ForensicLog	Directive

Description: Sets	filename	of	the	forensic	log
Syntax: ForensicLog	filename|pipe

Context: server	config,	virtual	host
Status: Extension
Module: mod_log_forensic

The	ForensicLog	directive	is	used	to	log	requests	to	the	server
for	forensic	analysis.	Each	log	entry	is	assigned	a	unique	ID	which
can	be	associated	with	the	request	using	the	normal	CustomLog
directive.	mod_log_forensic	creates	a	token	called
forensic-id,	which	can	be	added	to	the	transfer	log	using	the	%
{forensic-id}n	format	string.

The	argument,	which	specifies	the	location	to	which	the	logs	will
be	written,	can	take	one	of	the	following	two	types	of	values:

filename
A	filename,	relative	to	the	ServerRoot.

pipe
The	pipe	character	"|",	followed	by	the	path	to	a	program	to
receive	the	log	information	on	its	standard	input.	The	program
name	can	be	specified	relative	to	the	ServerRoot	directive.

Security:

If	a	program	is	used,	then	it	will	be	run	as	the	user	who
started	httpd.	This	will	be	root	if	the	server	was	started	by
root;	be	sure	that	the	program	is	secure	or	switches	to	a
less	privileged	user.

Note

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

When	entering	a	file	path	on	non-Unix	platforms,	care
should	be	taken	to	make	sure	that	only	forward	slashes	are
used	even	though	the	platform	may	allow	the	use	of	back
slashes.	In	general	it	is	a	good	idea	to	always	use	forward
slashes	throughout	the	configuration	files.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_logio

Description: Logging	of	input	and	output	bytes	per	request
Status: Extension
Module	Identifier: logio_module
Source	File: mod_logio.c

Summary
This	module	provides	the	logging	of	input	and	output	number	of	bytes
received/sent	per	request.	The	numbers	reflect	the	actual	bytes	as
received	on	the	network,	which	then	takes	into	account	the	headers
and	bodies	of	requests	and	responses.	The	counting	is	done	before
SSL/TLS	on	input	and	after	SSL/TLS	on	output,	so	the	numbers	will
correctly	reflect	any	changes	made	by	encryption.

This	module	requires	mod_log_config.

When	KeepAlive	connections	are	used	with	SSL,	the	overhead	of
the	SSL	handshake	is	reflected	in	the	byte	count	of	the	first	request
on	the	connection.	When	per-directory	SSL	renegotiation	occurs,
the	bytes	are	associated	with	the	request	that	triggered	the
renegotiation.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_logio
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_logio

See	also
mod_log_config

Apache	Log	Files

Custom	Log	Formats

This	module	adds	three	new	logging	directives.	The	characteristics
of	the	request	itself	are	logged	by	placing	"%"	directives	in	the
format	string,	which	are	replaced	in	the	log	file	by	the	values	as
follows:

Format	String Description
%I Bytes	received,	including	request	and	headers,

cannot	be	zero.
%O Bytes	sent,	including	headers,	cannot	be	zero.
%S Bytes	transferred	(received	and	sent),	including

request	and	headers,	cannot	be	zero.	This	is	the
combination	of	%I	and	%O.
Available	in	Apache	2.4.7	and	later

%^FB Delay	in	microseconds	between	when	the
request	arrived	and	the	first	byte	of	the	response
headers	are	written.	Only	available	if
LogIOTrackTTFB	is	set	to	ON.
Available	in	Apache	2.4.13	and	later

Usually,	the	functionality	is	used	like	this:

Combined	I/O	log	format:
"%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"

\"%{User-agent}i\"	%I	%O"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

LogIOTrackTTFB	Directive

Description: Enable	tracking	of	time	to	first	byte	(TTFB)
Syntax: LogIOTrackTTFB	ON|OFF

Default: LogIOTrackTTFB	OFF

Context: server	config,	virtual	host,	directory,	.htaccess
Override: none
Status: Extension
Module: mod_logio
Compatibility: Apache	HTTP	Server	2.4.13	and	later

This	directive	configures	whether	this	module	tracks	the	delay
between	the	request	being	read	and	the	first	byte	of	the	response
headers	being	written.	The	resulting	value	may	be	logged	with	the
%^FB	format.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_lua

Description: Provides	Lua	hooks	into	various	portions	of	the
httpd	request	processing

Status: Experimental
Module	Identifier: lua_module
Source	File: mod_lua.c
Compatibility: 2.3	and	later

Summary
This	module	allows	the	server	to	be	extended	with	scripts	written	in
the	Lua	programming	language.	The	extension	points	(hooks)
available	with	mod_lua	include	many	of	the	hooks	available	to
natively	compiled	Apache	HTTP	Server	modules,	such	as	mapping
requests	to	files,	generating	dynamic	responses,	access	control,
authentication,	and	authorization

More	information	on	the	Lua	programming	language	can	be	found	at
the	the	Lua	website.

mod_lua	is	still	in	experimental	state.	Until	it	is	declared	stable,
usage	and	behavior	may	change	at	any	time,	even	between	stable
releases	of	the	2.4.x	series.	Be	sure	to	check	the	CHANGES	file
before	upgrading.

Warning

This	module	holds	a	great	deal	of	power	over	httpd,	which	is	both	a
strength	and	a	potential	security	risk.	It	is	not	recommended	that
you	use	this	module	on	a	server	that	is	shared	with	users	you	do
not	trust,	as	it	can	be	abused	to	change	the	internal	workings	of
httpd.

http://www.lua.org/

Basic	Configuration

The	basic	module	loading	directive	is

LoadModule	lua_module	modules/mod_lua.so

mod_lua	provides	a	handler	named	lua-script,	which	can	be
used	with	a	SetHandler	or	AddHandler	directive:

<Files	"*.lua">

				SetHandler	lua-script

</Files>

This	will	cause	mod_lua	to	handle	requests	for	files	ending	in
.lua	by	invoking	that	file's	handle	function.

For	more	flexibility,	see	LuaMapHandler.

Writing	Handlers

In	the	Apache	HTTP	Server	API,	the	handler	is	a	specific	kind	of
hook	responsible	for	generating	the	response.	Examples	of
modules	that	include	a	handler	are	mod_proxy,	mod_cgi,	and
mod_status.

mod_lua	always	looks	to	invoke	a	Lua	function	for	the	handler,
rather	than	just	evaluating	a	script	body	CGI	style.	A	handler
function	looks	something	like	this:

example.lua

--	example	handler

require	"string"

--[[

					This	is	the	default	method	name	for	Lua	handlers,	see	the	optional

					function-name	in	the	LuaMapHandler	directive	to	choose	a	different

					entry	point.

--]]

function	handle(r)

				r.content_type	=	"text/plain"

				if	r.method	==	'GET'	then

								r:puts("Hello	Lua	World!\n")

								for	k,	v	in	pairs(r:parseargs())	do

												r:puts(string.format("%s:	%s\n",	k,	v))

								end

				elseif	r.method	==	'POST'	then

								r:puts("Hello	Lua	World!\n")

								for	k,	v	in	pairs(r:parsebody())	do

												r:puts(string.format("%s:	%s\n",	k,	v))

								end

				elseif	r.method	==	'PUT'	then

--	use	our	own	Error	contents

								r:puts("Unsupported	HTTP	method	"	..	r.method)

								r.status	=	405

								return	apache2.OK

				else

--	use	the	ErrorDocument

								return	501

				end

				return	apache2.OK

end

This	handler	function	just	prints	out	the	uri	or	form	encoded
arguments	to	a	plaintext	page.

This	means	(and	in	fact	encourages)	that	you	can	have	multiple
handlers	(or	hooks,	or	filters)	in	the	same	script.

Writing	Authorization	Providers

mod_authz_core	provides	a	high-level	interface	to	authorization
that	is	much	easier	to	use	than	using	into	the	relevant	hooks
directly.	The	first	argument	to	the	Require	directive	gives	the
name	of	the	responsible	authorization	provider.	For	any	Require
line,	mod_authz_core	will	call	the	authorization	provider	of	the
given	name,	passing	the	rest	of	the	line	as	parameters.	The
provider	will	then	check	authorization	and	pass	the	result	as	return
value.

The	authz	provider	is	normally	called	before	authentication.	If	it
needs	to	know	the	authenticated	user	name	(or	if	the	user	will	be
authenticated	at	all),	the	provider	must	return
apache2.AUTHZ_DENIED_NO_USER.	This	will	cause
authentication	to	proceed	and	the	authz	provider	to	be	called	a
second	time.

The	following	authz	provider	function	takes	two	arguments,	one	ip
address	and	one	user	name.	It	will	allow	access	from	the	given	ip
address	without	authentication,	or	if	the	authenticated	user
matches	the	second	argument:

authz_provider.lua

require	'apache2'

function	authz_check_foo(r,	ip,	user)

				if	r.useragent_ip	==	ip	then

								return	apache2.AUTHZ_GRANTED

				elseif	r.user	==	nil	then

								return	apache2.AUTHZ_DENIED_NO_USER

				elseif	r.user	==	user	then

								return	apache2.AUTHZ_GRANTED

				else

								return	apache2.AUTHZ_DENIED

				end

end

The	following	configuration	registers	this	function	as	provider	foo
and	configures	it	for	URL	/:

LuaAuthzProvider	foo	authz_provider.lua	authz_check_foo

<Location	"/">

		Require	foo	10.1.2.3	john_doe

</Location>

Writing	Hooks

Hook	functions	are	how	modules	(and	Lua	scripts)	participate	in
the	processing	of	requests.	Each	type	of	hook	exposed	by	the
server	exists	for	a	specific	purpose,	such	as	mapping	requests	to
the	file	system,	performing	access	control,	or	setting	mime	types:

Hook	phase mod_lua	directive Description
Quick
handler

LuaQuickHandler This	is	the	first	hook
that	will	be	called	after
a	request	has	been
mapped	to	a	host	or
virtual	host

Translate
name

LuaHookTranslateName This	phase	translates
the	requested	URI	into
a	filename	on	the
system.	Modules	such
as	mod_alias	and
mod_rewrite

operate	in	this	phase.
Map	to
storage

LuaHookMapToStorage This	phase	maps	files
to	their	physical,
cached	or
external/proxied
storage.	It	can	be	used
by	proxy	or	caching
modules

Check
Access

LuaHookAccessChecker This	phase	checks
whether	a	client	has
access	to	a	resource.
This	phase	is	run
before	the	user	is
authenticated,	so
beware.

Check	User
ID

LuaHookCheckUserID This	phase	it	used	to
check	the	negotiated
user	ID

Check
Authorization

LuaHookAuthChecker	or
LuaAuthzProvider

This	phase	authorizes
a	user	based	on	the
negotiated	credentials,
such	as	user	ID,	client
certificate	etc.

Check	Type LuaHookTypeChecker This	phase	checks	the
requested	file	and
assigns	a	content	type
and	a	handler	to	it

Fixups LuaHookFixups This	is	the	final	"fix
anything"	phase	before
the	content	handlers
are	run.	Any	last-
minute	changes	to	the
request	should	be
made	here.

Content
handler

fx.	.lua	files	or	through
LuaMapHandler

This	is	where	the
content	is	handled.
Files	are	read,	parsed,
some	are	run,	and	the
result	is	sent	to	the
client

Logging LuaHookLog Once	a	request	has
been	handled,	it	enters
several	logging
phases,	which	logs	the
request	in	either	the
error	or	access	log.
Mod_lua	is	able	to
hook	into	the	start	of

this	and	control
logging	output.

Hook	functions	are	passed	the	request	object	as	their	only
argument	(except	for	LuaAuthzProvider,	which	also	gets	passed
the	arguments	from	the	Require	directive).	They	can	return	any
value,	depending	on	the	hook,	but	most	commonly	they'll	return
OK,	DONE,	or	DECLINED,	which	you	can	write	in	Lua	as
apache2.OK,	apache2.DONE,	or	apache2.DECLINED,	or	else
an	HTTP	status	code.

translate_name.lua

--	example	hook	that	rewrites	the	URI	to	a	filesystem	path.

require	'apache2'

function	translate_name(r)

				if	r.uri	==	"/translate-name"	then

								r.filename	=	r.document_root	..	"/find_me.txt"

								return	apache2.OK

				end

				--	we	don't	care	about	this	URL,	give	another	module	a	chance

				return	apache2.DECLINED

end

translate_name2.lua

--[[example	hook	that	rewrites	one	URI	to	another	URI.	It	returns	a

					apache2.DECLINED	to	give	other	URL	mappers	a	chance	to	work	on	the

					substitution,	including	the	core	translate_name	hook	which	maps	based

					on	the	DocumentRoot.

					Note:	Use	the	early/late	flags	in	the	directive	to	make	it	run	before

											or	after	mod_alias.

--]]

require	'apache2'

function	translate_name(r)

				if	r.uri	==	"/translate-name"	then

								r.uri	=	"/find_me.txt"

								return	apache2.DECLINED

				end

				return	apache2.DECLINED

end

Data	Structures

request_rec
The	request_rec	is	mapped	in	as	a	userdata.	It	has	a
metatable	which	lets	you	do	useful	things	with	it.	For	the	most
part	it	has	the	same	fields	as	the	request_rec	struct,	many	of
which	are	writable	as	well	as	readable.	(The	table	fields'
content	can	be	changed,	but	the	fields	themselves	cannot	be
set	to	different	tables.)

Name Lua
type

Writable Description

allowoverrides string no The	AllowOverride	options	applied
to	the	current	request.

ap_auth_type string no If	an	authentication	check	was
made,	this	is	set	to	the	type	
authentication	(f.x.	

args string yes The	query	string	arguments
extracted	from	the	request	
foo=bar&name=johnsmith

assbackwards boolean no Set	to	true	if	this	is	an	HTTP/0.9
style	request	
no	headers))

auth_name string no The	realm	name	used	for
authorization	(if	applicable).

banner string no The	server	banner,	f.x.	
HTTP	Server/2.4.3

openssl/0.9.8c

basic_auth_pw string no The	basic	auth	password	sent	with
this	request,	if	any

canonical_filename string no The	canonical	filename	of	the
request

content_encoding string no The	content	encoding	of	the

current	request
content_type string yes The	content	type	of	the	current

request,	as	determined	in	the
type_check	phase	(f.x.
image/gif	or	

context_prefix string no
context_document_root string no
document_root string no The	document	root	of	the	host
err_headers_out table no MIME	header	environment	for	the

response,	printed	even	on	errors
and	persist	across	internal
redirects

filename string yes The	file	name	that	the	request
maps	to,	f.x.
/www/example.com/foo.txt.	This
can	be	changed	in	the	translate-
name	or	map-to-storage	phases	of
a	request	to	allow	the	
handler	(or	script	handlers)	to
serve	a	different	file	than	what	was
requested.

handler string yes The	name	of	the	
should	serve	this	request,	f.x.
lua-script

by	mod_lua.	This	is	typically	set	by
the	AddHandler
directives,	but	could	also	be	set	via
mod_lua	to	allow	another	handler
to	serve	up	a	specific	request	
would	otherwise	not	be	served	by
it.

headers_in table yes MIME	header	environment	from

the	request.	This	contains	headers
such	as	Host,	
Referer	and	so	on.

headers_out table yes MIME	header	environment	for	the
response.

hostname string no The	host	name,	as	set	by	the
Host:	header	or	by	a	full	URI.

is_https boolean no Whether	or	not	this	request	is
done	via	HTTPS

is_initial_req boolean no Whether	this	request	is	the	initial
request	or	a	sub-request

limit_req_body number no The	size	limit	of	the	request	body
for	this	request,	or	0	if	no	limit.

log_id string no The	ID	to	identify	request	in
access	and	error	log.

method string no The	request	method,	f.x.	
POST.

notes table yes A	list	of	notes	that	can	be	passed
on	from	one	module	to	another.

options string no The	Options	directive	applied	to
the	current	request.

path_info string no The	PATH_INFO	extracted	from
this	request.

port number no The	server	port	used	by	the
request.

protocol string no The	protocol	used,	f.x.	
proxyreq string yes Denotes	whether	this	is	a	proxy

request	or	not.	This	value	is
generally	set	in	
post_read_request/translate_name
phase	of	a	request.

range string no The	contents	of	the	
header.

remaining number no The	number	of	bytes	remaining	to
be	read	from	the	request	body.

server_built string no The	time	the	server	executable
was	built.

server_name string no The	server	name	for	this	request.
some_auth_required boolean no Whether	some	authorization

is/was	required	for	this	request.
subprocess_env table yes The	environment	variables	set	for

this	request.
started number no The	time	the	server	was

(re)started,	in	seconds	since	the
epoch	(Jan	1st,	1970)

status number yes The	(current)	HTTP	return	code	for
this	request,	f.x.	

the_request string no The	request	string	as	sent	by	the
client,	f.x.	GET	/foo/bar
HTTP/1.1.

unparsed_uri string no The	unparsed	URI	of	the	request
uri string yes The	URI	after	it	has	been	parsed

by	httpd
user string yes If	an	authentication	check	has

been	made,	this	is	set	to	the	name
of	the	authenticated	user.

useragent_ip string no The	IP	of	the	user	agent	making
the	request

Built	in	functions

The	request_rec	object	has	(at	least)	the	following	methods:

r:flush()			--	flushes	the	output	buffer.

												--	Returns	true	if	the	flush	was	successful,	false	otherwise.

while	we_have_stuff_to_send	do

				r:puts("Bla	bla	bla\n")	--	print	something	to	client

				r:flush()	--	flush	the	buffer	(send	to	client)

				r.usleep(500000)	--	fake	processing	time	for	0.5	sec.	and	repeat

end

r:addoutputfilter(name|function)	--	add	an	output	filter:

r:addoutputfilter("fooFilter")	--	add	the	fooFilter	to	the	output	stream

r:sendfile(filename)	--	sends	an	entire	file	to	the	client,	using	sendfile	if	supported	by	the	current	platform:

if	use_sendfile_thing	then

				r:sendfile("/var/www/large_file.img")

end

r:parseargs()	--	returns	two	tables;	one	standard	key/value	table	for	regular	GET	data,	

														--	and	one	for	multi-value	data	(fx.	foo=1&foo=2&foo=3):

local	GET,	GETMULTI	=	r:parseargs()

r:puts("Your	name	is:	"	..	GET['name']	or	"Unknown")

r:parsebody([sizeLimit])	--	parse	the	request	body	as	a	POST	and	return	two	lua	tables,

																									--	just	like	r:parseargs().

																									--	An	optional	number	may	be	passed	to	specify	the	maximum	number	

																									--	of	bytes	to	parse.	Default	is	8192	bytes:

																	

local	POST,	POSTMULTI	=	r:parsebody(1024*1024)

r:puts("Your	name	is:	"	..	POST['name']	or	"Unknown")

r:puts("hello",	"	world",	"!")	--	print	to	response	body,	self	explanatory

r:write("a	single	string")	--	print	to	response	body,	self	explanatory

r:escape_html("<html>test</html>")	--	Escapes	HTML	code	and	returns	the	escaped	result

r:base64_encode(string)	--	Encodes	a	string	using	the	Base64	encoding	standard:

local	encoded	=	r:base64_encode("This	is	a	test")	--	returns	VGhpcyBpcyBhIHRlc3Q=

r:base64_decode(string)	--	Decodes	a	Base64-encoded	string:

local	decoded	=	r:base64_decode("VGhpcyBpcyBhIHRlc3Q=")	--	returns	'This	is	a	test'

r:md5(string)	--	Calculates	and	returns	the	MD5	digest	of	a	string	(binary	safe):

local	hash	=	r:md5("This	is	a	test")	--	returns	ce114e4501d2f4e2dcea3e17b546f339

r:sha1(string)	--	Calculates	and	returns	the	SHA1	digest	of	a	string	(binary	safe):

local	hash	=	r:sha1("This	is	a	test")	--	returns	a54d88e06612d820bc3be72877c74f257b561b19

r:escape(string)	--	URL-Escapes	a	string:

local	url	=	"http://foo.bar/1	2	3	&	4	+	5"

local	escaped	=	r:escape(url)	--	returns	'http%3a%2f%2ffoo.bar%2f1+2+3+%26+4+%2b+5'

r:unescape(string)	--	Unescapes	an	URL-escaped	string:

local	url	=	"http%3a%2f%2ffoo.bar%2f1+2+3+%26+4+%2b+5"

local	unescaped	=	r:unescape(url)	--	returns	'http://foo.bar/1	2	3	&	4	+	5'

r:construct_url(string)	--	Constructs	an	URL	from	an	URI

local	url	=	r:construct_url(r.uri)

r.mpm_query(number)	--	Queries	the	server	for	MPM	information	using	ap_mpm_query:

local	mpm	=	r.mpm_query(14)

if	mpm	==	1	then

				r:puts("This	server	uses	the	Event	MPM")

end

r:expr(string)	--	Evaluates	an	expr	string.

if	r:expr("%{HTTP_HOST}	=~	/^www/")	then

				r:puts("This	host	name	starts	with	www")

end

r:scoreboard_process(a)	--	Queries	the	server	for	information	about	the	process	at	position	

local	process	=	r:scoreboard_process(1)

r:puts("Server	1	has	PID	"	..	process.pid)

r:scoreboard_worker(a,	b)	--	Queries	for	information	about	the	worker	thread,	

local	thread	=	r:scoreboard_worker(1,	1)

r:puts("Server	1's	thread	1	has	thread	ID	"	..	thread.tid	..	"	and	is	in	"	..	thread.status	..	"	status")

r:clock()	--	Returns	the	current	time	with	microsecond	precision

r:requestbody(filename)	--	Reads	and	returns	the	request	body	of	a	request.

																--	If	'filename'	is	specified,	it	instead	saves	the

																--	contents	to	that	file:

																

local	input	=	r:requestbody()

r:puts("You	sent	the	following	request	body	to	me:\n")

r:puts(input)

r:add_input_filter(filter_name)	--	Adds	'filter_name'	as	an	input	filter

r.module_info(module_name)	--	Queries	the	server	for	information	about	a	module

local	mod	=	r.module_info("mod_lua.c")

if	mod	then

				for	k,	v	in	pairs(mod.commands)	do

							r:puts(("%s:	%s\n"):format(k,v))	--	print	out	all	directives	accepted	by	this	module

				end

end

r:loaded_modules()	--	Returns	a	list	of	modules	loaded	by	httpd:

for	k,	module	in	pairs(r:loaded_modules())	do

				r:puts("I	have	loaded	module	"	..	module	..	"\n")

end

r:runtime_dir_relative(filename)	--	Compute	the	name	of	a	run-time	file	(e.g.,	shared	memory	"file")	

																									--	relative	to	the	appropriate	run-time	directory.

r:server_info()	--	Returns	a	table	containing	server	information,	such	as	

																--	the	name	of	the	httpd	executable	file,	mpm	used	etc.

r:set_document_root(file_path)	--	Sets	the	document	root	for	the	request	to	file_path

r:set_context_info(prefix,	docroot)	--	Sets	the	context	prefix	and	context	document	root	for	a	request

r:os_escape_path(file_path)	--	Converts	an	OS	path	to	a	URL	in	an	OS	dependent	way

r:escape_logitem(string)	--	Escapes	a	string	for	logging

r.strcmp_match(string,	pattern)	--	Checks	if	'string'	matches	'pattern'	using	strcmp_match	(globs).

																								--	fx.	whether	'www.example.com'	matches	'*.example.com':

																								

local	match	=	r.strcmp_match("foobar.com",	"foo*.com")

if	match	then	

				r:puts("foobar.com	matches	foo*.com")

end

r:set_keepalive()	--	Sets	the	keepalive	status	for	a	request.	Returns	true	if	possible,	false	otherwise.

r:make_etag()	--	Constructs	and	returns	the	etag	for	the	current	request.

r:send_interim_response(clear)	--	Sends	an	interim	(1xx)	response	to	the	client.

																							--	if	'clear'	is	true,	available	headers	will	be	sent	and	cleared.

r:custom_response(status_code,	string)	--	Construct	and	set	a	custom	response	for	a	given	status	code.

																															--	This	works	much	like	the	ErrorDocument	directive:

																															

r:custom_response(404,	"Baleted!")

r.exists_config_define(string)	--	Checks	whether	a	configuration	definition	exists	or	not:

if	r.exists_config_define("FOO")	then

				r:puts("httpd	was	probably	run	with	-DFOO,	or	it	was	defined	in	the	configuration")

end

r:state_query(string)	--	Queries	the	server	for	state	information

r:stat(filename	[,wanted])	--	Runs	stat()	on	a	file,	and	returns	a	table	with	file	information:

local	info	=	r:stat("/var/www/foo.txt")

if	info	then

				r:puts("This	file	exists	and	was	last	modified	at:	"	..	info.modified)

end

r:regex(string,	pattern	[,flags])	--	Runs	a	regular	expression	match	on	a	string,	returning	captures	if	matched:

local	matches	=	r:regex("foo	bar	baz",	[[foo	(\w+)	(\S*)]])

if	matches	then

				r:puts("The	regex	matched,	and	the	last	word	captured	($2)	was:	"	..	matches[2])

end

--	Example	ignoring	case	sensitivity:

local	matches	=	r:regex("FOO	bar	BAz",	[[(foo)	bar]],	1)

--	Flags	can	be	a	bitwise	combination	of:

--	0x01:	Ignore	case

--	0x02:	Multiline	search

r.usleep(number_of_microseconds)	--	Puts	the	script	to	sleep	for	a	given	number	of	microseconds.

r:dbacquire(dbType[,	dbParams])	--	Acquires	a	connection	to	a	database	and	returns	a	database	class.

																								--	See	'Database	connectivity

r:ivm_set("key",	value)	--	Set	an	Inter-VM	variable	to	hold	a	specific	value.

																								--	These	values	persist	even	though	the	VM	is	gone	or	not	being	used,

																								--	and	so	should	only	be	used	if	MaxConnectionsPerChild	is	>	0

																								--	Values	can	be	numbers,	strings	and	booleans,	and	are	stored	on	a	

																								--	per	process	basis	(so	they	won't	do	much	good	with	a	prefork	mpm)

																								

r:ivm_get("key")								--	Fetches	a	variable	set	by	ivm_set.	Returns	the	contents	of	the	variable

																								--	if	it	exists	or	nil	if	no	such	variable	exists.

																								

--	An	example	getter/setter	that	saves	a	global	variable	outside	the	VM:

function	handle(r)

				--	First	VM	to	call	this	will	get	no	value,	and	will	have	to	create	it

				local	foo	=	r:ivm_get("cached_data")

				if	not	foo	then

								foo	=	do_some_calcs()	--	fake	some	return	value

								r:ivm_set("cached_data",	foo)	--	set	it	globally

				end

				r:puts("Cached	data	is:	",	foo)

end

r:htpassword(string	[,algorithm	[,cost]])	--	Creates	a	password	hash	from	a	string.

																																										--	algorithm:	0	=	APMD5	(default),	1	=	SHA,	2	=	BCRYPT,	3	=	CRYPT.

																																										--	cost:	only	valid	with	BCRYPT	algorithm	(default	=	5).

r:mkdir(dir	[,mode])	--	Creates	a	directory	and	sets	mode	to	optional	mode	parameter.

r:mkrdir(dir	[,mode])	--	Creates	directories	recursive	and	sets	mode	to	optional	mode	parameter.

r:rmdir(dir)	--	Removes	a	directory.

r:touch(file	[,mtime])	--	Sets	the	file	modification	time	to	current	time	or	to	optional	mtime	msec	value.

r:get_direntries(dir)	--	Returns	a	table	with	all	directory	entries.

function	handle(r)

		local	dir	=	r.context_document_root

		for	_,	f	in	ipairs(r:get_direntries(dir))	do

				local	info	=	r:stat(dir	..	"/"	..	f)

				if	info	then

						local	mtime	=	os.date(fmt,	info.mtime	/	1000000)

						local	ftype	=	(info.filetype	==	2)	and	"[dir]	"	or	"[file]"

						r:puts(("%s	%s	%10i	%s\n"):format(ftype,	mtime,	info.size,	f))

				end

		end

end

r.date_parse_rfc(string)	--	Parses	a	date/time	string	and	returns	seconds	since	epoche.

r:getcookie(key)	--	Gets	a	HTTP	cookie

r:setcookie{

		key	=	[key],

		value	=	[value],

		expires	=	[expiry],

		secure	=	[boolean],

		httponly	=	[boolean],

		path	=	[path],

		domain	=	[domain]

}	--	Sets	a	HTTP	cookie,	for	instance:

r:setcookie{

		key	=	"cookie1",

		value	=	"HDHfa9eyffh396rt",

		expires	=	os.time()	+	86400,

		secure	=	true

}

r:wsupgrade()	--	Upgrades	a	connection	to	WebSockets	if	possible	(and	requested):

if	r:wsupgrade()	then	--	if	we	can	upgrade:

				r:wswrite("Welcome	to	websockets!")	--	write	something	to	the	client

				r:wsclose()		--	goodbye!

end

r:wsread()	--	Reads	a	WebSocket	frame	from	a	WebSocket	upgraded	connection	(see	above):

local	line,	isFinal	=	r:wsread()	--	isFinal	denotes	whether	this	is	the	final	frame.

																																	--	If	it	isn't,	then	more	frames	can	be	read

r:wswrite("You	wrote:	"	..	line)

r:wswrite(line)	--	Writes	a	frame	to	a	WebSocket	client:

r:wswrite("Hello,	world!")

r:wsclose()	--	Closes	a	WebSocket	request	and	terminates	it	for	httpd:

if	r:wsupgrade()	then

				r:wswrite("Write	something:	")

				local	line	=	r:wsread()	or	"nothing"

				r:wswrite("You	wrote:	"	..	line);

				r:wswrite("Goodbye!")

				r:wsclose()

end

Logging	Functions

--	examples	of	logging	messages

r:trace1("This	is	a	trace	log	message")	--	trace1	through	trace8	can	be	used

r:debug("This	is	a	debug	log	message")

r:info("This	is	an	info	log	message")

r:notice("This	is	a	notice	log	message")

r:warn("This	is	a	warn	log	message")

r:err("This	is	an	err	log	message")

r:alert("This	is	an	alert	log	message")

r:crit("This	is	a	crit	log	message")

r:emerg("This	is	an	emerg	log	message")

apache2	Package

A	package	named	apache2	is	available	with	(at	least)	the
following	contents.

apache2.OK
internal	constant	OK.	Handlers	should	return	this	if	they've
handled	the	request.

apache2.DECLINED
internal	constant	DECLINED.	Handlers	should	return	this	if
they	are	not	going	to	handle	the	request.

apache2.DONE
internal	constant	DONE.

apache2.version
Apache	HTTP	server	version	string

apache2.HTTP_MOVED_TEMPORARILY
HTTP	status	code

apache2.PROXYREQ_NONE,	apache2.PROXYREQ_PROXY,
apache2.PROXYREQ_REVERSE,
apache2.PROXYREQ_RESPONSE

internal	constants	used	by	mod_proxy

apache2.AUTHZ_DENIED,	apache2.AUTHZ_GRANTED,
apache2.AUTHZ_NEUTRAL,
apache2.AUTHZ_GENERAL_ERROR,
apache2.AUTHZ_DENIED_NO_USER

internal	constants	used	by	mod_authz_core

(Other	HTTP	status	codes	are	not	yet	implemented.)

Modifying	contents	with	Lua	filters

Filter	functions	implemented	via	LuaInputFilter	or
LuaOutputFilter	are	designed	as	three-stage	non-blocking
functions	using	coroutines	to	suspend	and	resume	a	function	as
buckets	are	sent	down	the	filter	chain.	The	core	structure	of	such	a
function	is:

function	filter(r)

				--	Our	first	yield	is	to	signal	that	we	are	ready	to	receive	buckets.

				--	Before	this	yield,	we	can	set	up	our	environment,	check	for	conditions,

				--	and,	if	we	deem	it	necessary,	decline	filtering	a	request	alltogether:

				if	something_bad	then

								return	--	This	would	skip	this	filter.

				end

				--	Regardless	of	whether	we	have	data	to	prepend,	a	yield	MUST	be	called	here.

				--	Note	that	only	output	filters	can	prepend	data.	Input	filters	must	use	the	

				--	final	stage	to	append	data	to	the	content.

				coroutine.yield([optional	header	to	be	prepended	to	the	content])

				

				--	After	we	have	yielded,	buckets	will	be	sent	to	us,	one	by	one,	and	we	can	

				--	do	whatever	we	want	with	them	and	then	pass	on	the	result.

				--	Buckets	are	stored	in	the	global	variable	'bucket',	so	we	create	a	loop

				--	that	checks	if	'bucket'	is	not	nil:

				while	bucket	~=	nil	do

								local	output	=	mangle(bucket)	--	Do	some	stuff	to	the	content

								coroutine.yield(output)	--	Return	our	new	content	to	the	filter	chain

				end

				--	Once	the	buckets	are	gone,	'bucket'	is	set	to	nil,	which	will	exit	the	

				--	loop	and	land	us	here.	Anything	extra	we	want	to	append	to	the	content

				--	can	be	done	by	doing	a	final	yield	here.	Both	input	and	output	filters	

				--	can	append	data	to	the	content	in	this	phase.

				coroutine.yield([optional	footer	to	be	appended	to	the	content])

end

Database	connectivity

Mod_lua	implements	a	simple	database	feature	for	querying	and
running	commands	on	the	most	popular	database	engines
(mySQL,	PostgreSQL,	FreeTDS,	ODBC,	SQLite,	Oracle)	as	well
as	mod_dbd.

The	example	below	shows	how	to	acquire	a	database	handle	and
return	information	from	a	table:

function	handle(r)

				--	Acquire	a	database	handle

				local	database,	err	=	r:dbacquire("mysql",	"server=localhost,user=someuser,pass=somepass,dbname=mydb")

				if	not	err	then

								--	Select	some	information	from	it

								local	results,	err	=	database:select(r,	"SELECT	`name`,	`age`	FROM	`people`	WHERE	1")

								if	not	err	then

												local	rows	=	results(0)	--	fetch	all	rows	synchronously

												for	k,	row	in	pairs(rows)	do

																r:puts(string.format("Name:	%s,	Age:	%s
",	row[1],	row[2]))

												end

								else

												r:puts("Database	query	error:	"	..	err)

								end

								database:close()

				else

								r:puts("Could	not	connect	to	the	database:	"	..	err)

				end

end

To	utilize	mod_dbd,	specify	mod_dbd	as	the	database	type,	or
leave	the	field	blank:

local	database	=	r:dbacquire("mod_dbd")

Database	object	and	contained	functions
The	database	object	returned	by	dbacquire	has	the	following
methods:

Normal	select	and	query	from	a	database:

--	Run	a	statement	and	return	the	number	of	rows	affected:

local	affected,	errmsg	=	database:query(r,	"DELETE	FROM	`tbl`	WHERE	1")

--	Run	a	statement	and	return	a	result	set	that	can	be	used	synchronously	or	async:

local	result,	errmsg	=	database:select(r,	"SELECT	*	FROM	`people`	WHERE	1")

Using	prepared	statements	(recommended):

--	Create	and	run	a	prepared	statement:

local	statement,	errmsg	=	database:prepare(r,	"DELETE	FROM	`tbl`	WHERE	`age`	>	%u")

if	not	errmsg	then

				local	result,	errmsg	=	statement:query(20)	--	run	the	statement	with	age	>	20

end

--	Fetch	a	prepared	statement	from	a	DBDPrepareSQL	directive:

local	statement,	errmsg	=	database:prepared(r,	"someTag")

if	not	errmsg	then

				local	result,	errmsg	=	statement:select("John	Doe",	123)	--	inject	the	values	"John	Doe"	and	123	into	the	statement

end

Escaping	values,	closing	databases	etc:

--	Escape	a	value	for	use	in	a	statement:

local	escaped	=	database:escape(r,	[["'|blabla]])

--	Close	a	database	connection	and	free	up	handles:

database:close()

--	Check	whether	a	database	connection	is	up	and	running:

local	connected	=	database:active()

Working	with	result	sets
The	result	set	returned	by	db:select	or	by	the	prepared
statement	functions	created	through	db:prepare	can	be	used	to
fetch	rows	synchronously	or	asynchronously,	depending	on	the
row	number	specified:
result(0)	fetches	all	rows	in	a	synchronous	manner,	returning	a
table	of	rows.
result(-1)	fetches	the	next	available	row	in	the	set,
asynchronously.
result(N)	fetches	row	number	N,	asynchronously:

--	fetch	a	result	set	using	a	regular	query:

local	result,	err	=	db:select(r,	"SELECT	*	FROM	`tbl`	WHERE	1")

local	rows	=	result(0)	--	Fetch	ALL	rows	synchronously

local	row	=	result(-1)	--	Fetch	the	next	available	row,	asynchronously

local	row	=	result(1234)	--	Fetch	row	number	1234,	asynchronously

local	row	=	result(-1,	true)	--	Fetch	the	next	available	row,	using	row	names	as	key	indexes.

One	can	construct	a	function	that	returns	an	iterative	function	to
iterate	over	all	rows	in	a	synchronous	or	asynchronous	way,
depending	on	the	async	argument:

function	rows(resultset,	async)

				local	a	=	0

				local	function	getnext()

								a	=	a	+	1

								local	row	=	resultset(-1)

								return	row	and	a	or	nil,	row

				end

				if	not	async	then

								return	pairs(resultset(0))

				else

								return	getnext,	self

				end

end

local	statement,	err	=	db:prepare(r,	"SELECT	*	FROM	`tbl`	WHERE	`age`	>	%u")

if	not	err	then

					--	fetch	rows	asynchronously:

				local	result,	err	=	statement:select(20)

				if	not	err	then

								for	index,	row	in	rows(result,	true)	do

											

								end

				end

					--	fetch	rows	synchronously:

				local	result,	err	=	statement:select(20)

				if	not	err	then

								for	index,	row	in	rows(result,	false)	do

											

								end

				end

end

Closing	a	database	connection
Database	handles	should	be	closed	using	database:close()
when	they	are	no	longer	needed.	If	you	do	not	close	them
manually,	they	will	eventually	be	garbage	collected	and	closed	by
mod_lua,	but	you	may	end	up	having	too	many	unused
connections	to	the	database	if	you	leave	the	closing	up	to
mod_lua.	Essentially,	the	following	two	measures	are	the	same:

--	Method	1:	Manually	close	a	handle

local	database	=	r:dbacquire("mod_dbd")

database:close()	--	All	done

--	Method	2:	Letting	the	garbage	collector	close	it

local	database	=	r:dbacquire("mod_dbd")

database	=	nil	--	throw	away	the	reference

collectgarbage()	--	close	the	handle	via	GC

Precautions	when	working	with	databases
Although	the	standard	query	and	run	functions	are	freely
available,	it	is	recommended	that	you	use	prepared	statements
whenever	possible,	to	both	optimize	performance	(if	your	db
handle	lives	on	for	a	long	time)	and	to	minimize	the	risk	of	SQL
injection	attacks.	run	and	query	should	only	be	used	when	there
are	no	variables	inserted	into	a	statement	(a	static	statement).
When	using	dynamic	statements,	use	db:prepare	or
db:prepared.

LuaAuthzProvider	Directive

Description: Plug	an	authorization	provider	function	into
mod_authz_core

Syntax: LuaAuthzProvider	provider_name

/path/to/lua/script.lua

function_name

Context: server	config
Status: Experimental
Module: mod_lua
Compatibility: 2.4.3	and	later

After	a	lua	function	has	been	registered	as	authorization	provider,
it	can	be	used	with	the	Require	directive:

LuaRoot	"/usr/local/apache2/lua"

LuaAuthzProvider	foo	authz.lua	authz_check_foo

<Location	"/">

		Require	foo	johndoe

</Location>

require	"apache2"

function	authz_check_foo(r,	who)

				if	r.user	~=	who	then	return	apache2.AUTHZ_DENIED

				return	apache2.AUTHZ_GRANTED

end

LuaCodeCache	Directive

Description: Configure	the	compiled	code	cache.
Syntax: LuaCodeCache	stat|forever|never

Default: LuaCodeCache	stat

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Specify	the	behavior	of	the	in-memory	code	cache.	The	default	is
stat,	which	stats	the	top	level	script	(not	any	included	ones)	each
time	that	file	is	needed,	and	reloads	it	if	the	modified	time	indicates
it	is	newer	than	the	one	it	has	already	loaded.	The	other	values
cause	it	to	keep	the	file	cached	forever	(don't	stat	and	replace)	or
to	never	cache	the	file.

In	general	stat	or	forever	is	good	for	production,	and	stat	or	never
for	development.

Examples:
LuaCodeCache	stat

LuaCodeCache	forever

LuaCodeCache	never

LuaHookAccessChecker	Directive

Description: Provide	a	hook	for	the	access_checker	phase	of
request	processing

Syntax: LuaHookAccessChecker

/path/to/lua/script.lua

hook_function_name	[early|late]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua
Compatibility: The	optional	third	argument	is	supported	in

2.3.15	and	later

Add	your	hook	to	the	access_checker	phase.	An	access	checker
hook	function	usually	returns	OK,	DECLINED,	or
HTTP_FORBIDDEN.

Ordering

The	optional	arguments	"early"	or	"late"	control	when	this	script
runs	relative	to	other	modules.

LuaHookAuthChecker	Directive

Description: Provide	a	hook	for	the	auth_checker	phase	of
request	processing

Syntax: LuaHookAuthChecker

/path/to/lua/script.lua

hook_function_name	[early|late]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua
Compatibility: The	optional	third	argument	is	supported	in

2.3.15	and	later

Invoke	a	lua	function	in	the	auth_checker	phase	of	processing	a
request.	This	can	be	used	to	implement	arbitrary	authentication
and	authorization	checking.	A	very	simple	example:

require	'apache2'

--	fake	authcheck	hook

--	If	request	has	no	auth	info,	set	the	response	header	and

--	return	a	401	to	ask	the	browser	for	basic	auth	info.

--	If	request	has	auth	info,	don't	actually	look	at	it,	just

--	pretend	we	got	userid	'foo'	and	validated	it.

--	Then	check	if	the	userid	is	'foo'	and	accept	the	request.

function	authcheck_hook(r)

			--	look	for	auth	info

			auth	=	r.headers_in['Authorization']

			if	auth	~=	nil	then

					--	fake	the	user

					r.user	=	'foo'

			end

			if	r.user	==	nil	then

						r:debug("authcheck:	user	is	nil,	returning	401")

						r.err_headers_out['WWW-Authenticate']	=	'Basic	realm="WallyWorld"'

						return	401

			elseif	r.user	==	"foo"	then

						r:debug('user	foo:	OK')

			else

						r:debug("authcheck:	user='"	..	r.user	..	"'")

						r.err_headers_out['WWW-Authenticate']	=	'Basic	realm="WallyWorld"'

						return	401

			end

			return	apache2.OK

end

Ordering

The	optional	arguments	"early"	or	"late"	control	when	this	script
runs	relative	to	other	modules.

LuaHookCheckUserID	Directive

Description: Provide	a	hook	for	the	check_user_id	phase	of
request	processing

Syntax: LuaHookCheckUserID

/path/to/lua/script.lua

hook_function_name	[early|late]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua
Compatibility: The	optional	third	argument	is	supported	in

2.3.15	and	later

...

Ordering

The	optional	arguments	"early"	or	"late"	control	when	this	script
runs	relative	to	other	modules.

LuaHookFixups	Directive

Description: Provide	a	hook	for	the	fixups	phase	of	a	request
processing

Syntax: LuaHookFixups	/path/to/lua/script.lua

hook_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Just	like	LuaHookTranslateName,	but	executed	at	the	fixups
phase

LuaHookInsertFilter	Directive

Description: Provide	a	hook	for	the	insert_filter	phase	of	request
processing

Syntax: LuaHookInsertFilter

/path/to/lua/script.lua

hook_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Not	Yet	Implemented

LuaHookLog	Directive

Description: Provide	a	hook	for	the	access	log	phase	of	a
request	processing

Syntax: LuaHookLog	/path/to/lua/script.lua

log_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

This	simple	logging	hook	allows	you	to	run	a	function	when	httpd
enters	the	logging	phase	of	a	request.	With	it,	you	can	append
data	to	your	own	logs,	manipulate	data	before	the	regular	log	is
written,	or	prevent	a	log	entry	from	being	created.	To	prevent	the
usual	logging	from	happening,	simply	return	apache2.DONE	in
your	logging	handler,	otherwise	return	apache2.OK	to	tell	httpd	to
log	as	normal.

Example:

LuaHookLog	"/path/to/script.lua"	logger

--	/path/to/script.lua	--

function	logger(r)

				--	flip	a	coin:

				--	If	1,	then	we	write	to	our	own	Lua	log	and	tell	httpd	not	to	log

				--	in	the	main	log.

				--	If	2,	then	we	just	sanitize	the	output	a	bit	and	tell	httpd	to	

				--	log	the	sanitized	bits.

				if	math.random(1,2)	==	1	then

								--	Log	stuff	ourselves	and	don't	log	in	the	regular	log

								local	f	=	io.open("/foo/secret.log",	"a")

								if	f	then

												f:write("Something	secret	happened	at	"	..	r.uri	..	"\n")

												f:close()

								end

								return	apache2.DONE	--	Tell	httpd	not	to	use	the	regular	logging	functions

				else

								r.uri	=	r.uri:gsub("somesecretstuff",	"")	--	sanitize	the	URI

								return	apache2.OK	--	tell	httpd	to	log	it.

				end

end

LuaHookMapToStorage	Directive

Description: Provide	a	hook	for	the	map_to_storage	phase	of
request	processing

Syntax: LuaHookMapToStorage

/path/to/lua/script.lua

hook_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Like	LuaHookTranslateName	but	executed	at	the	map-to-
storage	phase	of	a	request.	Modules	like	mod_cache	run	at	this
phase,	which	makes	for	an	interesting	example	on	what	to	do
here:

LuaHookMapToStorage	"/path/to/lua/script.lua"	check_cache

require"apache2"

cached_files	=	{}

function	read_file(filename)	

				local	input	=	io.open(filename,	"r")

				if	input	then

								local	data	=	input:read("*a")

								cached_files[filename]	=	data

								file	=	cached_files[filename]

								input:close()

				end

				return	cached_files[filename]

end

function	check_cache(r)

				if	r.filename:match("%.png$")	then	--	Only	match	PNG	files

								local	file	=	cached_files[r.filename]	--	Check	cache	entries

								if	not	file	then

												file	=	read_file(r.filename)		--	Read	file	into	cache

								end

								if	file	then	--	If	file	exists,	write	it	out

												r.status	=	200

												r:write(file)

												r:info(("Sent	%s	to	client	from	cache"):format(r.filename))

												return	apache2.DONE	--	skip	default	handler	for	PNG	files

								end

				end

				return	apache2.DECLINED	--	If	we	had	nothing	to	do,	let	others	serve	this.

end

LuaHookTranslateName	Directive

Description: Provide	a	hook	for	the	translate	name	phase	of
request	processing

Syntax: LuaHookTranslateName

/path/to/lua/script.lua

hook_function_name	[early|late]

Context: server	config,	virtual	host
Override: All
Status: Experimental
Module: mod_lua
Compatibility: The	optional	third	argument	is	supported	in

2.3.15	and	later

Add	a	hook	(at	APR_HOOK_MIDDLE)	to	the	translate	name
phase	of	request	processing.	The	hook	function	receives	a	single
argument,	the	request_rec,	and	should	return	a	status	code,	which
is	either	an	HTTP	error	code,	or	the	constants	defined	in	the
apache2	module:	apache2.OK,	apache2.DECLINED,	or
apache2.DONE.

For	those	new	to	hooks,	basically	each	hook	will	be	invoked	until
one	of	them	returns	apache2.OK.	If	your	hook	doesn't	want	to	do
the	translation	it	should	just	return	apache2.DECLINED.	If	the
request	should	stop	processing,	then	return	apache2.DONE.

Example:

#	httpd.conf

LuaHookTranslateName	"/scripts/conf/hooks.lua"	silly_mapper

--	/scripts/conf/hooks.lua	--

require	"apache2"

function	silly_mapper(r)

				if	r.uri	==	"/"	then

								r.filename	=	"/var/www/home.lua"

								return	apache2.OK

				else

								return	apache2.DECLINED

				end

end

Context

This	directive	is	not	valid	in	<Directory>,	<Files>,	or
htaccess	context.

Ordering

The	optional	arguments	"early"	or	"late"	control	when	this	script
runs	relative	to	other	modules.

LuaHookTypeChecker	Directive

Description: Provide	a	hook	for	the	type_checker	phase	of
request	processing

Syntax: LuaHookTypeChecker

/path/to/lua/script.lua

hook_function_name

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

This	directive	provides	a	hook	for	the	type_checker	phase	of	the
request	processing.	This	phase	is	where	requests	are	assigned	a
content	type	and	a	handler,	and	thus	can	be	used	to	modify	the
type	and	handler	based	on	input:

LuaHookTypeChecker	"/path/to/lua/script.lua"	type_checker

				function	type_checker(r)

								if	r.uri:match("%.to_gif$")	then	--	match	foo.png.to_gif

												r.content_type	=	"image/gif"	--	assign	it	the	image/gif	type

												r.handler	=	"gifWizard"						--	tell	the	gifWizard	module	to	handle	this

												r.filename	=	r.uri:gsub("%.to_gif$",	"")	--	fix	the	filename	requested

												return	apache2.OK

								end

								return	apache2.DECLINED

				end

LuaInherit	Directive

Description: Controls	how	parent	configuration	sections	are
merged	into	children

Syntax: LuaInherit	none|parent-first|parent-

last

Default: LuaInherit	parent-first

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua
Compatibility: 2.4.0	and	later

By	default,	if	LuaHook*	directives	are	used	in	overlapping
Directory	or	Location	configuration	sections,	the	scripts	defined	in
the	more	specific	section	are	run	after	those	defined	in	the	more
generic	section	(LuaInherit	parent-first).	You	can	reverse	this
order,	or	make	the	parent	context	not	apply	at	all.

In	previous	2.3.x	releases,	the	default	was	effectively	to	ignore
LuaHook*	directives	from	parent	configuration	sections.

LuaInputFilter	Directive

Description: Provide	a	Lua	function	for	content	input	filtering
Syntax: LuaInputFilter	filter_name

/path/to/lua/script.lua

function_name

Context: server	config
Status: Experimental
Module: mod_lua
Compatibility: 2.4.5	and	later

Provides	a	means	of	adding	a	Lua	function	as	an	input	filter.	As
with	output	filters,	input	filters	work	as	coroutines,	first	yielding
before	buffers	are	sent,	then	yielding	whenever	a	bucket	needs	to
be	passed	down	the	chain,	and	finally	(optionally)	yielding
anything	that	needs	to	be	appended	to	the	input	data.	The	global
variable	bucket	holds	the	buckets	as	they	are	passed	onto	the
Lua	script:

LuaInputFilter	myInputFilter	"/www/filter.lua"	input_filter

<Files	"*.lua">

		SetInputFilter	myInputFilter

</Files>

--[[

				Example	input	filter	that	converts	all	POST	data	to	uppercase.

]]--

function	input_filter(r)

				print("luaInputFilter	called")	--	debug	print

				coroutine.yield()	--	Yield	and	wait	for	buckets

				while	bucket	do	--	For	each	bucket,	do...

								local	output	=	string.upper(bucket)	--	Convert	all	POST	data	to	uppercase

								coroutine.yield(output)	--	Send	converted	data	down	the	chain

				end

				--	No	more	buckets	available.

				coroutine.yield("&filterSignature=1234")	--	Append	signature	at	the	end

end

The	input	filter	supports	denying/skipping	a	filter	if	it	is	deemed
unwanted:

function	input_filter(r)

				if	not	good	then

								return	--	Simply	deny	filtering,	passing	on	the	original	content	instead

				end

				coroutine.yield()	--	wait	for	buckets

				...	--	insert	filter	stuff	here

end

See	"Modifying	contents	with	Lua	filters"	for	more	information.

LuaMapHandler	Directive

Description: Map	a	path	to	a	lua	handler
Syntax: LuaMapHandler	uri-pattern

/path/to/lua/script.lua	[function-

name]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

This	directive	matches	a	uri	pattern	to	invoke	a	specific	handler
function	in	a	specific	file.	It	uses	PCRE	regular	expressions	to
match	the	uri,	and	supports	interpolating	match	groups	into	both
the	file	path	and	the	function	name.	Be	careful	writing	your	regular
expressions	to	avoid	security	issues.

Examples:
LuaMapHandler	"/(\w+)/(\w+)"	"/scripts/$1.lua"	"handle_$2"

This	would	match	uri's	such	as	/photos/show?id=9	to	the	file
/scripts/photos.lua	and	invoke	the	handler	function	handle_show
on	the	lua	vm	after	loading	that	file.

LuaMapHandler	"/bingo"	"/scripts/wombat.lua"

This	would	invoke	the	"handle"	function,	which	is	the	default	if	no
specific	function	name	is	provided.

LuaOutputFilter	Directive

Description: Provide	a	Lua	function	for	content	output	filtering
Syntax: LuaOutputFilter	filter_name

/path/to/lua/script.lua

function_name

Context: server	config
Status: Experimental
Module: mod_lua
Compatibility: 2.4.5	and	later

Provides	a	means	of	adding	a	Lua	function	as	an	output	filter.	As
with	input	filters,	output	filters	work	as	coroutines,	first	yielding
before	buffers	are	sent,	then	yielding	whenever	a	bucket	needs	to
be	passed	down	the	chain,	and	finally	(optionally)	yielding
anything	that	needs	to	be	appended	to	the	input	data.	The	global
variable	bucket	holds	the	buckets	as	they	are	passed	onto	the
Lua	script:

LuaOutputFilter	myOutputFilter	"/www/filter.lua"	output_filter

<Files	"*.lua">

		SetOutputFilter	myOutputFilter

</Files>

--[[

				Example	output	filter	that	escapes	all	HTML	entities	in	the	output

]]--

function	output_filter(r)

				coroutine.yield("(Handled	by	myOutputFilter)
\n")	--	Prepend	some	data	to	the	output,

																																																										--	yield	and	wait	for	buckets.

				while	bucket	do	--	For	each	bucket,	do...

								local	output	=	r:escape_html(bucket)	--	Escape	all	output

								coroutine.yield(output)	--	Send	converted	data	down	the	chain

				end

				--	No	more	buckets	available.

end

As	with	the	input	filter,	the	output	filter	supports	denying/skipping	a
filter	if	it	is	deemed	unwanted:

function	output_filter(r)

				if	not	r.content_type:match("text/html")	then

								return	--	Simply	deny	filtering,	passing	on	the	original	content	instead

				end

				coroutine.yield()	--	wait	for	buckets

				...	--	insert	filter	stuff	here

end

Lua	filters	with	mod_filter

When	a	Lua	filter	is	used	as	the	underlying	provider	via	the
FilterProvider	directive,	filtering	will	only	work	when	the
filter-name	is	identical	to	the	provider-name.

See	"Modifying	contents	with	Lua	filters"	for	more	information.

LuaPackageCPath	Directive

Description: Add	a	directory	to	lua's	package.cpath
Syntax: LuaPackageCPath

/path/to/include/?.soa

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Add	a	path	to	lua's	shared	library	search	path.	Follows	the	same
conventions	as	lua.	This	just	munges	the	package.cpath	in	the	lua
vms.

LuaPackagePath	Directive

Description: Add	a	directory	to	lua's	package.path
Syntax: LuaPackagePath	/path/to/include/?.lua

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Add	a	path	to	lua's	module	search	path.	Follows	the	same
conventions	as	lua.	This	just	munges	the	package.path	in	the	lua
vms.

Examples:
LuaPackagePath	"/scripts/lib/?.lua"

LuaPackagePath	"/scripts/lib/?/init.lua"

LuaQuickHandler	Directive

Description: Provide	a	hook	for	the	quick	handler	of	request
processing

Syntax: LuaQuickHandler	/path/to/script.lua

hook_function_name

Context: server	config,	virtual	host
Override: All
Status: Experimental
Module: mod_lua

This	phase	is	run	immediately	after	the	request	has	been	mapped
to	a	virtal	host,	and	can	be	used	to	either	do	some	request
processing	before	the	other	phases	kick	in,	or	to	serve	a	request
without	the	need	to	translate,	map	to	storage	et	cetera.	As	this
phase	is	run	before	anything	else,	directives	such	as	<Location>
or	<Directory>	are	void	in	this	phase,	just	as	URIs	have	not
been	properly	parsed	yet.

Context

This	directive	is	not	valid	in	<Directory>,	<Files>,	or
htaccess	context.

LuaRoot	Directive

Description: Specify	the	base	path	for	resolving	relative	paths
for	mod_lua	directives

Syntax: LuaRoot	/path/to/a/directory

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Specify	the	base	path	which	will	be	used	to	evaluate	all	relative
paths	within	mod_lua.	If	not	specified	they	will	be	resolved	relative
to	the	current	working	directory,	which	may	not	always	work	well
for	a	server.

LuaScope	Directive

Description: One	of	once,	request,	conn,	thread	--	default	is
once

Syntax: LuaScope

once|request|conn|thread|server	[min]

[max]

Default: LuaScope	once

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Experimental
Module: mod_lua

Specify	the	life	cycle	scope	of	the	Lua	interpreter	which	will	be
used	by	handlers	in	this	"Directory."	The	default	is	"once"

once:
use	the	interpreter	once	and	throw	it	away.

request:
use	the	interpreter	to	handle	anything	based	on	the	same	file
within	this	request,	which	is	also	request	scoped.

conn:
Same	as	request	but	attached	to	the	connection_rec

thread:
Use	the	interpreter	for	the	lifetime	of	the	thread	handling	the
request	(only	available	with	threaded	MPMs).

server:
This	one	is	different	than	others	because	the	server	scope	is
quite	long	lived,	and	multiple	threads	will	have	the	same
server_rec.	To	accommodate	this,	server	scoped	Lua	states
are	stored	in	an	apr	resource	list.	The	min	and	max
arguments	specify	the	minimum	and	maximum	number	of	Lua
states	to	keep	in	the	pool.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Generally	speaking,	the	thread	and	server	scopes	execute
roughly	2-3	times	faster	than	the	rest,	because	they	don't	have	to
spawn	new	Lua	states	on	every	request	(especially	with	the	event
MPM,	as	even	keepalive	requests	will	use	a	new	thread	for	each
request).	If	you	are	satisfied	that	your	scripts	will	not	have
problems	reusing	a	state,	then	the	thread	or	server	scopes
should	be	used	for	maximum	performance.	While	the	thread
scope	will	provide	the	fastest	responses,	the	server	scope	will
use	less	memory,	as	states	are	pooled,	allowing	f.x.	1000	threads
to	share	only	100	Lua	states,	thus	using	only	10%	of	the	memory
required	by	the	thread	scope.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_macro

Description: Provides	macros	within	apache	httpd	runtime
configuration	files

Status: Base
Module	Identifier: macro_module
Source	File: mod_macro.c

Summary
Provides	macros	within	Apache	httpd	runtime	configuration	files,	to
ease	the	process	of	creating	numerous	similar	configuration	blocks.
When	the	server	starts	up,	the	macros	are	expanded	using	the
provided	parameters,	and	the	result	is	processed	as	along	with	the
rest	of	the	configuration	file.

Usage

Macros	are	defined	using	<Macro>	blocks,	which	contain	the
portion	of	your	configuration	that	needs	to	be	repeated,	complete
with	variables	for	those	parts	that	will	need	to	be	substituted.

For	example,	you	might	use	a	macro	to	define	a	<VirtualHost>
block,	in	order	to	define	multiple	similar	virtual	hosts:

<Macro	VHost	$name	$domain>

<VirtualHost	*:80>

				ServerName	$domain

				ServerAlias	www.$domain

				DocumentRoot	"/var/www/vhosts/$name"

				ErrorLog	"/var/log/httpd/$name.error_log"

				CustomLog	"/var/log/httpd/$name.access_log"	combined

</VirtualHost>

</Macro>

Macro	names	are	case-insensitive,	like	httpd	configuration
directives.	However,	variable	names	are	case	sensitive.

You	would	then	invoke	this	macro	several	times	to	create	virtual
hosts:

Use	VHost	example	example.com

Use	VHost	myhost	hostname.org

Use	VHost	apache	apache.org

UndefMacro	VHost

At	server	startup	time,	each	of	these	Use	invocations	would	be
expanded	into	a	full	virtualhost,	as	described	by	the	<Macro>
definition.

The	UndefMacro	directive	is	used	so	that	later	macros	using	the
same	variable	names	don't	result	in	conflicting	definitions.

A	more	elaborate	version	of	this	example	may	be	seen	below	in
the	Examples	section.

Tips

Parameter	names	should	begin	with	a	sigil	such	as	$,	%,	or	@,	so
that	they	are	clearly	identifiable,	and	also	in	order	to	help	deal	with
interactions	with	other	directives,	such	as	the	core	Define
directive.	Failure	to	do	so	will	result	in	a	warning.	Nevertheless,
you	are	encouraged	to	have	a	good	knowledge	of	your	entire
server	configuration	in	order	to	avoid	reusing	the	same	variables	in
different	scopes,	which	can	cause	confusion.

Parameters	prefixed	with	either	$	or	%	are	not	escaped.
Parameters	prefixes	with	@	are	escaped	in	quotes.

Avoid	using	a	parameter	which	contains	another	parameter	as	a
prefix,	(For	example,	$win	and	$winter)	as	this	may	cause
confusion	at	expression	evaluation	time.	In	the	event	of	such
confusion,	the	longest	possible	parameter	name	is	used.

If	you	want	to	use	a	value	within	another	string,	it	is	useful	to
surround	the	parameter	in	braces,	to	avoid	confusion:

<Macro	DocRoot	${docroot}>

				DocumentRoot	"/var/www/${docroot}/htdocs"

</Macro>

Examples

Virtual	Host	Definition
A	common	usage	of	mod_macro	is	for	the	creation	of	dynamically-
generated	virtual	hosts.

##	Define	a	VHost	Macro	for	repetitive	configurations

<Macro	VHost	$host	$port	$dir>

		Listen	$port

		<VirtualHost	*:$port>

				ServerName	$host

				DocumentRoot	"$dir"

				#	Public	document	root

				<Directory	"$dir">

								Require	all	granted

				</Directory>

				#	limit	access	to	intranet	subdir.

				<Directory	"$dir/intranet">

						Require	ip	10.0.0.0/8

				</Directory>

		</VirtualHost>

</Macro>

##	Use	of	VHost	with	different	arguments.

Use	VHost	www.apache.org	80	/vhosts/apache/htdocs

Use	VHost	example.org	8080	/vhosts/example/htdocs

Use	VHost	www.example.fr	1234	/vhosts/example.fr/htdocs

Removal	of	a	macro	definition

It's	recommended	that	you	undefine	a	macro	once	you've	used	it.
This	avoids	confusion	in	a	complex	configuration	file	where	there
may	be	conflicts	in	variable	names.

<Macro	DirGroup	$dir	$group>

		<Directory	"$dir">

				Require	group	$group

		</Directory>

</Macro>

Use	DirGroup	/www/apache/private	private

Use	DirGroup	/www/apache/server		admin

UndefMacro	DirGroup

<Macro>	Directive

Description: Define	a	configuration	file	macro
Syntax: <Macro	name	[par1	..	parN]>	...

</Macro>

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_macro

The	<Macro>	directive	controls	the	definition	of	a	macro	within	the
server	runtime	configuration	files.	The	first	argument	is	the	name
of	the	macro.	Other	arguments	are	parameters	to	the	macro.	It	is
good	practice	to	prefix	parameter	names	with	any	of	'$%@',	and	not
macro	names	with	such	characters.

<Macro	LocalAccessPolicy>

				Require	ip	10.2.16.0/24

</Macro>

<Macro	RestrictedAccessPolicy	$ipnumbers>

				Require	ip	$ipnumbers

</Macro>

UndefMacro	Directive

Description: Undefine	a	macro
Syntax: UndefMacro	name

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_macro

The	UndefMacro	directive	undefines	a	macro	which	has	been
defined	before	hand.

UndefMacro	LocalAccessPolicy

UndefMacro	RestrictedAccessPolicy

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Use	Directive

Description: Use	a	macro
Syntax: Use	name	[value1	...	valueN]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_macro

The	Use	directive	controls	the	use	of	a	macro.	The	specified
macro	is	expanded.	It	must	be	given	the	same	number	of
arguments	as	in	the	macro	definition.	The	provided	values	are
associated	to	their	corresponding	initial	parameters	and	are
substituted	before	processing.

Use	LocalAccessPolicy

...

Use	RestrictedAccessPolicy	"192.54.172.0/24	192.54.148.0/24"

is	equivalent,	with	the	macros	defined	above,	to:

Require	ip	10.2.16.0/24

...

Require	ip	192.54.172.0/24	192.54.148.0/24

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_mime

Description: Associates	the	requested	filename's	extensions
with	the	file's	behavior	(handlers	and	filters)	and
content	(mime-type,	language,	character	set	and
encoding)

Status: Base
Module	Identifier: mime_module
Source	File: mod_mime.c

Summary
This	module	is	used	to	assign	content	metadata	to	the	content
selected	for	an	HTTP	response	by	mapping	patterns	in	the	URI	or
filenames	to	the	metadata	values.	For	example,	the	filename
extensions	of	content	files	often	define	the	content's	Internet	media
type,	language,	character	set,	and	content-encoding.	This	information
is	sent	in	HTTP	messages	containing	that	content	and	used	in	content
negotiation	when	selecting	alternatives,	such	that	the	user's
preferences	are	respected	when	choosing	one	of	several	possible
contents	to	serve.	See	mod_negotiation	for	more	information
about	content	negotiation.

The	directives	AddCharset,	AddEncoding,	AddLanguage	and
AddType	are	all	used	to	map	file	extensions	onto	the	metadata	for
that	file.	Respectively	they	set	the	character	set,	content-encoding,
content-language,	and	media-type	(content-type)	of	documents.	The
directive	TypesConfig	is	used	to	specify	a	file	which	also	maps
extensions	onto	media	types.

In	addition,	mod_mime	may	define	the	handler	and	filters	that
originate	and	process	content.	The	directives	AddHandler,
AddOutputFilter,	and	AddInputFilter	control	the	modules	or

scripts	that	serve	the	document.	The	MultiviewsMatch	directive
allows	mod_negotiation	to	consider	these	file	extensions	to	be
included	when	testing	Multiviews	matches.

While	mod_mime	associates	metadata	with	filename	extensions,	the
core	server	provides	directives	that	are	used	to	associate	all	the	files
in	a	given	container	(e.g.,	<Location>,	<Directory>,	or	<Files>)
with	particular	metadata.	These	directives	include	ForceType,
SetHandler,	SetInputFilter,	and	SetOutputFilter.	The	core
directives	override	any	filename	extension	mappings	defined	in
mod_mime.

Note	that	changing	the	metadata	for	a	file	does	not	change	the	value
of	the	Last-Modified	header.	Thus,	previously	cached	copies	may
still	be	used	by	a	client	or	proxy,	with	the	previous	headers.	If	you
change	the	metadata	(language,	content	type,	character	set	or
encoding)	you	may	need	to	'touch'	affected	files	(updating	their	last
modified	date)	to	ensure	that	all	visitors	are	receive	the	corrected
content	headers.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
MimeMagicFile

AddDefaultCharset

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_mime
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_mime

ForceType

SetHandler

SetInputFilter

SetOutputFilter

Files	with	Multiple	Extensions

Files	can	have	more	than	one	extension;	the	order	of	the
extensions	is	normally	irrelevant.	For	example,	if	the	file
welcome.html.fr	maps	onto	content	type	text/html	and
language	French	then	the	file	welcome.fr.html	will	map	onto
exactly	the	same	information.	If	more	than	one	extension	is	given
that	maps	onto	the	same	type	of	metadata,	then	the	one	to	the
right	will	be	used,	except	for	languages	and	content	encodings.
For	example,	if	.gif	maps	to	the	media-type	image/gif	and
.html	maps	to	the	media-type	text/html,	then	the	file
welcome.gif.html	will	be	associated	with	the	media-type
text/html.

Languages	and	content	encodings	are	treated	accumulative,
because	one	can	assign	more	than	one	language	or	encoding	to	a
particular	resource.	For	example,	the	file	welcome.html.en.de
will	be	delivered	with	Content-Language:	en,	de	and
Content-Type:	text/html.

Care	should	be	taken	when	a	file	with	multiple	extensions	gets
associated	with	both	a	media-type	and	a	handler.	This	will	usually
result	in	the	request	being	handled	by	the	module	associated	with
the	handler.	For	example,	if	the	.imap	extension	is	mapped	to	the
handler	imap-file	(from	mod_imagemap)	and	the	.html
extension	is	mapped	to	the	media-type	text/html,	then	the	file
world.imap.html	will	be	associated	with	both	the	imap-file
handler	and	text/html	media-type.	When	it	is	processed,	the
imap-file	handler	will	be	used,	and	so	it	will	be	treated	as	a
mod_imagemap	imagemap	file.

If	you	would	prefer	only	the	last	dot-separated	part	of	the	filename
to	be	mapped	to	a	particular	piece	of	meta-data,	then	do	not	use
the	Add*	directives.	For	example,	if	you	wish	to	have	the	file
foo.html.cgi	processed	as	a	CGI	script,	but	not	the	file

bar.cgi.html,	then	instead	of	using	AddHandler	cgi-
script	.cgi,	use

Configure	handler	based	on	final	extension	only
<FilesMatch	"[^.]+\.cgi$">

		SetHandler	cgi-script

</FilesMatch>

Content	encoding

A	file	of	a	particular	media-type	can	additionally	be	encoded	a
particular	way	to	simplify	transmission	over	the	Internet.	While	this
usually	will	refer	to	compression,	such	as	gzip,	it	can	also	refer	to
encryption,	such	a	pgp	or	to	an	encoding	such	as	UUencoding,
which	is	designed	for	transmitting	a	binary	file	in	an	ASCII	(text)
format.

The	HTTP/1.1	RFC,	section	14.11	puts	it	this	way:

The	Content-Encoding	entity-header	field	is	used	as	a
modifier	to	the	media-type.	When	present,	its	value	indicates
what	additional	content	codings	have	been	applied	to	the
entity-body,	and	thus	what	decoding	mechanisms	must	be
applied	in	order	to	obtain	the	media-type	referenced	by	the
Content-Type	header	field.	Content-Encoding	is	primarily
used	to	allow	a	document	to	be	compressed	without	losing
the	identity	of	its	underlying	media	type.

By	using	more	than	one	file	extension	(see	section	above	about
multiple	file	extensions),	you	can	indicate	that	a	file	is	of	a
particular	type,	and	also	has	a	particular	encoding.

For	example,	you	may	have	a	file	which	is	a	Microsoft	Word
document,	which	is	pkzipped	to	reduce	its	size.	If	the	.doc
extension	is	associated	with	the	Microsoft	Word	file	type,	and	the
.zip	extension	is	associated	with	the	pkzip	file	encoding,	then	the
file	Resume.doc.zip	would	be	known	to	be	a	pkzip'ed	Word
document.

Apache	sends	a	Content-encoding	header	with	the	resource,
in	order	to	tell	the	client	browser	about	the	encoding	method.

Content-encoding:	pkzip

http://www.ietf.org/rfc/rfc2616.txt

Character	sets	and	languages

In	addition	to	file	type	and	the	file	encoding,	another	important
piece	of	information	is	what	language	a	particular	document	is	in,
and	in	what	character	set	the	file	should	be	displayed.	For
example,	the	document	might	be	written	in	the	Vietnamese
alphabet,	or	in	Cyrillic,	and	should	be	displayed	as	such.	This
information,	also,	is	transmitted	in	HTTP	headers.

The	character	set,	language,	encoding	and	mime	type	are	all	used
in	the	process	of	content	negotiation	(See	mod_negotiation)	to
determine	which	document	to	give	to	the	client,	when	there	are
alternative	documents	in	more	than	one	character	set,	language,
encoding	or	mime	type.	All	filename	extensions	associations
created	with	AddCharset,	AddEncoding,	AddLanguage	and
AddType	directives	(and	extensions	listed	in	the
MimeMagicFile)	participate	in	this	select	process.	Filename
extensions	that	are	only	associated	using	the	AddHandler,
AddInputFilter	or	AddOutputFilter	directives	may	be
included	or	excluded	from	matching	by	using	the
MultiviewsMatch	directive.

Charset
To	convey	this	further	information,	Apache	optionally	sends	a
Content-Language	header,	to	specify	the	language	that	the
document	is	in,	and	can	append	additional	information	onto	the
Content-Type	header	to	indicate	the	particular	character	set	that
should	be	used	to	correctly	render	the	information.

Content-Language:	en,	fr	Content-Type:	text/plain;	charset=ISO-

8859-1

The	language	specification	is	the	two-letter	abbreviation	for	the
language.	The	charset	is	the	name	of	the	particular	character

set	which	should	be	used.

AddCharset	Directive

Description: Maps	the	given	filename	extensions	to	the
specified	content	charset

Syntax: AddCharset	charset	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddCharset	directive	maps	the	given	filename	extensions	to
the	specified	content	charset	(the	Internet	registered	name	for	a
given	character	encoding).	charset	is	the	media	type's	charset
parameter	for	resources	with	filenames	containing	extension.	This
mapping	is	added	to	any	already	in	force,	overriding	any	mappings
that	already	exist	for	the	same	extension.

Example
AddLanguage	ja	.ja

AddCharset	EUC-JP	.euc

AddCharset	ISO-2022-JP	.jis

AddCharset	SHIFT_JIS	.sjis

Then	the	document	xxxx.ja.jis	will	be	treated	as	being	a
Japanese	document	whose	charset	is	ISO-2022-JP	(as	will	the
document	xxxx.jis.ja).	The	AddCharset	directive	is	useful
for	both	to	inform	the	client	about	the	character	encoding	of	the
document	so	that	the	document	can	be	interpreted	and	displayed
appropriately,	and	for	content	negotiation,	where	the	server	returns
one	from	several	documents	based	on	the	client's	charset
preference.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple

http://www.iana.org/assignments/character-sets

extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

See	also
mod_negotiation

AddDefaultCharset

AddEncoding	Directive

Description: Maps	the	given	filename	extensions	to	the
specified	encoding	type

Syntax: AddEncoding	encoding	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddEncoding	directive	maps	the	given	filename	extensions
to	the	specified	HTTP	content-encoding.	encoding	is	the	HTTP
content	coding	to	append	to	the	value	of	the	Content-Encoding
header	field	for	documents	named	with	the	extension.	This
mapping	is	added	to	any	already	in	force,	overriding	any	mappings
that	already	exist	for	the	same	extension.

Example
AddEncoding	x-gzip	.gz

AddEncoding	x-compress	.Z

This	will	cause	filenames	containing	the	.gz	extension	to	be
marked	as	encoded	using	the	x-gzip	encoding,	and	filenames
containing	the	.Z	extension	to	be	marked	as	encoded	with	x-
compress.

Old	clients	expect	x-gzip	and	x-compress,	however	the
standard	dictates	that	they're	equivalent	to	gzip	and	compress
respectively.	Apache	does	content	encoding	comparisons	by
ignoring	any	leading	x-.	When	responding	with	an	encoding
Apache	will	use	whatever	form	(i.e.,	x-foo	or	foo)	the	client
requested.	If	the	client	didn't	specifically	request	a	particular	form
Apache	will	use	the	form	given	by	the	AddEncoding	directive.	To

make	this	long	story	short,	you	should	always	use	x-gzip	and	x-
compress	for	these	two	specific	encodings.	More	recent
encodings,	such	as	deflate,	should	be	specified	without	the	x-.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

AddHandler	Directive

Description: Maps	the	filename	extensions	to	the	specified
handler

Syntax: AddHandler	handler-name	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

Files	having	the	name	extension	will	be	served	by	the	specified
handler-name.	This	mapping	is	added	to	any	already	in	force,
overriding	any	mappings	that	already	exist	for	the	same	extension.
For	example,	to	activate	CGI	scripts	with	the	file	extension	.cgi,
you	might	use:

AddHandler	cgi-script	.cgi

Once	that	has	been	put	into	your	httpd.conf	file,	any	file	containing
the	.cgi	extension	will	be	treated	as	a	CGI	program.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

See	also
SetHandler

AddInputFilter	Directive

Description: Maps	filename	extensions	to	the	filters	that	will
process	client	requests

Syntax: AddInputFilter	filter[;filter...]

extension	[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

AddInputFilter	maps	the	filename	extension	extension	to	the
filters	which	will	process	client	requests	and	POST	input	when
they	are	received	by	the	server.	This	is	in	addition	to	any	filters
defined	elsewhere,	including	the	SetInputFilter	directive.	This
mapping	is	merged	over	any	already	in	force,	overriding	any
mappings	that	already	exist	for	the	same	extension.

If	more	than	one	filter	is	specified,	they	must	be	separated	by
semicolons	in	the	order	in	which	they	should	process	the	content.
The	filter	is	case-insensitive.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

See	also
RemoveInputFilter

SetInputFilter

AddLanguage	Directive

Description: Maps	the	given	filename	extension	to	the	specified
content	language

Syntax: AddLanguage	language-tag	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddLanguage	directive	maps	the	given	filename	extension	to
the	specified	content	language.	Files	with	the	filename	extension
are	assigned	an	HTTP	Content-Language	value	of	language-tag
corresponding	to	the	language	identifiers	defined	by	RFC	3066.
This	directive	overrides	any	mappings	that	already	exist	for	the
same	extension.

Example
AddEncoding	x-compress	.Z

AddLanguage	en	.en

AddLanguage	fr	.fr

Then	the	document	xxxx.en.Z	will	be	treated	as	being	a
compressed	English	document	(as	will	the	document
xxxx.Z.en).	Although	the	content	language	is	reported	to	the
client,	the	browser	is	unlikely	to	use	this	information.	The
AddLanguage	directive	is	more	useful	for	content	negotiation,
where	the	server	returns	one	from	several	documents	based	on
the	client's	language	preference.

If	multiple	language	assignments	are	made	for	the	same
extension,	the	last	one	encountered	is	the	one	that	is	used.	That
is,	for	the	case	of:

AddLanguage	en	.en

AddLanguage	en-gb	.en

AddLanguage	en-us	.en

documents	with	the	extension	.en	would	be	treated	as	being	en-
us.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

See	also
mod_negotiation

AddOutputFilter	Directive

Description: Maps	filename	extensions	to	the	filters	that	will
process	responses	from	the	server

Syntax: AddOutputFilter	filter[;filter...]

extension	[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddOutputFilter	directive	maps	the	filename	extension
extension	to	the	filters	which	will	process	responses	from	the
server	before	they	are	sent	to	the	client.	This	is	in	addition	to	any
filters	defined	elsewhere,	including	SetOutputFilter	and
AddOutputFilterByType	directive.	This	mapping	is	merged
over	any	already	in	force,	overriding	any	mappings	that	already
exist	for	the	same	extension.

For	example,	the	following	configuration	will	process	all	.shtml
files	for	server-side	includes	and	will	then	compress	the	output
using	mod_deflate.

AddOutputFilter	INCLUDES;DEFLATE	shtml

If	more	than	one	filter	is	specified,	they	must	be	separated	by
semicolons	in	the	order	in	which	they	should	process	the	content.
The	filter	argument	is	case-insensitive.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

Note	that	when	defining	a	set	of	filters	using	the

AddOutputFilter	directive,	any	definition	made	will	replace	any
previous	definition	made	by	the	AddOutputFilter	directive.

#	Effective	filter	"DEFLATE"

AddOutputFilter	DEFLATE	shtml

<Location	"/foo">

		#	Effective	filter	"INCLUDES",	replacing	"DEFLATE"

		AddOutputFilter	INCLUDES	shtml

</Location>

<Location	"/bar">

		#	Effective	filter	"INCLUDES;DEFLATE",	replacing	"DEFLATE"

		AddOutputFilter	INCLUDES;DEFLATE	shtml

</Location>

<Location	"/bar/baz">

		#	Effective	filter	"BUFFER",	replacing	"INCLUDES;DEFLATE"

		AddOutputFilter	BUFFER	shtml

</Location>

<Location	"/bar/baz/buz">

		#	No	effective	filter,	replacing	"BUFFER"

		RemoveOutputFilter	shtml

</Location>

See	also
RemoveOutputFilter

SetOutputFilter

AddType	Directive

Description: Maps	the	given	filename	extensions	onto	the
specified	content	type

Syntax: AddType	media-type	extension

[extension]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	AddType	directive	maps	the	given	filename	extensions	onto
the	specified	content	type.	media-type	is	the	media	type	to	use	for
filenames	containing	extension.	This	mapping	is	added	to	any
already	in	force,	overriding	any	mappings	that	already	exist	for	the
same	extension.

It	is	recommended	that	new	media	types	be	added	using	the
AddType	directive	rather	than	changing	the	TypesConfig	file.

Example
AddType	image/gif	.gif

Or,	to	specify	multiple	file	extensions	in	one	directive:

Example
AddType	image/jpeg	jpeg	jpg	jpe

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.	Filenames	may	have	multiple
extensions	and	the	extension	argument	will	be	compared	against
each	of	them.

A	simmilar	effect	to	mod_negotiation's	LanguagePriority
can	be	achieved	by	qualifying	a	media-type	with	qs:

Example
AddType	application/rss+xml;qs=0.8	.xml

This	is	useful	in	situations,	e.g.	when	a	client	requesting	Accept:
/	can	not	actually	processes	the	content	returned	by	the	server.

This	directive	primarily	configures	the	content	types	generated	for
static	files	served	out	of	the	filesystem.	For	resources	other	than
static	files,	where	the	generator	of	the	response	typically	specifies
a	Content-Type,	this	directive	has	no	effect.

Note

If	no	handler	is	explicitly	set	for	a	request,	the	specified	content
type	will	also	be	used	as	the	handler	name.

When	explicit	directives	such	as	SetHandler	or	AddHandler
do	not	apply	to	the	current	request,	the	internal	handler	name
normally	set	by	those	directives	is	instead	set	to	the	content
type	specified	by	this	directive.

This	is	a	historical	behavior	that	may	be	used	by	some	third-
party	modules	(such	as	mod_php)	for	taking	responsibility	for
the	matching	request.

Configurations	that	rely	on	such	"synthetic"	types	should	be
avoided.	Additionally,	configurations	that	restrict	access	to
SetHandler	or	AddHandler	should	restrict	access	to	this
directive	as	well.

See	also
ForceType

mod_negotiation

DefaultLanguage	Directive

Description: Defines	a	default	language-tag	to	be	sent	in	the
Content-Language	header	field	for	all	resources	in
the	current	context	that	have	not	been	assigned	a
language-tag	by	some	other	means.

Syntax: DefaultLanguage	language-tag

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	DefaultLanguage	directive	tells	Apache	that	all	resources
in	the	directive's	scope	(e.g.,	all	resources	covered	by	the	current
<Directory>	container)	that	don't	have	an	explicit	language
extension	(such	as	.fr	or	.de	as	configured	by	AddLanguage)
should	be	assigned	a	Content-Language	of	language-tag.	This
allows	entire	directory	trees	to	be	marked	as	containing	Dutch
content,	for	instance,	without	having	to	rename	each	file.	Note	that
unlike	using	extensions	to	specify	languages,	DefaultLanguage
can	only	specify	a	single	language.

If	no	DefaultLanguage	directive	is	in	force	and	a	file	does	not
have	any	language	extensions	as	configured	by	AddLanguage,
then	no	Content-Language	header	field	will	be	generated.

Example
DefaultLanguage	en

See	also
mod_negotiation

ModMimeUsePathInfo	Directive

Description: Tells	mod_mime	to	treat	path_info	components
as	part	of	the	filename

Syntax: ModMimeUsePathInfo	On|Off

Default: ModMimeUsePathInfo	Off

Context: directory
Status: Base
Module: mod_mime

The	ModMimeUsePathInfo	directive	is	used	to	combine	the
filename	with	the	path_info	URL	component	to	apply
mod_mime's	directives	to	the	request.	The	default	value	is	Off	-
therefore,	the	path_info	component	is	ignored.

This	directive	is	recommended	when	you	have	a	virtual	filesystem.

Example
ModMimeUsePathInfo	On

If	you	have	a	request	for	/index.php/foo.shtml	mod_mime
will	now	treat	the	incoming	request	as	/index.php/foo.shtml
and	directives	like	AddOutputFilter	INCLUDES	.shtml	will
add	the	INCLUDES	filter	to	the	request.	If	ModMimeUsePathInfo
is	not	set,	the	INCLUDES	filter	will	not	be	added.	This	will	work
analogously	for	virtual	paths,	such	as	those	defined	by
<Location>

See	also
AcceptPathInfo

MultiviewsMatch	Directive

Description: The	types	of	files	that	will	be	included	when
searching	for	a	matching	file	with	MultiViews

Syntax: MultiviewsMatch

Any|NegotiatedOnly|Filters|Handlers

[Handlers|Filters]

Default: MultiviewsMatch	NegotiatedOnly

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

MultiviewsMatch	permits	three	different	behaviors	for
mod_negotiation's	Multiviews	feature.	Multiviews	allows	a	request
for	a	file,	e.g.	index.html,	to	match	any	negotiated	extensions
following	the	base	request,	e.g.	index.html.en,
index.html.fr,	or	index.html.gz.

The	NegotiatedOnly	option	provides	that	every	extension
following	the	base	name	must	correlate	to	a	recognized
mod_mime	extension	for	content	negotiation,	e.g.	Charset,
Content-Type,	Language,	or	Encoding.	This	is	the	strictest
implementation	with	the	fewest	unexpected	side	effects,	and	is	the
default	behavior.

To	include	extensions	associated	with	Handlers	and/or	Filters,	set
the	MultiviewsMatch	directive	to	either	Handlers,	Filters,
or	both	option	keywords.	If	all	other	factors	are	equal,	the	smallest
file	will	be	served,	e.g.	in	deciding	between	index.html.cgi	of
500	bytes	and	index.html.pl	of	1000	bytes,	the	.cgi	file
would	win	in	this	example.	Users	of	.asis	files	might	prefer	to
use	the	Handler	option,	if	.asis	files	are	associated	with	the
asis-handler.

You	may	finally	allow	Any	extensions	to	match,	even	if	mod_mime
doesn't	recognize	the	extension.	This	can	cause	unpredictable
results,	such	as	serving	.old	or	.bak	files	the	webmaster	never
expected	to	be	served.

For	example,	the	following	configuration	will	allow	handlers	and
filters	to	participate	in	Multviews,	but	will	exclude	unknown	files:

MultiviewsMatch	Handlers	Filters

MultiviewsMatch	is	not	allowed	in	a	<Location>	or
<LocationMatch>	section.

See	also
Options

mod_negotiation

RemoveCharset	Directive

Description: Removes	any	character	set	associations	for	a	set
of	file	extensions

Syntax: RemoveCharset	extension	[extension]

...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveCharset	directive	removes	any	character	set
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

Example
RemoveCharset	.html	.shtml

RemoveEncoding	Directive

Description: Removes	any	content	encoding	associations	for	a
set	of	file	extensions

Syntax: RemoveEncoding	extension	[extension]

...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveEncoding	directive	removes	any	encoding
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.	An
example	of	its	use	might	be:

/foo/.htaccess:
AddEncoding	x-gzip	.gz

AddType	text/plain	.asc

<Files	"*.gz.asc">

				RemoveEncoding	.gz

</Files>

This	will	cause	foo.gz	to	be	marked	as	being	encoded	with	the
gzip	method,	but	foo.gz.asc	as	an	unencoded	plaintext	file.

Note

RemoveEncoding	directives	are	processed	after	any
AddEncoding	directives,	so	it	is	possible	they	may	undo	the
effects	of	the	latter	if	both	occur	within	the	same	directory
configuration.

The	extension	argument	is	case-insensitive	and	can	be	specified

with	or	without	a	leading	dot.

RemoveHandler	Directive

Description: Removes	any	handler	associations	for	a	set	of	file
extensions

Syntax: RemoveHandler	extension	[extension]

...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveHandler	directive	removes	any	handler	associations
for	files	with	the	given	extensions.	This	allows	.htaccess	files	in
subdirectories	to	undo	any	associations	inherited	from	parent
directories	or	the	server	config	files.	An	example	of	its	use	might
be:

/foo/.htaccess:
AddHandler	server-parsed	.html

/foo/bar/.htaccess:
RemoveHandler	.html

This	has	the	effect	of	returning	.html	files	in	the	/foo/bar
directory	to	being	treated	as	normal	files,	rather	than	as
candidates	for	parsing	(see	the	mod_include	module).

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

RemoveInputFilter	Directive

Description: Removes	any	input	filter	associations	for	a	set	of
file	extensions

Syntax: RemoveInputFilter	extension

[extension]	...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveInputFilter	directive	removes	any	input	filter
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

See	also
AddInputFilter

SetInputFilter

RemoveLanguage	Directive

Description: Removes	any	language	associations	for	a	set	of
file	extensions

Syntax: RemoveLanguage	extension	[extension]

...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveLanguage	directive	removes	any	language
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

RemoveOutputFilter	Directive

Description: Removes	any	output	filter	associations	for	a	set	of
file	extensions

Syntax: RemoveOutputFilter	extension

[extension]	...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveOutputFilter	directive	removes	any	output	filter
associations	for	files	with	the	given	extensions.	This	allows
.htaccess	files	in	subdirectories	to	undo	any	associations
inherited	from	parent	directories	or	the	server	config	files.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

Example
RemoveOutputFilter	shtml

See	also
AddOutputFilter

RemoveType	Directive

Description: Removes	any	content	type	associations	for	a	set	of
file	extensions

Syntax: RemoveType	extension	[extension]	...

Context: virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_mime

The	RemoveType	directive	removes	any	media	type	associations
for	files	with	the	given	extensions.	This	allows	.htaccess	files	in
subdirectories	to	undo	any	associations	inherited	from	parent
directories	or	the	server	config	files.	An	example	of	its	use	might
be:

/foo/.htaccess:
RemoveType	.cgi

This	will	remove	any	special	handling	of	.cgi	files	in	the	/foo/
directory	and	any	beneath	it,	causing	responses	containing	those
files	to	omit	the	HTTP	Content-Type	header	field.

Note

RemoveType	directives	are	processed	after	any	AddType
directives,	so	it	is	possible	they	may	undo	the	effects	of	the
latter	if	both	occur	within	the	same	directory	configuration.

The	extension	argument	is	case-insensitive	and	can	be	specified
with	or	without	a	leading	dot.

TypesConfig	Directive

Description: The	location	of	the	mime.types	file
Syntax: TypesConfig	file-path

Default: TypesConfig	conf/mime.types

Context: server	config
Status: Base
Module: mod_mime

The	TypesConfig	directive	sets	the	location	of	the	media	types
configuration	file.	File-path	is	relative	to	the	ServerRoot.	This	file
sets	the	default	list	of	mappings	from	filename	extensions	to
content	types.	Most	administrators	use	the	mime.types	file
provided	by	their	OS,	which	associates	common	filename
extensions	with	the	official	list	of	IANA	registered	media	types
maintained	at	http://www.iana.org/assignments/media-
types/index.html	as	well	as	a	large	number	of	unofficial	types.	This
simplifies	the	httpd.conf	file	by	providing	the	majority	of	media-
type	definitions,	and	may	be	overridden	by	AddType	directives	as
needed.	You	should	not	edit	the	mime.types	file,	because	it	may
be	replaced	when	you	upgrade	your	server.

The	file	contains	lines	in	the	format	of	the	arguments	to	an
AddType	directive:

media-type	[extension]	...

The	case	of	the	extension	does	not	matter.	Blank	lines,	and	lines
beginning	with	a	hash	character	(#)	are	ignored.	Empty	lines	are
there	for	completeness	(of	the	mime.types	file).	Apache	httpd	can
still	determine	these	types	with	mod_mime_magic.

Please	do	not	send	requests	to	the	Apache	HTTP	Server
Project	to	add	any	new	entries	in	the	distributed	mime.types

http://www.iana.org/assignments/media-types/index.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

file	unless	(1)	they	are	already	registered	with	IANA,	and	(2)
they	use	widely	accepted,	non-conflicting	filename	extensions
across	platforms.	category/x-subtype	requests	will	be
automatically	rejected,	as	will	any	new	two-letter	extensions	as
they	will	likely	conflict	later	with	the	already	crowded	language
and	character	set	namespace.

See	also
mod_mime_magic

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_mime_magic

Description: Determines	the	MIME	type	of	a	file	by	looking	at
a	few	bytes	of	its	contents

Status: Extension
Module	Identifier: mime_magic_module
Source	File: mod_mime_magic.c

Summary
This	module	determines	the	MIME	type	of	files	in	the	same	way	the
Unix	file(1)	command	works:	it	looks	at	the	first	few	bytes	of	the
file.	It	is	intended	as	a	"second	line	of	defense"	for	cases	that
mod_mime	can't	resolve.

This	module	is	derived	from	a	free	version	of	the	file(1)	command
for	Unix,	which	uses	"magic	numbers"	and	other	hints	from	a	file's
contents	to	figure	out	what	the	contents	are.	This	module	is	active
only	if	the	magic	file	is	specified	by	the	MimeMagicFile	directive.

Format	of	the	Magic	File

The	contents	of	the	file	are	plain	ASCII	text	in	4-5	columns.	Blank
lines	are	allowed	but	ignored.	Commented	lines	use	a	hash	mark
(#).	The	remaining	lines	are	parsed	for	the	following	columns:

Column Description
1 byte	number	to	begin	checking	from

">"	indicates	a	dependency	upon	the	previous	non-">"
line

2 type	of	data	to	match

byte single	character
short machine-order	16-bit	integer
long machine-order	32-bit	integer
string arbitrary-length	string
date long	integer	date	(seconds	since	Unix

epoch/1970)
beshort big-endian	16-bit	integer
belong big-endian	32-bit	integer
bedate big-endian	32-bit	integer	date
leshort little-endian	16-bit	integer
lelong little-endian	32-bit	integer
ledate little-endian	32-bit	integer	date

3 contents	of	data	to	match
4 MIME	type	if	matched
5 MIME	encoding	if	matched	(optional)

For	example,	the	following	magic	file	lines	would	recognize	some
audio	formats:

#	Sun/NeXT	audio	data

0						string						.snd

>12				belong						1							audio/basic

>12				belong						2							audio/basic

>12				belong						3							audio/basic

>12				belong						4							audio/basic

>12				belong						5							audio/basic

>12				belong						6							audio/basic

>12				belong						7							audio/basic

>12				belong					23							audio/x-adpcm

Or	these	would	recognize	the	difference	between	*.doc	files
containing	Microsoft	Word	or	FrameMaker	documents.	(These	are
incompatible	file	formats	which	use	the	same	file	suffix.)

#	Frame

0		string		\<MakerFile								application/x-frame

0		string		\<MIFFile										application/x-frame

0		string		\<MakerDictionary		application/x-frame

0		string		\<MakerScreenFon			application/x-frame

0		string		\<MML														application/x-frame

0		string		\<Book													application/x-frame

0		string		\<Maker												application/x-frame

#	MS-Word

0		string		\376\067\0\043												application/msword

0		string		\320\317\021\340\241\261		application/msword

0		string		\333\245-\0\0\0											application/msword

An	optional	MIME	encoding	can	be	included	as	a	fifth	column.	For
example,	this	can	recognize	gzipped	files	and	set	the	encoding	for
them.

#	gzip	(GNU	zip,	not	to	be	confused	with

#							[Info-ZIP/PKWARE]	zip	archiver)

0		string		\037\213		application/octet-stream		x-gzip

Performance	Issues

This	module	is	not	for	every	system.	If	your	system	is	barely
keeping	up	with	its	load	or	if	you're	performing	a	web	server
benchmark,	you	may	not	want	to	enable	this	because	the
processing	is	not	free.

However,	an	effort	was	made	to	improve	the	performance	of	the
original	file(1)	code	to	make	it	fit	in	a	busy	web	server.	It	was
designed	for	a	server	where	there	are	thousands	of	users	who
publish	their	own	documents.	This	is	probably	very	common	on
intranets.	Many	times,	it's	helpful	if	the	server	can	make	more
intelligent	decisions	about	a	file's	contents	than	the	file	name
allows	...even	if	just	to	reduce	the	"why	doesn't	my	page	work"
calls	when	users	improperly	name	their	own	files.	You	have	to
decide	if	the	extra	work	suits	your	environment.

Notes

The	following	notes	apply	to	the	mod_mime_magic	module	and
are	included	here	for	compliance	with	contributors'	copyright
restrictions	that	require	their	acknowledgment.

mod_mime_magic:	MIME	type	lookup	via	file	magic	numbers
Copyright	(c)	1996-1997	Cisco	Systems,	Inc.

This	software	was	submitted	by	Cisco	Systems	to	the	Apache
Group	in	July	1997.	Future	revisions	and	derivatives	of	this
source	code	must	acknowledge	Cisco	Systems	as	the	original
contributor	of	this	module.	All	other	licensing	and	usage
conditions	are	those	of	the	Apache	Group.

Some	of	this	code	is	derived	from	the	free	version	of	the	file
command	originally	posted	to	comp.sources.unix.	Copyright	info
for	that	program	is	included	below	as	required.

-	Copyright	(c)	Ian	F.	Darwin,	1987.	Written	by	Ian	F.	Darwin.

This	software	is	not	subject	to	any	license	of	the	American
Telephone	and	Telegraph	Company	or	of	the	Regents	of	the
University	of	California.

Permission	is	granted	to	anyone	to	use	this	software	for	any
purpose	on	any	computer	system,	and	to	alter	it	and	redistribute
it	freely,	subject	to	the	following	restrictions:

1.	 The	author	is	not	responsible	for	the	consequences	of	use
of	this	software,	no	matter	how	awful,	even	if	they	arise
from	flaws	in	it.

2.	 The	origin	of	this	software	must	not	be	misrepresented,
either	by	explicit	claim	or	by	omission.	Since	few	users	ever
read	sources,	credits	must	appear	in	the	documentation.

3.	 Altered	versions	must	be	plainly	marked	as	such,	and	must

not	be	misrepresented	as	being	the	original	software.	Since
few	users	ever	read	sources,	credits	must	appear	in	the
documentation.

4.	 This	notice	may	not	be	removed	or	altered.

For	compliance	with	Mr	Darwin's	terms:	this	has	been	very
significantly	modified	from	the	free	"file"	command.

all-in-one	file	for	compilation	convenience	when	moving
from	one	version	of	Apache	to	the	next.
Memory	allocation	is	done	through	the	Apache	API's	pool
structure.
All	functions	have	had	necessary	Apache	API	request	or
server	structures	passed	to	them	where	necessary	to	call
other	Apache	API	routines.	(i.e.,	usually	for	logging,	files,	or
memory	allocation	in	itself	or	a	called	function.)
struct	magic	has	been	converted	from	an	array	to	a	single-
ended	linked	list	because	it	only	grows	one	record	at	a	time,
it's	only	accessed	sequentially,	and	the	Apache	API	has	no
equivalent	of	realloc().
Functions	have	been	changed	to	get	their	parameters	from
the	server	configuration	instead	of	globals.	(It	should	be
reentrant	now	but	has	not	been	tested	in	a	threaded
environment.)
Places	where	it	used	to	print	results	to	stdout	now	saves
them	in	a	list	where	they're	used	to	set	the	MIME	type	in	the
Apache	request	record.
Command-line	flags	have	been	removed	since	they	will
never	be	used	here.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MimeMagicFile	Directive

Description: Enable	MIME-type	determination	based	on	file
contents	using	the	specified	magic	file

Syntax: MimeMagicFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_mime_magic

The	MimeMagicFile	directive	can	be	used	to	enable	this
module,	the	default	file	is	distributed	at	conf/magic.	Non-rooted
paths	are	relative	to	the	ServerRoot.	Virtual	hosts	will	use	the
same	file	as	the	main	server	unless	a	more	specific	setting	is
used,	in	which	case	the	more	specific	setting	overrides	the	main
server's	file.

Example
MimeMagicFile	conf/magic

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_negotiation

Description: Provides	for	content	negotiation
Status: Base
Module	Identifier: negotiation_module
Source	File: mod_negotiation.c

Summary
Content	negotiation,	or	more	accurately	content	selection,	is	the
selection	of	the	document	that	best	matches	the	clients	capabilities,
from	one	of	several	available	documents.	There	are	two
implementations	of	this.

A	type	map	(a	file	with	the	handler	type-map)	which	explicitly
lists	the	files	containing	the	variants.
A	Multiviews	search	(enabled	by	the	Multiviews	Options),
where	the	server	does	an	implicit	filename	pattern	match,	and
choose	from	amongst	the	results.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Options

mod_mime

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_negotiation
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_negotiation

Content	Negotiation
Environment	Variables

Type	maps

A	type	map	has	a	format	similar	to	RFC822	mail	headers.	It
contains	document	descriptions	separated	by	blank	lines,	with
lines	beginning	with	a	hash	character	('#')	treated	as	comments.	A
document	description	consists	of	several	header	records;	records
may	be	continued	on	multiple	lines	if	the	continuation	lines	start
with	spaces.	The	leading	space	will	be	deleted	and	the	lines
concatenated.	A	header	record	consists	of	a	keyword	name,	which
always	ends	in	a	colon,	followed	by	a	value.	Whitespace	is
allowed	between	the	header	name	and	value,	and	between	the
tokens	of	value.	The	headers	allowed	are:

Content-Encoding:

The	encoding	of	the	file.	Apache	only	recognizes	encodings
that	are	defined	by	an	AddEncoding	directive.	This	normally
includes	the	encodings	x-compress	for	compress'd	files,
and	x-gzip	for	gzip'd	files.	The	x-	prefix	is	ignored	for
encoding	comparisons.

Content-Language:

The	language(s)	of	the	variant,	as	an	Internet	standard
language	tag	(RFC	1766).	An	example	is	en,	meaning
English.	If	the	variant	contains	more	than	one	language,	they
are	separated	by	a	comma.

Content-Length:

The	length	of	the	file,	in	bytes.	If	this	header	is	not	present,
then	the	actual	length	of	the	file	is	used.

Content-Type:

The	MIME	media	type	of	the	document,	with	optional
parameters.	Parameters	are	separated	from	the	media	type
and	from	one	another	by	a	semi-colon,	with	a	syntax	of
name=value.	Common	parameters	include:

level

an	integer	specifying	the	version	of	the	media	type.	For

http://www.ietf.org/rfc/rfc1766.txt

text/html	this	defaults	to	2,	otherwise	0.

qs

a	floating-point	number	with	a	value	in	the	range	0[.000]
to	1[.000],	indicating	the	relative	'quality'	of	this	variant
compared	to	the	other	available	variants,	independent	of
the	client's	capabilities.	For	example,	a	jpeg	file	is	usually
of	higher	source	quality	than	an	ascii	file	if	it	is	attempting
to	represent	a	photograph.	However,	if	the	resource
being	represented	is	ascii	art,	then	an	ascii	file	would
have	a	higher	source	quality	than	a	jpeg	file.	All	qs
values	are	therefore	specific	to	a	given	resource.

Example
Content-Type:	image/jpeg;	qs=0.8

URI:

uri	of	the	file	containing	the	variant	(of	the	given	media	type,
encoded	with	the	given	content	encoding).	These	are
interpreted	as	URLs	relative	to	the	map	file;	they	must	be	on
the	same	server,	and	they	must	refer	to	files	to	which	the
client	would	be	granted	access	if	they	were	to	be	requested
directly.

Body:

The	actual	content	of	the	resource	may	be	included	in	the
type-map	file	using	the	Body	header.	This	header	must
contain	a	string	that	designates	a	delimiter	for	the	body
content.	Then	all	following	lines	in	the	type	map	file	will	be
considered	part	of	the	resource	body	until	the	delimiter	string
is	found.

Example:
Body:----xyz----

<html>

<body>

<p>Content	of	the	page.</p>

</body>

</html>

----xyz----

Consider,	for	example,	a	resource	called	document.html	which
is	available	in	English,	French,	and	German.	The	files	for	each	of
these	are	called	document.html.en,	document.html.fr,	and
document.html.de,	respectively.	The	type	map	file	will	be
called	document.html.var,	and	will	contain	the	following:

URI:	document.html

Content-language:	en

Content-type:	text/html

URI:	document.html.en

Content-language:	fr

Content-type:	text/html

URI:	document.html.fr

Content-language:	de

Content-type:	text/html

URI:	document.html.de

All	four	of	these	files	should	be	placed	in	the	same	directory,	and
the	.var	file	should	be	associated	with	the	type-map	handler
with	an	AddHandler	directive:

AddHandler	type-map	.var

A	request	for	document.html.var	in	this	directory	will	result	in
choosing	the	variant	which	most	closely	matches	the	language
preference	specified	in	the	user's	Accept-Language	request
header.

If	Multiviews	is	enabled,	and	MultiviewsMatch	is	set	to

"handlers"	or	"any",	a	request	to	document.html	will	discover
document.html.var	and	continue	negotiating	with	the	explicit
type	map.

Other	configuration	directives,	such	as	Alias	can	be	used	to	map
document.html	to	document.html.var.

Multiviews

A	Multiviews	search	is	enabled	by	the	Multiviews	Options.	If
the	server	receives	a	request	for	/some/dir/foo	and
/some/dir/foo	does	not	exist,	then	the	server	reads	the
directory	looking	for	all	files	named	foo.*,	and	effectively	fakes
up	a	type	map	which	names	all	those	files,	assigning	them	the
same	media	types	and	content-encodings	it	would	have	if	the
client	had	asked	for	one	of	them	by	name.	It	then	chooses	the	best
match	to	the	client's	requirements,	and	returns	that	document.

The	MultiviewsMatch	directive	configures	whether	Apache	will
consider	files	that	do	not	have	content	negotiation	meta-
information	assigned	to	them	when	choosing	files.

CacheNegotiatedDocs	Directive

Description: Allows	content-negotiated	documents	to	be	cached
by	proxy	servers

Syntax: CacheNegotiatedDocs	On|Off

Default: CacheNegotiatedDocs	Off

Context: server	config,	virtual	host
Status: Base
Module: mod_negotiation

If	set,	this	directive	allows	content-negotiated	documents	to	be
cached	by	proxy	servers.	This	could	mean	that	clients	behind
those	proxys	could	retrieve	versions	of	the	documents	that	are	not
the	best	match	for	their	abilities,	but	it	will	make	caching	more
efficient.

This	directive	only	applies	to	requests	which	come	from	HTTP/1.0
browsers.	HTTP/1.1	provides	much	better	control	over	the	caching
of	negotiated	documents,	and	this	directive	has	no	effect	in
responses	to	HTTP/1.1	requests.

ForceLanguagePriority	Directive

Description: Action	to	take	if	a	single	acceptable	document	is
not	found

Syntax: ForceLanguagePriority

None|Prefer|Fallback

[Prefer|Fallback]

Default: ForceLanguagePriority	Prefer

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_negotiation

The	ForceLanguagePriority	directive	uses	the	given
LanguagePriority	to	satisfy	negotiation	where	the	server	could
otherwise	not	return	a	single	matching	document.

ForceLanguagePriority	Prefer	uses	LanguagePriority
to	serve	a	one	valid	result,	rather	than	returning	an	HTTP	result
300	(MULTIPLE	CHOICES)	when	there	are	several	equally	valid
choices.	If	the	directives	below	were	given,	and	the	user's
Accept-Language	header	assigned	en	and	de	each	as	quality
.500	(equally	acceptable)	then	the	first	matching	variant,	en,	will
be	served.

LanguagePriority	en	fr	de

ForceLanguagePriority	Prefer

ForceLanguagePriority	Fallback	uses
LanguagePriority	to	serve	a	valid	result,	rather	than	returning
an	HTTP	result	406	(NOT	ACCEPTABLE).	If	the	directives	below
were	given,	and	the	user's	Accept-Language	only	permitted	an
es	language	response,	but	such	a	variant	isn't	found,	then	the	first
variant	from	the	LanguagePriority	list	below	will	be	served.

LanguagePriority	en	fr	de

ForceLanguagePriority	Fallback

Both	options,	Prefer	and	Fallback,	may	be	specified,	so	either
the	first	matching	variant	from	LanguagePriority	will	be	served
if	more	than	one	variant	is	acceptable,	or	first	available	document
will	be	served	if	none	of	the	variants	matched	the	client's
acceptable	list	of	languages.

See	also
AddLanguage

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

LanguagePriority	Directive

Description: The	precedence	of	language	variants	for	cases
where	the	client	does	not	express	a	preference

Syntax: LanguagePriority	MIME-lang	[MIME-

lang]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_negotiation

The	LanguagePriority	sets	the	precedence	of	language
variants	for	the	case	where	the	client	does	not	express	a
preference,	when	handling	a	Multiviews	request.	The	list	of	MIME-
lang	are	in	order	of	decreasing	preference.

LanguagePriority	en	fr	de

For	a	request	for	foo.html,	where	foo.html.fr	and
foo.html.de	both	existed,	but	the	browser	did	not	express	a
language	preference,	then	foo.html.fr	would	be	returned.

Note	that	this	directive	only	has	an	effect	if	a	'best'	language
cannot	be	determined	by	any	other	means	or	the
ForceLanguagePriority	directive	is	not	None.	In	general,	the
client	determines	the	language	preference,	not	the	server.

See	also
AddLanguage

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_nw_ssl

Description: Enable	SSL	encryption	for	NetWare
Status: Base
Module	Identifier: nwssl_module
Source	File: mod_nw_ssl.c
Compatibility: NetWare	only

Summary
This	module	enables	SSL	encryption	for	a	specified	port.	It	takes
advantage	of	the	SSL	encryption	functionality	that	is	built	into	the
NetWare	operating	system.

NWSSLTrustedCerts	Directive

Description: List	of	additional	client	certificates
Syntax: NWSSLTrustedCerts	filename	[filename]

...

Context: server	config
Status: Base
Module: mod_nw_ssl

Specifies	a	list	of	client	certificate	files	(DER	format)	that	are	used
when	creating	a	proxied	SSL	connection.	Each	client	certificate
used	by	a	server	must	be	listed	separately	in	its	own	.der	file.

NWSSLUpgradeable	Directive

Description: Allows	a	connection	to	be	upgraded	to	an	SSL
connection	upon	request

Syntax: NWSSLUpgradeable	[IP-

address:]portnumber

Context: server	config
Status: Base
Module: mod_nw_ssl

Allow	a	connection	that	was	created	on	the	specified	address
and/or	port	to	be	upgraded	to	an	SSL	connection	upon	request
from	the	client.	The	address	and/or	port	must	have	already	be
defined	previously	with	a	Listen	directive.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SecureListen	Directive

Description: Enables	SSL	encryption	for	the	specified	port
Syntax: SecureListen	[IP-address:]portnumber

Certificate-Name	[MUTUAL]

Context: server	config
Status: Base
Module: mod_nw_ssl

Specifies	the	port	and	the	eDirectory	based	certificate	name	that
will	be	used	to	enable	SSL	encryption.	An	optional	third	parameter
also	enables	mutual	authentication.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_privileges

Description: Support	for	Solaris	privileges	and	for	running
virtual	hosts	under	different	user	IDs.

Status: Experimental
Module	Identifier: privileges_module
Source	File: mod_privileges.c
Compatibility: Available	in	Apache	2.3	and	up,	on	Solaris	10

and	OpenSolaris	platforms

Summary
This	module	enables	different	Virtual	Hosts	to	run	with	different	Unix
User	and	Group	IDs,	and	with	different	Solaris	Privileges.	In	particular,
it	offers	a	solution	to	the	problem	of	privilege	separation	between
different	Virtual	Hosts,	first	promised	by	the	abandoned	perchild
MPM.	It	also	offers	other	security	enhancements.

Unlike	perchild,	mod_privileges	is	not	itself	an	MPM.	It	works
within	a	processing	model	to	set	privileges	and	User/Group	per
request	in	a	running	process.	It	is	therefore	not	compatible	with	a
threaded	MPM,	and	will	refuse	to	run	under	one.

mod_privileges	raises	security	issues	similar	to	those	of	suexec.
But	unlike	suexec,	it	applies	not	only	to	CGI	programs	but	to	the	entire
request	processing	cycle,	including	in-process	applications	and
subprocesses.	It	is	ideally	suited	to	running	PHP	applications	under
mod_php,	which	is	also	incompatible	with	threaded	MPMs.	It	is	also
well-suited	to	other	in-process	scripting	applications	such	as
mod_perl,	mod_python,	and	mod_ruby,	and	to	applications
implemented	in	C	as	apache	modules	where	privilege	separation	is
an	issue.

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

Security	Considerations

mod_privileges	introduces	new	security	concerns	in	situations
where	untrusted	code	may	be	run	within	the	webserver
process.	This	applies	to	untrusted	modules,	and	scripts	running
under	modules	such	as	mod_php	or	mod_perl.	Scripts	running
externally	(e.g.	as	CGI	or	in	an	appserver	behind	mod_proxy	or
mod_jk)	are	NOT	affected.

The	basic	security	concerns	with	mod_privileges	are:

Running	as	a	system	user	introduces	the	same	security
issues	as	mod_suexec,	and	near-equivalents	such	as	cgiwrap
and	suphp.
A	privileges-aware	malicious	user	extension	(module	or	script)
could	escalate	its	privileges	to	anything	available	to	the	httpd
process	in	any	virtual	host.	This	introduces	new	risks	if	(and
only	if)	mod_privileges	is	compiled	with	the
BIG_SECURITY_HOLE	option.
A	privileges-aware	malicious	user	extension	(module	or	script)
could	escalate	privileges	to	set	its	user	ID	to	another	system
user	(and/or	group).

The	PrivilegesMode	directive	allows	you	to	select	either	FAST
or	SECURE	mode.	You	can	mix	modes,	using	FAST	mode	for
trusted	users	and	fully-audited	code	paths,	while	imposing
SECURE	mode	where	an	untrusted	user	has	scope	to	introduce
code.

Before	describing	the	modes,	we	should	also	introduce	the	target
use	cases:	Benign	vs	Hostile.	In	a	benign	situation,	you	want	to
separate	users	for	their	convenience,	and	protect	them	and	the
server	against	the	risks	posed	by	honest	mistakes,	but	you	trust
your	users	are	not	deliberately	subverting	system	security.	In	a
hostile	situation	-	e.g.	commercial	hosting	-	you	may	have	users
deliberately	attacking	the	system	or	each	other.

FAST	mode
In	FAST	mode,	requests	are	run	in-process	with	the	selected
uid/gid	and	privileges,	so	the	overhead	is	negligible.	This	is
suitable	for	benign	situations,	but	is	not	secure	against	an
attacker	escalating	privileges	with	an	in-process	module	or
script.

SECURE	mode
A	request	in	SECURE	mode	forks	a	subprocess,	which	then
drops	privileges.	This	is	a	very	similar	case	to	running	CGI
with	suexec,	but	for	the	entire	request	cycle,	and	with	the
benefit	of	fine-grained	control	of	privileges.

You	can	select	different	PrivilegesModes	for	each	virtual	host,
and	even	in	a	directory	context	within	a	virtual	host.	FAST	mode	is
appropriate	where	the	user(s)	are	trusted	and/or	have	no	privilege
to	load	in-process	code.	SECURE	mode	is	appropriate	to	cases
where	untrusted	code	might	be	run	in-process.	However,	even	in
SECURE	mode,	there	is	no	protection	against	a	malicious	user
who	is	able	to	introduce	privileges-aware	code	running	before	the
start	of	the	request-processing	cycle.

DTracePrivileges	Directive

Description: Determines	whether	the	privileges	required	by
dtrace	are	enabled.

Syntax: DTracePrivileges	On|Off

Default: DTracePrivileges	Off

Context: server	config
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

This	server-wide	directive	determines	whether	Apache	will	run	with
the	privileges	required	to	run	dtrace.	Note	that	DTracePrivileges
On	will	not	in	itself	activate	DTrace,	but	DTracePrivileges	Off	will
prevent	it	working.

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp
http://sosc-dr.sun.com/bigadmin/content/dtrace/

PrivilegesMode	Directive

Description: Trade	off	processing	speed	and	efficiency	vs
security	against	malicious	privileges-aware	code.

Syntax: PrivilegesMode	FAST|SECURE|SELECTIVE

Default: PrivilegesMode	FAST

Context: server	config,	virtual	host,	directory
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

This	directive	trades	off	performance	vs	security	against	malicious,
privileges-aware	code.	In	SECURE	mode,	each	request	runs	in	a
secure	subprocess,	incurring	a	substantial	performance	penalty.	In
FAST	mode,	the	server	is	not	protected	against	escalation	of
privileges	as	discussed	above.

This	directive	differs	slightly	between	a	<Directory>	context
(including	equivalents	such	as	Location/Files/If)	and	a	top-level	or
<VirtualHost>.

At	top-level,	it	sets	a	default	that	will	be	inherited	by	virtualhosts.	In
a	virtual	host,	FAST	or	SECURE	mode	acts	on	the	entire	HTTP
request,	and	any	settings	in	a	<Directory>	context	will	be
ignored.	A	third	pseudo-mode	SELECTIVE	defers	the	choice	of
FAST	vs	SECURE	to	directives	in	a	<Directory>	context.

In	a	<Directory>	context,	it	is	applicable	only	where
SELECTIVE	mode	was	set	for	the	VirtualHost.	Only	FAST	or
SECURE	can	be	set	in	this	context	(SELECTIVE	would	be
meaningless).

Warning

Where	SELECTIVE	mode	is	selected	for	a	virtual	host,	the
activation	of	privileges	must	be	deferred	until	after	the	mapping
phase	of	request	processing	has	determined	what
<Directory>	context	applies	to	the	request.	This	might	give
an	attacker	opportunities	to	introduce	code	through	a
RewriteMap	running	at	top-level	or	<VirtualHost>	context
before	privileges	have	been	dropped	and	userid/gid	set.

VHostCGIMode	Directive

Description: Determines	whether	the	virtualhost	can	run
subprocesses,	and	the	privileges	available	to
subprocesses.

Syntax: VHostCGIMode	On|Off|Secure

Default: VHostCGIMode	On

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

Determines	whether	the	virtual	host	is	allowed	to	run	fork	and
exec,	the	privileges	required	to	run	subprocesses.	If	this	is	set	to
Off	the	virtualhost	is	denied	the	privileges	and	will	not	be	able	to
run	traditional	CGI	programs	or	scripts	under	the	traditional
mod_cgi,	nor	similar	external	programs	such	as	those	created	by
mod_ext_filter	or	RewriteMap	prog.	Note	that	it	does	not
prevent	CGI	programs	running	under	alternative	process	and
security	models	such	as	mod_fcgid,	which	is	a	recommended
solution	in	Solaris.

If	set	to	On	or	Secure,	the	virtual	host	is	permitted	to	run	external
programs	and	scripts	as	above.	Setting	VHostCGIMode	Secure
has	the	effect	of	denying	privileges	to	the	subprocesses,	as
described	for	VHostSecure.

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp
https://httpd.apache.org/mod_fcgid/

VHostCGIPrivs	Directive

Description: Assign	arbitrary	privileges	to	subprocesses
created	by	a	virtual	host.

Syntax: VHostPrivs	[+-]?privilege-name	[[+-

]?privilege-name]	...

Default: None

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM)
and	when	mod_privileges	is	compiled	with
the	BIG_SECURITY_HOLE	compile-time	option.

VHostCGIPrivs	can	be	used	to	assign	arbitrary	privileges	to
subprocesses	created	by	a	virtual	host,	as	discussed	under
VHostCGIMode.	Each	privilege-name	is	the	name	of	a	Solaris
privilege,	such	as	file_setid	or	sys_nfs.

A	privilege-name	may	optionally	be	prefixed	by	+	or	-,	which	will
respectively	allow	or	deny	a	privilege.	If	used	with	neither	+	nor	-,
all	privileges	otherwise	assigned	to	the	virtualhost	will	be	denied.
You	can	use	this	to	override	any	of	the	default	sets	and	construct
your	own	privilege	set.

Security

This	directive	can	open	huge	security	holes	in	apache
subprocesses,	up	to	and	including	running	them	with	root-level
powers.	Do	not	use	it	unless	you	fully	understand	what	you	are
doing!

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

VHostGroup	Directive

Description: Sets	the	Group	ID	under	which	a	virtual	host
runs.

Syntax: VHostGroup	unix-groupid

Default: Inherits	the	group	id	specified	in

Group

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

The	VHostGroup	directive	sets	the	Unix	group	under	which	the
server	will	process	requests	to	a	virtualhost.	The	group	is	set
before	the	request	is	processed	and	reset	afterwards	using	Solaris
Privileges.	Since	the	setting	applies	to	the	process,	this	is	not
compatible	with	threaded	MPMs.

Unix-group	is	one	of:

A	group	name
Refers	to	the	given	group	by	name.

#	followed	by	a	group	number.
Refers	to	a	group	by	its	number.

Security

This	directive	cannot	be	used	to	run	apache	as	root!
Nevertheless,	it	opens	potential	security	issues	similar	to	those
discussed	in	the	suexec	documentation.

See	also
Group

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

SuexecUserGroup

VHostPrivs	Directive

Description: Assign	arbitrary	privileges	to	a	virtual	host.
Syntax: VHostPrivs	[+-]?privilege-name	[[+-

]?privilege-name]	...

Default: None

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM)
and	when	mod_privileges	is	compiled	with
the	BIG_SECURITY_HOLE	compile-time	option.

VHostPrivs	can	be	used	to	assign	arbitrary	privileges	to	a	virtual
host.	Each	privilege-name	is	the	name	of	a	Solaris	privilege,	such
as	file_setid	or	sys_nfs.

A	privilege-name	may	optionally	be	prefixed	by	+	or	-,	which	will
respectively	allow	or	deny	a	privilege.	If	used	with	neither	+	nor	-,
all	privileges	otherwise	assigned	to	the	virtualhost	will	be	denied.
You	can	use	this	to	override	any	of	the	default	sets	and	construct
your	own	privilege	set.

Security

This	directive	can	open	huge	security	holes	in	apache,	up	to
and	including	running	requests	with	root-level	powers.	Do	not
use	it	unless	you	fully	understand	what	you	are	doing!

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

VHostSecure	Directive

Description: Determines	whether	the	server	runs	with
enhanced	security	for	the	virtualhost.

Syntax: VHostSecure	On|Off

Default: VHostSecure	On

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

Determines	whether	the	virtual	host	processes	requests	with
security	enhanced	by	removal	of	Privileges	that	are	rarely	needed
in	a	webserver,	but	which	are	available	by	default	to	a	normal	Unix
user	and	may	therefore	be	required	by	modules	and	applications.
It	is	recommended	that	you	retain	the	default	(On)	unless	it
prevents	an	application	running.	Since	the	setting	applies	to	the
process,	this	is	not	compatible	with	threaded	MPMs.

Note

If	VHostSecure	prevents	an	application	running,	this	may	be	a
warning	sign	that	the	application	should	be	reviewed	for
security.

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

VHostUser	Directive

Description: Sets	the	User	ID	under	which	a	virtual	host	runs.
Syntax: VHostUser	unix-userid

Default: Inherits	the	userid	specified	in

User

Context: virtual	host
Status: Experimental
Module: mod_privileges
Compatibility: Available	on	Solaris	10	and	OpenSolaris	with

non-threaded	MPMs	(prefork	or	custom	MPM).

The	VHostUser	directive	sets	the	Unix	userid	under	which	the
server	will	process	requests	to	a	virtualhost.	The	userid	is	set
before	the	request	is	processed	and	reset	afterwards	using	Solaris
Privileges.	Since	the	setting	applies	to	the	process,	this	is	not
compatible	with	threaded	MPMs.

Unix-userid	is	one	of:

A	username
Refers	to	the	given	user	by	name.

#	followed	by	a	user	number.
Refers	to	a	user	by	its	number.

Security

This	directive	cannot	be	used	to	run	apache	as	root!
Nevertheless,	it	opens	potential	security	issues	similar	to	those
discussed	in	the	suexec	documentation.

See	also
User

SuexecUserGroup

http://sosc-dr.sun.com/bigadmin/features/articles/least_privilege.jsp

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy

Description: Multi-protocol	proxy/gateway	server
Status: Extension
Module	Identifier: proxy_module
Source	File: mod_proxy.c

Summary

Warning

Do	not	enable	proxying	with	ProxyRequests	until	you	have
secured	your	server.	Open	proxy	servers	are	dangerous	both	to
your	network	and	to	the	Internet	at	large.

mod_proxy	and	related	modules	implement	a	proxy/gateway	for
Apache	HTTP	Server,	supporting	a	number	of	popular	protocols	as
well	as	several	different	load	balancing	algorithms.	Third-party
modules	can	add	support	for	additional	protocols	and	load	balancing
algorithms.

A	set	of	modules	must	be	loaded	into	the	server	to	provide	the
necessary	features.	These	modules	can	be	included	statically	at	build
time	or	dynamically	via	the	LoadModule	directive).	The	set	must
include:

mod_proxy,	which	provides	basic	proxy	capabilities
mod_proxy_balancer	and	one	or	more	balancer	modules	if
load	balancing	is	required.	(See	mod_proxy_balancer	for
more	information.)
one	or	more	proxy	scheme,	or	protocol,	modules:

Protocol Module
AJP13	(Apache	JServe	Protocol mod_proxy_ajp

version	1.3)
CONNECT	(for	SSL) mod_proxy_connect

FastCGI mod_proxy_fcgi

ftp mod_proxy_ftp

HTTP/0.9,	HTTP/1.0,	and	HTTP/1.1 mod_proxy_http

SCGI mod_proxy_scgi

WS	and	WSS	(Web-sockets) mod_proxy_wstunnel

In	addition,	extended	features	are	provided	by	other	modules.
Caching	is	provided	by	mod_cache	and	related	modules.	The	ability
to	contact	remote	servers	using	the	SSL/TLS	protocol	is	provided	by
the	SSLProxy*	directives	of	mod_ssl.	These	additional	modules	will
need	to	be	loaded	and	configured	to	take	advantage	of	these
features.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_cache

mod_proxy_ajp

mod_proxy_connect

mod_proxy_fcgi

mod_proxy_ftp

mod_proxy_http

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy

mod_proxy_scgi

mod_proxy_wstunnel

mod_proxy_balancer

mod_ssl

Forward	Proxies	and	Reverse	Proxies/Gateways

Apache	HTTP	Server	can	be	configured	in	both	a	forward	and
reverse	proxy	(also	known	as	gateway)	mode.

An	ordinary	forward	proxy	is	an	intermediate	server	that	sits
between	the	client	and	the	origin	server.	In	order	to	get	content
from	the	origin	server,	the	client	sends	a	request	to	the	proxy
naming	the	origin	server	as	the	target.	The	proxy	then	requests
the	content	from	the	origin	server	and	returns	it	to	the	client.	The
client	must	be	specially	configured	to	use	the	forward	proxy	to
access	other	sites.

A	typical	usage	of	a	forward	proxy	is	to	provide	Internet	access	to
internal	clients	that	are	otherwise	restricted	by	a	firewall.	The
forward	proxy	can	also	use	caching	(as	provided	by	mod_cache)
to	reduce	network	usage.

The	forward	proxy	is	activated	using	the	ProxyRequests
directive.	Because	forward	proxies	allow	clients	to	access	arbitrary
sites	through	your	server	and	to	hide	their	true	origin,	it	is	essential
that	you	secure	your	server	so	that	only	authorized	clients	can
access	the	proxy	before	activating	a	forward	proxy.

A	reverse	proxy	(or	gateway),	by	contrast,	appears	to	the	client
just	like	an	ordinary	web	server.	No	special	configuration	on	the
client	is	necessary.	The	client	makes	ordinary	requests	for	content
in	the	namespace	of	the	reverse	proxy.	The	reverse	proxy	then
decides	where	to	send	those	requests	and	returns	the	content	as	if
it	were	itself	the	origin.

A	typical	usage	of	a	reverse	proxy	is	to	provide	Internet	users
access	to	a	server	that	is	behind	a	firewall.	Reverse	proxies	can
also	be	used	to	balance	load	among	several	back-end	servers	or
to	provide	caching	for	a	slower	back-end	server.	In	addition,
reverse	proxies	can	be	used	simply	to	bring	several	servers	into

the	same	URL	space.

A	reverse	proxy	is	activated	using	the	ProxyPass	directive	or	the
[P]	flag	to	the	RewriteRule	directive.	It	is	not	necessary	to	turn
ProxyRequests	on	in	order	to	configure	a	reverse	proxy.

Basic	Examples

The	examples	below	are	only	a	very	basic	idea	to	help	you	get
started.	Please	read	the	documentation	on	the	individual
directives.

In	addition,	if	you	wish	to	have	caching	enabled,	consult	the
documentation	from	mod_cache.

Reverse	Proxy
ProxyPass	"/foo"	"http://foo.example.com/bar"

ProxyPassReverse	"/foo"	"http://foo.example.com/bar"

Forward	Proxy
ProxyRequests	On

ProxyVia	On

<Proxy	"*">

		Require	host	internal.example.com

</Proxy>

Access	via	Handler

You	can	also	force	a	request	to	be	handled	as	a	reverse-proxy
request,	by	creating	a	suitable	Handler	pass-through.	The
example	configuration	below	will	pass	all	requests	for	PHP	scripts
to	the	specified	FastCGI	server	using	reverse	proxy:

Reverse	Proxy	PHP	scripts
<FilesMatch	"\.php$">

				#	Unix	sockets	require	2.4.7	or	later

				SetHandler		"proxy:unix:/path/to/app.sock|fcgi://localhost/"

</FilesMatch>

This	feature	is	available	in	Apache	HTTP	Server	2.4.10	and	later.

Workers

The	proxy	manages	the	configuration	of	origin	servers	and	their
communication	parameters	in	objects	called	workers.	There	are
two	built-in	workers:	the	default	forward	proxy	worker	and	the
default	reverse	proxy	worker.	Additional	workers	can	be	configured
explicitly.

The	two	default	workers	have	a	fixed	configuration	and	will	be
used	if	no	other	worker	matches	the	request.	They	do	not	use
HTTP	Keep-Alive	or	connection	reuse.	The	TCP	connections	to
the	origin	server	will	instead	be	opened	and	closed	for	each
request.

Explicitly	configured	workers	are	identified	by	their	URL.	They	are
usually	created	and	configured	using	ProxyPass	or
ProxyPassMatch	when	used	for	a	reverse	proxy:

ProxyPass	"/example"	"http://backend.example.com"	connectiontimeout=5	timeout=30

This	will	create	a	worker	associated	with	the	origin	server	URL
http://backend.example.com	that	will	use	the	given	timeout
values.	When	used	in	a	forward	proxy,	workers	are	usually	defined
via	the	ProxySet	directive:

ProxySet	"http://backend.example.com"	connectiontimeout=5	timeout=30

or	alternatively	using	Proxy	and	ProxySet:

<Proxy	"http://backend.example.com">

		ProxySet	connectiontimeout=5	timeout=30

</Proxy>

Using	explicitly	configured	workers	in	the	forward	mode	is	not	very

common,	because	forward	proxies	usually	communicate	with
many	different	origin	servers.	Creating	explicit	workers	for	some	of
the	origin	servers	can	still	be	useful	if	they	are	used	very	often.
Explicitly	configured	workers	have	no	concept	of	forward	or
reverse	proxying	by	themselves.	They	encapsulate	a	common
concept	of	communication	with	origin	servers.	A	worker	created	by
ProxyPass	for	use	in	a	reverse	proxy	will	also	be	used	for
forward	proxy	requests	whenever	the	URL	to	the	origin	server
matches	the	worker	URL,	and	vice	versa.

The	URL	identifying	a	direct	worker	is	the	URL	of	its	origin	server
including	any	path	components	given:

ProxyPass	"/examples"	"http://backend.example.com/examples"

ProxyPass	"/docs"	"http://backend.example.com/docs"

This	example	defines	two	different	workers,	each	using	a	separate
connection	pool	and	configuration.

Worker	Sharing

Worker	sharing	happens	if	the	worker	URLs	overlap,	which
occurs	when	the	URL	of	some	worker	is	a	leading	substring	of
the	URL	of	another	worker	defined	later	in	the	configuration	file.
In	the	following	example

ProxyPass	"/apps"	"http://backend.example.com/"	timeout=60

ProxyPass	"/examples"	"http://backend.example.com/examples"	timeout=10

the	second	worker	isn't	actually	created.	Instead	the	first	worker
is	used.	The	benefit	is,	that	there	is	only	one	connection	pool,
so	connections	are	more	often	reused.	Note	that	all
configuration	attributes	given	explicitly	for	the	later	worker	will
be	ignored.	This	will	be	logged	as	a	warning.	In	the	above

example,	the	resulting	timeout	value	for	the	URL	/examples
will	be	60	instead	of	10!

If	you	want	to	avoid	worker	sharing,	sort	your	worker	definitions
by	URL	length,	starting	with	the	longest	worker	URLs.	If	you
want	to	maximize	worker	sharing,	use	the	reverse	sort	order.
See	also	the	related	warning	about	ordering	ProxyPass
directives.

Explicitly	configured	workers	come	in	two	flavors:	direct	workers
and	(load)	balancer	workers.	They	support	many	important
configuration	attributes	which	are	described	below	in	the
ProxyPass	directive.	The	same	attributes	can	also	be	set	using
ProxySet.

The	set	of	options	available	for	a	direct	worker	depends	on	the
protocol	which	is	specified	in	the	origin	server	URL.	Available
protocols	include	ajp,	fcgi,	ftp,	http	and	scgi.

Balancer	workers	are	virtual	workers	that	use	direct	workers
known	as	their	members	to	actually	handle	the	requests.	Each
balancer	can	have	multiple	members.	When	it	handles	a	request,
it	chooses	a	member	based	on	the	configured	load	balancing
algorithm.

A	balancer	worker	is	created	if	its	worker	URL	uses	balancer	as
the	protocol	scheme.	The	balancer	URL	uniquely	identifies	the
balancer	worker.	Members	are	added	to	a	balancer	using
BalancerMember.

DNS	resolution	for	origin	domains

DNS	resolution	happens	when	the	socket	to	the	origin	domain	is
created	for	the	first	time.	When	connection	reuse	is	enabled,
each	backend	domain	is	resolved	only	once	per	child	process,

and	cached	for	all	further	connections	until	the	child	is	recycled.
This	information	should	to	be	considered	while	planning	DNS
maintenance	tasks	involving	backend	domains.	Please	also
check	ProxyPass	parameters	for	more	details	about
connection	reuse.

Controlling	Access	to	Your	Proxy

You	can	control	who	can	access	your	proxy	via	the	<Proxy>
control	block	as	in	the	following	example:

<Proxy	"*">

		Require	ip	192.168.0

</Proxy>

For	more	information	on	access	control	directives,	see
mod_authz_host.

Strictly	limiting	access	is	essential	if	you	are	using	a	forward	proxy
(using	the	ProxyRequests	directive).	Otherwise,	your	server	can
be	used	by	any	client	to	access	arbitrary	hosts	while	hiding	his	or
her	true	identity.	This	is	dangerous	both	for	your	network	and	for
the	Internet	at	large.	When	using	a	reverse	proxy	(using	the
ProxyPass	directive	with	ProxyRequests	Off),	access	control
is	less	critical	because	clients	can	only	contact	the	hosts	that	you
have	specifically	configured.

See	Also	the	Proxy-Chain-Auth	environment	variable.

Slow	Startup

If	you're	using	the	ProxyBlock	directive,	hostnames'	IP
addresses	are	looked	up	and	cached	during	startup	for	later	match
test.	This	may	take	a	few	seconds	(or	more)	depending	on	the
speed	with	which	the	hostname	lookups	occur.

Intranet	Proxy

An	Apache	httpd	proxy	server	situated	in	an	intranet	needs	to
forward	external	requests	through	the	company's	firewall	(for	this,
configure	the	ProxyRemote	directive	to	forward	the	respective
scheme	to	the	firewall	proxy).	However,	when	it	has	to	access
resources	within	the	intranet,	it	can	bypass	the	firewall	when
accessing	hosts.	The	NoProxy	directive	is	useful	for	specifying
which	hosts	belong	to	the	intranet	and	should	be	accessed
directly.

Users	within	an	intranet	tend	to	omit	the	local	domain	name	from
their	WWW	requests,	thus	requesting	"http://somehost/"	instead	of
http://somehost.example.com/.	Some	commercial	proxy
servers	let	them	get	away	with	this	and	simply	serve	the	request,
implying	a	configured	local	domain.	When	the	ProxyDomain
directive	is	used	and	the	server	is	configured	for	proxy	service,
Apache	httpd	can	return	a	redirect	response	and	send	the	client	to
the	correct,	fully	qualified,	server	address.	This	is	the	preferred
method	since	the	user's	bookmark	files	will	then	contain	fully
qualified	hosts.

Protocol	Adjustments

For	circumstances	where	mod_proxy	is	sending	requests	to	an
origin	server	that	doesn't	properly	implement	keepalives	or
HTTP/1.1,	there	are	two	environment	variables	that	can	force	the
request	to	use	HTTP/1.0	with	no	keepalive.	These	are	set	via	the
SetEnv	directive.

These	are	the	force-proxy-request-1.0	and	proxy-
nokeepalive	notes.

<Location	"/buggyappserver/">

		ProxyPass	"http://buggyappserver:7001/foo/"

		SetEnv	force-proxy-request-1.0	1

		SetEnv	proxy-nokeepalive	1

</Location>

In	2.4.26	and	later,	the	"no-proxy"	environment	variable	can	be	set
to	disable	mod_proxy	processing	the	current	request.	This
variable	should	be	set	with	SetEnvIf,	as	SetEnv	is	not
evaluated	early	enough.

Request	Bodies

Some	request	methods	such	as	POST	include	a	request	body.
The	HTTP	protocol	requires	that	requests	which	include	a	body
either	use	chunked	transfer	encoding	or	send	a	Content-
Length	request	header.	When	passing	these	requests	on	to	the
origin	server,	mod_proxy_http	will	always	attempt	to	send	the
Content-Length.	But	if	the	body	is	large	and	the	original
request	used	chunked	encoding,	then	chunked	encoding	may	also
be	used	in	the	upstream	request.	You	can	control	this	selection
using	environment	variables.	Setting	proxy-sendcl	ensures
maximum	compatibility	with	upstream	servers	by	always	sending
the	Content-Length,	while	setting	proxy-sendchunked
minimizes	resource	usage	by	using	chunked	encoding.

Under	some	circumstances,	the	server	must	spool	request	bodies
to	disk	to	satisfy	the	requested	handling	of	request	bodies.	For
example,	this	spooling	will	occur	if	the	original	body	was	sent	with
chunked	encoding	(and	is	large),	but	the	administrator	has	asked
for	backend	requests	to	be	sent	with	Content-Length	or	as
HTTP/1.0.	This	spooling	can	also	occur	if	the	request	body	already
has	a	Content-Length	header,	but	the	server	is	configured	to	filter
incoming	request	bodies.

LimitRequestBody	only	applies	to	request	bodies	that	the
server	will	spool	to	disk

Reverse	Proxy	Request	Headers

When	acting	in	a	reverse-proxy	mode	(using	the	ProxyPass
directive,	for	example),	mod_proxy_http	adds	several	request
headers	in	order	to	pass	information	to	the	origin	server.	These
headers	are:

X-Forwarded-For

The	IP	address	of	the	client.

X-Forwarded-Host

The	original	host	requested	by	the	client	in	the	Host	HTTP
request	header.

X-Forwarded-Server

The	hostname	of	the	proxy	server.

Be	careful	when	using	these	headers	on	the	origin	server,	since
they	will	contain	more	than	one	(comma-separated)	value	if	the
original	request	already	contained	one	of	these	headers.	For
example,	you	can	use	%{X-Forwarded-For}i	in	the	log	format
string	of	the	origin	server	to	log	the	original	clients	IP	address,	but
you	may	get	more	than	one	address	if	the	request	passes	through
several	proxies.

See	also	the	ProxyPreserveHost	and	ProxyVia	directives,
which	control	other	request	headers.

Note:	If	you	need	to	specify	custom	request	headers	to	be	added
to	the	forwarded	request,	use	the	RequestHeader	directive.

BalancerGrowth	Directive

Description: Number	of	additional	Balancers	that	can	be
added	Post-configuration

Syntax: BalancerGrowth	#

Default: BalancerGrowth	5

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: BalancerGrowth	is	only	available	in	Apache

HTTP	Server	2.3.13	and	later.

This	directive	allows	for	growth	potential	in	the	number	of
Balancers	available	for	a	virtualhost	in	addition	to	the	number	pre-
configured.	It	only	takes	effect	if	there	is	at	least	one	pre-
configured	Balancer.

BalancerInherit	Directive

Description: Inherit	ProxyPassed	Balancers/Workers	from	the
main	server

Syntax: BalancerInherit	On|Off

Default: BalancerInherit	On

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: BalancerInherit	is	only	available	in	Apache	HTTP

Server	2.4.5	and	later.

This	directive	will	cause	the	current	server/vhost	to	"inherit"
ProxyPass	Balancers	and	Workers	defined	in	the	main	server.
This	can	cause	issues	and	inconsistent	behavior	if	using	the
Balancer	Manager	and	so	should	be	disabled	if	using	that	feature.

The	setting	in	the	global	server	defines	the	default	for	all	vhosts.

BalancerMember	Directive

Description: Add	a	member	to	a	load	balancing	group
Syntax: BalancerMember	[balancerurl]	url

[key=value	[key=value	...]]

Context: directory
Status: Extension
Module: mod_proxy
Compatibility: BalancerMember	is	only	available	in	Apache

HTTP	Server	2.2	and	later.

This	directive	adds	a	member	to	a	load	balancing	group.	It	can	be
used	within	a	<Proxy	balancer://...>	container	directive
and	can	take	any	of	the	key	value	pair	parameters	available	to
ProxyPass	directives.

