
Data	Transformation	Services



DTS	Overview
Microsoft®	SQL	Server™	2000	Data	Transformation	Services	(DTS)	is	a	set	of
graphical	tools	and	programmable	objects	that	lets	you	extract,	transform,	and
consolidate	data	from	disparate	sources	into	single	or	multiple	destinations.

The	following	sections	provide	essential	information	on	DTS	concepts,	tools,
and	features.

Topic Description
DTS	Basics Describes	the	capabilities	of	DTS	and

summarizes	the	business	problems	it
addresses.

DTS	Tools Describes	the	graphical	tools	supplied
with	SQL	Server	2000	that	are	used	to
build	DTS	packages.

DTS	Package	Elements Describes	the	main	components	of	a
package,	such	as	connections,	DTS	tasks,
and	DTS	transformations.

Managing	a	DTS	Package Explains	the	basics	of	package
management,	including	creating,	editing,
saving,	deleting,	and	executing	packages.

Adding	Functionality	to	a	DTS
Package

Explains	how	to	build	complex	packages
by	using	Microsoft	ActiveX®	scripts	to
customize	a	package.	Describes	how	to
join	package	steps	to	a	transaction	and
expose	package	data	to	external	sources.

Sharing	Meta	Data Explains	how	to	use	SQL	Server	2000
Meta	Data	Services	with	DTS	to	track
package	data	in	a	data	mart	or	data
warehouse.

Usage	Considerations	in	DTS Describes	specific	data	conversion	and
data	transformation	issues	that	can	arise
when	using	DTS.

For	more	information	about	programming	with	the	DTS	object	model,	see



Programming	DTS	Applications.

JavaScript:hhobj_1.Click()


Data	Transformation	Services



DTS	Basics
Many	organizations	need	to	centralize	data	to	improve	corporate	decision-
making.	However,	their	data	may	be	stored	in	a	variety	of	formats	and	in
different	locations.	Data	Transformation	Services	(DTS)	addresses	this	vital
business	need	by	providing	a	set	of	tools	that	lets	you	extract,	transform,	and
consolidate	data	from	disparate	sources	into	single	or	multiple	destinations
supported	by	DTS	connectivity.	By	using	DTS	tools	to	graphically	build	DTS
packages	or	by	programming	a	package	with	the	DTS	object	model,	you	can
create	custom	data	movement	solutions	tailored	to	the	specialized	business	needs
of	your	organization.

DTS	Packages
A	DTS	package	is	an	organized	collection	of	connections,	DTS	tasks,	DTS
transformations,	and	workflow	constraints	assembled	either	with	a	DTS	tool	or
programmatically	and	saved	to	Microsoft®	SQL	Server™,	SQL	Server	2000
Meta	Data	Services,	a	structured	storage	file,	or	a	Microsoft	Visual	Basic®	file.

Each	package	contains	one	or	more	steps	that	are	executed	sequentially	or	in
parallel	when	the	package	is	run.	When	executed,	the	package	connects	to	the
correct	data	sources,	copies	data	and	database	objects,	transforms	data,	and
notifies	other	users	or	processes	of	events.	Packages	can	be	edited,	password
protected,	scheduled	for	execution,	and	retrieved	by	version.

For	more	information,	see	Creating	a	DTS	Package.

DTS	Tasks
A	DTS	task	is	a	discrete	set	of	functionality,	executed	as	a	single	step	in	a
package.	Each	task	defines	a	work	item	to	be	performed	as	part	of	the	data
movement	and	data	transformation	process,	or	as	a	job	to	be	executed.

DTS	supplies	a	number	of	tasks	that	are	part	of	the	DTS	object	model	and	can	be
accessed	graphically,	through	DTS	Designer,	or	programmatically.	These	tasks,
which	can	be	configured	individually,	cover	a	wide	variety	of	data	copying,	data
transformation,	and	notification	situations.	For	example:



Importing	and	exporting	data.

DTS	can	import	data	from	a	text	file	or	an	OLE	DB	data	source	(for
example,	a	Microsoft	Access	2000	database)	into	SQL	Server.
Alternatively,	data	can	be	exported	from	SQL	Server	to	an	OLE	DB
data	destination	(for	example,	a	Microsoft	Excel	2000	spreadsheet).
DTS	also	allows	high-speed	data	loading	from	text	files	into	SQL
Server	tables.

Transforming	data.

DTS	Designer	includes	a	Transform	Data	task	that	allows	you	to	select
data	from	a	data	source	connection,	map	the	columns	of	data	to	a	set	of
transformations,	and	send	the	transformed	data	to	a	destination
connection.	DTS	Designer	also	includes	a	Data	Driven	Query	task	that
allows	you	to	map	data	to	parameterized	queries.

Copying	database	objects.

With	DTS,	you	can	transfer	indexes,	views,	logins,	stored	procedures,
triggers,	rules,	defaults,	constraints,	and	user-defined	data	types	in
addition	to	the	data.	In	addition,	you	can	generate	the	scripts	to	copy	the
database	objects.

Note		There	are	restrictions	on	this	capability.	For	more	information,	see
Copy	SQL	Server	Objects	Task.

Sending	and	receiving	messages	to	and	from	other	users	and	packages.

DTS	includes	a	Send	Mail	task	that	allows	you	to	send	an	e-mail	if	a
package	step	succeeds	or	fails.	DTS	also	includes	an	Execute	Package
task	that	allows	one	package	to	run	another	as	a	package	step,	and	a
Message	Queue	task	that	allows	you	to	use	Message	Queuing	to	send
and	receive	messages	between	packages.

Executing	a	set	of	Transact-SQL	statements	or	Microsoft	ActiveX®
scripts	against	a	data	source.

The	Execute	SQL	and	ActiveX	Script	tasks	allow	you	to	write	your	own
SQL	statements	and	scripting	code	and	execute	them	as	a	step	in	a
package	workflow.



Because	DTS	is	based	on	an	extensible	COM	model,	you	can	create	your	own
custom	tasks.	You	can	integrate	custom	tasks	into	the	user	interface	of	DTS
Designer	and	save	them	as	part	of	the	DTS	object	model.

For	more	information,	see	DTS	Tasks.

DTS	Transformations
A	DTS	transformation	is	one	or	more	functions	or	operations	applied	against	a
piece	of	data	before	the	data	arrives	at	the	destination.	The	source	data	is	not
changed.	For	example,	you	can	extract	a	substring	from	a	column	of	source	data
and	copy	it	to	a	destination	table.	The	particular	substring	function	is	the
transformation	mapped	onto	the	source	column.	You	also	can	search	for	rows
with	certain	characteristics	(for	example,	specific	data	values	in	columns)	and
apply	functions	only	against	the	data	in	those	rows.	Transformations	make	it
easy	to	implement	complex	data	validation,	data	scrubbing,	and	conversions
during	the	import	and	export	process.	Against	column	data,	you	can:

Manipulate	column	data.

For	example,	you	can	change	the	type,	size,	scale,	precision,	or
nullability	of	a	column.

Apply	functions	written	as	ActiveX	scripts.

These	functions	can	apply	specialized	transformations	or	include
conditional	logic.	For	example,	you	can	write	a	function	in	a	scripting
language	that	examines	the	data	in	a	column	for	values	over	1000.
Whenever	such	a	value	is	found,	a	value	of	-1	is	substituted	in	the
destination	table.	For	rows	with	column	values	under	1000,	the	value	is
copied	to	the	destination	table.

Choose	from	among	a	number	of	transformations	supplied	with	DTS.

An	example	would	be	a	function	that	reformats	input	data	using	string
and	date	formatting,	various	string	conversion	functions,	and	a	function
that	copies	the	contents	of	a	file	specified	by	a	source	column	to	a
destination	column.

Write	your	own	transformations	as	COM	objects	and	apply	those
transformations	against	column	data.



For	more	information,	see	DTS	Transformations.

DTS	Package	Workflow
You	can	define	the	sequence	of	step	execution	in	a	package	with:

Precedence	constraints	that	allow	you	to	link	two	tasks	together	based
on	whether	the	first	task	executes,	executes	successfully,	or	executes
unsuccessfully.	You	can	use	precedence	constraints	to	build	conditional
branches	in	a	workflow.	Steps	without	constraints	are	executed
immediately,	and	several	steps	can	execute	in	parallel.

ActiveX	scripts	that	modify	workflow.	For	more	information,	see	Using
ActiveX	Scripts	in	DTS.

For	more	information,	see	DTS	Package	Workflow.

Connectivity
DTS	is	based	on	an	OLE	DB	architecture	that	allows	you	to	copy	and	transform
data	from	a	variety	of	data	sources.	For	example:

SQL	Server	and	Oracle	directly,	using	native	OLE	DB	providers.

ODBC	sources,	using	the	Microsoft	OLE	DB	Provider	for	ODBC.

Access	2000,	Excel	2000,	Microsoft	Visual	FoxPro®,	dBase,	Paradox,
HTML,	and	additional	file	data	sources.	

Text	files,	using	the	built-in	DTS	flat	file	OLE	DB	provider.

Microsoft	Exchange	Server,	Microsoft	Active	Directory™	and	other
nonrelational	data	sources.

Other	data	sources	provided	by	third-party	vendors.



DTS	functionality	may	be	limited	by	the	capabilities	of	specific	databases,
ODBC	drivers,	or	OLE	DB	providers.	For	more	information,	see	Data
Conversion	and	Transformation	Considerations.

For	more	information,	see	DTS	Connections.

DTS	Tools
DTS	includes	several	tools	that	simplify	package	creation,	execution,	and
management:

The	DTS	Import/Export	Wizard,	which	is	used	to	build	packages	to
import,	export,	and	transform	data,	or	to	copy	database	objects.

DTS	Designer,	a	graphical	application	that	lets	you	construct	packages
containing	complex	workflows,	multiple	connections	to	heterogeneous
data	sources,	and	event-driven	logic.

The	Data	Transformation	Services	node	in	the	SQL	Server	Enterprise
Manager	console	tree,	which	is	used	to	view,	create,	load,	and	execute
DTS	packages,	to	control	DTS	Designer	settings,	and	to	manage
execution	logs.

Package	execution	utilities:

The	dtswiz	utility	starts	the	DTS	Import/Export	Wizard	by
using	command	prompt	options.	

The	dtsrun	utility	runs	a	package	from	a	command	prompt.	

The	DTS	Run	utility	(dtsrunui)	allows	you	to	run	a	package
using	dialog	boxes.

DTS	Query	Designer,	a	visual	database	tool	that	makes	it	easy	to	build
queries	in	DTS	Designer.



For	more	information,	see	DTS	Tools.

Meta	Data
DTS	includes	features	for	saving	package	meta	data	and	data	lineage
information	to	Meta	Data	Services	and	linking	those	types	of	information.	You
can	store	catalog	meta	data	for	databases	referenced	in	a	package	and	accounting
information	about	the	history	of	a	particular	row	of	data	for	your	data	mart	or
data	warehouse.

For	more	information,	see	Sharing	Meta	Data.

See	Also

Programming	DTS	Applications

JavaScript:hhobj_1.Click()


Data	Transformation	Services



DTS	Tools
Data	Transformation	Services	(DTS)	includes	the	following	set	of	tools	for
creating,	scheduling,	and	executing	DTS	packages.

Tool Description
DTS	Import/Export
Wizard

Wizard	used	to	copy	data	to	and	from	an	instance
of	Microsoft®	SQL	Server™	and	to	map
transformations	on	the	data.

DTS	Designer Graphical	tool	used	to	build	complex	packages
with	workflows	and	event-driven	logic.	You	also
can	use	DTS	Designer	to	edit	and	customize
packages	created	with	the	DTS	Import/Export
Wizard.

DTS	and	SQL	Server
Enterprise	Manager

Options	available	for	manipulating	packages	and
accessing	package	information	from	SQL	Server
Enterprise	Manager.

DTS	Package	Execution
Utilities

Includes	the	following:

The	DTS	Run	utility,	a	set	of	dialog
boxes	used	to	schedule	and	run
packages.

The	dtsrun	utility,	a	command	prompt
utility	used	to	run	packages.	For	more
information,	see	dtsrun	Utility.

DTS	Query	Designer A	graphical	tool	used	to	build	queries	in	DTS.

JavaScript:hhobj_1.Click()


Data	Transformation	Services



DTS	Import/Export	Wizard
Of	all	the	Data	Transformation	Services	(DTS)	tools,	the	DTS	Import/Export
Wizard	provides	the	simplest	method	of	copying	data	between	OLE	DB	data
sources.

After	connecting	to	the	source	and	destination,	you	can	select	the	data	to	import
or	export	and	apply	transformations	to	the	data	being	copied	(for	example,	by
selecting	columns	or	using	Microsoft®	ActiveX®	scripts).	In	many	cases,	you
can	automatically	copy	primary	and	foreign	key	constraints	along	with	the
source	data.

Note		You	can	copy	data	that	results	from	an	SQL	query.	SQL	queries	can
include	joins	of	multiple	tables	from	the	same	database	or	distributed	queries.	As
part	of	the	process,	the	DTS	Import/Export	Wizard	creates	the	destination	table
for	you	automatically	if	none	exists.

Available	Data	Sources
With	the	DTS	Import/Export	Wizard,	you	can	connect	to	the	following	data
sources:

Most	OLE	DB	and	ODBC	data	sources,	as	well	as	user-specified	OLE
DB	data	sources.

Text	files.

Other	connections	to	one	or	more	instances	of	Microsoft	SQL	Server™.

Oracle	and	Informix	databases.

You	must	have	the	Oracle	or	Informix	client	software	installed.

Microsoft	Excel	spreadsheets.

Microsoft	Access	and	Microsoft	FoxPro®	databases.



dBase	or	Paradox	databases.

For	more	information,	see	DTS	Connections.

Transforming	Data
In	addition	to	copying	data,	you	can	transform	column-level	data	with	an
ActiveX	scripting	language	such	as	Microsoft	Visual	Basic®	Scripting	Edition
(VBScript)	or	Microsoft	JScript®.	For	more	information,	see	DTS
Transformations,	Transform	Data	Task,	and	Using	ActiveX	Scripts	in	DTS.

Copying	Database	Objects
With	the	DTS	Import/Export	Wizard,	you	can	transfer	database	objects	such	as
indexes,	views,	roles,	stored	procedures,	and	referential	integrity	constraints.	For
more	information,	see	Copy	SQL	Server	Objects	Task.

Saving	DTS	Packages
After	you	complete	the	DTS	Import/Export	Wizard,	you	can	save	the
connections,	transformations,	and	scheduling	information	as	a	DTS	package.
The	package	can	be	saved:

To	the	SQL	Server	msdb	database.

To	SQL	Server	2000	Meta	Data	Services.

As	a	structured	storage	file	(.dts	file).

As	a	Visual	Basic	file.

You	can	run	the	package	immediately	or	schedule	it	for	later	execution.

For	more	information,	see	Saving	a	DTS	Package	and	Scheduling	a	DTS
Package	for	Execution.



Editing	Packages
If	you	create	a	package	with	the	DTS	Import/Export	Wizard	and	then	save	it,
you	can	edit	it	in	DTS	Designer.	Using	DTS	Designer,	you	can	customize	the
basic	package	you	created	in	the	DTS	Import/Export	Wizard,	adding	steps,	tasks,
transformations,	event-driven	logic,	and	configuring	workflow.	For	more
information,	see	DTS	Designer.

See	Also

dtswiz	Utility

JavaScript:hhobj_1.Click()


Data	Transformation	Services



Creating	a	DTS	Package	with	the	DTS	Import/Export
Wizard
The	Data	Transformation	Services	(DTS)	Import/Export	Wizard	offers	the
simplest	method	of	building	a	DTS	package,	interactively	guiding	you	through
the	process	of	copying	and	transforming	data.	Following	are	the	basic	steps	for
creating	a	package	with	the	DTS	Import/Export	Wizard:

1.	 Specify	whether	you	are	importing	or	exporting	data.

You	need	to	specify	whether	you	are	exporting	data	from	an	instance
of	Microsoft®	SQL	Server™	to	another	data	source	(for	example,	a
second	instance	of	SQL	Server	2000)	or	importing	data	from	another
data	source	to	an	instance	of	SQL	Server.	Both	choices	are	available	in
SQL	Server	Enterprise	Manager,	through	the	Data	Transformation
Services	node	of	the	console	tree,	and	as	command	switches	through
the	dtswiz	command	prompt	utility.

When	accessing	the	DTS	Import/Export	Wizard	from	the	Start	menu
or	the	command	prompt,	you	do	not	need	to	specify	whether	you	are
importing	or	exporting	data.

2.	 Choose	a	data	source	and	data	destination.

You	can	select	from	a	list	of	OLE	DB	data	sources,	which	includes
providers	for	both	databases	and	nondatabase	sources	(for	example,
text	files).	You	also	must	specify	any	required	login,	security,	or	file
location	information.	If	you	are	importing	data	from	a	text	file,	you
must	specify	the	format	and	delimiters	of	the	text	file.

When	you	import	data,	the	active	server	connection	is	specified	as	the
default	destination	server.	When	you	export	data,	the	active	server
connection	is	specified	as	the	default	source	server.

3.	 Choose	whether	to	copy	a	table	or	view,	copy	query	results,	or	transfer
objects	and	data.

If	you	choose	to	copy	data,	you	need	to	decide	which	columns
or	views	to	copy	and	whether	to	transform	the	data.	If	your



source	data	is	a	view,	the	DTS	Import/Export	Wizard
automatically	converts	the	view	to	a	table	in	the	destination.

If	you	choose	to	query	the	source	data	and	copy	the	results,
you	need	to	construct	an	SQL	query,	which	also	can	be	a
heterogeneous	or	distributed	query.	You	can	enter	the	SQL
query	manually	or	graphically.	After	you	have	completed	the
query,	you	can	decide	whether	to	add	transformations	to	the
query	results.	For	more	information	about	graphically
entering	an	SQL	query,	see	DTS	Query	Designer.

If	you	choose	to	transfer	database	objects	between	instances
of	SQL	Server,	you	need	to:	select	which	objects	to	transfer
(for	example,	views,	stored	procedures,	indexes,	and	rules);
choose	whether	to	drop	existing	database	objects	first;	replace
or	append	existing	data;	and	include	dependent	objects.

For	more	information,	see	Copy	SQL	Server	Objects	Task.

4.	 Optionally	select	columns,	add	transformations,	or	copy	constraints.

If	you	copy	the	data	or	the	results	of	a	query,	you	can	customize	the
data	being	copied	to	the	destination.	You	can:

Select	which	source	or	destination	columns	to	copy.

Select	which	source	or	destination	columns	to	ignore.

Change	the	data	type	where	valid.

Define	how	the	data	is	to	be	converted	between	source	and
destination.	

Map	transformations	onto	column	or	row	data	using
Microsoft	ActiveX®	scripts.



5.	 Save,	run,	or	schedule	a	package.

After	you	have	created	the	package,	you	need	to	decide:

The	format	in	which	to	save	the	DTS	package.

You	can	save	the	package	to	the	SQL	Server	msdb	database,
to	SQL	Server	2000	Meta	Data	Services,	as	a	structured
storage	file	(.dts	file),	or	as	a	Microsoft	Visual	Basic®	file.

When	you	want	to	run	the	package.

You	can	run	the	package	after	the	DTS	Import/Export	Wizard
completes,	or	you	can	schedule	the	package	to	execute	on	a
regular	basis	using	SQL	Server	Agent.

You	can	use	the	Create	Publication	Wizard	to	publish	the	data.
For	more	information,	see	Replication	Wizards.

IMPORTANT		Do	not	open	a	Microsoft	Excel	file	that	is	being
used	as	a	source	or	destination	during	the	wizard	creation	or
execution,	because	a	"file	in	use"	error	will	occur.

To	create	a	DTS	package	using	the	DTS	Import/Export	Wizard

JavaScript:hhobj_1.Click()


Data	Transformation	Services



DTS	Designer
Data	Transformation	Services	(DTS)	Designer	is	a	tool	you	can	use	to	import,
export,	and	transform	heterogeneous	data	between	one	or	more	databases	and	an
instance	of	Microsoft®	SQL	Server™.	DTS	Designer	graphically	implements
the	DTS	object	model,	allowing	you	to	create	DTS	packages	with	a	wide	range
of	functionality.	You	can	use	DTS	Designer	to:

Create	a	simple	package	(for	example,	a	package	that	copies	data
between	databases).

Create	a	package	that	includes	complex	workflows	(for	example,	a
package	that	contains	branches,	multiple	steps,	multiple	connections,
complicated	logic,	and	event-driven	code).

Edit	an	existing	package	(for	example,	a	package	you	have	created	with
the	DTS	Import/Export	Wizard).

Accessing	DTS	Designer

You	access	DTS	Designer	through	SQL	Server	Enterprise	Manager,	through	the
Data	Transformation	Services	node	of	the	console	tree.

DTS	Designer	User	Interface
The	DTS	Designer	graphical	user	interface	allows	you	to	build	and	configure
packages	by	using	drag-and-drop	methods	and	by	completing	property	sheets	on
the	various	DTS	objects	composing	the	package.	The	user	interface	includes:

The	DTS	Designer	main	panel,	which	consists	of	the	following	parts:

A	design	sheet	upon	which	you	create	workflows	by	dragging
graphical	objects	that	represent	DTS	tasks,	DTS
transformations,	and	precedence	constraints.

A	menu	bar	containing	selections	for	package	operations,	edit



operations,	data	sources,	tasks,	and	workflow	items.

A	toolbar	containing	buttons	for:	creating,	saving,	and
executing	a	package;	printing	a	workflow;	cutting,	copying,
and	pasting	graphical	objects	in	a	workflow;	annotating	a
workflow;	and	changing	both	the	workflow	layout	and	the	size
of	a	workflow	on	the	design	sheet.

A	Connection	toolbar	containing	connections	for	data	sources.

A	Task	toolbar	containing	DTS	tasks.

You	can	dock	and	undock	the	Connection	and	Task	toolbars
by	using	their	shortcut	menus.

Shortcut	menus	for	configuring	and	editing	package	components	and
workflow	(for	example,	connections,	tasks,	and	workflow	objects).



Data	Transformation	Services



Creating	a	Package	with	DTS	Designer
The	following	example	shows	you	how	to	build,	configure,	execute,	and	save	a
Data	Transformation	Services	(DTS)	package.

To	create	a	DTS	package	using	DTS	Designer



Data	Transformation	Services

DTS	Designer	Example:	A	Completed	DTS	Package
The	following	diagram	shows	a	completed	Data	Transformation	Services	(DTS)
package	on	the	DTS	Designer	design	sheet.	The	graphical	objects	on	the	design
sheet	represent	connections,	tasks,	and	precedence	constraints.

The	following	is	a	description	of	the	graphical	objects:

A	connection	to	a	text	file	containing	source	data	(the	Text	File
(Source)	icon)	and	a	second	connection	to	a	destination,	the	Northwind
database	(the	Northwind	icon).

A	Transform	Data	task	(the	gray	arrow)	that	defines	the	data	being
copied	and	transformed.

Two	precedence	constraints	(striped	arrows)	that	further	designate
workflow:

If	the	package	is	run	and	the	data	is	copied	successfully	from
the	text	file	to	an	instance	of	Microsoft®	SQL	Server™,	an
index	is	created	on	the	table	to	which	the	data	is	copied	(the
striped	arrow	from	the	Northwind	icon	to	the	Create	Index
icon).

If	the	package	is	run	and	the	data	copy	fails,	an	e-mail	is	sent	to
a	database	administrator	(the	striped	arrow	from	the



Northwind	data	icon	to	the	Send	Mail	task	icon).

A	text	annotation	(the	label	"Customer	Update,	Chicago").



Data	Transformation	Services

DTS	Designer	Example:	Copying	Northwind	Data
This	example	demonstrates	how	to	use	Data	Transformation	Services	(DTS)
Designer	to	copy	a	Northwind	database	table	from	the	source	to	the	destination.
The	basic	steps	are:

1.	 Make	two	connections,	one	to	the	source	and	a	second	to	the
destination.

2.	 Add	a	Transform	Data	task	that	defines	a	source	and	destination	table
and	the	copying	operation	to	be	performed.

3.	 Add	an	Execute	SQL	task	that	checks	for	the	existence	of	the
destination	table	prior	to	copying	the	data.	If	the	table	does	not	exist,	it
is	created.	If	the	table	exists,	it	is	dropped	and	re-created.

4.	 Configure	the	workflow	so	the	DTS	package	steps	execute	in	the
correct	sequence.

5.	 Run	the	package.

6.	 Save	the	package	so	that	it	can	be	reused.

Connecting	to	the	Source

Begin	by	creating	a	connection	to	the	Northwind	database	on	your	local	server.

To	create	a	connection	to	Northwind	in	DTS	Designer



Data	Transformation	Services



DTS	Package	Templates
Data	Transformation	Services	(DTS)	package	templates	are	partially	configured
packages	built	around	typical	usage	situations.	Each	template	contains	tasks	and
workflow	items	geared	toward	a	specific	task	or	set	of	tasks	(for	example,
copying	data	between	instances	of	Microsoft®	SQL	Server™	2000).	Copy	and
complete	these	templates	to	configure	tasks,	connections,	and	workflow	easily
and	quickly.

After	you	configure	the	template,	save	a	copy	as	a	package	to	a	new	location.
Then,	you	can	reuse	the	template,	customize	copies,	and	save	the	information	in
any	DTS	format.	Because	DTS	templates	are	read-only	files	(with	a	.dtt
extension),	you	cannot	accidentally	overwrite	a	template.

By	default,	package	templates	are	saved	in	the	\\Tools\Templates\DTS	folder.
However,	you	can	save	and	use	package	templates	from	any	location.

Creating	a	Template
To	create	a	package	template,	build	a	package	and	use	Disconnected	Edit	to	stub
out	the	properties	you	want	template	users	to	configure.	For	example,	instead	of
entering	a	specific	user	name	in	the	Connection	Properties	dialog	box,	use
Disconnected	Edit	to	assign	text	such	as	"Enter	your	login	name	here"	to	the
property	for	user	name.	You	also	can	add	instructions	and	labels	to	the	package
template.	After	you	build	the	package	template,	save	it	as	a	structured	storage
file	with	a	.dtt	extension.

To	create	and	save	a	package	template



Data	Transformation	Services



DTS	and	SQL	Server	Enterprise	Manager
The	Data	Transformation	Services	(DTS)	node	of	the	SQL	Server	Enterprise
Manager	console	tree	provides	facilities	for	accessing	DTS	tools,	manipulating
DTS	packages,	and	accessing	package	information.	You	can	use	these	facilities
to:

Open	a	new	package	in	the	DTS	Import/Export	Wizard	or	DTS
Designer.	In	DTS	Designer,	you	can	select	and	edit	an	existing	package
saved	to	SQL	Server,	SQL	Server	2000	Meta	Data	Services,	or	to	a
structured	storage	file.

For	more	information,	see	Creating	a	DTS	Package	and	Editing	a	DTS
Package.

Connect	to	and	import	meta	data	from	a	data	source,	and	display	the
meta	data	in	the	Meta	Data	node	of	SQL	Server	Enterprise	Manager.

For	more	information,	see	Viewing	Meta	Data	in	DTS.

Open	a	package	template	in	DTS	Designer.

For	more	information,	see	DTS	Package	Templates.

Display	the	version	history	of	a	package,	edit	a	specific	package	version
in	DTS	Designer,	and	delete	package	versions.

For	more	information,	see	Saving	a	DTS	Package	to	Meta	Data
Services.

Display	and	manipulate	package	log	information.

For	more	information,	see	Using	DTS	Package	Logs.

Set	the	properties	of	DTS	Designer	by	right-clicking	the	Data
Transformation	Services	node	and	clicking	Properties.

Execute	a	package.

For	more	information,	see	Executing	a	DTS	Package.



Schedule	a	package.

For	more	information,	see	Scheduling	a	DTS	Package	for	Execution.



Data	Transformation	Services



DTS	Package	Execution	Utilities
Data	Transformation	Services	(DTS)	packages	can	be	run	from	either	of	two
package	execution	utilities	included	with	Microsoft®	SQL	Server™	2000:	the
DTS	Run	utility	and	the	dtsrun	command	prompt	utility.	By	using	these	utilities,
you	do	not	need	to	open	a	package	to	run	it.

The	DTS	Run	utility	allows	you	to	create	a	command	prompt	and	run	a	package
or	schedule	a	package	outside	of	the	Microsoft	Management	Console	(MMC).
With	dtsrun,	you	can	run	a	package	from	the	command	prompt	or	a	batch	file.

DTS	Run	Utility
With	the	DTS	Run	utility,	you	can	execute	an	existing	package	from	a	set	of
dialog	boxes	that	you	call	from	the	command	prompt.

Using	the	DTS	Run	utility,	you	can	set:

Connection	settings.

You	can	specify	the	server	name	or	file	name,	identify	how	the	package
was	saved,	and	provide	login	information.

Scheduling	options.

You	can	specify	regular	package	execution	through	SQL	Server	Agent.

Logging	options.

You	can	identify	and	enable	an	event	log.

Global	variable	settings.

You	can	add	new	global	variables	and	change	the	properties	of	existing
global	variables.	Modifications	to	package	global	variables	are	in	effect
only	for	the	duration	of	a	DTS	Run	utility	session.	When	the	session	is
closed,	changes	to	package	global	variables	are	not	saved.

Encryption	options.

You	can	encrypt	the	command	prompt	options	to	be	executed	by	the
DTS	Run	utility,	allowing	you	to	create	an	encrypted	dtsrun	command



for	later	use.

You	also	can	use	the	DTS	Run	utility	to	generate	the	text	of	a	command	prompt
for	dtsrun,	with	or	without	encrypted	arguments.	You	can	save	this	text,	copy	it
to	a	file,	and	reuse	it	later	to	execute	the	same	operation	from	a	command
prompt.

You	access	the	DTS	Run	utility	by	executing	dtsrunui	from	a	command	prompt
without	any	command	switches.

To	execute	a	DTS	package	using	the	DTS	Run	utility



Data	Transformation	Services



DTS	Query	Designer
Data	Transformation	Services	(DTS)	Query	Designer	uses	a	graphical	user
interface	for	creating	SQL	queries.	Use	DTS	Query	Designer	to:

Work	visually	or	with	SQL	commands.

DTS	Query	Designer	includes	graphical	panes	that	display	your	query
visually	and	a	text	pane	that	displays	the	SQL	text	of	your	query.	You
can	work	in	either	the	graphical	or	text	panes.	DTS	Query	Designer
synchronizes	the	views	so	they	are	always	current.

Join	related	tables.

If	you	add	more	than	one	table	to	your	query,	DTS	Query	Designer
automatically	determines	how	the	tables	are	related	and	constructs	the
appropriate	join	command.

Query	or	update	databases.

You	can	use	DTS	Query	Designer	to	return	data	using	Transact-SQL
SELECT	statements	and	to	create	queries	that	update,	add,	or	delete
records	in	a	database.

View	and	edit	results	immediately.

You	can	execute	your	query	and	work	with	a	record	set	in	a	grid	that
allows	you	to	scroll	through	and	edit	records	in	the	database.

See	Also

Data	Transformation	Services	Query	Designer

Diagram	Pane

Grid	Pane

Navigating	in	the	Query	Designer

Results	Pane

SQL	Pane

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()
JavaScript:hhobj_6.Click()


Data	Transformation	Services



DTS	Package	Elements
This	section	describes	the	main	elements	of	a	Data	Transformation	Services
(DTS)	package.

Topic Description
DTS	Tasks Describes	the	DTS	tasks	and	their	typical	uses.
DTS	Transformations Describes	the	column-level	transformations

available	through	the	DTS	tasks	that	transform
data.

DTS	Connections Explains	the	different	types	of	connections
available	in	a	DTS	package.

DTS	Package	Workflow Discusses	how	workflow	is	ordered	in	a	package
and	how	package	steps	execute.



Data	Transformation	Services



DTS	Tasks
Usually,	a	Data	Transformation	Services	(DTS)	package	includes	one	or	more
DTS	tasks.	Each	task	defines	a	work	item	to	be	performed	as	part	of	the	data
movement	and	data	transformation	process.

Microsoft®	SQL	Server™	2000	supplies	several	DTS	tasks	that	are	part	of	the
DTS	object	model.	These	tasks	can	be	accessed	through	DTS	Designer	(except
for	the	Parallel	Data	Pump	task,	which	can	only	be	accessed	programmatically).
You	can	use	them	to:

Transform	data.	For	example,	you	can	use	the	Transform	Data	task	to
copy	data,	map	a	wide	variety	of	transformations	onto	the	data,	and
customize	the	transformations	with	a	Microsoft	ActiveX®	script.

For	more	information,	see	Data	Driven	Query	Task,	Transform	Data
Task,	and	ParallelDataPump	Task	Object.

Copy	and	manage	data.	For	example,	you	can	drop	a	table,	re-create	and
repopulate	the	table,	and	execute	a	series	of	queries	against	the	table.
Also,	you	can	generate	a	disconnected	Microsoft	ActiveX	Data	Objects
(ADO)	recordset,	which	you	can	then	manipulate	and	access	from	other
steps	in	the	package.

For	more	information,	see	Copy	SQL	Server	Objects	Task,	Execute
SQL	Task,	Bulk	Insert	Task,	and	Transfer	Database	Objects	Tasks.

Run	tasks	as	jobs	from	within	a	package.	For	example,	you	can	use	an
Execute	Process	task	to	run	a	custom	Microsoft	Visual	Basic®
application	that	collects	and	aggregates	data	on	a	daily	basis.	Then,	you
can	use	an	Execute	Package	task	to	run	a	second	package	that	imports
and	transforms	the	data	generated	by	the	Visual	Basic	application.	You
also	can	use	the	Send	Mail	task	to	send	an	e-mail	to	a	system
administrator	if	a	package	step	succeeds	or	fails.

For	more	information,	see	ActiveX	Script	Task,	Dynamic	Properties
Task,	Execute	Package	Task,	File	Transfer	Protocol	Task,	Execute
Process	Task,	and	Send	Mail	Task.

JavaScript:hhobj_1.Click()


Additionally,	you	can	build	your	own	custom	task	in	a	programming	language
that	supports	COM	(for	example,	Visual	Basic).	You	can	create	a	user	interface
for	the	custom	task,	including	its	own	icon,	if	you	want	to	access	the	custom	task
in	DTS	Designer.	For	more	information,	see	DTS	Custom	Task.

Adding	and	Configuring	Tasks
A	DTS	package	can	contain	a	single	task	(for	example,	an	ActiveX	Script	task
that	displays	a	message	box	when	the	package	is	run).	However,	a	package	often
contains	several	tasks,	connections,	and	workflow	constraints,	with	each	task	set
to	run	in	the	context	of	an	ordered	package	workflow.	You	can	include	multiple
tasks	of	the	same	type	in	a	package	(for	example,	six	Execute	SQL	tasks),	with
each	task	configured	differently.

You	can	add	tasks	to	a	package	and	set	their	properties	in	the	following	ways:

Graphically,	using	DTS	Designer.

Programmatically,	using	the	DTS	object	model	to	build	a	package	in
Visual	Basic	or	Microsoft	Visual	C++®.	For	more	information,	see
Programming	DTS	Applications.

To	add	a	DTS	task	to	a	DTS	package

JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Data	Transformation	Services



Tasks	That	Transform	Data
In	Data	Transformation	Services	(DTS),	tasks	that	transform	data	are	based	on
an	architectural	component	called	the	DTS	data	pump.

The	following	DTS	tasks	implement	the	DTS	data	pump.

Task Description
Transform	Data	Task Allows	point-to-point	copying	and

transforming	of	data	between	a	broad	range
of	OLE	DB-compliant	data	sources.

Data	Driven	Query	Task Allows	you	to	perform	flexible,	Transact-
SQL	based	operations	on	data,	including
stored	procedures	and	INSERT,	UPDATE	or
DELETE	statements.

ParallelDataPump	Task
Object

Allows	copying	and	transforming	of	data
containing	OLE	DB	hierarchical	rowsets.
This	task	is	only	accessible
programmatically,	through	the	DTS	object
model.

The	DTS	data	pump,	an	OLE	DB	service	provider,	is	a	COM	object	that
provides	a	set	of	data	movement	interfaces.

The	data	pump	architecture	supports:

High-speed	batch	copying	of	transformed	or	non-transformed	data.

Use	of	scripting	code	to	define	transformations.

A	variety	of	supplied	transformations	for	converting	string	data.

Custom	transformations,	written	in	Microsoft®	Visual	C++®	and
compiled	as	COM	objects,	that	you	can	access	programmatically	or
through	the	DTS	Designer	user	interface.

JavaScript:hhobj_1.Click()


The	DTS	data	pump	also	allows	users	to	add	programs	or	Microsoft	ActiveX®
script	functions	that	can	access	specific	phases	of	a	data	pump	operation.	For
example,	you	can	add	a	function	that	instructs	the	data	pump	to	write	header
information	to	a	file	before	the	source	data	is	copied	and	transformed.	For	more
information,	see	Multiphase	Data	Pump	Functionality.

Configuring	a	Task	that	Transforms	Data
To	configure	a	task	that	transforms	data,	follow	these	steps:

1.	 Establish	a	connection.	You	need	to	connect,	at	minimum,	to	the
source	and	destination	data	sources.

Before	configuring	these	tasks	in	DTS	Designer,	you	must	create	two
live	connections	to	data	sources.	If	you	define	additional	connections
in	an	ActiveX	Script	transformation,	those	connections	can	be	made	at
package	run	time.

For	more	information,	see	DTS	Connections	and	Configuring	a	Simple
Lookup	Query.

2.	 Perform	any	required	data	type	conversions	and	transformations	onto
the	data	copied	from	the	source	connection.

If	you	intend	to	transform	the	data,	you	need	to	map	column-level
transformations.	You	can	use	one	of	the	following	DTS	tools:

The	DTS	Import/Export	Wizard.	By	default,	the	wizard
creates	one	or	more	transformation	tasks	(depending	on	the
number	of	source	tables	selected	for	copying).	To	transform
column	or	row	data	in	the	wizard,	you	must	write	a
transformation	script	using	ActiveX	scripting	code.	To	edit
the	transformation	script,	you	must	open	the	package	in	DTS
Designer,	open	the	properties	dialog	box	for	the	task,	and	edit
the	script.

