
Introduction
Welcome	to	the	Amazon	Elastic	Compute	Cloud	(Amazon	EC2)	Developer
Guide.

This	guide	picks	up	where	the	Getting	Started	Guide	ends	and	will	provide	you
with	the	information	necessary	for	creating	more	sophisticated	AMIs,	using
advanced	service	features,	and	writing	applications	using	Amazon	EC2.	This
guide	assumes	you	have	worked	through	the	Getting	Started	Guide,	installed	the
command	line	and	API	tools	as	described,	and	have	a	general	understanding	of
the	service.

The	chapters	presented	in	the	guide	are:

Chapter	2,	Working	with	AMIs	walks	you	through	the	steps	required	to
create	the	customized	package	of	software	that	will	execute	on	your	host	-
essentially	packaging	your	desired	Operating	System	configuration.

Chapter	3,	Launching	and	Using	Instances	provides	an	overview	of	the
Amazon	EC2	instances	and	some	tips	for	using	them	effectively.

Chapter	4,	Using	and	Securing	the	Network	provides	an	overview	of
instance	network	addressing,	the	distributed	firewall	and	usage	examples.

Chapter	5,	Using	the	APIs	explains	the	basics	of	using	the	SOAP	and	Query
APIs,	including	signing	requests.

Chapter	6,	API	Reference	provides	a	comprehensive	reference	to	the	SOAP
and	Query	APIs.

Chapter	7,	Command	Line	Tools	Reference	provides	a	comprehensive
reference	to	the	command	line	tools	supplied	by	Amazon	EC2.

Chapter	8,	Technical	FAQ	is	a	collection	of	interesting	and	commonly	asked
questions.

Chapter	9,	Glossary	is	a	simple	glossary	of	Amazon	EC2	terminology.

Working	with	AMIs
This	section	details	how	to	build,	store,	and	share	AMIs.

Creating	an	AMI
There	are	several	techniques	for	creating	an	AMI	offering	a	mix	of	ease	of	use
and	detailed	customization	levels.	The	easiest	method	involves	starting	from	an
existing	public	AMI	and	modifying	it	according	to	your	requirements,	as
described	in	the	section	called	“Starting	with	an	Existing	AMI”.

Another	approach	is	to	build	a	fresh	installation	either	on	a	stand-alone	machine
or	on	an	empty	file	system	mounted	by	loopback.	This	essentially	entails
building	an	operating	system	installation	from	scratch	and	is	described	in	the
section	called	“Creating	via	a	Loopback	File”.

Once	the	installation	package	has	been	built	to	your	satisfaction	it	needs	to	be
bundled	and	uploaded	to	Amazon	S3	as	described	in	the	section	called
“Bundling	an	AMI”.

Starting	with	an	Existing	AMI

This	is	the	quickest	and	easiest	of	the	methods	to	get	a	new	working	AMI.	Start
with	an	existing	public	AMI	or	one	of	your	own.	You	can	then	modify	that	as
you	see	fit	and	subsequently	create	a	new	AMI	with	the	ec2-bundle-vol	utility,
as	decribed	later	in	the	section	called	“Bundling	an	AMI”.

Select	an	AMI

The	first	step	is	to	locate	an	AMI	that	contains	the	packages	and	services	that
you	require.	This	can	be	one	of	your	own	AMIs	or	one	of	the	public	AMIs
provided	by	Amazon	EC2.	Use	ec2-describe-images	to	get	a	list	of	available
AMIs,	as	is	shown	below,	then	select	one	of	the	listed	AMIs	and	note	its	AMI
ID,	e.g.	ami-5bae4b32:

PROMPT>		ec2-describe-images	

IMAGE	ami-60a54009	ec2-public-images/base-fc4-apache.manifest.xml	475219833042	available	public

IMAGE	ami-61a54028	<your-s3-bucket>/image.manifest.xml	495219933132	available	private

IMAGE	ami-5bae4b32	ec2-public-images/getting-started.manifest.xml	475219833042	available	public

IMAGE	ami-6ea54007	ec2-public-images/base-fc3-mysql.manifest.xml	475219833042	available	public	

Generate	a	Keypair

This	step	is	only	required	if	you've	selected	one	of	the	public	AMIs	provided	by
Amazon	EC2.	A	public/private	keypair	must	be	created	to	ensure	that	you,	and
only	you,	have	access	to	the	instances	that	you	launch.

PROMPT>		ec2-create-keypair	gsg-keypair

KEYPAIR	gsg-keypair	1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f	

-----BEGIN	RSA	PRIVATE	KEY-----

MIIEoQIBAAKCAQBuLFg5ujHrtm1jnutSuoO8Xe56LlT+HM8v/xkaa39EstM3/aFxTHgElQiJLChp

HungXQ29VTc8rc1bW0lkdi23OH5eqkMHGhvEwqa0HWASUMll4o3o/IX+0f2UcPoKCOVUR+jx71Sg

5AU52EQfanIn3ZQ8lFW7Edp5a3q4DhjGlUKToHVbicL5E+g45zfB95wIyywWZfeW/UUF3LpGZyq/

ebIUlq1qTbHkLbCC2r7RTn8vpQWp47BGVYGtGSBMpTRP5hnbzzuqj3itkiLHjU39S2sJCJ0TrJx5

i8BygR4s3mHKBj8l+ePQxG1kGbF6R4yg6sECmXn17MRQVXODNHZbAgMBAAECggEAY1tsiUsIwDl5

91CXirkYGuVfLyLflXenxfI50mDFms/mumTqloHO7tr0oriHDR5K7wMcY/YY5YkcXNo7mvUVD1pM

ZNUJs7rw9gZRTrf7LylaJ58kOcyajw8TsC4e4LPbFaHwS1d6K8rXh64o6WgW4SrsB6ICmr1kGQI7

3wcfgt5ecIu4TZf0OE9IHjn+2eRlsrjBdeORi7KiUNC/pAG23I6MdDOFEQRcCSigCj+4/mciFUSA

SWS4dMbrpb9FNSIcf9dcLxVM7/6KxgJNfZc9XWzUw77Jg8x92Zd0fVhHOux5IZC+UvSKWB4dyfcI

tE8C3p9bbU9VGyY5vLCAiIb4qQKBgQDLiO24GXrIkswF32YtBBMuVgLGCwU9h9HlO9mKAc2m8Cm1

jUE5IpzRjTedc9I2qiIMUTwtgnw42auSCzbUeYMURPtDqyQ7p6AjMujp9EPemcSVOK9vXYL0Ptco

xW9MC0dtV6iPkCN7gOqiZXPRKaFbWADp16p8UAIvS/a5XXk5jwKBgQCKkpHi2EISh1uRkhxljyWC

iDCiK6JBRsMvpLbc0v5dKwP5alo1fmdR5PJaV2qvZSj5CYNpMAy1/EDNTY5OSIJU+0KFmQbyhsbm

rdLNLDL4+TcnT7c62/aH01ohYaf/VCbRhtLlBfqGoQc7+sAc8vmKkesnF7CqCEKDyF/dhrxYdQKB

gC0iZzzNAapayz1+JcVTwwEid6j9JqNXbBc+Z2YwMi+T0Fv/P/hwkX/ypeOXnIUcw0Ih/YtGBVAC

DQbsz7LcY1HqXiHKYNWNvXgwwO+oiChjxvEkSdsTTIfnK4VSCvU9BxDbQHjdiNDJbL6oar92UN7V

rBYvChJZF7LvUH4YmVpHAoGAbZ2X7XvoeEO+uZ58/BGKOIGHByHBDiXtzMhdJr15HTYjxK7OgTZm

gK+8zp4L9IbvLGDMJO8vft32XPEWuvI8twCzFH+CsWLQADZMZKSsBasOZ/h1FwhdMgCMcY+Qlzd4

JZKjTSu3i7vhvx6RzdSedXEMNTZWN4qlIx3kR5aHcukCgYA9T+Zrvm1F0seQPbLknn7EqhXIjBaT

P8TTvW/6bdPi23ExzxZn7KOdrfclYRph1LHMpAONv/x2xALIf91UB+v5ohy1oDoasL0gij1houRe

2ERKKdwz0ZL9SWq6VTdhr/5G994CK72fy5WhyERbDjUIdHaK3M849JJuf8cSrvSb4g==

-----END	RSA	PRIVATE	KEY-----	

The	resulting	private	key	must	be	saved	in	a	local	file	for	later	use.	Create	a	file
named	id_rsa-gsg-keypair	and	paste	into	it	all	lines	starting	with	the	line	"---
--BEGIN	PRIVATE	KEY-----"	and	ending	with	the	line	"-----
END	PRIVATE	KEY-----".	Confirm	that	the	file	contents	looks	exactly	as	shown
below.

-----BEGIN	RSA	PRIVATE	KEY-----
MIIEoQIBAAKCAQBuLFg5ujHrtm1jnutSuoO8Xe56LlT+HM8v/xkaa39EstM3/aFxTHgElQiJLChp
HungXQ29VTc8rc1bW0lkdi23OH5eqkMHGhvEwqa0HWASUMll4o3o/IX+0f2UcPoKCOVUR+jx71Sg
5AU52EQfanIn3ZQ8lFW7Edp5a3q4DhjGlUKToHVbicL5E+g45zfB95wIyywWZfeW/UUF3LpGZyq/
ebIUlq1qTbHkLbCC2r7RTn8vpQWp47BGVYGtGSBMpTRP5hnbzzuqj3itkiLHjU39S2sJCJ0TrJx5
i8BygR4s3mHKBj8l+ePQxG1kGbF6R4yg6sECmXn17MRQVXODNHZbAgMBAAECggEAY1tsiUsIwDl5
91CXirkYGuVfLyLflXenxfI50mDFms/mumTqloHO7tr0oriHDR5K7wMcY/YY5YkcXNo7mvUVD1pM
ZNUJs7rw9gZRTrf7LylaJ58kOcyajw8TsC4e4LPbFaHwS1d6K8rXh64o6WgW4SrsB6ICmr1kGQI7
3wcfgt5ecIu4TZf0OE9IHjn+2eRlsrjBdeORi7KiUNC/pAG23I6MdDOFEQRcCSigCj+4/mciFUSA
SWS4dMbrpb9FNSIcf9dcLxVM7/6KxgJNfZc9XWzUw77Jg8x92Zd0fVhHOux5IZC+UvSKWB4dyfcI
tE8C3p9bbU9VGyY5vLCAiIb4qQKBgQDLiO24GXrIkswF32YtBBMuVgLGCwU9h9HlO9mKAc2m8Cm1
jUE5IpzRjTedc9I2qiIMUTwtgnw42auSCzbUeYMURPtDqyQ7p6AjMujp9EPemcSVOK9vXYL0Ptco
xW9MC0dtV6iPkCN7gOqiZXPRKaFbWADp16p8UAIvS/a5XXk5jwKBgQCKkpHi2EISh1uRkhxljyWC
iDCiK6JBRsMvpLbc0v5dKwP5alo1fmdR5PJaV2qvZSj5CYNpMAy1/EDNTY5OSIJU+0KFmQbyhsbm
rdLNLDL4+TcnT7c62/aH01ohYaf/VCbRhtLlBfqGoQc7+sAc8vmKkesnF7CqCEKDyF/dhrxYdQKB
gC0iZzzNAapayz1+JcVTwwEid6j9JqNXbBc+Z2YwMi+T0Fv/P/hwkX/ypeOXnIUcw0Ih/YtGBVAC
DQbsz7LcY1HqXiHKYNWNvXgwwO+oiChjxvEkSdsTTIfnK4VSCvU9BxDbQHjdiNDJbL6oar92UN7V
rBYvChJZF7LvUH4YmVpHAoGAbZ2X7XvoeEO+uZ58/BGKOIGHByHBDiXtzMhdJr15HTYjxK7OgTZm
gK+8zp4L9IbvLGDMJO8vft32XPEWuvI8twCzFH+CsWLQADZMZKSsBasOZ/h1FwhdMgCMcY+Qlzd4
JZKjTSu3i7vhvx6RzdSedXEMNTZWN4qlIx3kR5aHcukCgYA9T+Zrvm1F0seQPbLknn7EqhXIjBaT
P8TTvW/6bdPi23ExzxZn7KOdrfclYRph1LHMpAONv/x2xALIf91UB+v5ohy1oDoasL0gij1houRe
2ERKKdwz0ZL9SWq6VTdhr/5G994CK72fy5WhyERbDjUIdHaK3M849JJuf8cSrvSb4g==
-----END	RSA	PRIVATE	KEY-----

Launch	an	Instance

You	are	now	ready	to	launch	an	instance	of	the	AMI	you	selected	above.

PROMPT>		ec2-run-instances	ami-5bae4b32	-k	gsg-keypair	

INSTANCE								i-10a64379			ami-5bae4b32			EC2				pending			gsg-keypair		0

The	instance	ID	in	the	second	field	of	the	output	is	a	unique	identifier	for	the
instance	and	can	be	used	subsequently	to	manipulate	your	instance,	e.g.	to
terminate	it.

Important
Once	you	launch	an	instance,	you	will	be	billed	per	hour	for
CPU	time.	Make	sure	you	terminate	any	instances	which	you
don't	intend	to	leave	running	indefinitely.

It	will	take	a	few	minutes	for	the	instance	to	launch.	You	can	follow	its	progress
by	running:

PROMPT>		ec2-describe-instances	i-10a64379	

RESERVATION					r-fea54097		495219933132			EC2

INSTANCE								i-10a64379		ami-5bae4b32			domU-12-34-31-00-00-05.usma1.compute.amazonaws.com			EC2				running			gsg-keypair	0

When	the	status	field	reads	"running",	the	instance	has	been	created	and	has
started	booting.	There	may	still	be	a	short	time	before	it	is	accessible	over	the
network,	however.	The	DNS	name	displayed	in	the	sample	output	above	will	be
different	from	that	assigned	to	your	instance.	Make	sure	you	use	the	appropriate
one.

Authorize	Network	Access

In	order	to	be	able	to	reach	the	running	instance	from	the	Internet,	you	need	to
enable	access	for	the	ssh	service	which	runs	on	port	22:

PROMPT>		ec2-authorize	default	-p	22

PERMISSION					default		ALLOWS		tcp					22						22						FROM				CIDR			0.0.0.0/0

																								

Connect	to	the	Instance

Now	that	you	have	a	running	instance,	you	can	log	in	and	modify	it	according	to

your	requirements.	If	you	launched	a	public	Amazon	EC2	AMI,	you	can	use	the
following	command	to	log	in	with	your	own	private	key:

PROMPT>		ssh	-i	id_rsa-gsg-keypair	root@domU-12-34-31-00-00-05.usma1.compute.amazonaws.com

root@my-instance	#		

Otherwise,	use	the	plain	ssh	command	and	supply	the	appropriate	password
when	prompted.

PROMPT>		ssh	root@domU-12-34-31-00-00-05.usma1.compute.amazonaws.com

root@my-instance	#		

You	now	have	complete	control	over	the	instance	and	may	add,	remove,	modify
or	upgrade	packages	and	files	to	suit	your	needs.	Some	of	the	basic	configuration
settings	related	to	the	Amazon	EC2	enviroment,	such	as	the	network	interface
configuration	and	/etc/fstab	contents,	should	only	be	changed	with	extreme
care,	to	avoid	making	the	AMI	unbootable	or	inaccessible	from	the	network
once	running.

Upload	the	Key	and	Certificate

The	new	AMI	will	be	encrypted	and	signed	to	ensure	that	it	can	only	be	accessed
by	you	and	Amazon	EC2.	You	therefore	need	to	upload	your	Amazon	EC2
private	key	and	X.509	certificate	to	the	running	instance,	for	use	in	the	AMI
bundling	process.

Assuming	the	private	key	and	X.509	certificate	are	contained	in	files	pk-
HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem	and	cert-
HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem,	copy	both	of	these	files	to	your
instance:

PROMPT>	scp	pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem	cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem																									100%		717					0.7KB/s			00:00	cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem																							100%		685					0.7KB/s			00:00

Note
It	is	important	that	the	key	and	cert	files	are	uploaded	into
/tmp	to	prevent	them	being	bundled	with	the	new	AMI.

You	are	now	ready	to	proceed	to	the	next	step	which	involves	bundling	the

volume	and	uploading	the	resulting	AMI	to	Amazon	S3.	This	is	described	in	the
section	called	“Bundling	an	AMI”.

Creating	via	a	Loopback	File

This	method	entails	doing	a	full	operating	system	installation	on	a	clean	root	file
system,	but	avoids	having	to	create	a	new	root	disk	partition	and	file	system	on	a
physical	disk.	Once	you	have	installed	your	operating	system,	the	resulting
image	can	be	bundled	as	an	AMI	with	the	ec2-bundle-image	utility.

Create	a	File	to	Host	the	AMI

The	dd	utility	can	be	used	to	create	files	of	arbitrary	sizes.	In	this	case,	make
sure	to	create	a	file	large	enough	to	host	the	operating	system,	tools	and
applications	that	you	will	install.	For	example,	a	baseline	Linux	installation
requires	about	700MB,	so	your	file	should	be	at	least	1GB.	The	command	below
creates	a	file	of	1024*1MB=1GB.

#	dd	if=/dev/zero	of=my-image.fs	bs=1M	count=1024

1024+0	records	in

1024+0	records	out	

Create	a	Root	File	System	Inside	the	File

There	are	several	variations	on	the	generic	mkfs	utility	that	can	be	used	to	create
a	file	system	inside	my-image.fs.	Typical	Linux	installations	default	to	ext2	or
ext3	file	systems.	Create	an	ext3	file	system	by	issuing	the	following	command:

#	mke2fs	-F	-j	my-image.fs

mke2fs	1.38	(30-Jun-2005)

Filesystem	label=

OS	type:	Linux

Block	size=4096	(log=2)

Fragment	size=4096	(log=2)

131072	inodes,	262144	blocks

13107	blocks	(5.00%)	reserved	for	the	super	user

First	data	block=0

Maximum	filesystem	blocks=268435456

8	block	groups

32768	blocks	per	group,	32768	fragments	per	group

16384	inodes	per	group

Superblock	backups	stored	on	blocks:	

								32768,	98304,	163840,	229376

Writing	inode	tables:	done																												

Creating	journal	(8192	blocks):	done

Writing	superblocks	and	filesystem	accounting	information:	done

This	filesystem	will	be	automatically	checked	every	24	mounts	or

180	days,	whichever	comes	first.		Use	tune2fs	-c	or	-i	to	override.	

Mount	the	File	via	Loopback

The	loopback	module	allows	you	to	use	a	normal	file	as	if	it	were	a	raw	device.
In	this	manner	you	get	a	file-system	in	a	file.	Mounting	a	file	system	image	file
via	loopback	presents	it	as	part	of	the	normal	file	system.	You	can	then	modify	it
using	your	favourite	file	management	tools	and	utilities.	Create	a	mount	point	in
the	file	system	where	the	image	will	be	attached	and	then	mount	the	file	system
image,	as	follows:

#	mkdir	/mnt/ec2-fs

#	mount	-o	loop	my-image.fs	/mnt/ec2-fs	

Prepare	for	the	Installation

Before	the	operating	system	installation	can	proceed,	some	basic	files	have	to	be
created	and	prepared	on	the	newly	created	root	file	system.

Create	/dev

Create	a	/dev	directory	and	populate	it	with	a	minimal	set	of	devices	(you	can
ignore	the	errors	in	the	output):

#	mkdir	/mnt/ec2-fs/dev

#	/sbin/MAKEDEV	-d	/mnt/ec2-fs/dev	-x	console

MAKEDEV:	mkdir:	File	exists

MAKEDEV:	mkdir:	File	exists

MAKEDEV:	mkdir:	File	exists

#	/sbin/MAKEDEV	-d	/mnt/ec2-fs/dev	-x	null

MAKEDEV:	mkdir:	File	exists

MAKEDEV:	mkdir:	File	exists

MAKEDEV:	mkdir:	File	exists

#	/sbin/MAKEDEV	-d	/mnt/ec2-fs/dev	-x	zero

MAKEDEV:	mkdir:	File	exists

MAKEDEV:	mkdir:	File	exists

MAKEDEV:	mkdir:	File	exists	

Create	/etc

Create	an	/etc	directory:

#	mkdir	/mnt/ec2-fs/etc

Create	/mnt/ec2-fs/etc/fstab	and	add	the	following	entries	to	it:

/dev/sda1		/									ext3				defaults								1	1
none							/dev/pts		devpts		gid=5,mode=620		0	0
none							/dev/shm		tmpfs			defaults								0	0
none							/proc					proc				defaults								0	0
none							/sys						sysfs			defaults								0	0

Create	yum-xen.conf

Create	a	temporary	yum	configuration	file	that	will	ensure	all	the	required	basic
packages	and	utilities	are	installed.	This	configuration	file	can	be	created
anywhere	on	your	main	file	system,	but	for	now	we'll	assume	that	you	create	it
in	your	working	directory.	Just	to	clarify,	it	does	not	need	to	be	created	in	the
loopback	file	system.	It	is	used	only	during	installation	of	the	loopback	file
system.	Create	yum-xen.conf	with	the	following	content:

[main]
cachedir=/var/cache/yum
debuglevel=2
logfile=/var/log/yum.log
exclude=*-debuginfo
gpgcheck=0
obsoletes=1
reposdir=/dev/null

[base]
name=Fedora	Core	4	-	$basearch	-	Base
mirrorlist=http://fedora.redhat.com/download/mirrors/fedora-core-$releasever
enabled=1

[updates-released]
name=Fedora	Core	4	-	$basearch	-	Released	Updates
mirrorlist=http://fedora.redhat.com/download/mirrors/updates-released-fc$releasever
enabled=1

Mount	proc

Due	to	a	bug	in	the	groupadd	utility	from	the	shadow-utils	package	(versions
prior	to	4.0.7-7),	the	new	proc	file	system	needs	to	be	mounted	by	hand	at	this
point.

#	mkdir	/mnt/ec2-fs/proc

#	mount	-t	proc	none	/mnt/ec2-fs/proc	

Install	the	Operating	System

At	this	stage	all	the	basic	directories	and	files	have	been	created	and	you	are
ready	to	do	the	operating	system	installation.	This	process	might	take	a	while
depending	on	the	speed	of	the	host	and	the	network	link	to	the	repository.

#	yum	-c	yum-xen.conf	--installroot=/mnt/ec2-fs	-y	groupinstall	Base

Setting	up	Group	Process

Setting	up	repositories

base																						100%	|=========================|	1.1	kB				00:00					

updates-released										100%	|=========================|	1.1	kB				00:00					

comps.xml																	100%	|=========================|	693	kB				00:00					

comps.xml																	100%	|=========================|	693	kB				00:00					

Setting	up	repositories

Reading	repository	metadata	in	from	local	files

primary.xml.gz												100%	|=========================|	824	kB				00:00					

base						:	##	2772/2772

Added	2772	new	packages,	deleted	0	old	in	15.32	seconds

primary.xml.gz												100%	|=========================|	824	kB				00:00					

updates-re:	##	2772/2772

Added	2772	new	packages,	deleted	0	old	in	10.74	seconds

...

Complete!

Congratulations!

You	now	have	a	base	installation	in	the	image	file	you've	created.	The	next	steps
are	to	configure	the	installation	to	operate	inside	Amazon	EC2,	and	to	customize
the	installation	for	your	use.

Configure	the	Installed	Operating	System

The	base	operating	system	has	now	successfully	been	installed.	You	must	now
configure	the	networking	and	hard	drives	to	work	in	the	Amazon	EC2
environment.

Configure	the	Network	Interface

The	Amazon	EC2	environment	provides	a	networking	interface	card	that	needs
to	be	configured	to	provide	external	network	access	for	the	running	instance.
Edit	(or	create)	the	following	file	/mnt/ec2-fs/etc/sysconfig/network-
scripts/ifcfg-eth0,	making	sure	it	contains	at	least	the	following	information.

DEVICE=eth0
BOOTPROTO=dhcp
ONBOOT=yes
TYPE=Ethernet
USERCTL=yes
PEERDNS=yes
IPV6INIT=no

Note
The	Amazon	EC2	DHCP	server	ignores	hostname	requests.
If	you	set	DHCP_HOSTNAME	the	local	hostname	will	be	set	on
the	instance	but	not	externally.	In	addition,	this	local
hostname	will	be	the	same	for	all	instances	of	the	AMI,
which	may	prove	confusing.

Enable	Networking

After	configuring	the	network	interface,	you	need	to	ensure	that	networking	will
come	up	when	the	system	is	started.	To	do	this,	ensure	that	(at	least)	the
following	appears	in	/mnt/ec2-fs/etc/sysconfig/network.

NETWORKING=yes

Set	up	Hard	Drives	in	/etc/fstab

Amazon	EC2	provides	the	instance	with	additional	local	storage	by	way	of	a
disk	drive	on	/dev/sda2.	In	addition,	swap	space	is	provided	on	/dev/sda3.	To
ensure	both	these	are	mounted	at	system	start	up	time,	add	the	following	lines	to
/mnt/ec2-fs/etc/fstab:

/dev/sda2		/mnt						ext3				defaults								1	2
/dev/sda3		swap						swap				defaults								0	0

Configure	Additional	Services

Finally,	make	sure	that	all	of	your	required	services	will	be	started	at	system	start
up	time	by	allocating	them	to	the	appropriate	system	run	levels.	To	enable	the
service	my-service	on	multi-user	and	networked	run	levels,	for	example,
execute:

#	chroot	/mnt/ec2-fs	/bin/sh

#	chkconfig	--level	345	my-service	on

#	exit	

Unmount	the	Loopback	File

Your	new	installation	has	now	been	successfully	installed	and	configured	to
operate	in	the	Amazon	EC2	environment.	You	may	now	unmount	the	image:

#	umount	/mnt/ec2-fs/proc

#	umount	-d	/mnt/ec2-fs	

Bundling	an	AMI
A	root	file	system	image	needs	to	be	bundled	as	an	AMI	in	order	to	be	used	with
the	Amazon	EC2	service.	The	bundling	process	first	compresses	the	image	to
minimize	bandwidth	usage	and	storage	requirements.	The	compressed	image	is
then	encrypted	and	signed	to	ensure	confidentiality	of	the	data,	and
authentication	against	the	creator.	The	encrypted	image	is	finally	split	into
manageable	parts	for	upload.	A	manifest	file	is	created	containing	a	list	of	the
image	parts	with	their	checksums.	This	chapter	provides	an	overview	of	the	AMI
tools	that	automate	this	process	and	some	examples	of	their	use.

The	AMI	tools	are	three	command-line	utilities:

1.	 ec2-bundle-image	bundles	an	existing	AMI

2.	 ec2-bundle-vol	creates	an	AMI	from	an	existing	machine	or	installed
volume

3.	 ec2-upload-bundle	uploads	a	bundled	AMI	to	S3	storage

Installing	the	AMI	Tools

The	AMI	tools	are	packaged	as	an	RPM	suitable	for	running	on	Fedora	Core	3/4
with	Ruby	1.8.2	(or	greater)	installed.	On	Fedora	Core	4	Ruby	can	be	installed
by	following	the	steps	below.	You	will	need	root	privileges	to	install	the
software.	You	can	find	the	AMI	tools	RPM	from	our	public	S3	downloads
bucket.

First	install	Ruby	using	the	yum	package	manager.

#	yum	install	ruby	

Install	the	AMI	tools	RPM.

#	rpm	-i	ec2-ami-tools-x.x-xxxx.i386.rpm	

https://s3.amazonaws.com/ec2-downloads/ec2-ami-tools.noarch.rpm

Installation	Issues

The	AMI	tools	libraries	install	under	/usr/lib/site_ruby.	Ruby	should	pick	up
this	path	automatically,	but	if	you	see	a	load	error	when	running	one	of	the	AMI
utilities,	it	may	be	because	Ruby	isn't	looking	there.	To	fix	this,	add
/usr/lib/site_ruby	to	Ruby's	library	path,	which	is	set	in	the	RUBYLIB
environment	variable.

Documentation

The	manual	describing	the	operation	of	each	utility	can	be	displayed	by	invoking
it	with	the	--manual	parameter.	For	example:

#	ec2-bundle-image	--manual	

Invoking	a	utility	with	the	--help	parameter	displays	a	summary	and	list	of
command	line	parameters.	For	example:

#	ec2-bundle-image	--help	

Using	the	AMI	Tools

Once	a	machine	image	has	been	created	it	must	be	bundled	as	an	AMI	for	use
with	Amazon	EC2,	as	follows.	Use	ec2-bundle-image	to	bundle	an	image	that
you	have	prepared	in	a	loopback	file,	as	described	in	the	previous	section.

#	ec2-bundle-image	-i	my-image.img	-k	pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

This	will	create	the	bundle	files:

image.part.00
image.part.01
...
image.part.NN
image.manifest.xml

Alternatively	an	AMI	could	be	created	by	snapshotting	the	local	machine	root
file	system	and	bundling	it	all	at	once	by	using	ec2-bundle-vol.	(note:	you	will
need	to	have	root	privileges	to	do	this	and	SELinux	must	be	disabled).	Use	ec2-
bundle-vol	to	re-bundle	a	(modified)	running	instance	of	an	existing	AMI,	as
described	in	the	previous	section.

#	ec2-bundle-vol	-k	pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem	-c	cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

As	with	ec2-bundle-image,	ec2-bundle-vol	will	create	image	parts	files	and	a
manifest	file.

Note
If	selinux	is	enabled	when	ec2-bundle-vol	is	run,	the
filesystem	creation	step	may	fail.	Selinux	should	be
disabled	while	this	is	done.

Uploading	a	Bundled	AMI

The	bundled	AMI	needs	to	be	uploaded	for	storage	in	Amazon	S3	before	it	can
be	accessed	by	Amazon	EC2.	Use	ec2-upload-bundle	to	upload	the	bundled
AMI	that	you	created	as	described	above.	S3	stores	data	objects	in	buckets,
which	are	similar	in	concept	to	directories.	Buckets	must	have	globally	unique
names.	The	ec2-upload-bundle	utility	will	upload	the	bundled	AMI	to	a
specified	bucket.	If	the	specified	bucket	does	not	exist	it	will	be	created.
However,	if	the	specified	bucket	already	exists,	and	belongs	to	another	user,	then
ec2-upload-bundle	will	fail.

#	ec2-upload-bundle	-b	my-bucket	-m	image.manifest.xml	-a	my-aws-access-key-id

The	AMI	manifest	file	and	all	image	parts	are	uploaded	to	S3.	The	manifest	file
is	encrypted	with	the	Amazon	EC2	public	key	before	being	uploaded.

Building	Shared	AMIs
This	section	describes	best	practices	for	building	shared	AMIs.	Building	safe,
secure,	useable	AMIs	for	public	consumption	is	a	fairly	straightforward	process,
if	you	stick	to	a	few	simple	guidelines.

You're	welcome	to	choose	to	ignore	any,	or	all,	of	these	guidelines.	They're	not
requirements	for	publishing	an	AMI.	However,	we	believe	that	following	these
guidelines	will	make	for	a	far	smoother	user	experience	and	help	ensure	your
users'	instances	are	secure.

Platform	Notes

These	guidelines	are	generally	written	with	Fedora	distros	in	mind,	but	the
principles	hold	for	any	AMI.	You	may	need	to	tweak	the	examples	we've
provided	to	get	them	to	work	on	other	distributions.

Many	of	the	steps	below	involve	automating	something	during	the	boot
sequence.	We've	made	a	few	notes	for	some	of	the	more	common	distros	below.
For	other	distros	check	your	local	documentation	or	search	the	AWS	forums	in
case	someone	else	has	done	it	already.

On	Red	Hat	and	Fedora	systems	you	can	add	these	steps	to	your
/etc/rc.d/rc.local	script.

On	Gentoo	systems	you	can	add	them	to	/etc/conf.d/local.local.

On	Ubuntu	systems	you	can	add	them	to	/etc/rc.local.

On	Debian,	you	may	need	to	create	a	start	up	script	in	/etc/init.d	and	use
update-rc.d	<scriptname>	defaults	99	(where	<scriptname>	is	the
name	of	the	script	you	created)	and	add	the	steps	to	this	script.

http://developer.amazonwebservices.com/connect/forum.jspa?forumID=30

Update	the	AMI	Tools	at	Boot	Time.

We	recommend	that	during	the	boot	process	your	AMIs	should	fetch	and
upgrade	the	EC2	AMI	creation	tools.	This	ensures	that	new	AMIs	based	on	your
shared	AMIs	contain	the	latest	AMI	creation	tools.

On	Fedora,	adding	the	following	to	rclocal	will	update	the	AMI	tools	at	boot.

#	Update	the	EC2	AMI	creation	tools

echo	"	+	Updating	ec2-ami-tools"

wget	http://s3.amazonaws.com/ec2-downloads/ec2-ami-tools.noarch.rpm	&&	\

rpm	-Uvh	ec2-ami-tools.noarch.rpm	&&	\

echo	"	+	Updated	ec2-ami-tools"

You	may	wish	to	use	this	pattern	to	auto	update	other	software	on	your	image.
It's	up	to	you	to	decide	which,	if	any,	of	the	software	components	installed	on
your	AMI	should	be	updated	at	boot	time.	Two	things	to	consider	when	making
this	decision	are	how	much	WAN	traffic	will	the	update	generate	(bearing	in
mind	your	users	will	be	charged	for	it)	and	how	much	risk	is	there	that	the
update	will	break	other	software	on	the	AMI.

Disable	Password	Based	Logins	for	Root

A	fixed	root	password	for	a	public	AMI	is	a	security	risk.	It	won't	be	long	before
it	becomes	well	known.	It's	not	sufficient	to	rely	on	users	changing	the	password
after	logging	in	for	the	first	time,	since	this	leaves	a	small	window	of
"opportunity"	for	someone	looking	for	a	chance	to	do	something	bad	(or	cheap
thrills).

The	solution	is	to	disable	password	based	logins	for	the	root	user.	In	fact,	we
recommend	you	go	one	step	further	and	randomize	the	root	password	at	boot,
just	in	case.	Defense-in-depth	is	always	a	good	strategy.

To	disable	password	based	logins	for	root,	edit	the	/etc/ssh/sshd_config	file
and	find	and	change	the	following	line

#PermitRootLogin	yes

to

PermitRootLogin	without-password

The	location	of	this	configuration	file	may	differ	for	your	distribution,	or	if
you're	not	running	OpenSSH.	Consult	the	relevant	documentation	if	this	is	the
case.

Randomizing	the	root	password	is	also	pretty	simple.	Add	the	following	to	your
boot	process.

if	[-f	"/root/firstrun"]	;	then

		dd	if=/dev/urandom	count=50|md5sum|passwd	--stdin	root

		rm	-f	/root/firstrun

else

		echo	"*	Firstrun	*"	&&	touch	/root/firstrun

fi

Once	again,	you	may	need	to	consult	the	relevant	documentation	if	you're	using
a	distro	other	than	Fedora.

Install	Public	Key	Credentials.

Now	that	we've	done	a	pretty	thorough	job	of	ensuring	that	no	one	can	log	into
instances	of	our	AMI	using	a	password,	we	need	to	make	sure	they	can	login
using	some	other	mechanism.

EC2	allows	users	to	specify	a	public-private	keypair	name	when	launching	an
instance.	When	a	valid	keypair	name	is	provided	to	the	RunInstances	API	call
(or	via	the	command	line	API	tools)	the	following	happens	behind	the	scenes:

The	public	key	(the	only	portion	of	the	keypair	EC2	retains	on	the	server	after	a
call	to	CreateKeyPair)	is	made	available	to	the	instance	via	two	methods

1.	 an	HTTP	query

2.	 a	file	on	the	instance's	ephemeral	store	(/dev/sda2).	This	file	is	named
openssh_id.pub	and	its	format	is	compatible	with	the	OpenSSH
authorized_keys	file.