One	additional	parameter	is	available	only	to	BalancerMember
directives:	loadfactor.	This	is	the	member	load	factor	-	a	decimal
number	between	1.0	(default)	and	100.0,	which	defines	the
weighted	load	to	be	applied	to	the	member	in	question.

The	balancerurl	is	only	needed	when	not	within	a	<Proxy
balancer://...>	container	directive.	It	corresponds	to	the	url
of	a	balancer	defined	in	ProxyPass	directive.

The	path	component	of	the	balancer	URL	in	any	<Proxy
balancer://...>	container	directive	is	ignored.

Trailing	slashes	should	typically	be	removed	from	the	URL	of	a
BalancerMember.

BalancerPersist	Directive

Description: Attempt	to	persist	changes	made	by	the	Balancer
Manager	across	restarts.

Syntax: BalancerPersist	On|Off

Default: BalancerPersist	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: BalancerPersist	is	only	available	in	Apache

HTTP	Server	2.4.4	and	later.

This	directive	will	cause	the	shared	memory	storage	associated
with	the	balancers	and	balancer	members	to	be	persisted	across
restarts.	This	allows	these	local	changes	to	not	be	lost	during	the
normal	restart/graceful	state	transitions.

NoProxy	Directive

Description: Hosts,	domains,	or	networks	that	will	be	connected
to	directly

Syntax: NoProxy	host	[host]	...

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	directive	is	only	useful	for	Apache	httpd	proxy	servers	within
intranets.	The	NoProxy	directive	specifies	a	list	of	subnets,	IP
addresses,	hosts	and/or	domains,	separated	by	spaces.	A	request
to	a	host	which	matches	one	or	more	of	these	is	always	served
directly,	without	forwarding	to	the	configured	ProxyRemote	proxy
server(s).

Example
ProxyRemote		"*"		"http://firewall.example.com:81"

NoProxy									".example.com"	"192.168.112.0/21"

The	host	arguments	to	the	NoProxy	directive	are	one	of	the
following	type	list:

Domain
A	Domain	is	a	partially	qualified	DNS	domain	name,	preceded
by	a	period.	It	represents	a	list	of	hosts	which	logically	belong
to	the	same	DNS	domain	or	zone	(i.e.,	the	suffixes	of	the
hostnames	are	all	ending	in	Domain).

Examples
.com	.example.org.

To	distinguish	Domains	from	Hostnames	(both	syntactically
and	semantically;	a	DNS	domain	can	have	a	DNS	A	record,

too!),	Domains	are	always	written	with	a	leading	period.

Note

Domain	name	comparisons	are	done	without	regard	to	the
case,	and	Domains	are	always	assumed	to	be	anchored	in
the	root	of	the	DNS	tree;	therefore,	the	two	domains
.ExAmple.com	and	.example.com.	(note	the	trailing
period)	are	considered	equal.	Since	a	domain	comparison
does	not	involve	a	DNS	lookup,	it	is	much	more	efficient
than	subnet	comparison.

SubNet
A	SubNet	is	a	partially	qualified	internet	address	in	numeric
(dotted	quad)	form,	optionally	followed	by	a	slash	and	the
netmask,	specified	as	the	number	of	significant	bits	in	the
SubNet.	It	is	used	to	represent	a	subnet	of	hosts	which	can	be
reached	over	a	common	network	interface.	In	the	absence	of
the	explicit	net	mask	it	is	assumed	that	omitted	(or	zero
valued)	trailing	digits	specify	the	mask.	(In	this	case,	the
netmask	can	only	be	multiples	of	8	bits	wide.)	Examples:

192.168	or	192.168.0.0
the	subnet	192.168.0.0	with	an	implied	netmask	of	16
valid	bits	(sometimes	used	in	the	netmask	form
255.255.0.0)

192.168.112.0/21

the	subnet	192.168.112.0/21	with	a	netmask	of	21
valid	bits	(also	used	in	the	form	255.255.248.0)

As	a	degenerate	case,	a	SubNet	with	32	valid	bits	is	the
equivalent	to	an	IPAddr,	while	a	SubNet	with	zero	valid	bits
(e.g.,	0.0.0.0/0)	is	the	same	as	the	constant	_Default_,
matching	any	IP	address.

IPAddr
A	IPAddr	represents	a	fully	qualified	internet	address	in
numeric	(dotted	quad)	form.	Usually,	this	address	represents
a	host,	but	there	need	not	necessarily	be	a	DNS	domain
name	connected	with	the	address.

Example
192.168.123.7

Note

An	IPAddr	does	not	need	to	be	resolved	by	the	DNS
system,	so	it	can	result	in	more	effective	apache
performance.

Hostname
A	Hostname	is	a	fully	qualified	DNS	domain	name	which	can
be	resolved	to	one	or	more	IPAddrs	via	the	DNS	domain
name	service.	It	represents	a	logical	host	(in	contrast	to
Domains,	see	above)	and	must	be	resolvable	to	at	least	one
IPAddr	(or	often	to	a	list	of	hosts	with	different	IPAddrs).

Examples
prep.ai.example.edu

www.example.org

Note

In	many	situations,	it	is	more	effective	to	specify	an	IPAddr
in	place	of	a	Hostname	since	a	DNS	lookup	can	be
avoided.	Name	resolution	in	Apache	httpd	can	take	a
remarkable	deal	of	time	when	the	connection	to	the	name
server	uses	a	slow	PPP	link.

Hostname	comparisons	are	done	without	regard	to	the

case,	and	Hostnames	are	always	assumed	to	be	anchored
in	the	root	of	the	DNS	tree;	therefore,	the	two	hosts
WWW.ExAmple.com	and	www.example.com.	(note	the
trailing	period)	are	considered	equal.

See	also
DNS	Issues

<Proxy>	Directive

Description: Container	for	directives	applied	to	proxied
resources

Syntax: <Proxy	wildcard-url>	...</Proxy>

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

Directives	placed	in	<Proxy>	sections	apply	only	to	matching
proxied	content.	Shell-style	wildcards	are	allowed.

For	example,	the	following	will	allow	only	hosts	in
yournetwork.example.com	to	access	content	via	your	proxy
server:

<Proxy	"*">

		Require	host	yournetwork.example.com

</Proxy>

The	following	example	will	process	all	files	in	the	foo	directory	of
example.com	through	the	INCLUDES	filter	when	they	are	sent
through	the	proxy	server:

<Proxy	"http://example.com/foo/*">

		SetOutputFilter	INCLUDES

</Proxy>

Differences	from	the	Location	configuration	section

A	backend	URL	matches	the	configuration	section	if	it	begins
with	the	the	wildcard-url	string,	even	if	the	last	path	segment	in
the	directive	only	matches	a	prefix	of	the	backend	URL.	For
example,	<Proxy	"http://example.com/foo">	matches	all	of
http://example.com/foo,	http://example.com/foo/bar,	and

http://example.com/foobar.	The	matching	of	the	final	URL	differs
from	the	behavior	of	the	<Location>	section,	which	for
purposes	of	this	note	treats	the	final	path	component	as	if	it
ended	in	a	slash.

For	more	control	over	the	matching,	see	<ProxyMatch>.

See	also
<ProxyMatch>

ProxyAddHeaders	Directive

Description: Add	proxy	information	in	X-Forwarded-*	headers
Syntax: ProxyAddHeaders	Off|On

Default: ProxyAddHeaders	On

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy
Compatibility: Available	in	version	2.3.10	and	later

This	directive	determines	whether	or	not	proxy	related	information
should	be	passed	to	the	backend	server	through	X-Forwarded-For,
X-Forwarded-Host	and	X-Forwarded-Server	HTTP	headers.

Effectiveness

This	option	is	of	use	only	for	HTTP	proxying,	as	handled	by
mod_proxy_http.

ProxyBadHeader	Directive

Description: Determines	how	to	handle	bad	header	lines	in	a
response

Syntax: ProxyBadHeader

IsError|Ignore|StartBody

Default: ProxyBadHeader	IsError

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyBadHeader	directive	determines	the	behavior	of
mod_proxy	if	it	receives	syntactically	invalid	response	header
lines	(i.e.	containing	no	colon)	from	the	origin	server.	The	following
arguments	are	possible:

IsError

Abort	the	request	and	end	up	with	a	502	(Bad	Gateway)
response.	This	is	the	default	behavior.

Ignore

Treat	bad	header	lines	as	if	they	weren't	sent.

StartBody

When	receiving	the	first	bad	header	line,	finish	reading	the
headers	and	treat	the	remainder	as	body.	This	helps	to	work
around	buggy	backend	servers	which	forget	to	insert	an
empty	line	between	the	headers	and	the	body.

ProxyBlock	Directive

Description: Words,	hosts,	or	domains	that	are	banned	from
being	proxied

Syntax: ProxyBlock	*|word|host|domain

[word|host|domain]	...

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyBlock	directive	specifies	a	list	of	words,	hosts	and/or
domains,	separated	by	spaces.	HTTP,	HTTPS,	and	FTP	document
requests	to	sites	whose	names	contain	matched	words,	hosts	or
domains	are	blocked	by	the	proxy	server.	The	proxy	module	will
also	attempt	to	determine	IP	addresses	of	list	items	which	may	be
hostnames	during	startup,	and	cache	them	for	match	test	as	well.
That	may	slow	down	the	startup	time	of	the	server.

Example
ProxyBlock	"news.example.com"	"auctions.example.com"	"friends.example.com"

Note	that	example	would	also	be	sufficient	to	match	any	of	these
sites.

Hosts	would	also	be	matched	if	referenced	by	IP	address.

Note	also	that

ProxyBlock	"*"

blocks	connections	to	all	sites.

ProxyDomain	Directive

Description: Default	domain	name	for	proxied	requests
Syntax: ProxyDomain	Domain

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	directive	is	only	useful	for	Apache	httpd	proxy	servers	within
intranets.	The	ProxyDomain	directive	specifies	the	default
domain	which	the	apache	proxy	server	will	belong	to.	If	a	request
to	a	host	without	a	domain	name	is	encountered,	a	redirection
response	to	the	same	host	with	the	configured	Domain	appended
will	be	generated.

Example
ProxyRemote		"*"		"http://firewall.example.com:81"

NoProxy									".example.com"	"192.168.112.0/21"

ProxyDomain					".example.com"

ProxyErrorOverride	Directive

Description: Override	error	pages	for	proxied	content
Syntax: ProxyErrorOverride	On|Off

Default: ProxyErrorOverride	Off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

This	directive	is	useful	for	reverse-proxy	setups	where	you	want	to
have	a	common	look	and	feel	on	the	error	pages	seen	by	the	end
user.	This	also	allows	for	included	files	(via	mod_include's	SSI)
to	get	the	error	code	and	act	accordingly.	(Default	behavior	would
display	the	error	page	of	the	proxied	server.	Turning	this	on	shows
the	SSI	Error	message.)

This	directive	does	not	affect	the	processing	of	informational	(1xx),
normal	success	(2xx),	or	redirect	(3xx)	responses.

ProxyIOBufferSize	Directive

Description: Determine	size	of	internal	data	throughput	buffer
Syntax: ProxyIOBufferSize	bytes

Default: ProxyIOBufferSize	8192

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyIOBufferSize	directive	adjusts	the	size	of	the
internal	buffer	which	is	used	as	a	scratchpad	for	the	data	between
input	and	output.	The	size	must	be	at	least	512.

In	almost	every	case,	there's	no	reason	to	change	that	value.

If	used	with	AJP,	this	directive	sets	the	maximum	AJP	packet	size
in	bytes.	Values	larger	than	65536	are	set	to	65536.	If	you	change
it	from	the	default,	you	must	also	change	the	packetSize
attribute	of	your	AJP	connector	on	the	Tomcat	side!	The	attribute
packetSize	is	only	available	in	Tomcat	5.5.20+	and	6.0.2+

Normally	it	is	not	necessary	to	change	the	maximum	packet	size.
Problems	with	the	default	value	have	been	reported	when	sending
certificates	or	certificate	chains.

<ProxyMatch>	Directive

Description: Container	for	directives	applied	to	regular-
expression-matched	proxied	resources

Syntax: <ProxyMatch	regex>	...</ProxyMatch>

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	<ProxyMatch>	directive	is	identical	to	the	<Proxy>
directive,	except	that	it	matches	URLs	using	regular	expressions.

From	2.4.8	onwards,	named	groups	and	backreferences	are
captured	and	written	to	the	environment	with	the	corresponding
name	prefixed	with	"MATCH_"	and	in	upper	case.	This	allows
elements	of	URLs	to	be	referenced	from	within	expressions	and
modules	like	mod_rewrite.	In	order	to	prevent	confusion,
numbered	(unnamed)	backreferences	are	ignored.	Use	named
groups	instead.

<ProxyMatch	"^http://(?<sitename>[^/]+)">

				Require	ldap-group	cn=%{env:MATCH_SITENAME},ou=combined,o=Example

</ProxyMatch>

See	also
<Proxy>

ProxyMaxForwards	Directive

Description: Maximium	number	of	proxies	that	a	request	can
be	forwarded	through

Syntax: ProxyMaxForwards	number

Default: ProxyMaxForwards	-1

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: Default	behaviour	changed	in	2.2.7

The	ProxyMaxForwards	directive	specifies	the	maximum
number	of	proxies	through	which	a	request	may	pass	if	there's	no
Max-Forwards	header	supplied	with	the	request.	This	may	be
set	to	prevent	infinite	proxy	loops	or	a	DoS	attack.

Example
ProxyMaxForwards	15

Note	that	setting	ProxyMaxForwards	is	a	violation	of	the
HTTP/1.1	protocol	(RFC2616),	which	forbids	a	Proxy	setting	Max-
Forwards	if	the	Client	didn't	set	it.	Earlier	Apache	httpd	versions
would	always	set	it.	A	negative	ProxyMaxForwards	value,
including	the	default	-1,	gives	you	protocol-compliant	behavior	but
may	leave	you	open	to	loops.

ProxyPass	Directive

Description: Maps	remote	servers	into	the	local	server	URL-
space

Syntax: ProxyPass	[path]	!|url	[key=value

[key=value	...]]	[nocanon]

[interpolate]	[noquery]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy
Compatibility: Unix	Domain	Socket	(UDS)	support	added	in

2.4.7

This	directive	allows	remote	servers	to	be	mapped	into	the	space
of	the	local	server.	The	local	server	does	not	act	as	a	proxy	in	the
conventional	sense	but	appears	to	be	a	mirror	of	the	remote
server.	The	local	server	is	often	called	a	reverse	proxy	or	gateway.
The	path	is	the	name	of	a	local	virtual	path;	url	is	a	partial	URL	for
the	remote	server	and	cannot	include	a	query	string.

It	is	strongly	suggested	to	review	the	concept	of	a	Worker	before
proceeding	any	further	with	this	section.

This	directive	is	not	supported	within	<Directory>	and
<Files>	containers.

The	ProxyRequests	directive	should	usually	be	set	off	when
using	ProxyPass.

In	2.4.7	and	later,	support	for	using	a	Unix	Domain	Socket	is
available	by	using	a	target	which	prepends
unix:/path/lis.sock|.	For	example,	to	proxy	HTTP	and
target	the	UDS	at	/home/www/socket,	you	would	use

unix:/home/www.socket|http://localhost/whatever/.

Note:	The	path	associated	with	the	unix:	URL	is
DefaultRuntimeDir	aware.

When	used	inside	a	<Location>	section,	the	first	argument	is
omitted	and	the	local	directory	is	obtained	from	the	<Location>.
The	same	will	occur	inside	a	<LocationMatch>	section;
however,	ProxyPass	does	not	interpret	the	regexp	as	such,	so	it	is
necessary	to	use	ProxyPassMatch	in	this	situation	instead.

Suppose	the	local	server	has	address	http://example.com/;
then

<Location	"/mirror/foo/">

				ProxyPass	"http://backend.example.com/"

</Location>

will	cause	a	local	request	for
http://example.com/mirror/foo/bar	to	be	internally
converted	into	a	proxy	request	to
http://backend.example.com/bar.

If	you	require	a	more	flexible	reverse-proxy	configuration,	see	the
RewriteRule	directive	with	the	[P]	flag.

The	following	alternative	syntax	is	possible;	however,	it	can	carry	a
performance	penalty	when	present	in	very	large	numbers.	The
advantage	of	the	below	syntax	is	that	it	allows	for	dynamic	control
via	the	Balancer	Manager	interface:

ProxyPass	"/mirror/foo/"	"http://backend.example.com/"

If	the	first	argument	ends	with	a	trailing	/,	the	second	argument
should	also	end	with	a	trailing	/,	and	vice	versa.	Otherwise,	the
resulting	requests	to	the	backend	may	miss	some	needed
slashes	and	do	not	deliver	the	expected	results.

The	!	directive	is	useful	in	situations	where	you	don't	want	to
reverse-proxy	a	subdirectory,	e.g.

<Location	"/mirror/foo/">

				ProxyPass	"http://backend.example.com/"

</Location>

<Location	"/mirror/foo/i">

				ProxyPass	"!"

</Location>

ProxyPass	"/mirror/foo/i"	"!"

ProxyPass	"/mirror/foo"	"http://backend.example.com"

will	proxy	all	requests	to	/mirror/foo	to
backend.example.com	except	requests	made	to
/mirror/foo/i.

Ordering	ProxyPass	Directives

The	configured	ProxyPass	and	ProxyPassMatch	rules	are
checked	in	the	order	of	configuration.	The	first	rule	that	matches
wins.	So	usually	you	should	sort	conflicting	ProxyPass	rules
starting	with	the	longest	URLs	first.	Otherwise,	later	rules	for
longer	URLS	will	be	hidden	by	any	earlier	rule	which	uses	a
leading	substring	of	the	URL.	Note	that	there	is	some	relation
with	worker	sharing.	In	contrast,	only	one	ProxyPass	directive
can	be	placed	in	a	Location	block,	and	the	most	specific

location	will	take	precedence.

For	the	same	reasons,	exclusions	must	come	before	the
general	ProxyPass	directives.	In	2.4.26	and	later,	the	"no-
proxy"	environment	variable	is	an	alternative	to	exclusions,	and
is	the	only	way	to	configure	an	exclusion	of	a	ProxyPass
directive	in	Location	context.	This	variable	should	be	set	with
SetEnvIf,	as	SetEnv	is	not	evaluated	early	enough.

ProxyPass	key=value	Parameters

In	Apache	HTTP	Server	2.1	and	later,	mod_proxy	supports	pooled
connections	to	a	backend	server.	Connections	created	on	demand
can	be	retained	in	a	pool	for	future	use.	Limits	on	the	pool	size	and
other	settings	can	be	coded	on	the	ProxyPass	directive	using
key=value	parameters,	described	in	the	tables	below.

Maximum	connections	to	the	backend

By	default,	mod_proxy	will	allow	and	retain	the	maximum
number	of	connections	that	could	be	used	simultaneously	by
that	web	server	child	process.	Use	the	max	parameter	to	reduce
the	number	from	the	default.	The	pool	of	connections	is
maintained	per	web	server	child	process,	and	max	and	other
settings	are	not	coordinated	among	all	child	processes,	except
when	only	one	child	process	is	allowed	by	configuration	or	MPM
design.

Use	the	ttl	parameter	to	set	an	optional	time	to	live;	connections
which	have	been	unused	for	at	least	ttl	seconds	will	be	closed.
ttl	can	be	used	to	avoid	using	a	connection	which	is	subject	to
closing	because	of	the	backend	server's	keep-alive	timeout.

Example

ProxyPass	"/example"	"http://backend.example.com"	max=20	ttl=120	retry=300

Worker|BalancerMember	parameters

Parameter Default Description
min 0 Minimum	number	of

connection	pool	entries,
unrelated	to	the	actual
number	of	connections.	This
only	needs	to	be	modified
from	the	default	for	special
circumstances	where	heap
memory	associated	with	the
backend	connections	should
be	preallocated	or	retained.

max 1...n Maximum	number	of
connections	that	will	be
allowed	to	the	backend
server.	The	default	for	this
limit	is	the	number	of	threads
per	process	in	the	active
MPM.	In	the	Prefork	MPM,
this	is	always	1,	while	with
other	MPMs,	it	is	controlled
by	the	ThreadsPerChild
directive.

smax max Retained	connection	pool
entries	above	this	limit	are
freed	during	certain
operations	if	they	have	been
unused	for	longer	than	the
time	to	live,	controlled	by	the
ttl	parameter.	If	the

connection	pool	entry	has	an
associated	connection,	it	will
be	closed.	This	only	needs	to
be	modified	from	the	default
for	special	circumstances
where	connection	pool
entries	and	any	associated
connections	which	have
exceeded	the	time	to	live
need	to	be	freed	or	closed
more	aggressively.

acquire - If	set,	this	will	be	the
maximum	time	to	wait	for	a
free	connection	in	the
connection	pool,	in
milliseconds.	If	there	are	no
free	connections	in	the	pool,
the	Apache	httpd	will	return
SERVER_BUSY	status	to	the
client.

connectiontimeout timeout Connect	timeout	in	seconds.
The	number	of	seconds
Apache	httpd	waits	for	the
creation	of	a	connection	to
the	backend	to	complete.	By
adding	a	postfix	of	ms,	the
timeout	can	be	also	set	in
milliseconds.

disablereuse Off This	parameter	should	be
used	when	you	want	to	force
mod_proxy	to	immediately
close	a	connection	to	the
backend	after	being	used,
and	thus,	disable	its

persistent	connection	and
pool	for	that	backend.	This
helps	in	various	situations
where	a	firewall	between
Apache	httpd	and	the
backend	server	(regardless
of	protocol)	tends	to	silently
drop	connections	or	when
backends	themselves	may	be
under	round-	robin	DNS.
When	connection	reuse	is
enabled	each	backend
domain	is	resolved	(with	a
DNS	query)	only	once	per
child	process	and	cached	for
all	further	connections	until
the	child	is	recycled.	To
disable	connection	reuse,	set
this	property	value	to	On.

enablereuse On This	is	the	inverse	of
'disablereuse'	above,
provided	as	a	convenience
for	scheme	handlers	that
require	opt-in	for	connection
reuse	(such	as
mod_proxy_fcgi).	2.4.11
and	later	only.

flushpackets off Determines	whether	the
proxy	module	will	auto-flush
the	output	brigade	after	each
"chunk"	of	data.	'off'	means
that	it	will	flush	only	when
needed;	'on'	means	after
each	chunk	is	sent;	and	'auto'

means	poll/wait	for	a	period
of	time	and	flush	if	no	input
has	been	received	for
'flushwait'	milliseconds.
Currently,	this	is	in	effect	only
for	AJP.

flushwait 10 The	time	to	wait	for	additional
input,	in	milliseconds,	before
flushing	the	output	brigade	if
'flushpackets'	is	'auto'.

iobuffersize 8192 Adjusts	the	size	of	the
internal	scratchpad	IO	buffer.
This	allows	you	to	override
the	ProxyIOBufferSize
for	a	specific	worker.	This
must	be	at	least	512	or	set	to
0	for	the	system	default	of
8192.

keepalive Off This	parameter	should	be
used	when	you	have	a
firewall	between	your	Apache
httpd	and	the	backend	server,
which	tends	to	drop	inactive
connections.	This	flag	will	tell
the	Operating	System	to
send	KEEP_ALIVE
messages	on	inactive
connections	and	thus	prevent
the	firewall	from	dropping	the
connection.	To	enable
keepalive,	set	this	property
value	to	On.

The	frequency	of	initial	and

subsequent	TCP	keepalive
probes	depends	on	global
OS	settings,	and	may	be	as
high	as	2	hours.	To	be	useful,
the	frequency	configured	in
the	OS	must	be	smaller	than
the	threshold	used	by	the
firewall.

lbset 0 Sets	the	load	balancer	cluster
set	that	the	worker	is	a
member	of.	The	load
balancer	will	try	all	members
of	a	lower	numbered	lbset
before	trying	higher
numbered	ones.

ping 0 Ping	property	tells	the
webserver	to	"test"	the
connection	to	the	backend
before	forwarding	the
request.	For	AJP,	it	causes
mod_proxy_ajp	to	send	a
CPING	request	on	the	ajp13
connection	(implemented	on
Tomcat	3.3.2+,	4.1.28+	and
5.0.13+).	For	HTTP,	it	causes
mod_proxy_http	to	send	a
100-Continue	to	the
backend	(only	valid	for
HTTP/1.1	-	for	non	HTTP/1.1
backends,	this	property	has
no	effect).	In	both	cases,	the
parameter	is	the	delay	in
seconds	to	wait	for	the	reply.

This	feature	has	been	added
to	avoid	problems	with	hung
and	busy	backends.	This	will
increase	the	network	traffic
during	the	normal	operation
which	could	be	an	issue,	but
it	will	lower	the	traffic	in	case
some	of	the	cluster	nodes	are
down	or	busy.	By	adding	a
postfix	of	ms,	the	delay	can
be	also	set	in	milliseconds.

receivebuffersize 0 Adjusts	the	size	of	the	explicit
(TCP/IP)	network	buffer	size
for	proxied	connections.	This
allows	you	to	override	the
ProxyReceiveBufferSize

for	a	specific	worker.	This
must	be	at	least	512	or	set	to
0	for	the	system	default.

redirect - Redirection	Route	of	the
worker.	This	value	is	usually
set	dynamically	to	enable
safe	removal	of	the	node
from	the	cluster.	If	set,	all
requests	without	session	id
will	be	redirected	to	the
BalancerMember	that	has
route	parameter	equal	to	this
value.

retry 60 Connection	pool	worker	retry
timeout	in	seconds.	If	the
connection	pool	worker	to	the
backend	server	is	in	the	error
state,	Apache	httpd	will	not

forward	any	requests	to	that
server	until	the	timeout
expires.	This	enables	to	shut
down	the	backend	server	for
maintenance	and	bring	it
back	online	later.	A	value	of	0
means	always	retry	workers
in	an	error	state	with	no
timeout.

route - Route	of	the	worker	when
used	inside	load	balancer.
The	route	is	a	value
appended	to	session	id.

status - Single	letter	value	defining
the	initial	status	of	this
worker.

D:	Worker	is	disabled	and
will	not	accept	any	requests.
S:	Worker	is	administratively
stopped.
I:	Worker	is	in	ignore-errors
mode	and	will	always	be
considered	available.
H:	Worker	is	in	hot-standby
mode	and	will	only	be	used
if	no	other	viable	workers
are	available.
E:	Worker	is	in	an	error
state.
N:	Worker	is	in	drain	mode
and	will	only	accept	existing
sticky	sessions	destined	for
itself	and	ignore	all	other

requests.

Status	can	be	set	(which	is
the	default)	by	prepending
with	'+'	or	cleared	by
prepending	with	'-'.	Thus,	a
setting	of	'S-E'	sets	this
worker	to	Stopped	and	clears
the	in-error	flag.

timeout ProxyTimeout Connection	timeout	in
seconds.	The	number	of
seconds	Apache	httpd	waits
for	data	sent	by	/	to	the
backend.

ttl - Time	to	live	for	inactive
connections	and	associated
connection	pool	entries,	in
seconds.	Once	reaching	this
limit,	a	connection	will	not	be
used	again;	it	will	be	closed
at	some	later	time.

flusher flush Name	of	the	provider	used	by
mod_proxy_fdpass.	See
the	documentation	of	this
module	for	more	details.

secret - Value	of	secret	used	by
mod_proxy_ajp.	See	the
documentation	of	this	module
for	more	details.

upgrade WebSocket Protocol	accepted	in	the
Upgrade	header	by
mod_proxy_wstunnel.	See

the	documentation	of	this
module	for	more	details.

If	the	Proxy	directive	scheme	starts	with	the	balancer://	(eg:
balancer://cluster,	any	path	information	is	ignored),	then	a
virtual	worker	that	does	not	really	communicate	with	the	backend
server	will	be	created.	Instead,	it	is	responsible	for	the
management	of	several	"real"	workers.	In	that	case,	the	special
set	of	parameters	can	be	added	to	this	virtual	worker.	See
mod_proxy_balancer	for	more	information	about	how	the
balancer	works.

Balancer	parameters

Parameter Default Description
lbmethod byrequests Balancer	load-balance	method.	Select

the	load-balancing	scheduler	method	to
use.	Either	byrequests,	to	perform
weighted	request	counting;	bytraffic
to	perform	weighted	traffic	byte	count
balancing;	or	bybusyness,	to	perform
pending	request	balancing.	The	default
is	byrequests.

maxattempts One	less
than	the
number	of
workers,
or	1	with	a
single
worker.

Maximum	number	of	failover	attempts
before	giving	up.

nofailover Off If	set	to	On,	the	session	will	break	if	the
worker	is	in	error	state	or	disabled.	Set

this	value	to	On	if	backend	servers	do
not	support	session	replication.

stickysession - Balancer	sticky	session	name.	The
value	is	usually	set	to	something	like
JSESSIONID	or	PHPSESSIONID,	and	it
depends	on	the	backend	application
server	that	support	sessions.	If	the
backend	application	server	uses
different	name	for	cookies	and	url
encoded	id	(like	servlet	containers)	use	|
to	separate	them.	The	first	part	is	for	the
cookie	the	second	for	the	path.
Available	in	Apache	HTTP	Server	2.4.4
and	later.

stickysessionsep "." Sets	the	separation	symbol	in	the
session	cookie.	Some	backend
application	servers	do	not	use	the	'.'	as
the	symbol.	For	example,	the	Oracle
Weblogic	server	uses	'!'.	The	correct
symbol	can	be	set	using	this	option.	The
setting	of	'Off'	signifies	that	no	symbol	is
used.

scolonpathdelim Off If	set	to	On,	the	semi-colon	character	';'
will	be	used	as	an	additional	sticky
session	path	delimiter/separator.	This	
mainly	used	to	emulate	mod_jk's
behavior	when	dealing	with	paths	such
as
JSESSIONID=6736bcf34;foo=aabfa

timeout 0 Balancer	timeout	in	seconds.	If	set,	this
will	be	the	maximum	time	to	wait	for	a
free	worker.	The	default	is	to	not	wait.

failonstatus - A	single	or	comma-separated	list	of

HTTP	status	codes.	If	set,	this	will	force
the	worker	into	error	state	when	the
backend	returns	any	status	code	in	the
list.	Worker	recovery	behaves	the	same
as	other	worker	errors.

failontimeout Off If	set,	an	IO	read	timeout	after	a	request
is	sent	to	the	backend	will	force	the
worker	into	error	state.	Worker	recovery
behaves	the	same	as	other	worker
errors.
Available	in	Apache	HTTP	Server	2.4.5
and	later.

nonce <auto> The	protective	nonce	used	in	the
balancer-manager	application	page.
The	default	is	to	use	an	automatically
determined	UUID-based	nonce,	to
provide	for	further	protection	for	the
page.	If	set,	then	the	nonce	is	set	to	that
value.	A	setting	of	None	disables	all
nonce	checking.

Note

In	addition	to	the	nonce,	the
balancer-manager	page
should	be	protected	via	an	ACL.

growth 0 Number	of	additional	BalancerMembers
to	allow	to	be	added	to	this	balancer	in
addition	to	those	defined	at
configuration.

forcerecovery On Force	the	immediate	recovery	of	all
workers	without	considering	the	retry
parameter	of	the	workers	if	all	workers

of	a	balancer	are	in	error	state.	There
might	be	cases	where	an	already
overloaded	backend	can	get	into	deeper
trouble	if	the	recovery	of	all	workers	is
enforced	without	considering	the	retry
parameter	of	each	worker.	In	this	case,
set	to	Off.
Available	in	Apache	HTTP	Server	2.4.2
and	later.

A	sample	balancer	setup:

ProxyPass	"/special-area"	"http://special.example.com"	smax=5	max=10

ProxyPass	"/"	"balancer://mycluster/"	stickysession=JSESSIONID|jsessionid	nofailover=On

<Proxy	"balancer://mycluster">

				BalancerMember	"ajp://1.2.3.4:8009"

				BalancerMember	"ajp://1.2.3.5:8009"	loadfactor=20

				#	Less	powerful	server,	don't	send	as	many	requests	there,

				BalancerMember	"ajp://1.2.3.6:8009"	loadfactor=5

</Proxy>

Setting	up	a	hot-standby	that	will	only	be	used	if	no	other
members	are	available:

ProxyPass	"/"	"balancer://hotcluster/"

<Proxy	"balancer://hotcluster">

				BalancerMember	"ajp://1.2.3.4:8009"	loadfactor=1

				BalancerMember	"ajp://1.2.3.5:8009"	loadfactor=2.25

				#	The	server	below	is	on	hot	standby

				BalancerMember	"ajp://1.2.3.6:8009"	status=+H

				ProxySet	lbmethod=bytraffic

</Proxy>

Additional	ProxyPass	Keywords

Normally,	mod_proxy	will	canonicalise	ProxyPassed	URLs.	But
this	may	be	incompatible	with	some	backends,	particularly	those
that	make	use	of	PATH_INFO.	The	optional	nocanon	keyword
suppresses	this	and	passes	the	URL	path	"raw"	to	the	backend.
Note	that	this	keyword	may	affect	the	security	of	your	backend,	as
it	removes	the	normal	limited	protection	against	URL-based
attacks	provided	by	the	proxy.

Normally,	mod_proxy	will	include	the	query	string	when	generating
the	SCRIPT_FILENAME	environment	variable.	The	optional
noquery	keyword	(available	in	httpd	2.4.1	and	later)	prevents	this.

The	optional	interpolate	keyword,	in	combination	with
ProxyPassInterpolateEnv,	causes	the	ProxyPass	to
interpolate	environment	variables,	using	the	syntax	${VARNAME}.
Note	that	many	of	the	standard	CGI-derived	environment	variables
will	not	exist	when	this	interpolation	happens,	so	you	may	still
have	to	resort	to	mod_rewrite	for	complex	rules.	Also	note	that
interpolation	is	not	supported	within	the	scheme	portion	of	a	URL.
Dynamic	determination	of	the	scheme	can	be	accomplished	with
mod_rewrite	as	in	the	following	example.

RewriteEngine	On

RewriteCond	"%{HTTPS}"	=off

RewriteRule	"."	"-"	[E=protocol:http]

RewriteCond	"%{HTTPS}"	=on

RewriteRule	"."	"-"	[E=protocol:https]

RewriteRule	"^/mirror/foo/(.*)"	"%{ENV:protocol}://backend.example.com/$1"	[P]

ProxyPassReverse		"/mirror/foo/"	"http://backend.example.com/"

ProxyPassReverse		"/mirror/foo/"	"https://backend.example.com/"

ProxyPassInherit	Directive

Description: Inherit	ProxyPass	directives	defined	from	the
main	server

Syntax: ProxyPassInherit	On|Off

Default: ProxyPassInherit	On

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: ProxyPassInherit	is	only	available	in	Apache

HTTP	Server	2.4.5	and	later.

This	directive	will	cause	the	current	server/vhost	to	"inherit"
ProxyPass	directives	defined	in	the	main	server.	This	can	cause
issues	and	inconsistent	behavior	if	using	the	Balancer	Manager	for
dynamic	changes	and	so	should	be	disabled	if	using	that	feature.

The	setting	in	the	global	server	defines	the	default	for	all	vhosts.

Disabling	ProxyPassInherit	also	disables	BalancerInherit.

ProxyPassInterpolateEnv	Directive

Description: Enable	Environment	Variable	interpolation	in
Reverse	Proxy	configurations

Syntax: ProxyPassInterpolateEnv	On|Off

Default: ProxyPassInterpolateEnv	Off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy
Compatibility: Available	in	httpd	2.2.9	and	later

This	directive,	together	with	the	interpolate	argument	to
ProxyPass,	ProxyPassReverse,
ProxyPassReverseCookieDomain,	and
ProxyPassReverseCookiePath,	enables	reverse	proxies	to	be
dynamically	configured	using	environment	variables	which	may	be
set	by	another	module	such	as	mod_rewrite.	It	affects	the
ProxyPass,	ProxyPassReverse,
ProxyPassReverseCookieDomain,	and
ProxyPassReverseCookiePath	directives	and	causes	them	to
substitute	the	value	of	an	environment	variable	varname	for	the
string	${varname}	in	configuration	directives	if	the	interpolate
option	is	set.

Keep	this	turned	off	(for	server	performance)	unless	you	need	it!

ProxyPassMatch	Directive

Description: Maps	remote	servers	into	the	local	server	URL-
space	using	regular	expressions

Syntax: ProxyPassMatch	[regex]	!|url

[key=value	[key=value	...]]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

This	directive	is	equivalent	to	ProxyPass	but	makes	use	of
regular	expressions	instead	of	simple	prefix	matching.	The
supplied	regular	expression	is	matched	against	the	url,	and	if	it
matches,	the	server	will	substitute	any	parenthesized	matches	into
the	given	string	and	use	it	as	a	new	url.

Note:	This	directive	cannot	be	used	within	a	<Directory>
context.

Suppose	the	local	server	has	address	http://example.com/;
then

ProxyPassMatch	"^/(.*\.gif)$"	"http://backend.example.com/$1"

will	cause	a	local	request	for
http://example.com/foo/bar.gif	to	be	internally	converted
into	a	proxy	request	to
http://backend.example.com/foo/bar.gif.

Note

The	URL	argument	must	be	parsable	as	a	URL	before	regexp
substitutions	(as	well	as	after).	This	limits	the	matches	you	can
use.	For	instance,	if	we	had	used

ProxyPassMatch	"^(/.*\.gif)$"	"http://backend.example.com:8000$1"

in	our	previous	example,	it	would	fail	with	a	syntax	error	at
server	startup.	This	is	a	bug	(PR	46665	in	the	ASF	bugzilla),
and	the	workaround	is	to	reformulate	the	match:

ProxyPassMatch	"^/(.*\.gif)$"	"http://backend.example.com:8000/$1"

The	!	directive	is	useful	in	situations	where	you	don't	want	to
reverse-proxy	a	subdirectory.

When	used	inside	a	<LocationMatch>	section,	the	first
argument	is	omitted	and	the	regexp	is	obtained	from	the
<LocationMatch>.

If	you	require	a	more	flexible	reverse-proxy	configuration,	see	the
RewriteRule	directive	with	the	[P]	flag.

Default	Substitution

When	the	URL	parameter	doesn't	use	any	backreferences	into
the	regular	expression,	the	original	URL	will	be	appended	to	the
URL	parameter.

Security	Warning

Take	care	when	constructing	the	target	URL	of	the	rule,
considering	the	security	impact	from	allowing	the	client
influence	over	the	set	of	URLs	to	which	your	server	will	act	as	a
proxy.	Ensure	that	the	scheme	and	hostname	part	of	the	URL	is
either	fixed	or	does	not	allow	the	client	undue	influence.

ProxyPassReverse	Directive

Description: Adjusts	the	URL	in	HTTP	response	headers	sent
from	a	reverse	proxied	server

Syntax: ProxyPassReverse	[path]	url

[interpolate]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

This	directive	lets	Apache	httpd	adjust	the	URL	in	the	Location,
Content-Location	and	URI	headers	on	HTTP	redirect
responses.	This	is	essential	when	Apache	httpd	is	used	as	a
reverse	proxy	(or	gateway)	to	avoid	bypassing	the	reverse	proxy
because	of	HTTP	redirects	on	the	backend	servers	which	stay
behind	the	reverse	proxy.

Only	the	HTTP	response	headers	specifically	mentioned	above
will	be	rewritten.	Apache	httpd	will	not	rewrite	other	response
headers,	nor	will	it	by	default	rewrite	URL	references	inside	HTML
pages.	This	means	that	if	the	proxied	content	contains	absolute
URL	references,	they	will	bypass	the	proxy.	To	rewrite	HTML
content	to	match	the	proxy,	you	must	load	and	enable
mod_proxy_html.

path	is	the	name	of	a	local	virtual	path;	url	is	a	partial	URL	for	the
remote	server.	These	parameters	are	used	the	same	way	as	for
the	ProxyPass	directive.

For	example,	suppose	the	local	server	has	address
http://example.com/;	then

ProxyPass									"/mirror/foo/"	"http://backend.example.com/"

ProxyPassReverse		"/mirror/foo/"	"http://backend.example.com/"

ProxyPassReverseCookieDomain		"backend.example.com"		"public.example.com"

ProxyPassReverseCookiePath		"/"		"/mirror/foo/"

will	not	only	cause	a	local	request	for	the
http://example.com/mirror/foo/bar	to	be	internally
converted	into	a	proxy	request	to
http://backend.example.com/bar	(the	functionality	which
ProxyPass	provides	here).	It	also	takes	care	of	redirects	which
the	server	backend.example.com	sends	when	redirecting
http://backend.example.com/bar	to
http://backend.example.com/quux	.	Apache	httpd	adjusts
this	to	http://example.com/mirror/foo/quux	before
forwarding	the	HTTP	redirect	response	to	the	client.	Note	that	the
hostname	used	for	constructing	the	URL	is	chosen	in	respect	to
the	setting	of	the	UseCanonicalName	directive.

Note	that	this	ProxyPassReverse	directive	can	also	be	used	in
conjunction	with	the	proxy	feature	(RewriteRule	...	[P])	from
mod_rewrite	because	it	doesn't	depend	on	a	corresponding
ProxyPass	directive.

The	optional	interpolate	keyword,	used	together	with
ProxyPassInterpolateEnv,	enables	interpolation	of
environment	variables	specified	using	the	format	${VARNAME}.
Note	that	interpolation	is	not	supported	within	the	scheme	portion
of	a	URL.

When	used	inside	a	<Location>	section,	the	first	argument	is
omitted	and	the	local	directory	is	obtained	from	the	<Location>.
The	same	occurs	inside	a	<LocationMatch>	section,	but	will
probably	not	work	as	intended,	as	ProxyPassReverse	will	interpret
the	regexp	literally	as	a	path;	if	needed	in	this	situation,	specify	the
ProxyPassReverse	outside	the	section	or	in	a	separate
<Location>	section.

This	directive	is	not	supported	in	<Directory>	or	<Files>
sections.

ProxyPassReverseCookieDomain	Directive

Description: Adjusts	the	Domain	string	in	Set-Cookie	headers
from	a	reverse-	proxied	server

Syntax: ProxyPassReverseCookieDomain

internal-domain	public-domain

[interpolate]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

Usage	is	basically	similar	to	ProxyPassReverse,	but	instead	of
rewriting	headers	that	are	a	URL,	this	rewrites	the	domain	string
in	Set-Cookie	headers.

ProxyPassReverseCookiePath	Directive

Description: Adjusts	the	Path	string	in	Set-Cookie	headers	from
a	reverse-	proxied	server

Syntax: ProxyPassReverseCookiePath	internal-

path	public-path	[interpolate]

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy

Useful	in	conjunction	with	ProxyPassReverse	in	situations
where	backend	URL	paths	are	mapped	to	public	paths	on	the
reverse	proxy.	This	directive	rewrites	the	path	string	in	Set-
Cookie	headers.	If	the	beginning	of	the	cookie	path	matches
internal-path,	the	cookie	path	will	be	replaced	with	public-path.

In	the	example	given	with	ProxyPassReverse,	the	directive:

ProxyPassReverseCookiePath		"/"		"/mirror/foo/"

will	rewrite	a	cookie	with	backend	path	/	(or	/example	or,	in	fact,
anything)	to	/mirror/foo/.

ProxyPreserveHost	Directive

Description: Use	incoming	Host	HTTP	request	header	for
proxy	request

Syntax: ProxyPreserveHost	On|Off

Default: ProxyPreserveHost	Off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy
Compatibility: Usable	in	directory	context	in	2.3.3	and	later.

When	enabled,	this	option	will	pass	the	Host:	line	from	the
incoming	request	to	the	proxied	host,	instead	of	the	hostname
specified	in	the	ProxyPass	line.

This	option	should	normally	be	turned	Off.	It	is	mostly	useful	in
special	configurations	like	proxied	mass	name-based	virtual
hosting,	where	the	original	Host	header	needs	to	be	evaluated	by
the	backend	server.

ProxyReceiveBufferSize	Directive

Description: Network	buffer	size	for	proxied	HTTP	and	FTP
connections

Syntax: ProxyReceiveBufferSize	bytes

Default: ProxyReceiveBufferSize	0

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyReceiveBufferSize	directive	specifies	an	explicit
(TCP/IP)	network	buffer	size	for	proxied	HTTP	and	FTP
connections,	for	increased	throughput.	It	has	to	be	greater	than
512	or	set	to	0	to	indicate	that	the	system's	default	buffer	size
should	be	used.

Example
ProxyReceiveBufferSize	2048

ProxyRemote	Directive

Description: Remote	proxy	used	to	handle	certain	requests
Syntax: ProxyRemote	match	remote-server

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	defines	remote	proxies	to	this	proxy.	match	is	either	the	name
of	a	URL-scheme	that	the	remote	server	supports,	or	a	partial	URL
for	which	the	remote	server	should	be	used,	or	*	to	indicate	the
server	should	be	contacted	for	all	requests.	remote-server	is	a
partial	URL	for	the	remote	server.	Syntax:

remote-server	=	scheme://hostname[:port]

scheme	is	effectively	the	protocol	that	should	be	used	to
communicate	with	the	remote	server;	only	http	and	https	are
supported	by	this	module.	When	using	https,	the	requests	are
forwarded	through	the	remote	proxy	using	the	HTTP	CONNECT
method.

Example
ProxyRemote	"http://goodguys.example.com/"	"http://mirrorguys.example.com:8000"

ProxyRemote	"*"	"http://cleverproxy.localdomain"

ProxyRemote	"ftp"	"http://ftpproxy.mydomain:8080"

In	the	last	example,	the	proxy	will	forward	FTP	requests,
encapsulated	as	yet	another	HTTP	proxy	request,	to	another
proxy	which	can	handle	them.

This	option	also	supports	reverse	proxy	configuration;	a	backend
webserver	can	be	embedded	within	a	virtualhost	URL	space	even
if	that	server	is	hidden	by	another	forward	proxy.

ProxyRemoteMatch	Directive

Description: Remote	proxy	used	to	handle	requests	matched	by
regular	expressions

Syntax: ProxyRemoteMatch	regex	remote-server

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

The	ProxyRemoteMatch	is	identical	to	the	ProxyRemote
directive,	except	that	the	first	argument	is	a	regular	expression
match	against	the	requested	URL.

ProxyRequests	Directive

Description: Enables	forward	(standard)	proxy	requests
Syntax: ProxyRequests	On|Off

Default: ProxyRequests	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	allows	or	prevents	Apache	httpd	from	functioning	as	a
forward	proxy	server.	(Setting	ProxyRequests	to	Off	does	not
disable	use	of	the	ProxyPass	directive.)

In	a	typical	reverse	proxy	or	gateway	configuration,	this	option
should	be	set	to	Off.

In	order	to	get	the	functionality	of	proxying	HTTP	or	FTP	sites,	you
need	also	mod_proxy_http	or	mod_proxy_ftp	(or	both)
present	in	the	server.

In	order	to	get	the	functionality	of	(forward)	proxying	HTTPS	sites,
you	need	mod_proxy_connect	enabled	in	the	server.

Warning

Do	not	enable	proxying	with	ProxyRequests	until	you	have
secured	your	server.	Open	proxy	servers	are	dangerous	both	to
your	network	and	to	the	Internet	at	large.

See	also
Forward	and	Reverse	Proxies/Gateways

ProxySet	Directive

Description: Set	various	Proxy	balancer	or	member
parameters

Syntax: ProxySet	url	key=value	[key=value

...]

Context: directory
Status: Extension
Module: mod_proxy
Compatibility: ProxySet	is	only	available	in	Apache	HTTP

Server	2.2	and	later.

This	directive	is	used	as	an	alternate	method	of	setting	any	of	the
parameters	available	to	Proxy	balancers	and	workers	normally
done	via	the	ProxyPass	directive.	If	used	within	a	<Proxy
balancer	url|worker	url>	container	directive,	the	url
argument	is	not	required.	As	a	side	effect	the	respective	balancer
or	worker	gets	created.	This	can	be	useful	when	doing	reverse
proxying	via	a	RewriteRule	instead	of	a	ProxyPass	directive.

<Proxy	"balancer://hotcluster">

				BalancerMember	"http://www2.example.com:8080"	loadfactor=1

				BalancerMember	"http://www3.example.com:8080"	loadfactor=2

				ProxySet	lbmethod=bytraffic

</Proxy>

<Proxy	"http://backend">

				ProxySet	keepalive=On

</Proxy>

ProxySet	"balancer://foo"	lbmethod=bytraffic	timeout=15

ProxySet	"ajp://backend:7001"	timeout=15

Warning

Keep	in	mind	that	the	same	parameter	key	can	have	a	different
meaning	depending	whether	it	is	applied	to	a	balancer	or	a
worker,	as	shown	by	the	two	examples	above	regarding
timeout.

ProxySourceAddress	Directive

Description: Set	local	IP	address	for	outgoing	proxy
connections

Syntax: ProxySourceAddress	address

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: Available	in	version	2.3.9	and	later

This	directive	allows	to	set	a	specific	local	address	to	bind	to	when
connecting	to	a	backend	server.

ProxyStatus	Directive

Description: Show	Proxy	LoadBalancer	status	in	mod_status
Syntax: ProxyStatus	Off|On|Full

Default: ProxyStatus	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy
Compatibility: Available	in	version	2.2	and	later

This	directive	determines	whether	or	not	proxy	loadbalancer	status
data	is	displayed	via	the	mod_status	server-status	page.

Note

Full	is	synonymous	with	On

ProxyTimeout	Directive

Description: Network	timeout	for	proxied	requests
Syntax: ProxyTimeout	seconds

Default: Value	of	Timeout

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	directive	allows	a	user	to	specifiy	a	timeout	on	proxy
requests.	This	is	useful	when	you	have	a	slow/buggy	appserver
which	hangs,	and	you	would	rather	just	return	a	timeout	and	fail
gracefully	instead	of	waiting	however	long	it	takes	the	server	to
return.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ProxyVia	Directive

Description: Information	provided	in	the	Via	HTTP	response
header	for	proxied	requests

Syntax: ProxyVia	On|Off|Full|Block

Default: ProxyVia	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy

This	directive	controls	the	use	of	the	Via:	HTTP	header	by	the
proxy.	Its	intended	use	is	to	control	the	flow	of	proxy	requests
along	a	chain	of	proxy	servers.	See	RFC	2616	(HTTP/1.1),	section
14.45	for	an	explanation	of	Via:	header	lines.

If	set	to	Off,	which	is	the	default,	no	special	processing	is
performed.	If	a	request	or	reply	contains	a	Via:	header,	it	is
passed	through	unchanged.
If	set	to	On,	each	request	and	reply	will	get	a	Via:	header
line	added	for	the	current	host.
If	set	to	Full,	each	generated	Via:	header	line	will
additionally	have	the	Apache	httpd	server	version	shown	as	a
Via:	comment	field.
If	set	to	Block,	every	proxy	request	will	have	all	its	Via:
header	lines	removed.	No	new	Via:	header	will	be
generated.

http://www.ietf.org/rfc/rfc2616.txt
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_ajp

Description: AJP	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_ajp_module
Source	File: mod_proxy_ajp.c
Compatibility: Available	in	version	2.1	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	Apache	JServ	Protocol	version	1.3	(hereafter
AJP13).

Thus,	in	order	to	get	the	ability	of	handling	AJP13	protocol,
mod_proxy	and	mod_proxy_ajp	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_ajp
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_ajp

See	also
mod_proxy

Environment	Variable	documentation

Usage

This	module	is	used	to	reverse	proxy	to	a	backend	application
server	(e.g.	Apache	Tomcat)	using	the	AJP13	protocol.	The	usage
is	similar	to	an	HTTP	reverse	proxy,	but	uses	the	ajp://	prefix:

Simple	Reverse	Proxy
ProxyPass	"/app"	"ajp://backend.example.com:8009/app"

Balancers	may	also	be	used:

Balancer	Reverse	Proxy
<Proxy	"balancer://cluster">

				BalancerMember	"ajp://app1.example.com:8009"	loadfactor=1

				BalancerMember	"ajp://app2.example.com:8009"	loadfactor=2

				ProxySet	lbmethod=bytraffic

</Proxy>

ProxyPass	"/app"	"balancer://cluster/app"

Note	that	usually	no	ProxyPassReverse	directive	is	necessary.
The	AJP	request	includes	the	original	host	header	given	to	the
proxy,	and	the	application	server	can	be	expected	to	generate	self-
referential	headers	relative	to	this	host,	so	no	rewriting	is
necessary.

The	main	exception	is	when	the	URL	path	on	the	proxy	differs
from	that	on	the	backend.	In	this	case,	a	redirect	header	can	be
rewritten	relative	to	the	original	host	URL	(not	the	backend
ajp://	URL),	for	example:

Rewriting	Proxied	Path
ProxyPass	"/apps/foo"	"ajp://backend.example.com:8009/foo"

ProxyPassReverse	"/apps/foo"	"http://www.example.com/foo"

However,	it	is	usually	better	to	deploy	the	application	on	the
backend	server	at	the	same	path	as	the	proxy	rather	than	to	take

this	approach.

Environment	Variables

Environment	variables	whose	names	have	the	prefix	AJP_	are
forwarded	to	the	origin	server	as	AJP	request	attributes	(with	the
AJP_	prefix	removed	from	the	name	of	the	key).

Overview	of	the	protocol

The	AJP13	protocol	is	packet-oriented.	A	binary	format	was
presumably	chosen	over	the	more	readable	plain	text	for	reasons
of	performance.	The	web	server	communicates	with	the	servlet
container	over	TCP	connections.	To	cut	down	on	the	expensive
process	of	socket	creation,	the	web	server	will	attempt	to	maintain
persistent	TCP	connections	to	the	servlet	container,	and	to	reuse	a
connection	for	multiple	request/response	cycles.

Once	a	connection	is	assigned	to	a	particular	request,	it	will	not	be
used	for	any	others	until	the	request-handling	cycle	has
terminated.	In	other	words,	requests	are	not	multiplexed	over
connections.	This	makes	for	much	simpler	code	at	either	end	of
the	connection,	although	it	does	cause	more	connections	to	be
open	at	once.

Once	the	web	server	has	opened	a	connection	to	the	servlet
container,	the	connection	can	be	in	one	of	the	following	states:

Idle	
No	request	is	being	handled	over	this	connection.
Assigned	
The	connection	is	handling	a	specific	request.

Once	a	connection	is	assigned	to	handle	a	particular	request,	the
basic	request	information	(e.g.	HTTP	headers,	etc)	is	sent	over	the
connection	in	a	highly	condensed	form	(e.g.	common	strings	are
encoded	as	integers).	Details	of	that	format	are	below	in	Request
Packet	Structure.	If	there	is	a	body	to	the	request	(content-
length	>	0),	that	is	sent	in	a	separate	packet	immediately	after.

At	this	point,	the	servlet	container	is	presumably	ready	to	start
processing	the	request.	As	it	does	so,	it	can	send	the	following
messages	back	to	the	web	server:

SEND_HEADERS	
Send	a	set	of	headers	back	to	the	browser.
SEND_BODY_CHUNK	
Send	a	chunk	of	body	data	back	to	the	browser.
GET_BODY_CHUNK	
Get	further	data	from	the	request	if	it	hasn't	all	been
transferred	yet.	This	is	necessary	because	the	packets	have	a
fixed	maximum	size	and	arbitrary	amounts	of	data	can	be
included	the	body	of	a	request	(for	uploaded	files,	for
example).	(Note:	this	is	unrelated	to	HTTP	chunked	transfer).
END_RESPONSE	
Finish	the	request-handling	cycle.

Each	message	is	accompanied	by	a	differently	formatted	packet	of
data.	See	Response	Packet	Structures	below	for	details.

Basic	Packet	Structure

There	is	a	bit	of	an	XDR	heritage	to	this	protocol,	but	it	differs	in
lots	of	ways	(no	4	byte	alignment,	for	example).

AJP13	uses	network	byte	order	for	all	data	types.

There	are	four	data	types	in	the	protocol:	bytes,	booleans,	integers
and	strings.

Byte
A	single	byte.

Boolean
A	single	byte,	1	=	true,	0	=	false.	Using	other	non-zero
values	as	true	(i.e.	C-style)	may	work	in	some	places,	but	it
won't	in	others.

Integer
A	number	in	the	range	of	0	to	2^16	(32768).	Stored	in	2
bytes	with	the	high-order	byte	first.

String
A	variable-sized	string	(length	bounded	by	2^16).	Encoded
with	the	length	packed	into	two	bytes	first,	followed	by	the
string	(including	the	terminating	'\0').	Note	that	the	encoded
length	does	not	include	the	trailing	'\0'	--	it	is	like	strlen.
This	is	a	touch	confusing	on	the	Java	side,	which	is	littered
with	odd	autoincrement	statements	to	skip	over	these
terminators.	I	believe	the	reason	this	was	done	was	to	allow
the	C	code	to	be	extra	efficient	when	reading	strings	which
the	servlet	container	is	sending	back	--	with	the	terminating	\0
character,	the	C	code	can	pass	around	references	into	a
single	buffer,	without	copying.	if	the	\0	was	missing,	the	C
code	would	have	to	copy	things	out	in	order	to	get	its	notion	of
a	string.

Packet	Size
According	to	much	of	the	code,	the	max	packet	size	is	8	*	1024
bytes	(8K).	The	actual	length	of	the	packet	is	encoded	in	the
header.

Packet	Headers
Packets	sent	from	the	server	to	the	container	begin	with	0x1234.
Packets	sent	from	the	container	to	the	server	begin	with	AB	(that's
the	ASCII	code	for	A	followed	by	the	ASCII	code	for	B).	After	those
first	two	bytes,	there	is	an	integer	(encoded	as	above)	with	the
length	of	the	payload.	Although	this	might	suggest	that	the
maximum	payload	could	be	as	large	as	2^16,	in	fact,	the	code	sets
the	maximum	to	be	8K.

Packet	Format	(Server->Container)
Byte 0 1 2 3 4...(n+3)
Contents 0x12 0x34 Data	Length	(n) Data

Packet	Format	(Container->Server)
Byte 0 1 2 3 4...(n+3)
Contents A B Data	Length	(n) Data

For	most	packets,	the	first	byte	of	the	payload	encodes	the	type	of
message.	The	exception	is	for	request	body	packets	sent	from	the
server	to	the	container	--	they	are	sent	with	a	standard	packet
header	(0x1234	and	then	length	of	the	packet),	but	without	any
prefix	code	after	that.

The	web	server	can	send	the	following	messages	to	the	servlet
container:

Code Type	of
Packet

Meaning

2 Forward
Request

Begin	the	request-processing	cycle	with	the
following	data

7 Shutdown The	web	server	asks	the	container	to	shut
itself	down.

8 Ping The	web	server	asks	the	container	to	take
control	(secure	login	phase).

10 CPing The	web	server	asks	the	container	to	respond
quickly	with	a	CPong.

none Data Size	(2	bytes)	and	corresponding	body	data.

To	ensure	some	basic	security,	the	container	will	only	actually	do
the	Shutdown	if	the	request	comes	from	the	same	machine	on
which	it's	hosted.

The	first	Data	packet	is	send	immediately	after	the	Forward
Request	by	the	web	server.

The	servlet	container	can	send	the	following	types	of	messages	to
the	webserver:

Code Type	of
Packet

Meaning

3 Send
Body
Chunk

Send	a	chunk	of	the	body	from	the	servlet
container	to	the	web	server	(and	presumably,
onto	the	browser).

4 Send
Headers

Send	the	response	headers	from	the	servlet
container	to	the	web	server	(and	presumably,
onto	the	browser).

5 End
Response

Marks	the	end	of	the	response	(and	thus	the
request-handling	cycle).

6 Get	Body
Chunk

Get	further	data	from	the	request	if	it	hasn't	all
been	transferred	yet.

9 CPong The	reply	to	a	CPing	request

Reply

Each	of	the	above	messages	has	a	different	internal	structure,
detailed	below.

Request	Packet	Structure

For	messages	from	the	server	to	the	container	of	type	Forward
Request:

AJP13_FORWARD_REQUEST	:=

				prefix_code						(byte)	0x02	=	JK_AJP13_FORWARD_REQUEST

				method											(byte)

				protocol									(string)

				req_uri										(string)

				remote_addr						(string)

				remote_host						(string)

				server_name						(string)

				server_port						(integer)

				is_ssl											(boolean)

				num_headers						(integer)

				request_headers	*(req_header_name	req_header_value)

				attributes						*(attribut_name	attribute_value)

				request_terminator	(byte)	OxFF

The	request_headers	have	the	following	structure:

req_header_name	:=

				sc_req_header_name	|	(string)		[see	below	for	how	this	is	parsed]

sc_req_header_name	:=	0xA0xx	(integer)

req_header_value	:=	(string)

The	attributes	are	optional	and	have	the	following	structure:

attribute_name	:=	sc_a_name	|	(sc_a_req_attribute	string)

attribute_value	:=	(string)

Not	that	the	all-important	header	is	content-length,	because	it
determines	whether	or	not	the	container	looks	for	another	packet
immediately.

Detailed	description	of	the	elements	of	Forward
Request

Request	prefix
For	all	requests,	this	will	be	2.	See	above	for	details	on	other
Prefix	codes.

Method
The	HTTP	method,	encoded	as	a	single	byte:

Command	Name Code
OPTIONS 1
GET 2
HEAD 3
POST 4
PUT 5
DELETE 6
TRACE 7
PROPFIND 8
PROPPATCH 9
MKCOL 10
COPY 11
MOVE 12
LOCK 13
UNLOCK 14
ACL 15
REPORT 16
VERSION-CONTROL 17
CHECKIN 18
CHECKOUT 19
UNCHECKOUT 20
SEARCH 21
MKWORKSPACE 22

UPDATE 23
LABEL 24
MERGE 25
BASELINE_CONTROL 26
MKACTIVITY 27

Later	version	of	ajp13,	will	transport	additional	methods,	even	if
they	are	not	in	this	list.

protocol,	req_uri,	remote_addr,	remote_host,
server_name,	server_port,	is_ssl
These	are	all	fairly	self-explanatory.	Each	of	these	is	required,	and
will	be	sent	for	every	request.

Headers
The	structure	of	request_headers	is	the	following:	First,	the
number	of	headers	num_headers	is	encoded.	Then,	a	series	of
header	name	req_header_name	/	value	req_header_value
pairs	follows.	Common	header	names	are	encoded	as	integers,	to
save	space.	If	the	header	name	is	not	in	the	list	of	basic	headers,
it	is	encoded	normally	(as	a	string,	with	prefixed	length).	The	list	of
common	headers	sc_req_header_nameand	their	codes	is	as
follows	(all	are	case-sensitive):

Name Code	value Code	name
accept 0xA001 SC_REQ_ACCEPT
accept-charset 0xA002 SC_REQ_ACCEPT_CHARSET
accept-encoding 0xA003 SC_REQ_ACCEPT_ENCODING
accept-language 0xA004 SC_REQ_ACCEPT_LANGUAGE
authorization 0xA005 SC_REQ_AUTHORIZATION
connection 0xA006 SC_REQ_CONNECTION

content-type 0xA007 SC_REQ_CONTENT_TYPE
content-length 0xA008 SC_REQ_CONTENT_LENGTH
cookie 0xA009 SC_REQ_COOKIE
cookie2 0xA00A SC_REQ_COOKIE2
host 0xA00B SC_REQ_HOST
pragma 0xA00C SC_REQ_PRAGMA
referer 0xA00D SC_REQ_REFERER
user-agent 0xA00E SC_REQ_USER_AGENT

The	Java	code	that	reads	this	grabs	the	first	two-byte	integer	and
if	it	sees	an	'0xA0'	in	the	most	significant	byte,	it	uses	the	integer
in	the	second	byte	as	an	index	into	an	array	of	header	names.	If
the	first	byte	is	not	0xA0,	it	assumes	that	the	two-byte	integer	is
the	length	of	a	string,	which	is	then	read	in.

This	works	on	the	assumption	that	no	header	names	will	have
length	greater	than	0x9FFF	(==0xA000	-	1),	which	is	perfectly
reasonable,	though	somewhat	arbitrary.

Note:
The	content-length	header	is	extremely	important.	If	it	is
present	and	non-zero,	the	container	assumes	that	the	request
has	a	body	(a	POST	request,	for	example),	and	immediately
reads	a	separate	packet	off	the	input	stream	to	get	that	body.

Attributes
The	attributes	prefixed	with	a	?	(e.g.	?context)	are	all	optional.
For	each,	there	is	a	single	byte	code	to	indicate	the	type	of
attribute,	and	then	its	value	(string	or	integer).	They	can	be	sent	in
any	order	(though	the	C	code	always	sends	them	in	the	order
listed	below).	A	special	terminating	code	is	sent	to	signal	the	end
of	the	list	of	optional	attributes.	The	list	of	byte	codes	is:

Information Code
Value

Type	Of
Value

Note

?context 0x01 - Not	currently	implemented
?
servlet_path

0x02 - Not	currently	implemented

?
remote_user

0x03 String

?auth_type 0x04 String
?
query_string

0x05 String

?jvm_route 0x06 String
?ssl_cert 0x07 String
?ssl_cipher 0x08 String
?
ssl_session

0x09 String

?
req_attribute

0x0A String Name	(the	name	of	the
attribute	follows)

?
ssl_key_size

0x0B Integer

are_done 0xFF - request_terminator

The	context	and	servlet_path	are	not	currently	set	by	the	C
code,	and	most	of	the	Java	code	completely	ignores	whatever	is
sent	over	for	those	fields	(and	some	of	it	will	actually	break	if	a
string	is	sent	along	after	one	of	those	codes).	I	don't	know	if	this	is
a	bug	or	an	unimplemented	feature	or	just	vestigial	code,	but	it's
missing	from	both	sides	of	the	connection.

The	remote_user	and	auth_type	presumably	refer	to	HTTP-
level	authentication,	and	communicate	the	remote	user's
username	and	the	type	of	authentication	used	to	establish	their
identity	(e.g.	Basic,	Digest).

The	query_string,	ssl_cert,	ssl_cipher,	and
ssl_session	refer	to	the	corresponding	pieces	of	HTTP	and
HTTPS.

The	jvm_route,	is	used	to	support	sticky	sessions	--	associating
a	user's	sesson	with	a	particular	Tomcat	instance	in	the	presence
of	multiple,	load-balancing	servers.

Beyond	this	list	of	basic	attributes,	any	number	of	other	attributes
can	be	sent	via	the	req_attribute	code	0x0A.	A	pair	of	strings
to	represent	the	attribute	name	and	value	are	sent	immediately
after	each	instance	of	that	code.	Environment	values	are	passed
in	via	this	method.

Finally,	after	all	the	attributes	have	been	sent,	the	attribute
terminator,	0xFF,	is	sent.	This	signals	both	the	end	of	the	list	of
attributes	and	also	then	end	of	the	Request	Packet.

Response	Packet	Structure

for	messages	which	the	container	can	send	back	to	the	server.

AJP13_SEND_BODY_CHUNK	:=

		prefix_code			3

		chunk_length		(integer)

		chunk								*(byte)

		chunk_terminator	(byte)	Ox00

AJP13_SEND_HEADERS	:=

		prefix_code							4

		http_status_code		(integer)

		http_status_msg			(string)

		num_headers							(integer)

		response_headers	*(res_header_name	header_value)

res_header_name	:=

				sc_res_header_name	|	(string)			[see	below	for	how	this	is	parsed]

sc_res_header_name	:=	0xA0	(byte)

header_value	:=	(string)

AJP13_END_RESPONSE	:=

		prefix_code							5

		reuse													(boolean)

AJP13_GET_BODY_CHUNK	:=

		prefix_code							6

		requested_length		(integer)

Details:
Send	Body	Chunk
The	chunk	is	basically	binary	data,	and	is	sent	directly	back	to	the
browser.

Send	Headers
The	status	code	and	message	are	the	usual	HTTP	things	(e.g.
200	and	OK).	The	response	header	names	are	encoded	the	same

way	the	request	header	names	are.	See	header_encoding	above
for	details	about	how	the	codes	are	distinguished	from	the	strings.
The	codes	for	common	headers	are:

Name Code	value
Content-Type 0xA001
Content-Language 0xA002
Content-Length 0xA003
Date 0xA004
Last-Modified 0xA005
Location 0xA006
Set-Cookie 0xA007
Set-Cookie2 0xA008
Servlet-Engine 0xA009
Status 0xA00A
WWW-Authenticate 0xA00B

After	the	code	or	the	string	header	name,	the	header	value	is
immediately	encoded.

End	Response
Signals	the	end	of	this	request-handling	cycle.	If	the	reuse	flag	is
true	(anything	other	than	0	in	the	actual	C	code),
this	TCP	connection	can	now	be	used	to	handle	new	incoming
requests.	If	reuse	is	false	(==0),	the	connection	should	be	closed.

Get	Body	Chunk
The	container	asks	for	more	data	from	the	request	(If	the	body
was	too	large	to	fit	in	the	first	packet	sent	over	or	when	the	request
is	chunked).	The	server	will	send	a	body	packet	back	with	an
amount	of	data	which	is	the	minimum	of	the	request_length,

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

the	maximum	send	body	size	(8186	(8	Kbytes	-	6)),	and
the	number	of	bytes	actually	left	to	send	from	the	request	body.
If	there	is	no	more	data	in	the	body	(i.e.	the	servlet	container	is
trying	to	read	past	the	end	of	the	body),	the	server	will	send	back
an	empty	packet,	which	is	a	body	packet	with	a	payload	length	of
0.	(0x12,0x34,0x00,0x00)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_balancer

Description: mod_proxy	extension	for	load	balancing
Status: Extension
Module	Identifier: proxy_balancer_module
Source	File: mod_proxy_balancer.c
Compatibility: Available	in	version	2.1	and	later

Summary
This	module	requires	the	service	of	mod_proxy	and	it	provides	load
balancing	for	all	the	supported	protocols.	The	most	important	ones
are:

HTTP,	using	mod_proxy_http
FTP,	using	mod_proxy_ftp
AJP13,	using	mod_proxy_ajp
WebSocket,	using	mod_proxy_wstunnel

The	Load	balancing	scheduler	algorithm	is	not	provided	by	this
module	but	from	other	ones	such	as:

mod_lbmethod_byrequests

mod_lbmethod_bytraffic

mod_lbmethod_bybusyness

mod_lbmethod_heartbeat

Thus,	in	order	to	get	the	ability	of	load	balancing,	mod_proxy,
mod_proxy_balancer	and	at	least	one	of	load	balancing	scheduler
algorithm	modules	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open

proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

BalancerMember

BalancerGrowth

BalancerPersist

BalancerInherit

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_balancer
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_balancer

Load	balancer	scheduler	algorithm

At	present,	there	are	3	load	balancer	scheduler	algorithms
available	for	use:	Request	Counting,	Weighted	Traffic	Counting
and	Pending	Request	Counting.	These	are	controlled	via	the
lbmethod	value	of	the	Balancer	definition.	See	the	ProxyPass
directive	for	more	information,	especially	regarding	how	to
configure	the	Balancer	and	BalancerMembers.

Load	balancer	stickyness

The	balancer	supports	stickyness.	When	a	request	is	proxied	to
some	back-end,	then	all	following	requests	from	the	same	user
should	be	proxied	to	the	same	back-end.	Many	load	balancers
implement	this	feature	via	a	table	that	maps	client	IP	addresses	to
back-ends.	This	approach	is	transparent	to	clients	and	back-ends,
but	suffers	from	some	problems:	unequal	load	distribution	if	clients
are	themselves	hidden	behind	proxies,	stickyness	errors	when	a
client	uses	a	dynamic	IP	address	that	changes	during	a	session
and	loss	of	stickyness,	if	the	mapping	table	overflows.

The	module	mod_proxy_balancer	implements	stickyness	on
top	of	two	alternative	means:	cookies	and	URL	encoding.
Providing	the	cookie	can	be	either	done	by	the	back-end	or	by	the
Apache	web	server	itself.	The	URL	encoding	is	usually	done	on
the	back-end.

Examples	of	a	balancer	configuration

Before	we	dive	into	the	technical	details,	here's	an	example	of	how
you	might	use	mod_proxy_balancer	to	provide	load	balancing
between	two	back-end	servers:

<Proxy	"balancer://mycluster">

				BalancerMember	"http://192.168.1.50:80"

				BalancerMember	"http://192.168.1.51:80"

</Proxy>

ProxyPass	"/test"	"balancer://mycluster"

ProxyPassReverse	"/test"	"balancer://mycluster"

Another	example	of	how	to	provide	load	balancing	with	stickyness
using	mod_headers,	even	if	the	back-end	server	does	not	set	a
suitable	session	cookie:

Header	add	Set-Cookie	"ROUTEID=.%{BALANCER_WORKER_ROUTE}e;	path=/"	env=BALANCER_ROUTE_CHANGED

<Proxy	"balancer://mycluster">

				BalancerMember	"http://192.168.1.50:80"	route=1

				BalancerMember	"http://192.168.1.51:80"	route=2

				ProxySet	stickysession=ROUTEID

</Proxy>

ProxyPass	"/test"	"balancer://mycluster"

ProxyPassReverse	"/test"	"balancer://mycluster"

Exported	Environment	Variables

At	present	there	are	6	environment	variables	exported:

BALANCER_SESSION_STICKY
This	is	assigned	the	stickysession	value	used	for	the	current
request.	It	is	the	name	of	the	cookie	or	request	parameter
used	for	sticky	sessions

BALANCER_SESSION_ROUTE
This	is	assigned	the	route	parsed	from	the	current	request.

BALANCER_NAME
This	is	assigned	the	name	of	the	balancer	used	for	the	current
request.	The	value	is	something	like	balancer://foo.

BALANCER_WORKER_NAME
This	is	assigned	the	name	of	the	worker	used	for	the	current
request.	The	value	is	something	like	http://hostA:1234.

BALANCER_WORKER_ROUTE
This	is	assigned	the	route	of	the	worker	that	will	be	used	for
the	current	request.

BALANCER_ROUTE_CHANGED
This	is	set	to	1	if	the	session	route	does	not	match	the	worker
route	(BALANCER_SESSION_ROUTE	!=
BALANCER_WORKER_ROUTE)	or	the	session	does	not	yet
have	an	established	route.	This	can	be	used	to	determine
when/if	the	client	needs	to	be	sent	an	updated	route	when
sticky	sessions	are	used.

Enabling	Balancer	Manager	Support

This	module	requires	the	service	of	mod_status.	Balancer
manager	enables	dynamic	update	of	balancer	members.	You	can
use	balancer	manager	to	change	the	balance	factor	of	a	particular
member,	or	put	it	in	the	off	line	mode.

Thus,	in	order	to	get	the	ability	of	load	balancer	management,
mod_status	and	mod_proxy_balancer	have	to	be	present	in
the	server.

To	enable	load	balancer	management	for	browsers	from	the
example.com	domain	add	this	code	to	your	httpd.conf
configuration	file

<Location	"/balancer-manager">

				SetHandler	balancer-manager

				Require	host	example.com

</Location>

You	can	now	access	load	balancer	manager	by	using	a	Web
browser	to	access	the	page
http://your.server.name/balancer-manager.	Please
note	that	only	Balancers	defined	outside	of	<Location	...>
containers	can	be	dynamically	controlled	by	the	Manager.

Details	on	load	balancer	stickyness

When	using	cookie	based	stickyness,	you	need	to	configure	the
name	of	the	cookie	that	contains	the	information	about	which
back-end	to	use.	This	is	done	via	the	stickysession	attribute	added
to	either	ProxyPass	or	ProxySet.	The	name	of	the	cookie	is
case-sensitive.	The	balancer	extracts	the	value	of	the	cookie	and
looks	for	a	member	worker	with	route	equal	to	that	value.	The
route	must	also	be	set	in	either	ProxyPass	or	ProxySet.	The
cookie	can	either	be	set	by	the	back-end,	or	as	shown	in	the
above	example	by	the	Apache	web	server	itself.

Some	back-ends	use	a	slightly	different	form	of	stickyness	cookie,
for	instance	Apache	Tomcat.	Tomcat	adds	the	name	of	the	Tomcat
instance	to	the	end	of	its	session	id	cookie,	separated	with	a	dot
(.)	from	the	session	id.	Thus	if	the	Apache	web	server	finds	a	dot
in	the	value	of	the	stickyness	cookie,	it	only	uses	the	part	behind
the	dot	to	search	for	the	route.	In	order	to	let	Tomcat	know	about
its	instance	name,	you	need	to	set	the	attribute	jvmRoute	inside
the	Tomcat	configuration	file	conf/server.xml	to	the	value	of
the	route	of	the	worker	that	connects	to	the	respective	Tomcat.
The	name	of	the	session	cookie	used	by	Tomcat	(and	more
generally	by	Java	web	applications	based	on	servlets)	is
JSESSIONID	(upper	case)	but	can	be	configured	to	something
else.

The	second	way	of	implementing	stickyness	is	URL	encoding.	The
web	server	searches	for	a	query	parameter	in	the	URL	of	the
request.	The	name	of	the	parameter	is	specified	again	using
stickysession.	The	value	of	the	parameter	is	used	to	lookup	a
member	worker	with	route	equal	to	that	value.	Since	it	is	not	easy
to	extract	and	manipulate	all	URL	links	contained	in	responses,
generally	the	work	of	adding	the	parameters	to	each	link	is	done
by	the	back-end	generating	the	content.	In	some	cases	it	might	be
feasible	doing	this	via	the	web	server	using	mod_substitute	or

mod_sed.	This	can	have	negative	impact	on	performance	though.

The	Java	standards	implement	URL	encoding	slightly	different.
They	use	a	path	info	appended	to	the	URL	using	a	semicolon	(;)
as	the	separator	and	add	the	session	id	behind.	As	in	the	cookie
case,	Apache	Tomcat	can	include	the	configured	jvmRoute	in	this
path	info.	To	let	Apache	find	this	sort	of	path	info,	you	neet	to	set
scolonpathdelim	to	On	in	ProxyPass	or	ProxySet.

Finally	you	can	support	cookies	and	URL	encoding	at	the	same
time,	by	configuring	the	name	of	the	cookie	and	the	name	of	the
URL	parameter	separated	by	a	vertical	bar	(|)	as	in	the	following
example:

ProxyPass	"/test"	"balancer://mycluster"	stickysession=JSESSIONID|jsessionid	scolonpathdelim=On

<Proxy	"balancer://mycluster">

				BalancerMember	"http://192.168.1.50:80"	route=node1

				BalancerMember	"http://192.168.1.51:80"	route=node2

</Proxy>

If	the	cookie	and	the	request	parameter	both	provide	routing
information	for	the	same	request,	the	information	from	the	request
parameter	is	used.

Troubleshooting	load	balancer	stickyness

If	you	experience	stickyness	errors,	e.g.	users	lose	their
application	sessions	and	need	to	login	again,	you	first	want	to
check	whether	this	is	because	the	back-ends	are	sometimes
unavailable	or	whether	your	configuration	is	wrong.	To	find	out
about	possible	stability	problems	with	the	back-ends,	check	your
Apache	error	log	for	proxy	error	messages.

To	verify	your	configuration,	first	check,	whether	the	stickyness	is
based	on	a	cookie	or	on	URL	encoding.	Next	step	would	be
logging	the	appropriate	data	in	the	access	log	by	using	an
enhanced	LogFormat.	The	following	fields	are	useful:

%{MYCOOKIE}C

The	value	contained	in	the	cookie	with	name	MYCOOKIE.	The
name	should	be	the	same	given	in	the	stickysession	attribute.

%{Set-Cookie}o

This	logs	any	cookie	set	by	the	back-end.	You	can	track,
whether	the	back-end	sets	the	session	cookie	you	expect,
and	to	which	value	it	is	set.

%{BALANCER_SESSION_STICKY}e

The	name	of	the	cookie	or	request	parameter	used	to	lookup
the	routing	information.

%{BALANCER_SESSION_ROUTE}e

The	route	information	found	in	the	request.

%{BALANCER_WORKER_ROUTE}e

The	route	of	the	worker	chosen.

%{BALANCER_ROUTE_CHANGED}e

Set	to	1	if	the	route	in	the	request	is	different	from	the	route	of
the	worker,	i.e.	the	request	couldn't	be	handled	sticky.

Common	reasons	for	loss	of	session	are	session	timeouts,	which
are	usually	configurable	on	the	back-end	server.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	balancer	also	logs	detailed	information	about	handling
stickyness	to	the	error	log,	if	the	log	level	is	set	to	debug	or	higher.
This	is	an	easy	way	to	troubleshoot	stickyness	problems,	but	the
log	volume	might	be	to	high	for	production	servers	under	high
load.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_connect

Description: mod_proxy	extension	for	CONNECT	request
handling

Status: Extension
Module	Identifier: proxy_connect_module
Source	File: mod_proxy_connect.c

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	CONNECT	HTTP	method.	This	method	is	mainly	used	to	tunnel
SSL	requests	through	proxy	servers.

Thus,	in	order	to	get	the	ability	of	handling	CONNECT	requests,
mod_proxy	and	mod_proxy_connect	have	to	be	present	in	the
server.

CONNECT	is	also	used	when	the	server	needs	to	send	an	HTTPS
request	through	a	forward	proxy.	In	this	case	the	server	acts	as	a
CONNECT	client.	This	functionality	is	part	of	mod_proxy	and
mod_proxy_connect	is	not	needed	in	this	case.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

https://www.apache.org/foundation/contributing.html

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_connect
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_connect

Request	notes

mod_proxy_connect	creates	the	following	request	notes	for
logging	using	the	%{VARNAME}n	format	in	LogFormat	or
ErrorLogFormat:

proxy-source-port
The	local	port	used	for	the	connection	to	the	backend	server.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

AllowCONNECT	Directive

Description: Ports	that	are	allowed	to	CONNECT	through	the
proxy

Syntax: AllowCONNECT	port[-port]	[port[-

port]]	...

Default: AllowCONNECT	443	563

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_connect
Compatibility: Moved	from	mod_proxy	in	Apache	2.3.5.	Port

ranges	available	since	Apache	2.3.7.

The	AllowCONNECT	directive	specifies	a	list	of	port	numbers	or
ranges	to	which	the	proxy	CONNECT	method	may	connect.	Today's
browsers	use	this	method	when	a	https	connection	is	requested
and	proxy	tunneling	over	HTTP	is	in	effect.

By	default,	only	the	default	https	port	(443)	and	the	default	snews
port	(563)	are	enabled.	Use	the	AllowCONNECT	directive	to
override	this	default	and	allow	connections	to	the	listed	ports	only.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_express

Description: Dynamic	mass	reverse	proxy	extension	for
mod_proxy

Status: Extension
Module	Identifier: proxy_express_module
Source	File: mod_proxy_express.c

Summary
This	module	creates	dynamically	configured	mass	reverse	proxies,	by
mapping	the	Host:	header	of	the	HTTP	request	to	a	server	name	and
backend	URL	stored	in	a	DBM	file.	This	allows	for	easy	use	of	a	huge
number	of	reverse	proxies	with	no	configuration	changes.	It	is	much
less	feature-full	than	mod_proxy_balancer,	which	also	provides
dynamic	growth,	but	is	intended	to	handle	much,	much	larger
numbers	of	backends.	It	is	ideally	suited	as	a	front-end	HTTP	switch
and	for	micro-services	architectures.

This	module	requires	the	service	of	mod_proxy.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Limitations

This	module	is	not	intended	to	replace	the	dynamic	capability
of	mod_proxy_balancer.	Instead,	it	is	intended	to	be	mostly
a	lightweight	and	fast	alternative	to	using	mod_rewrite	with
RewriteMap	and	the	[P]	flag	for	mapped	reverse	proxying.
It	does	not	support	regex	or	pattern	matching	at	all.

It	emulates:

<VirtualHost	*:80>

			ServerName	front.end.server

			ProxyPass	"/"	"back.end.server:port"

			ProxyPassReverse	"/"	"back.end.server:port"

</VirtualHost>

That	is,	the	entire	URL	is	appended	to	the	mapped	backend
URL.	This	is	in	keeping	with	the	intent	of	being	a	simple	but
fast	reverse	proxy	switch.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

BalancerMember

BalancerGrowth

BalancerPersist

BalancerInherit

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_express
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_express

ProxyExpressDBMFile	Directive

Description: Pathname	to	DBM	file.
Syntax: ProxyExpressDBMFile	<pathname>

Default: None

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_express
Compatibility: Available	in	Apache	2.3.13	and	later

The	ProxyExpressDBMFile	directive	points	to	the	location	of
the	Express	map	DBM	file.	This	file	serves	to	map	the	incoming
server	name,	obtained	from	the	Host:	header,	to	a	backend	URL.

Note

The	file	is	constructed	from	a	plain	text	file	format	using	the
httxt2dbm	utility.

ProxyExpress	map	file
##

##express-map.txt:

##

www1.example.com	http://192.168.211.2:8080

www2.example.com	http://192.168.211.12:8088

www3.example.com	http://192.168.212.10

Create	DBM	file
httxt2dbm	-i	express-map.txt	-o	emap

Configuration
ProxyExpressEnable	on

ProxyExpressDBMFile	emap

ProxyExpressDBMType	Directive

Description: DBM	type	of	file.
Syntax: ProxyExpressDBMFile	<type>

Default: "default"

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_express
Compatibility: Available	in	Apache	2.3.13	and	later

The	ProxyExpressDBMType	directive	controls	the	DBM	type
expected	by	the	module.	The	default	is	the	default	DBM	type
created	with	httxt2dbm.

Possible	values	are	(not	all	may	be	available	at	run	time):

Value Description
db Berkeley	DB	files
gdbm GDBM	files
ndbm NDBM	files
sdbm SDBM	files	(always	available)
default default	DBM	type

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ProxyExpressEnable	Directive

Description: Enable	the	module	functionality.
Syntax: ProxyExpressEnable	[on|off]

Default: off

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_express
Compatibility: Available	in	Apache	2.3.13	and	later

The	ProxyExpressEnable	directive	controls	whether	the
module	will	be	active.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_fcgi

Description: FastCGI	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_fcgi_module
Source	File: mod_proxy_fcgi.c
Compatibility: Available	in	version	2.3	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	FastCGI	protocol.

Thus,	in	order	to	get	the	ability	of	handling	the	FastCGI	protocol,
mod_proxy	and	mod_proxy_fcgi	have	to	be	present	in	the	server.

Unlike	mod_fcgid	and	mod_fastcgi,	mod_proxy_fcgi	has	no
provision	for	starting	the	application	process;	fcgistarter	is
provided	(on	some	platforms)	for	that	purpose.	Alternatively,	external
launching	or	process	management	may	be	available	in	the	FastCGI
application	framework	in	use.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

http://www.fastcgi.com/
http://httpd.apache.org/mod_fcgid/
http://www.fastcgi.com/
https://www.apache.org/foundation/contributing.html

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
fcgistarter

mod_proxy

mod_authnz_fcgi

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_fcgi
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_fcgi

Examples

Remember,	in	order	to	make	the	following	examples	work,	you
have	to	enable	mod_proxy	and	mod_proxy_fcgi.

Single	application	instance
ProxyPass	"/myapp/"	"fcgi://localhost:4000/"

mod_proxy_fcgi	disables	connection	reuse	by	default,	so	after
a	request	has	been	completed	the	connection	will	NOT	be	held
open	by	that	httpd	child	process	and	won't	be	reused.	If	the
FastCGI	application	is	able	to	handle	concurrent	connections	from
httpd,	you	can	opt-in	to	connection	reuse	as	shown	in	the	following
example:

Single	application	instance,	connection	reuse	(2.4.11	and
later)
ProxyPass	"/myapp/"	"fcgi://localhost:4000/"	enablereuse=on

The	following	example	passes	the	request	URI	as	a	filesystem
path	for	the	PHP-FPM	daemon	to	run.	The	request	URL	is
implicitly	added	to	the	2nd	parameter.	The	hostname	and	port
following	fcgi://	are	where	PHP-FPM	is	listening.	Connection
pooling/reuse	is	enabled.

PHP-FPM
ProxyPassMatch	"^/myapp/.*\.php(/.*)?$"	"fcgi://localhost:9000/var/www/"	enablereuse=on

The	following	example	passes	the	request	URI	as	a	filesystem
path	for	the	PHP-FPM	daemon	to	run.	In	this	case,	PHP-FPM	is
listening	on	a	unix	domain	socket	(UDS).	Requires	2.4.9	or	later.
With	this	syntax,	the	hostname	and	optional	port	following	fcgi://
are	ignored.

PHP-FPM	with	UDS
ProxyPassMatch	"^/(.*\.php(/.*)?)$"	"unix:/var/run/php5-fpm.sock|fcgi://localhost/var/www/"

The	balanced	gateway	needs	mod_proxy_balancer	and	at
least	one	load	balancer	algorithm	module,	such	as
mod_lbmethod_byrequests,	in	addition	to	the	proxy	modules
listed	above.	mod_lbmethod_byrequests	is	the	default,	and
will	be	used	for	this	example	configuration.

Balanced	gateway	to	multiple	application	instances
ProxyPass	"/myapp/"	"balancer://myappcluster/"

<Proxy	"balancer://myappcluster/">

				BalancerMember	"fcgi://localhost:4000"

				BalancerMember	"fcgi://localhost:4001"

</Proxy>

You	can	also	force	a	request	to	be	handled	as	a	reverse-proxy
request,	by	creating	a	suitable	Handler	pass-through.	The
example	configuration	below	will	pass	all	requests	for	PHP	scripts
to	the	specified	FastCGI	server	using	reverse	proxy.	This	feature
is	available	in	Apache	HTTP	Server	2.4.10	and	later.	For
performance	reasons,	you	will	want	to	define	a	worker
representing	the	same	fcgi://	backend.	The	benefit	of	this	form	is
that	it	allows	the	normal	mapping	of	URI	to	filename	to	occur	in	the
server,	and	the	local	filesystem	result	is	passed	to	the	backend.
When	FastCGI	is	configured	this	way,	the	server	can	calculate	the
most	accurate	PATH_INFO.

Proxy	via	Handler
<FilesMatch	"\.php$">

				#	Note:	The	only	part	that	varies	is	/path/to/app.sock

				SetHandler		"proxy:unix:/path/to/app.sock|fcgi://localhost/"

</FilesMatch>

#	Define	a	matching	worker.

#	The	part	that	is	matched	to	the	SetHandler	is	the	part	that

#	follows	the	pipe.	If	you	need	to	distinguish,	"localhost;	can

#	be	anything	unique.

<Proxy	"fcgi://localhost/"	enablereuse=on	max=10>

</Proxy>

<FilesMatch	...>

				SetHandler		"proxy:fcgi://localhost:9000"

</FilesMatch>

<FilesMatch	...>

				SetHandler		"proxy:balancer://myappcluster/"

</FilesMatch>

Environment	Variables

In	addition	to	the	configuration	directives	that	control	the	behaviour
of	mod_proxy,	there	are	a	number	of	environment	variables	that
control	the	FCGI	protocol	provider:

proxy-fcgi-pathinfo
When	configured	via	ProxyPass	or	ProxyPassMatch,
mod_proxy_fcgi	will	not	set	the	PATH_INFO	environment
variable.	This	allows	the	backend	FCGI	server	to	correctly
determine	SCRIPT_NAME	and	Script-URI	and	be	compliant
with	RFC	3875	section	3.3.	If	instead	you	need
mod_proxy_fcgi	to	generate	a	"best	guess"	for
PATH_INFO,	set	this	env-var.	This	is	a	workaround	for	a	bug
in	some	FCGI	implementations.	This	variable	can	be	set	to
multiple	values	to	tweak	at	how	the	best	guess	is	chosen	(In
2.4.11	and	later	only):

first-dot
PATH_INFO	is	split	from	the	slash	following	the	first	"."	in
the	URL.

last-dot
PATH_INFO	is	split	from	the	slash	following	the	last	"."	in
the	URL.

full
PATH_INFO	is	calculated	by	an	attempt	to	map	the	URL
to	the	local	filesystem.

unescape
PATH_INFO	is	the	path	component	of	the	URL,
unescaped	/	decoded.

any	other	value
PATH_INFO	is	the	same	as	the	path	component	of	the
URL.	Originally,	this	was	the	only	proxy-fcgi-pathinfo
option.

ProxyFCGIBackendType	Directive

Description: Specify	the	type	of	backend	FastCGI	application
Syntax: ProxyFCGIBackendType	FPM|GENERIC

Default: ProxyFCGIBackendType	FPM

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_proxy_fcgi
Compatibility: Available	in	version	2.4.26	and	later

This	directive	allows	the	type	of	backend	FastCGI	application	to	be
specified.	Some	FastCGI	servers,	such	as	PHP-FPM,	use
historical	quirks	of	environment	variables	to	identify	the	type	of
proxy	server	being	used.	Set	this	directive	to	"GENERIC"	if	your
non	PHP-FPM	application	has	trouble	interpreting	environment
variables	such	as	SCRIPT_FILENAME	or	PATH_TRANSLATED
as	set	by	the	server.

One	example	of	values	that	change	based	on	the	setting	of	this
directive	is	SCRIPT_FILENAME.	When	using	mod_proxy_fcgi
historically,	SCRIPT_FILENAME	was	prefixed	with	the	string
"proxy:fcgi://".	This	variable	is	what	some	generic	FastCGI
applications	would	read	as	their	script	input,	but	PHP-FPM	would
strip	the	prefix	then	remember	it	was	talking	to	Apache.	In	2.4.21
through	2.4.25,	this	prefix	was	automatically	stripped	by	the
server,	breaking	the	ability	of	PHP-FPM	to	detect	and	interoperate
with	Apache	in	some	scenarios.

ProxyFCGISetEnvIf	Directive

Description: Allow	variables	sent	to	FastCGI	servers	to	be
fixed	up

Syntax: ProxyFCGISetEnvIf	conditional-

expression	[!]environment-variable-

name	[value-expression]

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_proxy_fcgi
Compatibility: Available	in	version	2.4.26	and	later

Just	before	passing	a	request	to	the	configured	FastCGI	server,
the	core	of	the	web	server	sets	a	number	of	environment	variables
based	on	details	of	the	current	request.	FastCGI	programs	often
uses	these	environment	variables	as	inputs	that	determine	what
underlying	scripts	they	will	process,	or	what	output	they	directly
produce.

Examples	of	noteworthy	environment	variables	are:

SCRIPT_NAME
SCRIPT_FILENAME
REQUEST_URI
PATH_INFO
PATH_TRANSLATED

This	directive	allows	the	environment	variables	above,	or	any
others	of	interest,	to	be	overridden.	This	directive	is	evaluated
after	the	initial	values	for	these	variables	are	set,	so	they	can	be
used	as	input	into	both	the	condition	expressions	and	value
expressions.

Parameter	syntax:

conditional-expression

Specifies	an	expression	that	controls	whether	the
environment	variable	that	follows	will	be	modified.	For
information	on	the	expression	syntax,	see	the	examples	that
follow	or	the	full	specification	at	the	ap_expr	documentation.

environment-variable-name
Specifies	the	CGI	environment	variable	to	change,	such	as
PATH_INFO.	If	preceded	by	an	exclamation	point,	the
variable	will	be	unset.

value-expression
Specifies	the	replacement	value	for	the	preceding
environment	variable.	Backreferences,	such	as	"$1",	can	be
included	from	regular	expression	captures	in	conditional-
expression.	If	omitted,	the	variable	is	set	(or	overridden)	to	an
empty	string	—	but	see	the	Note	below.

#	A	basic,	unconditional	override

ProxyFCGISetEnvIf	"true"	PATH_INFO	"/example"

#	Use	an	environment	variable	in	the	value

ProxyFCGISetEnvIf	"true"	PATH_INFO	"%{reqenv:SCRIPT_NAME}"

#	Use	captures	in	the	conditions	and	backreferences	in	the	replacement

ProxyFCGISetEnvIf	"reqenv('PATH_TRANSLATED')	=~	m|(/.*prefix)(\d+)(.*)|"	PATH_TRANSLATED	"$1$3"

Note:	Unset	vs.	Empty
The	following	will	unset	VARIABLE,	preventing	it	from	being
sent	to	the	FastCGI	server:

ProxyFCGISetEnvIf	true	!VARIABLE

Whereas	the	following	will	erase	any	existing	value	of
VARIABLE	(by	setting	it	to	the	empty	string),	but	the	empty
VARIABLE	will	still	be	sent	to	the	server:

ProxyFCGISetEnvIf	true	VARIABLE

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	CGI/1.1	specification	does	not	distinguish	between	a
variable	with	an	empty	value	and	a	variable	that	does	not	exist.
However,	many	CGI	and	FastCGI	implementations	distinguish
(or	allow	scripts	to	distinguish)	between	the	two.	The	choice	of
which	to	use	is	dependent	upon	your	implementation	and	your
reason	for	modifying	the	variable.

https://tools.ietf.org/html/rfc3875#section-4.1
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_fdpass

Description: fdpass	external	process	support	module	for
mod_proxy

Status: Extension
Module	Identifier: proxy_fdpass_module
Source	File: mod_proxy_fdpass.c
Compatibility: Available	for	unix	in	version	2.3	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	passing	the	socket	of	the	client	to	another	process.

mod_proxy_fdpass	uses	the	ability	of	AF_UNIX	domain	sockets	to
pass	an	open	file	descriptor	to	allow	another	process	to	finish
handling	a	request.

The	module	has	a	proxy_fdpass_flusher	provider	interface,
which	allows	another	module	to	optionally	send	the	response
headers,	or	even	the	start	of	the	response	body.	The	default	flush
provider	disables	keep-alive,	and	sends	the	response	headers,	letting
the	external	process	just	send	a	response	body.

In	order	to	use	another	provider,	you	have	to	set	the	flusher
parameter	in	the	ProxyPass	directive.

At	this	time	the	only	data	passed	to	the	external	process	is	the	client
socket.	To	receive	a	client	socket,	call	recvfrom	with	an	allocated
struct	cmsghdr.	Future	versions	of	this	module	may	include	more
data	after	the	client	socket,	but	this	is	not	implemented	at	this	time.

http://www.freebsd.org/cgi/man.cgi?query=recv
http://www.kernel.org/doc/man-pages/online/pages/man3/cmsg.3.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_fdpass
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_fdpass
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_ftp

Description: FTP	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_ftp_module
Source	File: mod_proxy_ftp.c

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	proxying	FTP	sites.	Note	that	FTP	support	is	currently	limited
to	the	GET	method.

Thus,	in	order	to	get	the	ability	of	handling	FTP	proxy	requests,
mod_proxy	and	mod_proxy_ftp	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_ftp
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_ftp

mod_proxy

Why	doesn't	file	type	xxx	download	via	FTP?

You	probably	don't	have	that	particular	file	type	defined	as
application/octet-stream	in	your	proxy's	mime.types
configuration	file.	A	useful	line	can	be

application/octet-stream			bin	dms	lha	lzh	exe	class	tgz	taz

Alternatively	you	may	prefer	to	default	everything	to	binary:

ForceType	application/octet-stream

How	can	I	force	an	FTP	ASCII	download	of	File	xxx?

In	the	rare	situation	where	you	must	download	a	specific	file	using
the	FTP	ASCII	transfer	method	(while	the	default	transfer	is	in
binary	mode),	you	can	override	mod_proxy's	default	by
suffixing	the	request	with	;type=a	to	force	an	ASCII	transfer.
(FTP	Directory	listings	are	always	executed	in	ASCII	mode,
however.)

How	can	I	do	FTP	upload?

Currently,	only	GET	is	supported	for	FTP	in	mod_proxy.	You	can	of
course	use	HTTP	upload	(POST	or	PUT)	through	an	Apache
proxy.

How	can	I	access	FTP	files	outside	of	my	home
directory?

An	FTP	URI	is	interpreted	relative	to	the	home	directory	of	the
user	who	is	logging	in.	Alas,	to	reach	higher	directory	levels	you
cannot	use	/../,	as	the	dots	are	interpreted	by	the	browser	and	not
actually	sent	to	the	FTP	server.	To	address	this	problem,	the	so
called	Squid	%2f	hack	was	implemented	in	the	Apache	FTP	proxy;
it	is	a	solution	which	is	also	used	by	other	popular	proxy	servers
like	the	Squid	Proxy	Cache.	By	prepending	/%2f	to	the	path	of
your	request,	you	can	make	such	a	proxy	change	the	FTP	starting
directory	to	/	(instead	of	the	home	directory).	For	example,	to
retrieve	the	file	/etc/motd,	you	would	use	the	URL:

ftp://user@host/%2f/etc/motd

http://www.squid-cache.org/

How	can	I	hide	the	FTP	cleartext	password	in	my
browser's	URL	line?

To	log	in	to	an	FTP	server	by	username	and	password,	Apache
uses	different	strategies.	In	absence	of	a	user	name	and	password
in	the	URL	altogether,	Apache	sends	an	anonymous	login	to	the
FTP	server,	i.e.,

user:	anonymous

password:	apache_proxy@

This	works	for	all	popular	FTP	servers	which	are	configured	for
anonymous	access.

For	a	personal	login	with	a	specific	username,	you	can	embed	the
user	name	into	the	URL,	like	in:

ftp://username@host/myfile

If	the	FTP	server	asks	for	a	password	when	given	this	username
(which	it	should),	then	Apache	will	reply	with	a	401	(Authorization
required)	response,	which	causes	the	Browser	to	pop	up	the
username/password	dialog.	Upon	entering	the	password,	the
connection	attempt	is	retried,	and	if	successful,	the	requested
resource	is	presented.	The	advantage	of	this	procedure	is	that
your	browser	does	not	display	the	password	in	cleartext	(which	it
would	if	you	had	used

ftp://username:password@host/myfile

in	the	first	place).

Note

The	password	which	is	transmitted	in	such	a	way	is	not
encrypted	on	its	way.	It	travels	between	your	browser	and	the

Apache	proxy	server	in	a	base64-encoded	cleartext	string,	and
between	the	Apache	proxy	and	the	FTP	server	as	plaintext.	You
should	therefore	think	twice	before	accessing	your	FTP	server
via	HTTP	(or	before	accessing	your	personal	files	via	FTP	at
all!)	When	using	insecure	channels,	an	eavesdropper	might
intercept	your	password	on	its	way.

Why	do	I	get	a	file	listing	when	I	expected	a	file	to	be
downloaded?

In	order	to	allow	both	browsing	the	directories	on	an	FTP	server
and	downloading	files,	Apache	looks	at	the	request	URL.	If	it	looks
like	a	directory,	or	contains	wildcard	characters	("*?[{~"),	then	it
guesses	that	a	listing	is	wanted	instead	of	a	download.

You	can	disable	the	special	handling	of	names	with	wildcard
characters.	See	the	ProxyFtpListOnWildcard	directive.

ProxyFtpDirCharset	Directive

Description: Define	the	character	set	for	proxied	FTP	listings
Syntax: ProxyFtpDirCharset	character	set

Default: ProxyFtpDirCharset	ISO-8859-1

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_ftp
Compatibility: Available	in	Apache	2.2.7	and	later.	Moved	from

mod_proxy	in	Apache	2.3.5.

The	ProxyFtpDirCharset	directive	defines	the	character	set	to
be	set	for	FTP	directory	listings	in	HTML	generated	by
mod_proxy_ftp.

ProxyFtpEscapeWildcards	Directive

Description: Whether	wildcards	in	requested	filenames	are
escaped	when	sent	to	the	FTP	server

Syntax: ProxyFtpEscapeWildcards	[on|off]

Default: on

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_ftp
Compatibility: Available	in	Apache	2.3.3	and	later

The	ProxyFtpEscapeWildcards	directive	controls	whether
wildcard	characters	("*?[{~")	in	requested	filenames	are	escaped
with	backslash	before	sending	them	to	the	FTP	server.	That	is	the
default	behavior,	but	many	FTP	servers	don't	know	about	the
escaping	and	try	to	serve	the	literal	filenames	they	were	sent,
including	the	backslashes	in	the	names.

Set	to	"off"	to	allow	downloading	files	with	wildcards	in	their	names
from	FTP	servers	that	don't	understand	wildcard	escaping.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ProxyFtpListOnWildcard	Directive

Description: Whether	wildcards	in	requested	filenames	trigger
a	file	listing

Syntax: ProxyFtpListOnWildcard	[on|off]

Default: on

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_ftp
Compatibility: Available	in	Apache	2.3.3	and	later

The	ProxyFtpListOnWildcard	directive	controls	whether
wildcard	characters	("*?[{~")	in	requested	filenames	cause
mod_proxy_ftp	to	return	a	listing	of	files	instead	of	downloading
a	file.	By	default	(value	on),	they	do.	Set	to	"off"	to	allow
downloading	files	even	if	they	have	wildcard	characters	in	their
names.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_hcheck

Description: Dynamic	health	check	of	Balancer	members
(workers)	for	mod_proxy

Status: Extension
Module	Identifier: proxy_hcheck_module
Source	File: mod_proxy_hcheck.c
Compatibility: Available	in	Apache	2.4.21	and	later

Summary
This	module	provides	for	dynamic	health	checking	of	balancer
members	(workers).	This	can	be	enabled	on	a	worker-by-worker
basis.	The	health	check	is	done	independently	of	the	actual	reverse
proxy	requests.

This	module	requires	the	service	of	mod_watchdog.

Parameters

The	health	check	mechanism	is	enabled	via	the	use	of	additional
BalancerMember	parameters,	which	are	configured	in	the	standard
way	via	ProxyPass:

A	new	BalancerMember	status	state	(flag)	is	defined	via	this
module:	"C".	When	the	worker	is	taken	offline	due	to	failures	as
determined	by	the	health	check	module,	this	flag	is	set,	and	can	be
seen	(and	modified)	via	the	balancer-manager.

Parameter Default Description
hcmethod None No	dynamic	health	check	performed.	Choices

are:

Method Description Note
None No	dynamic	health

checking	done
TCP Check	that	a	socket	to	the

backend	can	be	created:
e.g.	"are	you	up"

OPTIONS Send	an	HTTP	OPTIONS
request	to	the	backend

*

HEAD Send	an	HTTP	HEAD
request	to	the	backend

*

GET Send	an	HTTP	GET
request	to	the	backend

*

*:	Unless	hcexpr	is	used,	a	2xx	or	3xx
HTTP	status	will	be	interpreted	as	passing
the	health	check

hcpasses 1 Number	of	successful	health	check	tests
before	worker	is	re-enabled

hcfails 1 Number	of	failed	health	check	tests	before
worker	is	disabled

hcinterval 30 Period	of	health	checks	in	seconds	(e.g.
performed	every	30	seconds)

hcuri 	 Additional	URI	to	be	appended	to	the	worker
URL	for	the	health	check.

hctemplate 	 Name	of	template,	created	via
ProxyHCTemplate	to	use	for	setting	health
check	parameters	for	this	worker

hcexpr 	 Name	of	expression,	created	via
ProxyHCExpr,	used	to	check	response
headers	for	health.
If	not	used,	2xx	thru	3xx	status	codes	imply
success

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_hcheck
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_hcheck

Usage	examples

The	following	example	shows	how	one	might	configured	health
checking	for	various	backend	servers:

ProxyHCExpr	ok234	{%{REQUEST_STATUS}	=~	/^[234]/}

ProxyHCExpr	gdown	{%{REQUEST_STATUS}	=~	/^[5]/}

ProxyHCExpr	in_maint	{hc('body')	!~	/Under	maintenance/}

<Proxy	balancer://foo>

		BalancerMember	http://www.example.com/		hcmethod=GET	hcexpr=in_maint	hcuri=/status.php

		BalancerMember	http://www2.example.com/		hcmethod=HEAD	hcexpr=ok234	hcinterval=10

		BalancerMember	http://www3.example.com/	hcmethod=TCP	hcinterval=5	hcpasses=2	hcfails=3

		BalancerMember	http://www4.example.com/

</Proxy>

ProxyPass	"/"	"balancer://foo"

ProxyPassReverse	"/"	"balancer://foo"

In	this	scenario,	http://www.example.com/	is	health	checked
by	sending	a	GET	/status.php	request	to	that	server	and
seeing	that	the	returned	page	does	not	include	the	string	Under
maintenance.	If	it	does,	that	server	is	put	in	health-check	fail
mode,	and	disabled.	This	dynamic	check	is	performed	every	30
seconds,	which	is	the	default.

http://www2.example.com/	is	checked	by	sending	a	simple
HEAD	request	every	10	seconds	and	making	sure	that	the
response	status	is	2xx,	3xx	or	4xx.
http://www3.example.com/	is	checked	every	5	seconds	by
simply	ensuring	that	the	socket	to	that	server	is	up.	If	the	backend
is	marked	as	"down"	and	it	passes	2	health	check,	it	will	be	re-
enabled	and	added	back	into	the	load	balancer.	It	takes	3	back-to-
back	health	check	failures	to	disable	the	server	and	move	it	out	of
rotation.	Finally,	http://www4.example.com/	is	not

dynamically	checked	at	all.

ProxyHCExpr	Directive

Description: Creates	a	named	condition	expression	to	use	to
determine	health	of	the	backend	based	on	its
response.

Syntax: ProxyHCExpr	name	{ap_expr	expression}

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_hcheck

The	ProxyHCExpr	directive	allows	for	creating	a	named	condition
expression	that	checks	the	response	headers	of	the	backend
server	to	determine	its	health.	This	named	condition	can	then	be
assigned	to	balancer	members	via	the	hcexpr	parameter

ProxyHCExpr:	Allow	for	2xx/3xx/4xx	as	passing
ProxyHCExpr	ok234	{%{REQUEST_STATUS}	=~	/^[234]/}

ProxyPass	"/apps"					"http://backend.example.com/"	hcexpr=ok234

The	expression	can	use	curly-parens	("{}")	as	quoting
deliminators	in	addition	to	normal	quotes.

If	using	a	health	check	method	(eg:	GET)	which	results	in	a
response	body,	that	body	itself	can	be	checked	via	ap_expr	using
the	hc()	expression	function,	which	is	unique	to	this	module.

In	the	following	example,	we	send	the	backend	a	GET	request	and
if	the	response	body	contains	the	phrase	Under	maintenance,	we
want	to	disable	the	backend.

ProxyHCExpr:	Checking	response	body
ProxyHCExpr	in_maint	{hc('body')	!~	/Under	maintenance/}

ProxyPass	"/apps"					"http://backend.example.com/"	hcexpr=in_maint	hcmethod=get	hcuri=/status.php

NOTE:	Since	response	body	can	quite	large,	it	is	best	if	used
against	specific	status	pages.

ProxyHCTemplate	Directive

Description: Creates	a	named	template	for	setting	various
health	check	parameters

Syntax: ProxyHCTemplate	name

parameter=setting	<...>

Context: server	config,	virtual	host
Status: Extension
Module: mod_proxy_hcheck

The	ProxyHCTemplate	directive	allows	for	creating	a	named	set
(template)	of	health	check	parameters	that	can	then	be	assigned
to	balancer	members	via	the	hctemplate	parameter

ProxyHCTemplate
ProxyHCTemplate	tcp5	hcmethod=tcp	hcinterval=5

ProxyPass	"/apps"					"http://backend.example.com/"	hctemplate=tcp5

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ProxyHCTPsize	Directive

Description: Sets	the	total	server-wide	size	of	the	threadpool
used	for	the	health	check	workers.

Syntax: ProxyHCTPsize	<size>

Context: server	config
Status: Extension
Module: mod_proxy_hcheck

If	Apache	httpd	and	APR	are	built	with	thread	support,	the	health
check	module	will	offload	the	work	of	the	actual	checking	to	a
threadpool	associated	with	the	Watchdog	process,	allowing	for
parallel	checks.	The	ProxyHCTPsize	directive	determines	the
size	of	this	threadpool.	If	set	to	0,	no	threadpool	is	used	at	all,
resulting	in	serialized	health	checks.	The	default	size	is	16.

ProxyHCTPsize
ProxyHCTPsize	32

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_html

Description: Rewrite	HTML	links	in	to	ensure	they	are
addressable	from	Clients'	networks	in	a	proxy
context.

Status: Base
Module	Identifier: proxy_html_module
Source	File: mod_proxy_html.c
Compatibility: Version	2.4	and	later.	Available	as	a	third-party

module	for	earlier	2.x	versions

Summary
This	module	provides	an	output	filter	to	rewrite	HTML	links	in	a	proxy
situation,	to	ensure	that	links	work	for	users	outside	the	proxy.	It
serves	the	same	purpose	as	Apache's	ProxyPassReverse	directive
does	for	HTTP	headers,	and	is	an	essential	component	of	a	reverse
proxy.

For	example,	if	a	company	has	an	application	server	at
appserver.example.com	that	is	only	visible	from	within	the
company's	internal	network,	and	a	public	webserver
www.example.com,	they	may	wish	to	provide	a	gateway	to	the
application	server	at	http://www.example.com/appserver/.
When	the	application	server	links	to	itself,	those	links	need	to	be
rewritten	to	work	through	the	gateway.	mod_proxy_html	serves	to
rewrite	foobar

to	foobar

making	it	accessible	from	outside.

mod_proxy_html	was	originally	developed	at	WebÞing,	whose
extensive	documentation	may	be	useful	to	users.

http://apache.webthing.com/mod_proxy_html/

ProxyHTMLBufSize	Directive

Description: Sets	the	buffer	size	increment	for	buffering	inline
scripts	and	stylesheets.

Syntax: ProxyHTMLBufSize	bytes

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

In	order	to	parse	non-HTML	content	(stylesheets	and	scripts)
embedded	in	HTML	documents,	mod_proxy_html	has	to	read	the
entire	script	or	stylesheet	into	a	buffer.	This	buffer	will	be
expanded	as	necessary	to	hold	the	largest	script	or	stylesheet	in	a
page,	in	increments	of	bytes	as	set	by	this	directive.

The	default	is	8192,	and	will	work	well	for	almost	all	pages.
However,	if	you	know	you're	proxying	pages	containing
stylesheets	and/or	scripts	bigger	than	8K	(that	is,	for	a	single	script
or	stylesheet,	NOT	in	total),	it	will	be	more	efficient	to	set	a	larger
buffer	size	and	avoid	the	need	to	resize	the	buffer	dynamically
during	a	request.

ProxyHTMLCharsetOut	Directive

Description: Specify	a	charset	for	mod_proxy_html	output.
Syntax: ProxyHTMLCharsetOut	Charset	|	*

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

This	selects	an	encoding	for	mod_proxy_html	output.	It	should	not
normally	be	used,	as	any	change	from	the	default	UTF-8	(Unicode
-	as	used	internally	by	libxml2)	will	impose	an	additional
processing	overhead.	The	special	token	ProxyHTMLCharsetOut
*	will	generate	output	using	the	same	encoding	as	the	input.

Note	that	this	relies	on	mod_xml2enc	being	loaded.

ProxyHTMLDocType	Directive

Description: Sets	an	HTML	or	XHTML	document	type
declaration.

Syntax: ProxyHTMLDocType	HTML|XHTML	[Legacy]

OR	

ProxyHTMLDocType	fpi	[SGML|XML]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

In	the	first	form,	documents	will	be	declared	as	HTML	4.01	or
XHTML	1.0	according	to	the	option	selected.	This	option	also
determines	whether	HTML	or	XHTML	syntax	is	used	for	output.
Note	that	the	format	of	the	documents	coming	from	the	backend
server	is	immaterial:	the	parser	will	deal	with	it	automatically.	If	the
optional	second	argument	is	set	to	"Legacy",	documents	will	be
declared	"Transitional",	an	option	that	may	be	necessary	if	you	are
proxying	pre-1998	content	or	working	with	defective
authoring/publishing	tools.

In	the	second	form,	it	will	insert	your	own	FPI.	The	optional	second
argument	determines	whether	SGML/HTML	or	XML/XHTML
syntax	will	be	used.

The	default	is	changed	to	omitting	any	FPI,	on	the	grounds	that	no
FPI	is	better	than	a	bogus	one.	If	your	backend	generates	decent
HTML	or	XHTML,	set	it	accordingly.

If	the	first	form	is	used,	mod_proxy_html	will	also	clean	up	the
HTML	to	the	specified	standard.	It	cannot	fix	every	error,	but	it	will
strip	out	bogus	elements	and	attributes.	It	will	also	optionally	log
other	errors	at	LogLevel	Debug.

ProxyHTMLEnable	Directive

Description: Turns	the	proxy_html	filter	on	or	off.
Syntax: ProxyHTMLEnable	On|Off

Default: ProxyHTMLEnable	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

module	for	earlier	2.x	versions.

A	simple	switch	to	enable	or	disable	the	proxy_html	filter.	If
mod_xml2enc	is	loaded	it	will	also	automatically	set	up
internationalisation	support.

Note	that	the	proxy_html	filter	will	only	act	on	HTML	data	(Content-
Type	text/html	or	application/xhtml+xml)	and	when	the	data	are
proxied.	You	can	override	this	(at	your	own	risk)	by	setting	the
PROXY_HTML_FORCE	environment	variable.

ProxyHTMLEvents	Directive

Description: Specify	attributes	to	treat	as	scripting	events.
Syntax: ProxyHTMLEvents	attribute	[attribute

...]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

Specifies	one	or	more	attributes	to	treat	as	scripting	events	and
apply	ProxyHTMLURLMaps	to	where	enabled.	You	can	specify
any	number	of	attributes	in	one	or	more	ProxyHTMLEvents
directives.

Normally	you'll	set	this	globally.	If	you	set	ProxyHTMLEvents	in
more	than	one	scope	so	that	one	overrides	the	other,	you'll	need
to	specify	a	complete	set	in	each	of	those	scopes.

A	default	configuration	is	supplied	in	proxy-html.conf	and	defines
the	events	in	standard	HTML	4	and	XHTML	1.

ProxyHTMLExtended	Directive

Description: Determines	whether	to	fix	links	in	inline	scripts,
stylesheets,	and	scripting	events.

Syntax: ProxyHTMLExtended	On|Off

Default: ProxyHTMLExtended	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

Set	to	Off,	HTML	links	are	rewritten	according	to	the
ProxyHTMLURLMap	directives,	but	links	appearing	in	Javascript
and	CSS	are	ignored.

Set	to	On,	all	scripting	events	(as	determined	by
ProxyHTMLEvents)	and	embedded	scripts	or	stylesheets	are
also	processed	by	the	ProxyHTMLURLMap	rules,	according	to	the
flags	set	for	each	rule.	Since	this	requires	more	parsing,
performance	will	be	best	if	you	only	enable	it	when	strictly
necessary.

You'll	also	need	to	take	care	over	patterns	matched,	since	the
parser	has	no	knowledge	of	what	is	a	URL	within	an	embedded
script	or	stylesheet.	In	particular,	extended	matching	of	/	is	likely
to	lead	to	false	matches.

ProxyHTMLFixups	Directive

Description: Fixes	for	simple	HTML	errors.
Syntax: ProxyHTMLFixups	[lowercase]

[dospath]	[reset]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

This	directive	takes	one	to	three	arguments	as	follows:

lowercase	Urls	are	rewritten	to	lowercase
dospath	Backslashes	in	URLs	are	rewritten	to	forward
slashes.
reset	Unset	any	options	set	at	a	higher	level	in	the
configuration.

Take	care	when	using	these.	The	fixes	will	correct	certain
authoring	mistakes,	but	risk	also	erroneously	fixing	links	that	were
correct	to	start	with.	Only	use	them	if	you	know	you	have	a	broken
backend	server.

ProxyHTMLInterp	Directive

Description: Enables	per-request	interpolation	of
ProxyHTMLURLMap	rules.

Syntax: ProxyHTMLInterp	On|Off

Default: ProxyHTMLInterp	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

This	enables	per-request	interpolation	in	ProxyHTMLURLMap	to-
and	from-	patterns.

If	interpolation	is	not	enabled,	all	rules	are	pre-compiled	at	startup.
With	interpolation,	they	must	be	re-compiled	for	every	request,
which	implies	an	extra	processing	overhead.	It	should	therefore	be
enabled	only	when	necessary.

ProxyHTMLLinks	Directive

Description: Specify	HTML	elements	that	have	URL	attributes
to	be	rewritten.

Syntax: ProxyHTMLLinks	element	attribute

[attribute2	...]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

Specifies	elements	that	have	URL	attributes	that	should	be
rewritten	using	standard	ProxyHTMLURLMaps.	You	will	need	one
ProxyHTMLLinks	directive	per	element,	but	it	can	have	any
number	of	attributes.

Normally	you'll	set	this	globally.	If	you	set	ProxyHTMLLinks	in
more	than	one	scope	so	that	one	overrides	the	other,	you'll	need
to	specify	a	complete	set	in	each	of	those	scopes.

A	default	configuration	is	supplied	in	proxy-html.conf	and	defines
the	HTML	links	for	standard	HTML	4	and	XHTML	1.

Examples	from	proxy-html.conf
ProxyHTMLLinks		a										href

ProxyHTMLLinks		area							href

ProxyHTMLLinks		link							href

ProxyHTMLLinks		img								src	longdesc	usemap

ProxyHTMLLinks		object					classid	codebase	data	usemap

ProxyHTMLLinks		q										cite

ProxyHTMLLinks		blockquote	cite

ProxyHTMLLinks		ins								cite

ProxyHTMLLinks		del								cite

ProxyHTMLLinks		form							action

ProxyHTMLLinks		input						src	usemap

ProxyHTMLLinks		head							profile

ProxyHTMLLinks		base							href

ProxyHTMLLinks		script					src	for

ProxyHTMLMeta	Directive

Description: Turns	on	or	off	extra	pre-parsing	of	metadata	in
HTML	<head>	sections.

Syntax: ProxyHTMLMeta	On|Off

Default: ProxyHTMLMeta	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

module	for	earlier	2.x	versions.

This	turns	on	or	off	pre-parsing	of	metadata	in	HTML	<head>
sections.

If	not	required,	turning	ProxyHTMLMeta	Off	will	give	a	small
performance	boost	by	skipping	this	parse	step.	However,	it	is
sometimes	necessary	for	internationalisation	to	work	correctly.

ProxyHTMLMeta	has	two	effects.	Firstly	and	most	importantly	it
enables	detection	of	character	encodings	declared	in	the	form

<meta	http-equiv="Content-Type"	content="text/html;charset=

or,	in	the	case	of	an	XHTML	document,	an	XML	declaration.	It	is
NOT	required	if	the	charset	is	declared	in	a	real	HTTP	header
(which	is	always	preferable)	from	the	backend	server,	nor	if	the
document	is	utf-8	(unicode)	or	a	subset	such	as	ASCII.	You	may
also	be	able	to	dispense	with	it	where	documents	use	a	default
declared	using	xml2EncDefault,	but	that	risks	propagating	an
incorrect	declaration.	A	ProxyHTMLCharsetOut	can	remove	that
risk,	but	is	likely	to	be	a	bigger	processing	overhead	than	enabling
ProxyHTMLMeta.

The	other	effect	of	enabling	ProxyHTMLMeta	is	to	parse	all	<meta

http-equiv=...>	declarations	and	convert	them	to	real	HTTP
headers,	in	keeping	with	the	original	purpose	of	this	form	of	the
HTML	<meta>	element.

Warning
Because	ProxyHTMLMeta	promotes	all	http-equiv	elements
to	HTTP	headers,	it	is	important	that	you	only	enable	it	in	cases
where	you	trust	the	HTML	content	as	much	as	you	trust	the
upstream	server.	If	the	HTML	is	controlled	by	bad	actors,	it	will
be	possible	for	them	to	inject	arbitrary,	possibly	malicious,	HTTP
headers	into	your	server's	responses.

ProxyHTMLStripComments	Directive

Description: Determines	whether	to	strip	HTML	comments.
Syntax: ProxyHTMLStripComments	On|Off

Default: ProxyHTMLStripComments	Off

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

for	earlier	2.x	versions

This	directive	will	cause	mod_proxy_html	to	strip	HTML
comments.	Note	that	this	will	also	kill	off	any	scripts	or	styles
embedded	in	comments	(a	bogosity	introduced	in	1995/6	with
Netscape	2	for	the	benefit	of	then-older	browsers,	but	still	in	use
today).	It	may	also	interfere	with	comment-based	processors	such
as	SSI	or	ESI:	be	sure	to	run	any	of	those	before	mod_proxy_html
in	the	filter	chain	if	stripping	comments!

ProxyHTMLURLMap	Directive

Description: Defines	a	rule	to	rewrite	HTML	links
Syntax: ProxyHTMLURLMap	from-pattern	to-

pattern	[flags]	[cond]

Context: server	config,	virtual	host,	directory
Status: Base
Module: mod_proxy_html
Compatibility: Version	2.4	and	later;	available	as	a	third-party

module	for	earlier	2.x	versions.

This	is	the	key	directive	for	rewriting	HTML	links.	When	parsing	a
document,	whenever	a	link	target	matches	from-pattern,	the
matching	portion	will	be	rewritten	to	to-pattern,	as	modified	by	any
flags	supplied	and	by	the	ProxyHTMLExtended	directive.	Only
the	elements	specified	using	the	ProxyHTMLLinks	directive	will
be	considered	as	HTML	links.

The	optional	third	argument	may	define	any	of	the	following	Flags.
Flags	are	case-sensitive.

h
Ignore	HTML	links	(pass	through	unchanged)

e
Ignore	scripting	events	(pass	through	unchanged)

c
Pass	embedded	script	and	style	sections	through	untouched.

L
Last-match.	If	this	rule	matches,	no	more	rules	are	applied
(note	that	this	happens	automatically	for	HTML	links).

l
Opposite	to	L.	Overrides	the	one-change-only	default

behaviour	with	HTML	links.

R
Use	Regular	Expression	matching-and-replace.	from-
pattern	is	a	regexp,	and	to-pattern	a	replacement	string
that	may	be	based	on	the	regexp.	Regexp	memory	is
supported:	you	can	use	brackets	()	in	the	from-pattern
and	retrieve	the	matches	with	$1	to	$9	in	the	to-pattern.

If	R	is	not	set,	it	will	use	string-literal	search-and-replace.	The
logic	is	starts-with	in	HTML	links,	but	contains	in	scripting
events	and	embedded	script	and	style	sections.

x
Use	POSIX	extended	Regular	Expressions.	Only	applicable
with	R.

i
Case-insensitive	matching.	Only	applicable	with	R.

n
Disable	regexp	memory	(for	speed).	Only	applicable	with	R.

s
Line-based	regexp	matching.	Only	applicable	with	R.

^
Match	at	start	only.	This	applies	only	to	string	matching	(not
regexps)	and	is	irrelevant	to	HTML	links.

$
Match	at	end	only.	This	applies	only	to	string	matching	(not
regexps)	and	is	irrelevant	to	HTML	links.

V
Interpolate	environment	variables	in	to-pattern.	A	string	of

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

the	form	${varname|default}	will	be	replaced	by	the
value	of	environment	variable	varname.	If	that	is	unset,	it	is
replaced	by	default.	The	|default	is	optional.

NOTE:	interpolation	will	only	be	enabled	if
ProxyHTMLInterp	is	On.

v
Interpolate	environment	variables	in	from-pattern.
Patterns	supported	are	as	above.

NOTE:	interpolation	will	only	be	enabled	if
ProxyHTMLInterp	is	On.

The	optional	fourth	cond	argument	defines	a	condition	that	will	be
evaluated	per	Request,	provided	ProxyHTMLInterp	is	On.	If	the
condition	evaluates	FALSE	the	map	will	not	be	applied	in	this
request.	If	TRUE,	or	if	no	condition	is	defined,	the	map	is	applied.

A	cond	is	evaluated	by	the	Expression	Parser.	In	addition,	the
simpler	syntax	of	conditions	in	mod_proxy_html	3.x	for	HTTPD	2.0
and	2.2	is	also	supported.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_http

Description: HTTP	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_http_module
Source	File: mod_proxy_http.c

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	the
features	used	for	proxying	HTTP	and	HTTPS	requests.
mod_proxy_http	supports	HTTP/0.9,	HTTP/1.0	and	HTTP/1.1.	It
does	not	provide	any	caching	abilities.	If	you	want	to	set	up	a	caching
proxy,	you	might	want	to	use	the	additional	service	of	the	mod_cache
module.

Thus,	in	order	to	get	the	ability	of	handling	HTTP	proxy	requests,
mod_proxy	and	mod_proxy_http	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_http

Report	a	bug

See	also
mod_proxy

mod_proxy_connect

https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_http

Environment	Variables

In	addition	to	the	configuration	directives	that	control	the	behaviour
of	mod_proxy,	there	are	a	number	of	environment	variables	that
control	the	HTTP	protocol	provider.	Environment	variables	below
that	don't	specify	specific	values	are	enabled	when	set	to	any
value.

proxy-sendextracrlf
Causes	proxy	to	send	an	extra	CR-LF	newline	on	the	end	of	a
request.	This	is	a	workaround	for	a	bug	in	some	browsers.

force-proxy-request-1.0
Forces	the	proxy	to	send	requests	to	the	backend	as
HTTP/1.0	and	disables	HTTP/1.1	features.

proxy-nokeepalive
Forces	the	proxy	to	close	the	backend	connection	after	each
request.

proxy-chain-auth
If	the	proxy	requires	authentication,	it	will	read	and	consume
the	proxy	authentication	credentials	sent	by	the	client.	With
proxy-chain-auth	it	will	also	forward	the	credentials	to	the	next
proxy	in	the	chain.	This	may	be	necessary	if	you	have	a	chain
of	proxies	that	share	authentication	information.	Security
Warning:	Do	not	set	this	unless	you	know	you	need	it,	as	it
forwards	sensitive	information!

proxy-sendcl
HTTP/1.0	required	all	HTTP	requests	that	include	a	body	(e.g.
POST	requests)	to	include	a	Content-Length	header.	This
environment	variable	forces	the	Apache	proxy	to	send	this
header	to	the	backend	server,	regardless	of	what	the	Client
sent	to	the	proxy.	It	ensures	compatibility	when	proxying	for
an	HTTP/1.0	or	unknown	backend.	However,	it	may	require
the	entire	request	to	be	buffered	by	the	proxy,	so	it	becomes
very	inefficient	for	large	requests.

proxy-sendchunks	or	proxy-sendchunked
This	is	the	opposite	of	proxy-sendcl.	It	allows	request	bodies
to	be	sent	to	the	backend	using	chunked	transfer	encoding.
This	allows	the	request	to	be	efficiently	streamed,	but	requires
that	the	backend	server	supports	HTTP/1.1.

proxy-interim-response
This	variable	takes	values	RFC	(the	default)	or	Suppress.
Earlier	httpd	versions	would	suppress	HTTP	interim	(1xx)
responses	sent	from	the	backend.	This	is	technically	a
violation	of	the	HTTP	protocol.	In	practice,	if	a	backend	sends
an	interim	response,	it	may	itself	be	extending	the	protocol	in
a	manner	we	know	nothing	about,	or	just	broken.	So	this	is
now	configurable:	set	proxy-interim-response	RFC	to
be	fully	protocol	compliant,	or	proxy-interim-response
Suppress	to	suppress	interim	responses.

proxy-initial-not-pooled
If	this	variable	is	set,	no	pooled	connection	will	be	reused	if
the	client	request	is	the	initial	request	on	the	frontend
connection.	This	avoids	the	"proxy:	error	reading	status	line
from	remote	server"	error	message	caused	by	the	race
condition	that	the	backend	server	closed	the	pooled
connection	after	the	connection	check	by	the	proxy	and
before	data	sent	by	the	proxy	reached	the	backend.	It	has	to
be	kept	in	mind	that	setting	this	variable	downgrades
performance,	especially	with	HTTP/1.0	clients.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Request	notes

mod_proxy_http	creates	the	following	request	notes	for	logging
using	the	%{VARNAME}n	format	in	LogFormat	or
ErrorLogFormat:

proxy-source-port
The	local	port	used	for	the	connection	to	the	backend	server.

proxy-status
The	HTTP	status	received	from	the	backend	server.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_http2

Description: HTTP/2	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_http2_module
Source	File: mod_proxy_http2.c

Summary
mod_proxy_http2	supports	HTTP/2	only,	it	does	not	provide	any
downgrades	to	HTTP/1.1.	This	means	that	the	backend	needs	to
support	HTTP/2	because	HTTP/1.1	will	not	be	used	instead.

This	module	requires	the	service	of	mod_proxy,	so	in	order	to	get	the
ability	of	handling	HTTP/2	proxy	requests,	mod_proxy	and
mod_proxy_http2	need	to	be	both	loaded	by	the	server.

mod_proxy_http2	works	with	incoming	fronted	requests	using
HTTP/1.1	or	HTTP/2.	In	both	cases,	requests	proxied	to	the	same
backend	are	sent	over	a	single	TCP	connection	whenever	possible
(namely	when	the	connection	can	be	re-used).

Caveat:	there	will	be	no	attemp	to	consolidate	multiple	HTTP/1.1
frontend	requests	(configured	to	be	proxied	to	the	same	backend)	into
HTTP/2	streams	belonging	to	the	same	HTTP/2	request.	Each
HTTP/1.1	frontend	request	will	be	proxied	to	the	backend	using	a
separate	HTTP/2	request	(trying	to	re-use	the	same	TCP	connection
if	possible).

This	module	relies	on	libnghttp2	to	provide	the	core	http/2	engine.

Warning

This	module	is	experimental.	Its	behaviors,	directives,	and	defaults
are	subject	to	more	change	from	release	to	release	relative	to	other

http://nghttp2.org/

standard	modules.	Users	are	encouraged	to	consult	the
"CHANGES"	file	for	potential	updates.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_http2

mod_proxy

mod_proxy_connect

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_http2
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_http2

Basic	Examples

The	examples	below	demonstrate	how	to	configure	HTTP/2	for
backend	connections	for	a	reverse	proxy.

HTTP/2	(TLS)
ProxyPass	"/app"	"h2://app.example.com"

ProxyPassReverse	"/app"	"https://app.example.com"

HTTP/2	(cleartext)
ProxyPass	"/app"	"h2c://app.example.com"

ProxyPassReverse	"/app"	"http://app.example.com"

The	schemes	to	configure	above	in	ProxyPassReverse	for
reverse	proxying	h2	(or	h2c)	protocols	are	the	usual	https
(resp.	http)	as	expected/used	by	the	user	agent.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Request	notes

mod_proxy_http	creates	the	following	request	notes	for	logging
using	the	%{VARNAME}n	format	in	LogFormat	or
ErrorLogFormat:

proxy-source-port
The	local	port	used	for	the	connection	to	the	backend	server.

proxy-status
The	HTTP/2	status	received	from	the	backend	server.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_scgi

Description: SCGI	gateway	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_scgi_module
Source	File: mod_proxy_scgi.c
Compatibility: Available	in	version	2.2.14	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	SCGI	protocol,	version	1.

Thus,	in	order	to	get	the	ability	of	handling	the	SCGI	protocol,
mod_proxy	and	mod_proxy_scgi	have	to	be	present	in	the	server.

Warning

Do	not	enable	proxying	until	you	have	secured	your	server.	Open
proxy	servers	are	dangerous	both	to	your	network	and	to	the
Internet	at	large.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also

http://python.ca/scgi/protocol.txt
https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_scgi
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_scgi

mod_proxy

mod_proxy_balancer

Examples

Remember,	in	order	to	make	the	following	examples	work,	you
have	to	enable	mod_proxy	and	mod_proxy_scgi.

Simple	gateway
ProxyPass	/scgi-bin/	scgi://localhost:4000/

The	balanced	gateway	needs	mod_proxy_balancer	and	at
least	one	load	balancer	algorithm	module,	such	as
mod_lbmethod_byrequests,	in	addition	to	the	proxy	modules
listed	above.	mod_lbmethod_byrequests	is	the	default,	and
will	be	used	for	this	example	configuration.

Balanced	gateway
ProxyPass	"/scgi-bin/"	"balancer://somecluster/"

<Proxy	"balancer://somecluster">

				BalancerMember	"scgi://localhost:4000"

				BalancerMember	"scgi://localhost:4001"

</Proxy>

Environment	Variables

In	addition	to	the	configuration	directives	that	control	the	behaviour
of	mod_proxy,	an	environment	variable	may	also	control	the
SCGI	protocol	provider:

proxy-scgi-pathinfo
By	default	mod_proxy_scgi	will	neither	create	nor	export
the	PATH_INFO	environment	variable.	This	allows	the
backend	SCGI	server	to	correctly	determine	SCRIPT_NAME
and	Script-URI	and	be	compliant	with	RFC	3875	section	3.3.
If	instead	you	need	mod_proxy_scgi	to	generate	a	"best
guess"	for	PATH_INFO,	set	this	env-var.	The	variable	must	be
set	before	SetEnv	is	effective.	SetEnvIf	can	be	used
instead:	SetEnvIf	Request_URI	.	proxy-scgi-
pathinfo

ProxySCGIInternalRedirect	Directive

Description: Enable	or	disable	internal	redirect	responses
from	the	backend

Syntax: ProxySCGIInternalRedirect

On|Off|Headername

Default: ProxySCGIInternalRedirect	On

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_scgi
Compatibility: The	Headername	feature	is	available	in	version

2.4.13	and	later

The	ProxySCGIInternalRedirect	enables	the	backend	to
internally	redirect	the	gateway	to	a	different	URL.	This	feature
originates	in	mod_cgi,	which	internally	redirects	the	response	if
the	response	status	is	OK	(200)	and	the	response	contains	a
Location	(or	configured	alternate	header)	and	its	value	starts
with	a	slash	(/).	This	value	is	interpreted	as	a	new	local	URL	that
Apache	httpd	internally	redirects	to.

mod_proxy_scgi	does	the	same	as	mod_cgi	in	this	regard,
except	that	you	can	turn	off	the	feature	or	specify	the	use	of	a
header	other	than	Location.

Example
				ProxySCGIInternalRedirect	Off

#	Django	and	some	other	frameworks	will	fully	qualify	"local	URLs"

#	set	by	the	application,	so	an	alternate	header	must	be	used.

<Location	/django-app/>

				ProxySCGIInternalRedirect	X-Location

</Location>

ProxySCGISendfile	Directive

Description: Enable	evaluation	of	X-Sendfile	pseudo	response
header

Syntax: ProxySCGISendfile	On|Off|Headername

Default: ProxySCGISendfile	Off

Context: server	config,	virtual	host,	directory
Status: Extension
Module: mod_proxy_scgi

The	ProxySCGISendfile	directive	enables	the	SCGI	backend
to	let	files	be	served	directly	by	the	gateway.	This	is	useful	for
performance	purposes	—	httpd	can	use	sendfile	or	other
optimizations,	which	are	not	possible	if	the	file	comes	over	the
backend	socket.	Additionally,	the	file	contents	are	not	transmitted
twice.

The	ProxySCGISendfile	argument	determines	the	gateway
behaviour:

Off

No	special	handling	takes	place.

On

The	gateway	looks	for	a	backend	response	header	called	X-
Sendfile	and	interprets	the	value	as	the	filename	to	serve.
The	header	is	removed	from	the	final	response	headers.	This
is	equivalent	to	ProxySCGISendfile	X-Sendfile.

anything	else
Similar	to	On,	but	instead	of	the	hardcoded	header	name	X-
Sendfile,	the	argument	is	used	as	the	header	name.

Example
#	Use	the	default	header	(X-Sendfile)

ProxySCGISendfile	On

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

				

#	Use	a	different	header

ProxySCGISendfile	X-Send-Static

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_proxy_wstunnel

Description: Websockets	support	module	for	mod_proxy
Status: Extension
Module	Identifier: proxy_wstunnel_module
Source	File: mod_proxy_wstunnel.c
Compatibility: Available	in	httpd	2.4.5	and	later

Summary
This	module	requires	the	service	of	mod_proxy.	It	provides	support
for	the	tunnelling	of	web	socket	connections	to	a	backend	websockets
server.	The	connection	is	automatically	upgraded	to	a	websocket
connection:

HTTP	Response
Upgrade:	WebSocket

Connection:	Upgrade

Proxying	requests	to	a	websockets	server	like
echo.websocket.org	can	be	done	using	the	ProxyPass	directive:

ProxyPass	"/ws2/"		"ws://echo.websocket.org/"

ProxyPass	"/wss2/"	"wss://echo.websocket.org/"

Load	balancing	for	multiple	backends	can	be	achieved	using
mod_proxy_balancer.

In	fact	the	module	can	be	used	to	upgrade	to	other	protocols,	you	can
set	the	upgrade	parameter	in	the	ProxyPass	directive	to	allow	the
module	to	accept	other	protocol.	NONE	means	you	bypass	the	check
for	the	header	but	still	upgrade	to	WebSocket.	ANY	means	that

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Upgrade	will	read	in	the	request	headers	and	use	in	the	response
Upgrade

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_proxy

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_proxy_wstunnel
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_proxy_wstunnel
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_ratelimit

Description: Bandwidth	Rate	Limiting	for	Clients
Status: Extension
Module	Identifier: ratelimit_module
Source	File: mod_ratelimit.c
Compatibility: rate-initial-burst	available	in	httpd	2.4.24

and	later.

Summary
Provides	a	filter	named	RATE_LIMIT	to	limit	client	bandwidth.	The
throttling	is	applied	to	each	HTTP	response	while	it	is	transferred	to
the	client,	and	not	aggregated	at	IP/client	level.	The	connection	speed
to	be	simulated	is	specified,	in	KiB/s,	using	the	environment	variable
rate-limit.

Optionally,	an	initial	amount	of	burst	data,	in	KiB,	may	be	configured
to	be	passed	at	full	speed	before	throttling	to	the	specified	rate	limit.
This	value	is	optional,	and	is	set	using	the	environment	variable
rate-initial-burst.