For	more	information,	see	Using	ActiveX	Scripts	in	DTS.

DTS	Designer.	You	can	graphically	map	source	columns	to
destination	columns,	select	a	transformation	type,	and	apply
one	to	a	mapping.	Alternatively,	you	can	map	transformations



using	selection	boxes.

Note		For	most	situations,	you	will	only	map	columns	with
the	Transform	Data	task.	It	is	not	recommended	you	change
the	default	column	mappings	for	a	Data	Driven	Query	task
unless	you	are	an	advanced	user.	For	more	information,	see
Building	a	Data	Driven	Query.

Detecting	Row-Level	Errors

Tasks	that	transform	data	use	exception	files	to	record	information	about	failed
rows.	Exception	files	can	contain:

Package	information,	such	as	package	name,	description,	and	version.

Step	execution	information,	including	the	name	of	the	package	step
associated	with	the	data	pump	operation	and	step	execution	times.

Error	information,	including	the	source	of	the	error	(for	example,	the
data	pump	or	a	connection)	and	a	description	of	the	error	(for	example,
an	insert	error	that	occurred	on	EmployeeData	column,	row	2007).

The	tasks	that	transform	data	are	able	to	detect	row-level	errors	before	the	row	is
submitted	to	the	database.	For	example,	suppose	an	input	row	contains	missing
or	incorrectly	formatted	data.	When	these	tasks	encounter	such	a	row,	they	fail
the	row	and	do	not	pass	it	to	the	destination.	This	error	counts	as	one	failure
toward	the	maximum	error	count.

Some	errors,	such	as	duplicate	keys	or	referential	integrity	violations,	cannot	be
detected	at	row	level	by	these	tasks.	Such	rows	fail	only	after	being	passed	to	the
destination.	The	failure	is	noted	in	the	exception	file,	but	the	actual	rows	that
failed	are	not	logged.	Thus,	complete	error	information	is	not	always	available	in
the	exception	logs.

If	you	configure	an	exception	log	for	a	task	that	transforms	data,	step	execution
information	is	appended	to	the	exception	file	you	specify	each	time	the	package
is	run.	If	you	specify	an	exception	file	that	does	not	currently	exist,	the	file	will
be	created	at	package	execution	time.	If	the	step	associated	with	the	task	does



not	run,	no	exception	file	data	is	generated.

You	also	can	create	additional	log	files	to	capture	source	and	destination	rows
that	failed	when	a	task	that	transforms	data	is	executing	by	using	the	Microsoft
SQL	Server™	2000	exception	file	options.	You	can	use	these	files	to	examine
failed	rows	and	troubleshoot	problems	with	the	data.	The	source	row	and
destination	row	log	files	have	the	same	name	as	the	exception	file,	but	with	the
extensions	".Source"	and	".Destination",	respectively,	appended	to	the	name.
These	files	are	only	created	if	source	row	errors	or	destination	row	errors	occur
during	execution	of	the	transformation	task.

To	configure	the	data	pump	exception	files



Data	Transformation	Services

Transform	Data	Task
You	use	the	Transform	Data	task	to	copy	data	between	a	source	and	destination
and	to	optionally	apply	column-level	transformations	to	the	data.	The	Transform
Data	task	is	the	most	basic	implementation	of	the	data	pump	engine	in	Data
Transformation	Services	(DTS).

The	Transform	Data	task	is	optimized	for	insert-based	copying	and	transforming
of	column-level	data	between	commercial	databases,	spreadsheets,	and	text	files.
You	can	use	the	task	to	copy	and	transform	data	between	any	supported	OLE	DB
connections.	Because	the	task	handles	such	a	wide	variety	of	data	sources	and
transformation	scenarios,	you	will	frequently	use	one	or	more	instances	of	it
when	creating	packages	that	consolidate	data	from	disparate	sources.

Note		If	you	need	to	bulk	insert	text	files	into	Microsoft®	SQL	Server™	and	are
concerned	with	performance,	use	the	Bulk	Insert	task.	However,	you	cannot
transform	data	with	the	Bulk	Insert	task.	For	more	information,	see	Bulk	Insert
Task.

Batching	Data
If	the	destination	connection	for	a	Transform	Data	task	is	the	Microsoft	OLE	DB
Provider	for	SQL	Server,	you	can	use	the	fast	load	option,	which	is	available
through	the	OLE	DB	IRowsetFastLoad	interface.	The	fast	load	option	supports
high-performance	bulk-copy	processing.	When	the	fast	load	option	is	enabled,
the	data	pump	can	accept	batches	of	transformed	data.

When	you	batch	data,	the	data	pump	writes	the	transformed	rows	to	a	destination
buffer	but	does	not	submit	them	to	SQL	Server	until	either	the	specified	batch
size	or	the	end	of	the	source	data	is	reached.

You	can	customize	batch	processing	in	a	Transform	Data	task	by	writing	your
own	functions.	For	more	information,	see	Multiphase	Data	Pump	Functionality.

You	cannot	use	fast	load	with	a	Data	Driven	Query	task.

IMPORTANT		Also,	when	using	the	fast	load	option	in	a	Transform	Data	task	with
a	lookup	connection,	make	sure	your	lookup	connection	is	not	the	same	as	the



source	or	destination	connections.

Applying	Transformations	to	Batches
Transformations	are	applied	prior	to	the	bulk	copying	process.	Therefore,	you
can	use	the	same	column-level	transformations	with	the	fast	load	option	that	you
can	use	without	the	option	(for	example,	a	Microsoft	ActiveX®	Script
transformation).

Handling	Errors	and	Batched	Data
If	a	row	contains	errors	and	the	Transform	Data	task	does	not	detect	them,	the
row	causes	the	entire	batch	to	fail	on	submission.	Valid	rows	in	such	a	batch	are
neither	inserted	nor	noted	as	an	error	in	the	data	pump	exception	files.	The
failure	of	an	entire	batch	counts	as	only	one	failure	toward	the	maximum	error
count.

You	can	control	both	the	size	of	a	batch	and	the	way	the	data	will	be	committed
if	a	failure	occurs.	Before	setting	the	batch	size,	consider	the	following:

Error	descriptions	that	occur	in	a	batch	will	be	recorded	in	a	log	file,	but
the	error	rows	may	not	be	available	by	the	time	the	batch	rolls	back.	As
a	result,	the	error	rows	may	not	be	logged.

By	default,	the	batch	size	is	set	to	0,	which	means	that	all	the	rows
copied	from	the	source	are	placed	in	a	single	batch	before	being
submitted	to	SQL	Server.

For	example,	if	your	source	contains	a	million	rows	of	data,	and	the
batch	size	is	set	to	the	default,	the	data	will	not	commit	until	the	one-
millionth	row	is	processed.	In	cases	such	as	these,	you	may	want	to
commit	the	data	in	batches	of	one	thousand,	or	ten	thousand,	rather	than
in	a	single	batch	of	one	million.

A	batch	size	of	one	means	that	each	row	of	data	processed	is	treated	as	a
batch.	

Input	rows	containing	errors	detected	by	the	Transform	Data	task	are



neither	added	to	the	current	batch	nor	counted	as	rows	in	the	batch.	For
example,	a	batch	size	of	10	might	be	filled	from	source	rows	1	thru	12,
where	rows	3	and	4	contain	incorrectly	formatted	dates	and	are	not
copied	to	the	destination.	You	cannot	in	this	case	assume	that	the	third
batch	of	data	contains	source	rows	21	thru	30.

Before	configuring	the	error	options	for	batching	data,	consider	the	following:

When	you	enter	a	maximum	error	count	value	for	a	Transform	Data
task,	you	specify	the	sum	of	row-level	errors	detected	by	the	Transform
Data	task	and	batch	failures.	When	the	Max	error	count	value	is
exceeded,	task	execution	is	terminated.

Because	rows	containing	errors	detected	by	the	Transform	Data	task	are
discarded	before	batch	submission,	these	errors	do	not	trigger	nor	count
as	batch	failures.	Errors	caught	at	the	destination	will	fail	the	batch	and
add	one	to	the	error	count	regardless	of	how	many	rows	are	in	the	batch.

You	can	set	an	option	that	will	trigger	the	submission	of	the	current
batch	when	the	maximum	error	count	value	is	exceeded.	This	option	is
useful	when	the	only	types	of	errors	you	anticipate	are	row-level	errors
that	will	be	detected	by	the	Transform	Data	task.

Batches	and	Package	Transactions

Batches	succeed	and	fail	independently	of	the	package	transaction.	For	more
information,	see	Configuring	Properties	for	DTS	Transactions.

If	the	Transform	Data	task	takes	part	in	the	package	transaction,	any	successfully
added	batches	are	submitted	only	after	the	package	transaction	is	committed.

Configuring	a	Transform	Data	Task
In	DTS	Designer,	configure	a	Transform	Data	task	by	following	these	steps:

1.	 Configure	connections.	You	must	first	establish	a	source	and
destination	connection.



To	configure	the	connections	for	a	Transform	Data	task



Data	Transformation	Services

Data	Driven	Query	Task
The	Data	Driven	Query	task	allows	you	to	perform	flexible,	Transact-SQL	based
operations	on	data,	including	stored	procedures	and	INSERT,	UPDATE	or
DELETE	statements.	For	each	row	in	a	source	rowset,	the	Data	Driven	Query
task	selects,	customizes,	and	executes	one	of	several	SQL	statements.	You	select
which	statement	to	execute	via	a	constant	return	value	set	in	a	Microsoft®
ActiveX®	script	transformation.	Based	on	the	return	constant	you	use	in	the
script,	one	of	four	different	parameterized	SQL	statements	that	you	create	may
be	executed	for	each	source	row.

When	designing	a	Data	Driven	Query	task,	you	need	to	decide	whether	the	task
should	include	a	single	query	or	multiple	queries.	For	example,	if	you	only	want
the	task	to	delete	data,	you	use	a	single	query	(a	Delete	query).	If	you	want	to
update	some	rows	and	delete	others,	you	need	to	use	two	queries	(an	Update	and
Delete	query).	If	you	use	multiple	queries,	you	need	to	provide	scripting	code
that	supplies	conditional	logic.	That	logic	determines	when	each	query	type	is
applied	to	the	data.

Using	the	Data	Driven	Query	task,	you	can:

Run	any	large	collection	of	updates	that	are	not	necessarily	inserts.	For
example,	you	can	purge	expired	historical	data	from	a	database,	given	a
list	of	keys	generated	by	another	database.

Perform	traditional	file	maintenance.	For	example,	you	can	optionally
insert	or	update	records	depending	on	their	previous	existence	or	some
other	external	factor.

Customize	Microsoft	SQL	Server™	transformable	subscriptions,	which
are	used	to	distribute	and	transform	incremental	changes	during
replication.	For	example,	you	can	tailor	the	response	of	each	subscriber
to	insert,	delete,	or	update	requests.

Use	the	Data	Driven	Query	task	when,	for	each	of	many	source	rows,	you	must



either:

Choose	among	more	than	one	edit	operation.

-or-

Perform	a	non-insert	edit	(for	example,	perform	an	update	or	delete
operation,	or	execute	a	stored	procedure).

The	Transform	Data	task	and	the	Bulk	Insert	task	are	optimized	for
insert	operations.	Choose	the	Data	Driven	Query	task	for	insert
operations	only	if	these	tasks	do	not	meet	the	requirements	of	your
application.

You	can	use	either	DTS	Designer	or	the	DTS	object	model	to	create	and	manage
Data	Driven	Query	tasks.	For	more	information	about	programming	for	the	Data
Driven	Query	task,	see	DataDrivenQueryTask2	Object	and	Creating	a
Transformable	Subscription	Using	Visual	Basic.

See	Also

Transform	Data	Task

Using	ActiveX	Scripts	in	DTS

Using	Parameterized	Queries	in	DTS

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Data	Transformation	Services

Data	Flow	in	a	Data	Driven	Query	Task
When	you	use	a	Data	Driven	Query	task,	the	data	flows	as	follows:

1.	 Rows	are	selected	from	the	source.

2.	 Each	row	is	transformed	by	the	Microsoft®	ActiveX®	script	(and
possibly	additional	transformations).	The	return	value	of	the	ActiveX
script	determines	which	query	will	be	selected	later.

3.	 The	results	of	the	transformation	are	mapped	to	the	binding	table.
Nothing	is	written	to	the	destination	at	this	time.	The	binding	table	is
used	to	determine	the	attributes	of	the	columns	(for	example,	data
type,	scale,	precision)	that	will	be	used	by	the	parameterized	queries	in
the	next	step.	

4.	 For	each	row,	the	values	in	the	binding	table	are	mapped	into	the
selected	query,	and	the	query	is	executed.

5.	 The	query	execution	writes	the	row	to	the	destination.

See	Also

Using	ActiveX	Scripts	in	DTS

Using	Parameterized	Queries	in	DTS

Using	Return	Codes	in	DTS



Data	Transformation	Services

Building	a	Data	Driven	Query
Although	you	can	use	Data	Driven	Query	tasks	to	build	data	driven	queries	that
vary	in	complexity,	you	follow	the	same	basic	steps	for	building	a	data	driven
query	in	all	cases.

The	following	examples	show	how	to	build	data	driven	queries,	one	simple	and
one	complex,	using	the	Data	Driven	Query	task	in	Data	Transformation	Services
(DTS)	Designer.	In	the	first	example,	every	source	row	leads	to	the	update	of	a
destination	row.	Only	one	query	type,	an	Update	query,	is	used.	In	the	second
example,	multiple	query	types,	both	an	Update	and	a	Delete	query,	are	used.

To	update	a	destination	row	using	a	single	query	type

1.	 Define	the	source	data.

The	data	can	be	a	table	or	the	results	of	a	SELECT	statement,
parameterized	SELECT	statement,	or	stored	procedure.	You	choose
the	data	source	on	the	Source	tab	of	the	Data	Driven	Query	Task
Properties	dialog	box.

2.	 Define	a	binding	table.

This	binding	table	allows	you	to	transform	source	data	before	it
appears	in	your	SQL	statements.	The	Data	Driven	Query	task	makes
no	actual	changes	to	the	destination	unless	you	specifically	request
them	in	your	queries.	The	binding	table	must	be	an	existing	table.	This
table	is	used	to	define	the	schema	for	binding	the	parameters.	The
columns	of	this	binding	table	must	match	those	of	the	parameterized
queries	that	will	be	written	against	it	(Step	5)	in	type.	You	declare	the
binding	table	on	the	Bindings	tab	of	the	Data	Driven	Query	Task
Properties	dialog	box.

3.	 Provide	the	decision-making	logic	by	using	a	Microsoft®	ActiveX®
script.

You	create	ActiveX	script	code	in	the	text	box	of	the	ActiveX	Script
Transformation	Properties	dialog	box	to	determine	which	query	will



be	executed.	You	display	that	dialog	box	by	double-clicking	the
column	mapping	line	for	the	transformation	in	the	Transformations
tab	of	the	Data	Driven	Query	Task	Properties	dialog	box.

Note		By	default,	the	Data	Driven	Query	task	maps	all	source	columns
to	all	columns	in	the	binding	table	as	a	single	transformation.	The
mapping	is	displayed	on	the	Transformations	tab	of	the	Data	Driven
Query	Task	Properties	dialog	box.	It	is	recommended	you	do	not	use
more	then	one	ActiveX	script	for	a	Data	Driven	Query	task,	for	that
would	reduce	performance.	For	more	information,	see	Enhancing
Performance	of	DTS	Packages.

4.	 Edit	the	ActiveX	script	so	that	the	return	code	matches
DTSTransformStat_UpdateQuery.

The	default	return	code	for	any	query	type	is
DTSTransformStat_InsertQuery.	However,	the	query	type	labels	are
suggestions	only.	Although	you	can	use	the	default	Insert	query	to
perform	an	Update	query,	for	readability,	you	may	want	to	change	the
return	code	to	the	appropriate	one	for	an	update.

The	ActiveX	script	contains	references	to	the	DTSDestination
columns	collection,	which	refers	to	the	binding	table	(Step	2).	The
parameters	of	the	SQL	operation	will	be	applied	to	this	table.

5.	 Create	the	Update	query.

Click	Update	from	the	Query	type	list	on	the	Queries	tab	of	the	Data
Driven	Query	Task	Properties	dialog	box.	Build	the	parameterized
query,	either	by	typing	the	query	into	the	edit	box	or	by	using	DTS
Query	Designer.	Use	a	question	mark	(?)	as	the	placeholder	for	the
parameters	that	will	be	filled	in	by	the	processed	data.

The	attributes	of	a	binding	table	column	must	match	that	of	any
parameter	it	is	assigned	to.

On	the	Queries	tab,	a	grid	displays	one	row	for	every	parameter	(?)
entered	in	the	selected	query	(Update).	By	default	these	rows	will	map
to	binding	table	columns	ordinally,	from	the	transformation	previously
defined.	For	more	information,	see	Using	Parameterized	Queries	in
DTS.



To	update	or	delete	a	destination	row	using	multiple	query	types

1.	 Define	the	source	data	and	binding	table	as	you	did	in	the	previous
example	(Steps	1	and	2).

2.	 Provide	the	decision	logic	to	apply	to	each	query	type.

Your	script,	based	on	the	conditional	logic	you	provide,	returns	one	of
four	return	codes.	The	return	code	tells	DTS	which	query	to	execute
for	the	current	source	row.	You	edit	the	default	ActiveX	script	in	the
text	box	of	the	ActiveX	Script	Transformation	Properties	dialog
box	to	include	the	logic	and	the	return	code.

The	decision	logic	you	use	to	determine	the	query	type	typically
consists	of	branching	statements	(IF-THEN-ELSE	or	CASE).

In	this	example,	the	following	two	return	codes	are	used:

DTSTransformStat_UpdateQuery

DTSTransformStat_DeleteQuery

For	more	information,	see	Using	ActiveX	Scripts	in	DTS	and	Using
Return	Codes	in	DTS.

3.	 Create	the	queries.

For	each	query,	select	a	query	type	from	the	Query	type	list	on	the
Queries	tab	of	the	Data	Driven	Query	Task	Properties	dialog	box.
Build	the	parameterized	query,	either	by	typing	the	query	into	the	text
edit	box	or	by	using	DTS	Query	Designer.

The	queries	do	not	have	to	have	the	same	number	of	parameters	or
map	to	the	same	columns	in	the	binding	table.	The	queries	and	the
mappings	are	edited	separately.

See	Also

Using	ActiveX	Scripts	in	DTS

Using	Return	Codes	in	DTS



Data	Transformation	Services

Data	Driven	Query	Example:	Changing	Customer
Accounts
The	following	example	details	an	appropriate	situation	in	which	to	use	a	Data
Driven	Query	task:	A	source	row	triggers	one	of	three	different	edits,	two	of
which	are	not	insert	operations.

You	have	an	Account	table,	with	columns	for	CustomerID	and
CompanyName.	CustomerID	serves	as	a	key:

CREATE	TABLE	Account	(
			CustomerID	nchar	(5)	NOT	NULL,
			CompanyName	nvarchar	(40)	NOT	NULL	)

Required	Account	table	changes	accumulate	in	the	AccountChange	table.	It
contains	CustomerID	and	CompanyName	columns,	as	well	as	a	ChangeCode
column:

CREATE	TABLE	AccountChange	(
			CustomerID	nchar	(5)		NOT	NULL,
			ChangeCode	nchar	(10)	NOT	NULL,
			CompanyName	nvarchar	(40)		NULL	)

Different	values	of	ChangeCode	are	used	to	request	different	Account	table
modifications.

ChangeCode Required	Action
New Add	a	new	customer	to	the	Account	table.
Change Change	the	CompanyName	for	an	existing	customer.
Delete Remove	a	customer	row	from	the	Account	table.

The	AccountChange	table	serves	as	the	source.	Each	AccountChange	row
triggers	one	of	three	actions.	These	actions	will	be	represented	by	INSERT,
UPDATE,	and	DELETE	queries.



Note		In	this	example,	all	the	changes	were	made	to	a	single	table.	However,	that
is	not	a	requirement	of	the	Data	Driven	Query	task.	It	requires	only	that	the
affected	data	all	reside	on	the	same	connection.

Specifying	Query	Statements
After	identifying	an	appropriate	problem	for	the	Data	Driven	Query	task,	you
first	specify	up	to	four	parameterized	SQL	statements	to	carry	out	required	edit
operations.

Each	action	requires	an	SQL	query	or	a	stored	procedure	invocation.	These
statements	are	parameterized	by	replacing,	with	a	question	mark,	any
expressions	that	vary	from	source	row	to	source	row.	For	example,	two	change
actions	might	trigger	the	following	commands:

UPDATE	Account	SET	CompanyName	=	'Big	Pizza'	WHERE	CustomerID	=	'MARS'
UPDATE	Account	SET	CompanyName	=	'Tasty	Gyro'	WHERE	CustomerID	=	'ZEUS'

Parameterized,	the	UPDATE	query	reads:

UPDATE	Account	SET	CompanyName	=	?	WHERE	CustomerID	=	?

At	run	time,	the	question	marks	will	be	replaced	by	values	drawn	from,	or	based
on,	source	column	data.

Stored	procedure	calls	are	parameterized	like	queries,	with	question	marks
replacing	arguments:

sp_updatebalance	?,	'Credit',	?

Parameterized	queries	for	the	new	and	delete	actions	are	as	follows:

INSERT	INTO	Account	(CustomerID,	CompanyName)	VALUES	(?,	?)
DELETE	FROM	Account	WHERE	(CustomerID	=	?)

Assigning	Query	Types	to	Statements
In	order	to	refer	to	your	SQL	statements,	you	assign	each	statement	a	name,
called	a	query	type.	A	query	type,	returned	by	your	Microsoft®	ActiveX®	script
code,	is	used	to	select	one	of	your	SQL	statements	to	execute.	Data



Transformation	Services	(DTS)	provides	the	following	four	names:

Insert

Update

Delete

User

These	query	types	should	be	viewed	only	as	unique	identifiers	assigned	to	each
statement.	It	is	in	fact	possible	to	perform	any	SQL	operation	supported	by	the
connection.	It	would	be	possible	for	example,	to	perform	four	different	updates,
four	different	inserts	or	any	mix	of	these	or	stored	procedures.

The	example	is	one	of	those	applications	in	which	the	available	query	types
match	the	parameterized	SQL	statements.	Therefore,	the	assignments	are	as
follows.

Query
type Parameterized	Query
Insert INSERT	INTO	Account	(CustomerID,	CompanyName)	VALUES	(?,	?)

UpdateUPDATE	Account	SET	CompanyName	=	?	WHERE	CustomerID	=	?

Delete DELETE	FROM	Account	WHERE	(CustomerID	=	?)

Specifying	the	Binding	Table
After	you	assign	query	types	to	your	SQL	statements,	you	need	to	specify	a
binding	table	whose	columns	match	the	parameters	in	your	parameterized	query.
This	binding	table	allows	you	to	transform	source	data	before	it	appears	in	your
SQL	statements.	For	example:



A	customer	name	can	be	uppercase	characters.

An	address	line	can	be	constructed	by	concatenating	several	fields.

City	information	can	be	looked	up,	given	a	postal	code	in	the	source
data.

The	Data	Driven	Query	task	makes	no	actual	changes	to	the	destination	unless
you	specifically	request	them	in	your	queries.

To	specify	the	binding	table,	list	all	the	parameters	required	by	your	queries.
Then,	review	your	existing	tables	to	see	if	any	contain	all	the	columns	in	your
list.	If	you	find	such	a	table,	it	can	serve	as	the	binding	table.	If	no	existing	table
contains	all	of	the	required	parameters,	create	a	new	table	that	does.

Note		The	Data	Driven	Query	task	requires	that	the	source	table	and	binding
table	use	different	connections.

For	example,	the	preceding	queries	use	two	parameters:

CustomerID

CompanyName

A	review	of	the	database	yields	two	tables	that	contain	both	columns:	Account
and	AccountChange.	Because	AccountChange	is	likely	to	serve	as	the	source,
Account	is	the	better	choice	for	the	binding	table.	No	new	table	is	necessary.

In	this	example,	the	binding	table	is	the	same	table	that	the	queries	update.	This
frequently	happens	but	is	not	required	by	the	Data	Driven	Query	task,	as	the
binding	table	exists	only	to	map	meta	data	(size,	scale,	precision,	and	nullability)
for	the	queries.	It	is	not	actually	written	to.	Only	the	query	operation	affects	the
data

Specifying	the	Source	Rowset
After	specifying	the	binding	table,	you	either	must	choose	an	existing	table	as	a
source	or	specify	a	new	source	rowset.	Each	source	row	must	contain	enough



information	to:

Determine	the	appropriate	query	to	execute.

Fill	any	parameters	required	by	the	chosen	query.

If	this	information	is	available	in	a	single	table,	it	can	serve	as	the	source.	If	not,
you	can	create	an	SQL	query	to	collect	required	information	in	a	single	source
rowset.

If	necessary,	custom	ActiveX	script	code,	perhaps	referencing	DTS	lookup
queries,	can	be	used	to	help	determine	the	proper	query	to	execute.	Source	data
can	be	copied	immediately	into	binding	column	parameters,	or	the	data	may
undergo	intermediate	processing	through	ActiveX	code	or	DTS	custom
transformations.

In	the	example,	the	AccountChange	table	will	serve	as	the	source.	It	fulfills
both	requirements:

The	ChangeCode	column	determines	the	choice	of	query.

The	CustomerID	and	CompanyName	columns	are	sufficient	to	fill	all
required	parameters.

Specifying	the	ActiveX	Transformation

To	choose	which	query	to	execute,	you	must	code	a	single	ActiveX
transformation.	This	script	returns	one	of	four	values,	which	is	then	used	to
select	the	query	to	execute.	Additionally,	you	may	choose	to	include	ActiveX
code	to	populate	destination	parameters.

The	return	values	and	their	associated	query	types	are	as	follows.

Return	value Executes	Query	Type
DTSTransformstat_InsertQuery Insert
DTSTransformstat_UpdateQuery Update
DTSTransformstat_DeleteQuery Delete
DTSTransformstat_UserQuery User



These	query	types	should	be	viewed	only	as	identifiers	for	one	of	your	queries.
You	can	assign,	for	example,	the	Insert	type	to	a	DELETE	query.	If	your	script
returns	DTSTransformstat_InsertQuery,	the	DELETE	query	will	be	triggered.

Usually	your	code	takes	the	form	of	a	nested	IF	or	SELECT	CASE	structure.	For
example,	to	choose	among	three	queries	based	on	the	value	of	ChangeCode,	use
the	following	code:

Select	Case	Trim(DTSSource("ChangeCode"))
			Case	"New"
						Main	=	DTSTransformStat_InsertQuery
			Case	"Change"
						Main	=	DTSTransformStat_UpdateQuery
			Case	"Delete"
						Main	=	DTSTransformStat_DeleteQuery
			Case	Else
						Main	=	DTSTransformStat_SkipRow
End	Select	

The	above	code	responds	to	erroneous	ChangeCode	values	by	returning
DTSTransformStat_SkipRow.	No	query	is	triggered	for	the	source	row.

You	can	use	a	Copy	Column	transformation	or	other	column-level
transformations	to	populate	binding	table	columns,	or	you	can	fill	them	through
additional	code	in	your	ActiveX	transformation:

DTSDestination("CustomerID")	=	DTSSource("CustomerID")
DTSDestination("CompanyName")	=	DTSSource("CompanyName")

You	are	not	required	to	fill	every	destination	column,	only	those	required	by	the
chosen	query.

See	Also

Lookup	Queries



DTS	Transformations

Data	Driven	Query	Task



Data	Transformation	Services

Data	Driven	Query	Example:	File	Maintenance
The	following	example	presents	a	file	maintenance	problem	and	then	examines
the	steps	necessary	to	prepare	a	Data	Driven	Query	task	solution.

For	more	information	about	the	basics	of	the	Data	Driven	Query	task,	see	Data
Driven	Query	Task.

Identifying	a	Data	Driven	Query	Problem
You	have	an	Account	table,	with	columns	for	CustomerID	and
CompanyName.	CustomerID	serves	as	a	key:

CREATE	TABLE	Account	(
			CustomerID	nchar	(5)	NOT	NULL,
			CompanyName	nvarchar	(40)	NOT	NULL	)

You	also	have	an	AccountJournal	table.	One	row	is	written	to	this	table	each
time	there	is	a	change	in	the	customer	balance:

CREATE	TABLE	AccountJournal	(
			UpdateID	int	NOT	NULL,
			CustomerID	char	(5)	NOT	NULL,
			JournalAmount	money	NOT	NULL	)

You	want	to	use	the	AccountUpdate	table	as	a	source	table:

CREATE	TABLE	AccountUpdate	(
			UpdateID	int	IDENTITY	(1,	1)	NOT	NULL,
			UpdateCode	char	(10)	NOT	NULL,
			CustomerID	char	(5)	NOT	NULL,
			CompanyName	char	(30)	NULL,
			UpdateAmount	money		NULL	)

Different	values	of	UpdateCode	are	used	to	request	different	Account	and



AccountJournal	modifications.

UpdateCodeRequired	Action
Purchase Write	a	new	AccountJournal	row	with	JournalAmount	set

equal	to	UpdateAmount.
Payment Write	a	new	AccountJournal	row	with	JournalAmount	set

equal	to	UpdateAmount	*	-1.
New If	a	customer	does	not	exist,	add	one.	If	the	customer	exists,

change	the	old	CompanyName	to	the	new	one.

A	Data	Driven	Query	task	is	appropriate	for	this	problem.	Each	entry	in	the
AccountUpdate	table	triggers	one	of	three	different	queries.

Specifying	Query	Statements
Three	parameterized	SQL	statements	are	required	to	solve	this	problem:

INSERT	AccountJournal	(UpdateID,	CustomerID,	JournalAmount)	
			VALUES	(?,	?,	?)
INSERT	INTO	Account	(CustomerID,	CompanyName)	VALUES	(?,	?)
UPDATE	Account	SET	CompanyName	=	?		WHERE	CustomerID	=	?

The	first	query	adds	a	row	to	the	AccountJournal	table	in	the	case	of	a
"Purchase"	or	a	"Payment";	the	second	query	adds	a	new	account	if	the	customer
was	not	previously	on	file;	and	the	last	updates	the	CompanyName	for	an
existing	customer.

Assigning	Query	Types	to	Statements
There	are	two	INSERT	queries	and	one	UPDATE	query.	This	means	that	query
types	are	not	going	to	match	the	actual	query	content.

Query
type Parameterized	Query
Insert INSERT	AccountJournal	(UpdateID,	CustomerID,	JournalAmount)	

			VALUES	(?,	?,	?)



UpdateUPDATE	Account	SET	CompanyName	=	?		WHERE	CustomerID	=	?

User INSERT	INTO	Account	(CustomerID,	CompanyName)	VALUES	(?,	?)

The	second	INSERT	query	is	assigned	arbitrarily	to	the	User	query	type.	The
Delete	type	would	work	just	as	well.

Specifying	the	Binding	Table
The	binding	table	provides	names	and	data	types	for	your	SQL	parameters.	Your
queries	use	the	following	parameters:

UpdateID

CustomerID

JournalAmount

CompanyName

There	is	no	table	in	your	database	that	contains	all	four	of	these	columns.
Therefore,	you	must	create	a	new	binding	table:

CREATE	TABLE	AccountDestination	(
			UpdateID	int	NOT	NULL,
			CustomerID	char	(5)	NOT	NULL,
			CompanyName	char	(30)	NULL,
			JournalAmount	money	NULL	)

No	rows	will	ever	be	written	to	this	table.	Its	only	function	is	to	provide	an
empty	row	to	serve	as	a	staging	area	for	the	SQL	statement	parameters.

Specifying	the	Source	Rowset



The	AccountUpdate	table	is	not	ready	to	serve	as	a	source	table:

An	UpdateCode	of	"New"	triggers	an	UPDATE	or	an	INSERT,
depending	on	whether	the	customer	is	on	file	or	not.	However,
customer-on-file	status	is	not	present	in	the	AccountUpdate	table.

JournalAmount,	a	binding	column,	is	not	found	in	AccountUpdate.
For	purchases,	it	is	equal	to	UpdateAmount,	but	for	payments,	it	must
be	calculated	by	multiplying	UpdateAmount	by	–1.

Incorporating	the	customer-on-file	status	into	the	source	rowset,	by	using	a
SELECT	statement,	solves	the	first	of	these	two	problems.	The	new	source	SQL
statement	initializes	OnFile	with	a	subquery:

SELECT	UpdateID,	UpdateCode,	CustomerID,	CompanyName,	UpdateAmount,	
			OnFile	=	(SELECT	COUNT(*)FROM	Account	
																WHERE	CustomerID	=	AccountUpdate.CustomerID)		
			FROM	AccountUpdate	

The	second	problem	is	solved	with	Microsoft®	ActiveX®	code.

Specifying	the	ActiveX	Transformation
In	this	example,	Data	Transformation	Services	(DTS)	transformations	perform
the	following	three	jobs:

Correctly	choose	the	query	to	execute.

Compute	the	right	value	for	JournalAmount.

Populate	the	required	binding	table	columns.

A	single	ActiveX	Script	transformation	is	sufficient	to	carry	out	these
requirements:

Function	Main()
			DTSDestination("UpdateID")	=	DTSSource("UpdateID")



			DTSDestination("CustomerID")	=	DTSSource("CustomerID")
			DTSDestination("CompanyName")	=	DTSSource("CompanyName"
			Select	Case	Trim(DTSSource("UpdateCode"))
						Case	"Purchase"
									DTSDestination("JournalAmount")	=	DTSSource("UpdateAmount
									Main	=	DTSTransformstat_InsertQuery
						Case	"Payment"
									DTSDestination("JournalAmount")	=	-1	*	DTSSource("UpdateAmount
									Main	=	DTSTransformstat_InsertQuery
						Case	"New"
									If	DTSSource("OnFile")	=	1	Then
												Main	=	DTSTransformstat_UpdateQuery
									Else
												Main	=	DTSTransformstat_UserQuery
									End	If
			End	Select						
End	Function

The	script	first	initializes	three	binding	table	columns,	and	then,	in	a	SELECT
CASE	statement,	fills	the	remaining	parameter	and	sets	the	return	value.	Both
the	"Purchase"	and	"Payment"	cases	result	in	a	newly	inserted	AccountJournal
record.	The	two	cases	differ	only	in	how	the	JournalAmount	parameter	is
calculated.	In	the	"New"	case,	the	source	OnFile	value	is	used	to	determine
whether	to	update	an	existing	customer	or	insert	a	new	customer.	Neither	of	the
two	possible	queries	requires	JournalAmount,	so	it	is	not	initialized.



Data	Transformation	Services

Multiphase	Data	Pump	Functionality
Data	Transformation	Services	(DTS)	provides	advanced	users	the	capability	to
add	programs	that	customize	the	data	pump	at	various	phases	of	its	operation.	By
customizing	the	operation	of	the	data	pump,	you	can	add	a	wide	range	of
functionality	to	a	package.	For	example:

Row-level	restartability,	or	the	ability	to	restart	the	data	pump	without
having	to	reload	large	numbers	of	rows	that	were	already	processed.
You	can	add	functions	to	save	processed	row	data,	batches,	or	partial
batches,	writing	that	data	back	to	the	source	or	a	status	table	for	later
use.

Individual	handling	of	types	of	insert	or	transformation	errors.	For
example,	you	could	add	special	error	handlers	to	customize	problems
handling	NULL	data	or	constraint	violations.

Customizing	data	pump	initialization	or	termination	steps.	For	example,
on	data	pump	initialization	you	could	write	out	a	schema	header	to	a	file
prior	to	writing	XML	(Extensible	Markup	Language)	data	to	the	file.

Data	Pump	Process

The	multiphase	data	pump	option	allows	you	to	access	the	data	pump	at	several
points	during	its	operation	and	add	functionality.	When	copying	a	row	of	data
from	source	to	a	destination,	the	data	pump	follows	this	basic	process:

Fetches	a	row	of	source	data.

Optionally	applies	transformations	to	the	row.

Attempts	to	insert	the	row	of	data	to	the	destination	buffer.



Processes	exceptions.

Stores	the	results	in	a	batch,	if	a	batch	is	specified.

Repeats	the	previous	steps	until	the	batch	is	filled,	then	commits	the
data	stored	in	the	buffer	and	starts	the	next	batch,	or	rolls	back	the
batch.

After	the	data	pump	processes	the	last	row	of	data,	the	task	is	finished	and	the
data	pump	operation	terminates.

Data	Pump	Phases
The	following	figure	shows	the	data	pump	phases	and	how	they	map	to	the	data
flow.



In	the	figure,	the	data	flow	(detailed	in	the	expanded,	gray	area	of	the	figure):

Originates	in	the	Row	Transform	phase,	where	a	row	of	data	is	copied
from	the	source	and	any	transformations	are	applied.

If	the	transformation	is	successful,	the	data	for	the	row	moves	to	the
next	phase.	If	the	transformation	is	unsuccessful,	a	Transform	Failure
occurs,	and	the	next	row	of	data	is	fetched.	

Moves	to	the	Post	Row	phase,	where	an	attempt	is	made	to	copy	the
row	to	the	destination	buffer.	There	are	two	possible	outcomes	for	this
operation:	Insert	Success	or	Insert	Failure.

Ends	in	the	Batch	Complete	phase,	where	the	row	data	is	stored	in	a
batch	and	eventually	inserted	or	not	committed,	depending	on	whether	a
batch	was	configured	for	the	task,	and	the	size	of	the	batch.

Three	additional	data	pump	phases	not	directly	tied	to	the	processing	of	row	data
are	shown	in	the	figure:	Pre	Source,	Post	Source,	and	Pump	Complete.	Each	of
these	phases	covers	events	prior	to	or	after	the	row-by-row	copying	of	data,
transformation,	and	commit	(or	rollback)	process.	For	example,	the	Pre	Source
phase	occurs	before	the	first	row	of	data	is	fetched.	The	Post	Source	phase
occurs	after	the	last	row	of	data	is	processed,	and	the	Pump	Complete	phase
occurs	at	the	end	of	the	transformation	task.