Note
The	HTTP	request	is	the	preferred	method	of	retrieving	the
public	key.	The	second	method	is	deprecated	and	will	be
phased	out	in	future	versions	of	the	service.

This	means	at	boot,	all	your	AMI	need	do	is	retrieve	the	key	value	and	append	it
to	/root/.ssh/authorized_keys	(or	the	equivalent	for	any	other	user	account
on	the	AMI)	and	users	will	be	able	to	launch	instances	of	your	AMI	with	a
keypair	and	log	in	without	requiring	a	root	password.

if	[!	-d	/root/.ssh]	;	then

								mkdir	-p	/root/.ssh

								chmod	700	/root/.ssh

fi

#	Fetch	public	key	using	HTTP

curl	http://169.254.169.254/2007-03-01//meta-data/public-keys/0/openssh-key	>	/tmp/my-key

if	[$?	-eq	0]	;	then

								cat	/tmp/my-key	>>	/root/.ssh/authorized_keys

								chmod	600	/root/.ssh/authorized_keys

								rm	/tmp/my-key

fi

#	or	fetch	public	key	using	the	file	in	the	ephemeral	store:

if	[-e	/mnt/openssh_id.pub]	;	then

								cat	/mnt/openssh_id.pub	>>	/root/.ssh/authorized_keys

								chmod	600	/root/.ssh/authorized_keys

fi

This	can	be	applied	to	any	user	account.	There	is	no	reason	to	restrict	it	to	root.

Note
There's	an	implication	of	this	step	that	you	should	be	aware
of:	rebundling	an	instance	based	on	this	image	will	include
the	key	it	was	launched	with	in	the	new	image,	unless	you
explicitly	clear	out	(or	delete)	the	authorized_keys	file.
You	can	also	exclude	this	file	from	rebundling.

Disable	sshd	DNS	Checks

This	is	an	optional	step.	It	slightly	weakens	your	sshd	security	(although	not
significantly),	but	ensures	that	should	DNS	resolution	fail,	ssh	logins	will	still
work.	If	you	leave	this	setting	at	its	default,	DNS	resolution	failures	will	prevent
logins	altogether.

To	disable	password	based	logins	for	root,	edit	the	/etc/ssh/sshd_config	file
and	find	and	change	the	following	line

#UseDNS	yes

to	this

UseDNS	no

The	location	of	this	configuration	file	may	differ	for	your	distribution,	or	if
you're	not	running	OpenSSH.	Consult	the	relevant	documentation	if	this	is	the
case.

Identify	Yourself

Currently	there	is	no	easy	way	of	knowing	who	provides	a	shared	AMI.	All	you
are	presented	with	is	a	numeric	user	id.	We	suggest	that	you	post	a	description	of
your	ami,	and	the	ami	id,	in	the	Amazon	EC2	developer	forum.	This	will	provide
users	interested	in	trying	new	shared	AMIs	with	a	central	location	to	find
information	about	those	AMIs.

We	are	working	on	making	it	easier	to	share	and	find	new	AMIs.

Protect	Yourself

We	have	looked	at	making	shared	AMIs	safe,	secure	and	useable	for	the	users
who	launch	them,	but	if	you	publish	a	shared	AMI	you	should	also	take	steps	to
protect	yourself	against	the	users	of	you	AMI	This	section	looks	at	steps	you	can
take	to	do	this.

We	recommend	against	storing	sensitive	data	or	software	on	any	AMI	that	you
share.	Users	who	launch	a	shared	AMI	potentially	have	access	to	rebundle	it	and
register	it	as	their	own.	Follow	these	guidelines	to	help	you	to	avoid	some	easily
overlooked	security	risks:

Always	delete	the	shell	history	before	bundling.	If	you	attempt	more	than
one	bundle	upload	in	the	same	image	the	shell	history	will	contain	your
secret	access	key.

Bundling	a	running	instance	requires	your	private	key	and	X509	certificate.
Put	these	and	other	credentials	in	a	location	that	will	not	be	bundled	(such
as	the	ephemeral	store).

Exclude	the	ssh	authorized	keys	when	bundling	the	image.	The	Amazon
public	images	store	the	public	key	an	instance	was	launched	with	in	that
instance's	ssh	authorized	keys	file.

It	is	not	possible	for	this	list	to	be	exhaustive.	Build	your	shared	AMIs	carefully
and	consider	where	you	might	be	exposing	sensitive	data.

Sharing	AMIs

Introduction

Amazon	EC2	makes	it	possible	for	users	to	share	their	AMIs	with	other	users.
This	section	describes	how	to	do	this	using	the	Amazon	EC2	command	line
tools.

Please	be	sure	to	read	the	section	called	“Building	Shared	AMIs”	(which
highlights	the	security	considerations	of	sharing	AMIs)	before	proceeding.

AMIs	have	a	launchPermission	property	that	controls	which	users,	besides	the
owner,	are	allowed	to	launch	instances	of	that	AMI.	By	modifying	an	AMI's
launchPermission	property	it	is	possible	to	allow	all	users	to	launch	the	AMI
(make	the	AMI	public)	or	to	allow	only	a	few	specific	users	to	launch	the	AMI
(explicit	launch	permissions).

The	launchPermission	attribute	is	a	list	of	users	and	launch	groups.	Launch
permissions	can	be	granted	by	adding	items	to	the	list	and	revoked	by	removing
items	from	the	list.	Explicit	launch	permissions	for	users	are	granted	or	revoked
by	respectively	adding	or	removing	their	AWS	account	ids.	The	only	launch
group	currently	supported	is	the	all	group,	which	gives	launch	permissions	to
all	users	and	makes	the	AMI	public.	In	the	rest	of	this	chapter	we	refer	to	launch
groups	simply	as	groups.	These	launch	groups	are	not	the	same	as	security
groups	and	the	two	should	not	be	confused.	An	AMI	may	have	both	public	and
explicit	launch	permissions.

The	owner	of	an	AMI	is	not	billed	when	their	AMI	is	launched	by	another	user.
Only	the	user	launching	the	AMI	is	billed.

Making	an	AMI	Public

An	AMI	is	made	public	by	adding	the	all	group	to	the	AMI's
launchPermission	attribute.	This	can	be	done	with	the	ec2-modify-image-
attribute	command.

PROMPT>		ec2-modify-image-attribute	ami-5bae4b32	--launch-permission	-a	all

launchPermission								ami-5bae4b32				ADD					group			all	

To	check	the	launch	permissions	on	an	AMI	use	the	ec2-describe-image-attribute
command.	In	this	example	the	shortened	form	of	--launch-permission,	-l,	is
used.

PROMPT>	ec2-describe-image-attribute	ami-5bae4b32	-l

launchPermission								ami-5bae4b32				group			all	

An	AMI	is	be	made	private	again	by	removing	the	all	group	from	its	launch
permissions.	This	will	not	affect	any	explicit	launch	permissions	the	AMI	may
have	or	any	running	instances	of	the	AMI.

PROMPT>	ec2-modify-image-attribute	ami-5bae4b32	-l	-r	all

launchPermission								ami-5bae4b32				REMOVE		group			all	

Sharing	an	AMI	with	Specific	Users

It	is	possible	to	share	an	AMI	with	specific	users	without	making	the	AMI
public.	This	is	done	by	adding	explicit	launch	permissions.	To	do	this	you	need
the	user's	AWS	account	id.

PROMPT>	ec2-modify-image-attribute	ami-5bae4b32	-l	-a	495219933132

launchPermission								ami-5bae4b32				ADD					userId		495219933132

Explicit	launch	permissions	are	removed	in	the	same	way	as	public	launch
permissions.

PROMPT>	ec2-modify-image-attribute	ami-5bae4b32	-l	-r	495219933132

launchPermission								ami-5bae4b32				REMOVE		userId		495219933132

Another	way	to	remove	launch	permissions	is	to	use	the	ec2-reset-image-
attribute	command.	This	will	remove	any	launch	permissions	that	have	been
added	to	an	AMI,	public	and	explicit.	Owners	always	have	launch	permissions
for	their	AMIs	and	will	not	lose	those	permissions	by	using	ec2-reset-image-
attribute.

PROMPT>	ec2-reset-image-attribute	ami-5bae4b32	-l

launchPermission								ami-5bae4b32				RESET	

Publishing	Shared	AMIs

AMIs	can	be	published	by	posting	them	in	the	Amazon	Web	Services	Resource
Center,	Public	AMIs	Folder.

The	following	information	must	be	included	when	publishing	AMIs:

AMI	id

AMI	manifest

We	recommend	the	following	information	should	also	be	included	when
publishing	AMIs:

Publisher

Publisher	URL

OS	/	Distribution

Key	Features

Description

Daemons	/	Services

Release	Notes

The	following	template	can	be	cut	and	pasted	into	the	document.	You	must	be	in
HTML	edit	mode.

AMI ID:	[ami-id]

AMI Manifest:	[bucket/image.manifest.xml]

<h2>About	this	AMI</h2>

																

				Published	by	[Publisher]	([http://www.mysite.com]).

																																							

				[Key	Features]	

																																															

				[Description]											

http://developer.amazonwebservices.com/connect/kbcategory.jspa?categoryID=101

				This	image	contains	the	following	daemons	/	services:							

				

																																

								[Daemon	1]																																																																							

								[Daemon	2]										

				

												

<h2>What's	New?</h2>The	following	changes	were	made	on	[Date].

																

				[Release	Notes	1]

 - [Note	1]

 - [Note	2]

 - [Note	3]

						

Launching	and	Using	Instances
This	section	details	how	to	launch	instances	and	retrieve	instance	specific	data
from	within	the	image.	It	also	covers	launching	shared	AMIs	and	security	risks
associated	with	running	shared	AMIs.

Using	Instances
The	instance	is	your	basic	computation	building	block.	It	is	a	medium-sized	host
that	provides	you	with	the	same	predictable	performance	you	would	expect	from
a	physical	host.	You	can	run	on	as	many	or	as	few	as	you	need	at	any	given	time.
Each	instance	predictably	provides	the	equivalent	of	a	system	with	a	1.7Ghz	x86
CPU,	1.75GB	of	RAM,	160GB	of	local	disk,	and	250Mb/s	of	network
bandwidth.

Once	launched,	an	instance	looks	very	much	like	a	traditional	host.	You	have
complete	control	of	your	instances.	You	have	root	access	to	each	one,	and	you
can	interact	with	them	as	you	would	any	machine.

Best	Practices

Here	are	some	suggestions	for	making	the	best	use	of	the	Amazon's	EC2
instances.

Do	not	rely	on	an	instance's	local	storage	for	valuable,	long-term	data.
Instances	can	fail,	and	when	they	fail,	the	data	on	the	local	disk	is	lost.	You
should	use	a	replication	strategy	across	multiple	instances	to	keep	your	data
safe	or	store	your	persistent	data	in	Amazon	S3.

Define	images	based	on	the	type	of	work	your	instances	perform.	For
"internet	applications"	you	may	choose	to	define	one	image	for	database
instances	and	one	image	for	your	webservers.	Image	creation	and	storage
are	cheap	and	easy	operations.	Individualize	and	customize	as	necessary.
Keeping	your	images	specialized	will	mean	that	the	resulting	AMIs	can	be
smaller.	Smaller	AMIs	will	boot	considerably	faster.

Monitor	the	health	of	your	instances.	Make	your	instances	work	for	you	by
monitoring	each	other.	You	may	choose	to	create	an	image	which	contains
one	of	the	various	open-source	monitoring	tools	such	as	Nagios	or
OpenNMS.	Each	worker	instance,	based	on	your	other	images,	might	then
report	its	health	to	your	monitoring	instance.

Keep	your	Amazon	EC2	firewall	permissions	as	restrictive	as	possible.
Only	open	up	permissions	you	need	to	open.	Use	separate	groups	to	deal
with	instances	that	have	different	network	ingress	requirements.	Consider
using	additional	security	measures	inside	your	instance	including	your	own
firewall.	If	you	need	to	login	interactively	(ssh),	consider	creating	a	bastion
security	group	that	allows	external	login,	while	the	remainder	of	your
instances	are	in	a	group	that	does	not	allow	external	login.

Using	Instance	Data

Introduction

Amazon	EC2	instances	may	access	instance-specific	metadata	as	well	as	data
supplied	when	launching	the	instances.	This	data	can	be	used	to	build	more
generic	AMIs	(e.g.	behavior	could	be	modified	by	configuration	files	supplied	at
launch	time).

Example	Scenario

Perhaps	you	run	web	servers	for	various	Mom-and-Pop	stores.	All	the	instances
use	the	same	AMI.	At	launch	time	you	could	specify	which	Amazon	S3	bucket
the	AMI	should	retrieve	its	content	from.	This	allows	you	to	launch	multiple
Mom-and-Pop	sites	serving	different	content	using	the	same	AMI	by	doing	the
following:

Create	an	Amazon	S3	bucket

Place	your	content	in	the	Amazon	S3	bucket

Launch	an	instance	of	your	web	server	AMI	specifying	the	Amazon	S3
bucket	containing	the	web	content

Categories	of	Available	Data

The	data	available	to	instances	is	categorized	into

metadata

This	data	is	specific	to	an	instance.	Currently	we	provide:

Data Description Version
Introduced

ami-id The	AMI	id	the	instance	was	launched	with. 1.0

ami-
manifest-
path

The	manifest	path	of	the	AMI	the	instance	was	launched	with. 1.0

ami-
launch-
index

The	index	of	this	instance	in	the	reservation	(per	AMI). 1.0

instance-id The	id	of	this	instance. 1.0

hostname The	local	hostname	of	this	instance.	Deprecated	as	of	2007-01-19,
use	local-hostname	instead.

1.0

local-
hostname

The	local	hostname	of	the	instance. 2007-01-19

public-
hostname

The	public	hostname	of	the	instance. 2007-01-19

local-ipv4 Public	IP	address	if	launched	with	direct	addressing,	private	IP
address	if	launched	with	public	addressing.

1.0

public-ipv4 NATted	public	IP	Address 2007-01-19

public-
keys/

Public	keys.	Only	available	if	supplied	at	instance	launch	time 1.0

reservation-
id

Id	of	the	reservation. 1.0

security-
groups

Names	of	the	security	groups	the	instance	is	launched	in.	Only
available	if	supplied	at	instance	launch	time

1.0

product-
codes

Product	codes	associated	with	this	instance. 2007-03-01

user-supplied	data

Any	user-supplied	data	is	treated	as	opaque	data:	what	you	give	us	is	what
you	get	back.

Note
All	instances	launched	together	get	the	same
user-supplied	data.	You	may	use	the	AMI	launch
index	as	an	index	into	the	data	(example).
User	data	is	limited	to	16K.	This	limit	applies	to
the	data	in	raw	form,	not	base64	encoded	form.
The	user	data	must	be	base64-encoded	before
being	submitted	to	the	API.	The	API	command-
line	tools	perform	the	base64-encoding	for	you.
The	data	will	be	base64	decoded	before	being
presented	to	the	instance.

Retrieving	the	Data

An	instance	retrieves	the	data	by	querying	a	web	server	using	a	REST-like	API.
The	base	URI	of	all	requests	is	http://169.254.169.254/2007-03-01/	where
2007-03-01	indicates	the	API	version.

Note
Version	1.0	is	part	of	a	legacy	versioning	scheme.	Newer
versions	follow	a	date	based	versioning	scheme.	See	the
section	called	“API	Versioning”	for	more	information	on
the	versioning	scheme	used	by	Amazon	EC2.

The	latest	version	of	the	API	is	always	available	using	the	URI
http://169.254.169.254/latest.

Security	of	Launch	Data

Although	this	data	is	only	accessible	by	your	specific	instance,	the	data	is	not
protected	by	cryptographic	methods.	You	should	take	suitable	precautions	to
protect	sensitive	data	(such	as	long	lived	encryption	keys).

You	are	not	billed	for	these	HTTP	requests.

Retrieving	Metadata

Requests	for	a	specific	metadatum	resource	returns	the	appropriate	value	or	a
404	HTTP	error	code	if	the	resource	is	not	available.	All	metadata	is	returned	as
text	(content	type	text/plain).

Requests	for	a	general	metadatum	resource	(i.e.	an	URI	ending	with	a	/)	return	a
list	of	the	resources	available	at	that	level	or	a	404	HTTP	error	code	if	there	is	no
such	resource.	The	list	items	are	on	separate	lines	with	lines	terminated	by	any
combination	of	linefeed	(ASCII	10)	and	carriage	return	(ASCII	13).

Resource	&	URI Example

Get	the	available	API	versions

GET	http://169.254.169.254/

Request

GET	http://169.254.169.254/

Response

1.0

2007-01-03

Get	the	top-level	metadata	items

GET

http://169.254.169.254/2007-

03-01/meta-data/

Request

GET	http://169.254.169.254/2007-03-01/meta-data/

Response

ami-id

ami-launch-index

ami-manifest-path

instance-id

hostname

local-ipv4

public-keys/

reservation-id

security-groups

Get	the	value	of	metadatum	X
(where	'X'	is	from	the	above	list)

GET

http://169.254.169.254/2007-

03-01/meta-data/X

Request

GET	http://169.254.169.254/2007-03-01/meta-data/ami-manifest-path

Response

my-amis/spamd-image.manifest.xml

Request

GET	http://169.254.169.254/2007-03-01/meta-data/ami-id

Response

ami-5bae4b32

Request

GET	http://169.254.169.254/2007-03-01/meta-data/reservation-id

Response

r-fea54097

Request

GET	http://169.254.169.254/2007-03-01/meta-data/hostname

Response

domU-12-34-31-00-00-05.usma1.compute.amazonaws.com

Get	the	list	of	available	public
keys

GET

Request

GET	http://169.254.169.254/2007-03-01/meta-data/public-keys/

http://169.254.169.254/2007-

03-01/meta-data/public-keys/
Response

0=my-public-key

In	which	formats	is	public	key	0
available?

GET

http://169.254.169.254/2007-

03-01/meta-data/public-

keys/0/

Request

GET	http://169.254.169.254/2007-03-01/meta-data/public-keys/0/

Response

openssh-key

Get	public	key	0	(in	openssh-key
format)

GET

http://169.254.169.254/2007-

03-01/meta-data/public-

keys/0/openssh-key

Request

GET	http://169.254.169.254/2007-03-01/meta-data/public-keys/0/openssh-key

Response

ssh-rsa	AAAA.....wZEf	my-public-key

Get	product	codes

GET

http://169.254.169.254/2007-

03-01/meta-data/product-

codes

Request

GET	http://169.254.169.254/2007-03-01/meta-data/product-codes

Response

774F4FF8

Retrieving	User	Data

Requests	for	the	user	data	returns	the	data	as-is	(content	type	application/x-
octetstream).

Note
As	mentioned	previously,	all	user-supplied	data	is	treated
as	opaque	data:	what	you	give	us	is	what	you	get	back.	It	is
thus	the	responsibility	of	the	instance	to	interpret	this	data
appropriately.

Resource	&	URI Examples

Get	the	user-supplied	data

GET	http://169.254.169.254/2007-03-

01/user-data

Request

GET	http://169.254.169.254/2007-03-01/user-data

Response

1234,fred,reboot,true	|	4512,jimbo,	|	173,,,

Request

GET	http://169.254.169.254/2007-03-01/user-data

Response

[general]

instances:	4

[instance-0]

s3-bucket:	fred

[instance-1]

reboot-on-error:	yes

Request

GET	http://169.254.169.254/2007-03-01/user-data

Response

GIF89aXfgs13qa....

Example	of	Using	the	AMI	Launch	Index	Value

Alice	wants	four	instances	of	her	favorite	database	AMI.	The	first	instance	will
be	the	master	with	the	remainder	acting	as	replicants.

The	master	database	configuration	specifies	various	database	parameters	(the
size	of	store,	say)	while	the	replicants'	configuration	specifies	different
parameters	(replication	strategy	say).	Alice	decides	to	provide	this	data	as	an
ASCII	string	with	|	delimiting	the	various	instances'	data:

store-size=123PB	backup-every=5min	|	replicate-every=1min	|	replicate-every=2min	|	replicate-every=10min	|	replicate-every=20min

The	example	above	breaks	down	as	follows

store-size=123PB	backup-every=5min	defines	the	master	database
configuration

replicate-every=1min	defines	the	first	replicant's	configuration

Etc.

Alice	launches	her	instances:

$	ec2-run-instances	ami-5bae4b32	-n	4	-d	"store-size=123PB	backup-every=5min	|	replicate-every=1min	|	replicate-every=2min	|	replicate-every=10min	|	replicate-every=20min"

RESERVATION					r-fea54097						598916040194				default

INSTANCE	i-3ea74257	ami-5bae4b32	pending	0

INSTANCE	i-31a74258	ami-5bae4b32	pending	1

INSTANCE	i-31a74259	ami-5bae4b32	pending	2

INSTANCE	i-31a7425a	ami-5bae4b32	pending	3

Note	that	only	4	instances	were	launched.

Once	launched,	the	instances	all	have	a	copy	of	the	user	data	and	the	common
metadata:

AMI	id:	ami-5bae4b32

AMI	manifest	path:	ec2-public-images/getting-started.manifest.xml

Reservation	id:	r-fea54097

Public	keys:	none

Security	group	names:	default

However	each	instance	has	certain	unique	metadata:

Instance	1

Metadatum Value

instance-id i-3ea74257

ami-launch-index 0

hostname domU-12-43-33-00-01-27.usma1.compute.amazonaws.com

local-ipv4 216.182.228.87

Instance	2

Metadatum Value

instance-id i-31a74258

ami-launch-index 1

hostname domU-12-31-33-00-01-72.usma1.compute.amazonaws.com

local-ipv4 216.182.228.88

Instance	3

Metadatum Value

instance-id i-31a74259

ami-launch-index 2

hostname domU-12-31-33-00-01-73.usma1.compute.amazonaws.com

local-ipv4 216.182.228.89

Instance	4

Metadatum Value

instance-id i-31a7425a

ami-launch-index 3

hostname domU-12-31-33-00-01-74.usma1.compute.amazonaws.com

local-ipv4 216.182.228.90

Therefore	an	instance	can	determine	its	portion	of	the	user-supplied	data	by	the
simple	process	of

1.	 Determining	which	instance	in	the	launch	group	it	is:

GET	http://169.254.169.254/2007-03-01/meta-data/ami-launch-index

										1

2.	 Retrieving	the	user	data:

GET	http://169.254.169.254/2007-03-01/user-data

										store-size=123PB	backup-every=5min	|	replicate-every=1min	|	replicate-every=2min	|	replicate-every=10min	|	replicate-every=20min

3.	 Extracting	the	appropriate	part	of	the	user	data:

user_data.split('|')[ami_launch_index]

Using	Shared	AMIs

Introduction

This	section	looks	at	how	to	find	and	safely	use	shared	AMIs.

Finding	Shared	AMIs

The	following	command	displays	a	list	of	all	public	AMIs.

PROMPT>	ec2dim	-x	all

The	-x	all	flag	shows	AMIs	executable	by	all	users.	This	includes	AMIs	you
own.

To	show	AMIs	for	which	you	have	explicit	launch	permissions,	run:

PROMPT>	ec2dim	-x	self

The	-x	self	flag	shows	AMIs	you	have	explicit	launch	permissions	for.	AMIs
you	own	are	excluded.

To	show	AMIs	owned	by	Amazon	run:

PROMPT>	ec2dim	-o	amazon

To	find	AMIs	owned	by	a	particular	user	run:

PROMPT>	ec2dim	-o	495219933132

Replace	495219933132	with	the	AWS	account	id	of	the	user	who	owns	the	AMIs
you	are	looking	for.

Safely	Using	Shared	AMIs

AMIs	are	launched	at	the	user's	own	risk.	Amazon	cannot	vouch	for	the	integrity
or	security	of	AMIs	shared	by	other	users.	Therefore,	you	should	treat	shared
AMIs	as	you	would	any	foreign	code	that	you	might	consider	deploying	in	your
own	data	center	and	perform	the	appropriate	due	diligence.

Ideally,	you	will	get	the	AMI	ID	from	a	trusted	source	(a	website,	another	user,
etc).	If	you	do	not	know	the	source	of	an	AMI,	we	recommended	that	you	at
leaste	search	the	forums	for	comments	on	the	AMI	before	launching	it.
Conversely,	if	you	have	questions	or	observations	about	a	shared	AMI,	feel	free
to	use	the	forums	to	ask	or	comment.

Amazon's	public	images	have	an	aliased	owner	and	will	display	amazon	in	the
userId	field.	This	allows	users	to	find	Amazon's	public	images	easily.

Note
Users	are	not	currently	able	to	alias	an	AMI's	owner.

If	you	do	choose	to	launch	a	shared	AMI,	there	are	a	number	of	steps	you	should
take	(at	a	minimum)	after	launch	to	confirm	the	AMI	is	not	doing	anything
malicious:

Check	the	ssh	authorized	keys	file.	The	only	key	in	the	file	should	be	the
key	you	launched	the	AMI	with.

Check	open	ports	and	running	services.

Change	the	root	password	if	is	is	not	randomized	on	startup.	Take	a	look	at
the	section	called	“Disable	Password	Based	Logins	for	Root”	for	more
information	on	randomizing	the	root	password	on	startup.

Check	if	ssh	allows	root	password	logins.	the	section	called	“Disable
Password	Based	Logins	for	Root”	contains	more	information	on	disabling
root	based	password	logins.

Check	if	there	are	any	other	user	accounts	that	may	allow	backdoor	entry	to

your	instance.	Accounts	with	super	user	privileges	are	paticularly
dangerous.

Check	that	all	cron	jobs	are	legitimate.

Paying	for	AMIs

Introduction

This	section	describes	how	to	discover	paid	AMIs,	launch	paid	AMIs,	and
launch	instances	with	support	product	codes.

Finding	Paid	AMIs

The	ec2-describe-images	command	lists	product	codes	associated	with	the	AMI.
You	can	learn	more	about	the	product	and	the	AMI	in	the	Amazon	EC2	resource
center	and	forums.	You	will	need	to	sign	up	for	the	product	before	you	can
launch	instances	of	the	AMI.

$	ec2-describe-images	ami-5bae4b32

IMAGE	ami-5bae4b32	awesome-ami/webserver.manifest.xml	495219933132	available	private	774F4FF8

Launching	Paid	AMIs

Launching	a	paid	AMI	is	the	same	as	launching	any	other	AMI.	No	additional
parameters	are	required.	The	instance	will	be	charged	according	to	the	rates	set
by	the	owner	of	the	AMI	which	should	be	more	than	the	base	Amazon	EC2	rate.

$	ec2-run-instances	ami-5bae4b32

INSTANCE	i-10a64379	ami-5bae4b32	pending

Note
The	owner	of	a	product	will	be	able	to	see	the	instance	and
owner	IDs	of	instances	that	were	launched	with	their
product	codes.

Paying	for	Support

Developers	that	wish	to	offer	support	for	instances	can	register	support	products.
A	user	can	then	sign	up	for	the	support	product	and	associate	the	issued	product
code	with	their	own	AMI.

Note
Although	we	differentiate	between	products	and	support
products	in	this	document,	the	difference	is	only
conceptual	and	they	will	be	treated	identically	by
Amazon	EC2.

PROMPT>		ec2-modify-image-attribute	ami-5bae4b32	--product-code	774F4FF8

productCodes								ami-5bae4b32												productCode			774F4FF8	

No	extra	parameters	are	required	for	the	run	instances	call.	The	instance	will	be
charged	according	to	the	rates	set	by	the	owner	of	the	product.

$	ec2-run-instances	ami-5bae4b32

INSTANCE	i-10a64379	ami-5bae4b32	pending

A	paid	instance	is	any	instance	that	has	been	launched	with	a	product	code.	A
product	owner	can	confirm	that	an	instance	qualifies	for	support	by	calling	ec2-
confirm-product-instance.	This	command	returns	a	list	of	all	running	instances
associated	with	the	product,	regardless	of	who	launched	the	instance.	You	must
own	the	product	codes	passed	to	the	ec2-confirm-product-instance	command.

PROMPT>		ec2-confirm-product-instance	6883959E	-i	i-10a64379

6883959E	i-10a64379	true	495219933132	

Using	Get	Console	Output	and
Reboot	Instances

Introduction

Amazon	EC2	instances	don't	have	a	physical	monitor	to	display	their	console
output	on.	They	also	don't	have	physical	controls	to	allow	them	to	be	powered-
up,	rebooted	or	shutdown.	Instead	these	actions	are	enabled	via	the	EC2	SOAP
and	Query	APIs.

Console	output	is	a	valuable	tool	for	problem	diagnosis.	It	is	especially	useful
for	troubleshooting	kernel	problems	and	service	configuration	issues	that	may
cause	an	instance	to	terminate	or	become	unreachable	before	its	ssh	daemon	can
be	started.	Amazon	EC2	provides	a	way	to	programmatically	access	instance
console	output	via	both	the	SOAP	and	Query	APIs	and	the	corresponding
command-line	tool.

Similarly,	the	ability	to	reboot	instances	that	are	otherwise	unreachable	is
valuable	for	both	trouble-shooting	and	general	instance	management.
Amazon	EC2	provides	such	a	facility	via	the	SOAP	and	Query	APIs	and	the
corresponding	command-line	tool.

Get	Console	Output

Amazon	EC2	instance	console	output	reflects	exactly	the	character	based
console	output	that	would	otherwise	be	displayed	on	a	physical	monitor	attached
to	a	machine.	This	output	is	buffered	as	it	is	produced	by	the	instance	and	then
posted	to	a	store	from	which	it	can	be	retrieved	by	the	instance's	owner.	The
posted	output	is	not	continuously	updated.	Rather,	it	is	updated	shortly	after
instance	boot,	reboot	and	once	the	instance	terminates	when	it	is	likely	to	be	of
most	value.	Only	the	most	recent	64KB	of	posted	output	is	stored	and	it	is
available	for	a	period	of	at	least	1	hour	after	the	last	posting.

The	console	output	for	an	instance	can	be	retrieved	via	the	SOAP	API	call
described	in	the	section	called	“GetConsoleOutput”	and	the	Query	API	call
described	in	the	section	called	“GetConsoleOutput”.	The	corresponding
command	line	tool,	described	in	the	section	called	“ec2-get-console-output”,	can
be	used	to	retrieve	the	console	output	for	an	instance	and	display	it	to	the	user.

Console	output	can	only	be	accessed	by	the	instance	owner.

Reboot	Instances

As	machines	can	be	rebooted	by	pressing	the	reset	button,	EC2	instances	can	be
rebooted	via	the	SOAP	API	described	in	the	section	called	“RebootInstances”
and	the	Query	API	described	in	the	section	called	“RebootInstances”.	The
corresponding	command	line	tool	described	in	the	section	called	“ec2-reboot-
instances”	can	be	used	to	reboot	a	set	of	specified	instances	from	the	command-
line.

Using	and	Securing	the	Network

Introduction	to	Instance	Addressing

All	Amazon	EC2	instances	are	assigned	two	IP	addresses	at	launch:	a	private
address,	and	a	public	address.	The	public	IP	address	is	directly	mapped	to	the
private	address	via	Network	Address	Translation	(NAT).	Private	addresses	are
only	reachable	from	within	the	Amazon	EC2	network.	Public	addresses	are
reachable	from	the	Internet.

Amazon	EC2	also	provides	an	internal	DNS	name	and	a	public	DNS	which	map
to	the	private	and	public	IP	addresses	respectively.	The	internal	DNS	name	is
only	resolvable	from	within	Amazon	EC2.	The	public	DNS	name	resolves	to	the
public	IP	address	from	outside	of	Amazon	EC2,	and,	currently,	resolves	to	the
private	IP	address	from	with	Amazon	EC2.

More	detail	can	be	found	in	the	section	called	“Instance	Addressing”.

Note
During	earlier	stages	of	the	Amazon	EC2	Beta	program,
instances	used	direct	addressing.	This	addressing	scheme
used	the	same	address	for	internal	and	external	access.	This
approach	is	being	deprecated,	and	the	documentation
therefore	does	not	discuss	this	addressing	scheme.

Introduction	to	Securing	the	Network

The	Amazon	EC2	service	provides	the	ability	to	dynamically	add	and	remove
instances.	However,	this	flexibility	can	complicate	firewall	configuration	and
maintenance	which	traditionally	relies	on	IP	addresses,	subnet	ranges	or	DNS
host	names	as	the	basis	for	the	firewall	rules.

The	Amazon	EC2	firewall	allows	you	to	assign	your	compute	resources	to	user-
defined	groups	and	define	firewall	rules	for	and	in	terms	of	these	groups.	As
compute	resources	are	added	to	or	removed	from	groups,	the	appropriate	rules
are	enforced.	Similarly,	if	a	group's	rules	are	changed	these	changes	are
automatically	applied	to	all	members	of	the	affected	group.

the	section	called	“Securing	the	Network”	discusses	this	topic	in	more	detail.

Instance	Addressing
There	are	two	kinds	of	IP	addresses	and	DNS	names	associated	with
Amazon	EC2	instances.

Each	instance	is	assigned	a	private	(RFC1918)	address	which	is	allocated	by
DHCP.	This	is	the	only	address	the	operating	system	knows	about.	This	is	the
address	that	should	be	used	when	communicating	between	Amazon	EC2
instances.	This	address	is	not	reachable	from	the	Internet.

Additionally,	Amazon	EC2	also	provides	a	public	(Internet	routable)	address	for
each	instance	using	Network	Address	Translation	(NAT).	This	is	the	address	that
must	be	used	from	outside	the	Amazon	EC2	network	(i.e.	the	Internet).

Amazon	EC2	also	provides	an	internal	DNS	name	and	a	public	DNS	name
which	map	to	the	private	and	public	IP	addresses,	respectively.	The	internal	DNS
name	is	only	resolvable	from	within	Amazon	EC2.	The	public	DNS	name
resolves	to	the	public	IP	address	from	outside	of	Amazon	EC2,	and,	currently,
resolves	to	the	private	IP	address	from	with	Amazon	EC2.

Private	(RFC	1918)	Addresses

All	Amazon	EC2	instances	are	allocated	a	private	address	by	DHCP.	These
addresses	come	from	a	range	defined	in	"RFC	1918	-	Address	Allocation	for
Private	Internets".	These	addresses	are	routable	only	within	Amazon	EC2	and
are	used	for	communication	between	instances.

This	private	address	is	associated	exclusively	with	the	instance	for	its	lifetime.	It
is	returned	to	Amazon	EC2	when	the	instance	terminates.	You	should	always	use
the	internal	address	when	you	know	you	are	communicating	between
Amazon	EC2	instances.	Using	this	address	assures	that	your	network	traffic
follows	the	highest	bandwidth,	lowest	cost,	and	lowest	latency	path	through	our
network.

From	your	instance,	you	can	determine	your	private	IP	address	by	asking	the
operating	system:

PROMPT>	ifconfig	eth0

or	by	referring	to	the	instance	data:

PROMPT>	curl	http://169.254.169.254/latest/meta-data/local-ipv4

http://www.faqs.org/rfcs/rfc1918.html

Internal	DNS	Name

Each	instance	is	given	an	internal	DNS	name.	This	name	is	of	the	form	domU-
12-31-35-00-35-F3.z-2.compute-1.internal.	It	will	resolve	to	the	private	IP
address	described	above	when	resolved	from	within	Amazon	EC2	and	will	not
resolve	outside	of	Amazon	EC2.