Example	Configuration
<Location	"/downloads">

				SetOutputFilter	RATE_LIMIT

				SetEnv	rate-limit	400	

				SetEnv	rate-initial-burst	512

</Location>

If	the	value	specified	for	rate-limit	causes	integer	overflow,
the	rate-limited	will	be	disabled.	If	the	value	specified	for	rate-
limit-burst	causes	integer	overflow,	the	burst	will	be
disabled.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_reflector

Description: Reflect	a	request	body	as	a	response	via	the
output	filter	stack.

Status: Base
Module	Identifier: reflector_module
Source	File: mod_reflector.c
Compatibility: Version	2.3	and	later

Summary
This	module	allows	request	bodies	to	be	reflected	back	to	the	client,
in	the	process	passing	the	request	through	the	output	filter	stack.	A
suitably	configured	chain	of	filters	can	be	used	to	transform	the
request	into	a	response.	This	module	can	be	used	to	turn	an	output
filter	into	an	HTTP	service.

Examples

Compression	service
Pass	the	request	body	through	the	DEFLATE	filter	to
compress	the	body.	This	request	requires	a	Content-Encoding
request	header	containing	"gzip"	for	the	filter	to	return
compressed	data.

<Location	"/compress">

				SetHandler	reflector

				SetOutputFilter	DEFLATE

</Location>

Image	downsampling	service
Pass	the	request	body	through	an	image	downsampling	filter,
and	reflect	the	results	to	the	caller.

<Location	"/downsample">

				SetHandler	reflector

				SetOutputFilter	DOWNSAMPLE

</Location>

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ReflectorHeader	Directive

Description: Reflect	an	input	header	to	the	output	headers
Syntax: ReflectorHeader	inputheader

[outputheader]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Base
Module: mod_reflector

This	directive	controls	the	reflection	of	request	headers	to	the
response.	The	first	argument	is	the	name	of	the	request	header	to
copy.	If	the	optional	second	argument	is	specified,	it	will	be	used
as	the	name	of	the	response	header,	otherwise	the	original
request	header	name	will	be	used.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_remoteip

Description: Replaces	the	original	client	IP	address	for	the
connection	with	the	useragent	IP	address	list
presented	by	a	proxies	or	a	load	balancer	via	the
request	headers.

Status: Base
Module	Identifier: remoteip_module
Source	File: mod_remoteip.c

Summary
This	module	is	used	to	treat	the	useragent	which	initiated	the	request
as	the	originating	useragent	as	identified	by	httpd	for	the	purposes	of
authorization	and	logging,	even	where	that	useragent	is	behind	a	load
balancer,	front	end	server,	or	proxy	server.

The	module	overrides	the	client	IP	address	for	the	connection	with	the
useragent	IP	address	reported	in	the	request	header	configured	with
the	RemoteIPHeader	directive.

Once	replaced	as	instructed,	this	overridden	useragent	IP	address	is
then	used	for	the	mod_authz_host	Require	ip	feature,	is
reported	by	mod_status,	and	is	recorded	by	mod_log_config	%a
and	core	%a	format	strings.	The	underlying	client	IP	of	the
connection	is	available	in	the	%{c}a	format	string.

It	is	critical	to	only	enable	this	behavior	from	intermediate	hosts
(proxies,	etc)	which	are	trusted	by	this	server,	since	it	is	trivial	for
the	remote	useragent	to	impersonate	another	useragent.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_authz_host

mod_status

mod_log_config

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_remoteip
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_remoteip

Remote	IP	Processing

Apache	by	default	identifies	the	useragent	with	the	connection's
client_ip	value,	and	the	connection	remote_host	and
remote_logname	are	derived	from	this	value.	These	fields	play	a
role	in	authentication,	authorization	and	logging	and	other
purposes	by	other	loadable	modules.

mod_remoteip	overrides	the	client	IP	of	the	connection	with	the
advertised	useragent	IP	as	provided	by	a	proxy	or	load	balancer,
for	the	duration	of	the	request.	A	load	balancer	might	establish	a
long	lived	keepalive	connection	with	the	server,	and	each	request
will	have	the	correct	useragent	IP,	even	though	the	underlying
client	IP	address	of	the	load	balancer	remains	unchanged.

When	multiple,	comma	delimited	useragent	IP	addresses	are
listed	in	the	header	value,	they	are	processed	in	Right-to-Left
order.	Processing	halts	when	a	given	useragent	IP	address	is	not
trusted	to	present	the	preceding	IP	address.	The	header	field	is
updated	to	this	remaining	list	of	unconfirmed	IP	addresses,	or	if	all
IP	addresses	were	trusted,	this	header	is	removed	from	the
request	altogether.

In	overriding	the	client	IP,	the	module	stores	the	list	of	intermediate
hosts	in	a	remoteip-proxy-ip-list	note,	which	mod_log_config
can	record	using	the	%{remoteip-proxy-ip-list}n	format
token.	If	the	administrator	needs	to	store	this	as	an	additional
header,	this	same	value	can	also	be	recording	as	a	header	using
the	directive	RemoteIPProxiesHeader.

IPv4-over-IPv6	Mapped	Addresses
As	with	httpd	in	general,	any	IPv4-over-IPv6	mapped	addresses
are	recorded	in	their	IPv4	representation.

Internal	(Private)	Addresses

All	internal	addresses	10/8,	172.16/12,	192.168/16,	169.254/16
and	127/8	blocks	(and	IPv6	addresses	outside	of	the	public
2000::/3	block)	are	only	evaluated	by	mod_remoteip	when
RemoteIPInternalProxy	internal	(intranet)	proxies	are
registered.

RemoteIPHeader	Directive

Description: Declare	the	header	field	which	should	be	parsed
for	useragent	IP	addresses

Syntax: RemoteIPHeader	header-field

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPHeader	directive	triggers	mod_remoteip	to	treat
the	value	of	the	specified	header-field	header	as	the	useragent	IP
address,	or	list	of	intermediate	useragent	IP	addresses,	subject	to
further	configuration	of	the	RemoteIPInternalProxy	and
RemoteIPTrustedProxy	directives.	Unless	these	other
directives	are	used,	mod_remoteip	will	trust	all	hosts	presenting
a	RemoteIPHeader	IP	value.

Internal	(Load	Balancer)	Example
RemoteIPHeader	X-Client-IP

Proxy	Example
RemoteIPHeader	X-Forwarded-For

RemoteIPInternalProxy	Directive

Description: Declare	client	intranet	IP	addresses	trusted	to
present	the	RemoteIPHeader	value

Syntax: RemoteIPInternalProxy	proxy-ip|proxy-

ip/subnet|hostname	...

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPInternalProxy	directive	adds	one	or	more
addresses	(or	address	blocks)	to	trust	as	presenting	a	valid
RemoteIPHeader	value	of	the	useragent	IP.	Unlike	the
RemoteIPTrustedProxy	directive,	any	IP	address	presented	in
this	header,	including	private	intranet	addresses,	are	trusted	when
passed	from	these	proxies.

Internal	(Load	Balancer)	Example
RemoteIPHeader	X-Client-IP

RemoteIPInternalProxy	10.0.2.0/24

RemoteIPInternalProxy	gateway.localdomain

RemoteIPInternalProxyList	Directive

Description: Declare	client	intranet	IP	addresses	trusted	to
present	the	RemoteIPHeader	value

Syntax: RemoteIPInternalProxyList	filename

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPInternalProxyList	directive	specifies	a	file
parsed	at	startup,	and	builds	a	list	of	addresses	(or	address
blocks)	to	trust	as	presenting	a	valid	RemoteIPHeader	value	of	the
useragent	IP.

The	'#'	hash	character	designates	a	comment	line,	otherwise	each
whitespace	or	newline	separated	entry	is	processed	identically	to
the	RemoteIPInternalProxy	directive.

Internal	(Load	Balancer)	Example
RemoteIPHeader	X-Client-IP

RemoteIPInternalProxyList	conf/trusted-proxies.lst

conf/trusted-proxies.lst	contents
#	Our	internally	trusted	proxies;

10.0.2.0/24									#Everyone	in	the	testing	group

gateway.localdomain	#The	front	end	balancer

RemoteIPProxiesHeader	Directive

Description: Declare	the	header	field	which	will	record	all
intermediate	IP	addresses

Syntax: RemoteIPProxiesHeader	HeaderFieldName

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPProxiesHeader	directive	specifies	a	header	into
which	mod_remoteip	will	collect	a	list	of	all	of	the	intermediate
client	IP	addresses	trusted	to	resolve	the	useragent	IP	of	the
request.	Note	that	intermediate	RemoteIPTrustedProxy
addresses	are	recorded	in	this	header,	while	any	intermediate
RemoteIPInternalProxy	addresses	are	discarded.

Example
RemoteIPHeader	X-Forwarded-For

RemoteIPProxiesHeader	X-Forwarded-By

RemoteIPTrustedProxy	Directive

Description: Declare	client	intranet	IP	addresses	trusted	to
present	the	RemoteIPHeader	value

Syntax: RemoteIPTrustedProxy	proxy-ip|proxy-

ip/subnet|hostname	...

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPTrustedProxy	directive	adds	one	or	more
addresses	(or	address	blocks)	to	trust	as	presenting	a	valid
RemoteIPHeader	value	of	the	useragent	IP.	Unlike	the
RemoteIPInternalProxy	directive,	any	intranet	or	private	IP
address	reported	by	such	proxies,	including	the	10/8,	172.16/12,
192.168/16,	169.254/16	and	127/8	blocks	(or	outside	of	the	IPv6
public	2000::/3	block)	are	not	trusted	as	the	useragent	IP,	and	are
left	in	the	RemoteIPHeader	header's	value.

Trusted	(Load	Balancer)	Example
RemoteIPHeader	X-Forwarded-For

RemoteIPTrustedProxy	10.0.2.16/28

RemoteIPTrustedProxy	proxy.example.com

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

RemoteIPTrustedProxyList	Directive

Description: Declare	client	intranet	IP	addresses	trusted	to
present	the	RemoteIPHeader	value

Syntax: RemoteIPTrustedProxyList	filename

Context: server	config,	virtual	host
Status: Base
Module: mod_remoteip

The	RemoteIPTrustedProxyList	directive	specifies	a	file
parsed	at	startup,	and	builds	a	list	of	addresses	(or	address
blocks)	to	trust	as	presenting	a	valid	RemoteIPHeader	value	of	the
useragent	IP.

The	'#'	hash	character	designates	a	comment	line,	otherwise	each
whitespace	or	newline	separated	entry	is	processed	identically	to
the	RemoteIPTrustedProxy	directive.

Trusted	(Load	Balancer)	Example
RemoteIPHeader	X-Forwarded-For

RemoteIPTrustedProxyList	conf/trusted-proxies.lst

conf/trusted-proxies.lst	contents
#	Identified	external	proxies;

192.0.2.16/28	#wap	phone	group	of	proxies

proxy.isp.example.com	#some	well	known	ISP

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_reqtimeout

Description: Set	timeout	and	minimum	data	rate	for	receiving
requests

Status: Extension
Module	Identifier: reqtimeout_module
Source	File: mod_reqtimeout.c
Compatibility: Available	in	Apache	HTTPD	2.2.15	and	later

Examples

1.	 Allow	10	seconds	to	receive	the	request	including	the	headers
and	30	seconds	for	receiving	the	request	body:

RequestReadTimeout	header=10	body=30

2.	 Allow	at	least	10	seconds	to	receive	the	request	body.	If	the
client	sends	data,	increase	the	timeout	by	1	second	for	every
1000	bytes	received,	with	no	upper	limit	for	the	timeout
(except	for	the	limit	given	indirectly	by	LimitRequestBody):

RequestReadTimeout	body=10,MinRate=1000

3.	 Allow	at	least	10	seconds	to	receive	the	request	including	the
headers.	If	the	client	sends	data,	increase	the	timeout	by	1
second	for	every	500	bytes	received.	But	do	not	allow	more
than	30	seconds	for	the	request	including	the	headers:

RequestReadTimeout	header=10-30,MinRate=500

4.	 Usually,	a	server	should	have	both	header	and	body	timeouts
configured.	If	a	common	configuration	is	used	for	http	and
https	virtual	hosts,	the	timeouts	should	not	be	set	too	low:

RequestReadTimeout	header=20-40,MinRate=500	body=20,MinRate=500

RequestReadTimeout	Directive

Description: Set	timeout	values	for	receiving	request	headers
and	body	from	client.

Syntax: RequestReadTimeout	[header=timeout[-

maxtimeout][,MinRate=rate]

[body=timeout[-maxtimeout]

[,MinRate=rate]

Default: header=20-40,MinRate=500

body=20,MinRate=500

Context: server	config,	virtual	host
Status: Extension
Module: mod_reqtimeout
Compatibility: Available	in	version	2.2.15	and	later;	defaulted	to

disabled	in	version	2.3.14	and	earlier.

This	directive	can	set	various	timeouts	for	receiving	the	request
headers	and	the	request	body	from	the	client.	If	the	client	fails	to
send	headers	or	body	within	the	configured	time,	a	408	REQUEST
TIME	OUT	error	is	sent.

For	SSL	virtual	hosts,	the	header	timeout	values	include	the	time
needed	to	do	the	initial	SSL	handshake.	If	the	user's	browser	is
configured	to	query	certificate	revocation	lists	and	the	CRL	server
is	not	reachable,	the	initial	SSL	handshake	may	take	a	significant
time	until	the	browser	gives	up	waiting	for	the	CRL.	Therefore	the
header	timeout	values	should	not	be	set	to	very	low	values	for
SSL	virtual	hosts.	The	body	timeout	values	include	the	time
needed	for	SSL	renegotiation	(if	necessary).

When	an	AcceptFilter	is	in	use	(usually	the	case	on	Linux	and
FreeBSD),	the	socket	is	not	sent	to	the	server	process	before	at
least	one	byte	(or	the	whole	request	for	httpready)	is	received.
The	header	timeout	configured	with	RequestReadTimeout	is

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

only	effective	after	the	server	process	has	received	the	socket.

For	each	of	the	two	timeout	types	(header	or	body),	there	are
three	ways	to	specify	the	timeout:

Fixed	timeout	value:

type=timeout

The	time	in	seconds	allowed	for	reading	all	of	the	request
headers	or	body,	respectively.	A	value	of	0	means	no	limit.

Disable	module	for	a	vhost::

header=0	body=0

This	disables	mod_reqtimeout	completely.

Timeout	value	that	is	increased	when	data	is	received:

type=timeout,MinRate=data_rate

Same	as	above,	but	whenever	data	is	received,	the	timeout
value	is	increased	according	to	the	specified	minimum	data
rate	(in	bytes	per	second).

Timeout	value	that	is	increased	when	data	is	received,
with	an	upper	bound:

type=timeout-maxtimeout,MinRate=data_rate

Same	as	above,	but	the	timeout	will	not	be	increased	above
the	second	value	of	the	specified	timeout	range.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_request

Description: Filters	to	handle	and	make	available	HTTP
request	bodies

Status: Base
Module	Identifier: request_module
Source	File: mod_request.c
Compatibility: Available	in	Apache	2.3	and	later

KeptBodySize	Directive

Description: Keep	the	request	body	instead	of	discarding	it	up
to	the	specified	maximum	size,	for	potential	use	by
filters	such	as	mod_include.

Syntax: KeptBodySize	maximum	size	in	bytes

Default: KeptBodySize	0

Context: directory
Status: Base
Module: mod_request

Under	normal	circumstances,	request	handlers	such	as	the	default
handler	for	static	files	will	discard	the	request	body	when	it	is	not
needed	by	the	request	handler.	As	a	result,	filters	such	as
mod_include	are	limited	to	making	GET	requests	only	when
including	other	URLs	as	subrequests,	even	if	the	original	request
was	a	POST	request,	as	the	discarded	request	body	is	no	longer
available	once	filter	processing	is	taking	place.

When	this	directive	has	a	value	greater	than	zero,	request
handlers	that	would	otherwise	discard	request	bodies	will	instead
set	the	request	body	aside	for	use	by	filters	up	to	the	maximum
size	specified.	In	the	case	of	the	mod_include	filter,	an	attempt	to
POST	a	request	to	the	static	shtml	file	will	cause	any	subrequests
to	be	POST	requests,	instead	of	GET	requests	as	before.

This	feature	makes	it	possible	to	break	up	complex	web	pages
and	web	applications	into	small	individual	components,	and
combine	the	components	and	the	surrounding	web	page	structure
together	using	mod_include.	The	components	can	take	the	form
of	CGI	programs,	scripted	languages,	or	URLs	reverse	proxied
into	the	URL	space	from	another	server	using	mod_proxy.

Note:	Each	request	set	aside	has	to	be	set	aside	in	temporary
RAM	until	the	request	is	complete.	As	a	result,	care	should	be

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

taken	to	ensure	sufficient	RAM	is	available	on	the	server	to
support	the	intended	load.	Use	of	this	directive	should	be	limited	to
where	needed	on	targeted	parts	of	your	URL	space,	and	with	the
lowest	possible	value	that	is	still	big	enough	to	hold	a	request
body.

If	the	request	size	sent	by	the	client	exceeds	the	maximum	size
allocated	by	this	directive,	the	server	will	return	413	Request
Entity	Too	Large.

See	also
mod_include	documentation
mod_auth_form	documentation

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_rewrite

Description: Provides	a	rule-based	rewriting	engine	to	rewrite
requested	URLs	on	the	fly

Status: Extension
Module	Identifier: rewrite_module
Source	File: mod_rewrite.c

Summary
The	mod_rewrite	module	uses	a	rule-based	rewriting	engine,	based
on	a	PCRE	regular-expression	parser,	to	rewrite	requested	URLs	on
the	fly.	By	default,	mod_rewrite	maps	a	URL	to	a	filesystem	path.
However,	it	can	also	be	used	to	redirect	one	URL	to	another	URL,	or
to	invoke	an	internal	proxy	fetch.

mod_rewrite	provides	a	flexible	and	powerful	way	to	manipulate
URLs	using	an	unlimited	number	of	rules.	Each	rule	can	have	an
unlimited	number	of	attached	rule	conditions,	to	allow	you	to	rewrite
URL	based	on	server	variables,	environment	variables,	HTTP
headers,	or	time	stamps.

mod_rewrite	operates	on	the	full	URL	path,	including	the	path-info
section.	A	rewrite	rule	can	be	invoked	in	httpd.conf	or	in
.htaccess.	The	path	generated	by	a	rewrite	rule	can	include	a	query
string,	or	can	lead	to	internal	sub-processing,	external	request
redirection,	or	internal	proxy	throughput.

Further	details,	discussion,	and	examples,	are	provided	in	the	detailed
mod_rewrite	documentation.

Logging

mod_rewrite	offers	detailed	logging	of	its	actions	at	the	trace1
to	trace8	log	levels.	The	log	level	can	be	set	specifically	for
mod_rewrite	using	the	LogLevel	directive:	Up	to	level	debug,
no	actions	are	logged,	while	trace8	means	that	practically	all
actions	are	logged.

Using	a	high	trace	log	level	for	mod_rewrite	will	slow	down
your	Apache	HTTP	Server	dramatically!	Use	a	log	level	higher
than	trace2	only	for	debugging!

Example
LogLevel	alert	rewrite:trace3

RewriteLog

Those	familiar	with	earlier	versions	of	mod_rewrite	will	no
doubt	be	looking	for	the	RewriteLog	and	RewriteLogLevel
directives.	This	functionality	has	been	completely	replaced	by
the	new	per-module	logging	configuration	mentioned	above.

To	get	just	the	mod_rewrite-specific	log	messages,	pipe	the
log	file	through	grep:

tail	-f	error_log|fgrep	'[rewrite:'

RewriteBase	Directive

Description: Sets	the	base	URL	for	per-directory	rewrites
Syntax: RewriteBase	URL-path

Default: None

Context: directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteBase	directive	specifies	the	URL	prefix	to	be	used
for	per-directory	(htaccess)	RewriteRule	directives	that
substitute	a	relative	path.

This	directive	is	required	when	you	use	a	relative	path	in	a
substitution	in	per-directory	(htaccess)	context	unless	any	of	the
following	conditions	are	true:

The	original	request,	and	the	substitution,	are	underneath	the
DocumentRoot	(as	opposed	to	reachable	by	other	means,
such	as	Alias).
The	filesystem	path	to	the	directory	containing	the
RewriteRule,	suffixed	by	the	relative	substitution	is	also
valid	as	a	URL	path	on	the	server	(this	is	rare).
In	Apache	HTTP	Server	2.4.16	and	later,	this	directive	may	be
omitted	when	the	request	is	mapped	via	Alias	or
mod_userdir.

In	the	example	below,	RewriteBase	is	necessary	to	avoid
rewriting	to	http://example.com/opt/myapp-1.2.3/welcome.html
since	the	resource	was	not	relative	to	the	document	root.	This
misconfiguration	would	normally	cause	the	server	to	look	for	an
"opt"	directory	under	the	document	root.

DocumentRoot	"/var/www/example.com"

AliasMatch	"^/myapp"	"/opt/myapp-1.2.3"

<Directory	"/opt/myapp-1.2.3">

				RewriteEngine	On

				RewriteBase	"/myapp/"

				RewriteRule	"^index\.html$"		"welcome.html"

</Directory>

RewriteCond	Directive

Description: Defines	a	condition	under	which	rewriting	will	take
place

Syntax: RewriteCond	TestString	CondPattern

[flags]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteCond	directive	defines	a	rule	condition.	One	or	more
RewriteCond	can	precede	a	RewriteRule	directive.	The
following	rule	is	then	only	used	if	both	the	current	state	of	the	URI
matches	its	pattern,	and	if	these	conditions	are	met.

TestString	is	a	string	which	can	contain	the	following	expanded
constructs	in	addition	to	plain	text:

RewriteRule	backreferences:	These	are	backreferences	of
the	form	$N	(0	<=	N	<=	9).	$1	to	$9	provide	access	to	the
grouped	parts	(in	parentheses)	of	the	pattern,	from	the
RewriteRule	which	is	subject	to	the	current	set	of
RewriteCond	conditions.	$0	provides	access	to	the	whole
string	matched	by	that	pattern.
RewriteCond	backreferences:	These	are	backreferences	of
the	form	%N	(0	<=	N	<=	9).	%1	to	%9	provide	access	to	the
grouped	parts	(again,	in	parentheses)	of	the	pattern,	from	the
last	matched	RewriteCond	in	the	current	set	of	conditions.
%0	provides	access	to	the	whole	string	matched	by	that
pattern.
RewriteMap	expansions:	These	are	expansions	of	the	form
${mapname:key|default}.	See	the	documentation	for
RewriteMap	for	more	details.

Server-Variables:	These	are	variables	of	the	form	%{
NAME_OF_VARIABLE	}	where	NAME_OF_VARIABLE	can
be	a	string	taken	from	the	following	list:

HTTP	headers: connection	&	request:
HTTP_ACCEPT
HTTP_COOKIE
HTTP_FORWARDED
HTTP_HOST
HTTP_PROXY_CONNECTION
HTTP_REFERER
HTTP_USER_AGENT

AUTH_TYPE
CONN_REMOTE_ADDR
CONTEXT_PREFIX
CONTEXT_DOCUMENT_ROOT
IPV6
PATH_INFO
QUERY_STRING
REMOTE_ADDR
REMOTE_HOST
REMOTE_IDENT
REMOTE_PORT
REMOTE_USER
REQUEST_METHOD
SCRIPT_FILENAME

server	internals: date	and	time:
DOCUMENT_ROOT
SCRIPT_GROUP
SCRIPT_USER
SERVER_ADDR
SERVER_ADMIN
SERVER_NAME
SERVER_PORT
SERVER_PROTOCOL
SERVER_SOFTWARE

TIME_YEAR
TIME_MON
TIME_DAY
TIME_HOUR
TIME_MIN
TIME_SEC
TIME_WDAY
TIME

These	variables	all	correspond	to	the	similarly	named	HTTP
MIME-headers,	C	variables	of	the	Apache	HTTP	Server	or
struct	tm	fields	of	the	Unix	system.	Most	are	documented
here	or	elsewhere	in	the	Manual	or	in	the	CGI	specification.

SERVER_NAME	and	SERVER_PORT	depend	on	the	values
of	UseCanonicalName	and	UseCanonicalPhysicalPort
respectively.

Those	that	are	special	to	mod_rewrite	include	those	below.

API_VERSION

This	is	the	version	of	the	Apache	httpd	module	API	(the
internal	interface	between	server	and	module)	in	the
current	httpd	build,	as	defined	in	include/ap_mmn.h.	The
module	API	version	corresponds	to	the	version	of	Apache
httpd	in	use	(in	the	release	version	of	Apache	httpd
1.3.14,	for	instance,	it	is	19990320:10),	but	is	mainly	of
interest	to	module	authors.

CONN_REMOTE_ADDR

Since	2.4.8:	The	peer	IP	address	of	the	connection	(see
the	mod_remoteip	module).

HTTPS

Will	contain	the	text	"on"	if	the	connection	is	using
SSL/TLS,	or	"off"	otherwise.	(This	variable	can	be	safely
used	regardless	of	whether	or	not	mod_ssl	is	loaded).

IS_SUBREQ

Will	contain	the	text	"true"	if	the	request	currently	being
processed	is	a	sub-request,	"false"	otherwise.	Sub-
requests	may	be	generated	by	modules	that	need	to
resolve	additional	files	or	URIs	in	order	to	complete	their
tasks.

REMOTE_ADDR

The	IP	address	of	the	remote	host	(see	the
mod_remoteip	module).

REQUEST_FILENAME

The	full	local	filesystem	path	to	the	file	or	script	matching

the	request,	if	this	has	already	been	determined	by	the
server	at	the	time	REQUEST_FILENAME	is	referenced.
Otherwise,	such	as	when	used	in	virtual	host	context,	the
same	value	as	REQUEST_URI.	Depending	on	the	value
of	AcceptPathInfo,	the	server	may	have	only	used
some	leading	components	of	the	REQUEST_URI	to	map
the	request	to	a	file.

REQUEST_SCHEME

Will	contain	the	scheme	of	the	request	(usually	"http"	or
"https").	This	value	can	be	influenced	with	ServerName.

REQUEST_URI

The	path	component	of	the	requested	URI,	such	as
"/index.html".	This	notably	excludes	the	query	string
which	is	available	as	its	own	variable	named
QUERY_STRING.

THE_REQUEST

The	full	HTTP	request	line	sent	by	the	browser	to	the
server	(e.g.,	"GET	/index.html	HTTP/1.1").	This
does	not	include	any	additional	headers	sent	by	the
browser.	This	value	has	not	been	unescaped	(decoded),
unlike	most	other	variables	below.

If	the	TestString	has	the	special	value	expr,	the	CondPattern	will
be	treated	as	an	ap_expr.	HTTP	headers	referenced	in	the
expression	will	be	added	to	the	Vary	header	if	the	novary	flag	is
not	given.

Other	things	you	should	be	aware	of:

1.	 The	variables	SCRIPT_FILENAME	and
REQUEST_FILENAME	contain	the	same	value	-	the	value	of
the	filename	field	of	the	internal	request_rec	structure	of
the	Apache	HTTP	Server.	The	first	name	is	the	commonly

known	CGI	variable	name	while	the	second	is	the	appropriate
counterpart	of	REQUEST_URI	(which	contains	the	value	of
the	uri	field	of	request_rec).

If	a	substitution	occurred	and	the	rewriting	continues,	the
value	of	both	variables	will	be	updated	accordingly.

If	used	in	per-server	context	(i.e.,	before	the	request	is
mapped	to	the	filesystem)	SCRIPT_FILENAME	and
REQUEST_FILENAME	cannot	contain	the	full	local	filesystem
path	since	the	path	is	unknown	at	this	stage	of	processing.
Both	variables	will	initially	contain	the	value	of
REQUEST_URI	in	that	case.	In	order	to	obtain	the	full	local
filesystem	path	of	the	request	in	per-server	context,	use	an
URL-based	look-ahead	%{LA-U:REQUEST_FILENAME}	to
determine	the	final	value	of	REQUEST_FILENAME.

2.	 %{ENV:variable},	where	variable	can	be	any	environment
variable,	is	also	available.	This	is	looked-up	via	internal
Apache	httpd	structures	and	(if	not	found	there)	via
getenv()	from	the	Apache	httpd	server	process.

3.	 %{SSL:variable},	where	variable	is	the	name	of	an	SSL
environment	variable,	can	be	used	whether	or	not	mod_ssl	is
loaded,	but	will	always	expand	to	the	empty	string	if	it	is	not.
Example:	%{SSL:SSL_CIPHER_USEKEYSIZE}	may	expand
to	128.	These	variables	are	available	even	without	setting	the
StdEnvVars	option	of	the	SSLOptions	directive.

4.	 %{HTTP:header},	where	header	can	be	any	HTTP	MIME-
header	name,	can	always	be	used	to	obtain	the	value	of	a
header	sent	in	the	HTTP	request.	Example:	%{HTTP:Proxy-
Connection}	is	the	value	of	the	HTTP	header	``Proxy-
Connection:''.
If	a	HTTP	header	is	used	in	a	condition	this	header	is	added

to	the	Vary	header	of	the	response	in	case	the	condition
evaluates	to	true	for	the	request.	It	is	not	added	if	the
condition	evaluates	to	false	for	the	request.	Adding	the	HTTP
header	to	the	Vary	header	of	the	response	is	needed	for
proper	caching.

It	has	to	be	kept	in	mind	that	conditions	follow	a	short	circuit
logic	in	the	case	of	the	'ornext|OR'	flag	so	that	certain
conditions	might	not	be	evaluated	at	all.

5.	 %{LA-U:variable}	can	be	used	for	look-aheads	which
perform	an	internal	(URL-based)	sub-request	to	determine	the
final	value	of	variable.	This	can	be	used	to	access	variable	for
rewriting	which	is	not	available	at	the	current	stage,	but	will	be
set	in	a	later	phase.
For	instance,	to	rewrite	according	to	the	REMOTE_USER
variable	from	within	the	per-server	context	(httpd.conf	file)
you	must	use	%{LA-U:REMOTE_USER}	-	this	variable	is	set
by	the	authorization	phases,	which	come	after	the	URL
translation	phase	(during	which	mod_rewrite	operates).

On	the	other	hand,	because	mod_rewrite	implements	its	per-
directory	context	(.htaccess	file)	via	the	Fixup	phase	of	the
API	and	because	the	authorization	phases	come	before	this
phase,	you	just	can	use	%{REMOTE_USER}	in	that	context.

6.	 %{LA-F:variable}	can	be	used	to	perform	an	internal
(filename-based)	sub-request,	to	determine	the	final	value	of
variable.	Most	of	the	time,	this	is	the	same	as	LA-U	above.

CondPattern	is	the	condition	pattern,	a	regular	expression	which	is
applied	to	the	current	instance	of	the	TestString.	TestString	is	first
evaluated,	before	being	matched	against	CondPattern.

CondPattern	is	usually	a	perl	compatible	regular	expression,	but

there	is	additional	syntax	available	to	perform	other	useful	tests
against	the	Teststring:

1.	 You	can	prefix	the	pattern	string	with	a	'!'	character
(exclamation	mark)	to	negate	the	result	of	the	condition,	no
matter	what	kind	of	CondPattern	is	used.

2.	 You	can	perform	lexicographical	string	comparisons:

<CondPattern
Lexicographically	precedes
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString
lexicographically	precedes	CondPattern.

>CondPattern
Lexicographically	follows
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString
lexicographically	follows	CondPattern.

=CondPattern
Lexicographically	equal
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString	is
lexicographically	equal	to	CondPattern	(the	two	strings
are	exactly	equal,	character	for	character).	If	CondPattern
is	""	(two	quotation	marks)	this	compares	TestString	to
the	empty	string.

<=CondPattern
Lexicographically	less	than	or	equal	to
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString
lexicographically	precedes	CondPattern,	or	is	equal	to
CondPattern	(the	two	strings	are	equal,	character	for
character).

>=CondPattern
Lexicographically	greater	than	or	equal	to
Treats	the	CondPattern	as	a	plain	string	and	compares	it
lexicographically	to	TestString.	True	if	TestString
lexicographically	follows	CondPattern,	or	is	equal	to
CondPattern	(the	two	strings	are	equal,	character	for
character).

3.	 You	can	perform	integer	comparisons:

-eq
Is	numerically	equal	to
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	two	are
numerically	equal.

-ge
Is	numerically	greater	than	or	equal	to
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	TestString	is
numerically	greater	than	or	equal	to	the	CondPattern.

-gt
Is	numerically	greater	than
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	TestString	is
numerically	greater	than	the	CondPattern.

-le
Is	numerically	less	than	or	equal	to
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	TestString	is
numerically	less	than	or	equal	to	the	CondPattern.	Avoid
confusion	with	the	-l	by	using	the	-L	or	-h	variant.

-lt
Is	numerically	less	than
The	TestString	is	treated	as	an	integer,	and	is	numerically

compared	to	the	CondPattern.	True	if	the	TestString	is
numerically	less	than	the	CondPattern.	Avoid	confusion
with	the	-l	by	using	the	-L	or	-h	variant.

-ne
Is	numerically	not	equal	to
The	TestString	is	treated	as	an	integer,	and	is	numerically
compared	to	the	CondPattern.	True	if	the	two	are
numerically	different.	This	is	equivalent	to	!-eq.

4.	 You	can	perform	various	file	attribute	tests:

-d
Is	directory.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	is	a	directory.

-f
Is	regular	file.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	is	a	regular	file.

-F
Is	existing	file,	via	subrequest.
Checks	whether	or	not	TestString	is	a	valid	file,
accessible	via	all	the	server's	currently-configured	access
controls	for	that	path.	This	uses	an	internal	subrequest	to
do	the	check,	so	use	it	with	care	-	it	can	impact	your
server's	performance!

-h
Is	symbolic	link,	bash	convention.
See	-l.

-l
Is	symbolic	link.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	is	a	symbolic	link.	May	also	use	the

bash	convention	of	-L	or	-h	if	there's	a	possibility	of
confusion	such	as	when	using	the	-lt	or	-le	tests.

-L
Is	symbolic	link,	bash	convention.
See	-l.

-s
Is	regular	file,	with	size.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	is	a	regular	file	with	size	greater	than
zero.

-U
Is	existing	URL,	via	subrequest.
Checks	whether	or	not	TestString	is	a	valid	URL,
accessible	via	all	the	server's	currently-configured	access
controls	for	that	path.	This	uses	an	internal	subrequest	to
do	the	check,	so	use	it	with	care	-	it	can	impact	your
server's	performance!

This	flag	only	returns	information	about	things	like	access
control,	authentication,	and	authorization.	This	flag	does
not	return	information	about	the	status	code	the
configured	handler	(static	file,	CGI,	proxy,	etc.)	would
have	returned.

-x
Has	executable	permissions.
Treats	the	TestString	as	a	pathname	and	tests	whether	or
not	it	exists,	and	has	executable	permissions.	These
permissions	are	determined	according	to	the	underlying
OS.

For	example:

RewriteCond	/var/www/%{REQUEST_URI}	!-f

RewriteRule	^(.+)	/other/archive/$1	[R]

5.	 If	the	TestString	has	the	special	value	expr,	the	CondPattern
will	be	treated	as	an	ap_expr.

In	the	below	example,	-strmatch	is	used	to	compare	the
REFERER	against	the	site	hostname,	to	block	unwanted
hotlinking.

RewriteCond	expr	"!	%{HTTP_REFERER}	-strmatch	'*://%{HTTP_HOST}/*'"

RewriteRule	"^/images"	"-"	[F]

You	can	also	set	special	flags	for	CondPattern	by	appending
[flags]	as	the	third	argument	to	the	RewriteCond	directive,
where	flags	is	a	comma-separated	list	of	any	of	the	following	flags:

'nocase|NC'	(no	case)
This	makes	the	test	case-insensitive	-	differences	between	'A-
Z'	and	'a-z'	are	ignored,	both	in	the	expanded	TestString	and
the	CondPattern.	This	flag	is	effective	only	for	comparisons
between	TestString	and	CondPattern.	It	has	no	effect	on
filesystem	and	subrequest	checks.
'ornext|OR'	(or	next	condition)
Use	this	to	combine	rule	conditions	with	a	local	OR	instead	of
the	implicit	AND.	Typical	example:

RewriteCond	"%{REMOTE_HOST}"		"^host1"		[OR]

RewriteCond	"%{REMOTE_HOST}"		"^host2"		[OR]

RewriteCond	"%{REMOTE_HOST}"		"^host3"

RewriteRule	...some	special	stuff	for	any	of	these	hosts...

Without	this	flag	you	would	have	to	write	the	condition/rule

pair	three	times.
'novary|NV'	(no	vary)
If	a	HTTP	header	is	used	in	the	condition,	this	flag	prevents
this	header	from	being	added	to	the	Vary	header	of	the
response.	
Using	this	flag	might	break	proper	caching	of	the	response	if
the	representation	of	this	response	varies	on	the	value	of	this
header.	So	this	flag	should	be	only	used	if	the	meaning	of	the
Vary	header	is	well	understood.

Example:

To	rewrite	the	Homepage	of	a	site	according	to	the	``User-
Agent:''	header	of	the	request,	you	can	use	the	following:

RewriteCond		"%{HTTP_USER_AGENT}"		"(iPhone|Blackberry|Android)"

RewriteRule		"^/$"																	"/homepage.mobile.html"		[L]

RewriteRule		"^/$"																	"/homepage.std.html"					[L]

Explanation:	If	you	use	a	browser	which	identifies	itself	as	a
mobile	browser	(note	that	the	example	is	incomplete,	as	there	are
many	other	mobile	platforms),	the	mobile	version	of	the	homepage
is	served.	Otherwise,	the	standard	page	is	served.

RewriteEngine	Directive

Description: Enables	or	disables	runtime	rewriting	engine
Syntax: RewriteEngine	on|off

Default: RewriteEngine	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteEngine	directive	enables	or	disables	the	runtime
rewriting	engine.	If	it	is	set	to	off	this	module	does	no	runtime
processing	at	all.	It	does	not	even	update	the	SCRIPT_URx
environment	variables.

Use	this	directive	to	disable	rules	in	a	particular	context,	rather
than	commenting	out	all	the	RewriteRule	directives.

Note	that	rewrite	configurations	are	not	inherited	by	virtual	hosts.
This	means	that	you	need	to	have	a	RewriteEngine	on
directive	for	each	virtual	host	in	which	you	wish	to	use	rewrite
rules.

RewriteMap	directives	of	the	type	prg	are	not	started	during
server	initialization	if	they're	defined	in	a	context	that	does	not
have	RewriteEngine	set	to	on

RewriteMap	Directive

Description: Defines	a	mapping	function	for	key-lookup
Syntax: RewriteMap	MapName	MapType:MapSource

Context: server	config,	virtual	host
Status: Extension
Module: mod_rewrite

The	RewriteMap	directive	defines	a	Rewriting	Map	which	can	be
used	inside	rule	substitution	strings	by	the	mapping-functions	to
insert/substitute	fields	through	a	key	lookup.	The	source	of	this
lookup	can	be	of	various	types.

The	MapName	is	the	name	of	the	map	and	will	be	used	to	specify
a	mapping-function	for	the	substitution	strings	of	a	rewriting	rule
via	one	of	the	following	constructs:

${	MapName	:	LookupKey	}
${	MapName	:	LookupKey	|	DefaultValue	}

When	such	a	construct	occurs,	the	map	MapName	is	consulted
and	the	key	LookupKey	is	looked-up.	If	the	key	is	found,	the	map-
function	construct	is	substituted	by	SubstValue.	If	the	key	is	not
found	then	it	is	substituted	by	DefaultValue	or	by	the	empty	string
if	no	DefaultValue	was	specified.	Empty	values	behave	as	if	the
key	was	absent,	therefore	it	is	not	possible	to	distinguish	between
empty-valued	keys	and	absent	keys.

For	example,	you	might	define	a	RewriteMap	as:

RewriteMap	examplemap	"txt:/path/to/file/map.txt"

You	would	then	be	able	to	use	this	map	in	a	RewriteRule	as
follows:

RewriteRule	"^/ex/(.*)"	"${examplemap:$1}"

The	following	combinations	for	MapType	and	MapSource	can	be
used:

txt
A	plain	text	file	containing	space-separated	key-value	pairs,
one	per	line.	(Details	...)

rnd
Randomly	selects	an	entry	from	a	plain	text	file	(Details	...)

dbm
Looks	up	an	entry	in	a	dbm	file	containing	name,	value	pairs.
Hash	is	constructed	from	a	plain	text	file	format	using	the
httxt2dbm	utility.	(Details	...)

int
One	of	the	four	available	internal	functions	provided	by
RewriteMap:	toupper,	tolower,	escape	or	unescape.	(Details
...)

prg
Calls	an	external	program	or	script	to	process	the	rewriting.
(Details	...)

dbd	or	fastdbd
A	SQL	SELECT	statement	to	be	performed	to	look	up	the
rewrite	target.	(Details	...)

Further	details,	and	numerous	examples,	may	be	found	in	the
RewriteMap	HowTo

RewriteOptions	Directive

Description: Sets	some	special	options	for	the	rewrite	engine
Syntax: RewriteOptions	Options

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteOptions	directive	sets	some	special	options	for	the
current	per-server	or	per-directory	configuration.	The	Option	string
can	currently	only	be	one	of	the	following:

Inherit

This	forces	the	current	configuration	to	inherit	the
configuration	of	the	parent.	In	per-virtual-server	context,	this
means	that	the	maps,	conditions	and	rules	of	the	main	server
are	inherited.	In	per-directory	context	this	means	that
conditions	and	rules	of	the	parent	directory's	.htaccess
configuration	or	<Directory>	sections	are	inherited.	The
inherited	rules	are	virtually	copied	to	the	section	where	this
directive	is	being	used.	If	used	in	combination	with	local	rules,
the	inherited	rules	are	copied	behind	the	local	rules.	The
position	of	this	directive	-	below	or	above	of	local	rules	-	has
no	influence	on	this	behavior.	If	local	rules	forced	the	rewriting
to	stop,	the	inherited	rules	won't	be	processed.

Rules	inherited	from	the	parent	scope	are	applied	after
rules	specified	in	the	child	scope.

InheritBefore

Like	Inherit	above,	but	the	rules	from	the	parent	scope	are
applied	before	rules	specified	in	the	child	scope.
Available	in	Apache	HTTP	Server	2.3.10	and	later.

InheritDown

If	this	option	is	enabled,	all	child	configurations	will	inherit	the
configuration	of	the	current	configuration.	It	is	equivalent	to
specifying	RewriteOptions	Inherit	in	all	child
configurations.	See	the	Inherit	option	for	more	details	on
how	the	parent-child	relationships	are	handled.
Available	in	Apache	HTTP	Server	2.4.8	and	later.

InheritDownBefore

Like	InheritDown	above,	but	the	rules	from	the	current
scope	are	applied	before	rules	specified	in	any	child's	scope.
Available	in	Apache	HTTP	Server	2.4.8	and	later.

IgnoreInherit

This	option	forces	the	current	and	child	configurations	to
ignore	all	rules	that	would	be	inherited	from	a	parent
specifying	InheritDown	or	InheritDownBefore.
Available	in	Apache	HTTP	Server	2.4.8	and	later.

AllowNoSlash

By	default,	mod_rewrite	will	ignore	URLs	that	map	to	a
directory	on	disk	but	lack	a	trailing	slash,	in	the	expectation
that	the	mod_dir	module	will	issue	the	client	with	a	redirect
to	the	canonical	URL	with	a	trailing	slash.

When	the	DirectorySlash	directive	is	set	to	off,	the
AllowNoSlash	option	can	be	enabled	to	ensure	that	rewrite
rules	are	no	longer	ignored.	This	option	makes	it	possible	to
apply	rewrite	rules	within	.htaccess	files	that	match	the
directory	without	a	trailing	slash,	if	so	desired.
Available	in	Apache	HTTP	Server	2.4.0	and	later.

AllowAnyURI

When	RewriteRule	is	used	in	VirtualHost	or	server
context	with	version	2.2.22	or	later	of	httpd,	mod_rewrite

will	only	process	the	rewrite	rules	if	the	request	URI	is	a	URL-
path.	This	avoids	some	security	issues	where	particular	rules
could	allow	"surprising"	pattern	expansions	(see	CVE-2011-
3368	and	CVE-2011-4317).	To	lift	the	restriction	on	matching
a	URL-path,	the	AllowAnyURI	option	can	be	enabled,	and
mod_rewrite	will	apply	the	rule	set	to	any	request	URI
string,	regardless	of	whether	that	string	matches	the	URL-
path	grammar	required	by	the	HTTP	specification.
Available	in	Apache	HTTP	Server	2.4.3	and	later.

Security	Warning

Enabling	this	option	will	make	the	server	vulnerable	to
security	issues	if	used	with	rewrite	rules	which	are	not
carefully	authored.	It	is	strongly	recommended	that	this
option	is	not	used.	In	particular,	beware	of	input	strings
containing	the	'@'	character	which	could	change	the
interpretation	of	the	transformed	URI,	as	per	the	above
CVE	names.

MergeBase

With	this	option,	the	value	of	RewriteBase	is	copied	from
where	it's	explicitly	defined	into	any	sub-directory	or	sub-
location	that	doesn't	define	its	own	RewriteBase.	This	was
the	default	behavior	in	2.4.0	through	2.4.3,	and	the	flag	to
restore	it	is	available	Apache	HTTP	Server	2.4.4	and	later.

IgnoreContextInfo

When	a	relative	substitution	is	made	in	directory	(htaccess)
context	and	RewriteBase	has	not	been	set,	this	module
uses	some	extended	URL	and	filesystem	context	information
to	change	the	relative	substitution	back	into	a	URL.	Modules
such	as	mod_userdir	and	mod_alias	supply	this	extended
context	info.	Available	in	2.4.16	and	later.

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-3368
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2011-4317

LegacyPrefixDocRoot

Prior	to	2.4.26,	if	a	substitution	was	an	absolute	URL	that
matched	the	current	virtual	host,	the	URL	might	first	be
reduced	to	a	URL-path	and	then	later	reduced	to	a	local	path.
Since	the	URL	can	be	reduced	to	a	local	path,	the	path	should
be	prefixed	with	the	document	root.	This	prevents	a	file	such
as	/tmp/myfile	from	being	accessed	when	a	request	is	made
to	http://host/file/myfile	with	the	following	RewriteRule.

RewriteRule	/file/(.*)	http://localhost/tmp/$1

This	option	allows	the	old	behavior	to	be	used	where	the
document	root	is	not	prefixed	to	a	local	path	that	was	reduced
from	a	URL.	Available	in	2.4.26	and	later.

RewriteRule	Directive

Description: Defines	rules	for	the	rewriting	engine
Syntax: RewriteRule	Pattern	Substitution

[flags]

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_rewrite

The	RewriteRule	directive	is	the	real	rewriting	workhorse.	The
directive	can	occur	more	than	once,	with	each	instance	defining	a
single	rewrite	rule.	The	order	in	which	these	rules	are	defined	is
important	-	this	is	the	order	in	which	they	will	be	applied	at	run-
time.

Pattern	is	a	perl	compatible	regular	expression.	What	this	pattern
is	compared	against	varies	depending	on	where	the
RewriteRule	directive	is	defined.

What	is	matched?

In	VirtualHost	context,	The	Pattern	will	initially	be
matched	against	the	part	of	the	URL	after	the	hostname
and	port,	and	before	the	query	string	(e.g.
"/app1/index.html").	This	is	the	(%-decoded)	URL-path.

In	per-directory	context	(Directory	and	.htaccess),	the
Pattern	is	matched	against	only	a	partial	path,	for	example
a	request	of	"/app1/index.html"	may	result	in	comparison
against	"app1/index.html"	or	"index.html"	depending	on
where	the	RewriteRule	is	defined.

The	directory	path	where	the	rule	is	defined	is	stripped	from
the	currently	mapped	filesystem	path	before	comparison
(up	to	and	including	a	trailing	slash).	The	net	result	of	this

per-directory	prefix	stripping	is	that	rules	in	this	context	only
match	against	the	portion	of	the	currently	mapped
filesystem	path	"below"	where	the	rule	is	defined.

Directives	such	as	DocumentRoot	and	Alias,	or	even	the
result	of	previous	RewriteRule	substitutions,	determine
the	currently	mapped	filesystem	path.

If	you	wish	to	match	against	the	hostname,	port,	or	query
string,	use	a	RewriteCond	with	the	%{HTTP_HOST},	%
{SERVER_PORT},	or	%{QUERY_STRING}	variables
respectively.

Per-directory	Rewrites

The	rewrite	engine	may	be	used	in	.htaccess	files	and	in
<Directory>	sections,	with	some	additional	complexity.
To	enable	the	rewrite	engine	in	this	context,	you	need	to	set
"RewriteEngine	On"	and	"Options
FollowSymLinks"	must	be	enabled.	If	your	administrator
has	disabled	override	of	FollowSymLinks	for	a	user's
directory,	then	you	cannot	use	the	rewrite	engine.	This
restriction	is	required	for	security	reasons.
See	the	RewriteBase	directive	for	more	information
regarding	what	prefix	will	be	added	back	to	relative
substitutions.
If	you	wish	to	match	against	the	full	URL-path	in	a	per-
directory	(htaccess)	RewriteRule,	use	the	%
{REQUEST_URI}	variable	in	a	RewriteCond.
The	removed	prefix	always	ends	with	a	slash,	meaning	the
matching	occurs	against	a	string	which	never	has	a	leading
slash.	Therefore,	a	Pattern	with	^/	never	matches	in	per-
directory	context.
Although	rewrite	rules	are	syntactically	permitted	in

<Location>	and	<Files>	sections	(including	their
regular	expression	counterparts),	this	should	never	be
necessary	and	is	unsupported.	A	likely	feature	to	break	in
these	contexts	is	relative	substitutions.

For	some	hints	on	regular	expressions,	see	the	mod_rewrite
Introduction.

In	mod_rewrite,	the	NOT	character	('!')	is	also	available	as	a
possible	pattern	prefix.	This	enables	you	to	negate	a	pattern;	to
say,	for	instance:	``if	the	current	URL	does	NOT	match	this
pattern''.	This	can	be	used	for	exceptional	cases,	where	it	is	easier
to	match	the	negative	pattern,	or	as	a	last	default	rule.

Note
When	using	the	NOT	character	to	negate	a	pattern,	you	cannot
include	grouped	wildcard	parts	in	that	pattern.	This	is	because,
when	the	pattern	does	NOT	match	(ie,	the	negation	matches),
there	are	no	contents	for	the	groups.	Thus,	if	negated	patterns
are	used,	you	cannot	use	$N	in	the	substitution	string!

The	Substitution	of	a	rewrite	rule	is	the	string	that	replaces	the
original	URL-path	that	was	matched	by	Pattern.	The	Substitution
may	be	a:

file-system	path
Designates	the	location	on	the	file-system	of	the	resource	to
be	delivered	to	the	client.	Substitutions	are	only	treated	as	a
file-system	path	when	the	rule	is	configured	in	server
(virtualhost)	context	and	the	first	component	of	the	path	in	the
substitution	exists	in	the	file-system

URL-path
A	DocumentRoot-relative	path	to	the	resource	to	be	served.

Note	that	mod_rewrite	tries	to	guess	whether	you	have
specified	a	file-system	path	or	a	URL-path	by	checking	to	see
if	the	first	segment	of	the	path	exists	at	the	root	of	the	file-
system.	For	example,	if	you	specify	a	Substitution	string	of
/www/file.html,	then	this	will	be	treated	as	a	URL-path
unless	a	directory	named	www	exists	at	the	root	or	your	file-
system	(or,	in	the	case	of	using	rewrites	in	a	.htaccess	file,
relative	to	your	document	root),	in	which	case	it	will	be	treated
as	a	file-system	path.	If	you	wish	other	URL-mapping
directives	(such	as	Alias)	to	be	applied	to	the	resulting	URL-
path,	use	the	[PT]	flag	as	described	below.

Absolute	URL
If	an	absolute	URL	is	specified,	mod_rewrite	checks	to	see
whether	the	hostname	matches	the	current	host.	If	it	does,	the
scheme	and	hostname	are	stripped	out	and	the	resulting	path
is	treated	as	a	URL-path.	Otherwise,	an	external	redirect	is
performed	for	the	given	URL.	To	force	an	external	redirect
back	to	the	current	host,	see	the	[R]	flag	below.

-	(dash)
A	dash	indicates	that	no	substitution	should	be	performed	(the
existing	path	is	passed	through	untouched).	This	is	used
when	a	flag	(see	below)	needs	to	be	applied	without	changing
the	path.

In	addition	to	plain	text,	the	Substitution	string	can	include

1.	 back-references	($N)	to	the	RewriteRule	pattern

2.	 back-references	(%N)	to	the	last	matched	RewriteCond	pattern

3.	 server-variables	as	in	rule	condition	test-strings	(%
{VARNAME})

4.	 mapping-function	calls	(${mapname:key|default})

Back-references	are	identifiers	of	the	form	$N	(N=0..9),	which	will
be	replaced	by	the	contents	of	the	Nth	group	of	the	matched
Pattern.	The	server-variables	are	the	same	as	for	the	TestString	of
a	RewriteCond	directive.	The	mapping-functions	come	from	the
RewriteMap	directive	and	are	explained	there.	These	three	types
of	variables	are	expanded	in	the	order	above.

Rewrite	rules	are	applied	to	the	results	of	previous	rewrite	rules,	in
the	order	in	which	they	are	defined	in	the	config	file.	The	URL-path
or	file-system	path	(see	"What	is	matched?",	above)	is	completely
replaced	by	the	Substitution	and	the	rewriting	process	continues
until	all	rules	have	been	applied,	or	it	is	explicitly	terminated	by	an
L	flag,	or	other	flag	which	implies	immediate	termination,	such	as
END	or	F.

Modifying	the	Query	String

By	default,	the	query	string	is	passed	through	unchanged.	You
can,	however,	create	URLs	in	the	substitution	string	containing	a
query	string	part.	Simply	use	a	question	mark	inside	the
substitution	string	to	indicate	that	the	following	text	should	be	re-
injected	into	the	query	string.	When	you	want	to	erase	an
existing	query	string,	end	the	substitution	string	with	just	a
question	mark.	To	combine	new	and	old	query	strings,	use	the
[QSA]	flag.

Additionally	you	can	set	special	actions	to	be	performed	by
appending	[flags]	as	the	third	argument	to	the	RewriteRule
directive.	Flags	is	a	comma-separated	list,	surround	by	square
brackets,	of	any	of	the	flags	in	the	following	table.	More	details,
and	examples,	for	each	flag,	are	available	in	the	Rewrite	Flags
document.

Flag	and	syntax Function

B Escape	non-alphanumeric	characters	in	backreferences
before	applying	the	transformation.	details	...

backrefnoplus|BNP If	backreferences	are	being	escaped,	spaces	should	be
escaped	to	%20	instead	of	+.	Useful	when	the
backreference	will	be	used	in	the	path	component	rather
than	the	query	string.details	...

chain|C Rule	is	chained	to	the	following	rule.	If	the	rule	fails,	
rule(s)	chained	to	it	will	be	skipped.	details	...

cookie|CO=NAME:VAL Sets	a	cookie	in	the	client	browser.	Full	syntax	is:
CO=NAME:VAL:domain[:lifetime[:path[:secure
details	...

discardpath|DPI Causes	the	PATH_INFO	portion	of	the	rewritten	URI	to	be
discarded.	details	...

END Stop	the	rewriting	process	immediately	and	don't	apply
any	more	rules.	Also	prevents	further	execution	of	rewrite
rules	in	per-directory	and	.htaccess	context.	(Available	in
2.3.9	and	later)	details	...

env|E=[!]VAR[:VAL] Causes	an	environment	variable	VAR	to	be	set	(to	the
value	VAL	if	provided).	The	form	!VAR	causes	
environment	variable	VAR	to	be	unset.	details	...

forbidden|F Returns	a	403	FORBIDDEN	response	to	the	client
browser.	details	...

gone|G Returns	a	410	GONE	response	to	the	client	browser.
details	...

Handler|H=Content-
handler

Causes	the	resulting	URI	to	be	sent	to	the	specified
Content-handler	for	processing.	details	...

last|L Stop	the	rewriting	process	immediately	and	don't	apply
any	more	rules.	Especially	note	caveats	for	per-directory
and	.htaccess	context	(see	also	the	END	flag).	

next|N Re-run	the	rewriting	process,	starting	again	with	the	first
rule,	using	the	result	of	the	ruleset	so	far	as	a	starting
point.	details	...

nocase|NC Makes	the	pattern	comparison	case-insensitive.	
noescape|NE Prevent	mod_rewrite	from	applying	hexcode	escaping	of

special	characters	in	the	result	of	the	rewrite.	
nosubreq|NS Causes	a	rule	to	be	skipped	if	the	current	request	is	an

internal	sub-request.	details	...
proxy|P Force	the	substitution	URL	to	be	internally	sent	as	a

proxy	request.	details	...
passthrough|PT Forces	the	resulting	URI	to	be	passed	back	to	the	URL

mapping	engine	for	processing	of	other	URI-to-filename
translators,	such	as	Alias	or	Redirect.	

qsappend|QSA Appends	any	query	string	from	the	original	request	URL
to	any	query	string	created	in	the	rewrite	target.

qsdiscard|QSD Discard	any	query	string	attached	to	the	incoming	URI.
details	...

qslast|QSL Interpret	the	last	(right-most)	question	mark	as	the	query
string	delimiter,	instead	of	the	first	(left-most)	as	normally
used.	Available	in	2.4.19	and	later.	details	

redirect|R[=code] Forces	an	external	redirect,	optionally	with	the	specified
HTTP	status	code.	details	...

skip|S=num Tells	the	rewriting	engine	to	skip	the	next	num
current	rule	matches.	details	...

type|T=MIME-type Force	the	MIME-type	of	the	target	file	to	be	the	specified
type.	details	...

Home	directory	expansion

When	the	substitution	string	begins	with	a	string	resembling
"/~user"	(via	explicit	text	or	backreferences),	mod_rewrite
performs	home	directory	expansion	independent	of	the
presence	or	configuration	of	mod_userdir.

This	expansion	does	not	occur	when	the	PT	flag	is	used	on	the
RewriteRule	directive.

Here	are	all	possible	substitution	combinations	and	their
meanings:

Inside	per-server	configuration	(httpd.conf)
for	request	``GET	/somepath/pathinfo'':

Given	Rule Resulting	Substitution
^/somepath(.*)	otherpath$1 invalid,	not	supported
^/somepath(.*)	otherpath$1
[R]

invalid,	not	supported

^/somepath(.*)	otherpath$1
[P]

invalid,	not	supported

^/somepath(.*)
/otherpath$1

/otherpath/pathinfo

^/somepath(.*)
/otherpath$1	[R]

http://thishost/otherpath/pathinfo	via
external	redirection

^/somepath(.*)
/otherpath$1	[P]

doesn't	make	sense,	not	supported

^/somepath(.*)
http://thishost/otherpath$1

/otherpath/pathinfo

^/somepath(.*)
http://thishost/otherpath$1
[R]

http://thishost/otherpath/pathinfo	via
external	redirection

^/somepath(.*)
http://thishost/otherpath$1
[P]

doesn't	make	sense,	not	supported

^/somepath(.*)
http://otherhost/otherpath$1

http://otherhost/otherpath/pathinfo
via	external	redirection

^/somepath(.*)
http://otherhost/otherpath$1
[R]

http://otherhost/otherpath/pathinfo
via	external	redirection	(the	[R]	flag
is	redundant)

^/somepath(.*) http://otherhost/otherpath/pathinfo

http://otherhost/otherpath$1
[P]

via	internal	proxy

Inside	per-directory	configuration	for	/somepath
(/physical/path/to/somepath/.htaccess,	with
RewriteBase	"/somepath")
for	request	``GET	/somepath/localpath/pathinfo'':

Given	Rule Resulting	Substitution
^localpath(.*)	otherpath$1 /somepath/otherpath/pathinfo
^localpath(.*)	otherpath$1
[R]

http://thishost/somepath/otherpath/pathinfo
via	external	redirection

^localpath(.*)	otherpath$1
[P]

doesn't	make	sense,	not	supported

^localpath(.*)	/otherpath$1 /otherpath/pathinfo
^localpath(.*)	/otherpath$1
[R]

http://thishost/otherpath/pathinfo	via
external	redirection

^localpath(.*)	/otherpath$1
[P]

doesn't	make	sense,	not	supported

^localpath(.*)
http://thishost/otherpath$1

/otherpath/pathinfo

^localpath(.*)
http://thishost/otherpath$1
[R]

http://thishost/otherpath/pathinfo	via
external	redirection

^localpath(.*)
http://thishost/otherpath$1
[P]

doesn't	make	sense,	not	supported

^localpath(.*)
http://otherhost/otherpath$1

http://otherhost/otherpath/pathinfo	via
external	redirection

^localpath(.*)
http://otherhost/otherpath$1
[R]

http://otherhost/otherpath/pathinfo	via
external	redirection	(the	[R]	flag	is
redundant)

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

^localpath(.*)
http://otherhost/otherpath$1
[P]

http://otherhost/otherpath/pathinfo	via
internal	proxy

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_sed

Description: Filter	Input	(request)	and	Output	(response)
content	using	sed	syntax

Status: Experimental
Module	Identifier: sed_module
Source	File: mod_sed.c	sed0.c	sed1.c	regexp.c	regexp.h

sed.h
Compatibility: Available	in	Apache	2.3	and	later

Summary
mod_sed	is	an	in-process	content	filter.	The	mod_sed	filter
implements	the	sed	editing	commands	implemented	by	the	Solaris	10
sed	program	as	described	in	the	manual	page.	However,	unlike	sed,
mod_sed	doesn't	take	data	from	standard	input.	Instead,	the	filter	acts
on	the	entity	data	sent	between	client	and	server.	mod_sed	can	be
used	as	an	input	or	output	filter.	mod_sed	is	a	content	filter,	which
means	that	it	cannot	be	used	to	modify	client	or	server	http	headers.

The	mod_sed	output	filter	accepts	a	chunk	of	data,	executes	the	sed
scripts	on	the	data,	and	generates	the	output	which	is	passed	to	the
next	filter	in	the	chain.

The	mod_sed	input	filter	reads	the	data	from	the	next	filter	in	the
chain,	executes	the	sed	scripts,	and	returns	the	generated	data	to	the
caller	filter	in	the	filter	chain.

Both	the	input	and	output	filters	only	process	the	data	if	newline
characters	are	seen	in	the	content.	At	the	end	of	the	data,	the	rest	of
the	data	is	treated	as	the	last	line.

A	tutorial	article	on	mod_sed,	and	why	it	is	more	powerful	than	simple
string	or	regular	expression	search	and	replace,	is	available	on	the

http://www.gnu.org/software/sed/manual/sed.txt
https://blogs.oracle.com/basant/entry/using_mod_sed_to_filter

author's	blog.

Sample	Configuration

Adding	an	output	filter
#	In	the	following	example,	the	sed	filter	will	change	the	string

#	"monday"	to	"MON"	and	the	string	"sunday"	to	SUN	in	html	documents

#	before	sending	to	the	client.

<Directory	"/var/www/docs/sed">	

				AddOutputFilter	Sed	html	

				OutputSed	"s/monday/MON/g"	

				OutputSed	"s/sunday/SUN/g"	

</Directory>

Adding	an	input	filter
#	In	the	following	example,	the	sed	filter	will	change	the	string

#	"monday"	to	"MON"	and	the	string	"sunday"	to	SUN	in	the	POST	data

#	sent	to	PHP.

<Directory	"/var/www/docs/sed">	

				AddInputFilter	Sed	php	

				InputSed	"s/monday/MON/g"	

				InputSed	"s/sunday/SUN/g"	

</Directory>

Sed	Commands

Complete	details	of	the	sed	command	can	be	found	from	the	sed
manual	page.

b

Branch	to	the	label	specified	(similar	to	goto).

h

Copy	the	current	line	to	the	hold	buffer.

H

Append	the	current	line	to	the	hold	buffer.

g

Copy	the	hold	buffer	to	the	current	line.

G

Append	the	hold	buffer	to	the	current	line.

x

Swap	the	contents	of	the	hold	buffer	and	the	current	line.

http://www.gnu.org/software/sed/manual/sed.txt

InputSed	Directive

Description: Sed	command	to	filter	request	data	(typically	POST
data)

Syntax: InputSed	sed-command

Context: directory,	.htaccess
Status: Experimental
Module: mod_sed

The	InputSed	directive	specifies	the	sed	command	to	execute
on	the	request	data	e.g.,	POST	data.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

OutputSed	Directive

Description: Sed	command	for	filtering	response	content
Syntax: OutputSed	sed-command

Context: directory,	.htaccess
Status: Experimental
Module: mod_sed

The	OutputSed	directive	specifies	the	sed	command	to	execute
on	the	response.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_session

Description: Session	support
Status: Extension
Module	Identifier: session_module
Source	File: mod_session.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

The	session	modules	make	use	of	HTTP	cookies,	and	as	such	can
fall	victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially
private	information	to	clients.	Please	ensure	that	the	relevant	risks
have	been	taken	into	account	before	enabling	the	session
functionality	on	your	server.

This	module	provides	support	for	a	server	wide	per	user	session
interface.	Sessions	can	be	used	for	keeping	track	of	whether	a	user
has	been	logged	in,	or	for	other	per	user	information	that	should	be
kept	available	across	requests.

Sessions	may	be	stored	on	the	server,	or	may	be	stored	on	the
browser.	Sessions	may	also	be	optionally	encrypted	for	added
security.	These	features	are	divided	into	several	modules	in	addition
to	mod_session;	mod_session_crypto,	mod_session_cookie
and	mod_session_dbd.	Depending	on	the	server	requirements,	load
the	appropriate	modules	into	the	server	(either	statically	at	compile
time	or	dynamically	via	the	LoadModule	directive).

Sessions	may	be	manipulated	from	other	modules	that	depend	on	the
session,	or	the	session	may	be	read	from	and	written	to	using

environment	variables	and	HTTP	headers,	as	appropriate.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session_cookie

mod_session_crypto

mod_session_dbd

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_session
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_session

What	is	a	session?

At	the	core	of	the	session	interface	is	a	table	of	key	and	value
pairs	that	are	made	accessible	across	browser	requests.	These
pairs	can	be	set	to	any	valid	string,	as	needed	by	the	application
making	use	of	the	session.

The	"session"	is	a	application/x-www-form-urlencoded	string
containing	these	key	value	pairs,	as	defined	by	the	HTML
specification.

The	session	can	optionally	be	encrypted	and	base64	encoded
before	being	written	to	the	storage	mechanism,	as	defined	by	the
administrator.

http://www.w3.org/TR/html4/

Who	can	use	a	session?

The	session	interface	is	primarily	developed	for	the	use	by	other
server	modules,	such	as	mod_auth_form,	however	CGI	based
applications	can	optionally	be	granted	access	to	the	contents	of
the	session	via	the	HTTP_SESSION	environment	variable.
Sessions	have	the	option	to	be	modified	and/or	updated	by
inserting	an	HTTP	response	header	containing	the	new	session
parameters.

Keeping	sessions	on	the	server

Apache	can	be	configured	to	keep	track	of	per	user	sessions
stored	on	a	particular	server	or	group	of	servers.	This	functionality
is	similar	to	the	sessions	available	in	typical	application	servers.

If	configured,	sessions	are	tracked	through	the	use	of	a	session	ID
that	is	stored	inside	a	cookie,	or	extracted	from	the	parameters
embedded	within	the	URL	query	string,	as	found	in	a	typical	GET
request.

As	the	contents	of	the	session	are	stored	exclusively	on	the
server,	there	is	an	expectation	of	privacy	of	the	contents	of	the
session.	This	does	have	performance	and	resource	implications
should	a	large	number	of	sessions	be	present,	or	where	a	large
number	of	webservers	have	to	share	sessions	with	one	another.

The	mod_session_dbd	module	allows	the	storage	of	user
sessions	within	a	SQL	database	via	mod_dbd.

Keeping	sessions	on	the	browser

In	high	traffic	environments	where	keeping	track	of	a	session	on	a
server	is	too	resource	intensive	or	inconvenient,	the	option	exists
to	store	the	contents	of	the	session	within	a	cookie	on	the	client
browser	instead.

This	has	the	advantage	that	minimal	resources	are	required	on	the
server	to	keep	track	of	sessions,	and	multiple	servers	within	a
server	farm	have	no	need	to	share	session	information.

The	contents	of	the	session	however	are	exposed	to	the	client,
with	a	corresponding	risk	of	a	loss	of	privacy.	The
mod_session_crypto	module	can	be	configured	to	encrypt	the
contents	of	the	session	before	writing	the	session	to	the	client.

The	mod_session_cookie	allows	the	storage	of	user	sessions
on	the	browser	within	an	HTTP	cookie.

Basic	Examples

Creating	a	session	is	as	simple	as	turning	the	session	on,	and
deciding	where	the	session	will	be	stored.	In	this	example,	the
session	will	be	stored	on	the	browser,	in	a	cookie	called	session.

Browser	based	session
Session	On

SessionCookieName	session	path=/

The	session	is	not	useful	unless	it	can	be	written	to	or	read	from.
The	following	example	shows	how	values	can	be	injected	into	the
session	through	the	use	of	a	predetermined	HTTP	response
header	called	X-Replace-Session.

Writing	to	a	session
Session	On

SessionCookieName	session	path=/

SessionHeader	X-Replace-Session

The	header	should	contain	name	value	pairs	expressed	in	the
same	format	as	a	query	string	in	a	URL,	as	in	the	example	below.
Setting	a	key	to	the	empty	string	has	the	effect	of	removing	that
key	from	the	session.

CGI	to	write	to	a	session
#!/bin/bash

echo	"Content-Type:	text/plain"

echo	"X-Replace-Session:	key1=foo&key2=&key3=bar"

echo

env

If	configured,	the	session	can	be	read	back	from	the
HTTP_SESSION	environment	variable.	By	default,	the	session	is
kept	private,	so	this	has	to	be	explicitly	turned	on	with	the
SessionEnv	directive.

Read	from	a	session
Session	On

SessionEnv	On

SessionCookieName	session	path=/

SessionHeader	X-Replace-Session

Once	read,	the	CGI	variable	HTTP_SESSION	should	contain	the
value	key1=foo&key3=bar.

Session	Privacy

Using	the	"show	cookies"	feature	of	your	browser,	you	would	have
seen	a	clear	text	representation	of	the	session.	This	could
potentially	be	a	problem	should	the	end	user	need	to	be	kept
unaware	of	the	contents	of	the	session,	or	where	a	third	party
could	gain	unauthorised	access	to	the	data	within	the	session.

The	contents	of	the	session	can	be	optionally	encrypted	before
being	placed	on	the	browser	using	the	mod_session_crypto
module.

Browser	based	encrypted	session
Session	On

SessionCryptoPassphrase	secret

SessionCookieName	session	path=/

The	session	will	be	automatically	decrypted	on	load,	and
encrypted	on	save	by	Apache,	the	underlying	application	using	the
session	need	have	no	knowledge	that	encryption	is	taking	place.

Sessions	stored	on	the	server	rather	than	on	the	browser	can	also
be	encrypted	as	needed,	offering	privacy	where	potentially
sensitive	information	is	being	shared	between	webservers	in	a
server	farm	using	the	mod_session_dbd	module.

Cookie	Privacy

The	HTTP	cookie	mechanism	also	offers	privacy	features,	such	as
the	ability	to	restrict	cookie	transport	to	SSL	protected	pages	only,
or	to	prevent	browser	based	javascript	from	gaining	access	to	the
contents	of	the	cookie.

Warning

Some	of	the	HTTP	cookie	privacy	features	are	either	non-
standard,	or	are	not	implemented	consistently	across	browsers.
The	session	modules	allow	you	to	set	cookie	parameters,	but	it
makes	no	guarantee	that	privacy	will	be	respected	by	the
browser.	If	security	is	a	concern,	use	the
mod_session_crypto	to	encrypt	the	contents	of	the	session,
or	store	the	session	on	the	server	using	the
mod_session_dbd	module.

Standard	cookie	parameters	can	be	specified	after	the	name	of
the	cookie,	as	in	the	example	below.

Setting	cookie	parameters
Session	On

SessionCryptoPassphrase	secret

SessionCookieName	session	path=/private;domain=example.com;httponly;secure;

In	cases	where	the	Apache	server	forms	the	frontend	for	backend
origin	servers,	it	is	possible	to	have	the	session	cookies	removed
from	the	incoming	HTTP	headers	using	the
SessionCookieRemove	directive.	This	keeps	the	contents	of	the
session	cookies	from	becoming	accessible	from	the	backend
server.

Session	Support	for	Authentication

As	is	possible	within	many	application	servers,	authentication
modules	can	use	a	session	for	storing	the	username	and
password	after	login.	The	mod_auth_form	saves	the	user's	login
name	and	password	within	the	session.

Form	based	authentication
Session	On

SessionCryptoPassphrase	secret

SessionCookieName	session	path=/

AuthFormProvider	file

AuthUserFile	"conf/passwd"

AuthType	form

AuthName	realm

#...

See	the	mod_auth_form	module	for	documentation	and
complete	examples.

Integrating	Sessions	with	External	Applications

In	order	for	sessions	to	be	useful,	it	must	be	possible	to	share	the
contents	of	a	session	with	external	applications,	and	it	must	be
possible	for	an	external	application	to	write	a	session	of	its	own.

A	typical	example	might	be	an	application	that	changes	a	user's
password	set	by	mod_auth_form.	This	application	would	need	to
read	the	current	username	and	password	from	the	session,	make
the	required	changes	to	the	user's	password,	and	then	write	the
new	password	to	the	session	in	order	to	provide	a	seamless
transition	to	the	new	password.

A	second	example	might	involve	an	application	that	registers	a
new	user	for	the	first	time.	When	registration	is	complete,	the
username	and	password	is	written	to	the	session,	providing	a
seamless	transition	to	being	logged	in.

Apache	modules
Modules	within	the	server	that	need	access	to	the	session	can
use	the	mod_session.h	API	in	order	to	read	from	and	write	to
the	session.	This	mechanism	is	used	by	modules	like
mod_auth_form.

CGI	programs	and	scripting	languages
Applications	that	run	within	the	webserver	can	optionally
retrieve	the	value	of	the	session	from	the	HTTP_SESSION
environment	variable.	The	session	should	be	encoded	as	a
application/x-www-form-urlencoded	string	as	described	by
the	HTML	specification.	The	environment	variable	is
controlled	by	the	setting	of	the	SessionEnv	directive.	The
session	can	be	written	to	by	the	script	by	returning	a
application/x-www-form-urlencoded	response	header	with
a	name	set	by	the	SessionHeader	directive.	In	both	cases,
any	encryption	or	decryption,	and	the	reading	the	session
from	or	writing	the	session	to	the	chosen	storage	mechanism

http://www.w3.org/TR/html4/

is	handled	by	the	mod_session	modules	and	corresponding
configuration.

Applications	behind	mod_proxy
If	the	SessionHeader	directive	is	used	to	define	an	HTTP
request	header,	the	session,	encoded	as	a	application/x-
www-form-urlencoded	string,	will	be	made	available	to	the
application.	If	the	same	header	is	provided	in	the	response,
the	value	of	this	response	header	will	be	used	to	replace	the
session.	As	above,	any	encryption	or	decryption,	and	the
reading	the	session	from	or	writing	the	session	to	the	chosen
storage	mechanism	is	handled	by	the	mod_session	modules
and	corresponding	configuration.

Standalone	applications
Applications	might	choose	to	manipulate	the	session	outside
the	control	of	the	Apache	HTTP	server.	In	this	case,	it	is	the
responsibility	of	the	application	to	read	the	session	from	the
chosen	storage	mechanism,	decrypt	the	session,	update	the
session,	encrypt	the	session	and	write	the	session	to	the
chosen	storage	mechanism,	as	appropriate.

Session	Directive

Description: Enables	a	session	for	the	current	directory	or
location

Syntax: Session	On|Off

Default: Session	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

The	Session	directive	enables	a	session	for	the	directory	or
location	container.	Further	directives	control	where	the	session	will
be	stored	and	how	privacy	is	maintained.

SessionEnv	Directive

Description: Control	whether	the	contents	of	the	session	are
written	to	the	HTTP_SESSION	environment
variable

Syntax: SessionEnv	On|Off

Default: SessionEnv	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

If	set	to	On,	the	SessionEnv	directive	causes	the	contents	of	the
session	to	be	written	to	a	CGI	environment	variable	called
HTTP_SESSION.

The	string	is	written	in	the	URL	query	format,	for	example:

key1=foo&key3=bar

SessionExclude	Directive

Description: Define	URL	prefixes	for	which	a	session	is	ignored
Syntax: SessionExclude	path

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session

The	SessionExclude	directive	allows	sessions	to	be	disabled
relative	to	URL	prefixes	only.	This	can	be	used	to	make	a	website
more	efficient,	by	targeting	a	more	precise	URL	space	for	which	a
session	should	be	maintained.	By	default,	all	URLs	within	the
directory	or	location	are	included	in	the	session.	The
SessionExclude	directive	takes	precedence	over	the
SessionInclude	directive.

Warning

This	directive	has	a	similar	purpose	to	the	path	attribute	in
HTTP	cookies,	but	should	not	be	confused	with	this	attribute.
This	directive	does	not	set	the	path	attribute,	which	must	be
configured	separately.

SessionHeader	Directive

Description: Import	session	updates	from	a	given	HTTP
response	header

Syntax: SessionHeader	header

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

The	SessionHeader	directive	defines	the	name	of	an	HTTP
response	header	which,	if	present,	will	be	parsed	and	written	to
the	current	session.

The	header	value	is	expected	to	be	in	the	URL	query	format,	for
example:

key1=foo&key2=&key3=bar

Where	a	key	is	set	to	the	empty	string,	that	key	will	be	removed
from	the	session.

SessionInclude	Directive

Description: Define	URL	prefixes	for	which	a	session	is	valid
Syntax: SessionInclude	path

Default: all	URLs

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

The	SessionInclude	directive	allows	sessions	to	be	made	valid
for	specific	URL	prefixes	only.	This	can	be	used	to	make	a	website
more	efficient,	by	targeting	a	more	precise	URL	space	for	which	a
session	should	be	maintained.	By	default,	all	URLs	within	the
directory	or	location	are	included	in	the	session.

Warning

This	directive	has	a	similar	purpose	to	the	path	attribute	in
HTTP	cookies,	but	should	not	be	confused	with	this	attribute.
This	directive	does	not	set	the	path	attribute,	which	must	be
configured	separately.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SessionMaxAge	Directive

Description: Define	a	maximum	age	in	seconds	for	a	session
Syntax: SessionMaxAge	maxage

Default: SessionMaxAge	0

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_session

The	SessionMaxAge	directive	defines	a	time	limit	for	which	a
session	will	remain	valid.	When	a	session	is	saved,	this	time	limit
is	reset	and	an	existing	session	can	be	continued.	If	a	session
becomes	older	than	this	limit	without	a	request	to	the	server	to
refresh	the	session,	the	session	will	time	out	and	be	removed.
Where	a	session	is	used	to	stored	user	login	details,	this	has	the
effect	of	logging	the	user	out	automatically	after	the	given	time.

Setting	the	maxage	to	zero	disables	session	expiry.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_session_cookie

Description: Cookie	based	session	support
Status: Extension
Module	Identifier: session_cookie_module
Source	File: mod_session_cookie.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

The	session	modules	make	use	of	HTTP	cookies,	and	as	such	can
fall	victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially
private	information	to	clients.	Please	ensure	that	the	relevant	risks
have	been	taken	into	account	before	enabling	the	session
functionality	on	your	server.

This	submodule	of	mod_session	provides	support	for	the	storage	of
user	sessions	on	the	remote	browser	within	HTTP	cookies.

Using	cookies	to	store	a	session	removes	the	need	for	the	server	or	a
group	of	servers	to	store	the	session	locally,	or	collaborate	to	share	a
session,	and	can	be	useful	for	high	traffic	environments	where	a
server	based	session	might	be	too	resource	intensive.

If	session	privacy	is	required,	the	mod_session_crypto	module
can	be	used	to	encrypt	the	contents	of	the	session	before	writing	the
session	to	the	client.

For	more	details	on	the	session	interface,	see	the	documentation	for
the	mod_session	module.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session

mod_session_crypto

mod_session_dbd

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_session_cookie
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_session_cookie

Basic	Examples

To	create	a	simple	session	and	store	it	in	a	cookie	called	session,
configure	the	session	as	follows:

Browser	based	session
Session	On

SessionCookieName	session	path=/

For	more	examples	on	how	the	session	can	be	configured	to	be
read	from	and	written	to	by	a	CGI	application,	see	the
mod_session	examples	section.

For	documentation	on	how	the	session	can	be	used	to	store
username	and	password	details,	see	the	mod_auth_form
module.

SessionCookieName	Directive

Description: Name	and	attributes	for	the	RFC2109	cookie
storing	the	session

Syntax: SessionCookieName	name	attributes

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_cookie

The	SessionCookieName	directive	specifies	the	name	and
optional	attributes	of	an	RFC2109	compliant	cookie	inside	which
the	session	will	be	stored.	RFC2109	cookies	are	set	using	the
Set-Cookie	HTTP	header.

An	optional	list	of	cookie	attributes	can	be	specified,	as	per	the
example	below.	These	attributes	are	inserted	into	the	cookie	as	is,
and	are	not	interpreted	by	Apache.	Ensure	that	your	attributes	are
defined	correctly	as	per	the	cookie	specification.

Cookie	with	attributes
Session	On

SessionCookieName	session	path=/private;domain=example.com;httponly;secure;version=1;

SessionCookieName2	Directive

Description: Name	and	attributes	for	the	RFC2965	cookie
storing	the	session

Syntax: SessionCookieName2	name	attributes

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_cookie

The	SessionCookieName2	directive	specifies	the	name	and
optional	attributes	of	an	RFC2965	compliant	cookie	inside	which
the	session	will	be	stored.	RFC2965	cookies	are	set	using	the
Set-Cookie2	HTTP	header.

An	optional	list	of	cookie	attributes	can	be	specified,	as	per	the
example	below.	These	attributes	are	inserted	into	the	cookie	as	is,
and	are	not	interpreted	by	Apache.	Ensure	that	your	attributes	are
defined	correctly	as	per	the	cookie	specification.

Cookie2	with	attributes
Session	On

SessionCookieName2	session	path=/private;domain=example.com;httponly;secure;version=1;

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SessionCookieRemove	Directive

Description: Control	for	whether	session	cookies	should	be
removed	from	incoming	HTTP	headers

Syntax: SessionCookieRemove	On|Off

Default: SessionCookieRemove	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_cookie

The	SessionCookieRemove	flag	controls	whether	the	cookies
containing	the	session	will	be	removed	from	the	headers	during
request	processing.

In	a	reverse	proxy	situation	where	the	Apache	server	acts	as	a
server	frontend	for	a	backend	origin	server,	revealing	the	contents
of	the	session	cookie	to	the	backend	could	be	a	potential	privacy
violation.	When	set	to	on,	the	session	cookie	will	be	removed	from
the	incoming	HTTP	headers.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_session_crypto

Description: Session	encryption	support
Status: Experimental
Module	Identifier: session_crypto_module
Source	File: mod_session_crypto.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

The	session	modules	make	use	of	HTTP	cookies,	and	as	such	can
fall	victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially
private	information	to	clients.	Please	ensure	that	the	relevant	risks
have	been	taken	into	account	before	enabling	the	session
functionality	on	your	server.

This	submodule	of	mod_session	provides	support	for	the	encryption
of	user	sessions	before	being	written	to	a	local	database,	or	written	to
a	remote	browser	via	an	HTTP	cookie.

This	can	help	provide	privacy	to	user	sessions	where	the	contents	of
the	session	should	be	kept	private	from	the	user,	or	where	protection
is	needed	against	the	effects	of	cross	site	scripting	attacks.

For	more	details	on	the	session	interface,	see	the	documentation	for
the	mod_session	module.

https://www.apache.org/foundation/contributing.html

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session

mod_session_cookie

mod_session_dbd

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_session_crypto
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_session_crypto

Basic	Usage

To	create	a	simple	encrypted	session	and	store	it	in	a	cookie
called	session,	configure	the	session	as	follows:

Browser	based	encrypted	session
Session	On

SessionCookieName	session	path=/

SessionCryptoPassphrase	secret

The	session	will	be	encrypted	with	the	given	key.	Different	servers
can	be	configured	to	share	sessions	by	ensuring	the	same
encryption	key	is	used	on	each	server.

If	the	encryption	key	is	changed,	sessions	will	be	invalidated
automatically.

For	documentation	on	how	the	session	can	be	used	to	store
username	and	password	details,	see	the	mod_auth_form
module.

SessionCryptoCipher	Directive

Description: The	crypto	cipher	to	be	used	to	encrypt	the
session

Syntax: SessionCryptoCipher	name

Default: aes256

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Experimental
Module: mod_session_crypto
Compatibility: Available	in	Apache	2.3.0	and	later

The	SessionCryptoCipher	directive	allows	the	cipher	to	be
used	during	encryption.	If	not	specified,	the	cipher	defaults	to
aes256.

Possible	values	depend	on	the	crypto	driver	in	use,	and	could	be
one	of:

3des192
aes128
aes192
aes256

SessionCryptoDriver	Directive

Description: The	crypto	driver	to	be	used	to	encrypt	the
session

Syntax: SessionCryptoDriver	name

[param[=value]]

Default: none

Context: server	config
Status: Experimental
Module: mod_session_crypto
Compatibility: Available	in	Apache	2.3.0	and	later

The	SessionCryptoDriver	directive	specifies	the	name	of	the
crypto	driver	to	be	used	for	encryption.	If	not	specified,	the	driver
defaults	to	the	recommended	driver	compiled	into	APR-util.

The	NSS	crypto	driver	requires	some	parameters	for	configuration,
which	are	specified	as	parameters	with	optional	values	after	the
driver	name.

NSS	without	a	certificate	database
SessionCryptoDriver	nss

NSS	with	certificate	database
SessionCryptoDriver	nss	dir=certs

NSS	with	certificate	database	and	parameters
SessionCryptoDriver	nss	dir=certs	key3=key3.db	cert7=cert7.db	secmod=secmod

NSS	with	paths	containing	spaces
SessionCryptoDriver	nss	"dir=My	Certs"	key3=key3.db	cert7=cert7.db	secmod=secmod

The	NSS	crypto	driver	might	have	already	been	configured	by
another	part	of	the	server,	for	example	from	mod_nss	or
mod_ldap.	If	found	to	have	already	been	configured,	a	warning
will	be	logged,	and	the	existing	configuration	will	have	taken	affect.
To	avoid	this	warning,	use	the	noinit	parameter	as	follows.

NSS	with	certificate	database
SessionCryptoDriver	nss	noinit

To	prevent	confusion,	ensure	that	all	modules	requiring	NSS	are
configured	with	identical	parameters.

The	openssl	crypto	driver	supports	an	optional	parameter	to
specify	the	engine	to	be	used	for	encryption.

OpenSSL	with	engine	support
SessionCryptoDriver	openssl	engine=name

SessionCryptoPassphrase	Directive

Description: The	key	used	to	encrypt	the	session
Syntax: SessionCryptoPassphrase	secret	[

secret	...]

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Experimental
Module: mod_session_crypto
Compatibility: Available	in	Apache	2.3.0	and	later

The	SessionCryptoPassphrase	directive	specifies	the	keys	to
be	used	to	enable	symmetrical	encryption	on	the	contents	of	the
session	before	writing	the	session,	or	decrypting	the	contents	of
the	session	after	reading	the	session.

Keys	are	more	secure	when	they	are	long,	and	consist	of	truly
random	characters.	Changing	the	key	on	a	server	has	the	effect	of
invalidating	all	existing	sessions.

Multiple	keys	can	be	specified	in	order	to	support	key	rotation.	The
first	key	listed	will	be	used	for	encryption,	while	all	keys	listed	will
be	attempted	for	decryption.	To	rotate	keys	across	multiple	servers
over	a	period	of	time,	add	a	new	secret	to	the	end	of	the	list,	and
once	rolled	out	completely	to	all	servers,	remove	the	first	key	from
the	start	of	the	list.

As	of	version	2.4.7	if	the	value	begins	with	exec:	the	resulting
command	will	be	executed	and	the	first	line	returned	to	standard
output	by	the	program	will	be	used	as	the	key.

#key	used	as-is

SessionCryptoPassphrase	secret

#Run	/path/to/program	to	get	key

SessionCryptoPassphrase	exec:/path/to/program

#Run	/path/to/otherProgram	and	provide	arguments

SessionCryptoPassphrase	"exec:/path/to/otherProgram	argument1"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SessionCryptoPassphraseFile	Directive

Description: File	containing	keys	used	to	encrypt	the	session
Syntax: SessionCryptoPassphraseFile	filename

Default: none

Context: server	config,	virtual	host,	directory
Status: Experimental
Module: mod_session_crypto
Compatibility: Available	in	Apache	2.3.0	and	later

The	SessionCryptoPassphraseFile	directive	specifies	the
name	of	a	configuration	file	containing	the	keys	to	use	for
encrypting	or	decrypting	the	session,	specified	one	per	line.	The
file	is	read	on	server	start,	and	a	graceful	restart	will	be	necessary
for	httpd	to	pick	up	changes	to	the	keys.

Unlike	the	SessionCryptoPassphrase	directive,	the	keys	are
not	exposed	within	the	httpd	configuration	and	can	be	hidden	by
protecting	the	file	appropriately.

Multiple	keys	can	be	specified	in	order	to	support	key	rotation.	The
first	key	listed	will	be	used	for	encryption,	while	all	keys	listed	will
be	attempted	for	decryption.	To	rotate	keys	across	multiple	servers
over	a	period	of	time,	add	a	new	secret	to	the	end	of	the	list,	and
once	rolled	out	completely	to	all	servers,	remove	the	first	key	from
the	start	of	the	list.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_session_dbd

Description: DBD/SQL	based	session	support
Status: Extension
Module	Identifier: session_dbd_module
Source	File: mod_session_dbd.c
Compatibility: Available	in	Apache	2.3	and	later

Summary

Warning

The	session	modules	make	use	of	HTTP	cookies,	and	as	such	can
fall	victim	to	Cross	Site	Scripting	attacks,	or	expose	potentially
private	information	to	clients.	Please	ensure	that	the	relevant	risks
have	been	taken	into	account	before	enabling	the	session
functionality	on	your	server.

This	submodule	of	mod_session	provides	support	for	the	storage	of
user	sessions	within	a	SQL	database	using	the	mod_dbd	module.

Sessions	can	either	be	anonymous,	where	the	session	is	keyed	by	a
unique	UUID	string	stored	on	the	browser	in	a	cookie,	or	per	user,
where	the	session	is	keyed	against	the	userid	of	the	logged	in	user.

SQL	based	sessions	are	hidden	from	the	browser,	and	so	offer	a
measure	of	privacy	without	the	need	for	encryption.

Different	webservers	within	a	server	farm	may	choose	to	share	a
database,	and	so	share	sessions	with	one	another.

For	more	details	on	the	session	interface,	see	the	documentation	for
the	mod_session	module.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
mod_session

mod_session_crypto

mod_session_cookie

mod_dbd

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_session_dbd
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_session_dbd

DBD	Configuration

Before	the	mod_session_dbd	module	can	be	configured	to
maintain	a	session,	the	mod_dbd	module	must	be	configured	to
make	the	various	database	queries	available	to	the	server.

There	are	four	queries	required	to	keep	a	session	maintained,	to
select	an	existing	session,	to	update	an	existing	session,	to	insert
a	new	session,	and	to	delete	an	expired	or	empty	session.	These
queries	are	configured	as	per	the	example	below.

Sample	DBD	configuration
DBDriver	pgsql

DBDParams	"dbname=apachesession	user=apache	password=xxxxx	host=localhost"

DBDPrepareSQL	"delete	from	session	where	key	=	%s"	deletesession

DBDPrepareSQL	"update	session	set	value	=	%s,	expiry	=	%lld,	key	=	%s	where	key	=	%s"	updatesession

DBDPrepareSQL	"insert	into	session	(value,	expiry,	key)	values	(%s,	%lld,	%s)"	insertsession

DBDPrepareSQL	"select	value	from	session	where	key	=	%s	and	(expiry	=	0	or	expiry	>	%lld)"	selectsession

DBDPrepareSQL	"delete	from	session	where	expiry	!=	0	and	expiry	<	%lld"	cleansession

Anonymous	Sessions

Anonymous	sessions	are	keyed	against	a	unique	UUID,	and
stored	on	the	browser	within	an	HTTP	cookie.	This	method	is
similar	to	that	used	by	most	application	servers	to	store	session
information.

To	create	a	simple	anonymous	session	and	store	it	in	a	postgres
database	table	called	apachesession,	and	save	the	session	ID	in	a
cookie	called	session,	configure	the	session	as	follows:

SQL	based	anonymous	session
Session	On

SessionDBDCookieName	session	path=/

For	more	examples	on	how	the	session	can	be	configured	to	be
read	from	and	written	to	by	a	CGI	application,	see	the
mod_session	examples	section.

For	documentation	on	how	the	session	can	be	used	to	store
username	and	password	details,	see	the	mod_auth_form
module.

Per	User	Sessions

Per	user	sessions	are	keyed	against	the	username	of	a
successfully	authenticated	user.	It	offers	the	most	privacy,	as	no
external	handle	to	the	session	exists	outside	of	the	authenticated
realm.

Per	user	sessions	work	within	a	correctly	configured	authenticated
environment,	be	that	using	basic	authentication,	digest
authentication	or	SSL	client	certificates.	Due	to	the	limitations	of
who	came	first,	the	chicken	or	the	egg,	per	user	sessions	cannot
be	used	to	store	authentication	credentials	from	a	module	like
mod_auth_form.

To	create	a	simple	per	user	session	and	store	it	in	a	postgres
database	table	called	apachesession,	and	with	the	session	keyed
to	the	userid,	configure	the	session	as	follows:

SQL	based	per	user	session
Session	On

SessionDBDPerUser	On

Database	Housekeeping

Over	the	course	of	time,	the	database	can	be	expected	to	start
accumulating	expired	sessions.	At	this	point,	the
mod_session_dbd	module	is	not	yet	able	to	handle	session
expiry	automatically.

Warning

The	administrator	will	need	to	set	up	an	external	process	via
cron	to	clean	out	expired	sessions.

SessionDBDCookieName	Directive

Description: Name	and	attributes	for	the	RFC2109	cookie
storing	the	session	ID

Syntax: SessionDBDCookieName	name	attributes

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDCookieName	directive	specifies	the	name	and
optional	attributes	of	an	RFC2109	compliant	cookie	inside	which
the	session	ID	will	be	stored.	RFC2109	cookies	are	set	using	the
Set-Cookie	HTTP	header.

An	optional	list	of	cookie	attributes	can	be	specified,	as	per	the
example	below.	These	attributes	are	inserted	into	the	cookie	as	is,
and	are	not	interpreted	by	Apache.	Ensure	that	your	attributes	are
defined	correctly	as	per	the	cookie	specification.

Cookie	with	attributes
Session	On

SessionDBDCookieName	session	path=/private;domain=example.com;httponly;secure;version=1;

SessionDBDCookieName2	Directive

Description: Name	and	attributes	for	the	RFC2965	cookie
storing	the	session	ID

Syntax: SessionDBDCookieName2	name	attributes

Default: none

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDCookieName2	directive	specifies	the	name	and
optional	attributes	of	an	RFC2965	compliant	cookie	inside	which
the	session	ID	will	be	stored.	RFC2965	cookies	are	set	using	the
Set-Cookie2	HTTP	header.

An	optional	list	of	cookie	attributes	can	be	specified,	as	per	the
example	below.	These	attributes	are	inserted	into	the	cookie	as	is,
and	are	not	interpreted	by	Apache.	Ensure	that	your	attributes	are
defined	correctly	as	per	the	cookie	specification.

Cookie2	with	attributes
Session	On

SessionDBDCookieName2	session	path=/private;domain=example.com;httponly;secure;version=1;

SessionDBDCookieRemove	Directive

Description: Control	for	whether	session	ID	cookies	should	be
removed	from	incoming	HTTP	headers

Syntax: SessionDBDCookieRemove	On|Off

Default: SessionDBDCookieRemove	On

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDCookieRemove	flag	controls	whether	the
cookies	containing	the	session	ID	will	be	removed	from	the
headers	during	request	processing.

In	a	reverse	proxy	situation	where	the	Apache	server	acts	as	a
server	frontend	for	a	backend	origin	server,	revealing	the	contents
of	the	session	ID	cookie	to	the	backend	could	be	a	potential
privacy	violation.	When	set	to	on,	the	session	ID	cookie	will	be
removed	from	the	incoming	HTTP	headers.

SessionDBDDeleteLabel	Directive

Description: The	SQL	query	to	use	to	remove	sessions	from	the
database

Syntax: SessionDBDDeleteLabel	label

Default: SessionDBDDeleteLabel	deletesession

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDDeleteLabel	directive	sets	the	default	delete
query	label	to	be	used	to	delete	an	expired	or	empty	session.	This
label	must	have	been	previously	defined	using	the
DBDPrepareSQL	directive.

SessionDBDInsertLabel	Directive

Description: The	SQL	query	to	use	to	insert	sessions	into	the
database

Syntax: SessionDBDInsertLabel	label

Default: SessionDBDInsertLabel	insertsession

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDInsertLabel	directive	sets	the	default	insert
query	label	to	be	used	to	load	in	a	session.	This	label	must	have
been	previously	defined	using	the	DBDPrepareSQL	directive.

If	an	attempt	to	update	the	session	affects	no	rows,	this	query	will
be	called	to	insert	the	session	into	the	database.

SessionDBDPerUser	Directive

Description: Enable	a	per	user	session
Syntax: SessionDBDPerUser	On|Off

Default: SessionDBDPerUser	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDPerUser	flag	enables	a	per	user	session	keyed
against	the	user's	login	name.	If	the	user	is	not	logged	in,	this
directive	will	be	ignored.

SessionDBDSelectLabel	Directive

Description: The	SQL	query	to	use	to	select	sessions	from	the
database

Syntax: SessionDBDSelectLabel	label

Default: SessionDBDSelectLabel	selectsession

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDSelectLabel	directive	sets	the	default	select
query	label	to	be	used	to	load	in	a	session.	This	label	must	have
been	previously	defined	using	the	DBDPrepareSQL	directive.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SessionDBDUpdateLabel	Directive

Description: The	SQL	query	to	use	to	update	existing	sessions
in	the	database

Syntax: SessionDBDUpdateLabel	label

Default: SessionDBDUpdateLabel	updatesession

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Extension
Module: mod_session_dbd

The	SessionDBDUpdateLabel	directive	sets	the	default	update
query	label	to	be	used	to	load	in	a	session.	This	label	must	have
been	previously	defined	using	the	DBDPrepareSQL	directive.

If	an	attempt	to	update	the	session	affects	no	rows,	the	insert
query	will	be	called	to	insert	the	session	into	the	database.	If	the
database	supports	InsertOrUpdate,	override	this	query	to	perform
the	update	in	one	query	instead	of	two.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_setenvif

Description: Allows	the	setting	of	environment	variables
based	on	characteristics	of	the	request

Status: Base
Module	Identifier: setenvif_module
Source	File: mod_setenvif.c

Summary
The	mod_setenvif	module	allows	you	to	set	internal	environment
variables	according	to	whether	different	aspects	of	the	request	match
regular	expressions	you	specify.	These	environment	variables	can	be
used	by	other	parts	of	the	server	to	make	decisions	about	actions	to
be	taken,	as	well	as	becoming	available	to	CGI	scripts	and	SSI
pages.

The	directives	are	considered	in	the	order	they	appear	in	the
configuration	files.	So	more	complex	sequences	can	be	used,	such	as
this	example,	which	sets	netscape	if	the	browser	is	mozilla	but	not
MSIE.

BrowserMatch	^Mozilla	netscape

BrowserMatch	MSIE	!netscape

When	the	server	looks	up	a	path	via	an	internal	subrequest	such	as
looking	for	a	DirectoryIndex	or	generating	a	directory	listing	with
mod_autoindex,	per-request	environment	variables	are	not
inherited	in	the	subrequest.	Additionally,	SetEnvIf	directives	are	not
separately	evaluated	in	the	subrequest	due	to	the	API	phases
mod_setenvif	takes	action	in.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Environment	Variables	in	Apache	HTTP	Server

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_setenvif
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_setenvif

BrowserMatch	Directive

Description: Sets	environment	variables	conditional	on	HTTP
User-Agent

Syntax: BrowserMatch	regex	[!]env-

variable[=value]	[[!]env-

variable[=value]]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_setenvif

The	BrowserMatch	is	a	special	cases	of	the	SetEnvIf	directive
that	sets	environment	variables	conditional	on	the	User-Agent
HTTP	request	header.	The	following	two	lines	have	the	same
effect:

BrowserMatch	Robot	is_a_robot

SetEnvIf	User-Agent	Robot	is_a_robot

Some	additional	examples:

BrowserMatch	^Mozilla	forms	jpeg=yes	browser=netscape

BrowserMatch	"^Mozilla/[2-3]"	tables	agif	frames	javascript

BrowserMatch	MSIE	!javascript

BrowserMatchNoCase	Directive

Description: Sets	environment	variables	conditional	on	User-
Agent	without	respect	to	case

Syntax: BrowserMatchNoCase	regex	[!]env-

variable[=value]	[[!]env-

variable[=value]]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_setenvif

The	BrowserMatchNoCase	directive	is	semantically	identical	to
the	BrowserMatch	directive.	However,	it	provides	for	case-
insensitive	matching.	For	example:

BrowserMatchNoCase	mac	platform=macintosh

BrowserMatchNoCase	win	platform=windows

The	BrowserMatch	and	BrowserMatchNoCase	directives	are
special	cases	of	the	SetEnvIf	and	SetEnvIfNoCase	directives.
The	following	two	lines	have	the	same	effect:

BrowserMatchNoCase	Robot	is_a_robot

SetEnvIfNoCase	User-Agent	Robot	is_a_robot

SetEnvIf	Directive

Description: Sets	environment	variables	based	on	attributes	of
the	request

Syntax: SetEnvIf	attribute	regex	[!]env-

variable[=value]	[[!]env-

variable[=value]]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_setenvif

The	SetEnvIf	directive	defines	environment	variables	based	on
attributes	of	the	request.	The	attribute	specified	in	the	first
argument	can	be	one	of	four	things:

1.	 An	HTTP	request	header	field	(see	RFC2616	for	more
information	about	these);	for	example:	Host,	User-Agent,
Referer,	and	Accept-Language.	A	regular	expression
may	be	used	to	specify	a	set	of	request	headers.

2.	 One	of	the	following	aspects	of	the	request:

Remote_Host	-	the	hostname	(if	available)	of	the	client
making	the	request

Remote_Addr	-	the	IP	address	of	the	client	making	the
request

Server_Addr	-	the	IP	address	of	the	server	on	which
the	request	was	received	(only	with	versions	later	than
2.0.43)

Request_Method	-	the	name	of	the	method	being	used
(GET,	POST,	et	cetera)

Request_Protocol	-	the	name	and	version	of	the
protocol	with	which	the	request	was	made	(e.g.,

http://www.rfc-editor.org/rfc/rfc2616.txt

"HTTP/0.9",	"HTTP/1.1",	etc.)

Request_URI	-	the	resource	requested	on	the	HTTP
request	line	--	generally	the	portion	of	the	URL	following
the	scheme	and	host	portion	without	the	query	string.
See	the	RewriteCond	directive	of	mod_rewrite	for
extra	information	on	how	to	match	your	query	string.

3.	 The	name	of	an	environment	variable	in	the	list	of	those
associated	with	the	request.	This	allows	SetEnvIf	directives
to	test	against	the	result	of	prior	matches.	Only	those
environment	variables	defined	by	earlier
SetEnvIf[NoCase]	directives	are	available	for	testing	in
this	manner.	'Earlier'	means	that	they	were	defined	at	a
broader	scope	(such	as	server-wide)	or	previously	in	the
current	directive's	scope.	Environment	variables	will	be
considered	only	if	there	was	no	match	among	request
characteristics	and	a	regular	expression	was	not	used	for	the
attribute.

The	second	argument	(regex)	is	a	regular	expression.	If	the	regex
matches	against	the	attribute,	then	the	remainder	of	the
arguments	are	evaluated.

The	rest	of	the	arguments	give	the	names	of	variables	to	set,	and
optionally	values	to	which	they	should	be	set.	These	take	the	form
of

1.	 varname,	or

2.	 !varname,	or

3.	 varname=value

In	the	first	form,	the	value	will	be	set	to	"1".	The	second	will
remove	the	given	variable	if	already	defined,	and	the	third	will	set
the	variable	to	the	literal	value	given	by	value.	Since	version

2.0.51,	Apache	httpd	will	recognize	occurrences	of	$1..$9	within
value	and	replace	them	by	parenthesized	subexpressions	of
regex.	$0	provides	access	to	the	whole	string	matched	by	that
pattern.

SetEnvIf	Request_URI	"\.gif$"	object_is_image=gif

SetEnvIf	Request_URI	"\.jpg$"	object_is_image=jpg

SetEnvIf	Request_URI	"\.xbm$"	object_is_image=xbm

				

SetEnvIf	Referer	www\.mydomain\.example\.com	intra_site_referral

				

SetEnvIf	object_is_image	xbm	XBIT_PROCESSING=1

				

SetEnvIf	Request_URI	"\.(.*)$"	EXTENSION=$1

SetEnvIf	^TS		^[a-z]		HAVE_TS

The	first	three	will	set	the	environment	variable
object_is_image	if	the	request	was	for	an	image	file,	and	the
fourth	sets	intra_site_referral	if	the	referring	page	was
somewhere	on	the	www.mydomain.example.com	Web	site.

The	last	example	will	set	environment	variable	HAVE_TS	if	the
request	contains	any	headers	that	begin	with	"TS"	whose	values
begins	with	any	character	in	the	set	[a-z].

See	also
Environment	Variables	in	Apache	HTTP	Server,	for	additional
examples.

SetEnvIfExpr	Directive

Description: Sets	environment	variables	based	on	an	ap_expr
expression

Syntax: SetEnvIfExpr	expr	[!]env-

variable[=value]	[[!]env-

variable[=value]]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_setenvif

The	SetEnvIfExpr	directive	defines	environment	variables
based	on	an	<If>	ap_expr.	These	expressions	will	be	evaluated
at	runtime,	and	applied	env-variable	in	the	same	fashion	as
SetEnvIf.

SetEnvIfExpr	"tolower(req('X-Sendfile'))	==	'd:\images\very_big.iso')"	iso_delivered

This	would	set	the	environment	variable	iso_delivered	every
time	our	application	attempts	to	send	it	via	X-Sendfile

A	more	useful	example	would	be	to	set	the	variable	rfc1918	if	the
remote	IP	address	is	a	private	address	according	to	RFC	1918:

SetEnvIfExpr	"-R	'10.0.0.0/8'	||	-R	'172.16.0.0/12'	||	-R	'192.168.0.0/16'"	rfc1918

See	also
Expressions	in	Apache	HTTP	Server,	for	a	complete
reference	and	more	examples.
<If>	can	be	used	to	achieve	similar	results.
mod_filter

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SetEnvIfNoCase	Directive

Description: Sets	environment	variables	based	on	attributes	of
the	request	without	respect	to	case

Syntax: SetEnvIfNoCase	attribute	regex

[!]env-variable[=value]	[[!]env-

variable[=value]]	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Base
Module: mod_setenvif

The	SetEnvIfNoCase	is	semantically	identical	to	the	SetEnvIf
directive,	and	differs	only	in	that	the	regular	expression	matching
is	performed	in	a	case-insensitive	manner.	For	example:

SetEnvIfNoCase	Host	Example\.Org	site=example

This	will	cause	the	site	environment	variable	to	be	set	to
"example"	if	the	HTTP	request	header	field	Host:	was	included
and	contained	Example.Org,	example.org,	or	any	other
combination.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_slotmem_plain

Description: Slot-based	shared	memory	provider.
Status: Extension
Module	Identifier: slotmem_plain_module
Source	File: mod_slotmem_plain.c

Summary
mod_slotmem_plain	is	a	memory	provider	which	provides	for
creation	and	access	to	a	plain	memory	segment	in	which	the	datasets
are	organized	in	"slots."

If	the	memory	needs	to	be	shared	between	threads	and	processes,	a
better	provider	would	be	mod_slotmem_shm.

mod_slotmem_plain	provides	the	following	API	functions:

apr_status_t	doall(ap_slotmem_instance_t	*s,
ap_slotmem_callback_fn_t	*func,	void	*data,	apr_pool_t	*pool)

call	the	callback	on	all	worker	slots

apr_status_t	create(ap_slotmem_instance_t	**new,	const	char
*name,	apr_size_t	item_size,	unsigned	int	item_num,
ap_slotmem_type_t	type,	apr_pool_t	*pool)

create	a	new	slotmem	with	each	item	size	is	item_size.

apr_status_t	attach(ap_slotmem_instance_t	**new,	const	char
*name,	apr_size_t	*item_size,	unsigned	int	*item_num,
apr_pool_t	*pool)

attach	to	an	existing	slotmem.

apr_status_t	dptr(ap_slotmem_instance_t	*s,	unsigned	int
item_id,	void**mem)

get	the	direct	pointer	to	the	memory	associated	with	this	worker
slot.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

apr_status_t	get(ap_slotmem_instance_t	*s,	unsigned	int
item_id,	unsigned	char	*dest,	apr_size_t	dest_len)

get/read	the	memory	from	this	slot	to	dest

apr_status_t	put(ap_slotmem_instance_t	*slot,	unsigned	int
item_id,	unsigned	char	*src,	apr_size_t	src_len)

put/write	the	data	from	src	to	this	slot

unsigned	int	num_slots(ap_slotmem_instance_t	*s)
return	the	total	number	of	slots	in	the	segment

apr_size_t	slot_size(ap_slotmem_instance_t	*s)
return	the	total	data	size,	in	bytes,	of	a	slot	in	the	segment

apr_status_t	grab(ap_slotmem_instance_t	*s,	unsigned	int
*item_id);

grab	or	allocate	the	first	free	slot	and	mark	as	in-use	(does	not	do
any	data	copying)

apr_status_t	fgrab(ap_slotmem_instance_t	*s,	unsigned	int
item_id);

forced	grab	or	allocate	the	specified	slot	and	mark	as	in-use
(does	not	do	any	data	copying)

apr_status_t	release(ap_slotmem_instance_t	*s,	unsigned	int
item_id);

release	or	free	a	slot	and	mark	as	not	in-use	(does	not	do	any
data	copying)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_slotmem_shm

Description: Slot-based	shared	memory	provider.
Status: Extension
Module	Identifier: slotmem_shm_module
Source	File: mod_slotmem_shm.c

Summary
mod_slotmem_shm	is	a	memory	provider	which	provides	for	creation
and	access	to	a	shared	memory	segment	in	which	the	datasets	are
organized	in	"slots."

All	shared	memory	is	cleared	and	cleaned	with	each	restart,	whether
graceful	or	not.	The	data	itself	is	stored	and	restored	within	a	file
noted	by	the	name	parameter	in	the	create	and	attach	calls.	If	not
specified	with	an	absolute	path,	the	file	will	be	created	relative	to	the
path	specified	by	the	DefaultRuntimeDir	directive.

mod_slotmem_shm	provides	the	following	API	functions:

apr_status_t	doall(ap_slotmem_instance_t	*s,
ap_slotmem_callback_fn_t	*func,	void	*data,	apr_pool_t	*pool)

call	the	callback	on	all	worker	slots

apr_status_t	create(ap_slotmem_instance_t	**new,	const	char
*name,	apr_size_t	item_size,	unsigned	int	item_num,
ap_slotmem_type_t	type,	apr_pool_t	*pool)

create	a	new	slotmem	with	each	item	size	is	item_size.	name	is
used	to	generate	a	filename	for	the	persistent	store	of	the	shared
memory	if	configured.	Values	are:

"none"

Anonymous	shared	memory	and	no	persistent

store

"file-name"

[DefaultRuntimeDir]/file-name

"/absolute-file-name"

Absolute	file	name

apr_status_t	attach(ap_slotmem_instance_t	**new,	const	char
*name,	apr_size_t	*item_size,	unsigned	int	*item_num,
apr_pool_t	*pool)

attach	to	an	existing	slotmem.	See	create	for	description	of
name	parameter.

apr_status_t	dptr(ap_slotmem_instance_t	*s,	unsigned	int
item_id,	void**mem)

get	the	direct	pointer	to	the	memory	associated	with	this	worker
slot.

apr_status_t	get(ap_slotmem_instance_t	*s,	unsigned	int
item_id,	unsigned	char	*dest,	apr_size_t	dest_len)

get/read	the	memory	from	this	slot	to	dest

apr_status_t	put(ap_slotmem_instance_t	*slot,	unsigned	int
item_id,	unsigned	char	*src,	apr_size_t	src_len)

put/write	the	data	from	src	to	this	slot

unsigned	int	num_slots(ap_slotmem_instance_t	*s)
return	the	total	number	of	slots	in	the	segment

apr_size_t	slot_size(ap_slotmem_instance_t	*s)
return	the	total	data	size,	in	bytes,	of	a	slot	in	the	segment

apr_status_t	grab(ap_slotmem_instance_t	*s,	unsigned	int
*item_id);

grab	or	allocate	the	first	free	slot	and	mark	as	in-use	(does	not	do
any	data	copying)

apr_status_t	fgrab(ap_slotmem_instance_t	*s,	unsigned	int
item_id);

forced	grab	or	allocate	the	specified	slot	and	mark	as	in-use
(does	not	do	any	data	copying)

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

apr_status_t	release(ap_slotmem_instance_t	*s,	unsigned	int
item_id);

release	or	free	a	slot	and	mark	as	not	in-use	(does	not	do	any
data	copying)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_so

Description: Loading	of	executable	code	and	modules	into
the	server	at	start-up	or	restart	time

Status: Extension
Module	Identifier: so_module
Source	File: mod_so.c
Compatibility: This	is	a	Base	module	(always	included)	on

Windows

Summary
On	selected	operating	systems	this	module	can	be	used	to	load
modules	into	Apache	HTTP	Server	at	runtime	via	the	Dynamic
Shared	Object	(DSO)	mechanism,	rather	than	requiring	a
recompilation.

On	Unix,	the	loaded	code	typically	comes	from	shared	object	files
(usually	with	.so	extension),	on	Windows	this	may	either	be	the	.so
or	.dll	extension.

Warning

Modules	built	for	one	major	version	of	the	Apache	HTTP	Server	will
generally	not	work	on	another.	(e.g.	1.3	vs.	2.0,	or	2.0	vs.	2.2)
There	are	usually	API	changes	between	one	major	version	and
another	that	require	that	modules	be	modified	to	work	with	the	new
version.

Creating	Loadable	Modules	for	Windows

Note

On	Windows,	where	loadable	files	typically	have	a	file	extension
of	.dll,	Apache	httpd	modules	are	called	mod_whatever.so,
just	as	they	are	on	other	platforms.	However,	you	may
encounter	third-party	modules,	such	as	PHP	for	example,	that
continue	to	use	the	.dll	convention.

While	mod_so	still	loads	modules	with
ApacheModuleFoo.dll	names,	the	new	naming	convention	is
preferred;	if	you	are	converting	your	loadable	module	for	2.0,
please	fix	the	name	to	this	2.0	convention.

The	Apache	httpd	module	API	is	unchanged	between	the	Unix	and
Windows	versions.	Many	modules	will	run	on	Windows	with	no	or
little	change	from	Unix,	although	others	rely	on	aspects	of	the	Unix
architecture	which	are	not	present	in	Windows,	and	will	not	work.

When	a	module	does	work,	it	can	be	added	to	the	server	in	one	of
two	ways.	As	with	Unix,	it	can	be	compiled	into	the	server.
Because	Apache	httpd	for	Windows	does	not	have	the
Configure	program	of	Apache	httpd	for	Unix,	the	module's
source	file	must	be	added	to	the	ApacheCore	project	file,	and	its
symbols	must	be	added	to	the	os\win32\modules.c	file.

The	second	way	is	to	compile	the	module	as	a	DLL,	a	shared
library	that	can	be	loaded	into	the	server	at	runtime,	using	the
LoadModule	directive.	These	module	DLLs	can	be	distributed
and	run	on	any	Apache	httpd	for	Windows	installation,	without
recompilation	of	the	server.

To	create	a	module	DLL,	a	small	change	is	necessary	to	the
module's	source	file:	The	module	record	must	be	exported	from
the	DLL	(which	will	be	created	later;	see	below).	To	do	this,	add

the	AP_MODULE_DECLARE_DATA	(defined	in	the	Apache	httpd
header	files)	to	your	module's	module	record	definition.	For
example,	if	your	module	has:

module	foo_module;

Replace	the	above	with:

module	AP_MODULE_DECLARE_DATA	foo_module;

Note	that	this	will	only	be	activated	on	Windows,	so	the	module
can	continue	to	be	used,	unchanged,	with	Unix	if	needed.	Also,	if
you	are	familiar	with	.DEF	files,	you	can	export	the	module	record
with	that	method	instead.

Now,	create	a	DLL	containing	your	module.	You	will	need	to	link
this	against	the	libhttpd.lib	export	library	that	is	created	when	the
libhttpd.dll	shared	library	is	compiled.	You	may	also	have	to
change	the	compiler	settings	to	ensure	that	the	Apache	httpd
header	files	are	correctly	located.	You	can	find	this	library	in	your
server	root's	modules	directory.	It	is	best	to	grab	an	existing
module	.dsp	file	from	the	tree	to	assure	the	build	environment	is
configured	correctly,	or	alternately	compare	the	compiler	and	link
options	to	your	.dsp.

This	should	create	a	DLL	version	of	your	module.	Now	simply
place	it	in	the	modules	directory	of	your	server	root,	and	use	the
LoadModule	directive	to	load	it.

LoadFile	Directive

Description: Link	in	the	named	object	file	or	library
Syntax: LoadFile	filename	[filename]	...

Context: server	config,	virtual	host
Status: Extension
Module: mod_so

The	LoadFile	directive	links	in	the	named	object	files	or	libraries
when	the	server	is	started	or	restarted;	this	is	used	to	load
additional	code	which	may	be	required	for	some	module	to	work.
Filename	is	either	an	absolute	path	or	relative	to	ServerRoot.

For	example:

LoadFile	"libexec/libxmlparse.so"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

LoadModule	Directive

Description: Links	in	the	object	file	or	library,	and	adds	to	the	list
of	active	modules

Syntax: LoadModule	module	filename

Context: server	config,	virtual	host
Status: Extension
Module: mod_so

The	LoadModule	directive	links	in	the	object	file	or	library
filename	and	adds	the	module	structure	named	module	to	the	list
of	active	modules.	Module	is	the	name	of	the	external	variable	of
type	module	in	the	file,	and	is	listed	as	the	Module	Identifier	in	the
module	documentation.

For	example:

LoadModule	status_module	"modules/mod_status.so"

loads	the	named	module	from	the	modules	subdirectory	of	the
ServerRoot.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	Module	mod_socache_dbm

Description: DBM	based	shared	object	cache	provider.
Status: Extension
Module	Identifier: socache_dbm_module
Source	File: mod_socache_dbm.c

Summary
mod_socache_dbm	is	a	shared	object	cache	provider	which	provides
for	creation	and	access	to	a	cache	backed	by	a	DBM	database.

dbm:/path/to/datafile

Details	of	other	shared	object	cache	providers	can	be	found	here.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	Module	mod_socache_dc

Description: Distcache	based	shared	object	cache	provider.
Status: Extension
Module	Identifier: socache_dc_module
Source	File: mod_socache_dc.c

Summary
mod_socache_dc	is	a	shared	object	cache	provider	which	provides
for	creation	and	access	to	a	cache	backed	by	the	distcache
distributed	session	caching	libraries.

Details	of	other	shared	object	cache	providers	can	be	found	here.

http://distcache.sourceforge.net/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_socache_memcache

Description: Memcache	based	shared	object	cache	provider.
Status: Extension
Module	Identifier: socache_memcache_module
Source	File: mod_socache_memcache.c

Summary
mod_socache_memcache	is	a	shared	object	cache	provider	which
provides	for	creation	and	access	to	a	cache	backed	by	the
memcached	high-performance,	distributed	memory	object	caching
system.

This	shared	object	cache	provider's	"create"	method	requires	a
comma	separated	list	of	memcached	host/port	specifications.	If	using
this	provider	via	another	modules	configuration	(such	as
SSLSessionCache),	provide	the	list	of	servers	as	the	optional	"arg"
parameter.

SSLSessionCache	memcache:memcache.example.com:12345,memcache2.example.com:12345

Details	of	other	shared	object	cache	providers	can	be	found	here.

http://memcached.org/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

MemcacheConnTTL	Directive

Description: Keepalive	time	for	idle	connections
Syntax: MemcacheConnTTL	num[units]

Default: MemcacheConnTTL	15s

Context: server	config,	virtual	host
Status: Extension
Module: mod_socache_memcache
Compatibility: Available	in	Apache	2.4.17	and	later

Set	the	time	to	keep	idle	connections	with	the	memcache	server(s)
alive	(threaded	platforms	only).

Valid	values	for	MemcacheConnTTL	are	times	up	to	one	hour.	0
means	no	timeout.

This	timeout	defaults	to	units	of	seconds,	but	accepts	suffixes
for	milliseconds	(ms),	seconds	(s),	minutes	(min),	and	hours	(h).

Before	Apache	2.4.17,	this	timeout	was	hardcoded	and	its	value
was	600	usec.	So,	the	closest	configuration	to	match	the	legacy
behaviour	is	to	set	MemcacheConnTTL	to	1ms.

#	Set	a	timeout	of	10	minutes

MemcacheConnTTL	10min

#	Set	a	timeout	of	60	seconds

MemcacheConnTTL	60

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	Module	mod_socache_shmcb

Description: shmcb	based	shared	object	cache	provider.
Status: Extension
Module	Identifier: socache_shmcb_module
Source	File: mod_socache_shmcb.c

Summary
mod_socache_shmcb	is	a	shared	object	cache	provider	which
provides	for	creation	and	access	to	a	cache	backed	by	a	high-
performance	cyclic	buffer	inside	a	shared	memory	segment.

shmcb:/path/to/datafile(512000)

Details	of	other	shared	object	cache	providers	can	be	found	here.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_speling

Description: Attempts	to	correct	mistaken	URLs	by	ignoring
capitalization,	or	attempting	to	correct	various
minor	misspellings.

Status: Extension
Module	Identifier: speling_module
Source	File: mod_speling.c

Summary
Requests	to	documents	sometimes	cannot	be	served	by	the	core
apache	server	because	the	request	was	misspelled	or	miscapitalized.
This	module	addresses	this	problem	by	trying	to	find	a	matching
document,	even	after	all	other	modules	gave	up.	It	does	its	work	by
comparing	each	document	name	in	the	requested	directory	against
the	requested	document	name	without	regard	to	case,	and	allowing
up	to	one	misspelling	(character	insertion	/	omission	/	transposition
or	wrong	character).	A	list	is	built	with	all	document	names	which	were
matched	using	this	strategy.

If,	after	scanning	the	directory,

no	matching	document	was	found,	Apache	will	proceed	as	usual
and	return	a	"document	not	found"	error.
only	one	document	is	found	that	"almost"	matches	the	request,
then	it	is	returned	in	the	form	of	a	redirection	response.
more	than	one	document	with	a	close	match	was	found,	then	the
list	of	the	matches	is	returned	to	the	client,	and	the	client	can
select	the	correct	candidate.

CheckCaseOnly	Directive

Description: Limits	the	action	of	the	speling	module	to	case
corrections

Syntax: CheckCaseOnly	on|off

Default: CheckCaseOnly	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Extension
Module: mod_speling

When	set,	this	directive	limits	the	action	of	the	spelling	correction
to	lower/upper	case	changes.	Other	potential	corrections	are	not
performed.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

CheckSpelling	Directive

Description: Enables	the	spelling	module
Syntax: CheckSpelling	on|off

Default: CheckSpelling	Off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Extension
Module: mod_speling

This	directive	enables	or	disables	the	spelling	module.	When
enabled,	keep	in	mind	that

the	directory	scan	which	is	necessary	for	the	spelling
correction	will	have	an	impact	on	the	server's	performance
when	many	spelling	corrections	have	to	be	performed	at	the
same	time.
the	document	trees	should	not	contain	sensitive	files	which
could	be	matched	inadvertently	by	a	spelling	"correction".
the	module	is	unable	to	correct	misspelled	user	names	(as	in
http://my.host/~apahce/),	just	file	names	or	directory
names.
spelling	corrections	apply	strictly	to	existing	files,	so	a	request
for	the	<Location	"/status">	may	get	incorrectly	treated
as	the	negotiated	file	"/stats.html".

mod_speling	should	not	be	enabled	in	DAV	enabled	directories,
because	it	will	try	to	"spell	fix"	newly	created	resource	names
against	existing	filenames,	e.g.,	when	trying	to	upload	a	new
document	doc43.html	it	might	redirect	to	an	existing	document
doc34.html,	which	is	not	what	was	intended.

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_ssl

Description: Strong	cryptography	using	the	Secure	Sockets
Layer	(SSL)	and	Transport	Layer	Security	(TLS)
protocols

Status: Extension
Module	Identifier: ssl_module
Source	File: mod_ssl.c

Summary
This	module	provides	SSL	v3	and	TLS	v1.x	support	for	the	Apache
HTTP	Server.	SSL	v2	is	no	longer	supported.

This	module	relies	on	OpenSSL	to	provide	the	cryptography	engine.

Further	details,	discussion,	and	examples	are	provided	in	the	SSL
documentation.

http://www.openssl.org/

Environment	Variables

This	module	can	be	configured	to	provide	several	items	of	SSL
information	as	additional	environment	variables	to	the	SSI	and
CGI	namespace.	This	information	is	not	provided	by	default	for
performance	reasons.	(See	SSLOptions	StdEnvVars,	below.)
The	generated	variables	are	listed	in	the	table	below.	For
backward	compatibility	the	information	can	be	made	available
under	different	names,	too.	Look	in	the	Compatibility	chapter	for
details	on	the	compatibility	variables.

Variable	Name: Value
Type:

Description:

HTTPS flag HTTPS	is	being	used.
SSL_PROTOCOL string The	SSL	protocol	version

(SSLv3,	TLSv1,
TLSv1.1,	TLSv1.2)

SSL_SESSION_ID string The	hex-encoded	SSL
session	id

SSL_SESSION_RESUMED string Initial	or	Resumed	SSL
Session.	Note:	multiple
requests	may	be	served
over	the	same	(Initial	or
Resumed)	SSL	session	if
HTTP	KeepAlive	is	in
use

SSL_SECURE_RENEG string true	if	secure
renegotiation	is
supported,	else	false

SSL_CIPHER string The	cipher	specification
name

SSL_CIPHER_EXPORT string true	if	cipher	is	an
export	cipher

SSL_CIPHER_USEKEYSIZE number Number	of	cipher	bits
(actually	used)

SSL_CIPHER_ALGKEYSIZE number Number	of	cipher	bits
(possible)

SSL_COMPRESS_METHOD string SSL	compression
method	negotiated

SSL_VERSION_INTERFACE string The	mod_ssl	program
version

SSL_VERSION_LIBRARY string The	OpenSSL	program
version

SSL_CLIENT_M_VERSION string The	version	of	the	client
certificate

SSL_CLIENT_M_SERIAL string The	serial	of	the	client
certificate

SSL_CLIENT_S_DN string Subject	DN	in	client's
certificate

SSL_CLIENT_S_DN_x509 string Component	of	client's
Subject	DN

SSL_CLIENT_SAN_Email_n string Client	certificate's
subjectAltName
extension	entries	of	type
rfc822Name

SSL_CLIENT_SAN_DNS_n string Client	certificate's
subjectAltName
extension	entries	of	type
dNSName

SSL_CLIENT_SAN_OTHER_msUPN_n string Client	certificate's
subjectAltName
extension	entries	of	type
otherName,	Microsoft
User	Principal	Name
form	(OID

1.3.6.1.4.1.311.20.2.3)
SSL_CLIENT_I_DN string Issuer	DN	of	client's

certificate
SSL_CLIENT_I_DN_x509 string Component	of	client's

Issuer	DN
SSL_CLIENT_V_START string Validity	of	client's

certificate	(start	time)
SSL_CLIENT_V_END string Validity	of	client's

certificate	(end	time)
SSL_CLIENT_V_REMAIN string Number	of	days	until

client's	certificate	expires
SSL_CLIENT_A_SIG string Algorithm	used	for	the

signature	of	client's
certificate

SSL_CLIENT_A_KEY string Algorithm	used	for	the
public	key	of	client's
certificate

SSL_CLIENT_CERT string PEM-encoded	client
certificate

SSL_CLIENT_CERT_CHAIN_n string PEM-encoded
certificates	in	client
certificate	chain

SSL_CLIENT_CERT_RFC4523_CEA string Serial	number	and	issuer
of	the	certificate.	The
format	matches	that	of
the
CertificateExactAssertion
in	RFC4523

SSL_CLIENT_VERIFY string NONE,	SUCCESS,
GENEROUS	or
FAILED:reason

SSL_SERVER_M_VERSION string The	version	of	the	server

certificate
SSL_SERVER_M_SERIAL string The	serial	of	the	server

certificate
SSL_SERVER_S_DN string Subject	DN	in	server's

certificate
SSL_SERVER_SAN_Email_n string Server	certificate's

subjectAltName
extension	entries	of	type
rfc822Name

SSL_SERVER_SAN_DNS_n string Server	certificate's
subjectAltName
extension	entries	of	type
dNSName

SSL_SERVER_SAN_OTHER_dnsSRV_n string Server	certificate's
subjectAltName
extension	entries	of	type
otherName,	SRVName
form	(OID
1.3.6.1.5.5.7.8.7,	RFC
4985)

SSL_SERVER_S_DN_x509 string Component	of	server's
Subject	DN

SSL_SERVER_I_DN string Issuer	DN	of	server's
certificate

SSL_SERVER_I_DN_x509 string Component	of	server's
Issuer	DN

SSL_SERVER_V_START string Validity	of	server's
certificate	(start	time)

SSL_SERVER_V_END string Validity	of	server's
certificate	(end	time)

SSL_SERVER_A_SIG string Algorithm	used	for	the
signature	of	server's

certificate
SSL_SERVER_A_KEY string Algorithm	used	for	the

public	key	of	server's
certificate

SSL_SERVER_CERT string PEM-encoded	server
certificate

SSL_SRP_USER string SRP	username
SSL_SRP_USERINFO string SRP	user	info
SSL_TLS_SNI string Contents	of	the	SNI	TLS

extension	(if	supplied
with	ClientHello)

x509	specifies	a	component	of	an	X.509	DN;	one	of
C,ST,L,O,OU,CN,T,I,G,S,D,UID,Email.	In	Apache	2.1	and
later,	x509	may	also	include	a	numeric	_n	suffix.	If	the	DN	in
question	contains	multiple	attributes	of	the	same	name,	this	suffix
is	used	as	a	zero-based	index	to	select	a	particular	attribute.	For
example,	where	the	server	certificate	subject	DN	included	two	OU
attributes,	SSL_SERVER_S_DN_OU_0	and
SSL_SERVER_S_DN_OU_1	could	be	used	to	reference	each.	A
variable	name	without	a	_n	suffix	is	equivalent	to	that	name	with	a
_0	suffix;	the	first	(or	only)	attribute.	When	the	environment	table	is
populated	using	the	StdEnvVars	option	of	the	SSLOptions
directive,	the	first	(or	only)	attribute	of	any	DN	is	added	only	under
a	non-suffixed	name;	i.e.	no	_0	suffixed	entries	are	added.

The	format	of	the	*_DN	variables	has	changed	in	Apache	HTTPD
2.3.11.	See	the	LegacyDNStringFormat	option	for
SSLOptions	for	details.

SSL_CLIENT_V_REMAIN	is	only	available	in	version	2.1	and	later.

A	number	of	additional	environment	variables	can	also	be	used	in

SSLRequire	expressions,	or	in	custom	log	formats:

HTTP_USER_AGENT								PATH_INFO													AUTH_TYPE

HTTP_REFERER											QUERY_STRING										SERVER_SOFTWARE

HTTP_COOKIE												REMOTE_HOST											API_VERSION

HTTP_FORWARDED									REMOTE_IDENT										TIME_YEAR

HTTP_HOST														IS_SUBREQ													TIME_MON

HTTP_PROXY_CONNECTION		DOCUMENT_ROOT									TIME_DAY

HTTP_ACCEPT												SERVER_ADMIN										TIME_HOUR

THE_REQUEST												SERVER_NAME											TIME_MIN

REQUEST_FILENAME							SERVER_PORT											TIME_SEC

REQUEST_METHOD									SERVER_PROTOCOL							TIME_WDAY

REQUEST_SCHEME									REMOTE_ADDR											TIME

REQUEST_URI												REMOTE_USER

In	these	contexts,	two	special	formats	can	also	be	used:

ENV:variablename

This	will	expand	to	the	standard	environment	variable
variablename.

HTTP:headername

This	will	expand	to	the	value	of	the	request	header	with	name
headername.

Custom	Log	Formats

When	mod_ssl	is	built	into	Apache	or	at	least	loaded	(under	DSO
situation)	additional	functions	exist	for	the	Custom	Log	Format	of
mod_log_config.	First	there	is	an	additional	``%{varname}x''
eXtension	format	function	which	can	be	used	to	expand	any
variables	provided	by	any	module,	especially	those	provided	by
mod_ssl	which	can	you	find	in	the	above	table.

For	backward	compatibility	there	is	additionally	a	special	``%
{name}c''	cryptography	format	function	provided.	Information
about	this	function	is	provided	in	the	Compatibility	chapter.

Example
CustomLog	"logs/ssl_request_log"	"%t	%h	%{SSL_PROTOCOL}x	%{SSL_CIPHER}x	\"%r\"	%b"

These	formats	even	work	without	setting	the	StdEnvVars	option
of	the	SSLOptions	directive.

Request	Notes

mod_ssl	sets	"notes"	for	the	request	which	can	be	used	in
logging	with	the	%{name}n	format	string	in	mod_log_config.

The	notes	supported	are	as	follows:

ssl-access-forbidden

This	note	is	set	to	the	value	1	if	access	was	denied	due	to	an
SSLRequire	or	SSLRequireSSL	directive.

ssl-secure-reneg

If	mod_ssl	is	built	against	a	version	of	OpenSSL	which
supports	the	secure	renegotiation	extension,	this	note	is	set	to
the	value	1	if	SSL	is	in	used	for	the	current	connection,	and
the	client	also	supports	the	secure	renegotiation	extension.	If
the	client	does	not	support	the	secure	renegotiation
extension,	the	note	is	set	to	the	value	0.	If	mod_ssl	is	not
built	against	a	version	of	OpenSSL	which	supports	secure
renegotiation,	or	if	SSL	is	not	in	use	for	the	current
connection,	the	note	is	not	set.

Expression	Parser	Extension

When	mod_ssl	is	built	into	Apache	or	at	least	loaded	(under	DSO
situation)	any	variables	provided	by	mod_ssl	can	be	used	in
expressions	for	the	ap_expr	Expression	Parser.	The	variables	can
be	referenced	using	the	syntax	``%{varname}''.	Starting	with
version	2.4.18	one	can	also	use	the	mod_rewrite	style	syntax
``%{SSL:varname}''	or	the	function	style	syntax
``ssl(varname)''.

Example	(using	mod_headers)
Header	set	X-SSL-PROTOCOL	"expr=%{SSL_PROTOCOL}"

Header	set	X-SSL-CIPHER	"expr=%{SSL:SSL_CIPHER}"

This	feature	even	works	without	setting	the	StdEnvVars	option	of
the	SSLOptions	directive.

Authorization	providers	for	use	with	Require

mod_ssl	provides	a	few	authentication	providers	for	use	with
mod_authz_core's	Require	directive.

Require	ssl
The	ssl	provider	denies	access	if	a	connection	is	not	encrypted
with	SSL.	This	is	similar	to	the	SSLRequireSSL	directive.

Require	ssl

Require	ssl-verify-client
The	ssl	provider	allows	access	if	the	user	is	authenticated	with	a
valid	client	certificate.	This	is	only	useful	if	SSLVerifyClient
optional	is	in	effect.

The	following	example	grants	access	if	the	user	is	authenticated
either	with	a	client	certificate	or	by	username	and	password.

Require	ssl-verify-client

Require	valid-user

SSLCACertificateFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	Certificates
for	Client	Auth

Syntax: SSLCACertificateFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	can	assemble	the
Certificates	of	Certification	Authorities	(CA)	whose	clients	you	deal
with.	These	are	used	for	Client	Authentication.	Such	a	file	is	simply
the	concatenation	of	the	various	PEM-encoded	Certificate	files,	in
order	of	preference.	This	can	be	used	alternatively	and/or
additionally	to	SSLCACertificatePath.

Example
SSLCACertificateFile	"/usr/local/apache2/conf/ssl.crt/ca-bundle-client.crt"

SSLCACertificatePath	Directive

Description: Directory	of	PEM-encoded	CA	Certificates	for
Client	Auth

Syntax: SSLCACertificatePath	directory-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	Certificates	of
Certification	Authorities	(CAs)	whose	clients	you	deal	with.	These
are	used	to	verify	the	client	certificate	on	Client	Authentication.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	can't	just	place
the	Certificate	files	there:	you	also	have	to	create	symbolic	links
named	hash-value.N.	And	you	should	always	make	sure	this
directory	contains	the	appropriate	symbolic	links.

Example
SSLCACertificatePath	"/usr/local/apache2/conf/ssl.crt/"

SSLCADNRequestFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	Certificates
for	defining	acceptable	CA	names

Syntax: SSLCADNRequestFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

When	a	client	certificate	is	requested	by	mod_ssl,	a	list	of
acceptable	Certificate	Authority	names	is	sent	to	the	client	in	the
SSL	handshake.	These	CA	names	can	be	used	by	the	client	to
select	an	appropriate	client	certificate	out	of	those	it	has	available.

If	neither	of	the	directives	SSLCADNRequestPath	or
SSLCADNRequestFile	are	given,	then	the	set	of	acceptable	CA
names	sent	to	the	client	is	the	names	of	all	the	CA	certificates
given	by	the	SSLCACertificateFile	and
SSLCACertificatePath	directives;	in	other	words,	the	names
of	the	CAs	which	will	actually	be	used	to	verify	the	client
certificate.

In	some	circumstances,	it	is	useful	to	be	able	to	send	a	set	of
acceptable	CA	names	which	differs	from	the	actual	CAs	used	to
verify	the	client	certificate	-	for	example,	if	the	client	certificates	are
signed	by	intermediate	CAs.	In	such	cases,
SSLCADNRequestPath	and/or	SSLCADNRequestFile	can	be
used;	the	acceptable	CA	names	are	then	taken	from	the	complete
set	of	certificates	in	the	directory	and/or	file	specified	by	this	pair	of
directives.

SSLCADNRequestFile	must	specify	an	all-in-one	file	containing
a	concatenation	of	PEM-encoded	CA	certificates.

Example

SSLCADNRequestFile	"/usr/local/apache2/conf/ca-names.crt"

SSLCADNRequestPath	Directive

Description: Directory	of	PEM-encoded	CA	Certificates	for
defining	acceptable	CA	names

Syntax: SSLCADNRequestPath	directory-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	optional	directive	can	be	used	to	specify	the	set	of	acceptable
CA	names	which	will	be	sent	to	the	client	when	a	client	certificate
is	requested.	See	the	SSLCADNRequestFile	directive	for	more
details.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	can't	just	place
the	Certificate	files	there:	you	also	have	to	create	symbolic	links
named	hash-value.N.	And	you	should	always	make	sure	this
directory	contains	the	appropriate	symbolic	links.

Example
SSLCADNRequestPath	"/usr/local/apache2/conf/ca-names.crt/"

SSLCARevocationCheck	Directive

Description: Enable	CRL-based	revocation	checking
Syntax: SSLCARevocationCheck	chain|leaf|none

flags

Default: SSLCARevocationCheck	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Optional	flags	available	in	httpd	2.4.21	or	later

Enables	certificate	revocation	list	(CRL)	checking.	At	least	one	of
SSLCARevocationFile	or	SSLCARevocationPath	must	be
configured.	When	set	to	chain	(recommended	setting),	CRL
checks	are	applied	to	all	certificates	in	the	chain,	while	setting	it	to
leaf	limits	the	checks	to	the	end-entity	cert.

The	available	flags	are:

no_crl_for_cert_ok

Prior	to	version	2.3.15,	CRL	checking	in	mod_ssl	also
succeeded	when	no	CRL(s)	for	the	checked	certificate(s)
were	found	in	any	of	the	locations	configured	with
SSLCARevocationFile	or	SSLCARevocationPath.

With	the	introduction	of	SSLCARevocationFile,	the
behavior	has	been	changed:	by	default	with	chain	or	leaf,
CRLs	must	be	present	for	the	validation	to	succeed	-
otherwise	it	will	fail	with	an	"unable	to	get
certificate	CRL"	error.

The	flag	no_crl_for_cert_ok	allows	to	restore	previous
behaviour.

Example
SSLCARevocationCheck	chain

Compatibility	with	versions	2.2
SSLCARevocationCheck	chain	no_crl_for_cert_ok

SSLCARevocationFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	CRLs	for
Client	Auth

Syntax: SSLCARevocationFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	can	assemble	the
Certificate	Revocation	Lists	(CRL)	of	Certification	Authorities	(CA)
whose	clients	you	deal	with.	These	are	used	for	Client
Authentication.	Such	a	file	is	simply	the	concatenation	of	the
various	PEM-encoded	CRL	files,	in	order	of	preference.	This	can
be	used	alternatively	and/or	additionally	to
SSLCARevocationPath.

