ABAGM] i Ezreguntas Frecuentes | Glosario | Mapa del sitio web

HTTP SERVER PROJNerSiOn 2.4 del Servidor HTTP Apache

Apache > Servidor HTTP > Documentacion



http://wiki.apache.org/httpd/FAQ
http://httpd.apache.org/docs-project/
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Version 2.4 de la documentacién del Servidor
de HTTP Apache

Esta traduccion podria estar obsoleta. Consulte la version en
inglés de la documentacion para comprobar si se han
producido cambios recientemente.

| Buscar en Google}




Notas de la Version

Nuevas funcionalidades en Apache 2.3/2.4

Nuevas funcionalidades en Apache 2.1/2.2

Nuevas funcionalidades en Apache 2.0

Actualizarse a la version 2.0 desde la 1.3

Licencia Apache




Manual de Referencia

Compilacioén e Instalaciéon
Iniciar Apache

Parar y reiniciar Apache

Directivas para configurar la ejecucion

Directivas de configuracion en tiempo de ejecucion

Modulos
Modulos de MultiProcesamiento (MPMs)

Filtros
Handlers
Analizador de Expresiones

Programas de Soporte y Servidor

Glosario



Guia del Usuario

Empezando

Enlazando Direcciones y Puertos

Ficheros de Configuracion

Secciones de Configuracion

Almacenamiento de Contenido en Caché

Negociacion de Contenidos

Objetos Compartidos Dinamicamente (DSO)
Variables de Entorno

Ficheros de Log

Mapear URLSs a ubicaciones de un sistema de ficheros

Ajustes para conseguir un mejor rendimiento

Consejos de Seguridad

Configuracion Basica de Apache
Encriptado SSL/TLS
Ejecucion de Suexec para CGls

Reescritura de URL con mod_rewrite

Servidores Virtuales




How-To /| Tutoriales

Autenticacion y Autorizacion

Control de Acceso

CGl: Contenido Dinamico

Ficheros .htaccess

Server Side Includes (SSI)

Directorios web para cada usuario (public_html)
Reverse proxy setup guide

Guia de HTTP/2




Notas especificas sobre plataformas

Microsoft Windows

Sistemas Basados en RPM (Redhat / CentOS / Fedora)
Novell NetWare

EBCDIC Port




Otros Temas

Preguntas Frecuentes

Mapa del Sitio

Documentacion para desarrolladores
Contribuir en la Documentaciéon

Otros documentos
Wiki

Copyright 2017 The Apache Software Foundation.
Licencia bajo los términos de Apache License, Version 2.0.

Modulos | Directivas | Preguntas Frecuentes | Glosario | Mapa del sitio web



http://httpd.apache.org/docs-project/
http://wiki.apache.org/httpd/
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Upgrading to 2.4 from 2.2

In order to assist folks upgrading, we maintain a document describing
information critical to existing Apache HTTP Server users. These are
intended to be brief notes, and you should be able to find more
information in either the New Features document, or in the
src/CHANGES file. Application and module developers can find a

summary of API changes in the APl updates overview.

This document describes changes in server behavior that might
require you to change your configuration or how you use the server in
order to continue using 2.4 as you are currently using 2.2. To take
advantage of new features in 2.4, see the New Features document.

This document describes only the changes from 2.2 to 2.4. If you are
upgrading from version 2.0, you should also consult the 2.0 to 2.2
upgrading document.

See also

Overview of new features in Apache HTTP Server 2.4


http://httpd.apache.org/docs/2.2/upgrading.html
https://www.apache.org/foundation/contributing.html

The compilation process is very similar to the one used in version
2.2. Your old configure command line (as found in
build/config.nice in the installed server directory) can be
used in most cases. There are some changes in the default
settings. Some details of changes:

¢ These modules have been removed: mod_authn_default,
mod_authz_default, mod_mem_cache. If you were using
mod_mem_cache in 2.2, look at mod cache disk in 2.4.

» All load balancing implementations have been moved to
individual, self-contained mod_proxy submodules, e.g.
mod lbmethod bybusyness. You might need to build and
load any of these that your configuration uses.

e Platform support has been removed for BeOS, TPF, and even
older platforms such as A/UX, Next, and Tandem. These were
believed to be broken anyway.

e configure: dynamic modules (DSO) are built by default

e configure: By default, only a basic set of modules is loaded.
The other LoadModule directives are commented out in the
configuration file.

e configure: the "most" module set gets built by default

e configure: the "reallyall” module set adds developer modules
to the "all" set




There have been significant changes in authorization
configuration, and other minor configuration changes, that could
require changes to your 2.2 configuration files before using them
for 2.4.

Authorization

Any configuration file that uses authorization will likely need
changes.

You should review the Authentication, Authorization and Access
Control Howto, especially the section Beyond just authorization

which explains the new mechanisms for controlling the order in

which the authorization directives are applied.

Directives that control how authorization modules respond when
they don't match the authenticated user have been removed: This
includes AuthzLDAPAuthoritative, AuthzDBDAuthoritative,
AuthzDBMAuthoritative, AuthzGroupFileAuthoritative,
AuthzUserAuthoritative, and AuthzOwnerAuthoritative. These
directives have been replaced by the more expressive
RequireAny, RequireNone, and RequireAll.

If you use mod authz dbm, you must port your configuration to
use Require dbm-group ... inplace of Require group

Access control

In 2.2, access control based on client hostname, IP address, and
other characteristics of client requests was done using the
directives Order, Allow, Deny, and Satisfy.

In 2.4, such access control is done in the same way as other
authorization checks, using the new module mod authz host.




The old access control idioms should be replaced by the new
authentication mechanisms, although for compatibility with old
configurations, the new module mod access compat is

provided.

Mixing old and new directives

Mixing old directives like Order, Al1low or Deny with new ones
like Require is technically possible but discouraged.

mod access compat was created to support configurations
containing only old directives to facilitate the 2.4 upgrade.
Please check the examples below to get a better idea about
iIssues that might arise.

Here are some examples of old and new ways to do the same
access control.

In this example, there is no authentication and all requests are
denied.

2.2 configuration:

Order deny,allow
Deny from all

2.4 configuration:

Require all denied

In this example, there is no authentication and all requests are
allowed.

2.2 configuration:

Order allow, deny
Allow from all



2.4 configuration:

Require all granted

In the following example, there is no authentication and all hosts in
the example.org domain are allowed access; all other hosts are
denied access.

2.2 configuration:

Order Deny,Allow
Deny from all
Allow from example.org

2.4 configuration:

Require host example.org

In the following example, mixing old and new directives leads to
unexpected results.

Mixing old and new directives: NOT WORKING AS
EXPECTED

DocumentRoot "/var/www/html"

<Directory "/">
AllowOverride None
Order deny,allow
Deny from all

</Directory>

<Location "/server-status'">
SetHandler server-status
Require local
</Location>

access.log - GET /server-status 403 127.0.0.1
error.log - AHO1797: client denied by server configuration: /val

i ] o

Why httpd denies access to servers-status even if the



configuration seems to allow it? Because mod access compat
directives take precedence over the mod authz host one in this
configuration merge scenario.

This example conversely works as expected:

Mixing old and new directives: WORKING AS EXPECTED

DocumentRoot "/var/www/html"

<Directory "/">
AllowOverride None
Require all denied

</Directory>

<Location "/server-status'">
SetHandler server-status
Order deny,allow
Deny from all
Allow From 127.0.0.1
</Location>

access.log - GET /server-status 200 127.0.0.1

So even if mixing configuration is still possible, please try to avoid
it when upgrading: either keep old directives and then migrate to
the new ones on a later stage or just migrate everything in bulk.

In many configurations with authentication, where the value of the
Satisfy was the default of ALL, snippets that simply disabled

host-based access control are omitted:

2.2 configuration:

Order Deny,Allow

Deny from all

AuthBasicProvider File

AuthUserFile /example.com/conf/users.passwd
AuthName secure

Require valid-user



2.4 configuration:

# No replacement needed

AuthBasicProvider File

AuthUserFile /example.com/conf/users.passwd
AuthName secure

Require valid-user

In configurations where both authentication and access control
were meaningfully combined, the access control directives should
be migrated. This example allows requests meeting both criteria:

2.2 configuration:

Order allow, deny

Deny from all

# Satisfy ALL is the default

Satisfy ALL

Allow from 127.0.0.1

AuthBasicProvider File

AuthUserFile /example.com/conf/users.passwd
AuthName secure

Require valid-user

2.4 configuration:

AuthBasicProvider File
AuthUserFile /example.com/conf/users.passwd
AuthName secure
<RequireAll>
Require valid-user
Require ip 127.0.0.1
</RequireAll>

In configurations where both authentication and access control
were meaningfully combined, the access control directives should
be migrated. This example allows requests meeting either criteria:

2.2 configuration:

Order allow,deny
Deny from all
Satisfy any



Allow from 127.0.0.1

AuthBasicProvider File

AuthUserFile /example.com/conf/users.passwd
AuthName secure

Require valid-user

2.4 configuration:

AuthBasicProvider File

AuthUserFile /example.com/conf/users.passwd
AuthName secure

# Implicitly <RequireAny>

Require valid-user

Require ip 127.0.0.1

Other configuration changes

Some other small adjustments may be necessary for particular
configurations as discussed below.

MaxRequestsPerChild has been renamed to
MaxConnectionsPerChild, describes more accurately

what it does. The old name is still supported.

MaxClients has been renamed to MaxReguestWorkers,
which describes more accurately what it does. For async
MPMs, like event, the maximum number of clients is not
equivalent than the number of worker threads. The old name

is still supported.

The DefaultType directive no longer has any effect, other
than to emit a warning if it's used with any value other than
none. You need to use other configuration settings to replace

itin 2.4.
AllowOverride now defaults to None.

EnableSendfile now defaults to Off.

FileETag now defaults to "MTime Size" (without INode).

mod dav_fs: The format of the DavLockDB file has changed
for systems with inodes. The old DavLockDB file must be




deleted on upgrade.

KeepAlive only accepts values of On or Of f. Previously, any

value other than "Off" or "0" was treated as "On".

Directives AcceptMutex, LockFile, RewriteLock, SSLMutex,

SSLStaplingMutex, and WatchdogMutexPath have been

replaced with a single Mutex directive. You will need to

evaluate any use of these removed directives in your 2.2

configuration to determine if they can just be deleted or will

need to be replaced using Mutex.

mod cache: CacheIgnoreURLSessionIdentifiers now

does an exact match against the query string instead of a

partial match. If your configuration was using partial strings,

e.g. using sessionid to match

/someapplication/image.gif; jsessionid=12345678

then you will need to change to the full string jsessionid.

mod cache: The second parameter to CacheEnable only

matches forward proxy content if it begins with the correct

protocol. In 2.2 and earlier, a parameter of '/' matched all

content.

mod ldap: LDAPTrustedClientCert is now consistently a

per-directory setting only. If you use this directive, review your

configuration to make sure it is present in all the necessary

directory contexts.

mod filter: FilterProvider syntax has changed and

now uses a boolean expression to determine if a filter is

applied.

mod include:

= The #1f expr element now uses the new expression
parser. The old syntax can be restored with the new
directive SSILegacyExprParser.
= An SSI* config directive in directory scope no longer

causes all other per-directory SSI* directives to be reset
to their default values.




mod charset lite: The DebugLevel option has been
removed in favour of per-module LogLevel configuration.
mod ext filter: The DebugLevel option has been
removed in favour of per-module LogLevel configuration.
mod proxy scgi: The default setting for PATH_INFO has
changed from httpd 2.2, and some web applications will no
longer operate properly with the new PATH_INFO setting. The
previous setting can be restored by configuring the proxy -
scgi-pathinfo variable.

mod ss1: CRL based revocation checking now needs to be
explicitly configured through SSLCARevocationCheck.

mod substitute: The maximum line length is now limited to
1MB.

mod reqgtimeout: If the module is loaded, it will now set
some default timeouts.

mod dumpio: DumpIOLogLevel is no longer supported.
Data is always logged at LogLevel trace?.

On Unix platforms, piped logging commands configured using
either ErrorLog or CustomLog were invoked using
/bin/sh -cin 2.2 and earlier. In 2.4 and later, piped logging
commands are executed directly. To restore the old behaviour,
see the piped logging documentation.




e mod autoindex: will now extract titles and display
descriptions for .xhtml files, which were previously ignored.

e mod ssl: The default format of the *_DN variables has
changed. The old format can still be used with the new
LegacyDNStringFormat argumentto SSLOptions. The
SSLv2 protocol is no longer supported.
SSLProxyCheckPeerCN and
SSLProxyCheckPeerExpire now default to On, causing
proxy requests to HTTPS hosts with bad or outdated
certificates to fail with a 502 status code (Bad gateway)

e htpasswd now uses MD5 hash by default on all platforms.

e The NameVirtualHost directive no longer has any effect,
other than to emit a warning. Any address/port combination
appearing in multiple virtual hosts is implicitly treated as a
name-based virtual host.

e mod deflate will now skip compression if it knows that the
size overhead added by the compression is larger than the
data to be compressed.

* Multi-language error documents from 2.2.x may not work
unless they are adjusted to the new syntax of
mod include's #1f expr= element or the directive
SSILegacyExprParser is enabled for the directory
containing the error documents.

e The functionality provided by mod_authn_alias in previous
versions (i.e., the AuthnProviderAlias directive) has been
moved into mod _authn core.

¢ The RewriteLog and RewriteLogLevel directives have been
removed. This functionality is now provided by configuring the
appropriate level of logging for the mod rewrite module
using the LogLevel directive. See also the mod_rewrite

logging section.







- - J -
All modules must be recompiled for 2.4 before being loaded.

Many third-party modules designed for version 2.2 will otherwise
work unchanged with the Apache HTTP Server version 2.4. Some
will require changes; see the APl update overview.



e Startup errors:

= Invalid command 'User', perhaps misspelled
or defined by a module not included in the
server configuration -load module mod unixd

= Invalid command 'Require', perhaps
misspelled or defined by a module not
included in the server configuration, or
Invalid command 'Order', perhaps
misspelled or defined by a module not
included in the server configuration -load
module mod access compat, or update configuration

to 2.4 authorization directives.

m Ignoring deprecated use of DefaultType in
line NN of /path/to/httpd.conf -remove
DefaultType and replace with other configuration
settings.

» Invalid command 'AddOutputFilterByType',
perhaps misspelled or defined by a module
not included in the server configuration -
AddOutputFilterByType has moved from the core to
mod_filter, which must be loaded.

e Errors serving requests:
= configuration error: couldn't check user:
/path - load module mod authn core.
= . htaccess files aren't being processed - Check for an
appropriate ALllowOverride directive; the default
changed to None in 2.4.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.



http://www.apache.org/licenses/LICENSE-2.0

Modules | Directives | FAQ | Glossary | Sitemap



http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Overview of new features in Apache HTTP
Server 2.0

This document describes some of the major changes between the 1.3
and 2.0 versions of the Apache HTTP Server.

See also

Upgrading to 2.0 from 1.3


https://www.apache.org/foundation/contributing.html

Unix Threading
On Unix systems with POSIX threads support, Apache httpd
can now run in a hybrid multiprocess, multithreaded mode.
This improves scalability for many, but not all configurations.

New Build System
The build system has been rewritten from scratch to be based
on autoconf and 1ibtool. This makes Apache httpd's
configuration system more similar to that of other packages.

Multiprotocol Support
Apache HTTP Server now has some of the infrastructure in
place to support serving multiple protocols. mod echo has
been written as an example.

Better support for non-Unix platforms
Apache HTTP Server 2.0 is faster and more stable on non-
Unix platforms such as BeOS, OS/2, and Windows. With the
introduction of platform-specific multi-processing modules
(MPMs) and the Apache Portable Runtime (APR), these
platforms are now implemented in their native API, avoiding
the often buggy and poorly performing POSIX-emulation
layers.

New Apache httpd API
The API for modules has changed significantly for 2.0. Many
of the module-ordering/-priority problems from 1.3 should be
gone. 2.0 does much of this automatically, and module
ordering is now done per-hook to allow more flexibility. Also,
new calls have been added that provide additional module
capabilities without patching the core Apache HTTP Server.

IPv6 Support
On systems where IPv6 is supported by the underlying
Apache Portable Runtime library, Apache httpd gets IPv6
listening sockets by default. Additionally, the Listen,



NameVirtualHost, and VirtualHost directives support
IPv6 numeric address strings (e.g., "Listen
[2001:db8::1]:8080").

Filtering
Apache httpd modules may now be written as filters which act
on the stream of content as it is delivered to or from the
server. This allows, for example, the output of CGlI scripts to
be parsed for Server Side Include directives using the
INCLUDES filter in mod include. The module
mod ext filter allows external programs to act as filters
in much the same way that CGI programs can act as
handlers.

Multilanguage Error Responses
Error response messages to the browser are now provided in
several languages, using SSI documents. They may be
customized by the administrator to achieve a consistent look
and feel.

Simplified configuration
Many confusing directives have been simplified. The often
confusing Port and BindAddress directives are gone; only
the Listen directive is used for IP address binding; the
ServerName directive specifies the server name and port
number only for redirection and vhost recognition.

Native Windows NT Unicode Support
Apache httpd 2.0 on Windows NT now uses utf-8 for all
filename encodings. These directly translate to the underlying
Unicode file system, providing multilanguage support for all
Windows NT-based installations, including Windows 2000 and
Windows XP. This support does not extend to Windows 95, 98
or ME, which continue to use the machine's local codepage
for filesystem access.

Regular Expression Library Updated



Apache httpd 2.0 includes the Perl Compatible Regular
Expression Library (PCRE). All regular expression evaluation
now uses the more powerful Perl 5 syntax.



http://www.pcre.org/

mod ssl

New module in Apache httpd 2.0. This module is an interface
to the SSL/TLS encryption protocols provided by OpenSSL.

mod dav

New module in Apache httpd 2.0. This module implements the
HTTP Distributed Authoring and Versioning (DAV)
specification for posting and maintaining web content.

mod deflate

New module in Apache httpd 2.0. This module allows
supporting browsers to request that content be compressed
before delivery, saving network bandwidth.

mod_auth_ldap
New module in Apache httpd 2.0.41. This module allows an
LDAP database to be used to store credentials for HTTP
Basic Authentication. A companion module, mod ldap

provides connection pooling and results caching.

mod auth digest

Includes additional support for session caching across
processes using shared memory.

mod charset lite

New module in Apache httpd 2.0. This experimental module
allows for character set translation or recoding.

mod file cache

New module in Apache httpd 2.0. This module includes the
functionality of mod_mmap_static in Apache HTTP Server
version 1.3, plus adds further caching abilities.

mod headers

This module is much more flexible in Apache httpd 2.0. It can
now modify request headers used by mod proxy, and it can
conditionally set response headers.




mod proxy
The proxy module has been completely rewritten to take
advantage of the new filter infrastructure and to implement a
more reliable, HTTP/1.1 compliant proxy. In addition, new
<Proxy> configuration sections provide more readable (and
internally faster) control of proxied sites; overloaded
<Directory "proxy:...'"> configuration are not
supported. The module is now divided into specific protocol
support modules including proxy_connect, proxy_ftp
and proxy_http.

mod negotiation
Anew ForcelLanguagePriority directive can be used to
assure that the client receives a single document in all cases,
rather than NOT ACCEPTABLE or MULTIPLE CHOICES
responses. In addition, the negotiation and MultiViews
algorithms have been cleaned up to provide more consistent
results and a new form of type map that can include
document content is provided.

mod autoindex
Autoindex'ed directory listings can now be configured to use
HTML tables for cleaner formatting, and allow finer-grained
control of sorting, including version-sorting, and wildcard
filtering of the directory listing.

mod include
New directives allow the default start and end tags for SSI
elements to be changed and allow for error and time format
configuration to take place in the main configuration file rather
than in the SSI document. Results from regular expression
parsing and grouping (now based on Perl's regular expression
syntax) can be retrieved using mod include's variables $0 ..

$9.
mod_auth_dbm




Now supports multiple types of DBM-like databases using the
AuthDBMType directive.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

The Apache License, Version 2.0

Apache License
Version 2.0, January 2004
http://www.apache.org/licenses/

TERMS AND CONDITIONS FOR USE, REPRODUCTION, AND
DISTRIBUTION

1. Definitions

"License" shall mean the terms and conditions for use,
reproduction, and distribution as defined by Sections 1 through 9
of this document.

"Licensor" shall mean the copyright owner or entity authorized by
the copyright owner that is granting the License.

"Legal Entity" shall mean the union of the acting entity and all
other entities that control, are controlled by, or are under common
control with that entity. For the purposes of this definition,
"control” means (i) the power, direct or indirect, to cause the
direction or management of such entity, whether by contract or
otherwise, or (ii) ownership of fifty percent (50%) or more of the
outstanding shares, or (iii) beneficial ownership of such entity.

"You" (or "Your") shall mean an individual or Legal Entity
exercising permissions granted by this License.

"Source" form shall mean the preferred form for making
modifications, including but not limited to software source code,
documentation source, and configuration files.

"Object" form shall mean any form resulting from mechanical
transformation or translation of a Source form, including but not



http://www.apache.org/licenses/

limited to compiled object code, generated documentation, and
conversions to other media types.

"Work" shall mean the work of authorship, whether in Source or
Object form, made available under the License, as indicated by a
copyright notice that is included in or attached to the work (an
example is provided in the Appendix below).

"Derivative Works" shall mean any work, whether in Source or
Object form, that is based on (or derived from) the Work and for
which the editorial revisions, annotations, elaborations, or other
modifications represent, as a whole, an original work of
authorship. For the purposes of this License, Derivative Works
shall not include works that remain separable from, or merely link
(or bind by name) to the interfaces of, the Work and Derivative
Works thereof.

"Contribution” shall mean any work of authorship, including the
original version of the Work and any modifications or additions to
that Work or Derivative Works thereof, that is intentionally
submitted to Licensor for inclusion in the Work by the copyright
owner or by an individual or Legal Entity authorized to submit on
behalf of the copyright owner. For the purposes of this definition,
"submitted” means any form of electronic, verbal, or written
communication sent to the Licensor or its representatives,
including but not limited to communication on electronic mailing
lists, source code control systems, and issue tracking systems
that are managed by, or on behalf of, the Licensor for the
purpose of discussing and improving the Work, but excluding
communication that is conspicuously marked or otherwise
designated in writing by the copyright owner as "Not a
Contribution."

"Contributor" shall mean Licensor and any individual or Legal
Entity on behalf of whom a Contribution has been received by



Licensor and subsequently incorporated within the Work.

. Grant of Copyright License. Subject to the terms and
conditions of this License, each Contributor hereby grants to You
a perpetual, worldwide, non-exclusive, no-charge, royalty-free,
irrevocable copyright license to reproduce, prepare Derivative
Works of, publicly display, publicly perform, sublicense, and
distribute the Work and such Derivative Works in Source or
Object form.

. Grant of Patent License. Subject to the terms and conditions of
this License, each Contributor hereby grants to You a perpetual,
worldwide, non-exclusive, no-charge, royalty-free, irrevocable
(except as stated in this section) patent license to make, have
made, use, offer to sell, sell, import, and otherwise transfer the
Work, where such license applies only to those patent claims
licensable by such Contributor that are necessarily infringed by
their Contribution(s) alone or by combination of their
Contribution(s) with the Work to which such Contribution(s) was
submitted. If You institute patent litigation against any entity
(including a cross-claim or counterclaim in a lawsuit) alleging that
the Work or a Contribution incorporated within the Work
constitutes direct or contributory patent infringement, then any
patent licenses granted to You under this License for that Work
shall terminate as of the date such litigation is filed.

. Redistribution. You may reproduce and distribute copies of the
Work or Derivative Works thereof in any medium, with or without
modifications, and in Source or Object form, provided that You
meet the following conditions:

a. You must give any other recipients of the Work or Derivative
Works a copy of this License; and

b. You must cause any modified files to carry prominent notices
stating that You changed the files; and



c. You must retain, in the Source form of any Derivative Works
that You distribute, all copyright, patent, trademark, and
attribution notices from the Source form of the Work,
excluding those notices that do not pertain to any part of the
Derivative Works; and

d. If the Work includes a "NOTICE" text file as part of its
distribution, then any Derivative Works that You distribute
must include a readable copy of the attribution notices
contained within such NOTICE file, excluding those notices
that do not pertain to any part of the Derivative Works, in at
least one of the following places: within a NOTICE text file
distributed as part of the Derivative Works; within the Source
form or documentation, if provided along with the Derivative
Works; or, within a display generated by the Derivative
Works, if and wherever such third-party notices normally
appear. The contents of the NOTICE file are for informational
purposes only and do not modify the License. You may add
Your own attribution notices within Derivative Works that You
distribute, alongside or as an addendum to the NOTICE text
from the Work, provided that such additional attribution
notices cannot be construed as modifying the License.

You may add Your own copyright statement to Your modifications
and may provide additional or different license terms and
conditions for use, reproduction, or distribution of Your
modifications, or for any such Derivative Works as a whole,
provided Your use, reproduction, and distribution of the Work
otherwise complies with the conditions stated in this License.

. Submission of Contributions. Unless You explicitly state
otherwise, any Contribution intentionally submitted for inclusion in
the Work by You to the Licensor shall be under the terms and
conditions of this License, without any additional terms or
conditions. Notwithstanding the above, nothing herein shall



supersede or modify the terms of any separate license
agreement you may have executed with Licensor regarding such
Contributions.

. Trademarks. This License does not grant permission to use the
trade names, trademarks, service marks, or product names of the
Licensor, except as required for reasonable and customary use in
describing the origin of the Work and reproducing the content of
the NOTICE file.

. Disclaimer of Warranty. Unless required by applicable law or
agreed to in writing, Licensor provides the Work (and each
Contributor provides its Contributions) on an "AS 1S" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND,
either express or implied, including, without limitation, any
warranties or conditions of TITLE, NON-INFRINGEMENT,
MERCHANTABILITY, or FITNESS FOR A PARTICULAR
PURPOSE. You are solely responsible for determining the
appropriateness of using or redistributing the Work and assume
any risks associated with Your exercise of permissions under this
License.

. Limitation of Liability. In no event and under no legal theory,
whether in tort (including negligence), contract, or otherwise,
unless required by applicable law (such as deliberate and grossly
negligent acts) or agreed to in writing, shall any Contributor be
liable to You for damages, including any direct, indirect, special,
incidental, or consequential damages of any character arising as
a result of this License or out of the use or inability to use the
Work (including but not limited to damages for loss of goodwiill,
work stoppage, computer failure or malfunction, or any and all
other commercial damages or losses), even if such Contributor
has been advised of the possibility of such damages.

. Accepting Warranty or Additional Liability. While redistributing
the Work or Derivative Works thereof, You may choose to offer,
and charge a fee for, acceptance of support, warranty, indemnity,



or other liability obligations and/or rights consistent with this
License. However, in accepting such obligations, You may act
only on Your own behalf and on Your sole responsibility, not on
behalf of any other Contributor, and only if You agree to
indemnify, defend, and hold each Contributor harmless for any
liability incurred by, or claims asserted against, such Contributor
by reason of your accepting any such warranty or additional
liability.

END OF TERMS AND CONDITIONS
APPENDIX: How to apply the Apache License to your work.

To apply the Apache License to your work, attach the following
boilerplate notice, with the fields enclosed by brackets "[]" replaced
with your own identifying information. (Don't include the brackets!)
The text should be enclosed in the appropriate comment syntax for
the file format. We also recommend that a file or class name and
description of purpose be included on the same "printed page" as the
copyright notice for easier identification within third-party archives.

Copyright [yyyy] [nhame of copyright owner]

Licensed under the Apache License, Version 2.0 (the "License");
you may not use this file except in compliance with the License.
You may obtain a copy of the License at

http://www.apache.org/licenses/LICENSE-2.0

Unless required by applicable law or agreed to in writing, software
distributed under the License is distributed on an "AS IS" BASIS,
WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or impl
See the License for the specific language governing permissions and
limitations under the License.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.



http://www.apache.org/licenses/LICENSE-2.0

Modules | Directives | FAQ | Glossary | Sitemap



http://wiki.apache.org/httpd/FAQ

ABAGM] i Ezreguntas Frecuentes | Glosario | Mapa del sitio web

HTTP SERVER PROJNerSiOn 2.4 del Servidor HTTP Apache

Apache > Servidor HTTP > Documentacion > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Compilar e Instalar

Este documento hace referencia a la compilacion y la instalacion del
Apache HTTP Server solo para los sistemas Unix y tipo Unix. Para la
compilacion e instalacion en Windows ir a Usando Apache HTTP
Server con Microsoft Windows y Compilando Apache para Microsoft
Windows. Para otras plataformas visite la documentacion sobre
plataformas.

Apache httpd usa 1ibtool y autoconf para crear un entorno de
compilacion que se parece a muchos otros proyectos de codigo
abierto

Si esta actualizando desde una version menor a la siguiente (por
ejemplo, 2.4.8 a 2.4.9), pasa a la seccion de actualizacion.

Consulte también

Configuracion del arbol de las fuentes de cédigo
Arrancando Apache httpd
Parada y Reinicio



https://www.apache.org/foundation/contributing.html

Descarga Descarga la ultima version desde
http://httpd.apache.org/download.cgi
Extraer $ gzip -d httpd-NN.tar.gz
$ tar xvf httpd-NN.tar
$ cd httpd-NN

Configura $ ./configure --prefix=PREFIX

Compila $ make

Instala $ make install
Personalizalo $ vi PREFIX/conf/httpd.conf
Prueba $ PREFIX/bin/apachectl -k start

NN hay que reemplazarlo por el nimero de la versiéon menor, y
PREFIX hay que reemplazarlo por la ruta en la que se va a
instalar Apache. Si no especifica ningun valor en PREFIX, el valor
por defecto que se toma es /usr/local/apache?2.

Cada parte del proceso de configuracion e instalacion se describe
detalladamente mas abajo, empezando por los requisitos para
compilar e instalar Apache.


http://httpd.apache.org/download.cgi#apache24

-
Estos son los requisitos necesarios para compilar Apache:

APR y APR-Util
Asegurate de que tiene instalado ya en su sistema APR y
APR-Util. Si no es asi, o no quiere utilizar la version que le
proporciona el sistema, puede descargar la ultima version de
ambos APR y APR-Util de Apache APR, descomprimelo en
/httpd_source_tree_root/srclib/apry
/nttpd_source_tree_root/srclib/apr-util (cercidrate de
gue no existen directorios con numeros de versiones; por
ejemplo, la distribucion de APR debe estar en
/nttpd_source_tree_root/srclib/apr/) y usa el comando
./configure --con-las-opciones-incluidas-en-
apr. En algunas plataformas deberas instalar la parte
correspondiente a los paquetes -dev para permitir que httpd
se genere contra la instalacion de la copia de APR y APR-
Util.

Libreria Compatible de expresiones regulares de Perl (PCRE)
Esta libreria es requerida, pero ya no incluido con httpd.
Descarga el codigo fuente de http://www.pcre.org, o instala un
Port o un Paquete. Si la distrubucion de su sistema no puede
encontrar el escript pcre-config instalado por PCRE,
seleccione utilizando el pardmetro- -with-pcre.En algunas
plataformas, deberas instalar la correspondiente version -
dev del paquete para permitir a httpd que se genere contra la
instalacion de la copia del PCRE que se ha instalado.

Espacio en disco
Compruebe que tiene disponibles al menos 50 MB de espacio
libre en disco. Después de la instalacion, Apache ocupa
aproximadamente 10 MB. No obstante, la necesidad real de
espacio en disco varia considerablemente en funcién de las
opciones de configuracion que elija y de los médulos externos


http://apr.apache.org/
http://www.pcre.org/

gue use, y como no del tamafio de la pagina web

Systema de compilacion ANSI-C
Compruebe que tiene instalado un compilador de ANSI-C. Se
recomienda el Compilador GNU C (GCC) de la Free Software
Foundation (ESF) es el recomendado. Si no tiene instalado el
GCC, entonces compruebe que el compilador que va a
utilizar cumple con los estandares ANSI. Ademas, su PATH
debe contener la ubicacion donde de encuentran las
herramientas basicas para compilar tales como make.

Ajuste exacto del reloj del sistema
Los elementos del protocolo HTTP estan expresados segun
la hora del dia. Por eso, si quiere puede investigar como
instalar alguna utilidad para sincronizar la hora de su sistema.
Para esto, normalmente, se usan los programas ntpdate o
xntpd, que estan basados en el protocolo "Network Time
Protocol” (NTP). Consulte elsitio web de NTP para obtener
mas informaciéon sobre NTP y los servidores publicos de
tiempo.

Perl 5[OPCIONAL]
Para algunos de los scripts de soporte comoapxs o
dbmmanage (que estan escritos en Perl) es necesario el
intérprete de Perl 5 (las versiones 5.003 o posteriores son
suficientes). Si el escript configure no se encuentra, no
podra usar los escripts correspondientes que lo necesiten.
Pero por supuesto podras compilar y usar Apache httpd.



http://gcc.gnu.org/
http://www.gnu.org/
http://www.ntp.org
http://www.perl.org/

Puede descargar Apache desde |la seccion de descargas del sitio
web de Apache el cual tiene varios mirrors. Para la mayoria de los
usuarios de Apache que tienen sistemas tipo Unix, se recomienda
gue se descarguen y compilen el cédigo fuente. El proceso de
compilacion (descrito mas abajo) es facil, y permite adaptar el
servidor Apache a sus necesidades. Ademas, las versiones de
disponibles en archivos binarios no estan siempre actualizadas
con las dltimas modificaciones en el codigo fuente. Si se descarga
un binario, siga las instrucciones contenidas en el archivo
INSTALL.bindist incluido en la distribucion

Después de la descarga, es importante que verifiqgue que el
archivo descargado del servidor HTTP Apache esta completo y
sin modificaciones. Esto puede hacerlo comparando el archivo
descargado (.tgz) con su firma PGP. Instrucciones detalladas de
como hacer esto estan disponibles en |a seccion de descargas
junto con un ejemplo de como usar PGP.



http://httpd.apache.org/download.cgi
http://httpd.apache.org/download.cgi#verify
http://httpd.apache.org/dev/verification.html

Extraer el cédigo fuente del archivo .tgz del Servidor Apache
HTTP que acabada de descargar es muy facil. Ejecute los
siguientes comandos:

$ gzip -d httpd-NN.tar.gz
$ tar xvf httpd-NN.tar

Estos comandos crearan un nuevo directorio dentro del directorio
en el que se encuentra y que contendra el codigo fuente de
distribucion. Debe cambiarse a ese directorio con cd para
proceder a compilar el servidor Apache.



El siguiente paso es configurar la estructura de directorios para su
plataforma y sus necesidades personales. Esto se hace usando el
script configure incluido en el directorio raiz de la distribucion
gue acaba de descargar. (Los desarrolladores que se descarguen
la version del CVS de la estructura de directorios necesitaran
tener instalados autoconf y 1ibtool, y necesitaran ejecutar
buildconf antes de continuar con los siguientes pasos. Esto no
es preciso para las versiones oficiales.)

Para configurar la estructura de directorios a partir del cédigo
fuente usando las opciones por defecto, solo tiene que ejecutar
./configure.Para cambiar las opciones por defecto,
configure acepta una serie de variables y opciones por la linea
de comandos.

La opcidon mas importante es - -prefix que es el directorio en el
gue Apache va a ser instalado despueés, porque Apache tiene que
ser configurado para el directorio que se especifique para que
funcione correctamente. Es posible lograr un mayor control del
lugar donde se van a instalar los ficheros de Apache con otras
opciones de configuracion.

Llegados a este punto, puede especificar que caracteristicas o
funcionalidades quiere incluir en Apache activando o desactivando
modules.Apache vine con una amplia seleccion de médulos
incluidos por defecto. Que seran compilados como . Objetos
Compartidos (DSOs) Que pueden ser activados o desactivados
en tiempo de ejecucion. También puede elegir por compilar
modulos de forma estatica usando las opciones - -enable-

module=static.

Se pueden activar otros modulos usando la opcion - -enable-
module, where module es el nombre del modulo sin el mod_y



convirtiendo los guiones bajos que tenga en guiones normales.
Del mismo modo, puede desactivar los médulos con la opcion - -
disable-module. Tenga cuidado al utilizar esta opcion, ya que
configure no le avisara si el moédulo que especifica no existe;
simplemente ignorara esa opcion.

Ademas, a veces es necesario pasarle al script configure
informacidn adicional sobre donde esta su compilador, librerias o
ficheros de cabecera. Esto se puede hacer, tanto pasando
variables de entorno, como pasandole opciones a configure.
Para mas informacion, consulte el manual de configure. O use
configure con la opcion - -help.

Para que se haga una idea sobre las posibilidades que tiene, aqui
tiene un ejemplo tipico que configura Apache para la ruta
/sw/pkg/apache con un compilador y unos flags determinados,
y ademas, con dos moédulos adicionales mod ldap y mod ldap
para cargarlos después a través del mecanismo DSO:

$ CC="pgcc" CFLAGS="-02" \
./configure --prefix=/sw/pkg/apache \
--enable-ldap=shared \
--enable-lua=shared

Cuando se ejecuta configure se comprueban que
caracteristicas o funcionalidades estan disponibles en su sistema
y se crean los Makefiles que seran usados a continuacion para
compilar el servidor. Esto tardara algunos minutos.

Los detalles de todas las opciones de configure estan
disponibles en el manual de configure .




Ahora puede compilar las diferentes partes que forman Apache
simplemente ejecutando el siguiente comando:

$ make

Por favor sea paciente llegado a este punto, ya que una
configuracion basica lleva unos minutos para su compilacion, y el
tiempo puede variar mucho dependiendo de su hardware y del
namero de modulos que haya habilitado para la compilacion.(Se
recomienda afiadir al make el parametro -j3 como minimo para
gue vaya mas rapido)



Ahora es el momento de instalar el paquete en el diretorio elegido
en PREFIX (consulte mas arriba la opciéon - - prefix) ejecutando:

$ make install

Este paso requiere de forma tipica privilegios de root, ya que el
directorio de PREFIX es normalmente un directorio con
restricciones de permisos escritura.

Si lo que esta es solo actualizando, la instalacion no
sobreescribira los archivos de configuracion.



Tras la instalacion puede personalizarla, editando los archivos de
configuracion en el directorio de PREFIX/conf/.

$ vi PREFIX/conf/httpd.conf

Echele un vistazo al Manual de Apache que esta en
PREFIX/docs/manual/ o consulta
http://httpd.apache.org/docs/2.4/ para la versidbn mas reciente de
este manual y su completa referencia de las directivas de
configuracion disponibles.



http://httpd.apache.org/docs/2.4/

Ahora puedes ejecutar tu Apache HTTP server ejecutando
directamente:

$ PREFIX/bin/apachectl -k start

Ahora debe poder acceder a su primer documento bajo la URL
http://localhost/. La pagina o documento que ve se

encuentra en DocumentRoot, que por norma general casi
siempre serd PREFIX/htdocs/. Si quiere parar el servidor,
puede hacerlo ejecutando:

$ PREFIX/bin/apachectl -k stop



El primer paso para actualizar una instalacion anterior es leer las
especificaciones de la version y el fichero CHANGES en la
distribucion de codigo fuente que ha descargado para encontrar
los cambios que puedan afectar a su instalacion actual. Cuando el
cambio sea entre versiones mayores(por ejemplo, de la 2.0 a 2.2
odela 2.2 ala2.4), entonces es mas probable que haya
diferencias importantes en la compilacion y en la ejecucion que
necesitaran ajustes manuales. Todos los modulos necesitaran
también ser actualizados para adaptarse a los cambios en el
interfaz de programacion (API) de modulos.

Actualizando de una version menor a la siguiente (por ejemplo, de
la 2.2.55 a la 2.2.57) es mas facil. El prodeso de realizar el make
install no sobreescribira ninguno de tus documentos
existentes,archivos log, o archivos de configuracion. De hecho, los
desarrolladores estan haciendo los esfuerzos necerarios para
evitar cambios que generen incompatibilidades en las opciones de
configure, la configuracion al ser ejecutado, o el médulo de la
API entre versiones menores. En la mayor parte de los casos
debe poder usar un comando configure idéntico, un fichero de
configuracion idéntico, y todos sus moédulos deben seguir
funcionando.

Para actualizar entre versiones menores, empecemaos
encontrando el archivo de configuraciéon config.nice el
directorio de instalacion del servidor o en el directorio raiz del
codigo fuente de tu antigua instalacion. Este archivo contendra los
parametros exactos para pasarle al configure que usaste
anteriormente para configurar tus directorios. Entonces, para
actualizar su instalacion de una version a la siguinete, solo tiene
gue copiar el archivo config.nice a la estructura de directorios
del codigo fuente de la nueva version, editarlo, hacer cualquier
cambio que desee, y ejecutarlo :




$ ./config.nice

$ make

$ make install

$ PREFIX/bin/apachectl -k graceful-stop
$ PREFIX/bin/apachectl -k start

Tenga en cuenta que antes de poner una nueva version de
Apache en produccion, debe siempre probarla antes en un
entorno de pruebas. Por ejemplo, puede instalar y ejecutar la
nueva version junto con la antigua usando un - -prefix
diferente y un puerto diferente (modificando la directiva
Listen) para comprobar que no existe ninguna
incompatibilidad antes de hacer la actualizacion definitiva.

