
How	To

How	to	Install	SQL	Server	2000
This	set	of	How	To	topics	includes	common	procedures	used	in	installing
Microsoft®	SQL	Server™	2000.

How	To

How	to	install	SQL	Server	2000	(Setup)
To	install	SQL	Server	2000

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

If	you	are	running	Microsoft	Windows®	95,	click	SQL	Server	2000
Prerequisites,	and	then	click	Install	Common	Controls	Library
Update.

3.	 Select	Install	Database	Server	and	setup	prepares	the	SQL	Server
Installation	Wizard.	At	the	Welcome	screen,	click	Next.

4.	 In	the	Computer	Name	dialog	box,	Local	Computer	is	the	default
option	and	the	local	computer	name	appears	in	the	edit	box.	Click
Next.

For	a	remote	installation,	click	Remote	Computer.	You	can	then	type
a	computer	name	or	click	Browse	to	locate	a	remote	computer.

If	a	cluster	is	detected,	Virtual	server	is	the	default	option.

5.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

6.	 Follow	directions	on	the	User	Information,	Software	License
Agreement	and	related	screens.

7.	 In	the	Installation	Definition	dialog	box,	click	Server	and	Client
Tools,	and	then	click	Next.

8.	 In	the	Instance	Name	dialog	box,	if	the	Default	check	box	is

available,	you	can	install	either	the	default	or	a	named	instance.	If	the
Default	check	box	is	not	available,	a	default	instance	has	already	been
installed,	and	you	can	install	only	a	named	instance.

To	install	the	default	instance,	select	the	Default	check	box,
and	click	Next.

To	install	a	named	instance,	clear	the	Default	check	box,	and
type	a	new	named	instance	in	the	Instance	Name	edit	box.
Click	Next.

9.	 In	the	Setup	Type	dialog	box,	click	Typical	or	Minimum,	and	then
click	Next.

If	you	want	to	select	components	and	subcomponents,	change
character	set,	network	libraries	or	other	settings,	click	Custom,	and
then	click	Next.

10.	 In	the	Service	Accounts	dialog	box,	accept	the	default	settings,	enter
your	domain	password,	and	then	click	Next.

For	information	about	services	account	options,	see	Services
Accounts.

11.	 In	the	Authentication	Mode	dialog	box,	accept	the	default	setting,
and	click	Next.

To	use	Mixed	Mode,	see	Authentication	Modes.

12.	 When	you	are	finished	specifying	options,	click	Next	in	the	Start
Copying	Files	dialog	box.

13.	 In	the	Choose	Licensing	Mode	dialog	box,	make	selections	according
to	your	license	agreement,	and	click	Continue	to	begin	the
installation.

Click	Help	for	information	about	licensing	or	see	your	system
administrator.

14.	 In	the	Setup	Complete	dialog	box,	click	Yes,	I	want	to	restart	my

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

computer	now,	and	then	click	Finish.

See	Also

How	to	add	components	to	an	instance	of	SQL	Server	2000	(Setup)

How	to	create	a	case-sensitive	instance	of	SQL	Server	(Setup)

How	to	install	a	named	instance	of	SQL	Server	(Setup)

How	To

How	to	install	client	tools	only	(Setup)
You	can	install	client	tools	only	using	any	SQL	Server	compact	disc,	on	any
supported	operating	system.	For	more	information,	see	How	to	install	tools	only
from	any	compact	disc.

To	install	client	tools	only	for	SQL	Server	2000

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default
option,	and	the	local	computer	name	appears	in	the	edit	box.	Click
Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

5.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement,	and	related	screens.

6.	 In	the	Installation	Definition	dialog	box,	click	Client	tools	only,	and
then	click	Next.

7.	 In	the	Select	Components	dialog	box,	accept	the	defaults	or	select	the
components	you	want,	and	then	click	Next.

You	can	select	an	item	in	the	Components	list,	such	as	Management
Tools,	and	then	select	items	from	the	related	Sub-Components	list,

such	as	Enterprise	Manager.	Click	to	select	items	you	want	to	install;
clear	the	check	box	of	the	items	you	do	not	want	to	install.

For	information	about	each	component,	select	the	item,	and	view	the
Description	box.

8.	 In	the	Start	Copying	Files	dialog	box,	click	Next	to	complete	the
installation	of	the	client	tools.

How	To

How	to	install	tools	only	from	any	compact	disc
(Setup)
Note		In	this	procedure,	you	can	use	the	installation	disc	for	any	edition	of	SQL
Server	2000	on	a	computer	with	any	of	the	operating	systems	supported	by	SQL
Server	2000.

To	install	tools	only	from	any	compact	disc

1.	 Insert	a	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	This	can	be	the	installation	disc	for	any	edition	of	SQL
Server	2000,	without	regard	to	operating	system	support.	If	the
compact	disc	does	not	autorun,	double-click	Autorun.exe	in	the	root
directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default
option,	and	the	local	computer	name	appears	in	the	edit	box.	Click
Next.

4.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement,	and	related	screens.

5.	 In	the	Select	Components	dialog	box,	accept	the	defaults	or	select	the
components	you	want,	and	then	click	Next.

You	can	select	an	item	in	the	Components	list,	such	as	Management
Tools,	and	then	select	items	from	the	related	Sub-Components	list,
such	as	Enterprise	Manager.	Click	to	select	items	you	want	to	install;
clear	the	check	box	of	the	items	you	do	not	want	to	install.

For	information	about	each	component,	select	the	item,	and	view	the

Description	box.

6.	 In	the	Start	Copying	Files	dialog	box,	click	Next	to	complete	the
installation	of	the	client	tools.

How	To

How	to	install	connectivity	only	(Setup)
The	connectivity-only	option	installs	Network	Libraries	and	MDAC
(Microsoft®	Data	Access	Components).

To	install	connectivity	only	for	SQL	Server	2000

1.	 Insert	the	Microsoft	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

If	you	are	running	Microsoft	Windows®	95,	click	Install	Common
Controls	Library	Update.

3.	 Select	Install	Database	Server	and	setup	prepares	the	SQL	Server
Installation	Wizard.	At	the	Welcome	screen,	click	Next.

4.	 In	the	Computer	Name	dialog	box,	Local	Computer	is	the	default
option,	and	the	local	computer	name	appears	in	the	edit	box.	Click
Next.

5.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

6.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement	and	related	screens.

7.	 In	the	Installation	Definition	dialog	box,	click	Connectivity	Only,
and	then	click	Next.

8.	 In	the	Start	Copying	Files	dialog	box,	click	Next	to	complete	the
installation.

How	To

How	to	install	a	named	instance	of	SQL	Server	2000
(Setup)
You	can	install	a	named	instance	of	Microsoft®	SQL	Server™	2000	the	first
time	you	run	SQL	Server	Setup	or	later	after	the	default	instance	is	installed.	For
each	additional	named	instance	you	want	to	install,	follow	this	procedure.

Note		If	you	have	a	SQL	Server	7.0	installation	on	your	computer,	the
installation	remains	intact	during	the	installation	of	a	named	instance	of	SQL
Server	2000.	A	default	instance	of	SQL	Server	2000	will	overwrite	a	SQL	Server
7.0	installation	(as	the	previous	default	installation),	but	a	named	instance	does
not	overwrite	SQL	Server	7.0.

To	install	a	named	instance	of	SQL	Server	2000

1.	 Insert	the	SQL	Server	2000	compact	disc	in	your	CD-ROM	drive.	If
the	compact	disc	does	not	autorun,	double-click	Autorun.exe	in	the
root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

If	you	are	running	Microsoft	Windows®	95,	Install	Common
Controls	Library	Update.

3.	 Select	Install	Database	Server	and	setup	prepares	the	SQL	Server
Installation	Wizard.	At	the	Welcome	screen,	click	Next.	In	the
Computer	Name	dialog	box,	Local	Computer	is	the	default	option,
and	the	local	computer	name	appears	in	the	edit	box.	Click	Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

If	this	is	the	first	SQL	Server	2000	installation	on	your
computer,	follow	the	directions	on	the	User	Information,
Software	License	Agreement,	and	related	screens.

If	an	installation	of	SQL	Server	2000	exists	on	your	computer,
these	screens	are	omitted.

5.	 In	the	Installation	Definition	dialog	box,	click	Server	and	Client
Tools,	and	then	click	Next.

6.	 In	the	Instance	Name	dialog	box,	clear	the	Default	check	box,	and
type	a	name	for	the	new	named	instance,	and	then	click	Next.

Note		If	you	have	an	existing	default	installation	(either	SQL	Server
7.0	or	2000),	the	Default	check	box	is	not	available.

If	you	have	typed	an	instance	name,	and	later	return	to	the
Instance	Name	dialog	box	to	change	the	name	before
completing	setup,	you	can	do	so.	However,	a	workaround	is
necessary	to	edit	the	instance	name	box,	which	will	be
unavailable	after	clicking	Back	to	get	to	this	dialog	box.	Select
the	Default	checkbox,	then	immediately	clear	it,	and	you	will
be	able	to	edit	the	instance	name.

For	more	information	about	instance	names,	click	Help.

7.	 In	the	Setup	Type	dialog	box,	select	Typical,	Minimum,	or	Custom,
and	then	click	Next.

If	you	want	to	select	subcomponents	or	change	character	set,	network
libraries,	or	other	settings,	click	Custom.

8.	 In	the	Service	Accounts	dialog	box,	accept	the	default	settings,	enter
your	domain	password,	and	then	click	Next.

For	information	about	services	account	options,	see	Services
Accounts.

9.	 In	the	Authentication	Mode	dialog	box,	accept	the	default	setting,
and	click	Next.

To	use	Mixed	Mode	authentication,	see	Authentication	Modes.

10.	 When	you	are	finished	specifying	options,	click	Next	in	the	Start
Copying	Files	dialog	box.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

11.	 In	the	Choose	Licensing	Mode	dialog	box,	make	selections	according
to	your	license	agreement,	and	click	Continue	to	begin	the
installation.

Click	Help	for	information	about	licensing,	or	see	your	system
administrator.

12.	 In	the	Setup	Complete	dialog	box,	click	Yes,	I	want	to	restart	my
computer	now,	and	then	click	Finish.

See	Also

Working	with	Named	and	Multiple	Instances	of	SQL	Server	2000

Running	SQL	Server	7.0	Along	with	a	Named	Instance	of	SQL	Server	2000

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	upgrade	a	SQL	Server	7.0	installation	to	SQL
Server	2000	(Setup)
CAUTION		This	version	upgrade	procedure	overwrites	your	Microsoft®	SQL
Server™	7.0	installation;	the	installation	no	longer	exists	on	your	computer.	In
addition,	previous	registry	settings	are	removed.	For	example,	after	upgrading
you	will	need	to	re-register	your	servers.

To	restore	the	SQL	Server	7.0	installation,	you	must	first	uninstall	SQL
Server	2000,	perform	a	complete	reinstall	of	the	SQL	Server	7.0	files,	and
then	restore	your	backed-up	SQL	Server	7.0	databases.

To	upgrade	SQL	Server	7.0	to	SQL	Server	2000

1.	 Insert	the	Microsoft	SQL	Server	2000	compact	disc	for	the	edition	to
which	you	want	to	upgrade	into	your	CD-ROM	drive.	If	the	compact
disc	does	not	autorun,	double-click	Autorun.exe	in	the	root	directory
of	the	compact	disc.

Note		If	you	have	purchased	an	edition	of	SQL	Server	with	more
features	than	your	current	SQL	Server	7.0	installation,	the	upgrade
process	will	perform	both	the	version	and	edition	upgrade	at	the	same
time.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	setup	prepares	the	SQL	Server	Installation	Wizard.
At	the	Welcome	screen,	click	Next.

3.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default	option
and	the	local	computer	name	appears	in	the	edit	box.	Click	Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Upgrade,	remove,	or
add	components	to	an	existing	instance	of	SQL	Server,	and	then
click	Next.

5.	 In	the	Instance	Name	dialog	box,	Default	will	be	selected.	Click

Next.

Note		When	upgrading,	SQL	Server	7.0	automatically	becomes	the
default	instance	of	SQL	Server	2000.

6.	 In	the	Existing	Installation	dialog	box,	click	Upgrade	your	existing
installation,	and	then	click	Next.

7.	 In	the	Upgrade	dialog	box,	you	are	prompted	as	to	whether	you	want
to	proceed	with	the	requested	upgrade.	Click	Yes,	upgrade	my	<text
specific	to	the	upgrade>	to	start	the	upgrade	process,	and	then	click
Next.	The	upgrade	runs	until	finished.

8.	 In	the	Connect	to	Server	dialog	box,	select	an	authentication	mode,
and	then	click	Next.

If	you	are	not	sure	which	mode	to	use,	accept	the	default:	The
Windows	account	information	I	use	to	log	on	to	my	computer	with
(Windows).

9.	 In	Start	Copying	Files	dialog	box,	click	Next.	

10.	 In	the	Setup	Complete	dialog	box,	click	Yes,	I	want	to	restart	my
computer	now,	and	then	click	Finish.

See	Also

Authentication	Modes

How	to	perform	an	edition	upgrade	within	SQL	Server	2000	(Setup)

JavaScript:hhobj_1.Click()

How	To

How	to	upgrade	databases	online	using	the	Copy
Database	Wizard	(Enterprise	Manager)
To	upgrade	a	SQL	Server	7.0	database	to	a	SQL	Server	2000	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Right-click	the	server,	point	to	All	Tasks,	and	then	click	Copy
Database	Wizard.

3.	 Complete	the	steps	in	the	wizard.

IMPORTANT		After	upgrading	databases	from	SQL	Server	7.0,	run	sp_updatestats
(update	statistics)	against	the	database	on	the	destination	server	to	ensure
optimal	performance	of	the	copied	database.

See	Also

Copy	Database	Wizard	Help

Database	Upgrade	from	SQL	Server	7.0	(Copy	Database	Wizard)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	perform	an	edition	upgrade	within	SQL
Server	2000	(Setup)
To	upgrade	a	SQL	Server	2000	installation	to	a	different	edition	of	SQL
Server	2000

1.	 Insert	the	Microsoft®	SQL	Server	2000™	compact	disc	for	the	edition
you	want	to	install	into	your	CD-ROM	drive.	If	the	compact	disc	does
not	autorun,	double-click	Autorun.exe	in	the	root	directory	of	the
compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	setup	prepares	the	SQL	Server	Installation	Wizard.
At	the	Welcome	screen,	click	Next.

3.	 In	Computer	Name	dialog	box,	select	Local	Computer	or	Remote
computer.

4.	 In	the	Installation	Selection	dialog	box,	click	Upgrade,	Remove,	or
Add	Components	to	an	existing	instance	of	SQL	Server,	and	then
click	Next.

5.	 In	the	Instance	Name	dialog	box,	click	Next.

6.	 In	the	Existing	Installation	dialog	box,	click	Upgrade	your	existing
installation,	and	then	click	Next.

7.	 If	Setup	detects	that	you	are	doing	an	edition	upgrade,	the	Upgrade
dialog	box	appears.	Click	Yes,	Upgrade	my	<text	specific	to	the
upgrade>	to	upgrade	the	feature	set	of	your	current	installation,	and
click	Next.

8.	 After	the	upgrade	is	completed,	you	are	prompted	as	to	whether	you
want	to	install	additional	components.	If	you	click	Yes,	the	Select
Components	dialog	box	appears.	Accept	the	defaults	or	select	the
additional	components	you	want	to	install,	and	then	click	Next.

You	can	select	an	item	in	the	Components	list,	and	then	select	items
from	the	related	Sub-Components	list.	Click	to	select	items	you	want
to	install;	clear	the	check	box	of	the	items	you	do	not	want	to	install.

9.	 When	you	are	finished	specifying	options,	in	the	Start	Copying	Files
dialog	box,	click	Next.

10.	 In	the	Setup	Complete	dialog	box,	click	Yes,	I	want	to	restart	my
computer	now,	and	then	click	Finish	to	complete	the	edition	upgrade.

See	Also

Upgrading	an	Existing	Installation	of	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	uninstall	an	existing	installation	of	SQL
Server	(Setup)
To	uninstall	an	existing	installation	of	SQL	Server	7.0	or	SQL	Server	2000
(default	or	named	instance)

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	setup	prepares	the	SQL	Server	Installation	Wizard.
At	the	Welcome	screen,	click	Next.

3.	 In	Computer	Name	dialog	box,	select	Local	Computer	or	Remote
computer.

4.	 In	the	Installation	Selection	dialog	box,	click	Upgrade,	Remove,	or
Add	Components	to	an	existing	instance	of	SQL	Server,	and	then
click	Next.

5.	 In	the	Instance	Name	dialog	box,	Default	is	selected	if	you	have	the
Default	instance	installed.	If	you	want	to	uninstall	a	named	instance,
select	it	from	the	Instance	Name	list	box,	and	then	click	Next.

6.	 In	the	Existing	Installation	dialog	box,	click	Uninstall	your	existing
installation,	and	then	click	Next.

7.	 Setup	removes	the	selected	installation.	In	the	Uninstalling	dialog
box,	click	Next,	and	then	in	the	Setup	Complete	dialog	box,	click
Finish.

How	To

How	to	test	an	installation	of	SQL	Server	2000
(Command	Prompt)
To	test	the	installation

1.	 Start	Microsoft®	SQL	Server™	2000	by	entering	from	a	command
prompt:

For	the	default	instance,	use:

net	start	mssqlserver

For	a	named	instance,	include	the	instance	name,	for	example:

net	start	MSSQL$Instance1

2.	 Connect	to	SQL	Server	by	entering:

For	the	default	instance,	use:

osql	/Usa	/P	<administrator	password>

For	a	named	instance,	include	both	the	server	and	instance	name,	for
example:

osql	/Usa	/P	/S	Machine1\Instance1

When	osql	connects,	this	osql	prompt	appears:

1>

If	osql	cannot	connect,	an	ODBC	error	is	returned.

3.	 Enter	a	simple	query,	such	as:
SELECT	@@SERVERNAME
GO

The	osql	utility	returns	the	server	name:

1>	SELECT	@@SERVERNAME
2>	GO

WOLFHOUND

(1	row	affected)
1>

4.	 Verify	that	you	have	checked	a	SQL	Server	2000	server	by	entering:
SELECT	@@VERSION
GO

The	osql	utility	returns	the	version	information.

5.	 Quit	the	osql	utility	by	entering:
Exit

How	To

How	to	change	SQL	Server	services	login	account
information	(Windows	NT)
To	change	SQL	Server	services	login	account	information	(Windows	NT)

1.	 On	the	Start	menu,	point	to	Settings,	and	then	click	Control	Panel.

2.	 Double-click	Services.

3.	 In	the	Services	dialog	box,	double-click	MSSQLSERVER	in	the
Service	list.

Note		For	named	instances,	the	instance	name	is	included.	For
example,	to	modify	the	user	account	for	Instance1,	you	double-click
MSSQL$Instance1.

4.	 In	the	Service	dialog	box,	under	Log	on	as,	select	This	account,	and
then	enter	the	changed	account	information.

5.	 Repeat	Steps	3	and	4	above	for	SQL	Server	Agent.	In	the	Services
dialog	box,	double-click	SQLSERVERAGENT	(or
SQLAgent$Instance1	for	a	named	instance),	and	then	enter	the
changed	account	information	in	the	Service	dialog	box.

6.	 Start	SQL	Server	Enterprise	Manager,	and	change	the	user	account
information	there,	as	well,	for	both	SQL	Server	and	SQL	Server	Agent
For	more	information	see	How	to	change	SQL	Server	services	login
account	information	(Enterprise	Manager).

How	To

How	to	change	SQL	Server	services	login	account
information	(Windows)
To	change	SQL	Server	services	login	account	information	(Windows	2000)

1.	 On	the	Start	menu,	point	to	Programs/Administrative	Tools,	and
then	click	Services.

2.	 Right-click	MSSQLServer,	and	then	click	Properties.

3.	 On	the	Log	On	tab,	enter	and	confirm	the	new	password,	and	then
restart	services	using	the	SQL	Server	Service	Manager.

4.	 Repeat	the	password	reset	for	SQLServerAgent	and	other	services.

5.	 Start	SQL	Server	Enterprise	Manager,	and	change	user	account
information	there,	as	well,	for	both	SQL	Server	and	SQL	Server	Agent
For	more	information,	see	How	to	change	SQL	Server	services	login
account	information	(Enterprise	Manager).

How	To

How	to	change	SQL	Server	services	login	account
information	(Enterprise	Manager)
Note		If	you	are	running	Microsoft®	Windows®	2000	and	want	to	use	the
Windows	2000	Encrypted	File	System	to	encrypt	any	Microsoft	SQL	Server™
files,	you	must	unencrypt	the	files	before	you	can	change	the	SQL	Server	service
accounts.	If	you	do	not	unencrypt	the	files	and	then	reset	the	SQL	Server	service
accounts,	you	cannot	unencrypt	the	files.

To	change	the	MSSQLServer	service	login	(Enterprise	Manager)

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 In	the	SQL	Server	Properties	dialog	box,	click	the	Security	tab.

4.	 In	the	Startup	service	account	box,	the	option	for	This	Account	is
selected,	indicating	that	the	SQL	Server	service	account	is	a	Windows
domain	account.	Enter	changes	as	necessary	for	the	account	and
password.

To	change	the	SQLServerAgent	service	login	(Enterprise	Manager)

Note		You	can	change	the	SQLServerAgent	service	account	to	a	non	Microsoft
Windows	NT®	4.0	administrator	account.	However,	the	Windows	NT	4.0
account	must	be	a	member	of	the	sysadmin	fixed	server	role	to	run	SQL	Server
Agent.

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	and	then	click	Properties.

4.	 In	the	SQL	Server	Agent	Properties	dialog	box,	click	the	General
tab.

5.	 In	the	Service	startup	account	box,	enter	the	appropriate	account	and
password.

See	Also

Creating	SQL	Server	Services	User	Accounts

Changing	Passwords	and	User	Accounts

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	rebuild	the	registry	(Setup)
To	rebuild	the	registry

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,		and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	the	Computer	Name	dialog	box,	click	Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Advanced	options,	and
then	in	the	Advanced	Options	dialog	box,	click	Registry	Rebuild.
Click	Next.

5.	 A	message	appears	informing	you	that	Setup	rebuilds	the	registry
based	on	information	you	supply	in	the	subsequent	screens.

CAUTION		The	setup	options	you	enter	must	be	the	same	choices	that
you	entered	during	the	initial	installation.	If	you	do	not	know	or	are
not	sure	of	this	information,	do	not	use	this	registry	rebuild	process.
Instead,	you	must	uninstall	and	reinstall	SQL	Server	to	restore	the
registry.

6.	 To	prepare	for	the	registry	rebuild,	enter	the	same	information	and
options	that	you	entered	during	the	initial	installation	of	SQL	Server	in
the	setup	screens	as	they	appear.	When	you	have	finished,	the	registry
rebuild	will	occur.

Note		Rebuilding	the	registry	includes	re-copying	external	components
such	as	MDAC	and	MS	DTC.

How	To

How	to	rebuild	the	master	database	(Rebuild	Master
utility)
To	rebuild	the	master	database

1.	 Shutdown	Microsoft®	SQL	Server™	2000,	and	then	run
Rebuildm.exe.	This	is	located	in	the	Program	Files\Microsoft	SQL
Server\80\Tools\Binn	directory.

2.	 In	the	Rebuild	Master	dialog	box,	click	Browse.

3.	 In	the	Browse	for	Folder	dialog	box,	select	the	\Data	folder	on	the
SQL	Server	2000	compact	disc	or	in	the	shared	network	directory	from
which	SQL	Server	2000	was	installed,	and	then	click	OK.

4.	 Click	Settings.	In	the	Collation	Settings	dialog	box,	verify	or	change
settings	used	for	the	master	database	and	all	other	databases.

Initially,	the	default	collation	settings	are	shown,	but	these	may	not
match	the	collation	selected	during	setup.	You	can	select	the	same
settings	used	during	setup	or	select	new	collation	settings.	When	done,
click	OK.

5.	 In	the	Rebuild	Master	dialog	box,	click	Rebuild	to	start	the	process.

The	Rebuild	Master	utility	reinstalls	the	master	database.

Note		To	continue,	you	may	need	to	stop	a	server	that	is	running.

See	Also

Collation	Settings	in	Setup

JavaScript:hhobj_1.Click()

How	To

How	to	perform	a	remote	installation	of	SQL	Server
2000	(Setup)
To	perform	a	remote	installation

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	Computer	Name	dialog	box,	click	Remote	Computer.	You	can
then	type	a	computer	name	or	click	Browse	to	locate	a	remote
computer.

4.	 In	the	Installation	Selection	dialog	box,	click	Create	a	new	instance
of	SQL	Server,	or	install	Client	Tools.

5.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement,	and	related	screens.

6.	 In	the	Remote	Setup	Information	dialog	box,	enter	password	and
other	information.	For	more	information,	see	Remote	Setup
Information.	After	you	finish	defining	options,	click	Next.

7.	 In	the	Installation	Definition,	Instance	Name,	Setup	Type,	and
subsequent	setup	screens,	select	the	options	you	want	for	the	remote
installation.

SQL	Server	Setup	creates	the	Setup.iss	file	in	your	local	system	folder
with	the	options	you	have	specified.

JavaScript:hhobj_1.Click()

8.	 After	Setup	creates	Setup.iss,	the	Setup	Complete	dialog	box	appears.
Click	Finish	to	start	the	remote	installation	process.

9.	 When	the	process	is	finished,	click	OK	in	the	message	box	that
appears.	Reboot	the	remote	computer	before	running	the	remote
instance.

How	To

How	to	record	an	unattended	installation	file	(Setup)
The	Record	Unattended	Setup	option	allows	you	to	simulate	an	installation	and
create	an	.iss	file	that	can	be	used	later	for	an	unattended	installation	of
Microsoft®	SQL	Server™	2000.	SQL	Server	files	are	not	installed	in	this
process.

To	create	a	file	for	an	unattended	installation

1.	 Insert	the	Microsoft	SQL	Server	2000	compact	disc	in	your	CD-ROM
drive.	If	the	compact	disc	does	not	autorun,	double-click	Autorun.exe
in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components,	select	Install	Database
Server,	and	then	click	Next	at	the	Welcome	screen	of	the	SQL	Server
Installation	Wizard.

3.	 In	the	Computer	Name	dialog	box,	select	the	option	you	want,	and
click	Next.

4.	 In	the	Installation	Selection	dialog	box,	click	Advanced	options,	and
then	in	the	Advanced	Options	dialog	box,	click	Record	Unattended
.ISS	file.	Click	Next.

5.	 In	subsequent	Setup	screens,	select	the	options	you	want	for	the
unattended	installation.	After	you	finish	selecting	the	options,	in	the
Setup	Information	screen,	click	Next.

6.	 In	the	Setup	Complete	screen,	click	Finish.

This	message	appears:	"Setup	has	collected	the	information	needed	to
create	an	unattended	installation	file	(.iss)	for	use	with	later	unattended
installations	of	SQL	Server."

SQL	Server	Setup	then	creates	the	Setup.iss	file	in	the	%windir%

location	with	the	options	you	have	specified.

To	run	the	file,	see	How	to	run	an	unattended	installation	of	SQL
Server	2000	(Command	Prompt).

See	Also

Performing	an	Unattended	Installation

JavaScript:hhobj_1.Click()

How	To

How	to	run	an	unattended	installation	of	SQL	Server
2000	(Command	Prompt)
You	can	run	an	unattended	installation	by	using	sample	batch	files	and	setup
initialization	files	included	on	the	Microsoft®	SQL	Server™	2000	compact	disc.
Or,	you	can	run	the	Setup	program	directly	from	the	command	prompt	in	the
appropriate	directory	for	the	edition	of	SQL	Server	you	want	to	install,	using
arguments	as	needed.

To	run	an	unattended	installation	using	ready-made	batch	files

1.	 Locate	the	.bat	and	.iss	files	in	the	root	directory	of	your	SQL	Server
2000	compact	disc.

2.	 View	the	.bat	and	associated	.iss	files,	and	modify	if	necessary.	For
more	information,	see	Creating	a	Specialized	Setup	File.

3.	 Run	the	appropriate	batch	and	setup	files	from	the	command	prompt:

For	a	standard	unattended	installation,	run	Sqlins.bat.

For	a	client-only	unattended	installation,	run	Sqlcli.bat.

For	a	custom	unattended	installation,	run	Sqlcst.bat.

To	run	an	unattended	installation	directly	from	the	command	prompt

1.	 Run	Setupsql.exe	from	the	Setup	directory	in	the	appropriate
architecture	directory.

2.	 Use	arguments	as	needed:

-f1	<initialization	file	path>
Selects	an	unattended	setup	initialization	file.

JavaScript:hhobj_1.Click()

start	/wait	command	(with	the	-SMS	option)
Returns	control	to	the	command	prompt	only	after	SQL	Server	Setup
completes.

-s	flag
Causes	the	Setup	program	to	run	in	silent	mode	with	no	user	interface.

For	examples	of	command	prompt	options	and	arguments,	see	the	sample
.bat	files	on	your	SQL	Server	2000	compact	disc.

See	Also

Performing	an	Unattended	Installation

How	to	record	an	unattended	installation	file	(Setup)

JavaScript:hhobj_2.Click()

How	To

How	to	add	components	to	an	instance	of	SQL	Server
2000	(Setup)
Note		You	cannot	remove	components	by	clearing	checkboxes	in	the	Select
Components	dialog	box.	If	you	need	to	remove	components	from	an	instance	of
SQL	Server,	you	must	uninstall	the	instance.

To	add	components	to	an	instance	(default	or	named)	of	SQL	Server	2000

1.	 Run	SQL	Server	Setup,	select	SQL	Server	2000	Components,	select
Install	Database	Server,	and	then	click	Next	at	the	Welcome	screen
of	the	SQL	Server	Installation	Wizard.

2.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default	option
and	the	local	computer	name	appears	in	the	edit	box.	Click	Next.

3.	 In	the	Installation	Selection	dialog	box,	click	Upgrade,	Remove,	or
Add	Components	to	an	existing	instance	of	SQL	Server,	and	then
click	Next.

4.	 In	the	Instance	Name	dialog	box,	Default	is	selected	if	you	have	the
Default	instance	installed.	If	you	want	to	add	components	to	a	named
instance,	select	it	from	the	Instance	Name	list,	and	then	click	Next.

5.	 In	the	Existing	Installation	dialog	box,	click	Add	Components	to
your	existing	installation,	and	then	click	Next.

6.	 In	the	Select	Components	dialog	box,	select	a	component	from	the
Components	list,	and	then	select	items	from	the	related	Sub-
Components	list.	Click	to	select	items	you	want	to	add,	and	then	click
Next.

For	information	about	each	component,	select	the	item,	and	view	the
Description	box.

7.	 When	you	are	finished	specifying	options,	click	Next	in	the	Start
Copying	Files	dialog	box	to	add	components	to	the	selected	instance
of	SQL	Server.

See	Also

How	to	uninstall	an	existing	installation	of	SQL	Server	(Setup)

How	To

How	to	access	SQL	Server	Books	Online	for	SQL
Server	7.0
If	you	have	Microsoft®	SQL	Server™	7.0	running	as	the	default	instance	(and
SQL	Server	2000	as	a	named	instance),	SQL	Server	Books	Online	for	SQL
Server	7.0	remains	intact	on	your	computer.	You	can	access	SQL	Server	Books
Online	from	the	Start	menu	or	create	a	shortcut	to	it	on	your	desktop.

To	access	SQL	Server	Books	Online	for	SQL	Server	7.0	from	the	Start	menu

On	the	Start	menu,	point	to	Programs	and	Microsoft	SQL	Server	7.0,
and	then	click	Books	Online.

To	create	a	shortcut	to	SQL	Server	Books	Online	for	SQL	Server	7.0

1.	 Locate	Sqlbol.chm	on	your	computer.	(The	default	location	is
C:\Mssql7\Books.)

2.	 Right-click	Sqlbol.chm,	and	then	click	Create	Shortcut.

3.	 Copy	the	shortcut	to	your	desktop,	where	you	can	use	it	to	access	SQL
Server	Books	Online.

To	install	SQL	Server	Books	Online	for	SQL	Server	7.0	for	the	first	time,	or	to
reinstall	it,	you	must	install	it	from	the	SQL	Server	7.0	compact	disc	or	the	SQL
Server	Web	site.

To	reinstall	SQL	Server	Books	Online	for	SQL	Server	7.0	from	the	SQL
Server	7.0	compact	disc

1.	 Insert	the	Microsoft	SQL	Server	7.0	compact	disc	in	your	CD-ROM
drive.

2.	 Locate	the	file	Sqlbol.chm	on	the	compact	disc,	and	copy	it	to	a
location	on	your	computer.

3.	 Create	a	shortcut	on	your	desktop	to	SQL	Server	Books	Online	for
SQL	Server	7.0.

To	download	SQL	Server	Books	Online	for	SQL	Server	7.0	from	the	SQL
Server	Web	site

1.	 Go	to	the	Microsoft	SQL	Server	Web	site,	at	Microsoft	Web	site.

2.	 On	the	SQL	Server	Welcome	page,	click	Support.

3.	 On	the	Support	page,	click	Documentation	and	follow	instructions	to
access	SQL	Server	7.0	Books	Online.

http://www.microsoft.com/isapi/redir.dll?Prd=SQL&ar=home

How	To

How	to	install	English	Query	(Setup)
To	install	English	Query

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

3.	 On	the	Install	Components	screen,	select	Install	English	Query.

No	further	selections	are	necessary.	SQL	Server	Setup	installs	English
Query	on	your	computer.

How	To

How	to	install	Analysis	Services	(Setup)
The	following	procedure	is	a	shortened	version	of	the	steps	to	install	Analysis
Services.	For	a	more	complete	installation	procedure	and	for	related	information,
see	Running	Setup.

To	install	Analysis	Services

1.	 Insert	the	Microsoft®	SQL	Server™	2000	compact	disc	in	your	CD-
ROM	drive.	If	the	compact	disc	does	not	autorun,	double-click
Autorun.exe	in	the	root	directory	of	the	compact	disc.

2.	 Select	SQL	Server	2000	Components.

3.	 On	the	Install	Components	screen,	select	Install	Analysis	Services.

4.	 At	the	Welcome	screen	for	Microsoft	SQL	Server	2000	Analysis
Services,	click	Next.

5.	 Follow	the	directions	on	the	User	Information,	Software	License
Agreement,	and	related	screens.

6.	 In	the	Select	Components	dialog	box,	select	or	clear	components	as
needed,	and	then	click	Next.

If	you	want	to	change	the	default	location	of	the	Analysis	Services
program	files,	click	Browse	at	Destination	Folder	and	select	a	folder
location.

7.	 In	the	Data	Folder	Location	dialog	box,	accept	or	change	the	default
location	for	data	files,	and	then	click	Next.

8.	 In	the	Select	Program	Folder	dialog	box,	accept	or	change	the	default
settings,	and	then	click	Next.

JavaScript:hhobj_1.Click()

SQL	Server	Setup	installs	Analysis	Services	on	your	computer.

How	To

How	to	create	a	case-sensitive	instance	of	SQL	Server
2000	(Setup)
To	create	a	case-sensitive	instance	of	SQL	Server	2000

1.	 Run	SQL	Server	Setup	to	install	SQL	Server	2000	Components,
select	Install	Database	Server,	and	then	click	Next	at	the	Welcome
screen	of	the	SQL	Server	Installation	Wizard.

2.	 In	Computer	Name	dialog	box,	Local	Computer	is	the	default	option
and	the	local	computer	name	appears	in	the	edit	box.	Click	Next.

3.	 In	the	Installation	Selection	dialog	box,	click	click	Create	a	new
instance	of	SQL	Server,	or	install	Client	Tools,	and	then	click	Next.

4.	 Follow	the	directions	on	the	User	Information	and	related	screens.

5.	 In	the	Installation	Definition	dialog	box,	click	Server	and	Client
Tools,	and	then	click	Next.

6.	 In	the	Instance	Name	dialog	box:

To	create	a	case-sensitive	default	instance,	accept	the	Default
check	box	and	click	Next.

To	create	a	case-sensitive	named	instance,	clear	the	Default
check	box	and	type	an	instance	name.

7.	 In	the	Setup	Type	dialog	box,	click	Custom,	and	click	Next.

8.	 In	the	Select	Components,	Services	Accounts,	and	Authentication
Mode	dialog	boxes,	change	or	accept	the	default	settings,	and	then
click	Next.

9.	 In	the	Collation	Settings	dialog	box,	you	have	two	options:

To	make	a	Windows	Locale	collation	case-sensitive,	select
Collation	designator	and	then	select	the	correct	collation
designator	from	the	list.	Clear	the	Binary	check	box,	and	then
select	the	Case-sensitive	check	box.

To	make	a	SQL	collation	case-sensitive,	select	SQL
Collations,	and	then	select	the	correct	collation	name.

For	more	information	about	collation	options,	click	Help.	When	you
finish	setting	the	options,	click	Next.

10.	 In	subsequent	dialog	boxes,	change	or	accept	the	default	settings,	and
then	click	Next.	

11.	 When	you	are	finished	specifying	options,	click	Next	in	the	Start
Copying	Files	dialog	box.

12.	 In	the	Choose	Licensing	Mode	dialog	box,	make	selections	according
to	your	license	agreement,	and	click	Continue	to	begin	the
installation.

3.	 Click	Help	for	information	about	licensing,	or	see	your	system
administrator.

See	Also

Collation	Settings	in	Setup

JavaScript:hhobj_1.Click()

How	To

How	to	set	client	code	pages
To	set	client	code	pages	under	the	Windows	NT,	Windows	98,	or	Windows
2000	operating	systems

Use	the	Regional	Settings	application	in	Control	Panel	as	described	in
the	Microsoft®	Windows	NT®,	Microsoft	Windows®	98,	or	Microsoft
Windows	2000	documentation.

How	To

How	to	switch	from	SQL	Server	6.5	to	SQL	Server
2000	(Command	Prompt)
To	switch	from	SQL	Server	6.5	to	SQL	Server	2000

Run	Vswitch.exe.

-SwitchTo	<65|80>
Determines	which	version	of	Microsoft®	SQL	Server™	2000	to	activate.

-Silent	<0|1>
Determines	if	any	user	interface	or	messages	are	displayed.	If	1	is
specified,	a	user	interface	or	messages	are	not	displayed.	The	default	is	0.

Examples

c:\...\vswitch	-SwitchTo	80	-Silent	1
	

How	To

How	to	switch	from	SQL	Server	6.5	to	SQL	Server
2000	(Windows)
To	switch	from	SQL	Server	6.5	to	SQL	Server	2000

On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server-Switch,
and	then	click	Microsoft	SQL	Server	2000.

SQL	Server	Setup	switches	from	Microsoft®	SQL	Server™	2000
version	6.5	to	SQL	Server	2000.

How	To

How	to	remove	SQL	Server	2000	(Windows)
You	can	remove	instances	of	Microsoft®	SQL	Server™	2000	using	Control
Panel.	Each	named	instance	must	be	removed	separately.	When	upgrading	or
maintaining	instances,	you	can	remove	SQL	Server	using	the	Uninstall	option	in
Setup.	For	more	information,	see	How	to	uninstall	an	existing	installation
(Setup).

You	cannot	remove	a	selected	component	of	SQL	Server	2000	after	it	is
installed.	To	remove	components,	you	must	remove	the	entire	instance.

To	remove	a	named	instance	of	SQL	Server	2000

1.	 In	Control	Panel,	click	Add/Remove	programs.

2.	 Select	a	name	of	an	instance	of	SQL	Server	2000,	and	click	Remove.

To	remove	all	instances	of	SQL	Server	2000

1.	 In	Control	Panel,	click	Add/Remove	programs.

2.	 Repeat	the	removal	process	for	each	instance	of	SQL	Server	2000	that
is	installed.

SQL	Server	2000	is	uninstalled,	but	some	files	may	remain.	Manually	delete
directories	if	any	files	related	to	SQL	Server	2000	still	exist.

See	Also

Directories	and	File	Locations

JavaScript:hhobj_1.Click()

How	To

How	To	Upgrade	from	SQL	Server	6.5
The	How	To	topics	in	this	section	are	specific	to	the	process	of	converting	data
from	Microsoft®	SQL	Server™	6.5	to	Microsoft	SQL	Server	2000	using	the
SQL	Server	Upgrade	Wizard.

Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft	SQL	Server	2000	already	installed	on	your	computer.

Considerations	when	upgrading	from	SQL	Server	6.5:
During	the	upgrade	process,	the	SQL	Server	6.5	server	is	stopped	and
started	while	objects	are	scripted	and	data	is	extracted.	When	the	data
transfer	starts,	only	SQL	Server	2000	is	running,	and	it	is	not	possible	to
access	SQL	Server	6.5.

If	you	are	upgrading	your	existing	SQL	Server	6.5	server	to	a	different
computer	that	is	running	SQL	Server	2000,	both	computers	should	be
configured	to	use	a	domain	user	name	and	password	for	the
MSSQLServer	service.

During	this	upgrade,	user-defined	messages	created	in	SQL	Server	6.5
using	sp_addmessage	are	not	converted	to	SQL	Server	2000.	To	retain
these	custom	messages,	manually	copy	the	messages	added	in	SQL
Server	6.5	to	your	installation	of	SQL	Server	2000.

See	Also

Troubleshooting	the	SQL	Server	Upgrade	Wizard

Completing	the	SQL	Server	Upgrade	Wizard

Upgrade	Log	Files

Upgrading	to	SQL	Server	2000	FAQ

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	change	the	size	of	tempdb	in	SQL	Server	6.5	(ISQL/w)
To	change	the	size	of	tempdb	in	SQL	Server	6.5

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server	6.5,
and	then	click	ISQL/w.

2.	 Enter	the	sa	password,	and	then	click	Connect.

3.	 Execute	a	DISK	INIT	command	to	increase	the	size	of	the	tempdb
device	to	at	least	25	MB.

4.	 Execute	an	ALTER	DATABASE	command	to	increase	the	size	of	the
tempdb	database	to	at	least	25	MB.

Examples

--Increase	the	size	of	the	tempdb	device
DISK	INIT	name	=	'tempdb1',physname	=	'c:\mssql\data\tempdb1.DAT',vdevno	=	100,	size	=	12800
GO
--Increase	the	size	of	tempdb
ALTER	DATABASE	tempdb	ON	tempdb1	=	25
	

How	To

How	to	change	to	the	current	server	name	in	the	SQL	Server	6.5
master	database	(ISQL/w)
To	change	to	the	current	server	name	in	the	SQL	Server	6.5	master
database

1.	 Start	Microsoft®	SQL	Server™	in	minimal	configuration	mode.	In	a
command	prompt	window,	from	the	\Mssql\Binn	directory,	run:
sqlservr	-f

2.	 On	the	Start	menu,	point	to	Programs	/Microsoft	SQL	Server	6.5,
and	then	click	ISQL/w.

3.	 Enter	the	sa	password,	and	then	click	Connect.

4.	 Execute	SELECT	@@SERVERNAME	to	retrieve	the	former	server
name.

5.	 Execute	sp_dropserver	to	drop	the	former	server.

6.	 Execute	sp_addserver	to	add	the	current	server.

7.	 Stop	SQL	Server.	In	the	command	prompt	window,	press	Ctrl+C.

8.	 Restart	SQL	Server.

9.	 Execute	SELECT	@@SERVERNAME	to	verify	the	current	server
name.

Examples

--Start	SQL	Server	in	minimal	configuration	mode.

--Retrieve	the	former	server	name.
SELECT	@@SERVERNAME
--Drop	the	server	returned	from	the	previous	select.
sp_dropserver	'SERVER6X'
--Add	the	current	server.
sp_addserver	'SERVER70',	local
--Stop	SQL	Server.
--Restart	SQL	Server	in	minimal	configuration	mode.
--Verify	the	current	server	name.
SELECT	@@SERVERNAME

How	To

How	to	update	the	device	file	locations	in	the	SQL	Server	6.5
master	database	(ISQL/w)
To	update	the	device	file	locations	in	the	SQL	Server	6.5	master	database

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server	6.5,
and	then	click	ISQL/w.

2.	 Enter	the	sa	password,	and	then	click	Connect.

3.	 Select	from	sysdevices	in	the	master	database	to	view	the	old	device
file	locations.

4.	 Execute	sp_configure	to	allow	updates	to	the	system	tables,	and	then
reconfigure	with	override.

5.	 Update	the	device	file	locations	that	have	changed.

6.	 Execute	sp_configure	to	disallow	updates	to	the	system	tables,	and
then	reconfigure	with	override.

Examples

--View	the	old	device	file	locations
SELECT	phyname	FROM	sysdevices

--Allow	updates	to	the	system	tables
sp_configure	'allow	updates',1
GO
RECONFIGURE	WITH	OVERRIDE
GO
--Update	device	file	locations	that	have	changed

UPDATE	sysdevices
SET	phyname	=	"E:\Data\HR\HR1.dat"
WHERE	name	=	"HumanResources1"
GO
UPDATE	sysdevices
SET	phyname	=	"E:\Data\HR\HR1Log.dat"
WHERE	name	=	"HumanResources1Log"
GO
--Disallow	updates	to	the	system	tables
sp_configure	'allow	updates',0
GO
RECONFIGURE	WITH	OVERRIDE
GO
	

How	To

How	to	estimate	the	disk	space	required	for	an	upgrade	from	SQL
Server	version	6.5	to	SQL	Server	2000	(SQL	Server	Upgrade
Wizard)
Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft®	SQL	Server™	2000	already	installed	on	your	computer.

To	estimate	the	disk	space	required	for	an	upgrade

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server-
Switch,	click	SQL	Server	Upgrade	Wizard,	and	then	click	Next.

2.	 Select	Named	pipe;	then	click	Next.

3.	 In	Export	server	(6.5),	in	the	Server	name	box,	enter	the	name	of	the
local	or	remote	computer	on	which	SQL	Server	6.5	resides.

4.	 In	the	Administrator	password	('sa')	box,	enter	the	sa	password	for
SQL	Server	6.5,	and	then	click	Next.

Unless	you	have	changed	it,	the	system	administrator	password	for
SQL	Server	2000	is	blank.

5.	 Include	the	databases	to	upgrade.	Move	any	database	not	to	include	in
the	disk	space	estimation	to	the	Exclude	list,	and	then	click	Next.

6.	 Select	Use	the	default	configuration	or	edit	the	default;	then	click
Edit.

The	SQL	Server	Upgrade	Wizard	layout	utility	appears,	showing	the
proposed	layout	of	the	SQL	Server	2000	data	files.

7.	 Click	Advanced.

8.	 Click	an	object	in	the	Proposed	database	layout	box	to	view	details

in	the	Object	details	box.

9.	 The	Drive	summary	box	shows	the	estimated	size	of	all	SQL	Server
2000	data	files	and	the	free	disk	space	left	on	all	of	the	local	fixed
disks.	On	the	Options	menu,	select	Freespace	includes	6.5	files	to
view	the	free	space	that	would	exist	if	the	SQL	Server	6.5	data	files
were	deleted.

10.	 Click	Accept	to	return	to	the	Database	Creation	dialog	box.

11.	 Click	Cancel	to	quit	the	SQL	Server	Upgrade	Wizard.

How	To

How	to	edit	the	default	database	configuration	(SQL	Server
Upgrade	Wizard)
Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft®	SQL	Server™	2000	already	installed	on	your	computer.

To	edit	the	default	database	configuration

1.	 In	the	Database	Creation	dialog	box	of	the	SQL	Server	Upgrade
Wizard,	click	Edit.

2.	 Click	Advanced	to	view	object	details	and	drive	summaries.

3.	 In	the	Proposed	database	layout	box,	double-click	a	database	file.

4.	 Change	any	database	file	attributes,	and	then	click	OK.

5.	 View	the	changes	to	the	drive	summary.

6.	 When	all	changes	have	been	made,	click	Accept	to	save	the	database
configuration.

See	Also

Proposed	Database	Layout

JavaScript:hhobj_1.Click()

How	To

How	to	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000
upgrade	using	a	direct	pipeline	(SQL	Server	Upgrade	Wizard)
Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft®	SQL	Server™	2000	already	installed	on	your	computer.

To	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	by
named	pipe

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server-
Switch,	click	SQL	Server	Upgrade	Wizard,	and	then	click	Next.

2.	 In	the	Data	and	Object	Transfer	screen,	accept	the	default	selections,
including	Named	pipe,	and	then	click	Next.	Verification	options	are
recommended,	but	not	required.	Click	Help	for	information.

3.	 On	the	Logon	screen,	in	the	Server	name	box	in	the	Export	server
(6.5)	group	box,	enter	the	name	of	the	local	or	remote	computer	on
which	Microsoft	SQL	Server	version	6.5	is	installed.

In	the	Administrator	password	('sa')	box,	enter	the	sa	password	for
SQL	Server	6.5,	and	then	click	Next.	Unless	you	have	changed	it,	the
system	administrator	password	for	SQL	Server	2000	is	blank.

For	Import	Server	(2000),	the	server	name	is	filled	in.	Enter	the
optional	startup	arguments,	if	you	want.	Click	Help	for	information.
When	you	are	finished	setting	options,	click	Next.

4.	 In	the	message	box	asking	if	you	want	to	continue,	click	Yes	if	you	are
ready	to	upgrade.	The	SQL	Server	Upgrade	Wizard	shuts	down	SQL
Server	6.5	and	starts	SQL	Server	2000.

5.	 In	the	Code	Page	Selection	screen,	accept	or	change	the	default
settings,	and	then	click	Next.

6.	 In	the	Database	Selection	screen,	include	the	databases	to	upgrade.
Move	any	databases	you	do	not	want	upgraded	at	this	time	to	the
Exclude	list,	and	then	click	Next.

Converting	all	databases	is	recommended.

7.	 In	the	Database	Creation	dialog	box,	select	Use	the	default
configuration	or	edit	the	default,	and	then	click	Next.

Click	Edit	to	examine	and	make	changes	to	the	proposed	disk
configuration	within	the	layout	utility.	In	the	Proposed	Database
Layout	box,	make	changes	as	needed.	Click	Advanced	to	view
Object	Details	and	Drive	Summary.	When	you	are	finished,	click
Accept	to	return	to	the	SQL	Server	Upgrade	Wizard.

8.	 In	the	System	Configuration	screen,	in	System	objects	to	transfer,
select	the	object	types	to	transfer	from	SQL	Server	6.5	to	SQL	Server
2000:

Server	configuration

Login	and	remote	login	registrations	and	server	configuration
options	relevant	to	SQL	Server	2000	are	transferred	as	part	of
the	version	upgrade.

Replication	settings

All	articles,	subscriptions	and	publications	of	each	selected
database,	plus	the	distribution	database,	if	any,	are	transferred
and	upgraded.

SQL	Executive	settings

All	tasks	scheduled	by	SQL	Executive	are	transferred	and
upgraded	so	that	SQL	Server	2000	can	schedule	and	run	those
tasks	in	SQL	Server	Agent.

9.	 In	the	System	Configuration	screen,	in	Advanced	settings,	for	ANSI
Nulls,	select:

Off,	if	ANSI	nulls	should	not	be	used	when	stored	procedures
are	created.	This	is	the	default.

On,	if	ANSI	nulls	should	be	used	when	stored	procedures	are
created.

10.	 In	Quoted	identifiers,	select	one	of	these	options,	and	then	click
Next:

Mixed	(or	don't	know),	if	some	of	your	objects	were	created
with	QUOTED_IDENTIFIER	set	to	ON	and	others	with	it	set
to	OFF,	or	if	you	are	not	sure	how	they	were	created.

Off,	if	all	objects	should	be	compiled	with
QUOTED_IDENTIFIER	set	to	OFF.

On,	if	all	objects	should	be	compiled	with
QUOTED_IDENTIFIER	set	to	ON.

11.	 In	the	Completing	the	SQL	Server	Wizard	screen,	view	the
summary	of	choices	you	have	made.	Click	View	warnings	and
choices	in	notepad	to	open	a	text	version	of	the	upgrade	script.	If	all
options	are	correct,	click	Finish.

The	SQL	Server	Upgrade	Script	Interpreter	screen	appears,	with	information
on	the	progress	of	the	upgrade.

See	Also

Order	of	Upgrade	Using	a	Direct	Pipeline	or	Tape	Drive

JavaScript:hhobj_1.Click()

How	To

How	to	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000
upgrade	using	a	tape	drive	(SQL	Server	Upgrade	Wizard)
Note		To	run	the	SQL	Server	Upgrade	Wizard,	you	must	have	an	instance	of
Microsoft®	SQL	Server™	2000	already	installed	on	your	computer.

To	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	using	a
tape	drive

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server-
Switch,	click	SQL	Server	Upgrade	Wizard,	and	then	click	Next.

2.	 In	the	Data	and	Object	Transfer	screen,	click	Tape,	and	then	click
Next.	Verification	options	are	recommended,	but	not	required.	Click
Help	for	information.

3.	 On	the	Logon	screen,	in	the	Server	name	box	in	the	Export	server
(6.5)	group	box,	enter	the	name	of	the	computer	on	which	Microsoft
SQL	Server	version	6.5	is	installed.

In	the	Administrator	password	('sa')	box,	enter	the	sa	password	for
SQL	Server	6.5,	and	then	click	Next.

Unless	you	have	changed	it,	the	sa	password	for	SQL	Server	2000	is
blank.

For	Import	Server	(2000),	the	server	name	is	filled	in.	Enter	optional
startup	arguments,	if	you	want.	Click	Help	for	information.	When	you
are	finished	setting	options,	click	Next.

4.	 In	the	message	box	asking	if	you	want	to	continue,	click	Yes	if	you	are
ready	to	upgrade.	The	SQL	Server	Upgrade	Wizard	switches	to	the
SQL	Server	2000	server.

5.	 In	the	Code	Page	Selection	screen,	accept	or	change	the	default
settings,	and	then	click	Next.

6.	 In	the	Database	Selection	screen,	include	the	databases	to	upgrade.
Move	any	database	not	to	be	upgraded	at	this	time	to	the	Exclude	list,
and	then	click	Next.

7.	 In	Device	for	data	transfer,	specify	the	location	of	the	tape	drive.

8.	 In	6.5	device	backup	options,	select	Backup	6.5	devices	before
exporting	data	if	you	have	not	backed	up	the	databases	already.

Prior	to	creating	the	SQL	Server	2000	databases,	the	SQL	Server
Upgrade	Wizard	either	prompts	you	to	back	up	the	SQL	Server	6.5
devices	or	copies	the	devices	for	you	automatically.

9.	 Select	Delete	6.5	devices	before	importing	data	if	necessary	due	to
lack	of	disk	space,	and	then	click	Next.

After	objects	and	data	are	exported,	and	before	creating	databases	in
SQL	Server	2000,	the	SQL	Server	Upgrade	Wizard	deletes	the	SQL
Server	6.5	devices	to	reclaim	disk	space.

10.	 Select	Use	the	default	configuration	or	edit	the	default,	and	then
click	Next.

Click	Edit	to	examine	and	make	changes	to	the	proposed	disk
configuration	within	the	layout	utility.	In	the	Proposed	Database
Layout	box,	make	changes	as	needed.	Click	Advanced	to	view
Object	Details	and	Drive	Summary.	When	you	are	finished,	click
Accept	to	return	to	the	SQL	Server	Upgrade	Wizard.

11.	 In	System	objects	to	transfer,	select	the	object	types	to	transfer	from
SQL	Server	6.5	to	SQL	Server	2000:

Server	configuration

Login	and	remote	login	registrations	and	server	configuration
options	relevant	to	SQL	Server	2000	are	transferred	as	part	of
the	version	upgrade.

Replication	settings

All	articles,	subscriptions,	and	publications	of	each	selected
database,	plus	the	distribution	database,	if	any,	are	transferred
and	upgraded.

SQL	Executive	settings

All	tasks	scheduled	by	SQL	Executive	are	transferred	and
upgraded	so	that	SQL	Server	2000	can	schedule	and	run	those
tasks	in	SQL	Server	Agent.

12.	 In	ANSI	Nulls,	select:

Off,	if	ANSI	nulls	should	not	be	used	when	stored	procedures
are	created.	This	is	the	default.

On,	if	ANSI	nulls	should	be	used	when	stored	procedures	are
created.

13.	 In	Quoted	Identifiers,	select	one	of	these	options,	and	then	click
Next:

Mixed	(or	don't	know),	if	some	of	your	objects	were	created
with	QUOTED_IDENTIFIER	set	to	ON	and	others	with	it	set
to	OFF,	or	if	you	are	not	sure	how	they	were	created.

Off,	if	all	objects	should	be	compiled	with
QUOTED_IDENTIFIER	set	to	OFF.

On,	if	all	objects	should	be	compiled	with
QUOTED_IDENTIFIER	set	to	ON.

14.	 In	the	Completing	the	SQL	Server	Wizard	screen,	view	the
summary	of	choices	you	have	made.	Click	View	warnings	and
choices	in	notepad	to	open	a	text	version	of	the	upgrade	script.	If	all
options	are	correct,	click	Finish.

The	SQL	Server	Upgrade	Script	Interpreter	screen	appears	with

information	about	the	progress	of	the	upgrade.

See	Also

Order	of	Upgrade	Using	a	Direct	Pipeline	or	Tape	Drive

JavaScript:hhobj_1.Click()

How	To

SQL	Server	Enterprise	Manager
Microsoft®	Management	Console	(MMC)	is	a	tool	that	presents	a	common
interface	for	managing	different	server	applications	in	a	Microsoft	Windows®
network.	Server	applications	provide	a	component	called	an	MMC	snap-in	that
presents	MMC	users	with	a	user	interface	for	managing	the	server	application.
SQL	Server	Enterprise	Manager	is	the	Microsoft	SQL	Server™	MMC	snap-in.

SQL	Server	Enterprise	Manager	is	the	primary	administrative	tool	for	SQL
Server	and	provides	an	MMC-compliant	user	interface	that	allows	users	to:

Define	groups	of	SQL	Server	instances.

Register	individual	servers	in	a	group.

Configure	all	SQL	Server	options	for	each	registered	server.

Create	and	administer	all	SQL	Server	databases,	objects,	logins,	users,
and	permissions	in	each	registered	server.

Define	and	execute	all	SQL	Server	administrative	tasks	on	each
registered	server.

Design	and	test	SQL	statements,	batches,	and	scripts	interactively	by
invoking	SQL	Query	Analyzer.

Invoke	the	various	wizards	defined	for	SQL	Server.

How	To

Administering	SQL	Server
Microsoft®	SQL	Server™	2000	administration	applications,	and	the
accompanying	services,	are	designed	to	assist	the	system	administrator	with	all
administrative	tasks	related	to	maintaining	and	monitoring	server	performance
and	activities.

Topic Description
Starting,	Pausing,	and
Stopping	SQL	Server

Explains	how	to	start	an	instance	of	SQL
Server,	and	what	you	need	to	do	before,
during,	and	after	you	log	in.

Failover	Clustering Describes	how	to	set	up	and	use	a	SQL
Server	2000	failover	cluster.

Importing	and	Exporting	Data Describes	how	to	retrieve	data	from
external	sources	and	feed	data	to	other
applications.

Backing	Up	and	Restoring
Databases

Describes	how	to	protect	and	restore	data
over	a	wide	range	of	potential	system
problems.

Using	the	Copy	Database
Wizard

Describes	how	to	copy	or	move	databases
between	servers	and	upgrade	databases
from	SQL	Server	version	7.0	to	SQL	Server
2000.

Managing	Servers Describes	how	to	register	and	configure
remote	and	linked	servers,	add	or	remove
servers,	and	modify	server	settings.

Managing	Clients Describes	how	to	configure	client
connections	with	server	components	and
change	the	default	network	protocol	to	meet
the	needs	of	your	site.

Automating	Administrative
Tasks

Describes	how	to	establish	which
administrative	responsibilities	will	occur
regularly,	define	jobs	and	alerts,	and	run
SQL	Server	Agent.

Managing	Security Describes	how	to	protect	and	safeguard

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

database	access	by	restricting	permissions
to	include	only	authorized	users.

Monitoring	Server
Performance	and	Activity

Describes	how	to	develop	a	strategy	for
ensuring	that	server	and	activity
performance	are	at	acceptable	levels.

Using	the	Web	Assistant
Wizard

Explains	how	to	use	the	wizard	to	create
Web	pages.

JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

How	To

How	to	start	an	instance	of	SQL	Server	automatically	(Enterprise
Manager)
To	start	an	instance	of	SQL	Server	automatically

1.	 Right-click	a	server,	and	then	click	Properties.

2.	 Click	the	General	tab.

3.	 Under	Autostart	policies	when	the	operating	system	starts,	select
the	Autostart	SQL	Server	check	box.

See	Also

Starting	SQL	Server	Automatically

How	to	shut	off	automatic	startup	of	SQL	Server	(Enterprise	Manager)

JavaScript:hhobj_1.Click()

How	To

How	to	shut	off	automatic	startup	of	SQL	Server	(Enterprise
Manager)
To	shut	off	automatic	startup	of	SQL	Server

1.	 Right-click	a	server,	and	then	click	Properties.

2.	 Click	the	General	tab.

3.	 Under	Autostart	policies	when	the	operating	system	starts,	clear	the
Autostart	SQL	Server	check	box.

See	Also

Starting	SQL	Server	Automatically

How	to	start	SQL	Server	automatically

JavaScript:hhobj_1.Click()

How	To

How	to	start	SQL	Server	(Enterprise	Manager)
To	start	SQL	Server

Right-click	a	server,	and	then	click	Start.

The	green	arrow	on	the	icon	beside	the	server	name	indicates	that	the
server	started	successfully.

See	Also

Starting	SQL	Server	Manually

Stopping	SQL	Server

Pausing	and	Resuming	SQL	Server

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	stop	SQL	Server	or	SQL	Server	Agent	(Enterprise
Manager)
Note		Before	stopping	an	instance	of	Microsoft®	SQL	Server™,	you	should
pause	SQL	Server	and	stop	SQL	Server	Agent	to	ensure	the	most	orderly
shutdown.	You	can	stop	both	by	using	SQL	Server	Service	Manager.

To	stop	SQL	Server	or	SQL	Server	Agent	(Enterprise	Manager)

1.	 Right-click	a	server,	and	then	click	Pause.

2.	 Optionally,	send	a	message	informing	connected	users	that	the	server
will	be	shutting	down.	After	an	appropriate	interval,	proceed	to	Step	3.

3.	 Right-click	SQL	Server	Agent,	and	then	click	Stop.

4.	 Right-click	the	server,	and	then	click	Stop.

Note		Stopping	an	instance	of	SQL	Server	by	using	SQL	Server	Enterprise
Manager	or	the	net	stop	mssqlserver	command	causes	SQL	Server	to	perform	a
checkpoint	in	all	databases.	Then	a	SHUTDOWN	WITH	NOWAIT	is	done	to
flush	all	committed	data	from	the	data	cache	and	to	stop	the	server	immediately.

To	stop	SQL	Server	or	SQL	Server	Agent	(Service	Manager)

1.	 If	the	service	is	a	remote	service,	in	the	Server	box,	enter	the	name	of
the	remote	server.	If	it	is	a	local	server,	the	Server	box	will	be	filled	in.

This	connects	you	to	the	remote	server	and	populates	the	Services	box
with	the	names	of	the	SQL	Server	services	registered	on	the	remote
computer.

2.	 In	the	Services	dialog	box,	click	SQL	Server	or	SQL	Server	Agent.

3.	 Click	Pause.

If	you	are	stopping	SQL	Server	Agent,	proceed	to	Step	4.	Otherwise,	send	a
message	informing	connected	users	that	the	server	will	be	shutting	down.
After	an	appropriate	interval,	proceed	to	Step	4.

4.	 Click	Stop.

See	Also

Stopping	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	start	the	default	instance	of	SQL	Server	(Service
Manager)
To	start	the	default	instance	of	SQL	Server

1.	 In	the	Services	box,	click	SQL	Server.

If	the	service	is	a	remote	service,	type	the	name	of	the	remote	server	in
the	Server	box.

2.	 Click	Start/Continue.

See	Also

Starting	SQL	Server	Manually

JavaScript:hhobj_1.Click()

How	To

How	to	start	a	clustered	instance	of	SQL	Server	(Service
Manager)
To	start	a	clustered	instance	of	SQL	Server

1.	 Type	the	name	of	the	virtual	SQL	Server	in	the	Server	box.	If	it	is	a
default	instance,	you	only	need	to	specify	the	virtual	server	name.	If	it
is	a	named	instance,	you	must	enter	VIRTUALSERVER\Instance.

2.	 In	the	Services	box,	click	SQL	Server.

3.	 Click	Start/Continue.

See	Also

Starting	SQL	Server	Manually

JavaScript:hhobj_1.Click()

How	To

How	to	start	a	named	instance	of	SQL	Server	(Service	Manager)
To	start	a	named	instance	of	SQL	Server

1.	 In	the	Server	box,	select	the	name	of	the	server	and	the	named
instance	of	Microsoft®	SQL	Server™	2000,	or	type	the	name	of	the
remote	server.

2.	 In	the	Services	box,	click	SQL	Server,	and	then	click
Start/Continue.

How	To

How	to	start	the	default	instance	of	SQL	Server	(Windows)
To	start	the	default	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	MSSQLSERVER,	and	then	click
Start.

How	To

How	to	start	a	named	instance	of	SQL	Server	(Windows)
To	start	a	named	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	the	named	instance	of	Microsoft®
SQL	Server™	2000	you	want	to	start,	and	then	click	Start.

How	To

How	to	start	the	default	instance	of	SQL	Server	(Command
Prompt)
To	start	the	default	instance	of	SQL	Server	from	a	command	prompt

From	a	command	prompt,	enter:

sqlservr.exe	-c

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
Microsoft®	SQL	Server™	you	want	to	start)	in	the	command	window
before	starting	sqlservr.exe.

See	Also

Starting	SQL	Server	Manually

JavaScript:hhobj_1.Click()

How	To

How	to	start	a	named	instance	of	SQL	Server	(Command	Prompt)
To	start	a	named	instance	of	SQL	Server	from	a	command	prompt

From	a	command	prompt,	enter	this	command:

sqlservr.exe	-c	-s	{instancename}

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
Microsoft®	SQL	Server™	2000	you	want	to	start)	in	the	command	window
before	starting	sqlservr.exe.	For	example,	if	Instance1	uses	\mssql$Instance1	to
store	its	binaries,	you	must	be	in	the	\mssql$Instance1\binn	directory	to	start
sqlservr.exe.

How	To

How	to	start	the	default	instance	of	SQL	Server	in	single-user
mode	(Command	Prompt)
To	start	the	default	instance	of	SQL	Server	in	single-user	mode	from	a
command	prompt

From	a	command	prompt,	enter:

sqlservr.exe	-c	-m

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
Microsoft®	SQL	Server™	you	want	to	start)	in	the	command	window
before	starting	sqlservr.exe.

See	Also

Starting	SQL	Server	in	Single-User	Mode

Using	Startup	Options

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	start	a	named	instance	of	SQL	Server	in	single-user	mode
(Command	Prompt)
To	start	a	named	instance	of	SQL	Server	in	single-user	mode	from	a
command	prompt

From	a	command	prompt,	enter:

sqlservr.exe	-c	-	m	-s	{instancename}

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
Microsoft®	SQL	Server™	2000	you	want	to	start)	in	the	command
window	before	starting	sqlservr.exe.

How	To

How	to	start	the	default	instance	of	SQL	Server	with	minimal
configuration	(Command	Prompt)
To	start	the	default	instance	of	SQL	Server	with	minimal	configuration

From	a	command	prompt,	enter	the	following	command	to	start	the
default	instance	of	Microsoft®	SQL	Server™	as	a	service:

sqlservr	-c	-f

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
SQL	Server	you	want	to	start)	in	the	command	window	before	starting
sqlservr.exe.

See	Also

Starting	SQL	Server	Manually

JavaScript:hhobj_1.Click()

How	To

How	to	start	a	named	instance	of	SQL	Server	with	minimal
configuration	(Command	Prompt)
To	start	a	named	instance	of	SQL	Server	with	minimal	configuration

From	a	command	prompt,	enter	the	following	command	to	start	a
named	instance	of	Microsoft®	SQL	Server™	2000	as	a	service:

sqlservr	-c	-f	-s	{instancename}

Note		You	must	switch	to	the	appropriate	directory	(for	the	instance	of
SQL	Server	you	want	to	start)	in	the	command	window	before	starting
sqlservr.exe.

How	To

How	to	pause	and	resume	the	default	instance	of	SQL	Server
(Service	Manager)
To	pause	and	resume	the	default	instance	of	SQL	Server

1.	 In	the	Services	box,	click	SQL	Server.

If	the	service	is	a	remote	service,	type	the	name	of	the	remote	server.

2.	 Click	Pause,	and	then	click	Start/Continue.

See	Also

Pausing	and	Resuming	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	stop	a	clustered	instance	of	SQL	Server	(Service	Manager)
To	stop	a	clustered	instance	of	SQL	Server

1.	 Type	the	name	of	the	virtual	Microsoft®	SQL	Server™	in	the	Server
box.	If	it	is	a	default	instance,	you	only	need	to	specify	the	virtual
server	name.	If	it	is	a	named	instance,	you	must	enter
VIRTUALSERVER\Instance.

2.	 In	the	Services	box,	click	SQL	Server.

3.	 Click	Stop.	This	pauses	the	cluster	resource,	and	then	stops	the	SQL
Server	service,	which	does	not	cause	a	failover	of	SQL	Server.

See	Also

Stopping	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	pause	and	resume	a	named	instance	of	SQL	Server
(Service	Manager)
To	pause	and	resume	a	named	instance	of	SQL	Server

1.	 In	the	Server	box,	select	the	name	of	the	server	and	the	named
instance	of	Microsoft®	SQL	Server™	2000,	or	type	the	name	of	the
remote	server.	

2.	 In	the	Services	box,	click	SQL	Server.

3.	 Click	Pause,	and	then	click	Start/Continue.

How	To

How	to	pause	and	resume	the	default	instance	of	SQL	Server
(Windows)
To	pause	and	resume	the	default	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	MSSQLSERVER.

3.	 Click	Pause	or	Continue.

How	To

How	to	pause	and	resume	a	named	instance	of	SQL	Server
(Windows)
To	pause	and	resume	a	named	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	the	named	instance	of	Microsoft®
SQL	Server™	2000	you	want	to	pause.

3.	 Click	Pause	or	Continue.

How	To

How	to	pause	and	resume	the	default	instance	of	SQL	Server
(Command	Prompt)
To	pause	and	resume	the	default	instance	of	SQL	Server

From	a	command	prompt,	enter	either:

net	pause	mssqlserver

-or-

net	continue	mssqlserver

An	instance	of	Microsoft®	SQL	Server™	can	be	paused	or	resumed
only	if	it	was	started	as	a	Microsoft	Windows	NT®	4.0	or	Windows®
2000	service.

See	Also

Pausing	and	Resuming	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	pause	and	resume	a	named	instance	of	SQL	Server
(Command	Prompt)
To	pause	and	resume	a	named	instance	of	SQL	Server

From	a	command	prompt,	enter	either:

net	pause	mssql$instancename

-or-

net	continue	mssql$instancename

How	To

How	to	broadcast	a	shutdown	message	(Command	Prompt)
To	broadcast	a	shutdown	message

From	a	command	prompt,	enter:

net	send	/users	"message"

For	example:

net	send	/users	"SQL	Server	is	going	down	in	20	minutes.	
Disconnect	within	15	minutes."

Note		The	shutdown	message	can	be	broadcast	only	if	an	instance	of
Microsoft®	SQL	Server™	is	running	on	Microsoft	Windows	NT®	4.0
or	Windows®	2000.	The	users	option	specifies	that	the	message	be	sent
to	all	users	connected	to	the	server.	For	information	about	other	net
send	options,	see	the	Windows	NT	4.0	and	Windows	2000
documentation.

See	Also

Stopping	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	stop	the	default	instance	of	SQL	Server	(Windows)
To	stop	the	default	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	MSSQLSERVER,	and	then	click
Stop.

How	To

How	to	stop	a	named	instance	of	SQL	Server	(Windows)
To	stop	a	named	instance	of	SQL	Server

1.	 In	Control	Panel,	double-click	Services.

2.	 In	the	Services	dialog	box,	click	the	named	instance	of	Microsoft®
SQL	Server™	2000	you	want	to	stop,	and	then	click	Stop.

How	To

How	to	stop	the	default	instance	of	SQL	Server	(Command
Prompt)
To	stop	the	default	instance	of	SQL	Server

From	a	command	prompt,	enter:

net	stop	mssqlserver

Note		Stopping	a	default	instance	of	Microsoft®	SQL	Server™	using	SQL
Server	Enterprise	Manager	or	the	net	stop	mssqlserver	command	causes	SQL
Server	to	perform	a	checkpoint	in	all	databases.	Then	a	SHUTDOWN	WITH
NOWAIT	is	done	to	flush	all	committed	data	from	the	data	cache	and	to	stop	the
server	immediately.	Stopping	a	default	instance	of	SQL	Server	from	the
command	prompt	works	only	if	you	are	running	Microsoft	Windows	NT®	4.0	or
Windows®	2000.

See	Also

Stopping	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	stop	a	named	instance	of	SQL	Server	(Command	Prompt)
To	stop	a	named	instance	of	SQL	Server

From	a	command	prompt,	enter:

net	stop	mssql$instancename

Note		Stopping	a	named	instance	of	Microsoft®	SQL	Server™	2000	using	SQL
Server	Enterprise	Manager	or	the	net	stop	mssql$instancename	command
causes	SQL	Server	to	perform	a	checkpoint	in	all	databases.	Then	a
SHUTDOWN	WITH	NOWAIT	is	done	to	flush	all	committed	data	from	the	data
cache	and	to	stop	the	server	immediately.	Stopping	a	named	instance	of	SQL
Server	2000	from	the	command	prompt	works	only	if	you	are	running	Microsoft
Windows	NT®	4.0	or	Windows®	2000.

How	To

How	to	log	in	to	the	default	instance	of	SQL	Server	(Command
Prompt)
To	log	in	to	the	default	instance	of	SQL	Server

From	a	command	prompt,	enter	either:

osql	/U	[login_id]	/P	[password]	/S	[servername]

-or-

isql/U	[login_id]/P	[password]	/S	[servername]

See	Also

osql	Utility

JavaScript:hhobj_1.Click()

How	To

How	to	log	in	to	a	named	instance	of	SQL	Server	(Command
Prompt)
To	log	in	to	a	named	instance	of	SQL	Server

From	a	command	prompt,	enter	either:

osql	/	U	login_id	/P	password	/S	servername\instancename

-or-

isql/U	login_id/P	password	/S	servername\instancename

How	To

How	to	change	the	default	service	(Service	Manager)
To	change	the	default	service

1.	 Right-click	SQL	Server	Service	Manager,	and	then	click	Options.

2.	 In	the	Default	Service	box,	select	the	new	default	service	to	view
through	SQL	Server	Service	Manager.	When	you	restart	the	computer,
the	service	that	appears	is	the	new	default.	For	example,	if	you	change
the	default	service	to	SQLServerAgent	service	and	then	shut	down	the
computer,	the	next	time	you	start	it,	SQLServerAgent	service	will	be
displayed	in	Service	Control	Manager.	You	can	only	change	the
default	service	for	the	local	machine.

How	To

How	to	create	a	new	failover	cluster	(Setup)
IMPORTANT		Before	you	create	a	Microsoft®	SQL	Server™	2000	failover	cluster,
you	must	configure	Microsoft	Cluster	Service	(MSCS)	and	use	Cluster
Administrator	in	Microsoft	Windows	NT®	4.0	or	Windows®	2000	to	create	at
least	one	cluster	disk	resource.	Note	the	location	of	the	cluster	drive	in	the
Cluster	Administrator	before	you	run	SQL	Server	Setup	because	you	need	this
information	to	create	a	new	failover	cluster.

To	create	a	new	failover	cluster

1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation
Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	enter	a
virtual	server	name.	If	Setup	detects	that	you	are	running	MSCS,	it
will	default	to	Virtual	Server.	Click	Next.

3.	 On	the	User	Information	screen,	enter	the	user	name	and	company.
Click	Next.

4.	 On	the	Software	License	Agreement	screen,	click	Yes.

5.	 On	the	Failover	Clustering	screen,	enter	one	IP	address	for	each
network	configured	for	client	access.	That	is,	enter	one	IP	address	for
each	network	on	which	the	virtual	server	will	be	available	to	clients	on
a	public	(or	mixed)	network.	Select	the	network	for	which	you	want	to
enter	an	IP	address,	and	then	enter	the	IP	address.	Click	Add.

The	IP	address	and	the	subnet	are	displayed.	The	subnet	is	supplied	by
MSCS.	Continue	to	enter	IP	addresses	for	each	installed	network	until
you	have	populated	all	desired	networks	with	an	IP	address.	Click
Next.

6.	 On	the	Cluster	Disk	Selection	screen,	select	the	cluster	disk	group

where	the	data	files	will	be	placed	by	default.	Click	Next.

7.	 On	the	Cluster	Management	screen,	review	the	cluster	definition
provided	by	SQL	Server	2000.	By	default,	all	available	nodes	are
selected.	Remove	any	nodes	that	will	not	be	part	of	the	cluster
definition	for	the	virtual	server	you	are	creating.	Click	Next.

8.	 On	the	Remote	Information	screen,	enter	login	credentials	for	the
remote	cluster	node.	The	login	credentials	must	have	administrator
privileges	on	the	remote	node(s)	of	the	cluster.	Click	Next.

9.	 On	the	Instance	Name	screen,	choose	a	default	instance	or	specify	a
named	instance.	To	specify	a	named	instance,	clear	the	Default	check
box,	and	then	enter	the	name	for	the	named	instance.	Click	Next.

IMPORTANT		You	cannot	name	an	instance	DEFAULT	or
MSSQLSERVER.	For	more	information	about	naming	instances	of
SQL	Server	2000,	see	Working	with	Named	and	Multiple	Instances	of
SQL	Server	2000.	Names	must	follow	rules	for	SQL	Server	identifiers.
For	more	information	about	naming	conventions	for	identifiers,	see
Using	Identifiers.

10.	 On	the	Setup	Type	screen,	select	the	type	of	installation	to	install.	The
Setup	program	automatically	defaults	to	the	first	available	cluster	disk
resource	from	the	group	you	previously	selected.

However,	if	you	need	to	specify	a	different	clustered	drive	resource,
under	Data	Files,	click	Browse	and	then	specify	a	path	on	a	clustered
drive	resource.	You	will	be	required	to	select	a	clustered	drive	resource
that	is	owned	by	the	node	on	which	you	are	running	the	Setup
program.	The	drive	also	must	be	a	member	of	the	cluster	group	you
previously	selected.	Click	Next.

11.	 On	the	Services	Accounts	screen,	select	the	service	account(s)	that
you	want	to	run	in	the	failover	cluster.	Click	Next.

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

12.	 In	the	Authentication	Mode	dialog	box,	choose	the	authentication
mode	to	use.	If	you	change	the	selection	from	Windows
Authentication	Mode	to	Mixed	Mode	(Windows	Authentication
and	SQL	Server	Authentication),	you	need	to	enter	and	confirm	a
password	for	the	sa	login.

13.	 On	the	Start	Copying	Files	screen,	click	Next.

14.	 On	the	Setup	Complete	screen,	click	Finish.

If	you	are	instructed	to	restart	the	computer,	do	so	now.	It	is	important
to	read	the	message	from	the	Setup	program	when	you	are	done	with
installation.	Failure	to	restart	any	of	the	specified	nodes	may	cause
failures	when	you	run	the	Setup	program	in	the	future	on	any	node	in
the	failover	cluster.

How	To

How	to	install	a	one-node	failover	cluster	(Setup)
1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation

Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	enter	a
virtual	server	name.	If	SQL	Server	Setup	detects	that	you	are	running
Microsoft®	Cluster	Service	(MSCS),	it	will	default	to	Virtual	Server.
Click	Next.

3.	 On	the	User	Information	screen,	enter	the	user	name	and	company.
Click	Next.

4.	 On	the	Software	License	Agreement	screen,	click	Yes.

5.	 On	the	Failover	Clustering	screen,	enter	one	IP	address	per	installed
network	for	the	virtual	server.	Select	the	network	for	which	you	wish
to	enter	an	IP	address,	and	then	enter	the	IP	address.	Click	Add.

The	IP	address	and	the	subnet	are	displayed.	The	subnet	is	supplied	by
MSCS.	Continue	to	enter	IP	addresses	for	each	installed	network	until
you	have	populated	all	desired	networks	with	an	IP	address.	Click
Next.

6.	 On	the	Cluster	Disk	Selection	screen,	select	the	cluster	disk	group
where	the	data	files	will	be	placed	by	default.	Click	Next.

7.	 On	the	Cluster	Management	screen,	review	the	failover	cluster
definition	provided	by	Microsoft	SQL	Server™	2000.	By	default,	all
available	nodes	are	selected.	Remove	any	nodes	that	will	not	be	part	of
the	cluster	definition	for	the	virtual	server	you	are	creating.	Click
Next.

8.	 On	the	Remote	Information	screen,	enter	login	credentials	that	have
administrator	privileges	on	the	remote	node	of	the	cluster.	Click	Next.

9.	 On	the	Instance	Name	screen,	choose	a	default	instance	or	specify	a
named	instance.	To	specify	a	named	instance,	clear	the	Default	check
box,	and	then	enter	the	name.	Click	Next.

IMPORTANT		You	cannot	name	an	instance	DEFAULT	or
MSSQLSERVER.	The	name	must	follow	the	rules	for	SQL	Server
identifiers.	For	more	information	about	naming	conventions	for
identifiers,	see	Using	Identifiers.

10.	 On	the	Setup	Type	screen,	select	the	type	of	installation	to	install.
Setup	will	automatically	default	to	the	first	available	clustered	disk
resource	from	the	group	you	previously	selected.	However,	if	you	need
to	specify	a	different	clustered	drive	resource,	under	Data	Files,	click
the	Browse	button	and	then	specify	a	path	on	a	clustered	drive
resource.	You	will	be	required	to	select	a	clustered	drive	resource	that
is	owned	by	the	node	on	which	you	are	running	Setup.	The	drive	must
also	be	a	member	of	the	cluster	group	you	previously	selected.	Click
Next.

11.	 On	the	Services	Accounts	screen,	select	the	service	account(s)	that
you	want	to	run	in	the	failover	cluster.	Click	Next.

12.	 In	the	Authentication	Mode	dialog	box,	choose	the	authentication
mode	to	use.	If	you	change	the	selection	from	Windows
Authentication	Mode	to	Mixed	Mode	(Windows	Authentication
and	SQL	Server	Authentication),	you	must	enter	and	confirm	a
password	for	the	sa	login.

13.	 On	the	Start	Copying	Files	screen,	click	Next.

14.	 On	the	Setup	Complete	screen,	click	Finish.	If	you	are	instructed	to
restart	the	computer,	do	so	now.	It	is	important	to	read	the	message

JavaScript:hhobj_1.Click()

from	the	Setup	program	when	you	are	done	with	installation.	Failure	to
restart	any	of	the	specified	nodes	may	cause	failures	when	running	the
Setup	program	in	the	future	on	any	node	in	the	cluster.

How	To

How	to	add	nodes	to	an	existing	virtual	server	(Setup)
1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation

Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	specify	the
virtual	server	to	which	you	want	to	add	a	node.	Click	Next.

3.	 On	the	Installation	Selection	screen,	click	Advanced	options.	Click
Next.

4.	 On	the	Advanced	Options	screen,	click	Maintain	a	virtual	server
for	failover	clustering.	Click	Next.

5.	 On	the	Failover	Clustering	screen,	click	Next.

You	do	not	need	to	enter	an	IP	address.

6.	 On	the	Cluster	Management	screen,	select	the	node	and	click	Add.

If	the	node	is	listed	as	unavailable,	you	must	modify	the	disk	resources
in	the	cluster	group	of	the	virtual	server	so	the	disk	is	available	for	the
node	you	want	to	add	to	the	Microsoft®	SQL	Server™	configuration.
Click	Next.

7.	 On	the	Remote	Information	screen,	enter	login	credentials	for	the
remote	cluster	node	that	has	administrator	privileges	on	the	remote
node	of	the	cluster.	Click	Next.

8.	 On	the	Setup	Complete	screen,	click	Finish.

How	To

How	to	remove	a	node	from	an	existing	failover	cluster	(Setup)
1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation

Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	specify	the
name	of	the	server	from	which	to	remove	the	node.	Click	Next.

3.	 You	may	see	an	error	message	saying	that	one	(or	more)	of	the	nodes
of	the	Microsoft®	Windows	NT®	4.0	or	Microsoft	Windows®	2000
cluster	are	unavailable.	This	may	be	because	the	node(s)	you	are
attempting	to	remove	is	damaged.	The	node(s)	still	can	be	removed.
Click	OK.

4.	 On	the	Installation	Selection	screen,	click	Advanced	Options.	Click
Next.

5.	 On	the	Advanced	Options	screen,	click	Maintain	a	virtual	server
for	failover	clustering.	Click	Next.

6.	 On	the	Failover	Clustering	screen,	click	Next.

You	do	not	need	to	modify	any	IP	address(es).

7.	 On	the	Cluster	Management	screen,	select	the	node	and	click
Remove.	Click	Next.

8.	 On	the	Remote	Information	screen,	enter	login	credentials	for	the
remote	cluster	node	that	has	administrator	privileges	on	the	remote
node(s)	of	the	cluster.	Click	Next.

9.	 On	the	Setup	Complete	screen,	click	Finish.

If	you	are	instructed	to	restart	the	computer,	do	so	now.	It	is	important
to	read	the	message	from	SQL	Server	Setup	when	you	are	done	with
installation.	Failure	to	restart	any	of	the	specified	nodes	may	cause
failures	when	you	run	the	Setup	program	in	the	future	on	any	node	in
the	failover	cluster.

How	To

How	to	remove	a	failover	clustered	instance	(Setup)
1.	 On	the	Welcome	screen	of	the	Microsoft	SQL	Server	Installation

Wizard,	click	Next.

2.	 On	the	Computer	Name	screen,	click	Virtual	Server	and	specify	the
name	of	the	server	from	which	to	remove	a	clustered	instance.	Click
Next.

3.	 On	the	Installation	Selection	screen,	click	Upgrade,	remove,	or	add
components	to	an	existing	instance	of	SQL	Server.

4.	 On	the	Instance	Name	screen,	for	a	default	instance,	click	Default.
For	a	named	instance,	specify	the	name	of	the	instance	to	remove.
Click	Next.

5.	 On	the	Existing	Installation	screen,	click	Uninstall	your	existing
installation.	Click	Next.

6.	 On	the	Remote	Information	screen,	specify	the	password	that	is	a
valid	administrator	password	on	all	nodes	in	the	cluster.	Click	Next.

7.	 In	the	Setup	message	"Successfully	uninstalled	the	instance	.	.	.	",
click	OK.

8.	 On	the	Setup	Complete	screen,	click	Finish.

If	you	are	instructed	to	restart	the	computer,	do	so	now.	It	is	important
to	read	the	message	from	SQL	Server	Setup	when	you	are	done	with
installation.	Failure	to	restart	any	of	the	specified	nodes	may	cause
failures	when	you	run	the	Setup	program	in	the	future	on	any	node	in
the	failover	cluster.

How	To

How	to	recover	from	failover	cluster	failure	in	Scenario	1
In	this	scenario,	failure	is	caused	by	hardware	failure	in	Node	1	of	a	two-node
cluster.	This	hardware	failure	could	be	caused,	for	example,	by	the	failure	of	a
small	computer	system	interface	(SCSI)	card	or	the	operating	system.

1.	 After	Node	1	fails,	the	Microsoft®	SQL	Server™	2000	failover	cluster
fails	over	to	Node	2.

2.	 Run	SQL	Server	Setup	and	remove	Node	1.	For	more	information,	see
How	to	remove	a	failover	clustered	instance	.

3.	 Evict	Node	1	from	Microsoft	Cluster	Service	(MSCS).	To	evict	a	node
from	MSCS,	from	Node	2,	right-click	on	the	node	to	remove,	and	then
click	Evict	Node.

4.	 Install	new	hardware	to	replace	the	failed	hardware	in	Node	1.

5.	 Install	the	operating	system.	For	more	information	about	which
operating	system	to	install	and	specific	instructions	on	how	to	do	this,
see	Before	Installing	Failover	Clustering.

6.	 Install	MSCS	and	join	the	existing	cluster.	For	more	information,	see
Before	Installing	Failover	Clustering.

7.	 Run	the	Setup	program	on	Node	2	and	add	Node	1	back	to	the	failover
cluster.	For	more	information,	see	How	to	add	nodes	to	an	existing
virtual	server	(Setup).

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	recover	from	failover	cluster	failure	in	Scenario	2
In	Scenario	2,	failure	is	caused	by	Node	1	being	down	or	offline	but	not
irretrievably	broken.	This	could	be	caused,	for	example,	by	an	operating	system
failure.

1.	 After	Node	1	fails,	the	Microsoft®	SQL	Server™	2000	failover	cluster
fails	over	to	Node	2.

2.	 Run	SQL	Server	Setup	and	remove	Node	1.	For	more	information,	see
How	to	remove	a	failover	clustered	instance.

3.	 Resolve	the	problem	with	Node	1.

4.	 Ensure	that	the	Microsoft	Cluster	Service	(MSCS)	cluster	is	working
and	all	nodes	are	online.

5.	 Run	the	Setup	program	on	Node	2	and	add	Node	1	back	to	the	failover
cluster.	For	more	information,	see	How	to	add	nodes	to	an	existing
virtual	server	(Setup).

How	To

How	to	upgrade	from	a	SQL	Server	6.5	active/passive	failover
cluster	(Setup)
To	upgrade	from	a	SQL	Server	6.5	active/passive	failover	cluster

1.	 Uncluster	Microsoft®	SQL	Server™	version	6.5.

2.	 Install	a	default	instance	of	SQL	Server	2000.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for
the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	On	all	nodes	of	the	cluster,	this	drive	must
have	at	least	300	megabytes	(MB)	of	available	space.

3.	 Run	the	SQL	Server	Upgrade	Wizard	to	migrate	your	data	into	SQL
Server	2000.

4.	 Uninstall	SQL	Server	6.5.

5.	 Run	SQL	Server	Setup	to	upgrade	your	default	instance	of	SQL	Server
2000	to	a	SQL	Server	2000	failover	cluster.

For	more	information,	see	How	to	upgrade	from	a	default	instance	to	a
default	clustered	instance	of	SQL	Server	2000	(SQL	Server	Setup).

See	Also

How	to	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	using	a
direct	pipeline	(SQL	Server	Upgrade	Wizard)

How	to	perform	a	SQL	Server	version	6.5	to	SQL	Server	2000	upgrade	using	a
tape	drive	(SQL	Server	Upgrade	Wizard)

How	To

How	to	upgrade	from	a	SQL	Server	6.5	active/active	failover
cluster	(Setup)
Note		To	upgrade	from	a	Microsoft®	SQL	Server™	6.5	active/active	failover
cluster	(or	any	configuration	where	SQL	Server	exists	on	the	second	node),	you
must	first	convert	one	side	of	the	failover	cluster	to	a	named	instance	of	SQL
Server	2000.

To	upgrade	from	a	SQL	Server	6.5	active/active	failover	cluster

1.	 On	Node	1,	uncluster	SQL	Server	6.5.	On	Node	2,	uncluster	SQL
Server	6.5.

2.	 On	Node	1,	install	a	default	(non-clustered)	instance	of	SQL	Server
2000.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for
the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	This	drive	on	all	nodes	of	the	cluster	must
have	at	least	300	megabytes	(MB)	of	available	space.

3.	 On	Node	1,	run	the	SQL	Server	2000	Upgrade	Wizard	to	migrate	your
data	into	SQL	Server	2000.

4.	 On	Node	1,	uninstall	the	instance	of	SQL	Server	6.5.

5.	 On	Node1,	install	a	named,	clustered	instance	of	SQL	Server	2000.

6.	 Run	the	Copy	Database	Wizard	(CDW.exe)	to	migrate	your	SQL
Server	data	(originally	from	SQL	Server	6.5)	to	a	named	instance	in	a
SQL	Server	2000	failover	cluster.	For	more	information	about	the
Copy	Database	Wizard,	see	Using	the	Copy	Database	Wizard	or	How
to	upgrade	databases	online	using	the	Copy	Database	Wizard
(Enterprise	Manager).

JavaScript:hhobj_1.Click()

7.	 On	Node	1,	uninstall	the	default	instance	of	SQL	Server	2000.

8.	 On	Node	2,	install	a	default	instance	of	SQL	Server	2000.

9.	 Run	the	SQL	Server	2000	Upgrade	Wizard	to	migrate	your	data	into
SQL	Server	2000.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for
the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	On	all	nodes	of	the	cluster,	this	drive	must
have	at	least	300	megabytes	(MB)	of	available	space.

10.	 On	Node	2,	uninstall	the	instance	of	SQL	Server	6.5.

11.	 On	Node	2,	upgrade	the	default	instance	of	SQL	Server	to	a	clustered
instance.

For	more	information,	see	How	to	upgrade	from	a	default	instance	to	a
default	clustered	instance	of	SQL	Server	2000	(SQL	Server	Setup).

How	To

How	to	upgrade	from	a	SQL	Server	7.0	active/active	failover
cluster	(Setup)
Note		To	upgrade	from	a	Microsoft®	SQL	Server™	version	7.0	active/active
failover	cluster	(or	any	configuration	where	SQL	Server	exists	on	the	second
node),	you	must	first	convert	one	side	of	the	failover	cluster	to	a	named	instance
of	SQL	Server	2000.

To	upgrade	from	a	SQL	Server	7.0	active/active	failover	cluster

1.	 On	Node	1,	uncluster	SQL	Server	version	7.0.	Reboot	Node	1.

2.	 On	Node	2,	uncluster	SQL	Server	7.0.	Reboot	Node	2.

3.	 On	Node	1,	install	a	clustered,	named	instance	of	SQL	Server	2000	as
a	virtual	server.	This	is	not	an	upgrade	process,	but	a	side-by-side
installation	of	SQL	Server	7.0	and	SQL	Server	2000.	Do	not	install	the
data	to	the	same	location/disk	as	Node	2.	If	you	do,	when	you	attempt
to	upgrade	Node	2	from	a	SQL	Server	7.0	to	a	SQL	Server	2000
installation,	Setup	will	fail.

4.	 On	Node	1,	run	the	Copy	Database	Wizard	(CDW.exe)	to	move	all
databases	and	related	information	from	the	SQL	Server	7.0	installation
into	the	clustered,	named	instance	of	SQL	Server	2000.	For	more
information	about	the	Copy	Database	Wizard,	see	Using	the	Copy
Database	Wizard	or	How	to	upgrade	databases	online	using	the	Copy
Database	Wizard	(Enterprise	Manager).

5.	 On	Node	1,	uninstall	SQL	Server	7.0.

6.	 On	Node	2,	upgrade	SQL	Server	7.0	to	SQL	Server	2000	as	the	default
instance.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for

JavaScript:hhobj_1.Click()

the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	This	drive	on	all	nodes	of	the	cluster	must
have	at	least	300	megabytes	(MB)	of	available	space.

7.	 On	Node	2,	upgrade	the	default	instance	of	SQL	Server	2000	to	a
clustered	instance.

For	more	information,	see	How	to	upgrade	from	a	default	instance	to	a
default	clustered	instance	of	SQL	Server	2000	(SQL	Server	Setup).

Note		Optionally,	you	could	create	two	named	instances	of	SQL	Server	2000	and
use	the	Copy	Database	Wizard	to	upgrade	both	SQL	Server	7.0	installations	to	a
clustered,	named	instance	of	SQL	Server	2000.	This	will	provide	better
consistency,	because	all	references	to	clustered	installations	of	SQL	Server	2000
will	be	in	the	form	VirtualServer\Instance,	rather	than	sometimes	being	just	the
servername,	and	sometimes	both	the	servername	and	instancename.

How	To

How	to	upgrade	from	a	SQL	Server	7.0	active/passive	failover
cluster	(Setup)
To	upgrade	from	a	SQL	Server	7.0	active/passive	failover	cluster

1.	 On	Node	1,	uncluster	Microsoft®	SQL	Server™	version	7.0.	Reboot
Node	1.

2.	 On	Node	1,	upgrade	SQL	Server	7.0	to	SQL	Server	2000	as	the	default
instance.

You	must	install	the	binaries	to	a	local	drive	and	use	a	cluster	disk	for
the	data.	This	local	drive	is	a	path,	which	is	a	non-clustered	disk	valid
on	all	nodes	of	the	cluster.	This	drive	on	all	nodes	of	the	cluster	must
have	at	least	300	megabytes	(MB)	of	available	space.

3.	 On	Node	1,	upgrade	the	default	instance	of	SQL	Server	2000	to	a
clustered	instance	of	SQL	Server	2000.

For	more	information,	see	How	to	upgrade	from	a	default	instance	to	a
default	clustered	instance	of	SQL	Server	2000	(SQL	Server	Setup).

How	To

How	to	upgrade	from	a	default	instance	to	a	default	clustered
instance	of	SQL	Server	2000	(Setup)
Note		This	upgrade	is	from	a	default	instance	(a	local	installation	where	the	data
is	on	a	local	disk)	to	a	clustered	instance	of	Microsoft®	SQL	Server™	2000.	Use
this	upgrade	step	if	you	want	to	have	a	default	virtual	server.

To	upgrade	from	a	default	instance	to	a	default	clustered	instance	of	SQL
Server	2000

1.	 On	the	Welcome	screen	of	the	SQL	Server	Installation	Wizard,	click
Next.

2.	 On	the	Computer	Name	screen,	click	Local	Computer.	The
computer	you	want	to	change	from	a	default	to	a	clustered	instance
should	be	displayed.	You	must	be	on	the	local	computer	to	upgrade
from	a	default	to	a	clustered	instance.	Click	Next.

3.	 On	the	Installation	Selection	screen,	click	Upgrade,	remove,	or	add
components	to	an	existing	instance	of	SQL	Server.	Click	Next.

4.	 On	the	Existing	Installation	screen,	click	Upgrade	your	existing
installation	to	a	clustered	installation.	Click	Next.

5.	 On	the	Virtual	Server	Name	screen,	enter	a	name	for	your	virtual
server.	Click	Next.

6.	 On	the	Failover	Clustering	screen,	enter	one	IP	address	for	each
network	configured	for	client	access.	That	is,	enter	one	IP	address	for
each	network	on	which	the	virtual	server	will	be	available	to	clients	on
a	public	(or	mixed)	network.	Select	the	network	for	which	you	want	to
enter	an	IP	address,	and	then	enter	the	IP	address.	Click	Add.

The	IP	address	and	the	subnet	are	displayed.	The	subnet	is	supplied	by

Microsoft	Cluster	Service	(MSCS).	Continue	to	enter	IP	addresses	for
each	installed	network	until	you	have	populated	all	desired	networks
with	an	IP	address.	Click	Next.

6.	 On	the	Cluster	Management	screen,	review	the	failover	cluster
definition	provided	by	SQL	Server	2000.	By	default,	all	available
nodes	are	selected.	Remove	any	nodes	that	will	not	be	part	of	the
failover	cluster	definition	for	the	virtual	server	you	are	creating.	Click
Next.

7.	 On	the	Remote	Information	screen,	enter	login	credentials	for	the
remote	cluster	node.	The	login	credentials	must	have	administrator
privileges	on	the	remote	node(s)	of	the	cluster.	Click	Next.

8.	 On	the	Services	Accounts	screen,	select	the	service	account(s)	for	the
SQL	Server	services	under	which	you	want	the	failover	cluster	to	run.
Click	Next.

9.	 On	the	Setup	Complete	screen,	click	Finish.	If	you	need	to	restart	the
remote	nodes	in	the	failover	cluster,	you	will	be	instructed	to	do	so	in
the	Setup	Complete	screen.

How	To

How	to	upgrade	from	a	local	default	instance	to	a	clustered,
named	instance	of	SQL	Server	2000	(Setup)
To	upgrade	from	a	local	default	instance	to	a	named	clustered	instance	of
SQL	Server	2000

1.	 Install	a	clustered,	named	instance	of	Microsoft®	SQL	Server™	2000.

2.	 Run	the	Copy	Database	Wizard	(CDW.exe)	to	move	all	databases	and
related	information	into	the	clustered,	named	instance	of	SQL	Server
2000.	For	more	information	about	the	Copy	Database	Wizard,	see
Using	the	Copy	Database	Wizard	or	How	to	upgrade	databases	online
using	the	Copy	Database	Wizard	(Enterprise	Manager).

3.	 Optionally,	you	can	uninstall	the	default	instance	of	SQL	Server	2000.

JavaScript:hhobj_1.Click()

How	To

Backing	Up	and	Restoring	Databases
The	backup	and	restore	component	of	Microsoft®	SQL	Server™	provides	an
important	safeguard	for	protecting	critical	data	stored	in	SQL	Server	databases.
Understanding	how	to	create	and	restore	database,	differential	database,
transaction	log,	and	file	and	filegroup	backups	helps	you	implement	this
important	safeguard.

How	To

How	to	create	a	logical	disk	backup	device	(Enterprise	Manager)
To	create	a	logical	disk	backup	device

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	Backup,	and	then	click	New
Backup	Device.

3.	 In	the	Name	box,	type	a	name	for	the	named	backup	device.

4.	 Click	File	name,	and	then	do	one	of	the	following:

Type	the	name	of	the	file	used	by	the	disk	backup	device.

Click	the	browse	(...)	button	to	display	the	Backup	Device
Location	dialog	box,	and	then	select	the	file	on	the	local
computer	used	by	the	disk	backup	device.

See	Also

Backup	Devices

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	logical	tape	backup	device	(Enterprise	Manager)
To	create	a	logical	tape	backup	device

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	Backup,	and	then	click	New
Backup	Device.

3.	 In	the	Name	box,	type	a	name	for	the	named	backup	device.

4.	 Click	Tape	drive	name,	and	then	click	the	tape	device	to	use	as	the
tape	backup	device.

Note		If	no	tape	devices	are	listed,	then	no	tape	devices	can	be	detected	on	the
local	computer.	For	more	information	about	how	to	set	up	tape	devices,	see	the
Microsoft®	Windows	NT®	4.0	and	Windows®	2000	documentation.

See	Also

Backup	Devices

JavaScript:hhobj_1.Click()

How	To

How	to	delete	a	logical	backup	device	(Enterprise	Manager)
To	delete	a	logical	backup	device

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	click	Backup.

3.	 In	the	details	pane,	right-click	the	named	backup	device	to	delete.

4.	 Click	Delete,	and	then	confirm	the	deletion.

See	Also

Backup	Devices

sp_dropdevice

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	create	a	database	backup	(Enterprise	Manager)
To	create	a	database	backup

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Backup	Database.

3.	 In	the	Name	box,	type	the	backup	set	name.	Optionally,	in
Description,	type	a	description	of	the	backup	set.

4.	 Under	Backup,	click	Database	-	complete.

5.	 Under	Destination,	click	Tape	or	Disk,	and	then	specify	a	backup
destination.

If	no	backup	destinations	appear,	click	Add	to	add	an	existing
destination	or	to	create	a	new	one.

6.	 Under	Overwrite,	do	one	of	the	following:

Click	Append	to	media	to	append	the	backup	to	any	existing
backups	on	the	backup	device.

Click	Overwrite	existing	media	to	overwrite	any	existing
backups	on	the	backup	device.

7.	 Optionally,	select	the	Schedule	check	box	to	schedule	the	backup
operation	for	later	or	periodic	execution.

8.	 Optionally,	click	the	Options	tab	and	do	one	or	more	of	the	following:

Select	the	Verify	backup	upon	completion	check	box	to
cause	the	backup	to	be	verified	when	backed	up.

Select	the	Eject	tape	after	backup	check	box	to	cause	the
tape	to	be	ejected	when	the	backup	operation	has	completed.
Available	only	with	tape	devices.

Select	the	Check	media	set	name	and	backup	set
expiration	check	box	to	cause	the	backup	media	to	be
checked	to	prevent	accidental	overwrites.	In	Media	set	name,
type	the	name	of	the	media	to	be	used	for	the	backup
operation.	Leave	blank	when	specifying	only	the	backup	set
expiration.

9.	 If	it	is	the	first	use	of	the	backup	media,	or	you	want	to	change	an
existing	media	label,	under	Media	set	labels,	select	the	Initialize	and
label	media	check	box	and	type	the	media	set	name	and	media	set
description.	The	media	can	be	initialized	and	labeled	only	when
overwriting	the	media.

See	Also

Appending	Backup	Sets

Backing	Up	the	master	Database

Backing	Up	the	model,	msdb,	and	distribution	Databases

Copying	Databases

Transaction	Log	Backups

Database	Backups

Differential	Database	Backups

Deleting	a	Database

Overwriting	Backup	Media

Reducing	Recovery	Time

Initializing	Backup	Media

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()

Verifying	Backups

JavaScript:hhobj_12.Click()

How	To

How	to	start	the	Create	Database	Backup	Wizard	(Enterprise
Manager)
To	start	the	Create	Database	Backup	Wizard

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 On	the	Tools	menu,	click	Wizards.

3.	 In	the	Select	Wizard	dialog	box,	expand	Management.

4.	 Double-click	Backup	Wizard.

5.	 Complete	the	steps	in	the	wizard.

See	Also

Database	Backups

JavaScript:hhobj_1.Click()

How	To

How	to	restore	a	database	backup	(Enterprise	Manager)
Note		If	you	are	restoring	a	database	backup	that	does	not	have	any	backup	set
information	listed	in	the	backup	history	stored	in	the	msdb	database,	such	as	a
database	backup	created	on	another	server,	see	How	to	restore	a	backup	from	a
backupdevice.

To	restore	a	database	backup

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Restore	Database.

3.	 In	the	Restore	as	database	box,	type	or	select	the	name	of	the
database	to	restore,	if	different	from	the	default.	To	restore	the
database	with	a	new	name,	type	the	new	name	of	the	database.

4.	 Click	Database.

5.	 In	the	First	backup	to	restore	list,	click	the	backup	set	to	restore.

6.	 In	the	Restore	list,	click	the	database	backup	to	restore.

7.	 Optionally,	click	the	Options	tab	and	do	the	following:

In	Restore	as,	type	the	new	name	or	location	for	each
database	file	comprising	the	database	backup.

Note		Specifying	a	new	name	for	the	database	determines
automatically	the	new	names	for	the	database	files	restored
from	the	database	backup.

Click	Leave	database	operational.	No	additional	transaction	logs	can	be

restored	if	no	further	transaction	log	or	differential	database	backups	are	to	be
applied.

Click	Leave	database	nonoperational,	but	able	to	restore	additional
transaction	logs	if	another	transaction	log	or	differential	database	backup	is	to
be	applied.

See	Also

Transaction	Log	Backups

Database	Backups

Differential	Database	Backups

Identifying	the	Backup	Set	to	Restore

Rebuilding	the	master	Database

Restoring	a	Database	to	a	Prior	State

Restoring	the	master	Database	from	a	Current	Backup

Restoring	the	model,	msdb,	and	distribution	Databases

Reducing	Recovery	Time

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

How	To

How	to	restore	a	backup	from	a	backup	device	(Enterprise
Manager)
To	restore	a	backup	from	a	backup	device

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Restore	Database.

3.	 In	the	Restore	as	database	box,	type	or	select	the	name	of	the
database	to	restore	if	different	from	the	default.	To	restore	the	database
with	a	new	name,	type	the	new	name	of	the	database.

Note		Specifying	a	new	name	for	the	database	determines
automatically	the	new	names	for	the	database	files	restored	from	the
database	backup.

4.	 Click	From	device,	and	then	click	Select	devices.

5.	 Under	Restore	from,	click	Tape	or	Disk,	and	then	select	a	device
from	which	to	restore.

If	no	devices	appear,	click	Add	to	add	an	existing	backup	device	or	to
create	a	new	one.	In	the	Restore	Database	dialog	box,	click	View
Contents	and	select	the	backup	set	to	restore.

Note		This	option	scans	the	backup	set	for	the	backup	content
information	and	can	be	time	consuming,	especially	when	using	tape
devices.	If	you	already	know	the	backup	set	to	restore,	type	the	backup
set	number	in	Backup	number	instead.

6.	 Under	Restore	backup	set,	do	one	of	the	following:

Click	Database	-	complete	to	restore	a	database	backup.

Click	Database	-	differential	to	restore	a	differential	database
backup.

Click	Transaction	log	to	apply	a	transaction	log	backup.

Click	File	or	filegroup	to	restore	a	file	or	filegroup	backup.
Specify	the	name	of	the	file	or	filegroup.

7.	 Optionally,	click	the	Options	tab,	and	then	do	one	of	the	following:

Click	Leave	database	operational.	No	additional
transaction	logs	can	be	restored	if	no	further	transaction	log
backups	are	to	be	applied.

Click	Leave	database	nonoperational,	but	able	to	restore
additional	transaction	logs	if	another	transaction	log	backup
is	to	be	applied.

See	Also

Transaction	Log	Backups

Database	Backups

Differential	Database	Backups

Identifying	the	Backup	Set	to	Restore

Rebuilding	the	master	Database

Restoring	a	Database	to	a	Prior	State

Restoring	the	master	Database	from	a	Current	Backup

Restoring	the	model,	msdb,	and	distribution	Databases

Using	Differential	Database	Backups	with	Transaction	Log	Backups

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

How	To

How	to	create	a	transaction	log	backup	(Enterprise	Manager)
To	create	a	transaction	log	backup

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Backup	Database.

3.	 In	the	Name	box,	type	the	backup	set	name.	Optionally,	in
Description,	type	a	description	of	the	backup	set.

4.	 Under	Backup,	click	Transaction	log.

Note		If	the	Transaction	Log	option	is	unavailable,	ensure	that	the
recovery	model	is	set	to	Full	or	Bulk-Logged.	For	more	information,
see	Using	Recovery	Models.

5.	 Under	Destination,	click	Tape	or	Disk,	and	then	specify	a	backup
destination.

If	no	backup	destinations	appear,	click	Add	to	add	an	existing	backup
device	or	to	create	a	new	one.

6.	 Under	Overwrite,	do	one	of	the	following:

Click	Append	to	media	to	append	the	backup	to	any	existing
backups	on	the	backup	device.

Click	Overwrite	existing	media	to	overwrite	any	existing
backups	on	the	backup	device.

7.	 Optionally,	select	the	Schedule	check	box	to	schedule	the	backup
operation	for	later	or	periodic	execution.

JavaScript:hhobj_1.Click()

8.	 Optionally,	click	the	Options	tab,	and	then	do	one	of	the	following:

Select	the	Verify	backup	upon	completion	check	box	to
cause	the	backup	to	be	verified	when	backed	up.

Select	the	Eject	tape	after	backup	check	box	to	cause	the
tape	to	be	ejected	when	the	backup	operation	has	completed.
Available	only	with	tape	devices.

Select	the	Remove	inactive	entries	from	transaction	log
check	box	to	cause	the	inactive	portion	of	the	transaction	log
to	be	truncated,	allowing	Microsoft®	SQL	Server™

to	reuse	this	truncated,	unused	space.

Select	the	Check	media	set	name	and	backup	set
expiration	check	box	to	cause	the	backup	media	to	be
checked	to	prevent	accidental	overwrites.	In	the	Media	set
name	box,	type	the	name	of	the	media	to	be	used	for	the
backup	operation.	Leave	blank	when	specifying	only	the
backup	set	expiration.

9.	 If	it	is	the	first	use	of	the	backup	media	or	you	want	to	change	an
existing	media	label,	under	Media	set	labels,	select	the	Initialize	and
label	media	check	box	and	type	the	media	set	name	and	media	set
description.	The	media	can	only	be	initialized	and	labeled	when	it	is
being	overwritten.

See	Also

Transaction	Log	Backups

Using	File	Backups

Restoring	a	Database	to	a	Prior	State

Reducing	Recovery	Time

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	apply	a	transaction	log	backup	(Enterprise	Manager)
Note		If	you	are	restoring	a	transaction	log	backup	that	does	not	have	any
backup	set	information	listed	in	the	backup	history	stored	in	the	msdb	database,
such	as	a	transaction	log	backup	created	on	another	server,	see	How	to	restore	a
backup	from	a	backup	device.

To	apply	a	transaction	log	backup

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Restore	Database.

3.	 In	the	Restore	as	database	box,	type	or	select	the	name	of	the
database	to	restore,	if	different	from	the	default.

4.	 Click	Database.

5.	 In	the	First	backup	to	restore	list,	click	the	backup	set	to	restore.

6.	 In	the	Restore	list,	click	the	transaction	log	backup	to	restore.

7.	 Optionally,	click	the	Options	tab	and	,	and	then	do	one	of	the
following:

Click	Leave	database	operational.	No	additional
transaction	logs	can	be	restored	if	no	further	transaction	log
or	differential	database	backups	are	to	be	applied.

Click	Leave	database	nonoperational,	but	able	to	restore
additional	transaction	logs	if	another	transaction	log	or
differential	database	backup	is	to	be	applied.

See	Also

Transaction	Log	Backups

Using	File	Backups

Reducing	Recovery	Time

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	create	a	differential	database	backup	(Enterprise
Manager)
To	create	a	differential	database	backup

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Backup	Database.

3.	 In	the	Name	box,	type	the	backup	set	name.	Optionally,	in
Description,	type	a	description	of	the	backup	set.

4.	 Under	Backup,	select	Database	-	differential.

5.	 Under	Destination,	click	Tape	or	Disk,	and	then	specify	a	backup
destination.

If	no	backup	destinations	appear,	click	Add	to	add	an	existing	backup
device	or	to	create	a	new	one.

6.	 Under	Overwrite,	do	one	of	the	following:

Click	Append	to	media	to	append	the	backup	to	any	existing
backups	on	the	backup	device.

Click	Overwrite	existing	media	to	overwrite	any	existing
backups	on	the	backup	device.

7.	 Optionally,	select	the	Schedule	check	box	to	schedule	the	backup
operation	for	later	or	periodic	execution.

8.	 Optionally,	click	the	Options	tab,	and	then	do	one	or	more	of	the
following:

Select	the	Verify	backup	upon	completion	check	box	to
cause	the	backup	to	be	verified	when	backed	up.

Select	the	Eject	tape	after	backup	check	box	to	cause	the
tape	to	be	ejected	when	the	backup	operation	has	completed.
Available	only	with	tape	devices.

Select	the	Check	media	set	name	and	backup	set
expiration	check	box	to	cause	the	backup	media	to	be
checked	to	prevent	accidental	overwrites.	In	Media	set	name,
type	the	name	of	the	media	to	be	used	for	the	backup
operation.	Leave	blank	when	specifying	only	the	backup	set
expiration.

9.	 If	it	is	the	first	use	of	the	backup	media	or	you	want	to	change	an
existing	media	label,	under	Media	set	labels,	select	the	Initialize	and
label	media	check	box	and	type	the	media	set	name	and	media	set
description.	The	media	can	be	initialized	and	labeled	only	when
overwriting	the	media.

See	Also

Differential	Database	Backups

Reducing	Recovery	Time

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	restore	a	differential	database	backup	(Enterprise
Manager)
Note		If	you	are	restoring	a	differential	database	backup	that	does	not	have	any
backup	set	information	listed	in	the	backup	history	stored	in	the	msdb	database,
such	as	a	differential	database	backup	created	on	another	server,	see	How	to
restore	a	backup	from	a	backup	device.

To	restore	a	differential	database	backup

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Restore	Database.

3.	 In	the	Restore	as	database	box,	type	or	select	the	name	of	the
database	to	restore,	if	different	from	the	default.

4.	 Click	Database.

5.	 In	the	First	backup	to	restore	list,	click	the	backup	set	to	restore.

6.	 In	the	Restore	list,	click	the	differential	backup	to	restore.

7.	 Optionally,	click	the	Options	tab,	and	then	do	one	of	the	following:

Click	Leave	database	operational.	No	additional
transaction	logs	can	be	restored	if	no	further	transaction	log
backups	are	to	be	applied.

Click	Leave	database	nonoperational,	but	able	to	restore
additional	transaction	logs	if	another	transaction	log	backup
is	to	be	applied.

See	Also

Differential	Database	Backups

Reducing	Recovery	Time

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	set	up,	maintain,	and	bring	online	a	standby	server
(Enterprise	Manager)
Setting	up	a	standby	server	generally	involves	creating	database	backups	and
periodic	transaction	log	backups	at	the	primary	server,	and	then	applying	those
backups,	in	sequence,	to	the	standby	server.	The	standby	server	is	left	in	a	read-
only	state	between	restore	operations.	When	the	standby	server	must	be	made
available	for	use,	any	outstanding	transaction	log	backups	from	the	primary
server,	including	the	backup	of	the	active	transaction	log,	are	applied	to	the
standby	server;	then	the	database	is	recovered.

To	create	backups	on	the	primary	server

How	to	create	a	database	backup

How	to	create	a	transaction	log	backup

To	set	up	and	maintain	a	backup	(standby)	server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Restore	Database.

3.	 In	Restore	as	database,	type	or	select	the	name	of	the	database	to
restore,	if	different	from	the	default.	To	restore	the	database	with	a	new
name,	type	the	new	name	of	the	database.

4.	 Under	Restore,	click	From	device,	and	then	click	Select	devices.

5.	 Under	Restore	from,	click	Tape	or	Disk,	and	then	select	a	device
from	which	to	restore.

If	no	devices	appear,	click	Add	to	add	an	existing	backup	device	or	to
create	a	new	one.	The	backup	device	must	reference	the	backup	device
files	created	at	the	primary	server.

6.	 In	the	Restore	Database	dialog	box,	click	View	contents.	Select	the
backup	set	to	restore.

Note		This	option	scans	the	backup	set	for	the	backup	content
information	and	can	be	time	consuming,	especially	when	using	tape
devices.	If	you	already	know	the	backup	set	to	restore,	type	the	backup
set	number	in	Backup	number	instead.

7.	 Under	Restore	backup	set,	do	one	of	the	following:

Click	Database	-	complete	to	restore	the	initial	database
backup	created	on	the	primary	server.	The	initial	database
backup	must	be	restored	before	any	transaction	log	backups
can	be	applied.

Click	Transaction	log	to	apply	a	transaction	log	backup
created	on	the	primary	server.

8.	 On	the	Options	tab,	click	Leave	database	read-only	and	able	to
restore	additional	transaction	logs,	and	then	in	the	Undo	file	box,
type	the	name	of	the	undo	file	that	contains	the	contents	of	data	pages
before	uncommitted	transactions	affecting	those	pages	were	rolled
back.

9.	 Repeat	this	procedure	for	each	transaction	log	backup	applied	to	the
standby	server.

To	bring	the	standby	server	online	(primary	server	failed)

1.	 Back	up	the	active	transaction	log	on	the	primary	server,	if	possible.

For	more	information,	see	How	to	create	a	backup	of	the	currently
active	transaction	log.

