
Introducing	HostExplorer	Programming
HostExplorer	products	provide	a	wide	range	of	application	programming
interfaces	(APIs),	a	document	standard	used	to	program	applications.
These	APIs	let	you	exploit	the	functionality	and	features	of	HostExplorer
products	from	within	your	own	programs	and	scripts.

Rather	than	creating	your	own	code	to	redesign	applications,	you	can
use	the	available	HostExplorer	APIs.	These	APIs	let	you	extend	the
functionality	of	your	available	programming	languages	(for	example,
Visual	C++	and	Visual	Basic)	to	write	scripts.	With	HostExplorer
programming	you	can:

Use	OLE	Automation	APIs	to	add	File	Transfer	capabilities	to	your
own	application.
Use	a	small	amount	of	Visual	Basic	script	to	embed	an	HETerminal
screen	within	a	web	page,	as	well	as	add	HTML	user	interface
features	for	absolute	control	over	how	the	terminal	is	used.
Use	Visual	Basic	or	C++	scripts	to	provide	a	new	front	end	to	an
existing	application,	and	use	the	Parser	or	Terminal	objects	to
communicate	back	to	the	modified	application.
Automate	terminal	display	panels	to	improve	their	appearance	and
usability.
Automate	repetitive	tasks	(for	example,	checking	data)	which
improves	the	reliability	of	data.

You	can	customize	the	following	HostExplorer	programs	using	the
corresponding	application	programming	interfaces	(APIs)	and	available
scripts.

HostExplorer
FTP
WyseTerm

For	information	on	creating,	compiling,	and	debugging	scripts	using
Hummingbird	Basic	Language,	see	the	Hummingbird	Basic	Workbench
help.	Hummingbird	Basic	Workbench	is	an	application	that	is	available

with	the	Hummingbird	Accessories	product.	If	you	want	to	view	the	help
file,	install	Hummingbird	Basic	Workbench,	if	you	have	not	done	so
already.

Related	Topics
Introducing	HostExplorer	APIs
Introducing	FTP	API
Introducing	WyseTerm	API

Introducing	HostExplorer	APIs
As	part	of	the	latest	business	trend,	companies	are	rethinking	how	to
access	valuable	information	from	the	mainframe.	Programmers	need	to
create	applications	that	make	better	use	of	host	information.	They	need
application	programming	interfaces	(APIs)	to	allow	for	PC-to-host	or
UNIX-to-host	communication.

HostExplorer	provides	a	wide	range	of	APIs	that	let	you	automate	and
use	HostExplorer	functionality	from	within	your	own	programs	and
scripts.

With	programming	languages	such	as	C++	and	Basic,	you	can	use	the
methods	and	properties	within	these	APIs	to	customize	HostExplorer	to
suit	your	needs	or	those	of	your	customers.	For	example,	you	can	use
these	APIs	to:

redesign	a	graphical	user	interface	(GUI)	in	an	application
incorporate	an	application	into	a	Web	page
create	interactive	Web	sites

HostExplorer	APIs	are	based	on	the	following	popular	standards:

OLE	(Object	Linking	and	Embedding)	automation
COM	(Component	Object	Model)
OHIO	(Open	Host	Interface	Objects)

OLE	Automation
OLE	Automation	is	a	Windows	tool	that	lets	you	automate	the	exchange
of	data	between	applications,	and	lets	you	access	and	control
HostExplorer.

For	more	information,	see	OLE	Automation.

HostExplorer	COM	Objects
COM	objects	provide	methods	and	properties	that	let	you	manipulate	the
behavior	of	objects	and	create	relationships	between	objects.	These
objects	offer	the	most	efficient	means	of	accessing	an	application’s
features	and	functionality,	and	they	can	be	used	by	any	COM-compliant
application.	You	can	use	a	COM	object	to	make	a	direct	call,	and	the
system	returns	a	pointer	to	that	interface.
Note:	 	 Methods	and	properties	for	TN3270	and	TN5250	terminal	types	do	not	apply	to	HummingbirdConnectivity	SecureTerm.

HostExplorer	provides	the	following	COM	objects,	which	allow	you	to
seamlessly	integrate	HostExplorer	functionality	within	your	own
applications:

Terminal	objects
Note:	 	 The	three	Terminal	objects	(3270,	5250,	and	VT)	are	ActiveX	objects	that	let	youembed	the	HostExplorer	terminal	into	your	own	applications.

Profile	object
Parser	objects
Transport	objects

A	functional	diagram	illustrates	how	objects	work	together	to	access	host
data	from	the	mainframe.

The	most	common	libraries	are:

HostExplorer	3270	Type	Library
HostExplorer	5250	Type	Library
HostExplorer	VT	Type	Library
HESession	1.0	Type	Library

In	Visual	Basic,	you	can	add	the	visual	controls	(for	example,	3270,	5250,
and	VT	type	libraries)	to	the	project	by	clicking	Component	on	the	Project
menu.	You	can	add	objects	such	as	HESession	and	HEOhio	by	clicking
References	on	the	Project	menu.	When	you	add	the	objects,	they
become	available	in	a	drop-down	menu.	Using	this	drop-down	menu,	you
can	select	objects	in	Dim	statements,	as	well	as	other	Visual	Basic

statements.

When	you	are	using	the	visual	controls	and	you	add	the	basic	object,	this
object	is	displayed	on	the	component	bar.	When	you	add	the	selected
control	to	a	form	in	the	project,	Visual	Basic	automatically	creates	the
object.	In	the	following	example,	Visual	Basic	automatically	creates	the
Session	and	Transport	objects.	Visual	Basic	automatically	creates	other
objects	after	you	connect	to	the	session,	therefore,	you	must	assign
references	to	these	objects.	In	the	following	example,	the	active	control	is
named	My3270	in	the	project.	This	control	is	an	instance	of	the
HE3270Terminal	object	that	you	added	as	a	visual	component	to	the
project:

Example:

Dim	MySession	As	HESession

Dim	MyTransport	As	Object

…

Set	MySession	=	My3270.Session

Set	MyTransport	=	My3270.Transport

OHIO

OHIO	is	a	developing	standard;	it	addresses	the	need	for	a	standardized
programming	interface	to	host	data.	HostExplorer	provides	Ohio
interfaces,	which	contain	methods	and	properties	that	you	can	use	to
access	different	types	of	host	data.

The	Ohio	object	consists	of	classes,	such	as	OhioManager	and
OhioSession,	as	described	in	the	draft	IETF	standard.

In	Visual	Basic,	you	typically	declare	objects	in	one	of	the	following
formats:

Dim	OManager	As	HEOHIOLib.OhioManager

Dim	OSession	As	OhioSession

After	you	add	the	HEOhio	1.0	Type	Library,	the	most	common	library	for
Ohio,	to	the	project	references	list,	either	of	the	two	formats	will	work.
OhioManager,	OhioSession,	and	HEOHIOLib	appear	in	the	drop-down
menu	that	is	displayed	when	you	type	the	Visual	Basic	“AS”	keyword.
Note:	 	 In	Ohio,	you	must	create	the	object	as	follows:

	 Set	OManager=CreateObject("HEOhio.OhioManager")

Legacy	APIs
In	addition	to	COM	objects	and	OHIO,	HostExplorer	provides	the
following	existing	(or	“legacy”)	APIs:

EHLLAPI	(Extended	HLLAPI)	and	WinHLLAPI	(Windows	HLLAPI)—
Allow	other	Windows	programs	(for	example,	Attachmate®	Extra!	for
Windows)	to	communicate	and	control	HostExplorer	terminal
emulators.
DDE	(Dynamic	Data	Exchange)—A	tool	that	allows	programs	(for
example,	Microsoft	Excel,	Word,	and	Visual	Basic)	to	communicate
with	the	HostExplorer	3270	emulator.

While	these	APIs	are	less	efficient	and	use	larger	and	more	rigid	objects
than	COM	and	OHIO,	you	can	still	use	them	to	write	applications	and
thus	avoid	rewriting	your	own	code.	HostExplorer’s	support	of	these
earlier	APIs	helps	maximize	an	organization’s	investment	in	its
development.

Related	Topics
About	COM	Objects
About	OHIO
About	Legacy	APIs

OLE	Automation
3270	5250	VT

OLE	Automation	is	a	facility	provided	by	Windows	that	lets	you	exchange
data	between	applications.	You	can	use	OLE	Automation	to	automate
these	tasks.

You	can	also	use	OLE	Automation	to	access	and	control	HostExplorer.
You	can	write	OLE	Automation	clients	using	a	variety	of	tools,	including
Hummingbird	Basic,	Visual	Basic,	C++,	and	other	languages.

The	name	of	the	Automation	object	is	"HostExplorer."

The	following	example	uses	Visual	Basic:

Dim	HE	as	Object

Set	HE	=	CreateObject("HostExplorer")

Now,	use	the	language	extensions	as	you	would	in	the	built-in	macro
editor:

HE.CurrentHost.Keys	"Login	JOHN@E"

…

If	you	need	to	add	OLE	objects	to	a	project	during	development,	add	the
hostex32.exe	file	as	a	reference.	Visual	Basic	then	adds	the	objects,
properties,	and	methods	to	your	project.	You	can	view	the	objects	using
the	Object	Browser.

Some	sample	macros	are	provided	in	the	EB	directory	located	in	the	main
HostExplorer	program	folder.

Related	Topics
OLE	Objects
Methods	and	Properties	of	the	Application	Object
Methods	and	Properties	of	the	Field	Object
Methods	and	Properties	of	the	Host	Object
Methods	and	Properties	of	the	Hosts	Object

Methods	and	Properties	of	the	Cfg3270,	Cfg5250,	and	CfgVT	Objects

OLE	Objects
3270	5250	VT

HostExplorer	provides	methods	and	properties	for	the	following	OLE
objects:

Application
Hosts
Host
Area
Field
Cfg3270,	Cfg5250,	and	CfgVT

A	method	is	a	construct	that,	when	executed,	performs	an	action	and
possibly	returns	a	value.	For	example,	you	can	use	the	Keys	method	to
simulate	pressing	keys	in	HostExplorer.	This	method	returns	the	value	of
the	return	code,	indicating	whether	you	pressed	the	keys	successfully.	A
method	can	optionally	take	parameters.

A	property	is	an	interface	to	a	variable	in	HostExplorer.	Unlike	a	method,
it	does	not	perform	an	action	or	take	any	parameters.	You	can	use	a
property	to	retrieve	or	set	the	value	of	its	associated	variable	in
HostExplorer.	For	example,	you	can	use	the	AllowUpdates	host	property
to	get	or	set	the	value	of	the	Screen	Updates	flag,	which	determines
whether	the	program	updates	the	screen.	Properties	that	you	can
retrieve,	but	not	alter,	are	called	read-only	properties.

The	following	diagram	illustrates	the	relationship	between	the	OLE
objects.

Related	Topics
OLE	Automation

Methods	and	Properties	of	the	Application	Object
The	methods	and	properties	of	the	Application	object	let	you	manipulate
various	aspects	of	a	HostExplorer	session.

The	following	Application	object	methods	and	properties	are	available.
CurrentHost
GetCurrentDir
GetProfileString
HostFromProfile
NewSession
Word

ExitAll
GetFilePath
Hosts	Collection
HostFromShortName
StartSession
WriteProfileString

	 	

	 	

	 	

javascript:ole16.Click();
javascript:ole18.Click();
javascript:ole110.Click();
javascript:ole111.Click();
javascript:ole114.Click();
javascript:ole116.Click();
javascript:ole17.Click();
javascript:ole19.Click();
javascript:ole113.Click();
javascript:ole112.Click();
javascript:ole115.Click();
javascript:ole117.Click();

	 	

	 	

	

Methods	and	Properties	of	the	Hosts	Object
The	Hosts	object	consists	of	a	collection	of	hosts.	You	can	use	the	object
to	cycle	through	the	sessions	and	perform	actions.	The	following	Hosts
object	methods	and	properties	are	available:

CloseAll
Count
Item
Next
Open

Note:	 	 These	methods	and	properties	are	valid	for	all	terminal	types	(that	is,	TN3270,	TN5250,	andTNVT).

	 	

	 	

javascript:ole119.Click();
javascript:ole120.Click();
javascript:ole121.Click();
javascript:ole122.Click();
javascript:ole123.Click();

Methods	and	Properties	of	the	Host	Object
The	Host	object	methods	and	properties	let	you	configure	and	manipulate
all	aspects	of	a	screen.	You	can	access	a	host	screen	in	two	ways.	You
can	use	the	CurrentHost	object,	which	always	refers	to	the	screen	that
has	or	last	had	the	focus,	or	the	Hosts(n)	object	where	n	is	a	value	from	1
to	Hosts.Count	(the	total	number	of	available	sessions).	The	latter	is	the
method	used	to	access	the	n'th	session	available.	If	you	are	writing
scripts	that	simply	access	one	session,	use	of	the	CurrentHost	object	is
the	recommended	method.	You	can	access	host	methods	directly	using
the	With	statement,	or	by	creating	an	object	for	easy	reference.

The	following	Host	object	methods	and	properties	are	available:
Host	Activate OIAUpdated

AllowClose Pause

AllowUpdates PrintScreen

BFPress ProtectedText

BFStatus PSReserved

Bytes PSUpdated

Capture PutText

CaptureOIA QueryCloseRequest

Close QuickKeyFile

Columns ReceiveFile

Connect Restore

ConnectBy Row

ConnectErrorStatus Rows

ConnectRC RunCmd

Cursor RunQuickKey

CursorRC SaveScreen

Device3279 SaveScrollback

Disconnect Search

EAB SendFile

FieldID SetFont

FontLarger ShortName

FontSmaller Show

GetIOBuffer ShowToolbar

Hide SilentConnect

HideToolbar SystemColor

javascript:ole125.Click();
javascript:ole28.Click();
javascript:ole126.Click();
javascript:ole29.Click();
javascript:ole127.Click();
javascript:ole210.Click();
javascript:ole128.Click();
javascript:ole211.Click();
javascript:ole129.Click();
javascript:ole212.Click();
javascript:ole130.Click();
javascript:ole213.Click();
javascript:ole131.Click();
javascript:ole214.Click();
javascript:ole132.Click();
javascript:ole215.Click();
javascript:ole133.Click();
javascript:ole216.Click();
javascript:ole134.Click();
javascript:ole217.Click();
javascript:ole135.Click();
javascript:ole218.Click();
javascript:ole136.Click();
javascript:ole219.Click();
javascript:ole137.Click();
javascript:ole220.Click();
javascript:ole138.Click();
javascript:ole221.Click();
javascript:ole139.Click();
javascript:ole222.Click();
javascript:ole140.Click();
javascript:ole224.Click();
javascript:ole141.Click();
javascript:ole225.Click();
javascript:ole142.Click();
javascript:ole226.Click();
javascript:ole143.Click();
javascript:ole227.Click();
javascript:ole144.Click();
javascript:ole228.Click();
javascript:ole146.Click();
javascript:ole229.Click();
javascript:ole147.Click();
javascript:ole230.Click();
javascript:ole148.Click();
javascript:ole231.Click();
javascript:ole149.Click();
javascript:ole232.Click();
javascript:ole150.Click();
javascript:ole233.Click();

HighlightText TerminalMode

Hosts	Collection Text

Index TextRC

InsertMode TN3270

IsConnected TrackMenu

IsXfer Update

Keyboard WaitConnected

Keys WaitForIO

LoadQuickKeyFile WaitForString

LoadSlideShowFile WaitForStringRC

Maximize WaitIdle

Minimize WaitPSUpdated

Model WaitXfer

MouseToCursor XferCount

OIA XferRC

SaveQuickKeyFile																																																										

	 	

	 	

	 	

javascript:ole151.Click();
javascript:ole234.Click();
javascript:ole113.Click();
javascript:ole235.Click();
javascript:ole153.Click();
javascript:ole236.Click();
javascript:ole154.Click();
javascript:ole237.Click();
javascript:ole155.Click();
javascript:ole238.Click();
javascript:ole156.Click();
javascript:ole239.Click();
javascript:ole157.Click();
javascript:ole240.Click();
javascript:ole158.Click();
javascript:ole241.Click();
javascript:ole2.Click();
javascript:ole242.Click();
javascript:ole22.Click();
javascript:ole243.Click();
javascript:ole23.Click();
javascript:ole244.Click();
javascript:ole24.Click();
javascript:ole245.Click();
javascript:ole25.Click();
javascript:ole246.Click();
javascript:ole26.Click();
javascript:ole247.Click();
javascript:ole27.Click();
javascript:ole248.Click();
javascript:ole223.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Methods	and	Properties	of	the	Area	Object
The	Area	object	provides	access	to	a	specified	area	of	the	screen.	You
can	use	the	methods	and	properties	of	the	Area	object	to	write	to	or	read
from	the	presentation	space	(PS).	For	example,	you	can	read	to	or	write
from	the	Operator	Information	Area	(OIA)	in	3270	sessions.

The	following	Area	object	methods	and	properties	are	available:
Application
Copy
Delete
Parent
Right
Top
Value

Bottom
Cut
Left
Paste
Select
Type

	 	

	 	

	 	

javascript:ole250.Click();
javascript:ole252.Click();
javascript:ole254.Click();
javascript:ole256.Click();
javascript:ole258.Click();
javascript:ole32.Click();
javascript:ole34.Click();
javascript:ole251.Click();
javascript:ole253.Click();
javascript:ole255.Click();
javascript:ole257.Click();
javascript:ole3.Click();
javascript:ole33.Click();

	 	

	 	

	 	

Methods	and	Properties	of	the	Field	Object
The	Field	object	methods	and	properties	let	you	manipulate	all	aspects	of
a	field.	You	can	access	field	methods	directly,	using	the	"With"	statement
or	by	creating	an	object	for	easy	reference.

Example:
Sub	Main

Dim	HE	as	Object

Set	HE	=	CreateObject("HostExplorer")

HE.CurrentHost.Fields(7).Text	=	"Hello	World"

End	Sub

Sub	Main

Dim	HE	as	Object

Set	HE	=	CreateObject("HostExplorer")

With	HE.CurrentHost.Fields(7)

.Text	=	"Hello	World"

End	With

End	Sub

Sub	Main

Dim	HE	as	Object

Set	HE	=	CreateObject("HostExplorer")

Dim	Fld	as	Object

Set	Fld	=	HE.CurrentHost.Fields(7)

Fld.Text	=	"Hello	World"

End	Sub

The	following	Field	object	methods	and	properties	are	available:
Hosts.Fields	Collection	Object
Attr
IsBold
IsModified

Fields	Collection
ExtAttr
IsHidden
IsNumeric

javascript:ole36.Click();
javascript:ole37.Click();
javascript:ole39.Click();
javascript:ole311.Click();
javascript:ole145.Click();
javascript:ole38.Click();
javascript:ole310.Click();
javascript:ole312.Click();

IsPenSelectable
Length
Text
																																															

IsProtected
Pos

	 	

	 	

	 	

	 	

	 	

javascript:ole313.Click();
javascript:ole315.Click();
javascript:ole317.Click();
javascript:ole314.Click();
javascript:ole316.Click();

	 	

Methods	and	Properties	of	the	Cfg3270,	Cfg5250,
and	CfgVT	Objects
The	Cfg3270,	Cfg5250,	and	CfgVT	objects	let	you	configure	all	aspects
of	their	respective	sessions.	These	objects	have	no	properties	of	their
own.	These	objects	let	you	access	configuration	methods	directly,	using
the	With	statement	or	by	creating	an	object	for	easy	reference.

The	following	object	lists	let	you	configure	all	aspects	of	a	3270,	5250,	or
VT	session:

Cfg3270	Objects	List
Cfg5250	Objects	List
CfgVT	Objects	List

The	following	methods	and	properties	are	available:
ActionOnExist OptimizedDisplayMode

AlwaysAutoSkip Password

Answerback PrintBorder

AreaCode PrintDocumentName

AutoClearXferMonitor PrinterDeInit

AutoCopySelectedText PrinterInit

AutoMacro PrintFooter

AutoUnlockKeyboard PrintHeader

AutoWrap PrintLocation

BellMargin PrintOIA

BitMode Profile

BlinkToItalic ProportionalFonts

BSIsDel RawAddFormFeed

ClearAllTabStops RawCaptureMode

ColorDisplay ReplyOEM

CompressBlankLinesInScrollback ReRunAutoMacro

ConcealAnswerback RespectNumeric

ConnectTimeout RightMargin

ConvertNulls SaveAppend

Country SaveAttrsInScrollback

CRToCRLF SaveConfirm

CursorKeyMode SaveFile

javascript:ole322.Click();
javascript:ole426.Click();
javascript:ole323.Click();
javascript:ole427.Click();
javascript:ole324.Click();
javascript:ole428.Click();
javascript:ole325.Click();
javascript:ole429.Click();
javascript:ole326.Click();
javascript:ole430.Click();
javascript:ole327.Click();
javascript:ole431.Click();
javascript:ole328.Click();
javascript:ole432.Click();
javascript:ole329.Click();
javascript:ole433.Click();
javascript:ole330.Click();
javascript:ole434.Click();
javascript:ole331.Click();
javascript:ole435.Click();
javascript:ole332.Click();
javascript:ole436.Click();
javascript:ole333.Click();
javascript:ole437.Click();
javascript:ole334.Click();
javascript:ole438.Click();
javascript:ole335.Click();
javascript:ole439.Click();
javascript:ole336.Click();
javascript:ole440.Click();
javascript:ole337.Click();
javascript:ole441.Click();
javascript:ole338.Click();
javascript:ole442.Click();
javascript:ole339.Click();
javascript:ole443.Click();
javascript:ole340.Click();
javascript:ole444.Click();
javascript:ole341.Click();
javascript:ole445.Click();
javascript:ole342.Click();
javascript:ole446.Click();
javascript:ole343.Click();
javascript:ole447.Click();

CursorMode SaveFontOnExit

CursorType SaveMode

DefaultRecvDir SaveProfile

DefaultHeight SaveProfileOnClose

DefaultWidth ShowDialupDlg

Dev7171Terminal ShowHotspots

DirectToModem ShowNulls

Display3DBorder ShowRecvDialog

DisplayAttr SmoothScrolling

DisplayControlCodes SmoothScrollSpeed

DisplayRowCol Sound

DisplayUpperCase StatusLineMode

EntryAssist TabStop

FileXferProtocol TCPPort

ForceAltSize TelnetEcho

ForceExactSize TelnetName

Host TPRINTDestination

HostBGColor TypeAhead

HostColor UPSSet

HostFGColor UseDialProperties

KermitBinPrefix WindowTitle

KermitCompression WordWrap

KermitTextMode XferBlockSize

KermitUseFullPath XferHostSytem

KeyboardProfileName XferProgramName

KeypadMode XferStartAction

LeftMargin XModem16BitCrc

LinesInScrollback XModemPkt1024

Linemode XModemSendTimeout

LocalEcho YModemSendTimeout

LongName YModemUseFullPath

LUName ZModemAutoDownload

Modem ZModemCrashRecovery

MultiLineDelete ZModemMaxErr

MultiLineInsert ZModemOverwrite

Notify ZModemSlidingBytes

NRCSet ZModemSlidingWin

OnDisconnect ZModemUseFullPath

Online

javascript:ole344.Click();
javascript:ole448.Click();
javascript:ole345.Click();
javascript:ole449.Click();
javascript:ole347.Click();
javascript:ole450.Click();
javascript:ole346.Click();
javascript:ole451.Click();
javascript:ole348.Click();
javascript:ole452.Click();
javascript:ole349.Click();
javascript:ole453.Click();
javascript:ole350.Click();
javascript:ole454.Click();
javascript:ole351.Click();
javascript:ole455.Click();
javascript:ole352.Click();
javascript:ole456.Click();
javascript:ole353.Click();
javascript:ole457.Click();
javascript:ole354.Click();
javascript:ole458.Click();
javascript:ole355.Click();
javascript:ole459.Click();
javascript:ole356.Click();
javascript:ole460.Click();
javascript:ole357.Click();
javascript:ole5.Click();
javascript:ole4.Click();
javascript:ole52.Click();
javascript:ole42.Click();
javascript:ole53.Click();
javascript:ole43.Click();
javascript:ole54.Click();
javascript:ole44.Click();
javascript:ole55.Click();
javascript:ole45.Click();
javascript:ole56.Click();
javascript:ole46.Click();
javascript:ole57.Click();
javascript:ole47.Click();
javascript:ole58.Click();
javascript:ole48.Click();
javascript:ole59.Click();
javascript:ole49.Click();
javascript:ole510.Click();
javascript:ole410.Click();
javascript:ole511.Click();
javascript:ole411.Click();
javascript:ole512.Click();
javascript:ole412.Click();
javascript:ole513.Click();
javascript:ole413.Click();
javascript:ole514.Click();
javascript:ole414.Click();
javascript:ole515.Click();
javascript:ole415.Click();
javascript:ole516.Click();
javascript:ole416.Click();
javascript:ole517.Click();
javascript:ole417.Click();
javascript:ole518.Click();
javascript:ole418.Click();
javascript:ole519.Click();
javascript:ole419.Click();
javascript:ole520.Click();
javascript:ole420.Click();
javascript:ole521.Click();
javascript:ole421.Click();
javascript:ole522.Click();
javascript:ole422.Click();
javascript:ole523.Click();
javascript:ole423.Click();
javascript:ole524.Click();
javascript:ole424.Click();
javascript:ole525.Click();
javascript:ole425.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Unsupported	OLE	Methods	and	Properties
As	of	version	8.0,	the	following	methods	and	properties	no	longer	perform
their	specified	actions.	However,	to	properly	maintain	compatibility	with
earlier	versions,	the	methods	and	properties	continue	to	be	members	of
their	corresponding	objects.

Application	Object
DelSession	method

Host	Object
ShowPoppad	Host	property

Cfg3270,	Cfg5250,	and	CfgVT	Objects
ALA	Cfg3270	property
ALADisplayMode	Cfg3270	property
ALAInputMode	Cfg3270	property
ALAKeyboardProfileName	Cfg3270	method
ClearScreenOnSizeChange	CfgVT	property
CursorSelectMode	Cfgxxxx	property
FTPApplicationName	Cfgxxxx	property

Related	Topics
Methods	and	Properties	of	the	Application	Object
Methods	and	Properties	of	the	Host	Object
Methods	and	Properties	of	the	Cfg3270,	Cfg5250,	and	CfgVT	Objects

Differences	Between	Hummingbird	Basic	and
WinWrap	Basic
This	section	lists	the	differences	between	Hummingbird	Basic	and
WinWrap	Basic.
Note:	 	 WinWrap	Basic	was	used	in	HostExplorer	v4.x.

Differences	between	Hummingbird	Basic	and	WinWrap:
Assignment	Group
Conversion	Group
DDE	Group
DefType	Statement
Error	Handling	Group
Flow	Control	Group
Miscellaneous	Group
Operators	Group
String	Group
User	Dialog	Group
Variable	Info	Group
																																						

Constant	Group
Data	Type	Group
Declaration	Group
Dialog	Methods	and	Statements
File	Group
Math	Group
Object	Group
Settings	Group
TimeDate	Group
User	Input	Group

Related	Topics
OLE	Objects
Methods	and	Properties	of	the	Application	Object
Methods	and	Properties	of	the	Field	Object
Methods	and	Properties	of	the	Host	Object
Methods	and	Properties	of	the	Hosts	Object
Methods	and	Properties	of	the	Cfg3270,	Cfg5250,	and	CfgVT	Objects

File	Transfer	Options
You	can	use	this	option	to	set	file-transfer	options.	Remember	that	if	you
are	using	CMS,	you	must	precede	the	options	list	with	an	open
parenthesis.

Example
SendFile	"C:\CONFIG.SYS"	"CONFIG	SYS	A1"	"(ASCII

CRLF"

Related	Topics
General	Options
CMS-Specific	Options	on	Upload
TSO-Specific	Options	on	Upload
MUSIC-Specific	Options	on	Upload

General	Options
The	General	Options	group	box	lets	you	specify	whether	you	are
transferring	text	or	binary	files	or	whether	you	want	to	append	the	file	you
are	transferring	to	an	existing	file.

ASCII—Specifies	ASCII-to-EBCDIC	translation.	Check	this	option	when
transferring	files.

CRLF—This	is	the	carriage	return	and	line	feed	code.	This	code	is
necessary	for	viewing	and	editing	text	and	source	files,	such	as	SCRIPT
files.	It	is	not	required	for	binary	files.	Check	this	option	when	transferring
text	files.

APPEND—Specifies	that	you	want	to	add	the	file	you	are	sending	to	the
end	of	the	host	file.	Omit	this	option	if	you	want	the	file	to	replace	an
existing	host	file.

Related	Topics
CMS-Specific	Options	on	Upload
TSO-Specific	Options	on	Upload
MUSIC-Specific	Options	on	Upload

CMS-Specific	Options	on	Upload
The	following	CMS-specific	options	let	you	set	the	record	format.

RECFM	x—The	record	format	of	the	resulting	CMS	file	where	x	=	V
(variable)	or	F	(fixed).	If	you	omit	this	option,	the	file	will	contain	variable-
length	records	if	you	specify	CRLF;	otherwise,	it	will	contain	fixed-length
records.

LRECL	n—The	record	length	of	the	resulting	CMS	file,	where	n	is	the
logical	record	length.	Include	a	record	length	only	if	you	want	the
resulting	file	to	have	a	record	length	other	than	80.	If	you	omit	this	option,
the	file	will	have	a	record	length	of	80.

Related	Topics
General	Options
File	Transfer	Options
TSO-Specific	Options	on	Upload
MUSIC-Specific	Options	on	Upload

TSO-Specific	Options	on	Upload
The	following	TSO-specific	options	let	you	set	transfer	options:

(MEMBER)—If	you	are	uploading	the	file	to	a	partitioned	data	set,	you
can	append	the	member	name	to	the	host	file	name.

/PASSWORD—If	the	data	set	contains	a	password,	you	can	append	it	to
the	host	file	name.

RECFM(x)—The	record	format	of	the	resulting	TSO	data	set,	where	x	=
V	(variable),	F	(fixed),	or	U	(undefined).	If	you	omit	this	option,	the	file	will
contain	variable-length	records	if	you	specified	CRLF;	otherwise,	it	will
contain	fixed-length	records.	Do	not	use	this	option	with	the	MEMBER
option.

LRECL(n)—The	record	length	of	the	resulting	TSO	data	set,	where	n	=
1	through	132.	If	you	omit	this	option,	the	record	length	is	set	at	80.	Do
not	use	this	option	with	the	MEMBER	option.

BLKSIZE(n)—The	block	size	of	the	resulting	TSO	data	set.	If	you	omit
this	option,	the	block	size	will	be	the	same	as	the	record	length.	Do	not
use	this	option	with	the	MEMBER	option.

SPACE(n1,n2)	units—The	amount	of	space	to	be	allocated	for	the
resulting	TSO	data	set	(assuming	it	is	a	new	one),	where:

n1	=	primary	quantity	in	the	units	specified
n2	=	increment	in	the	units	specified	(if	the	primary	space	is
insufficient)
units	=	AVBLOCKS,	TRACKS,	or	CYLINDERS

The	units	parameter	is	optional.	These	values	are	similar	to	the	values	in
the	TSO	ALLOCATE	command.	If	you	omit	this	option,	you	will	get	the
space	for	one	block,	with	the	length	of	the	block	being	set	by	the
BLKSIZE	or	LRECL	options.	Do	not	use	this	option	with	the	MEMBER
option.

Related	Topics
General	Options

File	Transfer	Options
CMS-Specific	Options	on	Upload
MUSIC-Specific	Options	on	Upload

MUSIC-Specific	Options	on	Upload
The	following	MUSIC-specific	options	let	you	set	transfer	options:

LRECL(n)—The	record	length	of	the	resultant	MUSIC	save	file	where	n
=	1	through	32767.	If	you	omit	this	option,	the	record	length	is	set	at	80.

RECFM(x)—The	record	format	of	the	resultant	MUSIC	save	file	where	x
=	V	(variable),	F	(fixed),	VC	(variable	compressed),	or	FC	(fixed
compressed).	If	you	omit	this	option,	the	file	will	have	variable	length
records.

SPACE(n)—The	primary	space	allocation	for	the	resultant	MUSIC	save
file	where	n	=	1	through	8000	(Kb).	If	you	omit	this	option,	the	default
primary	allocation	will	be	40.

Related	Topics
General	Options
File	Transfer	Options
CMS-Specific	Options	on	Upload
TSO-Specific	Options	on	Upload

3270/5250	Special	Sequences
The	format	of	the	string	is	identical	to	the	one	used	in	the	EHLLAPI,	DDE,
and	VB	interfaces.	Listed	below	are	special-character	combinations.
Keep	in	mind	that	they	are	case-sensitive.	This	method	returns	0	if	all
keys	were	processed	successfully.	The	Keys	method	is	not	the	most
efficient	method	of	transferring	large	amounts	of	information	to	the	screen
buffer.	For	faster	access,	use	the	Fields.Text	property.
@B Backtab

@C Clear

@D Delete

@E Enter

@F Erase	EOF

@H 5250	Help

@I Insert

@J Next-Session

@L Cursor	Left

@N Newline

@P 5250Print

@R Reset

@T Tab

@U Cursor	Up

@V Cursor	Down

@Z Cursor	Right

@0 Home

@< Backspace

@1 PF1

@2 PF2

@3 PF3

@4 PF4

@5 PF5

@6 PF6

@7 PF7

@8 PF8

@9 PF9

@a PF10

@b PF11

@c PF12

@d PF13

@e PF14

@f PF15

@g PF16

@h PF17

@i PF18

@j PF19

@k PF20

@l PF21

@m PF22

@n PF23

@o PF24

@u Roll	Up

@v Roll	Down

@x PA1

@y PA2

@z PA3

@A@E Field	Exit

@A@F Erase	Input

@A@H Test	Request

@A@J Cursor	Select

@A@L Fast	Left

@A@Q Attention

@A@- Field	Minus

@A@+ Field	Plus

@A@< Record	Backspace

@A@Z Fast	Right

@A@t Print	Screen

@A@y Next	Word

@A@z Prev	Word

@S@x Duplicate

@S@y Field	Mark

Related	Topics
VT	Special	Sequences

VT	Special	Sequences
VT	mode	string	formats	are	different	to	allow	for	special	characters	such
as	control	characters	and	escape	sequences.	Enter	Escape	and	binary
codes	in	C-style	syntax	using	the	backslash	character	(\).	The	system
treats	in-line	spaces	as	part	of	the	sequence.

The	sequence	\xhh	lets	you	specify	any	ASCII	character	as	a
hexadecimal	character	code.	For	example,	you	can	give	the	ASCII
backspace	character	as	the	normal	C	escape	sequence	(\b),	or	you	can
code	it	as	\x08	hexadecimal.

You	must	use	at	least	one	digit	for	a	hexadecimal	escape	sequence,	but
you	can	omit	the	second	digit.	Therefore,	you	can	specify	the
hexadecimal	escape	sequence	for	the	backspace	as	either	\x8	or	\x08.