Puede pasarle argumentos adicionales a config.nice, que se
agregaran a susopciones originales de configure:

$ ./config.nice --prefix=/home/test/apache --with-port=90



Un gran nimero de terceros proporcionan sus propias
distribuciones empaquetadas del Apache HTTP Server para su
instalacion en plataformas especificas. Esto incluye las distintas
distribuciones de Linux, varios paquetes de Windows de terceros,
Mac OS X, Solaris, y muchos mas.

Nuestra licencia de software no soélo permite, sino que anima, este
tipo de redistribucion. Sin embargo, se da lugar a una situacion en
la que el disefio y la configuracion de los valores predeterminados
de la instalacion del servidor pueden diferir de lo que se indica en
la documentacion. Mientras lamentablemente, esta situacion no
es probable que cambie a corto plazo.

Una descripcién de estas distribuciones de terceros esta siendo
actualizada en el servidor de la WIKI de HTTP Server, y deberia
reflejar el actual estado de éstas distribuciones de terceros. Sin
embargo, tendra que familiarizarse con los procedimientos de
gestion e instalacion de paquetes de su plataforma (SO) en
particular.

Copyright 2017 The Apache Software Foundation.
Licencia bajo los términos de Apache License, Version 2.0.

Modulos | Directivas | Preguntas Frecuentes | Glosario | Mapa del sitio web



http://wiki.apache.org/httpd/DistrosDefaultLayout
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

ABAGM] i Ezreguntas Frecuentes | Glosario | Mapa del sitio web

HTTP SERVER PROJNerSiOn 2.4 del Servidor HTTP Apache

Apache > Servidor HTTP > Documentacion > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Iniciar Apache

En Windows, Apache se ejecuta normalmente como un servicio. Para
obtener mas informacion, consulte Ejecutar Apache como un servicio.

En Unix, el programa httpd se ejecuta como un demonio (daemon)
de forma continiua y en segundo plano y atiende las peticiones que le
lleguen. Este documento describe como invocar el programa ht tpd.

Consulte también

Parar y reiniciar Apache

httpd
apachectl



https://www.apache.org/foundation/contributing.html

Si el puerto especificado en la directiva Listen del fichero de
configuracion es el que viene por defecto, es decir, el puerto 80 (o
cualquier otro puerto por debajo del 1024), entonces es necesario
tener privilegios de usuario root (superusuario) para iniciar
Apache, de modo que pueda establecerse una conexion a traves
de esos puertos privilegiados. Una vez que el servidor Apache se
ha iniciado y ha completado algunas tareas preliminares, tales
como abrir sus ficheros log, lanzara varios procesos, procesos
hijo, que hacen el trabajo de escuchar y atender las peticiones de
los clientes. El proceso principal, httpd continla ejecutandose
con el usuario root, pero los procesos hijo se ejecutan con
menores privilegios de usuario. Esto lo controla el Modulo de
MultiProcesamiento (MPM) seleccionado.

La forma recomendada para invocar el ejecutable httpd es
usando el script de control apachectl. Este script fija

determinadas variables de entorno que son necesarias para que
ht tpd funcione correctamente en el sistema operativo, y después
invoca el binario httpd. apachectl pasa a httpd cualquier
argumento que se le pase a traves de la linea de comandos, de
forma que cualquier opcion de httpd puede ser usada también
con apachectl. Puede editar directamente el script apachectl
y cambiar la variable HTTPD variable que esta al principio y que
especifica la ubicacion exacta en la que esta el binario httpd y
cualquier argumento de linea de comandos que quiera que esté
siempre presente.

La primera cosa que hace httpd cuando es invocado es localizar
y leer el fichero de configuracion httpd.conf. El lugar en el que
esta ese fichero se determina al compilar, pero también es posible
especificar la ubicacion en la que se encuentra al iniciar el
servidor Apache usando la opcion de linea de comandos -f




/usr/local/apache2/bin/apachectl -f
/usr/local/apache2/conf/httpd.conf

Si todo va bien durante el arranque, la sesion de terminal se
suspendera un momento y volvera a estar activa casi
inmediatamente. Esto quiere decir que el servidor esta activo y
funcionando. Puede usar su navegador para conectarse al
servidor y ver la pagina de prueba que hay en el directorio de la
directiva DocumentRoot.




Si Apache encuentra una error irrecuperable durante el arranque,
escribira un mensaje describiendo el problema en la consola o en
el archivo ErrorlLog antes de abortar la ejecucion. Uno de los
mensajes de error mas comunes es "Unable to bind to
Port ...". Cuando se recibe este mensaje es normalmente por
alguna de las siguientes razones:

e Esta intentando iniciar el servidor Apache en un puerto
privilegiado (del 0 al 1024) sin haber hecho login como
usuario root; 0 bien

e Esta intentando iniciar el servidor Apache mientras esta ya
ejecutando Apache o algun otro servidor web en el mismo
puerto.

Puede encontrar mas informacion sobre como solucionar
problemas, en la seccion de Preguntas Frecuentes de Apache.



http://wiki.apache.org/httpd/FAQ

- - - - - - |
Si quiere que el servidor Apache continle su ejecucion después
de reiniciar el sistema, debe afadir una llamada a apachectl en
sus archivos de arranque (normalmente rc.local o un fichero
en ese directorio del tipo rc.N). Esto iniciara Apache como
usuario root. Antes de hacer esto, asegurese de que la

configuracion de seguridad y las restricciones de acceso de su
servidor Apache estan correctamente configuradas.

El script apachectl esta disefiado para actuar como un script
estandar de tipo SysV 1init; puede tomar los argumentos
start, restart, y stop y traducirlos en las sefales apropiadas
para httpd. De esta manera, casi siempre puede simplemente
enlazar apachectlcon el directorio init adecuado. Pero
asegurese de comprobar los requisitos exactos de su sistema.




En la seccion El Servidor y Programas de Soporte puede
encontrar mas informacion sobre las opciones de linea de
comandos que puede pasar a httpd y apachectl asi como
sobre otros programas de soporte incluidos con el servidor
Apache. También hay documentacion sobre todos los modulos
incluidos con la distribucion de Apache y sus correspondientes
directivas asociadas.

Copyright 2017 The Apache Software Foundation.
Licencia bajo los términos de Apache License, Version 2.0.

Modulos | Directivas | Preguntas Frecuentes | Glosario | Mapa del sitio web



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

ABAGM] i Ezreguntas Frecuentes | Glosario | Mapa del sitio web

HTTP SERVER PROJNerSiOn 2.4 del Servidor HTTP Apache

Apache > Servidor HTTP > Documentacion > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Iniciar y Parar el servidor Apache

Esta traduccion podria estar obsoleta. Consulte la version en
inglés de la documentacion para comprobar si se han
producido cambios recientemente.

Este documento explica como iniciar y parar el servidor Apache en
sistemas tipo Unix. Los usuarios de Windows NT, 2000 y XP deben
consultar la seccion Ejecutar Apache como un servicio y los usuario
de Windows 9x y ME deben consultar Ejecutar Apache como una
Aplicacion de Consola para obtener informacion sobre como controlar
Apache en esas plataformas.

Consulte también

httpd
apachectl


https://www.apache.org/foundation/contributing.html

|
Para parar y reiniciar Apache, hay que enviar la sefal apropiada
al proceso padre httpd que se esté ejecutando. Hay dos
maneras de enviar estas sefales. En primer lugar, puede usar el
comando de Unix kill que envia sefiales directamente a los
procesos. Puede que tenga varios procesos httpd ejecutandose
en su sistema, pero las sefiales deben enviarse solamente al
proceso padre, cuyo pid esta especificado en la directiva
PidFile. Esto quiere decir que no debe necesitar enviar sefiales

a ningun proceso excepto al proceso padre. Hay tres sefiales que
puede enviar al proceso padre: TERM, HUP, y USR1, que van a ser

descritas a continuacion.

Para enviar una sefial al proceso padre debe escribir un comando
como el que se muestra en el ejemplo:

kill -TERM “cat /usr/local/apache2/logs/httpd.pid’

La segunda manera de enviar sefiales a los procesos httpd es
usando las opciones de linea de comandos -k: stop, restart,y
graceful, como se muestra mas abajo. Estas opciones se le

pueden pasar al binario httpd, pero se recomienda que se pasen
al script de control apachectl, que a su vez los pasara a httpd.

Después de haber enviado las sefales que desee a httpd,
puede ver como progresa el proceso escribiendo:

tail -f /usr/local/apache2/logs/error_log

Modifiqgue estos ejemplos para que coincidan con la configuracion
gue tenga especificada en las directivas ServerRoot y PidFile

en su fichero principal de configuracion.




Seiial: TERM
apachectl -k stop

Enviar las sefales TERM o stop al proceso padre hace que se
intenten eliminar todos los procesos hijo inmediatamente. Esto
puede tardar algunos minutos. Una vez que hayan terminado
todos los procesos hijo, terminara el proceso padre. Cualquier
peticion en proceso terminara inmediatanmente, y ninguna
peticion posterior sera atendida.



Seial: USR1
apachectl -k graceful

Las sefiales USR1 o graceful hacen que el proceso padre
indique a sus hijos que terminen después de servir la peticion que
estén atendiendo en ese momento (o de inmediato si no estan
sirviendo ninguna peticion). El proceso padre lee de nuevo sus
ficheros de configuracion y vuelve a abrir sus ficheros log.
Conforme cada hijo va terminando, el proceso padre lo va
sustituyendo con un hijo de una nueva generacion con la nueva
configuracion, que empeciezan a servir peticiones
inmediatamente.

En algunas plataformas que no permiten usar USR1 para
reinicios graceful, puede usarse una sefial alternativa (como
WINCH). Tambien puede usar apachectl gracefuly el
script de control enviara la sefial adecuada para su plataforma.

Apache esta disefiado para respetar en todo momento la directiva
de control de procesos de los MPM, asi como para que el nimero
de procesos y hebras disponibles para servir a los clientes se
mantenga en los valores adecuados durante el proceso de
reinicio. AUn mas, esta disefiado para respetar la directiva
StartServers de la siguiente manera: si después de al menos
un segundo el nuevo hijo de la directiva StartServers no ha
sido creado, entonces crea los suficientes para se atienda el
trabajo que queda por hacer. Asi, se intenta mantener tanto el
namero de hijos adecuado para el trabajo que el servidor tenga en
ese momento, como respetar la configuracion determinada por los
parametros de la directiva StartServers.

Los usuarios del médulo mod status notaran que las
estadisticas del servidor no se ponen a cero cuando se usa la



sefial USR1. Apache fue escrito tanto para minimizar el tiempo en

el que el servidor no puede servir nuevas peticiones (que se
pondran en cola por el sistema operativo, de modo que se no se
pierda ningun evento), como para respetar sus parametros de
ajuste. Para hacer esto, tiene que guardar el scoreboard usado
para llevar el registro de los procesos hijo a través de las distintas
generaciones.

El mod_status también usa una G para indicar que esos hijos
estan todavia sirviendo peticiones previas al reinicio graceful.

Actualmente no existe ninguna manera de que un script con un
log de rotacion usando USR1 sepa con seguridad que todos los
hijos que se registraron en el log con anterioridad al reinicio han
terminado. Se aconseja que se use un retardo adecuado después
de enviar la sefial USR1 antes de hacer nada con el log antiguo.

Por ejemplo, si la mayor parte las visitas que recibe de usuarios
que tienen conexiones de baja velocidad tardan menos de 10
minutos en completarse, entoces espere 15 minutos antes de
hacer nada con el log antiguo.

Si su fichero de configuracion tiene errores cuando haga el
reinicio, entonces el proceso padre no se reinciciara y terminara
con un error. En caso de un reinicio graceful, también dejara a
los procesos hijo ejecutandose mientras existan. (Estos son los
hijos de los que se esta saliendo de forma graceful y que estan
sirviendo sus Ultimas peticiones.) Esto provocara problemas si
intenta reiniciar el servidor -- no sera posible conectarse a la
lista de puertos de escucha. Antes de reiniciar, puede
comprobar que la sintaxis de sus ficheros de configuracion es
correcta con la opcion de linea de comandos -t (consulte
httpd). No obstante, esto no garantiza que el servidor se reinicie
correctamente. Para comprobar que no hay errores en los
ficheros de configuracion, puede intentar iniciar httpd con un
usuario diferente a root. Si no hay errores, intentara abrir sus



sockets y logs y fallara porque el usuario no es root (o porque el
httpd que se esta ejecutando en ese momento ya esta
conectado a esos puertos). Si falla por cualquier otra razén,
entonces casi seguro que hay algun error en alguno de los
ficheros de configuracion y debe corregir ese 0 esos errores
antes de hacer un reinicio graceful.



Seial: HUP
apachectl -k restart

El envio de las sefales HUP o restart al proceso padre hace
gue los procesos hijo terminen como si le envia ramos la sefal
TERM, para eliminar el proceso padre. La diferencia esta en que
estas sefales vuelven a leer los archivos de configuracion y
vuelven a abrir los ficheros log. Se genera un nuevo conjunto de
hijos y se continda sirviendo peticiones.

Los usuarios del médulo mod status notaran que las

estadisticas del servidor se ponen a cero cuando se envia la sefal
HUP.

Si su fichero de configuracién contiene errores, cuando intente
reiniciar, el proceso padre del servidor no se reiniciara, sino que
terminara con un error. Consulte mas arriba como puede
solucionar este problema.



Con anterioridad a la version de Apache 1.2b9 habia varias race
conditions implicadas en las sefales para parar y reiniciar
procesos (una descripcion sencilla de una race condition es: un
problema relacionado con el momento en que suceden las cosas,
como si algo sucediera en momento en que no debe, y entonces
el resultado esperado no se corresponde con el obtenido). Para
aguellas arquitecturas que tienen el conjunto de caracteristicas
"adecuadas", se han eliminado tantas race conditions como ha
sido posible. Pero hay que tener en cuenta que todavia existen
race conditions en algunas arquitecturas.

En las arquitecturas que usan un ScoreBoardFile en disco,
existe la posibilidad de que se corrompan los scoreboards. Esto
puede hacer que se produzca el error "bind: Address already in
use" (después de usarHUP) o el error "long lost child came home!"
(después de usar USR1). En el primer caso se trata de un error
irrecuperable, mientras que en el segundo, solo ocurre que el
servidor pierde un slot del scoreboard. Por lo tanto, seria
aconsejable usar reinicios graceful, y solo hacer reinicios
normales de forma ocasional. Estos problemas son bastante
complicados de solucionar, pero afortunadamente casi ninguna
arquitectura necesita un fichero scoreboard. Consulte la
documentacion de la directiva ScoreBoardFile para ver las
arquitecturas que la usan.

Todas las arquitecturas tienen una pequefa race condition en
cada proceso hijo implicada en la segunda y subsiguientes
peticiones en una conexion HTTP persistente (KeepAlive). Puede
ser que el servidor termine después de leer la linea de peticion
pero antes de leer cualquiera de las cebeceras de peticion. Hay
una solucion que fue descubierta demasiado tarde para la incluirla
en version 1.2. En teoria esto no debe suponer ningun problema
porque el cliente KeepAlive ha de esperar que estas cosas pasen



debido a los retardos de red y a los timeouts que a veces dan los
servidores. En la practica, parece que no afecta a nada mas -- en
una sesion de pruebas, un servidor se reinicio veinte veces por
segundo y los clientes pudieron navegar sin problemas por el sitio
web sin encontrar problemas ni para descargar una sola imagen
ni encontrar un solo enlace roto.

Copyright 2017 The Apache Software Foundation.
Licencia bajo los términos de Apache License, Version 2.0.

Modulos | Directivas | Preguntas Frecuentes | Glosario | Mapa del sitio web



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Configuration Files

This document describes the files used to configure Apache HTTP
Server.



Related Modules Related Directives

mod mime <IfDefine>
Include
TypesConfig

Apache HTTP Server is configured by placing directives in plain
text configuration files. The main configuration file is usually called
httpd.conf. The location of this file is set at compile-time, but
may be overridden with the - f command line flag. In addition,
other configuration files may be added using the Include
directive, and wildcards can be used to include many configuration
files. Any directive may be placed in any of these configuration
files. Changes to the main configuration files are only recognized
by httpd when it is started or restarted.

The server also reads a file containing mime document types; the
filename is set by the TypesConfig directive, and is
mime. types by default.




 J - - - 9 - - |
httpd configuration files contain one directive per line. The
backslash "\" may be used as the last character on a line to
indicate that the directive continues onto the next line. There must
be no other characters or white space between the backslash and
the end of the line.

Arguments to directives are separated by whitespace. If an
argument contains spaces, you must enclose that argument in
quotes.

Directives in the configuration files are case-insensitive, but
arguments to directives are often case sensitive. Lines that begin
with the hash character "#" are considered comments, and are
ignored. Comments may not be included on the same line as a
configuration directive. White space occurring before a directive is
ignored, so you may indent directives for clarity. Blank lines are
also ignored.

The values of variables defined with the Define of or shell
environment variables can be used in configuration file lines using
the syntax ${VAR}. If "VAR" is the name of a valid variable, the
value of that variable is substituted into that spot in the
configuration file line, and processing continues as if that text were
found directly in the configuration file. Variables defined with
Define take precedence over shell environment variables. If the
"VAR" variable is not found, the characters ${VAR} are left
unchanged, and a warning is logged. Variable names may not
contain colon ":" characters, to avoid clashes with RewriteMap's
syntax.

Only shell environment variables defined before the server is
started can be used in expansions. Environment variables defined
in the configuration file itself, for example with SetEnv, take effect

too late to be used for expansions in the configuration file.



The maximum length of a line in normal configuration files, after
variable substitution and joining any continued lines, is
approximately 16 MiB. In .htaccess files, the maximum length is
8190 characters.

You can check your configuration files for syntax errors without
starting the server by using apachectl configtest orthe -t
command line option.

You can use mod info's -DDUMP_CONFIG to dump the

configuration with all included files and environment variables
resolved and all comments and non-matching <IfDefine> and

<IfModule> sections removed. However, the output does not

reflect the merging or overriding that may happen for repeated
directives.




Related Modules Related Directives

mod So <IfModule>
LoadModule

httpd is a modular server. This implies that only the most basic
functionality is included in the core server. Extended features are
available through modules which can be loaded into httpd. By
default, a base set of modules is included in the server at compile-
time. If the server is compiled to use dynamically loaded modules,
then modules can be compiled separately and added at any time
using the LoadModule directive. Otherwise, httpd must be
recompiled to add or remove modules. Configuration directives
may be included conditional on a presence of a particular module
by enclosing them in an <IfModule> block. However,
<IfModule> blocks are not required, and in some cases may
mask the fact that you're missing an important module.

To see which modules are currently compiled into the server, you
can use the -1 command line option. You can also see what

modules are loaded dynamically using the -M command line
option.



Related Modules Related Directives

<Directory>
<DirectoryMatch>
<Files>
<FilesMatch>
<Location>
<LocationMatch>
<VirtualHost>

Directives placed in the main configuration files apply to the entire
server. If you wish to change the configuration for only a part of the
server, you can scope your directives by placing them in
<Directory>, <DirectoryMatch>, <Files>,
<FilesMatch>, <Location>, and <LocationMatch> sections.
These sections limit the application of the directives which they
enclose to particular filesystem locations or URLs. They can also
be nested, allowing for very fine grained configuration.

httpd has the capability to serve many different websites
simultaneously. This is called Virtual Hosting. Directives can also
be scoped by placing them inside <VirtualHost> sections, so
that they will only apply to requests for a particular website.

Although most directives can be placed in any of these sections,
some directives do not make sense in some contexts. For
example, directives controlling process creation can only be
placed in the main server context. To find which directives can be
placed in which sections, check the Context of the directive. For
further information, we provide details on How Directory, Location
and Files sections work.




Related Modules Related Directives

AccessFileName
AllowOverride

httpd allows for decentralized management of configuration via
special files placed inside the web tree. The special files are
usually called . htaccess, but any name can be specified in the
AccessFileName directive. Directives placed in .htaccess files
apply to the directory where you place the file, and all sub-
directories. The . htaccess files follow the same syntax as the
main configuration files. Since . htaccess files are read on every
request, changes made in these files take immediate effect.

To find which directives can be placed in . htaccess files, check

the Context of the directive. The server administrator further
controls what directives may be placed in . htaccess files by

configuring the AllowOverride directive in the main
configuration files.

For more information on . htaccess files, see the .htaccess
tutorial.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Configuration Sections

Directives in the configuration files may apply to the entire server, or
they may be restricted to apply only to particular directories, files,
hosts, or URLSs. This document describes how to use configuration
section containers or . htaccess files to change the scope of other

configuration directives.




Related Modules Related Directives

core <Directory>

mod version <DirectoryMatch>

mod proxy <Files>
<FilesMatch>
<If>
<IfDefine>
<IfModule>
<IfVersion>
<Location>
<LocationMatch>
<Proxy>
<ProxyMatch>
<VirtualHost>

There are two basic types of containers. Most containers are
evaluated for each request. The enclosed directives are applied
only for those requests that match the containers. The
<IfDefine>, <IfModule>, and <IfVersion> containers, on
the other hand, are evaluated only at server startup and restart. If
their conditions are true at startup, then the enclosed directives will
apply to all requests. If the conditions are not true, the enclosed
directives will be ignored.

The <IfDefine> directive encloses directives that will only be
applied if an appropriate parameter is defined on the httpd
command line. For example, with the following configuration, all
requests will be redirected to another site only if the server is
started using httpd -DClosedForNow:

<IfDefine ClosedForNow>
Redirect "/" "http://otherserver.exampl¢



</IfDefine>
1 1 2

The <IfModule> directive is very similar, except it encloses
directives that will only be applied if a particular module is
available in the server. The module must either be statically
compiled in the server, or it must be dynamically compiled and its
LoadModule line must be earlier in the configuration file. This
directive should only be used if you need your configuration file to
work whether or not certain modules are installed. It should not be
used to enclose directives that you want to work all the time,
because it can suppress useful error messages about missing
modules.

In the following example, the MimeMagicFile directive will be
applied only if mod mime magic is available.

<IfModule mod_mime_magic.c>
MimeMagicFile "conf/magic"
</IfModule>

The <IfVersion> directive is very similar to <IfDefine> and
<IfModule>, except it encloses directives that will only be
applied if a particular version of the server is executing. This
module is designed for the use in test suites and large networks
which have to deal with different httpd versions and different
configurations.

<IfVersion >= 2.4>
# this happens only in versions greater
# equal 2.4.0.

</IfVersion>

| =%




<IfDefine>, <IfModule>, and the <IfVersion> can apply
negative conditions by preceding their test with "!". Also, these
sections can be nested to achieve more complex restrictions.




The most commonly used configuration section containers are the
ones that change the configuration of particular places in the
filesystem or webspace. First, it is important to understand the
difference between the two. The filesystem is the view of your
disks as seen by your operating system. For example, in a default
install, Apache httpd resides at /usr/local/apache2 in the
Unix filesystem or "c:/Program Files/Apache
Group/Apache2" in the Windows filesystem. (Note that forward
slashes should always be used as the path separator in Apache
httpd configuration files, even for Windows.) In contrast, the
webspace is the view of your site as delivered by the web server
and seen by the client. So the path /dir/ in the webspace
corresponds to the path /usr/local/apache2/htdocs/dir/
in the filesystem of a default Apache httpd install on Unix. The
webspace need not map directly to the filesystem, since
webpages may be generated dynamically from databases or other
locations.

Filesystem Containers

The <Directory> and <Files> directives, along with their
regex counterparts, apply directives to parts of the filesystem.
Directives enclosed in a <Directory> section apply to the
named filesystem directory and all subdirectories of that directory
(as well as the files in those directories). The same effect can be
obtained using .htaccess files. For example, in the following
configuration, directory indexes will be enabled for the
/var/web/dir1 directory and all subdirectories.

<Directory "/var/web/dir1">
Options +Indexes
</Directory>



Directives enclosed in a <Files> section apply to any file with the
specified name, regardless of what directory it lies in. So for
example, the following configuration directives will, when placed in
the main section of the configuration file, deny access to any file
named private.html regardless of where it is found.

<Files '"private.html">
Require all denied
</Files>

To address files found in a particular part of the filesystem, the
<Files>and <Directory> sections can be combined. For
example, the following configuration will deny access to
/var/web/dirl/private.html,
/var/web/dirl/subdir2/private.html,
/var/web/dirl/subdir3/private.html, and any other
instance of private.html found under the /var/web/dirl1/
directory.

<Directory "/var/web/dir1">
<Files '"private.html">
Require all denied
</Files>
</Directory>

Webspace Containers

The <Location> directive and its regex counterpart, on the other
hand, change the configuration for content in the webspace. For
example, the following configuration prevents access to any URL-
path that begins in /private. In particular, it will apply to requests for
http://yoursite.example.com/private,
http://yoursite.example.com/privatel23, and
http://yoursite.example.com/private/dir/file.html




as well as any other requests starting with the /private string.

<LocationMatch "A/private'>
Require all denied
</LocationMatch>

The <Location> directive need not have anything to do with the
filesystem. For example, the following example shows how to map
a particular URL to an internal Apache HTTP Server handler
provided by mod status. No file called server-status needs

to exist in the filesystem.

<Location "/server-status">
SetHandler server-status
</Location>

Overlapping Webspace

In order to have two overlapping URLs one has to consider the
order in which certain sections or directives are evaluated. For
<Location> this would be:

<Location "/foo">
</Location>

<Location "/foo/bar'">
</Location>

<Alias>es on the other hand, are mapped vice-versa:

Alias "/foo/bar" "/srv/www/uncommon/bar"
Alias "/foo" "/srv/www/common/foo"

The same is true for the ProxyPass directives:




ProxyPass "/special-area" "http://special.e:
ProxyPass "/" '"balancer://mycluster/" stick

j — 2]

Wildcards and Regular Expressions

The <Directory>, <Files>, and <Location> directives can
each use shell-style wildcard characters as in fnmatch from the C
standard library. The character "*" matches any sequence of
characters, "?" matches any single character, and "[seq]" matches
any character in seq. The "/" character will not be matched by any
wildcard; it must be specified explicitly.

If even more flexible matching is required, each container has a
regular expression (regex) counterpart <DirectoryMatch>,
<FilesMatch>, and <LocationMatch> that allow perl-
compatible regular expressions to be used in choosing the
matches. But see the section below on configuration merging to
find out how using regex sections will change how directives are
applied.

A non-regex wildcard section that changes the configuration of all
user directories could look as follows:

<Directory "/home/*/public_html">
Options Indexes
</Directory>

Using regex sections, we can deny access to many types of image
files at once:

<FilesMatch "\.(?i:gif|jpe?g|png)$">
Require all denied
</FilesMatch>



Regular expressions containing named groups and
backreferences are added to the environment with the
corresponding name in uppercase. This allows elements of
filename paths and URLSs to be referenced from within expressions
and modules like mod rewrite.

<DirectoryMatch "A/var/www/combined/ (?<SITEI
require ldap-group "cn=%{env:MATCH_SITEI
</DirectoryMatch>

J S o

Boolean expressions

The <If> directive change the configuration depending on a
condition which can be expressed by a boolean expression. For
example, the following configuration denies access if the HTTP
Referer header does not start with "http://www.example.com/".

<If "!(%{HTTP_REFERER} -strmatch 'http://ww
Require all denied
</If>

J S o]

What to use When

Choosing between filesystem containers and webspace containers
is actually quite easy. When applying directives to objects that
reside in the filesystem always use <Directory> or <Files>.
When applying directives to objects that do not reside in the
filesystem (such as a webpage generated from a database), use
<Location>.

It is important to never use <Location> when trying to restrict
access to objects in the filesystem. This is because many different
webspace locations (URLS) could map to the same filesystem




location, allowing your restrictions to be circumvented. For
example, consider the following configuration:

<Location "/dir/">
Require all denied
</Location>

This works fine if the request is for
http://yoursite.example.com/dir/. But what if you are on
a case-insensitive filesystem? Then your restriction could be easily
circumvented by requesting
http://yoursite.example.com/DIR/. The <Directory>
directive, in contrast, will apply to any content served from that
location, regardless of how it is called. (An exception is filesystem
links. The same directory can be placed in more than one part of
the filesystem using symbolic links. The <Directory> directive
will follow the symbolic link without resetting the pathname.
Therefore, for the highest level of security, symbolic links should
be disabled with the appropriate Options directive.)

If you are, perhaps, thinking that none of this applies to you
because you use a case-sensitive filesystem, remember that there
are many other ways to map multiple webspace locations to the
same filesystem location. Therefore you should always use the
filesystem containers when you can. There is, however, one
exception to this rule. Putting configuration restrictions in a
<Location "/'"> section is perfectly safe because this section

will apply to all requests regardless of the specific URL.

Nesting of sections

Some section types can be nested inside other section types. On
the one hand, <Files> can be used inside <Directory>. On

the other hand, <If> can be used inside <Directory>,




<Location>, and <Files> sections (but not inside another
<If>). The regex counterparts of the named section behave
identically.

Nested sections are merged after non-nested sections of the same
type.



The <VirtualHost> container encloses directives that apply to
specific hosts. This is useful when serving multiple hosts from the
same machine with a different configuration for each. For more
information, see the Virtual Host Documentation.




The <Proxy> and <ProxyMatch> containers apply enclosed
configuration directives only to sites accessed through

mod _proxy's proxy server that match the specified URL. For
example, the following configuration will allow only a subset of
clients to access the www . example.com website using the proxy
server:

<Proxy "http://www.example.com/*">

Require host yournetwork.example.com
</Proxy>



To find out what directives are allowed in what types of
configuration sections, check the Context of the directive.
Everything that is allowed in <Directory> sections is also
syntactically allowed in <DirectoryMatch>, <Files>,
<FilesMatch>, <Location>, <LocationMatch>, <Proxy>,
and <ProxyMatch> sections. There are some exceptions,
however:

e The AllowOverride directive works only in <Directory>
sections.

e The FollowSymLinks and SymLinksIfOwnerMatch
Options work only in <Directory> sections or .htaccess
files.

e The Options directive cannot be used in <Files> and
<FilesMatch> sections.




The configuration sections are applied in a very particular order.
Since this can have important effects on how configuration
directives are interpreted, it is important to understand how this
works.

The order of merging is:

1. <Directory> (except regular expressions) and .htaccess
done simultaneously (with . htaccess, if allowed, overriding
<Directory>)

. <DirectoryMatch> (and <Directory "~">)

. <Files> and <FilesMatch> done simultaneously

2
3
4. <Location> and <LocationMatch> done simultaneously
5

. <If>
Some important remarks:

e Apart from <Directory>, within each group the sections are
processed in the order they appear in the configuration files.
For example, a request for /foo will match <Location
"/foo/bar">and <Location "/foo"> (group 4 in this
case): both sections will be evaluated but in the order they
appear in the configuration files.

e <Directory> (group 1 above) is processed in the order
shortest directory component to longest. For example,
<Directory "/var/web/dir"> will be processed before
<Directory "/var/web/dir/subdir">.

o If multiple <Directory> sections apply to the same directory
they are processed in the configuration file order.

e Configurations included via the Include directive will be
treated as if they were inside the including file at the location




of the Include directive.

e Sections inside <VirtualHost> sections are applied after
the corresponding sections outside the virtual host definition.
This allows virtual hosts to override the main server
configuration.

e When the request is served by mod proxy, the <Proxy>
container takes the place of the <Directory> container in
the processing order.

Technical Note

There is actually a <Location>/<LocationMatch> sequence
performed just before the name translation phase (where
Aliases and DocumentRoots are used to map URLSs to

filenames). The results of this sequence are completely thrown
away after the translation has completed.

Relationship between modules and configuration
sections

One question that often arises after reading how configuration
sections are merged is related to how and when directives of
specific modules like mod rewrite are processed. The answer is
not trivial and needs a bit of background. Each httpd module
manages its own configuration, and each of its directives in
httpd.conf specify one piece of configuration in a particular
context. httpd does not execute a command as it is read.

At runtime, the core of httpd iterates over the defined configuration
sections in the order described above to determine which ones
apply to the current request. When the first section matches, it is
considered the current configuration for this request. If a
subsequent section matches too, then each module with a
directive in either of the sections is given a chance to merge its
configuration between the two sections. The result is a third



configuration, and the process goes on until all the configuration
sections are evaluated.

After the above step, the "real" processing of the HTTP request
begins: each module has a chance to run and perform whatever
tasks they like. They can retrieve their own final merged
configuration from the core of the httpd to determine how they
should act.

An example can help to visualize the whole process. The following
configuration uses the Header directive of nod headers to set a

specific HTTP header. What value will httpd set in the
CustomHeaderName header for a request to

/example/index.html ?

<Directory "/">
Header set CustomHeaderName one
<FilesMatch ".*">
Header set CustomHeaderName three
</FilesMatch>
</Directory>

<Directory "/example">
Header set CustomHeaderName two
</Directory>

e Directory "/" matches and an initial configuration to set the
CustomHeaderName header with the value one is created.

e Directory "/example" matches, and since mod headers
specifies in its code to override in case of a merge, a new
configuration is created to set the CustomHeaderName
header with the value two.

e FilesMatch ".*" matches and another merge opportunity
arises, causing the CustomHeaderName header to be set




with the value three.

o Eventually during the next steps of the HTTP request
processing mod headers will be called and it will receive the
configuration to set the CustomHeaderName header with the
value three. mod headers normally uses this configuration
to perfom its job, namely setting the foo header. This does not
mean that a module can't perform a more complex action like
discarding directives because not needed or deprecated, etc..

This is true for .htaccess too since they have the same priority as
Directory in the merge order. The important concept to

understand is that configuration sections like Directory and
FilesMatch are not comparable to module specific directives like
Header or RewriteRule because they operate on different
levels.

Some useful examples

Below is an artificial example to show the order of merging.
Assuming they all apply to the request, the directives in this
example will be applied in the order A>B>C>D > E.

<Location "/">
E
</Location>

<Files "f.html">
D
</Files>

<VirtualHost *>
<Directory "/a/b">
B
</Directory>
</VirtualHost>



<DirectoryMatch "A.*b$">
C
</DirectoryMatch>

<Directory "/a/b">
A
</Directory>

For a more concrete example, consider the following. Regardless
of any access restrictions placed in <Directory> sections, the
<Location> section will be evaluated last and will allow

unrestricted access to the server. In other words, order of merging
IS important, so be careful!

<Location "/">
Require all granted
</Location>

# Whoops! This <Directory> section will ha»
<Directory "/">
<RequireAll>
Require all granted
Require not host badguy.example.com
</RequireAll>
</Directory>

j S— o

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Server-Wide Configuration

This document explains some of the directives provided by the core
server which are used to configure the basic operations of the server.



Related Modules Related Directives

ServerName

ServerAdmin
ServerSignature
ServerTokens
UseCanonicalName
UseCanonicalPhysicalPort

The ServerAdmin and ServerTokens directives control what

information about the server will be presented in server-generated
documents such as error messages. The ServerTokens

directive sets the value of the Server HTTP response header field.

The ServerName, UseCanonicalName and
UseCanonicalPhysicalPort directives are used by the server
to determine how to construct self-referential URLs. For example,
when a client requests a directory, but does not include the trailing
slash in the directory name, httpd must redirect the client to the full
name including the trailing slash so that the client will correctly
resolve relative references in the document.




Related Modules Related Directives

CoreDumpDirectory
DocumentRoot
ErrorlLog

Mutex

PidFile
ScoreBoardFile
ServerRoot

These directives control the locations of the various files that httpd
needs for proper operation. When the pathname used does not
begin with a slash (/), the files are located relative to the
ServerRoot. Be careful about locating files in paths which are
writable by non-root users. See the security tips documentation for
more details.




Related Modules Related Directives

LimitRequestBody
LimitRequestFields
LimitRequestFieldsize
LimitRequestline
RLimitCPU

RLimitMEM

RLimitNPROC
ThreadStackSize

The LimitRequest* directives are used to place limits on the

amount of resources httpd will use in reading requests from
clients. By limiting these values, some kinds of denial of service
attacks can be mitigated.

The RLimit* directives are used to limit the amount of resources

which can be used by processes forked off from the httpd children.
In particular, this will control resources used by CGI scripts and
SSI exec commands.

The ThreadStackSize directive is used with some platforms to
control the stack size.




Related Modules Related Directives
Mutex

The Mutex directive can be used to change the underlying

implementation used for mutexes, in order to relieve functional or
performance problems with APR's default choice.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Log Files

In order to effectively manage a web server, it is necessary to get
feedback about the activity and performance of the server as well as
any problems that may be occurring. The Apache HTTP Server
provides very comprehensive and flexible logging capabilities. This
document describes how to configure its logging capabilities, and how
to understand what the logs contain.



Related Modules Related Directives
mod log config
mod log forensic

mod logio
mod cgi

The Apache HTTP Server provides a variety of different
mechanisms for logging everything that happens on your server,
from the initial request, through the URL mapping process, to the
final resolution of the connection, including any errors that may
have occurred in the process. In addition to this, third-party
modules may provide logging capabilities, or inject entries into the
existing log files, and applications such as CGI programs, or PHP
scripts, or other handlers, may send messages to the server error

log.

In this document we discuss the logging modules that are a
standard part of the http server.



Anyone who can write to the directory where Apache httpd is
writing a log file can almost certainly gain access to the uid that
the server is started as, which is normally root. Do NOT give
people write access to the directory the logs are stored in without
being aware of the consequences; see the security tips document
for details.

In addition, log files may contain information supplied directly by
the client, without escaping. Therefore, it is possible for malicious
clients to insert control-characters in the log files, so care must be
taken in dealing with raw logs.



Related Modules Related Directives

core ErrorlLog
ErrorLogFormat

LogLevel

The server error log, whose name and location is set by the
ErrorlLog directive, is the most important log file. This is the
place where Apache httpd will send diagnostic information and
record any errors that it encounters in processing requests. It is
the first place to look when a problem occurs with starting the
server or with the operation of the server, since it will often contain
details of what went wrong and how to fix it.

The error log is usually written to a file (typically error_log on
Unix systems and error . log on Windows and OS/2). On Unix

systems it is also possible to have the server send errors to
syslog or pipe them to a program.

The format of the error log is defined by the ErrorLogFormat
directive, with which you can customize what values are logged. A
default is format defined if you don't specify one. A typical log
message follows:

[Fri Sep 09 10:42:29.902022 2011] [core:error] [pid 35708:tid
4328636416] [client 72.15.99.187] File does not exist:
/usr/local/apache2/htdocs/favicon.ico

The first item in the log entry is the date and time of the message.
The next is the module producing the message (core, in this case)
and the severity level of that message. This is followed by the
process ID and, if appropriate, the thread ID, of the process that
experienced the condition. Next, we have the client address that
made the request. And finally is the detailed error message, which



in this case indicates a request for a file that did not exist.

A very wide variety of different messages can appear in the error
log. Most look similar to the example above. The error log will also
contain debugging output from CGI scripts. Any information written
to stderr by a CGI script will be copied directly to the error log.

Putting a %L token in both the error log and the access log will
produce a log entry ID with which you can correlate the entry in
the error log with the entry in the access log. If mod unique id
is loaded, its unique request ID will be used as the log entry 1D,
too.

During testing, it is often useful to continuously monitor the error
log for any problems. On Unix systems, you can accomplish this
using:

tail -f error_log



The LogLevel directive allows you to specify a log severity level
on a per-module basis. In this way, if you are troubleshooting a
problem with just one particular module, you can turn up its
logging volume without also getting the details of other modules
that you're not interested in. This is particularly useful for modules
such as mod proxy ormod rewrite where you want to know
details about what it's trying to do.

Do this by specifying the name of the module in your LogLevel
directive:

LogLevel info rewrite:traceb

This sets the main LogLevel to info, but turns it up to traceb5 for
mod rewrite.

This replaces the per-module logging directives, such as
Rewritelog, that were present in earlier versions of the server.



Related Modules Related Directives

mod log config CustomlLog
mod setenvif LogFormat
SetEnvIf

The server access log records all requests processed by the
server. The location and content of the access log are controlled
by the CustomLog directive. The LogFormat directive can be
used to simplify the selection of the contents of the logs. This
section describes how to configure the server to record information
in the access log.

Of course, storing the information in the access log is only the start
of log management. The next step is to analyze this information to
produce useful statistics. Log analysis in general is beyond the
scope of this document, and not really part of the job of the web
server itself. For more information about this topic, and for
applications which perform log analysis, check the Open Directory.

Various versions of Apache httpd have used other modules and
directives to control access logging, including mod_log_referer,
mod_log_agent, and the TransferLog directive. The
CustomLog directive now subsumes the functionality of all the
older directives.

The format of the access log is highly configurable. The format is
specified using a format string that looks much like a C-style
printf(1) format string. Some examples are presented in the next
sections. For a complete list of the possible contents of the format
string, see the mod log config format strings.

Common Log Format


http://dmoz.org/Computers/Software/Internet/Site_Management/Log_Analysis/

A typical configuration for the access log might look as follows.