Public	Addresses

At	launch	time,	a	public	address	is	also	associated	with	each	Amazon	EC2
instance	using	Network	Address	Translation	(NAT).	See	"RFC	1631:	The	IP
Network	Address	Translator	(NAT)"	for	more	information	on	NAT.

This	public	address	is	associated	exclusively	with	the	instance	for	its	lifetime.	It
is	returned	to	Amazon	EC2	when	the	instance	terminates.	You	must	use	this
public	address	to	access	your	instance	from	outside	of	Amazon	EC2	and	you
should	distribute	this	address	to	clients	(most	likely	via	a	DNS	name	that	maps
to	it).

Note
Amazon	EC2	instances	cannot	currently	access	other
instances	via	their	public	NAT	IP	address.	Instead,	the
private	address	of	the	instance	in	the	new	NAT
environment	must	be	used.

From	your	instance,	you	can	determine	your	public	IP	address	by	referring	to	the
instance	data:

PROMPT>	curl	http://169.254.169.254/latest/meta-data/public-ipv4

http://www.faqs.org/rfcs/rfc1631.html

Public	DNS

Each	instance	is	also	given	an	external	DNS	name.	This	name	is	of	the	form
ec2-72-44-45-204.z-2.compute-1.amazonaws.com.	This	DNS	name	will
resolve	to	the	public	IP	address	described	above	when	resolved	from	outside
Amazon	EC2,	and,	currently,	will	resolve	to	the	private	IP	address	from	within
Amazon	EC2.	See	note	below.

Note
Amazon	EC2	instances	cannot	currently	access	other
instances	in	the	new	NAT	environment	using	their	public
NAT	IP	address.	Instead,	the	private	address	of	the	instance
in	the	new	NAT	environment	must	be	used.	To	help
address	this	issue,	the	Amazon	EC2	network	will	alter
DNS	responses	from	external	DNS	servers	by	replacing	the
public	IP	address	for	any	Amazon	EC2	instance	in	the	new
NAT	environment	with	its	private	IP	address.	In	this	way,
DNS	lookups	that	would	resolve	to	a	public	Amazon	EC2
IP	address	will	be	translated	to	the	correct	internal	IP
address.	This	only	works	when	using	the	UDP	DNS
protocol.

Securing	the	Network

Anticipated	API	changes

At	present,	the	API	calls	for	authorizing	and	revoking	permissions	are	still	under
development.	The	remainder	of	this	section	outlines	what	you	can	depend	on
from	this	part	of	our	API.	The	command	line	API	tools	expose	only	the	subset	of
the	functionality	that	is	expected	to	remain	unchanged.

Callers	may	depend	on,	now	and	in	future,	being	able	to	grant	permissions	to

source	address	ranges	(specified	with	CIDRs,	specific	protocol	and	ports
(or	ICMP	type/code)).

source	{user,group}	tuples.	No	additional	granularity,	such	as	protocol	and
port	(or	ICMP	type/code),	should	be	expected.

Notes

Defining	firewall	rules	in	terms	of	groups	is	flexible	enough	to	allow	you	to
implement	functionality	equivalent	to	a	VLAN.

In	addition	to	the	distributed	firewall,	you	can	maintain	your	own	firewall
on	any	of	your	instances.	This	may	be	useful	if	you	have	specific
requirements	not	catered	for	by	the	distributed	firewall.

Concepts

Security	Groups

A	security	group	is	a	named	collection	of	access	rules.	These	access	rules	specify
which	ingress,	i.e.	incoming,	network	traffic	should	be	delivered	to	your
instance.	All	other	ingress	traffic	will	be	discarded.

A	group's	rules	may	be	modified	at	any	time.	The	new	rules	are	automatically
enforced	for	all	running,	as	well	as	for	subsequently	launched,	instances	affected
by	the	change	in	rules.

Note:	Currently	there	is	a	limit	of	one	hundred	rules	per	group.

Group	Membership

When	an	AMI	instance	is	launched	it	may	be	assigned	membership	to	any
number	of	groups.

If	no	groups	are	specified,	the	instance	is	assigned	to	the	"default"	group.	This
group	can	be	modified,	by	you,	like	any	other	group	you	have	created.	Be
default,	this	group	allows	all	network	traffic	from	other	members	of	the	"default"
group	and	discards	traffic	from	other	IP	addresses	and	groups.

Group	Access	Rights

The	access	rules	define	source	based	access	either	for	named	security	groups	or
for	IP	addresses,	i.e.	CIDRs.	For	CIDRs	you	may	also	specify	the	protocol	and
port	range	(or	ICMP	type/code).

Examples
We	illustrate	the	use	of	the	Amazon	EC2	firewall	in	the	following	two	examples.
Note	that	we	use	the	command	line	tools	throughout	the	examples.	The	same
results	can	be	achieved	using	the	SOAP	API.

Default	Group

1.	 Albert	launches	a	copy	of	his	favourite	public	AMI

$	ec2-run-instances	ami-eca54085

RESERVATION					r-01927768						598916040194

INSTANCE								i-cfd732a6						ami-eca54085												pending		0

2.	 After	a	little	wait	for	image	launch	to	complete,	Albert,	who	is	a	cautious
type,	checks	the	access	rules	of	the	default	group

$	ec2-describe-group	default

GROUP			598916040194				default	default	group

PERMISSION						default		ALLOWS		all																					FROM				USER				598916040194				GRPNAME	default

and	notices	that	it	only	accepts	ingress	network	connections	from	other
members	of	the	default	group	for	all	protocols	and	ports.

3.	 Albert,	being	paranoid	as	well	as	cautious,	port	scans	his	instance

$	nmap	-P0	-p1-100	domU-12-31-33-00-01-56.usma1.compute.amazonaws.com

Starting	nmap	3.81	(http://www.insecure.org/nmap/)	at	2006-08-07	15:42	SAST

All	100	scanned	ports	on	domU-12-31-33-00-01-56.usma1.compute.amazonaws.com	(216.182.228.116)	are:	filtered

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	31.008	seconds

4.	 Albert	decides	he	should	be	able	to	SSH	into	his	instance,	but	only	from	his
own	machine

$	ec2-authorize	default	-P	tcp	-p	22	-s	192.168.1.130/32

GROUP											default

PERMISSION														default	ALLOWS		tcp					22						22						FROM				CIDR				192.168.1.130/32

5.	 Repeating	the	port	scan

$	nmap	-P0	-p1-100	domU-12-31-33-00-01-56.usma1.compute.amazonaws.com

Starting	nmap	3.81	(http://www.insecure.org/nmap/)	at	2006-08-07	15:43	SAST

Interesting	ports	on	domU-12-31-33-00-01-56.usma1.compute.amazonaws.com	(216.182.228.116):

(The	99	ports	scanned	but	not	shown	below	are	in	state:	filtered)

PORT			STATE	SERVICE

22/tcp	open		ssh

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	32.705	seconds

Albert	is	happy	(or	at	least	less	paranoid).

Three	Tier	Web	Service

Mary	wishes	to	deploy	her	public,	fault	tolerant,	three	tier	web	service	in
Amazon	EC2.	Her	grand	plan	is	to	have	her	web	tier	start	off	executing	in	seven
instances	of	ami-fba54092,	her	application	tier	executing	in	twenty	instances	of
ami-e3a5408a,	and	her	multi-master	database	in	two	instances	of	ami-f1a54098.
She's	concerned	that	nasty	people	might	gain	access	to	her	subscriber	database,
so	she	wants	to	restrict	network	access	to	her	middle	and	back	tier	machines.
When	the	traffic	to	her	site	increases	over	the	holiday	shopping	period,	she	adds
additional	instances	to	her	web	and	application	tiers	to	handle	the	extra	load.

1.	 First	she	creates	a	group	for	her	Apache	web	server	instances	and	allows
HTTP	access	to	the	world

$	ec2-add-group	apache	-d	"Mary's	Apache	group"

GROUP			apache		Mary's	Apache	group

$	ec2-describe-group	apache

GROUP			598916040194				apache		Mary's	Apache	group

$	ec2-authorize	apache	-P	tcp	-p	80	-s	0.0.0.0/0

GROUP											apache

PERMISSION														apache		ALLOWS		tcp					80						80						FROM				CIDR				0.0.0.0/0

$	ec2-describe-group	apache

GROUP			598916040194				apache		Mary's	Apache	group

PERMISSION						598916040194				apache		ALLOWS		tcp					80						80						FROM				CIDR				0.0.0.0/0

She	then	launches	seven	instances	of	her	web	server	AMI	as	members	of
this	group

$	ec2run	ami-fba54092	-n	7	-g	apache

RESERVATION					r-01927768						598916040194

INSTANCE								i-cfd732a6						ami-fba54092												pending

...

$	ec2din	i-cfd732a6

RESERVATION					r-0592776c						598916040194

INSTANCE								i-cfd732a6						ami-fba54092							domU-12-31-33-00-04-16.usma1.compute.amazonaws.com						running

...

Having	studied	at	the	same	school	of	paranoia	as	Albert,	Mary	does	a	port

scan	to	confirm	the	permissions	she	just	configured

$	nmap	-P0	-p1-100	domU-12-31-33-00-04-16.usma1.compute.amazonaws.com

Starting	nmap	3.81	(http://www.insecure.org/nmap/)	at	2006-08-07	16:21	SAST

Interesting	ports	on	domU-12-31-33-00-04-16.usma1.compute.amazonaws.com	(216.182.231.20):

(The	99	ports	scanned	but	not	shown	below	are	in	state:	filtered)

PORT			STATE	SERVICE

80/tcp	open		http

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	33.409	seconds

And	then	she	tests	to	make	sure	her	web	server	is	contactable

$	telnet	domU-12-31-33-00-04-16.usma1.compute.amazonaws.com	80

Trying	216.182.231.20...

Connected	to	domU-12-31-33-00-04-16.usma1.compute.amazonaws.com	(216.182.231.20).

Escape	character	is	'^]'.

Excellent!

2.	 She	now	creates	a	separate	group	for	her	application	server

$	ec2-add-group	appserver	-d	"Mary's	app	server"

GROUP			appserver							Mary's	app	server

then	starts	twenty	instances	as	members	of	this	group

$	ec2run	ami-e3a5408a	-n	20	-g	appserver

and	grants	network	access	between	her	web	server	group	and	the
application	server	group

$	ec2-authorize	appserver	-o	apache	-u	598916040194

GROUP											appserver

PERMISSION						appserver		ALLOWS		all																					FROM				USER				598916040194				GRPNAME	apache

She	checks	to	ensure	access	to	her	app	server	is	indeed	restricted	by	port
scanning	one	of	the	app	servers

$	nmap	-P0	-p1-100	domU-12-31-33-00-03-D1.usma1.compute.amazonaws.com

Starting	nmap	3.81	(http://www.insecure.org/nmap/)	at	2006-08-07	15:42	SAST

All	100	scanned	ports	on	domU-12-31-33-00-03-D1.usma1.compute.amazonaws.com	(216.182.228.12)	are:	filtered

Nmap	finished:	1	IP	address	(1	host	up)	scanned	in	31.008	seconds

3.	 To	confirm	that	her	web	servers	have	access	to	her	application	servers	she
needs	to	do	a	little	extra	work...

a.	 She	(temporarily)	grants	SSH	access	from	her	workstation	to	the	web
server	group

$	ec2-authorize	apache	-P	tcp	-p	22	-s	192.168.1.130/32

b.	 She	logs	in	to	one	of	her	web	servers	and	connects	to	an	application
server	on	TCP	port	8080

$	telnet	domU-12-31-33-00-03-D1.usma1.compute.amazonaws.com	8080

Trying	216.182.228.12...

Connected	to	domU-12-31-33-00-03-D1	.usma1.compute.amazonaws.com	(216.182.228.12).

Escape	character	is	'^]'

c.	 Satisfied	with	the	setup,	she	revokes	SSH	access	to	the	web	server
group

$	ec2-revoke	apache	-P	tcp	-p	22	-s	192.168.1.130/32

Creating	the	group	for	database	servers	and	granting	access	to	them	from	the
application	server	group	is	left	as	an	exercise	for	the	reader	;-)

Tools	and	APIs
Below	we	highlight	the	most	relevant	command-line	tools	and	SOAP	API	calls
used	to	manipulate	security	groups.	Please	refer	to	the	appropriate	sections	of
this	guide	for	the	specific	details.

Purpose Command-line
tool

SOAP	API

List	the	rules	belonging	to	specified	groups ec2-describe-
group

DescribeSecurityGroups

Create	a	new	security	group ec2-add-group CreateSecurityGroup

Delete	an	existing	security	group ec2-delete-group DeleteSecurityGroup

Add	an	access	rule	to	an	existing	security	group ec2-authorize AuthorizeSecurityGroupIngress

Remove	an	access	rule	from	an	existing	security
group

ec2-revoke RevokeSecurityGroupIngress

Using	the	APIs
This	section	details	the	APIs	available.	Currently	the	APIs	are	available	as
SOAP	calls	and	HTTP	Query	requests.

Using	the	SOAP	API

WSDL	and	Schema	Definitions

The	Amazon	EC2	web	service	can	be	accessed	using	the	SOAP	web	services
messaging	protocol.	This	interface	is	described	by	a	Web	Services	Description
Language	(WSDL)	document	which	defines	the	operations	and	security	model
for	the	service.	The	WSDL	references	an	XML	Schema	document	which	strictly
defines	the	datatypes	that	may	appear	in	SOAP	requests	and	responses.	For	more
information	on	WSDL	and	SOAP,	please	see	the	references	in	the	section	called
“Additional	Web	Services	References”.

All	schemas	have	a	version	number.	The	version	number	appears	in	the	URL	of
a	schema	file,	and	in	a	schema's	target	namespace.	The	latest	version	is	2007-01-
03.	Upgrading	is	made	easy	by	differentiating	requests	based	on	the	version
number.	In	addition	to	the	latest	version,	the	service	will	support	the	older
versions	for	some	time.	Once	customer	transition	to	the	new	version	is	complete,
the	older	versions	will	be	retired.

The	Amazon	EC2	services	API	WSDL	can	be	found	at	URLs	of	the	form
'http://ec2.amazonaws.com/doc/VERSION/ec2.wsdl'	where	VERSION	indicates
the	version	of	the	API.	The	current	API	version	is	2007-01-03	and	can	thus	be
found	at	URL	http://ec2.amazonaws.com/doc/2007-01-03/AmazonEC2.wsdl

http://ec2.amazonaws.com/doc/2007-01-03/AmazonEC2.wsdl

Making	Requests

The	Amazon	EC2	web	service	complies	with	the	current	WS-Security	standard,
requiring	SOAP	request	messages	to	be	hashed	and	signed	for	integrity	and	non-
repudiation.	WS-Security	defines	profiles	which	are	used	to	implement	various
levels	of	security.	Amazon	EC2	secure	SOAP	messages	use
BinarySecurityToken	profile,	consisting	of	an	X.509	certificate	with	an	RSA
public	key.

Programming	Language	Support	in	Amazon	EC2

Since	the	SOAP	requests	and	responses	in	the	Amazon	EC2	Web	Service	follow
current	standards,	any	programming	language	with	the	appropriate	library
support	may	be	used.	Languages	known	to	have	such	support	include	C++,	C#,
Java,	Perl,	Python	and	Ruby.	Currently	we	only	supply	java	libraries	for	our	API
but	expect	to	release	additional	language	bindings	in	the	future.

Request	Authentication

The	following	is	an	insecure	request	to	run	instances:

<RunInstances	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
				<instancesSet>
								<item>
												<imageId>ami-60a54009</imageId>
												<minCount>1</minCount>
												<maxCount>3</maxCount>
								</item>
				</instancesSet>
				<groupSet/>
</RunInstances>

In	order	to	secure	the	request,	we	must	add	the	BinarySecurityToken	element
mentioned	above.	The	Java	libraries	we	supply	rely	on	the	Apache	Axis	project
for	XML	security,	canonicalization	and	SOAP	support.	(The	Sun	Java	Web
Service	Developer's	Pack	supplies	libraries	of	equivalent	functionality.)

The	secure	version	of	the	request	begins	with	the	following:

<SOAP-ENV:Envelope	xmlns:SOAP-ENV="http://schemas.xmlsoap.org/soap/envelope/">
		<SOAP-ENV:Header>
				<wsse:Security	xmlns:wsse="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-secext-1.0.xsd">
						<wsse:BinarySecurityToken
						xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"
						EncodingType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-soap-message-security-1.0#Base64Binary"
						ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3"
						wsu:Id="CertId-1064304">....many,	many	lines	of	base64	encoded
						X.509	certificate...</wsse:BinarySecurityToken>
						<ds:Signature	xmlns:ds="http://www.w3.org/2000/09/xmldsig#">
								<ds:SignedInfo>
										<ds:CanonicalizationMethod	Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"></ds:CanonicalizationMethod>
										<ds:SignatureMethod	Algorithm="http://www.w3.org/2000/09/xmldsig#rsa-sha1"></ds:SignatureMethod>
										<ds:Reference	URI="#id-17984263">
												<ds:Transforms>
														<ds:Transform	Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"></ds:Transform>
												</ds:Transforms>
												<ds:DigestMethod	Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></ds:DigestMethod>
												<ds:DigestValue>0pjZ1+TvgPf6uG7o+Yp3l2YdGZ4=</ds:DigestValue>
										</ds:Reference>
										<ds:Reference	URI="#id-15778003">
												<ds:Transforms>

														<ds:Transform	Algorithm="http://www.w3.org/2001/10/xml-exc-c14n#"></ds:Transform>
												</ds:Transforms>
												<ds:DigestMethod	Algorithm="http://www.w3.org/2000/09/xmldsig#sha1"></ds:DigestMethod>
												<ds:DigestValue>HhRbxBBmc2OO348f8nLNZyo4AOM=</ds:DigestValue>
										</ds:Reference>
								</ds:SignedInfo>
								<ds:SignatureValue>bmVx24Qom4kd9QQtclxWIlgLk4QsQBPaKESi79x479xgbO9PEStXMiHZuBAi9luuKdNTcfQ8UE/d
								jjHKZKEQRCOlLVy0Dn5ZL1RlMHsv+OzJzzvIJFTq3LQKNrzJzsNe</ds:SignatureValue>
								<ds:KeyInfo	Id="KeyId-17007273">
										<wsse:SecurityTokenReference
														xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"	wsu:Id="STRId-22438818">
												<wsse:Reference	URI="#CertId-1064304"
																												ValueType="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0#X509v3">
												</wsse:Reference>
										</wsse:SecurityTokenReference>
								</ds:KeyInfo>
						</ds:Signature>
						<wsu:Timestamp
										xmlns:wsu="http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-wssecurity-utility-1.0.xsd"	wsu:Id="id-17984263">
								<wsu:Created>2006-06-09T10:57:35Z</wsu:Created>
								<wsu:Expires>2006-06-09T11:02:35Z</wsu:Expires>
						</wsu:Timestamp>
				</wsse:Security>
		</SOAP-ENV:Header>

Let's	take	a	quick	look	at	the	most	important	elements	in	case	you	are	matching
this	against	requests	generated	by	Amazon	EC2	supplied	libraries,	or	those	of
another	vendor.

BinarySecurityToken	-	contains	the	X.509	certificate	in	base64	encoded
PEM	format.

Signature	-	contains	XML	digital	signature	created	using	the
canonicalization,	signature	algorithm,	and	digest	method	described	within.

Timestamp	-	Any	request	is	only	valid	to	Amazon	EC2	within	5	minutes	of
this	value.	Used	to	prevent	replay	attacks.

Understanding	Responses

In	response	to	a	request,	the	Amazon	EC2	web	service	returns	an	XML	data
structure	that	conforms	to	an	XML	schema	defined	as	part	of	the	Amazon	EC2
WSDL.	The	structure	of	a	XML	response	is	specific	to	the	associated	request.	In
general,	the	response	datatypes	with	be	named	according	to	the	operation
performed	and	whether	the	datatype	is	a	container	(may	have	children).
Examples	of	containers	include	'groupSet'	for	security	groups	and	'instancesSet'
for	instances.	Item	elements	are	children	of	containers	and	their	contents	vary
according	to	the	container's	role.

An	example	response	is:

<RunInstancesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<reservationId>r-47a5402e</reservationId>
		<ownerId>UYY3TLBUXIEON5NQVUUX6OMPWBZIQNFM</ownerId>
		<groupSet>
				<item>
						<groupId>default</groupId>
				</item>
		</groupSet>
		<instancesSet>
				<item>
						<instanceId>i-2ba64342</instanceId>
						<imageId>ami-60a54009</imageId>
						<instanceState>
								<code>0</code>
				<name>pending</name>
						</instanceState>
						<dnsName></dnsName>
				</item>
				<item>
						<instanceId>i-2bc64242</instanceId>
						<imageId>ami-60a54009</imageId>
						<instanceState>
								<code>0</code>
				<name>pending</name>
						</instanceState>
						<dnsName>domU-13-35-33-00-00-5C.dc2.compute.amazonaws.com</dnsName>
				</item>
				<item>
						<instanceId>i-2be64332</instanceId>
						<imageId>ami-60a54009</imageId>
						<instanceState>

http://ec2.amazonaws.com/doc/2007-01-03/AmazonEC2.wsdl

								<code>0</code>
				<name>pending</name>
						</instanceState>
						<dnsName>domU-12-34-28-00-00-5C.dc2.compute.amazonaws.com</dnsName>
				</item>
		</instancesSet>
</RunInstancesResponse>

Additional	Web	Services	References

Web	Service	Description	Language	(WSDL)

WS-Security	BinarySecurityToken	Profile

http://www.w3.org/TR/wsdl
http://docs.oasis-open.org/wss/2004/01/oasis-200401-wss-x509-token-profile-1.0.pdf

Using	the	Query	API

Making	Requests

HTTP	Query-based	requests	are	defined	as	any	HTTP	requests	using	the	HTTP
verb	GET	or	POST	and	a	Query	parameter	named	either	Action	or	Operation.
Action	is	used	throughout	this	documentation,	although	Operation	is	supported
for	backward	compatibility	with	other	AWS	Query	APIs.

Query	Parameters

Each	Query	request	must	include	some	common	parameters	to	handle
authentication	and	selection	of	an	action.	These	parameters	are	documented	in
the	section	called	“Common	Query	Parameters”.

Some	operations	take	lists	of	parameters.	These	lists	are	specified	using	the
param.n	notation.	Values	of	n	should	be	integers	starting	from	1.

Query	API	Authentication

Every	request	to	Amazon	EC2	must	contain	a	request	signature.	A	request
signature	is	calculated	by	constructing	a	string	and	then	calculating	an	RFC
2104-compliant	HMAC-SHA1	hash,	using	the	Secret	AWS	Access	Key	as	the
key.	For	more	information,	see	http://www.faqs.org/rfcs/rfc2104.html.

The	following	are	the	basic	steps	used	in	authenticating	requests	to	AWS.	It	is
assumed	that	the	developer	has	already	registered	with	AWS	and	received	an
Access	Key	ID	and	Secret	Access	Key.

1.	 The	sender	constructs	a	request	to	AWS.

2.	 The	sender	calculates	the	request	signature,	a	Keyed-Hashing	for	Message
Authentication	Code	(HMAC)	with	a	SHA-1	hash	function,	as	defined	in
the	next	section	of	this	topic.

3.	 The	sender	of	the	request	sends	the	request	data,	the	signature,	and	Access
Key	ID	(the	key-identifier	of	the	Secret	Access	Key	used)	to	AWS.

4.	 AWS	uses	the	Access	Key	ID	to	look	up	the	Secret	Access	Key.

5.	 AWS	generates	a	signature	from	the	request	data	and	the	Secret	Access	Key
using	the	same	algorithm	used	to	calculate	the	signature	in	the	request.

6.	 If	the	signatures	match,	the	request	is	considered	to	be	authentic.	If	the
comparison	fails,	the	request	is	discarded,	and	AWS	returns	an	error
response.

Note
If	a	request	contains	a	Timestamp	parameter,	the	signature
calculated	for	the	request	expires	15	minutes	after	the
Timestamp	value.	If	a	request	contains	an	Expires
parameter,	the	signature	expires	at	the	time	specified	as	the
value	for	the	Expires	parameter.

http://www.faqs.org/rfcs/rfc2104.html

Calculating	Request	Signatures

The	following	steps	demonstrate	how	to	calculate	a	signature	for	requests	to
AWS:

1.	 Based	on	the	API	(Query/SOAP/REST)	being	used,	construct	a	string.

2.	 Compute	an	RFC	2104	compliant	HMAC	using	the	Secret	AWS	Access
Key	as	the	"key".	This	value	should	be	base64	encoded,	and	then	included
as	the	value	for	the	Signature	parameter	for	the	request.

Calculating	the	string	to	sign

The	following	steps	demonstrate	how	to	calculate	the	string	to	be	signed:

1.	 The	query	parameters	(not	URL-encoded)	need	to	be	sorted	case-
insensitively.

2.	 Concatenate	the	parameter	names	and	values	without	the	initial	?	or	the
separating	&	and	=	characters.

Given	the	following	Query	string	to	sign	(linebreaks	added	for	clarity):

?Action=DescribeImages

&AWSAccessKeyId=10QMXFEV71ZS32XQFTR2

&SignatureVersion=1

&Timestamp=2006-12-08T07%3A48%3A03Z

&Version=2007-01-03

The	HMAC	signature	should	be	calculated	over	the	following	string:

ActionDescribeImagesAWSAccessKeyId10QMXFEV71ZS32XQFTR2SignatureVersion1Timestamp2006-12-08T07:48:03ZVersion2007-01-03

Calculating	the	HMAC	signature

Given	the	Query	string	above	and	the	secret	key
DMADSSfPfdaDjbK+RRUhS/aDrjsiZadgAUm8gRU2	the	base64	encoded	signature	is
as	follows:

GjH3941IBe6qsgQu+k7FpCJjpnc=

Shown	below	is	a	Java	code	sample	to	compute	the	signature	from	the	string	and
the	private	key.

import	java.security.SignatureException;

import	javax.crypto.Mac;

import	javax.crypto.spec.SecretKeySpec;

public	class	HmacExample

{

				private	static	final	String	HMAC_SHA1_ALGORITHM	=	"HmacSHA1";

				

				/**

					*	Computes	RFC	2104-compliant	HMAC	signature.

					*	

					*	@param	data

					*					The	data	to	be	signed.

					*	@param	key

					*					The	signing	key.

					*	@return

					*					The	base64-encoded	RFC	2104-compliant	HMAC	signature.

					*	@throws

					*					java.security.SignatureException	when	signature	generation	fails

					*/

				public	static	String	calculateRFC2104HMAC(String	data,	String	key)

								throws	java.security.SignatureException

				{

								String	result;

								try	{

												//	get	an	hmac_sha1	key	from	the	raw	key	bytes

												SecretKeySpec	signingKey	=	new	SecretKeySpec(key.getBytes(),	

																																																									HMAC_SHA1_ALGORITHM);

												

												//	get	an	hmac_sha1	Mac	instance	and	initialize	with	the	signing	key

												Mac	mac	=	Mac.getInstance(HMAC_SHA1_ALGORITHM);

												mac.init(signingKey);

												

												//	compute	the	hmac	on	input	data	bytes

												byte[]	rawHmac	=	mac.doFinal(data.getBytes());

												

												//	base64-encode	the	hmac

												result	=	Base64.encodeBytes(rawHmac);

								}	

								catch	(Exception	e)	{

												throw	new	SignatureException("Failed	to	generate	HMAC	:	"	+	e.getMessage());

								}

								return	result;

				}

}

Note
You	must	import	a	base	64	encoder	to	perform	the	last	step
in	the	above	method.

Example	Request

Here	is	a	complete	example	request,	including	all	required	parameters:

?AWSAccessKeyId=10QMXFEV71ZS32XQFTR2&Action=DescribeImages&SignatureVersion=1&Timestamp=2006-12-08T07%3A48%3A03Z&Version=2007-01-03&Signature=69DSJs1z%2B0wWJmdB77%2BLm0N0Trs%3D

API	Reference
Amazon	EC2	provides	two	APIs,	SOAP	and	Query.	These	APIs	allow
developers	to	launch	and	control	instances	from	their	own	applications.

This	section	discusses	the	operations	available	in	the	Amazon	EC2	APIs,	the
semantics	of	those	calls	and	the	parameters	that	must	be	supplied.	Examples	of
requests	and	responses	are	also	provided.

Note
The	same	XML	body	is	returned	in	both	the	Query	API
and	SOAP	API.

We	recommend	you	familiarize	yourself	with	the	conventions	we've	used	in
describing	the	API.

API	Conventions

Overview

This	topic	discusses	the	conventions	used	in	the	Amazon	EC2	API	reference.
This	includes	terminology,	notation	and	any	abbreviations	used	to	illuminate	the
API.

The	API	reference	is	broken	down	into	a	collection	of	Actions	and	Data	Types.

Actions

Actions	encapsulate	the	possible	interactions	with	Amazon	EC2.	These	can	be
viewed	as	remote	procedure	calls	and	consist	of	a	request	and	response	message
pair.	Requests	must	be	signed,	allowing	Amazon	EC2	to	authenticate	the	caller.
For	clarity,	the	sample	requests	and	responses	illustrating	each	of	the	operations
described	in	this	reference	are	not	signed.

Data	Types	and	the	Amazon	EC2	WSDL

The	current	version	of	the	Amazon	EC2	WSDL	is	available	at	the	following
location:	http://ec2.amazonaws.com/doc/2007-01-03/AmazonEC2.wsdl.	Some
libraries	can	generate	code	directly	from	the	WSDL.	Other	libraries	require	a
little	more	work	on	your	part.

Values	provided	as	parameters	to	the	various	operations	must	be	of	the	indicated
type.	Standard	XSD	types	(like	string,	boolean,	int)	are	prefixed	with	xsd:.
Complex	types	defined	by	the	Amazon	EC2	WSDL	are	prefixed	with	ec2:.

Parameters	that	consist	of	lists	of	information	are	defined	within	our	WSDL	to
require	<info>	tags	around	each	member.	Throughout	the	API,	type	references
for	parameters	that	accept	such	a	list	of	values	are	specified	using	the	notation
type[]	The	type	referred	to	in	these	instances	is	the	type	nested	within	the
<info>	tag	(for	Amazon	EC2	types	this	is	defined	in	the	WSDL).

For	example,	the	<imagesSet>	element	in	the	following	XML	snippet	is	of	type
xsd:string[]:

<imagesSet>
		<item>
				<imageId>ami-61a54008</imageId>
		</item>
		<item>
				<imageId>ami-61b54608</imageId>
		</item>
</imagesSet>

And	the	<instancesSet>	element	in	the	following	XML	snippet	is	of	type
ec2:RunInstanceItemType[]:

<instancesSet>
				<item>
								<imageId>ami-60a54009</imageId>
								<minCount>10</minCount>
								<maxCount>30</maxCount>
				</item>
				<item>
								<imageId>ami-60b54209</imageId>
								<minCount>5</minCount>

http://ec2.amazonaws.com/doc/2007-01-03/AmazonEC2.wsdl

								<maxCount>20</maxCount>
				</item>
</instancesSet>

API	Versioning
All	Amazon	EC2	API	updates	are	versioned.	This	helps	to	minimize	the	impact
of	API	changes	on	client	software	by	making	it	possible	to	always	send	back	a
response	that	the	client	is	capable	of	processing.	We	endeavor	as	far	as	possible
to	retain	backwards	compatibility	with	new	API	revisions.	However,	there	may
be	occasions	where	an	incompatible	API	change	is	required.	In	addition,	in
newer	API	releases	existing	responses	may	include	additional	fields,	and
depending	on	how	client	software	is	written	it	may	or	may	not	be	able	to	handle
these	additional	fields.	By	including	a	version	in	the	request,	a	client	guarantees
that	it	will	always	be	sent	a	response	it	expects.

Each	API	revision	is	assigned	a	version	in	date	form	(the	current	API	version	is
2007-01-03).	This	version	is	included	in	the	request	as	part	of	the	document
namespace	when	using	our	SOAP	API	and	as	a	Version	parameter	when	using
our	Query	API.	The	response	returned	by	Amazon	EC2	will	honor	the	version
included	in	the	request.	Fields	introduced	in	a	later	API	version	will	not	be
returned	in	the	response.

SOAP	clients	that	retrieve	the	Amazon	EC2	WSDL	at	runtime	and	generate	their
requests	dynamically	using	that	WSDL	should	reference	the	WSDL	for	the
version	of	the	API	the	client	was	developed	against.	This	will	ensure	client
software	continues	to	work	even	in	the	face	of	backwards	incompatible	API
changes.	The	WSDL	for	each	supported	API	version	is	available	from	the
following	URI:

http://ec2.amazonaws.com/doc/<api-version>/AmazonEC2.wsdl

The	WSDL	for	latest	version	of	our	API	can	always	be	retrieved	from	the
following	URI:

http://ec2.amazonaws.com/doc/AmazonEC2.wsdl

Note
The	WSDL	referenced	in	the	above	link	should	be	treated
as	a	moving	target.	This	WSDL	will	always	track	the	latest
release	of	the	Amazon	EC2	SOAP	API.	If	your	software
depends	on	fetching	the	WSDL	at	runtime	then	we	strongly

http://ec2.amazonaws.com/doc/AmazonEC2.wsdl

recommend	you	reference	the	specific	version	of	the
WSDL	you	are	developing	against.

API	Error	Codes

Overview

There	are	two	types	of	error	codes,	client	and	server.

Client	error	codes	suggest	that	the	error	was	caused	by	something	the	client	did,
such	as	an	authentication	failure	or	an	invalid	AMI	identifier.	In	the	SOAP	API,
These	error	codes	are	prefixed	with	Client.	For	example:	Client.AuthFailure.
In	the	Query	API,	these	errors	are	accompanied	by	a	40x	HTTP	response	code.

Server	error	codes	suggest	that	the	error	was	caused	by	a	server-side	issue,	and
should	be	reported.	In	the	SOAP	API,	These	error	codes	are	prefixed	with
Server.	For	example:	Server.Unavailable.	In	the	Query	API,	these	errors	are
accompanied	by	a	50x	HTTP	response	code.

Summary	of	Client	Error	Codes

Error	Code Definition Notes

AuthFailure User	not	authorized. Common	cause	is	trying	to	run	an
AMI	for	which	you	do	not	have
permission.

InvalidManifest Specified	AMI	has	an
unparsable	Manifest.

InvalidAMIID.Malformed Specified	AMI	ID	is	not
valid.

InvalidAMIID.NotFound Specified	AMI	ID	does
not	exist.

InvalidAMIID.Unavailable Specified	AMI	ID	has
been	deregistered	and	is
no	longer	available.

InvalidInstanceID.Malformed Specified	instance	ID	is
not	valid.

InvalidInstanceID.NotFound Specified	instance	ID
does	not	exist.

InvalidKeyPair.NotFound Specified	keypair	name
does	not	exist.

InvalidKeyPair.Duplicate Attempt	to	create	a
duplicate	keypair.

InvalidGroup.NotFound Specified	group	name
does	not	exist.

InvalidGroup.Duplicate Attempt	to	create	a
duplicate	group.

InvalidGroup.InUse Specified	group	can	not
be	deleted	because	it	is	in
use.

InvalidGroup.Reserved Specified	group	name	is	a
reserved	name.

InvalidParameterValue The	value	supplied	for	a
parameter	was	invalid.