Related	Topics
3270/5250	Special	Sequences
Entering	Control	Sequences

About	COM	Objects
Component	Object	Model	(COM)	is	an	efficient	object-oriented
programming	methodology	that	documents	all	of	the	standard	functions
that	reside	in	DLLs.	COM	allows	programmers	to	develop	objects	that
can	be	accessed	by	any	COM-compliant	application.

COM	is	one	type	of	application	programming	interface	(API),	which	is	a
widely	known	document	standard	used	to	write	applications.	COM	is	also
a	new	form	of	Object	Linking	and	Embedding	(OLE),	a	document
standard	that	lets	you	create	objects	within	one	application	and	embed
them	in	another	application.

In	COM,	an	individual	object	is	assigned	discrete	and	logical	functionality.
As	well,	you	can	create	relationships	between	objects.	Because	objects
can	be	independent	of	one	another,	you	can	create	an	object	that	inherits
many	of	its	features	from	existing	objects,	rather	than	changing	a	module
when	a	new	object	is	added.	Using	small	and	flexible	COM	objects,	you
can:

improve	application	performance
reduce	application	size
reuse	code	to	develop	applications	more	rapidly

The	COM	interface	displays	the	available	API	methods	and	properties
with	the	corresponding	syntax.	The	interface	executes	the	code	in	a
dynamic-link	library	(DLL),	and	the	COM	object	returns	the	corresponding
value	or	data.

An	ActiveX	object	(for	example,	Terminal	objects	within	HostExplorer)	is	a
specific	type	of	COM	object	and	is	associated	with	the	GUI.	ActiveX
objects	support	a	number	of	standard	methods	and	properties.

Sample	files	of	COM	objects	are	available	in	the	directory	where	the
program	files	are	stored	on	your	machine:

HostExplorer\SDK\Samples\COMObjects

Note:	 	 Methods	and	properties	for	TN3270	and	TN5250	terminal	types	do	not	apply	to	HummingbirdConnectivity	SecureTerm.

Related	Topics
About	the	Terminal	Objects
About	the	Profile	Object
About	the	Parser	Objects
About	the	Transport	Objects

Relationship	Between	COM	Objects
The	following	diagram	illustrates	the	relationships	between	the	Terminal,
Profile,	Parser,	and	Transport	COM	objects:

Related	Topics
About	COM	Objects

Unsupported	COM	Methods	and	Properties
As	of	version	8.0,	the	following	methods	and	properties	no	longer	perform
their	specified	actions.	However,	to	properly	maintain	compatibility	with
earlier	versions,	the	methods	and	properties	continue	to	be	members	of
their	corresponding	objects.

Profile	Object
AllowTN3270E	property	(Profile	interface)
Cecp0	property	(ProfileTerminal	interface)
Cecp2	property	(ProfileTerminal	interface)
HostCharacterSet	property	(ProfileTerminal
interface)
HostKeyboard	property	(ProfileTerminal
interface)
VTAUPSS	property	(ProfileTerminal	interface)
ProportionalFonts	property	(ProfileFonts
interface)

IntegerName	property	(Profile	interface)
Cecp1	property	(ProfileTerminal	interface)
Cecp3	property	(ProfileTerminal	interface)
HostCodePage	property	(ProfileTerminal
interface)
Language	property	(ProfileTerminal
interface)
ShowHotspots	property	(ProfileDisplay
interface)
ProfileSchemes	interface

Transport	Object
AddFeature	method
RemoveFeature	method

Parser	Object	Methods
GetCecp
SetCecp

Parser	Object	Properties
BellMargin
Columns
EnableAutoDeleteFromNextField
EnableAutoNextField
EnableDisplayRowColumnOnOIA
GraphicsCursorType
Language
MaxUndoRedoEvents
RightMargin
ScrollStart
VTScrollSpeed

CharSet
DetectChainedIO
EnableAutoInsertToNextField
EnableDisplayHostAddressOn
OIA
EnableOEMReply
InsertKeyStyle
LeftMargin
Password
Rows
VTNRC

Related	Topics
Renamed	or	Moved	COM	Methods,	Properties,	and	Interfaces

Renamed	or	Moved	COM	Methods,	Properties,
and	Interfaces
For	version	8.0,	certain	methods,	properties,	and	interfaces	have	been
renamed	or	moved.

Profile	Object
The	following	changes	have	been	made	to	the	Profile	object:

several	interfaces	have	been	renamed
several	properties	have	been	renamed
several	properties	have	been	moved	from	one	interface	to	another

Transport	Object
The	following	properties	of	the	Transport	object	have	been	renamed	or
implemented	differently	for	8.0:

Former	Name New	Name	or	Implementation

DeviceName LUNameRequested

Feature SetFeature	and	GetFeature	methods

KerberosUsername,
KerberosAlternateUsername,
and	KerberosVersion

SetKerberosInfo

LockOnAttention HOSTEX_LOCK_ON_ATTENTION	value	of	HEPARSER_FEATURE
Data	Type

javascript:hetransport127.Click();
javascript:hetransport115.Click();
javascript:hetransport19.Click();
javascript:hetransport119.Click();

Parser	Object
The	following	properties	of	the	Parser	objects	have	been	renamed	or
implemented	differently	for	8.0:

Former	Name New	Name	or	Implementation

CellDelimited CellCopyMode

Feature GetFeature	and	SetFeature	methods

NextFieldKey OnPasteFieldModeTabCharacter

NRC NRCID

ReplaceFieldAttributeWith OnCopyReplaceFieldAttributeWith

VTUPSS UPSS

WrapLines AutoWrap

XferMode TransferMode

XferErrorCode TransferErrorCode

Related	Topics
Unsupported	COM	Methods	and	Properties

	 	

	 	

javascript:heparser315.Click();
javascript:heparser112.Click();
javascript:heparser218.Click();
javascript:heparser424.Click();
javascript:heparser49.Click();
javascript:heparser423.Click();
javascript:heparser517.Click();
javascript:heparser518.Click();
javascript:heparser520.Click();
javascript:heparser519.Click();

	 	

	 	

	 	

	 	

	

About	the	Terminal	Objects
The	Terminal	objects	govern	the	terminal	display	and	its	menus.	You	can
use	the	Terminal	objects	to	create	display-based	applications.	At	the
programming	front	end,	you	can	also	use	the	Terminal	objects	to
reference	the	other	HostExplorer	API	objects	—	the	Parser	objects,	the
Transport	objects,	the	Profile	object,	and	Ohio.

HostExplorer	consists	of	the	following	terminal	emulators:

HostExplorer	TN3270—Emulates	3270	terminals	for	IBM	mainframes.
HostExplorer	TN5250—Emulates	5250	terminals	for	AS/400
computers,	IBM’s	family	of	mid-range	computers.
HostExplorer	Telnet—Emulates	ASCII	terminals	(VTxxx,	ANSI,	and
SCO	ANSI)	for	UNIX,	DEC,	and	other	ASCII-based	host	components.

The	three	terminal	emulators	correspond	to	the	following	Terminal
objects:

HETM3270
HETM5250
HETMVT

Methods	of	the	Terminal	Objects
The	following	are	methods	of	the	Terminal	objects:

ChooseTerminalFont
EditSessionProperties

Related	Topics
Properties	of	the	Terminal	Objects

	

javascript:heterminal3.Click();
javascript:heterminal6.Click();

Properties	of	the	Terminal	Objects
Properties	define	the	characteristics	of	an	object.	The	Terminal	objects
have	the	following	properties:

Connected
Host
Session
TCPPort
Transport

Related	Topics
Methods	of	the	Terminal	Objects

	 	

	 	

javascript:heterminal9.Click();
javascript:heterminal10.Click();
javascript:heterminal12.Click();
javascript:heterminal14.Click();
javascript:heterminal15.Click();

About	the	Profile	Object
The	Profile	object	contains	the	values	of	general	session-related
configuration	settings	for	session	items	such	as	terminals,	graphics,	and
security.	It	consists	of	the	following	interfaces:

Profile	Interface
ProfileGraphics	Interface
ProfileMouse	Interface
ProfileTrackMenu	Interface
ProfileVTCharset	Interface
ProfileColor	Interface
ProfileSecurity	Interface
ProfileCursor	Interface
ProfilePCPrint	Interface
ProfilePrintSession	Interface
ProfileHostPrinting	Interface
ProfileEvents	Interface
ProfileSessionWindow	Interface

ProfileTerminal	Interface
ProfileKeyboard	Interface
ProfileToolbar	Interface
ProfileTranslationTable	Interface
ProfileEdit	Interface
ProfileFileTransfer	Interface
ProfileDisplay	Interface
ProfileFonts	Interface
ProfilePrintScreen	Interface
ProfileCapture	Interface
ProfileHotspots	Interface
ProfileConnection	Interface
ProfileSound	Interface

Profile	Interface
The	Profile	interface	lets	you	modify	the	main	configuration	settings	and
lets	you	access	other	Profile-related	interfaces.

Methods
The	Profile	interface	consists	of	the	following	methods:

Load
LoadColorScheme
LoadFileTransferScheme
LoadQuickKeyFile
Save

javascript:heprofile13.Click();
javascript:heprofile14.Click();
javascript:heprofile15.Click();
javascript:heprofile16.Click();
javascript:heprofile17.Click();

Properties
The	Profile	interface	consists	of	the	following	properties:

AddOIAToCapture
AllowEmuTracing
AllowErrorRestart
AttnFormat
Capture
ClearPassword
Color
Connection
Cursor
DDEServerName
Display
Edit
EmuTraceFilename
EnableHLLAPITracing
EnableTracing
Events
FileTransfer
Fonts
GlobalSettingsPath
Graphics
HLLAPITraceFilename
HostPrinting

Hotspots
Keyboard
KillMacrosOnSessionExit
Mouse
PCPrint
PrintSession
PrintScreen
ProfileName
QueryShutdown
RecordPortableMacros
ReRunAutoMacro
Security
SessionWindow
Sound
Terminal
TerminalType
Toolbar
TrackMenu
TranslationTable
UserDirectory
VTCharset
WinDDEEnabled

	 	

javascript:heprofile18.Click();
javascript:heprofile119.Click();
javascript:heprofile19.Click();
javascript:heprofile110.Click();
javascript:heprofile28.Click();
javascript:heprofile111.Click();
javascript:heprofile112.Click();
javascript:heprofile113.Click();
javascript:heprofile114.Click();
javascript:heprofile115.Click();
javascript:heprofile116.Click();
javascript:heprofile117.Click();
javascript:heprofile118.Click();
javascript:heprofile120.Click();
javascript:heprofile121.Click();
javascript:heprofile122.Click();
javascript:heprofile123.Click();
javascript:heprofile124.Click();
javascript:heprofile125.Click();
javascript:heprofile126.Click();
javascript:heprofile217.Click();
javascript:heprofile222.Click();
javascript:heprofile127.Click();
javascript:heprofile128.Click();
javascript:heprofile2.Click();
javascript:heprofile22.Click();
javascript:heprofile23.Click();
javascript:heprofile24.Click();
javascript:heprofile25.Click();
javascript:heprofile26.Click();
javascript:heprofile27.Click();
javascript:heprofile29.Click();
javascript:heprofile210.Click();
javascript:heprofile211.Click();
javascript:heprofile212.Click();
javascript:heprofile213.Click();
javascript:heprofile214.Click();
javascript:heprofile215.Click();
javascript:heprofile216.Click();
javascript:heprofile218.Click();
javascript:heprofile219.Click();
javascript:heprofile220.Click();
javascript:heprofile221.Click();
javascript:heprofile223.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

ProfileTerminal	Interface
The	ProfileTerminal	interface	lets	you	set	configuration	settings	related	to
the	terminal.

Properties
The	ProfileTerminal	interface	consists	of	the	following	properties:

AlternateScreen
CharacterSet
CustomModel
CustomModelCols
CustomModelRows
DetectChainedIO
ForceAltSize
New3270EAB
NewModel3279
NewModelType
ReplyOEM
ShortName
VT8BitMode
VTAnswerback
VTWrapLine

VTAutoResize
VTBSIsDel
VTConcealAnswerback
VTDefColsPerScreen
VTDefLinesPerScreen
VTDisplayMode
VTEnableSSH
VTForce8Bit
VTLocalEcho
VTNewTerminalType
VTOnLine
VTScrollSpeed
VTSmoothScroll
VTTerminalID

	 	

	 	

javascript:heprofile225.Click();
javascript:heprofile3.Click();
javascript:heprofile39.Click();
javascript:heprofile310.Click();
javascript:heprofile311.Click();
javascript:heprofile32.Click();
javascript:heprofile33.Click();
javascript:heprofile34.Click();
javascript:heprofile35.Click();
javascript:heprofile36.Click();
javascript:heprofile37.Click();
javascript:heprofile38.Click();
javascript:heprofile312.Click();
javascript:heprofile313.Click();
javascript:heprofile44.Click();
javascript:heprofile314.Click();
javascript:heprofile315.Click();
javascript:heprofile316.Click();
javascript:heprofile317.Click();
javascript:heprofile318.Click();
javascript:heprofile319.Click();
javascript:heprofile320.Click();
javascript:heprofile321.Click();
javascript:heprofile322.Click();
javascript:heprofile323.Click();
javascript:heprofile324.Click();
javascript:heprofile4.Click();
javascript:heprofile42.Click();
javascript:heprofile43.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

ProfileGraphics	Interface
The	ProfileGraphics	interface	lets	you	set	configuration	settings	related	to
graphics.

Properties
The	ProfileGraphics	interface	consists	of	the	following	properties:

APL
GraphicsCursorType
GraphicsModel
LightPen
ProgramSymbols
PSCellSize

	 	

	 	

	

javascript:heprofile46.Click();
javascript:heprofile47.Click();
javascript:heprofile48.Click();
javascript:heprofile49.Click();
javascript:heprofile410.Click();
javascript:heprofile411.Click();

ProfileKeyboard	Interface
The	ProfileKeyboard	interface	lets	you	set	configuration	settings	related
to	the	keyboard.

Properties
The	ProfileKeyboard	interface	consists	of	the	following	properties:

AllowAIDKeyRepeat
CurrentKeyboard
LockOnAttention
RemapKeypad
TypeAheadTimeout
VTEnableBreak
VTNewLineMode

AllowDiac
KeyboardType
MapNumLock
TypeAhead
VTCursorKeyApplMode
VTKeypadApplMode

	 	

	 	

	 	

	 	

javascript:heprofile413.Click();
javascript:heprofile415.Click();
javascript:heprofile417.Click();
javascript:heprofile419.Click();
javascript:heprofile421.Click();
javascript:heprofile423.Click();
javascript:heprofile425.Click();
javascript:heprofile414.Click();
javascript:heprofile416.Click();
javascript:heprofile418.Click();
javascript:heprofile420.Click();
javascript:heprofile422.Click();
javascript:heprofile424.Click();

	 	

	 	

ProfileMouse	Interface
The	ProfileMouse	interface	lets	you	set	configuration	settings	related	to
the	mouse.

Properties
The	ProfileMouse	interface	consists	of	the	following	properties:

BlockSelect
SelectHilight

	

javascript:heprofile427.Click();
javascript:heprofile5.Click();

ProfileToolbar	Interface
The	ProfileToolbar	interface	lets	you	set	configuration	settings	related	to
the	toolbar.

Properties
The	ProfileToolbar	interface	consists	of	the	following	properties:

BigToolbar
MaxBitmaps
ShowTips
ToolbarDockType

Button
NumTools
TBUserBitmaps
ToolbarFilename

	 	

	 	

	 	

	

javascript:heprofile53.Click();
javascript:heprofile55.Click();
javascript:heprofile57.Click();
javascript:heprofile59.Click();
javascript:heprofile54.Click();
javascript:heprofile56.Click();
javascript:heprofile58.Click();
javascript:heprofile510.Click();

ProfileTrackMenu	Interface
The	ProfileTrackMenu	interface	lets	you	set	configuration	settings	related
to	the	Track	Menu.

Properties
The	ProfileTrackMenu	interface	consists	of	the	following	properties:

TrackCommands
TrackLabels

	

javascript:heprofile512.Click();
javascript:heprofile513.Click();

ProfileTranslationTable	Interface
The	Translation	Table	interface	lets	you	change	the	translation	table	(or
host	code	page)	used	to	display	data	received	from	the	host.	Because
mainframe	systems	and	midrange	systems	(such	as	the	AS/400)	support
many	host	languages,	you	must	select	the	correct	translation	table	to
display	host	data	properly.

Properties
The	ProfileTranslationTable	interface	consists	of	the	following	property:

CurrentLanguage

javascript:heprofile515.Click();

ProfileVTCharset	Interface
The	ProfileVTCharset	interface	lets	you	set	configuration	settings	related
to	the	VT	Character	Set.

Properties
The	ProfileVTCharset	interface	consists	of	the	following	properties:

VTForceNRC
VTNRC
VTNRCMode
VTUPSS

	 	

	

javascript:heprofile517.Click();
javascript:heprofile518.Click();
javascript:heprofile519.Click();
javascript:heprofile520.Click();

ProfileEdit	Interface
The	ProfileEdit	interface	lets	you	set	configuration	settings	related	to
editing.

Methods
The	ProfileEdit	interface	contains	the	following	methods:

ClearAllTabStops
TabStop

javascript:heprofile522.Click();
javascript:heprofile523.Click();

Properties
The	ProfileEdit	interface	consists	of	the	following	properties:

AlwaysAutoskip
AutoCopyKeepSelection
CellDelimited
ClipFormatCSV
ClipFormatPasteLink
ClipFormatText
CSVCopyEmptyFields
CutChar
EntryAssist
LeftMargin
MultiLineDelete
NoLockKeyb
PasteChar
RemoveTrailingBlankOnCopy
RespectNumeric
SmartInsert
WordWrapWithNewLineReturn

AutoCopy
BellMargin
ClipFormatBitmap
ClipFormatHE
ClipFormatRTF
ConvertNulls
CSVTrimFields
CutMode
InsertResetByAttn
MoveCursorAfterPaste
MultiLineInsert
NumericCharacters
PasteMode
ResetMDTOnEraseInput
RightMargin
WordWrap

	 	

	 	

javascript:heprofile524.Click();
javascript:heprofile526.Click();
javascript:heprofile6.Click();
javascript:heprofile63.Click();
javascript:heprofile65.Click();
javascript:heprofile67.Click();
javascript:heprofile69.Click();
javascript:heprofile611.Click();
javascript:heprofile613.Click();
javascript:heprofile615.Click();
javascript:heprofile617.Click();
javascript:heprofile619.Click();
javascript:heprofile621.Click();
javascript:heprofile623.Click();
javascript:heprofile625.Click();
javascript:heprofile72.Click();
javascript:heprofile74.Click();
javascript:heprofile525.Click();
javascript:heprofile527.Click();
javascript:heprofile62.Click();
javascript:heprofile64.Click();
javascript:heprofile66.Click();
javascript:heprofile68.Click();
javascript:heprofile610.Click();
javascript:heprofile612.Click();
javascript:heprofile614.Click();
javascript:heprofile616.Click();
javascript:heprofile618.Click();
javascript:heprofile620.Click();
javascript:heprofile622.Click();
javascript:heprofile624.Click();
javascript:heprofile7.Click();
javascript:heprofile73.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

ProfileColor	Interface
The	ProfileColor	interface	lets	you	set	configuration	settings	related	to
color.

Methods
The	ProfileColor	interface	contains	the	following	method:

SystemColor

javascript:heprofile76.Click();

Properties
The	ProfileColor	interface	consists	of	the	following	property:

Schemes

	

javascript:heprofile77.Click();

ProfileFileTransfer	Interface
The	ProfileFileTransfer	interface	lets	you	set	configuration	settings
related	to	transferring	files.

Properties
The	ProfileFileTransfer	interface	consists	of	the	following	properties:

Append
ASCII
AutoCC
AutoClearMonitor
BlkSize
CRLF
CustomTransferTable
DefaultDownloadPath
DefaultProtocol
DefaultRecvDir
DefaultUploadPath
DownloadHostFileName
DownloadPCFileName
DownloadTranslate
ExtraOptions
FileExistAction
Host
INDFILEName
KmBinaryPrefix
KmRLE
KmTextMode
KmUseFullPath
Lrecl
QuickMode
Recfm
Schemes

ShowRecvDlg
UploadHostFileName
UploadPCFileName
UploadTranslate
UserDefinedDownload
UserDefinedUpload
VTAutoClearMonitor
XferBlockSize
XferDest
XferHostCodePage
XferPCCodePage
XferSource
XferStartAction
Xm1KPacket
XmAckTimeout
XmCRC
YmAckTimeout
YmUseFullPath
ZmAutoDownload
ZmCrashRecovery
ZmMaxErrors
ZmOverwriteMngmt
ZmSlideWindow
ZmUseFullPath
ZmWindowSize

	 	

javascript:heprofile79.Click();
javascript:heprofile710.Click();
javascript:heprofile711.Click();
javascript:heprofile712.Click();
javascript:heprofile713.Click();
javascript:heprofile714.Click();
javascript:heprofile715.Click();
javascript:heprofile716.Click();
javascript:heprofile717.Click();
javascript:heprofile718.Click();
javascript:heprofile719.Click();
javascript:heprofile720.Click();
javascript:heprofile721.Click();
javascript:heprofile722.Click();
javascript:heprofile723.Click();
javascript:heprofile724.Click();
javascript:heprofile725.Click();
javascript:heprofile726.Click();
javascript:heprofile8.Click();
javascript:heprofile82.Click();
javascript:heprofile83.Click();
javascript:heprofile84.Click();
javascript:heprofile85.Click();
javascript:heprofile86.Click();
javascript:heprofile87.Click();
javascript:heprofile88.Click();
javascript:heprofile89.Click();
javascript:heprofile810.Click();
javascript:heprofile811.Click();
javascript:heprofile812.Click();
javascript:heprofile813.Click();
javascript:heprofile814.Click();
javascript:heprofile815.Click();
javascript:heprofile816.Click();
javascript:heprofile817.Click();
javascript:heprofile818.Click();
javascript:heprofile819.Click();
javascript:heprofile820.Click();
javascript:heprofile821.Click();
javascript:heprofile822.Click();
javascript:heprofile823.Click();
javascript:heprofile824.Click();
javascript:heprofile9.Click();
javascript:heprofile92.Click();
javascript:heprofile93.Click();
javascript:heprofile94.Click();
javascript:heprofile95.Click();
javascript:heprofile96.Click();
javascript:heprofile97.Click();
javascript:heprofile98.Click();
javascript:heprofile99.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

ProfileSecurity	Interface
The	ProfileSecurity	interface	lets	you	set	configuration	settings	related	to
security.

Properties
The	ProfileSecurity	interface	consists	of	the	following	properties:

Kerberos
KerberosAltName
KerberosEncryption
KerberosForwardTkt
KerberosVersion
SecurityOption

	 	

	 	

	

javascript:heprofile911.Click();
javascript:heprofile912.Click();
javascript:heprofile913.Click();
javascript:heprofile914.Click();
javascript:heprofile915.Click();
javascript:heprofile916.Click();

ProfileDisplay	Interface
The	ProfileDisplay	interface	lets	you	set	configuration	settings	related	to
screen	display.

Properties
The	ProfileDisplay	interface	consists	of	the	following	properties:

BlinkToItalic
DisplayInOIA
DisplayUpperCase
StatusLineMode
VTHostWritableStatusLine
VTMaxScrollBufferSize
VTSaveAttribsInScrollback
VTScrollNoBlanks

ColumnSeparators
DisplayRowCol
ShowNulls
VTClearScreenOnSizeChange
VTISOColors
VTResetISOColors
VTSaveEraseScreens

	 	

	 	

	 	

javascript:heprofile918.Click();
javascript:heprofile920.Click();
javascript:heprofile922.Click();
javascript:heprofile924.Click();
javascript:heprofile926.Click();
javascript:heprofile102.Click();
javascript:heprofile104.Click();
javascript:heprofile106.Click();
javascript:heprofile919.Click();
javascript:heprofile921.Click();
javascript:heprofile923.Click();
javascript:heprofile925.Click();
javascript:heprofile10.Click();
javascript:heprofile103.Click();
javascript:heprofile105.Click();

	 	

	 	

	 	

	 	

ProfileCursor	Interface
The	ProfileCursor	interface	lets	you	set	configuration	settings	related	to
the	cursor.

Properties
The	ProfileCursor	interface	consists	of	the	following	properties:

CursorMode
CursorType
DisplayCrossHairCursor
MoveCursorOnMouseClick

	 	

	

javascript:heprofile108.Click();
javascript:heprofile109.Click();
javascript:heprofile1010.Click();
javascript:heprofile1011.Click();

ProfileFonts	Interface
The	ProfileFonts	interface	lets	you	set	configuration	settings	related	to
fonts.

Methods
The	ProfileFonts	interface	has	the	following	method:

SetFont

javascript:heprofile1013.Click();

Properties
The	ProfileFonts	interface	consists	of	the	following	properties:

CharacterSpacing
VariableWidthFont

	 	

javascript:heprofile1014.Click();
javascript:heprofile1015.Click();

ProfilePCPrint	Interface
The	ProfilePCPrint	interface	lets	you	set	configuration	settings	related	to
the	PCPRINT	program.

Properties
The	ProfilePCPrint	interface	consists	of	the	following	properties:

PrintMode7171
PrinterDeinit
PrinterInit
TprintMode

	 	

	

javascript:heprofile1017.Click();
javascript:heprofile1018.Click();
javascript:heprofile1019.Click();
javascript:heprofile1020.Click();

ProfilePrintScreen	Interface
The	ProfilePrintScreen	interface	lets	you	set	configuration	settings	for
printing	a	screen.

Properties
The	ProfilePrintScreen	interface	consists	of	the	following	properties:

AddFormFeed
DisplayPrintDlg
PrintBlackAndWhite
PrinterDocname
PrinterHeader
PrintOIA
PrintScreenFontName
PRTSCRUseSpecificPrinter

DisplayAbortDlg
HostScreenPerPage
PrintBorder
PrinterFooter
PrintLocation
PrintReversedColors
PrintScreenFontPointSize

	 	

	 	

	 	

javascript:heprofile1022.Click();
javascript:heprofile1024.Click();
javascript:heprofile1026.Click();
javascript:heprofile1028.Click();
javascript:heprofile11a2.Click();
javascript:heprofile11a4.Click();
javascript:heprofile11a6.Click();
javascript:heprofile11a8.Click();
javascript:heprofile1023.Click();
javascript:heprofile1025.Click();
javascript:heprofile1027.Click();
javascript:heprofile11.Click();
javascript:heprofile11a3.Click();
javascript:heprofile11a5.Click();
javascript:heprofile11a7.Click();

	 	

	 	

	 	

	 	

ProfilePrintSession	Interface
The	ProfilePrintSession	interface	lets	you	set	configuration	settings
related	to	general	output.

Properties
The	ProfilePrintSession	interface	consists	of	the	following	properties:

HostName
LimitToSingleInstance
LUName
LUType
ProfileName
StartPrinter
StopPrinter

	 	

	 	

	 	

javascript:heprofile1110.Click();
javascript:heprofile1111.Click();
javascript:heprofile1112.Click();
javascript:heprofile1113.Click();
javascript:heprofile1114.Click();
javascript:heprofile1115.Click();
javascript:heprofile1116.Click();

ProfileCapture	Interface
The	ProfileCapture	interface	lets	you	set	configuration	settings	related	to
the	saving	of	files.

Properties
The	ProfileCapture	interface	consists	of	the	following	properties:

SaveAppend
SaveConfirm
SaveFileName
SaveMode
VTCaptureMode

	 	

	 	

javascript:heprofile1118.Click();
javascript:heprofile1119.Click();
javascript:heprofile1120.Click();
javascript:heprofile1121.Click();
javascript:heprofile1122.Click();

ProfileHostPrinting	Interface
The	ProfileHostPrinting	interface	lets	you	set	configuration	settings
related	to	host	printing.

Properties
The	ProfileHostPrinting	interface	consists	of	the	following	properties:

VTAutoFormFeed
VTiPrintMaxRows
VTPrintByPassWindows
VTPrintDisableTranslation
VTPrinterEnableTimeout
VTPrinterInit
VTPrinterTimeoutValue
VTPrintFileMode
VTPrintLFtoCRLF
VTUseSpecificPrinter

VTiPrintMaxCols
VTPassThruUPSS
VTPrintDefaultFont
VTPrinterDeinit
VTPrinterFontName
VTPrinterTimeout
VTPrintFile
VTPrintFitFontToPage
VTPrintTarget

	 	

	 	

	 	

javascript:heprofile1124.Click();
javascript:heprofile1126.Click();
javascript:heprofile12a.Click();
javascript:heprofile12a3.Click();
javascript:heprofile12a5.Click();
javascript:heprofile12a7.Click();
javascript:heprofile129.Click();
javascript:heprofile1211.Click();
javascript:heprofile1213.Click();
javascript:heprofile1215.Click();
javascript:heprofile1125.Click();
javascript:heprofile1127.Click();
javascript:heprofile12a2.Click();
javascript:heprofile12a4.Click();
javascript:heprofile12a6.Click();
javascript:heprofile12a8.Click();
javascript:heprofile1210.Click();
javascript:heprofile1212.Click();
javascript:heprofile1214.Click();

	 	

	 	

	 	

	 	

	 	

	 	

ProfileHotspots	Interface
The	ProfileHotspots	interface	lets	you	configure	settings	related	to
hotspots	on	the	host	screen.

Properties
The	ProfileHotspots	interface	consists	of	the	following	properties:

DisplayStyle
EnableHotspots
MouseActivation
Schemes

	 	

	

javascript:heprofile1217.Click();
javascript:heprofile1218.Click();
javascript:heprofile1219.Click();
javascript:heprofile1220.Click();

ProfileEvents	Interface
The	ProfileEvents	interface	lets	you	configure	settings	related	to
programmed	events.

Methods
The	ProfileEvents	interface	has	the	following	method:

RemoveEvent

javascript:heprofile1222.Click();

Properties
The	ProfileEvents	interface	consists	of	the	following	properties:

EnableEvents
Schemes

	 	

javascript:heprofile1223.Click();
javascript:heprofile1224.Click();

ProfileConnection	Interface
The	ProfileConnection	interface	lets	you	configure	settings	related	to	the
connection	to	the	host.

Properties
The	ProfileConnection	interface	consists	of	the	following	properties:

acPassword
AlwaysPromptForHostName
AreaCode
AutoEndMacroName
AutoMacroName
AutoRunMacroDelayTime
AutoSignOn
BackspaceKeyInterpretation
ConnectBy
Country
CountryCode
CountryID
DeviceName
DirectToModem
EnableEMode
EnableInfiniteRetries
EnterKeyInterpretation
HostName
KeyboardBufferMode
LUName

Modem
ModemID
NumberOfRetries
Password
Port
PortList
RetryDelayTimeBetweenHosts
ShowDialupDlg
SilentConnect
SYSREQasIACIP
TelnetEcho
TelnetName
Timeout
UponDisconnect
UseDialProp
UserName
VTDoHostWindowSize
VTInitiateTelnetNegotiation
VTLineMode

	 	

	 	

javascript:heprofile13a.Click();
javascript:heprofile132.Click();
javascript:heprofile133.Click();
javascript:heprofile134.Click();
javascript:heprofile135.Click();
javascript:heprofile136.Click();
javascript:heprofile137.Click();
javascript:heprofile138.Click();
javascript:heprofile139.Click();
javascript:heprofile1310.Click();
javascript:heprofile1311.Click();
javascript:heprofile1312.Click();
javascript:heprofile1313.Click();
javascript:heprofile1314.Click();
javascript:heprofile1315.Click();
javascript:heprofile1316.Click();
javascript:heprofile1317.Click();
javascript:heprofile1318.Click();
javascript:heprofile1319.Click();
javascript:heprofile1320.Click();
javascript:heprofile1321.Click();
javascript:heprofile1322.Click();
javascript:heprofile1323.Click();
javascript:heprofile14a.Click();
javascript:heprofile142.Click();
javascript:heprofile143.Click();
javascript:heprofile144.Click();
javascript:heprofile145.Click();
javascript:heprofile146.Click();
javascript:heprofile147.Click();
javascript:heprofile148.Click();
javascript:heprofile149.Click();
javascript:heprofile1410.Click();
javascript:heprofile1411.Click();
javascript:heprofile1412.Click();
javascript:heprofile1413.Click();
javascript:heprofile1414.Click();
javascript:heprofile1415.Click();
javascript:heprofile1416.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

ProfileSessionWindow	Interface
The	ProfileSessionWindow	interface	lets	you	configure	settings	for	the
session	window.

Properties
The	ProfileSessionWindow	interface	consists	of	the	following	properties:

DisplayBorder
EnableWorkspaceBackgroundBitmap
FullScreenMode
KeepFontAspectRatio
LongName
PromptOnClose
ResizeBehavior
SaveProfOnClose

SaveFontOnExit
SnapFrameBack
SwitchScreenType
WindowState
WindowTitle
WorkSpaceBackgroundBitmap
WorkspaceBackgroundColor
WorkspaceForegroundColor

	 	

	 	

	 	

javascript:heprofile1418.Click();
javascript:heprofile1419.Click();
javascript:heprofile1420.Click();
javascript:heprofile1421.Click();
javascript:heprofile1422.Click();
javascript:heprofile1423.Click();
javascript:heprofile1424.Click();
javascript:heprofile1425.Click();
javascript:heprofile15a.Click();
javascript:heprofile152.Click();
javascript:heprofile153.Click();
javascript:heprofile154.Click();
javascript:heprofile155.Click();
javascript:heprofile156.Click();
javascript:heprofile157.Click();
javascript:heprofile158.Click();

	 	

	 	

	 	

	 	

	

ProfileSound	Interface
The	ProfileSound	interface	lets	you	set	configuration	settings	related	to
program	sounds.

Properties
The	ProfileSound	interface	consists	of	the	following	properties:

Notify
Sound

	

javascript:heprofile1510.Click();
javascript:heprofile1511.Click();

Data	Types	of	the	Profile	Object
The	Profile	object	contains	the	following	data	types:

HOSTEX_ATN_FORMAT	Data	Type
HOSTEX_BACKSPACE_KEY_INTERPRETATION	Data	Type
HOSTEX_CELL_DELIMITED	Data	Type
HOSTEX_CONNECT_BY	Data	Type
HOSTEX_CUT_MODE	Data	Type
HOSTEX_ENTER_KEY_INTERPRETATION	Data	Type
HOSTEX_FIELD_ATTR_REPLACEMENT	Data	Type
HOSTEX_GRAPHICS_CELLSIZE	Data	Type
HOSTEX_GRAPHICS_CURSOR_TYPE	Data	Type
HOSTEX_GRAPHICS_MODEL	Data	Type
HOSTEX_HOTSPOT_DISPLAY	Data	Type
HOSTEX_HOTSPOT_MOUSE_ACTIVATION	Data	Type
HOSTEX_KEYBOARD_BUFFER_MODE	Data	Type
HOSTEX_KEYBOARD_TYPE	Data	Type
HOSTEX_LINEMODE	Data	Type
HOSTEX_NEXT_FIELD_KEY	Data	Type
HOSTEX_OIA_DISPLAY	Data	Type
HOSTEX_PASTE_MODE	Data	Type
HOSTEX_PRINT_TARGET	Data	Type
HOSTEX_PRINTFILE_MODE	Data	Type
HOSTEX_RESIZE_BEHAVIOR	Data	Type
HOSTEX_SAVE_OPTIONS	Data	Type
HOSTEX_SECURITY_OPTIONS	Data	Type
HOSTEX_SELECTION_MODE	Data	Type
HOSTEX_STATUS_LINE_MODE	Data	Type
HOSTEX_SWITCHSCREENTYPE	Data	Type
HOSTEX_TELNETECHO	Data	Type
HOSTEX_TPRINT_OUTPUT	Data	Type

About	the	Parser	Objects
The	Parser	objects	analyze	the	data	that	is	received	from	the	Transport
objects.	By	parsing	the	information	from	the	Transport	buffer,	the	Parser
objects	create	a	new	buffer	containing	information	that	will	eventually	be
displayed	on	the	screen.