Example
SSLCARevocationFile	"/usr/local/apache2/conf/ssl.crl/ca-bundle-client.crl"

SSLCARevocationPath	Directive

Description: Directory	of	PEM-encoded	CA	CRLs	for	Client	Auth
Syntax: SSLCARevocationPath	directory-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	Certificate
Revocation	Lists	(CRL)	of	Certification	Authorities	(CAs)	whose
clients	you	deal	with.	These	are	used	to	revoke	the	client
certificate	on	Client	Authentication.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	have	not	only	to
place	the	CRL	files	there.	Additionally	you	have	to	create	symbolic
links	named	hash-value.rN.	And	you	should	always	make	sure
this	directory	contains	the	appropriate	symbolic	links.

Example
SSLCARevocationPath	"/usr/local/apache2/conf/ssl.crl/"

SSLCertificateChainFile	Directive

Description: File	of	PEM-encoded	Server	CA	Certificates
Syntax: SSLCertificateChainFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

SSLCertificateChainFile	is	deprecated

SSLCertificateChainFile	became	obsolete	with	version
2.4.8,	when	SSLCertificateFile	was	extended	to	also	load
intermediate	CA	certificates	from	the	server	certificate	file.

This	directive	sets	the	optional	all-in-one	file	where	you	can
assemble	the	certificates	of	Certification	Authorities	(CA)	which
form	the	certificate	chain	of	the	server	certificate.	This	starts	with
the	issuing	CA	certificate	of	the	server	certificate	and	can	range	up
to	the	root	CA	certificate.	Such	a	file	is	simply	the	concatenation	of
the	various	PEM-encoded	CA	Certificate	files,	usually	in	certificate
chain	order.

This	should	be	used	alternatively	and/or	additionally	to
SSLCACertificatePath	for	explicitly	constructing	the	server
certificate	chain	which	is	sent	to	the	browser	in	addition	to	the
server	certificate.	It	is	especially	useful	to	avoid	conflicts	with	CA
certificates	when	using	client	authentication.	Because	although
placing	a	CA	certificate	of	the	server	certificate	chain	into
SSLCACertificatePath	has	the	same	effect	for	the	certificate
chain	construction,	it	has	the	side-effect	that	client	certificates
issued	by	this	same	CA	certificate	are	also	accepted	on	client
authentication.

But	be	careful:	Providing	the	certificate	chain	works	only	if	you	are
using	a	single	RSA	or	DSA	based	server	certificate.	If	you	are

using	a	coupled	RSA+DSA	certificate	pair,	this	will	work	only	if
actually	both	certificates	use	the	same	certificate	chain.	Else	the
browsers	will	be	confused	in	this	situation.

Example
SSLCertificateChainFile	"/usr/local/apache2/conf/ssl.crt/ca.crt"

SSLCertificateFile	Directive

Description: Server	PEM-encoded	X.509	certificate	data	file
Syntax: SSLCertificateFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	points	to	a	file	with	certificate	data	in	PEM	format.	At
a	minimum,	the	file	must	include	an	end-entity	(leaf)	certificate.
The	directive	can	be	used	multiple	times	(referencing	different
filenames)	to	support	multiple	algorithms	for	server	authentication
-	typically	RSA,	DSA,	and	ECC.	The	number	of	supported
algorithms	depends	on	the	OpenSSL	version	being	used	for
mod_ssl:	with	version	1.0.0	or	later,	openssl	list-public-
key-algorithms	will	output	a	list	of	supported	algorithms,	see
also	the	note	below	about	limitations	of	OpenSSL	versions	prior	to
1.0.2	and	the	ways	to	work	around	them.

The	files	may	also	include	intermediate	CA	certificates,	sorted
from	leaf	to	root.	This	is	supported	with	version	2.4.8	and	later,
and	obsoletes	SSLCertificateChainFile.	When	running	with
OpenSSL	1.0.2	or	later,	this	allows	to	configure	the	intermediate
CA	chain	on	a	per-certificate	basis.

Custom	DH	parameters	and	an	EC	curve	name	for	ephemeral
keys,	can	also	be	added	to	end	of	the	first	file	configured	using
SSLCertificateFile.	This	is	supported	in	version	2.4.7	or
later.	Such	parameters	can	be	generated	using	the	commands
openssl	dhparam	and	openssl	ecparam.	The	parameters
can	be	added	as-is	to	the	end	of	the	first	certificate	file.	Only	the
first	file	can	be	used	for	custom	parameters,	as	they	are	applied
independently	of	the	authentication	algorithm	type.

Finally	the	end-entity	certificate's	private	key	can	also	be	added	to

the	certificate	file	instead	of	using	a	separate
SSLCertificateKeyFile	directive.	This	practice	is	highly
discouraged.	If	it	is	used,	the	certificate	files	using	such	an
embedded	key	must	be	configured	after	the	certificates	using	a
separate	key	file.	If	the	private	key	is	encrypted,	the	pass	phrase
dialog	is	forced	at	startup	time.

DH	parameter	interoperability	with	primes	>	1024	bit

Beginning	with	version	2.4.7,	mod_ssl	makes	use	of
standardized	DH	parameters	with	prime	lengths	of	2048,	3072
and	4096	bits	and	with	additional	prime	lengths	of	6144	and
8192	bits	beginning	with	version	2.4.10	(from	RFC	3526),	and
hands	them	out	to	clients	based	on	the	length	of	the	certificate's
RSA/DSA	key.	With	Java-based	clients	in	particular	(Java	7	or
earlier),	this	may	lead	to	handshake	failures	-	see	this	FAQ
answer	for	working	around	such	issues.

Default	DH	parameters	when	using	multiple	certificates	and
OpenSSL	versions	prior	to	1.0.2

When	using	multiple	certificates	to	support	different
authentication	algorithms	(like	RSA,	DSA,	but	mainly	ECC)	and
OpenSSL	prior	to	1.0.2,	it	is	recommended	to	either	use	custom
DH	parameters	(preferably)	by	adding	them	to	the	first	certificate
file	(as	described	above),	or	to	order	the
SSLCertificateFile	directives	such	that	RSA/DSA
certificates	are	placed	after	the	ECC	one.

This	is	due	to	a	limitation	in	older	versions	of	OpenSSL	which
don't	let	the	Apache	HTTP	Server	determine	the	currently
selected	certificate	at	handshake	time	(when	the	DH	parameters
must	be	sent	to	the	peer)	but	instead	always	provide	the	last
configured	certificate.	Consequently,	the	server	may	select
default	DH	parameters	based	on	the	length	of	the	wrong

http://www.ietf.org/rfc/rfc3526.txt

certificate's	key	(ECC	keys	are	much	smaller	than	RSA/DSA
ones	and	their	length	is	not	relevant	for	selecting	DH	primes).

Since	custom	DH	parameters	always	take	precedence	over	the
default	ones,	this	issue	can	be	avoided	by	creating	and
configuring	them	(as	described	above),	thus	using	a
custom/suitable	length.

Example
SSLCertificateFile	"/usr/local/apache2/conf/ssl.crt/server.crt"

SSLCertificateKeyFile	Directive

Description: Server	PEM-encoded	private	key	file
Syntax: SSLCertificateKeyFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	points	to	the	PEM-encoded	private	key	file	for	the
server.	If	the	contained	private	key	is	encrypted,	the	pass	phrase
dialog	is	forced	at	startup	time.

The	directive	can	be	used	multiple	times	(referencing	different
filenames)	to	support	multiple	algorithms	for	server	authentication.
For	each	SSLCertificateKeyFile	directive,	there	must	be	a
matching	SSLCertificateFile	directive.

The	private	key	may	also	be	combined	with	the	certificate	in	the
file	given	by	SSLCertificateFile,	but	this	practice	is	highly
discouraged.	If	it	is	used,	the	certificate	files	using	such	an
embedded	key	must	be	configured	after	the	certificates	using	a
separate	key	file.

Example
SSLCertificateKeyFile	"/usr/local/apache2/conf/ssl.key/server.key"

SSLCipherSuite	Directive

Description: Cipher	Suite	available	for	negotiation	in	SSL
handshake

Syntax: SSLCipherSuite	cipher-spec

Default: SSLCipherSuite	DEFAULT	(depends	on

OpenSSL	version)

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	complex	directive	uses	a	colon-separated	cipher-spec	string
consisting	of	OpenSSL	cipher	specifications	to	configure	the
Cipher	Suite	the	client	is	permitted	to	negotiate	in	the	SSL
handshake	phase.	Notice	that	this	directive	can	be	used	both	in
per-server	and	per-directory	context.	In	per-server	context	it
applies	to	the	standard	SSL	handshake	when	a	connection	is
established.	In	per-directory	context	it	forces	a	SSL	renegotiation
with	the	reconfigured	Cipher	Suite	after	the	HTTP	request	was
read	but	before	the	HTTP	response	is	sent.

An	SSL	cipher	specification	in	cipher-spec	is	composed	of	4	major
attributes	plus	a	few	extra	minor	ones:

Key	Exchange	Algorithm:
RSA,	Diffie-Hellman,	Elliptic	Curve	Diffie-Hellman,	Secure
Remote	Password
Authentication	Algorithm:
RSA,	Diffie-Hellman,	DSS,	ECDSA,	or	none.
Cipher/Encryption	Algorithm:
AES,	DES,	Triple-DES,	RC4,	RC2,	IDEA,	etc.
MAC	Digest	Algorithm:
MD5,	SHA	or	SHA1,	SHA256,	SHA384.

An	SSL	cipher	can	also	be	an	export	cipher.	SSLv2	ciphers	are	no
longer	supported.	To	specify	which	ciphers	to	use,	one	can	either
specify	all	the	Ciphers,	one	at	a	time,	or	use	aliases	to	specify	the
preference	and	order	for	the	ciphers	(see	Table	1).	The	actually
available	ciphers	and	aliases	depends	on	the	used	openssl
version.	Newer	openssl	versions	may	include	additional	ciphers.

Tag Description
Key	Exchange	Algorithm:
kRSA RSA	key	exchange
kDHr Diffie-Hellman	key	exchange	with	RSA	key
kDHd Diffie-Hellman	key	exchange	with	DSA	key
kEDH Ephemeral	(temp.key)	Diffie-Hellman	key	exchange

(no	cert)
kSRP Secure	Remote	Password	(SRP)	key	exchange
Authentication	Algorithm:
aNULL No	authentication
aRSA RSA	authentication
aDSS DSS	authentication
aDH Diffie-Hellman	authentication
Cipher	Encoding	Algorithm:
eNULL No	encryption
NULL alias	for	eNULL
AES AES	encryption
DES DES	encryption
3DES Triple-DES	encryption
RC4 RC4	encryption
RC2 RC2	encryption
IDEA IDEA	encryption
MAC	Digest	Algorithm:

MD5 MD5	hash	function
SHA1 SHA1	hash	function
SHA alias	for	SHA1
SHA256 SHA256	hash	function
SHA384 SHA384	hash	function
Aliases:
SSLv3 all	SSL	version	3.0	ciphers
TLSv1 all	TLS	version	1.0	ciphers
EXP all	export	ciphers
EXPORT40 all	40-bit	export	ciphers	only
EXPORT56 all	56-bit	export	ciphers	only
LOW all	low	strength	ciphers	(no	export,	single	DES)
MEDIUM all	ciphers	with	128	bit	encryption
HIGH all	ciphers	using	Triple-DES
RSA all	ciphers	using	RSA	key	exchange
DH all	ciphers	using	Diffie-Hellman	key	exchange
EDH all	ciphers	using	Ephemeral	Diffie-Hellman	key

exchange
ECDH Elliptic	Curve	Diffie-Hellman	key	exchange
ADH all	ciphers	using	Anonymous	Diffie-Hellman	key

exchange
AECDH all	ciphers	using	Anonymous	Elliptic	Curve	Diffie-

Hellman	key	exchange
SRP all	ciphers	using	Secure	Remote	Password	(SRP)

key	exchange
DSS all	ciphers	using	DSS	authentication
ECDSA all	ciphers	using	ECDSA	authentication
aNULL all	ciphers	using	no	authentication

Now	where	this	becomes	interesting	is	that	these	can	be	put

together	to	specify	the	order	and	ciphers	you	wish	to	use.	To
speed	this	up	there	are	also	aliases	(SSLv3,	TLSv1,	EXP,
LOW,	MEDIUM,	HIGH)	for	certain	groups	of	ciphers.	These	tags
can	be	joined	together	with	prefixes	to	form	the	cipher-spec.
Available	prefixes	are:

none:	add	cipher	to	list
+:	move	matching	ciphers	to	the	current	location	in	list
-:	remove	cipher	from	list	(can	be	added	later	again)
!:	kill	cipher	from	list	completely	(can	not	be	added	later
again)

aNULL,	eNULL	and	EXP	ciphers	are	always	disabled

Beginning	with	version	2.4.7,	null	and	export-grade	ciphers	are
always	disabled,	as	mod_ssl	unconditionally	adds
!aNULL:!eNULL:!EXP	to	any	cipher	string	at	initialization.

A	simpler	way	to	look	at	all	of	this	is	to	use	the	``openssl
ciphers	-v''	command	which	provides	a	nice	way	to
successively	create	the	correct	cipher-spec	string.	The	default
cipher-spec	string	depends	on	the	version	of	the	OpenSSL
libraries	used.	Let's	suppose	it	is	``RC4-SHA:AES128-
SHA:HIGH:MEDIUM:!aNULL:!MD5''	which	means	the	following:
Put	RC4-SHA	and	AES128-SHA	at	the	beginning.	We	do	this,
because	these	ciphers	offer	a	good	compromise	between	speed
and	security.	Next,	include	high	and	medium	security	ciphers.
Finally,	remove	all	ciphers	which	do	not	authenticate,	i.e.	for	SSL
the	Anonymous	Diffie-Hellman	ciphers,	as	well	as	all	ciphers
which	use	MD5	as	hash	algorithm,	because	it	has	been	proven
insufficient.

$	openssl	ciphers	-v	'RC4-SHA:AES128-SHA:HIGH:MEDIUM:!aNULL:!MD5'

RC4-SHA																	SSLv3	Kx=RSA						Au=RSA		Enc=RC4(128)		Mac=SHA1

AES128-SHA														SSLv3	Kx=RSA						Au=RSA		Enc=AES(128)		Mac=SHA1

DHE-RSA-AES256-SHA						SSLv3	Kx=DH							Au=RSA		Enc=AES(256)		Mac=SHA1

...																				

SEED-SHA																SSLv3	Kx=RSA						Au=RSA		Enc=SEED(128)	Mac=SHA1

PSK-RC4-SHA													SSLv3	Kx=PSK						Au=PSK		Enc=RC4(128)		Mac=SHA1

KRB5-RC4-SHA												SSLv3	Kx=KRB5					Au=KRB5	Enc=RC4(128)		Mac=SHA1

The	complete	list	of	particular	RSA	&	DH	ciphers	for	SSL	is	given
in	Table	2.

Example
SSLCipherSuite	RSA:!EXP:!NULL:+HIGH:+MEDIUM:-LOW

Cipher-
Tag

Protocol Key	Ex. Auth. Enc. MAC Type

RSA	Ciphers:
DES-

CBC3-SHA

SSLv3 RSA RSA 3DES(168) SHA1

IDEA-

CBC-SHA

SSLv3 RSA RSA IDEA(128) SHA1

RC4-SHA SSLv3 RSA RSA RC4(128) SHA1
RC4-MD5 SSLv3 RSA RSA RC4(128) MD5
DES-CBC-

SHA

SSLv3 RSA RSA DES(56) SHA1

EXP-DES-

CBC-SHA

SSLv3 RSA(512) RSA DES(40) SHA1 export

EXP-RC2-

CBC-MD5

SSLv3 RSA(512) RSA RC2(40) MD5 export

EXP-RC4-

MD5

SSLv3 RSA(512) RSA RC4(40) MD5 export

NULL-SHA SSLv3 RSA RSA None SHA1
NULL-MD5 SSLv3 RSA RSA None MD5
Diffie-Hellman	Ciphers:
ADH-DES- SSLv3 DH None 3DES(168) SHA1

CBC3-SHA

ADH-DES-

CBC-SHA

SSLv3 DH None DES(56) SHA1

ADH-RC4-

MD5

SSLv3 DH None RC4(128) MD5

EDH-RSA-

DES-

CBC3-SHA

SSLv3 DH RSA 3DES(168) SHA1

EDH-DSS-

DES-

CBC3-SHA

SSLv3 DH DSS 3DES(168) SHA1

EDH-RSA-

DES-CBC-

SHA

SSLv3 DH RSA DES(56) SHA1

EDH-DSS-

DES-CBC-

SHA

SSLv3 DH DSS DES(56) SHA1

EXP-EDH-

RSA-DES-

CBC-SHA

SSLv3 DH(512) RSA DES(40) SHA1 export

EXP-EDH-

DSS-DES-

CBC-SHA

SSLv3 DH(512) DSS DES(40) SHA1 export

EXP-ADH-

DES-CBC-

SHA

SSLv3 DH(512) None DES(40) SHA1 export

EXP-ADH-

RC4-MD5

SSLv3 DH(512) None RC4(40) MD5 export

SSLCompression	Directive

Description: Enable	compression	on	the	SSL	level
Syntax: SSLCompression	on|off

Default: SSLCompression	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.3	and	later,	if	using

OpenSSL	0.9.8	or	later;	virtual	host	scope
available	if	using	OpenSSL	1.0.0	or	later.	The
default	used	to	be	on	in	version	2.4.3.

This	directive	allows	to	enable	compression	on	the	SSL	level.

Enabling	compression	causes	security	issues	in	most	setups
(the	so	called	CRIME	attack).

SSLCryptoDevice	Directive

Description: Enable	use	of	a	cryptographic	hardware
accelerator

Syntax: SSLCryptoDevice	engine

Default: SSLCryptoDevice	builtin

Context: server	config
Status: Extension
Module: mod_ssl

This	directive	enables	use	of	a	cryptographic	hardware	accelerator
board	to	offload	some	of	the	SSL	processing	overhead.	This
directive	can	only	be	used	if	the	SSL	toolkit	is	built	with	"engine"
support;	OpenSSL	0.9.7	and	later	releases	have	"engine"	support
by	default,	the	separate	"-engine"	releases	of	OpenSSL	0.9.6	must
be	used.

To	discover	which	engine	names	are	supported,	run	the	command
"openssl	engine".

Example
#	For	a	Broadcom	accelerator:

SSLCryptoDevice	ubsec

SSLEngine	Directive

Description: SSL	Engine	Operation	Switch
Syntax: SSLEngine	on|off|optional

Default: SSLEngine	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	toggles	the	usage	of	the	SSL/TLS	Protocol	Engine.
This	is	should	be	used	inside	a	<VirtualHost>	section	to
enable	SSL/TLS	for	a	that	virtual	host.	By	default	the	SSL/TLS
Protocol	Engine	is	disabled	for	both	the	main	server	and	all
configured	virtual	hosts.

Example
<VirtualHost	_default_:443>

SSLEngine	on

#...

</VirtualHost>

In	Apache	2.1	and	later,	SSLEngine	can	be	set	to	optional.
This	enables	support	for	RFC	2817,	Upgrading	to	TLS	Within
HTTP/1.1.	At	this	time	no	web	browsers	support	RFC	2817.

http://www.ietf.org/rfc/rfc2817.txt

SSLFIPS	Directive

Description: SSL	FIPS	mode	Switch
Syntax: SSLFIPS	on|off

Default: SSLFIPS	off

Context: server	config
Status: Extension
Module: mod_ssl

This	directive	toggles	the	usage	of	the	SSL	library	FIPS_mode
flag.	It	must	be	set	in	the	global	server	context	and	cannot	be
configured	with	conflicting	settings	(SSLFIPS	on	followed	by
SSLFIPS	off	or	similar).	The	mode	applies	to	all	SSL	library
operations.

If	httpd	was	compiled	against	an	SSL	library	which	did	not	support
the	FIPS_mode	flag,	SSLFIPS	on	will	fail.	Refer	to	the	FIPS	140-
2	Security	Policy	document	of	the	SSL	provider	library	for	specific
requirements	to	use	mod_ssl	in	a	FIPS	140-2	approved	mode	of
operation;	note	that	mod_ssl	itself	is	not	validated,	but	may	be
described	as	using	FIPS	140-2	validated	cryptographic	module,
when	all	components	are	assembled	and	operated	under	the
guidelines	imposed	by	the	applicable	Security	Policy.

SSLHonorCipherOrder	Directive

Description: Option	to	prefer	the	server's	cipher	preference
order

Syntax: SSLHonorCipherOrder	on|off

Default: SSLHonorCipherOrder	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

When	choosing	a	cipher	during	an	SSLv3	or	TLSv1	handshake,
normally	the	client's	preference	is	used.	If	this	directive	is	enabled,
the	server's	preference	will	be	used	instead.

Example
SSLHonorCipherOrder	on

SSLInsecureRenegotiation	Directive

Description: Option	to	enable	support	for	insecure
renegotiation

Syntax: SSLInsecureRenegotiation	on|off

Default: SSLInsecureRenegotiation	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.2.15	and	later,	if	using

OpenSSL	0.9.8m	or	later

As	originally	specified,	all	versions	of	the	SSL	and	TLS	protocols
(up	to	and	including	TLS/1.2)	were	vulnerable	to	a	Man-in-the-
Middle	attack	(CVE-2009-3555)	during	a	renegotiation.	This
vulnerability	allowed	an	attacker	to	"prefix"	a	chosen	plaintext	to
the	HTTP	request	as	seen	by	the	web	server.	A	protocol	extension
was	developed	which	fixed	this	vulnerability	if	supported	by	both
client	and	server.

If	mod_ssl	is	linked	against	OpenSSL	version	0.9.8m	or	later,	by
default	renegotiation	is	only	supported	with	clients	supporting	the
new	protocol	extension.	If	this	directive	is	enabled,	renegotiation
will	be	allowed	with	old	(unpatched)	clients,	albeit	insecurely.

Security	warning

If	this	directive	is	enabled,	SSL	connections	will	be	vulnerable	to
the	Man-in-the-Middle	prefix	attack	as	described	in	CVE-2009-
3555.

Example
SSLInsecureRenegotiation	on

http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555
http://cve.mitre.org/cgi-bin/cvename.cgi?name=CAN-2009-3555

The	SSL_SECURE_RENEG	environment	variable	can	be	used	from
an	SSI	or	CGI	script	to	determine	whether	secure	renegotiation	is
supported	for	a	given	SSL	connection.

SSLOCSPDefaultResponder	Directive

Description: Set	the	default	responder	URI	for	OCSP	validation
Syntax: SSLOCSDefaultResponder	uri

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	sets	the	default	OCSP	responder	to	use.	If
SSLOCSPOverrideResponder	is	not	enabled,	the	URI	given	will
be	used	only	if	no	responder	URI	is	specified	in	the	certificate
being	verified.

SSLOCSPEnable	Directive

Description: Enable	OCSP	validation	of	the	client	certificate
chain

Syntax: SSLOCSPEnable	on|off

Default: SSLOCSPEnable	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	enables	OCSP	validation	of	the	client	certificate	chain.
If	this	option	is	enabled,	certificates	in	the	client's	certificate	chain
will	be	validated	against	an	OCSP	responder	after	normal
verification	(including	CRL	checks)	have	taken	place.

The	OCSP	responder	used	is	either	extracted	from	the	certificate
itself,	or	derived	by	configuration;	see	the
SSLOCSPDefaultResponder	and
SSLOCSPOverrideResponder	directives.

Example
SSLVerifyClient	on

SSLOCSPEnable	on

SSLOCSPDefaultResponder	"http://responder.example.com:8888/responder"

SSLOCSPOverrideResponder	on

SSLOCSPNoverify	Directive

Description: skip	the	OCSP	responder	certificates	verification
Syntax: SSLOCSPNoverify	On/Off

Default: SSLOCSPNoverify	Off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.26	and	later,	if	using

OpenSSL	0.9.7	or	later

Skip	the	OCSP	responder	certificates	verification,	mostly	useful
when	testing	an	OCSP	server.

SSLOCSPOverrideResponder	Directive

Description: Force	use	of	the	default	responder	URI	for	OCSP
validation

Syntax: SSLOCSPOverrideResponder	on|off

Default: SSLOCSPOverrideResponder	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	forces	the	configured	default	OCSP	responder	to	be
used	during	OCSP	certificate	validation,	regardless	of	whether	the
certificate	being	validated	references	an	OCSP	responder.

SSLOCSPProxyURL	Directive

Description: Proxy	URL	to	use	for	OCSP	requests
Syntax: SSLOCSPProxyURL	url

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.19	and	later

This	option	allows	to	set	the	URL	of	a	HTTP	proxy	that	should	be
used	for	all	queries	to	OCSP	responders.

SSLOCSPResponderCertificateFile	Directive

Description: Set	of	trusted	PEM	encoded	OCSP	responder
certificates

Syntax: SSLOCSPResponderCertificateFile	file

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.26	and	later,	if	using

OpenSSL	0.9.7	or	later

This	supplies	a	list	of	trusted	OCSP	responder	certificates	to	be
used	during	OCSP	responder	certificate	validation.	The	supplied
certificates	are	implicitly	trusted	without	any	further	validation.	This
is	typically	used	where	the	OCSP	responder	certificate	is	self
signed	or	omitted	from	the	OCSP	response.

SSLOCSPResponderTimeout	Directive

Description: Timeout	for	OCSP	queries
Syntax: SSLOCSPResponderTimeout	seconds

Default: SSLOCSPResponderTimeout	10

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	sets	the	timeout	for	queries	to	OCSP	responders,
when	SSLOCSPEnable	is	turned	on.

SSLOCSPResponseMaxAge	Directive

Description: Maximum	allowable	age	for	OCSP	responses
Syntax: SSLOCSPResponseMaxAge	seconds

Default: SSLOCSPResponseMaxAge	-1

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	sets	the	maximum	allowable	age	("freshness")	for
OCSP	responses.	The	default	value	(-1)	does	not	enforce	a
maximum	age,	which	means	that	OCSP	responses	are	considered
valid	as	long	as	their	nextUpdate	field	is	in	the	future.

SSLOCSPResponseTimeSkew	Directive

Description: Maximum	allowable	time	skew	for	OCSP	response
validation

Syntax: SSLOCSPResponseTimeSkew	seconds

Default: SSLOCSPResponseTimeSkew	300

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	option	sets	the	maximum	allowable	time	skew	for	OCSP
responses	(when	checking	their	thisUpdate	and	nextUpdate
fields).

SSLOCSPUseRequestNonce	Directive

Description: Use	a	nonce	within	OCSP	queries
Syntax: SSLOCSPUseRequestNonce	on|off

Default: SSLOCSPUseRequestNonce	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.10	and	later

This	option	determines	whether	queries	to	OCSP	responders
should	contain	a	nonce	or	not.	By	default,	a	query	nonce	is	always
used	and	checked	against	the	response's	one.	When	the
responder	does	not	use	nonces	(e.g.	Microsoft	OCSP	Responder),
this	option	should	be	turned	off.

SSLOpenSSLConfCmd	Directive

Description: Configure	OpenSSL	parameters	through	its
SSL_CONF	API

Syntax: SSLOpenSSLConfCmd	command-name

command-value

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.8	and	later,	if	using

OpenSSL	1.0.2	or	later

This	directive	exposes	OpenSSL's	SSL_CONF	API	to	mod_ssl,
allowing	a	flexible	configuration	of	OpenSSL	parameters	without
the	need	of	implementing	additional	mod_ssl	directives	when
new	features	are	added	to	OpenSSL.

The	set	of	available	SSLOpenSSLConfCmd	commands	depends
on	the	OpenSSL	version	being	used	for	mod_ssl	(at	least	version
1.0.2	is	required).	For	a	list	of	supported	command	names,	see	the
section	Supported	configuration	file	commands	in	the
SSL_CONF_cmd(3)	manual	page	for	OpenSSL.

Some	of	the	SSLOpenSSLConfCmd	commands	can	be	used	as	an
alternative	to	existing	directives	(such	as	SSLCipherSuite	or
SSLProtocol),	though	it	should	be	noted	that	the	syntax	/
allowable	values	for	the	parameters	may	sometimes	differ.

Examples
SSLOpenSSLConfCmd	Options	-SessionTicket,ServerPreference

SSLOpenSSLConfCmd	ECDHParameters	brainpoolP256r1

SSLOpenSSLConfCmd	ServerInfoFile	"/usr/local/apache2/conf/server-info.pem"

SSLOpenSSLConfCmd	Protocol	"-ALL,	TLSv1.2"

SSLOpenSSLConfCmd	SignatureAlgorithms	RSA+SHA384:ECDSA+SHA256

http://www.openssl.org/docs/man1.0.2/ssl/SSL_CONF_cmd.html#SUPPORTED-CONFIGURATION-FILE-COMMANDS

SSLOptions	Directive

Description: Configure	various	SSL	engine	run-time	options
Syntax: SSLOptions	[+|-]option	...

Context: server	config,	virtual	host,	directory,	.htaccess
Override: Options
Status: Extension
Module: mod_ssl

This	directive	can	be	used	to	control	various	run-time	options	on	a
per-directory	basis.	Normally,	if	multiple	SSLOptions	could	apply
to	a	directory,	then	the	most	specific	one	is	taken	completely;	the
options	are	not	merged.	However	if	all	the	options	on	the
SSLOptions	directive	are	preceded	by	a	plus	(+)	or	minus	(-)
symbol,	the	options	are	merged.	Any	options	preceded	by	a	+	are
added	to	the	options	currently	in	force,	and	any	options	preceded
by	a	-	are	removed	from	the	options	currently	in	force.

The	available	options	are:

StdEnvVars

When	this	option	is	enabled,	the	standard	set	of	SSL	related
CGI/SSI	environment	variables	are	created.	This	per	default	is
disabled	for	performance	reasons,	because	the	information
extraction	step	is	a	rather	expensive	operation.	So	one
usually	enables	this	option	for	CGI	and	SSI	requests	only.

ExportCertData

When	this	option	is	enabled,	additional	CGI/SSI	environment
variables	are	created:	SSL_SERVER_CERT,
SSL_CLIENT_CERT	and	SSL_CLIENT_CERT_CHAIN_n	(with
n	=	0,1,2,..).	These	contain	the	PEM-encoded	X.509
Certificates	of	server	and	client	for	the	current	HTTPS
connection	and	can	be	used	by	CGI	scripts	for	deeper
Certificate	checking.	Additionally	all	other	certificates	of	the

client	certificate	chain	are	provided,	too.	This	bloats	up	the
environment	a	little	bit	which	is	why	you	have	to	use	this
option	to	enable	it	on	demand.

FakeBasicAuth

When	this	option	is	enabled,	the	Subject	Distinguished	Name
(DN)	of	the	Client	X509	Certificate	is	translated	into	a	HTTP
Basic	Authorization	username.	This	means	that	the	standard
Apache	authentication	methods	can	be	used	for	access
control.	The	user	name	is	just	the	Subject	of	the	Client's	X509
Certificate	(can	be	determined	by	running	OpenSSL's
openssl	x509	command:	openssl	x509	-noout	-
subject	-in	certificate.crt).	Note	that	no	password	is
obtained	from	the	user.	Every	entry	in	the	user	file	needs	this
password:	``xxj31ZMTZzkVA'',	which	is	the	DES-encrypted
version	of	the	word	`password''.	Those	who	live	under	MD5-
based	encryption	(for	instance	under	FreeBSD	or	BSD/OS,
etc.)	should	use	the	following	MD5	hash	of	the	same	word:
``1OXLyS...$Owx8s2/m9/gfkcRVXzgoE/''.

Note	that	the	AuthBasicFake	directive	within
mod_auth_basic	can	be	used	as	a	more	general
mechanism	for	faking	basic	authentication,	giving	control	over
the	structure	of	both	the	username	and	password.

StrictRequire

This	forces	forbidden	access	when	SSLRequireSSL	or
SSLRequire	successfully	decided	that	access	should	be
forbidden.	Usually	the	default	is	that	in	the	case	where	a
``Satisfy	any''	directive	is	used,	and	other	access
restrictions	are	passed,	denial	of	access	due	to
SSLRequireSSL	or	SSLRequire	is	overridden	(because
that's	how	the	Apache	Satisfy	mechanism	should	work.)
But	for	strict	access	restriction	you	can	use	SSLRequireSSL

and/or	SSLRequire	in	combination	with	an	``SSLOptions
+StrictRequire''.	Then	an	additional	``Satisfy	Any''	has
no	chance	once	mod_ssl	has	decided	to	deny	access.

OptRenegotiate

This	enables	optimized	SSL	connection	renegotiation
handling	when	SSL	directives	are	used	in	per-directory
context.	By	default	a	strict	scheme	is	enabled	where	every
per-directory	reconfiguration	of	SSL	parameters	causes	a	full
SSL	renegotiation	handshake.	When	this	option	is	used
mod_ssl	tries	to	avoid	unnecessary	handshakes	by	doing
more	granular	(but	still	safe)	parameter	checks.	Nevertheless
these	granular	checks	sometimes	may	not	be	what	the	user
expects,	so	enable	this	on	a	per-directory	basis	only,	please.

LegacyDNStringFormat

This	option	influences	how	values	of	the
SSL_{CLIENT,SERVER}_{I,S}_DN	variables	are
formatted.	Since	version	2.3.11,	Apache	HTTPD	uses	a	RFC
2253	compatible	format	by	default.	This	uses	commas	as
delimiters	between	the	attributes,	allows	the	use	of	non-ASCII
characters	(which	are	converted	to	UTF8),	escapes	various
special	characters	with	backslashes,	and	sorts	the	attributes
with	the	"C"	attribute	last.

If	LegacyDNStringFormat	is	set,	the	old	format	will	be
used	which	sorts	the	"C"	attribute	first,	uses	slashes	as
separators,	and	does	not	handle	non-ASCII	and	special
characters	in	any	consistent	way.

Example
SSLOptions	+FakeBasicAuth	-StrictRequire

<Files	~	"\.(cgi|shtml)$">

				SSLOptions	+StdEnvVars	-ExportCertData

</Files>

SSLPassPhraseDialog	Directive

Description: Type	of	pass	phrase	dialog	for	encrypted	private
keys

Syntax: SSLPassPhraseDialog	type

Default: SSLPassPhraseDialog	builtin

Context: server	config
Status: Extension
Module: mod_ssl

When	Apache	starts	up	it	has	to	read	the	various	Certificate	(see
SSLCertificateFile)	and	Private	Key	(see
SSLCertificateKeyFile)	files	of	the	SSL-enabled	virtual
servers.	Because	for	security	reasons	the	Private	Key	files	are
usually	encrypted,	mod_ssl	needs	to	query	the	administrator	for	a
Pass	Phrase	in	order	to	decrypt	those	files.	This	query	can	be
done	in	two	ways	which	can	be	configured	by	type:

builtin

This	is	the	default	where	an	interactive	terminal	dialog	occurs
at	startup	time	just	before	Apache	detaches	from	the	terminal.
Here	the	administrator	has	to	manually	enter	the	Pass	Phrase
for	each	encrypted	Private	Key	file.	Because	a	lot	of	SSL-
enabled	virtual	hosts	can	be	configured,	the	following	reuse-
scheme	is	used	to	minimize	the	dialog:	When	a	Private	Key
file	is	encrypted,	all	known	Pass	Phrases	(at	the	beginning
there	are	none,	of	course)	are	tried.	If	one	of	those	known
Pass	Phrases	succeeds	no	dialog	pops	up	for	this	particular
Private	Key	file.	If	none	succeeded,	another	Pass	Phrase	is
queried	on	the	terminal	and	remembered	for	the	next	round
(where	it	perhaps	can	be	reused).

This	scheme	allows	mod_ssl	to	be	maximally	flexible
(because	for	N	encrypted	Private	Key	files	you	can	use	N
different	Pass	Phrases	-	but	then	you	have	to	enter	all	of

them,	of	course)	while	minimizing	the	terminal	dialog	(i.e.
when	you	use	a	single	Pass	Phrase	for	all	N	Private	Key	files
this	Pass	Phrase	is	queried	only	once).

|/path/to/program	[args...]

This	mode	allows	an	external	program	to	be	used	which	acts
as	a	pipe	to	a	particular	input	device;	the	program	is	sent	the
standard	prompt	text	used	for	the	builtin	mode	on	stdin,
and	is	expected	to	write	password	strings	on	stdout.	If
several	passwords	are	needed	(or	an	incorrect	password	is
entered),	additional	prompt	text	will	be	written	subsequent	to
the	first	password	being	returned,	and	more	passwords	must
then	be	written	back.

exec:/path/to/program

Here	an	external	program	is	configured	which	is	called	at
startup	for	each	encrypted	Private	Key	file.	It	is	called	with	two
arguments	(the	first	is	of	the	form
``servername:portnumber'',	the	second	is	either	``RSA'',
``DSA'',	``ECC''	or	an	integer	index	starting	at	3	if	more	than
three	keys	are	configured),	which	indicate	for	which	server
and	algorithm	it	has	to	print	the	corresponding	Pass	Phrase	to
stdout.	In	versions	2.4.8	(unreleased)	and	2.4.9,	it	is	called
with	one	argument,	a	string	of	the	form
``servername:portnumber:index''	(with	index	being	a
zero-based	integer	number),	which	indicate	the	server,	TCP
port	and	certificate	number.	The	intent	is	that	this	external
program	first	runs	security	checks	to	make	sure	that	the
system	is	not	compromised	by	an	attacker,	and	only	when
these	checks	were	passed	successfully	it	provides	the	Pass
Phrase.

Both	these	security	checks,	and	the	way	the	Pass	Phrase	is
determined,	can	be	as	complex	as	you	like.	Mod_ssl	just

defines	the	interface:	an	executable	program	which	provides
the	Pass	Phrase	on	stdout.	Nothing	more	or	less!	So,	if
you're	really	paranoid	about	security,	here	is	your	interface.
Anything	else	has	to	be	left	as	an	exercise	to	the
administrator,	because	local	security	requirements	are	so
different.

The	reuse-algorithm	above	is	used	here,	too.	In	other	words:
The	external	program	is	called	only	once	per	unique	Pass
Phrase.

Example
SSLPassPhraseDialog	"exec:/usr/local/apache/sbin/pp-filter"

SSLProtocol	Directive

Description: Configure	usable	SSL/TLS	protocol	versions
Syntax: SSLProtocol	[+|-]protocol	...

Default: SSLProtocol	all	-SSLv3	(up	to	2.4.16:

all)

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	can	be	used	to	control	which	versions	of	the
SSL/TLS	protocol	will	be	accepted	in	new	connections.

The	available	(case-insensitive)	protocols	are:

SSLv3

This	is	the	Secure	Sockets	Layer	(SSL)	protocol,	version	3.0,
from	the	Netscape	Corporation.	It	is	the	successor	to	SSLv2
and	the	predecessor	to	TLSv1,	but	is	deprecated	in	RFC
7568.

TLSv1

This	is	the	Transport	Layer	Security	(TLS)	protocol,	version
1.0.	It	is	the	successor	to	SSLv3	and	is	defined	in	RFC	2246.
It	is	supported	by	nearly	every	client.

TLSv1.1	(when	using	OpenSSL	1.0.1	and	later)
A	revision	of	the	TLS	1.0	protocol,	as	defined	in	RFC	4346.

TLSv1.2	(when	using	OpenSSL	1.0.1	and	later)
A	revision	of	the	TLS	1.1	protocol,	as	defined	in	RFC	5246.

all

This	is	a	shortcut	for	``+SSLv3	+TLSv1''	or	-	when	using
OpenSSL	1.0.1	and	later	-	``+SSLv3	+TLSv1	+TLSv1.1

http://www.ietf.org/rfc/rfc7568.txt
http://www.ietf.org/rfc/rfc2246.txt
http://www.ietf.org/rfc/rfc4346.txt
http://www.ietf.org/rfc/rfc5246.txt

+TLSv1.2'',	respectively	(except	for	OpenSSL	versions
compiled	with	the	``no-ssl3''	configuration	option,	where	all
does	not	include	+SSLv3).

Example
SSLProtocol	TLSv1

SSLProxyCACertificateFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	Certificates
for	Remote	Server	Auth

Syntax: SSLProxyCACertificateFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	can	assemble	the
Certificates	of	Certification	Authorities	(CA)	whose	remote	servers
you	deal	with.	These	are	used	for	Remote	Server	Authentication.
Such	a	file	is	simply	the	concatenation	of	the	various	PEM-
encoded	Certificate	files,	in	order	of	preference.	This	can	be	used
alternatively	and/or	additionally	to
SSLProxyCACertificatePath.

Example
SSLProxyCACertificateFile	"/usr/local/apache2/conf/ssl.crt/ca-bundle-remote-server.crt"

SSLProxyCACertificatePath	Directive

Description: Directory	of	PEM-encoded	CA	Certificates	for
Remote	Server	Auth

Syntax: SSLProxyCACertificatePath	directory-

path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	Certificates	of
Certification	Authorities	(CAs)	whose	remote	servers	you	deal
with.	These	are	used	to	verify	the	remote	server	certificate	on
Remote	Server	Authentication.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	can't	just	place
the	Certificate	files	there:	you	also	have	to	create	symbolic	links
named	hash-value.N.	And	you	should	always	make	sure	this
directory	contains	the	appropriate	symbolic	links.

Example
SSLProxyCACertificatePath	"/usr/local/apache2/conf/ssl.crt/"

SSLProxyCARevocationCheck	Directive

Description: Enable	CRL-based	revocation	checking	for
Remote	Server	Auth

Syntax: SSLProxyCARevocationCheck

chain|leaf|none

Default: SSLProxyCARevocationCheck	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

Enables	certificate	revocation	list	(CRL)	checking	for	the	remote
servers	you	deal	with.	At	least	one	of
SSLProxyCARevocationFile	or
SSLProxyCARevocationPath	must	be	configured.	When	set	to
chain	(recommended	setting),	CRL	checks	are	applied	to	all
certificates	in	the	chain,	while	setting	it	to	leaf	limits	the	checks	to
the	end-entity	cert.

When	set	to	chain	or	leaf,	CRLs	must	be	available	for
successful	validation

Prior	to	version	2.3.15,	CRL	checking	in	mod_ssl	also
succeeded	when	no	CRL(s)	were	found	in	any	of	the	locations
configured	with	SSLProxyCARevocationFile	or
SSLProxyCARevocationPath.	With	the	introduction	of	this
directive,	the	behavior	has	been	changed:	when	checking	is
enabled,	CRLs	must	be	present	for	the	validation	to	succeed	-
otherwise	it	will	fail	with	an	"unable	to	get	certificate
CRL"	error.

Example
SSLProxyCARevocationCheck	chain

SSLProxyCARevocationFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	CRLs	for
Remote	Server	Auth

Syntax: SSLProxyCARevocationFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	can	assemble	the
Certificate	Revocation	Lists	(CRL)	of	Certification	Authorities	(CA)
whose	remote	servers	you	deal	with.	These	are	used	for	Remote
Server	Authentication.	Such	a	file	is	simply	the	concatenation	of
the	various	PEM-encoded	CRL	files,	in	order	of	preference.	This
can	be	used	alternatively	and/or	additionally	to
SSLProxyCARevocationPath.

Example
SSLProxyCARevocationFile	"/usr/local/apache2/conf/ssl.crl/ca-bundle-remote-server.crl"

SSLProxyCARevocationPath	Directive

Description: Directory	of	PEM-encoded	CA	CRLs	for	Remote
Server	Auth

Syntax: SSLProxyCARevocationPath	directory-

path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	Certificate
Revocation	Lists	(CRL)	of	Certification	Authorities	(CAs)	whose
remote	servers	you	deal	with.	These	are	used	to	revoke	the
remote	server	certificate	on	Remote	Server	Authentication.

The	files	in	this	directory	have	to	be	PEM-encoded	and	are
accessed	through	hash	filenames.	So	usually	you	have	not	only	to
place	the	CRL	files	there.	Additionally	you	have	to	create	symbolic
links	named	hash-value.rN.	And	you	should	always	make	sure
this	directory	contains	the	appropriate	symbolic	links.

Example
SSLProxyCARevocationPath	"/usr/local/apache2/conf/ssl.crl/"

SSLProxyCheckPeerCN	Directive

Description: Whether	to	check	the	remote	server	certificate's
CN	field

Syntax: SSLProxyCheckPeerCN	on|off

Default: SSLProxyCheckPeerCN	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	whether	the	remote	server	certificate's	CN	field
is	compared	against	the	hostname	of	the	request	URL.	If	both	are
not	equal	a	502	status	code	(Bad	Gateway)	is	sent.
SSLProxyCheckPeerCN	is	superseded	by
SSLProxyCheckPeerName	in	release	2.4.5	and	later.

In	all	releases	2.4.5	through	2.4.20,	setting
SSLProxyCheckPeerName	off	was	sufficient	to	enable	this
behavior	(as	the	SSLProxyCheckPeerCN	default	was	on.)	In
these	releases,	both	directives	must	be	set	to	off	to	completely
avoid	remote	server	certificate	name	validation.	Many	users
reported	this	to	be	very	confusing.

As	of	release	2.4.21,	all	configurations	which	enable	either	one	of
the	SSLProxyCheckPeerName	or	SSLProxyCheckPeerCN
options	will	use	the	new	SSLProxyCheckPeerName	behavior,
and	all	configurations	which	disable	either	one	of	the
SSLProxyCheckPeerName	or	SSLProxyCheckPeerCN	options
will	suppress	all	remote	server	certificate	name	validation.	Only
the	following	configuration	will	trigger	the	legacy	certificate	CN
comparison	in	2.4.21	and	later	releases;

Example
SSLProxyCheckPeerCN	on

SSLProxyCheckPeerName	off

SSLProxyCheckPeerExpire	Directive

Description: Whether	to	check	if	remote	server	certificate	is
expired

Syntax: SSLProxyCheckPeerExpire	on|off

Default: SSLProxyCheckPeerExpire	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	whether	it	is	checked	if	the	remote	server
certificate	is	expired	or	not.	If	the	check	fails	a	502	status	code
(Bad	Gateway)	is	sent.

Example
SSLProxyCheckPeerExpire	on

SSLProxyCheckPeerName	Directive

Description: Configure	host	name	checking	for	remote	server
certificates

Syntax: SSLProxyCheckPeerName	on|off

Default: SSLProxyCheckPeerName	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Apache	HTTP	Server	2.4.5	and	later

This	directive	configures	host	name	checking	for	server	certificates
when	mod_ssl	is	acting	as	an	SSL	client.	The	check	will	succeed	if
the	host	name	from	the	request	URI	matches	one	of	the	CN
attribute(s)	of	the	certificate's	subject,	or	matches	the
subjectAltName	extension.	If	the	check	fails,	the	SSL	request	is
aborted	and	a	502	status	code	(Bad	Gateway)	is	returned.

Wildcard	matching	is	supported	for	specific	cases:	an
subjectAltName	entry	of	type	dNSName,	or	CN	attributes	starting
with	*.	will	match	with	any	host	name	of	the	same	number	of
name	elements	and	the	same	suffix.	E.g.	*.example.org	will
match	foo.example.org,	but	will	not	match
foo.bar.example.org,	because	the	number	of	elements	in	the
respective	host	names	differs.

This	feature	was	introduced	in	2.4.5	and	superseded	the	behavior
of	the	SSLProxyCheckPeerCN	directive,	which	only	tested	the
exact	value	in	the	first	CN	attribute	against	the	host	name.
However,	many	users	were	confused	by	the	behavior	of	using
these	directives	individually,	so	the	mutual	behavior	of
SSLProxyCheckPeerName	and	SSLProxyCheckPeerCN
directives	were	improved	in	release	2.4.21.	See	the
SSLProxyCheckPeerCN	directive	description	for	the	original

behavior	and	details	of	these	improvements.

SSLProxyCipherSuite	Directive

Description: Cipher	Suite	available	for	negotiation	in	SSL	proxy
handshake

Syntax: SSLProxyCipherSuite	cipher-spec

Default: SSLProxyCipherSuite

ALL:!ADH:RC4+RSA:+HIGH:+MEDIUM:+LOW:+EXP

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

Equivalent	to	SSLCipherSuite,	but	for	the	proxy	connection.
Please	refer	to	SSLCipherSuite	for	additional	information.

SSLProxyEngine	Directive

Description: SSL	Proxy	Engine	Operation	Switch
Syntax: SSLProxyEngine	on|off

Default: SSLProxyEngine	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	toggles	the	usage	of	the	SSL/TLS	Protocol	Engine
for	proxy.	This	is	usually	used	inside	a	<VirtualHost>	section	to
enable	SSL/TLS	for	proxy	usage	in	a	particular	virtual	host.	By
default	the	SSL/TLS	Protocol	Engine	is	disabled	for	proxy	both	for
the	main	server	and	all	configured	virtual	hosts.

Note	that	the	SSLProxyEngine	directive	should	not,	in	general,
be	included	in	a	virtual	host	that	will	be	acting	as	a	forward	proxy
(using	<Proxy>	or	ProxyRequests	directives).
SSLProxyEngine	is	not	required	to	enable	a	forward	proxy
server	to	proxy	SSL/TLS	requests.

Example
<VirtualHost	_default_:443>

				SSLProxyEngine	on

				#...

</VirtualHost>

SSLProxyMachineCertificateChainFile	Directive

Description: File	of	concatenated	PEM-encoded	CA	certificates
to	be	used	by	the	proxy	for	choosing	a	certificate

Syntax: SSLProxyMachineCertificateChainFile

filename

Context: server	config
Override: Not	applicable
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	keep	the	certificate
chain	for	all	of	the	client	certs	in	use.	This	directive	will	be	needed
if	the	remote	server	presents	a	list	of	CA	certificates	that	are	not
direct	signers	of	one	of	the	configured	client	certificates.

This	referenced	file	is	simply	the	concatenation	of	the	various
PEM-encoded	certificate	files.	Upon	startup,	each	client	certificate
configured	will	be	examined	and	a	chain	of	trust	will	be
constructed.

Security	warning

If	this	directive	is	enabled,	all	of	the	certificates	in	the	file	will	be
trusted	as	if	they	were	also	in
SSLProxyCACertificateFile.

Example
SSLProxyMachineCertificateChainFile	"/usr/local/apache2/conf/ssl.crt/proxyCA.pem"

SSLProxyMachineCertificateFile	Directive

Description: File	of	concatenated	PEM-encoded	client
certificates	and	keys	to	be	used	by	the	proxy

Syntax: SSLProxyMachineCertificateFile

filename

Context: server	config
Override: Not	applicable
Status: Extension
Module: mod_ssl

This	directive	sets	the	all-in-one	file	where	you	keep	the
certificates	and	keys	used	for	authentication	of	the	proxy	server	to
remote	servers.

This	referenced	file	is	simply	the	concatenation	of	the	various
PEM-encoded	certificate	files,	in	order	of	preference.	Use	this
directive	alternatively	or	additionally	to
SSLProxyMachineCertificatePath.

Currently	there	is	no	support	for	encrypted	private	keys

Example
SSLProxyMachineCertificateFile	"/usr/local/apache2/conf/ssl.crt/proxy.pem"

SSLProxyMachineCertificatePath	Directive

Description: Directory	of	PEM-encoded	client	certificates	and
keys	to	be	used	by	the	proxy

Syntax: SSLProxyMachineCertificatePath

directory

Context: server	config
Override: Not	applicable
Status: Extension
Module: mod_ssl

This	directive	sets	the	directory	where	you	keep	the	certificates
and	keys	used	for	authentication	of	the	proxy	server	to	remote
servers.

The	files	in	this	directory	must	be	PEM-encoded	and	are	accessed
through	hash	filenames.	Additionally,	you	must	create	symbolic
links	named	hash-value.N.	And	you	should	always	make	sure
this	directory	contains	the	appropriate	symbolic	links.

Currently	there	is	no	support	for	encrypted	private	keys

Example
SSLProxyMachineCertificatePath	"/usr/local/apache2/conf/proxy.crt/"

SSLProxyProtocol	Directive

Description: Configure	usable	SSL	protocol	flavors	for	proxy
usage

Syntax: SSLProxyProtocol	[+|-]protocol	...

Default: SSLProxyProtocol	all	-SSLv3	(up	to

2.4.16:	all)

Context: server	config,	virtual	host
Override: Options
Status: Extension
Module: mod_ssl

This	directive	can	be	used	to	control	the	SSL	protocol	flavors
mod_ssl	should	use	when	establishing	its	server	environment	for
proxy	.	It	will	only	connect	to	servers	using	one	of	the	provided
protocols.

Please	refer	to	SSLProtocol	for	additional	information.

SSLProxyVerify	Directive

Description: Type	of	remote	server	Certificate	verification
Syntax: SSLProxyVerify	level

Default: SSLProxyVerify	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

When	a	proxy	is	configured	to	forward	requests	to	a	remote	SSL
server,	this	directive	can	be	used	to	configure	certificate
verification	of	the	remote	server.

The	following	levels	are	available	for	level:

none:	no	remote	server	Certificate	is	required	at	all
optional:	the	remote	server	may	present	a	valid	Certificate
require:	the	remote	server	has	to	present	a	valid	Certificate
optional_no_ca:	the	remote	server	may	present	a	valid
Certificate
but	it	need	not	to	be	(successfully)	verifiable.

In	practice	only	levels	none	and	require	are	really	interesting,
because	level	optional	doesn't	work	with	all	servers	and	level
optional_no_ca	is	actually	against	the	idea	of	authentication	(but
can	be	used	to	establish	SSL	test	pages,	etc.)

Example
SSLProxyVerify	require

SSLProxyVerifyDepth	Directive

Description: Maximum	depth	of	CA	Certificates	in	Remote
Server	Certificate	verification

Syntax: SSLProxyVerifyDepth	number

Default: SSLProxyVerifyDepth	1

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl

This	directive	sets	how	deeply	mod_ssl	should	verify	before
deciding	that	the	remote	server	does	not	have	a	valid	certificate.

The	depth	actually	is	the	maximum	number	of	intermediate
certificate	issuers,	i.e.	the	number	of	CA	certificates	which	are	max
allowed	to	be	followed	while	verifying	the	remote	server	certificate.
A	depth	of	0	means	that	self-signed	remote	server	certificates	are
accepted	only,	the	default	depth	of	1	means	the	remote	server
certificate	can	be	self-signed	or	has	to	be	signed	by	a	CA	which	is
directly	known	to	the	server	(i.e.	the	CA's	certificate	is	under
SSLProxyCACertificatePath),	etc.

Example
SSLProxyVerifyDepth	10

SSLRandomSeed	Directive

Description: Pseudo	Random	Number	Generator	(PRNG)
seeding	source

Syntax: SSLRandomSeed	context	source	[bytes]

Context: server	config
Status: Extension
Module: mod_ssl

This	configures	one	or	more	sources	for	seeding	the	Pseudo
Random	Number	Generator	(PRNG)	in	OpenSSL	at	startup	time
(context	is	startup)	and/or	just	before	a	new	SSL	connection	is
established	(context	is	connect).	This	directive	can	only	be	used
in	the	global	server	context	because	the	PRNG	is	a	global	facility.

The	following	source	variants	are	available:

builtin

This	is	the	always	available	builtin	seeding	source.	Its	usage
consumes	minimum	CPU	cycles	under	runtime	and	hence
can	be	always	used	without	drawbacks.	The	source	used	for
seeding	the	PRNG	contains	of	the	current	time,	the	current
process	id	and	(when	applicable)	a	randomly	chosen	1KB
extract	of	the	inter-process	scoreboard	structure	of	Apache.
The	drawback	is	that	this	is	not	really	a	strong	source	and	at
startup	time	(where	the	scoreboard	is	still	not	available)	this
source	just	produces	a	few	bytes	of	entropy.	So	you	should
always,	at	least	for	the	startup,	use	an	additional	seeding
source.

file:/path/to/source

This	variant	uses	an	external	file	/path/to/source	as	the
source	for	seeding	the	PRNG.	When	bytes	is	specified,	only
the	first	bytes	number	of	bytes	of	the	file	form	the	entropy
(and	bytes	is	given	to	/path/to/source	as	the	first

argument).	When	bytes	is	not	specified	the	whole	file	forms
the	entropy	(and	0	is	given	to	/path/to/source	as	the	first
argument).	Use	this	especially	at	startup	time,	for	instance
with	an	available	/dev/random	and/or	/dev/urandom
devices	(which	usually	exist	on	modern	Unix	derivatives	like
FreeBSD	and	Linux).

But	be	careful:	Usually	/dev/random	provides	only	as	much
entropy	data	as	it	actually	has,	i.e.	when	you	request	512
bytes	of	entropy,	but	the	device	currently	has	only	100	bytes
available	two	things	can	happen:	On	some	platforms	you
receive	only	the	100	bytes	while	on	other	platforms	the	read
blocks	until	enough	bytes	are	available	(which	can	take	a	long
time).	Here	using	an	existing	/dev/urandom	is	better,
because	it	never	blocks	and	actually	gives	the	amount	of
requested	data.	The	drawback	is	just	that	the	quality	of	the
received	data	may	not	be	the	best.

exec:/path/to/program

This	variant	uses	an	external	executable
/path/to/program	as	the	source	for	seeding	the	PRNG.
When	bytes	is	specified,	only	the	first	bytes	number	of	bytes
of	its	stdout	contents	form	the	entropy.	When	bytes	is	not
specified,	the	entirety	of	the	data	produced	on	stdout	form
the	entropy.	Use	this	only	at	startup	time	when	you	need	a
very	strong	seeding	with	the	help	of	an	external	program	(for
instance	as	in	the	example	above	with	the	truerand	utility
you	can	find	in	the	mod_ssl	distribution	which	is	based	on	the
AT&T	truerand	library).	Using	this	in	the	connection	context
slows	down	the	server	too	dramatically,	of	course.	So	usually
you	should	avoid	using	external	programs	in	that	context.

egd:/path/to/egd-socket	(Unix	only)
This	variant	uses	the	Unix	domain	socket	of	the	external

Entropy	Gathering	Daemon	(EGD)	(see
http://www.lothar.com/tech	/crypto/)	to	seed	the	PRNG.	Use
this	if	no	random	device	exists	on	your	platform.

Example
SSLRandomSeed	startup	builtin

SSLRandomSeed	startup	"file:/dev/random"

SSLRandomSeed	startup	"file:/dev/urandom"	1024

SSLRandomSeed	startup	"exec:/usr/local/bin/truerand"	16

SSLRandomSeed	connect	builtin

SSLRandomSeed	connect	"file:/dev/random"

SSLRandomSeed	connect	"file:/dev/urandom"	1024

http://www.lothar.com/tech/crypto/

SSLRenegBufferSize	Directive

Description: Set	the	size	for	the	SSL	renegotiation	buffer
Syntax: SSLRenegBufferSize	bytes

Default: SSLRenegBufferSize	131072

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

If	an	SSL	renegotiation	is	required	in	per-location	context,	for
example,	any	use	of	SSLVerifyClient	in	a	Directory	or
Location	block,	then	mod_ssl	must	buffer	any	HTTP	request	body
into	memory	until	the	new	SSL	handshake	can	be	performed.	This
directive	can	be	used	to	set	the	amount	of	memory	that	will	be
used	for	this	buffer.

Note	that	in	many	configurations,	the	client	sending	the	request
body	will	be	untrusted	so	a	denial	of	service	attack	by
consumption	of	memory	must	be	considered	when	changing
this	configuration	setting.

Example
SSLRenegBufferSize	262144

SSLRequire	Directive

Description: Allow	access	only	when	an	arbitrarily	complex
boolean	expression	is	true

Syntax: SSLRequire	expression

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

SSLRequire	is	deprecated

SSLRequire	is	deprecated	and	should	in	general	be	replaced
by	Require	expr.	The	so	called	ap_expr	syntax	of	Require
expr	is	a	superset	of	the	syntax	of	SSLRequire,	with	the
following	exception:

In	SSLRequire,	the	comparison	operators	<,	<=,	...	are
completely	equivalent	to	the	operators	lt,	le,	...	and	work	in	a
somewhat	peculiar	way	that	first	compares	the	length	of	two
strings	and	then	the	lexical	order.	On	the	other	hand,	ap_expr
has	two	sets	of	comparison	operators:	The	operators	<,	<=,	...
do	lexical	string	comparison,	while	the	operators	-lt,	-le,	...
do	integer	comparison.	For	the	latter,	there	are	also	aliases
without	the	leading	dashes:	lt,	le,	...

This	directive	specifies	a	general	access	requirement	which	has	to
be	fulfilled	in	order	to	allow	access.	It	is	a	very	powerful	directive
because	the	requirement	specification	is	an	arbitrarily	complex
boolean	expression	containing	any	number	of	access	checks.

The	expression	must	match	the	following	syntax	(given	as	a	BNF
grammar	notation):

expr					::=	"true"	|	"false"

											|	"!"	expr

											|	expr	"&&"	expr

											|	expr	"||"	expr

											|	"("	expr	")"

											|	comp

comp					::=	word	"=="	word	|	word	"eq"	word

											|	word	"!="	word	|	word	"ne"	word

											|	word	"<"		word	|	word	"lt"	word

											|	word	"<="	word	|	word	"le"	word

											|	word	">"		word	|	word	"gt"	word

											|	word	">="	word	|	word	"ge"	word

											|	word	"in"	"{"	wordlist	"}"

											|	word	"in"	"PeerExtList("	word	")"

											|	word	"=~"	regex

											|	word	"!~"	regex

wordlist	::=	word

											|	wordlist	","	word

word					::=	digit

											|	cstring

											|	variable

											|	function

digit				::=	[0-9]+

cstring		::=	"..."

variable	::=	"%{"	varname	"}"

function	::=	funcname	"("	funcargs	")"

For	varname	any	of	the	variables	described	in	Environment
Variables	can	be	used.	For	funcname	the	available	functions	are
listed	in	the	ap_expr	documentation.

The	expression	is	parsed	into	an	internal	machine	representation
when	the	configuration	is	loaded,	and	then	evaluated	during
request	processing.	In	.htaccess	context,	the	expression	is	both

parsed	and	executed	each	time	the	.htaccess	file	is	encountered
during	request	processing.

Example
SSLRequire	(%{SSL_CIPHER}	!~	m/^(EXP|NULL)-/																			\

												and	%{SSL_CLIENT_S_DN_O}	eq	"Snake	Oil,	Ltd."										\

												and	%{SSL_CLIENT_S_DN_OU}	in	{"Staff",	"CA",	"Dev"}				\

												and	%{TIME_WDAY}	-ge	1	and	%{TIME_WDAY}	-le	5										\

												and	%{TIME_HOUR}	-ge	8	and	%{TIME_HOUR}	-le	20)	\

											or	%{REMOTE_ADDR}	=~	m/^192\.76\.162\.[0-9]+$/

The	PeerExtList(object-ID)	function	expects	to	find	zero	or
more	instances	of	the	X.509	certificate	extension	identified	by	the
given	object	ID	(OID)	in	the	client	certificate.	The	expression
evaluates	to	true	if	the	left-hand	side	string	matches	exactly
against	the	value	of	an	extension	identified	with	this	OID.	(If
multiple	extensions	with	the	same	OID	are	present,	at	least	one
extension	must	match).

Example
SSLRequire	"foobar"	in	PeerExtList("1.2.3.4.5.6")

Notes	on	the	PeerExtList	function

The	object	ID	can	be	specified	either	as	a	descriptive	name
recognized	by	the	SSL	library,	such	as	"nsComment",	or
as	a	numeric	OID,	such	as	"1.2.3.4.5.6".

Expressions	with	types	known	to	the	SSL	library	are
rendered	to	a	string	before	comparison.	For	an	extension
with	a	type	not	recognized	by	the	SSL	library,	mod_ssl	will
parse	the	value	if	it	is	one	of	the	primitive	ASN.1	types
UTF8String,	IA5String,	VisibleString,	or	BMPString.	For	an
extension	of	one	of	these	types,	the	string	value	will	be
converted	to	UTF-8	if	necessary,	then	compared	against

the	left-hand-side	expression.

See	also
Environment	Variables	in	Apache	HTTP	Server,	for	additional
examples.
Require	expr
Generic	expression	syntax	in	Apache	HTTP	Server

SSLRequireSSL	Directive

Description: Deny	access	when	SSL	is	not	used	for	the	HTTP
request

Syntax: SSLRequireSSL

Context: directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	directive	forbids	access	unless	HTTP	over	SSL	(i.e.	HTTPS)
is	enabled	for	the	current	connection.	This	is	very	handy	inside	the
SSL-enabled	virtual	host	or	directories	for	defending	against
configuration	errors	that	expose	stuff	that	should	be	protected.
When	this	directive	is	present	all	requests	are	denied	which	are
not	using	SSL.

Example
SSLRequireSSL

SSLSessionCache	Directive

Description: Type	of	the	global/inter-process	SSL	Session
Cache

Syntax: SSLSessionCache	type

Default: SSLSessionCache	none

Context: server	config
Status: Extension
Module: mod_ssl

This	configures	the	storage	type	of	the	global/inter-process	SSL
Session	Cache.	This	cache	is	an	optional	facility	which	speeds	up
parallel	request	processing.	For	requests	to	the	same	server
process	(via	HTTP	keep-alive),	OpenSSL	already	caches	the	SSL
session	information	locally.	But	because	modern	clients	request
inlined	images	and	other	data	via	parallel	requests	(usually	up	to
four	parallel	requests	are	common)	those	requests	are	served	by
different	pre-forked	server	processes.	Here	an	inter-process	cache
helps	to	avoid	unnecessary	session	handshakes.

The	following	five	storage	types	are	currently	supported:

none

This	disables	the	global/inter-process	Session	Cache.	This
will	incur	a	noticeable	speed	penalty	and	may	cause	problems
if	using	certain	browsers,	particularly	if	client	certificates	are
enabled.	This	setting	is	not	recommended.

nonenotnull

This	disables	any	global/inter-process	Session	Cache.
However	it	does	force	OpenSSL	to	send	a	non-null	session	ID
to	accommodate	buggy	clients	that	require	one.

dbm:/path/to/datafile

This	makes	use	of	a	DBM	hashfile	on	the	local	disk	to

synchronize	the	local	OpenSSL	memory	caches	of	the	server
processes.	This	session	cache	may	suffer	reliability	issues
under	high	load.	To	use	this,	ensure	that	mod_socache_dbm
is	loaded.

shmcb:/path/to/datafile[(size)]
This	makes	use	of	a	high-performance	cyclic	buffer	(approx.
size	bytes	in	size)	inside	a	shared	memory	segment	in	RAM
(established	via	/path/to/datafile)	to	synchronize	the
local	OpenSSL	memory	caches	of	the	server	processes.	This
is	the	recommended	session	cache.	To	use	this,	ensure	that
mod_socache_shmcb	is	loaded.

dc:UNIX:/path/to/socket

This	makes	use	of	the	distcache	distributed	session	caching
libraries.	The	argument	should	specify	the	location	of	the
server	or	proxy	to	be	used	using	the	distcache	address
syntax;	for	example,	UNIX:/path/to/socket	specifies	a
UNIX	domain	socket	(typically	a	local	dc_client	proxy);
IP:server.example.com:9001	specifies	an	IP	address.
To	use	this,	ensure	that	mod_socache_dc	is	loaded.

Examples
SSLSessionCache	"dbm:/usr/local/apache/logs/ssl_gcache_data"

SSLSessionCache	"shmcb:/usr/local/apache/logs/ssl_gcache_data(512000)"

The	ssl-cache	mutex	is	used	to	serialize	access	to	the	session
cache	to	prevent	corruption.	This	mutex	can	be	configured	using
the	Mutex	directive.

http://distcache.sourceforge.net/

SSLSessionCacheTimeout	Directive

Description: Number	of	seconds	before	an	SSL	session
expires	in	the	Session	Cache

Syntax: SSLSessionCacheTimeout	seconds

Default: SSLSessionCacheTimeout	300

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Applies	also	to	RFC	5077	TLS	session

resumption	in	Apache	2.4.10	and	later

This	directive	sets	the	timeout	in	seconds	for	the	information
stored	in	the	global/inter-process	SSL	Session	Cache,	the
OpenSSL	internal	memory	cache	and	for	sessions	resumed	by
TLS	session	resumption	(RFC	5077).	It	can	be	set	as	low	as	15	for
testing,	but	should	be	set	to	higher	values	like	300	in	real	life.

Example
SSLSessionCacheTimeout	600

SSLSessionTicketKeyFile	Directive

Description: Persistent	encryption/decryption	key	for	TLS
session	tickets

Syntax: SSLSessionTicketKeyFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.0	and	later,	if	using

OpenSSL	0.9.8h	or	later

Optionally	configures	a	secret	key	for	encrypting	and	decrypting
TLS	session	tickets,	as	defined	in	RFC	5077.	Primarily	suitable	for
clustered	environments	where	TLS	sessions	information	should	be
shared	between	multiple	nodes.	For	single-instance	httpd	setups,
it	is	recommended	to	not	configure	a	ticket	key	file,	but	to	rely	on
(random)	keys	generated	by	mod_ssl	at	startup,	instead.

The	ticket	key	file	must	contain	48	bytes	of	random	data,
preferrably	created	from	a	high-entropy	source.	On	a	Unix-based
system,	a	ticket	key	file	can	be	created	as	follows:

dd	if=/dev/random	of=/path/to/file.tkey	bs=1	count=48

Ticket	keys	should	be	rotated	(replaced)	on	a	frequent	basis,	as
this	is	the	only	way	to	invalidate	an	existing	session	ticket	-
OpenSSL	currently	doesn't	allow	to	specify	a	limit	for	ticket
lifetimes.	A	new	ticket	key	only	gets	used	after	restarting	the	web
server.	All	existing	session	tickets	become	invalid	after	a	restart.

The	ticket	key	file	contains	sensitive	keying	material	and	should
be	protected	with	file	permissions	similar	to	those	used	for
SSLCertificateKeyFile.

http://www.ietf.org/rfc/rfc5077.txt

SSLSessionTickets	Directive

Description: Enable	or	disable	use	of	TLS	session	tickets
Syntax: SSLSessionTickets	on|off

Default: SSLSessionTickets	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.11	and	later,	if	using

OpenSSL	0.9.8f	or	later.

This	directive	allows	to	enable	or	disable	the	use	of	TLS	session
tickets	(RFC	5077).

TLS	session	tickets	are	enabled	by	default.	Using	them	without
restarting	the	web	server	with	an	appropriate	frequency	(e.g.
daily)	compromises	perfect	forward	secrecy.

SSLSRPUnknownUserSeed	Directive

Description: SRP	unknown	user	seed
Syntax: SSLSRPUnknownUserSeed	secret-string

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.4	and	later,	if	using

OpenSSL	1.0.1	or	later

This	directive	sets	the	seed	used	to	fake	SRP	user	parameters	for
unknown	users,	to	avoid	leaking	whether	a	given	user	exists.
Specify	a	secret	string.	If	this	directive	is	not	used,	then	Apache
will	return	the	UNKNOWN_PSK_IDENTITY	alert	to	clients	who
specify	an	unknown	username.

Example
SSLSRPUnknownUserSeed	"secret"

SSLSRPVerifierFile	Directive

Description: Path	to	SRP	verifier	file
Syntax: SSLSRPVerifierFile	file-path

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	httpd	2.4.4	and	later,	if	using

OpenSSL	1.0.1	or	later

This	directive	enables	TLS-SRP	and	sets	the	path	to	the	OpenSSL
SRP	(Secure	Remote	Password)	verifier	file	containing	TLS-SRP
usernames,	verifiers,	salts,	and	group	parameters.

Example
SSLSRPVerifierFile	"/path/to/file.srpv"

The	verifier	file	can	be	created	with	the	openssl	command	line
utility:

Creating	the	SRP	verifier	file
openssl	srp	-srpvfile	passwd.srpv	-userinfo	"some	info"	-add

username

The	value	given	with	the	optional	-userinfo	parameter	is
avalable	in	the	SSL_SRP_USERINFO	request	environment
variable.

SSLStaplingCache	Directive

Description: Configures	the	OCSP	stapling	cache
Syntax: SSLStaplingCache	type

Context: server	config
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

Configures	the	cache	used	to	store	OCSP	responses	which	get
included	in	the	TLS	handshake	if	SSLUseStapling	is	enabled.
Configuration	of	a	cache	is	mandatory	for	OCSP	stapling.	With	the
exception	of	none	and	nonenotnull,	the	same	storage	types
are	supported	as	with	SSLSessionCache.

SSLStaplingErrorCacheTimeout	Directive

Description: Number	of	seconds	before	expiring	invalid
responses	in	the	OCSP	stapling	cache

Syntax: SSLStaplingErrorCacheTimeout	seconds

Default: SSLStaplingErrorCacheTimeout	600

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

Sets	the	timeout	in	seconds	before	invalid	responses	in	the	OCSP
stapling	cache	(configured	through	SSLStaplingCache)	will
expire.	To	set	the	cache	timeout	for	valid	responses,	see
SSLStaplingStandardCacheTimeout.

SSLStaplingFakeTryLater	Directive

Description: Synthesize	"tryLater"	responses	for	failed	OCSP
stapling	queries

Syntax: SSLStaplingFakeTryLater	on|off

Default: SSLStaplingFakeTryLater	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

When	enabled	and	a	query	to	an	OCSP	responder	for	stapling
purposes	fails,	mod_ssl	will	synthesize	a	"tryLater"	response	for
the	client.	Only	effective	if
SSLStaplingReturnResponderErrors	is	also	enabled.

SSLStaplingForceURL	Directive

Description: Override	the	OCSP	responder	URI	specified	in
the	certificate's	AIA	extension

Syntax: SSLStaplingForceURL	uri

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	directive	overrides	the	URI	of	an	OCSP	responder	as
obtained	from	the	authorityInfoAccess	(AIA)	extension	of	the
certificate.	One	potential	use	is	when	a	proxy	is	used	for	retrieving
OCSP	queries.

SSLStaplingResponderTimeout	Directive

Description: Timeout	for	OCSP	stapling	queries
Syntax: SSLStaplingResponderTimeout	seconds

Default: SSLStaplingResponderTimeout	10

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	option	sets	the	timeout	for	queries	to	OCSP	responders	when
SSLUseStapling	is	enabled	and	mod_ssl	is	querying	a
responder	for	OCSP	stapling	purposes.

SSLStaplingResponseMaxAge	Directive

Description: Maximum	allowable	age	for	OCSP	stapling
responses

Syntax: SSLStaplingResponseMaxAge	seconds

Default: SSLStaplingResponseMaxAge	-1

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	option	sets	the	maximum	allowable	age	("freshness")	when
considering	OCSP	responses	for	stapling	purposes,	i.e.	when
SSLUseStapling	is	turned	on.	The	default	value	(-1)	does	not
enforce	a	maximum	age,	which	means	that	OCSP	responses	are
considered	valid	as	long	as	their	nextUpdate	field	is	in	the	future.

SSLStaplingResponseTimeSkew	Directive

Description: Maximum	allowable	time	skew	for	OCSP	stapling
response	validation

Syntax: SSLStaplingResponseTimeSkew	seconds

Default: SSLStaplingResponseTimeSkew	300

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	option	sets	the	maximum	allowable	time	skew	when	mod_ssl
checks	the	thisUpdate	and	nextUpdate	fields	of	OCSP
responses	which	get	included	in	the	TLS	handshake	(OCSP
stapling).	Only	applicable	if	SSLUseStapling	is	turned	on.

SSLStaplingReturnResponderErrors	Directive

Description: Pass	stapling	related	OCSP	errors	on	to	client
Syntax: SSLStaplingReturnResponderErrors

on|off

Default: SSLStaplingReturnResponderErrors	on

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

When	enabled,	mod_ssl	will	pass	responses	from	unsuccessful
stapling	related	OCSP	queries	(such	as	responses	with	an	overall
status	other	than	"successful",	responses	with	a	certificate	status
other	than	"good",	expired	responses	etc.)	on	to	the	client.	If	set	to
off,	only	responses	indicating	a	certificate	status	of	"good"	will	be
included	in	the	TLS	handshake.

SSLStaplingStandardCacheTimeout	Directive

Description: Number	of	seconds	before	expiring	responses	in
the	OCSP	stapling	cache

Syntax: SSLStaplingStandardCacheTimeout

seconds

Default: SSLStaplingStandardCacheTimeout	3600

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

Sets	the	timeout	in	seconds	before	responses	in	the	OCSP
stapling	cache	(configured	through	SSLStaplingCache)	will
expire.	This	directive	applies	to	valid	responses,	while
SSLStaplingErrorCacheTimeout	is	used	for	controlling	the
timeout	for	invalid/unavailable	responses.

SSLStrictSNIVHostCheck	Directive

Description: Whether	to	allow	non-SNI	clients	to	access	a
name-based	virtual	host.

Syntax: SSLStrictSNIVHostCheck	on|off

Default: SSLStrictSNIVHostCheck	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	in	Apache	2.2.12	and	later

This	directive	sets	whether	a	non-SNI	client	is	allowed	to	access	a
name-based	virtual	host.	If	set	to	on	in	the	default	name-based
virtual	host,	clients	that	are	SNI	unaware	will	not	be	allowed	to
access	any	virtual	host,	belonging	to	this	particular	IP	/	port
combination.	If	set	to	on	in	any	other	virtual	host,	SNI	unaware
clients	are	not	allowed	to	access	this	particular	virtual	host.

This	option	is	only	available	if	httpd	was	compiled	against	an
SNI	capable	version	of	OpenSSL.

Example
SSLStrictSNIVHostCheck	on

SSLUserName	Directive

Description: Variable	name	to	determine	user	name
Syntax: SSLUserName	varname

Context: server	config,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	directive	sets	the	"user"	field	in	the	Apache	request	object.
This	is	used	by	lower	modules	to	identify	the	user	with	a	character
string.	In	particular,	this	may	cause	the	environment	variable
REMOTE_USER	to	be	set.	The	varname	can	be	any	of	the	SSL
environment	variables.

Note	that	this	directive	has	no	effect	if	the	FakeBasicAuth	option
is	used	(see	SSLOptions).

Example
SSLUserName	SSL_CLIENT_S_DN_CN

SSLUseStapling	Directive

Description: Enable	stapling	of	OCSP	responses	in	the	TLS
handshake

Syntax: SSLUseStapling	on|off

Default: SSLUseStapling	off

Context: server	config,	virtual	host
Status: Extension
Module: mod_ssl
Compatibility: Available	if	using	OpenSSL	0.9.8h	or	later

This	option	enables	OCSP	stapling,	as	defined	by	the	"Certificate
Status	Request"	TLS	extension	specified	in	RFC	6066.	If	enabled
(and	requested	by	the	client),	mod_ssl	will	include	an	OCSP
response	for	its	own	certificate	in	the	TLS	handshake.	Configuring
an	SSLStaplingCache	is	a	prerequisite	for	enabling	OCSP
stapling.

OCSP	stapling	relieves	the	client	of	querying	the	OCSP	responder
on	its	own,	but	it	should	be	noted	that	with	the	RFC	6066
specification,	the	server's	CertificateStatus	reply	may	only
include	an	OCSP	response	for	a	single	cert.	For	server	certificates
with	intermediate	CA	certificates	in	their	chain	(the	typical	case
nowadays),	stapling	in	its	current	implementation	therefore	only
partially	achieves	the	stated	goal	of	"saving	roundtrips	and
resources"	-	see	also	RFC	6961	(TLS	Multiple	Certificate	Status
Extension).

When	OCSP	stapling	is	enabled,	the	ssl-stapling	mutex	is
used	to	control	access	to	the	OCSP	stapling	cache	in	order	to
prevent	corruption,	and	the	sss-stapling-refresh	mutex	is
used	to	control	refreshes	of	OCSP	responses.	These	mutexes	can
be	configured	using	the	Mutex	directive.

http://www.ietf.org/rfc/rfc6961.txt

SSLVerifyClient	Directive

Description: Type	of	Client	Certificate	verification
Syntax: SSLVerifyClient	level

Default: SSLVerifyClient	none

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	directive	sets	the	Certificate	verification	level	for	the	Client
Authentication.	Notice	that	this	directive	can	be	used	both	in	per-
server	and	per-directory	context.	In	per-server	context	it	applies	to
the	client	authentication	process	used	in	the	standard	SSL
handshake	when	a	connection	is	established.	In	per-directory
context	it	forces	a	SSL	renegotiation	with	the	reconfigured	client
verification	level	after	the	HTTP	request	was	read	but	before	the
HTTP	response	is	sent.

The	following	levels	are	available	for	level:

none:	no	client	Certificate	is	required	at	all
optional:	the	client	may	present	a	valid	Certificate
require:	the	client	has	to	present	a	valid	Certificate
optional_no_ca:	the	client	may	present	a	valid	Certificate
but	it	need	not	to	be	(successfully)	verifiable.	This	option
cannot	be	relied	upon	for	client	authentication.

Example
SSLVerifyClient	require

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

SSLVerifyDepth	Directive

Description: Maximum	depth	of	CA	Certificates	in	Client
Certificate	verification

Syntax: SSLVerifyDepth	number

Default: SSLVerifyDepth	1

Context: server	config,	virtual	host,	directory,	.htaccess
Override: AuthConfig
Status: Extension
Module: mod_ssl

This	directive	sets	how	deeply	mod_ssl	should	verify	before
deciding	that	the	clients	don't	have	a	valid	certificate.	Notice	that
this	directive	can	be	used	both	in	per-server	and	per-directory
context.	In	per-server	context	it	applies	to	the	client	authentication
process	used	in	the	standard	SSL	handshake	when	a	connection
is	established.	In	per-directory	context	it	forces	a	SSL
renegotiation	with	the	reconfigured	client	verification	depth	after
the	HTTP	request	was	read	but	before	the	HTTP	response	is	sent.

The	depth	actually	is	the	maximum	number	of	intermediate
certificate	issuers,	i.e.	the	number	of	CA	certificates	which	are	max
allowed	to	be	followed	while	verifying	the	client	certificate.	A	depth
of	0	means	that	self-signed	client	certificates	are	accepted	only,
the	default	depth	of	1	means	the	client	certificate	can	be	self-
signed	or	has	to	be	signed	by	a	CA	which	is	directly	known	to	the
server	(i.e.	the	CA's	certificate	is	under
SSLCACertificatePath),	etc.

Example
SSLVerifyDepth	10

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_status

Description: Provides	information	on	server	activity	and
performance

Status: Base
Module	Identifier: status_module
Source	File: mod_status.c

Summary
The	Status	module	allows	a	server	administrator	to	find	out	how	well
their	server	is	performing.	A	HTML	page	is	presented	that	gives	the
current	server	statistics	in	an	easily	readable	form.	If	required	this
page	can	be	made	to	automatically	refresh	(given	a	compatible
browser).	Another	page	gives	a	simple	machine-readable	list	of	the
current	server	state.

The	details	given	are:

The	number	of	worker	serving	requests
The	number	of	idle	worker
The	status	of	each	worker,	the	number	of	requests	that	worker
has	performed	and	the	total	number	of	bytes	served	by	the
worker	(*)
A	total	number	of	accesses	and	byte	count	served	(*)
The	time	the	server	was	started/restarted	and	the	time	it	has
been	running	for
Averages	giving	the	number	of	requests	per	second,	the	number
of	bytes	served	per	second	and	the	average	number	of	bytes	per
request	(*)
The	current	percentage	CPU	used	by	each	worker	and	in	total	by
all	workers	combined	(*)
The	current	hosts	and	requests	being	processed	(*)

The	lines	marked	"(*)"	are	only	available	if	ExtendedStatus	is	On.
In	version	2.3.6,	loading	mod_status	will	toggle	ExtendedStatus	On
by	default.

Enabling	Status	Support

To	enable	status	reports	only	for	browsers	from	the	example.com
domain	add	this	code	to	your	httpd.conf	configuration	file

<Location	"/server-status">

				SetHandler	server-status

				Require	host	example.com

</Location>

You	can	now	access	server	statistics	by	using	a	Web	browser	to
access	the	page	http://your.server.name/server-
status

Automatic	Updates

You	can	get	the	status	page	to	update	itself	automatically	if	you
have	a	browser	that	supports	"refresh".	Access	the	page
http://your.server.name/server-status?refresh=N	to
refresh	the	page	every	N	seconds.

Machine	Readable	Status	File

A	machine-readable	version	of	the	status	file	is	available	by
accessing	the	page	http://your.server.name/server-
status?auto.	This	is	useful	when	automatically	run,	see	the	Perl
program	log_server_status,	which	you	will	find	in	the
/support	directory	of	your	Apache	HTTP	Server	installation.

It	should	be	noted	that	if	mod_status	is	loaded	into	the
server,	its	handler	capability	is	available	in	all	configuration
files,	including	per-directory	files	(e.g.,	.htaccess).	This
may	have	security-related	ramifications	for	your	site.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Using	server-status	to	troubleshoot

The	server-status	page	may	be	used	as	a	starting	place	for
troubleshooting	a	situation	where	your	server	is	consuming	all
available	resources	(CPU	or	memory),	and	you	wish	to	identify
which	requests	or	clients	are	causing	the	problem.

First,	ensure	that	you	have	ExtendedStatus	set	on,	so	that	you
can	see	the	full	request	and	client	information	for	each	child	or
thread.

Now	look	in	your	process	list	(using	top,	or	similar	process
viewing	utility)	to	identify	the	specific	processes	that	are	the	main
culprits.	Order	the	output	of	top	by	CPU	usage,	or	memory
usage,	depending	on	what	problem	you're	trying	to	address.

Reload	the	server-status	page,	and	look	for	those	process
ids,	and	you'll	be	able	to	see	what	request	is	being	served	by	that
process,	for	what	client.	Requests	are	transient,	so	you	may	need
to	try	several	times	before	you	catch	it	in	the	act,	so	to	speak.

This	process	should	give	you	some	idea	what	client,	or	what	type
of	requests,	are	primarily	responsible	for	your	load	problems.
Often	you	will	identify	a	particular	web	application	that	is
misbehaving,	or	a	particular	client	that	is	attacking	your	site.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_substitute

Description: Perform	search	and	replace	operations	on
response	bodies

Status: Extension
Module	Identifier: substitute_module
Source	File: mod_substitute.c
Compatibility: Available	in	Apache	HTTP	Server	2.2.7	and	later

Summary
mod_substitute	provides	a	mechanism	to	perform	both	regular
expression	and	fixed	string	substitutions	on	response	bodies.

Substitute	Directive

Description: Pattern	to	filter	the	response	content
Syntax: Substitute

s/pattern/substitution/[infq]

Context: directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_substitute

The	Substitute	directive	specifies	a	search	and	replace	pattern
to	apply	to	the	response	body.

The	meaning	of	the	pattern	can	be	modified	by	using	any
combination	of	these	flags:

i

Perform	a	case-insensitive	match.

n

By	default	the	pattern	is	treated	as	a	regular	expression.
Using	the	n	flag	forces	the	pattern	to	be	treated	as	a	fixed
string.

f

The	f	flag	causes	mod_substitute	to	flatten	the	result	of	a
substitution	allowing	for	later	substitutions	to	take	place	on	the
boundary	of	this	one.	This	is	the	default.

q

The	q	flag	causes	mod_substitute	to	not	flatten	the
buckets	after	each	substitution.	This	can	result	in	much	faster
response	and	a	decrease	in	memory	utilization,	but	should
only	be	used	if	there	is	no	possibility	that	the	result	of	one
substitution	will	ever	match	a	pattern	or	regex	of	a	subsequent
one.

Example
<Location	"/">

				AddOutputFilterByType	SUBSTITUTE	text/html

				Substitute	"s/foo/bar/ni"

</Location>

If	either	the	pattern	or	the	substitution	contain	a	slash	character
then	an	alternative	delimiter	should	be	used:

Example	of	using	an	alternate	delimiter
<Location	"/">

				AddOutputFilterByType	SUBSTITUTE	text/html

				Substitute	"s|<BR	*/?>|
|i"

</Location>

Backreferences	can	be	used	in	the	comparison	and	in	the
substitution,	when	regular	expressions	are	used,	as	illustrated	in
the	following	example:

Example	of	using	backreferences	and	captures
<Location	"/">

				AddOutputFilterByType	SUBSTITUTE	text/html

				#	"foo=k,bar=k"	->	"foo/bar=k"

				Substitute	"s|foo=(\w+),bar=\1|foo/bar=$1"

</Location>

A	common	use	scenario	for	mod_substitute	is	the	situation	in
which	a	front-end	server	proxies	requests	to	a	back-end	server
which	returns	HTML	with	hard-coded	embedded	URLs	that	refer	to
the	back-end	server.	These	URLs	don't	work	for	the	end-user,
since	the	back-end	server	is	unreachable.

In	this	case,	mod_substitute	can	be	used	to	rewrite	those
URLs	into	something	that	will	work	from	the	front	end:

Rewriting	URLs	embedded	in	proxied	content

ProxyPass								"/blog/"	"http://internal.blog.example.com"

ProxyPassReverse	"/blog/"	"http://internal.blog.example.com/"

Substitute	"s|http://internal.blog.example.com/|http://www.example.com/blog/|i"

ProxyPassReverse	modifies	any	Location	(redirect)	headers
that	are	sent	by	the	back-end	server,	and,	in	this	example,
Substitute	takes	care	of	the	rest	of	the	problem	by	fixing	up	the
HTML	response	as	well.

SubstituteInheritBefore	Directive

Description: Change	the	merge	order	of	inherited	patterns
Syntax: SubstituteInheritBefore	on|off

Default: SubstituteInheritBefore	off

Context: directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_substitute
Compatibility: Available	in	httpd	2.4.17	and	later

Whether	to	apply	the	inherited	Substitute	patterns	first	(on),	or
after	the	ones	of	the	current	context	(off).
SubstituteInheritBefore	is	itself	inherited,	hence	contexts
that	inherit	it	(those	that	don't	specify	their	own
SubstituteInheritBefore	value)	will	apply	the	closest
defined	merge	order.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SubstituteMaxLineLength	Directive

Description: Set	the	maximum	line	size
Syntax: SubstituteMaxLineLength

bytes(b|B|k|K|m|M|g|G)

Default: SubstituteMaxLineLength	1m

Context: directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_substitute
Compatibility: Available	in	httpd	2.4.11	and	later

The	maximum	line	size	handled	by	mod_substitute	is	limited	to
restrict	memory	use.	The	limit	can	be	configured	using
SubstituteMaxLineLength.	The	value	can	be	given	as	the
number	of	bytes	and	can	be	suffixed	with	a	single	letter	b,	B,	k,	K,
m,	M,	g,	G	to	provide	the	size	in	bytes,	kilobytes,	megabytes	or
gigabytes	respectively.

Example
<Location	"/">

				AddOutputFilterByType	SUBSTITUTE	text/html

				SubstituteMaxLineLength	10m

				Substitute	"s/foo/bar/ni"

</Location>

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_suexec

Description: Allows	CGI	scripts	to	run	as	a	specified	user	and
Group

Status: Extension
Module	Identifier: suexec_module
Source	File: mod_suexec.c

Summary
This	module,	in	combination	with	the	suexec	support	program	allows
CGI	scripts	to	run	as	a	specified	user	and	Group.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
SuEXEC	support

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_suexec
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_suexec

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

SuexecUserGroup	Directive

Description: User	and	group	for	CGI	programs	to	run	as
Syntax: SuexecUserGroup	User	Group

Context: server	config,	virtual	host
Status: Extension
Module: mod_suexec

The	SuexecUserGroup	directive	allows	you	to	specify	a	user	and
group	for	CGI	programs	to	run	as.	Non-CGI	requests	are	still
processed	with	the	user	specified	in	the	User	directive.

Example
SuexecUserGroup	nobody	nogroup

Startup	will	fail	if	this	directive	is	specified	but	the	suEXEC	feature
is	disabled.

See	also
Suexec

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_unique_id

Description: Provides	an	environment	variable	with	a	unique
identifier	for	each	request

Status: Extension
Module	Identifier: unique_id_module
Source	File: mod_unique_id.c

Summary
This	module	provides	a	magic	token	for	each	request	which	is
guaranteed	to	be	unique	across	"all"	requests	under	very	specific
conditions.	The	unique	identifier	is	even	unique	across	multiple
machines	in	a	properly	configured	cluster	of	machines.	The
environment	variable	UNIQUE_ID	is	set	to	the	identifier	for	each
request.	Unique	identifiers	are	useful	for	various	reasons	which	are
beyond	the	scope	of	this	document.

Theory

First	a	brief	recap	of	how	the	Apache	server	works	on	Unix
machines.	This	feature	currently	isn't	supported	on	Windows	NT.
On	Unix	machines,	Apache	creates	several	children,	the	children
process	requests	one	at	a	time.	Each	child	can	serve	multiple
requests	in	its	lifetime.	For	the	purpose	of	this	discussion,	the
children	don't	share	any	data	with	each	other.	We'll	refer	to	the
children	as	httpd	processes.

Your	website	has	one	or	more	machines	under	your	administrative
control,	together	we'll	call	them	a	cluster	of	machines.	Each
machine	can	possibly	run	multiple	instances	of	Apache.	All	of
these	collectively	are	considered	"the	universe",	and	with	certain
assumptions	we'll	show	that	in	this	universe	we	can	generate
unique	identifiers	for	each	request,	without	extensive
communication	between	machines	in	the	cluster.

The	machines	in	your	cluster	should	satisfy	these	requirements.
(Even	if	you	have	only	one	machine	you	should	synchronize	its
clock	with	NTP.)

The	machines'	times	are	synchronized	via	NTP	or	other
network	time	protocol.
The	machines'	hostnames	all	differ,	such	that	the	module	can
do	a	hostname	lookup	on	the	hostname	and	receive	a
different	IP	address	for	each	machine	in	the	cluster.

As	far	as	operating	system	assumptions	go,	we	assume	that	pids
(process	ids)	fit	in	32-bits.	If	the	operating	system	uses	more	than
32-bits	for	a	pid,	the	fix	is	trivial	but	must	be	performed	in	the	code.

Given	those	assumptions,	at	a	single	point	in	time	we	can	identify
any	httpd	process	on	any	machine	in	the	cluster	from	all	other
httpd	processes.	The	machine's	IP	address	and	the	pid	of	the
httpd	process	are	sufficient	to	do	this.	A	httpd	process	can	handle

multiple	requests	simultaneously	if	you	use	a	multi-threaded	MPM.
In	order	to	identify	threads,	we	use	a	thread	index	Apache	httpd
uses	internally.	So	in	order	to	generate	unique	identifiers	for
requests	we	need	only	distinguish	between	different	points	in	time.

To	distinguish	time	we	will	use	a	Unix	timestamp	(seconds	since
January	1,	1970	UTC),	and	a	16-bit	counter.	The	timestamp	has
only	one	second	granularity,	so	the	counter	is	used	to	represent	up
to	65536	values	during	a	single	second.	The	quadruple	(ip_addr,
pid,	time_stamp,	counter)	is	sufficient	to	enumerate	65536
requests	per	second	per	httpd	process.	There	are	issues	however
with	pid	reuse	over	time,	and	the	counter	is	used	to	alleviate	this
issue.

When	an	httpd	child	is	created,	the	counter	is	initialized	with	(
current	microseconds	divided	by	10)	modulo	65536	(this	formula
was	chosen	to	eliminate	some	variance	problems	with	the	low
order	bits	of	the	microsecond	timers	on	some	systems).	When	a
unique	identifier	is	generated,	the	time	stamp	used	is	the	time	the
request	arrived	at	the	web	server.	The	counter	is	incremented
every	time	an	identifier	is	generated	(and	allowed	to	roll	over).

The	kernel	generates	a	pid	for	each	process	as	it	forks	the
process,	and	pids	are	allowed	to	roll	over	(they're	16-bits	on	many
Unixes,	but	newer	systems	have	expanded	to	32-bits).	So	over
time	the	same	pid	will	be	reused.	However	unless	it	is	reused
within	the	same	second,	it	does	not	destroy	the	uniqueness	of	our
quadruple.	That	is,	we	assume	the	system	does	not	spawn	65536
processes	in	a	one	second	interval	(it	may	even	be	32768
processes	on	some	Unixes,	but	even	this	isn't	likely	to	happen).

Suppose	that	time	repeats	itself	for	some	reason.	That	is,	suppose
that	the	system's	clock	is	screwed	up	and	it	revisits	a	past	time	(or
it	is	too	far	forward,	is	reset	correctly,	and	then	revisits	the	future
time).	In	this	case	we	can	easily	show	that	we	can	get	pid	and	time

stamp	reuse.	The	choice	of	initializer	for	the	counter	is	intended	to
help	defeat	this.	Note	that	we	really	want	a	random	number	to
initialize	the	counter,	but	there	aren't	any	readily	available
numbers	on	most	systems	(i.e.,	you	can't	use	rand()	because	you
need	to	seed	the	generator,	and	can't	seed	it	with	the	time
because	time,	at	least	at	one	second	resolution,	has	repeated
itself).	This	is	not	a	perfect	defense.

How	good	a	defense	is	it?	Suppose	that	one	of	your	machines
serves	at	most	500	requests	per	second	(which	is	a	very
reasonable	upper	bound	at	this	writing,	because	systems
generally	do	more	than	just	shovel	out	static	files).	To	do	that	it	will
require	a	number	of	children	which	depends	on	how	many
concurrent	clients	you	have.	But	we'll	be	pessimistic	and	suppose
that	a	single	child	is	able	to	serve	500	requests	per	second.	There
are	1000	possible	starting	counter	values	such	that	two	sequences
of	500	requests	overlap.	So	there	is	a	1.5%	chance	that	if	time	(at
one	second	resolution)	repeats	itself	this	child	will	repeat	a	counter
value,	and	uniqueness	will	be	broken.	This	was	a	very	pessimistic
example,	and	with	real	world	values	it's	even	less	likely	to	occur.	If
your	system	is	such	that	it's	still	likely	to	occur,	then	perhaps	you
should	make	the	counter	32	bits	(by	editing	the	code).

You	may	be	concerned	about	the	clock	being	"set	back"	during
summer	daylight	savings.	However	this	isn't	an	issue	because	the
times	used	here	are	UTC,	which	"always"	go	forward.	Note	that
x86	based	Unixes	may	need	proper	configuration	for	this	to	be
true	--	they	should	be	configured	to	assume	that	the	motherboard
clock	is	on	UTC	and	compensate	appropriately.	But	even	still,	if
you're	running	NTP	then	your	UTC	time	will	be	correct	very	shortly
after	reboot.

The	UNIQUE_ID	environment	variable	is	constructed	by	encoding
the	144-bit	(32-bit	IP	address,	32	bit	pid,	32	bit	time	stamp,	16	bit
counter,	32	bit	thread	index)	quadruple	using	the	alphabet	[A-Za-

Copyright	2017	The	Apache	Software	Foundation.

z0-9@-]	in	a	manner	similar	to	MIME	base64	encoding,
producing	24	characters.	The	MIME	base64	alphabet	is	actually
[A-Za-z0-9+/]	however	+	and	/	need	to	be	specially	encoded
in	URLs,	which	makes	them	less	desirable.	All	values	are	encoded
in	network	byte	ordering	so	that	the	encoding	is	comparable
across	architectures	of	different	byte	ordering.	The	actual	ordering
of	the	encoding	is:	time	stamp,	IP	address,	pid,	counter.	This
ordering	has	a	purpose,	but	it	should	be	emphasized	that
applications	should	not	dissect	the	encoding.	Applications	should
treat	the	entire	encoded	UNIQUE_ID	as	an	opaque	token,	which
can	be	compared	against	other	UNIQUE_IDs	for	equality	only.

The	ordering	was	chosen	such	that	it's	possible	to	change	the
encoding	in	the	future	without	worrying	about	collision	with	an
existing	database	of	UNIQUE_IDs.	The	new	encodings	should
also	keep	the	time	stamp	as	the	first	element,	and	can	otherwise
use	the	same	alphabet	and	bit	length.	Since	the	time	stamps	are
essentially	an	increasing	sequence,	it's	sufficient	to	have	a	flag
second	in	which	all	machines	in	the	cluster	stop	serving	any
request,	and	stop	using	the	old	encoding	format.	Afterwards	they
can	resume	requests	and	begin	issuing	the	new	encodings.

This	we	believe	is	a	relatively	portable	solution	to	this	problem.
The	identifiers	generated	have	essentially	an	infinite	life-time
because	future	identifiers	can	be	made	longer	as	required.
Essentially	no	communication	is	required	between	machines	in	the
cluster	(only	NTP	synchronization	is	required,	which	is	low
overhead),	and	no	communication	between	httpd	processes	is
required	(the	communication	is	implicit	in	the	pid	value	assigned
by	the	kernel).	In	very	specific	situations	the	identifier	can	be
shortened,	but	more	information	needs	to	be	assumed	(for
example	the	32-bit	IP	address	is	overkill	for	any	site,	but	there	is
no	portable	shorter	replacement	for	it).

Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_unixd

Description: Basic	(required)	security	for	Unix-family
platforms.

Status: Base
Module	Identifier: unixd_module
Source	File: mod_unixd.c

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
suEXEC	support

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_unixd
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_unixd

ChrootDir	Directive

Description: Directory	for	apache	to	run	chroot(8)	after
startup.

Syntax: ChrootDir	/path/to/directory

Default: none

Context: server	config
Status: Base
Module: mod_unixd

Compatibility: Available	in	Apache	2.2.10	and	later

This	directive	tells	the	server	to	chroot(8)	to	the	specified	directory
after	startup,	but	before	accepting	requests	over	the	'net.

Note	that	running	the	server	under	chroot	is	not	simple,	and
requires	additional	setup,	particularly	if	you	are	running	scripts
such	as	CGI	or	PHP.	Please	make	sure	you	are	properly	familiar
with	the	operation	of	chroot	before	attempting	to	use	this	feature.

Group	Directive

Description: Group	under	which	the	server	will	answer	requests
Syntax: Group	unix-group

Default: Group	#-1

Context: server	config
Status: Base
Module: mod_unixd

The	Group	directive	sets	the	group	under	which	the	server	will
answer	requests.	In	order	to	use	this	directive,	the	server	must	be
run	initially	as	root.	If	you	start	the	server	as	a	non-root	user,	it
will	fail	to	change	to	the	specified	group,	and	will	instead	continue
to	run	as	the	group	of	the	original	user.	Unix-group	is	one	of:

A	group	name
Refers	to	the	given	group	by	name.

#	followed	by	a	group	number.
Refers	to	a	group	by	its	number.

Example
Group	www-group

It	is	recommended	that	you	set	up	a	new	group	specifically	for
running	the	server.	Some	admins	use	user	nobody,	but	this	is	not
always	possible	or	desirable.

Security

Don't	set	Group	(or	User)	to	root	unless	you	know	exactly
what	you	are	doing,	and	what	the	dangers	are.

See	also

VHostGroup

SuexecUserGroup

Suexec	Directive

Description: Enable	or	disable	the	suEXEC	feature
Syntax: Suexec	On|Off

Default: On	if	suexec	binary	exists	with

proper	owner	and	mode,	Off	otherwise

Context: server	config
Status: Base
Module: mod_unixd

When	On,	startup	will	fail	if	the	suexec	binary	doesn't	exist	or	has
an	invalid	owner	or	file	mode.

When	Off,	suEXEC	will	be	disabled	even	if	the	suexec	binary
exists	and	has	a	valid	owner	and	file	mode.

User	Directive

Description: The	userid	under	which	the	server	will	answer
requests

Syntax: User	unix-userid

Default: User	#-1

Context: server	config
Status: Base
Module: mod_unixd

The	User	directive	sets	the	user	ID	as	which	the	server	will
answer	requests.	In	order	to	use	this	directive,	the	server	must	be
run	initially	as	root.	If	you	start	the	server	as	a	non-root	user,	it
will	fail	to	change	to	the	lesser	privileged	user,	and	will	instead
continue	to	run	as	that	original	user.	If	you	do	start	the	server	as
root,	then	it	is	normal	for	the	parent	process	to	remain	running	as
root.	Unix-userid	is	one	of:

A	username
Refers	to	the	given	user	by	name.

#	followed	by	a	user	number.
Refers	to	a	user	by	its	number.

The	user	should	have	no	privileges	that	result	in	it	being	able	to
access	files	that	are	not	intended	to	be	visible	to	the	outside	world,
and	similarly,	the	user	should	not	be	able	to	execute	code	that	is
not	meant	for	HTTP	requests.	It	is	recommended	that	you	set	up	a
new	user	and	group	specifically	for	running	the	server.	Some
admins	use	user	nobody,	but	this	is	not	always	desirable,	since
the	nobody	user	can	have	other	uses	on	the	system.

Security

Don't	set	User	(or	Group)	to	root	unless	you	know	exactly
what	you	are	doing,	and	what	the	dangers	are.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

See	also
VHostUser

SuexecUserGroup

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_userdir

Description: User-specific	directories
Status: Base
Module	Identifier: userdir_module
Source	File: mod_userdir.c

Summary
This	module	allows	user-specific	directories	to	be	accessed	using	the
http://example.com/~user/	syntax.

Bugfix	checklist
httpd	changelog
Known	issues
Report	a	bug

See	also
Mapping	URLs	to	the	Filesystem
public_html	tutorial

https://www.apache.org/foundation/contributing.html
https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_userdir
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_userdir

UserDir	Directive

Description: Location	of	the	user-specific	directories
Syntax: UserDir	directory-filename

[directory-filename]	...

Context: server	config,	virtual	host
Status: Base
Module: mod_userdir

The	UserDir	directive	sets	the	real	directory	in	a	user's	home
directory	to	use	when	a	request	for	a	document	for	a	user	is
received.	Directory-filename	is	one	of	the	following:

The	name	of	a	directory	or	a	pattern	such	as	those	shown
below.
The	keyword	disabled.	This	turns	off	all	username-to-
directory	translations	except	those	explicitly	named	with	the
enabled	keyword	(see	below).
The	keyword	disabled	followed	by	a	space-delimited	list	of
usernames.	Usernames	that	appear	in	such	a	list	will	never
have	directory	translation	performed,	even	if	they	appear	in	an
enabled	clause.
The	keyword	enabled	followed	by	a	space-delimited	list	of
usernames.	These	usernames	will	have	directory	translation
performed	even	if	a	global	disable	is	in	effect,	but	not	if	they
also	appear	in	a	disabled	clause.

If	neither	the	enabled	nor	the	disabled	keywords	appear	in	the
Userdir	directive,	the	argument	is	treated	as	a	filename	pattern,
and	is	used	to	turn	the	name	into	a	directory	specification.	A
request	for	http://www.example.com/~bob/one/two.html
will	be	translated	to:

UserDir	directive	used Translated	path

UserDir	public_html ~bob/public_html/one/two.html
UserDir	/usr/web /usr/web/bob/one/two.html
UserDir	/home/*/www /home/bob/www/one/two.html

The	following	directives	will	send	redirects	to	the	client:

UserDir	directive	used Translated	path
UserDir
http://www.example.com/users

http://www.example.com/users/bob/one/two.html

UserDir
http://www.example.com/*/usr

http://www.example.com/bob/usr/one/two.html

UserDir
http://www.example.com/~*/

http://www.example.com/~bob/one/two.html

Be	careful	when	using	this	directive;	for	instance,
"UserDir	./"	would	map	"/~root"	to	"/"	-	which	is
probably	undesirable.	It	is	strongly	recommended	that	your
configuration	include	a	"UserDir	disabled	root"
declaration.	See	also	the	Directory	directive	and	the
Security	Tips	page	for	more	information.

Additional	examples:

To	allow	a	few	users	to	have	UserDir	directories,	but	not	anyone
else,	use	the	following:

UserDir	disabled

UserDir	enabled	user1	user2	user3

To	allow	most	users	to	have	UserDir	directories,	but	deny	this	to
a	few,	use	the	following:

UserDir	disabled	user4	user5	user6

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

It	is	also	possible	to	specify	alternative	user	directories.	If	you	use
a	command	like:

UserDir	"public_html"	"/usr/web"	"http://www.example.com/"

With	a	request	for
http://www.example.com/~bob/one/two.html,	will	try	to
find	the	page	at	~bob/public_html/one/two.html	first,	then
/usr/web/bob/one/two.html,	and	finally	it	will	send	a	redirect
to	http://www.example.com/bob/one/two.html.

If	you	add	a	redirect,	it	must	be	the	last	alternative	in	the	list.
Apache	httpd	cannot	determine	if	the	redirect	succeeded	or	not,	so
if	you	have	the	redirect	earlier	in	the	list,	that	will	always	be	the
alternative	that	is	used.

User	directory	substitution	is	not	active	by	default	in	versions	2.1.4
and	later.	In	earlier	versions,	UserDir	public_html	was
assumed	if	no	UserDir	directive	was	present.

Merging	details

Lists	of	specific	enabled	and	disabled	users	are	replaced,	not
merged,	from	global	to	virtual	host	scope

See	also
Per-user	web	directories	tutorial

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_usertrack

Description: Clickstream	logging	of	user	activity	on	a	site
Status: Extension
Module	Identifier: usertrack_module
Source	File: mod_usertrack.c

Summary
Provides	tracking	of	a	user	through	your	website	via	browser	cookies.

Logging

mod_usertrack	sets	a	cookie	which	can	be	logged	via
mod_log_config	configurable	logging	formats:

LogFormat	"%{Apache}n	%r	%t"	usertrack

CustomLog	logs/clickstream.log	usertrack

CookieDomain	Directive

Description: The	domain	to	which	the	tracking	cookie	applies
Syntax: CookieDomain	domain

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

This	directive	controls	the	setting	of	the	domain	to	which	the
tracking	cookie	applies.	If	not	present,	no	domain	is	included	in	the
cookie	header	field.

The	domain	string	must	begin	with	a	dot,	and	must	include	at
least	one	embedded	dot.	That	is,	.example.com	is	legal,	but
www.example.com	and	.com	are	not.

Most	browsers	in	use	today	will	not	allow	cookies	to	be	set	for	a
two-part	top	level	domain,	such	as	.co.uk,	although	such	a
domain	ostensibly	fulfills	the	requirements	above.
These	domains	are	equivalent	to	top	level	domains	such	as
.com,	and	allowing	such	cookies	may	be	a	security	risk.	Thus,	if
you	are	under	a	two-part	top	level	domain,	you	should	still	use
your	actual	domain,	as	you	would	with	any	other	top	level
domain	(for	example	.example.co.uk).

CookieDomain	.example.com

CookieExpires	Directive

Description: Expiry	time	for	the	tracking	cookie
Syntax: CookieExpires	expiry-period

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

When	used,	this	directive	sets	an	expiry	time	on	the	cookie
generated	by	the	usertrack	module.	The	expiry-period	can	be
given	either	as	a	number	of	seconds,	or	in	the	format	such	as	"2
weeks	3	days	7	hours".	Valid	denominations	are:	years,	months,
weeks,	days,	hours,	minutes	and	seconds.	If	the	expiry	time	is	in
any	format	other	than	one	number	indicating	the	number	of
seconds,	it	must	be	enclosed	by	double	quotes.

If	this	directive	is	not	used,	cookies	last	only	for	the	current
browser	session.

CookieExpires	"3	weeks"

CookieName	Directive

Description: Name	of	the	tracking	cookie
Syntax: CookieName	token

Default: CookieName	Apache

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

This	directive	allows	you	to	change	the	name	of	the	cookie	this
module	uses	for	its	tracking	purposes.	By	default	the	cookie	is
named	"Apache".

You	must	specify	a	valid	cookie	name;	results	are	unpredictable	if
you	use	a	name	containing	unusual	characters.	Valid	characters
include	A-Z,	a-z,	0-9,	"_",	and	"-".

CookieName	clicktrack

CookieStyle	Directive

Description: Format	of	the	cookie	header	field
Syntax: CookieStyle

Netscape|Cookie|Cookie2|RFC2109|RFC2965

Default: CookieStyle	Netscape

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

This	directive	controls	the	format	of	the	cookie	header	field.	The
three	formats	allowed	are:

Netscape,	which	is	the	original	but	now	deprecated	syntax.
This	is	the	default,	and	the	syntax	Apache	has	historically
used.
Cookie	or	RFC2109,	which	is	the	syntax	that	superseded	the
Netscape	syntax.
Cookie2	or	RFC2965,	which	is	the	most	current	cookie
syntax.

Not	all	clients	can	understand	all	of	these	formats,	but	you	should
use	the	newest	one	that	is	generally	acceptable	to	your	users'
browsers.	At	the	time	of	writing,	most	browsers	support	all	three	of
these	formats,	with	Cookie2	being	the	preferred	format.

CookieStyle	Cookie2

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

CookieTracking	Directive

Description: Enables	tracking	cookie
Syntax: CookieTracking	on|off

Default: CookieTracking	off

Context: server	config,	virtual	host,	directory,	.htaccess
Override: FileInfo
Status: Extension
Module: mod_usertrack

When	mod_usertrack	is	loaded,	and	CookieTracking	on	is
set,	Apache	will	send	a	user-tracking	cookie	for	all	new	requests.
This	directive	can	be	used	to	turn	this	behavior	on	or	off	on	a	per-
server	or	per-directory	basis.	By	default,	enabling
mod_usertrack	will	not	activate	cookies.

CookieTracking	on

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_version

Description: Version	dependent	configuration
Status: Extension
Module	Identifier: version_module
Source	File: mod_version.c

Summary
This	module	is	designed	for	the	use	in	test	suites	and	large	networks
which	have	to	deal	with	different	httpd	versions	and	different
configurations.	It	provides	a	new	container	--	<IfVersion>,	which
allows	a	flexible	version	checking	including	numeric	comparisons	and
regular	expressions.

Examples
<IfVersion	2.4.2>

				#	current	httpd	version	is	exactly	2.4.2

</IfVersion>

<IfVersion	>=	2.5>

				#	use	really	new	features	:-)

</IfVersion>

See	below	for	further	possibilities.

<IfVersion>	Directive

Description: contains	version	dependent	configuration
Syntax: <IfVersion	[[!]operator]	version>	...

</IfVersion>

Context: server	config,	virtual	host,	directory,	.htaccess
Override: All
Status: Extension
Module: mod_version

The	<IfVersion>	section	encloses	configuration	directives
which	are	executed	only	if	the	httpd	version	matches	the	desired
criteria.	For	normal	(numeric)	comparisons	the	version	argument
has	the	format	major[.minor[.patch]],	e.g.	2.1.0	or	2.2.
minor	and	patch	are	optional.	If	these	numbers	are	omitted,	they
are	assumed	to	be	zero.	The	following	numerical	operators	are
possible:

operator description
=	or	== httpd	version	is	equal
> httpd	version	is	greater	than
>= httpd	version	is	greater	or	equal
< httpd	version	is	less	than
<= httpd	version	is	less	or	equal

Example
<IfVersion	>=	2.3>

				#	this	happens	only	in	versions	greater	or

				#	equal	2.3.0.

</IfVersion>

Besides	the	numerical	comparison	it	is	possible	to	match	a	regular
expression	against	the	httpd	version.	There	are	two	ways	to	write
it:

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

operator description
=	or	== version	has	the	form	/regex/
~ version	has	the	form	regex

Example
<IfVersion	=	/^2.4.[01234]$/>

				#	e.g.	workaround	for	buggy	versions

</IfVersion>

In	order	to	reverse	the	meaning,	all	operators	can	be	preceded	by
an	exclamation	mark	(!):

<IfVersion	!~	^2.4.[01234]$>

				#	not	for	those	versions

</IfVersion>

If	the	operator	is	omitted,	it	is	assumed	to	be	=.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_vhost_alias

Description: Provides	for	dynamically	configured	mass	virtual
hosting

Status: Extension
Module	Identifier: vhost_alias_module
Source	File: mod_vhost_alias.c

Summary
This	module	creates	dynamically	configured	virtual	hosts,	by	allowing
the	IP	address	and/or	the	Host:	header	of	the	HTTP	request	to	be
used	as	part	of	the	pathname	to	determine	what	files	to	serve.	This
allows	for	easy	use	of	a	huge	number	of	virtual	hosts	with	similar
configurations.

Note

If	mod_alias	or	mod_userdir	are	used	for	translating	URIs	to
filenames,	they	will	override	the	directives	of	mod_vhost_alias
described	below.	For	example,	the	following	configuration	will	map
/cgi-bin/script.pl	to	/usr/local/apache2/cgi-
bin/script.pl	in	all	cases:

ScriptAlias	"/cgi-bin/"	"/usr/local/apache2/cgi-bin/"

VirtualScriptAlias	"/never/found/%0/cgi-bin/"

Bugfix	checklist

https://www.apache.org/foundation/contributing.html

httpd	changelog
Known	issues
Report	a	bug

See	also
UseCanonicalName

Dynamically	configured	mass	virtual	hosting

https://www.apache.org/dist/httpd/CHANGES_2.4
https://bz.apache.org/bugzilla/buglist.cgi?bug_status=__open__&list_id=144532&product=Apache%20httpd-2&query_format=specific&order=changeddate%20DESC%2Cpriority%2Cbug_severity&component=mod_vhost_alias
https://bz.apache.org/bugzilla/enter_bug.cgi?product=Apache%20httpd-2&component=mod_vhost_alias

Directory	Name	Interpolation

All	the	directives	in	this	module	interpolate	a	string	into	a
pathname.	The	interpolated	string	(henceforth	called	the	"name")
may	be	either	the	server	name	(see	the	UseCanonicalName
directive	for	details	on	how	this	is	determined)	or	the	IP	address	of
the	virtual	host	on	the	server	in	dotted-quad	format.	The
interpolation	is	controlled	by	specifiers	inspired	by	printf	which
have	a	number	of	formats:

%% insert	a	%
%p insert	the	port	number	of	the	virtual	host
%N.M insert	(part	of)	the	name

N	and	M	are	used	to	specify	substrings	of	the	name.	N	selects	from
the	dot-separated	components	of	the	name,	and	M	selects
characters	within	whatever	N	has	selected.	M	is	optional	and
defaults	to	zero	if	it	isn't	present;	the	dot	must	be	present	if	and
only	if	M	is	present.	The	interpretation	is	as	follows:

0 the	whole	name
1 the	first	part
2 the	second	part
-1 the	last	part
-2 the	penultimate	part
2+ the	second	and	all	subsequent	parts
-2+ the	penultimate	and	all	preceding	parts
1+	and	-1+ the	same	as	0

If	N	or	M	is	greater	than	the	number	of	parts	available	a	single
underscore	is	interpolated.

Examples

For	simple	name-based	virtual	hosts	you	might	use	the	following
directives	in	your	server	configuration	file:

UseCanonicalName				Off

VirtualDocumentRoot	"/usr/local/apache/vhosts/%0"

A	request	for
http://www.example.com/directory/file.html	will	be
satisfied	by	the	file
/usr/local/apache/vhosts/www.example.com/directory/file.html

For	a	very	large	number	of	virtual	hosts	it	is	a	good	idea	to	arrange
the	files	to	reduce	the	size	of	the	vhosts	directory.	To	do	this	you
might	use	the	following	in	your	configuration	file:

UseCanonicalName				Off

VirtualDocumentRoot	"/usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2"

A	request	for
http://www.domain.example.com/directory/file.html

will	be	satisfied	by	the	file
/usr/local/apache/vhosts/example.com/d/o/m/domain/directory/file.html

A	more	even	spread	of	files	can	be	achieved	by	hashing	from	the
end	of	the	name,	for	example:

VirtualDocumentRoot	"/usr/local/apache/vhosts/%3+/%2.-1/%2.-2/%2.-3/%2"

The	example	request	would	come	from
/usr/local/apache/vhosts/example.com/n/i/a/domain/directory/file.html

Alternatively	you	might	use:

VirtualDocumentRoot	"/usr/local/apache/vhosts/%3+/%2.1/%2.2/%2.3/%2.4+"

The	example	request	would	come	from
/usr/local/apache/vhosts/example.com/d/o/m/ain/directory/file.html

A	very	common	request	by	users	is	the	ability	to	point	multiple
domains	to	multiple	document	roots	without	having	to	worry	about
the	length	or	number	of	parts	of	the	hostname	being	requested.	If
the	requested	hostname	is	sub.www.domain.example.com
instead	of	simply	www.domain.example.com,	then	using	%3+
will	result	in	the	document	root	being
/usr/local/apache/vhosts/domain.example.com/...

instead	of	the	intended	example.com	directory.	In	such	cases,	it
can	be	beneficial	to	use	the	combination	%-2.0.%-1.0,	which	will
always	yield	the	domain	name	and	the	tld,	for	example
example.com	regardless	of	the	number	of	subdomains	appended
to	the	hostname.	As	such,	one	can	make	a	configuration	that	will
direct	all	first,	second	or	third	level	subdomains	to	the	same
directory:

VirtualDocumentRoot	"/usr/local/apache/vhosts/%-2.0.%-1.0"

In	the	example	above,	both	www.example.com	as	well	as
www.sub.example.com	or	example.com	will	all	point	to
/usr/local/apache/vhosts/example.com.

For	IP-based	virtual	hosting	you	might	use	the	following	in	your
configuration	file:

UseCanonicalName	DNS

VirtualDocumentRootIP	"/usr/local/apache/vhosts/%1/%2/%3/%4/docs"

VirtualScriptAliasIP		"/usr/local/apache/vhosts/%1/%2/%3/%4/cgi-bin"

A	request	for
http://www.domain.example.com/directory/file.html

would	be	satisfied	by	the	file
/usr/local/apache/vhosts/10/20/30/40/docs/directory/file.html

if	the	IP	address	of	www.domain.example.com	were
10.20.30.40.	A	request	for
http://www.domain.example.com/cgi-bin/script.pl

would	be	satisfied	by	executing	the	program
/usr/local/apache/vhosts/10/20/30/40/cgi-

bin/script.pl.

If	you	want	to	include	the	.	character	in	a
VirtualDocumentRoot	directive,	but	it	clashes	with	a	%
directive,	you	can	work	around	the	problem	in	the	following	way:

VirtualDocumentRoot	"/usr/local/apache/vhosts/%2.0.%3.0"

A	request	for
http://www.domain.example.com/directory/file.html

will	be	satisfied	by	the	file
/usr/local/apache/vhosts/domain.example/directory/file.html

The	LogFormat	directives	%V	and	%A	are	useful	in	conjunction
with	this	module.

VirtualDocumentRoot	Directive

Description: Dynamically	configure	the	location	of	the	document
root	for	a	given	virtual	host

Syntax: VirtualDocumentRoot	interpolated-

directory|none

Default: VirtualDocumentRoot	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_vhost_alias

The	VirtualDocumentRoot	directive	allows	you	to	determine
where	Apache	HTTP	Server	will	find	your	documents	based	on	the
value	of	the	server	name.	The	result	of	expanding	interpolated-
directory	is	used	as	the	root	of	the	document	tree	in	a	similar
manner	to	the	DocumentRoot	directive's	argument.	If
interpolated-directory	is	none	then	VirtualDocumentRoot	is
turned	off.	This	directive	cannot	be	used	in	the	same	context	as
VirtualDocumentRootIP.

Note
VirtualDocumentRoot	will	override	any	DocumentRoot
directives	you	may	have	put	in	the	same	context	or	child
contexts.	Putting	a	VirtualDocumentRoot	in	the	global
server	scope	will	effectively	override	DocumentRoot	directives
in	any	virtual	hosts	defined	later	on,	unless	you	set
VirtualDocumentRoot	to	None	in	each	virtual	host.

VirtualDocumentRootIP	Directive

Description: Dynamically	configure	the	location	of	the	document
root	for	a	given	virtual	host

Syntax: VirtualDocumentRootIP	interpolated-

directory|none

Default: VirtualDocumentRootIP	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_vhost_alias

The	VirtualDocumentRootIP	directive	is	like	the
VirtualDocumentRoot	directive,	except	that	it	uses	the	IP
address	of	the	server	end	of	the	connection	for	directory
interpolation	instead	of	the	server	name.

VirtualScriptAlias	Directive

Description: Dynamically	configure	the	location	of	the	CGI
directory	for	a	given	virtual	host

Syntax: VirtualScriptAlias	interpolated-

directory|none

Default: VirtualScriptAlias	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_vhost_alias

The	VirtualScriptAlias	directive	allows	you	to	determine
where	Apache	httpd	will	find	CGI	scripts	in	a	similar	manner	to
VirtualDocumentRoot	does	for	other	documents.	It	matches
requests	for	URIs	starting	/cgi-bin/,	much	like	ScriptAlias
/cgi-bin/	would.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

VirtualScriptAliasIP	Directive

Description: Dynamically	configure	the	location	of	the	CGI
directory	for	a	given	virtual	host

Syntax: VirtualScriptAliasIP	interpolated-

directory|none

Default: VirtualScriptAliasIP	none

Context: server	config,	virtual	host
Status: Extension
Module: mod_vhost_alias

The	VirtualScriptAliasIP	directive	is	like	the
VirtualScriptAlias	directive,	except	that	it	uses	the	IP
address	of	the	server	end	of	the	connection	for	directory
interpolation	instead	of	the	server	name.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_watchdog

Description: provides	infrastructure	for	other	modules	to
periodically	run	tasks

Status: Base
Module	Identifier: watchdog_module
Source	File: mod_watchdog.c
Compatibility: Available	in	Apache	2.3	and	later

Summary
mod_watchdog	defines	programmatic	hooks	for	other	modules	to
periodically	run	tasks.	These	modules	can	register	handlers	for
mod_watchdog	hooks.	Currently,	the	following	modules	in	the
Apache	distribution	use	this	functionality:

mod_heartbeat

mod_heartmonitor

To	allow	a	module	to	use	mod_watchdog	functionality,
mod_watchdog	itself	must	be	statically	linked	to	the	server	core	or,
if	a	dynamic	module,	be	loaded	before	the	calling	module.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

WatchdogInterval	Directive

Description: Watchdog	interval	in	seconds
Syntax: WatchdogInterval	number-of-seconds

Default: WatchdogInterval	1

Context: server	config
Status: Base
Module: mod_watchdog

Sets	the	interval	at	which	the	watchdog_step	hook	runs.	Default	is
to	run	every	second.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Modules

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Module	mod_xml2enc

Description: Enhanced	charset/internationalisation	support	for
libxml2-based	filter	modules

Status: Base
Module	Identifier: xml2enc_module
Source	File: mod_xml2enc.c
Compatibility: Version	2.4	and	later.	Available	as	a	third-party

module	for	2.2.x	versions

Summary
This	module	provides	enhanced	internationalisation	support	for
markup-aware	filter	modules	such	as	mod_proxy_html.	It	can
automatically	detect	the	encoding	of	input	data	and	ensure	they	are
correctly	processed	by	the	libxml2	parser,	including	converting	to
Unicode	(UTF-8)	where	necessary.	It	can	also	convert	data	to	an
encoding	of	choice	after	markup	processing,	and	will	ensure	the
correct	charset	value	is	set	in	the	HTTP	Content-Type	header.

http://xmlsoft.org/

Usage

There	are	two	usage	scenarios:	with	modules	programmed	to
work	with	mod_xml2enc,	and	with	those	that	are	not	aware	of	it:

Filter	modules	enabled	for	mod_xml2enc
Modules	such	as	mod_proxy_html	version	3.1	and	up	use
the	xml2enc_charset	optional	function	to	retrieve	the
charset	argument	to	pass	to	the	libxml2	parser,	and	may	use
the	xml2enc_filter	optional	function	to	postprocess	to
another	encoding.	Using	mod_xml2enc	with	an	enabled
module,	no	configuration	is	necessary:	the	other	module	will
configure	mod_xml2enc	for	you	(though	you	may	still	want	to
customise	it	using	the	configuration	directives	below).

Non-enabled	modules
To	use	it	with	a	libxml2-based	module	that	isn't	explicitly
enabled	for	mod_xml2enc,	you	will	have	to	configure	the	filter
chain	yourself.	So	to	use	it	with	a	filter	foo	provided	by	a
module	mod_foo	to	improve	the	latter's	i18n	support	with
HTML	and	XML,	you	could	use

				FilterProvider	iconv				xml2enc	Content-Type	$text/html

				FilterProvider	iconv				xml2enc	Content-Type	$xml

				FilterProvider	markup			foo	Content-Type	$text/html

				FilterProvider	markup			foo	Content-Type	$xml

				FilterChain					iconv	markup

				

mod_foo	will	now	support	any	character	set	supported	by
either	(or	both)	of	libxml2	or	apr_xlate/iconv.

Programming	API

Programmers	writing	libxml2-based	filter	modules	are	encouraged
to	enable	them	for	mod_xml2enc,	to	provide	strong	i18n	support
for	your	users	without	reinventing	the	wheel.	The	programming
API	is	exposed	in	mod_xml2enc.h,	and	a	usage	example	is
mod_proxy_html.

Detecting	an	Encoding

Unlike	mod_charset_lite,	mod_xml2enc	is	designed	to	work
with	data	whose	encoding	cannot	be	known	in	advance	and	thus
configured.	It	therefore	uses	'sniffing'	techniques	to	detect	the
encoding	of	HTTP	data	as	follows:

1.	 If	the	HTTP	Content-Type	header	includes	a	charset
parameter,	that	is	used.

2.	 If	the	data	start	with	an	XML	Byte	Order	Mark	(BOM)	or	an
XML	encoding	declaration,	that	is	used.

3.	 If	an	encoding	is	declared	in	an	HTML	<META>	element,	that
is	used.

4.	 If	none	of	the	above	match,	the	default	value	set	by
xml2EncDefault	is	used.

The	rules	are	applied	in	order.	As	soon	as	a	match	is	found,	it	is
used	and	detection	is	stopped.

Output	Encoding

libxml2	always	uses	UTF-8	(Unicode)	internally,	and	libxml2-based
filter	modules	will	output	that	by	default.	mod_xml2enc	can	change
the	output	encoding	through	the	API,	but	there	is	currently	no	way
to	configure	that	directly.

Changing	the	output	encoding	should	(in	theory,	at	least)	never	be
necessary,	and	is	not	recommended	due	to	the	extra	processing
load	on	the	server	of	an	unnecessary	conversion.

http://xmlsoft.org/

Unsupported	Encodings

If	you	are	working	with	encodings	that	are	not	supported	by	any	of
the	conversion	methods	available	on	your	platform,	you	can	still
alias	them	to	a	supported	encoding	using	xml2EncAlias.

xml2EncAlias	Directive

Description: Recognise	Aliases	for	encoding	values
Syntax: xml2EncAlias	charset	alias	[alias

...]

Context: server	config
Status: Base
Module: mod_xml2enc

This	server-wide	directive	aliases	one	or	more	encoding	to	another
encoding.	This	enables	encodings	not	recognised	by	libxml2	to	be
handled	internally	by	libxml2's	encoding	support	using	the
translation	table	for	a	recognised	encoding.	This	serves	two
purposes:	to	support	character	sets	(or	names)	not	recognised
either	by	libxml2	or	iconv,	and	to	skip	conversion	for	an	encoding
where	it	is	known	to	be	unnecessary.

xml2EncDefault	Directive

Description: Sets	a	default	encoding	to	assume	when
absolutely	no	information	can	be	automatically
detected

Syntax: xml2EncDefault	name

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Base
Module: mod_xml2enc
Compatibility: Version	2.4.0	and	later;	available	as	a	third-party

module	for	earlier	versions.

If	you	are	processing	data	with	known	encoding	but	no	encoding
information,	you	can	set	this	default	to	help	mod_xml2enc	process
the	data	correctly.	For	example,	to	work	with	the	default	value	of
Latin1	(iso-8859-1	specified	in	HTTP/1.0,	use

xml2EncDefault	iso-8859-1

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

xml2StartParse	Directive

Description: Advise	the	parser	to	skip	leading	junk.
Syntax: xml2StartParse	element	[element	...]

Context: server	config,	virtual	host,	directory,	.htaccess
Status: Base
Module: mod_xml2enc

Specify	that	the	markup	parser	should	start	at	the	first	instance	of
any	of	the	elements	specified.	This	can	be	used	as	a	workaround
where	a	broken	backend	inserts	leading	junk	that	messes	up	the
parser	(example	here).

It	should	never	be	used	for	XML,	nor	well-formed	HTML.

http://bahumbug.wordpress.com/2006/10/12/mod_proxy_html-revisited/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	1.3	API	notes

Warning

This	document	has	not	been	updated	to	take	into	account	changes
made	in	the	2.0	version	of	the	Apache	HTTP	Server.	Some	of	the
information	may	still	be	relevant,	but	please	use	it	with	care.

These	are	some	notes	on	the	Apache	API	and	the	data	structures	you
have	to	deal	with,	etc.	They	are	not	yet	nearly	complete,	but	hopefully,
they	will	help	you	get	your	bearings.	Keep	in	mind	that	the	API	is	still
subject	to	change	as	we	gain	experience	with	it.	(See	the	TODO	file
for	what	might	be	coming).	However,	it	will	be	easy	to	adapt	modules
to	any	changes	that	are	made.	(We	have	more	modules	to	adapt	than
you	do).

A	few	notes	on	general	pedagogical	style	here.	In	the	interest	of
conciseness,	all	structure	declarations	here	are	incomplete	--	the	real
ones	have	more	slots	that	I'm	not	telling	you	about.	For	the	most	part,
these	are	reserved	to	one	component	of	the	server	core	or	another,
and	should	be	altered	by	modules	with	caution.	However,	in	some
cases,	they	really	are	things	I	just	haven't	gotten	around	to	yet.
Welcome	to	the	bleeding	edge.

Finally,	here's	an	outline,	to	give	you	some	bare	idea	of	what's	coming
up,	and	in	what	order:

Basic	concepts.
Handlers,	Modules,	and	Requests
A	brief	tour	of	a	module

How	handlers	work
A	brief	tour	of	the	request_rec
Where	request_rec	structures	come	from

Handling	requests,	declining,	and	returning	error	codes
Special	considerations	for	response	handlers
Special	considerations	for	authentication	handlers
Special	considerations	for	logging	handlers

Resource	allocation	and	resource	pools
Configuration,	commands	and	the	like

Per-directory	configuration	structures
Command	handling
Side	notes	---	per-server	configuration,	virtual	servers,	etc.

Basic	concepts

We	begin	with	an	overview	of	the	basic	concepts	behind	the	API,
and	how	they	are	manifested	in	the	code.

Handlers,	Modules,	and	Requests
Apache	breaks	down	request	handling	into	a	series	of	steps,	more
or	less	the	same	way	the	Netscape	server	API	does	(although	this
API	has	a	few	more	stages	than	NetSite	does,	as	hooks	for	stuff	I
thought	might	be	useful	in	the	future).	These	are:

URI	->	Filename	translation
Auth	ID	checking	[is	the	user	who	they	say	they	are?]
Auth	access	checking	[is	the	user	authorized	here?]
Access	checking	other	than	auth
Determining	MIME	type	of	the	object	requested
`Fixups'	--	there	aren't	any	of	these	yet,	but	the	phase	is
intended	as	a	hook	for	possible	extensions	like	SetEnv,
which	don't	really	fit	well	elsewhere.
Actually	sending	a	response	back	to	the	client.
Logging	the	request

These	phases	are	handled	by	looking	at	each	of	a	succession	of
modules,	looking	to	see	if	each	of	them	has	a	handler	for	the
phase,	and	attempting	invoking	it	if	so.	The	handler	can	typically
do	one	of	three	things:

Handle	the	request,	and	indicate	that	it	has	done	so	by
returning	the	magic	constant	OK.
Decline	to	handle	the	request,	by	returning	the	magic	integer
constant	DECLINED.	In	this	case,	the	server	behaves	in	all
respects	as	if	the	handler	simply	hadn't	been	there.
Signal	an	error,	by	returning	one	of	the	HTTP	error	codes.
This	terminates	normal	handling	of	the	request,	although	an
ErrorDocument	may	be	invoked	to	try	to	mop	up,	and	it	will	be

logged	in	any	case.

Most	phases	are	terminated	by	the	first	module	that	handles	them;
however,	for	logging,	`fixups',	and	non-access	authentication
checking,	all	handlers	always	run	(barring	an	error).	Also,	the
response	phase	is	unique	in	that	modules	may	declare	multiple
handlers	for	it,	via	a	dispatch	table	keyed	on	the	MIME	type	of	the
requested	object.	Modules	may	declare	a	response-phase	handler
which	can	handle	any	request,	by	giving	it	the	key	*/*	(i.e.,	a
wildcard	MIME	type	specification).	However,	wildcard	handlers	are
only	invoked	if	the	server	has	already	tried	and	failed	to	find	a
more	specific	response	handler	for	the	MIME	type	of	the
requested	object	(either	none	existed,	or	they	all	declined).

The	handlers	themselves	are	functions	of	one	argument	(a
request_rec	structure.	vide	infra),	which	returns	an	integer,	as
above.

A	brief	tour	of	a	module
At	this	point,	we	need	to	explain	the	structure	of	a	module.	Our
candidate	will	be	one	of	the	messier	ones,	the	CGI	module	--	this
handles	both	CGI	scripts	and	the	ScriptAlias	config	file
command.	It's	actually	a	great	deal	more	complicated	than	most
modules,	but	if	we're	going	to	have	only	one	example,	it	might	as
well	be	the	one	with	its	fingers	in	every	place.

Let's	begin	with	handlers.	In	order	to	handle	the	CGI	scripts,	the
module	declares	a	response	handler	for	them.	Because	of
ScriptAlias,	it	also	has	handlers	for	the	name	translation
phase	(to	recognize	ScriptAliased	URIs),	the	type-checking
phase	(any	ScriptAliased	request	is	typed	as	a	CGI	script).

The	module	needs	to	maintain	some	per	(virtual)	server
information,	namely,	the	ScriptAliases	in	effect;	the	module

structure	therefore	contains	pointers	to	a	functions	which	builds
these	structures,	and	to	another	which	combines	two	of	them	(in
case	the	main	server	and	a	virtual	server	both	have
ScriptAliases	declared).

Finally,	this	module	contains	code	to	handle	the	ScriptAlias
command	itself.	This	particular	module	only	declares	one
command,	but	there	could	be	more,	so	modules	have	command
tables	which	declare	their	commands,	and	describe	where	they
are	permitted,	and	how	they	are	to	be	invoked.

A	final	note	on	the	declared	types	of	the	arguments	of	some	of
these	commands:	a	pool	is	a	pointer	to	a	resource	pool	structure;
these	are	used	by	the	server	to	keep	track	of	the	memory	which
has	been	allocated,	files	opened,	etc.,	either	to	service	a	particular
request,	or	to	handle	the	process	of	configuring	itself.	That	way,
when	the	request	is	over	(or,	for	the	configuration	pool,	when	the
server	is	restarting),	the	memory	can	be	freed,	and	the	files
closed,	en	masse,	without	anyone	having	to	write	explicit	code	to
track	them	all	down	and	dispose	of	them.	Also,	a	cmd_parms
structure	contains	various	information	about	the	config	file	being
read,	and	other	status	information,	which	is	sometimes	of	use	to
the	function	which	processes	a	config-file	command	(such	as
ScriptAlias).	With	no	further	ado,	the	module	itself:

/*	Declarations	of	handlers.	*/

int	translate_scriptalias	(request_rec	*);

int	type_scriptalias	(request_rec	*);

int	cgi_handler	(request_rec	*);

/*	Subsidiary	dispatch	table	for	response-phase	

	*	handlers,	by	MIME	type	*/

handler_rec	cgi_handlers[]	=	{

{	"application/x-httpd-cgi",	cgi_handler	},

{	NULL	}

};

/*	Declarations	of	routines	to	manipulate	the	

	*	module's	configuration	info.	Note	that	these	are

	*	returned,	and	passed	in,	as	void	*'s;	the	server

	*	core	keeps	track	of	them,	but	it	doesn't,	and	can't,

	*	know	their	internal	structure.

	*/

void	*make_cgi_server_config	(pool	*);

void	*merge_cgi_server_config	(pool	*,	void	*,	void	*);

/*	Declarations	of	routines	to	handle	config-file	commands	*/

extern	char	*script_alias(cmd_parms	*,	void	*per_dir_config,

char	*fake,	char	*real);

command_rec	cgi_cmds[]	=	{

{	"ScriptAlias",	script_alias,	NULL,	RSRC_CONF,	TAKE2,

"a	fakename	and	a	realname"},

{	NULL	}

};

module	cgi_module	=	{

		STANDARD_MODULE_STUFF,

		NULL,																					/*	initializer	*/

		NULL,																					/*	dir	config	creator	*/

		NULL,																					/*	dir	merger	*/

		make_cgi_server_config,			/*	server	config	*/

		merge_cgi_server_config,		/*	merge	server	config	*/

		cgi_cmds,																	/*	command	table	*/

		cgi_handlers,													/*	handlers	*/

		translate_scriptalias,				/*	filename	translation	*/

		NULL,																					/*	check_user_id	*/

		NULL,																					/*	check	auth	*/

		NULL,																					/*	check	access	*/

		type_scriptalias,									/*	type_checker	*/

		NULL,																					/*	fixups	*/

		NULL,																					/*	logger	*/

		NULL																						/*	header	parser	*/

};

How	handlers	work

The	sole	argument	to	handlers	is	a	request_rec	structure.	This
structure	describes	a	particular	request	which	has	been	made	to
the	server,	on	behalf	of	a	client.	In	most	cases,	each	connection	to
the	client	generates	only	one	request_rec	structure.

A	brief	tour	of	the	request_rec
The	request_rec	contains	pointers	to	a	resource	pool	which	will
be	cleared	when	the	server	is	finished	handling	the	request;	to
structures	containing	per-server	and	per-connection	information,
and	most	importantly,	information	on	the	request	itself.