LogFormat "%h %1 %u %t \"%r\" %>s %b'" commol
CustomLog logs/access_log common

{ — Y

This defines the nickname common and associates it with a
particular log format string. The format string consists of percent
directives, each of which tell the server to log a particular piece of
information. Literal characters may also be placed in the format
string and will be copied directly into the log output. The quote
character (") must be escaped by placing a backslash before it to
prevent it from being interpreted as the end of the format string.
The format string may also contain the special control characters
"\n" for new-line and "\ t" for tab.

The CustomLog directive sets up a new log file using the defined
nickname. The filename for the access log is relative to the
ServerRoot unless it begins with a slash.

The above configuration will write log entries in a format known as
the Common Log Format (CLF). This standard format can be
produced by many different web servers and read by many log
analysis programs. The log file entries produced in CLF will look
something like this:

127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] "GET
/apache_pb.gif HTTP/1.0" 200 2326

Each part of this log entry is described below.

127.0.0.1 (%h)

This is the IP address of the client (remote host) which made
the request to the server. If HostnameLookups is set to On,

then the server will try to determine the hostname and log it in




place of the IP address. However, this configuration is not
recommended since it can significantly slow the server.
Instead, it is best to use a log post-processor such as
logresolve to determine the hostnames. The IP address
reported here is not necessarily the address of the machine at
which the user is sitting. If a proxy server exists between the
user and the server, this address will be the address of the
proxy, rather than the originating machine.

- (%1)
The "hyphen" in the output indicates that the requested piece
of information is not available. In this case, the information
that is not available is the RFC 1413 identity of the client
determined by identd on the clients machine. This
information is highly unreliable and should almost never be
used except on tightly controlled internal networks. Apache
httpd will not even attempt to determine this information
unless IdentityCheck is set to On.

frank (%u)
This is the userid of the person requesting the document as
determined by HTTP authentication. The same value is
typically provided to CGl scripts in the REMOTE_USER
environment variable. If the status code for the request (see
below) is 401, then this value should not be trusted because
the user is not yet authenticated. If the document is not
password protected, this part will be "-" just like the previous
one.

[16/0ct/2000:13:55:36 -0700] (%t)
The time that the request was received. The format is:

[day/month/year :hour:minute:second zone]
day = 2*digit

month = 3*letter

year = 4*digit



hour = 2*digit

minute = 2*digit

second = 2*digit

zone = (+' | "-') 4*digit

It is possible to have the time displayed in another format by
specifying %{format}t in the log format string, where
format is either as in strftime(3) from the C standard

library, or one of the supported special tokens. For details see
the mod log config format strings.

"GET /apache_pb.gif HTTP/1.0" (\"%r\")
The request line from the client is given in double quotes. The
request line contains a great deal of useful information. First,
the method used by the client is GET. Second, the client
requested the resource /apache_pb.gif, and third, the
client used the protocol HTTP/1.0. It is also possible to log
one or more parts of the request line independently. For
example, the format string "%m %U%q %H" will log the method,
path, query-string, and protocol, resulting in exactly the same
output as "%r".

200 (%>s)
This is the status code that the server sends back to the
client. This information is very valuable, because it reveals
whether the request resulted in a successful response (codes
beginning in 2), a redirection (codes beginning in 3), an error
caused by the client (codes beginning in 4), or an error in the
server (codes beginning in 5). The full list of possible status
codes can be found in the HTTP specification (RFC2616
section 10).

2326 (%b)

The last part indicates the size of the object returned to the
client, not including the response headers. If no content was



http://www.w3.org/Protocols/rfc2616/rfc2616.txt

returned to the client, this value will be "-". To log "0" for no
content, use %B instead.

Combined Log Format

Another commonly used format string is called the Combined Log
Format. It can be used as follows.

LogFormat "%h %1 %u %t \"%r\" %>s %b \"%{Re
CustomLog log/access_log combined

(| - o]

This format is exactly the same as the Common Log Format, with
the addition of two more fields. Each of the additional fields uses
the percent-directive %{header}i, where header can be any

HTTP request header. The access log under this format will look
like:

127.0.0.1 - frank [10/0ct/2000:13:55:36 -0700] "GET
/apache_pb.gif HTTP/1.0" 200 2326
"http://www.example.com/start.html" "Mozilla/4.08 [en] (Win98;
I ;Nav)"

The additional fields are:

"http://www.example.com/start.html" (\"%
{Referer}i\")
The "Referer"” (sic) HTTP request header. This gives the site
that the client reports having been referred from. (This should
be the page that links to or includes /apache_pb.gif).

"Mozilla/4.08 [en] (Win98; I ;Nav)" (\"%{User-
agent}i\")
The User-Agent HTTP request header. This is the identifying
information that the client browser reports about itself.



Multiple Access Logs

Multiple access logs can be created simply by specifying multiple
CustomlLog directives in the configuration file. For example, the

following directives will create three access logs. The first contains
the basic CLF information, while the second and third contain
referer and browser information. The last two CustomLog lines
show how to mimic the effects of the ReferLog and AgentLog
directives.

LogFormat "%h %1 %u %t \"%r\" %>s %b'" commol
CustomLog logs/access_log common

CustomLog logs/referer_log "%{Referer}i -> ¢
CustomLog logs/agent_log "%{User-agent}i"

J e

This example also shows that it is not necessary to define a
nickname with the LogFormat directive. Instead, the log format

can be specified directly in the CustomLog directive.

Conditional Logs

There are times when it is convenient to exclude certain entries
from the access logs based on characteristics of the client request.
This is easily accomplished with the help of environment variables.
First, an environment variable must be set to indicate that the
request meets certain conditions. This is usually accomplished
with SetEnvIf. Then the env= clause of the CustomlLog
directive is used to include or exclude requests where the
environment variable is set. Some examples:

# Mark requests from the loop-back interfacs
SetEnvIf Remote_Addr "127\.0\.0\.1" dontlog
# Mark requests for the robots.txt file

SetEnvIf Request_URI "A/robots\.txt$" dontl



# Log what remains
CustomLog logs/access_log common env=!dontl«

{ =

As another example, consider logging requests from english-
speakers to one log file, and non-english speakers to a different
log file.

SetEnvIf Accept-Language "en" english
CustomLog logs/english_log common env=engli:
CustomLog logs/non_english_log common env=!¢

j S 2

In a caching scenario one would want to know about the efficiency
of the cache. A very simple method to find this out would be:

SetEnv CACHE_MISS 1
LogFormat "%h %1 %u %t "%r " %>s %b %{CACHE.
CustomLog logs/access_log common-cache

j S o

mod cache will run before mod env and, when successful, will
deliver the content without it. In that case a cache hit will log -,
while a cache miss will log 1

In addition to the env= syntax, LogFormat supports logging
values conditional upon the HTTP response code:

LogFormat "%400,501{User-agent}i" browserlo¢
LogFormat "%!200,304,302{Referer}i" referer.

J a1

In the first example, the User -agent will be logged if the HTTP

status code is 400 or 501. In other cases, a literal "-" will be logged
instead. Likewise, in the second example, the Referer will be



logged if the HTTP status code is not 200, 204, or 302. (Note the
"I" before the status codes.

Although we have just shown that conditional logging is very
powerful and flexible, it is not the only way to control the contents
of the logs. Log files are more useful when they contain a
complete record of server activity. It is often easier to simply post-
process the log files to remove requests that you do not want to
consider.



On even a moderately busy server, the quantity of information
stored in the log files is very large. The access log file typically
grows 1 MB or more per 10,000 requests. It will consequently be
necessary to periodically rotate the log files by moving or deleting
the existing logs. This cannot be done while the server is running,
because Apache httpd will continue writing to the old log file as
long as it holds the file open. Instead, the server must be restarted
after the log files are moved or deleted so that it will open new log
files.

By using a graceful restart, the server can be instructed to open
new log files without losing any existing or pending connections
from clients. However, in order to accomplish this, the server must
continue to write to the old log files while it finishes serving old
requests. It is therefore necessary to wait for some time after the
restart before doing any processing on the log files. A typical
scenario that simply rotates the logs and compresses the old logs
to save space is:

mv access_log access_log.old

mv error_log error_log.old
apachectl graceful

sleep 600

gzip access_log.old error_log.old

Another way to perform log rotation is using piped logs as
discussed in the next section.



Apache httpd is capable of writing error and access log files
through a pipe to another process, rather than directly to a file.
This capability dramatically increases the flexibility of logging,
without adding code to the main server. In order to write logs to a
pipe, simply replace the filename with the pipe character "|",
followed by the name of the executable which should accept log
entries on its standard input. The server will start the piped-log
process when the server starts, and will restart it if it crashes while
the server is running. (This last feature is why we can refer to this
technique as "reliable piped logging".)

Piped log processes are spawned by the parent Apache httpd
process, and inherit the userid of that process. This means that
piped log programs usually run as root. It is therefore very
important to keep the programs simple and secure.

One important use of piped logs is to allow log rotation without
having to restart the server. The Apache HTTP Server includes a
simple program called rotatelogs for this purpose. For
example, to rotate the logs every 24 hours, you can use:

CustomLog "|/usr/local/apache/bin/rotatelog:
« ] 2

Notice that quotes are used to enclose the entire command that
will be called for the pipe. Although these examples are for the
access log, the same technique can be used for the error log.

As with conditional logging, piped logs are a very powerful tool, but
they should not be used where a simpler solution like off-line post-
processing is available.

By default the piped log process is spawned without invoking a
shell. Use " | $" instead of "|" to spawn using a shell (usually with



/bin/sh -c):

# Invoke "rotatelogs" using a shell
CustomLog "|$/usr/local/apache/bin/rotatelos

(| ] o]

This was the default behaviour for Apache 2.2. Depending on the
shell specifics this might lead to an additional shell process for the
lifetime of the logging pipe program and signal handling problems
during restart. For compatibility reasons with Apache 2.2 the
notation "| |" is also supported and equivalent to using "|".

Windows note

Note that on Windows, you may run into problems when running
many piped logger processes, especially when HTTPD is
running as a service. This is caused by running out of desktop
heap space. The desktop heap space given to each service is
specified by the third argument to the SharedSection
parameter in the

HKEY_ LOCAL_MACHINE\System\CurrentControlSet\Control\Ses
registry value. Change this value with care; the normal
caveats for changing the Windows registry apply, but you might
also exhaust the desktop heap pool if the number is adjusted
too high.



When running a server with many virtual hosts, there are several
options for dealing with log files. First, it is possible to use logs
exactly as in a single-host server. Simply by placing the logging
directives outside the <VirtualHost> sections in the main
server context, it is possible to log all requests in the same access
log and error log. This technique does not allow for easy collection
of statistics on individual virtual hosts.

If CustomLog or ErrorlLog directives are placed inside a
<VirtualHost> section, all requests or errors for that virtual host
will be logged only to the specified file. Any virtual host which does
not have logging directives will still have its requests sent to the
main server logs. This technique is very useful for a small number
of virtual hosts, but if the number of hosts is very large, it can be
complicated to manage. In addition, it can often create problems
with insufficient file descriptors.

For the access log, there is a very good compromise. By adding
information on the virtual host to the log format string, it is possible
to log all hosts to the same log, and later split the log into
individual files. For example, consider the following directives.

LogFormat "%v %1 %u %t \"%r\" %>s %b'" comon
CustomLog logs/access_log comonvhost

(| ] >

The %v is used to log the name of the virtual host that is serving

the request. Then a program like split-logfile can be used to post-
process the access log in order to split it into one file per virtual
host.



Related Modules Related Directives
mod logio LogFormat

mod log config BufferedLogs
mod log forensic Forensiclog

mod cgi PidFile
ScriptlLog
ScriptlLogBuffer
ScriptlLoglLength

Logging actual bytes sent and received

mod logio adds in two additional LogFormat fields (%l and
%0) that log the actual number of bytes received and sent on the
network.

Forensic Logging

mod log forensic provides for forensic logging of client
requests. Logging is done before and after processing a request,
so the forensic log contains two log lines for each request. The
forensic logger is very strict with no customizations. It can be an
invaluable debugging and security tool.

PID File

On startup, Apache httpd saves the process id of the parent httpd
process to the file logs/httpd.pid. This filename can be
changed with the PidFile directive. The process-id is for use by
the administrator in restarting and terminating the daemon by
sending signals to the parent process; on Windows, use the -k
command line option instead. For more information see the
Stopping and Restarting page.




Script Log

In order to aid in debugging, the ScriptlLog directive allows you
to record the input to and output from CGI scripts. This should only
be used in testing - not for live servers. More information is
available in the mod_cgi documentation.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Mapping URLSs to Filesystem Locations

This document explains how the Apache HTTP Server uses the URL
of a request to determine the filesystem location from which to serve a
file.



Related Modules  Related Directives
mod actions Alias
mod alias AliasMatch
mod autoindex CheckSpelling
mod dir DirectoryIndex
mod imagemap DocumentRoot
mod negotiation ErrorDocument
mod proxy Options
mod rewrite ProxyPass
mod speling ProxyPassReverse
mod userdir ProxyPassReverseCookieDomain
mod vhost alias ProxyPassReverseCookiePath
Redirect
RedirectMatch
RewriteCond
RewriteRule
ScriptAlias
ScriptAliasMatch
UserDir




In deciding what file to serve for a given request, httpd's default
behavior is to take the URL-Path for the request (the part of the
URL following the hostname and port) and add it to the end of the
DocumentRoot specified in your configuration files. Therefore,
the files and directories underneath the DocumentRoot make up
the basic document tree which will be visible from the web.

For example, if DocumentRoot were setto /var/www/html
then a request for
http://www.example.com/fish/guppies.html would
result in the file /var/www/html/fish/guppies.html being
served to the requesting client.

If a directory is requested (i.e. a path ending with /), the file
served from that directory is defined by the DirectoryIndex
directive. For example, if DocumentRoot were set as above, and
you were to set:

DirectoryIndex index.html index.php

Then arequest for http://www.example.com/fish/ will

cause httpd to attempt to serve the file
/var/www/html/fish/index.html. In the event that that file

does not exist, it will next attempt to serve the file
/var/www/html/fish/index. php.

If neither of these files existed, the next step is to attempt to
provide a directory index, if nod _autoindex is loaded and
configured to permit that.

httpd is also capable of Virtual Hosting, where the server receives
requests for more than one host. In this case, a different
DocumentRoot can be specified for each virtual host, or




alternatively, the directives provided by the module

mod vhost alias can be used to dynamically determine the
appropriate place from which to serve content based on the
requested IP address or hostname.

The DocumentRoot directive is set in your main server
configuration file (httpd.conf) and, possibly, once per additional
Virtual Host you create.




There are frequently circumstances where it is necessary to allow
web access to parts of the filesystem that are not strictly
underneath the DocumentRoot. httpd offers several different
ways to accomplish this. On Unix systems, symbolic links can
bring other parts of the filesystem under the DocumentRoot. For
security reasons, httpd will follow symbolic links only if the
Options setting for the relevant directory includes
FollowSymLinks or SymLinksIfOwnerMatch.

Alternatively, the Alias directive will map any part of the
filesystem into the web space. For example, with

Alias "/docs" "/var/web"

the URL http://www.example.com/docs/dir/file.html
will be served from /var/web/dir/file.html. The
ScriptAlias directive works the same way, with the additional

effect that all content located at the target path is treated as CGI
scripts.

For situations where you require additional flexibility, you can use
the AliasMatch and ScriptAliasMatch directives to do
powerful regular expression based matching and substitution. For
example,

ScriptAliasMatch "A/~([a-zA-Z0-9]+)/cgi-bin,
Kl — 1 13

will map arequestto http://example.com/~user/cgi-
bin/script.cgi to the path /home/user/cgi-
bin/script.cgi and will treat the resulting file as a CGI script.



ettt
Traditionally on Unix systems, the home directory of a particular
user can be referred to as ~user/. The module mod userdir

extends this idea to the web by allowing files under each user's
home directory to be accessed using URLSs such as the following.

http://www.example.com/~user/file.html

For security reasons, it is inappropriate to give direct access to a
user's home directory from the web. Therefore, the UserDir
directive specifies a directory underneath the user's home
directory where web files are located. Using the default setting of
Userdir public_html, the above URL maps to a file at a

directory like /home/user/public_html/file.html where
/home/user/ is the user's home directory as specified in
/etc/passwd.

There are also several other forms of the Userdir directive which
you can use on systems where /etc/passwd does not contain
the location of the home directory.

Some people find the "~" symbol (which is often encoded on the
web as %7e) to be awkward and prefer to use an alternate string
to represent user directories. This functionality is not supported by
mod_userdir. However, if users' home directories are structured in
a regular way, then it is possible to use the AliasMatch directive
to achieve the desired effect. For example, to make
http://www.example.com/upages/user/file.html map
to /home/user/public_html/file.html, use the following
AliasMatch directive:

AliasMatch "A/upages/([a-zA-Z0-9]+)(/(.*))?¢
« _ 1 2







The configuration directives discussed in the above sections tell
httpd to get content from a specific place in the filesystem and
return it to the client. Sometimes, it is desirable instead to inform
the client that the requested content is located at a different URL,
and instruct the client to make a new request with the new URL.
This is called redirection and is implemented by the Redirect
directive. For example, if the contents of the directory /foo/
under the DocumentRoot are moved to the new directory /bar/,
you can instruct clients to request the content at the new location
as follows:

Redirect permanent "/foo/" "http://www.ex:
« 1] i

This will redirect any URL-Path starting in /foo/ to the same URL
path on the www .example.com server with /bar/ substituted for
/fo0o/. You can redirect clients to any server, not only the origin
server.

httpd also provides a RedirectMatch directive for more
complicated rewriting problems. For example, to redirect requests
for the site home page to a different site, but leave all other
requests alone, use the following configuration:

RedirectMatch permanent "A/$" "http://ww
« ] 13

Alternatively, to temporarily redirect all pages on one site to a
particular page on another site, use the following:

RedirectMatch temp ".*" "http://othersite.«
< — 1 i




httpd also allows you to bring remote documents into the URL
space of the local server. This technique is called reverse proxying
because the web server acts like a proxy server by fetching the
documents from a remote server and returning them to the client.
It is different from normal (forward) proxying because, to the client,
it appears the documents originate at the reverse proxy server.

In the following example, when clients request documents under
the /foo/ directory, the server fetches those documents from the

/bar/ directory on internal.example.com and returns them
to the client as if they were from the local server.

ProxyPass "/foo/" "http://internal.example.«
ProxyPassReverse "/foo/" "http://internal.e:
ProxyPassReverseCookieDomain internal.examp.
ProxyPassReverseCookiePath "/foo/" "/bar/"

J S o]

The ProxyPass configures the server to fetch the appropriate
documents, while the ProxyPassReverse directive rewrites
redirects originating at internal.example.com so that they
target the appropriate directory on the local server. Similarly, the
ProxyPassReverseCookieDomain and
ProxyPassReverseCookiePath rewrite cookies set by the
backend server.

It is important to note, however, that links inside the documents will
not be rewritten. So any absolute links on
internal.example.com will result in the client breaking out of
the proxy server and requesting directly from
internal.example.com. You can modify these links (and other
content) in a page as it is being served to the client using

mod substitute.




Substitute "s/internal\.example\.com/www.ex:
« 1 2

For more sophisticated rewriting of links in HTML and XHTML, the

mod proxy html module is also available. It allows you to create
maps of URLSs that need to be rewritten, so that complex proxying

scenarios can be handled.




When even more powerful substitution is required, the rewriting
engine provided by mod rewrite can be useful. The directives
provided by this module can use characteristics of the request
such as browser type or source IP address in deciding from where
to serve content. In addition, mod_rewrite can use external
database files or programs to determine how to handle a request.
The rewriting engine is capable of performing all three types of
mappings discussed above: internal redirects (aliases), external
redirects, and proxying. Many practical examples employing
mod_rewrite are discussed in the detailed mod_rewrite
documentation.




Inevitably, URLs will be requested for which no matching file can
be found in the filesystem. This can happen for several reasons. In
some cases, it can be a result of moving documents from one
location to another. In this case, it is best to use URL redirection to
inform clients of the new location of the resource. In this way, you
can assure that old bookmarks and links will continue to work,
even though the resource is at a new location.

Another common cause of "File Not Found" errors is accidental
mistyping of URLSs, either directly in the browser, or in HTML links.
httpd provides the module mod speling (sic) to help with this
problem. When this module is activated, it will intercept "File Not
Found" errors and look for a resource with a similar filename. If
one such file is found, mod_speling will send an HTTP redirect to
the client informing it of the correct location. If several "close" files
are found, a list of available alternatives will be presented to the
client.

An especially useful feature of mod_speling, is that it will compare
filenames without respect to case. This can help systems where
users are unaware of the case-sensitive nature of URLs and the
unix filesystem. But using mod_speling for anything more than the
occasional URL correction can place additional load on the server,
since each "incorrect” request is followed by a URL redirection and
a new request from the client.

mod dir provides FallbackResource, which can be used to

map virtual URIs to a real resource, which then serves them. This
is a very useful replacement for mod rewrite when

implementing a 'front controller’

If all attempts to locate the content fail, httpd returns an error page
with HTTP status code 404 (file not found). The appearance of this
page is controlled with the ErrorbDocument directive and can be




customized in a flexible manner as discussed in the Custom error
responses document.




o
Other modules available for URL mapping include:

e mod actions - Maps a request to a CGlI script based on the
request method, or resource MIME type.

e mod dir - Provides basic mapping of a trailing slash into an
index file such as index.html.

e mod imagemap - Maps a request to a URL based on where a
user clicks on an image embedded in a HTML document.

e mod negotiation - Selects an appropriate document

based on client preferences such as language or content
compression.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Miscellaneous Documentation



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Security Tips

Some hints and tips on security issues in setting up a web server.
Some of the suggestions will be general, others specific to Apache.



The Apache HTTP Server has a good record for security and a
developer community highly concerned about security issues. But
it is inevitable that some problems -- small or large -- will be
discovered in software after it is released. For this reason, it is
crucial to keep aware of updates to the software. If you have
obtained your version of the HTTP Server directly from Apache,
we highly recommend you subscribe to the Apache HTTP Server
Announcements List where you can keep informed of new
releases and security updates. Similar services are available from
most third-party distributors of Apache software.

Of course, most times that a web server is compromised, it is not
because of problems in the HTTP Server code. Rather, it comes
from problems in add-on code, CGl scripts, or the underlying
Operating System. You must therefore stay aware of problems
and updates with all the software on your system.


http://httpd.apache.org/lists.html#http-announce

All network servers can be subject to denial of service attacks that
attempt to prevent responses to clients by tying up the resources

of the server. It is not possible to prevent such attacks entirely, but
you can do certain things to mitigate the problems that they create.

Often the most effective anti-DoS tool will be a firewall or other
operating-system configurations. For example, most firewalls can
be configured to restrict the number of simultaneous connections
from any individual IP address or network, thus preventing a range
of simple attacks. Of course this is no help against Distributed
Denial of Service attacks (DDoS).

There are also certain Apache HTTP Server configuration settings
that can help mitigate problems:

e The RequestReadTimeout directive allows to limit the time
a client may take to send the request.

e The TimeOut directive should be lowered on sites that are
subject to DoS attacks. Setting this to as low as a few
seconds may be appropriate. As TimeOut is currently used
for several different operations, setting it to a low value
introduces problems with long running CGI scripts.

e The KeepAliveTimeout directive may be also lowered on
sites that are subject to DoS attacks. Some sites even turn off
the keepalives completely via KeepAlive, which has of
course other drawbacks on performance.

e The values of various timeout-related directives provided by
other modules should be checked.

e The directives LimitRequestBody,
LimitRequestFields, LimitRequestFieldSize,
LimitRequestline, and LimitXMLRequestBody should
be carefully configured to limit resource consumption
triggered by client input.




On operating systems that support it, make sure that you use
the AcceptFilter directive to offload part of the request
processing to the operating system. This is active by default in
Apache httpd, but may require reconfiguration of your kernel.
Tune the MaxReguestWorkers directive to allow the server
to handle the maximum number of simultaneous connections
without running out of resources. See also the performance
tuning documentation.

The use of a threaded mpm may allow you to handle more
simultaneous connections, thereby mitigating DoS attacks.
Further, the event mpm uses asynchronous processing to
avoid devoting a thread to each connection. Due to the nature
of the OpenSSL library the event mpm is currently
incompatible with mod ss1 and other input filters. In these
cases it falls back to the behaviour of the worker mpm.
There are a number of third-party modules available through
http://modules.apache.org/ that can restrict certain client
behaviors and thereby mitigate DoS problems.



http://modules.apache.org/

In typical operation, Apache is started by the root user, and it
switches to the user defined by the User directive to serve hits. As
is the case with any command that root executes, you must take
care that it is protected from modification by non-root users. Not
only must the files themselves be writeable only by root, but so
must the directories, and parents of all directories. For example, if
you choose to place ServerRoot in /usr/local/apache then it
Is suggested that you create that directory as root, with commands
like these:

mkdir /usr/local/apache
cd /usr/local/apache
mkdir bin conf logs

chown © . bin conf logs
chgrp @ . bin conf logs
chmod 755 . bin conf logs

It is assumed that /, /usr, and /usr/local are only modifiable
by root. When you install the ht tpd executable, you should
ensure that it is similarly protected:

cp httpd /usr/local/apache/bin

chown @ /usr/local/apache/bin/httpd
chgrp @ /usr/local/apache/bin/httpd
chmod 511 /usr/local/apache/bin/httpd

You can create an htdocs subdirectory which is modifiable by
other users -- since root never executes any files out of there, and
shouldn't be creating files in there.

If you allow non-root users to modify any files that root either
executes or writes on then you open your system to root
compromises. For example, someone could replace the httpd
binary so that the next time you start it, it will execute some
arbitrary code. If the logs directory is writeable (by a non-root
user), someone could replace a log file with a symlink to some



other system file, and then root might overwrite that file with
arbitrary data. If the log files themselves are writeable (by a non-

root user), then someone may be able to overwrite the log itself
with bogus data.



Server Side Includes (SSI) present a server administrator with
several potential security risks.

The first risk is the increased load on the server. All SSl-enabled
files have to be parsed by Apache, whether or not there are any
SSI directives included within the files. While this load increase is
minor, in a shared server environment it can become significant.

SSil files also pose the same risks that are associated with CGI
scripts in general. Using the exec cmd element, SSl-enabled files
can execute any CGI script or program under the permissions of
the user and group Apache runs as, as configured in
httpd.conf.

There are ways to enhance the security of SSI files while still
taking advantage of the benefits they provide.

To isolate the damage a wayward SSI file can cause, a server
administrator can enable suexec as described in the CGl in
General section.

Enabling SSI for files with . html or . htm extensions can be
dangerous. This is especially true in a shared, or high traffic,
server environment. SSl-enabled files should have a separate
extension, such as the conventional . shtml. This helps keep

server load at a minimum and allows for easier management of
risk.

Another solution is to disable the ability to run scripts and
programs from SSI pages. To do this replace Includes with

IncludesNOEXEC in the Options directive. Note that users may
still use <--#include virtual="..." -->to execute CGI

scripts if these scripts are in directories designated by a
ScriptAlias directive.







First of all, you always have to remember that you must trust the
writers of the CGl scripts/programs or your ability to spot potential
security holes in CGI, whether they were deliberate or accidental.
CGil scripts can run essentially arbitrary commands on your
system with the permissions of the web server user and can
therefore be extremely dangerous if they are not carefully
checked.

All the CGI scripts will run as the same user, so they have
potential to conflict (accidentally or deliberately) with other scripts
e.g. User A hates User B, so he writes a script to trash User B's
CGlI database. One program which can be used to allow scripts to
run as different users is sSUEXEC which is included with Apache as
of 1.2 and is called from special hooks in the Apache server code.
Another popular way of doing this is with CGIWrap.


http://cgiwrap.sourceforge.net/

Allowing users to execute CGI scripts in any directory should only
be considered if:

e You trust your users not to write scripts which will deliberately
or accidentally expose your system to an attack.

e You consider security at your site to be so feeble in other
areas, as to make one more potential hole irrelevant.

e You have no users, and nobody ever visits your server.



Limiting CGl to special directories gives the admin control over
what goes into those directories. This is inevitably more secure
than non script aliased CGl, but only if users with write access to
the directories are trusted or the admin is willing to test each new
CGl script/program for potential security holes.

Most sites choose this option over the non script aliased CGI
approach.



Embedded scripting options which run as part of the server itself,
such as mod_php, mod_perl, mod_tcl, and mod_python, run
under the identity of the server itself (see the User directive), and
therefore scripts executed by these engines potentially can access
anything the server user can. Some scripting engines may provide
restrictions, but it is better to be safe and assume not.



When setting up dynamic content, such as mod_php, mod_perl
or mod_python, many security considerations get out of the
scope of httpd itself, and you need to consult documentation
from those modules. For example, PHP lets you setup Safe Mode,
which is most usually disabled by default. Another example is
Suhosin, a PHP addon for more security. For more information
about those, consult each project documentation.

At the Apache level, a module named mod_security can be seen
as a HTTP firewall and, provided you configure it finely enough,
can help you enhance your dynamic content security.



http://www.php.net/manual/en/ini.sect.safe-mode.php
http://www.hardened-php.net/suhosin/
http://modsecurity.org/

To run a really tight ship, you'll want to stop users from setting up
.htaccess files which can override security features you've
configured. Here's one way to do it.

In the server configuration file, put

<Directory "/">
AllowOverride None
</Directory>

This prevents the use of . htaccess files in all directories apart
from those specifically enabled.

Note that this setting is the default since Apache 2.3.9.



One aspect of Apache which is occasionally misunderstood is the
feature of default access. That is, unless you take steps to change
it, if the server can find its way to a file through normal URL
mapping rules, it can serve it to clients.

For instance, consider the following example:

# cd /; 1n -s / public_html
Accessing http://localhost/~root/

This would allow clients to walk through the entire filesystem. To
work around this, add the following block to your server's
configuration:

<Directory "/">
Require all denied
</Directory>

This will forbid default access to filesystem locations. Add
appropriate Directory blocks to allow access only in those

areas you wish. For example,

<Directory "/usr/users/*/public_html">
Require all granted

</Directory>

<Directory "/usr/local/httpd">
Require all granted

</Directory>

Pay particular attention to the interactions of Location and
Directory directives; for instance, even if <Directory "/">
denies access, a <Location "/"> directive might overturn it.

Also be wary of playing games with the UserDir directive; setting



it to something like ./ would have the same effect, for root, as the

first example above. We strongly recommend that you include the
following line in your server configuration files:

UserDir disabled root



To keep up-to-date with what is actually going on against your
server you have to check the Log Files. Even though the log files
only reports what has already happened, they will give you some
understanding of what attacks is thrown against the server and
allow you to check if the necessary level of security is present.

A couple of examples:

grep -c "/jsp/source.jsp?/jsp/ /jsp/source.jsp??" access_log
grep "client denied" error_log | tail -n 10

The first example will list the number of attacks trying to exploit the
Apache Tomcat Source.JSP Malformed Request Information
Disclosure Vulnerability, the second example will list the ten last
denied clients, for example:

[Thu Jul 11 17:18:39 2002] [error] [client foo.example.com]
client denied by server configuration:
/usr/local/apache/htdocs/.htpasswd

As you can see, the log files only report what already has
happened, so if the client had been able to access the
.htpasswd file you would have seen something similar to:

foo.example.com - - [12/Jul/2002:01:59:13 +0200] "GET
/.htpasswd HTTP/1.1"

in your Access Log. This means you probably commented out the
following in your server configuration file:

<Files ".ht*">
Require all denied
</Files>


http://online.securityfocus.com/bid/4876/info/

The merging of configuration sections is complicated and
sometimes directive specific. Always test your changes when
creating dependencies on how directives are merged.

For modules that don't implement any merging logic, such as
mod_access_compat, the behavior in later sections depends on
whether the later section has any directives from the module. The
configuration is inherited until a change is made, at which point the
configuration is replaced and not merged.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Dynamic Shared Object (DSO) Support

The Apache HTTP Server is a modular program where the
administrator can choose the functionality to include in the server by
selecting a set of modules. Modules will be compiled as Dynamic
Shared Objects (DSOs) that exist separately from the main httpd
binary file. DSO modules may be compiled at the time the server is
built, or they may be compiled and added at a later time using the
Apache Extension Tool (apxs).

Alternatively, the modules can be statically compiled into the httpd
binary when the server is built.

This document describes how to use DSO modules as well as the
theory behind their use.



Related Modules Related Directives
mod So LoadModule

The DSO support for loading individual Apache httpd modules is
based on a module named mod so which must be statically

compiled into the Apache httpd core. It is the only module besides
core which cannot be put into a DSO itself. Practically all other
distributed Apache httpd modules will then be placed into a DSO.
After a module is compiled into a DSO named mod_fo00. so you
can use mod_so's LoadModule directive in your httpd.conf file
to load this module at server startup or restart.

The DSO builds for individual modules can be disabled via
configure's --enable-mods-static option as discussed in
the install documentation.

To simplify this creation of DSO files for Apache httpd modules
(especially for third-party modules) a support program named
apxs (APache eXtenSion) is available. It can be used to build
DSO based modules outside of the Apache httpd source tree. The
idea is simple: When installing Apache HTTP Server the
configure's make install procedure installs the Apache
httpd C header files and puts the platform-dependent compiler and
linker flags for building DSO files into the apxs program. This way
the user can use apxs to compile his Apache httpd module
sources without the Apache httpd distribution source tree and
without having to fiddle with the platform-dependent compiler and
linker flags for DSO support.




To give you an overview of the DSO features of Apache HTTP
Server 2.x, here is a short and concise summary:

1. Build and install a distributed Apache httpd module, say
mod_foo0.c, into its own DSO mod_foo0. so:

$ ./configure --prefix=/path/to/install --enable-foo
$ make install

2. Configure Apache HTTP Server with all modules enabled.
Only a basic set will be loaded during server startup. You can
change the set of loaded modules by activating or
deactivating the LoadModule directives in httpd.conf.

$ ./configure --enable-mods-shared=all
$ make install

3. Some modules are only useful for developers and will not be
build. when using the module set all. To build all available
modules including developer modules use reallyall. In addition
the LoadModule directives for all built modules can be
activated via the configure option - -enable-load-all-
modules.

$ ./configure --enable-mods-shared=reallyall --enable-
load-all-modules
$ make install

4. Build and install a third-party Apache httpd module, say
mod_fo0o0.c, into its own DSO mod_fo00. so outside of the

Apache httpd source tree using apxs:

$ cd /path/to/3rdparty
$ apxs -cia mod_foo.c



In all cases, once the shared module is compiled, you must use a
LoadModule directive in httpd.conf to tell Apache httpd to

activate the module.

See the apxs documentation for more details.




On modern Unix derivatives there exists a mechanism called
dynamic linking/loading of Dynamic Shared Objects (DSO) which
provides a way to build a piece of program code in a special
format for loading it at run-time into the address space of an
executable program.

This loading can usually be done in two ways: automatically by a
system program called 1d. so when an executable program is
started or manually from within the executing program via a
programmatic system interface to the Unix loader through the
system calls dlopen()/dlsym().

In the first way the DSO's are usually called shared libraries or
DSO libraries and named 1ibfoo.so or 1ibfoo.so.1.2. They
reside in a system directory (usually /usr/11ib) and the link to the
executable program is established at build-time by specifying -
1foo to the linker command. This hard-codes library references
into the executable program file so that at start-time the Unix
loader is able to locate 1ibfoo.so in /usr/1ib, in paths hard-
coded via linker-options like -R or in paths configured via the
environment variable LD_LIBRARY_PATH. It then resolves any
(yet unresolved) symbols in the executable program which are
available in the DSO.

Symbols in the executable program are usually not referenced by
the DSO (because it's a reusable library of general code) and
hence no further resolving has to be done. The executable
program has no need to do anything on its own to use the symbols
from the DSO because the complete resolving is done by the Unix
loader. (In fact, the code to invoke 1d. so is part of the run-time
startup code which is linked into every executable program which
has been bound non-static). The advantage of dynamic loading of
common library code is obvious: the library code needs to be



stored only once, in a system library like 1ibc. so, saving disk
space for every program.

In the second way the DSO's are usually called shared objects or
DSO files and can be named with an arbitrary extension (although
the canonical name is T00.s0). These files usually stay inside a
program-specific directory and there is no automatically
established link to the executable program where they are used.
Instead the executable program manually loads the DSO at run-
time into its address space via dlopen( ). At this time no
resolving of symbols from the DSO for the executable program is
done. But instead the Unix loader automatically resolves any (yet
unresolved) symbols in the DSO from the set of symbols exported
by the executable program and its already loaded DSO libraries
(especially all symbols from the ubiquitous 1ibc. so). This way
the DSO gets knowledge of the executable program's symbol set
as if it had been statically linked with it in the first place.

Finally, to take advantage of the DSO's API the executable
program has to resolve particular symbols from the DSO via
dlsym() for later use inside dispatch tables etc. In other words:
The executable program has to manually resolve every symbol it
needs to be able to use it. The advantage of such a mechanism is
that optional program parts need not be loaded (and thus do not
spend memory) until they are needed by the program in question.
When required, these program parts can be loaded dynamically to
extend the base program's functionality.

Although this DSO mechanism sounds straightforward there is at
least one difficult step here: The resolving of symbols from the
executable program for the DSO when using a DSO to extend a
program (the second way). Why? Because "reverse resolving"
DSO symbols from the executable program's symbol set is against
the library design (where the library has no knowledge about the



programs it is used by) and is neither available under all platforms
nor standardized. In practice the executable program's global
symbols are often not re-exported and thus not available for use in
a DSO. Finding a way to force the linker to export all global
symbols is the main problem one has to solve when using DSO for
extending a program at run-time.

The shared library approach is the typical one, because it is what
the DSO mechanism was designed for, hence it is used for nearly
all types of libraries the operating system provides.



9 - 9 -
The above DSO based features have the following advantages:

e The server package is more flexible at run-time because the
server process can be assembled at run-time via
LoadModule httpd.conf configuration directives instead of
configure options at build-time. For instance, this way one
is able to run different server instances (standard & SSL
version, minimalistic & dynamic version [mod_perl, mod_php],
etc.) with only one Apache httpd installation.

e The server package can be easily extended with third-party
modules even after installation. This is a great benefit for
vendor package maintainers, who can create an Apache httpd
core package and additional packages containing extensions
like PHP, mod_perl, mod_security, etc.

e Easier Apache httpd module prototyping, because with the
DSO/apxs pair you can both work outside the Apache httpd
source tree and only need an apxs -1i command followed by
an apachectl restart to bring a new version of your
currently developed module into the running Apache HTTP
Server.

DSO has the following disadvantages:

e The server is approximately 20% slower at startup time
because of the symbol resolving overhead the Unix loader
now has to do.

e The server is approximately 5% slower at execution time
under some platforms, because position independent code
(PIC) sometimes needs complicated assembler tricks for
relative addressing, which are not necessarily as fast as
absolute addressing.

e Because DSO modules cannot be linked against other DSO-
based libraries (1d -1fo0) on all platforms (for instance



a.out-based platforms usually don't provide this functionality
while ELF-based platforms do) you cannot use the DSO
mechanism for all types of modules. Or in other words,
modules compiled as DSO files are restricted to only use
symbols from the Apache httpd core, from the C library
(1ibc) and all other dynamic or static libraries used by the
Apache httpd core, or from static library archives (1ibfoo.a)
containing position independent code. The only chances to
use other code is to either make sure the httpd core itself
already contains a reference to it or loading the code yourself
via dlopen().

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Content Negotiation

Apache HTTPD supports content negotiation as described in the
HTTP/1.1 specification. It can choose the best representation of a
resource based on the browser-supplied preferences for media type,
languages, character set and encoding. It also implements a couple of
features to give more intelligent handling of requests from browsers
that send incomplete negotiation information.

Content negotiation is provided by the mod negotiation module,
which is compiled in by default.




A resource may be available in several different representations.
For example, it might be available in different languages or
different media types, or a combination. One way of selecting the
most appropriate choice is to give the user an index page, and let
them select. However it is often possible for the server to choose
automatically. This works because browsers can send, as part of
each request, information about what representations they prefer.
For example, a browser could indicate that it would like to see
information in French, if possible, else English will do. Browsers
indicate their preferences by headers in the request. To request
only French representations, the browser would send

Accept-Language: fr

Note that this preference will only be applied when there is a
choice of representations and they vary by language.

As an example of a more complex request, this browser has been
configured to accept French and English, but prefer French, and to
accept various media types, preferring HTML over plain text or
other text types, and preferring GIF or JPEG over other media
types, but also allowing any other media type as a last resort:

Accept-Language: fr; gq=1.0, en; =0.5
Accept: text/html; gq=1.0, text/*; =0.8, image/gif; ¢=0.6,
image/jpeg; g=0.6, image/*; =0.5, */*; g=0.1

httpd supports 'server driven' content negotiation, as defined in the
HTTP/1.1 specification. It fully supports the Accept, Accept -
Language, Accept-Charset and Accept-Encoding request
headers. httpd also supports ‘transparent’ content negotiation,
which is an experimental negotiation protocol defined in RFC 2295
and RFC 2296. It does not offer support for ‘feature negotiation' as
defined in these RFCs.