The	Parser	objects	are:

HEPAR3270—Translates	information	received	from	the	3270	data
stream	protocol.
HEPAR5250—Translates	information	received	from	the	5250	data
stream	protocol.
HEPARVT—Translates	information	received	from	the	VT	data	stream
protocol.

For	HEPAR3270	and	HEPAR5250	objects,	the	buffer	is	in	EBCDIC
format.	For	the	HEPARVT	object,	the	buffer	is	in	ASCII	format.

There	are	methods,	properties,	and/or	data	types	specific	to:

only	the	HEPAR3270	object
both	the	HEPAR3270	and	HEPAR5250	objects
both	the	HEPAR3270	and	HEPARVT	objects
only	the	HEPARVT	object

There	are	also	methods,	properties,	and	data	types	common	to	all	three
objects.

Methods	of	the	Parser	Objects
The	following	are	methods	of	the	Parser	objects:

AsciiToHost
ClearSel
FindString
GetCursorPosition
GetFeature
GetFieldAttribute
GetFieldCount
GetFieldExtAttribute
GetFieldIndex
GetFieldLength
GetFieldPos
GetFieldText
GetScreenText
GetSel
GetSelectionArea
GetValue
HostToAscii
IsFieldBold
IsFieldHidden
IsFieldModified
IsFieldNumeric
IsFieldPenSelectable
IsFieldProtected
MoveCursorRelative

PasteDataToScreen
PutString
PutText
ReceiveFile
ReplaceSel
SendAid
SetCursorPosition
SetFeature
SetFieldText
SendFile
SendKeys
SetSel
SetValue
WaitConnected
WaitForCursor
WaitForCursorMove
WaitForIO
WaitForString
WaitHostQuiet
WaitIdle
WaitPSUpdated
WaitXfer
WriteProtectedText

	 	

javascript:heparser18.Click();
javascript:heparser19.Click();
javascript:heparser110.Click();
javascript:heparser111.Click();
javascript:heparser112.Click();
javascript:heparser113.Click();
javascript:heparser114.Click();
javascript:heparser115.Click();
javascript:heparser116.Click();
javascript:heparser117.Click();
javascript:heparser118.Click();
javascript:heparser119.Click();
javascript:heparser120.Click();
javascript:heparser121.Click();
javascript:heparser122.Click();
javascript:heparser123.Click();
javascript:heparser124.Click();
javascript:heparser125.Click();
javascript:heparser2.Click();
javascript:heparser22.Click();
javascript:heparser23.Click();
javascript:heparser24.Click();
javascript:heparser25.Click();
javascript:heparser26.Click();
javascript:heparser27.Click();
javascript:heparser28.Click();
javascript:heparser29.Click();
javascript:heparser210.Click();
javascript:heparser211.Click();
javascript:heparser212.Click();
javascript:heparser217.Click();
javascript:heparser218.Click();
javascript:heparser219.Click();
javascript:heparser215.Click();
javascript:heparser216.Click();
javascript:heparser220.Click();
javascript:heparser221.Click();
javascript:heparser222.Click();
javascript:heparser223.Click();
javascript:heparser3.Click();
javascript:heparser32.Click();
javascript:heparser33.Click();
javascript:heparser34.Click();
javascript:heparser35.Click();
javascript:heparser36.Click();
javascript:heparser37.Click();
javascript:heparser38.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Properties	of	the	Parser	Objects
Properties	define	the	characteristics	of	an	object.	The	Parser	objects
have	the	following	properties:

Answerback
APLInputMode
AutoWrap
BufRows
CanChangeScreen
CaptureMode
CellCopyMode
ConnectBy
ConnectErrorStatus
ConnectRC
ConvertNulls
CutMode
EnableAPL
EnablePrinterTimeout
GraphicsModel
HistoryLines
HLLAPIName
HostResponseTime
HostWritableString
KeyboardLocked
ModelColumns
ModelRows
MoveCursorOnMouseClick
NRCID
NumericCharacters
NVTMode
OIAString
OIAStringW
OnCopyReplaceFieldAttributeWith

OnPasteFieldModeTabCharacter
PasteMode
PrintByPassWindows
PrinterDeInitString
PrintDisableTranslation
PrinterInitString
PrinterTimeout
PrinterTimeoutValue
PrintLFtoCRLF
ProgramSymbols
SaveAppend
SaveFileName
ScreenChanged
ScreenCol
ScreenRow
SelectionMode
SessionName
SoftCharacterSetID
StatusLineMode
TerminalID
TerminalModel
Text
Transport
TypeAheadTimeout
UPSS
ValidateNumericFieldData
TransferErrorCode
TransferMode

javascript:heparser310.Click();
javascript:heparser311.Click();
javascript:heparser518.Click();
javascript:heparser312.Click();
javascript:heparser313.Click();
javascript:heparser314.Click();
javascript:heparser315.Click();
javascript:heparser316.Click();
javascript:heparser317.Click();
javascript:heparser318.Click();
javascript:heparser319.Click();
javascript:heparser320.Click();
javascript:heparser321.Click();
javascript:heparser322.Click();
javascript:heparser4.Click();
javascript:heparser42.Click();
javascript:heparser43.Click();
javascript:heparser44.Click();
javascript:heparser45.Click();
javascript:heparser46.Click();
javascript:heparser47.Click();
javascript:heparser48.Click();
javascript:heparser516.Click();
javascript:heparser49.Click();
javascript:heparser410.Click();
javascript:heparser411.Click();
javascript:heparser412.Click();
javascript:heparser413.Click();
javascript:heparser423.Click();
javascript:heparser424.Click();
javascript:heparser414.Click();
javascript:heparser415.Click();
javascript:heparser416.Click();
javascript:heparser417.Click();
javascript:heparser418.Click();
javascript:heparser419.Click();
javascript:heparser420.Click();
javascript:heparser421.Click();
javascript:heparser422.Click();
javascript:heparser5.Click();
javascript:heparser52.Click();
javascript:heparser53.Click();
javascript:heparser54.Click();
javascript:heparser55.Click();
javascript:heparser56.Click();
javascript:heparser57.Click();
javascript:heparser58.Click();
javascript:heparser59.Click();
javascript:heparser510.Click();
javascript:heparser511.Click();
javascript:heparser512.Click();
javascript:heparser513.Click();
javascript:heparser514.Click();
javascript:heparser517.Click();
javascript:heparser515.Click();
javascript:heparser519.Click();
javascript:heparser520.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Data	Types	of	the	Parser	Objects
The	Parser	objects	contain	the	following	data	types:

HEPARSER_FEATURE	Data	Type
HOSTEX_CAPTURE_MODE	Data	Type
HOSTEX_CELL_DELIMITED	Data	Type
HOSTEX_CONNECT_BY	Data	Type
HOSTEX_CUT_MODE	Data	Type
HOSTEX_FIELD_ATTR_REPLACEMENT	Data	Type
HOSTEX_GRAPHICS_MODEL	Data	Type
HOSTEX_INSERT_KEY_STYLE	Data	Type
HOSTEX_NEXT_FIELD_KEY	Data	Type
HOSTEX_PASTE_MODE	Data	Type
HOSTEX_SELECTION_MODE	Data	Type
HOSTEX_STATUS_LINE_MODE	Data	Type
HOSTEX_TERMINAL_ID	Data	Type
HOSTEX_TERM_MODEL	Data	Type
HOSTEX_TRANSFER	Data	Type

About	the	Transport	Objects
The	Transport	objects	are	tools	for	communication	exchange	and
negotiation	between	your	terminal	and	the	host.	The	Transport	objects
receive	and	send	data	in	EBCDIC	format	(for	TN3270	and	TN5250
terminals)	or	ASCII	format	(for	TNVT	terminals)	from	the	host.	This	data
is	eventually	displayed	on	the	terminal.

The	Transport	objects	are:

HETP3270—A	TN3270	terminal	emulator	that	connects	to	an	IBM
mainframe.
HETP5250—A	TN5250	terminal	emulator	that	connects	to	an	AS/400
mainframe.
HETPVT—A	TNVT	terminal	emulator	that	connects	to	a	UNIX	or	DEC
machine.
HETPSNA—An	SNA	terminal	emulator	that	connects	to	a	local	server
(Microsoft	SNA),	which	connects	you	to	the	host.
HETPSAA—An	SAA	terminal	emulator	that	connects	to	a	local	server
(Novell	Netware),	which	connects	you	to	the	host.
HETAPI—A	telephone	dial-up	emulator	that	connects	to	a	server.

For	properties	and/or	data	types	specific	to:

only	the	HETP3270	object
only	the	HETP5250	object
both	the	HETP3270	and	HETP5250	objects
only	the	HETPVT	object
both	the	HETP3270	and	HETPVT	objects

There	are	also	methods	and	properties	common	to	the	HETP3270,
HETP250,	and	HETPVT	objects.

Related	Topics
Methods	of	the	Transport	Objects
Properties	of	the	Transport	Objects
Data	Types	of	the	Transport	Objects

Methods	of	the	Transport	Objects
The	following	properties	are	methods	of	the	Transport	objects:

GetFeature
NegotiateNAWS
SendFunctionKey
SetFeature
SetKerberosInfo

GetStatusString
SendData
SendKeepAlive
SetHostPrintTransformInfo
ToggleBlockReceive

Related	Topics
Properties	of	the	Transport	Objects
Data	Types	of	the	Transport	Objects

	 	

	 	

	 	

javascript:hetransport19.Click();
javascript:hetransport111.Click();
javascript:hetransport113.Click();
javascript:hetransport115.Click();
javascript:hetransport119.Click();
javascript:hetransport110.Click();
javascript:hetransport112.Click();
javascript:hetransport114.Click();
javascript:hetransport116.Click();
javascript:hetransport120.Click();

	 	

	

Properties	of	the	Transport	Objects
Properties	define	the	characteristics	of	an	object.	The	Transport	objects
have	the	following	properties.
Note:	 	 These	properties	apply	to	all	of	the	Transport	objects	unless	specified	in	the	propertydescription.

AttentionFormat
CharSet
CodePage
Connected
ConnectionStatus
LUNameRequested
DeviceType
EnableEMode
EnableSSH
EnableTracing
HostAddress
HostName
IsEncrypted
IsReceiveBlocked
Keyboard
LineMode
MaxBlockSize
MessageQueueLibrary
MessageQueueName
ModelColumns

ModelRows
NumberOfRetries
Password
PerformingTransfer
Port
PortList
RetryDelayTimeBetweenHosts
SecurityOption
SessionKeepAlive
TelnetEcho
TelnetIsLineMode
TelnetIsLocalEcho
TelnetName
TerminalModel
TerminalOnline
TerminalType
TNESession
TraceFilename
Username

Related	Topics
Methods	of	the	Transport	Objects
Data	Types	of	the	Transport	Objects

	 	

javascript:hetransport122.Click();
javascript:hetransport123.Click();
javascript:hetransport124.Click();
javascript:hetransport125.Click();
javascript:hetransport126.Click();
javascript:hetransport127.Click();
javascript:hetransport128.Click();
javascript:hetransport129.Click();
javascript:hetransport130.Click();
javascript:hetransport131.Click();
javascript:hetransport132.Click();
javascript:hetransport2.Click();
javascript:hetransport22.Click();
javascript:hetransport23.Click();
javascript:hetransport24.Click();
javascript:hetransport228.Click();
javascript:hetransport25.Click();
javascript:hetransport26.Click();
javascript:hetransport27.Click();
javascript:hetransport28.Click();
javascript:hetransport29.Click();
javascript:hetransport210.Click();
javascript:hetransport211.Click();
javascript:hetransport212.Click();
javascript:hetransport213.Click();
javascript:hetransport214.Click();
javascript:hetransport215.Click();
javascript:hetransport216.Click();
javascript:hetransport217.Click();
javascript:hetransport218.Click();
javascript:hetransport219.Click();
javascript:hetransport220.Click();
javascript:hetransport221.Click();
javascript:hetransport222.Click();
javascript:hetransport223.Click();
javascript:hetransport224.Click();
javascript:hetransport225.Click();
javascript:hetransport226.Click();
javascript:hetransport227.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Data	Types	of	the	Transport	Objects
The	Transport	objects	contain	the	following	data	types:

HETRANSPORT_FEATURE	Data	Type
HOSTEX_ATN_FORMAT	Data	Type
HOSTEX_CON_STATUS	Data	Type
HOSTEX_DEVICE_TYPE	Data	Type
HOSTEX_ENCRYPTED	Data	Type
HOSTEX_FUNCTION_KEY	Data	Type
HOSTEX_LINEMODE	Data	Type
HOSTEX_SECURITY_OPTIONS	Data	Type
HOSTEX_TELNETECHO	Data	Type
HOSTEX_TERM_MODEL	Data	Type
HOSTEX_TOGGLE_RECEIVE	Data	Type

Related	Topics
Methods	of	the	Transport	Objects
Properties	of	the	Transport	Objects

About	OHIO
OHIO	(Open	Host	Interface	Objects)	is	a	standardized	programming
interface	to	the	host	data.	OHIO	provides	a	common	access	method	to
the	data	when	it	arrives	at	the	client	and	divides	the	data	into	logical
objects.	Using	OHIO,	you	can	write	a	script	that	can	run	in	any	type	of
emulator	that	supports	OHIO.

The	HostExplorer	object	Ohio	is	a	base	interface	for	eight	Ohio
interfaces,	which	use	a	specific	inheritance	hierarchy.

Ohio	is	used	to	create	a	screen	that	lets	you	communicate	with,	and
connect	to	or	disconnect	from,	the	host.	Ohio	functions	are	used	to	call
Transport	and	Parser	functions.

Sample	files	of	Ohio	are	available	in	the
HostExplorer\SDK\Samples\OHIO	directory	where	the	program	files
are	stored	on	your	machine.

OhioManager	Interface
The	OhioManager	interface	is	a	central	repository	that	provides	a	list	of
all	available	OhioSession	objects.	It	allows	you	to	open	and	close
sessions.

Methods
The	OhioManager	interface	consists	of	the	following	methods:

CloseSession
OpenSession

javascript:heohio13.Click();
javascript:heohio14.Click();

Properties
The	OhioManager	interface	consists	of	the	following	properties:

OhioVersion
Sessions
VendorName
VendorObject
VendorProductVersion

	 	

	 	

	 	

javascript:heohio15.Click();
javascript:heohio16.Click();
javascript:heohio17.Click();
javascript:heohio18.Click();
javascript:heohio19.Click();

OhioSessions	Interface
The	OhioSessions	interface	contains	a	collection	of	all	the	available
sessions.	You	can	use	this	interface	to	request	a	specific	session	or
determine	the	number	of	sessions	available.	Because	the	list	of	sessions
is	static,	you	can	use	a	refresh	function	to	get	an	updated	list.

Methods
The	OhioSessions	interface	consists	of	the	following	method:

Refresh

javascript:heohio111.Click();

Properties
The	OhioSessions	interface	consists	of	the	following	properties:

Count
Item

	 	

javascript:heohio112.Click();
javascript:heohio113.Click();

OhioSession	Interface
The	OhioSession	interface	allows	you	to	connect	to	or	disconnect	from
the	host	and	access	the	host	through	the	screen.	It	can	provide	you	with
the	following	data:

session	type	(for	example,	3270,	5250,	VT)
session	name	(for	example,	Session	1,	Session	2)
session	status	(for	example,	connected	or	disconnected)

Methods
The	OhioSession	interface	consists	of	the	following	methods:

Connect
Disconnect
isConnected
OnSessionChanged

javascript:heohio115.Click();
javascript:heohio116.Click();
javascript:heohio117.Click();
javascript:heohio118.Click();

Properties
CanChangeScreen
ConfigurationResource
Screen
SessionName
SessionType

	 	

	 	

	 	

	 	

javascript:heohio119.Click();
javascript:heohio120.Click();
javascript:heohio121.Click();
javascript:heohio122.Click();
javascript:heohio123.Click();

OhioScreen	Interface
The	OhioScreen	interface	is	the	host’s	virtual	screen.	It	contains	all	the
characters	and	attributes	that	would	be	seen	on	a	traditional	emulator
screen.	This	interface	is	the	primary	object	for	text-based	interactions
with	the	host.

The	interface	provides	methods	such	as	manipulating	text,	searching	the
screen,	sending	keystrokes	to	the	host,	and	handling	the	cursor.	It	lets
you	request	an	object	that	contains	a	collection	of	fields.	Specifically,	it
can	return	the	OIA	(Operator	Information	Area)	object.
Note:	 	 You	can	obtain	an	OhioScreen	object	from	the	Screen	property	of	an	instance	of	OhioSession.

The	data	on	the	screen	is	maintained	in	a	series	of	planes,	which	can	be
accessed	by	various	methods	within	the	OhioScreen	interface.	Most	of
the	methods	in	this	interface	work	with	the	text	plane,	which	contains	the
actual	characters	in	the	presentation	place.	The	remaining	planes	(color,
field,	and	extended)	contain	the	corresponding	attributes	for	each
character	in	the	text	plane.

Methods
The	OhioScreen	interface	consists	of	the	following	methods:

FindString
OnCursorMoved
OnSizeChanged
SendKeys
WaitForString

GetData
OnScreenChanged
PutString
WaitForInput
WaitIdle

javascript:heohio125.Click();
javascript:heohio127.Click();
javascript:heohio2.Click();
javascript:heohio23.Click();
javascript:heohio26.Click();
javascript:heohio126.Click();
javascript:heohio128.Click();
javascript:heohio22.Click();
javascript:heohio25.Click();
javascript:heohio27.Click();

Properties
The	OhioScreen	interface	consists	of	the	following	properties:

Columns
Fields
Rows

Cursor
OIA
String

	 	

	 	

	 	

	 	

javascript:heohio28.Click();
javascript:heohio210.Click();
javascript:heohio212.Click();
javascript:heohio29.Click();
javascript:heohio211.Click();
javascript:heohio213.Click();

	 	

	 	

	 	

	

OhioOIA	Interface
The	OhioOIA	interface	returns	the	Operator	Information	Area	(OIA)	object
of	a	host	session.	The	OhioOIA	object	contains	the	information	displayed
at	the	bottom	of	the	screen,	which	provides	the	user	with	the	session
name,	IP	address,	column	and	row	numbers,	and	cursor	position.

Properties
The	OhioOIA	interface	consists	of	the	following	properties:

Alphanumeric
CommCheckCode
InsertMode
Numeric
ProgCheckCode

APL
InputInhibited
MachineCheckCode
Owner

	 	

	 	

	 	

	 	

javascript:heohio215.Click();
javascript:heohio217.Click();
javascript:heohio219.Click();
javascript:heohio221.Click();
javascript:heohio223.Click();
javascript:heohio216.Click();
javascript:heohio218.Click();
javascript:heohio220.Click();
javascript:heohio222.Click();

OhioFields	Interface
The	OhioFields	interface	contains	a	collection	of	the	fields	in	the	virtual
screen.	Each	element	of	the	collection	is	an	instance	of	OhioField.
Through	this	interface,	you	can	iterate	through	the	fields	and	find	fields
based	on	location	and	string.

You	can	access	the	OhioFields	interface	only	through	the	OhioScreen
interface	using	the	Fields	property.
Note:	 	 OhioFields	is	a	static	view	of	the	virtual	screen.	It	does	not	reflect	your	changes	until	you	updatethe	field	list	with	a	new	view	of	the	virtual	screen	using	the	Refresh	method.

The	OhioFields	interface	returns	the	number	of	fields	in	the	screen.

Methods
The	OhioFields	interface	consists	of	the	following	methods:

FindByPosition
FindByString
Refresh

javascript:heohio225.Click();
javascript:heohio226.Click();
javascript:heohio227.Click();

Properties
The	OhioFields	interface	consists	of	the	following	properties:

Count
Item

	 	

	 	

javascript:heohio228.Click();
javascript:heohio229.Click();

OhioField	Interface
The	OhioField	interface	is	a	virtual-screen	field	that	includes	both	data
and	attributes	describing	the	field.	The	interface	provides	methods	for
accessing	and	manipulating	field	attributes	and	data.
Note:	 	 For	VT	terminals,	the	interface	returns	the	entire	screen	because	the	VT	terminal	does	not	havefields.

You	can	access	OhioField	methods	and	properties	only	through	the
OhioFields	interface.

Methods
The	OhioField	interface	consists	of	the	following	method:

GetData

javascript:heohio32.Click();

Properties
The	OhioField	interface	consists	of	the	following	properties:

Attribute
HighIntensity
Modified
Numeric
Protected
String

End
Length
Normal
PenSelectable
Start

	 	

	 	

	 	

	 	

javascript:heohio33.Click();
javascript:heohio35.Click();
javascript:heohio37.Click();
javascript:heohio39.Click();
javascript:heohio311.Click();
javascript:heohio313.Click();
javascript:heohio34.Click();
javascript:heohio36.Click();
javascript:heohio38.Click();
javascript:heohio310.Click();
javascript:heohio312.Click();

	 	

	

OhioPosition	Interface
The	OhioPosition	interface	provides	the	row	and	column	coordinates	of
the	cursor	position.	You	can	create	an	OhioPosition	by	using	the
CreateOhioPosition	method.

The	interface	is	used	by	the	following	sub-interfaces:

OhioScreen	Interface
OhioFields	Interface
OhioField	Interface

javascript:heohio315.Click();

Methods
The	OhioPosition	interface	consists	of	the	following	method:

CreateOhioPosition

javascript:heohio315.Click();

Properties
The	OhioPosition	interface	consists	of	the	following	properties:

Column
Row

	 	

javascript:heohio316.Click();
javascript:heohio317.Click();

Data	Types	of	OHIO
Ohio	contains	the	following	read-only	data	types:

Ohio	interface
OHIO_DIRECTION	Data	Type

OhioSession	interface
OHIO_STATE	Data	Type
OHIO_TYPE	Data	Type

OhioScreen	interface
OHIO_COLOR	Data	Type
OHIO_EXTENDED	Data	Type
OHIO_FIELD	Data	Type
OHIO_PLANE	Data	Type
OHIO_UPDATE	Data	Type

OhioOIA	interface
OHIO_INPUTINHIBITED	Data	Type
OHIO_OWNER	Data	Type

About	Legacy	APIs
HostExplorer	provides	the	following	existing	or	“legacy”	APIs:

EHLLAPI	(Extended	High	Level	Language	Application	Programming
Interface)	and	WinHLLAPI	(Windows	HLLAPI)—Allow	other	Windows
programs	(for	example,	Attachmate®	Extra!	for	Windows)	to
communicate	and	control	HostExplorer	terminal	emulators.
DDE	(Dynamic	Data	Exchange)—A	tool	that	allows	programs	(for
example,	Microsoft	Excel,	Word,	and	Visual	Basic)	to	communicate
with	the	HostExplorer	3270	emulator.

While	these	APIs	are	less	efficient	and	use	larger	and	more	rigid	objects
than	COM	and	OHIO,	you	can	still	use	them	to	write	applications	and
thus	avoid	rewriting	your	own	code.	HostExplorer’s	support	of	these
earlier	APIs	helps	maximize	an	organization’s	investment	in	its
development.

EHLLAPI	and	WinHLLAPI	DLL	Support
HostExplorer	supports	the	multiple	HLLAPI	(High	Level	Language
Application	Programming	Interface)	dynamic-link	libraries	(DLLs)	for
complete	compatibility	with	Attachmate®	Extra!	for	Windows.	These
interfaces	allow	other	Windows	programs	to	communicate	and	control	the
3270	and	5250	emulators	and	partially	control	the	Telnet	emulator.
Note:	 	 Unless	specified	explicitly,	the	term	HLLAPI	refers	to	all	supported	DLLs.

The	HLLAPI	DLLs	are	contained	in	the	following	modules:

EHLLAPI	Module
WinHLLAPI	Module

The	EHLLAPI	interface	includes:

a	new	Window	Close	(201)	function.
an	extended	ConnectPS	(1)	function.

Related	Topics
Irma	Compatibility	Mode
Configuration	Tips

	

javascript:hllapi4.Click();
javascript:hllapi3.Click();

Special	EHLLAPI	and	WinHLLAPI	Flags
When	the	HLLAPI	spawns	a	new	session	automatically	by	starting	a
profile,	it	may	have	trouble	synchronizing	with	the	initial	Host	Logon
panel.	Although	the	TCP/IP	connection	is	complete,	it	may	take	extra
time	for	the	host	to	paint	the	logon	panel	(HostExplorer	waits	for	the	first
host	update).	You	may	need	to	insert	an	additional	wait	before	the
ConnectPS	actually	returns.

The	following	special	EHLLAPI	flags	are	available:
Auto	Start	Delay
Auto	Unload
Return	Extra	Session	Info
Allow	Connect	Physical
Update	Screen	After	Copy

Start	Minimized
Yield	Wait
Auto	Sync
Convert	Nulls

Related	Topics
EHLLAPI	Support	in	VT	and	NVT	Modes
EHLLAPI	Development	Files
NVT	Mode	Functions
NVT	Mode	Exceptions

EHLLAPI	Module
The	EHLLAPI	module	(16-Bit=ACS3EHAP.DLL,	32-Bit=EHLLAP32.DLL,
EHLAPI32.DLL)	is	compatible	with	Attachmate®	Extra!	for	Windows.
Because	most	vendors’	products	support	multiple	HLLAPI	DLLs,	always
choose	Attachmate®	Extra!	for	Windows	EHLLAPI.	Check	the
Compatibility	option	to	ensure	that	the	emulator	you	are	using	is
compatible.	This	interface	is	available	with	both	the	16-bit	and	the	32-bit
versions	of	HostExplorer.
Note:	 	 If	you	choose	an	Irma	Workstation	for	Windows	setting,	make	sure	to	set	the	Irma	compatibility

in	the	EHLLAPI	dialog	box.

Related	Topics
EHLLAPI	Development	Files
EHLLAPI	Calls

Irma	Compatibility	Mode
By	default,	the	EHLLAPI	(ACS3EHAP.DLL)	module	is	compatible	with	the
Attachmate®	Extra!	for	Windows	specifications.

To	enable	Irma	compatibility,	add	the	following	line	to	the
EHLLAPI.Setting	section	in	the	HOSTEX.INI	file:

[EHLLAPI.Settings]

Compatibility	=	Irma

EHLLAPI	Calls
When	you	program	in	Visual	Basic,	you	can	control	the	emulator	by	using
the	OLE	Automation	interface	(recommended)	or	the
EHLLAPI/WinHLLAPI	interface.	If	you	use	the	EHLLAPI/WinHLLAPI
interface,	include	the	HLLCALLS.TXT	file	(which	is	in	the	DEVKITS
directory)	in	your	project.

Edit	the	top	of	the	HLLCALLS.TXT	file	to	call	either	EHLLAPI	or
WinHLLAPI.	If	you	use	WinHLLAPI,	remember	that	you	must	call
EHLLAPIStartup	before	calling	any	EHLLAPI	function	and	call
EHLLAPICleanup	as	the	last	call	in	your	program.

The	following	EHLLAPI	calls	are	available	with	HostExplorer:
EHLLAPIConnect
EHLLAPIConvertPosToRowCol
EHLLAPIConvertRowColToPosition
EHLLAPICopyFieldToString
EHLLAPICopyOIA
EHLLAPICopyPS
EHLLAPICopyPSToString
EHLLAPICopyStringToField
EHLLAPICopyStringToPS
EHLLAPIDisconnect
EHLLAPIFindFieldPosition
EHLLAPIGetRowString
EHLLAPIGetVersion
EHLLAPIPause
EHLLAPIQueryCursorLocation

EHLLAPIQueryFieldAttribute
EHLLAPIQuerySessions
EHLLAPIQuerySessionStatus
EHLLAPIReceiveFile
EHLLAPIRelease
EHLLAPIReserve
EHLLAPIReset
EHLLAPISearchField
EHLLAPISearchPS
EHLLAPISendFile
EHLLAPISendKey
EHLLAPISetCursorLocation
EHLLAPISetSessionParameters
EHLLAPIWait

Related	Topics
EHLLAPI	and	WinHLLAPI	DLL	Support
EHLLAPI	Development	Files
Visual	Basic	Interface

javascript:hllapi9.Click();
javascript:hllapi10.Click();
javascript:hllapi11.Click();
javascript:hllapi12.Click();
javascript:hllapi13.Click();
javascript:hllapi14.Click();
javascript:hllapi15.Click();
javascript:hllapi16.Click();
javascript:hllapi17.Click();
javascript:hllapi18.Click();
javascript:hllapi19.Click();
javascript:hllapi20.Click();
javascript:hllapi21.Click();
javascript:hllapi22.Click();
javascript:hllapi23.Click();
javascript:hllapi24.Click();
javascript:hllapi25.Click();
javascript:hllapi26.Click();
javascript:hllapi27.Click();
javascript:hllapi28.Click();
javascript:hllapi29.Click();
javascript:hllapi30.Click();
javascript:hllapi31.Click();
javascript:hllapi32.Click();
javascript:hllapi33.Click();
javascript:hllapi34.Click();
javascript:hllapi36.Click();
javascript:hllapi37.Click();
javascript:hllapi39.Click();

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

Visual	Basic	Interface
HostExplorer	implements	support	for	Visual	Basic	(VB)	using	a	number	of
helper	functions.	These	functions	extend	the	EHLLAPI	interface	into	VB,
allowing	you	to	communicate	with	the	emulator	and	control	it.

VB	functions	shield	VB	from	improper	data	manipulation	and	prevent
general	protection	faults.

Related	Topics
Using	the	Visual	Basic	Interface
Visual	Basic	Return	Codes

EHLLAPI	Support	in	VT	and	NVT	Modes
HostExplorer	supports	the	EHLLAPI	interface	while	in	VT	and	NVT
(Network	Virtual	Terminal),	or	ANSI	terminal	modes.	This	allows	your
application	to	interact	with	a	front-end	system	without	requiring	a	new
interface	to	work	with	the	ANSI-terminal	portion	of	the	emulator.

While	in	NVT	mode,	only	a	subset	of	the	EHLLAPI	functions	is	supported.
This	is	mainly	because	the	NVT	screen	does	not	contain	3270
information	and	does	not	have	a	concept	of	fields.

EHLLAPI	no	longer	supports	extended	return	codes	for	NVT	mode.	To
enable	support	for	extended	return	codes,	add	the	following	line	in	the
EHLLAPI.Settings	section	in	the	HOSTEX.INI	file:

[EHLLAPI.Settings]

Enhanced	RC	=	On

Related	Topics
Special	EHLLAPI	and	WinHLLAPI	Flags
EHLLAPI	Development	Files
NVT	Mode	Functions
NVT	Mode	Exceptions

EHLLAPI	Development	Files
To	develop	new	applications	that	need	to	communicate	with	the	3270	or
5250	emulator,	use	the	WinHLLAPI	interface.	This	is	the	only
standardized	interface	for	16-bit	and	32-bit	platforms.	The	development
and	online	documentation	files	are	installed	on	your	system.

The	following	EHLLAPI	development	files	are	available:

ACS3EHAP.H—EHLLAPI	'C'	header	file
ACS3EHAP.LIB—EHLLAPI	16-bit	link	library
EHLLAP32.LIB—EHLLAPI	32-bit	link	library
ACS3EHAP.DLL—EHLLAPI	DLL	(16-bit)
EHLLAP32.DLL—EHLLAPI	DLL	(32-bit)
EHLLTEST.EXE—EHLLAPI	Interactive	test	program	(16-bit)

Related	Topics
Special	EHLLAPI	and	WinHLLAPI	Flags
EHLLAPI	Support	in	VT	and	NVT	Modes
WinHLLAPI	Development	Files

NVT	Mode	Functions
The	following	functions	are	supported	normally	while	in	NVT	mode:

Connect	Presentation	Space	(1)
Convert	Position	or	RowCol	(99)
Disconnect	Presentation	Space	(2)
Pause	(18)
Query	Close	Intercept	(42)
Query	Cursor	Location	(7)
Query	Sessions	(10)
Query	System	(20)
Release	(12)
Reserve	(11)
Reset	System	(21)
Search	Presentation	Space	(6)
Set	Session	(9)
Start	Close	Intercept	(41)
Start	Host	Notification	(23)
Stop	Close	Intercept	(43)
Stop	Host	Notification	(25)

Related	Topics
Special	EHLLAPI	and	WinHLLAPI	Flags
EHLLAPI	Development	Files
EHLLAPI	Support	in	VT	and	NVT	Modes

NVT	Mode	Exceptions
The	following	functions	perform	differently	while	in	NVT	mode.	The	host
may	enter	and	exit	NVT	mode	during	your	session,	so	do	not	assume
that	you	will	be	in	NVT	mode	only	at	the	beginning	of	a	session.	Your
application	must	be	able	to	handle	both	modes.

Copy	OIA	(13)—The	return	value	in	the	data_string	is	slightly	different	to
let	you	determine	whether	the	terminal	is	in	NVT	mode.	Byte	82,	labeled
On-line	and	screen	ownership	(group	1),	has	the	0x01	bit	on	if	the
terminal	is	in	NVT	mode.	This	bit	is	normally	reserved.

Copy	Presentation	Space	(5)	and	Copy	Presentation	Space	to	String
(8)—The	return	code	in	the	ps_position	value	contains	a	101	(decimal)	if
the	terminal	is	in	NVT	mode.	If	the	terminal	is	in	3270	mode,	the	standard
values	of	0,	1,	4,	5,	and	9	apply.

Query	Host	Update	(24)—The	return	code	in	the	ps_position	value
contains	a	101	(decimal)	if	the	terminal	is	in	NVT	mode	and	the	PS	has
not	changed.	It	contains	a	102	(decimal)	if	the	terminal	is	in	NVT	mode
and	the	PS	has	changed	since	the	last	time	the	query	host	was	updated.
If	the	terminal	is	in	3270	mode,	the	standard	values	of	0,	1,	8,	9,	21,	22,
and	23	apply.