The	most	important	such	information	is	a	small	set	of	character
strings	describing	attributes	of	the	object	being	requested,
including	its	URI,	filename,	content-type	and	content-encoding
(these	being	filled	in	by	the	translation	and	type-check	handlers
which	handle	the	request,	respectively).

Other	commonly	used	data	items	are	tables	giving	the	MIME
headers	on	the	client's	original	request,	MIME	headers	to	be	sent
back	with	the	response	(which	modules	can	add	to	at	will),	and
environment	variables	for	any	subprocesses	which	are	spawned
off	in	the	course	of	servicing	the	request.	These	tables	are
manipulated	using	the	ap_table_get	and	ap_table_set
routines.

Note	that	the	Content-type	header	value	cannot	be	set	by
module	content-handlers	using	the	ap_table_*()	routines.
Rather,	it	is	set	by	pointing	the	content_type	field	in	the
request_rec	structure	to	an	appropriate	string.	e.g.,

r->content_type	=	"text/html";

Finally,	there	are	pointers	to	two	data	structures	which,	in	turn,
point	to	per-module	configuration	structures.	Specifically,	these
hold	pointers	to	the	data	structures	which	the	module	has	built	to
describe	the	way	it	has	been	configured	to	operate	in	a	given
directory	(via	.htaccess	files	or	<Directory>	sections),	for
private	data	it	has	built	in	the	course	of	servicing	the	request	(so
modules'	handlers	for	one	phase	can	pass	`notes'	to	their	handlers
for	other	phases).	There	is	another	such	configuration	vector	in	the
server_rec	data	structure	pointed	to	by	the	request_rec,
which	contains	per	(virtual)	server	configuration	data.

Here	is	an	abridged	declaration,	giving	the	fields	most	commonly
used:

struct	request_rec	{

pool	*pool;

conn_rec	*connection;

server_rec	*server;

/*	What	object	is	being	requested	*/

char	*uri;

char	*filename;

char	*path_info;

char	*args;											/*	QUERY_ARGS,	if	any	*/

struct	stat	finfo;				/*	Set	by	server	core;

																							*	st_mode	set	to	zero	if	no	such	file	*/

char	*content_type;

char	*content_encoding;

/*	MIME	header	environments,	in	and	out.	Also,	

	*	an	array	containing	environment	variables	to

	*	be	passed	to	subprocesses,	so	people	can	write

	*	modules	to	add	to	that	environment.

	*

	*	The	difference	between	headers_out	and	

	*	err_headers_out	is	that	the	latter	are	printed	

	*	even	on	error,	and	persist	across	internal

	*	redirects	(so	the	headers	printed	for	

	*	ErrorDocument	handlers	will	have	them).

	*/

table	*headers_in;
table	*headers_out;
table	*err_headers_out;
table	*subprocess_env;

/*	Info	about	the	request	itself...	*/

int	header_only;					/*	HEAD	request,	as	opposed	to	GET	*/

char	*protocol;						/*	Protocol,	as	given	to	us,	or	HTTP/0.9	*/

char	*method;								/*	GET,	HEAD,	POST,	etc.	*/

int	method_number;			/*	M_GET,	M_POST,	etc.	*/

/*	Info	for	logging	*/

char	*the_request;

int	bytes_sent;

/*	A	flag	which	modules	can	set,	to	indicate	that

	*	the	data	being	returned	is	volatile,	and	clients

	*	should	be	told	not	to	cache	it.

	*/

int	no_cache;

/*	Various	other	config	info	which	may	change

	*	with	.htaccess	files

	*	These	are	config	vectors,	with	one	void*

	*	pointer	for	each	module	(the	thing	pointed

	*	to	being	the	module's	business).

	*/

void	*per_dir_config;			/*	Options	set	in	config	files,	etc.	*/

void	*request_config;			/*	Notes	on	*this*	request	*/

};

Where	request_rec	structures	come	from
Most	request_rec	structures	are	built	by	reading	an	HTTP
request	from	a	client,	and	filling	in	the	fields.	However,	there	are	a
few	exceptions:

If	the	request	is	to	an	imagemap,	a	type	map	(i.e.,	a	*.var

file),	or	a	CGI	script	which	returned	a	local	`Location:',	then
the	resource	which	the	user	requested	is	going	to	be
ultimately	located	by	some	URI	other	than	what	the	client
originally	supplied.	In	this	case,	the	server	does	an	internal
redirect,	constructing	a	new	request_rec	for	the	new	URI,
and	processing	it	almost	exactly	as	if	the	client	had	requested
the	new	URI	directly.
If	some	handler	signaled	an	error,	and	an	ErrorDocument	is
in	scope,	the	same	internal	redirect	machinery	comes	into
play.
Finally,	a	handler	occasionally	needs	to	investigate	`what
would	happen	if'	some	other	request	were	run.	For	instance,
the	directory	indexing	module	needs	to	know	what	MIME	type
would	be	assigned	to	a	request	for	each	directory	entry,	in
order	to	figure	out	what	icon	to	use.

Such	handlers	can	construct	a	sub-request,	using	the
functions	ap_sub_req_lookup_file,
ap_sub_req_lookup_uri,	and
ap_sub_req_method_uri;	these	construct	a	new
request_rec	structure	and	processes	it	as	you	would
expect,	up	to	but	not	including	the	point	of	actually	sending	a
response.	(These	functions	skip	over	the	access	checks	if	the
sub-request	is	for	a	file	in	the	same	directory	as	the	original
request).

(Server-side	includes	work	by	building	sub-requests	and	then
actually	invoking	the	response	handler	for	them,	via	the
function	ap_run_sub_req).

Handling	requests,	declining,	and	returning	error
codes
As	discussed	above,	each	handler,	when	invoked	to	handle	a

particular	request_rec,	has	to	return	an	int	to	indicate	what
happened.	That	can	either	be

OK	--	the	request	was	handled	successfully.	This	may	or	may
not	terminate	the	phase.
DECLINED	--	no	erroneous	condition	exists,	but	the	module
declines	to	handle	the	phase;	the	server	tries	to	find	another.
an	HTTP	error	code,	which	aborts	handling	of	the	request.

Note	that	if	the	error	code	returned	is	REDIRECT,	then	the	module
should	put	a	Location	in	the	request's	headers_out,	to
indicate	where	the	client	should	be	redirected	to.

Special	considerations	for	response	handlers
Handlers	for	most	phases	do	their	work	by	simply	setting	a	few
fields	in	the	request_rec	structure	(or,	in	the	case	of	access
checkers,	simply	by	returning	the	correct	error	code).	However,
response	handlers	have	to	actually	send	a	request	back	to	the
client.

They	should	begin	by	sending	an	HTTP	response	header,	using
the	function	ap_send_http_header.	(You	don't	have	to	do
anything	special	to	skip	sending	the	header	for	HTTP/0.9
requests;	the	function	figures	out	on	its	own	that	it	shouldn't	do
anything).	If	the	request	is	marked	header_only,	that's	all	they
should	do;	they	should	return	after	that,	without	attempting	any
further	output.

Otherwise,	they	should	produce	a	request	body	which	responds	to
the	client	as	appropriate.	The	primitives	for	this	are	ap_rputc	and
ap_rprintf,	for	internally	generated	output,	and	ap_send_fd,
to	copy	the	contents	of	some	FILE	*	straight	to	the	client.

At	this	point,	you	should	more	or	less	understand	the	following

piece	of	code,	which	is	the	handler	which	handles	GET	requests
which	have	no	more	specific	handler;	it	also	shows	how
conditional	GETs	can	be	handled,	if	it's	desirable	to	do	so	in	a
particular	response	handler	--	ap_set_last_modified	checks
against	the	If-modified-since	value	supplied	by	the	client,	if
any,	and	returns	an	appropriate	code	(which	will,	if	nonzero,	be
USE_LOCAL_COPY).	No	similar	considerations	apply	for
ap_set_content_length,	but	it	returns	an	error	code	for
symmetry.

int	default_handler	(request_rec	*r)

{

int	errstatus;

FILE	*f;

if	(r->method_number	!=	M_GET)	return	DECLINED;

if	(r->finfo.st_mode	==	0)	return	NOT_FOUND;

if	((errstatus	=	ap_set_content_length	(r,	r-

>finfo.st_size))

				||	(errstatus	=	ap_set_last_modified	(r,	r-

>finfo.st_mtime)))

return	errstatus;

f	=	fopen	(r->filename,	"r");

if	(f	==	NULL)	{

log_reason("file	permissions	deny	server	access",	r-

>filename,	r);

return	FORBIDDEN;

}

register_timeout	("send",	r);

ap_send_http_header	(r);

if	(!r->header_only)	send_fd	(f,	r);

ap_pfclose	(r->pool,	f);

return	OK;

}

Finally,	if	all	of	this	is	too	much	of	a	challenge,	there	are	a	few
ways	out	of	it.	First	off,	as	shown	above,	a	response	handler	which

has	not	yet	produced	any	output	can	simply	return	an	error	code,
in	which	case	the	server	will	automatically	produce	an	error
response.	Secondly,	it	can	punt	to	some	other	handler	by	invoking
ap_internal_redirect,	which	is	how	the	internal	redirection
machinery	discussed	above	is	invoked.	A	response	handler	which
has	internally	redirected	should	always	return	OK.

(Invoking	ap_internal_redirect	from	handlers	which	are	not
response	handlers	will	lead	to	serious	confusion).

Special	considerations	for	authentication	handlers
Stuff	that	should	be	discussed	here	in	detail:

Authentication-phase	handlers	not	invoked	unless	auth	is
configured	for	the	directory.
Common	auth	configuration	stored	in	the	core	per-dir
configuration;	it	has	accessors	ap_auth_type,
ap_auth_name,	and	ap_requires.
Common	routines,	to	handle	the	protocol	end	of	things,	at
least	for	HTTP	basic	authentication
(ap_get_basic_auth_pw,	which	sets	the	connection-
>user	structure	field	automatically,	and
ap_note_basic_auth_failure,	which	arranges	for	the
proper	WWW-Authenticate:	header	to	be	sent	back).

Special	considerations	for	logging	handlers
When	a	request	has	internally	redirected,	there	is	the	question	of
what	to	log.	Apache	handles	this	by	bundling	the	entire	chain	of
redirects	into	a	list	of	request_rec	structures	which	are	threaded
through	the	r->prev	and	r->next	pointers.	The	request_rec
which	is	passed	to	the	logging	handlers	in	such	cases	is	the	one
which	was	originally	built	for	the	initial	request	from	the	client;	note
that	the	bytes_sent	field	will	only	be	correct	in	the	last	request	in

the	chain	(the	one	for	which	a	response	was	actually	sent).

Resource	allocation	and	resource	pools

One	of	the	problems	of	writing	and	designing	a	server-pool	server
is	that	of	preventing	leakage,	that	is,	allocating	resources
(memory,	open	files,	etc.),	without	subsequently	releasing	them.
The	resource	pool	machinery	is	designed	to	make	it	easy	to
prevent	this	from	happening,	by	allowing	resource	to	be	allocated
in	such	a	way	that	they	are	automatically	released	when	the	server
is	done	with	them.

The	way	this	works	is	as	follows:	the	memory	which	is	allocated,
file	opened,	etc.,	to	deal	with	a	particular	request	are	tied	to	a
resource	pool	which	is	allocated	for	the	request.	The	pool	is	a	data
structure	which	itself	tracks	the	resources	in	question.

When	the	request	has	been	processed,	the	pool	is	cleared.	At	that
point,	all	the	memory	associated	with	it	is	released	for	reuse,	all
files	associated	with	it	are	closed,	and	any	other	clean-up
functions	which	are	associated	with	the	pool	are	run.	When	this	is
over,	we	can	be	confident	that	all	the	resource	tied	to	the	pool
have	been	released,	and	that	none	of	them	have	leaked.

Server	restarts,	and	allocation	of	memory	and	resources	for	per-
server	configuration,	are	handled	in	a	similar	way.	There	is	a
configuration	pool,	which	keeps	track	of	resources	which	were
allocated	while	reading	the	server	configuration	files,	and	handling
the	commands	therein	(for	instance,	the	memory	that	was
allocated	for	per-server	module	configuration,	log	files	and	other
files	that	were	opened,	and	so	forth).	When	the	server	restarts,
and	has	to	reread	the	configuration	files,	the	configuration	pool	is
cleared,	and	so	the	memory	and	file	descriptors	which	were	taken
up	by	reading	them	the	last	time	are	made	available	for	reuse.

It	should	be	noted	that	use	of	the	pool	machinery	isn't	generally
obligatory,	except	for	situations	like	logging	handlers,	where	you
really	need	to	register	cleanups	to	make	sure	that	the	log	file	gets

closed	when	the	server	restarts	(this	is	most	easily	done	by	using
the	function	ap_pfopen,	which	also	arranges	for	the	underlying
file	descriptor	to	be	closed	before	any	child	processes,	such	as	for
CGI	scripts,	are	execed),	or	in	case	you	are	using	the	timeout
machinery	(which	isn't	yet	even	documented	here).	However,
there	are	two	benefits	to	using	it:	resources	allocated	to	a	pool
never	leak	(even	if	you	allocate	a	scratch	string,	and	just	forget
about	it);	also,	for	memory	allocation,	ap_palloc	is	generally
faster	than	malloc.

We	begin	here	by	describing	how	memory	is	allocated	to	pools,
and	then	discuss	how	other	resources	are	tracked	by	the	resource
pool	machinery.

Allocation	of	memory	in	pools
Memory	is	allocated	to	pools	by	calling	the	function	ap_palloc,
which	takes	two	arguments,	one	being	a	pointer	to	a	resource	pool
structure,	and	the	other	being	the	amount	of	memory	to	allocate
(in	chars).	Within	handlers	for	handling	requests,	the	most
common	way	of	getting	a	resource	pool	structure	is	by	looking	at
the	pool	slot	of	the	relevant	request_rec;	hence	the	repeated
appearance	of	the	following	idiom	in	module	code:

int	my_handler(request_rec	*r)

{

struct	my_structure	*foo;

...

foo	=	(foo	*)ap_palloc	(r->pool,	sizeof(my_structure));

}

Note	that	there	is	no	ap_pfree	--	ap_palloced	memory	is	freed
only	when	the	associated	resource	pool	is	cleared.	This	means
that	ap_palloc	does	not	have	to	do	as	much	accounting	as
malloc();	all	it	does	in	the	typical	case	is	to	round	up	the	size,

bump	a	pointer,	and	do	a	range	check.

(It	also	raises	the	possibility	that	heavy	use	of	ap_palloc	could
cause	a	server	process	to	grow	excessively	large.	There	are	two
ways	to	deal	with	this,	which	are	dealt	with	below;	briefly,	you	can
use	malloc,	and	try	to	be	sure	that	all	of	the	memory	gets
explicitly	freed,	or	you	can	allocate	a	sub-pool	of	the	main	pool,
allocate	your	memory	in	the	sub-pool,	and	clear	it	out	periodically.
The	latter	technique	is	discussed	in	the	section	on	sub-pools
below,	and	is	used	in	the	directory-indexing	code,	in	order	to	avoid
excessive	storage	allocation	when	listing	directories	with
thousands	of	files).

Allocating	initialized	memory
There	are	functions	which	allocate	initialized	memory,	and	are
frequently	useful.	The	function	ap_pcalloc	has	the	same
interface	as	ap_palloc,	but	clears	out	the	memory	it	allocates
before	it	returns	it.	The	function	ap_pstrdup	takes	a	resource
pool	and	a	char	*	as	arguments,	and	allocates	memory	for	a
copy	of	the	string	the	pointer	points	to,	returning	a	pointer	to	the
copy.	Finally	ap_pstrcat	is	a	varargs-style	function,	which	takes
a	pointer	to	a	resource	pool,	and	at	least	two	char	*	arguments,
the	last	of	which	must	be	NULL.	It	allocates	enough	memory	to	fit
copies	of	each	of	the	strings,	as	a	unit;	for	instance:

ap_pstrcat	(r->pool,	"foo",	"/",	"bar",	NULL);

returns	a	pointer	to	8	bytes	worth	of	memory,	initialized	to
"foo/bar".

Commonly-used	pools	in	the	Apache	Web	server
A	pool	is	really	defined	by	its	lifetime	more	than	anything	else.

There	are	some	static	pools	in	http_main	which	are	passed	to
various	non-http_main	functions	as	arguments	at	opportune	times.
Here	they	are:

permanent_pool

never	passed	to	anything	else,	this	is	the	ancestor	of	all	pools

pconf

subpool	of	permanent_pool
created	at	the	beginning	of	a	config	"cycle";	exists	until
the	server	is	terminated	or	restarts;	passed	to	all	config-
time	routines,	either	via	cmd->pool,	or	as	the	"pool	*p"
argument	on	those	which	don't	take	pools
passed	to	the	module	init()	functions

ptemp

sorry	I	lie,	this	pool	isn't	called	this	currently	in	1.3,	I
renamed	it	this	in	my	pthreads	development.	I'm	referring
to	the	use	of	ptrans	in	the	parent...	contrast	this	with	the
later	definition	of	ptrans	in	the	child.
subpool	of	permanent_pool
created	at	the	beginning	of	a	config	"cycle";	exists	until
the	end	of	config	parsing;	passed	to	config-time	routines
via	cmd->temp_pool.	Somewhat	of	a	"bastard	child"
because	it	isn't	available	everywhere.	Used	for	temporary
scratch	space	which	may	be	needed	by	some	config
routines	but	which	is	deleted	at	the	end	of	config.

pchild

subpool	of	permanent_pool
created	when	a	child	is	spawned	(or	a	thread	is	created);
lives	until	that	child	(thread)	is	destroyed
passed	to	the	module	child_init	functions
destruction	happens	right	after	the	child_exit	functions
are	called...	(which	may	explain	why	I	think	child_exit	is

redundant	and	unneeded)

ptrans

should	be	a	subpool	of	pchild,	but	currently	is	a	subpool
of	permanent_pool,	see	above
cleared	by	the	child	before	going	into	the	accept()	loop	to
receive	a	connection
used	as	connection->pool

r->pool

for	the	main	request	this	is	a	subpool	of	connection-
>pool;	for	subrequests	it	is	a	subpool	of	the	parent
request's	pool.
exists	until	the	end	of	the	request	(i.e.,
ap_destroy_sub_req,	or	in	child_main	after
process_request	has	finished)
note	that	r	itself	is	allocated	from	r->pool;	i.e.,	r->pool	is
first	created	and	then	r	is	the	first	thing	palloc()d	from	it

For	almost	everything	folks	do,	r->pool	is	the	pool	to	use.	But
you	can	see	how	other	lifetimes,	such	as	pchild,	are	useful	to
some	modules...	such	as	modules	that	need	to	open	a	database
connection	once	per	child,	and	wish	to	clean	it	up	when	the	child
dies.

You	can	also	see	how	some	bugs	have	manifested	themself,	such
as	setting	connection->user	to	a	value	from	r->pool	--	in	this
case	connection	exists	for	the	lifetime	of	ptrans,	which	is	longer
than	r->pool	(especially	if	r->pool	is	a	subrequest!).	So	the
correct	thing	to	do	is	to	allocate	from	connection->pool.

And	there	was	another	interesting	bug	in	mod_include	/
mod_cgi.	You'll	see	in	those	that	they	do	this	test	to	decide	if	they
should	use	r->pool	or	r->main->pool.	In	this	case	the
resource	that	they	are	registering	for	cleanup	is	a	child	process.	If

it	were	registered	in	r->pool,	then	the	code	would	wait()	for
the	child	when	the	subrequest	finishes.	With	mod_include	this
could	be	any	old	#include,	and	the	delay	can	be	up	to	3
seconds...	and	happened	quite	frequently.	Instead	the	subprocess
is	registered	in	r->main->pool	which	causes	it	to	be	cleaned	up
when	the	entire	request	is	done	--	i.e.,	after	the	output	has	been
sent	to	the	client	and	logging	has	happened.

Tracking	open	files,	etc.
As	indicated	above,	resource	pools	are	also	used	to	track	other
sorts	of	resources	besides	memory.	The	most	common	are	open
files.	The	routine	which	is	typically	used	for	this	is	ap_pfopen,
which	takes	a	resource	pool	and	two	strings	as	arguments;	the
strings	are	the	same	as	the	typical	arguments	to	fopen,	e.g.,

...

FILE	*f	=	ap_pfopen	(r->pool,	r->filename,	"r");

if	(f	==	NULL)	{	...	}	else	{	...	}

There	is	also	a	ap_popenf	routine,	which	parallels	the	lower-level
open	system	call.	Both	of	these	routines	arrange	for	the	file	to	be
closed	when	the	resource	pool	in	question	is	cleared.

Unlike	the	case	for	memory,	there	are	functions	to	close	files
allocated	with	ap_pfopen,	and	ap_popenf,	namely
ap_pfclose	and	ap_pclosef.	(This	is	because,	on	many
systems,	the	number	of	files	which	a	single	process	can	have
open	is	quite	limited).	It	is	important	to	use	these	functions	to	close
files	allocated	with	ap_pfopen	and	ap_popenf,	since	to	do
otherwise	could	cause	fatal	errors	on	systems	such	as	Linux,
which	react	badly	if	the	same	FILE*	is	closed	more	than	once.

(Using	the	close	functions	is	not	mandatory,	since	the	file	will

eventually	be	closed	regardless,	but	you	should	consider	it	in
cases	where	your	module	is	opening,	or	could	open,	a	lot	of	files).

Other	sorts	of	resources	--	cleanup	functions
More	text	goes	here.	Describe	the	cleanup	primitives	in	terms	of
which	the	file	stuff	is	implemented;	also,	spawn_process.

Pool	cleanups	live	until	clear_pool()	is	called:
clear_pool(a)	recursively	calls	destroy_pool()	on	all
subpools	of	a;	then	calls	all	the	cleanups	for	a;	then	releases	all
the	memory	for	a.	destroy_pool(a)	calls	clear_pool(a)	and
then	releases	the	pool	structure	itself.	i.e.,	clear_pool(a)
doesn't	delete	a,	it	just	frees	up	all	the	resources	and	you	can	start
using	it	again	immediately.

Fine	control	--	creating	and	dealing	with	sub-pools,
with	a	note	on	sub-requests
On	rare	occasions,	too-free	use	of	ap_palloc()	and	the
associated	primitives	may	result	in	undesirably	profligate	resource
allocation.	You	can	deal	with	such	a	case	by	creating	a	sub-pool,
allocating	within	the	sub-pool	rather	than	the	main	pool,	and
clearing	or	destroying	the	sub-pool,	which	releases	the	resources
which	were	associated	with	it.	(This	really	is	a	rare	situation;	the
only	case	in	which	it	comes	up	in	the	standard	module	set	is	in
case	of	listing	directories,	and	then	only	with	very	large	directories.
Unnecessary	use	of	the	primitives	discussed	here	can	hair	up	your
code	quite	a	bit,	with	very	little	gain).

The	primitive	for	creating	a	sub-pool	is	ap_make_sub_pool,
which	takes	another	pool	(the	parent	pool)	as	an	argument.	When
the	main	pool	is	cleared,	the	sub-pool	will	be	destroyed.	The	sub-
pool	may	also	be	cleared	or	destroyed	at	any	time,	by	calling	the
functions	ap_clear_pool	and	ap_destroy_pool,	respectively.

(The	difference	is	that	ap_clear_pool	frees	resources
associated	with	the	pool,	while	ap_destroy_pool	also
deallocates	the	pool	itself.	In	the	former	case,	you	can	allocate
new	resources	within	the	pool,	and	clear	it	again,	and	so	forth;	in
the	latter	case,	it	is	simply	gone).

One	final	note	--	sub-requests	have	their	own	resource	pools,
which	are	sub-pools	of	the	resource	pool	for	the	main	request.	The
polite	way	to	reclaim	the	resources	associated	with	a	sub	request
which	you	have	allocated	(using	the	ap_sub_req_...	functions)
is	ap_destroy_sub_req,	which	frees	the	resource	pool.	Before
calling	this	function,	be	sure	to	copy	anything	that	you	care	about
which	might	be	allocated	in	the	sub-request's	resource	pool	into
someplace	a	little	less	volatile	(for	instance,	the	filename	in	its
request_rec	structure).

(Again,	under	most	circumstances,	you	shouldn't	feel	obliged	to
call	this	function;	only	2K	of	memory	or	so	are	allocated	for	a
typical	sub	request,	and	it	will	be	freed	anyway	when	the	main
request	pool	is	cleared.	It	is	only	when	you	are	allocating	many,
many	sub-requests	for	a	single	main	request	that	you	should
seriously	consider	the	ap_destroy_...	functions).

Configuration,	commands	and	the	like

One	of	the	design	goals	for	this	server	was	to	maintain	external
compatibility	with	the	NCSA	1.3	server	---	that	is,	to	read	the	same
configuration	files,	to	process	all	the	directives	therein	correctly,
and	in	general	to	be	a	drop-in	replacement	for	NCSA.	On	the	other
hand,	another	design	goal	was	to	move	as	much	of	the	server's
functionality	into	modules	which	have	as	little	as	possible	to	do
with	the	monolithic	server	core.	The	only	way	to	reconcile	these
goals	is	to	move	the	handling	of	most	commands	from	the	central
server	into	the	modules.

However,	just	giving	the	modules	command	tables	is	not	enough
to	divorce	them	completely	from	the	server	core.	The	server	has	to
remember	the	commands	in	order	to	act	on	them	later.	That
involves	maintaining	data	which	is	private	to	the	modules,	and
which	can	be	either	per-server,	or	per-directory.	Most	things	are
per-directory,	including	in	particular	access	control	and
authorization	information,	but	also	information	on	how	to
determine	file	types	from	suffixes,	which	can	be	modified	by
AddType	and	ForceType	directives,	and	so	forth.	In	general,	the
governing	philosophy	is	that	anything	which	can	be	made
configurable	by	directory	should	be;	per-server	information	is
generally	used	in	the	standard	set	of	modules	for	information	like
Aliases	and	Redirects	which	come	into	play	before	the
request	is	tied	to	a	particular	place	in	the	underlying	file	system.

Another	requirement	for	emulating	the	NCSA	server	is	being	able
to	handle	the	per-directory	configuration	files,	generally	called
.htaccess	files,	though	even	in	the	NCSA	server	they	can
contain	directives	which	have	nothing	at	all	to	do	with	access
control.	Accordingly,	after	URI	->	filename	translation,	but	before
performing	any	other	phase,	the	server	walks	down	the	directory
hierarchy	of	the	underlying	filesystem,	following	the	translated
pathname,	to	read	any	.htaccess	files	which	might	be	present.

The	information	which	is	read	in	then	has	to	be	merged	with	the
applicable	information	from	the	server's	own	config	files	(either
from	the	<Directory>	sections	in	access.conf,	or	from
defaults	in	srm.conf,	which	actually	behaves	for	most	purposes
almost	exactly	like	<Directory	/>).

Finally,	after	having	served	a	request	which	involved	reading
.htaccess	files,	we	need	to	discard	the	storage	allocated	for
handling	them.	That	is	solved	the	same	way	it	is	solved	wherever
else	similar	problems	come	up,	by	tying	those	structures	to	the
per-transaction	resource	pool.

Per-directory	configuration	structures
Let's	look	out	how	all	of	this	plays	out	in	mod_mime.c,	which
defines	the	file	typing	handler	which	emulates	the	NCSA	server's
behavior	of	determining	file	types	from	suffixes.	What	we'll	be
looking	at,	here,	is	the	code	which	implements	the	AddType	and
AddEncoding	commands.	These	commands	can	appear	in
.htaccess	files,	so	they	must	be	handled	in	the	module's	private
per-directory	data,	which	in	fact,	consists	of	two	separate	tables
for	MIME	types	and	encoding	information,	and	is	declared	as
follows:

typedef	struct	{

				table	*forced_types;						/*	Additional	AddTyped	stuff	*/

				table	*encoding_types;				/*	Added	with	AddEncoding...	*/

}	mime_dir_config;

When	the	server	is	reading	a	configuration	file,	or	<Directory>
section,	which	includes	one	of	the	MIME	module's	commands,	it
needs	to	create	a	mime_dir_config	structure,	so	those
commands	have	something	to	act	on.	It	does	this	by	invoking	the
function	it	finds	in	the	module's	`create	per-dir	config	slot',	with	two
arguments:	the	name	of	the	directory	to	which	this	configuration

information	applies	(or	NULL	for	srm.conf),	and	a	pointer	to	a
resource	pool	in	which	the	allocation	should	happen.

(If	we	are	reading	a	.htaccess	file,	that	resource	pool	is	the	per-
request	resource	pool	for	the	request;	otherwise	it	is	a	resource
pool	which	is	used	for	configuration	data,	and	cleared	on	restarts.
Either	way,	it	is	important	for	the	structure	being	created	to	vanish
when	the	pool	is	cleared,	by	registering	a	cleanup	on	the	pool	if
necessary).

For	the	MIME	module,	the	per-dir	config	creation	function	just
ap_pallocs	the	structure	above,	and	a	creates	a	couple	of	tables
to	fill	it.	That	looks	like	this:

void	*create_mime_dir_config	(pool	*p,	char	*dummy)

{

mime_dir_config	*new	=

(mime_dir_config	*)	ap_palloc	(p,

sizeof(mime_dir_config));

new->forced_types	=	ap_make_table	(p,	4);

new->encoding_types	=	ap_make_table	(p,	4);

return	new;

}

Now,	suppose	we've	just	read	in	a	.htaccess	file.	We	already
have	the	per-directory	configuration	structure	for	the	next	directory
up	in	the	hierarchy.	If	the	.htaccess	file	we	just	read	in	didn't
have	any	AddType	or	AddEncoding	commands,	its	per-directory
config	structure	for	the	MIME	module	is	still	valid,	and	we	can	just
use	it.	Otherwise,	we	need	to	merge	the	two	structures	somehow.

To	do	that,	the	server	invokes	the	module's	per-directory	config
merge	function,	if	one	is	present.	That	function	takes	three
arguments:	the	two	structures	being	merged,	and	a	resource	pool
in	which	to	allocate	the	result.	For	the	MIME	module,	all	that	needs

to	be	done	is	overlay	the	tables	from	the	new	per-directory	config
structure	with	those	from	the	parent:

void	*merge_mime_dir_configs	(pool	*p,	void	*parent_dirv,	void

*subdirv)

{

mime_dir_config	*parent_dir	=	(mime_dir_config

*)parent_dirv;

mime_dir_config	*subdir	=	(mime_dir_config	*)subdirv;

mime_dir_config	*new	=

(mime_dir_config	*)ap_palloc	(p,	sizeof(mime_dir_config));

new->forced_types	=	ap_overlay_tables	(p,	subdir-

>forced_types,

parent_dir->forced_types);

new->encoding_types	=	ap_overlay_tables	(p,	subdir-

>encoding_types,

parent_dir->encoding_types);

return	new;

}

As	a	note	--	if	there	is	no	per-directory	merge	function	present,	the
server	will	just	use	the	subdirectory's	configuration	info,	and	ignore
the	parent's.	For	some	modules,	that	works	just	fine	(e.g.,	for	the
includes	module,	whose	per-directory	configuration	information
consists	solely	of	the	state	of	the	XBITHACK),	and	for	those
modules,	you	can	just	not	declare	one,	and	leave	the
corresponding	structure	slot	in	the	module	itself	NULL.

Command	handling
Now	that	we	have	these	structures,	we	need	to	be	able	to	figure
out	how	to	fill	them.	That	involves	processing	the	actual	AddType
and	AddEncoding	commands.	To	find	commands,	the	server
looks	in	the	module's	command	table.	That	table	contains
information	on	how	many	arguments	the	commands	take,	and	in
what	formats,	where	it	is	permitted,	and	so	forth.	That	information
is	sufficient	to	allow	the	server	to	invoke	most	command-handling
functions	with	pre-parsed	arguments.	Without	further	ado,	let's

look	at	the	AddType	command	handler,	which	looks	like	this	(the
AddEncoding	command	looks	basically	the	same,	and	won't	be
shown	here):

char	*add_type(cmd_parms	*cmd,	mime_dir_config	*m,	char	*ct,

char	*ext)

{

if	(*ext	==	'.')	++ext;

ap_table_set	(m->forced_types,	ext,	ct);

return	NULL;

}

This	command	handler	is	unusually	simple.	As	you	can	see,	it
takes	four	arguments,	two	of	which	are	pre-parsed	arguments,	the
third	being	the	per-directory	configuration	structure	for	the	module
in	question,	and	the	fourth	being	a	pointer	to	a	cmd_parms
structure.	That	structure	contains	a	bunch	of	arguments	which	are
frequently	of	use	to	some,	but	not	all,	commands,	including	a
resource	pool	(from	which	memory	can	be	allocated,	and	to	which
cleanups	should	be	tied),	and	the	(virtual)	server	being	configured,
from	which	the	module's	per-server	configuration	data	can	be
obtained	if	required.

Another	way	in	which	this	particular	command	handler	is	unusually
simple	is	that	there	are	no	error	conditions	which	it	can	encounter.
If	there	were,	it	could	return	an	error	message	instead	of	NULL;
this	causes	an	error	to	be	printed	out	on	the	server's	stderr,
followed	by	a	quick	exit,	if	it	is	in	the	main	config	files;	for	a
.htaccess	file,	the	syntax	error	is	logged	in	the	server	error	log
(along	with	an	indication	of	where	it	came	from),	and	the	request	is
bounced	with	a	server	error	response	(HTTP	error	status,	code
500).

The	MIME	module's	command	table	has	entries	for	these
commands,	which	look	like	this:

command_rec	mime_cmds[]	=	{

{	"AddType",	add_type,	NULL,	OR_FILEINFO,	TAKE2,

"a	mime	type	followed	by	a	file	extension"	},

{	"AddEncoding",	add_encoding,	NULL,	OR_FILEINFO,	TAKE2,

"an	encoding	(e.g.,	gzip),	followed	by	a	file	extension"

},

{	NULL	}

};

The	entries	in	these	tables	are:

The	name	of	the	command
The	function	which	handles	it
a	(void	*)	pointer,	which	is	passed	in	the	cmd_parms
structure	to	the	command	handler	---	this	is	useful	in	case
many	similar	commands	are	handled	by	the	same	function.
A	bit	mask	indicating	where	the	command	may	appear.	There
are	mask	bits	corresponding	to	each	AllowOverride	option,
and	an	additional	mask	bit,	RSRC_CONF,	indicating	that	the
command	may	appear	in	the	server's	own	config	files,	but	not
in	any	.htaccess	file.
A	flag	indicating	how	many	arguments	the	command	handler
wants	pre-parsed,	and	how	they	should	be	passed	in.	TAKE2
indicates	two	pre-parsed	arguments.	Other	options	are
TAKE1,	which	indicates	one	pre-parsed	argument,	FLAG,
which	indicates	that	the	argument	should	be	On	or	Off,	and	is
passed	in	as	a	boolean	flag,	RAW_ARGS,	which	causes	the
server	to	give	the	command	the	raw,	unparsed	arguments
(everything	but	the	command	name	itself).	There	is	also
ITERATE,	which	means	that	the	handler	looks	the	same	as
TAKE1,	but	that	if	multiple	arguments	are	present,	it	should	be
called	multiple	times,	and	finally	ITERATE2,	which	indicates
that	the	command	handler	looks	like	a	TAKE2,	but	if	more
arguments	are	present,	then	it	should	be	called	multiple	times,
holding	the	first	argument	constant.

Finally,	we	have	a	string	which	describes	the	arguments	that
should	be	present.	If	the	arguments	in	the	actual	config	file
are	not	as	required,	this	string	will	be	used	to	help	give	a	more
specific	error	message.	(You	can	safely	leave	this	NULL).

Finally,	having	set	this	all	up,	we	have	to	use	it.	This	is	ultimately
done	in	the	module's	handlers,	specifically	for	its	file-typing
handler,	which	looks	more	or	less	like	this;	note	that	the	per-
directory	configuration	structure	is	extracted	from	the
request_rec's	per-directory	configuration	vector	by	using	the
ap_get_module_config	function.

int	find_ct(request_rec	*r)

{

int	i;

char	*fn	=	ap_pstrdup	(r->pool,	r->filename);

mime_dir_config	*conf	=	(mime_dir_config	*)

ap_get_module_config(r->per_dir_config,	&mime_module);

char	*type;

if	(S_ISDIR(r->finfo.st_mode))	{

r->content_type	=	DIR_MAGIC_TYPE;

return	OK;

}

if((i=ap_rind(fn,'.'))	<	0)	return	DECLINED;

++i;

if	((type	=	ap_table_get	(conf->encoding_types,	&fn[i])))

{

r->content_encoding	=	type;

/*	go	back	to	previous	extension	to	try	to	use	it	as	a

type	*/

fn[i-1]	=	'\0';

if((i=ap_rind(fn,'.'))	<	0)	return	OK;

++i;

}

if	((type	=	ap_table_get	(conf->forced_types,	&fn[i])))

{

r->content_type	=	type;

}

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

return	OK;

}

Side	notes	--	per-server	configuration,	virtual	servers,
etc.
The	basic	ideas	behind	per-server	module	configuration	are
basically	the	same	as	those	for	per-directory	configuration;	there	is
a	creation	function	and	a	merge	function,	the	latter	being	invoked
where	a	virtual	server	has	partially	overridden	the	base	server
configuration,	and	a	combined	structure	must	be	computed.	(As
with	per-directory	configuration,	the	default	if	no	merge	function	is
specified,	and	a	module	is	configured	in	some	virtual	server,	is	that
the	base	configuration	is	simply	ignored).

The	only	substantial	difference	is	that	when	a	command	needs	to
configure	the	per-server	private	module	data,	it	needs	to	go	to	the
cmd_parms	data	to	get	at	it.	Here's	an	example,	from	the	alias
module,	which	also	indicates	how	a	syntax	error	can	be	returned
(note	that	the	per-directory	configuration	argument	to	the
command	handler	is	declared	as	a	dummy,	since	the	module
doesn't	actually	have	per-directory	config	data):

char	*add_redirect(cmd_parms	*cmd,	void	*dummy,	char	*f,	char

*url)

{

server_rec	*s	=	cmd->server;

alias_server_conf	*conf	=	(alias_server_conf	*)

ap_get_module_config(s->module_config,&alias_module);

alias_entry	*new	=	ap_push_array	(conf->redirects);

if	(!ap_is_url	(url))	return	"Redirect	to	non-URL";

new->fake	=	f;	new->real	=	url;

return	NULL;

}

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Debugging	Memory	Allocation	in	APR

This	document	has	been	removed.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Documenting	code	in	Apache	2.4

Apache	2.4	uses	Doxygen	to	document	the	APIs	and	global	variables
in	the	code.	This	will	explain	the	basics	of	how	to	document	using
Doxygen.

http://www.doxygen.org/

Brief	Description

To	start	a	documentation	block,	use	/**
To	end	a	documentation	block,	use	*/

In	the	middle	of	the	block,	there	are	multiple	tags	we	can	use:

Description	of	this	functions	purpose

@param	parameter_name	description

@return	description

@deffunc	signature	of	the	function

The	deffunc	is	not	always	necessary.	DoxyGen	does	not	have	a
full	parser	in	it,	so	any	prototype	that	use	a	macro	in	the	return
type	declaration	is	too	complex	for	scandoc.	Those	functions
require	a	deffunc.	An	example	(using	>	rather	than	>):

/**

	*	return	the	final	element	of	the	pathname

	*	@param	pathname	The	path	to	get	the	final	element	of

	*	@return	the	final	element	of	the	path

	*	@tip	Examples:

	*	<pre>

	*	"/foo/bar/gum"	->	"gum"

	*	"/foo/bar/gum/"	->	""

	*	"gum"	->	"gum"

	*	"wi\\n32\\stuff"	->	"stuff"

	*	</pre>

	*	@deffunc	const	char	*	ap_filename_of_pathname(const	char

*pathname)

	*/

At	the	top	of	the	header	file,	always	include:

/**

	*	@package	Name	of	library	header

	*/

Doxygen	uses	a	new	HTML	file	for	each	package.	The	HTML	files
are	named	{Name_of_library_header}.html,	so	try	to	be	concise
with	your	names.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

For	a	further	discussion	of	the	possibilities	please	refer	to	the
Doxygen	site.

http://www.doxygen.org/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Hook	Functions	in	the	Apache	HTTP	Server
2.x

Warning

This	document	is	still	in	development	and	may	be	partially	out	of
date.

In	general,	a	hook	function	is	one	that	the	Apache	HTTP	Server	will
call	at	some	point	during	the	processing	of	a	request.	Modules	can
provide	functions	that	are	called,	and	specify	when	they	get	called	in
comparison	to	other	modules.

Core	Hooks

The	httpd's	core	modules	offer	a	predefinined	list	of	hooks	used
during	the	standard	request	processing	phase.	Creating	a	new
hook	will	expose	a	function	that	implements	it	(see	sections	below)
but	it	is	essential	to	undestand	that	you	will	not	extend	the	httpd's
core	hooks.	Their	presence	and	order	in	the	request	processing	is
in	fact	a	consequence	of	how	they	are	called	in
server/request.c	(check	this	section	for	an	overview).	The
core	hooks	are	listed	in	the	doxygen	documentation.

Reading	guide	for	developing	modules	and	request	processing
before	proceeding	is	highly	recomended.

https://ci.apache.org/projects/httpd/trunk/doxygen/group__hooks.html

Creating	a	hook	function

In	order	to	create	a	new	hook,	four	things	need	to	be	done:

Declare	the	hook	function
Use	the	AP_DECLARE_HOOK	macro,	which	needs	to	be	given	the
return	type	of	the	hook	function,	the	name	of	the	hook,	and	the
arguments.	For	example,	if	the	hook	returns	an	int	and	takes	a
request_rec	*	and	an	int	and	is	called	do_something,	then
declare	it	like	this:

AP_DECLARE_HOOK(int,	do_something,	(request_rec	*r,	int	n))

This	should	go	in	a	header	which	modules	will	include	if	they	want
to	use	the	hook.

Create	the	hook	structure
Each	source	file	that	exports	a	hook	has	a	private	structure	which
is	used	to	record	the	module	functions	that	use	the	hook.	This	is
declared	as	follows:

APR_HOOK_STRUCT(

		APR_HOOK_LINK(do_something)

		...

)

Implement	the	hook	caller
The	source	file	that	exports	the	hook	has	to	implement	a	function
that	will	call	the	hook.	There	are	currently	three	possible	ways	to
do	this.	In	all	cases,	the	calling	function	is	called
ap_run_hookname().

Void	hooks
If	the	return	value	of	a	hook	is	void,	then	all	the	hooks	are	called,
and	the	caller	is	implemented	like	this:

AP_IMPLEMENT_HOOK_VOID(do_something,	(request_rec	*r,	int	n),	(r,	n))

The	second	and	third	arguments	are	the	dummy	argument
declaration	and	the	dummy	arguments	as	they	will	be	used	when
calling	the	hook.	In	other	words,	this	macro	expands	to	something
like	this:

void	ap_run_do_something(request_rec	*r,	int	n)

{

				...

				do_something(r,	n);

}

Hooks	that	return	a	value
If	the	hook	returns	a	value,	then	it	can	either	be	run	until	the	first
hook	that	does	something	interesting,	like	so:

AP_IMPLEMENT_HOOK_RUN_FIRST(int,	do_something,	(request_rec	*r,	int	n),	(r,	n),	DECLINED)

The	first	hook	that	does	not	return	DECLINED	stops	the	loop	and
its	return	value	is	returned	from	the	hook	caller.	Note	that
DECLINED	is	the	traditional	hook	return	value	meaning	"I	didn't	do
anything",	but	it	can	be	whatever	suits	you.

Alternatively,	all	hooks	can	be	run	until	an	error	occurs.	This	boils
down	to	permitting	two	return	values,	one	of	which	means	"I	did
something,	and	it	was	OK"	and	the	other	meaning	"I	did	nothing".

The	first	function	that	returns	a	value	other	than	one	of	those	two
stops	the	loop,	and	its	return	is	the	return	value.	Declare	these	like
so:

AP_IMPLEMENT_HOOK_RUN_ALL(int,	do_something,	(request_rec	*r,	int	n),	(r,	n),	OK,	DECLINED)

Again,	OK	and	DECLINED	are	the	traditional	values.	You	can	use
what	you	want.

Call	the	hook	callers
At	appropriate	moments	in	the	code,	call	the	hook	caller,	like	so:

int	n,	ret;

request_rec	*r;

ret=ap_run_do_something(r,	n);

Hooking	the	hook

A	module	that	wants	a	hook	to	be	called	needs	to	do	two	things.

Implement	the	hook	function
Include	the	appropriate	header,	and	define	a	static	function	of	the
correct	type:

static	int	my_something_doer(request_rec	*r,	int	n)

{

				...

				return	OK;

}

Add	a	hook	registering	function
During	initialisation,	the	server	will	call	each	modules	hook
registering	function,	which	is	included	in	the	module	structure:

static	void	my_register_hooks()

{

				ap_hook_do_something(my_something_doer,	NULL,	NULL,	APR_HOOK_MIDDLE);

}

mode	MODULE_VAR_EXPORT	my_module	=

{

				...

				my_register_hooks							/*	register	hooks	*/

};

Controlling	hook	calling	order
In	the	example	above,	we	didn't	use	the	three	arguments	in	the
hook	registration	function	that	control	calling	order	of	all	the

functions	registered	within	the	hook.	There	are	two	mechanisms
for	doing	this.	The	first,	rather	crude,	method,	allows	us	to	specify
roughly	where	the	hook	is	run	relative	to	other	modules.	The	final
argument	control	this.	There	are	three	possible	values:
APR_HOOK_FIRST,	APR_HOOK_MIDDLE	and	APR_HOOK_LAST.

All	modules	using	any	particular	value	may	be	run	in	any	order
relative	to	each	other,	but,	of	course,	all	modules	using
APR_HOOK_FIRST	will	be	run	before	APR_HOOK_MIDDLE	which
are	before	APR_HOOK_LAST.	Modules	that	don't	care	when	they
are	run	should	use	APR_HOOK_MIDDLE.	These	values	are	spaced
out,	so	that	positions	like	APR_HOOK_FIRST-2	are	possible	to
hook	slightly	earlier	than	other	functions.

Note	that	there	are	two	more	values,	APR_HOOK_REALLY_FIRST
and	APR_HOOK_REALLY_LAST.	These	should	only	be	used	by	the
hook	exporter.

The	other	method	allows	finer	control.	When	a	module	knows	that
it	must	be	run	before	(or	after)	some	other	modules,	it	can	specify
them	by	name.	The	second	(third)	argument	is	a	NULL-terminated
array	of	strings	consisting	of	the	names	of	modules	that	must	be
run	before	(after)	the	current	module.	For	example,	suppose	we
want	"mod_xyz.c"	and	"mod_abc.c"	to	run	before	we	do,	then	we'd
hook	as	follows:

static	void	register_hooks()

{

				static	const	char	*	const	aszPre[]	=	{	"mod_xyz.c",	"mod_abc.c",	NULL	};

				ap_hook_do_something(my_something_doer,	aszPre,	NULL,	APR_HOOK_MIDDLE);

}

Note	that	the	sort	used	to	achieve	this	is	stable,	so	ordering	set	by

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

APR_HOOK_ORDER	is	preserved,	as	far	as	is	possible.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Converting	Modules	from	Apache	1.3	to
Apache	2.0

This	is	a	first	attempt	at	writing	the	lessons	I	learned	when	trying	to
convert	the	mod_mmap_static	module	to	Apache	2.0.	It's	by	no
means	definitive	and	probably	won't	even	be	correct	in	some	ways,
but	it's	a	start.

The	easier	changes	...

Cleanup	Routines
These	now	need	to	be	of	type	apr_status_t	and	return	a	value
of	that	type.	Normally	the	return	value	will	be	APR_SUCCESS
unless	there	is	some	need	to	signal	an	error	in	the	cleanup.	Be
aware	that	even	though	you	signal	an	error	not	all	code	yet	checks
and	acts	upon	the	error.

Initialisation	Routines
These	should	now	be	renamed	to	better	signify	where	they	sit	in
the	overall	process.	So	the	name	gets	a	small	change	from
mmap_init	to	mmap_post_config.	The	arguments	passed
have	undergone	a	radical	change	and	now	look	like

apr_pool_t	*p

apr_pool_t	*plog

apr_pool_t	*ptemp

server_rec	*s

Data	Types
A	lot	of	the	data	types	have	been	moved	into	the	APR.	This	means
that	some	have	had	a	name	change,	such	as	the	one	shown
above.	The	following	is	a	brief	list	of	some	of	the	changes	that	you
are	likely	to	have	to	make.

pool	becomes	apr_pool_t
table	becomes	apr_table_t

http://apr.apache.org/

The	messier	changes...

Register	Hooks
The	new	architecture	uses	a	series	of	hooks	to	provide	for	calling
your	functions.	These	you'll	need	to	add	to	your	module	by	way	of
a	new	function,	static	void	register_hooks(void).	The
function	is	really	reasonably	straightforward	once	you	understand
what	needs	to	be	done.	Each	function	that	needs	calling	at	some
stage	in	the	processing	of	a	request	needs	to	be	registered,
handlers	do	not.	There	are	a	number	of	phases	where	functions
can	be	added,	and	for	each	you	can	specify	with	a	high	degree	of
control	the	relative	order	that	the	function	will	be	called	in.

This	is	the	code	that	was	added	to	mod_mmap_static:

static	void	register_hooks(void)

{

				static	const	char	*	const	aszPre[]={	"http_core.c",NULL	};

				ap_hook_post_config(mmap_post_config,NULL,NULL,HOOK_MIDDLE);

				ap_hook_translate_name(mmap_static_xlat,aszPre,NULL,HOOK_LAST);

};

This	registers	2	functions	that	need	to	be	called,	one	in	the
post_config	stage	(virtually	every	module	will	need	this	one)
and	one	for	the	translate_name	phase.	note	that	while	there
are	different	function	names	the	format	of	each	is	identical.	So
what	is	the	format?

ap_hook_phase_name(function_name,	predecessors,	successors,

position);

There	are	3	hook	positions	defined...

HOOK_FIRST

HOOK_MIDDLE

HOOK_LAST

To	define	the	position	you	use	the	position	and	then	modify	it	with
the	predecessors	and	successors.	Each	of	the	modifiers	can	be	a
list	of	functions	that	should	be	called,	either	before	the	function	is
run	(predecessors)	or	after	the	function	has	run	(successors).

In	the	mod_mmap_static	case	I	didn't	care	about	the
post_config	stage,	but	the	mmap_static_xlat	must	be
called	after	the	core	module	had	done	its	name	translation,	hence
the	use	of	the	aszPre	to	define	a	modifier	to	the	position
HOOK_LAST.

Module	Definition
There	are	now	a	lot	fewer	stages	to	worry	about	when	creating
your	module	definition.	The	old	definition	looked	like

module	MODULE_VAR_EXPORT	module_name_module	=

{

				STANDARD_MODULE_STUFF,

				/*	initializer	*/

				/*	dir	config	creater	*/

				/*	dir	merger	---	default	is	to	override	*/

				/*	server	config	*/

				/*	merge	server	config	*/

				/*	command	handlers	*/

				/*	handlers	*/

				/*	filename	translation	*/

				/*	check_user_id	*/

				/*	check	auth	*/

				/*	check	access	*/

				/*	type_checker	*/

				/*	fixups	*/

				/*	logger	*/

				/*	header	parser	*/

				/*	child_init	*/

				/*	child_exit	*/

				/*	post	read-request	*/

};

The	new	structure	is	a	great	deal	simpler...

module	MODULE_VAR_EXPORT	module_name_module	=

{

				STANDARD20_MODULE_STUFF,

				/*	create	per-directory	config	structures	*/

				/*	merge	per-directory	config	structures		*/

				/*	create	per-server	config	structures				*/

				/*	merge	per-server	config	structures					*/

				/*	command	handlers	*/

				/*	handlers	*/

				/*	register	hooks	*/

};

Some	of	these	read	directly	across,	some	don't.	I'll	try	to
summarise	what	should	be	done	below.

The	stages	that	read	directly	across	:

/*	dir	config	creater	*/

/*	create	per-directory	config	structures	*/

/*	server	config	*/

/*	create	per-server	config	structures	*/

/*	dir	merger	*/

/*	merge	per-directory	config	structures	*/

/*	merge	server	config	*/

/*	merge	per-server	config	structures	*/

/*	command	table	*/

/*	command	apr_table_t	*/

/*	handlers	*/

/*	handlers	*/

The	remainder	of	the	old	functions	should	be	registered	as	hooks.
There	are	the	following	hook	stages	defined	so	far...

ap_hook_pre_config

do	any	setup	required	prior	to	processing	configuration
directives

ap_hook_check_config

review	configuration	directive	interdependencies

ap_hook_test_config

executes	only	with	-t	option

ap_hook_open_logs

open	any	specified	logs

ap_hook_post_config

this	is	where	the	old	_init	routines	get	registered

ap_hook_http_method

retrieve	the	http	method	from	a	request.	(legacy)

ap_hook_auth_checker

check	if	the	resource	requires	authorization

ap_hook_access_checker

check	for	module-specific	restrictions

ap_hook_check_user_id

check	the	user-id	and	password

ap_hook_default_port

retrieve	the	default	port	for	the	server

ap_hook_pre_connection

do	any	setup	required	just	before	processing,	but	after
accepting

ap_hook_process_connection

run	the	correct	protocol

ap_hook_child_init

call	as	soon	as	the	child	is	started

ap_hook_create_request

??

ap_hook_fixups

last	chance	to	modify	things	before	generating	content

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

ap_hook_handler

generate	the	content

ap_hook_header_parser

lets	modules	look	at	the	headers,	not	used	by	most	modules,
because	they	use	post_read_request	for	this

ap_hook_insert_filter

to	insert	filters	into	the	filter	chain

ap_hook_log_transaction

log	information	about	the	request

ap_hook_optional_fn_retrieve

retrieve	any	functions	registered	as	optional

ap_hook_post_read_request

called	after	reading	the	request,	before	any	other	phase

ap_hook_quick_handler

called	before	any	request	processing,	used	by	cache
modules.

ap_hook_translate_name

translate	the	URI	into	a	filename

ap_hook_type_checker

determine	and/or	set	the	doc	type

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Request	Processing	in	the	Apache	HTTP
Server	2.x

Warning

Warning	-	this	is	a	first	(fast)	draft	that	needs	further	revision!

Several	changes	in	2.0	and	above	affect	the	internal	request
processing	mechanics.	Module	authors	need	to	be	aware	of	these
changes	so	they	may	take	advantage	of	the	optimizations	and
security	enhancements.

The	first	major	change	is	to	the	subrequest	and	redirect	mechanisms.
There	were	a	number	of	different	code	paths	in	the	Apache	HTTP
Server	1.3	to	attempt	to	optimize	subrequest	or	redirect	behavior.	As
patches	were	introduced	to	2.0,	these	optimizations	(and	the	server
behavior)	were	quickly	broken	due	to	this	duplication	of	code.	All
duplicate	code	has	been	folded	back	into
ap_process_request_internal()	to	prevent	the	code	from
falling	out	of	sync	again.

This	means	that	much	of	the	existing	code	was	'unoptimized'.	It	is	the
Apache	HTTP	Project's	first	goal	to	create	a	robust	and	correct
implementation	of	the	HTTP	server	RFC.	Additional	goals	include
security,	scalability	and	optimization.	New	methods	were	sought	to
optimize	the	server	(beyond	the	performance	of	1.3)	without
introducing	fragile	or	insecure	code.

The	Request	Processing	Cycle

All	requests	pass	through	ap_process_request_internal()
in	server/request.c,	including	subrequests	and	redirects.	If	a
module	doesn't	pass	generated	requests	through	this	code,	the
author	is	cautioned	that	the	module	may	be	broken	by	future
changes	to	request	processing.

To	streamline	requests,	the	module	author	can	take	advantage	of
the	hooks	offered	to	drop	out	of	the	request	cycle	early,	or	to
bypass	core	hooks	which	are	irrelevant	(and	costly	in	terms	of
CPU.)

The	Request	Parsing	Phase

Unescapes	the	URL
The	request's	parsed_uri	path	is	unescaped,	once	and	only
once,	at	the	beginning	of	internal	request	processing.

This	step	is	bypassed	if	the	proxyreq	flag	is	set,	or	the
parsed_uri.path	element	is	unset.	The	module	has	no	further
control	of	this	one-time	unescape	operation,	either	failing	to
unescape	or	multiply	unescaping	the	URL	leads	to	security
repercussions.

Strips	Parent	and	This	Elements	from	the	URI
All	/../	and	/./	elements	are	removed	by	ap_getparents().
This	helps	to	ensure	the	path	is	(nearly)	absolute	before	the
request	processing	continues.

This	step	cannot	be	bypassed.

Initial	URI	Location	Walk
Every	request	is	subject	to	an	ap_location_walk()	call.	This
ensures	that	<Location>	sections	are	consistently	enforced	for
all	requests.	If	the	request	is	an	internal	redirect	or	a	sub-request,
it	may	borrow	some	or	all	of	the	processing	from	the	previous	or
parent	request's	ap_location_walk,	so	this	step	is	generally	very
efficient	after	processing	the	main	request.

translate_name
Modules	can	determine	the	file	name,	or	alter	the	given	URI	in	this
step.	For	example,	mod_vhost_alias	will	translate	the	URI's
path	into	the	configured	virtual	host,	mod_alias	will	translate	the
path	to	an	alias	path,	and	if	the	request	falls	back	on	the	core,	the

DocumentRoot	is	prepended	to	the	request	resource.

If	all	modules	DECLINE	this	phase,	an	error	500	is	returned	to	the
browser,	and	a	"couldn't	translate	name"	error	is	logged
automatically.

Hook:	map_to_storage
After	the	file	or	correct	URI	was	determined,	the	appropriate	per-
dir	configurations	are	merged	together.	For	example,	mod_proxy
compares	and	merges	the	appropriate	<Proxy>	sections.	If	the
URI	is	nothing	more	than	a	local	(non-proxy)	TRACE	request,	the
core	handles	the	request	and	returns	DONE.	If	no	module	answers
this	hook	with	OK	or	DONE,	the	core	will	run	the	request	filename
against	the	<Directory>	and	<Files>	sections.	If	the	request
'filename'	isn't	an	absolute,	legal	filename,	a	note	is	set	for	later
termination.

URI	Location	Walk
Every	request	is	hardened	by	a	second	ap_location_walk()
call.	This	reassures	that	a	translated	request	is	still	subjected	to
the	configured	<Location>	sections.	The	request	again	borrows
some	or	all	of	the	processing	from	its	previous	location_walk
above,	so	this	step	is	almost	always	very	efficient	unless	the
translated	URI	mapped	to	a	substantially	different	path	or	Virtual
Host.

Hook:	header_parser
The	main	request	then	parses	the	client's	headers.	This	prepares
the	remaining	request	processing	steps	to	better	serve	the	client's
request.

The	Security	Phase

Needs	Documentation.	Code	is:

if	((access_status	=	ap_run_access_checker(r))	!=	0)	{

				return	decl_die(access_status,	"check	access",	r);

}

if	((access_status	=	ap_run_check_user_id(r))	!=	0)	{

				return	decl_die(access_status,	"check	user",	r);

}

if	((access_status	=	ap_run_auth_checker(r))	!=	0)	{

				return	decl_die(access_status,	"check	authorization",	r);

}

The	Preparation	Phase

Hook:	type_checker
The	modules	have	an	opportunity	to	test	the	URI	or	filename
against	the	target	resource,	and	set	mime	information	for	the
request.	Both	mod_mime	and	mod_mime_magic	use	this	phase	to
compare	the	file	name	or	contents	against	the	administrator's
configuration	and	set	the	content	type,	language,	character	set
and	request	handler.	Some	modules	may	set	up	their	filters	or
other	request	handling	parameters	at	this	time.

If	all	modules	DECLINE	this	phase,	an	error	500	is	returned	to	the
browser,	and	a	"couldn't	find	types"	error	is	logged	automatically.

Hook:	fixups
Many	modules	are	'trounced'	by	some	phase	above.	The	fixups
phase	is	used	by	modules	to	'reassert'	their	ownership	or	force	the
request's	fields	to	their	appropriate	values.	It	isn't	always	the
cleanest	mechanism,	but	occasionally	it's	the	only	option.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	Handler	Phase

This	phase	is	not	part	of	the	processing	in
ap_process_request_internal().	Many	modules	prepare
one	or	more	subrequests	prior	to	creating	any	content	at	all.	After
the	core,	or	a	module	calls	ap_process_request_internal()
it	then	calls	ap_invoke_handler()	to	generate	the	request.

Hook:	insert_filter
Modules	that	transform	the	content	in	some	way	can	insert	their
values	and	override	existing	filters,	such	that	if	the	user	configured
a	more	advanced	filter	out-of-order,	then	the	module	can	move	its
order	as	need	be.	There	is	no	result	code,	so	actions	in	this	hook
better	be	trusted	to	always	succeed.

Hook:	handler
The	module	finally	has	a	chance	to	serve	the	request	in	its	handler
hook.	Note	that	not	every	prepared	request	is	sent	to	the	handler
hook.	Many	modules,	such	as	mod_autoindex,	will	create
subrequests	for	a	given	URI,	and	then	never	serve	the	subrequest,
but	simply	lists	it	for	the	user.	Remember	not	to	put	required
teardown	from	the	hooks	above	into	this	module,	but	register	pool
cleanups	against	the	request	pool	to	free	resources	as	required.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

How	filters	work	in	Apache	2.0

Warning

This	is	a	cut	'n	paste	job	from	an	email
(<022501c1c529$f63a9550$7f00000a@KOJ>)	and	only
reformatted	for	better	readability.	It's	not	up	to	date	but	may	be	a
good	start	for	further	research.

Filter	Types

There	are	three	basic	filter	types	(each	of	these	is	actually	broken
down	into	two	categories,	but	that	comes	later).

CONNECTION

Filters	of	this	type	are	valid	for	the	lifetime	of	this	connection.
(AP_FTYPE_CONNECTION,	AP_FTYPE_NETWORK)

PROTOCOL

Filters	of	this	type	are	valid	for	the	lifetime	of	this	request	from
the	point	of	view	of	the	client,	this	means	that	the	request	is
valid	from	the	time	that	the	request	is	sent	until	the	time	that
the	response	is	received.	(AP_FTYPE_PROTOCOL,
AP_FTYPE_TRANSCODE)

RESOURCE

Filters	of	this	type	are	valid	for	the	time	that	this	content	is
used	to	satisfy	a	request.	For	simple	requests,	this	is	identical
to	PROTOCOL,	but	internal	redirects	and	sub-requests	can
change	the	content	without	ending	the	request.
(AP_FTYPE_RESOURCE,	AP_FTYPE_CONTENT_SET)

It	is	important	to	make	the	distinction	between	a	protocol	and	a
resource	filter.	A	resource	filter	is	tied	to	a	specific	resource,	it	may
also	be	tied	to	header	information,	but	the	main	binding	is	to	a
resource.	If	you	are	writing	a	filter	and	you	want	to	know	if	it	is
resource	or	protocol,	the	correct	question	to	ask	is:	"Can	this	filter
be	removed	if	the	request	is	redirected	to	a	different	resource?"	If
the	answer	is	yes,	then	it	is	a	resource	filter.	If	it	is	no,	then	it	is
most	likely	a	protocol	or	connection	filter.	I	won't	go	into
connection	filters,	because	they	seem	to	be	well	understood.	With
this	definition,	a	few	examples	might	help:

Byterange
We	have	coded	it	to	be	inserted	for	all	requests,	and	it	is
removed	if	not	used.	Because	this	filter	is	active	at	the

beginning	of	all	requests,	it	can	not	be	removed	if	it	is
redirected,	so	this	is	a	protocol	filter.

http_header
This	filter	actually	writes	the	headers	to	the	network.	This	is
obviously	a	required	filter	(except	in	the	asis	case	which	is
special	and	will	be	dealt	with	below)	and	so	it	is	a	protocol
filter.

Deflate
The	administrator	configures	this	filter	based	on	which	file	has
been	requested.	If	we	do	an	internal	redirect	from	an
autoindex	page	to	an	index.html	page,	the	deflate	filter	may
be	added	or	removed	based	on	config,	so	this	is	a	resource
filter.

The	further	breakdown	of	each	category	into	two	more	filter	types
is	strictly	for	ordering.	We	could	remove	it,	and	only	allow	for	one
filter	type,	but	the	order	would	tend	to	be	wrong,	and	we	would
need	to	hack	things	to	make	it	work.	Currently,	the	RESOURCE
filters	only	have	one	filter	type,	but	that	should	change.

How	are	filters	inserted?

This	is	actually	rather	simple	in	theory,	but	the	code	is	complex.
First	of	all,	it	is	important	that	everybody	realize	that	there	are
three	filter	lists	for	each	request,	but	they	are	all	concatenated
together:

r->output_filters	(corresponds	to	RESOURCE)
r->proto_output_filters	(corresponds	to	PROTOCOL)
r->connection->output_filters	(corresponds	to
CONNECTION)

The	problem	previously,	was	that	we	used	a	singly	linked	list	to
create	the	filter	stack,	and	we	started	from	the	"correct"	location.
This	means	that	if	I	had	a	RESOURCE	filter	on	the	stack,	and	I
added	a	CONNECTION	filter,	the	CONNECTION	filter	would	be
ignored.	This	should	make	sense,	because	we	would	insert	the
connection	filter	at	the	top	of	the	c->output_filters	list,	but
the	end	of	r->output_filters	pointed	to	the	filter	that	used	to
be	at	the	front	of	c->output_filters.	This	is	obviously	wrong.
The	new	insertion	code	uses	a	doubly	linked	list.	This	has	the
advantage	that	we	never	lose	a	filter	that	has	been	inserted.
Unfortunately,	it	comes	with	a	separate	set	of	headaches.

The	problem	is	that	we	have	two	different	cases	were	we	use
subrequests.	The	first	is	to	insert	more	data	into	a	response.	The
second	is	to	replace	the	existing	response	with	an	internal	redirect.
These	are	two	different	cases	and	need	to	be	treated	as	such.

In	the	first	case,	we	are	creating	the	subrequest	from	within	a
handler	or	filter.	This	means	that	the	next	filter	should	be	passed	to
make_sub_request	function,	and	the	last	resource	filter	in	the
sub-request	will	point	to	the	next	filter	in	the	main	request.	This
makes	sense,	because	the	sub-request's	data	needs	to	flow
through	the	same	set	of	filters	as	the	main	request.	A	graphical

representation	might	help:

Default_handler	-->	includes_filter	-->	byterange	-->	...

If	the	includes	filter	creates	a	sub	request,	then	we	don't	want	the
data	from	that	sub-request	to	go	through	the	includes	filter,
because	it	might	not	be	SSI	data.	So,	the	subrequest	adds	the
following:

Default_handler	-->	includes_filter	-/->	byterange	-->	...

																																				/

Default_handler	-->	sub_request_core

What	happens	if	the	subrequest	is	SSI	data?	Well,	that's	easy,	the
includes_filter	is	a	resource	filter,	so	it	will	be	added	to	the
sub	request	in	between	the	Default_handler	and	the
sub_request_core	filter.

The	second	case	for	sub-requests	is	when	one	sub-request	is
going	to	become	the	real	request.	This	happens	whenever	a	sub-
request	is	created	outside	of	a	handler	or	filter,	and	NULL	is
passed	as	the	next	filter	to	the	make_sub_request	function.

In	this	case,	the	resource	filters	no	longer	make	sense	for	the	new
request,	because	the	resource	has	changed.	So,	instead	of
starting	from	scratch,	we	simply	point	the	front	of	the	resource
filters	for	the	sub-request	to	the	front	of	the	protocol	filters	for	the
old	request.	This	means	that	we	won't	lose	any	of	the	protocol
filters,	neither	will	we	try	to	send	this	data	through	a	filter	that
shouldn't	see	it.

The	problem	is	that	we	are	using	a	doubly-linked	list	for	our	filter
stacks	now.	But,	you	should	notice	that	it	is	possible	for	two	lists	to
intersect	in	this	model.	So,	you	do	you	handle	the	previous
pointer?	This	is	a	very	difficult	question	to	answer,	because	there

is	no	"right"	answer,	either	method	is	equally	valid.	I	looked	at	why
we	use	the	previous	pointer.	The	only	reason	for	it	is	to	allow	for
easier	addition	of	new	servers.	With	that	being	said,	the	solution	I
chose	was	to	make	the	previous	pointer	always	stay	on	the
original	request.

This	causes	some	more	complex	logic,	but	it	works	for	all	cases.
My	concern	in	having	it	move	to	the	sub-request,	is	that	for	the
more	common	case	(where	a	sub-request	is	used	to	add	data	to	a
response),	the	main	filter	chain	would	be	wrong.	That	didn't	seem
like	a	good	idea	to	me.

Asis

The	final	topic.	:-)	Mod_Asis	is	a	bit	of	a	hack,	but	the	handler
needs	to	remove	all	filters	except	for	connection	filters,	and	send
the	data.	If	you	are	using	mod_asis,	all	other	bets	are	off.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Explanations

The	absolutely	last	point	is	that	the	reason	this	code	was	so	hard
to	get	right,	was	because	we	had	hacked	so	much	to	force	it	to
work.	I	wrote	most	of	the	hacks	originally,	so	I	am	very	much	to
blame.	However,	now	that	the	code	is	right,	I	have	started	to
remove	some	hacks.	Most	people	should	have	seen	that	the
reset_filters	and	add_required_filters	functions	are
gone.	Those	inserted	protocol	level	filters	for	error	conditions,	in
fact,	both	functions	did	the	same	thing,	one	after	the	other,	it	was
really	strange.	Because	we	don't	lose	protocol	filters	for	error
cases	any	more,	those	hacks	went	away.	The	HTTP_HEADER,
Content-length,	and	Byterange	filters	are	all	added	in	the
insert_filters	phase,	because	if	they	were	added	earlier,	we
had	some	interesting	interactions.	Now,	those	could	all	be	moved
to	be	inserted	with	the	HTTP_IN,	CORE,	and	CORE_IN	filters.	That
would	make	the	code	easier	to	follow.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Glosario

Éste	glosario	define	las	terminologías	más	comunes	relacionada	con
Apache	en	particular,	y	con	los	servidores	web	en	general.	En	los
enlaces	que	hay	asociados	a	cada	término	se	puede	encontrar
información	más	detallada	de	cada	uno.

Definiciones

Algoritmo
Un	proceso	definido	sin	ambigüedades	o	un	conjunto	de
reglas	para	solucionar	un	problema	en	un	número	finito	de
pasos.	Los	algoritmos	para	encriptar	se	llaman	normalmente
algoritmos	de	cifrado.

Algoritmo	de	cifrado,	(Cipher).
Es	un	algoritmo	o	sistema	de	encriptado	de	información.
Ejemplos	de	estos	algoritmos	son	DES,	IDEA,	RC4,	etc.
Consulte:	Encriptado	SSL/TLS

Autenticación.
La	identificación	positiva	de	una	entidad	de	red	tal	como	un
servidor,	un	cliente,	o	un	usuario.
Consulte:	Autentificación,	Autorización,	y	Control	de	Acceso

Autoridad	Certificadora.	(CA)
Es	una	entidad	externa	de	confianza	cuyo	fin	es	firmar
certificados	para	las	entidades	de	red	que	ha	autentificado
usando	medios	seguros.	Otras	entidades	de	red	pueden
verificar	la	firma	para	comprobar	que	una	Autoridad
Certificadora	ha	autentificado	al	poseedor	del	certificado.
Consulte:	Encriptado	SSL/TLS

Cabecera.
Es	la	parte	de	la	petición	y	la	respuesta	HTTP	que	se	envía
antes	del	contenido	propiamente	dicho,	y	que	contiene	meta-
información	describiendo	el	contenido.

Certificado.
Una	información	que	se	almacena	para	autenticar	entidades
de	red	tales	como	un	servidor	o	un	cliente.	Un	certificado
contiene	piezas	de	información	X.509	sobre	su	poseedor
(llamado	sujeto)	y	sobre	la	Autoridad	Certificadora	(llamada	el
emisor)	que	lo	firma,	más	la	clave	pública	del	propietario	y	la
firma	de	la	AC(Autoridad	Certificadora).	Las	entidades	de	red

verifican	las	firmas	usando	certificados	de	las	AC.
Consulte:	Encriptado	SSL/TLS

Clave	Pública.
La	clave	disponible	públicamente	en	un	sistema	criptográfico
de	Clave	Pública,	usado	para	encriptar	mensajes	destinados
a	su	propietario	y	para	desencriptar	firmas	hechas	por	su
propietario.
Consulte:	Encriptado	SSL/TLS

Clave	Privada.
La	clave	secreta	de	un	Sistema	criptográfico	de	Clave
Pública,	usada	para	desencriptar	los	mensajes	entrantes	y
firmar	los	salientes.
Consulte:	Encriptado	SSL/TLS

CONNECT
Un	método	de	HTTP	para	hacer	proxy	a	canales	de	datos	sin
usar	HTTP.	Puede	usarse	para	encapsular	otros	protocolos,
tales	como	el	protocolo	SSL.

Contexto
Un	área	en	los	ficheros	de	configuración	donde	están
permitidos	ciertos	tipos	de	directivas.
Consulte:	Términos	usados	para	describir	las	directivas	de
Apache

Control	de	Acceso.
La	restricción	en	el	acceso	al	entorno	de	una	red.	En	el
contexto	de	Apache	significa	normalmente	la	restricción	en	el
acceso	a	ciertas	URLs.
Consulte:	Autentificación,	Autorización,	y	Control	de	Acceso

Criptografía	Simétrica
El	estudio	y	aplicación	de	Algoritmos	de	Cifrado	que	usan	una
sola	clave	secreta	tanto	para	cifrar	como	para	descifrar.
Consulte:	Encriptado	SSL/TLS

Directiva
Un	comando	de	configuración	que	controla	uno	o	más
aspectos	del	comportamiento	de	Apache.	Las	directivas	se
ponen	en	el	Fichero	de	Configuración
Consulte:	Índice	de	Directivas

Directivas	de	configuración.
Consulte:	Directivas

Entorno	Portable	de	tiempo	de	ejecución	de	Apache,	(APR,
Apache	Portable	Runtime)

Es	un	conjunto	de	librerías	que	proveen	las	interfaces	básicas
entre	el	servidor	y	el	sistema	operativo.	El	desarrollo	de	APR
es	paralelo	al	del	Servidor	HTTP	Apache,	como	un	proyecto
independiente.	Puedes	visitar	el	proyecto	en:
Apache	Portable	Runtime	Project

Export-Crippled
Disminución	de	la	fortaleza	criptográfica	(y	seguridad)	para
cumplir	con	las	Regulaciones	sobre	Exportación	de	la
Administración	de	los	Estados	Unidos	(EAR).	El	software
criptográfico	Export-crippled	está	limitado	a	una	clave	de
pequeño	tamaño,	de	tal	manera	que	el	texto	cifrado	que	se
consigue	con	él,	puede	descifrarse	por	medio	de	fuerza	bruta.
Consulte:	Encriptado	SSL/TLS

Expresiones	Regulares	(Regex)
Una	forma	de	describir	un	patrón	en	un	texto	-	por	ejemplo,
"todas	las	palabras	que	empiezan	con	la	letra	"A"	o	"todos	los
números	de	teléfono	que	contienen	10	dígitos"	o	incluso
"Todas	las	frases	entre	comas,	y	que	no	contengan	ninguna
letra	Q".	Las	Expresiones	Regulares	son	útiles	en	Apache
porque	permiten	aplicar	ciertos	atributos	a	colecciones	de
ficheros	o	recursos	de	una	forma	flexible	-	por	ejemplo,	todos
los	archivos	.gif	y	.jpg	que	estén	en	el	directorio	"imágenes"
podrían	ser	escritos	como	"/images/.*(jpg|gif)$".	En
los	lugares	donde	expresiones	regulares	se	utilizan	para

http://apr.apache.org/

reemplazar	cadenas,	las	variables	especiales	$	1	...	$	9
contienen	referencias	inversa	las	partes	agrupadas	(entre
paréntesis)	de	la	expresión	coincidente.	La	variable	especial
$	0	contiene	una	referencia	inversa	a	todo	el	ejemplar	de	la
expresión.	Para	escribir	un	símbolo	de	dolar	literal	en	una
sustitución	de	una	cadena,	se	puede	escapar	usando	"\".
Históricamente,	la	variable	&	se	podía	usar	como	un	alias	a
$0	en	algunos	sitios.	Esto	ya	no	esta	soportado	desde	la
versión	2.3.6.	Apache	usa	Expresiones	Regulares
compatibles	con	Perl	gracias	a	la	librería	PCRE.	Puedes
encontrar	más	documentación	sobre	las	expresiones
regulares	de	PCRE	y	su	sintaxis	en	esa	página	o	en	la
Wikipedia.

Fichero	de	Configuración.
Un	fichero	de	texto	que	contiene	Directivas	que	controlan	la
configuración	de	Apache.
Consulte:	Ficheros	de	Configuración

.htaccess
Un	fichero	de	configuración	que	se	pone	dentro	de	la
estructura	de	directorios	del	sitio	web	y	aplica	directivas	de
configuración	al	directorio	en	el	que	está	y	a	sus
subdirectorios.	A	pesar	de	su	nombre,	este	fichero	puede
contener	cualquier	tipo	de	directivas,	no	solo	directivas	de
control	de	acceso.
Consulte:	Ficheros	de	Configuración	para	más	información.

httpd.conf
Es	el	fichero	de	configuración	principal	de	Apache.	Su
ubicación	por	defecto	es
/usr/local/apache2/conf/httpd.conf,	pero	puede
moverse	usando	opciones	de	configuración	al	compilar	o	al
iniciar	Apache.
Consulte:	Ficheros	de	Configuración

Filtro

http://www.pcre.org/
http://en.wikipedia.org/wiki/PCRE

Un	proceso	que	se	aplica	a	la	información	que	es	enviada	o
recibida	por	el	servidor.	Los	ficheros	de	entrada	procesan	la
información	enviada	por	un	cliente	al	servidor,	mientras	que
los	filtros	de	salida	procesan	la	información	en	el	servidor
antes	de	enviársela	al	cliente.	Por	ejemplo,	el	filtro	de	salida
INCLUDES	procesa	documentos	para	Server	Side	Includes.
Consulte:	Filtros

Firma	Digital
Un	bloque	de	texto	encriptado	que	verifica	la	validez	de	un
certificado	o	de	otro	fichero.	Una	Autoridad	Certificadora	crea
una	firma	generando	un	hash	a	partir	de	la	Clave	Pública	que
lleva	incorporada	en	un	Certificado,	después	encriptando	el
hash	con	su	propia	Clave	Privada.	Solo	las	claves	públicas	de
las	CAs	pueden	desencriptar	la	firma,	verificando	que	la	CA
ha	autentificado	a	la	entidad	de	red	propietaria	del
Certificado.
Consulte:	Encriptado	SSL/TLS

Handler
Es	una	representación	interna	de	Apache	de	una	acción	a	ser
ejecutada	cuando	se	llama	a	un	fichero.	Generalmente,	los
ficheros	tienen	un	handler	(manejador)	implícito,	basado	en	el
tipo	de	fichero.	Normalmente,	todos	los	ficheros	son
simplemente	servidos	por	el	servidor,	pero	sobre	algunos
tipos	de	ficheros	se	ejecutan	acciones	complementarias.	Por
ejemplo,	el	handler	cgi-script	designa	los	ficheros	a	ser
procesados	como	CGIs.
Consulte:	Uso	de	Handlers	en	Apache

Herramienta	de	extensión	de	Apache.	(apxs)
Es	un	script	escrito	en	Perl	que	ayuda	a	compilar	el	código
fuente	de	algunos	módulos	para	convertirlos	en	Objetos
Dinámicos	Compartidos	(DSOs)	y	ayuda	a	instalarlos	en	el
Servidor	Web	de	Apache.
Consulte:	Manual	de:	apxs

Hash
Algoritmo	matemático	de	un	solo	sentido	e	irreversible,	que
genera	una	cadena	de	una	determinada	longitud	de	otra
cadena	de	cualquier	tamaño.	Diferentes	entradas	darán
diferentes	hashes	(dependiendo	de	la	función	hash.)

Hosting	Virtual
Se	trata	de	servir	diferentes	sitios	web	con	una	sola	entidad
de	Apache.	El	hosting	virtual	de	IPs	diferencia	los	sitios	web
basándose	en	sus	direcciones	IP,	mientras	que	el	hosting
virtual	basado	en	nombres	usa	solo	el	nombre	del	host	y	de
esta	manera	puede	alojar	muchos	sitios	web	con	la	misma
dirección	IP.
Consulte:	Documentación	sobre	Hosting	Virtual	en	Apache

Identificador	de	Recursos	Uniforme	(URI)
Una	cadena	de	caracteres	compacta	para	identificar	un
recurso	físico	o	abstracto.	Se	define	formalmente	en	la	RFC
2396.	Los	URIs	que	se	usan	en	world-wide	web	se	refieren
normalmente	como	URLs.

Indicador	del	Nombre	del	servidor	Server	Name	Indication
(SNI)

Una	función	SSL	que	permite	pasar	el	nombre	de	host	del
servidor	deseado	en	el	mensaje	inicial	del	protocolo	de
enlace	SSL,	para	que	el	servidor	web	pueda	seleccionar	la
configuración	correcta	del	host	virtual	para	usar	en	el
procesamiento	del	protocolo	de	enlace	SSL.	Se	añadió	a	SSL
con	las	extensiones	TLS	en	el	RFC	3546.	
See:	the	SSL	FAQ	and	RFC	3546

Interfaz	de	Pasarela	Común.	Common	Gateway	Interface
(CGI)

Una	definición	estándar	para	un	interfaz	entre	un	servidor
web	y	un	programa	externo	que	permite	hacer	peticiones	de
servicio	a	los	programas	externos.	Este	interfaz	esta	definido
en	el	RFC-3875.

http://www.ietf.org/rfc/rfc2396.txt
http://www.ietf.org/rfc/rfc3546.txt
http://www.ietf.org/rfc/rfc3875

Consulte:	Contenido	Dinámico	con	CGI

Localizador	de	Recursos	Uniforme	(URL)
El	nombre	de	un	recurso	en	Internet.	Es	la	manera	informal
de	decir	lo	que	formalmente	se	llama	un	Identificador	de
Recursos	Uniforme.	Las	URLs	están	compuestas
normalmente	por	un	esquema,	tal	como	http	o	https,	un
nombre	de	host,	y	una	ruta.	Una	URL	para	esta	página	es
http://httpd.apache.org/docs/2.4/glossary.html

Módulo
Una	parte	independiente	de	un	programa.	La	mayor	parte	de
la	funcionalidad	de	Apache	está	contenida	en	módulos	que
pueden	incluirse	o	excluirse.	Los	módulos	que	se	compilan
con	el	binario	httpdde	Apache	se	llaman	módulos	estáticos,
mientras	que	los	que	se	almacenan	de	forma	separada	y
pueden	ser	cargados	de	forma	opcional,	se	llaman	módulos
dinámicos	o	DSOs.	Los	módulos	que	están	incluidos	por
defecto	de	llaman	módulos	base.	Hay	muchos	módulos
disponibles	para	Apache	que	no	se	distribuyen	con	la	tarball
del	Servidor	HTTP	Apache.	Estos	módulos	son	llamados
módulos	de	terceros.
Consulte:	Índice	de	Módulos

Método
En	el	contexto	de	HTTP,	es	una	acción	a	ejecutar	sobre	un
recurso,	especificado	en	la	líneas	de	petición	por	el	cliente.
Algunos	de	los	métodos	disponibles	en	HTTP	son	GET,	POST,
y	PUT.

Mensaje	Resumen	(Message	Digest)
Un	hash	de	un	mensaje,	el	cual	pude	ser	usado	para	verificar
que	el	contenido	del	mensaje	no	ha	sido	alterado	durante	la
transmisión.
Consulte:	Encriptado	SSL/TLS

MIME-type

Una	manera	de	describir	el	tipo	de	documento	a	ser
transmitido.	Su	nombre	viene	del	hecho	de	que	su	formato	se
toma	de	las	Extensiones	del	"Multipurpose	Internet	Mail".
Consiste	en	dos	componentes,	uno	principal	y	otro
secundario,	separados	por	una	barra.	Algunos	ejemplos	son
text/html,	image/gif,	y	application/octet-stream.
En	HTTP,	el	tipo	MIME	se	transmite	en	la	cabecera	del	Tipo
Contenido.
Consulte:	mod_mime

Módulo	del	Número	Mágico	(MMN	Module	Magic	Number)
El	módulo	del	número	mágico	es	una	constante	definida	en	el
código	fuente	de	Apache	que	está	asociado	con	la
compatibilidad	binaria	de	los	módulos.	Ese	número	cambia
cuando	cambian	las	estructuras	internas	de	Apache,	las
llamadas	a	funciones	y	otras	partes	significativas	de	la
interfaz	de	programación	de	manera	que	la	compatibilidad
binaria	no	puede	garantizarse	sin	cambiarlo.	Si	cambia	el
número	mágico	de	módulo,	todos	los	módulos	de	terceros
tienen	que	ser	al	menos	recompilados,	y	algunas	veces,
incluso	hay	que	introducir	ligeras	modificaciones	para	que
funcionen	con	la	nueva	versión	de	Apache

Nombre	de	dominio	completamente	qualificado	(FQDN)
El	nombre	único	de	una	entidad	de	red,	que	consiste	en	un
nombre	de	host	y	un	nombre	de	dominio	que	puede
traducirse	a	una	dirección	IP.	Por	ejemplo,	www	es	un	nombre
de	host,	example.com	es	un	nombre	de	dominio,	y
www.example.com	es	un	nombre	de	dominio
completamente	qualificado.

Objetos	Dinámicos	Compartidos	(DSO,	dinamic	shared
objects)

Los	Módulos	compilados	de	forma	separada	al	binario	httpd
de	Apache	se	pueden	cargar	según	se	necesiten.
Consulte:	Soporte	de	Objetos	Dinámicos	Compartidos

OpenSSL
El	toolkit	Open	Source	para	SSL/TLS
Ver:	http://www.openssl.org/

Pass	Phrase	o	frase	de	contraseña
La	palabra	o	frase	que	protege	los	archivos	de	clave	privada.
Evita	que	usuarios	no	autorizados	los	encripten.
Normalmente	es	solo	la	clave	de	encriptado/desencriptado
usada	por	los	Algoritmos	de	Cifrado.
Consulte:	Encriptado	SSL/TLS

Petición	de	firma	de	Certificado.	(CSR)
Es	la	petición	a	una	Autoridad	Certificadora	para	que	firme	un
certificado	aún	sin	firmar.	La	Autoridad	Certificadora	firma	el
Certificado	con	la	Clave	Privada	de	su	certificado.	Una	vez
que	el	CSR	está	firmado,	se	convierte	en	un	auténtico
certificado.
Consulte:	Encriptado	SSL/TLS

Protocolo	de	Transferencia	de	Hipertexto	(HTTP)
Es	el	protocolo	de	transmisión	estádar	usado	en	la	World
Wide	Web.	Apache	implementa	la	versión	1.1	de	este
protocolo,	al	que	se	hace	referencia	como	HTTP/1.1	y
definido	por	el	RFC	2616.

HTTPS
Protocolo	de	transferencia	de	Hipertexto	(Seguro),	es	el
mecanismo	de	comunicación	encriptado	estándar	en	World
Wide	Web.	En	realidad	es	HTTP	sobre	SSL.
Consulte:	Encriptado	SSL/TLS

Proxy
Un	servidor	intermedio	que	se	pone	entre	el	cliente	y	el
servidor	de	origen.	Acepta	las	peticiones	de	los	clientes,	las
transmite	al	servidor	de	origen,	y	después	devuelve	la
respuesta	del	servidor	de	origen	al	cliente.	Si	varios	clientes
piden	el	mismo	contenido,	el	proxy	sirve	el	contenido	desde

http://www.openssl.org/
http://ietf.org/rfc/rfc2616.txt

su	caché,	en	lugar	de	pedirlo	cada	vez	que	lo	necesita	al
servidor	de	origen,	reduciendo	con	esto	el	tiempo	de
respuesta.
Consulte:	mod_proxy

Proxy	Inverso
Es	un	servidor	proxy	que	se	presenta	al	cliente	como	si	fuera
un	servidor	de	origen.	Es	útil	para	esconder	el	auténtico
servidor	de	origen	a	los	clientes	por	cuestiones	de	seguridad,
o	para	equilibrar	la	carga.

SSL,	Capa	de	Conexión	Segura	Secure	Sockets	Layer(SSL)
Es	un	protocolo	creado	por	Netscape	Communications
Corporation	para	la	autenticación	en	comunicaciones	en
general	y	encriptado	sobre	redes	TCP/IP.	Su	aplicación	más
popular	es	en	HTTPS,	ejemplo.:	el	Protocolo	de
Transferencia	de	Hipertexto	(HTTP)	sobre	SSL.
Consulte:	Encriptado	SSL/TLS

SSLeay
La	implementación	original	de	la	librería	SSL/TLS
desarrollada	por	Eric	A.	Young

Server	Side	Includes	(SSI)
Una	técnica	para	incluir	directivas	de	proceso	en	archivos
HTML.
Consulte:	Introducción	a	Server	Side	Includes

Sesión
Información	del	contexto	de	una	comunicación	en	general.

Sistema	Criptográfico	de	Clave	Pública
El	estudio	y	aplicación	de	sistemas	de	encriptado	asimétricos,
que	usa	una	clave	para	encriptar	y	otra	para	desencriptar.
Una	clave	de	cada	uno	de	estos	tipos	constituye	un	par	de
claves.	También	se	llama	Criptografía	Asimétrica.
Consulte:	Encriptado	SSL/TLS

Subconsulta
Apache	proporciona	una	API	de	subconsultasd	a	los
módulos,	que	permiten	a	otros	sistemas	de	ficheros	o	paths
de	URL	ser	parcial	o	totalmente	evaluados	por	el	servidor.	Un
ejemplo	de	los	que	usan	esta	API	sería	DirectoryIndex,
mod_autoindex,	y	mod_include.

Tarball
Un	grupo	de	ficheros	puestos	en	un	solo	paquete	usando	la
utilidad	tar.	Las	distribuciones	Apache	se	almacenan	en
ficheros	comprimidos	con	tar	o	con	pkzip.

Texto	cifrado.
El	resultado	de	haber	aplicado	a	un	texto	plano	un	algoritmo
de	cifrado.
Consultar:	Encriptado	SSL/TLS

Texto	plano
Un	texto	no	encriptado.

Transport	Layer	Security	(TLS)
Es	el	sucesor	del	protocolo	SSL,	creado	por	el	"Internet
Engineering	Task	Force"	(IETF)	para	la	autentificación	en
comunicaciones	en	general	y	encriptado	sobre	redes	TCP/IP.
La	versión	1	de	TLS	es	casi	idéntica	a	la	versión	3	de	SSL.
Consulte:	Encriptado	SSL/TLS

Variable	de	Entorno	(env-variable)
Variables	que	gestionan	el	shell	del	sistema	operativo	y	que
se	usan	para	guardar	información	y	para	la	comunicación
entre	programas.	Apache	también	contiene	variables	internas
que	son	referidas	como	variables	de	entorno,	pero	que	son
almacenadas	en	las	estructuras	internas	de	Apache,	en	lugar
de	en	el	entorno	del	shell.
Consulte:	Variables	de	entorno	de	Apache

X.509
Un	esquema	de	certificado	de	autentificación	recomendado

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

por	la	International	Telecommunication	Union	(ITU-T)	que	se
usa	en	la	autentificación	SSL/TLS.
Consulte:	Encriptado	SSL/TLS

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4	>	Módulos

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Índice	de	Directivas

Todas	las	directivas	disponibles	en	la	distribución	estándar	de	Apache
están	en	la	lista	que	se	muestra	más	abajo.	Cada	una	se	describe
usando	un	formato	uniforme,	y	existe	un	glosario	de	los	términos
usados	en	las	descripciones	que	puede	consultar.

También	existe	una	Guía	Rápida	de	Referencia	de	Directivas	con
información	de	cada	directiva	de	forma	resumida.

	A		|		B		|		C		|		D		|		E		|		F		|		G		|		H		|		I		|		K		|		L		|		M		|		N		|		O		|		P		|
	Q		|		R		|		S		|		T		|		U		|		V		|		W		|		X	

AcceptFilter
AcceptPathInfo
AccessFileName
Action
AddAlt
AddAltByEncoding
AddAltByType
AddCharset
AddDefaultCharset
AddDescription
AddEncoding
AddHandler
AddIcon
AddIconByEncoding
AddIconByType
AddInputFilter
AddLanguage
AddModuleInfo
AddOutputFilter
AddOutputFilterByType
AddType

Alias
AliasMatch
Allow
AllowCONNECT
AllowEncodedSlashes
AllowMethods
AllowOverride
AllowOverrideList
Anonymous
Anonymous_LogEmail
Anonymous_MustGiveEmail
Anonymous_NoUserID
Anonymous_VerifyEmail
AsyncRequestWorkerFactor
AuthBasicAuthoritative
AuthBasicFake
AuthBasicProvider
AuthBasicUseDigestAlgorithm
AuthDBDUserPWQuery
AuthDBDUserRealmQuery
AuthDBMGroupFile
AuthDBMType
AuthDBMUserFile
AuthDigestAlgorithm
AuthDigestDomain
AuthDigestNonceLifetime
AuthDigestProvider
AuthDigestQop
AuthDigestShmemSize
AuthFormAuthoritative
AuthFormBody
AuthFormDisableNoStore
AuthFormFakeBasicAuth
AuthFormLocation

AuthFormLoginRequiredLocation
AuthFormLoginSuccessLocation
AuthFormLogoutLocation
AuthFormMethod
AuthFormMimetype
AuthFormPassword
AuthFormProvider
AuthFormSitePassphrase
AuthFormSize
AuthFormUsername
AuthGroupFile
AuthLDAPAuthorizePrefix
AuthLDAPBindAuthoritative
AuthLDAPBindDN
AuthLDAPBindPassword
AuthLDAPCharsetConfig
AuthLDAPCompareAsUser
AuthLDAPCompareDNOnServer
AuthLDAPDereferenceAliases
AuthLDAPGroupAttribute
AuthLDAPGroupAttributeIsDN
AuthLDAPInitialBindAsUser
AuthLDAPInitialBindPattern
AuthLDAPMaxSubGroupDepth
AuthLDAPRemoteUserAttribute
AuthLDAPRemoteUserIsDN
AuthLDAPSearchAsUser
AuthLDAPSubGroupAttribute
AuthLDAPSubGroupClass
AuthLDAPUrl
AuthMerging
AuthName
AuthnCacheContext
AuthnCacheEnable

AuthnCacheProvideFor
AuthnCacheSOCache
AuthnCacheTimeout
<AuthnProviderAlias>
AuthnzFcgiCheckAuthnProvider
AuthnzFcgiDefineProvider
AuthType
AuthUserFile
AuthzDBDLoginToReferer
AuthzDBDQuery
AuthzDBDRedirectQuery
AuthzDBMType
<AuthzProviderAlias>
AuthzSendForbiddenOnFailure
BalancerGrowth
BalancerInherit
BalancerMember
BalancerPersist
BrotliAlterETag
BrotliCompressionMaxInputBlock
BrotliCompressionQuality
BrotliCompressionWindow
BrotliFilterNote
BrowserMatch
BrowserMatchNoCase
BufferedLogs
BufferSize
CacheDefaultExpire
CacheDetailHeader
CacheDirLength
CacheDirLevels
CacheDisable
CacheEnable
CacheFile

CacheHeader
CacheIgnoreCacheControl
CacheIgnoreHeaders
CacheIgnoreNoLastMod
CacheIgnoreQueryString
CacheIgnoreURLSessionIdentifiers
CacheKeyBaseURL
CacheLastModifiedFactor
CacheLock
CacheLockMaxAge
CacheLockPath
CacheMaxExpire
CacheMaxFileSize
CacheMinExpire
CacheMinFileSize
CacheNegotiatedDocs
CacheQuickHandler
CacheReadSize
CacheReadTime
CacheRoot
CacheSocache
CacheSocacheMaxSize
CacheSocacheMaxTime
CacheSocacheMinTime
CacheSocacheReadSize
CacheSocacheReadTime
CacheStaleOnError
CacheStoreExpired
CacheStoreNoStore
CacheStorePrivate
CGIDScriptTimeout
CGIMapExtension
CGIPassAuth
CGIVar

CharsetDefault
CharsetOptions
CharsetSourceEnc
CheckCaseOnly
CheckSpelling
ChrootDir
ContentDigest
CookieDomain
CookieExpires
CookieName
CookieStyle
CookieTracking
CoreDumpDirectory
CustomLog
Dav
DavDepthInfinity
DavGenericLockDB
DavLockDB
DavMinTimeout
DBDExptime
DBDInitSQL
DBDKeep
DBDMax
DBDMin
DBDParams
DBDPersist
DBDPrepareSQL
DBDriver
DefaultIcon
DefaultLanguage
DefaultRuntimeDir
DefaultType
Define
DeflateBufferSize

DeflateCompressionLevel
DeflateFilterNote
DeflateInflateLimitRequestBody
DeflateInflateRatioBurst
DeflateInflateRatioLimit
DeflateMemLevel
DeflateWindowSize
Deny
<Directory>
DirectoryCheckHandler
DirectoryIndex
DirectoryIndexRedirect
<DirectoryMatch>
DirectorySlash
DocumentRoot
DTracePrivileges
DumpIOInput
DumpIOOutput
<Else>
<ElseIf>
EnableExceptionHook
EnableMMAP
EnableSendfile
Error
ErrorDocument
ErrorLog
ErrorLogFormat
Example
ExpiresActive
ExpiresByType
ExpiresDefault
ExtendedStatus
ExtFilterDefine
ExtFilterOptions

FallbackResource
FileETag
<Files>
<FilesMatch>
FilterChain
FilterDeclare
FilterProtocol
FilterProvider
FilterTrace
ForceLanguagePriority
ForceType
ForensicLog
GlobalLog
GprofDir
GracefulShutdownTimeout
Group
H2CopyFiles
H2Direct
H2EarlyHints
H2MaxSessionStreams
H2MaxWorkerIdleSeconds
H2MaxWorkers
H2MinWorkers
H2ModernTLSOnly
H2Push
H2PushDiarySize
H2PushPriority
H2PushResource
H2SerializeHeaders
H2StreamMaxMemSize
H2TLSCoolDownSecs
H2TLSWarmUpSize
H2Upgrade
H2WindowSize

Header
HeaderName
HeartbeatAddress
HeartbeatListen
HeartbeatMaxServers
HeartbeatStorage
HeartbeatStorage
HostnameLookups
HttpProtocolOptions
IdentityCheck
IdentityCheckTimeout
<If>
<IfDefine>
<IfModule>
<IfVersion>
ImapBase
ImapDefault
ImapMenu
Include
IncludeOptional
IndexHeadInsert
IndexIgnore
IndexIgnoreReset
IndexOptions
IndexOrderDefault
IndexStyleSheet
InputSed
ISAPIAppendLogToErrors
ISAPIAppendLogToQuery
ISAPICacheFile
ISAPIFakeAsync
ISAPILogNotSupported
ISAPIReadAheadBuffer
KeepAlive

KeepAliveTimeout
KeptBodySize
LanguagePriority
LDAPCacheEntries
LDAPCacheTTL
LDAPConnectionPoolTTL
LDAPConnectionTimeout
LDAPLibraryDebug
LDAPOpCacheEntries
LDAPOpCacheTTL
LDAPReferralHopLimit
LDAPReferrals
LDAPRetries
LDAPRetryDelay
LDAPSharedCacheFile
LDAPSharedCacheSize
LDAPTimeout
LDAPTrustedClientCert
LDAPTrustedGlobalCert
LDAPTrustedMode
LDAPVerifyServerCert
<Limit>
<LimitExcept>
LimitInternalRecursion
LimitRequestBody
LimitRequestFields
LimitRequestFieldSize
LimitRequestLine
LimitXMLRequestBody
Listen
ListenBackLog
ListenCoresBucketsRatio
LoadFile
LoadModule

<Location>
<LocationMatch>
LogFormat
LogIOTrackTTFB
LogLevel
LogMessage
LuaAuthzProvider
LuaCodeCache
LuaHookAccessChecker
LuaHookAuthChecker
LuaHookCheckUserID
LuaHookFixups
LuaHookInsertFilter
LuaHookLog
LuaHookMapToStorage
LuaHookTranslateName
LuaHookTypeChecker
LuaInherit
LuaInputFilter
LuaMapHandler
LuaOutputFilter
LuaPackageCPath
LuaPackagePath
LuaQuickHandler
LuaRoot
LuaScope
<Macro>
MaxConnectionsPerChild
MaxKeepAliveRequests
MaxMemFree
MaxRangeOverlaps
MaxRangeReversals
MaxRanges
MaxRequestWorkers

MaxSpareServers
MaxSpareThreads
MaxThreads
MemcacheConnTTL
MergeTrailers
MetaDir
MetaFiles
MetaSuffix
MimeMagicFile
MinSpareServers
MinSpareThreads
MMapFile
ModemStandard
ModMimeUsePathInfo
MultiviewsMatch
Mutex
NameVirtualHost
NoProxy
NWSSLTrustedCerts
NWSSLUpgradeable
Options
Order
OutputSed
PassEnv
PidFile
PrivilegesMode
Protocol
ProtocolEcho
Protocols
ProtocolsHonorOrder
<Proxy>
ProxyAddHeaders
ProxyBadHeader
ProxyBlock

ProxyDomain
ProxyErrorOverride
ProxyExpressDBMFile
ProxyExpressDBMType
ProxyExpressEnable
ProxyFCGIBackendType
ProxyFCGISetEnvIf
ProxyFtpDirCharset
ProxyFtpEscapeWildcards
ProxyFtpListOnWildcard
ProxyHCExpr
ProxyHCTemplate
ProxyHCTPsize
ProxyHTMLBufSize
ProxyHTMLCharsetOut
ProxyHTMLDocType
ProxyHTMLEnable
ProxyHTMLEvents
ProxyHTMLExtended
ProxyHTMLFixups
ProxyHTMLInterp
ProxyHTMLLinks
ProxyHTMLMeta
ProxyHTMLStripComments
ProxyHTMLURLMap
ProxyIOBufferSize
<ProxyMatch>
ProxyMaxForwards
ProxyPass
ProxyPassInherit
ProxyPassInterpolateEnv
ProxyPassMatch
ProxyPassReverse
ProxyPassReverseCookieDomain

ProxyPassReverseCookiePath
ProxyPreserveHost
ProxyReceiveBufferSize
ProxyRemote
ProxyRemoteMatch
ProxyRequests
ProxySCGIInternalRedirect
ProxySCGISendfile
ProxySet
ProxySourceAddress
ProxyStatus
ProxyTimeout
ProxyVia
QualifyRedirectURL
ReadmeName
ReceiveBufferSize
Redirect
RedirectMatch
RedirectPermanent
RedirectTemp
ReflectorHeader
RegisterHttpMethod
RemoteIPHeader
RemoteIPInternalProxy
RemoteIPInternalProxyList
RemoteIPProxiesHeader
RemoteIPTrustedProxy
RemoteIPTrustedProxyList
RemoveCharset
RemoveEncoding
RemoveHandler
RemoveInputFilter
RemoveLanguage
RemoveOutputFilter

RemoveType
RequestHeader
RequestReadTimeout
Require
<RequireAll>
<RequireAny>
<RequireNone>
RewriteBase
RewriteCond
RewriteEngine
RewriteMap
RewriteOptions
RewriteRule
RLimitCPU
RLimitMEM
RLimitNPROC
Satisfy
ScoreBoardFile
Script
ScriptAlias
ScriptAliasMatch
ScriptInterpreterSource
ScriptLog
ScriptLogBuffer
ScriptLogLength
ScriptSock
SecureListen
SeeRequestTail
SendBufferSize
ServerAdmin
ServerAlias
ServerLimit
ServerName
ServerPath

ServerRoot
ServerSignature
ServerTokens
Session
SessionCookieName
SessionCookieName2
SessionCookieRemove
SessionCryptoCipher
SessionCryptoDriver
SessionCryptoPassphrase
SessionCryptoPassphraseFile
SessionDBDCookieName
SessionDBDCookieName2
SessionDBDCookieRemove
SessionDBDDeleteLabel
SessionDBDInsertLabel
SessionDBDPerUser
SessionDBDSelectLabel
SessionDBDUpdateLabel
SessionEnv
SessionExclude
SessionHeader
SessionInclude
SessionMaxAge
SetEnv
SetEnvIf
SetEnvIfExpr
SetEnvIfNoCase
SetHandler
SetInputFilter
SetOutputFilter
SSIEndTag
SSIErrorMsg
SSIETag

SSILastModified
SSILegacyExprParser
SSIStartTag
SSITimeFormat
SSIUndefinedEcho
SSLCACertificateFile
SSLCACertificatePath
SSLCADNRequestFile
SSLCADNRequestPath
SSLCARevocationCheck
SSLCARevocationFile
SSLCARevocationPath
SSLCertificateChainFile
SSLCertificateFile
SSLCertificateKeyFile
SSLCipherSuite
SSLCompression
SSLCryptoDevice
SSLEngine
SSLFIPS
SSLHonorCipherOrder
SSLInsecureRenegotiation
SSLOCSPDefaultResponder
SSLOCSPEnable
SSLOCSPNoverify
SSLOCSPOverrideResponder
SSLOCSPProxyURL
SSLOCSPResponderCertificateFile
SSLOCSPResponderTimeout
SSLOCSPResponseMaxAge
SSLOCSPResponseTimeSkew
SSLOCSPUseRequestNonce
SSLOpenSSLConfCmd
SSLOptions

SSLPassPhraseDialog
SSLProtocol
SSLProxyCACertificateFile
SSLProxyCACertificatePath
SSLProxyCARevocationCheck
SSLProxyCARevocationFile
SSLProxyCARevocationPath
SSLProxyCheckPeerCN
SSLProxyCheckPeerExpire
SSLProxyCheckPeerName
SSLProxyCipherSuite
SSLProxyEngine
SSLProxyMachineCertificateChainFile
SSLProxyMachineCertificateFile
SSLProxyMachineCertificatePath
SSLProxyProtocol
SSLProxyVerify
SSLProxyVerifyDepth
SSLRandomSeed
SSLRenegBufferSize
SSLRequire
SSLRequireSSL
SSLSessionCache
SSLSessionCacheTimeout
SSLSessionTicketKeyFile
SSLSessionTickets
SSLSRPUnknownUserSeed
SSLSRPVerifierFile
SSLStaplingCache
SSLStaplingErrorCacheTimeout
SSLStaplingFakeTryLater
SSLStaplingForceURL
SSLStaplingResponderTimeout
SSLStaplingResponseMaxAge

SSLStaplingResponseTimeSkew
SSLStaplingReturnResponderErrors
SSLStaplingStandardCacheTimeout
SSLStrictSNIVHostCheck
SSLUserName
SSLUseStapling
SSLVerifyClient
SSLVerifyDepth
StartServers
StartThreads
Substitute
SubstituteInheritBefore
SubstituteMaxLineLength
Suexec
SuexecUserGroup
ThreadLimit
ThreadsPerChild
ThreadStackSize
TimeOut
TraceEnable
TransferLog
TypesConfig
UnDefine
UndefMacro
UnsetEnv
Use
UseCanonicalName
UseCanonicalPhysicalPort
User
UserDir
VHostCGIMode
VHostCGIPrivs
VHostGroup
VHostPrivs

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

VHostSecure
VHostUser
VirtualDocumentRoot
VirtualDocumentRootIP
<VirtualHost>
VirtualScriptAlias
VirtualScriptAliasIP
WatchdogInterval
XBitHack
xml2EncAlias
xml2EncDefault
xml2StartParse

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4	>	Módulos

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Guía	Rápida	de	Referencia	de	Directivas

La	Guía	Rápida	de	Referencia	de	Directivas	muestra	el	uso,	las
opciones	por	defecto,	el	estado	y	el	contexto	de	cada	directiva	de
configuración	de	Apache.	Para	más	información	sobre	cada	directiva,
consulte	el	Diccionario	de	Directivas.

La	primera	columna	muestra	el	nombre	y	el	uso	de	la	directiva.	La
segunda	columna	muestra	el	valor	por	defecto	de	la	directiva,	si
existe	ese	valor	por	defecto.	Si	el	valor	por	defecto	es	demasiado
largo	para	mostrarlo,	el	primer	carácter	va	seguido	de	un	signo	"+".

La	tercera	y	la	cuarta	columna	listan	los	contextos	en	los	que	la
directiva	puede	funcionar	y	el	estado	de	la	directiva	de	acuerdo	con
las	notas	que	detallan	más	abajo.

	A		|		B		|		C		|		D		|		E		|		F		|		G		|
	H		|		I		|		K		|		L		|		M		|		N		|		O		|
	P		|		Q		|		R		|		S		|		T		|		U		|		V		|

	W		|		X	

s server	config

v virtual	host

d directorio

h .htaccess

C Core
M MPM
B Base
E Extensión
X Experimental
T Externo

AcceptFilter	protocol	accept_filter
Configura	mejoras	para	un	Protocolo	de	Escucha	de	Sockets

AcceptPathInfo	On|Off|Default Default
Los	recursos	aceptan	información	sobre	su	ruta

AccessFileName	filename	[filename]htaccess
Nombre	del	fichero	distribuido	de	configuración

Action	action-type	cgi-script	[virtual]
Activates	a	CGI	script	for	a	particular	handler	or	content-type

AddAlt	string	file	[file]	...
Alternate	text	to	display	for	a	file,	instead	of	an	icon	selected	by	filename

AddAltByEncoding	string	MIME-encoding	[MIME-encoding]
...

Alternate	text	to	display	for	a	file	instead	of	an	icon	selected	by	MIME-encoding

AddAltByType	string	MIME-type	[MIME-type]	...
Alternate	text	to	display	for	a	file,	instead	of	an	icon	selected	by	MIME	content-type

AddCharset	charset	extension	[extension]	...
Maps	the	given	filename	extensions	to	the	specified	content	charset

AddDefaultCharset	On|Off|charset Off
Default	charset	parameter	to	be	added	when	a	response	content-type	is	text/plain	or	text/html

AddDescription	string	file	[file]	...
Description	to	display	for	a	file

AddEncoding	encoding	extension	[extension]	...
Maps	the	given	filename	extensions	to	the	specified	encoding	type

AddHandler	handler-name	extension	[extension]	...
Maps	the	filename	extensions	to	the	specified	handler

AddIcon	icon	name	[name]	...
Icon	to	display	for	a	file	selected	by	name

AddIconByEncoding	icon	MIME-encoding	[MIME-encoding]
...
Icon	to	display	next	to	files	selected	by	MIME	content-encoding

AddIconByType	icon	MIME-type	[MIME-type]	...
Icon	to	display	next	to	files	selected	by	MIME	content-type

AddInputFilter	filter[;filter...]	extension	[extension]	...
Maps	filename	extensions	to	the	filters	that	will	process	client	requests

AddLanguage	language-tag	extension	[extension]	...
Maps	the	given	filename	extension	to	the	specified	content	language

AddModuleInfo	module-name	string
Adds	additional	information	to	the	module	information	displayed	by	the	server-info	handler

AddOutputFilter	filter[;filter...]	extension	[extension]	...
Maps	filename	extensions	to	the	filters	that	will	process	responses	from	the	server

AddOutputFilterByType	filter[;filter...]	media-type	[media-
type]	...
assigns	an	output	filter	to	a	particular	media-type

AddType	media-type	extension	[extension]	...
Maps	the	given	filename	extensions	onto	the	specified	content	type

Alias	[URL-path]	file-path|directory-path
Maps	URLs	to	filesystem	locations

AliasMatch	regex	file-path|directory-path
Maps	URLs	to	filesystem	locations	using	regular	expressions

Allow	from	all|host|env=[!]env-variable	[host|env=[!]env-
variable]	...
Controls	which	hosts	can	access	an	area	of	the	server

AllowCONNECT	port[-port]	[port[-port]]	... 443	563
Ports	that	are	allowed	to	CONNECT	through	the	proxy

AllowEncodedSlashes	On|Off Off
Determines	whether	encoded	path	separators	in	URLs	are	allowed	to	be	passed	through

AllowMethods	reset|HTTP-method	[HTTP-method]... reset
Restrict	access	to	the	listed	HTTP	methods

AllowOverride	All|None|directive-type	[directive-type]	... None	(2.3.9	and	lat	+
Types	of	directives	that	are	allowed	in	.htaccess	files

AllowOverrideList	None|directive	[directive-type]	... None
Individual	directives	that	are	allowed	in	.htaccess	files

Anonymous	user	[user]	...
Specifies	userIDs	that	are	allowed	access	without	password	verification

Anonymous_LogEmail	On|Off On
Sets	whether	the	password	entered	will	be	logged	in	the	error	log

Anonymous_MustGiveEmail	On|Off On
Specifies	whether	blank	passwords	are	allowed

Anonymous_NoUserID	On|Off Off
Sets	whether	the	userID	field	may	be	empty

Anonymous_VerifyEmail	On|Off Off
Sets	whether	to	check	the	password	field	for	a	correctly	formatted	email	address

AsyncRequestWorkerFactor	factor
Limit	concurrent	connections	per	process

AuthBasicAuthoritative	On|Off On
Sets	whether	authorization	and	authentication	are	passed	to	lower	level	modules

AuthBasicFake	off|username	[password]
Fake	basic	authentication	using	the	given	expressions	for	username	and	password

AuthBasicProvider	provider-name	[provider-name]	... file
Sets	the	authentication	provider(s)	for	this	location

AuthBasicUseDigestAlgorithm	MD5|Off Off
Check	passwords	against	the	authentication	providers	as	if	Digest	Authentication	was	in	force	instead	of	Basic	Authentication.

AuthDBDUserPWQuery	query
SQL	query	to	look	up	a	password	for	a	user

AuthDBDUserRealmQuery	query
SQL	query	to	look	up	a	password	hash	for	a	user	and	realm.

AuthDBMGroupFile	file-path
Sets	the	name	of	the	database	file	containing	the	list	of	user	groups	for	authorization

AuthDBMType	default|SDBM|GDBM|NDBM|DB default
Sets	the	type	of	database	file	that	is	used	to	store	passwords

AuthDBMUserFile	file-path
Sets	the	name	of	a	database	file	containing	the	list	of	users	and	passwords	for	authentication

AuthDigestAlgorithm	MD5|MD5-sess MD5
Selects	the	algorithm	used	to	calculate	the	challenge	and	response	hashes	in	digest	authentication

AuthDigestDomain	URI	[URI]	...
URIs	that	are	in	the	same	protection	space	for	digest	authentication

AuthDigestNonceLifetime	seconds 300
How	long	the	server	nonce	is	valid

AuthDigestProvider	provider-name	[provider-name]	... file
Sets	the	authentication	provider(s)	for	this	location

AuthDigestQop	none|auth|auth-int	[auth|auth-int] auth
Determines	the	quality-of-protection	to	use	in	digest	authentication

AuthDigestShmemSize	size 1000
The	amount	of	shared	memory	to	allocate	for	keeping	track	of	clients

AuthFormAuthoritative	On|Off On
Sets	whether	authorization	and	authentication	are	passed	to	lower	level	modules

AuthFormBody	fieldname
The	name	of	a	form	field	carrying	the	body	of	the	request	to	attempt	on	successful	login

AuthFormDisableNoStore	On|Off Off
Disable	the	CacheControl	no-store	header	on	the	login	page

AuthFormFakeBasicAuth	On|Off Off
Fake	a	Basic	Authentication	header

AuthFormLocation	fieldname
The	name	of	a	form	field	carrying	a	URL	to	redirect	to	on	successful	login

AuthFormLoginRequiredLocation	url
The	URL	of	the	page	to	be	redirected	to	should	login	be	required

AuthFormLoginSuccessLocation	url

The	URL	of	the	page	to	be	redirected	to	should	login	be	successful

AuthFormLogoutLocation	uri
The	URL	to	redirect	to	after	a	user	has	logged	out

AuthFormMethod	fieldname
The	name	of	a	form	field	carrying	the	method	of	the	request	to	attempt	on	successful	login

AuthFormMimetype	fieldname
The	name	of	a	form	field	carrying	the	mimetype	of	the	body	of	the	request	to	attempt	on	successful	login

AuthFormPassword	fieldname
The	name	of	a	form	field	carrying	the	login	password

AuthFormProvider	provider-name	[provider-name]	... file
Sets	the	authentication	provider(s)	for	this	location

AuthFormSitePassphrase	secret
Bypass	authentication	checks	for	high	traffic	sites

AuthFormSize	size
The	largest	size	of	the	form	in	bytes	that	will	be	parsed	for	the	login	details

AuthFormUsername	fieldname
The	name	of	a	form	field	carrying	the	login	username

AuthGroupFile	file-path
Sets	the	name	of	a	text	file	containing	the	list	of	user	groups	for	authorization

AuthLDAPAuthorizePrefix	prefix AUTHORIZE_
Specifies	the	prefix	for	environment	variables	set	during	authorization

AuthLDAPBindAuthoritative	off|on on
Determines	if	other	authentication	providers	are	used	when	a	user	can	be	mapped	to	a	DN	but	the	server	cannot	successfully
bind	with	the	user's	credentials.

AuthLDAPBindDN	distinguished-name
Optional	DN	to	use	in	binding	to	the	LDAP	server

AuthLDAPBindPassword	password
Password	used	in	conjunction	with	the	bind	DN

AuthLDAPCharsetConfig	file-path
Language	to	charset	conversion	configuration	file

AuthLDAPCompareAsUser	on|off off
Use	the	authenticated	user's	credentials	to	perform	authorization	comparisons

AuthLDAPCompareDNOnServer	on|off on
Use	the	LDAP	server	to	compare	the	DNs

AuthLDAPDereferenceAliases always

never|searching|finding|always
When	will	the	module	de-reference	aliases

AuthLDAPGroupAttribute	attribute member	uniquemember	+
LDAP	attributes	used	to	identify	the	user	members	of	groups.

AuthLDAPGroupAttributeIsDN	on|off on
Use	the	DN	of	the	client	username	when	checking	for	group	membership

AuthLDAPInitialBindAsUser	off|on off
Determines	if	the	server	does	the	initial	DN	lookup	using	the	basic	authentication	users'	own	username,	instead	of
anonymously	or	with	hard-coded	credentials	for	the	server

AuthLDAPInitialBindPattern	regex	substitution (.*)	$1	(remote	use	+
Specifies	the	transformation	of	the	basic	authentication	username	to	be	used	when	binding	to	the	LDAP	server	to	perform	a	DN
lookup

AuthLDAPMaxSubGroupDepth	Number 10
Specifies	the	maximum	sub-group	nesting	depth	that	will	be	evaluated	before	the	user	search	is	discontinued.

AuthLDAPRemoteUserAttribute	uid
Use	the	value	of	the	attribute	returned	during	the	user	query	to	set	the	REMOTE_USER	environment	variable

AuthLDAPRemoteUserIsDN	on|off off
Use	the	DN	of	the	client	username	to	set	the	REMOTE_USER	environment	variable

AuthLDAPSearchAsUser	on|off off
Use	the	authenticated	user's	credentials	to	perform	authorization	searches

AuthLDAPSubGroupAttribute	attribute
Specifies	the	attribute	labels,	one	value	per	directive	line,	used	to	distinguish	the	members	of	the	current	group	that	are	groups.

AuthLDAPSubGroupClass	LdapObjectClass groupOfNames	groupO	+
Specifies	which	LDAP	objectClass	values	identify	directory	objects	that	are	groups	during	sub-group	processing.

AuthLDAPUrl	url	[NONE|SSL|TLS|STARTTLS]
URL	specifying	the	LDAP	search	parameters

AuthMerging	Off	|	And	|	Or Off
Controls	the	manner	in	which	each	configuration	section's	authorization	logic	is	combined	with	that	of	preceding	configuration
sections.

AuthName	auth-domain
Authorization	realm	for	use	in	HTTP	authentication

AuthnCacheContext	directory|server|custom-string
Specify	a	context	string	for	use	in	the	cache	key

AuthnCacheEnable
Enable	Authn	caching	configured	anywhere

AuthnCacheProvideFor	authn-provider	[...]

Specify	which	authn	provider(s)	to	cache	for

AuthnCacheSOCache	provider-name[:provider-args]
Select	socache	backend	provider	to	use

AuthnCacheTimeout	timeout	(seconds)
Set	a	timeout	for	cache	entries

<AuthnProviderAlias	baseProvider	Alias>	...
</AuthnProviderAlias>
Enclose	a	group	of	directives	that	represent	an	extension	of	a	base	authentication	provider	and	referenced	by	the	specified
alias

AuthnzFcgiCheckAuthnProvider	provider-name|None
option	...
Enables	a	FastCGI	application	to	handle	the	check_authn	authentication	hook.

AuthnzFcgiDefineProvider	type	provider-name	backend-
address
Defines	a	FastCGI	application	as	a	provider	for	authentication	and/or	authorization

AuthType	None|Basic|Digest|Form
Type	of	user	authentication

AuthUserFile	file-path
Sets	the	name	of	a	text	file	containing	the	list	of	users	and	passwords	for	authentication

AuthzDBDLoginToReferer	On|Off Off
Determines	whether	to	redirect	the	Client	to	the	Referring	page	on	successful	login	or	logout	if	a	
present

AuthzDBDQuery	query
Specify	the	SQL	Query	for	the	required	operation

AuthzDBDRedirectQuery	query
Specify	a	query	to	look	up	a	login	page	for	the	user

AuthzDBMType	default|SDBM|GDBM|NDBM|DB default
Sets	the	type	of	database	file	that	is	used	to	store	list	of	user	groups

<AuthzProviderAlias	baseProvider	Alias	Require-
Parameters>	...	</AuthzProviderAlias>
Enclose	a	group	of	directives	that	represent	an	extension	of	a	base	authorization	provider	and	referenced	by	the	specified	alias

AuthzSendForbiddenOnFailure	On|Off Off
Send	'403	FORBIDDEN'	instead	of	'401	UNAUTHORIZED'	if	authentication	succeeds	but	authorization	fails

BalancerGrowth	# 5
Number	of	additional	Balancers	that	can	be	added	Post-configuration

BalancerInherit	On|Off On
Inherit	ProxyPassed	Balancers/Workers	from	the	main	server

BalancerMember	[balancerurl]	url	[key=value	[key=value
...]]
Add	a	member	to	a	load	balancing	group

BalancerPersist	On|Off Off
Attempt	to	persist	changes	made	by	the	Balancer	Manager	across	restarts.

BrotliAlterETag	AddSuffix|NoChange|Remove AddSuffix
How	the	outgoing	ETag	header	should	be	modified	during	compression

BrotliCompressionMaxInputBlock	value
Maximum	input	block	size

BrotliCompressionQuality	value 5
Compression	quality

BrotliCompressionWindow	value 18
Brotli	sliding	compression	window	size

BrotliFilterNote	[type]	notename
Places	the	compression	ratio	in	a	note	for	logging

BrowserMatch	regex	[!]env-variable[=value]	[[!]env-
variable[=value]]	...
Sets	environment	variables	conditional	on	HTTP	User-Agent

BrowserMatchNoCase	regex	[!]env-variable[=value]	[[!]env-
variable[=value]]	...
Sets	environment	variables	conditional	on	User-Agent	without	respect	to	case

BufferedLogs	On|Off Off
Buffer	log	entries	in	memory	before	writing	to	disk

BufferSize	integer 131072
Maximum	size	in	bytes	to	buffer	by	the	buffer	filter

CacheDefaultExpire	seconds 3600	(one	hour)
The	default	duration	to	cache	a	document	when	no	expiry	date	is	specified.

CacheDetailHeader	on|off off
Add	an	X-Cache-Detail	header	to	the	response.

CacheDirLength	length 2
The	number	of	characters	in	subdirectory	names

CacheDirLevels	levels 2
The	number	of	levels	of	subdirectories	in	the	cache.

CacheDisable	url-string	|	on
Disable	caching	of	specified	URLs

CacheEnable	cache_type	[url-string]
Enable	caching	of	specified	URLs	using	a	specified	storage	manager

CacheFile	file-path	[file-path]	...
Cache	a	list	of	file	handles	at	startup	time

CacheHeader	on|off off
Add	an	X-Cache	header	to	the	response.

CacheIgnoreCacheControl	On|Off Off
Ignore	request	to	not	serve	cached	content	to	client

CacheIgnoreHeaders	header-string	[header-string]	... None
Do	not	store	the	given	HTTP	header(s)	in	the	cache.

CacheIgnoreNoLastMod	On|Off Off
Ignore	the	fact	that	a	response	has	no	Last	Modified	header.

CacheIgnoreQueryString	On|Off Off
Ignore	query	string	when	caching

CacheIgnoreURLSessionIdentifiers	identifier	[identifier]	... None
Ignore	defined	session	identifiers	encoded	in	the	URL	when	caching

CacheKeyBaseURL	URL http://example.com
Override	the	base	URL	of	reverse	proxied	cache	keys.

CacheLastModifiedFactor	float 0.1
The	factor	used	to	compute	an	expiry	date	based	on	the	LastModified	date.

CacheLock	on|off off
Enable	the	thundering	herd	lock.

CacheLockMaxAge	integer 5
Set	the	maximum	possible	age	of	a	cache	lock.

CacheLockPath	directory /tmp/mod_cache-lock	+
Set	the	lock	path	directory.

CacheMaxExpire	seconds 86400	(one	day)
The	maximum	time	in	seconds	to	cache	a	document

CacheMaxFileSize	bytes 1000000
The	maximum	size	(in	bytes)	of	a	document	to	be	placed	in	the	cache

CacheMinExpire	seconds 0
The	minimum	time	in	seconds	to	cache	a	document

CacheMinFileSize	bytes 1

The	minimum	size	(in	bytes)	of	a	document	to	be	placed	in	the	cache

CacheNegotiatedDocs	On|Off Off
Allows	content-negotiated	documents	to	be	cached	by	proxy	servers

CacheQuickHandler	on|off on
Run	the	cache	from	the	quick	handler.

CacheReadSize	bytes 0
The	minimum	size	(in	bytes)	of	the	document	to	read	and	be	cached	before	sending	the	data	downstream

CacheReadTime	milliseconds 0
The	minimum	time	(in	milliseconds)	that	should	elapse	while	reading	before	data	is	sent	downstream

CacheRoot	directory
The	directory	root	under	which	cache	files	are	stored

CacheSocache	type[:args]
The	shared	object	cache	implementation	to	use

CacheSocacheMaxSize	bytes 102400
The	maximum	size	(in	bytes)	of	an	entry	to	be	placed	in	the	cache

CacheSocacheMaxTime	seconds 86400
The	maximum	time	(in	seconds)	for	a	document	to	be	placed	in	the	cache

CacheSocacheMinTime	seconds 600
The	minimum	time	(in	seconds)	for	a	document	to	be	placed	in	the	cache

CacheSocacheReadSize	bytes 0
The	minimum	size	(in	bytes)	of	the	document	to	read	and	be	cached	before	sending	the	data	downstream

CacheSocacheReadTime	milliseconds 0
The	minimum	time	(in	milliseconds)	that	should	elapse	while	reading	before	data	is	sent	downstream

CacheStaleOnError	on|off on
Serve	stale	content	in	place	of	5xx	responses.

CacheStoreExpired	On|Off Off
Attempt	to	cache	responses	that	the	server	reports	as	expired

CacheStoreNoStore	On|Off Off
Attempt	to	cache	requests	or	responses	that	have	been	marked	as	no-store.

CacheStorePrivate	On|Off Off
Attempt	to	cache	responses	that	the	server	has	marked	as	private

CGIDScriptTimeout	time[s|ms]
The	length	of	time	to	wait	for	more	output	from	the	CGI	program

CGIMapExtension	cgi-path	.extension
Technique	for	locating	the	interpreter	for	CGI	scripts

CGIPassAuth	On|Off Off
Enables	passing	HTTP	authorization	headers	to	scripts	as	CGI	variables

CGIVar	variable	rule
Controls	how	some	CGI	variables	are	set

CharsetDefault	charset
Charset	to	translate	into

CharsetOptions	option	[option]	... ImplicitAdd
Configures	charset	translation	behavior

CharsetSourceEnc	charset
Source	charset	of	files

CheckCaseOnly	on|off Off
Limits	the	action	of	the	speling	module	to	case	corrections

CheckSpelling	on|off Off
Enables	the	spelling	module

ChrootDir	/path/to/directory
Directory	for	apache	to	run	chroot(8)	after	startup.

ContentDigest	On|Off Off
Enables	the	generation	of	Content-MD5	HTTP	Response	headers

CookieDomain	domain
The	domain	to	which	the	tracking	cookie	applies

CookieExpires	expiry-period
Expiry	time	for	the	tracking	cookie

CookieName	token Apache
Name	of	the	tracking	cookie

CookieStyle	Netscape|Cookie|Cookie2|RFC2109|RFC2965 Netscape
Format	of	the	cookie	header	field

CookieTracking	on|off off
Enables	tracking	cookie

CoreDumpDirectory	directory
Directory	where	Apache	HTTP	Server	attempts	to	switch	before	dumping	core

CustomLog	file|pipe	format|nickname	[env=[!]environment-
variable|	expr=expression]
Sets	filename	and	format	of	log	file

Dav	On|Off|provider-name Off
Enable	WebDAV	HTTP	methods

DavDepthInfinity	on|off off
Allow	PROPFIND,	Depth:	Infinity	requests

DavGenericLockDB	file-path
Location	of	the	DAV	lock	database

DavLockDB	file-path
Location	of	the	DAV	lock	database

DavMinTimeout	seconds 0
Minimum	amount	of	time	the	server	holds	a	lock	on	a	DAV	resource

DBDExptime	time-in-seconds 300
Keepalive	time	for	idle	connections

DBDInitSQL	"SQL	statement"
Execute	an	SQL	statement	after	connecting	to	a	database

DBDKeep	number 2
Maximum	sustained	number	of	connections

DBDMax	number 10
Maximum	number	of	connections

DBDMin	number 1
Minimum	number	of	connections

DBDParams	param1=value1[,param2=value2]
Parameters	for	database	connection

DBDPersist	On|Off
Whether	to	use	persistent	connections

DBDPrepareSQL	"SQL	statement"	label
Define	an	SQL	prepared	statement

DBDriver	name
Specify	an	SQL	driver

DefaultIcon	url-path
Icon	to	display	for	files	when	no	specific	icon	is	configured

DefaultLanguage	language-tag
Defines	a	default	language-tag	to	be	sent	in	the	Content-Language	header	field	for	all	resources	in	the	current	context	that
have	not	been	assigned	a	language-tag	by	some	other	means.

DefaultRuntimeDir	directory-path DEFAULT_REL_RUNTIME
+

Base	directory	for	the	server	run-time	files

DefaultType	media-type|none none

This	directive	has	no	effect	other	than	to	emit	warnings	if	the	value	is	not	none.	In	prior	versions,	DefaultType	would	specify	a
default	media	type	to	assign	to	response	content	for	which	no	other	media	type	configuration	could	be	found.

Define	parameter-name
Define	the	existence	of	a	variable

DeflateBufferSize	value 8096
Fragment	size	to	be	compressed	at	one	time	by	zlib

DeflateCompressionLevel	value
How	much	compression	do	we	apply	to	the	output

DeflateFilterNote	[type]	notename
Places	the	compression	ratio	in	a	note	for	logging

DeflateInflateLimitRequestBodyvalue
Maximum	size	of	inflated	request	bodies

DeflateInflateRatioBurst	value
Maximum	number	of	times	the	inflation	ratio	for	request	bodies	can	be	crossed

DeflateInflateRatioLimit	value
Maximum	inflation	ratio	for	request	bodies

DeflateMemLevel	value 9
How	much	memory	should	be	used	by	zlib	for	compression

DeflateWindowSize	value 15
Zlib	compression	window	size

Deny	from	all|host|env=[!]env-variable	[host|env=[!]env-
variable]	...
Controls	which	hosts	are	denied	access	to	the	server

<Directory	directory-path>	...	</Directory>
Enclose	a	group	of	directives	that	apply	only	to	the	named	file-system	directory,	sub-directories,	and	their	contents.

DirectoryCheckHandler	On|Off Off
Toggle	how	this	module	responds	when	another	handler	is	configured

DirectoryIndex	disabled	|	local-url	[local-url]	... index.html
List	of	resources	to	look	for	when	the	client	requests	a	directory

DirectoryIndexRedirect	on	|	off	|	permanent	|	temp	|
seeother	|	3xx-code

off

Configures	an	external	redirect	for	directory	indexes.

<DirectoryMatch	regex>	...	</DirectoryMatch>
Enclose	directives	that	apply	to	the	contents	of	file-system	directories	matching	a	regular	expression.

DirectorySlash	On|Off On

Toggle	trailing	slash	redirects	on	or	off

DocumentRoot	directory-path /usr/local/apache/h	+
Directory	that	forms	the	main	document	tree	visible	from	the	web

DTracePrivileges	On|Off Off
Determines	whether	the	privileges	required	by	dtrace	are	enabled.

DumpIOInput	On|Off Off
Dump	all	input	data	to	the	error	log

DumpIOOutput	On|Off Off
Dump	all	output	data	to	the	error	log

<Else>	...	</Else>
Contains	directives	that	apply	only	if	the	condition	of	a	previous	<If>	or	<ElseIf>	section	is	not	satisfied	by	a	request	at
runtime

<ElseIf	expression>	...	</ElseIf>
Contains	directives	that	apply	only	if	a	condition	is	satisfied	by	a	request	at	runtime	while	the	condition	of	a	previous	
<ElseIf>	section	is	not	satisfied

EnableExceptionHook	On|Off Off
Enables	a	hook	that	runs	exception	handlers	after	a	crash

EnableMMAP	On|Off On
Use	memory-mapping	to	read	files	during	delivery

EnableSendfile	On|Off Off
Use	the	kernel	sendfile	support	to	deliver	files	to	the	client

Error	message
Abort	configuration	parsing	with	a	custom	error	message

ErrorDocument	error-code	document
What	the	server	will	return	to	the	client	in	case	of	an	error

ErrorLog	file-path|syslog[:facility] logs/error_log	(Uni	+
Location	where	the	server	will	log	errors

ErrorLog	[connection|request]	format
Format	specification	for	error	log	entries

Example
Demonstration	directive	to	illustrate	the	Apache	module	API

ExpiresActive	On|Off Off
Enables	generation	of	Expires	headers

ExpiresByType	MIME-type	<code>seconds
Value	of	the	Expires	header	configured	by	MIME	type

ExpiresDefault	<code>seconds
Default	algorithm	for	calculating	expiration	time

ExtendedStatus	On|Off Off[*]
Keep	track	of	extended	status	information	for	each	request

ExtFilterDefine	filtername	parameters
Define	an	external	filter

ExtFilterOptions	option	[option]	... NoLogStderr
Configure	mod_ext_filter	options

FallbackResource	disabled	|	local-url
Define	a	default	URL	for	requests	that	don't	map	to	a	file

FileETag	component	... INode	MTime	Size
File	attributes	used	to	create	the	ETag	HTTP	response	header	for	static	files

<Files	filename>	...	</Files>
Contains	directives	that	apply	to	matched	filenames

<FilesMatch	regex>	...	</FilesMatch>
Contains	directives	that	apply	to	regular-expression	matched	filenames

FilterChain	[+=-@!]filter-name	...
Configure	the	filter	chain

FilterDeclare	filter-name	[type]
Declare	a	smart	filter

FilterProtocol	filter-name	[provider-name]	proto-flags
Deal	with	correct	HTTP	protocol	handling

FilterProvider	filter-name	provider-name	expression
Register	a	content	filter

FilterTrace	filter-name	level
Get	debug/diagnostic	information	from	mod_filter

ForceLanguagePriority	None|Prefer|Fallback
[Prefer|Fallback]

Prefer

Action	to	take	if	a	single	acceptable	document	is	not	found

ForceType	media-type|None
Forces	all	matching	files	to	be	served	with	the	specified	media	type	in	the	HTTP	Content-Type	header	field

ForensicLog	filename|pipe
Sets	filename	of	the	forensic	log

GlobalLogfile|pipe	format|nickname	[env=[!]environment-
variable|	expr=expression]

Sets	filename	and	format	of	log	file

GprofDir	/tmp/gprof/|/tmp/gprof/%
Directory	to	write	gmon.out	profiling	data	to.

GracefulShutdownTimeout	seconds 0
Specify	a	timeout	after	which	a	gracefully	shutdown	server	will	exit.

Group	unix-group #-1
Group	under	which	the	server	will	answer	requests

H2CopyFiles	on|off off
Determine	file	handling	in	responses

H2Direct	on|off on	for	h2c,	off	for	+
H2	Direct	Protocol	Switch

H2EarlyHints	on|off off
Determine	sending	of	103	status	codes

H2MaxSessionStreams	n 100
Maximum	number	of	active	streams	per	HTTP/2	session.

H2MaxWorkerIdleSeconds	n 600
Maximum	number	of	seconds	h2	workers	remain	idle	until	shut	down.

H2MaxWorkers	n
Maximum	number	of	worker	threads	to	use	per	child	process.

H2MinWorkers	n
Minimal	number	of	worker	threads	to	use	per	child	process.

H2ModernTLSOnly	on|off on
Require	HTTP/2	connections	to	be	"modern	TLS"	only

H2Push	on|off on
H2	Server	Push	Switch

H2PushDiarySize	n 256
H2	Server	Push	Diary	Size

H2PushPriority	mime-type	[after|before|interleaved]
[weight]

*	After	16

H2	Server	Push	Priority

H2PushResource	[add]	path	[critical]
Declares	resources	for	early	pushing	to	the	client

H2SerializeHeaders	on|off off
Serialize	Request/Response	Processing	Switch

H2StreamMaxMemSize	bytes 65536

Maximum	amount	of	output	data	buffered	per	stream.

H2TLSCoolDownSecs	seconds 1
-

H2TLSWarmUpSize	amount 1048576
-

H2Upgrade	on|off on	for	h2c,	off	for	+
H2	Upgrade	Protocol	Switch

H2WindowSize	bytes 65535
Size	of	Stream	Window	for	upstream	data.

Header	[condition]
add|append|echo|edit|edit*|merge|set|setifempty|unset|note
header	[[expr=]value	[replacement]	[early|env=
[!]varname|expr=expression]]
Configure	HTTP	response	headers

HeaderName	filename
Name	of	the	file	that	will	be	inserted	at	the	top	of	the	index	listing

HeartbeatAddress	addr:port
Multicast	address	for	heartbeat	packets

HeartbeatListenaddr:port
multicast	address	to	listen	for	incoming	heartbeat	requests

HeartbeatMaxServers	number-of-servers 10
Specifies	the	maximum	number	of	servers	that	will	be	sending	heartbeat	requests	to	this	server

HeartbeatStorage	file-path logs/hb.dat
Path	to	store	heartbeat	data

HeartbeatStorage	file-path logs/hb.dat
Path	to	read	heartbeat	data

HostnameLookups	On|Off|Double Off
Enables	DNS	lookups	on	client	IP	addresses

HttpProtocolOptions	[Strict|Unsafe]
[RegisteredMethods|LenientMethods]
[Allow0.9|Require1.0]

Strict	LenientMetho	+

Modify	restrictions	on	HTTP	Request	Messages

IdentityCheck	On|Off Off
Enables	logging	of	the	RFC	1413	identity	of	the	remote	user

IdentityCheckTimeout	seconds 30

Determines	the	timeout	duration	for	ident	requests

<If	expression>	...	</If>
Contains	directives	that	apply	only	if	a	condition	is	satisfied	by	a	request	at	runtime

<IfDefine	[!]parameter-name>	...	</IfDefine>
Encloses	directives	that	will	be	processed	only	if	a	test	is	true	at	startup

<IfModule	[!]module-file|module-identifier>	...	</IfModule>
Encloses	directives	that	are	processed	conditional	on	the	presence	or	absence	of	a	specific	module

<IfVersion	[[!]operator]	version>	...	</IfVersion>
contains	version	dependent	configuration

ImapBase	map|referer|URL http://servername/
Default	base	for	imagemap	files

ImapDefault	error|nocontent|map|referer|URL nocontent
Default	action	when	an	imagemap	is	called	with	coordinates	that	are	not	explicitly	mapped

ImapMenu	none|formatted|semiformatted|unformatted formatted
Action	if	no	coordinates	are	given	when	calling	an	imagemap

Include	[optional|strict]	file-path|directory-path|wildcard
Includes	other	configuration	files	from	within	the	server	configuration	files

IncludeOptional	file-path|directory-path|wildcard
Includes	other	configuration	files	from	within	the	server	configuration	files

IndexHeadInsert	"markup	..."
Inserts	text	in	the	HEAD	section	of	an	index	page.