Requests	that	could	cause	this	error
include	(for	example)	supplying	an
invalid	image	attribute	to	the
DescribeImageAttribute	request	or
an	invalid	version	or	encoding
value	for	the	userData	in	a

RunInstances	request.
InvalidPermission.Duplicate Attempt	to	authorize	a

permission	that	has
already	been	authorized.

InvalidPermission.Malformed Specified	permission	is
invalid.

InvalidReservationID.Malformed Specified	reservation	ID
is	invalid.

InvalidReservationID.NotFound Specified	reservation	ID
does	not	exist.

InstanceLimitExceeded User	has	max	allowed
concurrent	running
instances.

Each	user	has	a	concurrent	running
instance	limit.	For	new	users	during
public	beta,	this	limit	is	20.

InvalidParameterCombination RunInstances	was	called
with	minCount	and
maxCount	set	to	0	or
minCount	>	maxCount.

InvalidUserID.Malformed The	user	ID	is	neither	in
the	form	of	an	AWS
account	ID	or	one	of	the
special	values	accepted
by	the	owner	or
executableBy	flags	in
the	DescribeImages	call.

	

InvalidAMIAttributeItemValue The	value	of	an	item
added	to,	or	removed
from,	an	image	attribute
is	invalid.

If	you	are	specifying	a	userId	check
that	it	is	in	the	form	of	an	AWS
account	ID.

UnknownParameter An	unknown	or
unrecognized	parameter
was	supplied.

Requests	that	could	cause	this	error
include	(for	example)	supplying	a
misspelt	parameter	or	a	parameter
that	is	not	supported	for	the	specific
API	version	being	used.

Summary	of	Server	Error	Codes

Error	Code Definition Notes

InternalError Internal	Error. Should	not	occur.	Please	let	us
know.	Try	to	reproduce.

InsufficientInstanceCapacity Not	enough	available
instances	to	satisfy	your
minimum	request.

You	can	lower	your	request	or	wait
for	additional	capacity	to	become
available.

Unavailable Indicates	the	server	is
overloaded	and	cannot
handle	request.

Common	Data	Types
The	Amazon	EC2	API	contains	several	data	types	used	by	the	various
operations.	This	section	describes	each	operation	in	detail.

Since	both	the	Query	and	SOAP	APIs	return	the	same	XML	body,	the	data	types
described	in	the	WSDL	are	used	in	both.

DescribeImagesResponseItemType
The	DescribeImagesResponseItemType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

DescribeImages

Contents

The	following	table	describes	and	shows	the	elements	contained	in
DescribeImagesResponseItemType.

Member Description Type

imageId Unique	ID	of	the	AMI	being	described. xsd:string

imageState Current	state	of	the	AMI.

available:	the	image	has	been	successfully
registered	and	is	available	for	launching
deregistered:	the	image	has	recently	been
deregistered	and	is	no	longer	available	for
launching

xsd:string

imageOwnerId AWS	Access	Key	ID	of	the	image	owner. xsd:string

isPublic Returns	true	if	this	image	has	public	launch
permissions.	Returns	false	if	it	only	has	implicit	and
explicit	launch	permissions.

xsd:boolean

productCodes Product	codes	associated	with	this	image. ec2:ProductCodeItemType[]

DescribeKeyPairsResponseItemType
The	DescribeKeyPairsResponseItemType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

DeleteKeypair

DescribeKeypairs

Contents

The	following	table	describes	and	shows	the	elements	contained	in
DescribeKeyPairsResponseItemType.

Member Description Type

keyName The	user	supplied	name	for	this	key	pair. xsd:string

keyFingerprint A	fingerprint	for	the	private	key	of	this	keypair.	This	is	computed	as
the	SHA-1	digest	of	the	DER	encoded	form	of	the	private	key.

xsd:string

EmptyElementType
The	EmptyElementType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

ResetImageAttribute

DescribeImageAttribute

Contents

The	empty	element	is	just	that	-	an	empty	element,	and	has	no	contents.

GroupSetType
The	GroupSetType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

RunInstances

Contents

The	following	table	describes	and	shows	the	elements	contained	in
GroupSetType.

Member Description Type

groupId Name	of	a	security	group. xsd:string

InstanceStateType
The	InstanceStateType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

RunInstances

DescribeInstances

TerminateInstances

Contents

The	following	table	describes	and	shows	the	elements	contained	in
InstanceStateType.

Member Description Type

code A	16	bit	unsigned	integer.	The	high	byte	is	an	opaque	internal	value	and
should	be	ignored	when	consulting	this	value.	The	low	byte	is	set	based	on
the	state	represented:

pending:	0
running:	16
shutting-down:	32
terminated:	48

xsd:int

name The	current	state	of	the	instance.

pending:	the	instance	is	in	the	process	of	being	launched
running:	the	instance	has	been	launched	(although	it	may	not	yet	have
completed	the	boot	process)
shutting-down:	the	instance	has	begun	the	shutdown	process
terminated:	the	instance	has	been	terminated

xsd:string

IpPermissionType
The	IpPermissionType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

AuthorizeSecurityGroupIngress

DescribeSecurityGroups

RevokeSecurityGroupIngress

Contents

The	following	table	describes	and	shows	the	elements	contained	in
IpPermissionType.

Member Description Type

ipProtocol IP	Protocol. xsd:string

fromPort Start	of	port	range	for	the	TCP	and	UDP	protocols,	or	an
ICMP	type	number.	An	ICMP	type	number	of	-1
indicates	a	wildcard	(i.e.	any	ICMP	type	number).

xsd:int

toPort End	of	port	range	for	the	TCP	and	UDP	protocols,	or	an
ICMP	code.	An	ICMP	code	of	-1	indicates	a	wildcard
(i.e.	any	ICMP	code).

xsd:int

groups List	of	security	group	and	user	ID	pairs. ec2:UserIdGroupPairType[]

ipRanges List	of	CIDR	IP	range	specifications. xsd:string[]

LaunchPermissionItemType
The	LaunchPermissionItemType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

ModifyImageAttribute

DescribeImageAttribute

Contents

The	following	table	describes	and	shows	the	elements	contained	in
LaunchPermissionItemType.

Element
Name

Description Required? Type

group A	launch	permission	for	a	group.	Currently	only	all	is
supported,	which	gives	public	launch	permissions.

Choice	between
group	and	userId

xsd:string

userId A	launch	permission	for	a	user.	userId	is	an	AWS
account	id.

Choice	between
group	and	userId

xsd:string

LaunchPermissionOperationType
The	LaunchPermissionOperationType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

ModifyImageAttribute

Contents

The	following	table	describes	and	shows	the	elements	contained	in
LaunchPermissionOperationType.

Element
Name

Description Required? Type

add Adds	launch
permissions.

Choice	between	add	and
remove

ec2:LaunchPermissionItemType[]

remove Removes	launch
permissions.

Choice	between	add	and
remove

ec2:LaunchPermissionItemType[]

ProductCodeItemType
The	ProductCodeItemType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

ModifyImageAttribute

DescribeImageAttribute

Contents

The	following	table	describes	the	elements	contained	in	ProductCodeItemType.

Element	Name Description Required? Type

productCode A	product	code. Yes xsd:string

ProductInstanceResponseItemType
The	ProductInstanceResponseItemType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

ConfirmProductInstance

Contents

The	following	table	describes	the	elements	contained	in
ProductInstanceResponseItemType.

Member Description Type

productCode The	product	code	attached	to	the	instance	that	matches	one	of	the	product
codes	in	the	ConfirmProductInstance	request.

xsd:string

instanceId Unique	ID	of	the	instance. xsd:string

ownerId The	account	ID	of	the	owner	of	the	instance. xsd:string

ReservationInfoType
The	ReservationInfoType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

RunInstances

DescribeInstances

Contents

The	following	table	describes	and	shows	the	elements	contained	in
ReservationInfoType.

Member Description Type

reservationId Unique	ID	of	the	reservation	being	described. xsd:string

ownerId AWS	Access	Key	ID	of	the	user	who	owns	the
reservation.

xsd:string

groupSet Set	of	security	groups	these	instances	were
launched	in.

ec2:GroupSetType[]

instancesSet Information	about	instances	started. ec2:RunningInstancesItemType[]

RunInstanceItemType
The	RunInstanceItemType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

RunInstances

Contents

The	following	table	describes	and	shows	the	elements	contained	in
RunInstanceItemType.

Member Description Type

imageId Unique	ID	of	a	machine	image,	returned	by	a	call	to	RegisterImage. xsd:string

minCount Minimum	number	of	instances	to	launch.	If	minCount	is	more	than
Amazon	EC2	can	launch,	no	instances	are	launched	at	all.

xsd:int

maxCount Maximum	number	of	instances	to	launch.	If	maxCount	is	more	than
Amazon	EC2	can	launch,	the	largest	possible	number	above	minCount	will
be	launched	instead.

xsd:int

keyName The	name	of	the	keypair. xsd:string

RunningInstancesItemType
The	RunningInstancesItemType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

RunInstances

Contents

The	following	table	describes	and	shows	the	elements	contained	in
RunningInstancesItemType.

Element	Name Description Type

instanceId Unique	ID	of	the	instance	launched. xsd:string

imageId Image	ID	of	the	AMI	used	to	launch	the	instance. xsd:string

instanceState The	current	state	of	the	instance.

pending:	the	instance	is	in	the	process	of
being	launched
running:	the	instance	has	been	launched
(although	it	may	not	yet	have	completed	the
boot	process)
shutting-down:	the	instance	has	begun	the
shutdown	process
terminated:	the	instance	has	been	terminated

ec2:InstanceStateType

privateDnsName The	private	DNS	name	assigned	to	the	instance.
This	DNS	name	is	only	contactable	from	inside	the
Amazon	EC2	network.	This	element	remains	empty
until	the	instance	enters	a	running	state.	See
Chapter	4,	Using	and	Securing	the	Network	for
more	info.

xsd:string

dnsName The	public	DNS	name	assigned	to	the	instance.	This
DNS	name	is	contactable	from	outside	the
Amazon	EC2	network.	This	element	remains	empty
until	the	instance	enters	a	running	state.	See
Chapter	4,	Using	and	Securing	the	Network	for
more	info.

xsd:string

reason An	optional	reason	for	the	most	recent	state
transition.	This	may	be	an	empty	string.

xsd:string

keyName An	optional	key	name.	If	this	instance	was	launched
with	an	associated	key	pair,	this	is	the	name	of	that
key	pair.

xsd:string

amiLaunchIndex An	optional	AMI	launch	index	which	can	be	used	to
determine	which	instance	this	is	in	the	launch
group.	See	using	instance	data	for	more	info.

xsd:string

productCodes Product	codes	attached	to	this	instance. ec2:ProductCodeItemType[]

SecurityGroupItemType
The	SecurityGroupItemType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

DescribeSecurityGroups

Contents

The	following	table	describes	and	shows	the	elements	contained	in
SecurityGroupItemType.

Member Description Type

ownerId AWS	Access	Key	ID	of	the	owner	of	the	security
group	described.

xsd:string

groupName Name	of	the	security	group. xsd:string

groupDescription Description	of	the	security	group. xsd:string

ipPermissions Set	of	IP	permissions	associated	with	the	security
group.

ec2:IpPermissionType[]

TerminateInstancesResponseInfoType
The	TerminateInstancesResponseInfoType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

TerminateInstances

Contents

The	following	table	describes	and	shows	the	elements	contained	in
TerminateInstancesResponseInfoType.

Element	Name Description Type

instanceId Instance	ID	returned	from	previous	call	to	RunInstances. xsd:string

UserDataType
The	UserDataType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

RunInstances

Contents

The	following	table	describes	and	shows	the	elements	contained	in
UserDataType.

Member Description Type

data The	user	data. xsd:string

Notes

The	data	element	must	specify	the	attributes

Attribute	name Required? Value

version Yes 1.0

encoding Yes base64

The	user	data	is	base64-encoded	as	per	RFC3548	with	the	additional
restrictions

Implementations	MUST	NOT	add	linefeeds	to	encoded	data

Implementations	MUST	pad	(end	of)	encoded	data	with	'='	if	required

Implementations	MUST	ignore	characters	in	the	encoded	stream	that
are	not	in	the	encoding	alphabet.	Note	that	this	differs	from	what
RFC3548	says.	It	is	included	because	it	provides	more	leeway	for
clients.

Encoding	alphabet	as	per	table	1	in	RFC3548	(i.e.	A-Za-z0-9+/)

The	size	limit	on	the	user	data	applies	to	the	data	before	base64
encoding

http://www.faqs.org/rfcs/rfc3548.html
http://www.faqs.org/rfcs/rfc3548.html

UserIdGroupPairType
The	UserIdGroupPairType	data	type.

Relevant	Operations

Operations	that	use	this	data	type	include:

AuthorizeSecurityGroupIngress

DescribeSecurityGroups

RevokeSecurityGroupIngress

Contents

The	following	table	describes	and	shows	the	elements	contained	in
UserIdGroupPairType.

Member Description Type

userId AWS	Access	Key	ID	of	a	user. xsd:string

groupName Name	of	a	security	group. xsd:string

EC2	SOAP	API
The	Amazon	EC2	API	consists	of	web	service	operations	for	every	task	the
service	can	perform.	This	section	describes	each	operation	in	detail.

By	Function

Operations

Images

RegisterImage

DescribeImages

DeregisterImage

Instances

RunInstances

DescribeInstances

TerminateInstances

ConfirmProductInstance

Keypairs

CreateKeyPair

DescribeKeyPairs

DeleteKeyPair

Image	Attributes

ModifyImageAttribute

DescribeImageAttribute

ResetImageAttribute

Security	Groups

CreateSecurityGroup

DescribeSecurityGroups

DeleteSecurityGroup

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

AuthorizeSecurityGroupIngress
The	AuthorizeSecurityGroupIngress	operation	adds	permissions	to	a	security
group.

Permissions	are	specified	in	terms	of	the	IP	protocol	(TCP,	UDP	or	ICMP),	the
source	of	the	request	(by	IP	range	or	an	Amazon	EC2	user-group	pair),	source
and	destination	port	ranges	(for	TCP	and	UDP),	and	ICMP	codes	and	types	(for
ICMP).

Note
Changes	are	anticipated	in	this	API	that	may	restrict	further
what	is	allowable.	Please	consult	the	section	called
“Anticipated	API	changes”	for	more	details.

Permission	changes	are	propagated	to	instances	within	the	security	group	being
modified	as	quickly	as	possible.	However,	a	small	delay	is	likely,	depending	on
the	number	of	instances	that	are	members	of	the	indicated	group.

Request	Parameters

The	following	table	describes	the	request	parameters	for
AuthorizeSecurityGroupIngress.	Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

userId AWS	Access	Key	ID. Yes xsd:string

groupName Name	of	the	group	to	modify. Yes xsd:string

ipPermissions Set	of	permissions	to	add	to	the	group. Yes ec2:IpPermissionType[]

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
AuthorizeSecurityGroupIngress	responses.

Element	Name Definition Type

return true	if	permissions	successfully	added. xsd:boolean

Sample	Request

<AuthorizeSecurityGroupIngress	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
				<userId/>
				<groupName>WebServers</groupName>
				<ipPermissions>
								<item>
												<ipProtocol>tcp</ipProtocol>
												<fromPort>80</fromPort>
												<toPort>80</toPort>
												<groups/>
												<ipRanges>
																<item>
																				<cidrIp>0.0.0.0/0</cidrIp>
																</item>
												</ipRanges>
								</item>
				</ipPermissions>
</AuthorizeSecurityGroupIngress>

Sample	Response

<AuthorizeSecurityGroupIngressResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</AuthorizeSecurityGroupIngressResponse>

Related	Operations

CreateSecurityGroup

DescribeSecurityGroups

RevokeSecurityGroupIngress

DeleteSecurityGroup

ConfirmProductInstance
The	ConfirmProductInstance	operation	returns	true	if	the	given	product	code	is
attached	to	the	instance	with	the	given	instance	id.	False	is	returned	if	the
product	code	is	not	attached	to	the	instance.

Request	Parameters

The	following	table	describes	the	request	parameters	for
ConfirmProductInstance.	Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

productCode The	product	code	to	confirm	is	attached	to	the	instance. Yes xsdstring

instanceId The	instance	to	confirm	the	product	code	is	attached	to. Yes xsdstring

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
ConfirmProductInstance	responses.

Element
Name

Definition Type

return True	if	the	product	code	is	attached	to	the	instance,	false	if	it	is	not. xsd:boolean

ownerId The	instance	owner's	account	id.	Only	present	if	the	product	code	is
attached	to	the	instance.

xsdstring

Sample	Request

<ConfirmProductInstance	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<productCode>774F4FF8</productCode>
		<instanceId>i-10a64379</instanceId>
</ConfirmProductInstance>

Sample	Response

<ConfirmProductInstanceResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
		<ownerId>254933287430</ownerId>
</ConfirmProductInstanceResponse>

Related	Operations

DescribeInstances

RunInstances

CreateKeyPair
The	CreateKeyPair	operation	creates	a	new	2048	bit	RSA	keypair	and	returns	a
unique	ID	that	can	be	used	to	reference	this	keypair	when	launching	new
instances.

Request	Parameters

The	following	table	describes	the	request	parameters	for	CreateKeyPair.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

keyName A	unique	name	for	this	key. Yes xsd:string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
CreateKeyPair	responses.

Element	Name Definition Type

keyName The	key	name	provided	in	the	original	request. xsd:string

keyFingerprint A	SHA-1	digest	of	the	DER	encoded	private	key. xsd:string

keyMaterial An	unencrypted	PEM	encoded	RSA	private	key. xsd:string

Sample	Request

<CreateKeyPair	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<keyName>example-key-name</keyName>
</CreateKeyPair>

Sample	Response

<CreateKeyPairResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<keyName>example-key-name</keyName>
		<keyFingerprint>1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f</keyFingerprint>
		<keyMaterial>-----BEGIN	RSA	PRIVATE	KEY-----
MIIEoQIBAAKCAQBuLFg5ujHrtm1jnutSuoO8Xe56LlT+HM8v/xkaa39EstM3/aFxTHgElQiJLChp
HungXQ29VTc8rc1bW0lkdi23OH5eqkMHGhvEwqa0HWASUMll4o3o/IX+0f2UcPoKCOVUR+jx71Sg
5AU52EQfanIn3ZQ8lFW7Edp5a3q4DhjGlUKToHVbicL5E+g45zfB95wIyywWZfeW/UUF3LpGZyq/
ebIUlq1qTbHkLbCC2r7RTn8vpQWp47BGVYGtGSBMpTRP5hnbzzuqj3itkiLHjU39S2sJCJ0TrJx5
i8BygR4s3mHKBj8l+ePQxG1kGbF6R4yg6sECmXn17MRQVXODNHZbAgMBAAECggEAY1tsiUsIwDl5
91CXirkYGuVfLyLflXenxfI50mDFms/mumTqloHO7tr0oriHDR5K7wMcY/YY5YkcXNo7mvUVD1pM
ZNUJs7rw9gZRTrf7LylaJ58kOcyajw8TsC4e4LPbFaHwS1d6K8rXh64o6WgW4SrsB6ICmr1kGQI7
3wcfgt5ecIu4TZf0OE9IHjn+2eRlsrjBdeORi7KiUNC/pAG23I6MdDOFEQRcCSigCj+4/mciFUSA
SWS4dMbrpb9FNSIcf9dcLxVM7/6KxgJNfZc9XWzUw77Jg8x92Zd0fVhHOux5IZC+UvSKWB4dyfcI
tE8C3p9bbU9VGyY5vLCAiIb4qQKBgQDLiO24GXrIkswF32YtBBMuVgLGCwU9h9HlO9mKAc2m8Cm1
jUE5IpzRjTedc9I2qiIMUTwtgnw42auSCzbUeYMURPtDqyQ7p6AjMujp9EPemcSVOK9vXYL0Ptco
xW9MC0dtV6iPkCN7gOqiZXPRKaFbWADp16p8UAIvS/a5XXk5jwKBgQCKkpHi2EISh1uRkhxljyWC
iDCiK6JBRsMvpLbc0v5dKwP5alo1fmdR5PJaV2qvZSj5CYNpMAy1/EDNTY5OSIJU+0KFmQbyhsbm
rdLNLDL4+TcnT7c62/aH01ohYaf/VCbRhtLlBfqGoQc7+sAc8vmKkesnF7CqCEKDyF/dhrxYdQKB
gC0iZzzNAapayz1+JcVTwwEid6j9JqNXbBc+Z2YwMi+T0Fv/P/hwkX/ypeOXnIUcw0Ih/YtGBVAC
DQbsz7LcY1HqXiHKYNWNvXgwwO+oiChjxvEkSdsTTIfnK4VSCvU9BxDbQHjdiNDJbL6oar92UN7V
rBYvChJZF7LvUH4YmVpHAoGAbZ2X7XvoeEO+uZ58/BGKOIGHByHBDiXtzMhdJr15HTYjxK7OgTZm
gK+8zp4L9IbvLGDMJO8vft32XPEWuvI8twCzFH+CsWLQADZMZKSsBasOZ/h1FwhdMgCMcY+Qlzd4
JZKjTSu3i7vhvx6RzdSedXEMNTZWN4qlIx3kR5aHcukCgYA9T+Zrvm1F0seQPbLknn7EqhXIjBaT
P8TTvW/6bdPi23ExzxZn7KOdrfclYRph1LHMpAONv/x2xALIf91UB+v5ohy1oDoasL0gij1houRe
2ERKKdwz0ZL9SWq6VTdhr/5G994CK72fy5WhyERbDjUIdHaK3M849JJuf8cSrvSb4g==
-----END	RSA	PRIVATE	KEY-----</keyMaterial>
</CreateKeyPairResponse>
		

Related	Operations

DescribeKeyPairs

DeleteKeyPair

RunInstances

CreateSecurityGroup
The	CreateSecurityGroup	operation	creates	a	new	security	group.

Every	instance	is	launched	in	a	security	group.	If	none	is	specified	as	part	of	the
launch	request	then	instances	are	launched	in	the	default	security	group.
Instances	within	the	same	security	group	have	unrestricted	network	access	to	one
another.	Instances	will	reject	network	access	attempts	from	other	instances	in	a
different	security	group.	As	the	owner	of	instances	you	may	grant	or	revoke
specific	permissions	using	the	AuthorizeSecurityGroupIngress	and
RevokeSecurityGroupIngress	operations.

Request	Parameters

The	following	table	describes	the	request	parameters	for	CreateSecurityGroup.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

groupName Name	for	the	new	security	group. Yes xsd:string

groupDescription Description	of	the	new	security	group. Yes xsd:string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
CreateSecurityGroup	responses.

Element	Name Definition Type

return true	if	call	succeeded. xsd:boolean

Sample	Request

<CreateSecurityGroup	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
				<groupName>WebServers</groupName>
				<groupDescription>Web</groupDescription>
</CreateSecurityGroup>

Sample	Response

<CreateSecurityGroupResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</CreateSecurityGroupResponse>

Related	Operations

RunInstances

DescribeSecurityGroups

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

DeleteSecurityGroup

DeleteKeyPair
The	DeleteKeyPair	operation	deletes	a	keypair.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DeleteKeyPair.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

keyName Name	of	the	keypair	to	delete. Yes xsd:string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DeleteKeyPair	responses.

Element	Name Definition Type

return true	if	the	key	was	successfully	deleted. xsd:boolean

Sample	Request

<DeleteKeyPair	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
				<keyName>example-key-name</keyName>
</DeleteKeyPair>

Sample	Response

<DeleteKeyPair	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</DeleteKeyPair>

Related	Operations

CreateKeyPair

DescribeKeyPairs

DeleteSecurityGroup
The	DeleteSecurityGroup	operation	deletes	a	security	group.

If	an	attempt	is	made	to	delete	a	security	group	and	any	instances	exist	that	are
members	of	that	group	a	fault	is	returned.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DeleteSecurityGroup.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

groupName Name	of	the	security	group	to	delete. Yes xsd:string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DeleteSecurityGroup	responses.

Element	Name Definition Type

return true	if	group	deleted. xsd:boolean

Sample	Request

<DeleteSecurityGroup	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
				<groupName>RangedPortsBySource</groupName>
</DeleteSecurityGroup>

Sample	Response

<DeleteSecurityGroupResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</DeleteSecurityGroupResponse>

Related	Operations

CreateSecurityGroup

DescribeSecurityGroups

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

DeregisterImage
The	DeregisterImage	operation	deregisters	an	AMI.	Once	deregistered,
instances	of	the	AMI	may	no	longer	be	launched.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DeregisterImage.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

imageId Unique	ID	of	a	machine	image,	returned
by	a	call	to	RegisterImage	or
DescribeImages.

Yes xsd:string

launchPermission Specifies	launch	permissions	of	the	AMI. Choice xsd:EmptyElementType

productCodes Specifies	product	codes	of	the	AMI. Choice xsd:EmptyElementType

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DeregisterImage	responses.

Element	Name Definition Type

return true	if	deregistration	succeeded,	otherwise
false.

xsd:boolean

launchPermission Returns	launch	permissions	of	the	AMI	if
launchPermission	is	specified..

ec2:LaunchPermissionItemType[]

productCodes Returns	product	codes	of	the	AMI	if
launchPermission	is	specified.

ec2:ProductCodeItemType[]

Sample	Request

<DeregisterImage	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
				<imageId>ami-61a54008</imageId>
</DeregisterImage>

Sample	Response

<DeregisterImageResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</DeregisterImageResponse>

Related	Operations

RegisterImage

DescribeImages

DescribeImageAttribute
The	DescribeImageAttribute	operation	returns	information	about	an	attribute
of	an	AMI.	Only	one	attribute	may	be	specified	per	call.

Request	Parameters

The	following	table	describes	the	request	parameters	for
DescribeImageAttribute.	Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

imageId ID	of	the	AMI	for	which	an	attribute	will
be	described.

Yes xsd:string

launchPermission Describes	launch	permissions	of	the	AMI. Choice ec2:EmptyElementType

productCodes Describes	product	codes	of	the	AMI. Choice ec2:EmptyElementType

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeImageAttribute	responses.

Element	Name Definition Type

imageId ID	of	the	AMI	of	which	parameters	are
being	described.

xsd:string

launchPermission Launch	permissions	of	the	AMI.	Returned
if	launchPermissions	are	being	described.

ec2:LaunchPermissionItemType[]

productCodes Product	codes	of	the	AMI.	Returned	if
productCodes	are	being	described.

ec2:ProductCodeItemType[]

Sample	Request	-	Launch	Permission

<DescribeImageAttribute	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
		<launchPermission	/>
</DescribeImageAttribute>

Sample	Response	-	Launch	Permission

<DescribeImageAttributeResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
		<launchPermission>
				<item>
						<group>all</group>
				</item>
				<item>
						<userId>495219933132</userId>
				</item>
		</launchPermission>
</DescribeImageAttributeResponse>

Sample	Request	-	Product	Codes

<DescribeImageAttribute	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
		<productCodes	/>
</DescribeImageAttribute>

Sample	Response	-	Product	Codes

<DescribeImageAttributeResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
		<productCodes>
				<item>
						<productCode>774F4FF8</productCode>
				</item>
		</productCodes>
</DescribeImageAttributeResponse>

Related	Operations

DescribeImages

ModifyImageAttribute

ResetImageAttribute

DescribeImages
The	DescribeImages	operation	returns	information	about	AMIs	available	for	use
by	the	user.	This	includes	both	public	AMIs	(those	available	for	any	user	to
launch)	and	private	AMIs	(those	owned	by	the	user	making	the	request	and	those
owned	by	other	users	that	the	user	making	the	request	has	explicit	launch
permissions	for).

The	list	of	AMIs	returned	can	be	modified	via	optional	lists	of	AMI	IDs,	owners
or	users	with	launch	permissions.	If	all	three	optional	lists	are	empty	all	AMIs
the	user	has	launch	permissions	for	are	returned.	Launch	permissions	fall	into
three	categories:

Launch
Permission

Description

public The	all	group	has	launch	permissions	for	the	AMI.	All	users	have	launch
permissions	for	these	AMIs.

explicit The	owner	of	the	AMI	granted	launch	permissions	to	a	specific	user.	for	the	AMI.

implicit A	user	has	implicit	launch	permissions	for	all	AMIs	he	or	she	owns.

If	one	or	more	of	the	lists	are	specified	the	result	set	is	the	intersection	of	AMIs
matching	the	criteria	of	the	indivdual	lists.

Providing	the	list	of	AMI	IDs	requests	information	for	those	AMIs	only.	If	no
AMI	IDs	are	provided,	information	of	all	relevant	AMIs	will	be	returned.	If	an
AMI	is	specified	that	does	not	exist	a	fault	is	returned.	If	an	AMI	is	specified
that	exists	but	the	user	making	the	request	does	not	have	launch	permissions	for,
then	that	AMI	will	not	be	included	in	the	returned	results.

Providing	the	list	of	owners	requests	information	for	AMIs	owned	by	the
specified	owners	only.	Only	AMIs	the	user	has	launch	permissions	for	are
returned.	The	items	of	the	list	may	be	account	ids	for	AMIs	owned	by	users	with
those	account	ids,	amazon	for	AMIs	owned	by	Amazon	or	self	for	AMIs	owned
by	the	user	making	the	request.

The	executable	list	may	be	provided	to	request	information	for	AMIs	that	only
the	specified	users	have	launch	permissions	for.	The	items	of	the	list	may	be

account	ids	for	AMIs	owned	by	the	user	making	the	request	that	the	users	with
the	specified	account	ids	have	explicit	launch	permissions	for,	self	for	AMIs	the
user	making	the	request	has	explicit	launch	permissions	for	or	all	for	public
AMIs.

Deregistered	images	will	be	included	in	the	returned	results	for	an	unspecified
interval	subsequent	to	deregistration.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DescribeImages.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

imageSet AMI	IDs	to	describe Yes	(but	may	be
empty)

xsd:string[]

ownersSet Owners	of	AMIs	to	describe Yes	(but	may	be
empty)

xsd:string[]

executableBySet Describe	AMIs	that	the	specified	users	have
launch	permissions	for

Yes	(but	may	be
empty)

xsd:string[]

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeImages	responses.

Element	Name Definition Type

imagesSet A	list	of	image	descriptions ec2:DescribeImagesResponseItemType[]

Sample	Request

<DescribeImages	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<executableBySet>
				<item>
						<user>all</user>
				</item>
		</executableBySet>
		<ownersSet	/>
		<imagesSet>
				<item>
						<imageId>ami-61a54008</imageId>
						<imageId>ami-72f53012</imageId>
				</item>
		</imagesSet>
</DescribeImages>

Sample	Response

<DescribeImagesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imagesSet>
				<item>
						<imageId>ami-61a54008</imageId>
						<imageLocation>aes-ttylinux/image.manifest.xml</imageLocation>
						<imageState>available</imageState>
						<imageOwnerId>UYY3TLBUXIEON5NQVUUX6OMPWBZIQNFM</imageOwnerId>
						<isPublic>true</isPublic>
						<productCodes>
								<item>
										<productCode>774F4FF8</productCode>
								</item>
						</productCodes>
				</item>
		</imagesSet>
</DescribeImagesResponse>

Related	Operations

DescribeInstances

DescribeImageAttribute

DescribeInstances
The	DescribeInstances	operation	returns	information	about	instances	owned
by	the	user	making	the	request.

An	optional	list	of	instance	IDs	may	be	provided	to	request	information	for	those
instances	only.	If	no	instance	IDs	are	provided,	information	of	all	relevant
instances	information	will	be	returned.	If	an	instance	is	specified	that	does	not
exist	a	fault	is	returned.	If	an	instance	is	specified	that	exists	but	is	not	owned	by
the	user	making	the	request,	then	that	instance	will	not	be	included	in	the
returned	results.

Recently	terminated	instances	will	be	included	in	the	returned	results	for	a	small
interval	subsequent	to	their	termination.	This	interval	is	typically	of	the	order	of
one	hour.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DescribeInstances.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

instancesSet Set	of	instances	IDs	to	get	the	status	of. Yes	(but	may	be	empty) xsd:string[]

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeInstances	responses.

Element	Name Definition Type

reservationSet A	list	of	structures	describing	the	status	of	all
requested	instances.

ec2:ReservationInfoType[]

Sample	Request

<DescribeInstances	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<instancesSet>
				<item>
						<instanceId>i-28a64341</instanceId>
				</item>
		</instancesSet>
</DescribeInstances>

Sample	Response

<DescribeInstancesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<reservationSet>
				<item>
						<reservationId>r-44a5402d</reservationId>
						<ownerId>UYY3TLBUXIEON5NQVUUX6OMPWBZIQNFM</ownerId>
						<groupSet>
								<item>
										<groupId>default</groupId>
								</item>
						</groupSet>
						<instancesSet>
								<item>
										<instanceId>i-28a64341</instanceId>
										<imageId>ami-6ea54007</imageId>
										<instanceState>
												<code>0</code>
												<name>running</name>
										</instanceState>
										<privateDnsName>domU-12-31-35-00-1E-01.z-2.compute-1.internal</privateDnsName>
										<dnsName>ec2-72-44-33-4.z-2.compute-1.amazonaws.com</dnsName>
										<keyName>example-key-name</keyName>
										<amiLaunchIndex>23</amiLaunchIndex>
										<productCodesSet>
												<item><productCode>774F4FF8</productCode></item>
										<productCodesSet>
								</item>
						</instancesSet>
				</item>
		</reservationSet>
</DescribeInstancesResponse>

Related	Operations

RunInstances

TerminateInstances

DescribeKeyPairs
The	DescribeKeyPairs	operation	returns	information	about	keypairs	available
for	use	by	the	user	making	the	request.	Selected	keypairs	may	be	specified	or	the
list	may	be	left	empty	if	information	for	all	registered	keypairs	is	required.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DescribeKeyPairs.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

keySet Keypair	IDs	to	describe. Yes	(but	may	be	empty) xsd:string[]

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeKeyPairs	responses.

Element	Name Definition Type

keySet A	list	of	keypair	descriptions ec2:DescribeKeypairsResponseItemType[]

Sample	Request

<DescribeKeyPairs	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<keySet>
				<item>
						<keyName>example-key-name</keyName>
				</item>
		</keySet>
</DescribeKeyPairs>

Sample	Response

<DescribeKeyPairsResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<keySet>
				<item>
						<keyName>example-key-name</keyName>
						<keyFingerprint>1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f</keyFingerprint>
				</item>
		</keySet>
</DescribeKeyPairsResponse>

Related	Operations

CreateKeypair

DeleteKeypair

RunInstances

DescribeSecurityGroups
The	DescribeSecurityGroups	operation	returns	information	about	security
groups	owned	by	the	user	making	the	request.

An	optional	list	of	security	group	names	may	be	provided	to	request	information
for	those	security	groups	only.	If	no	security	group	names	are	provided,
information	of	all	security	groups	will	be	returned.	If	a	group	is	specified	that
does	not	exist	a	fault	is	returned.

Request	Parameters

The	following	table	describes	the	request	parameters	for
DescribeSecurityGroups.	Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

securityGroupSet List	of	security	groups	to	describe. Yes xsd:string[]

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeSecurityGroups	responses.