Query	Session	Status	(22)—The	return	value	in	the	data_string	is
slightly	different	to	let	you	determine	whether	the	terminal	is	in	NVT
mode.	Byte	11,	which	provides	the	session	characteristics,	has	the	0x01
bit	on	if	the	terminal	is	in	NVT	mode.	This	bit	is	normally	reserved.

Send	Key	(3)—This	function	does	not	support	any	of	the	standard
keyboard	mnemonics	except	@E–(carriage	return)	and	@D–
(backspace).
Note:	 	 Do	not	send	more	than	one	carriage	return	per	operation.	Use	the	Query	Host	Update	betweenCRs	to	synchronize	with	the	host.

Related	Topics
Special	EHLLAPI	and	WinHLLAPI	Flags
EHLLAPI	Development	Files
EHLLAPI	Support	in	VT	and	NVT	Modes

Configuration	Tips
HostExplorer	enables	you	to	associate	a	PS	short	name	with	a	specific
profile.	This	enables	HLLAPI	to	spawn	(start)	a	new	session	when	you
issue	a	ConnectPS	command.	Issuing	a	ConnectPS	command	lets	you
start	your	HLLAPI	application	without	pre-loading	the	emulator.	To
associate	a	PS	short	name	with	a	profile,	select	the	Save	Profile	option
from	the	File	menu.	The	Save	Profile	dialog	box	lets	you	change	the
HLLAPI	short	name.

If	you	want	the	emulator	to	automatically	assign	valid	HLLAPI	letters	to
new	sessions,	add	the	following	line	to	the	System.Settings	section	in
the	global	hostex.ini	file,	located	in	the	HostEx	directory	where	the
user	files	are	stored	on	your	machine.	For	the	appropriate	directory	path
for	your	platform,	refer	to	the	list	of	the	default	locations	for	the	user	files	
.

[System.Settings]

HLLAPI	Auto	Assign	=	On

In	the	event	that	HLLAPI	automatically	loads	the	emulator,	it	tries	to
spawn	hostex32.exe.	If	this	is	not	the	program	name	or	if	the	program
name	is	not	in	the	path,	the	Windows	directory	or	Windows	System
directory	specifies	the	program	name.

To	specify	the	program	name,	add	the	following	line	to	the	hostex.ini
file	in	the	HostEx	directory	where	the	user	files	are	stored	on	your
machine.

[EHLLAPI.Settings]

Auto	Start	Name	=	[path]programname.exe

Note:	 	 The	user	specifies	the	user	directory	when	you	install	HostExplorer.

javascript:userfiles.Click();

WinHLLAPI	Module
The	WinHLLAPI	module	(WHLLAPI.DLL)	fully	implements	Windows
HLLAPI	version	1.1	as	defined	in	the	Windows	Open	Services
Architecture.	The	documentation	(WHLLAPI.HLP)	and	development	files
(WHLLAPI.H,	WHLLAPI.LIB,	WHLLAP32.LIB)	are	installed	on	your
system.	This	interface	is	available	with	both	the	16-bit	and	32-bit	versions
of	HostExplorer.

Make	sure	that	the	appropriate	DLL	file
(ACS3EHAP.DLL/EHLLAP32.DLL,	HLLAPI.DLL,	or
WHLLAPI.DLL/WHLLAP32.DLL)	is	in	your	path	by	copying	the
appropriate	DLL	to	your	client	application	directory.	This	allows	Windows
to	load	the	DLL	when	you	run	your	client	application.
Note:	 	 You	may	have	to	rename	the	32-bit	WHLLAP32.DLL	to	WHLAPI32.DLL	to	be	compatible	with

the	Attachmate®	file	name.

WinHLLAPI	Development	Files
To	develop	new	applications	that	need	to	communicate	with	the	3270	or
5250	emulator,	use	the	WinHLLAPI	interface.	This	is	the	only
standardized	interface	for	16-bit	and	32-bit	platforms.	The	development
and	online	documentation	files	are	installed	on	your	system.

The	following	WinHLLAPI	development	files	are	available:

WHLLAPI.HLP—WinHLLAPI	on-line	Help
WHLLAPI.H—WinHLLAPI	'C'	header	file
WHLLAPI.LIB—WinHLLAPI	16-bit	link	library
WHLLAP32.LIB—WinHLLAPI	32-bit	link	library
WHLLAPI.DLL—WinHLLAPI	DLL	(16-bit)
WHLLAP32.DLL—WinHLLAPI	DLL	(32-bit)
WHLLTEST.EXE—WinHLLAPI	interactive	test	program	(16-bit)
WHLTST32.EXE—WinHLLAPI	interactive	test	program	(32-bit)

Related	Topics
EHLLAPI	Development	Files

What	is	DDE?
You	can	use	Dynamic	Data	Exchange	(DDE)	to	carry	out	interprocess
communication.	It	allows	programs	such	as	Excel,	Word	for	Windows,
and	Visual	Basic	to	interact	with	the	3270	emulator.	The	DDE	interface
enables	you	to	create	new	terminal	sessions,	enter	data,	run	macros,
retrieve	screens,	and	transfer	files.

Unlike	the	EHLLAPI	interface,	a	low-level	programmatic	interface	that
uses	C	or	C++,	the	DDE	interface	in	HostExplorer	is	designed	to	be	used
with	high-level	languages	such	as	Visual	Basic	or	Word	Basic.	For
example,	using	DDE,	you	can	write	macros	in	Word	for	Windows	that	log
you	into	the	mainframe,	transfer	a	file	to	the	mainframe,	and	then	send
the	file	automatically	as	e-mail.

The	DDE	interface	included	with	HostExplorer	is	almost	completely
compatible	with	the	Attachmate®	EXTRA!	for	Windows	DDE	interface.
This	compatibility	reduces	the	amount	of	work	involved	when	you	move
applications	to	HostExplorer.

Related	Topics
How	Does	DDE	Work?

How	Does	DDE	Work?
DDE	transfers	information	in	conversations.	A	conversation	occurs
between	a	client	application	and	a	server	application,	such	as
HostExplorer.

When	HostExplorer	is	loaded,	it	broadcasts	to	DDE	that	its	services	are
available.	Then	a	client	application,	such	as	Word	for	Windows,	can
initiate	a	conversation	with	HostExplorer.	The	procedure	is	similar	to	a
telephone	conversation:	you	must	call	a	friend	in	order	to	have	a
conversation.	Once	the	client	and	server	applications	begin	a
conversation,	the	client	application	can	request	information,	run	macros,
press	keys,	and	transfer	files.

A	client	application	can	issue	the	following	four	types	of	DDE	messages:

Advise	Message
Execute	Message
Poke	Message
Request	Message

To	have	a	DDE	conversation,	you	need	the	following	fields:

Application	Name	Field
Topic	Field

Related	Topics
System	Topic

DDE	Terminology
In	DDE,	the	screen	is	called	the	presentation	space	(PS).	When	copying
information	to	or	from	the	PS,	the	indices	used	always	begin	at	1	and	end
at	the	last	value	of	the	PS.	For	example,	a	24x80	screen	has	1920
addressable	positions,	which	range	from	1	to	1920.

Some	of	the	requests	return	multiple	items	back	to	you	in	a	single	string.
Each	item	is	delimited	using	the	carriage	return	byte	(“\r”	in	standard	C
syntax),	value	0x0D,	or	13	decimal.

DDE	lets	you	start	a	conversation	with:

HostExplorer	
Word	for	Windows	
Microsoft	Excel	

Related	Topics
How	Does	DDE	Work?
DDE	Sample	Code
System	Topic

	 	

javascript:hllapi79.Click();
javascript:hllapi80.Click();
javascript:hllapi81.Click();

DDE	Sample	Code
The	following	is	an	example	of	logging	in	to	a	CMS	account,	written	in
Word	for	Windows	Basic	language.	You	can	use	the	sample	WordBasic
macro	to	copy	the	current	screen	image	from	HostExplorer	(configured
as	EHLLAPI	session	"A")	to	your	Word	document	at	the	current	insertion
point.	The	macro	uses	DDE	to	connect	to	the	emulator	and	copy	the
emulator	line	by	line.

In	the	DDE	sample	code,	HostExplorer	lets	you	create	login	scripts	to
connect	to	remote	hosts.

The	first	command	is	the	On	Error	Command.	Always	include	an	On
Error	Command	to	make	sure	that	the	DDE	link	is	terminated	when	the
macro	is	finished.	If	you	do	not	use	the	command,	you	may	use	all
available	DDE	sources	and	be	unable	to	execute	the	macro	properly.

The	macro	begins	by	retrieving	the	number	of	rows	and	columns	in	the
current	presentation	space.	Because	data	returned	by	DDE	is	always	in
string	format,	you	must	use	the	Val()	function	to	convert	the	data	to
numeric	values.	The	macro	proceeds	to	copy	the	screen	line	by	line.	The
request$	=	...	line	is	where	all	the	work	is	prepared.

This	command	builds	a	string	of	the	format	PxxLyy,	where	xx	is	the
screen	position	(based	from	1)	and	yy	is	the	line	length.	Because	of	this,
the	macro	issues	requests	for	data	such	as	P1L80,	P81L80,	and
P161L80,	to	copy	line	by	line.	The	data	is	then	inserted	into	the	current
document	using	the	Insert	command.	The	last	step	of	the	macro	is	to
close	down	the	DDE	connection.
Sub	Main

				ChanNum	=	DDEInitiate("HOSTEX",	"A")

				DDEPoke	ChanNum,	"Keystroke",	"LOGIN	PIERRE@E"

				DDEExecute	ChanNum,	"[Wait	Unlock(6)]"

				DDEPoke	ChanNum,	"Keystroke",	password@E

				DDETerminate	ChanNum

				MessageBox	"Logged	into	CMS	successful",	"Information"

End	Sub

Sub	Main

				On	Error	Goto	ErrorHandler

				crlf$	=	Chr$(13)	+	Chr$(10)

				iChanNum	=	DDEInitiate("HOSTEX",	"A")

				iNumRows	=	Val(DDERequest$(iChanNum,	"Rows"))

				iNumCols	=	Val(DDERequest$(iChanNum,	"Columns"))

				If	iChanNum	Then

						For	row	=	1	To	iNumRows

				

				request$	=	"P"	+	Mid$(Str$(1	+	((row		1)	*	iNumCols)),	2)	+

								"L"	+	LTrim$(Str$(iNumCols))

								Data$	=	Data$	+	DDERequest$(iChanNum,	request$)	+	crlf$

						Next	row

						Insert	Data$

				Else	'could	not	open	session

						

MsgBox	"Could	not	open	DDE	Session	with	program."

				End	If

				ErrorHandler:

				DDETerminate	iChanNum

End	Sub

Related	Topics
DDE	Terminology

System	Topic
You	can	use	the	System	Topic	item	to	locate	information	about	the
system.	For	example,	you	can	use	the	item	to	see	which	sessions	are
currently	in	use.	To	request	any	of	the	following,	use	the	Request
command.

The	System	Topic	supports	the	following:

Formats—Returns	the	name	of	the	DDE	formats	supported.	Always
returns	"Text".

Profiles—Returns	the	list	of	defined	profile	names.	Each	item	is
separated	by	a	carriage	return	character	(0x0D).

Session	Started—Returns	the	topic	letter	for	the	session	last	started
with	the	Start	Session	EXECUTE	command.

SysItems—Returns	the	list	of	system	items	that	you	can	request.	Each
item	is	separated	by	a	carriage	return	character	(0x0D).

Topics—Returns	the	list	of	system	topics	that	are	currently	available	for
conversations.	Each	item	is	separated	by	a	carriage	return	character
(0x0D).

Related	Topics
System	Topic	Commands
What	is	DDE?

Introducing	FTP	API
The	FTP	API	is	a	non-OLE	interface	that	lets	you	build	Hummingbird
Basic	scripts	to	perform	local	and	remote	disk	and	directory	operations.
The	FTP	API	functions	correspond	to	functionality	in	the	5.3	and	earlier
versions	of	FTP.	For	information	on	the	6.0	version	of	FTP	API,	see
Introducing	FTP	OLE	API.	If	you	require	more	information	on	the	function
of	a	specific	FTP	API	scripting	command,	refer	to	the	FTP	online	Help.
Note:	 	 You	should	also	familiarize	yourself	with	the	following	reference	manuals	for	HLLAPI	from	IBM:

	
IBM	3270	Personal	Computer	High	Level	Language	Application	Programming	Interface
AIX	Version	3.2	High	Level	Application	Programming	Interface	(HLLAPI)	Programming

FTP	script	requirements
When	creating	an	FTP	script,	you	must	fulfill	certain	requirements:

All	of	the	FTP	API	functions	are	prototyped	in	the	ftprtns.ebh
header	file.	In	order	to	access	the	FTP	API	methods	in	Hummingbird
DLL's,	you	must	include	the	ftprtns.ebh	header	file	(.ebh)	in	your
script	file.
All	FTP	scripts	must	begin	with	the	InitFTP	command	and	end	with
the	DeinitFTP	command.

Handling	FTP	scripting	errors
The	GetErrorText	command	can	be	used	to	handle	errors.	All	the
error	codes	generated	by	FTP	API	scripting	commands	are	numbered
between	3000	and	4000.

Sample	Client	Source	Code
The	source	code	for	sample	scripts	is	included	in	the	EB	subdirectory	of
your	common	applications	home	directory.

These	samples	demonstrate	the	syntax	and	usage	of	Hummingbird	Basic
Language	commands	and	API	commands.	You	may	find	it	useful	to	refer
to	these	script	files	for	help	when	you	create	your	own	script	files.

To	open	the	source	file	(.ebs)	in	Hummingbird	Basic	Workbench,	click
Open	on	the	File	menu.	You	can	print	the	loaded	source	file	by	clicking
the	Print	command	on	the	File	menu.	If	you	want	to	run	the	loaded
source	file,	click	Run	on	the	File	menu.

javascript:void(0);

Sample	Scripts
TestFTP.ebs—is	a	sample	script	that	demonstrates	the	usage	of
Hummingbird	File	Transfer	Protocol	Application	Programming	Interface.
Note:	 	 The	X	client	sample	scripts	are	available	only	if	you	purchased	Exceed.

Introducing	FTP	OLE	API
The	FTP	API	is	an	OLE	interface	that	lets	you	build	Hummingbird	Basic
scripts	to	perform	local	disk	and	directory	operations.	The	FTP	API
methods	and	properties	correspond	to	functionality	in	the	current	version
of	FTP.	For	information	on	FTP	API	for	versions	5.2	or	earlier,	see
Introducing	FTP	API.	If	you	require	more	information	on	the	function	of	a
specific	FTP	API	scripting	command,	refer	to	the	FTP	online	Help.
Note:	 	 You	should	also	familiarize	yourself	with	the	following	reference	manuals	for	HLLAPI	from	IBM:

	
IBM	3270	Personal	Computer	High	Level	Language	Application	Programming	Interface
AIX	Version	3.2	High	Level	Application	Programming	Interface	(HLLAPI)	Programming

FTP	OLE	Objects
The	FTP	OLE	API	includes	three	objects:

IHclFtpEngine
IHclFtpSession
IHclFtpSessions

These	objects	implement	the	standard	IDispatch	interface,	and	include	a
group	of	user-defined	types	common	to	all	three	objects.

All	methods	generate	an	error	if	there	are	no	established	connections.
The	text	associated	with	the	error	can	be	retrieved	with	the	error-handling
routine.	All	errors	that	occur	on	the	host	side	are	generated,	and	must	be
trapped	with	the	error-handling	routine.

OLE	Automation
OLE	Automation	is	a	Windows	facility	that	permits	data	exchange
between	applications	and	automates	tasks.	When	an	object,	such	as	an
image	file	created	with	a	paint	program,	is	linked	to	a	compound
document,	such	as	a	spreadsheet	or	a	document	created	with	a	word
processing	program,	the	document	contains	only	a	reference	to	the
object.	Any	changes	made	to	the	contents	of	a	linked	object	are	seen	in
the	compound	document.

You	can	use	OLE	Automation	to	access	and	control	FTP	for	Windows
Explorer.	You	can	write	OLE	Automation	clients	using	a	variety	of	tools,
such	as	Hummingbird	Basic,	Visual	Basic,	C++,	and	Java.

The	name	of	the	Automation	object	is	HclFtp.Engine.

Related	Topics
Creating	an	OLE	Script
Sample	Client	Source	Code

Creating	an	OLE	Script
You	can	code	OLE	Automation	containers	to	implement	all	the	features
and	functions	of	FTP	in	another	application	that	uses	OLE	features,	such
as	Hummingbird	Basic.	You	can	work	with	FTP	session	objects	to	call
functions,	such	as	connecting	to	a	host,	transferring	files	from	host	to
host,	and	so	on.	You	can	use	any	tool	that	supports	OLE	Automation
control,	such	as	Visual	C++	and	Visual	Basic.

To	create	an	OLE	script:
1.	 Create	the	main	FTP	Engine	Object.	All	objects	support	a	dual

interface.	This	lets	you	fully	use	the	FTP	OLE	features.	For	example:
Dim	FtpEngine	As	Object	

Set	FtpEngine	=	CreateObject("HclFtp.Engine")

2.	 Retrieve	an	FTP	Sessions	collection.	This	lets	you	set	such	things
as	local	drives,	access	permissions,	and	so	on.	For	example:

Dim	FtpSessions	As	Object

Set	FtpSessions	=	FtpEngine.Sessions

3.	 Create	the	FTP	Session	object.	For	example:

Dim	FtpSession1	As	Object

Set	FtpSession1	=	FtpSessions.NewSession

4.	 Set	properties,	such	as	server	name,	user	name,	user	account,
and	so	on.	For	example:

FtpSession1.ServerName=ftp.com

5.	 Call	session	methods,	such	as	Connect	to	Host,	User	Login,	Get,
and	so	on.	For	example:

FtpSession1.UserLogin

Related	Topics
Introducing	FTP	OLE	API
Sample	Client	Source	Code

IHclFtpEngine	Object
The	IHclFtpEngine	object	provides	information	on	the	current	application
such	as	its	name,	parent	and	the	state	of	the	main	window.	Create	the
IHclFtpEngine	object	before	you	create	any	other	object.

The	methods	and	properties	of	this	object	are	for	use	with	this	object	and
for	versions	6.0	or	later	only.

Related	Topics
IHclFtpEngine	Object	Properties
IHclFtpEngine	Object	Method

	

javascript:ftpapi150.Click();
javascript:ftpapi149.Click();

IHclFtpSession	Object
The	IHclFtpSession	object	includes	methods	for	executing	a	wide	range
of	commands	for	managing	files,	printing,	and	connecting	to	the	host.
The	IHclFtpSession	object	properties	provide	information	on	accounts,
firewalls,	servers,	and	passwords.

The	methods	and	properties	of	this	object	are	for	use	with	this	object	and
for	version	6.0	or	later	only.

Related	Topics
IHclFtpSession	Object	Methods
IHclFtpSession	Object	Properties

	

javascript:ftpapi152.Click();
javascript:ftpapi153.Click();

IHclFtpSessions	Object
The	IHclFtpSessions	object	creates	and	manages	IHclFtpSession	objects
(a	collection	of	FTP	sessions).	The	IHclFtpSessions	object	includes
methods	for	deleting	the	local	tree,	and	creating	and	removing	sessions.

The	methods	and	properties	of	this	object	are	for	use	with	this	object	and
for	version	6.0	or	later	only.

Related	Topics
IHclFtpSessions	Object	Properties
IHclFtpSessions	Object	Methods

	

javascript:ftpapi156.Click();
javascript:ftpapi155.Click();

User-Defined	Types
The	following	are	the	user-defined	types:

TFirewall	Data	Type
TLocalCase	Data	Type
TTransfer	Data	Type

	 	

javascript:ftpapi268.Click();
javascript:ftpapi269.Click();
javascript:ftpapi266.Click();

Introducing	WyseTerm	API
WyseTerm	is	a	communications	and	terminal	emulation	program	that
supports	ANSI-BBS,	SCO	ANSI,	WYSE-50,	WYSE-60,	VT320,	and
VT220	(also	supports	VT220	7-bit	or	8-bit,	VT100,	or	VT52)	terminal
modes.	WyseTerm	allows	a	user	at	one	site	to	access	a	remote	host	as	if
the	user's	display	station	was	locally	attached.

You	can	use	the	WyseTerm	API	to	customize	your	WyseTerm	terminal
emulation	settings	by	using	DDE	and	OLE	to	create	dynamic	links
between	Telnet	and	any	other	application.

DDE	and	OLE	are	mechanisms	that	allow	applications	to	work	together.
DDE	lets	the	applications	talk	to	each	other:	one	as	the	server	and	the
other	as	the	client.	In	Telnet,	DDE	can	only	act	as	a	server.	OLE	lets	the
secondary	application	communicate	with	Telnet	and	define	a	set	of
properties	and	methods	in	it.	As	a	result,	OLE	gives	programmatic
access	to	Telnet	components	from	high-level	programming	languages
and	application	scripting	systems	like	Hummingbird	Basic.

Using	DDE	and	Telnet
Since	Telnet	is	the	server,	the	client	application	must	establish	a
communications	channel	with	Telnet.	Communication	takes	place	on	a
topic	basis.	This	means	that	Telnet	sets	itself	up	as	the	server	for	a
defined	topic.	The	client	then	communicates	with	the	server	on	a
particular	item	of	that	topic.	Normally,	the	client	requests	data	on	a
particular	item	from	Telnet,	or	simply	makes	a	request	that	does	not
require	the	return	of	data.

To	use	DDE	as	a	server,	you	must	first	click	the	Telnet	DDE	Server
command	on	the	Settings	menu	of	the	WyseTerm	application	You	cannot
use	Telnet	as	a	DDE	client	to	another	application.	For	more	information
on	using	Telnet,	see	Related	Topics	below.

Related	Topics
Conversing	with	Telnet	using	DDE
Automating	Telnet	using	OLE

Conversing	with	Telnet	using	DDE
In	a	DDE	client/server	conversation,	Telnet	can	be	used	only	as	a	DDE
server.	To	use	DDE	as	a	server,	you	must	first	choose	the	Telnet	DDE
Server	command	on	the	Settings	menu	of	the	WyseTerm	application.	You
cannot	use	Telnet	as	a	DDE	client	to	another	application.

In	order	for	a	DDE	client	to	establish	a	connection	with	Telnet,	you	must
specify	the	following	in	the	order	listed:

The	server’s	name	(in	the	case	of	Telnet,	htelnet).
The	topic	it	wants	to	have	a	conversation	about.

You	can	represent	this	application-topic	pair	using	the	following
command:

Appname|topic

For	example,

Telnet|System

Once	the	client	has	established	a	connection,	Telnet	responds	to	the
request	transaction	items	issued.	Some	items	return	information,	while
other	items	perform	functions.	The	most	commonly	used	transaction
items	in	Telnet	include	the	following:

request	transaction	items
execute	transaction	items
Note:	 	 Check	all	execute	transactions	using	the	ExecReturn	request	transaction	item.

poke	transaction	items

Related	Topics
Request	and	Execute	Syntax

Request	and	Execute	Syntax
After	you	have	started	Telnet	in	automation	mode,	you	can	begin	to
configure	it	using	request	and	execute	items.	The	syntax	for	these	items
is	described	below.

Request	Syntax
Use	the	following	command	to	set	a	property	to	a	value:

anyrequest=value

where	anyrequest	is	any	request	item,	and	value	is	a	setting	you	can
make	for	that	item.

Use	the	following	command	to	get	a	request	and	store	the	value:

value=anyexecute(parameter	list)

where	anyexecute	is	any	execute	item	and	parameter	list	is	the
appropriate	values	that	the	execute	item	requires.	Commas	separate
multiple	parameters.

Execute	Syntax
Use	the	following	command	to	call	the	Telnet	topic	request	with	value	as
its	parameter:

anyexecute=value

where	anyexecute	is	any	execute	item	and	value	is	a	setting	you	can
make	for	that	item.

DDE	Topics	Available	in	Telnet
If	you	are	trying	to	establish	a	connection	with	the	Telnet	application,	you
must	pre-specify	all	conversation	topics	at	the	beginning	of	a	connection
attempt.	You	can	choose	any	combination	of	the	following	DDE	topics	in
Telnet:

System	Topic	Request	Items	(HTelnet|System)—lets	the	client
determine	what	topics	are	available	and	assess	the	format	types	of	the
messages.	The	System	topic	is	a	standard	DDE	server	topic.

Terminal	Topic	Items	(HTelnet|Terminal)—lets	the	client	control	the
terminal	emulation	mode	(ANSI-BBS,	SCOANSI,	VT220,	VT320,
WYSE50,	WYSE60,	or	DG210)	and	other	connection	settings	in	the
Telnet	program.	It	also	lets	the	client	load	previously	saved	settings	files.

Emulation	Type	Topic	Items	(HTelnet|EmulationType)—lets	the	client
make	changes	to	the	settings	in	the	Telnet	program.	You	can	set	all
options	available	on	the	Property	tab	of	the	Modify	Terminal	Setup	dialog
box	in	WyseTerm.	To	view	these	settings,	open	WyseTerm	and	click
Terminal	on	the	Settings	menu.

Page	Topic	Items	(HTelnet|Page)—lets	the	client	control	the	current
displayable	properties	such	as	color	and	attribute	settings	that	can	be
changed	manually	in	Telnet	in	the	Modify	Terminal	Setup	dialog	box.	It
also	allows	the	client	to	retrieve	blocks	of	characters	from	anywhere	on
the	display	screen.

System	Topic	Request	Items	(HTelnet|System)
The	System	topic	is	a	standard	DDE	server	topic,	which	lets	clients
determine	what	topics	are	available	and	assess	the	format	types	of	the
messages.	The	System	topic	has	the	following	request	transaction	items:

Topics	Item
SysItems	Item
Formats	Item

	 	

javascript:wysetermapi16.Click();
javascript:wysetermapi17.Click();
javascript:wysetermapi18.Click();

Terminal	Topic	Items	(HTelnet|Terminal)
The	Terminal	topic	lets	the	client	control	the	terminal	emulation	mode
(ANSI-BBS,	SCOANSI,	VT220,	VT320,	WYSE50,	WYSE60,	or	DG210)
and	other	connection	settings	in	the	Telnet	program.	It	also	lets	the	client
load	previously	saved	settings	files.	The	Terminal	topic	includes	both
request	and	execute	items.

Request	Items
Terminal	Topic	has	following	request	transaction	items:

ConnectionStatus	Item
EmulationType	Item
ExecReturn	Item
Formats	Item
SaveData	Item
TopicItemList	Item

javascript:wysetermapi112.Click();
javascript:wysetermapi111.Click();
javascript:wysetermapi113.Click();
javascript:wysetermapi18.Click();
javascript:wysetermapi114.Click();
javascript:wysetermapi110.Click();

Execute	Items
To	perform	an	execute	transaction,	you	must	fill	the	data	with	text
corresponding	to	the	command.	To	confirm	that	the	command
succeeded,	you	must	perform	a	request	transaction	using	the
ExecReturn	item	(see	the	preceding	list)	to	confirm	that	the	execute
transaction	was	successful.

The	Exec	command	should	consist	only	of	the	command	name	and	any
parameters.	Do	not	include	any	spaces.

Terminal	Topic	has	the	following	Execute	transaction	items:

LoadSetupFile	Item
ConnectRlogin	Item
ConnectTelnet	Item
Disconnect	Item
SendString	Item
SendStringToTerminal	Item
LookForString	Item
StartDataSave	Item
StopDataSave	Item

	 	

	 	

javascript:wysetermapi115.Click();
javascript:wysetermapi116.Click();
javascript:wysetermapi117.Click();
javascript:wysetermapi118.Click();
javascript:wysetermapi119.Click();
javascript:wysetermapi120.Click();
javascript:wysetermapi121.Click();
javascript:wysetermapi122.Click();
javascript:wysetermapi123.Click();

	 	

	 	

	 	

	 	

	 	

Emulation	Type	Topic	Items
(HTelnet|EmulationType)
The	Emulation	Type	topic	lets	the	client	make	changes	to	the	settings	in
the	Telnet	program.	You	can	set	all	options	available	on	the	property	tab
of	the	Modify	Terminal	Setup	dialog	box	in	WyseTerm.	The	Emulation
Type	topic	includes	both	request	and	execute	items.

Request	Items
The	following	request	transaction	items	exist	for	the	Emulation	Type
topic:

TopicItemList	Item
Formats	Item
CursorPosition	Item
ExecReturn	Item

javascript:wysetermapi110.Click();
javascript:wysetermapi18.Click();
javascript:wysetermapi125.Click();
javascript:wysetermapi113.Click();

Execute	Items
To	perform	an	execute	transaction,	you	must	fill	the	data	with	text
corresponding	to	the	command.	To	confirm	that	the	command
succeeded,	you	must	perform	a	request	transaction	using	the
ExecReturn	item	(see	the	preceding	list)	to	confirm	that	the	execute
transaction	was	successful.

The	Exec	command	should	consist	only	of	the	command	name	and	any
parameters.	Do	not	include	any	spaces.

The	Emulation	Type	topic	has	the	following	Execute	transaction	items:

GetOption	Item
SetOption	Item
ReadKeyboardFile	Item
SetAttributeColor	Item
SetAttributeUsage	Item

	 	

	 	

	 	

javascript:wysetermapi126.Click();
javascript:wysetermapi127.Click();
javascript:wysetermapi128.Click();
javascript:wysetermapi129.Click();
javascript:wysetermapi130.Click();

	 	

Page	Topic	Items	(HTelnet|Page)
The	Page	topic	lets	the	client	control	the	current	displayable	properties
such	as	color	and	attribute	settings.	These	can	be	changed	manually	in
Telnet	in	the	Modify	Terminal	Setup	dialog	box.	It	also	lets	the	client
retrieve	blocks	of	characters	from	anywhere	on	the	display	screen.

The	Page	topic	has	the	following	request	transaction	items:

TopicItemList	Item
Formats	Item
CurrentFGColor	Item
CurrentBGColor	Item
CurrentAttribute	Item
CharacterAt	Item
CharacterAttributeAt	Item
CharacterFGColorAt	Item
CharacterBGColorAt	Item

	 	

	 	

javascript:wysetermapi110.Click();
javascript:wysetermapi18.Click();
javascript:wysetermapi133.Click();
javascript:wysetermapi134.Click();
javascript:wysetermapi135.Click();
javascript:wysetermapi136.Click();
javascript:wysetermapi137.Click();
javascript:wysetermapi138.Click();
javascript:wysetermapi139.Click();

	 	

	 	

Automating	Telnet	using	OLE
Use	Hummingbird	Basic	to	automate	Telnet	using	OLE.	Hummingbird
Basic	programs,	like	other	client	programs	that	are	OLE	automation
controllers,	can	take	control	of	certain	settings	in	the	Telnet	application.

To	automate	Telnet	using	OLE:
1.	 Start	Telnet	in	OLE	automation	mode	using	Hummingbird	Basic.	To

start	Telnet	in	OLE	you	must:
declare	Telnet	as	the	object
create	a	new	object,	or	connect	to	an	existing	one

2.	 Use	one	of	the	three	objects	available	in	Telnet	to	control	some	of	the
settings	in	Telnet:
WyseTerm	Object
Emulation	Object
Page	Object

3.	 Specify	the	appropriate	Property	and	Method	Syntax	corresponding	to
the	object	you	want	to	use.

Related	Topics
Starting	Telnet	in	Hummingbird	Basic	Using	OLE
Available	OLE	Objects	in	Telnet

Starting	Telnet	in	Hummingbird	Basic	Using	OLE
To	start	Telnet	in	OLE	automation	mode,	you	must	create	an	object
variable	and	associate	that	variable	with	the	application	on	your	system.

1.	 Declare	Telnet	as	the	object.	For	example:
Dim	Telnet	as	object

2.	 Start	the	application,	if	it	is	not	already	running,	using	the
WyseTerm	object.	For	example,

set	Telnet=CreateObject(“Hummingbird.WyseTerm”)

If	the	application	is	already	running,	connect	to	it	using	the
following	statement:

set	Telnet=GetObject(,"Hummingbird.WyseTerm")

Note:	 	 Note	the	comma	preceding	"Hummingbird	Telnet".

3.	 Configure	Telnet	using	the	Property	and	Method	Syntax	included.

Related	Topics
Available	OLE	Objects	in	Telnet

Property	and	Method	Syntax
After	you	have	started	Telnet	in	automation	mode,	you	can	configure
properties	and	perform	method	calls.	The	syntax	for	these	commands	is
outlined	below:

Property	Syntax
Use	the	following	command	to	set	the	property	value:

WyseTerm.property=value

where	property	is	any	property	item	and	value	is	a	setting	you	can
make	for	that	property.

Use	the	following	command	to	get	a	property	and	store	the	values.

value=WyseTerm.method(parameter	list)

where	method	is	any	method	item	and	parameter	list	is	the
appropriate	values	that	the	method	item	requires.	Commas	separate
multiple	parameters.

All	properties	have	a	VarType.	A	VarType	is	the	associate	variable	type	in
which	the	Property	fits.

Method	Syntax
Use	the	following	command	to	call	the	WyseTerm	object’s	method	with
value	as	its	parameter:

WyseTerm.method=value

where	method	is	any	method	item	and	value	is	a	setting	you	can	make
for	that	method.

Related	Topics
Available	OLE	Objects	in	Telnet

Available	OLE	Objects	in	Telnet
You	can	use	OLE	objects	to	configure	Telnet	settings.	In	Telnet,	there	are
four	OLE	objects	available:

WyseTerm	Object—This	object	holds	pre-connection	and	configuration
management	information.	You	can	specify	a	settings	file	to	use	through
this	object,	as	well	as	determine	the	current	emulation	type	in	use.	As
well,	you	can	send	characters	to	the	terminal	and	search	for	incoming
characters	using	this	object.

Emulation	Object—This	object	is	referenced	through	the	WyseTerm
Object	as	the	LPDISPATCH	emulationObject	property.	This	object	holds
all	emulation	type	information	and	controls	the	emulation-specific	settings
found	on	the	Emulation-specific	tab	in	the	Modify	Terminal	Setup	dialog
box.	The	object	contents	depend	on	the	current	emulation	type.
Depending	on	which	emulation	type	is	selected,	ANSI-BBS,	SCOANSI,
VT220,	VT320,	WYSE50	or	WYSE60,	the	content	of	this	property	sheet
changes.

Page	Object—The	Page	object	is	referenced	through	the	WyseTerm
Object	as	the	LPDISPATCH	pageObject	property.	Use	this	object	to
control	all	information	related	to	the	screen	and	its	contents.

Title	Object—The	Title	object	is	referenced	through	the	WyseTerm
Object	as	the	LPDISPATCH	title	property.	This	property	holds	all
information	related	to	the	title	and	its	contents,	and	is	both	readable	and
writable.
Note:	 	 The	Emulation	object	and	the	Page	objects	are	always	referenced	through	the	WyseTerm	object

WyseTerm	Object
The	WyseTerm	object	holds	pre-connection	basic	configuration
management	information.	You	can	specify	a	settings	file	to	use	through
this	object,	as	well	as	determine	the	current	emulation	type	in	use.	As
well,	you	can	send	characters	to	the	terminal	and	search	for	incoming
characters	using	this	object.