IndexIgnore	file	[file]	... "."
Adds	to	the	list	of	files	to	hide	when	listing	a	directory

IndexIgnoreReset	ON|OFF
Empties	the	list	of	files	to	hide	when	listing	a	directory

IndexOptions	[+|-]option	[[+|-]option]	...
Various	configuration	settings	for	directory	indexing

IndexOrderDefault	Ascending|Descending
Name|Date|Size|Description

Ascending	Name

Sets	the	default	ordering	of	the	directory	index

IndexStyleSheet	url-path
Adds	a	CSS	stylesheet	to	the	directory	index

InputSed	sed-command
Sed	command	to	filter	request	data	(typically	POST	data)

ISAPIAppendLogToErrors	on|off off

Record	HSE_APPEND_LOG_PARAMETER	requests	from	ISAPI	extensions	to	the	error	log

ISAPIAppendLogToQuery	on|off on
Record	HSE_APPEND_LOG_PARAMETER	requests	from	ISAPI	extensions	to	the	query	field

ISAPICacheFile	file-path	[file-path]	...
ISAPI	.dll	files	to	be	loaded	at	startup

ISAPIFakeAsync	on|off off
Fake	asynchronous	support	for	ISAPI	callbacks

ISAPILogNotSupported	on|off off
Log	unsupported	feature	requests	from	ISAPI	extensions

ISAPIReadAheadBuffer	size 49152
Size	of	the	Read	Ahead	Buffer	sent	to	ISAPI	extensions

KeepAlive	On|Off On
Enables	HTTP	persistent	connections

KeepAliveTimeout	num[ms] 5
Amount	of	time	the	server	will	wait	for	subsequent	requests	on	a	persistent	connection

KeptBodySize	maximum	size	in	bytes 0
Keep	the	request	body	instead	of	discarding	it	up	to	the	specified	maximum	size,	for	potential	use	by	filters	such	as
mod_include.

LanguagePriority	MIME-lang	[MIME-lang]	...
The	precedence	of	language	variants	for	cases	where	the	client	does	not	express	a	preference

LDAPCacheEntries	number 1024
Maximum	number	of	entries	in	the	primary	LDAP	cache

LDAPCacheTTL	seconds 600
Time	that	cached	items	remain	valid

LDAPConnectionPoolTTL	n -1
Discard	backend	connections	that	have	been	sitting	in	the	connection	pool	too	long

LDAPConnectionTimeout	seconds
Specifies	the	socket	connection	timeout	in	seconds

LDAPLibraryDebug	7
Enable	debugging	in	the	LDAP	SDK

LDAPOpCacheEntries	number 1024
Number	of	entries	used	to	cache	LDAP	compare	operations

LDAPOpCacheTTL	seconds 600
Time	that	entries	in	the	operation	cache	remain	valid

LDAPReferralHopLimit	number

The	maximum	number	of	referral	hops	to	chase	before	terminating	an	LDAP	query.

LDAPReferrals	On|Off|default On
Enable	referral	chasing	during	queries	to	the	LDAP	server.

LDAPRetries	number-of-retries 3
Configures	the	number	of	LDAP	server	retries.

LDAPRetryDelay	seconds 0
Configures	the	delay	between	LDAP	server	retries.

LDAPSharedCacheFile	directory-path/filename
Sets	the	shared	memory	cache	file

LDAPSharedCacheSize	bytes 500000
Size	in	bytes	of	the	shared-memory	cache

LDAPTimeout	seconds 60
Specifies	the	timeout	for	LDAP	search	and	bind	operations,	in	seconds

LDAPTrustedClientCert	type	directory-
path/filename/nickname	[password]
Sets	the	file	containing	or	nickname	referring	to	a	per	connection	client	certificate.	Not	all	LDAP	toolkits	support	per	connection
client	certificates.

LDAPTrustedGlobalCert	type	directory-path/filename
[password]
Sets	the	file	or	database	containing	global	trusted	Certificate	Authority	or	global	client	certificates

LDAPTrustedMode	type
Specifies	the	SSL/TLS	mode	to	be	used	when	connecting	to	an	LDAP	server.

LDAPVerifyServerCert	On|Off On
Force	server	certificate	verification

<Limit	method	[method]	...	>	...	</Limit>
Restrict	enclosed	access	controls	to	only	certain	HTTP	methods

<LimitExcept	method	[method]	...	>	...	</LimitExcept>
Restrict	access	controls	to	all	HTTP	methods	except	the	named	ones

LimitInternalRecursion	number	[number] 10
Determine	maximum	number	of	internal	redirects	and	nested	subrequests

LimitRequestBody	bytes 0
Restricts	the	total	size	of	the	HTTP	request	body	sent	from	the	client

LimitRequestFields	number 100
Limits	the	number	of	HTTP	request	header	fields	that	will	be	accepted	from	the	client

LimitRequestFieldSize	bytes 8190

Limits	the	size	of	the	HTTP	request	header	allowed	from	the	client

LimitRequestLine	bytes 8190
Limit	the	size	of	the	HTTP	request	line	that	will	be	accepted	from	the	client

LimitXMLRequestBody	bytes 1000000
Limits	the	size	of	an	XML-based	request	body

Listen	[IP-address:]portnumber	[protocol]
IP	addresses	and	ports	that	the	server	listens	to

ListenBacklog	backlog
Maximum	length	of	the	queue	of	pending	connections

ListenCoresBucketsRatio	ratio 0	(disabled)
Ratio	between	the	number	of	CPU	cores	(online)	and	the	number	of	listeners'	buckets

LoadFile	filename	[filename]	...
Link	in	the	named	object	file	or	library

LoadModule	module	filename
Links	in	the	object	file	or	library,	and	adds	to	the	list	of	active	modules

<Location	URL-path|URL>	...	</Location>
Applies	the	enclosed	directives	only	to	matching	URLs

<LocationMatch	regex>	...	</LocationMatch>
Applies	the	enclosed	directives	only	to	regular-expression	matching	URLs

LogFormat	format|nickname	[nickname] "%h	%l	%u	%t	\"%r\"	+
Describes	a	format	for	use	in	a	log	file

LogIOTrackTTFB	ON|OFF OFF
Enable	tracking	of	time	to	first	byte	(TTFB)

LogLevel	[module:]level	[module:level]	... warn
Controls	the	verbosity	of	the	ErrorLog

LogMessage	message	[hook=hook]	[expr=expression]
Log	user-defined	message	to	error	log

LuaAuthzProvider	provider_name	/path/to/lua/script.lua
function_name
Plug	an	authorization	provider	function	into	mod_authz_core

LuaCodeCache	stat|forever|never stat
Configure	the	compiled	code	cache.

LuaHookAccessChecker	/path/to/lua/script.lua
hook_function_name	[early|late]
Provide	a	hook	for	the	access_checker	phase	of	request	processing

LuaHookAuthChecker	/path/to/lua/script.lua
hook_function_name	[early|late]
Provide	a	hook	for	the	auth_checker	phase	of	request	processing

LuaHookCheckUserID	/path/to/lua/script.lua
hook_function_name	[early|late]
Provide	a	hook	for	the	check_user_id	phase	of	request	processing

LuaHookFixups	/path/to/lua/script.lua	hook_function_name
Provide	a	hook	for	the	fixups	phase	of	a	request	processing

LuaHookInsertFilter	/path/to/lua/script.lua
hook_function_name
Provide	a	hook	for	the	insert_filter	phase	of	request	processing

LuaHookLog	/path/to/lua/script.lua	log_function_name
Provide	a	hook	for	the	access	log	phase	of	a	request	processing

LuaHookMapToStorage	/path/to/lua/script.lua
hook_function_name
Provide	a	hook	for	the	map_to_storage	phase	of	request	processing

LuaHookTranslateName	/path/to/lua/script.lua
hook_function_name	[early|late]
Provide	a	hook	for	the	translate	name	phase	of	request	processing

LuaHookTypeChecker	/path/to/lua/script.lua
hook_function_name
Provide	a	hook	for	the	type_checker	phase	of	request	processing

LuaInherit	none|parent-first|parent-last parent-first
Controls	how	parent	configuration	sections	are	merged	into	children

LuaInputFilter	filter_name	/path/to/lua/script.lua
function_name
Provide	a	Lua	function	for	content	input	filtering

LuaMapHandler	uri-pattern	/path/to/lua/script.lua	[function-
name]
Map	a	path	to	a	lua	handler

LuaOutputFilter	filter_name	/path/to/lua/script.lua
function_name
Provide	a	Lua	function	for	content	output	filtering

LuaPackageCPath	/path/to/include/?.soa
Add	a	directory	to	lua's	package.cpath

LuaPackagePath	/path/to/include/?.lua
Add	a	directory	to	lua's	package.path

LuaQuickHandler	/path/to/script.lua	hook_function_name
Provide	a	hook	for	the	quick	handler	of	request	processing

LuaRoot	/path/to/a/directory
Specify	the	base	path	for	resolving	relative	paths	for	mod_lua	directives

LuaScope	once|request|conn|thread|server	[min]	[max] once
One	of	once,	request,	conn,	thread	--	default	is	once

<Macro	name	[par1	..	parN]>	...	</Macro>
Define	a	configuration	file	macro

MaxConnectionsPerChild	number 0
Limit	on	the	number	of	connections	that	an	individual	child	server	will	handle	during	its	life

MaxKeepAliveRequests	number 100
Number	of	requests	allowed	on	a	persistent	connection

MaxMemFree	KBytes 2048
Maximum	amount	of	memory	that	the	main	allocator	is	allowed	to	hold	without	calling	free()

MaxRangeOverlaps	default	|	unlimited	|	none	|	number-of-
ranges

20

Number	of	overlapping	ranges	(eg:	100-200,150-300)	allowed	before	returning	the	complete	

MaxRangeReversals	default	|	unlimited	|	none	|	number-of-
ranges

20

Number	of	range	reversals	(eg:	100-200,50-70)	allowed	before	returning	the	complete	resource

MaxRanges	default	|	unlimited	|	none	|	number-of-ranges 200
Number	of	ranges	allowed	before	returning	the	complete	resource

MaxRequestWorkers	number
Maximum	number	of	connections	that	will	be	processed	simultaneously

MaxSpareServers	number 10
Maximum	number	of	idle	child	server	processes

MaxSpareThreads	number
Maximum	number	of	idle	threads

MaxThreads	number 2048
Set	the	maximum	number	of	worker	threads

MemcacheConnTTL	num[units] 15s
Keepalive	time	for	idle	connections

MergeTrailers	[on|off] off

Determines	whether	trailers	are	merged	into	headers

MetaDir	directory .web
Name	of	the	directory	to	find	CERN-style	meta	information	files

MetaFiles	on|off off
Activates	CERN	meta-file	processing

MetaSuffix	suffix .meta
File	name	suffix	for	the	file	containing	CERN-style	meta	information

MimeMagicFile	file-path
Enable	MIME-type	determination	based	on	file	contents	using	the	specified	magic	file

MinSpareServers	number 5
Minimum	number	of	idle	child	server	processes

MinSpareThreads	number
Minimum	number	of	idle	threads	available	to	handle	request	spikes

MMapFile	file-path	[file-path]	...
Map	a	list	of	files	into	memory	at	startup	time

ModemStandard	V.21|V.26bis|V.32|V.34|V.92
Modem	standard	to	simulate

ModMimeUsePathInfo	On|Off Off
Tells	mod_mime	to	treat	path_info	components	as	part	of	the	filename

MultiviewsMatch	Any|NegotiatedOnly|Filters|Handlers
[Handlers|Filters]

NegotiatedOnly

The	types	of	files	that	will	be	included	when	searching	for	a	matching	file	with	MultiViews

Mutex	mechanism	[default|mutex-name]	...	[OmitPID] default
Configures	mutex	mechanism	and	lock	file	directory	for	all	or	specified	mutexes

NameVirtualHost	addr[:port]
Designates	an	IP	address	for	name-virtual	hosting

NoProxy	host	[host]	...
Hosts,	domains,	or	networks	that	will	be	connected	to	directly

NWSSLTrustedCerts	filename	[filename]	...
List	of	additional	client	certificates

NWSSLUpgradeable	[IP-address:]portnumber
Allows	a	connection	to	be	upgraded	to	an	SSL	connection	upon	request

Options	[+|-]option	[[+|-]option]	... All
Configures	what	features	are	available	in	a	particular	directory

Order	ordering Deny,Allow

Controls	the	default	access	state	and	the	order	in	which	Allow	and	Deny	are	evaluated.

OutputSed	sed-command
Sed	command	for	filtering	response	content

PassEnv	env-variable	[env-variable]	...
Passes	environment	variables	from	the	shell

PidFile	filename logs/httpd.pid
File	where	the	server	records	the	process	ID	of	the	daemon

PrivilegesMode	FAST|SECURE|SELECTIVE FAST
Trade	off	processing	speed	and	efficiency	vs	security	against	malicious	privileges-aware	code.

Protocol	protocol
Protocol	for	a	listening	socket

ProtocolEcho	On|Off Off
Turn	the	echo	server	on	or	off

Protocols	protocol	... http/1.1
Protocols	available	for	a	server/virtual	host

ProtocolsHonorOrder	On|Off On
Determines	if	order	of	Protocols	determines	precedence	during	negotiation

<Proxy	wildcard-url>	...</Proxy>
Container	for	directives	applied	to	proxied	resources

ProxyAddHeaders	Off|On On
Add	proxy	information	in	X-Forwarded-*	headers

ProxyBadHeader	IsError|Ignore|StartBody IsError
Determines	how	to	handle	bad	header	lines	in	a	response

ProxyBlock	*|word|host|domain	[word|host|domain]	...
Words,	hosts,	or	domains	that	are	banned	from	being	proxied

ProxyDomain	Domain
Default	domain	name	for	proxied	requests

ProxyErrorOverride	On|Off Off
Override	error	pages	for	proxied	content

ProxyExpressDBMFile	<pathname>
Pathname	to	DBM	file.

ProxyExpressDBMFile	<type>
DBM	type	of	file.

ProxyExpressEnable	[on|off]
Enable	the	module	functionality.

ProxyFCGIBackendType	FPM|GENERIC FPM
Specify	the	type	of	backend	FastCGI	application

ProxyFCGISetEnvIf	conditional-expression	[!]environment-
variable-name	[value-expression]
Allow	variables	sent	to	FastCGI	servers	to	be	fixed	up

ProxyFtpDirCharset	character	set ISO-8859-1
Define	the	character	set	for	proxied	FTP	listings

ProxyFtpEscapeWildcards	[on|off]
Whether	wildcards	in	requested	filenames	are	escaped	when	sent	to	the	FTP	server

ProxyFtpListOnWildcard	[on|off]
Whether	wildcards	in	requested	filenames	trigger	a	file	listing

ProxyHCExpr	name	{ap_expr	expression}
Creates	a	named	condition	expression	to	use	to	determine	health	of	the	backend	based	on	its	response.

ProxyHCTemplate	name	parameter=setting	<...>
Creates	a	named	template	for	setting	various	health	check	parameters

ProxyHCTPsize	<size>
Sets	the	total	server-wide	size	of	the	threadpool	used	for	the	health	check	workers.

ProxyHTMLBufSize	bytes
Sets	the	buffer	size	increment	for	buffering	inline	scripts	and	stylesheets.

ProxyHTMLCharsetOut	Charset	|	*
Specify	a	charset	for	mod_proxy_html	output.

ProxyHTMLDocType	HTML|XHTML	[Legacy]
OR	
ProxyHTMLDocType	fpi	[SGML|XML]
Sets	an	HTML	or	XHTML	document	type	declaration.

ProxyHTMLEnable	On|Off Off
Turns	the	proxy_html	filter	on	or	off.

ProxyHTMLEvents	attribute	[attribute	...]
Specify	attributes	to	treat	as	scripting	events.

ProxyHTMLExtended	On|Off Off
Determines	whether	to	fix	links	in	inline	scripts,	stylesheets,	and	scripting	events.

ProxyHTMLFixups	[lowercase]	[dospath]	[reset]
Fixes	for	simple	HTML	errors.

ProxyHTMLInterp	On|Off Off
Enables	per-request	interpolation	of	ProxyHTMLURLMap	rules.

ProxyHTMLLinks	element	attribute	[attribute2	...]
Specify	HTML	elements	that	have	URL	attributes	to	be	rewritten.

ProxyHTMLMeta	On|Off Off
Turns	on	or	off	extra	pre-parsing	of	metadata	in	HTML	<head>	sections.

ProxyHTMLStripComments	On|Off Off
Determines	whether	to	strip	HTML	comments.

ProxyHTMLURLMap	from-pattern	to-pattern	[flags]	[cond]
Defines	a	rule	to	rewrite	HTML	links

ProxyIOBufferSize	bytes 8192
Determine	size	of	internal	data	throughput	buffer

<ProxyMatch	regex>	...</ProxyMatch>
Container	for	directives	applied	to	regular-expression-matched	proxied	resources

ProxyMaxForwards	number -1
Maximium	number	of	proxies	that	a	request	can	be	forwarded	through

ProxyPass	[path]	!|url	[key=value	[key=value	...]]	[nocanon]
[interpolate]	[noquery]
Maps	remote	servers	into	the	local	server	URL-space

ProxyPassInherit	On|Off On
Inherit	ProxyPass	directives	defined	from	the	main	server

ProxyPassInterpolateEnv	On|Off Off
Enable	Environment	Variable	interpolation	in	Reverse	Proxy	configurations

ProxyPassMatch	[regex]	!|url	[key=value	[key=value	...]]
Maps	remote	servers	into	the	local	server	URL-space	using	regular	expressions

ProxyPassReverse	[path]	url	[interpolate]
Adjusts	the	URL	in	HTTP	response	headers	sent	from	a	reverse	proxied	server

ProxyPassReverseCookieDomain	internal-domain	public-
domain	[interpolate]
Adjusts	the	Domain	string	in	Set-Cookie	headers	from	a	reverse-	proxied	server

ProxyPassReverseCookiePath	internal-path	public-path
[interpolate]
Adjusts	the	Path	string	in	Set-Cookie	headers	from	a	reverse-	proxied	server

ProxyPreserveHost	On|Off Off
Use	incoming	Host	HTTP	request	header	for	proxy	request

ProxyReceiveBufferSize	bytes 0
Network	buffer	size	for	proxied	HTTP	and	FTP	connections

ProxyRemote	match	remote-server
Remote	proxy	used	to	handle	certain	requests

ProxyRemoteMatch	regex	remote-server
Remote	proxy	used	to	handle	requests	matched	by	regular	expressions

ProxyRequests	On|Off Off
Enables	forward	(standard)	proxy	requests

ProxySCGIInternalRedirect	On|Off|Headername On
Enable	or	disable	internal	redirect	responses	from	the	backend

ProxySCGISendfile	On|Off|Headername Off
Enable	evaluation	of	X-Sendfile	pseudo	response	header

ProxySet	url	key=value	[key=value	...]
Set	various	Proxy	balancer	or	member	parameters

ProxySourceAddress	address
Set	local	IP	address	for	outgoing	proxy	connections

ProxyStatus	Off|On|Full Off
Show	Proxy	LoadBalancer	status	in	mod_status

ProxyTimeout	seconds
Network	timeout	for	proxied	requests

ProxyVia	On|Off|Full|Block Off
Information	provided	in	the	Via	HTTP	response	header	for	proxied	requests

QualifyRedirectURL	ON|OFF OFF
Controls	whether	the	REDIRECT_URL	environment	variable	is	fully	qualified

ReadmeName	filename
Name	of	the	file	that	will	be	inserted	at	the	end	of	the	index	listing

ReceiveBufferSize	bytes 0
TCP	receive	buffer	size

Redirect	[status]	[URL-path]	URL
Sends	an	external	redirect	asking	the	client	to	fetch	a	different	URL

RedirectMatch	[status]	regex	URL
Sends	an	external	redirect	based	on	a	regular	expression	match	of	the	current	URL

RedirectPermanent	URL-path	URL
Sends	an	external	permanent	redirect	asking	the	client	to	fetch	a	different	URL

RedirectTemp	URL-path	URL
Sends	an	external	temporary	redirect	asking	the	client	to	fetch	a	different	URL

ReflectorHeader	inputheader	[outputheader]

Reflect	an	input	header	to	the	output	headers

RegisterHttpMethod	method	[method	[...]]
Register	non-standard	HTTP	methods

RemoteIPHeader	header-field
Declare	the	header	field	which	should	be	parsed	for	useragent	IP	addresses

RemoteIPInternalProxy	proxy-ip|proxy-ip/subnet|hostname
...
Declare	client	intranet	IP	addresses	trusted	to	present	the	RemoteIPHeader	value

RemoteIPInternalProxyList	filename
Declare	client	intranet	IP	addresses	trusted	to	present	the	RemoteIPHeader	value

RemoteIPProxiesHeader	HeaderFieldName
Declare	the	header	field	which	will	record	all	intermediate	IP	addresses

RemoteIPTrustedProxy	proxy-ip|proxy-ip/subnet|hostname
...
Declare	client	intranet	IP	addresses	trusted	to	present	the	RemoteIPHeader	value

RemoteIPTrustedProxyList	filename
Declare	client	intranet	IP	addresses	trusted	to	present	the	RemoteIPHeader	value

RemoveCharset	extension	[extension]	...
Removes	any	character	set	associations	for	a	set	of	file	extensions

RemoveEncoding	extension	[extension]	...
Removes	any	content	encoding	associations	for	a	set	of	file	extensions

RemoveHandler	extension	[extension]	...
Removes	any	handler	associations	for	a	set	of	file	extensions

RemoveInputFilter	extension	[extension]	...
Removes	any	input	filter	associations	for	a	set	of	file	extensions

RemoveLanguage	extension	[extension]	...
Removes	any	language	associations	for	a	set	of	file	extensions

RemoveOutputFilter	extension	[extension]	...
Removes	any	output	filter	associations	for	a	set	of	file	extensions

RemoveType	extension	[extension]	...
Removes	any	content	type	associations	for	a	set	of	file	extensions

RequestHeader
add|append|edit|edit*|merge|set|setifempty|unset	header
[[expr=]value	[replacement]	[early|env=
[!]varname|expr=expression]]

Configure	HTTP	request	headers

RequestReadTimeout	[header=timeout[-maxtimeout]
[,MinRate=rate]	[body=timeout[-maxtimeout]
[,MinRate=rate]
Set	timeout	values	for	receiving	request	headers	and	body	from	client.

Require	[not]	entity-name	[entity-name]	...
Tests	whether	an	authenticated	user	is	authorized	by	an	authorization	provider.

<RequireAll>	...	</RequireAll>
Enclose	a	group	of	authorization	directives	of	which	none	must	fail	and	at	least	one	must	succeed	for	the	enclosing	directive	to
succeed.

<RequireAny>	...	</RequireAny>
Enclose	a	group	of	authorization	directives	of	which	one	must	succeed	for	the	enclosing	directive	to	succeed.

<RequireNone>	...	</RequireNone>
Enclose	a	group	of	authorization	directives	of	which	none	must	succeed	for	the	enclosing	directive	to	not	fail.

RewriteBase	URL-path
Sets	the	base	URL	for	per-directory	rewrites

RewriteCond	TestString	CondPattern	[flags]
Defines	a	condition	under	which	rewriting	will	take	place

RewriteEngine	on|off off
Enables	or	disables	runtime	rewriting	engine

RewriteMap	MapName	MapType:MapSource
Defines	a	mapping	function	for	key-lookup

RewriteOptions	Options
Sets	some	special	options	for	the	rewrite	engine

RewriteRule	Pattern	Substitution	[flags]
Defines	rules	for	the	rewriting	engine

RLimitCPU	seconds|max	[seconds|max]
Limits	the	CPU	consumption	of	processes	launched	by	Apache	httpd	children

RLimitMEM	bytes|max	[bytes|max]
Limits	the	memory	consumption	of	processes	launched	by	Apache	httpd	children

RLimitNPROC	number|max	[number|max]
Limits	the	number	of	processes	that	can	be	launched	by	processes	launched	by	Apache	httpd	children

Satisfy	Any|All All
Interaction	between	host-level	access	control	and	user	authentication

ScoreBoardFile	file-path logs/apache_runtime	+

Location	of	the	file	used	to	store	coordination	data	for	the	child	processes

Script	method	cgi-script
Activates	a	CGI	script	for	a	particular	request	method.

ScriptAlias	[URL-path]	file-path|directory-path
Maps	a	URL	to	a	filesystem	location	and	designates	the	target	as	a	CGI	script

ScriptAliasMatch	regex	file-path|directory-path
Maps	a	URL	to	a	filesystem	location	using	a	regular	expression	and	designates	the	target	as	a	CGI	script

ScriptInterpreterSource	Registry|Registry-Strict|Script Script
Technique	for	locating	the	interpreter	for	CGI	scripts

ScriptLog	file-path
Location	of	the	CGI	script	error	logfile

ScriptLogBuffer	bytes 1024
Maximum	amount	of	PUT	or	POST	requests	that	will	be	recorded	in	the	scriptlog

ScriptLogLength	bytes 10385760
Size	limit	of	the	CGI	script	logfile

ScriptSock	file-path cgisock
The	filename	prefix	of	the	socket	to	use	for	communication	with	the	cgi	daemon

SecureListen	[IP-address:]portnumber	Certificate-Name
[MUTUAL]
Enables	SSL	encryption	for	the	specified	port

SeeRequestTail	On|Off Off
Determine	if	mod_status	displays	the	first	63	characters	of	a	request	or	the	last	63,	assuming	the	request	itself	is	greater	than
63	chars.

SendBufferSize	bytes 0
TCP	buffer	size

ServerAdmin	email-address|URL
Email	address	that	the	server	includes	in	error	messages	sent	to	the	client

ServerAlias	hostname	[hostname]	...
Alternate	names	for	a	host	used	when	matching	requests	to	name-virtual	hosts

ServerLimit	number
Upper	limit	on	configurable	number	of	processes

ServerName	[scheme://]fully-qualified-domain-name[:port]
Hostname	and	port	that	the	server	uses	to	identify	itself

ServerPath	URL-path
Legacy	URL	pathname	for	a	name-based	virtual	host	that	is	accessed	by	an	incompatible	browser

ServerRoot	directory-path /usr/local/apache
Base	directory	for	the	server	installation

ServerSignature	On|Off|EMail Off
Configures	the	footer	on	server-generated	documents

ServerTokens	Major|Minor|Min[imal]|Prod[uctOnly]|OS|Full Full
Configures	the	Server	HTTP	response	header

Session	On|Off Off
Enables	a	session	for	the	current	directory	or	location

SessionCookieName	name	attributes
Name	and	attributes	for	the	RFC2109	cookie	storing	the	session

SessionCookieName2	name	attributes
Name	and	attributes	for	the	RFC2965	cookie	storing	the	session

SessionCookieRemove	On|Off Off
Control	for	whether	session	cookies	should	be	removed	from	incoming	HTTP	headers

SessionCryptoCipher	name
The	crypto	cipher	to	be	used	to	encrypt	the	session

SessionCryptoDriver	name	[param[=value]]
The	crypto	driver	to	be	used	to	encrypt	the	session

SessionCryptoPassphrase	secret	[secret	...]
The	key	used	to	encrypt	the	session

SessionCryptoPassphraseFile	filename
File	containing	keys	used	to	encrypt	the	session

SessionDBDCookieName	name	attributes
Name	and	attributes	for	the	RFC2109	cookie	storing	the	session	ID

SessionDBDCookieName2	name	attributes
Name	and	attributes	for	the	RFC2965	cookie	storing	the	session	ID

SessionDBDCookieRemove	On|Off On
Control	for	whether	session	ID	cookies	should	be	removed	from	incoming	HTTP	headers

SessionDBDDeleteLabel	label deletesession
The	SQL	query	to	use	to	remove	sessions	from	the	database

SessionDBDInsertLabel	label insertsession
The	SQL	query	to	use	to	insert	sessions	into	the	database

SessionDBDPerUser	On|Off Off
Enable	a	per	user	session

SessionDBDSelectLabel	label selectsession

The	SQL	query	to	use	to	select	sessions	from	the	database

SessionDBDUpdateLabel	label updatesession
The	SQL	query	to	use	to	update	existing	sessions	in	the	database

SessionEnv	On|Off Off
Control	whether	the	contents	of	the	session	are	written	to	the	HTTP_SESSION	environment	variable

SessionExclude	path
Define	URL	prefixes	for	which	a	session	is	ignored

SessionHeader	header
Import	session	updates	from	a	given	HTTP	response	header

SessionInclude	path
Define	URL	prefixes	for	which	a	session	is	valid

SessionMaxAge	maxage 0
Define	a	maximum	age	in	seconds	for	a	session

SetEnv	env-variable	[value]
Sets	environment	variables

SetEnvIf	attribute	regex	[!]env-variable[=value]	[[!]env-
variable[=value]]	...
Sets	environment	variables	based	on	attributes	of	the	request

SetEnvIfExpr	expr	[!]env-variable[=value]	[[!]env-
variable[=value]]	...
Sets	environment	variables	based	on	an	ap_expr	expression

SetEnvIfNoCase	attribute	regex	[!]env-variable[=value]
[[!]env-variable[=value]]	...
Sets	environment	variables	based	on	attributes	of	the	request	without	respect	to	case

SetHandler	handler-name|None
Forces	all	matching	files	to	be	processed	by	a	handler

SetInputFilter	filter[;filter...]
Sets	the	filters	that	will	process	client	requests	and	POST	input

SetOutputFilter	filter[;filter...]
Sets	the	filters	that	will	process	responses	from	the	server

SSIEndTag	tag "-->"
String	that	ends	an	include	element

SSIErrorMsg	message "[an	error	occurred	+
Error	message	displayed	when	there	is	an	SSI	error

SSIETag	on|off off

Controls	whether	ETags	are	generated	by	the	server.

SSILastModified	on|off off
Controls	whether	Last-Modified	headers	are	generated	by	the	server.

SSILegacyExprParser	on|off off
Enable	compatibility	mode	for	conditional	expressions.

SSIStartTag	tag "<!--#"
String	that	starts	an	include	element

SSITimeFormat	formatstring "%A,	%d-%b-%Y	%H:%M
+

Configures	the	format	in	which	date	strings	are	displayed

SSIUndefinedEcho	string "(none)"
String	displayed	when	an	unset	variable	is	echoed

SSLCACertificateFile	file-path
File	of	concatenated	PEM-encoded	CA	Certificates	for	Client	Auth

SSLCACertificatePath	directory-path
Directory	of	PEM-encoded	CA	Certificates	for	Client	Auth

SSLCADNRequestFile	file-path
File	of	concatenated	PEM-encoded	CA	Certificates	for	defining	acceptable	CA	names

SSLCADNRequestPath	directory-path
Directory	of	PEM-encoded	CA	Certificates	for	defining	acceptable	CA	names

SSLCARevocationCheck	chain|leaf|none	flags none
Enable	CRL-based	revocation	checking

SSLCARevocationFile	file-path
File	of	concatenated	PEM-encoded	CA	CRLs	for	Client	Auth

SSLCARevocationPath	directory-path
Directory	of	PEM-encoded	CA	CRLs	for	Client	Auth

SSLCertificateChainFile	file-path
File	of	PEM-encoded	Server	CA	Certificates

SSLCertificateFile	file-path
Server	PEM-encoded	X.509	certificate	data	file

SSLCertificateKeyFile	file-path
Server	PEM-encoded	private	key	file

SSLCipherSuite	cipher-spec DEFAULT	(depends	on	+
Cipher	Suite	available	for	negotiation	in	SSL	handshake

SSLCompression	on|off off

Enable	compression	on	the	SSL	level

SSLCryptoDevice	engine builtin
Enable	use	of	a	cryptographic	hardware	accelerator

SSLEngine	on|off|optional off
SSL	Engine	Operation	Switch

SSLFIPS	on|off off
SSL	FIPS	mode	Switch

SSLHonorCipherOrder	on|off off
Option	to	prefer	the	server's	cipher	preference	order

SSLInsecureRenegotiation	on|off off
Option	to	enable	support	for	insecure	renegotiation

SSLOCSDefaultResponder	uri
Set	the	default	responder	URI	for	OCSP	validation

SSLOCSPEnable	on|off off
Enable	OCSP	validation	of	the	client	certificate	chain

SSLOCSPNoverify	On/Off Off
skip	the	OCSP	responder	certificates	verification

SSLOCSPOverrideResponder	on|off off
Force	use	of	the	default	responder	URI	for	OCSP	validation

SSLOCSPProxyURL	url
Proxy	URL	to	use	for	OCSP	requests

SSLOCSPResponderCertificateFile	file
Set	of	trusted	PEM	encoded	OCSP	responder	certificates

SSLOCSPResponderTimeout	seconds 10
Timeout	for	OCSP	queries

SSLOCSPResponseMaxAge	seconds -1
Maximum	allowable	age	for	OCSP	responses

SSLOCSPResponseTimeSkew	seconds 300
Maximum	allowable	time	skew	for	OCSP	response	validation

SSLOCSPUseRequestNonce	on|off on
Use	a	nonce	within	OCSP	queries

SSLOpenSSLConfCmd	command-name	command-value
Configure	OpenSSL	parameters	through	its	SSL_CONF	API

SSLOptions	[+|-]option	...
Configure	various	SSL	engine	run-time	options

SSLPassPhraseDialog	type builtin
Type	of	pass	phrase	dialog	for	encrypted	private	keys

SSLProtocol	[+|-]protocol	... all	-SSLv3	(up	to	2	+
Configure	usable	SSL/TLS	protocol	versions

SSLProxyCACertificateFile	file-path
File	of	concatenated	PEM-encoded	CA	Certificates	for	Remote	Server	Auth

SSLProxyCACertificatePath	directory-path
Directory	of	PEM-encoded	CA	Certificates	for	Remote	Server	Auth

SSLProxyCARevocationCheck	chain|leaf|none none
Enable	CRL-based	revocation	checking	for	Remote	Server	Auth

SSLProxyCARevocationFile	file-path
File	of	concatenated	PEM-encoded	CA	CRLs	for	Remote	Server	Auth

SSLProxyCARevocationPath	directory-path
Directory	of	PEM-encoded	CA	CRLs	for	Remote	Server	Auth

SSLProxyCheckPeerCN	on|off on
Whether	to	check	the	remote	server	certificate's	CN	field

SSLProxyCheckPeerExpire	on|off on
Whether	to	check	if	remote	server	certificate	is	expired

SSLProxyCheckPeerName	on|off on
Configure	host	name	checking	for	remote	server	certificates

SSLProxyCipherSuite	cipher-spec ALL:!ADH:RC4+RSA:+H	+
Cipher	Suite	available	for	negotiation	in	SSL	proxy	handshake

SSLProxyEngine	on|off off
SSL	Proxy	Engine	Operation	Switch

SSLProxyMachineCertificateChainFile	filename
File	of	concatenated	PEM-encoded	CA	certificates	to	be	used	by	the	proxy	for	choosing	a	certificate

SSLProxyMachineCertificateFile	filename
File	of	concatenated	PEM-encoded	client	certificates	and	keys	to	be	used	by	the	proxy

SSLProxyMachineCertificatePath	directory
Directory	of	PEM-encoded	client	certificates	and	keys	to	be	used	by	the	proxy

SSLProxyProtocol	[+|-]protocol	... all	-SSLv3	(up	to	2	+
Configure	usable	SSL	protocol	flavors	for	proxy	usage

SSLProxyVerify	level none
Type	of	remote	server	Certificate	verification

SSLProxyVerifyDepth	number 1

Maximum	depth	of	CA	Certificates	in	Remote	Server	Certificate	verification

SSLRandomSeed	context	source	[bytes]
Pseudo	Random	Number	Generator	(PRNG)	seeding	source

SSLRenegBufferSize	bytes 131072
Set	the	size	for	the	SSL	renegotiation	buffer

SSLRequire	expression
Allow	access	only	when	an	arbitrarily	complex	boolean	expression	is	true

SSLRequireSSL
Deny	access	when	SSL	is	not	used	for	the	HTTP	request

SSLSessionCache	type none
Type	of	the	global/inter-process	SSL	Session	Cache

SSLSessionCacheTimeout	seconds 300
Number	of	seconds	before	an	SSL	session	expires	in	the	Session	Cache

SSLSessionTicketKeyFile	file-path
Persistent	encryption/decryption	key	for	TLS	session	tickets

SSLSessionTickets	on|off on
Enable	or	disable	use	of	TLS	session	tickets

SSLSRPUnknownUserSeed	secret-string
SRP	unknown	user	seed

SSLSRPVerifierFile	file-path
Path	to	SRP	verifier	file

SSLStaplingCache	type
Configures	the	OCSP	stapling	cache

SSLStaplingErrorCacheTimeout	seconds 600
Number	of	seconds	before	expiring	invalid	responses	in	the	OCSP	stapling	cache

SSLStaplingFakeTryLater	on|off on
Synthesize	"tryLater"	responses	for	failed	OCSP	stapling	queries

SSLStaplingForceURL	uri
Override	the	OCSP	responder	URI	specified	in	the	certificate's	AIA	extension

SSLStaplingResponderTimeout	seconds 10
Timeout	for	OCSP	stapling	queries

SSLStaplingResponseMaxAge	seconds -1
Maximum	allowable	age	for	OCSP	stapling	responses

SSLStaplingResponseTimeSkew	seconds 300
Maximum	allowable	time	skew	for	OCSP	stapling	response	validation

SSLStaplingReturnResponderErrors	on|off on
Pass	stapling	related	OCSP	errors	on	to	client

SSLStaplingStandardCacheTimeout	seconds 3600
Number	of	seconds	before	expiring	responses	in	the	OCSP	stapling	cache

SSLStrictSNIVHostCheck	on|off off
Whether	to	allow	non-SNI	clients	to	access	a	name-based	virtual	host.

SSLUserName	varname
Variable	name	to	determine	user	name

SSLUseStapling	on|off off
Enable	stapling	of	OCSP	responses	in	the	TLS	handshake

SSLVerifyClient	level none
Type	of	Client	Certificate	verification

SSLVerifyDepth	number 1
Maximum	depth	of	CA	Certificates	in	Client	Certificate	verification

StartServers	number
Number	of	child	server	processes	created	at	startup

StartThreads	number
Number	of	threads	created	on	startup

Substitute	s/pattern/substitution/[infq]
Pattern	to	filter	the	response	content

SubstituteInheritBefore	on|off off
Change	the	merge	order	of	inherited	patterns

SubstituteMaxLineLength	bytes(b|B|k|K|m|M|g|G) 1m
Set	the	maximum	line	size

Suexec	On|Off
Enable	or	disable	the	suEXEC	feature

SuexecUserGroup	User	Group
User	and	group	for	CGI	programs	to	run	as

ThreadLimit	number
Sets	the	upper	limit	on	the	configurable	number	of	threads	per	child	process

ThreadsPerChild	number
Number	of	threads	created	by	each	child	process

ThreadStackSize	size
The	size	in	bytes	of	the	stack	used	by	threads	handling	client	connections

TimeOut	seconds 60

Amount	of	time	the	server	will	wait	for	certain	events	before	failing	a	request

TraceEnable	[on|off|extended] on
Determines	the	behaviour	on	TRACE	requests

TransferLog	file|pipe
Specify	location	of	a	log	file

TypesConfig	file-path conf/mime.types
The	location	of	the	mime.types	file

UnDefine	parameter-name
Undefine	the	existence	of	a	variable

UndefMacro	name
Undefine	a	macro

UnsetEnv	env-variable	[env-variable]	...
Removes	variables	from	the	environment

Use	name	[value1	...	valueN]
Use	a	macro

UseCanonicalName	On|Off|DNS Off
Configures	how	the	server	determines	its	own	name	and	port

UseCanonicalPhysicalPort	On|Off Off
Configures	how	the	server	determines	its	own	name	and	port

User	unix-userid #-1
The	userid	under	which	the	server	will	answer	requests

UserDir	directory-filename	[directory-filename]	...
Location	of	the	user-specific	directories

VHostCGIMode	On|Off|Secure On
Determines	whether	the	virtualhost	can	run	subprocesses,	and	the	privileges	available	to	subprocesses.

VHostPrivs	[+-]?privilege-name	[[+-]?privilege-name]	...
Assign	arbitrary	privileges	to	subprocesses	created	by	a	virtual	host.

VHostGroup	unix-groupid
Sets	the	Group	ID	under	which	a	virtual	host	runs.

VHostPrivs	[+-]?privilege-name	[[+-]?privilege-name]	...
Assign	arbitrary	privileges	to	a	virtual	host.

VHostSecure	On|Off On
Determines	whether	the	server	runs	with	enhanced	security	for	the	virtualhost.

VHostUser	unix-userid
Sets	the	User	ID	under	which	a	virtual	host	runs.

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

VirtualDocumentRoot	interpolated-directory|none none
Dynamically	configure	the	location	of	the	document	root	for	a	given	virtual	host

VirtualDocumentRootIP	interpolated-directory|none none
Dynamically	configure	the	location	of	the	document	root	for	a	given	virtual	host

<VirtualHost	addr[:port]	[addr[:port]]	...>	...	</VirtualHost>
Contains	directives	that	apply	only	to	a	specific	hostname	or	IP	address

VirtualScriptAlias	interpolated-directory|none none
Dynamically	configure	the	location	of	the	CGI	directory	for	a	given	virtual	host

VirtualScriptAliasIP	interpolated-directory|none none
Dynamically	configure	the	location	of	the	CGI	directory	for	a	given	virtual	host

WatchdogInterval	number-of-seconds 1
Watchdog	interval	in	seconds

XBitHack	on|off|full off
Parse	SSI	directives	in	files	with	the	execute	bit	set

xml2EncAlias	charset	alias	[alias	...]
Recognise	Aliases	for	encoding	values

xml2EncDefault	name
Sets	a	default	encoding	to	assume	when	absolutely	no	information	can	be	automatically	detected

xml2StartParse	element	[element	...]
Advise	the	parser	to	skip	leading	junk.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Índice	de	Módulos

Esta	traducción	podría	estar	obsoleta.	Consulte	la	versión	en
inglés	de	la	documentación	para	comprobar	si	se	han
producido	cambios	recientemente.

Abajo	se	muestra	una	lista	con	todos	los	módulos	que	forman	parte
de	la	distribución	de	Apache.	Consulte	también	la	lista	alfabética
completa	de	las	directivas	de	Apache.

Consulte	también
Módulos	de	MultiProcesamiento	(MPMs)
Guía	Rápida	de	Referencia	de	Directivas

Funcionalidad	Básica	y	Módulos	de	Multi-
Procesamiento

core
Funcionalides	básicas	del	Servidor	HTTP	Apache	que
siempre	están	presentes.

mpm_common
A	collection	of	directives	that	are	implemented	by	more	than
one	multi-processing	module	(MPM)

event
A	variant	of	the	worker	MPM	with	the	goal	of	consuming
threads	only	for	connections	with	active	processing

mpm_netware
Multi-Processing	Module	implementing	an	exclusively
threaded	web	server	optimized	for	Novell	NetWare

mpmt_os2
Hybrid	multi-process,	multi-threaded	MPM	for	OS/2

prefork
Implements	a	non-threaded,	pre-forking	web	server

mpm_winnt
Multi-Processing	Module	optimized	for	Windows	NT.

worker
Multi-Processing	Module	implementing	a	hybrid	multi-
threaded	multi-process	web	server

Otros	Módulos

	A		|		B		|		C		|		D		|		E		|		F		|		H		|		I		|		L		|		M		|		N		|		P		|		R		|		S		|
	U		|		V		|		W		|		X	

mod_access_compat
Group	authorizations	based	on	host	(name	or	IP	address)

mod_actions
Execute	CGI	scripts	based	on	media	type	or	request	method.

mod_alias
Provides	for	mapping	different	parts	of	the	host	filesystem	in
the	document	tree	and	for	URL	redirection

mod_allowmethods
Easily	restrict	what	HTTP	methods	can	be	used	on	the	server

mod_asis
Sends	files	that	contain	their	own	HTTP	headers

mod_auth_basic
Basic	HTTP	authentication

mod_auth_digest
User	authentication	using	MD5	Digest	Authentication

mod_auth_form
Form	authentication

mod_authn_anon
Allows	"anonymous"	user	access	to	authenticated	areas

mod_authn_core
Core	Authentication

mod_authn_dbd
User	authentication	using	an	SQL	database

mod_authn_dbm
User	authentication	using	DBM	files

mod_authn_file

User	authentication	using	text	files

mod_authn_socache
Manages	a	cache	of	authentication	credentials	to	relieve	the
load	on	backends

mod_authnz_fcgi
Allows	a	FastCGI	authorizer	application	to	handle	Apache
httpd	authentication	and	authorization

mod_authnz_ldap
Allows	an	LDAP	directory	to	be	used	to	store	the	database	for
HTTP	Basic	authentication.

mod_authz_core
Core	Authorization

mod_authz_dbd
Group	Authorization	and	Login	using	SQL

mod_authz_dbm
Group	authorization	using	DBM	files

mod_authz_groupfile
Group	authorization	using	plaintext	files

mod_authz_host
Group	authorizations	based	on	host	(name	or	IP	address)

mod_authz_owner
Authorization	based	on	file	ownership

mod_authz_user
User	Authorization

mod_autoindex
Generates	directory	indexes,	automatically,	similar	to	the	Unix
ls	command	or	the	Win32	dir	shell	command

mod_brotli
Compress	content	via	Brotli	before	it	is	delivered	to	the	client

mod_buffer
Support	for	request	buffering

mod_cache
RFC	2616	compliant	HTTP	caching	filter.

mod_cache_disk
Disk	based	storage	module	for	the	HTTP	caching	filter.

mod_cache_socache
Shared	object	cache	(socache)	based	storage	module	for	the
HTTP	caching	filter.

mod_cern_meta
CERN	httpd	metafile	semantics

mod_cgi
Execution	of	CGI	scripts

mod_cgid
Execution	of	CGI	scripts	using	an	external	CGI	daemon

mod_charset_lite
Specify	character	set	translation	or	recoding

mod_data
Convert	response	body	into	an	RFC2397	data	URL

mod_dav
Distributed	Authoring	and	Versioning	(WebDAV)	functionality

mod_dav_fs
Filesystem	provider	for	mod_dav

mod_dav_lock
Generic	locking	module	for	mod_dav

mod_dbd
Manages	SQL	database	connections

mod_deflate
Compress	content	before	it	is	delivered	to	the	client

http://www.webdav.org/

mod_dialup
Send	static	content	at	a	bandwidth	rate	limit,	defined	by	the
various	old	modem	standards

mod_dir
Provides	for	"trailing	slash"	redirects	and	serving	directory
index	files

mod_dumpio
Dumps	all	I/O	to	error	log	as	desired.

mod_echo
A	simple	echo	server	to	illustrate	protocol	modules

mod_env
Modifies	the	environment	which	is	passed	to	CGI	scripts	and
SSI	pages

mod_example_hooks
Illustrates	the	Apache	module	API

mod_expires
Generation	of	Expires	and	Cache-Control	HTTP	headers
according	to	user-specified	criteria

mod_ext_filter
Pass	the	response	body	through	an	external	program	before
delivery	to	the	client

mod_file_cache
Caches	a	static	list	of	files	in	memory

mod_filter
Context-sensitive	smart	filter	configuration	module

mod_headers
Customization	of	HTTP	request	and	response	headers

mod_heartbeat
Sends	messages	with	server	status	to	frontend	proxy

mod_heartmonitor
Centralized	monitor	for	mod_heartbeat	origin	servers

mod_http2
Support	for	the	HTTP/2	transport	layer

mod_ident
RFC	1413	ident	lookups

mod_imagemap
Server-side	imagemap	processing

mod_include
Server-parsed	html	documents	(Server	Side	Includes)

mod_info
Provides	a	comprehensive	overview	of	the	server
configuration

mod_isapi
ISAPI	Extensions	within	Apache	for	Windows

mod_lbmethod_bybusyness
Pending	Request	Counting	load	balancer	scheduler	algorithm
for	mod_proxy_balancer

mod_lbmethod_byrequests
Request	Counting	load	balancer	scheduler	algorithm	for
mod_proxy_balancer

mod_lbmethod_bytraffic
Weighted	Traffic	Counting	load	balancer	scheduler	algorithm
for	mod_proxy_balancer

mod_lbmethod_heartbeat
Heartbeat	Traffic	Counting	load	balancer	scheduler	algorithm
for	mod_proxy_balancer

mod_ldap
LDAP	connection	pooling	and	result	caching	services	for	use
by	other	LDAP	modules

mod_log_config
Logging	of	the	requests	made	to	the	server

mod_log_debug
Additional	configurable	debug	logging

mod_log_forensic
Forensic	Logging	of	the	requests	made	to	the	server

mod_logio
Logging	of	input	and	output	bytes	per	request

mod_lua
Provides	Lua	hooks	into	various	portions	of	the	httpd	request
processing

mod_macro
Provides	macros	within	apache	httpd	runtime	configuration
files

mod_mime
Associates	the	requested	filename's	extensions	with	the	file's
behavior	(handlers	and	filters)	and	content	(mime-type,
language,	character	set	and	encoding)

mod_mime_magic
Determines	the	MIME	type	of	a	file	by	looking	at	a	few	bytes
of	its	contents

mod_negotiation
Provides	for	content	negotiation

mod_nw_ssl
Enable	SSL	encryption	for	NetWare

mod_privileges
Support	for	Solaris	privileges	and	for	running	virtual	hosts
under	different	user	IDs.

mod_proxy
Multi-protocol	proxy/gateway	server

mod_proxy_ajp
AJP	support	module	for	mod_proxy

mod_proxy_balancer
mod_proxy	extension	for	load	balancing

mod_proxy_connect
mod_proxy	extension	for	CONNECT	request	handling

mod_proxy_express
Dynamic	mass	reverse	proxy	extension	for	mod_proxy

mod_proxy_fcgi
FastCGI	support	module	for	mod_proxy

mod_proxy_fdpass
fdpass	external	process	support	module	for	mod_proxy

mod_proxy_ftp
FTP	support	module	for	mod_proxy

mod_proxy_hcheck
Dynamic	health	check	of	Balancer	members	(workers)	for
mod_proxy

mod_proxy_html
Rewrite	HTML	links	in	to	ensure	they	are	addressable	from
Clients'	networks	in	a	proxy	context.

mod_proxy_http
HTTP	support	module	for	mod_proxy

mod_proxy_http2
HTTP/2	support	module	for	mod_proxy

mod_proxy_scgi
SCGI	gateway	module	for	mod_proxy

mod_proxy_wstunnel
Websockets	support	module	for	mod_proxy

mod_ratelimit
Bandwidth	Rate	Limiting	for	Clients

mod_reflector
Reflect	a	request	body	as	a	response	via	the	output	filter
stack.

mod_remoteip
Replaces	the	original	client	IP	address	for	the	connection	with
the	useragent	IP	address	list	presented	by	a	proxies	or	a	load
balancer	via	the	request	headers.

mod_reqtimeout
Set	timeout	and	minimum	data	rate	for	receiving	requests

mod_request
Filters	to	handle	and	make	available	HTTP	request	bodies

mod_rewrite
Provides	a	rule-based	rewriting	engine	to	rewrite	requested
URLs	on	the	fly

mod_sed
Filter	Input	(request)	and	Output	(response)	content	using
sed	syntax

mod_session
Session	support

mod_session_cookie
Cookie	based	session	support

mod_session_crypto
Session	encryption	support

mod_session_dbd
DBD/SQL	based	session	support

mod_setenvif
Allows	the	setting	of	environment	variables	based	on
characteristics	of	the	request

mod_slotmem_plain
Slot-based	shared	memory	provider.

mod_slotmem_shm
Slot-based	shared	memory	provider.

mod_so
Loading	of	executable	code	and	modules	into	the	server	at
start-up	or	restart	time

mod_socache_dbm
DBM	based	shared	object	cache	provider.

mod_socache_dc
Distcache	based	shared	object	cache	provider.

mod_socache_memcache
Memcache	based	shared	object	cache	provider.

mod_socache_shmcb
shmcb	based	shared	object	cache	provider.

mod_speling
Attempts	to	correct	mistaken	URLs	by	ignoring	capitalization,
or	attempting	to	correct	various	minor	misspellings.

mod_ssl
Strong	cryptography	using	the	Secure	Sockets	Layer	(SSL)
and	Transport	Layer	Security	(TLS)	protocols

mod_status
Provides	information	on	server	activity	and	performance

mod_substitute
Perform	search	and	replace	operations	on	response	bodies

mod_suexec
Allows	CGI	scripts	to	run	as	a	specified	user	and	Group

mod_unique_id
Provides	an	environment	variable	with	a	unique	identifier	for
each	request

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

mod_unixd
Basic	(required)	security	for	Unix-family	platforms.

mod_userdir
User-specific	directories

mod_usertrack
Clickstream	logging	of	user	activity	on	a	site

mod_version
Version	dependent	configuration

mod_vhost_alias
Provides	for	dynamically	configured	mass	virtual	hosting

mod_watchdog
provides	infrastructure	for	other	modules	to	periodically	run
tasks

mod_xml2enc
Enhanced	charset/internationalisation	support	for	libxml2-
based	filter	modules

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Mapa	de	este	sitio	web

Esta	traducción	podría	estar	obsoleta.	Consulte	la	versión	en
inglés	de	la	documentación	para	comprobar	si	se	han
producido	cambios	recientemente.

Esta	página	contiene	la	lista	con	los	documentos	actualmente
disponibles	de	la	Versión	2.4	de	la	Documentación	del	Servidor	HTTP
Apache.

Notas	de	la	Versión

Pasar	a	usar	Apache	2.0	desde	Apache	1.3
Nuevas	funcionalidades	de	Apache	2.0
Licencia	Apache

Funcionamiento	del	Servidor	HTTP	Apache

Compilación	e	Instalación	de	Apache
Iniciar	Apache
Parar	y	reiniciar	Apache
Ficheros	de	Configuración
Funcionamiento	de	las	secciones	Directory,	Location	y	Files
Configuración	Básica	de	Apache
Archivos	Log
Mapear	URLs	a	ubicaciones	de	un	sistema	de	ficheros
Consejos	de	Seguridad
Soporte	de	Objetos	Dinámicos	Compartidos	(DSO)
Negociación	de	Contenido
Mensajes	de	Error	Personalizados
Fijar	las	direcciones	y	los	puertos	que	usa	Apache
Módulos	de	Multiproceso	(MPMs)
Variables	de	entorno	en	Apache
El	uso	de	Handlers	en	Apache
Filtros
Soporte	de	suEXEC
Rendimiento	del	servidor
Documentación	adicional	sobre	mod_rewrite

Documentación	sobre	Hosting	Virtual	en	Apache

Visión	General

Hosting	Virtual	basado	en	nombres
Soporte	de	Hosting	Virtual	Basado	en	IPs
Configurar	de	forma	Dinámica	el	Hosting	Virtual	masivo	en
Apache
Ejemplos	de	Hosting	Virtual
Discusión	en	profundidad	sobre	los	tipos	de	Hosting	Virtual
Limitaciones	de	los	descriptores	de	ficheros
Asuntos	relacionados	con	DNS	y	Apache

Preguntas	Más	Frecuentes	sobre	Apache

Visión	General
Soporte
Mensajes	de	error

Encriptado	SSL/TLS	con	Apache

Visión	General

Encriptado	SSL/TLS:	Introducción
Encriptado	SSL/TLS:	Compatibilidad
Encriptado	SSL/TLS:	How-To
Encriptado	SSL/TLS:	Preguntas	Frecuentes

Guías,	Tutoriales,	y	HowTos

Visión	General

Autentificación
Contenido	Dinámico	con	CGIs
Introducción	a	Server	Side	Includes
Archivos	.htaccess
Directorios	web	para	cada	usuario

Notas	específicas	sobre	plataformas

Visión	General

Usar	Apache	con	Microsoft	Windows
Compilar	Apache	para	Microsoft	Windows
Usar	Apache	con	Novell	NetWare
Servidor	Web	de	alto	rendimiento	con	HPUX
La	versión	EBCDIC	de	Apache

Programas	de	soporte	y	el	Servidor	HTTP	Apache

Visión	General

Página	de	Ayuda:	httpd
Página	de	Ayuda:	ab
Página	de	Ayuda:	apachectl
Página	de	Ayuda:	apxs
Página	de	Ayuda:	configure
Página	de	Ayuda:	dbmmanage
Página	de	Ayuda:	htcacheclean
Página	de	Ayuda:	htdigest
Página	de	Ayuda:	htpasswd
Página	de	Ayuda:	logresolve
Página	de	Ayuda:	rotatelogs
Página	de	Ayuda:	suexec
Otros	Programas

Documentación	adicional	sobre	Apache

Visión	General

Estándares	Importantes

Módulos	de	Apache

Definiciones	de	términos	usados	para	describir	los	módulos
de	Apache
Definiciones	de	términos	usados	para	describir	las	directivas
de	Apache

Funcionalidad	Básica	de	Apache
Directivas	Comunes	de	los	MPM	de	Apache
MPM	de	Apache	event
MPM	de	Apache	netware
MPM	de	Apache	os2
MPM	de	Apache	prefork
MPM	de	Apache	winnt
MPM	de	Apache	worker

Módulo	Apache	mod_access_compat
Módulo	Apache	mod_actions
Módulo	Apache	mod_alias
Módulo	Apache	mod_allowmethods
Módulo	Apache	mod_asis
Módulo	Apache	mod_auth_basic
Módulo	Apache	mod_auth_digest
Módulo	Apache	mod_auth_form
Módulo	Apache	mod_authn_anon
Módulo	Apache	mod_authn_core
Módulo	Apache	mod_authn_dbd
Módulo	Apache	mod_authn_dbm
Módulo	Apache	mod_authn_file
Módulo	Apache	mod_authn_socache
Módulo	Apache	mod_authnz_fcgi
Módulo	Apache	mod_authnz_ldap
Módulo	Apache	mod_authz_core
Módulo	Apache	mod_authz_dbd
Módulo	Apache	mod_authz_dbm

Módulo	Apache	mod_authz_groupfile
Módulo	Apache	mod_authz_host
Módulo	Apache	mod_authz_owner
Módulo	Apache	mod_authz_user
Módulo	Apache	mod_autoindex
Módulo	Apache	mod_brotli
Módulo	Apache	mod_buffer
Módulo	Apache	mod_cache
Módulo	Apache	mod_cache_disk
Módulo	Apache	mod_cache_socache
Módulo	Apache	mod_cern_meta
Módulo	Apache	mod_cgi
Módulo	Apache	mod_cgid
Módulo	Apache	mod_charset_lite
Módulo	Apache	mod_data
Módulo	Apache	mod_dav
Módulo	Apache	mod_dav_fs
Módulo	Apache	mod_dav_lock
Módulo	Apache	mod_dbd
Módulo	Apache	mod_deflate
Módulo	Apache	mod_dialup
Módulo	Apache	mod_dir
Módulo	Apache	mod_dumpio
Módulo	Apache	mod_echo
Módulo	Apache	mod_env
Módulo	Apache	mod_example_hooks
Módulo	Apache	mod_expires
Módulo	Apache	mod_ext_filter
Módulo	Apache	mod_file_cache
Módulo	Apache	mod_filter
Módulo	Apache	mod_headers
Módulo	Apache	mod_heartbeat
Módulo	Apache	mod_heartmonitor
Módulo	Apache	mod_http2

Módulo	Apache	mod_ident
Módulo	Apache	mod_imagemap
Módulo	Apache	mod_include
Módulo	Apache	mod_info
Módulo	Apache	mod_isapi
Módulo	Apache	mod_lbmethod_bybusyness
Módulo	Apache	mod_lbmethod_byrequests
Módulo	Apache	mod_lbmethod_bytraffic
Módulo	Apache	mod_lbmethod_heartbeat
Módulo	Apache	mod_ldap
Módulo	Apache	mod_log_config
Módulo	Apache	mod_log_debug
Módulo	Apache	mod_log_forensic
Módulo	Apache	mod_logio
Módulo	Apache	mod_lua
Módulo	Apache	mod_macro
Módulo	Apache	mod_mime
Módulo	Apache	mod_mime_magic
Módulo	Apache	mod_negotiation
Módulo	Apache	mod_nw_ssl
Módulo	Apache	mod_privileges
Módulo	Apache	mod_proxy
Módulo	Apache	mod_proxy_ajp
Módulo	Apache	mod_proxy_balancer
Módulo	Apache	mod_proxy_connect
Módulo	Apache	mod_proxy_express
Módulo	Apache	mod_proxy_fcgi
Módulo	Apache	mod_proxy_fdpass
Módulo	Apache	mod_proxy_ftp
Módulo	Apache	mod_proxy_hcheck
Módulo	Apache	mod_proxy_html
Módulo	Apache	mod_proxy_http
Módulo	Apache	mod_proxy_http2
Módulo	Apache	mod_proxy_scgi

Módulo	Apache	mod_proxy_wstunnel
Módulo	Apache	mod_ratelimit
Módulo	Apache	mod_reflector
Módulo	Apache	mod_remoteip
Módulo	Apache	mod_reqtimeout
Módulo	Apache	mod_request
Módulo	Apache	mod_rewrite
Módulo	Apache	mod_sed
Módulo	Apache	mod_session
Módulo	Apache	mod_session_cookie
Módulo	Apache	mod_session_crypto
Módulo	Apache	mod_session_dbd
Módulo	Apache	mod_setenvif
Módulo	Apache	mod_slotmem_plain
Módulo	Apache	mod_slotmem_shm
Módulo	Apache	mod_so
Módulo	Apache	mod_socache_dbm
Módulo	Apache	mod_socache_dc
Módulo	Apache	mod_socache_memcache
Módulo	Apache	mod_socache_shmcb
Módulo	Apache	mod_speling
Módulo	Apache	mod_ssl
Módulo	Apache	mod_status
Módulo	Apache	mod_substitute
Módulo	Apache	mod_suexec
Módulo	Apache	mod_unique_id
Módulo	Apache	mod_unixd
Módulo	Apache	mod_userdir
Módulo	Apache	mod_usertrack
Módulo	Apache	mod_version
Módulo	Apache	mod_vhost_alias
Módulo	Apache	mod_watchdog
Módulo	Apache	mod_xml2enc

Documentación	para	desarrolladores

Visión	General

Notas	sobre	la	API	de	Apache
Debugear	la	Reserva	de	Memoria	en	APR
Documentando	Apache	2.0
Funciones	Hook	de	Apache	2.0
Convertir	Módulos	de	Apache	1.3	a	Apache	2.0
Procesamiento	de	Peticiones	en	Apache	2.0
Funcionamiento	de	los	filtros	en	Apache	2.0

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Glosario	e	Índice

Glosario
Índice	de	Módulos
Índice	de	Directivas
Guía	Rápida	de	Referencia	de	Directivas

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Overview	of	new	features	in	Apache	HTTP
Server	2.4

This	document	describes	some	of	the	major	changes	between	the	2.2
and	2.4	versions	of	the	Apache	HTTP	Server.	For	new	features	since
version	2.0,	see	the	2.2	new	features	document.

Core	Enhancements

Run-time	Loadable	MPMs
Multiple	MPMs	can	now	be	built	as	loadable	modules	at
compile	time.	The	MPM	of	choice	can	be	configured	at	run
time	via	LoadModule	directive.

Event	MPM
The	Event	MPM	is	no	longer	experimental	but	is	now	fully
supported.

Asynchronous	support
Better	support	for	asynchronous	read/write	for	supporting
MPMs	and	platforms.

Per-module	and	per-directory	LogLevel	configuration
The	LogLevel	can	now	be	configured	per	module	and	per
directory.	New	levels	trace1	to	trace8	have	been	added
above	the	debug	log	level.

Per-request	configuration	sections
<If>,	<ElseIf>,	and	<Else>	sections	can	be	used	to	set
the	configuration	based	on	per-request	criteria.

General-purpose	expression	parser
A	new	expression	parser	allows	to	specify	complex	conditions
using	a	common	syntax	in	directives	like	SetEnvIfExpr,
RewriteCond,	Header,	<If>,	and	others.

KeepAliveTimeout	in	milliseconds
It	is	now	possible	to	specify	KeepAliveTimeout	in
milliseconds.

NameVirtualHost	directive
No	longer	needed	and	is	now	deprecated.

Override	Configuration
The	new	AllowOverrideList	directive	allows	more	fine
grained	control	which	directives	are	allowed	in	.htaccess

files.

Config	file	variables
It	is	now	possible	to	Define	variables	in	the	configuration,
allowing	a	clearer	representation	if	the	same	value	is	used	at
many	places	in	the	configuration.

Reduced	memory	usage
Despite	many	new	features,	2.4.x	tends	to	use	less	memory
than	2.2.x.

New	Modules

mod_proxy_fcgi

FastCGI	Protocol	backend	for	mod_proxy

mod_proxy_scgi

SCGI	Protocol	backend	for	mod_proxy

mod_proxy_express

Provides	dynamically	configured	mass	reverse	proxies	for
mod_proxy

mod_remoteip

Replaces	the	apparent	client	remote	IP	address	and
hostname	for	the	request	with	the	IP	address	list	presented	by
a	proxies	or	a	load	balancer	via	the	request	headers.

mod_heartmonitor,	mod_lbmethod_heartbeat
Allow	mod_proxy_balancer	to	base	loadbalancing
decisions	on	the	number	of	active	connections	on	the
backend	servers.

mod_proxy_html

Formerly	a	third-party	module,	this	supports	fixing	of	HTML
links	in	a	reverse	proxy	situation,	where	the	backend
generates	URLs	that	are	not	valid	for	the	proxy's	clients.

mod_sed

An	advanced	replacement	of	mod_substitute,	allows	to
edit	the	response	body	with	the	full	power	of	sed.

mod_auth_form

Enables	form-based	authentication.

mod_session

Enables	the	use	of	session	state	for	clients,	using	cookie	or
database	storage.

mod_allowmethods

New	module	to	restrict	certain	HTTP	methods	without

interfering	with	authentication	or	authorization.

mod_lua

Embeds	the	Lua	language	into	httpd,	for	configuration	and
small	business	logic	functions.	(Experimental)

mod_log_debug

Allows	the	addition	of	customizable	debug	logging	at	different
phases	of	the	request	processing.

mod_buffer

Provides	for	buffering	the	input	and	output	filter	stacks

mod_data

Convert	response	body	into	an	RFC2397	data	URL

mod_ratelimit

Provides	Bandwidth	Rate	Limiting	for	Clients

mod_request

Provides	Filters	to	handle	and	make	available	HTTP	request
bodies

mod_reflector

Provides	Reflection	of	a	request	body	as	a	response	via	the
output	filter	stack.

mod_slotmem_shm

Provides	a	Slot-based	shared	memory	provider	(ala	the
scoreboard).

mod_xml2enc

Formerly	a	third-party	module,	this	supports
internationalisation	in	libxml2-based	(markup-aware)	filter
modules.

mod_macro	(available	since	2.4.5)
Provide	macros	within	configuration	files.

mod_proxy_wstunnel	(available	since	2.4.5)
Support	web-socket	tunnels.

http://www.lua.org/

mod_authnz_fcgi	(available	since	2.4.10)
Enable	FastCGI	authorizer	applications	to	authenticate	and/or
authorize	clients.

mod_http2	(available	since	2.4.17)
Support	for	the	HTTP/2	transport	layer.

mod_proxy_hcheck	(available	since	2.4.21)
Support	independent	dynamic	health	checks	for	remote	proxiy
backend	servers.

Module	Enhancements

mod_ssl

mod_ssl	can	now	be	configured	to	use	an	OCSP	server	to
check	the	validation	status	of	a	client	certificate.	The	default
responder	is	configurable,	along	with	the	decision	on	whether
to	prefer	the	responder	designated	in	the	client	certificate
itself.
mod_ssl	now	also	supports	OCSP	stapling,	where	the	server
pro-actively	obtains	an	OCSP	verification	of	its	certificate	and
transmits	that	to	the	client	during	the	handshake.
mod_ssl	can	now	be	configured	to	share	SSL	Session	data
between	servers	through	memcached
EC	keys	are	now	supported	in	addition	to	RSA	and	DSA.
Support	for	TLS-SRP	(available	in	2.4.4	and	later).

mod_proxy

The	ProxyPass	directive	is	now	most	optimally	configured
within	a	Location	or	LocationMatch	block,	and	offers	a
significant	performance	advantage	over	the	traditional	two-
parameter	syntax	when	present	in	large	numbers.
The	source	address	used	for	proxy	requests	is	now
configurable.
Support	for	Unix	domain	sockets	to	the	backend	(available	in
2.4.7	and	later).

mod_proxy_balancer

More	runtime	configuration	changes	for	BalancerMembers	via
balancer-manager
Additional	BalancerMembers	can	be	added	at	runtime	via
balancer-manager
Runtime	configuration	of	a	subset	of	Balancer	parameters
BalancerMembers	can	be	set	to	'Drain'	so	that	they	only
respond	to	existing	sticky	sessions,	allowing	them	to	be	taken
gracefully	offline.
Balancer	settings	can	be	persistent	after	restarts.

mod_cache

The	mod_cache	CACHE	filter	can	be	optionally	inserted	at	a
given	point	in	the	filter	chain	to	provide	fine	control	over
caching.
mod_cache	can	now	cache	HEAD	requests.
Where	possible,	mod_cache	directives	can	now	be	set	per
directory,	instead	of	per	server.
The	base	URL	of	cached	URLs	can	be	customised,	so	that	a
cluster	of	caches	can	share	the	same	endpoint	URL	prefix.
mod_cache	is	now	capable	of	serving	stale	cached	data
when	a	backend	is	unavailable	(error	5xx).
mod_cache	can	now	insert	HIT/MISS/REVALIDATE	into	an
X-Cache	header.

mod_include

Support	for	the	'onerror'	attribute	within	an	'include'	element,
allowing	an	error	document	to	be	served	on	error	instead	of
the	default	error	string.

mod_cgi,	mod_include,	mod_isapi,	...
Translation	of	headers	to	environment	variables	is	more	strict
than	before	to	mitigate	some	possible	cross-site-scripting
attacks	via	header	injection.	Headers	containing	invalid
characters	(including	underscores)	are	now	silently	dropped.
Environment	Variables	in	Apache	has	some	pointers	on	how
to	work	around	broken	legacy	clients	which	require	such
headers.	(This	affects	all	modules	which	use	these
environment	variables.)

mod_authz_core	Authorization	Logic	Containers
Advanced	authorization	logic	may	now	be	specified	using	the
Require	directive	and	the	related	container	directives,	such
as	<RequireAll>.

mod_rewrite

mod_rewrite	adds	the	[QSD]	(Query	String	Discard)	and

[END]	flags	for	RewriteRule	to	simplify	common	rewriting
scenarios.
Adds	the	possibility	to	use	complex	boolean	expressions	in
RewriteCond.
Allows	the	use	of	SQL	queries	as	RewriteMap	functions.

mod_ldap,	mod_authnz_ldap
mod_authnz_ldap	adds	support	for	nested	groups.
mod_ldap	adds	LDAPConnectionPoolTTL,
LDAPTimeout,	and	other	improvements	in	the	handling	of
timeouts.	This	is	especially	useful	for	setups	where	a	stateful
firewall	drops	idle	connections	to	the	LDAP	server.
mod_ldap	adds	LDAPLibraryDebug	to	log	debug
information	provided	by	the	used	LDAP	toolkit.

mod_info

mod_info	can	now	dump	the	pre-parsed	configuration	to
stdout	during	server	startup.

mod_auth_basic

New	generic	mechanism	to	fake	basic	authentication
(available	in	2.4.5	and	later).

Program	Enhancements

fcgistarter

New	FastCGI	daemon	starter	utility

htcacheclean

Current	cached	URLs	can	now	be	listed,	with	optional
metadata	included.
Allow	explicit	deletion	of	individual	cached	URLs	from	the
cache.
File	sizes	can	now	be	rounded	up	to	the	given	block	size,
making	the	size	limits	map	more	closely	to	the	real	size	on
disk.
Cache	size	can	now	be	limited	by	the	number	of	inodes,
instead	of	or	in	addition	to	being	limited	by	the	size	of	the	files
on	disk.

rotatelogs

May	now	create	a	link	to	the	current	log	file.
May	now	invoke	a	custom	post-rotate	script.

htpasswd,	htdbm
Support	for	the	bcrypt	algorithm	(available	in	2.4.4	and	later).

Documentation

mod_rewrite
The	mod_rewrite	documentation	has	been	rearranged	and
almost	completely	rewritten,	with	a	focus	on	examples	and
common	usage,	as	well	as	on	showing	you	when	other
solutions	are	more	appropriate.	The	Rewrite	Guide	is	now	a
top-level	section	with	much	more	detail	and	better
organization.

mod_ssl
The	mod_ssl	documentation	has	been	greatly	enhanced,
with	more	examples	at	the	getting	started	level,	in	addition	to
the	previous	focus	on	technical	details.

Caching	Guide
The	Caching	Guide	has	been	rewritten	to	properly	distinguish
between	the	RFC2616	HTTP/1.1	caching	features	provided
by	mod_cache,	and	the	generic	key/value	caching	provided
by	the	socache	interface,	as	well	as	to	cover	specialised
caching	provided	by	mechanisms	such	as	mod_file_cache.

Module	Developer	Changes

Check	Configuration	Hook	Added
A	new	hook,	check_config,	has	been	added	which	runs
between	the	pre_config	and	open_logs	hooks.	It	also
runs	before	the	test_config	hook	when	the	-t	option	is
passed	to	httpd.	The	check_config	hook	allows	modules
to	review	interdependent	configuration	directive	values	and
adjust	them	while	messages	can	still	be	logged	to	the
console.	The	user	can	thus	be	alerted	to	misconfiguration
problems	before	the	core	open_logs	hook	function	redirects
console	output	to	the	error	log.

Expression	Parser	Added
We	now	have	a	general-purpose	expression	parser,	whose
API	is	exposed	in	ap_expr.h.	This	is	adapted	from	the
expression	parser	previously	implemented	in	mod_ssl.

Authorization	Logic	Containers
Authorization	modules	now	register	as	a	provider,	via
ap_register_auth_provider(),	to	support	advanced
authorization	logic,	such	as	<RequireAll>.

Small-Object	Caching	Interface
The	ap_socache.h	header	exposes	a	provider-based	interface
for	caching	small	data	objects,	based	on	the	previous
implementation	of	the	mod_ssl	session	cache.	Providers
using	a	shared-memory	cyclic	buffer,	disk-based	dbm	files,
and	a	memcache	distributed	cache	are	currently	supported.

Cache	Status	Hook	Added
The	mod_cache	module	now	includes	a	new	cache_status
hook,	which	is	called	when	the	caching	decision	becomes
known.	A	default	implementation	is	provided	which	adds	an
optional	X-Cache	and	X-Cache-Detail	header	to	the
response.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

The	developer	documentation	contains	a	detailed	list	of	API
changes.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Overview	of	new	features	in	Apache	HTTP
Server	2.2

This	document	describes	some	of	the	major	changes	between	the	2.0
and	2.2	versions	of	the	Apache	HTTP	Server.	For	new	features	since
version	1.3,	see	the	2.0	new	features	document.

Core	Enhancements

Authn/Authz
The	bundled	authentication	and	authorization	modules	have
been	refactored.	The	new	mod_authn_alias(already	removed
from	2.3/2.4)	module	can	greatly	simplify	certain
authentication	configurations.	See	module	name	changes,
and	the	developer	changes	for	more	information	about	how
these	changes	affects	users	and	module	writers.

Caching
mod_cache,	mod_cache_disk,	and
mod_mem_cache(already	removed	from	2.3/2.4)	have
undergone	a	lot	of	changes,	and	are	now	considered
production-quality.	htcacheclean	has	been	introduced	to
clean	up	mod_cache_disk	setups.

Configuration
The	default	configuration	layout	has	been	simplified	and
modularised.	Configuration	snippets	which	can	be	used	to
enable	commonly-used	features	are	now	bundled	with
Apache,	and	can	be	easily	added	to	the	main	server	config.

Graceful	stop
The	prefork,	worker	and	event	MPMs	now	allow	httpd
to	be	shutdown	gracefully	via	the	graceful-stop	signal.
The	GracefulShutdownTimeout	directive	has	been	added
to	specify	an	optional	timeout,	after	which	httpd	will
terminate	regardless	of	the	status	of	any	requests	being
served.

Proxying
The	new	mod_proxy_balancer	module	provides	load
balancing	services	for	mod_proxy.	The	new
mod_proxy_ajp	module	adds	support	for	the	Apache
JServ	Protocol	version	1.3	used	by	Apache	Tomcat.

http://tomcat.apache.org/

Regular	Expression	Library	Updated
Version	5.0	of	the	Perl	Compatible	Regular	Expression	Library
(PCRE)	is	now	included.	httpd	can	be	configured	to	use	a
system	installation	of	PCRE	by	passing	the	--with-pcre
flag	to	configure.

Smart	Filtering
mod_filter	introduces	dynamic	configuration	to	the	output
filter	chain.	It	enables	filters	to	be	conditionally	inserted,	based
on	any	Request	or	Response	header	or	environment	variable,
and	dispenses	with	the	more	problematic	dependencies	and
ordering	problems	in	the	2.0	architecture.

Large	File	Support
httpd	is	now	built	with	support	for	files	larger	than	2GB	on
modern	32-bit	Unix	systems.	Support	for	handling	>2GB
request	bodies	has	also	been	added.

Event	MPM
The	event	MPM	uses	a	separate	thread	to	handle	Keep
Alive	requests	and	accepting	connections.	Keep	Alive
requests	have	traditionally	required	httpd	to	dedicate	a	worker
to	handle	it.	This	dedicated	worker	could	not	be	used	again
until	the	Keep	Alive	timeout	was	reached.

SQL	Database	Support
mod_dbd,	together	with	the	apr_dbd	framework,	brings
direct	SQL	support	to	modules	that	need	it.	Supports
connection	pooling	in	threaded	MPMs.

http://www.pcre.org/

Module	Enhancements

Authn/Authz
Modules	in	the	aaa	directory	have	been	renamed	and	offer
better	support	for	digest	authentication.	For	example,
mod_auth	is	now	split	into	mod_auth_basic	and
mod_authn_file;	mod_auth_dbm	is	now	called
mod_authn_dbm;	mod_access	has	been	renamed
mod_authz_host.	There	is	also	a	new
mod_authn_alias(already	removed	from	2.3/2.4)	module	for
simplifying	certain	authentication	configurations.

mod_authnz_ldap

This	module	is	a	port	of	the	2.0	mod_auth_ldap	module	to
the	2.2	Authn/Authz	framework.	New	features	include	using
LDAP	attribute	values	and	complicated	search	filters	in	the
Require	directive.

mod_authz_owner

A	new	module	that	authorizes	access	to	files	based	on	the
owner	of	the	file	on	the	file	system

mod_version

A	new	module	that	allows	configuration	blocks	to	be	enabled
based	on	the	version	number	of	the	running	server.

mod_info

Added	a	new	?config	argument	which	will	show	the
configuration	directives	as	parsed	by	Apache,	including	their
file	name	and	line	number.	The	module	also	shows	the	order
of	all	request	hooks	and	additional	build	information,	similar	to
httpd	-V.

mod_ssl

Added	a	support	for	RFC	2817,	which	allows	connections	to
upgrade	from	clear	text	to	TLS	encryption.

mod_imagemap

http://www.ietf.org/rfc/rfc2817.txt

mod_imap	has	been	renamed	to	mod_imagemap	to	avoid
user	confusion.

Program	Enhancements

httpd

A	new	command	line	option	-M	has	been	added	that	lists	all
modules	that	are	loaded	based	on	the	current	configuration.
Unlike	the	-l	option,	this	list	includes	DSOs	loaded	via
mod_so.

httxt2dbm

A	new	program	used	to	generate	dbm	files	from	text	input,	for
use	in	RewriteMap	with	the	dbm	map	type.

Module	Developer	Changes

APR	1.0	API
Apache	2.2	uses	the	APR	1.0	API.	All	deprecated	functions
and	symbols	have	been	removed	from	APR	and	APR-Util.
For	details,	see	the	APR	Website.

Authn/Authz
The	bundled	authentication	and	authorization	modules	have
been	renamed	along	the	following	lines:

mod_auth_*	->	Modules	that	implement	an	HTTP
authentication	mechanism
mod_authn_*	->	Modules	that	provide	a	backend
authentication	provider
mod_authz_*	->	Modules	that	implement	authorization
(or	access)
mod_authnz_*	->	Module	that	implements	both
authentication	&	authorization

There	is	a	new	authentication	backend	provider	scheme
which	greatly	eases	the	construction	of	new	authentication
backends.

Connection	Error	Logging
A	new	function,	ap_log_cerror	has	been	added	to	log
errors	that	occur	with	the	client's	connection.	When	logged,
the	message	includes	the	client	IP	address.

Test	Configuration	Hook	Added
A	new	hook,	test_config	has	been	added	to	aid	modules
that	want	to	execute	special	code	only	when	the	user	passes
-t	to	httpd.

Set	Threaded	MPM's	Stacksize
A	new	directive,	ThreadStackSize	has	been	added	to	set
the	stack	size	on	all	threaded	MPMs.	This	is	required	for
some	third-party	modules	on	platforms	with	small	default

http://apr.apache.org/

thread	stack	size.

Protocol	handling	for	output	filters
In	the	past,	every	filter	has	been	responsible	for	ensuring	that
it	generates	the	correct	response	headers	where	it	affects
them.	Filters	can	now	delegate	common	protocol
management	to	mod_filter,	using	the
ap_register_output_filter_protocol	or
ap_filter_protocol	calls.

Monitor	hook	added
Monitor	hook	enables	modules	to	run	regular/scheduled	jobs
in	the	parent	(root)	process.

Regular	expression	API	changes
The	pcreposix.h	header	is	no	longer	available;	it	is
replaced	by	the	new	ap_regex.h	header.	The	POSIX.2
regex.h	implementation	exposed	by	the	old	header	is	now
available	under	the	ap_	namespace	from	ap_regex.h.	Calls
to	regcomp,	regexec	and	so	on	can	be	replaced	by	calls	to
ap_regcomp,	ap_regexec.

DBD	Framework	(SQL	Database	API)
With	Apache	1.x	and	2.0,	modules	requiring	an	SQL	backend
had	to	take	responsibility	for	managing	it	themselves.	Apart
from	reinventing	the	wheel,	this	can	be	very	inefficient,	for
example	when	several	modules	each	maintain	their	own
connections.

Apache	2.1	and	later	provides	the	ap_dbd	API	for	managing
database	connections	(including	optimised	strategies	for
threaded	and	unthreaded	MPMs),	while	APR	1.2	and	later
provides	the	apr_dbd	API	for	interacting	with	the	database.

New	modules	SHOULD	now	use	these	APIs	for	all	SQL
database	operations.	Existing	applications	SHOULD	be

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

upgraded	to	use	it	where	feasible,	either	transparently	or	as	a
recommended	option	to	their	users.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Expressions	in	Apache	HTTP	Server

Historically,	there	are	several	syntax	variants	for	expressions	used	to
express	a	condition	in	the	different	modules	of	the	Apache	HTTP
Server.	There	is	some	ongoing	effort	to	only	use	a	single	variant,
called	ap_expr,	for	all	configuration	directives.	This	document
describes	the	ap_expr	expression	parser.

The	ap_expr	expression	is	intended	to	replace	most	other	expression
variants	in	HTTPD.	For	example,	the	deprecated	SSLRequire
expressions	can	be	replaced	by	Require	expr.

See	also
<If>

<ElseIf>

<Else>

ErrorDocument

Alias

ScriptAlias

Redirect

AuthBasicFake

AuthFormLoginRequiredLocation

AuthFormLoginSuccessLocation

AuthFormLogoutLocation

RewriteCond

SetEnvIfExpr

Header

https://www.apache.org/foundation/contributing.html

RequestHeader

FilterProvider

Require	expr
Require	ldap-user
Require	ldap-group
Require	ldap-dn
Require	ldap-attribute
Require	ldap-filter
Require	dbd-group
Require	dbm-group
Require	group
Require	host
SSLRequire

LogMessage

mod_include

Grammar	in	Backus-Naur	Form	notation

Backus-Naur	Form	(BNF)	is	a	notation	technique	for	context-free
grammars,	often	used	to	describe	the	syntax	of	languages	used	in
computing.	In	most	cases,	expressions	are	used	to	express
boolean	values.	For	these,	the	starting	point	in	the	BNF	is	expr.
However,	a	few	directives	like	LogMessage	accept	expressions
that	evaluate	to	a	string	value.	For	those,	the	starting	point	in	the
BNF	is	string.

expr								::=	"true"	|	"false"

														|	"!"	expr

														|	expr	"&&"	expr

														|	expr	"||"	expr

														|	"("	expr	")"

														|	comp

comp								::=	stringcomp

														|	integercomp

														|	unaryop	word

														|	word	binaryop	word

														|	word	"in"	"{"	wordlist	"}"

														|	word	"in"	listfunction

														|	word	"=~"	regex

														|	word	"!~"	regex

stringcomp		::=	word	"=="	word

														|	word	"!="	word

														|	word	"<"		word

														|	word	"<="	word

														|	word	">"		word

														|	word	">="	word

integercomp	::=	word	"-eq"	word	|	word	"eq"	word

														|	word	"-ne"	word	|	word	"ne"	word

														|	word	"-lt"	word	|	word	"lt"	word

http://en.wikipedia.org/wiki/Backus%E2%80%93Naur_Form

														|	word	"-le"	word	|	word	"le"	word

														|	word	"-gt"	word	|	word	"gt"	word

														|	word	"-ge"	word	|	word	"ge"	word

wordlist				::=	word

														|	wordlist	","	word

word								::=	word	"."	word

														|	digit

														|	"'"	string	"'"

														|	"""	string	"""

														|	variable

														|	rebackref

														|	function

string						::=	stringpart

														|	string	stringpart

stringpart		::=	cstring

														|	variable

														|	rebackref

cstring					::=	...

digit							::=	[0-9]+

variable				::=	"%{"	varname	"}"

														|	"%{"	funcname	":"	funcargs	"}"

rebackref			::=	"$"	[0-9]

function					::=	funcname	"("	word	")"

listfunction	::=	listfuncname	"("	word	")"

Variables

The	expression	parser	provides	a	number	of	variables	of	the	form
%{HTTP_HOST}.	Note	that	the	value	of	a	variable	may	depend	on
the	phase	of	the	request	processing	in	which	it	is	evaluated.	For
example,	an	expression	used	in	an	<If	>	directive	is	evaluated
before	authentication	is	done.	Therefore,	%{REMOTE_USER}	will
not	be	set	in	this	case.

The	following	variables	provide	the	values	of	the	named	HTTP
request	headers.	The	values	of	other	headers	can	be	obtained
with	the	req	function.	Using	these	variables	may	cause	the
header	name	to	be	added	to	the	Vary	header	of	the	HTTP
response,	except	where	otherwise	noted	for	the	directive
accepting	the	expression.	The	req_novary	function	may	be	used
to	circumvent	this	behavior.

Name
HTTP_ACCEPT

HTTP_COOKIE

HTTP_FORWARDED

HTTP_HOST

HTTP_PROXY_CONNECTION

HTTP_REFERER

HTTP_USER_AGENT

Other	request	related	variables

Name Description
REQUEST_METHOD The	HTTP	method	of	the	incoming

request	(e.g.	GET)
REQUEST_SCHEME The	scheme	part	of	the	request's

URI

REQUEST_URI The	path	part	of	the	request's	URI
DOCUMENT_URI Same	as	REQUEST_URI
REQUEST_FILENAME The	full	local	filesystem	path	to	the

file	or	script	matching	the	request,	if
this	has	already	been	determined
by	the	server	at	the	time
REQUEST_FILENAME	is	referenced.
Otherwise,	such	as	when	used	in
virtual	host	context,	the	same	value
as	REQUEST_URI

SCRIPT_FILENAME Same	as	REQUEST_FILENAME
LAST_MODIFIED The	date	and	time	of	last

modification	of	the	file	in	the	format
20101231235959,	if	this	has
already	been	determined	by	the
server	at	the	time	LAST_MODIFIED
is	referenced.

SCRIPT_USER The	user	name	of	the	owner	of	the
script.

SCRIPT_GROUP The	group	name	of	the	group	of	the
script.

PATH_INFO The	trailing	path	name	information,
see	AcceptPathInfo

QUERY_STRING The	query	string	of	the	current
request

IS_SUBREQ "true"	if	the	current	request	is	a
subrequest,	"false"	otherwise

THE_REQUEST The	complete	request	line	(e.g.,
"GET	/index.html	HTTP/1.1")

REMOTE_ADDR The	IP	address	of	the	remote	host
REMOTE_PORT The	port	of	the	remote	host	(2.4.26

and	later)
REMOTE_HOST The	host	name	of	the	remote	host
REMOTE_USER The	name	of	the	authenticated

user,	if	any	(not	available	during
<If	>)

REMOTE_IDENT The	user	name	set	by	mod_ident
SERVER_NAME The	ServerName	of	the	current

vhost
SERVER_PORT The	server	port	of	the	current	vhost,

see	ServerName
SERVER_ADMIN The	ServerAdmin	of	the	current

vhost
SERVER_PROTOCOL The	protocol	used	by	the	request
DOCUMENT_ROOT The	DocumentRoot	of	the	current

vhost
AUTH_TYPE The	configured	AuthType	(e.g.

"basic")
CONTENT_TYPE The	content	type	of	the	response

(not	available	during	<If	>)
HANDLER The	name	of	the	handler	creating

the	response
HTTP2 "on"	if	the	request	uses	http/2,

"off"	otherwise
HTTPS "on"	if	the	request	uses	https,	"off"

otherwise
IPV6 "on"	if	the	connection	uses	IPv6,

"off"	otherwise
REQUEST_STATUS The	HTTP	error	status	of	the

request	(not	available	during	<If
>)

REQUEST_LOG_ID The	error	log	id	of	the	request	(see
ErrorLogFormat)

CONN_LOG_ID The	error	log	id	of	the	connection
(see	ErrorLogFormat)

CONN_REMOTE_ADDR The	peer	IP	address	of	the
connection	(see	the
mod_remoteip	module)

CONTEXT_PREFIX

CONTEXT_DOCUMENT_ROOT

Misc	variables

Name Description
TIME_YEAR The	current	year	(e.g.	2010)
TIME_MON The	current	month	(01,	...,	12)
TIME_DAY The	current	day	of	the	month	(01,	...)
TIME_HOUR The	hour	part	of	the	current	time	(00,	...,

23)
TIME_MIN The	minute	part	of	the	current	time
TIME_SEC The	second	part	of	the	current	time
TIME_WDAY The	day	of	the	week	(starting	with	0	for

Sunday)
TIME The	date	and	time	in	the	format

20101231235959

SERVER_SOFTWARE The	server	version	string
API_VERSION The	date	of	the	API	version	(module	magic

number)

Some	modules	register	additional	variables,	see	e.g.	mod_ssl.

Binary	operators

With	the	exception	of	some	built-in	comparison	operators,	binary
operators	have	the	form	"-[a-zA-Z][a-zA-Z0-9_]+",	i.e.	a
minus	and	at	least	two	characters.	The	name	is	not	case	sensitive.
Modules	may	register	additional	binary	operators.

Comparison	operators
Name Alternative Description
== = String	equality
!= String	inequality
< String	less	than
<= String	less	than	or	equal
> String	greater	than
>= String	greater	than	or	equal
=~ String	matches	the	regular	expression
!~ String	does	not	match	the	regular	expression
-eq eq Integer	equality
-ne ne Integer	inequality
-lt lt Integer	less	than
-le le Integer	less	than	or	equal
-gt gt Integer	greater	than
-ge ge Integer	greater	than	or	equal

Other	binary	operators
Name Description
-ipmatch IP	address	matches	address/netmask
-strmatch left	string	matches	pattern	given	by	right	string

(containing	wildcards	*,	?,	[])
- same	as	-strmatch,	but	case	insensitive

strcmatch

-fnmatch same	as	-strmatch,	but	slashes	are	not	matched
by	wildcards

Unary	operators

Unary	operators	take	one	argument	and	have	the	form	"-[a-zA-
Z]",	i.e.	a	minus	and	one	character.	The	name	is	case	sensitive.
Modules	may	register	additional	unary	operators.

Name Description Restricted
-d The	argument	is	treated	as	a	filename.	True	if

the	file	exists	and	is	a	directory
yes

-e The	argument	is	treated	as	a	filename.	True	if
the	file	(or	dir	or	special)	exists

yes

-f The	argument	is	treated	as	a	filename.	True	if
the	file	exists	and	is	regular	file

yes

-s The	argument	is	treated	as	a	filename.	True	if
the	file	exists	and	is	not	empty

yes

-L The	argument	is	treated	as	a	filename.	True	if
the	file	exists	and	is	symlink

yes

-h The	argument	is	treated	as	a	filename.	True	if
the	file	exists	and	is	symlink	(same	as	-L)

yes

-F True	if	string	is	a	valid	file,	accessible	via	all
the	server's	currently-configured	access
controls	for	that	path.	This	uses	an	internal
subrequest	to	do	the	check,	so	use	it	with
care	-	it	can	impact	your	server's
performance!

-U True	if	string	is	a	valid	URL,	accessible	via	all
the	server's	currently-configured	access
controls	for	that	path.	This	uses	an	internal
subrequest	to	do	the	check,	so	use	it	with
care	-	it	can	impact	your	server's
performance!

-A Alias	for	-U
-n True	if	string	is	not	empty

-z True	if	string	is	empty
-T False	if	string	is	empty,	"0",	"off",	"false",

or	"no"	(case	insensitive).	True	otherwise.
-R Same	as	"%{REMOTE_ADDR}	-ipmatch

...",	but	more	efficient

The	operators	marked	as	"restricted"	are	not	available	in	some
modules	like	mod_include.

Functions

Normal	string-valued	functions	take	one	string	as	argument	and
return	a	string.	Functions	names	are	not	case	sensitive.	Modules
may	register	additional	functions.

Name Description Special
notes

req,	http Get	HTTP	request	header;	header
names	may	be	added	to	the	Vary
header,	see	below

req_novary Same	as	req,	but	header	names	will
not	be	added	to	the	Vary	header

resp Get	HTTP	response	header
reqenv Lookup	request	environment	variable

(as	a	shortcut,	v	can	also	be	used	to
access	variables).

ordering

osenv Lookup	operating	system	environment
variable

note Lookup	request	note ordering
env Return	first	match	of	note,	reqenv,

osenv

ordering

tolower Convert	string	to	lower	case
toupper Convert	string	to	upper	case
escape Escape	special	characters	in	%hex

encoding
unescape Unescape	%hex	encoded	string,	leaving

encoded	slashes	alone;	return	empty
string	if	%00	is	found

base64 Encode	the	string	using	base64
encoding

unbase64 Decode	base64	encoded	string,	return
truncated	string	if	0x00	is	found

md5 Hash	the	string	using	MD5,	then	encode
the	hash	with	hexadecimal	encoding

sha1 Hash	the	string	using	SHA1,	then
encode	the	hash	with	hexadecimal
encoding

file Read	contents	from	a	file	(including	line
endings,	when	present)

restricted

filemod Return	last	modification	time	of	a	file	(or
0	if	file	does	not	exist	or	is	not	regular
file)

restricted

filesize Return	size	of	a	file	(or	0	if	file	does	not
exist	or	is	not	regular	file)

restricted

The	functions	marked	as	"restricted"	in	the	final	column	are	not
available	in	some	modules	like	mod_include.

The	functions	marked	as	"ordering"	in	the	final	column	require
some	consideration	for	the	ordering	of	different	components	of	the
server,	especially	when	the	function	is	used	within	the	<If>
directive	which	is	evaluated	relatively	early.

Environment	variable	ordering
When	environment	variables	are	looked	up	within	an	<If>
condition,	it's	important	to	consider	how	extremely	early	in
request	processing	that	this	resolution	occurs.	As	a	guideline,
any	directive	defined	outside	of	virtual	host	context	(directory,
location,	htaccess)	is	not	likely	to	have	yet	had	a	chance	to
execute.	SetEnvIf	in	virtual	host	scope	is	one	directive	that
runs	prior	to	this	resolution	

When	reqenv	is	used	outside	of	<If>,	the	resolution	will
generally	occur	later,	but	the	exact	timing	depends	on	the
directive	the	expression	has	been	used	within.

When	the	functions	req	or	http	are	used,	the	header	name	will
automatically	be	added	to	the	Vary	header	of	the	HTTP	response,
except	where	otherwise	noted	for	the	directive	accepting	the
expression.	The	req_novary	function	can	be	used	to	prevent
names	from	being	added	to	the	Vary	header.

In	addition	to	string-valued	functions,	there	are	also	list-valued
functions	which	take	one	string	as	argument	and	return	a	wordlist,
i.e.	a	list	of	strings.	The	wordlist	can	be	used	with	the	special	-in
operator.	Functions	names	are	not	case	sensitive.	Modules	may
register	additional	functions.

There	are	no	built-in	list-valued	functions.	mod_ssl	provides
PeerExtList.	See	the	description	of	SSLRequire	for	details
(but	PeerExtList	is	also	usable	outside	of	SSLRequire).

Example	expressions

The	following	examples	show	how	expressions	might	be	used	to
evaluate	requests:

#	Compare	the	host	name	to	example.com	and	redirect	to	www.example.com	if	it	matches

<If	"%{HTTP_HOST}	==	'example.com'">

				Redirect	permanent	"/"	"http://www.example.com/"

</If>

#	Force	text/plain	if	requesting	a	file	with	the	query	string	contains	'forcetext'

<If	"%{QUERY_STRING}	=~	/forcetext/">

				ForceType	text/plain

</If>

#	Only	allow	access	to	this	content	during	business	hours

<Directory	"/foo/bar/business">

				Require	expr	%{TIME_HOUR}	-gt	9	&&	%{TIME_HOUR}	-lt	17

</Directory>

#	Check	a	HTTP	header	for	a	list	of	values

<If	"%{HTTP:X-example-header}	in	{	'foo',	'bar',	'baz'	}">

				Header	set	matched	true

</If>

#	Check	an	environment	variable	for	a	regular	expression,	negated.

<If	"!	reqenv('REDIRECT_FOO')	=~	/bar/">

				Header	set	matched	true

</If>

#	Check	result	of	URI	mapping	by	running	in	Directory	context	with	-f

<Directory	"/var/www">

				AddEncoding	x-gzip	gz

<If	"-f	'%{REQUEST_FILENAME}.unzipme'	&&	!	%{HTTP:Accept-Encoding}	=~	/gzip/">

						SetOutputFilter	INFLATE

</If>

</Directory>

#	Check	against	the	client	IP

<If	"-R	'192.168.1.0/24'">

				Header	set	matched	true

</If>

#	Function	example	in	boolean	context

<If	"md5('foo')	==	'acbd18db4cc2f85cedef654fccc4a4d8'">

		Header	set	checksum-matched	true

</If>

#	Function	example	in	string	context

Header	set	foo-checksum	"expr=%{md5:foo}"

#	This	delays	the	evaluation	of	the	condition	clause	compared	to	<If>

Header	always	set	CustomHeader	my-value	"expr=%{REQUEST_URI}	=~	m#^/special_path\.php$#"

Other

Name Alternative Description
-in in string	contained	in	wordlist
/regexp/ m#regexp# Regular	expression	(the	second	form

allows	different	delimiters	than	/)
/regexp/i m#regexp#i Case	insensitive	regular	expression
$0	...	$9 Regular	expression	backreferences

Regular	expression	backreferences
The	strings	$0	...	$9	allow	to	reference	the	capture	groups	from	a
previously	executed,	successfully	matching	regular	expressions.
They	can	normally	only	be	used	in	the	same	expression	as	the
matching	regex,	but	some	modules	allow	special	uses.

Comparison	with	SSLRequire

The	ap_expr	syntax	is	mostly	a	superset	of	the	syntax	of	the
deprecated	SSLRequire	directive.	The	differences	are	described
in	SSLRequire's	documentation.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Version	History

The	req_novary	function	is	available	for	versions	2.4.4	and	later.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

El	Servidor	Apache	y	Programas	de	Soporte

Esta	página	contiene	toda	la	documentación	sobre	los	programas
ejecutables	incluidos	en	el	servidor	Apache.

Índice

httpd

Servidor	Apache	del	Protocolo	de	Transmisión	de	Hipertexto
(HTTP)

apachectl

Interfaz	de	control	del	servidor	HTTP	Apache

ab

Herramienta	de	benchmarking	del	Servidor	HTTP	Apache

apxs

Herramienta	de	Extensión	de	Apache

configure

Configuración	de	la	estructura	de	directorios	de	Apache

dbmmanage

Crea	y	actualiza	los	archivos	de	autentificación	de	usuarios
en	formato	DBM	para	autentificación	básica

fcgistarter

Ejecuta	un	programa	FastCGI.

htcacheclean

Vacía	la	caché	del	disco.

htdigest

Crea	y	actualiza	los	ficheros	de	autentificación	de	usuarios
para	autentificación	tipo	digest

htdbm

Manipula	la	base	de	datos	DBM	de	contraseñas.

htpasswd

Crea	y	actualiza	los	ficheros	de	autentificación	de	usuarios
para	autentificación	tipo	básica

httxt2dbm

Crea	ficheros	dbm	para	que	se	usen	con	RewriteMap

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

logresolve

Resuelve	los	nombres	de	host	para	direcciones	IP	que	están
en	los	ficheros	log	de	Apache

log_server_status

Logea	de	forma	periódica	el	estado	del	servidor.

rotatelogs

Renueva	los	logs	de	Apache	sin	tener	que	parar	el	servidor

split-logfile

Divide	un	archivo	de	registro	multi-host	virtual	en	archivos	de
registro	por	host

suexec

Programa	para	cambiar	la	identidad	de	usuario	con	la	que	se
ejecuta	un	CGI

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Getting	Started

If	you're	completely	new	to	the	Apache	HTTP	Server,	or	even	to
running	a	website	at	all,	you	might	not	know	where	to	start,	or	what
questions	to	ask.	This	document	walks	you	through	the	basics.

Clients,	Servers,	and	URLs

Addresses	on	the	Web	are	expressed	with	URLs	-	Uniform
Resource	Locators	-	which	specify	a	protocol	(e.g.	http),	a
servername	(e.g.	www.apache.org),	a	URL-path	(e.g.
/docs/current/getting-started.html),	and	possibly	a
query	string	(e.g.	?arg=value)	used	to	pass	additional
arguments	to	the	server.

A	client	(e.g.,	a	web	browser)	connects	to	a	server	(e.g.,	your
Apache	HTTP	Server),	with	the	specified	protocol,	and	makes	a
request	for	a	resource	using	the	URL-path.

The	URL-path	may	represent	any	number	of	things	on	the	server.
It	may	be	a	file	(like	getting-started.html)	a	handler	(like
server-status)	or	some	kind	of	program	file	(like	index.php).
We'll	discuss	this	more	below	in	the	Web	Site	Content	section.

The	server	will	send	a	response	consisting	of	a	status	code	and,
optionally,	a	response	body.	The	status	code	indicates	whether	the
request	was	successful,	and,	if	not,	what	kind	of	error	condition
there	was.	This	tells	the	client	what	it	should	do	with	the	response.
You	can	read	about	the	possible	response	codes	in	HTTP	Server
wiki.

Details	of	the	transaction,	and	any	error	conditions,	are	written	to
log	files.	This	is	discussed	in	greater	detail	below	in	the	Logs	Files
and	Troubleshooting	section.

http://wiki.apache.org/httpd/CommonHTTPStatusCodes

Hostnames	and	DNS

In	order	to	connect	to	a	server,	the	client	will	first	have	to	resolve
the	servername	to	an	IP	address	-	the	location	on	the	Internet
where	the	server	resides.	Thus,	in	order	for	your	web	server	to	be
reachable,	it	is	necessary	that	the	servername	be	in	DNS.

If	you	don't	know	how	to	do	this,	you'll	need	to	contact	your
network	administrator,	or	Internet	service	provider,	to	perform	this
step	for	you.

More	than	one	hostname	may	point	to	the	same	IP	address,	and
more	than	one	IP	address	can	be	attached	to	the	same	physical
server.	Thus,	you	can	run	more	than	one	web	site	on	the	same
physical	server,	using	a	feature	called	virtual	hosts.

If	you	are	testing	a	server	that	is	not	Internet-accessible,	you	can
put	host	names	in	your	hosts	file	in	order	to	do	local	resolution.	For
example,	you	might	want	to	put	a	record	in	your	hosts	file	to	map	a
request	for	www.example.com	to	your	local	system,	for	testing
purposes.	This	entry	would	look	like:

127.0.0.1	www.example.com

A	hosts	file	will	probably	be	located	at	/etc/hosts	or
C:\Windows\system32\drivers\etc\hosts.

You	can	read	more	about	the	hosts	file	at
Wikipedia.org/wiki/Hosts_(file),	and	more	about	DNS	at
Wikipedia.org/wiki/Domain_Name_System.

http://en.wikipedia.org/wiki/Hosts_(file)
http://en.wikipedia.org/wiki/Domain_Name_System

Configuration	Files	and	Directives

The	Apache	HTTP	Server	is	configured	via	simple	text	files.	These
files	may	be	located	any	of	a	variety	of	places,	depending	on	how
exactly	you	installed	the	server.	Common	locations	for	these	files
may	be	found	in	the	httpd	wiki.	If	you	installed	httpd	from	source,
the	default	location	of	the	configuration	files	is
/usr/local/apache2/conf.	The	default	configuration	file	is
usually	called	httpd.conf.	This,	too,	can	vary	in	third-party
distributions	of	the	server.

The	configuration	is	frequently	broken	into	multiple	smaller	files,
for	ease	of	management.	These	files	are	loaded	via	the	Include
directive.	The	names	or	locations	of	these	sub-files	are	not
magical,	and	may	vary	greatly	from	one	installation	to	another.
Arrange	and	subdivide	these	files	as	makes	the	most	sense	to
you.	If	the	file	arrangement	you	have	by	default	doesn't	make
sense	to	you,	feel	free	to	rearrange	it.

The	server	is	configured	by	placing	configuration	directives	in
these	configuration	files.	A	directive	is	a	keyword	followed	by	one
or	more	arguments	that	set	its	value.

The	question	of	"Where	should	I	put	that	directive?"	is	generally
answered	by	considering	where	you	want	a	directive	to	be
effective.	If	it	is	a	global	setting,	it	should	appear	in	the
configuration	file,	outside	of	any	<Directory>,	<Location>,
<VirtualHost>,	or	other	section.	If	it	is	to	apply	only	to	a
particular	directory,	then	it	should	go	inside	a	<Directory>
section	referring	to	that	directory,	and	so	on.	See	the	Configuration
Sections	document	for	further	discussion	of	these	sections.

In	addition	to	the	main	configuration	files,	certain	directives	may	go
in	.htaccess	files	located	in	the	content	directories.	.htaccess
files	are	primarily	for	people	who	do	not	have	access	to	the	main
server	configuration	file(s).	You	can	read	more	about	.htaccess

http://wiki.apache.org/httpd/DistrosDefaultLayout

files	in	the	.htaccess	howto.

Web	Site	Content

Web	site	content	can	take	many	different	forms,	but	may	be
broadly	divided	into	static	and	dynamic	content.

Static	content	is	things	like	HTML	files,	image	files,	CSS	files,	and
other	files	that	reside	in	the	filesystem.	The	DocumentRoot
directive	specifies	where	in	your	filesystem	you	should	place	these
files.	This	directive	is	either	set	globally,	or	per	virtual	host.	Look	in
your	configuration	file(s)	to	determine	how	this	is	set	for	your
server.

Typically,	a	document	called	index.html	will	be	served	when	a
directory	is	requested	without	a	file	name	being	specified.	For
example,	if	DocumentRoot	is	set	to	/var/www/html	and	a
request	is	made	for	http://www.example.com/work/,	the	file
/var/www/html/work/index.html	will	be	served	to	the	client.

Dynamic	content	is	anything	that	is	generated	at	request	time,	and
may	change	from	one	request	to	another.	There	are	numerous
ways	that	dynamic	content	may	be	generated.	Various	handlers
are	available	to	generate	content.	CGI	programs	may	be	written	to
generate	content	for	your	site.

Third-party	modules	like	mod_php	may	be	used	to	write	code	that
does	a	variety	of	things.	Many	third-party	applications,	written
using	a	variety	of	languages	and	tools,	are	available	for	download
and	installation	on	your	Apache	HTTP	Server.	Support	of	these
third-party	things	is	beyond	the	scope	of	this	documentation,	and
you	should	find	their	documentation	or	other	support	forums	to
answer	your	questions	about	them.

Log	Files	and	Troubleshooting

As	an	Apache	HTTP	Server	administrator,	your	most	valuable
assets	are	the	log	files,	and,	in	particular,	the	error	log.
Troubleshooting	any	problem	without	the	error	log	is	like	driving
with	your	eyes	closed.

The	location	of	the	error	log	is	defined	by	the	ErrorLog	directive,
which	may	be	set	globally,	or	per	virtual	host.	Entries	in	the	error
log	tell	you	what	went	wrong,	and	when.	They	often	also	tell	you
how	to	fix	it.	Each	error	log	message	contains	an	error	code,	which
you	can	search	for	online	for	even	more	detailed	descriptions	of
how	to	address	the	problem.	You	can	also	configure	your	error	log
to	contain	a	log	ID	which	you	can	then	correlate	to	an	access	log
entry,	so	that	you	can	determine	what	request	caused	the	error
condition.

You	can	read	more	about	logging	in	the	logs	documentation.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

What's	next?

Once	you	have	the	prerequisites	under	your	belt,	it's	time	to	move
on.

This	document	covers	only	the	bare	basics.	We	hope	that	this	gets
you	started,	but	there	are	many	other	things	that	you	might	need
to	know.

Download
Install
Configure
Start
Frequently	Asked	Questions

http://httpd.apache.org/download.cgi
http://wiki.apache.org/httpd/FAQ
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Caching	Guide

This	document	supplements	the	mod_cache,	mod_cache_disk,
mod_file_cache	and	htcacheclean	reference	documentation.	It
describes	how	to	use	the	Apache	HTTP	Server's	caching	features	to
accelerate	web	and	proxy	serving,	while	avoiding	common	problems
and	misconfigurations.

Introduction

The	Apache	HTTP	server	offers	a	range	of	caching	features	that
are	designed	to	improve	the	performance	of	the	server	in	various
ways.

Three-state	RFC2616	HTTP	caching
mod_cache	and	its	provider	modules	mod_cache_disk
provide	intelligent,	HTTP-aware	caching.	The	content	itself	is
stored	in	the	cache,	and	mod_cache	aims	to	honor	all	of	the
various	HTTP	headers	and	options	that	control	the
cacheability	of	content	as	described	in	Section	13	of
RFC2616.	mod_cache	is	aimed	at	both	simple	and	complex
caching	configurations,	where	you	are	dealing	with	proxied
content,	dynamic	local	content	or	have	a	need	to	speed	up
access	to	local	files	on	a	potentially	slow	disk.

Two-state	key/value	shared	object	caching
The	shared	object	cache	API	(socache)	and	its	provider
modules	provide	a	server	wide	key/value	based	shared	object
cache.	These	modules	are	designed	to	cache	low	level	data
such	as	SSL	sessions	and	authentication	credentials.
Backends	allow	the	data	to	be	stored	server	wide	in	shared
memory,	or	datacenter	wide	in	a	cache	such	as	memcache	or
distcache.

Specialized	file	caching
mod_file_cache	offers	the	ability	to	pre-load	files	into
memory	on	server	startup,	and	can	improve	access	times	and
save	file	handles	on	files	that	are	accessed	often,	as	there	is
no	need	to	go	to	disk	on	each	request.

To	get	the	most	from	this	document,	you	should	be	familiar	with
the	basics	of	HTTP,	and	have	read	the	Users'	Guides	to	Mapping
URLs	to	the	Filesystem	and	Content	negotiation.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

Three-state	RFC2616	HTTP	caching

Related	Modules Related	Directives
mod_cache

mod_cache_disk

CacheEnable

CacheDisable

UseCanonicalName

CacheNegotiatedDocs

The	HTTP	protocol	contains	built	in	support	for	an	in-line	caching
mechanism	described	by	section	13	of	RFC2616,	and	the
mod_cache	module	can	be	used	to	take	advantage	of	this.

Unlike	a	simple	two	state	key/value	cache	where	the	content
disappears	completely	when	no	longer	fresh,	an	HTTP	cache
includes	a	mechanism	to	retain	stale	content,	and	to	ask	the	origin
server	whether	this	stale	content	has	changed	and	if	not,	make	it
fresh	again.

An	entry	in	an	HTTP	cache	exists	in	one	of	three	states:

Fresh
If	the	content	is	new	enough	(younger	than	its	freshness
lifetime),	it	is	considered	fresh.	An	HTTP	cache	is	free	to
serve	fresh	content	without	making	any	calls	to	the	origin
server	at	all.

Stale
If	the	content	is	too	old	(older	than	its	freshness	lifetime),	it
is	considered	stale.	An	HTTP	cache	should	contact	the	origin
server	and	check	whether	the	content	is	still	fresh	before
serving	stale	content	to	a	client.	The	origin	server	will	either
respond	with	replacement	content	if	not	still	valid,	or	ideally,
the	origin	server	will	respond	with	a	code	to	tell	the	cache	the
content	is	still	fresh,	without	the	need	to	generate	or	send	the
content	again.	The	content	becomes	fresh	again	and	the
cycle	continues.

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

The	HTTP	protocol	does	allow	the	cache	to	serve	stale	data
under	certain	circumstances,	such	as	when	an	attempt	to
freshen	the	data	with	an	origin	server	has	failed	with	a	5xx
error,	or	when	another	request	is	already	in	the	process	of
freshening	the	given	entry.	In	these	cases	a	Warning	header
is	added	to	the	response.

Non	Existent
If	the	cache	gets	full,	it	reserves	the	option	to	delete	content
from	the	cache	to	make	space.	Content	can	be	deleted	at	any
time,	and	can	be	stale	or	fresh.	The	htcacheclean	tool	can	be
run	on	a	once	off	basis,	or	deployed	as	a	daemon	to	keep	the
size	of	the	cache	within	the	given	size,	or	the	given	number	of
inodes.	The	tool	attempts	to	delete	stale	content	before
attempting	to	delete	fresh	content.

Full	details	of	how	HTTP	caching	works	can	be	found	in	Section
13	of	RFC2616.

Interaction	with	the	Server
The	mod_cache	module	hooks	into	the	server	in	two	possible
places	depending	on	the	value	of	the	CacheQuickHandler
directive:

Quick	handler	phase
This	phase	happens	very	early	on	during	the	request
processing,	just	after	the	request	has	been	parsed.	If	the
content	is	found	within	the	cache,	it	is	served	immediately	and
almost	all	request	processing	is	bypassed.

In	this	scenario,	the	cache	behaves	as	if	it	has	been	"bolted
on"	to	the	front	of	the	server.

This	mode	offers	the	best	performance,	as	the	majority	of
server	processing	is	bypassed.	This	mode	however	also

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html

bypasses	the	authentication	and	authorization	phases	of
server	processing,	so	this	mode	should	be	chosen	with	care
when	this	is	important.

Requests	with	an	"Authorization"	header	(for	example,	HTTP
Basic	Authentication)	are	neither	cacheable	nor	served	from
the	cache	when	mod_cache	is	running	in	this	phase.

Normal	handler	phase
This	phase	happens	late	in	the	request	processing,	after	all
the	request	phases	have	completed.

In	this	scenario,	the	cache	behaves	as	if	it	has	been	"bolted
on"	to	the	back	of	the	server.

This	mode	offers	the	most	flexibility,	as	the	potential	exists	for
caching	to	occur	at	a	precisely	controlled	point	in	the	filter
chain,	and	cached	content	can	be	filtered	or	personalized
before	being	sent	to	the	client.

If	the	URL	is	not	found	within	the	cache,	mod_cache	will	add	a
filter	to	the	filter	stack	in	order	to	record	the	response	to	the	cache,
and	then	stand	down,	allowing	normal	request	processing	to
continue.	If	the	content	is	determined	to	be	cacheable,	the	content
will	be	saved	to	the	cache	for	future	serving,	otherwise	the	content
will	be	ignored.

If	the	content	found	within	the	cache	is	stale,	the	mod_cache
module	converts	the	request	into	a	conditional	request.	If	the
origin	server	responds	with	a	normal	response,	the	normal
response	is	cached,	replacing	the	content	already	cached.	If	the
origin	server	responds	with	a	304	Not	Modified	response,	the
content	is	marked	as	fresh	again,	and	the	cached	content	is
served	by	the	filter	instead	of	saving	it.

Improving	Cache	Hits
When	a	virtual	host	is	known	by	one	of	many	different	server
aliases,	ensuring	that	UseCanonicalName	is	set	to	On	can
dramatically	improve	the	ratio	of	cache	hits.	This	is	because	the
hostname	of	the	virtual-host	serving	the	content	is	used	within	the
cache	key.	With	the	setting	set	to	On	virtual-hosts	with	multiple
server	names	or	aliases	will	not	produce	differently	cached
entities,	and	instead	content	will	be	cached	as	per	the	canonical
hostname.

Freshness	Lifetime
Well	formed	content	that	is	intended	to	be	cached	should	declare
an	explicit	freshness	lifetime	with	the	Cache-Control	header's
max-age	or	s-maxage	fields,	or	by	including	an	Expires
header.

At	the	same	time,	the	origin	server	defined	freshness	lifetime	can
be	overridden	by	a	client	when	the	client	presents	their	own
Cache-Control	header	within	the	request.	In	this	case,	the
lowest	freshness	lifetime	between	request	and	response	wins.

When	this	freshness	lifetime	is	missing	from	the	request	or	the
response,	a	default	freshness	lifetime	is	applied.	The	default
freshness	lifetime	for	cached	entities	is	one	hour,	however	this	can
be	easily	over-ridden	by	using	the	CacheDefaultExpire
directive.

If	a	response	does	not	include	an	Expires	header	but	does
include	a	Last-Modified	header,	mod_cache	can	infer	a
freshness	lifetime	based	on	a	heuristic,	which	can	be	controlled
through	the	use	of	the	CacheLastModifiedFactor	directive.

For	local	content,	or	for	remote	content	that	does	not	define	its

own	Expires	header,	mod_expires	may	be	used	to	fine-tune
the	freshness	lifetime	by	adding	max-age	and	Expires.

The	maximum	freshness	lifetime	may	also	be	controlled	by	using
the	CacheMaxExpire.

A	Brief	Guide	to	Conditional	Requests
When	content	expires	from	the	cache	and	becomes	stale,	rather
than	pass	on	the	original	request,	httpd	will	modify	the	request	to
make	it	conditional	instead.

When	an	ETag	header	exists	in	the	original	cached	response,
mod_cache	will	add	an	If-None-Match	header	to	the	request	to
the	origin	server.	When	a	Last-Modified	header	exists	in	the
original	cached	response,	mod_cache	will	add	an	If-
Modified-Since	header	to	the	request	to	the	origin	server.
Performing	either	of	these	actions	makes	the	request	conditional.

When	a	conditional	request	is	received	by	an	origin	server,	the
origin	server	should	check	whether	the	ETag	or	the	Last-Modified
parameter	has	changed,	as	appropriate	for	the	request.	If	not,	the
origin	should	respond	with	a	terse	"304	Not	Modified"	response.
This	signals	to	the	cache	that	the	stale	content	is	still	fresh	should
be	used	for	subsequent	requests	until	the	content's	new	freshness
lifetime	is	reached	again.

If	the	content	has	changed,	then	the	content	is	served	as	if	the
request	were	not	conditional	to	begin	with.

Conditional	requests	offer	two	benefits.	Firstly,	when	making	such
a	request	to	the	origin	server,	if	the	content	from	the	origin
matches	the	content	in	the	cache,	this	can	be	determined	easily
and	without	the	overhead	of	transferring	the	entire	resource.

Secondly,	a	well	designed	origin	server	will	be	designed	in	such	a
way	that	conditional	requests	will	be	significantly	cheaper	to
produce	than	a	full	response.	For	static	files,	typically	all	that	is
involved	is	a	call	to	stat()	or	similar	system	call,	to	see	if	the	file
has	changed	in	size	or	modification	time.	As	such,	even	local
content	may	still	be	served	faster	from	the	cache	if	it	has	not
changed.

Origin	servers	should	make	every	effort	to	support	conditional
requests	as	is	practical,	however	if	conditional	requests	are	not
supported,	the	origin	will	respond	as	if	the	request	was	not
conditional,	and	the	cache	will	respond	as	if	the	content	had
changed	and	save	the	new	content	to	the	cache.	In	this	case,	the
cache	will	behave	like	a	simple	two	state	cache,	where	content	is
effectively	either	fresh	or	deleted.

What	Can	be	Cached?
The	full	definition	of	which	responses	can	be	cached	by	an	HTTP
cache	is	defined	in	RFC2616	Section	13.4	Response	Cacheability,
and	can	be	summed	up	as	follows:

1.	 Caching	must	be	enabled	for	this	URL.	See	the
CacheEnable	and	CacheDisable	directives.

2.	 The	response	must	have	a	HTTP	status	code	of	200,	203,
300,	301	or	410.

3.	 The	request	must	be	a	HTTP	GET	request.

4.	 If	the	response	contains	an	"Authorization:"	header,	it	must
also	contain	an	"s-maxage",	"must-revalidate"	or	"public"
option	in	the	"Cache-Control:"	header,	or	it	won't	be	cached.

5.	 If	the	URL	included	a	query	string	(e.g.	from	a	HTML	form
GET	method)	it	will	not	be	cached	unless	the	response
specifies	an	explicit	expiration	by	including	an	"Expires:"

http://www.w3.org/Protocols/rfc2616/rfc2616-sec13.html#sec13.4

header	or	the	max-age	or	s-maxage	directive	of	the	"Cache-
Control:"	header,	as	per	RFC2616	sections	13.9	and	13.2.1.

6.	 If	the	response	has	a	status	of	200	(OK),	the	response	must
also	include	at	least	one	of	the	"Etag",	"Last-Modified"	or	the
"Expires"	headers,	or	the	max-age	or	s-maxage	directive	of
the	"Cache-Control:"	header,	unless	the
CacheIgnoreNoLastMod	directive	has	been	used	to	require
otherwise.

7.	 If	the	response	includes	the	"private"	option	in	a	"Cache-
Control:"	header,	it	will	not	be	stored	unless	the
CacheStorePrivate	has	been	used	to	require	otherwise.

8.	 Likewise,	if	the	response	includes	the	"no-store"	option	in	a
"Cache-Control:"	header,	it	will	not	be	stored	unless	the
CacheStoreNoStore	has	been	used.

9.	 A	response	will	not	be	stored	if	it	includes	a	"Vary:"	header
containing	the	match-all	"*".

What	Should	Not	be	Cached?
It	should	be	up	to	the	client	creating	the	request,	or	the	origin
server	constructing	the	response	to	decide	whether	or	not	the
content	should	be	cacheable	or	not	by	correctly	setting	the
Cache-Control	header,	and	mod_cache	should	be	left	alone	to
honor	the	wishes	of	the	client	or	server	as	appropriate.

Content	that	is	time	sensitive,	or	which	varies	depending	on	the
particulars	of	the	request	that	are	not	covered	by	HTTP
negotiation,	should	not	be	cached.	This	content	should	declare
itself	uncacheable	using	the	Cache-Control	header.

If	content	changes	often,	expressed	by	a	freshness	lifetime	of
minutes	or	seconds,	the	content	can	still	be	cached,	however	it	is
highly	desirable	that	the	origin	server	supports	conditional

requests	correctly	to	ensure	that	full	responses	do	not	have	to	be
generated	on	a	regular	basis.

Content	that	varies	based	on	client	provided	request	headers	can
be	cached	through	intelligent	use	of	the	Vary	response	header.

Variable/Negotiated	Content
When	the	origin	server	is	designed	to	respond	with	different
content	based	on	the	value	of	headers	in	the	request,	for	example
to	serve	multiple	languages	at	the	same	URL,	HTTP's	caching
mechanism	makes	it	possible	to	cache	multiple	variants	of	the
same	page	at	the	same	URL.

This	is	done	by	the	origin	server	adding	a	Vary	header	to	indicate
which	headers	must	be	taken	into	account	by	a	cache	when
determining	whether	two	variants	are	different	from	one	another.

If	for	example,	a	response	is	received	with	a	vary	header	such	as;

Vary:	negotiate,accept-language,accept-charset

mod_cache	will	only	serve	the	cached	content	to	requesters	with
accept-language	and	accept-charset	headers	matching	those	of
the	original	request.

Multiple	variants	of	the	content	can	be	cached	side	by	side,
mod_cache	uses	the	Vary	header	and	the	corresponding	values
of	the	request	headers	listed	by	Vary	to	decide	on	which	of	many
variants	to	return	to	the	client.

Cache	Setup	Examples

Related	Modules Related	Directives
mod_cache

mod_cache_disk

mod_cache_socache

mod_socache_memcache

CacheEnable

CacheRoot

CacheDirLevels

CacheDirLength

CacheSocache

Caching	to	Disk
The	mod_cache	module	relies	on	specific	backend	store
implementations	in	order	to	manage	the	cache,	and	for	caching	to
disk	mod_cache_disk	is	provided	to	support	this.

Typically	the	module	will	be	configured	as	so;

CacheRoot			"/var/cache/apache/"

CacheEnable	disk	/

CacheDirLevels	2

CacheDirLength	1

Importantly,	as	the	cached	files	are	locally	stored,	operating
system	in-memory	caching	will	typically	be	applied	to	their	access
also.	So	although	the	files	are	stored	on	disk,	if	they	are	frequently
accessed	it	is	likely	the	operating	system	will	ensure	that	they	are
actually	served	from	memory.

Understanding	the	Cache-Store
To	store	items	in	the	cache,	mod_cache_disk	creates	a	22
character	hash	of	the	URL	being	requested.	This	hash
incorporates	the	hostname,	protocol,	port,	path	and	any	CGI
arguments	to	the	URL,	as	well	as	elements	defined	by	the	Vary
header	to	ensure	that	multiple	URLs	do	not	collide	with	one

another.

Each	character	may	be	any	one	of	64-different	characters,	which
mean	that	overall	there	are	64^22	possible	hashes.	For	example,
a	URL	might	be	hashed	to	xyTGxSMO2b68mBCykqkp1w.	This
hash	is	used	as	a	prefix	for	the	naming	of	the	files	specific	to	that
URL	within	the	cache,	however	first	it	is	split	up	into	directories	as
per	the	CacheDirLevels	and	CacheDirLength	directives.

CacheDirLevels	specifies	how	many	levels	of	subdirectory
there	should	be,	and	CacheDirLength	specifies	how	many
characters	should	be	in	each	directory.	With	the	example	settings
given	above,	the	hash	would	be	turned	into	a	filename	prefix	as
/var/cache/apache/x/y/TGxSMO2b68mBCykqkp1w.

The	overall	aim	of	this	technique	is	to	reduce	the	number	of
subdirectories	or	files	that	may	be	in	a	particular	directory,	as	most
file-systems	slow	down	as	this	number	increases.	With	setting	of
"1"	for	CacheDirLength	there	can	at	most	be	64	subdirectories
at	any	particular	level.	With	a	setting	of	2	there	can	be	64	*	64
subdirectories,	and	so	on.	Unless	you	have	a	good	reason	not	to,
using	a	setting	of	"1"	for	CacheDirLength	is	recommended.

Setting	CacheDirLevels	depends	on	how	many	files	you
anticipate	to	store	in	the	cache.	With	the	setting	of	"2"	used	in	the
above	example,	a	grand	total	of	4096	subdirectories	can	ultimately
be	created.	With	1	million	files	cached,	this	works	out	at	roughly
245	cached	URLs	per	directory.

Each	URL	uses	at	least	two	files	in	the	cache-store.	Typically	there
is	a	".header"	file,	which	includes	meta-information	about	the	URL,
such	as	when	it	is	due	to	expire	and	a	".data"	file	which	is	a
verbatim	copy	of	the	content	to	be	served.

In	the	case	of	a	content	negotiated	via	the	"Vary"	header,	a	".vary"

directory	will	be	created	for	the	URL	in	question.	This	directory	will
have	multiple	".data"	files	corresponding	to	the	differently
negotiated	content.

Maintaining	the	Disk	Cache
The	mod_cache_disk	module	makes	no	attempt	to	regulate	the
amount	of	disk	space	used	by	the	cache,	although	it	will	gracefully
stand	down	on	any	disk	error	and	behave	as	if	the	cache	was
never	present.

Instead,	provided	with	httpd	is	the	htcacheclean	tool	which	allows
you	to	clean	the	cache	periodically.	Determining	how	frequently	to
run	htcacheclean	and	what	target	size	to	use	for	the	cache	is
somewhat	complex	and	trial	and	error	may	be	needed	to	select
optimal	values.

htcacheclean	has	two	modes	of	operation.	It	can	be	run	as
persistent	daemon,	or	periodically	from	cron.	htcacheclean	can
take	up	to	an	hour	or	more	to	process	very	large	(tens	of
gigabytes)	caches	and	if	you	are	running	it	from	cron	it	is
recommended	that	you	determine	how	long	a	typical	run	takes,	to
avoid	running	more	than	one	instance	at	a	time.

It	is	also	recommended	that	an	appropriate	"nice"	level	is	chosen
for	htcacheclean	so	that	the	tool	does	not	cause	excessive	disk	io
while	the	server	is	running.

Figure	1:	Typical	cache	growth	/	clean	sequence.

Because	mod_cache_disk	does	not	itself	pay	attention	to	how
much	space	is	used	you	should	ensure	that	htcacheclean	is
configured	to	leave	enough	"grow	room"	following	a	clean.

Caching	to	memcached
Using	the	mod_cache_socache	module,	mod_cache	can	cache
data	from	a	variety	of	implementations	(aka:	"providers").	Using
the	mod_socache_memcache	module,	for	example,	one	can
specify	that	memcached	is	to	be	used	as	the	the	backend	storage
mechanism.

Typically	the	module	will	be	configured	as	so:

CacheEnable	socache	/

CacheSocache	memcache:memcd.example.com:11211

http://memcached.org

Additional	memcached	servers	can	be	specified	by	appending
them	to	the	end	of	the	CacheSocache	memcache:	line
separated	by	commas:

CacheEnable	socache	/

CacheSocache	memcache:mem1.example.com:11211,mem2.example.com:11212

This	format	is	also	used	with	the	other	various
mod_cache_socache	providers.	For	example:

CacheEnable	socache	/

CacheSocache	shmcb:/path/to/datafile(512000)

CacheEnable	socache	/

CacheSocache	dbm:/path/to/datafile

General	Two-state	Key/Value	Shared	Object	Caching

Related	Modules Related	Directives
mod_authn_socache

mod_socache_dbm

mod_socache_dc

mod_socache_memcache

mod_socache_shmcb

mod_ssl

AuthnCacheSOCache

SSLSessionCache

SSLStaplingCache

The	Apache	HTTP	server	offers	a	low	level	shared	object	cache
for	caching	information	such	as	SSL	sessions,	or	authentication
credentials,	within	the	socache	interface.

Additional	modules	are	provided	for	each	implementation,	offering
the	following	backends:

mod_socache_dbm

DBM	based	shared	object	cache.

mod_socache_dc

Distcache	based	shared	object	cache.

mod_socache_memcache

Memcache	based	shared	object	cache.

mod_socache_shmcb

Shared	memory	based	shared	object	cache.

Caching	Authentication	Credentials

Related	Modules Related	Directives
mod_authn_socache AuthnCacheSOCache

The	mod_authn_socache	module	allows	the	result	of
authentication	to	be	cached,	relieving	load	on	authentication

backends.

Caching	SSL	Sessions

Related	Modules Related	Directives
mod_ssl SSLSessionCache

SSLStaplingCache

The	mod_ssl	module	uses	the	socache	interface	to	provide	a
session	cache	and	a	stapling	cache.

Specialized	File	Caching

Related	Modules Related	Directives
mod_file_cache CacheFile

MMapFile

On	platforms	where	a	filesystem	might	be	slow,	or	where	file
handles	are	expensive,	the	option	exists	to	pre-load	files	into
memory	on	startup.

On	systems	where	opening	files	is	slow,	the	option	exists	to	open
the	file	on	startup	and	cache	the	file	handle.	These	options	can
help	on	systems	where	access	to	static	files	is	slow.

File-Handle	Caching
The	act	of	opening	a	file	can	itself	be	a	source	of	delay,	particularly
on	network	filesystems.	By	maintaining	a	cache	of	open	file
descriptors	for	commonly	served	files,	httpd	can	avoid	this	delay.
Currently	httpd	provides	one	implementation	of	File-Handle
Caching.

CacheFile
The	most	basic	form	of	caching	present	in	httpd	is	the	file-handle
caching	provided	by	mod_file_cache.	Rather	than	caching	file-
contents,	this	cache	maintains	a	table	of	open	file	descriptors.
Files	to	be	cached	in	this	manner	are	specified	in	the	configuration
file	using	the	CacheFile	directive.

The	CacheFile	directive	instructs	httpd	to	open	the	file	when	it	is
started	and	to	re-use	this	file-handle	for	all	subsequent	access	to
this	file.

CacheFile	/usr/local/apache2/htdocs/index.html

If	you	intend	to	cache	a	large	number	of	files	in	this	manner,	you
must	ensure	that	your	operating	system's	limit	for	the	number	of
open	files	is	set	appropriately.

Although	using	CacheFile	does	not	cause	the	file-contents	to	be
cached	per-se,	it	does	mean	that	if	the	file	changes	while	httpd	is
running	these	changes	will	not	be	picked	up.	The	file	will	be
consistently	served	as	it	was	when	httpd	was	started.

If	the	file	is	removed	while	httpd	is	running,	it	will	continue	to
maintain	an	open	file	descriptor	and	serve	the	file	as	it	was	when
httpd	was	started.	This	usually	also	means	that	although	the	file
will	have	been	deleted,	and	not	show	up	on	the	filesystem,	extra
free	space	will	not	be	recovered	until	httpd	is	stopped	and	the	file
descriptor	closed.

In-Memory	Caching
Serving	directly	from	system	memory	is	universally	the	fastest
method	of	serving	content.	Reading	files	from	a	disk	controller	or,
even	worse,	from	a	remote	network	is	orders	of	magnitude	slower.
Disk	controllers	usually	involve	physical	processes,	and	network
access	is	limited	by	your	available	bandwidth.	Memory	access	on
the	other	hand	can	take	mere	nano-seconds.

System	memory	isn't	cheap	though,	byte	for	byte	it's	by	far	the
most	expensive	type	of	storage	and	it's	important	to	ensure	that	it
is	used	efficiently.	By	caching	files	in	memory	you	decrease	the
amount	of	memory	available	on	the	system.	As	we'll	see,	in	the
case	of	operating	system	caching,	this	is	not	so	much	of	an	issue,
but	when	using	httpd's	own	in-memory	caching	it	is	important	to
make	sure	that	you	do	not	allocate	too	much	memory	to	a	cache.
Otherwise	the	system	will	be	forced	to	swap	out	memory,	which
will	likely	degrade	performance.

Operating	System	Caching
Almost	all	modern	operating	systems	cache	file-data	in	memory
managed	directly	by	the	kernel.	This	is	a	powerful	feature,	and	for
the	most	part	operating	systems	get	it	right.	For	example,	on
Linux,	let's	look	at	the	difference	in	the	time	it	takes	to	read	a	file
for	the	first	time	and	the	second	time;

colm@coroebus:~$	time	cat	testfile	>	/dev/null

real				0m0.065s

user				0m0.000s

sys					0m0.001s

colm@coroebus:~$	time	cat	testfile	>	/dev/null

real				0m0.003s

user				0m0.003s

sys					0m0.000s

Even	for	this	small	file,	there	is	a	huge	difference	in	the	amount	of
time	it	takes	to	read	the	file.	This	is	because	the	kernel	has	cached
the	file	contents	in	memory.

By	ensuring	there	is	"spare"	memory	on	your	system,	you	can
ensure	that	more	and	more	file-contents	will	be	stored	in	this
cache.	This	can	be	a	very	efficient	means	of	in-memory	caching,
and	involves	no	extra	configuration	of	httpd	at	all.

Additionally,	because	the	operating	system	knows	when	files	are
deleted	or	modified,	it	can	automatically	remove	file	contents	from
the	cache	when	necessary.	This	is	a	big	advantage	over	httpd's	in-
memory	caching	which	has	no	way	of	knowing	when	a	file	has
changed.

Despite	the	performance	and	advantages	of	automatic	operating
system	caching	there	are	some	circumstances	in	which	in-memory
caching	may	be	better	performed	by	httpd.

MMapFile	Caching
mod_file_cache	provides	the	MMapFile	directive,	which	allows

you	to	have	httpd	map	a	static	file's	contents	into	memory	at	start
time	(using	the	mmap	system	call).	httpd	will	use	the	in-memory
contents	for	all	subsequent	accesses	to	this	file.

MMapFile	/usr/local/apache2/htdocs/index.html

As	with	the	CacheFile	directive,	any	changes	in	these	files	will
not	be	picked	up	by	httpd	after	it	has	started.

The	MMapFile	directive	does	not	keep	track	of	how	much
memory	it	allocates,	so	you	must	ensure	not	to	over-use	the
directive.	Each	httpd	child	process	will	replicate	this	memory,	so	it
is	critically	important	to	ensure	that	the	files	mapped	are	not	so
large	as	to	cause	the	system	to	swap	memory.

Security	Considerations

Authorization	and	Access	Control
Using	mod_cache	in	its	default	state	where
CacheQuickHandler	is	set	to	On	is	very	much	like	having	a
caching	reverse-proxy	bolted	to	the	front	of	the	server.	Requests
will	be	served	by	the	caching	module	unless	it	determines	that	the
origin	server	should	be	queried	just	as	an	external	cache	would,
and	this	drastically	changes	the	security	model	of	httpd.

As	traversing	a	filesystem	hierarchy	to	examine	potential
.htaccess	files	would	be	a	very	expensive	operation,	partially
defeating	the	point	of	caching	(to	speed	up	requests),	mod_cache
makes	no	decision	about	whether	a	cached	entity	is	authorised	for
serving.	In	other	words;	if	mod_cache	has	cached	some	content,
it	will	be	served	from	the	cache	as	long	as	that	content	has	not
expired.

If,	for	example,	your	configuration	permits	access	to	a	resource	by
IP	address	you	should	ensure	that	this	content	is	not	cached.	You
can	do	this	by	using	the	CacheDisable	directive,	or
mod_expires.	Left	unchecked,	mod_cache	-	very	much	like	a
reverse	proxy	-	would	cache	the	content	when	served	and	then
serve	it	to	any	client,	on	any	IP	address.

When	the	CacheQuickHandler	directive	is	set	to	Off,	the	full
set	of	request	processing	phases	are	executed	and	the	security
model	remains	unchanged.

Local	exploits
As	requests	to	end-users	can	be	served	from	the	cache,	the	cache
itself	can	become	a	target	for	those	wishing	to	deface	or	interfere
with	content.	It	is	important	to	bear	in	mind	that	the	cache	must	at
all	times	be	writable	by	the	user	which	httpd	is	running	as.	This	is

in	stark	contrast	to	the	usually	recommended	situation	of
maintaining	all	content	unwritable	by	the	Apache	user.

If	the	Apache	user	is	compromised,	for	example	through	a	flaw	in
a	CGI	process,	it	is	possible	that	the	cache	may	be	targeted.
When	using	mod_cache_disk,	it	is	relatively	easy	to	insert	or
modify	a	cached	entity.

This	presents	a	somewhat	elevated	risk	in	comparison	to	the	other
types	of	attack	it	is	possible	to	make	as	the	Apache	user.	If	you
are	using	mod_cache_disk	you	should	bear	this	in	mind	-	ensure
you	upgrade	httpd	when	security	upgrades	are	announced	and	run
CGI	processes	as	a	non-Apache	user	using	suEXEC	if	possible.

Cache	Poisoning
When	running	httpd	as	a	caching	proxy	server,	there	is	also	the
potential	for	so-called	cache	poisoning.	Cache	Poisoning	is	a
broad	term	for	attacks	in	which	an	attacker	causes	the	proxy
server	to	retrieve	incorrect	(and	usually	undesirable)	content	from
the	origin	server.

For	example	if	the	DNS	servers	used	by	your	system	running	httpd
are	vulnerable	to	DNS	cache	poisoning,	an	attacker	may	be	able
to	control	where	httpd	connects	to	when	requesting	content	from
the	origin	server.	Another	example	is	so-called	HTTP	request-
smuggling	attacks.

This	document	is	not	the	correct	place	for	an	in-depth	discussion
of	HTTP	request	smuggling	(instead,	try	your	favourite	search
engine)	however	it	is	important	to	be	aware	that	it	is	possible	to
make	a	series	of	requests,	and	to	exploit	a	vulnerability	on	an
origin	webserver	such	that	the	attacker	can	entirely	control	the
content	retrieved	by	the	proxy.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Denial	of	Service	/	Cachebusting
The	Vary	mechanism	allows	multiple	variants	of	the	same	URL	to
be	cached	side	by	side.	Depending	on	header	values	provided	by
the	client,	the	cache	will	select	the	correct	variant	to	return	to	the
client.	This	mechanism	can	become	a	problem	when	an	attempt	is
made	to	vary	on	a	header	that	is	known	to	contain	a	wide	range	of
possible	values	under	normal	use,	for	example	the	User-Agent
header.	Depending	on	the	popularity	of	the	particular	web	site
thousands	or	millions	of	duplicate	cache	entries	could	be	created
for	the	same	URL,	crowding	out	other	entries	in	the	cache.