2.	 Apply	all	transaction	log	backups,	including	the	active	transaction	log
backup	created	in	Step	1,	which	have	not	yet	been	applied	to	the
standby	server.

For	more	information,	see	How	to	apply	a	transaction	log	backup.

3.	 Recover	the	database.

For	more	information,	see	How	to	recover	a	database	without
restoring.

See	Also

Using	Standby	Servers

JavaScript:hhobj_1.Click()

How	To

How	to	restore	to	a	point	in	time	(Enterprise	Manager)
To	restore	to	a	point	in	time

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Restore	Database.

3.	 In	Restore	as	database,	type	or	select	the	name	of	the	database	to
restore,	if	different	from	the	default.

4.	 Click	Database.

5.	 In	the	First	backup	to	restore	list,	click	the	backup	set	to	restore.

6.	 In	the	Restore	list,	select	the	database	backup	and	one	or	more
transaction	logs	to	restore.

7.	 Click	Point	in	time	restore,	and	then	type	values	for	Date	and	Time.

8.	 Click	the	Options	tab,	and	then	click	Leave	database	operational.
No	additional	transaction	logs	can	be	restored.

See	Also

Restoring	a	Database	to	a	Prior	State

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	data	and	log	files	in	a	backup	set	(Enterprise
Manager)
To	view	the	data	and	log	files	in	a	backup	set

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Restore	Database.

3.	 Click	From	device,	and	then	click	Select	devices.

4.	 Under	Restore	from,	click	Tape	or	Disk,	and	then	select	a	device
from	which	to	restore.

If	no	backup	destinations	appear,	click	Add	to	add	an	existing	backup
device	or	to	create	a	new	one.	The	backup	device	must	reference	the
backup	device	files	created	at	the	primary	server.

5.	 In	the	Restore	Database	dialog	box,	click	View	contents.

See	Also

Verifying	Backups

Viewing	Information	about	Backups

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	view	backup	and	media	header	information	(Enterprise
Manager)
To	view	backup	and	media	header	information

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	click	Backup.

3.	 In	the	details	pane,	right-click	the	named	backup	device	to	view,	and
then	click	Properties.

4.	 Click	View	Contents.

See	Also

Verifying	Backups

Viewing	Information	about	Backups

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	back	up	files	and	filegroups	(Enterprise	Manager)
To	back	up	files	and	filegroups

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Backup	Database.

3.	 In	the	Name	box,	type	the	backup	set	name.	Optionally,	in
Description,	type	a	description	of	the	backup	set.

4.	 Under	Backup,	click	File	and	filegroup,and	then	click	the	browse	(...)
button.

5.	 In	the	Specify	Filegroups	and	Files	dialog	box,	select	a	Backup	for
each	filegroup	or	file	you	want	to	back	up.

By	selecting	a	filegroup	name,	all	the	files	within	the	filegroup	are
selected	automatically.

6.	 Under	Destination,	click	Tape	or	Disk,	and	then	specify	a	backup
destination.

If	no	backup	destinations	appear,	click	Add	to	add	an	existing	backup
destination	or	to	create	a	new	one.

7.	 Under	Overwrite,	do	one	of	the	following:

Click	Append	to	media	to	append	the	backup	to	any	existing
backups	on	the	backup	device.

Click	Overwrite	existing	media	to	overwrite	any	existing
backups	on	the	backup	device.

8.	 Optionally,	the	Schedule	check	box	to	schedule	the	backup	operation

for	later	or	periodic	execution.

9.	 Optionally,	click	the	Options	tab,	and	then	do	one	or	more	of	the
following:

Select	the	Verify	backup	upon	completion	check	box	to
cause	the	backup	to	be	verified	when	backed	up.

Select	the	Eject	tape	after	backup	check	box	to	cause	the
tape	to	be	ejected	when	the	backup	operation	has	completed.
Available	only	with	tape	devices.

Select	the	Check	media	set	name	and	backup	set
expiration	check	box	to	cause	the	backup	media	to	be
checked	to	prevent	accidental	overwrites.	In	Media	set	name,
type	the	name	of	the	media	to	be	used	for	the	backup
operation.	Leave	blank	when	specifying	only	the	backup	set
expiration.

10.	 If	it	is	the	first	use	of	the	backup	media	or	you	want	to	change	an
existing	media	label,	under	Media	set	labels,	select	the	Initialize	and
label	media	check	box	and	type	the	media	set	name	and	media	set
description.	The	media	can	be	initialized	and	labeled	only	when	it	is
being	overwritten.

See	Also

Using	File	Backups

JavaScript:hhobj_1.Click()

How	To

How	to	restore	files	and	filegroups	(Enterprise	Manager)
Note		If	you	are	restoring	a	file	or	filegroup	backup	that	does	not	have	any
backup	set	information	listed	in	the	backup	history	stored	in	the	msdb	database,
such	as	a	file	or	filegroup	backup	created	on	another	server,	see	How	to	restore	a
backup	from	a	backup	device.

To	restore	files	and	filegroups

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Restore	Database.

3.	 In	the	Restore	as	database	box,	type	or	select	the	name	of	the
database	to	restore,	if	different	from	the	default.	

4.	 Click	Filegroups	or	files.

5.	 In	the	Restore	list,	select	each	file	and	filegroup	to	restore.

6.	 Click	the	Options	tab,	and	then	do	one	of	the	following:

Click	Leave	database	operational.	No	additional
transaction	logs	can	be	restored	if	no	further	transaction	log
backups	are	to	be	applied.

Click	Leave	database	nonoperational,	but	able	to	restore
additional	transaction	logs	if	another	transaction	log	backup
is	to	be	applied.

IMPORTANT		If	the	files	have	been	modified	since	the	file	backup	was	created,
transaction	log	backups	created	after	the	file	backup	must	be	applied.

See	Also

Using	File	Backups

JavaScript:hhobj_1.Click()

How	To

How	to	restore	files	and	filegroups	over	existing	files	(Enterprise
Manager)
To	restore	files	and	filegroups	over	existing	files

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	point	to	All	Tasks,	and
then	click	Restore	Database.

3.	 In	the	Restore	as	database	box,	type	or	select	the	name	of	the
database	to	restore,	if	different	from	the	default.	

4.	 Click	From	device,	and	then	click	Select	devices.

5.	 Under	Restore	from,	click	Tape	or	Disk,	and	then	select	a	device
from	which	to	restore.

If	no	backup	destinations	appear,	click	Add	to	add	an	existing	backup
device	or	to	create	a	new	one.	The	backup	device	must	reference	the
backup	device	files	created	at	the	primary	server.

6.	 In	the	Restore	Database	dialog	box,	click	View	contents.	Select	the
backup	set	to	restore.

Note		This	option	scans	the	backup	set	for	the	backup	content
information	and	can	be	time	consuming,	especially	when	using	tape
devices.	If	you	already	know	the	backup	set	to	restore,	type	the	backup
set	number	in	Backup	number	instead.

7.	 Under	Restore	backup	set,	click	File	or	filegroup,	and	then	type	the
names	of	the	files	you	want	to	restore.

8.	 Click	the	Options	tab,	and	then	click	Force	restore	over	existing

database.

9.	 Under	Recovery	completion	state,	do	one	of	the	following:

Click	Leave	database	operational.	No	additional
transaction	logs	can	be	restored	if	no	further	transaction	log
backups	are	to	be	applied.

Click	Leave	database	nonoperational,	but	able	to	restore
additional	transaction	logs	if	another	transaction	log	backup
is	to	be	applied.

See	Also

Copying	Databases

JavaScript:hhobj_1.Click()

How	To

How	to	set	the	recovery	model	for	a	database	(Enterprise
Manager)
To	set	the	recovery	model	for	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database,	and	then	click	Properties.

3.	 Click	the	Options	tab.

4.	 In	the	Model	list,	click	a	recovery	model.

See	Also

Using	Recovery	Models

JavaScript:hhobj_1.Click()

How	To

Managing	Servers
Microsoft®	SQL	Server™	server	management	comprises	a	wide	variety	of
administration	tasks,	including:

Registering	servers	and	assigning	passwords.

Reconfiguring	network	connectivity.

Configuring	linked	servers,	which	allows	you	to	execute	distributed
queries	and	distributed	transactions	on	OLE	DB	data	sources	across	the
enterprise.

Configuring	remote	servers,	which	allows	you	to	use	one	instance	of
SQL	Server	to	execute	a	stored	procedure	residing	on	another	instance
of	SQL	Server.

Configuring	standby	servers.

Setting	server	configuration	options.

Managing	SQL	Server	messages.

Setting	the	polling	intervals.

In	most	cases,	you	do	not	need	to	reconfigure	the	server.	The	default	settings	for
server	components,	configured	during	SQL	Server	Setup,	allow	you	to	run	an
instance	of	SQL	Server	immediately	after	SQL	Server	is	installed.	However,
server	management	is	necessary	in	those	situations	where	you	want	to	add	new
servers,	set	up	special	server	configurations,	change	the	network	connections,	or
set	server	configuration	options	to	improve	SQL	Server	performance.

How	To

How	to	register	a	server	(Enterprise	Manager)
To	register	a	server

1.	 Right-click	a	server	or	a	server	group,	and	then	click	New	SQL	Server
Registration.

Note		If	you	selected	the	From	now	on	I	want	to	perform	this	task
without	using	a	wizard	check	box	the	last	time	you	used	the	Register
Server	Wizard,	SQL	Server	Enterprise	Manager	displays	the
Registered	SQL	Server	Properties	dialog	box.	Otherwise,	the
Register	Server	Wizard	is	started.

2.	 In	the	Server	box,	type	the	server	name.

3.	 To	specify	the	connection	between	SQL	Server	Enterprise	Manager	(as
a	client)	and	the	server	running	the	instance	of	Microsoft®	SQL
Server™	being	registered,	do	one	of	the	following:

Click	Use	Windows	Authentication

-or-

Click	Use	SQL	Server	Authentication

With	this	type	of	connection,	you	must	provide	a	login	name
and	password.	Select	the	Always	prompt	for	login	name
and	password	check	box	to	always	prompt	user	for	login
name	and	password,	rather	than	storing	your	login	id	and
password	in	your	registry.

4.	 In	the	Server	Group	list,	click	a	server	group.

Note		If	the	group	you	need	does	not	exist	yet,	create	it	by	clicking	the
build	(...)	button,	and	then	completing	the	Server	Groups	dialog	box.

5.	 Do	one	or	more	of	the	following:

Select	the	Display	SQL	Server	state	in	console	check	box	to

turn	on	service	polling.

Select	the	Show	system	databases	and	system	objects	check
box	to	show	all	system	databases	and	objects.

Select	the	Automatically	start	SQL	Server	when
connecting	check	box	to	start	an	instance	of	SQL	Server
automatically.

6.	 Repeat	Steps	1	through	5	to	register	each	server	with	SQL	Server
Enterprise	Manager.

See	Also

How	to	create	server	groups

Managing	Servers

Registering	Servers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	create	server	groups	(Enterprise	Manager)
To	create	server	groups

1.	 Right-click	a	server	group,	and	then	click	New	SQL	Server
Registration.

2.	 Under	Options,	click	the	add	(...)	button.

3.	 In	the	Name	box,	enter	a	unique	name	for	the	new	group.

4.	 Choose	from	the	following	group	levels:

Top	level	group	

Sub-group	of

If	this	option	is	selected,	you	need	to	select	the	top	level
group	under	which	you	want	the	new	subgroup	to	be	below.

5.	 Repeat	Steps	2	through	4	to	create	each	new	server	group.

See	Also

How	to	register	a	server	(Enterprise	Manager)

Managing	Servers

Registering	Servers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	change	a	server's	registration	(Enterprise	Manager)
To	change	a	server's	registration

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Click	Edit	SQL	Server	Registration	properties,	and	then	change	the
server's	registration	as	appropriate.

See	Also

Registering	Servers

JavaScript:hhobj_1.Click()

How	To

How	to	remove	a	registered	server	running	SQL	Server
(Enterprise	Manager)
To	remove	a	registered	server	running	SQL	Server

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Click	Delete	SQL	Server	Registration.

3.	 Confirm	the	deletion.

How	To

How	to	connect	to	a	registered	server	running	SQL	Server
(Enterprise	Manager)
To	connect	to	a	registered	server	running	SQL	Server

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Click	Connect	or	expand	the	server.

How	To

How	to	disconnect	from	a	registered	server	running	SQL	Server
(Enterprise	Manager)
To	disconnect	from	a	registered	server	running	SQL	Server

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Click	Disconnect.

How	To

How	to	assign	the	sa	password	on	a	newly	installed	server
(Enterprise	Manager)
To	assign	the	sa	password

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	sa,	and	then	click	Properties.

4.	 In	the	Password	box,	type	the	new	password.

How	To

How	to	view	server	properties	(Enterprise	Manager)
To	view	server	properties

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Click	Properties.

How	To

How	to	check	and	set	remote	server	configuration	options
(Enterprise	Manager)
To	check	and	set	remote	server	configuration	options

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Click	Properties,	and	then	click	the	Connections	tab.

3.	 Under	Remote	server	connections,	review	and,	if	appropriate,	change
the	values	for	the	following	configuration	options:

Allow	other	SQL	Servers	to	connect	remotely	to	this	SQL
Server	using	RPC.	

Query	time-out	(sec,	0	=	unlimited)

This	option	specifies	the	number	of	seconds	to	wait	before
returning	from	processing	a	query.	A	value	of	0	will	allow	an
infinite	wait.	The	default	is	0.

Enforce	distributed	transactions	(MTS).

Changing	a	configuration	option	requires	that	you	stop	and	restart	the
server.	If	you	changed	a	configuration	option,	then	proceed	to	Step	4.
If	not,	skip	to	Step	6.

4.	 Right-click	the	server,	and	then	click	Stop.

5.	 After	the	server	has	stopped,	right-click	the	server,	and	then	click
Start.

6.	 Repeat	Steps	1	through	5	on	the	other	server	of	the	remote	server	pair.

How	To

How	to	set	up	a	central	store	for	server	registration	information
(Enterprise	Manager)
To	set	up	a	central	store	for	server	registration	information	on	a	remote
server

1.	 Click	the	server,	and	then	on	the	Tools	menu,	click	Options.

2.	 On	the	General	tab,	clear	the	Read/Store	user	independent	check
box.

3.	 Use	SQL	Server	Enterprise	Manager	to	create	server	groups	and
register	servers.

To	set	up	a	central	store	for	server	registration	information	on	a	local	server

1.	 Click	the	server,	and	then	on	the	Tools	menu,	click	Options.

2.	 On	the	General	tab,	click	Read	from	remote.	

3.	 In	the	Server	name	box,	type	the	name	of	the	remote	server	from
which	you	want	to	use	registration	information.

How	To

How	to	set	access	to	your	display	of	servers	and	groups
(Enterprise	Manager)
To	set	access	to	your	display	of	servers	and	groups

1.	 Expand	a	server	group,	and	then	click	a	server.

2.	 On	the	Tools	menu,	click	Options.	

3.	 On	the	General	tab,	click	Read/Store	locally,	and	then	select	or	clear
the	Read/Store	user	independent	check	box.

How	To

How	to	set	the	polling	interval	(Enterprise	Manager)
To	set	the	polling	interval

1.	 Expand	a	server	group,	and	then	click	a	server.

2.	 On	the	Tools	menu,	click	Options.

3.	 On	the	General	tab,	select	the	Poll	server	to	find	out	state	of	server
and	related	services	check	box.

4.	 In	the	Service	list,	click	the	service	to	poll.

5.	 In	the	Poll	interval	(seconds)	box,	type	or	select	the	polling	interval.

See	Also

How	to	set	the	polling	interval	(Service	Manager)

How	To

How	to	disable	a	remote	server	setup	(Enterprise	Manager)
To	disable	a	remote	server	setup

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Remote	Servers	to	list	the	remote
servers	defined	on	the	selected	server.

3.	 Right-click	the	remote	server	to	disable,	and	then	click	Delete.

How	To

How	to	manage	or	view	SQL	Server	messages	(Enterprise
Manager)
To	manage	or	view	SQL	Server	messages

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Point	to	All	Tasks,	and	then	click	Manage	SQL	Server	Messages.

3.	 To	specify	search	options,	do	one	or	more	of	the	following:

In	the	Message	text	contains	box,	type	the	text	to	search	for.

In	the	Error	number	box,	type	the	error	number	to	search
for.

Under	Severity,	select	a	severity	level	to	search	for.

4.	 To	specify	the	messages	to	include,	do	one	of	the	following:

Select	the	Only	include	logged	messages	check	box.

-or-

Select	the	Only	include	user-defined	messages	check	box.

5.	 Click	Find	to	find	all	messages	that	match	the	search	criteria.

How	To

How	to	edit	a	SQL	Server	message	(Enterprise	Manager)
To	edit	a	SQL	Server	message

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Point	to	All	Tasks,	and	then	click	Manage	SQL	Server	Messages.

3.	 Click	the	Messages	tab,	select	the	message	to	edit,	and	then	click	Edit.

How	To

How	to	delete	a	SQL	Server	message	(Enterprise	Manager)
To	delete	a	SQL	Server	message

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Point	to	All	Tasks,	and	then	click	Manage	SQL	Server	Messages.

3.	 Click	the	Messages	tab,	select	the	message	to	delete,	and	then	click
Delete.

4.	 Confirm	the	deletion.

How	To

How	to	add	a	new	SQL	Server	message	(Enterprise	Manager)
To	add	a	new	SQL	Server	message

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Point	to	All	Tasks,	and	then	click	Manage	SQL	Server	Messages.

3.	 On	the	Messages	tab,	click	New.

4.	 To	specify	message	options,	do	the	following:

In	the	New	SQL	Server	Message	dialog	box,	select	an	error
number	for	the	message.

In	the	Severity	box,	type	or	select	a	severity	level.

In	the	Message	text	box,	type	the	text	for	the	message.

In	the	Language	box,	click	the	language	to	be	used	in	the
message.	The	default	is	English.

5.	 If	you	want	the	message	always	to	be	written	to	the	Microsoft®
Windows®	application	log,	select	the	Always	write	to	Windows	NT
event	log	check	box.

How	To

How	to	find	a	SQL	Server	message	(Enterprise	Manager)
To	find	a	SQL	Server	message

1.	 Expand	a	server	group,	and	then	right-click	a	server.

2.	 Point	to	All	Tasks,	and	then	click	Manage	SQL	Server	Messages.

3.	 Click	the	Search	tab,	and	then	specify	the	text,	error	number,	and
severity	level	for	the	message.	You	can	also	choose	to	include	only
logged	or	user-defined	messages.

4.	 Click	Find.

How	To

How	to	set	up	a	linked	server	(Enterprise	Manager)
To	set	up	a	linked	server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	right-click	Linked	Servers,	and	then	click	New
Linked	Server.

3.	 Click	the	General	tab,	and	in	the	Linked	server	box,	type	the	name	of
the	server	to	link.

4.	 Under	Server	type,	click	a	selection.

If	you	select	Other	data	source,	you	will	have	to	specify	provider
properties.

How	To

How	to	delete	a	linked	server	(Enterprise	Manager)
To	delete	a	linked	server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	expand	Linked	Servers.

3.	 Right-click	the	linked	server	to	delete,	and	then	click	Delete.

4.	 Confirm	the	deletion.

How	To

How	to	configure	log	shipping	(Enterprise	Manager)
To	configure	log	shipping	with	the	Database	Maintenance	Plan	Wizard

Note		Before	you	configure	log	shipping,	you	must	create	a	share	on	the	primary
database	to	make	the	transaction	logs	available.	This	is	a	share	off	of	the
directory	that	the	transaction	logs	are	dumped	to.	For	example,	if	you	dump	the
logs	to	the	directory	e:\data\tlogs\,	you	could	create	the	\\logshipping\tlogs	share
off	the	directory.

1.	 In	the	Select	Databases	screen,	select	the	These	databases	check	box,
and	then	select	the	database	to	log	ship.

If	you	select	more	than	one	database,	log	shipping	will	not	work,	and
the	log	shipping	option	will	not	be	available.	You	are	not	allowed	to
select	a	database	that	is	already	configured	for	log	shipping.

2.	 Select	the	Ship	the	transaction	logs	to	other	SQL	Servers	(Log
Shipping)	check	box.

3.	 Continue	through	the	wizard,	specifying	the	rest	of	the	database
maintenance	options,	until	you	get	to	the	Specify	the	Log	Shipping
Destinations	screen.

4.	 Click	Add	to	add	a	destination	database.

For	this	option	to	be	available,	you	must	have	selected	to	use	log
shipping	earlier	in	the	wizard.

5.	 In	the	Add	Destination	Database	screen,	select	a	server	name.

The	server	must	be	registered	and	running	Microsoft®	SQL	Server™
2000	Enterprise	Edition	to	appear	in	the	drop-down	list.	If	you	want
this	destination	to	become	an	available	source	destination,	you	must
select	the	Allow	database	to	assume	primary	role	check	box.	If	this
box	is	not	selected,	this	destination	database	will	not	be	able	to	assume
the	source	destination	role	in	the	future.	If	you	have	selected	the	Allow

database	to	assume	primary	role	check	box,	you	must	also	specify
the	Transaction	Log	Backup	Directory	on	the	destination	database	to
which	the	logs	will	be	backed	up.

6.	 To	change	the	transaction	log	destination	database	from	the	default
location,	enter	a	location	in	the	Directory	box.

7.	 If	the	source	database	does	not	exist	on	the	destination	database,	select
the	Create	New	Database	check	box.

The	Database	Name	box	will	default	to	the	source	database	name.	If
you	want	a	different	database	name	on	the	destination	server,	specify	a
new	name.	If	you	have	chosen	to	allow	this	destination	database	to
assume	the	source	role,	you	cannot	change	the	database	name	from	the
default.

8.	 If	you	have	selected	the	Create	New	Database	check	box,	you	must
specify	the	file	directories	for	the	data	and	log	on	the	destination
database	in	the	For	Data	and	For	Log	boxes.

9.	 If	the	source	database	already	exists	on	the	destination	database,	select
the	Use	Existing	Database	check	box.	If	the	database	name	on	the
destination	server	is	different,	enter	it	in	the	Database	Name	box.	This
database	must	have	been	restored	using	the	WITH	STANDBY	option
to	properly	accept	logs.

10.	 In	the	Initialize	the	Destination	Databases	screen,	either:

Click	Take	full	database	backup	now.

–or-

Click	Use	most	recent	backup	file	to	initialize	the
destination	database.

11.	 In	the	Log	Shipping	Schedules	screen,	view	the	default	log	shipping
schedule.	If	you	would	like	to	alter	the	schedule,	click	Change.

12.	 In	the	Copy/Load	Frequency	box,	set	the	frequency,	in	minutes,	with
which	you	want	the	destination	servers	to	backup	and	restore	the
transaction	logs	from	the	source	server.

13.	 In	the	Load	Delay	box,	set	the	delay,	in	minutes,	you	want	the
destination	database	to	wait	before	it	restores	the	transaction	log	from
the	source	server.

The	default	for	this	box	is	0	minutes,	which	indicates	that	the
destination	database	should	immediately	restore	any	transaction	log
backups.

14.	 In	the	File	Retention	Period	box,	specify	the	length	of	time	that	must
elapse	before	a	transaction	log	can	be	deleted.

15.	 In	the	Log	Shipping	Thresholds	screen,	set	the	Backup	Alert
Threshold.

This	is	the	maximum	elapsed	time	since	the	last	transaction	log	backup
was	made	on	the	source	server.	After	the	time	exceeds	this	specified
threshold,	an	alert	will	be	generated	by	the	monitor	server.

16.	 In	the	Out	of	Sync	Alert	box,	specify	how	long	a	time	has	passed
between	the	last	transaction	log	backup	on	the	source	server	and	the
last	transaction	log	restore	on	the	destination	server.

After	the	time	exceeds	this	specified	threshold,	an	alert	will	be
generated	by	the	monitor	server.

17.	 In	the	Specify	the	Log	Shipping	Monitor	Information	screen,	type
the	name	of	the	server	that	will	monitor	log	shipping.

18.	 Click	either	Use	Windows	Authentication	or	Use	SQL	Server
Authentication	to	connect	to	the	monitor	server.	The
log_shipping_monitor_probe	login	name	is	fixed	and	must	be	used	to
connect	to	the	monitor	server.	If	this	is	a	new	account,	choose	a	new
password.	If	the	account	already	exists	on	the	monitor	server,	you	must
specify	the	existing	password.

Note		Using	the	Database	Maintenance	Wizard	to	set	up	log	shipping,	you	can
log	ship	only	to	disks;	the	backup	to	tape	option	is	not	available.

How	To

How	to	remove	log	shipping	(Enterprise	Manager)
To	remove	log	shipping

1.	 Expand	a	server	group,	and	then	expand	the	primary	server.

2.	 Expand	Management,	and	then	click	Database	Maintenance	Plans.

3.	 In	the	details	pane,	right-click	the	database	maintenance	plan	to	delete,
and	then	click	Properties.

4.	 Click	the	Log	Shipping	tab,	and	then	click	Remove	Log	Shipping.

This	stops	log	shipping	on	the	primary	server,	removes	all	secondary
servers,	and	removes	the	monitor	server.	You	must	delete	the	database
maintenance	plan	to	remove	additional	jobs.

How	To

How	to	add	or	edit	a	destination	server	(Enterprise	Manager)
To	add	or	edit	a	destination	server

1.	 Expand	a	server	group,	and	then	expand	the	primary	server.

2.	 Expand	Management,	and	then	click	Database	Maintenance	Plans.

3.	 In	the	details	pane,	right-click	the	database	maintenance	plan	to	edit,
and	then	click	Properties.

4.	 Click	the	Log	Shipping	tab,	and	then	click	Add	or	Edit.

5.	 In	the	Directory	box,	type	or	select	the	directory	in	which	to	store	the
transaction	logs.

6.	 Do	one	of	the	following:

Click	Create	New	Database	to	create	a	new	database	on	the
destination	server.	If	you	create	a	new	database,	you	must
specify	the	database	name,	along	with	the	file	directories	for
the	data	and	logs.

Click	Use	Existing	Database	if	the	database	already	exists	on
the	destination	server.

How	To

How	to	delete	a	destination	server	(Enterprise	Manager)
To	delete	a	destination	server

1.	 Expand	a	server	group,	and	then	expand	the	primary	server.

2.	 Expand	Management,	and	then	click	Database	Maintenance	Plans.

3.	 In	the	details	pane,	right-click	the	database	maintenance	plan	to	edit,
and	then	click	Properties.

4.	 Click	the	Log	Shipping	tab,	select	the	destination	server	to	delete,	and
then	click	Delete.

5.	 Confirm	the	deletion.

Note		If	you	delete	the	only	destination	server,	all	of	log	shipping	is	removed
from	the	destination,	source,	and	monitor	servers.	You	must	use	the	Database
Maintenance	Plan	Wizard	or	the	Database	Properties	dialog	box	to	add	other
destination	servers.

How	To

How	to	view	the	status	of	servers	configured	for	log	shipping
(Enterprise	Manager)
To	view	the	status	of	servers	configured	for	log	shipping

1.	 Expand	a	server	group,	and	then	expand	the	monitor	server.

2.	 Expand	Management,	and	then	click	Log	Shipping	Monitor.

3.	 In	the	details	pane,	right-click	the	log	shipping	pair	to	monitor,	and
then	click	Properties.

4.	 Click	the	Status	tab,	and	then	view	information	about	the	status	of
both	the	source	and	destination	servers.

Information	about	the	last	backup	file,	the	last	file	copied,	and	the	last
file	restored	is	also	displayed.

How	To

How	to	view	or	edit	information	about	the	source	server
(Enterprise	Manager)
To	view	or	edit	information	about	the	source	server

1.	 Expand	a	server	group,	and	then	expand	the	monitor	server.

2.	 Expand	Management,	and	then	click	Log	Shipping	Monitor.

3.	 In	the	details	pane,	right-click	the	log	shipping	pair	to	monitor,	and
then	click	Properties.

4.	 Click	the	Source	tab,	and	then	view	or	edit	information	about	the
source	server	(for	example,	the	backup	failure	alert	and	the	alert
generation	suppression	value

There	is	also	an	option	to	view	the	backup	schedule	for	the	source
server.

How	To

How	to	view	or	edit	information	about	the	destination	server
(Enterprise	Manager)
To	view	or	edit	information	about	the	destination	server

1.	 Expand	a	server	group,	and	then	expand	the	monitor	server.

2.	 Expand	Management,	and	then	click	Log	Shipping	Monitor.

3.	 In	the	details	pane,	right-click	the	log	shipping	pair	to	monitor,	and
then	click	Properties.

4.	 Click	the	Destination	tab,	and	then	view	or	edit	information	about	the
destination	server	(for	example,	the	backup	failure	alert	and	the	alert
generation	suppression).

There	is	also	an	option	to	view	and/or	enable	the	copy	and	restore
schedules	for	the	destination	server.

How	To

How	to	add	an	external	tool	to	the	Tools	menu	(Enterprise
Manager)
To	add	an	external	tool	to	the	Tools	menu

1.	 On	the	Tools	menu,	click	External	Tools.

2.	 Click	Add.

3.	 Enter	a	command	and	parameters.

You	can	launch	any	Microsoft®	Windows	NT®	4.0	or	Windows®
2000	application	from	SQL	Server	Enterprise	Manager.	External
applications	can	be	added	to	and	run	from	the	Tools	menu.

Note		You	can	use	[SVR]	and	[DBN]	in	the	Parameters	box	to	represent	the
current	server	and	database.	When	you	run	the	tool,	SQL	Server	Enterprise
Manager	substitutes	the	current	server	and	database	names,	passing	them	as
parameters	to	the	application.

How	To

How	to	launch	SQL	Server	Enterprise	Manager	in	the	Computer
Management	console
Note		In	Microsoft®	Windows®	2000,	you	can	access	SQL	Server	Enterprise
Manager	from	the	Computer	Management	console.

To	launch	SQL	Server	Enterprise	Manager	in	the	Computer	Management
console

1.	 On	the	Start	menu,	point	to	Programs,	point	to	Administrative
Tools,	and	then	click	Computer	Management.

2.	 Expand	the	Services	and	Applications	group.

3.	 Expand	the	Microsoft	SQL	Servers	group.

See	Also

How	to	enable	child	windows	(Enterprise	Manager)

How	To

How	to	enable	child	windows	in	SQL	Server	Enterprise	Manager
Note		The	first	time	you	use	the	Computer	Management	console	to	access	SQL
Server	Enterprise	Manager,	you	may	need	to	change	the	console	mode	to	enable
child	windows.

To	enable	child	windows	in	SQL	Server	Enterprise	Manager

1.	 On	the	Start	menu,	point	to	Search,	and	then	click	For	Files	or
Folders.

2.	 In	the	Search	for	files	or	folders	named	box,	type	Compmgmt.msc,
and	then	click	Search	Now.

3.	 Right-click	Compmgmt.msc,	and	then	click	Author.

4.	 On	the	Console	menu,	click	Options.

5.	 In	the	Console	mode	list,	click	User	mode	-	limited	access,	multiple
window.

See	Also

How	to	launch	SQL	Server	Enterprise	Manager	in	the	Computer	Management
console	(Windows)

How	To

How	to	configure	the	affinity	mask	(Enterprise	Manager)
To	configure	the	affinity	mask

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Processor	tab.

4.	 Under	Processor	control,	select	one	or	more	processors	to	assemble
your	affinity	mask.

How	To

How	to	set	the	allow	updates	option	(Enterprise	Manager)
To	set	the	allow	updates	option

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Server	Settings	tab.

4.	 Under	Server	behavior,	select	or	clear	the	Allow	modifications	to	be
made	directly	to	the	system	catalogs	check	box.

How	To

How	to	configure	the	cost	threshold	for	parallelism	(Enterprise
Manager)
To	configure	the	cost	threshold	for	parallelism

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Processor	tab.

4.	 Under	Parallelism,	in	the	Minimum	query	plan	threshold	for
considering	queries	for	parallel	execution	(cost	estimate)	box,	type
or	select	a	value	from	0	through	32767.

This	threshold	value	is	relevant	only	in	symmetrical	multiprocessing
(SMP)	environments.

How	To

How	to	set	the	default	language	(Enterprise	Manager)
To	set	the	default	language

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Server	Settings	tab.

4.	 In	the	Default	language	for	user	box,	choose	the	language	in	which
Microsoft®	SQL	Server™	should	display	system	messages.

The	default	language	is	English.

How	To

How	to	set	a	fixed	fill	factor	(Enterprise	Manager)
To	set	a	fixed	fill	factor

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Database	Settings	tab.

4.	 Under	Settings,	select	the	Fixed	check	box,	and	then	position	the	fill
factor	slider.

How	To

How	to	configure	the	number	of	processors	available	for	parallel
queries	(Enterprise	Manager)
To	configure	the	number	of	processors	available	for	parallel	queries

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Processor	tab.

4.	 Under	Parallelism,	select	the	number	of	processors	to	execute	queries
in	parallel.

By	default,	all	available	processors	are	used.

How	To

How	to	set	minimum	query	memory	(Enterprise	Manager)
To	set	minimum	query	memory

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Memory	tab.

4.	 In	the	Minimum	query	memory	box,	type	or	select	a	value	from	512
through	2147483647	kilobytes	(KB).

The	default	value	is	1024	KB.

How	To

How	to	configure	the	maximum	number	of	worker	threads
(Enterprise	Manager)
To	configure	the	maximum	number	of	worker	threads

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Processor	tab.

4.	 In	the	Maximum	worker	threads	box,	type	or	select	a	value	from	32
through	32767.

The	default	value	is	255.

How	To

How	to	set	the	backup	retention	duration	(Enterprise	Manager)
To	set	the	backup	retention	duration

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Database	Settings	tab.

4.	 In	the	Default	backup	media	retention	(days)	box,	type	or	select	a
value	from	0	through	365	to	set	the	number	of	days	the	backup
medium	will	be	retained	after	a	database	or	transaction	log	backup.

The	default	value	is	0	days.

How	To

How	to	set	a	fixed	amount	of	memory	(Enterprise	Manager)
To	set	a	fixed	amount	of	memory

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Memory	tab.

4.	 Click	Use	a	fixed	memory	size	(MB),	and	then	position	the	fixed
memory	slider.

Note		If	you	use	the	default	settings,	Microsoft®	SQL	Server™	configures
memory	dynamically.

How	To

How	to	set	the	nested	triggers	option	(Enterprise	Manager)
To	set	the	nested	triggers	option

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Server	Settings	tab.

4.	 Under	Server	behavior,	select	or	clear	the	Allow	triggers	to	be	fired
which	fire	other	triggers	(nested	triggers)	check	box.

See	Also

Using	Nested	Triggers

JavaScript:hhobj_1.Click()

How	To

How	to	set	the	priority	boost	option	(Enterprise	Manager)
To	set	the	priority	boost	option

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Processor	tab.

4.	 Under	Processor	control,	select	the	Boost	SQL	Server	priority	on
Windows	check	box.

How	To

How	to	set	the	recovery	interval	(Enterprise	Manager)
To	set	the	recovery	interval

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Database	Settings	tab.

4.	 Under	Recovery,	in	the	Recovery	interval	(min)	box,	type	or	select	a
value	from	0	through	32767	to	set	the	maximum	amount	of	time,	in
minutes,	that	Microsoft®	SQL	Server™	should	spend	recovering	each
database	at	startup.

The	default	value	is	0	minutes,	indicating	automatic	configuration.

How	To

How	to	set	remote	server	access	(Enterprise	Manager)
To	set	remote	server	access

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Connections	tab.

4.	 Under	Remote	server	connections,	select	or	clear	the	Allow	other
SQL	Servers	to	connect	remotely	to	this	SQL	Server	using	RPC
check	box.

How	To

How	to	enforce	distributed	transactions	for	remote	procedures
(Enterprise	Manager)
To	enforce	distributed	transactions	for	remote	procedures

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Connections	tab.

4.	 Under	Remote	server	connections,	select	the	Enforce	distributed
transactions	(MTS)	check	box.

Note		Remote	server	connections	must	be	allowed	before	this	value	can	be	set.

How	To

How	to	set	a	time	limit	for	remote	queries	(Enterprise	Manager)
To	set	a	time	limit	for	remote	queries

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Connections	tab.

4.	 Under	Remote	server	connections,	in	the	Query	time-out	(sec,	0	=
unlimited)	box,	type	or	select	a	value	from	0	through	2147483647	to
set	the	maximum	number	seconds	that	Microsoft®	SQL	Server™	will
wait	before	timing	out.

Note		Remote	server	connections	must	be	allowed	before	this	value	can	be	set.

How	To

How	to	set	the	working	set	size	option	(Enterprise	Manager)
To	set	the	working	set	size	option

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Memory	tab.

4.	 Select	or	clear	the	Reserve	physical	memory	for	SQL	Server	check
box.

How	To

How	to	set	the	two	digit	year	cutoff	option	(Enterprise	Manager)
To	set	the	two	digit	year	cutoff	option

1.	 Expand	a	server	group.	

2.	 Right-click	a	server,	and	then	click	Properties.	

3.	 Click	the	Server	Settings	tab.	

4.	 Under	Two	digit	year	support,	in	the	When	a	two-digit	year	is
entered,	interpret	it	as	a	year	between	box,	type	or	select	a	value
that	is	the	ending	year	of	the	time	span.

The	default	time	span	for	Microsoft®	SQL	Server™	is	1950-2049,
which	represents	a	cutoff	year	of	2049.	This	means	that	SQL	Server
interprets	a	two-digit	year	of	49	as	2049,	a	two-digit	year	of	50	as
1950,	and	a	two-digit	year	of	99	as	1999.	To	maintain	backward
compatibility,	leave	the	setting	at	the	default	value.

Many	client	applications,	such	as	those	based	on	automation	objects,
use	2030	as	the	cutoff	year.	To	make	SQL	Server	compatible	with
those	client	applications,	specify	a	time	span	of	1931-2030.

How	To

How	to	set	user	connections	(Enterprise	Manager)
To	set	user	connections

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Connections	tab.

4.	 Under	Connections,	in	the	Maximum	concurrent	user	connections
(0	=	unlimited)	box,	type	or	select	a	value	from	0	through	32767	to	set
the	maximum	amount	of	simultaneous	user	connections	allowed	to	the
instance	of	Microsoft®	SQL	Server™.

How	To

How	to	configure	user	options	(Enterprise	Manager)
To	configure	user	options

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Connections	tab.

4.	 In	the	Default	connection	options	box,	select	one	or	more	attributes
to	configure	the	default	query-processing	options	for	all	connected
users.

By	default,	no	user	options	are	configured.

How	To

How	to	configure	packet	size	(Enterprise	Manager)
To	configure	packet	size

1.	 On	the	Tools	menu,	click	Options.

2.	 Click	the	Advanced	tab.

3.	 In	the	Packet	size	(bytes)	box,	type	a	value.

How	To

How	to	set	the	query	governor	cost	limit	option	(Enterprise
Manager)
To	set	the	query	governor	cost	limit	option

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Server	Settings	tab.

4.	 Under	Server	behavior,	select	or	clear	the	Use	query	governor	to
prevent	queries	exceeding	specified	cost	check	box.

If	you	select	this	check	box,	in	the	spin	box,	enter	a	nonzero,
nonnegative	value,	which	the	query	governor	uses	to	disallow
execution	of	any	query	with	a	running	length	exceeding	that	value.

How	To

How	to	enable	encryption	after	SQL	Server	has	been	installed
(Network	Utility)
Note		If	you	want	to	use	encryption	with	a	failover	cluster,	you	must	install	the
server	certificate	with	the	fully	qualified	DNS	name	of	the	virtual	server	on	all
nodes	in	the	failover	cluster.	For	example,	if	you	have	a	two-node	cluster,	with
nodes	named	test1.redmond.corp.microsoft.com	and
test2.redmond.corp.microsoft.com	and	a	virtual	SQL	Server	"Virtsql",	you	need
to	get	a	certificate	for	"virtsql.redmond.corp.microsoft.com"	and	install	the
certificate	on	both	nodes.	You	can	then	check	the	Force	protocol	encryption
check	box	on	the	Server	Network	Utility	to	configure	your	failover	cluster	for
encryption.

To	enable	encryption

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Server	Network	Utility

2.	 If	Multiprotocol	does	not	appear	under	Enabled	protocols,	click	it
under	Disabled	protocols,	and	then	click	Enable.	Otherwise,	skip	to
Step	3.

3.	 Under	Enabled	protocols,	click	Multiprotocol,	and	then	click
Properties.

4.	 Select	the	Enable	encryption	check	box.

See	Also

Multiprotocol	Clients

JavaScript:hhobj_1.Click()

How	To

How	to	connect	to	SQL	Server	through	Microsoft	Proxy	Server
(Setup)
Note		To	listen	remotely	by	way	of	Remote	WinSock	(RWS),	define	the	local
address	table	(LAT)	for	the	proxy	server	so	that	the	listening	node	address	is
outside	the	range	of	LAT	entries.

To	connect	to	SQL	Server	through	Microsoft	Proxy	Server

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Server	Network	Utility.

2.	 If	TCP/IP	does	not	appear	under	Enabled	protocols,	click	it	under
Disabled	protocols,	and	then	click	Enable.	Otherwise,	skip	to	Step	3.

3.	 Under	Enabled	protocols,	click	TCP/IP,	and	then	click	Properties.

4.	 Ensure	that	the	port	is	correct.

How	To

How	to	set	the	polling	interval	(Service	Manager)
To	set	the	polling	interval

1.	 Start	SQL	Server	Service	Manager,	if	it	is	not	already	running.

2.	 In	the	Microsoft®	Windows®	taskbar,	right-click	SQL	Server	Service
Manager,	and	then	click	Options.

3.	 In	the	Polling	interval	(seconds)	box,	enter	a	polling	interval.

The	polling	interval	determines	how	often	SQL	Server	Service
Manager	checks	the	state	of	Microsoft	SQL	Server™,	SQL	Server
Agent,	and	Microsoft	Distributed	Transaction	Coordinator	(MS	DTC).

4.	 Optionally,	select	the	Verify	service	control	action	check	box	if	you
want	SQL	Server	Service	Manager	to	provide	a	confirmation	box
before	stopping,	pausing,	starting,	or	continuing	a	service,	including
dependent	services	such	as	SQL	Server	Agent.

See	Also

How	to	set	the	polling	interval	(Enterprise	Manager)

How	To

How	to	configure	a	mail	profile	(Windows)
To	configure	a	mail	profile

1.	 Log	on	to	the	Microsoft®	Windows	NT®	4.0	or	Microsoft	Windows®
2000	server	by	specifying	the	name	and	password	used	to	start
Microsoft	SQL	Server™	services.

2.	 In	Control	Panel,	double-click	the	Mail	icon	to	create	and	configure
or	copy	an	existing	mail	profile.	Select	the	appropriate	mail	service	to
interact	with	your	mail	host.	Choose	a	name	for	the	profile	that	will
help	the	recipient	identify	the	messages.

3.	 On	the	instance	of	SQL	Server,	start	the	mail	client	using	the	newly
created	mail	profile.

4.	 Send	a	message	addressed	to	the	same	profile	name	to	ensure	that	the
mail	client,	mail	profile,	and	e-mail	provider	are	working	properly.

If	your	e-mail	message	does	not	appear,	you	may	need	to	establish
mail	synchronization	by	going	to	the	Tools	menu	and	then	clicking
Deliver	Now.

How	To

How	to	set	up	SQL	Mail	(Enterprise	Manager)
To	set	up	SQL	Mail

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Support	Services,	right-click	SQL	Mail,	and	then	click
Properties.

3.	 In	the	Profile	name	list,	type	or	select	the	mail	profile	that	you
configured	for	SQL	Mail.	

4.	 Click	Test	to	check	the	ability	of	the	system	to	start	and	stop	mail
client	services	with	the	profile	entered.

You	should	receive	a	message	that	SQL	Mail	has	started	successfully
and	stopped	a	mail	session	with	this	profile.

How	To

How	to	set	up	SQLAgentMail	(Enterprise	Manager)
To	set	up	SQLAgentMail

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 If	you	have	configured	a	mail	profile	using	a	domain	account	different
from	the	one	used	by	Microsoft®	SQL	Server™,	click	This	account,
and	then	enter	the	Microsoft	Windows	NT®	4.0	or	Windows	2000®
account	name	and	password	used	to	create	the	mail	profile	for
SQLAgentMail.

4.	 In	the	Mail	profile	box,	select	the	mail	profile	you	created	for
SQLAgentMail.	

5.	 Click	Test	to	check	the	ability	of	the	system	to	start	and	stop	mail
client	services	with	the	profile	entered.

You	should	receive	a	message	that	SQL	Mail	has	started	successfully
and	stopped	a	mail	session	with	this	profile.

How	To

How	to	enable	the	Lock	Page	in	Memory	option	(Windows)
Note		This	functionality	is	available	only	if	you	are	running	the	Microsoft®
Windows®	2000	operating	system.

To	enable	the	Lock	Page	in	Memory	option

1.	 On	the	Start	menu,	click	Run,	and	then	in	the	Open	box,	type
gpedit.msc.

2.	 On	the	Group	Policy	console,	expand	Computer	Configuration,	and
then	expand	Windows	Settings.

3.	 Expand	Security	Settings,	and	then	expand	Local	Policies.

4.	 Select	the	Users	Rights	Assignment	check	box.

The	policies	will	be	displayed	in	the	details	pane.

5.	 In	the	details	pane,	double-click	Lock	pages	in	memory.

6.	 In	the	Local	Security	Policy	Setting	dialog	box,	click	Add.

7.	 In	the	Select	Users	or	Groups	dialog	box,	add	an	account	with
privileges	to	run	sqlservr.exe.

How	To

How	to	start	the	SQL	Server	Network	Utility	(Network	Utility)
To	start	the	SQL	Server	Network	Utility

On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Server	Network	Utility.

How	To

How	to	load	an	installed	server	network	library	(Network	Utility)
To	load	an	installed	server	network	library

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Server	Network	Utility.

2.	 On	the	General	tab,	select	the	name	of	the	instance	of	Microsoft®
SQL	Server™	on	which	to	load	an	installed	server	network	library.

3.	 Under	Disabled	protocols,	click	the	protocol	you	want	to	enable,	and
then	click	Enable.

Depending	on	which	server	network	library	you	are	loading,	you	may
need	to	specify	any	necessary	connection	parameters.	To	change	any
necessary	connection	parameters,	click	the	protocol	and	then	click
Properties.

How	To

How	to	deactivate	a	server	network	library	configuration
(Network	Utility)
To	deactivate	a	server	network	library	configuration

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Server	Network	Utility.

2.	 Under	Enabled	protocols,	click	the	appropriate	server	network	library
configuration,	and	then	click	Disable.

How	To

How	to	edit	a	server	network	library	configuration	(Network
Utility)
To	edit	a	server	network	library	configuration

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Server	Network	Utility.

2.	 Under	Enabled	protocols,	click	the	server	network	library
configuration	to	edit,	and	then	click	Properties.

3.	 In	the	dialog	box	for	the	specified	protocol,	change	the	server	name	or
parameters	to	edit.

How	To

How	to	view	the	installed	SQL	Server	server	network	libraries
(Network	Utility)
To	view	the	installed	SQL	Server	server	network	libraries

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Server	Network	Utility.

2.	 Click	the	Network	Libraries	tab.	The	installed	Microsoft®	SQL
Server™	server	network	libraries	will	be	displayed.

How	To

Managing	Clients
A	client	is	a	front-end	application	that	uses	the	services	provided	by	a	server.
The	computer	that	hosts	the	application	is	referred	to	as	the	client	computer.
Client	software	enables	computers	to	connect	to	an	instance	of	Microsoft®	SQL
Server™	on	a	network.

SQL	Server	clients	can	include	applications	of	various	types,	such	as:

OLE	DB	consumers.

These	applications	use	the	Microsoft	OLE	DB	Provider	for	SQL	Server
or	the	Microsoft	OLE	DB	Provider	for	ODBC	to	connect	to	and
converse	with	instances	of	SQL	Server.	The	OLE	DB	providers	serve	as
intermediaries	between	an	instance	of	SQL	Server	and	client
applications	that	consume	SQL	Server	data	as	OLE	DB	rowsets.

ODBC	applications.

These	include	client	utilities	installed	with	SQL	Server,	such	as	SQL
Server	Enterprise	Manager	and	SQL	Query	Analyzer,	as	well	as	other
applications	that	use	the	SQL	Server	ODBC	driver	to	connect	to	and
converse	with	an	instance	of	SQL	Server.

DB-Library	clients,	including	the	SQL	Server	isql	command	prompt
utility	and	clients	written	to	DB-Library.

Regardless	of	the	type	of	application,	managing	a	client	consists	mainly	of
configuring	its	connection	with	the	server	components	of	SQL	Server.
Depending	on	the	requirements	of	your	site,	client	management	can	range	from
little	more	than	entering	the	name	of	the	server	computer	to	building	a	library	of
custom	configuration	entries	to	accommodate	a	diverse	multiserver	environment.

How	To

How	to	start	the	Client	Network	Utility	(Windows)
To	start	the	Client	Network	Utility

On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Client	Network	Utility.

How	To

How	to	display	the	network	library	version	numbers	(Client
Network	Utility)
To	display	the	library	version	numbers

Click	the	Network	Libraries	tab.

The	network	library,	library	file	name,	version,	file	date,	and	size	are
displayed.

How	To

How	to	set	DB-Library	conversion	preferences	(Client	Network
Utility)
Note		This	procedure	applies	to	Microsoft®	Windows®	32-bit	operating	system
clients.

To	set	the	DB-Library	conversion	preferences

1.	 Click	the	DB-Library	Options	tab.

2.	 Select	or	clear	the	Automatic	ANSI	to	OEM	conversion	check	box.

3.	 Select	or	clear	the	Use	international	settings	check	box.

How	To

How	to	add	a	network	library	configuration	(Client	Network
Utility)
To	add	a	network	library	configuration

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	under
Network	libraries,	select	one	of	the	network	libraries.

3.	 Enter	the	server	alias	and	any	required	parameter	information	for	the
network	library	selected.

How	To

How	to	edit	a	network	library	configuration	(Client	Network
Utility)
To	edit	a	network	library	configuration

1.	 Click	the	Alias	tab,	and	then	click	the	network	protocol	configuration
to	edit.

2.	 Click	Edit.

3.	 In	the	Edit	Network	Library	Configuration	dialog	box,	edit	the
information	to	change.

How	To

How	to	delete	a	network	library	configuration	(Client	Network
Utility)
To	delete	a	network	library	configuration

1.	 Click	the	Alias	tab,	and	then	click	the	network	library	configuration	to
delete.

2.	 Click	Remove.

How	To

How	to	alias	a	client	to	an	alternate	pipe	(Client	Network	Utility)
To	alias	a	client	to	an	alternate	pipe

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
Named	Pipes.

3.	 In	the	Server	alias	box,	enter	the	server	alias.

4.	 Under	Connection	parameters,	in	the	Pipe	name	box,	type	the	name
of	the	alternate	pipe	name	(for	example,	\\myserver\pipe\altpipe).

How	To

How	to	configure	a	client	to	use	the	Multiprotocol	Net-Library
(Client	Network	Utility)
Note		Before	creating	a	Multiprotocol	client	configuration,	make	sure	your
computer	has	at	least	one	IPC	protocol	loaded	under	Multiprotocol	on	the	server
(Named	Pipes,	NWLink	IPX/SPX,	TCP/IP,	or	Windows	Sockets).

To	configure	a	client	to	use	the	Multiprotocol	Net-Library

1.	 	Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
Multiprotocol.

3.	 In	the	Server	alias	box,	enter	the	name	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	Multiprotocol	Net-Library.

4.	 Leave	the	Additional	parameters	box	empty,	unless	the	server
requires	specific	parameters.	Verify	with	your	network	administrator
before	entering	parameters.

How	To

How	to	configure	a	client	to	use	TCP/IP	(Client	Network	Utility)
To	configure	a	client	to	use	TCP/IP

1.	 Click	the	General	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
TCP/IP.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	Windows	Sockets	Net-Library.

With	TCP/IP,	you	can	also	specify	the	server	with	its	IP	address
instead	of	its	name.

4.	 Do	one	of	the	following:

Select	the	Dynamically	determine	port	check	box	to
automatically	determine	the	port.

Clear	the	Dynamically	determine	port	check	box	to	set	the
port	manually,	and	then	in	the	Port	number	box,	type	the
port	number.

For	more	information	about	other	TCP/IP	protocols	that	support	Windows
Sockets,	see	the	TCP/IP	documentation.

How	To

How	to	configure	a	client	to	use	the	NWLink	IPX/SPX	network
library	(Client	Network	Utility)
To	configure	a	client	to	use	the	NWLink	IPX/SPX	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
NWLink	IPX/SPX.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	NWLink	IPX/SPX	Net-Library.

4.	 Under	Connection	parameters,	click	either	Service	name	or
Network	address,	and	then	do	one	of	the	following:

If	you	clicked	Service	name,	enter	the	service	name.

Service	name	is	the	Microsoft	Windows	NT®	4.0	or
Windows®	2000	computer	name	under	which	an	instance	of
SQL	Server	is	running.	This	name	is	stored	in	the	Bindery	of
the	server	computer.

If	you	clicked	Network	address,	enter	the	address	(the	MAC
address),	port	(socket	number),	and	network	(NetWare
network	number).

How	To

How	to	configure	a	client	to	use	the	AppleTalk	network	library
(Client	Network	Utility)
To	configure	a	client	to	use	the	AppleTalk	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
AppleTalk.

3.	 In	the	Server	alias	box,	enter	the	name	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	AppleTalk	Net-Library.

4.	 Under	Connection	parameters,	type	the	AppleTalk	object	name	and
optional	zone	identifiers.

How	To

How	to	configure	a	client	to	use	the	Banyan	VINES	network
library	(Client	Network	Utility)
To	configure	a	client	to	use	the	Banyan	VINES	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click
Banyan	VINES.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	Banyan	VINES	Net-Library.

4.	 Under	Connection	parameters,	type	the	service	and	the	VINES
organization.	You	can	use	the	default	value	of	MSSQL	for	group.

How	To

How	to	configure	a	client	to	use	the	VIA	network	library	(Client
Network	Utility)
To	configure	a	client	to	use	the	Banyan	VINES	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click	VIA.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	VIA	Net-Library.

4.	 Under	Connection	parameters,	type	the	server	name	and	server	port
number.

How	To

How	to	configure	a	client	to	use	a	nonstandard	network	library
(Client	Network	Utility)
To	configure	a	client	to	use	a	nonstandard	network	library

1.	 Click	the	Alias	tab,	and	then	click	Add.

2.	 In	the	Add	Network	Library	Configuration	dialog	box,	click	Other.

3.	 In	the	Server	alias	box,	enter	the	alias	of	the	instance	of	Microsoft®
SQL	Server™	listening	on	the	Net-Library	you	plan	to	install.

4.	 Under	Connection	parameters,	type	the	file	name	(file	must	be	a
DLL)	of	the	installed	Net-Library.	Do	not	enter	the	DLL	extension.

5.	 If	necessary,	enter	any	additional	information	in	the	Parameters	box
(such	as	user	name	and	password).	Use	comma	separators	between
parameters.

How	To

How	to	verify	that	SQL	Server	is	listening	on	AppleTalk	and	can
accept	a	client	connection	(Client	Network	Utility)
To	verify	that	SQL	Server	is	listening	on	AppleTalk	and	can	accept	a	client
connection

1.	 Copy	the	client	AppleTalk	Net-Library	(Dbmsadsn.dll)	from	the
\WINNT\system32	directory	of	the	server	to	the	same	directory	of	a
remote	computer	running	Microsoft®	Windows	NT®	or	Microsoft
Windows®	2000	Services	for	Macintosh.

2.	 On	the	remote	workstation,	start	SQL	Server	Client	Configuration.

3.	 If	AppleTalk	is	listed	in	the	Disabled	protocols	list,	click	AppleTalk,
and	then	click	Enable.

4.	 In	the	Enabled	protocols	by	order	list,	click	AppleTalk,	and	then
click	the	up	button	until	AppleTalk	is	at	the	top	of	the	list.

5.	 Click	OK.

6.	 Attempt	an	ISQL	connection	with	the	AppleTalk	service	object	name.

For	example,	at	the	command	line,	type:

isql	-Usa	-P	-Sservicename

If	you	can	connect	with	ISQL	and	execute	queries,	the	server	is
configured	properly	and	is	accepting	connections.

Note		The	Microsoft	Win32®	AppleTalk	(ADSP)	client	side	Net-
Library	(Dbmsadsn.dll)	is	included	for	testing	ADSP	connections	and
troubleshooting	AppleTalk	connections	between	Macintosh	clients	and
Microsoft	SQL	Server™.	This	Net-Library	is	intended	to	be	used	only

when	testing	a	connection	from	a	remote	client	to	an	instance	of	SQL
Server.	If	you	attempt	to	make	local	connections	through	the	ADSP
Net-Library	to	an	instance	of	SQL	Server	listening	on	AppleTalk,	you
will	receive	the	following	network	error:		Net-Library	error	11:
getsockopt().

How	To

How	to	check	the	ODBC	SQL	Server	driver	version	(Windows)
Note		You	can	follow	these	steps	only	if	you	are	running	the	Microsoft®
Windows	NT®	4.0	operating	system.

To	check	the	ODBC	SQL	Server	driver	version	(32-bit	ODBC)

1.	 In	Control	Panel,	double-click	ODBC	Data	Sources.

2.	 Click	the	Drivers	tab.

Information	for	the	Microsoft	SQL	Server™	entry	is	displayed	in	the
Version	column.

How	To

Automating	Administrative	Tasks
This	topic	defines	automated	administration	and	its	components,	multiserver
administration,	and	introduces	Microsoft®	SQL	Server™	tools	for	defining
automated	tasks.

What	is	Automated	Administration?
Automated	administration	is	the	programmed	response	to	predictable
administrative	responsibilities	or	server	events.	Administrators,	application
writers,	and	analysts	operating	data	warehouses	can	benefit	from	task
automation.	To	automate	administration:

Establish	which	administrative	responsibilities	or	server	events	occur
regularly	and	can	be	administered	programmatically.

Define	a	set	of	jobs	and	alerts.

Run	the	SQL	Server	Agent	service.

Why	Should	I	Automate	Administration?

The	job	of	an	administrator	entails	various	administrative	duties	that	do	not
change	from	day	to	day	and	can	be	tedious	chores.	By	automating	recurring
administrative	tasks	and	responses	to	server	events,	you	free	time	to	perform
other	tasks	that	require	creativity	and	lack	predictable	or	programmable
responses.

How	To

How	to	set	the	service	startup	account	for	SQL	Server	Agent
(Enterprise	Manager)
To	set	the	service	startup	account	for	SQL	Server	Agent

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Under	Service	startup	account,	do	one	of	the	following:

Click	System	account	if	your	jobs	require	resources	from	the
local	server	only.

Click	This	account	if	your	jobs	require	resources	across	the
network,	including	application	resources;	if	you	want	to
forward	events	to	other	Windows®	application	logs;	or	if	you
want	to	notify	operators	through	e-mail	or	pagers.

4.	 If	you	clicked	This	account,	enter	the	Microsoft®	Windows	NT®	4.0
or	Windows	2000	account	name	that	SQL	Server	Agent	will	use,	and
then	enter	the	password	for	this		account	in	the	Password	box.

You	must	restart	SQL	Server	Agent	before	these	configuration	changes	take
effect.

How	To

How	to	set	the	mail	profile	for	SQL	Server	Agent	(Enterprise
Manager)
To	set	the	mail	profile	for	SQL	Server	Agent

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Under	Mail	session,	select	a	profile	in	the	Mail	profile	box.	If	no
profiles	are	listed,	enter	the	name	of	the	profile	to	use.

How	To

How	to	set	the	SQL	Server	connection	(Enterprise	Manager)
To	set	the	SQL	Server	connection

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Click	the	Connection	tab,	and	under	SQL	Server	connection,	do	of
the	following:

Click	Use	Windows	Authentication	if	you	are	running	SQL
Server	Agent	on	a	Microsoft®	Windows	NT®	4.0	or
Windows	2000	server.

Use	SQL	Server	Authentication	if	you	are	running	SQL
Server	Agent	on	Windows	98.

If	you	clicked	Use	SQL	Server	Authentication,	in	the
SysAdmin	login	ID	box,	enter	a	login	ID	of	a	Microsoft	SQL
Server™	login	who	is	a	member	of	the	sysadmin	role.	In	the
Password	box,	enter	the	password	for	the	SQL	Server	login.

How	To

How	to	set	a	SQL	Server	alias	(Enterprise	Manager)
To	set	a	SQL	Server	alias

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Click	the	Connection	tab,	and	in	the	Local	host	server	list,	click	the
alias	to	which	SQL	Server	Agent	should	connect.

Select	an	alias	that	refers	to	the	local	instance	of	Microsoft®	SQL
Server™	or	SQL	Server	Agent	will	not	work	correctly.

How	To

How	to	create	a	job	(Enterprise	Manager)
To	create	a	job

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Right-click	Jobs,	and	then	click	New	Job.

4.	 In	the	Name	box,	enter	a	name	for	the	job.

5.	 Clear	the	Enabled	check	box	if	you	do	not	want	the	job	to	be	run
immediately	following	its	creation.	For	example,	if	you	want	to	test	a
job	before	it	is	scheduled	to	run,	disable	the	job.

6.	 Under	Source,	do	one	of	the	following:

Click	Target	local	server	if	the	job	should	run	on	this	server
only.	Skip	to	Step	9	if	you	select	this	option.

Click	Target	multiple	servers	if	the	job	should	run	on	other
servers.	Then	click	Change.

This	option	is	enabled	only	if	the	server	is	a	master	server.

7.	 In	the	Change	Job	Target	Servers	dialog	box,	on	the	Available
Servers	tab,	click	a	server,	and	then	click	the	right	arrow	to	move	the
server	to	the	Selected	target	servers	list.

8.	 Click	OK	to	return	to	the	New	Job	Properties	dialog	box.

9.	 In	the	Owner	list,	select	a	user	to	be	the	owner	of	the	job.	

10.	 In	the	Description	box,	enter	a	description	of	what	the	job	does.	The
maximum	number	of	characters	is	512.

IMPORTANT		Each	job	must	have	at	least	one	step.	A	step	must	be	created	with	the
job	before	the	job	can	be	saved.	For	more	information,	see	Creating	Job	Steps.

JavaScript:hhobj_1.Click()

How	To

How	to	disable	a	job	(Enterprise	Manager)
To	disable	a	job

1.	 In	the	details	pane,	right-click	the	job,	and	then	click	Properties.

2.	 Clear	the	Enabled	check	box.

How	To

How	to	create	a	job	category	(Enterprise	Manager)
To	create	a	job	category

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Right-click	Jobs,	point	to	All	Tasks,	and	then	click	Manage	Job
Categories.

4.	 In	the	Job	Categories	dialog	box,	click	Add.

5.	 In	the	Name	box,	enter	a	name	for	the	job	category.

See	Also

How	to	assign	a	job	to	a	job	category	(Enterprise	Manager)

How	To

How	to	delete	a	job	category	(Enterprise	Manager)
To	delete	a	job	category

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Right-click	Jobs,	point	to	All	Tasks,	and	then	click	Manage	Job
Categories.

4.	 Click	a	job	category,	and	then	click	Delete.

How	To

How	to	assign	a	job	to	a	job	category	(Enterprise	Manager)
To	assign	a	job	to	a	job	category

1.	 In	the	details	pane,	right-click	the	job,	and	then	click	Properties.

2.	 In	the	Category	list,	select	the	job	category	you	want	to	assign	to	the
job.

How	To

How	to	change	the	membership	of	a	job	category	(Enterprise
Manager)
To	change	the	membership	of	a	job	category

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Right-click	Jobs,	point	to	All	Tasks	and	then	click	Manage	Job
Categories.

4.	 In	the	Job	Categories	dialog	box,	select	a	job	category,	and	then	click
Properties.

5.	 Click	Show	all	jobs.

6.	 In	the	Select	jobs	for	this	category	list,	select	or	clear	the	Member
check	box.

How	To

How	to	give	others	ownership	of	a	job	(Enterprise	Manager)
To	give	others	ownership	of	a	job

1.	 In	the	details	pane,	right-click	the	job,	and	then	click	Properties.

2.	 In	the	Owner	list,	select	a	login.

Assigning	a	job	to	another	login	does	not	guarantee	that	the	new	owner
has	sufficient	permission	to	run	the	job	successfully.

How	To

How	to	create	a	CmdExec	job	step	(Enterprise	Manager)
To	create	a	CmdExec	job	step

1.	 Create	a	new	job	or	right-click	an	existing	job,	and	then	click
Properties.

For	more	information	about	creating	a	job,	see	Creating	Jobs.

2.	 In	the	Job	Properties	dialog	box,	click	the	Steps	tab,	and	then	click
New.	

3.	 In	the	Step	name	box,	enter	a	job	step	name.	

4.	 In	the	Type	list,	click	Operating	system	command	(CmdExec).

5.	 In	the	Process	exit	code	of	a	successful	command	box,	enter	a	value
from	0	to	999999.	

6.	 In	the	Command	box,	enter	the	operating	system	command	or
executable	program.

JavaScript:hhobj_1.Click()

How	To

How	to	reset	SQLAgentCmdExec	permissions	(Enterprise
Manager)
To	reset	SQLAgentCmdExec	permissions

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Click	the	Job	System	tab.

4.	 Under	Non-SysAdmin	job	step	proxy	account,	clear	the	Only	users
with	SysAdmin	privileges	can	execute	CmdExe	and
ActiveScripting	job	steps	check	box,	and	click	Reset	Proxy
Account.	

5.	 Type	the	user	name,	password,	and	domain	of	the	user	account	to	be
used	by	SQL	Server	Agent	when	running	jobs	owned	by	users	who	are
not	system	administrators.

How	To

How	to	define	Transact-SQL	job	step	options	(Enterprise
Manager)
To	define	Transact-SQL	job	step	options

1.	 In	the	details	pane,	right-click	the	job,	and	then	click	Properties.

2.	 Click	the	Steps	tab,	click	a	job	step,	and	then	click	Edit.

3.	 Confirm	that	the	job	type	is	Transact-SQL	Script	(TSQL),	and	then
click	the	Advanced	tab.

4.	 Enter	the	name	of	an	output	file,	and	decide	whether	the	file	should	be
overwritten	or	appended	to.

5.	 Select	the	Append	output	to	step	history	check	box	if	you	want	the
output	included	in	the	steps	history.

Output	will	only	be	shown	if	there	were	no	errors.	Also,	output	may	be
truncated.

6.	 In	the	Run	as	user	list,	click	the	user	(available	to	system
administrators	only).

How	To

How	to	create	an	Active	Script	job	step	(Enterprise	Manager)
To	create	an	Active	Script	job	step

1.	 Create	a	new	job	or	right-click	an	existing	job,	and	then	click
Properties.

For	more	information	on	creating	a	job,	see	Creating	Jobs.

2.	 Click	the	Steps	tab,	and	then	click	New.	

3.	 In	the	Step	name	box,	enter	a	job	step	name.	

4.	 In	the	Type	list,	click	ActiveX	Script.

5.	 In	the	Language	list,	click	a	scripting	language,	or	click	Other	and
then	enter	the	name	of	the	Microsoft®	ActiveX®	scripting	language	in
which	the	command	will	be	written.

6.	 In	the	Command	box,	enter	the	source	for	the	job	step.

7.	 Click	Parse	to	check	your	syntax.

The	message	"Parse	succeeded"	is	displayed	when	your	syntax	is
correct.	If	an	error	is	found,	correct	the	syntax	before	continuing.

Note		There	are	some	instances	in	which	the	"Parse	succeeded"	message	is
displayed,	but	the	command	does	not	run	successfully.	To	determine	whether	the
command	will	run	successfully,	run	the	command	in	an	ActiveX	script	authoring
environment	such	as	Microsoft	Visual	Basic®.

JavaScript:hhobj_1.Click()

How	To

How	to	set	job	step	success	or	failure	flow	(Enterprise	Manager)
To	set	job	step	success	or	failure	flow

1.	 In	the	details	pane,	right-click	the	job,	and	then	click	Properties.

2.	 Click	the	Steps	tab,	click	a	step,	and	then	click	Edit.

3.	 Click	the	Advanced	tab.

4.	 In	the	On	success	action	list,	click	the	action	to	perform	if	the	job	step
completes	successfully.

5.	 In	the	Retry	attempts	box,	enter	the	number	of	times	from	0	through
9999	that	the	job	step	should	be	repeated	before	it	is	considered	to
have	failed.	If	you	entered	a	value	greater	than	0	in	the	Retry
attempts	box,	enter	in	the	Retry	interval	(minutes)	box	the	number
of	minutes	from	1	through	9999	that	must	pass	before	the	job	step	is
retried.

6.	 In	the	On	failure	action	list,	click	the	action	to	perform	if	the	job	step
fails.

How	To

How	to	set	up	the	job	history	log	(Enterprise	Manager)
To	set	up	the	job	history	log

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Click	the	Job	System	tab,	select	the	Limit	size	of	job	history	log
check	box,	and	then	increase	or	decrease	the	maximum	number	of
rows	for	the	job	history	log.

How	To

How	to	view	the	job	history	(Enterprise	Manager)
To	view	the	job	history

1.	 In	the	details	pane,	right-click	a	job,	and	then	do	one	of	the	following:

Click	View	Job	History	if	you	are	viewing	the	history	of	a
local	job.

Click	Job	Status	if	you	are	viewing	the	history	of	a
multiserver	job.

2.	 If	you	clicked	Job	Status,	in	the	Multiserver	Job	Execution	Status
dialog	box,	click	Job,	click	a	job	name,	and	then	click	View	Remote
Job	History.

3.	 To	update	the	job	history,	click	Refresh.

How	To

How	to	make	a	master	server	(Enterprise	Manager)
To	make	a	master	server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Make	this	a	Master.

A	server	must	be	running	on	Microsoft®	Windows	NT®	4.0	or
Microsoft	Windows®	2000	to	be	made	a	master	server.	The	Make
MSX	Wizard	guides	you	through	the	process	of	making	a	master
server.

How	To

How	to	make	a	target	server	(Enterprise	Manager)
To	make	a	target	server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Make	this	a	Target.

A	server	must	be	running	on	Microsoft®	Windows	NT®	4.0	or
Windows®	2000	to	be	made	a	target	server.	The	Make	TSX	Wizard
guides	you	through	the	process	of	making	a	target	server.

How	To

How	to	enlist	a	target	server	from	a	master	server	(Enterprise
Manager)
To	enlist	a	target	server	from	master	server

1.	 Expand	a	server	group,	and	then	expand	a	server	configured	as	a
master	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Add	Target	Servers.	

4.	 Select	one	or	more	registered	servers,	and	then	click	Enlist.

How	To

How	to	defect	a	target	server	from	a	master	server	(Enterprise
Manager)
To	defect	a	target	server	from	a	master	server

1.	 Expand	a	server	group,	and	then	expand	a	server	configured	as	a	target
server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Defect	from	MSX.

4.	 Click	Yes	to	confirm	that	you	want	to	defect	this	target	server	from	a
master	server.

How	To

How	to	defect	multiple	target	servers	from	a	master	server
(Enterprise	Manager)
To	defect	multiple	target	servers	from	a	master	server

1.	 Expand	a	server	group,	and	then	expand	a	server	configured	as	a
master	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Manage	Target	Servers.

4.	 Click	Post	Instructions,	and	then	in	the	Instruction	type	list,	click
Defect.

5.	 Under	Recipients,	do	one	of	the	following:

Click	All	target	servers	to	defect	all	target	servers	of	this
master	server.	Use	this	option	if	you	want	to	completely
uninstall	the	current	multiserver	administration	configuration.

Click	These	target	servers,	and	then	click	the	corresponding
Select	box,	to	defect	some	but	not	all	target	servers	of	this
master	server.

How	To

How	to	view	a	master	SQL	Server	Agent	error	log	(Enterprise
Manager)
To	view	a	master	SQL	Server	Agent	error	log

1.	 Expand	a	server	group,	and	then	expand	a	server.	

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Manage	Target	Servers.

4.	 On	the	Target	Server	Status	tab,	right-click	a	server,	and	then	click
View	SQLServerAgent	Error	log.

How	To

How	to	check	the	status	of	a	target	server	(Enterprise	Manager)
To	check	the	status	of	a	target	server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Manage	Target	Servers.

4.	 On	the	Target	Server	Status	tab,	right-click	a	server,	and	then	click
Check	SQLServerAgent	State.

How	To

How	to	schedule	a	job	(Enterprise	Manager)
To	schedule	a	job

1.	 In	the	details	pane,	right-click	the	job,	click	Properties,	click	the
Schedules	tab,	and	then	click	New	Schedule.

2.	 In	the	Name	box,	enter	a	name	for	the	new	schedule.	

3.	 Clear	the	Enabled	check	box	if	you	do	not	want	the	schedule	to	take
effect	immediately	following	its	creation.

4.	 Under	Schedule	type,	do	one	of	the	following:

Click	Start	automatically	when	SQL	Server	Agent	starts	to
start	the	job	when	the	SQL	Server	Agent	service	is	started.

Click	Start	whenever	the	CPU(s)	become	idle	to	start	the
job	when	the	CPU(s)	reach	an	idle	condition.

Click	One	time	if	you	want	a	schedule	to	run	once.	To	set	the
one	time	schedule,	enter	values	in	the	On	date	and	At	time
boxes.

Click	Recurring	if	you	want	a	schedule	to	run	repeatedly.	To
set	the	recurring	schedule,	click	Change,	and	then	complete
the	Edit	Recurring	Job	Schedule	dialog	box.

How	To

How	to	set	CPU	idle	time	and	duration	(Enterprise	Manager)
To	set	CPU	idle	time	and	duration

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Click	the	Advanced	tab,	and	then	select	the	The	computer	is	idle
when	check	box.

4.	 Under	Idle	CPU	condition,	do	the	following:

Specify	the	percentage	that	the	average	CPU	usage	must
remain	below	(across	all	CPUs).

Specify	the	duration	in	seconds	before	the	computer	is
considered	idle.

How	To

How	to	notify	an	operator	of	job	status	(Enterprise	Manager)
To	notify	an	operator	of	job	status

1.	 In	the	details	pane,	right-click	the	job,	and	then	click	Properties.

2.	 In	the	Job	Properties	dialog	box,	click	the	Notifications	tab.

3.	 If	you	want	to	notify	an	operator	by	e-mail,	select	the	E-mail	operator
check	box,	and	then	in	the	list	do	one	of	the	following:

Click	When	the	job	succeeds	to	notify	the	operator	when	the
job	completes	successfully.

Click	When	the	job	fails	to	notify	the	operator	when	the	job
completes	unsuccessfully.

Click	Whenever	the	job	completes	to	notify	the	operator
regardless	of	completion	status.

4.	 If	you	want	to	notify	an	operator	by	pager,	select	the	Page	operator
check	box,	and	then	in	the	list	do	one	of	the	following:

Click	When	the	job	succeeds	to	notify	the	operator	when	the
job	completes	successfully.

Click	When	the	job	fails	to	notify	the	operator	when	the	job
completes	unsuccessfully.

Click	Whenever	the	job	completes	to	notify	the	operator
regardless	of	completion	status.

5.	 If	you	want	to	notify	an	operator	by	net	send,	select	the	Net	send
operator	check	box,	click	an	operator,	and	then	do	one	of	the

following:

Click	When	the	job	succeeds	to	notify	the	operator	when	the
job	completes	successfully.

Click	When	the	job	fails	to	notify	the	operator	when	the	job
completes	unsuccessfully.

Click	Whenever	the	job	completes	to	notify	the	operator
regardless	of	completion	status.

How	To

How	to	write	the	job	status	to	the	Windows	application	log
(Enterprise	Manager)
To	write	the	job	status	to	the	Windows	application	log

1.	 In	the	details	pane,	right-click	the	job,	and	then	click	Properties.

2.	 Click	the	Notifications	tab.

3.	 Select	the	Write	to	Windows	application	event	log	check	box,	and
then	in	the	list,	do	one	of	the	following:

Click	When	the	job	succeeds	to	log	the	job	status	when	the
job	completes	successfully.

Click	When	the	job	fails	to	log	the	job	status	when	the	job
completes	unsuccessfully.

Click	Whenever	the	job	completes	to	log	the	job	status
regardless	of	completion	status.

How	To

How	to	automatically	delete	a	job	(Enterprise	Manager)
To	automatically	delete	a	job

1.	 In	the	details	pane,	right-click	the	job,	and	then	click	Properties.

2.	 Click	the	Notifications	tab.

3.	 Select	the	Automatically	delete	job	check	box,	and	then	in	the	list,	do
one	of	the	following:

Click	When	the	job	succeeds	to	delete	the	job	status	when	it
has	completed	successfully.

Click	When	the	job	fails	to	delete	the	job	when	it	has
completed	unsuccessfully.

Click	Whenever	the	job	completes	to	delete	the	job
regardless	of	completion	status.

How	To

How	to	set	the	polling	interval	for	target	servers	(Enterprise
Manager)
To	set	the	polling	interval	for	target	servers

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Manage	Target	Servers.

4.	 On	the	Target	Server	Status	tab,	click	Post	Instructions.

5.	 In	the	Instruction	type	list,	select	Set	polling	interval.

6.	 In	the	Polling	interval	box,	enter	the	number	of	seconds	from	10
through	28,800	that	must	pass	before	the	target	server	polls	the	master
server.

7.	 Under	Recipients,	do	one	of	the	following:

Click	All	target	servers	if	all	target	servers	share	the	same
polling	interval.

Click	These	target	servers	if	not	all	target	servers	share	the
same	polling	interval,	and	then	select	each	target	server	that
will	use	this	polling	interval.

How	To

How	to	start	a	job	(Enterprise	Manager)
To	start	a	job

In	the	details	pane,	right-click	the	job,	and	then	do	of	the	following:

Click	Start	Job	if	you	are	working	on	a	single	server,	or
working	on	a	target	server,	or	running	a	local	server	job	on	a
master	server.

Click	Start	Job,	and	then	click	Start	on	all	targeted	servers	if
you	are	working	on	a	master	server	and	want	all	targeted
servers	to	run	the	job	simultaneously.

Click	Start	Job,	and	then	click	Start	on	specific	target
servers	if	you	are	working	on	a	master	server	and	want	to
specify	target	servers	for	the	job.

In	the	Post	Download	Instructions	dialog	box,	select	the
These	target	servers	check	box,	and	then	select	each	target
server	on	which	this	job	should	run.

How	To

How	to	stop	a	job	(Enterprise	Manager)
To	stop	a	job

In	the	details	pane,	right-click	the	job,	and	then	click	Stop	Job.

For	a	multiserver	job,	a	STOP	instruction	for	the	job	is	posted	to	all
target	servers	of	the	job.

How	To

How	to	force	a	target	server	to	poll	the	master	server	(Enterprise
Manager)
To	force	a	target	server	to	poll	the	master	server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Manage	Target	Servers.

4.	 Click	a	target	server,	and	then	click	Force	Poll.

How	To

How	to	view	a	job	(Enterprise	Manager)
To	view	a	job

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	expand	SQL	Server	Agent,	and	then	click
Jobs.

3.	 In	the	details	pane,	right-click	a	job,	and	then	click	Properties.

You	can	only	view	jobs	that	you	own.

How	To

How	to	resize	the	job	history	log	(Enterprise	Manager)
To	resize	the	job	history	log

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Click	the	Job	System	tab,	and	then	select	Limit	size	of	job	history
log	check	box.

4.	 In	the	Maximum	job	history	log	size	(rows)	box,	enter	the	maximum
number	of	rows	the	job	history	log	should	allow.

5.	 In	the	Maximum	job	history	rows	per	job	box,	enter	the	maximum
number	of	job	history	rows	to	allow	for	a	job.

How	To

How	to	clear	the	job	history	log	(Enterprise	Manager)
To	clear	the	job	history	log

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	expand	SQL	Server	Agent,	and	then	click
Jobs.

3.	 In	the	details	pane,	right-click	a	job,	and	then	do	one	of	the	following:

Click	View	job	history	if	you	want	to	clear	the	history	log	of
a	local	job.

Click	Job	status	if	you	want	to	clear	the	history	log	of	a
multiserver	job.	Click	Job,	click	a	job	name,	and	then	click
View	Remote	Job	History.

4.	 Click	Clear	All.

How	To

How	to	modify	a	job	(Enterprise	Manager)
To	modify	a	job

1.	 In	the	details	pane,	right-click	the	job,	and	then	click	Properties.

2.	 In	the	Job	Properties	dialog	box,	update	the	job's	properties,	steps,
schedule,	and	notifications	using	the	corresponding	tabs.

Unless	you	are	a	member	of	the	sysadmin	role,	you	can	only	modify
jobs	that	you	own.

See	Also

How	to	create	a	job	(Enterprise	Manager)

How	to	notify	an	operator	of	job	status	(Enterprise	Manager)

How	to	schedule	a	job	(Enterprise	Manager)

How	To

How	to	modify	the	target	servers	for	a	job	(Enterprise	Manager)
To	modify	the	target	servers	for	a	job

1.	 In	the	details	pane,	right-click	a	job	and	then	click	Properties.

2.	 On	the	General	tab,	click	Change.

3.	 Click	one	or	more	servers,	and	then	click	the	right	arrow	to	select	the
servers	as	targets	for	the	job.

4.	 Under	Selected	target	servers,	choose	one	or	more	servers,	and	then
click	the	left	arrow	to	remove	the	servers	as	targets	for	the	job.

How	To

How	to	modify	a	target	server's	location	(Enterprise	Manager)
To	modify	a	target	server's	location

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management.

3.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	then	click	Manage	Target	Servers.

4.	 Right-click	a	server,	and	then	click	Properties.

5.	 In	the	Location	box,	enter	a	location	for	the	server.

How	To

How	to	delete	a	job	(Enterprise	Manager)
To	delete	a	job

In	the	details	pane,	right-click	the	job,	and	then	click	Delete.

Unless	you	are	a	member	of	the	sysadmin	role,	you	can	only	delete	jobs
that	you	own.

How	To

How	to	synchronize	target	server	clocks	(Enterprise	Manager)
To	synchronize	target	server	clocks

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Right-click	SQL	Server	Agent,	point	to	Multi	Server
Administration,	and	the	click	Manage	Target	Servers.

3.	 Click	Post	Instructions.

4.	 In	the	Instruction	type	list,	select	Synchronize	clocks.

5.	 Under	Recipients,	do	one	of	the	following:

Click	All	target	servers	to	synchronize	all	target	server
clocks	with	the	master	server	clock.

Click	These	target	servers	to	synchronize	certain	server
clocks,	and	then	select	each	target	server	whose	clock	you
want	to	synchronize	with	the	master	server	clock.

How	To

How	to	script	jobs	using	Transact-SQL	(Enterprise	Manager)
To	script	jobs	using	Transact-SQL

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Right-click	Jobs,	point	to	All	Tasks,	and	then	click	Generate	SQL
Script.

4.	 In	the	File	name	box,	type	a	name	for	the	script.

5.	 Under	File	format,	do	one	of	the	following:

Click	MS-DOS	Text	(OEM)	to	save	the	script	in	OEM
format.

Click	Windows	Text	(ANSI)	to	save	the	script	in	ANSI
format.

Click	International	Text	(Unicode)	to	save	the	script	in
Unicode	format.

6.	 Optionally,	under	SQL	generation	options,	do	one	or	both	of	the
following:

Select	the	Replace	job	if	it	exists	check	box	to	include	in	the
script	commands	to	delete	jobs	that	have	the	same	names	as
the	jobs	generated	by	the	script.

Select	the	Include	target	servers	check	box	to	include	in	the
script	commands	to	generate	target	server	assignments.	This

option	is	available	only	when	scripting	multiserver	jobs.

7.	 In	the	TSQL	batch	separator	box,	enter	a	Transact-SQL	batch
separator.

How	To

How	to	create	an	operator	(Enterprise	Manager)
To	create	an	operator

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Right-click	Operators,	and	then	click	New	Operator.

4.	 In	the	Name	box,	type	the	name	of	the	operator.

5.	 To	define	notification	methods	for	the	operator,	do	one	or	more	of	the
following:

In	the	E-mail	name	box,	enter	the	operator's	e-mail	address	if
the	operator	will	be	notified	by	e-mail.

In	the	Pager	e-mail	name	box,	enter	the	pager	address	of	the
operator's	pager	service	if	the	operator	will	be	notified	by
pager.	Also	click	the	days	when	the	operator	is	available	to
receive	pager	notifications.

In	the	Net	send	address	box,	enter	the	operator's	net	send
address	if	the	operator	will	be	notified	by	net	send.

See	Also

How	to	assign	alerts	to	an	operator	(Enterprise	Manager)

How	To

How	to	assign	alerts	to	an	operator	(Enterprise	Manager)
To	assign	alerts	to	an	operator

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Operators.

4.	 In	the	details	pane,	right-click	an	operator,	click	Properties,	and	then
click	the	Notifications	tab.

5.	 Under	Notifications	sent	to	this	operator	by,	select	one	or	more	of
the	following	check	boxes	to	define	the	notification	method	for	each
alert	as	necessary:	E-mail,	Pager,	or	Net	send.

6.	 Select	the	Operator	is	available	to	receive	notifications	check	box	to
enable	notifications	(of	all	types)	for	the	operator.

How	To

How	to	format	pager	addresses	(Enterprise	Manager)
To	format	pager	addresses

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	click
Properties,	and	then	click	the	Alert	System	tab.

3.	 In	the	To	line	boxes	and	CC	line	boxes,	enter	the	pager	address	prefix
or	suffix.	The	operator's	actual	pager	address	is	inserted	when	a
notification	is	sent.

4.	 In	the	Subject	box,	enter	the	subject	line	prefix	or	suffix.

5.	 Select	the	Include	body	of	e-mail	in	notification	page	check	box	to
include	the	full	e-mail	message	with	the	pager	message	(as	opposed	to
the	subject	line	only).

How	To

How	to	designate	a	fail-safe	operator	(Enterprise	Manager)
To	designate	a	fail-safe	operator

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	click
Properties,	and	then	click	the	Alert	System	tab.

3.	 Under	Fail-safe	operator,	in	the	Operator	list,	click	an	operator.

4.	 Click	the	appropriate	notification	type(s)	to	specify	how	the	operator
will	be	notified.

How	To

How	to	create	an	alert	using	an	error	number	(Enterprise
Manager)
To	create	an	alert	using	an	error	number

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	Alerts,	and	then	click	New	Alert.

3.	 In	the	Name	box,	enter	a	name	for	this	alert.

4.	 Select	the	Enabled	check	box	to	enable	the	alert	to	run.

5.	 Click	Error	number,	and	then	type	a	valid	error	number	for	the	alert.

When	an	error	number	is	found	in	the	sysmessages	table,	the	error
number	message	text	is	displayed.	Otherwise,	"Not	a	valid	error
number"	is	displayed.

Note		To	search	for	errors	by	message	text,	error	number,	or	severity,
click	the	browse	(...)	button	to	open	the	Manage	SQL	Server
Messages	dialog	box.

6.	 In	the	Database	name	list,	click	the	database	to	restrict	the	alert	to	a
specific	database.

7.	 In	the	Error	message	contains	this	text	box,	enter	a	keyword	or
character	string	to	restrict	the	alert	to	a	particular	character	sequence.
The	maximum	number	of	characters	is	100.

See	Also

How	to	define	the	response	to	an	alert

How	To

How	to	create	an	alert	using	severity	level	(Enterprise	Manager)
To	create	an	alert	using	severity	level

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	Alerts,	and	then	click	New	Alerts.

3.	 In	the	Name	box,	type	a	name	for	this	alert.

4.	 Select	the	Enabled	check	box	to	enable	the	alert	to	run.

5.	 Click	Severity,	and	then	click	a	severity	level.

Severity	levels	from	19	through	25	send	a	Microsoft®	SQL	Server™
message	to	the	Microsoft	Windows®	application	log	and	trigger	an
alert.	Events	with	severity	levels	less	than	19	will	trigger	alerts	only	if
you	have	used	sp_altermessage,	RAISERROR	WITH	LOG,	or
xp_logevent	to	force	them	to	be	written	to	the	Windows	application
log.

6.	 In	the	Database	name	list,	click	the	database	to	restrict	the	alert	to	a
specific	database.

7.	 In	the	Error	message	contains	this	text	box,	type	a	keyword	or
character	string	to	restrict	the	alert	to	a	particular	character	sequence.

The	maximum	number	of	characters	is	100.

See	Also

How	to	define	the	response	to	an	alert

How	To

How	to	define	the	response	to	an	alert	(Enterprise	Manager)
To	define	the	response	to	an	alert

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Alerts,	and	in	the	details	pane,	right-click	an	alert.	

4.	 Click	Properties,	and	then	click	the	Response	tab.

5.	 Select	the	Execute	job	check	box,	and	then	click	a	job	to	execute
when	the	alert	occurs.

You	can	create	a	new	job	by	clicking	(New	Job),	or	modify	an	existing
job	by	clicking	the	browse	(...)	button.

6.	 Under	Operators	to	notify,	select	one	or	more	of	the	following	check
boxes	for	one	or	more	operators:	E-mail,	Pager,	or	Net	send.

Be	sure	that	each	operator's	notification	method	is	valid.

7.	 Select	the	appropriate	Include	alert	error	text	in	check	box	for	the
notification	method	used	if	you	want	the	alert	error	text	to	be	sent	with
the	notification.

8.	 Under	Additional	notification	message	to	send	to	operator,	enter
additional	information	for	the	operator.

The	maximum	number	of	characters	is	512.

See	Also

How	to	assign	alerts	to	an	operator	(Enterprise	Manager)

How	to	create	an	operator	(Enterprise	Manager)

How	to	modify	a	job	(Enterprise	Manager)

How	To

How	to	create	a	user-defined	event	error	message	(Enterprise
Manager)
To	create	a	user-defined	event	error	message

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	point	to	All	Tasks,	and	then	click	Manage	SQL
Server	Messages.

3.	 Click	the	Messages	tab,	and	then	click	New.

4.	 In	the	Severity	list,	click	the	severity	level.

5.	 In	the	Message	text	box,	enter	the	new	event	message.

The	maximum	number	of	characters	is	255.

6.	 Select	the	Always	write	to	Windows	eventlog	check	box	to	write	the
event	message	to	the	Microsoft®	Windows®	application	log.

How	To

How	to	edit	a	user-defined	event	error	message	(Enterprise
Manager)
To	edit	a	user-defined	event	error	message

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	point	to	All	Tasks,	and	then	click	Manage	SQL
Server	Messages.

3.	 On	the	General	tab,	click	Only	include	user-defined	messages.

To	refine	your	search,	you	can	specify	the	search	to	look	for	a
specified	error	number,	message	text,	or	a	severity	level.	Search	results
are	displayed	on	the	Messages	tab.

4.	 On	the	Messages	tab,	click	the	message	to	edit,	and	then	click	Edit.

In	the	Edit	SQL	Server	Message	dialog	box,	you	can	edit	severity
level	and	message	text.

How	To

How	to	delete	a	user-defined	event	error	message	(Enterprise
Manager)
To	delete	a	user-defined	event	error	message

1.	 Expand	a	server	group.

2.	 Right-click	the	server,	click	All	Tasks,	and	then	click	Manage	SQL
Server	Messages.

3.	 On	the	General	tab,	click	Only	include	user-defined	messages.

To	refine	your	search,	you	can	specify	the	search	to	look	for	a
specified	error	number,	message	text,	or	a	severity	level.	Search	results
are	displayed	on	the	Messages	tab.

4.	 On	the	Messages	tab,	click	the	message	to	delete,	and	then	click
Delete.

How	To

How	to	disable	or	reactivate	an	alert	(Enterprise	Manager)
To	disable	or	reactivate	an	alert

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Alerts,	and	in	the	details	pane,	right-click	an	alert,	and	then	click
Properties.

4.	 Select	or	clear	the	Enabled	check	box.

See	Also

How	to	delete	an	alert

How	To

How	to	designate	an	events	forwarding	server	(Enterprise
Manager)
To	designate	an	events	forwarding	server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	click
Properties,	and	then	click	the	Advanced	tab.

3.	 Under	SQL	Server	event	forwarding,	select	the	Forward	events	to	a
different	server	check	box.

Event	forwarding	is	only	available	on	Microsoft®	Windows	NT®	4.0
and	Microsoft	Windows®	2000.

4.	 In	the	Server	list,	click	a	server,	and	then	do	one	of	the	following:

Click	Unhandled	events	to	forward	only	the	events	that	have
not	been	handled	by	local	alerts.

Click	All	events	to	forward	all	events	regardless	of	whether
they	have	been	handled	by	local	alerts.

5.	 In	the	If	event	has	severity	of	or	above	list,	click	the	severity	level	at
which	events	are	forwarded	to	the	selected	server.

How	To

How	to	view	information	about	an	operator	(Enterprise	Manager)
To	view	information	about	an	operator

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Operators,	and	in	the	details	pane,	right-click	an	operator,	and
then	click	Properties.

The	General	tab	displays	the	notification	methods	and	the	pager
schedule	defined	for	the	operator.	The	Notifications	tab	displays	the
notifications	the	operator	receives	and	the	most	recent	notification
attempts.

How	To

How	to	edit	an	operator	(Enterprise	Manager)
To	edit	an	operator

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Operators,	and	in	the	details	pane,	right-click	an	operator,	and
then	click	Properties.

See	Also

How	to	assign	alerts	to	an	operator	(Enterprise	Manager)

How	to	create	an	operator	(Enterprise	Manager)

How	To

How	to	change	an	operator's	availability	(Enterprise	Manager)
To	change	an	operator's	availability

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Operators,	and	in	the	details	pane,	right-click	an	operator,	click
Properties,	and	then	click	the	Notifications	tab

4.	 Select	or	clear	the	Operator	is	available	to	receive	notifications
check	box.

See	Also

How	to	delete	an	operator

How	To

How	to	delete	an	operator	(Enterprise	Manager)
To	delete	an	operator

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Operators,	and	in	the	details	pane,	right-click	an	operator,	and
then	click	Delete.

4.	 If	the	Delete	Operator	dialog	box	appears,	do	one	of	the	following:

In	the	Reassign	to	list,	click	an	operator,	and	then	click
Reassign	if	you	want	another	operator	to	receive	the	alerts
and	jobs	sent	to	the	deleted	operator.

Click	Delete	without	reassigning	if	you	want	to	delete	the
operator	without	reassigning	the	alerts	and	jobs.

See	Also

How	to	change	an	operator's	availability

How	To

How	to	view	information	about	an	alert	(Enterprise	Manager)
To	view	information	about	an	alert

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Alerts,	and	in	the	details	pane,	right-click	an	alert,	and	then	click
Properties.

On	the	General	tab,	under	History,	you	can	view	the	date	the	alert	last
occurred,	the	date	the	alert	was	last	responded	to,	and	the	number	of
times	the	alert	was	triggered	since	the	last	time	the	count	was	reset.	On
the	Response	tab,	you	can	view	the	actions	that	occur	when	the	alert	is
triggered.

How	To

How	to	edit	an	alert	(Enterprise	Manager)
To	edit	an	alert

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Alerts,	and	in	the	details	pane,	right-click	an	alert,	and	then	click
Properties.

4.	 Update	the	alert	properties	on	the	General	and	Response	tabs.

See	Also

How	to	create	an	alert	using	an	error	number	(Enterprise	Manager)

How	to	create	an	alert	using	severity	level	(Enterprise	Manager)

How	to	define	the	response	to	an	alert	(Enterprise	Manager)

How	To

How	to	delete	an	alert	(Enterprise	Manager)
To	delete	an	alert

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Click	Alerts,	and	in	the	details	pane,	right-click	an	alert,	and	then	click
Delete.

4.	 Confirm	the	deletion.

See	Also

How	to	disable	or	reactivate	an	alert	(Enterprise	Manager)

How	To

How	to	script	operators	using	Transact-SQL	(Enterprise
Manager)
To	script	operators	using	Transact-SQL

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Right-click	Operators,	point	to	All	Tasks,	and	then	click	Generate
SQL	Script.

4.	 In	the	File	name	box,	type	a	name	for	the	script.

5.	 Under	File	format,	do	one	of	the	following:

Click	MS-DOS	Text	(OEM)	to	save	the	script	in	OEM
format.

Click	Windows	Text	(ANSI)	to	save	the	script	in	ANSI
format.

Click	International	Text	(Unicode)	to	save	the	script	in
Unicode	format.

6.	 Under	SQL	generation	options,	do	one	or	both	of	the	following:

Select	the	Replace	operator	if	it	exists	check	box	to	include
in	the	script	commands	to	that	will	delete	any	operators	with
the	same	name	as	jobs	generated	by	the	script.

Select	the	Include	notifications	sent	by	alerts	to	the
operator	check	box	to	include	in	the	script	commands	to

generate	alert	assignments	for	the	operators	generated	by	the
script.

7.	 Enter	a	Transact-SQL	batch	separator.

How	To

How	to	script	alerts	using	Transact-SQL	(Enterprise	Manager)
To	script	alerts	using	Transact-SQL

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Right-click	Alerts,	point	to	All	Tasks,	and	then	click	Generate	SQL
Script.

4.	 In	the	File	name	box,	type	a	name	for	the	script.

5.	 Under	File	format,	do	one	of	the	following:

Click	MS-DOS	Text	(OEM)	to	save	the	script	in	OEM
format.

Click	Windows	Text	(ANSI)	to	save	the	script	in	ANSI
format.

Click	International	Text	(Unicode)	to	save	the	script	in
Unicode	format.

6.	 Under	SQL	generation	options,	do	one	or	more	of	the	following:

Select	the	Replace	alert	if	it	exists	check	box	to	include	in
the	script	commands	to	delete	any	alerts	with	the	same	name
as	jobs	generated	by	the	script.

Select	the	Include	notifications	sent	by	alerts	to	the
operator	check	box	to	include	in	the	script	commands	to
generate	alert	assignments	for	the	operators	generated	by	the

script.

Select	the	Include	the	name	of	the	job	executed	by	the	alert
check	box	to	include	in	the	script	commands	to	provide	the
name	of	the	job	executed	by	the	alert.

7.	 In	the	TSQL	batch	separator	box,	enter	a	Transact-SQL	batch
separator.

Include	the	name	of	the	job	executed	by	the	alert	to	have	the	alerts
generated	by	the	script	reference	their	response	jobs.

How	To

How	to	set	job	execution	shutdown	(Enterprise	Manager)
To	set	job	execution	shutdown

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	click
Properties,	and	then	click	the	Job	System	tab.

3.	 Under	Job	execution,	in	the	Shutdown	time-out	interval	(seconds)
box,	increase	or	decrease	the	shutdown	time-out	interval.

This	determines	how	long	SQL	Server	Agent	will	wait	for	executing
jobs	to	finish	before	SQL	Server	Agent	itself	finishes.

How	To

How	to	autostart	SQL	Server	Agent	(Enterprise	Manager)
To	autostart	SQL	Server	Agent

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Click	the	Advanced	tab,	and	then	select	the	Auto	restart	SQL	Server
Agent	if	it	stops	unexpectedly	check	box.

How	To

How	to	send	SQL	Server	Agent	error	messages	(Enterprise
Manager)
To	send	SQL	Server	Agent	error	messages

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Under	Error	log,	in	the	Net	send	recipient	box,	type	the	user	name	or
computer	name.

This	feature	is	available	only	in	Microsoft®	Windows	NT®	4.0	and
Microsoft	Windows®	2000.

How	To

How	to	view	SQL	Server	Agent	error	log	(Enterprise	Manager)
To	view	SQL	Server	Agent	error	log

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Display	Error	Log.

3.	 In	the	Type	list,	click	a	type	of	logged	item	to	filter	the	log	contents.

4.	 Optionally,	in	the	Containing	text	box,	enter	message	text	to	filter	the
log	contents.

5.	 Click	Apply	Filter	if	you	have	selected	filter	parameters.

6.	 Under	Filtered	contents,	view	the	log	contents.

How	To

How	to	rename	a	SQL	Server	Agent	error	log	(Enterprise
Manager)
To	rename	a	SQL	Server	Agent	error	log

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Under	Error	log,	in	the	File	name	box,	enter	the	new	path	and	file
name,	or	find	it	using	the	browse	(...)	button.

You	can	only	rename	the	error	log	when	SQL	Server	Agent	is	stopped.

How	To

How	to	write	execution	trace	messages	to	the	SQL	Server	Agent
error	log	(Enterprise	Manager)
To	write	execution	trace	messages	to	the	SQL	Server	Agent	error	log

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	right-click	SQL	Server	Agent,	and	then	click
Properties.

3.	 Under	Error	log,	select	the	Include	execution	trace	messages	check
box.

Because	this	option	can	cause	the	error	log	to	become	large,	set	it	only
when	investigating	a	specific	SQL	Server	Agent	problem.

How	To

How	to	schedule	a	DTS	package	using	the	SQLServerAgent
service	(Enterprise	Manager)
To	schedule	a	DTS	package	using	the	SQLServerAgent	service

1.	 Expand	a	server,	and	then	expand	a	server	group.	

2.	 Expand	Management,	and	then	expand	SQL	Server	Agent.

3.	 Right-click	Jobs,	and	then	click	New	Job.

4.	 Complete	the	information	on	the	General	tab,	and	then	click	the	Steps
tab.

5.	 Click	New,	and	then	complete	the	information	in	the	New	Job	Step
dialog	box:

For	Type,	click	Operating	System	Command	(CmdExec)
from	the	list.	

For	Command,	enter	the	dtsrun	command	for	the	package.	

Click	the	Advanced	tab	for	further	job	customization	options.

See	Also

How	to	create	a	job	(Enterprise	Manager)

How	To

How	to	create	a	SQL	Server	7.0	compatible	script	(Enterprise
Manager)
To	create	a	SQL	Server	7.0	compatible	script

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases.

3.	 Right-click	a	database,	point	to	All	Tasks,	and	then	click	Generate
SQL	Script.

4.	 On	the	General	tab,	click	Show	All	to	show	all	objects	to	script.

5.	 Select	the	type	of	object	to	script,	or	select	the	Script	all	objects	check
box.

6.	 Click	the	Formatting	tab,	and	then	select	the	Only	script	7.0
compatible	features	check	box.

This	option	is	only	available	on	Microsoft®	SQL	Server™	2000.

How	To

Managing	Security
To	ensure	that	data	and	objects	stored	in	Microsoft®	SQL	Server™	are	accessed
only	by	authorized	users,	security	must	be	set	up	correctly.	Security	elements
that	may	have	to	be	set	up	include	authentication	modes,	logins,	users,	roles,
granting,	revoking,	and	denying	permissions	on	Transact-SQL	statements	and
objects,	and	data	encryption.

How	To

How	to	set	up	Windows	Authentication	Mode	security	(Enterprise
Manager)
To	set	up	Windows	Authentication	Mode	security

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 On	the	Security	tab,	under	Authentication,	click	Windows	only.

4.	 Under	Audit	level,	select	the	level	at	which	user	accesses	to
Microsoft®	SQL	Server™	are	recorded	in	the	SQL	Server	error	log:

None	causes	no	auditing	to	be	performed.

Success	causes	only	successful	login	attempts	to	be	audited.

Failure	causes	only	failed	login	attempts	to	be	audited.

All	causes	successful	and	failed	login	attempts	to	be	audited.

See	Also

Authentication	Modes

JavaScript:hhobj_1.Click()

How	To

How	to	set	up	Mixed	Mode	security	(Enterprise	Manager)
To	set	up	Mixed	Mode	security

1.	 Expand	a	server	group.

2.	 Right-click	a	server,	and	then	click	Properties.

3.	 Click	the	Security	tab.

4.	 Under	Authentication,	click	SQL	Server	and	Windows.

5.	 Under	Audit	level,	select	the	level	at	which	user	accesses	to
Microsoft®	SQL	Server™	are	recorded	in	the	SQL	Server	error	log:

None	causes	no	auditing	to	be	performed.

Success	causes	only	successful	login	attempts	to	be	audited.

Failure	causes	only	failed	login	attempts	to	be	audited.

All	causes	successful	and	failed	login	attempts	to	be	audited.

See	Also

Authentication	Modes

JavaScript:hhobj_1.Click()

How	To

How	to	grant	a	Windows	user	or	group	login	access	to	SQL	Server
(Enterprise	Manager)
To	grant	a	Windows	NT	4.0	or	Window	2000	user	or	group	login	access	to
SQL	Server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	right-click	Logins,	and	then	click	New	Login.

3.	 In	the	Name	box,	enter	the	Microsoft®	Windows	NT®	4.0	or
Windows®	2000	account	(in	the	form	DOMAIN\User)	to	be	granted
access	to	Microsoft	SQL	Server™.

4.	 Under	Authentication,	click	Windows	Authentication.

5.	 Optionally:

In	Database,	click	the	default	database	to	which	the	user	is
connected	after	logging	into	an	instance	of	SQL	Server.

In	Language,	click	the	default	language	in	which	messages
are	displayed	to	the	user.

See	Also

Adding	a	Windows	NT	User	or	Group

JavaScript:hhobj_1.Click()

How	To

How	to	grant	a	Windows	user	or	group	access	to	a	database
(Enterprise	Manager)
To	grant	a	Windows	NT	4.0	or	Windows	2000	user	or	group	access	to	a
database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user	or
group	will	be	granted	access.

3.	 Right-click	Users,	and	then	click	New	Database	User.

4.	 In	the	Login	name	box,	type	or	select	the	Microsoft®	Windows	NT®
4.0	or	Windows®	2000	user	or	group	name	to	which	database	access
will	be	granted.

5.	 Optionally,	in	User	name,	enter	the	user	name	that	the	login	is	known
by	in	the	database.	By	default,	it	is	set	to	the	login	name.

6.	 Optionally,	select	database	role	memberships	to	be	granted	to	the	user
or	group	in	addition	to	public,	the	default.

See	Also

Granting	a	Windows	NT	User	or	Group	Access	to	a	Database

JavaScript:hhobj_1.Click()

How	To

How	to	add	a	SQL	Server	login	(Enterprise	Manager)
To	add	a	SQL	Server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	right-click	Logins,	and	then	click	New	Login.

3.	 In	Name,	enter	a	name	for	the	Microsoft®	SQL	Server™	login.

4.	 Under	Authentication,	select	SQL	Server	Authentication.

5.	 Optionally,	in	Password,	enter	a	password.

6.	 Optionally:

In	Database,	click	the	default	database	to	which	the	login	is
connected	after	logging	into	an	instance	of	SQL	Server.

In	Language,	click	the	default	language	in	which	messages
are	displayed	to	the	user.

See	Also

Adding	a	SQL	Server	Login

JavaScript:hhobj_1.Click()

How	To

How	to	add	a	linked	server	login	(Enterprise	Manager)
To	add	a	linked	server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Linked	Servers.

3.	 In	the	details	pane,	right-click	the	linked	server	to	which	the	login	will
be	added,	and	then	click	Properties.

4.	 On	the	Security	tab,	click	the	local	login	to	add.

5.	 Optionally,	select	the	Impersonate	check	box	if	the	local	login	should
connect	to	the	linked	server	using	its	own	user	security	credentials.

6.	 Enter	the	remote	user	and	remote	password	with	which	the	local	login
should	connect	to	the	linked	server	when	not	using	the	user's	security
credentials	(Impersonate	not	selected).

See	Also

Establishing	Security	for	Linked	Servers

How	to	set	up	a	linked	server	(Enterprise	Manager)

JavaScript:hhobj_1.Click()

How	To

How	to	grant	a	SQL	Server	login	access	to	a	database	(Enterprise
Manager)
To	grant	a	SQL	Server	login	access	to	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	login
will	be	granted	access.

3.	 Right-click	Users,	and	then	click	New	Database	User.

4.	 In	the	Login	name	box,	click	the	Microsoft®	SQL	Server™	login	to
which	database	access	will	be	granted.

5.	 Optionally,	in	User	name,	enter	the	user	name	that	the	login	is	known
by	in	the	database.	By	default,	it	is	set	to	the	login	name.

6.	 Optionally,	select	database	role	memberships	in	addition	to	public,	the
default.

See	Also

Granting	a	SQL	Server	Login	Access	to	a	Database

guest	User

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	create	a	SQL	Server	database	role	(Enterprise	Manager)
To	create	a	SQL	Server	database	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	to	create	a
role.

3.	 Right-click	Roles,	and	then	click	New	Database	Role.

4.	 In	the	Name	box,	enter	the	name	of	the	new	role.

5.	 Optionally,	click	Add	to	add	members	to	the	Standard	role	list,	and
then	click	a	user	or	users	to	add.	

Only	users	in	the	selected	database	can	be	added	to	the	role.

See	Also

Creating	User-Defined	SQL	Server	Database	Roles

JavaScript:hhobj_1.Click()

How	To

How	to	add	a	member	to	a	SQL	Server	database	role	(Enterprise
Manager)
To	add	a	member	to	a	SQL	Server	database	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	the	role
exists.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	role	to	which	the	user	will	be	added,
and	then	click	Properties.

5.	 Click	Add,	and	then	click	a	user	or	users	to	add.

Only	users	in	the	selected	database	can	be	added	to	the	role.

See	Also

Adding	a	Member	to	a	Predefined	Role

Adding	a	Member	to	a	SQL	Server	Database	Role

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	add	a	member	to	a	fixed	server	role	(Enterprise	Manager)
To	add	a	member	to	a	fixed	server	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Server	Roles.

3.	 In	the	details	pane,	right-click	the	role,	and	then	click	Properties.

4.	 On	the	General	tab,	click	Add,	and	then	click	the	logins	to	add.

See	Also

Adding	a	Member	to	a	Predefined	Role

JavaScript:hhobj_1.Click()

How	To

How	to	grant	SQL	Server	login	access	to	a	user	by	using	the
Create	Login	Wizard	(Enterprise	Manager)
To	grant	SQL	Server	login	access	to	a	user	by	using	the	Create	SQL	Server
Login	Wizard

1.	 On	the	Tools	menu,	click	Wizards.

2.	 In	the	Select	Wizard	dialog	box,	expand	Database,	and	then	double-
click	Create	Login	Wizard.

3.	 Complete	the	steps	in	the	wizard.

See	Also

Using	the	Create	Login	Wizard

JavaScript:hhobj_1.Click()

How	To

How	to	view	a	SQL	Server	login	or	Windows	user	or	group
(Enterprise	Manager)
To	view	a	SQL	Server	login	or	Windows	NT	4.0	or	Windows	2000	user	or
group

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	view,	and	then	click
Properties.

See	Also

Viewing	Logins

JavaScript:hhobj_1.Click()

How	To

How	to	view	a	database	user	(Enterprise	Manager)
To	view	a	database	user

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user
belongs.

3.	 Click	Users.

4.	 In	the	details	pane,	right-click	the	user	to	view,	and	then	click
Properties.

See	Also

Viewing	Database	Users

JavaScript:hhobj_1.Click()

How	To

How	to	change	the	password	of	a	SQL	Server	login	(Enterprise
Manager)
To	change	the	password	of	a	SQL	Server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	modify,	and	then	click
Properties.

4.	 In	the	Password	box,	on	the	General	tab,	enter	a	new	password.

5.	 Confirm	the	password.

See	Also

Modifying	Logins

JavaScript:hhobj_1.Click()

How	To

How	to	change	the	default	database	of	a	login	(Enterprise
Manager)
To	change	the	default	database	of	a	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	modify,	and	then	click
Properties.

4.	 In	the	Database	list,	on	the	General	tab,	click	the	new	default
database	to	which	the	login	is	connected	after	logging	into	an	instance
of	Microsoft®	SQL	Server™.

See	Also

Modifying	Logins

JavaScript:hhobj_1.Click()

How	To

How	to	change	the	default	language	of	a	login	(Enterprise
Manager)
To	change	the	default	language	of	a	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	modify,	and	then	click
Properties.

4.	 In	the	Language	list,	on	the	General	tab,	click	the	new	default
language	in	which	messages	are	to	be	displayed	to	the	user.

See	Also

Modifying	Logins

JavaScript:hhobj_1.Click()

How	To

How	to	remove	a	user	or	group	from	a	database	(Enterprise
Manager)
To	remove	a	user	or	group	from	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user	or
group	belongs.

3.	 Click	Users.

4.	 In	the	details	pane,	right-click	the	user	or	group	to	remove,	and	then
click	Delete.

5.	 Confirm	the	deletion.

See	Also

Removing	Logins	and	Users

JavaScript:hhobj_1.Click()

How	To

How	to	remove	a	SQL	Server	login	(Enterprise	Manager)
To	remove	a	SQL	Server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	login	to	remove,	and	then	click
Delete.

4.	 Confirm	the	deletion.

See	Also

Removing	Logins	and	Users

JavaScript:hhobj_1.Click()

How	To

How	to	revoke	a	Windows	user	or	group	login	access	from	SQL
Server	(Enterprise	Manager)
To	revoke	a	Windows	NT	4.0	or	Windows	2000	user	or	group	login	access
from	SQL	Server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	Microsoft®	Windows	NT®	4.0	or
Windows®	2000	user	or	group	to	revoke,	and	then	click	Delete.

4.	 Confirm	the	deletion.

See	Also

Removing	Logins	and	Users

JavaScript:hhobj_1.Click()

How	To

How	to	deny	login	access	to	a	Windows	user	or	group	(Enterprise
Manager)
To	deny	login	access	to	a	Windows	NT	4.0	or	Windows	2000	user	or	group

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Logins.

3.	 In	the	details	pane,	right-click	the	Microsoft®	Windows	NT®	4.0	or
Windows®	2000	user	or	group	to	deny,	and	then	click	Properties.

4.	 Under	Authentication,	click	Deny	access.

See	Also

Denying	Login	Access	to	Windows	NT	Accounts

How	to	grant	a	Windows	NT	user	or	group	login	access	to	SQL	Server
(Enterprise	Manager)

JavaScript:hhobj_1.Click()

How	To

How	to	remove	a	linked	server	login	(Enterprise	Manager)
To	remove	a	linked	server	login

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Linked	Servers.

3.	 In	the	details	pane,	right-click	the	linked	server	to	which	the	linked
server	login	to	be	removed	is	mapped,	and	then	click	Properties.

4.	 On	the	Security	tab,	under	Local	login,	click	the	linked	server	login	to
remove,	and	then	select	the	blank	login	at	the	top	of	the	list.

See	Also

Removing	Logins	and	Users

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	roles	defined	in	the	current	database	(Enterprise
Manager)
To	view	the	roles	defined	in	the	current	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	view.

3.	 Click	Roles.

See	Also

Viewing	Roles

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	fixed	server	roles	(Enterprise	Manager)
To	view	the	fixed	server	roles

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Server	Roles.

See	Also

Viewing	Roles

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	members	of	a	database	role	(Enterprise
Manager)
To	view	the	members	of	a	database	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user
belongs.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	role	to	view,	and	then	click
Properties	to	view	members.

See	Also

Viewing	and	Modifying	Role	Memberships

JavaScript:hhobj_1.Click()

How	To

How	to	remove	a	user	account	from	a	database	role	(Enterprise
Manager)
To	remove	a	user	account	from	a	database	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	the	role
exists.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	role	to	which	the	user	account
belongs,	and	then	click	Properties.

5.	 Select	the	user	to	remove,	and	then	click	Remove.

See	Also

Viewing	and	Modifying	Role	Memberships

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	members	of	a	fixed	server	role	(Enterprise
Manager)
To	view	the	members	of	a	fixed	server	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Server	Roles.

3.	 In	the	details	pane,	right-click	the	server	role	to	view,	and	then	click
Properties.

See	Also

Viewing	and	Modifying	Role	Memberships

JavaScript:hhobj_1.Click()

How	To

How	to	remove	a	login	from	a	fixed	server	role	(Enterprise
Manager)
To	remove	a	login	from	a	fixed	server	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Security,	and	then	click	Server	Roles.

3.	 In	the	details	pane,	right-click	the	server	role	to	modify,	and	then	click
Properties.

4.	 On	the	General	tab,	select	the	login	to	remove,	and	then	click
Remove.

See	Also

Viewing	and	Modifying	Role	Memberships

JavaScript:hhobj_1.Click()

How	To

How	to	remove	a	SQL	Server	role	(Enterprise	Manager)
To	remove	a	SQL	Server	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	the	role
exists.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	role,	and	then	click	Delete.

Note		You	must	drop	all	role	members	before	you	can	delete	the	role.
Fixed	roles	cannot	be	deleted.

Confirm	the	deletion.

See	Also

Removing	a	SQL	Server	Database	Role

JavaScript:hhobj_1.Click()

How	To

How	to	allow	access	by	granting	permissions	(Enterprise
Manager)
To	allow	access	by	granting	permissions	(on	an	object)

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	object
belongs.

3.	 Depending	on	the	type	of	object,	click	one	of	the	following:

Tables	

Views

Stored	Procedures

4.	 In	the	details	pane,	right-click	the	object	on	which	to	grant
permissions,	point	to	All	Tasks,	and	then	click	Manage	Permissions.

5.	 Click	List	all	users/user-defined	database	roles/public,	and	then
select	the	permission	to	grant	each	user.

A	check	indicates	a	granted	permission.	Only	permissions	applicable
to	the	object	are	listed.

See	Also

Granting	Permissions

JavaScript:hhobj_1.Click()

How	To

How	to	grant	statement	permissions	to	users	within	a	database
(Enterprise	Manager)
To	grant	statement	permissions	to	users	within	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	containing	the	users	to
whom	statement	permissions	will	be	granted,	and	then	click
Properties.

3.	 On	the	Permissions	tab,	select	the	statement	permission	to	grant	each
user.

A	check	indicates	a	granted	permission.

See	Also

Granting	Permissions

JavaScript:hhobj_1.Click()

How	To

How	to	grant	permissions	on	multiple	objects	to	a	user,	group,	or
role	(Enterprise	Manager)
To	grant	permissions	on	multiple	objects	to	a	user,	group,	or	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user,
group,	or	role	belongs.

3.	 Depending	on	the	type	of	user,	group,	or	role	to	which	permissions
will	be	granted,	click	either	Users	or	Roles.

4.	 In	the	details	pane,	right-click	the	user,	group,	or	role	to	which
permissions	will	be	granted,	point	to	All	Tasks,	and	then	click
Manage	Permissions.

5.	 Click	List	all	objects,	and	then	select	the	permission	to	grant	each
object.

A	check	indicates	a	granted	permission.	Only	permissions	applicable
to	the	object	are	listed.

See	Also

Granting	Permissions

JavaScript:hhobj_1.Click()

How	To

How	to	prevent	access	by	denying	permissions	(Enterprise
Manager)
To	prevent	access	by	denying	permissions	(on	an	object)

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	object
belongs.

3.	 Depending	on	the	type	of	object	to	which	access	will	be	denied,	click
one	of	the	following:

Tables

Views

Stored	Procedures

4.	 In	the	details	pane,	right-click	the	object	to	which	access	will	be
denied,	point	to	All	Tasks,	and	then	click	Manage	Permissions.