Accessing	Data	Pump	Phases
To	display	the	multiphase	data	pump	options	in	DTS	Designer,	you	must	select
an	option	in	SQL	Server	Enterprise	Manager.	After	you	have	selected	the
multiphase	data	pump	option,	the	feature	will	remain	accessible	to	any	packages
opened	in	DTS	Designer,	for	any	future	sessions.	By	default,	this	option	is	not
selected.

To	activate	the	multiphase	data	pump	feature



Data	Transformation	Services



Tasks	that	Copy	and	Manage	Data
Data	Transformation	Services	(DTS)	includes	several	tasks	designed	to	copy	and
manage	data	and	meta	data.

Task Description
Bulk	Insert	Task Copies	large	amounts	of	data	from	a	text	file

into	a	Microsoft®	SQL	Server™	table	or	view.
Execute	SQL	Task Runs	SQL	statements	during	package	execution

and	saves	data	that	is	the	result	of	a	query.
Copy	SQL	Server	Objects
Task

Copies	or	creates	SQL	Server	objects	such	as
tables,	views,	indexes,	and	constraints	from	one
instance	of	SQL	Server	to	another.

Transfer	Database
Objects	Tasks

Copies	entire	databases,	jobs,	error	messages,
logins,	and	master	database	stored	procedures.



Data	Transformation	Services

Bulk	Insert	Task
The	Bulk	Insert	task	provides	the	quickest	way	to	copy	large	amounts	of	data
into	a	Microsoft®	SQL	Server™	table	or	view.	To	ensure	high-speed	data
movement,	transformations	cannot	be	performed	on	the	data	while	it	is	moved
from	the	source	file	to	the	table	or	view.

For	example,	suppose	your	company	keeps	your	million-row	product	list	on	a
mainframe	system.	Your	e-commerce	system	uses	SQL	Server	2000	to	populate
Web	pages.	You	need	to	update	the	product	table	nightly	with	the	master	product
list	from	the	mainframe.	To	do	this,	you	save	the	product	list	in	a	tab-delimited
format	and	use	the	Bulk	Insert	task	to	copy	the	data	directly	into	the	SQL	Server
table.	The	table	is	now	refreshed	with	the	updated	product	data.

Configuring	the	Bulk	Insert	Task
The	Bulk	Insert	task	encapsulates	a	Transact-SQL	BULK	INSERT	statement	that
is	run	during	task	execution.	In	Data	Transformation	Services	(DTS)	Designer,
you	can	set	parameters	for	the	BULK	INSERT	statement	in	the	Bulk	Insert
Properties	dialog	box.	Any	BULK	INSERT	parameters	not	available
graphically	are	set	to	their	defaults.	If	you	need	to	set	parameters	that	are	not
available	graphically,	you	can	use	the	BulkInsertTask	object	or	the	bcp	utility
to	set	them	programmatically.

Using	the	Bulk	Insert	Task	with	Transactions
If	a	batch	size	is	not	set,	then	an	entire	bulk	copy	operation	is	considered	one
transaction.	If	a	batch	size	is	set,	then	each	batch	constitutes	a	transaction	that	is
committed	when	the	batch	finishes.

The	behavior	of	the	Bulk	Insert	task	depends	on	whether	the	task	is	joined	into
the	package	transaction.	If	the	Bulk	Insert	task	does	not	join	the	package
transaction,	each	error-free	batch	is	committed,	as	a	unit,	before	the	next	batch	is
attempted.	If	the	Bulk	Insert	task	joins	the	package	transaction,	error-free
batches	remain	in	the	transaction	at	the	conclusion	of	the	task.	These	batches	are
subject	to	the	commit	or	rollback	operation	of	the	step	or	package.



A	failure	in	the	Bulk	Insert	task	does	not	automatically	roll	back	successfully
loaded	batches;	task	success	does	not	automatically	commit	them.	Commit	and
rollback	operations	happen	only	in	response	to	package	and	workflow	property
settings.	For	more	information,	see	DTS	Transaction	Fundamentals.

Usage	Considerations
Before	using	the	Bulk	Insert	task,	consider	the	following:

The	Bulk	Insert	task	can	transfer	data	only	from	a	text	file	into	a	SQL
Server	table	or	view.	To	transfer	data	from	a	database	management
system	(DBMS),	you	need	to	export	the	data	from	the	source	program
to	a	data	file	and	then	import	the	data	from	the	data	file	into	a	SQL
Server	table	or	view.

The	data	destination	must	be	a	table	or	view	created	by	SQL	Server.	If
the	destination	table	or	view	contains	data	already,	the	new	data	will	be
appended	when	the	Bulk	Insert	task	runs.

You	can	use	a	format	file	in	the	Bulk	Insert	task	object.	If	you	have	a
format	file	created	by	the	bcp	utility,	you	can	specify	its	path	in	the
Bulk	Insert	task.	The	path	given	must	be	with	respect	to	the	server.	For
more	information	about	format	files,	see	Using	Format	Files.

Specifying	the	Source	and	Destination

When	specifying	the	path	of	the	text	source	file,	consider	the	following:

When	running	the	Bulk	Insert	task,	only	members	of	the	sysadmin
fixed	server	role	can	execute	the	package.

Regardless	of	the	location	of	the	file,	the	server	must	have	permissions
to	both	the	file	and	the	destination	database.

The	server	will	be	running	the	Bulk	Insert	task.	Therefore,	the	path
given	must	be	with	respect	to	the	server.

JavaScript:hhobj_1.Click()


Optimizing	Performance

To	optimize	performance,	consider	the	following:

If	the	text	file	is	located	on	the	same	computer	running	the	instance	of
SQL	Server,	the	copy	operation	occurs	at	an	even	faster	rate	because	the
data	is	not	moved	across	the	network.

The	Bulk	Insert	task	does	not	log	error-causing	rows.	If	you	need	to
capture	this	information,	another	task,	the	Transform	Data	task,	can
capture	error-causing	rows	to	an	exception	file.	However,	writing	errors
to	the	log	will	slow	down	the	data	transfer.	If	speed	is	your	priority,	use
the	Bulk	Insert	task.	If	capturing	errors	is	more	important,	use	the
Transform	Data	task.

To	add	the	Bulk	Insert	task	to	a	DTS	package



Data	Transformation	Services

Execute	SQL	Task
With	the	Execute	SQL	task,	you	can	run	SQL	statements	during	package
execution.	The	Execute	SQL	task	also	can	save	data	that	is	the	result	of	a	query.
Using	the	Execute	SQL	task,	you	can:

Populate	multiple	global	variables.

Save	the	complete	rowset	returned	from	the	query	into	one	global
variable.

Drop	a	table.

Re-create	fact	and	dimension	tables	before	loading	them.

Run	stored	procedures.

The	task	can	contain	either	a	single	SQL	statement	or	multiple	SQL	statements
that	execute	sequentially.	SQL	statements	can	range	from	being	a	SELECT
command	to	running	a	stored	procedure.

The	SQL	statements	must	be	written	in	the	dialect	of	the	source	database
management	system	(DBMS).

Sending	Multiple	Statements	in	a	Batch	for	Execution
If	multiple	statements	are	contained	in	the	task,	they	can	be	grouped	and
executed	a	batch	at	a	time.	To	signal	the	end	of	a	batch,	use	the	GO	command.
All	the	SQL	statements	from	one	GO	command	to	the	next	are	sent	in	a	batch	to
the	OLE	DB	provider	for	execution.

Note		There	are	restrictions	on	the	kinds	of	SQL	statements	that	can	be	grouped
together	in	a	batch.	For	more	information,	see	Batches.

For	example,	suppose	you	have	three	tables:	a	table	containing	customer	orders;

JavaScript:hhobj_1.Click()


a	table	containing	a	daily	order	summary;	and	a	table	of	year-to-date	orders.
After	the	customer	order	table	is	updated,	you	can	use	the	Execute	SQL	task	to
run	two	stored	procedures,	one	to	create	the	new	daily	sales	summary	and	the
other	to	update	the	year-to-date	order	summary.	The	following	code	example
shows	you	how	to	execute	the	two	stored	procedures:

Execute	sp_UpdateDailySales
GO
Execute	sp_UpdateYTDSales
GO

Running	Parameterized	Queries
The	Execute	SQL	task	can	use	global	variables	to	populate	input	parameters	in
SQL	commands,	including	queries	and	stored	procedures	when	the	source	data
provider	supports	parameters.	You	can	write	a	parameterized	query	where	the
value	in	the	SQL	statement	is	filled	in	at	run	time	by	using	a	question	mark	as	a
parameter	placeholder.	Then,	you	can	map	a	global	variable	to	the	parameter
placeholder	to	specify	which	global	variable	will	be	used	at	run	time	in	place	of
the	question	mark.

To	execute	a	stored	procedure	with	an	input	parameter



Data	Transformation	Services

Copy	SQL	Server	Objects	Task
With	the	Copy	SQL	Server	Objects	task,	you	can	copy	Microsoft®	SQL
Server™	objects	from	one	instance	of	SQL	Server	to	another.	You	can	transfer
objects	such	as	data	and	tables,	as	well	as	the	definitions	of	objects	such	as	views
and	stored	procedures.	Additional	objects	include	referential	integrity	constraints
and	indexes.

If	you	select	a	table,	the	Copy	SQL	Server	Objects	task	will	automatically	copy
any	associated	table	and	views	that	have	a	foreign	key	constraint	on	the	selected
table.	For	example,	if	you	transfer	the	employee	table	from	the	pubs	database,
the	jobs	and	publishers	tables	also	will	be	transferred.	The	jobs	table	will	be
transferred	because	of	the	foreign	key	relationship	between	the	employee	table
and	the	jobs	table	on	the	jobs_id	field.	The	publishers	table	will	be	transferred
because	of	the	foreign	key	relationship	between	the	employee	table	and	the
publishers	table	on	the	pub_id	field.

If	either	the	destination	table	or	the	view	exists	and	contains	data,	you	can
specify	whether	to	overwrite	or	append	the	incoming	data	or	drop	and	re-create
the	table.

You	can	transfer	objects	only	from:

One	instance	of	SQL	Server	version	7.0	to	another.

An	instance	of	SQL	Server	7.0	to	an	instance	of	SQL	Server	2000.

One	instance	of	SQL	Server	2000	to	another.

When	configuring	the	Copy	SQL	Server	Objects	task,	you	are	not	required	to
create	separate	source	and	destination	connections.	You	set	source	and
destination	properties	in	the	Copy	SQL	Server	Objects	properties	dialog	box.

Note		DTS	packages	containing	Copy	SQL	Server	Objects	tasks,	where	the
source	and	destination	are	both	SQL	Server	7.0	databases,	may	fail	if	the	source
server	is	upgraded	to	SQL	Server	2000	and	the	package	is	executed.	If	the	source



server	was	upgraded,	you	need	to	refresh	each	Copy	SQL	Server	Objects	task	by
opening	the	package	in	SQL	Server	2000,	opening	each	Copy	SQL	Server
Objects	task	with	the	above	configuration,	and	clicking	the	Destination	tab	and
then	clicking	OK	for	each	of	the	tasks.

To	add	a	DTS	task	to	a	DTS	package



Data	Transformation	Services

Transfer	Database	Objects	Tasks
Usually,	you	use	the	Copy	SQL	Server	Objects	task	to	copy	database	objects
from	one	database	to	another.	However,	you	can	use	Transfer	Database	Objects
tasks	to	copy	server-wide	information	not	necessarily	found	in	individual
databases.	These	tasks	cover	situations	not	addressed	by	the	Copy	SQL	Server
Objects	task.

Note		The	Transfer	Database	Objects	tasks	are	custom	tasks	used	by	the	Copy
Database	Wizard.	For	more	information,	see	Using	the	Copy	Database	Wizard.

Transfer	Database	Task
Use	this	task	to	move	or	copy	a	Microsoft®	SQL	Server™	database	from	an
instance	of	SQL	Server	version	7.0	or	SQL	Server	2000	to	an	instance	of	SQL
Server	2000.	When	configuring	this	task,	specify	each	database,	indicate
whether	each	database	is	to	be	moved	or	copied,	and	specify	the	location	of	the
resulting	data	and	log	files.

Transfer	Error	Messages	Task
Use	this	task	to	copy	user-specified	error	messages,	created	by	the
sp_addmessage	system	stored	procedure,	from	an	instance	of	SQL	Server	7.0	or
SQL	Server	2000	to	an	instance	of	SQL	Server	2000.	When	configuring	this
task,	specify	the	source	and	destination	servers	and	the	error	messages	to	be
transferred.

Transfer	Logins	Task
Use	this	task	to	copy	logins	from	an	instance	of	SQL	Server	7.0	or	SQL	Server
2000	to	an	instance	of	SQL	Server	2000.	When	configuring	this	task,	specify	the
source	and	destination	servers,	the	database	to	be	moved	or	copied,	and	the
logins	to	be	transferred.

Transfer	Jobs	Task

JavaScript:hhobj_1.Click()


Use	this	task	to	copy	jobs	from	an	instance	of	SQL	Server	7.0	or	SQL	Server
2000	to	an	instance	of	SQL	Server	2000.	When	configuring	this	task,	specify	the
source	and	destination	servers	and	the	jobs	to	be	copied.

Transfer	Master	Stored	Procedures	Task
Use	this	task	to	copy	stored	procedures	from	a	master	database	on	an	instance	of
SQL	Server	7.0	or	SQL	Server	2000	to	the	master	database	on	an	instance	of
SQL	Server	2000.	When	configuring	this	task,	specify	the	source	and	destination
servers	and	the	stored	procedures	to	be	copied.

Note		If	you	unregister	a	Transfer	Database	Objects	task	and	want	to	re-register
the	task,	do	the	following:	from	the	Task	menu,	click	Register	Custom	Task,
click	the	browse	(...)	button,	and	then	open	Cdwtasks.dll.

See	Also

Copy	SQL	Server	Objects	Task

sp_addmessage

JavaScript:hhobj_2.Click()


Data	Transformation	Services



Tasks	That	Function	as	Jobs
Data	Transformation	Services	(DTS)	includes	a	number	of	tasks	that	function	as
jobs,	performing	operations	external	to	the	packages	containing	the	tasks.

Task Description
ActiveX	Script	Task Uses	scripting	code	to	perform	functions	that

are	not	available	in	the	other	tasks	in	DTS
Designer.

Dynamic	Properties	Task Retrieves	values	from	sources	outside	a	DTS
package	at	package	run	time	and	assigns	those
values	to	selected	package	properties.

Execute	Package	Task Runs	other	DTS	packages	as	part	of	a
workflow.

Execute	Process	Task Runs	an	executable	program	or	batch	file	as
part	of	a	package.

File	Transfer	Protocol	Task Downloads	data	files	from	a	remote	server	or
an	Internet	location	as	part	of	a	package
workflow.

Message	Queue	Task Uses	Message	Queuing	to	send	and	receive
messages	between	DTS	packages.

Send	Mail	Task Sends	an	e-mail	message	as	a	task.



Data	Transformation	Services

ActiveX	Script	Task
With	the	Microsoft®	ActiveX®	Script	task,	you	can	write	code	to	perform
functions	that	are	not	available	in	the	other	tasks	in	Data	Transformation
Services	(DTS)	Designer.	For	example:

As	a	package	executes,	you	can	replace	a	two-digit	state	code	in	the
source	data	with	the	legal	abbreviation	of	the	state	in	the	destination
data.	

If	the	destination	data	is	a	table	from	which	mailing	labels	are	created,
you	can	set	the	"title"	column	to	"Mr.",	"Mrs.",	or	a	default	of	spaces.	

You	can	validate	important	columns	in	the	source	data	and	skip	records
that	contain	invalid	data	to	prevent	them	from	being	copied	to	the
destination.

For	more	information,	see	Using	ActiveX	Scripts	in	DTS.

To	execute	a	ActiveX	script,	you	must	have	the	scripting	language	library
installed	on	the	computers	that	will	be	running	the	package	(for	example,	both
the	development	and	production	computers).	The	languages	that	can	be	used	to
write	your	script	include	Microsoft	Visual	Basic®	Scripting	Edition	(VBScript)
and	Microsoft	JScript®.

IMPORTANT		An	ActiveX	script	can	affect	the	execution	speed	of	a	DTS	package
as	it	executes	on	each	row	of	the	source	data.	Therefore,	if	performance	is	a
priority,	use	scripting	carefully	when	building	a	package.	For	more	information,
see	Enhancing	Performance	of	DTS	Packages.

To	add	a	DTS	task	to	a	DTS	package



Data	Transformation	Services

Dynamic	Properties	Task
The	Dynamic	Properties	task	works	by	retrieving	values	from	sources	outside	a
Data	Transformation	Services	(DTS)	package	at	package	run	time	and	assigning
those	values	to	selected	package	properties.	Typically,	the	external	values
assigned	by	the	task	are	unknown	until	package	run	time.	Therefore,	a	package
may	need	to:

Get	data	from	a	backup	file,	where	the	file	name	changes	according	to
the	date.

Connect	to	an	available	server,	where	the	name	of	the	server	is	not
known	until	package	run	time.

Run	a	scheduled	query	on	a	set	of	data	for	a	particular	date	range.	The
package	must	update	the	date	range	for	each	execution	and	change	the
source	SQL	statement	accordingly.

Available	Source	Types

The	Dynamic	Properties	task	can	assign	external	data	or	information	to	a
package	property	from	one	of	the	following	sources:

An	initialization	(*.ini)	file,	such	as	Win.ini,	or	any	initialization	file
that	you	want	to	create.	This	selection	only	supports	property	values	a
single	line	in	length.	

A	data	file	containing	a	property	value	that	can	be	read	and	assigned.
Unlike	the	initialization	file	selection,	the	data	file	selection	supports
property	values	greater	than	one	line	in	length.

A	query.	When	you	assign	the	results	of	a	query	to	a	DTS	package
property,	the	Dynamic	Properties	task	uses	only	the	results	of	the	first



column	of	the	first	row.	For	this	reason,	consider	designing	your	queries
so	they	generate	a	single	result	(for	example,	a	COUNT,	SUM	or
SELECT	statement	for	a	particular	name).

A	DTS	package	global	variable.	For	more	information,	see	Using
Global	Variables	with	DTS	Packages.

An	environment	variable,	which	can	encompass	any	available	user	or
system	variable	(for	example,	COMPUTERNAME,	LOGONSERVER,
and	so	on).

A	constant,	commonly	used	to	assign	a	default	value	to	a	property	in	the
event	a	previous	assignment	fails.

To	add	a	DTS	task	to	a	DTS	package



Data	Transformation	Services

Execute	Package	Task
The	Execute	Package	task	extends	the	enterprise	capabilities	of	Data
Transformation	Services	(DTS)	by	letting	you	run	other	DTS	packages	as	part	of
a	workflow.	This	capability	is	useful	when:

Package	workflow	is	complex	and	can	be	broken	down	into	two	or
more	modular	packages.	For	example,	if	you	are	loading	a	star	schema,
you	can	build	a	set	of	packages	so	that	different	packages	are	associated
with	filling	each	dimension	table	and	the	fact	table.	Such	a	strategy
increases	package	readability	and	simplifies	debugging	because	the
individual	packages	are	smaller	and	each	package	workflow	is	more
focused.	It	also	provides	a	higher	level	of	security	because	authors	may
not	require	access	to	all	packages.

Units	of	work	can	be	encapsulated	into	separate	packages	and	joined	as
transactional	components	to	the	workflow	of	a	master	package.	The
master	package	runs	the	accessory	packages	and,	based	on	the	success
or	failure	of	the	accessory	packages,	either	commits	or	rolls	back	the
transaction.

Parts	of	a	package	workflow	can	be	reused	by	other	packages.	For
example,	you	can	build	a	data	extraction	module	that	can	be	called	from
different	packages.	Each	of	the	packages	calling	the	extraction	module
performs	different	data	scrubbing,	filtering,	or	aggregation	operations.

Global	Variables	and	the	Execute	Package	Task

You	can	use	the	Execute	Package	task	to	dynamically	assign	the	values	of	global
variables	from	a	parent	package	to	a	child	package.	The	child	can	process	the
global	variable	data	passed	to	it	in	any	Microsoft®	ActiveX®	script	in	its
executable	workflow.

Using	global	variables	to	pass	information	from	one	package	to	another	is	useful



when	parts	of	a	larger	workflow	are	assigned	to	different	packages.	For	example,
one	package	could	download	data	on	a	nightly	basis,	summarize	the	data,	assign
summary	data	values	to	global	variables,	and	pass	the	values	to	another	package
for	further	processing	of	the	data.

Global	variable	values	passed	to	the	child	package	are	handled	according	to	their
scope	definitions	described	in	the	child	package.	Global	variables	defined	as
static	in	the	child	package	retain	their	last	assigned	values,	and	global	variables
not	defined	as	static	return	to	their	initial	values	after	the	script	runs.

Transactions	and	the	Execute	Package	Task
Joining	Execute	Package	tasks	to	package	transactions	lets	you	join	the
execution	of	entire	packages	and	other	workflow	steps	into	units	of	work	that
can	be	committed	or	rolled	back.	Before	joining	an	Execute	Package	task	to	a
transaction,	consider	the	following:

Only	one	transaction	can	be	run	at	a	time	from	a	package.

The	Microsoft	Distributed	Transaction	Coordinator	(MS	DTC)	must	be
operational	and	running	on	the	server	in	order	for	transactions	to	work.
Also,	the	MS	DTC	client	must	be	running	on	each	computer	on	which	a
package	runs	for	transaction	joining	to	work.

The	transactional	context	within	which	an	Execute	Package	task	runs	can	range
from	the	execution	context	of	the	entire	master	package	to	specific	parts	of	the
workflow,	and	to	the	Execute	Package	task	itself,	if	the	task	is	not	joined	to	any
transactions.

When	joining	the	Execute	Package	task	to	a	transaction	in	DTS	Designer,	use:

The	Advanced	tab	in	the	DTS	Package	Properties	dialog	box	to
enable	the	use	of	transactions	in	a	package	and	set	general	transaction
characteristics,	such	as	isolation	level.

The	Options	tab	in	the	Workflow	Properties	dialog	box	to	join	the
step	associated	with	the	Execute	Package	task	to	a	transaction.	



The	Insert	Commit	Size	check	box	in	the	Advanced	tab	of	the	Data
Transformation	Properties	dialog	box		to	control	the	number	of	rows
of	data	moved	prior	to	committing	a	transaction.	This	option	is	available
only	when	the	Use	fast	load	check	box	is	selected).

CAUTION		Creating	workflows	or	ActiveX	scripts	in	which	an	Execute	Package
task	is	used	to	call	its	own	package	can	generate	a	stack	overflow	and	cause
Microsoft	Management	Console	(MMC)	to	shut	down.	Generally,	recursive
operations	are	not	recommended	with	the	Execute	Package	task.	If	you	need	to
use	the	Execute	Package	task	recursively,	make	sure	you	set	a	global	variable	in
an	ActiveX	script	to	monitor	the	nesting	depth	(for	example,	in	a	step	ActiveX
script	or	in	an	ActiveX	Script	task	that	determines	precedence),	and	terminate
the	recursion	in	the	script	code	before	a	specified	depth	is	reached.	The	global
variable	must	be	passed	to	the	subpackage	through	its	GlobalVariable
collection.

To	add	a	DTS	task	to	a	DTS	package



Data	Transformation	Services

Execute	Process	Task
With	the	Execute	Process	task,	you	can	run	an	executable	program	or	batch	file
as	part	of	a	Data	Transformation	Services	(DTS)	package.	Although	you	can	use
the	Execute	Process	task	to	open	any	standard	application	such	as	Microsoft®
Excel	or	Microsoft	Word,	more	often	you	use	it	to	run	business	applications	or
batch	files	that	work	against	a	data	source.

For	example,	you	can	use	the	Execute	Process	task	to	run	a	custom	Microsoft
Visual	Basic®	application	that	generates	a	daily	sales	total	report.	Other	steps	or
tasks	in	the	package	can	use	the	sales	total	report.	Then,	you	can	attach	the
report	to	a	Send	Mail	task	and	forward	the	report	to	a	management	distribution
list.

To	add	a	DTS	task	to	a	DTS	package



Data	Transformation	Services

File	Transfer	Protocol	Task
The	File	Transfer	Protocol	(FTP)	task	lets	you	download	data	files	from	a	remote
server	or	an	Internet	location	as	part	of	a	Data	Transformation	Services	(DTS)
package	workflow.	By	including	an	FTP	task,	your	DTS	package	can:

Copy	directories	and	data	files	from	one	server	directory	location	to
another,	before	or	after	performing	data	movement	and	transformations.

Log	in	to	a	source	FTP	location	and	copy	files	or	packages	to	a
destination	directory.	The	transformed	data	or	package	becomes
available	on	an	FTP	site	for	download	over	the	Internet,	as	part	of	the
process	of	shipping	the	information	to	a	data	warehouse.	

Schedule	the	download	of	different	files	on	a	regular	basis.	By	using	the
FTP	task	in	conjunction	with	a	Dynamic	Properties	task,	you	can
change	the	names	of	files	to	be	downloaded,	according	to	properties	you
specify	(for	example,	a	date	or	the	value	of	a	run-time	global	or
environment	variable).

Note		If	you	experience	a	problem	using	the	FTP	task,	use	ftp.exe	in	a	command
prompt	to	help	identify	the	problem,	as	both	the	FTP	task	and	ftp.exe	use	the
same	connection	method.

To	add	a	DTS	task	to	a	DTS	package



Data	Transformation	Services

Message	Queue	Task
The	Message	Queue	task	allows	you	to	use	Message	Queuing	to	send	and
receive	messages	between	Data	Transformation	Services	(DTS)	packages.	These
messages	can	take	the	form	of	simple	text,	files,	or	global	variables	and	their
values.	Messages	can	be	sent	when	the	destination	is	unavailable	or	busy,	for
example,	from	or	to	the	laptop	of	a	sales	representative.	The	Message	Queue
task	therefore	offers	you	the	ability	to	asynchronously	coordinate	operations
throughout	your	enterprise.	You	can:

Delay	task	execution	until	other	packages	have	checked	in.	For
example,	at	each	of	your	retail	sites,	after	nightly	maintenance,	a
message	queue	task	sends	a	message	to	your	corporate	computer.	A
package	running	on	this	computer	contains	message	queue	tasks,	each
waiting	for	the	message	from	one	retail	site.	When	the	message	arrives,
a	task	is	triggered	to	upload	site	data.	Only	after	all	sites	have	checked
in	does	the	package	proceed	to	compute	summary	totals.

Send	data	files	to	the	computer	responsible	for	processing	them.	For
example,	restaurant	cash	register	output	can	be	sent	in	a	data	file
message	to	the	corporate	payroll	system,	for	waiter	tip	data	extraction.

Distribute	files	throughout	your	enterprise.	For	example,	one	package
can	use	a	Message	Queue	task	to	send	a	package	file	to	another
computer.	A	package	running	on	the	destination	computer	can	then	use
a	message	queue	task	to	retrieve	and	save	the	package	locally.

Split	a	large	job	into	component	parts	and	parcel	them	out	to	several
computers,	using	string	or	global	variable	messages	to	coordinate
operations.	For	example,	you	can	send	a	global	variables	message
containing	the	name	of	a	package.	On	another	computer	a	package	uses
a	Message	Queue	task,	a	Dynamic	Properties	task,	and	an	Execute
Package	task	to	execute	the	requested	package.



Transactions	and	the	Message	Queue	Task

In	Microsoft®	SQL	Server™	2000,	a	Message	Queue	task	cannot	take	part	in
the	package	transaction.

There	are	two	types	of	message	queues:	transactional	and	non-transactional.	The
transactional	queue	gives	you	the	assurance	that	each	message	is	delivered
exactly	once.	This	feature	makes	the	transactional	queue	more	likely	to	satisfy
current	and	long-term	requirements	than	the	non-transactional	queue	when	you
use	the	Message	Queue	task.	The	transactional	status	of	a	queue	is	set	at	the	time
the	table	is	created	and	cannot	be	changed.



Data	Transformation	Services

Installing	and	Configuring	Message	Queuing
To	use	the	Message	Queue	task,	you	must:

Install	Message	Queuing	server	software	on	your	network.

Install	Message	Queuing	client	software	on	your	computer.

Configure	a	queue	for	your	messages.

Two	versions	of	Message	Queuing	are	supported:

MSMQ.	This	version	is	provided	in	the	Microsoft®	Windows	NT®	4.0
Option	Pack.

Message	Queuing	for	Windows®	2000.

You	can	install	Message	Queuing	server	software	on	a	Windows	2000
domain	controller	running	Active	Directory™,	the	directory	service
included	in	Windows	2000,	as	well	as	on	queues	on	a	local	computer.

Message	Queuing	client	software	cannot	be	installed	unless	Message
Queuing	server	software	is	installed	on	a	domain	controller	in	your
organization.	Message	Queuing	client	software	is	not	installed	as	part	of
Windows	2000	Setup.

For	more	information	about	Message	Queuing,	see	the	Windows	2000
Server	documentation.

Note		Installation	and	configuration	of	MSMQ	and	Message	Queuing	differ
significantly.



Data	Transformation	Services

Message	Types
A	Message	Queue	task	sends	and	receives	the	following	types	of	messages:

String	message

Data	file	message

Global	variables	message

String	Messages

A	string	message	contains	a	text	string.	To	send	a	string	message,	you	must
specify	the	message	text.

When	you	configure	a	Message	Queue	task	to	receive	a	string	message,	you	can
specify	filtering	criteria.	You	can	accept	any	string	message,	or	you	can	type	a
compare	string	and	proceed	only	if	a	queued	message:

Matches	the	compare	string	exactly.

Matches	the	compare	string	(ignoring	case).

Contains	the	compare	string.

Data	File	Messages

A	data	file	message	contains	a	Data	Transformation	Services	(DTS)	package	ID,
a	version	ID,	and	the	name	and	contents	of	a	data	file.	To	send	a	data	file
message,	you	must	specify	the	path	of	the	file	to	be	sent.

When	you	configure	a	Message	Queue	task	to	receive	a	data	file	message,	you
must	answer	the	following	questions:

Is	the	file	to	be	saved	under	its	original	name	or	with	a	name	you



specify?

Do	you	want	the	Message	Queue	task	to	overwrite	an	existing	file?	

Will	you	accept	files	from	any	source	or	limit	them	to	only	those	sent
from	a	particular	package	or	package	version?

Global	Variables	Messages

A	global	variables	message	contains	a	DTS	package	ID,	a	version	ID,	and	the
name,	type,	and	value	of	one	or	more	variables.	To	send	a	global	variables
message,	you	must	add	the	variables	to	your	package,	and	then	specify	them
when	you	configure	the	Message	Queue	task.

When	you	configure	a	Message	Queue	task	to	receive	a	global	variables
message,	you	can	specify	filtering	criteria.	You	can	accept	any	global	variables
message,	or	you	can	proceed	only	if	a	queued	message	comes	from	a	particular
package	or	package	version.



Data	Transformation	Services

Sending	Messages	with	the	Message	Queue	Task
Use	the	Message	Queue	task	to	place	one	or	more	messages	on	a	queue	for	later
delivery	to	DTS	packages	running	on	this	or	other	computers.

The	Message	Queue	task	will	fail	at	run	time	if:

The	queue	name	is	entered	incorrectly	or	the	named	queue	is	not	on
your	network.

A	data	file	message	references	an	unavailable	or	nonexistent	data	file.

A	message	contains	more	than	4	megabytes	(MB).

Data	files	and	variables	must	use	slightly	less	than	4	megabytes	in	order
to	accommodate	any	included	package	or	version	IDs,	file	names,	or
variable	names	and	types.

IMPORTANT		A	Message	Queue	task	is	not	allowed	to	take	part	in	the	package
transaction.	As	a	result,	your	package	will	fail	at	run	time	if,	in	the	Workflow
Properties	dialog	box	for	a	Message	Queue	task,	you	select	the	Join
transaction	if	present	check	box.

To	send	a	message	with	the	Message	Queue	Task



Data	Transformation	Services

Receiving	Messages	with	the	Message	Queue	Task
Use	the	Message	Queue	task	to	retrieve	and	process	a	single	message	after	it	has
been	delivered	to	a	queue.

When	executed,	the	Message	Queue	task	scans	the	queue	for	the	first	message
that	meets	the	specified	filter	criteria.	If	such	a	message	is	found,	the	Message
Queue	task	terminates	successfully	after	processing	the	message.	If	no	such
message	is	found,	the	task	waits	for	the	first	of	the	following	events:

An	acceptable	message	arrives.	

An	optionally	specified	timeout	interval	expires.

Package	execution	is	canceled	manually.

If	the	wait	yields	an	acceptable	message,	the	Message	Queue	task	terminates
successfully	after	processing	the	message.	If	not,	it	fails.

Messages	can	be	removed	from	the	queue	on	receipt.

IMPORTANT		If	a	message,	once	read,	is	not	removed	from	the	queue,	the	next
time	the	task	executes,	the	same	message	will	be	returned.	Any	other	acceptable
messages	on	the	queue	remain	inaccessible	until	the	first	message	is	removed.	If
you	do	not	remove	a	message	on	receipt,	then	you	must	elsewhere	create	another
Message	Queue	task	that	does.

IMPORTANT		A	Message	Queue	task	is	not	allowed	to	take	part	in	the	package
transaction.	As	a	result,	your	package	will	fail	at	run	time	if,	in	the	Workflow
Properties	dialog	box	for	a	Message	Queue	task,	you	select	the	Join
transaction	if	present	check	box.



Data	Transformation	Services

Receiving	String	Messages
Use	string	messages	to	respond	to	notifications	of	external	events.	You	can
proceed	on	receipt	of	any	string	message,	or	you	can	use	filter	criteria	to	narrow
the	range	of	acceptable	messages.

To	receive	a	string	message	with	the	Message	Queue	Task



Data	Transformation	Services

Receiving	Data	File	Messages
Use	data	file	messages	to	transfer	data	files	from	computer	to	computer.	A	data
file	message	contains	a	Data	Transformation	Services	(DTS)	package	ID,	a
version	ID,	and	the	name	and	contents	of	a	data	file.

On	receipt	of	an	acceptable	message,	the	transmitted	data	file	is	saved	and	the
Message	Queue	task	terminates	successfully.	If	no	acceptable	message	is	initially
on	the	queue,	the	Message	Queue	task	waits	until	one	arrives.	If	the	specified
timeout	interval	expires	first,	the	task	fails.

You	can	save	the	transmitted	data	file	to	a	file	or	a	directory	location.	If	the	save
path	specifies	an	existing	file,	you	need	to	overwrite	the	file	or	the	step	fails.

IMPORTANT		Any	change	in	the	package	sending	the	data	file	message	will	result
in	a	new	version	ID.	If	you	click	Filter	by	version	on	the	Message	Queue	Task
Properties	dialog	box,	messages	from	the	modified	package	are	ignored.

To	receive	a	data	file	message	with	the	Message	Queue	Task



Data	Transformation	Services

Receiving	Global	Variables	Messages
Use	global	variables	messages	to	transfer	variables	and	their	values	from	one
package	to	another.	A	global	variables	message	contains	the	name,	type,	and
value	of	zero	or	more	variables.

On	successful	receipt,	transmitted	variables,	with	their	values,	are	added	to	the
DTSGLobalVariables	collection	and	the	Message	Queue	task	terminates
successfully.	Previously	existing	variables	with	the	same	name	are	replaced.	You
can	access	newly	transmitted	variables	from	Microsoft®	Visual	Basic®
Scripting	Edition	(VBScript)	with	DTSGlobalVariables("variable	name").
If	no	acceptable	message	is	initially	on	the	queue,	the	Message	Queue	task	either
waits	until	one	arrives,	or	fails	after	the	specified	timeout	interval	has	passed.

IMPORTANT		Any	change	in	the	package	sending	the	global	variables	message
will	result	in	a	new	version	ID.	If	you	click	Filter	by	version	in	the	Message
Queue	Task	Properties	dialog	box,	messages	from	the	modified	package	are
ignored.

To	receive	a	global	variables	message	with	the	Message	Queue	task



Data	Transformation	Services

Message	Queue	Task	Examples
The	following	package	examples	illustrate	the	use	of	the	Message	Queue	task
with	each	message	type:

The	Prepare	Facts	and	Update	Warehouse	packages	use	string	messages
to	coordinate	operations	on	two	computers.

The	Add	New	Employees	package	uses	global	variable	messages	to
retrieve	new	employee	information	from	a	queue	and	save	it	in	a
database.

The	Load	Expenses	package	uses	data	file	messages	to	take	Microsoft®
Excel	worksheets	from	a	queue,	extract	expense	data,	and	save	it	in	a
database.



Data	Transformation	Services

Using	String	Messages	to	Trigger	Tasks
You	can	use	string	messages	to	trigger	a	task	on	another	computer	or	to	wait	for
a	signal	from	that	computer	before	proceeding.

For	example,	you	have	an	online	transaction	processing	system	running	on	one
computer	(OLTP).	Your	data	warehouse	resides	on	another	computer
(Warehouse).	Every	night,	shipment	facts	are	summarized	on	OLTP	and
transferred	to	Warehouse.	Before	the	transfer	can	take	place	though,	Warehouse
dimension	tables	must	be	updated.

Two	packages	are	used	to	manage	this	process:	Update	Warehouse	and	Prepare
Facts.

Update	Warehouse	runs	on	the	Warehouse	computer.	When	Update	Warehouse
starts,	the	Ask	for	Facts	task	sends	a	string	message	telling	the	OLTP	computer
to	start	summarizing	shipment	data.	While	shipment	data	is	being	summarized
on	the	OLTP	computer,	the	Update	Dimensions	task	updates	Warehouse
dimension	data.	When	this	task	is	complete,	the	Wait	for	Facts	task	waits	for	a
string	message	from	the	OLTP	computer	that	says	shipment	data	is	ready.	Only
after	this	message	is	received	does	a	Transform	Data	task	move	the	shipment
data	to	the	Warehouse	computer.