In	other	cases,	there	may	be	a	need	to	change	the	URL	of	a
particular	resource	on	every	request,	usually	by	adding	a
"cachebuster"	string	to	the	URL.	If	this	content	is	declared
cacheable	by	a	server	for	a	significant	freshness	lifetime,	these
entries	can	crowd	out	legitimate	entries	in	a	cache.	While
mod_cache	provides	a
CacheIgnoreURLSessionIdentifiers	directive,	this	directive
should	be	used	with	care	to	ensure	that	downstream	proxy	or
browser	caches	aren't	subjected	to	the	same	denial	of	service
issue.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	SSL/TLS	Encryption

The	Apache	HTTP	Server	module	mod_ssl	provides	an	interface	to
the	OpenSSL	library,	which	provides	Strong	Encryption	using	the
Secure	Sockets	Layer	and	Transport	Layer	Security	protocols.

http://www.openssl.org/

Documentation

mod_ssl	Configuration	How-To
Introduction	To	SSL
Compatibility
Frequently	Asked	Questions
Glossary

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

mod_ssl

Extensive	documentation	on	the	directives	and	environment
variables	provided	by	this	module	is	provided	in	the	mod_ssl
reference	documentation.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	mod_rewrite

mod_rewrite	provides	a	way	to	modify	incoming	URL	requests,
dynamically,	based	on	regular	expression	rules.	This	allows	you	to
map	arbitrary	URLs	onto	your	internal	URL	structure	in	any	way	you
like.

It	supports	an	unlimited	number	of	rules	and	an	unlimited	number	of
attached	rule	conditions	for	each	rule	to	provide	a	really	flexible	and
powerful	URL	manipulation	mechanism.	The	URL	manipulations	can
depend	on	various	tests:	server	variables,	environment	variables,
HTTP	headers,	time	stamps,	external	database	lookups,	and	various
other	external	programs	or	handlers,	can	be	used	to	achieve	granular
URL	matching.

Rewrite	rules	can	operate	on	the	full	URLs,	including	the	path-info
and	query	string	portions,	and	may	be	used	in	per-server	context
(httpd.conf),	per-virtualhost	context	(<VirtualHost>	blocks),	or
per-directory	context	(.htaccess	files	and	<Directory>	blocks).
The	rewritten	result	can	lead	to	further	rules,	internal	sub-processing,
external	request	redirection,	or	proxy	passthrough,	depending	on
what	flags	you	attach	to	the	rules.

Since	mod_rewrite	is	so	powerful,	it	can	indeed	be	rather	complex.
This	document	supplements	the	reference	documentation,	and
attempts	to	allay	some	of	that	complexity,	and	provide	highly
annotated	examples	of	common	scenarios	that	you	may	handle	with
mod_rewrite.	But	we	also	attempt	to	show	you	when	you	should	not
use	mod_rewrite,	and	use	other	standard	Apache	features	instead,
thus	avoiding	this	unnecessary	complexity.

mod_rewrite	reference	documentation
Introduction	to	regular	expressions	and	mod_rewrite
Using	mod_rewrite	for	redirection	and	remapping	of	URLs

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Using	mod_rewrite	to	control	access
Dynamic	virtual	hosts	with	mod_rewrite
Dynamic	proxying	with	mod_rewrite
Using	RewriteMap
Advanced	techniques
When	NOT	to	use	mod_rewrite
RewriteRule	Flags
Technical	details

See	also
mod_rewrite	reference	documentation
Mapping	URLs	to	the	Filesystem
mod_rewrite	wiki
Glossary

https://www.apache.org/foundation/contributing.html
http://wiki.apache.org/httpd/Rewrite
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	Virtual	Host	documentation

The	term	Virtual	Host	refers	to	the	practice	of	running	more	than	one
web	site	(such	as	company1.example.com	and
company2.example.com)	on	a	single	machine.	Virtual	hosts	can	be
"IP-based",	meaning	that	you	have	a	different	IP	address	for	every
web	site,	or	"name-based",	meaning	that	you	have	multiple	names
running	on	each	IP	address.	The	fact	that	they	are	running	on	the
same	physical	server	is	not	apparent	to	the	end	user.

Apache	was	one	of	the	first	servers	to	support	IP-based	virtual	hosts
right	out	of	the	box.	Versions	1.1	and	later	of	Apache	support	both	IP-
based	and	name-based	virtual	hosts	(vhosts).	The	latter	variant	of
virtual	hosts	is	sometimes	also	called	host-based	or	non-IP	virtual
hosts.

Below	is	a	list	of	documentation	pages	which	explain	all	details	of
virtual	host	support	in	Apache	HTTP	Server:

See	also
mod_vhost_alias

Name-based	virtual	hosts
IP-based	virtual	hosts
Virtual	host	examples
File	descriptor	limits
Mass	virtual	hosting
Details	of	host	matching

https://www.apache.org/foundation/contributing.html

Virtual	Host	Support

Name-based	Virtual	Hosts	(More	than	one	web	site	per	IP
address)
IP-based	Virtual	Hosts	(An	IP	address	for	each	web	site)
Virtual	Host	examples	for	common	setups
File	Descriptor	Limits	(or,	Too	many	log	files)
Dynamically	Configured	Mass	Virtual	Hosting
In-Depth	Discussion	of	Virtual	Host	Matching

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Configuration	directives

<VirtualHost>

ServerName

ServerAlias

ServerPath

If	you	are	trying	to	debug	your	virtual	host	configuration,	you	may
find	the	-S	command	line	switch	useful.

Unix	example
apachectl	-S

Windows	example
httpd.exe	-S

This	command	will	dump	out	a	description	of	how	Apache	parsed
the	configuration	file.	Careful	examination	of	the	IP	addresses	and
server	names	may	help	uncover	configuration	mistakes.	(See	the
docs	for	the	httpd	program	for	other	command	line	options)

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4	>	How-To	/	Tutoriales

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Control	de	Acceso

Esta	traducción	podría	estar	obsoleta.	Consulte	la	versión	en
inglés	de	la	documentación	para	comprobar	si	se	han
producido	cambios	recientemente.

El	control	de	acceso,	hace	referencia	a	todos	los	medios	que
proporcionan	una	forma	de	controlar	el	acceso	a	cualquier	recurso.
Esta	parte	está	separada	de	autenticación	y	autorización.

Módulos	y	Directivas	relacionados

El	control	de	acceso	puede	efectuarse	mediante	diferentes
módulos.	Los	más	importantes	de	éstos	son	mod_authz_core	y
mod_authz_host.	También	se	habla	en	este	documento	de	el
control	de	acceso	usando	el	módulo	mod_rewrite.

Control	de	Acceso	por	host

Si	lo	que	se	quiere	es	restringir	algunas	zonas	del	sitio	web,
basándonos	en	la	dirección	del	visitante,	esto	puede	ser	realizado
de	manera	fácil	con	el	módulo	mod_authz_host.

La	directiva	Require	proporciona	una	variedad	de	diferentes
maneras	de	permitir	o	denegar	el	acceso	a	los	recursos.	Además
puede	ser	usada	junto	con	las	directivas:RequireAll,
RequireAny,	y	RequireNone,	estos	requerimientos	pueden	ser
combinados	de	forma	compleja	y	arbitraria,	para	cumplir
cualquiera	que	sean	tus	políticas	de	acceso.

Las	directivas	Allow,	Deny,	y	Order,	proporcionadas	por
mod_access_compat,	están	obsoletas	y	serán	quitadas	en
futuras	versiones.	Deberá	evitar	su	uso,	y	también	los	tutoriales
desactualizaos	que	recomienden	su	uso.

El	uso	de	estas	directivas	es:

Require	host	address	

Require	ip	ip.address

				

En	la	primera	línea,	address	es	el	FQDN	de	un	nombre	de
dominio	(o	un	nombre	parcial	del	dominio);	puede	proporcionar
múltiples	direcciones	o	nombres	de	dominio,	si	se	desea.

En	la	segunda	línea,	ip.address	es	la	dirección	IP,	una	dirección	IP
parcial,	una	red	con	su	máscara,	o	una	especificación	red/nnn
CIDR.	Pueden	usarse	tanto	IPV4	como	IPV6.

Consulte	también	la	documentación	de	mod_authz_host	para
otros	ejemplos	de	esta	sintaxis.

Puede	ser	insertado	not	para	negar	un	requisito	en	particular.
Note	que,	ya	que	not	es	una	negación	de	un	valor,	no	puede	ser
usado	por	si	solo	para	permitir	o	denegar	una	petición,	como	not
true	que	no	contituye	ser	false.	En	consecuencia,	para	denegar
una	visita	usando	una	negación,	el	bloque	debe	tener	un	elemento
que	se	evalúa	como	verdadero	o	falso.	Por	ejemplo,	si	tienes	a
alguien	espameandote	tu	tablón	de	mensajes,	y	tu	quieres	evitar
que	entren	o	dejarlos	fuera,	puedes	realizar	lo	siguiente:

<RequireAll>

				Require	all	granted

				Require	not	ip	10.252.46.165

</RequireAll>

Los	visitantes	que	vengan	desde	la	IP	que	se	configura
(10.252.46.165)	no	tendrán	acceso	al	contenido	que	cubre
esta	directiva.	Si	en	cambio,	lo	que	se	tiene	es	el	nombre	de	la
máquina,	en	vez	de	la	IP,	podrás	usar:

Require	not	host	host.example.com

				

Y,	Si	lo	que	se	quiere	es	bloquear	el	acceso	desde	dominio
especifico,	podrás	especificar	parte	de	una	dirección	o	nombre	de
dominio:

Require	not	ip	192.168.205

Require	not	host	phishers.example.com	moreidiots.example

Require	not	host	gov

Uso	de	las	directivas	RequireAll,	RequireAny,	y
RequireNone	pueden	ser	usadas	para	forzar	requisitos	más
complejos.

Control	de	acceso	por	variables	arbitrarias.

Haciendo	el	uso	de	<If>,	puedes	permitir	o	denegar	el	acceso
basado	en	variables	de	entrono	arbitrarias	o	en	los	valores	de	las
cabeceras	de	las	peticiones.	Por	ejemplo	para	denegar	el	acceso
basándonos	en	el	"user-agent"	(tipo	de	navegador	así	como
Sistema	Operativo)	puede	que	hagamos	lo	siguiente:

<If	"%{HTTP_USER_AGENT}	==	'BadBot'">

				Require	all	denied

</If>

Usando	la	sintaxis	de	Require	expr	,	esto	también	puede	ser
escrito	de	la	siguiente	forma:

Require	expr	%{HTTP_USER_AGENT}	!=	'BadBot'

Advertencia:

El	control	de	acceso	por	User-Agent	es	una	técnica	poco
fiable,	ya	que	la	cabecera	de	User-Agent	puede	ser
modificada	y	establecerse	al	antojo	del	usuario.

Vea	también	la	página	de	expresiones	para	una	mayor	aclaración
de	que	sintaxis	tienen	las	expresiones	y	que	variables	están
disponibles.

Control	de	acceso	con	mod_rewrite

El	flag	[F]	de	RewriteRule	causa	una	respuesta	403	Forbidden
para	ser	enviada.	USando	esto,	podrá	denegar	el	acceso	a
recursos	basándose	en	criterio	arbitrario.

Por	ejemplo,	si	lo	que	desea	es	bloquear	un	recurso	entre	las	8pm
y	las	7am,	podrá	hacerlo	usando	mod_rewrite:

RewriteEngine	On

RewriteCond	"%{TIME_HOUR}"	">=20"	[OR]

RewriteCond	"%{TIME_HOUR}"	"<07"

RewriteRule	"^/fridge"					"-"							[F]

Esto	devolverá	una	respuesta	de	error	403	Forbidden	para
cualquier	petición	después	de	las	8pm	y	antes	de	las	7am.	Esta
técnica	puede	ser	usada	para	cualquier	criterio	que	desee	usar.
También	puede	redireccionar,	o	incluso	reescribir	estas	peticiones,
si	se	prefiere	ese	enfoque.

La	directiva	<If>,	añadida	en	la	2.4,	sustituye	muchas	cosas	que
mod_rewrite	tradicionalmente	solía	hacer,	y	deberá	comprobar
estas	antes	de	recurrir	a

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Más	información

El	motor	de	expresiones	le	da	una	gran	capacidad	de	poder	para
hacer	una	gran	variedad	de	cosas	basadas	en	las	variables
arbitrarias	del	servidor,	y	debe	consultar	este	documento	para
más	detalles.

También,	deberá	leer	la	documentación	de	mod_authz_core
para	ejemplos	de	combinaciones	de	múltiples	requisitos	de
acceso	y	especificar	cómo	interactúan.

Vea	también	los	howtos	de	Authenticación	y	Autorización

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	How-To	/	Tutorials

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Reverse	Proxy	Guide

In	addition	to	being	a	"basic"	web	server,	and	providing	static	and
dynamic	content	to	end-users,	Apache	httpd	(as	well	as	most	other
web	servers)	can	also	act	as	a	reverse	proxy	server,	also-known-as	a
"gateway"	server.

In	such	scenarios,	httpd	itself	does	not	generate	or	host	the	data,	but
rather	the	content	is	obtained	by	one	or	several	backend	servers,
which	normally	have	no	direct	connection	to	the	external	network.	As
httpd	receives	a	request	from	a	client,	the	request	itself	is	proxied	to
one	of	these	backend	servers,	which	then	handles	the	request,
generates	the	content	and	then	sends	this	content	back	to	httpd,
which	then	generates	the	actual	HTTP	response	back	to	the	client.

There	are	numerous	reasons	for	such	an	implementation,	but
generally	the	typical	rationales	are	due	to	security,	high-availability,
load-balancing	and	centralized	authentication/authorization.	It	is
critical	in	these	implementations	that	the	layout,	design	and
architecture	of	the	backend	infrastructure	(those	servers	which
actually	handle	the	requests)	are	insulated	and	protected	from	the
outside;	as	far	as	the	client	is	concerned,	the	reverse	proxy	server	is
the	sole	source	of	all	content.

A	typical	implementation	is	below:

Reverse	Proxy

Related	Modules Related	Directives
mod_proxy

mod_proxy_balancer

mod_proxy_hcheck

ProxyPass

BalancerMember

Simple	reverse	proxying

The	ProxyPass	directive	specifies	the	mapping	of	incoming
requests	to	the	backend	server	(or	a	cluster	of	servers	known	as	a
Balancer	group).	The	simpliest	example	proxies	all	requests
("/")	to	a	single	backend:

ProxyPass	"/"		"http://www.example.com/"

To	ensure	that	and	Location:	headers	generated	from	the
backend	are	modified	to	point	to	the	reverse	proxy,	instead	of	back
to	itself,	the	ProxyPassReverse	directive	is	most	often	required:

ProxyPass	"/"		"http://www.example.com/"

ProxyPassReverse	"/"		"http://www.example.com/"

Only	specific	URIs	can	be	proxied,	as	shown	in	this	example:

ProxyPass	"/images"		"http://www.example.com/"

ProxyPassReverse	"/images"		"http://www.example.com/"

In	the	above,	any	requests	which	start	with	the	/images	path	with
be	proxied	to	the	specified	backend,	otherwise	it	will	be	handled
locally.

Clusters	and	Balancers

As	useful	as	the	above	is,	it	still	has	the	deficiencies	that	should
the	(single)	backend	node	go	down,	or	become	heavily	loaded,
that	proxying	those	requests	provides	no	real	advantage.	What	is
needed	is	the	ability	to	define	a	set	or	group	of	backend	servers
which	can	handle	such	requests	and	for	the	reverse	proxy	to	load
balance	and	failover	among	them.	This	group	is	sometimes	called
a	cluster	but	Apache	httpd's	term	is	a	balancer.	One	defines	a
balancer	by	leveraging	the	<Proxy>	and	BalancerMember
directives	as	shown:

<Proxy	balancer://myset>

				BalancerMember	http://www2.example.com:8080

				BalancerMember	http://www3.example.com:8080

				ProxySet	lbmethod=bytraffic

</Proxy>

ProxyPass	"/images/"		"balancer://myset/"

ProxyPassReverse	"/images/"		"balancer://myset/"

The	balancer://	scheme	is	what	tells	httpd	that	we	are	creating
a	balancer	set,	with	the	name	myset.	It	includes	2	backend
servers,	which	httpd	calls	BalancerMembers.	In	this	case,	any
requests	for	/images	will	be	proxied	to	one	of	the	2	backends.
The	ProxySet	directive	specifies	that	the	myset	Balancer	use	a
load	balancing	algorithm	that	balances	based	on	I/O	bytes.

Hint

BalancerMembers	are	also	sometimes	referred	to	as	workers.

Balancer	and	BalancerMember	configuration

You	can	adjust	numerous	configuration	details	of	the	balancers
and	the	workers	via	the	various	parameters	defined	in
ProxyPass.	For	example,	assuming	we	would	want
http://www3.example.com:8080	to	handle	3x	the	traffic	with
a	timeout	of	1	second,	we	would	adjust	the	configuration	as
follows:

<Proxy	balancer://myset>

				BalancerMember	http://www2.example.com:8080

				BalancerMember	http://www3.example.com:8080	loadfactor=3	timeout=1

				ProxySet	lbmethod=bytraffic

</Proxy>

ProxyPass	"/images"		"balancer://myset/"

ProxyPassReverse	"/images"		"balancer://myset/"

Failover

You	can	also	fine-tune	various	failover	scenarios,	detailing	which
workers	and	even	which	balancers	should	accessed	in	such
cases.	For	example,	the	below	setup	implements	2	failover	cases:
In	the	first,	http://hstandby.example.com:8080	is	only	sent
traffic	if	all	other	workers	in	the	myset	balancer	are	not	available.	If
that	worker	itself	is	not	available,	only	then	will	the
http://bkup1.example.com:8080	and
http://bkup2.example.com:8080	workers	be	brought	into
rotation:

<Proxy	balancer://myset>

				BalancerMember	http://www2.example.com:8080

				BalancerMember	http://www3.example.com:8080	loadfactor=3	timeout=1

				BalancerMember	http://hstandby.example.com:8080	status=+H

				BalancerMember	http://bkup1.example.com:8080	lbset=1

				BalancerMember	http://bkup2.example.com:8080	lbset=1

				ProxySet	lbmethod=byrequests

</Proxy>

ProxyPass	"/images/"		"balancer://myset/"

ProxyPassReverse	"/images/"		"balancer://myset/"

The	magic	of	this	failover	setup	is	setting
http://hstandby.example.com:8080	with	the	+H	status
flag,	which	puts	it	in	hot	standby	mode,	and	making	the	2	bkup#
servers	part	of	the	#1	load	balancer	set	(the	default	set	is	0);	for
failover,	hot	standbys	(if	they	exist)	are	used	1st,	when	all	regular
workers	are	unavailable;	load	balancer	sets	are	always	tried
lowest	number	first.

Balancer	Manager

One	of	the	most	unique	and	useful	features	of	Apache	httpd's
reverse	proxy	is	the	embedded	balancer-manager	application.
Similar	to	mod_status,	balancer-manager	displays	the	current
working	configuration	and	status	of	the	enabled	balancers	and
workers	currently	in	use.	However,	not	only	does	it	display	these
parameters,	it	also	allows	for	dynamic,	runtime,	on-the-fly
reconfiguration	of	almost	all	of	them,	including	adding	new
BalancerMembers	(workers)	to	an	existing	balancer.	To	enable
these	capability,	the	following	needs	to	be	added	to	your
configuration:

<Location	"/balancer-manager">

				SetHandler	balancer-manager

				Require	host	localhost

</Location>

Warning

Do	not	enable	the	balancer-manager	until	you	have	secured
your	server.	In	particular,	ensure	that	access	to	the	URL	is
tightly	restricted.

When	the	reverse	proxy	server	is	accessed	at	that	url	(eg:
http://rproxy.example.com/balancer-manager/,	you
will	see	a	page	similar	to	the	below:

This	form	allows	the	devops	admin	to	adjust	various	parameters,
take	workers	offline,	change	load	balancing	methods	and	add	new
works.	For	example,	clicking	on	the	balancer	itself,	you	will	get	the
following	page:

Whereas	clicking	on	a	worker,	displays	this	page:

To	have	these	changes	persist	restarts	of	the	reverse	proxy,
ensure	that	BalancerPersist	is	enabled.

Dynamic	Health	Checks

Before	httpd	proxies	a	request	to	a	worker,	it	can	"test"	if	that
worker	is	available	via	setting	the	ping	parameter	for	that	worker
using	ProxyPass.	Oftentimes	it	is	more	useful	to	check	the	health
of	the	workers	out	of	band,	in	a	dynamic	fashion.	This	is	achieved
in	Apache	httpd	by	the	mod_proxy_hcheck	module.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

BalancerMember	status	flags

In	the	balancer-manager	the	current	state,	or	status,	of	a	worker	is
displayed	and	can	be	set/reset.	The	meanings	of	these	statuses
are	as	follows:

Flag String Description
	 Ok Worker	is	available
	 Init Worker	has	been	initialized
D Dis Worker	is	disabled	and	will	not	accept	any	requests;

will	be	automatically	retried.
S Stop Worker	is	administratively	stopped;	will	not	accept

requests	and	will	not	be	automatically	retried
I Ign Worker	is	in	ignore-errors	mode	and	will	always	be

considered	available.
H Stby Worker	is	in	hot-standby	mode	and	will	only	be	used

if	no	other	viable	workers	are	available.
E Err Worker	is	in	an	error	state,	usually	due	to	failing

pre-request	check;	requests	will	not	be	proxied	to
this	worker,	but	it	will	be	retried	depending	on	the
retry	setting	of	the	worker.

N Drn Worker	is	in	drain	mode	and	will	only	accept
existing	sticky	sessions	destined	for	itself	and
ignore	all	other	requests.

C HcFl Worker	has	failed	dynamic	health	check	and	will	not
be	used	until	it	passes	subsequent	health	checks.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4	>	How-To	/	Tutoriales

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Guía	HTTP/2

Esta	traducción	podría	estar	obsoleta.	Consulte	la	versión	en
inglés	de	la	documentación	para	comprobar	si	se	han
producido	cambios	recientemente.

Esta	es	la	guía	para	configurar	HTTP/2	en	Apache	httpd.	Ésta
característica	es	experimental	así	que	es	de	esperar	que	algunas
directivas	e	interfaces	cambien	con	nuevas	versiones.

Consulte	también
mod_http2

https://www.apache.org/foundation/contributing.html

El	protocolo	HTTP/2

HTTP/2	es	la	evolución	del	protocolo	de	la	capa	de	aplicación	con
más	éxito,	HTTP.	Se	centra	en	hacer	un	uso	más	eficiente	de	los
recursos	de	red.	No	cambia	la	característica	fundamental	de
HTTP,	la	semántica.	Todavía	hay	solicitudes,	respuestas,
cabeceras	y	todo	los	elementos	típicos	de	HTTP/1.	Así	que,	si	ya
conoce	HTTP/1,	también	conoce	el	95%	de	HTTP/2.

Se	ha	escrito	mucho	sobre	HTTP/2	y	de	cómo	funciona.	La	norma
más	estándar	es,	por	supuesto,	su	RFC	7540	(también	disponible
en	un	formato	más	legible,	YMMV).	Así	que,	ahí	encontrará	toda
la	especificación	del	protocolo.

Pero,	como	con	todos	los	RFC,	no	es	ideal	como	primera	lectura.
Es	mejor	entender	primero	qué	se	quiere	hacer	y	después	leer	el
RFC	sobre	cómo	hacerlo.	Un	documento	mucho	mejor	con	el	que
empezar	es	http2	explicado	por	Daniel	Stenberg,	el	autor	de	curl.
¡También	está	disponible	cada	vez	en	un	mayor	número
lenguajes!

Si	le	parece	demasiado	largo,	o	no	lo	ha	leido,	hay	algunos
términos	y	elementos	a	tener	en	cuenta	cuando	lea	este
documento:

HTTP/2	es	un	protocolo	binario,	al	contrario	que	HTTP	1.1
que	es	texto	plano.	La	intención	para	HTTP	1.1	es	que	sea
legible	(por	ejemplo	capturando	el	tráfico	de	red)	mientras
que	para	HTTP/2	no.	Más	información	en	el	FAQ	oficial	¿Por
qué	es	binario	HTTP/2?
h2	es	HTTP/2	sobre	TLS	(negociación	de	protocolo	a	través
de	ALPN).
h2c	es	HTTP/2	sobre	TCP.
Un	frame	es	la	unidad	más	pequeña	de	comunicación	dentro
de	una	conexión	HTTP/2,	que	consiste	en	una	cabecera	y
una	secuencia	de	octetos	de	longitud	variable	estructurada	de

https://tools.ietf.org/html/rfc7540
http://httpwg.org/specs/rfc7540.html
https://daniel.haxx.se/http2/
https://curl.haxx.se
https://http2.github.io/faq/#why-is-http2-binary

acuerdo	con	el	tipo	de	frame.	Más	información	en	la
documentación	oficial	Sección	de	Capa	de	Frame.
Un	stream	es	un	flujo	bidireccional	de	frames	dentro	de	una
conexión	HTTP/2.	El	concepto	correspondiente	en	HTTP	1.1
es	un	intercambio	de	mensajes	de	solicitud/respuesta.	Más
información	en	la	documentación	oficial	Sección	Capa	de
Stream.
HTTP/2	es	capaz	de	llevar	múltiples	streams	de	datos	sobre
la	misma	conexión	TCP,	evitando	la	clásica	solicitud	lenta
"head-of-line	blocking"	de	HTTP	1.1	y	evitando	generar
múltiples	conexiones	TCP	para	cada	solicitud/respuesta
(KeepAlive	parcheó	el	problema	en	HTTP	1.1	pero	no	lo
resolvió	completamente).

http://httpwg.org/specs/rfc7540.html#FramingLayer
http://httpwg.org/specs/rfc7540.html#StreamsLayer

HTTP/2	en	Apache	httpd

El	protocolo	HTTP/2	se	implementa	con	su	propio	módulo	httpd,
llamado	acertadamente	mod_http2.	Incluye	el	set	completo	de
características	descritas	por	el	RFC	7540	y	soporta	HTTP/2	sobre
texto	plano	(http:),	así	como	conexiones	seguras	(https:).	La
variante	de	texto	plano	se	llama	'h2c',	la	segura	'h2'.	Para	h2c
permite	el	modo	direct	y	el	Upgrade:	a	través	de	una	solicitud
inicial	HTTP/1.

Una	característica	de	HTTP/2	que	ofrece	capacidades	nuevas
para	desarrolladores	de	web	es	Server	Push.	Vea	esa	sección
para	saber	como	su	aplicación	web	puede	hacer	uso	de	ella.

Compilar	httpd	con	soporte	HTTP/2

mod_http2	usa	la	librería	nghttp2	como	su	implementación	base.
Para	compilar	mod_http2	necesita	al	menos	la	versión	1.2.1	de
libnghttp2	instalada	en	su	sistema.

Cuando	usted	ejecuta	./configure	en	el	código	fuente	de
Apache	HTTPD,	necesita	indicarle	'--enable-http2'	como	una
opción	adicional	para	activar	la	compilación	de	este	módulo.	Si	su
libnghttp2	está	ubicado	en	una	ruta	no	habitual	(cualquiera
que	sea	en	su	sistema	operativo),	puede	indicar	su	ubicación	con
'--with-nghttp2=<path>'	para	./configure.

Aunque	puede	que	eso	sirva	para	la	mayoría,	habrá	quien	prefiera
un	nghttp2	compilado	estáticamente	para	este	módulo.	Para
ellos	existe	la	opción	--enable-nghttp2-staticlib-deps.
Funciona	de	manera	muy	similar	a	como	uno	debe	enlazar
openssl	estáticamente	para	mod_ssl.

Hablando	de	SSL,	necesita	estar	al	tanto	de	que	la	mayoría	de	los
navegadores	hablan	HTTP/2	solo	con	URLs	https:.	Así	que
necesita	un	servidor	con	soporte	SSL.	Pero	no	solo	eso,
necesitará	una	librería	SSL	que	de	soporte	a	la	extensión	ALPN.
Si	usa	OpenSSL,	necesita	al	menos	la	versión	1.0.2.

https://nghttp2.org

Configuración	básica

Cuando	tiene	un	httpd	compilado	con	mod_http2	necesita	una
configuración	básica	para	activarlo.	Lo	primero,	como	con
cualquier	otro	módulo	de	Apache,	es	que	necesita	cargarlo:

LoadModule	http2_module	modules/mod_http2.so

La	segunda	directiva	que	necesita	añadir	a	la	configuración	de	su
servidor	es:

Protocols	h2	http/1.1

Esto	permite	h2,	la	variante	segura,	para	ser	el	protocolo	preferido
de	las	conexiones	en	su	servidor.	Cuando	quiera	habilitar	todas
las	variantes	de	HTTP/2,	entonces	simplemente	configure:

Protocols	h2	h2c	http/1.1

Dependiendo	de	dónde	pone	esta	directiva,	afecta	a	todas	las
conexiones	o	solo	a	las	de	ciertos	host	virtuales.	La	puede	anidar,
como	en:

Protocols	http/1.1

<VirtualHost	...>

				ServerName	test.example.org

				Protocols	h2	http/1.1

</VirtualHost>

Esto	solo	permite	HTTP/1,	excepto	conexiones	SSL	hacia
test.example.org	que	ofrecen	HTTP/2.

Escoger	un	SSLCipherSuite	seguro

Es	necesario	configurar	SSLCipherSuite	con	una	suite
segura	de	cifrado	TLS.	La	versión	actual	de	mod_http2	no
fuerza	ningún	cifrado	pero	la	mayoría	de	los	clientes	si	lo	hacen.
Encaminar	un	navegador	hacia	un	servidor	con	h2	activado	con
una	suite	inapropiada	de	cifrados	forzará	al	navegador	a
rehusar	e	intentar	conectar	por	HTTP	1.1.	Esto	es	un	error
común	cuando	se	configura	httpd	con	HTTP/2	por	primera	vez,
¡así	que	por	favor	tenga	en	cuenta	que	debe	evitar	largas
sesiones	de	depuración!	Si	quiere	estar	seguro	de	la	suite	de
cifrados	que	escoja,	por	favor	evite	los	listados	en	la	Lista
Negra	de	TLS	para	HTTP/2.

El	orden	de	los	protocolos	mencionados	también	es	relevante.	Por
defecto,	el	primero	es	el	protocolo	preferido.	Cuando	un	cliente
ofrece	múltiples	opciones,	la	que	esté	más	a	la	izquierda	será	la
escogida.	En

Protocols	http/1.1	h2

el	protocolo	preferido	es	HTTP/1	y	siempre	será	seleccionado	a
menos	que	el	cliente	sólo	soporte	h2.	Puesto	que	queremos
hablar	HTTP/2	con	clientes	que	lo	soporten,	el	orden	correcto	es:

Protocols	h2	h2c	http/1.1

Hay	algo	más	respecto	al	orden:	el	cliente	también	tiene	sus
propias	preferencias.	Si	quiere,	puede	configurar	su	servidor	para
seleccionar	el	protocolo	preferido	por	el	cliente:

ProtocolsHonorOrder	Off

Hace	que	el	orden	en	que	usted	escribió	los	Protocols	sea
irrelevante	y	sólo	el	orden	de	preferencia	del	cliente	será

http://httpwg.org/specs/rfc7540.html#BadCipherSuites

decisorio.

Una	última	cosa:	cuando	usted	configura	los	protocolos	no	se
comprueba	si	son	correctos	o	están	bien	escritos.	Puede
mencionar	protocolos	que	no	existen,	así	que	no	hay	necesidad
de	proteger	Protocols	con	ningún	IfModule	de	comprobación.

Para	más	consejos	avanzados	de	configuración,	vea	la	sección	de
módulos	sobre	dimensionamiento	y	como	gestionar	multiples
hosts	con	el	mismo	certificado.

Configuración	MPM

HTTP/2	está	soportado	en	todos	los	módulos	de	multi-proceso
que	se	ofrecen	con	httpd.	Aun	así,	si	usa	el	mpm	prefork,	habrá
restricciones	severas.

En	prefork,	mod_http2	solo	procesará	una	solicitud	cada	vez
por	conexión.	Pero	los	clientes,	como	los	navegadores,	enviarán
muchas	solicitudes	al	mismo	tiempo.	Si	una	de	ellas	tarda	mucho
en	procesarse	(o	hace	un	sondeo	que	dura	más	de	la	cuenta),	las
otras	solicitudes	se	quedarán	atascadas.

mod_http2	no	evitará	este	límite	por	defecto.	El	motivo	es	que
prefork	hoy	en	día	solo	se	escoge	si	ejecuta	motores	de
proceso	que	no	están	preparados	para	multi-hilo,	p.ej.	fallará	con
más	de	una	solicitud.

Si	su	configuración	lo	soporta,	hoy	en	día	event	es	el	mejor	mpm
que	puede	usar.

Si	realmente	está	obligado	a	usar	prefork	y	quiere	multiples
solicitudes,	puede	configurar	la	directiva	H2MinWorkers	para
hacerlo	posible.	Sin	embargo,	si	esto	falla,	es	bajo	su	cuenta	y
riesgo.

Clientes

Casi	todos	los	navegadores	modernos	dan	soporte	a	HTTP/2,
pero	solo	en	conexiones	SSL:	Firefox	(v43),	Chrome	(v45),	Safari
(since	v9),	iOS	Safari	(v9),	Opera	(v35),	Chrome	para	Android
(v49)	e	Internet	Explorer	(v11	en	Windows10)	(Fuente).

Otros	clientes,	así	cómo	otros	servidores,	están	listados	en	la	wiki
de	Implementaciones,	entre	ellos,	implementaciones	para	c,	c++,
common	lisp,	dart,	erlang,	haskell,	java,	nodejs,	php,	python,	perl,
ruby,	rust,	scala	y	swift.

Muchos	de	las	implementaciones	de	clientes	que	no	son
navegadores	soportan	HTTP/2	sobre	texto	plano,	h2c.	La	más
versátil	es	curl.

http://caniuse.com/#search=http2
https://github.com/http2/http2-spec/wiki/Implementations
https://curl.haxx.se

Herramientas	útiles	para	depurar	HTTP/2

La	primera	herramienta	a	mencionar	es	por	supuesto	curl.	Por
favor	asegúrese	de	que	su	versión	soporta	HTTP/2	comprobando
sus	Características:

				$	curl	-V

				curl	7.45.0	(x86_64-apple-darwin15.0.0)	libcurl/7.45.0	OpenSSL/1.0.2d	zlib/1.2.8	nghttp2/1.3.4

				Protocols:	dict	file	ftp	ftps	gopher	http	https	imap	imaps	ldap	ldaps	pop3	[...]	

				Features:	IPv6	Largefile	NTLM	NTLM_WB	SSL	libz	TLS-SRP	

				

Notas	sobre	Mac	OS	homebrew
brew	install	curl	--with-openssl	--with-nghttp2

Y	para	una	inspección	en	gran	profundidad	wireshark.

El	paquete	nghttp2	también	incluye	clientes,	tales	como:

nghttp	-	util	para	visualizar	la	frames	de	HTTP/2	y	tener	una
mejor	idea	de	como	funciona	el	protocolo.
h2load	-	útil	para	hacer	un	stress-test	de	su	servidor.

Chrome	ofrece	logs	detallados	de	HTTP/2	en	sus	conexiones	a
través	de	la	página	especial	de	net-internals.	También	hay	una
extensión	interesante	para	Chrome	y	Firefox	con	la	que	visualizar
cuando	su	navegador	usa	HTTP/2.

https://curl.haxx.se
https://wiki.wireshark.org/HTTP2
https://nghttp2.org
https://nghttp2.org/documentation/nghttp.1.html
https://nghttp2.org/documentation/h2load-howto.html
chrome://net-internals/#http2
https://chrome.google.com/webstore/detail/http2-and-spdy-indicator/mpbpobfflnpcgagjijhmgnchggcjblin?hl=en
https://addons.mozilla.org/en-us/firefox/addon/spdy-indicator/

Server	Push

El	protocolo	HTTP/2	permite	al	servidor	hacer	PUSH	de
respuestas	a	un	cliente	que	nunca	las	solicitó.	El	tono	de	la
conversación	es:	"Aquí	tiene	una	solicitud	que	nunca	envió	y	la
respuesta	llegará	pronto..."

Pero	hay	restricciones:	el	cliente	puede	deshabilitar	esta
característica	y	el	servidor	entonces	solo	podrá	hacer	PUSH	en
una	solicitud	que	hizo	previamente	del	cliente.

La	intención	es	permitir	al	servidor	enviar	recursos	que	el	cliente
seguramente	vaya	a	necesitar,	p.	ej.	un	recurso	css	o	javascript
que	pertenece	a	una	página	html	que	el	cliente	solicitó,	un	grupo
de	imágenes	a	las	que	se	hace	referencia	en	un	css,	etc.

La	ventaja	para	el	cliente	es	que	ahorra	tiempo	para	solicitudes
que	pueden	tardar	desde	unos	pocos	milisegundos	a	medio
segundo,	dependiendo	de	la	distancia	entre	el	cliente	y	el	servidor.
La	desventaja	es	que	el	cliente	puede	recibir	cosas	que	ya	tiene
en	su	cache.	Por	supuesto	que	HTTP/2	soporta	cancelación
previa	de	tales	solicitudes,	pero	aun	así	se	malgastan	recursos.

Resumiendo:	no	hay	una	estrategia	mejor	sobre	cómo	usar	esta
característica	de	HTTP/2	y	todo	el	mundo	está	experimentando
con	ella.	Así	que,	¿cómo	experimenta	usted	con	ella	en	Apache
httpd?

mod_http2	busca	e	inspecciona	las	cabeceras	de	respuesta
Link	con	cierto	formato:

Link	</xxx.css>;rel=preload,	</xxx.js>;	rel=preload

Si	la	conexión	soporta	PUSH,	estos	dos	recursos	se	enviarán	al
cliente.	Como	desarrollador	web,	puede	configurar	estas

cabeceras	o	bien	directamente	en	la	respuesta	de	su	aplicación	o
configurar	su	servidor	con:

<Location	/xxx.html>

				Header	add	Link	"</xxx.css>;rel=preload"

				Header	add	Link	"</xxx.js>;rel=preload"

</Location>

Si	quiere	usar	enlaces	con	preload	sin	activar	un	PUSH,	puede
usar	el	parámetro	nopush,	como	en:

Link	</xxx.css>;rel=preload;nopush

o	puede	desactivar	PUSH	para	su	servidor	por	completo	con	la
directiva

H2Push	Off

Y	hay	más:

El	módulo	mantiene	un	registro	de	lo	que	se	ha	enviado	con
PUSH	para	cada	conexión	(hashes	de	URLs,	básicamente)	y	no
hará	PUSH	del	mismo	recurso	dos	veces.	Cuando	la	conexión	se
cierra,	la	información	es	descartada.

Hay	gente	pensando	cómo	un	cliente	puede	decirle	al	servidor	lo
que	ya	tiene,	para	evitar	los	PUSH	de	esos	elementos,	pero	eso
algo	muy	experimental	ahora	mismo.

Otro	borrador	experimental	que	ha	sido	implementado	en
mod_http2	es	el	Campo	de	Cabecera	Accept-Push-Policy	en	la
que	un	cliente	puede,	para	cada	solicitud,	definir	qué	tipo	de
PUSH	acepta.

https://tools.ietf.org/html/draft-ruellan-http-accept-push-policy-00

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Platform	Specific	Notes

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Using	Apache	With	RPM	Based	Systems
(Redhat	/	CentOS	/	Fedora)

While	many	distributions	make	Apache	httpd	available	as	operating
system	supported	packages,	it	can	sometimes	be	desirable	to	install
and	use	the	canonical	version	of	Apache	httpd	on	these	systems,
replacing	the	natively	provided	versions	of	the	packages.

While	the	Apache	httpd	project	does	not	currently	create	binary	RPMs
for	the	various	distributions	out	there,	it	is	easy	to	build	your	own
binary	RPMs	from	the	canonical	Apache	httpd	tarball.

This	document	explains	how	to	build,	install,	configure	and	run
Apache	httpd	2.4	under	Unix	systems	supporting	the	RPM	packaging
format.

Creating	a	Source	RPM

The	Apache	httpd	source	tarball	can	be	converted	into	an	SRPM
as	follows:

rpmbuild	-ts	httpd-2.4.x.tar.bz2

Building	RPMs

RPMs	can	be	built	directly	from	the	Apache	httpd	source	tarballs
using	the	following	command:

rpmbuild	-tb	httpd-2.4.x.tar.bz2

Corresponding	"-devel"	packages	will	be	required	to	be	installed
on	your	build	system	prior	to	building	the	RPMs,	the	rpmbuild
command	will	automatically	calculate	what	RPMs	are	required	and
will	list	any	dependencies	that	are	missing	on	your	system.	These
"-devel"	packages	will	not	be	required	after	the	build	is	completed,
and	can	be	safely	removed.

If	successful,	the	following	RPMs	will	be	created:

httpd-2.4.x-1.i686.rpm
The	core	server	and	basic	module	set.

httpd-debuginfo-2.4.x-1.i686.rpm
Debugging	symbols	for	the	server	and	all	modules.

httpd-devel-2.4.x-1.i686.rpm
Headers	and	development	files	for	the	server.

httpd-manual-2.4.x-1.i686.rpm
The	webserver	manual.

httpd-tools-2.4.x-1.i686.rpm
Supporting	tools	for	the	webserver.

mod_authnz_ldap-2.4.x-1.i686.rpm
mod_ldap	and	mod_authnz_ldap,	with	corresponding
dependency	on	openldap.

mod_lua-2.4.x-1.i686.rpm
mod_lua	module,	with	corresponding	dependency	on	lua.

mod_proxy_html-2.4.x-1.i686.rpm
mod_proxy_html	module,	with	corresponding	dependency

on	libxml2.

mod_socache_dc-2.4.x-1.i686.rpm
mod_socache_dc	module,	with	corresponding	dependency
on	distcache.

mod_ssl-2.4.x-1.i686.rpm
mod_ssl	module,	with	corresponding	dependency	on
openssl.

Installing	the	Server

The	httpd	RPM	is	the	only	RPM	necessary	to	get	a	basic	server
to	run.	Install	it	as	follows:

rpm	-U	httpd-2.4.x-1.i686.rpm

Self	contained	modules	are	included	with	the	server.	Modules	that
depend	on	external	libraries	are	provided	as	separate	RPMs	to
install	if	needed.

Configuring	the	Default	Instance	of	Apache	httpd

The	default	configuration	for	the	server	is	installed	by	default
beneath	the	/etc/httpd	directory,	with	logs	written	by	default	to
/var/log/httpd.	The	environment	for	the	webserver	is	set	by
default	within	the	optional	/etc/sysconfig/httpd	file.

Start	the	server	as	follows:

service	httpd	restart

Configuring	Additional	Instances	of	Apache	httpd
on	the	Same	Machine

It	is	possible	to	configure	additional	instances	of	the	Apache	httpd
server	running	independently	alongside	each	other	on	the	same
machine.	These	instances	can	have	independent	configurations,
and	can	potentially	run	as	separate	users	if	so	configured.

This	was	done	by	making	the	httpd	startup	script	aware	of	its	own
name.	This	name	is	then	used	to	find	the	environment	file	for	the
server,	and	in	turn,	the	server	root	of	the	server	instance.

To	create	an	additional	instance	called	httpd-additional,
follow	these	steps:

Create	a	symbolic	link	to	the	startup	script	for	the	additional
server:

ln	-s	/etc/rc.d/init.d/httpd	/etc/rc.d/init.d/httpd-

additional

chkconfig	--add	httpd-additional

Create	an	environment	file	for	the	server,	using	the
/etc/sysconfig/httpd	file	as	a	template:

#	template	from	httpd

cp	/etc/sysconfig/httpd	/etc/sysconfig/httpd-additional

#	blank	template

touch	/etc/sysconfig/httpd-additional

Edit	/etc/sysconfig/httpd-additional	and	pass	the
server	root	of	the	new	server	instance	within	the	OPTIONS
environment	variable.

OPTIONS="-d	/etc/httpd-additional	-f	conf/httpd-

additional.conf"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Edit	the	server	configuration	file	/etc/httpd-
additional/conf/httpd-additional.conf	to	ensure
the	correct	ports	and	paths	are	configured.
Start	the	server	as	follows:

service	httpd-additional	restart

Repeat	this	process	as	required	for	each	server	instance.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Preguntas	Frecuentes

Las	preguntas	frecuentes	se	han	movido	a	la	Wiki	de	HTTP	Server
(en	Inglés).

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Developer	Documentation	for	the	Apache
HTTP	Server	2.4

Warning

Many	of	the	documents	listed	here	are	in	need	of	update.	They	are
in	different	stages	of	progress.	Please	be	patient	and	follow	this	link
to	propose	a	fix	or	point	out	any	error/discrepancy.

https://httpd.apache.org/docs-project/

2.4	development	documents

Developing	modules	for	the	Apache	HTTP	Server	2.4
Hook	Functions	in	2.4
Request	Processing	in	2.4
How	filters	work	in	2.4
Guidelines	for	output	filters	in	2.4
Documenting	code	in	2.4
Thread	Safety	Issues	in	2.4

Upgrading	to	2.4

API	changes	in	2.3/2.4
Converting	Modules	from	1.3	to	2.x

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

External	Resources

Autogenerated	Apache	HTTP	Server	(trunk)	code
documentation	(the	link	is	built	by	this	job).
Developer	articles	at	apachetutor	include:

Request	Processing
Configuration	for	Modules
Resource	Management
Connection	Pooling
Introduction	to	Buckets	and	Brigades

http://ci.apache.org/projects/httpd/trunk/doxygen/
https://ci.apache.org/builders/httpd-doxygen-nightly
http://www.apachetutor.org/
http://www.apachetutor.org/dev/request
http://www.apachetutor.org/dev/config
http://www.apachetutor.org/dev/pools
http://www.apachetutor.org/dev/reslist
http://www.apachetutor.org/dev/brigades
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Copyright	2017	The	Apache	Software	Foundation.

Apache	Miscellaneous	Documentation

Below	is	a	list	of	additional	documentation	pages	that	apply	to	the
Apache	web	server	development	project.

Warning

The	documents	below	have	not	been	fully	updated	to	take	into
account	changes	made	in	the	2.1	version	of	the	Apache	HTTP
Server.	Some	of	the	information	may	still	be	relevant,	but	please
use	it	with	care.

Performance	Notes	-	Apache	Tuning

Notes	about	how	to	(run-time	and	compile-time)	configure
Apache	for	highest	performance.	Notes	explaining	why	Apache
does	some	things,	and	why	it	doesn't	do	other	things	(which
make	it	slower/faster).

Security	Tips

Some	"do"s	-	and	"don't"s	-	for	keeping	your	Apache	web	site
secure.

Relevant	Standards

This	document	acts	as	a	reference	page	for	most	of	the	relevant
standards	that	Apache	follows.

Password	Encryption	Formats

Discussion	of	the	various	ciphers	supported	by	Apache	for
authentication	purposes.

Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

API	Changes	in	Apache	HTTP	Server	2.4
since	2.2

This	document	describes	changes	to	the	Apache	HTTPD	API	from
version	2.2	to	2.4,	that	may	be	of	interest	to	module/application
developers	and	core	hacks.	As	of	the	first	GA	release	of	the	2.4
branch	API	compatibility	is	preserved	for	the	life	of	the	2.4	branch.
(The	VERSIONING	description	for	the	2.4	release	provides	more
information	about	API	compatibility.)

API	changes	fall	into	two	categories:	APIs	that	are	altogether	new,
and	existing	APIs	that	are	expanded	or	changed.	The	latter	are	further
divided	into	those	where	all	changes	are	backwards-compatible	(so
existing	modules	can	ignore	them),	and	those	that	might	require
attention	by	maintainers.	As	with	the	transition	from	HTTPD	2.0	to	2.2,
existing	modules	and	applications	will	require	recompiling	and	may
call	for	some	attention,	but	most	should	not	require	any	substantial
updating	(although	some	may	be	able	to	take	advantage	of	API
changes	to	offer	significant	improvements).

For	the	purpose	of	this	document,	the	API	is	split	according	to	the
public	header	files.	These	headers	are	themselves	the	reference
documentation,	and	can	be	used	to	generate	a	browsable	HTML
reference	with	make	docs.

http://svn.apache.org/repos/asf/httpd/httpd/branches/2.4.x/VERSIONING

Changed	APIs

ap_expr	(NEW!)
Introduces	a	new	API	to	parse	and	evaluate	boolean	and	algebraic
expressions,	including	provision	for	a	standard	syntax	and
customised	variants.

ap_listen	(changed;	backwards-compatible)
Introduces	a	new	API	to	enable	httpd	child	processes	to	serve
different	purposes.

ap_mpm	(changed)
ap_mpm_run	is	replaced	by	a	new	mpm	hook.	Also
ap_graceful_stop_signalled	is	lost,	and
ap_mpm_register_timed_callback	is	new.

ap_regex	(changed)
In	addition	to	the	existing	regexp	wrapper,	a	new	higher-level	API
ap_rxplus	is	now	provided.	This	provides	the	capability	to
compile	Perl-style	expressions	like
s/regexp/replacement/flags	and	to	execute	them	against
arbitrary	strings.	Support	for	regexp	backreferences	is	also	added.

ap_slotmem	(NEW!)
Introduces	an	API	for	modules	to	allocate	and	manage	memory
slots,	most	commonly	for	shared	memory.

ap_socache	(NEW!)
API	to	manage	a	shared	object	cache.

heartbeat	(NEW!)

common	structures	for	heartbeat	modules

ap_parse_htaccess	(changed)
The	function	signature	for	ap_parse_htaccess	has	been
changed.	A	apr_table_t	of	individual	directives	allowed	for
override	must	now	be	passed	(override	remains).

http_config	(changed)
Introduces	per-module,	per-directory	loglevels,	including
macro	wrappers.
New	AP_DECLARE_MODULE	macro	to	declare	all	modules.
New	APLOG_USE_MODULE	macro	necessary	for	per-module
loglevels	in	multi-file	modules.
New	API	to	retain	data	across	module	unload/load
New	check_config	hook
New	ap_process_fnmatch_configs()	function	to
process	wildcards
Change	ap_configfile_t,	ap_cfg_getline(),
ap_cfg_getc()	to	return	error	codes,	and	add
ap_pcfg_strerror()	for	retrieving	an	error	description.
Any	config	directive	permitted	in	ACCESS_CONF	context
must	now	correctly	handle	being	called	from	an	.htaccess	file
via	the	new	AllowOverrideList	directive.
ap_check_cmd_context()	accepts	a	new	flag
NOT_IN_HTACCESS	to	detect	this	case.

http_core	(changed)
REMOVED	ap_default_type,	ap_requires,	all	2.2
authnz	API
Introduces	Optional	Functions	for	logio	and	authnz
New	function	ap_get_server_name_for_url	to	support
IPv6	literals.

New	function	ap_register_errorlog_handler	to
register	error	log	format	string	handlers.
Arguments	of	error_log	hook	have	changed.	Declaration
has	moved	to	http_core.h.
New	function	ap_state_query	to	determine	if	the	server	is
in	the	initial	configuration	preflight	phase	or	not.	This	is	both
easier	to	use	and	more	correct	than	the	old	method	of
creating	a	pool	userdata	entry	in	the	process	pool.
New	function	ap_get_conn_socket	to	get	the	socket
descriptor	for	a	connection.	This	should	be	used	instead	of
accessing	the	core	connection	config	directly.

httpd	(changed)
Introduce	per-directory,	per-module	loglevel
New	loglevels	APLOG_TRACEn
Introduce	errorlog	ids	for	requests	and	connections
Support	for	mod_request	kept_body
Support	buffering	filter	data	for	async	requests
New	CONN_STATE	values
Function	changes:	ap_escape_html	updated;
ap_unescape_all,	ap_escape_path_segment_buffer
Modules	that	load	other	modules	later	than	the
EXEC_ON_READ	config	reading	stage	need	to	call
ap_reserve_module_slots()	or
ap_reserve_module_slots_directive()	in	their
pre_config	hook.
The	useragent	IP	address	per	request	can	now	be	tracked
independently	of	the	client	IP	address	of	the	connection,	for
support	of	deployments	with	load	balancers.

http_log	(changed)
Introduce	per-directory,	per-module	loglevel

New	loglevels	APLOG_TRACEn
ap_log_*error	become	macro	wrappers	(backwards-
compatible	if	APLOG_MARK	macro	is	used,	except	that	is	no
longer	possible	to	use	#ifdef	inside	the	argument	list)
piped	logging	revamped
module_index	added	to	error_log	hook
new	function:	ap_log_command_line

http_request	(changed)
New	auth_internal	API	and	auth_provider	API
New	EOR	bucket	type
New	function	ap_process_async_request
New	flags	AP_AUTH_INTERNAL_PER_CONF	and
AP_AUTH_INTERNAL_PER_URI

New	access_checker_ex	hook	to	apply	additional	access
control	and/or	bypass	authentication.
New	functions	ap_hook_check_access_ex,
ap_hook_check_access,	ap_hook_check_authn,
ap_hook_check_authz	which	accept
AP_AUTH_INTERNAL_PER_*	flags
DEPRECATED	direct	use	of	ap_hook_access_checker,
access_checker_ex,	ap_hook_check_user_id,
ap_hook_auth_checker

When	possible,	registering	all	access	control	hooks	(including
authentication	and	authorization	hooks)	using
AP_AUTH_INTERNAL_PER_CONF	is	recommended.	If	all	modules'
access	control	hooks	are	registered	with	this	flag,	then	whenever
the	server	handles	an	internal	sub-request	that	matches	the	same
set	of	access	control	configuration	directives	as	the	initial	request
(which	is	the	common	case),	it	can	avoid	invoking	the	access
control	hooks	another	time.

If	your	module	requires	the	old	behavior	and	must	perform	access
control	checks	on	every	sub-request	with	a	different	URI	from	the
initial	request,	even	if	that	URI	matches	the	same	set	of	access
control	configuration	directives,	then	use
AP_AUTH_INTERNAL_PER_URI.

mod_auth	(NEW!)
Introduces	the	new	provider	framework	for	authn	and	authz

mod_cache	(changed)
Introduces	a	commit_entity()	function	to	the	cache	provider
interface,	allowing	atomic	writes	to	cache.	Add	a
cache_status()	hook	to	report	the	cache	decision.	All	private
structures	and	functions	were	removed.

mod_core	(NEW!)
This	introduces	low-level	APIs	to	send	arbitrary	headers,	and
exposes	functions	to	handle	HTTP	OPTIONS	and	TRACE.

mod_cache_disk	(changed)
Changes	the	disk	format	of	the	disk	cache	to	support	atomic	cache
updates	without	locking.	The	device/inode	pair	of	the	body	file	is
embedded	in	the	header	file,	allowing	confirmation	that	the	header
and	body	belong	to	one	another.

mod_disk_cache	(renamed)
The	mod_disk_cache	module	has	been	renamed	to
mod_cache_disk	in	order	to	be	consistent	with	the	naming	of	other
modules	within	the	server.

mod_request	(NEW!)

The	API	for	mod_request,	to	make	input	data	available	to
multiple	application/handler	modules	where	required,	and	to	parse
HTML	form	data.

mpm_common	(changed)
REMOVES:	accept,	lockfile,	lock_mech,
set_scoreboard	(locking	uses	the	new	ap_mutex	API)
NEW	API	to	drop	privileges	(delegates	this	platform-
dependent	function	to	modules)
NEW	Hooks:	mpm_query,	timed_callback,	and
get_name

CHANGED	interfaces:	monitor	hook,
ap_reclaim_child_processes,
ap_relieve_child_processes

scoreboard	(changed)
ap_get_scoreboard_worker	is	made	non-backwards-
compatible	as	an	alternative	version	is	introduced.	Additional
proxy_balancer	support.	Child	status	stuff	revamped.

util_cookies	(NEW!)
Introduces	a	new	API	for	managing	HTTP	Cookies.

util_ldap	(changed)
no	description	available

util_mutex	(NEW!)
A	wrapper	for	APR	proc	and	global	mutexes	in	httpd,	providing
common	configuration	for	the	underlying	mechanism	and	location
of	lock	files.

util_script	(changed)
NEW:	ap_args_to_table

util_time	(changed)
NEW:	ap_recent_ctime_ex

Specific	information	on	upgrading	modules	from	2.2

Logging
In	order	to	take	advantage	of	per-module	loglevel	configuration,
any	source	file	that	calls	the	ap_log_*	functions	should	declare
which	module	it	belongs	to.	If	the	module's	module_struct	is	called
foo_module,	the	following	code	can	be	used	to	remain	backward
compatible	with	HTTPD	2.0	and	2.2:

#include	<http_log.h>

#ifdef	APLOG_USE_MODULE

APLOG_USE_MODULE(foo);

#endif

Note:	This	is	absolutely	required	for	C++-language	modules.	It	can
be	skipped	for	C-language	modules,	though	that	breaks	module-
specific	log	level	support	for	files	without	it.

The	number	of	parameters	of	the	ap_log_*	functions	and	the
definition	of	APLOG_MARK	has	changed.	Normally,	the	change	is
completely	transparent.	However,	changes	are	required	if	a
module	uses	APLOG_MARK	as	a	parameter	to	its	own	functions	or
if	a	module	calls	ap_log_*	without	passing	APLOG_MARK.	A
module	which	uses	wrappers	around	ap_log_*	typically	uses
both	of	these	constructs.

The	easiest	way	to	change	code	which	passes	APLOG_MARK	to	its
own	functions	is	to	define	and	use	a	different	macro	that	expands
to	the	parameters	required	by	those	functions,	as	APLOG_MARK
should	only	be	used	when	calling	ap_log_*	directly.	In	this	way,
the	code	will	remain	compatible	with	HTTPD	2.0	and	2.2.

Code	which	calls	ap_log_*	without	passing	APLOG_MARK	will
necessarily	differ	between	2.4	and	earlier	releases,	as	2.4	requires

a	new	third	argument,	APLOG_MODULE_INDEX.

/*	code	for	httpd	2.0/2.2	*/

ap_log_perror(file,	line,	APLOG_ERR,	0,	p,	"Failed	to	allocate

dynamic	lock	structure");

/*	code	for	httpd	2.4	*/

ap_log_perror(file,	line,	APLOG_MODULE_INDEX,	APLOG_ERR,	0,	p,

"Failed	to	allocate	dynamic	lock	structure");

ap_log_*error	are	now	implemented	as	macros.	This	means
that	it	is	no	longer	possible	to	use	#ifdef	inside	the	argument	list
of	ap_log_*error,	as	this	would	cause	undefined	behavor
according	to	C99.

A	server_rec	pointer	must	be	passed	to	ap_log_error()
when	called	after	startup.	This	was	always	appropriate,	but	there
are	even	more	limitations	with	a	NULL	server_rec	in	2.4	than	in
previous	releases.	Beginning	with	2.3.12,	the	global	variable
ap_server_conf	can	always	be	used	as	the	server_rec
parameter,	as	it	will	be	NULL	only	when	it	is	valid	to	pass	NULL	to
ap_log_error().	ap_server_conf	should	be	used	only	when
a	more	appropriate	server_rec	is	not	available.

Consider	the	following	changes	to	take	advantage	of	the	new
APLOG_TRACE1..8	log	levels:

Check	current	use	of	APLOG_DEBUG	and	consider	if	one	of
the	APLOG_TRACEn	levels	is	more	appropriate.
If	your	module	currently	has	a	mechanism	for	configuring	the
amount	of	debug	logging	which	is	performed,	consider
eliminating	that	mechanism	and	relying	on	the	use	of	different
APLOG_TRACEn	levels.	If	expensive	trace	processing	needs
to	be	bypassed	depending	on	the	configured	log	level,	use	the
APLOGtracen	and	APLOGrtracen	macros	to	first	check	if

tracing	is	enabled.

Modules	sometimes	add	process	id	and/or	thread	id	to	their	log
messages.	These	ids	are	now	logged	by	default,	so	it	may	not	be
necessary	for	the	module	to	log	them	explicitly.	(Users	may
remove	them	from	the	error	log	format,	but	they	can	be	instructed
to	add	it	back	if	necessary	for	problem	diagnosis.)

If	your	module	uses	these	existing	APIs...
ap_default_type()

This	is	no	longer	available;	Content-Type	must	be	configured
explicitly	or	added	by	the	application.

ap_get_server_name()

If	the	returned	server	name	is	used	in	a	URL,	use
ap_get_server_name_for_url()	instead.	This	new
function	handles	the	odd	case	where	the	server	name	is	an
IPv6	literal	address.

ap_get_server_version()

For	logging	purposes,	where	detailed	information	is
appropriate,	use	ap_get_server_description().	When
generating	output,	where	the	amount	of	information	should	be
configurable	by	ServerTokens,	use
ap_get_server_banner().

ap_graceful_stop_signalled()

Replace	with	a	call	to
ap_mpm_query(AP_MPMQ_MPM_STATE)	and	checking	for
state	AP_MPMQ_STOPPING.

ap_max_daemons_limit,	ap_my_generation,	and
ap_threads_per_child

Use	ap_mpm_query()	query	codes
AP_MPMQ_MAX_DAEMON_USED,	AP_MPMQ_GENERATION,	and
AP_MPMQ_MAX_THREADS,	respectively.

ap_mpm_query()

Ensure	that	it	is	not	used	until	after	the	register-hooks	hook
has	completed.	Otherwise,	an	MPM	built	as	a	DSO	would	not
have	had	a	chance	to	enable	support	for	this	function.

ap_requires()

The	core	server	now	provides	better	infrastructure	for
handling	Require	configuration.	Register	an	auth	provider
function	for	each	supported	entity	using
ap_register_auth_provider().	The	function	will	be
called	as	necessary	during	Require	processing.	(Consult
bundled	modules	for	detailed	examples.)

ap_server_conf->process->pool	userdata
Optional:

If	your	module	uses	this	to	determine	which	pass	of	the
startup	hooks	is	being	run,	use
ap_state_query(AP_SQ_MAIN_STATE).
If	your	module	uses	this	to	maintain	data	across	the
unloading	and	reloading	of	your	module,	use
ap_retained_data_create()	and
ap_retained_data_get().

apr_global_mutex_create(),	apr_proc_mutex_create()
Optional:	See	ap_mutex_register(),
ap_global_mutex_create(),	and
ap_proc_mutex_create();	these	allow	your	mutexes	to
be	configurable	with	the	Mutex	directive;	you	can	also
remove	any	configuration	mechanisms	in	your	module	for
such	mutexes

CORE_PRIVATE

This	is	now	unnecessary	and	ignored.

dav_new_error()	and	dav_new_error_tag()
Previously,	these	assumed	that	errno	contained	information

describing	the	failure.	Now,	an	apr_status_t	parameter
must	be	provided.	Pass	0/APR_SUCCESS	if	there	is	no	such
error	information,	or	a	valid	apr_status_t	value	otherwise.

mpm_default.h,	DEFAULT_LOCKFILE,
DEFAULT_THREAD_LIMIT,	DEFAULT_PIDLOG,	etc.

The	header	file	and	most	of	the	default	configuration	values
set	in	it	are	no	longer	visible	to	modules.	(Most	can	still	be
overridden	at	build	time.)	DEFAULT_PIDLOG	and
DEFAULT_REL_RUNTIMEDIR	are	now	universally	available
via	ap_config.h.

unixd_config

This	has	been	renamed	to	ap_unixd_config.

unixd_setup_child()

This	has	been	renamed	to	ap_unixd_setup_child(),	but	most
callers	should	call	the	added	ap_run_drop_privileges()	hook.

conn_rec->remote_ip	and	conn_rec->remote_addr
These	fields	have	been	renamed	in	order	to	distinguish
between	the	client	IP	address	of	the	connection	and	the
useragent	IP	address	of	the	request	(potentially	overridden	by
a	load	balancer	or	proxy).	References	to	either	of	these	fields
must	be	updated	with	one	of	the	following	options,	as
appropriate	for	the	module:

When	you	require	the	IP	address	of	the	user	agent,	which
might	be	connected	directly	to	the	server,	or	might
optionally	be	separated	from	the	server	by	a	transparent
load	balancer	or	proxy,	use	request_rec-
>useragent_ip	and	request_rec-
>useragent_addr.
When	you	require	the	IP	address	of	the	client	that	is
connected	directly	to	the	server,	which	might	be	the
useragent	or	might	be	the	load	balancer	or	proxy	itself,
use	conn_rec->client_ip	and	conn_rec-

>client_addr.

If	your	module	interfaces	with	this	feature...
suEXEC

Optional:	If	your	module	logs	an	error	when
ap_unixd_config.suexec_enabled	is	0,	also	log	the
value	of	the	new	field	suexec_disabled_reason,	which
contains	an	explanation	of	why	it	is	not	available.

Extended	status	data	in	the	scoreboard
In	previous	releases,	ExtendedStatus	had	to	be	set	to	On,
which	in	turn	required	that	mod_status	was	loaded.	In	2.4,	just
set	ap_extended_status	to	1	in	a	pre-config	hook	and	the
extended	status	data	will	be	available.

Does	your	module...
Parse	query	args

Consider	if	ap_args_to_table()	would	be	helpful.

Parse	form	data...
Use	ap_parse_form_data().

Check	for	request	header	fields	Content-Length	and
Transfer-Encoding	to	see	if	a	body	was	specified

Use	ap_request_has_body().

Implement	cleanups	which	clear	pointer	variables
Use	ap_pool_cleanup_set_null().

Create	run-time	files	such	as	shared	memory	files,	pid	files,
etc.

Use	ap_runtime_dir_relative()	so	that	the	global
configuration	for	the	location	of	such	files,	either	by	the
DEFAULT_REL_RUNTIMEDIR	compile	setting	or	the
DefaultRuntimeDir	directive,	will	be	respected.	Apache

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

httpd	2.4.2	and	above.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Platform	Specific	Notes

Microsoft	Windows

Using	Apache
This	document	explains	how	to	install,	configure	and	run
Apache	2.4	under	Microsoft	Windows.

See:	Using	Apache	with	Microsoft	Windows

Compiling	Apache
There	are	many	important	points	before	you	begin	compiling
Apache.	This	document	explain	them.

See:	Compiling	Apache	for	Microsoft	Windows

Unix	Systems

RPM	Based	Systems	(Redhat	/	CentOS	/	Fedora)
This	document	explains	how	to	build,	install,	and	run	Apache
2.4	on	systems	supporting	the	RPM	packaging	format.

See:	Using	Apache	With	RPM	Based	Systems

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Other	Platforms

Novell	NetWare
This	document	explains	how	to	install,	configure	and	run
Apache	2.4	under	Novell	NetWare	5.1	and	above.

See:	Using	Apache	With	Novell	NetWare

EBCDIC
Version	1.3	of	the	Apache	HTTP	Server	is	the	first	version
which	includes	a	port	to	a	(non-ASCII)	mainframe	machine
which	uses	the	EBCDIC	character	set	as	its	native	codeset.

Warning:	This	document	has	not	been	updated	to	take	into
account	changes	made	in	the	2.4	version	of	the	Apache
HTTP	Server.	Some	of	the	information	may	still	be	relevant,
but	please	use	it	with	care.

See:	The	Apache	EBCDIC	Port

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

split-logfile	-	Split	up	multi-vhost	logfiles

This	perl	script	will	take	a	combined	Web	server	access	log	file	and
break	its	contents	into	separate	files.	It	assumes	that	the	first	field	of
each	line	is	the	virtual	host	identity,	put	there	using	the	"%v"	variable	in
LogFormat.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Usage

Create	a	log	file	with	virtual	host	information	in	it:

LogFormat	"%v	%h	%l	%u	%t	\"%r\"	%>s	%b	\"%{Referer}i\"	\"%{User-agent}i\""	combined_plus_vhost

CustomLog	logs/access_log	combined_plus_vhost

Log	files	will	be	created,	in	the	directory	where	you	run	the	script,
for	each	virtual	host	name	that	appears	in	the	combined	log	file.
These	logfiles	will	named	after	the	hostname,	with	a	.log	file
extension.

The	combined	log	file	is	read	from	stdin.	Records	read	will	be
appended	to	any	existing	log	files.

split-logfile	<	access_log

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

suexec	-	Switch	user	before	executing
external	programs

suexec	is	used	by	the	Apache	HTTP	Server	to	switch	to	another	user
before	executing	CGI	programs.	In	order	to	achieve	this,	it	must	run
as	root.	Since	the	HTTP	daemon	normally	doesn't	run	as	root,	the
suexec	executable	needs	the	setuid	bit	set	and	must	be	owned	by
root.	It	should	never	be	writable	for	any	other	person	than	root.

For	further	information	about	the	concepts	and	the	security	model	of
suexec	please	refer	to	the	suexec	documentation
(http://httpd.apache.org/docs/2.4/suexec.html).

http://httpd.apache.org/docs/2.4/suexec.html

Synopsis
suexec	-V

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Options

-V

If	you	are	root,	this	option	displays	the	compile	options	of
suexec.	For	security	reasons	all	configuration	options	are
changeable	only	at	compile	time.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Dynamic	mass	virtual	hosts	with
mod_rewrite

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	how	you	can	use	mod_rewrite	to
create	dynamically	configured	virtual	hosts.

mod_rewrite	is	not	the	best	way	to	configure	virtual	hosts.	You
should	first	consider	the	alternatives	before	resorting	to
mod_rewrite.	See	also	the	"how	to	avoid	mod_rewrite	document.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Proxying
RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Virtual	Hosts	For	Arbitrary	Hostnames

Description:
We	want	to	automatically	create	a	virtual	host	for	every
hostname	which	resolves	in	our	domain,	without	having	to
create	new	VirtualHost	sections.

In	this	recipe,	we	assume	that	we'll	be	using	the	hostname
www.SITE.example.com	for	each	user,	and	serve	their
content	out	of	/home/SITE/www.

Solution:

RewriteEngine	on

RewriteMap				lowercase	int:tolower

RewriteCond			"${lowercase:%{HTTP_HOST}}"			"^www\.

RewriteRule			"^(.*)"	"/home/%1/www$1"

Discussion

You	will	need	to	take	care	of	the	DNS	resolution	-	Apache
does	not	handle	name	resolution.	You'll	need	either	to
create	CNAME	records	for	each	hostname,	or	a	DNS
wildcard	record.	Creating	DNS	records	is	beyond	the	scope
of	this	document.

The	internal	tolower	RewriteMap	directive	is	used	to	ensure
that	the	hostnames	being	used	are	all	lowercase,	so	that
there	is	no	ambiguity	in	the	directory	structure	which	must	be
created.

Parentheses	used	in	a	RewriteCond	are	captured	into	the

backreferences	%1,	%2,	etc,	while	parentheses	used	in
RewriteRule	are	captured	into	the	backreferences	$1,	$2,
etc.

As	with	many	techniques	discussed	in	this	document,
mod_rewrite	really	isn't	the	best	way	to	accomplish	this	task.
You	should,	instead,	consider	using	mod_vhost_alias
instead,	as	it	will	much	more	gracefully	handle	anything
beyond	serving	static	files,	such	as	any	dynamic	content,	and
Alias	resolution.

Dynamic	Virtual	Hosts	Using	mod_rewrite

This	extract	from	httpd.conf	does	the	same	thing	as	the	first
example.	The	first	half	is	very	similar	to	the	corresponding	part
above,	except	for	some	changes,	required	for	backward
compatibility	and	to	make	the	mod_rewrite	part	work	properly;
the	second	half	configures	mod_rewrite	to	do	the	actual	work.

Because	mod_rewrite	runs	before	other	URI	translation
modules	(e.g.,	mod_alias),	mod_rewrite	must	be	told	to
explicitly	ignore	any	URLs	that	would	have	been	handled	by	those
modules.	And,	because	these	rules	would	otherwise	bypass	any
ScriptAlias	directives,	we	must	have	mod_rewrite	explicitly
enact	those	mappings.

#	get	the	server	name	from	the	Host:	header

UseCanonicalName	Off

#	splittable	logs

LogFormat	"%{Host}i	%h	%l	%u	%t	\"%r\"	%s	%b"	vcommon

CustomLog	"logs/access_log"	vcommon

<Directory	"/www/hosts">

				#	ExecCGI	is	needed	here	because	we	can't	force

				#	CGI	execution	in	the	way	that	ScriptAlias	does

				Options	FollowSymLinks	ExecCGI

</Directory>

RewriteEngine	On

#	a	ServerName	derived	from	a	Host:	header	may	be	any	case	at	all

RewriteMap		lowercase		int:tolower

##	deal	with	normal	documents	first:

#	allow	Alias	"/icons/"	to	work	-	repeat	for	other	aliases

RewriteCond		"%{REQUEST_URI}"		"!^/icons/"

#	allow	CGIs	to	work

RewriteCond		"%{REQUEST_URI}"		"!^/cgi-bin/"

#	do	the	magic

RewriteRule		"^/(.*)$"		"/www/hosts/${lowercase:%{SERVER_NAME}}/docs/$1"

##	and	now	deal	with	CGIs	-	we	have	to	force	a	handler

RewriteCond		"%{REQUEST_URI}"		"^/cgi-bin/"

RewriteRule		"^/(.*)$"		"/www/hosts/${lowercase:%{SERVER_NAME}}/cgi-bin/$1"		[H=cgi-script]

Copyright	2017	The	Apache	Software	Foundation.

Using	a	Separate	Virtual	Host	Configuration	File

This	arrangement	uses	more	advanced	mod_rewrite	features	to
work	out	the	translation	from	virtual	host	to	document	root,	from	a
separate	configuration	file.	This	provides	more	flexibility,	but
requires	more	complicated	configuration.

The	vhost.map	file	should	look	something	like	this:

customer-1.example.com	/www/customers/1

customer-2.example.com	/www/customers/2

#	...

customer-N.example.com	/www/customers/N

The	httpd.conf	should	contain	the	following:

RewriteEngine	on

RewriteMap			lowercase		int:tolower

#	define	the	map	file

RewriteMap			vhost						"txt:/www/conf/vhost.map"

#	deal	with	aliases	as	above

RewriteCond		"%{REQUEST_URI}"															"!^/icons/"

RewriteCond		"%{REQUEST_URI}"															"!^/cgi-bin/"

RewriteCond		"${lowercase:%{SERVER_NAME}}"		"^(.+)$"

#	this	does	the	file-based	remap

RewriteCond		"${vhost:%1}"																		"^(/.*)$"

RewriteRule		"^/(.*)$"																						"%1/docs/$1"

RewriteCond		"%{REQUEST_URI}"															"^/cgi-bin/"

RewriteCond		"${lowercase:%{SERVER_NAME}}"		"^(.+)$"

RewriteCond		"${vhost:%1}"																		"^(/.*)$"

RewriteRule		"^/cgi-bin/(.*)$"																						"%1/cgi-bin/$1"	[H=cgi-script]

Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

Versión	2.4	del	Servidor	HTTP	Apache
Apache	>	Servidor	HTTP	>	Documentación	>	Versión	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

How-To	/	Tutoriales

How-To	/	Tutoriales

Autenticación	y	Autorización
Autenticación	es	un	proceso	en	el	cual	se	verifica	que	alguien
es	quien	afirma	ser.	Autorización	es	cualquier	proceso	en	el
que	se	permite	a	alguien	acceder	donde	quiere	ir,	o	a	obtener
la	información	que	desea	tener.

Ver:	Autenticación,	Autorización

Control	de	Acceso
Control	de	acceso	hace	referencia	al	proceso	de	restringir,	o
garantizar	el	acceso	a	un	recurso	en	base	a	un	criterio
arbitrario.	Esto	se	puede	conseguir	de	distintas	formas.

Ver:	Control	de	Acceso

Contenido	Dinámico	con	CGI
El	CGI	(Common	Gateway	Interface)	es	un	método	por	el
cual	un	servidor	web	puede	interactuar	con	programas
externos	de	generación	de	contenido,	a	ellos	nos	referimos
comúnmente	como	programas	CGI	o	scripts	CGI.	Es	un
método	sencillo	para	mostrar	contenido	dinámico	en	tu	sitio
web.	Este	documento	es	una	introducción	para	configurar
CGI	en	tu	servidor	web	Apache,	y	de	inicio	para	escribir
programas	CGI.

Ver:	CGI:	Contenido	Dinámico

Ficheros	.htaccess
Los	ficheros	.htaccess	facilitan	una	forma	de	hacer
configuraciones	por-directorio.	Un	archivo,	que	contiene	una
o	más	directivas	de	configuración,	se	coloca	en	un	directorio
específico	y	las	directivas	especificadas	solo	aplican	sobre
ese	directorio	y	los	subdirectorios	del	mismo.

Ver:	.htaccess	files

HTTP/2	con	httpd
HTTP/2	es	la	evolución	del	protocolo	de	capa	de	aplicación
más	conocido,	HTTP.	Se	centra	en	hacer	un	uso	más
eficiente	de	los	recursos	de	red	sin	cambiar	la	semántica	de
HTTP.	Esta	guía	explica	como	se	implementa	HTTP/2	en
httpd,	mostrando	buenas	prácticas	y	consejos	de
configuración	básica.

Ver:	Guía	HTTP/2

Introducción	a	los	SSI
Los	SSI	(Server	Side	Includes)	son	directivas	que	se	colocan
en	las	páginas	HTML,	y	son	evaluadas	por	el	servidor
mientras	éste	las	sirve.	Le	permiten	añadir	contenido
generado	dinámicamente	a	una	página	HTML	existente,	sin
tener	que	servir	la	página	entera	a	través	de	un	programa
CGI	u	otro	método	dinámico.

Ver:	Server	Side	Includes	(SSI)

Directorios	web	Por-usuario
En	sistemas	con	múltiples	usuarios,	cada	usuario	puede	tener
su	directorio	"home"	compartido	usando	la	directiva
UserDir.	Aquellos	que	visiten	la	URL
http://example.com/~username/	obtendrán	contenido
del	directorio	del	usuario	"username"	que	se	encuentra	en	el
directorio	"home"	del	sistema.

Ver:	Directorios	Web	de	Usuario	(public_html)

Guía	de	Proxy	Inverso
Apache	httpd	ofrece	muchas	posibilidades	como	proxy
inverso.	Usando	la	directiva	ProxyPass	así	como

Copyright	2017	The	Apache	Software	Foundation.
Licencia	bajo	los	términos	de	Apache	License,	Version	2.0.

Módulos	|	Directivas	|	Preguntas	Frecuentes	|	Glosario	|	Mapa	del	sitio	web

BalancerMember	puede	crear	sofisticadas	configuraciones
de	proxy	inverso	que	proveen	de	alta	disponibilidad,	balanceo
de	carga,	clustering	basado	en	la	nube	y	reconfiguración
dinámica	en	caliente.

Ver:	Guía	de	Proxy	Inverso

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

htdbm	-	Manipulate	DBM	password
databases

htdbm	is	used	to	manipulate	the	DBM	format	files	used	to	store
usernames	and	password	for	basic	authentication	of	HTTP	users	via
mod_authn_dbm.	See	the	dbmmanage	documentation	for	more
information	about	these	DBM	files.

See	also
httpd

dbmmanage

mod_authn_dbm

https://www.apache.org/foundation/contributing.html

Synopsis
htdbm	[-TDBTYPE]	[-i]	[-c]	[-m	|	-B	|	-d	|

-s	|	-p]	[-C	cost]	[-t]	[-v]	filename

username

htdbm	-b	[-TDBTYPE]	[-c]	[-m	|	-B	|	-d	|	-s

|	-p]	[-C	cost]	[-t]	[-v]	filename

username	password

htdbm	-n	[-i]	[-c]	[-m	|	-B	|	-d	|	-s	|	-p]

[-C	cost]	[-t]	[-v]	username

htdbm	-nb	[-c]	[-m	|	-B	|	-d	|	-s	|	-p]	[-C

cost]	[-t]	[-v]	username	password

htdbm	-v	[-TDBTYPE]	[-i]	[-c]	[-m	|	-B	|	-

d	|	-s	|	-p]	[-C	cost]	[-t]	[-v]	filename

username

htdbm	-vb	[-TDBTYPE]	[-c]	[-m	|	-B	|	-d	|	-s

|	-p]	[-C	cost]	[-t]	[-v]	filename

username	password

htdbm	-x	[-TDBTYPE]	filename	username

htdbm	-l	[-TDBTYPE]

Options

-b

Use	batch	mode;	i.e.,	get	the	password	from	the	command
line	rather	than	prompting	for	it.	This	option	should	be	used
with	extreme	care,	since	the	password	is	clearly	visible	on
the	command	line.	For	script	use	see	the	-i	option.

-i

Read	the	password	from	stdin	without	verification	(for	script
usage).

-c

Create	the	passwdfile.	If	passwdfile	already	exists,	it	is
rewritten	and	truncated.	This	option	cannot	be	combined	with
the	-n	option.

-n

Display	the	results	on	standard	output	rather	than	updating	a
database.	This	option	changes	the	syntax	of	the	command
line,	since	the	passwdfile	argument	(usually	the	first	one)	is
omitted.	It	cannot	be	combined	with	the	-c	option.

-m

Use	MD5	encryption	for	passwords.	On	Windows	and
Netware,	this	is	the	default.

-B

Use	bcrypt	encryption	for	passwords.	This	is	currently
considered	to	be	very	secure.

-C

This	flag	is	only	allowed	in	combination	with	-B	(bcrypt
encryption).	It	sets	the	computing	time	used	for	the	bcrypt
algorithm	(higher	is	more	secure	but	slower,	default:	5,	valid:	4
to	31).

-d

Use	crypt()	encryption	for	passwords.	The	default	on	all

platforms	but	Windows	and	Netware.	Though	possibly
supported	by	htdbm	on	all	platforms,	it	is	not	supported	by
the	httpd	server	on	Windows	and	Netware.	This	algorithm	is
insecure	by	today's	standards.

-s

Use	SHA	encryption	for	passwords.	Facilitates	migration
from/to	Netscape	servers	using	the	LDAP	Directory
Interchange	Format	(ldif).	This	algorithm	is	insecure	by
today's	standards.

-p

Use	plaintext	passwords.	Though	htdbm	will	support	creation
on	all	platforms,	the	httpd	daemon	will	only	accept	plain	text
passwords	on	Windows	and	Netware.

-l

Print	each	of	the	usernames	and	comments	from	the
database	on	stdout.

-v

Verify	the	username	and	password.	The	program	will	print	a
message	indicating	whether	the	supplied	password	is	valid.	If
the	password	is	invalid,	the	program	exits	with	error	code	3.

-x

Delete	user.	If	the	username	exists	in	the	specified	DBM	file,	it
will	be	deleted.

-t

Interpret	the	final	parameter	as	a	comment.	When	this	option
is	specified,	an	additional	string	can	be	appended	to	the
command	line;	this	string	will	be	stored	in	the	"Comment"	field
of	the	database,	associated	with	the	specified	username.

filename

The	filename	of	the	DBM	format	file.	Usually	without	the
extension	.db,	.pag,	or	.dir.	If	-c	is	given,	the	DBM	file	is

created	if	it	does	not	already	exist,	or	updated	if	it	does	exist.

username

The	username	to	create	or	update	in	passwdfile.	If	username
does	not	exist	in	this	file,	an	entry	is	added.	If	it	does	exist,	the
password	is	changed.

password

The	plaintext	password	to	be	encrypted	and	stored	in	the
DBM	file.	Used	only	with	the	-b	flag.

-TDBTYPE

Type	of	DBM	file	(SDBM,	GDBM,	DB,	or	"default").

Bugs

One	should	be	aware	that	there	are	a	number	of	different	DBM	file
formats	in	existence,	and	with	all	likelihood,	libraries	for	more	than
one	format	may	exist	on	your	system.	The	three	primary	examples
are	SDBM,	NDBM,	GNU	GDBM,	and	Berkeley/Sleepycat	DB
2/3/4.	Unfortunately,	all	these	libraries	use	different	file	formats,
and	you	must	make	sure	that	the	file	format	used	by	filename	is
the	same	format	that	htdbm	expects	to	see.	htdbm	currently	has
no	way	of	determining	what	type	of	DBM	file	it	is	looking	at.	If	used
against	the	wrong	format,	will	simply	return	nothing,	or	may	create
a	different	DBM	file	with	a	different	name,	or	at	worst,	it	may
corrupt	the	DBM	file	if	you	were	attempting	to	write	to	it.

One	can	usually	use	the	file	program	supplied	with	most	Unix
systems	to	see	what	format	a	DBM	file	is	in.

Exit	Status

htdbm	returns	a	zero	status	("true")	if	the	username	and	password
have	been	successfully	added	or	updated	in	the	DBM	File.	htdbm
returns	1	if	it	encounters	some	problem	accessing	files,	2	if	there
was	a	syntax	problem	with	the	command	line,	3	if	the	password
was	entered	interactively	and	the	verification	entry	didn't	match,	4
if	its	operation	was	interrupted,	5	if	a	value	is	too	long	(username,
filename,	password,	or	final	computed	record),	6	if	the	username
contains	illegal	characters	(see	the	Restrictions	section),	and	7	if
the	file	is	not	a	valid	DBM	password	file.

Examples

htdbm	/usr/local/etc/apache/.htdbm-users	jsmith

Adds	or	modifies	the	password	for	user	jsmith.	The	user	is
prompted	for	the	password.	If	executed	on	a	Windows	system,	the
password	will	be	encrypted	using	the	modified	Apache	MD5
algorithm;	otherwise,	the	system's	crypt()	routine	will	be	used.	If
the	file	does	not	exist,	htdbm	will	do	nothing	except	return	an
error.

htdbm	-c	/home/doe/public_html/.htdbm	jane

Creates	a	new	file	and	stores	a	record	in	it	for	user	jane.	The
user	is	prompted	for	the	password.	If	the	file	exists	and	cannot	be
read,	or	cannot	be	written,	it	is	not	altered	and	htdbm	will	display	a
message	and	return	an	error	status.

htdbm	-mb	/usr/web/.htdbm-all	jones	Pwd4Steve

Encrypts	the	password	from	the	command	line	(Pwd4Steve)
using	the	MD5	algorithm,	and	stores	it	in	the	specified	file.

Security	Considerations

Web	password	files	such	as	those	managed	by	htdbm	should	not
be	within	the	Web	server's	URI	space	--	that	is,	they	should	not	be
fetchable	with	a	browser.

The	use	of	the	-b	option	is	discouraged,	since	when	it	is	used	the
unencrypted	password	appears	on	the	command	line.

When	using	the	crypt()	algorithm,	note	that	only	the	first	8
characters	of	the	password	are	used	to	form	the	password.	If	the
supplied	password	is	longer,	the	extra	characters	will	be	silently
discarded.

The	SHA	encryption	format	does	not	use	salting:	for	a	given
password,	there	is	only	one	encrypted	representation.	The
crypt()	and	MD5	formats	permute	the	representation	by
prepending	a	random	salt	string,	to	make	dictionary	attacks
against	the	passwords	more	difficult.

The	SHA	and	crypt()	formats	are	insecure	by	today's	standards.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Restrictions

On	the	Windows	platform,	passwords	encrypted	with	htdbm	are
limited	to	no	more	than	255	characters	in	length.	Longer
passwords	will	be	truncated	to	255	characters.

The	MD5	algorithm	used	by	htdbm	is	specific	to	the	Apache
software;	passwords	encrypted	using	it	will	not	be	usable	with
other	Web	servers.

Usernames	are	limited	to	255	bytes	and	may	not	include	the
character	:.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Miscellaneous	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Password	Formats

Notes	about	the	password	encryption	formats	generated	and
understood	by	Apache.

Basic	Authentication

There	are	five	formats	that	Apache	recognizes	for	basic-
authentication	passwords.	Note	that	not	all	formats	work	on	every
platform:

bcrypt
"$2y$"	+	the	result	of	the	crypt_blowfish	algorithm.	See	the
APR	source	file	crypt_blowfish.c	for	the	details	of	the
algorithm.

MD5
"$apr1$"	+	the	result	of	an	Apache-specific	algorithm	using	an
iterated	(1,000	times)	MD5	digest	of	various	combinations	of	a
random	32-bit	salt	and	the	password.	See	the	APR	source	file
apr_md5.c	for	the	details	of	the	algorithm.

SHA1
"{SHA}"	+	Base64-encoded	SHA-1	digest	of	the	password.
Insecure.

CRYPT
Unix	only.	Uses	the	traditional	Unix	crypt(3)	function	with	a
randomly-generated	32-bit	salt	(only	12	bits	used)	and	the	first
8	characters	of	the	password.	Insecure.

PLAIN	TEXT	(i.e.	unencrypted)
Windows	&	Netware	only.	Insecure.

Generating	values	with	htpasswd

bcrypt
$	htpasswd	-nbB	myName	myPassword

myName:$2y$05$c4WoMPo3SXsafkva.HHa6uXQZWr7oboPiC2bT/r7q1BB8I2s0BRqC

MD5
$	htpasswd	-nbm	myName	myPassword

myName:$apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

http://svn.apache.org/viewvc/apr/apr/trunk/crypto/crypt_blowfish.c?view=markup
http://svn.apache.org/viewvc/apr/apr/trunk/crypto/apr_md5.c?view=markup

SHA1
$	htpasswd	-nbs	myName	myPassword

myName:{SHA}VBPuJHI7uixaa6LQGWx4s+5GKNE=

CRYPT
$	htpasswd	-nbd	myName	myPassword

myName:rqXexS6ZhobKA

Generating	CRYPT	and	MD5	values	with	the	OpenSSL
command-line	program
OpenSSL	knows	the	Apache-specific	MD5	algorithm.

MD5
$	openssl	passwd	-apr1	myPassword

$apr1$qHDFfhPC$nITSVHgYbDAK1Y0acGRnY0

CRYPT
openssl	passwd	-crypt	myPassword

qQ5vTYO3c8dsU

Validating	CRYPT	or	MD5	passwords	with	the
OpenSSL	command	line	program
The	salt	for	a	CRYPT	password	is	the	first	two	characters
(converted	to	a	binary	value).	To	validate	myPassword	against
rqXexS6ZhobKA

CRYPT
$	openssl	passwd	-crypt	-salt	rq	myPassword

Warning:	truncating	password	to	8	characters

rqXexS6ZhobKA

Note	that	using	myPasswo	instead	of	myPassword	will	produce
the	same	result	because	only	the	first	8	characters	of	CRYPT
passwords	are	considered.

The	salt	for	an	MD5	password	is	between	$apr1$	and	the
following	$	(as	a	Base64-encoded	binary	value	-	max	8	chars).	To
validate	myPassword	against
$apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

MD5
$	openssl	passwd	-apr1	-salt	r31.....	myPassword

$apr1$r31.....$HqJZimcKQFAMYayBlzkrA/

Database	password	fields	for	mod_dbd
The	SHA1	variant	is	probably	the	most	useful	format	for	DBD
authentication.	Since	the	SHA1	and	Base64	functions	are
commonly	available,	other	software	can	populate	a	database	with
encrypted	passwords	that	are	usable	by	Apache	basic
authentication.

To	create	Apache	SHA1-variant	basic-authentication	passwords	in
various	languages:

PHP
'{SHA}'	.	base64_encode(sha1($password,	TRUE))

Java
"{SHA}"	+	new

sun.misc.BASE64Encoder().encode(java.security.MessageDigest.getInstance("SHA1").digest(password.getBytes()))

ColdFusion
"{SHA}"	&	ToBase64(BinaryDecode(Hash(password,	"SHA1"),	"Hex"))

Ruby
require	'digest/sha1'

require	'base64'

'{SHA}'	+	Base64.encode64(Digest::SHA1.digest(password))

C	or	C++
Use	the	APR	function:	apr_sha1_base64

Python
import	base64

import	hashlib

"{SHA}"	+

format(base64.b64encode(hashlib.sha1(password).digest()))

PostgreSQL	(with	the	contrib/pgcrypto	functions	installed)
'{SHA}'||encode(digest(password,'sha1'),'base64')

Digest	Authentication

Apache	recognizes	one	format	for	digest-authentication
passwords	-	the	MD5	hash	of	the	string	user:realm:password
as	a	32-character	string	of	hexadecimal	digits.	realm	is	the
Authorization	Realm	argument	to	the	AuthName	directive	in
httpd.conf.

Database	password	fields	for	mod_dbd
Since	the	MD5	function	is	commonly	available,	other	software	can
populate	a	database	with	encrypted	passwords	that	are	usable	by
Apache	digest	authentication.

To	create	Apache	digest-authentication	passwords	in	various
languages:

PHP
md5($user	.	':'	.	$realm	.	':'	.$password)

Java
byte	b[]	=

java.security.MessageDigest.getInstance("MD5").digest((user	+

":"	+	realm	+	":"	+	password).getBytes());

java.math.BigInteger	bi	=	new	java.math.BigInteger(1,	b);

String	s	=	bi.toString(16);

while	(s.length()	<	32)

s	=	"0"	+	s;

//	String	s	is	the	encrypted	password

ColdFusion
LCase(Hash((user	&	":"	&	realm	&	":"	&	password)	,	"MD5"))

Ruby
require	'digest/md5'

Digest::MD5.hexdigest(user	+	':'	+	realm	+	':'	+	password)

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

PostgreSQL	(with	the	contrib/pgcrypto	functions	installed)
encode(digest(user	||	':'	||	realm	||	':'	||	password	,

'md5'),	'hex')

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	mod_rewrite	Introduction

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	the	basic	concepts	necessary	for	use	of
mod_rewrite.	Other	documents	go	into	greater	detail,	but	this	doc
should	help	the	beginner	get	their	feet	wet.

See	also
Module	documentation
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Introduction

The	Apache	module	mod_rewrite	is	a	very	powerful	and
sophisticated	module	which	provides	a	way	to	do	URL
manipulations.	With	it,	you	can	do	nearly	all	types	of	URL	rewriting
that	you	may	need.	It	is,	however,	somewhat	complex,	and	may	be
intimidating	to	the	beginner.	There	is	also	a	tendency	to	treat
rewrite	rules	as	magic	incantation,	using	them	without	actually
understanding	what	they	do.

This	document	attempts	to	give	sufficient	background	so	that	what
follows	is	understood,	rather	than	just	copied	blindly.

Remember	that	many	common	URL-manipulation	tasks	don't
require	the	full	power	and	complexity	of	mod_rewrite.	For	simple
tasks,	see	mod_alias	and	the	documentation	on	mapping	URLs
to	the	filesystem.

Finally,	before	proceeding,	be	sure	to	configure	mod_rewrite's
log	level	to	one	of	the	trace	levels	using	the	LogLevel	directive.
Although	this	can	give	an	overwhelming	amount	of	information,	it
is	indispensable	in	debugging	problems	with	mod_rewrite
configuration,	since	it	will	tell	you	exactly	how	each	rule	is
processed.

Regular	Expressions

mod_rewrite	uses	the	Perl	Compatible	Regular	Expression
vocabulary.	In	this	document,	we	do	not	attempt	to	provide	a
detailed	reference	to	regular	expressions.	For	that,	we	recommend
the	PCRE	man	pages,	the	Perl	regular	expression	man	page,	and
Mastering	Regular	Expressions,	by	Jeffrey	Friedl.

In	this	document,	we	attempt	to	provide	enough	of	a	regex
vocabulary	to	get	you	started,	without	being	overwhelming,	in	the
hope	that	RewriteRules	will	be	scientific	formulae,	rather	than
magical	incantations.

Regex	vocabulary
The	following	are	the	minimal	building	blocks	you	will	need,	in
order	to	write	regular	expressions	and	RewriteRules.	They
certainly	do	not	represent	a	complete	regular	expression
vocabulary,	but	they	are	a	good	place	to	start,	and	should	help	you
read	basic	regular	expressions,	as	well	as	write	your	own.

Character Meaning Example
. Matches	any	single

character
c.t	will	match	cat,	cot,
cut,	etc.

+ Repeats	the	previous
match	one	or	more	times

a+	matches	a,	aa,	aaa,	etc

* Repeats	the	previous
match	zero	or	more
times.

a*	matches	all	the	same
things	a+	matches,	but	will
also	match	an	empty
string.

? Makes	the	match
optional.

colou?r	will	match	color
and	colour.

^ Called	an	anchor,
matches	the	beginning	of
the	string

^a	matches	a	string	that
begins	with	a

http://pcre.org/
http://pcre.org/pcre.txt
http://perldoc.perl.org/perlre.html
http://shop.oreilly.com/product/9780596528126.do

$ The	other	anchor,	this
matches	the	end	of	the
string.

a$	matches	a	string	that
ends	with	a.

() Groups	several
characters	into	a	single
unit,	and	captures	a
match	for	use	in	a
backreference.

(ab)+	matches	ababab	-
that	is,	the	+	applies	to	the
group.	For	more	on
backreferences	see	below.

[] A	character	class	-
matches	one	of	the
characters

c[uoa]t	matches	cut,
cot	or	cat.

[^] Negative	character	class
-	matches	any	character
not	specified

c[^/]t	matches	cat	or
c=t	but	not	c/t

In	mod_rewrite	the	!	character	can	be	used	before	a	regular
expression	to	negate	it.	This	is,	a	string	will	be	considered	to	have
matched	only	if	it	does	not	match	the	rest	of	the	expression.

Regex	Back-Reference	Availability
One	important	thing	here	has	to	be	remembered:	Whenever	you
use	parentheses	in	Pattern	or	in	one	of	the	CondPattern,	back-
references	are	internally	created	which	can	be	used	with	the
strings	$N	and	%N	(see	below).	These	are	available	for	creating	the
Substitution	parameter	of	a	RewriteRule	or	the	TestString
parameter	of	a	RewriteCond.

Captures	in	the	RewriteRule	patterns	are	(counterintuitively)
available	to	all	preceding	RewriteCond	directives,	because	the
RewriteRule	expression	is	evaluated	before	the	individual
conditions.

Figure	1	shows	to	which	locations	the	back-references	are

transferred	for	expansion	as	well	as	illustrating	the	flow	of	the
RewriteRule,	RewriteCond	matching.	In	the	next	chapters,	we	will
be	exploring	how	to	use	these	back-references,	so	do	not	fret	if	it
seems	a	bit	alien	to	you	at	first.

Figure	1:	The	back-reference	flow	through	a	rule.
In	this	example,	a	request	for	/test/1234	would	be
transformed	into	/admin.foo?
page=test&id=1234&host=admin.example.com.

RewriteRule	Basics

A	RewriteRule	consists	of	three	arguments	separated	by
spaces.	The	arguments	are

1.	 Pattern:	which	incoming	URLs	should	be	affected	by	the	rule;

2.	 Substitution:	where	should	the	matching	requests	be	sent;

3.	 [flags]:	options	affecting	the	rewritten	request.

The	Pattern	is	a	regular	expression.	It	is	initially	(for	the	first
rewrite	rule	or	until	a	substitution	occurs)	matched	against	the
URL-path	of	the	incoming	request	(the	part	after	the	hostname	but
before	any	question	mark	indicating	the	beginning	of	a	query
string)	or,	in	per-directory	context,	against	the	request's	path
relative	to	the	directory	for	which	the	rule	is	defined.	Once	a
substitution	has	occurred,	the	rules	that	follow	are	matched
against	the	substituted	value.

Figure	2:	Syntax	of	the	RewriteRule	directive.

The	Substitution	can	itself	be	one	of	three	things:

A	full	filesystem	path	to	a	resource

RewriteRule	"^/games"	"/usr/local/games/web"

This	maps	a	request	to	an	arbitrary	location	on	your
filesystem,	much	like	the	Alias	directive.

A	web-path	to	a	resource

RewriteRule	"^/foo$"	"/bar"

If	DocumentRoot	is	set	to	/usr/local/apache2/htdocs,
then	this	directive	would	map	requests	for
http://example.com/foo	to	the	path
/usr/local/apache2/htdocs/bar.

An	absolute	URL

RewriteRule	"^/product/view$"	"http://site2.example.com/seeproduct.html"	[R]

This	tells	the	client	to	make	a	new	request	for	the	specified
URL.

The	Substitution	can	also	contain	back-references	to	parts	of	the
incoming	URL-path	matched	by	the	Pattern.	Consider	the
following:

RewriteRule	"^/product/(.*)/view$"	"/var/web/productdb/$1"

The	variable	$1	will	be	replaced	with	whatever	text	was	matched
by	the	expression	inside	the	parenthesis	in	the	Pattern.	For
example,	a	request	for
http://example.com/product/r14df/view	will	be	mapped

to	the	path	/var/web/productdb/r14df.

If	there	is	more	than	one	expression	in	parenthesis,	they	are
available	in	order	in	the	variables	$1,	$2,	$3,	and	so	on.

Rewrite	Flags

The	behavior	of	a	RewriteRule	can	be	modified	by	the
application	of	one	or	more	flags	to	the	end	of	the	rule.	For
example,	the	matching	behavior	of	a	rule	can	be	made	case-
insensitive	by	the	application	of	the	[NC]	flag:

RewriteRule	"^puppy.html"	"smalldog.html"	[NC]

For	more	details	on	the	available	flags,	their	meanings,	and
examples,	see	the	Rewrite	Flags	document.

Rewrite	Conditions

One	or	more	RewriteCond	directives	can	be	used	to	restrict	the
types	of	requests	that	will	be	subject	to	the	following
RewriteRule.	The	first	argument	is	a	variable	describing	a
characteristic	of	the	request,	the	second	argument	is	a	regular
expression	that	must	match	the	variable,	and	a	third	optional
argument	is	a	list	of	flags	that	modify	how	the	match	is	evaluated.

Figure	3:	Syntax	of	the	RewriteCond	directive

For	example,	to	send	all	requests	from	a	particular	IP	range	to	a
different	server,	you	could	use:

RewriteCond	"%{REMOTE_ADDR}"	"^10\.2\."

RewriteRule	"(.*)"	"http://intranet.example.com$1"

When	more	than	one	RewriteCond	is	specified,	they	must	all
match	for	the	RewriteRule	to	be	applied.	For	example,	to	deny
requests	that	contain	the	word	"hack"	in	their	query	string,	unless
they	also	contain	a	cookie	containing	the	word	"go",	you	could
use:

RewriteCond	"%{QUERY_STRING}"	"hack"

RewriteCond	"%{HTTP_COOKIE}"	"!go"

RewriteRule	"."	"-"	[F]

Notice	that	the	exclamation	mark	specifies	a	negative	match,	so
the	rule	is	only	applied	if	the	cookie	does	not	contain	"go".

Matches	in	the	regular	expressions	contained	in	the
RewriteConds	can	be	used	as	part	of	the	Substitution	in	the
RewriteRule	using	the	variables	%1,	%2,	etc.	For	example,	this
will	direct	the	request	to	a	different	directory	depending	on	the
hostname	used	to	access	the	site:

RewriteCond	"%{HTTP_HOST}"	"(.*)"

RewriteRule	"^/(.*)"	"/sites/%1/$1"

If	the	request	was	for	http://example.com/foo/bar,	then	%1
would	contain	example.com	and	$1	would	contain	foo/bar.

Rewrite	maps

The	RewriteMap	directive	provides	a	way	to	call	an	external
function,	so	to	speak,	to	do	your	rewriting	for	you.	This	is
discussed	in	greater	detail	in	the	RewriteMap	supplementary
documentation.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

.htaccess	files

Rewriting	is	typically	configured	in	the	main	server	configuration
setting	(outside	any	<Directory>	section)	or	inside
<VirtualHost>	containers.	This	is	the	easiest	way	to	do
rewriting	and	is	recommended.	It	is	possible,	however,	to	do
rewriting	inside	<Directory>	sections	or	.htaccess	files	at	the
expense	of	some	additional	complexity.	This	technique	is	called
per-directory	rewrites.

The	main	difference	with	per-server	rewrites	is	that	the	path	prefix
of	the	directory	containing	the	.htaccess	file	is	stripped	before
matching	in	the	RewriteRule.	In	addition,	the	RewriteBase
should	be	used	to	assure	the	request	is	properly	mapped.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

log_server_status	-	Log	periodic	status
summaries

This	perl	script	is	designed	to	be	run	at	a	frequent	interval	by
something	like	cron.	It	connects	to	the	server	and	downloads	the
status	information.	It	reformats	the	information	to	a	single	line	and
logs	it	to	a	file.	Adjust	the	variables	at	the	top	of	the	script	to	specify
the	location	of	the	resulting	logfile.	mod_status	will	need	to	be
loaded	and	configured	in	order	for	this	script	to	do	its	job.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Usage

The	script	contains	the	following	section.

my	$wherelog	=	"/usr/local/apache2/logs/";		#	Logs	will	be	like	"/usr/local/apache2/logs/19960312"

my	$server			=	"localhost";								#	Name	of	server,	could	be	"www.foo.com"

my	$port					=	"80";															#	Port	on	server

my	$request	=	"/server-status/?auto";				#	Request	to	send

You'll	need	to	ensure	that	these	variables	have	the	correct	values,
and	you'll	need	to	have	the	/server-status	handler	configured
at	the	location	specified,	and	the	specified	log	location	needs	to	be
writable	by	the	user	which	will	run	the	script.

Run	the	script	periodically	via	cron	to	produce	a	daily	log	file,
which	can	then	be	used	for	statistical	analysis.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Shared	Object	Cache	in	Apache	HTTP	Server

The	Shared	Object	Cache	provides	a	means	to	share	simple	data
across	all	a	server's	workers,	regardless	of	thread	and	process
models.	It	is	used	where	the	advantages	of	sharing	data	across
processes	outweigh	the	performance	overhead	of	inter-process
communication.

Shared	Object	Cache	Providers

The	shared	object	cache	as	such	is	an	abstraction.	Four	different
modules	implement	it.	To	use	the	cache,	one	or	more	of	these
modules	must	be	present,	and	configured.

The	only	configuration	required	is	to	select	which	cache	provider
to	use.	This	is	the	responsibility	of	modules	using	the	cache,	and
they	enable	selection	using	directives	such	as	CacheSocache,
AuthnCacheSOCache,	SSLSessionCache,	and
SSLStaplingCache.

Currently	available	providers	are:

"dbm"	(mod_socache_dbm)
This	makes	use	of	a	DBM	hash	file.	The	choice	of	underlying
DBM	used	may	be	configurable	if	the	installed	APR	version
supports	multiple	DBM	implementations.

"dc"	(mod_socache_dc)
This	makes	use	of	the	distcache	distributed	session	caching
libraries.

"memcache"	(mod_socache_memcache)
This	makes	use	of	the	memcached	high-performance,
distributed	memory	object	caching	system.

"shmcb"	(mod_socache_shmcb)
This	makes	use	of	a	high-performance	cyclic	buffer	inside	a
shared	memory	segment.

The	API	provides	the	following	functions:

const	char	*create(ap_socache_instance_t	**instance,	const
char	*arg,	apr_pool_t	*tmp,	apr_pool_t	*p);

Create	a	session	cache	based	on	the	given	configuration
string.	The	instance	pointer	returned	in	the	instance
parameter	will	be	passed	as	the	first	argument	to	subsequent

http://distcache.sourceforge.net/
http://memcached.org/

invocations.

apr_status_t	init(ap_socache_instance_t	*instance,	const
char	*cname,	const	struct	ap_socache_hints	*hints,
server_rec	*s,	apr_pool_t	*pool)

Initialize	the	cache.	The	cname	must	be	of	maximum	length
16	characters,	and	uniquely	identifies	the	consumer	of	the
cache	within	the	server;	using	the	module	name	is
recommended,	e.g.	"mod_ssl-sess".	This	string	may	be	used
within	a	filesystem	path	so	use	of	only	alphanumeric	[a-z0-9_-
]	characters	is	recommended.	If	hints	is	non-NULL,	it	gives	a
set	of	hints	for	the	provider.	Return	APR	error	code.

void	destroy(ap_socache_instance_t	*instance,	server_rec	*s)
Destroy	a	given	cache	instance	object.

apr_status_t	store(ap_socache_instance_t	*instance,
server_rec	*s,	const	unsigned	char	*id,	unsigned	int	idlen,
apr_time_t	expiry,	unsigned	char	*data,	unsigned	int	datalen,
apr_pool_t	*pool)

Store	an	object	in	a	cache	instance.

apr_status_t	retrieve(ap_socache_instance_t	*instance,
server_rec	*s,	const	unsigned	char	*id,	unsigned	int	idlen,
unsigned	char	*data,	unsigned	int	*datalen,	apr_pool_t	*pool)

Retrieve	a	cached	object.

apr_status_t	remove(ap_socache_instance_t	*instance,
server_rec	*s,	const	unsigned	char	*id,	unsigned	int	idlen,
apr_pool_t	*pool)

Remove	an	object	from	the	cache.

void	status(ap_socache_instance_t	*instance,	request_rec	*r,
int	flags)

Dump	the	status	of	a	cache	instance	for	mod_status.

apr_status_t	iterate(ap_socache_instance_t	*instance,
server_rec	*s,	void	*userctx,	ap_socache_iterator_t	*iterator,

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

apr_pool_t	*pool)
Dump	all	cached	objects	through	an	iterator	callback.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

fcgistarter	-	Start	a	FastCGI	program

See	also
mod_proxy_fcgi

https://www.apache.org/foundation/contributing.html

Note

Currently	only	works	on	Unix	systems.

Synopsis
fcgistarter	-c	command	-p	port	[-i	interface]	-

N	num

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Options

-c	command

FastCGI	program

-p	port

Port	which	the	program	will	listen	on

-i	interface

Interface	which	the	program	will	listen	on

-N	num

Number	of	instances	of	the	program

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Programs

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

httxt2dbm	-	Generate	dbm	files	for	use	with
RewriteMap

httxt2dbm	is	used	to	generate	dbm	files	from	text	input,	for	use	in
RewriteMap	with	the	dbm	map	type.

If	the	output	file	already	exists,	it	will	not	be	truncated.	New	keys	will
be	added	and	existing	keys	will	be	updated.

See	also
httpd

mod_rewrite

https://www.apache.org/foundation/contributing.html

Synopsis
httxt2dbm	[-v]	[-f	DBM_TYPE]	-i	SOURCE_TXT	-o

OUTPUT_DBM

Options

-v

More	verbose	output

-f	DBM_TYPE

Specify	the	DBM	type	to	be	used	for	the	output.	If	not
specified,	will	use	the	APR	Default.	Available	types	are:	GDBM
for	GDBM	files,	SDBM	for	SDBM	files,	DB	for	berkeley	DB	files,
NDBM	for	NDBM	files,	default	for	the	default	DBM	type.

-i	SOURCE_TXT

Input	file	from	which	the	dbm	is	to	be	created.	The	file	should
be	formated	with	one	record	per	line,	of	the	form:	key
value.	See	the	documentation	for	RewriteMap	for	further
details	of	this	file's	format	and	meaning.

-o	OUTPUT_DBM

Name	of	the	output	dbm	files.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Examples

httxt2dbm	-i	rewritemap.txt	-o	rewritemap.dbm

httxt2dbm	-f	SDBM	-i	rewritemap.txt	-o	rewritemap.dbm

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Using	RewriteMap

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	the	use	of	the	RewriteMap	directive,
and	provides	examples	of	each	of	the	various	RewriteMap	types.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Introduction

The	RewriteMap	directive	defines	an	external	function	which	can
be	called	in	the	context	of	RewriteRule	or	RewriteCond
directives	to	perform	rewriting	that	is	too	complicated,	or	too
specialized	to	be	performed	just	by	regular	expressions.	The
source	of	this	lookup	can	be	any	of	the	types	listed	in	the	sections
below,	and	enumerated	in	the	RewriteMap	reference
documentation.

The	syntax	of	the	RewriteMap	directive	is	as	follows:

RewriteMap	MapName	MapType:MapSource

The	MapName	is	an	arbitray	name	that	you	assign	to	the	map,
and	which	you	will	use	in	directives	later	on.	Arguments	are
passed	to	the	map	via	the	following	syntax:

${	MapName	:	LookupKey	}	${	MapName	:	LookupKey	|
DefaultValue	}

When	such	a	construct	occurs,	the	map	MapName	is	consulted
and	the	key	LookupKey	is	looked-up.	If	the	key	is	found,	the	map-
function	construct	is	substituted	by	SubstValue.	If	the	key	is	not
found	then	it	is	substituted	by	DefaultValue	or	by	the	empty	string
if	no	DefaultValue	was	specified.

For	example,	you	can	define	a	RewriteMap	as:

RewriteMap	examplemap	"txt:/path/to/file/map.txt"

You	would	then	be	able	to	use	this	map	in	a	RewriteRule	as
follows:

RewriteRule	"^/ex/(.*)"	"${examplemap:$1}"

A	default	value	can	be	specified	in	the	event	that	nothing	is	found
in	the	map:

RewriteRule	"^/ex/(.*)"	"${examplemap:$1|/not_found.html}"

Per-directory	and	.htaccess	context

The	RewriteMap	directive	may	not	be	used	in	<Directory>
sections	or	.htaccess	files.	You	must	declare	the	map	in
server	or	virtualhost	context.	You	may	use	the	map,	once
created,	in	your	RewriteRule	and	RewriteCond	directives	in
those	scopes.	You	just	can't	declare	it	in	those	scopes.

The	sections	that	follow	describe	the	various	MapTypes	that	may
be	used,	and	give	examples	of	each.

int:	Internal	Function

When	a	MapType	of	int	is	used,	the	MapSource	is	one	of	the
available	internal	RewriteMap	functions.	Module	authors	can
provide	additional	internal	functions	by	registering	them	with	the
ap_register_rewrite_mapfunc	API.	The	functions	that	are
provided	by	default	are:

toupper:
Converts	the	key	to	all	upper	case.
tolower:
Converts	the	key	to	all	lower	case.
escape:
Translates	special	characters	in	the	key	to	hex-encodings.
unescape:
Translates	hex-encodings	in	the	key	back	to	special
characters.

To	use	one	of	these	functions,	create	a	RewriteMap	referencing
the	int	function,	and	then	use	that	in	your	RewriteRule:

Redirect	a	URI	to	an	all-lowercase	version	of	itself

RewriteMap	lc	int:tolower

RewriteRule	"(.*)"	"${lc:$1}"	[R]

Please	note	that	the	example	offered	here	is	for	illustration
purposes	only,	and	is	not	a	recommendation.	If	you	want	to
make	URLs	case-insensitive,	consider	using	mod_speling
instead.

txt:	Plain	text	maps

When	a	MapType	of	txt	is	used,	the	MapSource	is	a	filesystem
path	to	a	plain-text	mapping	file,	containing	one	space-separated
key/value	pair	per	line.	Optionally,	a	line	may	contain	a	comment,
starting	with	a	'#'	character.

A	valid	text	rewrite	map	file	will	have	the	following	syntax:

#	Comment	line

MatchingKey	SubstValue

MatchingKey	SubstValue	#	comment

When	the	RewriteMap	is	invoked	the	argument	is	looked	for	in
the	first	argument	of	a	line,	and,	if	found,	the	substitution	value	is
returned.

For	example,	we	can	use	a	mapfile	to	translate	product	names	to
product	IDs	for	easier-to-remember	URLs,	using	the	following
recipe:

Product	to	ID	configuration

RewriteMap	product2id	"txt:/etc/apache2/productmap.txt"

RewriteRule	"^/product/(.*)"	"/prods.php?id=${product2id:$1|NOTFOUND}"	[PT]

We	assume	here	that	the	prods.php	script	knows	what	to	do
when	it	received	an	argument	of	id=NOTFOUND	when	a	product	is
not	found	in	the	lookup	map.

The	file	/etc/apache2/productmap.txt	then	contains	the
following:

Product	to	ID	map
##

##	productmap.txt	-	Product	to	ID	map	file

##

television	993

stereo	198

fishingrod	043

basketball	418

telephone	328

Thus,	when	http://example.com/product/television	is
requested,	the	RewriteRule	is	applied,	and	the	request	is
internally	mapped	to	/prods.php?id=993.

Note:	.htaccess	files
The	example	given	is	crafted	to	be	used	in	server	or	virtualhost
scope.	If	you're	planning	to	use	this	in	a	.htaccess	file,	you'll
need	to	remove	the	leading	slash	from	the	rewrite	pattern	in
order	for	it	to	match	anything:

RewriteRule	"^product/(.*)"	"/prods.php?id=${product2id:$1|NOTFOUND}"	[PT]

Cached	lookups

The	looked-up	keys	are	cached	by	httpd	until	the	mtime
(modified	time)	of	the	mapfile	changes,	or	the	httpd	server	is
restarted.	This	ensures	better	performance	on	maps	that	are
called	by	many	requests.

rnd:	Randomized	Plain	Text

When	a	MapType	of	rnd	is	used,	the	MapSource	is	a	filesystem
path	to	a	plain-text	mapping	file,	each	line	of	which	contains	a	key,
and	one	or	more	values	separated	by	|.	One	of	these	values	will
be	chosen	at	random	if	the	key	is	matched.

For	example,	you	can	use	the	following	map	file	and	directives	to
provide	a	random	load	balancing	between	several	back-end
servers,	via	a	reverse-proxy.	Images	are	sent	to	one	of	the	servers
in	the	'static'	pool,	while	everything	else	is	sent	to	one	of	the
'dynamic'	pool.

Rewrite	map	file
##

##	map.txt	--	rewriting	map

##

static	www1|www2|www3|www4

dynamic	www5|www6

Configuration	directives

RewriteMap	servers	"rnd:/path/to/file/map.txt"

RewriteRule	"^/(.*\.(png|gif|jpg))"	"http://${servers:static}/$1"		[NC,P,L]

RewriteRule	"^/(.*)"																"http://${servers:dynamic}/$1"	[P,L]

So,	when	an	image	is	requested	and	the	first	of	these	rules	is
matched,	RewriteMap	looks	up	the	string	static	in	the	map	file,
which	returns	one	of	the	specified	hostnames	at	random,	which	is
then	used	in	the	RewriteRule	target.

If	you	wanted	to	have	one	of	the	servers	more	likely	to	be	chosen
(for	example,	if	one	of	the	server	has	more	memory	than	the
others,	and	so	can	handle	more	requests)	simply	list	it	more	times

in	the	map	file.

static	www1|www1|www2|www3|www4

dbm:	DBM	Hash	File

When	a	MapType	of	dbm	is	used,	the	MapSource	is	a	filesystem
path	to	a	DBM	database	file	containing	key/value	pairs	to	be	used
in	the	mapping.	This	works	exactly	the	same	way	as	the	txt	map,
but	is	much	faster,	because	a	DBM	is	indexed,	whereas	a	text	file
is	not.	This	allows	more	rapid	access	to	the	desired	key.

You	may	optionally	specify	a	particular	dbm	type:

RewriteMap	examplemap	"dbm=sdbm:/etc/apache/mapfile.dbm"

The	type	can	be	sdbm,	gdbm,	ndbm	or	db.	However,	it	is
recommended	that	you	just	use	the	httxt2dbm	utility	that	is
provided	with	Apache	HTTP	Server,	as	it	will	use	the	correct	DBM
library,	matching	the	one	that	was	used	when	httpd	itself	was	built.

To	create	a	dbm	file,	first	create	a	text	map	file	as	described	in	the
txt	section.	Then	run	httxt2dbm:

$	httxt2dbm	-i	mapfile.txt	-o	mapfile.map

You	can	then	reference	the	resulting	file	in	your	RewriteMap
directive:

RewriteMap	mapname	"dbm:/etc/apache/mapfile.map"

Note	that	with	some	dbm	types,	more	than	one	file	is	generated,
with	a	common	base	name.	For	example,	you	may	have	two
files	named	mapfile.map.dir	and	mapfiile.map.pag.
This	is	normal,	and	you	need	only	use	the	base	name
mapfile.map	in	your	RewriteMap	directive.

Cached	lookups

The	looked-up	keys	are	cached	by	httpd	until	the	mtime
(modified	time)	of	the	mapfile	changes,	or	the	httpd	server	is
restarted.	This	ensures	better	performance	on	maps	that	are
called	by	many	requests.

prg:	External	Rewriting	Program

When	a	MapType	of	prg	is	used,	the	MapSource	is	a	filesystem
path	to	an	executable	program	which	will	providing	the	mapping
behavior.	This	can	be	a	compiled	binary	file,	or	a	program	in	an
interpreted	language	such	as	Perl	or	Python.

This	program	is	started	once,	when	the	Apache	HTTP	Server	is
started,	and	then	communicates	with	the	rewriting	engine	via
STDIN	and	STDOUT.	That	is,	for	each	map	function	lookup,	it
expects	one	argument	via	STDIN,	and	should	return	one	new-line
terminated	response	string	on	STDOUT.	If	there	is	no
corresponding	lookup	value,	the	map	program	should	return	the
four-character	string	"NULL"	to	indicate	this.

External	rewriting	programs	are	not	started	if	they're	defined	in	a
context	that	does	not	have	RewriteEngine	set	to	on.

This	feature	utilizes	the	rewrite-map	mutex,	which	is	required
for	reliable	communication	with	the	program.	The	mutex
mechanism	and	lock	file	can	be	configured	with	the	Mutex
directive.

A	simple	example	is	shown	here	which	will	replace	all	dashes	with
underscores	in	a	request	URI.

Rewrite	configuration

RewriteMap	d2u	"prg:/www/bin/dash2under.pl"

RewriteRule	"-"	"${d2u:%{REQUEST_URI}}"

dash2under.pl

#!/usr/bin/perl

$|	=	1;	#	Turn	off	I/O	buffering

while	(<STDIN>)	{

				s/-/_/g;	#	Replace	dashes	with	underscores

				print	$_;

}

Caution!

Keep	your	rewrite	map	program	as	simple	as	possible.	If
the	program	hangs,	it	will	cause	httpd	to	wait	indefinitely	for
a	response	from	the	map,	which	will,	in	turn,	cause	httpd	to
stop	responding	to	requests.
Be	sure	to	turn	off	buffering	in	your	program.	In	Perl	this	is
done	by	the	second	line	in	the	example	script:	$|	=	1;
This	will	of	course	vary	in	other	languages.	Buffered	I/O	will
cause	httpd	to	wait	for	the	output,	and	so	it	will	hang.
Remember	that	there	is	only	one	copy	of	the	program,
started	at	server	startup.	All	requests	will	need	to	go
through	this	one	bottleneck.	This	can	cause	significant
slowdowns	if	many	requests	must	go	through	this	process,
or	if	the	script	itself	is	very	slow.

dbd	or	fastdbd:	SQL	Query

When	a	MapType	of	dbd	or	fastdbd	is	used,	the	MapSource	is	a
SQL	SELECT	statement	that	takes	a	single	argument	and	returns
a	single	value.

mod_dbd	will	need	to	be	configured	to	point	at	the	right	database
for	this	statement	to	be	executed.

There	are	two	forms	of	this	MapType.	Using	a	MapType	of	dbd
causes	the	query	to	be	executed	with	each	map	request,	while
using	fastdbd	caches	the	database	lookups	internally.	So,	while
fastdbd	is	more	efficient,	and	therefore	faster,	it	won't	pick	up	on
changes	to	the	database	until	the	server	is	restarted.

If	a	query	returns	more	than	one	row,	a	random	row	from	the	result
set	is	used.

Example
RewriteMap	myquery	"fastdbd:SELECT	destination	FROM	rewrite	WHERE	source	=	%s"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Summary

The	RewriteMap	directive	can	occur	more	than	once.	For	each
mapping-function	use	one	RewriteMap	directive	to	declare	its
rewriting	mapfile.

While	you	cannot	declare	a	map	in	per-directory	context
(.htaccess	files	or	<Directory>	blocks)	it	is	possible	to	use
this	map	in	per-directory	context.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

RewriteRule	Flags

This	document	discusses	the	flags	which	are	available	to	the
RewriteRule	directive,	providing	detailed	explanations	and
examples.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Introduction

A	RewriteRule	can	have	its	behavior	modified	by	one	or	more
flags.	Flags	are	included	in	square	brackets	at	the	end	of	the	rule,
and	multiple	flags	are	separated	by	commas.

RewriteRule	pattern	target	[Flag1,Flag2,Flag3]

Each	flag	(with	a	few	exceptions)	has	a	short	form,	such	as	CO,	as
well	as	a	longer	form,	such	as	cookie.	While	it	is	most	common
to	use	the	short	form,	it	is	recommended	that	you	familiarize
yourself	with	the	long	form,	so	that	you	remember	what	each	flag
is	supposed	to	do.	Some	flags	take	one	or	more	arguments.	Flags
are	not	case	sensitive.

Flags	that	alter	metadata	associated	with	the	request	(T=,	H=,	E=)
have	no	affect	in	per-directory	and	htaccess	context,	when	a
substitution	(other	than	'-')	is	performed	during	the	same	round	of
rewrite	processing.

Presented	here	are	each	of	the	available	flags,	along	with	an
example	of	how	you	might	use	them.

B	(escape	backreferences)

The	[B]	flag	instructs	RewriteRule	to	escape	non-alphanumeric
characters	before	applying	the	transformation.

In	2.4.26	and	later,	you	can	limit	the	escaping	to	specific
characters	in	backreferences	by	listing	them:	[B=#?;].	Note:	The
space	character	can	be	used	in	the	list	of	characters	to	escape,
but	it	cannot	be	the	last	character	in	the	list.

mod_rewrite	has	to	unescape	URLs	before	mapping	them,	so
backreferences	are	unescaped	at	the	time	they	are	applied.	Using
the	B	flag,	non-alphanumeric	characters	in	backreferences	will	be
escaped.	For	example,	consider	the	rule:

RewriteRule	"^search/(.*)$"	"/search.php?term=$1"

Given	a	search	term	of	'x	&	y/z',	a	browser	will	encode	it	as
'x%20%26%20y%2Fz',	making	the	request
'search/x%20%26%20y%2Fz'.	Without	the	B	flag,	this	rewrite	rule
will	map	to	'search.php?term=x	&	y/z',	which	isn't	a	valid	URL,	and
so	would	be	encoded	as	search.php?term=x%20&y%2Fz=,
which	is	not	what	was	intended.

With	the	B	flag	set	on	this	same	rule,	the	parameters	are	re-
encoded	before	being	passed	on	to	the	output	URL,	resulting	in	a
correct	mapping	to	/search.php?term=x%20%26%20y%2Fz.

RewriteRule	"^search/(.*)$"	"/search.php?term=$1"	[B,PT]

Note	that	you	may	also	need	to	set	AllowEncodedSlashes	to
On	to	get	this	particular	example	to	work,	as	httpd	does	not	allow
encoded	slashes	in	URLs,	and	returns	a	404	if	it	sees	one.

This	escaping	is	particularly	necessary	in	a	proxy	situation,	when
the	backend	may	break	if	presented	with	an	unescaped	URL.

An	alternative	to	this	flag	is	using	a	RewriteCond	to	capture
against	%{THE_REQUEST}	which	will	capture	strings	in	the
encoded	form.

BNP|backrefnoplus	(don't	escape	space	to	+)

The	[BNP]	flag	instructs	RewriteRule	to	escape	the	space
character	in	a	backreference	to	%20	rather	than	'+'.	Useful	when
the	backreference	will	be	used	in	the	path	component	rather	than
the	query	string.

This	flag	is	available	in	version	2.4.26	and	later.

C|chain

The	[C]	or	[chain]	flag	indicates	that	the	RewriteRule	is	chained
to	the	next	rule.	That	is,	if	the	rule	matches,	then	it	is	processed	as
usual	and	control	moves	on	to	the	next	rule.	However,	if	it	does	not
match,	then	the	next	rule,	and	any	other	rules	that	are	chained
together,	are	skipped.

CO|cookie

The	[CO],	or	[cookie]	flag,	allows	you	to	set	a	cookie	when	a
particular	RewriteRule	matches.	The	argument	consists	of	three
required	fields	and	four	optional	fields.

The	full	syntax	for	the	flag,	including	all	attributes,	is	as	follows:

[CO=NAME:VALUE:DOMAIN:lifetime:path:secure:httponly]

If	a	literal	':'	character	is	needed	in	any	of	the	cookie	fields,	an
alternate	syntax	is	available.	To	opt-in	to	the	alternate	syntax,	the
cookie	"Name"	should	be	preceded	with	a	';'	character,	and	field
separators	should	be	specified	as	';'.

[CO=;NAME;VALUE:MOREVALUE;DOMAIN;lifetime;path;secure;httponly]

You	must	declare	a	name,	a	value,	and	a	domain	for	the	cookie	to
be	set.

Domain
The	domain	for	which	you	want	the	cookie	to	be	valid.	This
may	be	a	hostname,	such	as	www.example.com,	or	it	may
be	a	domain,	such	as	.example.com.	It	must	be	at	least	two
parts	separated	by	a	dot.	That	is,	it	may	not	be	merely	.com
or	.net.	Cookies	of	that	kind	are	forbidden	by	the	cookie
security	model.

You	may	optionally	also	set	the	following	values:

Lifetime
The	time	for	which	the	cookie	will	persist,	in	minutes.
A	value	of	0	indicates	that	the	cookie	will	persist	only	for	the
current	browser	session.	This	is	the	default	value	if	none	is
specified.

Path
The	path,	on	the	current	website,	for	which	the	cookie	is	valid,
such	as	/customers/	or	/files/download/.
By	default,	this	is	set	to	/	-	that	is,	the	entire	website.

Secure
If	set	to	secure,	true,	or	1,	the	cookie	will	only	be	permitted
to	be	translated	via	secure	(https)	connections.

httponly
If	set	to	HttpOnly,	true,	or	1,	the	cookie	will	have	the
HttpOnly	flag	set,	which	means	that	the	cookie	is
inaccessible	to	JavaScript	code	on	browsers	that	support	this
feature.

Consider	this	example:

RewriteEngine	On

RewriteRule	"^/index\.html"	"-"	[CO=frontdoor:yes:.example.com:1440:/]

In	the	example	give,	the	rule	doesn't	rewrite	the	request.	The	"-"
rewrite	target	tells	mod_rewrite	to	pass	the	request	through
unchanged.	Instead,	it	sets	a	cookie	called	'frontdoor'	to	a	value	of
'yes'.	The	cookie	is	valid	for	any	host	in	the	.example.com
domain.	It	is	set	to	expire	in	1440	minutes	(24	hours)	and	is
returned	for	all	URIs.

DPI|discardpath

The	DPI	flag	causes	the	PATH_INFO	portion	of	the	rewritten	URI
to	be	discarded.

This	flag	is	available	in	version	2.2.12	and	later.

In	per-directory	context,	the	URI	each	RewriteRule	compares
against	is	the	concatenation	of	the	current	values	of	the	URI	and
PATH_INFO.

The	current	URI	can	be	the	initial	URI	as	requested	by	the	client,
the	result	of	a	previous	round	of	mod_rewrite	processing,	or	the
result	of	a	prior	rule	in	the	current	round	of	mod_rewrite
processing.

In	contrast,	the	PATH_INFO	that	is	appended	to	the	URI	before
each	rule	reflects	only	the	value	of	PATH_INFO	before	this	round
of	mod_rewrite	processing.	As	a	consequence,	if	large	portions	of
the	URI	are	matched	and	copied	into	a	substitution	in	multiple
RewriteRule	directives,	without	regard	for	which	parts	of	the
URI	came	from	the	current	PATH_INFO,	the	final	URI	may	have
multiple	copies	of	PATH_INFO	appended	to	it.

Use	this	flag	on	any	substitution	where	the	PATH_INFO	that
resulted	from	the	previous	mapping	of	this	request	to	the
filesystem	is	not	of	interest.	This	flag	permanently	forgets	the
PATH_INFO	established	before	this	round	of	mod_rewrite
processing	began.	PATH_INFO	will	not	be	recalculated	until	the
current	round	of	mod_rewrite	processing	completes.	Subsequent
rules	during	this	round	of	processing	will	see	only	the	direct	result
of	substitutions,	without	any	PATH_INFO	appended.

E|env

With	the	[E],	or	[env]	flag,	you	can	set	the	value	of	an	environment
variable.	Note	that	some	environment	variables	may	be	set	after
the	rule	is	run,	thus	unsetting	what	you	have	set.	See	the
Environment	Variables	document	for	more	details	on	how
Environment	variables	work.

The	full	syntax	for	this	flag	is:

[E=VAR:VAL]

[E=!VAR]

VAL	may	contain	backreferences	($N	or	%N)	which	are	expanded.

Using	the	short	form

[E=VAR]

you	can	set	the	environment	variable	named	VAR	to	an	empty
value.

The	form

[E=!VAR]

allows	to	unset	a	previously	set	environment	variable	named	VAR.

Environment	variables	can	then	be	used	in	a	variety	of	contexts,
including	CGI	programs,	other	RewriteRule	directives,	or
CustomLog	directives.

The	following	example	sets	an	environment	variable	called	'image'
to	a	value	of	'1'	if	the	requested	URI	is	an	image	file.	Then,	that
environment	variable	is	used	to	exclude	those	requests	from	the
access	log.

RewriteRule	"\.(png|gif|jpg)$"	"-"	[E=image:1]

CustomLog	"logs/access_log"	combined	env=!image

Note	that	this	same	effect	can	be	obtained	using	SetEnvIf.	This
technique	is	offered	as	an	example,	not	as	a	recommendation.

END

Using	the	[END]	flag	terminates	not	only	the	current	round	of
rewrite	processing	(like	[L])	but	also	prevents	any	subsequent
rewrite	processing	from	occurring	in	per-directory	(htaccess)
context.

This	does	not	apply	to	new	requests	resulting	from	external
redirects.

F|forbidden

Using	the	[F]	flag	causes	the	server	to	return	a	403	Forbidden
status	code	to	the	client.	While	the	same	behavior	can	be
accomplished	using	the	Deny	directive,	this	allows	more	flexibility
in	assigning	a	Forbidden	status.

The	following	rule	will	forbid	.exe	files	from	being	downloaded
from	your	server.

RewriteRule	"\.exe"	"-"	[F]

This	example	uses	the	"-"	syntax	for	the	rewrite	target,	which
means	that	the	requested	URI	is	not	modified.	There's	no	reason
to	rewrite	to	another	URI,	if	you're	going	to	forbid	the	request.

When	using	[F],	an	[L]	is	implied	-	that	is,	the	response	is	returned
immediately,	and	no	further	rules	are	evaluated.

G|gone

The	[G]	flag	forces	the	server	to	return	a	410	Gone	status	with	the
response.	This	indicates	that	a	resource	used	to	be	available,	but
is	no	longer	available.

As	with	the	[F]	flag,	you	will	typically	use	the	"-"	syntax	for	the
rewrite	target	when	using	the	[G]	flag:

RewriteRule	"oldproduct"	"-"	[G,NC]

When	using	[G],	an	[L]	is	implied	-	that	is,	the	response	is	returned
immediately,	and	no	further	rules	are	evaluated.

H|handler

Forces	the	resulting	request	to	be	handled	with	the	specified
handler.	For	example,	one	might	use	this	to	force	all	files	without	a
file	extension	to	be	parsed	by	the	php	handler:

RewriteRule	"!\."	"-"	[H=application/x-httpd-php]

The	regular	expression	above	-	!\.	-	will	match	any	request	that
does	not	contain	the	literal	.	character.

This	can	be	also	used	to	force	the	handler	based	on	some
conditions.	For	example,	the	following	snippet	used	in	per-server
context	allows	.php	files	to	be	displayed	by	mod_php	if	they	are
requested	with	the	.phps	extension:

RewriteRule	"^(/source/.+\.php)s$"	"$1"	[H=application/x-httpd-php-source]

The	regular	expression	above	-	^(/source/.+\.php)s$	-	will
match	any	request	that	starts	with	/source/	followed	by	1	or	n
characters	followed	by	.phps	literally.	The	backreference	$1
referrers	to	the	captured	match	within	parenthesis	of	the	regular
expression.

L|last

The	[L]	flag	causes	mod_rewrite	to	stop	processing	the	rule	set.
In	most	contexts,	this	means	that	if	the	rule	matches,	no	further
rules	will	be	processed.	This	corresponds	to	the	last	command	in
Perl,	or	the	break	command	in	C.	Use	this	flag	to	indicate	that	the
current	rule	should	be	applied	immediately	without	considering
further	rules.

If	you	are	using	RewriteRule	in	either	.htaccess	files	or	in
<Directory>	sections,	it	is	important	to	have	some
understanding	of	how	the	rules	are	processed.	The	simplified	form
of	this	is	that	once	the	rules	have	been	processed,	the	rewritten
request	is	handed	back	to	the	URL	parsing	engine	to	do	what	it
may	with	it.	It	is	possible	that	as	the	rewritten	request	is	handled,
the	.htaccess	file	or	<Directory>	section	may	be	encountered
again,	and	thus	the	ruleset	may	be	run	again	from	the	start.	Most
commonly	this	will	happen	if	one	of	the	rules	causes	a	redirect	-
either	internal	or	external	-	causing	the	request	process	to	start
over.

It	is	therefore	important,	if	you	are	using	RewriteRule	directives
in	one	of	these	contexts,	that	you	take	explicit	steps	to	avoid	rules
looping,	and	not	count	solely	on	the	[L]	flag	to	terminate	execution
of	a	series	of	rules,	as	shown	below.

An	alternative	flag,	[END],	can	be	used	to	terminate	not	only	the
current	round	of	rewrite	processing	but	prevent	any	subsequent
rewrite	processing	from	occurring	in	per-directory	(htaccess)
context.	This	does	not	apply	to	new	requests	resulting	from
external	redirects.

The	example	given	here	will	rewrite	any	request	to	index.php,
giving	the	original	request	as	a	query	string	argument	to
index.php,	however,	the	RewriteCond	ensures	that	if	the

request	is	already	for	index.php,	the	RewriteRule	will	be
skipped.

RewriteBase	"/"

RewriteCond	"%{REQUEST_URI}"	"!=/index.php"

RewriteRule	"^(.*)"	"/index.php?req=$1"	[L,PT]

N|next

The	[N]	flag	causes	the	ruleset	to	start	over	again	from	the	top,
using	the	result	of	the	ruleset	so	far	as	a	starting	point.	Use	with
extreme	caution,	as	it	may	result	in	loop.

The	[Next]	flag	could	be	used,	for	example,	if	you	wished	to
replace	a	certain	string	or	letter	repeatedly	in	a	request.	The
example	shown	here	will	replace	A	with	B	everywhere	in	a
request,	and	will	continue	doing	so	until	there	are	no	more	As	to
be	replaced.

RewriteRule	"(.*)A(.*)"	"$1B$2"	[N]

You	can	think	of	this	as	a	while	loop:	While	this	pattern	still
matches	(i.e.,	while	the	URI	still	contains	an	A),	perform	this
substitution	(i.e.,	replace	the	A	with	a	B).

In	2.4.8	and	later,	this	module	returns	an	error	after	32,000
iterations	to	protect	against	unintended	looping.	An	alternative
maximum	number	of	iterations	can	be	specified	by	adding	to	the	N
flag.

#	Be	willing	to	replace	1	character	in	each	pass	of	the	loop

RewriteRule	"(.+)[><;]$"	"$1"	[N=64000]

#	...	or,	give	up	if	after	10	loops

RewriteRule	"(.+)[><;]$"	"$1"	[N=10]

NC|nocase

Use	of	the	[NC]	flag	causes	the	RewriteRule	to	be	matched	in	a
case-insensitive	manner.	That	is,	it	doesn't	care	whether	letters
appear	as	upper-case	or	lower-case	in	the	matched	URI.

In	the	example	below,	any	request	for	an	image	file	will	be	proxied
to	your	dedicated	image	server.	The	match	is	case-insensitive,	so
that	.jpg	and	.JPG	files	are	both	acceptable,	for	example.

RewriteRule	"(.*\.(jpg|gif|png))$"	"http://images.example.com$1"	[P,NC]

NE|noescape

By	default,	special	characters,	such	as	&	and	?,	for	example,	will
be	converted	to	their	hexcode	equivalent.	Using	the	[NE]	flag
prevents	that	from	happening.

RewriteRule	"^/anchor/(.+)"	"/bigpage.html#$1"	[NE,R]

The	above	example	will	redirect	/anchor/xyz	to
/bigpage.html#xyz.	Omitting	the	[NE]	will	result	in	the	#	being
converted	to	its	hexcode	equivalent,	%23,	which	will	then	result	in
a	404	Not	Found	error	condition.

NS|nosubreq

Use	of	the	[NS]	flag	prevents	the	rule	from	being	used	on
subrequests.	For	example,	a	page	which	is	included	using	an	SSI
(Server	Side	Include)	is	a	subrequest,	and	you	may	want	to	avoid
rewrites	happening	on	those	subrequests.	Also,	when	mod_dir
tries	to	find	out	information	about	possible	directory	default	files
(such	as	index.html	files),	this	is	an	internal	subrequest,	and
you	often	want	to	avoid	rewrites	on	such	subrequests.	On
subrequests,	it	is	not	always	useful,	and	can	even	cause	errors,	if
the	complete	set	of	rules	are	applied.	Use	this	flag	to	exclude
problematic	rules.

To	decide	whether	or	not	to	use	this	rule:	if	you	prefix	URLs	with
CGI-scripts,	to	force	them	to	be	processed	by	the	CGI-script,	it's
likely	that	you	will	run	into	problems	(or	significant	overhead)	on
sub-requests.	In	these	cases,	use	this	flag.

Images,	javascript	files,	or	css	files,	loaded	as	part	of	an	HTML
page,	are	not	subrequests	-	the	browser	requests	them	as
separate	HTTP	requests.

P|proxy

Use	of	the	[P]	flag	causes	the	request	to	be	handled	by
mod_proxy,	and	handled	via	a	proxy	request.	For	example,	if	you
wanted	all	image	requests	to	be	handled	by	a	back-end	image
server,	you	might	do	something	like	the	following:

RewriteRule	"/(.*)\.(jpg|gif|png)$"	"http://images.example.com/$1.$2"	[P]

Use	of	the	[P]	flag	implies	[L]	-	that	is,	the	request	is	immediately
pushed	through	the	proxy,	and	any	following	rules	will	not	be
considered.

You	must	make	sure	that	the	substitution	string	is	a	valid	URI
(typically	starting	with	http://hostname)	which	can	be	handled
by	the	mod_proxy.	If	not,	you	will	get	an	error	from	the	proxy
module.	Use	this	flag	to	achieve	a	more	powerful	implementation
of	the	ProxyPass	directive,	to	map	remote	content	into	the
namespace	of	the	local	server.