5.	 Click	List	all	users/user-defined	database	roles/public,	and	then
select	the	permission	to	deny	each	user.

An	'X'	indicates	a	denied	permission.	Only	permissions	applicable	to
the	object	are	listed.

See	Also

Denying	Permissions

JavaScript:hhobj_1.Click()

How	To

How	to	deny	statement	permissions	from	users	within	a	database
(Enterprise	Manager)
To	deny	statement	permissions	from	users	within	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	containing	the	users	to
whom	statement	permissions	will	be	denied,	and	then	click
Properties.

3.	 On	the	Permissions	tab,	select	the	statement	permission	to	deny	each
user.

An	'X'	indicates	a	denied	permission.

See	Also

Denying	Permissions

JavaScript:hhobj_1.Click()

How	To

How	to	deny	permissions	on	multiple	objects	to	a	user,	group,	or
role	(Enterprise	Manager)
To	deny	permissions	on	multiple	objects	to	a	user,	group,	or	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user,
group,	or	role	belongs.

3.	 Depending	on	the	type	of	user,	group,	or	role	to	which	permissions
will	be	denied,	click	either	Users	or	Roles.

4.	 In	the	details	pane,	right-click	the	user	or	group	to	which	permissions
will	be	denied,	point	to	All	Tasks,	and	then	click	Manage
Permissions.	If	you	are	denying	permission	to	a	role,	right-click	the
role	to	which	permissions	will	be	denied,	click	Properties,	and	then
click	Permissions.

5.	 Click	List	all	objects,	and	then	select	the	permission	to	deny	for	each
object.

An	'X'	indicates	a	denied	permission.	Only	permissions	applicable	to
the	object	are	listed.

See	Also

Denying	Permissions

JavaScript:hhobj_1.Click()

How	To

How	to	revoke	permissions	on	an	object	(Enterprise	Manager)
To	revoke	permissions	on	an	object

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	object
belongs.

3.	 Depending	on	the	type	of	object	to	which	access	will	be	revoked,	click
one	of	the	following:

Tables

Views

Stored	Procedures

4.	 In	the	details	pane,	right-click	the	object	to	which	access	will	be
revoked,	point	to	All	Tasks,	and	then	click	Manage	Permissions.

5.	 Click	List	all	users/user-defined	database	roles/public,	and	then
select	the	permission	to	revoke	from	each	user.

An	empty	box	indicates	a	revoked	permission.	Only	permissions
applicable	to	the	object	are	listed.

See	Also

Revoking	Permissions

JavaScript:hhobj_1.Click()

How	To

How	to	revoke	statement	permissions	from	users	in	a	database
(Enterprise	Manager)
To	revoke	statement	permissions	from	users	in	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	containing	the	users	from
whom	statement	permissions	will	be	revoked,	and	then	click
Properties.

3.	 On	the	Permissions	tab,	select	the	statement	permission	to	revoke
from	each	user.

An	empty	box	indicates	a	revoked	permission.

See	Also

Revoking	Permissions

JavaScript:hhobj_1.Click()

How	To

How	to	revoke	permissions	on	multiple	objects	from	a	user,	group,
or	role	(Enterprise	Manager)
To	revoke	permissions	on	multiple	objects	from	a	user,	group,	or	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	user,
group,	or	role	belongs.

3.	 Depending	on	the	type	of	user,	group,	or	role	from	which	permissions
will	be	revoked,	click	either	Users	or	Roles.

4.	 In	the	details	pane,	right-click	the	user	or	group	from	which
permissions	will	be	revoked,	point	to	All	Tasks,	and	then	click
Manage	Permissions.	If	you	are	revoking	permission	from	a	role,
right-click	the	role	to	which	permissions	will	be	denied,	click
Properties,	and	then	click	Permissions.

5.	 Click	List	all	objects,	and	then	select	the	permission	to	revoke	for
each	object.

An	empty	box	indicates	a	revoked	permission.	Only	permissions
applicable	to	the	object	are	listed.

See	Also

Revoking	Permissions

JavaScript:hhobj_1.Click()

How	To

How	to	create	an	application	role	(Enterprise	Manager)
To	create	an	application	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	to	create	a
role.

3.	 Right-click	Roles,	and	then	click	New	Database	Role.

4.	 In	the	Name	box,	enter	the	name	of	the	new	application	role.

5.	 Under	Database	role	type,	click	Application	role,	and	then	enter	a
password.

See	Also

Establishing	Application	Security	and	Application	Roles

JavaScript:hhobj_1.Click()

How	To

How	to	remove	an	application	role	(Enterprise	Manager)
To	remove	an	application	role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	the
application	role	exists.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	application	role	to	remove,	and	then
click	Delete.

5.	 Confirm	the	deletion.

See	Also

Establishing	Application	Security	and	Application	Roles

JavaScript:hhobj_1.Click()

How	To

How	to	reveal	or	cancel	announcement	of	SQL	Server	on	a
network	(Windows)
To	reveal	or	cancel	announcement	of	SQL	Server	on	a	network

1.	 In	Control	Panel,	double-click	Network.

2.	 Click	the	Services	tab.

3.	 In	the	Network	Services	list,	click	Server,	and	then	click	Properties.

4.	 Select	Make	Browser	Broadcasts	to	LAN	Manager	2.x	Clients	to
reveal	the	server,	or	clear	the	check	box	to	hide	the	server.

See	Also

Revealing	SQL	Server	on	a	Network

JavaScript:hhobj_1.Click()

How	To

How	to	grant,	deny,	or	revoke	permissions	on	multiple	objects	to	a
user-defined	role	(Enterprise	Manager)
To	grant,	deny,	or	revoke	permissions	on	multiple	objects	to	a	user-defined
role

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	to	which	the	role
belongs.

3.	 Click	Roles.

4.	 In	the	details	pane,	right-click	the	user-defined	role	to	which
permissions	will	be	granted,	denied,	or	revoked,	and	then	click
Properties.

5.	 Under	Names,	click	Permissions.

6.	 Click	List	all	objects,	and	then	select	the	permission	to	grant,	deny,	or
revoke	on	each	object.

A	checkmark	indicates	a	granted	permission;	an	'X'	indicates	a	denied
permission;	and	an	empty	box	indicates	a	revoked	permission.	Only
permissions	applicable	to	the	object	are	listed.

How	To

Monitoring	Server	Performance	and	Activity
There	are	a	variety	of	tools	and	techniques	that	can	be	used	to	monitor
Microsoft®	SQL	Server™.	Understanding	how	to	monitor	SQL	Server	can	help
you:

Determine	whether	performance	improvements	can	be	made.

Determine	user	activity	to	find	out	what	queries	users	are	issuing	and
who	is	connecting	to	SQL	Server.

Troubleshoot	problems.

Test	applications.

How	To

How	to	start	SQL	Profiler	(Enterprise	Manager)
To	start	SQL	Profiler

1.	 On	the	Start	menu,	point	to	Programs/Microsoft	SQL	Server,	and
then	click	Enterprise	Manager.

2.	 On	the	Tools	menu,	click	SQL	Profiler.

See	Also

Starting	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	view	current	server	activity	(Enterprise	Manager)
To	view	current	server	activity

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	Current	Activity.

3.	 Click	Process	Info.

The	current	server	activity	is	displayed	in	the	details	pane.

See	Also

Monitoring	with	SQL	Server	Enterprise	Manager

Monitoring	with	Transact-SQL	Statements

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	view	the	last	command	batch	for	a	connection	(Enterprise
Manager)
To	view	the	last	command	batch	for	a	connection

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	Current	Activity.

3.	 Click	Process	Info.

The	current	server	activity	is	displayed	in	the	details	pane.

4.	 In	the	details	pane,	right-click	a	Process	ID,	and	then	click	Properties.

5.	 Optionally,	click	Refresh	to	update	the	display.

See	Also

Monitoring	with	SQL	Server	Enterprise	Manager

Monitoring	with	Transact-SQL	Statements

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	view	the	current	locks	(Enterprise	Manager)
To	view	the	current	locks

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	Current	Activity.

3.	 Do	one	of	the	following:

Expand	Locks	/	Process	ID	to	view	the	current	locks	for	each
connection.

Expand	Locks	/	Object	to	view	the	current	locks	for	each
object.

4.	 In	the	console	tree,	click	the	connection	(SPID)	or	object	to	view.

The	current	locks	for	the	connection	or	object	are	displayed	in	the
details	pane.

See	Also

Displaying	Locking	Information

Monitoring	with	SQL	Server	Enterprise	Manager

Monitoring	with	Transact-SQL	Statements

Understanding	Locking	in	SQL	Server

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	send	a	message	to	a	currently	connected	user	(Enterprise
Manager)
To	send	a	message	to	a	currently	connected	user

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	Current	Activity.

3.	 Click	Process	Info.

The	current	server	activity	is	displayed	in	the	details	pane.

4.	 In	the	details	pane,	right-click	a	Process	ID,	and	then	click	Send
Message.

Note		It	is	not	possible	to	send	a	message	to	a	user	when	SQL	Server
Enterprise	Manager	is	running	on	Microsoft®	Windows®	98.

5.	 In	the	Message	box,	type	the	message.

6.	 Optionally,	select	Using	hostname,	and	enter	the	computer	name	to
send	the	message	to	a	specific	computer.

See	Also

Monitoring	with	SQL	Server	Enterprise	Manager

JavaScript:hhobj_1.Click()

How	To

How	to	terminate	a	process	(Enterprise	Manager)
To	terminate	a	process

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	Current	Activity.

3.	 Click	Process	Info.

The	current	server	activity	is	displayed	in	the	details	pane.

4.	 In	the	details	pane,	right-click	a	Process	ID,	and	then	click	Kill
Process.

5.	 Confirm	that	the	process	has	terminated.

See	Also

Monitoring	with	SQL	Server	Enterprise	Manager

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	SQL	Server	error	log	(Enterprise	Manager)
To	view	the	SQL	Server	error	log

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Management,	and	then	expand	SQL	Server	Logs.

3.	 Click	the	SQL	Server	Log	to	view.

Error	log	details	appear	in	the	details	pane.

See	Also

Viewing	the	SQL	Server	Error	Log

JavaScript:hhobj_1.Click()

How	To

How	to	start	Performance	Monitor	(Windows)
To	start	Performance	Monitor	in	Windows	NT	4.0

On	the	Start	menu,	point	to	Programs/Administrative	Tools,	and	then
click	Performance	Monitor.

See	Also

Running	System	Monitor

JavaScript:hhobj_1.Click()

How	To

How	to	start	System	Monitor	(Windows)
To	start	System	Monitor	in	Windows	2000

On	the	Start	menu,	point	to	Programs/Administrative	Tools,	and	then
click	Performance.

See	Also

Running	System	Monitor

JavaScript:hhobj_1.Click()

How	To

How	to	set	up	a	SQL	Server	database	alert	(Windows	NT)
To	set	up	a	SQL	Server	database	alert

1.	 On	the	View	menu,	click	Alert.

2.	 On	the	Edit	menu,	click	Add	to	Alert.

3.	 In	the	Object	list,	click	a	SQL	Server	object,	and	then	in	the	Counter
box,	click	a	counter	on	which	the	alert	will	be	based.

4.	 Under	Alert	If,	click	either	Over	or	Under,	and	then	enter	a	threshold
value.

The	alert	will	be	generated	when	the	value	for	the	counter	is	more	than
or	less	than	the	threshold	value	(depending	on	whether	you	click	Over
or	Under).

5.	 Click	First	Time	or	Every	Time	to	determine	how	often	the	alert	is
generated.

The	default	is	Every	Time.

See	Also

Creating	a	SQL	Server	Database	Alert

JavaScript:hhobj_1.Click()

How	To

How	to	set	up	a	SQL	Server	database	alert	(Windows)
To	set	up	a	SQL	Server	database	alert

1.	 On	the	Tree	tab	of	the	Performance	window,	expand	Performance
Logs	and	Alerts.

2.	 Right-click	Alerts,	and	then	click	New	Alert	Settings.

3.	 In	the	New	Alert	Settings	dialog	box,	type	a	name	for	the	new	alert,
and	then	click	OK.

4.	 Click	Add	to	add	a	counter	to	the	alert.

All	alerts	must	have	at	least	one	counter.

5.	 In	the	Performance	Object	list,	select	a	Microsoft®	SQL	Server™
object,	and	then	in	the	Select	counters	from	list	box,	select	a	counter.

6.	 To	add	the	counter	to	the	alert,	click	Add.	You	can	continue	to	add
counters,	or	you	can	click	Close	to	return	to	the	Alert	dialog	box.

7.	 In	the	Alert	dialog	box,	click	either	Over	or	Under	from	the	Alert
when	value	is	list,	and	then	enter	a	threshold	value.

The	alert	will	be	generated	when	the	value	for	the	counter	is	more	than
or	less	than	the	threshold	value	(depending	on	whether	you	clicked
Over	or	Under).

8.	 In	the	Sample	data	every	boxes,	set	the	sampling	frequency.	

9.	 On	the	Action	tab,	set	actions	to	occur	every	time	the	alert	is	triggered.

10.	 On	the	Schedule	tab,	set	the	start	and	stop	schedule	for	the	alert	scan.

See	Also

Creating	a	SQL	Server	Database	Alert

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	Windows	application	log	(Windows)
To	view	the	Windows	application	log

1.	 On	the	Start	menu,	point	to	Programs/Administrative	Tools,	and
then	click	Event	Viewer.

2.	 If	the	Microsoft®	Windows®	application	log	is	not	displayed,	on	the
Log	menu,	click	Application.

Microsoft	SQL	Server™	events	are	identified	by	the	entry
MSSQLSERVER	in	the	Source	column.	SQL	Server	Agent	events
are	identified	by	the	entry	SQLSERVERAGENT.	Microsoft	Search
service	events	are	identified	by	the	entry	Microsoft	Search.

3.	 To	view	the	log	of	a	different	computer,	on	the	Log	menu,	click	Select
Computer	and	complete	the	Select	Computer	dialog	box.

4.	 Optionally,	to	display	only	SQL	Server	events,	on	the	View	menu	click
Filter	Events,	and	in	the	Source	list,	select	MSSQLSERVER.	To
view	only	SQL	Server	Agent	events,	select	SQLSERVERAGENT
instead.

5.	 To	view	more	information	about	an	event,	double-click	the	event.

See	Also

How	to	view	the	SQL	Server	error	log

Viewing	the	Windows	NT	Application	Log

JavaScript:hhobj_1.Click()

How	To

How	to	enable	SQL	Server	support	of	SNMP	on	Windows	98
(SQL	Server	Network	Utility)
To	enable	SQL	Server	support	of	SNMP	on	Windows	98

1.	 Install	the	Microsoft®	Windows®	98	SNMP	Agent	by	clicking	on	the
Network	icon	in	Control	Panel.	Click	Add,	click	Service	as	the	type
of	network	component	to	install,	click	Add,	and	then	click	Have	Disk.

2.	 Install	SNMP	Agent	from	Tools\Reskit\Netadmin\Snmp	directory.

How	To

How	to	copy	the	SQL	Server	MSSQL-MIB	to	an	SNMP
workstation	(Windows)
To	copy	the	MSSQL-MIB	to	an	SNMP	workstation

1.	 Under	C:\Program	Files\Microsoft	SQL	Server\MSSQL\Binn,	locate
the	Mssql.mib	file.

2.	 Copy	the	Mssql.mib	file	to	the	appropriate	directory	on	the	monitoring
workstation.

3.	 Repeat	these	steps	for	all	workstations	that	will	be	monitoring
Microsoft®	SQL	Server™.

For	more	information	about	loading	the	Microsoft	SQL	Server
Management	Information	Base	(MSSQL-MIB)	and	monitoring	SQL
Server,	see	the	Simple	Network	Management	Protocol	(SNMP)
application	documentation.

How	To

How	to	set	trace	definition	defaults	(SQL	Profiler)
To	set	trace	definition	defaults

1.	 On	the	Tools	menu,	click	Options.

2.	 In	the	Trace	Options	dialog	box,	select	a	template	from	either	the
Template	name	list	or	from	the	Template	file	name	list.

3.	 Select	or	clear	the	Start	tracing	immediately	after	making	a
connection	check	box.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	set	trace	display	defaults	(SQL	Profiler)
To	set	trace	display	defaults

1.	 On	the	Tools	menu,	click	Options.

2.	 In	the	Trace	Options	dialog	box,	click	the	Display	tab.

3.	 In	the	Font	name	list,	select	the	font	to	be	used	by	SQL	Profiler	to
display	traces.

4.	 In	the	Font	size	list,	select	a	number	between	6	and	24.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	trace	(SQL	Profiler)
To	create	a	trace

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.	

2.	 In	the	SQL	Server	list,	select	the	server	to	be	traced,	and	then	select	a
connection.

3.	 In	the	Trace	name	box,	type	a	name	for	the	trace,	and	then	do	the
following:

In	the	Trace	SQL	Server	list,	select	a	server	for	the	trace	to
run	on.

In	the	Template	name	list,	select	a	trace	template	on	which
the	trace	will	be	based.

4.	 Do	one	of	the	following:

click	Save	to	file	to	capture	the	trace	to	a	file	in	another
location.

click	Save	to	table	to	capture	the	trace	to	a	database	table.

5.	 Optionally,	select	the	Enable	trace	stop	time	check	box	to	specify	a
stop	date	and	time.

6.	 To	complete	other	trace	properties,	click	the	Events,	Data	Columns,
or	Filters	tabs	and	set	the	options	on	these	tabs.

7.	 Click	Run	when	ready	to	start	the	trace.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	add	or	remove	events	from	a	trace	template	or	trace	file
(SQL	Profiler)
To	add	or	remove	events	from	a	trace	template	or	trace	file

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	Template	or
Trace	File.

2.	 Select	the	template	file	or	trace	file	to	open.

3.	 In	the	Trace	Template	Properties	dialog	box,	click	the	Events	tab.

4.	 In	the	Available	events	classes	list,	expand	an	event	group	and	click
an	individual	event,	or	click	the	entire	event	group.

5.	 Click	Add	to	add	the	selected	event	or	event	group	to	the	events	that
will	be	traced.

6.	 In	the	Selected	event	classes	list,	expand	an	event	group	and	click	an
individual	event,	or	click	the	entire	event	group.

7.	 Click	Remove	to	remove	the	selected	event	or	event	group	from	the
events	that	will	be	traced.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	add	or	remove	data	columns	from	a	trace	template	(SQL
Profiler)
To	add	or	remove	data	columns	from	a	trace	template

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	Template.

2.	 Select	the	template	file	to	open.

3.	 In	the	Trace	Template	Properties	dialog	box,	click	the	Data
Columns	tab.

4.	 In	Unselected	data	list,	click	a	data	column,	and	then	click	Add	to
add	the	data	column	to	the	data	that	will	be	captured.

5.	 In	the	Selected	data	list,	click	a	data	column,	and	then	click	Remove
to	remove	the	data	column	from	the	data	that	will	be	captured.

6.	 In	the	Selected	data	list,	click	an	individual	data	column,	and	then
click	Up	or	Down	to	order	the	data	column.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	filter	events	in	a	trace	template	(SQL	Profiler)
To	filter	events	in	a	trace	template

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	File	or	Trace
Template.

2.	 Select	the	template	file	or	trace	file	to	open.

3.	 In	the	Trace	Template	Properties	dialog	box,	click	the	Filters	tab.

4.	 In	the	Trace	event	criteria	list,	click	a	criterion.

5.	 Enter	a	value	in	the	field	that	appears	beneath	the	trace	event	criterion.

How	To

How	to	save	trace	results	to	a	file	(SQL	Profiler)
To	save	trace	results	to	a	file

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	which
you	want	to	connect	and	a	connection	method.

3.	 In	the	Trace	name	box,	type	a	name	for	the	trace,	and	then	select	the
Save	to	file	check	box.

4.	 Set	the	maximum	file	size	in	the	Set	maximum	file	size	(MB)	check
box.	You	must	set	the	maximum	file	size	if	you	are	saving	trace	results
to	a	file.	

5.	 Optionally,	after	saving	the	file,	do	the	following:

Select	the	Enable	file	rollover	check	box,	which	creates	new
files	to	store	the	trace	data	if	the	maximum	file	size	is
reached.	This	option	is	selected	by	default	when	you	are
saving	trace	results	to	a	file.

Select	the	Server	processes	SQL	Server	trace	data	check
box.

To	avoid	missing	events,	select	this	option.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	save	trace	results	to	a	table	(SQL	Profiler)
To	save	trace	results	to	a	table

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	which
you	want	to	connect	and	a	connection	method.

3.	 In	the	Trace	name	box,	type	a	name	for	the	trace,	and	then	click	Save
to	table.

4.	 In	the	Destination	Table	dialog	box,	do	the	following:

In	the	Database	list,	select	the	destination	database.

In	the	Table	list,	type	or	select	the	table	name	for	the	trace
results.

5.	 Select	the	Set	maximum	rows	(in	thousands)	check	box	to	specify
the	maximum	number	of	rows	to	save.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	modify	a	trace	template	(SQL	Profiler)
To	modify	a	trace	template

1.	 On	the	File	Menu,	point	to	Open,	and	then	click	Trace	Template.

2.	 Select	the	trace	template	file	to	open.

3.	 In	the	Trace	Template	Properties	dialog	box,	specify	the	trace
template	configurations	by	doing	the	following:

Click	the	Events	tab	to	modify	the	list	of	selected	event
classes.

Click	the	Data	Columns	tab	to	modify	the	list	of	selected
data.

Click	the	Filters	tab	to	modify	the	criteria	for	determining
which	events	to	capture.	To	add	or	edit	criteria,	expand	the
trace	event	and	then	type	the	criteria	in	the	field	that	appears
beneath	the	trace	criterion.

These	modifications	are	effective	the	next	time	the	trace	template	is
used	for	a	trace.

4.	 Click	Save,	or	click	Save	As	to	save	the	trace	template	under	another
name.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	pause	a	trace	(SQL	Profiler)
To	pause	a	trace

1.	 Select	the	window	for	a	trace	that	is	running.

2.	 On	the	File	menu,	click	Pause	Trace.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	run	a	trace	after	it	has	been	paused	or	stopped	(SQL
Profiler)
To	run	a	trace	after	it	has	been	paused	or	stopped

1.	 Select	the	window	containing	the	stopped	or	paused	trace.

2.	 On	the	File	menu,	click	Run	Trace.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	clear	a	trace	window	(SQL	Profiler)
To	clear	a	trace	window

1.	 When	multiple	traces	are	active,	select	the	trace	window	to	clear.

2.	 On	the	Edit	menu,	click	Clear	Trace	Window.

The	contents	of	the	trace	window	are	removed.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	close	a	trace	window	(SQL	Profiler)
To	close	a	trace	window	(which	closes	a	trace)

1.	 Select	the	trace	window	to	close.	Closing	the	trace	window	closes	the
trace.

2.	 On	the	File	menu,	click	Close.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	stop	a	trace	(SQL	Profiler)
To	stop	a	trace

1.	 Select	a	running	trace.

2.	 On	the	File	menu,	click	Stop	Trace,	or	close	a	trace	window.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	view	filter	information	(SQL	Profiler)
To	view	filter	information

1.	 Create	a	trace,	or	open	a	trace	template,	trace	file,	or	SQL	Script.

2.	 If	you	created	a	trace,	on	the	File	menu,	click	Properties.

3.	 Click	the	Filters	tab	to	view	the	filter	information.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	open	a	trace	data	file	(SQL	Profiler)
To	open	a	trace	data	file

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	File.

2.	 Select	the	trace	data	file	to	open.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	open	a	trace	table	(SQL	Profiler)
To	open	a	trace	table

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	Table.

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	instance	of
Microsoft®	SQL	Server™	that	contains	the	trace	table	and	a
connection	method.

3.	 In	the	Source	Table	dialog	box,	in	the	Database	list,	click	the
database	in	which	the	table	is	saved.

4.	 In	the	Table	list,	click	the	table	name.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	replay	a	trace	table	(SQL	Profiler)
To	replay	a	trace	table

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	Table.

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	instance	of
Microsoft®	SQL	Server™	that	contains	the	trace	table	and	a
connection	method.

3.	 In	the	Source	Table	dialog	box,	in	the	Database	list,	click	the
database	in	which	the	table	is	saved.

4.	 On	the	Replay	menu,	click	Start.

5.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	connect
to	and	a	connection	method.

6.	 In	the	Replay	SQL	Server	dialog	box,	select	the	destination	server,
and	then	select	any	of	the	following:

Replay	events	in	the	order	they	were	traced

Replay	events	using	multiple	threads

Display	replay	results

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	replay	a	trace	file	(SQL	Profiler)
To	replay	a	trace	file

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	File.

2.	 Select	the	file	to	open.

3.	 On	the	Replay	menu,	click	Start.

4.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	connect
to	and	a	connection	method.

5.	 In	the	Replay	SQL	Server	dialog	box,	select	the	destination	server,
and	then	select	any	of	the	following:

Replay	events	in	the	order	they	were	traced

Replay	events	using	multiple	threads

Display	replay	results

How	To

How	to	replay	a	single	event	at	a	time	(SQL	Profiler)
To	replay	a	single	event	at	a	time

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	File	or	Trace
Table.

2.	 If	you	choose	to	replay	an	event	from	a	trace	table,	you	must	enter	the
connection	information.	In	the	Connect	to	SQL	Server	dialog	box,
select	the	server	to	connect	to	and	a	connection	method,	and	specify
the	database	in	which	the	table	is	saved	in	the	Source	Table	dialog
box.

3.	 Select	the	trace	file	to	open,	unless	you	have	already	selected	the	trace
table.

4.	 On	the	Replay	menu,	click	Step.

5.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	connect
to	and	a	connection	method.

6.	 In	the	Replay	SQL	Server	dialog	box,	alter	any	necessary	settings,
and	then	click	Start.

7.	 On	the	Replay	menu,	click	Step.

8.	 Repeat	Step	6	until	you	have	replayed	all	the	necessary	event	steps.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	replay	to	a	breakpoint	(SQL	Profiler)
To	replay	to	a	breakpoint

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	File	or	Trace
Table.

2.	 If	you	choose	to	replay	a	trace	table,	you	must	enter	the	connection
information.	In	the	Connect	to	SQL	Server	dialog	box,	select	the
server	to	connect	to	and	a	connection	method,	and	specify	the	database
in	which	the	table	is	saved	in	the	Source	Table	dialog	box.

3.	 Select	the	trace	file	to	open,	unless	you	have	already	selected	the	trace
table.

4.	 In	the	trace	windows,	click	a	trace	event.

5.	 On	the	Replay	menu,	click	Toggle	Break-Point.

6.	 On	the	Replay	menu,	click	Start.

7.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	connect
to	and	a	connection	method.

8.	 In	the	Replay	SQL	Server	dialog	box,	alter	any	necessary	settings,
and	then	click	Start.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	replay	to	the	cursor	(SQL	Profiler)
To	replay	to	the	cursor

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	File	or	Trace
Table.

2.	 If	you	choose	to	replay	a	trace	table,	you	must	enter	the	connection
information.	In	the	Connect	to	SQL	Server	dialog	box,	select	the
server	to	connect	to	and	a	connection	method,	and	specify	the	database
in	which	the	table	is	saved	in	the	Source	Table	dialog	box.

3.	 Select	the	trace	file	to	open,	unless	you	have	already	selected	the	trace
table.

4.	 In	the	trace	window,	click	an	event.

5.	 On	the	Replay	menu,	click	Run	To	Cursor.

6.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	connect
to	and	a	connection	method.

7.	 In	the	Replay	SQL	Server	dialog	box,	alter	any	necessary	settings	and
then	click	Start.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	replay	an	SQL	script	(SQL	Profiler)
To	replay	an	SQL	script

1.	 On	the	File	menu,	point	to	Open,	and	then	click	SQL	Script.

2.	 Select	the	Transact-SQL	script	file	to	open.

3.	 On	the	Replay	menu,	click	Start.

4.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	connect
to	and	a	connection	method.

5.	 In	the	Replay	SQL	Server	dialog	box,	alter	any	necessary	settings,
and	then	click	Start.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	modify	a	filter	(SQL	Profiler)
To	modify	a	filter

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	Template.

2.	 Select	the	trace	template	to	open.

3.	 In	the	Trace	Template	Properties	dialog	box,	click	the	Filters	tab.

4.	 In	the	Trace	event	criteria	list,	click	a	criterion.

5.	 Enter	a	value	in	the	field	that	appears	beneath	the	criterion.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	set	a	maximum	file	size	for	a	trace	file	(SQL	Profiler)
To	set	a	maximum	file	size	for	a	trace	file

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	which
you	want	to	connect	and	a	connection	method.

3.	 In	the	Trace	Properties	dialog	box,	do	the	following:

In	the	Trace	name	box,	type	a	name	for	the	trace.

In	the	Template	name	list,	select	a	trace	template.

4.	 Select	Save	to	file,	and	then	specify	a	file	in	which	to	store	the	trace
information.

5.	 In	the	Set	maximum	file	size	(MB)	check	box,	specify	a	maximum
file	size	for	the	trace.	File	rollover	is	enabled	by	default.

When	the	file	size	reaches	this	maximum,	the	trace	events	are	no
longer	recorded.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	set	a	maximum	table	size	for	a	trace	table	(SQL	Profiler)
To	set	a	maximum	table	size	for	a	trace	table

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	which
you	want	to	connect	and	a	connection	method.

3.	 In	the	Trace	Properties	dialog	box,	in	the	Trace	name	box,	type	a
name	for	the	trace.

4.	 Select	the	Save	to	table	check	box,	and	then	specify	a	table	in	which
to	store	the	trace	information.

You	will	be	prompted	to	connect	to	the	server	on	which	you	want	the
trace	to	be	stored.

5.	 In	the	Destination	Table	dialog	box,	in	the	Database	list,	select	a
database	for	the	trace,	and	then	in	the	Table	box,	type	or	select	a	table
name.

6.	 Select	the	Set	maximum	rows	(in	thousands)	check	box	and	specify
a	maximum	number	of	rows	for	the	trace	table.

When	the	number	of	rows	in	the	table	exceeds	this	maximum,	the	trace
events	are	no	longer	recorded.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	set	an	immediate	start	time	for	traces	(SQL	Profiler)
To	set	an	immediate	start	time	for	traces

1.	 On	the	Tools	menu,	click	Options.

2.	 Select	the	Start	tracing	immediately	after	making	a	connection
check	box.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	set	a	StartTime	filter	for	a	trace	(SQL	Profiler)
To	set	a	StartTime	filter	for	a	trace

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	which
you	want	to	connect	and	a	connection	method.

3.	 In	the	Trace	Properties	dialog	box,	do	the	following:

In	the	Trace	name	box,	type	a	name	for	the	trace.

In	the	Template	name	list,	select	a	trace	template.

Optionally,	specify	a	save	destination	for	the	trace	results.

4.	 Click	the	Filters	tab,	and	then	in	the	Trace	event	criteria	box,	expand
StartTime.

5.	 Expand	Greater	or	Less	than,	and	then	enter	a	time	value	in	the	field
that	appears	beneath	the	criterion.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	set	an	EndTime	filter	for	a	trace	(SQL	Profiler)
To	set	an	EndTime	filter	for	a	trace

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	connect
to	and	a	connection	method.

3.	 In	the	Trace	Properties	dialog	box,	do	the	following:

In	the	Trace	name	box,	type	a	name	for	the	trace.

In	the	Template	name	list,	select	a	trace	template.

Optionally,	specify	a	save	destination	for	the	trace	results.

4.	 Click	the	Filters	tab,	and	then	in	the	Trace	event	criteria	box,	expand
EndTime.

5.	 Expand	Greater	or	Less	than,	and	then	enter	a	time	value	in	the	field
that	appears	beneath	the	criterion.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	filter	system	IDs	in	a	trace	(SQL	Profiler)
To	filter	system	IDs	in	a	trace

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.	

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	which
you	want	to	connect	and	a	connection	method.

3.	 In	the	Trace	Properties	dialog	box,	do	the	following:

In	the	Trace	name	box,	type	a	name	for	the	trace.

In	the	Template	name	list,	select	a	trace	template.	

Optionally,	specify	a	save	destination	for	the	trace	results.

4.	 Click	the	Filters	tab,	and	then	in	the	Trace	event	criteria	box,	expand
SPID.

5.	 Expand	Equals,	Not	equal	to,	Greater	than	or	equal	or	Less	than	or
equal,	and	then	enter	a	value	in	the	field	that	appears	beneath	the
criterion.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	trace	template	(SQL	Profiler)
To	create	a	trace	template

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace	Template.	

2.	 Specify	template	properties	by	clicking	options	on	the	Events,	Data
Columns,	or	Filters	tabs.

3.	 Click	Save	As	to	name	and	save	the	template.

See	Also

How	to	derive	a	template	from	a	running	trace

How	to	derive	a	template	from	a	trace	file	or	trace	table

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	set	global	trace	options	(SQL	Profiler)
To	set	global	trace	options

1.	 On	the	Tools	menu,	click	Options.	

2.	 From	the	Template	name	list,	select	a	default	trace	template.

3.	 Optionally,	select	the	Start	tracing	immediately	after	making	a
connection	check	box.

4.	 Click	the	Display	tab,	and	then	in	the	Font	Name	list,	select	the	font
used	by	SQL	Profiler	to	display	traces.

5.	 In	the	Font	size	list,	type	or	select	a	number	that	ranges	from	6
through	24.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	find	a	value	or	data	column	while	tracing	(SQL	Profiler)
To	find	a	value	or	data	column	while	tracing

1.	 Create	a	trace	by	clicking	the	File	menu	and	pointing	to	New	and	then
Trace.

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	which
you	want	to	connect	and	a	connection	method.

3.	 To	display	data	in	the	trace	window,	run	SQL	Query	Analyzer,	and
then	click	the	trace	window	in	SQL	Profiler	again.

4.	 On	the	Edit	menu,	click	Find.

5.	 In	the	Find	dialog	box,	enter	a	search	value	or	specify	a	data	column.

6.	 Click	Find	Previous.

The	search	starts	at	the	beginning	of	the	trace.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	launch	a	new	trace	with	the	current	template	(SQL
Profiler)
To	launch	a	new	trace	with	the	current	template

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.	

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	be
traced	and	a	connection	method.	

3.	 In	the	Trace	Properties	dialog	box,	do	the	following:

In	the	Trace	name	box,	type	the	name	of	the	new	trace.

In	the	Template	name	list,	select	the	same	template	as	the
currently	running	trace.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	derive	a	template	from	a	running	trace	(SQL	Profiler)
To	derive	a	template	from	a	running	trace

1.	 On	the	File	menu,	point	to	New,	and	then	click	Trace.	

2.	 In	the	Connect	to	SQL	Server	dialog	box,	select	the	server	to	be
traced	and	connection	method.	

3.	 In	the	Trace	Properties	dialog	box,	do	the	following:

In	the	Trace	name	box,	type	the	name	of	the	new	trace.

In	the	Template	name	list,	select	a	template.

4.	 Modify	the	template	by	adding	or	deleting	events,	columns,	or	filters,
and	then	start	the	trace	by	clicking	Run.

5.	 On	the	File	menu,	point	to	Save	As,	and	then	click	Trace	Template.

6.	 Type	a	name	and	save	the	template	file.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	derive	a	template	from	a	trace	file	or	trace	table	(SQL
Profiler)
To	derive	a	template	from	a	trace	file	or	trace	table

1.	 On	the	File	menu,	point	to	Open,	and	then	click	either	Trace	File	or
Trace	Table.

2.	 If	you	choose	to	replay	a	trace	table,	you	must	enter	the	connection
information.	In	the	Connect	to	SQL	Server	dialog	box,	select	the
server	to	which	you	want	to	connect	and	a	connection	method,	and
specify	the	database	in	which	the	table	is	saved	in	the	Source	Table
dialog	box.

3.	 Select	the	trace	file	to	open,	unless	you	have	already	selected	a	trace
table	to	open.

4.	 On	the	File	menu,	point	to	Save	As,	and	then	click	Trace	Template.

5.	 Type	a	name	and	save	the	template	file.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	save	a	template,	trace	file,	or	trace	table	to	SQL	Script
(SQL	Profiler)
To	save	a	template,	trace	file,	or	trace	table	to	SQL	Script

1.	 On	the	File	menu,	point	to	Open,	and	then	click	Trace	Template,
Trace	File,	or	Trace	Table.	

2.	 If	you	choose	to	save	a	trace	table,	you	must	enter	the	connection
information.	In	the	Connect	to	SQL	Server	dialog	box,	select	the
server	to	which	you	want	to	connect	and	a	connection	method.

3.	 In	the	Open	dialog	box,	select	a	trace	template,	trace	file,	or	trace	table
to	save.

4.	 On	the	File	menu,	point	to	Save	As,	and	then	click	SQL	Script.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

How	to	create	an	SQL	Script	for	a	running	trace	(SQL	Profiler)
To	create	an	SQL	Script	for	running	a	trace

1.	 Create	and	run	a	new	trace,	or	create	or	open	a	trace	template.

2.	 On	the	File	menu,	point	to	Script	Trace,	and	then	click	For	SQL
Server	2000	or	For	SQL	Server	7.0,	depending	on	the	server	that	is	to
be	traced.

See	Also

Monitoring	with	SQL	Profiler

JavaScript:hhobj_1.Click()

How	To

Creating	and	Maintaining	Databases
Designing	your	Microsoft®	SQL	Server™	2000	database	structure	involves
creating	and	maintaining	a	number	of	interrelated	components.

Database	component Description
Databases Contain	the	objects	used	to	represent,	manage,	and

access	data.
Tables Store	rows	of	data	and	define	the	relationships

between	multiple	tables.
Indexes Optimize	the	speed	of	accessing	the	data	in	the

table.
Views Provide	an	alternate	way	of	looking	at	the	data	in

one	or	more	tables.
Stored	Procedures Centralize	business	rules,	tasks,	and	processes

within	the	server	using	Transact-SQL	programs.
Triggers Centralize	business	rules,	tasks,	and	processes

within	the	server	using	special	types	of	stored
procedures	that	are	only	executed	when	data	in	a
table	is	modified.

Creating	a	database	to	serve	your	business	needs	requires	an	understanding	of
how	to	design,	create,	and	maintain	them	to	ensure	your	database	performs
optimally.

JavaScript:hhobj_1.Click()

How	To

Databases
A	database	in	Microsoft®	SQL	Server™	2000	consists	of	a	collection	of	tables
with	data,	and	other	objects,	such	as	views,	indexes,	stored	procedures,	and
triggers,	that	are	defined	to	support	the	activities	performed	with	the	data.	Before
objects	within	the	database	can	be	created,	you	must	create	the	database	and
understand	how	to	change	the	settings	and	the	configuration	of	the	database.
This	includes	tasks	such	as	expanding	or	shrinking	the	database,	or	specifying
the	files	used	to	create	the	database.

See	Also

Databases

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	database	(Enterprise	Manager)
To	create	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Right-click	Databases,	and	then	click	New	Database.

3.	 Enter	a	name	for	the	new	database.

The	primary	database	and	transaction	log	files	are	created	using	the
database	name	you	specified	as	the	prefix,	for	example
newdb_Data.mdf	and	newwdb_Log.ldf.	The	initial	sizes	of	the
database	and	transaction	log	files	are	the	same	as	the	default	sizes
specified	for	the	model	database.	The	primary	file	contains	the	system
tables	for	the	database.

4.	 To	change	the	default	values	for	the	new	primary	database	file,	click
the	General	tab.	To	change	the	defaults	for	the	new	transaction	log
file,	click	the	Transaction	Log	tab.

5.	 To	change	the	default	values	provided	in	the	File	name,	Location,
Initial	size	(MB),	and	File	group	(not	applicable	for	the	transaction
log)	columns,	click	the	appropriate	cell	to	change	and	enter	the	new
value.

6.	 To	specify	how	the	file	should	grow,	select	from	these	options:

To	allow	the	currently	selected	file	to	grow	as	more	data	space
is	needed,	select	Automatically	grow	file.

To	specify	that	the	file	should	grow	by	fixed	increments,
select	In	megabytes	and	specify	a	value.

To	specify	that	the	file	should	grow	by	a	percentage	of	the
current	file	size,	select	By	percent	and	specify	a	value.

7.	 To	specify	the	file	size	limit,	select	from	these	options:

To	allow	the	file	to	grow	as	much	as	necessary,	select
Unrestricted	filegrowth.

To	specify	the	maximum	size	the	file	should	be	allowed	to
grow	to,	select	Restrict	filegrowth	(MB)	and	specify	a	value.

Note		The	maximum	database	size	is	determined	by	the	amount	of	disk	space
available	and	the	licensing	limits	determined	by	the	version	of	Microsoft®	SQL
Server™	you	are	using.

See	Also

Creating	a	Database

Creating	Filegroups

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	create	a	database	using	the	Create	Database	Wizard
(Enterprise	Manager)
To	create	a	database	using	the	Create	Database	Wizard

1.	 Expand	a	server	group,	and	then	expand	the	server	in	which	to	create	a
database.

2.	 On	the	Tools	menu,	click	Wizards.

3.	 Expand	Database.

4.	 Double-click	Create	Database	Wizard.

5.	 Complete	the	steps	in	the	wizard.

See	Also

Creating	a	Database

JavaScript:hhobj_1.Click()

How	To

How	to	increase	the	size	of	a	database	(Enterprise	Manager)
To	increase	the	size	of	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	to	increase,	and	then	click
Properties.

3.	 To	increase	the	data	space,	click	the	General	tab.	To	increase	the
transaction	log	space,	click	the	Transaction	Log	tab.

4.	 To	add	a	new	file,	click	the	next	empty	row	and,	in	the	File	name
column,	enter	the	file	name	that	will	contain	the	additional	space.

The	file	location	is	generated	automatically	and	given	the	.ndf	suffix
for	a	database	file,	or	an	.ldf	suffix	for	a	transaction	log	file.

5.	 To	change	the	default	values	provided	in	the	File	name,	Location,
Space	allocated	(MB),	and	Filegroup	(not	applicable	for	the
transaction	log)	columns,	click	the	cell	to	change	and	enter	the	new
value.

For	existing	files,	only	the	Space	allocated	(MB)	value	can	be
changed;	the	new	value	must	be	larger	than	the	existing	value.

6.	 To	specify	how	the	file	should	grow,	select	from	these	options:

To	allow	the	currently	selected	file	to	grow	as	more	data	space
is	needed,	select	Automatically	grow	file.

To	specify	that	the	file	should	grow	by	fixed	increments,
select	In	megabytes	and	specify	a	value.

To	specify	that	the	file	should	grow	by	a	percentage	of	the

current	file	size,	select	By	percent	and	specify	a	value.

7.	 To	specify	the	file	size	limit,	select	from	these	options:

To	allow	the	file	to	grow	as	much	as	necessary,	select
Unrestricted	filegrowth.

To	specify	the	maximum	size	to	which	the	file	should	be
allowed	to	grow,	select	Restrict	filegrowth	(MB)	and	specify
a	value.

Note		The	maximum	database	size	is	determined	by	the	amount	of	disk	space
available	and	the	licensing	limits	determined	by	the	version	of	SQL	Server	you
are	using.

See	Also

Adding	and	Deleting	Data	and	Transaction	Log	Files

Creating	Filegroups

Expanding	a	Database

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	shrink	a	database	(Enterprise	Manager)
To	shrink	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	to	shrink,	point	to	All
Tasks,	and	then	click	Shrink	Database.

3.	 To	specify	how	much	to	shrink	the	database,	select	from	these	options:

For	Maximum	free	space	in	files	after	shrinking,	enter	the
amount	of	free	space	you	want	left	in	the	database	after
shrinking.	Use	the	Database	Size,	Space	free	value	as	a
guideline.

Select	Move	pages	to	beginning	of	file	before	shrinking	to
cause	the	freed	file	space	to	be	retained	in	the	database	files,
and	pages	containing	data	to	be	moved	to	the	beginning	of	the
database	files.

4.	 Click	Schedule	to	create	or	change	the	frequency	or	time	when	the
database	is	automatically	shrunk.

5.	 Click	Shrink	files	if	you	want	to	shrink	individual	database	files.

Note		You	cannot	shrink	a	database	smaller	than	the	size	of	the	model	database.

See	Also

Shrinking	a	Database

JavaScript:hhobj_1.Click()

How	To

How	to	delete	data	or	log	files	from	a	database	(Enterprise
Manager)
To	delete	data	or	log	files	from	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	from	which	to	delete	the
data	or	log	files,	and	then	click	Properties.

3.	 To	delete	data	files,	click	the	General	tab.	To	delete	log	files,	click	the
Transaction	Log	tab.

4.	 In	the	File	name	column,	click	the	arrow	next	to	the	name	of	the	file
to	delete,	and	then	press	the	DELETE	key.	A	cross	will	appear	next	to
the	file	name	indicating	that	the	file	will	be	deleted.

Note		Files	can	be	deleted	only	if	they	are	empty.	Remove	all	objects	on	the	files
and	shrink	the	database	before	deleting	files	from	the	database.

See	Also

Adding	and	Deleting	Data	and	Log	Files

JavaScript:hhobj_1.Click()

How	To

How	to	change	the	configuration	settings	for	a	database
(Enterprise	Manager)
To	change	the	configuration	settings	for	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	to	change,	and	then	click
Properties.

3.	 Click	the	Options	tab,	and	select	or	clear	the	configuration	setting(s)
to	change.

See	Also

Nested	Triggers

Renaming	a	Database

Setting	Database	Options

Shrinking	a	Database

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	view	a	database	(Enterprise	Manager)
To	view	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	click	the	database	to	view.

3.	 Click	General,	Tables	and	Indexes,	or	Space	Allocated	to	view	more
information	about	the	database.

See	Also

Viewing	a	Database

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	settings	for	a	database	(Enterprise	Manager)
To	view	the	settings	for	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	to	view,	and	then	click
Properties.

3.	 Click	the	Options	tab.

See	Also

Viewing	a	Database

JavaScript:hhobj_1.Click()

How	To

How	to	view	a	list	of	databases	on	a	server	(Enterprise	Manager)
To	view	a	list	of	databases	on	a	server

1.	 Expand	a	server	group,	and	then	expand	a	server.	

2.	 Expand	Databases	and	a	list	of	all	databases	on	the	server	will	be
displayed.

See	Also

Viewing	a	Database

JavaScript:hhobj_1.Click()

How	To

How	to	display	data	and	log	space	information	for	a	database
(Enterprise	Manager)
To	display	data	and	log	space	information	for	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	click	the	database	to	view.

3.	 In	the	details	pane,	click	Space	Allocated	to	view	database	space
information.

See	Also

Displaying	Database	and	Transaction	Log	Space

Monitoring	with	Transact-SQL	Statements

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	generate	a	script	(Enterprise	Manager)
To	generate	a	script

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	to	script,	point	to	All
Tasks,	and	then	click	Generate	SQL	Scripts.

3.	 On	the	General	tab,	select	the	database	objects	to	script.	By	default,
all	objects	in	the	database	are	scripted.

4.	 On	the	Formatting	tab,	select	from	the	script	formatting	options:

Generate	the	CREATE	<object>	command	for	each	object
so	that	each	object	to	be	scripted	is	explicitly	created	using	its
existing	definition.	This	is	selected	by	default.

Generate	the	DROP	<object>	command	for	each	object	so
that	a	DROP	statement	is	added	to	the	script	for	each	object	to
be	scripted.	This	is	selected	by	default.

CAUTION		When	executed,	this	causes	any	existing	objects	in
the	database	(where	the	script	is	executed	with	the	same	name
as	objects	listed	in	the	script)	to	be	deleted	first.

Generate	scripts	for	all	dependent	objects	so	that	all	objects
in	the	database	which	are	needed	to	create	the	objects	listed	in
the	script	are	included	automatically	in	the	script	if	not
already	selected.

Include	descriptive	headers	in	the	script	files	so	that	a
comment	is	added	to	the	file	for	each	object	listed	in	the
script.

5.	 On	the	Options	tab,	select	the	security-related,	table-related,	and	script
file-related	options.

6.	 On	the	General	tab,	click	Preview	to	view	a	preview	of	the	generated
script.

See	Also

Documenting	and	Scripting	Databases

JavaScript:hhobj_1.Click()

How	To

How	to	start	the	Database	Maintenance	Plan	Wizard	(Enterprise
Manager)
To	start	the	Database	Maintenance	Plan	Wizard

1.	 Expand	a	server	group,	and	then	expand	the	server.

2.	 On	the	Tools	menu,	click	Database	Maintenance	Planner.

3.	 Complete	the	steps	in	the	wizard.

See	Also

Database	Maintenance	Plan	Wizard

JavaScript:hhobj_1.Click()

How	To

How	to	delete	a	database	(Enterprise	Manager)
To	delete	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	right-click	the	database	to	delete,	and	then	click
Delete.

3.	 Confirm	the	deletion.

See	Also

Deleting	a	Database

JavaScript:hhobj_1.Click()

How	To

How	to	attach	and	detach	a	database	(Enterprise	Manager)
To	attach	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Right-click	Databases,	and	select	All	Tasks/Attach	Database.

3.	 Enter	the	name	of	the	MDF	(master	data	file)	of	the	database	to
attach.	If	you	are	not	sure	where	the	file	is	located,	click	browse	(...)	to
search.	There	can	only	be	up	to	16	file	names	specified.	For	more
information,	see	sp_attach_db.

4.	 To	ensure	that	the	specified	MDF	file	is	correct,	click	Verify.	The
Original	File	Name(s)	column	lists	all	the	files	in	the	database	(data
files	and	log	files).	The	Current	File(s)	Location	column	lists	the	file
names	and	paths.	If	Microsoft®	SQL	Server™	cannot	find	the	files	in
the	specified	locations,	the	attach	operation	fails.	The	Current	File(s)
Location	column	can	be	edited,	and	the	current	location	of	the	file
must	be	in	this	column	for	the	attach	operation	to	work.	For	example,
if	you	have	changed	the	default	location	of	the	file	before	you
detached	it,	you	must	specify	the	current	location	for	the	attach
operation	to	be	successful.

5.	 In	the	Attach	as	box,	enter	the	name	of	the	database.	The	database
name	must	not	match	any	existing	database	names.

6.	 Specify	the	database	owner.

7.	 Click	OK.	A	database	node	for	the	newly	attached	database	is	created
in	the	Database	folder.

JavaScript:hhobj_1.Click()

To	detach	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases.

3.	 Right-click	the	database,	and	then	select	All	Tasks/Detach	Database.
This	menu	is	visible	only	if	you	are	a	member	of	the	sysadmin	fixed
server	role	and	the	server	to	which	you	are	connected	is	SQL	Server
2000.	The	master,	model,	and	tempdb	databases	cannot	be	detached.	

4.	 In	the	Detach	Database	dialog	box,	check	the	status	of	the	database.
To	successfully	detach	a	database,	STATUS	should	be:	The	database
is	ready	to	be	detached.	Optionally,	you	can	select	to	update	statistics
prior	to	the	detach	operation.

5.	 To	terminate	any	existing	connections	from	the	database,	click	Clear.

6.	 Click	OK.	The	database	node	for	the	detached	database	is	removed
from	the	Database	folder.

How	To

How	to	create	user-defined	data	types	(Enterprise	Manager)
To	create	a	user-defined	data	type

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	to	create
the	user-defined	data	type.

3.	 Right-click	User	Defined	Data	Types,	and	then	click	New	User
Defined	Data	Type.

4.	 Enter	the	name	of	the	new	data	type.

5.	 In	the	Data	type	list,	select	the	base	data	type.

6.	 If	Length	is	active,	enter	another	value	if	you	want	to	change	the
maximum	data	length	that	the	data	type	can	store.	The	only	data	types
that	can	have	variable	lengths	are	binary,	char,	nchar,	nvarchar,
varbinary,	and	varchar.

7.	 To	allow	the	data	type	to	accept	null	values,	select	Allow	Nulls.

8.	 Optionally,	in	the	Rule	and	Default	lists,	select	a	rule	or	default,	if
any,	to	bind	to	the	user-defined	data	type.

See	Also

Creating	User-Defined	Data	Types

sp_addtype

Using	Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	delete	user-defined	data	types	(Enterprise	Manager)
To	delete	a	user-defined	data	type

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database,	and	then	click	User	Defined
Data	Types.

3.	 In	the	details	pane,	right-click	the	data	type	to	delete,	and	then	click
Delete.

4.	 To	see	how	deleting	this	data	type	will	affect	the	database,	click	Show
Dependencies.

5.	 In	the	Drop	Objects	dialog	box,	click	Drop	All.

See	Also

Creating	User-defined	Data	Types

sp_droptype

Using	Data	Types

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	create	a	reflexive	relationship	(Enterprise	Manager)
To	create	a	reflexive	relationship

1.	 Open	a	database	diagram.

2.	 Click	the	row	selector	for	the	database	column	that	you	want	to	relate
to	another	column.

3.	 While	the	pointer	is	positioned	over	the	row	selector,	drag	the	pointer
outside	the	table	until	a	line	appears.

4.	 Drag	the	line	back	to	the	selected	table.

5.	 Release	the	mouse	button.

The	Create	Relationship	dialog	box	appears	and	attempts	to	match
the	primary	key	columns	with	the	non-key	columns	to	which	you
dragged	the	line.

6.	 Confirm	that	the	columns	you	want	to	relate	are	shown	in	the	Primary
key	table	and	Foreign	key	table	lists.

See	Also

Drawing	a	Reflexive	Relationship

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	many-to-many	relationship	between	tables
(Enterprise	Manager)
To	create	a	many-to-many	relationship	between	tables

1.	 Open	a	database	diagram.

2.	 Add	the	tables	that	you	want	to	create	a	many-to-many	relationship
between.

3.	 Create	a	third	table	by	right-clicking	within	the	database	diagram,	and
then	clicking	New	Table.

This	will	become	the	junction	table.

4.	 In	the	Choose	Name	dialog	box,	enter	a	name	for	the	table.

For	example,	the	junction	table	between	the	titles	table	and	the	authors
table	is	named	titleauthors.

5.	 Copy	the	primary	key	columns	from	each	of	the	other	two	tables	to	the
junction	table.

You	can	add	other	columns	to	this	table,	just	as	you	can	to	any	other
table.

6.	 In	the	junction	table,	set	the	primary	key	to	include	all	the	primary	key
columns	from	the	other	two	tables.

7.	 Define	a	one-to-many	relationship	between	each	of	the	two	primary
tables	and	the	junction	table.

See	Also

Adding	Tables	to	a	Diagram

Copying	Columns	from	One	Table	to	Another

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Mapping	Many-to-Many	Relationships	to	a	Database	Diagram

JavaScript:hhobj_3.Click()

How	To

How	to	delete	a	relationship	(Enterprise	Manager)
To	delete	a	relationship

1.	 Open	a	database	diagram.

2.	 Right-click	the	relationship	line	that	you	want	to	delete	from	the
diagram,	and	then	click	Delete	Relationship	from	Database.

See	Also

Deleting	a	Relationship

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	DEFAULT	object	(Enterprise	Manager)
To	create	a	DEFAULT	object

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	to	create
the	DEFAULT	object.

3.	 Right-click	Defaults,	and	then	click	New	Default.

4.	 In	Name,	enter	a	name	for	the	DEFAULT	object.

5.	 In	Value,	enter	the	value	for	the	DEFAULT	object.	The	value	can	be	a
constant,	expression,	or	variable.

6.	 Optionally,	click:

Bind	UDTs	to	bind	the	new	DEFAULT	object	to	a	user-
defined	data	type.

Bind	Columns	to	bind	the	DEFAULT	object	to	an	existing
column	in	a	table.

See	Also

Creating	and	Modifying	DEFAULT	Definitions

JavaScript:hhobj_1.Click()

How	To

How	to	delete	a	DEFAULT	object	(Enterprise	Manager)
To	delete	a	DEFAULT	object

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	DEFAULT
object	belongs,	and	then	click	Defaults.

3.	 In	the	details	pane,	right-click	the	DEFAULT	object	to	delete,	and	then
click	Delete.

4.	 To	see	how	deleting	this	table	will	affect	the	database,	click	Show
Dependencies.

5.	 Click	Drop	All.

See	Also

Creating	and	Modifying	DEFAULT	Definitions

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	dependencies	of	a	table	(Enterprise	Manager)
To	view	the	dependencies	of	a	table

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	belongs,
and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table,	point	to	All	Tasks,	and	then
click	Display	Dependencies.

See	Also

Viewing	a	Table

JavaScript:hhobj_1.Click()

How	To

Indexes
To	create	efficient	indexes	that	improve	the	performance	of	your	database
application	by	increasing	the	speed	of	your	queries,	you	need	an	understanding
of	how	to	create	and	maintain	the	indexes	on	the	tables	in	your	database.

See	Also

Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	analyze	a	query	using	Index	Analysis	(Query	Analyzer)
To	start	the	Index	Tuning	Wizard

1.	 Expand	a	server	group,	and	then	expand	the	server	in	which	to	create
the	index.

2.	 On	the	Tools	menu,	click	Wizards.

3.	 Expand	Management.

4.	 Double-click	Index	Tuning	Wizard.

5.	 Complete	the	steps	in	the	wizard.

See	Also

Index	Tuning	Wizard

JavaScript:hhobj_1.Click()

How	To

How	to	analyze	a	query	using	Index	Tuning	Wizard	(Query
Analyzer)
To	analyze	a	query	using	Index	Tuning	Wizard

1.	 Enter	the	query	or	batch	of	Transact-SQL	statements	to	be	analyzed
into	the	query	pane.

2.	 On	the	Query	menu,	click	Index	Tuning	Wizard.

See	Also

Index	Tuning	Wizard

JavaScript:hhobj_1.Click()

How	To

How	to	create	an	index	using	the	Create	Index	Wizard
(Enterprise	Manager)
To	create	an	index	using	the	Create	Index	Wizard

1.	 Expand	a	server	group,	and	then	expand	the	server	in	which	to	create
the	index.

2.	 On	the	Tools	menu,	click	Wizards.

3.	 Expand	Database.

4.	 Double-click	Create	Index	Wizard.

5.	 Complete	the	steps	in	the	wizard.

See	Also

Creating	an	Index

JavaScript:hhobj_1.Click()

How	To

How	to	view	all	indexes	in	a	database	(Enterprise	Manager)
To	view	all	indexes	in	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	click	the	database	to	view.

3.	 Click	Tables	&	Indexes	to	view	information	about	the	indexes	in	the
database.

See	Also

Viewing	an	Index

JavaScript:hhobj_1.Click()

How	To

Views
By	creating,	modifying,	and	maintaining	views,	you	can	customize	each	user's
perception	of	the	database.

See	Also

Views

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	view	using	the	Create	View	Wizard	(Enterprise
Manager)
To	create	a	view	using	the	Create	View	Wizard

1.	 Expand	a	server	group,	and	then	expand	the	server	in	which	to	create
the	view.

2.	 On	the	Tools	menu,	click	Wizards.

3.	 Expand	Database.

4.	 Double-click	Create	View	Wizard.

5.	 Complete	the	steps	in	the	wizard.

See	Also

Creating	a	View

JavaScript:hhobj_1.Click()

How	To

How	to	rename	a	view	(Enterprise	Manager)
To	rename	a	view

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	view	belongs,
and	then	click	Views.

3.	 In	the	details	pane,	right-click	the	view,	and	then	click	Rename.

4.	 Enter	the	new	name	of	the	view.

5.	 Confirm	the	new	name.

See	Also

Modifying	and	Renaming	a	View

JavaScript:hhobj_1.Click()

How	To

How	to	modify	a	view	(Enterprise	Manager)
To	modify	a	view

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	view	belongs,
and	then	click	Views.

3.	 In	the	details	pane,	right-click	the	view,	and	then	click	Design	View.

4.	 To	add	additional	tables	or	views	to	the	view,	right-click	in	the
diagram	pane,	and	then	click	Add	Table.

On	the	Tables	or	Views	tabs,	click	the	table	or	view	to	add	to
the	new	view,	and	then	click	Add.	Repeat	for	each	table	or
view	you	want	to	add	to	the	new	view.

5.	 To	remove	an	entire	table	or	view	from	the	view,	in	the	diagram	pane,
right-click	the	title	bar	of	the	table,	and	then	click	Remove.

6.	 In	the	Column	box	of	the	grid	pane,	select	the	columns	to	be
referenced	in	the	view.

7.	 Select	Output	if	the	column	is	to	appear	in	the	result	set	of	the	view.

8.	 To	group	by	column,	right-click	the	column,	and	then	click	Group	By.

9.	 In	the	Criteria	column,	enter	the	criteria	specifying	which	rows	to
retrieve;	this	determines	the	WHERE	clause.	If	Group	By	is	specified,
this	determines	the	HAVING	clause.

10.	 In	the	Or	column,	enter	any	additional	criteria	to	specify	which	rows
to	retrieve.

11.	 Right-click	anywhere	in	the	grid	pane,	and	then	click	Properties.

12.	 Optionally,	select:

Output	all	columns	to	display	all	columns	in	the	view	in	the
result	set.

DISTINCT	values	to	filter	out	duplicate	values	in	the	result
set.

Encrypt	view	to	encrypt	the	definition	of	the	view.

13.	 Optionally,	in	Top,	enter	the	number	of	rows	to	return	in	the	result	set.
Enter	the	word	PERCENT	after	the	number	to	return	a	percentage	of
rows	in	the	result	set.

14.	 Right-click	anywhere	in	the	diagram	pane,	and	then	click	Run	(to
view	the	result	set)	or	Save	(to	save	the	view).

See	Also

Modifying	and	Renaming	a	View

JavaScript:hhobj_1.Click()

How	To

How	to	get	information	about	a	view	(Enterprise	Manager)
To	get	information	about	a	view

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	view	belongs,
and	then	click	Views.

3.	 In	the	details	pane,	right-click	the	view,	and	then	click	Properties.

See	Also

Getting	Information	About	a	View

JavaScript:hhobj_1.Click()

How	To

How	to	display	the	dependencies	of	a	view	(Enterprise	Manager)
To	display	the	dependencies	of	a	view

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	view	belongs,
and	then	click	Views.

3.	 In	the	details	pane,	right-click	the	view,	point	to	All	Tasks,	and	then
click	Display	Dependencies.

See	Also

Getting	Information	About	a	View

JavaScript:hhobj_1.Click()

How	To

How	to	delete	a	view	(Enterprise	Manager)
To	delete	a	view

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	view	belongs,
and	then	click	Views.

3.	 In	the	details	pane,	right-click	the	view,	and	then	click	Delete.

4.	 To	see	how	deleting	this	view	will	affect	the	database,	click	Show
Dependencies.

5.	 Click	Drop	All.

See	Also

Deleting	a	View

JavaScript:hhobj_1.Click()

How	To

Stored	Procedures
By	creating,	modifying,	and	using	stored	procedures,	you	can	simplify	your
business	applications	and	improve	application	and	database	performance.

See	Also

Stored	Procedures

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	stored	procedure	(Enterprise	Manager)
To	create	a	stored	procedure

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	in	which	to	create
the	procedure.

3.	 Right-click	Stored	Procedures,	and	then	click	New	Stored
Procedure.

4.	 Enter	the	text	of	the	stored	procedure.	Press	TAB	to	indent	the	text	of	a
stored	procedure.	Press	CTRL+TAB	to	exit	the	text	box,	or	click	an
appropriate	button.

5.	 To	check	the	syntax,	click	Check	Syntax.

6.	 To	set	the	permissions,	click	Permissions.

See	Also

Creating	a	Stored	Procedure

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	stored	procedure	using	the	Create	Stored
Procedure	Wizard	(Enterprise	Manager)
To	create	a	stored	procedure	using	the	Create	Stored	Procedure	Wizard

1.	 Expand	a	server	group,	and	then	expand	the	server	in	which	to	create
the	view.

2.	 On	the	Tools	menu,	click	Wizards.

3.	 Expand	Database.

4.	 Double-click	Create	Stored	Procedure	Wizard.

5.	 Complete	the	steps	in	the	wizard.

See	Also

Creating	a	Stored	Procedure

JavaScript:hhobj_1.Click()

How	To

How	to	add	an	extended	stored	procedure	(Enterprise	Manager)
To	add	an	extended	stored	procedure

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	master	database.

3.	 Right-click	Extended	Stored	Procedures,	and	then	click	New
Extended	Stored	Procedure.

4.	 In	Name,	enter	the	name	of	the	extended	stored	procedure.

5.	 In	Path,	enter	the	path	of	the	dynamic	link	library	that	contains	the
extended	stored	procedure.	Optionally,	click	(...)	to	locate	the	DLL
containing	the	extended	stored	procedure.

See	Also

Creating	a	Stored	Procedure

Extended	Stored	Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	modify	a	stored	procedure	(Enterprise	Manager)
To	modify	a	stored	procedure

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	procedure
belongs,	and	then	click	Stored	Procedures.

3.	 In	the	details	pane,	right-click	the	stored	procedure,	and	then	click
Properties.

4.	 In	the	Text	box,	change	the	text	of	the	stored	procedure	as	necessary.
Press	CTRL+TAB	to	indent	the	text	of	a	SQL	Server	Enterprise
Manager	stored	procedure.

5.	 To	check	the	syntax,	click	Check	Syntax.

6.	 To	change	the	permissions,	click	Permissions.

See	Also

Modifying	and	Renaming	a	Stored	Procedure

JavaScript:hhobj_1.Click()

How	To

How	to	rename	a	stored	procedure	(Enterprise	Manager)
To	rename	a	stored	procedure

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	procedure
belongs,	and	then	click	Stored	Procedures.

3.	 In	the	details	pane,	right-click	the	stored	procedure,	and	then	click
Rename.

4.	 Type	the	new	name	of	the	stored	procedure.

5.	 Confirm	the	new	name.

See	Also

Modifying	and	Renaming	a	Stored	Procedure

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	definition	of	a	stored	procedure	(Enterprise
Manager)
To	view	the	definition	of	a	stored	procedure

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	stored	procedure
belongs,	and	then	click	Stored	Procedures.

3.	 In	the	details	pane,	right-click	the	stored	procedure,	and	then	click
Properties.

See	Also

Viewing	a	Stored	Procedure

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	dependencies	of	a	stored	procedure	(Enterprise
Manager)
To	view	the	dependencies	of	a	stored	procedure

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	stored	procedure
belongs,	and	then	click	Stored	Procedures.

3.	 In	the	details	pane,	right-click	the	stored	procedure,	point	to	All	Tasks,
and	then	click	Display	Dependencies.

See	Also

Viewing	a	Stored	Procedure

JavaScript:hhobj_1.Click()

How	To

How	to	view	information	about	an	extended	stored	procedure
(Enterprise	Manager)
To	view	information	about	an	extended	stored	procedure

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	master	database,	and	then	click
Extended	Stored	Procedures.

3.	 In	the	details	pane,	right-click	the	extended	stored	procedure,	and	then
click	Properties.

4.	 Optionally,	click	(...)	to	locate	the	DLL	containing	the	extended	stored
procedure.

5.	 Optionally,	click	Permissions	to	view	or	set	permissions	on	the
extended	stored	procedure.

See	Also

Viewing	a	Stored	Procedure

JavaScript:hhobj_1.Click()

How	To

How	to	delete	a	stored	procedure	(Enterprise	Manager)
To	delete	a	stored	procedure

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	stored	procedure
belongs,	and	then	click	Stored	Procedures.

3.	 In	the	details	pane,	right-click	the	stored	procedure	to	delete,	and	then
click	Delete.

4.	 To	see	how	deleting	this	stored	procedure	will	affect	the	database,
click	Show	Dependencies.

5.	 Click	Drop	All.

See	Also

Deleting	a	Stored	Procedure

JavaScript:hhobj_1.Click()

How	To

How	to	delete	an	extended	stored	procedure	(Enterprise
Manager)
To	delete	an	extended	stored	procedure

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	master	database,	and	then	click
Extended	Stored	Procedures.

3.	 In	the	details	pane,	right-click	the	extended	stored	procedure	to	delete,
and	then	click	Delete.

4.	 To	see	how	deleting	this	extended	stored	procedure	will	affect	the
database,	click	Show	Dependencies.

5.	 Click	Drop	All.

See	Also

Deleting	a	Stored	Procedure

JavaScript:hhobj_1.Click()

How	To

Triggers
By	understanding	how	to	create,	modify,	and	maintain	triggers,	you	can	use
triggers	to:

Cascade	changes	through	related	tables	in	the	database.

Disallow	or	roll	back	changes	that	violate	referential	integrity,	thereby
canceling	the	attempted	data	modification	transaction.

Enforce	restrictions	that	are	more	complex	than	those	defined	with
CHECK	constraints.

Find	the	difference	between	the	state	of	a	table	before	and	after	a	data
modification	and	take	action(s)	based	on	that	difference.

See	Also

Enforcing	Business	Rules	with	Triggers

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	trigger	(Enterprise	Manager)
To	create	a	trigger

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	to	contain
the	trigger	belongs,	and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table	on	which	the	trigger	will	be
created,	point	to	All	Tasks,	and	then	click	Manage	Triggers.

4.	 In	Name,	click	<new>.

5.	 In	the	Text	box,	enter	the	text	of	the	trigger.	Use	CTRL-TAB	to	indent
the	text	of	a	trigger.

6.	 To	check	the	syntax,	click	Check	Syntax.

See	Also

Creating	a	Trigger

JavaScript:hhobj_1.Click()

How	To

How	to	modify	a	trigger	(Enterprise	Manager)
To	modify	a	trigger

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	containing
the	trigger	belongs,	and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table	on	which	the	trigger	exists,
point	to	All	Tasks,	and	then	click	Manage	Triggers.

4.	 In	Name,	select	the	name	of	the	trigger.

5.	 Change	the	text	of	the	trigger	in	the	Text	field	as	necessary.	Press
CTRL+TAB	to	indent	the	text	of	a	SQL	Server	Enterprise	Manager
trigger.

6.	 To	check	the	syntax	of	the	trigger,	click	Check	Syntax.

See	Also

Modifying	and	Renaming	a	Trigger

JavaScript:hhobj_1.Click()

How	To

How	to	view	a	trigger	(Enterprise	Manager)
To	view	a	trigger

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	containing
the	trigger	belongs,	and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table	on	which	the	trigger	exists,
point	to	All	Tasks,	and	then	click	Manage	Triggers.

See	Also

Viewing	a	Trigger

JavaScript:hhobj_1.Click()

How	To

How	to	view	the	dependencies	of	a	trigger	(Enterprise	Manager)
To	view	the	dependencies	of	a	trigger

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	trigger	belongs,
and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table	to	which	the	trigger	belongs,
point	to	All	Tasks,	and	then	click	Display	Dependencies.

4.	 In	Object,	click	the	name	of	the	trigger	whose	dependencies	you	want
to	display.

See	Also

Modifying	and	Renaming	a	Trigger

Viewing	a	Trigger

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	delete	a	trigger	(Enterprise	Manager)
To	delete	a	trigger

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	containing
the	trigger	belongs,	and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table	on	which	the	trigger	exists,
point	to	All	Tasks,	and	then	click	Manage	Triggers.

4.	 In	Name,	click	the	name	of	the	trigger	to	delete.

5.	 Click	Delete.

6.	 Confirm	the	deletion.

See	Also

Deleting	a	Trigger

JavaScript:hhobj_1.Click()

How	To

Full-text	Indexes
Full-text	support	for	Microsoft®	SQL	Server™	2000	data	requires	two	tasks:
enabling	the	database	to	allow	queries	against	character	data,	and	the	creation
and	maintenance	of	the	underlying	indexes	that	facilitate	these	queries.

How	To

How	to	enable	a	database	for	full-text	indexing	(Enterprise
Manager)
To	enable	a	database	for	full-text	indexing

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	click	a	database	to	enable.

3.	 On	the	Tools	menu,	click	Full-Text	Indexing.

4.	 Complete	the	Full-Text	Indexing	Wizard.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	enable	a	table	for	full-text	indexing	(Enterprise	Manager)
To	enable	a	table	for	full-text	indexing

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	belongs,
and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table,	click	Full-Text	Index	Table,
and	then	click	Define	Full-Text	Indexing	on	a	Table.

4.	 Complete	the	Full-Text	Indexing	Wizard.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	enable	a	column	for	full-text	indexing	(Enterprise
Manager)
To	enable	a	column	for	full-text	indexing

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	belongs,
and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table,	click	Full-Text	Index	Table,
and	then	click	Define	Full-Text	Indexing	on	a	Table.

4.	 Complete	the	Full-Text	Indexing	Wizard	to	enable	specific	columns.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	edit	a	full-text	index	on	a	table	(Enterprise	Manager)
To	edit	a	full-text	index	on	a	table

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	belongs,
and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table,	click	Full-Text	Index	Table,
and	then	click	Edit	Full-Text	Indexing.

4.	 Make	the	changes	in	the	Full-Text	Indexing	Wizard.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	remove	full-text	indexing	on	a	table	(Enterprise	Manager)
To	remove	a	full-text	index	on	a	table

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	belongs,
and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table,	click	Full-Text	Index	Table,
and	then	click	Remove	Full-Text	Indexing.

4.	 Click	Yes	to	confirm	the	removal	of	the	full-text	index	from	the	table.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	full-text	catalog	(Enterprise	Manager)
To	create	a	full-text	catalog

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	right-click	the	database	where	you	want
the	full-text	catalog.

3.	 Click	New,	and	then	click	New	Full-Text	Catalog.

4.	 Complete	the	New	Full-Text	Catalog	dialog	box.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	rebuild	a	full-text	catalog	(Enterprise	Manager)
To	rebuild	a	full-text	catalog

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	that	contains	the	full-
text	catalog	to	rebuild.

3.	 Click	Full-Text	Catalogs,	and	then	right-click	the	specific	catalog	to
rebuild.

4.	 Select	Rebuild	Catalog.

5.	 Click	Yes	to	rebuild	the	catalog.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	rebuild	all	full-text	catalogs	in	a	database	(Enterprise
Manager)
To	rebuild	all	full-text	catalogs

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	that	contains	the
catalogs	to	rebuild.	

3.	 Right-click	Full-Text	Catalogs,	and	then	click	Rebuild	All	Catalogs.

4.	 Click	Yes	to	rebuild	all	the	catalogs.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	start	and	stop	a	full	or	incremental	population	of	a	full-
text	index	(Enterprise	Manager)
To	start	and	stop	the	production	of	a	full-text	index

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	that	contains	the	full-
text	catalog	to	rebuild.	

3.	 Click	Full-Text	Catalogs,	and	then	right-click	the	specific	catalog	to
populate.

4.	 Click	Start	Full	Population	or	Start	Incremental	Population.	Or
click	Stop	Population,	as	appropriate.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	check	the	status,	tables,	and	schedules	of	a	full-text
catalog	(Enterprise	Manager)
To	check	the	status,	tables,	and	schedules	of	a	full-text	catalog

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	that	contains	the	full-
text	catalog	to	review.

3.	 Click	Full-Text	Catalogs,	and	then	right-click	the	specific	catalog	to
review.

4.	 Click	Properties,	and	then	click	the	Status,	Tables,	and	Schedules
tabs,	as	appropriate.

See	Also

Full-Text	Indexes

sp_fulltext_catalog

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	change	or	create	a	new	schedule	for	a	full-text	catalog
(Enterprise	Manager)
To	change	or	create	a	new	schedule	for	a	full-text	catalog

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	that	contains	the	full-
text	catalog	to	review.

3.	 Click	Full-Text	Catalogs,	and	then	right-click	the	specific	catalog	to
review.

4.	 Click	Schedules	and	make	changes	or	establish	a	new	schedule.

See	Also

Full-Text	Indexes

sp_add_job

sp_add_jobschedule

sp_add_jobserver

sp_fulltext_catalog

sp_delete_job

sp_update_job

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

How	To

How	to	remove	a	full-text	catalog	from	a	database	(Enterprise
Manager)
To	remove	a	full-text	catalog

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	that	contains	the	full-
text	catalog	to	rebuild.	

3.	 Click	Full-Text	Catalogs,	and	then	right-click	the	specific	catalog	you
want	to	remove,	and	click	Delete.

4.	 Click	Yes	to	remove	the	catalog.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	remove	all	full-text	catalogs	in	a	database	(Enterprise
Manager)
To	remove	all	full-text	catalogs	in	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	that	contains	the
catalogs	to	remove.	

3.	 Right-click	Full-Text	Catalogs,	and	then	click	Remove	All	Catalogs.

4.	 Click	Yes	to	confirm	the	removal	of	the	catalogs.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	repopulate	all	full-text	catalogs	for	a	database	(Enterprise
Manager)
To	repopulate	all	full-text	catalogs	in	a	database

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	database	that	contains	the
catalogs	to	repopulate.	

3.	 Right-click	Full-Text	Catalogs,	and	then	click	Repopulate	All
Catalogs.

4.	 Click	Yes	to	repopulate	all	the	catalogs.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	clean	up	the	full-text	catalogs	on	a	server	(Enterprise
Manager)
To	clean	up	the	full-text	catalogs	on	a	server

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Support	Services,		right-click	Full-Text	Search,	and	then	click
Clean	Up	Catalogs.

3.	 Click	Yes	to	clean	up	all	full-text	catalogs	on	the	server.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

How	to	start	and	stop	the	Microsoft	Search	Service	for	full-text
support	(Enterprise	Manager)
If	necessary,	the	full-text	service	can	be	started	(and	stopped)	in	one	of	these
ways:

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Support	Services,	right-click	Full-Text	Search,	and	then	click
Start	(or	Stop).

3.	 You	can	also	start	and	stop	the	service	by:

Selecting	the	Microsoft	Search	Service	in	SQL	Server	Service
Manager	and	clicking	start	or	stop.

Typing	net	start	mssearch	(or	net	stop	mssearch)	from	a
command	prompt.

See	Also

Full-Text	Indexes

JavaScript:hhobj_1.Click()

How	To

Accessing	and	Changing	Data
SQL	Server	Enterprise	Manager	includes	a	tool	for	designing	queries
interactively	using	a	graphical	user	interface.	These	queries	are	used:

In	views.

In	Data	Transformation	Services	(DTS)	Packages.

To	display	the	data	in	Microsoft®	SQL	Server™	tables.

How	To

How	to	access	the	Query	Designer	in	Data	Transformation
Services	(Enterprise	Manager)
To	access	the	Query	Designer	in	Data	Transformation	Services

1.	 Right-click	an	Execute	SQL	Task	object,	and	then	click	Properties.

2.	 In	the	Execute	SQL	Properties	window,	click	Build	Query.

The	Query	Designer	will	open	with	the	diagram	and	SQL	panes	visible.	To	open
panes,	see	Query	and	View	Designer	Layout.

Note		There	must	be	a	valid	data	source	connection	in	the	package	to	build	a
query.	If	there	is	not,	a	connection	must	be	created	before	trying	to	access	the
Query	Designer.

JavaScript:hhobj_1.Click()

How	To

Optimizing	Database	Performance
The	goal	of	optimizing	database	performance	is	to	minimize	the	response	time
for	each	query	and	to	maximize	the	throughput	of	the	entire	database	server	by
minimizing	network	traffic,	disk	I/O,	and	CPU	time.	Understanding	how	to
design	the	logical	and	physical	structure	of	the	data,	tune	queries,	and	configure
Microsoft®	SQL	Server™	2000	and	the	operating	system	can	help	optimize
database	performance.

How	To

Database	Design
There	are	two	components	to	designing	a	database:	logical	and	physical.	It	is
important	to	understand	how	to	design	the	database	to	model	your	business
requirements	correctly	and	to	take	advantage	of	hardware	and	software	features
early	on	in	the	development	of	a	database	application.	It	is	difficult	to	make
changes	to	these	components	later	in	the	development	cycle.

How	To

How	to	place	an	existing	table	on	a	different	filegroup	(Enterprise
Manager)
To	place	an	existing	table	on	a	different	filegroup

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	belongs,
and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table,	and	then	click	Design	Table.

4.	 Right-click	any	column,	and	then	click	Properties.

5.	 On	the	Tables	tab,	in	the	Table	Filegroup	list,	select	the	filegroup	on
which	to	place	the	table.

6.	 Optionally,	in	the	Text	Filegroup	list,	select	a	filegroup	on	which	to
place	any	text,	image,	and	ntext	columns.

See	Also

Placing	Tables	on	Filegroups

JavaScript:hhobj_1.Click()

How	To

How	to	place	an	existing	index	on	a	different	filegroup	(Enterprise
Manager)
To	place	an	existing	index	on	a	different	filegroup

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	expand	the	database	in	which	the	table	containing
the	index	belongs,	and	then	click	Tables.

3.	 In	the	details	pane,	right-click	the	table,	and	then	click	Design	Table.

4.	 Right-click	any	column,	and	then	click	Properties.

5.	 On	the	Indexes/Keys	tab,	in	the	Selected	index	list,	select	the	index	to
move.

6.	 In	the	Index	Filegroup	list,	select	a	filegroup	on	which	to	place	the
index.

See	Also

Placing	Indexes	on	Filegroups

JavaScript:hhobj_1.Click()

How	To

Query	Tuning
Query	tuning	involves	monitoring	and	determining	if	and	why	a	query	is	not
performing	as	optimally	as	possible,	and	then	taking	steps	to	resolve	any
problems.	Understanding	how	to	create	and	update	column	statistics	and	indexes
can	significantly	improve	query	performance.

How	To

How	to	create	statistics	(Query	Analyzer)
To	create	statistics

1.	 On	the	Query	menu,	click	Show	Execution	Plan.

2.	 Execute	the	Transact-SQL	script	in	the	query	pane.

3.	 In	the	result	pane,	click	the	Execution	Plan	tab.

4.	 Right-click	the	icon	of	the	physical	operator	that	suggests	that	statistics
need	to	be	created	(table	name	in	red),	and	then	click	Create	Missing
Statistics.	The	database,	table,	and	column(s)	that	the	Graphical
Execution	Plan	suggests	need	new	statistics	are	automatically	selected.

5.	 Optionally,	in	Statistics	name,	enter	the	name	for	the	statistics.

6.	 Optionally,	in	Amount	of	data	to	sample,	select:

Default	to	let	Microsoft®	SQL	Server™	determine	the
number	of	rows	to	sample	automatically.

Sample	all	the	data	to	instruct	SQL	Server	to	sample	all	of
the	data	in	the	table.

Sample	%	of	the	data	and	enter	a	percentage	of	data	to
sample	to	base	the	statistics	on.

7.	 Optionally,	select	Do	not	automatically	recompute	statistics	(not
recommended)	to	prevent	SQL	Server	from	updating	statistics
automatically	as	the	data	is	updated.

8.	 Optionally,	click	Edit	SQL	to	view	and	edit	the	Transact-SQL
statement	used	to	create	or	update	the	statistics.

See	Also

Graphically	Displaying	the	Execution	Plan	Using	SQL	Query	Analyzer

Statistical	Information

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	update	statistics	(Query	Analyzer)
To	update	statistics

1.	 On	the	Query	menu,	click	Show	Execution	Plan.

2.	 Execute	the	Transact-SQL	script	in	the	query	pane.

3.	 In	the	result	pane,	click	the	Execution	Plan	tab.

4.	 Right-click	the	icon	of	the	physical	operator	that	suggests	that	statistics
need	to	be	updated,	and	then	click	Manage	Statistics.	The	Graphical
Execution	Plan	automatically	selects	the	appropriate	database	and
table.

5.	 Optionally,	in	Database	and	Table,	click	the	name	of	a	different
database	and	table	on	which	to	update	the	statistics.

6.	 Click	Update.

7.	 In	Name,	select	the	statistics	to	be	updated.

8.	 Optionally,	in	Amount	of	data	to	sample,	select:

Default	to	let	Microsoft®	SQL	Server™	determine	the
number	of	rows	to	sample	automatically.

Sample	all	the	data	to	instruct	SQL	Server	to	sample	all	of
the	data	in	the	table.

Sample	%	of	the	data	and	enter	a	percentage	of	data	to

sample	to	base	the	statistics	on.

Sample	rows	and	enter	the	number	of	rows	to	sample	to	base
the	statistics	on.

9.	 Optionally,	in	Update	statistics	options,	select:

Include	columns	to	update	statistics	on	columns	as	well	as
indexes.

Do	not	automatically	recompute	statistics	(not
recommended)	to	prevent	SQL	Server	from	updating
statistics	automatically	as	the	data	is	updated.

10.	 Optionally,	click	Edit	SQL	to	view	and	edit	the	Transact-SQL
statement	used	to	create	or	update	the	statistics.

See	Also

Graphically	Displaying	the	Execution	Plan	Using	SQL	Query	Analyzer

Statistical	Information

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	delete	statistics	(Query	Analyzer)
To	delete	statistics

1.	 On	the	Query	menu,	click	Show	Execution	Plan.

2.	 Execute	the	Transact-SQL	script	in	the	query	pane.

3.	 In	the	result	pane,	click	the	Execution	Plan	tab.

4.	 Right-click	the	icon	of	the	physical	operator	that	represents	the	table
containing	the	statistics	that	need	to	be	deleted,	and	then	click	Manage
Statistics.

5.	 Optionally,	in	Database	and	Table,	click	the	name	of	a	different
database	and	table	on	which	to	delete	the	statistics.

6.	 In	Existing	statistics,	click	the	name	of	the	statistic	to	delete,	and	then
click	Delete.

7.	 Confirm	the	deletion.

See	Also

Graphically	Displaying	the	Execution	Plan	Using	SQL	Query	Analyzer

Statistical	Information

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	create	a	new	index	(Query	Analyzer)
To	create	a	new	index

1.	 On	the	Query	menu,	click	Show	Execution	Plan.

2.	 Execute	the	Transact-SQL	script	in	the	query	pane.

3.	 In	the	result	pane,	click	the	Execution	Plan	tab.

4.	 Right-click	the	icon	of	the	physical	operator	that	suggests	that	an	index
needs	to	be	created,	and	then	click	Manage	Indexes.	The	Graphical
Execution	Plan	automatically	selects	the	appropriate	database	and
table.	Click	New.

5.	 In	Index	name,	enter	the	name	for	the	index.

6.	 In	Column,	select	the	column	to	appear	in	the	index.	Composite
indexes	can	be	created	by	selecting	more	than	one	column.

7.	 Optionally,	select	a	column,	and	then	click	either	Move	Up	or	Move
Down	to	change	the	order	of	the	columns	in	the	index.

8.	 Optionally,	in	Index	options,	select:

Unique	values	to	create	a	unique	index.

Clustered	index	to	create	a	clustered	index.	If	a	clustered
index	already	exists,	this	option	is	not	available.

Ignore	duplicate	values	to	control	what	happens	when	an

INSERT	statement	inserts	multiple,	nonunique	key	values	into
an	index.	For	more	information,	see	CREATE	INDEX.

Do	not	recompute	statistics	(not	recommended)	to	specify
that	index	statistics	are	not	automatically	recomputed	as	the
index	is	updated.

Filegroup	to	specify	the	filegroup	on	which	to	create	the
index.	Click	the	name	of	the	filegroup.

Pad	index	to	leave	space	open	on	each	interior	node	of	the
index.	For	more	information,	see	CREATE	INDEX.

Drop	existing	to	delete	any	existing	index	of	the	same	name
before	creating	the	new	index.

Fill	factor	to	specify	how	full	SQL	Server	should	make	the
leaf	level	of	each	index	page	during	index	creation.	For	more
information,	see	CREATE	INDEX.

9.	 Optionally,	click	Edit	SQL	to	view	and	edit	the	Transact-SQL
statement	used	to	create	the	index.

See	Also

Graphically	Displaying	the	Execution	Plan	Using	SQL	Query	Analyzer

Placing	Indexes	on	Filegroups

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	modify	an	index	(Query	Analyzer)
To	modify	an	index

1.	 On	the	Query	menu,	click	Show	Execution	Plan.

2.	 Execute	the	Transact-SQL	script	in	the	query	pane.

3.	 In	the	result	pane,	click	the	Execution	Plan	tab.

4.	 Right-click	the	icon	of	the	physical	operator	that	suggests	that	an	index
needs	to	be	modified,	and	then	click	Manage	Indexes.	The	database
and	table	that	the	Graphical	Execution	Plan	suggests	need	an	index
modified	are	automatically	selected.

5.	 Optionally,	in	Database	and	Table,	select	the	name	of	a	different
database	and	table.

6.	 In	Existing	indexes,	click	the	name	of	the	index	to	modify,	and	then
click	Edit.

7.	 In	Column,	select	the	column	you	want	to	appear	in	the	index.
Composite	indexes	can	be	created	by	selecting	more	than	one	column.

8.	 Optionally,	select	a	column,	and	then	click	either	Move	Up	or	Move
Down	to	change	the	order	of	the	columns	in	the	index.

9.	 Optionally,	in	Index	options,	select:

Unique	values	to	create	a	unique	index.

Clustered	index	to	create	a	clustered	index.	If	a	clustered
index	already	exists,	this	option	is	not	available.

Ignore	duplicate	values	to	control	what	happens	when	an
INSERT	statement	inserts	multiple,	nonunique	key	values	into
an	index.	For	more	information,	see	CREATE	INDEX.

Do	not	recompute	statistics	(not	recommended)	to	specify
that	index	statistics	are	not	automatically	recomputed	as	the
index	is	updated.

Filegroup	to	specify	the	filegroup	on	which	to	create	the
index.	Click	the	name	of	the	filegroup.

Pad	index	to	leave	space	open	on	each	interior	node	of	the
index.	For	more	information,	see	CREATE	INDEX.

Drop	existing	to	delete	any	existing	index	of	the	same	name
before	creating	the	new	index.

Fill	factor	to	specify	how	full	SQL	Server	should	make	the
leaf	level	of	each	index	page	during	index	creation.	For	more
information,	see	CREATE	INDEX.

10.	 Optionally,	click	Edit	SQL	to	view	and	edit	the	Transact-SQL
statement	used	to	create	the	index.

See	Also

Graphically	Displaying	the	Execution	Plan	Using	SQL	Query	Analyzer

Placing	Indexes	on	Filegroups

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	delete	an	index	(Query	Analyzer)
To	delete	an	index

1.	 On	the	Query	menu,	click	Show	Execution	Plan.

2.	 Execute	the	Transact-SQL	script	in	the	query	pane.

3.	 In	the	result	pane,	click	the	Execution	Plan	tab.

4.	 Right-click	the	icon	of	the	physical	operator	that	represents	the	table
containing	the	index	that	needs	to	be	deleted,	and	then	click	Manage
Indexes.

5.	 Optionally,	in	Database	and	Table,	select	the	name	of	a	different
database	and	table.

6.	 In	Existing	indexes,	click	the	name	of	the	index	to	delete,	and	then
click	Delete.

7.	 Confirm	the	deletion.

See	Also

Graphically	Displaying	the	Execution	Plan	Using	SQL	Query	Analyzer

JavaScript:hhobj_1.Click()

How	To

Replication
Microsoft®	SQL	Server™	2000	replication	is	the	process	of	copying	and
distributing	data	and	database	objects	from	one	database	to	another	and	then
synchronizing	between	databases	for	consistency.

Using	replication,	you	can	distribute	data	to	different	locations,	to	remote	or
mobile	users	over	a	local	area	network,	using	a	dial-up	connection,	and	over	the
Internet.	Replication	also	allows	you	to	enhance	application	performance,
physically	separate	data	based	on	how	it	is	used	(for	example,	to	separate	online
transaction	processing	(OLTP)	and	decision	support	systems),	or	distribute
database	processing	across	multiple	servers.

How	To

Replication	Types	(Enterprise	Manager)
Microsoft®	SQL	Server™	2000	provides	the	following	types	of	replication	that
you	can	use	in	your	distributed	applications:

Snapshot	replication

Transactional	replication

Merge	replication

Each	type	provides	different	capabilities	depending	on	your	application	and
different	levels	of	ACID	properties	of	transactions	and	site	autonomy.	For
example,	merge	replication	allows	users	to	work	and	update	data	autonomously,
although	ACID	properties	are	not	assured.	Instead,	when	servers	are
reconnected,	all	sites	in	the	replication	topology	converge	to	the	same	data
values.	Transactional	replication	maintains	transactional	consistency,	but
Subscriber	sites	are	not	as	autonomous	as	they	are	in	merge	replication	because
Publishers	and	Subscribers	generally	must	be	connected	reliably	and
continuously	for	updates	to	be	propagated	to	Subscribers.

It	is	common	for	the	same	application	to	use	multiple	replication	types	and
options.	Some	of	the	data	in	the	application	may	not	require	any	updates	at
Subscribers,	some	sets	of	data	may	require	updates	infrequently,	with	updates
made	at	only	one	or	a	few	servers,	while	other	sets	of	data	may	need	to	be
updated	daily	at	multiple	servers.

Which	type	of	replication	you	choose	for	your	application	depends	on	your
requirements	based	on	distributed	data	factors,	whether	or	not	data	will	need	to
be	updated	at	the	Subscriber,	your	replication	environment,	and	the	needs	and
requirements	of	the	data	that	will	be	replicated.	For	more	information,	see
Planning	for	Replication.

Each	type	of	replication	begins	with	generating	and	applying	the	snapshot	at	the
Subscriber,	so	it	is	important	to	understand	snapshot	replication	in	addition	to
any	other	type	of	replication	and	options	you	choose.

JavaScript:hhobj_1.Click()

How	To

How	to	enable	activation	of	the	Interactive	Resolver	(Enterprise
Manager)

1.	 In	SQL	Server	Enterprise	Manager,	in	the	Create	Publication	Wizard,
on	the	Specify	Articles	page,	click	the	table	you	want	to	publish,	and
then	click	its	properties	(...)	button.

2.	 On	the	Resolver	tab,	click	Allow	Subscribers	to	resolve	conflicts
interactively	during	on-demand	synchronizations.

3.	 In	SQL	Server	Enterprise	Manager,	when	creating	a	subscription	in	the
Pull	Subscription	Wizard,	select	the	option	allowing	the	subscriber	to
resolve	conflicts	interactively	during	on-demand	synchronizations.

Alternatively,	you	can	set	this	option	after	you	have	created	a	pull
subscription,	on	the	Synchronization	tab	of	the	Properties	dialog	box
for	the	subscription.

How	To

To	activate	the	Interactive	Resolver	during	a	merge
synchronization	(Windows	Synchronization	Manager)

1.	 On	the	Windows	Start	menu,	point	to	Programs,	point	to
Accessories,	and	then	click	Synchronize.

2.	 In	the	Items	to	Synchronize	dialog	box,	click	the	subscription	you
want	to	synchronize,	click	Properties,	and	then	click	the	Other	tab.

3.	 Under	Conflict	resolution	mode,	click	Interactively	resolve
conflicts,	and	then	click	OK.

4.	 Repeat	Steps	1	through	3	for	each	subscription	you	will	be
synchronizing	and	using	the	Interactive	Resolver.

5.	 Click	Synchronize.

How	To

How	to	set	row-	or	column-level	tracking	for	an	article
(Enterprise	Manager)

1.	 In	the	Create	Publication	Wizard,	on	the	Specify	Articles	page,	click
the	Table	you	plan	to	use	as	an	article	in	your	merge	publication.

2.	 Click	the	properties	(...)	button	for	the	selected	table.

3.	 On	the	Properties	page	for	the	article,	on	the	General	tab,	under	When
merging	changes	from	different	sources,	click	Treat	changes	to	the
same	row	as	a	conflict	for	row-level	tracking,	or	click	Treat	changes
to	the	same	column	as	a	conflict	(changes	to	different	columns	in
the	same	row	will	be	merged)	for	column-level	tracking.

How	To

How	to	choose	a	resolver	(Enterprise	Manager)
1.	 In	the	Create	Publication	Wizard,	on	the	Specify	Articles	page,	click

the	Table	you	plan	to	use	as	an	article	in	your	merge	publication	(if	it
is	not	already	configured	as	an	active	article).

2.	 Click	the	properties	(...)	button	for	the	selected	table.

3.	 On	the	Properties	page	for	the	article,	on	the	Resolver	tab,	click	Use
the	default	resolver	to	enable	the	default	resolver	for	the	article.

4.	 If	you	want	to	use	a	custom	resolver	with	the	article,	click	Use	this
custom	resolver,	and	then	in	the	list,	click	the	desired	resolver.	If	you
want	to	use	a	custom	stored	procedure	resolver,	click	Microsoft	SQL
Server	Stored	Procedure	Resolver.

5.	 If	you	will	be	using	a	custom	stored	procedure	resolver,	press	the	TAB
key	to	get	to	the	Information	for	the	custom	resolver	box,	and	then
type	the	name	of	the	stored	procedure.	If	you	are	using	a	COM	custom
resolver,	use	the	information	box	only	if	you	need	to	enter	any
additional	information	required	by	the	custom	resolver	(such	as	an
input	parameter).

How	To

Replication	Tools	(Enterprise	Manager)
Microsoft®	SQL	Server™	2000	provides	several	methods	for	implementing	and
administering	replication,	including	SQL	Server	Enterprise	Manager,
programming	interfaces,	and	other	Microsoft	Windows®	components.

SQL	Server	Enterprise	Manager	includes	a	graphical	organization	of	replication
objects,	several	wizards,	and	dialog	boxes	you	can	use	to	simplify	configuration
and	administration	of	replication.	SQL	Server	Enterprise	Manager	allows	you	to
view	and	modify	the	properties	of	replication	configuration	and	monitor	and
troubleshoot	replication	activity.

You	can	also	implement,	monitor	and	maintain	replication	using	programming
interfaces	such	as	Microsoft	ActiveX®	controls	for	replication,	SQL-DMO,	and
scripting	of	Transact-SQL	system	stored	procedures.

Components	such	as	Windows	Synchronization	Manager	and	Microsoft
Windows	2000	Active	Directory™	Services	enable	you	to	synchronize	data,
subscribe	to	publications,	and	organize	and	access	replication	objects	from
within	Windows	applications.

How	To

How	to	open	Publisher	and	Distributor	properties	(Enterprise
Manager)

1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	folder,	and
then	right-click	the	Publications	folder.	

2.	 Click	Configure	Publishing,	Subscribers,	and	Distribution.

The	Publisher	and	Distributor	properties	dialog	box	is	titled	with	Publisher	and
Distributor	Properties	and	the	name	of	the	Distributor.

How	To

How	to	open	publication	properties	(Enterprise	Manager)
1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	folder,	and

then	expand	the	Publications	folder.

2.	 Right-click	a	publication,	and	then	click	Properties.

If	the	publication	has	subscriptions,	you	will	not	be	able	to	modify	some
properties,	and	a	dialog	box	will	notify	you	of	this.	Publication	properties	is
titled	with	Publication	Properties	and	the	name	of	the	publication.

How	To

How	to	open	push	subscription	properties	(Enterprise	Manager)
1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	folder,	and

then	expand	the	Publications	folder.

2.	 Click	a	publication,	right-click	a	push	subscription,	and	then	click
Properties.

How	To

How	to	open	pull	subscription	properties	(Enterprise	Manager)
1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	folder,	and

then	click	the	Subscriptions	folder.

2.	 Right-click	a	pull	subscription,	and	then	click	Properties.

How	To

How	to	open	agent	properties	(Enterprise	Manager)
1.	 In	SQL	Server	Enterprise	Manager,	expand	Replication	Monitor,	and

then	expand	the	Agents	folder.

2.	 Click	the	folder	for	the	agent	you	want	to	see	(for	example,	Snapshot
Agents),	right-click	an	agent,	and	then	click	Agent	Properties.

The	agent	properties	dialog	box	will	be	titled	with	the	name	of	the
Distributor,	the	published	database,	the	publication,	and	job	number.

How	To

How	to	open	Windows	Synchronization	Manager
Note		Windows	Synchronization	Manager	is	installed	automatically	with
Microsoft®	Windows®	2000	and	anywhere	Microsoft	Internet	Explorer	5.0	or
later	is	installed.

On	the	Windows	Start	menu,	click	Programs,	click	Accessories,	and
then	click	Synchronize.

How	To

Implementing	Replication	(Enterprise	Manager)
Whether	you	are	using	snapshot	replication,	transactional	replication,	or	merge
replication,	the	following	stages	will	help	you	implement	replication.

Stage Tasks
Configuring	Replication Identify	the	Publisher,	Distributor,	and

Subscribers	in	your	topology.	Use	SQL	Server
Enterprise	Manager,	SQL-DMO,	scripts,	or
Transact-SQL	system	stored	procedures	to
configure	the	Publisher,	create	a	distribution
database,	and	enable	Subscribers.

Publishing	Data	and
Database	Objects

Create	the	publication	and	define	the	data	and
database	object	articles	in	the	publication,	and
apply	any	necessary	filters	to	data	that	will	be
published.

Subscribing	to
Publications

Create	push,	pull,	or	anonymous	subscriptions
to	indicate	what	publications	need	to	be
propagated	to	individual	Subscribers	and	when.

Applying	the	Initial
Snapshot

Indicate	where	to	save	snapshot	files,	whether
they	are	compressed,	and	scripts	to	run	before
or	after	applying	the	initial	snapshot.

Specify	to	have	the	Snapshot	Agent	apply	the
snapshot	at	the	Subscriber	immediately	after
creating	a	subscription	or	at	a	specified	time.

Apply	the	snapshot	manually	by	saving	it	to	a
network	location	or	to	removable	media	that
can	be	transported	to	the	Subscriber,	and	then
applying	the	Snapshot	files	manually	at	the
Subscriber.

Synchronizing	Data Synchronizing	data	occurs	when	the	Snapshot,
Log	Reader,	or	Merge	Agent	runs	and	updates
are	propagated	between	Publisher	and
Subscribers.

For	snapshot	replication,	the	snapshot	will	be
reapplied	at	the	Subscriber.

For	transactional	replication,	updates	will	be
propagated	to	Subscribers.

If	using	updatable	subscriptions	with	either
snapshot	replication	or	transactional	replication,
data	will	be	propagated	from	the	Subscriber	to
the	Publisher	and	to	other	Subscribers.

For	merge	replication,	data	is	synchronized
during	the	merge	process	when	data	changes	at
all	servers	are	converged	and	conflicts,	if	any,
are	detected	and	resolved.

How	To

How	to	configure	publishing	and	distribution	(Enterprise
Manager)

1.	 In	SQL	Server	Enterprise	Manager,	expand	a	SQL	Server	group,
expand	a	server,	right-click	the	Replication	folder,	and	then	click
Configure	Publishing,	Subscribers,	and	Distribution.

2.	 Follow	the	wizard	pages	to	select	a	Distributor,	create	the	distribution
database,	and	then	on	the	Customize	the	Configuration	page,	either
accept	Publisher	and	Subscriber	defaults,	or	select	Yes,	let	me	set	the
distribution	database	properties,	enable	Publishers	or	set	the
publishing	settings.

This	allows	you	to	set	distribution	database	properties,	enable
Publishers,	enable	publication	databases,	and	enable	Subscribers	using
the	wizard.	You	can	also	configure	these	properties	later	in	the
Publisher	and	Distributor	properties.

How	To

How	to	modify	Publisher	and	Distributor	properties	(Enterprise
Manager)
To	add,	modify,	or	remove	a	Publisher

1.	 In	SQL	Server	Enterprise	Manager,	expand	a	server	group,	expand	the
Distributor,	right-click	the	Replication	folder,	and	then	click
Configure	Publishing,	Subscribers,	and	Distribution.

2.	 Select	what	you	want	to	do	with	the	Publisher.

To	add	a	Publisher,	click	the	Publishers	tab,	and	then	select	a
Publisher	to	enable.

To	modify	a	Publisher,	click	the	Publishers	tab,	click	the
Publisher	to	modify,	and	then	click	the	properties	button	(...).

To	remove	a	Publisher,	click	the	Publishers	tab,	and	then
clear	the	box	next	to	the	Publisher	name.

Note		If	the	Publisher	does	not	have	items	in	the	distribution	database,
a	confirmation	prompt	will	not	appear.

To	modify	a	Distributor	or	add	or	modify	a	distribution	database

1.	 In	SQL	Server	Enterprise	Manager,	expand	a	server	group,	expand	the
Distributor,	right-click	the	Replication	folder,	and	then	click
Configure	Publishing,	Subscribers,	and	Distribution.

2.	 Select	what	you	want	to	do	with	the	Distributor.

To	modify	Distributor	properties,	click	the	Distribution	tab	to
change	the	password	for	connecting	to	the	Distributor	or	set
agent	profiles.

To	add	a	distribution	database,	click	the	Distributor	tab,	click
New,	and	then	enter	a	database	name	and	the	location	for	the
database	and	log	files.

To	modify	the	distribution	database,	click	the	Properties
button	for	the	distribution	database	to	change	the	transaction
retention	period	or	the	history	retention	period.

How	To

How	to	add,	modify,	or	disable	a	Subscriber	(Enterprise
Manager)
To	enable	or	disable	a	Subscriber

1.	 In	SQL	Server	Enterprise	Manager,	expand	a	server	group,	expand	the
Distributor,	right-click	the	Replication	folder,	and	then	click
Configure	Publishing,	Subscribers,	and	Distribution.

2.	 Select	what	you	want	to	do	with	the	Subscriber.

To	enable	a	Subscriber,	click	the	Subscribers	tab,	and	then	if
the	Subscriber	is	listed,	select	the	Subscriber.

To	enable	a	Subscriber	if	it	is	not	listed,	on	the	Subscriber
tab,	click	New	Subscriber,	click	the	type	of	Subscriber	to
register,	and	then	enter	the	server,	ODBC	data	source,	or	OLE
DB	data	source,	and	connection	information.

To	disable	a	Subscriber,	click	the	Subscribers	tab,	and	then
clear	the	box	next	to	the	Subscriber.

To	modify	a	Subscriber

1.	 In	SQL	Server	Enterprise	Manager,	expand	a	server	group,	expand	the
Distributor,	right-click	the	Replication	folder,	and	then	click
Configure	Publishing,	Subscribers,	and	Distribution.

2.	 Click	the	Subscribers	tab,	click	the	Subscriber	to	modify,	and	then
click	the	properties	button	(...).

3.	 On	the	General	tab,	change	the	Subscriber	description	or	the	security
mode.

4.	 Click	the	Schedules	tab	to	modify	default	scheduling	options.

How	To

How	to	disable	publishing	and	distribution	(Enterprise	Manager)
To	disable	a	Distributor

1.	 In	SQL	Server	Enterprise	Manager,	expand	a	server	group,	expand	the
Distributor,	right-click	the	Replication	folder,	and	then	click	Disable
Publishing.

2.	 Complete	the	steps	in	the	wizard.

To	delete	a	distribution	database

1.	 In	SQL	Server	Enterprise	Manager,	expand	a	server	group,	expand	the
Distributor,	right-click	the	Replication	folder,	and	then	click
Configure	Publishing	and	Distribution.

2.	 Click	the	Distributor	tab,	select	the	database	to	delete,	and	then	click
Delete.

How	To

How	to	create	publications	and	define	articles	(Enterprise
Manager)
To	create	publications

1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	right-click	the
Publications	folder,	and	then	click	New	Publication.

2.	 On	the	Welcome	to	the	Create	Publication	Wizard	page,	select	Show
advanced	options	in	this	wizard	to	enable	updatable	subscriptions	or
transformable	subscriptions	(options	available	with	snapshot
replication	or	transactional	replication).

3.	 The	wizard	guides	you	through:

Choosing	a	publication	database.

Using	a	publication	template.

Selecting	the	type	of	publication.

Selecting	updatable	subscriptions	or	transformable
subscriptions	(snapshot	replication	or	transactional
replication).

Specifying	Subscriber	types.

Specifying	data	and	database	object	articles	to	publish.

Selecting	a	publication	name	and	description.	Publication

names	cannot	contain	these	characters:	/	\	<	>.

Customizing	the	properties	of	the	publication	including
filtering	columns,	filtering	rows,	enabling	dynamic	filters,
validating	subscription	information,	optimizing
synchronization,	allowing	anonymous	subscriptions,	and
setting	the	snapshot	agent	schedule.

How	To

How	to	modify	publications	and	articles	(Enterprise	Manager)
Note		If	subscriptions	have	been	created	to	the	publication,	some	properties	are
disabled	and	cannot	be	changed.

To	view	or	modify	publication	properties

1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	expand	the	Publications
folder,	right-click	a	publication	and	choose	Properties.

2.	 In	the	Publication	Properties	dialog	box,	click	the	General	tab	to
view	the	publication	name,	database	name,	and	type	of	publication.

3.	 You	can	also	view	or	modify	the	publication	description,	the	initial
snapshot	file	format,	or	the	synchronization	time	limit.

4.	 Select	what	you	want	to	do	on	the	General	tab.

To	add,	remove,	or	change	the	properties	of	an	article,	click
the	Articles	tab.	To	view	or	change	the	schema	objects	that
are	being	published,	click	the	properties	button	(...)	for	an
article	and	click	the	Snapshot	tab

To	filter	the	columns	in	published	tables,	click	Filter
Columns.

To	filter	the	rows	in	published	tables,	click	Filter	Rows.

To	push,	delete,	reinitialize,	or	view	the	properties	of
subscriptions,	click	the	Subscriptions	tab.

For	snapshot	or	transactional	publications,	click	Subscription

Options	to	allow	pull	subscriptions,	allow	anonymous
subscriptions,	allow	new	subscriptions	to	be	created	by
attaching	a	subscription	database,	and	view	whether	the
publication	allows	transformations	on	published	data,
immediate	updating,	or	queued	updating.

For	merge	publications,	click	Subscription	Options	to	allow
pull	subscriptions,	allow	anonymous	subscriptions,	allow	new
subscriptions	to	be	created	by	attaching	a	subscription
database,	view	if	data	conflicts	are	stored	centrally	at	the
Publisher,	view	if	dynamic	filtering	is	used,	and	if	so	if
Subscriber	information	is	validated,	and	view	if
synchronization	is	being	optimized.

For	snapshot	and	transactional	publications,	click	the
Updatable	tab	to	see	if	immediate	updating	or	queued
updating	subscriptions	are	allowed,	to	enable	conflicts	to	be
reported	centrally	at	the	Publisher,	to	specify	the	conflict
resolution	policy,	and	if	queued	updating	is	allowed,	to
specify	where	to	queue	changes	at	the	Subscriber.

To	modify	snapshot	format	(SQL	Server	or	character	mode),
specify	scripts	to	run	before	and	after	the	snapshot	is	applied,
and	for	transactional	replication	to	enable	concurrent	snapshot
processing,	click	the	Snapshot	tab.

To	specify	an	alternate	location	to	save	the	snapshot,
compress	the	snapshot	files,	and	specify	File	Transfer
Protocol	(FTP)	information	if	the	Subscriber	will	access	the
snapshot	folder	using	FTP,	click	the	Snapshot	Location	tab.

To	specify	the	logins	that	have	access	to	the	publication,	click
Publication	Access	List.

To	view	the	status	of	the	Snapshot	Agent,	run	the	Agent,	view
Agent	properties,	or	start	the	services	required	by	the
publication,	click	the	Status	tab.

For	merge	publications,	click	the	Sync	Partners	tab	to	enable
Subscribers	to	synchronize	with	servers	other	than	the	original
Publisher,	and	then	select	the	servers	that	may	serve	as
alternate	partners	for	this	publication.

To	grant	or	revoke	access	to	a	publication

1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	expand	the	Publications
folder,	right-click	the	publication,	and	then	click	Properties.

2.	 To	add	or	remove	a	login	for	access	to	the	publication,	click	the
Publication	Access	List	tab,	click	Add,	Remove,	or	Remove	All.

Note		If	a	remote	Distributor	is	used,	the	new	logins	must	exist	in	the	publication
access	lists	at	both	the	Publisher	and	at	the	Distributor.	If	the	pull	subscription
login	is	not	in	the	publication	access	list,	an	error	appears	at	the	Subscriber.

To	add	or	delete	an	article

Note		After	subscriptions	are	created,	articles	can	be	added	to	existing
publications.	Deleting	articles	from	publications	that	have	subscriptions	is	not
allowed.	To	remove	an	article,	you	must	first	delete	all	subscriptions.

1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	expand	the	Publications
folder,	right-click	a	publication	and	choose	Properties.

2.	 Select	what	you	want	to	do	with	the	article.

To	see	a	list	of	all	available	objects,	click	the	Articles	tab,	and
then	select	Show	unpublished	objects.

To	add	an	article,	select	the	Show	check	box	next	to	the

Object	Type	listed.	Select	the	check	box	next	to	the	article
object	to	add	to	the	publication,	or	select	the	Publish	All
check	box	next	to	the	object	type	you	want	to	publish.

To	delete	an	article,	select	the	Show	check	box	next	to	the
Object	Type	listed.	Clear	the	check	box	next	to	the	article
object	to	delete	to	the	publication,	or	clear	the	Publish	All
check	box	next	to	the	object	type	you	want	to	exclude	from
the	publication.

To	set	article	options,	click	the	build	button	(...).

How	To

How	to	delete	publications	and	articles	(Enterprise	Manager)
To	delete	a	publication

At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a	server
group,	expand	the	Replication	folder,	expand	the	Publications	folder,
right-click	the	publication,	and	then	click	Delete.

To	delete	an	article

Note		Deleting	articles	from	publications	that	have	subscriptions	is	not	allowed.
To	delete	an	article,	you	must	first	delete	all	subscriptions	to	the	publication.

1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	expand	the	Publications
folder,	right-click	the	publication,	and	then	click	Properties.

2.	 Click	the	Articles	tab,	select	an	article	to	delete,	and	then	clear	the
check	box	next	to	the	article	to	delete.

How	To

How	to	create	a	push	subscription	(Enterprise	Manager)
To	create	a	push	subscription

1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	expand	the	Publications
folder,	right-click	the	publication	for	which	you	want	the	subscription,
and	then	click	Push	New	Subscription.

2.	 Complete	the	steps	in	the	wizard.

How	To

How	to	modify	a	push	subscription	(Enterprise	Manager)
To	modify	push	subscription	properties

1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	expand	the	Publications
folder,	click	the	publication	that	has	the	subscription	you	want	to
modify,	right-click	the	push	subscription	for	that	publication,	and	then
click	Properties.

2.	 Select	what	you	want	to	do	with	the	subscription	properties.

To	view	the	selected	subscription	properties,	click	the
General	tab.

To	specify	where	the	Distribution	Agent	or	Merge	Agent
should	run,	click	the	Synchronization	tab.

How	To

How	to	delete	a	push	subscription	(Enterprise	Manager)
To	delete	a	push	subscription

At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a	server
group,	expand	the	Replication	folder,	expand	the	Publications	folder,
click	the	publication	that	has	the	subscription	you	want	to	delete,	right-
click	the	push	subscription	for	that	publication	in	SQL	Server	Enterprise
Manager,	and	then	click	Delete.

How	To

How	to	create	a	pull	or	anonymous	subscription	(Enterprise
Manager)
To	create	a	pull	or	anonymous	subscription

1.	 At	the	Subscriber,	in	SQL	Server	Enterprise	Manager,	expand	a	server
group,	expand	the	Replication	folder,	right-click	the	Subscriptions
folder,	and	then	click	New	Pull	Subscription.

2.	 Follow	the	steps	in	the	Pull	Subscription	Wizard.

If	the	publication	allows	anonymous	subscriptions,	the	Allow	Anonymous
Subscription	page	will	show	in	the	Pull	Subscription	Wizard	and	you	can
specify	the	new	subscription	as	anonymous.

How	To

How	to	view	or	modify	pull	or	anonymous	subscriptions
(Enterprise	Manager)

At	the	Subscriber,	in	SQL	Server	Enterprise	Manager,	expand	a	server
group,	expand	the	Replication	folder,	click	the	Subscriptions	folder,
right-click	the	subscription	you	want	to	modify	in	the	right	pane	of	SQL
Server	Enterprise	Manager,	and	then	click	Properties.

How	To

How	to	delete	a	pull	or	anonymous	subscription	(Enterprise
Manager)

At	the	Subscriber,	in	SQL	Server	Enterprise	Manager,	expand	a	server
group,	expand	the	Replication	folder,	click	the	Subscriptions	folder,
right-click	the	subscription	you	want	to	delete	in	the	right	pane	of	SQL
Server	Enterprise	Manager,	and	then	click	Delete.

How	To

How	to	create	an	anonymous	subscription	(Windows
Synchronization	Manager)

1.	 On	the	Start	menu,	point	to	Programs,	point	to	Accessories,	and	then
click	Synchronize.

2.	 Click	To	create	a	subscription:	select	this,	then	click	Properties,
click	Properties,	and	then	select	By	specifying	the	publication	and
subscription	information	manually.

3.	 Enter	the	name	for	the	subscription,	the	Subscriber	name,	subscription
database	name,	Publisher	name,	publication	database	name,	type	of
publication,	and	Distributor	name.

How	To

How	to	view	or	modify	the	default	snapshot	folder	location
(Enterprise	Manager)

1.	 In	SQL	Server	Enterprise	Manager,	expand	a	server	group,	expand	the
Publisher,	right-click	the	Replication	folder,	and	then	click	Configure
Publishers,	Subscribers,	and	Distribution.

2.	 Click	the	Publishers	tab,	and	then	click	the	distribution	database
properties	button	(...)	for	a	specific	Publisher.

3.	 To	modify	the	default	snapshot	folder	location,	click	the	properties
button	(...)	and	browse	to	set	a	new	default	location.

How	To

How	to	specify	alternate	snapshot	locations	(Enterprise	Manager)
1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and

Publications	directory,	select	a	publication,	right-click	the	publication,
and	then	click	Properties.

2.	 On	the	Snapshot	Location	tab,	select	Generate	snapshots	in	the
following	location	option,	and	then	type	a	Universal	Naming
Convention	path	or	click	the	browse	button	(...)	and	browse	for	the
location	where	you	want	to	save	snapshot	files.

3.	 To	use	compression,	select	Compress	the	snapshot	files	in	this
location.

4.	 If	FTP	is	being	used	to	transfer	snapshots,	select	Subscribers	can
access	this	folder	using	FTP	(File	Transfer	Protocol).

How	To

How	to	compress	and	deliver	snapshot	files	(Enterprise	Manager)
To	compress	snapshot	files

1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and
Publications	directories,	right-click	a	publication,	and	then	click
Properties.

2.	 On	the	Snapshot	Location	tab,	select	Generate	snapshots	in	the
following	location,	specify	a	location	for	the	files,	and	then	select
Compress	the	snapshot	files	in	this	location.

To	configure	snapshot	delivery	on	the	Subscriber

1.	 In	Microsoft	SQL	Server	Enterprise	Manager,	expand	the	subscription
database	and	the	Subscriptions	directory,	right-click	a	subscription,
and	then	click	Properties.

2.	 On	the	Snapshot	File	Location	tab,	select	Get	the	snapshot	from	the
following	folder.

3.	 Type	the	path	or	click	the	browse	(...)	button	and	browse	to	the
directory	where	you	want	snapshot	files	to	be	placed.

How	To

How	to	set	the	–	UseInprocLoader	property	(Enterprise	Manager)
1.	 On	the	server	where	the	Distribution	Agent	or	Merge	Agent	is	running,

expand	the	Replication	Monitor	node,	click	the	Distribution	Agents
or	Merge	Agents	folder,	right-click	the	agent	that	will	be	applying	the
snapshot,	and	then	click	Agent	Properties.