Prepare	Facts	runs	on	the	OLTP	computer.	The	Wait	For	Trigger	task	initially
waits	for	the	string	message	from	the	Ask	for	Facts	task.	On	receipt,	the
Shipment	Summary	task	prepares	the	data	for	transfer.	When	the	data	is	ready,
the	Alert	Warehouse	task	sends	the	message	which,	when	received	by	the	Wait
For	Facts	task,	tells	Update	Warehouse	to	start	the	transfer.

Ask	For	Facts	and	Wait	For	Trigger	form	a	matched	pair	of	Message	Queue
tasks.	Ask	For	Facts	sends	the	message	and	Wait	For	Trigger	receives	it.	Alert
Warehouse	and	Wait	For	Facts	form	another	such	matched	pair.	Their
configuration	differs	from	the	first	only	in	the	text	of	the	message.

Configuring	the	Ask	For	Facts	Task



Ask	For	Facts	sends	the	message	"Summarize	shipments"	to	a	queue,	where	it
can	later	be	read	by	the	Wait	For	Trigger	task.

To	configure	the	Ask	For	Facts	task



Data	Transformation	Services

Using	Global	Variable	Messages	to	Queue	Database
Updates
The	Add	New	Employees	package	uses	global	variable	messages	to	take	an
employee	ID	and	name	from	a	queue	and	add	the	employee	to	the	corporate
database.	It	continues	to	add	employees	until	the	queue	is	emptied,	at	which
point	it	stops.

Follow	these	instructions	to	create	and	run	this	package.

Creating	and	Configuring	the	Add	New	Employees	Package
The	new	package	must	be	created	and	named.	In	addition,	package	properties
must	be	set	so	that	a	single	failure	does	not	prevent	the	rest	of	the	new
employees	from	being	added.

To	create	and	configure	the	Add	New	Employees	package



Data	Transformation	Services

Using	Data	File	Messages	to	Collect	Data
The	Load	Expenses	package	uses	a	data	file	message	to	take	a	spreadsheet	from
a	queue,	extract	expense	data,	and	load	it	into	a	database.

Your	traveling	sales	force	uses	a	standard	Microsoft®	Excel	template	to	enter
expenses	on	their	laptops.	Every	week,	a	Data	Transformation	Services	(DTS)
package	on	the	laptop	sends	the	completed	worksheet	in	a	data	file	message
addressed	to	a	queue	at	corporate.	When	the	laptop	synchs	with	the	network,	the
message	is	delivered.	The	Load	Expenses	package	processes	these	messages	on
arrival.

Follow	these	steps	to	create	this	package	on	your	computer.

Creating	and	Configuring	the	Load	Expenses	Package
The	new	package	must	be	created	and	named.	In	addition,	package	properties
must	be	set	so	that	a	single	failure	does	not	shut	down	the	service.

To	create	and	configure	the	Load	Expenses	package



Data	Transformation	Services

Send	Mail	Task
With	the	Send	Mail	task,	you	can	send	an	e-mail	message	as	a	task.	For	example,
if	you	want	to	notify	a	database	administrator	about	the	success	or	failure	of	a
backup	operation,	you	can	link	a	Send	Mail	task	to	the	preceding	backup	task.
To	use	a	Send	Mail	task,	you	need	to	install	MAPI	with	a	valid	user	profile	on
the	instance	of	Microsoft®	SQL	Server™	you	are	running.

A	Send	Mail	task	can	include	attached	data	files.	You	can	point	to	a	location	for
an	attached	file	and	send	a	dynamically	updated	file,	rather	than	a	static	copy	of
the	file	fixed	when	you	create	the	task.	This	feature	is	useful	for	sending
attachments	such	as	log	files	and	exception	files.

Note		If	an	attachment	file	does	not	exist	when	the	package	is	run,	you	will
receive	the	message:	"Error	sending	mail:	Internal	MAPI	error:	the	address	book
has	no	directories	that	contain	names."	This	message	indicates	that	either	the	file
is	not	available	at	the	specified	location	or	that	access	permissions	are	not
granted	for	the	file.

To	add	a	DTS	task	to	a	DTS	package



Data	Transformation	Services



DTS	Transformations
This	section	describes	the	types	of	column-level	transformations	available	with
Data	Transformation	Services	(DTS)	and	explains	how	they	work.

Before	you	use	a	DTS	transformation,	you	need	to	know:

How	to	map	a	column	transformation.	For	more	information,	see
Mapping	Column	Transformations.

How	to	use	the	transformation	type	you	want.	For	more	information,
see	Transformation	Types.

DTS	also	allows	you	to	write	custom	transformations	written	as	COM	objects
with	DTS	Designer.	For	more	information,	see	Building	a	DTS	Custom
Transformation.

JavaScript:hhobj_1.Click()


Data	Transformation	Services



Mapping	Column	Transformations
In	Data	Transformation	Services	(DTS),	you	can	transfer	data	from	a	source
rowset	to	a	destination	table	by	using	one	of	the	available	DTS	transformation
types	or	by	supplying	a	custom	transformation.	For	some	transformation	types,
the	data	is	copied.	In	other	cases,	data	is	modified	as	transformations	are	applied
or	copied	according	to	the	rules	of	the	transformation	type.	You	can	perform	a
column	transformation	in	the	following	ways:

Graphically,	in	DTS	Designer,	with	the	Transform	Data	task	and	the
Data	Driven	Query	task.	Each	Transform	Data	task	or	Data	Driven
Query	task	you	add	to	a	package	contains	one	or	more	column
transformations.

To	configure	the	transformations,	use	the	Transformations	tab	of	the
Transform	Data	Task	Properties	and	Data	Driven	Query	Properties
dialog	boxes.	This	tab	graphically	displays	all	the	column	mappings
between	the	source	and	destination	that	are	used	in	the	task.	You	use
this	tab	as	a	starting	point	for	configuring	the	relationships	between
source	and	destination	columns	and	the	specific	transformations	to	use.

By	using	the	default	Copy	Column	transformation	or	by	writing	a
Microsoft®	ActiveX®	script	in	the	DTS	Import/Export	Wizard.	The
DTS	Import/Export	Wizard	is	limited	to	these	two	types	of
transformation.	For	more	information,	see	Using	ActiveX	Scripts	in
DTS.

To	modify	a	transformation	script	written	and	saved	to	a	package
created	in	the	DTS	Import/Export	Wizard,	you	need	to	open	the	package
in	DTS	Designer	and	edit	the	task	associated	with	the	script.

Programmatically,	using	a	Transform	Data	task,	a	Data	Driven	Query
task,	or	a	Parallel	Data	Pump	task.

For	more	information,	see	DTS	Transformations	in	Visual	Basic	and
DTS	Column	Objects	in	Visual	Basic.

Mapping	a	Transformation	in	DTS	Designer

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


You	map	a	transformation	in	DTS	Designer	to	establish	the	relationship	between
the	source	and	destination	columns.	Mapping	configurations	can	be	of	several
types:

One-to-one	mappings,	which	contain	a	single	source	column	and	a
single	destination	column.

N-to-N	mappings,	which	contain	an	equal	number	of	multiple	source
and	destination	columns.

Mappings	with	unequal	numbers	of	source	and	destination	columns.

DTS	allows	you	to	create	your	own	custom	transformations,	with	their	own
column	requirements,	by	programming	objects	that	implement	the
IDTSDataPumpTransform	interface.	The	mappings	for	these	transformations
can	fall	in	one	of	the	above	categories	or	can	have	different	requirements.

For	more	information,	see	Building	a	DTS	Custom	Transformation	and
IDTSDataPumpTransform	(DTS).

One-to-One	Column	Mappings
You	use	one-to-one	column	mappings	when	the	transformation	requires	one
source	and	one	destination	column.	By	default,	DTS	Designer	maps	each	source
and	destination	column	in	a	Transform	Data	task	in	this	configuration,
attempting	to	match	each	source	and	destination	column	by	name	(for	example,
CategoryName	in	the	source	would	be	mapped	to	CategoryName	in	the
destination,	and	so	forth).	These	are	the	types	of	transformations	you	use	with
one-to-one	column	mappings:

Copy	Column	transformation

Trim	String	transformation

Date	Time	String	transformation

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()


Middle	of	String	transformation

Read	File	transformation

ActiveX	Script	transformation

Transformations	that	use	one-to-one	column	mappings	are	displayed	with	a
single	connecting	arrow	indicating	the	flow	of	data.	The	following	diagram,
from	the	Transformations	tab	of	the	Transform	Data	Task	Properties	dialog
box,	shows	four	such	transformations	(the	bold	arrow	indicates	that	one	of	the
transformations	is	selected).

N-to-N	Column	Mappings
Transformations	using	N-to-N	column	mappings	require	a	matching	number	of
multiple	source	and	destination	columns.	You	use	this	mapping	in	situations
where	each	source	column	must	have	a	corresponding	destination	column,	and	it
is	more	efficient	to	configure	all	the	transformations	together	(as	a	single	data
pump	operation)	rather	than	as	separate	transformations	called	individually	for
each	row.	By	default,	the	Data	Driven	Query	task	uses	this	type	of	mapping
configuration.

N-to-N	column	mappings	include	the	following	types	of	transformations:

Copy	Column	transformation

Uppercase	String	transformation

Lowercase	String	transformation

ActiveX	Script	transformation

N-to-N	column	mappings	are	shown	with	a	single	arrow	connecting	an	equal
number	of	branches	at	each	end.	The	following	diagram	shows	a	mapping	for



this	transformation	that	connects	four	source	and	four	destination	columns:

If	you	edit	a	Copy	Column	transformation	so	that	the	same	source	column	is
copied	to	multiple	destination	columns,	the	mapping	will	change	to	indicate	the
data	flow,	and	the	number	of	mapping	lines	touching	the	source	and	destination
tables	will	be	unequal.	This	type	of	mapping	indicates	a	single	source	column	is
being	copied	to	multiple	destination	columns.

Note		A	single	many-to-many	Copy	Column	transformation	is	faster	then	many
one-to-one	Copy	Column	transformations.	For	more	information,	see	Enhancing
Performance	of	DTS	Packages.

Mappings	with	Unequal	Numbers	of	Source	and	Destination
Columns
A	transformation	mapping	can	include	an	unequal	number	of	source	and
destination	columns.	For	example:

More	source	columns	than	destination	columns

More	destination	columns	than	source	columns

No	source	or	destination	columns

Following	are	several	examples	of	these	types	of	mappings.

One	or	More	Source	Columns	and	No	Destination	Columns
You	can	have	an	ActiveX	Script	transformation	where	only	the	values	from	a
source	table	are	processed.	In	the	following	example,	written	in	Microsoft	Visual
Basic®	Scripting	Edition	(VBScript),	each	row	of	the	CategoryName	column
(from	the	Categories	table	of	the	Northwind	sample	database)	is	checked	for
the	presence	of	a	NULL	value	or	a	null	string.	If	neither	of	those	values	is	found
for	the	row,	a	package	global	variable	is	assigned	the	value	of	CategoryName.

Following	is	the	sample	ActiveX	transformation	script	for	this	type	of	mapping:



Function	Main()
			If	Not	IsNull	(DTSSource("CategoryName"))	Then
						If	LEN(DTSSource("CategoryName"))	>	0	Then
									DTSGlobalVariables("gv2")	=	DTSSource("CategoryName")
						End	If
			End	If
			Main	=	DTSTransformStat_OK
End	Function

Although	this	example	uses	only	one	source	column,	you	also	can	create
ActiveX	Script	transformations	using	multiple	source	columns	and	no
destination	columns.

Two	Source	Columns	and	No	Destination	Column
The	Write	File	column	transformation	is	an	example	of	a	transformation	with	a
specialized	mapping	requirement.	The	transformation	takes	data	from	one	source
column	and	writes	it	to	a	file,	the	name	of	which	it	finds	in	a	second	source
column.	As	a	result,	it	requires	two	source	columns	(one	column	containing	the
data	to	be	copied	and	a	second	column	containing	a	list	of	file	names)	and	zero
destination	columns.

In	the	following	diagram,	Write	File	column	transformations	originate	from	the
source	table	and	do	not	touch	any	destination	columns.

One	or	More	Destination	Columns	and	No	Source	Columns
You	can	have	an	ActiveX	Script	transformation	where	only	the	values	from	a
destination	table	are	processed.	In	the	example	below,	an	incrementing	counter
value	is	appended	to	the	value	of	two	global	variables,	and	the	concatenated
strings	are	assigned	to	the	CategoryName	and	Description	columns	of	the
Categories	table.

Following	is	the	sample	ActiveX	transformation	script	for	this	type	of	mapping:



Dim	N

Function	Main()

			If	IsEmpty(N)	Then
						N	=	0
			End	If

			DTSDestination("CategoryName")	=	DTSGlobalVariables("gv1")	&	(N)
			DTSDestination("Description")	=	DTSGlobalVariables("gv2")	&	(N)
			N	=	N	+	1			
Main	=	DTSTransformStat_OK

End	Function

No	Destination	Columns	and	No	Source	Columns
There	may	be	cases	where	the	ActiveX	Script	transformation	does	not	reference
any	source	or	destination	columns.	For	example,	the	script	may	only	involve	the
processing	of	global	variables	or	lookup	queries,	or	an	action	such	as	a
notification.

Following	is	an	example	of	a	simple	ActiveX	transformation	script	for	this	type
of	mapping.	In	the	following	script,	the	value	of	a	global	variable	is	incremented
for	each	row	of	data	in	the	source:

Dim	counter

Function	Main()
			Counter	=	counter	+	1
			DTSGlobalVariables("gv1").Value	=	DTSGlobalVariables("gv1")	+	1
			Main	=	DTSTransformStat_SkipInsert
End	Function



The	following	script	could	be	used	to	skip	further	inserts	after	the	required	items
have	been	loaded	in	a	transformation:

Function	Main()
			If	DTSGlobalVariables("LoadComplete").Value		=	True	Then	
						Main	=	DTSTransformStat_SkipRow
			Else
						Main	=	DTSTransformStat_OK
			End	if
End	Function

See	Also

Data	Driven	Query	Task

ParallelDataPump	Task	Object

Transform	Data	Task

Using	Global	Variables	With	DTS	Packages

JavaScript:hhobj_5.Click()


Data	Transformation	Services



Transformation	Types
This	section	describes	the	individual	column-level	transformations	available	in
Data	Transformation	Services	(DTS).

Topic Description
Copy	Column	Transformation Describes	the	transformation	used	to	copy

source	data	to	the	destination.
ActiveX	Script	Transformation Explains	how	to	use	Microsoft	ActiveX®

scripts	to	define	column-level
transformations.

Date	Time	String
Transformation

Describes	the	transformation	used	to
convert	a	source	date	into	a	new
destination	format.

Uppercase	String
Transformation

Describes	the	transformation	used	to
convert	a	string	into	uppercase	characters.

Lowercase	String
Transformation

Describes	the	transformation	used	to
convert	a	string	into	lowercase	characters.

Middle	of	String
Transformation

Describes	the	transformation	used	to
extract	a	substring	from	a	source	and
optionally	change	its	case	or	trim	white
space	before	placing	the	result	in	the
destination.

Trim	String	Transformation Describes	the	transformation	used	to
remove	leading,	trailing,	or	embedded
white	space	from	a	source	string	and	place
the	(optionally	case-shifted)	result	in	the
destination.

Read	File	Transformation Describes	the	transformation	used	to	copy
the	contents	of	a	file	specified	by	a	source
column	to	a	destination	column.

Write	File	Transformation Describes	the	transformation	that	creates	a
new	data	file	for	each	file	named	in	a
source	column	and	initializes	the	contents
of	each	file	from	data	in	a	second	source



column.



Data	Transformation	Services

Copy	Column	Transformation
A	Copy	Column	transformation	copies	data	directly	from	source	to	destination
columns,	without	Microsoft®	ActiveX®	scripts	or	any	other	transformations
applied	to	the	data.	When	copying	data	in	this	manner,	you	should	consider	the
following:

Specify	columns.	You	can	specify	a	Copy	Column	transformation	from
a	single	source	column	to	a	single	destination	column,	or	from	multiple
source	columns	to	multiple	destinations	columns.

Make	conversions.	You	can	use	transformation	flags	to	enforce	the
stringency	with	which	data	type	conversions	are	allowed.	These
transformation	flags	are	available	when	creating	or	editing	a
transformation	in	Data	Transformation	Services	(DTS)	Designer,	or
programmatically.	By	default,	DTS	allows	all	possible	conversions
between	source	and	destination	columns.

For	more	information,	see	DTSTransformFlags.

Truncation	issues.	The	copy	column	transformation	truncates	text
without	error	or	notification.	Although	you	can	set	transformation	flags
to	prevent	the	possibility	of	truncation,	there	is	no	way	to	have	the
transformation	fail	on	the	first	row	for	which	truncation	is	necessary.

Change	the	columns	in	the	copy.	When	using	the	Copy	Column
transformation	to	copy	multiple	source	and	destination	columns,	it	is
possible	to	copy	the	same	column	to	multiple	destination	columns.

See	Also

DataPumpTransformCopy	Object	(DTS)

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Data	Transformation	Services

ActiveX	Script	Transformation
You	can	use	a	Microsoft®	ActiveX®	script	to	modify	data	as	it	is	moved	from
its	source	to	its	destination.	You	can	code	a	transformation	between	one	or	more
source	and	destination	columns.

You	can	write	ActiveX	transformation	scripts	in	several	places	in	the	Data
Transformation	Services	(DTS)	user	interface.	However,	an	ActiveX	Script
transformation	applies	to	tasks	that	work	on	source	data	on	a	row-by-row	basis.
Use	it	with:

The	DTS	Import/Export	Wizard.

A	Data	Driven	Query	task.

A	Transform	Data	task.

For	these	items,	the	transformation	scripts	are	executed	for	each	row	of	data
coming	in	from	the	source.

Note		Because	ActiveX	Script	transformations	are	executed	for	each	row	of	data,
place	the	code	for	opening	and	closing	connections	in	such	a	way	that	a	new
connection	is	not	opened	and	closed	each	time	a	row	of	data	is	processed.

For	more	information	about	using	ActiveX	scripts	or	code	examples,	see	Using
ActiveX	Scripts	in	DTS.

See	Also

ActiveX	Script	Task

Transform	Data	Task

Data	Driven	Query	Task



Data	Transformation	Services

Date	Time	String	Transformation
The	Date	Time	String	transformation	converts	a	date	or	time	in	a	source	column
to	a	different	format	in	the	destination	column.

The	transformation	is	carried	out	in	two	steps:

1.	 Each	entry	is	converted	in	the	source	column	to	an	OLE	DB
DBTYPE_TIMESTAMP	data	type.	If	the	source	column	is	a	string
type,	a	source	date	format	string	guides	the	conversion.	

2.	 The	OLE	DB	DBTYPE_TIMESTAMP	data	type	is	converted	to	the
destination	column	format.	If	the	destination	column	is	a	string	type,
the	destination	date	format	string	is	used	to	format	the	resulting	text.

If	the	source	or	destination	column	is	not	a	string	type,	the	corresponding	format
string	is	ignored.

The	following	standard	date	format	strings	are	available:

dd	MMM	yy

dd	MMMM	yy	HHmm

dd	MMMM	yy	HHmmss.ff

dddd	MM/dd/yy	hh:mm	tt

dddd,	MMMM	dd,yyyy	hh:mm:ss.ffff	tt

hh:mmtt

If	yours	is	not	among	the	standard	formats,	create	your	own	date	format	string



using	any	of	the	following	tokens.

Value Token(s)
Year yyyy,	yy
Month MMMM,	MMM,	MM,	M
Day dddd,	ddd,	dd,	d
12	hour hh,	h
24	hour HH,	H
Minute mm,	m
Second ss,	s
Fraction f	(may	be	repeated)
AM/PM Tt

Additionally,	you	may	specify:

Long	and	short	names	for	months.

Long	and	short	names	for	days	of	the	week.

The	language	in	which	dates	appear.

Note		All	conversions	use	regional	settings	current	on	the	instance	of
Microsoft®	SQL	Server™	running	the	package.

If	the	formatted	result	is	too	large	to	fit	in	a	string	type	destination	column,	it	is
truncated.

The	Date	Time	String	transformation	fails	if:

The	source	or	destination	column	is	not	a	string	or	date	type.

An	invalid	date	format	string	is	specified,	for	example,	"mm/dd/mm."

A	source	string	does	not	match	the	source	date	format	string.



To	convert	the	format	of	a	Date	Time	String	transformation



Data	Transformation	Services

Lowercase	String	Transformation
The	Lowercase	String	transformation	converts	a	source	column	to	lowercase
characters	and,	if	necessary,	to	the	destination	data	type.	Both	the	source	and
destination	columns	must	be	a	string	data	type.	Multiple	source	columns	may	be
processed	in	a	single	transformation.

If	the	source	data	is	too	large	to	fit	in	the	destination	column,	it	is	truncated.	For
more	information,	see	Copy	Column	Transformation.

The	Lowercase	String	transformation	is	an	example	of	an	N-to-N	transformation
mapping.	Any	number	of	source	columns	may	be	selected,	as	long	as	each	is
provided	a	matching	destination	column.	For	more	information,	see	Mapping
Column	Transformations.

To	convert	a	string	to	lowercase	characters



Data	Transformation	Services

Uppercase	String	Transformation
The	Uppercase	String	transformation	converts	a	source	column	to	all	uppercase
characters	and,	if	necessary,	to	the	destination	data	type.	Both	the	source	and
destination	columns	must	be	a	string	data	type.	Multiple	source	columns	may	be
processed	in	a	single	transformation.

If	the	source	data	is	too	large	to	fit	in	the	destination	column,	it	is	truncated.

The	Uppercase	String	transformation	is	an	example	of	an	N-to-N	transformation
mapping.	Any	number	of	source	columns	can	be	selected,	as	long	as	each	is
matched	to	a	destination	column.	For	more	information,	see	Mapping	Column
Transformations.

To	convert	a	string	to	uppercase	characters



Data	Transformation	Services

Middle	of	String	Transformation
The	Middle	of	String	transformation	extracts	a	substring	from	the	source
column,	transforms	it,	and	copies	the	result	to	the	destination	column.

You	specify	the	substring	by	providing	a	start	position	and	a	maximum	number
of	characters	to	include.	Consider	the	following:

The	first	character	in	the	string	occupies	position	1.	

If	you	specify	no	maximum	number	of	characters,	all	characters	that
occupy	positions	greater	than	or	equal	to	the	start	position	are	included
in	the	substring.	

If	the	start	position	falls	beyond	the	end	of	the	string,	an	empty	string
results.

You	can	further	process	the	resulting	substring	by	using:

Trimming	options,	which	include	deleting	leading,	trailing,	or
embedded	white	spaces.

White	space	consists	of	the	following	characters:	tab,	line	feed,	vertical
tab,	form	feed,	carriage	return,	and	space	(0x09	–	0x0D,	0x20),	as	well
as	their	Unicode	equivalents.

Case	options,	which	include	converting	the	substring	to	either	uppercase
or	lowercase	characters.

If	the	final	result	is	too	large	to	fit	in	the	destination	column,	it	is	truncated.

The	Middle	of	String	transformation	fails	if	the	source	or	destination	columns
are	not	of	a	string	data	type.

To	perform	a	Middle	of	String	transformation



Data	Transformation	Services

Trim	String	Transformation
The	Trim	String	transformation	removes	leading,	trailing,	and	embedded	white
space	from	a	string	in	the	source	column	and	copies	the	result	to	the	destination
column.

White	space	consists	of	the	following	characters:	tab,	line	feed,	vertical	tab,	form
feed,	carriage	return,	and	space	(0x09	–	0x0D,	0x20),	as	well	as	their	Unicode
equivalents.

You	may	optionally	convert	the	trimmed	string	to	either	uppercase	or	lowercase
characters.

If	the	trimmed	source	data	is	too	large	to	fit	in	the	destination	column,	it	is
truncated.

The	Trim	String	transformation	fails	if	the	source	or	destination	columns	are	not
of	a	string	data	type.

To	perform	a	Trim	String	transformation



Data	Transformation	Services

Read	File	Transformation
The	Read	File	transformation	locates	and	opens	the	contents	of	a	file,	whose
name	is	specified	in	a	source	column,	and	copies	the	contents	into	a	destination
column.

When	you	configure	the	transformation,	you	define	the	path	containing	the	files
listed	in	the	source	column.	All	the	files	must	be	in	the	same	directory	path.

Note		The	directory	name	can	start	with	a	disk	drive	or	a	Universal	Naming
Convention	(UNC).

If	a	file	is	not	found	in	the	path,	you	can	either:

Null	the	destination	column.

Or

Fail	the	task.

A	Read	File	transformation	fails	if:

The	Error	if	file	not	found	check	box	is	selected	and	the	path	matches
no	existing	file.

The	source	column	is	not	a	string	type.

The	destination	column	is	not	a	string	or	binary	type.

The	process	does	not	have	permission	to	read	the	file.

Invalid	file	name	characters	appear	in	the	source	column.

The	read	path	specifies	a	location	in	a	nonexistent	folder.



Translating	File	Content

If	the	destination	column	is	a	string	type,	file	contents	are	interpreted	according
to	their	file	type	(for	example,	ANSI,	OEM,	or	Unicode).	Translation	is
performed	on	the	instance	of	Microsoft®	SQL	Server™	running	the	package,
using	current	code	pages.	If	the	destination	column	is	of	binary	or	image	type,	no
translation	occurs.

To	perform	a	Read	File	transformation



Data	Transformation	Services

Write	File	Transformation
The	Write	File	transformation	copies	the	contents	of	a	source	column	(data
column)	to	a	file	whose	path	is	specified	by	a	second	source	column	(file	name
column).

When	you	configure	the	transformation,	you	define	the	path	containing	the	files
listed	in	the	file	name	column.	All	the	files	must	be	in	the	same	directory	path.	If
the	file	is	not	found	in	the	path,	one	is	created	and	initialized	with	the	contents	of
the	data	column.

Note		The	directory	name	can	start	with	a	disk	drive	or	a	Universal	Naming
Convention	(UNC).

If	a	file	with	the	same	name	already	exists,	the	transformation	does	one	of	the
following:

Replaces	the	existing	file.

Appends	the	contents	of	the	data	column	to	the	existing	file.

Fails	step	execution.

Before	configuring	a	Write	File	transformation,	consider	the	following:

A	destination	connection	must	be	specified,	although	the	content	may	or
may	not	be	copied	to	a	destination.

If	the	contents	of	the	data	column	are	Null,	the	transformation	deletes
the	file	specified	by	the	save	path.	However,	if	you	select	the	Append	if
file	exists	check	box,	the	file	is	not	deleted.

The	Write	File	transformation	fails	if:

The	save	path	matches	an	existing	file	and	you	do	not	select	the
Overwrite	if	file	exists	check	box.



The	value	in	the	File	name	column	check	box	is	not	a	string	type.

The	data	column	is	not	a	string	or	binary	type.

The	process	does	not	have	permission	to	write	to	the	specified	directory
or	overwrite	an	existing	file.

The	contents	of	the	File	name	column	check	box	are	NULL	or	zero-
length.

Invalid	file	name	characters	appear	in	the	File	name	column	check	box.

The	save	path	specifies	a	location	in	a	nonexistent	folder.

To	perform	a	Write	File	transformation



Data	Transformation	Services



DTS	Connections
To	successfully	execute	Data	Transformation	Services	(DTS)	tasks	that	copy	and
transform	data,	a	DTS	package	must	establish	valid	connections	to	its	source	and
destination	data	and	to	any	additional	data	sources	(for	example,	lookup	tables).

Because	of	its	OLE	DB	architecture,	DTS	allows	connections	to	data	stored	in	a
wide	variety	of	OLE	DB-compliant	formats.	In	addition,	DTS	packages	usually
can	connect	to	data	in	custom	or	nonstandard	formats	if	OLE	DB	providers	are
available	for	those	data	sources	and	if	you	use	Microsoft®	Data	Link	files	to
configure	those	connections.

DTS	allows	the	following	varieties	of	connections:

A	data	source	connection.

These	are	connections	to:	standard	databases	such	as	Microsoft	SQL
Server™	2000,	Microsoft	Access	2000,	Oracle,	dBase,	Paradox;	OLE
DB	connections	to	ODBC	data	sources;	Microsoft	Excel	2000
spreadsheet	data;	HTML	sources;	and	other	OLE	DB	providers.

A	file	connection.

DTS	provides	additional	support	for	text	files.	When	specifying	a	text
file	connection,	you	specify	the	format	of	the	file.	For	example:

Whether	a	text	file	is	in	delimited	or	fixed	field	format.	

Whether	the	text	file	is	in	a	Unicode	or	an	ANSI	format.

The	row	delimiter	and	column	delimiter	if	the	text	file	is	in
fixed	field	format.	

The	text	qualifier.

Whether	the	first	row	contains	column	names.



A	data	link	connection.

These	are	connections	in	which	an	intermediate	file	outside	of	SQL
Server	stores	the	connection	string.

Configuring	a	Connection

When	creating	a	package	in	the	DTS	Import/Export	Wizard,	in	DTS	Designer,	or
programmatically,	you	configure	connections	by	selecting	a	connection	type
from	a	list	of	available	OLE	DB	providers.	The	properties	you	configure	for
each	connection	vary	depending	on	the	individual	provider	for	the	data	source.

You	can	configure	a	new	connection	or	use	an	existing	one.	You	can	use	the
same	connection	multiple	times	in	a	package.

Before	configuring	a	connection,	consider	the	following:

Each	connection	can	be	used	by	only	one	DTS	task	at	a	time	because
the	connections	are	single-threaded.	When	designing	a	package	that
requires	multiple	task	connections,	consider	opening	up	several
connections	and	balancing	the	load	to	improve	performance.

If	two	tasks	use	the	same	connection,	they	are	compelled	to	execute
serially,	rather	than	in	parallel.	If	two	tasks	use	different	connections,
they	may	execute	in	parallel.	If	two	tasks	use	separate	connections	that
refer	to	the	same	instance	of	SQL	Server,	they	will	execute	in	parallel.	If
both	of	these	tasks	have	joined	the	package	transaction,	the	package
fails.

For	more	information,	see	DTS	Transaction	Fundamentals.

If	you	plan	to	run	a	package	on	different	servers,	you	may	need	to	edit
the	direct	connections	made	in	a	package	(for	example,	if	the	original
data	sources	will	be	unavailable,	or	you	will	be	connecting	to	different
data	sources).	To	simplify	editing,	consider	using	a	data	link	file,	where
the	connection	string	is	saved	in	a	separate	text	file.	Alternately,
consider	using	the	Dynamic	Properties	task	to	change	the	connection
information	at	run	time.



When	scheduling	a	package,	consider	the	security	information	you	have
provided.	If	you	used	Windows	Authentication	when	configuring	a
connection,	the	SQL	Server	Agent	authorization	information	is	used	to
make	the	connection	rather	than	the	account	information	you	used	when
designing	the	package.	For	more	information,	see	Handling	Package
Security	in	DTS.

To	create	a	connection



Data	Transformation	Services



Data	Link	Connection
In	Microsoft®	SQL	Server™	2000,	Data	Transformation	Services	(DTS)
packages	can	use	Microsoft	Data	Link	(.udl)	files	to	create	OLE	DB	connections
and	resolve	the	connections	at	run	time.	This	feature	lets	you	encapsulate	the
connection	properties	from	a	DTS	package	into	a	separate	file.	In	situations
where	connection	information	such	as	the	server	name,	login,	or	even	the	OLE
DB	provider	may	change,	you	can	edit	the	connection	string	in	a	data	link	file
instead	of	the	connection	properties	in	a	DTS	package.

In	Microsoft	SQL	Server	version	7.0,	you	can	use	a	data	link	file,	but	the
connections	are	not	resolved	at	run	time	and	can	be	modified	only	by	editing	the
DTS	package.	This	choice	is	useful	in	situations	where	an	OLE	DB	provider	has
special	connection	requirements	that	can	be	addressed	only	through	the	data	link
dialog	boxes.

If	you	are	specifying	a	data	link	connection,	you	first	must	specify	whether	to
load	an	existing	data	link	file	or	create	a	data	link	to	save	with	DTS	Designer.

If	you	want	to	use	a	data	link	file	rather	than	saving	the	data	link	with	DTS
Designer,	you	can	create	one	either	from	Windows	Explorer	or	during	the	data
link	configuration	process	in	DTS	Designer.

To	create	a	data	link	file	with	run-time	resolution



Data	Transformation	Services



DTS	Package	Workflow
Data	Transformation	Services	(DTS)	steps	and	precedence	constraints	order
work	items	in	a	DTS	package.	You	can	design	DTS	package	workflow
graphically,	through	DTS	Designer,	or	programmatically.	For	more	information,
see	Creating	DTS	Package	Workflow	and	Tasks.

You	also	can	use	a	Microsoft®	ActiveX®	script	to	customize	step	execution.	For
more	information,	see	Using	ActiveX	Scripts	in	a	DTS	Workflow.

DTS	Package	Steps
Steps	control	the	order	in	which	tasks	are	executed	in	a	DTS	package.	Steps
represent	the	execution	units	in	the	DTS	object	model,	and	they	define	which
tasks	execute	in	what	sequence	when	the	package	is	run.

In	DTS	Designer,	you	do	not	manipulate	steps	directly.	Instead,	you	manipulate
tasks	on	the	DTS	Designer	design	sheet	and	use	precedence	constraints	to
control	the	sequence	in	which	the	tasks	execute.	When	you	place	a	task	on	the
design	sheet,	a	step	is	automatically	added	to	the	package,	for	a	step	references	a
task.

When	creating	a	package	programmatically,	you	can	control	the	relationship
between	a	step	and	a	task	more	precisely.	You	can	create	multiple	steps	for
different	package	operations	and	associate	the	execution	of	those	steps	with	a
single	task.	For	example,	suppose	you	write	a	package	in	Microsoft	Visual
Basic®	and	specify	in	several	parts	of	the	package	that	errors	can	be	generated.
By	linking	the	steps	associated	with	those	errors,	you	can	make	the	different
types	of	errors	execute	the	same	Send	Mail	task.	That	Send	Mail	task	can	send
an	e-mail	notifying	the	database	administrator	(DBA)	that	the	package	failed.

DTS	Designer	allows	you	to	execute	an	individual	package	step.	This	action	is
useful	for	testing	and	troubleshooting	individual	steps	without	having	to	run	the
entire	package.

To	execute	a	single	package	step	in	DTS	Designer

JavaScript:hhobj_1.Click()


Data	Transformation	Services



Using	ActiveX	Scripts	in	a	DTS	Workflow
You	can	use	Microsoft®	ActiveX®	scripts	to	customize	the	execution	of	steps	in
a	Data	Transformation	Services	(DTS)	package.	Because	the	code	is	run	before
the	steps	executes,	you	can	use	an	ActiveX	script	in	a	workflow	to:

Restart	a	workflow.

Turn	off	a	step	under	certain	conditions.	

Initiate	retries	of	connections	and	other	operations.

Implement	loop	conditions.

You	can	also	use	a	step	ActiveX	script	to	initialize	or	reference	global	variables.
For	more	information,	see	Using	Global	Variables	with	DTS	Packages.

To	add	ActiveX	workflow	scripts	in	DTS	Designer



Data	Transformation	Services



Managing	a	DTS	Package
You	can	manage	Data	Transformation	Services	(DTS)	packages	from	SQL
Server	Enterprise	Manager	and	from	within	DTS	tools.	The	following	topics
describe	the	various	aspects	of	package	management.

Topic Description
Creating	a	DTS	Package Explains	different	ways	to	create	a	DTS

package.
Editing	a	DTS	Package Describes	how	to	modify	an	existing	package.
Deleting	a	DTS	Package Describes	different	ways	to	delete	a	package

and	package	versions.
Executing	a	DTS	Package Explains	different	ways	to	run	a	package.
Saving	a	DTS	Package Describes	the	different	formats	in	which	you

can	save	a	package.
Using	DTS	Package	Logs Describes	the	information	contained	in	a

package	log.
Managing	DTS	Package
Properties

Describes	different	ways	to	view,	configure,	and
edit	package	properties.

Handling	Package
Security	in	DTS

Discusses	security	issues	surrounding	packages
and	ways	to	increase	package	security.

You	also	can	save	and	execute	packages	programmatically.	For	more
information,	see	Managing	DTS	Package	Programs	in	Visual	Basic.

JavaScript:hhobj_1.Click()


Data	Transformation	Services



Creating	a	DTS	Package
You	create	Data	Transformation	Services	(DTS)	packages	either	by	using	tools
provided	with	Microsoft®	SQL	Server™	2000	or	by	programming	the	DTS
object	model.

Package
Construction
Method Description Recommended	Usage
DTS
Import/Export
Wizard

An	easy-to-use	tool	that
guides	you,	a	step	at	a
time,	through	the	process
of	creating	a	DTS	package.

For	simple	data
transformation	or	data
movement	solutions	(for
example,	importing	tabular
data	into	a	SQL	Server	2000
database).

DTS	Designer An	application	that	uses
graphical	objects	to	help
you	build	packages
containing	complex
workflows.

DTS	Designer	includes	a
set	of	model	DTS	Package
Templates,	each	designed
for	a	specific	solution	that
you	can	copy	and
customize	for	your	own
installation.

For	sophisticated	data
transformation	solutions
requiring	multiple
connections,	complex
workflows,	and	event-driven
logic.

DTS	package	templates	are
geared	toward	new	users	who
are	learning	about	DTS
Designer	or	more
experienced	users	who	want
assistance	setting	up	specific
DTS	functionalities	(for
example,	data	driven
queries).

Programming
DTS
Applications

Programming	applications
that	you	can	use	to	write
and	compile	a	DTS
package	either	in	Microsoft

For	developers	who	want	to
access	the	DTS	object	model
directly	and	exert	a	fine
degree	of	control	over

JavaScript:hhobj_1.Click()


Visual	Basic®	or	Microsoft
Visual	C++®.

package	operations.