A resource is a conceptual entity identified by a URI (RFC 2396).
An HTTP server like Apache HTTP Server provides access to
representations of the resource(s) within its namespace, with
each representation in the form of a sequence of bytes with a
defined media type, character set, encoding, etc. Each resource
may be associated with zero, one, or more than one
representation at any given time. If multiple representations are
available, the resource is referred to as negotiable and each of its
representations is termed a variant. The ways in which the
variants for a negotiable resource vary are called the dimensions
of negotiation.



In order to negotiate a resource, the server needs to be given
information about each of the variants. This is done in one of two
ways:

e Using a type map (i.e., a * . var file) which names the files
containing the variants explicitly, or

e Using a 'MultiViews' search, where the server does an implicit
filename pattern match and chooses from among the results.

Using a type-map file

A type map is a document which is associated with the handler
named type-map (or, for backwards-compatibility with older httpd
configurations, the MIME-type application/x-type-map).
Note that to use this feature, you must have a handler set in the
configuration that defines a file suffix as type-map; this is best
done with

AddHandler type-map .var

in the server configuration file.

Type map files should have the same name as the resource which
they are describing, followed by the extension .var. In the
examples shown below, the resource is named foo, so the type
map file is named foo.var.

This file should have an entry for each available variant; these
entries consist of contiguous HTTP-format header lines. Entries for
different variants are separated by blank lines. Blank lines are
illegal within an entry. It is conventional to begin a map file with an
entry for the combined entity as a whole (although this is not
required, and if present will be ignored). An example map file is
shown below.



URIs in this file are relative to the location of the type map file.
Usually, these files will be located in the same directory as the
type map file, but this is not required. You may provide absolute or
relative URIs for any file located on the same server as the map
file.

URI: foo

URI: foo.en.html
Content-type: text/html
Content-language: en

URI: foo.fr.de.html
Content-type: text/html;charset=iso-8859-2
Content-language: fr, de

Note also that a typemap file will take precedence over the
filename's extension, even when Multiviews is on. If the variants
have different source qualities, that may be indicated by the "gs"
parameter to the media type, as in this picture (available as JPEG,
GIF, or ASCll-art):

URI: foo

URI: foo.jpeg
Content-type: image/jpeg; (qs=0.8

URI: foo.gif
Content-type: image/gif; gs=0.5

URI: foo.txt
Content-type: text/plain; qs=0.01

gs values can vary in the range 0.000 to 1.000. Note that any
variant with a gs value of 0.000 will never be chosen. Variants with
no 'gs' parameter value are given a gs factor of 1.0. The gs
parameter indicates the relative ‘quality’ of this variant compared
to the other available variants, independent of the client's
capabilities. For example, a JPEG file is usually of higher source



quality than an ASCII file if it is attempting to represent a
photograph. However, if the resource being represented is an
original ASCII art, then an ASCII representation would have a
higher source quality than a JPEG representation. A gs value is
therefore specific to a given variant depending on the nature of the
resource it represents.

The full list of headers recognized is available in the
mod_negotiation typemap documentation.

Multiviews

MultiViews is a per-directory option, meaning it can be set with
an Options directive within a <Directory>, <Location> or
<Files> sectionin httpd.conf, or (if ALlowOverride is
properly set) in . htaccess files. Note that Options All does
not set MultiViews; you have to ask for it by name.

The effect of MultiViews is as follows: if the server receives a
request for /some/dir/foo, if /some/dir has MultiViews
enabled, and /some/dir/foo does not exist, then the server

reads the directory looking for files named foo.*, and effectively
fakes up a type map which names all those files, assigning them
the same media types and content-encodings it would have if the
client had asked for one of them by name. It then chooses the best
match to the client's requirements.

MultiViews may also apply to searches for the file named by the
DirectoryIndex directive, if the server is trying to index a
directory. If the configuration files specify

DirectoryIndex index

then the server will arbitrate between index.html and



index.html3 if both are present. If neither are present, and
index.cgi is there, the server will run it.

If one of the files found when reading the directory does not have
an extension recognized by mod_mime to designate its Charset,
Content-Type, Language, or Encoding, then the result depends on
the setting of the MultiViewsMatch directive. This directive
determines whether handlers, filters, and other extension types
can participate in MultiViews negotiation.




After httpd has obtained a list of the variants for a given resource,
either from a type-map file or from the filenames in the directory, it
invokes one of two methods to decide on the 'best’ variant to
return, if any. It is not necessary to know any of the details of how
negotiation actually takes place in order to use httpd's content
negotiation features. However the rest of this document explains
the methods used for those interested.

There are two negotiation methods:

1. Server driven negotiation with the httpd algorithm is used
in the normal case. The httpd algorithm is explained in more
detail below. When this algorithm is used, httpd can
sometimes 'fiddle’ the quality factor of a particular dimension
to achieve a better result. The ways httpd can fiddle quality
factors is explained in more detail below.

2. Transparent content negotiation is used when the browser
specifically requests this through the mechanism defined in
RFC 2295. This negotiation method gives the browser full
control over deciding on the 'best' variant, the result is
therefore dependent on the specific algorithms used by the
browser. As part of the transparent negotiation process, the
browser can ask httpd to run the ‘remote variant selection
algorithm' defined in RFC 2296.

Dimensions of Negotiation

Dimension Notes

Media Browser indicates preferences with the Accept

Type header field. Each item can have an associated
guality factor. Variant description can also have a
guality factor (the "gs" parameter).

Language Browser indicates preferences with the Accept -



Language header field. Each item can have a
guality factor. Variants can be associated with none,
one or more than one language.

Encoding Browser indicates preference with the Accept -
Encoding header field. Each item can have a
quality factor.

Charset Browser indicates preference with the Accept -
Charset header field. Each item can have a quality

factor. Variants can indicate a charset as a
parameter of the media type.

httpd Negotiation Algorithm

httpd can use the following algorithm to select the 'best’ variant (if
any) to return to the browser. This algorithm is not further
configurable. It operates as follows:

1. First, for each dimension of the negotiation, check the
appropriate Accept* header field and assign a quality to each
variant. If the Accept* header for any dimension implies that
this variant is not acceptable, eliminate it. If no variants
remain, go to step 4.

2. Select the 'best' variant by a process of elimination. Each of
the following tests is applied in order. Any variants not
selected at each test are eliminated. After each test, if only
one variant remains, select it as the best match and proceed
to step 3. If more than one variant remains, move on to the
next test.

1. Multiply the quality factor from the Accept header with
the quality-of-source factor for this variants media type,
and select the variants with the highest value.

2. Select the variants with the highest language quality
factor.



3. Select the variants with the best language match, using
either the order of languages in the Accept-Language
header (if present), or else the order of languages in the
LanguagePriority directive (if present).

4. Select the variants with the highest 'level' media
parameter (used to give the version of text/html media

types).

5. Select variants with the best charset media parameters,
as given on the Accept-Charset header line. Charset
ISO-8859-1 is acceptable unless explicitly excluded.
Variants with a text/* media type but not explicitly
associated with a particular charset are assumed to be in
|ISO-8859-1.

6. Select those variants which have associated charset
media parameters that are not ISO-8859-1. If there are
no such variants, select all variants instead.

7. Select the variants with the best encoding. If there are
variants with an encoding that is acceptable to the user-
agent, select only these variants. Otherwise if there is a
mix of encoded and non-encoded variants, select only
the unencoded variants. If either all variants are encoded
or all variants are not encoded, select all variants.

8. Select the variants with the smallest content length.

9. Select the first variant of those remaining. This will be
either the first listed in the type-map file, or when variants
are read from the directory, the one whose file name
comes first when sorted using ASCII code order.

3. The algorithm has now selected one 'best' variant, so return it
as the response. The HTTP response header Vary is set to
indicate the dimensions of negotiation (browsers and caches
can use this information when caching the resource). End.



4. To get here means no variant was selected (because none
are acceptable to the browser). Return a 406 status (meaning
"No acceptable representation”) with a response body
consisting of an HTML document listing the available variants.
Also set the HTTP Vary header to indicate the dimensions of

variance.



httpd sometimes changes the quality values from what would be
expected by a strict interpretation of the httpd negotiation
algorithm above. This is to get a better result from the algorithm for
browsers which do not send full or accurate information. Some of
the most popular browsers send Accept header information
which would otherwise result in the selection of the wrong variant
in many cases. If a browser sends full and correct information
these fiddles will not be applied.

Media Types and Wildcards

The Accept: request header indicates preferences for media
types. It can also include ‘wildcard' media types, such as "image/*"
or "*/*" where the * matches any string. So a request including:

Accept: image/*, */*

would indicate that any type starting "image/" is acceptable, as is
any other type. Some browsers routinely send wildcards in
addition to explicit types they can handle. For example:

Accept: text/html, text/plain, image/gif, image/jpeg, */*

The intention of this is to indicate that the explicitly listed types are
preferred, but if a different representation is available, that is ok
too. Using explicit quality values, what the browser really wants is
something like:

Accept: text/html, text/plain, image/gif, image/jpeg, */*;
0=0.01

The explicit types have no quality factor, so they default to a
preference of 1.0 (the highest). The wildcard */* is given a low
preference of 0.01, so other types will only be returned if no



variant matches an explicitly listed type.

If the Accept: header contains no g factors at all, httpd sets the g
value of "*/*", if present, to 0.01 to emulate the desired behavior. It
also sets the g value of wildcards of the format "type/*" to 0.02 (so
these are preferred over matches against "*/*". If any media type
on the Accept: header contains a q factor, these special values
are not applied, so requests from browsers which send the explicit
information to start with work as expected.

Language Negotiation Exceptions

New in httpd 2.0, some exceptions have been added to the
negotiation algorithm to allow graceful fallback when language
negotiation fails to find a match.

When a client requests a page on your server, but the server
cannot find a single page that matches the Accept-language
sent by the browser, the server will return either a "No Acceptable
Variant" or "Multiple Choices" response to the client. To avoid
these error messages, it is possible to configure httpd to ignore the
Accept-language in these cases and provide a document that
does not explicitly match the client's request. The
ForcelLanguagePriority directive can be used to override one
or both of these error messages and substitute the servers
judgement in the form of the LanguagePriority directive.

The server will also attempt to match language-subsets when no
other match can be found. For example, if a client requests
documents with the language en-GB for British English, the server
Is not normally allowed by the HTTP/1.1 standard to match that
against a document that is marked as simply en. (Note that it is
almost surely a configuration error to include en-GB and not en in
the Accept-Language header, since it is very unlikely that a
reader understands British English, but doesn't understand



English in general. Unfortunately, many current clients have
default configurations that resemble this.) However, if no other
language match is possible and the server is about to return a "No
Acceptable Variants" error or fallback to the LanguagePriority,
the server will ignore the subset specification and match en-GB
against en documents. Implicitly, httpd will add the parent
language to the client's acceptable language list with a very low
guality value. But note that if the client requests "en-GB; g=0.9, fr;
g=0.8", and the server has documents designated "en" and "fr",
then the "fr* document will be returned. This is necessary to
maintain compliance with the HTTP/1.1 specification and to work
effectively with properly configured clients.

In order to support advanced techniques (such as cookies or
special URL-paths) to determine the user's preferred language,
since httpd 2.0.47 mod negotiation recognizes the
environment variable prefer-language. If it exists and contains
an appropriate language tag, mod negotiation will try to select
a matching variant. If there's no such variant, the normal
negotiation process applies.

Example

SetEnvIf Cookie "language=(.+)" prefer-language=%$1
Header append Vary cookie



httpd extends the transparent content negotiation protocol (RFC
2295) as follows. Anew {encoding ..} elementis used in
variant lists to label variants which are available with a specific
content-encoding only. The implementation of the RVSA/1.0
algorithm (RFC 2296) is extended to recognize encoded variants
in the list, and to use them as candidate variants whenever their
encodings are acceptable according to the Accept-Encoding
request header. The RVSA/1.0 implementation does not round

computed quality factors to 5 decimal places before choosing the
best variant.



If you are using language negotiation you can choose between
different naming conventions, because files can have more than
one extension, and the order of the extensions is normally
irrelevant (see the mod_mime documentation for details).

A typical file has a MIME-type extension (e.g., html), maybe an
encoding extension (e.g., gz), and of course a language extension
(e.g., en) when we have different language variants of this file.

Examples:

e foo.en.html
e foo.html.en
e foo.en.html.gz

Here some more examples of filenames together with valid and
invalid hyperlinks:

Filename Valid hyperlink | Invalid hyperlink
foo.html.en  foo -

foo.html
foo.en.html  foo foo.html
foo.html.en.gz foo foo.gz
foo.html foo.html.gz
foo.en.html.gz | foo foo.html
foo.html.gz
foo.gz
foo.gz.html.en foo foo.html
foo.gz
foo.gz.html
foo.html.gz.en foo foo.gz
foo.html

foo.html.gz



Looking at the table above, you will notice that it is always possible
to use the name without any extensions in a hyperlink (e.g., f00).
The advantage is that you can hide the actual type of a document
rsp. file and can change it later, e.g., from html to shtml or cgi
without changing any hyperlink references.

If you want to continue to use a MIME-type in your hyperlinks (e.g.
foo.html) the language extension (including an encoding
extension if there is one) must be on the right hand side of the
MIME-type extension (e.g., foo.html.en).



When a cache stores a representation, it associates it with the
request URL. The next time that URL is requested, the cache can
use the stored representation. But, if the resource is negotiable at
the server, this might result in only the first requested variant being
cached and subsequent cache hits might return the wrong
response. To prevent this, httpd normally marks all responses that
are returned after content negotiation as non-cacheable by
HTTP/1.0 clients. httpd also supports the HTTP/1.1 protocol
features to allow caching of negotiated responses.

For requests which come from a HTTP/1.0 compliant client (either
a browser or a cache), the directive CacheNegotiatedDocs can
be used to allow caching of responses which were subject to
negotiation. This directive can be given in the server config or
virtual host, and takes no arguments. It has no effect on requests
from HTTP/1.1 clients.

For HTTP/1.1 clients, httpd sends a Vary HTTP response header
to indicate the negotiation dimensions for the response. Caches
can use this information to determine whether a subsequent
request can be served from the local copy. To encourage a cache
to use the local copy regardless of the negotiation dimensions, set
the force-no-vary environment variable.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

ABAGM] i Ezreguntas Frecuentes | Glosario | Mapa del sitio web

HTTP SERVER PROJNerSiOn 2.4 del Servidor HTTP Apache

Apache > Servidor HTTP > Documentacion > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Respuestas de error personalizadas

Apache ofrece la posibilidad de que los webmasters puedan
configurar las respuestas que muestra el servidor Apache cuando se
producen algunos errores o problemas.

Las respuestas personalizadas pueden definirse para activarse en
caso de que el servidor detecte un error o problema.

Si un script termina de forma anormal y se produce una respuesta
"500 Server Error", esta respuesta puede ser sustituida por otro texto
de su eleccidn o por una redireccion a otra URL (local o externa).



Comportamiento anterior

NCSA httpd 1.3 devolvia mensajes antiguos del error o problema
encontrado que con frecuencia no tenian significado alguno para
el usuario, y que no incluian en los logs informacién que diera
pistas sobre las causas de lo sucedido.

Comportamiento actual

Se puede hacer que el servidor siga uno de los siguientes
comportamientos:

1. Desplegar un texto diferente, en lugar de los mensajes de la
NCSA, o

2. redireccionar la peticion a una URL local, o

3. redireccionar la peticion a una URL externa.

Redireccionar a otra URL puede resultar de utilidad, pero solo si
con ello se puede también pasar alguna informacion que pueda
explicar el error o problema y/o registrarlo en el log
correspondiente mas claramente.

Para conseguir esto, Apache define ahora variables de entorno
similares a las de los CGil:

REDIRECT_HTTP_ACCEPT=*/*, image/gif, image/x-xbitmap,
image/jpeg

REDIRECT_HTTP_USER_AGENT=Mozilla/1.1b2 (X11; I; HP-UX A.09.05
9000/712)

REDIRECT_PATH=. :/bin:/usr/local/bin:/etc
REDIRECT_QUERY_STRING=
REDIRECT_REMOTE_ADDR=121.345.78.123
REDIRECT_REMOTE_HOST=00h.ahhh.com
REDIRECT_SERVER_NAME=crash.bang.edu
REDIRECT_SERVER_PORT=80
REDIRECT_SERVER_SOFTWARE=Apache/0.8.15
REDIRECT_URL=/cgi-bin/buggy.pl



Tenga en cuenta el prefijo REDIRECT._.

Al menos REDIRECT_URL y REDIRECT_QUERY_STRING se
pasaran a la nueva URL (asumiendo que es un cgi-script o un cgi-
include). Las otras variables existiran solo si existian antes de
aparecer el error o problema. Ninguna de estas variables se
creara si en la directiva ErrorDocument ha especificado una
redireccion externa (cualquier cosa que empiece por un nombre
de esquema del tipo http:, incluso si se refiere al mismo
servidor).




El uso de ErrorDocument esta activado para los ficheros
.htaccess cuando AllowOverride tiene el valor adecuado.

Aqui hay algunos ejemplos mas...

ErrorDocument 500 /cgi-bin/crash-recover

ErrorDocument 500 "Sorry, our script crashed. Oh dear"
ErrorDocument 500 http://xxx/

ErrorDocument 404 /Lame_excuses/not_found.html
ErrorDocument 401 /Subscription/how_to_subscribe.html

La sintaxis es,

ErrorDocument <3-digit-code> <action>

donde action puede ser,

1. Texto a mostrar. Ponga antes del texto que quiere que se
muestre unas comillas (). Lo que sea que siga a las comillas
se mostrara. Nota: las comillas (") no se muestran.

2. Una URL local a la que se redireccionara la peticion.

3. Una URL externa a la que se redireccionara la peticion.



El comportamiento de Apache en cuanto a las redirecciones ha
cambiado para que puedan usarse mas variables de entorno con
los script/server-include.

Antiguo comportamiento

Las variables CGl estandar estaban disponibles para el script al
gue se hacia la redireccion. No se incluia ninguna indicacion
sobre la precedencia de la redireccion.

Nuevo comportamiento

Un nuevo grupo de variables de entorno se inicializa para que las
use el script al que ha sido redireccionado. Cada nueva variable
tendra el prefijjo REDIRECT_. Las variables de entorno
REDIRECT_ se crean a partir de de las variables de entorno CGI
gue existen antes de la redireccion, se les cambia el nombre
afadiéndoles el prefijo REDIRECT_, por ejemplo,
HTTP_USER_AGENT pasa a ser REDIRECT_HTTP_USER_AGENT.
Ademas, para esas nuevas variables, Apache definira
REDIRECT_URL y REDIRECT_STATUS para ayudar al script a
seqguir su origen. Tanto la URL original como la URL a la que es
redirigida la peticion pueden almacenarse en los logs de acceso.

Si ErrorDocument especifica una redireccion local a un script CGl,
el script debe incluir una campo de cabeceraa "Status:" en el
resultado final para asegurar que es posible hacer llegar al cliente
de vuelta la condicion de error que lo provocdé. Por ejemplo, un
script en Perl para usar con ErrorDocument podria incluir lo
siguiente:

print "Content-type: text/html\n";
printf "Status: %s Condition Intercepted\n",
$ENV{"REDIRECT_STATUS"};



Si el script tiene como fin tratar una determinada condicion de
error, por ejemplo 404 Not Found, se pueden usar los cédigos
de error y textos especificos en su lugar.

Tenga en cuenta que el script debe incluir un campo de cabecera
Status: apropiado (como 302 Found), si la respuesta contiene
un campo de cabecera Location: (para poder enviar una
redireccion que se interprete en el cliente). De otra manera, la
cabecera Location: puede que no tenga efecto.

Copyright 2017 The Apache Software Foundation.
Licencia bajo los términos de Apache License, Version 2.0.

Modulos | Directivas | Preguntas Frecuentes | Glosario | Mapa del sitio web



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Binding to Addresses and Ports

Configuring Apache HTTP Server to listen on specific addresses and
ports.

See also
Virtual Hosts

DNS Issues



https://www.apache.org/foundation/contributing.html

Related Modules Related Directives

core <VirtualHost>
mpm_common Listen

When httpd starts, it binds to some port and address on the local
machine and waits for incoming requests. By default, it listens to
all addresses on the machine. However, it may need to be told to
listen on specific ports, or only on selected addresses, or a
combination of both. This is often combined with the Virtual Host
feature, which determines how httpd responds to different IP

addresses, hostnames and ports.

The Listen directive tells the server to accept incoming requests
only on the specified port(s) or address-and-port combinations. If
only a port number is specified in the Listen directive, the server
listens to the given port on all interfaces. If an IP address is given
as well as a port, the server will listen on the given port and
interface. Multiple Listen directives may be used to specify a
number of addresses and ports to listen on. The server will
respond to requests from any of the listed addresses and ports.

For example, to make the server accept connections on both port
80 and port 8000, on all interfaces, use:

Listen 80
Listen 8000

To make the server accept connections on port 80 for one
interface, and port 8000 on another, use

Listen 192.0.2.1:80
Listen 192.0.2.5:8000



IPv6 addresses must be enclosed in square brackets, as in the
following example:

Listen [2001:db8::a00:20ff:fea7:ccea]:80

Overlapping Listen directives will result in a fatal error which
will prevent the server from starting up.

(48)Address already in use: make_sock: could not bind to
address [::]:80

See the discussion in the wiki for further troubleshooting tips.



http://wiki.apache.org/httpd/CouldNotBindToAddress

A growing number of platforms implement IPv6, and APR supports
IPv6 on most of these platforms, allowing httpd to allocate IPv6
sockets, and to handle requests sent over IPv6.

One complicating factor for httpd administrators is whether or not
an IPv6 socket can handle both IPv4 connections and IPv6
connections. Handling IPv4 connections with an IPv6 socket uses
IPv4-mapped IPv6 addresses, which are allowed by default on
most platforms, but are disallowed by default on FreeBSD,
NetBSD, and OpenBSD, in order to match the system-wide policy
on those platforms. On systems where it is disallowed by default, a
special configure parameter can change this behavior for httpd.

On the other hand, on some platforms, such as Linux and Tru64,
the only way to handle both IPv6 and IPv4 is to use mapped
addresses. If you want httpd to handle IPv4 and IPv6
connections with a minimum of sockets, which requires using
IPv4-mapped IPv6 addresses, specify the - -enable-v4-
mapped configure option.

--enable-v4-mapped is the default on all platforms except

FreeBSD, NetBSD, and OpenBSD, so this is probably how your
httpd was built.

If you want httpd to handle IPv4 connections only, regardless of
what your platform and APR will support, specify an IPv4 address
on all Listen directives, as in the following examples:

Listen 0.0.0.0:80
Listen 192.0.2.1:80

If your platform supports it and you want httpd to handle IPv4 and
IPv6 connections on separate sockets (i.e., to disable IPv4-
mapped addresses), specify the - -disable-v4-mapped



configure option. - -disable-v4-mapped is the default on
FreeBSD, NetBSD, and OpenBSD.




The optional second protocol argument of Listen is not required
for most configurations. If not specified, https is the default for
port 443 and http the default for all other ports. The protocol is

used to determine which module should handle a request, and to
apply protocol specific optimizations with the AcceptFilter
directive.

You only need to set the protocol if you are running on non-
standard ports. For example, running an https site on port 8443:

Listen 192.170.2.1:8443 https



The Listen directive does not implement Virtual Hosts - it only
tells the main server what addresses and ports to listen on. If no
<VirtualHost> directives are used, the server will behave in the
same way for all accepted requests. However, <VirtualHost>
can be used to specify a different behavior for one or more of the
addresses or ports. To implement a VirtualHost, the server must
first be told to listen to the address and port to be used. Then a
<VirtualHost> section should be created for the specified
address and port to set the behavior of this virtual host. Note that if
the <VirtualHost> is set for an address and port that the server
Is not listening to, it cannot be accessed.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap


http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

ABAGM] i Ezreguntas Frecuentes | Glosario | Mapa del sitio web

HTTP SERVER PROJNerSiOn 2.4 del Servidor HTTP Apache

Apache > Servidor HTTP > Documentacion > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Mddulos de MultiProcesamiento (MPMs)

Esta traduccion podria estar obsoleta. Consulte la version en
inglés de la documentacion para comprobar si se han
producido cambios recientemente.

Este documento describe que es un Moédulo de Multiprocesamiento y
como los usa Apache.



Apache esta disefiado para ser un servidor web potente y flexible
gue pueda funcionar en la mas amplia variedad de plataformas y
entornos. Las diferentes plataformas y los diferentes entornos,
hacen que a menudo sean necesarias diferentes caracteristicas o
funcionalidades, o que una misma caracteristica o funcionalidad
sea implementada de diferente manera para obtener una mayor
eficiencia. Apache se ha adaptado siempre a una gran variedad
de entornos a través de su disefio modular. Este disefio permite a
los administradores de sitios web elegir que caracteristicas van a
ser incluidas en el servidor seleccionando que médulos se van a
cargar, ya sea al compilar o al ejecutar el servidor.

Apache 2.0 extiende este disefio modular hasta las funciones mas
basicas de un servidor web. El servidor viene con una serie de
Modulos de MultiProcesamiento que son responsables de
conectar con los puertos de red de la maquina, acceptar las
peticiones, y generar los procesos hijo que se encargan de
servirlas.

La extension del disefio modular a este nivel del servidor ofrece
dos beneficios importantes:

e Apache puede soportar de una forma mas facil y eficiente una
amplia variedad de sistemas operativos. En concreto, la
version de Windows de Apache es mucho mas eficiente,
porque el modulo mpm _winnt puede usar funcionalidades
nativas de red en lugar de usar la capa POSIX como hace
Apache 1.3. Este beneficio se extiende también a otros
sistemas operativos que implementan sus respectivos MPMs.

e El servidor puede personalizarse mejor para las necesidades
de cada sitio web. Por ejemplo, los sitios web que necesitan
mas que nada escalibildad pueden usar un MPM hebrado
como worker, mientras que los sitios web que requieran por
encima de otras cosas estabilidad o compatibilidad con




software antiguo pueden usar prefork. Ademas, se pueden
configurar funcionalidades especiales como servir diferentes
hosts con diferentes identificadores de usuario (perchild).

A nivel de usuario, los MPMs son como cualquier otro modulo de
Apache. La diferencia mas importante es que solo un MPM puede
estar cargado en el servidor en un determinado momento. La lista
de MPMs disponibles esta en la seccion indice de Modulos.




Los MPMs deben elegirse durante el proceso de configuracion, y
deben ser compilados en el servidor. Los compiladores son
capaces de optimizar muchas funciones si se usan hebras, pero
solo si se sabe que se estan usando hebras. Como algunos MPM
usan hebras en Unix y otros no, Apache tendra un mejor
rendimiento si el MPM es elegido en el momento de compilar y
esta incorporado en el servidor.

Para elegir el MPM deseado, use el argumento --with-mpm=
NAME con el script ./configure. NAME es el nombre del MPM
deseado.

Una vez que el servidor ha sido compilado, es posible determinar
gue MPM ha sido elegido usando ./httpd -1. Este comando

lista todos los modulos compilados en el servidor, incluido en
MPM.



En la siguiente tabla se muestran los MPMs por defecto para
varios sistemas operativos. Estos seran los MPM seleccionados si
no se especifica lo contrario al compilar.

BeOS beos
Netware mpm netware
0S/2 mpmt 0s2

Unix prefork
Windows mpm_winnt

Copyright 2017 The Apache Software Foundation.
Licencia bajo los términos de Apache License, Version 2.0.

Modulos | Directivas | Preguntas Frecuentes | Glosario | Mapa del sitio web



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Environment Variables in Apache

There are two kinds of environment variables that affect the Apache
HTTP Server.

First, there are the environment variables controlled by the underlying
operating system. These are set before the server starts. They can be
used in expansions in configuration files, and can optionally be
passed to CGl scripts and SSI using the PassEnv directive.

Second, the Apache HTTP Server provides a mechanism for storing
information in named variables that are also called environment
variables. This information can be used to control various operations
such as logging or access control. The variables are also used as a
mechanism to communicate with external programs such as CGl
scripts. This document discusses different ways to manipulate and
use these variables.

Although these variables are referred to as environment variables,
they are not the same as the environment variables controlled by the
underlying operating system. Instead, these variables are stored and
manipulated in an internal Apache structure. They only become actual
operating system environment variables when they are provided to
CGil scripts and Server Side Include scripts. If you wish to manipulate
the operating system environment under which the server itself runs,
you must use the standard environment manipulation mechanisms
provided by your operating system shell.



Related Modules Related Directives

mod cache BrowserMatch

mod env BrowserMatchNoCase

mod rewrite PassEnv

mod setenvif RewriteRule

mod unique id SetEnv
SetEnvIf
SetEnvIfNoCase
UnsetEnv

Basic Environment Manipulation

The most basic way to set an environment variable in Apache is
using the unconditional SetEnv directive. Variables may also be
passed from the environment of the shell which started the server
using the PassEnv directive.

Conditional Per-Request Settings

For additional flexibility, the directives provided by mod setenvif
allow environment variables to be set on a per-request basis,
conditional on characteristics of particular requests. For example,
a variable could be set only when a specific browser (User-Agent)
iIs making a request, or only when a specific Referer [sic] header is
found. Even more flexibility is available through the

mod rewrite's RewriteRule which usesthe [E=...] option
to set environment variables.

Unique Identifiers

Finally, mod unique id sets the environment variable
UNIQUE_ID for each request to a value which is guaranteed to be
unique across "all" requests under very specific conditions.




Standard CGI Variables

In addition to all environment variables set within the Apache
configuration and passed from the shell, CGlI scripts and SSI
pages are provided with a set of environment variables containing
meta-information about the request as required by the CGI
specification.

Some Caveats

It is not possible to override or change the standard CGl
variables using the environment manipulation directives.
When suexec is used to launch CGl scripts, the environment
will be cleaned down to a set of safe variables before CGI
scripts are launched. The list of safe variables is defined at
compile-time in suexec._c.

For portability reasons, the names of environment variables
may contain only letters, numbers, and the underscore
character. In addition, the first character may not be a number.
Characters which do not match this restriction will be replaced
by an underscore when passed to CGl scripts and SSI pages.
A special case are HTTP headers which are passed to CGI
scripts and the like via environment variables (see below).
They are converted to uppercase and only dashes are
replaced with underscores; if the header contains any other
(invalid) character, the whole header is silently dropped. See
below for a workaround.

The SetEnv directive runs late during request processing
meaning that directives such as SetEnvIf and
RewriteCond will not see the variables set with it.

When the server looks up a path via an internal subrequest
such as looking for a DirectoryIndex or generating a
directory listing with mod autoindex, per-request
environment variables are not inherited in the subrequest.
Additionally, SetEnvIf directives are not separately



http://www.ietf.org/rfc/rfc3875

evaluated in the subrequest due to the APl phases
mod setenvif takes action in.




Related Modules Related Directives
mod authz host Require

mod cgi CustomlLog

mod ext filter Deny

mod headers ExtFilterDefine

mod include Header

mod log config LogFormat

mod rewrite RewriteCond
RewriteRule

CGl Scripts

One of the primary uses of environment variables is to
communicate information to CGlI scripts. As discussed above, the
environment passed to CGI scripts includes standard meta-
information about the request in addition to any variables set
within the Apache configuration. For more details, see the CGI
tutorial.

SSI Pages

Server-parsed (SSI) documents processed by mod include's
INCLUDES filter can print environment variables using the echo
element, and can use environment variables in flow control
elements to makes parts of a page conditional on characteristics
of a request. Apache also provides SSI pages with the standard
CGlI environment variables as discussed above. For more details,
see the SSI tutorial.

Access Control

Access to the server can be controlled based on the value of
environment variables using the allow from env=and deny



from env= directives. In combination with SetEnvIf, this allows

for flexible control of access to the server based on characteristics
of the client. For example, you can use these directives to deny
access to a particular browser (User-Agent).

Conditional Logging

Environment variables can be logged in the access log using the
LogFormat option %e. In addition, the decision on whether or not
to log requests can be made based on the status of environment
variables using the conditional form of the CustomLog directive. In
combination with SetEnvIf this allows for flexible control of which
requests are logged. For example, you can choose not to log
requests for filenames ending in gif, or you can choose to only
log requests from clients which are outside your subnet.

Conditional Response Headers

The Header directive can use the presence or absence of an
environment variable to determine whether or not a certain HTTP
header will be placed in the response to the client. This allows, for
example, a certain response header to be sent only if a
corresponding header is received in the request from the client.

External Filter Activation

External filters configured by mod ext filter using the
ExtFilterDefine directive can by activated conditional on an
environment variable using the disableenv=and enableenv=
options.

URL Rewriting

The %{ENV:variable} form of TestString in the RewriteCond
allows mod rewrite's rewrite engine to make decisions




conditional on environment variables. Note that the variables
accessible in mod rewrite without the ENV: prefix are not
actually environment variables. Rather, they are variables special
to mod rewrite which cannot be accessed from other modules.




Interoperability problems have led to the introduction of
mechanisms to modify the way Apache behaves when talking to
particular clients. To make these mechanisms as flexible as
possible, they are invoked by defining environment variables,
typically with BrowserMatch, though SetEnv and PassEnv
could also be used, for example.

downgrade-1.0

This forces the request to be treated as a HTTP/1.0 request even
if it was in a later dialect.

force-gzip

If you have the DEFLATE filter activated, this environment variable
will ignore the accept-encoding setting of your browser and will
send compressed output unconditionally.

force-no-vary

This causes any Vary fields to be removed from the response
header before it is sent back to the client. Some clients don't
interpret this field correctly; setting this variable can work around
this problem. Setting this variable also implies force-response-
1.0.

force-response-1.0

This forces an HTTP/1.0 response to clients making an HTTP/1.0
request. It was originally implemented as a result of a problem with
AOL's proxies. Some HTTP/1.0 clients may not behave correctly
when given an HTTP/1.1 response, and this can be used to
interoperate with them.

gzip-only-text/html



When set to a value of "1", this variable disables the DEFLATE
output filter provided by mod deflate for content-types other
than text/html. If you'd rather use statically compressed files,
mod negotiation evaluates the variable as well (not only for
gzip, but for all encodings that differ from "identity").

no-gzip

When set, the DEFLATE filter of mod deflate will be turned off
and mod negotiation will refuse to deliver encoded resources.

no-cache

Available in versions 2.2.12 and later

When set, mod cache will not save an otherwise cacheable
response. This environment variable does not influence whether a
response already in the cache will be served for the current
request.

nokeepalive

This disables KeepAlive when set.

prefer-language

This influences mod negotiation's behaviour. If it contains a
language tag (such as en, ja or x-klingon),

mod negotiation tries to deliver a variant with that language. If
there's no such variant, the normal negotiation process applies.

redirect-carefully

This forces the server to be more careful when sending a redirect
to the client. This is typically used when a client has a known
problem handling redirects. This was originally implemented as a



result of a problem with Microsoft's WebFolders software which
has a problem handling redirects on directory resources via DAV
methods.

suppress-error-charset

Available in versions after 2.0.54

When Apache issues a redirect in response to a client request, the
response includes some actual text to be displayed in case the
client can't (or doesn't) automatically follow the redirection. Apache
ordinarily labels this text according to the character set which it
uses, which is ISO-8859-1.

However, if the redirection is to a page that uses a different
character set, some broken browser versions will try to use the
character set from the redirection text rather than the actual page.
This can result in Greek, for instance, being incorrectly rendered.

Setting this environment variable causes Apache to omit the
character set for the redirection text, and these broken browsers
will then correctly use that of the destination page.

Security note

Sending error pages without a specified character set may allow
a cross-site-scripting attack for existing browsers (MSIE) which
do not follow the HTTP/1.1 specification and attempt to "guess"”
the character set from the content. Such browsers can be easily
fooled into using the UTF-7 character set, and UTF-7 content
from input data (such as the request-URI) will not be escaped
by the usual escaping mechanisms designed to prevent cross-
site-scripting attacks.

force-proxy-request-1.0, proxy-nokeepalive, proxy-



sendchunked, proxy-sendcl, proxy-chain-auth, proxy-
interim-response, proxy-initial-not-pooled

These directives alter the protocol behavior of mod proxy. See
the mod proxy and mod proxy http documentation for more
details.




Passing broken headers to CGI scripts

Starting with version 2.4, Apache is more strict about how HTTP
headers are converted to environment variables in mod cgi and
other modules: Previously any invalid characters in header names
were simply translated to underscores. This allowed for some
potential cross-site-scripting attacks via header injection (see
Unusual Web Bugs, slide 19/20).

If you have to support a client which sends broken headers and
which can't be fixed, a simple workaround involving

mod setenvif and mod headers allows you to still accept
these headers:

The following works around a client sendil
header.

H H HHF

SetEnvIfNoCase ~Accept.Encoding$ A(.*)$ fix
RequestHeader set Accept-Encoding %{fix_acc

j . >

Changing protocol behavior with misbehaving clients

Earlier versions recommended that the following lines be included
in httpd.conf to deal with known client problems. Since the affected
clients are no longer seen in the wild, this configuration is likely no-
longer necessary.

#

# The following directives modify normal HT
# The first directive disables keepalive foi
# spoof it. There are known problems with ti
# The second directive 1is for Microsoft Int¢


http://events.ccc.de/congress/2007/Fahrplan/events/2212.en.html

# which has a broken HTTP/1.1 implementatiol
# support keepalive when it is used on 301 «
#

BrowserMatch "Mozilla/2" nokeepalive
BrowserMatch "MSIE 4\.0b2;" nokeepalive dowi

#

# The following directive disables HTTP/1.1
# are in violation of the HTTP/1.0 spec by 1
# basic 1.1 response.

#

BrowserMatch "RealPlayer 4\.0" force-respon:
BrowserMatch "Java/1\.0" force-response-1.0
BrowserMatch "JDK/1\.0" force-response-1.0

(| - >

Do not log requests for images in the access log

This example keeps requests for images from appearing in the
access log. It can be easily modified to prevent logging of
particular directories, or to prevent logging of requests coming
from particular hosts.

SetEnvIf Request_URI \.gif image-request
SetEnvIf Request_URI \.jpg image-request
SetEnvIf Request_URI \.png image-request
CustomLog logs/access_log common env=!image-

(| S— >

Prevent "Image Theft"

This example shows how to keep people not on your server from
using images on your server as inline-images on their pages. This
IS not a recommended configuration, but it can work in limited
circumstances. We assume that all your images are in a directory
called /web/images.



SetEnvIf Referer "Ahttp://www\.example\.com,
# Allow browsers that do not send Referer ii
SetEnvIf Referer "A$" local_referal
<Directory "/web/images">

Require env local_referal
</Directory>

{ — >

For more information about this technique, see the "Keeping Your
Images from Adorning Other Sites" tutorial on ServerWatch.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.serverwatch.com/tutorials/article.php/1132731
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

ABAGM] i Ezreguntas Frecuentes | Glosario | Mapa del sitio web

HTTP SERVER PROJNerSiOn 2.4 del Servidor HTTP Apache

Apache > Servidor HTTP > Documentacion > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Uso de los Handlers en Apache

Este documento describe el uso de los Handlers en Apache.




Moédulos Relacionados Directivas Relacionadas

mod actions Action

mod asis AddHandler
mod cgi RemoveHandler
mod imagemap SetHandler
mod info

mod mime

mod negotiation
mod status

Un "handler" es una representacion interna de Apache de una
accion que se va a ejecutar cuando hay una llamada a un fichero.
Generalmente, los ficheros tienen handlers implicitos, basados en
el tipo de fichero de que se trata. Normalmente, todos los ficheros
son simplemente servidos por el servidor, pero algunos tipos de
ficheros se tratan de forma diferente.

Handlers pueden ser usados de manera explicita, basandose en
la extension del fichero o en la ubicacion en la que este, se
pueden especificar handlers sin tener en cuenta el tipo de fichero
gue se trate. Esto es una ventaja por dos razones. Primero, es
una solucién mas elegante. Segundo, porque a un fichero se le
pueden asignar tanto un tipo como un handler. (Consulte también
la seccidn Ficheros y extensiones multiples.)

Los Handlers pueden tanto ser compilados con el servidor como
incluidos en un moédulo, o afladidos con la directiva Action. Los
handlers que vienen incluidos en el core con el servidor de la
distribucion estandar de Apache son:

o default-handler: Envia el fichero usando el
default_handler (), que es el handler usado por defecto

para tratar contenido estatico. (core)



send-as-is: Envia el fichero con cabeceras HTTP tal y como
es. (mod asis)

cgi-script: Trata el fichero como un sript CGI. (mod cgi)
imap-file: Trata el fichero como un mapa de imagenes.
(mod_imagemap)

server-info: Extrae la informacion de configuracion del
servidor. (mod info)

server-status: Extrae el informe del estado del servidor.
(mod status)

type-map: Trata el fichero como una correspondencia de
tipos para la negociacion de contenidos.

(mod negotiation)




Modificar contenido estatico usando un script CGI

Las siguientes directivas hacen que cuando haya una peticion de
ficheros con la extension html se lance el script CGI footer.pl.