Element	Name Definition Type

securityGroupInfo Information	about	security	groups. ec2:SecurityGroupItemType[]

Sample	Request

<DescribeSecurityGroups	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<securityGroupSet>
				<item>
						<groupName>WebServers</groupName>
				</item>
				<item>
						<groupName>RangedPortsBySource</groupName>
				</item>
		</securityGroupSet>
</DescribeSecurityGroups>

Sample	Response

<DescribeSecurityGroupsResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<securityGroupInfo>
				<item>
						<ownerId>UYY3TLBUXIEON5NQVUUX6OMPWBZIQNFM</ownerId>
						<groupName>WebServers</groupName>
						<groupDescription>Web</groupDescription>
						<ipPermissions>
								<item>
			 		<ipProtocol>tcp</ipProtocol>
	 		<fromPort>80</fromPort>
	 		<toPort>80</toPort>
	 		<groups/>
	 		<ipRanges>
	 				<item>
	 						<cidrIp>0.0.0.0/0</cidrIp>
	 				</item>
	 		</ipRanges>
									</item>
						</ipPermissions>
				</item>
				<item>
						<ownerId>UYY3TLBUXIEON5NQVUUX6OMPWBZIQNFM</ownerId>
						<groupName>RangedPortsBySource</groupName>
						<groupDescription>A</groupDescription>
						<ipPermissions>
		 <item>
	 		<ipProtocol>tcp</ipProtocol>
	 		<fromPort>6000</fromPort>
	 		<toPort>7000</toPort>
	 		<groups/>
	 		<ipRanges/>
	 </item>
						</ipPermissions>
				</item>
		</securityGroupInfo>
</DescribeSecurityGroupsResponse>

Related	Operations

CreateSecurityGroup

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

DeleteSecurityGroup

GetConsoleOutput
The	GetConsoleOutput	operation	retrieves	console	output	that	has	been	posted
for	the	specified	instance.

Instance	console	output	is	buffered	and	posted	shortly	after	instance	boot,	reboot
and	once	the	instance	is	terminated.	Only	the	most	recent	64	KB	of	posted
output	is	available.	Console	output	is	available	for	at	least	1	hour	after	the	most
recent	post.

Request	Parameters

The	following	table	describes	the	request	parameters	for	GetConsoleOutput.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

An	instance	ID	returned	from	a	previous	call	to	RunInstances. Yes xsd:string 	

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
GetConsoleOutput	responses.

Element	Name Definition Type

instanceId The	instance	ID. xsd:string

timestamp The	time	the	output	was	last	updated. xsd:dateTime

output The	console	output,	Base64	encoded. xsd:string

Sample	Request

<GetConsoleOutput	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
						<instanceId>i-28a64341</instanceId>
</GetConsoleOutput>

Sample	Response

<GetConsoleOutputResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<instanceId>i-28a64341</instanceId>
		<timestamp>2007-01-03	15:00:00</timestamp>
		<output>TGludXggdmVyc2lvbiAyLjYuMTYteGVuVSAoYnVpbGRlckBwYXRjaGJhdC5hbWF6b25zYSkgKGdj
YyB2ZXJzaW9uIDQuMC4xIDIwMDUwNzI3IChSZWQgSGF0IDQuMC4xLTUpKSAjMSBTTVAgVGh1IE9j
dCAyNiAwODo0MToyNiBTQVNUIDIwMDYKQklPUy1wcm92aWRlZCBwaHlzaWNhbCBSQU0gbWFwOgpY
ZW46IDAwMDAwMDAwMDAwMDAwMDAgLSAwMDAwMDAwMDZhNDAwMDAwICh1c2FibGUpCjk4ME1CIEhJ
R0hNRU0gYXZhaWxhYmxlLgo3MjdNQiBMT1dNRU0gYXZhaWxhYmxlLgpOWCAoRXhlY3V0ZSBEaXNh
YmxlKSBwcm90ZWN0aW9uOiBhY3RpdmUKSVJRIGxvY2t1cCBkZXRlY3Rpb24gZGlzYWJsZWQKQnVp
bHQgMSB6b25lbGlzdHMKS2VybmVsIGNvbW1hbmQgbGluZTogcm9vdD0vZGV2L3NkYTEgcm8gNApF
bmFibGluZyBmYXN0IEZQVSBzYXZlIGFuZCByZXN0b3JlLi4uIGRvbmUuCg==</output>
</GetConsoleOutputResponse>

ModifyImageAttribute
The	ModifyImageAttribute	operation	modifies	an	attribute	of	an	AMI.

Attributes

Attribute	Name Type Description

launchPermission List Controls	who	has	permission	to	launch	the	AMI.	Launch	permissions	can
be	granted	to	specific	users	by	adding	userIds.	The	AMI	can	be	made
public	by	adding	the	all	group.

productCodes List Associates	product	codes	with	AMIs.	This	allows	a	developer	to	charge	a
user	extra	for	using	the	AMIs.	The	user	must	be	signed	up	for	the	product
before	they	can	launch	the	AMI.	productCodes	is	a	write	once	attribute	-
once	it	has	been	set	it	can	not	be	changed	or	removed.

Request	Parameters

The	following	table	describes	the	request	parameters	for
ModifyImageAttribute.	Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

imageId AMI	ID	to	modify	an
attribute	on.

Yes xsd:string

launchPermission Adds	or	removes	launch
permissions	for	the	AMI.

Choice ec2:LaunchPermissionOperationType

productCodes Attaches	product	codes	to
the	AMI.	Currently	only
one	product	code	may	be
associated	with	an	AMI.
Once	set,	the	product	code
can	not	be	changed	or
reset.

Choice ec2:ProductCodeItemType[]

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
ModifyImageAttribute	responses.

Element	Name Definition Type

return true	if	the	operation	succeeded,	otherwise	false. xsd:boolean

Sample	Request	-	Launch	Permission

<ModifyImageAttribute	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
		<launchPermission>
				<add>
						<item>
								<group>all</group>
						</item>
						<item>
								<userId>495219933132</userId>
						</item>
				</add>
		<launchPermission>
</ModifyImageAttribute>

Sample	Request	-	Product	Codes

<ModifyImageAttribute	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
		<productCodes>
				<item>
						<productCode>774F4FF8</productCode>
				</item>
		<productCodes>
</ModifyImageAttribute>

Sample	Response

<ModifyImageAttributeResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</ModifyImageAttributeResponse>

Related	Operations

ResetImageAttribute

DescribeImageAttribute

RebootInstances
The	RebootInstances	operation	requests	a	reboot	of	one	or	more	instances.	This
operation	is	asynchronous;	it	only	queues	a	request	to	reboot	the	specified
instance(s).	The	operation	will	succeed	provided	the	instances	are	valid	and
belong	to	the	user.	Terminated	instances	will	be	ignored.

Request	Parameters

The	following	table	describes	the	request	parameters	for	RebootInstances.
Parameter	names	are	case	sensitive.

Element
Name

Definition Required? Type

instancesSet One	or	more	instance	IDs	returned	from	previous	calls	to
RunInstances.

Yes xsd:string[]

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
RebootInstances	responses.

Element	Name Definition Type

result An	indication	of	whether	the	request	was	successful. xsd:boolean

Sample	Request

<RebootInstances	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
				<instancesSet>
						<item>
								<instanceId>i-28a64341</instanceId>
						</item>
				</instancesSet>
</RebootInstances>

Sample	Response

<RebootInstancesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
						<return>true</return>
</RebootInstancesResponse>

RegisterImage
The	RegisterImage	operation	registers	an	AMI	with	Amazon	EC2.	Images	must
be	registered	before	they	can	be	launched.

Each	AMI	is	associated	with	an	unique	ID	which	is	provided	by	the	EC2	service
via	the	Registerimage	operation.	As	part	of	the	registration	process,
Amazon	EC2	will	retrieve	the	specified	image	manifest	from	Amazon	S3	and
verify	that	the	image	is	owned	by	the	user	requesting	image	registration.

The	image	manifest	is	retrieved	once	and	stored	within	the	Amazon	EC2
network.	Any	modifications	to	an	image	in	Amazon	S3	invalidate	this
registration.	If	you	do	have	to	make	changes	and	upload	a	new	image	deregister
the	previous	image	and	register	the	new	image.

Request	Parameters

The	following	table	describes	the	request	parameters	for	RegisterImage.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

imageLocation Full	path	to	your	AMI	manifest	in	Amazon	S3	storage. Yes xsd:string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
RegisterImage	responses.

Element	Name Definition Type

imageId Unique	ID	of	the	newly	registered	machine	image. xsd:string

Sample	Request

<RegisterImage	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageLocation>/mybucket/myimage.manifest.xml</imageLocation>
</RegisterImage>

Sample	Response

<RegisterImageResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
</RegisterImageResponse>

Related	Operations

DescribeImages

DeregisterImage

ResetImageAttribute
The	ResetImageAttribute	operation	resets	an	attribute	of	an	AMI	to	its	default
value.

The	productCodes	attribute	cannot	be	reset.

Request	Parameters

The	following	table	describes	the	request	parameters	for	ResetImageAttribute.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

imageId ID	of	the	AMI	on	which	the	attribute	will
be	reset.

Yes xsd:string

launchPermission Resets	the	AMI's	launch	permissions.	All
public	and	explicit	launch	permissions	for
the	AMI	are	revoked.

Yes ec2:EmptyElementType

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
ResetImageAttribute	responses.

Element	Name Definition Type

return true	if	the	operation	succeeded,	otherwise	false. xsd:boolean

Sample	Request

<ResetImageAttribute	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
		<launchPermission	/>
</ResetImageAttribute>

Sample	Response

<ResetImageAttributeResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</ResetImageAttributeResponse>

Related	Operations

ModifyImageAttribute

DescribeImageAttribute

RevokeSecurityGroupIngress
The	RevokeSecurityGroupIngress	operation	revokes	existing	permissions	that
were	previously	granted	to	a	security	group.	The	permissions	to	revoke	must	be
specified	using	the	same	values	originally	used	to	grant	the	permission.

Permissions	are	specified	in	terms	of	the	IP	protocol	(TCP,	UDP	or	ICMP),	the
source	of	the	request	(by	IP	range	or	an	Amazon	EC2	user-group	pair),	source
and	destination	port	ranges	(for	TCP	and	UDP),	and	ICMP	codes	and	types	(for
ICMP).

Note
Changes	are	anticipated	in	this	API	that	may	restrict	further
what	is	allowable.	Please	consult	the	section	called
“Anticipated	API	changes”	for	more	details.

Permission	changes	are	propagated	to	instances	within	the	security	group	being
modified	as	quickly	as	possible.	However,	a	small	delay	is	likely,	depending	on
the	number	of	instances	that	are	members	of	the	indicated	group.

Request	Parameters

The	following	table	describes	the	request	parameters	for
RevokeSecurityGroupIngress.	Parameter	names	are	case	sensitive.

Element
Name

Definition Required? Type

userId AWS	Access	Key	ID. Yes xsd:string

groupName Name	of	the	group	to	modify. Yes xsd:string

ipPermissions Set	of	permissions	to	remove	from	the
group.

Yes ec2:IpPermissionType[]

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
RevokeSecurityGroupIngress	responses.

Element	Name Definition Type

return true	if	permissions	successfully	revoked. xsd:boolean

Sample	Request

<RevokeSecurityGroupIngress	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
				<userId/>
				<groupName>RangedPortsBySource</groupName>
				<ipPermissions>
								<item>
												<ipProtocol>tcp</ipProtocol>
												<fromPort>6000</fromPort>
												<toPort>7000</toPort>
												<groups/>
												<ipRanges/>
								</item>
				</ipPermissions>
</RevokeSecurityGroupIngress>

Sample	Response

<RevokeSecurityGroupIngressResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</RevokeSecurityGroupIngressResponse>

Related	Operations

CreateSecurityGroup

DescribeSecurityGroups

AuthorizeSecurityGroupIngress

DeleteSecurityGroup

RunInstances
The	RunInstances	operation	launches	a	specified	number	of	instances.

A	call	to	RunInstances	is	guaranteed	to	start	no	fewer	than	the	requested
minimum	for	each	AMI	specified.	If	there	is	insufficient	capacity	available	then
no	instances	will	be	started.	Amazon	EC2	will	make	a	best	effort	attempt	to
satisfy	the	requested	maximum	values.	If	there	is	capacity	to	cover	the	specified
minimum	values	but	not	the	maximum	values	then	instances	of	each	image
specified	will	be	launched	in	a	round	robin	fashion.

As	an	example,	consider	a	request	to	launch	two	images	(A	and	B),	with
minimum	and	maximum	values	of	(5,10)	and	(20,	40)	respectively.

If	there	is	sufficient	capacity	for	less	than	25	instances	then	no	instances	will	be
launched	(since	the	minimums	of	5	and	20	cannot	both	be	satisfied).

If	there	is	capacity	available	for	only	30	instances	then	5	instances	of	A	and	20
instances	of	B	will	be	launched.	The	remaining	5	instances	will	be	allocated	in
round	robin	fashion.

Every	instance	is	launched	in	a	security	group.	This	may	be	specified	as	part	of
the	launch	request.	If	a	security	group	is	not	indicated	then	instances	are	started
in	a	the	default	security	group.

An	optional	keypair	ID	may	be	provided	for	each	image	in	the	launch	request.
All	instances	that	are	created	from	images	for	which	this	is	provided	will	have
access	to	the	associated	public	key	at	boot	time	(detailed	below).	This	key	may
be	used	to	provide	secure	access	to	an	instance	of	an	image	on	a	per-instance
basis.	Amazon	EC2	public	images	make	use	of	this	functionality	to	provide
secure	passwordless	access	to	instances	(and	launching	those	images	without	a
keypair	ID	will	leave	them	inaccessible).

The	public	key	material	is	made	available	to	the	instance	at	boot	time	by	placing
it	in	a	file	named	openssh_id.pub	on	a	logical	device	that	is	exposed	to	the
instance	as	/dev/sda2	(the	ephemeral	store).	The	format	of	this	file	is	suitable
for	use	as	an	entry	within	~/.ssh/authorized_keys	(the	OpenSSH	format).
This	can	be	done	at	boot	time	(as	part	of	rclocal,	for	example)	allowing	for

secure	password-less	access.	As	the	need	arises,	other	formats	will	also	be
considered.

Optional	user	data	may	be	provided	in	the	launch	request.	All	instances
comprising	the	launch	request	have	access	to	this	data	(see	the	section	called
“Using	Instance	Data”	for	details).

If	any	of	the	AMIs	have	product	codes	attached	for	which	the	user	has	not
subscribed,	the	RunInstances	call	will	fail.

Request	Parameters

The	following	table	describes	the	request	parameters	for	RunInstances.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

instancesSet Description	of	the	instances	to	launch. Yes ec2:RunInstanceItemType[]

groupSet Description	of	the	security	groups	to
associate	the	instances	with.

Yes ec2:GroupSetType[]

userData The	user	data	available	to	the	launched
instances.

No ec2:UserDataType

addressingType The	addressing	scheme	with	which	to
launch	the	instance.	The	supported
addressing	type	is	public.	For	the	public
scheme,	the	instance	has	a	private	and
public	IP	address	that	are	mapped	through
NAT.	See	the	section	called	“Instance
Addressing”	for	more	information.

Note

To
support
our
legacy
cluster,
early	beta
customers
can	also
specify
direct.
In	the
direct
scheme
the
instance
has	a
single

No xsd:string

public	IP
address.

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
RunInstances	responses.

Element	Name Definition Type

RunInstancesResponse Status	information	about	the	instances	started. ReservationInfoType

Sample	Request

<RunInstances	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
				<instancesSet>
								<item>
												<imageId>ami-60a54009</imageId>
												<minCount>1</minCount>
												<maxCount>3</maxCount>
												<keyName>example-key-name</keyName>
								</item>
				</instancesSet>
				<groupSet/>
				<userData	version="1.0"	encoding="base64"><data>"VGhpcyBpcyBiYXNlIDY0IQ==</data></userData>
				<addressingType>public</addressingType>
</RunInstances>

Sample	Response

<RunInstancesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<reservationId>r-47a5402e</reservationId>
		<ownerId>495219933132</ownerId>
		<groupSet>
				<item>
						<groupId>default</groupId>
				</item>
		</groupSet>
		<instancesSet>
				<item>
						<instanceId>i-2ba64342</instanceId>
						<imageId>ami-60a54009</imageId>
						<instanceState>
								<code>0</code>
								<name>pending</name>
						</instanceState>
						<privateDnsName></privateDnsName>
						<dnsName></dnsName>
						<keyName>example-key-name</keyName>
						<amiLaunchIndex>0</amiLaunchIndex>
				</item>
				<item>
						<instanceId>i-2bc64242</instanceId>
						<imageId>ami-60a54009</imageId>
						<instanceState>
								<code>0</code>
								<name>pending</name>
						</instanceState>
						<privateDnsName></privateDnsName>
						<dnsName></dnsName>
						<keyName>example-key-name</keyName>
						<amiLaunchIndex>1</amiLaunchIndex>
				</item>
				<item>
						<instanceId>i-2be64332</instanceId>
						<imageId>ami-60a54009</imageId>
						<instanceState>
								<code>0</code>
								<name>pending</name>
						</instanceState>
						<privateDnsName></privateDnsName>
						<dnsName></dnsName>
						<keyName>example-key-name</keyName>
						<amiLaunchIndex>2</amiLaunchIndex>
				</item>

		</instancesSet>
</RunInstancesResponse>

Related	Operations

DescribeInstances

TerminateInstances

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

DescribeSecurityGroups

TerminateInstances
The	TerminateInstances	operation	shuts	down	one	or	more	instances.	This
operation	is	idempotent	and	terminating	an	instance	that	is	in	the	process	of
shutting	down	(or	already	terminated)	will	succeed.

Terminated	instances	remain	visible	for	a	short	period	of	time	(approximately
one	hour)	after	termination,	after	which	their	instance	ID	is	invalidated.

Request	Parameters

The	following	table	describes	the	request	parameters	for	TerminateInstances.
Parameter	names	are	case	sensitive.

Element
Name

Definition Required? Type

instancesSet One	or	more	instance	IDs	returned	from	previous	calls	to
RunInstances.

Yes xsd:string[]

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
TerminateInstances	responses.

Element
Name

Definition Type

instancesSet A	complex	type	containing
describing	the	current	and	new	state
of	each	instance	specified.

ec2:TerminateInstancesResponseInfoType[]

Sample	Request

<TerminateInstances	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<instancesSet>
				<item>
						<instanceId>i-28a64341</instanceId>
				</item>
		</instancesSet>
</TerminateInstances>

Sample	Response

<TerminateInstancesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<instancesSet>
				<item>
						<instanceId>i-28a64341</instanceId>
						<shutdownState>
								<code>32</code>
								<name>shutting-down</name>
						</shutdownState>
						<previousState>
								<code>16</code>
								<name>running</name>
						</previousState>
				</item>
		</instancesSet>
</TerminateInstancesResponse>

Related	Operations

DescribeInstances

EC2	Query	API
The	Amazon	EC2	API	consists	of	web	service	operations	for	every	task	the
service	can	perform.	This	section	describes	each	operation	in	detail.

Common	Query	Parameters

Request	Parameters

All	Query	operations	share	a	set	of	common	parameters	that	must	be	present	in
each	call:

Parameter	Name Description Example	Value

Action Indicates	the	action	to	perform. RunInstances

Version The	API	version	to	use,	as	specified	in	the
WSDL.

2007-01-03

AWSAccessKeyId The	Access	Key	ID	for	the	request	sender.
This	identifies	the	account	which	will	be
charged	for	usage	of	the	service.	The	account
with	which	the	Access	Key	ID	is	associated
must	be	signed	up	for	EC2,	or	requests	will
not	be	accepted.

10QMXFEV71ZS32XQFTR2

Timestamp The	date	and	time	at	which	the	request	is
signed,	in	the	format	YYYY-MM-
DDThh:mm:ssZ,	as	specified	in	the	ISO	8601
standard.

2006-07-07T15:04:56Z

Expires The	date	and	time	at	which	the	signature
included	in	the	request	expires,	in	the	format
YYYY-MM-DDThh:mm:ssZ,	as	specified	in
the	ISO	8601	standard.

2006-07-07T15:04:56Z

Signature A	request	signature	is	calculated	as	explained
in	Request	Authentication.

Qnpl4Qk/7tINHzfXCiT7VbBatDA=

SignatureVersion A	value	of	0	or	1	indicates	the	method	chosen
to	construct	the	string	to	be	signed.	Currently,
only	a	value	of	1	is	valid.

1

Note
The	Timestamp	parameter	can	be	used	instead	of	Expires.
Requests	must	include	either	Timestamp	or	Expires,	but
cannot	contain	both.

Parameter	values	must	be	URL-encoded.	This	is	true	for	any	Query	parameter
passed	to	EC2	and	is	typically	necessary	in	the	Signature	parameter.	Some
clients	do	this	automatically,	but	this	is	not	the	norm.

http://en.wikipedia.org/wiki/ISO_8601
http://en.wikipedia.org/wiki/ISO_8601

By	Function

Operations

Images

RegisterImage

DescribeImages

DeregisterImage

Instances

RunInstances

DescribeInstances

TerminateInstances

ConfirmProductInstance

Keypairs

CreateKeyPair

DescribeKeyPairs

DeleteKeyPair

Image	Attributes

ModifyImageAttribute

DescribeImageAttribute

ResetImageAttribute

Security	Groups

CreateSecurityGroup

DescribeSecurityGroups

DeleteSecurityGroup

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

AuthorizeSecurityGroupIngress
The	AuthorizeSecurityGroupIngress	operation	adds	permissions	to	a	security
group.

Permissions	are	specified	in	terms	of	the	IP	protocol	(TCP,	UDP	or	ICMP),	the
source	of	the	request	(by	IP	range	or	an	Amazon	EC2	user-group	pair),	source
and	destination	port	ranges	(for	TCP	and	UDP),	and	ICMP	codes	and	types	(for
ICMP).	When	authorizing	ICMP,	-1	may	be	used	as	a	wildcard	in	the	type	and
code	fields.

Permission	changes	are	propagated	to	instances	within	the	security	group	being
modified	as	quickly	as	possible.	However,	a	small	delay	is	likely,	depending	on
the	number	of	instances	that	are	members	of	the	indicated	group.

When	authorizing	a	user/group	pair	permission,	GroupName,
SourceSecurityGroupName	and	SourceSecurityGroupOwnerId	must	be
specified.	When	authorizing	a	CIDR	IP	permission,	GroupName,	IpProtocol,
FromPort,	ToPort	and	CidrIp	must	be	specified.	Mixing	these	two	types	of
parameters	is	not	allowed.

Request	Parameters

The	following	table	describes	the	request	parameters	for
AuthorizeSecurityGroupIngress.	Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

GroupName Name	of	the	group	to	modify. Yes string

SourceSecurityGroupName Name	of	security	group	to	authorize	access
to	when	operating	on	a	user/group	pair.

When
authorizing
user/group	pair
permission.

string

SourceSecurityGroupOwnerId Owner	of	security	group	to	authorize
access	to	when	operating	on	a	user/group
pair.

When
authorizing
user/group	pair
permisison.

string

IpProtocol IP	protocol	to	authorize	access	to	when
operating	on	a	CIDR	IP.	Valid	values	are
tcp,	udp	and	icmp.

When
authorizing
CIDR	IP
permission.

string

FromPort Bottom	of	port	range	to	authorize	access	to
when	operating	on	a	CIDR	IP.	This
contains	the	ICMP	type	if	ICMP	is	being
authorized.

When
authorizing
CIDR	IP
permission.

int

ToPort Top	of	port	range	to	authorize	access	to
when	operating	on	a	CIDR	IP.	This
contains	the	ICMP	code	if	ICMP	is	being
authorized.

When
authorizing
CIDR	IP
permission.

int

CidrIp CIDR	IP	range	to	authorize	access	to	when
operating	on	a	CIDR	IP.

When
authorizing
CIDR	IP
permission.

string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
AuthorizeSecurityGroupIngress	responses.

Element	Name Definition Type

return true	if	permissions	successfully	added. xsd:boolean

Sample	Request

https://ec2.amazonaws.com/
?Action=AuthorizeSecurityGroupIngress
&IpProtocol=tcp
&FromPort=80
&ToPort=80
&CidrIp=0.0.0.0/0
&...auth	parameters...

Sample	Response

<AuthorizeSecurityGroupIngressResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</AuthorizeSecurityGroupIngressResponse>

Related	Operations

CreateSecurityGroup

DescribeSecurityGroups

RevokeSecurityGroupIngress

DeleteSecurityGroup

ConfirmProductInstance
The	ConfirmProductInstance	operation	returns	true	if	the	given	product	code	is
attached	to	the	instance	with	the	given	instance	id.	False	is	returned	if	the
product	code	is	not	attached	to	the	instance.

Request	Parameters

The	following	table	describes	the	request	parameters	for
ConfirmProductInstance.	Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

ProductCode The	product	code	to	confirm	is	attached	to	the	instance. Yes xsdstring

InstanceId The	instance	to	confirm	the	product	code	is	attached	to. Yes xsdstring

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
ConfirmProductInstance	responses.

Element
Name

Definition Type

result True	if	the	product	code	is	attached	to	the	instance,	false	if	it	is	not. xsd:boolean

ownerId The	instance	owner's	account	id.	Only	present	if	the	product	code	is
attached	to	the	instance.

xsdstring

Sample	Request

https://ec2.amazonaws.com/
?Action=ConfirmProductInstance
&ProductCode=774F4FF8
&InstanceId=i-10a64379
&...auth	parameters...

Sample	Response

<ConfirmProductInstanceResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<result>true</result>
		<ownerId>254933287430</ownerId>
</ConfirmProductInstanceResponse>

Related	Operations

DescribeInstances

RunInstances

CreateKeyPair
The	CreateKeyPair	operation	creates	a	new	2048	bit	RSA	keypair	and	returns	a
unique	ID	that	can	be	used	to	reference	this	keypair	when	launching	new
instances.

Request	Parameters

The	following	table	describes	the	request	parameters	for	CreateKeyPair.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

KeyName A	unique	name	for	this	key. Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
CreateKeyPair	responses.

Element	Name Definition Type

keyName The	key	name	provided	in	the	original	request. xsd:string

KeyFingerprint A	SHA-1	digest	of	the	DER	encoded	private	key. xsd:string

KeyMaterial An	unencrypted	PEM	encoded	RSA	private	key. xsd:string

Sample	Request

https://ec2.amazonaws.com/
?Action=CreateKeyPair
&KeyName=example-key-name
&...auth	parameters...

Sample	Response

<CreateKeyPairResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<keyName>example-key-name</keyName>
		<keyFingerprint>1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f</keyFingerprint>
		<keyMaterial>-----BEGIN	RSA	PRIVATE	KEY-----
MIIEoQIBAAKCAQBuLFg5ujHrtm1jnutSuoO8Xe56LlT+HM8v/xkaa39EstM3/aFxTHgElQiJLChp
HungXQ29VTc8rc1bW0lkdi23OH5eqkMHGhvEwqa0HWASUMll4o3o/IX+0f2UcPoKCOVUR+jx71Sg
5AU52EQfanIn3ZQ8lFW7Edp5a3q4DhjGlUKToHVbicL5E+g45zfB95wIyywWZfeW/UUF3LpGZyq/
ebIUlq1qTbHkLbCC2r7RTn8vpQWp47BGVYGtGSBMpTRP5hnbzzuqj3itkiLHjU39S2sJCJ0TrJx5
i8BygR4s3mHKBj8l+ePQxG1kGbF6R4yg6sECmXn17MRQVXODNHZbAgMBAAECggEAY1tsiUsIwDl5
91CXirkYGuVfLyLflXenxfI50mDFms/mumTqloHO7tr0oriHDR5K7wMcY/YY5YkcXNo7mvUVD1pM
ZNUJs7rw9gZRTrf7LylaJ58kOcyajw8TsC4e4LPbFaHwS1d6K8rXh64o6WgW4SrsB6ICmr1kGQI7
3wcfgt5ecIu4TZf0OE9IHjn+2eRlsrjBdeORi7KiUNC/pAG23I6MdDOFEQRcCSigCj+4/mciFUSA
SWS4dMbrpb9FNSIcf9dcLxVM7/6KxgJNfZc9XWzUw77Jg8x92Zd0fVhHOux5IZC+UvSKWB4dyfcI
tE8C3p9bbU9VGyY5vLCAiIb4qQKBgQDLiO24GXrIkswF32YtBBMuVgLGCwU9h9HlO9mKAc2m8Cm1
jUE5IpzRjTedc9I2qiIMUTwtgnw42auSCzbUeYMURPtDqyQ7p6AjMujp9EPemcSVOK9vXYL0Ptco
xW9MC0dtV6iPkCN7gOqiZXPRKaFbWADp16p8UAIvS/a5XXk5jwKBgQCKkpHi2EISh1uRkhxljyWC
iDCiK6JBRsMvpLbc0v5dKwP5alo1fmdR5PJaV2qvZSj5CYNpMAy1/EDNTY5OSIJU+0KFmQbyhsbm
rdLNLDL4+TcnT7c62/aH01ohYaf/VCbRhtLlBfqGoQc7+sAc8vmKkesnF7CqCEKDyF/dhrxYdQKB
gC0iZzzNAapayz1+JcVTwwEid6j9JqNXbBc+Z2YwMi+T0Fv/P/hwkX/ypeOXnIUcw0Ih/YtGBVAC
DQbsz7LcY1HqXiHKYNWNvXgwwO+oiChjxvEkSdsTTIfnK4VSCvU9BxDbQHjdiNDJbL6oar92UN7V
rBYvChJZF7LvUH4YmVpHAoGAbZ2X7XvoeEO+uZ58/BGKOIGHByHBDiXtzMhdJr15HTYjxK7OgTZm
gK+8zp4L9IbvLGDMJO8vft32XPEWuvI8twCzFH+CsWLQADZMZKSsBasOZ/h1FwhdMgCMcY+Qlzd4
JZKjTSu3i7vhvx6RzdSedXEMNTZWN4qlIx3kR5aHcukCgYA9T+Zrvm1F0seQPbLknn7EqhXIjBaT
P8TTvW/6bdPi23ExzxZn7KOdrfclYRph1LHMpAONv/x2xALIf91UB+v5ohy1oDoasL0gij1houRe
2ERKKdwz0ZL9SWq6VTdhr/5G994CK72fy5WhyERbDjUIdHaK3M849JJuf8cSrvSb4g==
-----END	RSA	PRIVATE	KEY-----</keyMaterial>
</CreateKeyPairResponse>
		

Related	Operations

DescribeKeyPairs

DeleteKeyPair

RunInstances

CreateSecurityGroup
The	CreateSecurityGroup	operation	creates	a	new	security	group.

Every	instance	is	launched	in	a	security	group.	If	none	is	specified	as	part	of	the
launch	request	then	instances	are	launched	in	the	default	security	group.
Instances	within	the	same	security	group	have	unrestricted	network	access	to	one
another.	Instances	will	reject	network	access	attempts	from	other	instances	in	a
different	security	group.	As	the	owner	of	instances	you	may	grant	or	revoke
specific	permissions	using	the	AuthorizeSecurityGroupIngress	and
RevokeSecurityGroupIngress	operations.

Request	Parameters

The	following	table	describes	the	request	parameters	for	CreateSecurityGroup.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

GroupName Name	for	the	new	security	group. Yes string

GroupDescription Description	of	the	new	security	group. Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
CreateSecurityGroup	responses.

Element	Name Definition Type

return true	if	call	succeeded. xsd:boolean

Sample	Request

https://ec2.amazonaws.com/
?Action==CreateSecurityGroup
&GroupName=WebServers
&GroupDescription=Web
&...auth	parameters...

Sample	Response

<CreateSecurityGroupResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</CreateSecurityGroupResponse>

Related	Operations

RunInstances

DescribeSecurityGroups

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

DeleteSecurityGroup

DeleteKeyPair
The	DeleteKeyPair	operation	deletes	a	keypair.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DeleteKeyPair.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

KeyName Name	of	the	keypair	to	delete. Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DeleteKeyPair	responses.

Element	Name Definition Type

return true	if	the	key	was	successfully	deleted. xsd:boolean

Sample	Request

https://ec2.amazonaws.com/
?Action=DeleteKeyPair
&KeyName=example-key-name
&...auth	parameters...

Sample	Response

<DeleteKeyPair	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</DeleteKeyPair>

Related	Operations

CreateKeyPair

DescribeKeyPairs

DeleteSecurityGroup
The	DeleteSecurityGroup	operation	deletes	a	security	group.

If	an	attempt	is	made	to	delete	a	security	group	and	any	instances	exist	that	are
members	of	that	group	a	fault	is	returned.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DeleteSecurityGroup.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

GroupName Name	of	the	security	group	to	delete. Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DeleteSecurityGroup	responses.

Element	Name Definition Type

return true	if	group	deleted. xsd:boolean

Sample	Request

https://ec2.amazonaws.com/
?Action=DeleteSecurityGroup
&GroupName=RangedPortsBySource
&...auth	parameters...

Sample	Response

<DeleteSecurityGroupResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</DeleteSecurityGroupResponse>

Related	Operations

CreateSecurityGroup

DescribeSecurityGroups

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

DeregisterImage
The	DeregisterImage	operation	deregisters	an	AMI.	Once	deregistered,
instances	of	the	AMI	may	no	longer	be	launched.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DeregisterImage.
Parameter	names	are	case	sensitive.

Element
Name

Definition Required? Type

ImageId Unique	ID	of	a	machine	image,	returned	by	a	call	to
RegisterImage	or	DescribeImages.

Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DeregisterImage	responses.

Element	Name Definition Type

return true	if	deregistration	succeeded,	otherwise	false. xsd:boolean

Sample	Request

https://ec2.amazonaws.com/
?Action=DeregisterImage
&ImageId=ami-61a54008
&...auth	parameters...

Sample	Response

<DeregisterImageResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</DeregisterImageResponse>

Related	Operations

RegisterImage

DescribeImages

DescribeImageAttribute
The	DescribeImageAttribute	operation	returns	information	about	an	attribute
of	an	AMI.	Only	one	attribute	may	be	specified	per	call.

Request	Parameters

The	following	table	describes	the	request	parameters	for
DescribeImageAttribute.	Parameter	names	are	case-sensitive.

Element
Name

Definition Required? Type

ImageId Id	of	the	AMI	for	which	an	attribute	will	be	described. Yes string

Attribute Specifies	the	attribute	to	describe.	Currently,	only
launchPermission	is	supported.

Yes string

Attributes

Attribute	Name Description

launchPermission The	AMIs	launch	permissions.

productCodes The	product	codes	attached	to	the	AMI.

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeImageAttribute	responses.

Element	Name Definition Type

imageId ID	of	the	AMI	being	described. xsd:string

launchPermission Launch	permissions	of	the	AMI.	Returned
if	launchPermissions	are	being	described.

ec2:LaunchPermissionItemType[]

productCodes Product	codes	of	the	AMI.	Returned	if
productCodes	are	being	described.

ec2:ProductCodeItemType[]

Sample	Request	-	Launch	Permission

https://ec2.amazonaws.com/
?Action=DescribeImageAttribute
&ImageId=ami-61a54008
&Attribute=launchPermission
&...auth	parameters...

Sample	Response	-	Launch	Permission

<DescribeImageAttributeResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
		<launchPermission>
				<item>
						<group>all</group>
				</item>
				<item>
						<userId>495219933132</userId>
				</item>
		</launchPermission>
</DescribeImageAttributeResponse>

Sample	Request	-	Product	Codes

https://ec2.amazonaws.com/
?Action=DescribeImageAttribute
&ImageId=ami-61a54008
&Attribute=productCodes
&...auth	parameters...
	

Sample	Response	-	Product	Codes

<DescribeImageAttributeResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
		<productCodes>
				<item>
						<productCode>774F4FF8</productCode>
				</item>
		</productCodes>
</DescribeImageAttributeResponse>

Related	Operations

DescribeImages

ModifyImageAttribute

ResetImageAttribute

DescribeImages
The	DescribeImages	operation	returns	information	about	AMIs	available	for	use
by	the	user.	This	includes	both	public	AMIs	(those	available	for	any	user	to
launch)	and	private	AMIs	(those	owned	by	the	user	making	the	request	and	those
owned	by	other	users	that	the	user	making	the	request	has	explicit	launch
permissions	for).