Packages	created
programmatically	can	be
opened	and	further
customized	in	DTS	Designer.
In	addition,	packages	created
in	the	DTS	Import/Export
Wizard	or	DTS	Designer	can
be	saved	as	a	Visual	Basic
program	and	then	opened	and
further	customized	in	a
development	environment
such	as	Microsoft	Visual
Studio®.

DTS	packages	created	on	an	instance	of	SQL	Server	2000	cannot	be	loaded	or
run	on	an	instance	of	SQL	Server	version	7.0	or	earlier.	For	more	information,
see	SQL	Server	Backward	Compatibility	Details.

To	create	a	DTS	package	using	the	DTS	Import/Export	Wizard

JavaScript:hhobj_2.Click()


Data	Transformation	Services



Editing	a	DTS	Package
When	you	edit	a	Data	Transformation	Services	(DTS)	package,	you	modify	or
further	customize	a	previously	saved	package.	For	example,	you	can	create	a
package	that	copies	data	from	an	Oracle	server	to	an	instance	of	Microsoft®
SQL	Server™	2000,	and	later	you	can	add	a	task	that	sends	an	e-mail
notification	when	the	copy	operation	completes.

You	edit	a	package	by:

Using	DTS	Designer.

Note		You	cannot	use	the	DTS	Import/Export	Wizard	to	edit	a	package.

Using	the	Microsoft	Visual	Basic®	development	environment,	if	a
package	has	been	created	with	DTS	Designer	or	the	DTS	Import/Export
Wizard	and	saved	as	a	Visual	Basic	file.	

Using	the	Microsoft	Visual	Studio®	development	environment,	if	a
package	has	been	created	in	Microsoft	Visual	Basic	or	Microsoft	Visual
C++®	modules	and	saved	as	a	Visual	Basic	or	Visual	C++	project.	In
most	cases,	you	can	open	these	types	of	packages	for	editing	in	DTS
Designer	after	saving	them.

To	edit	a	package,	you	must	have	authorization	to	open	the	package.	If	a	package
is	saved	with	an	owner	password	and	you	do	not	have	access	to	that	password,
you	cannot	edit	the	package.	If	a	user	password	is	set,	and	you	have	access	to
that	password,	you	can	execute	but	not	edit	the	package.

You	cannot	set	DTS	package	password	protection	if	you	save	a	package	to	SQL
Server	2000	Meta	Data	Services.	In	that	case,	you	need	to	handle	security
through	Windows	Authentication	or	SQL	Server	Authentication.	For	more
information,	see	Handling	Package	Security	in	DTS.

To	edit	a	DTS	package	saved	to	a	structured	storage	file



Data	Transformation	Services



Deleting	a	DTS	Package
You	can	delete	any	Data	Transformation	Services	(DTS)	package.	The	method
you	use	depends	on	the	format	in	which	you	saved	the	package.	For	example:

If	the	package	was	saved	to	Microsoft®	SQL	Server™	or	SQL	Server
2000	Meta	Data	Services,	delete	the	package	through	SQL	Server
Enterprise	Manager.	

You	can	only	delete	a	package	saved	to	SQL	Server	or	Meta	Data
Services	if	you	are	the	package	creator	or	a	member	of	the	sysadmin
fixed	server	role.	If	the	package	was	saved	to	a	structured	storage	file	or
to	a	Microsoft	Visual	Basic®	file,	delete	the	package	through	a	file
manager.

Deleting	Package	Versions

To	delete	package	versions,	you	need	to	consider	the	format	in	which	you	saved
the	package.	For	example:

If	you	save	a	package	to	SQL	Server,	you	can	delete	any	package
version.

If	you	save	a	package	to	Meta	Data	Services,	you	can	delete	only	the
most	recent	package	version.

If	you	save	a	package	to	a	structured	storage	file,	you	must	delete	the
entire	file.	You	cannot	delete	individual	packages	or	package	versions
saved	to	the	file.

Packages	saved	to	a	Visual	Basic	file	do	not	contain	version	information.

To	delete	a	DTS	package



Data	Transformation	Services



Executing	a	DTS	Package
When	you	run	a	Data	Transformation	Services	(DTS)	package,	all	of	its
connections,	tasks,	transformations,	and	scripting	code	are	executed	in	the
sequence	described	by	the	package	workflow.

You	can	execute	a	package	from:

Within	a	DTS	tool.	

SQL	Server	Enterprise	Manager.	

Package	execution	utilities.

Executing	a	Package	from	a	DTS	Tool

You	can	execute	a	package	in	DTS	Designer	after	creating	or	editing	a	package
or	in	the	DTS	Import/Export	Wizard	after	creating	a	package.

When	you	run	a	package	in	DTS	Designer	or	the	DTS	Import/Export	Wizard,	a
summary	status	of	the	execution	progress	and	execution	status	of	all	the	steps	in
the	package	is	displayed.	You	can	check	the	status	of	each	step	and	gather
information	on	steps	that	failed	to	execute	successfully.

Note		You	also	can	view	the	status	of	step	execution	when	you	use	the	DTS	Run
utility.

To	execute	a	DTS	package	from	DTS	Designer



Data	Transformation	Services



Scheduling	a	DTS	Package	for	Execution
You	can	schedule	a	saved	Data	Transformation	Services	(DTS)	package	to
execute	at	specific	times,	either	once	or	at	recurring	intervals.	For	example:

Daily	at	12:00	midnight.	

Weekly	on	Sunday	at	6:00	A.M.	

The	first	or	last	day	of	the	month.

A	scheduled	DTS	package	is	executed	by	SQL	Server	Agent	as	a	job.	Because
SQL	Server	Agent	controls	the	underlying	automation	for	scheduling,	it	must	be
running	for	any	scheduled	packages	to	execute.	To	schedule	a	DTS	package	for
execution,	do	one	of	the	following:

In	SQL	Server	Enterprise	Manager,	right-click	a	DTS	package,	and	then
click	Schedule	package.

This	option	is	the	easiest	way	to	schedule	packages	created	in	the	DTS
Designer	for	execution.	However,	the	package	needs	to	have	been	saved
to	either	the	Microsoft®	SQL	Server™	msdb	database	or	SQL	Server
2000	Meta	Data	Services	and	needs	to	exist	on	the	local	server.

To	schedule	a	DTS	package	using	the	Schedule	Package	option



Data	Transformation	Services



Saving	a	DTS	Package
When	you	save	a	Data	Transformation	Services	(DTS)	package,	you	save	all
DTS	connections,	DTS	tasks,	DTS	transformations,	and	workflow	steps	and
preserve	the	graphical	layout	of	these	objects	on	the	DTS	Designer	design	sheet.

You	can	save	a	package	to:

Microsoft®	SQL	Server™.

With	this	default	save	option,	you	can	store	a	package	as	a	SQL	Server
msdb	table,	allowing	you	to:	store	packages	on	any	instances	of	SQL
Server	on	your	network;	keep	a	convenient	inventory	of	saved	packages
in	SQL	Server	Enterprise	Manager;	and	create,	delete,	and	branch
multiple	package	versions	during	the	package	development	process.

To	save	a	DTS	package	to	SQL	Server



Data	Transformation	Services



Saving	a	DTS	Package	to	SQL	Server
Save	your	Data	Transformation	Services	(DTS)	package	to	Microsoft®	SQL
Server™	if	you	want	to	store	packages	on	any	instance	of	SQL	Server	on	your
network,	keep	a	convenient	inventory	of	those	packages,	and	add	and	delete
package	versions	during	the	package	development	process.	This	option	saves	a
DTS	package	in	the	sysdtspackages	table	in	the	SQL	Server	msdb	database	as
BLOB	(binary	large	object)	data.

You	can	save	and	delete	versions	of	a	SQL	Server	package.	If	a	package	has
multiple	versions,	you	can	display	a	version	history	in	SQL	Server	Enterprise
Manager	and	open	the	version	you	want.	Otherwise,	the	latest	package	version	is
opened.

To	save	a	DTS	package	to	SQL	Server



Data	Transformation	Services



Saving	a	DTS	Package	to	Meta	Data	Services
Save	your	Data	Transformation	Services	(DTS)	package	to	Microsoft®	SQL
Server™	2000	Meta	Data	Services	if	you	plan	to	track	package	version,	meta
data,	and	data	lineage	information.

You	can	save	versions	of	a	package	to	Meta	Data	Services.	If	a	package	has
multiple	versions,	you	can	display	a	version	history	in	SQL	Server	Enterprise
Manager	and	open	the	version	you	want.	Otherwise,	the	latest	package	version	is
opened.	You	can	also	view	version	information	for	packages	saved	to	Meta	Data
Services	with	Meta	Data	Services	viewing	tools	supplied	with	SQL	Server
Enterprise	Manager.

When	you	save	a	package	to	Meta	Data	Services,	the	DTS	package	protection
options	are	not	available.	If	package	security	is	important,	consider	saving	the
package	to	SQL	Server	or	as	a	structured	storage	file	instead.

If	you	create	a	package	outside	of	DTS	Designer	(for	example,	in	Microsoft
Visual	Basic®),	you	can	specify	the	repository	database	to	which	you	want	to
save	the	package	data	(for	example,	Microsoft	Access).

Versioning
DTS	Designer	maintains	version	information	about	each	saved	package,	and	this
information	can	be	stored	in	Meta	Data	Services.	Version	information	for	each
package	includes:

A	package	GUID,	a	globally	unique	identifier	(GUID)	that	identifies	the
package.

A	version	GUID,	a	GUID	that	identifies	the	package	version.

When	a	package	is	first	created,	the	package	GUID	and	version	GUID	are	the
same,	and	there	is	only	one	version.	If	changes	made	to	a	package	are	saved,	the
package	is	versioned,	and	the	new	version	is	assigned	a	different	version	GUID
than	that	of	the	previously	saved	version.	Rather	than	the	last	version
overwriting	the	previous	one	(as	in	a	typical	save	operation),	each	package



version	is	preserved.

When	you	save	a	package	to	Meta	Data	Services,	version	information	can	be
linked	to	saved	meta	data	by	using	the	scanning	options.	In	addition,	data	lineage
information	can	be	saved	for	a	package.	These	features	let	you	track:

Changes	to	the	package	meta	data,	such	as	changes	to	table	columns
and	keys	(displayed	in	the	Meta	Data	Browser	in	SQL	Server
Enterprise	Manager)	across	package	versions.

Which	package	version	produced	a	particular	set	of	transformations.	To
do	this,	use	the	data	lineage	lookup	feature	in	SQL	Server	Enterprise
Manager.

To	save	a	DTS	package	to	Meta	Data	Services



Data	Transformation	Services



Saving	a	DTS	Package	to	a	Structured	Storage	File
Save	a	Data	Transformation	Services	(DTS)	package	to	a	structured	storage	file
if	you	want	to	copy,	move,	and	send	a	package	across	the	network	without
having	to	store	the	package	in	a	Microsoft®	SQL	Server™	database.

With	the	structured	storage	format,	you	can	maintain	multiple	packages	and
multiple	package	versions	in	a	single	file.	If	you	want	to	save	multiple	packages
to	the	same	structured	storage	file,	use	different	package	names	but	the	same	file
name	when	saving.	However,	every	package	and	package	version	you	save
under	the	structured	storage	file	name	persists	for	the	lifetime	of	that	file.
Although	you	can	edit	individual	packages	or	package	versions	saved	to	a
structured	storage	file,	you	cannot	delete	them.	Therefore,	you	need	to	manage
package	versions	differently	when	saving	to	structured	storage	files	than	when
saving	to	SQL	Server.

When	saving	a	package	to	SQL	Server,	you	can	delete	any	package	version	you
want.	With	a	structured	storage	file,	you	can	delete	only	the	entire	file.	If	you
want	to	retain	or	branch	a	specific	package	version	saved	in	a	structured	storage
file,	save	the	package	version	under	a	new	file	name.	It	is	recommended	that	you
do	this	infrequently,	because	saving	multiple	packages	with	multiple	versions
can	generate	a	sizeable	number	of	large	files.

Note		When	you	save	a	DTS	package	to	a	structured	storage	file,	you	create	a
file	with	the	extension	.dts.

To	save	a	DTS	package	to	a	structured	storage	file



Data	Transformation	Services



Saving	a	DTS	Package	to	a	Visual	Basic	File
You	can	save	a	Data	Transformation	Services	(DTS)	package	that	has	been
created	by	DTS	Designer	or	the	DTS	Import/Export	Wizard	to	a	Microsoft®
Visual	Basic®	file.	Packages	saved	in	this	way	can	be	incorporated	into	Visual
Basic	programs	or	can	be	used	as	prototypes	by	Visual	Basic	developers	who
need	to	reference	the	components	of	the	DTS	object	model.

To	save	a	DTS	package	to	a	Visual	Basic	file



Data	Transformation	Services



Using	DTS	Package	Logs
Use	the	Data	Transformation	Services	(DTS)	package	log	to	troubleshoot
problems	that	occurred	during	the	execution	of	a	DTS	package.	The	DTS
package	log,	unlike	the	Microsoft®	SQL	Server™	error	log	and	the	DTS
exception	log,	contains	information	about	the	success	or	failure	of	each	step	in	a
package	and	can	help	determine	the	step	at	which	a	package	failure	occurred.
Each	time	a	package	executes,	execution	information	is	appended	to	the	package
log,	which	is	stored	in	msdb	tables	in	SQL	Server	or	in	SQL	Server	Meta	Data
Services.	You	can	save	package	logs	on	any	server	running	an	instance	of	SQL
Server	2000.	If	a	package	log	does	not	exist,	the	log	will	be	created	when	a
package	is	run.

An	executing	package	writes	information	to	the	package	log	about	all	steps	in
the	package,	whether	or	not	an	individual	step	runs.	If	a	step	runs,	it	will	retain
start	and	end	times,	and	the	step	execution	time.	For	steps	that	do	not	run,	the	log
lists	the	steps	and	notes	that	the	step	was	not	executed.

Package	logging	is	only	available	on	servers	running	an	instance	of	SQL	Server
2000.

Along	with	DTS	package	logs,	DTS	exception	files	provide	helpful
troubleshooting	information.	The	Data	Driven	Query	task	and	Transform	Data
task	use	exception	files	to	save	error	information	about	rows	of	data	that	were
not	copied	to	the	destination	and	to	store	the	actual	source	and	destination	rows
that	failed.	For	more	information,	see	Tasks	That	Transform	Data.

To	view	DTS	package	logs



Data	Transformation	Services



Managing	DTS	Package	Properties
In	Data	Transformation	Services	(DTS),	you	can	retrieve	or	set	package
properties	graphically,	with	DTS	Designer,	or	programmatically.	For	more
information	on	managing	package	properties	programmatically,	see	Creating
DTS	Packages	with	the	DTS	Object	Model.

With	DTS	Designer,	you	can	view	or	monitor	properties	associated	with:

Package	identification.

Errors.

Microsoft	Windows®	events.

Global	variables.

Transactions.

To	view	or	modify	DTS	package	properties

JavaScript:hhobj_1.Click()


Data	Transformation	Services



Viewing	and	Modifying	DTS	Package	Properties
In	Data	Transformation	Services	(DTS)	Designer,	you	can	view	or	modify
properties	associated	with:

Package	identification.

Most	of	these	properties	are	read-only.	The	information	includes
package	name,	package	and	version	globally	unique	identifiers	(GUID),
creator	name,	creation	date,	computer	name,	and	a	text	description	for
the	package.

Error	information.

You	can	specify	information	about	the	log	file,	which	contains	package
run-time	errors.	You	also	can	specify	whether	package	execution	is
terminated	after	the	first	error,	which	reflects	a	step	failure.

Microsoft®	Windows®	events.

You	can	specify	whether	the	package	execution	status	is	written	to	the
Windows	event	log.	You	also	can	define	the	process	priority	for
Windows	events	and	the	maximum	number	of	tasks	that	can	execute
concurrently	with	the	package.

Package	global	variables.

You	can	view	information	about	global	variables,	which	can	be
referenced	by	any	Microsoft	ActiveX®	script	in	the	package.	You	can
create	new	global	variables	or	edit	existing	global	variables.

Data	lineage.

You	can	track	the	source	of	any	piece	of	data	and	the	transformations
applied	to	that	data	when	saving	it	to	Microsoft	SQL	Server™	2000
Meta	Data	Services.

Meta	Data	Services	scanning.

You	can	relate	objects	referenced	by	the	DTS	package	to	catalog	meta
data	in	Meta	Data	Services.



Transactions.

You	can	assign	steps	in	a	workflow	to	a	transaction,	and	commit	and
roll	back	individual	steps	based	on	the	success	or	failure	of	the
transactional	unit.	For	transactions	to	work,	the	Microsoft	Distributed
Transaction	Coordinator	(MS	DTC)	must	be	running	on	the	computer
executing	the	package.

To	view	or	modify	DTS	package	properties



Data	Transformation	Services



Editing	DTS	Package	Properties	with	Disconnected
Edit
Data	Transformation	Services	(DTS)	Designer	includes	a	Disconnected	Edit
feature	that	allows	you	to	view	or	modify	the	value	of	any	property	associated
with	a	package.	For	example:

General	package	properties	(for	example,	package	name,	description,
creator	name,	package	priority	class).

Connection	properties	(for	example,	server	name,	user	name,	and
password).

Task	properties	(for	example,	custom	tasks,	tasks	that	transform	data,
and	data	driven	queries).

Step	properties,	including	precedence	constraints.

Global	variables.

Use	the	Disconnected	Edit	feature	to:

Modify	a	package	when	the	source	or	destination	connection	is
unavailable.	Usually,	when	you	build	a	DTS	package,	connectivity	is
required	as	a	precaution	against	setting	properties	or	including
components	that	do	not	work.	Disconnected	Edit	allows	you	to	edit	a
package	without	establishing	a	live	connection.	For	example,	you	can
modify	a	package	created	on	a	test	system	so	that	it	works	on	a
production	system	at	a	different	site.	You	can	use	Disconnected	Edit	to
change	the	connection	properties	of	the	source	and	destination	to	those
of	the	production	system,	without	having	to	actually	connect	to	the
production	system.



View	and	modify	properties	that	are	not	exposed	through	the	DTS
Designer	user	interface,	such	as	task	names,	step	names,	and	connection
names.

When	changing	a	task	name	with	Disconnected	Edit,	change	the
TaskName	property	of	the	step	associated	with	the	task.

CAUTION		Because	Disconnected	Edit	does	not	validate	changes	to	property
values,	entering	invalid	data	can	result	in	package	failure	and	unwanted	effects
on	your	system.	Disconnected	Edit	is	similar	to	Registry	Editor.	Both	are
powerful	tools	for	editing	properties	directly,	and	it	is	recommended	that	both	be
used	only	by	advanced	users	when	there	are	no	alternative	methods	of	modifying
values.

To	use	Disconnected	Edit	to	modify	DTS	package	properties



Data	Transformation	Services



Handling	Package	Security	in	DTS
To	view,	edit,	protect,	schedule,	and	run	Data	Transformation	Services	(DTS)
packages	on	your	network,	you	need	to	understand	issues	that	affect	package
access,	permissions,	and	connections.

DTS	Package	Passwords
When	you	save	a	package	to	Microsoft®	SQL	Server™	or	as	a	structured
storage	file,	you	can	use	DTS	package	passwords.	You	use	DTS	passwords	in
addition	to	the	Windows	Authentication	or	SQL	Server	Authentication
passwords	you	use	to	connect	to	an	instance	of	SQL	Server.	The	following	types
of	DTS	package	passwords	are	available:

If	you	set	an	owner	password,	the	package	user	needs	the	password	to
edit	or	run	the	package.

If	you	set	a	user	password,	you	also	must	set	an	owner	password.
Package	users	with	access	only	to	the	user	password	can	run	the
package.	However,	they	can	neither	open	nor	edit	the	package	unless
they	have	access	to	the	owner	password.

It	is	strongly	recommended	you	use	DTS	package	passwords	for	all	packages	to
ensure	both	package	and	database	security.	At	a	minimum,	always	use	DTS
package	passwords	when	connection	information	to	a	data	source	is	saved	and
Windows	Authentication	is	not	used.

To	set	a	DTS	package	password



Data	Transformation	Services



Adding	Functionality	to	a	DTS	Package
Microsoft®	SQL	Server™	2000	Data	Transformation	Services	(DTS)	includes
capabilities	for	extending	the	functionality	of	a	DTS	package.	The	following
sections	provide	information	on	these	capabilities	and	explains	how	to	use	them.

Topic Description
Using	ActiveX	Scripts	in	DTS Explains	how	to	write	scripting	code	that

executes	as	a	task,	workflow	step,	or
transformation.

Incorporating	Transactions	in	a
DTS	Package

Describes	how	to	bind	multiple	package
steps,	including	disparate	operations	on
multiple	platforms,	into	a	single
transactional	unit.

Lookup	Queries Explains	how	to	use	lookup	queries,	which
allow	you	to	run	queries	and	stored
procedures	against	other	connections
besides	the	source	and	destination.

Using	Global	Variables	with
DTS	Packages

Explains	how	to	use	global	variables	to
pass	data	between	different	package	steps
and	tasks,	and	dynamically	assign	values.

Using	Parameterized	Queries	in
DTS

Describes	how	parameterized	queries	can
be	used	with	several	DTS	tasks.

Querying	a	DTS	Package	from
External	Sources

Explains	how	to	make	DTS	package	data
available	to	an	external	source,	such	as
SQL	Query	Analyzer,	and	how	to	join
package	data	in	a	distributed	query.



Data	Transformation	Services



Using	ActiveX	Scripts	in	DTS
In	Data	Transformation	Services	(DTS),	you	can	extend	the	capabilities	of	your
DTS	package	by	using	Microsoft®	ActiveX®	scripts	that	implement	the	objects,
properties,	methods,	and	collections	of	the	DTS	object	model.	Using	ActiveX
scripts,	you	can:

Format	and	transform	the	data	as	it	is	copied	from	its	source	to	its
destination.	

Write	functions	that	use	conditional	logic	to	manage	package	workflow
or	that	process	data	on	a	row-by-row	basis.

Create,	use,	and	modify	the	values	stored	in	DTS	global	variables.

Manipulate	COM	objects	built	for	data	access	and	utility	functions.

Create	and	use	Microsoft	ActiveX	Data	Objects	(ADO)	connections,
commands,	recordsets,	and	other	objects	to	access	and	manipulate	data.

Microsoft	Visual	Basic®	Scripting	Edition	(VBScript)	and	Microsoft	JScript®
are	available	with	an	installation	of	Microsoft	SQL	Server™.	If	you	plan	to	write
ActiveX	scripts	in	a	language	other	than	VBScript	and	JScript,	be	sure	the
language	library	for	the	scripting	language	you	use	is	installed.	For	more
information,	search	on	"VBScript"	and	"JScript"	in	the	MSDN®	Library	at
Microsoft	Web	site.

Writing	ActiveX	Scripts	in	DTS
In	DTS,	you	can	write	the	following	types	of	scripts:

Transformation	scripts	that	are	applied	to	data	on	a	row-by-row	basis.
The	script	executes	each	time	a	row	of	data	is	read	from	the	source.

You	add	these	scripts	only	to	DTS	tasks	that	transform	data:	the

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red


Transform	Data	task;	the	Data	Driven	Query	task;	and	the	Parallel	Data
Pump	task	(available	only	programmatically).	These	tasks	use	the	data
pump	to	transform	the	data.

ActiveX	scripts	that	function	as	tasks.	The	script	is	run	once	each	time
the	task	is	called	by	the	package.

You	can	use	an	ActiveX	script	task	to	perform	functions	that	are	not
available	in	the	other	tasks	in	DTS	Designer.	For	more	information,	see
ActiveX	Script	Task.

Workflow	scripts	that	are	applied	to	a	package	step	prior	to	step
execution.	The	script	is	run	once	each	time	the	task	is	called	by	the
package.

You	can	use	an	ActiveX	workflow	step	script	to	customize	step
execution.	For	example,	you	can	use	certain	return	codes	in	an	ActiveX
workflow	step	script	to	prevent	other	tasks	in	a	package	from	executing,
or	you	can	allow	a	task	to	execute	or	mark	the	task	as	waiting	to	be	run.
For	more	information	about	writing	scripts	that	control	workflow,	see
DTS	Package	Workflow.

Generally,	you	do	not	use	an	ActiveX	script	task	or	ActiveX	workflow	script	to
operate	on	data	on	a	row-by-row	basis	because	it	is	less	efficient	than	using	a
transformation	script.	However,	it	is	possible	to	do	so.	For	example,	you	could
use	an	ActiveX	Script	task	to	create	one	or	more	ADO	connections	and	populate
a	set	of	text	files	with	data	from	an	ADO	recordset.

IMPORTANT		An	ActiveX	script	in	a	transformation	can	affect	the	execution	speed
of	a	DTS	package.	Therefore,	if	performance	is	a	priority,	use	scripting	carefully
when	building	a	package.	For	more	information,	see	Enhancing	Performance	of
DTS	Packages.

Adding	ActiveX	Scripts	to	a	DTS	Package
You	can	add	scripts	to	a	package	in	DTS	Designer,	in	the	DTS	Import/Export
Wizard,	or	programmatically.	For	more	information	about	adding	scripts
programmatically,	see	Adding	DTS	ActiveX	Scripts.

To	add	transformation	scripts:

JavaScript:hhobj_1.Click()


In	DTS	Designer,	add	transformation	scripts	in	the	ActiveX	Script
Transformation	Properties	dialog	box	to	define	an	ActiveX	Script
transformation	for	a	Transform	Data	task	or	a	Data	Driven	Query	task.

In	the	DTS	Import/Export	Wizard,	add	transformation	scripts	in	the
Transformation	tab	of	the	Column	Mappings	and	Transformations
dialog	box.	For	more	information,	see	Creating	a	DTS	Package	with	the
DTS	Import/Export	Wizard.

To	add	ActiveX	Script	Tasks:

In	DTS	Designer,	drag	an	ActiveX	Script	Task	onto	the	design	sheet
and	add	the	script	when	configuring	the	task.

To	add	ActiveX	workflow	scripts:

In	DTS	Designer,	access	the	Workflow	Properties	dialog	box
associated	with	a	package	step.

Scripting	Capabilities

The	range	of	functionality	you	can	access	from	ActiveX	scripts	covers:

The	SQL	Server	environment.	You	can	use	Transact-SQL	statements	in
your	scripts	and	access	SQL	Server	tables.

Data	access	interfaces.	SQL	Server	installations	include	familiar	data
access	interfaces	such	as	ADO,	Data	Access	Objects	(DAO),	and
Remote	Data	Objects	(RDO),	which	you	can	use	in	your	scripts	to	make
connections,	create	recordsets,	and	execute	SQL	commands.	

Custom	COM	objects.	You	can	access	custom	COM	objects	you
develop	in	your	scripts,	if	the	objects	are	available	on	the	server	running
the	package.

The	scripting	language.	You	can	use	any	function	of	the	scripting



language	you	code	with,	provided	the	scripting	engine	for	the	language
is	installed	on	your	server.	Most	scripting	languages	allow	you	to:

Use	looping	and	conditional	logic.

Write	functions	that	control	row	selection,	determine	workflow,
control	the	success	or	failure	of	an	operation,	or	throw
exceptions.	These	determinations	are	made	by	specialized
return	code	constants	specified	by	the	DTS	object	model.

For	example,	a	scripting	language	such	as	VBScript	allows	you	to	use
intrinsic	functions	supplied	by	the	language,	such	as	Trim,	Len,	and
CInt,	and	validate	data	in	a	field	with	functions	such	as	IsNumeric	or
IsDate.	If	you	require	functionality	beyond	what	can	be	achieved	using
a	scripting	language,	you	may	want	to	program	your	own	DTS
applications	or	custom	tasks.	For	more	information,	see	Creating	DTS
Packages	in	Visual	Basic.

Scripting	Examples

The	following	DTS	ActiveX	script	examples	show:

ActiveX	Script	transformations	that	transform	date	data,	concatenate
columns,	and	validate	data.

ActiveX	Script	tasks	that	connect	and	use	ADO	objects,	and	populate
global	variables.

Simple	Column	Transformation

You	have	a	daily	sales	table	sent	to	your	Accounting	department.	However,	your
accounting	month	is	not	based	on	a	calendar	month.	Sales	before	the	15th	day	of
the	month	are	considered	sales	for	that	month.	Any	sales	that	take	place	on	the
15th	or	after	are	considered	sales	for	the	following	accounting	month.

The	following	ActiveX	Script	transformation,	written	in	VBScript,	copies	all	the
columns	from	the	source	to	destination	table,	for	each	row	of	source	data,	except
for	the	AccountingMonth	column.	For	that	column,	the	Sale_Date	is	checked

JavaScript:hhobj_2.Click()


to	see	if	the	sale	took	place	before	or	after	the	15th,	and	the	AccountingMonth
adjusted	accordingly.

Function	Main()
			DTSDestination("DeptName")	=	DTSSource("DeptName")
			DTSDestination("Sales")	=	DTSSource("Sales")
			DTSDestination("Sale_Date")	=	DTSSource("Sale_Date")
			
'	break	the	day	out	of	the	Sale_Date
			theDay	=	Day(DTSSource("Sale_Date"))

'	if	the	day	field	is	before	the	15th,	the	Accounting	Month	is	the	same	as
'	the	current	Sale_Date	month
			If	theDay	<	15	then
						DTSDestination("AccountingMonth")	=	DTSSource("AccountingMonth")
			Else
'	if	the	day	is	the	15th	or	later,	the	sales	dollars	belong	in	the	next
'	Accounting	Month	
						theMonth	=	DTSSource("AccountingMonth")	+	1
						'	check	if	we	were	in	December	when	we	added	1	to	the	month,	and							'	roll	it	to	January	
						If		theMonth	>	12	then
									theMonth	=	1
						End	if
						DTSDestination("AccountingMonth")	=	theMonth
			End	If

			Main	=	DTSTransformStat_OK

End	Function

Concatenating	Columns
In	the	following	example,	an	ActiveX	Script	transformation,	written	in
VBScript,	consolidates	the	Sales_Month,	Sales_Day,	and	Sales_Year	columns
from	the	source	table	into	a	single	Sales_Date	column	in	the	destination	table.



This	script	is	run	on	each	row	in	the	source	data,	and	can	be	used	in	those	tasks
that	operate	on	a	row-by-row	basis.

Function	Main()
			DTSDestination("CustomerID")	=	DTSSource("CustomerID")
			DTSDestination("Sales_Date")	=	Trim(DTSSource("Sales_Month"))	_
							+	"/"	+	Trim(DTSSource("Sales_Day"))	+	"/"	+		_
						Trim(DTSSource("Sales_Year"))
			Main	=	DTSTransformStat_OK
End	Function

Transforming	Date	Data
When	importing	data	from	a	file	to	an	OLE	DB	destination	table,	you	can	use
the	VBScript	CDate	function	to	convert	date	data	if	the	date	format	is	in	a	text	or
character	field	and	is	not	in	the	format	required	by	OLE	DB,	which	is	yyyy-mm-
dd	hh:mm:ss:sss.	CDate	is	useful	when	the	source	data	is	in	more	than	one
format.	If	the	source	data	is	in	a	single	format,	then	consider	using	the	Date	Time
transformation,	which	is	faster.

Function	Main()

			DTSDestination("Total	Sales")	=	DTSSource("Total	Sales	")
			DTSDestination("DestColumnDate")	=	CDATE(DTSSource("SourceColumnDate"))

			Main	=	DTSTransformStat_OK

End	Function

Reading	Values	from	a	Text	File	Using	FileSystemObject
In	the	following	VBScript	example,	the	input	text	file,	Start_End_Dates.txt,
contains	the	start	and	end	dates	to	be	read	into	global	variables.	The	text	file	is
stored	on	the	C:\	drive.	The	start	date	is	the	first	line	of	text	and	contains
"01/01/00"	and	the	second	line	contains	the	end	date,	which	is	"01/31/00".	After
the	package	executes	and	the	script	runs,	two	message	boxes	are	displayed.	The
first	message	box	shows	"The	Start	Date	is:	01/01/00",	and	the	second	message



box	shows	"The	End	Date	is:	01/31/00".

'	Read	start	and	end	dates	from	a	flat	file	and	
'	store	the	values	in	dynamically	generated	global	variables
'Function	Main()

				dim	oFSO
				dim	x

'		instantiate	the	Scripting	Object
				set	oFSO	=	CreateObject("Scripting.FileSystemObject")

'			Open	the	file
				set	x	=	oFSO.OpenTextFile("C:\Start_End_Dates.txt")

'		store	the	first	line,	which	is	the	Start	Date,	in	a	global	variable
				DTSGlobalVariables("StartDate").value	=	x.Readline
				MsgBox	"The	Start	Date	is:	"	&	DTSGlobalVariables("StartDate").value

'		store	the	second	line,	which	is	the	End	Date,	in	a	global	variable
				DTSGlobalVariables("EndDate").value	=	x.Readline
				MsgBox	"The	End	Date	is:	"	&	DTSGlobalVariables("EndDate").value

				x.Close

				Main	=	DTSTaskExecResult_Success

End	Function

Using	an	ADO	Connection	and	Recordset	to	Check	Records
The	following	ActiveX	script	creates	a	connection	to	the	Northwind	database
and	the	employee	table	and	counts	the	number	of	employee	records.	If	employee
records	are	found	in	the	table,	the	script	displays	the	number	of	employees	and
sends	a	success	flag	back	to	the	package.	Otherwise,	the	script	sends	a	failure



flag.	Those	flags	can	be	used	to	trigger	other	tasks.	For	example,	the	success	flag
can	signal	that	the	table	has	records	and	then	execute	a	Bulk	Insert	task.	You	can
use	the	failure	flag	to	execute	a	Send	Mail	task	informing	a	database
administrator	(DBA)	that	a	potential	problem	exists.

dim	myConn
dim	myRecordset
dim	iRowCount

'	instantiate	the	ADO	objects
set	myConn	=	CreateObject("ADODB.Connection")
set	myRecordset	=	CreateObject("ADODB.Recordset")

'	set	the	connection	properties	to	point	to	the	Northwind	database,
'	using	the	Customers	table
myConn.Open	=	"Provider=SQLOLEDB.1;Data	Source=(local);	_
			Initial	Catalog=Northwind;user	id	=	'sa';password=''"

mySQLCmdText	=	"Select	'rowcount'	=	Count(*)	from	Customers"

myRecordset.Open	mySQLCmdText,	myConn

set	Flds	=	myRecordset.Fields
set	iRowCount	=	Flds("rowcount")

If	iRowCount.Value	=	0	then
			Main	=	DTSTaskExecResult_Failure
Else
			MsgBox	"The	number	of	customers	is:	"	&	iRowCount.Value
			Main	=	DTSTaskExecResult_Success
End	If

Inserting	Rows	into	a	Table	using	an	ADO	Recordset
The	following	example	contains	an	ActiveX	script	written	in	VBScript	that



shows	how	to	connect	to	a	source	using	ADO	and	how	to	insert	the	rows	into	the
destination	table.	The	example	uses	tables	from	the	Northwind	database,	and
one	that	you	must	create,	a	NewEmployeeTerritory	table	that	contains	the
EmployeeID	and	the	new	TerritoryID	that	the	employee	is	assigned	to.	These
new	territory	assignments	need	to	be	entered	into	the	EmployeeTerritory	table.

To	run	this	example,	do	the	following:

1.	 Create	a	table	named	NewEmployeeTerritory	in	the	Northwind
database	that	has	a	schema	identical	to	the	EmployeeTerritory	table.

2.	 Insert	the	following	four	records	into	the	NewEmployeeTerritory
table:

EmployeeID				TerritoryID

1													03801
1													07960
3													40222
9													11747

3.	 Create	a	new	DTS	package	in	DTS	Designer.

4.	 Drag	an	ActiveX	Script	task	onto	the	design	sheet.

5.	 In	the	ActiveX	script	box,	place	the	following	code	between	the
FUNCTION	MAIN()	and	END	FUNCTION	statements:
'	These	values	were	copied	from	the	ADOVBS.INC	file.
'----	CursorTypeEnum	Values	----
Const	adOpenForwardOnly	=	0
Const	adOpenKeyset	=	1
Const	adOpenDynamic	=	2
Const	adOpenStatic	=	3

'----	CommandTypeEnum	Values	----
Const	adCmdUnknown	=	&H0008



Const	adCmdText	=	&H0001
Const	adCmdTable	=	&H0002
Const	adCmdStoredProc	=	&H0004

dim	countr

'	Instantiate	the	ADO	objects.
set	mySourceConn	=	CreateObject("ADODB.Connection")
set	mySourceRecordset	=	CreateObject("ADODB.Recordset")

'Set	the	connection	properties	to	point	to	Northwind.	
'Use	the	NewEmployeeTerritories	table.
mySourceConn.Open	=	"Provider=SQLOLEDB.1;Data	Source=(local);	_
				Initial	Catalog=Northwind;user	id	=	'sa';password=''"

mySQLCmdText	=	"Select	*	from	NewEmployeeTerritories"

'Execute	the	mySQLCmdText,	and	put	the	data	into	the	myRecordset	object.	
mySourceRecordset.Open	mySQLCmdText,	mySourceConn,	adOpenKeyset

If	mySourceRecordset.RecordCount	<	1	Then
				MsgBox	"	There	are	no	records	found.	Return	a	Failure	code"
				Main	=	DTSTaskExecResult_Failure
Else
'	Since	we	have	records	to	insert	into	the	EmployeeTerritory	table,	create
'	a	Connection	object	and	do	the	INSERT.
				dim	EmpID,	TerrID,	myDestSQL
				set	myDestConn	=	CreateObject("ADODB.Connection")
				myDestConn.Open	=	"Provider=SQLOLEDB.1;Data	Source=(local);	_
				Initial	Catalog=Northwind;user	id	=	'sa'"
				
				for	countr	=	1	to	mySourceRecordset.RecordCount
								EmpID	=	mySourceRecordset.Fields("EmployeeID").value



								TerrID	=	mySourceRecordset.Fields("TerritoryID").value
								'	Put	single	quotes	around	the	TerrID	since	it	is	a	varchar	and									'needs	to	have	the	single	quotes	when	it	is	in	the	VALUES	list.
								TerrID	=	"'"	&	Terrid	&	"'"

								myDestSQL	=	"INSERT	INTO	EmployeeTerritories	_
								VALUES	(	"	&	EmpID	&	","		&	Terrid	&	")"
								myDestConn.Execute	myDestSQL

								mySourceRecordset.MoveNext
				Next

				Main	=	DTSTaskExecResult_Success

End	If

Validating	Data

The	following	ActiveX	script,	written	in	VBScript,	modifies	data	on	a	row-by-
row	basis.	Using	the	Customers	table	of	the	Northwind	database	as	a	source,
the	script	moves	the	data	into	a	new	destination	table	in	Northwind.	The	script
validates	several	columns	in	the	source	data	and	transforms	some	column	data
before	the	row	is	inserted	into	the	destination.	The	transformations	change	the
Company	Name	to	uppercase	characters,	trim	leading	and	trailing	spaces	from
the	first	name	and	last	name,	and	fill	the	Region	field	with	the	string	"unknown"
if	it	is	empty.