Action add-footer /cgi-bin/footer.pl
AddHandler add-footer .html

En este caso, el script CGl es el responsable de enviar el
documento originalmente solicitado (contenido en la variable de
entorno PATH_TRANSLATED) y de hacer cualquier modificacion o

afadido deseado.

Archivos con cabeceras HTTP

Las siguientes directivas activan el handler send-as-1is, que se
usa para ficheros que contienen sus propias cabeceras HTTP.
Todos los archivos en el directorio /web/htdocs/asis/ seran
procesados por el handler send-as-1is, sin tener en cuenta su
extension.

<Directory "/web/htdocs/asis">
SetHandler send-as-1is
</Directory>



Para implementar las funcionalidades de los handlers, se ha
hecho un afadido a la APl de Apache que puede que quiera usar.
Para ser mas especificos, se ha afiadido un nuevo registro a la
estructura request_rec:

char *handler

Si quiere que su modulo llame a un handler , solo tiene que afnadir
r->handler al nombre del handler en cualquier momento antes
de la fase invoke_handler de la peticion. Los handlers se
implementan siempre como se hacia antes, aunque usando el
nombre del handler en vez de un tipo de contenido. Aunque no es
de obligado cumplimiento, la convencion de nombres para los
handlers es que se usen palabras separadas por guiones, sin
barras, de manera que no se invada el media type name-space.

Copyright 2017 The Apache Software Foundation.
Licencia bajo los términos de Apache License, Version 2.0.

Modulos | Directivas | Preguntas Frecuentes | Glosario | Mapa del sitio web



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

ABAGM] i Ezreguntas Frecuentes | Glosario | Mapa del sitio web

HTTP SERVER PROJNerSiOn 2.4 del Servidor HTTP Apache

Apache > Servidor HTTP > Documentacion > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Filtros

Este documento describe como usar filtros en Apache.




Moédulos Relacionados Directivas Relacionadas

mod filter FilterChain

mod deflate FilterDeclare

mod ext filter FilterProtocol
mod include FilterProvider
mod charset lite AddInputFilter
mod reflector AddOutputFilter
mod buffer RemovelInputFilter
mod data RemoveOQutputFilter
mod ratelimit ReflectorHeader
mod reqgtimeout ExtFilterDefine
mod request ExtFilterOptions
mod sed SetInputFilter
mod substitute SetOQutputFilter

mod xml2enc
mod proxy html
mod policy

La cadena de filtrado esta disponible en Apache 2.0 y superiores.
Un filtro es un proceso que se aplica a los datos que se reciben o
se envian por el servidor. Los datos enviados por los clientes al
servidor son procesados por filtros de entrada mientras que los
datos enviados por el servidor se procesan por los filtros de
salida. A los datos se les pueden aplicar varios filtros, y el orden
en que se aplica cada filtro puede especificarse explicitamente.
Todo este proceso es independiente de las tradicionales fase de
peticiones



Data Axis
|

Request Processing in Apache

Ciutput
Filters

N

-

] 1 s Wl i Vi Contgnt ey PrOCEssing

Hequest\_>< \_‘_/ 7;/ Generator | SRS T s
Freliminary Frocessing C

-

Input
Filters

o/

Algunos ejemplos de filtrado en la distribucion estandar de
Apache son:

e mod include, implementa server-side includes (SSI).

e mod ssl, implementa cifrado SSL (https).

e mod deflate, implementa compresiony descompresion en
el acto.

e mod charset 1lite, transcodificacion entre diferentes
juegos de caracteres.

e mod ext filter, ejecuta un programa externo como filtro.

Los filtros se usan internamente por Apache para llevar a cabo
funciones tales como chunking y servir peticiones de byte-range.
Ademas, los médulos contienen filtros que se pueden seleccionar
usando directivas de configuracion al iniciar el servidor.

Una mayor amplitud de aplicaciones son implementadas con
modulos de filtros de terceros que estan disponibles en
modules.apache.org y en otros lados. algunos de ellos son:



http://modules.apache.org/

Procesamiento y reescritura de HTML y XML.
Transformaciones de XSLT y XiIncludes.

Soporte de espacios de nombres en XML.

Manipulacion de carga de archivos y decodificacion de los
formularios HTML.

Procesamiento de imagenes.

Proteccion de aplicaciones vulnerables, tales como scripts
PHP

Edicion de texto de busqueda y remplazo.



To Client
‘.‘
PFDVldEF-HHH%hﬂhﬂ —
E;iﬁg;s FProwvider
PFDVidEF~“ﬁHﬁ;;Jﬁ :
Filker :
Harhess FProwvider

mod filter, incluido en Apache 2.1y posterior, habilita la
cadena de filtrado para ser configurada dindAmicamente en tiempo
de ejecucion. Asi, por ejemplo, usted puede configurar un proxy
para que reescriba HTML con un filtro de HTML y imagenes JPEG
con filtros completos por separado, a pesar de que el proxy no
tiene informacion previa sobre lo que enviara al servidor de
origen. Esto funciona usando un engranaje filtros, que envia a
diferentes proveedores dependiendo del contenido en tiempo de
ejecucion. Cualquier filtro puede ser, ya sea insertado
directamente en la cadena y ejecutado incondicionalmente, o
usado como proveedor y afiadido dindAmicamente Por ejemplo:

e Un filtro de procesamiento de HTML solo se ejecuta si el
contenido es text/html o application/xhtml + xml.

e Un filtro de compresion solo se ejecuta si la entrada es un
tipo compresible y no esta ya comprimida.

e Se insertard un filtro de conversion de juego de caracteres, si
un documento de texto no esta ya en el juego de caracteres
deseado.






Los filtros pueden ser usados para procesar contenido originado
desde el cliente ademas de usarse para procesar el contenido
originado desde el propio servidor usando el modulo

mod reflector.

mod reflector acepta peticiones POST de los clientes, y refleja
el cuerpo de la peticion POST recibida, dentro del contenido de la
respuesta de la peticion, pasa a través de la pila del filtro de salida
en el camino de vuelta al cliente.

Esta técnica se puede utilizar como una alternativa a un servicio
web que se ejecuta en una pila de de aplicaciones dentro del
servidor, en donde el filtro de salida proporciona la transformacion
requerida en el cuerpo de la peticion. Por ejemplo, el modulo

mod deflate puede ser usado para proporcionar un servicio de
compresion general, o un filtro de transformacion de imagen,
puede ser convertido en un servicio de conversion de imagenes.




Hay dos formas de usar el filtrado: de forma Simple y Dinamica.
Generalmente, debera usar una forma u otra; ya que mezclarlas
puede causar consecuencias inesperadas (a pesar de que reglas
de Entrada de tipo simple pueden ser combinadas libremente con
reglas de filtrado de Salidas de tipo simple o dinamico).

La forma mas sencilla es la Unica manera de configurar filtros de
Entrada, y es suficiente para filtros de Salida donde se necesita
una cadena de filtros estatica. Las directivas mas relevantes son:
SetInputFilter, SetOutputFilter, AddInputFilter,
AddOutputFilter, RemoveInputFilter, and
RemoveOQutputFilter.

La forma Dinamica habilita ambas configuraciones estatica, y
dindmica, para los filtros de Salida, como se plantea en la pagina
mod filter. Las directivas mas relevantes son: FilterChain,
FilterDeclare,and FilterProvider.

Una directiva mas como es AddOutputFilterByType sigue

siendo soportada pero esta obsoleta. Usa en cambio la
configuracion dinamica.

Copyright 2017 The Apache Software Foundation.
Licencia bajo los términos de Apache License, Version 2.0.

Modulos | Directivas | Preguntas Frecuentes | Glosario | Mapa del sitio web



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SUEXEC Support

The suEXEC feature provides users of the Apache HTTP Server the
ability to run CGI and SSI programs under user IDs different from the
user ID of the calling web server. Normally, when a CGI or SSI
program executes, it runs as the same user who is running the web
server.

Used properly, this feature can reduce considerably the security risks
involved with allowing users to develop and run private CGI or SSI
programs. However, if SUEXEC is improperly configured, it can cause
any number of problems and possibly create new holes in your
computer's security. If you aren't familiar with managing setuid root
programs and the security issues they present, we highly recommend
that you not consider using sUEXEC.



Before jumping head-first into this document, you should be aware
that certain assumptions are made about you and the environment
in which you will be using suexec.

First, it is assumed that you are using a UNIX derivative operating
system that is capable of setuid and setgid operations. All
command examples are given in this regard. Other platforms, if
they are capable of supporting SUEXEC, may differ in their
configuration.

Second, it is assumed you are familiar with some basic concepts
of your computer's security and its administration. This involves an
understanding of setuid/setgid operations and the various effects
they may have on your system and its level of security.

Third, it is assumed that you are using an unmodified version of
SUEXEC code. All code for suEXEC has been carefully scrutinized
and tested by the developers as well as numerous beta testers.
Every precaution has been taken to ensure a simple yet solidly
safe base of code. Altering this code can cause unexpected
problems and new security risks. It is highly recommended you
not alter the SUEXEC code unless you are well versed in the
particulars of security programming and are willing to share your
work with the Apache HTTP Server development team for
consideration.

Fourth, and last, it has been the decision of the Apache HTTP
Server development team to NOT make suEXEC part of the
default installation of Apache httpd. To this end, SUEXEC
configuration requires of the administrator careful attention to
details. After due consideration has been given to the various
settings for SUEXEC, the administrator may install SUEXEC
through normal installation methods. The values for these settings
need to be carefully determined and specified by the administrator



to properly maintain system security during the use of SUEXEC
functionality. It is through this detailed process that we hope to
limit SUEXEC installation only to those who are careful and
determined enough to use it.

Still with us? Yes? Good. Let's move on!



Before we begin configuring and installing SUEXEC, we will first
discuss the security model you are about to implement. By doing
S0, you may better understand what exactly is going on inside
SUEXEC and what precautions are taken to ensure your system's
security.

SuEXEC is based on a setuid "wrapper" program that is called by
the main Apache HTTP Server. This wrapper is called when an
HTTP request is made for a CGI or SSI program that the
administrator has designated to run as a userid other than that of
the main server. When such a request is made, Apache httpd
provides the sSUEXEC wrapper with the program's name and the
user and group IDs under which the program is to execute.

The wrapper then employs the following process to determine
success or failure -- if any one of these conditions fail, the program
logs the failure and exits with an error, otherwise it will continue:

1. Is the user executing this wrapper a valid user of this
system?

This is to ensure that the user executing the wrapper is
truly a user of the system.

2. Was the wrapper called with the proper number of
arguments?

The wrapper will only execute if it is given the proper
number of arguments. The proper argument format is
known to the Apache HTTP Server. If the wrapper is not
receiving the proper number of arguments, it is either
being hacked, or there is something wrong with the
SUEXEC portion of your Apache httpd binary.

3. Is this valid user allowed to run the wrapper?



Is this user the user allowed to run this wrapper? Only
one user (the Apache user) is allowed to execute this
program.

. Does the target CGI or SSI program have an unsafe
hierarchical reference?

Does the target CGI or SSI program's path contain a
leading '/' or have a'.." backreference? These are not
allowed; the target CGI/SSI program must reside within
SUEXEC's document root (see - -with-suexec-
docroot=DIR below).

. Is the target user name valid?
Does the target user exist?

. Is the target group name valid?
Does the target group exist?

. Is the target user NOT superuser?

SUEXEC does not allow root to execute CGI/SSI
programs.

. Is the target userid ABOVE the minimum ID humber?

The minimum user ID number is specified during
configuration. This allows you to set the lowest possible
userid that will be allowed to execute CGI/SSI programs.
This is useful to block out "system" accounts.

. Is the target group NOT the superuser group?

Presently, SUEXEC does not allow the root group to
execute CGI/SSI programs.



10.

11.

12.

13.

14.

15.

Is the target groupid ABOVE the minimum ID number?

The minimum group ID number is specified during
configuration. This allows you to set the lowest possible
groupid that will be allowed to execute CGI/SSI
programs. This is useful to block out "system" groups.

Can the wrapper successfully become the target user and
group?

Here is where the program becomes the target user and
group via setuid and setgid calls. The group access list is
also initialized with all of the groups of which the user is a
member.

Can we change directory to the one in which the target
CGIISSI program resides?

If it doesn't exist, it can't very well contain files. If we can't
change directory to it, it might as well not exist.

Is the directory within the httpd webspace?

If the request is for a regular portion of the server, is the
requested directory within SUEXEC's document root? If
the request is for a UserDir, is the requested directory
within the directory configured as sUEXEC's userdir (see
SuEXEC's configuration options)?

Is the directory NOT writable by anyone else?

We don't want to open up the directory to others; only the
owner user may be able to alter this directories contents.

Does the target CGI/SSI program exist?

If it doesn't exists, it can't very well be executed.



16.

17.

18.

19.

20.

Is the target CGI/SSI program NOT writable by anyone
else?

We don't want to give anyone other than the owner the
ability to change the CGI/SSI program.

Is the target CGI/SSI program NOT setuid or setgid?

We do not want to execute programs that will then
change our UID/GID again.

Is the target user/group the same as the program's
user/group?

Is the user the owner of the file?

Can we successfully clean the process environment to
ensure safe operations?

SUEXEC cleans the process' environment by establishing
a safe execution PATH (defined during configuration), as
well as only passing through those variables whose
names are listed in the safe environment list (also
created during configuration).

Can we successfully become the target CGI/SSI program
and execute?

Here is where sUEXEC ends and the target CGI/SSI
program begins.

This is the standard operation of the SUEXEC wrapper's security
model. It is somewhat stringent and can impose new limitations
and guidelines for CGI/SSI design, but it was developed carefully
step-by-step with security in mind.

For more information as to how this security model can limit your



possibilities in regards to server configuration, as well as what
security risks can be avoided with a proper sUEXEC setup, see the
"Beware the Jabberwock" section of this document.




. 99 -9 |
Here's where we begin the fun.

SuEXEC configuration options

--enable-suexec
This option enables the SUEXEC feature which is never
installed or activated by default. At least one - -with-
suexec-Xxxxx option has to be provided together with the -
-enable-suexec option to let APACI accept your request
for using the sUEXEC feature.

--with-suexec-bin=PATH
The path to the suexec binary must be hard-coded in the
server for security reasons. Use this option to override the
default path. e.g. --with-suexec-
bin=/usr/sbin/suexec

--with-suexec-caller=UID

The username under which httpd normally runs. This is the
only user allowed to execute the SUEXEC wrapper.

--with-suexec-userdir=DIR
Define to be the subdirectory under users' home directories
where SUEXEC access should be allowed. All executables
under this directory will be executable by SUEXEC as the user
so they should be "safe" programs. If you are using a "simple”
UserDir directive (ie. one without a "*" in it) this should be
set to the same value. SUEXEC will not work properly in cases
where the UserDir directive points to a location that is not
the same as the user's home directory as referenced in the
passwd file. Default value is "public_html".
If you have virtual hosts with a different UserDir for each,
you will need to define them to all reside in one parent
directory; then name that parent directory here. If this is not
defined properly, "~userdir" cgi requests will not work!



--with-suexec-docroot=DIR
Define as the DocumentRoot set for httpd. This will be the
only hierarchy (aside from UserDirs) that can be used for
SUEXEC behavior. The default directory is the - -datadir
value with the suffix "/htdocs", e.qg. if you configure with "- -
datadir=/home/apache" the directory
"/home/apache/htdocs" is used as document root for the
SUEXEC wrapper.

--with-suexec-uidmin=UID
Define this as the lowest UID allowed to be a target user for
SUEXEC. For most systems, 500 or 100 is common. Default
value is 100.

--with-suexec-gidmin=GID
Define this as the lowest GID allowed to be a target group for
SUEXEC. For most systems, 100 is common and therefore
used as default value.

--with-suexec-logfile=FILE
This defines the filename to which all SUEXEC transactions
and errors are logged (useful for auditing and debugging
purposes). By default the logfile is named "suexec_log" and

located in your standard logfile directory (--logfiledir).

--with-suexec-safepath=PATH
Define a safe PATH environment to pass to CGIl executables.
Default value is "/usr/local/bin:/usr/bin:/bin".

Compiling and installing the suUEXEC wrapper

If you have enabled the sUEXEC feature with the - -enable-
suexec option the suexec binary (together with httpd itself) is
automatically built if you execute the make command.

After all components have been built you can execute the



command make install to install them. The binary image
suexec is installed in the directory defined by the - -sbindir
option. The default location is "/usr/local/apache2/bin/suexec".

Please note that you need root privileges for the installation step.
In order for the wrapper to set the user ID, it must be installed as
owner root and must have the setuserid execution bit set for file

modes.

Setting paranoid permissions

Although the suEXEC wrapper will check to ensure that its caller is
the correct user as specified with the - -with-suexec-caller
configure option, there is always the possibility that a system or
library call SUEXEC uses before this check may be exploitable on
your system. To counter this, and because it is best-practise in
general, you should use filesystem permissions to ensure that only
the group httpd runs as may execute suEXEC.

If for example, your web server is configured to run as:

User www
Group webgroup

and suexec is installed at "/usr/local/apache2/bin/suexec", you
should run:

chgrp webgroup /usr/local/apache2/bin/suexec
chmod 4750 /usr/local/apache2/bin/suexec

This will ensure that only the group httpd runs as can even
execute the sSUEXEC wrapper.



Upon startup of httpd, it looks for the file suexec in the directory
defined by the - -sbindir option (default is
"/usr/local/apache/sbin/suexec”). If httpd finds a properly
configured sUEXEC wrapper, it will print the following message to
the error log:

[notice] sSuEXEC mechanism enabled (wrapper: /path/to/suexec)

If you don't see this message at server startup, the server is most
likely not finding the wrapper program where it expects it, or the
executable is not installed setuid root.

If you want to enable the SUEXEC mechanism for the first time and
an Apache HTTP Server is already running you must kill and
restart httpd. Restarting it with a simple HUP or USR1 signal will
not be enough.

If you want to disable suEXEC you should kill and restart httpd
after you have removed the suexec file.



Requests for CGI programs will call the sSUEXEC wrapper only if
they are for a virtual host containing a SuexecUserGroup

directive or if they are processed by mod userdir.

Virtual Hosts:

One way to use the suEXEC wrapper is through the
SuexecUserGroup directive in VirtualHost definitions. By
setting this directive to values different from the main server user
ID, all requests for CGlI resources will be executed as the User
and Group defined for that <VirtualHost>. If this directive is not
specified for a <VirtualHost> then the main server userid is
assumed.

User directories:

Requests that are processed by mod userdir will call the
SUEXEC wrapper to execute CGI programs under the userid of the
requested user directory. The only requirement needed for this
feature to work is for CGI execution to be enabled for the user and
that the script must meet the scrutiny of the security checks above.
See also the - -with-suexec-userdir compile time option.




The suEXEC wrapper will write log information to the file defined
with the - -with-suexec-logfile option as indicated above. If
you feel you have configured and installed the wrapper properly,
have a look at this log and the error_log for the server to see
where you may have gone astray.



NOTE! This section may not be complete. For the latest revision of
this section of the documentation, see the Online Documentation
version.

There are a few points of interest regarding the wrapper that can
cause limitations on server setup. Please review these before
submitting any "bugs" regarding SUEXEC.

e sUEXEC Points Of Interest
e Hierarchy limitations

For security and efficiency reasons, all SUEXEC requests
must remain within either a top-level document root for
virtual host requests, or one top-level personal document
root for userdir requests. For example, if you have four
VirtualHosts configured, you would need to structure all
of your VHosts' document roots off of one main httpd
document hierarchy to take advantage of SUEXEC for
VirtualHosts. (Example forthcoming.)

e SUEXEC's PATH environment variable

This can be a dangerous thing to change. Make certain
every path you include in this define is a trusted
directory. You don't want to open people up to having
someone from across the world running a trojan horse on
them.

o Altering the sUEXEC code

Again, this can cause Big Trouble if you try this without
knowing what you are doing. Stay away from it if at all
possible.

Copyright 2017 The Apache Software Foundation.


http://httpd.apache.org/docs/2.4/suexec.html

Licensed under the Apache License, Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Miscellaneous Documentation



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache Performance Tuning

Apache 2.x is a general-purpose webserver, designed to provide a
balance of flexibility, portability, and performance. Although it has not
been designed specifically to set benchmark records, Apache 2.x is
capable of high performance in many real-world situations.

Compared to Apache 1.3, release 2.x contains many additional
optimizations to increase throughput and scalability. Most of these
improvements are enabled by default. However, there are compile-
time and run-time configuration choices that can significantly affect
performance. This document describes the options that a server
administrator can configure to tune the performance of an Apache 2.x
installation. Some of these configuration options enable the httpd to
better take advantage of the capabilities of the hardware and OS,
while others allow the administrator to trade functionality for speed.



The single biggest hardware issue affecting webserver
performance is RAM. A webserver should never ever have to
swap, as swapping increases the latency of each request beyond
a point that users consider "fast enough”. This causes users to hit
stop and reload, further increasing the load. You can, and should,
control the MaxRequestWorkers setting so that your server does
not spawn so many children that it starts swapping. The procedure
for doing this is simple: determine the size of your average Apache
process, by looking at your process list via a tool such as top, and
divide this into your total available memory, leaving some room for
other processes.

Beyond that the rest is mundane: get a fast enough CPU, a fast
enough network card, and fast enough disks, where "fast enough”
Is something that needs to be determined by experimentation.

Operating system choice is largely a matter of local concerns. But
some guidelines that have proven generally useful are:

¢ Run the latest stable release and patch level of the operating
system that you choose. Many OS suppliers have introduced
significant performance improvements to their TCP stacks
and thread libraries in recent years.

o If your OS supports a sendfile(2) system call, make sure
you install the release and/or patches needed to enable it.
(With Linux, for example, this means using Linux 2.4 or later.
For early releases of Solaris 8, you may need to apply a
patch.) On systems where it is available, sendfile enables
Apache 2 to deliver static content faster and with lower CPU
utilization.



Related Modules Related Directives

mod dir AllowOverride

mpm_common DirectoryIndex

mod status HostnamelLookups
EnableMMAP
EnableSendfile
KeepAliveTimeout
MaxSpareServers
MinSpareServers

Options
StartServers

HosthnameLookups and other DNS considerations

Prior to Apache 1.3, HostnamelLookups defaulted to On. This
adds latency to every request because it requires a DNS lookup to
complete before the request is finished. In Apache 1.3 this setting
defaults to Off. If you need to have addresses in your log files
resolved to hostnames, use the 1logresolve program that comes
with Apache, or one of the numerous log reporting packages
which are available.

It is recommended that you do this sort of postprocessing of your
log files on some machine other than the production web server
machine, in order that this activity not adversely affect server
performance.

If you use any Allow from domain or Deny from domain directives
(i.e., using a hostname, or a domain name, rather than an IP
address) then you will pay for two DNS lookups (a reverse,
followed by a forward lookup to make sure that the reverse is not
being spoofed). For best performance, therefore, use IP



addresses, rather than names, when using these directives, if
possible.

Note that it's possible to scope the directives, such as within a
<Location "/server-status'"> section. In this case the DNS
lookups are only performed on requests matching the criteria.
Here's an example which disables lookups except for . html and
.Ccg1 files:

HostnameLookups off
<Files ~ "\.(html|cgi)$">

HostnameLookups on
</Files>

But even still, if you just need DNS names in some CGls you could
consider doing the gethostbyname call in the specific CGls that

need it.

FollowSymLinks and SymLinksifOwnerMatch

Wherever in your URL-space you do not have an Options
FollowSymLinks, or you do have an Options
SymLinksIfOwnerMatch, Apache will need to issue extra
system calls to check up on symlinks. (One extra call per filename
component.) For example, if you had:

DocumentRoot "/www/htdocs"
<Directory "/">

Options SymLinksIfOwnerMatch
</Directory>

and a request is made for the URI /index.html, then Apache
will perform 1stat(2) on /www, /www/htdocs, and
/www/htdocs/index.html. The results of these 1stats are



never cached, so they will occur on every single request. If you
really desire the symlinks security checking, you can do something
like this:

DocumentRoot "/www/htdocs"
<Directory "/">

Options FollowSymLinks
</Directory>

<Directory "/www/htdocs">
Options -FollowSymLinks +SymLinksIfOwner M:
</Directory>

J S

This at least avoids the extra checks for the DocumentRoot path.
Note that you'll need to add similar sections if you have any
Alias or RewriteRule paths outside of your document root. For
highest performance, and no symlink protection, set
FollowSymLinks everywhere, and never set
SymLinksIfOwnerMatch.

AllowOverride

Wherever in your URL-space you allow overrides (typically
.htaccess files), Apache will attempt to open .htaccess for
each filename component. For example,

DocumentRoot "/www/htdocs"
<Directory "/">

AllowOverride all
</Directory>

and a request is made for the URI /index.html. Then Apache
will attempt to open /.htaccess, /www/ . htaccess, and
/www/htdocs/.htaccess. The solutions are similar to the



previous case of Options FollowSymLinks. For highest
performance use AllowOverride None everywhere in your
filesystem.

Negotiation

If at all possible, avoid content negotiation if you're really
interested in every last ounce of performance. In practice the
benefits of negotiation outweigh the performance penalties.
There's one case where you can speed up the server. Instead of
using a wildcard such as:

DirectoryIndex index

Use a complete list of options:

DirectoryIndex index.cgi index.pl index.shtr
« 1 i

where you list the most common choice first.

Also note that explicitly creating a type-map file provides better
performance than using MultiViews, as the necessary
information can be determined by reading this single file, rather
than having to scan the directory for files.

If your site needs content negotiation, consider using type-map
files, rather than the Options MultiViews directive to
accomplish the negotiation. See the Content Negotiation
documentation for a full discussion of the methods of negotiation,
and instructions for creating type-map files.

Memory-mapping

In situations where Apache 2.x needs to look at the contents of a



file being delivered--for example, when doing server-side-include
processing--it normally memory-maps the file if the OS supports
some form of mmap(2).

On some platforms, this memory-mapping improves performance.
However, there are cases where memory-mapping can hurt the
performance or even the stability of the httpd:

e On some operating systems, mmap does not scale as well as
read(2) when the number of CPUs increases. On
multiprocessor Solaris servers, for example, Apache 2.x
sometimes delivers server-parsed files faster when mmap is
disabled.

¢ |f you memory-map a file located on an NFS-mounted
filesystem and a process on another NFS client machine
deletes or truncates the file, your process may get a bus error
the next time it tries to access the mapped file content.

For installations where either of these factors applies, you should
use EnableMMAP off to disable the memory-mapping of
delivered files. (Note: This directive can be overridden on a per-
directory basis.)

Sendfile

In situations where Apache 2.x can ignore the contents of the file
to be delivered -- for example, when serving static file content -- it
normally uses the kernel sendfile support for the file if the OS
supports the sendfile(2) operation.

On most platforms, using sendfile improves performance by
eliminating separate read and send mechanics. However, there
are cases where using sendfile can harm the stability of the httpd:

e Some platforms may have broken sendfile support that the



build system did not detect, especially if the binaries were
built on another box and moved to such a machine with
broken sendfile support.

e With an NFS-mounted filesystem, the kernel may be unable to
reliably serve the network file through its own cache.

For installations where either of these factors applies, you should
use EnableSendfile off to disable sendfile delivery of file

contents. (Note: This directive can be overridden on a per-
directory basis.)

Process Creation

Prior to Apache 1.3 the MinSpareServers, MaxSpareServers,
and StartServers settings all had drastic effects on benchmark
results. In particular, Apache required a "ramp-up" period in order
to reach a number of children sufficient to serve the load being
applied. After the initial spawning of StartServers children, only
one child per second would be created to satisfy the
MinSpareServers setting. So a server being accessed by 100
simultaneous clients, using the default StartServers of 5 would
take on the order of 95 seconds to spawn enough children to
handle the load. This works fine in practice on real-life servers
because they aren't restarted frequently. But it does really poorly
on benchmarks which might only run for ten minutes.

The one-per-second rule was implemented in an effort to avoid
swamping the machine with the startup of new children. If the
machine is busy spawning children, it can't service requests. But it
has such a drastic effect on the perceived performance of Apache
that it had to be replaced. As of Apache 1.3, the code will relax the
one-per-second rule. It will spawn one, wait a second, then spawn
two, wait a second, then spawn four, and it will continue
exponentially until it is spawning 32 children per second. It will



stop whenever it satisfies the MinSpareServers setting.

This appears to be responsive enough that it's almost
unnecessary to twiddle the MinSpareServers,

MaxSpareServers and StartServers knobs. When more than

4 children are spawned per second, a message will be emitted to
the ErrorLog. If you see a lot of these errors, then consider

tuning these settings. Use the mod status output as a guide.

Related to process creation is process death induced by the
MaxConnectionsPerChild setting. By default this is ©, which
means that there is no limit to the number of connections handled
per child. If your configuration currently has this set to some very
low number, such as 30, you may want to bump this up
significantly. If you are running SunOS or an old version of Solaris,
limit this to 10000 or so because of memory leaks.

When keep-alives are in use, children will be kept busy doing
nothing waiting for more requests on the already open connection.
The default KeepAliveTimeout of 5 seconds attempts to
minimize this effect. The tradeoff here is between network
bandwidth and server resources. In no event should you raise this
above about 60 seconds, as most of the benefits are lost.



http://www.hpl.hp.com/techreports/Compaq-DEC/WRL-95-4.html

Choosing an MPM

Apache 2.x supports pluggable concurrency models, called Multi-
Processing Modules (MPMs). When building Apache, you must
choose an MPM to use. There are platform-specific MPMs for
some platforms: mpm netware, mpmt 0s2, and mpm winnt. For
general Unix-type systems, there are several MPMs from which to
choose. The choice of MPM can affect the speed and scalability of
the httpd:

e The worker MPM uses multiple child processes with many
threads each. Each thread handles one connection at a time.
Worker generally is a good choice for high-traffic servers
because it has a smaller memory footprint than the prefork
MPM.

e The event MPM is threaded like the Worker MPM, but is
designed to allow more requests to be served simultaneously
by passing off some processing work to supporting threads,
freeing up the main threads to work on new requests.

e The prefork MPM uses multiple child processes with one
thread each. Each process handles one connection at a time.
On many systems, prefork is comparable in speed to worker,
but it uses more memory. Prefork's threadless design has
advantages over worker in some situations: it can be used
with non-thread-safe third-party modules, and it is easier to
debug on platforms with poor thread debugging support.

For more information on these and other MPMs, please see the
MPM documentation.

Modules

Since memory usage is such an important consideration in
performance, you should attempt to eliminate modules that you



are not actually using. If you have built the modules as DSOs,
eliminating modules is a simple matter of commenting out the
associated LoadModule directive for that module. This allows you
to experiment with removing modules and seeing if your site still
functions in their absence.

If, on the other hand, you have modules statically linked into your
Apache binary, you will need to recompile Apache in order to
remove unwanted modules.

An associated question that arises here is, of course, what
modules you need, and which ones you don't. The answer here
will, of course, vary from one web site to another. However, the
minimal list of modules which you can get by with tends to include
mod mime, mod dir,and mod log config.mod_log_config
Is, of course, optional, as you can run a web site without log files.
This is, however, not recommended.

Atomic Operations

Some modules, such as mod_cache and recent development
builds of the worker MPM, use APR's atomic API. This API
provides atomic operations that can be used for lightweight thread
synchronization.

By default, APR implements these operations using the most
efficient mechanism available on each target OS/CPU platform.
Many modern CPUs, for example, have an instruction that does an
atomic compare-and-swap (CAS) operation in hardware. On some
platforms, however, APR defaults to a slower, mutex-based
implementation of the atomic API in order to ensure compatibility
with older CPU models that lack such instructions. If you are
building Apache for one of these platforms, and you plan to run
only on newer CPUSs, you can select a faster atomic
implementation at build time by configuring Apache with the - -



enable-nonportable-atomics option:

./buildconf
./configure --with-mpm=worker --enable-nonportable-atomics=yes

The --enable-nonportable-atomics option is relevant for
the following platforms:

e Solaris on SPARC
By default, APR uses mutex-based atomics on
Solaris/SPARC. If you configure with - -enable-
nonportable-atomics, however, APR generates code that
uses a SPARC v8plus opcode for fast hardware compare-
and-swap. If you configure Apache with this option, the atomic
operations will be more efficient (allowing for lower CPU
utilization and higher concurrency), but the resulting
executable will run only on UltraSPARC chips.

e Linux on x86
By default, APR uses mutex-based atomics on Linux. If you
configure with - -enable-nonportable-atomics,
however, APR generates code that uses a 486 opcode for fast
hardware compare-and-swap. This will result in more efficient
atomic operations, but the resulting executable will run only
on 486 and later chips (and not on 386).

mod_status and ExtendedStatus On

If you include mod status and you also set ExtendedStatus
On when building and running Apache, then on every request
Apache will perform two calls to gettimeofday(2) (or
times(2) depending on your operating system), and (pre-1.3)
several extra calls to time(2). This is all done so that the status
report contains timing indications. For highest performance, set
ExtendedStatus off (which is the default).




accept Serialization - Multiple Sockets

Warning:

with care.

This section has not been fully updated to take into account
changes made in the 2.x version of the Apache HTTP Server.
Some of the information may still be relevant, but please use it

This discusses a shortcoming in the Unix socket API. Suppose
your web server uses multiple Listen statements to listen on
either multiple ports or multiple addresses. In order to test each
socket to see if a connection is ready, Apache uses select(2).
select(2) indicates that a socket has zero or at least one
connection waiting on it. Apache's model includes multiple
children, and all the idle ones test for new connections at the same
time. A naive implementation looks something like this (these
examples do not match the code, they're contrived for pedagogical

purposes):

for (7;) {
for (;;) {
fd_set accept_fds;

FD_ZERO (&accept_fds);
for (i = first_socket; 1 <= las
FD_SET (i, &accept_fds);

}

rc = select (last_socket+l, &ac
if (rc < 1) continue;
new_connection = -1;

for (i = first_socket; 1 <= las
if (FD_ISSET (i, &accept_fds)

new_connection = accept (1,
if (new_connection != -1) b




}
}
if (new_connection != -1) break
zrocess_the(new_connection);
}
« 1] i

But this naive implementation has a serious starvation problem.
Recall that multiple children execute this loop at the same time,
and so multiple children will block at select when they are in
between requests. All those blocked children will awaken and
return from select when a single request appears on any socket.
(The number of children which awaken varies depending on the
operating system and timing issues.) They will all then fall down
into the loop and try to accept the connection. But only one will
succeed (assuming there's still only one connection ready). The
rest will be blocked in accept. This effectively locks those
children into serving requests from that one socket and no other
sockets, and they'll be stuck there until enough new requests
appear on that socket to wake them all up. This starvation problem
was first documented in PR#467. There are at least two solutions.

One solution is to make the sockets non-blocking. In this case the
accept won't block the children, and they will be allowed to
continue immediately. But this wastes CPU time. Suppose you
have ten idle children in select, and one connection arrives.
Then nine of those children will wake up, try to accept the
connection, fail, and loop back into select, accomplishing
nothing. Meanwhile none of those children are servicing requests
that occurred on other sockets until they get back up to the
select again. Overall this solution does not seem very fruitful

unless you have as many idle CPUs (in a multiprocessor box) as
you have idle children (not a very likely situation).


http://bugs.apache.org/index/full/467

Another solution, the one used by Apache, is to serialize entry into
the inner loop. The loop looks like this (differences highlighted):

for (;;) {
accept_mutex_on ();
for (;;) {
fd_set accept_fds;

FD_ZERO (&accept_fds);

for (i = first_socket; 1 <= las
FD_SET (i, &accept_fds);

}

rc = select (last_socket+1l, &ac
if (rc < 1) continue;
new_connection = -1;
for (i = first_socket; 1 <= las
if (FD_ISSET (i, &accept_fds)
new_connection = accept (1,
if (new_connection != -1) b
}
}
if (new_connection != -1) break
}

accept_mutex_off ();
process the new_connection;

}
(| - >

The functions accept_mutex_on and accept_mutex_off
Implement a mutual exclusion semaphore. Only one child can
have the mutex at any time. There are several choices for
iImplementing these mutexes. The choice is defined in
src/conf.h (pre-1.3) or src/include/ap_config.h (1.3 or
later). Some architectures do not have any locking choice made,
on these architectures it is unsafe to use multiple Listen
directives.



The Mutex directive can be used to change the mutex
implementation of the mpm-accept mutex at run-time. Special
considerations for different mutex implementations are
documented with that directive.

Another solution that has been considered but never implemented
is to partially serialize the loop -- that is, let in a certain number of
processes. This would only be of interest on multiprocessor boxes
where it's possible that multiple children could run simultaneously,
and the serialization actually doesn't take advantage of the full
bandwidth. This is a possible area of future investigation, but
priority remains low because highly parallel web servers are not
the norm.

|deally you should run servers without multiple Listen statements
if you want the highest performance. But read on.

accept Serialization - Single Socket

The above is fine and dandy for multiple socket servers, but what
about single socket servers? In theory they shouldn't experience
any of these same problems because all the children can just
block in accept (2) until a connection arrives, and no starvation
results. In practice this hides almost the same "spinning" behavior
discussed above in the non-blocking solution. The way that most
TCP stacks are implemented, the kernel actually wakes up all
processes blocked in accept when a single connection arrives.
One of those processes gets the connection and returns to user-
space. The rest spin in the kernel and go back to sleep when they
discover there's no connection for them. This spinning is hidden
from the user-land code, but it's there nonetheless. This can result
in the same load-spiking wasteful behavior that a non-blocking
solution to the multiple sockets case can.

For this reason we have found that many architectures behave



more "nicely" if we serialize even the single socket case. So this is
actually the default in almost all cases. Crude experiments under
Linux (2.0.30 on a dual Pentium pro 166 w/128Mb RAM) have
shown that the serialization of the single socket case causes less
than a 3% decrease in requests per second over unserialized
single-socket. But unserialized single-socket showed an extra
100ms latency on each request. This latency is probably a wash
on long haul lines, and only an issue on LANSs. If you want to
override the single socket serialization, you can define
SINGLE_LISTEN_UNSERIALIZED_ACCEPT, and then single-

socket servers will not serialize at all.

Lingering Close

As discussed in draft-ietf-http-connection-00.txt section 8, in order
for an HTTP server to reliably implement the protocol, it needs to
shut down each direction of the communication independently.
(Recall that a TCP connection is bi-directional. Each half is
independent of the other.)

When this feature was added to Apache, it caused a flurry of
problems on various versions of Unix because of
shortsightedness. The TCP specification does not state that the
FIN_WAIT_2 state has a timeout, but it doesn't prohibit it. On
systems without the timeout, Apache 1.2 induces many sockets
stuck forever in the FIN_WAIT_2 state. In many cases this can be
avoided by simply upgrading to the latest TCP/IP patches supplied
by the vendor. In cases where the vendor has never released
patches (i.e., SunOS4 -- although folks with a source license can
patch it themselves), we have decided to disable this feature.

There are two ways to accomplish this. One is the socket option
SO_LINGER. But as fate would have it, this has never been
implemented properly in most TCP/IP stacks. Even on those
stacks with a proper implementation (i.e., Linux 2.0.31), this


http://www.ics.uci.edu/pub/ietf/http/draft-ietf-http-connection-00.txt

method proves to be more expensive (cputime) than the next
solution.

For the most part, Apache implements this in a function called
lingering_close (in http_main.c). The function looks
roughly like this:

void lingering_close (int s)

{
char junk_buffer[2048];

/* shutdown the sending side */
shutdown (s, 1);

signal (SIGALRM, lingering_death)
alarm (30);

for (;;) {
select (s for reading, 2 second
if (error) break;
if (s 1s ready for reading) {
if (read (s, junk_buffer, siz

break;
}
/* just toss away whatever 1is
}
}
close (s);
}
J ] i

This naturally adds some expense at the end of a connection, but
it is required for a reliable implementation. As HTTP/1.1 becomes
more prevalent, and all connections are persistent, this expense

will be amortized over more requests. If you want to play with fire



and disable this feature, you can define NO_LINGCLOSE, but this
IS not recommended at all. In particular, as HTTP/1.1 pipelined
persistent connections come into use, 1ingering_closeis an
absolute necessity (and pipelined connections are faster, so you
want to support them).

Scoreboard File

Apache's parent and children communicate with each other
through something called the scoreboard. Ideally this should be
implemented in shared memory. For those operating systems that
we either have access to, or have been given detailed ports for, it
typically is implemented using shared memory. The rest default to
using an on-disk file. The on-disk file is not only slow, but it is
unreliable (and less featured). Peruse the src/main/conf. h file
for your architecture, and look for either USE_MMAP_SCOREBOARD
or USE_SHMGET_SCOREBOARD. Defining one of those two (as well
as their companions HAVE_MMAP and HAVE_SHMGET respectively)
enables the supplied shared memory code. If your system has
another type of shared memory, edit the file
src/main/http_main.c and add the hooks necessary to use it
in Apache. (Send us back a patch too, please.)

Historical note: The Linux port of Apache didn't start to use
shared memory until version 1.2 of Apache. This oversight
resulted in really poor and unreliable behavior of earlier versions
of Apache on Linux.