2.	 On	the	Steps	tab,	double-click	the	subscription	agent	step,	and	then
add	the	–UseInprocLoader	property	in	the	Command	text	box.

How	To

How	to	execute	scripts	before	and	after	the	snapshot	is	applied
(Enterprise	Manager)

1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	the
Replication	and	Publications	directories,	right-click	a	publication,
and	then	click	Properties.

2.	 On	the	Snapshot	tab,	click	the	browse	(...)	button	for	either	Before
applying	the	snapshot	or	After	applying	the	snapshot,	and	then
select	the	script	that	you	want	to	execute	before	or	after
synchronization.

How	To

How	to	reinitialize	a	subscription	(Enterprise	Manager)
To	reinitialize	a	push	subscription

At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a	server
group,	expand	the	Replication	folder,	expand	the	Publications	folder,
and	then	click	the	publication	for	which	subscriptions	need	to	be
reinitialized.

Right-click	the	subscription	you	want	to	reinitialize,	and	then	click
Reinitialize.

To	reinitialize	a	pull	or	anonymous	subscription

At	the	Subscriber,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	and	then	click	the
Subscriptions	folder.

Right-click	the	subscription	you	want	to	reinitialize,	and	then	click
Reinitialize.

How	To

How	to	browse	and	copy	snapshot	files	(Enterprise	Manager)
To	use	the	Snapshot	Explorer

In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and
Publications	directories,	select	a	publication,	right-click	the
publication,	and	then	click	Explore	the	Latest	Snapshot	Folder.

How	To

How	to	synchronize	a	subscription	(Enterprise	Manager)
To	synchronize	a	push	subscription

1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	expand	the	Publications
folder,	and	then	click	the	publication	for	which	subscriptions	need	to
be	synchronized.

2.	 Right-click	the	subscription	you	want	to	synchronize,	and	then	click
Start	Synchronizing.

To	synchronize	a	pull	or	anonymous	subscription

1.	 At	the	Subscriber,	open	SQL	Server	Enterprise	Manager,	expand	a
server	group,	expand	the	Replication	folder,	and	then	click	the
Subscriptions	folder.

2.	 Right-click	the	subscription	you	want	to	synchronize,	and	then	click
Start	Synchronizing.

How	To

How	to	synchronize	an	anonymous	subscription	(Windows
Synchronization	Manager)
To	synchronize	an	anonymous	subscription

1.	 On	the	Start	menu,	point	to	Programs,	point	to	Accessories,	and	then
click	Synchronize.

2.	 Click	the	subscription	that	you	want	to	synchronize,	and	then	click
Synchronize.

How	To

How	to	view	and	resolve	merge	synchronization	conflicts
(Enterprise	Manager)
To	view	and	further	resolve	synchronization	conflicts

1.	 Expand	a	server	group,	and	then	expand	a	server.

2.	 Expand	Databases,	and	then	expand	the	name	of	the	database.

3.	 Expand	Publications,	right-click	the	publication,	and	then	click	View
Conflicts.

4.	 In	the	Publications	in	database	list,	select	the	publication	to	view.

5.	 In	the	Tables	with	conflicts	list,	select	the	table	of	conflicts	to	view.

Note		Be	sure	to	connect	to	the	correct	server	to	view	the	conflicts.	The	location
of	the	conflict	table	varies	depending	upon	whether	replication	has	been
configured	for	centralized	of	decentralize	logging	of	conflicts.	If	centralized,	the
conflict	table	is	stored	at	the	Publisher	and	you	must	connect	to	the	Publisher	to
view	the	conflicts.	If	decentralized,	the	conflict	table	is	stored	at	either	the
Publisher	or	Subscriber,	depending	upon	which	one	lost	the	conflicts.

How	To

How	to	script	replication	(Enterprise	Manager)
1.	 At	the	Publisher,	open	SQL	Server	Enterprise	Manager,	expand	a

server	group,	right-click	the	Replication	folder,	and	then	click
Generate	SQL	Script.

2.	 Select	the	replication	component	to	script	(Distributor	properties,
publications	and	push	subscriptions,	or	pull	subscriptions)	and	whether
you	want	the	script	to	enable	or	create	the	components	or	disable	or
drop	the	components.

How	To

How	to	apply	schema	changes	on	publication	databases
(Enterprise	Manager)
To	add	columns	to	an	article

1.	 In	SQL	Server	Enterprise	Manager,	under	Replication,	expand
Publications	and	then	right-click	the	publication	where	you	want	to
modify	a	schema.

2.	 Click	Properties,	click	Filter	Columns,	and	then	click	Add	Column.

3.	 In	the	Add	Column	to	Replicated	Table	dialog	box,	enter	the	name
of	the	column	and	the	SQL	syntax	that	defines	the	column.	In	the	SQL
for	the	column	definition,	you	must	either	specify	a	default	value	or
allow	NULL	values.

4.	 For	information	about	the	syntax	required	to	define	the	column,	see	the
Transact-SQL	ALTER	TABLE	statement.

5.	 In	the	Add	Column	to	Replicated	Table	dialog	box,	select	the
publications	to	which	you	want	to	add	the	column.

To	drop	columns	from	an	article

1.	 In	SQL	Server	Enterprise	Manager,	expand	Replication,	expand
Publications,	and	then	right-click	the	publication	where	you	want	to
modify	a	schema.

2.	 Click	Properties,	click	Filter	Columns,	select	a	table	in	the	Tables	in
publication	list,	select	a	column	in	the	Columns	in	selected	table	list,
and	then	click	Drop	Column.

3.	 If	the	column	is	constrained,	you	will	be	prompted;	columns	with

primary	key	or	unique	constraints,	and	uniqueidentifier	columns
cannot	be	dropped.	If	you	attempt	to	drop	one	of	those	types	of
columns,	an	error	message	is	displayed.	For	other	constraints,	a
warning	message	is	displayed;	click	OK	to	drop	the	column.

How	To

How	to	specify	FTP	information	(Enterprise	Manager)
To	set	the	snapshot	folder	as	the	FTP	home	directory

1.	 On	the	Start	menu,	point	to	Programs,	point	to	Microsoft	Internet
Server,	and	then	click	Internet	Service	Manager.

2.	 Click	the	server	name	corresponding	to	the	FTP	service.

3.	 On	the	Properties	menu,	click	Service	Properties,	and	then	on	the
Directories	tab,	click	Add.

4.	 Enter	the	path	to	the	FTP	directory	(for	example,	C:\Microsoft	SQL
Server\Mssql\Repldata\Ftp),	and	then	click	Home	Directory.

To	configure	the	FTP	home	directory	as	an	FTP	site

1.	 On	the	Start	menu,	point	to	Programs,	point	to	Microsoft	SQL
Server	2000,	and	then	click	Client	Network	Utility.

2.	 On	the	General	tab,	ensure	that	TCP/IP	appears	in	the	Enabled
protocols	by	order	list.	If	TCP/IP	appears	in	the	Disabled	protocols
list,	select	it,	and	then	click	Enable.

3.	 In	Server	alias,	enter	the	name	of	the	server.

4.	 In	Computer	name,	overwrite	the	existing	name	with	the	IP	address.

5.	 Your	system	administrator	can	provide	you	with	the	correct	IP	address.

6.	 In	Port	number,	overwrite	the	existing	port	number,	if	necessary.

How	To

Replication	Options	(Enterprise	Manager)
Replication	Options	allow	you	to	configure	replication	in	a	manner	best	suited	to
your	application	and	environment.

Option
Type	of
Replication Benefits

Filtering
Published	Data

Snapshot
Replication

Transactional
Replication

Merge
Replication

Filters	allow	you	to	create	vertical	and/or
horizontal	partitions	of	data	that	can	be
published	as	part	of	replication.	By
distributing	partitions	of	data	to	different
Subscribers,	you	can:

Minimize	the	amount	of	data	sent
over	the	network.

Reduce	the	amount	of	storage
space	required	at	the	Subscriber.

Customize	publications	and
applications	based	on	individual
Subscriber	requirements.

Reduce	conflicts	because	the
different	data	partitions	can	be
sent	to	different	Subscribers.

Updatable
Subscriptions
(Immediate
Updating,
Queued
Updating)

Snapshot
Replication

Transactional
Replication

Immediate	updating	and	queued	updating
options	allow	users	to	update	data	at	the
Subscriber	and	either	propagate	those
updates	to	the	Publisher	immediately	or
store	the	updates	in	a	queue.

Updatable	subscriptions	are	best	for
replication	topologies	where	replicated	data

is	mostly	read,	and	occassionally	updated
at	the	Subscriber	when	Publisher,
Distributor,	and	Subscriber	are	connected
most	of	the	time	and	when	conflicts	caused
my	multiple	users	updating	the	same	data
are	infrequent.

Transforming
Published	Data

Snapshot
Replication

Transactional
Replication

You	can	leverage	the	data	movement,
transformation	mapping	and	filtering
capabilities	of	Data	Transformation
Services	(DTS)	during	replication.	With
transformable	subscriptions,	you	can:

Create	custom	partitions	for
snapshot	and	transactional
publications.

Transform	the	data	as	it	is	being
published	with	data	type	mappings
(for	example,	integer	to	real	data
type),	column	manipulations	(for
example,	concatenating	first	name
and	last	name	columns	into	one),
string	manipulations,	and
functions.

Alternate
Synchronization
Partners

Merge
Replication

Alternate	synchronization	partners	allow
Subscribers	to	merge	publications	to
synchronize	data	with	servers	other	than
the	Publisher	at	which	the	subscription
originated.	This	allows	the	Subscriber	to
synchronize	data	when	the	original
Publisher	is	unavailable,	and	is	also	useful
for	mobile	Subscribers	that	may	have
access	to	a	faster	or	more	reliable	network
connection	with	an	alternate	server.

Optimizing Merge By	optimizing	synchronization	during

Synchronization Replication merge	replication,	you	can	store	more
information	at	the	Publisher	instead	of
transferring	that	information	over	the
network	to	the	Subscriber.	This	improves
synchronization	performance	over	a	slow
network	connection,	but	requires	additional
storage	at	the	Publisher.

Attachable
Subscription
Databases

Snapshot
Replication

Transactional
Replication

Merge
Replication

Attachable	subscription	databases	allow
you	to	transfer	a	database	with	replicated
data	and	subscriptions	from	one	Subscriber
to	another.	After	the	database	is	attached	to
the	new	Subscriber,	the	database	at	the	new
Subscriber	will	automatically	receive	its
own	pull	subscriptions	to	the	publications
at	those	Publishers.	This	saves	you	the	time
and	effort	of	creating	subscription
databases	and	subscriptions	at	multiple
Subscribers.

How	To

How	to	filter	publications	horizontally	using	the	Create
Publication	Wizard	(Enterprise	Manager)

1.	 In	the	Create	Publication	Wizard,	on	the	Customize	the	Properties	of
the	Publication	page,	select	Yes,	I	will	define	data	filters,	enable
anonymous	subscriptions,	or	customize	other	properties.

2.	 On	the	Filter	Data	page,	select	Horizontally,	by	filtering	the	rows	of
published	data.

3.	 On	the	Filter	Table	Rows	page,	click	the	Filter	Clause	(...)	button	next
to	the	article	you	want	to	filter,	and	then	in	the	Specify	Filter	dialog
box,	complete	the	WHERE	clause	with	a	condition	for	the	filter.

Note		This	is	not	the	page	to	enter	join	filters	that	cross	tables	based	on
relationships	between	tables.	That	page	in	the	Create	Publication	Wizard	is
called	Generate	Filters	Automatically.

How	To

How	to	filter	publications	vertically	using	the	Create	Publication
Wizard	(Enterprise	Manager)
Note		If	you	are	creating	a	merge	publication	for	use	with	Subscribers	running
Microsoft®	SQL	Server™	version	7.0,	you	will	not	be	able	to	create	a	vertical
filter	and	you	will	not	see	the	Filter	Columns	page	in	the	Create	Publication
Wizard.

1.	 In	the	Create	Publication	Wizard,	on	the	Customize	the	Properties	of
the	Publication	page,	select	Yes,	I	will	define	data	filters,	enable
anonymous	subscriptions,	or	customize	other	properties.

2.	 On	the	Filter	Data	page,	select	Vertically,	by	filtering	the	columns	of
published	data.

3.	 On	the	Filter	Table	Columns	page,	click	the	table	in	the	publication	for
which	you	want	to	add	a	vertical	filter,	and	then	clear	the	columns	you
do	not	want	included	in	the	publication.

How	To

How	to	filter	publications	vertically	using	publication	properties
(Enterprise	Manager)
Note		If	you	are	viewing	the	properties	of	a	merge	publication	on	Microsoft®
SQL	Server™	version	7.0,	you	will	not	see	the	Filter	Columns	page.

1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and
Publications	folders,	right-click	the	publication	for	which	you	want	to
add	a	column	filter,	and	then	click	Properties.

2.	 On	the	Filter	Columns	tab,	click	the	table	in	the	publication	for	which
you	want	to	add	a	column	filter,	and	then	clear	the	columns	you	do	not
want	included	in	the	publication.

How	To

How	to	validate	Subscriber	information	using	the	Create
Publication	Wizard	(Enterprise	Manager)

1.	 In	the	Create	Publication	Wizard,	on	the	Customize	the	Properties	of
the	Publication	page,	select	Yes,	I	will	define	data	filters,	enable
anonymous	subscriptions,	or	customize	other	properties.

2.	 On	the	Filter	Data	page,	select	Horizontally,	by	filtering	the	rows	of
published	data,	and	then	on	the	Enable	Dynamic	Filters	page,	select
Yes,	enable	dynamic	filters.

3.	 On	the	Filter	Table	Rows	page,	click	the	Filter	Clause	(...)	button	next
to	the	article	you	want	to	filter,	and	then	in	the	Specify	Filter	dialog
box,	complete	the	WHERE	clause	with	the	function	that	will	retrieve
information	at	the	Subscriber	and	filter	the	publication	dynamically.

4.	 On	the	Validate	Subscriber	Information	page,	select	Yes,	validate
Subscriber	information,	and	then	type	in	the	functions	used	in
dynamic	filters	for	this	publication.

How	To

How	to	filter	publications	horizontally	using	publication
properties	(Enterprise	Manager)

1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and
Publications	folders,	right-click	the	publication	for	which	you	want	to
add	a	row	filter,	and	then	click	Properties.

2.	 On	the	Filter	Rows	tab,	click	the	Filter	Clause	(...)	button	next	to	the
article	you	want	to	filter,	and	then	in	the	Specify	Filter	dialog	box,
complete	the	WHERE	clause	with	a	condition	for	the	filter.

How	To

How	to	create	a	dynamic	snapshot	(Enterprise	Manager)
To	generate	a	dynamic	snapshot

Note		You	must	generate	a	regular	snapshot	to	the	dynamically	filtered	merge
publication	before	creating	a	dynamic	snapshot.

1.	 Create	the	merge	publication	with	dynamic	filters	enabled	and
specified	on	any	necessary	articles.	

2.	 Generate	the	regular	snapshot	by	running	the	Snapshot	Agent.	

3.	 At	the	Publisher,	in	SQL	Server	Enterprise	Manager,	expand	the
Replication	and	Publications	folders,	right-click	the	dynamically
filtered	merge	publication,	and	then	click	Create	Dynamic	Snapshot
Job.	

4.	 On	the	Specify	Filter	Criteria	page,	type	in	the	system	functions	used
in	the	dynamic	filters	of	the	publication	(SUSER_SNAME()	or
HOSTNAME())	and	the	value	of	the	login	for	the	Publisher.

5.	 On	the	Specify	Snapshot	File	Location	page,	type	the	path	to	the	folder
where	you	want	snapshot	files	saved	or	click	the	browse	button	(...)
and	browse	for	the	folder	location.	Using	the	alternate	snapshot
location	feature,	you	can	specify	the	snapshot	folder	location	on	the
network,	on	removable	media	or	on	an	FTP	server.

6.	 On	the	Set	Job	Schedule	page,	select	Using	the	following	schedule,
and	then	select	Change	to	specify	a	schedule	for	when	the	dynamic
snapshot	will	be	generated,	or	select	On	demand	only.	Select	the
Create	the	first	snapshot	immediately	check	box	to	generate	the
dynamic	snapshot	immediately.

7.	 On	the	Specify	Job	Name	page,	type	in	a	name	for	this	dynamic
Snapshot	Agent.

8.	 Run	the	dynamic	snapshot	agent	job

To	apply	the	dynamic	snapshot

1.	 At	the	Subscriber,	create	a	pull	subscription	using	the	Pull
Subscription	Wizard.	On	the	Snapshot	File	Location	page,	select	Use
the	snapshot	from	files	from	the	following	folder,	specify	or	browse
for	the	location	of	the	dynamic	snapshot	in	the	text	box,	and	then
select	This	is	a	snapshot	for	a	dynamically	filtered	subscription.

2.	 Finish	the	steps	in	the	Pull	Subscription	Wizard.	Manually	start	the
Merge	Agent	(using	Replication	Monitor	at	the	Publisher	or
programmatically)	when	the	snapshot	is	available	to	apply	it	at	the
Subscriber.

How	To

How	to	filter	with	a	user-defined	function	using	the	Create
Publication	Wizard	(Enterprise	Manager)

1.	 In	the	Create	Publication	Wizard,	on	the	Customize	the	Properties	of
the	Publication	page,	select	Yes,	I	will	define	data	filters,	enable
anonymous	Subscribers,	or	customize	other	properties.

2.	 On	the	Filter	Data	page,	select	Horizontally,	by	filtering	the	rows	of
published	data.

3.	 If	you	also	selected	Vertically,	by	filtering	the	columns	of	published
data	on	the	Filter	Data	page,	on	the	Filter	Table	Columns	page,	select
the	columns	you	want	to	filter	from	the	publication.

4.	 In	the	Filter	Table	Rows	dialog	box,	click	the	properties	button	(...)
next	to	the	article	that	you	want	to	filter,	and	then	complete	the
WHERE	clause	using	a	user-defined	function	in	the	condition.

How	To

How	to	filter	with	a	user-defined	function	using	publication
properties	(Enterprise	Manager)

1.	 In	SQL	Server	Enterprise	Manager,	on	the	Tools	menu,	click
Replication,	and	then	click	Create	and	Manage	Publications.

2.	 Expand	the	database	containing	the	publication	to	modify,	click	the
publication	to	modify,	and	then	click	Properties	&	Subscriptions.

3.	 If	there	are	Subscriptions	for	this	publication,	you	will	need	to	delete
them	before	you	can	modify	the	publication	filter.

How	To

How	to	drop	all	subscriptions	to	a	publication	(Enterprise
Manager)

1.	 On	the	Subscriptions	tab,	click	the	subscription	name,	and	then	click
Delete.

2.	 Click	OK	to	close	the	Publication	Properties	dialog	box,	and	then
reopen	it	in	the	Create	and	Manage	Publications	dialog	box	by
clicking	Properties	&	Subscriptions.

3.	 In	the	Publication	Properties	dialog	box,	click	the	Filter	Rows	tab,
and	then	complete	the	WHERE	clause	using	a	user-defined	function	as
part	of	the	filter	condition.

How	To

How	to	install	Message	Queuing	on	the	Distributor	and
Subscribers	(Enterprise	Manager)

1.	 In	Control	Panel,	double-click	Add/Remove	Programs,	click
Add/Remove	Windows	Components,	and	then	select	Message
Queuing	Services.

2.	 Select	Message	Queuing	Server.

How	To

How	to	set	the	queued	updating	conflict	resolution	policy
(Enterprise	Manager)

1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and
Publications	directories.

2.	 Right-click	the	publication	that	allows	queued	updating,	and	then	click
Properties.

3.	 On	the	Updatable	tab,	under	Conflict	resolution	policy,	you	can
choose	to	keep	the	change	made	at	the	Publisher,	keep	the	change
made	at	the	Subscriber,	or	reinitialize	the	subscription.

How	To

How	to	allow	decentralized	conflict	reporting	(Enterprise
Manager)

1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and
Publications	directories.	

2.	 Right-click	the	publication	that	allows	queued	updating,	and	then	click
Properties.	On	the	Updatable	tab,	under	Data	Conflicts,	you	can
clear	Report	conflicting	data	changes	at	the	Publisher	only.
Conflicting	data	changes	will	be	reported	at	both	the	Publisher	and
Subscriber.

How	To

How	to	view	conflicts	(Enterprise	Manager)
1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and

Publications	directories.	

2.	 Right-click	the	publication	that	allows	queued	updating,	and	then
select	View	Conflicts.

How	To

How	to	enable	immediate	updating	with	queued	updating	as	a
failover	(Enterprise	Manager)

1.	 In	the	Create	Publication	Wizard,	on	the	Welcome	page,	select	Show
advanced	options	in	this	wizard.	

2.	 Select	either	Snapshot	publication	or	Transactional	publication,	and
then	on	the	Updatable	Subscriptions	page,	select	both	Immediate
updating	and	Queued	updating.

3.	 When	you	create	a	subscription	using	either	the	Pull	Subscription
Wizard	or	Push	Subscription	Wizard,	on	the	Updatable	Subscriptions
page,	select	Immediate	updating	with	queued	updating	as	a
standby	in	case	of	failure.

How	To

How	to	switch	from	immediate	updating	to	queued	updating	as	a
failover	(Enterprise	Manager)

1.	 For	push	subscriptions:	expand	the	Replication	and	Subscriptions
directories,	right-click	the	subscription,	click	Set	Update	Method,	and
then	select	either	Immediate	Updating	or	Queued	Updating.

2.	 For	pull	subscriptions:	on	the	Subscriber,	expand	the	Pull
Subscriptions	directory,	right-click	the	subscription,	click	Properties,
and	then	on	the	Synchronization	tab,	select	either	Immediate
Updating	or	Queued	Updating.

How	To

How	to	switch	from	immediate	updating	to	queued	updating	as	a
failover	(Transact-SQL)

Use	the	sp_setreplfailovermode	stored	procedure	and	set	the	following
parameters.

Parameter Description
@publisher Name	of	the	Publisher.
@publisher_db Name	of	the	publication	database.
@publication Name	of	the	publication.
@failover_mode Can	be	'immediate',	or	'queued'.

How	To

How	to	switch	from	immediate	updating	to	queued	updating	as	a
failover	(Windows	Synchronization	Manager)

1.	 On	the	Start	Menu,	point	to	Programs,	point	to	Accessories,	and
then	click	Synchronize.

2.	 Double-click	the	subscription,	and	then	in	the	Properties	dialog	box,
on	the	Other	tab,	select	either	Immediate	Updating	or	Queued
Updating.

Pull	subscriptions	created	using	on-demand	synchronization	are	automatically
added	to	Windows	Synchronization	Manager.	You	can	add	pull	subscriptions
that	are	not	using	on-demand	synchronization	to	Windows	Synchronization
Manager	by	opening	the	subscription	properties,	and	then	on	the
Synchronization	tab,	selecting	Enable	this	subscription	to	be	synchronized
using	the	Windows	Synchronization	Manager.

How	To

How	to	create	a	transformable	subscription	(Enterprise	Manager)
1.	 Create	a	publication	enabled	for	transformable	subscriptions	using	the

Create	Publication	Wizard,	and	on	the	Create	Publication	Wizard
Welcome	page,	click	Show	Advanced	Options,	click	Next,	and	then
click	a	database	in	the	list.

2.	 On	the	Choose	Publication	Type	page,	click	either	Snapshot
Publication	or	Transactional	Publication.

3.	 On	the	Updatable	Subscriptions	page,	do	not	select	Immediate
Updating	or	Queued	Updating	because	transformable	subscriptions
will	not	also	be	available.

4.	 On	the	Transform	Published	Data	page,	click	Yes,	and	then	continue
creating	the	publication.

5.	 Build	the	replication	DTS	package	using	the	Transform	Published
Data	Wizard.

a.	 In	SQL	Server	Enterprise	Manager,	right-click	the
publication	enabled	for	transformable	subscriptions,	and
then	click	Properties.

b.	 In	the	Properties	dialog	box	for	the	publication,	click
Subscriptions,	and	then	click	Transformations.	

c.	 In	the	Transform	Published	Data	Wizard,	click	Next	until	the
Choose	a	Destination	page	is	displayed.	Select	a	provider	to
connect	to	the	Subscriber	(the	Microsoft®	SQL	Server™
2000	Replication	OLE	DB	Provider	for	DTS	is	used	only	for
the	source	connection	from	the	package	to	the	Distributor),

and	then	complete	the	rest	of	the	connection	information.	On
the	Define	Transformations	page,	click	the	transform	(...)
button	for	a	published	table	on	which	to	define	a
transformation.

d.	 On	the	Column	Mappings	and	Transformations	page,	click
the	Column	Mappings	tab,	and	then	click	one	of	the
following:	Keep	the	existing	table	unchanged,	DROP	the
existing	table	and	re-create	it	or	Delete	all	data	in	the
existing	table.	If	you	want	to	partition	data	vertically,	in	the
list,	select	the	Destination	columns	you	want	to	include.

e.	 If	you	want	to	partition	published	data	horizontally	or	map
transformations	on	the	published	partition,	click	the
Transformations	tab	for	the	published	table.	Click
Transform	data	using	the	following	script.	Choose	the
type	of	language	for	the	script	from	the	drop	down,	edit
directly	in	the	script	window	or	click	Load	file	to	load	a
script.	Repeat	this	step	for	all	tables	in	the	publication	for
which	you	want	to	add	transformations.

f.	 On	the	Save	DTS	Package	page,	enter	a	Name,	enter	a
Description,	and	then	either	enter	optional	password
information	for	the	package	or	use	the	supplied	default
values.	Continue	until	the	package	is	created	successfully.	If
you	want	to	use	this	package	for	a	push	subscription,	save
the	package	at	the	Distributor	(default).	If	using	the	package
for	a	pull	subscription,	save	it	at	the	Subscriber.

6.	 This	set	of	steps	is	used	to	create	a	transformable	subscription.

a.	 Open	either	the	Push	Subscription	Wizard	or	the	Pull
Subscription	Wizard.

b.	 On	the	Specify	DTS	Package	page,	click	the	DTS	package
you	want	to	use	with	the	subscription,	optionally	enter	a

package	password,	click	Next,	and	then	continue	through	the
wizard	until	you	have	created	the	subscription	successfully.

How	To

How	to	enable	Subscribers	to	synchronize	with	alternate
synchronization	partners	(Enterprise	Manager)

1.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and
Publications	directories,	right-click	a	Publication,	and	then	click
Properties.

2.	 Click	the	Sync	Partners	tab,	and	then	enable	Allow	Subscribers	to
synchronize	with	other	partners	than	the	Publisher	from	which	the
subscription	was	created.

3.	 Enable	the	Publishers	and	Subscribers	that	can	be	alternate	Publishers
for	Subscribers	to	this	publication.

How	To

How	to	enable	a	Subscriber	at	an	alternate	synchronization
partner	(for	named	subscriptions)	(Enterprise	Manager)

1.	 On	the	Publisher,	right-click	the	Replication	directory	in	SQL	Server
Enterprise	Manager,	and	then	click	Configure	Publishing,
Subscribers,	and	Distribution.

2.	 On	the	Subscribers	tab,	select	the	box	next	to	the	Subscriber	you	want
to	enable	or	click	New	Subscriber	and	register	the	Subscriber.

How	To

How	to	synchronize	with	alternate	synchronization	partners
(Windows	Synchronization	Manager)

1.	 On	the	Start	Menu,	point	to	Programs,	Accessories,	and	then	click
Synchronize.

2.	 Select	the	publication	you	want	to	synchronize,	click	Properties,	and
then	on	the	Identity	tab,	select	the	Publisher	with	which	you	want	to
synchronize.

3.	 Click	OK,	and	then	click	Synchronize.

How	To

How	to	synchronize	pull	subscriptions	with	alternate
synchronization	partners	(Enterprise	Manager)

1.	 On	the	Subscriber,	expand	the	Replication	directory,	click	the
Subscriptions	directory,	right-click	a	pull	subscription,	and	then	click
Properties.

2.	 On	the	Synchronization	tab,	click	Merge	Agent	Properties.

3.	 On	the	Steps	tab,	double-click	the	subscription	agent	step,	and	then
add	the	–SyncToAlternate	switch	in	the	Command	text	box.

How	To

How	to	synchronize	push	subscriptions	with	alternate
synchronization	partners	(Enterprise	Manager)

1.	 On	the	Subscriber,	expand	the	Replication	Monitor	and	Agents
directories,	select	the	Merge	Agents	directory,	right-click	the
publication,	and	then	click	Agent	Properties.

2.	 On	the	Steps	tab,	double-click	the	subscription	agent	step,	and	add	the
–SyncToAlternate	switch	in	the	Command	text	box.

How	To

How	to	minimize	the	amount	of	data	sent	over	the	network	during
merge	replication	(Transact-SQL)

Execute	the	sp_addmergepublication	system	stored	procedure	and	set
the	@keep_partition_changes	parameter	to	'true'.

How	To

How	to	configure	a	publication	to	allow	copying	of	subscription
databases	(Enterprise	Manager)

1.	 Create	the	publication	using	the	Create	Publication	Wizard.

2.	 In	SQL	Server	Enterprise	Manager,	expand	the	Replication	and
Publication	directories,	and	then	right-click	the	publication	that	you
want	to	enable	for	new	subscriptions.

3.	 For	snapshot	replication	and	transactional	replication,	click	the
Subscription	Options	tab	in	the	Publication	Properties,	select	Use	a
Distribution	Agent	that	is	independent	of	other	publications	from
this	database,	and	then	select	Snapshot	files	are	always	available	to
immediately	initialize	new	subscriptions.	You	do	not	need	to	do
anything	for	this	step	if	you	are	using	merge	replication.

4.	 Select	Allow	new	subscriptions	to	be	created	by	attaching	a	copy	of
a	subscription	database.

How	To

How	to	copy	a	subscription	database	(Enterprise	Manager)
1.	 On	the	Subscriber,	in	SQL	Server	Enterprise	Manager,	expand	the

Replication	and	Subscriptions	directories,	right-click	the	pull
subscription	that	has	a	subscription	database	you	want	to	copy,	and
then	click	Copy	Subscription	Database.

2.	 In	the	Copy	Subscription	Database	dialog	box,	browse	to	the
directory	or	drive	where	you	want	to	save	a	copy	of	the	subscription
database.

3.	 The	location	can	be	on	the	network,	using	removable	media	(such	as
CD-ROMs	or	tape	devices)	or	on	a	File	Transfer	Protocol	(FTP)	site.

4.	 In	the	File	Name	box,	type	a	name	for	the	subscription	database	file
(the	file	will	have	the	extension	.msf).

How	To

How	to	enable	a	Subscriber	to	receive	published	data	(Enterprise
Manager)

1.	 On	the	Publisher,	in	SQL	Server	Enterprise	Manager,	right-click	the
Replication	directory,	and	then	click	Configure	Publishing,
Subscribers,	and	Distribution.

2.	 On	the	Subscribers	tab,	select	the	box	next	to	the	Subscriber	you	want
to	enable	or	click	New	Subscriber	and	register	the	Subscriber.

How	To

How	to	attach	a	subscription	database	with	named	subscriptions
(Enterprise	Manager)

1.	 On	the	new	Subscriber,	in	SQL	Server	Enterprise	Manager,	expand	the
Replication	directory.

2.	 Right-click	the	Subscriptions	directory,	and	then	click	Attach
Subscription	Database.

3.	 Either	type	the	Universal	Naming	Convention	(UNC)	path	or	click	the
browse	(...)	button	and	browse	for	the	location	of	the	.msf	file.

4.	 In	the	Name	of	database	to	create	box,	type	a	name	for	the	database.

How	To

How	to	attach	a	subscription	database	with	anonymous
subscriptions	(Enterprise	Manager)

1.	 On	the	new	Subscriber,	in	SQL	Server	Enterprise	Manager,	expand	the
Replication	directory.

2.	 Right-click	the	Subscriptions	directory,	and	then	click	Attach
Subscription	Database.

3.	 Either	type	the	UNC	path	or	click	the	browse	(...)	button	and	browse
for	the	location	of	the	.msf	file.	

4.	 In	the	Attach	as	database	box,	type	a	name	for	the	database.

How	To

Administering	and	Monitoring	Replication
(Enterprise	Manager)
SQL	Server	replication	provides	tools	to	administer	and	monitor	replication
agents	and	replication	alerts	and	replication	processes	so	that	you	can	ensure	that
replication	is	meeting	the	needs	of	your	applications	and	your	organization.

Monitoring	replication	will	help	you:

Set	the	profiles,	schedules	and	notifications	for	replication	agents.

Troubleshoot	agent	activity	including	verifying	when	agents	last	ran,
monitoring	agent	activity.	

Troubleshoot	agent	errors.

Ensure	that	data	values	are	the	same	at	the	Publisher	and	at	Subscribers.

How	To

How	to	change	replication	monitoring	properties	(Enterprise
Manager)
To	change	replication	monitoring	properties

1.	 Expand	a	server	group,	and	then	expand	the	Distributor.

2.	 Right-click	Replication	Monitor,	and	then	click	Refresh	Rate	and
Settings.

To	select	columns	for	monitoring	views

1.	 Expand	a	server	group;	then	expand	the	Distributor.

2.	 Right-click	Replication	Monitor;	then	click	Select	Columns.

How	To

How	to	monitor	replication	agent	history	(Enterprise	Manager)
To	monitor	replication	agent	history

1.	 Expand	a	server	group,	and	then	expand	the	Distributor.

2.	 Expand	Replication	Monitor,	and	then	click	Agents.

3.	 Click	the	agent	to	monitor,	right-click	a	row	in	the	details	pane,	and
then	click	Agent	History.

How	To

How	to	configure	DCOM	to	run	the	Distribution	Agent	remotely
To	configure	DCOM	to	run	the	Distribution	Agent	remotely

Note		To	run	DCOM	configuration,	on	Microsoft®	Windows	NT®	4.0	or
Microsoft	Windows®	2000,	run	Dcomcnfg.exe	located	at	\Winnt\System32.	On
Microsoft	Windows	98,	run	Dcomcnfg.exe	located	at	\Windows\System.

1.	 On	the	computer	where	you	want	the	agent	to	run,	on	to	the	Start
menu,	click	Run,	type	dcomcnfg,	and	then	click	OK.

2.	 On	the	Applications	tab,	select	Microsoft	SQL	Server	Replication
Remote	Dist	Agent	8.0,	and	then	click	Properties.	

3.	 On	the	Security	tab,	select	Use	custom	launch	permissions,	and	then
click	Edit.

4.	 In	the	Registry	Value	Permissions	window,	add	the	account	used	to	run
SQL	Server	Agent	on	the	Distributor	(for	push	subscriptions),	or	SQL
Server	Agent	on	the	Subscriber	(for	pull	subscriptions),	and	then	click
OK.

5.	 Click	the	Identity	tab,	select	This	user,	and	then	type	the	user	account
used	by	SQL	Server	Agent	on	the	Distributor	(for	push	subscriptions),
or	SQL	Server	Agent	on	the	Subscriber	(for	pull	subscriptions).

How	To

How	to	configure	DCOM	to	run	the	Merge	Agent	remotely
To	configure	DCOM	to	run	the	Merge	Agent	remotely

Note		To	run	DCOM	configuration,	on	Microsoft®	Windows	NT®	4.0	or
Microsoft	Windows®	2000,	run	Ecomcnfg.exe	located	at	\Winnt\System32.	On
Microsoft	Windows	98,	run	Dcomcnfg.exe	located	at	\Windows\System.

1.	 On	the	Start	menu,	click	Run,	enter	dcomcnfg,	and	then	click	OK.

2.	 On	the	Applications	tab,	select	Microsoft	SQL	Server	Replication
Remote	Merge	Agent	8.0,	and	then	click	Properties.

3.	 On	the	Security	tab,	select	Use	custom	launch	permissions,	and	then
click	Edit.

4.	 In	the	Registry	Value	Permissions	window,	add	the	account	used	to	run
SQL	Server	Agent	on	the	Distributor	(for	push	subscriptions),	or	SQL
Server	Agent	on	the	Subscriber	(for	pull	subscriptions),	and	then	click
OK.

5.	 Click	the	Identity	tab,	select	This	user,	and	then	enter	the	same	user
account	used	by	SQL	Server	Agent	on	the	Distributor	(for	push
subscriptions),	or	SQL	Server	Agent	on	the	Subscriber	(for	pull
subscriptions).

How	To

How	to	enable	a	push	subscription	to	use	remote	agent	activation
To	configure	a	push	subscription	to	use	remote	agent	activation

1.	 In	the	Microsoft®	Management	Console	on	the	Distributor,	expand
Microsoft	SQL	Servers	2000,	expand	SQL	Server	Group,	select	the
Distributor,	and	then	expand	the	Replication	directory.

2.	 At	the	Publisher,	expand	the	Publications	directory,	right-click	a
publication,	and	then	select	Push	New	Subscription.	

3.	 In	either	the	Set	Distribution	Agent	Location	window	for	Transactional
Replication,	or	the	Set	Merge	Agent	Location	window	for	Merge
Replication,	select	Run	the	Agent	at	the	Subscriber.

4.	 To	verify	that	the	agent	can	be	run	remotely,	click	Verify	Subscriber.

5.	 The	Distributor	connects	to	the	Subscriber	and	starts	the	Distribution
Agent	or	the	Merge	Agent	using	DCOM.	If	the	connection	is
successful,	you	will	receive	the	message,	The	Subscriber
'SubscriberName'	is	prepared	to	run	the	offload	agent.

IMPORTANT		After	you	specify	where	the	agent	should	run	when	creating	the
subscription,	synchronization	may	fail	if	you	specified	that	the	subscription
should	be	automatically	synchronized	and	you	haven't	configured	DCOM	for	the
remote	agent	activation.

How	To

How	to	enable	a	pull	subscription	to	use	remote	agent	activation
To	configure	a	pull	subscription	to	use	remote	agent	activation

1.	 At	the	Subscriber,	in	SQL	Server	Enterprise	Manager,	expand	the
Replication	folder,	right-click	the	Subscriptions	folder,	and	then	click
New	Pull	Subscription.

2.	 Follow	the	steps	in	the	wizard	to	create	a	new	pull	subscription.

3.	 After	the	pull	subscription	is	created,	right-click	on	it,	and	then	select
Properties.

4.	 Click	the	Synchronization	tab,	and	then	select	Run	the	agent	at	the
Distributor	to	offload	agent	processing	from	the	Subscriber.

IMPORTANT		After	you	specify	where	the	agent	should	run	when	creating	the
subscription,	synchronization	may	fail	if	you	specified	that	the	subscription
should	be	automatically	synchronized	and	you	haven't	configured	DCOM	for	the
remote	agent	activation.

How	To

How	to	configure	an	existing	subscription	to	use	remote	agent
activation
To	configure	an	existing	subscription	to	use	remote	agent	activation

1.	 Right-click	a	publication,	and	then	select	Properties.

2.	 Click	the	Subscriptions	tab,	and	then	select	Properties.

3.	 Click	the	Synchronization	tab,	and	then	select	Run	the	distribution
agent	at	the	Subscriber	for	push	subscriptions	or	Run	the
distribution	agent	at	the	Distributor	for	pull	subscriptions.

How	To

How	to	monitor	replication	agent	performance	(Enterprise
Manager)
To	monitor	replication	agent	performance

1.	 Expand	a	server	group;	then	expand	a	server.

2.	 Right-click	Replication	Monitor;	then	click	Performance	Monitor.

3.	 On	the	Edit	menu,	click	Add	To	Chart.

4.	 In	the	Object	list,	select	the	SQL	Server	replication	object	to	monitor.

5.	 In	the	Counter	list,	select	the	counter	to	use.

To	monitor	replication	agent	session	details

1.	 Expand	a	server	group;	then	expand	the	Distributor.

2.	 Expand	Replication	Monitor;	then	click	Agents.

3.	 Click	the	agent	to	monitor.

4.	 Right-click	a	row	in	the	details	pane;	then	click	Agent	History.

5.	 Select	a	session	in	the	session	list;	then	click	Session	Details.

How	To

How	to	create	a	replication	agent	profile	(Enterprise	Manager)
To	create	a	replication	agent	profile

1.	 Expand	a	server	group,	and	then	expand	the	Distributor.

2.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Configure
Publishing,	Subscribers,	and	Distribution.

3.	 Click	Agent	Profiles,	click	the	tab	for	the	type	of	agent	to	get	a	new
profile,	and	then	click	Copy	Selected	Profile.

4.	 Enter	the	name	and	optional	description	of	the	new	profile,	click	the
parameters	you	want	to	change,	and	then	enter	the	new	value.

To	set	the	default	profile	for	a	type	of	replication	agent

1.	 Expand	a	server	group,	and	then	click	the	Distributor	name.

2.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Configure
Publishing,	Subscribers,	and	Distribution.

3.	 Click	the	Distributor,	click	Agent	Profiles,	and	then	click	the	tab	for
the	type	of	replication	agent.

4.	 Select	the	Default	column	next	to	the	profile	to	be	used	as	the	default.

5.	 Select	Change	all	existing	type	Agents	to	use	the	selected	profile	to
apply	the	new	default	to	all	existing	type	agents.	Clearing	this	option
will	apply	the	new	default	only	to	new	agents	created	from	this	point
forward.

To	view	or	modify	a	replication	agent	profile

1.	 Expand	a	server	group,	expand	a	server,	and	then	expand	Replication
Monitor.

2.	 Expand	Publishers,	expand	the	Publisher	name	where	the	profile	is	to
be	modified,	and	then	click	the	publication.

3.	 In	the	details	pane,	right-click	the	agent	or	subscription,	and	then	click
Agent	Profiles.

4.	 Select	an	agent	profile,	click	View	Details,	and	then	enter	the	value	of
the	parameter	you	want	to	change.	If	you	created	the	agent	profile,	you
can	click	Modify	to	modify	the	parameters	for	the	agent.

Note		You	cannot	delete	the	system	profiles,	and	you	cannot	delete	a	profile	if	it
is	being	used	by	any	agent.

To	delete	a	replication	agent	profile

1.	 Expand	a	server	group,	and	then	click	the	Distributor	name.

2.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Configure
Publishing,	Subscribers,	and	Distribution.

3.	 Click	the	Distributor	tab,	click	Agent	Profiles,	and	then	click	the	tab
for	the	type	of	replication	agent.

4.	 Select	the	profile	to	be	deleted,	and	then	click	Delete	Profile.

How	To

Replication	and	Heterogeneous	Data	Sources
(Enterprise	Manager)
Microsoft®	SQL	Server™	2000	offers	the	ability	to	replicate	data	to	any
heterogeneous	data	source	that	provides	a	32-bit	ODBC	or	OLE	DB	driver	on
Microsoft	Windows®	2000,	Microsoft	Windows	NT®	Server	4.0,	or	Windows
98	operating	systems.	Additionally,	SQL	Server	2000	can	receive	copies	of	data
replicated	from	Microsoft	Access,	Microsoft	Exchange,	Oracle,	DB2	Universal,
DB2/MVS,	and	DB2	AS400.

Heterogeneous	Subscribers
Publishing	to	heterogeneous	data	sources	allows	corporations	that	have	acquired
different	databases	to	continue	providing	SQL	Server	2000	to	individuals	or
offices	using	those	databases.

The	simplest	way	to	publish	data	to	a	heterogeneous	data	source	is	by	using
ODBC	and	creating	a	push	subscription	from	the	Publisher	to	the	ODBC
Subscriber.

Heterogeneous	Publishers
SQL	Server	2000	can	subscribe	to	snapshot	or	transactional	data	replicated	from
Oracle,	DB2,	Access,	and	other	data	sources.	This	allows	companies	that	are
planning	to	deploy	large	databases	or	a	data	warehouse	with	SQL	Server,	or
Internet	and	intranet	applications,	to	gain	access	to	various	sources	of	data.	That
data	can	then	be	consolidated	in	SQL	Server	2000	using	replication,	and	placed
into	a	data	mart,	data	warehouse,	or	multidimensional	database	designed	for
SQL	Server	Analysis	Services.

To	implement	snapshot	or	transactional	replication	published	by	heterogeneous
data	sources	to	your	SQL	Server	2000	applications,	configure	SQL	Server	with
third-party	software	or	using	applications	built	with	SQL-DMO	and	the
Replication	Distributor	Interface.

For	more	information,	see	Programming	Replication	from	Heterogeneous	Data
Sources.

JavaScript:hhobj_1.Click()

How	To

How	to	publish	to	heterogeneous	Subscribers	(Enterprise
Manager)

1.	 Expand	a	server	group;	then	expand	the	Publisher.

2.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Create	and
Manage	Publications.	

3.	 In	the	Databases	and	Publications	list,	click	the	database	from	which
to	create	a	publication,	and	then	click	Create	Publication.

4.	 When	prompted	to	specify	subscriber	types	that	will	use	the
publication,	select	One	or	more	Subscribers	will	not	be	SQL
Servers.

5.	 Complete	the	steps	in	the	wizard.

6.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Configuring
Publishing,	Subscribers,	and	Distribution.

7.	 Click	the	Subscribers	tab.	

8.	 Click	New	Subscriber;	then	click	the	type	of	data	source.

9.	 Select	the	heterogeneous	Subscriber;	then	specify	the	login
information,	if	required.

How	To

How	to	enable	a	Jet	4.0	database	as	a	Subscriber	(Enterprise
Manager)

1.	 Expand	a	server	group;	then	expand	the	Publisher	of	the	publication	to
which	the	Jet	Subscribers	will	subscribe.	

2.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Configuring
Publishing,	Subscribers,	and	Distribution.	

3.	 On	the	Subscribers	tab,	click	New	Subscriber.

4.	 Select	Microsoft	Jet	4.0	database	(Microsoft	Access).

5.	 Select	the	new	Subscriber	from	the	list	of	Microsoft®	Jet	4.0	databases
shown.	Enter	the	login	name	and,	optionally,	the	password	for	the
Microsoft	Jet	database.	The	Microsoft	Jet	database	does	not	need	to
exist.	If	the	database	is	new	or	unsecured,	you	must	enter	admin	as	the
login	name.

6.	 If	the	database	is	not	listed,	click	Add.	In	Linked	server	name,	enter
a	name	for	the	linked	server	(for	example,	enter	the	name	of	the	Jet
database).

7.	 In	Database	path,	enter	the	path	and	file	name	to	the	database.	If	the
database	is	located	on	the	same	server	as	the	Distributor,	you	can	use
local	drive	letters	in	the	path.	If	the	database	is	located	on	a	different
server	than	the	Distributor,	enter	a	UNC	path.	If	the	database	does	not
exist,	it	will	be	created	automatically	when	the	subscription	is
initialized.

How	To

How	to	create	a	publication	for	a	Jet	4.0	Subscriber	(Enterprise
Manager)

1.	 Expand	a	server	group;	then	expand	the	Publisher.

2.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Create	and
Manage	Publications.

3.	 In	the	Databases	and	Publications	list,	click	the	database	from	which
to	create	a	publication	list,	and	then	click	Create	Publication.

4.	 Follow	the	steps	in	the	wizard.

5.	 If	you	are	creating	a	transactional	publication,	select	One	or	more
Subscribers	will	not	be	a	server	running	SQL	Server	when	asked
What	type	of	Subscribers	will	subscribe	to	this	publication?	

6.	 If	you	are	creating	a	merge	publication,	select	Some	Subscribers	will
be	Microsoft	Jet	4.0	databases	when	asked	What	type	of
Subscribers	will	subscribe	to	this	publication?	

7.	 Follow	the	remaining	steps	in	the	wizard.

How	To

How	to	add	a	push	subscription	to	a	Jet	4.0	Subscriber
(Enterprise	Manager)

1.	 Expand	a	server	group;	then	expand	the	Publisher.

2.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Push
Subscriptions	to	Others.

3.	 Expand	the	database	containing	the	publication	to	which	a	push
subscription	will	be	added.

4.	 Click	the	publication;	then	click	Push	New	Subscription.

5.	 Follow	the	steps	in	the	wizard.

6.	 If	the	subscription	is	to	a	merge	publication,	when	asked	to	set	the
subscription	priority,	click	the	priority	that	corresponds	to	the	type	of
subscription	known	to	Microsoft®	Access.	If	you	want	the
subscription	to	be	an	Access	Local	or	Anonymous	replica,	select	Use
the	priority	setting	of	the	Publisher	from	which	this	subscription	is
created.	If	you	want	the	subscription	to	be	an	Access	Global	replica,
select	Use	the	following	priority	to	resolve	the	conflict	and	set	the
desired	priority.

7.	 Follow	the	remaining	steps	in	the	wizard.

How	To

Replication	Security	(Enterprise	Manager)
Replication	security	is	an	important	part	of	the	design	and	implementation	of
your	distributed	application.	Replication	applies	the	data	changes	made
elsewhere	on	the	network	to	the	database	at	your	server	and	vice-versa.

The	decentralized	availability	of	replicated	data	increases	the	complexity	of
managing	or	restricting	access	to	that	data.	Microsoft®	SQL	Server™	2000
replication	uses	a	combination	of	security	mechanisms	to	protect	the	data	and
business	logic	in	your	application:

Role	requirements

By	mapping	user	logins	to	specific	SQL	Server	2000	roles,	SQL	Server
2000	allows	users	to	perform	only	those	replication	and	database
activities	authorized	for	that	role.	Replication	grants	certain	permission
to	the	sysadmin	fixed	server	role,	the	db_owner	fixed	database	role,
the	current	login,	and	the	public	role.	For	example,	only	members	of
the	sysadmin	server	role	can	configure	replication.

Distributor	administrative	link	security

SQL	Server	2000	provides	a	secure	administrative	link	between	the
Distributor	and	a	remote	Publisher.	Publishers	can	be	treated	as	trusted
or	nontrusted.

Snapshot	folder	security

The	operating	system	or	FTP	service	prevents	users	from	accessing
specific	files	on	the	server.	The	user	must	have	a	valid	login	to	read	or
write	the	files	used	in	the	replication	process.

Registered	subscribers

SQL	Server	2000	allows	you	to	limit	access	to	publications	to	either
registered	Subscribers	that	are	well-known	to	the	Publisher,	anonymous,
or	Subscribers	that	have	logins	in	the	publication	access	list.	SQL
Server	2000	uses	linked	server	definitions	for	heterogeneous
Subscribers	to	secure	the	replication	of	data	with	heterogeneous	data
sources.

Publication	access	lists

By	supporting	publication	access	lists	(PAL)	on	each	server,	SQL
Server	2000	allows	you	to	determine	which	logins	have	access	to
publications.	SQL	Server	2000	creates	the	PAL	with	default	logins,	but
you	can	add	or	delete	logins	from	the	list.

Agent	login	security

By	supporting	agent	login	security,	SQL	Server	2000	requires	each	user
to	supply	a	valid	login	account	to	connect	to	the	server.	Replication
agents	are	required	to	use	valid	logins	when	connecting	to	Publishers,
Distributors,	and	Subscribers.	However,	agents	also	can	use	different
logins	and	security	modes	when	connecting	to	different	servers
simultaneously.

Immediate-updating	Subscriber	security

For	immediate-updating	Subscribers,	SQL	Server	2000	replication
applies	security	mechanisms	to	the	Publisher-RPC	link	and	Publisher
stored	procedures.

When	used	together,	these	security	mechanisms	provide	the	highest	safeguards
for	the	data	and	business	logic	in	your	application.

How	To

How	to	change	the	login	property	of	a	pull	subscription
1.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Pull

Subscription	To.

2.	 Click	Properties,	and	then	on	the	Synchronization	tab,	click
Distribution	Agent	Properties.

3.	 On	the	Steps	tab,	click	Edit.

4.	 On	the	command	line,	edit	the	values	for	SubscriberSecurityMode
and	SubscriberLogin.

How	To

How	to	add	or	change	a	password	on	a	Distributor
To	add	or	change	a	password	on	a	Distributor

1.	 Expand	a	server	group;	then	click	the	Distributor	name.

2.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Configure
Publishing,	Subscribers,	and	Distribution.

3.	 Click	the	Distributor	tab.

4.	 Enter	the	new	or	changed	password.

How	To

To	grant	or	revoke	access	to	a	publication
To	grant	or	revoke	access	to	a	publication

1.	 Expand	a	server	group;	then	click	the	Publisher	name.

2.	 On	the	Tools	menu,	point	to	Replication,	and	then	click	Create	and
Manage	Publications.

3.	 Expand	the	database;	then	click	the	publication.

4.	 Click	Properties	&	Subscriptions.

5.	 Click	the	Publication	Access	List	tab.

6.	 Add	or	remove	the	login	to	access	the	publication.

Note		If	a	remote	Distributor	is	used,	the	new	logins	must	exist	in	the	publication
access	lists	at	the	Publisher	and	the	Distributor.	If	the	pull	subscription	login	is
not	in	the	publication	access	list,	an	error	appears	at	the	Subscriber.

How	To

Data	Transformation	Services
This	section	contains	procedures	for:

Using	Data	Transformation	Services	(DTS)	tools.	

Using	DTS	connections,	tasks,	transformations,	and	workflow	elements
to	build	DTS	packages.	

Managing	packages.

How	To

DTS	Tools
This	section	contains	procedures	for	using	Data	Transformation	Services	(DTS)
tools.

How	To

How	to	create	a	connection	to	Northwind	in	DTS	Designer
(Enterprise	Manager)
To	create	a	connection	to	Northwind	in	DTS	Designer

1.	 From	the	Connection	toolbar,	drag	a	Microsoft®	OLE	DB	Provider
for	SQL	Server	connection	onto	the	Data	Transformation	Services
(DTS)	Designer	design	sheet.

2.	 In	the	New	Connection	box,	type	Cn1.

3.	 In	the	Data	source	list,	click	Microsoft	SQL	OLE	DB	Provider	for
SQL	Server.	

4.	 In	the	Server	list,	click	local.

5.	 Do	one	of	the	following:

Click	Use	Windows	Authentication.

-or-

Click	Use	SQL	Server	Authentication,	and	then	enter	a	user
name	and	password.

6.	 In	the	Database	list,	click	Northwind.

How	To

How	to	create	a	second	connection	to	the	Northwind	database
using	DTS	Designer	(Enterprise	Manager)
To	create	a	second	connection	to	the	Northwind	database	using	DTS
Designer

1.	 From	the	Connection	toolbar,	drag	a	second	Microsoft®	OLE	DB
Provider	for	SQL	Server	connection	onto	the	Data	Transformation
Services	(DTS)	Designer	design	sheet.

2.	 In	the	New	Connection	box,	type	Cn2.

3.	 Complete	the	remaining	property	selections	as	you	did	for	the	first
connection.

How	To

How	to	copy	data	from	a	Northwind	table	using	DTS	Designer
(Enterprise	Manager)
To	copy	data	from	a	Northwind	table	using	DTS	Designer

1.	 On	the	Data	Transformation	Services	(DTS)	Designer	design	sheet,
CTRL-click	Cn1,	and	then	CTRL-click	Cn2.

The	order	in	which	you	CTRL-click	is	the	order	in	which	DTS	Designer
directs	the	data	flow.

2.	 On	the	Task	toolbar,	click	Transform	Data	Task.

An	arrow	appears	pointing	from	Cn1	to	Cn2.

3.	 Right-click	the	Transform	Data	arrow,	and	then	click	Properties.

4.	 In	the	Description	box,	type	Copy	Categories	data,	and	then	in	the
Table/View	list,	click	[Northwind].[dbo].[Categories].

5.	 Click	the	Destination	tab,	and	then	click	Create.

A	new	table	is	created	to	receive	the	copy	of	the	source	data.

6.	 In	the	Create	Destination	Table	dialog	box,	in	the	SQL	statement
box,	position	the	insertion	point	in	the	first	line	and	edit	the	CREATE
TABLE	statement	so	it	reads:

CREATE	TABLE	[Categories2]
7.	 Click	the	Transformations	tab	and	view	the	mappings	between	the

source	and	destination	columns	in	the	two	tables.	Then	click	OK	to
exit	the	Transform	Data	Task	Properties	dialog	box	and	save	the
settings.

Note		In	this	example,	you	are	copying	data,	but	you	also	can	use	this
dialog	box	to	map	transformations	or	manipulate	the	columns.

How	To

How	to	configure	an	Execute	SQL	task	to	drop	and	re-create	a
destination	table	(Enterprise	Manager)
To	configure	an	Execute	SQL	Task	to	drop	and	re-create	a	destination	table

1.	 From	the	Task	toolbar,	drag	an	Execute	SQL	task	onto	the	Data
Transformation	Services	(DTS)	Designer	design	sheet.		

2.	 In	the	Description	box,	type	Drop	Dest	Table.

After	you	configure	the	task,	that	text	will	display	on	the	design	sheet,	under
the	Execute	SQL	task	icon.

3.	 In	the	Existing	connection	list,	click	Cn2.

In	this	example,	you	can	use	either	connection	because	both	Cn1	and
Cn2	connect	to	the	same	database.	However,	it	is	better	practice	to	use
the	destination	connection.

4.	 In	the	SQL	statement	text	box,	type	the	following	SQL	code:
IF	EXISTS	(SELECT	*	from	sysobjects	
			WHERE	id	=	object_id(N'[Northwind].[dbo].[Categories2]')	AND
			OBJECTPROPERTY(id,	N'IsUserTable')	=	1)
			DROP	Table	[Northwind].[dbo].[Categories2]
GO

CREATE	TABLE	[Northwind].[dbo].[Categories2]
(
			[CategoryID]		[int]		IDENTITY	(1,1)		NOT	NULL		PRIMARY	KEY,
			[CategoryName]		[nvarchar]		(15)		NOT	NULL,
			[Description]		[ntext],
			[Picture]		[image]
)
GO

This	SQL	code	checks	for	the	presence	of	the	destination	table.	If	the	table
does	not	exist,	it	is	created.	If	the	table	exists,	it	is	dropped	and	re-created.
Without	this	package	step,	the	same	data	from	the	source	table	is	appended	to
the	destination	table	every	time	the	package	is	run.

5.	 Click	OK	to	save	the	configuration	settings	and	SQL	code	for	the
Execute	SQL	task.

How	To

How	to	configure	workflow	in	the	Execute	SQL	task	(Enterprise
Manager)
To	configure	workflow	in	the	Execute	SQL	Task

1.	 On	the	Data	Transformation	Services	(DTS)	design	sheet,	CTRL-click
Drop	Dest	Table	(the	Execute	SQL	task	you	created),	and	then	CTRL-
click	Cn1	(the	first	Northwind	connection).

2.	 Click	the	Workflow	menu,	and	then	click	On	success.

A	green	striped	arrow	appears	pointing	from	Drop	Dest	Table	to	Cn1.	This
arrow	is	a	conditional	precedence	constraint.	It	directs	the	workflow	so	that
the	first	task	must	execute	successfully	in	order	for	the	next	task	(the
Transform	Data	task)	to	run.

How	To

How	to	save	the	DTS	package	to	a	SQL	Server	msdb	table
(Enterprise	Manager)
To	save	the	DTS	package	to	a	SQL	Server	msdb	table

1.	 In	Data	Transformation	Services	(DTS)	Designer,	on	the	Package
menu,	click	Save.

2.	 In	the	Package	name	box,	type	Northwind	Package.	

3.	 In	the	Location	list,	click	SQL	Server.

How	To

How	to	access	a	DTS	package	template	(Enterprise	Manager)
To	access	a	DTS	package	template

1.	 In	SQL	Server	Enterprise	Manager,	right-click	Data	Transformation
Services,	point	to	All	Tasks,	and	then	click	Open	Template.

2.	 In	the	Select	File	dialog	box,	double-click	the	template	you	want	(.dtt
file).

How	To

How	to	create	and	save	a	DTS	package	template	(Enterprise
Manager)
To	create	and	save	a	DTS	package	template

1.	 In	Data	Transformation	Services	(DTS)	Designer,	right-click	the
design	sheet	of	a	DTS	package,	click	Disconnected	Edit,	and	stub	out
property	values	that	will	be	entered	later	by	template	users.	Repeat	as
needed.

You	stub	out	a	property	value	by	replacing	it	with	a	label	or	instruction
or	by	deleting	the	current	value.

2.	 Right-click	the	design	sheet,	click	Add	Text	Annotation,	and	then	add
labels	and	instructions.	Repeat	as	needed.

3.	 On	the	Package	menu,	click	Save.

4.	 In	the	Package	name	box,	type	a	name	for	the	template	and	optionally
any	passwords.	

5.	 In	the	Location	list,	click	Structured	Storage	File.

6.	 In	the	File	name	box,	type	a	name	for	the	package	template	and
change	the	file	suffix	from	.dts	to	.dtt.

7.	 Click	the	browse	(...)	button	to	select	a	directory	location	to	save	the
template.

How	To

DTS	Package	Elements
The	following	are	procedures	for	adding,	configuring,	and	using	Data
Transformation	Services	(DTS)	tasks,	transformations,	connections,	and
workflow	items.

How	To

How	to	create	a	Transform	Data	task	(Enterprise	Manager)
To	create	a	Transform	Data	Task

1.	 On	the	Data	Transformation	Services	(DTS)	Designer	design	sheet,
click	the	connection	you	want	to	use	as	a	source,	and	then	CTRL-click
the	connection	you	want	to	use	as	a	destination.

You	must	have	your	source	and	destination	connections	defined	before
configuring	a	Transform	Data	task.

2.	 From	the	Task	toolbar,	drag	a	Transform	Data	task	to	the	design	sheet.

See	Also

DTS	Connections

Tasks	That	Transform	Data

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	configure	the	connections	for	a	Transform	Data	task
(Enterprise	Manager)
To	configure	the	connections	for	a	Transform	Data	task

1.	 Point	to	the	Transform	Data	task	on	the	Data	Transformation	Services
(DTS)	Designer	design	sheet	until	the	cursor	changes,	and	then
double-click	to	open	the	Transform	Data	Task	Properties	dialog
box.

2.	 On	the	Source	tab,	type	a	description	for	the	task.

3.	 Under	Connection,	do	one	of	the	following:

Click	Table	/	View	and	select	a	table	or	view	from	the	list.

Click	SQL	query.	You	can	enter	the	query	text	in	the	box	or
click	Build	Query	to	create	the	query	with	DTS	Query
Designer.	If	you	create	a	query	with	input	parameters,	click
Parameters	to	assign	the	parameters	to	DTS	package	global
variables.

4.	 Click	the	Destination	tab,	and	then	do	one	of	the	following:

In	the	Table	name	list,	select	a	destination	table.

Create	a	new	table	by	clicking	Create	and	editing	the
CREATE	TABLE	script	in	the	Create	Destination	Table
dialog	box.

See	Also

DTS	Connections

DTS	Transformations

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Tasks	That	Transform	Data

Transform	Data	Task

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	configure	a	new	transformation	for	a	Transform	Data
task	(Enterprise	Manager)
To	configure	a	new	transformation	for	a	Transform	Data	Task

1.	 After	configuring	your	source	and	destination	connections,	click	the
Transformations	tab.

2.	 Do	one	of	the	following:

If	the	columns	you	want	are	not	already	mapped	to	another
transformation,	click	New.

If	the	columns	you	want	are	already	mapped,	click	on	the
mapping	line	for	the	transformation,	click	Delete,	and	then
click	New.

3.	 In	the	Create	New	Transformation	dialog	box,	click	the	type	of
transformation	you	want	to	add.	The	Transformation	Options	dialog
box	is	displayed.	

4.	 Click	the	Source	Columns	tab,	and	then	use	the	arrow	buttons	to
select	columns	for	the	transformation.

5.	 Click	the	Destination	Columns	tab,	and	then	use	the	arrow	buttons	to
select	columns	for	the	transformation.	

6.	 Click	the	General	tab,	click	Properties,	and	then	accept	or	edit	the
properties	for	the	transformation	you	selected.

7.	 Repeat	steps	2	through	6	for	each	transformation	you	want	to	create.

See	Also

Mapping	Column	Transformations

DTS	Transformations

Tasks	That	Transform	Data

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	activate	the	multiphase	data	pump	feature	(Enterprise
Manager)
To	activate	the	multiphase	data	pump	feature

1.	 In	SQL	Server	Enterprise	Manager	console	tree,	right-click	Data
Transformation	Services,	and	then	click	Properties.

2.	 Under	Designer,	select	the	Show	multi-phase	pump	in	DTS
Designer	check	box.

See	Also

Multiphase	Data	Pump	Functionality

JavaScript:hhobj_1.Click()

How	To

How	to	add	a	multiphase	data	pump	transformation	function
using	an	ActiveX	script	(Enterprise	Manager)
To	add	a	multiphase	data	pump	transformation	function	using	an	ActiveX
script

1.	 After	activating	the	multiphase	data	pump	feature	and	configuring
your	source	and	destination	connections,	click	the	Transformations
tab.

2.	 In	the	Phases	filter	list,	click	the	data	pump	phase	you	want	to	add.

The	Phases	filter	list	displays	all	the	transformations	configured	for	a
specific	data	pump	phase.	By	default,	the	Row	transform	phase	is	selected.

3.	 Do	one	of	the	following:

If	the	columns	you	want	are	not	already	mapped	to	another
transformation,	click	New.

If	the	columns	you	want	are	already	mapped,	click	on	the
mapping	line	for	the	transformation,	click	Delete,	and	then
click	New.

4.	 In	the	Create	New	Transformation	dialog	box,	click	ActiveX	Script.

5.	 Click	the	Source	Columns	tab,	and	then	use	the	arrow	buttons	to
select	columns	for	the	transformation.

6.	 Click	the	Destination	Columns	tab,	and	then	use	the	arrow	buttons	to
include	a	column	in	the	transformation.

7.	 Click	the	General	tab,	click	Properties,	and	then	click	the	Phases	tab.

8.	 Select	the	data	pump	phases	for	which	you	will	be	adding	Microsoft®
ActiveX®	script	functions,	and	then	for	the	selected	phases,	type	the
names	of	those	functions	in	their	respective	boxes.	

9.	 In	the	ActiveX	Script	text	box,	enter	the	ActiveX	script	code	for	each
function.

The	function	names	specified	in	the	ActiveX	Script	text	box	must
match	those	entered	on	the	Phases	tab.

See	Also

ActiveX	Script	Transformation

Multiphase	Data	Pump	Functionality

Tasks	That	Transform	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	call	a	COM	object	that	customizes	one	or	more	data	pump
phases	(Enterprise	Manager)
To	call	a	COM	object	that	customizes	one	or	more	data	pump	phases

1.	 After	activating	the	multiphase	data	pump	feature	and	after
configuring	your	source	and	destination	connections,	click	the
Transformations	tab.

2.	 In	the	Phases	filter	list,	click	the	data	pump	phase	you	want	to
customize.

The	Phases	filter	list	displays	all	the	transformations	configured	for	a
specific	data	pump	phase.	By	default,	the	Row	transform	phase	is
selected.

3.	 Do	one	of	the	following:

If	the	columns	you	want	are	not	already	mapped	to	another
transformation,	click	New.

If	the	columns	you	want	are	already	mapped,	click	on	the
mapping	line	for	the	transformation	and	click	Delete,	and	then
click	New.

4.	 In	the	Create	New	Transformation	dialog	box,	click	the	entry
corresponding	to	the	custom	transformation	(COM	object)	that	will	be
called.

Note		If	the	COM	object	has	been	installed	on	your	computer	but	does
not	appear	in	the	Create	New	Transform	dialog	box,	and	you	have
enabled	Data	Transformation	Services	(DTS)	caching,	you	must
refresh	the	cache.	In	SQL	Server	Enterprise	Manager,	right-click	Data
Transformation	Services,	and	then	click	Properties.	Under	Cache,
click	Refresh	Cache.

5.	 Click	the	Source	Columns	tab,	and	then	use	the	arrow	buttons	to

select	columns	for	the	transformation.

6.	 Click	the	Destination	Columns	tab,	and	then	use	the	arrow	buttons	to
include	a	column	in	the	transformation.

7.	 Click	the	Phases	tab,	and	then	click	the	data	pump	phases	that	will	call
the	custom	transformation	you	are	supplying.

Note		If	the	custom	transformation	includes	a	user	interface,	you	can
click	the	General	tab	and	then	click	Properties	to	enter	any	additional
information	for	the	transformation.

See	Also

Multiphase	Data	Pump	Functionality

Tasks	That	Transform	Data

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	enable	the	Transform	Data	task	fast	load	options
(Enterprise	Manager)
To	enable	the	Transform	Data	Task	fast	load	options

1.	 After	configuring	the	connections	and	transformations	for	a	Transform
Data	task,	click	the	Options	tab.

2.	 Select	the	Use	fast	load	check	box,	and	then	select	any	of	the	other
Microsoft®	SQL	Server™	fast	load	options	that	you	want	to	use.

The	fast	load	options	are	only	in	effect	when	you	use	the	Microsoft
OLE	DB	Provider	for	SQL	Server	as	the	destination	connection.

See	Also

DTS	Transformations

Tasks	That	Transform	Data

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	configure	the	fast	load	batch	options	(Enterprise
Manager)
To	configure	the	fast	load	batch	options

1.	 After	configuring	the	connections	and	transformations	for	a	Transform
Data	task,	click	the	Options	tab.

2.	 Select	the	Use	fast	load	check	box.

The	fast	load	options	are	only	in	effect	when	you	use	the	Microsoft®
OLE	DB	Provider	for	SQL	Server	as	the	destination	connection.

3.	 In	Insert	batch	size	box,	enter	a	value	for	the	batch	size.

4.	 Optionally,	select	the	Commit	final	batch	check	box	if	you	want	to
commit	all	rows	in	the	last	batch	that	will	be	copied	prior	to	an	error.

5.	 In	the	Max	error	count	box,	enter	a	value	to	specify	the	number	of
row-level	errors	detected	by	the	Transform	Data	task	plus	the	number
of	batch	failures	that	must	be	exceeded	before	data	pump	operation	for
the	task	is	terminated.

See	Also

DTS	Transformations

Tasks	That	Transform	Data

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	configure	the	data	pump	exception	files	(Enterprise
Manager)
To	configure	the	data	pump	exception	files

1.	 On	the	Data	Transformation	Services	(DTS)	design	sheet,	double-click
a	Transform	Data	task	or	Data	Driven	Query	task.

You	must	have	your	source	and	destination	connections	defined	before
configuring	a	Transform	Data	task.

2.	 Click	the	Options	tab.

3.	 Under	Exception	file,	in	the	Name	box,	type	a	file	path	for	the	text
file	you	want	to	use	as	an	exception	file,	or	click	the	browse	(...)	button
to	locate	the	file.

If	you	enter	a	file	that	does	not	exist,	the	file	will	be	created	when	the
step	associated	with	this	transformation	task	is	run.

4.	 Optionally,	if	you	want	to	use	the	Microsoft®	SQL	Server™	2000	data
pump	exception	file	options,	then	under	File	type,	clear	the	7.0	format
check	box	and	select	the	exception	files	you	want	to	generate.	

5.	 Under	File	format,	select	any	additional	options	for	the	exception	file.

See	Also

DTS	Connections

Tasks	That	Transform	Data

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	add	a	DTS	task	to	a	DTS	package	(Enterprise	Manager)
To	add	a	DTS	task	to	a	DTS	package	in	DTS	Designer

From	the	Task	toolbar,	drag	the	task	onto	the	Data	Transformation
Services	(DTS)	design	sheet.

See	Also

DTS	Tasks

JavaScript:hhobj_1.Click()

How	To

How	to	add	the	Bulk	Insert	task	to	a	DTS	package	(Enterprise
Manager)
To	add	a	Bulk	Insert	task	to	a	DTS	package	in	DTS	Designer

1.	 From	the	Connection	toolbar,	drag	a	Microsoft®	OLE	DB	Provider
for	SQL	Server	connection	onto	the	Data	Transformation	Services
(DTS)	design	sheet	and	configure	the	connection.

Note		The	Bulk	Insert	Task	requires	one	Microsoft	OLE	DB	Provider
for	SQL	Server	connection.	If	such	a	connection	is	already	configured
in	the	package,	you	can	skip	Step	1.

2.	 From	the	Task	toolbar,	drag	a	Bulk	Insert	Task	to	the	design	sheet.

See	Also

Bulk	Insert	Task

JavaScript:hhobj_1.Click()

How	To

How	to	add	the	Execute	SQL	task	to	a	DTS	package	(Enterprise
Manager)
To	add	the	Execute	SQL	task	to	a	DTS	package	in	DTS	Designer

1.	 From	the	Connection	toolbar,	drag	a	connection	onto	the	Data
Transformation	Services	(DTS)	design	sheet	and	configure	the
connection.

Note		The	Execute	SQL	task	requires	one	connection.	If	a	connection
is	already	configured	in	the	package	and	you	can	access	the	data
source	through	that	connection,	you	can	skip	Step	1.

2.	 From	the	Task	toolbar,	drag	an	Execute	SQL	task	to	the	design	sheet.

See	Also

Execute	SQL	Task

JavaScript:hhobj_1.Click()

How	To

How	to	execute	a	stored	procedure	with	an	input	parameter
(Enterprise	Manager)
To	execute	a	stored	procedure	with	an	input	parameter	using	the	Execute
SQL	task

1.	 In	the	Execute	SQL	Task	Properties	dialog	box,	in	the	SQL
statement	box,	type	the	parameterized	SQL	stored	procedure
statement.	For	example:
exec	byRoyalty	?

2.	 Click	Parameters,	click	the	Input	Parameters	tab,	and	then	assign	a
global	variable	and	its	value	to	the	parameter.

How	To

How	to	save	row	values	into	global	variables	(Enterprise
Manager)
To	save	row	values	into	global	variables

1.	 From	the	Connection	toolbar,	drag	a	Microsoft®	OLE	DB	Provider
for	SQL	Server	connection	to	the	Data	Transformation	Services	(DTS)
design	sheet.

2.	 In	the	Connection	Properties	dialog	box,	in	the	Database	list,	click
pubs.

3.	 From	the	Task	toolbar,	drag	an	Execute	SQL	task	to	the	design	sheet.	

4.	 In	the	Execute	SQL	Task	Properties	dialog	box,	in	the	Existing
connection	list,	click	the	pubs	connection	just	created.	

5.	 In	the	SQL	statement	box,	type	the	SQL	code.	For	example:
SELECT	*
FROM	titleauthor
WHERE	(royaltyper	=	'40')

6.	 Click	Parameters,	click	Create	Global	Variables,	and	then	enter	the
global	variable	names.	For	example:	o_au_id,	o_title_id,	o_au_order,
and	o_royaltyper.	

7.	 Click	the	Output	Parameters	tab,	click	Row	Value,	and	in	the
Output	Global	Variables	column,	click	a	row	and	select	the	global
variable	from	the	list	to	hold	the	column's	data.

You	can	skip	a	column	when	saving	values	to	a	global	variable.	For
example,	if	you	do	not	want	to	store	the	value	of	the	title_id	column,
modify	the	Output	Global	Variable	column	to	assign	the	title_id

column	to	<none>.

Note		If	the	package	has	been	executed	and	a	value	previously
returned	into	the	o_title_id	global	variable,	setting	the	title_id	column
to	<none>	will	not	reset	or	null	the	value	of	o_title_id.	The	global
variable	will	contain	the	last	value	to	which	it	was	set.	For	more
information,	see	Using	Global	Variables	with	DTS	Packages.

JavaScript:hhobj_1.Click()

How	To

How	to	retrieve	the	row	value	data	(Enterprise	Manager)
To	retrieve	the	row	value	data

1.	 From	the	Task	toolbar,	drag	a	Microsoft®	ActiveX®	Script	task	onto
the	Data	Transformation	Services	(DTS)	design	sheet.

2.	 In	the	ActiveX	Script	Properties	dialog	box,	after	the	Function
Main()	statement,	type	the	following	Microsoft	Visual	Basic®
Scripting	Editing	(VBScript)	code:
MsgBox	"The	author	ID	is	"	&	DTSGlobalVariables("o_au_id").value
MsgBox	"The	title	ID	is	"	&	DTSGlobalVariables("o_title_id").value
MsgBox	"The	au_ord	is	"	&	DTSGlobalVariables("o_au_ord").value
MsgBox	"The	royalty	is	"	&	DTSGlobalVariables("o_royaltyper").value

Main	=	DTSTaskExecResult_Success

3.	 On	the	design	sheet,	click	the	Execute	SQL	task,	and	then	CTRL-click
the	ActiveX	Script	task.	

4.	 On	the	Workflow	menu,	click	On	Success	or	On	Completion.

How	To

How	to	save	an	entire	rowset	into	a	global	variable	(Enterprise
Manager)
To	save	an	entire	result	set	of	a	SELECT	statement	into	a	global	variable
using	the	Execute	SQL	task

1.	 From	the	Connection	toolbar,	drag	a	Microsoft®	OLE	DB	Provider
for	SQL	Server	connection	to	the	design	sheet.	

2.	 In	the	Database	list,	click	pubs.

3.	 From	the	Task	toolbar,	drag	an	Execute	SQL	task	to	the	Data
Transformation	Services	(DTS)	design	sheet.

4.	 In	the	Execute	SQL	Properties	dialog	box,	in	the	Existing
connection	list,	click	the	pubs	connection	just	created.	

5.	 In	the	SQL	statement	box,	type	the	following:
SELECT	*
FROM	titleauthor

6.	 Click	Parameters,	and	then	click	Create	Global	Variables.

7.	 In	the	Name	list,	type	Authors,	and	then	in	the	Type	list,	click
<other>.	Leave	the	Value	box	empty.	

8.	 Click	the	Output	Parameters	tab,	click	Rowset,	and	then	in	the
Output	Parameter	Type	list,	select	the	Authors	global	variable.

This	procedure	assigns	all	records	returned	from	the	SELECT
statement	to	be	stored	in	the	Authors	global	variable.

How	To

How	to	retrieve	rowset	data	stored	in	a	global	variable
(Enterprise	Manager)
To	retrieve	the	rowset	data	stored	in	a	global	variable	using	the	Execute
SQL	task

1.	 From	the	Task	toolbar,	drag	a	Microsoft®	ActiveX®	Script	task	onto
the	Data	Transformation	Services	(DTS)	design	sheet.

2.	 In	the	ActiveX	Script	Properties	dialog	box,	after	the	Function
Main()	statement,	type	the	following	Microsoft	Visual	Basic®
Scripting	Edition	(VBScript)	code:
dim	countr
dim	RS
set	RS	=	CreateObject("ADODB.Recordset")
set	RS	=	DTSGlobalVariables("Authors").value

for	countr	=	1	to	RS.RecordCount
				MsgBox	"The	author	ID	is	"	&	RS.Fields("au_id").value
				RS.MoveNext
Next

Main	=	DTSTaskExecResult_Success

3.	 On	the	design	sheet,	click	the	Execute	SQL	task,	and	then	CTRL-click
the	ActiveX	Script	task.	

4.	 On	the	Workflow	menu,	click	On	Success	or	On	Completion.

The	au_id	column	for	each	row	returned	from	the	SELECT	statement
is	displayed.

How	To

How	to	send	a	message	with	the	Message	Queue	task	(Enterprise
Manager)
To	send	a	message	with	the	Message	Queue	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.	

2.	 In	the	Message	Queue	Task	Properties	dialog	box,	in	the
Description	box,	type	a	label	that	identifies	the	task	on	the	design
sheet.

3.	 In	the	Message	list,	click	Receive	messages.

4.	 In	the	Queue	box,	type	the	name	of	the
computer_name\queue_type$\queue_name	combination	that	identifies
the	queue	from	which	you	will	be	reading	messages.

5.	 Click	Add,	and	then	in	the	Message	type	list,	select	a	type	of	message
queue	and	configure	each	message:

Select	String	Message,	and	in	the	String	Message	box,	type
the	message.

Select	Data	File	Message,	and	in	the	File	Name	box,	type	the
path	of	the	file	to	send	the	message	to,	or	click	the	browse	(...)
button	to	locate	the	file.	

Select	Global	Variables	Message.	To	add	an	existing
package	global	variable,	click	New,	and	then	in	the	name	list,
click	a	global	variable.	To	create	a	global	variable	that	does
not	exist	in	the	package	for	use	as	a	message,	click	Create
Global	Variables.

How	To

How	to	receive	a	string	message	with	the	Message	Queue	task
(Enterprise	Manager)
To	receive	a	string	message	with	the	Message	Queue	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.

2.	 In	the	Message	Queue	Task	Properties	dialog	box,	in	the
Description	box,	enter	a	label	that	identifies	the	task	on	the	design
sheet.

3.	 In	the	Message	list,	click	Receive	messages.

4.	 In	the	Queue	box,	enter	the	name	of	the
computer_name\queue_type$\queue_name	combination	that	identifies
the	queue	from	which	you	will	be	reading	messages.

5.	 In	the	Message	type	list,	click	String	message,	and	then	under
Compare,	click	an	option	for	filtering	the	message.

6.	 If	you	click	Exact	Match,	Ignore	Case,	or	Containing	in	the
Compare	String	box,	type	the	search	text.

7.	 Select	the	Remove	from	message	queue	check	box	to	delete	any
received	message	from	the	queue.	Clear	this	check	box	to	leave	the
message	on	the	queue	after	task	completion.	

8.	 Clear	the	Timeout	after	check	box	to	wait	indefinitely	for	an
acceptable	message	or	select	the	Timeout	after	check	box	to	enter	a
timeout	interval.

The	timeout	interval	may	take	any	value	from	1	through	9999	(in
seconds).

How	To

How	to	receive	a	Data	File	Message	with	the	Message	Queue	task
(Enterprise	Manager)
To	receive	a	data	file	message	with	the	Message	Queue	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.

2.	 In	the	Message	Queue	Task	Properties	dialog	box,	in	the
Description	box,	enter	a	label	that	identifies	the	task	on	the	design
sheet.

3.	 In	the	Message	list,	click	Receive	messages.

4.	 In	the	Queue	box,	enter	the	name	of	the
computer_name\queue_type$\queue_name	combination	that	identifies
the	queue	from	which	you	will	be	reading	messages.

5.	 In	the	Message	type	list,	click	Data	File	Message.

6.	 In	the	Save	file	as	box,	enter	the	path	of	a	file	or	directory	on	your
computer,	or	click	the	browse	(...)	button	to	locate	the	file.

7.	 Under	Only	receive	message	from	a	specific	package	or	version,
click	a	filter	option.

8.	 If	you	select	From	package	or	From	version,	set	Identifier	to	the
globally	unique	identifier	(GUID)	string	that	identifies	the	proper	DTS
package	or	version.	Use	the	browse	(...)	button	to	search	for	available
packages	and	versions.

9.	 Clear	the	Timeout	after	check	box	to	wait	indefinitely	for	an
acceptable	message	or	select	the	Timeout	after	check	box	to	enter	a
timeout	interval.	The	value	can	range	from	1	through	9999	(in
seconds).

How	To

How	to	receive	a	global	variables	message	with	the	Message
Queue	task	(Enterprise	Manager)
To	receive	a	global	variables	message	with	the	Message	Queue	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.	

2.	 In	the	Message	Queue	Task	Properties	dialog	box,	in	the
Description	box,	enter	a	label	that	identifies	the	task	on	the	design
sheet.

3.	 In	the	Message	list,	click	Receive	messages.

4.	 In	the	Queue	box,	enter	the	name	of	the
computer_name\queue_type$\queue_name	combination	that	identifies
the	queue	from	which	you	will	be	reading	messages.

5.	 In	the	Message	type	box,	click	Global	Variables	Message.

6.	 Under	Only	receive	message	from	a	specific	package	or	version,
click	a	filter	option.

7.	 If	you	selected	From	package	or	From	version,	set	Identifier	to	the
globally	unique	identifier	(GUID)	string	that	identifies	the	proper	DTS
package	or	version.	Use	the	browse	(...)	button	to	search	for	available
packages	and	versions.

8.	 Clear	the	Timeout	after	check	box	to	wait	indefinitely	for	an
acceptable	message.	Select	the	Timeout	after	check	box	to	enter	a
timeout	interval.	The	value	can	range	from	1	through	9999	(in
seconds).

How	To

How	to	configure	the	Ask	For	Facts	task	(Enterprise	Manager)
To	configure	the	Ask	For	Facts	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.

2.	 In	the	Message	Queue	Task	Properties	dialog	box,	in	the
Description	box,	type	Ask	For	Facts.

3.	 In	the	Message	box,	click	Send	Message.

4.	 In	the	Queue	box,	enter	the	name	of	the
computer_name\queue_type$\queue_name	combination	that	identifies
the	location	to	which	these	messages	will	be	sent.

5.	 Under	Messages	to	be	sent,	click	New,	and	then	in	the	Message	type
box,	click	String	Message.

6.	 In	the	String	Message	box,	type	Summarize	shipments.

7.	 On	the	design	sheet,	right-click	Ask	For	Facts,	point	to	Workflow,
and	then	click	Workflow	Properties.

8.	 Click	the	Options	tab,	and	then	clear	the	following	check	boxes:

Join	transaction	if	present

Commit	transaction	on	successful	completion	of	this	step

Rollback	transaction	on	failure

How	To

How	to	configure	the	Wait	For	Trigger	task	(Enterprise	Manager)
To	configure	the	Wait	For	Trigger	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.

2.	 In	the	Message	Queue	Task	Properties	dialog	box,	in	the
Description	box,	type	Wait	for	Trigger.

3.	 In	the	Message	list,	click	Receive	Message.	In	the	Queue	box,	enter
the	same	computer_name\queue_type$\queue_name	combination	as
that	entered	for	the	Ask	for	Facts	task.

4.	 In	the	Message	type	list,	click	String	Message.

5.	 Under	Compare,	click	Exact	Match,	and	then	in	the	Compare	String
box,	type	Summarize	shipments.

6.	 Select	the	Remove	from	message	queue	check	box.

7.	 On	the	design	sheet,	right-click	Wait	for	Trigger,	point	to	Workflow,
and	then	click	Workflow	Properties.	

8.	 In	the	Workflow	Properties	dialog	box,	click	the	Options	tab,	and
then	clear	the	following	check	boxes:

Join	transaction	if	present

Commit	transaction	on	successful	completion	of	this	step

Rollback	transaction	on	failure

How	To

How	to	create	and	configure	Add	New	Employees	(Enterprise
Manager)
To	create	and	configure	the	Add	New	Employees	package

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	right-click	Data
Transformation	Services,	and	then	click	New	Package.

2.	 On	the	Package	menu,	click	Save.

3.	 In	the	Package	name	box,	type	Add	New	Employees,	and	in	the
Location	list,	click	SQL	Server.

4.	 Right-click	the	Data	Transformation	Services	(DTS)	design	sheet,	and
then	click	Package	Properties.

5.	 Click	the	Advanced	tab,	select	the	Use	transactions	check	box,	and
then	clear	the	Commit	on	successful	package	completion	check	box.

6.	 Click	the	Logging	tab,	and	then	under	Error	handling,	clear	the	Fail
package	on	first	error	check	box.

How	To

How	to	configure	the	New	Employee	task	(Enterprise	Manager)
To	configure	the	New	Employee	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.

2.	 In	the	Message	Queue	Task	Properties	dialog	box,	in	the
Description	box,	type	New	Employee.

3.	 In	the	Message	box,	click	Receive	Message.

4.	 In	the	Queue	box,	enter	the	name	of	the
computer_name\queue_type$\queue_name	combination	to	identify	the
queue	at	which	global	variable	messages	will	be	received.

5.	 In	the	Message	type	list,	click	Global	Variables	Message,	and	then
click	No	filter.

6.	 Specify	the	following	options:

Select	the	Remove	from	message	queue	check	box	or	the
DTS	package	will	loop	indefinitely	as	it	repeatedly	attempts
to	add	the	same	employee.

Select	the	Timeout	after	check	box	to	force	package
termination	after	the	queue	is	emptied,	and	then	in	the
seconds	box,	type	1.

7.	 On	the	design	sheet,	right-click	New	Employee,	point	to	Workflow,
and	then	select	Workflow	Properties.	

8.	 In	the	Workflow	Properties	dialog	box,	click	the	Options	tab,	and

then	clear	the	following	check	boxes:

Join	transaction	if	present

Commit	transaction	on	successful	completion	of	this	step

Rollback	transaction	on	failure

How	To

How	to	configure	the	Transform	Data	task	for	Global	Variable
Messages	(Enterprise	Manager)
To	configure	the	Transform	Data	task	for	global	variable	messages

1.	 Click	Not	Used,	and	then	CTRL-click	Corporate.	

2.	 On	the	Task	toolbar,	click	Transform	Data	Task,	and	then	on	the
Data	Transformation	Services	(DTS)	design	sheet,	double-click	the
resulting	arrow.

3.	 In	the	Data	Transformation	Properties	dialog	box,	do	the	following:

a.	 In	the	Description	box,	type	Insert	One	Employee.

b.	 Under	Connection,	click	SQL	query,	and	then	in	the	text
box,	type	SELECT	'xxx'	AS	xxx.
This	generates	a	source	rowset	with	one	row	in	it.	As	a
result,	the	insert	will	be	attempted	exactly	once.

4.	 Click	the	Destination	tab,	and	then	in	the	Table	name	list,	select	the
Employee	table.

5.	 Click	the	Transformations	tab,	and	then	do	the	following:

a.	 Click	Delete	All	to	clear	any	default	transformations.

b.	 In	the	Destination	list,	click	EmployeeID,	and	then	CTRL-
click	EmployeeName.

c.	 Click	New.

6.	 In	the	Create	New	Transformation	dialog	box,	click	ActiveX	Script.

7.	 In	the	Transformation	Options	dialog	box,	click	Properties.

8.	 In	the	Active	X	Script	Transformation	Properties	dialog	box,	under
Entry	function,	type	the	following:
DTSDestination	("EmployeeID")	=	DTSGlobalVariables("ID")
DTSDestination("EmployeeName")	=	DTSGlobalVariables("Name")

9.	 Right-click	the	Transform	Data	task,	and	then	click	Workflow
Properties.

10.	 In	the	Workflow	Properties	dialog	box,	click	the	Options	tab,	and
then	do	the	following:

Select	the	Join	transaction	if	present	check	box.

Select	the	Commit	transaction	on	successful	completion	of
this	step	check	box.

Clear	the	Rollback	transaction	on	failure	check	box.

11.	 Click	the	Precedence	tab,	and	then	add	a	new	entry	with	Source	Step
set	to	New	Employee	and	Precedence	set	to	Success.

How	To

How	to	configure	the	Log	Bad	Update	task	(Enterprise	Manager)
To	configure	the	Log	Bad	Update	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.

2.	 In	the	Message	Queue	Task	Properties	dialog	box,	in	the
Description	box,	type	Log	Bad	Update.

3.	 In	the	Message	list,	click	Send	Messages.

4.	 In	the	Queue	box,	enter	the	name	of	the
computer_name\queue_type$\queue_name	combination	that	identifies
the	location	to	which	bad	update	messages	will	be	sent.

5.	 Click	Add,	and	then	in	the	Message	type	list,	click	Global	Variables
Message.

6.	 Add	the	global	variables	ID	and	Name	by	doing	the	following:

a.	 Click	Create	Global	Variables.

b.	 In	the	Global	Variables	dialog	box,	type	ID	under	a	blank
entry	in	the	Variables	list,	then	click	New	to	create	a	new
entry	and	enter	Name.

c.	 In	the	Message	Queue	Message	Properties	dialog	box,
click	New,	click	in	the	box	under	Name,	and	then	select	ID
from	the	list.	Repeat	this	step	for	the	global	variable	Name.

Note		Entries	for	Type	and	Value	have	no	effect	in	this

application.	You	do	not	need	to	enter	values.

7.	 On	the	design	sheet,	right-click	Log	Bad	Update,	point	to	Workflow,
and	then	click	Workflow	Properties.	

8.	 Click	the	Options	tab,	and	then	do	the	following:

Select	the	Join	transaction	if	present	check	box.

Select	the	Commit	transaction	on	successful	completion	of
this	step	check	box.

Clear	the	Rollback	transaction	on	failure	check	box.

9.	 Click	the	Precedence	tab,	and	then	add	a	new	entry	with	Source	Step
set	to	Insert	One	Employee	and	Precedence	set	to	Failure.

How	To

How	to	configure	one	Loop	task	(Enterprise	Manager)
To	configure	one	Loop	task

1.	 On	the	Data	Transformation	Services	(DTS)	design	sheet,	right-click
New	Employee,	point	to	Workflow,	and	then	click	Workflow
Properties.	

2.	 In	the	Workflow	Properties	dialog	box,	click	the	Options	tab	and
note	the	name	of	the	step	in	the	Name	box.

It	is	likely	to	be	DTSStep_DTSMessageQueueTask_1.	You	will	need
to	click	this	name	in	another	box	later	in	this	procedure.

3.	 From	the	Task	toolbar,	drag	a	Dynamic	Properties	task	onto	the	design
sheet.

4.	 In	the	Dynamic	Properties	Task	Properties	dialog	box,	in	the
Description	box,	type	Loop,	and	then	click	Add.

5.	 In	the	tree	display	in	the	left	pane,	expand	Steps,	and	then	expand
DTSStep_DTSMessageQueueTask_1	(the	name	you	noted	in	Step
2).

6.	 In	the	right	pane,	under	Property	name,	double-click
ExecutionStatus.

7.	 In	the	Add/Edit	Assignment	dialog	box,	in	the	Source	list,	click
Constant,	and	then	in	the	Constant	box,	type	1.

1	is	the	value	assigned	to	DTSStepExecStat_Waiting.

8.	 On	the	design	sheet,	right-click	Loop,	point	to	Workflow,	and	then
click	Workflow	Properties.	

9.	 Click	the	Precedence	tab,	and	then	add	a	new	entry	with	Source	Step
set	to	either	Insert	One	Employee	or	Log	Bad	Update	and
Precedence	set	to	Success.

How	To

How	to	create	and	configure	the	Load	Expenses	package
(Enterprise	Manager)
To	create	and	configure	the	Load	Expenses	package

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	right-click	Data
Transformation	Services,	and	then	click	New	Package.

2.	 On	the	Package	menu,	click	Save.	

3.	 In	the	Package	Name	box,	type	Load	Expenses.

4.	 Right-click	the	Data	Transformation	Services	(DTS)	design	sheet,	and
then	click	Package	Properties.	

5.	 Click	the	Logging	tab,	and	then	clear	the	Fail	package	on	first	error
check	box.

6.	 Click	the	Advanced	tab,	select	the	Use	transactions	check	box,	and
then	clear	the	Commit	on	successful	package	completion	check	box.

How	To

How	to	configure	the	Spreadsheet	Wait	task	(Enterprise
Manager)
To	configure	the	Spreadsheet	Wait	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.

2.	 In	the	Message	list,	click	Receive	Message.

3.	 In	the	Queue	box,	enter	the	name	of	the
computer_name\queue_type$\queue_name	combination	that	identifies
the	queue	where	expense	worksheets	will	be	sent.

4.	 In	the	Message	Type	list,	click	Data	File	Message.

5.	 In	the	Save	file	as	box,	type	C:\Temp\Expense.xls.

6.	 Do	the	following:

Select	the	Overwrite	check	box	to	prevent	the	first	worksheet
from	blocking	further	uploads.

Select	the	Remove	from	message	queue	check	box	or	the
package	will	loop	indefinitely	as	it	repeatedly	attempts	to	load
the	same	worksheet.

Clear	the	Timeout	after	check	box	because	this	package	runs
until	canceled.

7.	 On	the	design	sheet,	right-click	Wait,	point	to	Workflow,	and	then
click	Workflow	Properties.	

8.	 Click	the	Options	tab,	and	then	clear	the	following	check	boxes:

Join	transaction	if	present

Commit	transaction	on	successful	completion	of	this	step

Rollback	transaction	on	failure

How	To

How	to	configure	the	Delete	Raw	Data	task	(Enterprise	Manager)
To	configure	the	Delete	Raw	Data	task

1.	 From	the	Task	toolbar,	drag	an	Execute	SQL	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.

2.	 In	the	Execute	SQL	Task	Properties	dialog	box,	in	the	Description
box,	type	Delete	Raw	Data.

3.	 In	the	Existing	Connection	list,	click	Raw	Data.

4.	 In	the	SQL	Statement	text	box,	type	the	following:
DELETE	FROM	RawExpense.

5.	 On	the	design	sheet,	right-click	Delete	Raw	Data,	point	to	Workflow,
and	then	click	Workflow	Properties.	

6.	 Click	the	Options	tab,	and	then	clear	the	following	check	boxes:

Join	transaction	if	present

Commit	transaction	on	successful	completion	of	this	step

Rollback	transaction	on	failure

7.	 Click	the	Precedence	tab,	and	then	add	a	new	entry	with	Source	Step
set	to	Spreadsheet	Wait	and	set	Precedence	to	Success.

How	To

How	to	configure	the	Load	Raw	Data	task	(Enterprise	Manager)
To	configure	the	Load	Raw	Data	task

1.	 Click	Expense	Report,	and	then	CTRL-click	Raw	Data.

2.	 On	the	Task	toolbar,	click	Transform	Data	Task,	and	then	on	the
Data	Transformation	Services	(DTS)	design	sheet,	double-click	the
resulting	arrow.	

3.	 In	the	Description	box,	type	Load	Raw	Data,	and	in	the	Table/View
list,	click	Expenses	to	load	data	from	the	proper	spreadsheet	range.

4.	 Click	the	Destination	tab,	and	then	in	the	Table	name	list,	click
RawExpense.

5.	 Click	the	Transformations	tab,	and	then	click	OK.

Clicking	OK	without	editing	the	transformations	saves	the	default
column	mappings.

6.	 On	the	design	sheet,	right-click	the	Transform	Data	task,	point	to
Workflow,	and	then	click	Workflow	Properties.	

7.	 Click	the	Options	tab,	and	then	do	the	following:

Clear	the	Commit	transaction	on	successful	completion	of
this	step	check	box.

Clear	the	Rollback	transaction	on	failure	check	box.

Select	the	Join	transaction	if	present	check	box.

8.	 Click	the	Precedence	tab,	and	then	add	a	new	entry	with	Source	Step

set	to	Delete	Raw	Data	and	Precedence	set	to	Success.

How	To

How	to	configure	the	Load	Filtered	Data	task	(Enterprise
Manager)
To	configure	the	Load	Filtered	Data	task

1.	 Click	Raw	Data,	and	then	CTRL-click	Corporate.

2.	 On	the	Task	toolbar,	click	Transform	Data	Task,	and	then	on	the
Data	Transformation	Services	(DTS)	design	sheet,	double-click	the
resulting	arrow.

3.	 In	the	Description	box,	type	Load	Final	Data.	

4.	 Under	Connection,	click	SQL	query,	and	then	in	the	text	box,	type
the	following	SQL	statement:
SELECT	FROM	RawExpense	WHERE	ExpenseDate	IS	NOT	NULL	

This	generates	a	source	rowset	without	any	null	rows.

5.	 Click	the	Destination	tab,	and	then	in	the	Table	name	list,	click
Expense.

6.	 Click	the	Transformations	tab,	and	then	click	OK.

Clicking	OK	without	editing	the	transformations	saves	the	default
column	mappings.

7.	 On	the	design	sheet,	right-click	the	Transform	Data	task,	point	to
Workflow,	and	then	click	Workflow	Properties.	

8.	 Click	the	Options	tab,	and	then	do	the	following:

Select	the	Commit	transaction	on	successful	completion	of
this	step	check	box.

Select	the	Join	transaction	if	present	check	box.

Clear	the	Rollback	transaction	on	failure	check	box.

9.	 Click	the	Precedence	tab,	and	then	add	a	new	entry	with	Source	Step
set	to	Load	Raw	Data	and	Precedence	set	to	Success.

How	To

How	to	configure	the	Failed	Expense	Load	(or	Failed	XLS	Load)
task	(Enterprise	Manager)
To	configure	the	Failed	Expense	Load	(or	Failed	XLS	Load)	task

1.	 From	the	Task	toolbar,	drag	a	Message	Queue	task	onto	the	Data
Transformation	Services	(DTS)	design	sheet.

2.	 In	the	Message	Queue	Task	Properties	dialog	box,	in	the
Description	box,	type	Failed	Expense	Load	(or	Failed	XLS	Load).

3.	 In	the	Message	list,	click	Send	Message.

4.	 In	the	Queue	box,	enter	the	name	of	the
computer_name\queue_type$\queue_name	combination	that	identifies
the	location	to	which	unloadable	worksheets	will	be	sent.

5.	 In	the	Messages	to	be	sent	list,	click	Add.

6.	 In	the	Message	type	box,	click	Data	File	Message,	and	in	the	File
Name	box,	type	C:\Temp\Expense.xls.

7.	 On	the	design	sheet,	right-click	Failed	Expense	Load	(or	Failed	XLS
Load),	point	to	Workflow,	and	then	click	Workflow	Properties.	

8.	 Click	the	Options	tab,	and	then	select	the	following	check	boxes:

	Commit	transaction	on	successful	completion	of	this	step

Join	transaction	if	present

Rollback	transaction	on	failure

9.	 Click	the	Precedence	tab,	and	then	add	a	new	entry	with	Source	Step
set	to	Load	Filtered	Data	(or	Load	Raw	Data)	and	Precedence	set	to
Failure.

How	To

How	to	create	and	configure	three	Loop	tasks	(Enterprise
Manager)
To	create	and	configure	three	Loop	tasks

1.	 On	the	Data	Transformation	Services	(DTS)	design	sheet,	right-click
Spreadsheet	Wait,	point	to	Workflow,	and	then	click	Workflow
Properties.

2.	 In	the	Workflow	Properties	dialog	box,	click	the	Options	tab	and
note	the	name	of	the	step	in	the	Name	box.

It	is	likely	to	be	DTSStep_DTSMessageQueueTask_1.	You	will	need
to	click	this	name	in	another	box	later	in	this	procedure.

3.	 From	the	Task	toolbar,	drag	a	Dynamic	Properties	task	onto	the	design
sheet.

4.	 In	the	Description	box,	type	Loop,	and	then	click	Add.

5.	 In	the	tree	display	in	the	left	pane,	expand	Steps,	and	then	expand
DTSStep_DTSMessageQueueTask_1	(the	name	you	noted	in	Step
2).

6.	 In	the	right	pane,	under	Property	name,	double-click	Execution
Status.

7.	 In	the	Add/Edit	Assignment	dialog	box,	in	the	Source	list,	click
Constant,	and	then	in	the	Constant	box,	type	1.

1	is	the	value	assigned	to	DTSStepExecStat_Waiting.

8.	 On	the	design	sheet,	do	the	following:

Right-click	Loop,	and	then	click	Copy.	

Right-click	the	design	sheet,	and	then	click	Paste.	Repeat	this
paste	once.	

Position	the	three	Loop	tasks	in	a	column	on	the	right	side	of
the	design	sheet.

9.	 Right-click	each	of	these	pasted	Loop	tasks,	point	to	Workflow,	and
then	click	Workflow	Properties.	

10.	 Click	the	Precedence	tab,	and	then	add	a	new	entry	with	Source	Step
set	to	the	proper	step:	Failed	XLS	Load,	Failed	Expense	Load,	or
Load	Filtered	Data.	Set	Precedence	to	Success.

How	To

How	to	convert	the	format	of	a	Date	Time	String	transformation
(Enterprise	Manager)
To	convert	the	format	of	a	Date	Time	String	transformation

1.	 On	the	Transformations	tab	of	the	Transform	Data	Task	Properties
or	Data	Driven	Query	Task	Properties	dialog	box,	click	the	Source
column	containing	the	date	or	time	to	be	modified,	and	then	click	the
Destination	column	where	you	want	the	modified	string	to	be	placed.	

2.	 Do	one	of	the	following:

If	there	is	a	mapping	arrow	connecting	the	two	columns,	click
Delete,	and	then	click	New.

If	there	is	no	mapping	arrow,	click	New.

3.	 In	the	Create	New	Transformation	dialog	box,	click	DateTime
String.

4.	 Click	the	General	tab,	and	then	click	Properties.

5.	 In	the	Date	Format	list,	select	the	format	you	want.

6.	 Click	Naming	to	display	the	Calendar	Names	dialog	box,	where	you
can	select	long	or	short	day	or	month	names	and	the	A.M.	and	P.M.
designators	you	want.

7.	 In	the	Language	list,	select	the	language	you	want,	and	then	click	Set
Language	Defaults.

See	Also

Date	Time	String	Transformation

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	convert	a	string	to	lowercase	characters	(Enterprise
Manager)
To	convert	a	string	to	lowercase	characters

1.	 On	the	Transformations	tab	of	the	Transform	Data	Task	Properties
or	Data	Driven	Query	Task	Properties	dialog	box,	click	the	Source
column	containing	the	string	to	be	modified,	and	then	click	the
Destination	column	where	you	want	the	modified	string	to	be	placed.	

2.	 Do	one	of	the	following:

If	there	is	a	mapping	arrow	connecting	the	two	columns,	click
Delete,	and	then	click	New.

If	there	is	no	mapping	arrow,	click	New.

3.	 In	the	Create	New	Transformation	dialog	box,	select	Lowercase
String.

See	Also

Lowercase	String	Transformation

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	convert	a	string	to	uppercase	characters	(Enterprise
Manager)
To	convert	a	string	to	uppercase	characters

1.	 On	the	Transformations	tab	of	the	Transform	Data	Task	Properties
or	Data	Driven	Query	Task	Properties	dialog	box,	click	the	Source
column	containing	the	string	to	be	modified,	and	then	click	the
Destination	column	where	you	want	the	modified	string	to	be	placed.	

2.	 Do	one	of	the	following:

If	there	is	a	mapping	arrow	connecting	the	two	columns,	click
Delete,	and	then	click	New

If	there	is	no	mapping	arrow,	click	New.

3.	 In	the	Create	New	Transformation	dialog	box,	select	Uppercase
String.

See	Also

Uppercase	String	Transformation

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	perform	a	Middle	of	String	transformation	(Enterprise
Manager)
To	perform	a	Middle	of	String	transformation

1.	 On	the	Transformations	tab	of	the	Transform	Data	Task	Properties
or	Data	Driven	Query	Task	Properties	dialog	box,	click	the	Source
column	containing	the	string	to	be	modified,	and	then	click	the
Destination	column	where	you	want	the	modified	string	to	be	placed.

2.	 Do	one	of	the	following:

If	there	is	a	mapping	arrow	connecting	the	two	columns,	click
Delete,	and	then	click	New.

If	there	is	no	mapping	arrow,	click	New.

3.	 In	the	Create	New	Transformation	dialog	box,	select	Middle	of
String.

4.	 Click	the	General	tab,	and	then	click	Properties.

5.	 In	the	Start	position	(1	based)	box,	type	or	select	the	first	character
position	occupied	by	the	substring.	

6.	 Optionally,	if	you	want	to	remove	characters	from	the	end	of	the
source	string,	select	the	Limit	number	of	characters	to	check	box
and	enter	a	maximum	substring	length.

See	Also

Middle	of	String	Transformation

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	perform	a	Trim	String	transformation	(Enterprise
Manager)
To	perform	a	Trim	String	transformation

1.	 On	the	Transformations	tab	of	the	Transform	Data	Task	Properties
or	Data	Driven	Query	Task	Properties	dialog	box,	click	the	Source
column	containing	the	string	to	be	modified,	and	then	click	the
Destination	column	where	you	want	the	modified	string	to	be	placed.	

2.	 Do	one	of	the	following:

If	there	is	a	mapping	arrow	connecting	the	two	columns,	click
Delete,	and	then	click	New.

If	there	is	no	mapping	arrow,	click	New.

3.	 In	the	Create	New	Transformation	dialog	box,	select	Trim	String.

4.	 Click	the	General	tab,	and	then	click	Properties.

See	Also

Trim	String	Transformation

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	perform	a	Read	File	transformation	(Enterprise
Manager)
To	perform	a	Read	File	transformation

1.	 On	the	Transformations	tab	of	the	Transform	Data	Task	Properties
or	Data	Driven	Query	Task	Properties	dialog	box,	click	the	Source
column	containing	the	file	specification	information,	and	then	click	the
Destination	column	to	which	you	want	the	contents	of	the	file	copied.	

2.	 Do	one	of	the	following:

If	there	is	a	mapping	arrow	connecting	the	two	columns,	click
Delete,	and	then	click	New.

If	there	is	no	mapping	arrow,	click	New.

3.	 In	the	Create	New	Transformation	dialog	box,	click	Read	File.

4.	 Click	the	General	tab,	and	then	click	Properties.	

5.	 In	the	Read	File	Transformation	dialog	box,	do	the	following:

In	the	Directory	box,	type	the	name	of	the	directory	from
which	the	files	are	to	be	read.	

In	the	File	type	list,	click	the	file	type	you	want.

Select	the	Error	if	file	not	found	check	box	to	fail	the	step
when	no	file	matches	the	source	column.	Clear	this	check	box
to	null	the	destination	column.

See	Also

Read	File	Transformation

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	perform	a	Write	File	transformation	(Enterprise
Manager)
To	perform	a	Write	File	transformation

1.	 On	the	Transformations	tab	of	the	Transform	Data	Task	Properties
or	Data	Driven	Query	Task	Properties	dialog	box,	click	the	Source
column	containing	the	file	name	column	and	the	Source	column
containing	the	data	column.

2.	 Click	New,	and	in	the	Create	New	Transformation	dialog	box,	click
Write	File.

3.	 Click	the	General	tab,	and	then	click	Properties.

4.	 In	the	Write	File	Transformation	Properties	dialog	box,	do	the
following:

In	the	Directory	box,	type	the	name	of	the	directory	in	which
the	files	are	to	be	saved.	

In	the	File	type	list,	click	the	file	type	you	want.	

In	the	File	name	column	list,	click	the	column	that	contains
the	file	names.

Under	Handle	existing	file,	click	the	option	that	you	want.

See	Also

Write	File	Transformation

Transform	Data	Task

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	create	a	connection	(Enterprise	Manager)
To	create	a	connection	in	DTS	Designer

1.	 On	the	Connection	toolbar,	drag	the	connection	you	want	onto	the
Data	Transformation	Services	(DTS)	Designer	design	sheet.

2.	 Do	one	of	the	following:

Click	New	connection.	

Click	Existing	connection,	and	then	click	an	available
connection	from	the	list.

3.	 Complete	the	rest	of	the	connection	configuration	information.

The	types	of	information	will	vary	according	to	the	particular	data
provider	you	choose.

How	To

How	to	create	a	data	link	with	run-time	resolution	(Enterprise
Manager)
To	create	a	data	link	with	run-time	resolution

1.	 In	the	Connection	Properties	dialog	box,	in	the	Data	Source	list,
click	Microsoft	Data	Link.

2.	 Select	the	Always	read	properties	from	UDL	file	check	box.

If	the	check	box	is	cleared,	connection	properties	must	be	edited
through	the	Data	Transformation	Services	(DTS)	package.

3.	 Click	Properties	to	display	the	Data	Link	Properties	dialog	box.

See	Also

Data	Link	Connection

JavaScript:hhobj_1.Click()

How	To

DTS	Package	Management
The	topics	in	this	section	contain	procedures	for	managing	Data	Transformation
Services	(DTS)	packages	from	SQL	Server	Enterprise	Manager	and	from	within
DTS	tools.

How	To

How	to	create	a	DTS	package	using	DTS	Designer	(Enterprise
Manager)
To	create	a	DTS	package	using	DTS	Designer

In	the	SQL	Server	Enterprise	Manager	console	tree,	right-click	Data
Transformation	Services,	and	then	click	New	Package.

Note		Your	choice	of	Local	Packages	or	Meta	Data	Services
Packages	determines	the	format	in	which	the	file	is	saved	by	default
(Local	packages	are	saved	to	Microsoft®	SQL	Server™	and	Meta	Data
Services	packages	are	saved	to	SQL	Server	2000	Meta	Data	Services).

See	Also

Managing	a	DTS	Package

JavaScript:hhobj_1.Click()

How	To

How	to	create	a	DTS	package	using	the	DTS	Import/Export
Wizard	(Enterprise	Manager)
To	create	a	new	package	using	the	DTS	Import/Export	Wizard

In	the	SQL	Server	Enterprise	Manager	console	tree,	right-click	Data
Transformation	Services,	point	to	All	Tasks,	and	then	click	Import
Data	or	Export	Data.

See	Also

dtswiz	Utility

DTS	Import/Export	Wizard

Managing	a	DTS	Package

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	edit	a	DTS	package	saved	to	SQL	Server	or	Meta	Data
Services	(Enterprise	Manager)
To	edit	a	DTS	package	saved	to	SQL	Server	or	Meta	Data	Services

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	expand	Data
Transformation	Services.

2.	 Do	one	of	the	following:

Click	Local	Packages	for	Data	Transformation	Services
(DTS)	packages	saved	to	Microsoft®	SQL	Server™.

Click	Meta	Data	Services	Packages	for	packages	saved	to
SQL	Server	2000	Meta	Data	Services.

3.	 In	the	details	pane,	double-click	the	DTS	package	you	want	to	open	in
DTS	Designer.

See	Also

Managing	a	DTS	Package

Saving	a	DTS	Package	to	Meta	Data	Services

Saving	a	DTS	Package	to	SQL	Server

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	edit	a	DTS	package	saved	to	a	structured	storage	file
(Enterprise	Manager)
To	edit	a	DTS	package	saved	to	a	structured	storage	file

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	right-click	Data
Transformation	Services,	and	then	click	Open	Package.

2.	 In	the	Select	File	dialog	box,	browse	for	the	file	you	want,	click	the
file,	and	then	click	Open.

3.	 If	the	file	contains	multiple	packages	or	multiple	package	versions,	the
Select	Package	dialog	box	appears.	Double-click	a	Data
Transformation	Services	(DTS)	package	or	package	version.	If	you
want	the	most	recent	version	of	a	package,	click	the	package	node	or
the	latest	version	node.

See	Also

Saving	a	DTS	Package	to	a	Structured	Storage	File

Managing	a	DTS	Package

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	delete	a	DTS	package	(Enterprise	Manager)
To	delete	a	DTS	package	saved	to	SQL	Server	or	Meta	Data	Services

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	expand	Data
Transformation	Services.

2.	 Do	one	of	the	following:

Click	Local	Packages	for	Data	Transformation	Services
(DTS)	packages	saved	to	Microsoft®	SQL	Server™.

Click	Meta	Data	Services	Packages	for	packages	saved	to
SQL	Server	2000	Meta	Data	Services.

3.	 In	the	details	pane,	right-click	a	Data	Transformation	Services	(DTS)
package,	and	then	click	Delete.

This	deletes	all	versions	of	the	package.

To	delete	a	DTS	package	version	saved	to	SQL	Server

1.	 In	SQL	Server	Enterprise	Manager	console	tree,	expand	Local
Packages.

2.	 In	the	detail	pane,	right-click	the	package,	and	then	click	Versions.

3.	 In	the	DTS	Package	Versions	dialog	box,	click	the	package	version,
and	then	click	Delete.

To	delete	a	DTS	package	saved	to	a	file

1.	 Using	a	file	manager	such	as	Microsoft	Windows	Explorer,	click	the
folder	containing	your	DTS	packages.

2.	 Right-click	the	desired	package	file,	and	then	click	Delete.

See	Also

Managing	a	DTS	Package

JavaScript:hhobj_1.Click()

How	To

How	to	execute	a	DTS	package	from	SQL	Server	Enterprise
Manager	(Enterprise	Manager)
To	execute	a	DTS	package	from	SQL	Server	Enterprise	Manager

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	expand	Data
Transformation	Services.

2.	 Do	one	of	the	following:

Click	Local	Packages	for	Data	Transformation	Services
(DTS)	packages	saved	to	Microsoft®	SQL	Server™.

Click	Meta	Data	Services	Packages	for	packages	saved	to
SQL	Server	2000	Meta	Data	Services.

3.	 In	the	details	pane,	right-click	the	package,	and	then	click	Execute
Package.

See	Also

Executing	a	DTS	Package

JavaScript:hhobj_1.Click()

How	To

How	to	execute	a	DTS	package	from	DTS	Designer	(Enterprise
Manager)
To	execute	a	DTS	package	from	DTS	Designer

With	the	Data	Transformation	Services	(DTS)	package	open	in	DTS
Designer,	click	the	Execute	button	on	the	toolbar.

See	Also

Executing	a	DTS	Package

JavaScript:hhobj_1.Click()

How	To

How	to	execute	a	DTS	package	from	the	DTS	Import/Export
Wizard	(Enterprise	Manager)
To	execute	a	DTS	package	from	the	DTS	Import/Export	Wizard

1.	 On	the	Save,	Schedule	and	Replicate	Package	dialog	box,	click	Run
immediately,	and	then	click	Next.

2.	 On	the	Completing	the	DTS	Wizard	dialog	box,	click	Finish.

See	Also

Executing	a	DTS	Package

JavaScript:hhobj_1.Click()

How	To

How	to	execute	a	DTS	package	using	the	DTS	Run	utility
(Command	Prompt)
To	execute	a	DTS	package	using	the	DTS	Run	utility

1.	 Open	a	command	prompt	window	and	type	dtsrunui	without	any
command	switches.

2.	 In	the	DTS	Run	and	Advanced	DTS	Run	dialog	boxes,	enter	any
information	for	connection	settings	and	logging.

3.	 Click	OK	when	you	are	ready	to	execute	the	package.

See	Also

DTS	Package	Execution	Utilities

Executing	a	DTS	Package

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	execute	a	DTS	package	using	dtsrun	(Command	Prompt)
To	execute	a	DTS	package	using	dtsrun

Open	a	command	prompt	window	and	type	dtsrun	with	any	necessary
and	optional	command	switches.

See	Also

dtsrun	Utility

Executing	a	DTS	Package

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	save	a	DTS	package	to	SQL	Server	(Enterprise	Manager)
To	save	a	DTS	package	to	SQL	Server

1.	 In	Data	Transformation	Services	(DTS)	Designer,	on	the	toolbar,	click
the	Save	button.

2.	 In	the	Location	list,	click	SQL	Server.

3.	 Complete	the	rest	of	the	required	fields.

Note		If	the	DTS	package	has	already	been	saved	to	Microsoft®	SQL
Server™,	the	Save	DTS	Package	dialog	box	will	not	appear	and	a
new	version	will	be	saved.	If	the	package	has	been	saved	to	a
structured	storage	or	a	Microsoft	Visual	Basic®	file,	or	to	SQL	Server
2000	Meta	Data	Services,	click	Save	As	to	save	to	SQL	Server.

See	Also

Saving	a	DTS	Package	to	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	open	a	DTS	package	saved	to	SQL	Server	(Enterprise
Manager)
To	open	a	DTS	package	saved	to	SQL	Server

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	expand	Data
Transformation	Services,	and	then	click	Local	Packages.

2.	 Do	one	of	the	following:

Double-click	the	Data	Transformation	Services	(DTS)
package	you	want	to	open	in	DTS	Designer.

Right-click	the	DTS	package	you	want	to	open,	and	then	click
Versions.	In	the	DTS	Package	Versions	dialog	box,	click	the
package	version	you	want,	and	then	click	Edit.