The	WyseTerm	object	has	the	creatable	name	of
hummingbird.WyseTerm,	and	consists	of	the	following	properties	and
methods.

Properties
EmulationType	Property
EmulationObject	Property				

Title	Object

ConnectionStatus	Property
Page	Object

javascript:wysetermapi22.Click();
javascript:wysetermapi24.Click();
javascript:wysetermapi23.Click();

Methods
LoadSetupFile	Method
ConnectTelnet	Method
Visible	BOOL	Method
Fullname	Method
SendStringToTerminal	Method
GetEventStatus	Method
StartDataSave	Method
StopDataSave	Method

ConnectRlogin	Method
Disconnect	Method
Name	Method
SendString	Method
LookForString	Method
RemoveEvent	Method
ReadData	Method

	 	

	 	

	 	

	 	

javascript:wysetermapi25.Click();
javascript:wysetermapi27.Click();
javascript:wysetermapi29.Click();
javascript:wysetermapi211.Click();
javascript:wysetermapi213.Click();
javascript:wysetermapi215.Click();
javascript:wysetermapi217.Click();
javascript:wysetermapi219.Click();
javascript:wysetermapi26.Click();
javascript:wysetermapi28.Click();
javascript:wysetermapi210.Click();
javascript:wysetermapi212.Click();
javascript:wysetermapi214.Click();
javascript:wysetermapi216.Click();
javascript:wysetermapi218.Click();

	 	

	 	

	 	

	 	

	

Emulation	Object
The	Emulation	object	is	referenced	through	the	WyseTerm	Object	as	the
LPDISPATCH	emulationObject	property.	This	object	holds	all	emulation
type	information	and	controls	the	emulation-specific	settings	found	on	the
Emulation-specific	tab	in	the	Modify	Terminal	Setup	dialog	box.	The
object	contents	depend	on	the	current	emulation	type.	Depending	on
which	emulation	type	is	selected,	ANSI-BBS,	SCOANSI,	VT220,	VT320,
WYSE50	or	WYSE60,	the	content	of	this	property	sheet	changes.

This	object	contains	properties	and	methods	common	to	all	emulation
type	objects.	For	some	emulation	types	there	are	specific	additional
properties	and	methods.

Generic	Properties	and	Methods
VT220	and	VT320	Properties
WYSE50	and	WYSE60	Properties

Page	Object
The	Page	object	is	referenced	through	the	WyseTerm	Object	as	the
LPDISPATCH	pageObject	property.	Use	this	object	to	control	all
information	related	to	the	screen	and	its	contents.

The	Page	Object	has	the	following	properties	and	methods.

Properties
FGColor	Property
BGColor	Property
Attribute	Property

javascript:wysetermapi261.Click();
javascript:wysetermapi262.Click();
javascript:wysetermapi263.Click();

Methods
GetCharacter	Method
GetCharacterAttrib	Method
GetCharacterBGColor	Method
SetCharacterAttrib	Method
SetCharacterBGColor	Method

GetCharacterString	Method
GetCharacterFGColor	Method
SetCharacter	Method
SetCharacterFGColor	Method

	 	

	 	

	 	

	 	

javascript:wysetermapi264.Click();
javascript:wysetermapi266.Click();
javascript:wysetermapi268.Click();
javascript:wysetermapi270.Click();
javascript:wysetermapi272.Click();
javascript:wysetermapi265.Click();
javascript:wysetermapi267.Click();
javascript:wysetermapi269.Click();
javascript:wysetermapi271.Click();

	 	

	

Title	Object
The	Title	object	is	referenced	through	the	WyseTerm	Object	as	the
LPDISPATCH	title	property.	This	property	holds	all	information	related	to
the	title	and	its	contents,	and	is	both	readable	and	writable.

After	the	OLE	client	changes	the	title	property,	it	cannot	be	changed
again	until	you	set	its	value	to	empty	(null)	and	reset	the	title.	If	you	want
a	blank	title,	use	a	single	space.

The	default	title	is:

Telnet	Hostname[IP]

where	hostname	is	the	name	of	the	PC	to	which	you	want	to	connect,
and	IP	is	its	IP	address.

or

Telnet

if	no	connection	has	been	established.

Changing	the	Title
The	following	script	changes	a	title:

'Sample	Hummingbird	Basic	snippit	to	do	this

(Same	for	Visual	Basic)

Set	Term=CreateObject	("Hummingbird.WyseTerm")

Term.visible=1

'Telnet	is	now	visible

Term.title="Personalized	Telnet"

'do	something	with	new	title	being	shown

Term.title=""

'empty	title	reverts	to	default

Term.title=Chr$(32)'space	character

'appears	as	blank

'You	can	get	the	value	of	the	property	as	well:

Dim	titlestring

titlestring=Term.title

General	Accessibility
Hummingbird	products	are	accessible	to	all	users.	Wherever	possible,
our	software	adheres	to	Microsoft	Windows	interface	standards	and
contains	a	comprehensive	set	of	accessibility	features.

Access	Keys		All	menus	have	associated	access	keys	(mnemonics)	that
let	you	use	the	keyboard,	rather	than	a	mouse,	to	navigate	the	user
interface	(UI).	These	access	keys	appear	as	underlined	letters	in	the
names	of	most	UI	items.	(If	this	is	not	the	case,	press	Alt	to	reveal	them.)
To	open	any	menu,	press	Alt	and	then	press	the	key	that	corresponds
with	the	underlined	letter	in	the	menu	name.	For	example,	to	access	the
File	menu	in	any	Hummingbird	application,	press	Alt+F.

Once	you	have	opened	a	menu,	you	can	access	an	item	on	the	menu	by
pressing	the	underlined	letter	in	the	menu	item	name,	or	you	can	use	the
arrow	keys	to	navigate	the	menu	list.

Keyboard	Shortcuts		Some	often-used	menu	options	also	have	shortcut
(accelerator)	keys.	The	shortcut	key	for	an	item	appears	beside	it	on	the
menu.

Directional	Arrows		Use	the	directional	arrows	on	the	keyboard	to
navigate	through	menu	items	or	to	scroll	vertically	and	horizontally.	You
can	also	use	the	directional	arrows	to	navigate	through	multiple	options.
For	example,	if	you	have	a	series	of	radio	buttons,	you	can	use	the	arrow
keys	to	navigate	the	possible	selections.

Tab	Key	Sequence		To	navigate	through	a	dialog	box,	press	the	Tab	key.
Selected	items	appear	with	a	dotted	border.	You	can	also	press	Shift+Tab
to	go	back	to	a	previous	selection	within	the	dialog	box.

Spacebar		Press	the	Spacebar	to	select	or	clear	check	boxes,	or	to
select	buttons	in	a	dialog	box.

Esc		Press	the	Esc	key	to	close	a	dialog	box	without	implementing	any
new	settings.

Enter		Press	the	Enter	key	to	select	the	highlighted	item	or	to	close	a
dialog	box	and	apply	the	new	settings.	You	can	also	press	the	Enter	key
to	close	all	About	boxes.

ToolTips		ToolTips	appear	for	all	functional	icons.	This	feature	lets	users
use	Screen	Reviewers	to	make	interface	information	available	through
synthesized	speech	or	through	a	refreshable	Braille	display.

Microsoft	Accessibility	Options
Microsoft	Windows	environments	contain	accessibility	options	that	let	you
change	how	you	interact	with	the	software.	These	options	can	add
sound,	increase	the	magnification,	and	create	sticky	keys.

To	enable/disable	Accessibility	options:
1.	 In	Control	Panel,	double-click	Accessibility	Options.
2.	 In	the	Accessibility	Options	dialog	box,	select	or	clear	the	option

check	boxes	on	the	various	tabs	as	required,	and	click	Apply.
3.	 Click	OK.

If	you	installed	the	Microsoft	Accessibility	components	for	your	Windows
system,	you	can	find	additional	accessibility	tools	under	Accessibility	on
the	Start	menu.

Technical	Support
You	can	contact	the	Hummingbird	Technical	Support	department	Monday
to	Friday	between	8:00	a.m.	and	8:00	p.m.	Eastern	Time.

Hummingbird	Ltd.
1	Sparks	Avenue,	Toronto,	Ontario,	Canada	M2H	2W1

	 Canada	and	the	USA International

Technical	Support: 1-800-486-0095 +1-416-496-2200

General	Enquiry: 1-877-FLY-HUMM +1-416-496-2200

Main: +1-416-496-2200

Fax: +1-416-496-2207

E-mail: support@hummingbird.com

FTP: ftp.hummingbird.com

Web	Support: support.hummingbird.com/customer

Web	Site: www.hummingbird.com

mailto:support@hummingbird.com
ftp://ftp.hummingbird.com
http://support.hummingbird.com/customer
http://www.hummingbird.com

Cfg3270	Objects	List
The	Cfg3270	object	lets	you	configure	all	aspects	of	a	3270	session.
Unlike	other	objects,	the	Cfg3270	object	exists	only	to	group	3270
configuration	methods.	It	has	no	properties	of	its	own.	You	can	access
configuration	methods	directly	using	the	With	statement	or	by	creating	an
object	for	easy	reference.
Example '$include:"-E\hebasic.ebh"

Sub	Main

		Dim	HE	as	Object

		Set	HE	=	CreateObject("HostExplorer")

		He.CurrentHost.Cfg3270.CursorType	=	CURSOR_BLOCK

End	Sub

'$include:"-E\hebasic.ebh"

Sub	Main

		Dim	HE	as	Object

		Set	HE	=	CreateObject("HostExplorer")

		With	He.CurrentHost.Cfg3270.CursorType	=	CURSOR_BLOCK

		End	With

End	Sub

'$include:"-E\hebasic.ebh"

Sub	Main

		Dim	HE	as	Object

		Set	HE	=	CreateObject("HostExplorer")

		Dim	Cfg	as	Object

		Set	Cfg	=	HE.CurrentHost.Cfg3270

		Cfg.CursorType	=	CURSOR_BLOCK

End	Sub

Cfg5250	Objects	List
The	Cfg5250	object	lets	you	configure	all	aspects	of	a	5250	session.
Unlike	other	objects,	the	Cfg5250	object	only	exists	to	group	5250
configuration	methods.	It	has	no	properties	of	its	own.

You	can	access	configuration	methods	directly,	using	the	With	statement
or	by	creating	an	object	for	easy	reference.
Example '$include:"-E\hebasic.ebh"

Sub	Main

		Dim	HE	as	Object

		Set	HE	=	CreateObject("HostExplorer")

		HE.CurrentHost.Cfg5250.CursorType	=	CURSOR_BLOCK

End	Sub

'$include:"-E\hebasic.ebh"

Sub	Main

		Dim	HE	as	Object

		Set	HE	=	CreateObject("HostExplorer")

		With	HE.CurrentHost.Cfg5250.CursorType	=	CURSOR_BLOCK

		End	With

End	Sub

'$include:"-E\hebasic.ebh"

Sub	Main

		Dim	Cfg	as	Object

		Dim	HE	as	Object

		Set	HE	=	CreateObject("HostExplorer")

		Set	Cfg	=	HE.CurrentHost.Cfg5250

		Cfg.CursorType	=	CURSOR_BLOCK

End	Sub

CfgVT	Objects	List
The	CfgVT	object	lets	you	configure	all	aspects	of	a	VT	session.	Unlike
other	objects,	the	CfgVT	object	exists	only	to	group	VT	configuration
methods.	It	has	no	properties	of	its	own.	You	can	access	configuration
methods	directly,	using	the	With	statement	or	by	creating	an	object	for
easy	reference.
Example '$include:"-E\hebasic.ebh"

Sub	Main

		Dim	HE	as	Object

		Set	HE	=	CreateObject("HostEx

lorer")

		HE.CurrentHost.CfgVT.CursorTy

e	=	CURSOR_BLOCK

End	Sub

'$include:"-E\hebasic.ebh"

Sub	Main

		Dim	HE	as	Object

		Set	HE	=	CreateObject("HostEx

lorer")

		With	HE.CurrentHost.CfgVT.CursorTy

e	=	CURSOR_BLOCK

		End	With

End	Sub

'$include:"-E\hebasic.ebh"

Sub	Main

		Dim	Cfg	as	Object

		Dim	HE	as	Object

		Set	HE	=	CreateObject("HostEx

lorer")

		Set	Cfg	=	HE.CurrentHost.CfgVT

		Cfg.CursorTy

e	=	CURSOR_BLOCK

End	Sub

Assignment	Group
3270	5250	VT

Erase—Reinitializes	the	elements	of	fixed-size	arrays	and	frees	dynamic
storage	space.	Not	supported	by	Hummingbird	Basic.	Supported	by
Microsoft	Visual	Basic.

Let—Assigns	the	value	of	an	expression	to	a	variable	or	property.	Not
supported	by	Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

Lset—Left-aligns	a	string	variable	or	copies	a	variable	of	one	user-
defined	type	to	another	variable	of	a	different	user-defined	type.

Set—Assigns	an	object	reference	to	a	variable	or	property.

New—In	the	Set	statement,	New	allocates	and	initializes	a	new	object	of
the	named	class.

Rset—Right-aligns	a	string	within	a	string	variable.

Conversion	Group
3270	5250	VT

Array—Returns	a	variant	containing	an	array.	Declaring	the	dimension
for	WinWrap	Basic	and	Hummingbird	Basic	is	very	similar,	but	there	are
differences	in	Microsoft	Visual	Basic.

Cbool—Converts	a	number	or	string	to	a	Boolean	value.
Note:	 	 Boolean	is	not	supported	by	Hummingbird	Basic.

Cbyte—Converts	a	number	or	string	value	to	a	byte	value.
Note:	 	 Boolean	is	not	supported	by	Hummingbird	Basic.

Ccur—Converts	a	number	or	string	value	to	a	currency	value.

Cdate—Converts	a	number	or	string	value	to	a	date	value.
Note:	 	 Boolean	is	not	supported	by	Hummingbird	Basic.

CDbl—Converts	a	number	or	string	value	to	a	double-precision	real
value.

Cint—Converts	a	value	to	an	integer	by	rounding.

CLng—Converts	a	value	to	a	Long	by	rounding.

CSng—Converts	a	value	to	a	single-precision	float	point.

CStr—Converts	a	number	or	string	value	to	a	string	value.

Cvar—Converts	a	value	to	a	variant.

CVDate—Converts	a	value	to	a	variant	date.

CVErr—Converts	to	a	variant	that	contains	an	error	code.	Not	supported
by	Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

DDE	Group
3270	5250	VT

DDEExecute—Sends	one	or	more	commands	to	an	application	using	a
Dynamic	Data	Exchange	(DDE)	channel.

DDEInitiate—Opens	a	DDE	channel	and	returns	the	DDE	channel
number	(1,2,	and	so	on).

DDEPoke—Sends	data	to	an	application	on	an	open	DDE	channel.

DDERequest—Returns	data	from	an	application	on	an	open	DDE
channel.

DDETerminate—Closes	the	specified	DDE	channel.

DDETerminateAll—Terminates	all	open	DDE	channels.	Not	supported
by	Hummingbird	Basic.

DefType	Statement
3270	5250	VT

Used	at	the	module	level	to	set	the	default	data	type	for	variables,
arguments	passed	to	procedures,	and	the	return	type	for	Function	and
Property	Get	procedures	whose	names	start	with	the	specified
characters.

DefBool—Boolean	is	not	supported	by	Hummingbird	Basic.

DefByte—Byte	is	not	supported	by	Hummingbird	Basic.

DefCur—Currency.

DefDate—Date	is	not	supported	by	Hummingbird	Basic.

DefDb—Double.

DefInt—Integer.

DefLong—Long.

DefObj—Object	is	not	supported	by	Hummingbird	Basic.

DefVar—Variant.

DeleteSetting—Deletes	a	section	or	key	setting	from	an	application's
entry	in	the	Windows	registry.	Not	supported	by	Hummingbird	Basic.
Supported	by	Microsoft	Visual	Basic.

Error	Handling	Group
3270	5250	VT

Err	Object—The	following	is	not	supported	by	Hummingbird	Basic.	Can
be	found	in	Microsoft	Visual	Basic	(simulates	the	occurrence	of	an	error).

Err[.Number]—The	error	code	for	the	last	error	event.

Err.Description—The	description	of	the	last	error	event.

Err.Source—The	error-source	file	name	of	the	last	error	event.

Err.HelpFile—The	Help	file	name	of	the	last	error	event.

Err.HelpContext—The	Help	context	ID	of	the	last	error	event.

Err.Clear—Clears	the	last	error	event.

Err.Raise—Raises	an	error	event.

Err.LastDLLError—For	32-bit	Windows,	returns	the	error	code	for	the
last	DLL	call.	For	16-bit	Windows,	always	returns	0.

Error—Returns	the	error	message	that	corresponds	to	the	specified	error
code.

On	Error—Specifies	the	location	of	an	error-handling	routine	within	the
current	procedure.

Resume—Resumes	execution	after	an	error-handling	routine	is	finished.

Flow	Control	Group
3270	5250	VT

Call—Transfers	control	to	a	subprogram	procedure.

Case—Executes	one	of	a	series	of	statement	blocks,	depending	on	the
value	of	an	expression.

Choose—Selects	and	returns	a	value	from	a	list	of	arguments.	Not
supported	by	Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

Do	Loop—Repeats	a	block	of	statements	while	a	condition	is	TRUE	or
until	a	condition	becomes	TRUE.
Note:	 	 Hummingbird	Basic	does	not	support	Boolean	values,	so	it	interprets	TRUE	as	non-zero	andFALSE	as	zero.

Each—Repeats	a	group	of	statements	for	each	element	in	an	array	or
collection.
Note:	 	 The	For	Each	Next	Statement	part	is	not	supported	by	Hummingbird	Basic.

End—An	instruction	that	causes	a	macro	to	terminate	immediately.

Exit—An	instruction	that	causes	a	macro	to	continue	without	carrying	out
some	or	all	of	the	remaining	instructions.

For	Next	Each—Repeats	a	group	of	statements	for	each	element	in	an
array	or	collection.	Not	supported	by	Hummingbird	Basic.	Supported	by
Microsoft	Visual	Basic.

For	Next—Repeats	a	group	of	statements	a	specified	number	of	times.

Goto—The	Goto	statement	sends	control	to	a	label.

If	Then—Executes	alternative	blocks	of	program	code	based	on	one	or
more	expressions.

MacroDir—Returns	the	directory	of	the	current	macro.	A	run-time	error
occurs	if	the	current	macro	has	never	been	saved.	Not	supported	by
Hummingbird	Basic.

MacroRun—Plays	a	macro.	Execution	continues	at	the	following
statement	after	the	macro	has	completed.	Not	supported	by
Hummingbird	Basic.

Select	Case—Executes	one	of	a	series	of	statement	blocks,	depending
on	the	value	of	an	expression.

Stop—Halts	program	execution.

While—Controls	a	repetitive	action.

Miscellaneous	Group
3270	5250	VT

'—Used	to	include	explanatory	remarks	in	a	program.

AboutWinWrapBasic—Shows	the	WinWrap	Basic	About	box.	Not
supported	by	Hummingbird	Basic.

AppActivate—Activates	an	application	window.	Activates	an
application’s	top-level	window	title	window.

Beep—Produces	a	single,	short	beeping	tone	through	the	computer’s
speaker.

CallersLine—Returns	the	line	of	a	caller	as	a	text	string.	Not	supported
by	Hummingbird	Basic.

Clipboard—Provides	access	to	the	system	Clipboard.

Command—Returns	a	string	containing	the	command	line	specified
when	the	MAIN	subprogram	was	invoked.

Debug—Sends	output	to	the	Immediate	window	at	run	time.	Not
supported	by	Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic

DoEvents—Yields	execution	so	that	the	operating	system	can	process
other	events.

Environ—Returns	the	string	associated	with	an	operating	system
environment	variable.

IIf—Returns	the	value	of	the	indicated	by	an	expression	that	returns	a
numerical	result.	Not	supported	by	Hummingbird	Basic.

QBColor—Returns	a	Long	representing	the	RGB	color	code
corresponding	to	the	specified	color.	Not	supported	by	Hummingbird
Basic.	Supported	by	Microsoft	Visual	Basic.

RGB—Returns	a	Long	whole	number	representing	an	RGB	color	value.
Not	supported	by	Hummingbird	Basic.	Supported	by	Microsoft	Visual
Basic.

SendKeys—Sends	one	or	more	keystrokes	to	an	active	window	as	if
they	were	typed	at	the	keyboard.

Shell—Runs	an	executable	program.	If	successful,	it	returns	a	variant
(Double)	representing	the	program's	task	ID;	otherwise,	it	returns	zero.

Wait—Waits	for	delay	seconds.	Not	supported	by	Hummingbird	Basic.

Operators	Group
3270	5250	VT

^—Exponentiation.
-,+—Unary	minus	and	plus.	The	+	operator	is	also	used	for	string
concatenation.

*,/—Numeric	multiplication	or	division.	For	division,	the	result	is	a
Double.

\—Integer	division.	The	operand	can	be	Integer	or	Long.
Mod—Modulus	or	Remainder.	The	operand	can	be	Integer	or	Long.
&—String	concatenation.

>,<,=,<=.>=,==—Numeric	or	string	comparison.

Not—Unary	Not.

And—Operands	can	be	Integer	or	Long.

Or—Inclusive	Or.

Xor—Exclusive	Or.

Eqv—Equivalence.

Imp—Implication.

Is—Compares	two	object	reference	variables.

Like—Compares	two	strings.

Rem—Includes	explanatory	remarks	in	a	program.

String	Group
3270	5250	VT

Asc—Returns	an	integer	corresponding	to	the	ANSI	code	of	the	first
character	in	the	specified	string.

AscB—Returns	the	first	byte.	Not	supported	by	Hummingbird	Basic.

AscW—Returns	the	Unicode	number.

Chr—Returns	a	one-char	string	for	the	ASCII	value.

ChrB—Returns	a	single-byte	ACSII	string.	Not	supported	by
Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

ChrW—Returns	a	single	char	Unicode	string.	Not	supported	by
Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

Format—Returns	a	formatted	string	of	an	expression	based	on	a	given
format.

Hex—Returns	the	hexadecimal	representation	of	a	number,	as	a	string.

InStr—Returns	a	variant	(Long)	specifying	the	position	of	the	first
occurrence	of	one	string	within	another.

IntStrB—Returns	the	byte	index	specifying	the	position	of	the	first
occurrence	of	one	string	within	another.	Not	supported	by	Hummingbird
Basic.

LCase—Returns	a	string	that	has	been	converted	to	lowercase.

Left—Returns	a	variant	(string)	containing	a	specified	number	of
characters	from	the	left	side	of	a	string.

LeftB—Returns	bytes	containing	a	specified	number	of	characters	from
the	left	side	of	a	string.	Not	supported	by	Hummingbird	Basic.

Len—Returns	a	Long	containing	the	number	of	characters	in	a	string.

LenB—Returns	a	byte	containing	the	number	of	characters	in	a	string.
Not	supported	by	Hummingbird	Basic.

LTrim—Returns	a	copy	of	the	source	string,	with	all	leading	spaces
removed.

Mid	(method)—Returns	a	variant	(string)	containing	a	specified	number
of	characters	from	a	string.

Mid	(statement)—Replaces	a	specified	number	of	characters	in	a	variant
(string)	variable	with	characters	from	another	string.

MidB—Returns	a	byte	containing	a	specified	number	of	characters	from
a	string.	Not	supported	by	Hummingbird	Basic.

Oct—Returns	a	variant	(string)	representing	the	octal	value	of	a	number.

Right—Returns	a	string	of	a	specified	length	copied	from	the	right-most
character	of	the	string	expression.

RightB—Returns	a	byte	of	a	specified	length	copied	from	the	right-most
character	of	the	string	expression.	Not	supported	by	Hummingbird	Basic.

Rtrim—Returns	a	copy	of	the	source	expression	with	all	trailing	spaces
removed.

Space—Returns	a	variant	(string)	consisting	of	the	specified	number	of
spaces.

Str—Returns	a	string	representation	of	a	number.

StrConv—Returns	a	variant	(string)	converted	as	specified.	Not
supported	by	Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

String—Returns	a	variant	(string)	containing	a	repeating	character	string
of	the	length	specified.

Trim—Returns	the	string	with	leading	and	trailing	spaces	removed.

Ucase—Returns	a	copy	of	a	string	after	all	lowercase	letters	have	been
converted	to	uppercase.

Val—Returns	the	numeric	value	of	the	first	number	found	in	the	specified
string.

User	Dialog	Group
3270	5250	VT

Begin—Starts	the	dialog-box	declaration	for	a	user-defined	dialog	box.

Begin	Dialog—Begins	and	ends	a	dialog-box	declaration.

CancelButton—Used	in	the	interactive	dialog	box.

CheckBox—Used	in	the	interactive	dialog	box.

ComboBox—Used	in	the	interactive	dialog	box.

Dialog	(statement)—Displays	a	dialog	box.

DialogFunc—Implements	the	dynamic	dialog	capabilities.	Not	supported
by	Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

DropListBox—Defines	a	drop-down	list	box	item.

GroupBox—Defines	and	draws	a	box	that	encloses	sets	of	dialog	box
items,	such	as	option	boxes	and	check	boxes.

ListBox—Displays	a	list	of	items	from	which	the	user	can	select	one	or
more.

OKButton—Defines	an	OK	button	dialog	box	control.	See	Dialog	Box
Definition.

OptionButton—Defines	an	option	button	item.

OptionGroup—Groups	a	series	of	option	buttons	under	one	heading	in	a
dialog	box.

Picture—Defines	a	picture	control	in	a	custom	dialog	box.

PushButton—Defines	a	custom	push	button.

Text—Places	lines	of	text	in	a	dialog	box.

TextBox—Sometimes	called	an	edit	field	or	edit	control.	Displays
information	entered	at	design	time,	entered	by	a	user,	or	assigned	to	the
control	in	the	code	at	run	time.

Variable	Info	Group
3270	5250	VT

IsArray—Returns	a	Boolean	value	indicating	whether	a	variable	is	an
array.	Not	supported	by	Hummingbird	Basic.	Supported	by	Microsoft
Visual	Basic.

IsDate—Determines	whether	a	value	is	a	legal	date.

IsEmpty—Returns	a	value	that	identifies	whether	a	variant	has	been
initialized.

IsError—Returns	a	Boolean	value	indicating	whether	a	variable	has
been	initialized.	Not	supported	by	Hummingbird	Basic.	Supported	by
Microsoft	Visual	Basic.

IsMissing—Returns	a	Boolean	value	indicating	whether	an	optional
variant	argument	has	been	passed	to	a	procedure.	Not	supported	by
Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

IsNull—Returns	a	value	that	identifies	whether	an	expression	has
resulted	in	a	null	value.

IsNumeric—Returns	a	value	that	signifies	whether	a	variant	is	of
numeric	type.

IsObject—Returns	a	Boolean	value	indicating	whether	an	identifier
represents	an	object	variable.	Not	supported	by	Hummingbird	Basic.
Supported	by	Microsoft	Visual	Basic.

Lbound—Returns	a	Long	containing	the	smallest	available	subscript	for
the	indicating	dimension	of	an	array.

TypeName—Returns	a	string	indicating	the	type	of	value	stored.	Not
supported	by	Hummingbird	Basic.

Ubound—Returns	the	upper	bound	of	the	subscript	range	for	the
specified	array.

VarType—Returns	the	ordinal	number	representing	the	type	of	data
currently	stored	in	the	variant.	A	string	representation	with	a	prefix	of	vb
of	the	value	is	used	in	WinWrap	Basic	but	not	in	Hummingbird	Basic.
Instead,	Hummingbird	Basic	includes	the	MsgBox	Instruction/Method,

String	Data	Type,	Attribute	definition,	Shell	Method,	Var	Type,	Weekday
Method,	and	StrConv	Method.	It	also	uses	the	numerical	values	of	the
string	representation	with	prefix	vb.

Constant	Group
3270	5250	VT

Empty—A	variant	that	does	not	have	any	value.	Not	supported	by
Hummingbird	Basic.

FALSE—An	expression	is	false	when	its	value	is	zero.	Not	supported	by
Hummingbird	Basic,	instead	an	integer	value	zero	is	used.

Nothing—An	object	value	that	does	not	refer	to	an	object.

Null—The	Null	method	returns	a	variant	value	set	to	the	null	value.	Null
is	used	to	explicitly	set	a	variant	to	the	null	value.

TRUE—An	expression	is	TRUE	when	its	value	is	non-zero.	Not
supported	by	Hummingbird	Basic,	instead	an	integer	value	not	equal	to
zero	is	used.

Win16—TRUE	if	running	in	16-bits.	FALSE	if	running	in	32-bits.	Not
supported	by	Hummingbird	Basic.

Win32—TRUE	if	running	in	32-bits.	FALSE	if	running	in	16-bits.	Not
supported	by	Hummingbird	Basic.

Data	Type	Group
3270	5250	VT

Boolean—A	true	or	false	value.	It	uses	integer	values	to	represent	true
and	false.

Byte—An	8-bit	unsigned	integer	value.

Currency—Currency	variables	are	stored	as	64-bit	numbers	in	an
integer	format.

Date—The	whole	part	represents	the	date,	while	the	fractional	part	is	the
time	of	day.

Double—A	64-bit	real	value.

Integer—A	16-bit	integer	value.

Long—A	32-bit	integer	value.

Object—An	object	reference	value.

PortInt—A	portable	integer	value.

Single—A	32-bit	real	value.

String—An	arbitrary-length	string	value.

String*n—A	fixed-length	(n)	string	value.	Not	supported	by	Hummingbird
Basic.

Variant—An	empty,	numeric,	currency,	date,	string,	object,	error	code,
null,	or	array	value.

Declaration	Group
3270	5250	VT

Attributes—Sets	or	returns	a	value	that	indicates	one	or	more
characteristics	of	a	Field,	Relation.	Not	supported	by	Hummingbird	Basic.
Supported	by	Microsoft	Visual	Basic.

Declare—Used	at	the	module	level	to	declare	references	to	external
procedures	in	a	dynamic-link	library	(DLL).

Class_Initialize—A	class	module-initialization	subroutine.	Each	time	a
new	instance	is	created	for	a	class	module,	the	Class_Initialize
subroutine	is	called.	Not	supported	by	Hummingbird	Basic.	Supported	by
Microsoft	Visual	Basic.

Class_Terminate—A	class	module-termination	subroutine.	Each	time	an
instance	is	destroyed	for	a	class	module,	the	Class_Terminate	subroutine
is	called.	Not	supported	by	Hummingbird	Basic.	Supported	by	Microsoft
Visual	Basic.

Const—Declares	constants	for	use	in	place	of	literal	values.

Deftype—Specifies	the	default	data	type	for	one	or	more	variables.

Dim—Declares	variables	and	allocates	storage	space.

Enum—Declares	a	type	for	an	enumeration.	Not	supported	by
Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic

Friend—Modifies	the	definition	of	a	procedure	in	a	class	module	to	make
the	procedure	callable	from	modules	that	are	outside	the	class,	but	part
of	the	project	within	which	the	class	is	defined.

Functions—Declares	the	name,	argument,	and	code	that	forms	the	body
of	a	function	procedure.

Global—An	Application	object	that	enables	you	to	access	application-
level	properties	and	methods.

Option	Explicit—Specifies	that	all	variables	in	a	module	must	be
explicitly	declared.

Object_Initialize—An	object	module-initialization	subroutine.	Not

supported	by	Hummingbird	Basic.

Object_Terminate—An	object	module-termination	subroutine.	Not
supported	by	Hummingbird	Basic.

Private—Creates	arrays	(or	simple	variables)	that	are	available	to	an
entire	macro	or	module,	but	not	other	macros	or	modules.	Not	supported
by	Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

Public—Creates	arrays	(or	simple	variables)	that	are	available	to	an
entire	macro	or	module,	but	not	other	macros	or	modules.	Not	supported
by	Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

ReDim—Changes	the	upper	and	lower	bounds	of	a	dynamic	array's
dimension.

Static—Used	inside	procedures	to	declare	variables	and	allocate	storage
space.

Sub—Declares	the	name,	arguments,	and	code	that	form	the	body	of	a
subprocedure.

Type—Declares	a	user-defined	type,	which	can	then	be	used	in	the	Dim
statement	to	declare	a	record	variable.

Dialog	Methods	and	Statements
3270	5250	VT

You	can	use	Dialog	methods	and	statements	only	when	there	is	an	active
dialog	box	on	the	screen.	In	other	words,	only	the	method	that	was
associated	with	the	active	dialog	box	in	the	BeginDialog	statement	can
call	these	methods.

DialogFunc—Implements	the	dynamic	dialog	capabilities.	Not	supported
by	Hummingbird	Basic.

DlgControlld—Returns	the	numeric	ID	of	a	dialog	box	control.

DlgCount—Returns	the	number	of	dialog	box	items	in	the	dialog	box.
Not	supported	by	Hummingbird	Basic.

DlgEnable	(method)—Indicates	whether	a	control	is	enabled	or
disabled.

DlgEnable	(statement)—Enables	or	disables	a	dialog	box	control.

DlgEnd—Closes	the	dialog	box.

DlgFocus—Sets	the	focus	to	a	dialog	box	control.

DlgListBoxArray	(method)—Returns	the	contents	of	a	list	box	or	combo
box.

DlgListBoxArray	(statement)—Sets	the	contents	of	a	list	box	or	combo
box.

DlgName—Returns	the	field	name.	Not	supported	by	Hummingbird
Basic.

DlgNumber—Returns	the	number	of	the	expression	that	returns	a	string
result.	Not	supported	by	Hummingbird	Basic.

DlgSetPicture—Changes	the	picture	in	a	picture	dialog	box	control	for
the	current	dialog	box.	Not	supported	by	Hummingbird	Basic.

DlgText	(method)—Returns	the	text	associated	with	a	dialog	box
control.

DlgText	(statement)—Sets	the	text	associated	with	a	dialog	box	control.

DlgType—Returns	a	string	value	indicating	the	type	of	expression	that
returns	a	numeric	result.	Not	supported	by	Hummingbird	Basic.

DlgValue	(method)—Returns	the	value	associated	with	a	dialog	box
control.

DlgValue	(statement)—Sets	the	value	associated	with	a	dialog	box
control.

DlgVisible	(method)—Indicates	whether	a	control	is	enabled	or
disabled.

DlgVisible	(statement)—Shows	or	hides	a	dialog	box	control.

File	Group
3270	5250	VT

ChDir—Changes	the	default	directory	for	the	specified	drive.	It	does	not
change	the	default	drive.

ChDrive—Changes	the	default	drive.

Close—Closes	a	file,	concluding	input/output	to	that	file.

CurDir—Returns	the	path	(including	the	drive	letter)	of	the	current	default
directory	for	the	specified	drive.

Dir—Returns	a	string	representing	the	name	of	a	file,	directory,	or	folder
that	matches	a	specified	pattern	or	file	attribute	or	the	volume	label	of	a
drive.