The	list	of	AMIs	returned	can	be	modified	via	optional	lists	of	AMI	IDs,	owners
or	users	with	launch	permissions.	If	all	three	optional	lists	are	empty	all	AMIs
the	user	has	launch	permissions	for	are	returned.	Launch	permissions	fall	into
three	categories:

Launch
Permission

Description

public The	all	group	has	launch	permissions	for	the	AMI.	All	users	have	launch
permissions	for	these	AMIs.

explicit The	owner	of	the	AMIs	has	granted	a	specific	user	launch	permissions	for	the	AMI.

implicit A	user	has	implicit	launch	permissions	for	all	AMIs	he	or	she	owns.

If	one	or	more	of	the	lists	are	specified	the	result	set	is	the	intersection	of	AMIs
matching	the	criteria	of	the	individual	lists.

Providing	the	list	of	AMI	IDs	requests	information	for	those	AMIs	only.	If	no
AMI	IDs	are	provided,	information	of	all	relevant	AMIs	will	be	returned.	If	an
AMI	is	specified	that	does	not	exist	a	fault	is	returned.	If	an	AMI	is	specified
that	exists	but	the	user	making	the	request	does	not	have	launch	permissions	for,
then	that	AMI	will	not	be	included	in	the	returned	results.

Providing	the	list	of	owners	requests	information	for	AMIs	owned	by	the
specified	owners	only.	Only	AMIs	the	user	has	launch	permissions	for	are
returned.	The	items	of	the	list	may	be	account	ids	for	AMIs	owned	by	users	with
those	account	ids,	amazon	for	AMIs	owned	by	Amazon	or	self	for	AMIs	owned
by	the	user	making	the	request.

The	executable	list	may	be	provided	to	request	information	for	AMIs	that	only
the	specified	users	have	launch	permissions	for.	The	items	of	the	list	may	be

account	ids	for	AMIs	owned	by	the	user	making	the	request	that	the	users	with
the	specified	account	ids	have	explicit	launch	permissions	for,	self	for	AMIs	the
user	making	the	request	has	explicit	launch	permissions	for	or	all	for	public
AMIs.

Deregistered	images	will	be	included	in	the	returned	results	for	an	unspecified
interval	subsequent	to	deregistration.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DescribeImages.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

ImageId.n A	list	of	image	descriptions No string

Owner.n Owners	of	AMIs	to	describe No string

ExecutableBy.n Describe	AMIs	that	the	specified	users	have	launch
permissions	for

No string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeImages	responses.

Element	Name Definition Type

imagesSet A	list	of	image	descriptions ec2:DescribeImagesResponseItemType[]

Sample	Request

https://ec2.amazonaws.com/
?Action=DescribeImages
&ImageId.1=ami-61a54008
&...auth	parameters...

Sample	Response

<DescribeImagesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imagesSet>
				<item>
						<imageId>ami-61a54008</imageId>
						<imageLocation>aes-ttylinux/image.manifest.xml</imageLocation>
						<imageState>available</imageState>
						<imageOwnerId>UYY3TLBUXIEON5NQVUUX6OMPWBZIQNFM</imageOwnerId>
						<isPublic>false</isPublic>
						<productCodes>
								<item>
										<productCode>774F4FF8</productCode>
								</item>
						</productCodes>
				</item>
		</imagesSet>
</DescribeImagesResponse>

Related	Operations

DescribeInstances

DescribeImageAttribute

DescribeInstances
The	DescribeInstances	operation	returns	information	about	instances	owned
by	the	user	making	the	request.

An	optional	list	of	instance	IDs	may	be	provided	to	request	information	for	those
instances	only.	If	no	instance	IDs	are	provided,	information	of	all	relevant
instances	information	will	be	returned.	If	an	instance	is	specified	that	does	not
exist	a	fault	is	returned.	If	an	instance	is	specified	that	exists	but	is	not	owned	by
the	user	making	the	request,	then	that	instance	will	not	be	included	in	the
returned	results.

Recently	terminated	instances	will	be	included	in	the	returned	results	for	a	small
interval	subsequent	to	their	termination.	This	interval	is	typically	of	the	order	of
one	hour.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DescribeInstances.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

InstanceId.n Set	of	instances	IDs	to	get	the	status	of. No string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeInstances	responses.

Element	Name Definition Type

reservationSet A	list	of	structures	describing	the	status	of	all
requested	instances.

ec2:ReservationInfoType[]

Sample	Request

https://ec2.amazonaws.com/
?Action=DescribeInstances
&InstanceId.1=i-28a64341
&...auth	parameters...

Sample	Response

<DescribeInstancesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<reservationSet>
				<item>
						<reservationId>r-44a5402d</reservationId>
						<ownerId>UYY3TLBUXIEON5NQVUUX6OMPWBZIQNFM</ownerId>
						<groupSet>
								<item>
										<groupId>default</groupId>
								</item>
						</groupSet>
						<instancesSet>
								<item>
										<instanceId>i-28a64341</instanceId>
										<imageId>ami-6ea54007</imageId>
										<instanceState>
												<code>0</code>
												<name>running</name>
										</instanceState>
	 		<privateDnsName>domU-12-31-35-00-1E-01.z-2.compute-1.internal</privateDnsName>
	 		<dnsName>ec2-72-44-33-4.z-2.compute-1.amazonaws.com</dnsName>
										<keyName>example-key-name</keyName>
										<productCodesSet>
												<item><productCode>774F4FF8</productCode></item>
										<productCodesSet>
								</item>
						</instancesSet>
				</item>
		</reservationSet>
</DescribeInstancesResponse>

Related	Operations

RunInstances

TerminateInstances

DescribeKeyPairs
The	DescribeKeyPairs	operation	returns	information	about	keypairs	available
for	use	by	the	user	making	the	request.	Selected	keypairs	may	be	specified	or	the
list	may	be	left	empty	if	information	for	all	registered	keypairs	is	required.

Request	Parameters

The	following	table	describes	the	request	parameters	for	DescribeKeyPairs.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

KeyName.n Keypair	IDs	to	describe. No string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeKeyPairs	responses.

Element	Name Definition Type

keySet A	list	of	keypair	descriptions ec2:DescribeKeypairsResponseItemType[]

Sample	Request

https://ec2.amazonaws.com/
?Action=DescribeKeyPairs
&KeyName.1=example-key-name
&...auth	parameters...

Sample	Response

<DescribeKeyPairsResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<keySet>
				<item>
						<keyName>example-key-name</keyName>
						<keyFingerprint>1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f</keyFingerprint>
				</item>
		</keySet>
</DescribeKeyPairsResponse>

Related	Operations

CreateKeypair

DeleteKeypair

RunInstances

DescribeSecurityGroups
The	DescribeSecurityGroups	operation	returns	information	about	security
groups	owned	by	the	user	making	the	request.

An	optional	list	of	security	group	names	may	be	provided	to	request	information
for	those	security	groups	only.	If	no	security	group	names	are	provided,
information	of	all	security	groups	will	be	returned.	If	a	group	is	specified	that
does	not	exist	a	fault	is	returned.

Request	Parameters

The	following	table	describes	the	request	parameters	for
DescribeSecurityGroups.	Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

GroupName.n List	of	security	groups	to	describe. No string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
DescribeSecurityGroups	responses.

Element	Name Definition Type

securityGroupInfo Information	about	security	groups. ec2:SecurityGroupItemType[]

Sample	Request

https://ec2.amazonaws.com/
?Action=DescribeSecurityGroups
&GroupName.1=WebServers
&GroupName.2=RangedPortsBySource
&...auth	parameters...

Sample	Response

<DescribeSecurityGroupsResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<securityGroupInfo>
				<item>
						<ownerId>UYY3TLBUXIEON5NQVUUX6OMPWBZIQNFM</ownerId>
						<groupName>WebServers</groupName>
						<groupDescription>Web</groupDescription>
						<ipPermissions>
								<item>
			 		<ipProtocol>tcp</ipProtocol>
	 		<fromPort>80</fromPort>
	 		<toPort>80</toPort>
	 		<groups/>
	 		<ipRanges>
	 				<item>
	 						<cidrIp>0.0.0.0/0</cidrIp>
	 				</item>
	 		</ipRanges>
									</item>
						</ipPermissions>
				</item>
				<item>
						<ownerId>UYY3TLBUXIEON5NQVUUX6OMPWBZIQNFM</ownerId>
						<groupName>RangedPortsBySource</groupName>
						<groupDescription>A</groupDescription>
						<ipPermissions>
		 <item>
	 		<ipProtocol>tcp</ipProtocol>
	 		<fromPort>6000</fromPort>
	 		<toPort>7000</toPort>
	 		<groups/>
	 		<ipRanges/>
	 </item>
						</ipPermissions>
				</item>
		</securityGroupInfo>
</DescribeSecurityGroupsResponse>

Related	Operations

CreateSecurityGroup

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

DeleteSecurityGroup

GetConsoleOutput
The	GetConsoleOutput	operation	retrieves	console	output	that	has	been	posted
for	the	specified	instance.

Instance	console	output	is	buffered	and	posted	shortly	after	instance	boot,	reboot
and	once	the	instance	is	terminated.	Only	the	most	recent	64	KB	of	posted
output	is	available.	Console	output	is	available	for	at	least	1	hour	after	the	most
recent	post.

Request	Parameters

The	following	table	describes	the	request	parameters	for	GetConsoleOutput.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

InstanceId An	instance	ID	returned	from	a	previous	call	to	RunInstances. Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
GetConsoleOutput	responses.

Element	Name Definition Type

instanceId The	instance	ID. xsd:string

timestamp The	time	the	output	was	last	updated. xsd:dateTime

output The	console	output,	Base64	encoded. xsd:string

Sample	Request

https://ec2.amazonaws.com/
?Action=GetConsoleOutput
&InstanceId.1=i-2ea64347
&...auth	parameters...

Sample	Response

<GetConsoleOutputResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<instanceId>i-28a64341</instanceId>
		<timestamp>2007-01-03	15:00:00</timestamp>
		<output>TGludXggdmVyc2lvbiAyLjYuMTYteGVuVSAoYnVpbGRlckBwYXRjaGJhdC5hbWF6b25zYSkgKGdj
YyB2ZXJzaW9uIDQuMC4xIDIwMDUwNzI3IChSZWQgSGF0IDQuMC4xLTUpKSAjMSBTTVAgVGh1IE9j
dCAyNiAwODo0MToyNiBTQVNUIDIwMDYKQklPUy1wcm92aWRlZCBwaHlzaWNhbCBSQU0gbWFwOgpY
ZW46IDAwMDAwMDAwMDAwMDAwMDAgLSAwMDAwMDAwMDZhNDAwMDAwICh1c2FibGUpCjk4ME1CIEhJ
R0hNRU0gYXZhaWxhYmxlLgo3MjdNQiBMT1dNRU0gYXZhaWxhYmxlLgpOWCAoRXhlY3V0ZSBEaXNh
YmxlKSBwcm90ZWN0aW9uOiBhY3RpdmUKSVJRIGxvY2t1cCBkZXRlY3Rpb24gZGlzYWJsZWQKQnVp
bHQgMSB6b25lbGlzdHMKS2VybmVsIGNvbW1hbmQgbGluZTogcm9vdD0vZGV2L3NkYTEgcm8gNApF
bmFibGluZyBmYXN0IEZQVSBzYXZlIGFuZCByZXN0b3JlLi4uIGRvbmUuCg==</output>
</GetConsoleOutputResponse>

ModifyImageAttribute
The	ModifyImageAttribute	operation	modifies	an	attribute	of	an	AMI.

Attributes

Attribute	Name Type Description

launchPermission List Controls	who	has	permission	to	launch	the	AMI.	Launch	permissions	can
be	granted	to	specific	users	by	adding	userIds.	The	AMI	can	be	made
public	by	adding	the	all	group.

productCodes List Associates	product	codes	with	AMIs.	This	allows	a	developer	to	charge	a
user	extra	for	using	the	AMIs.	productCodes	is	a	write	once	attribute	-	once
it	has	been	set	it	can	not	be	changed	or	removed.

Request	Parameters

The	following	table	describes	the	request	parameters	for
ModifyImageAttribute.	Parameter	names	are	case	sensitive.

Element
Name

Definition Required? Type

ImageId AMI	Id	to	modify	an	attribute	on. Yes string

Attribute Specifies	the	attribute	to	modify.	See	the	attributes
table	below	for	supported	attributes.

Yes string

OperationType Specifies	the	operation	to	perform	on	the	attribute.	See
the	attributes	table	below	for	supported	operations	for
attributes.	Currently	only	add	and	remove	are
supported.	This	parameter	is	not	required	for	the
ProductCodes	attribute.

Yes	-	Not	for
ProductCodes

string

UserId.n User	ids	to	add	to	or	remove	from	the
launchPermission	attribute.

With
launchPermission

attribute

string

UserGroup.n User	groups	to	add	to	or	remove	from	the
launchPermission	attribute.	Currently,	only	the	all
group	is	available,	specifiying	all	Amazon	EC2	users.

With
launchPermission

attribute

string

ProductCode.n Attaches	product	codes	to	the	AMI.	Currently	only	one
product	code	may	be	associated	with	an	AMI.	Once
set,	the	product	code	can	not	be	changed	or	reset.

With
productCodes

attribute

string

Attributes

Attribute	Name Description Supported
Operations

launchPermission Modifies	the	AMI's	launch	permissions. add,	remove

productCodes Attaches	a	product	code	to	the	AMIs.	The	productCodes
attribute	is	a	write	once	attribute.

operation	not
required

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
ModifyImageAttribute	responses.

Element	Name Definition Type

return true	if	the	operation	succeeded,	otherwise	false. xsd:boolean

Sample	Request	-	Launch	Permission

https://ec2.amazonaws.com/
?Action=ModifyImageAttribute
&ImageId=ami-61a54008
&Attribute=launchPermission
&OperationType=add
&Group.1=all
&UserId.1=495219933132
&...auth	parameters...

Sample	Request	-	Product	Codes

https://ec2.amazonaws.com/
?Action=ModifyImageAttribute
&ImageId=ami-61a54008
&Attribute=productCodes
&ProductCode.1=774F4FF8
&...auth	parameters...

Sample	Response

<ModifyImageAttributeResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</ModifyImageAttributeResponse>

Related	Operations

ResetImageAttribute

DescribeImageAttribute

RebootInstances
The	RebootInstances	operation	requests	a	reboot	of	one	or	more	instances.	This
operation	is	asynchronous;	it	only	queues	a	request	to	reboot	the	specified
instance(s).	The	operation	will	succeed	provided	the	instances	are	valid	and
belong	to	the	user.	Terminated	instances	will	be	ignored.

Request	Parameters

The	following	table	describes	the	request	parameters	for	RebootInstance.
Parameter	names	are	case	sensitive.

Element
Name

Definition Required? Type

InstanceId.n One	or	more	instance	IDs	returned	from	previous	calls	to
RunInstances.

Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
RebootInstances	responses.

Element	Name Definition Type

result An	indication	of	whether	the	request	was	successful. xsd:boolean

Sample	Request

https://ec2.amazonaws.com/
?Action=RebootInstances
&InstanceId.1=i-2ea64347
&InstanceId.2=i-21a64348
&...auth	parameters...

Sample	Response

<RebootInstancesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
						<return>true</return>
</RebootInstancesResponse>

RegisterImage
The	RegisterImage	operation	registers	an	AMI	with	Amazon	EC2.	Images	must
be	registered	before	they	can	be	launched.

Each	AMI	is	associated	with	an	unique	ID	which	is	provided	by	the	EC2	service
via	the	Registerimage	operation.	As	part	of	the	registration	process,
Amazon	EC2	will	retrieve	the	specified	image	manifest	from	Amazon	S3	and
verify	that	the	image	is	owned	by	the	user	requesting	image	registration.

The	image	manifest	is	retrieved	once	and	stored	within	the	Amazon	EC2
network.	Any	modifications	to	an	image	in	Amazon	S3	invalidate	this
registration.	If	you	do	have	to	make	changes	and	upload	a	new	image	deregister
the	previous	image	and	register	the	new	image.

Request	Parameters

The	following	table	describes	the	request	parameters	for	RegisterImage.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

ImageLocation Full	path	to	your	AMI	manifest	in	Amazon	S3	storage. Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
RegisterImage	responses.

Element	Name Definition Type

imageId Unique	ID	of	the	newly	registered	machine	image. xsd:string

Sample	Request

https://ec2.amazonaws.com/
?Action=RegisterImage
&ImageLocation=mybucket-myimage.manifest.xml
&...auth	parameters...

Sample	Response

<RegisterImageResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<imageId>ami-61a54008</imageId>
</RegisterImageResponse>

Related	Operations

DescribeImages

DeregisterImage

ResetImageAttribute
The	ResetImageAttribute	operation	resets	an	attribute	of	an	AMI	to	its	default
value.

The	productCodes	attribute	cannot	be	reset.

Request	Parameters

The	following	table	describes	the	request	parameters	for	ResetImageAttribute.
Parameter	names	are	case	sensitive.

Element
Name

Definition Required? Type

ImageId Id	of	the	AMI	for	which	an	attribute	will	be	described. Yes string

Attribute Specifies	the	attribute	to	reset.	Currently,	only	launchPermission
is	supported.	In	the	case	of	launchPermission,	all	public	and
explicit	launch	permissions	for	the	AMI	are	revoked.

Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
ResetImageAttribute	responses.

Element	Name Definition Type

return true	if	the	operation	succeeded,	otherwise	false. xsd:boolean

Sample	Request

https://ec2.amazonaws.com/
?Action=ResetImageAttribute
&ImageId=ami-61a54008
&Attribute=launchPermission
&...auth	parameters...

Sample	Response

<ResetImageAttributeResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</ResetImageAttributeResponse>

Related	Operations

ModifyImageAttribute

DescribeImageAttribute

RevokeSecurityGroupIngress
The	RevokeSecurityGroupIngress	operation	revokes	existing	permissions	that
were	previously	granted	to	a	security	group.	The	permissions	to	revoke	must	be
specified	using	the	same	values	originally	used	to	grant	the	permission.

Permissions	are	specified	in	terms	of	the	IP	protocol	(TCP,	UDP	or	ICMP),	the
source	of	the	request	(by	IP	range	or	an	Amazon	EC2	user-group	pair),	source
and	destination	port	ranges	(for	TCP	and	UDP),	and	ICMP	codes	and	types	(for
ICMP).	When	authorizing	ICMP,	-1	may	be	used	as	a	wildcard	in	the	type	and
code	fields.

Permission	changes	are	propagated	to	instances	within	the	security	group	being
modified	as	quickly	as	possible.	However,	a	small	delay	is	likely,	depending	on
the	number	of	instances	that	are	members	of	the	indicated	group.

When	revoking	a	user/group	pair	permission,	GroupName,
SourceSecurityGroupName	and	SourceSecurityGroupOwnerId	must	be
specified.	When	authorizing	a	CIDR	IP	permission,	GroupName,	IpProtocol,
FromPort,	ToPort	and	CidrIp	must	be	specified.	Mixing	these	two	types	of
parameters	is	not	allowed.

Request	Parameters

The	following	table	describes	the	request	parameters	for
RevokeSecurityGroupIngress.	Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

GroupName Name	of	the	group	to	modify. Yes string

SourceSecurityGroupName Name	of	security	group	to	revoke	access	to
when	operating	on	a	user/group	pair.

When
revoking
user/group
pair
permission.

string

SourceSecurityGroupOwnerId Owner	of	security	group	to	revoke	access
to	when	operating	on	a	user/group	pair.

When
revoking
user/group
pair
permisison.

string

IpProtocol IP	protocol	to	revoke	access	to	when
operating	on	a	CIDR	IP.	Valid	values	are
tcp,	udp	and	icmp.

When
revoking
CIDR	IP
permission.

string

FromPort Bottom	of	port	range	to	revoke	access	to
when	operating	on	a	CIDR	IP.	This
contains	the	ICMP	type	if	ICMP	is	being
authorized.

When
revoking
CIDR	IP
permission.

int

ToPort Top	of	port	range	to	revoke	access	to	when
operating	on	a	CIDR	IP.	This	contains	the
ICMP	code	if	ICMP	is	being	authorized.

When
revoking
CIDR	IP
permission.

int

CidrIp CIDR	IP	range	to	revoke	access	to	when
operating	on	a	CIDR	IP.

When
revoking
CIDR	IP
permission.

string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
RevokeSecurityGroupIngress	responses.

Element	Name Definition Type

return true	if	permissions	successfully	revoked. xsd:boolean

Sample	Request

https://ec2.amazonaws.com/
?Action=AuthorizeSecurityGroupIngress
&IpProtocol=tcp
&FromPort=80
&ToPort=80
&CidrIp=0.0.0.0/0
&...auth	parameters...

Sample	Response

<RevokeSecurityGroupIngressResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<return>true</return>
</RevokeSecurityGroupIngressResponse>

Related	Operations

CreateSecurityGroup

DescribeSecurityGroups

AuthorizeSecurityGroupIngress

DeleteSecurityGroup

RunInstances
The	RunInstances	operation	launches	a	specified	number	of	instances.

Note
The	Query	version	of	RunInstances	only	allows	instances
of	a	single	AMI	to	be	launched	in	one	call.	This	is	different
from	the	SOAP	API	call	of	the	same	name	but	similar	to
the	ec2-run-instances	command	line	tool.

A	call	to	RunInstances	is	guaranteed	to	start	no	fewer	than	the	requested
minimum.	If	there	is	insufficient	capacity	available	then	no	instances	will	be
started.	Amazon	EC2	will	make	a	best	effort	attempt	to	satisfy	the	requested
maximum	values.

Every	instance	is	launched	in	a	security	group.	This	may	be	specified	as	part	of
the	launch	request.	If	a	security	group	is	not	indicated	then	instances	are	started
in	a	the	default	security	group.

An	optional	keypair	ID	may	be	provided	for	each	image	in	the	launch	request.
All	instances	that	are	created	from	images	for	which	this	is	provided	will	have
access	to	the	associated	public	key	at	boot	time	(detailed	below).	This	key	may
be	used	to	provide	secure	access	to	an	instance	of	an	image	on	a	per-instance
basis.	Amazon	EC2	public	images	make	use	of	this	functionality	to	provide
secure	passwordless	access	to	instances	(and	launching	those	images	without	a
keypair	ID	will	leave	them	inaccessible).

The	public	key	material	is	made	available	to	the	instance	at	boot	time	by	placing
it	in	a	file	named	openssh_id.pub	on	a	logical	device	that	is	exposed	to	the
instance	as	/dev/sda2	(the	ephemeral	store).	The	format	of	this	file	is	suitable
for	use	as	an	entry	within	~/.ssh/authorized_keys	(the	OpenSSH	format).
This	can	be	done	at	boot	time	(as	part	of	rclocal,	for	example)	allowing	for
secure	password-less	access.	As	the	need	arises,	other	formats	will	also	be
considered.

If	the	AMI	has	a	product	code	attached	for	which	the	user	has	not	subscribed,	the
RunInstances	call	will	fail.

Request	Parameters

The	following	table	describes	the	request	parameters	for	RunInstances.
Parameter	names	are	case	sensitive.

Element	Name Definition Required? Type

ImageId Id	of	the	AMI	to	launch	instances	based	on. Yes string

MinCount Minimum	number	of	instances	to	launch. Yes int

MaxCount Maximum	number	of	instances	to	launch. Yes int

KeyName Name	of	the	keypair	to	launch	instances	with. No string

SecurityGroup.n Names	of	the	security	groups	to	associate	the	instances	with. No string

UserData The	user	data	available	to	the	launched	instances.	This
should	be	base64-encoded.	See	the	UserDataType	data	type
for	encoding	details.

No string

AddressingType The	addressing	scheme	to	launch	the	instance	with.	The
addressing	type	can	be	direct	or	public.	In	the	direct	scheme
the	instance	has	one	IP	address	that	is	not	NATted.	For	the
public	scheme	the	instance	has	a	NATted	IP	address.	See	the
section	called	“Instance	Addressing”	for	more	information
on	instance	addressing.

No string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
RunInstances	responses.

Element	Name Definition Type

RunInstancesResponse Status	information	about	the	instances	started. ec2ReservationInfoType

Sample	Request

https://ec2.amazonaws.com/
?Action=RunInstances
&ImageId=ami-60a54009
&MaxCount=3
&MinCount=1
&AddressingType=public
&...auth	parameters...

Sample	Response

<RunInstancesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<reservationId>r-47a5402e</reservationId>
		<ownerId>495219933132</ownerId>
		<groupSet>
				<item>
						<groupId>default</groupId>
				</item>
		</groupSet>
		<instancesSet>
				<item>
						<instanceId>i-2ba64342</instanceId>
						<imageId>ami-60a54009</imageId>
						<instanceState>
								<code>0</code>
	 <name>pending</name>
						</instanceState>
						<privateDnsName></privateDnsName>
						<dnsName></dnsName>
						<keyName>example-key-name</keyName>
				</item>
				<item>
						<instanceId>i-2bc64242</instanceId>
						<imageId>ami-60a54009</imageId>
						<instanceState>
								<code>0</code>
	 <name>pending</name>
						</instanceState>
						<privateDnsName></privateDnsName>
						<dnsName></dnsName>
						<keyName>example-key-name</keyName>
				</item>
				<item>
						<instanceId>i-2be64332</instanceId>
						<imageId>ami-60a54009</imageId>
						<instanceState>
								<code>0</code>
	 <name>pending</name>
						</instanceState>
						<privateDnsName></privateDnsName>
						<dnsName></dnsName>
						<keyName>example-key-name</keyName>
				</item>
		</instancesSet>
</RunInstancesResponse>

Related	Operations

DescribeInstances

TerminateInstances

AuthorizeSecurityGroupIngress

RevokeSecurityGroupIngress

DescribeSecurityGroups

TerminateInstances
The	TerminateInstances	operation	shuts	down	one	or	more	instances.	This
operation	is	idempotent	and	terminating	an	instance	that	is	in	the	process	of
shutting	down	(or	already	terminated)	will	succeed.

Terminated	instances	remain	visible	for	a	short	period	of	time	(approximately
one	hour)	after	termination,	after	which	their	instance	ID	is	invalidated.

Request	Parameters

The	following	table	describes	the	request	parameters	for	TerminateInstances.
Parameter	names	are	case	sensitive.

Element
Name

Definition Required? Type

InstanceId.n One	or	more	instance	IDs	returned	from	previous	calls	to
RunInstances.

Yes string

Response	Tags

The	following	table	describes	the	default	response	tags	included	in
TerminateInstances	responses.

Element
Name

Definition Type

instancesSet A	complex	type	containing
describing	the	current	and	new	state
of	each	instance	specified.

ec2:TerminateInstancesResponseInfoType[]

Sample	Request

https://ec2.amazonaws.com/
?Action=TerminateInstances
&InstanceId.1=i-2ea64347
&InstanceId.2=i-21a64348
&...auth	parameters...

Sample	Response

<TerminateInstancesResponse	xmlns="http://ec2.amazonaws.com/doc/2007-01-03">
		<instancesSet>
				<item>
						<instanceId>i-28a64341</instanceId>
						<shutdownState>
								<code>32</code>
								<name>shutting-down</name>
						</shutdownState>
						<previousState>
								<code>16</code>
								<name>running</name>
						</previousState>
				</item>
				<item>
						<instanceId>i-21a64348</instanceId>
						<shutdownState>
								<code>32</code>
								<name>shutting-down</name>
						</shutdownState>
						<previousState>
								<code>16</code>
								<name>running</name>
						</previousState>
				</item>
		</instancesSet>
</TerminateInstancesResponse>

Related	Operations

DescribeInstances

Command	Line	Tools	Reference

Introduction

The	Amazon	EC2	command	line	tools	provide	a	command	line	interface	to	the
web	service	API.	This	section	describes	each	tool	and	its	command	line
arguments	in	detail.

Command	line	options	and	arguments	are	based	on	the	GNU	getopt	conventions.
Optional	parameters	are	indicated	by	means	of	flags.	Flags	typically	come	in	a
short	and	long	form,	although	not	all	flags	exist	in	both	forms.	In	their	short
form,	flags	are	a	single	character	prefixed	with	a	single	dash.	In	their	long	form,
flags	use	a	longer,	more	expressive	name	prefixed	with	a	double	dash.	Optional
parameters	typically	have	default	values,	or	may	be	required	only	when	other
optional	parameters	are	specified,	and	order	is	unimportant.	For	all	remaining
parameters	order	does	matter.

A	number	of	command	line	options	apply	to	all	of	the	command	line	tools.
These	are	covered	below	and,	for	reasons	of	brevity,	are	not	included	in	the
description	of	each	of	the	specific	tools.

Errors

Any	service	errors	encountered	by	the	command	line	tools	will	be	passed
straight	through	from	the	API.	A	list	of	these	errors	can	be	seen	in	the	section
called	“API	Error	Codes”.

Common	Options

Most	command	line	tools	covered	in	the	following	sections	accept	a	common	set
of	optional	parameters	as	follows:

Element
Name

Definition Valid
Values/Types

Example

-U	URL URL	is	the	uniform	resource
locator	of	the	Amazon	EC2
web	service	entry	point.	This
option	defaults	to	the	value	of
the	EC2_URL	environment
variable,	or
http://ec2.amazonaws.com	if
that	is	not	set.

URL -U	http://ec2.amazonaws.com

-K	EC2-

PRIVATE-

KEY

The	private	key	to	use	when
constructing	requests	to
Amazon	EC2.	This	parameter
defaults	to	the	value	of	the
EC2_PRIVATE_KEY

environment	variable.

File	name -K	pk-

HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

-C	EC2-

CERT
The	X509	certificate	to	use
when	constructing	requests	to
Amazon	EC2.	This	parameter
defaults	to	the	value	of	the
EC2_CERT	environment
variable.

File	name -C	cert-

HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

-v Increase	output	verbosity.
This	will	print	the	SOAP
request	and	response	on	the
command	line.	This	is
particularly	useful	if	you're
trying	to	build	your	own	tools
to	talk	directly	to	our	SOAP
API.

N/A N/A

--show-

empty-

fields

Shows	empty	columns	as
(nil).

N/A N/A

--debug Print	internal	debugging
information.	This	is	intended
to	assist	us	to	troubleshoot
problems.

N/A N/A

-? Show	help. N/A N/A
- If	-	is	specified	as	an

argument	to	one	of	the
parameters,	a	list	of
arguments	will	be	read	from
stdin.	This	is	useful	for	piping
the	output	of	one	command
into	the	input	of	another.

N/A ec2-describe-instances	|	grep

running	|	cut	-f	2	|	ec2-terminate-

instances	-i	-

By	Function

AMI	Tools

ec2-bundle-image

ec2-bundle-vol

ec2-unbundle

ec2-upload-bundle

ec2-download-bundle

ec2-delete-bundle

API	Tools

Images

ec2-register

ec2-deregister

ec2-describe-images

Instances

ec2-run-instances

ec2-describe-instances

ec2-terminate-instances

ec2-confirm-product-instance

Keypairs

ec2-add-keypair

ec2-describe-keypairs

ec2-delete-keypair

ec2-fingerprint-key

Image	Attributes

ec2-modify-image-attribute

ec2-describe-image-attribute

ec2-reset-image-attribute

Security	Groups

ec2-add-group

ec2-delete-group

ec2-describe-groups

ec2-authorize

ec2-revoke

ec2-add-group

SYNOPSIS

ec2-add-group	GROUP	-d	DESCRIPTION

DESCRIPTION

Creates	a	new	security	group	named	GROUP.	Group	names	must	be	unique	per
user.

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("GROUP").

Group	name.

Group	description.

Errors	are	displayed	on	stderr.

OPTIONS

Option Definition Required? Example

-d	DESCRIPTION Description	of	the	group.	This	is	informational	only. Yes -d	'Web	servers'

EXAMPLE
$	ec2-add-group	websrv	-d	'Web	servers'

GROUP	websrv	Web	servers

SEE	ALSO

CreateSecurityGroup

ec2-describe-groups

ec2-delete-group

ec2-authorize

ec2-revoke

ec2-confirm-product-instance

SYNOPSIS

ec2-confirm-product-instance	PRODUCT_CODE	-i	INSTANCE_ID

DESCRIPTION

Returns	a	boolean	indicating	if	the	instance	with	INSTANCE_ID	has
PRODUCT_CODE	attached	to	it.

OUTPUT

A	table	containing	the	following	information	is	returned:

Product	code.

Instance	ID.

Boolean	indicating	if	the	product	code	is	attached	to	the	instance.

The	instance	owner's	account	id.	Only	returned	if	the	product	code	is
attached.

Errors	are	displayed	on	stderr.

EXAMPLE	-	SUMMARY
$	ec2-confirm-product-instance	774F4FF8	-i	i-10a64379

774F4FF8	i-10a64379	true

SEE	ALSO

DescribeInstances

ec2-modify-image-attribute

ec2-add-keypair

SYNOPSIS

ec2-add-keypair	KEY

DESCRIPTION

A	new	2048	bit	RSA	key	pair	is	created	with	the	specified	name.	The	public	key
is	stored	by	Amazon	EC2	and	the	private	key	is	displayed	on	the	console.	The
private	key	is	returned	as	an	unencrypted	PEM	encoded	PKCS#8	private	key.	If
a	key	with	the	specified	name	already	exists	an	error	is	returned.

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("KEYPAIR").

Keypair	name.

Private	key	fingerprint.

Private	key.	This	value	is	displayed	on	a	new	line.