Security	Warning

Take	care	when	constructing	the	target	URL	of	the	rule,
considering	the	security	impact	from	allowing	the	client
influence	over	the	set	of	URLs	to	which	your	server	will	act	as	a
proxy.	Ensure	that	the	scheme	and	hostname	part	of	the	URL	is
either	fixed,	or	does	not	allow	the	client	undue	influence.

Performance	warning

Using	this	flag	triggers	the	use	of	mod_proxy,	without	handling
of	persistent	connections.	This	means	the	performance	of	your
proxy	will	be	better	if	you	set	it	up	with	ProxyPass	or
ProxyPassMatch

This	is	because	this	flag	triggers	the	use	of	the	default	worker,
which	does	not	handle	connection	pooling/reuse.

Avoid	using	this	flag	and	prefer	those	directives,	whenever	you
can.

Note:	mod_proxy	must	be	enabled	in	order	to	use	this	flag.

PT|passthrough

The	target	(or	substitution	string)	in	a	RewriteRule	is	assumed	to
be	a	file	path,	by	default.	The	use	of	the	[PT]	flag	causes	it	to	be
treated	as	a	URI	instead.	That	is	to	say,	the	use	of	the	[PT]	flag
causes	the	result	of	the	RewriteRule	to	be	passed	back	through
URL	mapping,	so	that	location-based	mappings,	such	as	Alias,
Redirect,	or	ScriptAlias,	for	example,	might	have	a	chance
to	take	effect.

If,	for	example,	you	have	an	Alias	for	/icons,	and	have	a
RewriteRule	pointing	there,	you	should	use	the	[PT]	flag	to
ensure	that	the	Alias	is	evaluated.

Alias	"/icons"	"/usr/local/apache/icons"

RewriteRule	"/pics/(.+)\.jpg$"	"/icons/$1.gif"	[PT]

Omission	of	the	[PT]	flag	in	this	case	will	cause	the	Alias	to	be
ignored,	resulting	in	a	'File	not	found'	error	being	returned.

The	PT	flag	implies	the	L	flag:	rewriting	will	be	stopped	in	order	to
pass	the	request	to	the	next	phase	of	processing.

Note	that	the	PT	flag	is	implied	in	per-directory	contexts	such	as
<Directory>	sections	or	in	.htaccess	files.	The	only	way	to
circumvent	that	is	to	rewrite	to	-.

QSA|qsappend

When	the	replacement	URI	contains	a	query	string,	the	default
behavior	of	RewriteRule	is	to	discard	the	existing	query	string,
and	replace	it	with	the	newly	generated	one.	Using	the	[QSA]	flag
causes	the	query	strings	to	be	combined.

Consider	the	following	rule:

RewriteRule	"/pages/(.+)"	"/page.php?page=$1"	[QSA]

With	the	[QSA]	flag,	a	request	for	/pages/123?one=two	will	be
mapped	to	/page.php?page=123&one=two.	Without	the	[QSA]
flag,	that	same	request	will	be	mapped	to	/page.php?page=123
-	that	is,	the	existing	query	string	will	be	discarded.

QSD|qsdiscard

When	the	requested	URI	contains	a	query	string,	and	the	target
URI	does	not,	the	default	behavior	of	RewriteRule	is	to	copy
that	query	string	to	the	target	URI.	Using	the	[QSD]	flag	causes
the	query	string	to	be	discarded.

This	flag	is	available	in	version	2.4.0	and	later.

Using	[QSD]	and	[QSA]	together	will	result	in	[QSD]	taking
precedence.

If	the	target	URI	has	a	query	string,	the	default	behavior	will	be
observed	-	that	is,	the	original	query	string	will	be	discarded	and
replaced	with	the	query	string	in	the	RewriteRule	target	URI.

QSL|qslast

By	default,	the	first	(left-most)	question	mark	in	the	substitution
delimits	the	path	from	the	query	string.	Using	the	[QSL]	flag
instructs	RewriteRule	to	instead	split	the	two	components	using
the	last	(right-most)	question	mark.

This	is	useful	when	mapping	to	files	that	have	literal	question
marks	in	their	filename.	If	no	query	string	is	used	in	the
substitution,	a	question	mark	can	be	appended	to	it	in	combination
with	this	flag.

This	flag	is	available	in	version	2.4.19	and	later.

R|redirect

Use	of	the	[R]	flag	causes	a	HTTP	redirect	to	be	issued	to	the
browser.	If	a	fully-qualified	URL	is	specified	(that	is,	including
http://servername/)	then	a	redirect	will	be	issued	to	that
location.	Otherwise,	the	current	protocol,	servername,	and	port
number	will	be	used	to	generate	the	URL	sent	with	the	redirect.

Any	valid	HTTP	response	status	code	may	be	specified,	using	the
syntax	[R=305],	with	a	302	status	code	being	used	by	default	if
none	is	specified.	The	status	code	specified	need	not	necessarily
be	a	redirect	(3xx)	status	code.	However,	if	a	status	code	is
outside	the	redirect	range	(300-399)	then	the	substitution	string	is
dropped	entirely,	and	rewriting	is	stopped	as	if	the	L	were	used.

In	addition	to	response	status	codes,	you	may	also	specify	redirect
status	using	their	symbolic	names:	temp	(default),	permanent,	or
seeother.

You	will	almost	always	want	to	use	[R]	in	conjunction	with	[L]	(that
is,	use	[R,L])	because	on	its	own,	the	[R]	flag	prepends
http://thishost[:thisport]	to	the	URI,	but	then	passes
this	on	to	the	next	rule	in	the	ruleset,	which	can	often	result	in
'Invalid	URI	in	request'	warnings.

S|skip

The	[S]	flag	is	used	to	skip	rules	that	you	don't	want	to	run.	The
syntax	of	the	skip	flag	is	[S=N],	where	N	signifies	the	number	of
rules	to	skip	(provided	the	RewriteRule	matches).	This	can	be
thought	of	as	a	goto	statement	in	your	rewrite	ruleset.	In	the
following	example,	we	only	want	to	run	the	RewriteRule	if	the
requested	URI	doesn't	correspond	with	an	actual	file.

#	Is	the	request	for	a	non-existent	file?

RewriteCond	"%{REQUEST_FILENAME}"	"!-f"

RewriteCond	"%{REQUEST_FILENAME}"	"!-d"

#	If	so,	skip	these	two	RewriteRules

RewriteRule	".?"	"-"	[S=2]

RewriteRule	"(.*\.gif)"	"images.php?$1"

RewriteRule	"(.*\.html)"	"docs.php?$1"

This	technique	is	useful	because	a	RewriteCond	only	applies	to
the	RewriteRule	immediately	following	it.	Thus,	if	you	want	to
make	a	RewriteCond	apply	to	several	RewriteRules,	one
possible	technique	is	to	negate	those	conditions	and	add	a
RewriteRule	with	a	[Skip]	flag.	You	can	use	this	to	make	pseudo
if-then-else	constructs:	The	last	rule	of	the	then-clause	becomes
skip=N,	where	N	is	the	number	of	rules	in	the	else-clause:

#	Does	the	file	exist?

RewriteCond	"%{REQUEST_FILENAME}"	"!-f"

RewriteCond	"%{REQUEST_FILENAME}"	"!-d"

#	Create	an	if-then-else	construct	by	skipping	3	lines	if	we	meant	to	go	to	the	"else"	stanza.

RewriteRule	".?"	"-"	[S=3]

#	IF	the	file	exists,	then:

				RewriteRule	"(.*\.gif)"	"images.php?$1"

				RewriteRule	"(.*\.html)"	"docs.php?$1"

				#	Skip	past	the	"else"	stanza.

				RewriteRule	".?"	"-"	[S=1]

#	ELSE...

				RewriteRule	"(.*)"	"404.php?file=$1"

#	END

It	is	probably	easier	to	accomplish	this	kind	of	configuration	using
the	<If>,	<ElseIf>,	and	<Else>	directives	instead.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

T|type

Sets	the	MIME	type	with	which	the	resulting	response	will	be	sent.
This	has	the	same	effect	as	the	AddType	directive.

For	example,	you	might	use	the	following	technique	to	serve	Perl
source	code	as	plain	text,	if	requested	in	a	particular	way:

#	Serve	.pl	files	as	plain	text

RewriteRule	"\.pl$"	"-"	[T=text/plain]

Or,	perhaps,	if	you	have	a	camera	that	produces	jpeg	images
without	file	extensions,	you	could	force	those	images	to	be	served
with	the	correct	MIME	type	by	virtue	of	their	file	names:

#	Files	with	'IMG'	in	the	name	are	jpg	images.

RewriteRule	"IMG"	"-"	[T=image/jpg]

Please	note	that	this	is	a	trivial	example,	and	could	be	better	done
using	<FilesMatch>	instead.	Always	consider	the	alternate
solutions	to	a	problem	before	resorting	to	rewrite,	which	will
invariably	be	a	less	efficient	solution	than	the	alternatives.

If	used	in	per-directory	context,	use	only	-	(dash)	as	the
substitution	for	the	entire	round	of	mod_rewrite	processing,
otherwise	the	MIME-type	set	with	this	flag	is	lost	due	to	an	internal
re-processing	(including	subsequent	rounds	of	mod_rewrite
processing).	The	L	flag	can	be	useful	in	this	context	to	end	the
current	round	of	mod_rewrite	processing.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Developing	modules	for	the	Apache	HTTP
Server	2.4

This	document	explains	how	you	can	develop	modules	for	the	Apache
HTTP	Server	2.4

See	also
Request	Processing	in	Apache	2.4
Apache	2.x	Hook	Functions

https://www.apache.org/foundation/contributing.html

Introduction

What	we	will	be	discussing	in	this	document
This	document	will	discuss	how	you	can	create	modules	for	the
Apache	HTTP	Server	2.4,	by	exploring	an	example	module	called
mod_example.	In	the	first	part	of	this	document,	the	purpose	of
this	module	will	be	to	calculate	and	print	out	various	digest	values
for	existing	files	on	your	web	server,	whenever	we	access	the	URL
http://hostname/filename.sum.	For	instance,	if	we	want	to
know	the	MD5	digest	value	of	the	file	located	at
http://www.example.com/index.html,	we	would	visit
http://www.example.com/index.html.sum.

In	the	second	part	of	this	document,	which	deals	with	configuration
directive	and	context	awareness,	we	will	be	looking	at	a	module
that	simply	writes	out	its	own	configuration	to	the	client.

Prerequisites
First	and	foremost,	you	are	expected	to	have	a	basic	knowledge	of
how	the	C	programming	language	works.	In	most	cases,	we	will
try	to	be	as	pedagogical	as	possible	and	link	to	documents
describing	the	functions	used	in	the	examples,	but	there	are	also
many	cases	where	it	is	necessary	to	either	just	assume	that	"it
works"	or	do	some	digging	yourself	into	what	the	hows	and	whys
of	various	function	calls.

Lastly,	you	will	need	to	have	a	basic	understanding	of	how
modules	are	loaded	and	configured	in	the	Apache	HTTP	Server,
as	well	as	how	to	get	the	headers	for	Apache	if	you	do	not	have
them	already,	as	these	are	needed	for	compiling	new	modules.

Compiling	your	module
To	compile	the	source	code	we	are	building	in	this	document,	we

will	be	using	APXS.	Assuming	your	source	file	is	called
mod_example.c,	compiling,	installing	and	activating	the	module	is
as	simple	as:

apxs	-i	-a	-c	mod_example.c

Defining	a	module

	Every	module	starts	with
the	same	declaration,	or	name	tag	if	you	will,	that	defines	a
module	as	a	separate	entity	within	Apache:

module	AP_MODULE_DECLARE_DATA			example_module	=

{	

				STANDARD20_MODULE_STUFF,

				create_dir_conf,	/*	Per-directory	configuration	handler	*/

				merge_dir_conf,		/*	Merge	handler	for	per-directory	configurations	*/

				create_svr_conf,	/*	Per-server	configuration	handler	*/

				merge_svr_conf,		/*	Merge	handler	for	per-server	configurations	*/

				directives,						/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks			/*	Our	hook	registering	function	*/

};

This	bit	of	code	lets	the	server	know	that	we	have	now	registered
a	new	module	in	the	system,	and	that	its	name	is
example_module.	The	name	of	the	module	is	used	primarily	for
two	things:

Letting	the	server	know	how	to	load	the	module	using	the
LoadModule
Setting	up	a	namespace	for	the	module	to	use	in
configurations

For	now,	we're	only	concerned	with	the	first	purpose	of	the	module
name,	which	comes	into	play	when	we	need	to	load	the	module:

LoadModule	example_module	modules/mod_example.so

In	essence,	this	tells	the	server	to	open	up	mod_example.so	and
look	for	a	module	called	example_module.

Within	this	name	tag	of	ours	is	also	a	bunch	of	references	to	how
we	would	like	to	handle	things:	Which	directives	do	we	respond	to
in	a	configuration	file	or	.htaccess,	how	do	we	operate	within
specific	contexts,	and	what	handlers	are	we	interested	in
registering	with	the	Apache	HTTP	service.	We'll	return	to	all	these
elements	later	in	this	document.

Getting	started:	Hooking	into	the	server

An	introduction	to	hooks
When	handling	requests	in	Apache	HTTP	Server	2.4,	the	first
thing	you	will	need	to	do	is	create	a	hook	into	the	request	handling
process.	A	hook	is	essentially	a	message	telling	the	server	that
you	are	willing	to	either	serve	or	at	least	take	a	glance	at	certain
requests	given	by	clients.	All	handlers,	whether	it's	mod_rewrite,
mod_authn_*,	mod_proxy	and	so	on,	are	hooked	into	specific
parts	of	the	request	process.	As	you	are	probably	aware,	modules
serve	different	purposes;	Some	are	authentication/authorization
handlers,	others	are	file	or	script	handlers	while	some	third
modules	rewrite	URIs	or	proxies	content.	Furthermore,	in	the	end,
it	is	up	to	the	user	of	the	server	how	and	when	each	module	will
come	into	place.	Thus,	the	server	itself	does	not	presume	to	know
which	module	is	responsible	for	handling	a	specific	request,	and
will	ask	each	module	whether	they	have	an	interest	in	a	given
request	or	not.	It	is	then	up	to	each	module	to	either	gently	decline
serving	a	request,	accept	serving	it	or	flat	out	deny	the	request
from	being	served,	as	authentication/authorization	modules	do:	

To	make	it	a	bit	easier	for	handlers	such	as	our	mod_example	to
know	whether	the	client	is	requesting	content	we	should	handle	or
not,	the	server	has	directives	for	hinting	to	modules	whether	their

assistance	is	needed	or	not.	Two	of	these	are	AddHandler	and
SetHandler.	Let's	take	a	look	at	an	example	using
AddHandler.	In	our	example	case,	we	want	every	request	ending
with	.sum	to	be	served	by	mod_example,	so	we'll	add	a
configuration	directive	that	tells	the	server	to	do	just	that:

AddHandler	example-handler	.sum

What	this	tells	the	server	is	the	following:	Whenever	we	receive	a
request	for	a	URI	ending	in	.sum,	we	are	to	let	all	modules	know
that	we	are	looking	for	whoever	goes	by	the	name	of	"example-
handler"	.	Thus,	when	a	request	is	being	served	that	ends	in	.sum,
the	server	will	let	all	modules	know,	that	this	request	should	be
served	by	"example-handler	".	As	you	will	see	later,	when	we	start
building	mod_example,	we	will	check	for	this	handler	tag	relayed
by	AddHandler	and	reply	to	the	server	based	on	the	value	of	this
tag.

Hooking	into	httpd
To	begin	with,	we	only	want	to	create	a	simple	handler,	that	replies
to	the	client	browser	when	a	specific	URL	is	requested,	so	we
won't	bother	setting	up	configuration	handlers	and	directives	just
yet.	Our	initial	module	definition	will	look	like	this:

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				NULL,

				NULL,

				NULL,

				NULL,

				NULL,

				register_hooks			/*	Our	hook	registering	function	*/

};

This	lets	the	server	know	that	we	are	not	interested	in	anything
fancy,	we	just	want	to	hook	onto	the	requests	and	possibly	handle
some	of	them.

The	reference	in	our	example	declaration,	register_hooks	is
the	name	of	a	function	we	will	create	to	manage	how	we	hook	onto
the	request	process.	In	this	example	module,	the	function	has	just
one	purpose;	To	create	a	simple	hook	that	gets	called	after	all	the
rewrites,	access	control	etc	has	been	handled.	Thus,	we	will	let
the	server	know,	that	we	want	to	hook	into	its	process	as	one	of
the	last	modules:

static	void	register_hooks(apr_pool_t	*pool)

{

				/*	Create	a	hook	in	the	request	handler,	so	we	get	called	when	a	request	arrives	*/

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

The	example_handler	reference	is	the	function	that	will	handle
the	request.	We	will	discuss	how	to	create	a	handler	in	the	next
chapter.

Other	useful	hooks
Hooking	into	the	request	handling	phase	is	but	one	of	many	hooks
that	you	can	create.	Some	other	ways	of	hooking	are:

ap_hook_child_init:	Place	a	hook	that	executes	when	a
child	process	is	spawned	(commonly	used	for	initializing
modules	after	the	server	has	forked)
ap_hook_pre_config:	Place	a	hook	that	executes	before
any	configuration	data	has	been	read	(very	early	hook)

ap_hook_post_config:	Place	a	hook	that	executes	after
configuration	has	been	parsed,	but	before	the	server	has
forked
ap_hook_translate_name:	Place	a	hook	that	executes
when	a	URI	needs	to	be	translated	into	a	filename	on	the
server	(think	mod_rewrite)
ap_hook_quick_handler:	Similar	to	ap_hook_handler,
except	it	is	run	before	any	other	request	hooks	(translation,
auth,	fixups	etc)
ap_hook_log_transaction:	Place	a	hook	that	executes
when	the	server	is	about	to	add	a	log	entry	of	the	current
request

Building	a	handler

A	handler	is	essentially	a	function	that	receives	a	callback	when	a
request	to	the	server	is	made.	It	is	passed	a	record	of	the	current
request	(how	it	was	made,	which	headers	and	requests	were
passed	along,	who's	giving	the	request	and	so	on),	and	is	put	in
charge	of	either	telling	the	server	that	it's	not	interested	in	the
request	or	handle	the	request	with	the	tools	provided.

A	simple	"Hello,	world!"	handler
Let's	start	off	by	making	a	very	simple	request	handler	that	does
the	following:

1.	 Check	that	this	is	a	request	that	should	be	served	by
"example-handler"

2.	 Set	the	content	type	of	our	output	to	text/html

3.	 Write	"Hello,	world!"	back	to	the	client	browser

4.	 Let	the	server	know	that	we	took	care	of	this	request	and
everything	went	fine

In	C	code,	our	example	handler	will	now	look	like	this:

static	int	example_handler(request_rec	*r)

{

				/*	First	off,	we	need	to	check	if	this	is	a	call	for	the	"example-handler"	handler.

					*	If	it	is,	we	accept	it	and	do	our	things,	if	not,	we	simply	return	DECLINED,

					*	and	the	server	will	try	somewhere	else.

					*/

				if	(!r->handler	||	strcmp(r->handler,	"example-handler"))	return	(DECLINED);

				

				/*	Now	that	we	are	handling	this	request,	we'll	write	out	"Hello,	world!"	to	the	client.

					*	To	do	so,	we	must	first	set	the	appropriate	content	type,	followed	by	our	output.

					*/

				ap_set_content_type(r,	"text/html");

				ap_rprintf(r,	"Hello,	world!");

				

				/*	Lastly,	we	must	tell	the	server	that	we	took	care	of	this	request	and	everything	went	fine.

					*	We	do	so	by	simply	returning	the	value	OK	to	the	server.

					*/

				return	OK;

}

Now,	we	put	all	we	have	learned	together	and	end	up	with	a
program	that	looks	like	mod_example_1.c	.	The	functions	used	in
this	example	will	be	explained	later	in	the	section	"Some	useful
functions	you	should	know".

The	request_rec	structure
The	most	essential	part	of	any	request	is	the	request	record	.	In	a
call	to	a	handler	function,	this	is	represented	by	the
request_rec*	structure	passed	along	with	every	call	that	is
made.	This	struct,	typically	just	referred	to	as	r	in	modules,
contains	all	the	information	you	need	for	your	module	to	fully
process	any	HTTP	request	and	respond	accordingly.

Some	key	elements	of	the	request_rec	structure	are:

r->handler	(char*):	Contains	the	name	of	the	handler
the	server	is	currently	asking	to	do	the	handling	of	this	request
r->method	(char*):	Contains	the	HTTP	method	being
used,	f.x.	GET	or	POST
r->filename	(char*):	Contains	the	translated	filename
the	client	is	requesting
r->args	(char*):	Contains	the	query	string	of	the
request,	if	any
r->headers_in	(apr_table_t*):	Contains	all	the
headers	sent	by	the	client
r->connection	(conn_rec*):	A	record	containing

http://people.apache.org/~humbedooh/mods/examples/mod_example_1.c

information	about	the	current	connection
r->user	(char*):	If	the	URI	requires	authentication,	this
is	set	to	the	username	provided
r->useragent_ip	(char*):	The	IP	address	of	the	client
connecting	to	us
r->pool	(apr_pool_t*):	The	memory	pool	of	this
request.	We'll	discuss	this	in	the	"Memory	management"
chapter.

A	complete	list	of	all	the	values	contained	within	the
request_rec	structure	can	be	found	in	the	httpd.h	header	file
or	at
http://ci.apache.org/projects/httpd/trunk/doxygen/structrequest__rec.html

Let's	try	out	some	of	these	variables	in	another	example	handler:

static	int	example_handler(request_rec	*r)

{

				/*	Set	the	appropriate	content	type	*/

				ap_set_content_type(r,	"text/html");

				/*	Print	out	the	IP	address	of	the	client	connecting	to	us:	*/

				ap_rprintf(r,	"<h2>Hello,	%s!</h2>",	r->useragent_ip);

				

				/*	If	we	were	reached	through	a	GET	or	a	POST	request,	be	happy,	else	sad.	*/

				if	(!strcmp(r->method,	"POST")	||	!strcmp(r->method,	"GET"))	{

								ap_rputs("You	used	a	GET	or	a	POST	method,	that	makes	us	happy!
",	r);

				}

				else	{

								ap_rputs("You	did	not	use	POST	or	GET,	that	makes	us	sad	:(
",	r);

				}

				/*	Lastly,	if	there	was	a	query	string,	let's	print	that	too!	*/

				if	(r->args)	{

								ap_rprintf(r,	"Your	query	string	was:	%s",	r->args);

				}

http://svn.apache.org/repos/asf/httpd/httpd/trunk/include/httpd.h
http://ci.apache.org/projects/httpd/trunk/doxygen/structrequest__rec.html

				return	OK;

}

Return	values
Apache	relies	on	return	values	from	handlers	to	signify	whether	a
request	was	handled	or	not,	and	if	so,	whether	the	request	went
well	or	not.	If	a	module	is	not	interested	in	handling	a	specific
request,	it	should	always	return	the	value	DECLINED.	If	it	is
handling	a	request,	it	should	either	return	the	generic	value	OK,	or
a	specific	HTTP	status	code,	for	example:

static	int	example_handler(request_rec	*r)

{

				/*	Return	404:	Not	found	*/

				return	HTTP_NOT_FOUND;

}

Returning	OK	or	a	HTTP	status	code	does	not	necessarily	mean
that	the	request	will	end.	The	server	may	still	have	other	handlers
that	are	interested	in	this	request,	for	instance	the	logging	modules
which,	upon	a	successful	request,	will	write	down	a	summary	of
what	was	requested	and	how	it	went.	To	do	a	full	stop	and	prevent
any	further	processing	after	your	module	is	done,	you	can	return
the	value	DONE	to	let	the	server	know	that	it	should	cease	all
activity	on	this	request	and	carry	on	with	the	next,	without
informing	other	handlers.	
General	response	codes:

DECLINED:	We	are	not	handling	this	request
OK:	We	handled	this	request	and	it	went	well
DONE:	We	handled	this	request	and	the	server	should	just
close	this	thread	without	further	processing

HTTP	specific	return	codes	(excerpt):

HTTP_OK	(200):	Request	was	okay
HTTP_MOVED_PERMANENTLY	(301):	The	resource	has
moved	to	a	new	URL
HTTP_UNAUTHORIZED	(401):	Client	is	not	authorized	to
visit	this	page
HTTP_FORBIDDEN	(403):	Permission	denied
HTTP_NOT_FOUND	(404):	File	not	found
HTTP_INTERNAL_SERVER_ERROR	(500):	Internal	server
error	(self	explanatory)

Some	useful	functions	you	should	know
ap_rputs(const	char	*string,	request_rec	*r):	
Sends	a	string	of	text	to	the	client.	This	is	a	shorthand	version
of	ap_rwrite.

ap_rputs("Hello,	world!",	r);

ap_rprintf:	
This	function	works	just	like	printf,	except	it	sends	the
result	to	the	client.

ap_rprintf(r,	"Hello,	%s!",	r->useragent_ip);

ap_set_content_type(request_rec	*r,	const

char	*type):	
Sets	the	content	type	of	the	output	you	are	sending.

ap_set_content_type(r,	"text/plain");	/*	force	a	raw	text	output	*/

http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__PROTO.html#gac827cd0537d2b6213a7c06d7c26cc36e
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__PROTO.html#ga5e91eb6ca777c9a427b2e82bf1eeb81d
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__PROTO.html#gaa2f8412c400197338ec509f4a45e4579

Memory	management
Managing	your	resources	in	Apache	HTTP	Server	2.4	is	quite
easy,	thanks	to	the	memory	pool	system.	In	essence,	each	server,
connection	and	request	have	their	own	memory	pool	that	gets
cleaned	up	when	its	scope	ends,	e.g.	when	a	request	is	done	or
when	a	server	process	shuts	down.	All	your	module	needs	to	do	is
latch	onto	this	memory	pool,	and	you	won't	have	to	worry	about
having	to	clean	up	after	yourself	-	pretty	neat,	huh?

In	our	module,	we	will	primarily	be	allocating	memory	for	each
request,	so	it's	appropriate	to	use	the	r->pool	reference	when
creating	new	objects.	A	few	of	the	functions	for	allocating	memory
within	a	pool	are:

void*	apr_palloc(apr_pool_t	*p,	apr_size_t

size):	Allocates	size	number	of	bytes	in	the	pool	for	you
void*	apr_pcalloc(apr_pool_t	*p,	apr_size_t

size):	Allocates	size	number	of	bytes	in	the	pool	for	you
and	sets	all	bytes	to	0
char*	apr_pstrdup(apr_pool_t	*p,	const	char

*s):	Creates	a	duplicate	of	the	string	s.	This	is	useful	for
copying	constant	values	so	you	can	edit	them
char*	apr_psprintf(apr_pool_t	*p,	const	char

*fmt,	...):	Similar	to	sprintf,	except	the	server	supplies
you	with	an	appropriately	allocated	target	variable

Let's	put	these	functions	into	an	example	handler:

static	int	example_handler(request_rec	*r)

{

				const	char	*original	=	"You	can't	edit	this!";

				char	*copy;

				int	*integers;

				

http://apr.apache.org/docs/apr/1.4/group__apr__pools.html#ga85f1e193c31d109affda72f9a92c6915
http://apr.apache.org/docs/apr/1.4/group__apr__pools.html#gaf61c098ad258069d64cdf8c0a9369f9e
http://apr.apache.org/docs/apr/1.4/group__apr__strings.html#gabc79e99ff19abbd7cfd18308c5f85d47
http://apr.apache.org/docs/apr/1.4/group__apr__strings.html#ga3eca76b8d293c5c3f8021e45eda813d8

				/*	Allocate	space	for	10	integer	values	and	set	them	all	to	zero.	*/

				integers	=	apr_pcalloc(r->pool,	sizeof(int)*10);	

				

				/*	Create	a	copy	of	the	'original'	variable	that	we	can	edit.	*/

				copy	=	apr_pstrdup(r->pool,	original);

				return	OK;

}

This	is	all	well	and	good	for	our	module,	which	won't	need	any	pre-
initialized	variables	or	structures.	However,	if	we	wanted	to
initialize	something	early	on,	before	the	requests	come	rolling	in,
we	could	simply	add	a	call	to	a	function	in	our	register_hooks
function	to	sort	it	out:

static	void	register_hooks(apr_pool_t	*pool)

{

				/*	Call	a	function	that	initializes	some	stuff	*/

				example_init_function(pool);

				/*	Create	a	hook	in	the	request	handler,	so	we	get	called	when	a	request	arrives	*/

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

In	this	pre-request	initialization	function	we	would	not	be	using	the
same	pool	as	we	did	when	allocating	resources	for	request-based
functions.	Instead,	we	would	use	the	pool	given	to	us	by	the	server
for	allocating	memory	on	a	per-process	based	level.

Parsing	request	data
In	our	example	module,	we	would	like	to	add	a	feature,	that
checks	which	type	of	digest,	MD5	or	SHA1	the	client	would	like	to
see.	This	could	be	solved	by	adding	a	query	string	to	the	request.
A	query	string	is	typically	comprised	of	several	keys	and	values
put	together	in	a	string,	for	instance

valueA=yes&valueB=no&valueC=maybe.	It	is	up	to	the
module	itself	to	parse	these	and	get	the	data	it	requires.	In	our
example,	we'll	be	looking	for	a	key	called	digest,	and	if	set	to
md5,	we'll	produce	an	MD5	digest,	otherwise	we'll	produce	a	SHA1
digest.

Since	the	introduction	of	Apache	HTTP	Server	2.4,	parsing
request	data	from	GET	and	POST	requests	have	never	been
easier.	All	we	require	to	parse	both	GET	and	POST	data	is	four
simple	lines:

apr_table_t	*GET;	

apr_array_header_t*POST;	

ap_args_to_table(r,	&GET);	

ap_parse_form_data(r,	NULL,	&POST,	-1,	8192);

In	our	specific	example	module,	we're	looking	for	the	digest
value	from	the	query	string,	which	now	resides	inside	a	table
called	GET.	To	extract	this	value,	we	need	only	perform	a	simple
operation:

/*	Get	the	"digest"	key	from	the	query	string,	if	any.	*/

const	char	*digestType	=	apr_table_get(GET,	"digest");

/*	If	no	key	was	returned,	we	will	set	a	default	value	instead.	*/

if	(!digestType)	digestType	=	"sha1";

The	structures	used	for	the	POST	and	GET	data	are	not	exactly
the	same,	so	if	we	were	to	fetch	a	value	from	POST	data	instead

http://ci.apache.org/projects/httpd/trunk/doxygen/group__apr__tables.html#gad7ea82d6608a4a633fc3775694ab71e4
http://ci.apache.org/projects/httpd/trunk/doxygen/structapr__array__header__t.html
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__SCRIPT.html#gaed25877b529623a4d8f99f819ba1b7bd
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__DAEMON.html#ga9d426b6382b49754d4f87c55f65af202

of	the	query	string,	we	would	have	to	resort	to	a	few	more	lines,	as
outlined	in	this	example	in	the	last	chapter	of	this	document.

Making	an	advanced	handler
Now	that	we	have	learned	how	to	parse	form	data	and	manage
our	resources,	we	can	move	on	to	creating	an	advanced	version	of
our	module,	that	spits	out	the	MD5	or	SHA1	digest	of	files:

static	int	example_handler(request_rec	*r)

{

				int	rc,	exists;

				apr_finfo_t	finfo;

				apr_file_t	*file;

				char	*filename;

				char	buffer[256];

				apr_size_t	readBytes;

				int	n;

				apr_table_t	*GET;

				apr_array_header_t	*POST;

				const	char	*digestType;

				

				

				/*	Check	that	the	"example-handler"	handler	is	being	called.	*/

				if	(!r->handler	||	strcmp(r->handler,	"example-handler"))	return	(DECLINED);

				

				/*	Figure	out	which	file	is	being	requested	by	removing	the	.sum	from	it	*/

				filename	=	apr_pstrdup(r->pool,	r->filename);

				filename[strlen(filename)-4]	=	0;	/*	Cut	off	the	last	4	characters.	*/

				

				/*	Figure	out	if	the	file	we	request	a	sum	on	exists	and	isn't	a	directory	*/

				rc	=	apr_stat(&finfo,	filename,	APR_FINFO_MIN,	r->pool);

				if	(rc	==	APR_SUCCESS)	{

								exists	=

								(

												(finfo.filetype	!=	APR_NOFILE)

								&&		!(finfo.filetype	&	APR_DIR)

);

								if	(!exists)	return	HTTP_NOT_FOUND;	/*	Return	a	404	if	not	found.	*/

				}

				/*	If	apr_stat	failed,	we're	probably	not	allowed	to	check	this	file.	*/

				else	return	HTTP_FORBIDDEN;

				

				/*	Parse	the	GET	and,	optionally,	the	POST	data	sent	to	us	*/

				

				ap_args_to_table(r,	&GET);

				ap_parse_form_data(r,	NULL,	&POST,	-1,	8192);

				

				/*	Set	the	appropriate	content	type	*/

				ap_set_content_type(r,	"text/html");

				

				/*	Print	a	title	and	some	general	information	*/

				ap_rprintf(r,	"<h2>Information	on	%s:</h2>",	filename);

				ap_rprintf(r,	"Size:	%u	bytes
",	finfo.size);

				

				/*	Get	the	digest	type	the	client	wants	to	see	*/

				digestType	=	apr_table_get(GET,	"digest");

				if	(!digestType)	digestType	=	"MD5";

				

				

				rc	=	apr_file_open(&file,	filename,	APR_READ,	APR_OS_DEFAULT,	r->pool);

				if	(rc	==	APR_SUCCESS)	{

								

								/*	Are	we	trying	to	calculate	the	MD5	or	the	SHA1	digest?	*/

								if	(!strcasecmp(digestType,	"md5"))	{

												/*	Calculate	the	MD5	sum	of	the	file	*/

												union	{

																char						chr[16];

																uint32_t		num[4];

												}	digest;

												apr_md5_ctx_t	md5;

												apr_md5_init(&md5);

												readBytes	=	256;

												while	(apr_file_read(file,	buffer,	&readBytes)	==	APR_SUCCESS)	{

																apr_md5_update(&md5,	buffer,	readBytes);

												}

												apr_md5_final(digest.chr,	&md5);

												

												/*	Print	out	the	MD5	digest	*/

												ap_rputs("MD5:	<code>",	r);

												for	(n	=	0;	n	<	APR_MD5_DIGESTSIZE/4;	n++)	{

																ap_rprintf(r,	"%08x",	digest.num[n]);

												}

												ap_rputs("</code>",	r);

												/*	Print	a	link	to	the	SHA1	version	*/

												ap_rputs("
View	the	SHA1	hash	instead",	r);

								}

								else	{

												/*	Calculate	the	SHA1	sum	of	the	file	*/

												union	{

																char						chr[20];

																uint32_t		num[5];

												}	digest;

												apr_sha1_ctx_t	sha1;

												apr_sha1_init(&sha1);

												readBytes	=	256;

												while	(apr_file_read(file,	buffer,	&readBytes)	==	APR_SUCCESS)	{

																apr_sha1_update(&sha1,	buffer,	readBytes);

												}

												apr_sha1_final(digest.chr,	&sha1);

												

												/*	Print	out	the	SHA1	digest	*/

												ap_rputs("SHA1:	<code>",	r);

												for	(n	=	0;	n	<	APR_SHA1_DIGESTSIZE/4;	n++)	{

																ap_rprintf(r,	"%08x",	digest.num[n]);

												}

												ap_rputs("</code>",	r);

												

												/*	Print	a	link	to	the	MD5	version	*/

												ap_rputs("
View	the	MD5	hash	instead",	r);

								}

								apr_file_close(file);

								

				}				

				/*	Let	the	server	know	that	we	responded	to	this	request.	*/

				return	OK;

}

This	version	in	its	entirety	can	be	found	here:	mod_example_2.c.

http://people.apache.org/~humbedooh/mods/examples/mod_example_2.c

Adding	configuration	options

In	this	next	segment	of	this	document,	we	will	turn	our	eyes	away
from	the	digest	module	and	create	a	new	example	module,	whose
only	function	is	to	write	out	its	own	configuration.	The	purpose	of
this	is	to	examine	how	the	server	works	with	configuration,	and
what	happens	when	you	start	writing	advanced	configurations	for
your	modules.

An	introduction	to	configuration	directives
If	you	are	reading	this,	then	you	probably	already	know	what	a
configuration	directive	is.	Simply	put,	a	directive	is	a	way	of	telling
an	individual	module	(or	a	set	of	modules)	how	to	behave,	such	as
these	directives	control	how	mod_rewrite	works:

RewriteEngine	On

RewriteCond	"%{REQUEST_URI}"	"^/foo/bar"

RewriteRule	"^/foo/bar/(.*)$"	"/foobar?page=$1"

Each	of	these	configuration	directives	are	handled	by	a	separate
function,	that	parses	the	parameters	given	and	sets	up	a
configuration	accordingly.

Making	an	example	configuration
To	begin	with,	we'll	create	a	basic	configuration	in	C-space:

typedef	struct	{

				int									enabled;						/*	Enable	or	disable	our	module	*/

				const	char	*path;									/*	Some	path	to...something	*/

				int									typeOfAction;	/*	1	means	action	A,	2	means	action	B	and	so	on	*/

}	example_config;

Now,	let's	put	this	into	perspective	by	creating	a	very	small	module

that	just	prints	out	a	hard-coded	configuration.	You'll	notice	that	we
use	the	register_hooks	function	for	initializing	the	configuration
values	to	their	defaults:

typedef	struct	{

				int									enabled;						/*	Enable	or	disable	our	module	*/

				const	char	*path;									/*	Some	path	to...something	*/

				int									typeOfAction;	/*	1	means	action	A,	2	means	action	B	and	so	on	*/

}	example_config;

static	example_config	config;

static	int	example_handler(request_rec	*r)

{

				if	(!r->handler	||	strcmp(r->handler,	"example-handler"))	return(DECLINED);

				ap_set_content_type(r,	"text/plain");

				ap_rprintf(r,	"Enabled:	%u\n",	config.enabled);

				ap_rprintf(r,	"Path:	%s\n",	config.path);

				ap_rprintf(r,	"TypeOfAction:	%x\n",	config.typeOfAction);

				return	OK;

}

static	void	register_hooks(apr_pool_t	*pool)	

{

				config.enabled	=	1;

				config.path	=	"/foo/bar";

				config.typeOfAction	=	0x00;

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

/*	Define	our	module	as	an	entity	and	assign	a	function	for	registering	hooks		*/

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				NULL,												/*	Per-directory	configuration	handler	*/

				NULL,												/*	Merge	handler	for	per-directory	configurations	*/

				NULL,												/*	Per-server	configuration	handler	*/

				NULL,												/*	Merge	handler	for	per-server	configurations	*/

				NULL,												/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks			/*	Our	hook	registering	function	*/

};

So	far	so	good.	To	access	our	new	handler,	we	could	add	the
following	to	our	configuration:

<Location	"/example">

				SetHandler	example-handler

</Location>

When	we	visit,	we'll	see	our	current	configuration	being	spit	out	by
our	module.

Registering	directives	with	the	server
What	if	we	want	to	change	our	configuration,	not	by	hard-coding
new	values	into	the	module,	but	by	using	either	the	httpd.conf	file
or	possibly	a	.htaccess	file?	It's	time	to	let	the	server	know	that	we
want	this	to	be	possible.	To	do	so,	we	must	first	change	our	name
tag	to	include	a	reference	to	the	configuration	directives	we	want
to	register	with	the	server:

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				NULL,															/*	Per-directory	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-directory	configurations	*/

				NULL,															/*	Per-server	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-server	configurations	*/

				example_directives,	/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks						/*	Our	hook	registering	function	*/

};

This	will	tell	the	server	that	we	are	now	accepting	directives	from
the	configuration	files,	and	that	the	structure	called
example_directives	holds	information	on	what	our	directives
are	and	how	they	work.	Since	we	have	three	different	variables	in
our	module	configuration,	we	will	add	a	structure	with	three
directives	and	a	NULL	at	the	end:

static	const	command_rec								example_directives[]	=

{

				AP_INIT_TAKE1("exampleEnabled",	example_set_enabled,	NULL,	RSRC_CONF,	"Enable	or	disable	mod_example"),

				AP_INIT_TAKE1("examplePath",	example_set_path,	NULL,	RSRC_CONF,	"The	path	to	whatever"),

				AP_INIT_TAKE2("exampleAction",	example_set_action,	NULL,	RSRC_CONF,	"Special	action	value!"),

				{	NULL	}

};

As	you	can	see,	each	directive	needs	at	least	5	parameters	set:

1.	 AP_INIT_TAKE1:	This	is	a	macro	that	tells	the	server	that
this	directive	takes	one	and	only	one	argument.	If	we	required
two	arguments,	we	could	use	the	macro	AP_INIT_TAKE2
and	so	on	(refer	to	httpd_conf.h	for	more	macros).

2.	 exampleEnabled:	This	is	the	name	of	our	directive.	More
precisely,	it	is	what	the	user	must	put	in	his/her	configuration
in	order	to	invoke	a	configuration	change	in	our	module.

3.	 example_set_enabled:	This	is	a	reference	to	a	C	function
that	parses	the	directive	and	sets	the	configuration

http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__CONFIG.html#ga07c7d22ae17805e61204463326cf9c34
http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__CONFIG.html#gafaec43534fcf200f37d9fecbf9247c21

accordingly.	We	will	discuss	how	to	make	this	in	the	following
paragraph.

4.	 RSRC_CONF:	This	tells	the	server	where	the	directive	is
permitted.	We'll	go	into	details	on	this	value	in	the	later
chapters,	but	for	now,	RSRC_CONF	means	that	the	server	will
only	accept	these	directives	in	a	server	context.

5.	 "Enable	or	disable....":	This	is	simply	a	brief
description	of	what	the	directive	does.

(The	"missing"	parameter	in	our	definition,	which	is	usually	set	to
NULL,	is	an	optional	function	that	can	be	run	after	the	initial
function	to	parse	the	arguments	have	been	run.	This	is	usually
omitted,	as	the	function	for	verifying	arguments	might	as	well	be
used	to	set	them.)

The	directive	handler	function
Now	that	we	have	told	the	server	to	expect	some	directives	for	our
module,	it's	time	to	make	a	few	functions	for	handling	these.	What
the	server	reads	in	the	configuration	file(s)	is	text,	and	so	naturally,
what	it	passes	along	to	our	directive	handler	is	one	or	more
strings,	that	we	ourselves	need	to	recognize	and	act	upon.	You'll
notice,	that	since	we	set	our	exampleAction	directive	to	accept
two	arguments,	its	C	function	also	has	an	additional	parameter
defined:

/*	Handler	for	the	"exampleEnabled"	directive	*/

const	char	*example_set_enabled(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				if(!strcasecmp(arg,	"on"))	config.enabled	=	1;

				else	config.enabled	=	0;

				return	NULL;

}

/*	Handler	for	the	"examplePath"	directive	*/

const	char	*example_set_path(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				config.path	=	arg;

				return	NULL;

}

/*	Handler	for	the	"exampleAction"	directive	*/

/*	Let's	pretend	this	one	takes	one	argument	(file	or	db),	and	a	second	(deny	or	allow),	*/

/*	and	we	store	it	in	a	bit-wise	manner.	*/

const	char	*example_set_action(cmd_parms	*cmd,	void	*cfg,	const	char	*arg1,	const	char	*arg2)

{

				if(!strcasecmp(arg1,	"file"))	config.typeOfAction	=	0x01;

				else	config.typeOfAction	=	0x02;

				

				if(!strcasecmp(arg2,	"deny"))	config.typeOfAction	+=	0x10;

				else	config.typeOfAction	+=	0x20;

				return	NULL;

}

Putting	it	all	together
Now	that	we	have	our	directives	set	up,	and	handlers	configured
for	them,	we	can	assemble	our	module	into	one	big	file:

/*	mod_example_config_simple.c:	*/

#include	<stdio.h>

#include	"apr_hash.h"

#include	"ap_config.h"

#include	"ap_provider.h"

#include	"httpd.h"

#include	"http_core.h"

#include	"http_config.h"

#include	"http_log.h"

#include	"http_protocol.h"

#include	"http_request.h"

/*

	==

	Our	configuration	prototype	and	declaration:

	==

	*/

typedef	struct	{

				int									enabled;						/*	Enable	or	disable	our	module	*/

				const	char	*path;									/*	Some	path	to...something	*/

				int									typeOfAction;	/*	1	means	action	A,	2	means	action	B	and	so	on	*/

}	example_config;

static	example_config	config;

/*

	==

	Our	directive	handlers:

	==

	*/

/*	Handler	for	the	"exampleEnabled"	directive	*/

const	char	*example_set_enabled(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				if(!strcasecmp(arg,	"on"))	config.enabled	=	1;

				else	config.enabled	=	0;

				return	NULL;

}

/*	Handler	for	the	"examplePath"	directive	*/

const	char	*example_set_path(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				config.path	=	arg;

				return	NULL;

}

/*	Handler	for	the	"exampleAction"	directive	*/

/*	Let's	pretend	this	one	takes	one	argument	(file	or	db),	and	a	second	(deny	or	allow),	*/

/*	and	we	store	it	in	a	bit-wise	manner.	*/

const	char	*example_set_action(cmd_parms	*cmd,	void	*cfg,	const	char	*arg1,	const	char	*arg2)

{

				if(!strcasecmp(arg1,	"file"))	config.typeOfAction	=	0x01;

				else	config.typeOfAction	=	0x02;

				

				if(!strcasecmp(arg2,	"deny"))	config.typeOfAction	+=	0x10;

				else	config.typeOfAction	+=	0x20;

				return	NULL;

}

/*

	==

	The	directive	structure	for	our	name	tag:

	==

	*/

static	const	command_rec								example_directives[]	=

{

				AP_INIT_TAKE1("exampleEnabled",	example_set_enabled,	NULL,	RSRC_CONF,	"Enable	or	disable	mod_example"),

				AP_INIT_TAKE1("examplePath",	example_set_path,	NULL,	RSRC_CONF,	"The	path	to	whatever"),

				AP_INIT_TAKE2("exampleAction",	example_set_action,	NULL,	RSRC_CONF,	"Special	action	value!"),

				{	NULL	}

};

/*

	==

	Our	module	handler:

	==

	*/

static	int	example_handler(request_rec	*r)

{

				if(!r->handler	||	strcmp(r->handler,	"example-handler"))	return(DECLINED);

				ap_set_content_type(r,	"text/plain");

				ap_rprintf(r,	"Enabled:	%u\n",	config.enabled);

				ap_rprintf(r,	"Path:	%s\n",	config.path);

				ap_rprintf(r,	"TypeOfAction:	%x\n",	config.typeOfAction);

				return	OK;

}

/*

	==

	The	hook	registration	function	(also	initializes	the	default	config	values):

	==

	*/

static	void	register_hooks(apr_pool_t	*pool)	

{

				config.enabled	=	1;

				config.path	=	"/foo/bar";

				config.typeOfAction	=	3;

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

/*

	==

	Our	module	name	tag:

	==

	*/

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				NULL,															/*	Per-directory	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-directory	configurations	*/

				NULL,															/*	Per-server	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-server	configurations	*/

				example_directives,	/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks						/*	Our	hook	registering	function	*/

};

In	our	httpd.conf	file,	we	can	now	change	the	hard-coded
configuration	by	adding	a	few	lines:

ExampleEnabled	On

ExamplePath	"/usr/bin/foo"

ExampleAction	file	allow

And	thus	we	apply	the	configuration,	visit	/example	on	our	web
site,	and	we	see	the	configuration	has	adapted	to	what	we	wrote	in
our	configuration	file.

Context	aware	configurations

Introduction	to	context	aware	configurations
In	Apache	HTTP	Server	2.4,	different	URLs,	virtual	hosts,
directories	etc	can	have	very	different	meanings	to	the	user	of	the
server,	and	thus	different	contexts	within	which	modules	must
operate.	For	example,	let's	assume	you	have	this	configuration	set
up	for	mod_rewrite:

<Directory	"/var/www">

				RewriteCond	"%{HTTP_HOST}"	"^example.com$"

				RewriteRule	"(.*)"	"http://www.example.com/$1"

</Directory>

<Directory	"/var/www/sub">

				RewriteRule	"^foobar$"	"index.php?foobar=true"

</Directory>

In	this	example,	you	will	have	set	up	two	different	contexts	for
mod_rewrite:

1.	 Inside	/var/www,	all	requests	for	http://example.com
must	go	to	http://www.example.com

2.	 Inside	/var/www/sub,	all	requests	for	foobar	must	go	to
index.php?foobar=true

If	mod_rewrite	(or	the	entire	server	for	that	matter)	wasn't	context
aware,	then	these	rewrite	rules	would	just	apply	to	every	and	any
request	made,	regardless	of	where	and	how	they	were	made,	but
since	the	module	can	pull	the	context	specific	configuration
straight	from	the	server,	it	does	not	need	to	know	itself,	which	of
the	directives	are	valid	in	this	context,	since	the	server	takes	care
of	this.

So	how	does	a	module	get	the	specific	configuration	for	the	server,

directory	or	location	in	question?	It	does	so	by	making	one	simple
call:

example_config	*config	=	(example_config*)	ap_get_module_config

That's	it!	Of	course,	a	whole	lot	goes	on	behind	the	scenes,	which
we	will	discuss	in	this	chapter,	starting	with	how	the	server	came
to	know	what	our	configuration	looks	like,	and	how	it	came	to	be
set	up	as	it	is	in	the	specific	context.

Our	basic	configuration	setup
In	this	chapter,	we	will	be	working	with	a	slightly	modified	version
of	our	previous	context	structure.	We	will	set	a	context	variable
that	we	can	use	to	track	which	context	configuration	is	being	used
by	the	server	in	various	places:

typedef	struct	{

				char								context[256];

				char								path[256];

				int									typeOfAction;

				int									enabled;

}	example_config;

Our	handler	for	requests	will	also	be	modified,	yet	still	very	simple:

static	int	example_handler(request_rec	*r)

{

				if(!r->handler	||	strcmp(r->handler,	"example-handler"))	return(DECLINED);

				example_config	*config	=	(example_config*)	ap_get_module_config(r->per_dir_config,	&example_module);

				ap_set_content_type(r,	"text/plain");

				ap_rprintf("Enabled:	%u\n",	config->enabled);

				ap_rprintf("Path:	%s\n",	config->path);

				ap_rprintf("TypeOfAction:	%x\n",	config->typeOfAction);

http://ci.apache.org/projects/httpd/trunk/doxygen/group__APACHE__CORE__CONFIG.html#ga1093a5908a384eacc929b028c79f2a02

				ap_rprintf("Context:	%s\n",	config->context);

				return	OK;

}

Choosing	a	context
Before	we	can	start	making	our	module	context	aware,	we	must
first	define,	which	contexts	we	will	accept.	As	we	saw	in	the
previous	chapter,	defining	a	directive	required	five	elements	be
set:

AP_INIT_TAKE1("exampleEnabled",	example_set_enabled,	NULL,	RSRC_CONF,	"Enable	or	disable	mod_example"),

The	RSRC_CONF	definition	told	the	server	that	we	would	only	allow
this	directive	in	a	global	server	context,	but	since	we	are	now
trying	out	a	context	aware	version	of	our	module,	we	should	set
this	to	something	more	lenient,	namely	the	value	ACCESS_CONF,
which	lets	us	use	the	directive	inside	<Directory>	and	<Location>
blocks.	For	more	control	over	the	placement	of	your	directives,	you
can	combine	the	following	restrictions	together	to	form	a	specific
rule:

RSRC_CONF:	Allow	in	.conf	files	(not	.htaccess)	outside
<Directory>	or	<Location>
ACCESS_CONF:	Allow	in	.conf	files	(not	.htaccess)	inside
<Directory>	or	<Location>
OR_OPTIONS:	Allow	in	.conf	files	and	.htaccess	when
AllowOverride	Options	is	set
OR_FILEINFO:	Allow	in	.conf	files	and	.htaccess	when
AllowOverride	FileInfo	is	set
OR_AUTHCFG:	Allow	in	.conf	files	and	.htaccess	when
AllowOverride	AuthConfig	is	set

OR_INDEXES:	Allow	in	.conf	files	and	.htaccess	when
AllowOverride	Indexes	is	set
OR_ALL:	Allow	anywhere	in	.conf	files	and	.htaccess

Using	the	server	to	allocate	configuration	slots
A	much	smarter	way	to	manage	your	configurations	is	by	letting
the	server	help	you	create	them.	To	do	so,	we	must	first	start	off	by
changing	our	name	tag	to	let	the	server	know,	that	it	should	assist
us	in	creating	and	managing	our	configurations.	Since	we	have
chosen	the	per-directory	(or	per-location)	context	for	our	module
configurations,	we'll	add	a	per-directory	creator	and	merger
function	reference	in	our	tag:

module	AP_MODULE_DECLARE_DATA			example_module	=

{

				STANDARD20_MODULE_STUFF,

				create_dir_conf,	/*	Per-directory	configuration	handler	*/

				merge_dir_conf,		/*	Merge	handler	for	per-directory	configurations	*/

				NULL,												/*	Per-server	configuration	handler	*/

				NULL,												/*	Merge	handler	for	per-server	configurations	*/

				directives,						/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks			/*	Our	hook	registering	function	*/

};

Creating	new	context	configurations
Now	that	we	have	told	the	server	to	help	us	create	and	manage
configurations,	our	first	step	is	to	make	a	function	for	creating	new,
blank	configurations.	We	do	so	by	creating	the	function	we	just
referenced	in	our	name	tag	as	the	Per-directory	configuration
handler:

void	*create_dir_conf(apr_pool_t	*pool,	char	*context)	{

				context	=	context	?	context	:	"(undefined	context)";

				example_config	*cfg	=	apr_pcalloc(pool,	sizeof(example_config));

				if(cfg)	{

								/*	Set	some	default	values	*/

								strcpy(cfg->context,	context);

								cfg->enabled	=	0;

								cfg->path	=	"/foo/bar";

								cfg->typeOfAction	=	0x11;

				}

				return	cfg;

}

Merging	configurations
Our	next	step	in	creating	a	context	aware	configuration	is	merging
configurations.	This	part	of	the	process	particularly	applies	to
scenarios	where	you	have	a	parent	configuration	and	a	child,	such
as	the	following:

<Directory	"/var/www">

				ExampleEnabled	On

				ExamplePath	"/foo/bar"

				ExampleAction	file	allow

</Directory>

<Directory	"/var/www/subdir">

				ExampleAction	file	deny

</Directory>

In	this	example,	it	is	natural	to	assume	that	the	directory
/var/www/subdir	should	inherit	the	values	set	for	the
/var/www	directory,	as	we	did	not	specify	an	ExampleEnabled
nor	an	ExamplePath	for	this	directory.	The	server	does	not
presume	to	know	if	this	is	true,	but	cleverly	does	the	following:

1.	 Creates	a	new	configuration	for	/var/www

2.	 Sets	the	configuration	values	according	to	the	directives	given
for	/var/www

3.	 Creates	a	new	configuration	for	/var/www/subdir

4.	 Sets	the	configuration	values	according	to	the	directives	given
for	/var/www/subdir

5.	 Proposes	a	merge	of	the	two	configurations	into	a	new
configuration	for	/var/www/subdir

This	proposal	is	handled	by	the	merge_dir_conf	function	we
referenced	in	our	name	tag.	The	purpose	of	this	function	is	to
assess	the	two	configurations	and	decide	how	they	are	to	be
merged:

void	*merge_dir_conf(apr_pool_t	*pool,	void	*BASE,	void	*ADD)	{

				example_config	*base	=	(example_config	*)	BASE	;	/*	This	is	what	was	set	in	the	parent	context	*/

				example_config	*add	=	(example_config	*)	ADD	;			/*	This	is	what	is	set	in	the	new	context	*/

				example_config	*conf	=	(example_config	*)	create_dir_conf(pool,	"Merged	configuration");	/*	This	will	be	the	merged	configuration	*/

				

				/*	Merge	configurations	*/

				conf->enabled	=	(add->enabled	==	0)	?	base->enabled	:	add->enabled	;

				conf->typeOfAction	=	add->typeOfAction	?	add->typeOfAction	:	base->typeOfAction;

				strcpy(conf->path,	strlen(add->path)	?	add->path	:	base->path);

				

				return	conf	;

}

Trying	out	our	new	context	aware	configurations
Now,	let's	try	putting	it	all	together	to	create	a	new	module	that	is
context	aware.	First	off,	we'll	create	a	configuration	that	lets	us	test
how	the	module	works:

<Location	"/a">

				SetHandler	example-handler

				ExampleEnabled	on

				ExamplePath	"/foo/bar"

				ExampleAction	file	allow

</Location>

<Location	"/a/b">

				ExampleAction	file	deny

				ExampleEnabled	off

</Location>

<Location	"/a/b/c">

				ExampleAction	db	deny

				ExamplePath	"/foo/bar/baz"

				ExampleEnabled	on

</Location>

Then	we'll	assemble	our	module	code.	Note,	that	since	we	are
now	using	our	name	tag	as	reference	when	fetching	configurations
in	our	handler,	I	have	added	some	prototypes	to	keep	the	compiler
happy:

/*$6

	+++

	*	mod_example_config.c

	+++

	*/

#include	<stdio.h>

#include	"apr_hash.h"

#include	"ap_config.h"

#include	"ap_provider.h"

#include	"httpd.h"

#include	"http_core.h"

#include	"http_config.h"

#include	"http_log.h"

#include	"http_protocol.h"

#include	"http_request.h"

/*$1

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

				Configuration	structure

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	*/

typedef	struct

{

				char				context[256];

				char				path[256];

				int					typeOfAction;

				int					enabled;

}	example_config;

/*$1

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

				Prototypes

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	*/

static	int				example_handler(request_rec	*r);

const	char				*example_set_enabled(cmd_parms	*cmd,	void	*cfg,	const	char	*arg);

const	char				*example_set_path(cmd_parms	*cmd,	void	*cfg,	const	char	*arg);

const	char				*example_set_action(cmd_parms	*cmd,	void	*cfg,	const	char	*arg1,	const	char	*arg2);

void										*create_dir_conf(apr_pool_t	*pool,	char	*context);

void										*merge_dir_conf(apr_pool_t	*pool,	void	*BASE,	void	*ADD);

static	void			register_hooks(apr_pool_t	*pool);

/*$1

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

				Configuration	directives

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	*/

static	const	command_rec				directives[]	=

{

				AP_INIT_TAKE1("exampleEnabled",	example_set_enabled,	NULL,	ACCESS_CONF,	"Enable	or	disable	mod_example"),

				AP_INIT_TAKE1("examplePath",	example_set_path,	NULL,	ACCESS_CONF,	"The	path	to	whatever"),

				AP_INIT_TAKE2("exampleAction",	example_set_action,	NULL,	ACCESS_CONF,	"Special	action	value!"),

				{	NULL	}

};

/*$1

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

				Our	name	tag

	~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~

	*/

module	AP_MODULE_DECLARE_DATA				example_module	=

{

				STANDARD20_MODULE_STUFF,

				create_dir_conf,				/*	Per-directory	configuration	handler	*/

				merge_dir_conf,					/*	Merge	handler	for	per-directory	configurations	*/

				NULL,															/*	Per-server	configuration	handler	*/

				NULL,															/*	Merge	handler	for	per-server	configurations	*/

				directives,									/*	Any	directives	we	may	have	for	httpd	*/

				register_hooks						/*	Our	hook	registering	function	*/

};

/*

	===

				Hook	registration	function

	===

	*/

static	void	register_hooks(apr_pool_t	*pool)

{

				ap_hook_handler(example_handler,	NULL,	NULL,	APR_HOOK_LAST);

}

/*

	===

				Our	example	web	service	handler

	===

	*/

static	int	example_handler(request_rec	*r)

{

				if(!r->handler	||	strcmp(r->handler,	"example-handler"))	return(DECLINED);

				/*~~*/

				example_config				*config	=	(example_config	*)	ap_get_module_config(r->per_dir_config,	&example_module);

				/*~~*/

				ap_set_content_type(r,	"text/plain");

				ap_rprintf(r,	"Enabled:	%u\n",	config->enabled);

				ap_rprintf(r,	"Path:	%s\n",	config->path);

				ap_rprintf(r,	"TypeOfAction:	%x\n",	config->typeOfAction);

				ap_rprintf(r,	"Context:	%s\n",	config->context);

				return	OK;

}

/*

	===

				Handler	for	the	"exampleEnabled"	directive

	===

	*/

const	char	*example_set_enabled(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				/*~~~*/

				example_config				*conf	=	(example_config	*)	cfg;

				/*~~~*/

				if(conf)

				{

								if(!strcasecmp(arg,	"on"))

												conf->enabled	=	1;

								else

												conf->enabled	=	0;

				}

				return	NULL;

}

/*

	===

				Handler	for	the	"examplePath"	directive

	===

	*/

const	char	*example_set_path(cmd_parms	*cmd,	void	*cfg,	const	char	*arg)

{

				/*~~~*/

				example_config				*conf	=	(example_config	*)	cfg;

				/*~~~*/

				if(conf)

				{

								strcpy(conf->path,	arg);

				}

				return	NULL;

}

/*

	===

				Handler	for	the	"exampleAction"	directive	;

				Let's	pretend	this	one	takes	one	argument	(file	or	db),	and	a	second	(deny	or	allow),	;

				and	we	store	it	in	a	bit-wise	manner.

	===

	*/

const	char	*example_set_action(cmd_parms	*cmd,	void	*cfg,	const	char	*arg1,	const	char	*arg2)

{

				/*~~~*/

				example_config				*conf	=	(example_config	*)	cfg;

				/*~~~*/

				if(conf)

				{

								{

												if(!strcasecmp(arg1,	"file"))

																conf->typeOfAction	=	0x01;

												else

																conf->typeOfAction	=	0x02;

												if(!strcasecmp(arg2,	"deny"))

																conf->typeOfAction	+=	0x10;

												else

																conf->typeOfAction	+=	0x20;

								}

				}

				return	NULL;

}

/*

	===

				Function	for	creating	new	configurations	for	per-directory	contexts

	===

	*/

void	*create_dir_conf(apr_pool_t	*pool,	char	*context)

{

				context	=	context	?	context	:	"Newly	created	configuration";

				/*~~~*/

				example_config				*cfg	=	apr_pcalloc(pool,	sizeof(example_config));

				/*~~~*/

				if(cfg)

				{

								{

												/*	Set	some	default	values	*/

												strcpy(cfg->context,	context);

												cfg->enabled	=	0;

												memset(cfg->path,	0,	256);

												cfg->typeOfAction	=	0x00;

								}

				}

				return	cfg;

}

/*

	===

				Merging	function	for	configurations

	===

	*/

void	*merge_dir_conf(apr_pool_t	*pool,	void	*BASE,	void	*ADD)

{

				/*~~*/

				example_config				*base	=	(example_config	*)	BASE;

				example_config				*add	=	(example_config	*)	ADD;

				example_config				*conf	=	(example_config	*)	create_dir_conf(pool,	"Merged	configuration");

				/*~~*/

				conf->enabled	=	(add->enabled	==	0)	?	base->enabled	:	add->enabled;

				conf->typeOfAction	=	add->typeOfAction	?	add->typeOfAction	:	base->typeOfAction;

				strcpy(conf->path,	strlen(add->path)	?	add->path	:	base->path);

				return	conf;

}

Summing	up

We	have	now	looked	at	how	to	create	simple	modules	for	Apache
HTTP	Server	2.4	and	configuring	them.	What	you	do	next	is
entirely	up	to	you,	but	it	is	my	hope	that	something	valuable	has
come	out	of	reading	this	documentation.	If	you	have	questions	on
how	to	further	develop	modules,	you	are	welcome	to	join	our
mailing	lists	or	check	out	the	rest	of	our	documentation	for	further
tips.

http://httpd.apache.org/lists.html

Some	useful	snippets	of	code

Retrieve	variables	from	POST	form	data

typedef	struct	{

				const	char	*key;

				const	char	*value;

}	keyValuePair;

keyValuePair	*readPost(request_rec	*r)	{

				apr_array_header_t	*pairs	=	NULL;

				apr_off_t	len;

				apr_size_t	size;

				int	res;

				int	i	=	0;

				char	*buffer;

				keyValuePair	*kvp;

				res	=	ap_parse_form_data(r,	NULL,	&pairs,	-1,	HUGE_STRING_LEN);

				if	(res	!=	OK	||	!pairs)	return	NULL;	/*	Return	NULL	if	we	failed	or	if	there	are	is	no	POST	data	*/

				kvp	=	apr_pcalloc(r->pool,	sizeof(keyValuePair)	*	(pairs->nelts	+	1));

				while	(pairs	&&	!apr_is_empty_array(pairs))	{

								ap_form_pair_t	*pair	=	(ap_form_pair_t	*)	apr_array_pop(pairs);

								apr_brigade_length(pair->value,	1,	&len);

								size	=	(apr_size_t)	len;

								buffer	=	apr_palloc(r->pool,	size	+	1);

								apr_brigade_flatten(pair->value,	buffer,	&size);

								buffer[len]	=	0;

								kvp[i].key	=	apr_pstrdup(r->pool,	pair->name);

								kvp[i].value	=	buffer;

								i++;

				}

				return	kvp;

}

static	int	example_handler(request_rec	*r)

{

				/*~~~~~~~~~~~~~~~~~~~~~~*/

				keyValuePair	*formData;

				/*~~~~~~~~~~~~~~~~~~~~~~*/

				formData	=	readPost(r);

				if	(formData)	{

								int	i;

								for	(i	=	0;	&formData[i];	i++)	{

												if	(formData[i].key	&&	formData[i].value)	{

																ap_rprintf(r,	"%s	=	%s\n",	formData[i].key,	formData[i].value);

												}	else	if	(formData[i].key)	{

																ap_rprintf(r,	"%s\n",	formData[i].key);

												}	else	if	(formData[i].value)	{

																ap_rprintf(r,	"=	%s\n",	formData[i].value);

												}	else	{

																break;

												}

								}

				}

				return	OK;

}

Printing	out	every	HTTP	header	received

static	int	example_handler(request_rec	*r)

{

				/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

				const	apr_array_header_t				*fields;

				int																									i;

				apr_table_entry_t											*e	=	0;

				/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

				fields	=	apr_table_elts(r->headers_in);

				e	=	(apr_table_entry_t	*)	fields->elts;

				for(i	=	0;	i	<	fields->nelts;	i++)	{

								ap_rprintf(r,	"%s:	%s\n",	e[i].key,	e[i].val);

				}

				return	OK;

}

Reading	the	request	body	into	memory

static	int	util_read(request_rec	*r,	const	char	**rbuf,	apr_off_t	*size)

{

				/*~~~~~~~~*/

				int	rc	=	OK;

				/*~~~~~~~~*/

				if((rc	=	ap_setup_client_block(r,	REQUEST_CHUNKED_ERROR)))	{

								return(rc);

				}

				if(ap_should_client_block(r))	{

								/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

								char									argsbuffer[HUGE_STRING_LEN];

								apr_off_t				rsize,	len_read,	rpos	=	0;

								apr_off_t	length	=	r->remaining;

								/*~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~*/

								*rbuf	=	(const	char	*)	apr_pcalloc(r->pool,	(apr_size_t)	(length	+	1));

								*size	=	length;

								while((len_read	=	ap_get_client_block(r,	argsbuffer,	sizeof(argsbuffer)))	>	0)	{

												if((rpos	+	len_read)	>	length)	{

																rsize	=	length	-	rpos;

												}

												else	{

																rsize	=	len_read;

												}

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

												memcpy((char	*)	*rbuf	+	rpos,	argsbuffer,	(size_t)	rsize);

												rpos	+=	rsize;

								}

				}

				return(rc);

}

static	int	example_handler(request_rec	*r)	

{

				/*~~~~~~~~~~~~~~~~*/

				apr_off_t			size;

				const	char		*buffer;

				/*~~~~~~~~~~~~~~~~*/

				if(util_read(r,	&buffer,	&size)	==	OK)	{

								ap_rprintf(r,	"We	read	a	request	body	that	was	%"	APR_OFF_T_FMT	"	bytes	long",	size);

				}

				return	OK;

}

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Redirecting	and	Remapping	with
mod_rewrite

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	how	you	can	use	mod_rewrite	to
redirect	and	remap	request.	This	includes	many	examples	of	common
uses	of	mod_rewrite,	including	detailed	descriptions	of	how	each
works.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

See	also
Module	documentation
mod_rewrite	introduction
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

From	Old	to	New	(internal)

Description:
Assume	we	have	recently	renamed	the	page	foo.html	to
bar.html	and	now	want	to	provide	the	old	URL	for	backward
compatibility.	However,	we	want	that	users	of	the	old	URL
even	not	recognize	that	the	pages	was	renamed	-	that	is,	we
don't	want	the	address	to	change	in	their	browser.

Solution:
We	rewrite	the	old	URL	to	the	new	one	internally	via	the
following	rule:

RewriteEngine		on

RewriteRule				"^/foo\.html$"		"/bar.html"	[PT]

Rewriting	From	Old	to	New	(external)

Description:
Assume	again	that	we	have	recently	renamed	the	page
foo.html	to	bar.html	and	now	want	to	provide	the	old
URL	for	backward	compatibility.	But	this	time	we	want	that	the
users	of	the	old	URL	get	hinted	to	the	new	one,	i.e.	their
browsers	Location	field	should	change,	too.

Solution:
We	force	a	HTTP	redirect	to	the	new	URL	which	leads	to	a
change	of	the	browsers	and	thus	the	users	view:

RewriteEngine		on

RewriteRule				"^/foo\.html$"		"bar.html"		[

Discussion
In	this	example,	as	contrasted	to	the	internal	example	above,
we	can	simply	use	the	Redirect	directive.	mod_rewrite	was
used	in	that	earlier	example	in	order	to	hide	the	redirect	from
the	client:

Redirect	"/foo.html"	"/bar.html"

Resource	Moved	to	Another	Server

Description:
If	a	resource	has	moved	to	another	server,	you	may	wish	to
have	URLs	continue	to	work	for	a	time	on	the	old	server	while
people	update	their	bookmarks.

Solution:
You	can	use	mod_rewrite	to	redirect	these	URLs	to	the	new
server,	but	you	might	also	consider	using	the	Redirect	or
RedirectMatch	directive.

#With	mod_rewrite

RewriteEngine	on

RewriteRule			"^/docs/(.+)"		"http://new.example.com/docs/$1"		[R,L]

#With	RedirectMatch

RedirectMatch	"^/docs/(.*)"	"http://new.example.com/docs/$1"

#With	Redirect

Redirect	"/docs/"	"http://new.example.com/docs/"

From	Static	to	Dynamic

Description:
How	can	we	transform	a	static	page	foo.html	into	a
dynamic	variant	foo.cgi	in	a	seamless	way,	i.e.	without
notice	by	the	browser/user.

Solution:
We	just	rewrite	the	URL	to	the	CGI-script	and	force	the
handler	to	be	cgi-script	so	that	it	is	executed	as	a	CGI
program.	This	way	a	request	to	/~quux/foo.html	internally
leads	to	the	invocation	of	/~quux/foo.cgi.

RewriteEngine		on

RewriteBase				"/~quux/"

RewriteRule				"^foo\.html$"		"foo.cgi"		[H=

Backward	Compatibility	for	file	extension	change

Description:
How	can	we	make	URLs	backward	compatible	(still	existing
virtually)	after	migrating	document.YYYY	to
document.XXXX,	e.g.	after	translating	a	bunch	of	.html	files
to	.php?

Solution:
We	rewrite	the	name	to	its	basename	and	test	for	existence	of
the	new	extension.	If	it	exists,	we	take	that	name,	else	we
rewrite	the	URL	to	its	original	state.

#			backward	compatibility	ruleset	for

#			rewriting	document.html	to	document.php

#			when	and	only	when	document.php	exists

<Directory	"/var/www/htdocs">

				RewriteEngine	on

				RewriteBase	"/var/www/htdocs"

				RewriteCond	"$1.php"	-f

				RewriteCond	"$1.html"	!-f

				RewriteRule	"^(.*).html$"	"$1.php"

</Directory>

Discussion
This	example	uses	an	often-overlooked	feature	of
mod_rewrite,	by	taking	advantage	of	the	order	of	execution	of
the	ruleset.	In	particular,	mod_rewrite	evaluates	the	left-hand-
side	of	the	RewriteRule	before	it	evaluates	the	RewriteCond
directives.	Consequently,	$1	is	already	defined	by	the	time	the
RewriteCond	directives	are	evaluated.	This	allows	us	to	test
for	the	existence	of	the	original	(document.html)	and	target
(document.php)	files	using	the	same	base	filename.

This	ruleset	is	designed	to	use	in	a	per-directory	context	(In	a
<Directory>	block	or	in	a	.htaccess	file),	so	that	the	-f	checks
are	looking	at	the	correct	directory	path.	You	may	need	to	set
a	RewriteBase	directive	to	specify	the	directory	base	that
you're	working	in.

Canonical	Hostnames

Description:
The	goal	of	this	rule	is	to	force	the	use	of	a	particular
hostname,	in	preference	to	other	hostnames	which	may	be
used	to	reach	the	same	site.	For	example,	if	you	wish	to	force
the	use	of	www.example.com	instead	of	example.com,	you
might	use	a	variant	of	the	following	recipe.

Solution:
The	very	best	way	to	solve	this	doesn't	involve	mod_rewrite	at
all,	but	rather	uses	the	Redirect	directive	placed	in	a	virtual
host	for	the	non-canonical	hostname(s).

<VirtualHost	*:80>

		ServerName	undesired.example.com

		ServerAlias	example.com	notthis.example.com

		Redirect	"/"	"http://www.example.com/"

</VirtualHost>

<VirtualHost	*:80>

		ServerName	www.example.com

</VirtualHost>

You	can	alternatively	accomplish	this	using	the	<If>
directive:

<If	"%{HTTP_HOST}	!=	'www.example.com'">

				Redirect	"/"	"http://www.example.com/"

</If>

Or,	for	example,	to	redirect	a	portion	of	your	site	to	HTTPS,
you	might	do	the	following:

<If	"%{SERVER_PROTOCOL}	!=	'HTTPS'">

				Redirect	"/admin/"	"https://www.example.com/admin/"

</If>

If,	for	whatever	reason,	you	still	want	to	use	mod_rewrite	-
if,	for	example,	you	need	this	to	work	with	a	larger	set	of
RewriteRules	-	you	might	use	one	of	the	recipes	below.

For	sites	running	on	a	port	other	than	80:

RewriteCond	"%{HTTP_HOST}"			"!^www\.example\.com"	[NC]

RewriteCond	"%{HTTP_HOST}"			"!^$"

RewriteCond	"%{SERVER_PORT}"	"!^80$"

RewriteRule	"^/?(.*)"								"http://www.example.com:%{SERVER_PORT}/$1"	[L,R,NE]

And	for	a	site	running	on	port	80

RewriteCond	"%{HTTP_HOST}"			"!^www\.example\.com"	[NC]

RewriteCond	"%{HTTP_HOST}"			"!^$"

RewriteRule	"^/?(.*)"								"http://www.example.com/$1"	[L,R,NE]

If	you	wanted	to	do	this	generically	for	all	domain	names	-	that
is,	if	you	want	to	redirect	example.com	to
www.example.com	for	all	possible	values	of	example.com,
you	could	use	the	following	recipe:

RewriteCond	"%{HTTP_HOST}"	"!^www\."	[NC]

RewriteCond	"%{HTTP_HOST}"	"!^$"

RewriteRule	"^/?(.*)"						"http://www.%{HTTP_HOST}/$1"	[L,R,NE]

These	rulesets	will	work	either	in	your	main	server
configuration	file,	or	in	a	.htaccess	file	placed	in	the
DocumentRoot	of	the	server.

Search	for	pages	in	more	than	one	directory

Description:
A	particular	resource	might	exist	in	one	of	several	places,	and
we	want	to	look	in	those	places	for	the	resource	when	it	is
requested.	Perhaps	we've	recently	rearranged	our	directory
structure,	dividing	content	into	several	locations.

Solution:
The	following	ruleset	searches	in	two	directories	to	find	the
resource,	and,	if	not	finding	it	in	either	place,	will	attempt	to
just	serve	it	out	of	the	location	requested.

RewriteEngine	on

#			first	try	to	find	it	in	dir1/...

#			...and	if	found	stop	and	be	happy:

RewriteCond									"%{DOCUMENT_ROOT}/dir1/%{REQUEST_URI}"		-f

RewriteRule	"^(.+)"	"%{DOCUMENT_ROOT}/dir1/$1"		[L]

#			second	try	to	find	it	in	dir2/...

#			...and	if	found	stop	and	be	happy:

RewriteCond									"%{DOCUMENT_ROOT}/dir2/%{REQUEST_URI}"		-f

RewriteRule	"^(.+)"	"%{DOCUMENT_ROOT}/dir2/$1"		[L]

#			else	go	on	for	other	Alias	or	ScriptAlias	directives,

#			etc.

RewriteRule			"^"		"-"		[PT]

Redirecting	to	Geographically	Distributed	Servers

Description:
We	have	numerous	mirrors	of	our	website,	and	want	to
redirect	people	to	the	one	that	is	located	in	the	country	where
they	are	located.

Solution:
Looking	at	the	hostname	of	the	requesting	client,	we
determine	which	country	they	are	coming	from.	If	we	can't	do
a	lookup	on	their	IP	address,	we	fall	back	to	a	default	server.

We'll	use	a	RewriteMap	directive	to	build	a	list	of	servers
that	we	wish	to	use.

HostnameLookups	on

RewriteEngine	on

RewriteMap				multiplex									"txt:/path/to/map.mirrors"

RewriteCond			"%{REMOTE_HOST}"		"([a-z]+)$"	[NC]

RewriteRule			"^/(.*)$"		"${multiplex:%1|http://www.example.com/}$1"		[R,L]

##	map.mirrors	--	Multiplexing	Map

de	http://www.example.de/

uk	http://www.example.uk/

com	http://www.example.com/

##EOF##

Discussion

This	ruleset	relies	on	HostNameLookups	being	set	on,
which	can	be	a	significant	performance	hit.

The	RewriteCond	directive	captures	the	last	portion	of	the
hostname	of	the	requesting	client	-	the	country	code	-	and	the

following	RewriteRule	uses	that	value	to	look	up	the
appropriate	mirror	host	in	the	map	file.

Browser	Dependent	Content

Description:
We	wish	to	provide	different	content	based	on	the	browser,	or
user-agent,	which	is	requesting	the	content.

Solution:
We	have	to	decide,	based	on	the	HTTP	header	"User-Agent",
which	content	to	serve.	The	following	config	does	the
following:	If	the	HTTP	header	"User-Agent"	contains
"Mozilla/3",	the	page	foo.html	is	rewritten	to	foo.NS.html
and	the	rewriting	stops.	If	the	browser	is	"Lynx"	or	"Mozilla"	of
version	1	or	2,	the	URL	becomes	foo.20.html.	All	other
browsers	receive	page	foo.32.html.	This	is	done	with	the
following	ruleset:

RewriteCond	"%{HTTP_USER_AGENT}"		"^Mozilla/3

RewriteRule	"^foo\.html$"									"foo.NS.html"										[

RewriteCond	"%{HTTP_USER_AGENT}"		"^Lynx/"	[OR]

RewriteCond	"%{HTTP_USER_AGENT}"		"^Mozilla/[12]"

RewriteRule	"^foo\.html$"									"foo.20.html"										[

RewriteRule	"^foo\.html$"									"foo.32.html"										[

Canonical	URLs

Description:
On	some	webservers	there	is	more	than	one	URL	for	a
resource.	Usually	there	are	canonical	URLs	(which	are	be
actually	used	and	distributed)	and	those	which	are	just
shortcuts,	internal	ones,	and	so	on.	Independent	of	which
URL	the	user	supplied	with	the	request,	they	should	finally
see	the	canonical	one	in	their	browser	address	bar.

Solution:
We	do	an	external	HTTP	redirect	for	all	non-canonical	URLs
to	fix	them	in	the	location	view	of	the	Browser	and	for	all
subsequent	requests.	In	the	example	ruleset	below	we
replace	/puppies	and	/canines	by	the	canonical	/dogs.

RewriteRule			"^/(puppies|canines)/(.*)"				"/dogs/$2"		[R]

Discussion:
This	should	really	be	accomplished	with	Redirect	or
RedirectMatch	directives:

RedirectMatch	"^/(puppies|canines)/(.*)"	"/dogs/$2"

Moved	DocumentRoot

Description:
Usually	the	DocumentRoot	of	the	webserver	directly	relates
to	the	URL	"/".	But	often	this	data	is	not	really	of	top-level
priority.	For	example,	you	may	wish	for	visitors,	on	first
entering	a	site,	to	go	to	a	particular	subdirectory	/about/.
This	may	be	accomplished	using	the	following	ruleset:

Solution:
We	redirect	the	URL	/	to	/about/:

RewriteEngine	on

RewriteRule			"^/$"		"/about/"		[R]

Note	that	this	can	also	be	handled	using	the
RedirectMatch	directive:

RedirectMatch	"^/$"	"http://example.com/about/"

Note	also	that	the	example	rewrites	only	the	root	URL.	That
is,	it	rewrites	a	request	for	http://example.com/,	but	not
a	request	for	http://example.com/page.html.	If	you
have	in	fact	changed	your	document	root	-	that	is,	if	all	of	your
content	is	in	fact	in	that	subdirectory,	it	is	greatly	preferable	to
simply	change	your	DocumentRoot	directive,	or	move	all	of
the	content	up	one	directory,	rather	than	rewriting	URLs.

Fallback	Resource

Description:
You	want	a	single	resource	(say,	a	certain	file,	like	index.php)
to	handle	all	requests	that	come	to	a	particular	directory,
except	those	that	should	go	to	an	existing	resource	such	as
an	image,	or	a	css	file.

Solution:
As	of	version	2.2.16,	you	should	use	the
FallbackResource	directive	for	this:

<Directory	"/var/www/my_blog">

		FallbackResource	"index.php"

</Directory>

However,	in	earlier	versions	of	Apache,	or	if	your	needs	are
more	complicated	than	this,	you	can	use	a	variation	of	the
following	rewrite	set	to	accomplish	the	same	thing:

<Directory	"/var/www/my_blog">

		RewriteBase	"/my_blog"

		RewriteCond	"/var/www/my_blog/%{REQUEST_FILENAME}"	!-f

		RewriteCond	"/var/www/my_blog/%{REQUEST_FILENAME}"	!-d

		RewriteRule	"^"	"index.php"	[PT]

</Directory>

If,	on	the	other	hand,	you	wish	to	pass	the	requested	URI	as	a
query	string	argument	to	index.php,	you	can	replace	that
RewriteRule	with:

RewriteRule	"(.*)"	"index.php?$1"	[PT,QSA]

Note	that	these	rulesets	can	be	used	in	a	.htaccess	file,	as
well	as	in	a	<Directory>	block.

Rewrite	query	string

Description:
You	want	to	capture	a	particular	value	from	a	query	string	and
either	replace	it	or	incorporate	it	into	another	component	of
the	URL.

Solutions:
Many	of	the	solutions	in	this	section	will	all	use	the	same
condition,	which	leaves	the	matched	value	in	the	%2
backreference.	%1	is	the	beginining	of	the	query	string	(up	to
the	key	of	intererest),	and	%3	is	the	remainder.	This	condition
is	a	bit	complex	for	flexibility	and	to	avoid	double	'&&'	in	the
substitutions.

This	solution	removes	the	matching	key	and	value:

#	Remove	mykey=???

RewriteCond	"%{QUERY_STRING}"	"(.*(?:^|&))mykey=([^&]*)&?(.*)&?$"

RewriteRule	"(.*)"	"$1?%1%3"

This	solution	uses	the	captured	value	in	the	URL
subsitution,	discarding	the	rest	of	the	original	query	by
appending	a	'?':

#	Copy	from	query	string	to	PATH_INFO

RewriteCond	"%{QUERY_STRING}"	"(.*(?:^|&))mykey=([^&]*)&?(.*)&?$"

RewriteRule	"(.*)"	"$1/products/%2/?"	[PT]

This	solution	checks	the	captured	value	in	a	subsequent
condition:

#	Capture	the	value	of	mykey	in	the	query	string

RewriteCond	"%{QUERY_STRING}"	"(.*(?:^|&))mykey=([^&]*)&?(.*)&?$"

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

RewriteCond	"%2"	!=not-so-secret-value	

RewriteRule	"(.*)"	-	[F]

This	solution	shows	the	reverse	of	the	previous	ones,
copying	path	components	(perhaps	PATH_INFO)	from
the	URL	into	the	query	string.

#	The	desired	URL	might	be	/products/kitchen-sink,	and	the	script	expects

#	/path?products=kitchen-sink.

RewriteRule	"^/?path/([^/]+)/([^/]+)"	"/path?$1=$2"	[PT]

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Using	mod_rewrite	to	control	access

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	how	you	can	use	mod_rewrite	to
control	access	to	various	resources,	and	other	related	techniques.
This	includes	many	examples	of	common	uses	of	mod_rewrite,
including	detailed	descriptions	of	how	each	works.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Forbidding	Image	"Hotlinking"

Description:
The	following	technique	forbids	the	practice	of	other	sites
including	your	images	inline	in	their	pages.	This	practice	is
often	referred	to	as	"hotlinking",	and	results	in	your	bandwidth
being	used	to	serve	content	for	someone	else's	site.

Solution:
This	technique	relies	on	the	value	of	the	HTTP_REFERER
variable,	which	is	optional.	As	such,	it's	possible	for	some
people	to	circumvent	this	limitation.	However,	most	users	will
experience	the	failed	request,	which	should,	over	time,	result
in	the	image	being	removed	from	that	other	site.

There	are	several	ways	that	you	can	handle	this	situation.

In	this	first	example,	we	simply	deny	the	request,	if	it	didn't
initiate	from	a	page	on	our	site.	For	the	purpose	of	this
example,	we	assume	that	our	site	is	www.example.com.

RewriteCond	"%{HTTP_REFERER}"	"!^$"

RewriteCond	"%{HTTP_REFERER}"	"!www.example.com"	[NC]

RewriteRule	"\.(gif|jpg|png)$"				"-"			[F,NC]

In	this	second	example,	instead	of	failing	the	request,	we
display	an	alternate	image	instead.

RewriteCond	"%{HTTP_REFERER}"	"!^$"

RewriteCond	"%{HTTP_REFERER}"	"!www.example.com"	[NC]

RewriteRule	"\.(gif|jpg|png)$"				"/images/go-away.png"			[R,NC]

In	the	third	example,	we	redirect	the	request	to	an	image	on
some	other	site.

RewriteCond	"%{HTTP_REFERER}"	"!^$"

RewriteCond	"%{HTTP_REFERER}"	"!www.example.com"	[NC]

RewriteRule	"\.(gif|jpg|png)$"	"http://other.example.com/image.gif"			[R,NC]

Of	these	techniques,	the	last	two	tend	to	be	the	most	effective
in	getting	people	to	stop	hotlinking	your	images,	because	they
will	simply	not	see	the	image	that	they	expected	to	see.

Discussion:
If	all	you	wish	to	do	is	deny	access	to	the	resource,	rather
than	redirecting	that	request	elsewhere,	this	can	be
accomplished	without	the	use	of	mod_rewrite:

SetEnvIf	Referer	"example\.com"	localreferer

<FilesMatch	"\.(jpg|png|gif)$">

				Require	env	localreferer

</FilesMatch>

Blocking	of	Robots

Description:
In	this	recipe,	we	discuss	how	to	block	persistent	requests
from	a	particular	robot,	or	user	agent.

The	standard	for	robot	exclusion	defines	a	file,	/robots.txt
that	specifies	those	portions	of	your	website	where	you	wish
to	exclude	robots.	However,	some	robots	do	not	honor	these
files.

Note	that	there	are	methods	of	accomplishing	this	which	do
not	use	mod_rewrite.	Note	also	that	any	technique	that	relies
on	the	clients	USER_AGENT	string	can	be	circumvented	very
easily,	since	that	string	can	be	changed.

Solution:
We	use	a	ruleset	that	specifies	the	directory	to	be	protected,
and	the	client	USER_AGENT	that	identifies	the	malicious	or
persistent	robot.

In	this	example,	we	are	blocking	a	robot	called
NameOfBadRobot	from	a	location	/secret/files.	You
may	also	specify	an	IP	address	range,	if	you	are	trying	to
block	that	user	agent	only	from	the	particular	source.

RewriteCond	"%{HTTP_USER_AGENT}"			"^NameOfBadRobot"

RewriteCond	"%{REMOTE_ADDR}"							"=123\.45\.67\.[8-9]"

RewriteRule	"^/secret/files/"			"-"			[F]

Discussion:
Rather	than	using	mod_rewrite	for	this,	you	can	accomplish
the	same	end	using	alternate	means,	as	illustrated	here:

SetEnvIfNoCase	User-Agent	"^NameOfBadRobot"	goaway

<Location	"/secret/files">

				<RequireAll>

								Require	all	granted

								Require	not	env	goaway

				</RequireAll>

</Location>

As	noted	above,	this	technique	is	trivial	to	circumvent,	by
simply	modifying	the	USER_AGENT	request	header.	If	you	are
experiencing	a	sustained	attack,	you	should	consider	blocking
it	at	a	higher	level,	such	as	at	your	firewall.

Denying	Hosts	in	a	Blacklist

Description:
We	wish	to	maintain	a	blacklist	of	hosts,	rather	like
hosts.deny,	and	have	those	hosts	blocked	from	accessing
our	server.

Solution:

RewriteEngine	on

RewriteMap				hosts-deny		"txt:/path/to/hosts.deny"

RewriteCond			"${hosts-deny:%{REMOTE_ADDR}|NOT-FOUND}"	"!=NOT-FOUND"	[OR]

RewriteCond			"${hosts-deny:%{REMOTE_HOST}|NOT-FOUND}"	"!=NOT-FOUND"

RewriteRule			"^"		"-"		[F]

##

##	hosts.deny

##

##	ATTENTION!	This	is	a	map,	not	a	list,	even	when	we

treat	it	as	such.

##	mod_rewrite	parses	it	for	key/value	pairs,	so	at	least

a

##	dummy	value	"-"	must	be	present	for	each	entry.

##

193.102.180.41	-

bsdti1.sdm.de	-

192.76.162.40	-

Discussion:
The	second	RewriteCond	assumes	that	you	have
HostNameLookups	turned	on,	so	that	client	IP	addresses	will
be	resolved.	If	that's	not	the	case,	you	should	drop	the	second
RewriteCond,	and	drop	the	[OR]	flag	from	the	first
RewriteCond.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Referer-based	Deflector

Description:
Redirect	requests	based	on	the	Referer	from	which	the
request	came,	with	different	targets	per	Referer.

Solution:
The	following	ruleset	uses	a	map	file	to	associate	each
Referer	with	a	redirection	target.

RewriteMap		deflector	"txt:/path/to/deflector.map"

RewriteCond	"%{HTTP_REFERER}"	!=""

RewriteCond	"${deflector:%{HTTP_REFERER}}"	"=-"

RewriteRule	"^"	"%{HTTP_REFERER}"	[R,L]

RewriteCond	"%{HTTP_REFERER}"	!=""

RewriteCond	"${deflector:%{HTTP_REFERER}|NOT-FOUND}"	"!=NOT-FOUND"

RewriteRule	"^"	"${deflector:%{HTTP_REFERER}}"	[R,L]

The	map	file	lists	redirection	targets	for	each	referer,	or,	if	we
just	wish	to	redirect	back	to	where	they	came	from,	a	"-"	is
placed	in	the	map:

##

##		deflector.map

##

http://badguys.example.com/bad/index.html				-

http://badguys.example.com/bad/index2.html			-

http://badguys.example.com/bad/index3.html			http://somewhere.example.com/

http://www.apache.org/licenses/LICENSE-2.0

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Using	mod_rewrite	for	Proxying

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	how	to	use	the	RewriteRule's	[P]	flag	to
proxy	content	to	another	server.	A	number	of	recipes	are	provided	that
describe	common	scenarios.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

Proxying	Content	with	mod_rewrite

Description:
mod_rewrite	provides	the	[P]	flag,	which	allows	URLs	to	be
passed,	via	mod_proxy,	to	another	server.	Two	examples	are
given	here.	In	one	example,	a	URL	is	passed	directly	to
another	server,	and	served	as	though	it	were	a	local	URL.	In
the	other	example,	we	proxy	missing	content	to	a	back-end
server.

Solution:
To	simply	map	a	URL	to	another	server,	we	use	the	[P]	flag,
as	follows:

RewriteEngine		on

RewriteBase				"/products/"

RewriteRule				"^widget/(.*)$"		"http://product.example.com/widget/$1"		[P]

ProxyPassReverse	"/products/widget/"	"http://product.example.com/widget/"

In	the	second	example,	we	proxy	the	request	only	if	we	can't
find	the	resource	locally.	This	can	be	very	useful	when	you're
migrating	from	one	server	to	another,	and	you're	not	sure	if	all
the	content	has	been	migrated	yet.

RewriteCond	"%{REQUEST_FILENAME}"							!-f

RewriteCond	"%{REQUEST_FILENAME}"							!-d

RewriteRule	"^/(.*)"	"http://old.example.com/$1"	[P]

ProxyPassReverse	"/"	"http://old.example.com/"

Discussion:
In	each	case,	we	add	a	ProxyPassReverse	directive	to
ensure	that	any	redirects	issued	by	the	backend	are	correctly
passed	on	to	the	client.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Consider	using	either	ProxyPass	or	ProxyPassMatch
whenever	possible	in	preference	to	mod_rewrite.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Advanced	Techniques	with	mod_rewrite

This	document	supplements	the	mod_rewrite	reference
documentation.	It	provides	a	few	advanced	techniques	using
mod_rewrite.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

URL-based	sharding	across	multiple	backends

Description:
A	common	technique	for	distributing	the	burden	of	server	load
or	storage	space	is	called	"sharding".	When	using	this
method,	a	front-end	server	will	use	the	url	to	consistently
"shard"	users	or	objects	to	separate	backend	servers.

Solution:
A	mapping	is	maintained,	from	users	to	target	servers,	in
external	map	files.	They	look	like:

user1	physical_host_of_user1

user2	physical_host_of_user2

:	:

We	put	this	into	a	map.users-to-hosts	file.	The	aim	is	to
map;

/u/user1/anypath

to

http://physical_host_of_user1/u/user/anypath

thus	every	URL	path	need	not	be	valid	on	every	backend
physical	host.	The	following	ruleset	does	this	for	us	with	the
help	of	the	map	files	assuming	that	server0	is	a	default	server
which	will	be	used	if	a	user	has	no	entry	in	the	map:

RewriteEngine	on

RewriteMap						users-to-hosts			"txt:/path/to/map.users-to-hosts"

RewriteRule			"^/u/([^/]+)/?(.*)"			"http://${users-to-hosts:$1|server0}/u/$1/$2"

See	the	RewriteMap	documentation	for	more	discussion	of	the

syntax	of	this	directive.

On-the-fly	Content-Regeneration

Description:
We	wish	to	dynamically	generate	content,	but	store	it	statically
once	it	is	generated.	This	rule	will	check	for	the	existence	of
the	static	file,	and	if	it's	not	there,	generate	it.	The	static	files
can	be	removed	periodically,	if	desired	(say,	via	cron)	and	will
be	regenerated	on	demand.

Solution:
This	is	done	via	the	following	ruleset:

#	This	example	is	valid	in	per-directory	context	only

RewriteCond	"%{REQUEST_URI}"			"!-U"

RewriteRule	"^(.+)\.html$"										"/regenerate_page.cgi"			[PT,L]

The	-U	operator	determines	whether	the	test	string	(in	this
case,	REQUEST_URI)	is	a	valid	URL.	It	does	this	via	a
subrequest.	In	the	event	that	this	subrequest	fails	-	that	is,	the
requested	resource	doesn't	exist	-	this	rule	invokes	the	CGI
program	/regenerate_page.cgi,	which	generates	the
requested	resource	and	saves	it	into	the	document	directory,
so	that	the	next	time	it	is	requested,	a	static	copy	can	be
served.

In	this	way,	documents	that	are	infrequently	updated	can	be
served	in	static	form.	if	documents	need	to	be	refreshed,	they
can	be	deleted	from	the	document	directory,	and	they	will	then
be	regenerated	the	next	time	they	are	requested.

Load	Balancing

Description:
We	wish	to	randomly	distribute	load	across	several	servers
using	mod_rewrite.

Solution:
We'll	use	RewriteMap	and	a	list	of	servers	to	accomplish
this.

RewriteEngine	on

RewriteMap	lb	"rnd:/path/to/serverlist.txt"

RewriteRule	"^/(.*)"	"http://${lb:servers}/$1"	[P,L]

serverlist.txt	will	contain	a	list	of	the	servers:

##	serverlist.txt

servers	one.example.com|two.example.com|three.example.com

If	you	want	one	particular	server	to	get	more	of	the	load	than
the	others,	add	it	more	times	to	the	list.

Discussion
Apache	comes	with	a	load-balancing	module	-
mod_proxy_balancer	-	which	is	far	more	flexible	and
featureful	than	anything	you	can	cobble	together	using
mod_rewrite.

Structured	Userdirs

Description:
Some	sites	with	thousands	of	users	use	a	structured	homedir
layout,	i.e.	each	homedir	is	in	a	subdirectory	which	begins	(for
instance)	with	the	first	character	of	the	username.	So,
/~larry/anypath	is
/home/l/larry/public_html/anypath	while
/~waldo/anypath	is
/home/w/waldo/public_html/anypath.

Solution:
We	use	the	following	ruleset	to	expand	the	tilde	URLs	into	the
above	layout.

RewriteEngine	on

RewriteRule			"^/~(([a-z])[a-z0-9]+)(.*)"		"/home/

Redirecting	Anchors

Description:
By	default,	redirecting	to	an	HTML	anchor	doesn't	work,
because	mod_rewrite	escapes	the	#	character,	turning	it	into
%23.	This,	in	turn,	breaks	the	redirection.

Solution:
Use	the	[NE]	flag	on	the	RewriteRule.	NE	stands	for	No
Escape.

Discussion:
This	technique	will	of	course	also	work	with	other	special
characters	that	mod_rewrite,	by	default,	URL-encodes.

Time-Dependent	Rewriting

Description:
We	wish	to	use	mod_rewrite	to	serve	different	content	based
on	the	time	of	day.

Solution:
There	are	a	lot	of	variables	named	TIME_xxx	for	rewrite
conditions.	In	conjunction	with	the	special	lexicographic
comparison	patterns	<STRING,	>STRING	and	=STRING	we
can	do	time-dependent	redirects:

RewriteEngine	on

RewriteCond			"%{TIME_HOUR}%{TIME_MIN}"	">0700"

RewriteCond			"%{TIME_HOUR}%{TIME_MIN}"	"<1900"

RewriteRule			"^foo\.html$"													"foo.day.html"	[L]

RewriteRule			"^foo\.html$"													"foo.night.html"

This	provides	the	content	of	foo.day.html	under	the	URL
foo.html	from	07:01-18:59	and	at	the	remaining	time	the
contents	of	foo.night.html.

mod_cache,	intermediate	proxies	and	browsers	may	each
cache	responses	and	cause	the	either	page	to	be	shown
outside	of	the	time-window	configured.	mod_expires	may
be	used	to	control	this	effect.	You	are,	of	course,	much
better	off	simply	serving	the	content	dynamically,	and
customizing	it	based	on	the	time	of	day.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Set	Environment	Variables	Based	On	URL	Parts

Description:
At	time,	we	want	to	maintain	some	kind	of	status	when	we
perform	a	rewrite.	For	example,	you	want	to	make	a	note	that
you've	done	that	rewrite,	so	that	you	can	check	later	to	see	if
a	request	can	via	that	rewrite.	One	way	to	do	this	is	by	setting
an	environment	variable.

Solution:
Use	the	[E]	flag	to	set	an	environment	variable.

RewriteEngine	on

RewriteRule			"^/horse/(.*)"			"/pony/$1"	[E=

Later	in	your	ruleset	you	might	check	for	this	environment
variable	using	a	RewriteCond:

RewriteCond	"%{ENV:rewritten}"	"=1"

Note	that	environment	variables	do	not	survive	an	external
redirect.	You	might	consider	using	the	[CO]	flag	to	set	a
cookie.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

When	not	to	use	mod_rewrite

This	document	supplements	the	mod_rewrite	reference
documentation.	It	describes	perhaps	one	of	the	most	important
concepts	about	mod_rewrite	-	namely,	when	to	avoid	using	it.

mod_rewrite	should	be	considered	a	last	resort,	when	other
alternatives	are	found	wanting.	Using	it	when	there	are	simpler
alternatives	leads	to	configurations	which	are	confusing,	fragile,	and
hard	to	maintain.	Understanding	what	other	alternatives	are	available
is	a	very	important	step	towards	mod_rewrite	mastery.

Note	that	many	of	these	examples	won't	work	unchanged	in	your
particular	server	configuration,	so	it's	important	that	you	understand
them,	rather	than	merely	cutting	and	pasting	the	examples	into	your
configuration.

The	most	common	situation	in	which	mod_rewrite	is	the	right	tool	is
when	the	very	best	solution	requires	access	to	the	server
configuration	files,	and	you	don't	have	that	access.	Some
configuration	directives	are	only	available	in	the	server	configuration
file.	So	if	you	are	in	a	hosting	situation	where	you	only	have	.htaccess
files	to	work	with,	you	may	need	to	resort	to	mod_rewrite.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping

https://www.apache.org/foundation/contributing.html

Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques

Simple	Redirection

mod_alias	provides	the	Redirect	and	RedirectMatch
directives,	which	provide	a	means	to	redirect	one	URL	to	another.
This	kind	of	simple	redirection	of	one	URL,	or	a	class	of	URLs,	to
somewhere	else,	should	be	accomplished	using	these	directives
rather	than	RewriteRule.	RedirectMatch	allows	you	to
include	a	regular	expression	in	your	redirection	criteria,	providing
many	of	the	benefits	of	using	RewriteRule.

A	common	use	for	RewriteRule	is	to	redirect	an	entire	class	of
URLs.	For	example,	all	URLs	in	the	/one	directory	must	be
redirected	to	http://one.example.com/,	or	perhaps	all	http
requests	must	be	redirected	to	https.

These	situations	are	better	handled	by	the	Redirect	directive.
Remember	that	Redirect	preserves	path	information.	That	is	to
say,	a	redirect	for	a	URL	/one	will	also	redirect	all	URLs	under
that,	such	as	/one/two.html	and	/one/three/four.html.

To	redirect	URLs	under	/one	to	http://one.example.com,	do
the	following:

Redirect	"/one/"	"http://one.example.com/"

To	redirect	one	hostname	to	another,	for	example	example.com
to	www.example.com,	see	the	Canonical	Hostnames	recipe.

To	redirect	http	URLs	to	https,	do	the	following:

<VirtualHost	*:80>

				ServerName	www.example.com

				Redirect	"/"	"https://www.example.com/"

</VirtualHost>

<VirtualHost	*:443>

				ServerName	www.example.com

				#	...	SSL	configuration	goes	here

</VirtualHost>

The	use	of	RewriteRule	to	perform	this	task	may	be	appropriate
if	there	are	other	RewriteRule	directives	in	the	same	scope.
This	is	because,	when	there	are	Redirect	and	RewriteRule
directives	in	the	same	scope,	the	RewriteRule	directives	will	run
first,	regardless	of	the	order	of	appearance	in	the	configuration	file.

In	the	case	of	the	http-to-https	redirection,	the	use	of
RewriteRule	would	be	appropriate	if	you	don't	have	access	to
the	main	server	configuration	file,	and	are	obliged	to	perform	this
task	in	a	.htaccess	file	instead.

URL	Aliasing

The	Alias	directive	provides	mapping	from	a	URI	to	a	directory	-
usually	a	directory	outside	of	your	DocumentRoot.	Although	it	is
possible	to	perform	this	mapping	with	mod_rewrite,	Alias	is
the	preferred	method,	for	reasons	of	simplicity	and	performance.

Using	Alias
Alias	"/cats"	"/var/www/virtualhosts/felines/htdocs"

The	use	of	mod_rewrite	to	perform	this	mapping	may	be
appropriate	when	you	do	not	have	access	to	the	server
configuration	files.	Alias	may	only	be	used	in	server	or	virtualhost
context,	and	not	in	a	.htaccess	file.

Symbolic	links	would	be	another	way	to	accomplish	the	same
thing,	if	you	have	Options	FollowSymLinks	enabled	on	your
server.

Virtual	Hosting

Although	it	is	possible	to	handle	virtual	hosts	with	mod_rewrite,	it
is	seldom	the	right	way.	Creating	individual	<VirtualHost>
blocks	is	almost	always	the	right	way	to	go.	In	the	event	that	you
have	an	enormous	number	of	virtual	hosts,	consider	using
mod_vhost_alias	to	create	these	hosts	automatically.

Modules	such	as	mod_macro	are	also	useful	for	creating	a	large
number	of	virtual	hosts	dynamically.

Using	mod_rewrite	for	vitualhost	creation	may	be	appropriate	if
you	are	using	a	hosting	service	that	does	not	provide	you	access
to	the	server	configuration	files,	and	you	are	therefore	restricted	to
configuration	using	.htaccess	files.

See	the	virtual	hosts	with	mod_rewrite	document	for	more	details
on	how	you	might	accomplish	this	if	it	still	seems	like	the	right
approach.

Simple	Proxying

RewriteRule	provides	the	[P]	flag	to	pass	rewritten	URIs	through
mod_proxy.

RewriteRule	"^/?images(.*)"	"http://imageserver.local/images$1"	[P]

However,	in	many	cases,	when	there	is	no	actual	pattern	matching
needed,	as	in	the	example	shown	above,	the	ProxyPass	directive
is	a	better	choice.	The	example	here	could	be	rendered	as:

ProxyPass	"/images/"	"http://imageserver.local/images/"

Note	that	whether	you	use	RewriteRule	or	ProxyPass,	you'll
still	need	to	use	the	ProxyPassReverse	directive	to	catch
redirects	issued	from	the	back-end	server:

ProxyPassReverse	"/images/"	"http://imageserver.local/images/"

You	may	need	to	use	RewriteRule	instead	when	there	are	other
RewriteRules	in	effect	in	the	same	scope,	as	a	RewriteRule
will	usually	take	effect	before	a	ProxyPass,	and	so	may	preempt
what	you're	trying	to	accomplish.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Environment	Variable	Testing

mod_rewrite	is	frequently	used	to	take	a	particular	action	based
on	the	presence	or	absence	of	a	particular	environment	variable	or
request	header.	This	can	be	done	more	efficiently	using	the	<If>.

Consider,	for	example,	the	common	scenario	where
RewriteRule	is	used	to	enforce	a	canonical	hostname,	such	as
www.example.com	instead	of	example.com.	This	can	be	done
using	the	<If>	directive,	as	shown	here:

<If	"req('Host')	!=	'www.example.com'">

				Redirect	"/"	"http://www.example.com/"

</If>

This	technique	can	be	used	to	take	actions	based	on	any	request
header,	response	header,	or	environment	variable,	replacing
mod_rewrite	in	many	common	scenarios.

See	especially	the	expression	evaluation	documentation	for	a
overview	of	what	types	of	expressions	you	can	use	in	<If>
sections,	and	in	certain	other	directives.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Rewrite

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	mod_rewrite	Technical	Details

This	document	discusses	some	of	the	technical	details	of	mod_rewrite
and	URL	matching.

See	also
Module	documentation
mod_rewrite	introduction
Redirection	and	remapping
Controlling	access
Virtual	hosts
Proxying
Using	RewriteMap
Advanced	techniques
When	not	to	use	mod_rewrite

https://www.apache.org/foundation/contributing.html

API	Phases

The	Apache	HTTP	Server	handles	requests	in	several	phases.	At
each	of	these	phases,	one	or	more	modules	may	be	called	upon
to	handle	that	portion	of	the	request	lifecycle.	Phases	include
things	like	URL-to-filename	translation,	authentication,
authorization,	content,	and	logging.	(This	is	not	an	exhaustive	list.)

mod_rewrite	acts	in	two	of	these	phases	(or	"hooks",	as	they	are
often	called)	to	influence	how	URLs	may	be	rewritten.

First,	it	uses	the	URL-to-filename	translation	hook,	which	occurs
after	the	HTTP	request	has	been	read,	but	before	any
authorization	starts.	Secondly,	it	uses	the	Fixup	hook,	which	is
after	the	authorization	phases,	and	after	per-directory
configuration	files	(.htaccess	files)	have	been	read,	but	before
the	content	handler	is	called.

So,	after	a	request	comes	in	and	a	corresponding	server	or	virtual
host	has	been	determined,	the	rewriting	engine	starts	processing
any	mod_rewrite	directives	appearing	in	the	per-server
configuration.	(i.e.,	in	the	main	server	configuration	file	and
<Virtualhost>	sections.)	This	happens	in	the	URL-to-filename
phase.

A	few	steps	later,	once	the	final	data	directories	have	been	found,
the	per-directory	configuration	directives	(.htaccess	files	and
<Directory>	blocks)	are	applied.	This	happens	in	the	Fixup
phase.

In	each	of	these	cases,	mod_rewrite	rewrites	the	REQUEST_URI
either	to	a	new	URL,	or	to	a	filename.

In	per-directory	context	(i.e.,	within	.htaccess	files	and
Directory	blocks),	these	rules	are	being	applied	after	a	URL	has
already	been	translated	to	a	filename.	Because	of	this,	the	URL-

path	that	mod_rewrite	initially	compares	RewriteRule	directives
against	is	the	full	filesystem	path	to	the	translated	filename	with
the	current	directories	path	(including	a	trailing	slash)	removed
from	the	front.

To	illustrate:	If	rules	are	in	/var/www/foo/.htaccess	and	a	request
for	/foo/bar/baz	is	being	processed,	an	expression	like	^bar/baz$
would	match.

If	a	substitution	is	made	in	per-directory	context,	a	new	internal
subrequest	is	issued	with	the	new	URL,	which	restarts	processing
of	the	request	phases.	If	the	substitution	is	a	relative	path,	the
RewriteBase	directive	determines	the	URL-path	prefix
prepended	to	the	substitution.	In	per-directory	context,	care	must
be	taken	to	create	rules	which	will	eventually	(in	some	future
"round"	of	per-directory	rewrite	processing)	not	perform	a
substitution	to	avoid	looping.	(See	RewriteLooping	for	further
discussion	of	this	problem.)

Because	of	this	further	manipulation	of	the	URL	in	per-directory
context,	you'll	need	to	take	care	to	craft	your	rewrite	rules
differently	in	that	context.	In	particular,	remember	that	the	leading
directory	path	will	be	stripped	off	of	the	URL	that	your	rewrite	rules
will	see.	Consider	the	examples	below	for	further	clarification.

Location	of	rule Rule
VirtualHost	section RewriteRule	"^/images/(.+)\.jpg"

"/images/$1.gif"
.htaccess	file	in	document
root

RewriteRule	"^images/(.+)\.jpg"
"images/$1.gif"

.htaccess	file	in	images
directory

RewriteRule	"^(.+)\.jpg"	"$1.gif"

For	even	more	insight	into	how	mod_rewrite	manipulates	URLs	in

http://wiki.apache.org/httpd/RewriteLooping

different	contexts,	you	should	consult	the	log	entries	made	during
rewriting.

Ruleset	Processing

Now	when	mod_rewrite	is	triggered	in	these	two	API	phases,	it
reads	the	configured	rulesets	from	its	configuration	structure
(which	itself	was	either	created	on	startup	for	per-server	context	or
during	the	directory	walk	of	the	Apache	kernel	for	per-directory
context).	Then	the	URL	rewriting	engine	is	started	with	the
contained	ruleset	(one	or	more	rules	together	with	their
conditions).	The	operation	of	the	URL	rewriting	engine	itself	is
exactly	the	same	for	both	configuration	contexts.	Only	the	final
result	processing	is	different.

The	order	of	rules	in	the	ruleset	is	important	because	the	rewriting
engine	processes	them	in	a	special	(and	not	very	obvious)	order.
The	rule	is	this:	The	rewriting	engine	loops	through	the	ruleset	rule
by	rule	(RewriteRule	directives)	and	when	a	particular	rule
matches	it	optionally	loops	through	existing	corresponding
conditions	(RewriteCond	directives).	For	historical	reasons	the
conditions	are	given	first,	and	so	the	control	flow	is	a	little	bit	long-
winded.	See	Figure	1	for	more	details.

	Figure
1:The	control	flow	through	the	rewriting	ruleset

First	the	URL	is	matched	against	the	Pattern	of	each	rule.	If	it	fails,
mod_rewrite	immediately	stops	processing	this	rule,	and	continues
with	the	next	rule.	If	the	Pattern	matches,	mod_rewrite	looks	for
corresponding	rule	conditions	(RewriteCond	directives,	appearing
immediately	above	the	RewriteRule	in	the	configuration).	If	none
are	present,	it	substitutes	the	URL	with	a	new	value,	which	is
constructed	from	the	string	Substitution,	and	goes	on	with	its	rule-
looping.	But	if	conditions	exist,	it	starts	an	inner	loop	for
processing	them	in	the	order	that	they	are	listed.	For	conditions,
the	logic	is	different:	we	don't	match	a	pattern	against	the	current
URL.	Instead	we	first	create	a	string	TestString	by	expanding
variables,	back-references,	map	lookups,	etc.	and	then	we	try	to
match	CondPattern	against	it.	If	the	pattern	doesn't	match,	the
complete	set	of	conditions	and	the	corresponding	rule	fails.	If	the
pattern	matches,	then	the	next	condition	is	processed	until	no

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

more	conditions	are	available.	If	all	conditions	match,	processing
is	continued	with	the	substitution	of	the	URL	with	Substitution.

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Guide	to	writing	output	filters

There	are	a	number	of	common	pitfalls	encountered	when	writing
output	filters;	this	page	aims	to	document	best	practice	for	authors	of
new	or	existing	filters.

This	document	is	applicable	to	both	version	2.0	and	version	2.2	of	the
Apache	HTTP	Server;	it	specifically	targets	RESOURCE-level	or
CONTENT_SET-level	filters	though	some	advice	is	generic	to	all	types
of	filter.

Filters	and	bucket	brigades

Each	time	a	filter	is	invoked,	it	is	passed	a	bucket	brigade,
containing	a	sequence	of	buckets	which	represent	both	data
content	and	metadata.	Every	bucket	has	a	bucket	type;	a	number
of	bucket	types	are	defined	and	used	by	the	httpd	core	modules
(and	the	apr-util	library	which	provides	the	bucket	brigade
interface),	but	modules	are	free	to	define	their	own	types.

Output	filters	must	be	prepared	to	process	buckets	of	non-
standard	types;	with	a	few	exceptions,	a	filter	need	not	care
about	the	types	of	buckets	being	filtered.

A	filter	can	tell	whether	a	bucket	represents	either	data	or
metadata	using	the	APR_BUCKET_IS_METADATA	macro.
Generally,	all	metadata	buckets	should	be	passed	down	the	filter
chain	by	an	output	filter.	Filters	may	transform,	delete,	and	insert
data	buckets	as	appropriate.

There	are	two	metadata	bucket	types	which	all	filters	must	pay
attention	to:	the	EOS	bucket	type,	and	the	FLUSH	bucket	type.	An
EOS	bucket	indicates	that	the	end	of	the	response	has	been
reached	and	no	further	buckets	need	be	processed.	A	FLUSH
bucket	indicates	that	the	filter	should	flush	any	buffered	buckets	(if
applicable)	down	the	filter	chain	immediately.

FLUSH	buckets	are	sent	when	the	content	generator	(or	an
upstream	filter)	knows	that	there	may	be	a	delay	before	more
content	can	be	sent.	By	passing	FLUSH	buckets	down	the	filter
chain	immediately,	filters	ensure	that	the	client	is	not	kept
waiting	for	pending	data	longer	than	necessary.

Filters	can	create	FLUSH	buckets	and	pass	these	down	the	filter
chain	if	desired.	Generating	FLUSH	buckets	unnecessarily,	or	too
frequently,	can	harm	network	utilisation	since	it	may	force	large

numbers	of	small	packets	to	be	sent,	rather	than	a	small	number
of	larger	packets.	The	section	on	Non-blocking	bucket	reads
covers	a	case	where	filters	are	encouraged	to	generate	FLUSH
buckets.

Example	bucket	brigade
HEAP	FLUSH	FILE	EOS

This	shows	a	bucket	brigade	which	may	be	passed	to	a	filter;	it
contains	two	metadata	buckets	(FLUSH	and	EOS),	and	two	data
buckets	(HEAP	and	FILE).

Filter	invocation

For	any	given	request,	an	output	filter	might	be	invoked	only	once
and	be	given	a	single	brigade	representing	the	entire	response.	It
is	also	possible	that	the	number	of	times	a	filter	is	invoked	for	a
single	response	is	proportional	to	the	size	of	the	content	being
filtered,	with	the	filter	being	passed	a	brigade	containing	a	single
bucket	each	time.	Filters	must	operate	correctly	in	either	case.

An	output	filter	which	allocates	long-lived	memory	every	time	it
is	invoked	may	consume	memory	proportional	to	response	size.
Output	filters	which	need	to	allocate	memory	should	do	so	once
per	response;	see	Maintaining	state	below.

An	output	filter	can	distinguish	the	final	invocation	for	a	given
response	by	the	presence	of	an	EOS	bucket	in	the	brigade.	Any
buckets	in	the	brigade	after	an	EOS	should	be	ignored.

An	output	filter	should	never	pass	an	empty	brigade	down	the	filter
chain.	To	be	defensive,	filters	should	be	prepared	to	accept	an
empty	brigade,	and	should	return	success	without	passing	this
brigade	on	down	the	filter	chain.	The	handling	of	an	empty	brigade
should	have	no	side	effects	(such	as	changing	any	state	private	to
the	filter).

How	to	handle	an	empty	brigade
apr_status_t	dummy_filter(ap_filter_t	*f,	apr_bucket_brigade	*bb)

{

				if	(APR_BRIGADE_EMPTY(bb))	{

								return	APR_SUCCESS;

				}

				...

Brigade	structure

A	bucket	brigade	is	a	doubly-linked	list	of	buckets.	The	list	is
terminated	(at	both	ends)	by	a	sentinel	which	can	be	distinguished
from	a	normal	bucket	by	comparing	it	with	the	pointer	returned	by
APR_BRIGADE_SENTINEL.	The	list	sentinel	is	in	fact	not	a	valid
bucket	structure;	any	attempt	to	call	normal	bucket	functions	(such
as	apr_bucket_read)	on	the	sentinel	will	have	undefined
behaviour	(i.e.	will	crash	the	process).

There	are	a	variety	of	functions	and	macros	for	traversing	and
manipulating	bucket	brigades;	see	the	apr_buckets.h	header	for
complete	coverage.	Commonly	used	macros	include:

APR_BRIGADE_FIRST(bb)

returns	the	first	bucket	in	brigade	bb

APR_BRIGADE_LAST(bb)

returns	the	last	bucket	in	brigade	bb

APR_BUCKET_NEXT(e)

gives	the	next	bucket	after	bucket	e

APR_BUCKET_PREV(e)

gives	the	bucket	before	bucket	e

The	apr_bucket_brigade	structure	itself	is	allocated	out	of	a
pool,	so	if	a	filter	creates	a	new	brigade,	it	must	ensure	that
memory	use	is	correctly	bounded.	A	filter	which	allocates	a	new
brigade	out	of	the	request	pool	(r->pool)	on	every	invocation,	for
example,	will	fall	foul	of	the	warning	above	concerning	memory
use.	Such	a	filter	should	instead	create	a	brigade	on	the	first
invocation	per	request,	and	store	that	brigade	in	its	state	structure.

It	is	generally	never	advisable	to	use	apr_brigade_destroy
to	"destroy"	a	brigade	unless	you	know	for	certain	that	the
brigade	will	never	be	used	again,	even	then,	it	should	be	used

http://apr.apache.org/docs/apr-util/trunk/group___a_p_r___util___bucket___brigades.html

rarely.	The	memory	used	by	the	brigade	structure	will	not	be
released	by	calling	this	function	(since	it	comes	from	a	pool),	but
the	associated	pool	cleanup	is	unregistered.	Using
apr_brigade_destroy	can	in	fact	cause	memory	leaks;	if	a
"destroyed"	brigade	contains	buckets	when	its	containing	pool	is
destroyed,	those	buckets	will	not	be	immediately	destroyed.

In	general,	filters	should	use	apr_brigade_cleanup	in
preference	to	apr_brigade_destroy.

Processing	buckets

When	dealing	with	non-metadata	buckets,	it	is	important	to
understand	that	the	"apr_bucket	*"	object	is	an	abstract
representation	of	data:

1.	 The	amount	of	data	represented	by	the	bucket	may	or	may
not	have	a	determinate	length;	for	a	bucket	which	represents
data	of	indeterminate	length,	the	->length	field	is	set	to	the
value	(apr_size_t)-1.	For	example,	buckets	of	the	PIPE
bucket	type	have	an	indeterminate	length;	they	represent	the
output	from	a	pipe.

2.	 The	data	represented	by	a	bucket	may	or	may	not	be	mapped
into	memory.	The	FILE	bucket	type,	for	example,	represents
data	stored	in	a	file	on	disk.

Filters	read	the	data	from	a	bucket	using	the	apr_bucket_read
function.	When	this	function	is	invoked,	the	bucket	may	morph	into
a	different	bucket	type,	and	may	also	insert	a	new	bucket	into	the
bucket	brigade.	This	must	happen	for	buckets	which	represent
data	not	mapped	into	memory.

To	give	an	example;	consider	a	bucket	brigade	containing	a	single
FILE	bucket	representing	an	entire	file,	24	kilobytes	in	size:

FILE(0K-24K)

When	this	bucket	is	read,	it	will	read	a	block	of	data	from	the	file,
morph	into	a	HEAP	bucket	to	represent	that	data,	and	return	the
data	to	the	caller.	It	also	inserts	a	new	FILE	bucket	representing
the	remainder	of	the	file;	after	the	apr_bucket_read	call,	the
brigade	looks	like:

HEAP(8K)	FILE(8K-24K)

Filtering	brigades

The	basic	function	of	any	output	filter	will	be	to	iterate	through	the
passed-in	brigade	and	transform	(or	simply	examine)	the	content
in	some	manner.	The	implementation	of	the	iteration	loop	is	critical
to	producing	a	well-behaved	output	filter.

Taking	an	example	which	loops	through	the	entire	brigade	as
follows:

Bad	output	filter	--	do	not	imitate!
apr_bucket	*e	=	APR_BRIGADE_FIRST(bb);

const	char	*data;

apr_size_t	length;

while	(e	!=	APR_BRIGADE_SENTINEL(bb))	{

				apr_bucket_read(e,	&data,	&length,	APR_BLOCK_READ);

				e	=	APR_BUCKET_NEXT(e);

}

return	ap_pass_brigade(bb);

The	above	implementation	would	consume	memory	proportional
to	content	size.	If	passed	a	FILE	bucket,	for	example,	the	entire
file	contents	would	be	read	into	memory	as	each
apr_bucket_read	call	morphed	a	FILE	bucket	into	a	HEAP
bucket.

In	contrast,	the	implementation	below	will	consume	a	fixed	amount
of	memory	to	filter	any	brigade;	a	temporary	brigade	is	needed
and	must	be	allocated	only	once	per	response,	see	the
Maintaining	state	section.

Better	output	filter
apr_bucket	*e;

const	char	*data;

apr_size_t	length;

while	((e	=	APR_BRIGADE_FIRST(bb))	!=	APR_BRIGADE_SENTINEL(bb))	{

				rv	=	apr_bucket_read(e,	&data,	&length,	APR_BLOCK_READ);

				if	(rv)	...;

				/*	Remove	bucket	e	from	bb.	*/

				APR_BUCKET_REMOVE(e);

				/*	Insert	it	into		temporary	brigade.	*/

				APR_BRIGADE_INSERT_HEAD(tmpbb,	e);

				/*	Pass	brigade	downstream.	*/

				rv	=	ap_pass_brigade(f->next,	tmpbb);

				if	(rv)	...;

				apr_brigade_cleanup(tmpbb);

}

Maintaining	state

A	filter	which	needs	to	maintain	state	over	multiple	invocations	per
response	can	use	the	->ctx	field	of	its	ap_filter_t	structure.	It
is	typical	to	store	a	temporary	brigade	in	such	a	structure,	to	avoid
having	to	allocate	a	new	brigade	per	invocation	as	described	in	the
Brigade	structure	section.

Example	code	to	maintain	filter	state
struct	dummy_state	{

				apr_bucket_brigade	*tmpbb;

				int	filter_state;

				...

};

apr_status_t	dummy_filter(ap_filter_t	*f,	apr_bucket_brigade	*bb)

{

				struct	dummy_state	*state;

				

				state	=	f->ctx;

				if	(state	==	NULL)	{

				

								/*	First	invocation	for	this	response:	initialise	state	structure.

									*/

								f->ctx	=	state	=	apr_palloc(f->r->pool,	sizeof	*state);

								state->tmpbb	=	apr_brigade_create(f->r->pool,	f->c->bucket_alloc);

								state->filter_state	=	...;

				}

				...

Buffering	buckets

If	a	filter	decides	to	store	buckets	beyond	the	duration	of	a	single
filter	function	invocation	(for	example	storing	them	in	its	->ctx
state	structure),	those	buckets	must	be	set	aside.	This	is
necessary	because	some	bucket	types	provide	buckets	which
represent	temporary	resources	(such	as	stack	memory)	which	will
fall	out	of	scope	as	soon	as	the	filter	chain	completes	processing
the	brigade.

To	setaside	a	bucket,	the	apr_bucket_setaside	function	can
be	called.	Not	all	bucket	types	can	be	setaside,	but	if	successful,
the	bucket	will	have	morphed	to	ensure	it	has	a	lifetime	at	least	as
long	as	the	pool	given	as	an	argument	to	the
apr_bucket_setaside	function.

Alternatively,	the	ap_save_brigade	function	can	be	used,	which
will	move	all	the	buckets	into	a	separate	brigade	containing
buckets	with	a	lifetime	as	long	as	the	given	pool	argument.	This
function	must	be	used	with	care,	taking	into	account	the	following
points:

1.	 On	return,	ap_save_brigade	guarantees	that	all	the
buckets	in	the	returned	brigade	will	represent	data	mapped
into	memory.	If	given	an	input	brigade	containing,	for
example,	a	PIPE	bucket,	ap_save_brigade	will	consume
an	arbitrary	amount	of	memory	to	store	the	entire	output	of
the	pipe.

2.	 When	ap_save_brigade	reads	from	buckets	which	cannot
be	setaside,	it	will	always	perform	blocking	reads,	removing
the	opportunity	to	use	Non-blocking	bucket	reads.

3.	 If	ap_save_brigade	is	used	without	passing	a	non-NULL
"saveto"	(destination)	brigade	parameter,	the	function	will
create	a	new	brigade,	which	may	cause	memory	use	to	be

proportional	to	content	size	as	described	in	the	Brigade
structure	section.

Filters	must	ensure	that	any	buffered	data	is	processed	and
passed	down	the	filter	chain	during	the	last	invocation	for	a
given	response	(a	brigade	containing	an	EOS	bucket).
Otherwise	such	data	will	be	lost.

Non-blocking	bucket	reads

The	apr_bucket_read	function	takes	an	apr_read_type_e
argument	which	determines	whether	a	blocking	or	non-blocking
read	will	be	performed	from	the	data	source.	A	good	filter	will	first
attempt	to	read	from	every	data	bucket	using	a	non-blocking	read;
if	that	fails	with	APR_EAGAIN,	then	send	a	FLUSH	bucket	down	the
filter	chain,	and	retry	using	a	blocking	read.

This	mode	of	operation	ensures	that	any	filters	further	down	the
filter	chain	will	flush	any	buffered	buckets	if	a	slow	content	source
is	being	used.

A	CGI	script	is	an	example	of	a	slow	content	source	which	is
implemented	as	a	bucket	type.	mod_cgi	will	send	PIPE	buckets
which	represent	the	output	from	a	CGI	script;	reading	from	such	a
bucket	will	block	when	waiting	for	the	CGI	script	to	produce	more
output.

Example	code	using	non-blocking	bucket	reads
apr_bucket	*e;

apr_read_type_e	mode	=	APR_NONBLOCK_READ;

while	((e	=	APR_BRIGADE_FIRST(bb))	!=	APR_BRIGADE_SENTINEL(bb))	{

				apr_status_t	rv;

				rv	=	apr_bucket_read(e,	&data,	&length,	mode);

				if	(rv	==	APR_EAGAIN	&&	mode	==	APR_NONBLOCK_READ)	{

								/*	Pass	down	a	brigade	containing	a	flush	bucket:	*/

								APR_BRIGADE_INSERT_TAIL(tmpbb,	apr_bucket_flush_create(...));

								rv	=	ap_pass_brigade(f->next,	tmpbb);

								apr_brigade_cleanup(tmpbb);

								if	(rv	!=	APR_SUCCESS)	return	rv;

								/*	Retry,	using	a	blocking	read.	*/

								mode	=	APR_BLOCK_READ;

								continue;

				}

				else	if	(rv	!=	APR_SUCCESS)	{

								/*	handle	errors	*/

				}

				/*	Next	time,	try	a	non-blocking	read	first.	*/

				mode	=	APR_NONBLOCK_READ;

				...

}

Ten	rules	for	output	filters

In	summary,	here	is	a	set	of	rules	for	all	output	filters	to	follow:

1.	 Output	filters	should	not	pass	empty	brigades	down	the	filter
chain,	but	should	be	tolerant	of	being	passed	empty	brigades.

2.	 Output	filters	must	pass	all	metadata	buckets	down	the	filter
chain;	FLUSH	buckets	should	be	respected	by	passing	any
pending	or	buffered	buckets	down	the	filter	chain.

3.	 Output	filters	should	ignore	any	buckets	following	an	EOS
bucket.

4.	 Output	filters	must	process	a	fixed	amount	of	data	at	a	time,
to	ensure	that	memory	consumption	is	not	proportional	to	the
size	of	the	content	being	filtered.

5.	 Output	filters	should	be	agnostic	with	respect	to	bucket	types,
and	must	be	able	to	process	buckets	of	unfamiliar	type.

6.	 After	calling	ap_pass_brigade	to	pass	a	brigade	down	the
filter	chain,	output	filters	should	call	apr_brigade_cleanup
to	ensure	the	brigade	is	empty	before	reusing	that	brigade
structure;	output	filters	should	never	use
apr_brigade_destroy	to	"destroy"	brigades.

7.	 Output	filters	must	setaside	any	buckets	which	are	preserved
beyond	the	duration	of	the	filter	function.

8.	 Output	filters	must	not	ignore	the	return	value	of
ap_pass_brigade,	and	must	return	appropriate	errors	back
up	the	filter	chain.

9.	 Output	filters	must	only	create	a	fixed	number	of	bucket
brigades	for	each	response,	rather	than	one	per	invocation.

10.	 Output	filters	should	first	attempt	non-blocking	reads	from
each	data	bucket,	and	send	a	FLUSH	bucket	down	the	filter
chain	if	the	read	blocks,	before	retrying	with	a	blocking	read.

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Apache	HTTP	Server	Version	2.4
Apache	>	HTTP	Server	>	Documentation	>	Version	2.4	>	Developer	Documentation

http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache	HTTP	Server	2.x	Thread	Safety
Issues

When	using	any	of	the	threaded	mpms	in	the	Apache	HTTP	Server
2.x	it	is	important	that	every	function	called	from	Apache	be	thread
safe.	When	linking	in	3rd	party	extensions	it	can	be	difficult	to
determine	whether	the	resulting	server	will	be	thread	safe.	Casual
testing	generally	won't	tell	you	this	either	as	thread	safety	problems
can	lead	to	subtle	race	conditions	that	may	only	show	up	in	certain
conditions	under	heavy	load.

Global	and	static	variables

When	writing	your	module	or	when	trying	to	determine	if	a	module
or	3rd	party	library	is	thread	safe	there	are	some	common	things
to	keep	in	mind.

First,	you	need	to	recognize	that	in	a	threaded	model	each
individual	thread	has	its	own	program	counter,	stack	and	registers.
Local	variables	live	on	the	stack,	so	those	are	fine.	You	need	to
watch	out	for	any	static	or	global	variables.	This	doesn't	mean	that
you	are	absolutely	not	allowed	to	use	static	or	global	variables.
There	are	times	when	you	actually	want	something	to	affect	all
threads,	but	generally	you	need	to	avoid	using	them	if	you	want
your	code	to	be	thread	safe.

In	the	case	where	you	have	a	global	variable	that	needs	to	be
global	and	accessed	by	all	threads,	be	very	careful	when	you
update	it.	If,	for	example,	it	is	an	incrementing	counter,	you	need	to
atomically	increment	it	to	avoid	race	conditions	with	other	threads.
You	do	this	using	a	mutex	(mutual	exclusion).	Lock	the	mutex,
read	the	current	value,	increment	it	and	write	it	back	and	then
unlock	the	mutex.	Any	other	thread	that	wants	to	modify	the	value
has	to	first	check	the	mutex	and	block	until	it	is	cleared.

If	you	are	using	APR,	have	a	look	at	the	apr_atomic_*	functions
and	the	apr_thread_mutex_*	functions.

http://apr.apache.org/

errno

This	is	a	common	global	variable	that	holds	the	error	number	of
the	last	error	that	occurred.	If	one	thread	calls	a	low-level	function
that	sets	errno	and	then	another	thread	checks	it,	we	are	bleeding
error	numbers	from	one	thread	into	another.	To	solve	this,	make
sure	your	module	or	library	defines	_REENTRANT	or	is	compiled
with	-D_REENTRANT.	This	will	make	errno	a	per-thread	variable
and	should	hopefully	be	transparent	to	the	code.	It	does	this	by
doing	something	like	this:

#define	errno	(*(__errno_location()))

which	means	that	accessing	errno	will	call
__errno_location()	which	is	provided	by	the	libc.	Setting
_REENTRANT	also	forces	redefinition	of	some	other	functions	to
their	*_r	equivalents	and	sometimes	changes	the	common
getc/putc	macros	into	safer	function	calls.	Check	your	libc
documentation	for	specifics.	Instead	of,	or	in	addition	to
_REENTRANT	the	symbols	that	may	affect	this	are
_POSIX_C_SOURCE,	_THREAD_SAFE,	_SVID_SOURCE,	and
_BSD_SOURCE.

Common	standard	troublesome	functions

Not	only	do	things	have	to	be	thread	safe,	but	they	also	have	to	be
reentrant.	strtok()	is	an	obvious	one.	You	call	it	the	first	time
with	your	delimiter	which	it	then	remembers	and	on	each
subsequent	call	it	returns	the	next	token.	Obviously	if	multiple
threads	are	calling	it	you	will	have	a	problem.	Most	systems	have
a	reentrant	version	of	the	function	called	strtok_r()	where	you
pass	in	an	extra	argument	which	contains	an	allocated	char	*
which	the	function	will	use	instead	of	its	own	static	storage	for
maintaining	the	tokenizing	state.	If	you	are	using	APR	you	can	use
apr_strtok().

crypt()	is	another	function	that	tends	to	not	be	reentrant,	so	if
you	run	across	calls	to	that	function	in	a	library,	watch	out.	On
some	systems	it	is	reentrant	though,	so	it	is	not	always	a	problem.
If	your	system	has	crypt_r()	chances	are	you	should	be	using
that,	or	if	possible	simply	avoid	the	whole	mess	by	using	md5
instead.

http://apr.apache.org/

Common	3rd	Party	Libraries

The	following	is	a	list	of	common	libraries	that	are	used	by	3rd
party	Apache	modules.	You	can	check	to	see	if	your	module	is
using	a	potentially	unsafe	library	by	using	tools	such	as	ldd(1)
and	nm(1).	For	PHP,	for	example,	try	this:

%	ldd	libphp4.so

libsablot.so.0	=>	/usr/local/lib/libsablot.so.0	(0x401f6000)

libexpat.so.0	=>	/usr/lib/libexpat.so.0	(0x402da000)

libsnmp.so.0	=>	/usr/lib/libsnmp.so.0	(0x402f9000)

libpdf.so.1	=>	/usr/local/lib/libpdf.so.1	(0x40353000)

libz.so.1	=>	/usr/lib/libz.so.1	(0x403e2000)

libpng.so.2	=>	/usr/lib/libpng.so.2	(0x403f0000)

libmysqlclient.so.11	=>	/usr/lib/libmysqlclient.so.11

(0x40411000)

libming.so	=>	/usr/lib/libming.so	(0x40449000)

libm.so.6	=>	/lib/libm.so.6	(0x40487000)

libfreetype.so.6	=>	/usr/lib/libfreetype.so.6	(0x404a8000)

libjpeg.so.62	=>	/usr/lib/libjpeg.so.62	(0x404e7000)

libcrypt.so.1	=>	/lib/libcrypt.so.1	(0x40505000)

libssl.so.2	=>	/lib/libssl.so.2	(0x40532000)

libcrypto.so.2	=>	/lib/libcrypto.so.2	(0x40560000)

libresolv.so.2	=>	/lib/libresolv.so.2	(0x40624000)

libdl.so.2	=>	/lib/libdl.so.2	(0x40634000)

libnsl.so.1	=>	/lib/libnsl.so.1	(0x40637000)

libc.so.6	=>	/lib/libc.so.6	(0x4064b000)

/lib/ld-linux.so.2	=>	/lib/ld-linux.so.2	(0x80000000)

In	addition	to	these	libraries	you	will	need	to	have	a	look	at	any
libraries	linked	statically	into	the	module.	You	can	use	nm(1)	to
look	for	individual	symbols	in	the	module.

http://www.php.net/

Library	List

Please	drop	a	note	to	dev@httpd.apache.org	if	you	have	additions
or	corrections	to	this	list.

Library Version Thread
Safe?

Notes

ASpell/PSpell ?
Berkeley	DB 3.x,	4.x Yes Be	careful	about	sharing	a	connection	across	threads.
bzip2 Yes Both	low-level	and	high-level	APIs	are	thread-safe.

However,	high-level	API	requires	thread-safe	access	to
errno.

cdb ?
C-Client Perhaps c-client	uses	strtok()	and	gethostbyname()

are	not	thread-safe	on	most	C	library	implementations.	
client's	static	data	is	meant	to	be	shared	
If	strtok()	and	gethostbyname()
your	OS,	c-client	may	be	thread-safe.

libcrypt ?
Expat Yes Need	a	separate	parser	instance	per	thread
FreeTDS ?
FreeType ?
GD	1.8.x ?
GD	2.0.x ?
gdbm No Errors	returned	via	a	static	gdbm_error

ImageMagick 5.2.2 Yes ImageMagick	docs	claim	it	is	thread	safe	since	version
5.2.2	(see	Change	log).

Imlib2 ?
libjpeg v6b ?
libmysqlclient Yes Use	mysqlclient_r	library	variant	to	ensure	thread-safety.

For	more	information,	please	read
http://dev.mysql.com/doc/mysql/en/Threaded_clients.html

http://httpd.apache.org/lists.html#http-dev
http://aspell.sourceforge.net/
http://www.sleepycat.com/
http://sources.redhat.com/bzip2/index.html
http://cr.yp.to/cdb.html
http://www.washington.edu/imap/
http://www.ijg.org/files/
http://expat.sourceforge.net/
http://www.freetds.org/
http://www.freetype.org/
http://www.boutell.com/gd/
http://www.boutell.com/gd/
http://www.gnu.org/software/gdbm/gdbm.html
http://www.imagemagick.org/
http://www.imagemagick.com/www/changelog.html
http://www.enlightenment.org/p.php?p=about/efl&l=en
http://www.ijg.org/files/
http://mysql.com
http://dev.mysql.com/doc/mysql/en/Threaded_clients.html

Copyright	2017	The	Apache	Software	Foundation.
Licensed	under	the	Apache	License,	Version	2.0.

Modules	|	Directives	|	FAQ	|	Glossary	|	Sitemap

Ming 0.2a ?
Net-SNMP 5.0.x ?
OpenLDAP 2.1.x Yes Use	ldap_r	library	variant	to	ensure	

OpenSSL 0.9.6g Yes Requires	proper	usage	of	CRYPTO_num_locks
CRYPTO_set_locking_callback

CRYPTO_set_id_callback

liboci8
(Oracle	8+)

8.x,9.x ?

pdflib 5.0.x Yes PDFLib	docs	claim	it	is	thread	safe;	changes.txt	indicates
it	has	been	partially	thread-safe	since	V1.91:
http://www.pdflib.com/products/pdflib-family/pdflib/

libpng 1.0.x ?
libpng 1.2.x ?
libpq
(PostgreSQL)

8.x Yes Don't	share	connections	across	threads	and	watch	out	for
crypt()	calls

Sablotron 0.95 ?
zlib 1.1.4 Yes Relies	upon	thread-safe	zalloc	and	zfree	functions	

is	to	use	libc's	calloc/free	which	are	thread-safe.

http://www.opaque.net/ming/
http://net-snmp.sourceforge.net/
http://www.openldap.org/
http://www.openssl.org/
http://www.oracle.com/
http://pdflib.com/
http://www.pdflib.com/products/pdflib-family/pdflib/
http://www.libpng.org/pub/png/libpng.html
http://www.libpng.org/pub/png/libpng.html
http://www.postgresql.org/docs/8.4/static/libpq-threading.html
http://www.gingerall.com/charlie/ga/xml/p_sab.xml
http://www.gzip.org/zlib/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

	Versión 2.4 del Servidor HTTP Apache