EOF—Returns	a	value	indicating	whether	the	end	of	a	file	has	been
reached.

FileAttr—Returns	information	about	an	open	file.	Depending	on	the
attribute	chosen,	this	information	is	either	the	file	mode	or	the	operating
system	handle.

FileCopy—Copies	a	file.

FileDateTime—Returns	a	string	that	indicates	when	a	specified	file	was
last	modified.

FileLen—Returns	a	Long	that	indicates	the	length	of	the	specified	file.

FreeFile—Returns	the	lowest	unused	file	number.

Get—Reads	a	variable	from	a	file	opened	in	Random	or	Binary	mode.

GetAttr—Returns	an	integer	representing	the	attributes	of	a	file,
directory,	or	folder.

Input	(method)—Returns	a	string	containing	characters	from	a	file
opened	in	Input	or	Binary	mode.

Input	(statement)—Reads	data	from	an	open	sequential	file	and	assigns
the	data	to	variables.

Kill—Deletes	files	from	a	disk.

LineInput—Reads	a	single	line	from	an	open	sequential	file	and	assigns
it	to	a	string	variable.

Loc—Returns	a	Long	specifying	the	current	read/write	position	within	an
open	file.

Lock—Controls	access	by	other	processes	to	all	or	part	of	a	file	opened
using	the	Open	statement.

LOF—Returns	a	Long	representing	the	size,	in	bytes,	of	a	file	opened
using	the	Open	statement.

MkDir—Makes	a	new	directory.

Name—Renames	a	file.

Open—Opens	a	file	or	device	for	input	or	output.

Print—Writes	display-formatted	data	to	a	sequential	file.

Put—Writes	a	variable	to	a	file	opened	in	Random	or	Binary	mode.

Reset—Closes	all	open	disk	files	and	writes	any	data	still	remaining	in
the	operating-system	buffer	to	disk.

RmDir—Removes	an	existing	directory	or	folder.

Seek	(method)—Returns	a	Long	specifying	the	current	read/write
position	within	a	file	opened	using	the	Open	Statement.

Seek(statement)—Sets	the	position	for	the	next	read/write	operation
within	a	file	opened	using	the	Open	statement.

SetAttr—Sets	attribute	information	for	a	file.

UnLock—Controls	access	to	an	open	file.

Write—Writes	data	to	an	open	sequential	file.

Math	Group
3270	5250	VT

Abs—Returns	the	absolute	value.

Atn—Returns	the	angle	(in	radians)	corresponding	to	the	arc	tangent	of
the	specified	numeric	expression.

Cos—Returns	the	cosine	of	an	angle.

Exp—Returns	the	exponential.

Fix—Returns	the	integer	value	of	the	number	value.

Int—Returns	a	value	of	the	type	passed	to	it	containing	the	integer
portion	of	a	number.

Log—Returns	a	Double	specifying	the	natural	logarithm	of	a	number.

Randomize—Initializes	the	random-number	generator.

Rnd—Returns	a	random	number	greater	than	or	equal	to	zero	and	less
than	one.

Sgn—Returns	a	value	indicating	the	sine	of	the	number.

Sin—Returns	a	Double	specifying	the	sine	of	an	angle.

Sqr—Returns	a	Double	specifying	the	square	root	of	a	number.

Tan—Returns	a	Double	specifying	the	tangent	of	an	angle.

TimeValue—Returns	a	variant	(vate)	containing	the	time.

Object	Group
3270	5250	VT

CreateObject—Creates	a	new	Ole2	automation.

GetObject—Returns	an	Ole2	object	associated	with	the	file	name	or	the
application	name.

With—Executes	a	series	of	statements	on	a	specified	variable.

Settings	Group
3270	5250	VT

DeleteSetting—Deletes	a	section	or	key	setting	from	an	application's
entry	in	the	Windows	registry.

GetAllSettings—Returns	a	list	of	key	settings	and	their	respective
values	from	an	application's	entry	in	the	Windows	registry.	Not	supported
by	Hummingbird	Basic.	Supported	by	Microsoft	Visual	Basic.

GetSetting—Returns	a	key	setting	value	from	an	application's	entry	in
the	Windows	registry.	Not	supported	by	Hummingbird	Basic.	Supported
by	Microsoft	Visual	Basic.

Save	Setting—Saves	or	creates	an	application	entry	in	the	Windows
registry.	Not	supported	by	Hummingbird	Basic.	Supported	by	Microsoft
Visual	Basic.

TimeDate	Group
3270	5250	VT

Date—Returns	a	string	representing	the	current	date.

DateAdd—Returns	a	variant	(date)	containing	a	date	to	which	a	specified
time	interval	has	been	added.	Not	supported	by	Hummingbird	Basic.
Supported	by	Microsoft	Visual	Basic.

DateDiff—Returns	a	variant	(Long)	specifying	the	number	of	time
intervals	between	two	specified	dates.	Not	supported	by	Hummingbird
Basic.	Supported	by	Microsoft	Visual	Basic.

DatePart—Returns	a	variant	(integer)	containing	the	specified	part	of	a
given	date.	Not	supported	by	Hummingbird	Basic.	Supported	by
Microsoft	Visual	Basic.

DateSerial—Returns	a	variant	(date)	for	the	specified	year,	month,	and
day.

DateValue—Returns	a	date	value	for	the	string	specified.

Day—Returns	the	day-of-the-month	component	of	a	date-time	value.

Hour—Returns	the	hour-of-day	component	(0–23)	of	a	date-time	value.

Minute—Returns	the	minute	component	of	a	date-time	value.

Month—Returns	the	month	component	of	a	date-time	value.

Now—Returns	the	current	date	and	time.

Second—Returns	the	second	component	of	a	date-time	value.

Time—Returns	a	string	representing	the	current	time.

Timer—Returns	the	number	of	seconds	past	midnight.

TimerSerial—Returns	a	variant	(date)	containing	the	time	for	a	specific
hour,	minute	and	second.

WeekDay—Returns	the	day	of	the	week	for	the	specified	date-time
value.

Year—Returns	the	year	component	(1–12)	of	a	date-time	value.

User	Input	Group
3270	5250	VT

Dialog	(method)—Displays	a	dialog	box	and	returns	a	number	for	the
button	selected.

GetFilePath—Displays	a	dialog	box	and	gets	a	file	path	from	the	user.
The	returned	string	is	a	complete	path	and	file	name.	Not	supported	by
Hummingbird	Basic.

InputBox—Displays	a	prompt	in	a	dialog	box,	waits	for	the	user	to	input
text	or	click	a	button,	and	returns	a	string	containing	the	contents	of	the
text	box.

MsgBox	(method)—Returns	an	integer	value	indicating	which	button	the
user	selected.

MsgBox	(statement)—Displays	a	message	in	a	dialog	box.	If	a	message
box	requires	buttons	in	addition	to	OK,	use	the	MsgBox	method	instead.

Entering	Control	Sequences
VT

The	system	treats	the	following	in-line	spaces	as	part	of	a	sequence:

\a—Bell	(alert)
\b—Backspace
\e—Escape
\f—Formfeed
\n—Newline
\r—Carriage	Return
\t—Horizontal	Tab
\v—Vertical	Tab
\'—Single	quotation	mark
""—Double	quotation	mark
\\—Backslash
\xhh—ASCII	character	in	hexadecimal	notation

When	you	type	control	sequences,	you	can	use	caret	format.	For
example,	to	type	a	Ctrl-A	value,	you	would	type	^A.	To	type	a	caret,	type
the	caret	character	twice,	for	example,	(^^).

Example:
Sub	Main

Dim	HE	as	Object

Set	HE	=	CreateObject("HostExplorer")

'	Press	tab	key	twice

HE.CurrentHost.Keys	"\t\tTab	Twice"

'	Press	Ctrl-C

HE.CurrentHost.Keys	"^C"

End	Sub

Renamed	Interfaces	of	the	Profile	Object
The	following	interfaces	of	the	Profile	object	have	been	renamed:

Former	Name New	Name

ProfileEditing ProfileEdit

ProfilePrintExplorer ProfilePrintSession

ProfileSaveFile ProfileCapture

ProfileVTPrint ProfileHostPrinting

Related	Topics
Renamed	or	Moved	COM	Methods,	Properties,	and	Interfaces

Renamed	Properties	of	the	Profile	Object
The	following	properties	of	the	Profile	object	have	been	renamed:

Former	Name New	Name Interface

TraceFilename HLLAPITraceFilename Profile

EnableEmuTracing AllowEmuTracing Profile

Editing Edit Profile

PrintExplorer PrintSession Profile

VTPrint HostPrinting Profile

SaveFile Capture Profile

SpecialModel CustomModel ProfileTerminal

SpecialModelCols CustomModelCols ProfileTerminal

SpecialModelRows CustomModelRows ProfileTerminal

VTMoveCursorOn
MouseClick

MoveCursorOn
MouseClick

ProfileCursor

UseSpecificPrinter PRTSCRUseSpecific
Printer

ProfilePrintScreen

PEHostName HostName ProfilePrintSession

PELUName LUName ProfilePrintSession

PELUType LUType ProfilePrintSession

PEProfileName ProfileName ProfilePrintSession

PEStartPrinter StartPrinter ProfilePrintSession

PEStopPrinter StopPrinter ProfilePrintSession

ShowRecvDir ShowRecvDlg ProfileFileTransfer

7171PrintMode PrintMode7171 ProfilePCPrint

Related	Topics
Renamed	or	Moved	COM	Methods,	Properties,	and	Interfaces

Moved	Properties	of	the	Profile	Object
The	following	properties	have	been	moved	from	one	interface	to	another:

Property Former
Interface

New	Interface

AlternateScreen Profile ProfileTerminal

AreaCode Profile ProfileConnection

AutoMacroName Profile ProfileConnection

CharacterSpacing Profile ProfileFonts

ConnectBy Profile ProfileConnection

CountryCode Profile ProfileConnection

CountryID Profile ProfileConnection

DeviceName Profile ProfileConnection

DirectToModem Profile ProfileConnection

FullScreenMode Profile ProfileSessionWindow

HostName Profile ProfileConnection

Port Profile ProfileConnection

PromptOnClose Profile ProfileSessionWindow

SaveProfOnClose Profile ProfileSessionWindow

Schemes Profile ProfileEvents,	ProfileColor,	ProfileFileTransfer,
ProfileHotspots

ShowDialupDlg Profile ProfileConnection

SYSREQasIACIP Profile ProfileConnection

TelnetEcho Profile ProfileConnection

TelnetName Profile ProfileConnection

Timeout Profile ProfileConnection

TypeAhead Profile ProfileKeyboard

TypeAheadTimeout Profile ProfileKeyboard

UponDisconnect Profile ProfileConnection

UseDialProp Profile ProfileConnection

UserName Profile ProfileConnection

VariableWidthFont Profile ProfileFonts

LongName Profile ProfileSessionWindow

LUName Profile ProfileConnection

ModemID Profile ProfileConnection

Notify Profile ProfileSound

Password Profile ProfileConnection

VTDoHostWindow
Size

Profile ProfileConnection

VTInitiateTelnet
Negotiation

Profile ProfileConnection

VTLineMode Profile ProfileConnection

Sound Profile ProfileSound

WindowTitle Profile ProfileSessionWindow

AutoRunMacro
DelayTime

Profile ProfileConnection

ColumnSeparators ProfileTerminal ProfileDisplay

VTDefColsPerScreen ProfileDisplay ProfileTerminal

VTDefLinesPerScreen ProfileDisplay ProfileTerminal

NoLockKeyb ProfileDisplay ProfileEdit

MultiLineDelete ProfileDisplay ProfileEdit

MultiLineInsert ProfileDisplay ProfileEdit

InsertResetByAttn ProfileDisplay ProfileEdit

RespectNumeric ProfileDisplay ProfileEdit

ConvertNulls ProfileDisplay ProfileEdit

AlwaysAutoskip ProfileDisplay ProfileEdit

EnableWorkspace
BackgroundBitmap

ProfileDisplay ProfileSessionWindow

WorkSpace
BackgroundBitmap

ProfileDisplay ProfileSessionWindow

WorkSpace
BackgroundColor

ProfileDisplay ProfileSessionWindow

WorkSpace
ForegroundColor

ProfileDisplay ProfileSessionWindow

DisplayBorder ProfileFonts ProfileSessionWindow

SaveFontOnExit ProfileFonts ProfileSessionWindow

SnapFrameBack ProfileFonts ProfileSessionWindow

SwitchScreenType ProfileFonts ProfileSessionWindow

Related	Topics
Renamed	or	Moved	COM	Methods,	Properties,	and	Interfaces

HEPARSER_FEATURE	Data	Type
The	HEPARSER_FEATURE	data	type	indicates	the	type	of	feature	that	is
enabled	or	disabled.

It	has	the	following	values:

Value Definition

HOSTEX_8BIT_MODE Determines	whether	the	communication	mode
used	to	connect	to	the	host	supports	the	8-bit	data
format.	This	data	type	value	applies	only	to	TNVT
terminals.

HOSTEX_ALLOW_AID_KEY_REPEAT Determines	whether	HostExplorer	sends	multiple
function-key	commands	to	the	host	without	you
having	to	press	a	key	again.	By	default,	this	data
type	value	is	FALSE.

HOSTEX_ALWAYS_OUTLINE Determines	whether	HostExplorer	automatically
sets	all	input	fields	to	full	outline.	By	default,	this
data	type	value	is	FALSE	and	applies	only	to
TN3270	terminals.

HOSTEX_AUTO_COPY_KEEP_SELECTION Determines	whether	HostExplorer	maintains	the
selection	once	you	have	copied	or	cut	the	text.	By
default,	this	data	type	value	is	FALSE.

HOSTEX_AUTO_COPY_SELECTED_TEXT Determines	whether	HostExplorer	automatically
copies	all	selected	text	to	the	Clipboard.	By
default,	this	data	type	value	is	FALSE.

HOSTEX_AUTO_DIACRITIC_	COMPOSITION Determines	whether	HostExplorer	can	compose
accented	and/or	special	characters.	By	default,
this	data	type	value	is	FALSE	and	applies	only	to
TN5250	terminals.

HOSTEX_BACKSPACE_IS_DELETE Determines	whether	HostExplorer	sends	a	Delete
character	to	the	host	when	you	press	the
Backspace	key.	This	data	type	value	applies	only
to	TNVT	terminals.

HOSTEX_CAPTURE_SCREEN Determines	whether	HostExplorer	saves	all
information	on	the	screen.	By	default,	this	data
type	value	is	FALSE	and	applies	only	to	TNVT
terminals.

HOSTEX_CLIPBOARD_FORMAT_BITMAP Determines	whether	HostExplorer	enables	bitmap
format	when	copying	data	to	the	Clipboard.	By
default,	this	data	type	value	is	TRUE.

HOSTEX_CLIPBOARD_FORMAT_CSV Determines	whether	HostExplorer	enables	CSV
format	when	copying	data	to	the	Clipboard	and
pasting	data	from	other	applications.	By	default,
this	data	type	value	is	TRUE.

HOSTEX_CLIPBOARD_FORMAT_HE Determines	whether	HostExplorer	enables	its
proprietary	format	when	copying	data	to	the
Clipboard.	By	default,	this	data	type	value	is
TRUE.

HOSTEX_CLIPBOARD_FORMAT_PASTE_	LINK

																																				
Determines	whether	HostExplorer	enables	Paste
Link	format	when	copying	data	to	the	Clipboard.
By	default,	this	data	type	value	is	TRUE.

HOSTEX_CLIPBOARD_FORMAT_RTF Determines	whether	HostExplorer	enables	Rich
Text	Format	(RTF)	when	copying	data	to	the
Clipboard.	By	default,	this	data	type	value	is
TRUE.

HOSTEX_CLIPBOARD_FORMAT_TEXT Determines	whether	HostExplorer	enables
standard	text	format	when	copying	data	to	the
Clipboard	and	pasting	data	from	other
applications.	By	default,	this	data	type	value	is
TRUE.

HOSTEX_CONTROLCODES Determines	whether	HostExplorer	acts	on	control
codes	or	displays	them	using	a	special	character
set.	This	data	type	value	is	set	by	the	host	and
applies	only	to	TNVT	terminals.

HOSTEX_CURSOR_KEY_MODE Determines	the	cursor-key	mode	(Normal	or
Application),	which	affects	the	sequences
HostExplorer	sends	to	the	host.	This	data	type
value	applies	only	to	TNVT	terminals.

HOSTEX_ENABLE_NOTIFY Determines	whether	HostExplorer	beeps	when	the
session	window	is	not	the	active	or	highlighted
window.	By	default,	this	data	type	value	is	FALSE.

HOSTEX_ENABLE_SOUND Determines	whether	HostExplorer	emits	all
program	sounds.	By	default,	this	data	type	value	is
FALSE.

HOSTEX_ENTRY_ASSIST Determines	whether	HostExplorer	enables	Entry
Assist,	which	lets	you	set	general	editing	options.
By	default,	this	data	type	value	is	FALSE	and
applies	only	to	TN3270	and	TN5250	terminals.

HOSTEX_FORCE_ALT_SIZE Determines	whether	you	can	change	the	window
to	the	alternate	size	when	the	host	receives	an
Erase	Write	command.	By	default,	this	data	type

value	is	FALSE	and	applies	only	to	TN3270
terminals.

HOSTEX_HOST_WRITABLE_STATUS_LINE Determines	whether	the	host	displays	messages
within	the	status	line.	By	default,	this	data	type
value	is	FALSE	and	applies	only	to	TNVT
terminals.

HOSTEX_IGNORE_ATTRIBUTE Determines	whether	the	field	attribute	is	displayed.
By	default,	this	data	type	value	is	FALSE.

HOSTEX_INSERT_MODE Determines	whether	the	Insert	key	inserts
characters	in	the	current	and	subsequent	lines.	By
default,	this	data	type	value	is	FALSE	and	applies
only	to	TN3270	and	TN5250	terminals.

HOSTEX_ISO_COLORS Determines	whether	HostExplorer	enables	support
for	ISO	colors	for	ANSI	color	escape	sequences
when	using	VT100,	VT101,	VT220,	VT320,	and
VT420	models.	By	default,	this	data	type	value	is
FALSE	and	applies	only	to	TNVT	terminals.

HOSTEX_KEYPAD_APPLICATION_MODE Determines	whether	HostExplorer	sends
application	sequences	to	the	host.	This	data	type
value	applies	only	to	TNVT	terminals.

HOSTEX_LOCK_ON_ATTENTION Determines	whether	HostExplorer	locks	the
keyboard	after	you	send	an	attention	key
command.	By	default,	this	value	is	FALSE.

HOSTEX_MONO_TRANSITION_MODE Determines	whether	the	screen	is	in	monochrome
transition	mode.	If	it	is,	the	screen	is	black,	and	the
characters	are	green.	This	data	type	value	is	set
by	the	host	and	applies	only	to	TN3270	terminals.

HOSTEX_MOVE_CURSOR_AFTER_PASTE Determines	whether	HostExplorer	automatically
repositions	the	cursor	after	pasting	text.	By	default,
this	data	type	is	FALSE	and	applies	only	to
TN3270	and	TN5250	terminals.

HOSTEX_NEW_LINE_MODE Determines	whether	pressing	the	Enter	key	sends
a	carriage-return	(CR)	or	carriage	return/line	feed
(CR/LF)	command	to	the	host.	By	default,	the	CR
option	is	on.	This	data	type	value	applies	only	to
TNVT	terminals.

HOSTEX_NO_LOCK_KEYBOARD Determines	whether	HostExplorer	sends	a	Never
Lock	the	Keyboard	command	to	the	host.	By
default,	this	data	type	value	is	TRUE	and	applies
only	to	TN3270	terminals.

HOSTEX_PAR_LOCAL_ECHO Determines	whether	HostExplorer	enables	local

echo	of	characters	typed	in	the	emulator.	This	data
type	value	applies	only	to	TNVT	terminals.

HOSTEX_PAR_VTONLINE Determines	whether	you	can	type,	and	move	the
cursor	around	the	screen	without	sending	data	to
the	host.	By	default,	this	data	type	value	is	FALSE
and	applies	only	to	TNVT	terminals.

HOSTEX_PS_RESERVE Lets	you	reserve	a	session	to	prevent	user	input.
By	default,	this	data	type	value	is	FALSE.

HOSTEX_SAVE_ATTR_IN_SCROLLBACK Determines	whether	HostExplorer	saves	the	Telnet
screen	attributes	within	data	in	the	Scrollback
buffer.	By	default,	this	data	type	value	is	FALSE
and	applies	only	to	TNVT	terminals.

HOSTEX_SAVE_ERASE_SCREENS Determines	whether	HostExplorer	saves	a	screen
to	the	Scrollback	buffer	before	performing	the
Erase-Screen	Host	command.	By	default,	this	data
type	value	is	FALSE	and	applies	only	to	TNVT
terminals.

HOSTEX_SCROLL_NO_BLANKS Determines	whether	HostExplorer	prevents	adding
blank	lines	to	the	Scrollback	buffer.	By	default,	this
data	type	value	is	TRUE	and	applies	only	to	TNVT
terminals.

HOSTEX_SMOOTH_SCROLL Determines	whether	HostExplorer	scrolls	data
using	a	smooth	scroll	method.	By	default,	this	data
type	value	is	FALSE	and	applies	only	to	TNVT
terminals.

HOSTEX_TYPE_AHEAD Determines	whether	you	can	continue	typing	even
when	the	keyboard	is	locked.	HostExplorer
enables	you	to	continue	typing	by	buffering	typed
characters.	By	default,	this	data	type	value	is
FALSE	and	applies	only	to	TN3270	and	TN5250
terminals.

HOSTEX_UNICODE_FONT Determines	whether	you	are	using	Unicode	font.
By	default,	this	data	type	value	is	TRUE.

HOSTEX_VT_ENABLE_BREAK Determines	whether	you	can	send	the	Break	key
to	the	host.	By	default,	this	data	type	value	is
FALSE	and	applies	only	to	TNVT	terminals.

HOSTEX_VT_NRC_MODE Determines	whether	HostExplorer	enables	the
NRC	(National	Replacement	Character)	set.	By
default,	this	data	type	value	is	FALSE	and	applies
only	to	TNVT	terminals.

HOSTEX_WHAT_THIS Verifies	whether	"What’s	this?"	or	context-sensitive

Help	is	enabled.	By	default,	this	data	type	value	is
FALSE.

HOSTEX_WORD_WRAP Determines	whether	HostExplorer	automatically
wraps	text	around	the	screen.	Text	wrapping
occurs	when	the	terminal	attempts	to	display	a
character	beyond	the	last	column	of	the	emulator.
By	default,	this	data	type	value	is	FALSE	and
applies	only	to	TN3270	and	TN5250	terminals.

HOSTEX_ATN_FORMAT	Data	Type
3270	5250	VT

The	HOSTEX_ATN_FORMAT	data	type	consists	of	the	type	of	sequences
that	you	want	to	send	to	the	host.

It	has	the	following	values:

Value Definition

HOSTEX_ATN_FORMAT_IBM Indicates	that	the	format	is	compatible	with	IBM	emulators.

HOSTEX_ATN_FORMAT_WALLDATA Indicates	that	the	format	is	compatible	with	WallData
emulators.

HOSTEX_ATN_FORMAT_ATTACHMATE

																														
Indicates	that	the	format	is	compatible	with	AttachMate®
emulators.

Related	Topics
AttentionFormat
AttnFormat

	

javascript:hetransport122.Click();
javascript:heprofile110.Click();

HOSTEX_BACKSPACE_KEY_INTERPRETATION
Data	Type
3270	5250

The	HOSTEX_BACKSPACE_KEY_INTERPRETATION	data	type	specifies
what	command	HostExplorer	sends	to	the	host	when	you	press	the
Backspace	key.

Value Definition

HOSTEX_BACKSPACE_KEY_AS_DELETE Specifies	that	HostExplorer	sends	the	Delete
command	to	the	host	every	time	you	press	the
Backspace	key.	The	Delete	command	deletes	the
character	to	the	immediate	right	of	the	cursor.

HOSTEX_BACKSPACE_KEY_AS_BACKSPACE

																																		
Specifies	that	HostExplorer	sends	the	Backspace
command	to	the	host	every	time	you	press	the
Backspace	key.	The	Backspace	command	deletes
the	character	to	the	immediate	left	of	the	cursor.

Related	Topics
BackspaceKeyInterpretation

javascript:heprofile138.Click();

HOSTEX_CELL_DELIMITED	Data	Type
3270	5250

The	HOSTEX_CELL_DELIMITED	data	type	specifies	how	HostExplorer
parses	screen	data	when	copying	data	to	the	Clipboard	in	cell-delimited
format.

It	has	the	following	values:

Value Definition

HOSTEX_CELL_DELIMITED_WORD Indicates	that	HostExplorer	parses	screen	data	at	words.

HOSTEX_CELL_DELIMITED_FIELD

																													
Indicates	that	HostExplorer	parses	screen	data	at	field
attributes.

Related	Topics
CellCopyMode
CellDelimited

	

javascript:heparser315.Click();
javascript:heprofile6.Click();

HOSTEX_CONNECT_BY	Data	Type
3270	5250	VT

The	HOSTEX_CONNECT_BY	data	type	specifies	the	transport	type	that
HostExplorer	uses	to	connect	to	a	host.

It	has	the	following	values:

Value Definition

HOSTEX_CONNECT_BY_TELNET Indicates	that	HostExplorer	connects	to	the	host	using
TCP/IP.

HOSTEX_CONNECT_BY_MODEM Indicates	that	HostExplorer	connects	to	the	host	using	a
modem.	This	data	type	applies	only	to	TNVT	terminals.

HOSTEX_CONNECT_BY_MSSNA Indicates	that	HostExplorer	connects	to	the	host	using	a
Microsoft	SNA	server	gateway.	This	data	type	applies	only	to
TN3270	terminals.

HOSTEX_CONNECT_BY_NWSAA Indicates	that	HostExplorer	connects	to	the	host	using	a
Novell	NetWare	for	SAA	gateway.	This	data	type	applies	only
to	TN3270	terminals.

HOSTEX_CONNECT_BY_DEMOLINK

																												
Indicates	that	HostExplorer	starts	a	demo	session,	which	you
can	use	to	play	back	demo	files	that	you	previously	recorded
using	the	Dlg	Save	Demo	File	system	command.	This	data
type	applies	only	to	TN3270	terminals.

Related	Topics
ConnectBy	(IHEParser)
ConnectBy	(IHEProfileConnection)
ConnectBy	(IHETerminal)

	 	

javascript:heparser316.Click();
javascript:heprofile139.Click();
javascript:heterminal8.Click();

HOSTEX_CUT_MODE	Data	Type
3270	5250

The	HOSTEX_CUT_MODE	data	type	indicates	what	occurs	on	the	screen
after	you	cut	text.	By	default,	this	data	type	is	set	to
HOSTEX_CUT_MODE_DELETE_TEXT.

It	has	the	following	values:

Value Definition

HOSTEX_CUT_MODE_REPLACE_WITH_

SPACES
Indicates	that	the	cut	text	is	replaced	with	blank	characters.

HOSTEX_CUT_MODE_REPLACE_WITH_

NULLS
Indicates	that	the	cut	text	is	replaced	with	nulls	(or	zeros).

HOSTEX_CUT_MODE_DELETE_TEXT Indicates	that	the	cut	text	is	deleted	and	not	replaced	by
any	characters.

Related	Topics
CutMode

javascript:heparser320.Click();

HOSTEX_ENTER_KEY_INTERPRETATION	Data
Type
3270	5250

The	HOSTEX_ENTER_KEY_INTERPRETATION	data	type	specifies	what
key	sequence	HostExplorer	sends	to	the	host	when	you	press	the	Enter
key.

Value Definition

HOSTEX_ENTER_KEY_AS_RETURN_AND_LINEFEED Specifies	that	HostExplorer	sends	the	key
sequence	CR	+	LF	(carriage	return	+	linefeed)
every	time	you	press	Enter.

HOSTEX_ENTER_KEY_AS_CARRIAGE_RETURN Specifies	that	HostExplorer	sends	the	key
sequence	CR	(carriage	return)	every	time	you
press	Enter.

Related	Topics
EnterKeyInterpretation

javascript:heprofile1317.Click();

HOSTEX_FIELD_ATTR_REPLACEMENT	Data
Type
3270	5250

The	HOSTEX_FIELD_ATTR_REPLACEMENT	data	type	specifies	how
HostExplorer	replaces	the	field	attribute	when	copying	information	to	the
clipboard.	By	default,	this	data	type	is	set	to
HOSTEX_FIELD_ATTR_REPLACEMENT_COMMA.

It	has	the	following	values:

Value Definition

HOSTEX_FIELD_ATTR_REPLACEMENT_NONE Indicates	that	HostExplorer	does	not	replace	the	field
attribute	with	anything.

HOSTEX_FIELD_ATTR_REPLACEMENT_TAB Indicates	that	HostExplorer	replaces	the	field	attribute
with	a	tab	stop	on	the	screen.

HOSTEX_FIELD_ATTR_REPLACEMENT_

COMMA
Indicates	that	HostExplorer	replaces	the	field	attribute
with	a	comma	on	the	screen.

HOSTEX_FIELD_ATTR_REPLACEMENT_

PARAGRAPH
Indicates	that	HostExplorer	replaces	the	field	attribute
with	a	paragraph	mark	on	the	screen.

HOSTEX_GRAPHICS_CELLSIZE	Data	Type
3270

The	HOSTEX_GRAPHICS_CELLSIZE	data	type	indicates	the	cell	size	of	a
character	in	pixels.	By	default,	this	data	type	is	set	to
HOSTEX_GRAPHICS_CELLSIZE_AUTOMATIC.

It	has	the	following	values:

Value Definition

HOSTEX_GRAPHICS_CELLSIZE_

AUTOMATIC
Indicates	that	HostExplorer	does	not	correctly	display	the
graphics	for	the	automatic	cell	size.	HostExplorer	reports	a
Presentation	Space	size	equal	to	the	actual	window	size.

HOSTEX_GRAPHICS_CELLSIZE_

NINE_BY_TWELVE
Indicates	that	the	cell	size	of	the	character	is	9	x	12	pixels.

HOSTEX_GRAPHICS_CELLSIZE_

NINE_BY_SIXTEEN
Indicates	that	the	cell	size	of	the	character	is	9	x	16	pixels.

HOSTEX_GRAPHICS_CELLSIZE_

NINE_BY_TWENTY_ONE
Indicates	that	the	cell	size	of	the	character	is	9	x	21	pixels.

HOSTEX_GRAPHICS_CELLSIZE_

THIRTEEN_BY_TWENTY_TWO
Indicates	that	the	cell	size	of	the	character	is	13	x	22	pixels.

HOSTEX_GRAPHICS_CELLSIZE_

THIRTEEN_BY_TWENTY_NINE
Indicates	that	the	cell	size	of	the	character	is	13	x	29	pixels.

Related	Topics
PSCellSize

javascript:heprofile411.Click();

HOSTEX_GRAPHICS_CURSOR_TYPE	Data	Type
3270

The	HOSTEX_GRAPHICS_CURSOR_TYPE	data	type	specifies	how	the
cursor	appears	in	the	terminal	window.	By	default,	this	data	type	is	set	to
HOSTEX_GRAPHICS_CURSOR_TYPE_SMALL_CROSS_WHITE.

It	has	the	following	values:

Value Definition

HOSTEX_GRAPHICS_CURSOR_TYPE_

SMALL_CROSS_WHITE
Displays	the	cursor	as	a	small	white
cross.

HOSTEX_GRAPHICS_CURSOR_TYPE_

LARGE_CROSS_WHITE
Displays	the	cursor	as	a	large	white
cross.

HOSTEX_GRAPHICS_CURSOR_TYPE_

SMALL_CROSS_GREEN
Displays	the	cursor	as	a	small	green
cross.

HOSTEX_GRAPHICS_CURSOR_TYPE_

LARGE_CROSS_GREEN
Displays	the	cursor	as	a	large	green
cross.

Related	Topics
GraphicsCursorType

javascript:heprofile47.Click();

HOSTEX_GRAPHICS_MODEL	Data	Type
3270

The	HOSTEX_GRAPHICS_MODEL	data	type	sets	general	graphic	options.
By	default,	this	data	type	is	set	to
HOSTEX_GRAPHICS_MODEL_3270PCG.

It	has	the	following	values:

Value Definition

HOSTEX_GRAPHICS_MODEL_

NOGRAPHICS
Indicates	that	HostExplorer	displays	only	text.

HOSTEX_GRAPHICS_MODEL_3179G Indicates	that	HostExplorer	displays	the	IBM	3179G
graphics	terminal	model.

HOSTEX_GRAPHICS_MODEL_3472G Indicates	that	HostExplorer	displays	the	IBM	3472G
graphics	terminal	model.

HOSTEX_GRAPHICS_MODEL_3270PCG Indicates	that	HostExplorer	displays	the	IBM	3270G
graphics	terminal	model.

Related	Topics
GraphicsModel	(IHEParser)
GraphicsModel	(IHEProfileGraphics)

	

javascript:heparser4.Click();
javascript:heprofile48.Click();

HOSTEX_HOTSPOT_DISPLAY	Data	Type
3270	5250	VT

The	HOSTEX_HOTSPOT_DISPLAY	data	type	specifies	how	HostExplorer
displays	hotspots.

It	has	the	following	values:

Value Definition

HOSTEX_HOTSPOT_DISPLAY_INVISIBLE Specifies	that	each	hotspot	text	or	region	appears
in	its	regular	display	style	(not	highlighted)	until
you	place	your	cursor	over	it,	at	which	point	the
cursor	turns	into	a	hand	to	indicate	the	presence	of
the	hotspot.

HOSTEX_HOTSPOT_DISPLAY_RAISED_BUTTON Specifies	that	each	hotspot	text	or	region	appears
highlighted.

Related	Topics
DisplayStyle

javascript:heprofile1217.Click();

HOSTEX_HOTSPOT_MOUSE_ACTIVATION	Data
Type
3270	5250	VT

The	HOSTEX_HOTSPOT_MOUSE_ACTIVATION	data	type	specifies	how
hotspots	are	activated	using	the	mouse.

It	has	the	following	values:

Value Definition

HOSTEX_HOTSPOT_MOUSE_ACTIVATION_SINGLE_CLICK Specifies	that	hotspots	activate	when
you	click	them	once	with	the	left	mouse
button.

HOSTEX_HOTSPOT_MOUSE_ACTIVATION_DOUBLE_CLICK Specifies	that	hotspots	activate	when
you	click	them	twice	with	the	left	mouse
button.

Related	Topics
MouseActivation

javascript:heprofile1219.Click();

HOSTEX_KEYBOARD_BUFFER_MODE	Data	Type
3270	5250

The	HOSTEX_KEYBOARD_BUFFER_MODE	data	type	specifies	how
HostExplorer	stores	characters	in	a	buffer	until	they	are	sent	to	the	host.