'	Verify	that	there	is	a	CompanyName.	If	there	is,	process	the	record.	If
'	there	is	not,	skip	the	record.
If	DTSSource("CompanyName")	<>	""	Then
				DTSDestination("CustomerID")	=	DTSSource("CustomerID")
				'	Uppercase	the	Company	Name
				DTSDestination("CompanyName")	=	Ucase(DTSSource("CompanyName"))
				'	Trim	leading	and	trailing	spaces	from	the	Name	
				DTSDestination("ContactName")	=	Trim(DTSSource("ContactName"))
				DTSDestination("ContactTitle")	=	DTSSource("ContactTitle")



				DTSDestination("Address")	=	DTSSource("Address")
				DTSDestination("City")	=	DTSSource("City")

				'	Check	to	see	if	the	region	is	empty.	If	it	is,	fill	it	with	string	
				'	of	"unknown".
				If	IsNull(DTSSource("Region").value		then
								DTSDestination("Region")	=	"unknown"
				Else
								DTSDestination("Region")	=	DTSSource("Region")
								End	if

				DTSDestination("PostalCode")	=	DTSSource("PostalCode")
				DTSDestination("Country")	=	DTSSource("Country")
				DTSDestination("Phone")	=	DTSSource("Phone")
				DTSDestination("Fax")	=	DTSSource("Fax")

				'	This	was	a	successful	row.	Send	an	OK	status	back	for	this	row.
				Main	=	DTSTransformStat_OK
Else
				'	This	row	contained	data	that	could	not	be	processed.
				'	Skip	it	and	get	another	row.
				Main	=	DTSTransformStat_SkipRow
End	If

Using	a	Global	Variable	that	Contains	Columns	of	Data
This	example	uses	an	Execute	SQL	task	to	select	data	from	a	table,	and	populate
global	variables	with	the	data	from	the	first	row	returned.	Each	column	is	stored
in	its	own	global	variable.	The	second	half	of	this	sample	uses	ActiveX	script	to
display	the	data	stored	in	the	global	variables.

To	save	row	values	into	global	variables



Data	Transformation	Services



Using	Return	Codes	in	DTS
In	Data	Transformation	Services	(DTS),	you	can	use	Microsoft®	ActiveX®
script	return	codes	to:

Process	row	data	in	a	transformation,	including	the	handling	of	inserts,
errors,	and	exceptions.

Set	up	conditions	in	a	transformation	script	for	skipping	rows,	reusing
rows,	choosing	whether	to	write	the	row	to	the	destination,	and
terminating	row	processing	based	on	an	error.

Control	package	workflow	or	step	execution.

Execute	the	correct	query	type	for	a	data	driven	query.

DTS	provides	a	number	of	return	code	constants.	Depending	on	where	you	use
the	ActiveX	script,	these	return	codes	have	different	effects	on	the	package	or
rows:

Return	codes	used	inside	an	ActiveX	Script	task	are	sent	to	the	package,
where	they	control	the	flow	of	steps	through	the	use	of	precedence
constraints.	The	success	or	failure	of	one	task	activates	any	On	Success
or	On	Failure	precedence	constraints	on	any	tasks	that	follow	it.

Return	codes	used	in	a	transformation	script	or	a	script	that	operates	on
a	row-by-row	basis	apply	to	the	row	being	processed.

Note		Use	the	return	code	constants	rather	than	the	decimal	or	hexadecimal
values	of	the	transformation	return	code	in	the	script.

A	return	code	in	a	Data	Driven	Query	task	defines	which	SQL	query	to
execute	on	each	row	processed.

Using	Multiple	Return	Codes



Some	situations	require	multiple	return	codes.	For	example,	if	you	want	to
transform	a	row	multiple	times	but	do	not	want	to	insert	it	into	the	destination
multiple	times,	you	can	use	DTSTransformStat_SkipFetch	to	transform	the
row	again.	Or,	you	can	use	DTSTransformStat_SkipInsert	to	prevent	it	from
being	put	into	the	destination.	However,	no	return	code	can	do	both.	In	that
situation,	you	can	use	an	OR	operator	to	combine	actions.	For	example,	Main	=
DTSTransformStat_SkipFetch	OR	DTSTransformStat_SkipInsert	causes
both	actions	to	occur.	DTSTransformStat_SkipFetch	prevents	another	row
from	coming	into	the	transformation,	and	DTSTransformStat_SkipInsert
keeps	the	row	from	being	inserted	into	the	destination.

See	Also

DTSTransformStatus

JavaScript:hhobj_1.Click()


Data	Transformation	Services



Debugging	ActiveX	Scripts
If	you	have	Microsoft®	Windows®	2000,	Microsoft	Visual	InterDev®	6.0	or	the
Microsoft	Windows	NT®	4.0	Option	Pack	installed,	you	can	use	the	script
debugger	supplied	with	those	products	to	troubleshoot	your	Microsoft	ActiveX®
scripts.	Three	types	of	events	cause	errors:

A	forced	break	in	the	script	execution.

Incorrect	script	syntax	or	object.

Objects	that	contain	incorrect	references.

Your	ability	to	debug	these	errors	depends	on	whether	or	not	you	have	selected
the	Turn	on	just-in-time	debugging	check	box.

To	select	the	Turn	on	just-in-time	debugging	option



Data	Transformation	Services



Incorporating	Transactions	in	a	DTS	Package
You	use	database	transactions	to	bind	multiple	updates	into	a	single	atomic	unit.
In	this	way,	you	help	to	ensure	that	your	data	remains	in	a	consistent	state.
Distributed	transactions	carry	this	concept	a	step	further,	allowing	you	to	bind
disparate	operations	on	multiple	platforms	into	a	single	transaction.

Data	Transformation	Services	(DTS)	uses	functions	offered	by	the	Microsoft®
Distributed	Transaction	Coordinator	(MS	DTC)	to	extend	the	benefits	of
distributed	transactions	to	the	DTS	package	developer.	For	transactions	to	work,
MS	DTC	must	be	running	on	the	computer	executing	the	package.	Use	the	SQL
Server	Service	Manager	to	start	MS	DTC	or	to	verify	that	it	is	running.

With	DTS	transactions,	you	can:

Gather	the	results	of	several	tasks	into	a	single	transaction	and	so	ensure
consistent	updates.	For	example,	orders	and	line	items	can	be	uploaded
by	two	tasks,	which	succeed	or	fail	together.

Perform	consistent	updates	on	multiple	database	servers.	For	example,	a
customer	address	can	be	changed	in	two	different	online	transaction
processing	(OLTP)	systems,	all	in	the	context	of	one	transaction.

Combine	database	modifications	and	message	queue	operations	in	a
single	transaction	to	provide	guaranteed	updates	in	an	asynchronous
environment.	For	example,	a	package	might	employ	a	Message	Queue
task	to	read	and	delete	a	message	bearing	the	name	of	a	file	to	upload.	If
the	task	that	uploads	the	file	fails,	the	subsequent	rollback	both	reverses
the	database	changes	and	puts	the	message	back	on	the	queue.	The
package	can	be	restarted	with	no	user	intervention.

Carry	out	multiple	transactions	under	the	control	of	a	single	package.
For	example,	using	Execute	Package	tasks,	you	can	simultaneously	run
an	end-of-day	sequence	of	transactions	on	each	of	three	different
servers.	For	more	information,	see	Execute	Package	Task.



You	can	use	DTS	Designer	to	manage	package	transactions,	or	you	can	access
the	same	functionality	programmatically.	For	more	information,	see	DTS
Designer	and	DTS	Programming	Reference.

JavaScript:hhobj_1.Click()


Data	Transformation	Services



Configuring	Properties	for	DTS	Transactions
Several	Data	Transformation	Services	(DTS)	package	properties	and	workflow
step	properties	are	used	to	control	transaction	initiation,	step	participation	in	the
transaction,	and	the	final	commit	or	rollback	operation.	These	properties	can	be
set	from	within	DTS	Designer	or	programmatically,	through	the	package	and
step	objects	of	the	DTS	object	model.

DTS	transaction	settings	fall	into	two	groups.	Package	properties	are	global
settings	that	affect	transaction	behavior	across	the	entire	package.	Step	properties
operate	at	the	level	of	the	individual	task.	In	the	following	list	of	DTS
transaction	settings,	package	properties	are	listed	before	step	properties.	For	each
transaction	option,	the	corresponding	DTS	object	model	property	is	listed.

In	the	DTS	Package	Properties	dialog	box,	on	the	General	tab,	you	can	find:

Fail	package	on	first	error.

If	this	check	box	is	selected,	the	first	step	failure	triggers	package
failure,	terminating	all	tasks.	If	cleared,	the	package	continues	to	run
after	the	first	and	subsequent	step	failures,	always	completing
successfully,	no	matter	how	many	errors	occur.

In	the	DTS	object	model,	set	the	FailOnError	property	of	the	package
object.	For	more	information,	see	FailOnError	Property.

In	the	DTS	Package	Properties	dialog	box,	on	the	Advanced	tab,	you	can	find:

Use	transactions.

If	this	check	box	is	selected,	transactions	are	enabled.	If	cleared,	no
package	transaction	is	created,	and	requests	by	steps	to	join	the
transaction	are	ignored.

In	the	DTS	object	model,	set	the	UseTransaction	property	of	the
package	object.	For	more	information,	see	UseTransaction
(DTSMQMessage)	Property.

Commit	on	successful	package	completion.

If	this	check	box	is	selected,	updates	pending	in	an	open	package

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


transaction	are	committed	when	a	package	finishes	executing	and	one	or
both	of	the	following	is	true:

No	steps	failed.

The	Fail	package	on	first	error	check	box	is	cleared.

If	the	Commit	on	successful	package	completion	check	box	is
cleared,	an	open	transaction	is	rolled	back	on	package	completion	and
pending	updates	are	lost.

In	the	DTS	object	model,	set	the	AutoCommitTransaction	property	of
the	package	object.	For	more	information,	see	AutoCommitTransaction
Property	(DTS).

Transaction	isolation	level.

In	this	check	box,	you	can	select	the	level	of	locking	used	within
transactions	to	protect	the	user	from	dirty	reads,	nonrepeatable	reads,
and	phantom	data.	In	order	of	increasing	protection,	available	isolation
levels	are:	Chaos,	Read	uncommitted,	Read	committed,	Repeatable
read,	and	Serializable.	For	more	information,	see	Isolation	Levels.

In	the	Workflow	Properties	dialog	box	of	a	step,	on	the	Options	tab,	you	can
find:

Join	transaction	if	present.

If	this	check	box	is	selected	(and	transactions	are	enabled),	the	step
joins	the	package	transaction.	Updates	accumulate	until	commit	or
rollback.	If	cleared,	updates	are	carried	out	one	at	a	time,	as	they	are
requested.

In	the	DTS	object	model,	set	the	JoinTransactionIfPresent	property	of
the	step	object.	For	more	information,	see	JoinTransactionIfPresent
Property	(DTS).

Rollback	transaction	on	failure.

If	this	check	box	is	selected,	step	failure	triggers	a	rollback	of	the
package	transaction.	Pending	updates	are	discarded.	If	cleared,	any

JavaScript:hhobj_3.Click()
JavaScript:hhobj_4.Click()
JavaScript:hhobj_5.Click()


updates	remain	in	the	transaction	until	a	later	commit	or	rollback.

In	the	DTS	object	model,	set	the	RollbackFailure	property	of	the	step
object.	For	more	information,	see	RollbackFailure	Property	(DTS).

Commit	transaction	on	successful	completion	of	this	step.

If	this	check	box	is	selected,	successful	step	completion	triggers	a
transaction	commit.	Pending	updates	are	made	permanent.	If	cleared,
any	updates	remain	in	the	transaction	until	a	later	commit	or	rollback.

In	the	DTS	object	model,	set	the	CommitSuccess	property	of	the	step
object.	For	more	information,	see	CommitSuccess	Property	(DTS).

See	Also

Package	Object	(DTS)

Package2	Object	(DTS)

Step	Object	(DTS)

JavaScript:hhobj_6.Click()
JavaScript:hhobj_7.Click()
JavaScript:hhobj_8.Click()
JavaScript:hhobj_9.Click()
JavaScript:hhobj_10.Click()


Data	Transformation	Services



DTS	Transaction	Fundamentals
Over	the	course	of	the	execution	of	a	single	package,	transactions	are	initiated,
joined,	and	then	committed	or	rolled	back.	After	a	commit	or	rollback	operation,
the	cycle	may	repeat.

If	the	Data	Transformation	Services	(DTS)	package	includes	Execute	Package
tasks,	transaction	behavior	can	differ	from	that	described	in	this	topic.	For	more
information	about	transactions	and	the	Execute	Package	task,	see	Inherited
Transactions.

Initiating	a	New	Package	Transaction
No	package	transaction	exists	until	a	step	attempts	to	join	it.	At	this	point,	a	new
transaction	is	created	for	the	package,	and	the	step	proceeds	with	its	attempt.	If
other	steps	attempt	to	join	the	package	transaction	before	the	first	transaction	has
committed	or	rolled	back,	they	are	enlisted	in	the	first	transaction.	Although	a
package	may	initiate	several	transactions,	only	one	package	transaction	can	be
active	at	a	time.

Joining	the	Package	Transaction
The	attempt	to	join	the	package	transaction	takes	place	only	after	any	workflow
script	has	been	processed.	If	a	step	joins	the	package	transaction,	any	updates
made	by	the	step	accumulate	in	the	package	transaction.	If	a	step	does	not	join
the	package	transaction,	database	changes	are	committed	in	autocommit	mode:
one	at	a	time,	as	they	are	requested.

In	order	to	join	a	transaction	successfully,	the	package	step	must:

Be	one	of	several	supported	task	types.	For	example,	the	Execute	SQL
task	is	supported,	but	the	Send	Mail	task	is	not.

Use	supported	connection	types	on	outputs.	For	example,	an	instance	of
Microsoft®	SQL	Server™	2000	is	supported,	but	a	connection	to	a
Microsoft	Excel	2000	worksheet	is	not.



If	the	preceding	conditions	are	not	met,	the	attempt	to	join	the	package
transaction	fails,	and	the	package	halts	at	runtime.	For	more	information	about
supported	task	and	connection	types,	see	Supported	Task	Types	and	Supported
Connection	Types.

In	DTS	Designer,	a	step	attempts	to	join	the	package	transaction	if	you:

Select	the	Use	transactions	check	box	in	the	DTS	Package	Properties
dialog	box.

Select	the	Join	transaction	if	present	check	box	in	the	Workflow
Properties	dialog	box	of	a	step.

Note		When	a	step	joins	the	package	transaction,	each	connection	used
by	the	step	is	enlisted	in	the	distributed	transaction.	All	updates	for	such
a	connection	accumulate	in	the	package	transaction,	even	if	they
originate	in	a	step	that	did	not	explicitly	join	the	package	transaction.
Therefore,	to	make	transactional	and	non-transactional	updates	to	the
same	database	from	one	package,	you	must	use	two	connections.

Committing	and	Rolling	Back	Package	Transactions

When	a	package	transaction	is	committed,	any	accumulated	updates	are	made
permanent.	When	a	package	transaction	is	rolled	back,	any	accumulated	updates
are	reversed.

A	package	transaction	is	committed	when	either	of	the	following	events	occurs:

A	step	completes	successfully	and	the	Commit	transaction	on
successful	completion	of	this	step	check	box	is	selected.

The	package	completes	successfully	and	the	Commit	on	successful
package	completion	check	box	is	selected.

The	current	package	transaction	is	rolled	back	when	any	of	the	following	events
occur:

The	package	fails.



The	package	finishes	and	the	Commit	on	successful	package
completion	check	box	is	cleared	for	the	package.

A	step	fails	and	the	Rollback	transaction	on	failure	check	box	is
selected	for	the	step.

Note		Some	operations	can	leave	the	current	transaction	in	an	invalid
state	(for	example,	failure	during	a	commit	or	rollback	or	a	rollback	in	a
subpackage).	Attempts	to	join	or	commit	an	invalid	transaction	fail	the
package.	To	terminate	the	invalid	transaction	and	so	allow	a	new
package	transaction	to	start,	trigger	a	rollback	in	the	controlling
package.



Data	Transformation	Services

Inherited	Transactions
The	Execute	Package	task	allows	you	to	execute	a	Data	Transformation	Services
(DTS)	package	as	one	step	of	a	parent	package.	This	subpackage	may	create	its
own	package	transactions,	or	it	may	inherit	the	parent	package	transaction.

A	package	inherits	the	parent	package	transaction	if	both	of	the	following	are
true:

The	package	is	invoked	by	an	Execute	Package	task.

The	Execute	Package	task	that	invoked	the	package	also	joined	the
parent	package	transaction.

In	the	following	diagram,	there	are	six	packages	that	all	use	transactions.	Each
package	contains	numerous	tasks.	Only	the	Execute	Package	tasks	are	shown.
Package	A	executes	packages	B	and	C,	which	in	turn	execute	packages	D,	E,	and
F.	The	Execute	Package	tasks	that	join	the	package	transactions	are	indicated
with	an	underline.

Packages	A,	B,	and	D	execute	in	one	package	transaction.	Packages	C	and	F
execute	in	a	second	transaction.	Package	E	gets	its	own	separate	package
transaction.

Packages	A,	C,	and	E	control	their	own	transactions.	Packages	B,	D,	and	F
inherit	their	transactions.

If	a	package	runs	with	an	inherited	transaction,	transaction	behavior	differs
considerably:

No	new	package	transaction	is	initiated.	Steps	join	the	inherited	parent
transaction.

No	commit	takes	place.	In	particular:

If	the	Commit	transaction	on	successful	completion	of	this
step	check	box	is	selected,	it	is	ignored.



If	the	Commit	on	successful	package	completion	check	box
is	selected,	it	is	ignored.

No	rollback	takes	place	on	package	completion,	even	if	the	package
fails.	However,	individual	steps	may	roll	back	the	parent	package
transaction	if	you	select	the	Rollback	transaction	on	failure	check	box
in	the	Workflow	Properties	dialog	box.

Note		If	a	subpackage	fails,	its	parent	Execute	Package	task	fails.	If	a
subpackage	completes	successfully,	its	parent	Execute	Package	task
completes	successfully.	If	a	subpackage	experiences	many	errors	or
rolls	back	the	package	transaction,	but	its	Fail	package	on	first	error
property	is	cleared,	it	will	complete	successfully.	Its	parent	Execute
Package	task	also	will	complete	successfully.

See	Also

Execute	Package	Task

ExecutePackageTask	Object

JavaScript:hhobj_1.Click()


Data	Transformation	Services

Supported	Connection	Types
In	order	to	take	part	in	a	Data	Transformation	Services	(DTS)	package
transaction,	the	data	source	of	a	connection	must	support	distributed
transactions.	A	step	that	attempts	to	join	the	package	transaction	with	an
unsupported	connection,	(for	example,	a	Microsoft®	Access	2000	table)	fails	at
runtime.	The	following	connection	types,	available	in	DTS	Designer,	can
provide	this	support:

Microsoft	OLE	DB	Provider	for	SQL	Server

ODBC	data	source

The	ODBC	driver	must	support	the	connection	attribute
SQL_ATT_ENLIST_IN_DTC	and	this	attribute	must	be	set.	For	more
information,	see	the	ODBC	documentation.

Microsoft	Data	Link

Microsoft	Data	Link	is	used	to	access	any	installed	OLE	DB	provider.
An	OLE	DB	provider	must	implement	the	ITransactionJoin	interface
if	it	is	to	join	a	distributed	transaction.	For	more	information,	see	the
OLE	DB	documentation.

If	your	application	requires	tasks	that	access	an	unsupported	connection,	those
tasks	cannot	join	the	DTS	package	transaction.	However,	failure	in	such	a	task
still	can	be	used	to	roll	back	an	open	transaction.



Data	Transformation	Services

Supported	Task	Types
There	are	differences	in	how	the	custom	tasks	available	through	Data
Transformation	Services	(DTS)	participate	in	transactions.	For	example:

Some	tasks	perform	operations	that	cannot	take	part	in	a	transaction.
For	example,	the	File	Transfer	Protocol	(FTP)	task	writes	files	directly
to	disk.	No	rollback	is	possible.	Other	such	tasks	are:

The	Dynamic	Properties	task.

The	Send	Mail	task.

The	Copy	SQL	Server	Objects	task.

Some	tasks	allow	the	user	to	create	their	own	scripts	or	programs	and
run	them	from	DTS.	Although	these	tasks	can	create	and	independently
manage	their	own	local	or	distributed	transactions,	they	have	no	access
to	the	DTS	package	transaction.	These	tasks	are:

The	Microsoft®	ActiveX®	Script	task.

The	Execute	Process	task.

Some	supported	tasks	can	join	the	package	transaction	if	the	right
connections	are	supported.	These	tasks	are:

The	Bulk	Insert	task.

The	Data	Driven	Query	task.

The	Transform	Data	task.

The	Execute	Package	task.



The	Execute	SQL	task.

The	Message	Queue	task.

All	of	the	above	three	groups	of	tasks	may	commit	or	roll	back	the	current
transaction.

See	Also

Bulk	Insert	Task

Data	Driven	Query	Task

Execute	SQL	Task

Inherited	Transactions

Message	Queue	Task

Transform	Data	Task



Data	Transformation	Services



Designing	DTS	Transactions
It	is	strongly	recommended	that	you	follow	a	few	general	design	principles	when
you	design	Data	Transformation	Services	(DTS)	transactions	to	greatly	reduce
the	chance	of	anomalous	results:

If	possible,	organize	tasks	sequentially.

When	steps	execute	in	parallel,	use	DTS	package	failure	to	roll	back	the
transaction.

Use	checkpoint	tasks	to	commit	intermediate	results	within	a	package.

Use	the	Execute	Package	task	and	package	failure	to	branch	on
transaction	failure.



Data	Transformation	Services

Sequential	Execution
For	the	simplest	Data	Transformation	Services	(DTS)	package	transaction
configuration,	organize	steps	sequentially.	If	you	do	this,	you	can	roll	back
transactions	at	the	step	level.

The	following	diagram	shows	a	sequential	ABC	package.

Three	Execute	SQL	tasks	are	arranged	in	order	with	precedence	relationships.
Only	on	the	success	of	one	step	is	the	following	task	started.	If	any	one	of	the
tasks	fails,	no	more	steps	execute.	The	sequential	organization	of	the	package
allows	you	to	roll	back	the	transaction	immediately	on	failure.

All	three	tasks	join	the	package	transaction.	If	any	task	fails,	the	transaction	rolls
back,	and	the	package	halts.	If	task	C	completes	successfully,	the	entire
transaction	is	committed.

To	run	all	three	tasks	as	part	of	a	single	package	transaction,	do	the	following:

Select	the	Use	transactions	check	box	for	the	package.

Select	the	Join	transaction	if	present	check	box	for	each	step.

Select	the	Rollback	transaction	on	failure	check	box	for	each	step.

Select	the	Commit	transaction	on	successful	completion	of	this	step
check	box	for	task	C.



Data	Transformation	Services

Parallel	Execution
Time	or	resource	constraints	may	require	that	Data	Transformation	Services
(DTS)	tasks	execute	in	parallel.	As	a	result,	transaction	configuration	becomes
more	complex.	To	avoid	anomalous	results,	use	DTS	package	failure	to	roll	back
the	transaction	when	steps	execute	in	parallel.

The	following	diagram	shows	a	parallel	ABC	package.

All	three	tasks	still	join	the	same	transaction,	but	now,	tasks	A	and	C	are
supposed	to	start	simultaneously.	In	this	situation,	DTS	behavior	differs,
depending	on	the	connections	used	by	these	tasks:

If	tasks	A,	B,	and	C	all	use	the	same	connection,	DTS	will	serialize
their	execution	in	spite	of	the	parallel	construction.	Precedence
relationships	are	enforced,	but	otherwise,	order	of	execution	is
undefined.

If	tasks	A	and	B	use	Connection	1	and	task	C	uses	Connection	2,	then:

If	Connection	1	and	Connection	2	are	on	the	same	instance	of
Microsoft®	SQL	Server™	2000,	the	package	fails	when	the
second	task	attempts	to	join	the	transaction.

Therefore,	you	must	use	precedence	relationships	or	the
Execute	on	main	package	thread	workflow	property	to
ensure	that	no	two	tasks	execute	simultaneously	as	part	of	the
package	transaction.

If	Connection	1	and	Connection	2	are	not	on	the	same	instance
of	SQL	Server	2000,	tasks	A	and	C	execute	in	parallel,	as
expected.



Rollback	and	the	Package	Transaction

If	you	do	not	attend	carefully	to	package	configuration,	your	package	may
produce	unanticipated	results.	For	example,	in	the	preceding	diagram,	you	want
all	three	tasks	to	join	the	same	transaction.	However,	incorrect	settings	for
transaction	properties	could	result	in	tasks	A	and	C	rolling	back,	while	changes
made	by	task	B	are	committed.	For	example,	consider	what	happens	if	tasks	A
and	C	start	simultaneously	and	then	task	C	fails	and	rolls	back	before	A
completes:

Task	A	is	not	canceled	in	mid-execution	but	continues	to	its	normal
conclusion.

Any	changes	made	by	task	A	or	C	are	rolled	back	after	task	A
completes.

The	rollback	has	no	effect	on	the	success	or	failure	status	of	task	A.	If
task	A	encounters	no	problems,	it	completes	successfully	as	usual.

If	the	package	is	not	configured	to	fail	on	the	first	error,	task	B	will
commence	as	usual	on	the	successful	completion	of	task	A.	Because
there	is	no	active	transaction	when	task	B	starts,	a	new	package
transaction	is	created.	If	the	Commit	on	successful	package
completion	check	box	is	selected,	changes	made	by	task	B	will	be
committed	in	spite	of	the	earlier	failed	transaction.

Enforcing	a	Single	Package	Transaction

If	a	transaction	includes	several	tasks	executing	in	parallel,	when	one	task	fails,
any	changes	must	roll	back	and	execution	must	stop.	New	tasks	must	not
commence.	To	enforce	a	single	package	transaction	when	multiple	tasks	may	be
active,	fail	the	package	and	then	roll	back	the	transaction	on	package	failure.

Configure	the	Parallel	ABC	package	as	follows:

Select	the	Fail	package	on	first	error	check	box	for	the	package.



Select	the	Use	transactions	check	box	for	the	package.

Select	the	Commit	on	successful	package	completion	check	box	for
the	package.

Select	the	Join	transaction	if	present	check	box	for	each	step.

Clear	the	Commit	transaction	on	successful	completion	of	this	step
check	box	for	each	step.

Clear	the	Rollback	transaction	on	failure	check	box	for	each	step.

Selecting	the	Fail	package	on	first	error	check	box	triggers	an	unsuccessful
package	completion	as	of	the	first	step	failure.	As	a	consequence,	no	more	tasks
are	started,	and	any	updates	in	the	existing	package	transaction	are	rolled	back.



Data	Transformation	Services

Checkpointing	Package	Transactions
Sometimes,	work	naturally	falls	into	two	or	more	transactions.	You	can	use
checkpoint	tasks	to	commit	intermediate	results	within	a	Data	Transformation
Services	(DTS)	package.

In	the	following	diagram	of	a	package,	Checkpoint	is	a	Microsoft®	ActiveX®
Script	task.	It	functions	as	a	placeholder,	ensuring	only	that	the	package
transactions	operate	properly.	It	is	necessary	in	this	case	because	there	is	no
other	place	to	commit	the	transaction	without	introducing	potential	problems.	If
there	were	a	job	that	followed	tasks	B	and	C	and	took	part	in	the	same
transaction,	that	task	could	carry	out	the	checkpoint	function.

Tasks	A,	B,	and	C	execute	as	part	of	a	single	transaction.	If	no	tasks	fail,	the
Checkpoint	task	commits	the	new	updates	after	both	task	B	and	task	C	finish.
Tasks	D	and	E	then	join	a	second	package	transaction,	to	be	committed	on
successful	package	completion.

Configure	Checkpoint	workflow	properties	as	follows:

Clear	the	Join	transaction	if	present	check	box.

Select	the	Commit	transaction	on	successful	completion	of	this	step
check	box.

For	more	information	about	configuring	the	package	and	the	remaining	tasks,
see	Parallel	Execution.



Data	Transformation	Services

Branching	on	Transaction	Failure
When	tasks	execute	in	parallel,	you	often	have	to	fail	the	Data	Transformation
Services	(DTS)	package	in	order	to	prevent	anomalous	results.	This	poses	a
problem	if	you	require	an	action	on	failure	(for	example,	the	dispatch	of	an	e-
mail	message).	Within	a	package,	you	cannot	simultaneously	fail	the	package
and	run	extra	steps.

Use	the	Execute	Package	task	and	package	failure	to	conditionally	run	extra
steps	after	transaction	failure.

The	following	diagram	shows	a	package	executing	the	Run	Parallel	ABC
package.	Depending	on	the	outcome,	the	package	either	continues	processing	or
sends	an	error	message.	Although	the	Run	Parallel	ABC	task	appears	in	this
example,	the	same	procedure	can	be	used	to	branch	on	the	failure	of	any
package,	even	those	that	do	not	use	transactions.

The	first	step	in	the	package	executes	the	Parallel	ABC	package	as	a
subpackage.	The	failure	of	step	A,	B,	or	C	triggers	subpackage	failure,	which	in
turn	fails	the	Run	Parallel	ABC	step.	On	failure	of	this	step,	Error	Alert	sends
the	e-mail	message.	If	the	subpackage	completes	successfully,	however,	Run
Parallel	ABC	succeeds	and	More	Work	is	commenced.

For	the	example,	configure	package	properties	as	follows:

Select	the	Use	transactions	check	box.

Clear	the	Fail	package	on	first	error	check	box.

Configure	More	Work	workflow	properties	as	follows:

Select	the	Join	transaction	if	present	check	box.



Select	the	Commit	transaction	on	successful	completion	of	this	step
check	box.

Select	the	Rollback	transaction	on	failure	check	box.

If	Run	Parallel	ABC	and	More	Work	are	to	join	the	same	transaction,	configure
Run	Parallel	ABC	workflow	properties	as	follows:

Select	the	Join	transaction	if	present	check	box.

Clear	the	Commit	transaction	on	successful	completion	of	this	step
check	box.

Select	the	Rollback	transaction	on	failure	check	box.

If	Run	Parallel	ABC	and	More	Work	are	to	run	in	separate	transactions,	with
changes	committed	after	the	first,	you	can	delegate	transaction	processing	to	the
subtask.	To	do	this,	configure	Run	Parallel	ABC	workflow	properties	as	follows:

Clear	the	Join	transaction	if	present	check	box.

Clear	the	Commit	transaction	on	successful	completion	of	this	step
check	box.

Clear	the	Rollback	transaction	on	failure	check	box.



Data	Transformation	Services



Lookup	Queries
A	feature	of	the	Transform	Data	and	Data	Driven	Query	tasks,	lookup	queries
allow	you	to	run	queries	and	stored	procedures	against	other	connections	besides
the	source	and	destination.	For	example,	by	using	a	lookup	query,	you	can	make
a	separate	connection	during	a	query	and	include	data	from	that	connection	in
the	destination	table.

Lookup	queries	allow	you	to	customize	and	execute	an	SQL	statement	from
within	a	Microsoft®	ActiveX®	script	transformation.	The	statement	may	be	a
stored	procedure	invocation,	or	a	SELECT,	INSERT,	UPDATE,	or	DELETE
statement.	You	customize	these	statements	for	each	source	row	through	the	use
of	parameters,	blanks	left	in	the	statement	to	be	filled	in	before	execution.	When
you	execute	a	lookup	query,	your	script	provides	values	to	be	substituted	for
each	parameter.	Your	results	can	be	loaded	into	destination	columns	or	can	serve
as	input	for	further	script	processing.

You	can	use	lookup	queries	to:

Look	up	tabular	information.

Perform	parallel	updates	on	two	database	systems.

Validate	input	data	before	loading	it.

Invoke	stored	procedures	in	response	to	input	conditions.

Use	global	variable	values	as	query	parameters.

You	can	use	either	Data	Transformation	Services	(DTS)	Designer	or	the	DTS
object	model	to	create	and	manage	lookup	queries.	For	more	information	about
programming	with	lookup	queries,	see	Adding	DTS	Lookups	and	Global
Variables	and	Lookup	Object	(DTS).

See	Also

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Data	Driven	Query	Task

Transform	Data	Task



Data	Transformation	Services



Configuring	a	Simple	Lookup	Query
To	configure	a	simple	lookup	query,	complete	the	following	steps:

1.	 Create	a	new	connection.

Although	a	lookup	query	can	share	a	connection	with	the	source	or
destination	under	certain	conditions,	the	best	performance	occurs	when
it	is	given	its	own	connection.

2.	 Create	and	name	your	parameterized	query.

The	parameterized	query	can	be	a	stored	procedure	invocation	or	a
SELECT,	INSERT,	DELETE,	or	UPDATE	statement.	Mark
parameters	by	including	question	marks	in	place	of	expressions	that
will	be	set	at	runtime.	Parameter	values	typically	come	from	source
data	but	may	be	supplied	by	global	variables	or	any	other	terms
accessible	to	Microsoft®	ActiveX®	script	code.

3.	 Create	an	ActiveX	Script	transformation	with	code	to	execute	your
query.

The	query	is	executed	with	the	following	statement:

return	value	=	DTSLookups("query	name").Execute(argument	list)

where	return	value	is	a	variant	that	receives	the	result	of	the	query,
query	name	is	the	name	you	provided	the	query	in	step	two,	and
argument	list	is	a	comma-separated	list	of	parameter	values,	one	for
each	question	mark	in	the	query.

Before	you	configure	a	lookup	query,	consider	the	following:

Tasks	that	avoid	lookup	queries	run	much	more	quickly	than	those	that
use	them.	For	example:

A	task	that	joins	two	tables	in	a	source	SQL	query	runs	faster
than	one	that	looks	up	the	information	from	the	second	table.

Two	separate	Transform	Data	tasks	usually	can	be	run	in	less



time	than	one	that	inserts	data	in	a	second	table	with	a	lookup
query.

In	general	you	should	use	a	lookup	query	only	in	situations	where	there
is	no	alternative.	For	example:

A	source	join	is	impossible	because	data	resides	in	non-SQL
Server™	databases,	or	the	volume	of	data	generated	by	a
source	join	would	exceed	system	capacity.

A	stored	procedure	must	be	called,	or	a	DELETE	or	UPDATE
query	must	be	run.

The	need	for	clarity	outweighs	any	performance	issues.

Lookup	Query	Example

In	this	example,	you	have	source	data	that	includes	a	postal	code	but	no	city.	A
Mail	Codes	table	contains	a	row	for	each	postal	code	and	a	column	for	city
name.	The	procedure	for	including	this	city	name	in	your	destination	rows	is	as
follows:

1.	 Create	and	name	a	connection	to	the	database	containing	the	Mail
Codes	table.

2.	 Write	your	query	statement,	leaving	a	question	mark	in	place	of	the
postal	code	value:
SELECT	City	FROM	MailCodes	WHERE	PostalCode	=	?

When	you	configure	the	lookup	query,	you	are	required	to	provide	a
connection	name	and	a	query	name.	Use	the	connection	you	created	in
step	one,	and	name	your	query	GetCity.

3.	 In	an	ActiveX	Script	transformation,	include	the	following	code	to
execute	your	query	and	place	the	resulting	city	name	in	the	destination
row:
DTSDestination("City")	=					DTSLookups("GetCity").Execute(DTSSource(



The	postal	code	is	drawn	from	the	source	row.	Its	value	replaces	the
question	mark	each	time	the	query	is	executed.

Using	More	Than	One	Argument

Sometimes	a	lookup	query	takes	more	than	one	argument.	For	example,	when:

Required	information	has	a	multiple	column	key.

An	INSERT	or	UPDATE	statement	must	fill	multiple	columns.

To	configure	a	lookup	query	with	multiple	arguments,	you	must:

Include	multiple	parameters	in	your	query	statement.

Provide	values	for	each	parameter	when	you	execute	the	query.

In	this	example,	you	need	to	retrieve	a	city	name,	given	the	postal	code	and
country.	The	GetInternationalCity	query	has	two	parameters:

SELECT	City	FROM	MailCodes	WHERE	PostalCode	=	?	AND	Country	=	?

In	your	ActiveX	script,	values	are	provided	for	the	postal	code	and	the	country:

DTSDestination(City)	=	DTSLookups("GetInternationalCity").Execute	_
			(DTSSource("PostalCode"),	DTSSource("Country"))

Looking	Up	More	Than	One	Value
Sometimes	you	want	to	retrieve	multiple	values	with	a	single	lookup	(for
example,	when	you	have	a	customer	account	number	and	need	a	name	and
address).

Data	Transformation	Services	(DTS)	handles	multiple	columns	in	query	results
by	returning	an	array	of	variants.	Each	entry	in	the	array	holds	one	result	value.
The	index	of	the	first	value	is	0.