DYNAMIC_MODULE_LIMIT

If you have no intention of using dynamically loaded modules (you
probably don't if you're reading this and tuning your server for
every last ounce of performance), then you should add -
DDYNAMIC_MODULE_LIMIT=0 when building your server. This


http://www.w3.org/Protocols/HTTP/Performance/Pipeline.html

will save RAM that's allocated only for supporting dynamically
loaded modules.



Here is a system call trace of Apache 2.0.38 with the worker MPM
on Solaris 8. This trace was collected using:

truss -1 -p httpd_child pid.

The -1 option tells truss to log the ID of the LWP (lightweight

process--Solaris' form of kernel-level thread) that invokes each
system call.

Other systems may have different system call tracing utilities such
as strace, ktrace, or par. They all produce similar output.

In this trace, a client has requested a 10KB static file from the
httpd. Traces of non-static requests or requests with content
negotiation look wildly different (and quite ugly in some cases).

/67: accept(3, Ox00200BEC, 0x00200COC, 1) (sleeping...)
/67: accept(3, Ox00200BEC, 0x00200C0C, 1) =9

In this trace, the listener thread is running within LWP #67.

Note the lack of accept (2) serialization. On this particular

platform, the worker MPM uses an unserialized accept by
default unless it is listening on multiple ports.

/65: lwp_park(0x00000000, 0)
/67: Iwp_unpark(65, 1)

(O]

Upon accepting the connection, the listener thread wakes up a
worker thread to do the request processing. In this trace, the
worker thread that handles the request is mapped to LWP #65.

/65: getsockname(9, Ox00200BA4, 0x00200BC4, 1) =0



In order to implement virtual hosts, Apache needs to know the
local socket address used to accept the connection. It is possible
to eliminate this call in many situations (such as when there are no
virtual hosts, or when Listen directives are used which do not
have wildcard addresses). But no effort has yet been made to do
these optimizations.

(O]

/65: brk(0x002170E8)
/65: brk (0x002190E8)

The brk(2) calls allocate memory from the heap. It is rare to see
these in a system call trace, because the httpd uses custom
memory allocators (apr_pool and apr_bucket_alloc) for
most request processing. In this trace, the httpd has just been
started, so it must call malloc(3) to get the blocks of raw
memory with which to create the custom memory allocators.

/65: fcntl(9, F_GETFL, Ox00000000) =2

/65: fstat64(9, OXFAF7B818) =0

/65: getsockopt(9, 65535, 8192, OxFAF7B918, 0xFAF78910 21906
/65: fstat64(9, OXFAF7B818) =0

/65: getsockopt(9, 65535, 8192, OxFAF7B918, OxFAF7B914, 21906:
/65: setsockopt (9, 65535, 8192, OXxFAF7B918, 4, 2190656) =

/65: fcntl(9, F_SETFL, Ox00000082) =0

Next, the worker thread puts the connection to the client (file
descriptor 9) in non-blocking mode. The setsockopt(2) and
getsockopt(2) calls are a side-effect of how Solaris' libc
handles fcntl(2) on sockets.

/65: read(9, " GE T / 10k . htm".., 8000) = 97

The worker thread reads the request from the client.

/65: stat("/var/httpd/apache/httpd-8999/htdocs/10k.html", OxF/
/65: open('"/var/httpd/apache/httpd-8999/htdocs/10k.html", O_RI



This httpd has been configured with Options FollowSymLinks
and AllowOverride None. Thus it doesn't need to 1stat(2)
each directory in the path leading up to the requested file, nor
check for .htaccess files. It simply calls stat(2) to verify that
the file: 1) exists, and 2) is a regular file, not a directory.

/65: sendfilev(0, 9, 0x00200F90, 2, OXFAF7B53C) = 160269

In this example, the httpd is able to send the HTTP response
header and the requested file with a single sendfilev(2)
system call. Sendfile semantics vary among operating systems.
On some other systems, it is necessary to doawrite(2) or
writev(2) call to send the headers before calling
sendfile(2).

/65: write(4, "1 27 .0 .0 .1 - ".., 78) = 78

Thiswrite(2) call records the request in the access log. Note
that one thing missing from this trace is a time(2) call. Unlike
Apache 1.3, Apache 2.x uses gettimeofday(3) to look up the
time. On some operating systems, like Linux or Solaris,
gettimeofday has an optimized implementation that doesn't
require as much overhead as a typical system call.

/65: shutdown(9, 1, 1) =0
/65 poll(OxFAF7B980, 1, 2000) =1
/65: read(9, OxFAF7BC20, 512) =0
/65: close(9) =0
The worker thread does a lingering close of the connection.
/65: close(10) =0

/65: lwp_park(0x00000000, 0) (sleeping...)

Finally the worker thread closes the file that it has just delivered



and blocks until the listener assigns it another connection.

/67: accept (3, OxOO1FEB74, OxO001FEB94, 1) (sleeping...)

Meanwhile, the listener thread is able to accept another
connection as soon as it has dispatched this connection to a
worker thread (subject to some flow-control logic in the worker
MPM that throttles the listener if all the available workers are
busy). Though it isn't apparent from this trace, the next
accept(2) can (and usually does, under high load conditions)
occur in parallel with the worker thread's handling of the just-
accepted connection.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap


http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Virtual Hosts



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Name-based Virtual Host Support

This document describes when and how to use name-based virtual
hosts.

See also
|P-based Virtual Host Support

An In-Depth Discussion of Virtual Host Matching
Dynamically configured mass virtual hosting
Virtual Host examples for common setups



https://www.apache.org/foundation/contributing.html

|IP-based virtual hosts use the IP address of the connection to
determine the correct virtual host to serve. Therefore you need to
have a separate IP address for each host.

With name-based virtual hosting, the server relies on the client to
report the hostname as part of the HTTP headers. Using this
technique, many different hosts can share the same IP address.

Name-based virtual hosting is usually simpler, since you need only
configure your DNS server to map each hostname to the correct
IP address and then configure the Apache HTTP Server to
recognize the different hostnames. Name-based virtual hosting
also eases the demand for scarce IP addresses. Therefore you
should use name-based virtual hosting unless you are using
equipment that explicitly demands IP-based hosting. Historical
reasons for IP-based virtual hosting based on client support are no
longer applicable to a general-purpose web server.

Name-based virtual hosting builds off of the IP-based virtual host
selection algorithm, meaning that searches for the proper server
name occur only between virtual hosts that have the best IP-based
address.



virtual host

It is important to recognize that the first step in name-based virtual
host resolution is IP-based resolution. Name-based virtual host
resolution only chooses the most appropriate name-based virtual
host after narrowing down the candidates to the best IP-based
match. Using a wildcard (*) for the IP address in all of the
VirtualHost directives makes this IP-based mapping irrelevant.

When a request arrives, the server will find the best (most specific)
matching <VirtualHost> argument based on the IP address
and port used by the request. If there is more than one virtual host
containing this best-match address and port combination, Apache
will further compare the ServerName and ServerAlias
directives to the server name present in the request.

If you omit the ServerName directive from any name-based virtual
host, the server will default to a fully qualified domain name
(FQDN) derived from the system hostname. This implicitly set
server name can lead to counter-intuitive virtual host matching and
is discouraged.

The default name-based vhost for an IP and port
combination

If no matching ServerName or ServerAlias is found in the set of
virtual hosts containing the most specific matching IP address and
port combination, then the first listed virtual host that matches
that will be used.



Related Modules Related Directives

core DocumentRoot
ServerAlias
ServerName
<VirtualHost>

The first step is to create a <VirtualHost> block for each

different host that you would like to serve. Inside each
<VirtualHost> block, you will need at minimum a ServerName

directive to designate which host is served and a DocumentRoot

directive to show where in the filesystem the content for that host
lives.

Main host goes away

Any request that doesn't match an existing <VirtualHost>is
handled by the global server configuration, regardless of the
hostname or ServerName.

When you add a name-based virtual host to an existing server,
and the virtual host arguments match preexisting IP and port
combinations, requests will now be handled by an explicit virtual
host. In this case, it's usually wise to create a default virtual host
with a ServerName matching that of the base server. New
domains on the same interface and port, but requiring separate
configurations, can then be added as subsequent (non-default)
virtual hosts.

ServerName inheritance

It is best to always explicitly list a ServerName in every name-
based virtual host.

If aVirtualHost doesn't specify a ServerName, a server




name will be inherited from the base server configuration. If no
server name was specified globally, one is detected at startup
through reverse DNS resolution of the first listening address. In
either case, this inherited server name will influence name-
based virtual host resolution, so it is best to always explicitly list
a ServerName in every name-based virtual host.

For example, suppose that you are serving the domain

www . example.com and you wish to add the virtual host
other.example.com, which points at the same IP address.
Then you simply add the following to httpd.conf:

<VirtualHost *:80>
# This first-listed virtual host is als«
ServerName www.example.com
ServerAlias example.com
DocumentRoot "/www/domain"
</VirtualHost>

<VirtualHost *:80>
ServerName other.example.com
DocumentRoot "/www/otherdomain"
</VirtualHost>

{ - 2

You can alternatively specify an explicit IP address in place of the
*in <VirtualHost> directives. For example, you might want to
do this in order to run some name-based virtual hosts on one IP
address, and either IP-based, or another set of name-based virtual
hosts on another address.

Many servers want to be accessible by more than one name. This
is possible with the ServerAlias directive, placed inside the
<VirtualHost> section. For example in the first
<VirtualHost> block above, the ServerAlias directive




indicates that the listed names are other names which people can
use to see that same web site:

ServerAlias example.com *.example.com

then requests for all hosts in the example.com domain will be
served by the www.example. com virtual host. The wildcard
characters * and ? can be used to match names. Of course, you
can't just make up names and place them in ServerName or
ServerAlias. You must first have your DNS server properly

configured to map those names to an IP address associated with
your server.

Name-based virtual hosts for the best-matching set of
<virtualhost>s are processed in the order they appear in the
configuration. The first matching ServerName or ServerAlias
is used, with no different precedence for wildcards (nor for
ServerName vs. ServerAlias).

The complete list of names in the VirtualHost directive are
treated just like a (non wildcard) ServerAlias.

Finally, you can fine-tune the configuration of the virtual hosts by
placing other directives inside the <VirtualHost> containers.
Most directives can be placed in these containers and will then
change the configuration only of the relevant virtual host. To find
out if a particular directive is allowed, check the Context of the
directive. Configuration directives set in the main server context
(outside any <VirtualHost> container) will be used only if they
are not overridden by the virtual host settings.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.



http://www.apache.org/licenses/LICENSE-2.0

Modules | Directives | FAQ | Glossary | Sitemap



http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Virtual Hosts



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Apache IP-based Virtual Host Support

See also

Name-based Virtual Hosts Support



https://www.apache.org/foundation/contributing.html

IP-based virtual hosting is a method to apply different directives
based on the IP address and port a request is received on. Most
commonly, this is used to serve different websites on different
ports or interfaces.

In many cases, name-based virtual hosts are more convenient,
because they allow many virtual hosts to share a single
address/port. See Name-based vs. IP-based Virtual Hosts to help
you decide.




As the term IP-based indicates, the server must have a different
IP address/port combination for each IP-based virtual host.
This can be achieved by the machine having several physical
network connections, or by use of virtual interfaces which are
supported by most modern operating systems (see system
documentation for details, these are frequently called "ip aliases",
and the "ifconfig" command is most commonly used to set them
up), and/or using multiple port numbers.

In the terminology of Apache HTTP Server, using a single IP
address but multiple TCP ports, is also IP-based virtual hosting.



There are two ways of configuring apache to support multiple
hosts. Either by running a separate ht tpd daemon for each
hostname, or by running a single daemon which supports all the
virtual hosts.

Use multiple daemons when:

e There are security partitioning issues, such as companyl
does not want anyone at company?2 to be able to read their
data except via the web. In this case you would need two
daemons, each running with different User, Group, Listen,
and ServerRoot settings.

¢ You can afford the memory and file descriptor requirements of
listening to every IP alias on the machine. It's only possible to
Listen to the "wildcard" address, or to specific addresses.
So if you have a need to listen to a specific address for
whatever reason, then you will need to listen to all specific
addresses. (Although one httpd could listen to N-1 of the
addresses, and another could listen to the remaining
address.)

Use a single daemon when:

e Sharing of the httpd configuration between virtual hosts is
acceptable.

e The machine services a large number of requests, and so the
performance loss in running separate daemons may be
significant.



Create a separate ht tpd installation for each virtual host. For
each installation, use the Listen directive in the configuration file
to select which IP address (or virtual host) that daemon services.
e.g.

Listen 192.0.2.100:80

It is recommended that you use an IP address instead of a
hostname (see DNS caveats).




g - 9 - - |
For this case, a single ht tpd will service requests for the main
server and all the virtual hosts. The VirtualHost directive in the
configuration file is used to set the values of ServerAdmin,
ServerName, DocumentRoot, ErrorlLog and TransferlLog or
CustomlLog configuration directives to different values for each
virtual host. e.g.

<VirtualHost 172.20.30.40:80>
ServerAdmin webmaster@wwwl.example.com
DocumentRoot "/www/vhosts/wwwl"
ServerName wwwl.example.com
ErrorLog "/www/logs/wwwl/error_log"
CustomLog "/www/logs/wwwl/access_log" c«
</VirtualHost>

<VirtualHost 172.20.30.50:80>
ServerAdmin webmaster@www?2.example.org
DocumentRoot "/www/vhosts/www2"
ServerName www2.example.org
ErrorLog "/www/logs/www2/error_log"
CustomLog "/www/logs/www2/access_log" c«
</VirtualHost>

j S ol

It is recommended that you use an IP address instead of a
hostname in the <VirtualHost> directive (see DNS caveats).

Specific IP addresses or ports have precedence over their
wildcard equivalents, and any virtual host that matches has
precedence over the servers base configuration.

Almost any configuration directive can be put in the VirtualHost
directive, with the exception of directives that control process
creation and a few other directives. To find out if a directive can be
used in the VirtualHost directive, check the Context using the




directive index.

SuexecUserGroup may be used inside a VirtualHost directive if
the SUEXEC wrapper is used.

SECURITY: When specifying where to write log files, be aware of
some security risks which are present if anyone other than the
user that starts Apache has write access to the directory where
they are written. See the security tips document for details.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Virtual Hosts



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Dynamically Configured Mass Virtual Hosting

This document describes how to efficiently serve an arbitrary number
of virtual hosts with the Apache HTTP Server. A separate document
discusses using mod rewrite to create dynamic mass virtual hosts.




The techniques described here are of interest if your httpd.conf
contains many <VirtualHost> sections that are substantially
the same, for example:

<VirtualHost 111.22.33.44>
ServerName customer-1.e:
DocumentRoot "/www/hosts/customel
ScriptAlias '"/cgi-bin/" "/www/hosts/cl
</VirtualHost>

<VirtualHost 111.22.33.44>
ServerName customer-2.e:
DocumentRoot "/www/hosts/customel
ScriptAlias '"/cgi-bin/" "/www/hosts/cl
</VirtualHost>

<VirtualHost 111.22.33.44>
ServerName customer-N.e:
DocumentRoot "/www/hosts/customel
ScriptAlias '"/cgi-bin/" "/www/hosts/cl
</VirtualHost>

J — o

We wish to replace these multiple <VirtualHost> blocks with a

mechanism that works them out dynamically. This has a number of
advantages:

1. Your configuration file is smaller, so Apache starts more
quickly and uses less memory. Perhaps more importantly, the
smaller configuration is easier to maintain, and leaves less
room for errors.

2. Adding virtual hosts is simply a matter of creating the
appropriate directories in the filesystem and entries in the
DNS - you don't need to reconfigure or restart Apache.



The main disadvantage is that you cannot have a different log file
for each virtual host; however, if you have many virtual hosts,
doing this can be a bad idea anyway, because of the number of
file descriptors needed. It is better to log to a pipe or a fifo, and
arrange for the process at the other end to split up the log files into
one per virtual host. One example of such a process can be found

in the split-logfile utility.




A virtual host is defined by two pieces of information: its IP
address, and the contents of the Host : header in the HTTP
request. The dynamic mass virtual hosting technique used here is
based on automatically inserting this information into the
pathname of the file that is used to satisfy the request. This can be
most easily done by using mod vhost alias with Apache httpd.
Alternatively, mod_rewrite can be used.

Both of these modules are disabled by default; you must enable
one of them when configuring and building Apache httpd if you
want to use this technique.

A couple of things need to be determined from the request in order
to make the dynamic virtual host look like a normal one. The most
important is the server name, which is used by the server to
generate self-referential URLs etc. It is configured with the
ServerName directive, and it is available to CGls via the

SERVER_NAME environment variable. The actual value used at run
time is controlled by the UseCanonicalName setting. With
UseCanonicalName Off, the server name is taken from the
contents of the Host : header in the request. With
UseCanonicalName DNS, itis taken from a reverse DNS lookup

of the virtual host's IP address. The former setting is used for
name-based dynamic virtual hosting, and the latter is used for IP-
based hosting. If httpd cannot work out the server name because
there is no Host : header, or the DNS lookup fails, then the value
configured with ServerName is used instead.

The other thing to determine is the document root (configured with
DocumentRoot and available to CGI scripts via the
DOCUMENT_ROOT environment variable). In a normal
configuration, this is used by the core module when mapping URIs
to filenames, but when the server is configured to do dynamic



virtual hosting, that job must be taken over by another module
(either mod vhost alias ormod rewrite), which has a
different way of doing the mapping. Neither of these modules is
responsible for setting the DOCUMENT_ROOT environment variable

so if any CGls or SSI documents make use of it, they will get a
misleading value.




This extract from httpd.conf implements the virtual host
arrangement outlined in the Motivation section above using
mod vhost alias.

# get the server name from the Host: header
UseCanonicalName Off

# this log format can be split per-virtual-|
# using the split-logfile utility.

LogFormat "%V %h %1 %u %t \"%r\" %s %b" vcor
CustomLog "logs/access_log" vcommon

# include the server name in the filenames |
VirtualDocumentRoot "/www/hosts/%0/docs"
VirtualScriptAlias "/www/hosts/%0/cgi-bin"

J — o

This configuration can be changed into an IP-based virtual hosting
solution by just turning UseCanonicalName Off into

UseCanonicalName DNS. The server name that is inserted into

the filename is then derived from the IP address of the virtual host.
The variable %0 references the requested servername, as

indicated in the Host : header.

See the mod vhost alias documentation for more usage
examples.




[ e e
This is an adjustment of the above system, tailored for an ISP's
web hosting server. Using %2, we can select substrings of the
server name to use in the filename so that, for example, the
documents for www . user .example.com are found in
/home/user/www. It uses a single cgi-bin directory instead of
one per virtual host.

UseCanonicalName Off

LogFormat "%V %h %1 %u %t \"%r\" %s %b" wvcor
CustomLog logs/access_log vcommon

# include part of the server name in the fi.
VirtualDocumentRoot '"/home/%2/www"

# single cgi-bin directory
ScriptAlias '"/cgi-bin/" "/www/std-cgi/"

J S o]

There are examples of more complicated
VirtualDocumentRoot settings in the mod vhost alias

documentation.




Server

With more complicated setups, you can use httpd's normal
<VirtualHost> directives to control the scope of the various
virtual hosting configurations. For example, you could have one IP
address for general customers' homepages, and another for
commercial customers, with the following setup. This can be
combined with conventional <VirtualHost> configuration
sections, as shown below.

UseCanonicalName Off
LogFormat "%V %h %1 %u %t \"%r\" %s %b" wvcor

<Directory "/www/commercial'>
Options FollowSymLinks
AllowOverride All
</Directory>

<Directory "/www/homepages'">
Options FollowSymLinks
AllowOverride None
</Directory>

<VirtualHost 111.22.33.44>
ServerName www.commercial.example.com

CustomLog "logs/access_log.commercial"
VirtualDocumentRoot "/www/commercial/%0.,
VirtualScriptAlias "/www/commercial/%0.

</VirtualHost>

<VirtualHost 111.22.33.45>
ServerName www.homepages.example.com



CustomLog "logs/access_log.homepages" v«

VirtualDocumentRoot "/www/homepages/%0/ 1
ScriptAlias "/cgi-bin/" "/www/S!
</VirtualHost>

j S 2l

Note

If the first VirtualHost block does not include a ServerName

directive, the reverse DNS of the relevant IP will be used
instead. If this is not the server name you wish to use, a bogus
entry (eg. ServerName none.example.com) can be added to

get around this behaviour.




The configuration changes suggested to turn the first example into
an IP-based virtual hosting setup result in a rather inefficient
setup. A new DNS lookup is required for every request. To avoid
this overhead, the filesystem can be arranged to correspond to the
IP addresses, instead of to the host names, thereby negating the
need for a DNS lookup. Logging will also have to be adjusted to fit
this system.

# get the server name from the reverse DNS «
UseCanonicalName DNS

# include the IP address in the logs so the
LogFormat "%A %h %1 %u %t \"%r\" %s %b" wvcor
CustomLog "logs/access_log" vcommon

# include the IP address in the filenames
VirtualDocumentRootIP "/www/hosts/%0/docs"
VirtualScriptAliasIP "/www/hosts/%0/cgi-bii

j — ol




Mass virtual hosting may also be accomplished using

mod rewrite, either using simple RewriteRule directives, or
using more complicated techniques such as storing the vhost
definitions externally and accessing them via RewriteMap. These
techniques are discussed in the rewrite documentation.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Virtual Hosts



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

VirtualHost Examples

This document attempts to answer the commonly-asked questions
about setting up virtual hosts. These scenarios are those involving

multiple web sites running on a single server, via name-based or IP-
based virtual hosts.




IP address.

Your server has multiple hostnames that resolve to a single
address, and you want to respond differently for
www . example.com and www.example.org

Note

Creating virtual host configurations on your Apache server does
not magically cause DNS entries to be created for those host
names. You must have the names in DNS, resolving to your IP
address, or nobody else will be able to see your web site. You
can put entries in your hosts file for local testing, but that will
work only from the machine with those hosts entries.

# Ensure that Apache listens on port 80
Listen 80
<VirtualHost *:80>
DocumentRoot "/www/examplel"
ServerName www.example.com

# Other directives here
</VirtualHost>

<VirtualHost *:80>
DocumentRoot "/www/example2"
ServerName www.example.org

# Other directives here
</VirtualHost>

The asterisks match all addresses, so the main server serves no
requests. Due to the fact that the virtual host with ServerName

www . example.com is first in the configuration file, it has the
highest priority and can be seen as the default or primary server.



That means that if a request is received that does not match one
of the specified ServerName directives, it will be served by this

first <VirtualHost>.

The above configuration is what you will want to use in almost all
name-based virtual hosting situations. The only thing that this
configuration will not work for, in fact, is when you are serving
different content based on differing IP addresses or ports.

Note

You may replace * with a specific IP address on the system.
Such virtual hosts will only be used for HTTP requests received
on connection to the specified IP address.

However, it is additionally useful to use * on systems where the
IP address is not predictable - for example if you have a
dynamic IP address with your ISP, and you are using some
variety of dynamic DNS solution. Since * matches any IP
address, this configuration would work without changes
whenever your IP address changes.



Note

Any of the techniques discussed here can be extended to any
number of IP addresses.

The server has two IP addresses. On one (172.20.30.40), we
will serve the "main" server, server.example.com and on the
other (172.20.30.50), we will serve two or more virtual hosts.

Listen 80

# This 1is the "main" server running on 172..
ServerName server.example.com
DocumentRoot "/www/mainserver"

<VirtualHost 172.20.30.50>
DocumentRoot "/www/examplel"
ServerName www.example.com

# Other directives here
</VirtualHost>

<VirtualHost 172.20.30.50>
DocumentRoot "/www/example2"
ServerName www.example.org

# Other directives here
</VirtualHost>

(| S— >

Any request to an address other than 172.20.30.50 will be
served from the main server. Arequestto 172.20.30.50 with an
unknown hostname, or no Host : header, will be served from

www . example.com.






(such as an internal and external address).

The server machine has two IP addresses (192.168.1.1 and
172.20.30.40). The machine is sitting between an internal
(intranet) network and an external (internet) network. Outside of
the network, the name server.example.com resolves to the
external address (172.20.30.40), but inside the network, that
same name resolves to the internal address (192.168.1.1).

The server can be made to respond to internal and external
requests with the same content, with just one <VirtualHost>
section.

<VirtualHost 192.168.1.1 172.20.30.40>
DocumentRoot "/www/serverli"
ServerName server.example.com
ServerAlias server

</VirtualHost>

Now requests from both networks will be served from the same
<VirtualHost>.

Note:

On the internal network, one can just use the name server
rather than the fully qualified host name
server.example.com.

Note also that, in the above example, you can replace the list of
IP addresses with *, which will cause the server to respond the
same on all addresses.



You have multiple domains going to the same IP and also want to
serve multiple ports. The example below illustrates that the name-
matching takes place after the best matching IP address and port
combination is determined.

Listen 80
Listen 8080

<VirtualHost 172.20.30.40:80>
ServerName www.example.com
DocumentRoot "/www/domain-80"
</VirtualHost>

<VirtualHost 172.20.30.40:8080>
ServerName www.example.com
DocumentRoot "/www/domain-8080"
</VirtualHost>

<VirtualHost 172.20.30.40:80>
ServerName www.example.org
DocumentRoot "/www/otherdomain-80"
</VirtualHost>

<VirtualHost 172.20.30.40:8080>
ServerName www.example.org
DocumentRoot "/www/otherdomain-8080"
</VirtualHost>



The server has two IP addresses (172.20.30.40 and
172.20.30.50) which resolve to the names www .example.com
and www . example . org respectively.

Listen 80

<VirtualHost 172.20.30.40>
DocumentRoot "/www/examplel"
ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.50>
DocumentRoot "/www/example2"
ServerName www.example.org
</VirtualHost>

Requests for any address not specified in one of the
<VirtualHost> directives (such as 1localhost, for example)
will go to the main server, if there is one.



The server machine has two IP addresses (172.20.30.40 and
172.20.30.50) which resolve to the names www .example.com
and www .example.org respectively. In each case, we want to
run hosts on ports 80 and 8080.

Listen 172.20.30.40:80
Listen 172.20.30.40:8080
Listen 172.20.30.50:80
Listen 172.20.30.50:8080

<VirtualHost 172.20.30.40:80>
DocumentRoot "/www/examplel-80"
ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.40:8080>
DocumentRoot "/www/examplel-8080"
ServerName www.example.com
</VirtualHost>

<VirtualHost 172.20.30.50:80>
DocumentRoot "/www/example2-80"
ServerName www.example.org
</VirtualHost>

<VirtualHost 172.20.30.50:8080>
DocumentRoot "/www/example2-8080"
ServerName www.example.org
</VirtualHost>



Any address mentioned in the argument to a virtualhost that never
appears in another virtual host is a strictly IP-based virtual host.

Listen 80

<VirtualHost 172.20.30.40>
DocumentRoot "/www/examplel"
ServerName www.example.com

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/example2"
ServerName www.example.org
</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/example3"
ServerName www.example.net
</VirtualHost>

# IP-based

<VirtualHost 172.20.30.50>
DocumentRoot "/www/example4"
ServerName www.example.edu

</VirtualHost>

<VirtualHost 172.20.30.60>
DocumentRoot "/www/example5"
ServerName www.example.gov
</VirtualHost>



The following example allows a front-end machine to proxy a
virtual host through to a server running on another machine. In the
example, a virtual host of the same name is configured on a
machine at 192.168.111.2. The ProxyPreserveHost 0On
directive is used so that the desired hostname is passed through,
in case we are proxying multiple hostnames to a single machine.

<VirtualHost *:*>
ProxyPreserveHost On
ProxyPass "/" "http://192.168.11:
ProxyPassReverse "/" "http://192.168.11:
ServerName hostname.example.com
</VirtualHost>

J S o]




_default_ vhosts for all ports

Catching every request to any unspecified IP address and port,
I.e., an address/port combination that is not used for any other
virtual host.

<VirtualHost _default_:*>
DocumentRoot "/www/default"
</VirtualHost>

Using such a default vhost with a wildcard port effectively prevents
any request going to the main server.

A default vhost never serves a request that was sent to an
address/port that is used for name-based vhosts. If the request
contained an unknown or no Host : header it is always served

from the primary name-based vhost (the vhost for that
address/port appearing first in the configuration file).

You can use AliasMatch or RewriteRule to rewrite any
request to a single information page (or script).

_default_ vhosts for different ports

Same as setup 1, but the server listens on several ports and we
want to use a second _default_ vhost for port 80.

<VirtualHost _default_ :80>
DocumentRoot "/www/default80"
# ...

</VirtualHost>

<VirtualHost _default_:*>
DocumentRoot "/www/default"



# ...
</VirtualHost>

The default vhost for port 80 (which must appear before any
default vhost with a wildcard port) catches all requests that were
sent to an unspecified IP address. The main server is never used
to serve a request.

_default_ vhosts for one port

We want to have a default vhost for port 80, but no other default
vhosts.

<VirtualHost _default_ :80>
DocumentRoot "/www/default"

</VirtualHost>

A request to an unspecified address on port 80 is served from the
default vhost. Any other request to an unspecified address and
port is served from the main server.

Any use of * in a virtual host declaration will have higher
precedence than _default_.



The name-based vhost with the hosthame www . example.org
(from our name-based example, setup 2) should get its own IP
address. To avoid problems with name servers or proxies who
cached the old IP address for the name-based vhost we want to
provide both variants during a migration phase.

The solution is easy, because we can simply add the new IP
address (172.20.30.50) to the VirtualHost directive.

Listen 80
ServerName www.example.com
DocumentRoot "/www/examplel"

<VirtualHost 172.20.30.40 172.20.30.50>
DocumentRoot "/www/example2"
ServerName www.example.org
# ...

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/example3"
ServerName www.example.net
ServerAlias *.example.net
# ...

</VirtualHost>

The vhost can now be accessed through the new address (as an
IP-based vhost) and through the old address (as a name-based
vhost).



We have a server with two name-based vhosts. In order to match
the correct virtual host a client must send the correct Host :

header. Old HTTP/1.0 clients do not send such a header and
Apache has no clue what vhost the client tried to reach (and
serves the request from the primary vhost). To provide as much
backward compatibility as possible we create a primary vhost
which returns a single page containing links with an URL prefix to
the name-based virtual hosts.

<VirtualHost 172.20.30.40>
# primary vhost
DocumentRoot "/www/subdomain"
RewriteEngine On
RewriteRule "." "/www/subdomain/index. ht
# ...

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/subdomain/sub1"
ServerName www.subl.domain.tld
ServerPath "/sub1/"
RewriteEngine On

RewriteRule "A(/subl/.*)" "/www/subdoma:
#

</VirtualHost>

<VirtualHost 172.20.30.40>
DocumentRoot "/www/subdomain/sub2"
ServerName www.sub2.domain.tld
ServerPath "/sub2/"
RewriteEngine On

RewriteRule "A(/sub2/.*)" "/www/subdoma:
#

</VirtualHost>
4 1] 2




Due to the ServerPath directive a request to the URL
http://www.subl.domain.tld/subl/ is always served from

the subl-vhost.
Arequest to the URL http://www.subl.domain.tld/ is only

served from the subl-vhost if the client sent a correct Host :
header. If no Host : header is sent the client gets the information
page from the primary host.

Please note that there is one oddity: A request to
http://www.sub2.domain.tld/subl/ is also served from

the subl-vhost if the client sent no Host : header.

The RewriteRule directives are used to make sure that a client
which sent a correct Host : header can use both URL variants,
i.e., with or without URL prefix.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Virtual Hosts



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

An In-Depth Discussion of Virtual Host
Matching

This document attempts to explain exactly what Apache HTTP Server
does when deciding what virtual host to serve a request from.

Most users should read about Name-based vs. IP-based Virtual Hosts
to decide which type they want to use, then read more about name-
based or |P-based virtualhosts, and then see some examples.

If you want to understand all the details, then you can come back to
this page.

See also
|P-based Virtual Host Support

Name-based Virtual Hosts Support
Virtual Host examples for common setups
Dynamically configured mass virtual hosting



https://www.apache.org/foundation/contributing.html

There is a main server which consists of all the definitions
appearing outside of <VirtualHost> sections.

There are virtual servers, called vhosts, which are defined by
<VirtualHost> sections.

Each VirtualHost directive includes one or more addresses
and optional ports.

Hostnames can be used in place of IP addresses in a virtual host
definition, but they are resolved at startup and if any name
resolutions fail, those virtual host definitions are ignored. This is,
therefore, not recommended.

The address can be specified as *, which will match a request if

no other vhost has the explicit address on which the request was
received.

The address appearing in the VirtualHost directive can have
an optional port. If the port is unspecified, it is treated as a
wildcard port, which can also be indicated explicitly using *. The
wildcard port matches any port.

(Port numbers specified in the VirtualHost directive do not
influence what port numbers Apache will listen on, they only
control which VirtualHost will be selected to handle a request.
Use the Listen directive to control the addresses and ports on
which the server listens.)

Collectively the entire set of addresses (including multiple results
from DNS lookups) are called the vhost's address set.

Apache automatically discriminates on the basis of the HTTP
Host header supplied by the client whenever the most specific



match for an IP address and port combination is listed in multiple
virtual hosts.

The ServerName directive may appear anywhere within the
definition of a server. However, each appearance overrides the
previous appearance (within that server). If no ServerName is
specified, the server attempts to deduce it from the server's IP
address.

The first name-based vhost in the configuration file for a given
IP:port pair is significant because it is used for all requests
received on that address and port for which no other vhost for that
IP:port pair has a matching ServerName or ServerAlias. It is also
used for all SSL connections if the server does not support Server
Name Indication.

The complete list of names in the VirtualHost directive are
treated just like a (non wildcard) ServerAlias (but are not
overridden by any ServerAlias statement).

For every vhost various default values are set. In particular:

1. If avhost has no ServerAdmin, Timeout,
KeepAliveTimeout, KeepAlive,
MaxKeepAliveRequests, ReceiveBufferSize, or
SendBufferSize directive then the respective value is
inherited from the main server. (That is, inherited from
whatever the final setting of that value is in the main server.)

2. The "lookup defaults” that define the default directory
permissions for a vhost are merged with those of the main
server. This includes any per-directory configuration
information for any module.

3. The per-server configs for each module from the main server
are merged into the vhost server.



Essentially, the main server is treated as "defaults” or a "base" on
which to build each vhost. But the positioning of these main server
definitions in the config file is largely irrelevant -- the entire config
of the main server has been parsed when this final merging
occurs. So even if a main server definition appears after a vhost
definition it might affect the vhost definition.

If the main server has no ServerName at this point, then the
hostname of the machine that ht tpd is running on is used
instead. We will call the main server address set those IP
addresses returned by a DNS lookup on the ServerName of the

main server.

For any undefined ServerName fields, a name-based vhost
defaults to the address given first in the VirtualHost statement
defining the vhost.

Any vhost that includes the magic _default_ wildcard is given
the same ServerName as the main server.



-9
The server determines which vhost to use for a request as follows:

IP address lookup

When the connection is first received on some address and port,
the server looks for all the VirtualHost definitions that have the
same IP address and port.

If there are no exact matches for the address and port, then
wildcard (*) matches are considered.

If no matches are found, the request is served by the main server.

If there are VirtualHost definitions for the IP address, the next

step is to decide if we have to deal with an IP-based or a name-
based vhost.

IP-based vhost

If there is exactly one VirtualHost directive listing the IP
address and port combination that was determined to be the best
match, no further actions are performed and the request is served
from the matching vhost.

Name-based vhost

If there are multiple VirtualHost directives listing the IP address
and port combination that was determined to be the best match,
the "list" in the remaining steps refers to the list of vhosts that
matched, in the order they were in the configuration file.

If the connection is using SSL, the server supports Server Name
Indication, and the SSL client handshake includes the TLS
extension with the requested hostname, then that hostname is
used below just like the Host : header would be used on a non-




SSL connection. Otherwise, the first name-based vhost whose
address matched is used for SSL connections. This is significant
because the vhost determines which certificate the server will use
for the connection.

If the request contains a Host : header field, the list is searched
for the first vhost with a matching ServerName or ServerAlias,
and the request is served from that vhost. AHost : header field
can contain a port number, but Apache always ignores it and
matches against the real port to which the client sent the request.

The first vhost in the config file with the specified IP address has
the highest priority and catches any request to an unknown server
name, or a request without a Host : header field (such as a

HTTP/1.0 request).

Persistent connections

The IP lookup described above is only done once for a particular
TCP/IP session while the name lookup is done on every request
during a KeepAlive/persistent connection. In other words, a client
may request pages from different name-based vhosts during a
single persistent connection.

Absolute URI

If the URI from the request is an absolute URI, and its hostname
and port match the main server or one of the configured virtual
hosts and match the address and port to which the client sent the
request, then the scheme/hostname/port prefix is stripped off and
the remaining relative URI is served by the corresponding main
server or virtual host. If it does not match, then the URI remains
untouched and the request is taken to be a proxy request.

Observations



Name-based virtual hosting is a process applied after the
server has selected the best matching IP-based virtual host.
If you don't care what IP address the client has connected to,
use a "*" as the address of every virtual host, and name-
based virtual hosting is applied across all configured virtual
hosts.

ServerName and ServerAlias checks are never
performed for an IP-based vhost.

Only the ordering of name-based vhosts for a specific address
set is significant. The one name-based vhosts that comes first
in the configuration file has the highest priority for its
corresponding address set.

Any port in the Host : header field is never used during the
matching process. Apache always uses the real port to which
the client sent the request.

If two vhosts have an address in common, those common
addresses act as name-based virtual hosts implicitly. This is
new behavior as of 2.3.11.

The main server is only used to serve a request if the IP
address and port number to which the client connected does
not match any vhost (including a * vhost). In other words, the
main server only catches a request for an unspecified
address/port combination (unless there is a _default_ vhost
which matches that port).

You should never specify DNS names in VirtualHost
directives because it will force your server to rely on DNS to
boot. Furthermore it poses a security threat if you do not
control the DNS for all the domains listed. There's more
iInformation available on this and the next two topics.
ServerName should always be set for each vhost. Otherwise
a DNS lookup is required for each vhost.



|
In addition to the tips on the DNS Issues page, here are some
further tips:

e Place all main server definitions before any VirtualHost

definitions. (This is to aid the readability of the configuration --
the post-config merging process makes it non-obvious that
definitions mixed in around virtual hosts might affect all virtual

hosts.)

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > Virtual Hosts



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

File Descriptor Limits

When using a large number of Virtual Hosts, Apache may run out of
available file descriptors (sometimes called file handles) if each Virtual
Host specifies different log files. The total number of file descriptors
used by Apache is one for each distinct error log file, one for every
other log file directive, plus 10-20 for internal use. Unix operating
systems limit the number of file descriptors that may be used by a
process; the limit is typically 64, and may usually be increased up to a
large hard-limit.

Although Apache attempts to increase the limit as required, this may
not work if:

1. Your system does not provide the setrlimit () system call.

2. The setrlimit (RLIMIT_NOFILE) call does not function on
your system (such as Solaris 2.3)

3. The number of file descriptors required exceeds the hard limit.

4. Your system imposes other limits on file descriptors, such as a
limit on stdio streams only using file descriptors below 256.
(Solaris 2)

In the event of problems you can:

e Reduce the number of log files; don't specify log files in the
<VirtualHost> sections, but only log to the main log files. (See
Splitting up your log files, below, for more information on doing
this.)

¢ |f you system falls into 1 or 2 (above), then increase the file
descriptor limit before starting Apache, using a script like

#!/bin/sh
ulimit -S -n 100
exec httpd







If you want to log multiple virtual hosts to the same log file, you
may want to split up the log files afterwards in order to run
statistical analysis of the various virtual hosts. This can be
accomplished in the following manner.

First, you will need to add the virtual host information to the log
entries. This can be done using the LogFormat directive, and the
%V variable. Add this to the beginning of your log format string:

LogFormat "%v %h %1 %u %t \"%r\" %>s %b" wvh
CustomLog logs/multiple_vhost_log vhost

] il

1]

This will create a log file in the common log format, but with the
canonical virtual host (whatever appears in the ServerName

directive) prepended to each line. (See mod 1log config for
more about customizing your log files.)

When you wish to split your log file into its component parts (one
file per virtual host) you can use the program split-logfileto
accomplish this. You'll find this program in the support directory
of the Apache distribution.

Run this program with the command:

split-logfile < /logs/multiple_vhost_log

This program, when run with the name of your vhost log file, will
generate one file for each virtual host that appears in your log file.
Each file will be called hostname. log.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.



http://www.apache.org/licenses/LICENSE-2.0

Modules | Directives | FAQ | Glossary | Sitemap



http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Issues Regarding DNS and Apache HTTP
Server

This page could be summarized with the statement: don't configure
Apache HTTP Server in such a way that it relies on DNS resolution
for parsing of the configuration files. If httpd requires DNS resolution
to parse the configuration files then your server may be subject to
reliability problems (ie. it might not start up), or denial and theft of
service attacks (including virtual hosts able to steal hits from other
virtual hosts).