See	Also

Saving	a	DTS	Package	to	SQL	Server

JavaScript:hhobj_1.Click()

How	To

How	to	save	a	DTS	package	to	Meta	Data	Services	(Enterprise
Manager)
To	save	a	DTS	package	to	Meta	Data	Services

1.	 In	Data	Transformation	Services	(DTS)	Designer,	on	the	Package
menu,	click	Save.

2.	 In	the	Location	list,	click	Meta	Data	Services.

3.	 Complete	the	rest	of	the	required	fields.

Note		If	the	package	has	already	been	saved	to	Microsoft®	SQL	Server™	2000
Meta	Data	Services,	the	Save	DTS	Package	dialog	box	will	not	appear,	and	a
new	version	will	be	saved.	If	the	package	has	been	saved	to	a	structured	storage
or	a	Microsoft	Visual	Basic®	file,	or	to	SQL	Server,	click	Save	As	to	save	to
Meta	Data	Services.

See	Also

Saving	a	DTS	Package	to	Meta	Data	Services

JavaScript:hhobj_1.Click()

How	To

How	to	open	a	DTS	package	saved	to	Meta	Data	Services
(Enterprise	Manager)
To	open	a	DTS	package	saved	to	Meta	Data	Services

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	expand	Data
Transformation	Services,	and	then	double-click	Meta	Data	Services
Packages.

2.	 Do	one	of	the	following:

Double-click	the	Data	Transformation	Services	(DTS)
package	you	want	to	open	in	DTS	Designer.

Right-click	the	DTS	package	you	want	to	open,	and	then	click
Versions.	In	the	DTS	Package	Versions	dialog	box,	click	the
package	version	you	want,	and	then	click	Edit.

See	Also

Saving	a	DTS	Package	to	Meta	Data	Services

JavaScript:hhobj_1.Click()

How	To

How	to	save	a	DTS	package	to	a	structured	storage	file
(Enterprise	Manager)
To	save	a	DTS	package	to	a	structured	storage	file

1.	 In	Data	Transformation	Services	(DTS)	Designer,	on	the	toolbar,	click
Save.

2.	 In	the	Location	list,	click	Structured	Storage	File.

3.	 Complete	the	rest	of	the	required	fields.

Note		If	the	DTS	package	has	already	been	saved	to	a	structured	storage	file,	the
Save	DTS	Package	dialog	box	will	not	appear,	and	a	new	version	will	be	saved.
If	the	package	has	been	saved	to	Microsoft®	SQL	Server™,	SQL	Server	2000
Meta	Data	Services,	or	a	Microsoft	Visual	Basic®	file,	click	Save	As	to	save	to	a
structured	storage	file.

See	Also

Saving	a	DTS	Package	to	a	Structured	Storage	File

JavaScript:hhobj_1.Click()

How	To

How	to	open	a	DTS	package	saved	to	a	structured	storage	file
(Enterprise	Manager)
To	open	a	DTS	package	saved	to	a	structured	storage	file

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	right-click	Data
Transformation	Services,	and	then	click	Open	Package.

2.	 In	the	Select	File	dialog	box,	click	the	.dts	file	you	want,	and	then
click	Open.

3.	 If	multiple	Data	Transformation	Services	(DTS)	packages	or	package
versions	were	saved,	the	Select	Package	dialog	box	appears.	Click	the
package	or	package	version	you	want	to	open.

See	Also

Saving	a	DTS	Package	to	a	Structured	Storage	File

JavaScript:hhobj_1.Click()

How	To

How	to	schedule	a	DTS	package	using	the	Schedule	Package
option	(Enterprise	Manager)
To	schedule	a	DTS	package	using	the	Schedule	Package	option

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	expand	Data
Transformation	Services,	and	then	click	either	Local	Packages	or
Meta	Data	Services	Packages.

2.	 In	the	details	pane,	right-click	the	Data	Transformation	Services	(DTS)
package	you	want	to	schedule,	and	then	click	Schedule	Package.

3.	 In	the	Edit	Recurring	Job	Schedule	dialog	box,	complete	the
required	information.

Note		The	scheduled	package	will	be	executed	by	SQL	Server	Agent	using	the
permissions	specified	during	server	registration.	If	Windows	Authentication	was
used,	then	SQL	Server	Agent	will	attempt	to	load	the	package	using	its	own
security,	which	may	not	be	sufficient	to	load	the	package.	For	more	information
see	Handling	Package	Security	in	DTS.

See	Also

Scheduling	a	DTS	Package	for	Execution

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	schedule	a	DTS	package	using	SQL	Server	Agent
(Enterprise	Manager)
To	schedule	a	DTS	package	using	SQL	Server	Agent

1.	 In	SQL	Server	Enterprise	Manager	console	tree,	expand	Management,
and	then	click	SQL	Server	Agent.

2.	 In	the	details	pane,	right-click	Jobs,	and	then	click	New	Job.

3.	 On	the	General	tab,	complete	the	information	to	configure	the	new
job.	

4.	 Click	the	Steps	tab,	click	New,	and	then	do	the	following:

In	the	Step	name	box,	type	a	name.

In	the	Type	list,	click	Operating	System	Command
(CmdExec).

In	the	Command	text	box,	type	the	dtsrun	command	for	the
package.

Note		Scheduled	packages	are	run	by	SQL	Server	Agent	and,	as	such,	do	not
have	the	same	shared	drive	letters	or	the	same	permissions	as	the	package
creator.

See	Also

Scheduling	a	DTS	Package	for	Execution

JavaScript:hhobj_1.Click()

How	To

How	to	view	or	modify	DTS	package	properties	(Enterprise
Manager)
To	view	or	modify	DTS	package	properties

1.	 With	the	Data	Transformation	Services	(DTS)	package	open	in	DTS
Designer,	right-click	the	design	sheet,	and	then	click	Package
Properties.

2.	 Click	the	tab	you	want,	and	then	view	or	modify	the	values.

See	Also

Viewing	and	Configuring	DTS	Package	Properties

JavaScript:hhobj_1.Click()

How	To

How	to	use	Disconnected	Edit	to	modify	DTS	package	properties
(Enterprise	Manager)
To	use	Disconnected	Edit	to	modify	DTS	package	properties

1.	 With	the	Data	Transformation	Services	(DTS)	package	open	in	DTS
Designer,	right-click	the	design	sheet,	and	then	click	Disconnected
Edit.

2.	 In	the	Edit	All	Package	Properties	dialog	box,	expand	the	property
nodes	in	the	left	pane,	and	then	double-click	the	property	group	you
want	to	edit.

3.	 In	the	right	pane,	select	the	property	you	want	and	click	Edit.

4.	 In	the	Type	list,	choose	a	property,	and	then	in	the	Value	box,	type	a
new	property	value.

Note		Not	all	property	values	can	be	modified	though	the
Disconnected	Edit	feature.

See	Also

Viewing	and	Configuring	DTS	Package	Properties

JavaScript:hhobj_1.Click()

How	To

How	to	save	a	DTS	package	to	a	Visual	Basic	file	(Enterprise
Manager)
To	save	a	DTS	package	to	a	Visual	Basic	file	using	the	DTS	Import/Export
Wizard

On	the	Save,	Schedule	and	Replicate	Package	screen,	select	the	Save
DTS	Package	check	box,	and	then	click	Visual	Basic	File.

To	save	a	DTS	package	to	a	Visual	Basic	file	using	DTS	Designer

1.	 On	the	Package	menu,	click	Save	As.

2.	 In	the	Location	list,	click	Visual	Basic	File.

3.	 In	the	File	Name	box,	type	the	name	of	the	Microsoft®	Visual	Basic®
file.

See	Also

Saving	a	DTS	Package	to	a	Visual	Basic	File

JavaScript:hhobj_1.Click()

How	To

How	To	View	Package	Logs	(Enterprise	Manager)
To	view	package	logs

1.	 In	SQL	Server	Enterprise	Manager,	expand	Data	Transformation
Services.	

2.	 Do	one	of	the	following:

Right-click	Local	Packages	(if	the	Data	Transformation
Services	(DTS)	package	log	was	saved	to	Microsoft®	SQL
Server™)	and	then	click	Package	Logs.

Right-click	Meta	Data	Services	Packages	(if	the	package	log
was	saved	to	SQL	Server	2000	Meta	Data	Services),	and	then
click	Package	Logs.

Click	Local	Packages	or	Meta	Data	Services	Packages,	and
in	the	details	pane,	right-click	a	package	and	click	Package
Logs.

See	Also

Using	DTS	Package	Logs

JavaScript:hhobj_1.Click()

How	To

How	to	Enable	Package	Logging	(Enterprise	Manager)
To	enable	package	logging

1.	 Open	the	Data	Transformation	Services	(DTS)	package	for	which	you
want	to	create	a	log.

2.	 On	the	Package	menu,	click	Properties	to	display	the	DTS	Package
Properties	dialog	box.

3.	 Do	one	of	the	following:

Save	package	logs	to	Microsoft®	SQL	Server™	by	clicking
the	Logging	tab,	selecting	the	Log	package	execution	to
SQLServer	check	box,	and	then	clicking	an	available	server
on	which	to	save	the	package	logs.

Save	package	logs	to	SQL	Server	2000	Meta	Data	Services	by
clicking	the	Advanced	tab,	and	then	selecting	the	Show
lineage	variables	as	source	columns	and	Write	lineage	to
repository	check	boxes.	On	the	Package	menu,	click	Save
As,	and	then	in	the	Save	DTS	Package	dialog	box,	in	the
Location	list,	select	Meta	Data	Services.

See	Also

How	To	View	Package	Logs

Using	DTS	Package	Logs

JavaScript:hhobj_1.Click()

How	To

How	to	set	a	DTS	package	password	(Enterprise	Manager)
To	set	a	DTS	package	password	in	DTS	Designer

1.	 On	the	Package	menu,	click	Save	or	Save	As.

2.	 In	the	Location	list,	click	either	SQL	Server	or	Structured	Storage
File.	

3.	 Do	one	of	the	following:

Enter	an	Owner	password.	Assigning	an	Owner	password
puts	limits	on	who	can	both	edit	and	run	the	package.

Enter	a	User	password.	Assigning	a	User	password	puts
limits	only	on	who	can	edit	the	package.	If	you	create	a	User
password,	you	must	also	create	an	Owner	password.

See	Also

Handling	Package	Security	in	DTS

JavaScript:hhobj_1.Click()

How	To

How	to	modify	the	persisting	of	authentication	information
(Enterprise	Manager)
To	modify	the	persisting	of	authentication	information	in	a	DTS	package

1.	 On	the	Data	Transformation	Services	(DTS)	Designer	design	sheet,
double-click	a	connection.

2.	 In	the	Connection	Properties	dialog	box,	click	Advanced.	

3.	 Under	the	Value	column,	click	the	value	for	the	Persist	Security	Info
property.

4.	 Do	one	of	the	following:

Type	0	to	disable	the	saving	of	authentication	information
with	the	DTS	package.

Type	1	to	persist	the	saving	of	authentication	information.

See	Also

Handling	Package	Security	in	DTS

JavaScript:hhobj_1.Click()

How	To

How	to	select	the	Turn	on	just-in-time	debugging	option
(Enterprise	Manager)
To	select	the	Turn	on	just-in-time	debugging	option

1.	 In	the	SQL	Server	Enterprise	Manager	console	tree,	right-click	the
Data	Transformation	Services	node,	and	then	click	Properties.	

2.	 Select	the	Turn	on	just-in-time	debugging	check	box.

How	To

How	to	add	ActiveX	workflow	scripts	in	DTS	Designer
(Enterprise	Manager)
To	add	ActiveX	workflow	scripts	in	DTS	Designer

1.	 Right-click	the	task	icon	associated	with	step	you	want	to	configure,
point	to	Workflow,	and	then	click	Workflow	Properties.

2.	 Click	the	Options	tab,	select	the	Use	ActiveX	Script	check	box,	and
then	click	Properties.

3.	 In	the	Microsoft®	ActiveX®	Script	text	box,	enter	the	scripting	code
for	the	workflow	step.

How	To

How	to	execute	a	single	package	step	in	DTS	Designer	(Enterprise
Manager)
To	execute	a	single	package	step	in	DTS	Designer

1.	 On	the	Task	toolbar,	right-click	the	task	you	want	to	execute.

2.	 Click	Execute	Step.

How	To

Transact-SQL
These	procedures	allow	you	to	administer	installations	of	SQL	Server	or
administer	SQL	Server	replication	using	Transact-SQL	statements.

How	To

Administering	SQL	Server
Microsoft®	SQL	Server™	administration	applications	and	their	accompanying
services	are	designed	to	assist	the	system	administrator	with	all	administrative
tasks	related	to	maintaining	and	monitoring	server	performance	and	activities.

How	To

Backing	Up	and	Restoring	Databases
The	backup	and	restore	component	of	Microsoft®	SQL	Server™	provides	an
important	safeguard	for	protecting	critical	data	stored	in	SQL	Server	databases.
Understanding	how	to	create	and	restore	database,	differential	database,
transaction	log,	and	file	and	filegroup	backups	helps	you	implement	this
important	safeguard.

How	To

How	to	create	a	database	backup	(Transact-SQL)
To	create	a	database	backup

1.	 Execute	the	BACKUP	DATABASE	statement	to	create	the	database
backup,	specifying:

The	name	of	the	database	to	back	up.

The	backup	device	where	the	database	backup	will	be	written.

2.	 Optionally,	specify:

The	INIT	clause	to	overwrite	the	backup	media,	and	write	the
backup	as	the	first	file	on	the	backup	media.	If	no	existing
media	header	exists,	one	is	automatically	written.

The	SKIP	and	INIT	clauses	to	overwrite	the	backup	media
even	if	there	are	either	backups	on	the	backup	media	that	have
not	yet	expired,	or	the	media	name	does	not	match	the	name
on	the	backup	media.

The	FORMAT	clause	when	using	media	for	the	first	time	to
completely	initialize	the	backup	media	and	rewrite	any
existing	media	header.

The	INIT	clause	is	not	required	if	the	FORMAT	clause	is
specified.

IMPORTANT		Use	extreme	caution	when	using	the	FORMAT	or	INIT	clauses	of
the	BACKUP	statement,	as	this	will	destroy	any	backups	previously	stored	on
the	backup	media.

Examples
This	example	backs	up	the	entire	MyNwind	database	to	tape:

USE	MyNwind
GO
BACKUP	DATABASE	MyNwind
			TO	TAPE	=	'\\.\Tape0'
			WITH	FORMAT,
			NAME	=	'Full	Backup	of	MyNwind'
GO

See	Also

sp_addumpdevice

Database	Backups

Appending	Backup	Sets

Differential	Database	Backups

Backing	Up	the	master	Database

Deleting	a	Database

Backing	Up	the	model,	msdb,	and	distribution	Databases

Overwriting	Backup	Media

BACKUP

Reducing	Recovery	Times

Transaction	Log	Backups

Initializing	Backup	Media

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()

How	To

How	to	restore	a	database	backup	(Transact-SQL)
To	restore	a	database	backup

IMPORTANT		The	system	administrator	restoring	the	database	backup	must	be	the
only	person	currently	using	the	database	to	be	restored.

1.	 Execute	the	RESTORE	DATABASE	statement	to	restore	the	database
backup,	specifying:

The	name	of	the	database	to	restore.

The	backup	device	from	where	the	database	backup	will	be
restored.

The	NORECOVERY	clause	if	you	have	a	transaction	log	or
differential	database	backup	to	apply	after	restoring	the
database	backup.

2.	 Optionally,	specify:

The	FILE	clause	to	identify	the	backup	set	on	the	backup
device	to	restore.

Examples
This	example	restores	the	MyNwind	database	backup	from	tape:

USE	master
GO
RESTORE	DATABASE	MyNwind
			FROM	TAPE	=	'\\.\Tape0'
GO

See	Also

Database	Backups

JavaScript:hhobj_1.Click()

Setting	Database	Options

RESTORE

Identifying	the	Backup	Set	to	Restore

Transaction	Log	Backups

Differential	Database	Backups

Rebuilding	the	master	Database

Restoring	the	model,	msdb,	and	distribution	Databases

Reducing	Recovery	Times

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()

How	To

How	to	restart	an	interrupted	backup	operation	(Transact-SQL)
To	restart	an	interrupted	backup	operation

Execute	the	interrupted	BACKUP	statement	again,	specifying:

The	same	clauses	used	in	the	original	BACKUP	statement.

The	RESTART	clause.

Examples

This	example	restarts	an	interrupted	database	backup	operation:

--	Create	a	database	backup	of	the	MyNwind	database
BACKUP	DATABASE	MyNwind
			TO	MyNwind_1
--	The	backup	operation	halts	due	to	power	outage.
--	Repeat	the	original	BACKUP	statement	specifying	WITH	RESTART
BACKUP	DATABASE	MyNwind
			TO	MyNwind_1	
			WITH	RESTART

See	Also

BACKUP

Database	Backups

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	restart	an	interrupted	restore	operation	(Transact-SQL)
To	restart	an	interrupted	restore	operation

IMPORTANT		The	system	administrator	restoring	the	backup	must	be	the	only
person	currently	using	the	database	to	be	restored.

Execute	the	interrupted	RESTORE	statement	again,	specifying:

The	same	clauses	used	in	the	original	RESTORE	statement.

The	RESTART	clause.

Examples
This	example	restarts	an	interrupted	restore	operation:

--	Restore	a	database	backup	of	the	MyNwind	database
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
GO
--	The	restore	operation	halted	prematurely.
--	Repeat	the	original	RESTORE	statement	specifying	WITH	RESTART
RESTORE	DATABASE	MyNwind	
			FROM	MyNwind_1
			WITH	RESTART
GO

See	Also

Database	Backups

RESTORE

Copying	Databases

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	create	a	transaction	log	backup	(Transact-SQL)
To	create	a	transaction	log	backup

1.	 Execute	the	BACKUP	LOG	statement	to	back	up	the	transaction	log,
specifying:

The	name	of	the	database	to	which	the	transaction	log	to	back
up	belongs.

The	backup	device	where	the	transaction	log	backup	will	be
written.

2.	 Optionally,	specify:

The	INIT	clause	to	overwrite	the	backup	media,	and	write	the
backup	as	the	first	file	on	the	backup	media.	If	no	existing
media	header	exists,	one	is	automatically	written.

The	SKIP	and	INIT	clauses	to	overwrite	the	backup	media
even	if	there	are	either	backups	on	the	backup	media	that	have
not	yet	expired,	or	the	media	name	does	not	match	the	name
on	the	backup	media.

The	FORMAT	clause,	when	using	media	for	the	first	time,	to
completely	initialize	the	backup	media	and	rewrite	any
existing	media	header.

The	INIT	clause	is	not	required	if	the	FORMAT	clause	is
specified.

IMPORTANT		Use	extreme	caution	when	using	the	FORMAT	or	INIT	clauses	of
the	BACKUP	statement	as	this	will	destroy	any	backups	previously	stored	on	the
backup	media.

Examples

This	example	creates	a	transaction	log	backup	for	the	MyNwind	database	to	the
previously	created	named	backup	device,	MyNwind_log1:

BACKUP	LOG	MyNwind
			TO	MyNwind_log1
GO

See	Also

BACKUP

Transaction	Log	Backups

Restoring	a	Database	to	a	Prior	State

Reducing	Recovery	Times

File	and	Filegroup	Backup	and	Restore

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	back	up	the	transaction	log	when	the	database	is	damaged
(Transact-SQL)
To	create	a	backup	of	the	currently	active	transaction	log

1.	 Execute	the	BACKUP	LOG	statement	to	back	up	the	currently	active
transaction	log,	specifying:

The	name	of	the	database	to	which	the	transaction	log	to	back
up	belongs.

The	backup	device	where	the	transaction	log	backup	will	be
written.

The	NO_TRUNCATE	clause	to	back	up	the	transaction	log
without	truncating	the	inactive	part	of	the	transaction	log.

This	clause	allows	the	active	part	of	the	transaction	log	to	be
backed	up	even	if	the	database	is	inaccessible,	provided	that
the	transaction	log	file(s)	is	accessible	and	undamaged.

2.	 Optionally,	specify:

The	INIT	clause	to	overwrite	the	backup	media,	and	write	the
backup	as	the	first	file	on	the	backup	media.	If	no	existing
media	header	exists,	one	is	automatically	written.

The	SKIP	and	INIT	clauses	to	overwrite	the	backup	media,
even	if	there	are	either	backups	on	the	backup	media	that	have
not	yet	expired,	or	the	media	name	does	not	match	the	name
on	the	backup	media.

The	FORMAT	clause,	when	using	media	for	the	first	time,	to
completely	initialize	the	backup	media	and	rewrite	any
existing	media	header.

The	INIT	clause	is	not	required	if	the	FORMAT	clause	is
specified.

IMPORTANT		Use	extreme	caution	when	using	the	FORMAT	or	INIT	clauses	of
the	BACKUP	statement	as	this	will	destroy	any	backups	previously	stored	on	the
backup	media.

Examples
This	example	backs	up	the	currently	active	transaction	log	for	the	MyNwind
database	even	though	MyNwind	has	been	damaged	and	is	inaccessible.	The
transaction	log,	however,	is	undamaged	and	accessible:

BACKUP	LOG	MyNwind
			TO	MyNwind_log1
			WITH	NO_TRUNCATE
GO

See	Also

BACKUP

Transaction	Log	Backups

Restoring	a	Database	to	a	Prior	State

Reducing	Recovery	Times

File	and	Filegroup	Backup	and	Restore

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	apply	a	transaction	log	backup	(Transact-SQL)
It	is	not	possible	to	apply	a	transaction	log	backup:

Unless	the	database	or	differential	database	backup	preceding	the
transaction	log	backup	is	restored	first.

Unless	all	preceding	transaction	logs	created	since	the	database	or
differential	database	were	backed	up	are	applied	first.

If	the	database	has	already	recovered	and	all	outstanding	transactions
have	either	been	rolled	back	or	rolled	forward.

To	apply	a	transaction	log	backup

1.	 Execute	the	RESTORE	LOG	statement	to	apply	the	transaction	log
backup,	specifying:

The	name	of	the	database	to	which	the	transaction	log	will	be
applied.

The	backup	device	where	the	transaction	log	backup	will	be
restored	from.

The	NORECOVERY	clause	if	you	have	another	transaction
log	backup	to	apply	after	the	current	one,	otherwise	specify
the	RECOVERY	clause.

2.	 Repeat	Step	1	for	each	transaction	log	backup	you	need	to	apply.

Examples

A.	Applying	a	single	transaction	log	backup

This	example	applies	a	transaction	log	backup	to	the	MyNwind	database.

RESTORE	LOG	MyNwind
			FROM	MyNwind_log1
			WITH	RECOVERY
GO

B.	Applying	multiple	transaction	log	backups
This	example	applies	multiple	transaction	log	backups	to	the	MyNwind
database.

RESTORE	LOG	MyNwind
			FROM	MyNwind_log1
			WITH	NORECOVERY
GO
RESTORE	LOG	MyNwind
			FROM	MyNwind_log2
			WITH	NORECOVERY
GO
RESTORE	LOG	MyNwind
			FROM	MyNwind_log3
			WITH	RECOVERY
GO

See	Also

Transaction	Log	Backups

RESTORE

Reducing	Recovery	Times

File	and	Filegroup	Backup	and	Restore

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	create	a	differential	database	backup	(Transact-SQL)
To	create	a	differential	database	backup

IMPORTANT		It	is	not	possible	to	create	a	differential	database	backup	unless	the
database	has	been	backed	up	first.

1.	 Execute	the	BACKUP	DATABASE	statement	to	create	the	differential
database	backup,	specifying:

The	name	of	the	database	to	back	up.

The	backup	device	where	the	database	backup	will	be	written.

The	DIFFERENTIAL	clause,	to	specify	that	only	the	parts	of
the	database	that	have	changed	after	the	last	database	backup
was	created	are	backed	up.

2.	 Optionally,	specify:

The	INIT	clause	to	overwrite	the	backup	media,	and	write	the
backup	as	the	first	file	on	the	backup	media.	If	no	existing
media	header	exists,	one	is	automatically	written.

The	SKIP	and	INIT	clauses	to	overwrite	the	backup	media
even	if	there	are	either	backups	on	the	backup	media	that	have
not	yet	expired,	or	the	media	name	does	not	match	the	name
on	the	backup	media.

The	FORMAT	clause	when	using	media	for	the	first	time	to
completely	initialize	the	backup	media	and	rewrite	any
existing	media	header.

The	INIT	clause	is	not	required	if	the	FORMAT	clause	is
specified.

IMPORTANT		Use	extreme	caution	when	using	the	FORMAT	or	INIT	clauses	of
the	BACKUP	statement	as	this	will	destroy	any	backups	previously	stored	on	the
backup	media.

Examples
This	example	creates	a	full	and	a	differential	database	backup	for	the	MyNwind
database.

--	Create	a	full	database	backup	first.
BACKUP	DATABASE	MyNwind	
			TO	MyNwind_1	
			WITH	INIT
GO
--	Time	elapses.
--	Create	a	differential	database	backup,	appending	the	backup
--	to	the	backup	device	containing	the	database	backup.
BACKUP	DATABASE	MyNwind
			TO	MyNwind_1
			WITH	DIFFERENTIAL
GO

See	Also

BACKUP

Differential	Database	Backups

Reducing	Recovery	Times

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	restore	a	differential	database	backup	(Transact-SQL)
To	restore	a	differential	database	backup

1.	 Execute	the	RESTORE	DATABASE	statement,	specifying	the
NORECOVERY	clause,	to	restore	the	database	backup	preceding	the
differential	database	backup.	For	more	information,	see	How	to	restore
a	database	backup.

2.	 Execute	the	RESTORE	DATABASE	statement	to	restore	the
differential	database	backup,	specifying:

The	name	of	the	database	to	which	the	differential	database
backup	will	be	applied.

The	backup	device	where	the	differential	database	backup
will	be	restored	from.

The	NORECOVERY	clause	if	you	have	transaction	log
backups	to	apply	after	the	differential	database	backup	is
restored,	otherwise	specify	the	RECOVERY	clause.

Examples

A.	Restoring	a	database	and	differential	database	backup

This	example	restores	a	database	and	differential	database	backup	of	the
MyNwind	database.

--	Assume	the	database	is	lost	at	this	point.	Now	restore	the	full	
--	database.	Specify	the	original	full	backup	and	NORECOVERY.
--	NORECOVERY	allows	subsequent	restore	operations	to	proceed.
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1

			WITH	NORECOVERY
GO
--	Now	restore	the	differential	database	backup,	the	second	backup	on	
--	the	MyNwind_1	backup	device.
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
			WITH	FILE	=	2,
						RECOVERY
GO

B.	Restoring	a	database,	differential	database,	and	transaction	log
backup
This	example	restores	a	database,	differential	database,	and	transaction	log
backup	of	the	MyNwind	database.

--	Assume	the	database	is	lost	at	this	point.	Now	restore	the	full	
--	database.	Specify	the	original	full	backup	and	NORECOVERY.
--	NORECOVERY	allows	subsequent	restore	operations	to	proceed.
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
			WITH	NORECOVERY
GO
--	Now	restore	the	differential	database	backup,	the	second	backup	on	
--	the	MyNwind_1	backup	device.
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
			WITH	FILE	=	2,
						NORECOVERY
GO
--	Now	restore	each	transaction	log	backup	created	after
--	the	differential	database	backup.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log1

			WITH	NORECOVERY
GO
RESTORE	LOG	MyNwind
			FROM	MyNwind_log2
			WITH	RECOVERY
GO

See	Also

Differential	Database	Backups

RESTORE

Reducing	Recovery	Times

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	recover	a	database	without	restoring	(Transact-SQL)
To	recover	a	database	without	restoring

Execute	the	RESTORE	DATABASE	statement,	specifying:

The	name	of	the	database	to	be	recovered.

The	RECOVERY	clause.

Examples

This	example	recovers	the	MyNwind	database	without	restoring	from	a	backup.

--	Restore	database	using	WITH	RECOVERY.
RESTORE	DATABASE	MyNwind
			WITH	RECOVERY

See	Also

Recovering	a	Database	Without	Restoring

RESTORE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	restore	to	the	point	of	failure	(Transact-SQL)
To	restore	to	the	point	of	failure

1.	 Execute	the	BACKUP	LOG	statement	using	the	NO_TRUNCATE
clause	to	back	up	the	currently	active	transaction	log.

2.	 Execute	the	RESTORE	DATABASE	statement	using	the
NORECOVERY	clause	to	restore	the	database	backup.

3.	 Execute	the	RESTORE	LOG	statement	using	the	NORECOVERY
clause	to	apply	each	transaction	log	backup.

4.	 Execute	the	RESTORE	LOG	statement	using	the	RECOVERY	clause
to	apply	the	transaction	log	backup	created	in	Step	1.

Examples

This	example	backs	up	the	currently	active	transaction	log	of	the	MyNwind
database,	even	though	MyNwind	is	inaccessible,	and	then	restores	the	database
to	the	point	of	failure	using	previously	created	backups:

--	Back	up	the	currently	active	transaction	log.
BACKUP	LOG	MyNwind
			TO	MyNwind_log2
			WITH	NO_TRUNCATE
GO
--	Restore	the	database	backup.
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
			WITH	NORECOVERY
GO
--	Restore	the	first	transaction	log	backup.

RESTORE	LOG	MyNwind
			FROM	MyNwind_log1
			WITH	NORECOVERY
GO
--	Restore	the	final	transaction	log	backup.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log2
			WITH	RECOVERY
GO

See	Also

RESTORE

Restoring	a	Database	to	a	Prior	State

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	set	up,	maintain,	and	bring	online	a	standby	server
(Transact-SQL)
Setting	up	a	standby	server	generally	involves	creating	a	database	backup	and
periodic	transaction	log	backups	at	the	primary	server,	and	then	applying	those
backups,	in	sequence,	to	the	standby	server.	The	standby	server	is	left	in	a	read-
only	state	between	restores.	When	the	standby	server	needs	to	be	made	available
for	use,	any	outstanding	transaction	log	backups,	including	the	backup	of	the
active	transaction	log,	from	the	primary	server,	are	applied	to	the	standby	server
and	the	database	is	recovered.

To	create	backups	on	the	primary	server

1.	 Execute	the	BACKUP	DATABASE	statement	to	create	the	database
backup.

2.	 Execute	the	BACKUP	LOG	statement	to	create	a	transaction	log
backup.

3.	 Repeat	Step	2	for	each	transaction	log	you	want	to	create	over	time.

To	set	up	and	maintain	the	standby	server

1.	 Execute	the	RESTORE	DATABASE	statement	using	the	STANDBY
clause	to	restore	the	database	backup	created	in	Step	1	on	the	primary
server.	Specify	the	name	of	the	undo	file	that	contains	the	contents	of
data	pages	before	uncommitted	transactions	affecting	those	pages	were
rolled	back.

2.	 Execute	the	RESTORE	LOG	statement	using	the	STANDBY	clause	to
apply	each	transaction	log	created	in	Step	2	on	the	primary	server.

3.	 Repeat	Step	2	for	each	transaction	log	created	on	the	primary	server.

To	bring	the	standby	server	online	(primary	server	failed)

1.	 Execute	the	BACKUP	LOG	statement	using	the	NO_TRUNCATE
clause	to	back	up	the	currently	active	transaction	log.	This	is	the	last
transaction	log	backup	that	will	be	applied	to	the	standby	server	when
the	standby	server	is	brought	online.	For	more	information,	see	How	to
create	a	backup	of	the	currently	active	transaction	log.

2.	 Execute	the	RESTORE	LOG	statement	using	the	STANDBY	clause	to
apply	all	transaction	log	backups,	including	the	active	transaction	log
backup	created	in	Step	1,	that	have	not	yet	been	applied	to	the	standby
server.

3.	 Execute	the	RESTORE	DATABASE	WITH	RECOVERY	statement	to
recover	the	database	and	bring	up	the	standby	server.

Examples

This	example	sets	up	the	MyNwind	database	on	a	standby	server.	The	database
can	be	used	in	read-only	mode	between	restore	operations.

--	Restore	the	initial	database	backup	on	the	standby	server.
USE	master
GO
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1	
			WITH	STANDBY	=	'c:\undo.ldf'
GO
--	Apply	the	first	transaction	log	backup.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log1
			WITH	STANDBY	=	'c:\undo.ldf'
GO
--	Apply	the	next	transaction	log	backup.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log2

			WITH	STANDBY	=	'c:\undo.ldf'
GO
--	Repeat	for	each	transaction	log	backup	created	on	the	
--	primary	server.
--
--	Time	elapses..
--
--	The	primary	server	has	failed.	Back	up	the	
--	active	transaction	log	on	the	primary	server.
BACKUP	LOG	MyNwind
			TO	MyNwind_log3
			WITH	NO_TRUNCATE
GO
--	Apply	the	final	(active)	transaction	log	backup
--	to	the	standby	server.	All	preceding	transaction
--	log	backups	must	have	been	already	applied.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log3
			WITH	STANDBY	=	'c:\undo.ldf'
GO
--	Recover	the	database	on	the	standby	server,	
--	making	it	available	for	normal	operations.
RESTORE	DATABASE	MyNwind
			WITH	RECOVERY
GO

See	Also

RESTORE

Restoring	a	Database	to	a	Prior	State

Using	Standby	Servers

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	restore	to	a	point	in	time	(Transact-SQL)
To	restore	to	a	point	in	time

1.	 Execute	the	RESTORE	DATABASE	statement	using	the
NORECOVERY	clause.

2.	 Execute	the	RESTORE	LOG	statement	to	apply	each	transaction	log
backup,	specifying:

The	name	of	the	database	to	which	the	transaction	log	will	be
applied.

The	backup	device	from	where	the	transaction	log	backup
will	be	restored.

The	RECOVERY	and	STOPAT	clauses.	If	the	transaction	log
backup	does	not	contain	the	requested	time	(for	example,	if
the	time	specified	is	beyond	the	end	of	the	time	covered	by
the	transaction	log),	a	warning	is	generated	and	the	database
remains	unrecovered.

Examples

This	example	restores	a	database	to	its	state	as	of	10:00	A.M.	on	July	1,	1998,
and	illustrates	a	restore	operation	involving	multiple	logs	and	multiple	backup
devices.

--	Restore	the	database	backup.
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1,	MyNwind_2
			WITH	NORECOVERY
GO
RESTORE	LOG	MyNwind

			FROM	MyNwind_log1
			WITH	RECOVERY,	STOPAT	=	'Jul	1,	1998	10:00	AM'
GO
RESTORE	LOG	MyNwind
			FROM	MyNwind_log2
			WITH	RECOVERY,	STOPAT	=	'Jul	1,	1998	10:00	AM'
GO

See	Also

RESTORE

Restoring	a	Database	to	a	Prior	State

RESTORE	HEADERONLY

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	restore	the	master	database	(Transact-SQL)
To	restore	the	master	database

1.	 Start	Microsoft®	SQL	Server™	in	single-user	mode.

2.	 Execute	the	RESTORE	DATABASE	statement	to	restore	the	master
database	backup,	specifying:

The	backup	device	from	where	the	master	database	backup
will	be	restored.

Examples

This	example	restores	the	master	database	backup	from	tape	without	using	a
permanent	(named)	backup	device.

USE	master
GO
RESTORE	DATABASE	master
			FROM	TAPE	=	'\\.\Tape0'
GO

See	Also

RESTORE

Restoring	the	master	Database	from	a	Current	Backup

How	to	start	the	default	instance	of	SQL	Server	in	single-user	mode	(Command
Prompt)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	back	up	files	and	filegroups	(Transact-SQL)
To	back	up	files	and	filegroups

Execute	the	BACKUP	DATABASE	statement	to	create	the	file	and
filegroup	backup,	specifying:

The	name	of	the	database	to	back	up.

The	backup	device	where	the	database	backup	will	be	written.

The	FILE	clause	for	each	file	to	back	up.

The	FILEGROUP	clause	for	each	filegroup	to	back	up.

Examples

This	example	performs	a	backup	operation	with	files	and	filegroups	for	the
MyNwind	database.

--	Back	up	the	MyNwind	file(s)	and	filegroup(s)
BACKUP	DATABASE	MyNwind
			FILE	=	'MyNwind_data_1',
			FILEGROUP	=	'new_customers',
			FILE	=	'MyNwind_data_2',	
			FILEGROUP	=	'first_qtr_sales'
			TO	MyNwind_1
GO

See	Also

BACKUP

File	and	Filegroup	Backup	and	Restore

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	restore	files	and	filegroups	(Transact-SQL)
To	restore	files	and	filegroups

IMPORTANT		The	system	administrator	restoring	the	files	and	filegroups	must	be
the	only	person	currently	using	the	database	to	be	restored.

1.	 Execute	the	RESTORE	DATABASE	statement	to	restore	the	file	and
filegroup	backup,	specifying:

The	name	of	the	database	to	restore.

The	backup	device	from	where	the	database	backup	will	be
restored.

The	FILE	clause	for	each	file	to	restore.

The	FILEGROUP	clause	for	each	filegroup	to	restore.

The	NORECOVERY	clause.	If	the	files	have	not	been
modified	after	the	backup	was	created,	specify	the
RECOVERY	clause.

2.	 If	the	files	have	been	modified	after	the	file	backup	was	created,
execute	the	RESTORE	LOG	statement	to	apply	the	transaction	log
backup,	specifying:

The	name	of	the	database	to	which	the	transaction	log	will	be
applied.

The	backup	device	from	where	the	transaction	log	backup
will	be	restored.

The	NORECOVERY	clause	if	you	have	another	transaction

log	backup	to	apply	after	the	current	one;	otherwise,	specify
the	RECOVERY	clause.

The	transaction	log	backups,	if	applied,	must	cover	the	time
when	the	files	and	filegroups	were	backed	up	until	the	end	of
log	(unless	ALL	database	files	are	restored).

Examples
This	example	restores	the	files	and	filegroups	for	the	MyNwind	database.	Two
transaction	logs	will	also	be	applied,	to	restore	the	database	to	the	current	time.

USE	master
GO
--	Restore	the	files	and	filesgroups	for	MyNwind.
RESTORE	DATABASE	MyNwind
			FILE	=	'MyNwind_data_1',
			FILEGROUP	=	'new_customers',
			FILE	=	'MyNwind_data_2',
			FILEGROUP	=	'first_qtr_sales'
			FROM	MyNwind_1
			WITH	NORECOVERY
GO
--	Apply	the	first	transaction	log	backup.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log1
			WITH	NORECOVERY
GO
--	Apply	the	last	transaction	log	backup.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log2
			WITH	RECOVERY
GO

See	Also

RESTORE

File	and	Filegroup	Backup	and	Restore

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	restore	files	and	filegroups	over	existing	files	(Transact-
SQL)
To	restore	files	and	filegroups	over	existing	files

IMPORTANT		The	system	administrator	restoring	the	files	and	filegroups	must	be
the	only	person	currently	using	the	database	to	be	restored.

1.	 Execute	the	RESTORE	DATABASE	statement	to	restore	the	file	and
filegroup	backup,	specifying:

The	name	of	the	database	to	restore.

The	backup	device	from	where	the	database	backup	will	be
restored.

The	FILE	clause	for	each	file	to	restore.

The	FILEGROUP	clause	for	each	filegroup	to	restore.

The	REPLACE	clause	to	specify	that	each	file	can	be	restored
over	existing	files	of	the	same	name	and	location.

The	NORECOVERY	clause.	If	the	files	have	not	been
modified	after	the	backup	was	created,	specify	the
RECOVERY	clause.

2.	 If	the	files	have	been	modified	after	the	file	backup	was	created,
execute	the	RESTORE	LOG	statement	to	apply	the	transaction	log
backup,	specifying:

The	name	of	the	database	to	which	the	transaction	log	will	be
applied.

The	backup	device	from	where	the	transaction	log	backup
will	be	restored.

The	NORECOVERY	clause	if	you	have	another	transaction
log	backup	to	apply	after	the	current	one;	otherwise,	specify
the	RECOVERY	clause.

The	transaction	log	backups,	if	applied,	must	cover	the	time
when	the	files	and	filegroups	were	backed	up.

Examples
This	example	restores	the	files	and	filegroups	for	the	MyNwind	database,	and
replaces	any	existing	files	of	the	same	name.	Two	transaction	logs	will	also	be
applied	to	restore	the	database	to	the	current	time.

USE	master
GO
--	Restore	the	files	and	filesgroups	for	MyNwind.
RESTORE	DATABASE	MyNwind
			FILE	=	'MyNwind_data_1',
			FILEGROUP	=	'new_customers',
			FILE	=	'MyNwind_data_2',
			FILEGROUP	=	'first_qtr_sales'
			FROM	MyNwind_1
			WITH	NORECOVERY,
			REPLACE
GO
--	Apply	the	first	transaction	log	backup.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log1
			WITH	NORECOVERY
GO
--	Apply	the	last	transaction	log	backup.
RESTORE	LOG	MyNwind

			FROM	MyNwind_log2
			WITH	RECOVERY
GO

See	Also

RESTORE

Copying	Databases

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	restore	files	to	a	new	location	(Transact-SQL)
To	restore	files	to	a	new	location

IMPORTANT		The	system	administrator	restoring	the	files	must	be	the	only	person
currently	using	the	database	to	be	restored.

1.	 Optionally,	execute	the	RESTORE	FILELISTONLY	statement	to
determine	the	number	and	names	of	the	files	in	the	database	backup.

2.	 Execute	the	RESTORE	DATABASE	statement	to	restore	the	database
backup,	specifying:

The	name	of	the	database	to	restore.

The	backup	device	from	where	the	database	backup	will	be
restored.

The	MOVE	clause	for	each	file	to	restore	to	a	new	location.

The	NORECOVERY	clause.	If	the	files	have	not	been
modified	since	the	backup	was	created,	specify	the
RECOVERY	clause.

3.	 If	the	files	have	been	modified	after	the	file	backup	was	created,
execute	the	RESTORE	LOG	statement	to	apply	the	transaction	log
backup,	specifying:

The	name	of	the	database	to	which	the	transaction	log	will	be
applied.

The	backup	device	from	where	the	transaction	log	backup
will	be	restored.

The	NORECOVERY	clause	if	you	have	another	transaction
log	backup	to	apply	after	the	current	one;	otherwise,	specify
the	RECOVERY	clause.

The	transaction	log	backups,	if	applied,	must	cover	the	time
when	the	files	and	filegroups	were	backed	up.

Examples
This	example	restores	two	of	the	files	for	the	MyNwind	database	that	were
originally	located	on	the	C:\	drive	to	new	locations	on	the	D:	\drive.	Two
transaction	logs	will	also	be	applied	to	restore	the	database	to	the	current	time.
The	RESTORE	FILELISTONLY	statement	is	used	to	determine	the	number	and
logical	and	physical	names	of	the	files	in	the	database	being	restored.

USE	master
GO
--	First	determine	the	number	and	names	of	the	files	in	the	backup.
RESTORE	FILELISTONLY
			FROM	MyNwind_1
--	Restore	the	files	for	MyNwind.
RESTORE	DATABASE	MyNwind
			FROM	MyNwind_1
			WITH	NORECOVERY,
			MOVE	'MyNwind_data_1'	TO	'D:\MyData\MyNwind_data_1.mdf',	
			MOVE	'MyNwind_data_2'	TO	'D:\MyData\MyNwind_data_2.ndf'
GO
--	Apply	the	first	transaction	log	backup.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log1
			WITH	NORECOVERY
GO
--	Apply	the	last	transaction	log	backup.
RESTORE	LOG	MyNwind
			FROM	MyNwind_log2
			WITH	RECOVERY

GO

See	Also

RESTORE

Copying	Databases

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	restore	a	database	with	a	new	name	(Transact-SQL)
To	restore	a	database	with	a	new	name

1.	 Optionally,	execute	the	RESTORE	FILELISTONLY	statement	to
determine	the	number	and	names	of	the	files	in	the	database	backup.

2.	 Execute	the	RESTORE	DATABASE	statement	to	restore	the	database
backup,	specifying:

The	new	name	for	the	database.

The	backup	device	from	where	the	database	backup	will	be
restored.

The	NORECOVERY	clause	if	you	have	transaction	log
backups	to	apply	after	the	file	backups	are	restored.
Otherwise,	specify	the	RECOVERY	clause.

The	transaction	log	backups,	if	applied,	must	cover	the	time
when	the	files	were	backed	up.

The	MOVE	clause	for	each	file	to	restore	to	a	new	location	if
the	file	names	already	exist.	For	example,	creating	a	copy	of
an	existing	database	on	the	same	server	for	testing	purposes
may	be	necessary.	In	this	case,	the	database	files	for	the
original	database	already	exist,	and	so	different	file	names
need	to	be	specified	when	the	database	copy	is	created	during
the	restore	operation.

Examples

This	example	creates	a	new	database	called	MyNwind2_Test.	MyNwind2_Test
is	a	copy	of	the	existing	MyNwind2	database	that	comprises	two	files:
MyNwind2_data	and	MyNwind2_log.	Because	the	MyNwind2	database	already

exists,	the	files	in	the	backup	need	to	be	moved	during	the	restore	operation.	The
RESTORE	FILELISTONLY	statement	is	used	to	determine	the	number	and
names	of	the	files	in	the	database	being	restored.

USE	master
GO
--	First	determine	the	number	and	names	of	the	files	in	the	backup.
--	MyNwind_2	is	the	name	of	the	backup	device.
RESTORE	FILELISTONLY
			FROM	MyNwind_2
--	Restore	the	files	for	MyNwind2_Test.
RESTORE	DATABASE	MyNwind2_Test
			FROM	MyNwind_2
			WITH	RECOVERY,
			MOVE	'MyNwind2_data'	TO	'D:\MyData\MyNwind2_Test_data.mdf',	
			MOVE	'MyNwind2_log'	TO	'D:\MyData\MyNwind2_Test_log.ldf'
GO

See	Also

RESTORE

Copying	Databases

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

Managing	Servers
Microsoft®	SQL	Server™	server	management	comprises	a	wide	variety	of
administration	tasks,	including:

Registering	servers	and	assigning	passwords.

Reconfiguring	network	connectivity.

Configuring	linked	servers.	This	allows	you	to	execute	distributed
queries	and	distributed	transactions	on	OLE	DB	data	sources	across	the
enterprise.

Configuring	remote	servers.This	allows	you	to	use	one	SQL	Server
installation	to	execute	a	stored	procedure	residing	on	another	SQL
Server	installation.

Configuring	standby	and	failover	servers.

Setting	server	configuration	options.

Managing	SQL	Server	messages.

Setting	the	polling	intervals.

In	most	cases,	you	do	not	need	to	reconfigure	the	server.	The	default	settings	for
the	server	components,	configured	during	SQL	Server	setup,	allow	you	to	run
SQL	Server	immediately	after	it	is	installed.	However,	server	management	is
necessary	in	those	situations	where	you	want	to	add	new	servers,	set	up	special
server	configurations,	change	the	network	connections,	or	set	server
configuration	options	to	improve	SQL	Server	performance.

How	To

How	to	set	up	a	remote	server	to	allow	the	use	of	remote	stored
procedures	(Transact-SQL)
To	set	up	a	remote	server	to	allow	the	use	of	remote	stored	procedures

1.	 Run	the	following	code	on	the	first	server	running	Microsoft®	SQL
Server™:
EXEC	sp_addlinkedserver	ServerName1,	N'SQL	Server'
EXEC	sp_addlinkedserver	ServerName2
EXEC	sp_configure	'remote	access',	1
RECONFIGURE
GO

2.	 Stop	and	restart	the	first	SQL	Server.

3.	 Run	the	following	code	on	the	second	SQL	Server.	Make	sure	you	are
logging	in	using	SQL	Server	Authentication.
--	The	example	shows	how	to	set	up	access	for	a	login	'sa'
--		from	ServerName1	on	ServerName2.
EXEC	sp_addlinkedserver	ServerName2,	local
EXEC	sp_addlinkedserver	ServerName1
EXEC	sp_configure	'remote	access',	1
RECONFIGURE
GO
--	Assumes	that	the	login	'sa'	in	ServerName2	and	ServerName1
--		have	the	same	password.
EXEC	sp_addremotelogin	ServerName1,	sa,	sa
GO

4.	 Stop	and	restart	the	second	SQL	Server.

5.	 Using	the	sa	login,	you	can	now	execute	a	stored	procedure	on	the

second	SQL	Server	from	the	first	SQL	Server.

See	Also

sp_addremotelogin

sp_configure

sp_addlinkedserver

RECONFIGURE

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	disable	a	remote	server	setup	(Transact-SQL)
To	disable	a	remote	server	setup

1.	 Run	the	following	code	on	the	second	server	running	Microsoft®	SQL
Server™.
EXEC	sp_remoteoption	ServerName1,sa,	sa,	trusted,	false
EXEC	sp_dropremotelogin	ServerName1,	sa,	sa
RECONFIGURE
GO

EXEC	sp_configure	'remote	access',	0
EXEC	sp_dropserver	ServerName1
EXEC	sp_dropserver	ServerName2
RECONFIGURE
GO

2.	 Stop	and	restart	the	second	SQL	Server.

3.	 Run	the	following	code	on	the	first	SQL	Server:
EXEC	sp_configure	'remote	access',	0
EXEC	sp_dropserver	ServerName2
EXEC	sp_dropserver	ServerName1
RECONFIGURE
GO

4.	 Stop	and	restart	the	first	SQL	Server.

See	Also

sp_configure

sp_remoteoption

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

sp_dropremotelogin

RECONFIGURE

sp_dropserver

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	set	up	and	perform	a	log	shipping	role	change	(Transact-
SQL)
Log	shipping	supports	the	changing	of	roles,	which	requires	these	basic	steps:

1.	 Create	a	Data	Transformation	Services	(DTS)	package	to	copy	the
current	primary	server	to	the	current	secondary	server.

2.	 Create	a	job	to	back	up	syslogins	from	the	current	primary	server,
copy	the	file	to	a	directory	on	the	current	secondary	server,	and	then
execute	the	DTS	package.

3.	 Perform	the	role	change	to	set	the	current	secondary	server	as	the
current	primary	server.

Before	performing	a	log	shipping	role	change,	a	maintenance	plan	for	this	log
shipping	pair	must	exist	on	the	secondary	server.	A	maintenance	plan	can	be
created	using	the	Database	Maintenance	Plan	Wizard,	or	by	adding	a	server	as	a
secondary	server	using	the	Add	Secondary	dialog	box	found	in	the	user
interface	of	the	primary	database	maintenance	plan.

To	create	a	DTS	package	to	copy	the	logins	from	the	current	primary	server
to	the	current	secondary	server

4.	 Create	a	DTS	package	on	the	current	primary	server	using	DTS
Designer.

The	package	should	use	the	Transfer	Logins	Task,	located	in	the	list
of	tasks	in	the	designer.

5.	 In	the	Transfer	Logins	dialog	box	on	the	Source	tab,	in	the	Source
server	list,	enter	the	source	server	(the	current	primary	server).

6.	 Click	either	Use	Windows	Authentication	or	Use	SQL	Server
Authentication.

7.	 On	the	Destination	tab,	in	the	Destination	server	list,	enter	the
destination	server	(the	current	secondary	server).

8.	 Click	either	Use	Windows	Authentication	or	Use	SQL	Server
Authentication.

9.	 On	the	Logins	tab,	click	either	All	server	logins	detected	at	package
runtime	or	Logins	for	selected	databases.

10.	 Save	the	package.

To	create	a	job	to	back	up	syslogins	from	the	current	primary	server,	copy
the	file	to	a	directory	on	the	current	secondary	server,	and	then	execute	the
DTS	package

1.	 Click	New	Job	to	open	the	New	Job	Properties	dialog	box	on	the
General	tab.	On	the	current	primary	server,	create	a	job	owned	by	sa
or	a	login	with	sysadmin	rights	to	both	servers.

2.	 On	the	Steps	tab,	click	New	to	open	the	New	Job	Step	dialog	box,	and
then	create	the	following	job	steps:

BCP	Out

In	the	Type	list,	select	Operating	System	Command
(CmdExec).	In	the	Command	text	box,	enter	the	command
as	follows:

bcp	master..syslogins	out	localpath\syslogins.dat	/N	/S	

Click	the	Advanced	tab,	and	then	in	the	On	success	action
list,	select	Go	to	the	next	step.	In	the	On	failure	action	list,
select	Quit	the	job	reporting	failure.

Copy	File

In	the	Type	list,	select	Transact-SQL	Script	(T-SQL).	In	the
Database	list,	specify	master.	In	the	Command	text	box,

enter	the	command	as	follows:

EXEC	xp_cmdshell	'copy	localpath\syslogins.dat	destination_share

Click	the	Advanced	tab,	and	then	in	the	On	success	action
list,	select	Go	to	the	next	step.	In	the	On	failure	action	list,
select	Quit	the	job	reporting	failure.

Transfer	Logins

In	the	Type	list,	select	Operating	System	Command
(CmdExec).	In	the	Command	text	box,	enter	the	command
as	follows:

DTSRun	/Scurrent_primary_server	/Uuser_nName	/Ppassword	

3.	 In	the	New	Job	Properties	dialog	box,	click	the	Schedules	tab,	and
then	create	a	job	schedule	that	runs	either	one	time	or	on	a	recurrent
basis.

It	is	recommended	that	the	job	run	as	close	to	the	time	of	role	change	as	possible
so	that	the	job	obtains	the	most	current	login	information	from	the	primary
server.

To	perform	the	role	change	to	make	the	current	secondary	server	the
current	primary	server

You	must	be	a	SQL	Server	administrator	to	perform	a	server	role	change.

1.	 Run	sp_change_primary_role	on	the	instance	of	SQL	Server	marked
as	the	current	primary	server.	The	example	shows	how	to	make	the
primary	database	stop	being	the	primary	database.
current_primary_dbname	is	the	name	of	the	current	primary	database.
EXEC	sp_change_primary_role
				@db_name	=	'current_primary_dbname',
				@backup_log	=	1,
				@terminate	=	0,
				@final_state	=	2,
				@access_level	=	1

GO

2.	 Run	sp_change_secondary_role	on	the	instance	of	SQL	Server
marked	as	the	current	secondary	server.	The	example	shows	how	to
make	the	secondary	database	the	primary	database.
current_secondary_dbname	is	the	name	of	the	current	secondary
database.
EXEC	sp_change_secondary_role
				@db_name	=	'current_secondary_dbname',
				@do_load	=	1,
				@force_load	=	1,
				@final_state	=	1,
				@access_level	=	1,
				@terminate	=	1,
				@stopat	=	NULL
GO

3.	 Run	sp_change_monitor_role	on	the	instance	of	SQL	Server	marked
as	the	monitor.	The	example	shows	how	to	change	the	monitor	to
reflect	the	new	primary	database.	new_source_directory	is	the	path	to
the	location	where	the	primary	server	dumps	the	transaction	logs.
EXEC	sp_change_monitor_role
				@primary_server	=	'current_primary_server_name',
				@secondary_server	=	'current_secondary_server_name',
				@database	=	'current_secondary_dbname',
				@new_source	=	'new_source_directory'
GO

4.	 Run	sp_resolve_logins	on	the	instance	of	SQL	Server	now	marked	as
the	primary	server	(the	former	secondary	server).	You	must	run	the
stored	procedure	from	the	target	database.

The	example	shows	how	to	resolve	the	logins	on	the	new	primary
server	against	the	logins	from	the	former	primary	server.
destination_path	is	the	destination	share	specified	in	the	Copy	File	job
step.	filename	is	the	same	as	specified	in	the	BCP	Out	job	step.

dbname	is	the	name	of	the	new	primary	database.

EXEC	sp_resolve_logins
				@dest_db	=	'dbname',	
				@dest_path	=	'destination_path',	
				@filename	=	'filename'
GO

The	former	secondary	server	is	now	the	current	primary	server	and	is	ready	to
assume	the	function	of	a	primary	server.	The	former	primary	is	no	longer	part	of
a	log	shipping	pair.	You	must	add	the	former	primary	server	as	a	secondary
server	to	the	new	primary	server	to	establish	a	log	shipping	pair	between	the	two
databases.

See	Also

sp_change_monitor_role

sp_change_primary_role

sp_change_secondary_role

sp_resolve_logins

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	set	up	a	Log	Shipping	Monitor	(Transact-SQL)
To	set	up	a	Log	Shipping	Monitor	on	an	instance	of	SQL	Server

Execute	these	stored	procedures	on	the	server	running	the	instance	of
Microsoft®	SQL	Server™	2000	that	will	monitor	log	shipping.

1.	 Run	sp_add_log_shipping_primary	to	notify	the	monitor	server
which	machine	will	be	the	primary	in	the	log	shipping	pair.	The	output
of	the	stored	procedure	will	be	the	primary_id,	which	will	be	used	by
the	sp_add_log_shipping_secondary	stored	procedure.

2.	 Run	sp_add_log_shipping_secondary	to	notify	the	monitor	server
which	machine	will	be	the	secondary	in	the	log	shipping	pair.

Examples

This	example	sets	up	a	log	shipping	monitor	for	an	existing	log	shipping	pair	of
the	Northwind	database.	You	will	need	to	have	set	up	log	shipping	using	the
Database	Maintenance	Plan	Wizard	prior	to	setting	up	this	monitor	manually.
Note	that	a	monitor	is	created	during	the	wizard	setup	as	well.

EXEC	sp_add_log_shipping_primary
			@primary_server_name	=	'MyPrimaryServer',
			@primary_database_name	=	'Northwind',
			@maintenance_plan_id	=	'9B4E380E-11D2-41FC-9BA5-A8EB040A3DEF',
			@backup_threshold	=	15,
			@threshold_alert	=	14420,
			@threshold_alert_enabled	=	1,
			@planned_outage_start_time	=	0,
			@planned_outage_end_time	=	0,
			@planned_outage_weekday_mask	=	0

EXEC	sp_add_log_shipping_secondary

			@primary_id	=	1,
			@secondary_server_name	=	'MySecondaryServer',
			@secondary_database_name	=	'Northwind',
			@secondary_plan_id	=	'B5C330FF-1081-4FCB-83D0-955DDFB56BA5',
			@copy_enabled	=	1,
			@load_enabled	=	1,
			@out_of_sync_threshold	=	15,
			@threshold_alert	=	14421,
			@threshold_alert_enabled	=	1,
			@planned_outage_start_time	=	0,
			@planned_outage_end_time	=	0,
			@planned_outage_weekday_mask	=	0,
			@allow_role_change	=	0
GO

See	Also

sp_add_log_shipping_primary

sp_add_log_shipping_secondary

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	remove	a	log	shipping	pair	from	the	Log	Shipping
Monitor	(Transact-SQL)
To	remove	a	log	shipping	pair	from	a	Log	Shipping	Monitor	on	an	instance
of	Microsoft®	SQL	Server™	2000

Run	sp_delete_log_shipping_monitor_info	on	the	monitor	server.	This
informs	the	monitor	server	which	log	shipping	pair	will	be	deleted.	Note
that	the	actual	log	shipping	pair	is	not	deleted.	Only	the	monitor	will	be
affected	by	this	operation.

Optionally,	run	sp_delete_database_backuphistory	on	the	primary
and	secondary	servers.	This	removes	backup	history	information	about
members	of	the	deleted	log	shipping	pair.

Examples

This	example	removes	a	log	shipping	pair	from	a	Log	Shipping	Monitor	for	an
existing	log	shipping	pair	of	the	Northwind	database:

EXEC	sp_delete_log_shipping_monitor_info
			@primary_server_name	=	'MyPrimaryServer',
			@primary_database_name	=	'Northwind',
			@secondary_server_name	=	'MySecondaryServer',
			@secondary_database_name	=	'Northwind'
GO

Optionally,	the	following	stored	procedure	call	can	be	used	to	remove	backup
history	information	about	the	deleted	members	of	a	log	shipping	pair.	Execute
this	command	on	each	of	the	primary	and	secondary	servers:

EXEC	sp_delete_database_backuphistory	'Northwind'
GO

sp_delete_log_shipping_monitor_info

JavaScript:hhobj_1.Click()

''''''''

How	To

Automating	Administrative	Tasks
Many	of	the	repetitive	tasks	performed	when	administering	a	Microsoft®	SQL
Server™	system	can	be	automated.

Jobs	and	tasks	can	be	defined	to	run	at	specific	times	or	after	specific	events.
These	jobs	are	most	often	defined	using	SQL	Server	Enterprise	Manager,	but
they	can	also	be	defined	using	Transact-SQL	statements.

How	To

How	to	create	a	job	(Transact-SQL)
To	create	a	job

1.	 Execute	sp_add_job	to	create	a	job.

2.	 Execute	sp_add_jobstep	to	create	one	or	more	job	steps.

3.	 Execute	sp_add_jobschedule	to	create	a	job	schedule.

Note		It	is	recommended	that	you	execute	sp_add_jobserver	after
sp_add_jobstep	for	maximum	efficiency	in	communicating	job	changes	to	all
involved	servers.

Because	local	jobs	are	cached	by	the	local	SQL	Server	Agent,	any	modifications
implicitly	force	SQL	Server	Agent	to	recache	the	job.	Because	SQL	Server
Agent	does	not	cache	the	job	until	sp_add_jobserver	is	called,	it	is	more
efficient	to	call	sp_add_jobserver	last.

See	Also

Defining	Jobs

System	Stored	Procedures	(SQL	Server	Agent	Procedures)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	create	a	master	SQL	Server	Agent	job	(Transact-SQL)
To	create	a	master	SQL	Server	Agent	job

1.	 Execute	sp_add_job	to	create	a	job.

2.	 Execute	sp_add_jobstep	to	create	one	or	more	job	steps.

3.	 Execute	sp_add_jobschedule	to	create	a	job	schedule.

4.	 Execute	sp_add_jobserver	to	specify	the	target	servers	on	which	the
job	is	to	run.

Note		It	is	recommended	that	you	execute	sp_add_jobserver	after
sp_add_jobstep	for	maximum	efficiency	in	communicating	job	changes	to	all
involved	servers.

Changes	to	master	SQL	Server	Agent	jobs	must	be	propagated	to	all	involved
target	servers.	Because	target	servers	do	not	initially	download	the	job	until
sp_add_jobserver	is	called,	it	is	recommended	that	all	job	steps	and	job
schedules	for	a	particular	job	be	created	before	executing	sp_add_jobserver.
Otherwise,	sp_post_msx_operation	must	be	subsequently	called	to	request	that
the	target	server(s)	redownload	the	modified	job.

See	Also

How	to	create	a	master	SQL	Server	Agent	job	(Transact-SQL)

System	Stored	Procedures	(SQL	Server	Agent	Procedures)

JavaScript:hhobj_1.Click()

How	To

How	to	modify	a	master	SQL	Server	Agent	job	(Transact-SQL)
To	change	the	scheduling	details	for	a	job	definition

Execute	sp_update_jobschedule.

To	add,	change,	or	remove	steps	from	a	job	by	working	with	the	job	steps

1.	 Execute	sp_add_jobstep	to	add	new	job	steps.

2.	 Execute	sp_update_jobstep	to	change	pre-existing	job	steps.

3.	 Execute	sp_delete_jobstep	to	delete	a	pre-existing	job.

To	modify	the	target	server(s)	associated	with	a	job

1.	 Execute	sp_delete_jobserver	to	delete	a	server	currently	associated
with	a	job.

2.	 Execute	sp_add_jobserver	to	associate	a	server	with	the	current	job.

Note		A	master	SQL	Server	Agent	job	cannot	be	targeted	at	both	local	and
remote	servers.

See	Also

Creating	Jobs

System	Stored	Procedures	(SQL	Server	Agent	Procedures)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	create	an	operator	(Transact-SQL)
To	create	an	operator	for	a	local	job

Execute	sp_add_operator.

To	create	an	operator	for	a	master	SQL	Server	Agent

1.	 Execute	sp_add_operator	to	specify	the	master	SQL	Server	Agent
operator.

2.	 Execute	sp_add_targetsvrgrp_member	to	add	the	specified	target
server	to	the	target	server	group

3.	 Execute	sp_msx_enlist	to	enlist	the	target	server	in	the	job.

4.	 Execute	the	steps	in	How	to	create	a	master	SQL	Server	Agent	job
(Transact-SQL)	to	create	a	master	SQL	Server	Agent	job.

See	Also

Defining	Operators

System	Stored	Procedures	(SQL	Server	Agent	Procedures)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

How	to	modify	an	operator	(Transact-SQL)
To	modify	a	local	operator

Execute	sp_update_operator.

To	modify	an	operator	for	a	master	SQL	Server	Agent

1.	 Execute	sp_msx_defect	to	remove	the	target	server	from	the	master
SQL	Server	Agent.

2.	 Execute	sp_update_operator	to	change	the	operator.

See	Also

Modifying	and	Viewing	Operators

System	Stored	Procedures	(SQL	Server	Agent	Procedures)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

How	To

Monitoring	Server	Performance	and	Activity
There	are	a	variety	of	tools	and	techniques	that	can	be	used	to	monitor
Microsoft®	SQL	Server™	2000.	The	general	reasons	for	monitoring	SQL	Server
are:

Determining	if	performance	improvements	can	be	made.

Determining	user	activity	to	find	out	what	queries	users	are	issuing	and
who	is	connecting	to	SQL	Server.

Troubleshooting	problems.

Testing	applications.

How	To

How	to	create	a	trace	(Transact-SQL)
To	create	a	trace

1.	 Execute	sp_trace_create	with	the	required	parameters	to	create	a	new
trace.	The	new	trace	will	be	in	a	stopped	state	(status	is	0).

2.	 Execute	sp_trace_setevent	with	the	required	parameters	to	select	the
events	and	columns	to	trace.

3.	 Optionally,	execute	sp_trace_setfilter	to	set	any	or	a	combination	of
filters.

sp_trace_setevent	and	sp_trace_setfilter	can	be	executed	only	on
existing	traces	that	are	stopped.

IMPORTANT		Unlike	regular	stored	procedures,	parameters	of	all	SQL
Profiler	stored	procedures	(sp_trace_xx)	are	strictly	typed	and	do	not
support	automatic	data	type	conversion.	If	these	parameters	are	not
called	with	the	correct	input	parameter	data	types,	as	specified	in	the
argument	description,	the	stored	procedure	will	return	an	error.

See	Also

Creating	and	Managing	Traces	and	Templates

sp_trace_create

sp_trace_setevent

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	set	a	trace	filter	(Transact-SQL)
To	set	a	trace	filter

1.	 If	the	trace	is	already	running,	execute	sp_trace_setstatus	specifying
@status	=	0	to	stop	the	trace.

2.	 Execute	sp_trace_setfilter	to	configure	the	type	of	information	to
retrieve	for	the	event	being	traced.

IMPORTANT		Unlike	regular	stored	procedures,	parameters	of	all	SQL
Profiler	stored	procedures	(sp_trace_xx)	are	strictly	typed	and	do	not
support	automatic	data	type	conversion.	If	these	parameters	are	not
called	with	the	correct	input	parameter	data	types,	as	specified	in	the
argument	description,	the	stored	procedure	will	return	an	error.

See	Also

Creating	and	Managing	Traces	and	Templates

Limiting	Traces

sp_trace_setfilter

sp_trace_setstatus

System	Stored	Procedures	(SQL	Profiler	Procedures)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	modify	an	existing	trace	(Transact-SQL)
To	modify	an	existing	trace

1.	 If	the	trace	is	already	running,	execute	sp_trace_setstatus	specifying
@status	=	0	to	stop	the	trace.

2.	 To	modify	trace	events,	execute	sp_trace_setevent,	specifying	the
changes	through	the	parameters.	Listed	in	order,	they	are:

@traceid	(Trace	ID)

@eventid	(Event	ID)

@columnid	(Column	ID)

@on	(ON)

When	modifying	the	@on	parameter,	keep	in	mind	its	interaction	with
the	@columnid	parameter:

ON Column	ID Result
ON	(1) NULL Event	is	turned	on.

All	columns	are	cleared.
	 NOT	NULL Column	is	turned	on	for	the	specified

event.
OFF	(0) NULL Event	is	turned	off.

All	columns	are	cleared.
	 NOT	NULL Column	is	turned	off	for	the

specified	event.

IMPORTANT		Unlike	regular	stored	procedures,	parameters	of	all	SQL
Profiler	stored	procedures	(sp_trace_xx)	are	strictly	typed	and	do	not

support	automatic	data	type	conversion.	If	these	parameters	are	not
called	with	the	correct	input	parameter	data	types,	as	specified	in	the
argument	description,	the	stored	procedure	will	return	an	error.

See	Also

Creating	and	Managing	Traces	and	Templates

Modifying	Templates

sp_trace_setevent

System	Stored	Procedures	(SQL	Profiler	Procedures)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	view	a	saved	trace	(Transact-SQL)
To	view	a	specific	trace

Execute	fn_trace_getinfo	specifying	the	ID	of	the	trace	on	which
information	is	needed.	This	function	will	return	a	table	listing	the	trace,
trace	property,	and	information	about	the	property.

Invoke	the	function	this	way:

SELECT	*
FROM	::fn_trace_getinfo(trace_id)

To	view	all	existing	traces

Execute	fn_trace_getinfo	specifying	"0"	or	the	term	"default".	This
function	will	return	a	table	listing	all	the	trace,	their	properties,	and
information	about	these	properties.

Invoke	the	function	this	way:

SELECT	*
FROM	::fn_trace_getinfo(default)

See	Also

Creating	and	Managing	Traces	and	Templates

fn_trace_getinfo

Viewing	and	Analyzing	Traces

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	view	filter	information	(Transact-SQL)
To	view	filter	information

Execute	fn_trace_getfilterinfo	specifying	the	ID	of	the	trace	on	which
filter	information	is	needed.	This	function	will	return	a	table	listing	the
filters,	the	column	on	which	the	filters	are	applied,	and	the	value	on
which	the	filter	is	applied.

Invoke	the	function	this	way:

SELECT	*
FROM	::fn_trace_getfilterinfo(trace_id)

See	Also

Creating	and	Managing	Traces	and	Templates

fn_trace_getfilterinfo

System	Stored	Procedures	(SQL	Profiler	Procedures)

Viewing	and	Analyzing	Traces

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	delete	a	trace	(Transact-SQL)
To	delete	a	trace

1.	 Execute	sp_trace_setstatus	specifying	@status	=	0	to	stop	the	trace.

2.	 Execute	sp_trace_setstatus	specifying	@status	=	2	to	close	the	trace
and	delete	its	information	from	the	server.

Note		A	trace	must	be	stopped	first	before	it	can	be	closed.

See	Also

Creating	and	Managing	Traces	and	Templates

Deleting	Traces

sp_trace_setstatus

System	Stored	Procedures	(SQL	Profiler	Procedures)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

Integrating	SQL	Server	with	Other	Tools
Microsoft®	SQL	Server™	applications	can	reference	Automation	objects	in
Transact-SQL	statements.	SQL	Server	can	also	use	MAPI-compliant	e-mail
systems	to	send	and	receive	e-mails.

How	To

How	to	create	an	OLE	Automation	object	(Transact-SQL)
To	create	an	OLE	Automation	object

1.	 Call	sp_OACreate	to	create	the	object.

2.	 Use	the	object.

Call	sp_OAGetProperty	to	get	a	property	value.

Call	sp_OASetProperty	to	set	a	property	to	a	new	value.

Call	sp_OAMethod	to	call	a	method.

Call	sp_OAGetErrorInfo	to	get	the	most	recent	error
information.

3.	 Call	sp_OADestroy	to	destroy	the	object.

Note		All	of	these	steps	must	be	performed	within	a	single	Transact-SQL
statement	batch.	All	created	OLE	objects	are	destroyed	automatically	at	the	end
of	each	statement	batch.

See	Also

System	Stored	Procedures

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)

OLE	Automation	Sample	Script

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	debug	a	custom	OLE	Automation	server	(Transact-SQL)
You	can	debug	a	custom	OLE	Automation	server	created	by	using	32-bit
Microsoft®	Visual	Basic®	version	4.0.	To	do	this,	Visual	Basic	must	be	installed
on	the	Microsoft	SQL	Server™	computer,	and	SQL	Server	must	be	running
under	the	same	Microsoft	Windows	NT®	user	account	as	Visual	Basic.	SQL
Server	must	be	started	from	the	command	prompt	and	independently	of	the
Windows	NT	Service	Control	Manager	(by	using	the	sqlservr	/c	command),	or
the	SQL	Server	service	must	be	started	under	the	same	Windows	NT	user
account	used	to	log	on	to	the	system.

To	debug	a	custom	OLE	Automation	server

1.	 Load	your	custom	OLE	Automation	server	project	into	Visual	Basic.

2.	 Set	breakpoint(s)	on	the	desired	lines	of	source	code.

3.	 On	the	Run	menu,	click	Start	With	Full	Compile.

This	registers	and	runs	your	custom	OLE	Automation	server.

4.	 Use	the	OLE	Automation	stored	procedures	to	call	the	OLE	objects
exposed	by	your	custom	OLE	Automation	server.

When	a	breakpoint	is	hit,	the	Visual	Basic	debugger	is	activated.

For	more	information,	see	your	documentation	for	Visual	Basic.

A	custom,	in-process	OLE	server,	created	using	32-bit	Visual	Basic	4.0,	must
have	an	error	handler	(specified	with	the	On	Error	GoTo	statement)	for	the
Class_Initialize	and	Class_Terminate	subroutines.	The	error	handlers	will
prevent	unhandled	errors	from	occurring	in	the	subroutines.	Unhandled	errors	in
the	Class_Initialize	and	Class_Terminate	subroutines	can	cause	unpredictable
SQL	Server	problems,	such	as	a	SQL	Server	access	violation.	Error	handlers	for
other	subroutines	are	also	recommended.

See	Also

System	Stored	Procedures

How	to	create	an	OLE	Automation	object	(Transact-SQL)

Data	Type	Conversions	Using	OLE	Automation	Stored	Procedures

OLE	Automation	Sample	Script

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	use	SQL	Mail	(Transact-SQL)
SQL	Mail	uses	several	extended	stored	procedures	that	are	necessary	for	mail
enabling.	These	extended	stored	procedures	are	included	in	a	dynamic-link
library,	SQLMAP70.DLL,	which	is	installed	with	Microsoft®	SQL	Server™
2000.

To	process	e-mail	messages	manually

1.	 In	SQL	Query	Analyzer,	start	a	SQL	Server	Mail	client	session	by
executing	xp_startmail.

2.	 To	find	the	ID	of	the	next	unread	message	in	the	mail	box,	execute
xp_findnextmsg.

3.	 To	read	a	message	or	attachment,	execute	xp_readmail	(using	a
specific	message	ID),	and	use	the	output	variable	in	a	SELECT
statement	to	display	the	message	in	the	result	pane.

4.	 To	delete	a	message,	execute	xp_deletemail	(using	a	specific	message
ID).

5.	 To	send	a	message	or	a	query	result	set	to	specified	recipients,	execute
xp_sendmail	(with	the	query	in	the	message	body).

6.	 Stop	the	SQL	Server	Mail	client	session	by	executing	xp_stopmail.

To	process	multiple	e-mail	messages	as	a	scheduled	job

1.	 In	SQL	Query	Analyzer,	start	a	SQL	Server	Mail	client	session	by
executing	xp_startmail.

2.	 Execute	sp_processmail	to	find,	read,	respond	to,	and	delete	multiple

messages.

3.	 Stop	the	SQL	Server	Mail	client	session	by	executing	xp_stopmail.

See	Also

sp_processmail

xp_sendmail

xp_deletemail

xp_startmail

xp_findnextmsg

xp_stopmail

xp_readmail

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

How	To

Replication
Microsoft®	SQL	Server™	2000	replication	is	the	process	of	copying	and
distributing	data	and	database	objects	from	one	database	to	another	and	then
synchronizing	between	databases	for	consistency.

Using	replication,	you	can	distribute	data	to	different	locations,	to	remote	or
mobile	users	over	a	local	area	network,	using	a	dial-up	connection,	and	over	the
Internet.	Replication	also	allows	you	to	enhance	application	performance,
physically	separate	data	based	on	how	it	is	used	(for	example,	to	separate	online
transaction	processing	(OLTP)	and	decision	support	systems),	or	distribute
database	processing	across	multiple	servers.

How	To

Replication	Types
Microsoft®	SQL	Server™	2000	provides	the	following	types	of	replication	that
you	can	use	in	your	distributed	applications:

Snapshot	replication

Transactional	replication

Merge	replication

Each	type	provides	different	capabilities	depending	on	your	application	and
different	levels	of	ACID	properties	of	transactions	and	site	autonomy.	For
example,	merge	replication	allows	users	to	work	and	update	data	autonomously,
although	ACID	properties	are	not	assured.	Instead,	when	servers	are
reconnected,	all	sites	in	the	replication	topology	converge	to	the	same	data
values.	Transactional	replication	maintains	transactional	consistency,	but
Subscriber	sites	are	not	as	autonomous	as	they	are	in	merge	replication	because
Publishers	and	Subscribers	generally	must	be	connected	reliably	and
continuously	for	updates	to	be	propagated	to	Subscribers.

It	is	common	for	the	same	application	to	use	multiple	replication	types	and
options.	Some	of	the	data	in	the	application	may	not	require	any	updates	at
Subscribers,	some	sets	of	data	may	require	updates	infrequently,	with	updates
made	at	only	one	or	a	few	servers,	while	other	sets	of	data	may	need	to	be
updated	daily	at	multiple	servers.

Which	type	of	replication	you	choose	for	your	application	depends	on	your
requirements	based	on	distributed	data	factors,	whether	or	not	data	will	need	to
be	updated	at	the	Subscriber,	your	replication	environment,	and	the	needs	and
requirements	of	the	data	that	will	be	replicated.	For	more	information,	see
Planning	for	Replication.

Each	type	of	replication	begins	with	generating	and	applying	the	snapshot	at	the
Subscriber,	so	it	is	important	to	understand	snapshot	replication	in	addition	to
any	other	type	of	replication	and	options	you	choose.

JavaScript:hhobj_1.Click()

How	To

How	to	set	row-	or	column-level	tracking	for	an	article	(Transact-
SQL)

If	you	are	adding	a	merge	article	to	a	publication,	set	the
@column_tracking	parameter	of	the	replication	stored	procedure
sp_addmergearticle	to	true	for	column-level	tracking	or	to	false	for
row-level	tracking.

If	you	are	changing	the	properties	of	an	existing	inactive	merge	article
in	a	publication,	set	the	@property	=	parameter	of	the	replication	stored
procedure	sp_changemergearticle	to	column_tracking,	and	then	set
the	@value	=	parameter	to	true	for	column-level	tracking	or	to	false	for
row-level	tracking.

If	this	property	is	changed	after	the	publication	has	active	subscriptions,	the
current	snapshot	will	become	obsolete	and	existing	subscriptions	will	be	marked
for	reinitialization.

How	To

How	to	choose	a	resolver	(Transact-SQL)
If	you	are	using	stored	procedures	to	create	a	publication	and	want	to
specify	the	resolver,	set	the	@article_resolver	=	parameter	of	the
replication	stored	procedure	sp_addmergearticle	to	the	name	of	the
custom	resolver.	If	the	custom	resolver	is	a	stored	procedure,	also	set
the	@resolver_info	=	parameter	to	the	name	of	the	stored	procedure.

If	you	are	changing	the	resolver	properties	of	an	existing	merge	article
in	a	publication,	set	the	@property	=	parameter	of	the	replication	stored
procedure	sp_changemergearticle	to	article_resolver,	and	then	set	the
@value	=	parameter	to	the	name	of	the	custom	resolver.	If	the	custom
resolver	is	a	stored	procedure,	execute	a	second
sp_changemergearticle	statement,	set	the	@property	=	parameter	to
resolver_info,	and	then	set	the	@value	=	parameter	to	the	name	of	the
stored	procedure.

How	To

Implementing	Replication	(Transact-SQL)
Whether	you	are	using	snapshot	replication,	transactional	replication,	or	merge
replication,	the	following	stages	will	help	you	implement	replication.

Stage Tasks
Configuring	Replication Identify	the	Publisher,	Distributor,	and

Subscribers	in	your	topology.	Use	SQL	Server
Enterprise	Manager,	SQL-DMO,	scripts,	or
Transact-SQL	system	stored	procedures	to
configure	the	Publisher,	create	a	distribution
database,	and	enable	Subscribers.

Publishing	Data	and
Database	Objects

Create	the	publication	and	define	the	data	and
database	object	articles	in	the	publication,	and
apply	any	necessary	filters	to	data	that	will	be
published.

Subscribing	to
Publications

Create	push,	pull,	or	anonymous	subscriptions
to	indicate	what	publications	need	to	be
propagated	to	individual	Subscribers	and	when.

Applying	the	Initial
Snapshot

Indicate	where	to	save	snapshot	files,	whether
they	are	compressed,	and	scripts	to	run	before
or	after	applying	the	initial	snapshot.

Specify	to	have	the	Snapshot	Agent	apply	the
snapshot	at	the	Subscriber	immediately	after
creating	a	subscription	or	at	a	specified	time.

Apply	the	snapshot	manually	by	saving	it	to	a
network	location	or	to	removable	media	that
can	be	transported	to	the	Subscriber,	and	then
applying	the	Snapshot	files	manually	at	the
Subscriber.

Synchronizing	Data Synchronizing	data	occurs	when	the	Snapshot,
Log	Reader,	or	Merge	Agent	runs	and	updates
are	propagated	between	Publisher	and
Subscribers.

For	snapshot	replication,	the	snapshot	will	be
reapplied	at	the	Subscriber.

For	transactional	replication,	updates	will	be
propagated	to	Subscribers.

If	using	updatable	subscriptions	with	either
snapshot	replication	or	transactional	replication,
data	will	be	propagated	from	the	Subscriber	to
the	Publisher	and	to	other	Subscribers.

For	merge	replication,	data	is	synchronized
during	the	merge	process	when	data	changes	at
all	servers	are	converged	and	conflicts,	if	any,
are	detected	and	resolved.

How	To

How	to	Configure	Publishing	and	Distribution	(Transact-SQL)
1.	 Execute	sp_adddistributor	at	the	server	that	will	be	the	Distributor.

2.	 Execute	sp_adddistributiondb	at	the	Distributor	to	create	a	new
distribution	database.	

3.	 Execute	sp_adddistpublisher	at	each	server	that	will	be	a	Publisher
using	the	Distributor.

On	the	master	database	on	the	Publisher,	execute	sp_replicationdboption	for
each	database	that	will	be	a	publication	database.

How	To

How	to	Modify	Publisher	and	Distributor	Properties	(Transact-
SQL)
To	view	Distributor	properties

1.	 Execute	sp_helpdistributor	to	list	information	about	the	Distributor,
distribution	database,	working	directory,	and	SQL	Server	Agent	user
account.

2.	 Execute	sp_helpdistributiondb	to	return	properties	of	the	specified
distribution	database.

To	modify	a	Distributor

1.	 Execute	sp_changedistributor_property	to	modify	Distributor
properties.

2.	 Execute	sp_changedistributiondb	to	modify	distribution	database
properties.

To	add	a	password	to	a	Distributor

Execute	sp_add_distributor	specifying	the	password	parameter.

To	change	a	password	on	a	Distributor

Execute	sp_changedistributor_password.

To	create	a	new	distribution	database

Execute	sp_adddistributiondb	to	create	a	new	distribution	database
and	install	the	distribution	schema.

To	add	a	Publisher	to	a	distribution	database

Execute	sp_adddistpublisher	n	times	to	define	each	Publisher	that	uses
the	Distributor.

To	remove	a	Publisher	from	a	distribution	database

Execute	sp_dropdistpublisher	to	drop	a	Publisher	that	is	also	the
Distributor.

How	To

How	To	Disable	Publishing	and	Distribution	(Transact-SQL)
To	disable	a	Distributor	(Transact-SQL)

1.	 Execute	sp_dropdistpublisher	to	drop	a	Publisher	that	is	also	the
Distributor.

2.	 Execute	sp_dropdistributiondb	to	delete	the	distribution	database.

3.	 Execute	sp_dropdistributor	to	remove	the	Distributor	designation
from	the	server.

To	delete	a	distribution	database	(Transact-SQL)

Execute	sp_dropdistributiondb	to	delete	a	distribution	database.

To	manually	remove	replication	on	a	Publisher	without	connecting	to	the
Distributor	(Transact-SQL)

Execute	sp_dropdistributor	with	@no_checks=1	and
@ignore_distributor=1.

How	To

How	to	Create	Publications	and	Define	Articles	(Transact-SQL)
To	create	a	snapshot	or	transactional	publication

1.	 Execute	sp_replicationdboption	to	enable	publication	of	the	current
database.

2.	 Execute	sp_addpublication	with	repl_freq	set	to	snapshot	to	define
the	publication.

3.	 Execute	sp_addpublication_snapshot	to	create	a	Snapshot	Agent,	set
the	publication	agent_id,	and	place	the	schema	and	data	into	the
replication	working	directory.

4.	 Execute	sp_addarticle	n	times	to	define	each	article	in	the
publication.

To	define	an	article	for	a	snapshot	or	transactional	publication

1.	 Execute	sp_addarticle	to	define	an	article.

2.	 Execute	sp_articlefilter	to	filter	a	table	horizontally.

3.	 Execute	sp_articlecolumn	to	filter	a	table	vertically.

4.	 Execute	sp_articleview	to	create	the	synchronization	object	for	an
article	when	a	table	is	filtered	vertically	or	horizontally.

To	create	a	merge	publication

1.	 Execute	sp_replicationdboption	to	enable	publication	of	the	current
database.

2.	 Execute	sp_addmergepublication	to	define	the	publication.

3.	 Execute	sp_addpublication_snapshot	to	create	a	Snapshot	Agent	and
place	the	schema	and	data	into	the	replication	working	directory.

4.	 Execute	sp_addmergearticle	n	times	to	define	each	article	in	the
publication.

To	define	a	merge	article

1.	 Execute	sp_addmergearticle	to	define	an	article.

2.	 Execute	sp_addmergefilter	to	create	a	partitioned	publication.

How	To

How	to	Modify	Publications	and	Articles	(Transact-SQL)
To	view	snapshot	or	transactional	publication	properties

Execute	sp_helppublication	to	display	information	about	a	publication.

To	view	merge	publication	properties

Execute	sp_helpmergepublication	to	display	information	about	a
publication.

To	modify	publication	properties

Execute	sp_changepublication	to	modify	the	properties	of	a
publication.

To	modify	merge	publication	properties

Execute	sp_changemergepublication	to	modify	the	properties	of	a
publication.

To	view	article	properties	for	a	snapshot	or	transactional	publication

1.	 Execute	sp_helparticle	to	display	information	about	an	article.

2.	 Execute	sp_helparticlecolumns	to	display	all	columns	in	the	table
underlying	an	article.

To	view	merge	article	properties

1.	 Execute	sp_helpmergearticle	to	display	information	about	a	merge
article.

2.	 Execute	sp_helpmergefilter	to	display	information	about	merge
filters.

To	modify	article	properties	for	a	snapshot	or	transactional	publication

Execute	sp_changearticle	to	change	the	properties	of	an	article.

To	modify	merge	article	properties

1.	 Execute	sp_changemergearticle	to	change	the	properties	of	an	article.

2.	 Execute	sp_changemergefilter	to	change	the	properties	of	a	filter.

How	To

How	to	Delete	Publications	and	Articles	(Transact-SQL)
To	delete	a	snapshot	or	transactional	publication

1.	 Execute	sp_dropsubscription	to	delete	all	snapshot	subscriptions.

2.	 Execute	sp_droppublication	to	delete	the	publication	and	all	of	its
articles.

3.	 Execute	sp_replicationdboption	to	disable	replication	of	the	current
database.

Note		Do	not	call	sp_replicationdboption	to	disable	publication	of	the	current
database	if	you	are	deleting	only	one	publication	and	you	still	want	to	publish
from	the	database.

To	delete	an	article	for	a	snapshot	or	transactional	publication

Execute	sp_droparticle	to	delete	an	article	from	a	publication.

To	delete	a	merge	publication

1.	 Execute	sp_dropmergesubscription	to	delete	all	merge	subscriptions.

2.	 Execute	sp_mergesubscription_cleanup	to	remove	merge
configuration	for	all	merge	articles	in	the	subscription	database.

3.	 Execute	sp_dropmergepublication	to	delete	the	publication	and	all	of
its	articles.

4.	 Execute	sp_replicationdboption	to	disable	replication	of	the	current
database.

Note		Do	not	call	sp_replicationdboption	to	disable	publication	of	the	current
database	if	you	are	deleting	only	one	publication	and	you	want	to	publish	from

the	database.

To	delete	a	merge	article

Execute	sp_dropmergearticle	to	delete	an	article	from	a	publication.

How	To

How	to	Create	a	Push	Subscription	(Transact-SQL)
To	add	a	push	subscription	for	a	snapshot	publication	(Transact-SQL)

1.	 Execute	sp_addsubscriber	to	register	the	Subscriber	at	the	Publisher.

2.	 Execute	sp_addpublication	with	allow_push	set	to	TRUE	to	enable
push	subscriptions.

3.	 Execute	sp_addsubscription	to	create	the	subscription.

To	create	a	push	subscription	(transactional)

1.	 Execute	sp_addsubscriber	to	register	the	Subscriber	at	the	Publisher.

2.	 Execute	sp_addpublication	with	allow_push	set	to	true	to	enable	push
subscriptions.

3.	 Execute	sp_addsubscription	to	create	the	subscription.

To	add	a	push	subscription	(merge)

1.	 Execute	sp_addsubscriber	to	register	the	Subscriber	at	the	Publisher.

2.	 Execute	sp_addmergepublication	with	allow_push	set	to	true	to
enable	push	subscriptions.

3.	 Execute	sp_addmergesubscription	to	create	the	subscription.

How	To

How	to	Modify	a	Push	Subscription	(Transact-SQL)
To	view	push	subscription	properties	for	a	snapshot	publication

1.	 Execute	sp_helpsubscription	to	list	subscription	information
associated	with	a	particular	publication,	article,	Subscriber,	or	set	of
subscriptions.

2.	 Execute	sp_helpsubscriberinfo	to	display	information	about	a
Subscriber.

To	modify	push	subscription	properties	for	a	snapshot	publication

1.	 Execute	sp_changesubscriber	to	change	Subscriber	options.

2.	 Execute	sp_changesubstatus	to	change	Subscriber	status.

To	view	push	subscription	properties	for	a	transactional	publication

1.	 Execute	sp_helpsubscription	to	list	subscription	information
associated	with	a	particular	publication,	article,	Subscriber,	or	set	of
subscriptions.

2.	 Execute	sp_helpsubscriberinfo	to	display	information	about	a
Subscriberexecute.

To	modify	push	subscription	properties	for	a	transactional	publication

1.	 Execute	sp_changesubscriber	to	change	Subscriber	options.

2.	 Execute	sp_changesubstatus	to	change	Subscriber	status.

To	view	push	subscription	properties	for	a	merge	publication

Execute	sp_helpmergesubscription	to	list	subscription	information
associated	with	a	particular	publication,	article,	Subscriber,	or	set	of

subscriptions.

To	modify	push	subscription	properties	for	a	merge	publication

Execute	sp_changemergesubscription	to	change	Subscriber	options.

How	To

How	to	Delete	a	Push	Subscription	(Transact-SQL)
To	delete	a	push	subscription	to	a	snapshot	publication

1.	 Execute	sp_dropsubscription	to	delete	the	subscription.

2.	 Execute	sp_dropsubscriber	to	remove	the	registration	entry	of	the
Subscriber.

Note		It	is	not	necessary	to	drop	a	Subscriber	unless	you	are	dropping	the	last
publication	to	which	it	subscribes.

To	delete	a	push	subscription	to	a	transactional	publication

1.	 Execute	sp_dropsubscription	to	delete	the	subscription.

2.	 Execute	sp_dropsubscriber	to	remove	the	registration	entry	of	a
Subscriber.

Note		It	is	not	necessary	to	drop	a	Subscriber	unless	you	are	dropping	the	last
publication	to	which	it	subscribes.

To	delete	a	push	subscription	to	a	merge	publication

Execute	sp_dropmergesubscription	to	delete	the	subscription.

How	To

How	to	Create	a	Pull	Subscription	(Transact-SQL)
To	add	a	pull	subscription	to	a	snapshot	publication

1.	 Execute	sp_addpublication	with	allow_pull	set	to	true	to	enable	pull
subscriptions	at	the	Publisher.

2.	 Execute	sp_addsubscriber	to	register	the	Subscriber	at	the	Publisher.

3.	 Execute	sp_addsubscription	to	create	the	subscription	at	the
Publisher.

4.	 Execute	sp_addpullsubscription	to	create	the	pull	subscription	at	the
Subscriber.

5.	 Execute	sp_addpullsubscription_agent	to	create	a	scheduled	job	for
the	Distribution	Agent	at	the	Subscriber.

To	create	a	pull	subscription	(transactional)

1.	 Execute	sp_addpublication	with	allow_pull	set	to	TRUE	to	enable
pull	subscriptions	at	the	Publisher.

2.	 Execute	sp_addsubscriber	to	register	the	Subscriber	at	the	Publisher.

3.	 Execute	sp_addsubscription	to	create	the	subscription	at	the
Publisher.

4.	 Execute	sp_addpullsubscription	to	create	the	pull	subscription	at	the
Subscriber.

5.	 Execute	sp_addpullsubscription_agent	to	create	a	scheduled	job	for

the	Distribution	Agent	at	the	Subscriber.

To	add	a	pull	subscription	(merge)

1.	 Execute	sp_addmergepublication	with	allow_pull	set	to	TRUE	to
enable	pull	subscriptions	at	the	Publisher.

2.	 Execute	sp_addsubscriber	to	register	the	Subscriber	at	the	Publisher.

3.	 Execute	sp_addmergesubscription	to	create	the	subscription	at	the
Publisher.

4.	 Execute	sp_addmergepullsubscription	to	create	the	subscription	at
the	Subscriber.

5.	 Execute	sp_addmergepullsubscription_agent	to	create	a	scheduled
job	for	the	Distribution	Agent	at	the	Subscriber.

How	To

How	to	View	or	Modify	Pull	or	Anonymous	Subscriptions
(Transact-SQL)
To	view	pull	and	anonymous	subscription	properties	for	a	snapshot
publication

1.	 Execute	sp_helpsubscription	to	list	subscription	information
associated	with	a	particular	publication,	article,	Subscriber,	or	set	of
subscriptions.

2.	 Execute	sp_helppullsubscription	to	display	information	about	one	or
more	subscriptions	at	the	Subscriber.

3.	 Execute	sp_helpsubscriberinfo	to	display	information	about	the
Subscriber.

To	modify	pull	and	anonymous	subscription	properties	for	a	snapshot
publication

1.	 Execute	sp_changesubscriber	to	change	Subscriber	options.

2.	 Execute	sp_changesubstatus	to	change	Subscriber	status.

To	view	pull	and	anonymous	subscription	properties	(transactional)

1.	 Execute	sp_helpsubscription	to	list	subscription	information
associated	with	a	particular	publication,	article,	Subscriber,	or	set	of
subscriptions.

2.	 Execute	sp_helppullsubscription	to	display	information	about	one	or
more	subscriptions	at	the	Subscriber.	

3.	 Execute	sp_helpsubscriberinfo	to	display	information	about	the
Subscriber.

To	modify	pull	and	anonymous	subscription	properties	(transactional)

1.	 Execute	sp_changesubscriber	to	change	Subscriber	options.

2.	 Execute	sp_changesubstatus	to	change	Subscriber	status.

To	view	pull	and	anonymous	subscription	properties	(merge)

Execute	sp_helpmergepullsubscription	to	list	subscription	information
associated	with	a	particular	publication,	article,	Subscriber,	or	set	of
subscriptions.

To	modify	pull	and	anonymous	subscription	properties	(merge)

Execute	sp_changemergepullsubscription	to	change	Subscriber
options.

How	To

How	to	Delete	a	Pull	Subscription	(Transact-SQL)
To	delete	a	pull	subscription	to	a	snapshot	publication

1.	 Execute	sp_dropsubscription	to	delete	the	subscription.

2.	 Execute	sp_dropsubscriber	to	remove	the	registration	entry	of	the
Subscriber.

To	delete	a	pull	subscription	(transactional)

1.	 Execute	sp_dropsubscription	to	delete	the	subscription.

2.	 Execute	sp_dropsubscriber	to	remove	the	registration	entry	of	the
Subscriber.

3.	 Execute	sp_droppullsubscription	at	the	Subscriber.

To	delete	a	pull	subscription	(merge)

Execute	sp_dropmergepullsubscription	to	delete	the	subscription.

How	To

How	to	Create	an	Anonymous	Subscription	(Transact-SQL)
To	add	an	anonymous	subscription	to	a	snapshot	publication	(Transact-
SQL)

1.	 Execute	sp_addpublication	with	allow_pull,	allow_anonymous,	and
immediate_sync	set	to	TRUE	to	enable	anonymous	subscriptions.

2.	 Execute	sp_addpullsubscription	to	create	the	anonymous
subscription	at	the	Subscriber.

3.	 Execute	sp_addpullsubscription_agent	to	create	a	scheduled	job	for
the	Distribution	Agent	at	the	Subscriber.

To	add	an	anonymous	subscription	(transactional)

1.	 Execute	sp_addpublication	with	allow_pull,	allow_anonymous,	and
immediate_sync	set	to	TRUE	to	enable	anonymous	subscriptions.

2.	 Execute	sp_addpullsubscription	to	create	the	anonymous
subscription	at	the	Subscriber.

3.	 Execute	sp_addpullsubscription_agent	to	create	a	scheduled	job	for
the	Distribution	Agent	at	the	Subscriber.

To	add	an	anonymous	subscription	to	a	merge	publication

1.	 Execute	sp_addmergepublication	with	allow_pull	and
allow_anonymous	set	to	TRUE	to	enable	anonymous	subscriptions	at
the	Publisher.

2.	 Execute	sp_addmergepullsubscription	to	create	the	anonymous
subscription	at	the	Subscriber.

3.	 Execute	sp_addmergepullsubscription_agent	to	create	a	scheduled
job	for	the	anonymous	Merge	Agent	at	the	Subscriber.

How	To

How	to	Delete	an	Anonymous	Subscription	(Transact-SQL)
To	disable	snapshot	publications	that	allow	anonymous	subscriptions

1.	 Execute	sp_droparticle	n	times	to	delete	each	article	in	the
publication.

2.	 Execute	sp_droppublication	to	delete	the	publication.

3.	 Execute	sp_replicationdboption	to	disable	replication	of	the	current
database.

Note		Anonymous	subscriptions	are	unknown	to	the	Publisher.	The	preceding
steps	disable	all	anonymous	subscriptions	to	a	publication	by	dropping	the
publication.

To	disable	transactional	publications	that	allow	anonymous	subscriptions

1.	 Execute	sp_droparticle	n	times	to	delete	each	article	in	the
publication.

2.	 Execute	sp_droppublication	to	delete	the	publication.

3.	 Execute	sp_replicationdboption	to	disable	replication	of	the	current
database.

Note		Anonymous	subscriptions	are	unknown	to	the	Publisher.	The	preceding
steps	disable	all	anonymous	subscriptions	to	a	publication	by	dropping	the
publication.

To	disable	merge	publications	that	allow	anonymous	subscriptions

1.	 Execute	sp_dropmergearticle	n	times	to	delete	each	article	in	the
publication.

2.	 Execute	sp_dropmergepublication	to	delete	the	publication.

3.	 Execute	sp_replicationdboption	to	disable	replication	of	the	current
database.

Note		Anonymous	subscriptions	are	unknown	to	the	Publisher.	The	preceding
steps	disable	all	anonymous	subscriptions	to	a	publication	by	dropping	the
publication.

How	To

How	to	Browse	and	Copy	Snapshot	Files	(Transact-SQL)
To	browse	snapshot	files

For	transactional	publications,	execute	the	sp_browsesnapshotfolder
Transact-SQL	system	stored	procedure	at	the	Publisher.

For	merge	publications,	execute	the	sp_browsemergesnapshotfolder
Transact-SQL	system	stored	procedure	at	the	Publisher.

To	copy	snapshot	files

For	transactional	publications,	execute	the	sp_copysnapshot	Transact-
SQL	system	stored	procedure	at	the	Publisher.

For	merge	publications,	execute	the	sp_copymergesnapshot	Transact-
SQL	system	stored	procedure	at	the	Publisher.

How	To

How	to	Apply	Schema	Changes	on	Publication	Databases
(Transact-SQL)
To	add	columns	to	an	article

Execute	the	sp_repladdcolumn	stored	procedure	and	set	the	following
parameters.

Parameter

Function	@source_objectNames	the	table	to	which	the	column	will	be	added.
@columnNames	the	column	to	be	added.	@typetextDefines	the	column	(data
type	information,	default	value,	and	so	on.).	In	the	SQL	for	the	column
definition,	you	must	either	specify	a	default	value	or	allow	NULL	values.

For	information	about	the	syntax	required	to	define	the	column,	see	ALTER
TABLE.

@publication_to_addLists	the	names	of	the	publications	to	which	you	will	add
the	column;	you	can	also	use	the	values	all	or	none.
@force_invalidate_snapshotWhen	set	equal	to	0,	current	snapshot	with	previous
schema	information	is	still	available	in	case	it	is	needed.	This	parameter	affects
only	publications	created	with	the	immediate_sync	option.
@force_reinit_subscriptionWhen	set	equal	to	1,	schema	changes	commands	will
not	be	propagated	to	Subscribers.	All	subscriptions	affected	by	the	schema
change	will	be	reintialized	except	for	nosync	subscriptions,	for	which	no	action
is	taken.

To	drop	columns	from	an	article

Execute	the	sp_repldropcolumn	stored	procedure	and	set	the	following
parameters.

Parameter

Function	@source_objectNames	the	table	from	which	the	column	will	be
dropped.	@columnNames	the	column	to	be	dropped.
@force_invalidate_snapshotWhen	set	equal	to	0,	current	snapshot	with	previous

JavaScript:hhobj_1.Click()

schema	information	is	still	available	in	case	it	is	needed.	This	parameter	affects
only	publications	created	with	the	immediate_sync	option.
@force_reinit_subscriptionWhen	set	equal	to	1,	schema	changes	commands	will
not	be	propagated	to	Subscribers.	All	subscriptions	affected	by	the	schema
change	will	be	reintialized	except	for	nosync	subscriptions,	for	which	no	action
is	taken.	

How	To

How	to	Publish	Data	Over	the	Internet	(Transact-SQL)
To	publish	over	the	Internet	using	snapshot	replication	(Transact-SQL)

When	defining	the	publication,	execute	sp_addpublication	with
enabled_for_internet	set	to	TRUE	to	enable	Internet	subscriptions.

To	publish	on	the	Internet	using	transactional	replication	(Transact-SQL)

When	defining	the	publication,	execute	sp_addpublication	with
enabled_for_internet	set	to	TRUE	to	enable	Internet	subscriptions.

To	publish	on	the	Internet	using	merge	replication

When	defining	the	publication,	execute	sp_addmergepublication	with
enabled_for_internet	set	to	TRUE	to	enable	Internet	subscriptions.

How	To

Replication	Options	(Transact-SQL)
Replication	Options	allow	you	to	configure	replication	in	a	manner	best	suited	to
your	application	and	environment.

Option
Type	of
Replication Benefits

Filtering
Published	Data

Snapshot
Replication

Transactional
Replication

Merge
Replication

Filters	allow	you	to	create	vertical	and/or
horizontal	partitions	of	data	that	can	be
published	as	part	of	replication.	By
distributing	partitions	of	data	to	different
Subscribers,	you	can:

Minimize	the	amount	of	data	sent
over	the	network.

Reduce	the	amount	of	storage
space	required	at	the	Subscriber.

Customize	publications	and
applications	based	on	individual
Subscriber	requirements.

Reduce	conflicts	because	the
different	data	partitions	can	be
sent	to	different	Subscribers.

Updatable
Subscriptions
(Immediate
Updating,
Queued
Updating)

Snapshot
Replication

Transactional
Replication

Immediate	updating	and	queued	updating
options	allow	users	to	update	data	at	the
Subscriber	and	either	propagate	those
updates	to	the	Publisher	immediately	or
store	the	updates	in	a	queue.

Updatable	subscriptions	are	best	for
replication	topologies	where	replicated

data	is	mostly	read,	and	occasionally
updated	at	the	Subscriber	when	Publisher,
Distributor,	and	Subscriber	are	connected
most	of	the	time	and	when	conflicts
caused	my	multiple	users	updating	the
same	data	are	infrequent.

Transforming
Published	Data

Snapshot
Replication

Transactional
Replication

You	can	leverage	the	data	movement,
transformation	mapping	and	filtering
capabilities	of	Data	Transformation
Services	(DTS)	during	replication.	With
transformable	subscriptions,	you	can:

Create	custom	partitions	for
snapshot	and	transactional
publications.

Transform	the	data	as	it	is	being
published	with	data	type
mappings	(for	example,	integer	to
real	data	type),	column
manipulations	(for	example,
concatenating	first	name	and	last
name	columns	into	one),	string
manipulations,	and	functions.

Alternate
Synchronization
Partners

Merge
Replication

Alternate	synchronization	partners	allow
Subscribers	to	merge	publications	to
synchronize	data	with	servers	other	than
the	Publisher	at	which	the	subscription
originated.	This	allows	the	Subscriber	to
synchronize	data	when	the	original
Publisher	is	unavailable,	and	is	also	useful
for	mobile	Subscribers	that	may	have
access	to	a	faster	or	more	reliable	network
connection	with	an	alternate	server.

Optimizing Merge By	optimizing	synchronization	during

Synchronization Replication merge	replication,	you	can	store	more
information	at	the	Publisher	instead	of
transferring	that	information	over	the
network	to	the	Subscriber.	This	improves
synchronization	performance	over	a	slow
network	connection,	but	requires
additional	storage	at	the	Publisher.

Attachable
Subscription
Databases

Snapshot
Replication

Transactional
Replication

Merge
Replication

Attachable	subscription	databases	allow
you	to	transfer	a	database	with	replicated
data	and	subscriptions	from	one
Subscriber	to	another.	After	the	database	is
attached	to	the	new	Subscriber,	the
database	at	the	new	Subscriber	will
automatically	receive	its	own	pull
subscriptions	to	the	publications	at	those
Publishers.	This	saves	you	the	time	and
effort	of	creating	subscription	databases
and	subscriptions	at	multiple	Subscribers.

How	To

How	to	validate	Subscriber	information	(Transact-SQL)
When	creating	a	merge	publication,	execute	the
sp_addmergepublication	system	stored	procedure	and	at	the
@validate_subscriber_info	parameter,	list	the	functions	that	are	being
used	to	retrieve	Subscriber	information.

For	example,	if	you	are	using	SUSER_SNAME()	in	your	dynamic	filter,	the
parameter	should	read:	@validate_subscriber_info=N'SUSER_SNAME()'.

How	To

Administering	and	Monitoring	Replication	(Transact-
SQL)
SQL	Server	replication	provides	tools	to	administer	and	monitor	replication
agents,	replication	alerts,	and	replication	processes	so	that	you	can	ensure	that
replication	is	meeting	the	needs	of	your	applications	and	your	organization.

Monitoring	replication	will	help	you:

Set	the	profiles,	schedules	and	notifications	for	replication	agents.

Troubleshoot	agent	activity	including	verifying	when	agents	last	ran,
monitoring	agent	activity.	

Troubleshoot	agent	errors.

Ensure	that	data	values	are	the	same	at	the	Publisher	and	at	Subscribers.

How	To

How	to	create	a	replication	agent	profile	(Transact-SQL)
To	create	a	replication	agent	profile.

1.	 Execute	sp_add_agent_profile.

2.	 Execute	sp_add_agent_parameter.

To	set	the	default	profile	for	a	type	of	replication	agent

1.	 Execute	sp_update_agent_profile.

2.	 Execute	sp_help_agent_profile.

3.	 Execute	sp_help_agent_parameter.

To	view	or	modify	a	replication	agent	profile

1.	 Execute	sp_help_agent_profile.

2.	 Execute	sp_help_agent_parameter.

3.	 Execute	sp_update_agent_profile.

To	delete	a	replication	agent	profile

Execute	sp_drop_agent_profile.

How	To

Replication	Security	(Transact-SQL)
Replication	security	is	an	important	part	of	the	design	and	implementation	of
your	distributed	application.	Replication	applies	the	data	changes	made
elsewhere	on	the	network	to	the	database	at	your	server	and	vice-versa.

The	decentralized	availability	of	replicated	data	increases	the	complexity	of
managing	or	restricting	access	to	that	data.	Microsoft®	SQL	Server™	2000
replication	uses	a	combination	of	security	mechanisms	to	protect	the	data	and
business	logic	in	your	application:

Role	requirements

By	mapping	user	logins	to	specific	SQL	Server	2000	roles,	SQL	Server
2000	allows	users	to	perform	only	those	replication	and	database
activities	authorized	for	that	role.	Replication	grants	certain	permission
to	the	sysadmin	fixed	server	role,	the	db_owner	fixed	database	role,
the	current	login,	and	the	public	role.	For	example,	only	members	of
the	sysadmin	server	role	can	configure	replication.

Distributor	administrative	link	security

SQL	Server	2000	provides	a	secure	administrative	link	between	the
Distributor	and	a	remote	Publisher.	Publishers	can	be	treated	as	trusted
or	nontrusted.

Snapshot	folder	security

The	operating	system	or	FTP	service	prevents	users	from	accessing
specific	files	on	the	server.	The	user	must	have	a	valid	login	to	read	or
write	the	files	used	in	the	replication	process.

Registered	subscribers

SQL	Server	2000	allows	you	to	limit	access	to	publications	to	either
registered	Subscribers	that	are	well-known	to	the	Publisher,	anonymous,
or	Subscribers	that	have	logins	in	the	publication	access	list.	SQL
Server	2000	uses	linked	server	definitions	for	heterogeneous
Subscribers	to	secure	the	replication	of	data	with	heterogeneous	data
sources.

Publication	access	lists

By	supporting	publication	access	lists	(PAL)	on	each	server,	SQL
Server	2000	allows	you	to	determine	which	logins	have	access	to
publications.	SQL	Server	2000	creates	the	PAL	with	default	logins,	but
you	can	add	or	delete	logins	from	the	list.

Agent	login	security

By	supporting	agent	login	security,	SQL	Server	2000	requires	each	user
to	supply	a	valid	login	account	to	connect	to	the	server.	Replication
agents	are	required	to	use	valid	logins	when	connecting	to	Publishers,
Distributors,	and	Subscribers.	However,	agents	also	can	use	different
logins	and	security	modes	when	connecting	to	different	servers
simultaneously.

Immediate-updating	Subscriber	security

For	immediate-updating	Subscribers,	SQL	Server	2000	replication
applies	security	mechanisms	to	the	Publisher-RPC	link	and	Publisher
stored	procedures.

When	used	together,	these	security	mechanisms	provide	the	highest	safeguards
for	the	data	and	business	logic	in	your	application.

How	To

How	to	add	or	change	a	password	on	a	Distributor
To	add	a	password	to	a	Distributor

Execute	sp_add_distributor	specifying	the	password	parameter.

To	change	a	password	on	a	Distributor

Execute	sp_changedistributor_password.

How	To

To	grant	or	revoke	access	to	a	publication
To	grant	access	to	a	publication

Execute	sp_grant_publication_access.

To	revoke	access	to	a	publication

Execute	sp_revoke_publication_access.

How	To

OLE	DB
To	use	the	Microsoft	OLE	DB	Provider	for	SQL	Server	(SQLOLEDB),	you	have
to	understand	how	to	make	a	connection	to	the	server,	execute	the	command,	and
process	the	results.

How	To

Processing	Results	(OLE	DB)
Processing	results	in	an	OLE	DB	application	involves	first	determining	the
characteristics	of	the	result	set,	and	then	retrieving	the	data	into	program
variables.	If	the	command	executes	a	stored	procedure,	you	also	must	know	how
to	process	return	codes	and	output	parameters	from	the	stored	procedures.

How	To

Execute	stored	procedure	(using	ODBC	CALL	syntax)
and	process	return	codes	and	output	parameters
(OLE	DB)
Microsoft®	SQL	Server™	stored	procedures	can	have	integer	return	codes	and
output	parameters.	The	return	codes	and	output	parameters	are	sent	in	the	last
packet	from	the	server	and	are	therefore	not	available	to	the	application	until	the
rowset	is	completely	released.	If	the	command	returns	multiple	results,	output
parameter	data	is	available	when	IMultipleResults::GetResult	returns
DB_S_NORESULT	or	the	IMultipleResults	interface	is	completely	released,
whichever	occurs	first.

To	process	return	codes	and	output	parameters

1.	 Construct	an	SQL	statement	that	uses	the	ODBC	CALL	escape
sequence.	The	statement	should	use	parameter	markers	for	each
input/output,	and	output	parameter,	and	for	the	procedure	return	value
(if	any).	For	input	parameters,	you	can	use	the	parameter	markers	or
hard	code	the	values.

2.	 Create	a	set	of	bindings	(one	for	each	parameter	maker)	by	using	an
array	of	DBBINDING	structure.	

3.	 Create	an	accessor	for	the	defined	parameters	by	using	the
IAccessor::CreateAccessor	method.	CreateAccessor	creates	an
accessor	from	a	set	of	bindings.	

4.	 Fill	in	the	DBPARAMS	structure.

5.	 Call	the	Execute	command	(in	this	case,	a	call	to	a	stored	procedure).

6.	 Process	the	rowset	and	release	it	by	using	the	IRowset::Release
method.

7.	 Process	the	return	code	and	output	parameter	values	received	from	the
stored	procedure.

This	example	shows	processing	a	rowset,	a	return	code,	and	an	output	parameter.
Result	sets	are	not	processed.	Here	is	the	sample	stored	procedure	used	by	the
application.