In	this	example,	you	need	to	retrieve	a	city	and	a	region,	given	the	postal	code.
The	GetCityAndRegion	query	selects	both	required	columns:



SELECT	City,	Region	FROM	MailCodes	WHERE	PostalCode	=	?

The	returned	values	are	accessed	through	the	following	ActiveX	script	code:

dim	varArray
varArray	=	DTSLookups("GetCityAndRegion").Execute(DTSSource(
DTSDestination("City")	=	varArray(0)
DTSDestination("Region")	=	varArray(1)

See	Also

Data	Driven	Query	Task

DTS	Connections

Transform	Data	Task

Using	ActiveX	Scripts	in	DTS

Using	Parameterized	Queries	in	DTS



Data	Transformation	Services



Managing	Zero	or	Multiple	Result	Rows	in	Lookup
Queries
When	you	run	a	lookup	query,	Data	Transformation	Services	(DTS)	always
returns	the	first	row	in	the	result	set.	Although	you	are	not	given	access	to
succeeding	rows,	you	can	find	out	how	many	rows	were	returned.	This	can	be
useful	when	a	query	returns	zero	or	multiple	rows.

Result	Sets	With	Zero	Rows
Lookup	queries	sometimes	fail	to	return	any	rows.	For	example,	if	you	are
tracking	the	number	of	vacation	days	your	employees	have	taken,	you	might	find
that	some	have	not	taken	any	vacation	days.

When	a	lookup	query	retrieves	zero	rows,	DTS	returns	an	empty	variant.	In
Microsoft®	ActiveX®	code,	you	can	test	for	this	condition	with	the	IsEmpty()
function.

For	example,	the	VacationDays	query	returns	zero	rows	if	the	given	employee
has	taken	zero	vacation	days:

SELECT	EmployeeID	FROM	VacationDay	WHERE	EmployeeID	=	?

Using	this	query,	you	can	skip	over	employees	who	have	not	taken	any	vacation
days	by	using	the	following	ActiveX	script	code:

Dim	LookupResults
LookupResults	=	DTSLookups("VacationDays").Execute(DTSSource(
If	IsEmpty(LookupResults)	Then
			Main	=	DTSTransformStat_SkipRow
Else
			Main	=	DTSTransformStat_OK
End	If

Note		If	all	data	resides	on	a	computer	running	an	instance	of	Microsoft	SQL
Server™,	performance	can	be	improved	by	using	a	source	query,	instead	of	a



lookup	query,	to	filter	out	unwanted	rows.

Result	Sets	With	Multiple	Rows
Lookup	queries	sometimes	return	many	rows.	For	example,	an	employee	may
have	taken	many	vacation	days.

When	a	lookup	query	retrieves	multiple	rows,	DTS	discards	all	but	the	first	row.
If	this	is	acceptable,	you	can	use	the	ORDER	BY	phrase	in	your	query	to	bring
the	most	important	row	to	the	top	of	the	results.	In	any	case,	the	number	of	rows
returned	is	accessible	through	the	LastRowCount	property	of	the	lookup	query.

For	example,	suppose	you	want	to	prepare	a	vacation	day	summary.	The
RecentVacationDays	query	lists	vacation	days	for	one	employee	with	the
most	recent	vacation	day	in	the	first	row:

SELECT	VacationDate	FROM	VacationDay	WHERE	EmployeeID	=	?	
			ORDER	BY	VacationDate	DESC

Then,	the	most	recent	vacation	day	date	and	the	total	number	of	vacation	days
per	employee	are	accessed	with	the	following	ActiveX	script	code:

DTSDestination("LastVacationDate")	=				DTSLookups("RecentVacationDays
DTSDestination("NumberOfVacationDays")	=				DTSLookups("RecentVacationDays

If	an	employee	has	taken	zero	vacation	days,	the	above	code	nulls	the
LastVacationDate	and	sets	NumberOfVacationDays	to	zero.

See	Also

Using	ActiveX	Scripts	in	DTS



Data	Transformation	Services



Using	Lookup	Queries	to	Modify	Data
Lookup	queries	are	not	limited	solely	to	SELECT	statements.	INSERT,
DELETE,	and	UPDATE	statements,	as	well	as	stored	procedure	invocations,	all
can	appear	in	lookup	queries.

The	UpdateEmployee	query	updates	a	value	in	the	Employee	table	when	you
provide	it	an	EmployeeID:

UPDATE	Employee	SET	HasTakenVacation	=	0	WHERE	EmployeeID	=	?

Execute	this	query	for	every	row	in	the	source	rowset	with	the	following
Microsoft®	ActiveX®	script	code:

DTSLookups("UpdateEmployee").Execute(DTSSource("EmployeeID

Note		An	INSERT	query	can	be	used	in	conjunction	with	a	Transform	Data	task
to	split	a	source	rowset,	sending	rows	to	two	different	tables.	However,	when
both	tables	reside	in	Microsoft	SQL	Server™	databases,	this	practice	results	in
longer	execution	times	than	sequentially	running	two	Transform	Data	tasks	with
fast	load	enabled.

See	Also

Using	ActiveX	Scripts	in	DTS



Data	Transformation	Services



Using	Multiple	Lookup	Queries
Data	Transformation	Services	(DTS)	places	no	limitations	on	the	number	of
lookup	queries	that	can	appear	in	a	single	Microsoft®	ActiveX®	Script
transformation.	Therefore,	you	can	use	multiple	lookup	queries	to:

Add,	change,	or	delete	an	account,	depending	on	values	in	a	source
transaction	table.

Carry	out	an	update	only	after	a	query	returns	successfully.

Look	up	dimension	table	keys,	given	corresponding	values	from	an
online	transaction	processing	(OLTP)	system.

Carrying	Out	an	Update

Two	queries,	VacationDays	and	UpdateEmployee,	can	be	combined	to
update	only	those	employees	who	have	taken	no	vacation	days:

Dim	LookupResults
LookupResults	=	DTSLookups("VacationDays").Execute(DTSSource(
If	Not	IsEmpty(LookupResults)	Then
			DTSLookups("UpdateEmployee").Execute(DTSSource("EmployeeID
End	If

Looking	Up	Dimension	Table	Keys
Data	warehouse	dimension	tables	are	often	keyed	with	identity	fields.	These
fields	do	not	necessarily	occur	in	the	OLTP	system	that	provides	facts	for	the
data	warehouse.	For	example,	in	an	OLTP	system,	the	product	might	be	keyed
by	the	SKU	field,	whereas	in	the	data	warehouse,	it	is	keyed	by	the
automatically	generated	ProductID.	Before	a	new	SalesFact	can	be	inserted,	the
SKU	field	must	be	used	to	look	up	the	corresponding	value	of	ProductID	in	the
data	warehouse.



In	the	following	example	code,	the	GetProductID	query	retrieves	a
ProductID,	given	an	SKU	passed	in	as	a	parameter:

SELECT	ProductID	FROM	Product	WHERE	SKU	=	?

In	the	same	way,	a	CustomerID	can	be	retrieved	given	an	account	number.	Here
is	the	GetCustomerID	query:

SELECT	CustomerID	FROM	Customer	WHERE	AccountNumber	=	?

Fill	the	ProductID	and	CustomerID	columns	in	the	SalesFact	table	with	the
following	ActiveX	script	code:

DTSDestination("ProductID")	=	
			DTSLookups("GetProductID").Execute(DTSSource("SKU"))
DTSDestination("CustomerID")	=	
			DTSLookups("GetCustomerID").Execute(DTSSource("AccountNumber

To	look	up	additional	values,	(for	example,	the	StoreID),	add	another	query	and
another	line	of	script	code.

For	more	information	about	queries	that	appear	in	this	example,	see	Managing
Zero	or	Multiple	Result	Rows	in	Lookup	Queries	or	Using	Lookup	Queries	to
Modify	Data.



Data	Transformation	Services



Using	Global	Variables	with	DTS	Packages
When	you	execute	a	Data	Transformation	Services	(DTS)	package,	you	can	save
data	or	a	value	from	a	DTS	step	to	pass	on	to	subsequent	steps.	For	example,	you
can	use	the	saved	data	to	change	the	way	a	subsequent	step	executes	or	to
dynamically	modify	a	SELECT	statement.

When	you	use	global	variables	with	DTS	tasks,	you	can:

Set	a	global	variable	to	the	accounting	month-end	date,	according	to	the
fiscal	calendar	of	the	accounting	department.	You	can	do	this	by	using	a
Microsoft	ActiveX®	Script	task	to	retrieve	the	values	or	by	setting	the
global	variable	to	the	accounting	month-end	dates	during	design	time
and	referencing	during	package	execution.	A	step	inside	the	package
can	use	that	date	to	determine	the	existence	of	a	file	with	that	date	in	its
name.	If	it	exists,	the	step	inserts	the	records	from	that	file	into	a	table.

Alternatively,	the	global	variable	can	be	used	in	a	WHERE	clause	to
determine	the	specific	records	to	be	loaded	(for	example,	only	loading	up
records	that	were	modified	on	that	month-end	date).

You	can	populate	multiple	global	variables	with	data	in	one	pass	with
the	Execute	SQL	task.	Entire	rowsets	also	can	be	saved	in	a	single
global	variable	and	accessed	as	a	disconnected	ActiveX	Data	Objects
(ADO)	recordset.	For	more	information,	see	Execute	SQL	Task.

You	can	then	use	the	global	variable	as	an	in-memory	lookup	table.
With	the	Execute	SQL	task,	issue	a	SELECT	statement	against	a	state
table	and	store	the	results	in	a	global	variable.	Then,	with	the	Transform
Data	task,	for	each	source	row,	call	a	"StateLookup"	function	that
iterates	through	the	global	variable	recordset	and	matches	the	state	code
in	the	source	field	with	the	state	code	in	the	table.	When	there	is	a
match,	store	the	full	name	of	the	state	in	the	destination	column.	For
more	information,	see	Lookup	Queries.

Creating	Global	Variables

You	can	create	global	variables	in	DTS	and	assign	them	values	in	the	following



ways:

During	design	time	by	using:

The	DTS	Package	Properties	dialog	box	in		DTS	Designer.	

The	Execute	SQL	Properties	dialog	box.	For	more
information,	see	Execute	SQL	Task	Properties.

Dynamically	during	package	execution	by:

Using	an	ActiveX	script.

Issuing	a	dtsrun	command	prompt	utility	from	the	command
prompt	and	using	the	/A	command	switch	to	allocate	and
initialize	global	variables.

Scope	of	Global	Variables

Scope	refers	to	the	lifetime	of	the	variable	reference	in	memory.	The	scope
depends	on	where	the	variables	are	declared	or	initialized.	Whether	a	global
variable	is	still	accessible	after	a	package	has	executed	depends	on	how	the
global	variable	was	created.

A	global	variable	created	during	design	time	retains	the	value	it	had	when	the
package	finished	execution,	if	the	package	is	saved.	For	example,	suppose	you
create	the	global	variable,	"city,"	and	set	it	to	the	value	of	"Boston."	During
package	execution,	an	ActiveX	script	changes	the	value	of	"Boston"	to
"Philadelphia."	The	next	time	you	execute	the	package,	the	global	variable	will
contain	"Philadelphia,"	not	"Boston."	This	is	useful	if	you	want	to	query	the
value	of	a	package	global	variable	after	execution.

However,	global	variables	created	dynamically	in	an	ActiveX	script	have	two
scopes.	If	they	are	created	above	the	Function	Main(),	they	are	available	to	all
functions	in	the	script.	This	is	the	equivalent	to	module-level	scope.	If	they	are
declared	within	a	function,	they	are	available	only	inside	that	function.	This	is
equivalent	to	procedure-level	scope.

JavaScript:hhobj_1.Click()


Examples	of	Using	Global	Variables	in	DTS	Packages
The	following	examples	show	you	how	to	create,	set,	retrieve,	and	use	the	values
of	global	variables	in	a	DTS	package	by	using	an	ActiveX	script.

Creating	a	Global	Variable	Dynamically	from	an	ActiveX	Script
If	a	global	variable	does	not	exist	when	the	package	is	run,	you	can	create	one
dynamically	by	using	an	ActiveX	script.	To	create	a	new	global	variable	called
"city"	and	assign	it	a	value	of	"Boston",	use	the	following	Microsoft	Visual
Basic®	Scripting	Edition	(VBScript)	code:

			DTSGlobalVariables("city").value	=	"Boston"

You	can	dynamically	create	a	COM	object	and	store	it	in	a	global	variable	from
within	an	ActiveX	script.	In	the	following	example,	VBScript	code	is	used	to
create	an	ADO	connection,	which	can	be	used	by	scripts	in	the	package	to
execute	SQL	commands	and	examine	ADO	recordsets.	In	this	example,	a	year-
to-date	sales	table	containing	a	Totals	field	in	the	pubs	database	is	created:

Function	Main()
			dim	conn
			set	DTSGlobalVariables("MyConn").value	=	CreateObject("ADODB.Connection")

			set	conn	=	DTSGlobalVariables("MyConn").value
			conn.provider="sqloledb"
			conn.open		"(local)",	"sa",	""
			conn.DefaultDatabase	=	"pubs"
			conn.execute("Create	Table	YTDSales	(Totals	int)")
			Main	=	DTSTaskExecResult_Success
End	Function

The	following	code	example	shows	you	how	to	create	the	year-to-date	sales
table	using	Microsoft	JScript®:

function	Main()
{



DTSGlobalVariables("MyConn").value	=	CreateObject("ADODB.Connection");
conn	=	DTSGlobalVariables("MyConn").value;

conn.open	=	("provider	=	sqloledb;	data	source	=	(local);user	id	=	sa");
conn.DefaultDatabase	=	"pubs";
conn.execute("Create	Table	YTDSales	(Totals	int)");

		return(DTSTaskExecResult_Success)
}

Setting	the	Value	of	a	Global	Variable	Dynamically	from	an
ActiveX	Script
The	following	ActiveX	script	code,	written	in	VBScript,	sets	the	value	of	a
global	variable	named	count	to	200:

			DTSGlobalVariables("count").value	=	200

Getting	a	Global	Variable	Dynamically	from	an	ActiveX	Script
The	following	ActiveX	script	code,	written	in	VBScript,	gets	the	value	of	a
global	variable	named	count	and	saves	the	value	in	a	variable	named
globalCount:

			globalCount	=	DTSGlobalVariables("count").value

Using	a	Global	Variable	Dynamically	from	an	ActiveX	Script
The	following	code	concatenates	the	value	of	a	column	containing	a	file	name
with	a	global	variable	containing	the	Julian	date,	and	stores	the	new	results	in	the
filename	column	in	a	destination	table:

			DTSDestination("FileName")	=	DTSSource("FileName")	&				DTSGlobalVariable("julianDate").value

See	Also

Adding	DTS	Lookups	and	Global	Variables

JavaScript:hhobj_2.Click()


dtsrun	Utility

JavaScript:hhobj_3.Click()


Data	Transformation	Services



Using	Parameterized	Queries	in	DTS
Parameterized	queries	are	SQL	queries	written	for	reusability.	They	contain
parameter	markers	as	placeholders	for	data	that	will	change	from	execution	to
execution.	In	the	Data	Transformation	Services	(DTS)	tasks	that	use
parameterized	queries,	the	placeholder	syntax	is	a	question	mark.	The	following
is	an	example	of	a	parameterized	query:

INSERT	INTO	Account	(CustomerID,	CompanyName)	VALUES	(?,	?)

The	following	DTS	tasks	make	use	of	parameterized	queries:

Execute	SQL	task

Data	Driven	Query	task	

Transform	Data	task

Lookup	queries,	which	you	can	include	in	Microsoft®	ActiveX®	script
transformations	in	a	Data	Driven	Query	or	Transform	Data	task,	make	use	of
parameters	to	retrieve	information	from	an	additional	connection.	For	more
information,	see	Lookup	Queries.

Input	Parameters	to	DTS	Tasks
All	the	tasks	above	can	execute	SQL	queries	written	with	parameters	if	the
source	that	the	query	is	running	against	supports	it.	You	can	map	variables	into
the	SQL	parameters.	The	Data	Driven	Query	task	can	bring	in	data	from	a	text
file,	global	variable,	or	the	source	data	as	input	to	its	parameter	set.	The
Transform	Data	task	can	use	only	global	variables	as	input	to	source	data
queries.	Lookup	queries	can	use	data	from	a	text	file,	global	variable,	or	other
source	data	fields	as	input.	However,	the	Execute	SQL	task	can	use	only	global
variables	as	input	to	its	parameterized	queries.	For	more	information,	see	Data
Driven	Query	Task,	Transform	Data	Task,	and	Lookup	Queries.



Output	Parameters	to	DTS	Tasks
The	Execute	SQL	task	can	save	the	results	of	a	query	to	a	global	variable.	You
can	use	the	task	to	save	the	data	in	several	formats.	For	more	information	about
these	formats,	see	Execute	SQL	Task.

The	Transform	Data	and	Data	Driven	Query	tasks	can	save	query	results	into	a
table	destination	column,	or	a	variable.	You	can	also	save	data	to	an	array	when
using	a	Lookup	query.



Data	Transformation	Services



Querying	a	DTS	Package	from	External	Sources
Data	Transformation	Services	(DTS)	package	data	can	be	made	available	to	an
external	source,	such	as	SQL	Query	Analyzer,	by:

Querying	a	package	step	associated	with	a	transformation	with	the
Transact-SQL	OPENROWSET	statement.

Defining	the	package	as	a	linked	server	and	joining	package	data	in	a
distributed	query.

When	querying	package	rowset	data,	the	following	conditions	apply:

The	package	supplying	the	data	must	be	launched	by	the	application
getting	the	package	data.	You	do	not	execute	the	package	to	send	the
data	to	the	requesting	application	or	process.

You	can	only	query	a	package	step	associated	with	a	Transform	Data
task.

The	package	must	have	destination	columns	to	bind	to;	the	destination
cannot	be	a	text	file.

In	DTS	Designer,	you	make	package	data	available	by	selecting	the	DSO	rowset
provider	check	box	(on	the	Options	tab	of	the	Workflow	Properties	dialog
box)	for	a	package	step	associated	with	a	Transform	Data	task.	The	data	from
that	task	then	becomes	available	to	an	external	data	consumer.

Enable	the	DSO	rowset	provider	check	box	only	for	packages	that	you	intend
to	query.	After	the	option	is	set,	the	package	step	where	you	set	the	option	does
not	complete	execution	when	the	package	is	run	normally.	While	the	flag	is	set
that	pump	task	can	only	be	accessed	through	OPENROWSET.

Note		These	methods	are	used	typically	to	query	packages	from	an	external
source;	however,	you	can	also	query	other	packages	from	within	a	package	by
issuing	OPENROWSET	queries	and	distributed	queries	in	an	Execute	SQL	task



or	as	the	source	for	another	Transform	Data	task.

See	Also

OPENROWSET

Transform	Data	Task

Using	SQL	Query	Analyzer

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()


Data	Transformation	Services



Querying	a	Package	with	OPENROWSET
You	can	run	queries	against	a	Data	Transformation	Services	(DTS)	package	by
using	a	Transact-SQL	OPENROWSET	statement.

To	prepare	a	package	to	serve	as	a	data	source,	select	the	DSO	rowset	provider
check	box	(on	the	Options	tab	of	the	Workflow	Properties	dialog	box)	for	a
package	step.

Before	querying	a	package	with	OPENROWSET,	consider	the	following:

DTS	uses	its	own	OLE	DB	provider,	DTSPackageDSO.	When	you	use
OPENROWSET,	you	only	specify	its	provider_name,	provider_string,
and	query	arguments:

Use	'DTSPackageDSO'	for	the	provider_name	argument.

Use	any	combination	of	dtsrun	command	switches	necessary
to	describe	the	package	for	the	provider_string	argument.	For
more	information	about	the	dtsrun	command	switches,	see
dtsrun	Utility.

Use	either	'SELECT	*',	'SELECT	*	FROM	<package	name>',
or	'SELECT	*	FROM	<package	step	name>'	for	the	query
argument.

If	you	select	the	DSO	rowset	provider	option	for	more	than	one	step	in
a	package,	you	need	to	specify	the	package	step	name	in	the
OPENROWSET	query	argument.	The	package	step	name	can	be	copied
from	the	Options	tab	of	the	Workflow	Properties	dialog	box	for	the
step	whose	data	you	want	to	query.

If	you	saved	multiple	versions	of	the	package,	you	can	specify	the
package	version	using	the	dtsrun	command	switch
/vpackage_version_guid_string.	If	you	do	not	specify	a	package
version,	the	last-saved	version	is	used.

JavaScript:hhobj_1.Click()


For	more	information	about	using	the	Transact-SQL	OPENROWSET	statement,
see	OPENROWSET.

Querying	a	Package	Saved	to	a	File
Suppose	you	want	to	use	SQL	Query	Analyzer	to	query	a	package	saved	to	the
package	Dso.dts	on	your	local	server.	Use	the	following	query	statement:

SELECT	*	FROM	OPENROWSET('DTSPackageDSO',	'/FC:\Dts\Dso.dts',	'Select	*')

In	the	OPENROWSET	statement:

The	provider_name	argument	is	always	DTSPackageDSO,	an	entry	in
the	registry	that	functions	as	the	package	OLE	DB	provider.	

The	provider_string	argument	contains	the	structured	storage	file	name,
preceded	by	the	/F	dtsrun	command	switch.

The	query	argument	is	a	SELECT	*	statement	used	to	pass	through	the
rowset	data.

If	you	selected	the	DSO	rowset	provider	check	box	for	more	than	one
Transform	Data	task	in	the	above	package,	you	can	use	the	following	code	to
query	the	second	package	step	in	Dso.dts:

SELECT	*	FROM	OPENROWSET('DTSPackageDSO',	'/FC:\Dts\Dso.dts',
																		'SELECT	*	FROM	DTSStep_DTSDataPumpTask_2')

Querying	a	Package	Saved	to	SQL	Server
In	the	following	example,	the	package,	Sqlpackage,	is	saved	to	an	instance	of
Microsoft®	SQL	Server™	running	on	your	local	server.	To	query	the	package
using	SQL	Query	Analyzer,	use	the	following	query	statement:

SELECT	*	FROM	OPENROWSET('DTSPackageDSO',	'/Usa	/P	/S	/NSqlpackage',	'Select	*')

In	the	OPENROWSET	statement:

The	provider_name	argument	is	always	DTSPackageDSO.	

JavaScript:hhobj_2.Click()


The	provider_string	argument	contains	the	following	dtsrun	command
switches:	/U	for	the	user	ID,	/P	for	the	password	(blank	here),	/S	for	the
network	name	of	the	server	(if	the	server	is	local,	server_name	can	be
omitted,	as	shown	here),	/N	for	the	name	of	the	SQL	Server	package.

The	query	argument	is	a	SELECT	*	statement	used	to	pass	through	the
rowset	data.

If	you	save	multiple	versions	of	this	package	and	want	to	reference	a	specific
version,	you	need	to	include	the	version	globally	unique	identifier	(GUID)	string
after	the	/V	dtsrun	command	switch.	The	version	GUID	can	be	obtained	from
the	General	tab	of	the	DTS	Package	Properties	dialog	box.	Use	the	following
code	to	querying	a	version	of	the	package	described	above:

SELECT	*	FROM	OPENROWSET('DTSPackageDSO',
						'/Usa	/P	/S	/Nsqlpackage	/V{3C904BA2-4E83-11D2-BB38-00C04FA35397}',
						'Select	*')



Data	Transformation	Services



Issuing	Distributed	Queries	Against	Package	Data
You	can	register	a	Data	Transformation	Services	(DTS)	package	as	a	linked
server	and	issue	a	distributed	query	against	the	package.	This	capability	allows
you	to	consolidate	data	from	diverse	sources	(for	example,	from	Oracle	and	DB2
data	sources)	in	a	single	package,	transform	that	data,	and	expose	the	results	of
the	transformed	distributed	query	to	any	outside	data	consumer.

To	issue	a	distributed	query	against	package	data,	you	need	to	define	the	package
as	a	linked	server	through	the	sp_addlinkedserver	stored	procedure.	The
following	example	code	illustrates	how	to	use	sp_addlinkedserver	against	a
DTS	package:

sp_addlinkedserver	'DTSOLEDBPkg',	'PackageName',	'DTSPackageDSO',	'/FC:\Dts\Dts01.dts')

In	the	sp_addlinkedserver	command:

DTSOLEDBPkg	is	the	name	of	the	linked	server	you	want	to	create.	

PackageName	is	the	product	name	of	the	OLE	DB	data	source;	in	this
context,	you	can	provide	any	name	or	a	null	string.

DTSPackageDSO	is	the	name	of	the	DTS	package	OLE	DB	Provider.

The	last	argument	specifies	the	location	of	the	file,	DTS01.dts.

After	you	have	defined	the	package	as	a	linked	server,	you	can	execute
distributed	queries	that	include	the	package	as	a	data	source.	Following	is	an
example	of	a	distributed	query.	It	performs	a	join	operation	on	the	Orders	table
in	the	Northwind	database	with	a	package	that	gets	data	from	a	Customer	table
on	an	Oracle	server.	The	query	assumes	the	Orders	and	Customers	tables	have
a	common	key,	which	is	CustomerID.

SELECT	a.OrderID,	a.CustomerID,	a.OrderDate,	b.Companyname,	b.Region
FROM	Orders	AS	a,	dtsLink...packageNameOracle	AS	b
WHERE	a.CustomerID	=	b.CustomerID



In	the	above	query,	packageNameOracle	is	the	DTS	package	name.	However,
you	can	use	a	package	step	name	when	multiple	steps	in	a	package	serve	as	data
sources.

See	Also

Configuring	Linked	Servers

Configuring	OLE	DB	Providers	for	Distributed	Queries

sp_addlinkedserver

JavaScript:hhobj_1.Click()
JavaScript:hhobj_2.Click()
JavaScript:hhobj_3.Click()


Data	Transformation	Services



Sharing	Meta	Data
Data	Transformation	Services	(DTS)	Designer	provides	features	for	saving
package	meta	data	and	data	lineage	information	to	Microsoft®	SQL	Server™
2000	Meta	Data	Services.	You	can	store	catalog	meta	data	for	databases
referenced	in	a	package	and	accounting	information	about	the	package	version
history	of	a	particular	row	of	data	for	your	data	mart	or	data	warehouse.

DTS	Designer	uses	its	own	information	model,	the	DTS	Information	Model,	for
structuring	package	meta	data	and	data	lineage	information	and	saving	it	to	Meta
Data	Services.

To	browse	the	data	lineage	and	meta	data	information	generated	by	DTS
Designer,	use	the	DTS	Browser	found	in	SQL	Server	Enterprise	Manager
(available	through	the	console	tree,	under	Data	Transformation	Services,	in	the
Meta	Data	node).	This	tool	allows	you	to	explore	the	meta	data	and	version
history	of	a	package	and	to	look	up	the	specific	package	version	that	generated	a
row	of	data.

For	more	information,	search	under	Meta	Data	Services	at	Microsoft	Web	site.

See	Also

Saving	a	DTS	Package	to	Meta	Data	Services

http://www.microsoft.com/isapi/redir.dll?Prd=msdn&Ar=msdn&O1=red


Data	Transformation	Services



DTS	Information	Model
Data	Transformation	Services	(DTS)	uses	the	DTS	Information	Model	to	persist
data	transformation	meta	data	in	Microsoft®	SQL	Server™	2000	Meta	Data
Services.	The	DTS	Information	Model	is	based	on	the	Transformations	package
of	the	Open	Information	Model	(OIM).

The	DTS	Information	Model	describes:

The	data	transformations	and	how	they	are	grouped	into	larger
execution	units.

The	types	of	data	accessed.

Specifically,	the	DTS	Information	Model	allows:

The	storage	of	data	transformation	meta	data	in	one	well-defined
location.	Storing	this	information	in	Meta	Data	Services	allows	existing
transformations	to	be	reused	when	a	data	warehouse	or	data	mart	is
being	rebuilt.

The	sharing	of	data	transformation	information	across	multiple	tools.
This	allows	the	use	of	tools	from	different	vendors	during	the	building
and	maintenance	of	data	warehouses.

For	more	information,	search	under	Meta	Data	Services	at	Microsoft	Web	site.

Upgrading	Meta	Data	Services	Information	Models
When	you	upgrade	to	SQL	Server	2000,	you	must	also	upgrade	the	Meta	Data
Services	Information	Models	in	order	to	save	and	retrieve	DTS	package	versions
to	and	from	Meta	Data	Services.	Otherwise,	you	will	receive	an	error	when	you
save	to	Meta	Data	Services.

Upgrading	the	information	models	modifies	the	Meta	Data	Services	table
structure	to	support	additional	functionality	and	features	provided	by	SQL	Server
2000	Meta	Data	Services.	In	an	upgrade,	existing	repository	data	is	preserved	in

http://www.microsoft.com/isapi/redir.dll?Prd=sql&Ar=home


the	new	table	structure.

Before	you	upgrade	the	information	models,	install	SQL	Server	2000.	SQL
Server	2000	contains	the	most	recent	DLL	and	EXE	versions	of	Insrepim,	the
model	installation	program.

To	upgrade	information	models,	you	need	the	following:

The	SQL	Server	2000	CD	or	an	equivalent	installation	directory	that
contains	the	information	models	required	by	DTS.	To	locate	the
information	models,	search	for	*.rdm	files	on	the	SQL	Server	2000	CD.

Insrepim.exe,	the	model	installation	program	that	creates	or	updates	the
Meta	Data	Services	tables	and	installs	information	models.	When	you
upgrade	to	SQL	Server	2000,	this	program	is	installed	on	your
computer.

A	batch	file	to	install	the	models.	This	file	must	reside	in	the	directory
that	contains	the	insrepim.exe	file.	After	you	create	the	batch	file,	run	it
from	a	command	prompt.

Creating	an	Installation	Batch	File

Replace	the	<placeholder>	values	in	the	following	batch	file	text	with	real
values	that	apply	to	your	system.	For	example:

<path>	must	be	the	path	to	the	CD	or	to	the	installation	directory.	

<servername>	must	the	name	of	the	SQL	Server.

<sa>	must	be	the	SQL	Server	system	administrator	login.	If	you	are
using	Windows	Authentication,	do	not	specify	this	parameter.

<password>	must	be	the	SQL	Server	system	administrator	password.	If
you	are	using	Windows	Authentication,	do	not	specify	this	parameter.



Information	models	must	be	installed	in	the	exact	order	shown	below.	The	lines
headed	with	REM	are	comments:
REM		Usage:		InsRepIM.exe	

REM		Syntax:		/f[Model	File]	/r[Repository	connect	string]	/u[User]	/p[Password]

REM		

insrepim.exe	/f<path>\uml.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\umx.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\gen.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\dtm.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\dbm.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\tfm.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\dts.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\sql.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\db2.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\ocl.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\ifx.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\olp.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\mds.rdm	/rserver=<servername>;database=msdb	/u<

insrepim.exe	/f<path>\sim.rdm	/rserver=<servername>;database=msdb	/u<sa>	/p<password>

See	Also

OIM	in	Meta	Data	Services

JavaScript:hhobj_1.Click()


Data	Transformation	Services



Recording	Data	Lineage	in	DTS
Design	a	plan	before	implementing	and	using	data	lineage	information.	Base
your	plan	on	factors	such	as	auditing	needs,	the	amount	of	lineage	data	that	can
be	managed,	performance	considerations,	and	whether	you	need	to	track	row-	or
column-level	lineage,	or	both.

If	you	save	a	Data	Transformation	Services	(DTS)	package	to	Microsoft®	SQL
Server™	2000	Meta	Data	Services,	you	can	record	and	track	two	types	of	data
lineage:

Row-level	data	lineage,	which	reveals	the	source	of	any	piece	of	data
and	the	transformations	applied	to	that	data.	This	data	lineage	can	be
tracked	at	the	package	and	row	levels	of	a	table	and	provides	a	complete
audit	trail	of	data	transformation	and	DTS	package	execution
information.	In	Meta	Data	Services,	an	object	associated	with	this	type
of	lineage	contains	lineage	values	(package	execution	globally	unique
identifiers),	the	user	name	and	server	name	for	package	execution,	and
the	time	of	execution.

Column-level	data	lineage,	which	provides	information	about	a	package
version	and	the	database	tables	and	columns	the	package	uses	as	a
source	or	destination	(if	any).	You	can	browse	packages	and	package
versions	that	use	a	specific	column	as	a	source	or	destination,	and	check
to	see	whether	a	specific	column	is	used	as	a	source	or	destination	in
any	package	saved	to	Meta	Data	Services.

Use	the	DTS	Browser	to	display	data	lineage	information.	For	more	information,
see	Viewing	Meta	Data	in	DTS.

Implementing	Row-Level	Data	Lineage
These	are	the	steps	for	implementing	row-level	data	lineage:

1.	 Connect	to	and	import	meta	data	from	the	database	whose	tables	will
be	used	by	the	package	as	a	source	or	destination.



To	import	the	meta	data,	use	either	the	DTS	Browser	or	right-click
Import	Meta	Data	on	either	the	Meta	Data	Services	Packages	or
Meta	Data	nodes	in	SQL	Server	Enterprise	Manager.

2.	 Create	the	table	columns	in	your	data	warehouse	for	receiving	row-
level	data	lineage	information.	DTS	maintains	the	following	lineage
identifiers	for	each	package	execution:

A	short	(integer)	value,	which	is	the	package	version
checksum.

A	long	(uniqueidentifier)	value,	which	is	the	globally	unique
identifier	(GUID)	of	the	package	version.

The	short	lineage	value	occupies	less	space	in	the	destination	table	but
is	potentially	less	unique.	Either	one	or	both	of	these	values	need	to	be
written	to	columns	in	your	data	mart	or	data	warehouse.

3.	 Select	the	data	lineage	options	in	DTS	Designer.

These	options	can	be	found	on	the	Advanced	tab	of	the	DTS	Package
Properties	dialog	box.	After	you	have	turned	on	the	data	lineage
options	in	a	package,	the	two	lineage	values	(GUIDs)	are	available
when	you	configure	a	Transform	Data	task	and	Data	Driven	Query
task.

4.	 Map	the	data	lineage	source	columns	to	destination	columns	in	DTS
Designer.

You	configure	the	lineage	columns	on	the	Transformations	tab	for
these	tasks	and	on	the	tabs	of	the	Transformation	Options	dialog
box.

5.	 Save	the	package	containing	the	data	lineage	information	to	Meta
Data	Services.

6.	 Execute	the	package.

Implementing	Column-Level	Data	Lineage



These	are	the	steps	for	implementing	column-level	data	lineage:

1.	 Create	a	DTS	package	containing	at	least	one	transformation	task.

2.	 Save	the	package	to	Meta	Data	Services.

3.	 Scan	the	meta	data.	During	the	save	operation,	click	Scanning,	and	in
the	Scanning	Options	dialog	box,	click	Resolve	package	references
to	scanned	catalog	metadata	to	save	the	meta	data,	and	link	the
package	meta	data	to	a	repository	database.

For	more	information,	see	Importing	and	Saving	Meta	Data	in	DTS.



Data	Transformation	Services



Importing	and	Saving	Meta	Data	in	DTS
You	can	import	meta	data	to	Microsoft®	SQL	Server™	2000	Meta	Data
Services	through	SQL	Server	Enterprise	Manager	or	by	using	the	Data
Transformation	Services	(DTS)	scanning	options.	When	you	import	meta	data
using	SQL	Server	Enterprise	Manager,	you	read	the	meta	data	from	only	one
database.	You	can	read	the	meta	data	from	all	referenced	databases	in	a	package
by	selecting	the	Scan	all	referenced	catalogs	check	box	in	the	Scanning
Options	dialog	box.

Note		For	the	import	of	meta	data	to	work,	the	data	provider	specified	must
support	OLE	DB	schema	rowsets.

The	OLE	DB	scanner	for	Meta	Data	Services	is	a	utility	that	imports	database
schema	from	an	OLE	DB	data	source.	The	scanner	is	passed	an	OLE	DB
provider,	examines	the	schema,	and	creates	a	set	of	corresponding	instance
objects	in	Meta	Data	Services.

If	you	save	package	information	to	Meta	Data	Services,	you	can	save	meta	data
about	the	databases	referenced	in	the	package,	such	as:

Primary	and	foreign	keys.

Column	type,	size,	precision,	scale,	and	nullability	information.

Indexes.

You	can	view	meta	data	information	saved	to	Meta	Data	Services	through	the
DTS	Browser.	For	more	information,	see	Viewing	Meta	Data	in	DTS.

See	Also

Using	OLE	DB	Scanner

JavaScript:hhobj_1.Click()


Data	Transformation	Services



Viewing	Meta	Data	in	DTS
Data	Transformation	Services	(DTS)	allows	you	to	view	meta	data	in	SQL
Server	Enterprise	Manager	(through	the	console	tree,	under	Data
Transformation	Services,	in	the	Meta	Data	node).	You	can:

Generate	a	hierarchical	display	of	the	meta	data	for	any	databases
scanned	to	Microsoft®	SQL	Server™	2000	Meta	Data	Services,	and
jump	to	information	on	the	DTS	packages	that	reference	the	meta	data.
If	you	regularly	scan	changes	to	catalog	meta	data,	this	display	provides
useful	historical	information	on	changes	to	the	meta	data.	You	can
display	the	properties	of	a	package	version	associated	with	any	item	of
meta	data,	and	a	version	history	of	those	packages.

Retrieve	the	specific	version	and	date	of	a	package	that	populated	a	row
of	data.	If	you	are	tracking	data	lineage	for	a	package,	the	DTS	Browser
lets	you	enter	the	lineage	tracking	number	for	a	row	of	data	to	identify
the	package	that	created	the	row.	For	more	information,	see	Recording
Data	Lineage	in	DTS.

Browse	through	package	versions	saved	to	Meta	Data	Services	and
update	packages.	You	can	display	a	version	history	of	each	package,
view	the	properties	of	a	selected	package	version,	and	open	and	update
a	package	version.	