It	has	the	following	values:

Value Definition

HOSTEX_KEYBOARD_BUFFER_AS_CHARACTER_MODE Specifies	that	HostExplorer	sends	each
character	immediately	to	the	host.

HOSTEX_KEYBOARD_BUFFER_AS_LINE_MODE Specifies	that	HostExplorer	sends	characters
one	line	at	a	time	until	you	press	the	Enter
key.

Related	Topics
KeyboardBufferMode

javascript:heprofile1319.Click();

HOSTEX_KEYBOARD_TYPE	Data	Type
3270	5250	VT

The	HOSTEX_KEYBOARD_TYPE	data	type	specifies	the	type	of	keyboard
to	use	for	the	current	session.

It	has	the	following	values

Value Definition

HOSTEX_KEYBOARD_TYPE_PC_84 Indicates	that	the	PC	keyboard	has	84	keys.

HOSTEX_KEYBOARD_TYPE_PC_101 Indicates	that	the	PC	keyboard	has	101

keys.

HOSTEX_KEYBOARD_TYPE_PC_102 Indicates	that	the	PC	keyboard	has	102

keys.

HOSTEX_KEYBOARD_TYPE_DEC_LK450 Indicates	that	the	DEC	keyboard	is	an	LK450

model.

HOSTEX_KEYBOARD_TYPE_IBM_3270 Indicates	that	the	IBM	keyboard	is	a	3270

model.

HOSTEX_KEYBOARD_TYPE_PC_104 Indicates	that	the	PC	keyboard	has	104

keys.

HOSTEX_KEYBOARD_TYPE_PC_105 Indicates	that	the	PC	keyboard	has	105

keys.

Related	Topics
KeyboardType

javascript:heprofile416.Click();

HOSTEX_LINEMODE	Data	Type
VT

The	HOSTEX_LINEMODE	data	type	specifies	how	HostExplorer	stores
characters	in	a	buffer	until	you	send	a	carriage	return	to	the	host.	When
enabled,	Line	mode	forces	HostExplorer	to	send	characters	one	line	at	a
time	rather	than	as	individual	characters.	Using	line	mode	is	useful	when
you	are	trying	to	reduce	costs	on	networks	that	charge	per	packet	or
when	you	are	experiencing	long	network	delays.	By	default,	this	data
type	is	set	to	HOSTEX_LINEMODE_DONTDOLINEMODE.

It	has	the	following	values:

Value Definition

HOSTEX_LINEMODE_DONTDOLINEMODE Disables	Line	mode.

HOSTEX_LINEMODE_ALWAYS Enables	Line	mode	continuously.

HOSTEX_LINEMODE_DURINGLOCALECHO Enables	Line	mode	when	the	host	tells	HostExplorer	to
do	the	echoing.

HOSTEX_LINEMODE_WHENNOTINSGA Enables	Line	mode	when	the	host	does	not	Suppress
Go	Ahead	(SGA).

HOSTEX_LINEMODE_LOCALECHOORNOTSGA Enables	Line	mode	when	the	host	tells	HostExplorer	to
do	the	echoing	or	when	the	host	does	not	SGA.

HOSTEX_LINEMODE_RFCOMPLIANT Enables	compliance	with	Telnet	RFC	specifications.

Related	Topics
VTLineMode

javascript:heprofile1416.Click();

HOSTEX_NEXT_FIELD_KEY	Data	Type
3270	5250

The	HOSTEX_NEXT_FIELD_KEY	data	type	specifies	how	HostExplorer
tabs	to	the	next	field	on	the	screen.	By	default,	this	data	type	is	set	to
HOSTEX_NEXT_FIELD_KEY_COMMA.	You	can	set	this	data	type	only
when	the	HOSTEX_PASTE_MODE	data	type	is	set	to
HOSTEX_PASTE_MODE_PASTE_FIELD.

It	has	the	following	values:

Value Definition

HOSTEX_NEXT_FIELD_KEY_NONE Indicates	that	HostExplorer	does	not	interpret	any	of	the
characters	as	the	next	field	key.

HOSTEX_NEXT_FIELD_KEY_TAB Indicates	that	HostExplorer	tabs	to	the	next	field	using
the	Tab	character.

HOSTEX_NEXT_FIELD_KEY_COMMA Indicates	that	HostExplorer	tabs	to	the	next	field	using
the	Comma	character.

HOSTEX_NEXT_FIELD_KEY_PARAGRAPH Indicates	that	HostExplorer	tabs	to	the	next	field	using
the	Paragraph	Mark	or	Enter	key.

Related	Topics
OnPasteFieldModeTabCharacter
HOSTEX_PASTE_MODE	Data	Type

javascript:heparser424.Click();

HOSTEX_OIA_DISPLAY	Data	Type
3270	5250

The	HOSTEX_OIA_DISPLAY	data	type	specifies	whether	HostExplorer
displays	the	host	IP	address	or	the	host	response	time	in	the	OIA
(Operator	Information	Area).

It	has	the	following	values:

Value Definition

HOSTEX_OIA_DISPLAY_IP_ADDRESS Specifies	that	HostExplorer	displays	the	host	IP
address	in	the	OIA.

HOSTEX_OIA_DISPLAY_HOST_RESPONSE_TIME Specifies	that	HostExplorer	displays	the	host
response	time	in	the	OIA.

Related	Topics
DisplayInOIA

javascript:heprofile920.Click();

HOSTEX_PASTE_MODE	Data	Type
3270	5250

The	HOSTEX_PASTE_MODE	data	type	specifies	how	HostExplorer	pastes
the	contents	of	the	Clipboard	to	the	current	cursor	location.	By	default,
this	data	type	is	set	to	HOSTEX_PASTE_MODE_PASTE_BLOCK.

It	has	the	following	values:

Value Definition

HOSTEX_PASTE_MODE_PASTE_BLOCK Indicates	that	HostExplorer	stops	pasting	text	when	it
reaches	a	protected	field	on	the	screen.

HOSTEX_PASTE_MODE_PASTE_OVERLAY Indicates	that	HostExplorer	ignores	pasted	characters
that	overlay	protected	fields.

HOSTEX_PASTE_MODE_PASTE_STREAM Indicates	that	HostExplorer	pastes	text	one	character	at	a
time	and	stops	when	it	reaches	a	protected	field.

HOSTEX_PASTE_MODE_PASTE_ Indicates	that	HostExplorer	pastes	text	using	wordwrap.
In	this	case,	HostExplorer	pastes	text,	stops	at	a
protected	field,	and	continues	pasting	at	the	next
available	unprotected	field.

HOSTEX_PASTE_MODE_PASTE_FIELD Indicates	that	HostExplorer	pastes	text	in	a	stream-like
fashion,	and	moves	to	the	next	field	when	a
HOSTEX_NEXT_FIELD_KEY	character	is	encountered.

Related	Topics
PasteMode
HOSTEX_NEXT_FIELD_KEY	Data	Type

javascript:heparser414.Click();

HOSTEX_PRINT_TARGET	Data	Type
VT

The	HOSTEX_PRINT_TARGET	data	type	specifies	the	target	for	host
printing.	It	has	the	following	values:

Value Definition

HOSTEX_PRINT_TARGET_DEFAULT_PRT Specifies	that	HostExplorer	uses	the	default	printer	for
host	print	jobs.

HOSTEX_PRINT_TARGET_SPECIFIC_PRT Specifies	that	HostExplorer	uses	a	specified	printer	for
host	printing.

HOSTEX_PRINT_TARGET_FILE Specifies	that	HostExplorer	prints	host	print	jobs	to	a
specified	file.

Related	Topics
VTPrintTarget
VTPrintFile
VTUseSpecificPrinter

	 	

javascript:heprofile1214.Click();
javascript:heprofile1210.Click();
javascript:heprofile1215.Click();

HOSTEX_PRINTFILE_MODE	Data	Type
The	HOSTEX_PRINTFILE_MODE	data	type	specifies	the	method	that
HostExplorer	uses	to	print	to	a	file.

The	data	type	has	the	following	values:

Value Definition

HOSTEX_PRINTFILE_MODE_OVERWRITE Specifies	that	HostExplorer	overwrites	the	target	file
with	the	new	material.

HOSTEX_PRINTFILE_MODE_APPEND Specifies	that	HostExplorer	appends	the	new	material
to	the	existing	contents	of	the	target	file.

HOSTEX_PRINTFILE_MODE_AUTO_NUMBER Specifies	that	HostExplorer	prefixes	a	line	number	to
each	line	it	writes	to	the	target	file.

Related	Topics
VTPrintFileMode

javascript:heprofile1211.Click();

HOSTEX_RESIZE_BEHAVIOR	Data	Type
VT

The	HOSTEX_RESIZE_BEHAVIOR	data	type	specifies	how	HostExplorer
displays	information	in	the	session	window	when	you	resize	the	window.

Value Definition

HOSTEX_RESIZE_BEHAVIOR_CHANGE_FONT Specifies	that	HostExplorer	changes	the
size	of	the	font	to	allow	the	same	number	of
rows	and	columns	to	be	displayed	in	the
resized	window.

HOSTEX_RESIZE_BEHAVIOR_NEGOTIATE_WIN_SIZE Specifies	that	HostExplorer	sends	a	change
in	the	number	of	maximum	rows	and
columns	to	the	Telnet	host	when	you	resize
the	window,	but	does	not	change	the	font
size.	This	value	is	valid	only	for	Telnet	hosts
that	support	the	NAWS	(Negotiate	About
Window	Size)	option.

HOSTEX_RESIZE_BEHAVIOR_DO_NOTHING Specifies	that	HostExplorer	does	not	do
anything	when	you	resize	the	window.

Related	Topics
ResizeBehavior

javascript:heprofile1424.Click();

HOSTEX_SAVE_OPTIONS	Data	Type
3270	5250	VT

The	HOSTEX_SAVE_OPTIONS	data	type	specifies	the	components	of	the
Profile	object	that	you	can	save.

It	has	the	following	values:

Value Definition

HOSTEX_SAVE_ALL Specifies	that	HostExplorer	saves	the	values	of	all	components	in
the	Profile	object.

HOSTEX_SAVE_FONTS Specifies	that	HostExplorer	saves	any	changes	made	to	the
session	font.

HOSTEX_SAVE_EVENT_SCHEME Specifies	that	HostExplorer	saves	the	event	scheme	for	the	current
session.

Related	Topics
Save

javascript:heprofile17.Click();

HOSTEX_SECURITY_OPTIONS	Data	Type
The	HOSTEX_SECURITY_OPTIONS	data	type	specifies	the	type	of
security	method	used	to	secure	the	traffic	between	the	server	and	the
client.	By	default,	this	data	type	is	set	to
HOSTEX_SECURITY_NO_SECURITY.

It	has	the	following	values:

Value Definition

HOSTEX_SECURITY_NO_SECURITY Indicates	that	there	is	no	security	of	traffic	between	the	server
and	the	client.

HOSTEX_SECURITY_SSL_TLS Encrypts	all	traffic	between	the	server	and	the	client	for	3270,
5250,	and	Telnet	terminals	using	Secure	Socket	Layer.

HOSTEX_SECURITY_KERBEROS Provides	authentication	and	encrypts	all	traffic	between	the
server	and	the	client	for	3270	and	Telnet	terminals	using
Kerberos	software.

HOSTEX_SECURITY_SECURESHELL Encrypts	all	traffic	between	the	server	and	the	client	for	Telnet
terminals	using	Secure	Shell	software.

Related	Topics
Security	Option	(IHETransport)
Security	Option	(IHEProfileSecurity)

	

javascript:hetransport216.Click();
javascript:heprofile916.Click();

HOSTEX_SELECTION_MODE	Data	Type
3270	5250	VT

The	HOSTEX_SELECTION_MODE	data	type	specifies	how	you	select	text.
By	default,	this	data	type	is	set	to	HOSTEX_SELECTION_MODE_BLOCK.

It	has	the	following	values:

Value Definition

HOSTEX_SELECTION_MODE_BLOCK Indicates	that	you	can	select	text	as	a	block.

HOSTEX_SELECTION_MODE_STREAM Indicates	that	you	can	select	text	as	a	stream.

Related	Topics
SelectionMode

javascript:heparser56.Click();

HOSTEX_STATUS_LINE_MODE	Data	Type
3270	5250

The	HOSTEX_STATUS_LINE_MODE	data	type	indicates	where	the	status
line	appears.

It	has	the	following	values:

Value Definition

HOSTEX_STATUS_LINE_MODE_	NOSTATUSLINE Indicates	that	no	status	line	is
displayed.

HOSTEX_STATUS_LINE_MODE_	TERMINALSTATUSLINE Indicates	that	the	status	line	appears
at	the	bottom	of	the	terminal	screen.

HOSTEX_STATUS_LINE_MODE_	WINDOWSTATUSBAR Indicates	that	the	status	line	appears
at	the	bottom	of	the	window.

HOSTEX_STATUS_LINE_MODE_5250TERMIMALSTATUSBAR Indicates	that	HostExplorer	displays	a
5250-terminal-style	status	bar.

Related	Topics
StatusLineMode	(IHEParser)
StatusLineMode	(IHEProfileDisplay)

	

javascript:heparser59.Click();
javascript:heprofile924.Click();

HOSTEX_SWITCHSCREENTYPE	Data	Type
3270	5250	VT

The	HOSTEX_SWITCHSCREENTYPE	data	type	specifies	the	type	of
information	that	HostExplorer	retains	when	the	host	switches	the	screen
between	standard	and	alternate	sizes.	By	default,	this	data	type	is	set	to
HOSTEX_SWITCHSCREENTYPE_KEEPSIZE.

It	has	the	following	values:

Value Definition

HOSTEX_SWITCHSCREENTYPE_

KEEPSIZE
Indicates	that	when	HostExplorer	switches	between	screen	sizes,	if
the	current	font	is	not	available,	HostExplorer	selects	another	font
within	given	parameters.

HOSTEX_SWITCHSCREENTYPE_

KEEPFONT
Indicates	that	when	HostExplorer	switches	between	screen	sizes,	it
keeps	the	font	size	constant.

HOSTEX_SWITCHSCREENTYPE_

KEEPOLDINFO
Indicates	that	when	HostExplorer	switches	between	screen	sizes,	it
saves	the	font	and	window	information	separately	for	the	default
and	alternate	modes.

Related	Topics
SwitchScreenType

javascript:heprofile153.Click();

HOSTEX_TELNETECHO	Data	Type
VT

The	HOSTEX_TELNETECHO	data	type	specifies	how	HostExplorer
responds	to	remote	echo	negotiation	with	a	Telnet	host.	By	default,	this
data	type	is	set	to	HOSTEX_TELNETECHO_AUTOMATIC.

It	has	the	following	values:

Value Definition

HOSTEX_TELNETECHO_NO Indicates	that	HostExplorer	negotiates	remote	echo	with	the
host	without	local	echoing.

HOSTEX_TELNETECHO_YES Indicates	that	HostExplorer	negotiates	local	echo	with	the	host
and	always	echoes.

HOSTEX_TELNETECHO_AUTOMATIC Indicates	that	HostExplorer	uses	host	commands	to	negotiate
remote	or	local	echoing.

Related	Topics
TelnetEcho	(IHETransport)
TelnetEcho	(IHEProfileConnection)

	

javascript:hetransport218.Click();
javascript:heprofile148.Click();

HOSTEX_TPRINT_OUTPUT	Data	Type
3270

The	HOSTEX_TPRINT_OUTPUT	data	type	specifies	where	a	host	TPRINT
or	PCPRINT	print	job	is	being	sent.

It	has	the	following	values:

Value Definition

HOSTEX_TPRINT_OUTPUT_DEFAULT_

WIN_PRINTER
Indicates	that	the	print	job	is	being	sent	to	the	default
printer	specified	on	your	machine.

HOSTEX_TPRINT_OUTPUT_LPT1 Indicates	that	the	print	job	is	being	sent	to	the	LPT1	port.

HOSTEX_TPRINT_OUTPUT_LTP2 Indicates	that	the	print	job	is	being	sent	to	the	LPT2	port.

HOSTEX_TPRINT_OUTPUT_LPT3 Indicates	that	the	print	job	is	being	sent	to	the	LPT3	port.

HOSTEX_TPRINT_OUTPUT_CLIPBOARD Indicates	that	the	print	job	is	being	sent	to	the	Clipboard.

Related	Topics
TprintMode

javascript:heprofile1020.Click();

Properties	and	Data	Types	of	the	HEPAR3270
Object
The	following	properties	and	data	types	are	specific	to	the	HEPAR3270
object:

Properties
APLInputMode
GraphicsModel
PrinterDeInitString
ProgramSymbols
TransferMode

EnableAPL
NumericCharacters
PrinterInitString
TransferErrorCode
ValidateNumericFieldData

javascript:heparser311.Click();
javascript:heparser4.Click();
javascript:heparser416.Click();
javascript:heparser422.Click();
javascript:heparser520.Click();
javascript:heparser321.Click();
javascript:heparser410.Click();
javascript:heparser418.Click();
javascript:heparser519.Click();
javascript:heparser515.Click();

Data	Types
HOSTEX_GRAPHICS_CURSOR_TYPE	Data	Type
HOSTEX_GRAPHICS_MODEL	Data	Type
HOSTEX_INSERT_KEY_STYLE	Data	Type

	 	

	 	

	 	

	 	

	

Methods,	Properties,	and	Data	Types	of	the
HEPAR3270/5250	Objects
The	following	methods,	properties,	and	data	types	are	specific	to	both	the
HEPAR3270	and	the	HEPAR5250	objects:

Methods
GetFieldAttribute
GetFieldExtAttribute
GetFieldPos
GetScreenText
IsFieldBold
IsFieldModified
IsFieldPenSelectable
PasteDataToScreen
SetFieldText
WriteProtectedText

GetFieldCount
GetFieldIndex
GetFieldText
HostResponseTime
IsFieldHidden
IsFieldNumeric
IsFieldProtected
PutString
WaitForIO

javascript:heparser113.Click();
javascript:heparser115.Click();
javascript:heparser118.Click();
javascript:heparser120.Click();
javascript:heparser125.Click();
javascript:heparser22.Click();
javascript:heparser24.Click();
javascript:heparser27.Click();
javascript:heparser219.Click();
javascript:heparser38.Click();
javascript:heparser114.Click();
javascript:heparser116.Click();
javascript:heparser119.Click();
javascript:heparser44.Click();
javascript:heparser2.Click();
javascript:heparser23.Click();
javascript:heparser25.Click();
javascript:heparser28.Click();
javascript:heparser32.Click();

Properties
ConvertNulls
OnCopyReplaceFieldAttributeWith
PasteMode

CutMode
OnPasteFieldModeTabCharacter

javascript:heparser319.Click();
javascript:heparser423.Click();
javascript:heparser414.Click();
javascript:heparser320.Click();
javascript:heparser424.Click();

Data	Types
HOSTEX_CELL_DELIMITED	Data	Type
HOSTEX_FIELD_ATTR_REPLACEMENT	Data
Type
HOSTEX_PASTE_MODE	Data	Type

HOSTEX_CUT_MODE	Data	Type
HOSTEX_NEXT_FIELD_KEY	Data	Type
HOSTEX_STATUS_LINE_MODE	Data
Type

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Methods	of	the	HEPAR3270/HEPARVT	Objects
The	following	methods	are	specific	to	the	HEPAR3270	and	HEPARVT
objects:

SendFile
ReceiveFile

	

javascript:heparser215.Click();
javascript:heparser210.Click();

Properties	and	Data	Types	of	the	HEPARVT
Object
The	following	properties	and	data	types	are	specific	to	the	HEPARVT
object:

Properties
Answerback
BufRows
EnablePrinterTimeout
HostWritableString
NRCID
PrintDisableTranslation
PrintLFtoCRLF
SaveFileName
TerminalID

AutoWrap
CaptureMode
HistoryLines
MoveCursorOnMouseClick
PrintByPassWindows
PrinterTimeoutValue
SaveAppend
SoftCharacterSetID
UPSS

javascript:heparser310.Click();
javascript:heparser312.Click();
javascript:heparser322.Click();
javascript:heparser45.Click();
javascript:heparser49.Click();
javascript:heparser417.Click();
javascript:heparser421.Click();
javascript:heparser52.Click();
javascript:heparser510.Click();
javascript:heparser518.Click();
javascript:heparser314.Click();
javascript:heparser42.Click();
javascript:heparser516.Click();
javascript:heparser415.Click();
javascript:heparser420.Click();
javascript:heparser5.Click();
javascript:heparser58.Click();
javascript:heparser517.Click();

Data	Types
HOSTEX_CAPTURE_MODE	Data	Type
HOSTEX_TERMINAL_ID	Data	Type

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

Methods,	Properties,	and	Data	Types	of	the
HEPAR3270/5250/VT	Objects
The	following	methods,	properties,	and	data	types	are	common	to	the
HEPAR3270,	HEPAR5250,	and	HEPARVT	objects:

Methods
AsciiToHost
FindString
GetFeature
GetSel
GetValue
MoveCursorRelative
ReplaceSel
SendKeys
SetFeature
SetValue
WaitForCursor
WaitForString
WaitIdle
WaitXfer

ClearSel
GetCursorPosition
GetFieldLength
GetSelectionArea
HostToAscii
PutText
SendAid
SetCursorPosition
SetSel
WaitConnected
WaitForCursorMove
WaitHostQuiet
WaitPSUpdated

javascript:heparser18.Click();
javascript:heparser110.Click();
javascript:heparser112.Click();
javascript:heparser121.Click();
javascript:heparser123.Click();
javascript:heparser26.Click();
javascript:heparser211.Click();
javascript:heparser216.Click();
javascript:heparser218.Click();
javascript:heparser221.Click();
javascript:heparser223.Click();
javascript:heparser33.Click();
javascript:heparser35.Click();
javascript:heparser37.Click();
javascript:heparser19.Click();
javascript:heparser111.Click();
javascript:heparser117.Click();
javascript:heparser122.Click();
javascript:heparser124.Click();
javascript:heparser29.Click();
javascript:heparser212.Click();
javascript:heparser217.Click();
javascript:heparser220.Click();
javascript:heparser222.Click();
javascript:heparser3.Click();
javascript:heparser34.Click();
javascript:heparser36.Click();

Properties
CanChangeScreen
ConnectBy
ConnectRC
KeyboardLocked
ModelRows
OIAString
ScreenChanged
ScreenRow
SessionName
TerminalModel
Transport

CellCopyMode
ConnectErrorStatus
HLLAPIName
ModelColumns
NVTMode
OIAStringW
ScreenCol
SelectionMode
StatusLineMode
Text
TypeAheadTimeout

javascript:heparser313.Click();
javascript:heparser316.Click();
javascript:heparser318.Click();
javascript:heparser46.Click();
javascript:heparser48.Click();
javascript:heparser412.Click();
javascript:heparser53.Click();
javascript:heparser55.Click();
javascript:heparser57.Click();
javascript:heparser511.Click();
javascript:heparser513.Click();
javascript:heparser315.Click();
javascript:heparser317.Click();
javascript:heparser43.Click();
javascript:heparser47.Click();
javascript:heparser411.Click();
javascript:heparser413.Click();
javascript:heparser54.Click();
javascript:heparser56.Click();
javascript:heparser59.Click();
javascript:heparser512.Click();
javascript:heparser514.Click();

Data	Types
HEPARSER_FEATURE	Data	Type
HOSTEX_CONNECT_BY	Data	Type
HOSTEX_SELECTION_MODE	Data	Type
HOSTEX_TERM_MODEL	Data	Type

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

HOSTEX_CAPTURE_MODE	Data	Type
VT

The	HOSTEX_CAPTURE_MODE	data	type	specifies	how	to	capture
selected	text.

It	has	the	following	values:

Value Definition

HOSTEX_CAPTURE_MODE_RAW Indicates	that	the	system	captures	all	data,	including	escape
sequences,	received	by	the	emulator.

HOSTEX_CAPTURE_MODE_TEXT

																										
Indicates	that	escape	sequences	are	removed	so	that	what
appears	on	the	screen	is	what	is	sent	to	the	printer.	In	this
mode,	the	system	captures	every	line	that	is	terminated	by	a	line
feed,	thereby	allowing	you	to	capture	line-by-line	output.

Related	Topics
CaptureMode

javascript:heparser314.Click();

HOSTEX_INSERT_KEY_STYLE	Data	Type
3270

The	HOSTEX_INSERT_KEY_STYLE	data	type	specifies	how	the	Insert
key	option	operates.

It	has	the	following	values:

Value Definition

HOSTEX_INSERT_KEY_STYLE_RESET Indicates	that	the	Insert-key	option	is	on	until	you	press	the
Reset	key.

HOSTEX_INSERT_KEY_STYLE_ACTION Indicates	that	the	Insert-key	option	is	on	until	you	press	an
action	key,	such	as	Enter	or	Clear.

HOSTEX_TERMINAL_ID	Data	Type
VT

The	HOSTEX_TERMINAL_ID	data	type	specifies	the	terminal	ID
response	that	HostExplorer	sends	to	the	host.

It	has	the	following	values:

Value Definition

HOSTEX_TERMINAL_ID_VT100 Indicates	that	the	terminal	ID	response	is	VT100.

HOSTEX_TERMINAL_ID_VT101 Indicates	that	the	terminal	ID	response	is	VT101.

HOSTEX_TERMINAL_ID_VT102 Indicates	that	the	terminal	ID	response	is	VT102.

HOSTEX_TERMINAL_ID_VT220 Indicates	that	the	terminal	ID	response	is	VT220.

HOSTEX_TERMINAL_ID_VT320 Indicates	that	the	terminal	ID	response	is	VT320.

HOSTEX_TERMINAL_ID_VT420 Indicates	that	the	terminal	ID	response	is	VT420.

HOSTEX_TERMINAL_ID_VT80 Indicates	that	the	terminal	ID	response	is	VT80.

HOSTEX_TERMINAL_ID_VT100J Indicates	that	the	terminal	ID	response	is	VT100J.

HOSTEX_TERMINAL_ID_VT102J Indicates	that	the	terminal	ID	response	is	VT102J.

HOSTEX_TERMINAL_ID_VT220J Indicates	that	the	terminal	ID	response	is	VT220J.

HOSTEX_TERMINAL_ID_VT282 Indicates	that	the	terminal	ID	response	is	VT282.

HOSTEX_TERMINAL_ID_VT382 Indicates	that	the	terminal	ID	response	is	VT382.

Related	Topics
TerminalID

javascript:heparser510.Click();

HOSTEX_TERM_MODEL	Data	Type
3270	5250	VT

The	HOSTEX_TERM_MODEL	data	type	specifies	the	type	of	terminal	that
you	are	using	to	connect	to	the	host.	By	default,	this	data	type	is	set	to
HOSTEX_TERM_MODEL_2.

It	has	the	following	values:

Value Definition

HOSTEX_TERM_MODEL_2 Indicates	that	the	terminal	consists	of	24	lines	by	80	columns.

HOSTEX_TERM_MODEL_3 Indicates	that	the	terminal	consists	of	32	lines	by	80	columns.

HOSTEX_TERM_MODEL_4 Indicates	that	the	terminal	consists	of	27	lines	by	80	columns.

HOSTEX_TERM_MODEL_5 Indicates	that	the	terminal	consists	of	27	lines	by	132	columns.

HOSTEX_TERM_MODEL_VT100 Indicates	that	you	are	using	a	VT100	terminal	to	connect	to	the
host.

HOSTEX_TERM_MODEL_VT101 Indicates	that	you	are	using	a	VT101	terminal	to	connect	to	the
host.

HOSTEX_TERM_MODEL_VT102 Indicates	that	you	are	using	a	VT102	terminal	to	connect	to	the
host.

HOSTEX_TERM_MODEL_VT220 Indicates	that	you	are	using	a	VT220	terminal	to	connect	to	the
host.

HOSTEX_TERM_MODEL_VT320 Indicates	that	you	are	using	a	VT320	terminal	to	connect	to	the
host.

HOSTEX_TERM_MODEL_VT420 Indicates	that	you	are	using	a	VT420	terminal	to	connect	to	the
host.

HOSTEX_TERM_MODEL_VT52 Indicates	that	you	are	using	a	VT52	terminal	to	connect	to	the
host.

HOSTEX_TERM_MODEL_ANSI Indicates	that	you	are	using	an	ANSI/BBS	terminal	to	connect	to
the	host.

HOSTEX_TERM_MODEL_SCOANSI Indicates	that	you	are	using	a	SCO-ANSI	terminal	to	connect	to
the	host.

HOSTEX_TERM_MODEL_TERM_ Indicates	that	you	are	using	an	IBM	3151	terminal	to	connect	to
the	host.

HOSTEX_TERM_MODEL_WYSE50 Indicates	that	you	are	using	a	WYSE50	terminal	to	connect	to	the
host.

HOSTEX_TERM_MODEL_WYSE60 Indicates	that	you	are	using	a	WYSE60	terminal	to	connect	to	the
host.

Related	Topics
TerminalModel

javascript:hetransport222.Click();

HOSTEX_TRANSFER	Data	Type
3270

The	HOSTEX_TRANSFER	data	type	specifies	whether	to	download	or
upload	files.

It	has	the	following	values:

Value Definition

HOSTEX_TRANSFER_DOWNLOAD Indicates	that	HostExplorer	downloads	files.

HOSTEX_TRANSFER_UPLOAD Indicates	that	HostExplorer	uploads	files.

Related	Topics
TransferMode

javascript:heparser520.Click();

Properties	of	the	HETP3270	Object
The	following	properties	are	specific	to	the	HETP3270	object:

EnableEMode
TNESession

	

javascript:hetransport129.Click();
javascript:hetransport225.Click();

Properties	of	the	HETP5250	Object
The	following	properties	are	specific	to	the	HETP5250	object:

LUNameRequested
MessageQueueLibrary
Password

Keyboard
MessageQueueName
Username

	 	

	 	

	

javascript:hetransport127.Click();
javascript:hetransport26.Click();
javascript:hetransport211.Click();
javascript:hetransport24.Click();
javascript:hetransport27.Click();
javascript:hetransport227.Click();

Properties	of	the	HETP3270/5250	Objects
The	following	properties	are	specific	to	both	the	HETP3270	and	the
HETP5250	objects:

DeviceType
LUNameRequested

	

javascript:hetransport128.Click();
javascript:hetransport127.Click();

Properties	and	Data	Types	of	the	HETPVT	Object
The	following	properties	and	data	types	are	specific	to	the	HETPVT
object:

Properties
LineMode
TerminalOnline

javascript:hetransport228.Click();
javascript:hetransport223.Click();

Data	Types
HOSTEX_LINEMODE	Data	Type
HOSTEX_TELNETECHO	Data	Type

	

Properties	of	the	HETP3270/VT	Objects
The	following	properties	are	specific	to	both	the	HETP3270	and	the
HETPVT	objects:

EnableSSH
IsEncrypted

	

javascript:hetransport130.Click();
javascript:hetransport22.Click();

Properties	and	Data	Types	of	the
HETP3270/5250/VT	Objects
The	following	properties	and	data	types	are	common	to	the	HETP3270,
HETP5250,	and	HETPVT	objects:

Properties
AttentionFormat
CodePage
ConnectionStatus
HostAddress
IsReceiveBlocked
ModelRows
Port
RetryDelayTimeBetweenHosts
TelnetIsLineMode
TelnetName
TerminalType

CharSet
Connected
EnableTracing
HostName
ModelColumns
NumberOfRetries
PortList
TelnetEcho
TelnetIsLocalEcho
TerminalModel
TraceFilename

javascript:hetransport122.Click();
javascript:hetransport124.Click();
javascript:hetransport126.Click();
javascript:hetransport132.Click();
javascript:hetransport23.Click();
javascript:hetransport29.Click();
javascript:hetransport213.Click();
javascript:hetransport215.Click();
javascript:hetransport219.Click();
javascript:hetransport221.Click();
javascript:hetransport224.Click();
javascript:hetransport123.Click();
javascript:hetransport125.Click();
javascript:hetransport131.Click();
javascript:hetransport2.Click();
javascript:hetransport28.Click();
javascript:hetransport210.Click();
javascript:hetransport214.Click();
javascript:hetransport218.Click();
javascript:hetransport220.Click();
javascript:hetransport222.Click();
javascript:hetransport226.Click();

Data	Types
HOSTEX_ATN_FORMAT	Data	Type
HOSTEX_CONNECT_BY	Data	Type
HOSTEX_DEVICE_TYPE	Data	Type
HOSTEX_FUNCTION_KEY	Data	Type
HOSTEX_TERM_MODEL	Data	Type
HOSTEX_TOGGLE_RECEIVE	Data	Type

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	 	

	

HETRANSPORT_FEATURE	Data	Type
3270	5250	VT

The	HETRANSPORT_FEATURE	data	type	enumerates	the	configurable
features	of	the	Transport	objects.	It	has	the	following	values:

Value Definition

HOSTEX_E_MODE Enables/disables	3270	E	or	5250	E	mode.

HOSTEX_EAB Enables/disables	the	Extended	Attribute	feature
(3270	only).

HOSTEX_INITIATE_TELNET_NEGOTIATION Enables/disables	Telnet	negotiation	(VT	only).

HOSTEX_ENABLEKERBEROSTICKETFORWARDING Enables/disables	Kerberos	ticket	forwarding
(3270	and	VT	only).

HOSTEX_ENABLEKERBEROSAUTHENTICATION Enables/disables	Kerberos	authentication	(3270
and	VT	only).

HOSTEX_ENABLEKERBEROSENCRYPTION Enables/disables	Kerberos	encryption	(3270	and
VT	only).

HOSTEX_ENABLESSLTLSUSERCERTIFICATE Enables/disables	the	user	certificate	for	SSL
authentication.

HOSTEX_ENABLESSLTLSSERVERCERTIFICATE

																																					
Enables/disables	the	server	certificate	for	SSL
authentication.

HOSTEX_ENABLESSLTLSREQUESTCERTIFICATE Enables/disables	the	SSL	request	certificate
feature.

HOSTEX_ENABLESSLTLSNEGOTIATIONFAILURE Enables/disables	SSL	negotiation	failure.

HOSTEX_ENABLESSLTLSNEGOTIATEVIATELNET Enables/disables	SSL	negotiation	over	Telnet.

HOSTEX_ENABLESSLTLSSECURITY Enables/disables	the	SSL	security	feature.

HOSTEX_CON_STATUS	Data	Type
3270	5250	VT

The	HOSTEX_CON_STATUS	data	type	specifies	the	current	status	of	your
connection	to	the	host.

It	has	the	following	values:

Value Definition

HOSTEX_CON_STATUS_DISCONNECTED Indicates	when	you	are	fully	disconnected	from	the
host.

HOSTEX_CON_STATUS_CONNECTED Indicates	when	you	are	fully	connected	to	the	host.

HOSTEX_CON_STATUS_CONNECTING Indicates	the	status	from	the	time	you	issue	a	Connect
command	to	the	host	to	the	time	you	are	actually
connected	to	the	host.

HOSTEX_CON_STATUS_DISCONNECTING

																																	
Indicates	the	status	from	the	time	you	issue	a
Disconnect	command	to	the	host	to	the	time	you	are
fully	disconnected	from	the	host.