USE	pubs
DROP	PROCEDURE	myProc
GO

CREATE	PROCEDURE	myProc	
				@inparam	int,
				@outparam	int	OUTPUT

AS
SELECT	title,	price	
FROM	titles	WHERE	royalty	>	@inparam
SELECT	@outparam	=	100

IF		(@outparam	>	0)
				RETURN	999
ELSE
				RETURN	888
GO

Here	is	the	sample	code:

void	InitializeAndEstablishConnection();

#define	UNICODE
#define	DBINITCONSTANTS
#define	INITGUID
#include	<windows.h>

#include	<stdio.h>
#include	<stddef.h>
#include	<iostream.h>
#include	<oledb.h>
#include	<oledberr.h>
#include	<SQLOLEDB.h>

IDBInitialize*						pIDBInitialize										=	NULL;
IDBCreateSession*			pIDBCreateSession							=	NULL;
IDBCreateCommand*			pIDBCreateCommand							=	NULL;
ICommandText*							pICommandText											=	NULL;
IRowset*												pIRowset																=	NULL;
ICommandWithParameters*	pICommandWithParams	=	NULL;
IAccessor*										pIAccessor														=	NULL;
IDBProperties*						pIDBProperties										=	NULL;
WCHAR*														pStringsBuffer;
DBBINDING*										pBindings;
const	ULONG									nInitProps	=	4;
DBPROP														InitProperties[nInitProps];
const	ULONG									nPropSet	=	1;
DBPROPSET											rgInitPropSet[nPropSet];
HRESULT													hr;
HACCESSOR											hAccessor;
const	ULONG									nParams	=	3;	//Number	of	parameters	in	the	command
DBPARAMBINDINFO					ParamBindInfo[nParams];
ULONG															i;
ULONG															cbColOffset	=	0;

ULONG															ParamOrdinals[nParams];
LONG																cNumRows	=	0;
DBPARAMS												Params;
/*
Declare	an	array	of	DBBINDING	structures,	one	for	each	parameter

in	the	command.
*/
DBBINDING											acDBBinding[nParams];
DBBINDSTATUS								acDBBindStatus[nParams];

//The	following	buffer	is	used	to	store	parameter	values.
typedef	struct	tagSPROCPARAMS
{
				long				lReturnValue;
				long				outParam;
				long				inParam;
}	SPROCPARAMS;
		
void	main()	{

				//The	command	to	execute.
			WCHAR*	wCmdString	=	L"{?	=	call	myProc(?,?)}";

				SPROCPARAMS	sprocparams	=	{0,0,14};

				//All	the	initialization	activities	in	a	separate	function.
				InitializeAndEstablishConnection();

				//Create	a	new	activity	from	the	data	source	object.
				if(FAILED(pIDBInitialize->QueryInterface(
																																				IID_IDBCreateSession,
																																				(void**)	&pIDBCreateSession)))
				{
								cout	<<	"Failed	to	access	IDBCreateSession	interface.\n";
								goto	EXIT;
				}
				if(FAILED(pIDBCreateSession->CreateSession(
																																					NULL,	

																																					IID_IDBCreateCommand,	
																																					(IUnknown**)	&pIDBCreateCommand)))
				{
								cout	<<	"pIDBCreateSession->CreateSession	failed.\n";
								goto	EXIT;
				}

				//Create	a	Command	object.
				if(FAILED(pIDBCreateCommand->CreateCommand(
																																								NULL,	
																																								IID_ICommandText,	
																																								(IUnknown**)	&pICommandText)))
				{
								cout	<<	"Failed	to	access	ICommand	interface.\n";
								goto	EXIT;
				}
				
				//Set	the	command	text.
				if(FAILED(pICommandText->SetCommandText(DBGUID_DBSQL,	wCmdString)))
				{
								cout	<<	"Failed	to	set	command	text.\n";
								goto	EXIT;
				}
			/*	No	need	to	describe	command	parameters	(parameter	name,	data	type
			etc)	in	DBPARAMBINDINFO	structure	and	then	SetParameterInfo().	The
			provider	obtains	this	information	by	calling	appropriate	helper
			function.
			*/

			
				/*Describe	the	consumer	buffer	by	filling	in	the	array	
				of	DBBINDING	structures.		Each	binding	associates
				a	single	parameter	to	the	consumer's	buffer.*/

				for(i	=	0;	i	<	nParams;	i++)
				{
								acDBBinding[i].obLength	=	0;
								acDBBinding[i].obStatus	=	0;
								acDBBinding[i].pTypeInfo	=	NULL;
								acDBBinding[i].pObject	=	NULL;
								acDBBinding[i].pBindExt	=	NULL;
								acDBBinding[i].dwPart	=	DBPART_VALUE;
								acDBBinding[i].dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
								acDBBinding[i].dwFlags	=	0;
								acDBBinding[i].bScale	=	0;
				}	//endfor

				acDBBinding[0].iOrdinal	=	1;
				acDBBinding[0].obValue	=	offsetof(SPROCPARAMS,	lReturnValue);
				acDBBinding[0].eParamIO	=	DBPARAMIO_OUTPUT;
				acDBBinding[0].cbMaxLen	=	sizeof(long);
				acDBBinding[0].wType	=	DBTYPE_I4;
				acDBBinding[0].bPrecision	=	11;
				
				acDBBinding[1].iOrdinal	=	2;
				acDBBinding[1].obValue	=	offsetof(SPROCPARAMS,	inParam);
				acDBBinding[1].eParamIO	=	DBPARAMIO_INPUT;
				acDBBinding[1].cbMaxLen	=	sizeof(long);
				acDBBinding[1].wType	=	DBTYPE_I4;
				acDBBinding[1].bPrecision	=	11;
				
				acDBBinding[2].iOrdinal	=	3;
				acDBBinding[2].obValue	=	offsetof(SPROCPARAMS,	outParam);
				acDBBinding[2].eParamIO	=	DBPARAMIO_OUTPUT;
				acDBBinding[2].cbMaxLen	=	sizeof(long);
				acDBBinding[2].wType	=	DBTYPE_I4;
				acDBBinding[2].bPrecision	=	11;

				//Create	an	accessor	from	the	above	set	of	bindings.
				hr	=	pICommandText->QueryInterface(
																																				IID_IAccessor,	
																																				(void**)&pIAccessor);
				if	(FAILED(hr))
				{
								cout	<<	"Failed	to	get	IAccessor	interface.\n";
				}

				hr	=	pIAccessor->CreateAccessor(
																												DBACCESSOR_PARAMETERDATA,
																												nParams,	
																												acDBBinding,	
																												sizeof(SPROCPARAMS),	
																												&hAccessor,
																												acDBBindStatus);
				if	(FAILED(hr))
				{
							cout	<<	"Failed	to	create	accessor	for	the	defined	parameters.\n";
				}
				/*
				Fill	in	DBPARAMS	structure	for	the	command	execution.	This	structure
				specifies	the	parameter	values	in	the	command	and	is	then	passed	
				to	Execute.
				*/
				Params.pData	=	&sprocparams;
				Params.cParamSets	=	1;
				Params.hAccessor	=	hAccessor;
				
				//Execute	the	command.
				if(FAILED(hr	=	pICommandText->Execute(
																																				NULL,	

																																				IID_IRowset,	
																																				&Params,	
																																				&cNumRows,	
																																				(IUnknown	**)	&pIRowset)))
				{
								cout	<<	"Failed	to	execute	command.\n";
								goto	EXIT;
				}

				printf("After	command	execution	but	before	rowset	processing.\n\n");
				printf("		Return	value	=	%d\n",	sprocparams.lReturnValue);
				printf("		Output	parameter	value	=	%d\n",	sprocparams.outParam);
				printf("		These	are	the	same	default	values	set	in	the	application.\n\n\n");

				/*The	result	set	does	not	matter	in	this	example,	so	release	it	
				without	processing.*/
				pIRowset->Release();

				printf("After	processing	the	result	set...\n");
				printf("		Return	value	=	%d\n",	sprocparams.lReturnValue);
				printf("		Output	parameter	value	=	%d\n\n",	sprocparams.outParam);

				//Free	up	memory.
				pIAccessor->ReleaseAccessor(hAccessor,	NULL);
				pIAccessor->Release();
				pICommandText->Release();
				pIDBCreateCommand->Release();
				pIDBCreateSession->Release();				
				if(FAILED(pIDBInitialize->Uninitialize()))
				{
								/*Uninitialize	is	not	required,	but	it	fails	if	an	interface
								has	not	been	released.		This	can	be	used	for	debugging.*/
								cout	<<	"Problem	uninitializing.\n";

				}	//endif
				pIDBInitialize->Release();
				
				//Release	COM.
				CoUninitialize();
				return;

EXIT:
				if(pIAccessor	!=	NULL)
								pIAccessor->Release();
				if(pICommandText	!=	NULL)
								pICommandText->Release();
				if(pIDBCreateCommand	!=	NULL)
								pIDBCreateCommand->Release();
				if(pIDBCreateSession	!=	NULL)
							pIDBCreateSession->Release();
				if	(pIDBInitialize	!=	NULL)
				{
								if	(FAILED(pIDBInitialize->Uninitialize()))
								{
												/*Uninitialize	is	not	required,	but	it	fails	if	an
												interface	has	not	been	released.		This	can	be	used
												for	debugging.*/
												cout	<<	"Problem	in	uninitializing.\n";
								}	//if	inner
								pIDBInitialize->Release();
				}	//endif	outer

				CoUninitialize();
};
//---
void	InitializeAndEstablishConnection()
{				

				//Initialize	the	COM	library.
				CoInitialize(NULL);

				//Obtain	access	to	the	SQLOLEDB	provider.				
				hr	=	CoCreateInstance(
																				CLSID_SQLOLEDB,	
																				NULL,	
																				CLSCTX_INPROC_SERVER,
																				IID_IDBInitialize,	
																				(void	**)	&pIDBInitialize);
				if	(FAILED(hr))
				{
								cout	<<	"Failed	in	CoCreateInstance().\n";
				}

				/*
				Initialize	the	property	values	needed
				to	establish	the	connection.
				*/
				for(i	=	0;	i	<	nInitProps;	i++)
								VariantInit(&InitProperties[i].vValue);
				//Specify	server	name.
				InitProperties[0].dwPropertyID	=	DBPROP_INIT_DATASOURCE;
				InitProperties[0].vValue.vt	=	VT_BSTR;
				InitProperties[0].vValue.bstrVal	=	
																																SysAllocString(L"mohanv1");
				InitProperties[0].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[0].colid	=	DB_NULLID;

				//Specify	database	name.
				InitProperties[1].dwPropertyID	=	DBPROP_INIT_CATALOG;
				InitProperties[1].vValue.vt	=	VT_BSTR;
				InitProperties[1].vValue.bstrVal	=	

																																SysAllocString(L"pubs");
				InitProperties[1].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[1].colid	=	DB_NULLID;

				//Specify	username	(login).
				InitProperties[2].dwPropertyID	=	DBPROP_AUTH_USERID;	
				InitProperties[2].vValue.vt	=	VT_BSTR;
				InitProperties[2].vValue.bstrVal	=	
																																SysAllocString(L"sa");
				InitProperties[3].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid	=	DB_NULLID;

				//Specify	password.
				InitProperties[3].dwPropertyID	=	DBPROP_AUTH_PASSWORD;
				InitProperties[3].vValue.vt	=	VT_BSTR;
				InitProperties[3].vValue.bstrVal	=	SysAllocString(L"");
				InitProperties[3].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid	=	DB_NULLID;

				/*
				Now	that	properties	are	set,	construct	the	DBPROPSET	structure
				(rgInitPropSet).		The	DBPROPSET	structure	is	used	to	pass	an	array
				of	DBPROP	structures	(InitProperties)	to	the	SetProperties	method.
				*/
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
				rgInitPropSet[0].cProperties	=	4;
				rgInitPropSet[0].rgProperties	=	InitProperties;

				//Set	initialization	properties.
				hr	=	pIDBInitialize->QueryInterface(
																																IID_IDBProperties,	
																																(void	**)&pIDBProperties);
				if	(FAILED(hr))

				{
								cout	<<	"Failed	to	obtain	IDBProperties	interface.\n";
				}

				hr	=	pIDBProperties->SetProperties(
																																nPropSet,	
																																rgInitPropSet);
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	set	initialization	properties.\n";
				}
				pIDBProperties->Release();

				//Now	establish	a	connection	to	the	data	source.
				if(FAILED(pIDBInitialize->Initialize()))
				{
								cout	<<	"Problem	in	initializing.\n";
				}
}	//end	of	InitializeAndEstablishConnection.
	

How	To

Execute	stored	procedure	(using	RPC	syntax)	and
process	return	codes	and	output	parameters	(OLE
DB)
Microsoft®	SQL	Server™	stored	procedures	can	have	integer	return	codes	and
output	parameters.	The	return	codes	and	output	parameters	are	sent	in	the	last
packet	from	the	server	and	are	therefore	not	available	to	the	application	until	the
rowset	is	completely	released.	If	the	command	returns	multiple	results,	output
parameter	data	is	available	when	IMultipleResults::GetResult	returns
DB_S_NORESULT	or	the	IMultipleResults	interface	is	completely	released,
whichever	occurs	first.

To	process	return	codes	and	output	parameters

1.	 Construct	an	SQL	statement	that	uses	the	RPC	escape	sequence.	

2.	 Call	the	ICommandWithParameters::SetParameterInfo	method	to
describe	parameters		to	the	provider.	Fill	in	the	parameter	information
in	an	array	of	PARAMBINDINFO	structures.

3.	 Create	a	set	of	bindings	(one	for	each	parameter	maker)	by	using	an
array	of	DBBINDING	structure.	

4.	 Create	an	accessor	for	the	defined	parameters	by	using	the
IAccessor::CreateAccessor	method.	CreateAccessor	creates	an
accessor	from	a	set	of	bindings.	

5.	 Fill	in	the	DBPARAMS	structure.

6.	 Call	the	Execute	command	(in	this	case,	a	call	to	a	stored	procedure).

7.	 Process	the	rowset	and	release	it	by	using	the	IRowset::Release

method.

8.	 Process	the	return	code	and	output	parameter	values	received	from	the
stored	procedure.

This	example	shows	processing	a	rowset,	a	return	code,	and	an	output	parameter.
Result	sets	are	not	processed.	Here	is	the	sample	stored	procedure	used	by	the
application.

USE	pubs
DROP	PROCEDURE	myProc
GO

CREATE	PROCEDURE	myProc	
				@inparam	int,
				@outparam	int	OUTPUT

AS
SELECT	title,	price	
FROM	titles	WHERE	royalty	>	@inparam
SELECT	@outparam	=	100

IF		(@outparam	>	0)
				RETURN	999
ELSE
				RETURN	888
GO

Here	is	the	sample	code:
void	InitializeAndEstablishConnection();

#define	UNICODE
#define	DBINITCONSTANTS
#define	INITGUID

#include	<windows.h>
#include	<stdio.h>
#include	<stddef.h>
#include	<iostream.h>
#include	<oledb.h>
#include	<oledberr.h>
#include	<SQLOLEDB.h>

IDBInitialize*						pIDBInitialize										=	NULL;
IDBCreateSession*			pIDBCreateSession							=	NULL;
IDBCreateCommand*			pIDBCreateCommand							=	NULL;
ICommandText*							pICommandText											=	NULL;
IRowset*												pIRowset																=	NULL;
ICommandWithParameters*	pICommandWithParams	=	NULL;
IAccessor*										pIAccessor														=	NULL;
IDBProperties*						pIDBProperties										=	NULL;
WCHAR*														pStringsBuffer;
DBBINDING*										pBindings;
const	ULONG									nInitProps	=	4;
DBPROP														InitProperties[nInitProps];
const	ULONG									nPropSet	=	1;
DBPROPSET											rgInitPropSet[nPropSet];
HRESULT													hr;
HACCESSOR											hAccessor;
const	ULONG									nParams	=	3;	//Number	of	parameters	in	the	command
DBPARAMBINDINFO					ParamBindInfo[nParams];
ULONG															i;
ULONG															cbColOffset	=	0;

ULONG															ParamOrdinals[nParams];
LONG																cNumRows	=	0;
DBPARAMS												Params;
/*

Declare	an	array	of	DBBINDING	structures,	one	for	each	parameter
in	the	command.
*/
DBBINDING											acDBBinding[nParams];
DBBINDSTATUS								acDBBindStatus[nParams];

//The	following	buffer	is	used	to	store	parameter	values.
typedef	struct	tagSPROCPARAMS
{
				long				lReturnValue;
				long				outParam;
				long				inParam;
}	SPROCPARAMS;
		
void	main()	{

				//The	command	to	execute.
				//WCHAR*	wCmdString	=	L"{?	=	call	myProc(?,?)}";
			WCHAR*	wCmdString=L"{rpc	myProc}";
				SPROCPARAMS	sprocparams	=	{0,0,14};

				//All	the	initialization	activities	in	a	separate	function.
				InitializeAndEstablishConnection();

				//Create	a	new	activity	from	the	data	source	object.
				if(FAILED(pIDBInitialize->QueryInterface(
																																				IID_IDBCreateSession,
																																				(void**)	&pIDBCreateSession)))
				{
								cout	<<	"Failed	to	access	IDBCreateSession	interface.\n";
								goto	EXIT;
				}
				if(FAILED(pIDBCreateSession->CreateSession(

																																					NULL,	
																																					IID_IDBCreateCommand,	
																																					(IUnknown**)	&pIDBCreateCommand)))
				{
								cout	<<	"pIDBCreateSession->CreateSession	failed.\n";
								goto	EXIT;
				}

				//Create	a	Command	object.
				if(FAILED(pIDBCreateCommand->CreateCommand(
																																								NULL,	
																																								IID_ICommandText,	
																																								(IUnknown**)	&pICommandText)))
				{
								cout	<<	"Failed	to	access	ICommand	interface.\n";
								goto	EXIT;
				}
				
				//Set	the	command	text.
				if(FAILED(pICommandText->SetCommandText(DBGUID_DBSQL,	wCmdString)))
				{
								cout	<<	"Failed	to	set	command	text.\n";
								goto	EXIT;
				}

				/*
				Describe	the	command	parameters	(parameter	name,	provider
				specific	name	of	the	parameter's	data	type,	and	so	on.)	in	an	array	of	
				DBPARAMBINDINFO	structures.		This	information	is	then	used	by
				SetParameterInfo().
				*/
				ParamBindInfo[0].pwszDataSourceType	=	L"DBTYPE_I4";
				ParamBindInfo[0].pwszName	=	L"ReturnVal";	//return	value	from	sp

				ParamBindInfo[0].ulParamSize	=	sizeof(long);
				ParamBindInfo[0].dwFlags	=	DBPARAMFLAGS_ISOUTPUT;
				ParamBindInfo[0].bPrecision	=	11;
				ParamBindInfo[0].bScale	=	0;
				ParamOrdinals[0]	=	1;
				
				ParamBindInfo[1].pwszDataSourceType	=	L"DBTYPE_I4";
				ParamBindInfo[1].pwszName	=	L"@inparam";
				ParamBindInfo[1].ulParamSize	=	sizeof(long);
				ParamBindInfo[1].dwFlags	=	DBPARAMFLAGS_ISINPUT;
				ParamBindInfo[1].bPrecision	=	11;
				ParamBindInfo[1].bScale	=	0;
				ParamOrdinals[1]	=	2;

				ParamBindInfo[2].pwszDataSourceType	=	L"DBTYPE_I4";
				ParamBindInfo[2].pwszName	=	L"@outparam";
				ParamBindInfo[2].ulParamSize	=	sizeof(long);
				ParamBindInfo[2].dwFlags	=	DBPARAMFLAGS_ISOUTPUT;
				ParamBindInfo[2].bPrecision	=	11;
				ParamBindInfo[2].bScale	=	0;
				ParamOrdinals[2]	=	3;

				//Set	the	parameters	information.
				if(FAILED(pICommandText->QueryInterface(
																																				IID_ICommandWithParameters,
																																				(void**)&pICommandWithParams)))
				{
								cout	<<	"Failed	to	obtain	ICommandWithParameters.\n";
								goto	EXIT;
				}
				if(FAILED(pICommandWithParams->SetParameterInfo(
																																								nParams,	
																																								ParamOrdinals,	

																																								ParamBindInfo)))
				{
								cout	<<	"Failed	in	setting	parameter	information.(SetParameterInfo)\n";
								goto	EXIT;
				}

				/*Describe	the	consumer	buffer	by	filling	in	the	array	
				of	DBBINDING	structures.		Each	binding	associates
				a	single	parameter	to	the	consumer's	buffer.*/
				for(i	=	0;	i	<	nParams;	i++)
				{
								acDBBinding[i].obLength	=	0;
								acDBBinding[i].obStatus	=	0;
								acDBBinding[i].pTypeInfo	=	NULL;
								acDBBinding[i].pObject	=	NULL;
								acDBBinding[i].pBindExt	=	NULL;
								acDBBinding[i].dwPart	=	DBPART_VALUE;
								acDBBinding[i].dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
								acDBBinding[i].dwFlags	=	0;
								acDBBinding[i].bScale	=	0;
				}	//endfor

				acDBBinding[0].iOrdinal	=	1;
				acDBBinding[0].obValue	=	offsetof(SPROCPARAMS,	lReturnValue);
				acDBBinding[0].eParamIO	=	DBPARAMIO_OUTPUT;
				acDBBinding[0].cbMaxLen	=	sizeof(long);
				acDBBinding[0].wType	=	DBTYPE_I4;
				acDBBinding[0].bPrecision	=	11;
				
				acDBBinding[1].iOrdinal	=	2;
				acDBBinding[1].obValue	=	offsetof(SPROCPARAMS,	inParam);
				acDBBinding[1].eParamIO	=	DBPARAMIO_INPUT;
				acDBBinding[1].cbMaxLen	=	sizeof(long);

				acDBBinding[1].wType	=	DBTYPE_I4;
				acDBBinding[1].bPrecision	=	11;
				
				acDBBinding[2].iOrdinal	=	3;
				acDBBinding[2].obValue	=	offsetof(SPROCPARAMS,	outParam);
				acDBBinding[2].eParamIO	=	DBPARAMIO_OUTPUT;
				acDBBinding[2].cbMaxLen	=	sizeof(long);
				acDBBinding[2].wType	=	DBTYPE_I4;
				acDBBinding[2].bPrecision	=	11;

				//Create	an	accessor	from	the	above	set	of	bindings.
				hr	=	pICommandWithParams->QueryInterface(
																																				IID_IAccessor,	
																																				(void**)&pIAccessor);
				if	(FAILED(hr))
				{
								cout	<<	"Failed	to	get	IAccessor	interface.\n";
				}

				hr	=	pIAccessor->CreateAccessor(
																												DBACCESSOR_PARAMETERDATA,
																												nParams,	
																												acDBBinding,	
																												sizeof(SPROCPARAMS),	
																												&hAccessor,
																												acDBBindStatus);
				if	(FAILED(hr))
				{
							cout	<<	"Failed	to	create	accessor	for	the	defined	parameters.\n";
				}
				/*
				Fill	in	DBPARAMS	structure	for	the	command	execution.	This	structure
				specifies	the	parameter	values	in	the	command	and	is	then	passed	

				to	Execute.
				*/
				Params.pData	=	&sprocparams;
				Params.cParamSets	=	1;
				Params.hAccessor	=	hAccessor;
				
				//Execute	the	command.
				if(FAILED(hr	=	pICommandText->Execute(
																																				NULL,	
																																				IID_IRowset,	
																																				&Params,	
																																				&cNumRows,	
																																				(IUnknown	**)	&pIRowset)))
				{
								cout	<<	"Failed	to	execute	command.\n";
								goto	EXIT;
				}

				printf("After	command	execution	but	before	rowset	processing.\n\n");
				printf("		Return	value	=	%d\n",	sprocparams.lReturnValue);
				printf("		Output	parameter	value	=	%d\n",	sprocparams.outParam);
				printf("		These	are	the	same	default	values	set	in	the	application.\n\n\n");

				/*The	result	set	does	not	matter	in	this	example,	so	release	it	
				without	processing.*/
				pIRowset->Release();

				printf("After	processing	the	result	set...\n");
				printf("		Return	value	=	%d\n",	sprocparams.lReturnValue);
				printf("		Output	parameter	value	=	%d\n\n",	sprocparams.outParam);

				//Free	up	memory.
				pIAccessor->ReleaseAccessor(hAccessor,	NULL);

				pIAccessor->Release();
				pICommandWithParams->Release();
				pICommandText->Release();
				pIDBCreateCommand->Release();
				pIDBCreateSession->Release();				
				if(FAILED(pIDBInitialize->Uninitialize()))
				{
								/*Uninitialize	is	not	required,	but	it	fails	if	an	interface
								has	not	been	released.		This	can	be	used	for	debugging.*/
								cout	<<	"Problem	uninitializing.\n";
				}	//endif
				pIDBInitialize->Release();
				
				//Release	COM.
				CoUninitialize();
				return;

EXIT:
				if(pIAccessor	!=	NULL)
								pIAccessor->Release();
				if(pICommandWithParams	!=	NULL)
								pICommandWithParams->Release();
				if(pICommandText	!=	NULL)
								pICommandText->Release();
				if(pIDBCreateCommand	!=	NULL)
								pIDBCreateCommand->Release();
				if(pIDBCreateSession	!=	NULL)
							pIDBCreateSession->Release();
				if	(pIDBInitialize	!=	NULL)
				{
								if	(FAILED(pIDBInitialize->Uninitialize()))
								{
												/*Uninitialize	is	not	required,	but	it	fails	if	an

												interface	has	not	been	released.		This	can	be	used
												for	debugging.*/
												cout	<<	"Problem	in	uninitializing.\n";
								}	//if	inner
								pIDBInitialize->Release();
				}	//endif	outer

				CoUninitialize();
};
//---
void	InitializeAndEstablishConnection()
{				
				//Initialize	the	COM	library.
				CoInitialize(NULL);

				//Obtain	access	to	the	SQLOLEDB	provider.				
				hr	=	CoCreateInstance(
																				CLSID_SQLOLEDB,	
																				NULL,	
																				CLSCTX_INPROC_SERVER,
																				IID_IDBInitialize,	
																				(void	**)	&pIDBInitialize);
				if	(FAILED(hr))
				{
								cout	<<	"Failed	in	CoCreateInstance().\n";
				}

				/*
				Initialize	the	property	values	needed
				to	establish	the	connection.
				*/
				for(i	=	0;	i	<	nInitProps;	i++)
								VariantInit(&InitProperties[i].vValue);

				//Specify	server	name.
				InitProperties[0].dwPropertyID	=	DBPROP_INIT_DATASOURCE;
				InitProperties[0].vValue.vt	=	VT_BSTR;
				InitProperties[0].vValue.bstrVal	=	
																																SysAllocString(L"mohanv1");
				InitProperties[0].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[0].colid	=	DB_NULLID;

				//Specify	database	name.
				InitProperties[1].dwPropertyID	=	DBPROP_INIT_CATALOG;
				InitProperties[1].vValue.vt	=	VT_BSTR;
				InitProperties[1].vValue.bstrVal	=	
																																SysAllocString(L"pubs");
				InitProperties[1].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[1].colid	=	DB_NULLID;

				//Specify	username	(login).
				InitProperties[2].dwPropertyID	=	DBPROP_AUTH_USERID;	
				InitProperties[2].vValue.vt	=	VT_BSTR;
				InitProperties[2].vValue.bstrVal	=	
																																SysAllocString(L"sa");
				InitProperties[3].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid	=	DB_NULLID;

				//Specify	password.
				InitProperties[3].dwPropertyID	=	DBPROP_AUTH_PASSWORD;
				InitProperties[3].vValue.vt	=	VT_BSTR;
				InitProperties[3].vValue.bstrVal	=	SysAllocString(L"");
				InitProperties[3].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid	=	DB_NULLID;

				/*
				Now	that	properties	are	set,	construct	the	DBPROPSET	structure

				(rgInitPropSet).		The	DBPROPSET	structure	is	used	to	pass	an	array
				of	DBPROP	structures	(InitProperties)	to	the	SetProperties	method.
				*/
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
				rgInitPropSet[0].cProperties	=	4;
				rgInitPropSet[0].rgProperties	=	InitProperties;

				//Set	initialization	properties.
				hr	=	pIDBInitialize->QueryInterface(
																																IID_IDBProperties,	
																																(void	**)&pIDBProperties);
				if	(FAILED(hr))
				{
								cout	<<	"Failed	to	obtain	IDBProperties	interface.\n";
				}

				hr	=	pIDBProperties->SetProperties(
																																nPropSet,	
																																rgInitPropSet);
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	set	initialization	properties.\n";
				}
				pIDBProperties->Release();

				//Now	establish	a	connection	to	the	data	source.
				if(FAILED(pIDBInitialize->Initialize()))
				{
								cout	<<	"Problem	in	initializing.\n";
				}
}	//end	of	InitializeAndEstablishConnection.
	

How	To

Execute	user-defined	function	and	process	return	code
(OLE	DB)
In	this	example	a	user-defined	function	is	executed	and	the	return	code	is
printed.	Here	is	the	sample	user-defined	function	used	by	the	application.

drop	function	fn_RectangleArea
go
CREATE	FUNCTION	fn_RectangleArea
			(@Width	int,	
@Height	int)
RETURNS	int
AS
BEGIN
			RETURN	(@Width	*	@Height)
END
GO

Here	is	a	sample	code.

/*
Example	shows	how	to	execute	user-defined	functions	and	process	return	code	value.
*/
void	InitializeAndEstablishConnection();
#define	UNICODE
#define	DBINITCONSTANTS
#define	INITGUID
#include	<windows.h>
#include	<stdio.h>
#include	<stddef.h>
#include	<iostream.h>
#include	<oledb.h>
#include	<oledberr.h>

#include	<sqloledb.h>

IDBInitialize*						pIDBInitialize										=	NULL;				
IDBCreateSession*			pIDBCreateSession							=	NULL;
IDBCreateCommand*			pIDBCreateCommand							=	NULL;
ICommandText*							pICommandText											=	NULL;
IRowset*												pIRowset																=	NULL;
ICommandWithParameters*	pICommandWithParams	=	NULL;
IAccessor*										pIAccessor														=	NULL;
IDBProperties*						pIDBProperties										=	NULL;
WCHAR*														pStringsBuffer;
DBBINDING*										pBindings;
const	ULONG									nInitProps	=	4;
DBPROP														InitProperties[nInitProps];				
const	ULONG									nPropSet	=	1;
DBPROPSET											rgInitPropSet[nPropSet];												
HRESULT													hr;
HACCESSOR											hAccessor;
const	ULONG									nParams	=	3;	//No.	of	parameters	in	the	command
DBPARAMBINDINFO					ParamBindInfo[nParams];
ULONG															i;
ULONG															cbColOffset	=	0;

ULONG															ParamOrdinals[nParams];
LONG																cNumRows	=	0;
DBPARAMS												Params;
/*
Declare	an	array	of	DBBINDING	structures,	one	for	each	parameter
in	the	command
*/
DBBINDING											acDBBinding[nParams];
DBBINDSTATUS								acDBBindStatus[nParams];

//The	following	buffer	is	used	to	store	parameter	values.
typedef	struct	tagSPROCPARAMS
{
				long				lReturnValue;
				long				inParam1;
				long				inParam2;
}	SPROCPARAMS;
		
void	main()	{

				//The	command	to	execute.
	WCHAR*	wCmdString	=	L"{?	=	CALL	fn_RectangleArea(?,	?)	}";
//	WCHAR*	wCmdString	=	L"EXEC	?	=	fn_RectangleVolume(?,	?)";

				SPROCPARAMS	sprocparams	=	{0,5,10};

				//All	the	initialization	stuff	in	a	separate	function.
				InitializeAndEstablishConnection();

				//Let	us	create	a	new	session	from	the	data	source	object.
				if(FAILED(pIDBInitialize->QueryInterface(
																																				IID_IDBCreateSession,
																																				(void**)	&pIDBCreateSession)))
				{
								cout	<<	"Failed	to	access	IDBCreateSession	interface\\n";
								goto	EXIT;
				}
				if(FAILED(pIDBCreateSession->CreateSession(
																																								NULL,	
																																								IID_IDBCreateCommand,	
																																								(IUnknown**)	&pIDBCreateCommand)))
				{
								cout	<<	"pIDBCreateSession->CreateSession	failed\\n";

								goto	EXIT;
				}

				//Create	a	Command
				if(FAILED(pIDBCreateCommand->CreateCommand(
																																								NULL,	
																																								IID_ICommandText,	
																																								(IUnknown**)	&pICommandText)))
				{
								cout	<<	"Failed	to	access	ICommand	interface\\n";
								goto	EXIT;
				}
				
				//Set	the	command	text.
				if(FAILED(pICommandText->SetCommandText(DBGUID_DBSQL,	wCmdString)))
				{
								cout	<<	"failed	to	set	command	text\\n";
								goto	EXIT;
				}

				/*
				Describe	the	command	parameters	(parameter	name,	provider
				specific	name	of	the	parameter's	data	type	etc.)	in	an	array	of	
				DBPARAMBINDINFO	structures.		This	information	is	then	used	by
				SetParameterInfo().
				*/
				ParamBindInfo[0].pwszDataSourceType	=	L"DBTYPE_I4";
				ParamBindInfo[0].pwszName	=	NULL;	//	L"ReturnVal";	//return	value	from	sp
				ParamBindInfo[0].ulParamSize	=	sizeof(long);
				ParamBindInfo[0].dwFlags	=	DBPARAMFLAGS_ISOUTPUT;
				ParamBindInfo[0].bPrecision	=	11;
				ParamBindInfo[0].bScale	=	0;
				ParamOrdinals[0]	=	1;

				
				ParamBindInfo[1].pwszDataSourceType	=	L"DBTYPE_I4";
				ParamBindInfo[1].pwszName	=	NULL;						//L"@inparam1";															
				ParamBindInfo[1].ulParamSize	=	sizeof(long);
				ParamBindInfo[1].dwFlags	=	DBPARAMFLAGS_ISINPUT;
				ParamBindInfo[1].bPrecision	=	11;
				ParamBindInfo[1].bScale	=	0;
				ParamOrdinals[1]	=	2;

				ParamBindInfo[2].pwszDataSourceType	=	L"DBTYPE_I4";
				ParamBindInfo[2].pwszName	=	NULL;						//	L"@inparam2";	
				ParamBindInfo[2].ulParamSize	=	sizeof(long);
				ParamBindInfo[2].dwFlags	=	DBPARAMFLAGS_ISINPUT;
				ParamBindInfo[2].bPrecision	=	11;
				ParamBindInfo[2].bScale	=	0;
				ParamOrdinals[2]	=	3;

				//Set	the	parameters	information.
				if(FAILED(pICommandText->QueryInterface(
																																				IID_ICommandWithParameters,
																																				(void**)&pICommandWithParams)))
				{
								cout	<<	"failed	to	obtain	ICommandWithParameters\\n";
								goto	EXIT;
				}
				if(FAILED(pICommandWithParams->SetParameterInfo(
																																								nParams,	
																																								ParamOrdinals,	
																																								ParamBindInfo)))
				{
								cout	<<	"failed	in	setting	parameter	info.(SetParameterInfo)\\n";
								goto	EXIT;
				}

				//Let	us	describe	the	consumer	buffer	by	filling	in	the	array	
				//of	DBBINDING	structures.		Each	binding	associates
				//a	single	parameter	to	the	consumer's	buffer.
				for(i	=	0;	i	<	nParams;	i++)
				{
								acDBBinding[i].obLength	=	0;
								acDBBinding[i].obStatus	=	0;
								acDBBinding[i].pTypeInfo	=	NULL;
								acDBBinding[i].pObject	=	NULL;
								acDBBinding[i].pBindExt	=	NULL;
								acDBBinding[i].dwPart	=	DBPART_VALUE;
								acDBBinding[i].dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
								acDBBinding[i].dwFlags	=	0;
								acDBBinding[i].bScale	=	0;
				}	//for

				acDBBinding[0].iOrdinal	=	1;
				acDBBinding[0].obValue	=	offsetof(SPROCPARAMS,	lReturnValue);
				acDBBinding[0].eParamIO	=	DBPARAMIO_OUTPUT;
				acDBBinding[0].cbMaxLen	=	sizeof(long);
				acDBBinding[0].wType	=	DBTYPE_I4;
				acDBBinding[0].bPrecision	=	11;
				
				acDBBinding[1].iOrdinal	=	2;
				acDBBinding[1].obValue	=	offsetof(SPROCPARAMS,	inParam1);
				acDBBinding[1].eParamIO	=	DBPARAMIO_INPUT;
				acDBBinding[1].cbMaxLen	=	sizeof(long);
				acDBBinding[1].wType	=	DBTYPE_I4;
				acDBBinding[1].bPrecision	=	11;
				
				acDBBinding[2].iOrdinal	=	3;
				acDBBinding[2].obValue	=	offsetof(SPROCPARAMS,	inParam2);

				acDBBinding[2].eParamIO	=	DBPARAMIO_INPUT;
				acDBBinding[2].cbMaxLen	=	sizeof(long);
				acDBBinding[2].wType	=	DBTYPE_I4;
				acDBBinding[2].bPrecision	=	11;

				//Let	us	create	an	accessor	from	the	above	set	of	bindings.
				hr	=	pICommandWithParams->QueryInterface(
																																				IID_IAccessor,	
																																				(void**)&pIAccessor);
				if	(FAILED(hr))
				{
								cout	<<	"Failed	to	get	IAccessor	interface\\n";
				}

				hr	=	pIAccessor->CreateAccessor(
																												DBACCESSOR_PARAMETERDATA,
																												nParams,	
																												acDBBinding,	
																												sizeof(SPROCPARAMS),	
																												&hAccessor,
																												acDBBindStatus);
				if	(FAILED(hr))
				{
								cout	<<	"failed	to	create	accessor	for	the	defined	parameters\\n";
				}
				/*
				Fill	in	DBPARAMS	structure	for	the	command	execution.	This	structure
				specify	the	parameter	values	in	the	command.		This	structure	is
				then	passed	to	Execute.
				*/
				Params.pData	=	&sprocparams;
				Params.cParamSets	=	1;
				Params.hAccessor	=	hAccessor;

				
				//Execute	the	command.
				if(FAILED(hr	=	pICommandText->Execute(
																																				NULL,	
																																				IID_IRowset,	
																																				&Params,	
																																				&cNumRows,	
																																				(IUnknown	**)	&pIRowset)))				
				{
								cout	<<	"failed	to	execute	command\\n";
								goto	EXIT;
				}

				printf("		Return	value	=	%d\n",	sprocparams.lReturnValue);

				//we	are	not	interested	in	the	resultset	so	release	it	
				//without	processing.
			if	(pIRowset	!=	NULL)
						pIRowset->Release();
				//Free	up	memory.
				pIAccessor->ReleaseAccessor(hAccessor,	NULL);
				pIAccessor->Release();
				pICommandWithParams->Release();
				pICommandText->Release();
				pIDBCreateCommand->Release();
				pIDBCreateSession->Release();				
				if(FAILED(pIDBInitialize->Uninitialize()))
				{
								//Uninitialize	is	not	required,	but	it	fails	if	an	interface
								//has	not	not	been	released.		This	can	be	used	for	debugging.
								cout	<<	"Problem	uninitializing\\n";
				}	//if
				pIDBInitialize->Release();

				
				//Release	COM.
				CoUninitialize();
				return;

EXIT:
				if(pIAccessor	!=	NULL)
								pIAccessor->Release();
				if(pICommandWithParams	!=	NULL)
								pICommandWithParams->Release();
				if(pICommandText	!=	NULL)
								pICommandText->Release();
				if(pIDBCreateCommand	!=	NULL)
								pIDBCreateCommand->Release();
				if(pIDBCreateSession	!=	NULL)
							pIDBCreateSession->Release();
				if	(pIDBInitialize	!=	NULL)
				{
								if	(FAILED(pIDBInitialize->Uninitialize()))
								{
												//Uninitialize	is	not	required,	but	it	fails	if	an
												//interface	has	not	been	released.		This	can	be	used
												//for	debugging.
												cout	<<	"problem	in	uninitializing\\n";
								}	//if	inner
								pIDBInitialize->Release();
				}	//if	outer

				CoUninitialize();
}
//---
void	InitializeAndEstablishConnection()
{				

				//Initialize	the	COM	library.
				CoInitialize(NULL);

				//Obtain	access	to	the	SQLOLEDB	provider.				
				hr	=	CoCreateInstance(
																				CLSID_SQLOLEDB,	
																				NULL,	
																				CLSCTX_INPROC_SERVER,
																				IID_IDBInitialize,	
																				(void	**)	&pIDBInitialize);
				if	(FAILED(hr))
				{
								cout	<<	"Failed	in	CoCreateInstance()\\n";
				}

				/*
				Let	us	initialize	the	property	values	needed
				to	establish	the	connection.
				*/
				for(i	=	0;	i	<	nInitProps;	i++)
								VariantInit(&InitProperties[i].vValue);
				//Specify	server	name.
				InitProperties[0].dwPropertyID	=	DBPROP_INIT_DATASOURCE;
				InitProperties[0].vValue.vt	=	VT_BSTR;
				InitProperties[0].vValue.bstrVal	=	
																																SysAllocString(L"server");
				InitProperties[0].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[0].colid	=	DB_NULLID;

				//Specify	database	name.
				InitProperties[1].dwPropertyID	=	DBPROP_INIT_CATALOG;
				InitProperties[1].vValue.vt	=	VT_BSTR;
				InitProperties[1].vValue.bstrVal	=	

																																SysAllocString(L"database");
				InitProperties[1].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[1].colid	=	DB_NULLID;

				//Specify	user	name	(login).
				InitProperties[2].dwPropertyID	=	DBPROP_AUTH_USERID;	
				InitProperties[2].vValue.vt	=	VT_BSTR;
				InitProperties[2].vValue.bstrVal	=	
																																SysAllocString(L"login");
				InitProperties[3].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid	=	DB_NULLID;

				//Specify	password.
				InitProperties[3].dwPropertyID	=	DBPROP_AUTH_PASSWORD;
				InitProperties[3].vValue.vt	=	VT_BSTR;
				InitProperties[3].vValue.bstrVal	=	SysAllocString(L"password");
				InitProperties[3].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid	=	DB_NULLID;

				/*
				Now	that	properties	are	set,	construct	the	DBPROPSET	structure
				(rgInitPropSet).		The	DBPROPSET	structure	is	used	to	pass	an	array
				of	DBPROP	structures	(InitProperties)	to	SetProperties	method.
				*/
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
				rgInitPropSet[0].cProperties	=	4;
				rgInitPropSet[0].rgProperties	=	InitProperties;

				//Set	initialization	properties.
				hr	=	pIDBInitialize->QueryInterface(
																																IID_IDBProperties,	
																																(void	**)&pIDBProperties);
				if	(FAILED(hr))

				{
								cout	<<	"Failed	to	obtain	IDBProperties	interface.\\n";
				}

				hr	=	pIDBProperties->SetProperties(
																																nPropSet,	
																																rgInitPropSet);
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	set	initialization	properties\\n";
				}
				pIDBProperties->Release();

				//Now	we	establish	connection	to	the	data	source.
				if(FAILED(pIDBInitialize->Initialize()))
				{
								cout	<<	"Problem	in	initializing\\n";
				}
}	//end	of	InitializeAndEstablishConnection.

How	To

How	to	fetch	rows	from	a	result	set	(OLE	DB)
To	fetch	rows	from	a	result	set

/*
				Example	shows	how	to	fetch	rows	from	a	result	set.
*/
void	InitializeAndEstablishConnection();
void	ProcessResultSet();

#define	UNICODE
#define	_UNICODE
#define	DBINITCONSTANTS
#define	INITGUID

#include	<stdio.h>
#include	<tchar.h>
#include	<stddef.h>
#include	<windows.h>
#include	<iostream.h>
#include	<oledb.h>
#include	<SQLOLEDB.h>

IDBInitialize*							pIDBInitialize					=	NULL;
IDBProperties*							pIDBProperties					=	NULL;
IDBCreateSession*				pIDBCreateSession		=	NULL;
IDBCreateCommand*				pIDBCreateCommand		=	NULL;
ICommandText*								pICommandText						=	NULL;
IRowset*													pIRowset											=	NULL;
IColumnsInfo*								pIColumnsInfo						=	NULL;
DBCOLUMNINFO*								pDBColumnInfo						=	NULL;
IAccessor*											pIAccessor								=		NULL;

DBPROP															InitProperties[4];
DBPROPSET												rgInitPropSet[1];
ULONG																i,	j;
HRESULT														hr;
LONG																	cNumRows	=	0;
ULONG																lNumCols;
WCHAR*															pStringsBuffer;
DBBINDING*											pBindings;
ULONG																ConsumerBufColOffset	=	0;
HACCESSOR												hAccessor;
ULONG																lNumRowsRetrieved;
HROW																	hRows[10];
HROW*																pRows	=	&hRows[0];
BYTE*																pBuffer;

void	main()	{

				//Here	is	the	command	to	execute.
				WCHAR*	wCmdString	
								=	OLESTR("	SELECT	title,	price	FROM	titles	WHERE	royalty	>	14");
		//	Call	a	function	to	initialize	and	establish	connection.	
				InitializeAndEstablishConnection();

				//Create	a	session	object.
				if(FAILED(pIDBInitialize->QueryInterface(
																																IID_IDBCreateSession,
																																(void**)	&pIDBCreateSession)))
				{
								cout	<<	"Failed	to	obtain	IDBCreateSession	interface.\n";
				}

				if(FAILED(pIDBCreateSession->CreateSession(
																																					NULL,	

																																					IID_IDBCreateCommand,	
																																					(IUnknown**)	&pIDBCreateCommand)))
				{
								cout	<<	"pIDBCreateSession->CreateSession	failed.\n";
				}

				//Access	the	ICommandText	interface.
				if(FAILED(pIDBCreateCommand->CreateCommand(
																																				NULL,	
																																				IID_ICommandText,	
																																				(IUnknown**)	&pICommandText)))
				{
								cout	<<	"Failed	to	access	ICommand	interface.\n";
				}
				
				//Use	SetCommandText()	to	specify	the	command	text.
				if(FAILED(pICommandText->SetCommandText(DBGUID_DBSQL,	wCmdString)))
				{
								cout	<<	"Failed	to	set	command	text.\n";
				}

				//Execute	the	command.
				if(FAILED(hr	=	pICommandText->Execute(NULL,	
																																				IID_IRowset,	
																																				NULL,	
																																				&cNumRows,	
																																				(IUnknown	**)	&pIRowset)))
				{
								cout	<<	"Failed	to	execute	command.\n";
				}

				//Process	the	result	set.
				ProcessResultSet();	

																								
				pIRowset->Release();

				//Free	up	memory.
				pICommandText->Release();
				pIDBCreateCommand->Release();
				pIDBCreateSession->Release();
				
				if(FAILED(pIDBInitialize->Uninitialize()))
				{
								/*Uninitialize	is	not	required,	but	it	fails	if	an	interface
								has	not	been	released.		This	can	be	used	for	debugging.
								cout	<<	"Problem	uninitializing.\n";	*/
				}	//endif.
				pIDBInitialize->Release();
				
				//Release	the	COM	library.
				CoUninitialize();
};
//--
void	InitializeAndEstablishConnection()
{				
				//Initialize	the	COM	library.
				CoInitialize(NULL);

				//Obtain	access	to	the	SQLOLEDB	provider.
				hr	=	CoCreateInstance(CLSID_SQLOLEDB,	
																										NULL,	
																										CLSCTX_INPROC_SERVER,
																										IID_IDBInitialize,	
																										(void	**)	&pIDBInitialize);
				if(FAILED(hr))
				{

								printf("Failed	to	get	IDBInitialize	interface.\n");
				}	//end	if

				/*
				Initialize	the	property	values	needed	
				to	establish	the	connection.
				*/
				for(i	=	0;	i	<	4;	i++)	
								VariantInit(&InitProperties[i].vValue);
				

				//Server	name.
				InitProperties[0].dwPropertyID		=	DBPROP_INIT_DATASOURCE;
				InitProperties[0].vValue.vt					=	VT_BSTR;
				InitProperties[0].vValue.bstrVal=	
																												SysAllocString(L"server");
				InitProperties[0].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[0].colid									=	DB_NULLID;

//Database.
				InitProperties[1].dwPropertyID		=	DBPROP_INIT_CATALOG;
				InitProperties[1].vValue.vt					=	VT_BSTR;
				InitProperties[1].vValue.bstrVal=	SysAllocString(L"database");
				InitProperties[1].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[1].colid									=	DB_NULLID;

//Username	(login).
				InitProperties[2].dwPropertyID		=	DBPROP_AUTH_USERID;	
				InitProperties[2].vValue.vt					=	VT_BSTR;
				InitProperties[2].vValue.bstrVal=	SysAllocString(L"login");
				InitProperties[2].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[2].colid									=	DB_NULLID;

//Password.
				InitProperties[3].dwPropertyID		=	DBPROP_AUTH_PASSWORD;
				InitProperties[3].vValue.vt					=	VT_BSTR;
				InitProperties[3].vValue.bstrVal=	SysAllocString(L"Password");
				InitProperties[3].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid									=	DB_NULLID;

				/*
				Now	that	the	properties	are	set,	construct	the	DBPROPSET	structure
				(rgInitPropSet).	The	DBPROPSET	structure	is	used	to	pass	an	array	
				of	DBPROP	structures	(InitProperties)	to	the	SetProperties	method.
				*/
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
				rgInitPropSet[0].cProperties				=	4;
				rgInitPropSet[0].rgProperties			=	InitProperties;

				//Set	initialization	properties.
				hr	=	pIDBInitialize->QueryInterface(IID_IDBProperties,	
																																			(void	**)&pIDBProperties);
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	get	IDBProperties	interface.\n";
				}

				hr	=	pIDBProperties->SetProperties(1,	rgInitPropSet);	
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	set	initialization	properties.\n";
				}	//end	if

				pIDBProperties->Release();

				//Now	establish	the	connection	to	the	data	source.

				if(FAILED(pIDBInitialize->Initialize()))
				{
								cout	<<	"Problem	in	establishing	connection	to	the	data
								source.\n";
				}
}	//end	of	InitializeAndEstablishConnection.
//--
//Retrieve	and	display	data	resulting	from	a	query.
void	ProcessResultSet()
{
				//Obtain	access	to	the	IColumnInfo	interface,	from	the	Rowset
				object.
				hr	=	pIRowset->QueryInterface(IID_IColumnsInfo,	
																																	(void	**)&pIColumnsInfo);
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	get	IColumnsInfo	interface.\n";
				}	//end	if

				//Retrieve	the	column	information.
				pIColumnsInfo->GetColumnInfo(&lNumCols,	
																																	&pDBColumnInfo,	
																																	&pStringsBuffer);

				//Free	the	column	information	interface.
				pIColumnsInfo->Release();

				//Create	a	DBBINDING	array.
				pBindings	=	new	DBBINDING[lNumCols];

				//Using	the	ColumnInfo	structure,	fill	out	the	pBindings	array.
				for(j=0;	j<lNumCols;	j++)	{
								pBindings[j].iOrdinal	=	j+1;

								pBindings[j].obValue	=	ConsumerBufColOffset;
								pBindings[j].pTypeInfo	=	NULL;
								pBindings[j].pObject	=	NULL;
								pBindings[j].pBindExt	=	NULL;
								pBindings[j].dwPart	=	DBPART_VALUE;
								pBindings[j].dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
								pBindings[j].eParamIO	=	DBPARAMIO_NOTPARAM;
								pBindings[j].cbMaxLen	=	pDBColumnInfo[j].ulColumnSize;
								pBindings[j].dwFlags	=	0;
								pBindings[j].wType	=	pDBColumnInfo[j].wType;
								pBindings[j].bPrecision	=	pDBColumnInfo[j].bPrecision;
								pBindings[j].bScale	=	pDBColumnInfo[j].bScale;
								
								//Compute	the	next	buffer	offset.
								ConsumerBufColOffset	=	ConsumerBufColOffset	+	
																															pDBColumnInfo[j].ulColumnSize;
				};
				//Get	the	IAccessor	interface.
				hr	=	pIRowset->QueryInterface(IID_IAccessor,	(void	**)	&pIAccessor);
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	obtain	IAccessor	interface.\n";
				}
//Create	an	accessor	from	the	set	of	bindings	(pBindings).
				pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA,
																																lNumCols,
																																pBindings,
																																0,
																																&hAccessor,
																																NULL);
																																															
				//Print	column	names.
				for(j=0;	j<lNumCols;	j++)	{

								printf("%-40S",	pDBColumnInfo[j].pwszName);
				};
				//Get	a	set	of	10	rows.
				pIRowset->GetNextRows(
																								NULL,
																								0,
																								10,
																								&lNumRowsRetrieved,
																								&pRows);

				//Allocate	space	for	the	row	buffer.
				pBuffer	=	new	BYTE[ConsumerBufColOffset];

				//Display	the	rows.
				while(lNumRowsRetrieved	>	0)	{
								//For	each	row,	print	the	column	data.
								for(j=0;	j<lNumRowsRetrieved;	j++)	{
												//Clear	the	buffer.
												memset(pBuffer,	0,	ConsumerBufColOffset);
												//Get	the	row	data	values.
												pIRowset->GetData(hRows[j],	hAccessor,	pBuffer);
												//Print	title	and	price	values.
												printf("%-40s%f\n",	&pBuffer[pBindings[0].obValue],
																																(FLOAT)	pBuffer[pBindings[0].obValue]);
								
								};	//for.

								//Release	the	rows	retrieved.
								pIRowset->ReleaseRows(lNumRowsRetrieved,	
																														hRows,	
																														NULL,	
																														NULL,	
																														NULL);

								//Get	the	next	set	of	10	rows.
								pIRowset->GetNextRows(NULL,
																														0,
																														10,
																														&lNumRowsRetrieved,
																														&pRows);
				};		//while	lNumRowsRetrieved	>	0.

				//Free	up	all	allocated	memory.
				delete	[]	pBuffer;
				pIAccessor->ReleaseAccessor(hAccessor,	NULL);
				pIAccessor->Release();
				delete	[]	pBindings;
}	//ProcessResultSet.
	

How	To

Processing	Large	Data
SQLOLEDB	exposes	the	ISequentialStream	interface	to	support	consumer
access	to	Microsoft®	SQL	Server™	ntext,	text	and	image	data	types	as	binary
large	objects	(BLOBs).

How	To

How	to	set	large	data	(OLE	DB)
To	pass	a	pointer	to	its	own	storage	object,	the	consumer	creates	an	accessor	that
binds	the	value	of	the	BLOB	column	and	then	calls	the
IRowsetChange::SetData	or	IRowsetChange::InsertRow	methods.

To	set	BLOB	data

1.	 Create	a	DBOBJECT	structure	describing	how	the	BLOB	column
should	be	accessed.	Set	the	dwFlag	element	of	the	DBOBJECT
structure	to	STGM_READ	and	set	the	iid	element	to
IID_ISequentialStream	(the	interface	to	be	exposed).

2.	 Set	the	properties	in	the	DBPROPSET_ROWSET	property	group	so
the	rowset	is	updatable.

3.	 Create	a	set	of	bindings	(one	of	each	column)	by	using	an	array	of
DBBINDING	structures.	Set	the	wType	element	in	the	DBBINDING
structure	to	DBTYPE_IUNKNOWN,	and	the	pObject	element	to
point	to	the	DBOBJECT	structure	you	created.

4.	 Create	an	accessor	using	the	binding	information	in	the
DBBINDINGS	array	of	structures.

5.	 Call	GetNextRows	to	fetch	next	rows	into	the	rowset.	Call	GetData	to
read	the	data	from	the	rowset.

6.	 To	set	the	data,	create	a	storage	object	containing	the	data	(and	also	the
length	indicator),	and	then	call	IRowsetChange::SetData	(or
IRowsetChange::InsertRow)	with	the	accessor	that	binds	the	BLOB
column.

This	example	shows	how	to	set	BLOB	data.	The	example	creates	a	table,	adds	a
sample	record,	fetches	that	record	in	the	rowset,	and	then	sets	the	value	of	the

BLOB	field:

#define	UNICODE
#define	DBINITCONSTANTS
#define	INITGID

#include	<windows.h>
#include	<stdio.h>
#include	<stddef.h>
#include	<iostream.h>

#include	<oledb.h>
#include	<oledberr.h>

#include	<SQLOLEDB.h>

#define	SAFE_RELEASE(pIUnknown)	if(pIUnknown)	(pIUnknown)->Release();
HRESULT	GetCommandObject(REFIID	riid,	IUnknown**	ppIUnknown);
HRESULT	CreateTable(ICommandText*	pICommandText);

class	CSeqStream	:	public	ISequentialStream
{
public:
				//Constructors
				CSeqStream();
				virtual	~CSeqStream();

				virtual	BOOL	Seek(ULONG	iPos);
				virtual	BOOL	Clear();
				virtual	BOOL	CompareData(void*	pBuffer);
				virtual	ULONG	Length()		{	return	m_cBufSize;	};

				virtual	operator	void*	const()	{	return	m_pBuffer;	};

				STDMETHODIMP_(ULONG)				AddRef(void);
				STDMETHODIMP_(ULONG)				Release(void);
				STDMETHODIMP	QueryInterface(REFIID	riid,	LPVOID	*ppv);
				
				STDMETHODIMP	Read(
												/*	[out]	*/	void	__RPC_FAR	*pv,
												/*	[in]		*/	ULONG	cb,
												/*	[out]	*/	ULONG	__RPC_FAR	*pcbRead);
								
				STDMETHODIMP	Write(
												/*	[in]	*/	const	void	__RPC_FAR	*pv,
												/*	[in]	*/	ULONG	cb,
												/*	[out]*/	ULONG	__RPC_FAR	*pcbWritten);

protected:
				//Data

private:

				ULONG							m_cRef;									//	reference	count
				void*							m_pBuffer;						//	buffer
				ULONG							m_cBufSize;					//	buffer	size
				ULONG							m_iPos;									//	current	index	position	in	the	buffer
};

//class	implementation

CSeqStream::CSeqStream()
{
				m_iPos									=	0;
				m_cRef									=	0;
				m_pBuffer						=	NULL;
				m_cBufSize					=	0;

				//The	constructor	AddRef's
				AddRef();
}

CSeqStream::~CSeqStream()
{
				//Shouldn't	have	any	references	left
//				ASSERT(m_cRef	==	0);
				CoTaskMemFree(m_pBuffer);
}

ULONG				CSeqStream::AddRef(void)
{
				return	++m_cRef;
}

ULONG				CSeqStream::Release(void)
{
//				ASSERT(m_cRef);

				if(--m_cRef)
								return	m_cRef;
				
				delete	this;
				return	0;
}

HRESULT	CSeqStream::QueryInterface(REFIID	riid,	void**	ppv)
{
//				ASSERT(ppv);
				*ppv	=	NULL;

				if	(riid	==	IID_IUnknown)
								*ppv	=	this;
				if	(riid	==	IID_ISequentialStream)
								*ppv	=	this;
				
				if(*ppv)
				{
								((IUnknown*)*ppv)->AddRef();
								return	S_OK;
				}

				return	E_NOINTERFACE;
}

BOOL	CSeqStream::Seek(ULONG	iPos)
{
				//Make	sure	the	desired	position	is	within	the	buffer
//				ASSERT(iPos	==	0	||	iPos	<	m_cBufSize);

				//Reset	the	current	buffer	position
				m_iPos	=	iPos;
				return	TRUE;
}

BOOL	CSeqStream::Clear()
{
				//Frees	the	buffer
				m_iPos									=	0;
				m_cBufSize					=	0;

				CoTaskMemFree(m_pBuffer);
				m_pBuffer	=	NULL;

				return	TRUE;
}

BOOL	CSeqStream::CompareData(void*	pBuffer)
{
//				ASSERT(pBuffer);

				//Quick	and	easy	way	to	compare	user	buffer	with	the	stream
				return	memcmp(pBuffer,	m_pBuffer,	m_cBufSize)==0;
}

HRESULT	CSeqStream::Read(void	*pv,	ULONG	cb,	ULONG*	pcbRead)
{
				//Parameter	checking
				if(pcbRead)
								*pcbRead	=	0;

				if(!pv)
								return	STG_E_INVALIDPOINTER;

				if(cb	==	0)
								return	S_OK;

				//Actual	code
				ULONG	cBytesLeft	=	m_cBufSize	-	m_iPos;
				ULONG	cBytesRead	=	cb	>	cBytesLeft	?	cBytesLeft	:	cb;

				//if	no	more	bytes	to	retrieve	return	
				if(cBytesLeft	==	0)
								return	S_FALSE;	

				//Copy	to	users	buffer	the	number	of	bytes	requested	or	remaining
				memcpy(pv,	(void*)((BYTE*)m_pBuffer	+	m_iPos),	cBytesRead);

				m_iPos	+=	cBytesRead;

				if(pcbRead)
								*pcbRead	=	cBytesRead;

				if(cb	!=	cBytesRead)
								return	S_FALSE;	

				return	S_OK;
}
								
HRESULT	CSeqStream::Write(const	void	*pv,	ULONG	cb,	ULONG*	pcbWritten)
{
				//Parameter	checking
				if(!pv)
								return	STG_E_INVALIDPOINTER;

				if(pcbWritten)
								*pcbWritten	=	0;

				if(cb	==	0)
								return	S_OK;

				//Enlarge	the	current	buffer
				m_cBufSize	+=	cb;

				//Need	to	append	to	the	end	of	the	stream
				m_pBuffer	=	CoTaskMemRealloc(m_pBuffer,	m_cBufSize);
				memcpy((void*)((BYTE*)m_pBuffer	+	m_iPos),	pv,	cb);
				//m_iPos	+=	cb;

				if(pcbWritten)
								*pcbWritten	=	cb;

				return	S_OK;
}
//...
void	main()
{
				CoInitialize(NULL);

				DBOBJECT	ObjectStruct;
				ObjectStruct.dwFlags	=	STGM_READ;
				ObjectStruct.iid					=	IID_ISequentialStream;

				struct	BLOBDATA
				{
								DBSTATUS												dwStatus;			
								DWORD															dwLength;	
								ISequentialStream*		pISeqStream;
				};

				
				BLOBDATA	BLOBGetData;
				BLOBDATA	BLOBSetData;

				const	ULONG	cBindings	=	1;
				DBBINDING	rgBindings[cBindings];	
				HRESULT	hr	=	S_OK;
				IAccessor*										pIAccessor										=	NULL;
				ICommandText*							pICommandText							=	NULL;
				ICommandProperties*	pICommandProperties	=	NULL;
				IRowsetChange*						pIRowsetChange						=	NULL;
				IRowset*												pIRowset												=	NULL;
				CSeqStream*									pMySeqStream								=	NULL;
				ULONG	cRowsObtained	=	0;

				HACCESSOR	hAccessor	=	DB_NULL_HACCESSOR;
				DBBINDSTATUS	rgBindStatus[cBindings];
				HROW*	rghRows	=	NULL;
				const	ULONG	cPropSets	=	1;
				DBPROPSET			rgPropSets[cPropSets];
				const	ULONG	cProperties	=	1;
				DBPROP						rgProperties[cProperties];
				const	ULONG	cBytes	=	10;
				BYTE								pBuffer[cBytes];
				ULONG							cBytesRead	=	0;

				BYTE	pReadData[cBytes];		//read	BLOB	data	in	this	array
				memset(pReadData,	0xAA,	cBytes);

				BYTE	pWriteData[cBytes];		//write	BLOB	data	from	this	array
				memset(pWriteData,	'D',	cBytes);

				//Get	Command	object
				hr	=	GetCommandObject(IID_ICommandText,	
																										(IUnknown**)&pICommandText);
				if	(FAILED(hr))
				{
								printf("Failed	to	get	ICommandText	interface.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				//Create	table	with	image	column	and	index
				hr	=	CreateTable(pICommandText);
				if	(FAILED(hr))
				{
								printf("Failed	to	create	table.\n");
								//Release	any	references	and	return.

								goto	Exit;
				}	//end	if
				
				/*
				Set	the	DBPROPSET	structure.		It	is	used	to	pass	an	array	
				of	DBPROP	structures	to	SetProperties().
				*/
				rgPropSets[0].guidPropertySet	=	DBPROPSET_ROWSET;
				rgPropSets[0].cProperties	=	cProperties;
				rgPropSets[0].rgProperties	=	rgProperties;

				//Now	set	properties	in	the	property	group	(DBPROPSET_ROWSET)
				rgPropSets[0].rgProperties[0].dwPropertyID	=	DBPROP_UPDATABILITY;
				rgPropSets[0].rgProperties[0].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				rgPropSets[0].rgProperties[0].dwStatus	=	DBPROPSTATUS_OK;
				rgPropSets[0].rgProperties[0].colid	=	DB_NULLID;
				rgPropSets[0].rgProperties[0].vValue.vt	=	VT_I4;
				V_I4(&rgPropSets[0].rgProperties[0].vValue)	=	DBPROPVAL_UP_CHANGE;

				//Set	the	rowset	properties
				hr	=	pICommandText->QueryInterface(IID_ICommandProperties,
																												(void	**)&pICommandProperties);
				if	(FAILED(hr))
				{
								printf("Failed	to	get	ICommandProperties	to	set	rowset	properties.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if
				hr	=	pICommandProperties->SetProperties(cPropSets,	rgPropSets);
				if	(FAILED(hr))
				{
								printf("Execute	failed	to	set	rowset	properties.\n");
								//Release	any	references	and	return.

								goto	Exit;
				}	//end	if
				
				//Execute	a	command	(SELECT	*	FROM	TestISeqStream)
				hr	=	pICommandText->SetCommandText(DBGUID_DBSQL,
																																							L"SELECT	*	FROM	TestISeqStream");
				if	(FAILED(hr))
				{
								printf("Failed	to	set	command	text	SELECT	*	FROM.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				hr	=	pICommandText->Execute(NULL,	IID_IRowsetChange,	NULL,	NULL,
																																(IUnknown**)&pIRowsetChange);
				if	(FAILED(hr))
				{
								printf("Failed	to	execute	the	command	SELECT	*	FROM.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				//Fill	the	DBBINDINGS	array.
				rgBindings[0].iOrdinal	=	2;	//ordinal	position
				rgBindings[0].obValue	=	offsetof(BLOBDATA,	pISeqStream);
				rgBindings[0].obLength	=	offsetof(BLOBDATA,	dwLength);
				rgBindings[0].obStatus	=	offsetof(BLOBDATA,	dwStatus);
				rgBindings[0].pTypeInfo	=	NULL;
				rgBindings[0].pObject	=	&ObjectStruct;
				rgBindings[0].pBindExt	=	NULL;
				rgBindings[0].dwPart	=		DBPART_VALUE	|	DBPART_STATUS	|	DBPART_LENGTH;
				rgBindings[0].dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
				rgBindings[0].eParamIO	=	DBPARAMIO_NOTPARAM;

				rgBindings[0].cbMaxLen	=	0;	
				rgBindings[0].dwFlags	=	0;
				rgBindings[0].wType	=	DBTYPE_IUNKNOWN;
				rgBindings[0].bPrecision	=	0;
				rgBindings[0].bScale	=	0;

				//Create	an	accessor	using	the	binding	information.
				hr	=	pIRowsetChange->QueryInterface(IID_IAccessor,	
																																								(void**)&pIAccessor);
				if	(FAILED(hr))
				{
								printf("Failed	to	get	IAccessor	interface.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				hr	=	pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA,
																																				cBindings,
																																				rgBindings,	
																																				sizeof(BLOBDATA),
																																				&hAccessor,
																																				rgBindStatus);
				if	(FAILED(hr))
				{
								printf("Failed	to	create	an	accessor.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if	

				//Now	get	the	first	row.
				hr	=	pIRowsetChange->QueryInterface(IID_IRowset,	
																																								(void	**)&pIRowset);
				if	(FAILED(hr))

				{
								printf("Failed	to	get	IRowset	interface.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				hr	=	pIRowset->GetNextRows(NULL,	
																															0,	
																															1,	
																															&cRowsObtained,	
																															&rghRows);

				hr	=	pIRowset->GetData(rghRows[0],	
																											hAccessor,	
																											&BLOBGetData);

				//Verify	the	retrieved	data,	only	if	data	is	not	null.
				if	(BLOBGetData.dwStatus	==	DBSTATUS_S_ISNULL)
				{
								//Process	null	data
								printf("Provider	returned	a	null	value.\n");
				}	else	if(BLOBGetData.dwStatus	==	DBSTATUS_S_OK)	
						//Provider	returned	a	nonNULL	value
				{
								BLOBGetData.pISeqStream->Read(
																																				pBuffer,	
																																				cBytes,	
																																				&cBytesRead);
								if(memcmp(pBuffer,	pReadData,	cBytes)	!=	0)
								{
												//cleanup	
									}

								SAFE_RELEASE(BLOBGetData.pISeqStream);
				}

				//Set	up	data	for	SetData.
				pMySeqStream	=	new	CSeqStream();

				/*
				Put	data	in	to	the	ISequentialStream	object	
				for	the	provider	to	write.
				*/
				pMySeqStream->Write(pWriteData,	
																								cBytes,	
																								NULL);

				BLOBSetData.pISeqStream	=	(ISequentialStream*)pMySeqStream;
				BLOBSetData.dwStatus				=	DBSTATUS_S_OK;
				BLOBSetData.dwLength				=	pMySeqStream->Length();
						
				//Set	the	data.
				hr	=	pIRowsetChange->SetData(rghRows[0],	
																																	hAccessor,	
																																	&BLOBSetData);
								if	(FAILED(hr))
				{
								printf("Failed	to	set	data.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				hr	=	pIAccessor->ReleaseAccessor(hAccessor,	NULL);
				if	(FAILED(hr))
				{
								printf("Failed	to	release	accessor.\n");

								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if
				hr	=	pIRowset->ReleaseRows(cRowsObtained,	
																												rghRows,	
																												NULL,	
																												NULL,	
																												NULL);
				if	(FAILED(hr))
				{
								printf("Failed	to	release	rows.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if
Exit:
				//Free	up	all	allocated	memory	and	release	interface	pointers.

				CoUninitialize();
}	//end	main.
//..
HRESULT	GetCommandObject(REFIID	riid,	IUnknown**	ppIUnknown)
{
				HRESULT	hr	=	S_OK;

				//Local	interface	pointers,	until	a	connection	is	made.
				IDBInitialize*	pIDBInitialize	=	NULL;
				IDBProperties*		pIDBProperties	=	NULL;
				IDBCreateSession*	pIDBCreateSession	=	NULL;
				IDBCreateCommand*	pIDBCreateCommand	=	NULL;

				const	ULONG	cPropSets	=	1;
				DBPROPSET	rgPropSets[cPropSets];

				const	ULONG	cProperties	=	4;
				DBPROP	rgProperties[cProperties];

				/*
				Initialize	the	property	values	needed	to	
				establish	the	connection.
				*/
				for(ULONG	i	=	0;	i	<	4;	i++)
								VariantInit(&rgProperties[i].vValue);

				//Server	name.
				rgProperties[0].dwPropertyID	=	DBPROP_INIT_DATASOURCE;
				rgProperties[0].vValue.vt	=	VT_BSTR;
				rgProperties[0].vValue.bstrVal	=	
																				SysAllocString(L"server");
				rgProperties[0].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				rgProperties[0].colid	=	DB_NULLID;

				//Database.
				rgProperties[1].dwPropertyID	=	DBPROP_INIT_CATALOG;
				rgProperties[1].vValue.vt	=	VT_BSTR;
				rgProperties[1].vValue.bstrVal	=	
																				SysAllocString(L"pubs");
				rgProperties[1].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				rgProperties[1].colid	=	DB_NULLID;

				//Username	(login).
				rgProperties[2].dwPropertyID	=	DBPROP_AUTH_USERID;
				rgProperties[2].vValue.vt	=	VT_BSTR;
				rgProperties[2].vValue.bstrVal	=	
																				SysAllocString(L"login");
				rgProperties[2].dwOptions	=	DBPROPOPTIONS_REQUIRED;

				rgProperties[2].colid	=	DB_NULLID;

				//Password.
				rgProperties[3].dwPropertyID	=	DBPROP_AUTH_PASSWORD;
				rgProperties[3].vValue.vt	=	VT_BSTR;
				rgProperties[3].vValue.bstrVal	=	
																				SysAllocString(L"password");
				rgProperties[3].dwOptions	=	DBPROPOPTIONS_REQUIRED;
				rgProperties[3].colid	=	DB_NULLID;

				
				/*
				Now	that	the	properties	are	set,	construct	the	DBPROPSET	
				structure	(rgInitPropSet).		The	DBPROPSET	structure	is	used	
				to	pass	an	array	of	DBPROP	structures	(InitProperties)	to	the	
				SetProperties	method.
				*/
				rgPropSets[0].guidPropertySet			=	DBPROPSET_DBINIT;
				rgPropSets[0].cProperties							=	cProperties;
				rgPropSets[0].rgProperties						=	rgProperties;

				//Get	the	IDBInitialize	interface.
				hr	=	CoCreateInstance(CLSID_SQLOLEDB,	
																												NULL,	
																												CLSCTX_INPROC_SERVER,
																												IID_IDBInitialize,	
																												(void**)&pIDBInitialize);
				if(FAILED(hr))
				{
								printf("Failed	to	get	IDBInitialize	interface.\n");
								//Release	any	references	and	return.
								goto	Exit;

				}	//end	if

				//Set	initialization	properties.
				hr	=	pIDBInitialize->QueryInterface(IID_IDBProperties,
																																								(void	**)&pIDBProperties);
				if(FAILED(hr))
				{
								printf("Failed	to	get	IDBProperties	interface.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				hr	=	pIDBProperties->SetProperties(cPropSets,	rgPropSets);
					if(FAILED(hr))
				{
								printf("Failed	to	set	properties	for	DBPROPSET_DBINIT.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

					hr	=	pIDBInitialize->Initialize();
						if(FAILED(hr))
				{
								printf("Failed	to	initialize.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				//Create	a	session	object.
						hr	=	pIDBInitialize->QueryInterface(
																																IID_IDBCreateSession,
																																(void	**)&pIDBCreateSession);
							if(FAILED(hr))

				{
								printf("Failed	to	get	pIDBCreateSession	interface.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

							hr	=	pIDBCreateSession->CreateSession(
																																				NULL,	
																																				IID_IDBCreateCommand,
																																				(IUnknown**)&pIDBCreateCommand);
					if(FAILED(hr))
				{
								printf("Failed	to	create	session	object.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

					//Get	CommandText	object
					hr	=	pIDBCreateCommand->CreateCommand(
																																				NULL,	
																																				riid,	
																																				(IUnknown**)ppIUnknown);
					if(FAILED(hr))
				{
								printf("Failed	to	create	CommandText	object.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

					return	hr;
Exit:
				//Free	up	all	allocated	memory	and	release	interface	pointers.
					return	hr;

}	//end	function
//...
HRESULT	CreateTable(ICommandText*	pICommandText)
{
				HRESULT	hr	=	S_OK;

				//Drop	existing	table.
				hr	=	pICommandText->SetCommandText(
																												DBGUID_DBSQL,
																												L"DROP	TABLE	TestISeqStream");
				if(FAILED(hr))
				{
								printf("Failed	to	set	command	text	DROP	TABLE.\n");
								//Release	any	references	and	return.
								goto	Exit;

				}	//end	if

				hr	=	pICommandText->Execute(NULL,	IID_NULL,	NULL,	NULL,	NULL);
				if(FAILED(hr))
				{
								printf("Failed	to	drop	the	table.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				//Create	a	new	table.
				hr	=	pICommandText->SetCommandText(DBGUID_DBSQL,
									L"CREATE	TABLE	TestISeqStream	(col1	int,col2	image)");
				if(FAILED(hr))
				{
								printf("Failed	to	set	command	text	CREATE	TABLE.\n");

								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				hr	=	pICommandText->Execute(NULL,	IID_NULL,	NULL,	NULL,	NULL);
				if(FAILED(hr))
				{
								printf("Failed	to	create	new	table.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				//Insert	one	row	into	table.
				hr	=	pICommandText->SetCommandText(DBGUID_DBSQL,
				L"INSERT	INTO	TestISeqStream(col1,col2)	VALUES	(1,0xAAAAAAAAAAAAAAAAA)");
				if(FAILED(hr))
				{
								printf("Failed	to	set	command	text	INSERT	INTO.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if

				hr	=	pICommandText->Execute(NULL,	IID_NULL,	NULL,	NULL,	NULL);
				if(FAILED(hr))
				{
								printf("Failed	to	insert	record	in	the	table.\n");
								//Release	any	references	and	return.
								goto	Exit;
				}	//end	if
			
Exit:
				//Free	up	all	allocated	memory	and	release	interface	pointers.
					return	hr;

}	//end	function
	

How	To

Enumerating	OLE	DB	Data	Sources
SQLOLEDB	has	an	enumerator	that	a	consumer	can	call	to	search	for	accessible
data	sources.	Consumers	should	use	enumerators	to	search	for	data	sources,
rather	than	searching	the	registry	directly.	In	that	way,	the	consumers	will
continue	to	work	if	the	registry	information	changes.

How	To

How	to	enumerate	OLE	DB	data	sources	(OLE	DB)
To	list	the	data	sources	visible	to	the	SQLOLEDB	enumerator,	the	consumer
calls	the	ISourcesRowset::GetSourcesRowset	method.	This	method	returns	a
rowset	of	information	about	the	currently	visible	data	sources.	

Depending	on	the	network	library	used,	the	appropriate	domain	is	searched	for
the	data	sources.	For	Named	Pipes,	it	is	the	domain	to	which	the	client	is	logged
on.	For	AppleTalk,	it	is	the	default	zone.	For	SPX/IPX,	it	is	the	list	of	SQL
Server	installations	found	in	the	bindery.	For	Banyan	VINES,	it	is	the	SQL
Server	installations	found	on	the	local	network.	Multiprotocol	and	TCP/IP
sockets	are	not	supported.

When	the	server	is	turned	off	or	on,	it	can	take	few	minutes	to	update	the
information	in	these	domains.

To	enumerate	OLE	DB	data	sources

1.	 Retrieve	the	source	rowset	by	calling
ISourceRowset::GetSourcesRowset.

2.	 Find	the	description	of	the	enumerators	rowset	by	calling
GetColumnInfo::IColumnInfo.

3.	 Create	the	binding	structures	from	the	column	information.

4.	 Create	the	rowset	accessor	by	calling	IAccessor::CreateAccessor.

5.	 Fetch	the	rows	by	calling	IRowset::GetNextRows.

6.	 Retrieve	data	from	the	rowset's	copy	of	the	row	by	calling
IRowset::GetData	and	process	it.

//How	to	use	the	enumerator	object	to	list	
//the	data	sources	available.

#define	UNICODE
#define	_UNICODE
#define	DBINITCONSTANTS
#define	INITGUID

#include	<windows.h>
#include	<stddef.h>
#include	<oledb.h>
#include	<oledberr.h>
#include	<SQLOLEDB.h>
#include	<stdio.h>

#define	NUMROWS_CHUNK		5

//AdjustLen	supports	binding	on	four-byte	boundaries.
_inline	ULONG	AdjustLen(ULONG	cb)
{
				return	((cb	+	3)	&	~3);
}

//	Get	the	characteristics	of	the	rowset	(the	IColumnsInfo	interface).
HRESULT	GetColumnInfo
				(
				IRowset*																							pIRowset,
				UINT*																										pnCols,
				DBCOLUMNINFO**																	ppColumnsInfo,
				OLECHAR**																						ppColumnStrings
)
				{
				IColumnsInfo*			pIColumnsInfo;
				HRESULT									hr;

				*pnCols	=	0;
				if	(FAILED(pIRowset->QueryInterface(IID_IColumnsInfo,
																																							(void**)	&pIColumnsInfo)))
								{
								return	(E_FAIL);
								}

				hr	=	pIColumnsInfo->GetColumnInfo((ULONG*)	pnCols,	
																																						ppColumnsInfo,	
																																						ppColumnStrings);
				if	(FAILED(hr))
								{
								//Process	error.
								}
				pIColumnsInfo->Release();

				return	(hr);
				}

//	Create	binding	structures	from	column	information.	Binding	structures
//	will	be	used	to	create	an	accessor	that	allows	row	value	retrieval.
void	CreateDBBindings
				(
				UINT															nCols,
				DBCOLUMNINFO*						pColumnsInfo,
				DBBINDING**								ppDBBindings,
				BYTE**													ppRowValues
)
				{
				ULONG														nCol;
				ULONG														cbRow	=	0;
				ULONG														cbCol;
				DBBINDING*									pDBBindings;

				BYTE*														pRowValues;

				pDBBindings	=	new	DBBINDING[nCols];

				for	(nCol	=	0;	nCol	<	nCols;	nCol++)
								{
								pDBBindings[nCol].iOrdinal	=	nCol+1;
								pDBBindings[nCol].pTypeInfo	=	NULL;
								pDBBindings[nCol].pObject	=	NULL;
								pDBBindings[nCol].pBindExt	=	NULL;
								pDBBindings[nCol].dwPart	=	DBPART_VALUE;
								pDBBindings[nCol].dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
								pDBBindings[nCol].eParamIO	=	DBPARAMIO_NOTPARAM;
								pDBBindings[nCol].dwFlags	=	0;
								pDBBindings[nCol].wType	=	pColumnsInfo[nCol].wType;
								pDBBindings[nCol].bPrecision	=	pColumnsInfo[nCol].bPrecision;
								pDBBindings[nCol].bScale	=	pColumnsInfo[nCol].bScale;

								cbCol	=	pColumnsInfo[nCol].ulColumnSize;

								switch	(pColumnsInfo[nCol].wType)
												{
												case	DBTYPE_STR:
																{
																cbCol	+=	1;
																break;
																}

												case	DBTYPE_WSTR:
																{
																cbCol	=	(cbCol	+	1)	*	sizeof(WCHAR);
																break;
																}

												default:
																break;
												}

								pDBBindings[nCol].obValue	=	cbRow;

								pDBBindings[nCol].cbMaxLen	=	cbCol;
								cbRow	+=	AdjustLen(cbCol);
						}

				pRowValues	=	new	BYTE[cbRow];

				*ppDBBindings	=	pDBBindings;
				*ppRowValues	=	pRowValues;

				return;
				}

int	main()	
{
				ISourcesRowset*							pISourceRowset	=	NULL;				
				IRowset*														pIRowset	=	NULL;								
				IAccessor*												pIAccessor	=	NULL;
				DBBINDING*												pDBBindings	=	NULL;												
				HROW*																	pRows	=	new	HROW[500];				
				BYTE*																	pData	=	NULL;												
				HACCESSOR													hAccessorRetrieve	=	NULL;								
				ULONG																	cRows	=	0;
				ULONG																	DSSeqNumber	=	0;
				HRESULT															hr;
				UINT																		nCols;
				DBCOLUMNINFO*									pColumnsInfo	=	NULL;

				OLECHAR*														pColumnStrings	=	NULL;
				DBBINDSTATUS*									pDBBindStatus	=	NULL;
				BYTE*																	pRowValues	=	NULL;
				ULONG																	cRowsObtained;
				ULONG																	iRow;
				char*																	pMultiByte	=	NULL;
				short*																psSourceType	=	NULL;
				BYTE*																	pDatasource	=	NULL;
				
				//Initialize	COM	library.
				CoInitialize(NULL);

				//Initialize	the	enumerator.
				if(FAILED(CoCreateInstance(CLSID_SQLOLEDB_ENUMERATOR,	
																															NULL,
																															CLSCTX_INPROC_SERVER,	
																															IID_ISourcesRowset,	
																															(void**)&pISourceRowset)))
				{
								//Process	error.
								return	TRUE;
				}

				//Retrieve	the	source	rowset.
				hr	=	pISourceRowset->GetSourcesRowset(NULL,	
																																								IID_IRowset,	
																																								0,	
																																								NULL,	
																																								(IUnknown**)&pIRowset);
				pISourceRowset->Release();
				if(FAILED(hr))
				{
								//Process	error.

								return	TRUE;
				}
				//Get	the	description	of	the	enumerator's	rowset.
				if(FAILED(hr	=	GetColumnInfo(pIRowset,	
																																&nCols,	
																																&pColumnsInfo,	
																																&pColumnStrings)))
				{
								//Process	error.
								goto	SAFE_EXIT;
				}

				//Create	the	binding	structures.
				CreateDBBindings(nCols,	
																				pColumnsInfo,	
																				&pDBBindings,	
																				&pRowValues);
				pDBBindStatus	=	new	DBBINDSTATUS[nCols];

				if	(sizeof(TCHAR)	!=	sizeof(WCHAR))
				{
								pMultiByte	=	new	char[pDBBindings[0].cbMaxLen];
				}
				if(FAILED(pIRowset->QueryInterface(IID_IAccessor,	(void**)&pIAccessor)))
				{
								//Process	error.
								goto	SAFE_EXIT;
				}
				//Create	the	rowset	accessor.
				if(FAILED(hr	=	pIAccessor->CreateAccessor(DBACCESSOR_ROWDATA,	
																																													nCols,
																																													pDBBindings,	
																																													0,	

																																													&hAccessorRetrieve,	
																																													pDBBindStatus)))
				{
								//Process	error.
								goto	SAFE_EXIT;
				}

				//Process	all	the	rows,	NUMROWS_CHUNK	rows	at	a	time.
				while	(SUCCEEDED(hr))
				{
				hr=pIRowset->GetNextRows(NULL,	
																													0,	
																													NUMROWS_CHUNK,	
																													&cRowsObtained,	
																													&pRows);
				if(FAILED(hr))
				{
								//process	error
				}
				if(cRowsObtained	==	0	||	FAILED(hr))
								break;

								for(iRow	=	0;	iRow	<	cRowsObtained;	iRow++)
								{
												//Get	the	rowset	data.
												if(SUCCEEDED(hr	=	pIRowset->GetData(pRows[iRow],	
																																															hAccessorRetrieve,	
																																															pRowValues)))
												{
												psSourceType	=	(short	*)(pRowValues	+
																																					pDBBindings[3].obValue);
																																				
												if	(*psSourceType	==	DBSOURCETYPE_DATASOURCE)

												{
																DSSeqNumber	=	DSSeqNumber	+	1;	//Data	source	counter.
																pDatasource	=	(pRowValues	+	pDBBindings[0].obValue);

																if(sizeof(TCHAR)	!=	sizeof(WCHAR))
																{
																				WideCharToMultiByte(CP_ACP,	0,
																								(WCHAR*)pDatasource,	-1,	pMultiByte,
																								pDBBindings[0].cbMaxLen,	NULL,	NULL);
																
																				printf("DataSource#	%d\tName:	%S\n",	
																																				DSSeqNumber,	(WCHAR	*)	pMultiByte);
																}
																else
																{
																				printf("DataSource#	%d\tName:	%S\n",	
																													DSSeqNumber,	(WCHAR	*)	pDatasource);
																}	//if
												}		//if
								}	//if

				}	//for
								pIRowset->ReleaseRows(cRowsObtained,	pRows,	NULL,	NULL,	NULL);
				}	//while
				//Release	COM	library.
				CoUninitialize();

				return(0);
SAFE_EXIT:
//Do	the	clean-up.
				return	TRUE;
};
	

How	To

Bulk-Copying	Rowsets
SQLOLEDB	implements	the	provider-specific	IRowsetFastLoad	interface	to
expose	support	for	Microsoft®	SQL	Server™	bulk	copying	from	a	consumer	to
a	SQL	Server	table.

How	To

How	to	bulk	copy	data	using	IRowsetFastLoad	(OLE
DB)
The	consumer	notifies	SQLOLEDB	of	its	need	for	bulk	copying	by	setting	the
SQLOLEDB	provider-specific	property	SSPROP_ENABLEFASTLOAD	to
VARIANT_TRUE.	With	the	property	set	on	the	data	source,	the	consumer
creates	a	SQLOLEDB	session.	The	new	session	allows	the	consumer	access	to
IRowsetFastLoad.

To	bulk	copy	data	into	a	SQL	Server	table

1.	 Establish	a	connection	to	the	data	source.

2.	 Set	the	SQLOLEDB	provider-specific	data	source	property
SSPROP_ENABLEFASTLOAD	to	VARIANT_TRUE.	With	this
property	set	to	VARIANT_TRUE,	the	newly	created	session	allows
the	consumer	access	to	IRowsetFastLoad.	

3.	 Create	a	session	requesting	the	IOpenRowset	interface.

4.	 Call	IOpenRowset::OpenRowset	to	open	a	rowset	that	includes	all
the	rows	from	the	table	(in	which	data	is	to	be	copied	using	bulk-copy
operation).

5.	 Do	the	necessary	bindings	and	create	an	accessor	using
IAccessor::CreateAccessor.

6.	 Set	up	the	memory	buffer	from	which	the	data	will	be	copied	to	the
table.

7.	 Call	IRowsetFastLoad::InsertRow	to	bulk	copy	the	data	in	to	the
table.

The	following	example	illustrates	the	use	of	IRowsetFastLoad	for	bulk	copying
of	the	records	into	a	table.	In	this	example,	10	records	will	be	added	to	the	table
IRFLTable.	You	need	to	create	the	table	IRFLTable	in	the	database.

CREATE	TABLE	IRFLTable	(col_vchar	varchar(30))

#define	DBINITCONSTANTS

#include	<oledb.h>
#include	<oledberr.h>
#include	<stdio.h>
#include	<stddef.h>		//for	offsetof
#include	<sqloledb.h>

/*	@type	UWORD				|	2	byte	unsigned	integer.	*/
typedef	unsigned	short								UWORD;
/*	@type	SDWORD				|	4	byte	signed	integer.	*/
typedef	signed	long												SDWORD;

WCHAR	g_wszTable[]						=	L"IRFLTable";
WCHAR	g_strTestLOC[100]	=	L"server	";
WCHAR	g_strTestDSN[]				=	L"database";
WCHAR	g_strTestUID[]				=	L"login";								
WCHAR	g_strTestPWD[]				=	L"password";				
const	UWORD	g_cOPTION			=	4;
const	UWORD	MAXPROPERTIES	=	5;
const	ULONG	DEFAULT_CBMAXLENGTH	=	20;
IMalloc*				g_pIMalloc	=	NULL;
IDBInitialize*		g_pIDBInitialize	=	NULL;

/*
Given	an	ICommand	pointer,	properties,	and	query,	a	
rowsetpointer	is	returned.
*/

HRESULT			CreateSessionCommand
				(
				DBPROPSET*		rgPropertySets,
				ULONG								ulcPropCount,		
				CLSID								clsidProv							
);

//Use	to	set	properties	and	execute	a	given	query.
HRESULT			ExecuteQuery
				(
				IDBCreateCommand*		pIDBCreateCommand,	
				WCHAR*															pwszQuery,									
				DBPROPSET*											rgPropertySets,								
				ULONG															ulcPropCount,								
				LONG*															pcRowsAffected,								
				IRowset**											ppIRowset,												
				BOOL															fSuccessOnly	=	TRUE				
);

//Use	to	set	up	options	for	call	to	IDBInitialize::Initialize.
void		SetupOption
				(
				DBPROPID	PropID,
				WCHAR	*wszVal,
				DBPROP	*	pDBProp
);

//Sets	fastload	property	on/off	for	session.
HRESULT	SetFastLoadProperty(BOOL	fSet);

//IRowsetFastLoad	inserting	data.
HRESULT		FastLoadData(void);

//	How	to	lay	out	each	column	in	memory.
struct	COLUMNDATA	{
				SDWORD												dwLength;	//	Length	of	data	(not	space	allocated).
				DWORD												dwStatus;	//	Status	of	column.
				BYTE												bData[1];	//	Store	data	here	as	a	variant.
};

#define				COLUMN_ALIGNVAL									8

#define	ROUND_UP(Size,	Amount)(((DWORD)(Size)	+	((Amount)-1))	&	~((Amount)-1))

int	main()
				{

				HRESULT													hr	=	NOERROR;
				HRESULT													hr2	=	NOERROR;
				BOOL																fResults	=	FALSE;
																								//OLE	initialized?
				BOOL																fInitialized	=	FALSE;
																								//One	property	set	for	initializing.
				DBPROPSET											rgPropertySets[1];
																								//Properties	within	above	property	set.
				DBPROP														rgDBProperties[g_cOPTION];	
																								//Property	count.
				ULONG															ulPropCount		=	0;
																								//#	of	initialization	properties.
				ULONG															cOptions	=					g_cOPTION;	
						IDBCreateCommand*	pIDBCreateCommand			=	NULL;				
				IRowset*												pIRowset												=	NULL;
				DBPROPSET*												rgProperties						=	NULL;
				IAccessor*												pIAccessor								=	NULL;

				//Basic	initialization.

				if(FAILED(CoInitialize(NULL)))
								goto	cleanup;
				else
								fInitialized	=	TRUE;

				hr	=	CoGetMalloc(MEMCTX_TASK,	&g_pIMalloc);
				if((!g_pIMalloc)	||	FAILED(hr))
								{
								goto	cleanup;
								}

				/*
				Set	up	property	set	for	call	to	IDBInitialize
				in	CreateSessionCommand.
				*/
				rgPropertySets[0].rgProperties	=	rgDBProperties;
				rgPropertySets[0].cProperties	=	g_cOPTION;
				rgPropertySets[0].guidPropertySet	=	DBPROPSET_DBINIT;

					SetupOption(DBPROP_INIT_CATALOG,	
																	g_strTestDSN,	
																	&rgDBProperties[0]);
				SetupOption(DBPROP_AUTH_USERID,	
																g_strTestUID,		
																&rgDBProperties[1]);
				SetupOption(DBPROP_AUTH_PASSWORD,	
																g_strTestPWD,		
																&rgDBProperties[2]);
				SetupOption(DBPROP_INIT_DATASOURCE,	
																g_strTestLOC,		
																&rgDBProperties[3]);

				if(!SUCCEEDED(hr=CreateSessionCommand(rgPropertySets,

																																												1,
																																												CLSID_SQLOLEDB)))
								goto	cleanup;

				//Get	IRowsetFastLoad	and	insert	data	into	IRFLTable.
				if(FAILED(hr	=	FastLoadData()))
								goto	cleanup;
								
cleanup:
				//Free	memory.
				if(rgProperties	&&	rgProperties->rgProperties)
								delete	[](rgProperties->rgProperties);
				if(rgProperties)
								delete	[]rgProperties;
				if(pIDBCreateCommand)
								pIDBCreateCommand->Release();

				if(pIAccessor)
								pIAccessor->Release();

				if(pIRowset)
								pIRowset->Release();
				if(g_pIMalloc)
								g_pIMalloc->Release();

				if(g_pIDBInitialize)
				{				
								hr2	=	g_pIDBInitialize->Uninitialize();
								if(FAILED(hr2))
												printf("Uninitialize	failed\n");
				}
												
				if(fInitialized)

								CoUninitialize();
						
				if(SUCCEEDED(hr))
								printf("Test	completed	successfully.\n\n");
				else
								printf("Test	failed.\n\n");

				return(0);
				}
//--
HRESULT		FastLoadData(void)
{
				HRESULT											hr																=	E_FAIL;
				HRESULT											hr2															=	E_FAIL;
				DBID														TableID;
				IDBCreateSession*	pIDBCreateSession	=	NULL;
				IOpenRowset*						pIOpenRowsetFL				=	NULL;
				IRowsetFastLoad*		pIFastLoad								=	NULL;
				IAccessor*								pIAccessor								=	NULL;
				HACCESSOR									hAccessor									=	0;
				DBBINDSTATUS						oneStatus									=	0;						
				DBBINDING									oneBinding;
				ULONG													ulOffset										=	0;
				TableID.uName.pwszName														=	NULL;
				LONG														i																	=	0;
				void*													pData													=	NULL;
				COLUMNDATA*							pcolData										=	NULL;
				CHAR														strData[]	=	"Show	me	the	money!";

				TableID.eKind	=	DBKIND_NAME;
				TableID.uName.pwszName	=	new	WCHAR[wcslen(g_wszTable)+2];
				wcscpy(TableID.uName.pwszName,	g_wszTable);

				//Get	the	fastload	pointer.
				if(FAILED(hr	=	SetFastLoadProperty(TRUE)))
								goto	cleanup;

				if(FAILED(hr	=	g_pIDBInitialize->QueryInterface(
																																				IID_IDBCreateSession,	
																																				(void	**)	&pIDBCreateSession)))
								goto	cleanup;

				if(FAILED(hr	=	pIDBCreateSession->CreateSession(
																																NULL,	
																																IID_IOpenRowset,	
																																(IUnknown	**)	&pIOpenRowsetFL)))
								goto	cleanup;

				//Get	IRowsetFastLoad	initialized	to	use	the	test	table.
				if(FAILED(hr	=	pIOpenRowsetFL->OpenRowset(
																																NULL,	
																																&TableID,	
																																NULL,	
																																IID_IRowsetFastLoad,	
																																0,	
																																NULL,	
																																(LPUNKNOWN	*)&pIFastLoad)))
								goto	cleanup;

				//Next	set	up	an	accessor	for	the	data.

				//Set	up	custom	bindings.
				oneBinding.dwPart				=	DBPART_VALUE	|	
																												DBPART_LENGTH	|	
																												DBPART_STATUS;
				oneBinding.iOrdinal		=	1;

				oneBinding.pTypeInfo	=	NULL;
				oneBinding.obValue			=	ulOffset	+	offsetof(COLUMNDATA,bData);
				oneBinding.obLength		=	ulOffset	+	offsetof(COLUMNDATA,dwLength);
				oneBinding.obStatus		=	ulOffset	+	offsetof(COLUMNDATA,dwStatus);
				oneBinding.cbMaxLen		=	30;		//Size	of	varchar	column.
				oneBinding.pTypeInfo	=	NULL;
				oneBinding.pObject			=	NULL;
				oneBinding.pBindExt		=	NULL;
				oneBinding.dwFlags			=	0;
				oneBinding.eParamIO		=	DBPARAMIO_NOTPARAM;
				oneBinding.dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
				oneBinding.bPrecision=	0;			
				oneBinding.bScale				=	0;		
				oneBinding.wType					=	DBTYPE_STR;		
				ulOffset	=	oneBinding.cbMaxLen	+	offsetof(COLUMNDATA,	bData);
				ulOffset	=	ROUND_UP(ulOffset,	COLUMN_ALIGNVAL);

				if(FAILED(hr	=	pIFastLoad->QueryInterface(
																																				IID_IAccessor,	
																																				(void	**)	&pIAccessor)))
								return	hr;

				if(FAILED(hr	=	pIAccessor->CreateAccessor(
																																DBACCESSOR_ROWDATA,	
																																1,	
																																&oneBinding,	
																																ulOffset,	
																																&hAccessor,	
																																&oneStatus)))
								return	hr;

				//Set	up	memory	buffer.
				pData	=	new	BYTE[40];		

				pcolData	=	(COLUMNDATA*)pData;
				pcolData->dwLength	=	strlen("Show	the	data")	+	1;
				pcolData->dwStatus	=		0;
				memcpy(&(pcolData->bData),	"Show	the	data",	
																												strlen("Show	me	data")	+	1);

				for(i=0;	i<10;	i++)
				{
								if(FAILED(hr	=	pIFastLoad->InsertRow(hAccessor,	pData)))
												goto	cleanup;
				}

				if(FAILED(hr	=	pIFastLoad->Commit(TRUE)))
								printf("Error	on	IRFL::Commit\n");

cleanup:
				if(FAILED(hr2	=	SetFastLoadProperty(FALSE)))
				{
								printf("SetFastLoadProperty(FALSE)	failed	with	%x",	hr2);
				}
				
				if(pIAccessor	&&	hAccessor)
				{
								if(FAILED(pIAccessor->ReleaseAccessor(hAccessor,	NULL)))
												hr	=	E_FAIL;
				}
				if(pIAccessor)
								pIAccessor->Release();
				if(pIFastLoad)
								pIFastLoad->Release();
				if(pIOpenRowsetFL)
								pIOpenRowsetFL->Release();
				if(pIDBCreateSession)

								pIDBCreateSession->Release();

				if(TableID.uName.pwszName)
								delete	[]TableID.uName.pwszName;

				return	hr;
}
//--
HRESULT	SetFastLoadProperty(BOOL	fSet)
{
								HRESULT																hr										=	S_OK;
								IDBProperties	*								pIDBProps	=	NULL;
								DBPROP																rgProps[1];
								DBPROPSET											PropSet;
								

								VariantInit(&rgProps[0].vValue);

								rgProps[0].dwOptions				=	DBPROPOPTIONS_REQUIRED;
								rgProps[0].colid								=	DB_NULLID;
								rgProps[0].vValue.vt				=	VT_BOOL;
								rgProps[0].dwPropertyID	=	SSPROP_ENABLEFASTLOAD;

								if(fSet	==	TRUE)
												rgProps[0].vValue.boolVal	=	VARIANT_TRUE;
								else
												rgProps[0].vValue.boolVal	=	VARIANT_FALSE;

								PropSet.rgProperties				=	rgProps;
								PropSet.cProperties					=	1;
								PropSet.guidPropertySet	=	DBPROPSET_SQLSERVERDATASOURCE;

								if(SUCCEEDED(hr	=	g_pIDBInitialize->QueryInterface(

																																				IID_IDBProperties,	
																																				(LPVOID	*)&pIDBProps)))
								{
												hr	=	pIDBProps->SetProperties(1,	&PropSet);
								}

								VariantClear(&rgProps[0].vValue);	

								if(pIDBProps)
												pIDBProps->Release();

								return	hr;
}
//--
HRESULT		CreateSessionCommand
				(
				DBPROPSET*		rgPropertySets,	//@parm	[in]	property	sets.
				ULONG								ulcPropCount,			//@parm	[in]	count	of	prop	sets.
				CLSID								clsidProv						//@parm	[in]	Provider	CLSID.
)
				{
				HRESULT	hr	=	NOERROR;
				IDBCreateSession*				pIDBCreateSession	=	NULL;
				IDBProperties*								pIDBProperties						=	NULL;
				UWORD																i=0,	j=0;			//indexes.

				
				if(ulcPropCount				&&	!rgPropertySets)
								{
								hr	=	E_INVALIDARG;
								return	hr;
								}

				if	(!SUCCEEDED(hr	=	CoCreateInstance(clsidProv,	
																																				NULL,CLSCTX_INPROC_SERVER,
																																				IID_IDBInitialize,
																																				(void	**)&g_pIDBInitialize)))
				{
								goto	CLEANUP;
				}

				if	(!SUCCEEDED(hr	=	g_pIDBInitialize->QueryInterface(
																																				IID_IDBProperties,
																																				(void	**)&pIDBProperties)))
				{
								goto	CLEANUP;
				}

				if	(!SUCCEEDED(hr	=	pIDBProperties->SetProperties(
																																								ulcPropCount,	
																																								rgPropertySets)))
				{
								goto	CLEANUP;
				}

				if	(!SUCCEEDED(hr	=	g_pIDBInitialize->Initialize()))
				{
								printf("Call	to	initialize	failed.\n");
								goto	CLEANUP;
				}

CLEANUP:
				if(pIDBProperties)
								pIDBProperties->Release();
				if(pIDBCreateSession)
								pIDBCreateSession->Release();

				for(i	=	0;	i	<	ulcPropCount;	i++)
								for(j	=	0;	j	<	rgPropertySets[i].cProperties;	j++)
								{
								VariantClear(&(rgPropertySets[i].rgProperties[j]).vValue);
								}

				return	hr;
				}
//--
void	SetupOption
				(
				DBPROPID	PropID,
				WCHAR	*wszVal,
				DBPROP	*	pDBProp
)
				{
				pDBProp->dwPropertyID	=	PropID;
				pDBProp->dwOptions	=	DBPROPOPTIONS_REQUIRED;
				pDBProp->colid	=	DB_NULLID;
				pDBProp->vValue.vt	=	VT_BSTR;
				pDBProp->vValue.bstrVal	=	SysAllocStringLen(
																																wszVal,	
																																wcslen(wszVal));
				}
	

How	To

Obtaining	a	FAST_FORWARD	cursor
Consumers	can	request	different	cursor	behaviors	in	a	rowset	by	setting	certain
rowset	properties.	If	the	consumer	does	not	set	any	of	these	rowset	properties,	or
sets	them	all	to	their	default	values,	SQLOLEDB	implements	the	rowset	using	a
default	result	set.	If	any	one	of	these	properties	are	set	to	a	value	other	than	the
default,	SQLOLEDB	implements	the	rowset	using	server	cursors.

How	To

How	to	obtain	FAST_FORWARD	cursor
To	obtain	a	forward-only,	read-only	cursor,	set	the	rowset	properties,
DBPROP_SERVERCURSOR,	DBPROP_OTHERINSERT,
DBPROP_OTHERUPDATEDELETE,	DBPROP_OWNINSERT,
DBPROP_OWNUPDATEDELETE	to	VARIANT_TRUE.

To	obtain	FAST_FORWARD	cursor

1.	 Establish	a	connection	to	the	data	source.

2.	 Set	the	rowset	properties,	DBPROP_SERVERCURSOR,
DBPROP_OTHERINSERT,
DBPROP_OTHERUPDATEDELETE,	DBPROP_OWNINSERT,
DBPROP_OWNUPDATEDELETE	should	be	set	to
VARIANT_TRUE

3.	 Execute	the	command.

The	following	example	shows	how	to	set	the	rowset	properties	to	obtain	a
FAST_FORWARD	cursor.	After	the	properties	are	set,	a	SELECT	statement	is
executed	to	find	the	first	and	last	names	of	authors	in	the	pubs	database.

#define	INITGUID
#define	DBINITCONSTANTS

#include	<windows.h>
#include	<stdio.h>
#include	<oledb.h>
#include	<sqloledb.h>
#include	<oledberr.h>

IDBInitialize*	pIDBInitialize	=	NULL;
ICommandText*		pICommandText		=	NULL;

//	Connect	to	the	server	and	create	a	command	object.
void	InitializeAndConnect();

//	Set	the	properties	to	get	a	FAST_FORWARD	cursor.
void	SetRowsetProperties();

//	This	function	executes	a	command	and	displays	the	results.
void	ExecuteAndDisplay();

//	Clean	up	the	memory.
void	Cleanup();

void	main()
{
				//	Initialize.
				InitializeAndConnect();

				//	Set	the	row	properties	to	FAST_FORWARD	cursor.
				SetRowsetProperties();

				//	Execute	a	command	and	display	the	results.
				ExecuteAndDisplay();

				//	Cleanup.
				Cleanup();
}

void	InitializeAndConnect()
{
				HRESULT														hr																			=	S_OK;
				IDBProperties*							pIDBProperties							=	NULL;
				IDBCreateSession*				pIDBCreateSession				=	NULL;
				IDBCreateCommand*				pIDBCreateCommand				=	NULL;

				DBPROPSET												dbPropSet;
				DBPROP															dbProp[4];

				//	Initialize	OLE
				if(FAILED(hr	=	OleInitialize(NULL)))
				{
								//	Handle	errors	here.
				}

				//	Create	an	instance	of	Microsoft	OLE	DB	Provider	for	SQL	Server.
				if(FAILED(hr	=	CoCreateInstance(
																																CLSID_SQLOLEDB,	
																																NULL,	
																																CLSCTX_INPROC_SERVER,	
																																IID_IDBProperties,	
																																(void	**)	&pIDBProperties)))
				{
								//	Handle	errors	here.
				}

				//	Set	up	the	connection	properties.
				dbProp[0].dwPropertyID						=	DBPROP_INIT_DATASOURCE;
				dbProp[0].dwOptions									=	DBPROPOPTIONS_REQUIRED;
				dbProp[0].colid													=	DB_NULLID;
				V_VT(&(dbProp[0].vValue))			=	VT_BSTR;
				V_BSTR(&(dbProp[0].vValue))	=	SysAllocString(L"server	");

				dbProp[1].dwPropertyID						=	DBPROP_AUTH_USERID;
				dbProp[1].dwOptions									=	DBPROPOPTIONS_REQUIRED;
				dbProp[1].colid													=	DB_NULLID;
				V_VT(&(dbProp[1].vValue))			=	VT_BSTR;
				V_BSTR(&(dbProp[1].vValue))	=	SysAllocString(L"login");

				dbProp[2].dwPropertyID						=	DBPROP_AUTH_PASSWORD;
				dbProp[2].dwOptions									=	DBPROPOPTIONS_REQUIRED;
				dbProp[2].colid													=	DB_NULLID;
				V_VT(&(dbProp[2].vValue))			=	VT_BSTR;
				V_BSTR(&(dbProp[2].vValue))	=	SysAllocString(L"");

				dbProp[3].dwPropertyID						=	DBPROP_INIT_CATALOG;
				dbProp[3].dwOptions									=	DBPROPOPTIONS_REQUIRED;
				dbProp[3].colid													=	DB_NULLID;
				V_VT(&(dbProp[3].vValue))			=	VT_BSTR;
				V_BSTR(&(dbProp[3].vValue))	=	SysAllocString(L"pubs");

				dbPropSet.rgProperties						=	dbProp;
				dbPropSet.cProperties							=	4;
				dbPropSet.guidPropertySet			=	DBPROPSET_DBINIT;

				if(FAILED(hr	=	pIDBProperties->SetProperties(
																																								1,	
																																								&dbPropSet)))
				{
								//	Handle	errors	here.
				}

				SysFreeString(V_BSTR(&(dbProp[0].vValue)));
				SysFreeString(V_BSTR(&(dbProp[1].vValue)));
				SysFreeString(V_BSTR(&(dbProp[2].vValue)));
				SysFreeString(V_BSTR(&(dbProp[3].vValue)));

				//	Get	an	IDBInitialize	interface.
				if(FAILED(hr	=	pIDBProperties->QueryInterface(
																																			IID_IDBInitialize,	
																																			(void	**)	&pIDBInitialize)))
				{

								//	Handle	errors	here.
				}

				//	Call	Initialize.
				if(FAILED(hr	=	pIDBInitialize->Initialize()))
				{
								//	Handle	errors	here.
				}

				//	Get	a	IDBCreateSession	interface.
				if(FAILED(hr	=	pIDBInitialize->QueryInterface(
																																IID_IDBCreateSession,	
																																(void	**)	&pIDBCreateSession)))
				{
								//	Handle	errors	here.
				}

				//	Create	a	session
				if(FAILED(hr	=	pIDBCreateSession->CreateSession(
																																	NULL,	
																																	IID_IDBCreateCommand,	
																																	(IUnknown	**)	&pIDBCreateCommand)))
				{
								//	Handle	errors	here.
				}

				//	Create	a	command.
				if(FAILED(hr	=	pIDBCreateCommand->CreateCommand(
																																					NULL,	
																																					IID_ICommandText,	
																																					(IUnknown	**)	&pICommandText)))
				{
								//	Handle	errors	here.

				}

				//	Release	all	the	objects	not	needed	anymore.
				pIDBProperties->Release();
				pIDBCreateSession->Release();
				pIDBCreateCommand->Release();
}

void	SetRowsetProperties()
{
				HRESULT														hr																				=	S_OK;
				ICommandProperties*		pICommandProperties			=	NULL;
				DBPROPSET												dbPropSet;
				DBPROP															dbProp[5];

				//	Get	an	ICommandProperties	object.
				if(FAILED(hr	=	pICommandText->QueryInterface(
																								IID_ICommandProperties,	
																								(void	**)	&pICommandProperties)))
				{
								//	Handle	errors	here.
				}

				//	Set	up	the	properties	to	get	a	FAST_FORWARD	cursor.
				dbProp[0].dwPropertyID							=	DBPROP_SERVERCURSOR;
				dbProp[0].dwOptions										=	DBPROPOPTIONS_REQUIRED;
				dbProp[0].colid														=	DB_NULLID;
				V_VT(&(dbProp[0].vValue))				=	VT_BOOL;
				V_BOOL(&(dbProp[0].vValue))		=	VARIANT_TRUE;

				dbProp[1].dwPropertyID							=	DBPROP_OTHERINSERT;
				dbProp[1].dwOptions										=	DBPROPOPTIONS_REQUIRED;
				dbProp[1].colid														=	DB_NULLID;

				V_VT(&(dbProp[1].vValue))				=	VT_BOOL;
				V_BOOL(&(dbProp[1].vValue))		=	VARIANT_TRUE;

				dbProp[2].dwPropertyID							=	DBPROP_OTHERUPDATEDELETE;
				dbProp[2].dwOptions										=	DBPROPOPTIONS_REQUIRED;
				dbProp[2].colid														=	DB_NULLID;
				V_VT(&(dbProp[2].vValue))				=	VT_BOOL;
				V_BOOL(&(dbProp[2].vValue))		=	VARIANT_TRUE;

				dbProp[3].dwPropertyID							=	DBPROP_OWNINSERT;
				dbProp[3].dwOptions										=	DBPROPOPTIONS_REQUIRED;
				dbProp[3].colid														=	DB_NULLID;
				V_VT(&(dbProp[3].vValue))				=	VT_BOOL;
				V_BOOL(&(dbProp[3].vValue))		=	VARIANT_TRUE;

				dbProp[4].dwPropertyID							=	DBPROP_OWNUPDATEDELETE;
				dbProp[4].dwOptions										=	DBPROPOPTIONS_REQUIRED;
				dbProp[4].colid														=	DB_NULLID;
				V_VT(&(dbProp[4].vValue))				=	VT_BOOL;
				V_BOOL(&(dbProp[4].vValue))		=	VARIANT_TRUE;

				dbPropSet.rgProperties							=	dbProp;
				dbPropSet.cProperties								=	5;
				dbPropSet.guidPropertySet				=	DBPROPSET_ROWSET;

				if(FAILED(hr	=	pICommandProperties->SetProperties(
																																												1,	
																																												&dbPropSet)))
				{
								//	Handle	errors	here.
				}

				//	Release	the	ICommandProperties	object.

				pICommandProperties->Release();
}

void	ExecuteAndDisplay()
{
				HRESULT													hr																		=	S_OK;
				IRowset*												pIRowset												=	NULL;
				IAccessor*										pIAccessor										=	NULL;
				BYTE*															pData															=	NULL;
				ULONG															cRowsObtained							=	0;
				ULONG															cCount														=	0;
				HROW*															pRows															=	new	HROW[10];
				HACCESSOR											hAccessor;
				DBBINDING											Bind[2];
				
				//	Set	the	command	text.
				if(FAILED(hr	=	pICommandText->SetCommandText(
																								DBGUID_SQL,	
																								L"select	au_lname,	au_fname	from	authors")))
				{
								//	Handle	errors	here.
				}

				//	Execute	the	command.
				if(FAILED(hr	=	pICommandText->Execute(
																																										NULL,	
																																										IID_IRowset,	
																																										NULL,	
																																										NULL,	
																																										(IUnknown	**)	&pIRowset)))
				{
								//	Handle	errors	here.
				}

				//	Set	up	the	binding	structure	for	au_lname	(varchar(40)).
				Bind[0].dwPart						=	DBPART_VALUE;
				Bind[0].eParamIO				=	DBPARAMIO_NOTPARAM;
				Bind[0].iOrdinal				=	1;
				Bind[0].pTypeInfo			=	NULL;
				Bind[0].pObject					=	NULL;
				Bind[0].pBindExt				=	NULL;
				Bind[0].dwFlags					=	0;
				Bind[0].dwMemOwner		=	DBMEMOWNER_CLIENTOWNED;
				Bind[0].obLength				=	0;
				Bind[0].obStatus				=	0;
				Bind[0].obValue					=	0;
				Bind[0].cbMaxLen				=	40;
				Bind[0].wType							=	DBTYPE_STR;
				Bind[0].bPrecision		=	0;
				Bind[0].bScale						=	0;

				//	Set	up	the	binding	structure	for	au_fname	(varchar(20)).
				Bind[1].dwPart						=	DBPART_VALUE;
				Bind[1].eParamIO				=	DBPARAMIO_NOTPARAM;
				Bind[1].iOrdinal				=	2;
				Bind[1].pTypeInfo			=	NULL;
				Bind[1].pObject					=	NULL;
				Bind[1].pBindExt				=	NULL;
				Bind[1].dwFlags					=	0;
				Bind[1].dwMemOwner		=	DBMEMOWNER_CLIENTOWNED;
				Bind[1].obLength				=	0;
				Bind[1].obStatus				=	0;
				Bind[1].obValue					=	50;
				Bind[1].cbMaxLen				=	20;
				Bind[1].wType							=	DBTYPE_STR;
				Bind[1].bPrecision		=	0;

				Bind[1].bScale						=	0;

				//	Get	an	IAccessor	interface.
				if(FAILED(hr	=	pIRowset->QueryInterface(
																																IID_IAccessor,	
																																(void	**)	&pIAccessor)))
				{
								//	Handle	errors	here.
				}

				//	Create	an	accessor.
				if(FAILED(hr	=	pIAccessor->CreateAccessor(
																																DBACCESSOR_ROWDATA,	
																																2,	
																																Bind,	
																																0,	
																																&hAccessor,	
																																NULL)))
				{
								//	Handle	errors	here.
				}

				//	Allocate	memory	for	the	data.
				pData	=	new	BYTE[100];

				//	Loop	through	all	of	the	rows.
				while(TRUE)
				{
								if(FAILED(hr	=	pIRowset->GetNextRows(
																																				NULL,	
																																				0,	
																																				10,	
																																				&cRowsObtained,	

																																				&pRows)))
								{
												//	Handle	errors	here.
								}

								//	Make	sure	some	rows	were	obtained.
								if(cRowsObtained	==	0)
								{
												break;
								}

								//	Get	the	data	for	the	each	of	the	rows.
								for(cCount	=	0;	cCount	<	cRowsObtained;	cCount++)
								{
												//	Get	the	row	data	needed.
												if(FAILED(hr	=	pIRowset->GetData(
																																								pRows[cCount],	
																																								hAccessor,	
																																								pData)))
												{
																//	Handle	errors	here.
												}

												//	Display	row	data.
												printf("%s,	%s\n",	pData,	(pData	+	50));
								}

								//	Release	the	rows.
								if(FAILED(hr	=	pIRowset->ReleaseRows(
																																				cRowsObtained,	
																																				pRows,	
																																				NULL,	
																																				NULL,	

																																				NULL)))
								{
												//	Handle	errors	here.
								}
				}

				//	Free	the	memory	allocated	for	the	data.
				delete	[]	pData;

				//	Release	the	HACCESSOR.
				if(FAILED(hr	=	pIAccessor->ReleaseAccessor(
																																								hAccessor,	
																																								NULL)))
				{
								//	Handle	errors	here.
				}

				//	Release	the	IAccessor	object.
				pIAccessor->Release();

				//	Release	the	rowset.
				pIRowset->Release();
}

void	Cleanup()
{
				HRESULT		hr	=	S_OK;

				//	Release	the	ICommandText	object.
				pICommandText->Release();

				//	Uninitialize	the	IDBInitialize	object.
				if(FAILED(hr	=	pIDBInitialize->Uninitialize()))

				{
								//	Handle	errors	here.
				}

				//	Release	the	IDBInitialize	object.
				pIDBInitialize->Release();

				//	Uninitialize	OLE.
				OleUninitialize();
}
	

How	To

Using	Bookmarks
Bookmarks	allow	consumers	to	return	quickly	to	a	row.	The	bookmark	column
is	the	column	0	in	the	rowset.

How	To

How	to	retrieve	rows	using	bookmarks	(OLE	DB)
The	consumer	sets	the	dwFlag	field	value	of	the	binding	structure	to
DBCOLUMNSINFO_ISBOOKMARK	to	indicate	that	the	column	is	used	as
bookmark.	The	consumer	also	sets	the	rowset	property
DBPROP_BOOKMARKS	to	VARIANT_TRUE.	This	allows	column	0	to	be
present	in	the	rowset.		IRowsetLocate::GetRowsAt	is	then	used	to	fetch	rows
starting	with	the	row	specified	an	an	offset	from	a	bookmark.

To	retrieve	rows	using	bookmarks

1.	 Establish	a	connection	to	the	data	source.

2.	 Set	the	rowset	property	DBPROP_IRowsetLocate	property	to
VARIANT_TRUE.

3.	 Execute	the	command.

4.	 Set	the	dwFlags	field	of	the	binding	structure	to
DBCOLUMNSINFO_ISBOOKMARK	flag	for	the	column	that	will
be	used	as	a	bookmark.

5.	 Use	IRowsetLocate::GetRowsAt	to	fetch	rows,	starting	with	the	row
specified	by	an	offset	from	the	bookmark.

The	following	example	shows	how	to	fetch	rows	using	a	bookmark.	In	this
example,	the5th	row	is	retrieved	from	the	result	set	produced	from	the	execution
of	a	SELECT	statement.