Data	Transformation	Services



Usage	Considerations	in	DTS
This	section	describes	specific	data	conversion	and	data	transformation	issues
that	may	arise	when	using	Data	Transformation	Services	(DTS)	and	supplies
additional	DTS	error	information.

Topic Description
Enhancing	Performance	of	DTS
Packages

Describes	ways	to	enhance	the
performance	of	DTS	packages.

Data	Conversion	and
Transformation	Considerations

Details	the	interactions	between	individual
providers	and	DTS.

DTS	Driver	Support	for
Heterogeneous	Data	Types

Lists	the	ODBC	drivers	and	OLE	DB
providers	supplied	by	SQL	Server	to
perform	distributed	operations	against
heterogeneous	data	sources.

Enhancing	Data	Driven	Queries
in	DTS

Describes	error	handling	issues,	and	issues
regarding	the	use	of	transactions,	lookups,
and	connections	with	a	Data	Driven	Query
task.

Enhancing	Lookup	Queries	in
DTS

Lists	issues	and	implementation	details
you	should	consider	when	using	lookup
queries	in	a	DTS	package.



Data	Transformation	Services



Enhancing	Performance	of	DTS	Packages
There	are	a	number	of	factors	that	can	affect	the	performance	of	Data
Transformation	Services	(DTS)	packages.

Using	ActiveX	Scripts
Depending	on	the	type	of	transformation	and	your	choice	of	scripting	language,
data	pump	operations	that	use	Microsoft®	ActiveX®	transformation	scripts	can
be	up	to	two	to	four	times	slower	than	copy	operations.

Using	ordinal	values	to	refer	to	columns	in	ActiveX	transformations	can	be
much	faster	then	referring	to	columns	by	name.	For	example,	use:

DTSSource(1)	

instead	of:

DTSSource("CustomerID").

This	speed	improvement	is	not	significant	when	the	number	of	columns	is	less
then	20,	but	can	become	significant	when	the	transformation	contains	many
columns.	For	fewer	columns,	ignore	this	optimization	to	make	the	script	easier	to
read.

In	addition,	scripts	written	in	Microsoft	Visual	Basic®	Scripting	Edition
(VBScript)	run	approximately	10	percent	faster	than	scripts	written	in	Microsoft
JScript®,	which	in	turn	run	approximately	10	percent	faster	than	scripts	written
in	PerlScript.

Enhancing	Data	Pump	Performance
The	data	pump	is	the	transformation	component	of	the	Transform	Data	task	and
the	Data	Driven	Query	task.	When	you	use	these	tasks	to	transform	data,	you
may	be	able	to	enhance	performance	when:

There	are	large	amounts	of	data.	



The	transformations	are	numerous.	

The	scripting	code	is	complex.

To	improve	performance	in	these	situations,	use	many-to-many	mappings
whenever	possible.	That	way,	you	avoid	mapping	a	separate	transformation
function	for	each	column.	The	script	engine	is	not	invoked	for	each
transformation.	As	a	result,	performance	is	faster.	For	more	information	about
the	column	mappings	used	with	transformations,	see	Mapping	Column
Transformations.

The	DTS	Import/Export	Wizard	creates	packages	with	many-to-many	column
mappings.	However,	by	default,	the	DTS	Designer	assigns	one-to-one	column
mappings	to	transformations	in	order	to	improve	readability.	Therefore,	when
using	DTS	Designer,	consider	remapping	as	many	transformations	as	possible	to
a	many-to-many	configuration.	As	with	the	use	of	ordinals	in	scripts,	this
optimization	becomes	more	noticeable	as	the	number	of	transformations
increases.	In	general,	if	you	have	more	than	20	transformations,	you	can	see	a
noticeable	performance	decrease.

Data	Driven	Query	Task	vs.	Transform	Data	Task
When	Microsoft	SQL	Server™	is	a	data	destination	of	the	Transform	Data	task,
transformations,	by	default,	use	the	IRowsetFastLoad	interface.	When	SQL
Server	is	not	the	destination,	the	Transform	Data	task	uses	the	IRowsetChange
interface	(typically,	sending	INSERT	statements).

Transformations	in	the	Data	Driven	Query	task	use	the	ICommand	interface	on
the	destination	using	prepared	insert	operations.	This	might	be	faster	than	the
IRowsetChange	interface	that	transformations	in	the	Transform	Data	task	use,
depending	on	how	your	destination	OLE	DB	provider	implements	the	interfaces.
However,	transformations	using	the	ICommand	interface	or	the
IRowsetChange	interface	will	not	show	better	performance	than
transformations	using	the	IRowsetFastLoad	interface.

Using	Bulk	Insert	and	bcp
The	Bulk	Insert	task	creates	and	executes	the	Transact-SQL	BULK	INSERT



statement.	BULK	INSERT,	supported	by	the	Microsoft	OLE	DB	Provider	for
SQL	Server,	is	significantly	faster	than	bcp	or	the	data	pump	for	performing	text
file	import	operations.	Therefore,	if	transformations	are	not	used,	use	the	Bulk
Insert	task	and	achieve	faster	throughput.

The	BULK	INSERT	statement	is	limited	to	file	import	operations.

When	importing	data,	bcp	and	DTS	copy	operations	are	approximately	the	same
speed.	However,	when	exporting	data,	bcp	operations	can	be	approximately
three	to	six	times	faster.	Native	bcp,	which	only	applies	to	SQL	Server	data,	is
faster	than	the	DTS	data	pump.	BULK	INSERT	and	native	bcp	are	comparable
in	speed.

Using	Connections
Use	the	ExecuteOnMainThread	property	only	when	necessary	(for	example,
with	drivers	that	are	not	thread-safe).	Always	avoid	using
ExecuteOnMainThread	in	ActiveX	scripts	to	achieve	concurrency	unless	the
package	or	package	step	includes:

Precedence	constraints,	which	may	affect	the	order	of	operation	of	a
DTS	package.

Scripts	that	call	COM	objects	written	in	Visual	Basic.

Custom	tasks	that	are	not	free	threaded.

For	safety,	only	one	task	can	use	a	connection	at	a	time.	To	achieve	parallel
execution,	you	must	set	up	different	connections	for	each	task.	For	example,	a
source	(A)	might	connect	to	two	destinations	(C)	and	(D),	but	the	operation
occurs	serially.	The	same	source	(A)	could	also	be	configured	as	(B),	and
parallelism	could	be	achieved	by	(A)	connecting	to	(C)	and	(B)	connecting	to
(D).

However,	if	two	tasks	join	the	package	transaction	and	then	access	the	same
instance	of	SQL	Server	in	parallel,	the	package	will	fail.	For	more	information,
see	Incorporating	Transactions	in	a	DTS	Package.

By	default,	the	maximum	number	of	concurrent	steps	is	four.	Use	the



MaxConcurrentSteps	property	to	modify	this	setting.

Using	Other	SQL	Server	Solutions
A	Transact-SQL	query	is	the	fastest	method	to	move	data	without
transformations	or	validations	between	tables.	For	multiple	sources,	consider
running	a	distributed	query	such	as	a	SELECT	INTO	statement.

In	an	environment	using	multiple	packages,	each	DTS	package	must	be	run	as	a
separate	process	using	dtsrun	in	either	a	batch	operation	or	using	SQL	Server
Agent.	This	makes	DTS	a	client	process.	If	you	must	run	a	large	number	of
packages	(for	example,	1,000	or	more)	as	a	server	process,	consider	using	SQL
Server	2000	replication,	which	provides	snapshot,	transactional,	and	merge
capabilities.	Also,	consider	using	SQL	Server	2000	replication	if	your	primary
task	is	copying	just	the	SQL	Server	data	that	has	changed.

Improving	Query	Performance	on	Large	DTS	Packages	Stored	in
a	Repository
When	you	query	a	large	DTS	package	that	is	stored	in	a	SQL	Server	2000	Meta
Data	Services	repository,	you	can	achieve	better	results	if	you	increase	the	query
time-out	value.	This	ensures	that	your	query	has	time	to	complete	the	roundtrip
from	the	repository	database,	even	if	the	DTS	package	is	very	large.	By	default,
the	query	time-out	value	is	10	seconds.	Adjust	the	query	time-out	value	by
creating	the	following	registry	key:
HKEY_LOCALMACHINE\SOFTWARE\Microsoft\Repository\Engine\ODBCQueryTimeout.
For	this	key,	set	a	value	that	is	larger	than	the	default	(for	example,	60	seconds
or	greater).	The	unit	measurement	is	in	seconds.



Data	Transformation	Services



Data	Conversion	and	Transformation	Considerations
Before	using	Data	Transformation	Services	(DTS)	to	convert	or	transform	data
between	heterogeneous	data	and	destinations,	consider	these	variations	in	the
way	different	programs,	providers,	and	drivers	support	data	types	and	SQL
statements.

When	using	Microsoft®	SQL	Server™	as	a	data	source,	consider	the	following:

Transforming	the	real	data	type	into	the	int	data	type	may	not	return	the
exact	value	because	SQL	Server	2000	supports	only	six	digits	of
precision	for	the	real	data	type.	For	example,	the	real	number
2147480000	may	result	in	an	int	value	of	2147480065.	

When	transforming	a	string	(DBTYPE_WSTR)	into	a	date
(DBTYPE_DATE)	or	time	(DBTYPE_TIME)	column	from	a	text	file,
only	one	date	or	time	format	(yyyy-mm-dd	hh:mm:ss.fffffffff)	is	accepted
by	the	OLE	DB	data	conversion	service	component.	Use	the	Date	Time
String	transformation,	or	code	a	Microsoft	ActiveX®	script	transform
using	the	CDate	function	to	transform	dates	correctly.

SQL	Server	2000	does	not	support	OLE	DB	types	DBTYPE_DATE	or
DBTYPE_TIME.	SQL	Server	2000	only	supports
DBTYPE_DATETIME.	

To	access	data	across	multiple	steps,	avoid	using	a	temp	table	during
transformations.	Instead,	use	a	global	temp	table	or	create	a	permanent
table	in	tempdb.	

Stored	procedures	that	return	rows	from	temp	tables	cannot	be	used	as
the	source	of	a	transformation.	You	can	use	stored	procedures	that
return	rows	from	a	global	temp	table	or	table.

When	using	temporary	tables	in	the	Transform	Data	task,	the	Data



Driven	Query	task,	or	the	Execute	SQL	task	in	DTS	Designer,	be	aware
that	you	cannot	use	a	Transact-SQL	statement	or	stored	procedure	that
calls	a	temp	table	as	your	source.

This	limitation	does	not	apply	outside	of	DTS	Designer.	You	can	use	source
statements	or	stored	procedures	that	access	SQL	Server	temp	tables
programmatically.

DTS	Import/Export	Wizard	and	DTS	Designer
When	using	the	DTS	Import/Export	Wizard	and	DTS	Designer	to	create
packages,	consider	the	following:

The	DTS	user	interface	allows	sharing	existing	connections	among
tasks	but	the	same	connection	cannot	be	used	for	both	the	source	and
destination	of	a	transformation.

Using	DTS	Designer	or	the	DTS	Import/Export	Wizard,	it	is	possible	to
specify	read-only	or	in-use	status	for	some	providers	(for	example,
Microsoft	Access	and	ODBC	DSNs)	that	are	to	serve	as	data	sources
only.	Click	the	Advanced	tab	in	the	Connection	Properties	dialog	box,
and	in	the	Advanced	Connection	Properties	dialog	box,	set	the	value
of	the	mode	property	to	1.	

When	creating	a	table	using	the	DTS	Import/Export	Wizard	or	DTS
Designer,	the	owner	of	a	table	created	at	the	destination	is	the	current
user	(generally	the	dbo),	regardless	of	who	the	owner	is	at	the	source.
This	can	result	in	a	situation	where	the	dbo	attempts	to	create	a	table	at
the	destination	and	the	table	name	already	exists,	thus	causing	the
attempt	to	fail.

When	defining	a	data-driven	query	using	DTS	Designer,	a	data
destination	must	be	able	to	support	the	OLE	DB	ICommand	interface.
Due	to	this	restriction,	destinations	such	as	text	files	are	not	supported.

The	Copy	SQL	Server	Objects	task	of	DTS	truncates	fields	of	type	text,



ntext,	and	image	if	they	exceed	8388602	bytes	in	length.	No	error
messages	are	displayed	by	either	DTS	Designer	or	the	DTS
Import/Export	Wizard.	These	both	indicate	the	task	completed
successfully.

The	only	indication	of	failure	is	a	log	message	written	to	a	log	file
named	<server>.<database>.log,	in	the	Script	File	Directory	specified
on	the	Copy	tab	of	the	Copy	SQL	Server	Objects	Task	Properties
dialog	box.	The	log	message	specifies	the	table	and	column,	but	not	the
row,	where	the	truncation	occurred.	No	error	records	are	written	to	the
DTS	error	file	or	to	the	SQL	Server	log.

Microsoft	SNA	Server

When	using	Microsoft	SNA	Server	as	a	data	source,	consider	the	following:

The	Microsoft	OLE	DB	provider	for	AS/400	and	VSAM	does	not
support	SQL	statements	that	the	DTS	Import/Export	Wizard	uses	to
create	or	truncate	a	table.

Microsoft	Access

When	working	with	Access,	consider	the	following:

When	exporting	data	from	SQL	Server	2000	to	Microsoft	Access	97	or
earlier,	the	Microsoft	OLE	DB	Provider	for	Access	buffers	all	inserts	in
memory	and	only	commits	them	when	the	DTS	Import/Export	Wizard
completes	operation.	As	a	result,	you	can	face	a	low	memory	situation
when	you	export	large	tables.	However,	you	can	resolve	this	issue	by
constructing	SELECT	statements	that	send	smaller	numbers	of	rows	in
multiple	passes.

Microsoft	Visual	FoxPro

Microsoft	Visual	FoxPro®	supports	only	a	precision	of	(15,9)	for	numeric	data
types.	Data	exported	to	Visual	FoxPro	that	exceeds	this	precision	is	truncated
and	rounded.

Visual	FoxPro	does	not	support	the	SELECT	INTO	statement.



The	DTS	Query	Designer	supports	the	Visual	FoxPro	INSERT	VALUE
statement,	but	not	the	INSERT	statement	using	a	SELECT	statement.

The	Microsoft	OLE	DB	driver	for	ODBC	is	unable	to	write	BLOBs	to
Visual	FoxPro	using	the	FoxPro	ODBC	driver	because	Visual	FoxPro
does	not	support	dynamic	cursors.

ODBC

When	connecting	to	an	ODBC	data	source,	consider	the	following:

The	Microsoft	OLE	DB	Provider	for	ODBC	requires	a	unique	key	on
all	destination	tables	with	a	BLOB	data	column	when	performing	export
operations.

When	using	the	Microsoft	OLE	DB	provider	for	ODBC	with	the	SQL
Server	ODBC	driver,	all	BLOB	columns	should	be	arranged	after
columns	with	other	data	types	in	a	source	rowset.	You	can	use	a
SELECT	statement	to	rearrange	the	BLOB	columns	to	the	end	of	the
source	rowset.	The	DTS	Import/Export	Wizard	performs	this	operation
automatically.

IMPORTANT		When	using	the	Microsoft	OLE	DB	Provider	for	ODBC
with	the	SQL	Server	ODBC	driver,	attempts	to	preview	stored
procedures	fail	with	a	connection	busy	error.	This	problem	does	not
occur	if	you	use	the	Microsoft	OLE	DB	Provider	for	SQL	Server.

If	a	Microsoft	ODBC	Driver	for	SQL	Server	connection	is	being	shared
by	multiple	threads,	the	connection	may	fail,	returning	the	error
message	"Connection	is	busy	with	results	for	another	hstmt".	In	some
cases,	this	affects	packages	built	with	the	DTS	Import/Export	wizard.
Use	one	of	the	following	approaches	to	address	this	problem:

Set	the	MaxConcurrentSteps	property	to	1	to	eliminate
contending	threads.



Create	additional	ODBC	connections	to	eliminate	connection
sharing.

Use	the	Microsoft	OLE	DB	Provider	for	SQL	Server
(SQLOLEDB)	to	connect	to	the	database.	If	you	need	to
connect	to	a	SQL	Server	6.5	database,	run	Instcatl.sql	to	enable
access	with	the	Microsoft	OLE	DB	Provider	for	SQL	Server.

Oracle

When	using	Oracle	as	a	data	source,	consider	the	following:

The	Microsoft	ODBC	and	OLEDB	drivers	for	Oracle	support	the
Oracle	7.3	BLOB	data	types,	not	Oracle	8.0	data	types.	For	example,
BLOB,	CLOB,	NCLOB,	and	BFILE	are	not	supported.

The	Microsoft	ODBC	driver	for	Oracle	does	not	support	sending
Unicode	strings	into	an	Oracle	server.	Oracle	requires	prefixing
Unicode	strings	with	the	letter	N.

The	Microsoft	ODBC	driver	for	Oracle	does	not	support	negative
scaling	for	the	Oracle	number	data	type.

The	Microsoft	ODBC	driver	for	Oracle	reports	that	an	Oracle	number
data	type	without	a	specified	precision	has	a	size	of	20	digits.	When
importing	from	Oracle	(regardless	of	the	destination),	if	there	are	more
than	20	digits,	you	may	have	to	manually	increase	the	precision	if	the
destination	table	does	not	already	exist.

Oracle	supports	only	one	LONG	(BLOB)	data	column	in	a	table.	

You	cannot	import	or	export	Oracle	columns	that	have	mixed	or	lower
case	names.	You	also	cannot	transform	or	copy	data	using	Oracle
column	names	that	contain	spaces	using	the	DTS	Import/Export	Wizard.



Oracle	requires	case-sensitive	column	names	to	be	precisely	specified
and	quoted.

To	perform	distributed	transactions	between	SQL	Server	2000	and
Oracle,	you	must	use	Oracle	version	8.0.4.1	or	later.	For	more
information,	see	Distributed	Transactions.

Because	the	Microsoft	OLE	DB	Provider	for	Oracle	does	not	support
ICommandWithParameters,	it	cannot	be	used	as	the	destination	of	a
Data	Driven	Query	task.	When	using	this	provider	in	DTS	Designer,	the
Parameters	buttons	on	a	Transform	Data	task,	Data	Driven	Query	task,
and	Execute	SQL	task	will	be	disabled.

DB2	on	the	IBM	AS/400

When	connecting	to	a	DB2	data	source,	consider	the	following:

There	is	no	Unicode	or	BLOB	support	on	the	AS/400	system.	

You	cannot	transform	any	table	with	a	NULL	column	value	to	an
AS/400	server	because	the	AS/400	does	not	support	NULL	syntax	in	its
CREATE	TABLE	statement.	However,	you	can	send	NULL	values	if
you	edit	the	CREATE	TABLE	syntax	to	remove	the	references	to
NULL.	The	AS/400	does	not	support	NOT	NULL;	NULL	is	assumed	if
not	specified.

Using	the	Sybase	ODBC	Driver

When	connecting	to	a	Sybase	ODBC	data	source,	consider	the	following:

When	transforming	data	from	SQL	Server	into	Sybase	version	11	using
the	DTS	Import/Export	Wizard:

The	SQL	Server	numeric	(3,0)	data	type	maps	to	the	Sybase
smallmoney	data	type	by	default.	Change	this	setting	to	avoid
data	loss.

JavaScript:hhobj_1.Click()


The	SQL	Server	numeric	(18,x	or	19,x)	data	type	maps	to	the
Sybase	money	data	type	by	default.	Change	this	setting	to
avoid	data	loss.

When	moving	data	into	a	new	Sybase	table,	if	you	click	OK	in
the	Column	Mappings	and	Transformations	dialog	box,	the
wizard	returns	a	"Table	already	exists"	error	message.	You
should	ignore	this	message.

You	cannot	drop	and	re-create	a	Sybase	table	using	the	DTS
Import/Export	Wizard.	You	must	perform	this	action	without
using	a	wizard.

The	DTS	Query	Designer	does	not	support	the	Sybase	SQLAnywhere
CREATE	TABLE	statement.

The	DTS	Import/Export	Wizard	can	only	move	one	table	at	a	time	to	a
SQLAnywhere	database	due	to	a	limitation	in	the	SQLAnywhere	driver.
You	can	overcome	this	limitation	using	DTS	Designer.	However,	you
must	set	the	ExecuteInMainThread	property	of	the	Step	object	to
True	for	each	table,	as	the	SQLAnywhere	driver	is	not	thread	safe.

You	cannot	copy	a	table	to	a	Sybase	destination	if	it	contains	a	BLOB
column.

If	you	programmatically	copy	a	table	containing	an	image	data	type
from	Sybase,	changing	the	default	BLOB	settings	can	result	in	failure.

dBase	and	Paradox

When	connecting	to	dBase	and	Paradox	data	sources,	consider	the	following:

Table	names	in	dBase	and	Paradox	are	limited	to	eight	characters.
Column	names	in	dBase	are	limited	to	10	characters.



File	Import	or	Export

When	importing	or	exporting	data	from	text	files,	consider	the	following:

If	you	import	into	or	export	from	char	or	varchar	columns,	some
extended	characters	may	not	be	copied	correctly	if	your	client	OEM
code	page	is	different	from	the	code	page	on	the	server.	When	you
import	into	or	export	from	nchar	or	nvarchar	columns,	all	characters
copy	correctly.

If	you	export	BLOB	(including	SQL	Server	data	types	text	and	ntext)
columns	to	a	fixed	length	text	field,	the	default	length	is	set	equal	to	the
maximum	BLOB	field	length	(approximately	two	gigabytes).	Prevent
disk	overflow	by	choosing	a	smaller	but	still	adequate	field	length,	or
use	a	delimited	format	if	possible.

The	OLE	DB	provider	for	text	files	used	in	DTS	cannot	process
columns	with	BLOB	data	greater	than	two	megabytes	(MB).

Code	Pages,	Collation,	and	Non-Unicode	Data	Issues

When	using	DTS	to	copy	data	between	SQL	Server	databases	with	different
code	pages	and	collations,	data	may	be	lost	or	incorrectly	translated.

To	avoid	translation	issues,	store	international	data	in	Unicode.	Once	converted
to	Unicode,	you	can	easily	transfer	data	in	any	collation	or	code	page	without
loss	or	incorrect	translation	to	any	Microsoft	SQL	Server	2000	or	Microsoft	SQL
Server	7.0	database.

In	Microsoft	SQL	Server	2000,	collations	are	associated	with	particular	code
pages	and	are	assigned	to	individual	columns.	(Microsoft	SQL	Server	7.0	uses	a
single	default	code	page,	and	does	not	support	column-level	collations).	If	the
code	page	used	for	a	source	and	destination	column	match,	no	data	loss	will
occur	in	non-Unicode	columns.	When	data	is	copied	between	non-Unicode
columns,	and	the	source	and	destination	code	pages	do	not	match,	loss	of	data
can	result.	In	some	cases,	DTS	will	perform	a	best	fit	mapping,	with	data	loss	if
the	source	contains	characters	that	do	not	occur	in	the	destination	code	page.	In



other	cases,	DTS	will	perform	a	copy	without	any	intervening	translation,
resulting	in	the	loss	of	any	data	not	represented	by	the	same	binary	value	in	both
code	pages.	Following	are	problems	and	guidelines	for	using	the	Copy	SQL
Server	Objects	task	and	when	copying	data	with	the	Copy	Column
transformation	using	different	collations	or	code	pages.

Copy	SQL	Server	Objects	Task
The	following	refers	to	how	the	Copy	SQL	Server	Objects	task	handles	non-
Unicode	data:

When	copying	data	from	one	instance	of	SQL	Server	2000	to	another
instance	of	SQL	Server	2000	there	is	no	loss	of	data	provided	you	set
the	UseCollation	property	of	the	Copy	SQL	Server	Objects	task.

When	copying	data	from	an	instance	of	SQL	Server	2000	to	SQL	Server
7.0,	a	best	fit	mapping	is	used	for	columns	that	have	collations	that
match	the	database	default	collation	code	page.	Data	stored	in	a	column
with	a	different	code	page	is	interpreted	as	being	encoded	in	the	default
code	page,	with	attendant	losses	on	translation.	

When	copying	data	from	SQL	Server	7.0	to	an	instance	of	SQL	Server
2000,	the	UseCollation	property	is	not	available	because	SQL	Server
7.0	is	unable	to	determine	which	of	several	collations	its	default	code
page	maps	to.	No	collations	are	supported	during	Copy	SQL	Server
Objects	task	execution,	thus,	non-Unicode	destination	columns	will	be
assigned	the	default	collation	for	the	destination	database.	If	the	code
page	associated	with	the	collation	does	not	match	that	of	the	source
database,	DTS	will	perform	a	best	fit	mapping

When	copying	data	from	SQL	Server	7.0	to	SQL	Server	7.0,	if	the
source	and	destination	databases	use	different	default	code	pages,	DTS
will	perform	a	best	fit	mapping.

If	you	want	to	ensure	that	there	is	no	data	loss	when	copying	non-Unicode	data,
you	can	use	the	SQL	Server	bulk	copy	feature	to	export	data	in	Unicode	format,



then	use	bulk	copy	or	DTS	to	import	it.

To	disable	the	default	scripting	of	collations,	add	code	or	use	Disconnected	Edit
or	the	Dynamic	Properties	Task	to	add	the	value	of	SQLDMOScript2_70Only
to	the	ScriptOptionEx	property	of	the	Copy	SQL	Server	Objects	Task.

Copy	Column	Transformation
The	following	refers	to	how	the	Copy	Column	Transformation	handles	non-
Unicode	data	between	different	code	pages:

If	the	source	column	is	Unicode	and	the	destination	column	in	non-
Unicode,	a	best	fit	mapping	is	done,	and	an	attempt	is	made	to	translate
the	data	between	source	and	destination.

If	the	source	column	is	non-Unicode	and	the	destination	column	is
Unicode,	DTS	interprets	the	source	column	as	belonging	to	code	page
1252	regardless	of	the	actual	code	page	used.

If	both	the	source	and	destination	columns	are	non-Unicode,	raw	data
will	be	copied	without	translation,	and	some	loss	of	data	will	occur.



Data	Transformation	Services



DTS	Driver	Support	for	Heterogeneous	Data	Types
Data	Transformation	Services	(DTS)	uses	the	ODBC	drivers	and	OLE	DB
providers	supplied	by	Microsoft®	SQL	Server™	2000	to	perform	distributed
operations	against	heterogeneous	data	sources.

The	following	table	summarizes,	for	each	of	the	major	data	sources,	those
supplied	drivers	or	providers.	Microsoft	Product	Support	Services	will	help	you
resolve	problems	that	you	encounter	when	using	these	drivers	and	providers	to
perform	distributed	operations.	If	you	are	using	another	driver	or	provider,
contact	the	vendor	of	that	ODBC	driver	or	OLE	DB	provider	for	support.

Data	source Driver	or	provider Supported
Oracle	8 Microsoft	ODBC	for	Oracle	version

2.573.3401.00
Yes

Oracle	8 Microsoft	OLE	DB	Provider	for	Oracle
version	2.0010.3401.000

Yes

Microsoft	Jet
version	4.0

Microsoft	OLE	DB	Provider	for	Jet	version
4.0000.2115.0004

Yes

Microsoft	Excel
spreadsheet

Microsoft	OLE	DB	Provider	for	Jet	version
4.00.2115.15

Yes

Microsoft	Jet
version	3.51

Microsoft	Access	Driver	version
4.00.3401.00

No

IBM	DB2/MVS StarSQL	32	version	2.52.0501 Yes
IBM	DB2/AS400 StarSQL	32	version	2.40.0805 Yes

DTS	and	Informix
The	Informix	ODBC	driver	is	not	supported	for	use	with	DTS.

The	Merant	Informix	OLE	DB	provider	is	supported	for	DTS	imports
from	Informix,	but	not	DTS	exports	to	Informix.	This	driver	also	cannot
be	used	to	import	meta	data.



The	Intersolv	Informix	ODBC	driver	is	supported,	but	with	the
following	restrictions:

BLOBs	cannot	be	exported	to	Informix.

When	creating	new	tables	on	Informix,	the	DTS	Import/Export
Wizard	will	incorrectly	map	the	SQL	Server	2000	datetime
columns	to	the	Informix	'Datetime	year	to	fraction'	data	type.
Manually	change	this	to	the	Informix	Date	type.

The	DTS	meta	data	import	will	not	import	Informix	catalog	or
table	information.



Data	Transformation	Services



Enhancing	Data	Driven	Queries	in	DTS
By	changing	properties	in	Data	Transformation	Services	(DTS)	Designer	or	via
the	DTS	object	model,	you	can	configure	the	Data	Driven	Query	task	to:

Fail	on	the	first	error,	or	continue,	perhaps	logging	errors,	until	a
maximum	error	count	is	reached.

Commit	modifications	immediately,	or	join	the	package	transaction	to
make	all	edits	succeed	or	fail	together.

Use	lookup	queries	to	help	populate	destination	columns	or	determine
which	query	to	execute.

Error	Handling	and	the	Data	Driven	Query	Task

The	Data	Driven	Query	task	offers	a	number	of	features	to	support	error
handling	and	restarts:

To	adjust	the	response	of	the	Data	Driven	Query	task	to	failures,	you
can	either	change	the	Maximum	errors	property	in	the	Data	Driven
Queries	dialog	box	or	adjust	the	MaximumErrorCount	property	in	the
DTS	object	model.

When	the	number	of	failures	exceeds	this	maximum	value,	the	task
halts	and	the	step	fails.

You	can	log	errors	to	a	file	you	name,	with	formatting	you	provide.	

In	order	to	support	restarts,	you	can	configure	the	Data	Driven	Query
task	to	operate	only	on	a	numbered	subrange	of	the	source	rowset.

Transactions	and	the	Data	Driven	Query	Task

The	Data	Driven	Query	task	can	join	the	package	transaction.	Before	using	the
Data	Driven	Query	task	in	transactions,	consider	the	following:



If	the	Data	Driven	Query	task	does	not	join	the	package	transaction,
updates	are	made	one	at	a	time,	as	they	are	requested.	

If	the	Data	Driven	Query	task	does	join	the	package	transaction,
successfully	run	queries	remain	in	the	transaction	at	the	conclusion	of
the	task.	These	results	are	subject	to	commit	or	rollback	in	the	current	or
following	steps,	or	at	package	completion.

In	order	to	join	the	package	transaction,	the	binding	table
connection	must	support	transactions.	

Data	Driven	Query	task	failure	does	not	automatically	roll	back
successfully	run	queries;	task	success	does	not	automatically
commit	them.	Commit	and	rollback	happen	only	in	response	to
user	package	and	workflow	settings.	For	more	information,	see
Configuring	Properties	for	DTS	Transactions.

Lookup	Queries	and	the	Data	Driven	Query	Task

The	Data	Driven	Query	task	can	include	lookup	queries,	which	are	additional
parameterized	queries	that	can	be	used	to	look	up	or	modify	data	on	local	or
distant	connections.

Before	adding	lookup	queries	to	the	Data	Driven	Query	task,	consider	the
following:

If	the	Data	Driven	Query	task	joins	the	package	transaction,	and	the
lookup	connection	supports	transactions,	any	updates	made	by	lookup
queries	also	take	part	in	the	package	transaction.	For	more	information,
see	Lookup	Queries.

If	the	Data	Driven	Query	task	does	not	join	the	package	transaction,	or
Maximum	errors	is	not	equal	to	zero,	the	possibility	exists	that	a
lookup	might	successfully	execute	before	the	corresponding	data	driven
query	fails.	If	the	lookup	modifies	data,	inconsistent	updates	might
result.



Other	Usage	Considerations

Before	using	the	Data	Driven	Query	task,	you	also	should	consider	the
following:

The	data	driven	query	task	binding	table	must	be	able	to	support	the
OLE	DB	ICommand	interface.	Due	to	this	restriction,	binding	tables
such	as	text	files	are	not	supported.

You	should	use	unique	connections	for	the	source,	binding	table,	and
any	lookup	queries.

See	Also

Data	Driven	Query	Task



Data	Transformation	Services



Enhancing	Lookup	Queries	in	DTS
When	implementing	Data	Transformation	Services	(DTS)	lookup	queries,
consider	the	following:

DTS	lookups	are	best	used	when	the	input	to	the	lookup	is	an	external
value	(for	example,	a	global	variable).

Lookups	can	be	invoked	from	within	a	transformation	function,
allowing	you	to	associate	a	query	and	a	connection	with	the	lookup.	In	a
transformation	function,	you	can	then	execute	the	query	and	have	one	or
more	values	returned.	You	can	achieve	similar	functionality	using	COM
objects,	VARIANTs,	and	the	DTS	GlobalVariables	collection.
However,	the	Lookup	object	uses	an	established	connection	and	is
optimized	for	quick	data	retrieval	using	caching.

If	the	transformation	function	can	use	an	SQL	statement	instead	of	a
lookup	(for	example,	a	SELECT	statement	with	a	join	clause),
performance	can	be	greatly	improved.

You	can	configure	a	lookup	query	to	cache	results	by	specifying	a	cache
size.	If	the	cache	size	is	larger	than	zero,	then	the	results	of	the	query
are	cached	along	with	parameter	values.	If	you	provide	the	same
parameter	values	to	the	query	again,	the	results	are	returned	from	the
cache	with	no	additional	database	access.	When	the	cache	fills	up,	rows
are	removed	in	least	recently	used	order.

The	lookup	query	connection	must	be	able	to	support	the	OLE	DB
ICommand	interface	in	order	to	accept	SQL	statements	directly.	Due	to
this	restriction,	connections	such	as	text	files	cannot	be	used	for
lookups.

If	a	task	joins	the	package	transaction	and	the	lookup	connection
supports	transactions,	any	updates	made	by	lookup	queries	also	take
part	in	the	package	transaction.	If	the	task	joins	the	package	transaction



and	the	lookup	connection	does	not	support	transactions,	on	rollback,
updates	made	by	lookups	will	remain	on	file.

A	lookup	query	may	fail	(for	example,	if	it	attempts	to	insert	a	row	with	a
duplicate	key).	If	a	lookup	fails,	no	further	processing	takes	place	for	the	source
row.	Lookup	failure	counts	as	one	error	against	the	maximum	errors	property
of	the	containing	task.

See	Also

Lookup	Queries


	DTS Overview
	DTS Basics
	DTS Tools
	DTS Import/Export Wizard
	Creating a DTS Package with the DTS Import/Export Wizard

	DTS Designer
	Creating a DTS Package with DTS Designer
	DTS Designer Example: A Completed DTS Package
	DTS Designer Example: Copying Northwind Data

	DTS Package Templates

	DTS and SQL Server Enterprise Manager
	DTS Package Execution Utilities
	DTS Query Designer

	DTS Package Elements
	DTS Tasks
	Tasks That Transform Data
	Transform Data Task
	Data Driven Query Task
	Data Flow in a Data Driven Query Task
	Building a Data Driven Query
	Data Driven Query Example: Changing Customer Accounts
	Data Driven Query Example: File Maintenance

	Multiphase Data Pump Functionality

	Tasks that Copy and Manage Data
	Bulk Insert Task
	Execute SQL Task
	Copy SQL Server Objects Task
	Transfer Database Objects Tasks

	Tasks That Function as Jobs
	ActiveX Script Task
	Dynamic Properties Task
	Execute Package Task
	Execute Process Task
	File Transfer Protocol Task
	Message Queue Task
	Installing and Configuring Message Queuing
	Message Types
	Sending Messages with the Message Queue Task
	Receiving Messages with the Message Queue Task
	Receiving String Messages
	Receiving Data File Messages
	Receiving Global Variables Messages

	Message Queue Task Examples
	Using String Messages to Trigger Tasks
	Using Global Variable Messages to Queue Database Updates
	Using Data File Messages to Collect Data


	Send Mail Task


	DTS Transformations
	Mapping Column Transformations
	Transformation Types
	Copy Column Transformation
	ActiveX Script Transformation
	Date Time String Transformation
	Lowercase String Transformation
	Uppercase String Transformation
	Middle of String Transformation
	Trim String Transformation
	Read File Transformation
	Write File Transformation


	DTS Connections
	Data Link Connection

	DTS Package Workflow
	Using ActiveX Scripts in a DTS Workflow


	Managing a DTS Package
	Creating a DTS Package
	Editing a DTS Package
	Deleting a DTS Package
	Executing a DTS Package
	Scheduling a DTS Package for Execution

	Saving a DTS Package
	Saving a DTS Package to SQL Server
	Saving a DTS Package to Meta Data Services
	Saving a DTS Package to a Structured Storage File
	Saving a DTS Package to a Visual Basic File

	Using DTS Package Logs
	Managing DTS Package Properties
	Viewing and Modifying DTS Package Properties
	Editing DTS Package Properties with Disconnected Edit

	Handling Package Security in DTS

	Adding Functionality to a DTS Package
	Using ActiveX Scripts in DTS
	Using Return Codes in DTS
	Debugging ActiveX Scripts

	Incorporating Transactions in a DTS Package
	Configuring Properties for DTS Transactions
	DTS Transaction Fundamentals
	Inherited Transactions
	Supported Connection Types
	Supported Task Types

	Designing DTS Transactions
	Sequential Execution
	Parallel Execution
	Checkpointing Package Transactions
	Branching on Transaction Failure


	Lookup Queries
	Configuring a Simple Lookup Query
	Managing Zero or Multiple Result Rows in Lookup Queries
	Using Lookup Queries to Modify Data
	Using Multiple Lookup Queries

	Using Global Variables with DTS Packages
	Using Parameterized Queries in DTS
	Querying a DTS Package from External Sources
	Querying a Package with OPENROWSET
	Issuing Distributed Queries Against Package Data


	Sharing Meta Data
	DTS Information Model
	Recording Data Lineage in DTS
	Importing and Saving Meta Data in DTS
	Viewing Meta Data in DTS

	Usage Considerations in DTS
	Enhancing Performance of DTS Packages
	Data Conversion and Transformation Considerations
	DTS Driver Support for Heterogeneous Data Types
	Enhancing Data Driven Queries in DTS
	Enhancing Lookup Queries in DTS