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-add-keypair	gsg-keypair

KEYPAIR	gsg-keypair		1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f

-----BEGIN	RSA	PRIVATE	KEY-----

MIIEoQIBAAKCAQBuLFg5ujHrtm1jnutSuoO8Xe56LlT+HM8v/xkaa39EstM3/aFxTHgElQiJLChp

HungXQ29VTc8rc1bW0lkdi23OH5eqkMHGhvEwqa0HWASUMll4o3o/IX+0f2UcPoKCOVUR+jx71Sg

5AU52EQfanIn3ZQ8lFW7Edp5a3q4DhjGlUKToHVbicL5E+g45zfB95wIyywWZfeW/UUF3LpGZyq/

ebIUlq1qTbHkLbCC2r7RTn8vpQWp47BGVYGtGSBMpTRP5hnbzzuqj3itkiLHjU39S2sJCJ0TrJx5

i8BygR4s3mHKBj8l+ePQxG1kGbF6R4yg6sECmXn17MRQVXODNHZbAgMBAAECggEAY1tsiUsIwDl5

91CXirkYGuVfLyLflXenxfI50mDFms/mumTqloHO7tr0oriHDR5K7wMcY/YY5YkcXNo7mvUVD1pM

ZNUJs7rw9gZRTrf7LylaJ58kOcyajw8TsC4e4LPbFaHwS1d6K8rXh64o6WgW4SrsB6ICmr1kGQI7

3wcfgt5ecIu4TZf0OE9IHjn+2eRlsrjBdeORi7KiUNC/pAG23I6MdDOFEQRcCSigCj+4/mciFUSA

SWS4dMbrpb9FNSIcf9dcLxVM7/6KxgJNfZc9XWzUw77Jg8x92Zd0fVhHOux5IZC+UvSKWB4dyfcI

tE8C3p9bbU9VGyY5vLCAiIb4qQKBgQDLiO24GXrIkswF32YtBBMuVgLGCwU9h9HlO9mKAc2m8Cm1

jUE5IpzRjTedc9I2qiIMUTwtgnw42auSCzbUeYMURPtDqyQ7p6AjMujp9EPemcSVOK9vXYL0Ptco

xW9MC0dtV6iPkCN7gOqiZXPRKaFbWADp16p8UAIvS/a5XXk5jwKBgQCKkpHi2EISh1uRkhxljyWC

iDCiK6JBRsMvpLbc0v5dKwP5alo1fmdR5PJaV2qvZSj5CYNpMAy1/EDNTY5OSIJU+0KFmQbyhsbm

rdLNLDL4+TcnT7c62/aH01ohYaf/VCbRhtLlBfqGoQc7+sAc8vmKkesnF7CqCEKDyF/dhrxYdQKB

gC0iZzzNAapayz1+JcVTwwEid6j9JqNXbBc+Z2YwMi+T0Fv/P/hwkX/ypeOXnIUcw0Ih/YtGBVAC

DQbsz7LcY1HqXiHKYNWNvXgwwO+oiChjxvEkSdsTTIfnK4VSCvU9BxDbQHjdiNDJbL6oar92UN7V

rBYvChJZF7LvUH4YmVpHAoGAbZ2X7XvoeEO+uZ58/BGKOIGHByHBDiXtzMhdJr15HTYjxK7OgTZm

gK+8zp4L9IbvLGDMJO8vft32XPEWuvI8twCzFH+CsWLQADZMZKSsBasOZ/h1FwhdMgCMcY+Qlzd4

JZKjTSu3i7vhvx6RzdSedXEMNTZWN4qlIx3kR5aHcukCgYA9T+Zrvm1F0seQPbLknn7EqhXIjBaT

P8TTvW/6bdPi23ExzxZn7KOdrfclYRph1LHMpAONv/x2xALIf91UB+v5ohy1oDoasL0gij1houRe

2ERKKdwz0ZL9SWq6VTdhr/5G994CK72fy5WhyERbDjUIdHaK3M849JJuf8cSrvSb4g==

-----END	RSA	PRIVATE	KEY-----

SEE	ALSO

CreateKeypair

ec2-describe-keypairs

ec2-delete-keypair

ec2-authorize

SYNOPSIS

ec2-authorize	GROUP	[-P	PROTOCOL]	(-p	PORT_RANGE	|	-t
ICMP_TYPE_CODE)	[-u	SOURCE_GROUP_USER	...]	[-o	SOURCE_GROUP
...]	[-s	SOURCE_SUBNET	...]

DESCRIPTION

Adds	a	rule	to	the	security	group	named	GROUP.	If	no	source	host,	group	or
subnet	is	provided,	requests	from	any	source	address	will	be	honored.

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("GROUP",	"PERMISSION").

Group	name.	Currently,	this	will	report	an	empty	string.

Type	of	rule.	Currently,	only	ALLOW	rules	are	supported.

Protocol	to	allow.

Start	of	port	range.

End	of	port	range.

FROM

Source.

Errors	are	displayed	on	stderr.

OPTIONS

Option Definition Required? Example

-P	PROTOCOL The	protocol	to	allow.	This	can	be	tcp,	udp	or
icmp.	This	option	only	applies	when	specifying	a
CIDR	subnet	as	the	source.

Yes -P	tcp

-p	PORT_RANGE For	the	TCP	or	UDP	protocols,	this	specifies	the
range	of	ports	to	allow.	This	may	be	specified	as
a	single	integer	or	as	a	range	(min-max).	This
option	only	applies	when	specifying	a	CIDR
subnet	as	the	source.

Yes -p	80

-t	ICMP_TYPE_CODE For	the	ICMP	protocol,	the	ICMP	type	and	code
must	be	specified.	This	must	be	specified	as
type:code	where	both	are	integers.	Type	or	code
(or	both)	may	be	specified	as	-1	which	is	a
wildcard.	This	option	only	applies	when
specifying	a	CIDR	subnet	as	the	source.

Yes -t	2:5

-u

SOURCE_GROUP_USER
The	owner	of	a	group	specified	using	-o.	If	this
is	not	specified,	all	groups	will	refer	to	the
current	user.	If	specified	more	than	once,	there
must	be	exactly	one	-u	per	-o	and	each	user	will
be	mapped	to	the	corresponding	group.

No -u
495219933132

-o	SOURCE_GROUP The	network	source	from	which	traffic	is	to	be
authorized	specified	as	a	security	Group.	See	the
description	of	the	-u	parameter	for	group	owner
information.

No -o	headoffice

-s	SOURCE_SUBNET The	network	source	from	which	traffic	is	to	be
authorized	specified	as	a	CIDR	Subnet	range.

No -s
205.192.8.45/24

EXAMPLE
$	ec2-authorize	websrv	-P	tcp	-p	80	-s	205.192.0.0/16

GROUP	websrv	""

PERMISSION	websrv	ALLOWS	tcp	80	80	FROM	CIDR	205.192.0.0/16

SEE	ALSO

AuthorizeSecurityGroupIngress

ec2-add-group

ec2-describe-groups

ec2-delete-group

ec2-revoke

ec2-bundle-image

SYNOPSIS

ec2-bundle-image	-k	PRIVATE-KEY	-c	EC2-CERT	-u	USER-ID	-i	IMAGE	[-d
DESTINATION-DIR]	[-p	AMI-PREFIX]

DESCRIPTION

Create	a	bundled	AMI	of	an	operating	system	image	that	was	created	in	a
loopback	file.

OUTPUT

Status	messages	indicating	the	various	stages	of	the	bundling	process	are
displayed.

OPTIONS

Note
This	tool	does	not	support	the	common	options

Option Definition Required? Example

-k,	--

privatekey

KEY

The	path	to	the
user's	PEM
encoded	RSA
key	file.

Yes -k	pk-
HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

-c,	--cert

EC2-CERT
The	user's	PEM
encoded	RSA
public	key
certificate	file..

Yes -c	cert-
HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

-u,	--user

USER
The	user's	EC2
user	ID	(i.e.,
AWS	account
number,	not	the
Access	Key
ID).

Yes -u	123456789

-i,	--image

PATH
The	path	to	the
image	to
bundle.

Yes -i	/var/spool/my-image/version-2/debian.img

-d,	--

destination

DESTINATION

The	directory	in
which	to	create
the	bundle.
Defaults	to	the
current
directory.

No -d	/var/run/my-bundle

-p,	--

prefix

PREFIX

The	filename
prefix	for
bundled	AMI
files.	Defaults
to	"image".

No -p	my-image-is-special

--help Display	the
help	message.

No --help

--manual Display	the
help.

No --manual

EXAMPLE
$	ec2-bundle-image	-k	pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem	-c	cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem	-u	495219933132	-i	image.img	-d	bundled/	-p	fred

Splitting	bundled/fred.gz.crypt...

Created	fred.part.00

Created	fred.part.01

Created	fred.part.02

Created	fred.part.03

Created	fred.part.04

Created	fred.part.05

Created	fred.part.06

Created	fred.part.07

Created	fred.part.08

Created	fred.part.09

Created	fred.part.10

Created	fred.part.11

Created	fred.part.12

Created	fred.part.13

Created	fred.part.14

Generating	digests	for	each	part...

Digests	generated.

Creating	bundle	manifest...

Bundle	Image	complete.

				

SEE	ALSO

ec2-bundle-vol

ec2-unbundle

ec2-upload-bundle

ec2-download-bundle

ec2-delete-bundle

ec2-bundle-vol

SYNOPSIS

ec2-bundle-vol	-k	PRIVATE-KEY	-u	USER-ID	-c	EC2-CERT	[-s	SIZE]	[-d
DESTINATION-DIR]	[-e	EXLCUDE-DIR-1,EXCLUDE-DIR-2...]	[-p	AMI-
PREFIX]	[-v	VOLUME]	[--ec2cert	PATH]

DESCRIPTION

Create	a	bundled	AMI	by	taking	a	snapshot	of	the	local	machine's	root	file
system,	compressing,	encrypting	and	signing	the	snapshot.

OUTPUT

Status	messages	indicating	the	various	stages	of	the	bundling	process	are
displayed.

OPTIONS

Note
Note	that	this	tool	does	not	support	the	common	arguments

Option Definition Required? Example

-k,	--

privatekey

KEY

The	path	to	the	user's
PEM	encoded	RSA
key	file.

Yes -k	pk-
HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

-c,	--cert

EC2-CERT
The	user's	PEM
encoded	RSA	public
key	certificate	file.

Yes -c	cert-
HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

-u,	--user

USER
The	user's	EC2	user
ID	(a.k.a.	AWS
account	number).

Yes -u	123456789

-s,	--size

SIZE
The	size,	in	MB
(1024	*	1024	bytes),
of	the	image	file	to
create.	The
maximum	size	is
10240	MB.	Defaults
to	10240.

No -s	2048

-d,	--

destination

DESTINATION

The	directory	in
which	to	create	the
bundle.	Defaults	to
"/tmp".

No -d	/var/run/my-bundle

-e,	--exclude

DIR1,DIR2,...
A	list	of	absolute
directory	paths	to
exclude	from	the
bundle	operation.
Note	that	it	overrides
the	'--all'	parameter.

No -e	/tmp,/home/secret-data

-p,	--prefix

PREFIX
The	filename	prefix
for	bundled	AMI
files.	Defaults	to
"image".

No -p	my-image-is-special

-v,	--volume

VOLUME
The	absolute	path	to
the	mounted	volume
to	create	the	bundle
from.	Defaults	to	"/".

No -v	/mnt/my-customized-ami

-a,	--all Bundle	all
directories,	including
those	on	remotely
mounted	filesystems.

No -a

--ec2cert

PATH
The	path	to	the	EC2
X509	public	key
certificate.	Defaults
to
"/etc/aes/amiutil/cert-
ec2.pem".

No --ec2cert	/etc/aes/amiutil/cert-ec2.pem

--help Display	the	help
message.

No --help

--manual Display	the	user
manual.

No --manual

EXAMPLE
$	ec2-bundle-vol	-d	/mnt	-k	pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem	-c	cert-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem	-u	495219933132

Copying	/	into	the	image	file	/mnt/image.img...

Excluding:	

					sys

					dev/shm

					proc

					dev/pts

					proc/sys/fs/binfmt_misc

					dev

					media

					mnt

					proc

					sys

					tmp/image.img

					mnt/img-mnt

1+0	records	in

1+0	records	out

mke2fs	1.38	(30-Jun-2005)

warning:	256	blocks	unused.

Splitting	/mnt/image.gz.crypt...

Created	image.part.00

Created	image.part.01

Created	image.part.02

Created	image.part.03

...

Created	image.part.22

Created	image.part.23

Generating	digests	for	each	part...

Digests	generated.

Creating	bundle	manifest...

Bundle	Volume	complete.

				

SEE	ALSO

ec2-bundle-image

ec2-unbundle

ec2-upload-bundle

ec2-download-bundle

ec2-delete-bundle

ec2-delete-bundle

SYNOPSIS

ec2-delete-bundle	-b	S3-BUCKET	-a	AWS-ACCESS-KEY-ID	-s	AWS-
SECRET-KEY	[-m	MANIFEST-PATH]	[-p	PREFIX]	[--url	URL]	[--retry]	[-y]

DESCRIPTION

Delete	the	specified	bundle	from	S3	storage.

OUTPUT

Status	messages	indicating	the	various	stages	of	the	delete	process	are	displayed.

OPTIONS

Note
Note	that	this	tool	does	not	support	the	common	arguments

Option Definition Required? Example

-b,	--

bucket

S3-BUCKET

The	name	of	the
Amazon	S3	bucket
containing	the	bundled
AMI

Yes -b	aes-cracker-ami-bucket

-a,	--

access-

key	USER

The	user's	AWS	access
key	ID.

Yes -a	10QMXFEV71ZS32XQFTR2

-s,	--

secret-

key

PASSWORD

The	user's	AWS	secret
access	key.

Yes -s
DMADSSfPfdaDjbK+RRUhS/aDrjsiZadgAUm8gRU2

-m,	--

manifest

MANIFEST-

PATH

The	path	to	the
unencrypted	manifest	file.

No -m	/var/spool/my-first-bundle/Manifest

-p,	--

prefix

PREFIX

The	bundled	AMI	part
filename	prefix.

No -p	eos-

--url	URL The	S3	service	URL.
Defaults	to
https://s3.amazonaws.com.

No --url	https://s3.amazonaws.ie

--retry Automatically	retry	failed
uploads.	Use	with	caution.

No --retry

-y,	--yes Automatically	assume	the
answer	to	all	prompts	is
'yes'.

No -y

--help Display	the	help	message. No --help

--manual Display	the	help. No --manual

EXAMPLE
$	ec2-delete-bundle	-b	my-s3-bucket	-a	10QMXFEV71ZS32XQFTR2	-s	DMADSSfPfdaDjbK+RRUhS/aDrjsiZadgAUm8gRU2	-p	fred

Deleting	files:

my-s3-bucket/fred.manifest.xml

my-s3-bucket/fred.part.00

my-s3-bucket/fred.part.01

my-s3-bucket/fred.part.02

my-s3-bucket/fred.part.03

my-s3-bucket/fred.part.04

my-s3-bucket/fred.part.05

my-s3-bucket/fred.part.06

Continue?	[y/n]

y

Deleted	my-s3-bucket/fred.manifest.xml

Deleted	my-s3-bucket/fred.part.00

Deleted	my-s3-bucket/fred.part.01

Deleted	my-s3-bucket/fred.part.02

Deleted	my-s3-bucket/fred.part.03

Deleted	my-s3-bucket/fred.part.04

Deleted	my-s3-bucket/fred.part.05

Deleted	my-s3-bucket/fred.part.06

ec2-delete-bundle	complete.

SEE	ALSO

ec2-bundle-image

ec2-bundle-vol

ec2-unbundle

ec2-upload-bundle

ec2-download-bundle

ec2-delete-group

SYNOPSIS

ec2-delete-group	GROUP

DESCRIPTION

Deletes	the	named	GROUP.

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("GROUP").

Name	of	the	deleted	group.

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-delete-group	websrv

GROUP	websrv

SEE	ALSO

DeleteSecurityGroup

ec2-add-group

ec2-describe-groups

ec2-authorize

ec2-revoke

ec2-delete-keypair

SYNOPSIS

ec2-delete-keypair	KEY

DESCRIPTION

Deletes	the	named	KEY,	purging	the	public	key	from	Amazon	EC2

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("KEYPAIR").

Identifier	of	the	deleted	keypair.

Private	key	fingerprint.

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-delete-keypair	gsg-keypair

KEYPAIR	gsg-keypair

SEE	ALSO

DeleteKeypair

ec2-add-keypair

ec2-describe-keypairs

ec2-deregister

SYNOPSIS

ec2-deregister	AMI

DESCRIPTION

The	AMI	identified	is	deregistered.	This	AMI	may	no	longer	be	used	to	launch
new	instances.	The	AMI	is	not	deleted	from	Amazon	S3

OUTPUT

A	table	containing	the	following	information	is	returned:

A	record	type	identifier	("IMAGE")

the	image	identifier	that	was	deregistered

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-deregister	ami-4fa54026

IMAGE	ami-4fa54026

SEE	ALSO

DeregisterImage

ec2-register

ec2-describe-images

ec2-describe-groups

SYNOPSIS

ec2-describe-groups	[GROUP	...]

DESCRIPTION

Describes	the	current	state	of	each	GROUP	specified	on	the	command	line.	If	no
GROUPs	are	explicitly	listed	then	all	GROUPs	owned	by	the	current	user	are
included	in	the	output.

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("GROUP",	"PERMISSION").

User	ID	of	group	owner.

Group	name.

Description	of	the	group.

Firewall	rule.

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-describe-groups	websrv

GROUP	495219933132	websrv	Web	servers

PERMISSION	495219933132	websrv	ALLOWS	tcp	80	80	FROM	CIDR	0.0.0.0/0

SEE	ALSO

DescribeSecurityGroups

ec2-add-group

ec2-delete-group

ec2-authorize

ec2-revoke

ec2-describe-image-attribute

SYNOPSIS

ec2-describe-image-attribute	AMI	(-l	|	-p)

DESCRIPTION

Describes	an	attribute	for	the	specified	AMI.

OUTPUT

A	table	containing	the	following	information	is	returned:

Attribute	type	identifier

ID	of	the	AMI	of	which	an	attribute	is	being	described.

Attribute	value	type	or	attribute	list	item	value	type.

Attribute	or	attribute	list	item	value.

Errors	are	displayed	on	stderr.

OPTIONS

Option Definition Required? Example

-l Describes	the	launchPermission	attribute. Choice -l

-p Describes	the	productCodes	attribute. Choice -p

EXAMPLE	-	LAUNCH	PERMISSION
$	ec2-describe-image-attribute	ami-5bae4b32	-l

launchPermission	ami-5bae4b32	group	all

launchPermission	ami-5bae4b32	userId	495219933132

EXAMPLE	-	PRODUCT	CODES
$	ec2-describe-image-attribute	ami-5bae4b32	-p

productCodes	ami-5bae4b32	productCode	774F4FF8

SEE	ALSO

DescribeImageAttribute

ec2-modify-image-attribute

ec2-reset-image-attribute

Sharing	AMIs

ec2-describe-images

SYNOPSIS

ec2-describe-images[AMI	...]	[-a]	[-o	OWNER	...]	[-x	USER]

DESCRIPTION

Describes	the	current	state	of	each	AMI	specified	on	the	command	line.	If	no
AMIs	are	explicitly	listed,	the	AMIs	described	can	be	controlled	with	the
optional	parameters.	If	no	optional	parameters	are	specified,	it	returns	all	AMIs
owned	by	the	user,	AMIs	for	which	the	user	has	explicit	launch	permissions,
public	AMIs,	and	Amazon-owned	AMIs.

Note
The	default	behaviour	of	ec2-describe-images	changed
from	version	2006-06-26	to	version	2006-10-01.	In	the
2006-06-26	version	all	images	to	which	the	user	has
access,	including	public	images,	are	returned.	In	the
version	2006-10-01	and	later,	only	images	which	the	user
owns	or	has	explicit	access	are	returned.	Public	images	are
not	returned.

OUTPUT

A	table	containing	the	following	information	is	returned:

A	record	type	identifier	("IMAGE")

image	identifier

manifest	location

user	identifier	of	the	user	that	registered	the	image

image	status

public	or	private	indicating	whether	or	not	the	image	is	visible	to	all	users

product	codes,	if	any	are	attached	the	instance

Errors	are	displayed	on	stderr.

OPTIONS

Option Definition Required? Example

-a All	AMIs	the	user	owns	and	has	execution	permissions	for,
both	public	and	explicit	are	returned.

No -a

-o

OWNER
AMIs	owned	by	the	specified	owner	are	returned.	Multiple
owners	may	be	specified.	OWNER	is	a	AWS	user	account	ID,
the	same	ID	in	the	result	set	for	the	user	that	registered	the
AMI.	The	IDs	amazon,	self	and	explicit	may	be	specified	to
include	AMIs	owned	by	Amazon,	AMIs	owned	by	the	user,
and	AMIs	for	which	the	user	has	explicit	launch	permissions,
respectively.

No -o
123456789012

-x

USER
Only	AMIs	for	which	the	specified	user	has	explicit	launch
permissions	are	returned.	USER	can	be	a	user's	account	ID,
'self'	to	return	AMIs	for	which	the	sender	of	the	request	has
explicit	launch	permissions,	or	'all'	to	return	AMIs	with	public
launch	permissions.

No -x	self

EXAMPLE
$	ec2-describe-images	ami-78a54011

IMAGE	ami-78a54011	powerdns/image.manifest.xml	495219933132	available	private	774F4FF8

SEE	ALSO

DescribeImages

ec2-register

ec2-deregister

ec2-describe-instances

SYNOPSIS

ec2-describe-instances	[INSTANCEID	...]

DESCRIPTION

Describes	the	current	state	of	each	instance	indicated	by	the	respective
INSTANCEID	specified	on	the	command	line.	If	no	instances	are	explicitly
listed	then	all	instances	owned	by	the	current	user	are	included	in	the	output.

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("RESERVATION",	"INSTANCE")

Instance	ID	which	uniquely	identifies	each	running	instance.

AMI	ID	of	the	image	the	instance	is	based	on.

Public	DNS	name	associated	with	the	instance.	Only	present	for	instances
in	the	running	state.

Private	DNS	name	associated	with	the	instance.	Only	present	for	instances
in	the	running	state	launched	with	public	addressing	type.

Instance	state.

Key	name.	If	a	key	was	associated	with	the	instance	at	launch	it's	name	will
be	displayed	in	this	column.

AMI	launch	index.	See	using	instance	data	for	more	info.

Product	codes	attached	to	the	instance.

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-describe-instances

RESERVATION	r-15a4417c	495219933132	

INSTANCE	i-3ea74257	ami-6ba54002	ec2-72-44-33-4.z-2.compute-1.amazonaws.com	domU-12-31-33-00-00-01.z-2.compute-1.internal	running	0	774F4FF8

INSTANCE	i-31a74258	ami-6ba54002	ec2-72-44-34-23.z-2.compute-1.amazonaws.com	domU-12-31-33-00-00-02.z-2.compute-1.internal	running	1

SEE	ALSO

DescribeInstances

ec2-run-instances

ec2-terminate-instances

ec2-describe-keypairs

SYNOPSIS

ec2-describe-keypairs	[KEY	...]

DESCRIPTION

Describes	the	current	state	of	each	KEY	specified	on	the	command	line.	If	no
KEYs	are	explicitly	listed	then	all	KEYs	owned	by	the	current	user	are	included
in	the	output.

OUTPUT

A	table	containing	the	following	information	is	returned:

A	output	type	identifier	("KEYPAIR")

Keypair	identifier

Private	key	fingerprint

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-describe-keypairs	gsg-keypair

KEYPAIR	gsg-keypair		1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f

SEE	ALSO

DescribeKeypairs

ec2-add-keypair

ec2-delete-keypair

ec2-download-bundle

SYNOPSIS

ec2-download-bundle	-b	S3-BUCKET	-m	MANIFEST	-a	AWS-ACCESS-
KEY-ID	-s	AWS-SECRET-KEY	-k	PRIVATE-KEY	[-p	PREFIX]	[-d
DIRECTORY]	[--url	URL]

DESCRIPTION

Download	the	specified	bundles	from	S3	storage.

OUTPUT

Status	messages	indicating	the	various	stages	of	the	download	process	are
displayed.

OPTIONS

Note
Note	that	this	tool	does	not	support	the	common	arguments

Option Definition Required? Example

-b,	--

bucket	S3-

BUCKET

The	name	of	the	Amazon	S3	bucket	from
which	to	fetch	the	bundles.

Yes -b	aes-cracked

-m,	--

manifest

MANIFEST

The	manifest	filename. Yes -m	/var/spool/my-first-bundle/Manifest

-a,	--

access-key

USER

The	user's	AWS	access	key	ID. Yes -a	10QMXFEV71ZS32XQFTR2

-s,	--

secret-key

PASSWORD

The	user's	AWS	secret	access	key. Yes -s
DMADSSfPfdaDjbK+RRUhS/aDrjsiZadgAUm8gRU2

-k,	--

privatekey

KEY

The	user's	private	key	used	to	decrypt	the
manifest.

Yes -k	pk-
HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem

-p,	--

prefix

PREFIX

The	filename	prefix	for	the	bundled	AMI
files.	Defaults	to	"image".

No -p	my-image

-d,	--

directory

DIRECTORY

The	directory	into	which	the	downloaded
bundles	are	saved.	Defaults	to	the	current
working	directory.

Note

The
directory
must
exist.

No -d	/tmp/my-downloaded-bundle

--url	URL The	S3	service	URL.	Defaults	to
https://s3.amazonaws.com.

No --url	https://s3.amazonaws.ie

--help Display	the	help	message. No --help

EXAMPLE
$	mkdir	bundled

$	ec2-download-bundle	-b	my-s3-bucket	-m	fred.manifest.xml	-a	10QMXFEV71ZS32XQFTR2	-s	DMADSSfPfdaDjbK+RRUhS/aDrjsiZadgAUm8gRU2	-k	pk-HKZYKTAIG2ECMXYIBH3HXV4ZBZQ55CLO.pem	-d	bundled

downloading	manifest	https://s3.amazonaws.com/my-s3-bucket/image.manifest.xml	to	bundled/image.manifest.xml	...

downloading	part	https://s3.amazonaws.com/my-s3-bucket/image.part.00	to	bundled/image.part.00	...

Downloaded	image.part.00	from	https://s3.amazonaws.com/my-s3-bucket.

downloading	part	https://s3.amazonaws.com/my-s3-bucket/image.part.01	to	bundled/image.part.01	...

Downloaded	image.part.01	from	https://s3.amazonaws.com/my-s3-bucket.

downloading	part	https://s3.amazonaws.com/my-s3-bucket/image.part.02	to	bundled/image.part.02	...

Downloaded	image.part.02	from	https://s3.amazonaws.com/my-s3-bucket.

downloading	part	https://s3.amazonaws.com/my-s3-bucket/image.part.03	to	bundled/image.part.03	...

Downloaded	image.part.03	from	https://s3.amazonaws.com/my-s3-bucket.

downloading	part	https://s3.amazonaws.com/my-s3-bucket/image.part.04	to	bundled/image.part.04	...

Downloaded	image.part.04	from	https://s3.amazonaws.com/my-s3-bucket.

downloading	part	https://s3.amazonaws.com/my-s3-bucket/image.part.05	to	bundled/image.part.05	...

Downloaded	image.part.05	from	https://s3.amazonaws.com/my-s3-bucket.

downloading	part	https://s3.amazonaws.com/my-s3-bucket/image.part.06	to	bundled/image.part.06	...

Downloaded	image.part.06	from	https://s3.amazonaws.com/my-s3-bucket.

Download	Bundle	complete.			

SEE	ALSO

ec2-bundle-image

ec2-bundle-vol

ec2-unbundle

ec2-upload-bundle

ec2-delete-bundle

ec2-fingerprint-key

SYNOPSIS

ec2-fingerprint-key	KEYFILE

DESCRIPTION

Computes	and	displays	the	fingerprint	for	a	private	key	produced	by
Amazon	EC2.	KEYFILE	must	be	the	path	to	a	file	containing	an	unencrypted
PEM	encoded	PKCS#8	private	key.

This	operation	is	performed	entirely	on	the	client-side.	Network	access	is	not
required.

OUTPUT

A	key	fingerprint.	This	is	formatted	as	a	hash	digest	with	each	octet	separated	by
a	colon.

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-fingerprint-key	mykey.pem

1f:51:ae:28:bf:89:e9:d8:1f:25:5d:37:2d:7d:b8:ca:9f:f5:f1:6f

SEE	ALSO

ec2-create-keypair

ec2-describe-keypairs

ec2-get-console-output

SYNOPSIS

ec2-get-console-output	INSTANCEID	[-r]

DESCRIPTION

Retrieve	the	console	output	for	instance	INSTANCEID,	if	available,	and	display
it	to	stdout.

OUTPUT

Two	fields:

A	timestamp	indicating	the	time	of	the	last	update.

The	instance	console	output.	By	default	the	^ESC	character	is	escaped	and
duplicate	new-lines	are	removed	to	facilitate	reading.

Errors	are	displayed	on	stderr.

OPTIONS

Option Definition Required? Example

-r Raw	output.	Do	not	escape	the	output	to	facilitate	reading. No 	

EXAMPLE
$	ec2-get-console-output		i-10a64379

2007-01-03	12:00:00

Linux	version	2.6.16-xenU	(builder@patchbat.amazonsa)	(gcc	version	4.0.1	20050727	(Red	Hat	4.0.1-5))	#1	SMP	Thu	Oct	26	08:41:26	SAST	2006

BIOS-provided	physical	RAM	map:

Xen:	0000000000000000	-	000000006a400000	(usable)

980MB	HIGHMEM	available.

727MB	LOWMEM	available.

NX	(Execute	Disable)	protection:	active

IRQ	lockup	detection	disabled

Built	1	zonelists

Kernel	command	line:	root=/dev/sda1	ro	4

Enabling	fast	FPU	save	and	restore...	done.

ec2-modify-image-attribute

SYNOPSIS

ec2-modify-image-attribute	AMI	-l	(-a	ITEM_VALUE	|	-r	ITEM_VALUE)

ec2-modify-image-attribute	AMI	-p	PRODUCT_CODE	[-p
PRODUCT_CODE	...]

DESCRIPTION

Modifies	an	attribute	for	the	specified	AMI.

ATTRIBUTES

Attribute	Name Type Description

launchPermission List Controls	who	has	permission	to	launch	the	AMI.	You	can	grant	launch
permissions	by	adding	user	IDs	or	make	the	AMI	public	by	adding	the	all
group.	To	learn	more	about	sharing	AMIs	see	the	section	called	“Sharing
AMIs”.

Note

If	another	user	launches	your
AMI	there	is	no	mechanism	to
prevent	that	user	from	rebundling
the	image	and	registering	it	as	a
new	AMI.

productCodes List Associates	product	codes	with	an	AMI.	This	allows	a	developer	to	charge	a
user	for	using	the	AMI.

Note

The	user	must	be	signed	up	for
the	product	before	they	can
launch	the	AMI.

The	product	code	attribute	is	a	write	once	attribute.	After	a	product	code	is
set	for	an	AMI	it	can	not	be	altered	or	removed.

AMIs	are	currently	limited	to	one	product	code.

OUTPUT

A	table	containing	the	following	information	is	returned:

Attribute	type	identifier.

ID	of	the	AMI	on	which	attributes	are	being	modified.

Action	performed	on	the	attribute.

Attribute	or	attribute	list	item	value	type.

Attribute	or	attribute	list	item	value.

Errors	are	displayed	on	stderr.

OPTIONS

Option Definition Required? Example

-l Modifies	the	launchPermission	property. Yes -l

-a

ITEM_VALUE	|

-r

ITEM_VALUE

Adds	or	removes	an	attribute	item.	The	value	of	the	item	is
ITEM_VALUE.	The	type	of	the	item	is	inferred	from	the	item
value.	For	launchPermission	there	are	two	item	types:

group:	The	only	group	currently	supported	is	the	all
group.	Adding	this	group	sets	public	launch
permissions	for	the	AMI.
userId:	UserId	must	be	in	the	form	of	an	AWS
account	id.	Adding	userId	items	grants	explicit	launch
permissions	to	that	user	for	the	AMI.

Yes -a	all

-p

PRODUCT_CODE
Sets	the	productCodes	property. Yes -p

774F4FF8

EXAMPLE	-	LAUNCH	PERMISSION
$	ec2-modify-image-attribute	ami-5bae4b32	-l	-a	495219933132

launchPermission	ami-5bae4b32	ADD	userId	495219933132

EXAMPLE	-	PRODUCT	CODE
$	ec2-modify-image-attribute	ami-5bae4b32	-p	774F4FF8

productCodes	ami-5bae4b32					productCode	774F4FF8

SEE	ALSO

ModifyImageAttribute

ec2-reset-image-attribute

ec2-describe-image-attribute

Sharing	AMIs

ec2-reboot-instances

SYNOPSIS

ec2-reboot-instances	INSTANCEID	[INSTANCEID	...]

DESCRIPTION

All	instances	indicated	by	the	respective	INTANCEID	specified	on	the
command	line	are	rebootd.	At	least	one	INSTANCEID	must	be	specified.

OUTPUT

This	command	displays	no	output	on	success.

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-reboot-instances	i-3ea74257

ec2-register

SYNOPSIS

ec2-register	MANIFEST

DESCRIPTION

Registers	the	Amazon	Machine	Image	(AMI)	described	by	the	named
MANIFEST	file,	generating	a	new	Amazon	Machine	Image	(AMI)	ID.
MANIFEST	must	specify	a	location	of	a	manifest	file	in	Amazon	S3	and	must
be	of	the	form	bucket/object.

OUTPUT

The	image	ID	that	was	assigned	by	Amazon	EC2	is	displayed.

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-register	mybucket/image.manifest.xml

IMAGE	ami-78a54011

SEE	ALSO

RegisterImage

ec2-deregister

ec2-describe-images

ec2-reset-image-attribute

SYNOPSIS

ec2-reset-image-attribute	AMI	-l

DESCRIPTION

Resets	an	attribute	for	the	specified	AMI.

The	productCodes	attribute	cannot	be	reset.

OUTPUT

A	table	containing	the	following	information	is	returned:

Attribute	type	identifier

ID	of	the	AMI	on	which	the	attribute	is	being	reset

Action	identifier	("RESET")

Errors	are	displayed	on	stderr.

OPTIONS

Option Definition Required? Example

-l Reset	the	launchPermission	attribute. Yes -l

EXAMPLE
$	ec2-reset-image-attribute	ami-6ba54002	-l

launchPermission	ami-6ba54002	RESET

SEE	ALSO

ResetImageAttribute

ec2-modify-image-attribute

ec2-describe-image-attribute

Sharing	AMIs

ec2-revoke

SYNOPSIS

ec2-revoke	GROUP	[-P	PROTOCOL]	(-p	PORT_RANGE	|	-t
ICMP_TYPE_CODE)	[-u	SOURCE_GROUP_USER	...]	[-o	SOURCE_GROUP
...]	[-s	SOURCE_SUBNET	...]

DESCRIPTION

Revokes	a	rule	from	the	security	group	named	GROUP.	To	identify	the	rule	to	be
removed	you	must	provide	exactly	the	same	set	of	options	used	to	create	that
rule.

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("GROUP",	"PERMISSION").

Group	name.	Currently,	this	will	report	an	empty	string.

Type	of	rule.	Currently,	only	ALLOW	rules	are	supported.

Protocol	to	allow.

Start	of	port	range.

End	of	port	range.

FROM

Source.

Errors	are	displayed	on	stderr.

OPTIONS

Option Definition Required? Example

-P	PROTOCOL The	protocol	to	allow.	This	can	betcp,	udp	or
icmp.	This	option	only	applies	when	specifying	a
CIDR	subnet	as	the	source.

Yes -P	tcp

-p	PORT_RANGE The	range	of	ports	to	revoke.	This	may	be
specified	as	a	single	integer	or	as	a	range	(min-
max).	This	option	only	applies	when	specifying
a	CIDR	subnet	as	the	source.

Yes -p	80

-t	ICMP_TYPE_CODE If	the	protocol	is	ICMP,	the	ICMP	type	and	code
must	be	specified.	This	must	be	specified	as
type:code	where	both	are	integers.	Type	or	code
(or	both)	may	be	specified	as	-1	which	acts	as	a
wildcard.	This	option	only	applies	when
specifying	a	CIDR	subnet	as	the	source.

Yes -t	2:5

-u

SOURCE_GROUP_USER
The	owner	of	a	group	specified	using	-o.	If	this
is	not	specified,	all	groups	will	refer	to	the
current	user.	If	specified	more	than	once,	there
must	be	exactly	one	-u	per	-o	and	each	user	will
be	mapped	to	the	corresponding	group.

No -u
495219933132

-o	SOURCE_GROUP The	network	source	from	which	traffic	is	to	be
revoked	specified	as	a	security	Group.	See	the
description	of	the	-u	parameter	for	group	owner
information.

No -o	outsideworld

-s	SOURCE_SUBNET The	network	source	from	which	traffic	is	to	be
revoked	specified	as	a	CIDR	Subnet	range.