/*
				How	to	use	bookmarks
*/
void	InitializeAndEstablishConnection();
void	ProcessResultSet();

#define	UNICODE
#define	_UNICODE
#define	DBINITCONSTANTS
#define	INITGUID

#include	<stdio.h>
#include	<tchar.h>
#include	<stddef.h>
#include	<windows.h>
#include	<iostream.h>
#include	<oledb.h>
#include	<sqloledb.h>

IDBInitialize*							pIDBInitialize					=	NULL;	
IDBProperties*							pIDBProperties					=	NULL;								
IDBCreateSession*				pIDBCreateSession		=	NULL;
IDBCreateCommand*				pIDBCreateCommand		=	NULL;
ICommandProperties*		pICommandProperties	=	NULL;
ICommandText*								pICommandText				=	NULL;
IRowset*													pIRowset									=	NULL;
IColumnsInfo*								pIColumnsInfo							=	NULL;
DBCOLUMNINFO*								pDBColumnInfo						=	NULL;
IAccessor*											pIAccessor									=	NULL;
IRowsetLocate*							pIRowsetLocate						=	NULL;

DBPROP															InitProperties[4];
DBPROPSET												rgInitPropSet[1];	
DBPROPSET												rgPropSets[1];
DBPROP															rgProperties[1];
ULONG																i,	j;														
HRESULT														hr;

LONG																	cNumRows	=	0;
ULONG																lNumCols;
WCHAR*															pStringsBuffer;
DBBINDING*											pBindings;
ULONG																ConsumerBufferColOffset	=	0;
HACCESSOR												hAccessor;
ULONG																lNumRowsRetrieved;
HROW																	hRows[5];									
HROW*																pRows	=	&hRows[0];
char*																pBuffer;

void	main()	{

				//The	command	to	execute.
				WCHAR*	wCmdString	
								=	OLESTR("	SELECT	title_id,	title	FROM	titles	");

		//	Initialize	and	establish	a	connection	to	the	data	source.
				InitializeAndEstablishConnection();

				//Create	a	session	object.
				if(FAILED(pIDBInitialize->QueryInterface(
																																IID_IDBCreateSession,
																																(void**)	&pIDBCreateSession)))
				{
								cout	<<	"Failed	to	obtain	IDBCreateSession	interface.\n";
				}

				if(FAILED(pIDBCreateSession->CreateSession(
																																				NULL,	
																																				IID_IDBCreateCommand,	
																																				(IUnknown**)	&pIDBCreateCommand)))
				{

								cout	<<	"pIDBCreateSession->CreateSession	failed.\n";
				}

				//Access	the	ICommandText	interface.
				if(FAILED(pIDBCreateCommand->CreateCommand(
																																				NULL,	
																																				IID_ICommandText,	
																																				(IUnknown**)	&pICommandText)))
				{
								cout	<<	"Failed	to	access	ICommand	interface.\n";
				}

				//Set	DBPROP_IRowsetLocate
				if(FAILED(pICommandText->QueryInterface(
																																				IID_ICommandProperties,	
																																				(void	**)	&pICommandProperties)))
				{
								cout	<<	"Failed	to	obtain	ICommandProperties	interface.\n";
				}

				/*
				Set	DBPROP_IRowsetLocate	to	VARIANT_TRUE	to	
				get	the	IRowsetLocate	interface.
				*/
				VariantInit(&rgProperties[0].vValue);

				rgPropSets[0].guidPropertySet			=	DBPROPSET_ROWSET;
				rgPropSets[0].cProperties							=	1;
				rgPropSets[0].rgProperties						=	rgProperties;

				//Set	properties	in	the	property	group	(DBPROPSET_ROWSET)	
				rgPropSets[0].rgProperties[0].dwPropertyID		=	DBPROP_IRowsetLocate;
				rgPropSets[0].rgProperties[0].dwOptions					=	DBPROPOPTIONS_REQUIRED;

				rgPropSets[0].rgProperties[0].colid									=	DB_NULLID;
				rgPropSets[0].rgProperties[0].vValue.vt					=	VT_BOOL;
				rgPropSets[0].rgProperties[0].vValue.boolVal	=	VARIANT_TRUE;

				//Set	the	rowset	properties.
				hr	=	pICommandText->QueryInterface(
																																IID_ICommandProperties,
																																(void	**)&pICommandProperties);
				if	(FAILED(hr))
				{
								printf("Failed	to	get	ICommandProperties	to	set	rowset	properties.\n");
								//Release	any	references	and	return.
				}	//end	if

				hr	=	pICommandProperties->SetProperties(1,	rgPropSets);
				if	(FAILED(hr))
				{
								printf("Execute	failed	to	set	rowset	properties.\n");
								//Release	any	references	and	return.
				}	//end	if

				pICommandProperties->Release();

				//Specify	the	command	text.
				if(FAILED(pICommandText->SetCommandText(
																																				DBGUID_DBSQL,	
																																				wCmdString)))
				{
								cout	<<	"Failed	to	set	command	text.\n";
				}

				//Execute	the	command.
				if(FAILED(hr	=	pICommandText->Execute(

																																				NULL,	
																																				IID_IRowset,	
																																				NULL,	
																																				&cNumRows,	
																																				(IUnknown	**)	&pIRowset)))				
				{
								cout	<<	"Failed	to	execute	command.\n";
				}

				ProcessResultSet();	
																								
				pIRowset->Release();

				//Free	up	memory.
				pICommandText->Release();
				pIDBCreateCommand->Release();
				pIDBCreateSession->Release();
				
				if(FAILED(pIDBInitialize->Uninitialize()))
				{
								/*
								Uninitialize	is	not	required,	but	it	fails	if	an	interface
								has	not	been	released.		This	can	be	used	for	debugging.
								*/
								cout	<<	"Problem	uninitializing.\n";
				}	//if.
				pIDBInitialize->Release();
				
				//Release	COM	library.
				CoUninitialize();
};
//--
void	InitializeAndEstablishConnection()

{				
				//Initialize	the	COM	library.
				CoInitialize(NULL);

				//Obtain	access	to	the	SQLOLEDB	provider.
				CoCreateInstance(CLSID_SQLOLEDB,	
																								NULL,	CLSCTX_INPROC_SERVER,
																								IID_IDBInitialize,	
																								(void	**)	&pIDBInitialize);

				//Initialize	the	property	values	that	are	the	same	for	each	property.
				for(i	=	0;	i	<	5;	i++)	{
								VariantInit(&InitProperties[i].vValue);
								InitProperties[i].dwOptions	=	DBPROPOPTIONS_REQUIRED;
								InitProperties[i].colid					=	DB_NULLID;
				}

				//Server	name.
				InitProperties[0].dwPropertyID	=	DBPROP_INIT_DATASOURCE;
				InitProperties[0].vValue.vt	=	VT_BSTR;
				InitProperties[0].vValue.bstrVal	=	
																												SysAllocString((LPOLESTR)L"server");

				//Database.
				InitProperties[1].dwPropertyID	=	DBPROP_INIT_CATALOG;
				InitProperties[1].vValue.vt	=	VT_BSTR;
				InitProperties[1].vValue.bstrVal	=	SysAllocString((LPOLESTR)L"pubs");

				//Login.
				InitProperties[2].dwPropertyID	=	DBPROP_AUTH_USERID;	
				InitProperties[2].vValue.vt	=	VT_BSTR;
				InitProperties[2].vValue.bstrVal	=	SysAllocString((LPOLESTR)L"login");

				//Password.
				InitProperties[3].dwPropertyID	=	DBPROP_AUTH_PASSWORD;
				InitProperties[3].vValue.vt	=	VT_BSTR;
				InitProperties[3].vValue.bstrVal	=	SysAllocString((LPOLESTR)"password");

				//Construct	the	PropertySet	array.
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
				rgInitPropSet[0].cProperties	=	4;
				rgInitPropSet[0].rgProperties	=	InitProperties;

				//Set	initialization	properties.
				pIDBInitialize->QueryInterface(IID_IDBProperties,	
																																				(void	**)&pIDBProperties);

				hr	=	pIDBProperties->SetProperties(1,	rgInitPropSet);	
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	set	initialization	properties.\n";
				}

				pIDBProperties->Release();

				//Call	the	initialization	method	to	establish	the	connection.
				if(FAILED(pIDBInitialize->Initialize()))
				{
								cout	<<	"Problem	initializing	and	connecting	to	the	data	source.\n";
				}
}	//end	of	InitializeAndEstablishConnection.
//---
void	ProcessResultSet()
{
				//Retrieve	5th	row	from	the	rowset	(for	example).
				int	iBookmark	=	5;

				pIRowset->QueryInterface(
																				IID_IColumnsInfo,	
																				(void	**)&pIColumnsInfo);

				pIColumnsInfo->GetColumnInfo(
																								&lNumCols,	
																								&pDBColumnInfo,	
																								&pStringsBuffer);

				//Create	a	DBBINDING	array.
				pBindings	=	new	DBBINDING[lNumCols];

				//Using	the	ColumnInfo	strucuture,	fill	out	the	pBindings	array.
				for(j=0;	j<lNumCols;	j++)	{
								pBindings[j].iOrdinal		=	j;
								pBindings[j].obValue			=	ConsumerBufferColOffset;
								pBindings[j].pTypeInfo	=	NULL;
								pBindings[j].pObject			=	NULL;
								pBindings[j].pBindExt		=	NULL;
								pBindings[j].dwPart				=	DBPART_VALUE;
								pBindings[j].dwMemOwner	=	DBMEMOWNER_CLIENTOWNED;
								pBindings[j].eParamIO		=	DBPARAMIO_NOTPARAM;
								pBindings[j].cbMaxLen		=	pDBColumnInfo[j].ulColumnSize	+	1;
																																	//	+	1	for	null	terminator
								pBindings[j].dwFlags			=	0;
								pBindings[j].wType						=	pDBColumnInfo[j].wType;
								pBindings[j].bPrecision	=	pDBColumnInfo[j].bPrecision;
								pBindings[j].bScale					=	pDBColumnInfo[j].bScale;

								//Recalculate	the	next	buffer	offset.
								ConsumerBufferColOffset	=	ConsumerBufferColOffset	+	
																																				pDBColumnInfo[j].ulColumnSize;

				};
								/*
								Indicate	that	the	first	field	is	used	as	a	bookmark	by	setting
								dwFlags	to	DBCOLUMNFLAGS_ISBOOKMARK.
								*/
								pBindings[0].dwFlags	=	DBCOLUMNFLAGS_ISBOOKMARK;

				//Get	IAccessor	interface.
				hr	=	pIRowset->QueryInterface(
																												IID_IAccessor,	
																												(void	**)&pIAccessor);
				if	(FAILED(hr))
				{
								printf("Failed	to	get	IAccessor	interface.\n");
				}
				//Create	accessor.
				hr	=	pIAccessor->CreateAccessor(
																								DBACCESSOR_ROWDATA,	
																								lNumCols,	
																								pBindings,
																								0,
																								&hAccessor,
																								NULL);
				if(FAILED(hr))
				{
								printf("Failed	to	create	an	accessor.\n");
				}

				HRESULT	hr	=	pIRowset->QueryInterface(
																																IID_IRowsetLocate,	
																																(void	**)	&pIRowsetLocate);
				if	(FAILED(hr))
				{

								printf("Failed	to	get	IRowsetLocate	interface.\n");
				}
								hr	=	pIRowsetLocate->GetRowsAt(
																																				0,																										
																																				NULL,																							
																																				sizeof(int),																
																																				(BYTE	*)	&iBookmark,								
																																				0,																										
																																				1,																										
																																				&lNumRowsRetrieved,									
																																				&pRows);																	

								if	(FAILED(hr))
								{
												printf("Calling	the	GetRowsAt	method	failed.\n");
								}
				//Create	buffer	and	retrieve	data.
				pBuffer	=	new	char[ConsumerBufferColOffset];
				memset(pBuffer,	0,	ConsumerBufferColOffset);

				hr	=	pIRowset->GetData(hRows[0],	hAccessor,	pBuffer);
				if	(FAILED(hr))
				{
								printf("Failed	GetDataCall.\n");
				}
				
				printf("%d\t%s%s\n",	&pBuffer[pBindings[0].obValue],	
																								&pBuffer[pBindings[1].obValue],
																								&pBuffer[pBindings[2].obValue]);
															
				pIRowset->ReleaseRows(lNumRowsRetrieved,	
																												hRows,	
																												NULL,	

																												NULL,	
																												NULL);
			
				//Free		all	allocated	memory.
				delete	[]	pBuffer;
				pIAccessor->ReleaseAccessor(hAccessor,	NULL);
				pIAccessor->Release();
				delete	[]	pBindings;
}	//ProcessResultSet.
	

How	To

Fetching	Columns	Using	IRow::GetColumns	(or
IRow::Open)	and	ISequentialStream
Large	data	can	be	bound	or	retrieved	using	the	IsequentialStream	interface.	For
bound	columns,	the	status	flag	indicates	if	the	data	is	truncated	by	setting
DBSTATUS_S_TRUNCATED.

To	fetch	columns	using	IRow::GetColumns	(or	IRow::Open)	and
ISequentialStream

1.	 Establish	a	connection	to	the	data	source.

2.	 Execute	the	command	(in	this	example,
IcommandExecute::Execute()	is	called	with	IID_IRow).

3.	 The	column	data	can	be	fetched	using	IRow::Open()	or
IRow::GetColumns().

a.	 IRow::Open()	can	be	used	to	open	an	IsequentialStream
on	the	row.	Specify	DBGUID_STREAM	to	indicate	that	the
column	contains	a	stream	of	binary	data	(IStream	or
ISequentialStream	can	then	be	used	to	read	the	data	from
the	column).

b.	 If	IRow::GetColumns()	is	used,	then	the	pData	element	of
DBCOLUMNACCESS	structure	is	set	to	point	to	a	stream
object.

4.	 IsequentialStream::Read()	is	used	repeatedly	to	read	the	specified
number	of	bytes	into	the	consumer	buffer.

Here	is	the	sample	table	used	by	the	application:

use	pubs
go

if	exists	(select	name	from	sysobjects	where	name	=	'MyTable')
					drop	table	MyTable
go

create	table	MyTable
(
					col1		int,
					col2		varchar(50),
					col3		char(50),
					col4		datetime,
					col5		float,
					col6		money,
					col7		sql_variant,
					col8		binary(50),
					col9		text,
					col10	image
)
go

/*	Enter	data	*/
insert	into	MyTable
values
(
					10,
					'abcdefghijklmnopqrstuvwxyz',
					'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
					'11/1/1999	11:52	AM',
					3.14,
					99.95,
					convert(nchar(50),	N'AbCdEfGhIjKlMnOpQrStUvWxYz'),
					0x123456789,
					replicate('AAAAABBBBB',	500),
					replicate(0x123456789,	500)

)
go

Here	is	the	sample	code:

/*
				Example	shows	how	to	fetch	a	single	row	using	IRow.	In	this	example	
				one	column	at	a	time	is	retrieved	from	the	row.	This	example	illustrate	
				the	use	of	IRow::Open()	as	well	as	IRow::GetColumns().	To	read	the
				column	data,	the	example	uses	ISequentialStream::Read.

*/

#define	DBINITCONSTANTS
#define	INITGUID

#include	<stdio.h>
#include	<windows.h>
#include	<iostream.h>
#include	<oledb.h>
#include	<sqloledb.h>

//constants
const	int	kMaxBuff	=	50;

void				InitializeAndEstablishConnection();
HRESULT	GetColumnSize(IRow*	pUnkRow,	ULONG	iCol);
ULONG				PrintData(ULONG	iCols,	ULONG	iStart,	DBCOLUMNINFO*	prgInfo,	
																DBCOLUMNACCESS*	prgColumns);
HRESULT	GetColumns(IRow*	pUnkRow,	ULONG	iStart,	ULONG	iEnd);
HRESULT	GetSequentialColumn(IRow*	pUnkRow,	ULONG	iCol,	BOOL	fOpen	=	TRUE);

IDBInitialize*							pIDBInitialize					=	NULL;
IDBProperties*							pIDBProperties					=	NULL;

IDBCreateSession*				pIDBCreateSession		=	NULL;
IDBCreateCommand*				pIDBCreateCommand		=	NULL;
ICommandText*								pICommandText						=	NULL;
IRow			*													pIRow																=	NULL;
IColumnsInfo*								pIColumnsInfo						=	NULL;
DBCOLUMNINFO*								pDBColumnInfo						=	NULL;
IAccessor*											pIAccessor									=	NULL;
DBPROP															InitProperties[4];
DBPROPSET												rgInitPropSet[1];
ULONG																i,	j;
HRESULT														hr;
LONG																	cNumRows	=	0;
ULONG																lNumCols;
WCHAR*															pStringsBuffer;
DBBINDING*											pBindings;
ULONG																ConsumerBufColOffset	=	0;
HACCESSOR												hAccessor;
ULONG																lNumRowsRetrieved;
HROW																	hRows[10];
HROW*																pRows	=	&hRows[0];
BYTE*																pBuffer;

void	main()	
{
				ULONG				iidx	=	0;
				WCHAR*	wCmdString	
								=	OLESTR("	SELECT	*	FROM	MyTable	");
		//	Call	a	function	to	initialize	and	establish	connection.	
				InitializeAndEstablishConnection();

				//Create	a	session	object.
				if(FAILED(pIDBInitialize->QueryInterface(
																																IID_IDBCreateSession,

																																(void**)	&pIDBCreateSession)))
				{
								cout	<<	"Failed	to	obtain	IDBCreateSession	interface.\n";
				}

				if(FAILED(pIDBCreateSession->CreateSession(
																																					NULL,	
																																					IID_IDBCreateCommand,	
																																					(IUnknown**)	&pIDBCreateCommand)))
				{
								cout	<<	"pIDBCreateSession->CreateSession	failed.\n";
				}

				//Access	the	ICommandText	interface.
				if(FAILED(pIDBCreateCommand->CreateCommand(
																																				NULL,	
																																				IID_ICommandText,	
																																				(IUnknown**)	&pICommandText)))
				{
								cout	<<	"Failed	to	access	ICommand	interface.\n";
				}
				
				//Use	SetCommandText()	to	specify	the	command	text.
				if(FAILED(pICommandText->SetCommandText(DBGUID_DBSQL,	wCmdString)))
				{
								cout	<<	"Failed	to	set	command	text.\n";
				}

				//Execute	the	command.
				if(FAILED(hr	=	pICommandText->Execute(NULL,	
																																				IID_IRow,	
																																				NULL,	
																																				&cNumRows,	

																																				(IUnknown	**)	&pIRow)))
				{
								cout	<<	"Failed	to	execute	command.\n";
				}

				//Get	columns	(one	at	a	time)	using	ISequentialStream	and	Open
				
				for(iidx	=	1;	iidx	<=	10;	iidx++)
								//the	3rd	parameter	is	by	default	TRUE	indicating	use	of	ISequentialStream
								//and	Open.
								hr	=	GetSequentialColumn(pIRow,	iidx);
				
				//Release	the	Row	object.
				pIRow->Release();

				//Execute	the	command	again.
				if(FAILED(hr	=	pICommandText->Execute(NULL,	
																																				IID_IRow,	
																																				NULL,	
																																				&cNumRows,	
																																				(IUnknown	**)	&pIRow)))
				{
								cout	<<	"Failed	to	execute	command.\n";
				}

				/*	
				Now	get	columns	(one	at	a	time)	using	ISequentialStream	and	
				GetColumns.	The	3rd	parameter	is	by	default	TRUE	indicating	use	
				of	ISequentialStream	and	GetColumns.
				*/
				for(iidx	=	1;	iidx	<=	10;	iidx++)
								hr	=	GetSequentialColumn(pIRow,	iidx,	FALSE);	

				//Free	up	memory.
				pICommandText->Release();
				pIDBCreateCommand->Release();
				pIDBCreateSession->Release();
				
				if(FAILED(pIDBInitialize->Uninitialize()))
				{
								/*Uninitialize	is	not	required,	but	it	fails	if	an	interface
								has	not	been	released.		This	can	be	used	for	debugging.
								cout	<<	"Problem	uninitializing.\n";	*/
				}	//endif.
				pIDBInitialize->Release();
				
				//Release	the	COM	library.
				CoUninitialize();
};
//--
HRESULT	GetSequentialColumn(IRow*	pUnkRow,	ULONG	iCol,	BOOL	fOpen)
{
				HRESULT	hr	=	NOERROR;
				ULONG	cbRead	=	0;
				ULONG	cbTotal	=	0;
				ULONG	cColumns	=	0;
				ULONG	cReads	=	0;
				ISequentialStream*	pIStream	=	NULL;
				WCHAR*	pBuffer[kMaxBuff];//50	chars	read	by	ISequentialStream::Read()
				DBCOLUMNINFO*	prgInfo;
				OLECHAR*	pColNames;
				IColumnsInfo*	pIColumnsInfo;
				DBID	columnid;
				DBCOLUMNACCESS	column;

				wprintf(TEXT("[RETRIEVING	COLUMN	%d	SEQUENTIALLY]\n"),	iCol);

				//Get	column	information	(basically	get	column	id)
				hr	=	pUnkRow->QueryInterface(IID_IColumnsInfo,	
																												(void**)	&pIColumnsInfo);
				if(FAILED(hr))
								goto	CLEANUP;

				hr	=	pIColumnsInfo->GetColumnInfo(&cColumns,	&prgInfo,	&pColNames);
				if	(FAILED(hr))
								goto	CLEANUP;

				//Get	Column	ID
				columnid	=	(prgInfo	+	(iCol	-	1))->columnid;
				if	(fOpen)	//Get	columns	using	Open	and	ISequentialStream.
				{
								wprintf(TEXT("[RETRIEVING	COLUMNS	USING	"));
								wprintf(TEXT("	ISequentialSteam	and	Open]\n"));
								//Open	sequential	stream
								hr	=	pUnkRow->Open(NULL,	
																												&columnid,	
																												DBGUID_STREAM,	
																												0,	
																												IID_ISequentialStream,
																												(LPUNKNOWN	*)&pIStream);
								if	(FAILED(hr))
								{
												wprintf(TEXT("Unable	to	get	ISequentialStream	interface.\n"));
												goto	CLEANUP;
								}
				}

				else				//Get	Columns	using	GetColumns	and	ISequentialStream.

				{
								IUnknown*	pUnkStream	=	NULL;

								ZeroMemory(&column,	sizeof(column));
								column.columnid	=	prgInfo[iCol	-	1].columnid;
								column.wType				=	DBTYPE_IUNKNOWN;
								column.pData				=	(LPVOID*)	&pUnkStream;

								hr	=	pUnkRow->GetColumns(1,	&column);
								if	(FAILED(hr))
								{
												wprintf(TEXT("Error	executing	IRow::GetColumns.\n"));
												goto	CLEANUP;
								}

								hr	=	pUnkStream->QueryInterface(IID_ISequentialStream,	
																																								(LPVOID*)	&pIStream);
								if	(FAILED(hr))
								{
												wprintf(TEXT("Unable	to	get	ISequentialStream	interface	"));
												wprintf(TEXT("via	IRow::GetColumns.\n"));
												goto	CLEANUP;
								}

								pUnkStream->Release();
				}

				ZeroMemory(pBuffer,	kMaxBuff	*	sizeof(WCHAR));

				//Read	50	chars	at	a	time	until	no	more	data.
				do
				{
								hr	=	pIStream->Read(pBuffer,	kMaxBuff,	&cbRead);

								if(FAILED(hr))
								{
												wprintf(TEXT("Error	reading	data.\n"));
												goto	CLEANUP;
								}
								cbTotal	=	cbTotal	+	cbRead;
								//Print	the	data
								wprintf(TEXT("READ	#%d:	%-*S\n"),	++cReads,	kMaxBuff,	pBuffer);
				}	while(cbRead	>	0);

				wprintf(TEXT("[READ	%d	bytes	for	column	%d.\n"),	cbTotal,	iCol);

CLEANUP:
				if(pIColumnsInfo)
								pIColumnsInfo->Release();

				if(pIStream)
								pIStream->Release();

				return	hr;
}

//--
BOOL	InitColumn(DBCOLUMNACCESS*	pCol,	DBCOLUMNINFO*	pInfo)
{
				/*
				If	text	or	image	column	is	being	read,	in	which	case	the	max	possible	
				length	of	a	value	is	the	column	is	hugh,	we	will	limit	that	size	to	
				512	bytes	(for	illustration	purposes).
				*/

				ULONG	ulSize=
								(pInfo->ulColumnSize	<	0x7fffffff)	?	pInfo->ulColumnSize	:	512;

				//Verify	dta	buffer	is	large	enough.
				if(pCol->cbMaxLen	<	(ulSize	+	1))
				{
								if(pCol->pData)
								{
												delete	[]	pCol->pData;
												pCol->pData	=	NULL;
								}

								//Allocate	data	buffer
								pCol->pData	=	new	WCHAR[ulSize	+	1];
								//set	the	max	length	of	caller-initialized	memory.
								pCol->cbMaxLen	=	sizeof(WCHAR)	*	(ulSize	+	1);
								/*
								In	the	above	2	steps,	pData	is	pointing	to	memory	(it	is	not	NULL)	
								and	cbMaxLen	has	a	value	(not	0),	so	next	call	to	IRow->GetData()	
								will	read	the	data	from	the	column.
								*/
				}

								//Clear	memory	buffer
								ZeroMemory((void*)	pCol->pData,	pCol->cbMaxLen);

								//Set	properties.
								pCol->wType	=	DBTYPE_WSTR;
								pCol->columnid	=	pInfo->columnid;
								pCol->cbDataLen	=	0;
								pCol->dwStatus	=	0;
								pCol->dwReserved	=	0;
								pCol->bPrecision	=	0;
								pCol->bScale	=	0;

								return	TRUE;
}

//--
HRESULT	GetColumns(IRow*	pUnkRow,	ULONG	iStart,	ULONG	iEnd)	
//Start	and	end	are	same.	Thus,	get	only	one	column.
{
				HRESULT												hr;
				ULONG												iidx;								//loop	counter
				ULONG												cColumns;				//Count	of	columns
				ULONG												cUserCols;				//Count	of	user	columns
				DBCOLUMNINFO*				prgInfo;				//Column	of	info.	array
				OLECHAR*								pColNames;				//Array	of	column	names
				DBCOLUMNACCESS*	prgColumns;	//Ptr	to	column	access	structures	array
				DBCOLUMNINFO*				pCurrInfo;
				DBCOLUMNACCESS*	pCurrCol;

				IColumnsInfo*	pIColumnsInfo	=	NULL;

				//Initialize
				cColumns				=	0;
				prgInfo								=	NULL;
				pColNames				=	NULL;
				prgColumns				=	NULL;

				printf("Retrieving	data\n");

				//Get	column	info	to	build	column	access	array
				hr=pUnkRow->QueryInterface(IID_IColumnsInfo,	(void**)&pIColumnsInfo);
				if(FAILED(hr))
								goto	CLEANUP;
				hr=pIColumnsInfo->GetColumnInfo(&cColumns,	&prgInfo,	&pColNames);
				if(FAILED(hr))

								goto	CLEANUP;

				printf("In	GetColumns(),	Columns=	%d\n",	cColumns);

				/*
				Determine	no.	of	columns	to	retrieve.	
				Since	iEnd	and	iStart	is	same,	this	is	redundent	step.
				cUserCols	will	always	be	1.
				*/
				cUserCols	=	iEnd	-	iStart	+	1;	
				//Walk	list	of	columns	and	setup	a	DBCOLUMNACCESS	structure
				prgColumns=	new	DBCOLUMNACCESS[cUserCols];	//cUserCols	is	only	1
				ZeroMemory((void*)	prgColumns,	sizeof(DBCOLUMNACCESS)	*	cUserCols);

				for(iidx=0;	iidx	<	cUserCols;	iidx++)
				{
								pCurrInfo	=	prgInfo	+	iidx	+	iStart	-	1;
								pCurrCol	=	prgColumns	+	iidx;
								//Here	the	values	of	pData	and	cbMaxLen	elements	of	
								//DBCOLUMNACCESS	elements	is	set.	Thus	IRow->GetColumns()	
								//will	return	actual	data.
								if(InitColumn(pCurrCol,	pCurrInfo)	==	FALSE)
												goto	CLEANUP;
				}
				hr	=	pUnkRow->GetColumns(cUserCols,	prgColumns);	//cUserCols=1
				if(FAILED(hr))
				{
								printf("Error	occured\n");
				}

				//Show	data.
				PrintData(cUserCols,	iStart,	prgInfo,	prgColumns);

CLEANUP:
				if(pIColumnsInfo)
								pIColumnsInfo->Release();
				if(prgColumns)
								delete	[]	prgColumns;

				return	hr;
}
//--
/*
This	function	returns	the	actual	width	of	the	data	in	the	column	
(not	the	columnwidth	in	DBCOLUMNFO	structure	which	is	the	width	of	the	
column)
*/

HRESULT	GetColumnSize(IRow*	pUnkRow,	ULONG	iCol)
{
				HRESULT												hr	=	NOERROR;
				ULONG												iidx	=	0;						//Loop	counter
				ULONG												cColumns	=	0;	//Count	the	columns
				DBCOLUMNINFO*				prgInfo;						//Column	info	array
				OLECHAR*								pColNames;
				DBCOLUMNACCESS				column;										
				DBCOLUMNINFO*				pCurrInfo;
				IColumnsInfo*				pIColumnsInfo	=	NULL;

				//Initialize
				prgInfo	=	NULL;
				pColNames	=	NULL;

				printf("Checking	column	size\n");

				//Get	column	info	to	build	column	access	array

				hr=pUnkRow->QueryInterface(IID_IColumnsInfo,	(void**)	&pIColumnsInfo);
				if	(FAILED(hr))
								goto	CLEANUP;

				hr=pIColumnsInfo->GetColumnInfo(&cColumns,	&prgInfo,	&pColNames);
				if	(FAILED(hr))
								goto	CLEANUP;
				printf("Value	of	cColumns	is	%d\n",	cColumns);

				/*	
				Setup	a	DBCOLUMNACCESS	structure:	Here	pData	is	set	to	NULL	and	
				cbMaxLen	is	set	to	0.	Thus	IRow->GetColumns()	returns	only	the	actual	
				column	length	in	cbDataLen	member	of	DBCOLUMNACCESS	structure.In	this	
				case	you	can	call	IRow->GetColumns()	again	for	the	same	column	to	
				retrieve	actual	data	in	the	second	call.
				*/
				ZeroMemory((void*)	&column,	sizeof(DBCOLUMNACCESS));
				column.pData=NULL;

				pCurrInfo	=	prgInfo	+	iCol	-	1;
				//Get	the	column	id	in	DBCOLUMNACCESS	structure.
				//It	is	then	used	in	GetColumn().
				column.columnid	=	pCurrInfo->columnid;	

				printf("column.columnid	value	is	%d\n",	column.columnid);
				//We	know	which	column	to	get.	
				//The	column.columnid	gives	the	column	number.
				hr	=	pUnkRow->GetColumns(1,	&column);	
				if	(FAILED(hr))
				{
								printf("Errors	occured\n");
				}
				//Show	data

				PrintData(1,	iCol,	prgInfo,	&column);

CLEANUP:
				if	(pIColumnsInfo)
								pIColumnsInfo->Release();
				return	hr;
}

//--
BOOL	GetStatus(DWORD	dwStatus,	WCHAR*	pwszStatus)
{
				switch	(dwStatus)
				{
				case	DBSTATUS_S_OK:
								wcscpy(pwszStatus,	TEXT("DBSTATUS_S_OK"));
								break;
				case	DBSTATUS_E_UNAVAILABLE:
								wcscpy(pwszStatus,	TEXT("DBSTATUS_E_UNAVAILABLE"));
								break;
				case	DBSTATUS_S_TRUNCATED:
								wcscpy(pwszStatus,	TEXT("DBSTATUS_S_TRUNCATED"));
								break;
				}
				return	TRUE;
}
//--

ULONG	PrintData(ULONG	iCols,	
																ULONG	iStart,	
																DBCOLUMNINFO*	prgInfo,	
																DBCOLUMNACCESS*	prgColumns)
{
				WCHAR	wszStatus[255];

				DBCOLUMNINFO*	pCurrInfo;
				DBCOLUMNACCESS*	pCurrCol;

				printf("No.	Name							Status					Length		Max		Data\n");

				for(ULONG	iidx=0;	iidx	<	iCols;	iidx++)
				{
								pCurrInfo=prgInfo	+	iidx	+	iStart	-	1;
								pCurrCol=prgColumns+iidx;

								GetStatus(pCurrCol->dwStatus,	wszStatus);	
								//was	the	data	successfully	retrieved?
								wprintf(TEXT("%-3d	%-*s	%-20s	%-3d	%-3d	%-20s\n"),
												iStart+iidx,
												10,
												pCurrInfo->pwszName,
												wszStatus,
												pCurrCol->cbDataLen,
												pCurrCol->cbMaxLen,
												(WCHAR*)	pCurrCol->pData);
				}
				wprintf(TEXT("\n"));
				return	iidx;
}

//--
void	InitializeAndEstablishConnection()
{				
				//Initialize	the	COM	library.
				CoInitialize(NULL);

				//Obtain	access	to	the	SQLOLEDB	provider.

				hr	=	CoCreateInstance(CLSID_SQLOLEDB,	
																										NULL,	
																										CLSCTX_INPROC_SERVER,
																										IID_IDBInitialize,	
																										(void	**)	&pIDBInitialize);
				if(FAILED(hr))
				{
								printf("Failed	to	get	IDBInitialize	interface.\n");
				}	//end	if

				/*
				Initialize	the	property	values	needed	
				to	establish	the	connection.
				*/
				for(i	=	0;	i	<	4;	i++)	
								VariantInit(&InitProperties[i].vValue);
				

				//Server	name.
				InitProperties[0].dwPropertyID		=	DBPROP_INIT_DATASOURCE;
				InitProperties[0].vValue.vt					=	VT_BSTR;
				InitProperties[0].vValue.bstrVal=	
																												SysAllocString(L"mohanv1");
				InitProperties[0].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[0].colid									=	DB_NULLID;

//Database.
				InitProperties[1].dwPropertyID		=	DBPROP_INIT_CATALOG;
				InitProperties[1].vValue.vt					=	VT_BSTR;
				InitProperties[1].vValue.bstrVal=	SysAllocString(L"pubs");
				InitProperties[1].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[1].colid									=	DB_NULLID;

//Username	(login).
				InitProperties[2].dwPropertyID		=	DBPROP_AUTH_USERID;	
				InitProperties[2].vValue.vt					=	VT_BSTR;
				InitProperties[2].vValue.bstrVal=	SysAllocString(L"sa");
				InitProperties[2].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[2].colid									=	DB_NULLID;

//Password.
				InitProperties[3].dwPropertyID		=	DBPROP_AUTH_PASSWORD;
				InitProperties[3].vValue.vt					=	VT_BSTR;
				InitProperties[3].vValue.bstrVal=	SysAllocString(L"");
				InitProperties[3].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid									=	DB_NULLID;

				/*
				Now	that	the	properties	are	set,	construct	the	DBPROPSET	structure
				(rgInitPropSet).	The	DBPROPSET	structure	is	used	to	pass	an	array	
				of	DBPROP	structures	(InitProperties)	to	the	SetProperties	method.
				*/
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
				rgInitPropSet[0].cProperties				=	4;
				rgInitPropSet[0].rgProperties			=	InitProperties;

				//Set	initialization	properties.
				hr	=	pIDBInitialize->QueryInterface(IID_IDBProperties,	
																																			(void	**)&pIDBProperties);
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	get	IDBProperties	interface.\n";
				}

				hr	=	pIDBProperties->SetProperties(1,	rgInitPropSet);	
				if(FAILED(hr))

				{
								cout	<<	"Failed	to	set	initialization	properties.\n";
				}	//end	if

				pIDBProperties->Release();

				//Now	establish	the	connection	to	the	data	source.
				if(FAILED(pIDBInitialize->Initialize()))
				{
								cout	<<	"Problem	establishing	connection	to	the	data	source.\n";
				}
}	//end	of	InitializeAndEstablishConnection.
//--
	

How	To

Fetching	Columns	Using	IRow::GetColumns	(OLE
DB)
The	IRow	interface	allows	direct	access	to	columns	of	a	single	row	in	the	result
set.	Thus,	IRow	is	an	efficient	way	to	retrieve	columns	from	a	result	set	with	one
row.

To	fetch	columns	using	IRow::GetColumns

1.	 Establish	a	connection	to	the	data	source.

2.	 Execute	the	command	(in	the	following	example,
IcommandExecute::Execute()	is	called	with	IID_IRow).

3.	 Execute	IRow::GetColumns()	to	fetch	one	or	more	columns	in	the
resulting	row.	If	you	want	to	find	the	actual	column	size	before
fetching	data,	set	the	pData	in	DBCOLUMNACCESS	to	NULL.	The
call	to	IRow::GetColumns()	will	return	only	the	column	width.
Another	call	the	IRow::GetColumns()	will	fetch	the	data.

4.	 Execute	IRow::GetColumns()	until	all	the	columns	you	need	are
accessed.	The	columns	must	be	accessed	in	sequence.

This	example	shows	how	to	fetch	a	single	row	using	IRow.	It	also	illustrates	two
ways	to	access	columns	in	the	row:

Fetching	columns	in	groups,	and

Obtaining	the	column	width	first	and	then	fetch	the	column	data.

Here	is	the	sample	table	used	by	the	application:

use	pubs
go

if	exists	(select	name	from	sysobjects	where	name	=	'MyTable')
					drop	table	MyTable
go

create	table	MyTable
(
					col1		int,
					col2		varchar(50),
					col3		char(50),
					col4		datetime,
					col5		float,
					col6		money,
					col7		sql_variant,
					col8		binary(50),
					col9		text,
					col10	image
)
go
insert	into	MyTable
values
(
					10,
					'abcdefghijklmnopqrstuvwxyz',
					'ABCDEFGHIJKLMNOPQRSTUVWXYZ',
					'11/1/1999	11:52	AM',
					3.14,
					99.95,
					convert(nchar(50),	N'AbCdEfGhIjKlMnOpQrStUvWxYz'),
					0x123456789,
					replicate('AAAAABBBBB',	500),
					replicate(0x123456789,	500)
)
go

Here	is	the	sample	code:

/*
				This	example	shows	how	to	fetch	a	single	row	using	IRow.	In	this	
				example	one	column	at	a	time	is	retrieved	from	the	row.	The	example	
				shows	2	things
					1)	How	to	fetch	a	group	of	columns	(in	sequence)
					2)	How	to	access	a	column	twice	-	the	first	time	the	actual	column	
					width	is	obtained	and	then	later	the	actual	data	is	accessed.	In	the	
					DBCOLUMNACCESS	structure,	if	pData	is	NULL	and	cbMaxLen	is	0,	the	
					call	to	IRow->GetColumns()	returns	only	the	actual	column	length.	In	
					this	case	IRow->GetColumns()	can	be	called	again	on	the	
					same	column	to	retrieve	the	actual	data.
*/
#define	DBINITCONSTANTS

#include	<stdio.h>
#include	<windows.h>
#include	<iostream.h>
#include	<oledb.h>
#include	<sqloledb.h>

void					InitializeAndEstablishConnection();
HRESULT	GetColumnSize(IRow*	pUnkRow,	ULONG	iCol);
ULONG					PrintData(ULONG	iCols,	ULONG	iStart,	DBCOLUMNINFO*	prgInfo,	
																				DBCOLUMNACCESS*	prgColumns);
HRESULT	GetColumns(IRow*	pUnkRow,	ULONG	iStart,	ULONG	iEnd);

IDBInitialize*							pIDBInitialize					=	NULL;
IDBProperties*							pIDBProperties					=	NULL;
IDBCreateSession*				pIDBCreateSession		=	NULL;
IDBCreateCommand*				pIDBCreateCommand		=	NULL;
ICommandText*								pICommandText						=	NULL;
IRow			*													pIRow																	=	NULL;

IColumnsInfo*								pIColumnsInfo						=	NULL;
DBCOLUMNINFO*								pDBColumnInfo						=	NULL;
IAccessor*											pIAccessor									=	NULL;
DBPROP															InitProperties[4];
DBPROPSET												rgInitPropSet[1];
ULONG																i,	j;
HRESULT														hr;
LONG																	cNumRows	=	0;
ULONG																lNumCols;
WCHAR*															pStringsBuffer;
DBBINDING*											pBindings;
ULONG																ConsumerBufColOffset	=	0;
HACCESSOR												hAccessor;
ULONG																lNumRowsRetrieved;
HROW																	hRows[10];
HROW*																pRows	=	&hRows[0];
BYTE*																pBuffer;

void	main()	
{
					ULONG					iidx	=	0;
					WCHAR*	wCmdString	
								=	OLESTR("	SELECT	*	FROM	MyTable	");
		//	Call	a	function	to	initialize	and	establish	connection.	
				InitializeAndEstablishConnection();

				//Create	a	session	object.
				if(FAILED(pIDBInitialize->QueryInterface(
																																IID_IDBCreateSession,
																																(void**)	&pIDBCreateSession)))
				{
								cout	<<	"Failed	to	obtain	IDBCreateSession	interface.\n";
				}

				if(FAILED(pIDBCreateSession->CreateSession(
																																					NULL,	
																																					IID_IDBCreateCommand,	
																																					(IUnknown**)	&pIDBCreateCommand)))
				{
								cout	<<	"pIDBCreateSession->CreateSession	failed.\n";
				}

				//Access	the	ICommandText	interface.
				if(FAILED(pIDBCreateCommand->CreateCommand(
																																				NULL,	
																																				IID_ICommandText,	
																																				(IUnknown**)	&pICommandText)))
				{
								cout	<<	"Failed	to	access	ICommand	interface.\n";
				}
				
				//Use	SetCommandText()	to	specify	the	command	text.
				if(FAILED(pICommandText->SetCommandText(DBGUID_DBSQL,	wCmdString)))
				{
								cout	<<	"Failed	to	set	command	text.\n";
				}

					/*
					Fetch	columns	1-5	and	then	6-10	and	display	the	contents
					*/
					if(FAILED(hr	=	pICommandText->Execute(NULL,	
																																				IID_IRow,	
																																				NULL,	
																																				&cNumRows,	
																																				(IUnknown	**)	&pIRow)))
				{

								cout	<<	"Failed	to	execute	command.\n";
				}
					hr	=	GetColumns(pIRow,	1,	5);
					hr	=	GetColumns(pIRow,	6,	10);

					hr	=	pIRow->Release();

				//Execute	the	command.
				if(FAILED(hr	=	pICommandText->Execute(NULL,	
																																				IID_IRow,	
																																				NULL,	
																																				&cNumRows,	
																																				(IUnknown	**)	&pIRow)))
				{
								cout	<<	"Failed	to	execute	command.\n";
				}
					
					//Get	columns
					for(iidx=1;	iidx	<=10;	iidx++)
					{
										hr=GetColumnSize(pIRow,	iidx);
										hr=GetColumns(pIRow,	iidx,	iidx);
					}

				pIRow->Release();

				//Free	up	memory.
				pICommandText->Release();
				pIDBCreateCommand->Release();
				pIDBCreateSession->Release();
				
				if(FAILED(pIDBInitialize->Uninitialize()))
				{

								/*Uninitialize	is	not	required,	but	it	fails	if	an	interface
								has	not	been	released.		This	can	be	used	for	debugging.
								cout	<<	"Problem	uninitializing.\n";	*/
				}	//endif.
				pIDBInitialize->Release();
				
				//Release	the	COM	library.
				CoUninitialize();
};
//--
BOOL	InitColumn(DBCOLUMNACCESS*	pCol,	DBCOLUMNINFO*	pInfo)
{
					//If	text	or	image	column	is	being	read,in	which	case	the	max	
					//	possible	length	of	a	value	is	the	column	is	hugh,we	will	limit	
					//that	size	to	512	bytes	(for	illustration	purposes).

					ULONG	ulSize=
										(pInfo->ulColumnSize	<	0x7fffffff)	?	pInfo->ulColumnSize	:	512;

					//Verify	dta	buffer	is	large	enough.
					if(pCol->cbMaxLen	<	(ulSize	+	1))
					{
										if(pCol->pData)
										{
															delete	[]	pCol->pData;
															pCol->pData	=	NULL;
										}

										//Allocate	data	buffer
										pCol->pData	=	new	WCHAR[ulSize	+	1];
										//set	the	max	length	of	caller-initialized	memory.
										pCol->cbMaxLen	=	sizeof(WCHAR)	*	(ulSize	+	1);
										/*

										In	the	above	2	steps,	pData	is	pointing	to	memory	(it	is	not	
										NULL)	and	cbMaxLen	has	a	value	(not	0),	so	next	call	to	
										IRow->GetData()	will	read	the	data	from	the	column.
										*/
					}

										//Clear	memory	buffer
										ZeroMemory((void*)	pCol->pData,	pCol->cbMaxLen);

										//Set	properties.
										pCol->wType	=	DBTYPE_WSTR;
										pCol->columnid	=	pInfo->columnid;
										pCol->cbDataLen	=	0;
										pCol->dwStatus	=	0;
										pCol->dwReserved	=	0;
										pCol->bPrecision	=	0;
										pCol->bScale	=	0;
										return	TRUE;
}

//--
HRESULT	GetColumns(IRow*	pUnkRow,	ULONG	iStart,	ULONG	iEnd)	
//Start	and	end	are	same.	Thus,	get	only	one	column.
{
					HRESULT															hr;
					ULONG															iidx;										//loop	counter
					ULONG															cColumns;	//Count	of	columns
					ULONG															cUserCols;	//Count	of	user	columns
					DBCOLUMNINFO*					prgInfo;					//Column	of	info.	array
					OLECHAR*										pColNames;					//Array	of	column	names
					DBCOLUMNACCESS*	prgColumns;	//Ptr	to	column	access	structures	array
					DBCOLUMNINFO*					pCurrInfo;
					DBCOLUMNACCESS*	pCurrCol;

					IColumnsInfo*	pIColumnsInfo	=	NULL;

					//Initialize
					cColumns					=	0;
					prgInfo										=	NULL;
					pColNames					=	NULL;
					prgColumns					=	NULL;

					printf("Retrieving	data\n");

					//Get	column	info	to	build	column	access	array
					hr=pUnkRow->QueryInterface(IID_IColumnsInfo,	(void**)&pIColumnsInfo);
					if(FAILED(hr))
										goto	CLEANUP;
					hr=pIColumnsInfo->GetColumnInfo(&cColumns,	&prgInfo,	&pColNames);
					if(FAILED(hr))
										goto	CLEANUP;

					printf("In	GetColumns(),	Columns=	%d\n",	cColumns);

					/*
					Determine	no.	of	columns	to	retrieve.	
					Since	iEnd	and	iStart	is	same,	this	is	redundent	step.
					cUserCols	will	always	be	1.
				*/
					cUserCols	=	iEnd	-	iStart	+	1;	
					//Walk	list	of	columns	and	setup	a	DBCOLUMNACCESS	structure
					prgColumns=	new	DBCOLUMNACCESS[cUserCols];	//cUserCols	is	only	1
					ZeroMemory((void*)	prgColumns,	sizeof(DBCOLUMNACCESS)	*	cUserCols);

					for(iidx=0;	iidx	<	cUserCols;	iidx++)

					{
										pCurrInfo	=	prgInfo	+	iidx	+	iStart	-	1;
										pCurrCol	=	prgColumns	+	iidx;
										//Here	the	values	of	DBCOLUMNACCESS	elements	is	set	
										//(pData	and	cbMaxLen)Thus	IRow->GetColumns()	will	return	actual	
										//data.
										if(InitColumn(pCurrCol,	pCurrInfo)	==	FALSE)
															goto	CLEANUP;
					}
					hr	=	pUnkRow->GetColumns(cUserCols,	prgColumns);	//cUserCols	=	1
					if(FAILED(hr))
					{
										printf("Error	occured\n");
					}

					//Show	data.
					PrintData(cUserCols,	iStart,	prgInfo,	prgColumns);

CLEANUP:
					if(pIColumnsInfo)
										pIColumnsInfo->Release();
					if(prgColumns)
										delete	[]	prgColumns;

					return	hr;
}
//--
/*
This	function	returns	the	actual	width	of	the	data	in	the	column	
(not	the	columnwidth	in	DBCOLUMNFO	structure	which	is	the	width	of	the	
column)
*/

HRESULT	GetColumnSize(IRow*	pUnkRow,	ULONG	iCol)
{
					HRESULT															hr	=	NOERROR;
					ULONG															iidx	=	0;		//Loop	counter
					ULONG															cColumns	=	0;	//Count	the	columns
					DBCOLUMNINFO*					prgInfo;			//Column	info	array
					OLECHAR*										pColNames;
					DBCOLUMNACCESS					column;
					DBCOLUMNINFO*					pCurrInfo;
					IColumnsInfo*					pIColumnsInfo	=	NULL;

					//Initialize
					prgInfo	=	NULL;
					pColNames	=	NULL;

					printf("Checking	column	size\n");

					//Get	column	info	to	build	column	access	array
					hr=pUnkRow->QueryInterface(IID_IColumnsInfo,	(void**)	&pIColumnsInfo);
					if	(FAILED(hr))
										goto	CLEANUP;

					hr=pIColumnsInfo->GetColumnInfo(&cColumns,	&prgInfo,	&pColNames);
					if	(FAILED(hr))
										goto	CLEANUP;
					printf("Value	of	cColumns	is	%d\n",	cColumns);

					/*	
					Setup	a	DBCOLUMNACCESS	structure:	Here	pData	is	set	to	NULL	and	
					cbMaxLen	is	set	to	0.	Thus	IRow->GetColumns()	returns	only	the	
					actual	column	length	in	cbDataLen	member	of	DBCOLUMNACCESS	structure.
					In	this	case	you	can	call	IRow->GetColumns()	again	for	the	same	
					column	to	retrieve	actual	data	in	the	second	call.

					*/
					ZeroMemory((void*)	&column,	sizeof(DBCOLUMNACCESS));
					column.pData=NULL;

					pCurrInfo	=	prgInfo	+	iCol	-	1;
					//Get	the	column	id	in	DBCOLUMNACCESS	structure.
					//It	is	then	used	in	GetColumn().
					column.columnid	=	pCurrInfo->columnid;	

					printf("column.columnid	value	is	%d\n",	column.columnid);
					//We	know	which	column	to	get.	The	column.columnid	gives	the	column	no.
					hr	=	pUnkRow->GetColumns(1,	&column);	
					if	(FAILED(hr))
					{
										printf("Errors	occured\n");
					}
					//Show	data
					PrintData(1,	iCol,	prgInfo,	&column);

CLEANUP:
					if	(pIColumnsInfo)
										pIColumnsInfo->Release();
					return	hr;
}
//--
BOOL	GetStatus(DWORD	dwStatus,	WCHAR*	pwszStatus)
{
					switch	(dwStatus)
					{
					case	DBSTATUS_S_OK:
										wcscpy(pwszStatus,	TEXT("DBSTATUS_S_OK"));
										break;
					case	DBSTATUS_E_UNAVAILABLE:

										wcscpy(pwszStatus,	TEXT("DBSTATUS_E_UNAVAILABLE"));
										break;
					case	DBSTATUS_S_TRUNCATED:
										wcscpy(pwszStatus,	TEXT("DBSTATUS_S_TRUNCATED"));
										break;
					}
					return	TRUE;
}
//--
ULONG	PrintData(ULONG	iCols,	
																				ULONG	iStart,	
																				DBCOLUMNINFO*	prgInfo,	
																				DBCOLUMNACCESS*	prgColumns)
{
					WCHAR	wszStatus[255];
					DBCOLUMNINFO*	pCurrInfo;
					DBCOLUMNACCESS*	pCurrCol;

					printf("No.	Name							Status					Length		Max		Data\n");

					for(ULONG	iidx=0;	iidx	<	iCols;	iidx++)
					{
										pCurrInfo=prgInfo	+	iidx	+	iStart	-	1;
										pCurrCol=prgColumns+iidx;

										GetStatus(pCurrCol->dwStatus,	wszStatus);	
										//was	the	data	successfully	retrieved?
										wprintf(TEXT("%-3d	%-*s	%-20s	%-3d	%-3d	%-20s\n"),
															iStart+iidx,
															10,
															pCurrInfo->pwszName,
															wszStatus,

															pCurrCol->cbDataLen,
															pCurrCol->cbMaxLen,
															(WCHAR*)	pCurrCol->pData);
					}
					wprintf(TEXT("\n"));
					return	iidx;
}

//--
void	InitializeAndEstablishConnection()
{				
				//Initialize	the	COM	library.
				CoInitialize(NULL);

				//Obtain	access	to	the	SQLOLEDB	provider.
				hr	=	CoCreateInstance(CLSID_SQLOLEDB,	
																										NULL,	
																										CLSCTX_INPROC_SERVER,
																										IID_IDBInitialize,	
																										(void	**)	&pIDBInitialize);
				if(FAILED(hr))
				{
								printf("Failed	to	get	IDBInitialize	interface.\n");
				}	//end	if

				/*
				Initialize	the	property	values	needed	
				to	establish	the	connection.
				*/
				for(i	=	0;	i	<	4;	i++)	
								VariantInit(&InitProperties[i].vValue);
				

				//Server	name.
				InitProperties[0].dwPropertyID		=	DBPROP_INIT_DATASOURCE;
				InitProperties[0].vValue.vt					=	VT_BSTR;
				InitProperties[0].vValue.bstrVal=	
																												SysAllocString(L"mohanv1");
				InitProperties[0].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[0].colid									=	DB_NULLID;

//Database.
				InitProperties[1].dwPropertyID		=	DBPROP_INIT_CATALOG;
				InitProperties[1].vValue.vt					=	VT_BSTR;
				InitProperties[1].vValue.bstrVal=	SysAllocString(L"pubs");
				InitProperties[1].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[1].colid									=	DB_NULLID;

//Username	(login).
				InitProperties[2].dwPropertyID		=	DBPROP_AUTH_USERID;	
				InitProperties[2].vValue.vt					=	VT_BSTR;
				InitProperties[2].vValue.bstrVal=	SysAllocString(L"sa");
				InitProperties[2].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[2].colid									=	DB_NULLID;

//Password.
				InitProperties[3].dwPropertyID		=	DBPROP_AUTH_PASSWORD;
				InitProperties[3].vValue.vt					=	VT_BSTR;
				InitProperties[3].vValue.bstrVal=	SysAllocString(L"");
				InitProperties[3].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[3].colid									=	DB_NULLID;

				/*
				Now	that	the	properties	are	set,	construct	the	DBPROPSET	structure
				(rgInitPropSet).	The	DBPROPSET	structure	is	used	to	pass	an	array	
				of	DBPROP	structures	(InitProperties)	to	the	SetProperties	method.

				*/
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
				rgInitPropSet[0].cProperties				=	4;
				rgInitPropSet[0].rgProperties			=	InitProperties;

				//Set	initialization	properties.
				hr	=	pIDBInitialize->QueryInterface(IID_IDBProperties,	
																																			(void	**)&pIDBProperties);
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	get	IDBProperties	interface.\n";
				}

				hr	=	pIDBProperties->SetProperties(1,	rgInitPropSet);	
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	set	initialization	properties.\n";
				}	//end	if

				pIDBProperties->Release();

				//Now	establish	the	connection	to	the	data	source.
				if(FAILED(pIDBInitialize->Initialize()))
				{
								cout	<<	"Problem	establishing	connection	to	the	data	source.\n";
				}
}	//end	of	InitializeAndEstablishConnection.
//--
	

How	To

Setting	XML	as	a	Command	Using	ICommandStream
and	Retrieving	the	Results	as	an	XML	Document
The	ICommandStream	interface	can	be	used	to	set	XML	documents	as	a
command,	and	the	results	can	be	retrieved	as	an	XML	document.

Executing	Templates	with	XPath	Queries
The	following	XML	template	consisting	of	an	XPath	query	is	specified	as	a
command	using	ICommandStream:

<ROOT	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<sql:xpath-query	mapping-schema="Schema.xml">Employees</sql:xpath-query>
</ROOT>

The	XPath	query	in	the	template	is	executed	against	the	following	mapping
schema:

<?xml	version="1.0"	?>
<Schema	xmlns="urn:schemas-microsoft-com:xml-data"	xmlns:dt="urn:schemas-microsoft-com:datatypes"	xmlns:sql="urn:schemas-microsoft-com:xml-sql">
<ElementType	name="Employees"	>
<AttributeType	name="EmployeeID"	/>
<AttributeType	name="FirstName"	/>
<AttributeType	name="LastName"	/>
<attribute	type="EmployeeID"	/>
<attribute	type="FirstName"	/>
<attribute	type="LastName"	/>
</ElementType>
</Schema>

The	query	returns	all	of	the	employee	elements.	With	default	mapping,	the
<Employees>	element	maps	to	the	Employees	table	in	the	Northwind	database.

To	set	XML	as	a	command	and	retrieving	result	as	an	XML	document

1.	 Initialize	and	establish	a	connection	to	the	database.

2.	 Obtain	ICommandStream	interface	on	ICommand.

3.	 Set	the	necessary	command	properties.	In	this	example,	provider
specific	property	SSPROP_STREAM_BASEPATH	is	set	to	the
directory	where	the	mapping	schema	and	the	template	files	are	stored.

4.	 Use	ICommandStream::SetCommandStream	to	specify	the
command	stream.	In	this	example,	the	XML	template	being	executed
is	read	from	a	file.	This	is	useful	when	you	want	to	execute	large	XML
templates.

5.	 Execute	the	XML	command	using	ICommand::Execute,	requesting
IID_ISequentialStream	interface	ID.

6.	 Process	the	result.	In	this	example,	the	XML	read	from	the	stream	is
displayed	on	the	screen.

void	InitializeAndEstablishConnection();
void	SetCommandProperties();
void	ProcessResultSet();

#define	UNICODE
#define	_UNICODE
#define	DBINITCONSTANTS
#define	INITGUID

#include	<stdio.h>
#include	<tchar.h>
#include	<stddef.h>
#include	<windows.h>
#include	<iostream.h>
#include	<oledb.h>

#include	<SQLOLEDB.h>

class	CSequentialStream	:	public	ISequentialStream
{
			private:			
						ULONG							m_cRef;														//	reference	count
						HANDLE						m_hFile;									//	handle	to	the	file
						LPWSTR						m_wszFileName;						//	the	file	name

			public:
						CSequentialStream(LPWSTR);
						virtual	~CSequentialStream();

						//	IUnknown	Methods
						STDMETHODIMP_(ULONG)				AddRef();
						STDMETHODIMP_(ULONG)				Release();
						STDMETHODIMP	QueryInterface(REFIID,	LPVOID*);

						//	ISequentialStream	Methods
						STDMETHODIMP	Read(
												/*	[out]	*/	void	__RPC_FAR*,
												/*	[in]		*/	ULONG,
												/*	[out]	*/	ULONG	__RPC_FAR*);
								
						STDMETHODIMP	Write(
												/*	[in]	*/	const	void	__RPC_FAR*,
												/*	[in]	*/	ULONG,
												/*	[out]*/	ULONG	__RPC_FAR*);
};

IDBInitialize*							pIDBInitialize					=	NULL;
IDBProperties*							pIDBProperties					=	NULL;
IDBCreateSession*				pIDBCreateSession		=	NULL;

IDBCreateCommand*				pIDBCreateCommand		=	NULL;
ICommand*												pICommand										=	NULL;
ICommandStream*						pICommandStream				=	NULL;
ICommandProperties*				pICommandProperties	=	NULL;
IColumnsInfo*								pIColumnsInfo						=	NULL;
ISequentialStream*				pIXMLOutput						=	NULL;
DBCOLUMNINFO*								pDBColumnInfo						=	NULL;
IAccessor*											pIAccessor								=		NULL;
DBPROP															InitProperties[4];
DBPROPSET												rgInitPropSet[1];
ULONG																i,	j;
HRESULT														hr;
LONG																	cNumRows	=	0;
ULONG																lNumCols;
WCHAR*															pStringsBuffer;
DBBINDING*											pBindings;
ULONG																ConsumerBufColOffset	=	0;
HACCESSOR												hAccessor;
ULONG																lNumRowsRetrieved;
HROW																	hRows[10];
HROW*																pRows	=	&hRows[0];
BYTE*																pBuffer;
CSequentialStream				XMLInput(L"Query.xml");

CSequentialStream::CSequentialStream
(
			LPWSTR						wszFileName
)
:
			m_cRef(0),
			m_hFile(NULL),
			m_wszFileName(NULL)
{

				//	The	constructor	AddRefs.
				AddRef();

			//	Allocate	memory	for	the	file	name.
			m_wszFileName	=	(LPWSTR)	CoTaskMemAlloc((wcslen(wszFileName)	+	1)	*	2);

			//	Copy	the	file	name.
			wcscpy(m_wszFileName,	wszFileName);
}

CSequentialStream::~CSequentialStream
(
)
{
			//	Free	any	allocated	memory.
			if(m_wszFileName)
						CoTaskMemFree(m_wszFileName);

			//	Close	the	file.
			if(m_hFile)
						CloseHandle(m_hFile);
}

ULONG				
CSequentialStream::AddRef
(
)
{
				return	++m_cRef;
}

		

ULONG
CSequentialStream::Release()
{
				if(--m_cRef)
								return	m_cRef;

				delete	this;
				return	0;
}

HRESULT	
CSequentialStream::QueryInterface
(
			REFIID	riid,	
			void**	ppv
)
{
				*ppv	=	NULL;

				if	(riid	==	IID_IUnknown)
								*ppv	=	this;

				if	(riid	==	IID_ISequentialStream)
								*ppv	=	this;

				if(*ppv)
				{
								((IUnknown*)*ppv)->AddRef();
								return	S_OK;
				}

				return	E_NOINTERFACE;
}

HRESULT	
CSequentialStream::Read
(
			void	*pv,	
			ULONG	cb,	
			ULONG*	pcbRead
)
{
			ULONG			cBytesRead	=	0;

				//	Parameter	checking.
				if(pcbRead)
								*pcbRead	=	0;

				if(!pv)
								return	STG_E_INVALIDPOINTER;

				if(cb	==	0)
								return	S_OK;

			//	Do	we	need	to	open	the	file?
			if(m_hFile	==	NULL)
			{
						//	Open	the	file.
						m_hFile	=	CreateFile(m_wszFileName,	GENERIC_READ,	0,	NULL,	OPEN_EXISTING,	0,	NULL);

						//	If	the	file	failed	to	open,	return	E_FAIL.
						if(m_hFile	==	INVALID_HANDLE_VALUE)
									return	E_FAIL;
			}

			//	Clear	the	buffer.

			ZeroMemory(pv,	cb);

			//	Read	cb	bytes	from	the	stream.
			if(!ReadFile(m_hFile,	pv,	cb,	&cBytesRead,	NULL))
						return	E_FAIL;

			//	Inform	the	user	of	how	many	bytes	to	read.
			if(NULL	!=	pcbRead)	
						*pcbRead	=	cBytesRead;

				if(cb	!=	cBytesRead)
								return	S_FALSE;	

				return	S_OK;
}

HRESULT	
CSequentialStream::Write
(
			const	void	*pv,	
			ULONG	cb,	
			ULONG*	pcbWritten
)
{
			//	For	this	example,	only	a	read-only	stream	is	needed.
			return	STG_E_CANTSAVE;
}

void	main()	
{
			//	Call	a	function	to	initialize	and	establish	a	connection.	
				InitializeAndEstablishConnection();

				//	Create	a	session	object.
				if(FAILED(pIDBInitialize->QueryInterface(
																																IID_IDBCreateSession,
																																(void**)	&pIDBCreateSession)))
				{
								cout	<<	"Failed	to	obtain	IDBCreateSession	interface.\n";
				}

				if(FAILED(pIDBCreateSession->CreateSession(
																																					NULL,	
																																					IID_IDBCreateCommand,	
																																					(IUnknown**)	&pIDBCreateCommand)))
				{
								cout	<<	"pIDBCreateSession->CreateSession	failed.\n";
				}

				//	Access	the	ICommand	interface.
				if(FAILED(pIDBCreateCommand->CreateCommand(
																																				NULL,	
																																				IID_ICommand,	
																																				(IUnknown**)	&pICommand)))
				{
								cout	<<	"Failed	to	access	ICommand	interface.\n";
				}
				
			//	Get	an	ICommandStream	interface.
			if(FAILED(pICommand->QueryInterface(IID_ICommandStream,	(void**)	&pICommandStream)))
			{
						cout	<<	"Failed	to	get	an	ICommandStream	interface.\n";
			}

			//	Get	an	ICommandProperties	interface.
			if(FAILED(pICommand->QueryInterface(IID_ICommandProperties,	(void**)	&pICommandProperties)))

			{
						cout	<<	"Failed	to	get	an	ICommandProperties	interface.\n";
			}

			//	Set	the	command	properties.
			SetCommandProperties();

				//	Use	SetCommandStream()	to	specify	the	command	stream.
				if(FAILED(pICommandStream->SetCommandStream(IID_ISequentialStream,	DBGUID_DEFAULT,	(ISequentialStream*)	&XMLInput)))
				{
								cout	<<	"Failed	to	set	command	stream.\n";
				}

				//	Execute	the	command.
				if(FAILED(hr	=	pICommand->Execute(NULL,	
																																				IID_ISequentialStream,	
																																				NULL,	
																																				&cNumRows,	
																																				(IUnknown	**)	&pIXMLOutput)))
				{
								cout	<<	"Failed	to	execute	command.\n";
				}

				//	Process	the	result	set.
				ProcessResultSet();	
								
				//	Free	memory.
			if(pIXMLOutput)
						pIXMLOutput->Release();
			pICommandProperties->Release();
			pICommandStream->Release();
				pICommand->Release();
				pIDBCreateCommand->Release();

				pIDBCreateSession->Release();
				
				if(FAILED(pIDBInitialize->Uninitialize()))
				{
								/*Uninitialize	is	not	required,	but	it	fails	if	an	interface
								has	not	been	released.	This	can	be	used	for	debugging.
								cout	<<	"Problem	uninitializing.\n";	*/
				}	//	endif.
				pIDBInitialize->Release();
				
				//	Release	the	COM	library.
				CoUninitialize();
};

//--
void	InitializeAndEstablishConnection()
{				
				//	Initialize	the	COM	library.
				CoInitialize(NULL);

				//	Obtain	access	to	the	SQLOLEDB	Provider.
				hr	=	CoCreateInstance(CLSID_SQLOLEDB,	
																										NULL,	
																										CLSCTX_INPROC_SERVER,
																										IID_IDBInitialize,	
																										(void	**)	&pIDBInitialize);
				if(FAILED(hr))
				{
								printf("Failed	to	get	IDBInitialize	interface.\n");
				}	//	end	if

				/*
				Initialize	the	property	values	needed	

				to	establish	the	connection.
				*/
				for(i	=	0;	i	<	4;	i++)	
								VariantInit(&InitProperties[i].vValue);
				

				//	Server	name.
				InitProperties[0].dwPropertyID		=	DBPROP_INIT_DATASOURCE;
				InitProperties[0].vValue.vt					=	VT_BSTR;
				InitProperties[0].vValue.bstrVal=	
																												SysAllocString(L"Server");
				InitProperties[0].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[0].colid									=	DB_NULLID;

//	Database.
				InitProperties[1].dwPropertyID		=	DBPROP_INIT_CATALOG;
				InitProperties[1].vValue.vt					=	VT_BSTR;
				InitProperties[1].vValue.bstrVal=	SysAllocString(L"northwind");
				InitProperties[1].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[1].colid									=	DB_NULLID;

//	Username	(login).
				InitProperties[2].dwPropertyID		=	DBPROP_AUTH_USERID;	
				InitProperties[2].vValue.vt					=	VT_BSTR;
				InitProperties[2].vValue.bstrVal=	SysAllocString(L"Login");
				InitProperties[2].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[2].colid									=	DB_NULLID;

//	Password.
//				InitProperties[3].dwPropertyID		=	DBPROP_AUTH_PASSWORD;	
//				InitProperties[3].vValue.vt					=	VT_BSTR;
//				InitProperties[3].vValue.bstrVal=	SysAllocString(L"Password");
//				InitProperties[3].dwOptions					=	DBPROPOPTIONS_REQUIRED;

//				InitProperties[3].colid									=	DB_NULLID;

				/*
				Now	that	the	properties	are	set,	construct	the	DBPROPSET	structure.
				(rgInitPropSet).	The	DBPROPSET	structure	is	used	to	pass	an	array	
				of	DBPROP	structures	(InitProperties)	to	the	SetProperties	method.
				*/
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
//		rgInitPropSet[0].cProperties				=	4;
				rgInitPropSet[0].cProperties				=	3;
				rgInitPropSet[0].rgProperties			=	InitProperties;

				//	Set	initialization	properties.
				hr	=	pIDBInitialize->QueryInterface(IID_IDBProperties,	
																																			(void	**)&pIDBProperties);
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	get	IDBProperties	interface.\n";
				}

				hr	=	pIDBProperties->SetProperties(1,	rgInitPropSet);	
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	set	initialization	properties.\n";
				}	//	end	if

				pIDBProperties->Release();

				//	Establish	the	connection	to	the	data	source.
				if(FAILED(pIDBInitialize->Initialize()))
				{
								cout	<<	"Problem	establishing	connection	to	the	data	source.\n";
				}

}	//	End	of	InitializeAndEstablishConnection.
void	SetCommandProperties()
{				
//				for(i	=	0;	i	<	4;	i++)	
								VariantInit(&InitProperties[0].vValue);
				

				//	Server	name.
				InitProperties[0].dwPropertyID		=	SSPROP_STREAM_BASEPATH;
				InitProperties[0].vValue.vt					=	VT_BSTR;
				InitProperties[0].vValue.bstrVal=	
																												SysAllocString(L"C:\\MyDir");
				InitProperties[0].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				InitProperties[0].colid									=	DB_NULLID;

				/*
				Now	that	the	properties	are	set,	construct	the	DBPROPSET	structure
				(rgInitPropSet).	The	DBPROPSET	structure	is	used	to	pass	an	array	
				of	DBPROP	structures	(InitProperties)	to	the	SetProperties	method.
				*/
				rgInitPropSet[0].guidPropertySet	=	DBPROPSET_SQLSERVERSTREAM;
				rgInitPropSet[0].cProperties				=	1;
				rgInitPropSet[0].rgProperties			=	InitProperties;

				//	Set	initialization	properties.
				hr	=	pICommandProperties->SetProperties(1,	rgInitPropSet);	
				if(FAILED(hr))
				{
								cout	<<	"Failed	to	set	command	properties.\n";
				}	//	end	if
}	//	End	of	InitializeAndEstablishConnection.

//--
//	Retrieve	and	display	data	resulting	from	a	query.
void	ProcessResultSet()
{
			CHAR			szBuf[1000];
			ULONG			ulNumRead;
			HRESULT			hr;

			if(pIXMLOutput	==	NULL)
						return;

			//	Read	from	the	stream.
			ZeroMemory(szBuf,	1000);
			while((hr	=	pIXMLOutput->Read(szBuf,	1000,	&ulNumRead))	==	S_OK)
			{
						cout	<<	szBuf;
			}
}	//	Process	resultset.
	

Passing	Parameters	to	Templates

This	example	shows	how	parameter	values	can	be	passed	to	XML	commands.
This	XML	template	is	specified	as	a	command:

<ROOT	xmlns:sql='urn:schemas-microsoft-com:xml-sql'>																																								
<sql:header><sql:param	name='CategoryName'>Confections</sql:param></sql:header>																																										
<sql:query>select	*	from	Categories	where	CategoryName	=	@CategoryName	for	XML	AUTO</sql:query>
</ROOT>

The	template	includes	an	SQL	query.	The	query	requires	a	value	for	its
parameter	(@CategoryName).	If	no	parameter	value	is	passed,	the	default	value
(Condiments)	is	used.

In	passing	parameter	values	to	a	template,	the	parameter	name	and	value	both

must	be	specified.

This	is	the	code:

#define	UNICODE
#define	_UNICODE
#define	DBINITCONSTANTS
#define	INITGUID

#include	<stdio.h>
#include	<tchar.h>
#include	<stddef.h>
#include	<windows.h>
#include	<iostream.h>
#include	"oledb.h"
#include	"SQLOLEDB.h"

HRESULT	InitializeAndEstablishConnection(IDBInitialize	**	ppIDBInitialize);
HRESULT	SetCommandProperties(ICommand	*	pICommand);
HRESULT	ProcessResultSet(ISequentialStream	*	pStreamOutput);

//---
//	Structure	Definition	Section
//---
struct	COLUMNDATA
{
				DBLENGTH				dwLength;			//	The	length	of	the	data	field
				DBSTATUS				dwStatus;			//	The	status	value
				BYTE								bData[1];			//	The	start	of	the	data	field
};

class	CSequentialStream	:	public	ISequentialStream
{
				private:				

								ULONG							m_cRef;													//	reference	count
								HANDLE						m_hFile;												//	handle	to	the	file
								LPWSTR						m_wszFileName;						//	the	file	name

				public:
								CSequentialStream(LPWSTR);
								virtual	~CSequentialStream();

								//	IUnknown	Methods
								STDMETHODIMP_(ULONG)				AddRef();
								STDMETHODIMP_(ULONG)				Release();
								STDMETHODIMP	QueryInterface(REFIID,	LPVOID*);

								//	ISequentialStream	Methods
								STDMETHODIMP	Read(
																/*	[out]	*/	void	__RPC_FAR*,
																/*	[in]		*/	ULONG,
																/*	[out]	*/	ULONG	__RPC_FAR*);
								
								STDMETHODIMP	Write(
																/*	[in]	*/	const	void	__RPC_FAR*,
																/*	[in]	*/	ULONG,
																/*	[out]*/	ULONG	__RPC_FAR*);
};

CSequentialStream::CSequentialStream
(
				LPWSTR						wszFileName
)
:
				m_cRef(0),
				m_hFile(NULL),
				m_wszFileName(NULL)

{
				//	The	constructor	AddRef's.
				AddRef();

				//	Allocate	memory	for	the	file	name.
				m_wszFileName	=	(LPWSTR)	CoTaskMemAlloc((wcslen(wszFileName)	+	1)	*	2);

				//	Copy	the	file	name
				wcscpy(m_wszFileName,	wszFileName);
}

CSequentialStream::~CSequentialStream
(
)
{
				//	Free	any	allocated	memory.
				if(m_wszFileName)
								CoTaskMemFree(m_wszFileName);

				//	Close	the	file.
				if(m_hFile)
								CloseHandle(m_hFile);
}

ULONG				
CSequentialStream::AddRef
(
)
{
				return	++m_cRef;
}
ULONG	CSequentialStream::Release()
{

				if(--m_cRef)
								return	m_cRef;

				delete	this;
				return	0;
}

HRESULT	CSequentialStream::QueryInterface
(
				REFIID	riid,	
				void**	ppv
)
{
				*ppv	=	NULL;

				if	(riid	==	IID_IUnknown)
								*ppv	=	this;

				if	(riid	==	IID_ISequentialStream)
								*ppv	=	this;

				if(*ppv)
				{
								((IUnknown*)*ppv)->AddRef();
								return	S_OK;
				}

				return	E_NOINTERFACE;
}

HRESULT	CSequentialStream::Read
(
				void	*pv,	

				ULONG	cb,	
				ULONG*	pcbRead
)
{
				ULONG			cBytesRead	=	0;

				//	Parameter	checking.
				if(pcbRead)
								*pcbRead	=	0;

				if(!pv)
								return	STG_E_INVALIDPOINTER;

				if(cb	==	0)
								return	S_OK;

				//	Do	we	need	to	open	the	file?
				if(m_hFile	==	NULL)
				{
								//	Open	the	file.
								m_hFile	=	CreateFile(m_wszFileName,	GENERIC_READ,	0,	NULL,	OPEN_EXISTING,	0,	NULL);

								//	If	we	failed	to	open	the	file,	return	E_FAIL.
								if(m_hFile	==	INVALID_HANDLE_VALUE)
												return	E_FAIL;
				}

				//	Clear	the	buffer.
				ZeroMemory(pv,	cb);

				//	Read	cb	bytes	from	the	stream.
				if(!ReadFile(m_hFile,	pv,	cb,	&cBytesRead,	NULL))
								return	E_FAIL;

				//	Inform	the	user	how	many	bytes	were	read.
				if(NULL	!=	pcbRead)	
								*pcbRead	=	cBytesRead;

				if(cb	!=	cBytesRead)
								return	S_FALSE;	

				return	S_OK;
}

HRESULT	CSequentialStream::Write
(
				const	void	*pv,	
				ULONG	cb,	
				ULONG*	pcbWritten
)
{
				//	For	purposes	of	this	example,	only	a	read-only	stream	is	needed.
				return	STG_E_CANTSAVE;
}
void	main()	
{
				HRESULT																	hr	=	S_OK;
				IDBInitialize									*	pIDBInitialize										=	NULL;
				IDBCreateSession						*	pIDBCreateSession							=	NULL;
				IDBCreateCommand						*	pIDBCreateCommand							=	NULL;
				ICommand														*	pICommand															=	NULL;
				ICommandStream								*	pICommandStream									=	NULL;
				ICommandWithParameters*	pICommandWithParameters	=	NULL;
				ICommandText										*	pICommandText											=	NULL;
				IAccessor													*	pIAccessor														=	NULL;
				const	ULONG													nParams	=	1;

				DBPARAMS														*	pParams																	=	NULL;
				DBPARAMS																params;
				DBBINDING															acDBBinding[nParams];
				DBBINDSTATUS												acDBBindStatus[nParams];
				DBORDINAL															rgParamOrdinals[1];
				DBPARAMBINDINFO									rgParamBindInfo[1];
				const	WCHAR											*	wszParamName	=						L"@CategoryName";
				const	WCHAR											*	wszDataSourceType	=	L"DBTYPE_WCHAR";
				BYTE																				sprocparams[1000];
				COLUMNDATA												*	pCol	=	(COLUMNDATA	*)	sprocparams;
				ISequentialStream					*	pStreamOutput							=	NULL;
				DBCOLUMNINFO										*	pDBColumnInfo							=	NULL;
				HACCESSOR															hAccessor;
				CSequentialStream							XMLInput(L"TemplateFile.xml");

				typedef	struct	tagSPROCPARAMS
				{
								WCHAR	CategoryName[25];
				}	SPROCPARAMS;

				CoInitialize(0);

				//	Call	a	function	to	initialize	and	establish	connection.	
				if	(FAILED(hr	=	InitializeAndEstablishConnection(&pIDBInitialize)))
								goto	Cleanup;

				//Create	a	session	object.
				if(FAILED(hr	=	pIDBInitialize->QueryInterface(
																																IID_IDBCreateSession,
																																(void**)	&pIDBCreateSession)))
				{
								cout	<<	"Failed	to	obtain	IDBCreateSession	interface.\n";
								goto	Cleanup;

				}

				if(FAILED(hr	=	pIDBCreateSession->CreateSession(
																																					NULL,	
																																					IID_IDBCreateCommand,	
																																					(IUnknown**)	&pIDBCreateCommand)))
				{
								cout	<<	"pIDBCreateSession->CreateSession	failed.\n";
								goto	Cleanup;
				}

				//Access	the	ICommand	interface.
				if(FAILED(hr	=	pIDBCreateCommand->CreateCommand(
																																				NULL,	
																																				IID_ICommand,	
																																				(IUnknown**)	&pICommand)))
				{
								cout	<<	"Failed	to	access	ICommand	interface.\n";
								goto	Cleanup;
				}
				
				//	Get	an	ICommandStream	interface
				if(FAILED(pICommand->QueryInterface(IID_ICommandStream,	(void**)	&pICommandStream)))
				{
								cout	<<	"Failed	to	get	an	ICommandStream	interface.\n";
								goto	Cleanup;
				}

				//Use	SetCommandStream()	to	specify	the	command	stream.
				if(FAILED(hr	=	pICommandStream->SetCommandStream(IID_ISequentialStream,	DBGUID_DEFAULT,	(ISequentialStream*)	&XMLInput)))
				{
								cout	<<	"Failed	to	set	command	stream.\n";
								goto	Cleanup;

				}

				//	Set	the	command	properties.
				if	(FAILED(hr	=	SetCommandProperties(pICommand)))
								goto	Cleanup;

				//***************************************
				pCol->dwStatus	=	DBSTATUS_S_OK;
				wcscpy((LPWSTR)	pCol->bData,	L"Condiments");
				pCol->dwLength	=	wcslen((LPWSTR)	pCol->bData)	*	sizeof(WCHAR);

				/*Describe	the	consumer	buffer	by	filling	in	the	array.	
				of	DBBINDING	structures.		Each	binding	associates
				a	single	parameter	to	the	consumer's	buffer.*/
				acDBBinding[0].iOrdinal					=	1;
				acDBBinding[0].obLength					=	offsetof(COLUMNDATA,	dwLength);
				acDBBinding[0].obStatus					=	offsetof(COLUMNDATA,	dwStatus);
				acDBBinding[0].pTypeInfo				=	NULL;
				acDBBinding[0].pObject						=	NULL;
				acDBBinding[0].pBindExt					=	NULL;
				acDBBinding[0].dwPart							=	DBPART_VALUE	|	DBPART_STATUS	|	DBPART_LENGTH;
				acDBBinding[0].dwMemOwner			=	DBMEMOWNER_CLIENTOWNED;
				acDBBinding[0].dwFlags						=	0;
				acDBBinding[0].bScale							=	0;
				acDBBinding[0].obValue						=	offsetof(COLUMNDATA,	bData);
				acDBBinding[0].eParamIO					=	DBPARAMIO_INPUT;
				acDBBinding[0].cbMaxLen					=	50;	
				acDBBinding[0].wType								=	DBTYPE_WSTR;
				acDBBinding[0].bPrecision			=	0;
								
				rgParamOrdinals[0]														=	1;
				rgParamBindInfo[0].bPrecision			=	0;
				rgParamBindInfo[0].bScale							=	0;

				rgParamBindInfo[0].dwFlags						=	DBPARAMFLAGS_ISINPUT;
				rgParamBindInfo[0].pwszDataSourceType	=	(WCHAR	*)wszDataSourceType;
				rgParamBindInfo[0].pwszName					=	(WCHAR	*)wszParamName;
				rgParamBindInfo[0].ulParamSize		=	35;

				if	(FAILED(hr	=	pICommandStream->QueryInterface(
																								IID_ICommandWithParameters,
																								(LPVOID	*)&pICommandWithParameters)))
				{
								cout	<<	"Error.\n";
								goto	Cleanup;
				}

				if	(FAILED(hr	=	pICommandWithParameters->SetParameterInfo(
																								nParams,
																								rgParamOrdinals,
																								rgParamBindInfo)))
				{
								cout	<<	"Error.\n";
								goto	Cleanup;
				}

				//Create	an	accessor	from	the	above	set	of	bindings.
				if	(FAILED(hr	=	pICommandStream->QueryInterface(
																																				IID_IAccessor,	
																																				(void**)&pIAccessor)))
				{
								cout	<<	"Failed	to	get	IAccessor	interface.\n";
								goto	Cleanup;
				}

				if	(FAILED(hr	=	pIAccessor->CreateAccessor(
																												DBACCESSOR_PARAMETERDATA,

																												nParams,	
																												acDBBinding,	
																												sizeof(SPROCPARAMS),	
																												&hAccessor,
																												acDBBindStatus)))
				{
								cout	<<	"Failed	to	create	accessor	for	the	defined	parameters.\n";
								goto	Cleanup;
				}
				/*
				Fill	in	DBPARAMS	structure	for	the	command	execution.	This	structure
				specifies	the	parameter	values	in	the	command	and	is	then	passed	
				to	Execute.
				*/
				params.pData	=	sprocparams;	//pCol->bData;	//sprocparams;
				params.cParamSets	=	1;
				params.hAccessor	=	hAccessor;

				pParams	=	¶ms;

				//***************************************
				//Execute	the	command.
				if(FAILED(hr	=	pICommand->Execute(NULL,	
																																				IID_ISequentialStream,	
																																				pParams,	
																																				NULL,	
																																				(IUnknown	**)	&pStreamOutput)))
				{
								cout	<<	"Failed	to	execute	command.\n";
								goto	Cleanup;
				}

				//Process	the	result	set.

				if	(FAILED(hr	=	ProcessResultSet(pStreamOutput)))
				{
								goto	Cleanup;
				}

Cleanup:
				//Free	up	memory.
				if(pStreamOutput)
								pStreamOutput->Release();
				if	(pICommandStream)
								pICommandStream->Release();
				if	(pICommand)
								pICommand->Release();
				if	(pIDBCreateCommand)
								pIDBCreateCommand->Release();
				if	(pIDBCreateSession)
								pIDBCreateSession->Release();
				if	(pIDBInitialize)
								pIDBInitialize->Release();

				if	(hr)
				{
								IErrorInfo*	pErrorInfo	=	NULL;
								BSTR								bstrDesc	=	NULL;
								GetErrorInfo(0,	&pErrorInfo);
								if	(pErrorInfo)
								{
												pErrorInfo->GetDescription(&bstrDesc);
												printf	("\r\nError:	%S\r\n",	bstrDesc	?	bstrDesc	:	L"Unknown	error");
												SysFreeString(bstrDesc);
												pErrorInfo->Release();
								}
				}

				
				//Release	the	COM	library.
				CoUninitialize();
};

//--
HRESULT	InitializeAndEstablishConnection(IDBInitialize	**	ppIDBInitialize)
{
				HRESULT									hr	=	S_OK;
				IDBInitialize	*	pIDBInitialize	=	NULL;
				IDBProperties	*	pIDBProperties	=	NULL;
				DBPROP										rgIDBProps[4];
				DBPROPSET							rgIDBPropSet[1];
				int													ii;

				if	(!ppIDBInitialize)
								return	E_INVALIDARG;

				*ppIDBInitialize	=	NULL;

				/*
				Initialize	the	property	values	needed	
				to	establish	the	connection.
				*/
				for(ii	=	0;	ii	<	4;	ii++)	
								VariantInit(&rgIDBProps[ii].vValue);

				//Obtain	access	to	the	SQLOLEDB	provider.
				if(FAILED(hr	=	CoCreateInstance(CLSID_SQLOLEDB,	
																										NULL,	
																										CLSCTX_INPROC_SERVER,
																										IID_IDBInitialize,	
																										(void	**)	&pIDBInitialize)))

				{
								printf("Failed	to	get	IDBInitialize	interface.\n");
								goto	Cleanup;
				}

				//Server	name.
				rgIDBProps[0].dwPropertyID		=	DBPROP_INIT_DATASOURCE;
				rgIDBProps[0].vValue.vt					=	VT_BSTR;
				rgIDBProps[0].vValue.bstrVal=	SysAllocString(L"server");
				rgIDBProps[0].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				rgIDBProps[0].colid									=	DB_NULLID;

//Database.
				rgIDBProps[1].dwPropertyID		=	DBPROP_INIT_CATALOG;
				rgIDBProps[1].vValue.vt					=	VT_BSTR;
				rgIDBProps[1].vValue.bstrVal=	SysAllocString(L"Northwind");
				rgIDBProps[1].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				rgIDBProps[1].colid									=	DB_NULLID;

//User	name	(login).
				rgIDBProps[2].dwPropertyID		=	DBPROP_AUTH_USERID;	
				rgIDBProps[2].vValue.vt					=	VT_BSTR;
				rgIDBProps[2].vValue.bstrVal=	SysAllocString(L"sa");
				rgIDBProps[2].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				rgIDBProps[2].colid									=	DB_NULLID;

//Password.
//				rgIDBProps[3].dwPropertyID		=	DBPROP_AUTH_PASSWORD;	
//				rgIDBProps[3].vValue.vt					=	VT_BSTR;
//				rgIDBProps[3].vValue.bstrVal=	SysAllocString(L"password");
//				rgIDBProps[3].dwOptions					=	DBPROPOPTIONS_REQUIRED;
//				rgIDBProps[3].colid									=	DB_NULLID;

				/*
				Now	that	the	properties	are	set,	construct	the	DBPROPSET	structure
				(rgInitPropSet).	The	DBPROPSET	structure	is	used	to	pass	an	array	
				of	DBPROP	structures	(rgIDBProps)	to	the	SetProperties	method.
				*/
				rgIDBPropSet[0].guidPropertySet	=	DBPROPSET_DBINIT;
//		rgInitPropSet[0].cProperties				=	4;
				rgIDBPropSet[0].cProperties				=	3;
				rgIDBPropSet[0].rgProperties			=	rgIDBProps;

				//Set	initialization	properties.
				if	(FAILED(hr	=	pIDBInitialize->QueryInterface(IID_IDBProperties,	
																																			(void	**)&pIDBProperties)))
				{
								cout	<<	"Failed	to	get	IDBProperties	interface.\n";
								goto	Cleanup;
				}

				if	(FAILED(hr	=	pIDBProperties->SetProperties(1,	rgIDBPropSet)))
				{
								cout	<<	"Failed	to	set	initialization	properties.\n";
								goto	Cleanup;
				}	//end	if

				//Now	establish	the	connection	to	the	data	source.
				if(FAILED(hr	=	pIDBInitialize->Initialize()))
				{
								cout	<<	"Problem	in	establishing	connection	to	the	data	source.\n";
								goto	Cleanup;
				}

				*ppIDBInitialize	=	pIDBInitialize;

Cleanup:
				for(ii	=	0;	ii	<	4;	ii++)	
								VariantClear(&rgIDBProps[ii].vValue);

				if	(pIDBProperties)
								pIDBProperties->Release();
				return	hr;
}	//End	of	InitializeAndEstablishConnection.

HRESULT	SetCommandProperties(ICommand	*	pICommand)
{
				HRESULT					hr	=	S_OK;
				DBPROP						rgProps[1];
				DBPROPSET			rgPropSet[1];
				ICommandProperties*	pICommandProperties	=	NULL;
			
				VariantInit(&rgProps[0].vValue);
				
				//Server	name.
				rgProps[0].dwPropertyID		=	SSPROP_STREAM_BASEPATH;
				rgProps[0].vValue.vt					=	VT_BSTR;
				rgProps[0].vValue.bstrVal=	SysAllocString(L"D:\\Test");
				rgProps[0].dwOptions					=	DBPROPOPTIONS_REQUIRED;
				rgProps[0].colid									=	DB_NULLID;

				/*
				Now	that	the	properties	are	set,	construct	the	DBPROPSET	structure
				(rgInitPropSet).	The	DBPROPSET	structure	is	used	to	pass	an	array	
				of	DBPROP	structures	(rgProps)	to	the	SetProperties	method.
				*/
				rgPropSet[0].guidPropertySet	=	DBPROPSET_SQLSERVERSTREAM;
				rgPropSet[0].cProperties				=	1;

				rgPropSet[0].rgProperties			=	rgProps;

				//	Get	an	ICommandProperties	interface.
				if(FAILED(pICommand->QueryInterface(IID_ICommandProperties,	(void**)	&pICommandProperties)))
				{
								cout	<<	"Failed	to	get	an	ICommandProperties	interface.\n";
								goto	Cleanup;
				}

				//Set	initialization	properties.
				if(FAILED(hr	=	pICommandProperties->SetProperties(1,	rgPropSet)))
				{
								cout	<<	"Failed	to	set	command	properties.\n";
								goto	Cleanup;
				}
Cleanup:
				VariantClear(&rgProps[0].vValue);
				if	(pICommandProperties)
								pICommandProperties->Release();
				return	hr;
}

//--
//Retrieve	and	display	data	resulting	from	a	query.
HRESULT	ProcessResultSet(ISequentialStream	*	pStreamOutput)
{
				CHAR				szBuf[1000];
				ULONG			ulNumRead;
				HRESULT	hr;

				if(pStreamOutput	==	NULL)
								return	E_INVALIDARG;

				//	Read	from	the	stream
				ZeroMemory(szBuf,	1000);
				while((hr	=	pStreamOutput->Read(szBuf,	1000,	&ulNumRead))	==	S_OK)
				{
								cout	<<	szBuf;
								cout.flush();
				}
				return	hr;
}	//ProcessResultSet.

How	To

ODBC
To	use	the	Microsoft®	SQL	Server™	2000	ODBC	driver,	you	must	be	able	to
create	ODBC	data	sources	and	ensure	that	the	server	has	the	correct	version	of
the	catalog	stored	procedures.	To	code	an	ODBC	application	that	uses	SQL
Server,	you	must	know	how	to	allocate	ODBC	handles,	set	attributes,	connect	to
an	instance	of	SQL	Server,	execute	queries,	and	process	results.

How	To

Configuring	the	SQL	Server	ODBC	Driver	(ODBC)
Before	using	ODBC	applications	with	Microsoft®	SQL	Server™	2000,	you
must	know	how	to	upgrade	the	version	of	the	catalog	stored	procedures	on
earlier	versions	of	SQL	Server	and	add,	delete,	and	test	data	sources.

How	To

How	to	add	a	data	source	(ODBC)
You	can	add	a	data	source	by	using	ODBC	Administrator,	programmatically	(by
using	SQLConfigDataSource),	or	by	creating	a	file.

To	add	a	data	source	by	using	ODBC	Administrator

1.	 On	the	Start	menu,	point	to	Settings,	and	then	click	Control	Panel.

2.	 Double-click	ODBC.

3.	 Click	the	User	DSN,	System	DSN,	or	File	DSN	tab,	and	then	click
Add.

4.	 Click	SQL	Server,	and	then	click	Finish.

5.	 Complete	the	Steps	in	the	Create	a	New	Data	Source	to	SQL	Server
Wizard.

To	add	a	data	source	programmatically

Call	SQLConfigDataSource	with	the	fOption	set	to	either
ODBC_ADD_DSN	or	ODBC_ADD_SYS_DSN.

To	add	a	file	data	source

Call	SQLDriverConnect	with	a	SAVEFILE=file_name	parameter	in
the	connect	string.	If	the	connect	is	successful,	the	ODBC	driver	creates
a	file	data	source	with	the	connection	parameters	in	the	location	pointed
to	by	the	SAVEFILE	parameter.

Examples

A.	Create	a	data	source	using	SQLConfigDataSource

#include	<stdio.h>

#include	<windows.h>
#include	"sql.h"
#include	<odbcinst.h>

int	main()
{
RETCODE	retcode;

UCHAR			*szDriver	=	"SQL	Server";
UCHAR			*szAttributes	=
"DSN=MyDSN\0DESCRIPTION=SQLConfigDSN	Sample\0"
"SERVER=MySQL\0ADDRESS=MyServer\0NETWORK=dbmssocn\0"
"DATABASE=pubs\0";

retcode	=	SQLConfigDataSource(NULL,
																							ODBC_ADD_DSN,
																							szDriver,
																							szAttributes);

B.	Create	a	file	data	source

Use	the	SAVEFILE	keyword	in	SQLDriverConnect	to	create	a	file	data	source,
and	then	use	SQLDriverConnect	to	connect	with	the	file	data	source.	This
example	has	been	simplified	by	removing	error	handling.

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

#define	MAXBUFLEN			255

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;

int	main()	{

			RETCODE						retcode;

			//	This	format	of	the	SAVEFILE	keyword	saves	a	successful
			//	connection	as	the	file	Myfiledsn.dsn	in	the	ODBC	default
			//	directory	for	file	DSNs.
			SQLCHAR						szConnStrIn[MAXBUFLEN]	=
												"SAVEFILE=MyFileDSN;DRIVER={SQL	Server};SERVER=MySQL;"
												"NETWORK=dbmssocn;UID=sa;PWD=MyPassWord;";

			SQLCHAR						szConnStrOut[MAXBUFLEN];
			SQLSMALLINT			cbConnStrOut	=	0;

				//	Allocate	the	ODBC	Environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);

			//Notify	ODBC	that	this	is	an	ODBC	3.0	application.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);

			//	Allocate	an	ODBC	connection	handle	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLDriverConnect(hdbc1,						//	Connection	handle
																					NULL,									//	Window	handle
																					szConnStrIn,						//	Input	connect	string
																					SQL_NTS,									//	Null-terminated	string
																					szConnStrOut,			//	Addr	of	output	buffer
																					MAXBUFLEN,						//	Size	of	output	buffer
																					&cbConnStrOut,			//	Address	of	output	length

																					SQL_DRIVER_NOPROMPT);

			//	Disconnect,	set	up	a	new	connect	string,	and	then	test	file	DSN.
			SQLDisconnect(hdbc1);
			strcpy(szConnStrIn,	"FILEDSN=MyFileDSN;UID=sa;PWD=MyPassWord;");
			retcode	=	SQLDriverConnect(hdbc1,						//	Connection	handle
																					NULL,									//	Window	handle
																					szConnStrIn,						//	Input	connect	string
																					SQL_NTS,									//	Null-terminated	string
																					szConnStrOut,			//	Addr	of	output	buffer
																					MAXBUFLEN,						//	Size	of	output	buffer
																					&cbConnStrOut,			//	Address	of	output	length
																					SQL_DRIVER_NOPROMPT);

			/*	Clean	up.	*/
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

See	Also

Adding	or	Deleting	an	ODBC	Data	Source

JavaScript:hhobj_1.Click()

How	To

How	to	delete	a	data	source	(ODBC)
You	can	delete	a	data	source	by	using	ODBC	Administrator,	programmatically
(by	using	SQLConfigDataSource),	or	by	deleting	a	file.

To	delete	a	data	source	by	using	ODBC	Administrator

1.	 On	the	Start	menu,	point	to	Settings,	and	then	click	Control	Panel.

2.	 Double-click	32bit	ODBC.

3.	 Click	the	User	DSN,	System	DSN,	or	File	DSN	tab.

4.	 Click	the	data	source	to	delete.

5.	 Click	Remove,	and	then	confirm	the	deletion.

To	delete	a	user	or	system	data	source	programmatically

Call	SQLConfigDataSource	with	the	fOption	parameter	set	to	either
ODBC_REMOVE_DSN	or	ODBC_REMOVE_SYS_DSN.

To	delete	a	file	data	source

1.	 On	the	Start	menu,	point	to	Settings,	and	then	click	Control	Panel.

2.	 Double-click	32bit	ODBC.

3.	 Click	the	File	DSN	tab.

4.	 Click	the	file	DSN	to	delete.

5.	 Click	Remove.

Examples

This	example	shows	data	source	removal	by	using	SQLConfigDataSource.	It
has	been	simplified	by	removing	error	checking.

#include	<stdio.h>
#include	<windows.h>
#include	"sql.h"
#include	<odbcinst.h>

int	main()	{

RETCODE	retcode;

UCHAR			*szDriver	=	"SQL	Server";
UCHAR			*szAttributes	=	"DSN=MyFileDSN";

retcode	=	SQLConfigDataSource(NULL,
																							ODBC_REMOVE_DSN,
																							szDriver,
																							szAttributes);
}

See	Also

Deleting	a	Data	Source

JavaScript:hhobj_1.Click()

How	To

How	to	upgrade	the	catalog	stored	procedures
This	procedure	is	needed	only	when:

Running	a	new	Microsoft®	SQL	Server™	2000	ODBC	driver	against
an	earlier	version	of	SQL	Server.

Running	a	new	SQL	Server	OLE	DB	provider	against	an	earlier	version
of	SQL	Server.

Referencing	an	earlier	version	of	SQL	Server	in	an
sp_addlinkedserver,	OPENROWSET,	or	OPENQUERY	statement
running	on	a	new	version	of	SQL	Server.	These	statements	use	the	SQL
Server	OLE	DB	provider	to	access	the	target	SQL	Server.

To	ensure	the	proper	operation	of	the	SQL	Server	OLE	DB	provider	or	SQL
Server	ODBC	driver,	you	must	use	the	Instcat.sql	script	that	comes	with	your
new	version	of	SQL	Server	to	upgrade	the	catalog	stored	procedures	on	the
earlier	version	of	SQL	Server.	For	example,	when	running	the	SQL	Server
version	7.0	ODBC	driver	against	SQL	Server	6.5,	you	must	run	the	SQL	Server
7.0	version	of	Instcat.sql	against	SQL	Server	6.5.

To	upgrade	the	catalog	stored	procedures

To	upgrade	the	catalog	stored	procedures,	the	system	administrator	runs	a	script
by	using	the	isql	utility.	To	run	isql,	the	computer	must	be	installed	as	a	client
workstation	for	SQL	Server.	The	system	administrator	should	back	up	the
master	database	before	running	Instcat.sql.

At	a	command	prompt,	use	the	isql	utility	to	run	the	Instcat.sql	script.	For
example:

C:>	ISQL	-Usa	-Psa_password	-Sserver_name	-ilocation\Instcat.sql

Arguments
sa_password

Is	the	password	of	the	system	administrator.

server_name

Is	the	name	of	the	server	on	which	SQL	Server	resides.

location

Is	the	full	path	of	the	location	of	Instcat.sql.	You	can	use	Instcat.sql	from	an
installed	SQL	Server	(the	default	location	is	C:\Mssql7\Install)	or	from	the
SQL	Server	compact	disc	(the	default	location	is	D:\platform	where	D:	is	the
CD-ROM	drive	letter	and	platform	is	the	appropriate	server	platform
directory,	such	as	386).

The	Instcat.sql	script	generates	many	messages.	Most	of	these	indicate	how	rows
were	affected	by	Transact-SQL	statements	issued	by	the	script.	These	messages
can	be	ignored,	although	the	output	should	be	scanned	for	messages	that	indicate
an	execution	error.	When	Instcat.sql	is	run	against	a	version	6.0	SQL	Server,	the
message	generated	about	the	object	sp_MS_upd_sysobj_category	not	existing
can	be	ignored.	The	last	message	should	indicate	that	Instcat.sql	completed
successfully.

The	Instcat.sql	script	fails	when	there	is	not	enough	space	available	in	the
master	database	to	store	the	catalog	stored	procedures	or	to	log	the	changes	to
existing	procedures.	If	the	Instcat.sql	script	fails,	contact	your	system
administrator.

See	Also

Upgrading	the	Catalog	Stored	Procedures

JavaScript:hhobj_1.Click()

How	To

Connecting	to	SQL	Server	(ODBC)
Initializing	an	ODBC	application	involves	allocating	environment	and
connection	handles,	setting	attributes	for	the	handles	to	tailor	the	behavior	of	the
driver	and	server,	and	then	connecting	to	Microsoft®	SQL	Server™	2000.

How	To

How	to	allocate	handles	and	connect	to	SQL	Server
(ODBC)
To	allocate	handles	and	connect	to	SQL	Server

1.	 Include	the	ODBC	header	files	Sql.h,	Sqlext.h,	Sqltypes.h.

2.	 Include	the	Microsoft®	SQL	Server™	2000	driver-specific	header	file,
Odbcss.h.

3.	 Call	SQLAllocHandle	with	a	HandleType	of	SQL_HANDLE_ENV	to
initialize	ODBC	and	allocate	an	environment	handle.

4.	 Call	SQLSetEnvAttr	with	Attribute	set	to
SQL_ATTR_ODBC_VERSION	and	ValuePtr	set	to
SQL_OV_ODBC3	to	indicate	the	application	will	use	ODBC	3.x-
format	function	calls.

5.	 Optionally,	call	SQLSetEnvAttr	to	set	other	environment	options	or
SQLGetEnvAttr	to	get	environment	options.

6.	 Call	SQLAllocHandle	with	a	HandleType	of	SQL_HANDLE_DBC	to
allocate	a	connection	handle.

7.	 Optionally,	call	SQLSetConnectAttr	to	set	connection	options	or
SQLGetConnectAttr	to	get	connection	options.

8.	 Call	SQLConnect	to	use	an	existing	data	source	to	connect	to	SQL
Server.

Or

Call	SQLDriverConnect	to	use	a	connection	string	to	connect	to	SQL

Server.

A	minimum	complete	SQL	Server	connection	string	has	one	of	two
forms:

DSN=dsn_name;UID=login_id;PWD=password;

DRIVER={SQL
Server};SERVER=server;UID=login_id;PWD=password;

If	the	connection	string	is	not	complete,	SQLDriverConnect	can
prompt	for	the	required	information.	This	is	controlled	by	the	value
specified	for	the	DriverCompletion	parameter.

Or

Call	SQLBrowseConnect	multiple	times	in	an	iterative	fashion	to
build	the	connection	string	and	connect	to	SQL	Server.

9.	 Optionally,	call	SQLGetInfo	to	get	driver	attributes	and	behavior	for
the	SQL	Server	data	source.

10.	 Allocate	and	use	statements.	

11.	 Call	SQLDisconnect	to	disconnect	from	SQL	Server	and	make	the
connection	handle	available	for	a	new	connection.

12.	 Call	SQLFreeHandle	with	a	HandleType	of	SQL_HANDLE_DBC	to
free	the	connection	handle.

13.	 Call	SQLFreeHandle	with	a	HandleType	of	SQL_HANDLE_ENV	to
free	the	environment	handle.

Examples

A.	Allocate	handles,	then	connect	by	using	SQLConnect

This	example	shows	allocating	an	environment	handle	and	a	connection	handle,

then	connecting	by	using	SQLConnect.	It	has	been	simplified	by	removing
much	of	the	error	checking.

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<sqltypes.h>
#include	<odbcss.h>

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;

int	main()	{
			RETCODE	retcode;
			UCHAR			szDSN[SQL_MAX_DSN_LENGTH+1]	=	"MyDSN",
									szUID[MAXNAME]	=	"sa",
									szAuthStr[MAXNAME]	=	"MyPassword";

				//	Allocate	the	ODBC	Environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);

			//	Notify	ODBC	that	this	is	an	ODBC	3.0	application.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)SQL_OV_ODBC3,
																					SQL_IS_INTEGER);

			//	Allocate	an	ODBC	connection	handle	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLConnect(hdbc1,	szDSN,	(SWORD)strlen(szDSN),
																		szUID,	(SWORD)strlen(szUID),
																		szAuthStr,	(SWORD)strlen(szAuthStr));

			if	((retcode	!=	SQL_SUCCESS)	&&	
						(retcode	!=	SQL_SUCCESS_WITH_INFO))	{
									//	Connect	failed,	call	SQLGetDiagRec	for	errors.
			}
			else	{
						//	Connects	to	SQL	Server	always	return
						//	informational	messages.		These	messages	can	be
						//	retrieved	by	calling	SQLGetDiagRec.
			}

			//	Allocate	statement	handles	and	do	ODBC	processing.

			/*	Clean	up.	*/
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

B.	Connect	to	SQL	Server	without	an	existing	ODBC	data	source
This	example	shows	a	call	to	SQLDriverConnect	to	connect	to	an	instance	of
SQL	Server	without	requiring	an	existing	ODBC	data	source:

#define	MAXBUFLEN			255

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;

SQLCHAR						ConnStrIn[MAXBUFLEN]	=
									"DRIVER={SQL	Server};SERVER=MyServer;"
									"UID=sa;PWD=MyPassWord;DATABASE=pubs;";

SQLCHAR						ConnStrOut[MAXBUFLEN];
SQLSMALLINT			cbConnStrOut	=	0;

//	Make	connection	without	data	source.	Ask	that	driver	not
//	prompt	if	insufficient	information.	Driver	returns
//	SQL_ERROR	and	application	prompts	user
//	for	missing	information.	Window	handle	not	needed	for
//	SQL_DRIVER_NOPROMPT.
retcode	=	SQLDriverConnect(hdbc1,						//	Connection	handle
																		NULL,									//	Window	handle
																		ConnStrIn,						//	Input	connect	string
																		SQL_NTS,									//	Null-terminated	string
																		ConnStrOut,						//	Address	of	output	buffer
																		MAXBUFLEN,						//	Size	of	output	buffer
																		&cbConnStrOut,			//	Address	of	output	length
																		SQL_DRIVER_NOPROMPT);

See	Also

SQLFreeHandle

SQLGetInfo

SQLBrowseConnect

SQLSetConnectAttr

SQLDriverConnect

SQLSetEnvAttr

SQLGetConnectAttr

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

How	To

Executing	Queries	(ODBC)
Executing	an	SQL	statement	in	an	ODBC	application	requires	allocating	a
statement	handle,	setting	statement	attributes,	and	preparing	and	executing	the
SQL	statement.

How	To

How	to	use	a	statement	(ODBC)
To	use	a	statement

1.	 Call	SQLAllocHandle	with	a	HandleType	of	SQL_HANDLE_STMT
to	allocate	a	statement	handle.

2.	 Optionally,	call	SQLSetStmtAttr	to	set	statement	options	or
SQLGetStmtAttr	to	get	statement	attributes.

To	use	server	cursors,	you	must	set	cursor	attributes	to	values	other
than	their	defaults.

3.	 Optionally,	if	the	statement	will	be	executed	several	times,	prepare	the
statement	for	execution	with	SQLPrepare.

4.	 Optionally,	if	the	statement	has	bound	parameter	markers,	bind	the
parameter	markers	to	program	variables	by	using
SQLBindParameter.	If	the	statement	was	prepared,	you	can	call
SQLNumParams	and	SQLDescribeParam	to	find	the	number	and
characteristics	of	the	parameters.

5.	 Execute	a	statement	directly	by	using	SQLExecDirect.

Or

If	the	statement	was	prepared,	execute	it	multiple	times	by	using
SQLExecute.

Or

Call	a	catalog	function,	which	returns	results.

6.	 Process	the	results	by	binding	the	result	set	columns	to	program
variables,	by	moving	data	from	the	result	set	columns	to	program
variables	by	using	SQLGetData,	or	a	combination	of	the	two
methods.

Fetch	through	the	result	set	of	a	statement	one	row	at	a	time.

Or

Fetch	through	the	result	set	several	rows	at	a	time	by	using	a	block
cursor.

Or

Call	SQLRowCount	to	determine	the	number	of	rows	affected	by	an
INSERT,	UPDATE,	or	DELETE	statement.

If	the	SQL	statement	can	have	multiple	result	sets,	call
SQLMoreResults	at	the	end	of	each	result	set	to	see	if	there	are
additional	result	sets	to	process.

7.	 After	results	are	processed,	the	following	actions	may	be	necessary	to
make	the	statement	handle	available	to	execute	a	new	statement:

If	you	did	not	call	SQLMoreResults	until	it	returned
SQL_NO_DATA,	call	SQLCloseCursor	to	close	the	cursor.

If	you	bound	parameter	markers	to	program	variables,	call
SQLFreeStmt	with	Option	set	to	SQL_RESET_PARAMS	to
free	the	bound	parameters.

If	you	bound	result	set	columns	to	program	variables,	call
SQLFreeStmt	with	Option	set	to	SQL_UNBIND	to	free	the
bound	columns.

To	reuse	the	statement	handle,	go	to	Step	2.

8.	 Call	SQLFreeHandle	with	a	HandleType	of	SQL_HANDLE_STMT
to	free	the	statement	handle.

See	Also

Allocating	a	Statement	Handle

Constructing	an	SQL	Statement

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()

Direct	Execution

Freeing	a	Statement	Handle

Prepared	Execution

SQLBindParameter

SQLDescribeParam

SQLFreeHandle

SQLGetData

SQLGetStmtAttr

SQLMoreResults

SQLRowCount

SQLSetStmtAttr

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()
JavaScript:hhobj_11.Click()
JavaScript:hhobj_12.Click()
JavaScript:hhobj_13.Click()

How	To

How	to	set	cursor	options	(ODBC)
To	set	cursor	options

Call	SQLSetStmtAttr	to	set	or	SQLGetStmtAttr	to	get	the	statement
options	that	control	cursor	behavior.

Foption Specifies
SQL_ATTR_CURSOR_TYPE Cursor	type	of	forward-

only,	static,	dynamic,	or
keyset-driven

SQL_ATTR_CONCURRENCY Concurrency	control
option	of	read-only,
locking,	optimistic	using
timestamps,	or	optimistic
using	values

SQL_ATTR_ROW_ARRAY_SIZE Number	of	rows	retrieved
in	each	fetch

SQL_ATTR_CURSOR_SENSITIVITY Cursor	that	does	or	does
not	show	updates	to
cursor	rows	made	by
other	connections

SQL_ATTR_CURSOR_SCROLLABLECursor	that	can	be
scrolled	forward	and
backward

The	default	values	for	these	attributes	(forward-only,	read-only,	rowset
size	of	1)	do	not	use	server	cursors.	To	use	server	cursors,	at	least	one	of
these	attributes	must	be	set	to	a	value	other	than	the	default,	and	the
statement	being	executed	must	be	a	single	SELECT	statement	or	a
stored	procedure	that	contains	a	single	SELECT	statement.	When	using
server	cursors,	SELECT	statements	cannot	use	clauses	not	supported	by
server	cursors:	COMPUTE,	COMPUTE	BY,	FOR	BROWSE,	and
INTO.

You	can	control	the	type	of	cursor	used	either	by	setting
SQL_ATTR_CURSOR_TYPE	and	SQL_ATTR_CONCURRENCY,	or
by	setting	SQL_ATTR_CURSOR_SENSITIVITY	and
SQL_ATTR_CURSOR_SCROLLABLE.	You	should	not	mix	the	two
methods	of	specifying	cursor	behavior.

Examples

A.	Allocate	a	statement	handle,	set	a	dynamic	cursor	type	with
row	versioning	optimistic	concurrency,	and	then	execute	a
SELECT

retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);
retcode	=	SQLSetStmtAttr(hstmt1,	SQL_ATTR_CURSOR_TYPE,
																		(SQLPOINTER)SQL_CURSOR_DYNAMIC,
																		SQL_IS_INTEGER);
retcode	=	SQLSetStmtAttr(hstmt1,	SQL_ATTR_CONCURRENCY,
																		(SQLPOINTER)SQL_CONCUR_ROWVER,
																		SQL_IS_INTEGER);
retcode	=	SQLExecDirect(hstmt1,
																		"SELECT	au_lname	FROM	authors",
																		SQL_NTS);

B.	Allocate	a	statement	handle,	set	a	scrollable,	sensitive	cursor,
and	then	execute	a	SELECT

retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);
//	Set	the	cursor	options	and	execute	the	statement.
retcode	=	SQLSetStmtAttr(hstmt1,	SQL_ATTR_CURSOR_SCROLLABLE,
																		(SQLPOINTER)SQL_SCROLLABLE,
																		SQL_IS_INTEGER);
retcode	=	SQLSetStmtAttr(hstmt1,	SQL_ATTR_CURSOR_SENSITIVITY,
																		(SQLPOINTER)SQL_INSENSITIVE,
																		SQL_IS_INTEGER);
retcode	=	SQLExecDirect(hstmt1,

																		"select	au_lname	from	authors",
																		SQL_NTS);

See	Also

Constructing	SQL	Statements	for	Cursors

SQLGetStmtAttr

SQLSetStmtAttr

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	execute	a	statement	directly	(ODBC)
To	execute	a	statement	directly	and	one	time	only

1.	 If	the	statement	has	parameter	markers,	use	SQLBindParameter	to
bind	each	parameter	to	a	program	variable.	Fill	the	program	variables
with	data	values,	and	then	set	up	any	data-at-execution	parameters.

2.	 Call	SQLExecDirect	to	execute	the	statement.

3.	 If	data-at-execution	input	parameters	are	used,	SQLExecDirect
returns	SQL_NEED_DATA.	Send	the	data	in	chunks	by	using
SQLParamData	and	SQLPutData.

To	execute	a	statement	multiple	times	by	using	column-wise	parameter
binding

1.	 Call	SQLSetStmtAttr	to	set	the	following	attributes:

Set	SQL_ATTR_PARAMSET_SIZE	to	the	number	of	sets	(S)
of	parameters.

Set	SQL_ATTR_PARAM_BIND_TYPE	to
SQL_PARAMETER_BIND_BY_COLUMN.

Set	the	SQL_ATTR_PARAMS_PROCESSED_PTR	attribute
to	point	to	a	SQLUINTEGER	variable	to	hold	the	number	of
parameters	processed.

Set	SQL_ATTR_PARAMS_STATUS_PTR	to	point	to	an
array[S]	of	SQLUSSMALLINT	variables	to	hold	the
parameter	status	indicators.

2.	 For	each	parameter	marker:

Allocate	an	array	of	S	parameter	buffers	to	store	data	values.

Allocate	an	array	of	S	parameter	buffers	to	store	data	lengths.

Call	SQLBindParameter	to	bind	the	parameter	data	value
and	data	length	arrays	to	the	statement	parameter.

Set	up	any	data-at-execution	text	or	image	parameters.	

Put	S	data	values	and	S	data	lengths	into	the	bound	parameter
arrays.

3.	 Call	SQLExecDirect	to	execute	the	statement.	The	driver	efficiently
executes	the	statement	S	times,	once	for	each	set	of	parameters.

4.	 If	data-at-execution	input	parameters	are	used,	SQLExecDirect
returns	SQL_NEED_DATA.	Send	the	data	in	chunks	by	using
SQLParamData	and	SQLPutData.

To	execute	a	statement	multiple	times	by	using	row-wise	parameter	binding

1.	 Allocate	an	array[S]	of	structures,	where	S	is	the	number	of	sets	of
parameters.	The	structure	has	one	element	for	each	parameter,	and
each	element	has	two	parts:

The	first	part	is	a	variable	of	the	appropriate	data	type	to	hold
the	parameter	data.

The	second	part	is	a	SQLINTEGER	variable	to	hold	the	status
indicator.

2.	 Call	SQLSetStmtAttr	to	set	the	following	attributes:

Set	SQL_ATTR_PARAMSET_SIZE	to	the	number	of	sets	(S)
of	parameters.

Set	SQL_ATTR_PARAM_BIND_TYPE	to	the	size	of	the
structure	allocated	in	Step	1.

Set	the	SQL_ATTR_PARAMS_PROCESSED_PTR	attribute
to	point	to	a	SQLUINTEGER	variable	to	hold	the	number	of
parameters	processed.

Set	SQL_ATTR_PARAMS_STATUS_PTR	to	point	to	an
array[S]	of	SQLUSSMALLINT	variables	to	hold	the
parameter	status	indicators.

3.	 For	each	parameter	marker,	call	SQLBindParameter	to	point	the
parameter's	data	value	and	data	length	pointer	to	their	variables	in	the
first	element	of	the	array	of	structures	allocated	in	Step	1.	If	the
parameter	is	a	data-at-execution	parameter,	set	it	up.

4.	 Fill	the	bound	parameter	buffer	array	with	data	values.

5.	 Call	SQLExecDirect	to	execute	the	statement.	The	driver	efficiently
executes	the	statement	S	times,	once	for	each	set	of	parameters.

6.	 If	data-at-execution	input	parameters	are	used,	SQLExecDirect
returns	SQL_NEED_DATA.	Send	the	data	in	chunks	by	using
SQLParamData	and	SQLPutData.

Column-wise	and	row-wise	binding	are	more	typically	used	in	conjunction	with
SQLPrepare	and	SQLExecute	than	with	SQLExecDirect.

Examples
This	example	shows	executing	a	SELECT	statement	by	using	SQLExecDirect.
It	has	been	simplified	by	removing	all	error	checking.

#include	<stdio.h>
#include	<string.h>

#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

#define	MAXBUFLEN			255

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;					
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;

int	main()
{
			RETCODE	retcode;
			//	SQLBindCol	variables
			SQLCHAR						szName[MAXNAME+1];
			SQLINTEGER			cbName;

				//	Allocate	the	ODBC	Environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	application.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			//	Allocate	an	ODBC	connection	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLConnect(hdbc1,
												"MyDSN",	SQL_NTS,			"sa",	SQL_NTS,
												"MyPassWord",	SQL_NTS);

			//	Allocate	a	statement	handle.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);

			//	Execute	an	SQL	statement	directly	on	the	statement	handle.

			//	Uses	a	default	result	set	because	no	cursor	attributes	are	set.
			retcode	=	SQLExecDirect(hstmt1,
																					"SELECT	au_lname	FROM	authors",
																					SQL_NTS);
			//	Simplified	result	set	processing.	Bind	one	column	and
			//	then	fetch	until	SQL_NO_DATA.
			retcode	=	SQLBindCol(hstmt1,	1,	SQL_C_CHAR,
																		szName,	MAXNAME,	&cbName);
			while	((retcode	=	SQLFetch(hstmt1))	!=	SQL_NO_DATA)
						printf("Name	=	%s\n",	szName);

			/*	Clean	up.	*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt1);
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

See	Also

Binding	Parameters

Direct	Execution

SQLBindParameter

SQLPutData

SQLSetStmtAttr

Using	Statement	Parameters

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

How	To

How	to	prepare	and	execute	a	statement	(ODBC)
To	prepare	a	statement	once,	and	then	execute	it	multiple	times

1.	 Call	SQLPrepare	to	prepare	the	statement.

2.	 Optionally,	call	SQLNumParams	to	determine	the	number	of
parameters	in	the	prepared	statement.

3.	 Optionally,	for	each	parameter	in	the	prepared	statement:

Call	SQLDescribeParam	to	get	parameter	information.

Bind	each	parameter	to	a	program	variable	by	using
SQLBindParam.	Set	up	any	data-at-execution	parameters.

4.	 For	each	execution	of	a	prepared	statement:

If	the	statement	has	parameter	markers,	put	the	data	values
into	the	bound	parameter	buffer.

Call	SQLExecute	to	execute	the	prepared	statement.

If	data-at-execution	input	parameters	are	used,	SQLExecute
returns	SQL_NEED_DATA.	Send	the	data	in	chunks	by	using
SQLParamData	and	SQLPutData.

To	prepare	a	statement	with	column-wise	parameter	binding

1.	 Call	SQLSetStmtAttr	to	set	the	following	attributes:

Set	SQL_ATTR_PARAMSET_SIZE	to	the	number	of	sets	(S)
of	parameters.

Set	SQL_ATTR_PARAM_BIND_TYPE	to

SQL_PARAMETER_BIND_BY_COLUMN.

Set	the	SQL_ATTR_PARAMS_PROCESSED_PTR	attribute
to	point	to	a	SQLUINTEGER	variable	to	hold	the	number	of
parameters	processed.

Set	SQL_ATTR_PARAMS_STATUS_PTR	to	point	to	an
array[S]	of	SQLUSSMALLINT	variables	to	hold	parameter
status	indicators.

2.	 Call	SQLPrepare	to	prepare	the	statement.

3.	 Optionally,	call	SQLNumParams	to	determine	the	number	of
parameters	in	the	prepared	statement.

4.	 Optionally,	for	each	parameter	in	the	prepared	statement,	call
SQLDescribeParam	to	get	parameter	information.

5.	 For	each	parameter	marker:

Allocate	an	array	of	S	parameter	buffers	to	store	data	values.

Allocate	an	array	of	S	parameter	buffers	to	store	data	lengths.

Call	SQLBindParameter	to	bind	the	parameter	data	value
and	data	length	arrays	to	the	statement	parameter.

If	the	parameter	is	a	data-at-execution	text	or	image
parameter,	set	it	up.	

If	any	data-at-execution	parameters	are	used,	set	them	up.