# This is a misconfiguration example, do noi
<VirtualHost www.example.dom>
ServerAdmin webgirl@example.dom
DocumentRoot "/www/example"
</VirtualHost>

{ — >

In order for the server to function properly, it absolutely needs to
have two pieces of information about each virtual host: the
ServerName and at least one IP address that the server will bind
and respond to. The above example does not include the IP
address, so httpd must use DNS to find the address of

www . example.dom. If for some reason DNS is not available at
the time your server is parsing its config file, then this virtual host
will not be configured. It won't be able to respond to any hits to
this virtual host.

Suppose that www . example .dom has address 192.0.2.1. Then
consider this configuration snippet:

# This is a misconfiguration example, do noi
<VirtualHost 192.0.2.1>
ServerAdmin webgirl@example.dom
DocumentRoot "/www/example"
</VirtualHost>

(| — >

This time httpd needs to use reverse DNS to find the ServerName
for this virtualhost. If that reverse lookup fails then it will partially
disable the virtualhost. If the virtual host is name-based then it will
effectively be totally disabled, but if it is IP-based then it will mostly
work. However, if httpd should ever have to generate a full URL for
the server which includes the server name (such as when a
Redirect is issued), then it will fail to generate a valid URL.



Here is a snippet that avoids both of these problems:

<VirtualHost 192.0.2.1>
ServerName www.example.dom
ServerAdmin webgirl@example.dom
DocumentRoot "/www/example"
</VirtualHost>



-
Consider this configuration snippet:

<VirtualHost www.examplel.dom>
ServerAdmin webgirl@examplel.dom
DocumentRoot "/www/examplel"

</VirtualHost>

<VirtualHost www.example2.dom>
ServerAdmin webguy@example2.dom
DocumentRoot "/www/example2"

</VirtualHost>

Suppose that you've assigned 192.0.2.1 to www . examplel.dom
and 192.0.2.2 to www . example?2.dom. Furthermore, suppose that
examplel.dom has control of their own DNS. With this config you
have put examplel.dom into a position where they can steal all
traffic destined to example2.dom. To do so, all they have to do is
set www.examplel.domto 192.0.2.2. Since they control their
own DNS you can't stop them from pointing the

www . examplel.dom record wherever they wish.

Requests coming in to 192.0.2.2 (including all those where users
typed in URLs of the form
http://www.example2.dom/whatever) will all be served by
the examplel.dom virtual host. To better understand why this
happens requires a more in-depth discussion of how httpd
matches up incoming requests with the virtual host that will serve
it. A rough document describing this is available.



Name-based virtual host support requires httpd to know the IP
address(es) of the host that ht tpd is running on. To get this
address it uses either the global ServerName (if present) or calls
the C function gethostname (which should return the same as
typing "hostname" at the command prompt). Then it performs a
DNS lookup on this address. At present there is no way to avoid
this lookup.

If you fear that this lookup might fail because your DNS server is
down then you can insert the hostname in /etc/hosts (where
you probably already have it so that the machine can boot
properly). Then ensure that your machine is configured to use
/etc/hosts in the event that DNS fails. Depending on what OS
you are using this might be accomplished by editing
/etc/resolv.conf, or maybe /etc/nsswitch.conf.

If your server doesn't have to perform DNS for any other reason
then you might be able to get away with running httpd with the
HOSTRESORDER environment variable set to "local". This all
depends on what OS and resolver libraries you are using. It also
affects CGls unless you use mod env to control the environment.
It's best to consult the man pages or FAQs for your OS.



e use IP addresses in VirtualHost

e use IP addresses in Listen

e ensure all virtual hosts have an explicit ServerName

e create a<VirtualHost _default_:*> server that has no
pages to serve

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > SSL/TLS



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSL/TLS Strong Encryption: An Introduction

As an introduction this chapter is aimed at readers who are familiar
with the Web, HTTP, and Apache, but are not security experts. It is
not intended to be a definitive guide to the SSL protocol, nor does it
discuss specific techniques for managing certificates in an
organization, or the important legal issues of patents and import and
export restrictions. Rather, it is intended to provide a common
background to mod ss1 users by pulling together various concepts,
definitions, and examples as a starting point for further exploration.



Understanding SSL requires an understanding of cryptographic
algorithms, message digest functions (aka. one-way or hash
functions), and digital signatures. These techniques are the
subject of entire books (see for instance [AC96]) and provide the
basis for privacy, integrity, and authentication.

Cryptographic Algorithms

Suppose Alice wants to send a message to her bank to transfer
some money. Alice would like the message to be private, since it
will include information such as her account number and transfer
amount. One solution is to use a cryptographic algorithm, a
technique that would transform her message into an encrypted
form, unreadable until it is decrypted. Once in this form, the
message can only be decrypted by using a secret key. Without the
key the message is useless: good cryptographic algorithms make
it so difficult for intruders to decode the original text that it isn't
worth their effort.

There are two categories of cryptographic algorithms: conventional
and public key.

Conventional cryptography
also known as symmetric cryptography, requires the sender
and receiver to share a key: a secret piece of information that
may be used to encrypt or decrypt a message. As long as this
key is kept secret, nobody other than the sender or recipient
can read the message. If Alice and the bank know a secret
key, then they can send each other private messages. The
task of sharing a key between sender and recipient before
communicating, while also keeping it secret from others, can
be problematic.

Public key cryptography
also known as asymmetric cryptography, solves the key



exchange problem by defining an algorithm which uses two
keys, each of which may be used to encrypt a message. If
one key is used to encrypt a message then the other must be
used to decrypt it. This makes it possible to receive secure
messages by simply publishing one key (the public key) and
keeping the other secret (the private key).

Anyone can encrypt a message using the public key, but only the
owner of the private key will be able to read it. In this way, Alice
can send private messages to the owner of a key-pair (the bank),
by encrypting them using their public key. Only the bank will be
able to decrypt them.

Message Digests

Although Alice may encrypt her message to make it private, there
is still a concern that someone might modify her original message
or substitute it with a different one, in order to transfer the money
to themselves, for instance. One way of guaranteeing the integrity
of Alice's message is for her to create a concise summary of her
message and send this to the bank as well. Upon receipt of the
message, the bank creates its own summary and compares it with
the one Alice sent. If the summaries are the same then the
message has been received intact.

A summary such as this is called a message digest, one-way
function or hash function. Message digests are used to create a
short, fixed-length representation of a longer, variable-length
message. Digest algorithms are designed to produce a unique
digest for each message. Message digests are designed to make
it impractically difficult to determine the message from the digest
and (in theory) impossible to find two different messages which
create the same digest -- thus eliminating the possibility of
substituting one message for another while maintaining the same
digest.



Another challenge that Alice faces is finding a way to send the
digest to the bank securely; if the digest is not sent securely, its
integrity may be compromised and with it the possibility for the
bank to determine the integrity of the original message. Only if the
digest is sent securely can the integrity of the associated message
be determined.

One way to send the digest securely is to include it in a digital
signature.

Digital Sighatures

When Alice sends a message to the bank, the bank needs to
ensure that the message is really from her, so an intruder cannot
request a transaction involving her account. A digital signature,
created by Alice and included with the message, serves this
purpose.

Digital signatures are created by encrypting a digest of the
message and other information (such as a sequence number) with
the sender's private key. Though anyone can decrypt the signature
using the public key, only the sender knows the private key. This
means that only the sender can have signed the message.
Including the digest in the signhature means the signature is only
good for that message; it also ensures the integrity of the message
since no one can change the digest and still sign it.

To guard against interception and reuse of the signature by an
intruder at a later date, the signature contains a unique sequence
number. This protects the bank from a fraudulent claim from Alice
that she did not send the message -- only she could have signed it
(non-repudiation).



Although Alice could have sent a private message to the bank,
signed it and ensured the integrity of the message, she still needs
to be sure that she is really communicating with the bank. This
means that she needs to be sure that the public key she is using is
part of the bank's key-pair, and not an intruder's. Similarly, the
bank needs to verify that the message signature really was signed
by the private key that belongs to Alice.

If each party has a certificate which validates the other's identity,
confirms the public key and is signed by a trusted agency, then
both can be assured that they are communicating with whom they
think they are. Such a trusted agency is called a Certificate
Authority and certificates are used for authentication.

Certificate Contents

A certificate associates a public key with the real identity of an
individual, server, or other entity, known as the subject. As shown
in Table 1, information about the subject includes identifying
information (the distinguished name) and the public key. It also
includes the identification and signature of the Certificate Authority
that issued the certificate and the period of time during which the
certificate is valid. It may have additional information (or
extensions) as well as administrative information for the Certificate
Authority's use, such as a serial number.

Table 1: Certificate Information

Subject Distinguished Name, Public Key
Issuer Distinguished Name, Signature
Period of Validity Not Before Date, Not After Date
Administrative Version, Serial Number
Information

Extended Information Basic Constraints, Netscape Flags,



etc.

A distinguished name is used to provide an identity in a specific
context -- for instance, an individual might have a personal
certificate as well as one for their identity as an employee.
Distinguished names are defined by the X.509 standard [X509],
which defines the fields, field names and abbreviations used to

refer to the fields (see Table 2).

Table 2: Distinguished Name Information

DN Field Abbrev. Description
Common Name |CN Name being certified
Organization or | O Name is associated
Company with this

organization
Organizational OU Name is associated
Unit with this

organization unit, such
as a department

City/Locality L Name is located in this
City
State/Province |ST Name is located in this

State/Province

Country C Name is located in this
Country (1ISO code)

Example

CN=Joe
Average
O=Snake Qill,
Ltd.

OU=Research
Institute

L=Snake City
ST=Desert

C=XZ

A Certificate Authority may define a policy specifying which
distinguished field names are optional and which are required. It
may also place requirements upon the field contents, as may
users of certificates. For example, a Netscape browser requires
that the Common Name for a certificate representing a server
matches a wildcard pattern for the domain name of that server,



such as *.snakeoil.com.

The binary format of a certificate is defined using the ASN.1
notation [ASN1] [PKCS]. This notation defines how to specify the
contents and encoding rules define how this information is
translated into binary form. The binary encoding of the certificate is
defined using Distinguished Encoding Rules (DER), which are
based on the more general Basic Encoding Rules (BER). For
those transmissions which cannot handle binary, the binary form
may be translated into an ASCII form by using Base64 encoding
[MIME]. When placed between begin and end delimiter lines (as
below), this encoded version is called a PEM ("Privacy Enhanced
Mail") encoded certificate.

Example of a PEM-encoded certificate (snakeoil.crt)

MIIC7jCCAlegAwIBAgIBATANBgkqhkiGOwWOBAQQFADCBQTELMAKGALUEBhMCWFkx
FTATBgNVBAgTDFNuYWt1IER1c2VydDETMBEGA1UEBXMKU25ha2UgVG93bjEXMBUG
A1UEChMOU25ha2UgT21sLCBMdGQxHjAcCBgNVBASTFUN1cnRpZmljYXR1IIEF1dGhv
cmlOeTEVMBMGA1UEAXMMU25ha2UgT21sIENBMR4WHAY JKoZIhvcNAQKBFg9jYUBZz
bmFrzw9pbC5kb20wHhcNOTgXMDIXMDg10DM2WhcNOTkXMDIXMDg10DM2WjCBpzEL
MAKGA1UEBhMCWFkXFTATBgNVBAgTDFNuYWt1IER1c2VydDETMBEGA1UEBXMKU25h
a2UgVG93bjEXMBUGA1UEChMOU25ha2UgT21sLCBMdGQXxFzAVBgNVBASTD1d1YnN1
cnZlciBUZWFtMRkwFwYDVQQDEXxB3d3cuc25ha2VvaWwuZG9tMR8wWHQY JKoZIhvcN
AQkBFhB3d3dAc25ha2VvaWwuZG9tMIGTFMAGGCSqGSIb3DQEBAQUAA4GNADCBiQKB
gQDH9Ge/s2zcH+da+rPTx/DPRp3XxGjHZ4GG6pCmvADIEtBtKBFACZ64n+Dy7Np8b
VKR+yy5DGQiijsH1D/j8H1GE+q4TZ80Fk7BNBFazHxFbYI40KMiCxdKzdiflyfaa
1WoANF1Az1SdbxeGVHOTOK+gT5w3UXwZKv2DLbCTzLZyPwIDAQABOYYwWJIDAPBgNV
HRMECDAGAQH/AgEAMBEGCWCGSAGG+EIBAQQEAWIAQDANBgkghkiGOWOBAQQFAAOB
gQAZUIHAL4DO90E6LV2k56Gp380BDUILVWLg1vIKL8MQR+KFjghCrtpgaztzqeDt
2(02QoyulCgSzHbEGMiOEsdkPfg6mpOpenssIFePYNI+/8uUu9HT4LUKMIX15hxBam7
dUHzICxBVC11lnHyYGjDuAMhe3961YANn8bCld1l/L4NMGBCQ==

----- END CERTIFICATE-----

Certificate Authorities

By verifying the information in a certificate request before granting
the certificate, the Certificate Authority assures itself of the identity
of the private key owner of a key-pair. For instance, if Alice



requests a personal certificate, the Certificate Authority must first
make sure that Alice really is the person the certificate request
claims she is.

Certificate Chains

A Certificate Authority may also issue a certificate for another
Certificate Authority. When examining a certificate, Alice may need
to examine the certificate of the issuer, for each parent Certificate
Authority, until reaching one which she has confidence in. She
may decide to trust only certificates with a limited chain of issuers,
to reduce her risk of a "bad" certificate in the chain.

Creating a Root-Level CA

As noted earlier, each certificate requires an issuer to assert the
validity of the identity of the certificate subject, up to the top-level
Certificate Authority (CA). This presents a problem: who can
vouch for the certificate of the top-level authority, which has no
issuer? In this unique case, the certificate is "self-signed", so the
issuer of the certificate is the same as the subject. Browsers are
preconfigured to trust well-known certificate authorities, but it is
important to exercise extra care in trusting a self-signed certificate.
The wide publication of a public key by the root authority reduces
the risk in trusting this key -- it would be obvious if someone else
publicized a key claiming to be the authority.

A number of companies, such as Thawte and VeriSign have
established themselves as Certificate Authorities. These
companies provide the following services:

e Verifying certificate requests
e Processing certificate requests
¢ Issuing and managing certificates

It is also possible to create your own Certificate Authority.
Although risky in the Internet environment, it may be useful within


http://www.thawte.com/
http://www.verisign.com/

an Intranet where the organization can easily verify the identities
of individuals and servers.

Certificate Management

Establishing a Certificate Authority is a responsibility which
requires a solid administrative, technical and management
framework. Certificate Authorities not only issue certificates, they
also manage them -- that is, they determine for how long
certificates remain valid, they renew them and keep lists of
certificates that were issued in the past but are no longer valid
(Certificate Revocation Lists, or CRLS).

For example, if Alice is entitled to a certificate as an employee of a
company but has now left that company, her certificate may need
to be revoked. Because certificates are only issued after the
subject's identity has been verified and can then be passed
around to all those with whom the subject may communicate, it is
impossible to tell from the certificate alone that it has been
revoked. Therefore when examining certificates for validity it is
necessary to contact the issuing Certificate Authority to check
CRLs -- this is usually not an automated part of the process.

Note

If you use a Certificate Authority that browsers are not
configured to trust by default, it is necessary to load the
Certificate Authority certificate into the browser, enabling the
browser to validate server certificates signed by that Certificate
Authority. Doing so may be dangerous, since once loaded, the
browser will accept all certificates signed by that Certificate
Authority.



The Secure Sockets Layer protocol is a protocol layer which may
be placed between a reliable connection-oriented network layer
protocol (e.g. TCP/IP) and the application protocol layer (e.g.
HTTP). SSL provides for secure communication between client
and server by allowing mutual authentication, the use of digital
signatures for integrity and encryption for privacy.

The protocol is designed to support a range of choices for specific
algorithms used for cryptography, digests and signatures. This
allows algorithm selection for specific servers to be made based
on legal, export or other concerns and also enables the protocol to
take advantage of new algorithms. Choices are negotiated
between client and server when establishing a protocol session.

Table 4: Versions of the SSL protocol

Version |Source Description
SSL Vendor First SSL protocol for which
v2.0 Standard implementations exist
(from
Netscape
Corp.)
SSL Expired Revisions to prevent specific security
v3.0 Internet Draft |attacks, add non-RSA ciphers and
(from support for certificate chains
Netscape

Corp.) [SSL3]
TLS Proposed Revision of SSL 3.0 to update the MAC

v1.0 Internet layer to HMAC, add block padding for
Standard block ciphers, message order
(from IETF) | standardization and more alert
[TLS1] messages.

TLS Proposed Update of TLS 1.0 to add protection



vl.l Internet against Cipher block chaining (CBC)

Standard attacks.
(from IETF)
[TLS11]
TLS Proposed Update of TLS 1.1 deprecating MD5 as
v1.2 Internet hash, and adding incompatibility to SSL
Standard so it will never negotiate the use of
(from IETF) | SSLv2.
[TLS12]

There are a number of versions of the SSL protocol, as shown in
Table 4. As noted there, one of the benefits in SSL 3.0 is that it
adds support of certificate chain loading. This feature allows a
server to pass a server certificate along with issuer certificates to
the browser. Chain loading also permits the browser to validate the
server certificate, even if Certificate Authority certificates are not
installed for the intermediate issuers, since they are included in the
certificate chain. SSL 3.0 is the basis for the Transport Layer
Security [TLS] protocol standard, currently in development by the
Internet Engineering Task Force (IETF).

Establishing a Session

The SSL session is established by following a handshake
sequence between client and server, as shown in Figure 1. This
sequence may vary, depending on whether the server is
configured to provide a server certificate or request a client
certificate. Although cases exist where additional handshake steps
are required for management of cipher information, this article
summarizes one common scenario. See the SSL specification for
the full range of possibilities.

Note

Once an SSL session has been established, it may be reused.



This avoids the performance penalty of repeating the many
steps needed to start a session. To do this, the server assigns
each SSL session a unique session identifier which is cached in
the server and which the client can use in future connections to
reduce the handshake time (until the session identifier expires
from the cache of the server).

ClientHello - Estahlish protocol wersion, session id,
. Hells cipher suite, compression method
-t SRET Exchange random values
L Cetifieste |

Optionally send server cerificate
and request client cedificate

- Certificate Fecuest
k= ServerHelloDone

fos| Send client certificate respaonse if
Certificate Verifiy regquested
i

Change Ciphers pec

=
Finished -
_ Change CipherSuite and Finish
| hamge Ciphers pee Handshake
e Finished
Client SEIVEr

Figure 1: Simplified SSL Handshake Sequence

The elements of the handshake sequence, as used by the client
and server, are listed below:

1. Negotiate the Cipher Suite to be used during data transfer

2. Establish and share a session key between client and server
3.
4

. Optionally authenticate the client to the server

Optionally authenticate the server to the client

The first step, Cipher Suite Negotiation, allows the client and
server to choose a Cipher Suite supported by both of them. The
SSL3.0 protocol specification defines 31 Cipher Suites. A Cipher
Suite is defined by the following components:



e Key Exchange Method

e Cipher for Data Transfer

e Message Digest for creating the Message Authentication
Code (MAC)

These three elements are described in the sections that follow.

Key Exchange Method

The key exchange method defines how the shared secret
symmetric cryptography key used for application data transfer will
be agreed upon by client and server. SSL 2.0 uses RSA key
exchange only, while SSL 3.0 supports a choice of key exchange
algorithms including RSA key exchange (when certificates are
used), and Diffie-Hellman key exchange (for exchanging keys
without certificates, or without prior communication between client
and server).

One variable in the choice of key exchange methods is digital
signatures -- whether or not to use them, and if so, what kind of
signatures to use. Signing with a private key provides protection
against a man-in-the-middle-attack during the information
exchange used to generating the shared key [AC96, p516].

Cipher for Data Transfer

SSL uses conventional symmetric cryptography, as described
earlier, for encrypting messages in a session. There are nine
choices of how to encrypt, including the option not to encrypt:

e No encryption

e Stream Ciphers
= RC4 with 40-bit keys
= RC4 with 128-bit keys

e CBC Block Ciphers



m RC2 with 40 bit key

= DES with 40 bit key

» DES with 56 bit key

= Triple-DES with 168 bit key
= |dea (128 bit key)

= Fortezza (96 bit key)

"CBC" refers to Cipher Block Chaining, which means that a portion
of the previously encrypted cipher text is used in the encryption of
the current block. "DES" refers to the Data Encryption Standard
[AC96, ch12], which has a number of variants (including DES40
and 3DES_EDE). "Idea" is currently one of the best and
cryptographically strongest algorithms available, and "RC2" is a
proprietary algorithm from RSA DSI [AC96, ch13].

Digest Function

The choice of digest function determines how a digest is created
from a record unit. SSL supports the following:

¢ No digest (Null choice)
e MD5, a 128-bit hash
e Secure Hash Algorithm (SHA-1), a 160-bit hash

The message digest is used to create a Message Authentication
Code (MAC) which is encrypted with the message to verify
integrity and to protect against replay attacks.

Handshake Sequence Protocol

The handshake sequence uses three protocols:

e The SSL Handshake Protocol for performing the client and
server SSL session establishment.

e The SSL Change Cipher Spec Protocol for actually
establishing agreement on the Cipher Suite for the session.



e The SSL Alert Protocol for conveying SSL error messages
between client and server.

These protocols, as well as application protocol data, are
encapsulated in the SSL Record Protocol, as shown in Eigure 2.
An encapsulated protocol is transferred as data by the lower layer
protocol, which does not examine the data. The encapsulated
protocol has no knowledge of the underlying protocol.

SEL
Handshake
Protocal

SEL Change | S5L Alert

Cipher Spec | Protocol U Teinet ket

a5l Record Protocol

TCF

P

Figure 2: SSL Protocol Stack

The encapsulation of SSL control protocols by the record protocol
means that if an active session is renegotiated the control
protocols will be transmitted securely. If there was no previous
session, the Null cipher suite is used, which means there will be
no encryption and messages will have no integrity digests, until
the session has been established.

Data Transfer

The SSL Record Protocol, shown in Figure 3, is used to transfer
application and SSL Control data between the client and server,
where necessary fragmenting this data into smaller units, or
combining multiple higher level protocol data messages into single
units. It may compress, attach digest signatures, and encrypt
these units before transmitting them using the underlying reliable
transport protocol (Note: currently, no major SSL implementations



include support for compression).

Application Data | ahodefghi

Fragment/Cambine

Record ProtocolUnits | abc | [ def || ghi |

Compress

Compressed Unit

MAC Encrypt
Encrypted
Transmit
¥
TCP Packet l HH ':":':"::."::."::."::."::."::."::."::."::."::.:':|

Figure 3: SSL Record Protocol
Securing HTTP Communication

One common use of SSL is to secure Web HTTP communication
between a browser and a webserver. This does not preclude the
use of non-secured HTTP - the secure version (called HTTPS) is
the same as plain HTTP over SSL, but uses the URL scheme
https rather than http, and a different server port (by default,
port 443). This functionality is a large part of what mod ss1
provides for the Apache webserver.



[AC96]
Bruce Schneier, “Applied Cryptography”, 2nd Edition, Wiley,
1996. See http://www.counterpane.com/ for various other
materials by Bruce Schneier.

[ASN1]
ITU-T Recommendation X.208, “Specification of Abstract
Syntax Notation One (ASN.1)”, last updated 2008. See
http://www.itu.int/ITU-T/asn1/.

[X509]
ITU-T Recommendation X.509, “The Directory -
Authentication Framework”. For references, see
http://en.wikipedia.org/wiki/X.509.

[PKCS]
“Public Key Cryptography Standards (PKCS)”, RSA
Laboratories Technical Notes, See
http://www.rsasecurity.com/rsalabs/pkcs/.

[MIME]
N. Freed, N. Borenstein, “Multipurpose Internet Mail
Extensions (MIME) Part One: Format of Internet Message
Bodies”, RFC2045. See for instance
http://tools.ietf.org/html/rfc2045.

[SSL3]
Alan O. Freier, Philip Karlton, Paul C. Kocher, “The SSL
Protocol Version 3.0”7, 1996. See
http://www.netscape.com/eng/ss|3/draft302.txt.

[TLS1]
Tim Dierks, Christopher Allen, “The TLS Protocol Version
1.0”, 1999. See http://ietf.org/rfc/rfc2246.txt.

[TLS11]
“The TLS Protocol Version 1.1”, 2006. See



http://www.counterpane.com/
http://www.itu.int/ITU-T/asn1/
http://en.wikipedia.org/wiki/X.509
http://www.rsasecurity.com/rsalabs/pkcs/
http://tools.ietf.org/html/rfc2045
http://www.netscape.com/eng/ssl3/draft302.txt
http://ietf.org/rfc/rfc2246.txt

http://tools.ietf.org/html/rfc4346.

[TLS12]
“The TLS Protocol Version 1.2”, 2008. See
http://tools.ietf.org/html/rfc5246.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://tools.ietf.org/html/rfc4346
http://tools.ietf.org/html/rfc5246
http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > SSL/TLS



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSLI/TLS Strong Encryption: Compatibility

This page covers backwards compatibility between mod_ssl and other
SSL solutions. mod_ssl is not the only SSL solution for Apache; four
additional products are (or were) also available: Ben Laurie's freely
available Apache-SSL (from where mod_ssl were originally derived in
1998), Red Hat's commercial Secure Web Server (which was based
on mod_ssl), Covalent's commercial Raven SSL Module (also based
on mod_ssl) and finally C2Net's (now Red Hat's) commercial product
Stronghold (based on a different evolution branch, named Sioux up to
Stronghold 2.x, and based on mod_ssl since Stronghold 3.x).

mod_ssl| mostly provides a superset of the functionality of all the other
solutions, so it's simple to migrate from one of the older modules to
mod_ssl. The configuration directives and environment variable
names used by the older SSL solutions vary from those used in
mod_ssl; mapping tables are included here to give the equivalents
used by mod_ssl.


http://www.apache-ssl.org/
http://www.redhat.com/explore/stronghold/

The mapping between configuration directives used by Apache-
SSL 1.x and mod_ssl 2.0.x is given in Table 1. The mapping from
Sioux 1.x and Stronghold 2.x is only partial because of special
functionality in these interfaces which mod_ssl doesn't provide.

Table 1: Configuration Directive Mapping

Old Directive mod_ssl Directive
Apache-SSL 1.x & mod_ssl 2.0.x compatibility:
SSLEnable SSLEngine on
SSLDisable SSLEngine off

SSLLogFile file

SSLRequiredCiphers spec SSLCipherSuite spec
SSLRequireCipher ci ... SSLRequire %{SSL_CIPH
{"e1", ...}
SSLBanCipher c1 ... SSLRequire not (%{SSL
in {"c1", ...})
SSLFakeBasicAuth SSLOptions +FakeBasic

SSLCacheServerPath dir -

SSLCacheServerPort integer -

Apache-SSL 1.x compatibility:
SSLExportClientCertificates SSLOptions +ExportCer
SSLCacheServerRunDir dir -

Sioux 1.x compatibility:

SSL_CertFile file SSLCertificateFile file
SSL_KeyFile file SSLCertificateKeyFile
SSL_CipherSuite arg SSLCipherSuite arg



SSL_X509VerifyDir arg
SSL_Log file

SSL_Connect flag
SSL_ClientAuth arg
SSL_X509VerifyDepth arg
SSL_FetchKeyPhraseFrom arg

SSL_SessionDir dir

SSL_Require expr
SSL_CertFileType arg
SSL_KeyFileType arg
SSL_X509VerifyPolicy arg
SSL_LogX509Attributes arg

Stronghold 2.x compatibility:

StrongholdAccelerator engine

StrongholdKey dir
StrongholdLicenseFile dir

SSLFlag flag
SSLSessionLockFile file

SSLCACertificatePathe

SSLEngine flag
SSLVerifyClient arg
SSLVerifyDepth arg

SSLCryptoDevice engine

SSLEngine flag
SSLMutex file



SSLCipherList spec
RequireSSL

SSLErrorFile file

SSLRoot dir
SSL_CertificatelLogDir dir
AuthCertDir dir

SSL_Group name
SSLProxyMachineCertPath dir
SSLProxyMachineCertFile file

SSLProxyCipherList spec

SSLCipherSuite spec
SSLRequireSSL

SSLProxyMachineCertif
dir
SSLProxyMachineCertif
file
SSLProxyCipherSpec spe



The mapping between environment variable names used by the
older SSL solutions and the names used by mod_ssl is given in
Table 2.

Table 2: Environment Variable Derivation

Old Variable mod_ssl Variable
SSL_PROTOCOL_VERSION SSL_PROTOCOL
SSLEAY_VERSION SSL_VERSION_LIBRAR
HTTPS_SECRETKEYSIZE SSL_CIPHER_USEKEYS
HTTPS_KEYSIZE SSL_CIPHER_ALGKEYS
HTTPS_CIPHER SSL_CIPHER
HTTPS_EXPORT SSL_CIPHER_EXPORT
SSL_SERVER_KEY_SIZE SSL_CIPHER_ALGKEYS
SSL_SERVER_CERTIFICATE SSL_SERVER_CERT
SSL_SERVER_CERT_START SSL_SERVER_V_START
SSL_SERVER_CERT_END SSL_SERVER_V_END
SSL_SERVER_CERT_SERIAL SSL_SERVER_M_SERIA
SSL_SERVER_SIGNATURE_ALGORITHM SSL_SERVER_A_SIG
SSL_SERVER_DN SSL_SERVER_S_DN
SSL_SERVER_CN SSL_SERVER_S_DN_CN
SSL_SERVER_EMAIL SSL_SERVER_S_DN_Em
SSL_SERVER_O SSL_SERVER_S_DN_O
SSL_SERVER_OU SSL_SERVER_S_DN_OU
SSL_SERVER_C SSL_SERVER_S_DN_C
SSL_SERVER_SP SSL_SERVER_S_DN_SP
SSL_SERVER_L SSL_SERVER_S_DN_L
SSL_SERVER_IDN SSL_SERVER_I_DN
SSL_SERVER_ICN SSL_SERVER_I_DN_CN

SSL_SERVER_IEMAIL SSL_SERVER_I_DN_Em



SSL_SERVER_IO
SSL_SERVER_IOU
SSL_SERVER_IC
SSL_SERVER_ISP
SSL_SERVER_IL

SSL_CLIENT_CERTIFICATE
SSL_CLIENT_CERT_START

SSL_CLIENT_CERT_END

SSL_CLIENT_CERT_SERIAL
SSL_CLIENT_SIGNATURE_ALGORITHM

SSL_CLIENT_DN
SSL_CLIENT_CN
SSL_CLIENT_EMAIL
SSL_CLIENT_O
SSL_CLIENT_OU
SSL_CLIENT_C
SSL_CLIENT_SP
SSL_CLIENT_L
SSL_CLIENT_IDN
SSL_CLIENT_ICN
SSL_CLIENT_IEMAIL
SSL_CLIENT_IO
SSL_CLIENT_IOU
SSL_CLIENT_IC
SSL_CLIENT_ISP
SSL_CLIENT_IL
SSL_EXPORT
SSL_KEYSIZE
SSL_SECKEYSIZE
SSL_SSLEAY_VERSION

SSL_SERVER_I_DN_O
SSL_SERVER_I_DN_OU
SSL_SERVER_I_DN_C
SSL_SERVER_I_DN_SP
SSL_SERVER_I_DN_L
SSL_CLIENT_CERT
SSL_CLIENT_V_START
SSL_CLIENT_V_END
SSL_CLIENT_M_SERIA
SSL_CLIENT_A_SIG
SSL_CLIENT_S_DN
SSL_CLIENT_S_DN_CN
SSL_CLIENT_S_DN_Em
SSL_CLIENT_S_DN_O
SSL_CLIENT_S_DN_OU
SSL_CLIENT_S_DN_C
SSL_CLIENT_S_DN_SP
SSL_CLIENT_S_DN_L
SSL_CLIENT_I_DN
SSL_CLIENT_I_DN_CN
SSL_CLIENT_I_DN_Em
SSL_CLIENT_I_DN_O
SSL_CLIENT_I_DN_OU
SSL_CLIENT_I_DN_C
SSL_CLIENT_I_DN_SP
SSL_CLIENT_I_DN_L
SSL_CIPHER_EXPORT
SSL_CIPHER_ALGKEYS
SSL_CIPHER_USEKEYS
SSL_VERSION_LIBRAR



SSL_STRONG_CRYPTO

SSL_SERVER_KEY_EXP

SSL_SERVER_KEY_ALGORITHM

SSL_SERVER_KEY_SIZE

SSL_SERVER_SESSIONDIR

SSL_SERVER_CERTIFICATELOGDIR

SSL_SERVER_CERTFILE

SSL_SERVER_KEYFILE

SSL_SERVER_KEYFILETYPE



SSL_CLIENT_KEY_EXP

SSL_CLIENT_KEY_ALGORITHM

SSL_CLIENT_KEY_SIZE



- 9 |
When mod_ssl is enabled, additional functions exist for the
Custom Log Format of mod 1og config as documented in the
Reference Chapter. Beside the ~%{varname}x" eXtension format
function which can be used to expand any variables provided by
any module, an additional Cryptography ~%{name}c"
cryptography format function exists for backward compatibility. The
currently implemented function calls are listed in Table 3.

Table 3: Custom Log Cryptography Function

Function Call Description
%...{version}c SSL protocol version
%...{cipher}c  SSL cipher

%. .. Client Certificate Subject Distinguished

{subjectdn}c Name

%...{issuerdn}c Client Certificate Issuer Distinguished
Name

%...{errcode}c Certificate Verification Error (numerical)
%...{errstr}c Certificate Verification Error (string)

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > SSL/TLS



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSLI/TLS Strong Encryption: How-To

This document is intended to get you started, and get a few things
working. You are strongly encouraged to read the rest of the SSL
documentation, and arrive at a deeper understanding of the material,
before progressing to the advanced techniques.



Your SSL configuration will need to contain, at minimum, the
following directives.

LoadModule ssl module modules/mod_ssl.so

Listen 443
<VirtualHost *:443>
ServerName www.example.com
SSLEngine on
SSLCertificateFile "/path/to/www.example
SSLCertificateKeyFile "/path/to/www.exalr
</VirtualHost>

j S o




* How can | create an SSL server which accepts strong
encryption only?

* How can | create an SSL server which accepts all types of
ciphers in general, but requires a strong cipher for access to a
particular URL?

How can | create an SSL server which accepts strong
encryption only?

The following enables only the strongest ciphers:

SSLCipherSuite HIGH: !aNULL: !MD5

While with the following configuration you specify a preference for
specific speed-optimized ciphers (which will be selected by
mod_ssl, provided that they are supported by the client):

SSLCipherSuite RC4-SHA:AES128-SHA:HIGH: 'aNUI
SSLHonorCipherOrder on

j S— 2

How can | create an SSL server which accepts all
types of ciphers in general, but requires a strong
ciphers for access to a particular URL?

Obviously, a server-wide SSLCipherSuite which restricts
ciphers to the strong variants, isn't the answer here. However,
mod ss1 can be reconfigured within Location blocks, to give a
per-directory solution, and can automatically force a renegotiation
of the SSL parameters to meet the new configuration. This can be
done as follows:

# be liberal in general



SSLCipherSuite ALL:'!'aNULL:RC4+RSA:+HIGH :+MEI

<Location "/strong/area">

# but https://hostname/strong/area/ and bel«
# requires strong ciphers

SSLCipherSuite HIGH: !aNULL: !MD5

</Location>

{ — >




The Online Certificate Status Protocol (OCSP) is a mechanism for
determining whether or not a server certificate has been revoked,
and OCSP Stapling is a special form of this in which the server,
such as httpd and mod_ssl, maintains current OCSP responses
for its certificates and sends them to clients which communicate
with the server. Most certificates contain the address of an OCSP
responder maintained by the issuing Certificate Authority, and
mod_ssl can communicate with that responder to obtain a signed
response that can be sent to clients communicating with the
server.

Because the client can obtain the certificate revocation status from
the server, without requiring an extra connection from the client to
the Certificate Authority, OCSP Stapling is the preferred way for
the revocation status to be obtained. Other benefits of eliminating
the communication between clients and the Certificate Authority
are that the client browsing history is not exposed to the Certificate
Authority and obtaining status is more reliable by not depending
on potentially heavily loaded Certificate Authority servers.

Because the response obtained by the server can be reused for all
clients using the same certificate during the time that the response
is valid, the overhead for the server is minimal.

Once general SSL support has been configured properly, enabling
OCSP Stapling generally requires only very minor modifications to
the httpd configuration — the addition of these two directives:

SSLUseStapling On
SSLStaplingCache "shmcb:logs/ssl_stapling(3:

(| S— >

These directives are placed at global scope (i.e., not within a
virtual host definition) wherever other global SSL configuration



directives are placed, such as in conf/extra/httpd-ssl.conf
for normal open source builds of httpd, /etc/apache2/mods-
enabled/ssl.conf for the Ubuntu or Debian-bundled httpd, etc.

The path on the SSLStaplingCache directive (e.g., 1ogs/)
should match the one on the SSLSessionCache directive. This
path is relative to ServerRoot.

This particular SSLStaplingCache directive requires
mod _socache shmcb (from the shmcb prefix on the directive's

argument). This module is usually enabled already for
SSLSessionCache or on behalf of some module other than

mod_ssl. If you enabled an SSL session cache using a
mechanism other than mod socache shmcb, use that alternative
mechanism for SSLStaplingCache as well. For example:

SSLSessionCache "dbm:logs/ssl_scache"
SSLStaplingCache "dbm:logs/ssl _stapling"

You can use the openssl command-line program to verify that an
OCSP response is sent by your server:

$ openssl s_client -connect www.example.com:443 -

OCSP response:

OCSP Response Data:
OCSP Response Status: successful (0x0)
Response Type: Basic OCSP Response

Cert Status: Good

The following sections highlight the most common situations which
require further modification to the configuration. Refer also to the



mod ssl reference manual.

If more than a few SSL certificates are used for the
server

OCSP responses are stored in the SSL stapling cache. While the
responses are typically a few hundred to a few thousand bytes in
size, mod_ssl supports OCSP responses up to around 10K bytes
in size. With more than a few certificates, the stapling cache size
(32768 bytes in the example above) may need to be increased.
Error message AH01929 will be logged in case of an error storing
a response.

If the certificate does not point to an OCSP
responder, or if a different address must be used

Refer to the SSLStaplingForceURL directive.

You can confirm that a server certificate points to an OCSP
responder using the openssl command-line program, as follows:

$ openssl x509 -in ./www.example.com.crt -text |
OCSP - URI:http://ocsp.example.com

If the OCSP URI is provided and the web server can communicate
to it directly without using a proxy, no configuration is required.
Note that firewall rules that control outbound connections from the
web server may need to be adjusted.

If no OCSP URI is provided, contact your Certificate Authority to
determine if one is available; if so, configure it with
SSLStaplingForceURL in the virtual host that uses the
certificate.

If multiple SSL-enabled virtual hosts are configured
and OCSP Stapling should be disabled for some



Add SSLUseStapling Off to the virtual hosts for which OCSP
Stapling should be disabled.

If the OCSP responder is slow or unreliable

Several directives are available to handle timeouts and errors.
Refer to the documentation for the
SSLStaplingFakeTrylater,
SSLStaplingResponderTimeout, and
SSLStaplingReturnResponderErrors directives.

If mod_ssl logs error AH02217
AH02217: ssl_stapling_init_cert: Can't retrieve 1

In order to support OCSP Stapling when a particular server
certificate is used, the certificate chain for that certificate must be
configured. If it was not configured as part of enabling SSL, the
AHO02217 error will be issued when stapling is enabled, and an
OCSP response will not be provided for clients using the
certificate.

Refer to the SSLCertificateChainFile and
SSLCertificateFile for instructions for configuring the
certificate chain.




* How can | force clients to authenticate using certificates?

e How can | force clients to authenticate using certificates for a
particular URL, but still allow arbitrary clients to access the
rest of the server?

* How can | allow only clients who have certificates to access a
particular URL, but allow all clients to access the rest of the
server?

e How can | require HTTPS with strong ciphers, and either
basic authentication or client certificates, for access to part of
the Intranet website, for clients coming from the Internet?

How can | force clients to authenticate using
certificates?

When you know all of your users (eg, as is often the case on a
corporate Intranet), you can require plain certificate authentication.
All you need to do is to create client certificates signed by your
own CA certificate (ca.crt) and then verify the clients against

this certificate.

# require a client certificate which has to
# signed by our CA certificate in ca.crt
SSLVerifyClient require

SSLVerifyDepth 1

SSLCACertificateFile '"conf/ssl.crt/ca.crt"

Al S— >

How can | force clients to authenticate using
certificates for a particular URL, but still allow
arbitrary clients to access the rest of the server?

To force clients to authenticate using certificates for a particular
URL, you can use the per-directory reconfiguration features of
mod ssl:



SSLVerifyClient none
SSLCACertificateFile '"conf/ssl.crt/ca.crt"

<Location "/secure/area'>
SSLVerifyClient require
SSLVerifyDepth 1
</Location>

How can | allow only clients who have certificates to
access a particular URL, but allow all clients to
access the rest of the server?