No -s
205.192.8.45/24

EXAMPLE
$	ec2-revoke	websrv	-P	tcp	-p	80	-s	205.192.0.0/16

GROUP	websrv	""

PERMISSION	websrv	ALLOWS	tcp	80	80	FROM	CIDR	205.192.0.0/16

SEE	ALSO

RevokeSecurityGroupIngress

ec2-add-group

ec2-describe-groups

ec2-delete-group

ec2-authorize

ec2-run-instances

SYNOPSIS

ec2-run-instances	AMI	[-n	INSTANCE_COUNT]	[-g	GROUP	[-g	GROUP	...]]
[-k	KEY]	[-d	USER_DATA	|	-f	FILE_NAME]	[--addressing
ADDRESSING_TYPE]

DESCRIPTION

Launches	one	or	more	instances	of	the	specified	AMI.	Optional	parameters
include

A	security	group.	New	instances	will	be	launched	in	this	group.	If	no	group
is	specified	instances	are	launched	in	the	default	group.

A	keypair	name.	The	public	key	associated	with	this	keypair	name	will	be
made	available	to	the	instances	at	boot	time.

User	data.	This	data	will	be	made	available	to	the	launched	instances.	See
using	instance	data	for	more	info.

Addressing	type.	This	specifies	if	the	instance	will	have	a	NATted	address
or	not.	See	Chapter	4,	Using	and	Securing	the	Network	for	more
information	on	instance	addressing.

If	the	AMI	has	a	product	code	attached	for	which	the	user	has	not	subscribed,	the
ec2-run-instances	call	will	fail.

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("INSTANCE")

Instance	ID	which	uniquely	identifies	each	running	instance.

AMI	ID	of	the	image	the	instance	is	based	on.

DNS	name	associated	with	the	instance	(only	present	for	instances	in	the
running	state).

Instance	state.	This	will	in	most	cases	be	pending	which	indicates	that	the
instance	is	being	prepared	for	launch.

Key	name.	If	a	key	was	associated	with	the	instance	at	launch	it's	name	will
be	displayed	in	this	column.

Errors	are	displayed	on	stderr.

OPTIONS

Option Definition Required? Example

-n

INSTANCE_COUNT
The	number	of	instances	to	launch.	If	not	specified,	a
value	of	1	will	be	assumed.	If	it	is	not	possible	to	launch
at	least	this	many	instances	(due	to	a	lack	of	capacity	or
funds),	no	instances	will	be	launched.	If	specified	as	a
range	(min-max)	Amazon	EC2	will	try	to	launch	as	many
instances	as	possible,	up	to	max,	but	will	launch	no	fewer
than	min	instances.

No -n	5

-g	GROUP The	security	group(s)	within	which	the	instance(s)	should
be	run.	This	determines	the	ingress	firewall	rules	that
will	be	applied	to	the	instances.	By	default	instances	will
run	in	the	user's	default	group.	If	more	than	one	group	is
specified,	the	security	policy	of	the	instances	will	be	the
union	of	the	security	policies	of	the	specified	groups.

No -g
fooGroup

-k	KEY The	keypair	to	make	available	to	these	instances	at	boot
time.

No -k
fooKeyPair

-d	USER-DATA The	data	to	make	available	to	these	instances.	The	data	is
read	off	the	command	line	from	the	USER_DATA	argument.
If	you	want	the	data	to	be	read	from	a	file	see	the	-f
option.

No -d	"my
user	data"

-f	FILE_NAME The	data	to	make	available	to	these	instances.	The	data	is
read	from	the	file	specified	by	FILE_NAME.	If	you	want	to
specify	user	data	on	the	command	line	use	the	-d	flag.	-d
option.

No -f	data.zip

--addressing

ADDRESS_TYPE
The	address	type	with	which	the	instance	will	be
launched.	The	supported	values	for	ADDRESS_TYPE	is
public.	Instances	launched	with	the	public	addressing
type	have	an	internal	and	an	external	IP	address.	See	the
section	called	“Introduction	to	Instance	Addressing”	for
more	information	on	instance	addressing.

Note

To	support	the	early
beta	legacy
networking	scheme,
direct	is	also
supported	for	early
beta	users.	Instances

	 	

launched	with	the
direct	addressing
type	have	a	single
public	IP	address.

EXAMPLE
$	ec2-run-instances	ami-6ba54002	-n	5

RESERVATION	r-0ea54067	joeuser	default

INSTANCE	i-3ea74257	ami-6ba54002	pending	0

INSTANCE	i-31a74258	ami-6ba54002	pending	1

INSTANCE	i-31a74259	ami-6ba54002	pending	2

INSTANCE	i-31a7425a	ami-6ba54002	pending	3

INSTANCE	i-31a7425b	ami-6ba54002	pending	4

INSTANCE	i-31a7425c	ami-6ba54002	pending	5

SEE	ALSO

RunInstances

ec2-terminate-instances

ec2-describe-instances

ec2-add-keypair

Using	instance	data

ec2-terminate-instances

SYNOPSIS

ec2-terminate-instances	INSTANCEID	[INSTANCEID	...]

DESCRIPTION

All	instances	indicated	by	the	respective	INTANCEID	specified	on	the
command	line	are	terminated.	At	least	one	INSTANCEID	must	be	specified.

OUTPUT

A	table	containing	the	following	information	is	returned:

Output	type	identifier	("INSTANCE")

The	instance	ID	of	the	instance	being	terminated.

The	state	of	the	instance	prior	to	being	terminated.

The	new	state	of	the	instance.

Errors	are	displayed	on	stderr.

EXAMPLE
$	ec2-terminate-instances	i-3ea74257

INSTANCE	i-3ea74257	running	shutting-down

SEE	ALSO

TerminateInstances

ec2-run-instances

ec2-describe-instances

ec2-unbundle

SYNOPSIS

ec2-unbundle	-m	MANIFEST-PATH	-k	PRIVATEKEY	[-d	DESTINATION-
DIRECTORY]	[-s	SOURCE-DIRECTORY]

DESCRIPTION

Recreates	the	AMI	from	the	bundled	AMI	parts.

OUTPUT

Status	messages	indicating	the	various	stages	of	the	unbundling	process	are
displayed.

OPTIONS

Note
Note	that	this	tool	does	not	support	the	common	arguments

Option Definition Required? Example

-m,	--

manifest

MANIFEST

The	path	to	the	unencrypted	AMI	manifest
file.

Yes -m	/var/spool/my-first-
bundle/Manifest

-k,	--

privatekey

KEY

The	path	to	the	user's	PEM	encoded	RSA
key	file.

Yes -k	$HOME/pk-
234242DEADCAFE.pem

-s,	--source

SOURCE-

DIRECTORY

The	directory	containing	the	bundled	AMI
parts.	Defaults	to	the	current	directory.

No -s	/tmp/my-bundled-
image

-d,	--

destination

DESTINATION-

DIRECTORY

The	directory	to	unbundle	the	AMI	in.
Defaults	to	the	current	directory.

Note

The
destination
directory
must	exist.

No -d	/tmp/my-image

--help Display	the	help	message. No --help

EXAMPLE
$	mkdir	unbundled

$	ec2-unbundle	-m	fred.manifest.xml	-s	bundled	-d	unbundled

cat		bundled/fred.part.00	bundled/fred.part.01	bundled/fred.part.02	bundled/fred.part.03	bundled/fred.part.04	bundled/fred.part.05	bundled/fred.part.06	bundled/fred.part.07	bundled/fred.part.08	bundled/fred.part.09	bundled/fred.part.10	bundled/fred.part.11	bundled/fred.part.12	bundled/fred.part.13	bundled/fred.part.14	|	openssl	enc	-d	-aes-128-cbc	-K	a8fbe9586b7fd3df893b237f88e351a9	-iv	121febdf64b0322cd4ffda03aa1ab535	|	gunzip	>	unbundled/fred.img	

Unbundle	complete.

$	ls	-l	unbundled

total	1025008

-rw-r--r--		1	root	root	1048578048	Aug	25	23:46	fred.img

				

SEE	ALSO

ec2-bundle-image

ec2-bundle-vol

ec2-upload-bundle

ec2-download-bundle

ec2-delete-bundle

ec2-upload-bundle

SYNOPSIS

ec2-upload-bundle	-b	S3-BUCKET	-m	MANIFEST-PATH	-a	AWS-ACCESS-
KEY-ID	-s	AWS-SECRET-KEY	[--acl	ACL]	[--ec2cert	PATH]	[-d
DIRECTORY]	[--part	PART]	[--url	URL]	[--retry]	[--skipmanifest]

DESCRIPTION

Upload	a	bundled	AMI	to	S3	storage.

OUTPUT

Status	messages	indicating	the	various	stages	of	the	upload	process	are
displayed.

OPTIONS

Note
Note	that	this	tool	does	not	support	the	common	options

Option Definition Required? Example

-b,	--bucket

S3-BUCKET
The	name	of	the	Amazon	S3	bucket	in	which
the	bundle	will	be	stored.	If	the	bucket	doesn't
exist	it	will	be	created	(provided	the	bucket	is
available	of	course).

Yes -b	aes-cracker-ami

-m,	--

manifest

MANIFEST-

PATH

The	path	to	the	manifest	file.	The	manifest	file
is	created	during	the	bundling	process	and	can
be	found	in	the	directory	containing	the	bundle.

Yes -m	/var/spool/my-first-
bundle/Manifest

-a,	--

access-key

USER

The	user's	AWS	access	key	ID. Yes -a	???????

-s,	--

secret-key

PASSWORD

The	user's	AWS	secret	access	key. Yes -s	???????

--acl	ACL The	access	control	list	policy	of	the	bundled
image.	It	may	be	either	"public-read"	or	"aws-
exec-read"	and	defaults	to	"aws-exec-read"	if
not	specified.

No --acl	public-read

--ec2cert

PATH
The	path	to	the	EC2	X509	public	key
certificate.	Defaults	to	"/etc/aes/amiutil/cert-
ec2.pem".

No --ec2cert
/etc/aes/amiutil/cert-
ec2.pem

-d,	--

directory

DIRECTORY

The	directory	containing	the	bundled	AMI
parts.	Defaults	to	the	directory	containing	the
manifest	file	(see	the	"-m"	option).

No -d	/var/run/my-bundle

--part	PART Start	uploading	the	specified	part	and	upload
all	subsequent	parts.

No --part	????

--url	URL The	S3	service	URL.	Defaults	to
https://s3.amazonaws.com.

No --url
https://s3.amazonaws.ie

--retry Automatically	retry	failed	uploads.	Use	with
caution.

No --retry

--

skipmanifest
Do	not	upload	the	manifest. No --skipmanifest

--help Display	the	help	message. No --help

--manual Display	the	help. No --manual

EXAMPLE
$	ec2-upload-bundle	-b	my-s3-bucket	-m	bundled/fred.manifest.xml	-a	10QMXFEV71ZS32XQFTR2	-s	DMADSSfPfdaDjbK+RRUhS/aDrjsiZadgAUm8gRU2	-d	bundled

Encrypting	bundle	manifest...

Completed	encryption.

Uploading	encrypted	manifest...

Uploaded	encrypted	manifest	to	http://s3.amazonaws.com:80/alpowell-images/fred.manifest.xml.

Uploading	bundled	AMI	parts	to	http://s3.amazonaws.com:80/alpowell-images...

Uploaded	fred.part.00	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.00.

Uploaded	fred.part.01	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.01.

Uploaded	fred.part.02	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.02.

Uploaded	fred.part.03	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.03.

Uploaded	fred.part.04	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.04.

Uploaded	fred.part.05	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.05.

Uploaded	fred.part.06	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.06.

Uploaded	fred.part.07	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.07.

Uploaded	fred.part.08	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.08.

Uploaded	fred.part.09	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.09.

Uploaded	fred.part.10	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.10.

Uploaded	fred.part.11	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.11.

Uploaded	fred.part.12	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.12.

Uploaded	fred.part.13	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.13.

Uploaded	fred.part.14	to	http://s3.amazonaws.com:80/alpowell-images/fred.part.14.

Upload	Bundle	complete.

				

SEE	ALSO

ec2-bundle-image

ec2-bundle-vol

ec2-unbundle

ec2-download-bundle

ec2-delete-bundle

Technical	FAQ
8.1.	Why	can't	I	"talk"	to	my	instances?
8.2.	Why	did	my	instance	terminate	immediately	after	launch?
8.3.	I	ran	shutdown	from	within	an	ssh	session	but	my	instance	still	shows	up	as
running	when	I	query	it	with	DescribeInstances	and	I	can't	shell	into	it.	What's
happening?
8.4.	What	username	do	I	use	for	the	various	Amazon	EC2	tools?
8.5.	What	happens	to	my	running	instances	if	the	machines	they	are	running	on
go	down?
8.6.	Why	are	my	instances	stuck	in	a	pending	state	(or	a	shutting-down	state)?
8.7.	Why	do	I	get	an	"AuthFailure:	User	is	not	AMI	creator"	error	when	I	try	to
register	an	image?
8.8.	Why	do	I	get	an	"InsufficientInstanceCapacity"	error	when	I	try	to	launch	an
instance?
8.9.	Why	do	I	get	an	"InstanceLimitExceeded"	error	when	I	try	to	launch	an
instance?

8.1.Why	can't	I	"talk"	to	my	instances?
Here	are	a	few	common	reasons	for	broken	connectivity	to	your	instance.

An	instance's	state	is	changed	to	running	as	soon	as	we	start	to	boot	your
OS.	This	means	there	will	be	some	delay	(possibly	a	few	minutes
depending	on	your	configuration)	during	which	your	instance	will	not	have
been	fully	set-up.	After	this	period,	it	should	be	fully	functional.

Additionally,	you	will	need	to	make	sure	you	have	authorized	the
appropriate	access	to	your	host	through	the	Amazon	EC2	firewall.	If	you
have	launched	your	instances	without	specifying	a	security	group,	the
default	group	is	used.	Permissions	on	the	default	group	are	very	strict	by
default	and	disallow	all	access	from	the	Internet	and	other	groups.	You	will
need	to	add	permissions	to	your	default	group	or	you	will	have	to	set	up	a
new	group	with	appropriate	permissions.	See	the	developer	guide	for	more
information	on	the	“Securing	the	Network”.

Assuming	you	have	authorized	port	22,	a	useful	debugging	tool	is	to	try	to
open	an	ssh	connection	with	verbose	output.	You	should	use	the	man	page
to	get	the	exact	syntax	for	your	system,	but	the	command	is	likely	to	look

like	ssh	-vv	root@[hostname].	This	output	would	be	very	useful	if
posting	to	the	forum.

8.2.Why	did	my	instance	terminate	immediately	after	launch?
Launch	errors	may	be	the	result	of	an	internal	error	during	launch	or	a
corrupt	Amazon	EC2	image.	The	former	should	be	rare,	and	we	actively
test	for	and	isolate	suspect	hosts.	You	should	use	the	“DescribeInstances”
API	to	look	for	more	details	on	why	your	instance	failed	to	launch.

NB:	the	ec2-describe-instances	command	line	tool	does	not
conveniently	print	out	this	information	yet!	You	can	use	the	-v	flag	to	read
the	SOAP	response	from	this	tool	and	get	the	information	discussed	above.

You	can	always	feel	free	to	attempt	to	launch	the	image	again,	but	if	you
run	into	a	persistent	problem	(especially	with	a	shared	image),	you	should
post	to	the	Amazon	EC2	forum.

8.3. I	ran	shutdown	from	within	an	ssh	session	but	my	instance	still	shows
up	as	running	when	I	query	it	with	DescribeInstances	and	I	can't	shell
into	it.	What's	happening?
This	is	a	"feature"	of	the	shutdown	command.	If	you	issue	shutdown
without	a	-h	(halt)	flag	it	shuts	down	the	network	and	switches	to	single
user	mode.	The	instance	is	still	running	but	without	a	network.	You	should
always	use	shutdown	-h	when	working	inside	an	Amazon	EC2	instance.

You	can	shut	the	instance	down	using	the	TerminateInstances	call	(ec2-
terminate	on	the	command	line).

8.4.What	username	do	I	use	for	the	various	Amazon	EC2	tools?
When	you	sign	up	with	Amazon	Web	Services,	you	are	given	an	AWS
Account	ID.	This	is	your	username.	More	detail	is	provided	in	the	Getting
Started	Guide.

8.5.What	happens	to	my	running	instances	if	the	machines	they	are
running	on	go	down?
The	instances	themselves	will	be	terminated	and	will	have	to	be	relaunched.
The	data	on	the	instances'	hard	drives	will	be	lost.

Always	replicate	important	data	or	store	it	in	Amazon	S3.
8.6.Why	are	my	instances	stuck	in	a	pending	state	(or	a	shutting-down

state)?

This	situation	should	be	rare	and	is	the	result	of	a	software	error	or
misconfiguration.	We	actively	monitor	for	it,	but	please	let	us	know	if	you
do	encounter	this.

8.7.Why	do	I	get	an	"AuthFailure:	User	is	not	AMI	creator"	error	when	I
try	to	register	an	image?
Make	sure	that	you	are	using	the	correct	user	ID	and	certificate	to	create
and	upload	the	image.	You	need	to	use	the	same	ID	and	certificate	to
register	the	image	with	Amazon	EC2.

8.8.Why	do	I	get	an	"InsufficientInstanceCapacity"	error	when	I	try	to
launch	an	instance?
This	error	indicates	that	we	don’t	currently	have	enough	available	capacity
to	service	your	request.	During	our	beta,	capacity	is	limited.

If	you	are	requesting	a	large	number	of	instances,	there	may	not	be	enough
server	capacity	to	host	them.	You	could	try	again	at	a	different	time	or
specify	a	smaller	number	of	instances	to	launch.

8.9.Why	do	I	get	an	"InstanceLimitExceeded"	error	when	I	try	to	launch
an	instance?
This	error	indicates	that	you	have	reached	your	concurrent	running	instance
limit.	For	new	users	during	the	public	beta,	this	limit	is	20.

If	you	need	additional	capacity,	please	contact	us	at	aws@amazon.com.

8.1.	How	many	instances	can	I	launch?
8.2.	Can	I	use	a	static	IP	in	my	instances?
8.3.	How	do	I	host	a	public	domain	if	I	have	to	DHCP	an	IP	address?
8.4.	Why	can't	I	connect	to	my	instances	public	IP	address	from	another
instance?
8.5.	Why	do	I	get	an	internal	(RFC	1918)	IP	address	when	I	look	up	a	DNS
name	that	I	expect	to	map	to	my	instance's	external	IP	address?
8.6.	Why	can't	I	get	reverse	DNS	for	my	public	DNS	name?
8.7.	Anything	special	about	FTP?

8.1. How	many	instances	can	I	launch?
Each	user	has	a	concurrent	running	instance	limit.	For	new	users	during	the
public	beta,	this	limit	is	20.

8.2. Can	I	use	a	static	IP	in	my	instances?

Not	at	present.	Your	image	must	be	configured	as	a	DHCP	client	and	it	will
be	assigned	an	IP.	Currently,	all	instances	come	with	internet	addressable	IP
addresses.	If	you	enable	access	through	the	firewall	from	the	"world",	you
can	address	them	from	anywhere.

8.3. How	do	I	host	a	public	domain	if	I	have	to	DHCP	an	IP	address?
You	can	use	a	dynamic	DNS	service,	such	as	DynDNS	or	ZoneEdit.

8.4.Why	can't	I	connect	to	my	instances	public	IP	address	from	another
instance?
There	is	a	known	limitation	today	that	prevents	instances	from	contacting
other	instances	via	their	public	IP	address.	This	is	being	addressed.	Even
when	this	is	fixed,	you	should	favor	the	internal	IP/DNS	name	when	you
know	you	are	communicating	between	EC2	instances.	This	will	assure	you
use	the	lowest	latency,	highest	throughput,	and	lowest	cost	network	route.

8.5.Why	do	I	get	an	internal	(RFC	1918)	IP	address	when	I	look	up	a	DNS
name	that	I	expect	to	map	to	my	instance's	external	IP	address?
Currently,	EC2	instances	cannot	access	instances	in	the	new	NAT
environment	using	their	public	NAT	IP	address.	Instead,	the	private	address
of	an	instance	in	the	new	NAT	environment	must	be	used.	To	help	address
this	issue,	the	EC2	network	will	alter	DNS	responses	from	external	DNS
servers	by	replacing	the	public	IP	address	for	any	EC2	instance	in	the	new
NAT	environment	with	its	private	IP	address.	In	this	way,	DNS	lookups	that
would	resolve	to	a	public	EC2	IP	address	will	be	translated	to	the	correct
internal	IP	address.	This	only	works	when	using	the	UDP	DNS	protocol.

8.6.Why	can't	I	get	reverse	DNS	for	my	public	DNS	name?
There	is	a	known	issue	with	reverse	DNS	of	public	DNS	names	with	the
new	NAT	instances.	Since	the	public	IP	is	not	currently	routable	from
within	EC2,	this	should	not	be	too	big	a	problem.	Use	your	internal	IP
address	when	possible.

8.7. Anything	special	about	FTP?
The	File	Transfer	Protocol	(FTP)	has	a	PORT	command	by	which	a	client
sends	its	address	back	to	the	server.	The	server	then	connects	to	the	client	at
that	address	to	send	the	file	data.	If	the	client	looks	up	its	own	internal
address	and	sends	this	to	the	server,	the	connection	will	fail.	In	this	specific
case,	there	are	two	solutions	to	the	problem.	First,	the	implementation	of
NAT	that	EC2	uses	recognizes	FTP	as	a	special	case	and	rewrites	the	PORT
command	address	(if	the	ftp	client	connects	to	the	server	on	the	standard

http://www.dyndns.com/
http://www.zoneedit.com/

port).	Second,	the	client	can	use	"passive	FTP"	which	makes	connections
only	to	the	server,	rather	than	from	the	server	to	the	client.	In	general,
applications	which	encode	local	addresses	and	port	numbers	in	data	sent	to
external	servers	may	have	problems	with	NAT.	Care	must	always	be	taken
to	send	the	public	address,	rather	than	the	internal	one.

8.1.	Why	is	EC2	Using	NAT?
8.2.	How	Does	The	Instance	Know	Its	Public	And	Private	Addresses?
8.3.	How	do	I	handle	time	synchronization	between	instances?
8.4.	Can	I	use	my	own	kernel?
8.5.	Can	I	get	a	bigger/smaller/differently	optimized	virtual	machine?
8.6.	Is	there	a	REST	interface	to	Amazon	EC2?
8.7.	How	does	Amazon	EC2	handle	load	balancing?
8.8.	How	do	I	monitor	my	systems?
8.9.	Is	there	any	way	for	an	instance	to	discover	its	own	instance	ID?
8.10.	Can	I	pass	arbitrary	configuration	values	to	an	instance	at	launch	time?

8.1. Why	is	EC2	Using	NAT?
Public	IP	space	is	a	limited	resource.	EC2	is	adopting	NAT	to	assure	that
we	are	able	to	efficiently	make	use	of	our	public	internet	addresses.

Furthermore,	the	new	NAT	networking	will	enable	Amazon	to	deliver	new
features	in	the	future.	For	example,	users	have	asked	for	the	ability	to	have
instances	that	only	have	internal	addresses.	This	would	allow	for	non-
internet	routable	clusters	which	will	further	preserve	IPs	and	increase
security	for	those	not	running	public	facing	servers.

8.2. How	Does	The	Instance	Know	Its	Public	And	Private	Addresses?
From	within	the	instance,	issue	the	following	HTTP	queries:

To	obtain	the	internal	IP	address:

curl	http://169.254.169.254/2007-03-01//meta-data/local-ipv4

To	obtain	the	public	IP	address:

curl	http://169.254.169.254/2007-03-01//meta-data/public-ipv4

8.3. How	do	I	handle	time	synchronization	between	instances?

You	can	set	up	NTP	(the	Network	Time	Protocol)	which	does	this	for	you.
You	can	find	more	information	at	http://www.ntp.org/.	This	is	particularly
important	if	you	plan	on	using	any	of	Amazon's	web	services	(such	as
Amazon	S3	or	Amazon	EC2)	from	within	an	instance,	since	requests	to
these	services	need	to	be	timestamped.

8.4. Can	I	use	my	own	kernel?
Not	at	present.

8.5. Can	I	get	a	bigger/smaller/differently	optimized	virtual	machine?
Not	at	present.	For	now,	if	you	need	more	capacity	launch	more	instances.

8.6. Is	there	a	REST	interface	to	Amazon	EC2?
Not	at	present.	For	now,	you	will	have	to	use	the	SOAP	or	Query	API,	or
the	provided	API	command	line	tools.

8.7. How	does	Amazon	EC2	handle	load	balancing?
With	a	service	as	flexible	as	Amazon	EC2,	customers	can	launch	any
number	of	load	balancing	systems	within	Amazon	EC2.	The	load
balancing	instances	can	forward	traffic	to	other	systems.	There	are	several
open	source	solutions	that	are	in	wide	use.

8.8. How	do	I	monitor	my	systems?
Amazon	EC2	currently	only	provides	the	most	basic	monitoring.	You	can
tell	from	DescribeInstances	whether	we	believe	your	instance	is	running	or
not.	However,	you	may	regard	your	systems	running	in	Amazon	EC2	as
your	data	center,	and	so	any	monitoring	instrumentation	that	you	wish	to
include	on	the	systems	–	be	it	SNMP	or	some	other	mechanism	–	is
entirely	up	to	you.

8.9. Is	there	any	way	for	an	instance	to	discover	its	own	instance	ID?
From	within	your	instance	you	can	use	REST-like	queries	to
http://169.254.169.254/2007-03-01/	to	retrieve	various	instance	specific
meta-data,	including	the	instance	ID.	Refer	to	the	Developer's	Guide
(section	'Using	Instance	Data')	for	the	details.

8.10. Can	I	pass	arbitrary	configuration	values	to	an	instance	at	launch
time?
Yes,	although	the	size	of	the	data	is	limited	to	16K	at	the	moment.	Refer	to
the	Developer's	Guide	for	the	details:	section	'Using	Instance	Data'	tells
you	how	to	retrieve	data	and	the	sections	on	the	command-line	tools	and
APIs	tell	you	how	to	supply	the	data	when	launching	an	instance.

http://www.ntp.org/

8.1.	Why	can't	I	retrieve	my	instance-specific	data	from	within	a	running
instance	when	querying	http://169.254.169.254/2007-03-01/?
8.2.	Is	there	a	way	to	run	a	script	on	instance	termination?
8.3.	Why	do	I	get	keep	getting	"Request	has	expired"	errors?
8.4.	How	can	I	allow	other	people	to	launch	my	AMIs?
8.5.	Why	do	I	need	to	reregister	a	rebundled	AMI?	Can't	I	keep	the	same	AMI
ID?
8.6.	Can	I	pass	JVM	properties	to	the	command	line	tools?
8.7.	Can	I	use	a	proxy	with	the	command	line	tools?

8.1.Why	can't	I	retrieve	my	instance-specific	data	from	within	a	running	instance	when
querying	http://169.254.169.254/2007-03-01/?
The	Parameterized	Launches	feature	is	only	available	to	instances	that	were	launched	after	the
feature	was	released.	Therefore	if	you	launched	your	instance	before	then,	this	data	will	not	be
available.	We	suggest	you	relaunch	your	instances	if	you	want	to	use	this	functionality.

If	after	relaunching	your	instance	you	still	experience	problems	retrieving	the	data,	you	should
check:

Are	you	using	the	correct	base	URI	(http://169.254.169.254/2007-03-01/)
Are	you	using	the	correct	URI	for	the	data	you're	trying	to	retrieve?	Remember	that
trailing	'/'	may	be	required,	depending	on	the	data	you're	trying	to	retrieve.
Did	you	specify	any	launch	data	when	launching	your	instances?	If	not	you	will	get	a
HTTP	error	response	(404)	when	trying	to	retrieve	the	user	data.	Note	that	the	
meta-data	is	always	available,	even	if	you	do	not	specify	data	at	instance	launch.

8.2. Is	there	a	way	to	run	a	script	on	instance	termination?
Not	with	any	reliability.	Amazon	EC2	tries	to	shut	an	instance	down	cleanly	(in	which	case
normal	system	shutdown	scripts	will	run),	but	there	is	only	a	short	time	available	for	things	to
happen	and	in	some	cases	(hardware	failure,	for	example)	this	does	not	happen.	
no	entirely	reliable	way	to	ensure	shutdown	scripts	run,	it	is	best	to	have	a	strategy	in	place	to
deal	with	abnormal	terminations.

8.3.Why	do	I	get	keep	getting	"Request	has	expired"	errors?
To	reduce	the	risk	of	replay	attacks	our	requests	include	a	timestamp.	This,	along	with	the	most
important	parts	of	the	request,	is	signed	to	ensure	the	message	(including	the	timestamp)	can't
be	modified	without	detection.

If	the	difference	between	the	timestamp	in	the	request	and	the	time	on	our	servers	is	larger	than

5	minutes	the	request	is	deemed	too	old	(or	too	new)	and	an	error	is	returned.

You	need	to	ensure	that	your	system	clock	is	accurate	and	configured	to	use	the	correct
timezone.	NTP	is	a	good	way	to	do	this.

8.4. How	can	I	allow	other	people	to	launch	my	AMIs?
You	can	allow	other	users	to	launch	your	AMIs	by	modifying	the	AMI's	launchPermission
attribute.	It	is	possible	to	either	grant	public	launch	permissions,	which	gives	all	users
permission	to	launch	the	AMI,	or	to	only	grant	launch	permissions	to	specific	users.

To	grant	public	launch	permissions:

PROMPT>	ec2matt	ami-5bae4b32	-t	launchPermission	-a	-i	group=all

To	grant	a	specific	user	launch	permissions:

PROMPT>	ec2matt	ami-5bae4b32	-t	launchPermission	-a	-i	userId=495219933132

To	clear	additional	launch	permissions	for	an	AMI:

PROMPT>	ec2ratt	ami-5bae4b32	-t	launchPermission

8.5.Why	do	I	need	to	reregister	a	rebundled	AMI?	Can't	I	keep	the	same	AMI
An	AMI	ID	is	associated	with	the	physical	bits	in	an	image.	To	protect	users	from	
modified	we	require	you	to	reregister	AMIs	when	rebundling.

8.6. Can	I	pass	JVM	properties	to	the	command	line	tools?
Yes.	By	setting	the	environment	variable	EC2_JVM_ARGS	arbitrary	JVM	properties	can	be	passed
to	the	command	line	tools.

8.7. Can	I	use	a	proxy	with	the	command	line	tools?
Yes.	By	passing	in	JVM	properties	via	the	EC2_JVM_ARGS	environment	variable,	proxy	settings
can	be	specified	for	the	command	line	tools.	For	example	in	Linux:

export	EC2_JVM_ARGS="-Dhttp.proxyHost=http://my.proxy.com	-Dhttp.proxyPort=8080"

The	following	properties	are	supported	for	configuring	a	proxy:

Setting Description

https.proxyHost HTTPS	proxy	host

https.proxyPort HTTPS	proxy	port

http://www.ntp.org

http.proxyHost HTTPS	proxy	host

http.proxyPort HTTPS	proxy	port

http.proxyRealm Proxy	realm	(https	and	http)

http.proxyUser Proxy	username	(https	and	http)

http.proxyPass Proxy	password	(https	and	http)

Note
https.proxyHost	should	be	used	when	EC2_URL	points	to	an	https	host,
and	http.proxyHost	when	EC2_URL	points	to	an	http	host.

Glossary

Amazon	Machine	Image	(AMI)

An	Amazon	Machine	Image	(AMI)	is	an	encrypted	machine	image	stored
in	Amazon	S3.	It	contains	all	the	information	necessary	to	boot	instances	of
your	software.

Explicit	Launch	Permission

Launch	permission	granted	to	a	specific	user.

Instance

Once	an	AMI	has	been	launched,	the	resulting	running	system	is	referred	to
as	an	instance.	All	instances	based	on	the	same	AMI	start	out	identical	and
any	information	on	them	is	lost	when	the	instances	are	terminated	or	fail.

Group

A	set	of	customer	instances	that	have	been	designated	by	the	customer	as
being	related	by	assigning	them	the	same	security	group	when	the	instances
were	first	run.	The	Amazon	EC2	firewall	controls	access	to	instances	based
on	the	instance's	group	membership	and	the	rules	defined	for	the	group.

Launch	Permission

AMI	attribute	allowing	users	to	launch	an	AMI

Public	AMI

An	AMI	that	all	users	have	launch	permissions	for.

Reservation

A	collection	of	instances	started	as	part	of	the	same	launch	request.

Shared	AMI

An	AMI	that	users	other	than	the	owner	have	launch	permissions	for.

	Introduction
	Working with AMIs
	Creating an AMI
	Bundling an AMI
	Building Shared AMIs
	Sharing AMIs

	Launching and Using Instances
	Using Instances
	Using Instance Data
	Using Shared AMIs
	Paying for AMIs
	Using Get Console Output and Reboot Instances

	Using and Securing the Network
	Instance Addressing
	Securing the Network
	Concepts
	Examples
	Tools and APIs

	Using the APIs
	Using the SOAP API
	Using the Query API

	API Reference
	API Conventions
	API Versioning
	API Error Codes
	Common Data Types
	DescribeImagesResponseItemType
	DescribeKeyPairsResponseItemType
	EmptyElementType
	GroupSetType
	InstanceStateType
	IpPermissionType
	LaunchPermissionItemType
	LaunchPermissionOperationType
	ProductCodeItemType
	ProductInstanceResponseItemType
	ReservationInfoType
	RunInstanceItemType
	RunningInstancesItemType
	SecurityGroupItemType
	TerminateInstancesResponseInfoType
	UserDataType
	UserIdGroupPairType

	EC2 SOAP API
	By Function
	AuthorizeSecurityGroupIngress
	ConfirmProductInstance
	CreateKeyPair
	CreateSecurityGroup
	DeleteKeyPair
	DeleteSecurityGroup
	DeregisterImage
	DescribeImageAttribute
	DescribeImages
	DescribeInstances
	DescribeKeyPairs
	DescribeSecurityGroups
	GetConsoleOutput
	ModifyImageAttribute
	RebootInstances
	RegisterImage
	ResetImageAttribute
	RevokeSecurityGroupIngress
	RunInstances
	TerminateInstances

	EC2 Query API
	Common Query Parameters
	By Function
	AuthorizeSecurityGroupIngress
	ConfirmProductInstance
	CreateKeyPair
	CreateSecurityGroup
	DeleteKeyPair
	DeleteSecurityGroup
	DeregisterImage
	DescribeImageAttribute
	DescribeImages
	DescribeInstances
	DescribeKeyPairs
	DescribeSecurityGroups
	GetConsoleOutput
	ModifyImageAttribute
	RebootInstances
	RegisterImage
	ResetImageAttribute
	RevokeSecurityGroupIngress
	RunInstances
	TerminateInstances

	Command Line Tools Reference
	By Function
	ec2-add-group
	ec2-confirm-product-instance
	ec2-add-keypair
	ec2-authorize
	ec2-bundle-image
	ec2-bundle-vol
	ec2-delete-bundle
	ec2-delete-group
	ec2-delete-keypair
	ec2-deregister
	ec2-describe-groups
	ec2-describe-image-attribute
	ec2-describe-images
	ec2-describe-instances
	ec2-describe-keypairs
	ec2-download-bundle
	ec2-fingerprint-key
	ec2-get-console-output
	ec2-modify-image-attribute
	ec2-reboot-instances
	ec2-register
	ec2-reset-image-attribute
	ec2-revoke
	ec2-run-instances
	ec2-terminate-instances
	ec2-unbundle
	ec2-upload-bundle

	Technical FAQ
	Glossary