6.	 For	each	execution	of	a	prepared	statement:

Put	the	S	data	values	and	S	data	lengths	into	the	bound
parameter	arrays.

Call	SQLExecute	to	execute	the	prepared	statement.

If	data-at-execution	input	parameters	are	used,	SQLExecute
returns	SQL_NEED_DATA.	Send	the	data	in	chunks	by	using
SQLParamData	and	SQLPutData.

To	prepare	a	statement	with	row-wise	bound	parameters

1.	 Allocate	an	array[S]	of	structures,	where	S	is	the	number	of	sets	of
parameters.	The	structure	has	one	element	for	each	parameter,	and
each	element	has	two	parts:

The	first	part	is	a	variable	of	the	appropriate	data	type	to	hold
the	parameter	data.

The	second	part	is	a	SQLINTEGER	variable	to	hold	the	status
indicator.

2.	 Call	SQLSetStmtAttr	to	set	the	following	attributes:

Set	SQL_ATTR_PARAMSET_SIZE	to	the	number	of	sets	(S)
of	parameters.

Set	SQL_ATTR_PARAM_BIND_TYPE	to	the	size	of	the
structure	allocated	in	Step	1.

Set	the	SQL_ATTR_PARAMS_PROCESSED_PTR	attribute
to	point	to	a	SQLUINTEGER	variable	to	hold	the	number	of
parameters	processed.

Set	SQL_ATTR_PARAMS_STATUS_PTR	to	point	to	an
array[S]	of	SQLUSSMALLINT	variables	to	hold	parameter
status	indicators.

3.	 Call	SQLPrepare	to	prepare	the	statement.

4.	 For	each	parameter	marker,	call	SQLBindParameter	to	point	the
parameter	data	value	and	data	length	pointer	to	their	variables	in	the
first	element	of	the	array	of	structures	allocated	in	Step	1.	If	the
parameter	is	a	data-at-execution	parameter,	set	it	up.

5.	 For	each	execution	of	a	prepared	statement:

Fill	the	bound	parameter	buffer	array	with	data	values.

Call	SQLExecute	to	execute	the	prepared	statement.	The
driver	efficiently	executes	the	SQL	statement	S	times,	once
for	each	set	of	parameters.

If	data-at-execution	input	parameters	are	used,	SQLExecute
returns	SQL_NEED_DATA.	Send	the	data	in	chunks	by	using
SQLParamData	and	SQLPutData.

Examples

This	example	shows	executing	a	SELECT	statement	by	using	SQLPrepare	and
SQLExecute.	It	has	been	simplified	by	removing	all	error	checking.

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

#define	MAXBUFLEN			255

SQLHENV						henv	=	SQL_NULL_HENV;

SQLHDBC						hdbc1	=	SQL_NULL_HDBC;					
SQLHSTMT			hstmt1	=	SQL_NULL_HSTMT;

int	main()
{
			RETCODE	retcode;
			//	SQLBindCol	variables
			SQLCHAR						szName[MAXNAME+1];
			SQLINTEGER			cbName;

				//	Allocate	the	ODBC	Environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	application.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			//	Allocate	an	ODBC	connection	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLConnect(hdbc1,
												"MyDSN",	SQL_NTS,			"sa",	SQL_NTS,
												"MyPassWord",	SQL_NTS);
			
			//	Allocate	a	statement	handle.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);
			//	Prepare	and	execute	an	SQL	statement	on	the	statement	handle.
			//	Uses	a	default	result	set	because	no	cursor	attributes	are	set.
			retcode	=	SQLPrepare(hstmt1,
																		"SELECT	au_lname	from	authors",	SQL_NTS);
			retcode	=	SQLExecute(hstmt1);
			//	Simplified	result	set	processing.	Bind	one	column	and
			//	then	fetch	until	SQL_NO_DATA.
			retcode	=	SQLBindCol(hstmt1,	1,	SQL_C_CHAR,
																		szName,	MAXNAME,	&cbName);
			while	((retcode	=	SQLFetch(hstmt1))	!=	SQL_NO_DATA)

						printf("Name	=	%s\n",	szName);

			/*	Clean	up.	*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt1);
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

See	Also

Binding	Parameters

SQLBindParameter

SQLDescribeParam

SQLPrepare

SQLPutData

SQLSetStmtAttr

Prepared	Execution

Using	Statement	Parameters

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

How	To

Processing	Results	(ODBC)
Processing	results	in	an	ODBC	application	involves	first	determining	the
characteristics	of	the	result	set,	then	retrieving	the	data	into	program	variables	by
using	either	SQLBindCol	or	SQLGetData.

How	To

How	to	retrieve	result	set	information	(ODBC)
To	get	information	about	a	result	set

1.	 Call	SQLNumResultCols	to	get	the	number	of	columns	in	the	result
set.

2.	 For	each	column	in	the	result	set:

Call	SQLDescribeCol	to	get	information	about	the	result
column.

Or

Call	SQLColAttribute	to	get	specific	descriptor	information
about	the	result	column.

See	Also

Determining	the	Characteristics	of	a	Result	Set

How	to	process	results	(ODBC)

SQLColAttribute

SQLDescribeCol

SQLNumResultCols

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	process	results	(ODBC)
To	process	results

1.	 Retrieve	result	set	information.	

2.	 If	bound	columns	are	used,	for	each	column	you	want	to	bind	to,	call
SQLBindCol	to	bind	a	program	buffer	to	the	column.

3.	 For	each	row	in	the	result	set:

Call	SQLFetch	to	get	the	next	row.

If	bound	columns	are	used,	use	the	data	now	available	in	the
bound	column	buffers.

If	unbound	columns	are	used,	call	SQLGetData	one	or	more
times	to	get	the	data	for	unbound	columns	after	the	last	bound
column.	Calls	to	SQLGetData	should	be	in	increasing	order
of	column	number.

Call	SQLGetData	multiple	times	to	get	data	from	a	text	or
image	column.

4.	 When	SQLFetch	signals	the	end	of	the	result	set	by	returning
SQL_NO_DATA,	call	SQLMoreResults	to	determine	if	another	result
set	is	available.

If	it	returns	SQL_SUCCESS,	another	result	set	is	available.

If	it	returns	SQL_NO_DATA,	no	more	result	sets	are
available.

If	it	returns	SQL_SUCCESS_WITH_INFO	or	SQL_ERROR,
call	SQLGetDiagRec	to	determine	if	the	output	from	a
PRINT	or	RAISERROR	statement	is	available.

If	bound	statement	parameters	are	used	for	output	parameters	or	the
return	value	of	a	stored	procedure,	use	the	data	now	available	in	the
bound	parameter	buffers.	Also,	when	bound	parameters	are	used,	each
call	to	SQLExecute	or	SQLExecDirect	will	have	executed	the	SQL
statement	S	times,	where	S	is	the	number	of	elements	in	the	array	of
bound	parameters.	This	means	that	there	will	be	S	sets	of	results	to
process,	where	each	set	of	results	comprises	all	of	the	result	sets,
output	parameters,	and	return	codes	usually	returned	by	a	single
execution	of	the	SQL	statement.

Note	that	when	a	result	set	contains	compute	rows,	each	compute	row
is	made	available	as	a	separate	result	set.	These	compute	result	sets	are
interspersed	within	the	normal	rows	and	break	normal	rows	into
multiple	result	sets.

5.	 Optionally,	call	SQLFreeStmt	with	an	fOption	of	SQL_UNBIND	to
release	any	bound	column	buffers.

6.	 If	another	result	set	is	available,	go	to	Step	1.

To	cancel	processing	a	result	set	before	SQLFetch	returns	SQL_NO_DATA,	call
SQLCloseCursor.

Examples
This	example	shows	how	to	use	either	SQLBindCol	or	SQLGetData.	It	has
been	simplified	by	removing	all	error	checking.	The	program	can	be	compiled
with	either	the	SQLBindCol	function	or	the	SQLGetData	function	commented
out,	the	resulting	executable	will	operate	the	same.

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>

#include	<sqlext.h>
#include	<odbcss.h>

#define	MAXBUFLEN			255

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;					
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;

int	main()	{
			RETCODE	retcode;
			//	SQLBindCol	variables
			SQLCHAR						szName[MAXNAME+1];
			SQLINTEGER			cbName;

				//	Allocate	the	ODBC	Environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	application.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			//	Allocate	an	ODBC	connection	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLConnect(hdbc1,
												"MyDSN",	SQL_NTS,"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);
			
			//	Allocate	a	statement	handle.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);
			//	Execute	an	SQL	statement	directly	on	the	statement	handle.
			//	Uses	a	default	result	set	because	no	cursor	attributes	are	set.
			retcode	=	SQLExecDirect(hstmt1,
																					"SElECT	au_lname	FROM	authors",	SQL_NTS);

			//	Simplified	result	set	processing.	Fetch	until	SQL_NO_DATA.

			//	The	application	can	be	compiled	with	the	SQLBindCol	line
			//	commented	out	to	illustrate	SQLGetData,	or	compiled	with	the
			//	SQLGetData	line	commented	out	to	illustrate	SQLBindCol.
			//	This	sample	shows	that	SQLBindCol	is	called	once	for	the
			//	result	set,	while	SQLGetData	must	be	called	once	for	each
			//	row	in	the	result	set.

			retcode	=	SQLBindCol(hstmt1,	1,	SQL_C_CHAR,
																		szName,	MAXNAME,	&cbName);
			while	((retcode	=	SQLFetch(hstmt1))	!=	SQL_NO_DATA)	{
			//			SQLGetData(hstmt1,	1,	SQL_C_CHAR,	szName,	MAXNAME,	&cbName);
						printf("Name	=	%s\n",	szName);
			}

			/*	Clean	up.*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt1);
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);

			return(0);
}

See	Also

Assigning	Storage	(Binding)

Determining	the	Characteristics	of	a	Result	Set

Fetching	Result	Data

How	to	retrieve	result	set	information	(ODBC)

SQLBindCol

SQLCloseCursor

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

SQLFreeStmt

SQLGetData

SQLMoreResults

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()

How	To

Using	Cursors	(ODBC)
To	use	cursors,	you	must	first	set	connection	and	statement	attributes	that	control
ODBC	cursor	behavior.	Cursors	allow	an	application	to	retrieve	multiple	rows
on	each	fetch	and	execute	UPDATE,	INSERT,	or	DELETE	statements	at	the
current	location	of	the	cursor.

How	To

How	to	use	cursors	(ODBC)
To	use	cursors

1.	 Call	SQLSetStmtAttr	to	set	the	desired	cursor	attributes:

Set	the	SQL_ATTR_CURSOR_TYPE	and
SQL_ATTR_CONCURRENCY	attributes	(this	is	the	preferred
option).

Or

Set	the	SQL_CURSOR_SCROLLABLE	and
SQL_CURSOR_SENSITIVITY	attributes.

2.	 Call	SQLSetStmtAttr	to	set	the	rowset	size	by	using	the
SQL_ATTR_ROW_ARRAY_SIZE	attribute.

3.	 Optionally,	call	SQLSetCursorName	to	set	a	cursor	name	if
positioned	updates	will	be	done	by	using	the	WHERE	CURRENT	OF
clause.

4.	 Execute	the	SQL	statement.

5.	 Optionally,	call	SQLGetCursorName	to	get	the	cursor	name	if
positioned	updates	will	be	done	by	using	the	WHERE	CURRENT	OF
clause	and	a	cursor	name	was	not	supplied	with	SQLSetCursorName
in	Step	3.

6.	 Call	SQLNumResultCols	to	get	the	number	of	columns	(C)	in	the
rowset.

7.	 Use	column-wise	binding.

Or

Use	row-wise	binding.

8.	 Fetch	rowsets	from	the	cursor	as	desired.	

9.	 Call	SQLMoreResults	to	determine	if	another	result	set	is	available.

If	it	returns	SQL_SUCCESS,	another	result	set	is	available.

If	it	returns	SQL_NO_DATA,	no	more	result	sets	are
available.

If	it	returns	SQL_SUCCESS_WITH_INFO	or	SQL_ERROR,
call	SQLGetDiagRec	to	determine	if	the	output	from	a
PRINT	or	RAISERROR	statement	is	available.

If	bound	statement	parameters	are	used	for	output	parameters	or	the
return	value	of	a	stored	procedure,	use	the	data	now	available	in	the
bound	parameter	buffers.

When	bound	parameters	are	used,	each	call	to	SQLExecute	or
SQLExecDirect	will	have	executed	the	SQL	statement	S	times,	where
S	is	the	number	of	elements	in	the	array	of	bound	parameters.	This
means	that	there	will	be	S	sets	of	results	to	process,	where	each	set	of
results	comprises	all	of	the	result	sets,	output	parameters,	and	return
codes	usually	returned	by	a	single	execution	of	the	SQL	statement.

Note	that	when	a	result	set	contains	compute	rows,	each	compute	row
is	made	available	as	a	separate	result	set.	These	compute	result	sets	are
interspersed	within	the	normal	rows	and	break	normal	rows	into
multiple	result	sets.

10.	 Optionally,	call	SQLFreeStmt	with	an	fOption	of	SQL_UNBIND	to
release	any	bound	column	buffers.

11.	 If	another	result	set	is	available,	go	to	Step	6.

In	Step	9,	calling	SQLMoreResults	on	a	partially	processed	result	set	clears	the
remainder	of	the	result	set.	Another	way	to	clear	a	partially	processed	result	set

is	to	call	SQLCloseCursor.

You	can	control	the	type	of	cursor	used	by	either	setting
SQL_ATTR_CURSOR_TYPE	and	SQL_ATTR_CONCURRENCY,	or	by
setting	SQL_ATTR_CURSOR_SENSITIVITY	and
SQL_ATTR_CURSOR_SCROLLABLE.	You	should	not	mix	the	two	methods
of	specifying	cursor	behavior.

See	Also

How	Cursors	Are	Implemented

How	to	use	rowset	binding	(ODBC)

SQLFreeStmt

SQLGetCursorName

SQLMoreResults

SQLNumResultCols

SQLSetStmtAttr

Using	Default	Result	Sets

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

How	To

How	to	use	rowset	binding	(ODBC)
To	use	column-wise	binding

1.	 For	each	bound	column

Allocate	an	array	of	R	(or	more)	column	buffers	to	store	data
values,	where	R	is	number	of	rows	in	the	rowset.

Optionally,	allocate	an	array	of	R	(or	more)	column	buffers	to
store	data	lengths.

Call	SQLBindCol	to	bind	the	column's	data	value	and	data
length	arrays	to	the	column	of	the	rowset.

2.	 Call	SQLSetStmtAttr	to	set	the	following	attributes:

Set	SQL_ATTR_ROW_ARRAY_SIZE	to	the	number	of	rows
in	the	rowset	(R).

Set	SQL_ATTR_ROW_BIND_TYPE	to
SQL_BIND_BY_COLUMN.

Set	the	SQL_ATTR_ROWS	FETCHED_PTR	attribute	to
point	to	a	SQLUINTEGER	variable	to	hold	the	number	of
rows	fetched.

Set	SQL_ATTR_ROW_STATUS_PTR	to	point	to	an	array[R]
of	SQLUSSMALLINT	variables	to	hold	the	row-status
indicators.

3.	 Execute	the	statement.

4.	 Each	call	to	SQLFetch	or	SQLFetchScroll	retrieves	R	rows	and

transfers	the	data	into	the	bound	columns.

To	use	row-wise	binding

1.	 Allocate	an	array[R]	of	structures,	where	R	is	the	number	of	rows	in
the	rowset.	The	structure	has	one	element	for	each	column,	and	each
element	has	two	parts:

The	first	part	is	a	variable	of	the	appropriate	data	type	to	hold
the	column	data.

The	second	part	is	a	SQLINTEGER	variable	to	hold	the
column	status	indicator.

2.	 Call	SQLSetStmtAttr	to	set	the	following	attributes:

Set	SQL_ATTR_ROW_ARRAY_SIZE	to	the	number	of	rows
in	the	rowset	(R).

Set	SQL_ATTR_ROW_BIND_TYPE	to	the	size	of	the
structure	allocated	in	Step	1.

Set	the	SQL_ATTR_ROWS_FETCHED_PTR	attribute	to
point	to	a	SQLUINTEGER	variable	to	hold	the	number	of
rows	fetched.

Set	SQL_ATTR_PARAMS_STATUS_PTR	to	point	to	an
array[R]	of	SQLUSSMALLINT	variables	to	hold	the	row-
status	indicators.

3.	 For	each	column	in	the	result	set,	call	SQLBindCol	to	point	the	data
value	and	data	length	pointer	of	the	column	to	their	variables	in	the
first	element	of	the	array	of	structures	allocated	in	Step	1.

4.	 Execute	the	statement.

5.	 Each	call	to	SQLFetch	or	SQLFetchScroll	retrieves	R	rows	and
transfers	the	data	into	the	bound	columns.

See	Also

How	Cursors	Are	Implemented

How	to	use	cursors	(ODBC)

SQLBindCol

SQLFetchScroll

SQLSetStmtAttr

Using	Default	Result	Sets

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	fetch	and	update	rowsets	(ODBC)
To	fetch	and	update	rowsets

1.	 Optionally,	call	SQLSetStmtAttr	with	an	fOption	of
SQL_ROW_ARRAY_SIZE	to	change	the	number	of	rows	(R)	in	the
rowset.

2.	 Call	SQLFetch	or	SQLFetchScroll	to	get	a	rowset.

3.	 If	bound	columns	are	used,	use	the	data	values	and	data	lengths	now
available	in	the	bound	column	buffers	for	the	rowset.

If	unbound	columns	are	used,	for	each	row	call	SQLSetPos	with
Operation	set	to	SQL_POSITION	to	set	the	cursor	position;	then,	for
each	unbound	column:

Call	SQLGetData	one	or	more	times	to	get	the	data	for
unbound	columns	after	the	last	bound	column	of	the	rowset.
Calls	to	SQLGetData	should	be	in	order	of	increasing
column	number.

Call	SQLGetData	multiple	times	to	get	data	from	a	text	or
image	column.

4.	 Set	up	any	data-at-execution	text	or	image	columns.	

5.	 Call	SQLSetPos	or	SQLBulkOperations	to	set	the	cursor	position,
refresh,	update,	delete,	or	add	row(s)	within	the	rowset.

If	data-at-execution	text	or	image	columns	are	used	for	an	update	or
add	operation,	handle	them.

6.	 Optionally,	execute	a	positioned	UPDATE	or	DELETE	statement,
specifying	the	cursor	name	(available	from	SQLGetCursorName)
and	using	a	different	statement	handle	on	the	same	connection.

See	Also

Bookmarking	Rows

Changing	Rows	with	Positioned	Operations

Scrolling	and	Retrieving	Rows

SQLFetchScroll

SQLGetCursorName

SQLGetData

SQLSetStmtAttr

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()

How	To

Performing	Transactions	(ODBC)
In	ODBC,	transactions	cannot	span	connections.	ODBC	applications	can	use	the
standard	ODBC	transaction	management	functions	to	work	with	transactions	on
individual	connections.	ODBC	applications	can	also	use	the	Microsoft
Distributed	Transaction	Coordinator	(MS	DTC)	to	include	multiple	Microsoft®
SQL	Server™	connections	in	a	single	transaction,	even	when	the	connections	are
to	separate	servers.

How	To

How	to	use	Microsoft	Distributed	Transaction
Coordinator	(ODBC)
To	update	two	or	more	SQL	Servers	by	using	MS	DTC

1.	 Connect	to	MS	DTC	by	using	the	MS	DTC	OLE
DtcGetTransactionManager	function.	For	information	about	MS
DTC,	see	Microsoft	Distributed	Transaction	Coordinator.

2.	 Call	SQLDriverConnect	once	for	each	Microsoft®	SQL	Server™
connection	you	want	to	establish.

3.	 Call	the	MS	DTC	OLE	ITransactionDispenser::BeginTransaction
function	to	begin	an	MS	DTC	transaction	and	obtain	a	Transaction
object	that	represents	the	transaction.

4.	 Call	SQLSetConnectAttr	one	or	more	times	for	each	ODBC
connection	you	want	to	enlist	in	the	MS	DTC	transaction.
SQLSetConnectAttr	must	be	called	with	an	fOption	of
SQL_ATTR_ENLIST_IN_DTC	and	a	vParam	of	the	Transaction
object	(obtained	in	Step	3).

5.	 Call	SQLExecDirect	once	for	each	SQL	Server	you	want	to	update.

6.	 Call	the	MS	DTC	OLE	ITransaction::Commit	function	to	commit
the	MS	DTC	transaction.	The	Transaction	object	is	no	longer	valid.

To	perform	a	series	of	MS	DTC	transactions,	repeat	Steps	3	through	6.

To	release	the	reference	to	the	Transaction	object,	call	the	MS	DTC	OLE
ITransaction::Return	function.

To	use	an	ODBC	connection	with	an	MS	DTC	transaction,	and	then	use	the
same	connection	with	a	local	SQL	Server	transaction,	call	SQLSetConnectAttr

with	a	vParam	of	SQL_DTC_DONE.

Note		You	can	also	call	SQLSetConnectAttr	and	SQLExecDirect	in	turn	for
each	SQL	Server	instead	of	calling	them	as	suggested	earlier	in	Steps	4	and	5.

See	Also

Performing	Distributed	Transactions

SQLDriverConnect

SQLSetConnectAttr

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

Running	Stored	Procedures	(ODBC)
The	Microsoft®	SQL	Server™	ODBC	driver	supports	executing	stored
procedures	as	remote	stored	procedures.	Executing	a	stored	procedure	as	a
remote	stored	procedure	allows	the	driver	and	the	server	to	optimize	the
performance	of	executing	the	procedure.

How	To

How	to	call	stored	procedures	(ODBC)
When	a	SQL	statement	calls	a	stored	procedure	using	the	ODBC	CALL	escape
clause,	the	Microsoft®	SQL	Server™	driver	sends	the	procedure	to	SQL	Server
using	the	remote	stored	procedure	call	(RPC)	mechanism.	RPC	requests	bypass
much	of	the	statement	parsing	and	parameter	processing	in	SQL	Server	and	are
faster	than	using	the	Transact-SQL	EXECUTE	statement.

To	run	a	procedure	as	an	RPC

1.	 Construct	a	SQL	statement	that	uses	the	ODBC	CALL	escape
sequence.	The	statement	uses	parameter	markers	for	each	input,
input/output,	and	output	parameter,	and	for	the	procedure	return	value
(if	any):
{?	=	CALL	procname	(?,?)}

2.	 Call	SQLBindParameter	for	each	input,	input/output,	and	output
parameter,	and	for	the	procedure	return	value	(if	any).

3.	 Execute	the	statement	with	SQLExecDirect.

Note		If	an	application	submits	a	procedure	using	the	Transact-SQL	EXECUTE
syntax	(as	opposed	to	the	ODBC	CALL	escape	sequence),	the	SQL	Server
ODBC	driver	passes	the	procedure	call	to	SQL	Server	as	a	SQL	statement	rather
than	as	an	RPC.	Also,	output	parameters	are	not	returned	if	the	Transact-SQL
EXECUTE	statement	is	used.

See	Also

Batching	Stored	Procedure	Calls

Running	Stored	Procedures

Calling	a	Stored	Procedure

SQLBindParameter

Procedures

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	process	return	codes	and	output	parameters
(ODBC)
Microsoft®	SQL	Server™	stored	procedures	can	have	integer	return	codes	and
output	parameters.	The	return	codes	and	output	parameters	are	sent	in	the	last
packet	from	the	server	and	are	not	available	to	the	application	until
SQLMoreResults	returns	SQL_NO_DATA.

To	process	return	codes	and	output	parameters

1.	 Construct	a	SQL	statement	that	uses	the	ODBC	CALL	escape
sequence.	The	statement	should	use	parameter	markers	for	each	input,
input/output,	and	output	parameter,	and	for	the	procedure	return	value
(if	any).

2.	 Call	SQLBindParameter	for	each	input,	input/output,	and	output
parameter,	and	for	the	procedure	return	value	(if	any).

3.	 Execute	the	statement	with	SQLExecDirect.

4.	 Process	result	sets	until	SQLFetch	or	SQLFetchScroll	returns
SQL_NO_DATA	while	processing	the	last	result	set	or	until
SQLMoreResults	returns	SQL_NO_DATA.	At	this	point,	the
variables	bound	to	the	return	code	and	output	parameters	are	filled
with	returned	data	values.

Examples

This	example	shows	processing	a	return	code	and	output	parameter.	Error-
checking	code	is	removed	to	simplify	this	example.

//	CREATE	PROCEDURE	TestParm	@OutParm	int	OUTPUT	AS
//	SELECT	au_lname	FROM	pubs.dbo.authors
//	SELECT	@OutParm	=	88

//	RETURN	99

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

#define	MAXBUFLEN			255

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;					
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;

int	main()	{
			RETCODE	retcode;
			//	SQLBindParameter	variables.
			SWORD			sParm1=0,	sParm2=1;
			SDWORD			cbParm1=SQL_NTS,	cbParm2=SQL_NTS;

				//	Allocate	the	ODBC	environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			//	Allocate	ODBC	connection	handle	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
																		"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);

			//	Allocate	statement	handle.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);

			//	Bind	the	return	code	to	variable	sParm1.
			retcode	=	SQLBindParameter(hstmt1,1,SQL_PARAM_OUTPUT,SQL_C_SSHORT,
									SQL_INTEGER,0,0,&sParm1,0,&cbParm1);
			//	Bind	the	output	parameter	to	variable	sParm2.
			retcode	=	SQLBindParameter(hstmt1,2,SQL_PARAM_OUTPUT,SQL_C_SSHORT,
																								SQL_INTEGER,0,0,&sParm2,0,&cbParm2);
			//	Execute	the	command.
			retcode	=	SQLExecDirect(hstmt1,	"{?	=	call	TestParm(?)}",	SQL_NTS);

			//	Show	parameters	are	not	filled.
			printf("Before	result	sets	cleared:	RetCode	=	%d,	OutParm	=	%d.\n",
									sParm1,	sParm2);

			//	Clear	any	result	sets	generated.
			while	((retcode	=	SQLMoreResults(hstmt1))	!=	SQL_NO_DATA)
						;

			//	Show	parameters	are	now	filled.
			printf("After	result	sets	drained:	RetCode	=	%d,	OutParm	=	%d.\n",
									sParm1,	sParm2);

			/*	Clean	up.	*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt1);
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

How	To

Managing	text	and	image	Columns	(ODBC)
The	Microsoft®	SQL	Server™	ODBC	driver	supports	using	text	and	image
parameters	and	retrieving	data	from	text,	ntext,	and	image	columns	in	result
sets.

How	To

How	to	use	data-at-execution	parameters	(ODBC)
To	use	data-at-execution	text,	ntext,	or	image	parameters

1.	 When	calling	SQLBindParameter	to	bind	a	program	buffer	to	the
statement	parameter:

Use	a	pcbValue	of	SQL_LEN_DATA_AT_EXEC(length)
where	length	is	the	total	length	of	the	text,	ntext,	or	image
parameter	data	in	bytes.

Use	an	rgbValue	of	a	program-defined	parameter	identifier.

2.	 Calling	SQLExecDirect	or	SQLExecute	returns	SQL_NEED_DATA,
which	indicates	that	data-at-execution	parameters	are	ready	for
processing.

3.	 For	each	data-at-execution	parameter:

Call	SQLParamData	to	get	the	program-defined	parameter
ID.	It	will	return	SQL_NEED_DATA	if	there	is	another	data-
at-execution	parameter.

Call	SQLPutData	one	or	more	times,	to	send	the	parameter
data,	until	length	is	sent.

4.	 Call	SQLParamData	to	indicate	that	all	the	data	for	the	final	data-at-
execution	parameter	is	sent.	It	will	not	return	SQL_NEED_DATA.

Examples

This	example	shows	using	SQLPutData	to	fill	the	data	in	a	data-at-execution
text	parameter.	Error-checking	code	is	removed	to	simplify	this	example.

//	Sample	ODBC3	console	application	to	write	SQL_LONGVARCHAR	data
//	using	SQLPutData.

//	Assumes	DSN	has	table:
//		SQLSrvr:	CREATE	TABLE	emp3	(NAME	char(30),	AGE	int,	
//											BIRTHDAY	datetime,	Memo1	text)

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

#define	TEXTSIZE			12000

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;					
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;

int	main()	{
			RETCODE	retcode;
						
			//	SQLBindParameter	variables.
			SDWORD						cbTextSize,	lbytes;
			//SQLParamData	variable.
			PTR									pParmID;
			//SQLPutData	variables.
			UCHAR			Data[]	=	
									"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
									"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
									"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
									"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
									"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
									"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
									"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"

									"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
									"abcdefghijklmnopqrstuvwxyzabcdefghijklmnopqrstuvwxyz"
									"abcdefghijklmnopqrstuvwxyz";
			SDWORD			cbBatch	=	(SDWORD)sizeof(Data)-1;
			
				//	Allocate	the	ODBC	environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			//	Allocate	ODBC	connection	handle	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
																			"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);
			
			//	Allocate	statement	handle.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);

			//	Set	parameters	based	on	total	data	to	send.
			lbytes	=	(SDWORD)TEXTSIZE;
			cbTextSize	=	SQL_LEN_DATA_AT_EXEC(lbytes);
			//	Bind	the	parameter	marker.
			retcode	=	SQLBindParameter(hstmt1,			//	hstmt
									1,																					//	ipar
									SQL_PARAM_INPUT,												//	fParamType
									SQL_C_CHAR,															//	fCType
									SQL_LONGVARCHAR,												//	FSqlType
									lbytes,																		//	cbColDef
									0,																					//	ibScale
									(VOID	*)1,															//	rgbValue
									0,																					//	cbValueMax
									&cbTextSize);												//	pcbValue

			//	Execute	the	command.
			retcode	=	SQLExecDirect(hstmt1,
			"INSERT	INTO	emp3	VALUES('Paul	Borm',	46,'1950-11-24	00:00:00',	?)",
																					SQL_NTS);
			//	Check	to	see	if	NEED_DATA;	if	yes,	use	SQLPutData.
			retcode	=	SQLParamData(hstmt1,	&pParmID);
			if	(retcode	==	SQL_NEED_DATA)
			{
						while	(lbytes	>	cbBatch)
						{
									SQLPutData(hstmt1,	Data,	cbBatch);
									lbytes	-=	cbBatch;
						}
						//	Put	final	batch.
						SQLPutData(hstmt1,	Data,	lbytes);	
			}
			else
			{
									ProcessErrorMessages(SQL_HANDLE_STMT,	hstmt1,
																					"SQLPutData	Failed\n\n");
									return(9);
			}

			//	Make	final	SQLParamData	call.
			retcode	=	SQLParamData(hstmt1,	&pParmID);

			/*	Clean	up.	*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt1);
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

See	Also

Bound	vs.	Unbound	text	and	image	Columns

SQLBindParameter

Data-at-execution	and	text,	ntext,	or	image	Columns

SQLPutData

Managing	text	and	image	Columns

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

How	to	use	data-at-execution	columns	(ODBC)
To	use	data-at-execution	text,	ntext,	or	image	columns

1.	 For	each	data-at-execution	column,	put	special	values	into	the	buffers
previously	bound	by	SQLBindCol:

Into	the	pcbValue	data	value	buffer,	put
SQL_LEN_DATA_AT_EXEC(length)	where	length	is	the
total	length	of	the	text,	ntext,	or	image	column	data	in	bytes.

Into	the	rgbValue	data	length	buffer,	put	a	program-defined
column	identifier.

2.	 Calling	SQLSetPos	returns	SQL_NEED_DATA,	which	indicates	that
data-at-execution	columns	are	ready	for	processing.

3.	 For	each	data-at-execution	column:

Call	SQLParamData	to	get	the	column	array	pointer.	It	will
return	SQL_NEED_DATA	if	there	is	another	data-at-
execution	column.

Call	SQLPutData	one	or	more	times	to	send	the	column	data,
until	length	is	sent.

4.	 Call	SQLParamData	to	indicate	that	all	the	data	for	the	final	data-at-
execution	column	is	sent.	It	will	not	return	SQL_NEED_DATA.

Examples

This	example	shows	using	SQLGetData	to	retrieve	the	data	from	a	data-at-
execution	text	column.	Error-checking	code	was	removed	to	simplify	this
example.

//	Sample	ODBC3	console	application	to	read	SQL_LONGVARChar

//	data	using	SQLGetData.
//	Assumes	DSN	has	table:
//		SQLSrvr:	CREATE	TABLE	emp3	(NAME	char(30),	AGE	int,	
//											BIRTHDAY	datetime,	Memo1	text)

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

#define	TEXTSIZE						12000
#define	BUFFERSIZE			450

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;

int	main()	{
			RETCODE	retcode;
			SWORD			cntr;

			//SQLGetData	variables.
			UCHAR			Data[BUFFERSIZE];
			SDWORD			cbBatch	=	(SDWORD)sizeof(Data)-1;
			SDWORD			cbTxtSize;

			//	Clear	data	array.
			for(cntr	=	0;	cntr	<	BUFFERSIZE;	cntr++)
						Data[cntr]	=	0x00;
			
				//	Allocate	the	ODBC	environment	and	save	handle.

			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,
																					SQL_IS_INTEGER);
			//	Allocate	ODBC	connection	handle	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
																			"sa",	SQL_NTS,	"MyPassWord,	SQL_NTS);
			
			//	Allocate	statement	handle;	prepare,	then	execute	command.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);
			retcode	=	SQLExecDirect(hstmt1,
																					"SELECT	Memo1	FROM	emp3",
																					SQL_NTS);

			//	Get	first	row.
			retcode	=	SQLFetch(hstmt1);
			//	Get	the	SQL_LONG	column.
			cntr	=	1;
			do	{
						retcode	=	SQLGetData(hstmt1,			//	hstmt
									1,																		//	ipar
									SQL_C_CHAR,												//	fCType
									Data,															//	rgbValue
									cbBatch,															//	cbValueMax
									&cbTxtSize);												//	pcbValue
						if	(retcode	!=	SQL_NO_DATA)	{
						printf("GetData	iteration	%d,	pcbValue	=	%d,\n",
												cntr++,	cbTxtSize);
						printf("Data	=	%s\n\n",	Data);
						}
			}	while	(retcode	!=	SQL_NO_DATA);

			/*	Clean	up.	*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt1);
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}	//	End	Main.

See	Also

Bound	vs.	Unbound	text	and	image	Columns

SQLBindCol

Data-at-execution	and	text/ntext/image	Columns

SQLPutData

Managing	text	and	image	Columns

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()

How	To

Profiling	ODBC	Driver	Performance	(ODBC)
The	Microsoft®	SQL	Server™	ODBC	driver	has	two	driver-specific	options	for
profiling	the	performance	of	the	driver.

The	SQL	Server	ODBC	driver	can	log	performance	statistics	in	file.	The	log	file
is	a	tab-delimited	file	that	can	be	analyzed	in	any	spreadsheet	supporting	tab-
delimited	files,	such	as	Microsoft	Excel.

The	driver	can	also	log	long-running	queries	(queries	that	do	not	get	a	response
from	the	server	in	a	specified	length	of	time).	These	queries	can	later	be
analyzed	by	programmers	and	database	administrators.

How	To

How	to	profile	driver	performance	data	(ODBC)
To	log	driver	performance	data	using	ODBC	Administrator

1.	 In	Control	Panel,	double-click	32-bit	ODBC.

2.	 Click	the	User	DSN,	System	DSN,	or	File	DSN	tab.

3.	 Click	the	data	source	for	which	to	log	performance.

4.	 Click	Configure.	

5.	 Navigate	the	Microsoft	SQL	Server	Configure	DSN	Wizard	to	the
page	with	Log	ODBC	driver	statistics	to	the	log	file.

6.	 Select	Log	ODBC	driver	statistics	to	the	log	file.	In	the	box,	place
the	name	of	the	file	where	the	statistics	should	be	logged.	Optionally,
click	Browse	to	browse	the	file	system	for	the	statistics	log.

To	log	driver	performance	data	programmatically

1.	 Call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_DATA_LOG	and	vParam	set	to	the	full	path
and	file	name	of	the	performance	data	log	file.	For	example:
"C:\\Odbcperf.log"

2.	 Call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_DATA	and	vParam	set	to	SQL_PERF_START
to	start	logging	performance	data.

3.	 Optionally,	call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_LOG_NOW	and	vParam	set	to	NULL	to	write	a	tab-
delimited	record	of	performance	data	to	the	performance	data	log	file.

This	can	be	done	multiple	times	as	the	application	runs.

4.	 Call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_DATA	and	vParam	set	to	SQL_PERF_STOP
to	stop	logging	performance	data.

To	pull	driver	performance	data	into	an	application

1.	 Call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_DATA	and	vParam	set	to	SQL_PERF_START
to	start	profiling	performance	data.

2.	 Call	SQLGetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_DATA	and	pvParam	set	to	the	address	of	a
pointer	to	a	SQLPERF	structure.	The	first	such	call	sets	the	pointer	to
the	address	of	a	valid	SQLPERF	structure	that	contains	current
performance	data.	The	driver	does	not	continually	refresh	the	data	in
the	performance	structure.	The	application	must	repeat	the	call	to
SQLGetConnectAttr	anytime	it	needs	to	refresh	the	structure	with
more	current	performance	data.

3.	 Call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_DATA	and	vParam	set	to	SQL_PERF_STOP
to	stop	logging	performance	data.

The	SQLPERF	structure	is	defined	in	Odbcss.h	as	follows:

typedef	struct	sqlperf
{
			//	Application	profile	statistics
			DWORD	TimerResolution;
			DWORD	SQLidu;
			DWORD	SQLiduRows;
			DWORD	SQLSelects;
			DWORD	SQLSelectRows;

			DWORD	Transactions;
			DWORD	SQLPrepares;
			DWORD	ExecDirects;
			DWORD	SQLExecutes;
			DWORD	CursorOpens;
			DWORD	CursorSize;
			DWORD	CursorUsed;
			LDOUBLE	PercentCursorUsed;
			LDOUBLE	AvgFetchTime;
			LDOUBLE	AvgCursorSize;	
			LDOUBLE	AvgCursorUsed;
			DWORD	SQLFetchTime;
			DWORD	SQLFetchCount;
			DWORD	CurrentStmtCount;
			DWORD	MaxOpenStmt;
			DWORD	SumOpenStmt;
			
			//	Connection	statistics
			DWORD	CurrentConnectionCount;
			DWORD	MaxConnectionsOpened;
			DWORD	SumConnectionsOpened;
			DWORD	SumConnectionTime;
			LDOUBLE	AvgTimeOpened;

			//	Network	statistics
			DWORD	ServerRndTrips;
			DWORD	BuffersSent;
			DWORD	BuffersRec;
			DWORD	BytesSent;
			DWORD	BytesRec;

			//	Time	statistics
			DWORD	msExecutionTime;

			DWORD	msNetworkServerTime;

}				SQLPERF;

Examples
This	example	shows	both	the	creation	of	a	performance	data	log	file	and
displaying	performance	data	directly	from	the	SQLPERF	data	structure.	Error-
checking	code	is	removed	to	simplify	this	example.

//	Sample	showing	the	SQL	Server	ODBC	driver-specific	options
//	to	record	performance	statistics.		The	sample	creates
//	one	file:
//
//	C:\Odbcperf.log	contains	performance	statistics	and
//	can	be	imported	to	a	spreadsheet	application	such	as	Microsoft	Excel	
//	as	a	tab-delimited	file	for	analysis.

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;					
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;

int	main()	{
			RETCODE	retcode;
			//	Pointer	to	the	ODBC	driver	performance	structure.
			SQLPERF						*PerfPtr;
			SQLINTEGER			cbPerfPtr;

			
				//	Allocate	the	ODBC	environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			//	Allocate	ODBC	connection	handle	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
																		"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);

			//	Set	options	to	log	performance	statistics.
			//	Specify	file	to	use	for	the	log.
			retcode	=	SQLSetConnectAttr
																					(hdbc1,
																					SQL_COPT_SS_PERF_DATA_LOG,
																					&"c:\\odbcperf.log",
																					SQL_NTS);
			//	Start	the	performance	statistics	log.
			retcode	=	SQLSetConnectAttr
																					(hdbc1,
																					SQL_COPT_SS_PERF_DATA,
																					(SQLPOINTER)SQL_PERF_START,
																					SQL_IS_UINTEGER);

			//	Allocate	statement	handle,	then	execute	command.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);
			retcode	=	SQLExecDirect(hstmt1,
									"SELECT	*	FROM	pubs.dbo.authors",	SQL_NTS);
			//	Clear	any	result	sets	generated.
			while	((retcode	=	SQLMoreResults(hstmt1))	!=	SQL_NO_DATA)
						;

			retcode	=	SQLExecDirect(hstmt1,
									"SELECT	*	FROM	pubs.dbo.stores",	SQL_NTS);
			//	Clear	any	result	sets	generated.
			while	((retcode	=	SQLMoreResults(hstmt1))	!=	SQL_NO_DATA)
						;

			//	Generate	a	long-running	query.
			retcode	=	SQLExecDirect(hstmt1,
																					"waitfor	delay	'00:00:04'	",	SQL_NTS);
			//	Clear	any	result	sets	generated.
			while	((retcode	=	SQLMoreResults(hstmt1))	!=	SQL_NO_DATA)
						;

			//	Write	current	statistics	to	the	performance	log.
			retcode	=	SQLSetConnectAttr
																					(hdbc1,
																					SQL_COPT_SS_PERF_DATA_LOG_NOW,
																					(SQLPOINTER)NULL,
																					SQL_IS_UINTEGER);

			//	Get	pointer	to	current	SQLPerf	structure.
			//	Print	a	couple	of	statistics.
			retcode	=	SQLGetConnectAttr
																					(hdbc1,
																					SQL_COPT_SS_PERF_DATA,
																					(SQLPOINTER)&PerfPtr,
																					SQL_IS_POINTER,
																					&cbPerfPtr);
			printf("SQLSelects	=	%d,	SQLSelectRows	=	%d\n",
												PerfPtr->SQLSelects,	PerfPtr->SQLSelectRows);

			/*	Clean	up.	*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt1);

			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

See	Also

Profiling	ODBC	Driver	Performance

SQLSetConnectAttr

SQLGetConnectAttr

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	log	long-running	queries	(ODBC)
To	log	long-running	queries	using	ODBC	Administrator

1.	 In	Control	Panel,	double-click	32-bit	ODBC.

2.	 Click	the	User	DSN,	System	DSN,	or	File	DSN	tab.

3.	 Click	the	data	source	for	which	to	log	long-running	queries.

4.	 Click	Configure.

5.	 Navigate	the	Microsoft	SQL	Server	Configure	DSN	Wizard	to	the
page	with	Save	long-running	queries	to	the	log	file.

6.	 Select	Save	long-running	queries	to	the	log	file.	In	the	box,	place	the
name	of	the	file	where	the	long-running	queries	should	be	logged.
Optionally,	click	Browse	to	browse	the	file	system	for	the	query	log.

7.	 Set	a	query	time-out	interval,	in	milliseconds,	in	the	Long	query	time
(milliseconds)	box.

To	log	long-running	queries	data	programmatically

1.	 Call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_QUERY_LOG	and	vParam	set	to	the	full	path
and	file	name	of	the	long-running	query	log	file.	For	example:
C:\\Odbcqry.log

2.	 Call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_QUERY_INTERVAL	and	vParam	set	to	the
time-out	interval,	in	milliseconds.

3.	 Call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_QUERY	and	vParam	set	to
SQL_PERF_START	to	start	logging	long-running	queries.

4.	 Call	SQLSetConnectAttr	with	fOption	set	to
SQL_COPT_SS_PERF_QUERY	and	vParam	set	to
SQL_PERF_STOP	to	stop	logging	long-running	queries.

Examples

This	example	shows	the	creation	of	a	long-running	query	log	file.	Error-
checking	code	is	removed	to	simplify	this	example.

//	Sample	showing	the	SQL	Server	ODBC	driver-specific	options
//	to	log	long-running	queries.	Creates	C:\Odbcqry.log,	which
//	contains	a	list	of	queries	whose	execution
//	exceeds	an	interval	set	by	the	application.

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;					
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;

int	main()	{

			RETCODE	retcode;

				//	Allocate	the	ODBC	environment	and	save	handle.

			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			//	Allocate	ODBC	connection	handle	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
															"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS));

			//	Set	options	to	log	long-running	queries,	including	the
			//	file	to	use	for	the	log.
			retcode	=	SQLSetConnectAttr
																					(hdbc1,
																					SQL_COPT_SS_PERF_QUERY_LOG,
																					&"c:\\odbcqry.log",
																					SQL_NTS);
			//	Set	the	long-running	query	interval	(in
			//	milliseconds).		Note	that	for	version	2.50	and	2.65
			//	drivers,	this	value	is	specified	in	seconds,	not	milliseconds.
			retcode	=	SQLSetConnectAttr
																					(hdbc1,
																					SQL_COPT_SS_PERF_QUERY_INTERVAL,
																					(SQLPOINTER)3000,
																					SQL_IS_UINTEGER);
			//	Start	the	long-running	query	log.
			retcode	=	SQLSetConnectAttr
																					(hdbc1,
																					SQL_COPT_SS_PERF_QUERY,
																					(SQLPOINTER)SQL_PERF_START,
																					SQL_IS_UINTEGER);

			//	Allocate	statement	handle	then	execute	commands.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);

			retcode	=	SQLExecDirect(hstmt1,
									"SELECT	*	FROM	pubs.dbo.authors",	SQL_NTS);
			//	Clear	any	result	sets	generated.
			while	((retcode	=	SQLMoreResults(hstmt1))	!=	SQL_NO_DATA)
						;

			retcode	=	SQLExecDirect(hstmt1,
									"SELECT	*	FROM	pubs.dbo.stores",	SQL_NTS);
			//	Clear	any	result	sets	generated.
			while	((retcode	=	SQLMoreResults(hstmt1))	!=	SQL_NO_DATA)
						;

			//	Generate	a	long-running	query.
			retcode	=	SQLExecDirect(hstmt1,
									"waitfor	delay	'00:00:04'	",	SQL_NTS);
			//	Clear	any	result	sets	generated.
			while	((retcode	=	SQLMoreResults(hstmt1))	!=	SQL_NO_DATA)
						;

			/*	Clean	up.	*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt1);
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

See	Also

Profiling	ODBC	Driver	Performance

SQLSetConnectAttr

SQLGetConnectAttr

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	process	ODBC	errors	(ODBC)
Two	ODBC	function	calls	can	be	used	to	retrieve	ODBC	messages:
SQLGetDiagRec	and	SQLGetDiagField.	To	obtain	primary	ODBC-related
information	in	the	SQLState,	pfNative,	and	ErrorMessage	diagnostic	fields,	call
SQLGetDiagRec	until	it	returns	SQL_NO_DATA.	For	each	diagnostic	record,
SQLGetDiagField	can	be	called	to	retrieve	individual	fields.	All	driver-specific
fields	must	be	retrieved	using	SQLGetDiagField.

SQLGetDiagRec	and	SQLGetDiagField	are	processed	by	ODBC	Driver
Manager,	not	an	individual	driver.	ODBC	Driver	Manager	does	not	cache	driver-
specific	diagnostic	fields	until	a	successful	connection	has	been	made.	Calling
SQLGetDiagField	for	driver-specific	diagnostic	fields	is	not	possible	before	a
successful	connection.	This	includes	the	ODBC	connection	commands,	even	if
they	return	SQL_SUCCESS_WITH_INFO.	Driver-specific	diagnostic	fields	will
not	be	available	until	the	next	ODBC	function	call.

Examples
The	following	example	shows	a	simple	error	handler	that	calls	SQLGetDiagRec
for	the	standard	ODBC	information.	It	then	tests	for	a	valid	connection,	and	if
there	is,	it	calls	SQLGetDiagField	for	the	Microsoft®	SQL	Server™	ODBC
driver-specific	diagnostic	fields.

//	Example	of	SQL	Server	ODBC	driver-specific	options
//	on	SQLGetDiagField.
//
//	This	application	assumes	the	existence	of	the	following
//	stored	procedure:
//
//	CREATE	PROCEDURE	BadOne	AS	SELECT	*	FROM	NotThere
//
//	where	no	object	named	NotThere	exists.

#include	<stdio.h>

#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

#define	MAXBUFLEN	256

SQLHENV						henv	=	SQL_NULL_HENV;
SQLHDBC						hdbc1	=	SQL_NULL_HDBC;					
SQLHSTMT						hstmt1	=	SQL_NULL_HSTMT;
char									logstring[MAXBUFLEN]	=	"";

void						ProcessLogMessages(SQLSMALLINT	plm_handle_type,
																					SQLHANDLE	plm_handle,	char	*logstring,
																					int	ConnInd);

int	main()	{
			RETCODE	retcode;

			//	Allocate	the	ODBC	environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			if((retcode	!=	SQL_SUCCESS_WITH_INFO)	&&
								(retcode	!=	SQL_SUCCESS))	{
						printf("SQLAllocHandle(Env)	Failed\n\n");
						return(9);
			}

			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			if((retcode	!=	SQL_SUCCESS_WITH_INFO)	&&
								(retcode	!=	SQL_SUCCESS))	{

						printf("SQLSetEnvAttr(ODBC	version)	Failed\n\n");
						return(9);						
			}

			//	Allocate	ODBC	connection	handle	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			if((retcode	!=	SQL_SUCCESS_WITH_INFO)	&&
								(retcode	!=	SQL_SUCCESS))	{
						printf("SQLAllocHandle(hdbc1)	Failed\n\n");
						return(9);
			}
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
						"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);
			if	((retcode	!=	SQL_SUCCESS)	&&
								(retcode	!=	SQL_SUCCESS_WITH_INFO))	{
									ProcessLogMessages(SQL_HANDLE_DBC,	hdbc1,
															"SQLConnect()	Failed\n\n",	FALSE);
									return(9);
			}
			else	{
									ProcessLogMessages(SQL_HANDLE_DBC,	hdbc1,
																					"\nConnect	Successful\n\n",	FALSE);
						}

			//	Allocate	statement	handle,	and	then	execute	command.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc1,	&hstmt1);
			if	((retcode	!=	SQL_SUCCESS)	&&
								(retcode	!=	SQL_SUCCESS_WITH_INFO))	{
									ProcessLogMessages(SQL_HANDLE_DBC,	hdbc1,
																					"SQLAllocHandle(hstmt1)	Failed\n\n",
																					TRUE);
									return(9);
			}

			retcode	=	SQLExecDirect(hstmt1,	"exec	BadOne",	SQL_NTS);
			if	((retcode	!=	SQL_SUCCESS)	&&
								(retcode	!=	SQL_SUCCESS_WITH_INFO))	{
									ProcessLogMessages(SQL_HANDLE_STMT,	hstmt1,
																		"SQLExecute()	Failed\n\n",	TRUE);
									return(9);
			}
			//	Clear	any	result	sets	generated.
			while	((retcode	=	SQLMoreResults(hstmt1))	!=	SQL_NO_DATA)
						;

			/*	Clean	up.	*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt1);
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

void	ProcessLogMessages(SQLSMALLINT	plm_handle_type,
																		SQLHANDLE	plm_handle,
																		char	*logstring,	int	ConnInd)
{
			RETCODE						plm_retcode	=	SQL_SUCCESS;
			UCHAR						plm_szSqlState[MAXBUFLEN]	=	"",
												plm_szErrorMsg[MAXBUFLEN]	=	"";
			SDWORD						plm_pfNativeError	=	0L;
			SWORD						plm_pcbErrorMsg	=	0;
			SQLSMALLINT			plm_cRecNmbr	=	1;
			SDWORD						plm_SS_MsgState	=	0,	plm_SS_Severity	=	0;
			SQLINTEGER			plm_Rownumber	=	0;
			USHORT						plm_SS_Line;
			SQLSMALLINT			plm_cbSS_Procname,	plm_cbSS_Srvname;

			SQLCHAR						plm_SS_Procname[MAXNAME],	plm_SS_Srvname[MAXNAME];

			printf(logstring);

			while	(plm_retcode	!=	SQL_NO_DATA_FOUND)	{
						plm_retcode	=	SQLGetDiagRec(plm_handle_type,	plm_handle,
									plm_cRecNmbr,	plm_szSqlState,	&plm_pfNativeError,
									plm_szErrorMsg,	MAXBUFLEN	-	1,	&plm_pcbErrorMsg);

						//	Note	that	if	the	application	has	not	yet	made	a
						//	successful	connection,	the	SQLGetDiagField
						//	information	has	not	yet	been	cached	by	ODBC
						//	Driver	Manager	and	these	calls	to	SQLGetDiagField
						//	will	fail.
						if	(plm_retcode	!=	SQL_NO_DATA_FOUND)	{
									if	(ConnInd)	{
												plm_retcode	=	SQLGetDiagField(
															plm_handle_type,	plm_handle,	plm_cRecNmbr,
															SQL_DIAG_ROW_NUMBER,	&plm_Rownumber,
															SQL_IS_INTEGER,
															NULL);
												plm_retcode	=	SQLGetDiagField(
															plm_handle_type,	plm_handle,	plm_cRecNmbr,
															SQL_DIAG_SS_LINE,	&plm_SS_Line,
															SQL_IS_INTEGER,
															NULL);
												plm_retcode	=	SQLGetDiagField(
															plm_handle_type,	plm_handle,	plm_cRecNmbr,
															SQL_DIAG_SS_MSGSTATE,	&plm_SS_MsgState,
															SQL_IS_INTEGER,
															NULL);
												plm_retcode	=	SQLGetDiagField(
															plm_handle_type,	plm_handle,	plm_cRecNmbr,

															SQL_DIAG_SS_SEVERITY,	&plm_SS_Severity,
															SQL_IS_INTEGER,
															NULL);
												plm_retcode	=	SQLGetDiagField(
															plm_handle_type,	plm_handle,	plm_cRecNmbr,
															SQL_DIAG_SS_PROCNAME,	&plm_SS_Procname,
															sizeof(plm_SS_Procname),
															&plm_cbSS_Procname);
												plm_retcode	=	SQLGetDiagField(
															plm_handle_type,	plm_handle,	plm_cRecNmbr,
															SQL_DIAG_SS_SRVNAME,	&plm_SS_Srvname,
															sizeof(plm_SS_Srvname),
															&plm_cbSS_Srvname);
									}
									printf("szSqlState	=	%s\n",plm_szSqlState);
									printf("pfNativeError	=	%d\n",plm_pfNativeError);
									printf("szErrorMsg	=	%s\n",plm_szErrorMsg);
									printf("pcbErrorMsg	=	%d\n\n",plm_pcbErrorMsg);
									if	(ConnInd)	{
												printf("ODBCRowNumber	=	%d\n",	plm_Rownumber);
												printf("SSrvrLine	=	%d\n",	plm_Rownumber);
												printf("SSrvrMsgState	=	%d\n",plm_SS_MsgState);
												printf("SSrvrSeverity	=	%d\n",plm_SS_Severity);
												printf("SSrvrProcname	=	%s\n",plm_SS_Procname);
												printf("SSrvrSrvname	=	%s\n\n",plm_SS_Srvname);
									}
						}
						plm_cRecNmbr++;	//Increment	to	next	diagnostic	record.
			}	//	End	while.
}

See	Also

Handling	Errors	and	Messages

SQLGetDiagField

Diagnostic	Records	and	Fields

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	bulk	copy	with	the	SQL	Server	ODBC	driver
(ODBC)
When	used	with	Microsoft®	SQL	Server™	version	7.0,	the	SQL	Server	ODBC
driver	supports	the	same	bulk	copy	functions	supported	by	the	DB-Library	API.

How	To

How	to	bulk	copy	without	a	format	file	(ODBC)
To	bulk	copy	without	a	format	file

1.	 Allocate	an	environment	handle	and	a	connection	handle.

2.	 Set	SQL_COPT_SS_BCP	and	SQL_BCP_ON	to	enable	bulk	copy
operations.

3.	 Connect	to	Microsoft®	SQL	Server™.

4.	 Call	bcp_init	to	set	the	following	information:

The	name	of	the	table	or	view	to	bulk	copy	from	or	to.

The	name	of	the	data	file	that	contains	the	data	to	copy	into
the	database	or	that	receives	data	when	copying	from	the
database.

The	name	of	a	data	file	to	receive	any	bulk	copy	error
messages	(specify	NULL	if	you	do	not	want	a	message	file).

The	direction	of	the	copy:	DB_IN	from	the	file	to	the	view	or
table,	or	DB_OUT	to	the	file	from	the	table	or	view.

5.	 Call	bcp_exec	to	execute	the	bulk	copy	operation.

When	DB_OUT	is	set	with	these	steps,	the	file	is	created	in	native	format.	The
file	can	then	be	bulk	copied	into	a	server	by	following	these	same	steps,	except
that	DB_OUT	is	set	instead	of	DB_IN.	This	works	only	if	both	the	source	and
target	tables	have	exactly	the	same	structure.

Examples

The	following	example	shows	using	bulk	copy	functions	to	create	a	native	mode
data	file.	Most	error-checking	code	was	removed	to	simplify	this	example.

//	Sample	showing	ODBC	BCP_OUT	in	native	mode	format.
//

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

SQLHENV						henv	=	SQL_NULL_HENV;
HDBC									hdbc1	=	SQL_NULL_HDBC;

int	main()	{
			RETCODE	retcode;

			//	Bulk	copy	variables.
			SDWORD			cRows;

				//	Allocate	the	ODBC	environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);

			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,
																						SQL_IS_INTEGER);

			//	Allocate	ODBC	connection	handle,	set	bulk	copy	mode,	and	
			//	then	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLSetConnectAttr(hdbc1,	SQL_COPT_SS_BCP,

																								(void	*)SQL_BCP_ON,
																									SQL_IS_INTEGER);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
												"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);
			
			//	Initialize	the	bulk	copy.
			retcode	=	bcp_init(hdbc1,	"pubs..authors",	"c:\\BCPODBC.bcp",
																		"c:\\BCPERROR.out,	DB_OUT);
			//	Note	that	the	test	is	for	the	bulk	copy	return	of	SUCCEED,
			//	not	the	ODBC	return	of	SQL_SUCCESS.
			if	((retcode	!=	SUCCEED))
			{
									ProcessLogMessages(SQL_HANDLE_DBC,	hdbc1,
																					"bcp_init(hdbc1)	Failed\n\n");
									return(9);
			}

			//	Execute	the	bulk	copy.
			retcode	=	bcp_exec(hdbc1,	&cRows);
			if	((retcode	!=	SUCCEED))
			{
									ProcessLogMessages(SQL_HANDLE_DBC,	hdbc1,
																					"bcp_exec(hdbc1)	Failed\n\n");
									return(9);
			}
			printf("Number	of	rows	bulk	copied	out	=	%d.\n",	cRows);

			/*	Clean	up.	*/
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

The	data	file	created	by	this	sample	is	a	native	mode	file.	To	bulk	copy	the	data
back	into	the	table,	recompile	the	application	after	changing	the	bcp_init	call
from	BCP_OUT	to	BCP_IN.	To	use	the	file	as	native-mode	input	to	the	bcp
utility,	enter	at	a	command	prompt:

bcp	MyDB..DateTable	in	c:\BCPODBC.bcp	/n	/SMyServer	
/Usa	/PMyPassWord

See	Also

bcp_exec

Using	Data	Files	and	Format	Files

bcp_init

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	bulk	copy	a	SELECT	result	set	(ODBC)
To	bulk	copy	out	the	result	set	of	a	SELECT	statement

1.	 Allocate	an	environment	handle	and	a	connection	handle.

2.	 Set	SQL_COPT_SS_BCP	and	SQL_BCP_ON	to	enable	bulk	copy
operations.

3.	 Connect	to	Microsoft®	SQL	Server™.

4.	 Call	bcp_init	to	set	the	following	information:

Specify	NULL	for	the	szTable	parameter.

The	name	of	the	data	file	that	receives	result	set	data.

The	name	of	a	data	file	to	receive	any	bulk	copy	error
messages	(specify	NULL	if	you	do	not	want	a	message	file).

The	direction	of	the	copy:	DB_OUT.

5.	 Call	bcp_control,	set	eOption	to	BCPHINTS	and	place	in	iValue	a
pointer	to	a	SQLTCHAR	array	containing	the	SELECT	statement.

6.	 Call	bcp_exec	to	execute	the	bulk	copy	operation.

When	using	these	steps	the	file	is	created	in	native	format.	You	can	convert	the
data	values	to	other	data	types	by	using	bcp_colfmt,	for	more	information,	see
the	How	to	create	a	bulk	copy	format	file	(ODBC)	section.

Examples

The	following	example	shows	using	bulk	copy	functions	to	bulk	copy	out	the
result	set	of	a	SELECT	statement.	Most	error-checking	code	is	removed	to
simplify	this	example.

//	Sample	showing	ODBC	BCP_OUT	of	a	SELECT	result	set
//	using	native	mode	format.

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

SQLHENV						henv	=	SQL_NULL_HENV;
HDBC									hdbc1	=	SQL_NULL_HDBC;

int	main()	{
			RETCODE	retcode;

			//	Bulk	copy	variables.
			SDWORD			cRows;
			SQLTCHAR			szBCPQuery[]	=
						"SELECT	LastName,	FirstName	FROM	Northwind.dbo.Employees";

				//	Allocate	the	ODBC	environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);

			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,
																						SQL_IS_INTEGER);

			//	Allocate	ODBC	connection	handle,	set	bulk	copy	mode,	and	

			//	then	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLSetConnectAttr(hdbc1,	SQL_COPT_SS_BCP,
																								(void	*)SQL_BCP_ON,
																									SQL_IS_INTEGER);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
												"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);
			
			//	Initialize	the	bulk	copy.
			retcode	=	bcp_init(hdbc1,	NULL,	"c:\\BCPODBC.bcp",
																		"c:\\BCPERROR.out,	DB_OUT);
			//	Note	that	the	test	is	for	the	bulk	copy	return	of	SUCCEED,
			//	not	the	ODBC	return	of	SQL_SUCCESS.
			if	((retcode	!=	SUCCEED))
			{
									ProcessLogMessages(SQL_HANDLE_DBC,	hdbc1,
																					"bcp_init(hdbc1)	Failed\n\n");
									return(9);
			}

			//	Specify	the	query	to	use.
			retcode	=	bcp_control(hdbc1,	BCPHINTS,	(void	*)szBCPQuery);
			if	((retcode	!=	SUCCEED))
			{
									ProcessLogMessages(SQL_HANDLE_DBC,	hdbc1,
																					"bcp_control(hdbc1)	Failed\n\n");
									return(9);
			}

			//	Execute	the	bulk	copy.
			retcode	=	bcp_exec(hdbc1,	&cRows);
			if	((retcode	!=	SUCCEED))
			{

									ProcessLogMessages(SQL_HANDLE_DBC,	hdbc1,
																					"bcp_exec(hdbc1)	Failed\n\n");
									return(9);
			}
			printf("Number	of	rows	bulk	copied	out	=	%d.\n",	cRows);

			/*	Clean	up.	*/
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

See	Also

bcp_init

bcp_control

bcp_exec

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()

How	To

How	to	create	a	bulk	copy	format	file	(ODBC)
To	create	a	bulk	copy	format	file

1.	 Allocate	an	environment	handle	and	a	connection	handle.

2.	 Set	SQL_COPT_SS_BCP	and	SQL_BCP_ON	to	enable	bulk	copy
operations.

3.	 Connect	to	Microsoft®	SQL	Server™.

4.	 Call	bcp_init	to	set	the	following	information:

The	name	of	the	table	or	view	to	bulk	copy	from	or	to.

The	name	of	the	data	file	that	contains	the	data	to	copy	into
the	database	or	that	receives	data	when	copying	from	the
database.

The	name	of	a	data	file	to	receive	any	bulk	copy	error
messages	(specify	NULL	if	you	do	not	want	a	message	file).

The	direction	of	the	copy:	DB_OUT	to	the	file	from	the	table
or	view.

5.	 Call	bcp_columns	to	set	the	number	of	columns.

6.	 Call	bcp_colfmt	for	each	column	to	define	its	characteristics	in	the
data	file.

7.	 Call	bcp_writefmt	to	create	a	format	file	describing	the	data	file	to	be
created	by	the	bulk	copy	operation.

8.	 Call	bcp_exec	to	execute	the	bulk	copy	operation.

A	bulk	copy	operation	run	in	this	way	creates	both	a	data	file	containing	the	bulk
copied	data	and	a	format	file	describing	the	layout	of	the	data	file.

Examples
The	following	example	shows	using	bulk	copy	functions	to	create	both	a	data
file	and	a	format	file.	Error-checking	code	was	removed	to	simplify	this
example.

//	Sample	showing	ODBC	BCP_OUT	creating	a	format	file.
//
//	Assumes	server	has:
//	CREATE	TABLE	BCPDate	(cola	int,	colb	datetime)

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

SQLHENV						henv	=	SQL_NULL_HENV;
HDBC									hdbc1	=	SQL_NULL_HDBC;					

int	main()	{
			RETCODE						retcode;
			//	BCP	variables.
			SDWORD			cRows;

				//	Allocate	the	ODBC	environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);

			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			//	Allocate	ODBC	connection	handle,	set	bulk	copy	mode,	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLSetConnectAttr(hdbc1,	SQL_COPT_SS_BCP,
																								(void	*)SQL_BCP_ON,	SQL_IS_INTEGER);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
																					"sa",SQL_NTS,	"MyPassWord",	SQL_NTS);
			
			//	Initialize	the	bulk	copy.
			retcode	=	bcp_init(hdbc1,	"pubs..BCPDate",	"c:\\BCPODBC.bcp",
																		NULL,	DB_OUT);
			//	Set	the	number	of	output	columns.
			retcode	=	bcp_columns(hdbc1,	2);

			//	Describe	the	format	of	column	1	in	the	data	file.
			retcode	=	bcp_colfmt(hdbc1,	1,	SQLCHARACTER,	-1,	5,	NULL,	0,	1);
			//	Describe	the	format	of	column	2	in	the	data	file.
			retcode	=	bcp_colfmt(hdbc1,	2,	SQLCHARACTER,	-1,	20,	NULL,	0,	2);

			//	Create	the	format	file.
			retcode	=	bcp_writefmt(hdbc1,	"c:\\BCPFMT.fmt");
			
			//	Execute	the	bulk	copy.
			retcode	=	bcp_exec(hdbc1,	&cRows);

			printf("Number	of	rows	bulk	copied	out	=	%d.\n",	cRows);

			/*	Clean	up.	*/
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);

			return(0);
}

To	bulk	copy	this	data	file	back	into	the	database,	see	How	to	bulk	copy	using	a
format	file.	To	use	this	data	file	as	the	input	to	the	bcp	utility,	enter	at	a
command	prompt:

bcp	pubs..BCPDate	in	C:\Bcpodbc.bcp	/fc:\Bcpfmt.fmt	/SMyServer
/Usa	/PMyPassWord

See	Also

bcp_colfmt

bcp_writefmt

bcp_columns

How	to	bulk	copy	by	using	a	format	file	(ODBC)

bcp_exec

Using	Data	Files	and	Format	Files

bcp_init

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

How	To

How	to	bulk	copy	by	using	a	format	file	(ODBC)
To	bulk	copy	by	using	a	format	file

1.	 Allocate	an	environment	handle	and	a	connection	handle.

2.	 Set	SQL_COPT_SS_BCP	and	SQL_BCP_ON	to	enable	bulk	copy
operations.

3.	 Connect	to	Microsoft®	SQL	Server™.

4.	 Call	bcp_init	to	set	the	following	information:

The	name	of	the	table	or	view	to	bulk	copy	from	or	to.

The	name	of	the	data	file	that	contains	the	data	to	copy	into
the	database	or	that	receives	data	when	copying	from	the
database.

The	name	of	a	data	file	to	receive	any	bulk	copy	error
messages	(specify	NULL	if	you	do	not	want	a	message	file).

The	direction	of	the	copy:	DB_IN	from	the	file	to	the	table	or
view.

5.	 Call	bcp_readfmt	to	read	the	format	file	describing	the	data	file	to	be
used	by	the	bulk	copy	operation.

6.	 Call	bcp_exec	to	execute	the	bulk	copy	operation.

Examples

The	following	example	shows	using	bulk	copy	functions	with	both	an	data	file

and	format	file.	Error-checking	code	was	removed	to	simplify	this	example.

//	Sample	showing	ODBC	BCP_IN	using	a	format	file.
//
//	Assumes	server	has:
//	CREATE	TABLE	BCPDate	(cola	int,	colb	datetime)
//	Assumes	you	have	the	format	file	and	datafile	from	the	example	
//	in	How	to	create	a	bulk	copy	format	file.

#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

SQLHENV						henv	=	SQL_NULL_HENV;
HDBC									hdbc1	=	SQL_NULL_HDBC;					

int	main()	{
			RETCODE						retcode;
			//	BCP	variables.
			SDWORD			cRows;

			//	Allocate	the	ODBC	environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);
			//	Allocate	ODBC	connection	handle,	set	BCP	mode,	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLSetConnectAttr(hdbc1,	SQL_COPT_SS_BCP,
																								(void	*)SQL_BCP_ON,	SQL_IS_INTEGER);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,

																					"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);
			
			//	Initialize	the	bulk	copy.
			retcode	=	bcp_init(hdbc1,	"pubs..BCPDate",	"c:\\BCPODBC.bcp",
																		NULL,	DB_IN);

			//	Read	the	format	file.
			retcode	=	bcp_readfmt(hdbc1,	"c:\\BCPFMT.fmt");

			//	Execute	the	bulk	copy.
			retcode	=	bcp_exec(hdbc1,	&cRows);

			printf("Number	of	rows	bulk	copied	in	=	%d.\n",	cRows);

			/*	Clean	up.	*/
			SQLDisconnect(hdbc1);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

See	Also

bcp_exec

How	to	bulk	copy	by	using	a	format	file

bcp_init

Using	Data	Files	and	Format	Files

bcp_readfmt

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()

How	To

How	to	bulk	copy	data	from	program	variables
(ODBC)
To	use	bulk	copy	functions	directly	on	program	variables

1.	 Allocate	an	environment	handle	and	a	connection	handle.

2.	 Set	SQL_COPT_SS_BCP	and	SQL_BCP_ON	to	enable	bulk	copy
operations.

3.	 Connect	to	Microsoft®	SQL	Server™.

4.	 Call	bcp_init	to	set	the	following	information:

The	name	of	the	table	or	view	to	bulk	copy	from	or	to.

Specify	NULL	for	the	name	of	the	data	file.

The	name	of	an	data	file	to	receive	any	bulk	copy	error
messages	(specify	NULL	if	you	do	not	want	a	message	file).

The	direction	of	the	copy:	DB_IN	from	the	application	to	the
view	or	table	or	DB_OUT	to	the	application	from	the	table	or
view.

5.	 Call	bcp_bind	for	each	column	in	the	bulk	copy	to	bind	the	column	to
a	program	variable.

6.	 Fill	the	program	variables	with	data,	and	call	bcp_sendrow	to	send	a
row	of	data.

7.	 After	several	rows	have	been	sent,	call	bcp_batch	to	checkpoint	the

rows	already	sent.	It	is	good	practice	to	call	bcp_batch	at	least	once
per	1000	rows.

8.	 After	all	rows	have	been	sent,	call	bcp_done	to	complete	the
operation.

You	can	vary	the	location	and	length	of	program	variables	during	a	bulk	copy
operation	by	calling	bcp_colptr	and	bcp_collen.

Use	bcp_control	to	set	various	bulk	copy	options.	Use	bcp_moretext	to	send
text,	ntext,	and	image	data	in	segments	to	the	server.

Examples
The	following	example	shows	using	bulk	copy	functions	to	bulk	copy	data	from
program	variables	to	SQL	Server	using	bcp_bind	and	bcp_sendrow.	Error-
checking	code	is	removed	to	simplify	this	example.

//	Sample	showing	ODBC	bulk	copy	from	program	variables
//	bound	with	bcp_bind;	data	sent	with	bcp_sendrow.
//
//	Assumes	server	has:
//
//	CREATE	TABLE	BCPSource	(cola	int	PRIMARY	KEY,
//																			colb	CHAR(10)	NULL)
//	CREATE	TABLE	BCPTarget	(cola	int	PRIMARY	KEY,
//																					colb	CHAR(10)	NULL)
#include	<stdio.h>
#include	<string.h>
#include	<windows.h>
#include	<sql.h>
#include	<sqlext.h>
#include	<odbcss.h>

SQLHENV						henv	=	SQL_NULL_HENV;
HDBC									hdbc1	=	SQL_NULL_HDBC,	hdbc2	=	SQL_NULL_HDBC;

SQLHSTMT						hstmt2	=	SQL_NULL_HSTMT;

int	main()	{
			RETCODE						retcode;

			//	BCP	variables.
			char			*terminator	=	"\0";
			//	bcp_done	takes	a	different	format	return	code
			//	because	it	returns	number	of	rows	bulk	copied
			//	after	the	last	bcp_batch	call.
			DBINT						cRowsDone;
			//	Set	up	separate	return	code	for	bcp_sendrow	so
			//	it	is	not	using	the	same	retcode	as	SQLFetch.
			RETCODE						SendRet;

			//	Column	variables.
			//	cbCola	and	cbColb	must	be	defined	right	before
			//	Cola	and	szColb	because	they	are	used	as	
			//	bulk	copy	indicator	variables.
			struct	ColaData{
						SQLINTEGER	cbCola;
						SQLINTEGER	Cola;
			}	ColaInst;
			struct	ColbData{
						SQLINTEGER	cbColb;
						SQLCHAR			szColb[11];
			}	ColbInst;
			
				//	Allocate	the	ODBC	environment	and	save	handle.
			retcode	=	SQLAllocHandle	(SQL_HANDLE_ENV,	NULL,	&henv);
			//	Notify	ODBC	that	this	is	an	ODBC	3.0	app.
			retcode	=	SQLSetEnvAttr(henv,	SQL_ATTR_ODBC_VERSION,
																					(SQLPOINTER)	SQL_OV_ODBC3,	SQL_IS_INTEGER);

			//	Allocate	ODBC	connection	handle,	set	bulk	copy	mode,	and	connect.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc1);
			retcode	=	SQLSetConnectAttr(hdbc1,	SQL_COPT_SS_BCP,
																								(void	*)SQL_BCP_ON,	SQL_IS_INTEGER);
			retcode	=	SQLConnect(hdbc1,	"MyDSN",	SQL_NTS,
																					"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);
			
			//	Initialize	the	bulk	copy.
			retcode	=	bcp_init(hdbc1,	"pubs..BCPTarget",	NULL,
																		NULL,	DB_IN);
			//	Bind	the	program	variables	for	the	bulk	copy.
			retcode	=	bcp_bind(hdbc1,	(BYTE	*)&ColaInst.cbCola,	4,
															SQL_VARLEN_DATA,	NULL,	(INT)NULL,
															SQLINT4,	1);
			//	Could	normally	use	strlen	to	calculate	the	bcp_bind
			//	cbTerm	parameter,	but	this	terminator	is	a	null	byte
			//	(\0),	which	gives	strlen	a	value	of	0.	Explicitly	give
			//	cbTerm	a	value	of	1.
			retcode	=	bcp_bind(hdbc1,	(BYTE	*)&ColbInst.cbColb,	4,	11,
															terminator,	1,	SQLCHARACTER,	2);

			//	Allocate	second	ODBC	connection	handle	so	that	bulk	copy
			//	and	cursor	operations	do	not	conflict.
			retcode	=	SQLAllocHandle(SQL_HANDLE_DBC,	henv,	&hdbc2);
			retcode	=	SQLConnect(hdbc2,	"MyDSN",	SQL_NTS,
																					"sa",	SQL_NTS,	"MyPassWord",	SQL_NTS);
			//	Allocate	ODBC	statement	handle.
			retcode	=	SQLAllocHandle(SQL_HANDLE_STMT,	hdbc2,	&hstmt2);

			//	Bind	the	SELECT	statement	to	the	same	program	variables
			//	bound	to	the	bulk	copy	operation.
			retcode	=	SQLBindCol(hstmt2,	1,	SQL_C_SLONG,	&ColaInst.Cola,	0,

																					&ColaInst.cbCola);
			retcode	=	SQLBindCol(hstmt2,	2,	SQL_C_CHAR,	&ColbInst.szColb,	11,
																					&ColbInst.cbColb);
			//	Execute	a	SELECT	statement	to	build	a	cursor	containing	
			//	the	data	to	be	bulk	copied	to	the	new	table.
			retcode	=	SQLExecDirect(hstmt2,
																					"SELECT	*	FROM	BCPSource",
																					SQL_NTS);
			//	Go	into	a	loop	fetching	rows	from	the	cursor	until
			//	each	row	is	fetched.	Because	the	bcp_bind	calls
			//	and	SQLBindCol	calls	each	reference	the	same
			//	variables,	each	fetch	fills	the	variables	used	by
			//	bcp_sendrow,	so	all	you	have	to	do	to	send	the	data
			//	to	SQL	Server	is	to	call	bcp_sendrow.

			while	((retcode	=	SQLFetch(hstmt2))	!=	SQL_NO_DATA)	{
						if	((retcode	!=	SQL_SUCCESS)	&&
									(retcode	!=	SQL_SUCCESS_WITH_INFO))	{
												//	Process	error.
												return(9);
						}
						if	((SendRet	=	bcp_sendrow(hdbc1))	!=	SUCCEED)	{
									//	Process	error.
									return(9);
						}
			}
			//	Signal	the	end	of	the	bulk	copy	operation.
			cRowsDone	=	bcp_done(hdbc1);
			printf("Number	of	rows	bulk	copied	after	last	bcp_batch	
															call	=	%d.\n",	cRowsDone);
			/*	Clean	up.	*/
			SQLFreeHandle(SQL_HANDLE_STMT,	hstmt2);
			SQLDisconnect(hdbc1);

			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc1);
			SQLDisconnect(hdbc2);
			SQLFreeHandle(SQL_HANDLE_DBC,	hdbc2);
			SQLFreeHandle(SQL_HANDLE_ENV,	henv);
			return(0);
}

See	Also

bcp_batch

bcp_init

bcp_bind

bcp_sendrow

bcp_done

Bulk	Copying	from	Program	Variables

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()

	How to Install SQL Server 2000
	How to install SQL Server 2000 (Setup)
	How to install client tools only (Setup)
	How to install tools only from any compact disc (Setup)
	How to install connectivity only (Setup)
	How to install a named instance of SQL Server 2000 (Setup)
	How to upgrade a SQL Server 7.0 installation to SQL Server 2000 (Setup)
	How to upgrade databases online using the Copy Database Wizard (Enterprise Manager)
	How to perform an edition upgrade within SQL Server 2000 (Setup)
	How to uninstall an existing installation of SQL Server (Setup)
	How to test an installation of SQL Server 2000 (Command Prompt)
	How to change SQL Server services login account information (Windows NT)
	How to change SQL Server services login account information (Windows)
	How to change SQL Server services login account information (Enterprise Manager)
	How to rebuild the registry (Setup)
	How to rebuild the master database (Rebuild Master utility)
	How to perform a remote installation of SQL Server 2000 (Setup)
	How to record an unattended installation file (Setup)
	How to run an unattended installation of SQL Server 2000 (Command Prompt)
	How to add components to an instance of SQL Server 2000 (Setup)
	How to access SQL Server Books Online for SQL Server 7.0
	How to install English Query (Setup)
	How to install Analysis Services (Setup)
	How to create a case-sensitive instance of SQL Server 2000 (Setup)
	How to set client code pages
	How to switch from SQL Server 6.5 to SQL Server 2000 (Command Prompt)
	How to switch from SQL Server 6.5 to SQL Server 2000 (Windows)
	How to remove SQL Server 2000 (Windows)
	How To Upgrade from SQL Server 6.5
	How to change the size of tempdb in SQL Server 6.5 (ISQL/w)
	How to change to the current server name in the SQL Server 6.5 master database (ISQL/w)
	How to update the device file locations in the SQL Server 6.5 master database (ISQL/w)
	How to estimate the disk space required for an upgrade from SQL Server version 6.5 to SQL Server 2000 (SQL Server Upgrade Wizard)
	How to edit the default database configuration (SQL Server Upgrade Wizard)
	How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a direct pipeline (SQL Server Upgrade Wizard)
	How to perform a SQL Server version 6.5 to SQL Server 2000 upgrade using a tape drive (SQL Server Upgrade Wizard)

	SQL Server Enterprise Manager
	Administering SQL Server
	How to start an instance of SQL Server automatically (Enterprise Manager)
	How to shut off automatic startup of SQL Server (Enterprise Manager)
	How to start SQL Server (Enterprise Manager)
	How to stop SQL Server or SQL Server Agent (Enterprise Manager)
	How to start the default instance of SQL Server (Service Manager)
	How to start a clustered instance of SQL Server (Service Manager)
	How to start a named instance of SQL Server (Service Manager)
	How to start the default instance of SQL Server (Windows)
	How to start a named instance of SQL Server (Windows)
	How to start the default instance of SQL Server (Command Prompt)
	How to start a named instance of SQL Server (Command Prompt)
	How to start the default instance of SQL Server in single-user mode (Command Prompt)
	How to start a named instance of SQL Server in single-user mode (Command Prompt)
	How to start the default instance of SQL Server with minimal configuration (Command Prompt)
	How to start a named instance of SQL Server with minimal configuration (Command Prompt)
	How to pause and resume the default instance of SQL Server (Service Manager)
	How to stop a clustered instance of SQL Server (Service Manager)
	How to pause and resume a named instance of SQL Server (Service Manager)
	How to pause and resume the default instance of SQL Server (Windows)
	How to pause and resume a named instance of SQL Server (Windows)
	How to pause and resume the default instance of SQL Server (Command Prompt)
	How to pause and resume a named instance of SQL Server (Command Prompt)
	How to broadcast a shutdown message (Command Prompt)
	How to stop the default instance of SQL Server (Windows)
	How to stop a named instance of SQL Server (Windows)
	How to stop the default instance of SQL Server (Command Prompt)
	How to stop a named instance of SQL Server (Command Prompt)
	How to log in to the default instance of SQL Server (Command Prompt)
	How to log in to a named instance of SQL Server (Command Prompt)
	How to change the default service (Service Manager)
	How to create a new failover cluster (Setup)
	How to install a one-node failover cluster (Setup)
	How to add nodes to an existing virtual server (Setup)
	How to remove a node from an existing failover cluster (Setup)
	How to remove a failover clustered instance (Setup)
	How to recover from failover cluster failure in Scenario 1
	How to recover from failover cluster failure in Scenario 2
	How to upgrade from a SQL Server 6.5 active/passive failover cluster (Setup)
	How to upgrade from a SQL Server 6.5 active/active failover cluster (Setup)
	How to upgrade from a SQL Server 7.0 active/active failover cluster (Setup)
	How to upgrade from a SQL Server 7.0 active/passive failover cluster (Setup)
	How to upgrade from a default instance to a default clustered instance of SQL Server 2000 (Setup)
	How to upgrade from a local default instance to a clustered, named instance of SQL Server 2000 (Setup)
	Backing Up and Restoring Databases
	How to create a logical disk backup device (Enterprise Manager)
	How to create a logical tape backup device (Enterprise Manager)
	How to delete a logical backup device (Enterprise Manager)
	How to create a database backup (Enterprise Manager)
	How to start the Create Database Backup Wizard (Enterprise Manager)
	How to restore a database backup (Enterprise Manager)
	How to restore a backup from a backup device (Enterprise Manager)
	How to create a transaction log backup (Enterprise Manager)
	How to apply a transaction log backup (Enterprise Manager)
	How to create a differential database backup (Enterprise Manager)
	How to restore a differential database backup (Enterprise Manager)
	How to set up, maintain, and bring online a standby server (Enterprise Manager)
	How to restore to a point in time (Enterprise Manager)
	How to view the data and log files in a backup set (Enterprise Manager)
	How to view backup and media header information (Enterprise Manager)
	How to back up files and filegroups (Enterprise Manager)
	How to restore files and filegroups (Enterprise Manager)
	How to restore files and filegroups over existing files (Enterprise Manager)
	How to set the recovery model for a database (Enterprise Manager)

	Managing Servers
	How to register a server (Enterprise Manager)
	How to create server groups (Enterprise Manager)
	How to change a server's registration (Enterprise Manager)
	How to remove a registered server running SQL Server (Enterprise Manager)
	How to connect to a registered server running SQL Server (Enterprise Manager)
	How to disconnect from a registered server running SQL Server (Enterprise Manager)
	How to assign the sa password on a newly installed server (Enterprise Manager)
	How to view server properties (Enterprise Manager)
	How to check and set remote server configuration options (Enterprise Manager)
	How to set up a central store for server registration information (Enterprise Manager)
	How to set access to your display of servers and groups (Enterprise Manager)
	How to set the polling interval (Enterprise Manager)
	How to disable a remote server setup (Enterprise Manager)
	How to manage or view SQL Server messages (Enterprise Manager)
	How to edit a SQL Server message (Enterprise Manager)
	How to delete a SQL Server message (Enterprise Manager)
	How to add a new SQL Server message (Enterprise Manager)
	How to find a SQL Server message (Enterprise Manager)
	How to set up a linked server (Enterprise Manager)
	How to delete a linked server (Enterprise Manager)
	How to configure log shipping (Enterprise Manager)
	How to remove log shipping (Enterprise Manager)
	How to add or edit a destination server (Enterprise Manager)
	How to delete a destination server (Enterprise Manager)
	How to view the status of servers configured for log shipping (Enterprise Manager)
	How to view or edit information about the source server (Enterprise Manager)
	How to view or edit information about the destination server (Enterprise Manager)
	How to add an external tool to the Tools menu (Enterprise Manager)
	How to launch SQL Server Enterprise Manager in the Computer Management console (Windows)
	How to enable child windows (Enterprise Manager)
	How to configure the affinity mask (Enterprise Manager)
	How to set the allow updates option (Enterprise Manager)
	How to configure the cost threshold for parallelism (Enterprise Manager)
	How to set the default language (Enterprise Manager)
	How to set a fixed fill factor (Enterprise Manager)
	How to configure the number of processors available for parallel queries (Enterprise Manager)
	How to set minimum query memory (Enterprise Manager)
	How to configure the maximum number of worker threads (Enterprise Manager)
	How to set the backup retention duration (Enterprise Manager)
	How to set a fixed amount of memory (Enterprise Manager)
	How to set the nested triggers option (Enterprise Manager)
	How to set the priority boost option (Enterprise Manager)
	How to set the recovery interval (Enterprise Manager)
	How to set remote server access (Enterprise Manager)
	How to enforce distributed transactions for remote procedures (Enterprise Manager)
	How to set a time limit for remote queries (Enterprise Manager)
	How to set the working set size option (Enterprise Manager)
	How to set the two digit year cutoff option (Enterprise Manager)
	How to set user connections (Enterprise Manager)
	How to configure user options (Enterprise Manager)
	How to configure packet size (Enterprise Manager)
	How to set the query governor cost limit option (Enterprise Manager)
	How to enable encryption after SQL Server has been installed (Network Utility)
	How to connect to SQL Server through Microsoft Proxy Server (Setup)
	How to set the polling interval (Service Manager)
	How to configure a mail profile (Windows)
	How to set up SQL Mail (Enterprise Manager)
	How to set up SQLAgentMail (Enterprise Manager)
	How to enable the Lock Page in Memory option (Windows)
	How to start the SQL Server Network Utility (Network Utility)
	How to load an installed server network library (Network Utility)
	How to deactivate a server network library configuration (Network Utility)
	How to edit a server network library configuration (Network Utility)
	How to view the installed SQL Server server network libraries (Network Utility)

	Managing Clients
	How to start the Client Network Utility (Windows)
	How to display the network library version numbers (Client Network Utility)
	How to set DB-Library conversion preferences (Client Network Utility)
	How to add a network library configuration (Client Network Utility)
	How to edit a network library configuration (Client Network Utility)
	How to delete a network library configuration (Client Network Utility)
	How to alias a client to an alternate pipe (Client Network Utility)
	How to configure a client to use the Multiprotocol Net-Library (Client Network Utility)
	How to configure a client to use TCP/IP (Client Network Utility)
	How to configure a client to use the NWLink IPX/SPX network library (Client Network Utility)
	How to configure a client to use the AppleTalk network library (Client Network Utility)
	How to configure a client to use the Banyan VINES network library (Client Network Utility)
	How to configure a client to use the VIA network library (Client Network Utility)
	How to configure a client to use a nonstandard network library (Client Network Utility)
	How to verify that SQL Server is listening on AppleTalk and can accept a client connection (Client Network Utility)
	How to check the ODBC SQL Server driver version (Windows)

	Automating Administrative Tasks
	How to set the service startup account for SQL Server Agent (Enterprise Manager)
	How to set the mail profile for SQL Server Agent (Enterprise Manager)
	How to set the SQL Server connection (Enterprise Manager)
	How to set a SQL Server alias (Enterprise Manager)
	How to create a job (Enterprise Manager)
	How to disable a job (Enterprise Manager)
	How to create a job category (Enterprise Manager)
	How to delete a job category (Enterprise Manager)
	How to assign a job to a job category (Enterprise Manager)
	How to change the membership of a job category (Enterprise Manager)
	How to give others ownership of a job (Enterprise Manager)
	How to create a CmdExec job step (Enterprise Manager)
	How to reset SQLAgentCmdExec permissions (Enterprise Manager)
	How to define Transact-SQL job step options (Enterprise Manager)
	How to create an Active Script job step (Enterprise Manager)
	How to set job step success or failure flow (Enterprise Manager)
	How to set up the job history log (Enterprise Manager)
	How to view the job history (Enterprise Manager)
	How to make a master server (Enterprise Manager)
	How to make a target server (Enterprise Manager)
	How to enlist a target server from a master server (Enterprise Manager)
	How to defect a target server from a master server (Enterprise Manager)
	How to defect multiple target servers from a master server (Enterprise Manager)
	How to view a master SQL Server Agent error log (Enterprise Manager)
	How to check the status of a target server (Enterprise Manager)
	How to schedule a job (Enterprise Manager)
	How to set CPU idle time and duration (Enterprise Manager)
	How to notify an operator of job status (Enterprise Manager)
	How to write the job status to the Windows application log (Enterprise Manager)
	How to automatically delete a job (Enterprise Manager)
	How to set the polling interval for target servers (Enterprise Manager)
	How to start a job (Enterprise Manager)
	How to stop a job (Enterprise Manager)
	How to force a target server to poll the master server (Enterprise Manager)
	How to view a job (Enterprise Manager)
	How to resize the job history log (Enterprise Manager)
	How to clear the job history log (Enterprise Manager)
	How to modify a job (Enterprise Manager)
	How to modify the target servers for a job (Enterprise Manager)
	How to modify a target server's location (Enterprise Manager)
	How to delete a job (Enterprise Manager)
	How to synchronize target server clocks (Enterprise Manager)
	How to script jobs using Transact-SQL (Enterprise Manager)
	How to create an operator (Enterprise Manager)
	How to assign alerts to an operator (Enterprise Manager)
	How to format pager addresses (Enterprise Manager)
	How to designate a fail-safe operator (Enterprise Manager)
	How to create an alert using an error number (Enterprise Manager)
	How to create an alert using severity level (Enterprise Manager)
	How to define the response to an alert (Enterprise Manager)
	How to create a user-defined event error message (Enterprise Manager)
	How to edit a user-defined event error message (Enterprise Manager)
	How to delete a user-defined event error message (Enterprise Manager)
	How to disable or reactivate an alert (Enterprise Manager)
	How to designate an events forwarding server (Enterprise Manager)
	How to view information about an operator (Enterprise Manager)
	How to edit an operator (Enterprise Manager)
	How to change an operator's availability (Enterprise Manager)
	How to delete an operator (Enterprise Manager)
	How to view information about an alert (Enterprise Manager)
	How to edit an alert (Enterprise Manager)
	How to delete an alert (Enterprise Manager)
	How to script operators using Transact-SQL (Enterprise Manager)
	How to script alerts using Transact-SQL (Enterprise Manager)
	How to set job execution shutdown (Enterprise Manager)
	How to autostart SQL Server Agent (Enterprise Manager)
	How to send SQL Server Agent error messages (Enterprise Manager)
	How to view SQL Server Agent error log (Enterprise Manager)
	How to rename a SQL Server Agent error log (Enterprise Manager)
	How to write execution trace messages to the SQL Server Agent error log (Enterprise Manager)
	How to schedule a DTS package using the SQLServerAgent service (Enterprise Manager)
	How to create a SQL Server 7.0 compatible script (Enterprise Manager)

	Managing Security
	How to set up Windows Authentication Mode security (Enterprise Manager)
	How to set up Mixed Mode security (Enterprise Manager)
	How to grant a Windows user or group login access to SQL Server (Enterprise Manager)
	How to grant a Windows user or group access to a database (Enterprise Manager)
	How to add a SQL Server login (Enterprise Manager)
	How to add a linked server login (Enterprise Manager)
	How to grant a SQL Server login access to a database (Enterprise Manager)
	How to create a SQL Server database role (Enterprise Manager)
	How to add a member to a SQL Server database role (Enterprise Manager)
	How to add a member to a fixed server role (Enterprise Manager)
	How to grant SQL Server login access to a user by using the Create Login Wizard (Enterprise Manager)
	How to view a SQL Server login or Windows user or group (Enterprise Manager)
	How to view a database user (Enterprise Manager)
	How to change the password of a SQL Server login (Enterprise Manager)
	How to change the default database of a login (Enterprise Manager)
	How to change the default language of a login (Enterprise Manager)
	How to remove a user or group from a database (Enterprise Manager)
	How to remove a SQL Server login (Enterprise Manager)
	How to revoke a Windows user or group login access from SQL Server (Enterprise Manager)
	How to deny login access to a Windows user or group (Enterprise Manager)
	How to remove a linked server login (Enterprise Manager)
	How to view the roles defined in the current database (Enterprise Manager)
	How to view the fixed server roles (Enterprise Manager)
	How to view the members of a database role (Enterprise Manager)
	How to remove a user account from a database role (Enterprise Manager)
	How to view the members of a fixed server role (Enterprise Manager)
	How to remove a login from a fixed server role (Enterprise Manager)
	How to remove a SQL Server role (Enterprise Manager)
	How to allow access by granting permissions (Enterprise Manager)
	How to grant statement permissions to users within a database (Enterprise Manager)
	How to grant permissions on multiple objects to a user, group, or role (Enterprise Manager)
	How to prevent access by denying permissions (Enterprise Manager)
	How to deny statement permissions from users within a database (Enterprise Manager)
	How to deny permissions on multiple objects to a user, group, or role (Enterprise Manager)
	How to revoke permissions on an object (Enterprise Manager)
	How to revoke statement permissions from users in a database (Enterprise Manager)
	How to revoke permissions on multiple objects from a user, group, or role (Enterprise Manager)
	How to create an application role (Enterprise Manager)
	How to remove an application role (Enterprise Manager)
	How to reveal or cancel announcement of SQL Server on a network (Windows)
	How to grant, deny, or revoke permissions on multiple objects to a user-defined role (Enterprise Manager)

	Monitoring Server Performance and Activity
	How to start SQL Profiler (Enterprise Manager)
	How to view current server activity (Enterprise Manager)
	How to view the last command batch for a connection (Enterprise Manager)
	How to view the current locks (Enterprise Manager)
	How to send a message to a currently connected user (Enterprise Manager)
	How to terminate a process (Enterprise Manager)
	How to view the SQL Server error log (Enterprise Manager)
	How to start Performance Monitor (Windows)
	How to start System Monitor (Windows)
	How to set up a SQL Server database alert (Windows NT)
	How to set up a SQL Server database alert (Windows 2000)
	How to view the Windows application log (Windows)
	How to enable SQL Server support of SNMP on Windows 98 (Windows)
	How to copy the SQL Server MSSQL-MIB to an SNMP workstation (Windows)
	How to set trace definition defaults (SQL Profiler)
	How to set trace display defaults (SQL Profiler)
	How to create a trace (SQL Profiler)
	How to add or remove events from a trace template or trace file (SQL Profiler)
	How to add or remove data columns from a trace template (SQL Profiler)
	How to filter events in a trace template (SQL Profiler)
	How to save trace results to a file (SQL Profiler)
	How to save trace results to a table (SQL Profiler)
	How to modify a trace template (SQL Profiler)
	How to pause a trace (SQL Profiler)
	How to run a trace after it has been paused or stopped (SQL Profiler)
	How to clear a trace window (SQL Profiler)
	How to close a trace window (SQL Profiler)
	How to stop a trace (SQL Profiler)
	How to view filter information (SQL Profiler)
	How to open a trace data file (SQL Profiler)
	How to open a trace table (SQL Profiler)
	How to replay a trace table (SQL Profiler)
	How to replay a trace file (SQL Profiler)
	How to replay a single event at a time (SQL Profiler)
	How to replay to a breakpoint (SQL Profiler)
	How to replay to the cursor (SQL Profiler)
	How to replay an SQL script (SQL Profiler)
	How to modify a filter (SQL Profiler)
	How to set a maximum file size for a trace file (SQL Profiler)
	How to set a maximum table size for a trace table (SQL Profiler)
	How to set an immediate start time for traces (SQL Profiler)
	How to set a StartTime filter for a trace (SQL Profiler)
	How to set an EndTime filter for a trace (SQL Profiler)
	How to filter system IDs in a trace (SQL Profiler)
	How to create a trace template (SQL Profiler)
	How to set global trace options (SQL Profiler)
	How to find a value or data column while tracing (SQL Profiler)
	How to launch a new trace with the current template (SQL Profiler)
	How to derive a template from a running trace (SQL Profiler)
	How to derive a template from a trace file or trace table (SQL Profiler)
	How to save a template, trace file, or trace table to SQL Script (SQL Profiler)
	How to create an SQL Script for a running trace (SQL Profiler)

	Creating and Maintaining Databases
	Databases
	How to create a database (Enterprise Manager)
	How to create a database using the Create Database Wizard (Enterprise Manager)
	How to increase the size of a database (Enterprise Manager)
	How to shrink a database (Enterprise Manager)
	How to delete data or log files from a database (Enterprise Manager)
	How to change the configuration settings for a database (Enterprise Manager)
	How to view a database (Enterprise Manager)
	How to view the settings for a database (Enterprise Manager)
	How to view a list of databases on a server (Enterprise Manager)
	How to display data and log space information for a database (Enterprise Manager)
	How to generate a script (Enterprise Manager)
	How to start the Database Maintenance Plan Wizard (Enterprise Manager)
	How to delete a database (Enterprise Manager)
	How to attach and detach a database (Enterprise Manager)
	How to create user-defined data types (Enterprise Manager)
	How to delete user-defined data types (Enterprise Manager)
	How to create a reflexive relationship (Enterprise Manager)
	How to create a many-to-many relationship between tables (Enterprise Manager)
	How to delete a relationship (Enterprise Manager)
	How to create a DEFAULT object (Enterprise Manager)
	How to delete a DEFAULT object (Enterprise Manager)
	How to view the dependencies of a table (Enterprise Manager)

	Indexes
	How to analyze a query using Index Analysis (Query Analyzer)
	How to analyze a query using Index Tuning Wizard (Query Analyzer)
	How to create an index using the Create Index Wizard (Enterprise Manager)
	How to view all indexes in a database (Enterprise Manager)

	Views
	How to create a view using the Create View Wizard (Enterprise Manager)
	How to rename a view (Enterprise Manager)
	How to modify a view (Enterprise Manager)
	How to get information about a view (Enterprise Manager)
	How to display the dependencies of a view (Enterprise Manager)
	How to delete a view (Enterprise Manager)

	Stored Procedures
	How to create a stored procedure (Enterprise Manager)
	How to create a stored procedure using the Create Stored Procedure Wizard (Enterprise Manager)
	How to add an extended stored procedure (Enterprise Manager)
	How to modify a stored procedure (Enterprise Manager)
	How to rename a stored procedure (Enterprise Manager)
	How to view the definition of a stored procedure (Enterprise Manager)
	How to view the dependencies of a stored procedure (Enterprise Manager)
	How to view information about an extended stored procedure (Enterprise Manager)
	How to delete a stored procedure (Enterprise Manager)
	How to delete an extended stored procedure (Enterprise Manager)

	Triggers
	How to create a trigger (Enterprise Manager)
	How to modify a trigger (Enterprise Manager)
	How to view a trigger (Enterprise Manager)
	How to view the dependencies of a trigger (Enterprise Manager)
	How to delete a trigger (Enterprise Manager)

	Full-text Indexes
	How to enable a database for full-text indexing (Enterprise Manager)
	How to enable a table for full-text indexing (Enterprise Manager)
	How to enable a column for full-text indexing (Enterprise Manager)
	How to edit a full-text index on a table (Enterprise Manager)
	How to remove full-text indexing on a table (Enterprise Manager)
	How to create a full-text catalog (Enterprise Manager)
	How to rebuild a full-text catalog (Enterprise Manager)
	How to rebuild all full-text catalogs in a database (Enterprise Manager)
	How to start and stop a full or incremental population of a full-text index (Enterprise Manager)
	How to check the status, tables, and schedules of a full-text catalog (Enterprise Manager)
	How to change or create a new schedule for a full-text catalog (Enterprise Manager)
	How to remove a full-text catalog from a database (Enterprise Manager)
	How to remove all full-text catalogs in a database (Enterprise Manager)
	How to repopulate all full-text catalogs for a database (Enterprise Manager)
	How to clean up the full-text catalogs on a server (Enterprise Manager)
	How to start and stop the Microsoft Search Service for full-text support (Enterprise Manager)

	Accessing and Changing Data
	How to access the Query Designer in Data Transformation Services (Enterprise Manager)

	Optimizing Database Performance
	Database Design
	How to place an existing table on a different filegroup (Enterprise Manager)
	How to place an existing index on a different filegroup (Enterprise Manager)

	Query Tuning
	How to create statistics (Query Analyzer)
	How to update statistics (Query Analyzer)
	How to delete statistics (Query Analyzer)
	How to create a new index (Query Analyzer)
	How to modify an index (Query Analyzer)
	How to delete an index (Query Analyzer)

	Replication
	Replication Types (Enterprise Manager)
	How to enable activation of the Interactive Resolver (Enterprise Manager)
	To activate the Interactive Resolver during a merge synchronization (Windows Synchronization Manager)
	How to set row- or column-level tracking for an article (Enterprise Manager)
	How to choose a resolver (Enterprise Manager)

	Replication Tools (Enterprise Manager)
	How to open Publisher and Distributor properties (Enterprise Manager)
	How to open publication properties (Enterprise Manager)
	How to open push subscription properties (Enterprise Manager)
	How to open pull subscription properties (Enterprise Manager)
	How to open agent properties (Enterprise Manager)
	How to open Windows Synchronization Manager

	Implementing Replication (Enterprise Manager)
	How to configure publishing and distribution (Enterprise Manager)
	How to modify Publisher and Distributor properties (Enterprise Manager)
	How to add, modify, or disable a Subscriber (Enterprise Manager)
	How to disable publishing and distribution (Enterprise Manager)
	How to create publications and define articles (Enterprise Manager)
	How to modify publications and articles (Enterprise Manager)
	How to delete publications and articles (Enterprise Manager)
	How to create a push subscription (Enterprise Manager)
	How to modify a push subscription (Enterprise Manager)
	How to delete a push subscription (Enterprise Manager)
	How to create a pull or anonymous subscription (Enterprise Manager)
	How to view or modify pull or anonymous subscriptions (Enterprise Manager)
	How to delete a pull or anonymous subscription (Enterprise Manager)
	How to create an anonymous subscription (Windows Synchronization Manager)
	How to view or modify the default snapshot folder location (Enterprise Manager)
	How to specify alternate snapshot locations (Enterprise Manager)
	How to compress and deliver snapshot files (Enterprise Manager)
	How to set the - UseInprocLoader property (Enterprise Manager)
	How to execute scripts before and after the snapshot is applied (Enterprise Manager)
	How to reinitialize a subscription (Enterprise Manager)
	How to browse and copy snapshot files (Enterprise Manager)
	How to synchronize a subscription (Enterprise Manager)
	How to synchronize an anonymous subscription (Windows Synchronization Manager)
	How to view and resolve merge synchronization conflicts (Enterprise Manager)
	How to script replication (Enterprise Manager)
	How to apply schema changes on publication databases (Enterprise Manager)
	How to specify FTP information (Enterprise Manager)

	Replication Options (Enterprise Manager)
	How to filter publications horizontally using the Create Publication Wizard (Enterprise Manager)
	How to filter publications vertically using the Create Publication Wizard (Enterprise Manager)
	How to filter publications vertically using publication properties (Enterprise Manager)
	How to validate Subscriber information using the Create Publication Wizard (Enterprise Manager)
	How to filter publications horizontally using publication properties (Enterprise Manager)
	How to create a dynamic snapshot (Enterprise Manager)
	How to filter with a user-defined function using the Create Publication Wizard (Enterprise Manager)
	How to filter with a user-defined function using publication properties (Enterprise Manager)
	How to drop all subscriptions to a publication (Enterprise Manager)
	How to install Message Queuing on the Distributor and Subscribers (Enterprise Manager)
	How to set the queued updating conflict resolution policy (Enterprise Manager)
	How to allow decentralized conflict reporting (Enterprise Manager)
	How to view conflicts (Enterprise Manager)
	How to enable immediate updating with queued updating as a failover (Enterprise Manager)
	How to switch from immediate updating to queued updating as a failover (Enterprise Manager)
	How to switch from immediate updating to queued updating as a failover (Transact-SQL)
	How to switch from immediate updating to queued updating as a failover (Windows Synchronization Manager)
	How to create a transformable subscription (Enterprise Manager)
	How to enable Subscribers to synchronize with alternate synchronization partners (Enterprise Manager)
	How to enable a Subscriber at an alternate synchronization partner (for named subscriptions) (Enterprise Manager)
	How to synchronize with alternate synchronization partners (Windows Synchronization Manager)
	How to synchronize pull subscriptions with alternate synchronization partners (Enterprise Manager)
	How to synchronize push subscriptions with alternate synchronization partners (Enterprise Manager)
	How to minimize the amount of data sent over the network during merge replication (Transact-SQL)
	How to configure a publication to allow copying of subscription databases (Enterprise Manager)
	How to copy a subscription database (Enterprise Manager)
	How to enable a Subscriber to receive published data (Enterprise Manager)
	How to attach a subscription database with named subscriptions (Enterprise Manager)
	How to attach a subscription database with anonymous subscriptions (Enterprise Manager)

	Administering and Monitoring Replication (Enterprise Manager)
	How to change replication monitoring properties (Enterprise Manager)
	How to monitor replication agent history (Enterprise Manager)
	How to configure DCOM to run the Distribution Agent remotely
	How to configure DCOM to run the Merge Agent remotely
	How to enable a push subscription to use remote agent activation
	How to enable a pull subscription to use remote agent activation
	How to configure an existing subscription to use remote agent activation
	How to monitor replication agent performance (Enterprise Manager)
	How to create a replication agent profile (Enterprise Manager)

	Replication and Heterogeneous Data Sources (Enterprise Manager)
	How to publish to heterogeneous Subscribers (Enterprise Manager)
	How to enable a Jet 4.0 database as a Subscriber (Enterprise Manager)
	How to create a publication for a Jet 4.0 Subscriber (Enterprise Manager)
	How to add a push subscription to a Jet 4.0 Subscriber (Enterprise Manager)

	Replication Security (Enterprise Manager)
	How to change the login property of a pull subscription
	How to add or change a password on a Distributor
	To grant or revoke access to a publication

	Data Transformation Services
	DTS Tools
	How to create a connection to Northwind in DTS Designer (Enterprise Manager)
	How to create a second connection to the Northwind database using DTS Designer (Enterprise Manager)
	How to copy data from a Northwind table using DTS Designer (Enterprise Manager)
	How to configure an Execute SQL task to drop and re-create a destination table (Enterprise Manager)
	How to configure workflow in the Execute SQL task (Enterprise Manager)
	How to save the DTS package to a SQL Server msdb table (Enterprise Manager)
	How to access a DTS package template (Enterprise Manager)
	How to create and save a DTS package template (Enterprise Manager)

	DTS Package Elements
	How to create a Transform Data task (Enterprise Manager)
	How to configure the connections for a Transform Data task (Enterprise Manager)
	How to configure a new transformation for a Transform Data task (Enterprise Manager)
	How to activate the multiphase data pump feature (Enterprise Manager)
	How to add a multiphase data pump transformation function using an ActiveX script (Enterprise Manager)
	How to call a COM object that customizes one or more data pump phases (Enterprise Manager)
	How to enable the Transform Data task fast load options (Enterprise Manager)
	How to configure the fast load batch options (Enterprise Manager)
	How to configure the data pump exception files (Enterprise Manager)
	How to add a DTS task to a DTS package (Enterprise Manager)
	How to add the Bulk Insert task to a DTS package (Enterprise Manager)
	How to add the Execute SQL task to a DTS package (Enterprise Manager)
	How to execute a stored procedure with an input parameter (Enterprise Manager)
	How to save row values into global variables (Enterprise Manager)
	How to retrieve the row value data (Enterprise Manager)
	How to save an entire rowset into a global variable (Enterprise Manager)
	How to retrieve rowset data stored in a global variable (Enterprise Manager)
	How to send a message with the Message Queue task (Enterprise Manager)
	How to receive a string message with the Message Queue task (Enterprise Manager)
	How to receive a Data File Message with the Message Queue task (Enterprise Manager)
	How to receive a global variables message with the Message Queue task (Enterprise Manager)
	How to configure the Ask For Facts task (Enterprise Manager)
	How to configure the Wait For Trigger task (Enterprise Manager)
	How to create and configure Add New Employees (Enterprise Manager)
	How to configure the New Employee task (Enterprise Manager)
	How to configure the Transform Data task for Global Variable Messages (Enterprise Manager)
	How to configure the Log Bad Update task (Enterprise Manager)
	How to configure one Loop task (Enterprise Manager)
	How to create and configure the Load Expenses package (Enterprise Manager)
	How to configure the Spreadsheet Wait task (Enterprise Manager)
	How to configure the Delete Raw Data task (Enterprise Manager)
	How to configure the Load Raw Data task (Enterprise Manager)
	How to configure the Load Filtered Data task (Enterprise Manager)
	How to configure the Failed Expense Load (or Failed XLS Load) task (Enterprise Manager)
	How to create and configure three Loop tasks (Enterprise Manager)
	How to convert the format of a Date Time String transformation (Enterprise Manager)
	How to convert a string to lowercase characters (Enterprise Manager)
	How to convert a string to uppercase characters (Enterprise Manager)
	How to perform a Middle of String transformation (Enterprise Manager)
	How to perform a Trim String transformation (Enterprise Manager)
	How to perform a Read File transformation (Enterprise Manager)
	How to perform a Write File transformation (Enterprise Manager)
	How to create a connection (Enterprise Manager)
	How to create a data link with run-time resolution (Enterprise Manager)

	DTS Package Management
	How to create a DTS package using DTS Designer (Enterprise Manager)
	How to create a DTS package using the DTS Import/Export Wizard (Enterprise Manager)
	How to edit a DTS package saved to SQL Server or Meta Data Services (Enterprise Manager)
	How to edit a DTS package saved to a structured storage file (Enterprise Manager)
	How to delete a DTS package (Enterprise Manager)
	How to execute a DTS package from SQL Server Enterprise Manager (Enterprise Manager)
	How to execute a DTS package from DTS Designer (Enterprise Manager)
	How to execute a DTS package from the DTS Import/Export Wizard (Enterprise Manager)
	How to execute a DTS package using the DTS Run utility (Command Prompt)
	How to execute a DTS package using dtsrun (Command Prompt)
	How to save a DTS package to SQL Server (Enterprise Manager)
	How to open a DTS package saved to SQL Server (Enterprise Manager)
	How to save a DTS package to Meta Data Services (Enterprise Manager)
	How to open a DTS package saved to Meta Data Services (Enterprise Manager)
	How to save a DTS package to a structured storage file (Enterprise Manager)
	How to open a DTS package saved to a structured storage file (Enterprise Manager)
	How to schedule a DTS package using the Schedule Package option (Enterprise Manager)
	How to schedule a DTS package using SQL Server Agent (Enterprise Manager)
	How to view or modify DTS package properties (Enterprise Manager)
	How to use Disconnected Edit to modify DTS package properties (Enterprise Manager)
	How to save a DTS package to a Visual Basic file (Enterprise Manager)
	How To View Package Logs (Enterprise Manager)
	How to Enable Package Logging (Enterprise Manager)
	How to set a DTS package password (Enterprise Manager)
	How to modify the persisting of authentication information (Enterprise Manager)
	How to select the Turn on just-in-time debugging option (Enterprise Manager)
	How to add ActiveX workflow scripts in DTS Designer (Enterprise Manager)
	How to execute a single package step in DTS Designer (Enterprise Manager)

	Transact-SQL
	Administering SQL Server
	Backing Up and Restoring Databases
	How to create a database backup (Transact-SQL)
	How to restore a database backup (Transact-SQL)
	How to restart an interrupted backup operation (Transact-SQL)
	How to restart an interrupted restore operation (Transact-SQL)
	How to create a transaction log backup (Transact-SQL)
	How to backup the transaction log when the database is damaged (Transact-SQL)
	How to apply a transaction log backup (Transact-SQL)
	How to create a differential database backup (Transact-SQL)
	How to restore a differential database backup (Transact-SQL)
	How to recover a database without restoring (Transact-SQL)
	How to restore to the point of failure (Transact-SQL)
	How to set up, maintain, and bring online a standby server (Transact-SQL)
	How to restore to a point in time (Transact-SQL)
	How to restore the master database (Transact-SQL)
	How to back up files and filegroups (Transact-SQL)
	How to restore files and filegroups (Transact-SQL)
	How to restore files and filegroups over existing files (Transact-SQL)
	How to restore files to a new location (Transact-SQL)
	How to restore a database with a new name (Transact-SQL)

	Managing Servers
	How to set up a remote server to allow the use of remote stored procedures (Transact-SQL)
	How to disable a remote server setup (Transact-SQL)
	How to set up and perform a log shipping role change (Transact-SQL)
	How to set up a Log Shipping Monitor (Transact-SQL)
	How to remove a log shipping pair from the Log Shipping Monitor (Transact-SQL)

	Automating Administrative Tasks
	How to create a job (Transact-SQL)
	How to create a master SQL Server Agent job (Transact-SQL)
	How to modify a master SQL Server Agent job (Transact-SQL)
	How to create an operator (Transact-SQL)
	How to modify an operator (Transact-SQL)

	Monitoring Server Performance and Activity
	How to create a trace (Transact-SQL)
	How to set a trace filter (Transact-SQL)
	How to modify an existing trace (Transact-SQL)
	How to view a saved trace (Transact-SQL)
	How to view filter information (Transact-SQL)
	How to delete a trace (Transact-SQL)

	Integrating SQL Server with Other Tools
	How to create an OLE Automation object (Transact-SQL)
	How to debug a custom OLE Automation server (Transact-SQL)
	How to use SQL Mail (Transact-SQL)

	Replication
	Replication Types
	How to set row- or column-level tracking for an article (Transact-SQL)
	How to choose a resolver (Transact-SQL)

	Implementing Replication (Transact-SQL)
	How to Configure Publishing and Distribution (Transact-SQL)
	How to Modify Publisher and Distributor Properties (Transact-SQL)
	How To Disable Publishing and Distribution (Transact-SQL)
	How to Create Publications and Define Articles (Transact-SQL)
	How to Modify Publications and Articles (Transact-SQL)
	How to Delete Publications and Articles (Transact-SQL)
	How to Create a Push Subscription (Transact-SQL)
	How to Modify a Push Subscription (Transact-SQL)
	How to Delete a Push Subscription (Transact-SQL)
	How to Create a Pull Subscription (Transact-SQL)
	How to View or Modify Pull or Anonymous Subscriptions (Transact-SQL)
	How to Delete a Pull Subscription (Transact-SQL)
	How to Create an Anonymous Subscription (Transact-SQL)
	How to Delete an Anonymous Subscription (Transact-SQL)
	How to Browse and Copy Snapshot Files (Transact-SQL)
	How to Apply Schema Changes on Publication Databases (Transact-SQL)
	How to Publish Data Over the Internet (Transact-SQL)

	Replication Options (Transact-SQL)
	How to validate Subscriber information (Transact-SQL)

	Administering and Monitoring Replication (Transact-SQL)
	How to create a replication agent profile (Transact-SQL)

	Replication Security (Transact-SQL)
	How to add or change a password on a Distributor
	To grant or revoke access to a publication

	OLE DB
	Processing Results (OLE DB)
	Execute stored procedure (using ODBC CALL syntax) and process return codes and output parameters (OLE DB)
	Execute stored procedure (using RPC syntax) and process return codes and output parameters (OLE DB)
	Execute user-defined function and process return code (OLE DB)
	How to fetch rows from a result set (OLE DB)

	Processing Large Data
	How to set large data (OLE DB)

	Enumerating OLE DB Data Sources
	How to enumerate OLE DB data sources (OLE DB)

	Bulk-Copying Rowsets
	How to bulk copy data using IRowsetFastLoad (OLE DB)

	Obtaining a FAST_FORWARD cursor
	How to obtain FAST_FORWARD cursor

	Using Bookmarks
	How to retrieve rows using bookmarks (OLE DB)

	Fetching Columns Using IRow::GetColumns (or IRow::Open) and ISequentialStream
	Fetching Columns Using IRow::GetColumns (OLE DB)
	Setting XML as a Command Using ICommandStream and Retrieving the Results as an XML Document

	ODBC
	Configuring the SQL Server ODBC Driver (ODBC)
	How to add a data source (ODBC)
	How to delete a data source (ODBC)
	How to upgrade the catalog stored procedures

	Connecting to SQL Server (ODBC)
	How to allocate handles and connect to SQL Server (ODBC)

	Executing Queries (ODBC)
	How to use a statement (ODBC)
	How to set cursor options (ODBC)
	How to execute a statement directly (ODBC)
	How to prepare and execute a statement (ODBC)

	Processing Results (ODBC)
	How to retrieve result set information (ODBC)
	How to process results (ODBC)

	Using Cursors (ODBC)
	How to use cursors (ODBC)
	How to use rowset binding (ODBC)
	How to fetch and update rowsets (ODBC)

	Performing Transactions (ODBC)
	How to use Microsoft Distributed Transaction Coordinator (ODBC)

	Running Stored Procedures (ODBC)
	How to call stored procedures (ODBC)
	How to process return codes and output parameters (ODBC)

	Managing text and image Columns (ODBC)
	How to use data-at-execution parameters (ODBC)
	How to use data-at-execution columns (ODBC)

	Profiling ODBC Driver Performance (ODBC)
	How to profile driver performance data (ODBC)
	How to log long-running queries (ODBC)

	How to process ODBC errors (ODBC)
	How to bulk copy with the SQL Server ODBC driver (ODBC)
	How to bulk copy without a format file (ODBC)
	How to bulk copy a SELECT result set (ODBC)
	How to create a bulk copy format file (ODBC)
	How to bulk copy by using a format file (ODBC)
	How to bulk copy data from program variables (ODBC)