The key to doing this is checking that part of the client certificate
matches what you expect. Usually this means checking all or part
of the Distinguished Name (DN), to see if it contains some known
string. There are two ways to do this, using either

mod auth basic or SSLRequire.

The mod auth basic method is generally required when the
certificates are completely arbitrary, or when their DNs have no
common fields (usually the organisation, etc.). In this case, you
should establish a password database containing all clients
allowed, as follows:

SSLVerifyClient none
SSLCACertificateFile '"conf/ssl.crt/ca.crt"
SSLCACertificatePath '"conf/ssl.crt"

<Directory "/usr/local/apache2/htdocs/securt

SSLVerifyClient require
SSLVerifyDepth 5

SSLOptions +FakeBasicAuth
SSLRequireSSL

AuthName "Snake 0il Authent:

AuthType Basic



AuthBasicProvider file

AuthUserFile "/usr/local/apache:
Require valid-user
</Directory>
« 1 2

The password used in this example is the DES encrypted string
"password". See the SSLOptions docs for more information.

httpd.passwd

/C=DE/L=Munich/0=Snake 0il, Ltd./OU=Staff/CN=Fo00:xx]j31ZMTZzkVA
/C=US/L=S.F./0=Snake 0il, Ltd./0OU=CA/CN=Bar :xxj31ZMTZzkVA
/C=US/L=L.A./0=Snake 0il, Ltd./0U=Dev/CN=Quux:xX]j31ZMTZzkVA

When your clients are all part of a common hierarchy, which is
encoded into the DN, you can match them more easily using
SSLRequire, as follows:

SSLVerifyClient none
SSLCACertificateFile '"conf/ssl.crt/ca.crt"
SSLCACertificatePath '"conf/ssl.crt"

<Directory "/usr/local/apache2/htdocs/securt

SSLVerifyClient require
SSLVerifyDepth 5
SSLOptions +FakeBasicAuth
SSLRequireSSL
SSLRequire %{SSL_CLIENT_S_DN_O} eq
and %{SSL_CLIENT_S_DN_OU} in
</Directory>
< — 1] i

How can | require HTTPS with strong ciphers, and
either basic authentication or client certificates, for
access to part of the Intranet website, for clients



coming from the Internet? | still want to allow plain
HTTP access for clients on the Intranet.

These examples presume that clients on the Intranet have IPs in
the range 192.168.1.0/24, and that the part of the Intranet website
you want to allow internet access to is
/usr/local/apache2/htdocs/subarea. This configuration
should remain outside of your HTTPS virtual host, so that it
applies to both HTTPS and HTTP.

SSLCACertificateFile "conf/ssl.crt/company -«

<Directory "/usr/local/apache2/htdocs">
# Outside the subarea only Intranet a
Require ip 192.168.1.0/24
</Directory>

<Directory "/usr/local/apache2/htdocs/subart
# Inside the subarea any Intranet acc
# but from the Internet only HTTPS + !
# or the alternative HTTPS + Strong-C:

# If HTTPS is used, make sure a strong
# Additionally allow client certs as :

SSLVerifyClient optional
SSLVerifyDepth 1

SSLOptions +FakeBasicAuth +St
SSLRequire %{SSL_CIPHER_USEKE"
# Force clients from the Internet to |
RewriteEngine on

RewriteCond "%{REMOTE_ADDR}" "
RewriteCond "%{HTTPS}" "!=o0on"
RewriteRule R

# Allow Network Access and/or Basic Al
Satisfy any



# Network Access Control

Require

ip 192.168.1.0/24

# HTTP Basic Authentication

AuthType

AuthName

AuthBasicProvider

AuthUserFile

Require
</Directory>

J

basic

"Protected Intranet
file
"conf/protected. pa:
valid-user

] 2




mod_ss1 can log extremely verbose debugging information to the
error log, when its LogLevel is set to the higher trace levels. On
the other hand, on a very busy server, level info may already be
too much. Remember that you can configure the LogLevel per
module to suite your needs.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

A PAC H E Modules | Directives | FAQ | Glossary | Sitemap
a HTTP SERVER PROJECApache HTTP Server Version 2.4

Apache > HTTP Server > Documentation > Version 2.4 > SSL/TLS



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

SSLI/TLS Strong Encryption: FAQ

The wise man doesn't give the right answers, he poses the right
questions.
-- Claude Levi-Strauss




* Why do | get permission errors related to SSLMutex when |
start Apache?

* Why does mod_ssl stop with the error "Failed to generate
temporary 512 bit RSA private key" when | start Apache?

Why do | get permission errors related to SSLMutex
when | start Apache?

Errors such as "mod_ssl: Child could not open
SSLMutex lockfile
/opt/apache/logs/ssl_mutex.18332 (System error
follows) [...] System: Permission denied (errno:
13)" are usually caused by overly restrictive permissions on the
parent directories. Make sure that all parent directories (here
/opt, /opt/apache and /opt/apache/logs) have the x-bit
set for, at minimum, the UID under which Apache's children are
running (see the User directive).

Why does mod_ssl stop with the error "Failed to
generate temporary 512 bit RSA private key" when |
start Apache?

Cryptographic software needs a source of unpredictable data to
work correctly. Many open source operating systems provide a
"randomness device" that serves this purpose (usually named
/dev/random). On other systems, applications have to seed the
OpenSSL Pseudo Random Number Generator (PRNG) manually
with appropriate data before generating keys or performing public
key encryption. As of version 0.9.5, the OpenSSL functions that
need randomness report an error if the PRNG has not been
seeded with at least 128 bits of randomness.

To prevent this error, mod ss1 has to provide enough entropy to
the PRNG to allow it to work correctly. This can be done via the



SSLRandomSeed directive.




e |s it possible to provide HTTP and HTTPS from the same
server?

e Which port does HTTPS use?

e How do | speak HTTPS manually for testing purposes?

* Why does the connection hang when | connect to my SSL-
aware Apache server?

* Why do | get ""Connection Refused" errors, when trying to
access my newly installed Apache+mod_ssl server via
HTTPS?

e Why are the SSL XXX variables not available to my CGIl &
SSI scripts?

e How can | switch between HTTP and HTTPS in relative

hyperlinks?

Is it possible to provide HTTP and HTTPS from the
same server?

Yes. HTTP and HTTPS use different server ports (HTTP binds to
port 80, HTTPS to port 443), so there is no direct conflict between
them. You can either run two separate server instances bound to
these ports, or use Apache's elegant virtual hosting facility to
create two virtual servers, both served by the same instance of
Apache - one responding over HTTP to requests on port 80, and
the other responding over HTTPS to requests on port 443.

Which port does HTTPS use?

You can run HTTPS on any port, but the standards specify port
443, which is where any HTTPS compliant browser will look by
default. You can force your browser to look on a different port by
specifying it in the URL. For example, if your server is set up to
serve pages over HTTPS on port 8080, you can access them at
https://example.com: 8080/



How do | speak HTTPS manually for testing
purposes?

While you usually just use

$ telnet localhost 80
GET / HTTP/1.0

for simple testing of Apache via HTTP, it's not so easy for HTTPS
because of the SSL protocol between TCP and HTTP. With the
help of OpenSSL's s_client command, however, you can do a
similar check via HTTPS:

$ openssl s_client -connect localhost:443 -state -debug
GET / HTTP/1.0

Before the actual HTTP response you will receive detailed
information about the SSL handshake. For a more general
command line client which directly understands both HTTP and
HTTPS, can perform GET and POST operations, can use a proxy,
supports byte ranges, etc. you should have a look at the nifty
cURL tool. Using this, you can check that Apache is responding
correctly to requests via HTTP and HTTPS as follows:

$ curl http://localhost/
$ curl https://localhost/

Why does the connection hang when | connect to my
SSL-aware Apache server?

This can happen when you try to connect to a HTTPS server (or
virtual server) via HTTP (eg, using http://example.com/
instead of https://example.com). It can also happen when

trying to connect via HTTPS to a HTTP server (eg, using
https://example.com/ on a server which doesn't support

HTTPS, or which supports it on a non-standard port). Make sure


http://curl.haxx.se/

that you're connecting to a (virtual) server that supports SSL.

Why do | get "Connection Refused" messages, when
trying to access my newly installed Apache+mod_ssl
server via HTTPS?

This error can be caused by an incorrect configuration. Please
make sure that your Listen directives match your

<VirtualHost> directives. If all else fails, please start afresh,
using the default configuration provided by mod ssl.

Why are the SSL_XXX variables not available to my
CGIl & SSI scripts?

Please make sure you have "SSLOptions +StdEnvVvars"
enabled for the context of your CGI/SSI requests.

How can | switch between HTTP and HTTPS in
relative hyperlinks?

Usually, to switch between HTTP and HTTPS, you have to use
fully-qualified hyperlinks (because you have to change the URL
scheme). Using mod rewrite however, you can manipulate
relative hyperlinks, to achieve the same effect.

RewriteEngine on

RewriteRule "A/(.*)_SSL$" "https://%{SEl
RewriteRule "A/(.*)_NOSSL$" "http://%{SER
< — 1 ]

This rewrite ruleset lets you use hyperlinks of the form <a
href="document.html_SSL">, to switch to HTTPS in a relative
link. (Replace SSL with NOSSL to switch to HTTP.)



e What are RSA Private Keys, CSRs and Certificates?

¢ |s there a difference on startup between a non-SSL-aware
Apache and an SSL-aware Apache?

e How do | create a self-signed SSL Certificate for testing
purposes?

e How do | create a real SSL Certificate?

* How do | create and use my own Certificate Authority (CA)?

e How can | change the pass-phrase on my private key file?

* How can | get rid of the pass-phrase dialog at Apache startup
time?

e How do | verify that a private key matches its Certificate?

e How can | convert a certificate from PEM to DER format?

e Why do browsers complain that they cannot verify my server
certificate?

What are RSA Private Keys, CSRs and Certificates?

An RSA private key file is a digital file that you can use to decrypt
messages sent to you. It has a public component which you
distribute (via your Certificate file) which allows people to encrypt
those messages to you.

A Certificate Signing Request (CSR) is a digital file which contains
your public key and your name. You send the CSR to a Certifying
Authority (CA), who will convert it into a real Certificate, by signing
it.

A Certificate contains your RSA public key, your name, the name
of the CA, and is digitally signed by the CA. Browsers that know
the CA can verify the signature on that Certificate, thereby
obtaining your RSA public key. That enables them to send
messages which only you can decrypt.

See the Introduction chapter for a general description of the SSL



protocol.

Is there a difference on startup between a hon-SSL-
aware Apache and an SSL-aware Apache?

Yes. In general, starting Apache with mod ss1 built-in is just like
starting Apache without it. However, if you have a passphrase on
your SSL private key file, a startup dialog will pop up which asks
you to enter the pass phrase.

Having to manually enter the passphrase when starting the server
can be problematic - for example, when starting the server from
the system boot scripts. In this case, you can follow the steps
below to remove the passphrase from your private key. Bear in
mind that doing so brings additional security risks - proceed with
caution!

How do | create a self-sighed SSL Certificate for
testing purposes?

1. Make sure OpenSSL is installed and in your PATH.

2. Run the following command, to create server .key and

server.crt files:

$ openssl req -new -x509 -nodes -out
server.crt -keyout server.key

These can be used as follows in your httpd.conf file:

SSLCertificateFile "/path/to/this/ser
SSLCertificateKeyFile "/path/to/this/ser
J — 1 i

3. Itis important that you are aware that this server . key does
not have any passphrase. To add a passphrase to the key,



you should run the following command, and enter & verify the
passphrase as requested.

$ openssl rsa -des3 -in server.key -out
server.key.new

$ mv server.key.new server.key

Please backup the server . key file, and the passphrase you
entered, in a secure location.

How do | create a real SSL Certificate?

Here is a step-by-step description:

1. Make sure OpenSSL is installed and in your PATH.

2. Create a RSA private key for your Apache server (will be
Triple-DES encrypted and PEM formatted):

$ openssl genrsa -des3 -out server.key 2048
Please backup this server . key file and the pass-phrase you
entered in a secure location. You can see the details of this

RSA private key by using the command:

$ openssl rsa -noout -text -in server.key

If necessary, you can also create a decrypted PEM version
(not recommended) of this RSA private key with:

$ openssl rsa -in server.key -out
server.key.unsecure

3. Create a Certificate Signing Request (CSR) with the server
RSA private key (output will be PEM formatted):



$ openssl req -new -key server.key -out
server.csr

Make sure you enter the FQDN ("Fully Qualified Domain
Name") of the server when OpenSSL prompts you for the
"CommonName", i.e. when you generate a CSR for a website
which will be later accessed via https://www.foo.dom/,
enter "www.foo.dom" here. You can see the details of this
CSR by using

$ openssl req -noout -text -in server.csr

. You now have to send this Certificate Signing Request (CSR)
to a Certifying Authority (CA) to be signed. Once the CSR has
been signed, you will have a real Certificate, which can be
used by Apache. You can have a CSR signed by a
commercial CA, or you can create your own CA to sign it.
Commercial CAs usually ask you to post the CSR into a web
form, pay for the signing, and then send a signed Certificate,
which you can store in a server.crt file.

For details on how to create your own CA, and use this to sign
a CSR, see below.

Once your CSR has been signed, you can see the details of
the Certificate as follows:

$ openssl x509 -noout -text -in server.crt

. You should now have two files: server.key and
server.crt. These can be used as follows in your
httpd.conf file:

SSLCertificateFile "/path/to/this/ser
SSLCertificateKeyFile "/path/to/this/ser



«1 — >

The server.csr file is no longer needed.

How do | create and use my own Certificate Authority
(CA)?
The short answer is to use the CA. sh or CA. pl script provided by

OpenSSL. Unless you have a good reason not to, you should use
these for preference. If you cannot, you can create a self-signed
certificate as follows:

1. Create a RSA private key for your server (will be Triple-DES
encrypted and PEM formatted):

$ openssl genrsa -des3 -out server.key 2048

Please backup this server . key file and the pass-phrase you

entered in a secure location. You can see the details of this
RSA private key by using the command:

$ openssl rsa -noout -text -in server.key

If necessary, you can also create a decrypted PEM version
(not recommended) of this RSA private key with:

$ openssl rsa -in server.key -out
server.key.unsecure

2. Create a self-signed certificate (X509 structure) with the RSA
key you just created (output will be PEM formatted):

$ openssl req -new -x509 -nodes -shal -days
365 -key server.key -out server.crt -



extensions usr_cert

This signs the server CSR and results in a server.crt file.
You can see the details of this Certificate using:

$ openssl x509 -noout -text -in server.crt

How can | change the pass-phrase on my private key
file?

You simply have to read it with the old pass-phrase and write it
again, specifying the new pass-phrase. You can accomplish this
with the following commands:

$ openssl rsa -des3 -in server.key -out
server.key.new
$ mv server.key.new server.key

The first time you're asked for a PEM pass-phrase, you should
enter the old pass-phrase. After that, you'll be asked again to enter
a pass-phrase - this time, use the new pass-phrase. If you are
asked to verify the pass-phrase, you'll need to enter the new pass-
phrase a second time.

How can | get rid of the pass-phrase dialog at Apache
startup time?

The reason this dialog pops up at startup and every re-start is that
the RSA private key inside your server.key file is stored in
encrypted format for security reasons. The pass-phrase is needed
to decrypt this file, so it can be read and parsed. Removing the
pass-phrase removes a layer of security from your server -
proceed with caution!



1. Remove the encryption from the RSA private key (while
keeping a backup copy of the original file):

$ cp server.key server.key.org
$ openssl rsa -in server.key.org -out
server . key

2. Make sure the server.key file is only readable by root:

$ chmod 400 server.key

Now server . key contains an unencrypted copy of the key. If you
point your server at this file, it will not prompt you for a pass-
phrase. HOWEVER, if anyone gets this key they will be able to
impersonate you on the net. PLEASE make sure that the
permissions on this file are such that only root or the web server
user can read it (preferably get your web server to start as root but
run as another user, and have the key readable only by root).

As an alternative approach you can use the
"SSLPassPhraseDialog exec:/path/to/program” facility.

Bear in mind that this is neither more nor less secure, of course.

How do | verify that a private key matches its
Certificate?

A private key contains a series of numbers. Two of these numbers
form the "public key", the others are part of the "private key". The
"public key" bits are included when you generate a CSR, and
subsequently form part of the associated Certificate.

To check that the public key in your Certificate matches the public
portion of your private key, you simply need to compare these



numbers. To view the Certificate and the key run the commands:

$ openssl x509 -noout -text -in server.crt
$ openssl rsa -noout -text -in server.key

The "'modulus’ and the “public exponent' portions in the key and
the Certificate must match. As the public exponent is usually
65537 and it's difficult to visually check that the long modulus
numbers are the same, you can use the following approach:

$ openssl x509 -noout -modulus -in server.crt |
openssl md5

$ openssl rsa -noout -modulus -in server.key |
openssl md5

This leaves you with two rather shorter numbers to compare. It is,
in theory, possible that these numbers may be the same, without
the modulus numbers being the same, but the chances of this are
overwhelmingly remote.

Should you wish to check to which key or certificate a particular
CSR belongs you can perform the same calculation on the CSR
as follows:

$ openssl req -noout -modulus -in server.csr |
openssl md5

How can | convert a certificate from PEM to DER
format?

The default certificate format for OpenSSL is PEM, which is simply
Base64 encoded DER, with header and footer lines. For some
applications (e.g. Microsoft Internet Explorer) you need the
certificate in plain DER format. You can convert a PEM file
cert.pem into the corresponding DER file cert.der using the

following command: $ openssl x509 -in cert.pem -out



cert.der -outform DER

Why do browsers complain that they cannot verify my
server certificate?

One reason this might happen is because your server certificate is
signed by an intermediate CA. Various CAs, such as Verisign or
Thawte, have started signing certificates not with their root
certificate but with intermediate certificates.

Intermediate CA certificates lie between the root CA certificate
(which is installed in the browsers) and the server certificate
(which you installed on the server). In order for the browser to be
able to traverse and verify the trust chain from the server
certificate to the root certificate it needs need to be given the
intermediate certificates. The CAs should be able to provide you
such intermediate certificate packages that can be installed on the
server.

You need to include those intermediate certificates with the
SSLCertificateChainFile directive.




e Why do | get lots of random SSL protocol errors under heavy
server load?

 Why does my webserver have a higher load, now that it
serves SSL encrypted traffic?

e Why do HTTPS connections to my server sometimes take up
to 30 seconds to establish a connection?

e What SSL Ciphers are supported by mod_ssI?

e Why do | get "no shared cipher" errors, when trying to use
Anonymous Diffie-Hellman (ADH) ciphers?

e Why do | get a 'no shared ciphers' error when connecting to
my newly installed server?

o Why can't | use SSL with nhame-based/non-IP-based virtual
hosts?

¢ |s it possible to use Name-Based Virtual Hosting to identify
different SSL virtual hosts?

e How do | get SSL compression working?

o When | use Basic Authentication over HTTPS the lock icon in
Netscape browsers stays unlocked when the dialog pops up.
Does this mean the username/password is being sent
unencrypted?

e Why do I get I/O errors when connecting via HTTPS to an
Apache+mod_ssl server with Microsoft Internet Explorer
(MSIE)?

e How do | enable TLS-SRP?

e Why do | get handshake failures with Java-based clients
when using a certificate with more than 1024 bits?

Why do | get lots of random SSL protocol errors
under heavy server load?

There can be a number of reasons for this, but the main one is
problems with the SSL session Cache specified by the
SSLSessionCache directive. The DBM session cache is the most




likely source of the problem, so using the SHM session cache (or
no cache at all) may help.

Why does my webserver have a higher load, now that
it serves SSL encrypted traffic?

SSL uses strong cryptographic encryption, which necessitates a
lot of number crunching. When you request a webpage via
HTTPS, everything (even the images) is encrypted before it is
transferred. So increased HTTPS traffic leads to load increases.

Why do HTTPS connections to my server sometimes
take up to 30 seconds to establish a connection?

This is usually caused by a /dev/random device for
SSLRandomSeed which blocks the read(2) call until enough
entropy is available to service the request. More information is
available in the reference manual for the SSLRandomSeed

directive.

What SSL Ciphers are supported by mod_ssl?

Usually, any SSL ciphers supported by the version of OpenSSL in
use, are also supported by mod ssl1. Which ciphers are available

can depend on the way you built OpenSSL. Typically, at least the
following ciphers are supported:

1. RC4 with SHA1
2. AES with SHA1
3. Triple-DES with SHA1

To determine the actual list of ciphers available, you should run the
following:

$ openssl ciphers -v



Why do | get ""no shared cipher" errors, when trying
to use Anonymous Diffie-Hellman (ADH) ciphers?

By default, OpenSSL does not allow ADH ciphers, for security
reasons. Please be sure you are aware of the potential side-
effects if you choose to enable these ciphers.

In order to use Anonymous Diffie-Hellman (ADH) ciphers, you
must build OpenSSL with ~"-DSSL_ALLOW_ADH", and then add
“ADH" into your SSLCipherSuite.

Why do | get a 'no shared ciphers' error when
connecting to my newly installed server?

Either you have made a mistake with your SSLCipherSuite
directive (compare it with the pre-configured example in
extra/httpd-ssl.conf) or you chose to use DSA/DH
algorithms instead of RSA when you generated your private key
and ignored or overlooked the warnings. If you have chosen
DSA/DH, then your server cannot communicate using RSA-based
SSL ciphers (at least until you configure an additional RSA-based
certificate/key pair). Modern browsers like NS or IE can only
communicate over SSL using RSA ciphers. The result is the "no
shared ciphers" error. To fix this, regenerate your server
certificate/key pair, using the RSA algorithm.

Why can't | use SSL with nhame-based/non-IP-based
virtual hosts?

The reason is very technical, and a somewhat "chicken and egg"
problem. The SSL protocol layer stays below the HTTP protocol
layer and encapsulates HTTP. When an SSL connection (HTTPS)
is established Apache/mod_ssl has to negotiate the SSL protocol
parameters with the client. For this, mod_ssl has to consult the
configuration of the virtual server (for instance it has to look for the
cipher suite, the server certificate, etc.). But in order to go to the



correct virtual server Apache has to know the Host HTTP header

field. To do this, the HTTP request header has to be read. This
cannot be done before the SSL handshake is finished, but the
information is needed in order to complete the SSL handshake
phase. See the next question for how to circumvent this issue.

Note that if you have a wildcard SSL certificate, or a certificate that
has multiple hostnames on it using subjectAltName fields, you can
use SSL on name-based virtual hosts without further workarounds.

Is it possible to use Name-Based Virtual Hosting to
identify different SSL virtual hosts?

Name-Based Virtual Hosting is a very popular method of
identifying different virtual hosts. It allows you to use the same IP
address and the same port number for many different sites. When
people move on to SSL, it seems natural to assume that the same
method can be used to have lots of different SSL virtual hosts on
the same server.

It is possible, but only if using a 2.2.12 or later web server, built
with 0.9.8) or later OpenSSL. This is because it requires a feature
that only the most recent revisions of the SSL specification added,
called Server Name Indication (SNI).

Note that if you have a wildcard SSL certificate, or a certificate that
has multiple hostnames on it using subjectAltName fields, you can
use SSL on name-based virtual hosts without further workarounds.

The reason is that the SSL protocol is a separate layer which
encapsulates the HTTP protocol. So the SSL session is a separate
transaction, that takes place before the HTTP session has begun.
The server receives an SSL request on IP address X and port Y
(usually 443). Since the SSL request did not contain any Host:
field, the server had no way to decide which SSL virtual host to



use. Usually, it just used the first one it found which matched the
port and IP address specified.

If you are using a version of the web server and OpenSSL that
support SNI, though, and the client's browser also supports SNI,
then the hostname is included in the original SSL request, and the
web server can select the correct SSL virtual host.

You can, of course, use Name-Based Virtual Hosting to identify
many non-SSL virtual hosts (all on port 80, for example) and then
have a single SSL virtual host (on port 443). But if you do this, you
must make sure to put the non-SSL port number on the
NameVirtualHost directive, e.g.

NameVirtualHost 192.168.1.1:80

Other workaround solutions include:

Using separate IP addresses for different SSL hosts. Using
different port numbers for different SSL hosts.

How do | get SSL compression working?

Although SSL compression negotiation was defined in the
specification of SSLv2 and TLS, it took until May 2004 for RFC
3749 to define DEFLATE as a negotiable standard compression
method.

OpenSSL 0.9.8 started to support this by default when compiled
with the z11ib option. If both the client and the server support
compression, it will be used. However, most clients still try to
initially connect with an SSLv2 Hello. As SSLv2 did not include an
array of preferred compression algorithms in its handshake,
compression cannot be negotiated with these clients. If the client
disables support for SSLv2, either an SSLv3 or TLS Hello may be



sent, depending on which SSL library is used, and compression
may be set up. You can verify whether clients make use of SSL
compression by logging the %{SSL_COMPRESS_METHOD } x
variable.

When | use Basic Authentication over HTTPS the lock
icon in Netscape browsers stays unlocked when the
dialog pops up. Does this mean the
username/password is being sent unencrypted?

No, the username/password is transmitted encrypted. The icon in
Netscape browsers is not actually synchronized with the SSL/TLS
layer. It only toggles to the locked state when the first part of the
actual webpage data is transferred, which may confuse people.
The Basic Authentication facility is part of the HTTP layer, which is
above the SSL/TLS layer in HTTPS. Before any HTTP data
communication takes place in HTTPS, the SSL/TLS layer has
already completed its handshake phase, and switched to
encrypted communication. So don't be confused by this icon.

Why do | get I/O errors when connecting via HTTPS to
an Apache+mod_ssl server with older versions of
Microsoft Internet Explorer (MSIE)?

The first reason is that the SSL implementation in some MSIE
versions has some subtle bugs related to the HTTP keep-alive
facility and the SSL close notify alerts on socket connection close.
Additionally the interaction between SSL and HTTP/1.1 features
are problematic in some MSIE versions. You can work around
these problems by forcing Apache not to use HTTP/1.1, keep-alive
connections or send the SSL close notify messages to MSIE
clients. This can be done by using the following directive in your
SSL-aware virtual host section:

SetEnvIf User-Agent "MSIE [2-5]" \



nokeepalive ssl-unclean-shutdown \
downgrade-1.0 force-response-1.0

{ —

Further, some MSIE versions have problems with particular
ciphers. Unfortunately, it is not possible to implement a MSIE-
specific workaround for this, because the ciphers are needed as
early as the SSL handshake phase. So a MSIE-specific
SetEnvIf won't solve these problems. Instead, you will have to
make more drastic adjustments to the global parameters. Before
you decide to do this, make sure your clients really have problems.
If not, do not make these changes - they will affect all your clients,
MSIE or otherwise.

How do | enable TLS-SRP?

TLS-SRP (Secure Remote Password key exchange for TLS,
specified in RFC 5054) can supplement or replace certificates in
authenticating an SSL connection. To use TLS-SRP, set the
SSLSRPVerifierFile directive to point to an OpenSSL SRP

verifier file. To create the verifier file, use the openss1 tool:

openssl srp -srpvfile passwd.srpv -add username
After creating this file, specify it in the SSL server configuration:

SSLSRPVerifierFile /path/to/passwd.srpv

To force clients to use non-certificate TLS-SRP cipher suites, use
the following directive:

SSLCipherSuite "!DSS:!aRSA:SRP"

Why do | get handshake failures with Java-based



clients when using a certificate with more than 1024
bits?

Beginning with version 2.4.7, mod ssJ1 will use DH parameters
which include primes with lengths of more than 1024 bits. Java 7

and earlier limit their support for DH prime sizes to a maximum of
1024 bits, however.

If your Java-based client aborts with exceptions such as
java.lang.RuntimeException: Could not generate DH

keypair and
java.security.InvalidAlgorithmParameterException:
Prime size must be multiple of 64, and can only
range from 512 to 1024 (inclusive), and httpd logs
tlsvl alert internal error (SSL alert number 80)
(at LogLevel info or higher), you can either rearrange
mod_ssl's cipher list with SSLCipherSuite (possibly in
conjunction with SSLHonorCipherQOrder), or you can use
custom DH parameters with a 1024-bit prime, which will always
have precedence over any of the built-in DH parameters.

To generate custom DH parameters, use the openssl dhparam
1024 command. Alternatively, you can use the following standard
1024-bit DH parameters from REC 2409, section 6.2:

----- BEGIN DH PARAMETERS-----

MIGHAOGBAP//////////yQ/a0oiFowj TEXmKLgNwcOSkCTgiKZ8x0Agu+pjsTmyJR
Sgh57j jQE3e+VGbPNOKMbMCsKbfJfFDAP4TVtbVHCReSFtXZiXn7G9EXC6aY37WsL
/1y29Aa37ed4a/taiz+1rp8KEXXLH+ZIKGZR70ZTgf//////////AgEC

----- END DH PARAMETERS-----

Add the custom parameters including the "BEGIN DH
PARAMETERS" and "END DH PARAMETERS" lines to the end of
the first certificate file you have configured using the
SSLCertificateFile directive.



http://www.ietf.org/rfc/rfc2409.txt




e What information resources are available in case of mod_ssl

roblems?
What support contacts are available in case of mod_ssl

problems?

What information should | provide when writing a bug report?
| had a core dump, can you help me?

How do | get a backtrace, to help find the reason for my core

dump?

What information resources are available in case of
mod_ssl problems?

The following information resources are available. In case of
problems you should search here first.

Answers in the User Manual's F.A.Q. List (this)
http://httpd.apache.org/docs/2.4/ssl/ssl_faq.html
First check the F.A.Q. (this text). If your problem is a common
one, it may have been answered several times before, and
been included in this doc.

What support contacts are available in case of
mod_ssl problems?

The following lists all support possibilities for mod_ssl, in order of
preference. Please go through these possibilities in this order -
don't just pick the one you like the look of.

1. Send a Problem Report to the Apache httpd Users Support
Mailing List
users@httpd.apache.org
This is the second way of submitting your problem report.
Again, you must subscribe to the list first, but you can then
easily discuss your problem with the whole Apache httpd user



http://httpd.apache.org/docs/2.4/ssl/ssl_faq.html
mailto:users@httpd.apache.org

community.

2. Write a Problem Report in the Bug Database
http://httpd.apache.org/bug_report.html
This is the last way of submitting your problem report. You
should only do this if you've already posted to the mailing
lists, and had no success. Please follow the instructions on
the above page carefully.

What information should | provide when writing a bug
report?

You should always provide at least the following information:

Apache httpd and OpenSSL version information
The Apache version can be determined by running httpd -
v. The OpenSSL version can be determined by running
openssl version. Alternatively, if you have Lynx installed,
you can run the command lynx -mime_header
http://localhost/ | grep Server to gather this
information in a single step.

The details on how you built and installed Apache httpd and
OpenSSL
For this you can provide a logfile of your terminal session
which shows the configuration and install steps. If this is not
possible, you should at least provide the configure
command line you used.

In case of core dumps please include a Backtrace
If your Apache httpd dumps its core, please attach a stack-
frame ““backtrace" (see below for information on how to get
this). This information is required in order to find a reason for
your core dump.

A detailed description of your problem
Don't laugh, we really mean it! Many problem reports don't


http://httpd.apache.org/bug_report.html

include a description of what the actual problem is. Without
this, it's very difficult for anyone to help you. So, it's in your
own interest (you want the problem be solved, don't you?) to
include as much detail as possible, please. Of course, you
should still include all the essentials above too.

| had a core dump, can you help me?

In general no, at least not unless you provide more details about
the code location where Apache dumped core. What is usually
always required in order to help you is a backtrace (see next
guestion). Without this information it is mostly impossible to find
the problem and help you in fixing it.

How do | get a backtrace, to help find the reason for
my core dump?

Following are the steps you will need to complete, to get a
backtrace:

1. Make sure you have debugging symbols available, at least in
Apache. On platforms where you use GCC/GDB, you will
have to build Apache+mod_ssl with "OPTIM="-g -ggdb3""
to get this. On other platforms at least "OPTIM="-g""is
needed.

2. Start the server and try to reproduce the core-dump. For this
you may want to use a directive like “"CoreDumpDirectory

/tmp" to make sure that the core-dump file can be written.
This should resultina /tmp/core or /tmp/httpd.core
file. If you don't get one of these, try running your server
under a non-root UID. Many modern kernels do not allow a
process to dump core after it has done a setuid() (unless it
does an exec()) for security reasons (there can be privileged
information left over in memory). If necessary, you can run



/path/to/httpd -X manually to force Apache to not fork.

3. Analyze the core-dump. For this, run gdb /path/to/httpd
/tmp/httpd.core or a similar command. In GDB, all you
have to do then is to enter bt, and voila, you get the

backtrace. For other debuggers consult your local debugger
manual.

Copyright 2017 The Apache Software Foundation.
Licensed under the Apache License. Version 2.0.

Modules | Directives | FAQ | Glossary | Sitemap



http://www.apache.org/licenses/LICENSE-2.0
http://wiki.apache.org/httpd/FAQ

ABAGM] i Ezreguntas Frecuentes | Glosario | Mapa del sitio web

HTTP SERVER PROJNerSiOn 2.4 del Servidor HTTP Apache

Apache > Servidor HTTP > Documentacion > Version 2.4 > How-To / Tutoriales



http://wiki.apache.org/httpd/FAQ
http://www.apache.org/
http://httpd.apache.org/
http://httpd.apache.org/docs/

Autenticacion y Autorizacion

Autenticacion es cualquier proceso por el cual se verifica que uno es
guien dice ser. Autorizacion es cualquier proceso en el cual
cualquiera esta permitido a estar donde se quiera, o tener
informacion la cual se quiera tener.

Para informacion de control de acceso de forma genérica visiteHow
to de Control de Acceso.




Hay tres tipos de modulos involucrados en los procesos de la
autenticacion y autorizacion. Normalmente deberas escoger al
menos un médulo de cada grupo.

¢ Modos de Autenticacion (consulte la directiva AuthType )
= mod auth basic
= mod auth digest

e Proveedor de Autenticacion (consulte la directiva
AuthBasicProvider y AuthDigestProvider)
= mod authn anon
= mod authn dbd
= mod authn dbm
= mod authn file
= mod authnz ldap
= mod authn socache

e Autorizacion (consulte la directiva Require)
= mod authnz ldap
= mod authz dbd
= mod authz dbm
= mod authz groupfile
= mod authz host
= mod authz owner
= mod authz user

A parte de éstos modulos, también estan mod _authn corey
mod authz core. Estos médulos implementan las directivas

esenciales que son el centro de todos los médulos de
autenticacion.

El médulo mod _authnz ldap es tanto un proveedor de
autenticacion como de autorizacion. El médulo mod authz host




proporciona autorizacion y control de acceso basado en el nombre
del Host, la direccion IP o caracteristicas de la propia peticion,
pero no es parte del sistema proveedor de autenticacion. Para
tener compatibilidad inversa con el mod_access, hay un nuevo
modulo llamado mod access compat.

También puedes mirar el how-to de Control de Acceso , donde se
plantean varias formas del control de acceso al servidor.



Si se tiene informacidn en nuestra pagina web que sea
informacidn sensible o pensada para un grupo reducido de
usuarios/personas, las técnicas que se describen en este manual,
le serviran de ayuda para asegurarse de que las personas que
ven esas paginas sean las personas que uno quiere.

Este articulo cubre la parte "estandar" de como proteger partes de
un sitio web que muchos usaran.

Nota:

Si de verdad es necesario que tus datos estén en un sitio
seguro, considera usar mod _ss1 como método de

autenticacion adicional a cualquier forma de autenticacion.



Las directivas que se usan en este articulo necesitaran ponerse
ya sea en el fichero de configuracion principal del servidor (
tipicamente en la seccion <Directory> de httpd.conf), o en
cada uno de los ficheros de configuraciones del propio directorio
(los archivos . htaccess).

Si planea usar los ficheros . htaccess , necesitaras tener en la
configuracion global del servidor, una configuracion que permita
poner directivas de autenticacion en estos ficheros. Esto se hace
con la directiva A1lowOverride, la cual especifica que
directivas, en su caso, pueden ser puestas en cada fichero de
configuracion por directorio.

Ya que estamos hablando aqui de autenticacion, necesitaras una
directiva A1l1lowOverride como la siguiente:

AllowOverride AuthConfig

O, si solo se van a poner las directivas directamente en la
configuracion principal del servidor, deberas tener, claro esta,
permisos de escritura en el archivo.

Y necesitaras saber un poco de como esta estructurado el arbol
de directorios de tu servidor, para poder saber donde se
encuentran algunos archivos. Esto no deberia ser una tarea dificil,
aun asi intentaremos dejarlo claro llegado el momento de
comentar dicho aspecto.

También deberas de asegurarte de que los modulos

mod authn coreymod authz core han sido incorporados, o
afadidos a la hora de compilar en tu binario httpd o cargados
mediante el archivo de configuracion httpd.conf. Estos dos
modulos proporcionan directivas basicas y funcionalidades que




son criticas para la configuracion y uso de autenticacion y
autorizacion en el servidor web.



Aqui esta lo basico de como proteger con contrasefia un directorio
en tu servidor.

Primero, necesitaras crear un fichero de contrasefa. Dependiendo
de que proveedor de autenticacion se haya elegido, se hara de
una forma u otra. Para empezar, usaremos un fichero de
contrasefia de tipo texto.

Este fichero debera estar en un sitio que no se pueda tener
acceso desde la web. Esto también implica que nadie pueda
descargarse el fichero de contrasefas. Por ejemplo, si tus
documentos estan guardados fuera de
/usr/local/apache/htdocs, querras poner tu archivo de

contrasefas en /usr/local/apache/passwd.

Para crear el fichero de contrasefas, usa la utilidad htpasswd

gue viene con Apache. Esta herramienta se encuentra en el
directorio /bin en donde sea que se ha instalado el Apache. Si

ha instalado Apache desde un paquete de terceros, puede ser
gue se encuentre en su ruta de ejecucion.

Para crear el fichero, escribiremos:

htpasswd -c /usr/local/apache/passwd/passwords rbowen

htpasswd te preguntara por una contrasefa, y después te pedira
gue la vuelvas a escribir para confirmarla:

$ htpasswd -c /usr/local/apache/passwd/passwords rbowen
New password: mypassword

Re-type new password: mypassword

Adding password for user rbowen

Si htpasswd no esta en tu variable de entorno "path” del sistema,
por supuesto deberas escribir la ruta absoluta del ejecutable para



poder hacer que se ejecute. En una instalacion por defecto, esta
en: /usr/local/apache2/bin/htpasswd

Lo proximo que necesitas, sera configurar el servidor para que
pida una contrasefia y asi decirle al servidor que usuarios estan
autorizados a acceder. Puedes hacer esto ya sea editando el
fichero httpd.conf de configuracion o usando in fichero
.htaccess. Por ejemplo, si quieres proteger el directorio
/usr/local/apache/htdocs/secret, puedes usar las
siguientes directivas, ya sea en el fichero . htaccess localizado
en following directives, either placed in the file
/usr/local/apache/htdocs/secret/.htaccess, oenla
configuracion global del servidor httpd.conf dentro de la
seccion <Directory "/usr/local/apache/htdocs/secret"> , como se
muestra a continuacion:

<Directory "/usr/local/apache/htdocs/secret'
AuthType Basic

AuthName "Restricted Files"

# (Following line optional)
AuthBasicProvider file

AuthUserFile "/usr/local/apache/passwd/pass\
Require user rbowen

</Directory>

(| S— >

Vamos a explicar cada una de las directivas individualmente. La
directiva AuthType selecciona el método que se usa para
autenticar al usuario. EIl método mas comuin es Basic, y éste es
el método que implementa mod auth basic. Es muy importante
ser consciente, de que la autenticacion basica, envia las
contrasefias desde el cliente al servidor sin cifrar. Este método por
tanto, no debe ser utilizado para proteger datos muy sensibles, a
no ser que, este método de autenticacion basica, sea




acompafnado del médulo mod ss1. Apache soporta otro método
mas de autenticacion que es del tipo AuthType Digest. Este
meétodo, es implementado por el modulo mod auth digesty
con el se pretendia crear una autenticacion mas segura. Este ya
no es el caso, ya que la conexion deberé realizarse con mod ss1
en su lugar.

La directiva AuthName establece el Realm para ser usado en la
autenticacion. El Realm tiene dos funciones principales. La
primera, el cliente presenta a menudo esta informacion al usuario
como parte del cuadro de dialogo de contrasefa. La segunda, que
es utilizado por el cliente para determinar qué contrasefia enviar a
para una determinada zona de autenticacion.

Asi que, por ejemple, una vez que el cliente se ha autenticado en
el area de los "Ficheros Restringidos", entonces re-
intentara automaticamente la misma contrasefa para cualquier
area en el mismo servidor que es marcado con el Realm de
"Ficheros Restringidos" Por lo tanto, puedes prevenir que
a un usuario se le pida mas de una vez por su contrasena,
compartiendo asi varias areas restringidas el mismo Realm Por
supuesto, por razones de seguridad, el cliente pedira siempre por
una contrasefa, siempre y cuando el nombre del servidor cambie.

La directiva AuthBasicProvider es, en este caso, opcional, ya
gue file es el