Related	Topics
ConnectionStatus

javascript:hetransport126.Click();

HOSTEX_DEVICE_TYPE	Data	Type
3270	5250	VT

The	HOSTEX_DEVICE_TYPE	data	type	specifies	the	device	type	to	be
used	with	the	Transport	objects.

It	has	the	following	values:

Value Definition

HOSTEX_DEVICE_TYPE_DISPLAY Indicates	that	the	Transport	objects	are	used	with	a	display
terminal.

HOSTEX_DEVICE_TYPE_PRINTER Indicates	that	the	Transport	objects	are	used	with	a	printer
device.

Related	Topics
DeviceType

javascript:hetransport128.Click();

HOSTEX_ENCRYPTED	Data	Type
3270	5250	VT

The	HOSTEX_ENCRYPTED	data	type	specifies	the	encryption	level	of
the	session.

It	has	the	following	values:

Value Definition

HOSTEX_IS_NOT_ENCRYPTED Indicates	that	the	session	is	not	encrypted.

HOSTEX_IS_PARTIALLY_ENCRYPTED Indicates	that	the	session	is	partially	encrypted.

HOSTEX_IS_ENCRYPTED Indicates	that	the	session	is	fully	encrypted.

Related	Topics
IsEncrypted

javascript:hetransport22.Click();

HOSTEX_FUNCTION_KEY	Data	Type
3270	5250	VT

The	HOSTEX_FUNCTION_KEY	data	type	specifies	the	value	that	you	can
request	the	Transport	object	to	send	to	the	host.

It	has	the	following	values:

Value Definition

HOSTEX_FUNCTION_KEY_SYSTEM_

REQUEST
Executes	a	system-request	command	to	the	host.

HOSTEX_FUNCTION_KEY_SEND_

ATTENTION
Executes	an	attention	command	to	the	host.

HOSTEX_FUNCTION_KEY_SEND_

ABORT_OUTPUT
Executes	an	abort-output	command	to	the	host;	this
command	stops	the	process.

Related	Topics
SendFunctionKey

javascript:hetransport113.Click();

HOSTEX_TOGGLE_RECEIVE	Data	Type
3270	5250	VT

The	HOSTEX_TOGGLE_RECEIVE	data	type	specifies	how	HostExplorer
toggles	the	state	of	the	receipt	of	data	from	the	Transport	objects.

It	has	the	following	values:

Value Definition

HOSTEX_TOGGLE_RECEIVE_RETURNS_

STATE
Indicates	that	HostExplorer	returns	only	the	actual	state
(whether	or	not	the	receipt	is	already	blocked).

HOSTEX_TOGGLE_RECEIVE_STATE Indicates	that	HostExplorer	toggles	the	current	state.	If	the
state	is	TRUE,	it	is	toggled	to	FALSE.	If	the	state	is	FALSE,
it	is	toggled	to	TRUE.

HOSTEX_TOGGLE_RECEIVE_OFF Indicates	that	if	the	state	is	ON,	HostExplorer	toggles	it	to
OFF.

HOSTEX_TOGGLE_RECEIVE_ON Indicates	that	if	the	state	is	OFF,	HostExplorer	toggles	it	to
ON.

Related	Topics
ToggleBlockReceive

javascript:hetransport120.Click();

OHIO_DIRECTION	Data	Type
The	OHIO_DIRECTION	data	type	specifies	the	direction	of	the	search.

It	has	the	following	values:

Value Description

OHIO_DIRECTION_FORWARD Indicates	that	the	direction	of	the	search	is	forward	(from	the
beginning	to	the	end).

OHIO_DIRECTION_BACKWARD Indicates	that	the	direction	of	the	search	is	backward	(from	the	end
to	the	beginning).

Related	Topics
FindByString
FindString

	

javascript:heohio226.Click();
javascript:heohio125.Click();

OHIO_STATE	Data	Type
The	OHIO_STATE	data	type	specifies	the	status	of	the	communication
link	to	the	host.

It	has	the	following	values:

Value Description

OHIO_STATE_DISCONNECTED Indicates	that	the	communication	link	to	the	host	is	disconnected.

OHIO_STATE	CONNECTED Indicates	that	the	communication	link	to	the	host	is	connected.

Related	Topics
OnSessionChanged

javascript:heohio118.Click();

OHIO_TYPE	Data	Type
The	OHIO_TYPE	data	type	specifies	the	type	of	host.

It	has	the	following	values:

Value Description

OHIO_TYPE	UNKNOWN Indicates	that	the	host	type	is	unknown.

OHIO_TYPE_3270 Indicates	that	the	host	type	is	3270.

OHIO_TYPE_5250 Indicates	that	the	host	type	is	5250.

OHIO_TYPE_VT Indicates	that	the	host	type	is	VT.

Related	Topics
SessionType

javascript:heohio123.Click();

OHIO_COLOR	Data	Type
The	OHIO_COLOR	data	type	specifies	the	color	of	the	text	in	the	entire
field.

It	has	the	following	values:

Value Descripton

OHIO_COLOR_BLACK Indicates	that	the	color	of	the	text	is	black.

OHIO_COLOR_BLUE Indicates	that	the	color	of	the	text	is	blue.

OHIO_COLOR_GREEN Indicates	that	the	color	of	the	text	is	green.

OHIO_COLOR_CYAN Indicates	that	the	color	of	the	text	is	cyan.

OHIO_COLOR_RED Indicates	that	the	color	of	the	text	is	red.

OHIO_COLOR_MAGENTA Indicates	that	the	color	of	the	text	is	magenta.

OHIO_COLOR_WHITE Indicates	that	the	color	of	the	text	is	white.

OHIO_COLOR_YELLOW Indicates	that	the	color	of	the	text	is	yellow.

Related	Topics
GetData	(IHEOhioField)
GetData	(IHEOhioScreen)

	

javascript:heohio32.Click();
javascript:heohio126.Click();

OHIO_EXTENDED	Data	Type
The	OHIO_EXTENDED	data	type	specifies	the	extended	attribute	of	the
field.

It	has	the	following	values:

Value Description

OHIO_EXTENDED_HILITE Indicates	the	bitmask	for	highlighting	bits.

OHIO_EXTENDED_COLOR Indicates	the	bitmask	for	color	bits.

OHIO_EXTENDED_RESERVED Indicates	the	bitmask	for	reserved	bits.

Related	Topics
GetData	(IHEOhioField)
GetData	(IHEOhioScreen)

	

javascript:heohio32.Click();
javascript:heohio126.Click();

OHIO_FIELD	Data	Type
The	OHIO_FIELD	data	type	specifies	the	field	type.

It	has	the	following	values:

Value Description

OHIO_FIELD_ATTRIBUTE Indicates	that	the	byte	in	the	data	stream	(buffer)	contains	a	field
attribute.

OHIO_FIELD_PROTECTED Indicates	that	the	field	is	not	writable.

OHIO_FIELD_NUMERIC Indicates	that	you	can	enter	only	numbers	in	the	field.

OHIO_FIELD_PEN_SELECTABLE Indicates	that	you	can	select	the	field.

OHIO_FIELD_HIGH_INTENSITY Indicates	that	the	field	is	highlighted,	bold,	and	bright.

OHIO_FIELD_HIDDEN Indicates	that	the	field	cannot	be	displayed.

OHIO_FIELD_RESERVED Indicates	that	the	field	is	reserved.

OHIO_FIELD_MODIFIED Indicates	that	the	field	has	been	modified	by	a	host.

Related	Topics
GetData	(IHEOhioScreen)

javascript:heohio126.Click();

OHIO_PLANE	Data	Type
The	OHIO_PLANE	data	type	specifies	the	plane	from	which	to	retrieve	the
data.

It	has	the	following	values:

Value Description

OHIO_PLANE_TEXT Indicates	the	text	plane	that	contains	character	data.

OHIO_PLANE_COLOR Indicates	the	color	of	each	character	in	the	particular	field.	This	value
uses	the	standard	HLLAPI	CGA	color	values.

OHIO_PLANE_FIELD Returns	the	attribute	of	the	field.

OHIO_PLANE_EXTENDED Returns	the	extended	attributes	of	the	field.	These	attributes	extend	the
function	of	OHIO_PLANE_FIELD.

Related	Topics
GetData	(IHEOhioField)
GetData	(IHEOhioScreen)

	

javascript:heohio32.Click();
javascript:heohio126.Click();

OHIO_UPDATE	Data	Type
The	OHIO_UPDATE	data	type	specifies	whether	the	host	or	client	initiated
the	update	of	the	screen.

It	has	the	following	values:

Value Description

OHIO_UPDATE_HOST Indicates	that	the	host	initiated	the	update.

OHIO_UPDATE_CLIENT Indicates	that	the	client	initiated	the	update.

Related	Topics
OnScreenChanged

javascript:heohio128.Click();

OHIO_INPUTINHIBITED	Data	Type
The	OHIO_INPUTINHIBITED	data	type	specifies	what	is	inhibiting	the
input.

It	has	the	following	values:

Value Description

OHIO_INPUTINHIBITED_NOTINHIBITED Indicates	that	the	input	is	not	inhibited.

OHIO_INPUTINHIBITED_SYSTEM_WAIT Indicates	that	the	input	is	inhibited	by	a	system	wait
state.

OHIO_INPUTINHIBITED_COMMCHECK Indicates	that	the	input	is	inhibited	by	a	communications
check	state.

OHIO_INPUTINHIBITED_PROGCHECK Indicates	that	the	input	is	inhibited	by	a	program	check
state.

OHIO_INPUTINHIBITED_MACHINECHECK Indicates	that	the	input	is	inhibited	by	a	machine	check
state.

OHIO_INPUTINHIBITED_OTHER Indicates	that	the	input	is	inhibited	by	a	state	other	than
those	listed	above.

Related	Topics
InputInhibited

javascript:heohio218.Click();

OHIO_OWNER	Data	Type
The	OHIO_OWNER	data	type	specifies	the	owner	of	the	Ohio	session.

It	has	the	following	values:

Value Description

OHIO_OWNER_UNKNOWN Indicates	that	the	owner	is	uninitialized.

OHIO_OWNER_APP Indicates	that	the	owner	is	an	application	or	5250	host.

OHIO_OWNER_MYJOB Indicates	that	the	owner	is	an	application	or	3270	host.

OHIO_OWNER_NVT Indicates	that	the	owner	is	a	3270	host	(NVT	or	VT-XXX	terminal).

OHIO_OWNER_UNOWNED Indicates	that	the	owner	is	a	3270	host	(unowned).

OHIO_OWNER_SSCP Indicates	that	the	owner	is	a	3270	host	(SSCP).

Related	Topics
Owner

javascript:heohio222.Click();

Auto	Start	Delay
To	add	an	additional	wait	command:
1.	 Launch	HostExplorer,	then	establish	a	remote	host	connection.
2.	 Add	the	following	line	to	the	EHLLAPI.Settings	section	in	the

HOSTEX.INI	file:

[EHLLAPI.Settings]

Auto	Start	Delay	=	x

This	delays	the	ConnectPS	return	after	the	connection	is	complete.

3.	 Replace	x	with	the	number	of	seconds.
Note:	 	 x	is	the	number	of	seconds	you	want	the	system	to	wait.	By	default,	this	value	is	1.

Auto	Unload
When	you	issue	a	DisconnectPS,	HLLAPI	terminates	that	terminal
session	automatically	if	the	session	was	spawned	by	HLLAPI.

To	prevent	HLLAPI	from	terminating	the	session,	add	the	following	line	to
the	EHLLAPI.Settings	section	in	the	HOSTEX.INI	file:

[EHLLAPI.Settings]

Auto	Unload	=	Off

Return	Extra	Session	Info
To	set	the	last	byte	of	the	18-byte	structure:
1.	 Add	one	of	the	following	lines	to	the	EHLLAPI.Settings	section	in

the	HOSTEX.INI	file:

'I'—Idle	-	Configured	but	not	loaded	and	not	connected.
'R'—Ready	-	Session	connected	to	host	but	not	connected	to
HLLAPI.
'C'—Connect	-	Session	connected	to	host	and	connected	to
HLLAPI	(Connect	PS).

This	sets	the	last	byte	of	the	18-byte	structure,	normally	reserved
to	a	flag	providing	this	information.

2.	 Add	the	following	lines	to	the	EHLLAPI.Settings	section	in	the
HOSTEX.INI	file:

[EHLLAPI.Settings]

Return	Extra	Session	Info	=	On

This	enables	this	extra	flag	byte.

Note:	

	

By	default,	the	HLLAPI	standard	interface	does	not	provide	any	mechanism
to	know	whether	a	session	is:	connected	(with	HLLAPI),	loaded	and
connected	to	a	host	but	not	to	HLLAPI,	or	simply	configured	and	not
connected	at	all.

Allow	Connect	Physical
According	to	common	specifications,	the	CONPHYS	flag	that	is	used	in
DOS	to	perform	a	physical	connect	(bring	window	to	front)	is	not
supported	in	EHLLAPI	(ACS3EHAP.DLL).

To	bring	the	window	to	the	front,	add	the	following	line	to	the
EHLLAPI.Settings	section	in	the	HOSTEX.INI	file:

[EHLLAPI.Settings]

Allow	Connect	Physical=	On

Update	Screen	After	Copy
This	option	forces	the	emulator	to	repaint	the	screen	when	an	HLLAPI
application	copies	data	to	the	screen	buffer	using	the	CopyString	to	PS
and	CopyStringToField	functions.

To	force	the	emulator	to	repaint	the	screen,	add	the	following	line	to	the
EHLLAPI.Settings	section	in	the	HOSTEX.INI	file:

[EHLLAPI.Settings]

Update	Screen	After	Copy	=	On

Note:	 	 This	function	dramatically	reduces	performance.	Enable	this	option	for	debugging	purposesonly.

Start	Minimized
When	HLLAPI	spawns	a	new	session	automatically	by	starting	a	profile,
that	window	is	kept	hidden	by	the	emulator	because	it	is	under	HLLAPI
control.

To	force	newly	spawned	sessions	in	minimized	mode	(iconized	and
visible),	add	the	following	line	to	the	EHLLAPI.Settings	section	in	the
HOSTEX.INI	file:

[EHLLAPI.Settings]

Start	Minimized	=	On

Yield	Wait
By	default,	the	functions	that	require	the	DLL	to	wait	for	some	event	to
complete	(such	as	Wait,	Pause,	Send	File,	and	Receive	File)	use	a
PeekMessage	loop	in	order	to	let	all	applications	process	messages.
However,	you	can	set	a	loop	call	to	yield	the	wait.

To	set	a	loop	call,	set	the	following	line	in	the	EHLLAPI.Settings
section	of	the	HOSTEX.INI	file:

[EHLLAPI.Settings]

Yield	Wait	=	On

Auto	Sync
The	SendKey	function	(in	its	current	design)	does	not	allow	for	automatic
pacing	when	you	press	AID	generating	keys.	Therefore,	if	you	want	to
send	two	sets	of	strings	in	a	row,	such	as	XYZ@E,	you	must	place	a
WAIT(TWAIT)	command	between	them.	You	can	instruct	HLLAPI	to	wait
until	the	keyboard	unlocks	before	returning	from	the	SendKey	function
when	you	press	an	AID	key.	This	extension	provides	an	automatic
synchronization	with	the	host	and	simplifies	your	HLLAPI	application.

To	enable	Auto	Sync:
1.	 Enable	the	Type	Ahead	feature	in	the	profile	assigned	to	the	HLLAPI

short	name.	You	can	set	the	Type	Ahead	feature	by	double-clicking
the	Session	folder	and	clicking	General	in	the	Session	Profile	dialog
box.

2.	 Add	the	following	line	to	the	EHLLAPI.Settings	section	in	the
HOSTEX.INI	file:

[EHLLAPI.Settings]

Auto	Sync	=	On

Convert	Nulls
The	CopyPS	and	CopyPSToString	functions	normally	convert	3270/5250
Nulls	to	ASCII	blanks	when	you	copy	text.

To	prevent	HLLAPI	from	converting	nulls,	add	the	following	line	to	the
EHLLAPI.Settings	section	in	the	HOSTEX.INI	file.

[EHLLAPI.Settings]

Convert	Nulls	=	Off

Note:	 	 If	you	disable	the	Convert	Nulls	HLLAPI	feature,	you	must	use	the	STRLEN	option	to	useexplicit	string	lengths	or	change	the	EOT	character	from	the	default	value	of	Null.

Using	the	Visual	Basic	Interface
To	use	the	Visual	Basic	interface:
1.	 Include	the	HLLCALLS.BAS	file	in	your	project.

2.	 Before	calling	any	EHLLAPI	functions,	call	EHLLAPIQuerySessions.
This	determines	which,	if	any,	3270	sessions	are	available.	The
returned	string	contains	the	short	names	of	the	available	sessions.

All	EHLLAPI	functions	return	the	EHLLAPI	return	code,	as
described	in	the	EHLLAPI	Programming	Guide.

Visual	Basic	Return	Codes
All	EHLLAPI	functions	return	the	EHLLAPI	return	code,	as	described	in
the	EHLLAPI	Programming	Guide.	Before	calling	any	EHLLAPI	functions,
call	EHLLAPIQuerySessions.	This	determines	which,	if	any,	3270
sessions	are	available.	The	returned	string	contains	the	short	names	of
the	available	sessions.
Return
Code

Description

0 Function	completed	successfully;	PS	is	unlocked	and	ready	for	input.

1 Invalid	PS	position	(null	or	blank	with	no	connection).

2 File	not	sent.	Command	line	is	not	valid	or	one	or	more	unrecognized	parameters;	all
recognized	values	accepted.

3 File	transfer	complete.

4 Successful	connection,	but	PS	is	busy	or	timed	out	on	TWAIT	or	LWAIT;	or	OIA	copied,	PS
is	busy.

5 Successful	connection,	but	PS	is	locked	or	not	all	keystrokes	could	be	sent	or	OIA	copied,
PS	is	locked.

6 Copy	was	completed,	but	data	was	truncated.

7 Invalid	PS	position.

8 No	prior	Function	23	or	50	call	for	this	PS	position.

9 System	error,	function	failed.	Emulator	not	loaded.

21 OIA	was	updated.

22 PS	was	updated.

23 OIA	and/or	PS	was	updated.

24 Search	string	was	not	found.

26 PS	or	OIA	has	been	updated.

27 File	transfer	ended	by	user	request.

28 Field	length	of	0	bytes.

Advise	Message
You	can	use	the	Advise	message	to	receive	feedback	about	when	certain
events	take	place,	such	as	updates	to	cursor	movement	or	presentation
space.	In	DDE	terminology,	these	updates	are	known	as	warm	links	and
hot	links.	They	allow	your	application	to	receive	updated	information
when	a	specified	event	takes	place.

Hot	links	update	your	client	information	automatically	whenever	changes
occur	in	HostExplorer,	whereas	warm	links	require	additional	steps	to
update	your	client	information.	Hot	links	are	used	to	provide	continuous,
up-to-date	information.
Example The	following	function	requests	feedback	when	the	cursor	changes

position.

Word	for
Windows

Insert	a	field	in	your	document	by	pressing	the	INSERT	FIELD	key,
then	Ctrl+F9.

Type	the	DDE	command	below	for	a	warm	or	hot	link.	Do	not	type	the
curly	brackets;	they	are	simply	the	field-delimiter	characters.
{	dde	HOSTEX	session	name	item	name	}

{	ddeauto	HOSTEX	session	name	item	name	}

Example {	dde	HOSTEX	A	Cursor}

Related	Topics
Advise	Commands

Execute	Message
You	can	use	an	Execute	message	to	instruct	HostExplorer	how	to
perform	commands,	such	as	running	macros	and	transferring	files.	An
Execute	message	does	not	return	any	information.
Examples The	following	function	pauses	the	system	for	1.5	seconds.	The

variable	ChanNum	represents	the	DDE	conversation	ID.

Word	for
Windows

DDEExecute	ChanNum,	"[pause(3)]"

Microsoft	Excel =EXECUTE(A1,	"[pause(3))]")

Related	Topics
Execute	Commands

Poke	Message
You	can	use	a	Poke	message	to	send	information	to	the	DDE	server
HOSTEX.	The	Poke	message	lets	you	send	information	to	identify	a	new
cursor	position,	press	keys,	and	set	the	search	string.	Poke	does	not
return	any	information.
Examples The	following	function	sets	the	cursor	position	to	position	1761.	The

variable	ChanNum	represents	the	DDE	conversation	ID.

Word	for
Windows

DDEPoke	ChanNum,	"Cursor",	"1761"

Microsoft	Excel
4.0

=POKE(A1,	"Cursor",	B1)

Microsoft	Excel
5.0	and	7.0

You	can	poke	only	data	that	exists	in	a	cell.
DDEPoke	ChanNum,"	Cursor	",Range("a1")

If	you	want	to	Poke	data	in	a	text	string,	you	must	use	the	v4.0
macros.

Related	Topics
Poke	Commands

Request	Message
You	can	use	a	Request	message	to	retrieve	information	from	the	DDE
server	HOSTEX.	The	Request	message	lets	you	retrieve	information
such	as	the	screen	format,	cursor	position,	and	presentation	space.
Request	messages	retrieve	information	only.	They	do	not	perform	any
actions	on	the	emulator	or	system.
Examples The	following	function	requests	the	third	line	of	data	from	the

presentation	space.	The	variable	ChanNum	represents	the	DDE
conversation	ID.

Word	for
Windows

Data$	=	DDERequest(ChanNum,	"P160L80")

Microsoft	Excel =REQUEST(A1,	"P160L80")

Related	Topics
Request	Commands

Application	Name	Field
The	Application	Name	directs	the	DDE	conversation	to	a	particular
application.	The	application	name	for	HostExplorer	is	HOSTEX.

Topic	Field
The	Topic	field	specifies	the	terminal	session,	or	session	short	name,
assigned	in	the	session	profile.	The	terminal	session	is	always	a	single
letter	and	usually	starts	with	A.

A	special	topic	field	called	a	SYSTEM	topic	field	lets	you	perform
functions	that	are	not	session-oriented.	The	Item	field	is	a	third	and	often
used	field.	It	usually	specifies	the	request	or	command	issued	to	the
session	or	system.

System	Topic	Commands
The	following	is	a	list	of	available	commands	that	you	can	issue	to	a
SYSTEM	topic:

Start	Session—Starts	a	new	session	using	the	specified	profile	and
connect	options.	For	additional	information,	refer	to	the	Start	Session
example.	

Profile	Name—The	profile	name	is	always	required	along	with	its
associated	Profile	Folder.	For	example:

[Start	Session(VMTCP.3270_Profiles)]

[Start	Session(VMTCP.a_folder,132.206.27.2)]

[Start

Session(VMTCP.a_folder2,132.206.27.2,1023)]

Topic	Name—The	topic	name	for	the	session	that	just	started	can	be
retrieved	from	a	System	Request	with	the	item	"Session	Started".

Related	Topics
System	Topic
What	is	DDE?

javascript:hllapi86.Click();

Generic	Properties	and	Methods
The	properties	and	methods	listed	below	are	available	for	all	emulation
modes.

Properties
Interpret	Property
BackSpaceDelete	Property
NewLine	Property
LocalEcho	Property
DisplayLines	Property
SmoothScroll	Property
History	Property
CaptureMode	Property
CurrentRow	Property

Autowrap	Property
WarningBell	Property
TermStringId	Property
Online	Property
DisplayWidth80	Property
JumpScrollNumber	Property
HistorySize	Property
CaptureDestination	Property
CurrentCol	Property

javascript:wysetermapi222.Click();
javascript:wysetermapi224.Click();
javascript:wysetermapi226.Click();
javascript:wysetermapi228.Click();
javascript:wysetermapi230.Click();
javascript:wysetermapi232.Click();
javascript:wysetermapi234.Click();
javascript:wysetermapi236.Click();
javascript:wysetermapi238.Click();
javascript:wysetermapi223.Click();
javascript:wysetermapi225.Click();
javascript:wysetermapi227.Click();
javascript:wysetermapi229.Click();
javascript:wysetermapi231.Click();
javascript:wysetermapi233.Click();
javascript:wysetermapi235.Click();
javascript:wysetermapi237.Click();
javascript:wysetermapi239.Click();

Methods
ReadKeyboardFile	Method
SetAttributeColor	Method
SetAttributeUsage	Method

	 	

	 	

	 	

	 	

javascript:wysetermapi240.Click();
javascript:wysetermapi241.Click();
javascript:wysetermapi242.Click();

	 	

	 	

	 	

	 	

	 	

	 	

VT220	and	VT320	Properties
The	properties	listed	below	are	available	for	either	the	VT220	or	VT320
emulation	modes.

VT220
UFLock	Property
UDKLock	Property
EmulationMode	Property
NationalSet	Property
Multinational	Property

javascript:wysetermapi244.Click();
javascript:wysetermapi245.Click();
javascript:wysetermapi246.Click();
javascript:wysetermapi247.Click();
javascript:wysetermapi248.Click();

VT320
UserPrefCharSetISO	Property
StatusLine	Property

	 	

	 	

	 	

javascript:wysetermapi249.Click();
javascript:wysetermapi250.Click();

WYSE50	and	WYSE60	Properties
The	properties	listed	below	are	available	for	both	the	WYSE50	or
WySE60	emulation	modes:

ApplicationMode	Property
BlockEndUSCR	Property
AutoScroll	Property
ActivePage	Property

EditModeLocal	Property
AutoPageMode	Property
CommMode	Property
ActivePageSize	Property

	 	

	 	

	 	

	

javascript:wysetermapi252.Click();
javascript:wysetermapi254.Click();
javascript:wysetermapi256.Click();
javascript:wysetermapi258.Click();
javascript:wysetermapi253.Click();
javascript:wysetermapi255.Click();
javascript:wysetermapi257.Click();
javascript:wysetermapi259.Click();

OHIO_EXTENDED_HILITE	Data	Type
The	OHIO_EXTENDED_HILITE	data	type	specifies	the	type	of	the
highlighted	text.

It	has	the	following	values:

Value Description

OHIO_EXTENDED_HILITE_NORMAL Indicates	normal	highlighting.

OHIO_EXTENDED_HILITE_BLINK Indicates	that	the	highlighted	text	is	flashing.

OHIO_EXTENDED_HILITE_	REVERSEVIDEO Reverses	the	foreground	and	background	color.

OHIO_EXTENDED_HILITE_	UNDERSCORE Indicates	that	the	field	is	underscored.

Related	Topics
GetData	(IHEOhioField)
GetData	(IHEOhioScreen)

	

javascript:heohio32.Click();
javascript:heohio126.Click();

OHIO_EXTENDED_COLOR	Data	Type
The	OHIO_EXTENDED_COLOR	data	type	specifies	the	color	of	the
individual	character	and	overrides	the	OHIO_COLOR	data	type.

The	OHIO_EXTENDED_COLOR	data	type	has	the	following	values:

Value Description

OHIO_EXTENDED_COLOR_DEFAULT Indicates	that	the	color	of	the	text	is	the	default	color.

OHIO_EXTENDED_COLOR_BLUE Indicates	that	the	color	of	the	text	is	blue.

OHIO_EXTENDED_COLOR_RED Indicates	that	the	color	of	the	text	is	red.

OHIO_EXTENDED_COLOR_PINK Indicates	that	the	color	of	the	text	is	pink.

OHIO_EXTENDED_COLOR_GREEN Indicates	that	the	color	of	the	text	is	green.

OHIO_EXTENDED_COLOR_TURQUOISE Indicates	that	the	color	of	the	text	is	turquoise.

OHIO_EXTENDED_COLOR_YELLOW Indicates	that	the	color	of	the	text	is	yellow.

OHIO_EXTENDED_COLOR_WHITE Indicates	that	the	color	of	the	text	is	white.

Related	Topics
GetData	(IHEOhioField)
GetData	(IHEOhioScreen)

	

javascript:heohio32.Click();
javascript:heohio126.Click();

Advise	Commands
You	can	send	the	following	Advise	commands	to	a	session	topic:

Alarm—Informs	you	that	the	terminal	alarm	has	been	sounded.

Cursor—Informs	you	that	the	cursor	position	has	changed	in	the
presentation	space.	HostExplorer	returns	the	new	cursor	position	in	a	hot
link.

File	Transfer—	Informs	you	when	a	file	transfer	terminates	in	the
presentation	space.	The	first	string	returned	is	the	PS	short	name
followed	by	a	“0”.	This	indicates	that	the	file	has	been	transferred.

OIA—Informs	you	that	you	have	made	changes	to	the	operator
information	area	(OIA)	and	returns	the	updated	OIA	string.

Power—Always	returns	"On".

PS—Informs	you	when	the	presentation	space	has	changed	and	returns
the	complete	PS	as	a	string.

Related	Topics
Execute	Commands
Poke	Commands
Request	Commands

Execute	Commands
You	can	issue	the	following	commands	to	a	session	topic:

Allow	Emulator	Updates—Enables	HostExplorer	to	update	the	3270
window	when	it	receives	information	from	the	host.

Block	Emulator	Updates—Prevents	HostExplorer	from	updating	its
window	when	it	receives	information	from	the	host.

End	Session—Terminates	the	current	terminal	session.	This	command
is	identical	to	selecting	Close	Session	from	the	File	menu	in
HostExplorer.

Pause—Pauses	for	the	specified	time	in	half-second	increments.	The
following	example	pauses	for	2	seconds:	[pause(4)]

Receive	File—Downloads	the	specified	file	from	the	host	to	your
computer.	This	requires	command	syntax.	

Send	File—Uploads	the	specified	file	to	the	host	from	your	computer.
This	requires	command	syntax.	

Run	Macro—Runs	the	specified	macro.	The	following	example	runs	the
macro	dothis:	[run	macro(dothis)]

Wait	Unlock—Pauses	for	the	specified	time	in	half-second	increments
until	the	3270	keyboard	is	unlocked.	If	the	keyboard	is	already	unlocked,
the	function	returns	immediately.	The	following	example	pauses	for	up	to
three	seconds:	[Wait	Unlock(6)]

Related	Topics
Advise	Commands
Poke	Commands
Request	Commands

javascript:hllapi69.Click();
javascript:hllapi70.Click();

	

Poke	Commands
You	can	send	the	following	items	to	a	Session	topic:

Cursor—Sets	the	cursor	position	to	the	new	value	in	the	presentation
space.	The	syntax	for	the	value	field	is	either	nnn	or	Fnn[U/P].	nnn	sets
the	position	to	the	numeric	value	specified	whereas	Fnn[U/P]	sets	the
position	to	the	first	position	of	the	specified	field.	For	additional
information,	see	the	Cursor	example.	

EscChar—Sets	the	escape	character	used	for	sending	keys.	The	default
escape	character	is	'@'.

Keystroke—Presses	a	collection	of	keystrokes.	The	string	can	contain
up	to	255	characters.	The	string	format	for	keys	is	in	HLLAPI	mnemonic
format.	This	allows	you	to	enter	normal	text	and	press	3270	action	keys
such	as	Home,	Pfx,	and	Clear.	For	additional	information,	see	the
Keystroke	example.	

PS—Inserts	the	string	into	the	entire	presentation	space.	In	this	mode,
data	over	protected	fields	is	ignored.	Therefore,	you	can	retrieve	the
entire	PS,	update	certain	portions,	and	then	replace	the	entire	PS.

Pnnnn[F/Lmmm]—Inserts	the	string	into	a	specific	position	in	the
presentation	space.	Data	is	inserted	until	the	end	of	the	field	or	end	of	the
data	string,	whichever	comes	first.

P100—Inserts	the	string	at	position	100	until	the	end	of	field.

P100F—Inserts	the	string	in	the	field	that	contains	position	100.

P100L20—Inserts	the	string	at	position	100	for	a	maximum	length
of	20	characters,	regardless	of	the	length	of	the	string.

Fnn[U]—Inserts	the	string	into	a	specific	field	in	the	presentation	space.
Data	is	inserted	until	the	end	of	the	field	or	end	of	the	data	string,
whichever	comes	first.

F2—Inserts	the	string	starting	in	the	first	position	of	the	second
field.

javascript:hllapi72.Click();
javascript:hllapi73.Click();

F2U—Inserts	the	string	starting	in	the	first	position	of	the	second
unprotected	field.

Rxx—Inserts	the	string	into	the	specified	row	in	the	presentation	space.
Data	is	written	only	into	unprotected	fields.

R2—Inserts	the	string	into	the	second	row	of	the	presentation
space.

Search—Sets	the	search	string	for	the	Search	request	command.

Related	Topics
Advise	Commands
Execute	Commands
Request	Commands

	

Request	Commands
You	can	request	the	following	items	from	a	Session	topic:

Columns—Returns	the	number	of	columns	in	the	current	presentation
space.

Cursor—Returns	the	current	cursor	location	in	the	presentation	space.	1
is	the	first	position.

Emulator—Returns	the	window	handle	of	the	window	displaying	the
presentation	space.

File	Transfer—	Returns	the	short	name	of	the	presentation	space	and
either	0	if	no	transfer	is	occurring	or	1	if	a	transfer	is	occurring.	For
additional	information,	see	the	File	Transfer	example.	

Keyboard—Returns	the	status	of	the	3270	keyboard.	Valid	return	values
are	Clear	and	Locked.

Model—Returns	the	3270	model	for	the	presentation	space.	Valid	values
are	2,	3,	4,	and	5.

OIA—Returns	the	operator	information	area	(OIA)	in	ASCII	format.

Power—Always	returns	“On”.

Profile	Name—Returns	the	name	of	the	profile	used	for	the	presentation
space;	for	example,	DEFAULT.

Rows—Returns	the	number	of	rows	in	the	current	presentation	space.

Search—Returns	the	position	of	the	search	string	in	the	presentation
space	(PS).	The	search	string	is	defined	using	the	POKE	command.

PS—Returns	the	entire	contents	of	the	PS.	The	entire	space	is	returned
as	one	string.	Nulls	are	converted	to	blanks.	Therefore,	if	you	are	using	a
Model	2	terminal	(24x80),	a	string	of	1920	bytes	is	returned.

Pnnnn[F/Lmmm]—Returns	a	portion	of	the	PS.	Nulls	are	converted	to
blanks.	For	additional	information,	refer	to	the	Pnnnn[F/Lmmm]	example.	

Fnn[U/P]—Returns	the	contents	of	the	field	specified.	Nulls	are
converted	to	blanks.	For	additional	information,	refer	to	the	Fnn	example.

javascript:hllapi75.Click();
javascript:hllapi76.Click();
javascript:hllapi77.Click();

Rnn—Returns	the	contents	of	the	specified	row.	Nulls	are	converted	to
blanks.

R2—Returns	the	contents	of	the	second	row	in	the	presentation	space.
The	length	is	dependent	on	which	3270	model	you	are	using.	Models	2,
3,	and	4	return	80	characters,	whereas	a	model	5	returns	132	characters.

Related	Topics
Advise	Commands
Execute	Commands
Poke	Commands

	 	

	Introducing HostExplorer Programming

